1 % $Id: mp.web,v 1.8 2005/08/24 10:54:02 taco Exp $
2 % MetaPost, by John Hobby. Public domain.
4 % Much of this program was copied with permission from MF.web Version 1.9
5 % It interprets a language very similar to D.E. Knuth's METAFONT, but with
6 % changes designed to make it more suitable for PostScript output.
8 % TeX is a trademark of the American Mathematical Society.
9 % METAFONT is a trademark of Addison-Wesley Publishing Company.
10 % PostScript is a trademark of Adobe Systems Incorporated.
12 % Here is TeX material that gets inserted after \input webmac
13 \def\hang{\hangindent 3em\noindent\ignorespaces}
14 \def\textindent#1{\hangindent2.5em\noindent\hbox to2.5em{\hss#1 }\ignorespaces}
16 \def\psqrt#1{\sqrt{\mathstrut#1}}
18 \def\pct!{{\char`\%}} % percent sign in ordinary text
19 \font\tenlogo=logo10 % font used for the METAFONT logo
21 \def\MF{{\tenlogo META}\-{\tenlogo FONT}}
22 \def\MP{{\tenlogo META}\-{\tenlogo POST}}
23 \def\[#1]{\ignorespaces} % left over from pascal web
24 \def\<#1>{$\langle#1\rangle$}
25 \def\section{\mathhexbox278}
26 \let\swap=\leftrightarrow
27 \def\round{\mathop{\rm round}\nolimits}
28 \mathchardef\vb="026A % synonym for `\|'
30 \def\(#1){} % this is used to make section names sort themselves better
31 \def\9#1{} % this is used for sort keys in the index via @@:sort key}{entry@@>
38 This is \MP, a graphics-language processor based on D. E. Knuth's \MF.
40 The main purpose of the following program is to explain the algorithms of \MP\
41 as clearly as possible. However, the program has been written so that it
42 can be tuned to run efficiently in a wide variety of operating environments
43 by making comparatively few changes. Such flexibility is possible because
44 the documentation that follows is written in the \.{WEB} language, which is
45 at a higher level than C.
47 A large piece of software like \MP\ has inherent complexity that cannot
48 be reduced below a certain level of difficulty, although each individual
49 part is fairly simple by itself. The \.{WEB} language is intended to make
50 the algorithms as readable as possible, by reflecting the way the
51 individual program pieces fit together and by providing the
52 cross-references that connect different parts. Detailed comments about
53 what is going on, and about why things were done in certain ways, have
54 been liberally sprinkled throughout the program. These comments explain
55 features of the implementation, but they rarely attempt to explain the
56 \MP\ language itself, since the reader is supposed to be familiar with
57 {\sl The {\logos METAFONT\/}book} as well as the manual
59 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
60 {\sl A User's Manual for MetaPost}, Computing Science Technical Report 162,
61 AT\AM T Bell Laboratories.
63 @ The present implementation is a preliminary version, but the possibilities
64 for new features are limited by the desire to remain as nearly compatible
65 with \MF\ as possible.
67 On the other hand, the \.{WEB} description can be extended without changing
68 the core of the program, and it has been designed so that such
69 extensions are not extremely difficult to make.
70 The |banner| string defined here should be changed whenever \MP\
71 undergoes any modifications, so that it will be clear which version of
72 \MP\ might be the guilty party when a problem arises.
74 @^system dependencies@>
76 @d banner "This is MetaPost, Version 1.002" /* printed when \MP\ starts */
77 @d metapost_version "1.002"
78 @d mplib_version "0.20"
79 @d version_string " (Cweb version 0.20)"
84 @ The external library header for \MP\ is |mplib.h|. It contains a
85 few typedefs and the header defintions for the externally used
88 The most important of the typedefs is the definition of the structure
89 |MP_options|, that acts as a small, configurable front-end to the fairly
90 large |MP_instance| structure.
93 typedef struct MP_instance * MP;
95 typedef struct MP_options {
98 @<Exported function headers@>
100 @ The internal header file is much longer: it not only lists the complete
101 |MP_instance|, but also a lot of functions that have to be available to
102 the \ps\ backend, that is defined in a separate \.{WEB} file.
104 The variables from |MP_options| are included inside the |MP_instance|
109 typedef struct psout_data_struct * psout_data;
111 typedef signed int integer;
113 @<Types in the outer block@>;
114 @<Constants in the outer block@>
115 # ifndef LIBAVL_ALLOCATOR
116 # define LIBAVL_ALLOCATOR
117 struct libavl_allocator {
118 void *(*libavl_malloc) (struct libavl_allocator *, size_t libavl_size);
119 void (*libavl_free) (struct libavl_allocator *, void *libavl_block);
122 typedef struct MP_instance {
126 @<Internal library declarations@>
134 #include <unistd.h> /* for access() */
135 #include <time.h> /* for struct tm \& co */
137 #include "mpmp.h" /* internal header */
138 #include "mppsout.h" /* internal header */
141 @<Basic printing procedures@>
142 @<Error handling procedures@>
144 @ Here are the functions that set up the \MP\ instance.
147 @<Declare |mp_reallocate| functions@>;
148 struct MP_options *mp_options (void);
149 MP mp_new (struct MP_options *opt);
152 struct MP_options *mp_options (void) {
153 struct MP_options *opt;
154 opt = malloc(sizeof(MP_options));
156 memset (opt,0,sizeof(MP_options));
161 @ The |__attribute__| pragma is gcc-only.
163 @<Internal library ... @>=
164 #if !defined(__GNUC__) || (__GNUC__ < 2)
165 # define __attribute__(x)
166 #endif /* !defined(__GNUC__) || (__GNUC__ < 2) */
169 MP __attribute__ ((noinline))
170 mp_new (struct MP_options *opt) {
172 mp = xmalloc(1,sizeof(MP_instance));
173 @<Set |ini_version|@>;
174 @<Setup the non-local jump buffer in |mp_new|@>;
175 @<Allocate or initialize variables@>
176 if (opt->main_memory>mp->mem_max)
177 mp_reallocate_memory(mp,opt->main_memory);
178 mp_reallocate_paths(mp,1000);
179 mp_reallocate_fonts(mp,8);
184 void mp_free (MP mp) {
185 int k; /* loop variable */
186 @<Dealloc variables@>
191 void __attribute__((noinline))
192 mp_do_initialize ( MP mp) {
193 @<Local variables for initialization@>
194 @<Set initial values of key variables@>
196 int mp_initialize (MP mp) { /* this procedure gets things started properly */
197 mp->history=mp_fatal_error_stop; /* in case we quit during initialization */
198 @<Install and test the non-local jump buffer@>;
199 t_open_out; /* open the terminal for output */
200 @<Check the ``constant'' values...@>;
203 snprintf(ss,256,"Ouch---my internal constants have been clobbered!\n"
204 "---case %i",(int)mp->bad);
205 do_fprintf(mp->err_out,(char *)ss);
209 mp_do_initialize(mp); /* erase preloaded mem */
210 if (mp->ini_version) {
211 @<Run inimpost commands@>;
213 @<Initialize the output routines@>;
214 @<Get the first line of input and prepare to start@>;
216 mp_init_map_file(mp, mp->troff_mode);
217 mp->history=mp_spotless; /* ready to go! */
218 if (mp->troff_mode) {
219 mp->internal[mp_gtroffmode]=unity;
220 mp->internal[mp_prologues]=unity;
222 if ( mp->start_sym>0 ) { /* insert the `\&{everyjob}' symbol */
223 mp->cur_sym=mp->start_sym; mp_back_input(mp);
229 @<Exported function headers@>=
230 extern struct MP_options *mp_options (void);
231 extern MP mp_new (struct MP_options *opt) ;
232 extern void mp_free (MP mp);
233 extern int mp_initialize (MP mp);
235 @ The overall \MP\ program begins with the heading just shown, after which
236 comes a bunch of procedure declarations and function declarations.
237 Finally we will get to the main program, which begins with the
238 comment `|start_here|'. If you want to skip down to the
239 main program now, you can look up `|start_here|' in the index.
240 But the author suggests that the best way to understand this program
241 is to follow pretty much the order of \MP's components as they appear in the
242 \.{WEB} description you are now reading, since the present ordering is
243 intended to combine the advantages of the ``bottom up'' and ``top down''
244 approaches to the problem of understanding a somewhat complicated system.
246 @ Some of the code below is intended to be used only when diagnosing the
247 strange behavior that sometimes occurs when \MP\ is being installed or
248 when system wizards are fooling around with \MP\ without quite knowing
249 what they are doing. Such code will not normally be compiled; it is
250 delimited by the preprocessor test `|#ifdef DEBUG .. #endif|'.
252 @ This program has two important variations: (1) There is a long and slow
253 version called \.{INIMP}, which does the extra calculations needed to
255 initialize \MP's internal tables; and (2)~there is a shorter and faster
256 production version, which cuts the initialization to a bare minimum.
258 Which is which is decided at runtime.
260 @ The following parameters can be changed at compile time to extend or
261 reduce \MP's capacity. They may have different values in \.{INIMP} and
262 in production versions of \MP.
264 @^system dependencies@>
267 #define file_name_size 255 /* file names shouldn't be longer than this */
268 #define bistack_size 1500 /* size of stack for bisection algorithms;
269 should probably be left at this value */
271 @ Like the preceding parameters, the following quantities can be changed
272 at compile time to extend or reduce \MP's capacity. But if they are changed,
273 it is necessary to rerun the initialization program \.{INIMP}
275 to generate new tables for the production \MP\ program.
276 One can't simply make helter-skelter changes to the following constants,
277 since certain rather complex initialization
278 numbers are computed from them.
281 int max_strings; /* maximum number of strings; must not exceed |max_halfword| */
282 int pool_size; /* maximum number of characters in strings, including all
283 error messages and help texts, and the names of all identifiers */
284 int mem_max; /* greatest index in \MP's internal |mem| array;
285 must be strictly less than |max_halfword|;
286 must be equal to |mem_top| in \.{INIMP}, otherwise |>=mem_top| */
287 int mem_top; /* largest index in the |mem| array dumped by \.{INIMP};
288 must not be greater than |mem_max| */
290 @ @<Option variables@>=
291 int error_line; /* width of context lines on terminal error messages */
292 int half_error_line; /* width of first lines of contexts in terminal
293 error messages; should be between 30 and |error_line-15| */
294 int max_print_line; /* width of longest text lines output; should be at least 60 */
295 int hash_size; /* maximum number of symbolic tokens,
296 must be less than |max_halfword-3*param_size| */
297 int hash_prime; /* a prime number equal to about 85\pct! of |hash_size| */
298 int param_size; /* maximum number of simultaneous macro parameters */
299 int max_in_open; /* maximum number of input files and error insertions that
300 can be going on simultaneously */
301 int main_memory; /* only for options, to set up |mem_max| and |mem_top| */
304 @d set_value(a,b,c) do { a=c; if (b>c) a=b; } while (0)
309 set_value(mp->error_line,opt->error_line,79);
310 set_value(mp->half_error_line,opt->half_error_line,50);
311 set_value(mp->max_print_line,opt->max_print_line,100);
312 mp->main_memory=5000;
315 set_value(mp->hash_size,opt->hash_size,9500);
316 set_value(mp->hash_prime,opt->hash_prime,7919);
317 set_value(mp->param_size,opt->param_size,150);
318 set_value(mp->max_in_open,opt->max_in_open,10);
321 @ In case somebody has inadvertently made bad settings of the ``constants,''
322 \MP\ checks them using a global variable called |bad|.
324 This is the first of many sections of \MP\ where global variables are
328 integer bad; /* is some ``constant'' wrong? */
330 @ Later on we will say `\ignorespaces|if (mem_max>=max_halfword) bad=10;|',
331 or something similar. (We can't do that until |max_halfword| has been defined.)
333 @<Check the ``constant'' values for consistency@>=
335 if ( (mp->half_error_line<30)||(mp->half_error_line>mp->error_line-15) ) mp->bad=1;
336 if ( mp->max_print_line<60 ) mp->bad=2;
337 if ( mp->mem_top<=1100 ) mp->bad=4;
338 if (mp->hash_prime>mp->hash_size ) mp->bad=5;
340 @ Some |goto| labels are used by the following definitions. The label
341 `|restart|' is occasionally used at the very beginning of a procedure; and
342 the label `|reswitch|' is occasionally used just prior to a |case|
343 statement in which some cases change the conditions and we wish to branch
344 to the newly applicable case. Loops that are set up with the |loop|
345 construction defined below are commonly exited by going to `|done|' or to
346 `|found|' or to `|not_found|', and they are sometimes repeated by going to
347 `|continue|'. If two or more parts of a subroutine start differently but
348 end up the same, the shared code may be gathered together at
351 @ Here are some macros for common programming idioms.
353 @d incr(A) (A)=(A)+1 /* increase a variable by unity */
354 @d decr(A) (A)=(A)-1 /* decrease a variable by unity */
355 @d negate(A) (A)=-(A) /* change the sign of a variable */
356 @d double(A) (A)=(A)+(A)
359 @d do_nothing /* empty statement */
360 @d Return goto exit /* terminate a procedure call */
361 @f return nil /* \.{WEB} will henceforth say |return| instead of \\{return} */
363 @* \[2] The character set.
364 In order to make \MP\ readily portable to a wide variety of
365 computers, all of its input text is converted to an internal eight-bit
366 code that includes standard ASCII, the ``American Standard Code for
367 Information Interchange.'' This conversion is done immediately when each
368 character is read in. Conversely, characters are converted from ASCII to
369 the user's external representation just before they are output to a
373 Such an internal code is relevant to users of \MP\ only with respect to
374 the \&{char} and \&{ASCII} operations, and the comparison of strings.
376 @ Characters of text that have been converted to \MP's internal form
377 are said to be of type |ASCII_code|, which is a subrange of the integers.
380 typedef unsigned char ASCII_code; /* eight-bit numbers */
382 @ The present specification of \MP\ has been written under the assumption
383 that the character set contains at least the letters and symbols associated
384 with ASCII codes 040 through 0176; all of these characters are now
385 available on most computer terminals.
387 We shall use the name |text_char| to stand for the data type of the characters
388 that are converted to and from |ASCII_code| when they are input and output.
389 We shall also assume that |text_char| consists of the elements
390 |chr(first_text_char)| through |chr(last_text_char)|, inclusive.
391 The following definitions should be adjusted if necessary.
392 @^system dependencies@>
394 @d first_text_char 0 /* ordinal number of the smallest element of |text_char| */
395 @d last_text_char 255 /* ordinal number of the largest element of |text_char| */
398 typedef unsigned char text_char; /* the data type of characters in text files */
400 @ @<Local variables for init...@>=
403 @ The \MP\ processor converts between ASCII code and
404 the user's external character set by means of arrays |xord| and |xchr|
405 that are analogous to Pascal's |ord| and |chr| functions.
407 @d xchr(A) mp->xchr[(A)]
408 @d xord(A) mp->xord[(A)]
411 ASCII_code xord[256]; /* specifies conversion of input characters */
412 text_char xchr[256]; /* specifies conversion of output characters */
414 @ The core system assumes all 8-bit is acceptable. If it is not,
415 a change file has to alter the below section.
416 @^system dependencies@>
418 Additionally, people with extended character sets can
419 assign codes arbitrarily, giving an |xchr| equivalent to whatever
420 characters the users of \MP\ are allowed to have in their input files.
421 Appropriate changes to \MP's |char_class| table should then be made.
422 (Unlike \TeX, each installation of \MP\ has a fixed assignment of category
423 codes, called the |char_class|.) Such changes make portability of programs
424 more difficult, so they should be introduced cautiously if at all.
425 @^character set dependencies@>
426 @^system dependencies@>
429 for (i=0;i<=0377;i++) { xchr(i)=i; }
431 @ The following system-independent code makes the |xord| array contain a
432 suitable inverse to the information in |xchr|. Note that if |xchr[i]=xchr[j]|
433 where |i<j<0177|, the value of |xord[xchr[i]]| will turn out to be
434 |j| or more; hence, standard ASCII code numbers will be used instead of
435 codes below 040 in case there is a coincidence.
438 for (i=first_text_char;i<=last_text_char;i++) {
441 for (i=0200;i<=0377;i++) { xord(xchr(i))=i;}
442 for (i=0;i<=0176;i++) { xord(xchr(i))=i;}
444 @* \[3] Input and output.
445 The bane of portability is the fact that different operating systems treat
446 input and output quite differently, perhaps because computer scientists
447 have not given sufficient attention to this problem. People have felt somehow
448 that input and output are not part of ``real'' programming. Well, it is true
449 that some kinds of programming are more fun than others. With existing
450 input/output conventions being so diverse and so messy, the only sources of
451 joy in such parts of the code are the rare occasions when one can find a
452 way to make the program a little less bad than it might have been. We have
453 two choices, either to attack I/O now and get it over with, or to postpone
454 I/O until near the end. Neither prospect is very attractive, so let's
457 The basic operations we need to do are (1)~inputting and outputting of
458 text, to or from a file or the user's terminal; (2)~inputting and
459 outputting of eight-bit bytes, to or from a file; (3)~instructing the
460 operating system to initiate (``open'') or to terminate (``close'') input or
461 output from a specified file; (4)~testing whether the end of an input
462 file has been reached; (5)~display of bits on the user's screen.
463 The bit-display operation will be discussed in a later section; we shall
464 deal here only with more traditional kinds of I/O.
466 @ Finding files happens in a slightly roundabout fashion: the \MP\
467 instance object contains a field that holds a function pointer that finds a
468 file, and returns its name, or NULL. For this, it receives three
469 parameters: the non-qualified name |fname|, the intended |fopen|
470 operation type |fmode|, and the type of the file |ftype|.
472 The file types that are passed on in |ftype| can be used to
473 differentiate file searches if a library like kpathsea is used,
474 the fopen mode is passed along for the same reason.
477 typedef unsigned char eight_bits ; /* unsigned one-byte quantity */
479 @ @<Exported types@>=
481 mp_filetype_terminal = 0, /* the terminal */
482 mp_filetype_error, /* the terminal */
483 mp_filetype_program , /* \MP\ language input */
484 mp_filetype_log, /* the log file */
485 mp_filetype_postscript, /* the postscript output */
486 mp_filetype_memfile, /* memory dumps */
487 mp_filetype_metrics, /* TeX font metric files */
488 mp_filetype_fontmap, /* PostScript font mapping files */
489 mp_filetype_font, /* PostScript type1 font programs */
490 mp_filetype_encoding, /* PostScript font encoding files */
491 mp_filetype_text, /* first text file for readfrom and writeto primitives */
493 typedef char *(*mp_file_finder)(char *, char *, int);
494 typedef void *(*mp_file_opener)(char *, char *, int);
495 typedef char *(*mp_file_reader)(void *, size_t *);
496 typedef void (*mp_binfile_reader)(void *, void **, size_t *);
497 typedef void (*mp_file_closer)(void *);
498 typedef int (*mp_file_eoftest)(void *);
499 typedef void (*mp_file_flush)(void *);
500 typedef void (*mp_file_writer)(void *, char *);
501 typedef void (*mp_binfile_writer)(void *, void *, size_t);
504 @ @<Option variables@>=
505 mp_file_finder find_file;
506 mp_file_opener open_file;
507 mp_file_reader read_ascii_file;
508 mp_binfile_reader read_binary_file;
509 mp_file_closer close_file;
510 mp_file_eoftest eof_file;
511 mp_file_flush flush_file;
512 mp_file_writer write_ascii_file;
513 mp_binfile_writer write_binary_file;
515 @ The default function for finding files is |mp_find_file|. It is
516 pretty stupid: it will only find files in the current directory.
518 This function may disappear altogether, it is currently only
519 used for the default font map file.
522 char *mp_find_file (char *fname, char *fmode, int ftype) {
523 if (fmode[0] != 'r' || (! access (fname,R_OK)) || ftype) {
524 return strdup(fname);
529 @ This has to be done very early on, so it is best to put it in with
530 the |mp_new| allocations
532 @d set_callback_option(A) do { mp->A = mp_##A;
533 if (opt->A!=NULL) mp->A = opt->A;
536 @<Allocate or initialize ...@>=
537 set_callback_option(find_file);
538 set_callback_option(open_file);
539 set_callback_option(read_ascii_file);
540 set_callback_option(read_binary_file);
541 set_callback_option(close_file);
542 set_callback_option(eof_file);
543 set_callback_option(flush_file);
544 set_callback_option(write_ascii_file);
545 set_callback_option(write_binary_file);
547 @ Because |mp_find_file| is used so early, it has to be in the helpers
551 char *mp_find_file (char *fname, char *fmode, int ftype) ;
552 void *mp_open_file (char *fname, char *fmode, int ftype) ;
553 char *mp_read_ascii_file (void *f, size_t *size) ;
554 void mp_read_binary_file (void *f, void **d, size_t *size) ;
555 void mp_close_file (void *f) ;
556 int mp_eof_file (void *f) ;
557 void mp_flush_file (void *f) ;
558 void mp_write_ascii_file (void *f, char *s) ;
559 void mp_write_binary_file (void *f, void *s, size_t t) ;
561 @ The function to open files can now be very short.
564 void *mp_open_file(char *fname, char *fmode, int ftype) {
566 if (ftype==mp_filetype_terminal) {
567 return (fmode[0] == 'r' ? stdin : stdout);
568 } else if (ftype==mp_filetype_error) {
570 } else if (fname != NULL && (fmode[0] != 'r' || (! access (fname,R_OK)))) {
571 return (void *)fopen(fname, fmode);
577 @ This is a legacy interface: (almost) all file names pass through |name_of_file|.
580 char name_of_file[file_name_size+1]; /* the name of a system file */
581 int name_length;/* this many characters are actually
582 relevant in |name_of_file| (the rest are blank) */
584 @ @<Option variables@>=
585 int print_found_names; /* configuration parameter */
587 @ If this parameter is true, the terminal and log will report the found
588 file names for input files instead of the requested ones.
589 It is off by default because it creates an extra filename lookup.
591 @<Allocate or initialize ...@>=
592 mp->print_found_names = (opt->print_found_names>0 ? true : false);
594 @ \MP's file-opening procedures return |false| if no file identified by
595 |name_of_file| could be opened.
597 The |OPEN_FILE| macro takes care of the |print_found_names| parameter.
598 It is not used for opening a mem file for read, because that file name
602 if (mp->print_found_names) {
603 char *s = (mp->find_file)(mp->name_of_file,A,ftype);
605 *f = (mp->open_file)(mp->name_of_file,A, ftype);
606 strncpy(mp->name_of_file,s,file_name_size);
612 *f = (mp->open_file)(mp->name_of_file,A, ftype);
615 return (*f ? true : false)
618 boolean mp_a_open_in (MP mp, void **f, int ftype) {
619 /* open a text file for input */
623 boolean mp_w_open_in (MP mp, void **f) {
624 /* open a word file for input */
625 *f = (mp->open_file)(mp->name_of_file,"rb",mp_filetype_memfile);
626 return (*f ? true : false);
629 boolean mp_a_open_out (MP mp, void **f, int ftype) {
630 /* open a text file for output */
634 boolean mp_b_open_out (MP mp, void **f, int ftype) {
635 /* open a binary file for output */
639 boolean mp_w_open_out (MP mp, void **f) {
640 /* open a word file for output */
641 int ftype = mp_filetype_memfile;
646 char *mp_read_ascii_file (void *f, size_t *size) {
648 size_t len = 0, lim = 128;
656 if (s==NULL) return NULL;
657 while (c!=EOF && c!='\n' && c!='\r') {
659 s =realloc(s, (lim+(lim>>2)));
660 if (s==NULL) return NULL;
668 if (c!=EOF && c!='\n')
678 void mp_write_ascii_file (void *f, char *s) {
687 void mp_read_binary_file (void *f, void **data, size_t *size) {
690 len = fread(*data,1,*size,f);
696 void mp_write_binary_file (void *f, void *s, size_t size) {
705 void mp_close_file (void *f) {
712 int mp_eof_file (void *f) {
721 void mp_flush_file (void *f) {
727 @ Input from text files is read one line at a time, using a routine called
728 |input_ln|. This function is defined in terms of global variables called
729 |buffer|, |first|, and |last| that will be described in detail later; for
730 now, it suffices for us to know that |buffer| is an array of |ASCII_code|
731 values, and that |first| and |last| are indices into this array
732 representing the beginning and ending of a line of text.
735 size_t buf_size; /* maximum number of characters simultaneously present in
736 current lines of open files */
737 ASCII_code *buffer; /* lines of characters being read */
738 size_t first; /* the first unused position in |buffer| */
739 size_t last; /* end of the line just input to |buffer| */
740 size_t max_buf_stack; /* largest index used in |buffer| */
742 @ @<Allocate or initialize ...@>=
744 mp->buffer = xmalloc((mp->buf_size+1),sizeof(ASCII_code));
746 @ @<Dealloc variables@>=
750 void mp_reallocate_buffer(MP mp, size_t l) {
752 if (l>max_halfword) {
753 mp_confusion(mp,"buffer size"); /* can't happen (I hope) */
755 buffer = xmalloc((l+1),sizeof(ASCII_code));
756 memcpy(buffer,mp->buffer,(mp->buf_size+1));
758 mp->buffer = buffer ;
762 @ The |input_ln| function brings the next line of input from the specified
763 field into available positions of the buffer array and returns the value
764 |true|, unless the file has already been entirely read, in which case it
765 returns |false| and sets |last:=first|. In general, the |ASCII_code|
766 numbers that represent the next line of the file are input into
767 |buffer[first]|, |buffer[first+1]|, \dots, |buffer[last-1]|; and the
768 global variable |last| is set equal to |first| plus the length of the
769 line. Trailing blanks are removed from the line; thus, either |last=first|
770 (in which case the line was entirely blank) or |buffer[last-1]<>" "|.
773 The variable |max_buf_stack|, which is used to keep track of how large
774 the |buf_size| parameter must be to accommodate the present job, is
775 also kept up to date by |input_ln|.
778 boolean mp_input_ln (MP mp, void *f ) {
779 /* inputs the next line or returns |false| */
782 mp->last=mp->first; /* cf.\ Matthew 19\thinspace:\thinspace30 */
783 s = (mp->read_ascii_file)(f, &size);
787 mp->last = mp->first+size;
788 if ( mp->last>=mp->max_buf_stack ) {
789 mp->max_buf_stack=mp->last+1;
790 while ( mp->max_buf_stack>=mp->buf_size ) {
791 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
794 memcpy((mp->buffer+mp->first),s,size);
795 /* while ( mp->buffer[mp->last]==' ' ) mp->last--; */
801 @ The user's terminal acts essentially like other files of text, except
802 that it is used both for input and for output. When the terminal is
803 considered an input file, the file variable is called |term_in|, and when it
804 is considered an output file the file variable is |term_out|.
805 @^system dependencies@>
808 void * term_in; /* the terminal as an input file */
809 void * term_out; /* the terminal as an output file */
810 void * err_out; /* the terminal as an output file */
812 @ Here is how to open the terminal files. In the default configuration,
813 nothing happens except that the command line (if there is one) is copied
814 to the input buffer. The variable |command_line| will be filled by the
815 |main| procedure. The copying can not be done earlier in the program
816 logic because in the |INI| version, the |buffer| is also used for primitive
819 @^system dependencies@>
821 @d t_open_out do {/* open the terminal for text output */
822 mp->term_out = (mp->open_file)("terminal", "w", mp_filetype_terminal);
823 mp->err_out = (mp->open_file)("error", "w", mp_filetype_error);
825 @d t_open_in do { /* open the terminal for text input */
826 mp->term_in = (mp->open_file)("terminal", "r", mp_filetype_terminal);
827 if (mp->command_line!=NULL) {
828 mp->last = strlen(mp->command_line);
829 strncpy((char *)mp->buffer,mp->command_line,mp->last);
830 xfree(mp->command_line);
834 @d t_close_out do { /* close the terminal */
835 (mp->close_file)(mp->term_out);
836 (mp->close_file)(mp->err_out);
839 @d t_close_in do { /* close the terminal */
840 (mp->close_file)(mp->term_in);
843 @<Option variables@>=
846 @ @<Allocate or initialize ...@>=
847 mp->command_line = xstrdup(opt->command_line);
849 @ Sometimes it is necessary to synchronize the input/output mixture that
850 happens on the user's terminal, and three system-dependent
851 procedures are used for this
852 purpose. The first of these, |update_terminal|, is called when we want
853 to make sure that everything we have output to the terminal so far has
854 actually left the computer's internal buffers and been sent.
855 The second, |clear_terminal|, is called when we wish to cancel any
856 input that the user may have typed ahead (since we are about to
857 issue an unexpected error message). The third, |wake_up_terminal|,
858 is supposed to revive the terminal if the user has disabled it by
859 some instruction to the operating system. The following macros show how
860 these operations can be specified:
861 @^system dependencies@>
863 @d update_terminal (mp->flush_file)(mp->term_out) /* empty the terminal output buffer */
864 @d clear_terminal do_nothing /* clear the terminal input buffer */
865 @d wake_up_terminal (mp->flush_file)(mp->term_out) /* cancel the user's cancellation of output */
867 @ We need a special routine to read the first line of \MP\ input from
868 the user's terminal. This line is different because it is read before we
869 have opened the transcript file; there is sort of a ``chicken and
870 egg'' problem here. If the user types `\.{input cmr10}' on the first
871 line, or if some macro invoked by that line does such an \.{input},
872 the transcript file will be named `\.{cmr10.log}'; but if no \.{input}
873 commands are performed during the first line of terminal input, the transcript
874 file will acquire its default name `\.{mpout.log}'. (The transcript file
875 will not contain error messages generated by the first line before the
876 first \.{input} command.)
878 The first line is even more special. It's nice to let the user start
879 running a \MP\ job by typing a command line like `\.{MP cmr10}'; in
880 such a case, \MP\ will operate as if the first line of input were
881 `\.{cmr10}', i.e., the first line will consist of the remainder of the
882 command line, after the part that invoked \MP.
884 @ Different systems have different ways to get started. But regardless of
885 what conventions are adopted, the routine that initializes the terminal
886 should satisfy the following specifications:
888 \yskip\textindent{1)}It should open file |term_in| for input from the
889 terminal. (The file |term_out| will already be open for output to the
892 \textindent{2)}If the user has given a command line, this line should be
893 considered the first line of terminal input. Otherwise the
894 user should be prompted with `\.{**}', and the first line of input
895 should be whatever is typed in response.
897 \textindent{3)}The first line of input, which might or might not be a
898 command line, should appear in locations |first| to |last-1| of the
901 \textindent{4)}The global variable |loc| should be set so that the
902 character to be read next by \MP\ is in |buffer[loc]|. This
903 character should not be blank, and we should have |loc<last|.
905 \yskip\noindent(It may be necessary to prompt the user several times
906 before a non-blank line comes in. The prompt is `\.{**}' instead of the
907 later `\.*' because the meaning is slightly different: `\.{input}' need
908 not be typed immediately after~`\.{**}'.)
910 @d loc mp->cur_input.loc_field /* location of first unread character in |buffer| */
912 @ The following program does the required initialization
913 without retrieving a possible command line.
914 It should be clear how to modify this routine to deal with command lines,
915 if the system permits them.
916 @^system dependencies@>
919 boolean mp_init_terminal (MP mp) { /* gets the terminal input started */
926 wake_up_terminal; do_fprintf(mp->term_out,"**"); update_terminal;
928 if ( ! mp_input_ln(mp, mp->term_in ) ) { /* this shouldn't happen */
929 do_fprintf(mp->term_out,"\n! End of file on the terminal... why?");
930 @.End of file on the terminal@>
934 while ( (loc<(int)mp->last)&&(mp->buffer[loc]==' ') )
936 if ( loc<(int)mp->last ) {
937 return true; /* return unless the line was all blank */
939 do_fprintf(mp->term_out,"Please type the name of your input file.\n");
944 boolean mp_init_terminal (MP mp) ;
947 @* \[4] String handling.
948 Symbolic token names and diagnostic messages are variable-length strings
949 of eight-bit characters. Many strings \MP\ uses are simply literals
950 in the compiled source, like the error messages and the names of the
951 internal parameters. Other strings are used or defined from the \MP\ input
952 language, and these have to be interned.
954 \MP\ uses strings more extensively than \MF\ does, but the necessary
955 operations can still be handled with a fairly simple data structure.
956 The array |str_pool| contains all of the (eight-bit) ASCII codes in all
957 of the strings, and the array |str_start| contains indices of the starting
958 points of each string. Strings are referred to by integer numbers, so that
959 string number |s| comprises the characters |str_pool[j]| for
960 |str_start[s]<=j<str_start[ss]| where |ss=next_str[s]|. The string pool
961 is allocated sequentially and |str_pool[pool_ptr]| is the next unused
962 location. The first string number not currently in use is |str_ptr|
963 and |next_str[str_ptr]| begins a list of free string numbers. String
964 pool entries |str_start[str_ptr]| up to |pool_ptr| are reserved for a
965 string currently being constructed.
967 String numbers 0 to 255 are reserved for strings that correspond to single
968 ASCII characters. This is in accordance with the conventions of \.{WEB},
970 which converts single-character strings into the ASCII code number of the
971 single character involved, while it converts other strings into integers
972 and builds a string pool file. Thus, when the string constant \.{"."} appears
973 in the program below, \.{WEB} converts it into the integer 46, which is the
974 ASCII code for a period, while \.{WEB} will convert a string like \.{"hello"}
975 into some integer greater than~255. String number 46 will presumably be the
976 single character `\..'\thinspace; but some ASCII codes have no standard visible
977 representation, and \MP\ may need to be able to print an arbitrary
978 ASCII character, so the first 256 strings are used to specify exactly what
979 should be printed for each of the 256 possibilities.
982 typedef int pool_pointer; /* for variables that point into |str_pool| */
983 typedef int str_number; /* for variables that point into |str_start| */
986 ASCII_code *str_pool; /* the characters */
987 pool_pointer *str_start; /* the starting pointers */
988 str_number *next_str; /* for linking strings in order */
989 pool_pointer pool_ptr; /* first unused position in |str_pool| */
990 str_number str_ptr; /* number of the current string being created */
991 pool_pointer init_pool_ptr; /* the starting value of |pool_ptr| */
992 str_number init_str_use; /* the initial number of strings in use */
993 pool_pointer max_pool_ptr; /* the maximum so far of |pool_ptr| */
994 str_number max_str_ptr; /* the maximum so far of |str_ptr| */
996 @ @<Allocate or initialize ...@>=
997 mp->str_pool = xmalloc ((mp->pool_size +1),sizeof(ASCII_code));
998 mp->str_start = xmalloc ((mp->max_strings+1),sizeof(pool_pointer));
999 mp->next_str = xmalloc ((mp->max_strings+1),sizeof(str_number));
1001 @ @<Dealloc variables@>=
1002 xfree(mp->str_pool);
1003 xfree(mp->str_start);
1004 xfree(mp->next_str);
1006 @ Most printing is done from |char *|s, but sometimes not. Here are
1007 functions that convert an internal string into a |char *| for use
1008 by the printing routines, and vice versa.
1010 @d str(A) mp_str(mp,A)
1011 @d rts(A) mp_rts(mp,A)
1014 int mp_xstrcmp (const char *a, const char *b);
1015 char * mp_str (MP mp, str_number s);
1018 str_number mp_rts (MP mp, char *s);
1019 str_number mp_make_string (MP mp);
1021 @ The attempt to catch interrupted strings that is in |mp_rts|, is not
1022 very good: it does not handle nesting over more than one level.
1025 int mp_xstrcmp (const char *a, const char *b) {
1026 if (a==NULL && b==NULL)
1036 char * mp_str (MP mp, str_number ss) {
1039 if (ss==mp->str_ptr) {
1043 s = xmalloc(len+1,sizeof(char));
1044 strncpy(s,(char *)(mp->str_pool+(mp->str_start[ss])),len);
1049 str_number mp_rts (MP mp, char *s) {
1050 int r; /* the new string */
1051 int old; /* a possible string in progress */
1055 } else if (strlen(s)==1) {
1059 str_room((integer)strlen(s));
1060 if (mp->str_start[mp->str_ptr]<mp->pool_ptr)
1061 old = mp_make_string(mp);
1066 r = mp_make_string(mp);
1068 str_room(length(old));
1069 while (i<length(old)) {
1070 append_char((mp->str_start[old]+i));
1072 mp_flush_string(mp,old);
1078 @ Except for |strs_used_up|, the following string statistics are only
1079 maintained when code between |stat| $\ldots$ |tats| delimiters is not
1083 integer strs_used_up; /* strings in use or unused but not reclaimed */
1084 integer pool_in_use; /* total number of cells of |str_pool| actually in use */
1085 integer strs_in_use; /* total number of strings actually in use */
1086 integer max_pl_used; /* maximum |pool_in_use| so far */
1087 integer max_strs_used; /* maximum |strs_in_use| so far */
1089 @ Several of the elementary string operations are performed using \.{WEB}
1090 macros instead of functions, because many of the
1091 operations are done quite frequently and we want to avoid the
1092 overhead of procedure calls. For example, here is
1093 a simple macro that computes the length of a string.
1096 @d str_stop(A) mp->str_start[mp->next_str[(A)]] /* one cell past the end of string
1098 @d length(A) (str_stop((A))-mp->str_start[(A)]) /* the number of characters in string \# */
1100 @ The length of the current string is called |cur_length|. If we decide that
1101 the current string is not needed, |flush_cur_string| resets |pool_ptr| so that
1102 |cur_length| becomes zero.
1104 @d cur_length (mp->pool_ptr - mp->str_start[mp->str_ptr])
1105 @d flush_cur_string mp->pool_ptr=mp->str_start[mp->str_ptr]
1107 @ Strings are created by appending character codes to |str_pool|.
1108 The |append_char| macro, defined here, does not check to see if the
1109 value of |pool_ptr| has gotten too high; this test is supposed to be
1110 made before |append_char| is used.
1112 To test if there is room to append |l| more characters to |str_pool|,
1113 we shall write |str_room(l)|, which tries to make sure there is enough room
1114 by compacting the string pool if necessary. If this does not work,
1115 |do_compaction| aborts \MP\ and gives an apologetic error message.
1117 @d append_char(A) /* put |ASCII_code| \# at the end of |str_pool| */
1118 { mp->str_pool[mp->pool_ptr]=(A); incr(mp->pool_ptr);
1120 @d str_room(A) /* make sure that the pool hasn't overflowed */
1121 { if ( mp->pool_ptr+(A) > mp->max_pool_ptr ) {
1122 if ( mp->pool_ptr+(A) > mp->pool_size ) mp_do_compaction(mp, (A));
1123 else mp->max_pool_ptr=mp->pool_ptr+(A); }
1126 @ The following routine is similar to |str_room(1)| but it uses the
1127 argument |mp->pool_size| to prevent |do_compaction| from aborting when
1128 string space is exhausted.
1130 @<Declare the procedure called |unit_str_room|@>=
1131 void mp_unit_str_room (MP mp);
1134 void mp_unit_str_room (MP mp) {
1135 if ( mp->pool_ptr>=mp->pool_size ) mp_do_compaction(mp, mp->pool_size);
1136 if ( mp->pool_ptr>=mp->max_pool_ptr ) mp->max_pool_ptr=mp->pool_ptr+1;
1139 @ \MP's string expressions are implemented in a brute-force way: Every
1140 new string or substring that is needed is simply copied into the string pool.
1141 Space is eventually reclaimed by a procedure called |do_compaction| with
1142 the aid of a simple system system of reference counts.
1143 @^reference counts@>
1145 The number of references to string number |s| will be |str_ref[s]|. The
1146 special value |str_ref[s]=max_str_ref=127| is used to denote an unknown
1147 positive number of references; such strings will never be recycled. If
1148 a string is ever referred to more than 126 times, simultaneously, we
1149 put it in this category. Hence a single byte suffices to store each |str_ref|.
1151 @d max_str_ref 127 /* ``infinite'' number of references */
1152 @d add_str_ref(A) { if ( mp->str_ref[(A)]<max_str_ref ) incr(mp->str_ref[(A)]);
1158 @ @<Allocate or initialize ...@>=
1159 mp->str_ref = xmalloc ((mp->max_strings+1),sizeof(int));
1161 @ @<Dealloc variables@>=
1164 @ Here's what we do when a string reference disappears:
1166 @d delete_str_ref(A) {
1167 if ( mp->str_ref[(A)]<max_str_ref ) {
1168 if ( mp->str_ref[(A)]>1 ) decr(mp->str_ref[(A)]);
1169 else mp_flush_string(mp, (A));
1173 @<Declare the procedure called |flush_string|@>=
1174 void mp_flush_string (MP mp,str_number s) ;
1177 @ We can't flush the first set of static strings at all, so there
1178 is no point in trying
1181 void mp_flush_string (MP mp,str_number s) {
1183 mp->pool_in_use=mp->pool_in_use-length(s);
1184 decr(mp->strs_in_use);
1185 if ( mp->next_str[s]!=mp->str_ptr ) {
1189 decr(mp->strs_used_up);
1191 mp->pool_ptr=mp->str_start[mp->str_ptr];
1195 @ C literals cannot be simply added, they need to be set so they can't
1198 @d intern(A) mp_intern(mp,(A))
1201 str_number mp_intern (MP mp, char *s) {
1204 mp->str_ref[r] = max_str_ref;
1209 str_number mp_intern (MP mp, char *s);
1212 @ Once a sequence of characters has been appended to |str_pool|, it
1213 officially becomes a string when the function |make_string| is called.
1214 This function returns the identification number of the new string as its
1217 When getting the next unused string number from the linked list, we pretend
1219 $$ \hbox{|max_str_ptr+1|, |max_str_ptr+2|, $\ldots$, |mp->max_strings|} $$
1220 are linked sequentially even though the |next_str| entries have not been
1221 initialized yet. We never allow |str_ptr| to reach |mp->max_strings|;
1222 |do_compaction| is responsible for making sure of this.
1225 @<Declare the procedure called |do_compaction|@>;
1226 @<Declare the procedure called |unit_str_room|@>;
1227 str_number mp_make_string (MP mp);
1230 str_number mp_make_string (MP mp) { /* current string enters the pool */
1231 str_number s; /* the new string */
1234 mp->str_ptr=mp->next_str[s];
1235 if ( mp->str_ptr>mp->max_str_ptr ) {
1236 if ( mp->str_ptr==mp->max_strings ) {
1238 mp_do_compaction(mp, 0);
1242 if ( mp->strs_used_up!=mp->max_str_ptr ) mp_confusion(mp, "s");
1243 @:this can't happen s}{\quad \.s@>
1245 mp->max_str_ptr=mp->str_ptr;
1246 mp->next_str[mp->str_ptr]=mp->max_str_ptr+1;
1250 mp->str_start[mp->str_ptr]=mp->pool_ptr;
1251 incr(mp->strs_used_up);
1252 incr(mp->strs_in_use);
1253 mp->pool_in_use=mp->pool_in_use+length(s);
1254 if ( mp->pool_in_use>mp->max_pl_used )
1255 mp->max_pl_used=mp->pool_in_use;
1256 if ( mp->strs_in_use>mp->max_strs_used )
1257 mp->max_strs_used=mp->strs_in_use;
1261 @ The most interesting string operation is string pool compaction. The idea
1262 is to recover unused space in the |str_pool| array by recopying the strings
1263 to close the gaps created when some strings become unused. All string
1264 numbers~$k$ where |str_ref[k]=0| are to be linked into the list of free string
1265 numbers after |str_ptr|. If this fails to free enough pool space we issue an
1266 |overflow| error unless |needed=mp->pool_size|. Calling |do_compaction|
1267 with |needed=mp->pool_size| supresses all overflow tests.
1269 The compaction process starts with |last_fixed_str| because all lower numbered
1270 strings are permanently allocated with |max_str_ref| in their |str_ref| entries.
1273 str_number last_fixed_str; /* last permanently allocated string */
1274 str_number fixed_str_use; /* number of permanently allocated strings */
1276 @ @<Declare the procedure called |do_compaction|@>=
1277 void mp_do_compaction (MP mp, pool_pointer needed) ;
1280 void mp_do_compaction (MP mp, pool_pointer needed) {
1281 str_number str_use; /* a count of strings in use */
1282 str_number r,s,t; /* strings being manipulated */
1283 pool_pointer p,q; /* destination and source for copying string characters */
1284 @<Advance |last_fixed_str| as far as possible and set |str_use|@>;
1285 r=mp->last_fixed_str;
1288 while ( s!=mp->str_ptr ) {
1289 while ( mp->str_ref[s]==0 ) {
1290 @<Advance |s| and add the old |s| to the list of free string numbers;
1291 then |break| if |s=str_ptr|@>;
1293 r=s; s=mp->next_str[s];
1295 @<Move string |r| back so that |str_start[r]=p|; make |p| the location
1296 after the end of the string@>;
1298 @<Move the current string back so that it starts at |p|@>;
1299 if ( needed<mp->pool_size ) {
1300 @<Make sure that there is room for another string with |needed| characters@>;
1302 @<Account for the compaction and make sure the statistics agree with the
1304 mp->strs_used_up=str_use;
1307 @ @<Advance |last_fixed_str| as far as possible and set |str_use|@>=
1308 t=mp->next_str[mp->last_fixed_str];
1309 while (t!=mp->str_ptr && mp->str_ref[t]==max_str_ref) {
1310 incr(mp->fixed_str_use);
1311 mp->last_fixed_str=t;
1314 str_use=mp->fixed_str_use
1316 @ Because of the way |flush_string| has been written, it should never be
1317 necessary to |break| here. The extra line of code seems worthwhile to
1318 preserve the generality of |do_compaction|.
1320 @<Advance |s| and add the old |s| to the list of free string numbers;...@>=
1325 mp->next_str[t]=mp->next_str[mp->str_ptr];
1326 mp->next_str[mp->str_ptr]=t;
1327 if ( s==mp->str_ptr ) break;
1330 @ The string currently starts at |str_start[r]| and ends just before
1331 |str_start[s]|. We don't change |str_start[s]| because it might be needed
1332 to locate the next string.
1334 @<Move string |r| back so that |str_start[r]=p|; make |p| the location...@>=
1337 while ( q<mp->str_start[s] ) {
1338 mp->str_pool[p]=mp->str_pool[q];
1342 @ Pointers |str_start[str_ptr]| and |pool_ptr| have not been updated. When
1343 we do this, anything between them should be moved.
1345 @ @<Move the current string back so that it starts at |p|@>=
1346 q=mp->str_start[mp->str_ptr];
1347 mp->str_start[mp->str_ptr]=p;
1348 while ( q<mp->pool_ptr ) {
1349 mp->str_pool[p]=mp->str_pool[q];
1354 @ We must remember that |str_ptr| is not allowed to reach |mp->max_strings|.
1356 @<Make sure that there is room for another string with |needed| char...@>=
1357 if ( str_use>=mp->max_strings-1 )
1358 mp_reallocate_strings (mp,str_use);
1359 if ( mp->pool_ptr+needed>mp->max_pool_ptr ) {
1360 mp_reallocate_pool(mp, mp->pool_ptr+needed);
1361 mp->max_pool_ptr=mp->pool_ptr+needed;
1365 void mp_reallocate_strings (MP mp, str_number str_use) ;
1366 void mp_reallocate_pool(MP mp, pool_pointer needed) ;
1369 void mp_reallocate_strings (MP mp, str_number str_use) {
1370 while ( str_use>=mp->max_strings-1 ) {
1371 int l = mp->max_strings + (mp->max_strings>>2);
1372 XREALLOC (mp->str_ref, l, int);
1373 XREALLOC (mp->str_start, l, pool_pointer);
1374 XREALLOC (mp->next_str, l, str_number);
1375 mp->max_strings = l;
1378 void mp_reallocate_pool(MP mp, pool_pointer needed) {
1379 while ( needed>mp->pool_size ) {
1380 int l = mp->pool_size + (mp->pool_size>>2);
1381 XREALLOC (mp->str_pool, l, ASCII_code);
1386 @ @<Account for the compaction and make sure the statistics agree with...@>=
1387 if ( (mp->str_start[mp->str_ptr]!=mp->pool_in_use)||(str_use!=mp->strs_in_use) )
1388 mp_confusion(mp, "string");
1389 @:this can't happen string}{\quad string@>
1390 incr(mp->pact_count);
1391 mp->pact_chars=mp->pact_chars+mp->pool_ptr-str_stop(mp->last_fixed_str);
1392 mp->pact_strs=mp->pact_strs+str_use-mp->fixed_str_use;
1394 s=mp->str_ptr; t=str_use;
1395 while ( s<=mp->max_str_ptr ){
1396 if ( t>mp->max_str_ptr ) mp_confusion(mp, "\"");
1397 incr(t); s=mp->next_str[s];
1399 if ( t<=mp->max_str_ptr ) mp_confusion(mp, "\"");
1402 @ A few more global variables are needed to keep track of statistics when
1403 |stat| $\ldots$ |tats| blocks are not commented out.
1406 integer pact_count; /* number of string pool compactions so far */
1407 integer pact_chars; /* total number of characters moved during compactions */
1408 integer pact_strs; /* total number of strings moved during compactions */
1410 @ @<Initialize compaction statistics@>=
1415 @ The following subroutine compares string |s| with another string of the
1416 same length that appears in |buffer| starting at position |k|;
1417 the result is |true| if and only if the strings are equal.
1420 boolean mp_str_eq_buf (MP mp,str_number s, integer k) {
1421 /* test equality of strings */
1422 pool_pointer j; /* running index */
1424 while ( j<str_stop(s) ) {
1425 if ( mp->str_pool[j++]!=mp->buffer[k++] )
1431 @ Here is a similar routine, but it compares two strings in the string pool,
1432 and it does not assume that they have the same length. If the first string
1433 is lexicographically greater than, less than, or equal to the second,
1434 the result is respectively positive, negative, or zero.
1437 integer mp_str_vs_str (MP mp, str_number s, str_number t) {
1438 /* test equality of strings */
1439 pool_pointer j,k; /* running indices */
1440 integer ls,lt; /* lengths */
1441 integer l; /* length remaining to test */
1442 ls=length(s); lt=length(t);
1443 if ( ls<=lt ) l=ls; else l=lt;
1444 j=mp->str_start[s]; k=mp->str_start[t];
1446 if ( mp->str_pool[j]!=mp->str_pool[k] ) {
1447 return (mp->str_pool[j]-mp->str_pool[k]);
1454 @ The initial values of |str_pool|, |str_start|, |pool_ptr|,
1455 and |str_ptr| are computed by the \.{INIMP} program, based in part
1456 on the information that \.{WEB} has output while processing \MP.
1461 void mp_get_strings_started (MP mp) {
1462 /* initializes the string pool,
1463 but returns |false| if something goes wrong */
1464 int k; /* small indices or counters */
1465 str_number g; /* a new string */
1466 mp->pool_ptr=0; mp->str_ptr=0; mp->max_pool_ptr=0; mp->max_str_ptr=0;
1469 mp->pool_in_use=0; mp->strs_in_use=0;
1470 mp->max_pl_used=0; mp->max_strs_used=0;
1471 @<Initialize compaction statistics@>;
1473 @<Make the first 256 strings@>;
1474 g=mp_make_string(mp); /* string 256 == "" */
1475 mp->str_ref[g]=max_str_ref;
1476 mp->last_fixed_str=mp->str_ptr-1;
1477 mp->fixed_str_use=mp->str_ptr;
1482 void mp_get_strings_started (MP mp);
1484 @ The first 256 strings will consist of a single character only.
1486 @<Make the first 256...@>=
1487 for (k=0;k<=255;k++) {
1489 g=mp_make_string(mp);
1490 mp->str_ref[g]=max_str_ref;
1493 @ The first 128 strings will contain 95 standard ASCII characters, and the
1494 other 33 characters will be printed in three-symbol form like `\.{\^\^A}'
1495 unless a system-dependent change is made here. Installations that have
1496 an extended character set, where for example |xchr[032]=@t\.{'^^Z'}@>|,
1497 would like string 032 to be printed as the single character 032 instead
1498 of the three characters 0136, 0136, 0132 (\.{\^\^Z}). On the other hand,
1499 even people with an extended character set will want to represent string
1500 015 by \.{\^\^M}, since 015 is ASCII's ``carriage return'' code; the idea is
1501 to produce visible strings instead of tabs or line-feeds or carriage-returns
1502 or bell-rings or characters that are treated anomalously in text files.
1504 Unprintable characters of codes 128--255 are, similarly, rendered
1505 \.{\^\^80}--\.{\^\^ff}.
1507 The boolean expression defined here should be |true| unless \MP\ internal
1508 code number~|k| corresponds to a non-troublesome visible symbol in the
1509 local character set.
1510 If character |k| cannot be printed, and |k<0200|, then character |k+0100| or
1511 |k-0100| must be printable; moreover, ASCII codes |[060..071, 0141..0146]|
1513 @^character set dependencies@>
1514 @^system dependencies@>
1516 @<Character |k| cannot be printed@>=
1519 @* \[5] On-line and off-line printing.
1520 Messages that are sent to a user's terminal and to the transcript-log file
1521 are produced by several `|print|' procedures. These procedures will
1522 direct their output to a variety of places, based on the setting of
1523 the global variable |selector|, which has the following possible
1527 \hang |term_and_log|, the normal setting, prints on the terminal and on the
1530 \hang |log_only|, prints only on the transcript file.
1532 \hang |term_only|, prints only on the terminal.
1534 \hang |no_print|, doesn't print at all. This is used only in rare cases
1535 before the transcript file is open.
1537 \hang |pseudo|, puts output into a cyclic buffer that is used
1538 by the |show_context| routine; when we get to that routine we shall discuss
1539 the reasoning behind this curious mode.
1541 \hang |new_string|, appends the output to the current string in the
1544 \hang |>=write_file| prints on one of the files used for the \&{write}
1545 @:write_}{\&{write} primitive@>
1549 \noindent The symbolic names `|term_and_log|', etc., have been assigned
1550 numeric codes that satisfy the convenient relations |no_print+1=term_only|,
1551 |no_print+2=log_only|, |term_only+2=log_only+1=term_and_log|. These
1552 relations are not used when |selector| could be |pseudo|, or |new_string|.
1553 We need not check for unprintable characters when |selector<pseudo|.
1555 Three additional global variables, |tally|, |term_offset| and |file_offset|
1556 record the number of characters that have been printed
1557 since they were most recently cleared to zero. We use |tally| to record
1558 the length of (possibly very long) stretches of printing; |term_offset|,
1559 and |file_offset|, on the other hand, keep track of how many
1560 characters have appeared so far on the current line that has been output
1561 to the terminal, the transcript file, or the \ps\ output file, respectively.
1563 @d new_string 0 /* printing is deflected to the string pool */
1564 @d pseudo 2 /* special |selector| setting for |show_context| */
1565 @d no_print 3 /* |selector| setting that makes data disappear */
1566 @d term_only 4 /* printing is destined for the terminal only */
1567 @d log_only 5 /* printing is destined for the transcript file only */
1568 @d term_and_log 6 /* normal |selector| setting */
1569 @d write_file 7 /* first write file selector */
1572 void * log_file; /* transcript of \MP\ session */
1573 void * ps_file; /* the generic font output goes here */
1574 unsigned int selector; /* where to print a message */
1575 unsigned char dig[23]; /* digits in a number being output */
1576 integer tally; /* the number of characters recently printed */
1577 unsigned int term_offset;
1578 /* the number of characters on the current terminal line */
1579 unsigned int file_offset;
1580 /* the number of characters on the current file line */
1581 ASCII_code *trick_buf; /* circular buffer for pseudoprinting */
1582 integer trick_count; /* threshold for pseudoprinting, explained later */
1583 integer first_count; /* another variable for pseudoprinting */
1585 @ @<Allocate or initialize ...@>=
1586 memset(mp->dig,0,23);
1587 mp->trick_buf = xmalloc((mp->error_line+1),sizeof(ASCII_code));
1589 @ @<Dealloc variables@>=
1590 xfree(mp->trick_buf);
1592 @ @<Initialize the output routines@>=
1593 mp->selector=term_only; mp->tally=0; mp->term_offset=0; mp->file_offset=0;
1595 @ Macro abbreviations for output to the terminal and to the log file are
1596 defined here for convenience. Some systems need special conventions
1597 for terminal output, and it is possible to adhere to those conventions
1598 by changing |wterm|, |wterm_ln|, and |wterm_cr| here.
1599 @^system dependencies@>
1601 @d do_fprintf(f,b) (mp->write_ascii_file)(f,b)
1602 @d wterm(A) do_fprintf(mp->term_out,(A))
1603 @d wterm_chr(A) { unsigned char ss[2]; ss[0]=(A); ss[1]=0; do_fprintf(mp->term_out,(char *)ss); }
1604 @d wterm_cr do_fprintf(mp->term_out,"\n")
1605 @d wterm_ln(A) { wterm_cr; do_fprintf(mp->term_out,(A)); }
1606 @d wlog(A) do_fprintf(mp->log_file,(A))
1607 @d wlog_chr(A) { unsigned char ss[2]; ss[0]=(A); ss[1]=0; do_fprintf(mp->log_file,(char *)ss); }
1608 @d wlog_cr do_fprintf(mp->log_file, "\n")
1609 @d wlog_ln(A) {wlog_cr; do_fprintf(mp->log_file,(A)); }
1612 @ To end a line of text output, we call |print_ln|. Cases |0..max_write_files|
1613 use an array |wr_file| that will be declared later.
1615 @d mp_print_text(A) mp_print_str(mp,text((A)))
1618 void mp_print_ln (MP mp);
1619 void mp_print_visible_char (MP mp, ASCII_code s);
1620 void mp_print_char (MP mp, ASCII_code k);
1621 void mp_print (MP mp, char *s);
1622 void mp_print_str (MP mp, str_number s);
1623 void mp_print_nl (MP mp, char *s);
1624 void mp_print_two (MP mp,scaled x, scaled y) ;
1625 void mp_print_scaled (MP mp,scaled s);
1627 @ @<Basic print...@>=
1628 void mp_print_ln (MP mp) { /* prints an end-of-line */
1629 switch (mp->selector) {
1632 mp->term_offset=0; mp->file_offset=0;
1635 wlog_cr; mp->file_offset=0;
1638 wterm_cr; mp->term_offset=0;
1645 do_fprintf(mp->wr_file[(mp->selector-write_file)],"\n");
1647 } /* note that |tally| is not affected */
1649 @ The |print_visible_char| procedure sends one character to the desired
1650 destination, using the |xchr| array to map it into an external character
1651 compatible with |input_ln|. (It assumes that it is always called with
1652 a visible ASCII character.) All printing comes through |print_ln| or
1653 |print_char|, which ultimately calls |print_visible_char|, hence these
1654 routines are the ones that limit lines to at most |max_print_line| characters.
1655 But we must make an exception for the \ps\ output file since it is not safe
1656 to cut up lines arbitrarily in \ps.
1658 Procedure |unit_str_room| needs to be declared |forward| here because it calls
1659 |do_compaction| and |do_compaction| can call the error routines. Actually,
1660 |unit_str_room| avoids |overflow| errors but it can call |confusion|.
1662 @<Basic printing...@>=
1663 void mp_print_visible_char (MP mp, ASCII_code s) { /* prints a single character */
1664 switch (mp->selector) {
1666 wterm_chr(xchr(s)); wlog_chr(xchr(s));
1667 incr(mp->term_offset); incr(mp->file_offset);
1668 if ( mp->term_offset==(unsigned)mp->max_print_line ) {
1669 wterm_cr; mp->term_offset=0;
1671 if ( mp->file_offset==(unsigned)mp->max_print_line ) {
1672 wlog_cr; mp->file_offset=0;
1676 wlog_chr(xchr(s)); incr(mp->file_offset);
1677 if ( mp->file_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1680 wterm_chr(xchr(s)); incr(mp->term_offset);
1681 if ( mp->term_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1686 if ( mp->tally<mp->trick_count )
1687 mp->trick_buf[mp->tally % mp->error_line]=s;
1690 if ( mp->pool_ptr>=mp->max_pool_ptr ) {
1691 mp_unit_str_room(mp);
1692 if ( mp->pool_ptr>=mp->pool_size )
1693 goto DONE; /* drop characters if string space is full */
1698 { char ss[2]; ss[0] = xchr(s); ss[1]=0;
1699 do_fprintf(mp->wr_file[(mp->selector-write_file)],(char *)ss);
1706 @ The |print_char| procedure sends one character to the desired destination.
1707 File names and string expressions might contain |ASCII_code| values that
1708 can't be printed using |print_visible_char|. These characters will be
1709 printed in three- or four-symbol form like `\.{\^\^A}' or `\.{\^\^e4}'.
1710 (This procedure assumes that it is safe to bypass all checks for unprintable
1711 characters when |selector| is in the range |0..max_write_files-1|.
1712 The user might want to write unprintable characters.
1714 @d print_lc_hex(A) do { l=(A);
1715 mp_print_visible_char(mp, (l<10 ? l+'0' : l-10+'a'));
1718 @<Basic printing...@>=
1719 void mp_print_char (MP mp, ASCII_code k) { /* prints a single character */
1720 int l; /* small index or counter */
1721 if ( mp->selector<pseudo || mp->selector>=write_file) {
1722 mp_print_visible_char(mp, k);
1723 } else if ( @<Character |k| cannot be printed@> ) {
1726 mp_print_visible_char(mp, k+0100);
1727 } else if ( k<0200 ) {
1728 mp_print_visible_char(mp, k-0100);
1730 print_lc_hex(k / 16);
1731 print_lc_hex(k % 16);
1734 mp_print_visible_char(mp, k);
1738 @ An entire string is output by calling |print|. Note that if we are outputting
1739 the single standard ASCII character \.c, we could call |print("c")|, since
1740 |"c"=99| is the number of a single-character string, as explained above. But
1741 |print_char("c")| is quicker, so \MP\ goes directly to the |print_char|
1742 routine when it knows that this is safe. (The present implementation
1743 assumes that it is always safe to print a visible ASCII character.)
1744 @^system dependencies@>
1747 void mp_do_print (MP mp, char *ss, unsigned int len) { /* prints string |s| */
1750 mp_print_char(mp, ss[j]); incr(j);
1756 void mp_print (MP mp, char *ss) {
1757 mp_do_print(mp, ss, strlen(ss));
1759 void mp_print_str (MP mp, str_number s) {
1760 pool_pointer j; /* current character code position */
1761 if ( (s<0)||(s>mp->max_str_ptr) ) {
1762 mp_do_print(mp,"???",3); /* this can't happen */
1766 mp_do_print(mp, (char *)(mp->str_pool+j), (str_stop(s)-j));
1770 @ Here is the very first thing that \MP\ prints: a headline that identifies
1771 the version number and base name. The |term_offset| variable is temporarily
1772 incorrect, but the discrepancy is not serious since we assume that the banner
1773 and mem identifier together will occupy at most |max_print_line|
1774 character positions.
1776 @<Initialize the output...@>=
1778 wterm (version_string);
1779 if (mp->mem_ident!=NULL)
1780 mp_print(mp,mp->mem_ident);
1784 @ The procedure |print_nl| is like |print|, but it makes sure that the
1785 string appears at the beginning of a new line.
1788 void mp_print_nl (MP mp, char *s) { /* prints string |s| at beginning of line */
1789 switch(mp->selector) {
1791 if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_ln(mp);
1794 if ( mp->file_offset>0 ) mp_print_ln(mp);
1797 if ( mp->term_offset>0 ) mp_print_ln(mp);
1803 } /* there are no other cases */
1807 @ An array of digits in the range |0..9| is printed by |print_the_digs|.
1810 void mp_print_the_digs (MP mp, eight_bits k) {
1811 /* prints |dig[k-1]|$\,\ldots\,$|dig[0]| */
1813 decr(k); mp_print_char(mp, '0'+mp->dig[k]);
1817 @ The following procedure, which prints out the decimal representation of a
1818 given integer |n|, has been written carefully so that it works properly
1819 if |n=0| or if |(-n)| would cause overflow. It does not apply |%| or |/|
1820 to negative arguments, since such operations are not implemented consistently
1824 void mp_print_int (MP mp,integer n) { /* prints an integer in decimal form */
1825 integer m; /* used to negate |n| in possibly dangerous cases */
1826 int k = 0; /* index to current digit; we assume that $|n|<10^{23}$ */
1828 mp_print_char(mp, '-');
1829 if ( n>-100000000 ) {
1832 m=-1-n; n=m / 10; m=(m % 10)+1; k=1;
1836 mp->dig[0]=0; incr(n);
1841 mp->dig[k]=n % 10; n=n / 10; incr(k);
1843 mp_print_the_digs(mp, k);
1847 void mp_print_int (MP mp,integer n);
1849 @ \MP\ also makes use of a trivial procedure to print two digits. The
1850 following subroutine is usually called with a parameter in the range |0<=n<=99|.
1853 void mp_print_dd (MP mp,integer n) { /* prints two least significant digits */
1855 mp_print_char(mp, '0'+(n / 10));
1856 mp_print_char(mp, '0'+(n % 10));
1861 void mp_print_dd (MP mp,integer n);
1863 @ Here is a procedure that asks the user to type a line of input,
1864 assuming that the |selector| setting is either |term_only| or |term_and_log|.
1865 The input is placed into locations |first| through |last-1| of the
1866 |buffer| array, and echoed on the transcript file if appropriate.
1868 This procedure is never called when |interaction<mp_scroll_mode|.
1870 @d prompt_input(A) do {
1871 if (!mp->noninteractive) {
1872 wake_up_terminal; mp_print(mp, (A));
1875 } while (0) /* prints a string and gets a line of input */
1878 void mp_term_input (MP mp) { /* gets a line from the terminal */
1879 size_t k; /* index into |buffer| */
1880 update_terminal; /* Now the user sees the prompt for sure */
1881 if (!mp_input_ln(mp, mp->term_in )) {
1882 if (!mp->noninteractive) {
1883 mp_fatal_error(mp, "End of file on the terminal!");
1884 @.End of file on the terminal@>
1885 } else { /* we are done with this input chunk */
1886 longjmp(mp->jump_buf,1);
1889 if (!mp->noninteractive) {
1890 mp->term_offset=0; /* the user's line ended with \<\rm return> */
1891 decr(mp->selector); /* prepare to echo the input */
1892 if ( mp->last!=mp->first ) {
1893 for (k=mp->first;k<=mp->last-1;k++) {
1894 mp_print_char(mp, mp->buffer[k]);
1898 mp->buffer[mp->last]='%';
1899 incr(mp->selector); /* restore previous status */
1903 @* \[6] Reporting errors.
1904 When something anomalous is detected, \MP\ typically does something like this:
1905 $$\vbox{\halign{#\hfil\cr
1906 |print_err("Something anomalous has been detected");|\cr
1907 |help3("This is the first line of my offer to help.")|\cr
1908 |("This is the second line. I'm trying to")|\cr
1909 |("explain the best way for you to proceed.");|\cr
1911 A two-line help message would be given using |help2|, etc.; these informal
1912 helps should use simple vocabulary that complements the words used in the
1913 official error message that was printed. (Outside the U.S.A., the help
1914 messages should preferably be translated into the local vernacular. Each
1915 line of help is at most 60 characters long, in the present implementation,
1916 so that |max_print_line| will not be exceeded.)
1918 The |print_err| procedure supplies a `\.!' before the official message,
1919 and makes sure that the terminal is awake if a stop is going to occur.
1920 The |error| procedure supplies a `\..' after the official message, then it
1921 shows the location of the error; and if |interaction=error_stop_mode|,
1922 it also enters into a dialog with the user, during which time the help
1923 message may be printed.
1924 @^system dependencies@>
1926 @ The global variable |interaction| has four settings, representing increasing
1927 amounts of user interaction:
1930 enum mp_interaction_mode {
1931 mp_unspecified_mode=0, /* extra value for command-line switch */
1932 mp_batch_mode, /* omits all stops and omits terminal output */
1933 mp_nonstop_mode, /* omits all stops */
1934 mp_scroll_mode, /* omits error stops */
1935 mp_error_stop_mode, /* stops at every opportunity to interact */
1938 @ @<Option variables@>=
1939 int interaction; /* current level of interaction */
1940 int noninteractive; /* do we have a terminal? */
1942 @ Set it here so it can be overwritten by the commandline
1944 @<Allocate or initialize ...@>=
1945 mp->interaction=opt->interaction;
1946 if (mp->interaction==mp_unspecified_mode || mp->interaction>mp_error_stop_mode)
1947 mp->interaction=mp_error_stop_mode;
1948 if (mp->interaction<mp_unspecified_mode)
1949 mp->interaction=mp_batch_mode;
1950 mp->noninteractive=opt->noninteractive;
1954 @d print_err(A) mp_print_err(mp,(A))
1957 void mp_print_err(MP mp, char * A);
1960 void mp_print_err(MP mp, char * A) {
1961 if ( mp->interaction==mp_error_stop_mode )
1963 mp_print_nl(mp, "! ");
1969 @ \MP\ is careful not to call |error| when the print |selector| setting
1970 might be unusual. The only possible values of |selector| at the time of
1973 \yskip\hang|no_print| (when |interaction=mp_batch_mode|
1974 and |log_file| not yet open);
1976 \hang|term_only| (when |interaction>mp_batch_mode| and |log_file| not yet open);
1978 \hang|log_only| (when |interaction=mp_batch_mode| and |log_file| is open);
1980 \hang|term_and_log| (when |interaction>mp_batch_mode| and |log_file| is open).
1982 @<Initialize the print |selector| based on |interaction|@>=
1983 if ( mp->interaction==mp_batch_mode ) mp->selector=no_print; else mp->selector=term_only
1985 @ A global variable |deletions_allowed| is set |false| if the |get_next|
1986 routine is active when |error| is called; this ensures that |get_next|
1987 will never be called recursively.
1990 The global variable |history| records the worst level of error that
1991 has been detected. It has four possible values: |spotless|, |warning_issued|,
1992 |error_message_issued|, and |fatal_error_stop|.
1994 Another global variable, |error_count|, is increased by one when an
1995 |error| occurs without an interactive dialog, and it is reset to zero at
1996 the end of every statement. If |error_count| reaches 100, \MP\ decides
1997 that there is no point in continuing further.
2000 enum mp_history_states {
2001 mp_spotless=0, /* |history| value when nothing has been amiss yet */
2002 mp_warning_issued, /* |history| value when |begin_diagnostic| has been called */
2003 mp_error_message_issued, /* |history| value when |error| has been called */
2004 mp_fatal_error_stop, /* |history| value when termination was premature */
2008 boolean deletions_allowed; /* is it safe for |error| to call |get_next|? */
2009 int history; /* has the source input been clean so far? */
2010 int error_count; /* the number of scrolled errors since the last statement ended */
2012 @ The value of |history| is initially |fatal_error_stop|, but it will
2013 be changed to |spotless| if \MP\ survives the initialization process.
2015 @<Allocate or ...@>=
2016 mp->deletions_allowed=true; mp->error_count=0; /* |history| is initialized elsewhere */
2018 @ Since errors can be detected almost anywhere in \MP, we want to declare the
2019 error procedures near the beginning of the program. But the error procedures
2020 in turn use some other procedures, which need to be declared |forward|
2021 before we get to |error| itself.
2023 It is possible for |error| to be called recursively if some error arises
2024 when |get_next| is being used to delete a token, and/or if some fatal error
2025 occurs while \MP\ is trying to fix a non-fatal one. But such recursion
2027 is never more than two levels deep.
2030 void mp_get_next (MP mp);
2031 void mp_term_input (MP mp);
2032 void mp_show_context (MP mp);
2033 void mp_begin_file_reading (MP mp);
2034 void mp_open_log_file (MP mp);
2035 void mp_clear_for_error_prompt (MP mp);
2036 void mp_debug_help (MP mp);
2037 @<Declare the procedure called |flush_string|@>
2040 void mp_normalize_selector (MP mp);
2042 @ Individual lines of help are recorded in the array |help_line|, which
2043 contains entries in positions |0..(help_ptr-1)|. They should be printed
2044 in reverse order, i.e., with |help_line[0]| appearing last.
2046 @d hlp1(A) mp->help_line[0]=(A); }
2047 @d hlp2(A) mp->help_line[1]=(A); hlp1
2048 @d hlp3(A) mp->help_line[2]=(A); hlp2
2049 @d hlp4(A) mp->help_line[3]=(A); hlp3
2050 @d hlp5(A) mp->help_line[4]=(A); hlp4
2051 @d hlp6(A) mp->help_line[5]=(A); hlp5
2052 @d help0 mp->help_ptr=0 /* sometimes there might be no help */
2053 @d help1 { mp->help_ptr=1; hlp1 /* use this with one help line */
2054 @d help2 { mp->help_ptr=2; hlp2 /* use this with two help lines */
2055 @d help3 { mp->help_ptr=3; hlp3 /* use this with three help lines */
2056 @d help4 { mp->help_ptr=4; hlp4 /* use this with four help lines */
2057 @d help5 { mp->help_ptr=5; hlp5 /* use this with five help lines */
2058 @d help6 { mp->help_ptr=6; hlp6 /* use this with six help lines */
2061 char * help_line[6]; /* helps for the next |error| */
2062 unsigned int help_ptr; /* the number of help lines present */
2063 boolean use_err_help; /* should the |err_help| string be shown? */
2064 str_number err_help; /* a string set up by \&{errhelp} */
2065 str_number filename_template; /* a string set up by \&{filenametemplate} */
2067 @ @<Allocate or ...@>=
2068 mp->help_ptr=0; mp->use_err_help=false; mp->err_help=0; mp->filename_template=0;
2070 @ The |jump_out| procedure just cuts across all active procedure levels and
2071 goes to |end_of_MP|. This is the only nonlocal |goto| statement in the
2072 whole program. It is used when there is no recovery from a particular error.
2074 The program uses a |jump_buf| to handle this, this is initialized at three
2075 spots: the start of |mp_new|, the start of |mp_initialize|, and the start
2076 of |mp_run|. Those are the only library enty points.
2078 @^system dependencies@>
2083 @ @<Install and test the non-local jump buffer@>=
2084 if (setjmp(mp->jump_buf) != 0) { return mp->history; }
2087 @ @<Setup the non-local jump buffer in |mp_new|@>=
2088 if (setjmp(mp->jump_buf) != 0) return NULL;
2090 @ If the array of internals is still |NULL| when |jump_out| is called, a
2091 crash occured during initialization, and it is not safe to run the normal
2095 void mp_jump_out (MP mp) {
2096 if(mp->internal!=NULL)
2097 mp_close_files_and_terminate(mp);
2098 longjmp(mp->jump_buf,1);
2101 @ Here now is the general |error| routine.
2104 void mp_error (MP mp) { /* completes the job of error reporting */
2105 ASCII_code c; /* what the user types */
2106 integer s1,s2,s3; /* used to save global variables when deleting tokens */
2107 pool_pointer j; /* character position being printed */
2108 if ( mp->history<mp_error_message_issued )
2109 mp->history=mp_error_message_issued;
2110 mp_print_char(mp, '.'); mp_show_context(mp);
2111 if ((!mp->noninteractive) && (mp->interaction==mp_error_stop_mode )) {
2112 @<Get user's advice and |return|@>;
2114 incr(mp->error_count);
2115 if ( mp->error_count==100 ) {
2116 mp_print_nl(mp,"(That makes 100 errors; please try again.)");
2117 @.That makes 100 errors...@>
2118 mp->history=mp_fatal_error_stop; mp_jump_out(mp);
2120 @<Put help message on the transcript file@>;
2122 void mp_warn (MP mp, char *msg) {
2123 int saved_selector = mp->selector;
2124 mp_normalize_selector(mp);
2125 mp_print_nl(mp,"Warning: ");
2127 mp->selector = saved_selector;
2130 @ @<Exported function ...@>=
2131 void mp_error (MP mp);
2132 void mp_warn (MP mp, char *msg);
2135 @ @<Get user's advice...@>=
2138 mp_clear_for_error_prompt(mp); prompt_input("? ");
2140 if ( mp->last==mp->first ) return;
2141 c=mp->buffer[mp->first];
2142 if ( c>='a' ) c=c+'A'-'a'; /* convert to uppercase */
2143 @<Interpret code |c| and |return| if done@>;
2146 @ It is desirable to provide an `\.E' option here that gives the user
2147 an easy way to return from \MP\ to the system editor, with the offending
2148 line ready to be edited. But such an extension requires some system
2149 wizardry, so the present implementation simply types out the name of the
2151 edited and the relevant line number.
2152 @^system dependencies@>
2155 typedef void (*mp_run_editor_command)(MP, char *, int);
2157 @ @<Option variables@>=
2158 mp_run_editor_command run_editor;
2160 @ @<Allocate or initialize ...@>=
2161 set_callback_option(run_editor);
2164 void mp_run_editor (MP mp, char *fname, int fline);
2166 @ @c void mp_run_editor (MP mp, char *fname, int fline) {
2167 mp_print_nl(mp, "You want to edit file ");
2168 @.You want to edit file x@>
2169 mp_print(mp, fname);
2170 mp_print(mp, " at line ");
2171 mp_print_int(mp, fline);
2172 mp->interaction=mp_scroll_mode;
2177 There is a secret `\.D' option available when the debugging routines haven't
2181 @<Interpret code |c| and |return| if done@>=
2183 case '0': case '1': case '2': case '3': case '4':
2184 case '5': case '6': case '7': case '8': case '9':
2185 if ( mp->deletions_allowed ) {
2186 @<Delete |c-"0"| tokens and |continue|@>;
2191 mp_debug_help(mp); continue;
2195 if ( mp->file_ptr>0 ){
2196 (mp->run_editor)(mp,
2197 str(mp->input_stack[mp->file_ptr].name_field),
2202 @<Print the help information and |continue|@>;
2205 @<Introduce new material from the terminal and |return|@>;
2207 case 'Q': case 'R': case 'S':
2208 @<Change the interaction level and |return|@>;
2211 mp->interaction=mp_scroll_mode; mp_jump_out(mp);
2216 @<Print the menu of available options@>
2218 @ @<Print the menu...@>=
2220 mp_print(mp, "Type <return> to proceed, S to scroll future error messages,");
2221 @.Type <return> to proceed...@>
2222 mp_print_nl(mp, "R to run without stopping, Q to run quietly,");
2223 mp_print_nl(mp, "I to insert something, ");
2224 if ( mp->file_ptr>0 )
2225 mp_print(mp, "E to edit your file,");
2226 if ( mp->deletions_allowed )
2227 mp_print_nl(mp, "1 or ... or 9 to ignore the next 1 to 9 tokens of input,");
2228 mp_print_nl(mp, "H for help, X to quit.");
2231 @ Here the author of \MP\ apologizes for making use of the numerical
2232 relation between |"Q"|, |"R"|, |"S"|, and the desired interaction settings
2233 |mp_batch_mode|, |mp_nonstop_mode|, |mp_scroll_mode|.
2234 @^Knuth, Donald Ervin@>
2236 @<Change the interaction...@>=
2238 mp->error_count=0; mp->interaction=mp_batch_mode+c-'Q';
2239 mp_print(mp, "OK, entering ");
2241 case 'Q': mp_print(mp, "batchmode"); decr(mp->selector); break;
2242 case 'R': mp_print(mp, "nonstopmode"); break;
2243 case 'S': mp_print(mp, "scrollmode"); break;
2244 } /* there are no other cases */
2245 mp_print(mp, "..."); mp_print_ln(mp); update_terminal; return;
2248 @ When the following code is executed, |buffer[(first+1)..(last-1)]| may
2249 contain the material inserted by the user; otherwise another prompt will
2250 be given. In order to understand this part of the program fully, you need
2251 to be familiar with \MP's input stacks.
2253 @<Introduce new material...@>=
2255 mp_begin_file_reading(mp); /* enter a new syntactic level for terminal input */
2256 if ( mp->last>mp->first+1 ) {
2257 loc=mp->first+1; mp->buffer[mp->first]=' ';
2259 prompt_input("insert>"); loc=mp->first;
2262 mp->first=mp->last+1; mp->cur_input.limit_field=mp->last; return;
2265 @ We allow deletion of up to 99 tokens at a time.
2267 @<Delete |c-"0"| tokens...@>=
2269 s1=mp->cur_cmd; s2=mp->cur_mod; s3=mp->cur_sym; mp->OK_to_interrupt=false;
2270 if ( (mp->last>mp->first+1) && (mp->buffer[mp->first+1]>='0')&&(mp->buffer[mp->first+1]<='9') )
2271 c=c*10+mp->buffer[mp->first+1]-'0'*11;
2275 mp_get_next(mp); /* one-level recursive call of |error| is possible */
2276 @<Decrease the string reference count, if the current token is a string@>;
2279 mp->cur_cmd=s1; mp->cur_mod=s2; mp->cur_sym=s3; mp->OK_to_interrupt=true;
2280 help2("I have just deleted some text, as you asked.")
2281 ("You can now delete more, or insert, or whatever.");
2282 mp_show_context(mp);
2286 @ @<Print the help info...@>=
2288 if ( mp->use_err_help ) {
2289 @<Print the string |err_help|, possibly on several lines@>;
2290 mp->use_err_help=false;
2292 if ( mp->help_ptr==0 ) {
2293 help2("Sorry, I don't know how to help in this situation.")
2294 ("Maybe you should try asking a human?");
2297 decr(mp->help_ptr); mp_print(mp, mp->help_line[mp->help_ptr]); mp_print_ln(mp);
2298 } while (mp->help_ptr!=0);
2300 help4("Sorry, I already gave what help I could...")
2301 ("Maybe you should try asking a human?")
2302 ("An error might have occurred before I noticed any problems.")
2303 ("``If all else fails, read the instructions.''");
2307 @ @<Print the string |err_help|, possibly on several lines@>=
2308 j=mp->str_start[mp->err_help];
2309 while ( j<str_stop(mp->err_help) ) {
2310 if ( mp->str_pool[j]!='%' ) mp_print_str(mp, mp->str_pool[j]);
2311 else if ( j+1==str_stop(mp->err_help) ) mp_print_ln(mp);
2312 else if ( mp->str_pool[j+1]!='%' ) mp_print_ln(mp);
2313 else { incr(j); mp_print_char(mp, '%'); };
2317 @ @<Put help message on the transcript file@>=
2318 if ( mp->interaction>mp_batch_mode ) decr(mp->selector); /* avoid terminal output */
2319 if ( mp->use_err_help ) {
2320 mp_print_nl(mp, "");
2321 @<Print the string |err_help|, possibly on several lines@>;
2323 while ( mp->help_ptr>0 ){
2324 decr(mp->help_ptr); mp_print_nl(mp, mp->help_line[mp->help_ptr]);
2328 if ( mp->interaction>mp_batch_mode ) incr(mp->selector); /* re-enable terminal output */
2331 @ In anomalous cases, the print selector might be in an unknown state;
2332 the following subroutine is called to fix things just enough to keep
2333 running a bit longer.
2336 void mp_normalize_selector (MP mp) {
2337 if ( mp->log_opened ) mp->selector=term_and_log;
2338 else mp->selector=term_only;
2339 if ( mp->job_name==NULL ) mp_open_log_file(mp);
2340 if ( mp->interaction==mp_batch_mode ) decr(mp->selector);
2343 @ The following procedure prints \MP's last words before dying.
2345 @d succumb { if ( mp->interaction==mp_error_stop_mode )
2346 mp->interaction=mp_scroll_mode; /* no more interaction */
2347 if ( mp->log_opened ) mp_error(mp);
2348 /*| if ( mp->interaction>mp_batch_mode ) mp_debug_help(mp); |*/
2349 mp->history=mp_fatal_error_stop; mp_jump_out(mp); /* irrecoverable error */
2353 void mp_fatal_error (MP mp, char *s) { /* prints |s|, and that's it */
2354 mp_normalize_selector(mp);
2355 print_err("Emergency stop"); help1(s); succumb;
2359 @ @<Exported function ...@>=
2360 void mp_fatal_error (MP mp, char *s);
2363 @ Here is the most dreaded error message.
2366 void mp_overflow (MP mp, char *s, integer n) { /* stop due to finiteness */
2367 mp_normalize_selector(mp);
2368 print_err("MetaPost capacity exceeded, sorry [");
2369 @.MetaPost capacity exceeded ...@>
2370 mp_print(mp, s); mp_print_char(mp, '='); mp_print_int(mp, n); mp_print_char(mp, ']');
2371 help2("If you really absolutely need more capacity,")
2372 ("you can ask a wizard to enlarge me.");
2376 @ @<Internal library declarations@>=
2377 void mp_overflow (MP mp, char *s, integer n);
2379 @ The program might sometime run completely amok, at which point there is
2380 no choice but to stop. If no previous error has been detected, that's bad
2381 news; a message is printed that is really intended for the \MP\
2382 maintenance person instead of the user (unless the user has been
2383 particularly diabolical). The index entries for `this can't happen' may
2384 help to pinpoint the problem.
2387 @<Internal library ...@>=
2388 void mp_confusion (MP mp,char *s);
2390 @ @<Error hand...@>=
2391 void mp_confusion (MP mp,char *s) {
2392 /* consistency check violated; |s| tells where */
2393 mp_normalize_selector(mp);
2394 if ( mp->history<mp_error_message_issued ) {
2395 print_err("This can't happen ("); mp_print(mp, s); mp_print_char(mp, ')');
2396 @.This can't happen@>
2397 help1("I'm broken. Please show this to someone who can fix can fix");
2399 print_err("I can\'t go on meeting you like this");
2400 @.I can't go on...@>
2401 help2("One of your faux pas seems to have wounded me deeply...")
2402 ("in fact, I'm barely conscious. Please fix it and try again.");
2407 @ Users occasionally want to interrupt \MP\ while it's running.
2408 If the runtime system allows this, one can implement
2409 a routine that sets the global variable |interrupt| to some nonzero value
2410 when such an interrupt is signaled. Otherwise there is probably at least
2411 a way to make |interrupt| nonzero using the C debugger.
2412 @^system dependencies@>
2415 @d check_interrupt { if ( mp->interrupt!=0 )
2416 mp_pause_for_instructions(mp); }
2419 integer interrupt; /* should \MP\ pause for instructions? */
2420 boolean OK_to_interrupt; /* should interrupts be observed? */
2422 @ @<Allocate or ...@>=
2423 mp->interrupt=0; mp->OK_to_interrupt=true;
2425 @ When an interrupt has been detected, the program goes into its
2426 highest interaction level and lets the user have the full flexibility of
2427 the |error| routine. \MP\ checks for interrupts only at times when it is
2431 void mp_pause_for_instructions (MP mp) {
2432 if ( mp->OK_to_interrupt ) {
2433 mp->interaction=mp_error_stop_mode;
2434 if ( (mp->selector==log_only)||(mp->selector==no_print) )
2436 print_err("Interruption");
2439 ("Try to insert some instructions for me (e.g.,`I show x'),")
2440 ("unless you just want to quit by typing `X'.");
2441 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
2446 @ Many of \MP's error messages state that a missing token has been
2447 inserted behind the scenes. We can save string space and program space
2448 by putting this common code into a subroutine.
2451 void mp_missing_err (MP mp, char *s) {
2452 print_err("Missing `"); mp_print(mp, s); mp_print(mp, "' has been inserted");
2453 @.Missing...inserted@>
2456 @* \[7] Arithmetic with scaled numbers.
2457 The principal computations performed by \MP\ are done entirely in terms of
2458 integers less than $2^{31}$ in magnitude; thus, the arithmetic specified in this
2459 program can be carried out in exactly the same way on a wide variety of
2460 computers, including some small ones.
2463 But C does not rigidly define the |/| operation in the case of negative
2464 dividends; for example, the result of |(-2*n-1) / 2| is |-(n+1)| on some
2465 computers and |-n| on others (is this true ?). There are two principal
2466 types of arithmetic: ``translation-preserving,'' in which the identity
2467 |(a+q*b)/b=(a/b)+q| is valid; and ``negation-preserving,'' in which
2468 |(-a)/b=-(a/b)|. This leads to two \MP s, which can produce
2469 different results, although the differences should be negligible when the
2470 language is being used properly. The \TeX\ processor has been defined
2471 carefully so that both varieties of arithmetic will produce identical
2472 output, but it would be too inefficient to constrain \MP\ in a similar way.
2474 @d el_gordo 017777777777 /* $2^{31}-1$, the largest value that \MP\ likes */
2476 @ One of \MP's most common operations is the calculation of
2477 $\lfloor{a+b\over2}\rfloor$,
2478 the midpoint of two given integers |a| and~|b|. The most decent way to do
2479 this is to write `|(a+b)/2|'; but on many machines it is more efficient
2480 to calculate `|(a+b)>>1|'.
2482 Therefore the midpoint operation will always be denoted by `|half(a+b)|'
2483 in this program. If \MP\ is being implemented with languages that permit
2484 binary shifting, the |half| macro should be changed to make this operation
2485 as efficient as possible. Since some systems have shift operators that can
2486 only be trusted to work on positive numbers, there is also a macro |halfp|
2487 that is used only when the quantity being halved is known to be positive
2490 @d half(A) ((A) / 2)
2491 @d halfp(A) ((A) >> 1)
2493 @ A single computation might use several subroutine calls, and it is
2494 desirable to avoid producing multiple error messages in case of arithmetic
2495 overflow. So the routines below set the global variable |arith_error| to |true|
2496 instead of reporting errors directly to the user.
2499 boolean arith_error; /* has arithmetic overflow occurred recently? */
2501 @ @<Allocate or ...@>=
2502 mp->arith_error=false;
2504 @ At crucial points the program will say |check_arith|, to test if
2505 an arithmetic error has been detected.
2507 @d check_arith { if ( mp->arith_error ) mp_clear_arith(mp); }
2510 void mp_clear_arith (MP mp) {
2511 print_err("Arithmetic overflow");
2512 @.Arithmetic overflow@>
2513 help4("Uh, oh. A little while ago one of the quantities that I was")
2514 ("computing got too large, so I'm afraid your answers will be")
2515 ("somewhat askew. You'll probably have to adopt different")
2516 ("tactics next time. But I shall try to carry on anyway.");
2518 mp->arith_error=false;
2521 @ Addition is not always checked to make sure that it doesn't overflow,
2522 but in places where overflow isn't too unlikely the |slow_add| routine
2525 @c integer mp_slow_add (MP mp,integer x, integer y) {
2527 if ( y<=el_gordo-x ) {
2530 mp->arith_error=true;
2533 } else if ( -y<=el_gordo+x ) {
2536 mp->arith_error=true;
2541 @ Fixed-point arithmetic is done on {\sl scaled integers\/} that are multiples
2542 of $2^{-16}$. In other words, a binary point is assumed to be sixteen bit
2543 positions from the right end of a binary computer word.
2545 @d quarter_unit 040000 /* $2^{14}$, represents 0.250000 */
2546 @d half_unit 0100000 /* $2^{15}$, represents 0.50000 */
2547 @d three_quarter_unit 0140000 /* $3\cdot2^{14}$, represents 0.75000 */
2548 @d unity 0200000 /* $2^{16}$, represents 1.00000 */
2549 @d two 0400000 /* $2^{17}$, represents 2.00000 */
2550 @d three 0600000 /* $2^{17}+2^{16}$, represents 3.00000 */
2553 typedef integer scaled; /* this type is used for scaled integers */
2554 typedef unsigned char small_number; /* this type is self-explanatory */
2556 @ The following function is used to create a scaled integer from a given decimal
2557 fraction $(.d_0d_1\ldots d_{k-1})$, where |0<=k<=17|. The digit $d_i$ is
2558 given in |dig[i]|, and the calculation produces a correctly rounded result.
2561 scaled mp_round_decimals (MP mp,small_number k) {
2562 /* converts a decimal fraction */
2563 integer a = 0; /* the accumulator */
2565 a=(a+mp->dig[k]*two) / 10;
2570 @ Conversely, here is a procedure analogous to |print_int|. If the output
2571 of this procedure is subsequently read by \MP\ and converted by the
2572 |round_decimals| routine above, it turns out that the original value will
2573 be reproduced exactly. A decimal point is printed only if the value is
2574 not an integer. If there is more than one way to print the result with
2575 the optimum number of digits following the decimal point, the closest
2576 possible value is given.
2578 The invariant relation in the \&{repeat} loop is that a sequence of
2579 decimal digits yet to be printed will yield the original number if and only if
2580 they form a fraction~$f$ in the range $s-\delta\L10\cdot2^{16}f<s$.
2581 We can stop if and only if $f=0$ satisfies this condition; the loop will
2582 terminate before $s$ can possibly become zero.
2584 @<Basic printing...@>=
2585 void mp_print_scaled (MP mp,scaled s) { /* prints scaled real, rounded to five digits */
2586 scaled delta; /* amount of allowable inaccuracy */
2588 mp_print_char(mp, '-');
2589 negate(s); /* print the sign, if negative */
2591 mp_print_int(mp, s / unity); /* print the integer part */
2595 mp_print_char(mp, '.');
2598 s=s+0100000-(delta / 2); /* round the final digit */
2599 mp_print_char(mp, '0'+(s / unity));
2606 @ We often want to print two scaled quantities in parentheses,
2607 separated by a comma.
2609 @<Basic printing...@>=
2610 void mp_print_two (MP mp,scaled x, scaled y) { /* prints `|(x,y)|' */
2611 mp_print_char(mp, '(');
2612 mp_print_scaled(mp, x);
2613 mp_print_char(mp, ',');
2614 mp_print_scaled(mp, y);
2615 mp_print_char(mp, ')');
2618 @ The |scaled| quantities in \MP\ programs are generally supposed to be
2619 less than $2^{12}$ in absolute value, so \MP\ does much of its internal
2620 arithmetic with 28~significant bits of precision. A |fraction| denotes
2621 a scaled integer whose binary point is assumed to be 28 bit positions
2624 @d fraction_half 01000000000 /* $2^{27}$, represents 0.50000000 */
2625 @d fraction_one 02000000000 /* $2^{28}$, represents 1.00000000 */
2626 @d fraction_two 04000000000 /* $2^{29}$, represents 2.00000000 */
2627 @d fraction_three 06000000000 /* $3\cdot2^{28}$, represents 3.00000000 */
2628 @d fraction_four 010000000000 /* $2^{30}$, represents 4.00000000 */
2631 typedef integer fraction; /* this type is used for scaled fractions */
2633 @ In fact, the two sorts of scaling discussed above aren't quite
2634 sufficient; \MP\ has yet another, used internally to keep track of angles
2635 in units of $2^{-20}$ degrees.
2637 @d forty_five_deg 0264000000 /* $45\cdot2^{20}$, represents $45^\circ$ */
2638 @d ninety_deg 0550000000 /* $90\cdot2^{20}$, represents $90^\circ$ */
2639 @d one_eighty_deg 01320000000 /* $180\cdot2^{20}$, represents $180^\circ$ */
2640 @d three_sixty_deg 02640000000 /* $360\cdot2^{20}$, represents $360^\circ$ */
2643 typedef integer angle; /* this type is used for scaled angles */
2645 @ The |make_fraction| routine produces the |fraction| equivalent of
2646 |p/q|, given integers |p| and~|q|; it computes the integer
2647 $f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are
2648 positive. If |p| and |q| are both of the same scaled type |t|,
2649 the ``type relation'' |make_fraction(t,t)=fraction| is valid;
2650 and it's also possible to use the subroutine ``backwards,'' using
2651 the relation |make_fraction(t,fraction)=t| between scaled types.
2653 If the result would have magnitude $2^{31}$ or more, |make_fraction|
2654 sets |arith_error:=true|. Most of \MP's internal computations have
2655 been designed to avoid this sort of error.
2657 If this subroutine were programmed in assembly language on a typical
2658 machine, we could simply compute |(@t$2^{28}$@>*p)div q|, since a
2659 double-precision product can often be input to a fixed-point division
2660 instruction. But when we are restricted to int-eger arithmetic it
2661 is necessary either to resort to multiple-precision maneuvering
2662 or to use a simple but slow iteration. The multiple-precision technique
2663 would be about three times faster than the code adopted here, but it
2664 would be comparatively long and tricky, involving about sixteen
2665 additional multiplications and divisions.
2667 This operation is part of \MP's ``inner loop''; indeed, it will
2668 consume nearly 10\pct! of the running time (exclusive of input and output)
2669 if the code below is left unchanged. A machine-dependent recoding
2670 will therefore make \MP\ run faster. The present implementation
2671 is highly portable, but slow; it avoids multiplication and division
2672 except in the initial stage. System wizards should be careful to
2673 replace it with a routine that is guaranteed to produce identical
2674 results in all cases.
2675 @^system dependencies@>
2677 As noted below, a few more routines should also be replaced by machine-dependent
2678 code, for efficiency. But when a procedure is not part of the ``inner loop,''
2679 such changes aren't advisable; simplicity and robustness are
2680 preferable to trickery, unless the cost is too high.
2684 fraction mp_make_fraction (MP mp,integer p, integer q);
2685 integer mp_take_scaled (MP mp,integer q, scaled f) ;
2687 @ If FIXPT is not defined, we need these preprocessor values
2689 @d ELGORDO 0x7fffffff
2690 @d TWEXP31 2147483648.0
2691 @d TWEXP28 268435456.0
2693 @d TWEXP_16 (1.0/65536.0)
2694 @d TWEXP_28 (1.0/268435456.0)
2698 fraction mp_make_fraction (MP mp,integer p, integer q) {
2700 integer f; /* the fraction bits, with a leading 1 bit */
2701 integer n; /* the integer part of $\vert p/q\vert$ */
2702 integer be_careful; /* disables certain compiler optimizations */
2703 boolean negative = false; /* should the result be negated? */
2705 negate(p); negative=true;
2709 if ( q==0 ) mp_confusion(mp, '/');
2711 @:this can't happen /}{\quad \./@>
2712 negate(q); negative = ! negative;
2716 mp->arith_error=true;
2717 return ( negative ? -el_gordo : el_gordo);
2719 n=(n-1)*fraction_one;
2720 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>;
2721 return (negative ? (-(f+n)) : (f+n));
2727 if (q==0) mp_confusion(mp,'/');
2729 d = TWEXP28 * (double)p /(double)q;
2732 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
2734 if (d==i && ( ((q>0 ? -q : q)&077777)
2735 * (((i&037777)<<1)-1) & 04000)!=0) --i;
2738 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
2740 if (d==i && ( ((q>0 ? q : -q)&077777)
2741 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
2747 @ The |repeat| loop here preserves the following invariant relations
2748 between |f|, |p|, and~|q|:
2749 (i)~|0<=p<q|; (ii)~$fq+p=2^k(q+p_0)$, where $k$ is an integer and
2750 $p_0$ is the original value of~$p$.
2752 Notice that the computation specifies
2753 |(p-q)+p| instead of |(p+p)-q|, because the latter could overflow.
2754 Let us hope that optimizing compilers do not miss this point; a
2755 special variable |be_careful| is used to emphasize the necessary
2756 order of computation. Optimizing compilers should keep |be_careful|
2757 in a register, not store it in memory.
2760 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>=
2764 be_careful=p-q; p=be_careful+p;
2770 } while (f<fraction_one);
2772 if ( be_careful+p>=0 ) incr(f);
2775 @ The dual of |make_fraction| is |take_fraction|, which multiplies a
2776 given integer~|q| by a fraction~|f|. When the operands are positive, it
2777 computes $p=\lfloor qf/2^{28}+{1\over2}\rfloor$, a symmetric function
2780 This routine is even more ``inner loopy'' than |make_fraction|;
2781 the present implementation consumes almost 20\pct! of \MP's computation
2782 time during typical jobs, so a machine-language substitute is advisable.
2783 @^inner loop@> @^system dependencies@>
2786 integer mp_take_fraction (MP mp,integer q, fraction f) ;
2790 integer mp_take_fraction (MP mp,integer q, fraction f) {
2791 integer p; /* the fraction so far */
2792 boolean negative; /* should the result be negated? */
2793 integer n; /* additional multiple of $q$ */
2794 integer be_careful; /* disables certain compiler optimizations */
2795 @<Reduce to the case that |f>=0| and |q>0|@>;
2796 if ( f<fraction_one ) {
2799 n=f / fraction_one; f=f % fraction_one;
2800 if ( q<=el_gordo / n ) {
2803 mp->arith_error=true; n=el_gordo;
2807 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>;
2808 be_careful=n-el_gordo;
2809 if ( be_careful+p>0 ){
2810 mp->arith_error=true; n=el_gordo-p;
2817 integer mp_take_fraction (MP mp,integer p, fraction q) {
2820 d = (double)p * (double)q * TWEXP_28;
2824 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2825 mp->arith_error = true;
2829 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2833 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2834 mp->arith_error = true;
2838 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2844 @ @<Reduce to the case that |f>=0| and |q>0|@>=
2848 negate( f); negative=true;
2851 negate(q); negative=! negative;
2854 @ The invariant relations in this case are (i)~$\lfloor(qf+p)/2^k\rfloor
2855 =\lfloor qf_0/2^{28}+{1\over2}\rfloor$, where $k$ is an integer and
2856 $f_0$ is the original value of~$f$; (ii)~$2^k\L f<2^{k+1}$.
2859 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>=
2860 p=fraction_half; /* that's $2^{27}$; the invariants hold now with $k=28$ */
2861 if ( q<fraction_four ) {
2863 if ( odd(f) ) p=halfp(p+q); else p=halfp(p);
2868 if ( odd(f) ) p=p+halfp(q-p); else p=halfp(p);
2874 @ When we want to multiply something by a |scaled| quantity, we use a scheme
2875 analogous to |take_fraction| but with a different scaling.
2876 Given positive operands, |take_scaled|
2877 computes the quantity $p=\lfloor qf/2^{16}+{1\over2}\rfloor$.
2879 Once again it is a good idea to use a machine-language replacement if
2880 possible; otherwise |take_scaled| will use more than 2\pct! of the running time
2881 when the Computer Modern fonts are being generated.
2886 integer mp_take_scaled (MP mp,integer q, scaled f) {
2887 integer p; /* the fraction so far */
2888 boolean negative; /* should the result be negated? */
2889 integer n; /* additional multiple of $q$ */
2890 integer be_careful; /* disables certain compiler optimizations */
2891 @<Reduce to the case that |f>=0| and |q>0|@>;
2895 n=f / unity; f=f % unity;
2896 if ( q<=el_gordo / n ) {
2899 mp->arith_error=true; n=el_gordo;
2903 @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>;
2904 be_careful=n-el_gordo;
2905 if ( be_careful+p>0 ) {
2906 mp->arith_error=true; n=el_gordo-p;
2908 return ( negative ?(-(n+p)) :(n+p));
2910 integer mp_take_scaled (MP mp,integer p, scaled q) {
2913 d = (double)p * (double)q * TWEXP_16;
2917 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2918 mp->arith_error = true;
2922 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2926 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2927 mp->arith_error = true;
2931 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2937 @ @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>=
2938 p=half_unit; /* that's $2^{15}$; the invariants hold now with $k=16$ */
2940 if ( q<fraction_four ) {
2942 p = (odd(f) ? halfp(p+q) : halfp(p));
2947 p = (odd(f) ? p+halfp(q-p) : halfp(p));
2952 @ For completeness, there's also |make_scaled|, which computes a
2953 quotient as a |scaled| number instead of as a |fraction|.
2954 In other words, the result is $\lfloor2^{16}p/q+{1\over2}\rfloor$, if the
2955 operands are positive. \ (This procedure is not used especially often,
2956 so it is not part of \MP's inner loop.)
2958 @<Internal library ...@>=
2959 scaled mp_make_scaled (MP mp,integer p, integer q) ;
2962 scaled mp_make_scaled (MP mp,integer p, integer q) {
2964 integer f; /* the fraction bits, with a leading 1 bit */
2965 integer n; /* the integer part of $\vert p/q\vert$ */
2966 boolean negative; /* should the result be negated? */
2967 integer be_careful; /* disables certain compiler optimizations */
2968 if ( p>=0 ) negative=false;
2969 else { negate(p); negative=true; };
2972 if ( q==0 ) mp_confusion(mp, "/");
2973 @:this can't happen /}{\quad \./@>
2975 negate(q); negative=! negative;
2979 mp->arith_error=true;
2980 return (negative ? (-el_gordo) : el_gordo);
2983 @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>;
2984 return ( negative ? (-(f+n)) :(f+n));
2990 if (q==0) mp_confusion(mp,"/");
2992 d = TWEXP16 * (double)p /(double)q;
2995 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
2997 if (d==i && ( ((q>0 ? -q : q)&077777)
2998 * (((i&037777)<<1)-1) & 04000)!=0) --i;
3001 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
3003 if (d==i && ( ((q>0 ? q : -q)&077777)
3004 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
3010 @ @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>=
3013 be_careful=p-q; p=be_careful+p;
3014 if ( p>=0 ) f=f+f+1;
3015 else { f+=f; p=p+q; };
3018 if ( be_careful+p>=0 ) incr(f)
3020 @ Here is a typical example of how the routines above can be used.
3021 It computes the function
3022 $${1\over3\tau}f(\theta,\phi)=
3023 {\tau^{-1}\bigl(2+\sqrt2\,(\sin\theta-{1\over16}\sin\phi)
3024 (\sin\phi-{1\over16}\sin\theta)(\cos\theta-\cos\phi)\bigr)\over
3025 3\,\bigl(1+{1\over2}(\sqrt5-1)\cos\theta+{1\over2}(3-\sqrt5\,)\cos\phi\bigr)},$$
3026 where $\tau$ is a |scaled| ``tension'' parameter. This is \MP's magic
3027 fudge factor for placing the first control point of a curve that starts
3028 at an angle $\theta$ and ends at an angle $\phi$ from the straight path.
3029 (Actually, if the stated quantity exceeds 4, \MP\ reduces it to~4.)
3031 The trigonometric quantity to be multiplied by $\sqrt2$ is less than $\sqrt2$.
3032 (It's a sum of eight terms whose absolute values can be bounded using
3033 relations such as $\sin\theta\cos\theta\L{1\over2}$.) Thus the numerator
3034 is positive; and since the tension $\tau$ is constrained to be at least
3035 $3\over4$, the numerator is less than $16\over3$. The denominator is
3036 nonnegative and at most~6. Hence the fixed-point calculations below
3037 are guaranteed to stay within the bounds of a 32-bit computer word.
3039 The angles $\theta$ and $\phi$ are given implicitly in terms of |fraction|
3040 arguments |st|, |ct|, |sf|, and |cf|, representing $\sin\theta$, $\cos\theta$,
3041 $\sin\phi$, and $\cos\phi$, respectively.
3044 fraction mp_velocity (MP mp,fraction st, fraction ct, fraction sf,
3045 fraction cf, scaled t) {
3046 integer acc,num,denom; /* registers for intermediate calculations */
3047 acc=mp_take_fraction(mp, st-(sf / 16), sf-(st / 16));
3048 acc=mp_take_fraction(mp, acc,ct-cf);
3049 num=fraction_two+mp_take_fraction(mp, acc,379625062);
3050 /* $2^{28}\sqrt2\approx379625062.497$ */
3051 denom=fraction_three+mp_take_fraction(mp, ct,497706707)+mp_take_fraction(mp, cf,307599661);
3052 /* $3\cdot2^{27}\cdot(\sqrt5-1)\approx497706706.78$ and
3053 $3\cdot2^{27}\cdot(3-\sqrt5\,)\approx307599661.22$ */
3054 if ( t!=unity ) num=mp_make_scaled(mp, num,t);
3055 /* |make_scaled(fraction,scaled)=fraction| */
3056 if ( num / 4>=denom )
3057 return fraction_four;
3059 return mp_make_fraction(mp, num, denom);
3062 @ The following somewhat different subroutine tests rigorously if $ab$ is
3063 greater than, equal to, or less than~$cd$,
3064 given integers $(a,b,c,d)$. In most cases a quick decision is reached.
3065 The result is $+1$, 0, or~$-1$ in the three respective cases.
3067 @d mp_ab_vs_cd(M,A,B,C,D) mp_do_ab_vs_cd(A,B,C,D)
3070 integer mp_do_ab_vs_cd (integer a,integer b, integer c, integer d) {
3071 integer q,r; /* temporary registers */
3072 @<Reduce to the case that |a,c>=0|, |b,d>0|@>;
3074 q = a / d; r = c / b;
3076 return ( q>r ? 1 : -1);
3077 q = a % d; r = c % b;
3080 if ( q==0 ) return -1;
3082 } /* now |a>d>0| and |c>b>0| */
3085 @ @<Reduce to the case that |a...@>=
3086 if ( a<0 ) { negate(a); negate(b); };
3087 if ( c<0 ) { negate(c); negate(d); };
3090 if ( (a==0||b==0)&&(c==0||d==0) ) return 0;
3094 return ( a==0 ? 0 : -1);
3095 q=a; a=c; c=q; q=-b; b=-d; d=q;
3096 } else if ( b<=0 ) {
3097 if ( b<0 ) if ( a>0 ) return -1;
3098 return (c==0 ? 0 : -1);
3101 @ We conclude this set of elementary routines with some simple rounding
3102 and truncation operations.
3104 @<Internal library declarations@>=
3105 #define mp_floor_scaled(M,i) ((i)&(-65536))
3106 #define mp_round_unscaled(M,i) (((i>>15)+1)>>1)
3107 #define mp_round_fraction(M,i) (((i>>11)+1)>>1)
3110 @* \[8] Algebraic and transcendental functions.
3111 \MP\ computes all of the necessary special functions from scratch, without
3112 relying on |real| arithmetic or system subroutines for sines, cosines, etc.
3114 @ To get the square root of a |scaled| number |x|, we want to calculate
3115 $s=\lfloor 2^8\!\sqrt x +{1\over2}\rfloor$. If $x>0$, this is the unique
3116 integer such that $2^{16}x-s\L s^2<2^{16}x+s$. The following subroutine
3117 determines $s$ by an iterative method that maintains the invariant
3118 relations $x=2^{46-2k}x_0\bmod 2^{30}$, $0<y=\lfloor 2^{16-2k}x_0\rfloor
3119 -s^2+s\L q=2s$, where $x_0$ is the initial value of $x$. The value of~$y$
3120 might, however, be zero at the start of the first iteration.
3123 scaled mp_square_rt (MP mp,scaled x) ;
3126 scaled mp_square_rt (MP mp,scaled x) {
3127 small_number k; /* iteration control counter */
3128 integer y,q; /* registers for intermediate calculations */
3130 @<Handle square root of zero or negative argument@>;
3133 while ( x<fraction_two ) { /* i.e., |while x<@t$2^{29}$@>|\unskip */
3136 if ( x<fraction_four ) y=0;
3137 else { x=x-fraction_four; y=1; };
3139 @<Decrease |k| by 1, maintaining the invariant
3140 relations between |x|, |y|, and~|q|@>;
3146 @ @<Handle square root of zero...@>=
3149 print_err("Square root of ");
3150 @.Square root...replaced by 0@>
3151 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3152 help2("Since I don't take square roots of negative numbers,")
3153 ("I'm zeroing this one. Proceed, with fingers crossed.");
3159 @ @<Decrease |k| by 1, maintaining...@>=
3161 if ( x>=fraction_four ) { /* note that |fraction_four=@t$2^{30}$@>| */
3162 x=x-fraction_four; incr(y);
3164 x+=x; y=y+y-q; q+=q;
3165 if ( x>=fraction_four ) { x=x-fraction_four; incr(y); };
3166 if ( y>q ){ y=y-q; q=q+2; }
3167 else if ( y<=0 ) { q=q-2; y=y+q; };
3170 @ Pythagorean addition $\psqrt{a^2+b^2}$ is implemented by an elegant
3171 iterative scheme due to Cleve Moler and Donald Morrison [{\sl IBM Journal
3172 @^Moler, Cleve Barry@>
3173 @^Morrison, Donald Ross@>
3174 of Research and Development\/ \bf27} (1983), 577--581]. It modifies |a| and~|b|
3175 in such a way that their Pythagorean sum remains invariant, while the
3176 smaller argument decreases.
3178 @<Internal library ...@>=
3179 integer mp_pyth_add (MP mp,integer a, integer b);
3183 integer mp_pyth_add (MP mp,integer a, integer b) {
3184 fraction r; /* register used to transform |a| and |b| */
3185 boolean big; /* is the result dangerously near $2^{31}$? */
3187 if ( a<b ) { r=b; b=a; a=r; }; /* now |0<=b<=a| */
3189 if ( a<fraction_two ) {
3192 a=a / 4; b=b / 4; big=true;
3193 }; /* we reduced the precision to avoid arithmetic overflow */
3194 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>;
3196 if ( a<fraction_two ) {
3199 mp->arith_error=true; a=el_gordo;
3206 @ The key idea here is to reflect the vector $(a,b)$ about the
3207 line through $(a,b/2)$.
3209 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>=
3211 r=mp_make_fraction(mp, b,a);
3212 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3214 r=mp_make_fraction(mp, r,fraction_four+r);
3215 a=a+mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3219 @ Here is a similar algorithm for $\psqrt{a^2-b^2}$.
3220 It converges slowly when $b$ is near $a$, but otherwise it works fine.
3223 integer mp_pyth_sub (MP mp,integer a, integer b) {
3224 fraction r; /* register used to transform |a| and |b| */
3225 boolean big; /* is the input dangerously near $2^{31}$? */
3228 @<Handle erroneous |pyth_sub| and set |a:=0|@>;
3230 if ( a<fraction_four ) {
3233 a=halfp(a); b=halfp(b); big=true;
3235 @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>;
3236 if ( big ) double(a);
3241 @ @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>=
3243 r=mp_make_fraction(mp, b,a);
3244 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3246 r=mp_make_fraction(mp, r,fraction_four-r);
3247 a=a-mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3250 @ @<Handle erroneous |pyth_sub| and set |a:=0|@>=
3253 print_err("Pythagorean subtraction "); mp_print_scaled(mp, a);
3254 mp_print(mp, "+-+"); mp_print_scaled(mp, b);
3255 mp_print(mp, " has been replaced by 0");
3257 help2("Since I don't take square roots of negative numbers,")
3258 ("I'm zeroing this one. Proceed, with fingers crossed.");
3264 @ The subroutines for logarithm and exponential involve two tables.
3265 The first is simple: |two_to_the[k]| equals $2^k$. The second involves
3266 a bit more calculation, which the author claims to have done correctly:
3267 |spec_log[k]| is $2^{27}$ times $\ln\bigl(1/(1-2^{-k})\bigr)=
3268 2^{-k}+{1\over2}2^{-2k}+{1\over3}2^{-3k}+\cdots\,$, rounded to the
3271 @d two_to_the(A) (1<<(A))
3274 static const integer spec_log[29] = { 0, /* special logarithms */
3275 93032640, 38612034, 17922280, 8662214, 4261238, 2113709,
3276 1052693, 525315, 262400, 131136, 65552, 32772, 16385,
3277 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1 };
3279 @ @<Local variables for initialization@>=
3280 integer k; /* all-purpose loop index */
3283 @ Here is the routine that calculates $2^8$ times the natural logarithm
3284 of a |scaled| quantity; it is an integer approximation to $2^{24}\ln(x/2^{16})$,
3285 when |x| is a given positive integer.
3287 The method is based on exercise 1.2.2--25 in {\sl The Art of Computer
3288 Programming\/}: During the main iteration we have $1\L 2^{-30}x<1/(1-2^{1-k})$,
3289 and the logarithm of $2^{30}x$ remains to be added to an accumulator
3290 register called~$y$. Three auxiliary bits of accuracy are retained in~$y$
3291 during the calculation, and sixteen auxiliary bits to extend |y| are
3292 kept in~|z| during the initial argument reduction. (We add
3293 $100\cdot2^{16}=6553600$ to~|z| and subtract 100 from~|y| so that |z| will
3294 not become negative; also, the actual amount subtracted from~|y| is~96,
3295 not~100, because we want to add~4 for rounding before the final division by~8.)
3298 scaled mp_m_log (MP mp,scaled x) {
3299 integer y,z; /* auxiliary registers */
3300 integer k; /* iteration counter */
3302 @<Handle non-positive logarithm@>;
3304 y=1302456956+4-100; /* $14\times2^{27}\ln2\approx1302456956.421063$ */
3305 z=27595+6553600; /* and $2^{16}\times .421063\approx 27595$ */
3306 while ( x<fraction_four ) {
3307 double(x); y-=93032639; z-=48782;
3308 } /* $2^{27}\ln2\approx 93032639.74436163$ and $2^{16}\times.74436163\approx 48782$ */
3309 y=y+(z / unity); k=2;
3310 while ( x>fraction_four+4 ) {
3311 @<Increase |k| until |x| can be multiplied by a
3312 factor of $2^{-k}$, and adjust $y$ accordingly@>;
3318 @ @<Increase |k| until |x| can...@>=
3320 z=((x-1) / two_to_the(k))+1; /* $z=\lceil x/2^k\rceil$ */
3321 while ( x<fraction_four+z ) { z=halfp(z+1); incr(k); };
3322 y+=spec_log[k]; x-=z;
3325 @ @<Handle non-positive logarithm@>=
3327 print_err("Logarithm of ");
3328 @.Logarithm...replaced by 0@>
3329 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3330 help2("Since I don't take logs of non-positive numbers,")
3331 ("I'm zeroing this one. Proceed, with fingers crossed.");
3336 @ Conversely, the exponential routine calculates $\exp(x/2^8)$,
3337 when |x| is |scaled|. The result is an integer approximation to
3338 $2^{16}\exp(x/2^{24})$, when |x| is regarded as an integer.
3341 scaled mp_m_exp (MP mp,scaled x) {
3342 small_number k; /* loop control index */
3343 integer y,z; /* auxiliary registers */
3344 if ( x>174436200 ) {
3345 /* $2^{24}\ln((2^{31}-1)/2^{16})\approx 174436199.51$ */
3346 mp->arith_error=true;
3348 } else if ( x<-197694359 ) {
3349 /* $2^{24}\ln(2^{-1}/2^{16})\approx-197694359.45$ */
3353 z=-8*x; y=04000000; /* $y=2^{20}$ */
3355 if ( x<=127919879 ) {
3357 /* $2^{27}\ln((2^{31}-1)/2^{20})\approx 1023359037.125$ */
3359 z=8*(174436200-x); /* |z| is always nonnegative */
3363 @<Multiply |y| by $\exp(-z/2^{27})$@>;
3365 return ((y+8) / 16);
3371 @ The idea here is that subtracting |spec_log[k]| from |z| corresponds
3372 to multiplying |y| by $1-2^{-k}$.
3374 A subtle point (which had to be checked) was that if $x=127919879$, the
3375 value of~|y| will decrease so that |y+8| doesn't overflow. In fact,
3376 $z$ will be 5 in this case, and |y| will decrease by~64 when |k=25|
3377 and by~16 when |k=27|.
3379 @<Multiply |y| by...@>=
3382 while ( z>=spec_log[k] ) {
3384 y=y-1-((y-two_to_the(k-1)) / two_to_the(k));
3389 @ The trigonometric subroutines use an auxiliary table such that
3390 |spec_atan[k]| contains an approximation to the |angle| whose tangent
3391 is~$1/2^k$. $\arctan2^{-k}$ times $2^{20}\cdot180/\pi$
3394 static const angle spec_atan[27] = { 0, 27855475, 14718068, 7471121, 3750058,
3395 1876857, 938658, 469357, 234682, 117342, 58671, 29335, 14668, 7334, 3667,
3396 1833, 917, 458, 229, 115, 57, 29, 14, 7, 4, 2, 1 };
3398 @ Given integers |x| and |y|, not both zero, the |n_arg| function
3399 returns the |angle| whose tangent points in the direction $(x,y)$.
3400 This subroutine first determines the correct octant, then solves the
3401 problem for |0<=y<=x|, then converts the result appropriately to
3402 return an answer in the range |-one_eighty_deg<=@t$\theta$@><=one_eighty_deg|.
3403 (The answer is |+one_eighty_deg| if |y=0| and |x<0|, but an answer of
3404 |-one_eighty_deg| is possible if, for example, |y=-1| and $x=-2^{30}$.)
3406 The octants are represented in a ``Gray code,'' since that turns out
3407 to be computationally simplest.
3413 @d second_octant (first_octant+switch_x_and_y)
3414 @d third_octant (first_octant+switch_x_and_y+negate_x)
3415 @d fourth_octant (first_octant+negate_x)
3416 @d fifth_octant (first_octant+negate_x+negate_y)
3417 @d sixth_octant (first_octant+switch_x_and_y+negate_x+negate_y)
3418 @d seventh_octant (first_octant+switch_x_and_y+negate_y)
3419 @d eighth_octant (first_octant+negate_y)
3422 angle mp_n_arg (MP mp,integer x, integer y) {
3423 angle z; /* auxiliary register */
3424 integer t; /* temporary storage */
3425 small_number k; /* loop counter */
3426 int octant; /* octant code */
3428 octant=first_octant;
3430 negate(x); octant=first_octant+negate_x;
3433 negate(y); octant=octant+negate_y;
3436 t=y; y=x; x=t; octant=octant+switch_x_and_y;
3439 @<Handle undefined arg@>;
3441 @<Set variable |z| to the arg of $(x,y)$@>;
3442 @<Return an appropriate answer based on |z| and |octant|@>;
3446 @ @<Handle undefined arg@>=
3448 print_err("angle(0,0) is taken as zero");
3449 @.angle(0,0)...zero@>
3450 help2("The `angle' between two identical points is undefined.")
3451 ("I'm zeroing this one. Proceed, with fingers crossed.");
3456 @ @<Return an appropriate answer...@>=
3458 case first_octant: return z;
3459 case second_octant: return (ninety_deg-z);
3460 case third_octant: return (ninety_deg+z);
3461 case fourth_octant: return (one_eighty_deg-z);
3462 case fifth_octant: return (z-one_eighty_deg);
3463 case sixth_octant: return (-z-ninety_deg);
3464 case seventh_octant: return (z-ninety_deg);
3465 case eighth_octant: return (-z);
3466 }; /* there are no other cases */
3469 @ At this point we have |x>=y>=0|, and |x>0|. The numbers are scaled up
3470 or down until $2^{28}\L x<2^{29}$, so that accurate fixed-point calculations
3473 @<Set variable |z| to the arg...@>=
3474 while ( x>=fraction_two ) {
3475 x=halfp(x); y=halfp(y);
3479 while ( x<fraction_one ) {
3482 @<Increase |z| to the arg of $(x,y)$@>;
3485 @ During the calculations of this section, variables |x| and~|y|
3486 represent actual coordinates $(x,2^{-k}y)$. We will maintain the
3487 condition |x>=y|, so that the tangent will be at most $2^{-k}$.
3488 If $x<2y$, the tangent is greater than $2^{-k-1}$. The transformation
3489 $(a,b)\mapsto(a+b\tan\phi,b-a\tan\phi)$ replaces $(a,b)$ by
3490 coordinates whose angle has decreased by~$\phi$; in the special case
3491 $a=x$, $b=2^{-k}y$, and $\tan\phi=2^{-k-1}$, this operation reduces
3492 to the particularly simple iteration shown here. [Cf.~John E. Meggitt,
3493 @^Meggitt, John E.@>
3494 {\sl IBM Journal of Research and Development\/ \bf6} (1962), 210--226.]
3496 The initial value of |x| will be multiplied by at most
3497 $(1+{1\over2})(1+{1\over8})(1+{1\over32})\cdots\approx 1.7584$; hence
3498 there is no chance of integer overflow.
3500 @<Increase |z|...@>=
3505 z=z+spec_atan[k]; t=x; x=x+(y / two_to_the(k+k)); y=y-t;
3510 if ( y>x ) { z=z+spec_atan[k]; y=y-x; };
3513 @ Conversely, the |n_sin_cos| routine takes an |angle| and produces the sine
3514 and cosine of that angle. The results of this routine are
3515 stored in global integer variables |n_sin| and |n_cos|.
3518 fraction n_sin;fraction n_cos; /* results computed by |n_sin_cos| */
3520 @ Given an integer |z| that is $2^{20}$ times an angle $\theta$ in degrees,
3521 the purpose of |n_sin_cos(z)| is to set
3522 |x=@t$r\cos\theta$@>| and |y=@t$r\sin\theta$@>| (approximately),
3523 for some rather large number~|r|. The maximum of |x| and |y|
3524 will be between $2^{28}$ and $2^{30}$, so that there will be hardly
3525 any loss of accuracy. Then |x| and~|y| are divided by~|r|.
3528 void mp_n_sin_cos (MP mp,angle z) { /* computes a multiple of the sine
3530 small_number k; /* loop control variable */
3531 int q; /* specifies the quadrant */
3532 fraction r; /* magnitude of |(x,y)| */
3533 integer x,y,t; /* temporary registers */
3534 while ( z<0 ) z=z+three_sixty_deg;
3535 z=z % three_sixty_deg; /* now |0<=z<three_sixty_deg| */
3536 q=z / forty_five_deg; z=z % forty_five_deg;
3537 x=fraction_one; y=x;
3538 if ( ! odd(q) ) z=forty_five_deg-z;
3539 @<Subtract angle |z| from |(x,y)|@>;
3540 @<Convert |(x,y)| to the octant determined by~|q|@>;
3541 r=mp_pyth_add(mp, x,y);
3542 mp->n_cos=mp_make_fraction(mp, x,r);
3543 mp->n_sin=mp_make_fraction(mp, y,r);
3546 @ In this case the octants are numbered sequentially.
3548 @<Convert |(x,...@>=
3551 case 1: t=x; x=y; y=t; break;
3552 case 2: t=x; x=-y; y=t; break;
3553 case 3: negate(x); break;
3554 case 4: negate(x); negate(y); break;
3555 case 5: t=x; x=-y; y=-t; break;
3556 case 6: t=x; x=y; y=-t; break;
3557 case 7: negate(y); break;
3558 } /* there are no other cases */
3560 @ The main iteration of |n_sin_cos| is similar to that of |n_arg| but
3561 applied in reverse. The values of |spec_atan[k]| decrease slowly enough
3562 that this loop is guaranteed to terminate before the (nonexistent) value
3563 |spec_atan[27]| would be required.
3565 @<Subtract angle |z|...@>=
3568 if ( z>=spec_atan[k] ) {
3569 z=z-spec_atan[k]; t=x;
3570 x=t+y / two_to_the(k);
3571 y=y-t / two_to_the(k);
3575 if ( y<0 ) y=0 /* this precaution may never be needed */
3577 @ And now let's complete our collection of numeric utility routines
3578 by considering random number generation.
3579 \MP\ generates pseudo-random numbers with the additive scheme recommended
3580 in Section 3.6 of {\sl The Art of Computer Programming}; however, the
3581 results are random fractions between 0 and |fraction_one-1|, inclusive.
3583 There's an auxiliary array |randoms| that contains 55 pseudo-random
3584 fractions. Using the recurrence $x_n=(x_{n-55}-x_{n-31})\bmod 2^{28}$,
3585 we generate batches of 55 new $x_n$'s at a time by calling |new_randoms|.
3586 The global variable |j_random| tells which element has most recently
3588 The global variable |random_seed| was introduced in version 0.9,
3589 for the sole reason of stressing the fact that the initial value of the
3590 random seed is system-dependant. The initialization code below will initialize
3591 this variable to |(internal[mp_time] div unity)+internal[mp_day]|, but this
3592 is not good enough on modern fast machines that are capable of running
3593 multiple MetaPost processes within the same second.
3594 @^system dependencies@>
3597 fraction randoms[55]; /* the last 55 random values generated */
3598 int j_random; /* the number of unused |randoms| */
3600 @ @<Option variables@>=
3601 int random_seed; /* the default random seed */
3603 @ @<Allocate or initialize ...@>=
3604 mp->random_seed = (scaled)opt->random_seed;
3606 @ To consume a random fraction, the program below will say `|next_random|'
3607 and then it will fetch |randoms[j_random]|.
3609 @d next_random { if ( mp->j_random==0 ) mp_new_randoms(mp);
3610 else decr(mp->j_random); }
3613 void mp_new_randoms (MP mp) {
3614 int k; /* index into |randoms| */
3615 fraction x; /* accumulator */
3616 for (k=0;k<=23;k++) {
3617 x=mp->randoms[k]-mp->randoms[k+31];
3618 if ( x<0 ) x=x+fraction_one;
3621 for (k=24;k<= 54;k++){
3622 x=mp->randoms[k]-mp->randoms[k-24];
3623 if ( x<0 ) x=x+fraction_one;
3630 void mp_init_randoms (MP mp,scaled seed);
3632 @ To initialize the |randoms| table, we call the following routine.
3635 void mp_init_randoms (MP mp,scaled seed) {
3636 fraction j,jj,k; /* more or less random integers */
3637 int i; /* index into |randoms| */
3639 while ( j>=fraction_one ) j=halfp(j);
3641 for (i=0;i<=54;i++ ){
3643 if ( k<0 ) k=k+fraction_one;
3644 mp->randoms[(i*21)% 55]=j;
3648 mp_new_randoms(mp); /* ``warm up'' the array */
3651 @ To produce a uniform random number in the range |0<=u<x| or |0>=u>x|
3652 or |0=u=x|, given a |scaled| value~|x|, we proceed as shown here.
3654 Note that the call of |take_fraction| will produce the values 0 and~|x|
3655 with about half the probability that it will produce any other particular
3656 values between 0 and~|x|, because it rounds its answers.
3659 scaled mp_unif_rand (MP mp,scaled x) {
3660 scaled y; /* trial value */
3661 next_random; y=mp_take_fraction(mp, abs(x),mp->randoms[mp->j_random]);
3662 if ( y==abs(x) ) return 0;
3663 else if ( x>0 ) return y;
3667 @ Finally, a normal deviate with mean zero and unit standard deviation
3668 can readily be obtained with the ratio method (Algorithm 3.4.1R in
3669 {\sl The Art of Computer Programming\/}).
3672 scaled mp_norm_rand (MP mp) {
3673 integer x,u,l; /* what the book would call $2^{16}X$, $2^{28}U$, and $-2^{24}\ln U$ */
3677 x=mp_take_fraction(mp, 112429,mp->randoms[mp->j_random]-fraction_half);
3678 /* $2^{16}\sqrt{8/e}\approx 112428.82793$ */
3679 next_random; u=mp->randoms[mp->j_random];
3680 } while (abs(x)>=u);
3681 x=mp_make_fraction(mp, x,u);
3682 l=139548960-mp_m_log(mp, u); /* $2^{24}\cdot12\ln2\approx139548959.6165$ */
3683 } while (mp_ab_vs_cd(mp, 1024,l,x,x)<0);
3687 @* \[9] Packed data.
3688 In order to make efficient use of storage space, \MP\ bases its major data
3689 structures on a |memory_word|, which contains either a (signed) integer,
3690 possibly scaled, or a small number of fields that are one half or one
3691 quarter of the size used for storing integers.
3693 If |x| is a variable of type |memory_word|, it contains up to four
3694 fields that can be referred to as follows:
3695 $$\vbox{\halign{\hfil#&#\hfil&#\hfil\cr
3696 |x|&.|int|&(an |integer|)\cr
3697 |x|&.|sc|\qquad&(a |scaled| integer)\cr
3698 |x.hh.lh|, |x.hh|&.|rh|&(two halfword fields)\cr
3699 |x.hh.b0|, |x.hh.b1|, |x.hh|&.|rh|&(two quarterword fields, one halfword
3701 |x.qqqq.b0|, |x.qqqq.b1|, |x.qqqq|&.|b2|, |x.qqqq.b3|\hskip-100pt
3702 &\qquad\qquad\qquad(four quarterword fields)\cr}}$$
3703 This is somewhat cumbersome to write, and not very readable either, but
3704 macros will be used to make the notation shorter and more transparent.
3705 The code below gives a formal definition of |memory_word| and
3706 its subsidiary types, using packed variant records. \MP\ makes no
3707 assumptions about the relative positions of the fields within a word.
3709 @d max_quarterword 0x3FFF /* largest allowable value in a |quarterword| */
3710 @d max_halfword 0xFFFFFFF /* largest allowable value in a |halfword| */
3712 @ Here are the inequalities that the quarterword and halfword values
3713 must satisfy (or rather, the inequalities that they mustn't satisfy):
3715 @<Check the ``constant''...@>=
3716 if (mp->ini_version) {
3717 if ( mp->mem_max!=mp->mem_top ) mp->bad=8;
3719 if ( mp->mem_max<mp->mem_top ) mp->bad=8;
3721 if ( max_quarterword<255 ) mp->bad=9;
3722 if ( max_halfword<65535 ) mp->bad=10;
3723 if ( max_quarterword>max_halfword ) mp->bad=11;
3724 if ( mp->mem_max>=max_halfword ) mp->bad=12;
3725 if ( mp->max_strings>max_halfword ) mp->bad=13;
3727 @ The macros |qi| and |qo| are used for input to and output
3728 from quarterwords. These are legacy macros.
3729 @^system dependencies@>
3731 @d qo(A) (A) /* to read eight bits from a quarterword */
3732 @d qi(A) (A) /* to store eight bits in a quarterword */
3734 @ The reader should study the following definitions closely:
3735 @^system dependencies@>
3737 @d sc cint /* |scaled| data is equivalent to |integer| */
3740 typedef short quarterword; /* 1/4 of a word */
3741 typedef int halfword; /* 1/2 of a word */
3746 struct { /* Make B0,B1 overlap the most significant bytes of LH. */
3753 quarterword B2, B3, B0, B1;
3768 @ When debugging, we may want to print a |memory_word| without knowing
3769 what type it is; so we print it in all modes.
3773 void mp_print_word (MP mp,memory_word w) {
3774 /* prints |w| in all ways */
3775 mp_print_int(mp, w.cint); mp_print_char(mp, ' ');
3776 mp_print_scaled(mp, w.sc); mp_print_char(mp, ' ');
3777 mp_print_scaled(mp, w.sc / 010000); mp_print_ln(mp);
3778 mp_print_int(mp, w.hh.lh); mp_print_char(mp, '=');
3779 mp_print_int(mp, w.hh.b0); mp_print_char(mp, ':');
3780 mp_print_int(mp, w.hh.b1); mp_print_char(mp, ';');
3781 mp_print_int(mp, w.hh.rh); mp_print_char(mp, ' ');
3782 mp_print_int(mp, w.qqqq.b0); mp_print_char(mp, ':');
3783 mp_print_int(mp, w.qqqq.b1); mp_print_char(mp, ':');
3784 mp_print_int(mp, w.qqqq.b2); mp_print_char(mp, ':');
3785 mp_print_int(mp, w.qqqq.b3);
3789 @* \[10] Dynamic memory allocation.
3791 The \MP\ system does nearly all of its own memory allocation, so that it
3792 can readily be transported into environments that do not have automatic
3793 facilities for strings, garbage collection, etc., and so that it can be in
3794 control of what error messages the user receives. The dynamic storage
3795 requirements of \MP\ are handled by providing a large array |mem| in
3796 which consecutive blocks of words are used as nodes by the \MP\ routines.
3798 Pointer variables are indices into this array, or into another array
3799 called |eqtb| that will be explained later. A pointer variable might
3800 also be a special flag that lies outside the bounds of |mem|, so we
3801 allow pointers to assume any |halfword| value. The minimum memory
3802 index represents a null pointer.
3804 @d null 0 /* the null pointer */
3805 @d mp_void (null+1) /* a null pointer different from |null| */
3809 typedef halfword pointer; /* a flag or a location in |mem| or |eqtb| */
3811 @ The |mem| array is divided into two regions that are allocated separately,
3812 but the dividing line between these two regions is not fixed; they grow
3813 together until finding their ``natural'' size in a particular job.
3814 Locations less than or equal to |lo_mem_max| are used for storing
3815 variable-length records consisting of two or more words each. This region
3816 is maintained using an algorithm similar to the one described in exercise
3817 2.5--19 of {\sl The Art of Computer Programming}. However, no size field
3818 appears in the allocated nodes; the program is responsible for knowing the
3819 relevant size when a node is freed. Locations greater than or equal to
3820 |hi_mem_min| are used for storing one-word records; a conventional
3821 \.{AVAIL} stack is used for allocation in this region.
3823 Locations of |mem| between |0| and |mem_top| may be dumped as part
3824 of preloaded format files, by the \.{INIMP} preprocessor.
3826 Production versions of \MP\ may extend the memory at the top end in order to
3827 provide more space; these locations, between |mem_top| and |mem_max|,
3828 are always used for single-word nodes.
3830 The key pointers that govern |mem| allocation have a prescribed order:
3831 $$\hbox{|null=0<lo_mem_max<hi_mem_min<mem_top<=mem_end<=mem_max|.}$$
3834 memory_word *mem; /* the big dynamic storage area */
3835 pointer lo_mem_max; /* the largest location of variable-size memory in use */
3836 pointer hi_mem_min; /* the smallest location of one-word memory in use */
3840 @d xfree(A) do { mp_xfree(A); A=NULL; } while (0)
3841 @d xrealloc(P,A,B) mp_xrealloc(mp,P,A,B)
3842 @d xmalloc(A,B) mp_xmalloc(mp,A,B)
3843 @d xstrdup(A) mp_xstrdup(mp,A)
3844 @d XREALLOC(a,b,c) a = xrealloc(a,(b+1),sizeof(c));
3846 @<Declare helpers@>=
3847 void mp_xfree (void *x);
3848 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) ;
3849 void *mp_xmalloc (MP mp, size_t nmem, size_t size) ;
3850 char *mp_xstrdup(MP mp, const char *s);
3852 @ The |max_size_test| guards against overflow, on the assumption that
3853 |size_t| is at least 31bits wide.
3855 @d max_size_test 0x7FFFFFFF
3858 void mp_xfree (void *x) {
3859 if (x!=NULL) free(x);
3861 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) {
3863 if ((max_size_test/size)<nmem) {
3864 do_fprintf(mp->err_out,"Memory size overflow!\n");
3865 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3867 w = realloc (p,(nmem*size));
3869 do_fprintf(mp->err_out,"Out of memory!\n");
3870 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3874 void *mp_xmalloc (MP mp, size_t nmem, size_t size) {
3876 if ((max_size_test/size)<nmem) {
3877 do_fprintf(mp->err_out,"Memory size overflow!\n");
3878 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3880 w = malloc (nmem*size);
3882 do_fprintf(mp->err_out,"Out of memory!\n");
3883 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3887 char *mp_xstrdup(MP mp, const char *s) {
3893 do_fprintf(mp->err_out,"Out of memory!\n");
3894 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3901 @<Allocate or initialize ...@>=
3902 mp->mem = xmalloc ((mp->mem_max+1),sizeof (memory_word));
3903 memset(mp->mem,0,(mp->mem_max+1)*sizeof (memory_word));
3905 @ @<Dealloc variables@>=
3908 @ Users who wish to study the memory requirements of particular applications can
3909 can use optional special features that keep track of current and
3910 maximum memory usage. When code between the delimiters |stat| $\ldots$
3911 |tats| is not ``commented out,'' \MP\ will run a bit slower but it will
3912 report these statistics when |mp_tracing_stats| is positive.
3915 integer var_used; integer dyn_used; /* how much memory is in use */
3917 @ Let's consider the one-word memory region first, since it's the
3918 simplest. The pointer variable |mem_end| holds the highest-numbered location
3919 of |mem| that has ever been used. The free locations of |mem| that
3920 occur between |hi_mem_min| and |mem_end|, inclusive, are of type
3921 |two_halves|, and we write |info(p)| and |link(p)| for the |lh|
3922 and |rh| fields of |mem[p]| when it is of this type. The single-word
3923 free locations form a linked list
3924 $$|avail|,\;\hbox{|link(avail)|},\;\hbox{|link(link(avail))|},\;\ldots$$
3925 terminated by |null|.
3927 @d link(A) mp->mem[(A)].hh.rh /* the |link| field of a memory word */
3928 @d info(A) mp->mem[(A)].hh.lh /* the |info| field of a memory word */
3931 pointer avail; /* head of the list of available one-word nodes */
3932 pointer mem_end; /* the last one-word node used in |mem| */
3934 @ If one-word memory is exhausted, it might mean that the user has forgotten
3935 a token like `\&{enddef}' or `\&{endfor}'. We will define some procedures
3936 later that try to help pinpoint the trouble.
3939 @<Declare the procedure called |show_token_list|@>;
3940 @<Declare the procedure called |runaway|@>
3942 @ The function |get_avail| returns a pointer to a new one-word node whose
3943 |link| field is null. However, \MP\ will halt if there is no more room left.
3947 pointer mp_get_avail (MP mp) { /* single-word node allocation */
3948 pointer p; /* the new node being got */
3949 p=mp->avail; /* get top location in the |avail| stack */
3951 mp->avail=link(mp->avail); /* and pop it off */
3952 } else if ( mp->mem_end<mp->mem_max ) { /* or go into virgin territory */
3953 incr(mp->mem_end); p=mp->mem_end;
3955 decr(mp->hi_mem_min); p=mp->hi_mem_min;
3956 if ( mp->hi_mem_min<=mp->lo_mem_max ) {
3957 mp_runaway(mp); /* if memory is exhausted, display possible runaway text */
3958 mp_overflow(mp, "main memory size",mp->mem_max);
3959 /* quit; all one-word nodes are busy */
3960 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
3963 link(p)=null; /* provide an oft-desired initialization of the new node */
3964 incr(mp->dyn_used);/* maintain statistics */
3968 @ Conversely, a one-word node is recycled by calling |free_avail|.
3970 @d free_avail(A) /* single-word node liberation */
3971 { link((A))=mp->avail; mp->avail=(A); decr(mp->dyn_used); }
3973 @ There's also a |fast_get_avail| routine, which saves the procedure-call
3974 overhead at the expense of extra programming. This macro is used in
3975 the places that would otherwise account for the most calls of |get_avail|.
3978 @d fast_get_avail(A) {
3979 (A)=mp->avail; /* avoid |get_avail| if possible, to save time */
3980 if ( (A)==null ) { (A)=mp_get_avail(mp); }
3981 else { mp->avail=link((A)); link((A))=null; incr(mp->dyn_used); }
3984 @ The available-space list that keeps track of the variable-size portion
3985 of |mem| is a nonempty, doubly-linked circular list of empty nodes,
3986 pointed to by the roving pointer |rover|.
3988 Each empty node has size 2 or more; the first word contains the special
3989 value |max_halfword| in its |link| field and the size in its |info| field;
3990 the second word contains the two pointers for double linking.
3992 Each nonempty node also has size 2 or more. Its first word is of type
3993 |two_halves|\kern-1pt, and its |link| field is never equal to |max_halfword|.
3994 Otherwise there is complete flexibility with respect to the contents
3995 of its other fields and its other words.
3997 (We require |mem_max<max_halfword| because terrible things can happen
3998 when |max_halfword| appears in the |link| field of a nonempty node.)
4000 @d empty_flag max_halfword /* the |link| of an empty variable-size node */
4001 @d is_empty(A) (link((A))==empty_flag) /* tests for empty node */
4002 @d node_size info /* the size field in empty variable-size nodes */
4003 @d llink(A) info((A)+1) /* left link in doubly-linked list of empty nodes */
4004 @d rlink(A) link((A)+1) /* right link in doubly-linked list of empty nodes */
4007 pointer rover; /* points to some node in the list of empties */
4009 @ A call to |get_node| with argument |s| returns a pointer to a new node
4010 of size~|s|, which must be 2~or more. The |link| field of the first word
4011 of this new node is set to null. An overflow stop occurs if no suitable
4014 If |get_node| is called with $s=2^{30}$, it simply merges adjacent free
4015 areas and returns the value |max_halfword|.
4017 @<Internal library declarations@>=
4018 pointer mp_get_node (MP mp,integer s) ;
4021 pointer mp_get_node (MP mp,integer s) { /* variable-size node allocation */
4022 pointer p; /* the node currently under inspection */
4023 pointer q; /* the node physically after node |p| */
4024 integer r; /* the newly allocated node, or a candidate for this honor */
4025 integer t,tt; /* temporary registers */
4028 p=mp->rover; /* start at some free node in the ring */
4030 @<Try to allocate within node |p| and its physical successors,
4031 and |goto found| if allocation was possible@>;
4032 if (rlink(p)==null || rlink(p)==p) {
4033 print_err("Free list garbled");
4034 help3("I found an entry in the list of free nodes that links")
4035 ("badly. I will try to ignore the broken link, but something")
4036 ("is seriously amiss. It is wise to warn the maintainers.")
4040 p=rlink(p); /* move to the next node in the ring */
4041 } while (p!=mp->rover); /* repeat until the whole list has been traversed */
4042 if ( s==010000000000 ) {
4043 return max_halfword;
4045 if ( mp->lo_mem_max+2<mp->hi_mem_min ) {
4046 if ( mp->lo_mem_max+2<=max_halfword ) {
4047 @<Grow more variable-size memory and |goto restart|@>;
4050 mp_overflow(mp, "main memory size",mp->mem_max);
4051 /* sorry, nothing satisfactory is left */
4052 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
4054 link(r)=null; /* this node is now nonempty */
4055 mp->var_used+=s; /* maintain usage statistics */
4059 @ The lower part of |mem| grows by 1000 words at a time, unless
4060 we are very close to going under. When it grows, we simply link
4061 a new node into the available-space list. This method of controlled
4062 growth helps to keep the |mem| usage consecutive when \MP\ is
4063 implemented on ``virtual memory'' systems.
4066 @<Grow more variable-size memory and |goto restart|@>=
4068 if ( mp->hi_mem_min-mp->lo_mem_max>=1998 ) {
4069 t=mp->lo_mem_max+1000;
4071 t=mp->lo_mem_max+1+(mp->hi_mem_min-mp->lo_mem_max) / 2;
4072 /* |lo_mem_max+2<=t<hi_mem_min| */
4074 if ( t>max_halfword ) t=max_halfword;
4075 p=llink(mp->rover); q=mp->lo_mem_max; rlink(p)=q; llink(mp->rover)=q;
4076 rlink(q)=mp->rover; llink(q)=p; link(q)=empty_flag;
4077 node_size(q)=t-mp->lo_mem_max;
4078 mp->lo_mem_max=t; link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4083 @ @<Try to allocate...@>=
4084 q=p+node_size(p); /* find the physical successor */
4085 while ( is_empty(q) ) { /* merge node |p| with node |q| */
4086 t=rlink(q); tt=llink(q);
4088 if ( q==mp->rover ) mp->rover=t;
4089 llink(t)=tt; rlink(tt)=t;
4094 @<Allocate from the top of node |p| and |goto found|@>;
4097 if ( rlink(p)!=p ) {
4098 @<Allocate entire node |p| and |goto found|@>;
4101 node_size(p)=q-p /* reset the size in case it grew */
4103 @ @<Allocate from the top...@>=
4105 node_size(p)=r-p; /* store the remaining size */
4106 mp->rover=p; /* start searching here next time */
4110 @ Here we delete node |p| from the ring, and let |rover| rove around.
4112 @<Allocate entire...@>=
4114 mp->rover=rlink(p); t=llink(p);
4115 llink(mp->rover)=t; rlink(t)=mp->rover;
4119 @ Conversely, when some variable-size node |p| of size |s| is no longer needed,
4120 the operation |free_node(p,s)| will make its words available, by inserting
4121 |p| as a new empty node just before where |rover| now points.
4123 @<Internal library declarations@>=
4124 void mp_free_node (MP mp, pointer p, halfword s) ;
4127 void mp_free_node (MP mp, pointer p, halfword s) { /* variable-size node
4129 pointer q; /* |llink(rover)| */
4130 node_size(p)=s; link(p)=empty_flag;
4132 q=llink(mp->rover); llink(p)=q; rlink(p)=mp->rover; /* set both links */
4133 llink(mp->rover)=p; rlink(q)=p; /* insert |p| into the ring */
4134 mp->var_used-=s; /* maintain statistics */
4137 @ Just before \.{INIMP} writes out the memory, it sorts the doubly linked
4138 available space list. The list is probably very short at such times, so a
4139 simple insertion sort is used. The smallest available location will be
4140 pointed to by |rover|, the next-smallest by |rlink(rover)|, etc.
4143 void mp_sort_avail (MP mp) { /* sorts the available variable-size nodes
4145 pointer p,q,r; /* indices into |mem| */
4146 pointer old_rover; /* initial |rover| setting */
4147 p=mp_get_node(mp, 010000000000); /* merge adjacent free areas */
4148 p=rlink(mp->rover); rlink(mp->rover)=max_halfword; old_rover=mp->rover;
4149 while ( p!=old_rover ) {
4150 @<Sort |p| into the list starting at |rover|
4151 and advance |p| to |rlink(p)|@>;
4154 while ( rlink(p)!=max_halfword ) {
4155 llink(rlink(p))=p; p=rlink(p);
4157 rlink(p)=mp->rover; llink(mp->rover)=p;
4160 @ The following |while| loop is guaranteed to
4161 terminate, since the list that starts at
4162 |rover| ends with |max_halfword| during the sorting procedure.
4165 if ( p<mp->rover ) {
4166 q=p; p=rlink(q); rlink(q)=mp->rover; mp->rover=q;
4169 while ( rlink(q)<p ) q=rlink(q);
4170 r=rlink(p); rlink(p)=rlink(q); rlink(q)=p; p=r;
4173 @* \[11] Memory layout.
4174 Some areas of |mem| are dedicated to fixed usage, since static allocation is
4175 more efficient than dynamic allocation when we can get away with it. For
4176 example, locations |0| to |1| are always used to store a
4177 two-word dummy token whose second word is zero.
4178 The following macro definitions accomplish the static allocation by giving
4179 symbolic names to the fixed positions. Static variable-size nodes appear
4180 in locations |0| through |lo_mem_stat_max|, and static single-word nodes
4181 appear in locations |hi_mem_stat_min| through |mem_top|, inclusive.
4183 @d null_dash (2) /* the first two words are reserved for a null value */
4184 @d dep_head (null_dash+3) /* we will define |dash_node_size=3| */
4185 @d zero_val (dep_head+2) /* two words for a permanently zero value */
4186 @d temp_val (zero_val+2) /* two words for a temporary value node */
4187 @d end_attr temp_val /* we use |end_attr+2| only */
4188 @d inf_val (end_attr+2) /* and |inf_val+1| only */
4189 @d test_pen (inf_val+2)
4190 /* nine words for a pen used when testing the turning number */
4191 @d bad_vardef (test_pen+9) /* two words for \&{vardef} error recovery */
4192 @d lo_mem_stat_max (bad_vardef+1) /* largest statically
4193 allocated word in the variable-size |mem| */
4195 @d sentinel mp->mem_top /* end of sorted lists */
4196 @d temp_head (mp->mem_top-1) /* head of a temporary list of some kind */
4197 @d hold_head (mp->mem_top-2) /* head of a temporary list of another kind */
4198 @d spec_head (mp->mem_top-3) /* head of a list of unprocessed \&{special} items */
4199 @d hi_mem_stat_min (mp->mem_top-3) /* smallest statically allocated word in
4200 the one-word |mem| */
4202 @ The following code gets the dynamic part of |mem| off to a good start,
4203 when \MP\ is initializing itself the slow way.
4205 @<Initialize table entries (done by \.{INIMP} only)@>=
4206 @^data structure assumptions@>
4207 mp->rover=lo_mem_stat_max+1; /* initialize the dynamic memory */
4208 link(mp->rover)=empty_flag;
4209 node_size(mp->rover)=1000; /* which is a 1000-word available node */
4210 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
4211 mp->lo_mem_max=mp->rover+1000;
4212 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4213 for (k=hi_mem_stat_min;k<=(int)mp->mem_top;k++) {
4214 mp->mem[k]=mp->mem[mp->lo_mem_max]; /* clear list heads */
4216 mp->avail=null; mp->mem_end=mp->mem_top;
4217 mp->hi_mem_min=hi_mem_stat_min; /* initialize the one-word memory */
4218 mp->var_used=lo_mem_stat_max+1;
4219 mp->dyn_used=mp->mem_top+1-(hi_mem_stat_min); /* initialize statistics */
4220 @<Initialize a pen at |test_pen| so that it fits in nine words@>;
4222 @ The procedure |flush_list(p)| frees an entire linked list of one-word
4223 nodes that starts at a given position, until coming to |sentinel| or a
4224 pointer that is not in the one-word region. Another procedure,
4225 |flush_node_list|, frees an entire linked list of one-word and two-word
4226 nodes, until coming to a |null| pointer.
4230 void mp_flush_list (MP mp,pointer p) { /* makes list of single-word nodes available */
4231 pointer q,r; /* list traversers */
4232 if ( p>=mp->hi_mem_min ) if ( p!=sentinel ) {
4237 if ( r<mp->hi_mem_min ) break;
4238 } while (r!=sentinel);
4239 /* now |q| is the last node on the list */
4240 link(q)=mp->avail; mp->avail=p;
4244 void mp_flush_node_list (MP mp,pointer p) {
4245 pointer q; /* the node being recycled */
4248 if ( q<mp->hi_mem_min )
4249 mp_free_node(mp, q,2);
4255 @ If \MP\ is extended improperly, the |mem| array might get screwed up.
4256 For example, some pointers might be wrong, or some ``dead'' nodes might not
4257 have been freed when the last reference to them disappeared. Procedures
4258 |check_mem| and |search_mem| are available to help diagnose such
4259 problems. These procedures make use of two arrays called |free| and
4260 |was_free| that are present only if \MP's debugging routines have
4261 been included. (You may want to decrease the size of |mem| while you
4265 Because |boolean|s are typedef-d as ints, it is better to use
4266 unsigned chars here.
4269 unsigned char *free; /* free cells */
4270 unsigned char *was_free; /* previously free cells */
4271 pointer was_mem_end; pointer was_lo_max; pointer was_hi_min;
4272 /* previous |mem_end|, |lo_mem_max|,and |hi_mem_min| */
4273 boolean panicking; /* do we want to check memory constantly? */
4275 @ @<Allocate or initialize ...@>=
4276 mp->free = xmalloc ((mp->mem_max+1),sizeof (unsigned char));
4277 mp->was_free = xmalloc ((mp->mem_max+1), sizeof (unsigned char));
4279 @ @<Dealloc variables@>=
4281 xfree(mp->was_free);
4283 @ @<Allocate or ...@>=
4284 mp->was_mem_end=0; /* indicate that everything was previously free */
4285 mp->was_lo_max=0; mp->was_hi_min=mp->mem_max;
4286 mp->panicking=false;
4288 @ @<Declare |mp_reallocate| functions@>=
4289 void mp_reallocate_memory(MP mp, int l) ;
4292 void mp_reallocate_memory(MP mp, int l) {
4293 XREALLOC(mp->free, l, unsigned char);
4294 XREALLOC(mp->was_free, l, unsigned char);
4296 int newarea = l-mp->mem_max;
4297 XREALLOC(mp->mem, l, memory_word);
4298 memset (mp->mem+(mp->mem_max+1),0,sizeof(memory_word)*(newarea));
4300 XREALLOC(mp->mem, l, memory_word);
4301 memset(mp->mem,0,sizeof(memory_word)*(l+1));
4304 if (mp->ini_version)
4310 @ Procedure |check_mem| makes sure that the available space lists of
4311 |mem| are well formed, and it optionally prints out all locations
4312 that are reserved now but were free the last time this procedure was called.
4315 void mp_check_mem (MP mp,boolean print_locs ) {
4316 pointer p,q,r; /* current locations of interest in |mem| */
4317 boolean clobbered; /* is something amiss? */
4318 for (p=0;p<=mp->lo_mem_max;p++) {
4319 mp->free[p]=false; /* you can probably do this faster */
4321 for (p=mp->hi_mem_min;p<= mp->mem_end;p++) {
4322 mp->free[p]=false; /* ditto */
4324 @<Check single-word |avail| list@>;
4325 @<Check variable-size |avail| list@>;
4326 @<Check flags of unavailable nodes@>;
4327 @<Check the list of linear dependencies@>;
4329 @<Print newly busy locations@>;
4331 memcpy(mp->was_free,mp->free, sizeof(char)*(mp->mem_end+1));
4332 mp->was_mem_end=mp->mem_end;
4333 mp->was_lo_max=mp->lo_mem_max;
4334 mp->was_hi_min=mp->hi_mem_min;
4337 @ @<Check single-word...@>=
4338 p=mp->avail; q=null; clobbered=false;
4340 if ( (p>mp->mem_end)||(p<mp->hi_mem_min) ) clobbered=true;
4341 else if ( mp->free[p] ) clobbered=true;
4343 mp_print_nl(mp, "AVAIL list clobbered at ");
4344 @.AVAIL list clobbered...@>
4345 mp_print_int(mp, q); break;
4347 mp->free[p]=true; q=p; p=link(q);
4350 @ @<Check variable-size...@>=
4351 p=mp->rover; q=null; clobbered=false;
4353 if ( (p>=mp->lo_mem_max)||(p<0) ) clobbered=true;
4354 else if ( (rlink(p)>=mp->lo_mem_max)||(rlink(p)<0) ) clobbered=true;
4355 else if ( !(is_empty(p))||(node_size(p)<2)||
4356 (p+node_size(p)>mp->lo_mem_max)|| (llink(rlink(p))!=p) ) clobbered=true;
4358 mp_print_nl(mp, "Double-AVAIL list clobbered at ");
4359 @.Double-AVAIL list clobbered...@>
4360 mp_print_int(mp, q); break;
4362 for (q=p;q<=p+node_size(p)-1;q++) { /* mark all locations free */
4363 if ( mp->free[q] ) {
4364 mp_print_nl(mp, "Doubly free location at ");
4365 @.Doubly free location...@>
4366 mp_print_int(mp, q); break;
4371 } while (p!=mp->rover)
4374 @ @<Check flags...@>=
4376 while ( p<=mp->lo_mem_max ) { /* node |p| should not be empty */
4377 if ( is_empty(p) ) {
4378 mp_print_nl(mp, "Bad flag at "); mp_print_int(mp, p);
4381 while ( (p<=mp->lo_mem_max) && ! mp->free[p] ) incr(p);
4382 while ( (p<=mp->lo_mem_max) && mp->free[p] ) incr(p);
4385 @ @<Print newly busy...@>=
4387 @<Do intialization required before printing new busy locations@>;
4388 mp_print_nl(mp, "New busy locs:");
4390 for (p=0;p<= mp->lo_mem_max;p++ ) {
4391 if ( ! mp->free[p] && ((p>mp->was_lo_max) || mp->was_free[p]) ) {
4392 @<Indicate that |p| is a new busy location@>;
4395 for (p=mp->hi_mem_min;p<=mp->mem_end;p++ ) {
4396 if ( ! mp->free[p] &&
4397 ((p<mp->was_hi_min) || (p>mp->was_mem_end) || mp->was_free[p]) ) {
4398 @<Indicate that |p| is a new busy location@>;
4401 @<Finish printing new busy locations@>;
4404 @ There might be many new busy locations so we are careful to print contiguous
4405 blocks compactly. During this operation |q| is the last new busy location and
4406 |r| is the start of the block containing |q|.
4408 @<Indicate that |p| is a new busy location@>=
4412 mp_print(mp, ".."); mp_print_int(mp, q);
4414 mp_print_char(mp, ' '); mp_print_int(mp, p);
4420 @ @<Do intialization required before printing new busy locations@>=
4421 q=mp->mem_max; r=mp->mem_max
4423 @ @<Finish printing new busy locations@>=
4425 mp_print(mp, ".."); mp_print_int(mp, q);
4428 @ The |search_mem| procedure attempts to answer the question ``Who points
4429 to node~|p|?'' In doing so, it fetches |link| and |info| fields of |mem|
4430 that might not be of type |two_halves|. Strictly speaking, this is
4431 undefined, and it can lead to ``false drops'' (words that seem to
4432 point to |p| purely by coincidence). But for debugging purposes, we want
4433 to rule out the places that do {\sl not\/} point to |p|, so a few false
4434 drops are tolerable.
4437 void mp_search_mem (MP mp, pointer p) { /* look for pointers to |p| */
4438 integer q; /* current position being searched */
4439 for (q=0;q<=mp->lo_mem_max;q++) {
4441 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4444 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4447 for (q=mp->hi_mem_min;q<=mp->mem_end;q++) {
4449 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4452 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4455 @<Search |eqtb| for equivalents equal to |p|@>;
4458 @* \[12] The command codes.
4459 Before we can go much further, we need to define symbolic names for the internal
4460 code numbers that represent the various commands obeyed by \MP. These codes
4461 are somewhat arbitrary, but not completely so. For example,
4462 some codes have been made adjacent so that |case| statements in the
4463 program need not consider cases that are widely spaced, or so that |case|
4464 statements can be replaced by |if| statements. A command can begin an
4465 expression if and only if its code lies between |min_primary_command| and
4466 |max_primary_command|, inclusive. The first token of a statement that doesn't
4467 begin with an expression has a command code between |min_command| and
4468 |max_statement_command|, inclusive. Anything less than |min_command| is
4469 eliminated during macro expansions, and anything no more than |max_pre_command|
4470 is eliminated when expanding \TeX\ material. Ranges such as
4471 |min_secondary_command..max_secondary_command| are used when parsing
4472 expressions, but the relative ordering within such a range is generally not
4475 The ordering of the highest-numbered commands
4476 (|comma<semicolon<end_group<stop|) is crucial for the parsing and
4477 error-recovery methods of this program as is the ordering |if_test<fi_or_else|
4478 for the smallest two commands. The ordering is also important in the ranges
4479 |numeric_token..plus_or_minus| and |left_brace..ampersand|.
4481 At any rate, here is the list, for future reference.
4483 @d start_tex 1 /* begin \TeX\ material (\&{btex}, \&{verbatimtex}) */
4484 @d etex_marker 2 /* end \TeX\ material (\&{etex}) */
4485 @d mpx_break 3 /* stop reading an \.{MPX} file (\&{mpxbreak}) */
4486 @d max_pre_command mpx_break
4487 @d if_test 4 /* conditional text (\&{if}) */
4488 @d fi_or_else 5 /* delimiters for conditionals (\&{elseif}, \&{else}, \&{fi} */
4489 @d input 6 /* input a source file (\&{input}, \&{endinput}) */
4490 @d iteration 7 /* iterate (\&{for}, \&{forsuffixes}, \&{forever}, \&{endfor}) */
4491 @d repeat_loop 8 /* special command substituted for \&{endfor} */
4492 @d exit_test 9 /* premature exit from a loop (\&{exitif}) */
4493 @d relax 10 /* do nothing (\.{\char`\\}) */
4494 @d scan_tokens 11 /* put a string into the input buffer */
4495 @d expand_after 12 /* look ahead one token */
4496 @d defined_macro 13 /* a macro defined by the user */
4497 @d min_command (defined_macro+1)
4498 @d save_command 14 /* save a list of tokens (\&{save}) */
4499 @d interim_command 15 /* save an internal quantity (\&{interim}) */
4500 @d let_command 16 /* redefine a symbolic token (\&{let}) */
4501 @d new_internal 17 /* define a new internal quantity (\&{newinternal}) */
4502 @d macro_def 18 /* define a macro (\&{def}, \&{vardef}, etc.) */
4503 @d ship_out_command 19 /* output a character (\&{shipout}) */
4504 @d add_to_command 20 /* add to edges (\&{addto}) */
4505 @d bounds_command 21 /* add bounding path to edges (\&{setbounds}, \&{clip}) */
4506 @d tfm_command 22 /* command for font metric info (\&{ligtable}, etc.) */
4507 @d protection_command 23 /* set protection flag (\&{outer}, \&{inner}) */
4508 @d show_command 24 /* diagnostic output (\&{show}, \&{showvariable}, etc.) */
4509 @d mode_command 25 /* set interaction level (\&{batchmode}, etc.) */
4510 @d mp_random_seed 26 /* initialize random number generator (\&{randomseed}) */
4511 @d message_command 27 /* communicate to user (\&{message}, \&{errmessage}) */
4512 @d every_job_command 28 /* designate a starting token (\&{everyjob}) */
4513 @d delimiters 29 /* define a pair of delimiters (\&{delimiters}) */
4514 @d special_command 30 /* output special info (\&{special})
4515 or font map info (\&{fontmapfile}, \&{fontmapline}) */
4516 @d write_command 31 /* write text to a file (\&{write}) */
4517 @d type_name 32 /* declare a type (\&{numeric}, \&{pair}, etc. */
4518 @d max_statement_command type_name
4519 @d min_primary_command type_name
4520 @d left_delimiter 33 /* the left delimiter of a matching pair */
4521 @d begin_group 34 /* beginning of a group (\&{begingroup}) */
4522 @d nullary 35 /* an operator without arguments (e.g., \&{normaldeviate}) */
4523 @d unary 36 /* an operator with one argument (e.g., \&{sqrt}) */
4524 @d str_op 37 /* convert a suffix to a string (\&{str}) */
4525 @d cycle 38 /* close a cyclic path (\&{cycle}) */
4526 @d primary_binary 39 /* binary operation taking `\&{of}' (e.g., \&{point}) */
4527 @d capsule_token 40 /* a value that has been put into a token list */
4528 @d string_token 41 /* a string constant (e.g., |"hello"|) */
4529 @d internal_quantity 42 /* internal numeric parameter (e.g., \&{pausing}) */
4530 @d min_suffix_token internal_quantity
4531 @d tag_token 43 /* a symbolic token without a primitive meaning */
4532 @d numeric_token 44 /* a numeric constant (e.g., \.{3.14159}) */
4533 @d max_suffix_token numeric_token
4534 @d plus_or_minus 45 /* either `\.+' or `\.-' */
4535 @d max_primary_command plus_or_minus /* should also be |numeric_token+1| */
4536 @d min_tertiary_command plus_or_minus
4537 @d tertiary_secondary_macro 46 /* a macro defined by \&{secondarydef} */
4538 @d tertiary_binary 47 /* an operator at the tertiary level (e.g., `\.{++}') */
4539 @d max_tertiary_command tertiary_binary
4540 @d left_brace 48 /* the operator `\.{\char`\{}' */
4541 @d min_expression_command left_brace
4542 @d path_join 49 /* the operator `\.{..}' */
4543 @d ampersand 50 /* the operator `\.\&' */
4544 @d expression_tertiary_macro 51 /* a macro defined by \&{tertiarydef} */
4545 @d expression_binary 52 /* an operator at the expression level (e.g., `\.<') */
4546 @d equals 53 /* the operator `\.=' */
4547 @d max_expression_command equals
4548 @d and_command 54 /* the operator `\&{and}' */
4549 @d min_secondary_command and_command
4550 @d secondary_primary_macro 55 /* a macro defined by \&{primarydef} */
4551 @d slash 56 /* the operator `\./' */
4552 @d secondary_binary 57 /* an operator at the binary level (e.g., \&{shifted}) */
4553 @d max_secondary_command secondary_binary
4554 @d param_type 58 /* type of parameter (\&{primary}, \&{expr}, \&{suffix}, etc.) */
4555 @d controls 59 /* specify control points explicitly (\&{controls}) */
4556 @d tension 60 /* specify tension between knots (\&{tension}) */
4557 @d at_least 61 /* bounded tension value (\&{atleast}) */
4558 @d curl_command 62 /* specify curl at an end knot (\&{curl}) */
4559 @d macro_special 63 /* special macro operators (\&{quote}, \.{\#\AT!}, etc.) */
4560 @d right_delimiter 64 /* the right delimiter of a matching pair */
4561 @d left_bracket 65 /* the operator `\.[' */
4562 @d right_bracket 66 /* the operator `\.]' */
4563 @d right_brace 67 /* the operator `\.{\char`\}}' */
4564 @d with_option 68 /* option for filling (\&{withpen}, \&{withweight}, etc.) */
4566 /* variant of \&{addto} (\&{contour}, \&{doublepath}, \&{also}) */
4567 @d of_token 70 /* the operator `\&{of}' */
4568 @d to_token 71 /* the operator `\&{to}' */
4569 @d step_token 72 /* the operator `\&{step}' */
4570 @d until_token 73 /* the operator `\&{until}' */
4571 @d within_token 74 /* the operator `\&{within}' */
4572 @d lig_kern_token 75
4573 /* the operators `\&{kern}' and `\.{=:}' and `\.{=:\char'174}, etc. */
4574 @d assignment 76 /* the operator `\.{:=}' */
4575 @d skip_to 77 /* the operation `\&{skipto}' */
4576 @d bchar_label 78 /* the operator `\.{\char'174\char'174:}' */
4577 @d double_colon 79 /* the operator `\.{::}' */
4578 @d colon 80 /* the operator `\.:' */
4580 @d comma 81 /* the operator `\.,', must be |colon+1| */
4581 @d end_of_statement (mp->cur_cmd>comma)
4582 @d semicolon 82 /* the operator `\.;', must be |comma+1| */
4583 @d end_group 83 /* end a group (\&{endgroup}), must be |semicolon+1| */
4584 @d stop 84 /* end a job (\&{end}, \&{dump}), must be |end_group+1| */
4585 @d max_command_code stop
4586 @d outer_tag (max_command_code+1) /* protection code added to command code */
4589 typedef int command_code;
4591 @ Variables and capsules in \MP\ have a variety of ``types,''
4592 distinguished by the code numbers defined here. These numbers are also
4593 not completely arbitrary. Things that get expanded must have types
4594 |>mp_independent|; a type remaining after expansion is numeric if and only if
4595 its code number is at least |numeric_type|; objects containing numeric
4596 parts must have types between |transform_type| and |pair_type|;
4597 all other types must be smaller than |transform_type|; and among the types
4598 that are not unknown or vacuous, the smallest two must be |boolean_type|
4599 and |string_type| in that order.
4601 @d undefined 0 /* no type has been declared */
4602 @d unknown_tag 1 /* this constant is added to certain type codes below */
4603 @d unknown_types mp_unknown_boolean: case mp_unknown_string:
4604 case mp_unknown_pen: case mp_unknown_picture: case mp_unknown_path
4607 enum mp_variable_type {
4608 mp_vacuous=1, /* no expression was present */
4609 mp_boolean_type, /* \&{boolean} with a known value */
4611 mp_string_type, /* \&{string} with a known value */
4613 mp_pen_type, /* \&{pen} with a known value */
4615 mp_path_type, /* \&{path} with a known value */
4617 mp_picture_type, /* \&{picture} with a known value */
4619 mp_transform_type, /* \&{transform} variable or capsule */
4620 mp_color_type, /* \&{color} variable or capsule */
4621 mp_cmykcolor_type, /* \&{cmykcolor} variable or capsule */
4622 mp_pair_type, /* \&{pair} variable or capsule */
4623 mp_numeric_type, /* variable that has been declared \&{numeric} but not used */
4624 mp_known, /* \&{numeric} with a known value */
4625 mp_dependent, /* a linear combination with |fraction| coefficients */
4626 mp_proto_dependent, /* a linear combination with |scaled| coefficients */
4627 mp_independent, /* \&{numeric} with unknown value */
4628 mp_token_list, /* variable name or suffix argument or text argument */
4629 mp_structured, /* variable with subscripts and attributes */
4630 mp_unsuffixed_macro, /* variable defined with \&{vardef} but no \.{\AT!\#} */
4631 mp_suffixed_macro /* variable defined with \&{vardef} and \.{\AT!\#} */
4635 void mp_print_type (MP mp,small_number t) ;
4637 @ @<Basic printing procedures@>=
4638 void mp_print_type (MP mp,small_number t) {
4640 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
4641 case mp_boolean_type:mp_print(mp, "boolean"); break;
4642 case mp_unknown_boolean:mp_print(mp, "unknown boolean"); break;
4643 case mp_string_type:mp_print(mp, "string"); break;
4644 case mp_unknown_string:mp_print(mp, "unknown string"); break;
4645 case mp_pen_type:mp_print(mp, "pen"); break;
4646 case mp_unknown_pen:mp_print(mp, "unknown pen"); break;
4647 case mp_path_type:mp_print(mp, "path"); break;
4648 case mp_unknown_path:mp_print(mp, "unknown path"); break;
4649 case mp_picture_type:mp_print(mp, "picture"); break;
4650 case mp_unknown_picture:mp_print(mp, "unknown picture"); break;
4651 case mp_transform_type:mp_print(mp, "transform"); break;
4652 case mp_color_type:mp_print(mp, "color"); break;
4653 case mp_cmykcolor_type:mp_print(mp, "cmykcolor"); break;
4654 case mp_pair_type:mp_print(mp, "pair"); break;
4655 case mp_known:mp_print(mp, "known numeric"); break;
4656 case mp_dependent:mp_print(mp, "dependent"); break;
4657 case mp_proto_dependent:mp_print(mp, "proto-dependent"); break;
4658 case mp_numeric_type:mp_print(mp, "numeric"); break;
4659 case mp_independent:mp_print(mp, "independent"); break;
4660 case mp_token_list:mp_print(mp, "token list"); break;
4661 case mp_structured:mp_print(mp, "mp_structured"); break;
4662 case mp_unsuffixed_macro:mp_print(mp, "unsuffixed macro"); break;
4663 case mp_suffixed_macro:mp_print(mp, "suffixed macro"); break;
4664 default: mp_print(mp, "undefined"); break;
4668 @ Values inside \MP\ are stored in two-word nodes that have a |name_type|
4669 as well as a |type|. The possibilities for |name_type| are defined
4670 here; they will be explained in more detail later.
4674 mp_root=0, /* |name_type| at the top level of a variable */
4675 mp_saved_root, /* same, when the variable has been saved */
4676 mp_structured_root, /* |name_type| where a |mp_structured| branch occurs */
4677 mp_subscr, /* |name_type| in a subscript node */
4678 mp_attr, /* |name_type| in an attribute node */
4679 mp_x_part_sector, /* |name_type| in the \&{xpart} of a node */
4680 mp_y_part_sector, /* |name_type| in the \&{ypart} of a node */
4681 mp_xx_part_sector, /* |name_type| in the \&{xxpart} of a node */
4682 mp_xy_part_sector, /* |name_type| in the \&{xypart} of a node */
4683 mp_yx_part_sector, /* |name_type| in the \&{yxpart} of a node */
4684 mp_yy_part_sector, /* |name_type| in the \&{yypart} of a node */
4685 mp_red_part_sector, /* |name_type| in the \&{redpart} of a node */
4686 mp_green_part_sector, /* |name_type| in the \&{greenpart} of a node */
4687 mp_blue_part_sector, /* |name_type| in the \&{bluepart} of a node */
4688 mp_cyan_part_sector, /* |name_type| in the \&{redpart} of a node */
4689 mp_magenta_part_sector, /* |name_type| in the \&{greenpart} of a node */
4690 mp_yellow_part_sector, /* |name_type| in the \&{bluepart} of a node */
4691 mp_black_part_sector, /* |name_type| in the \&{greenpart} of a node */
4692 mp_grey_part_sector, /* |name_type| in the \&{bluepart} of a node */
4693 mp_capsule, /* |name_type| in stashed-away subexpressions */
4694 mp_token /* |name_type| in a numeric token or string token */
4697 @ Primitive operations that produce values have a secondary identification
4698 code in addition to their command code; it's something like genera and species.
4699 For example, `\.*' has the command code |primary_binary|, and its
4700 secondary identification is |times|. The secondary codes start at 30 so that
4701 they don't overlap with the type codes; some type codes (e.g., |mp_string_type|)
4702 are used as operators as well as type identifications. The relative values
4703 are not critical, except for |true_code..false_code|, |or_op..and_op|,
4704 and |filled_op..bounded_op|. The restrictions are that
4705 |and_op-false_code=or_op-true_code|, that the ordering of
4706 |x_part...blue_part| must match that of |x_part_sector..mp_blue_part_sector|,
4707 and the ordering of |filled_op..bounded_op| must match that of the code
4708 values they test for.
4710 @d true_code 30 /* operation code for \.{true} */
4711 @d false_code 31 /* operation code for \.{false} */
4712 @d null_picture_code 32 /* operation code for \.{nullpicture} */
4713 @d null_pen_code 33 /* operation code for \.{nullpen} */
4714 @d job_name_op 34 /* operation code for \.{jobname} */
4715 @d read_string_op 35 /* operation code for \.{readstring} */
4716 @d pen_circle 36 /* operation code for \.{pencircle} */
4717 @d normal_deviate 37 /* operation code for \.{normaldeviate} */
4718 @d read_from_op 38 /* operation code for \.{readfrom} */
4719 @d close_from_op 39 /* operation code for \.{closefrom} */
4720 @d odd_op 40 /* operation code for \.{odd} */
4721 @d known_op 41 /* operation code for \.{known} */
4722 @d unknown_op 42 /* operation code for \.{unknown} */
4723 @d not_op 43 /* operation code for \.{not} */
4724 @d decimal 44 /* operation code for \.{decimal} */
4725 @d reverse 45 /* operation code for \.{reverse} */
4726 @d make_path_op 46 /* operation code for \.{makepath} */
4727 @d make_pen_op 47 /* operation code for \.{makepen} */
4728 @d oct_op 48 /* operation code for \.{oct} */
4729 @d hex_op 49 /* operation code for \.{hex} */
4730 @d ASCII_op 50 /* operation code for \.{ASCII} */
4731 @d char_op 51 /* operation code for \.{char} */
4732 @d length_op 52 /* operation code for \.{length} */
4733 @d turning_op 53 /* operation code for \.{turningnumber} */
4734 @d color_model_part 54 /* operation code for \.{colormodel} */
4735 @d x_part 55 /* operation code for \.{xpart} */
4736 @d y_part 56 /* operation code for \.{ypart} */
4737 @d xx_part 57 /* operation code for \.{xxpart} */
4738 @d xy_part 58 /* operation code for \.{xypart} */
4739 @d yx_part 59 /* operation code for \.{yxpart} */
4740 @d yy_part 60 /* operation code for \.{yypart} */
4741 @d red_part 61 /* operation code for \.{redpart} */
4742 @d green_part 62 /* operation code for \.{greenpart} */
4743 @d blue_part 63 /* operation code for \.{bluepart} */
4744 @d cyan_part 64 /* operation code for \.{cyanpart} */
4745 @d magenta_part 65 /* operation code for \.{magentapart} */
4746 @d yellow_part 66 /* operation code for \.{yellowpart} */
4747 @d black_part 67 /* operation code for \.{blackpart} */
4748 @d grey_part 68 /* operation code for \.{greypart} */
4749 @d font_part 69 /* operation code for \.{fontpart} */
4750 @d text_part 70 /* operation code for \.{textpart} */
4751 @d path_part 71 /* operation code for \.{pathpart} */
4752 @d pen_part 72 /* operation code for \.{penpart} */
4753 @d dash_part 73 /* operation code for \.{dashpart} */
4754 @d sqrt_op 74 /* operation code for \.{sqrt} */
4755 @d m_exp_op 75 /* operation code for \.{mexp} */
4756 @d m_log_op 76 /* operation code for \.{mlog} */
4757 @d sin_d_op 77 /* operation code for \.{sind} */
4758 @d cos_d_op 78 /* operation code for \.{cosd} */
4759 @d floor_op 79 /* operation code for \.{floor} */
4760 @d uniform_deviate 80 /* operation code for \.{uniformdeviate} */
4761 @d char_exists_op 81 /* operation code for \.{charexists} */
4762 @d font_size 82 /* operation code for \.{fontsize} */
4763 @d ll_corner_op 83 /* operation code for \.{llcorner} */
4764 @d lr_corner_op 84 /* operation code for \.{lrcorner} */
4765 @d ul_corner_op 85 /* operation code for \.{ulcorner} */
4766 @d ur_corner_op 86 /* operation code for \.{urcorner} */
4767 @d arc_length 87 /* operation code for \.{arclength} */
4768 @d angle_op 88 /* operation code for \.{angle} */
4769 @d cycle_op 89 /* operation code for \.{cycle} */
4770 @d filled_op 90 /* operation code for \.{filled} */
4771 @d stroked_op 91 /* operation code for \.{stroked} */
4772 @d textual_op 92 /* operation code for \.{textual} */
4773 @d clipped_op 93 /* operation code for \.{clipped} */
4774 @d bounded_op 94 /* operation code for \.{bounded} */
4775 @d plus 95 /* operation code for \.+ */
4776 @d minus 96 /* operation code for \.- */
4777 @d times 97 /* operation code for \.* */
4778 @d over 98 /* operation code for \./ */
4779 @d pythag_add 99 /* operation code for \.{++} */
4780 @d pythag_sub 100 /* operation code for \.{+-+} */
4781 @d or_op 101 /* operation code for \.{or} */
4782 @d and_op 102 /* operation code for \.{and} */
4783 @d less_than 103 /* operation code for \.< */
4784 @d less_or_equal 104 /* operation code for \.{<=} */
4785 @d greater_than 105 /* operation code for \.> */
4786 @d greater_or_equal 106 /* operation code for \.{>=} */
4787 @d equal_to 107 /* operation code for \.= */
4788 @d unequal_to 108 /* operation code for \.{<>} */
4789 @d concatenate 109 /* operation code for \.\& */
4790 @d rotated_by 110 /* operation code for \.{rotated} */
4791 @d slanted_by 111 /* operation code for \.{slanted} */
4792 @d scaled_by 112 /* operation code for \.{scaled} */
4793 @d shifted_by 113 /* operation code for \.{shifted} */
4794 @d transformed_by 114 /* operation code for \.{transformed} */
4795 @d x_scaled 115 /* operation code for \.{xscaled} */
4796 @d y_scaled 116 /* operation code for \.{yscaled} */
4797 @d z_scaled 117 /* operation code for \.{zscaled} */
4798 @d in_font 118 /* operation code for \.{infont} */
4799 @d intersect 119 /* operation code for \.{intersectiontimes} */
4800 @d double_dot 120 /* operation code for improper \.{..} */
4801 @d substring_of 121 /* operation code for \.{substring} */
4802 @d min_of substring_of
4803 @d subpath_of 122 /* operation code for \.{subpath} */
4804 @d direction_time_of 123 /* operation code for \.{directiontime} */
4805 @d point_of 124 /* operation code for \.{point} */
4806 @d precontrol_of 125 /* operation code for \.{precontrol} */
4807 @d postcontrol_of 126 /* operation code for \.{postcontrol} */
4808 @d pen_offset_of 127 /* operation code for \.{penoffset} */
4809 @d arc_time_of 128 /* operation code for \.{arctime} */
4810 @d mp_version 129 /* operation code for \.{mpversion} */
4811 @d envelope_of 130 /* operation code for \.{envelope} */
4813 @c void mp_print_op (MP mp,quarterword c) {
4814 if (c<=mp_numeric_type ) {
4815 mp_print_type(mp, c);
4818 case true_code:mp_print(mp, "true"); break;
4819 case false_code:mp_print(mp, "false"); break;
4820 case null_picture_code:mp_print(mp, "nullpicture"); break;
4821 case null_pen_code:mp_print(mp, "nullpen"); break;
4822 case job_name_op:mp_print(mp, "jobname"); break;
4823 case read_string_op:mp_print(mp, "readstring"); break;
4824 case pen_circle:mp_print(mp, "pencircle"); break;
4825 case normal_deviate:mp_print(mp, "normaldeviate"); break;
4826 case read_from_op:mp_print(mp, "readfrom"); break;
4827 case close_from_op:mp_print(mp, "closefrom"); break;
4828 case odd_op:mp_print(mp, "odd"); break;
4829 case known_op:mp_print(mp, "known"); break;
4830 case unknown_op:mp_print(mp, "unknown"); break;
4831 case not_op:mp_print(mp, "not"); break;
4832 case decimal:mp_print(mp, "decimal"); break;
4833 case reverse:mp_print(mp, "reverse"); break;
4834 case make_path_op:mp_print(mp, "makepath"); break;
4835 case make_pen_op:mp_print(mp, "makepen"); break;
4836 case oct_op:mp_print(mp, "oct"); break;
4837 case hex_op:mp_print(mp, "hex"); break;
4838 case ASCII_op:mp_print(mp, "ASCII"); break;
4839 case char_op:mp_print(mp, "char"); break;
4840 case length_op:mp_print(mp, "length"); break;
4841 case turning_op:mp_print(mp, "turningnumber"); break;
4842 case x_part:mp_print(mp, "xpart"); break;
4843 case y_part:mp_print(mp, "ypart"); break;
4844 case xx_part:mp_print(mp, "xxpart"); break;
4845 case xy_part:mp_print(mp, "xypart"); break;
4846 case yx_part:mp_print(mp, "yxpart"); break;
4847 case yy_part:mp_print(mp, "yypart"); break;
4848 case red_part:mp_print(mp, "redpart"); break;
4849 case green_part:mp_print(mp, "greenpart"); break;
4850 case blue_part:mp_print(mp, "bluepart"); break;
4851 case cyan_part:mp_print(mp, "cyanpart"); break;
4852 case magenta_part:mp_print(mp, "magentapart"); break;
4853 case yellow_part:mp_print(mp, "yellowpart"); break;
4854 case black_part:mp_print(mp, "blackpart"); break;
4855 case grey_part:mp_print(mp, "greypart"); break;
4856 case color_model_part:mp_print(mp, "colormodel"); break;
4857 case font_part:mp_print(mp, "fontpart"); break;
4858 case text_part:mp_print(mp, "textpart"); break;
4859 case path_part:mp_print(mp, "pathpart"); break;
4860 case pen_part:mp_print(mp, "penpart"); break;
4861 case dash_part:mp_print(mp, "dashpart"); break;
4862 case sqrt_op:mp_print(mp, "sqrt"); break;
4863 case m_exp_op:mp_print(mp, "mexp"); break;
4864 case m_log_op:mp_print(mp, "mlog"); break;
4865 case sin_d_op:mp_print(mp, "sind"); break;
4866 case cos_d_op:mp_print(mp, "cosd"); break;
4867 case floor_op:mp_print(mp, "floor"); break;
4868 case uniform_deviate:mp_print(mp, "uniformdeviate"); break;
4869 case char_exists_op:mp_print(mp, "charexists"); break;
4870 case font_size:mp_print(mp, "fontsize"); break;
4871 case ll_corner_op:mp_print(mp, "llcorner"); break;
4872 case lr_corner_op:mp_print(mp, "lrcorner"); break;
4873 case ul_corner_op:mp_print(mp, "ulcorner"); break;
4874 case ur_corner_op:mp_print(mp, "urcorner"); break;
4875 case arc_length:mp_print(mp, "arclength"); break;
4876 case angle_op:mp_print(mp, "angle"); break;
4877 case cycle_op:mp_print(mp, "cycle"); break;
4878 case filled_op:mp_print(mp, "filled"); break;
4879 case stroked_op:mp_print(mp, "stroked"); break;
4880 case textual_op:mp_print(mp, "textual"); break;
4881 case clipped_op:mp_print(mp, "clipped"); break;
4882 case bounded_op:mp_print(mp, "bounded"); break;
4883 case plus:mp_print_char(mp, '+'); break;
4884 case minus:mp_print_char(mp, '-'); break;
4885 case times:mp_print_char(mp, '*'); break;
4886 case over:mp_print_char(mp, '/'); break;
4887 case pythag_add:mp_print(mp, "++"); break;
4888 case pythag_sub:mp_print(mp, "+-+"); break;
4889 case or_op:mp_print(mp, "or"); break;
4890 case and_op:mp_print(mp, "and"); break;
4891 case less_than:mp_print_char(mp, '<'); break;
4892 case less_or_equal:mp_print(mp, "<="); break;
4893 case greater_than:mp_print_char(mp, '>'); break;
4894 case greater_or_equal:mp_print(mp, ">="); break;
4895 case equal_to:mp_print_char(mp, '='); break;
4896 case unequal_to:mp_print(mp, "<>"); break;
4897 case concatenate:mp_print(mp, "&"); break;
4898 case rotated_by:mp_print(mp, "rotated"); break;
4899 case slanted_by:mp_print(mp, "slanted"); break;
4900 case scaled_by:mp_print(mp, "scaled"); break;
4901 case shifted_by:mp_print(mp, "shifted"); break;
4902 case transformed_by:mp_print(mp, "transformed"); break;
4903 case x_scaled:mp_print(mp, "xscaled"); break;
4904 case y_scaled:mp_print(mp, "yscaled"); break;
4905 case z_scaled:mp_print(mp, "zscaled"); break;
4906 case in_font:mp_print(mp, "infont"); break;
4907 case intersect:mp_print(mp, "intersectiontimes"); break;
4908 case substring_of:mp_print(mp, "substring"); break;
4909 case subpath_of:mp_print(mp, "subpath"); break;
4910 case direction_time_of:mp_print(mp, "directiontime"); break;
4911 case point_of:mp_print(mp, "point"); break;
4912 case precontrol_of:mp_print(mp, "precontrol"); break;
4913 case postcontrol_of:mp_print(mp, "postcontrol"); break;
4914 case pen_offset_of:mp_print(mp, "penoffset"); break;
4915 case arc_time_of:mp_print(mp, "arctime"); break;
4916 case mp_version:mp_print(mp, "mpversion"); break;
4917 case envelope_of:mp_print(mp, "envelope"); break;
4918 default: mp_print(mp, ".."); break;
4923 @ \MP\ also has a bunch of internal parameters that a user might want to
4924 fuss with. Every such parameter has an identifying code number, defined here.
4927 enum mp_given_internal {
4928 mp_tracing_titles=1, /* show titles online when they appear */
4929 mp_tracing_equations, /* show each variable when it becomes known */
4930 mp_tracing_capsules, /* show capsules too */
4931 mp_tracing_choices, /* show the control points chosen for paths */
4932 mp_tracing_specs, /* show path subdivision prior to filling with polygonal a pen */
4933 mp_tracing_commands, /* show commands and operations before they are performed */
4934 mp_tracing_restores, /* show when a variable or internal is restored */
4935 mp_tracing_macros, /* show macros before they are expanded */
4936 mp_tracing_output, /* show digitized edges as they are output */
4937 mp_tracing_stats, /* show memory usage at end of job */
4938 mp_tracing_lost_chars, /* show characters that aren't \&{infont} */
4939 mp_tracing_online, /* show long diagnostics on terminal and in the log file */
4940 mp_year, /* the current year (e.g., 1984) */
4941 mp_month, /* the current month (e.g, 3 $\equiv$ March) */
4942 mp_day, /* the current day of the month */
4943 mp_time, /* the number of minutes past midnight when this job started */
4944 mp_char_code, /* the number of the next character to be output */
4945 mp_char_ext, /* the extension code of the next character to be output */
4946 mp_char_wd, /* the width of the next character to be output */
4947 mp_char_ht, /* the height of the next character to be output */
4948 mp_char_dp, /* the depth of the next character to be output */
4949 mp_char_ic, /* the italic correction of the next character to be output */
4950 mp_design_size, /* the unit of measure used for |mp_char_wd..mp_char_ic|, in points */
4951 mp_pausing, /* positive to display lines on the terminal before they are read */
4952 mp_showstopping, /* positive to stop after each \&{show} command */
4953 mp_fontmaking, /* positive if font metric output is to be produced */
4954 mp_linejoin, /* as in \ps: 0 for mitered, 1 for round, 2 for beveled */
4955 mp_linecap, /* as in \ps: 0 for butt, 1 for round, 2 for square */
4956 mp_miterlimit, /* controls miter length as in \ps */
4957 mp_warning_check, /* controls error message when variable value is large */
4958 mp_boundary_char, /* the right boundary character for ligatures */
4959 mp_prologues, /* positive to output conforming PostScript using built-in fonts */
4960 mp_true_corners, /* positive to make \&{llcorner} etc. ignore \&{setbounds} */
4961 mp_default_color_model, /* the default color model for unspecified items */
4962 mp_restore_clip_color,
4963 mp_procset, /* wether or not create PostScript command shortcuts */
4964 mp_gtroffmode, /* whether the user specified |-troff| on the command line */
4969 @d max_given_internal mp_gtroffmode
4972 scaled *internal; /* the values of internal quantities */
4973 char **int_name; /* their names */
4974 int int_ptr; /* the maximum internal quantity defined so far */
4975 int max_internal; /* current maximum number of internal quantities */
4977 @ @<Option variables@>=
4980 @ @<Allocate or initialize ...@>=
4981 mp->max_internal=2*max_given_internal;
4982 mp->internal = xmalloc ((mp->max_internal+1), sizeof(scaled));
4983 mp->int_name = xmalloc ((mp->max_internal+1), sizeof(char *));
4984 mp->troff_mode=(opt->troff_mode>0 ? true : false);
4986 @ @<Exported function ...@>=
4987 int mp_troff_mode(MP mp);
4990 int mp_troff_mode(MP mp) { return mp->troff_mode; }
4992 @ @<Set initial ...@>=
4993 for (k=0;k<= mp->max_internal; k++ ) {
4995 mp->int_name[k]=NULL;
4997 mp->int_ptr=max_given_internal;
4999 @ The symbolic names for internal quantities are put into \MP's hash table
5000 by using a routine called |primitive|, which will be defined later. Let us
5001 enter them now, so that we don't have to list all those names again
5004 @<Put each of \MP's primitives into the hash table@>=
5005 mp_primitive(mp, "tracingtitles",internal_quantity,mp_tracing_titles);
5006 @:tracingtitles_}{\&{tracingtitles} primitive@>
5007 mp_primitive(mp, "tracingequations",internal_quantity,mp_tracing_equations);
5008 @:mp_tracing_equations_}{\&{tracingequations} primitive@>
5009 mp_primitive(mp, "tracingcapsules",internal_quantity,mp_tracing_capsules);
5010 @:mp_tracing_capsules_}{\&{tracingcapsules} primitive@>
5011 mp_primitive(mp, "tracingchoices",internal_quantity,mp_tracing_choices);
5012 @:mp_tracing_choices_}{\&{tracingchoices} primitive@>
5013 mp_primitive(mp, "tracingspecs",internal_quantity,mp_tracing_specs);
5014 @:mp_tracing_specs_}{\&{tracingspecs} primitive@>
5015 mp_primitive(mp, "tracingcommands",internal_quantity,mp_tracing_commands);
5016 @:mp_tracing_commands_}{\&{tracingcommands} primitive@>
5017 mp_primitive(mp, "tracingrestores",internal_quantity,mp_tracing_restores);
5018 @:mp_tracing_restores_}{\&{tracingrestores} primitive@>
5019 mp_primitive(mp, "tracingmacros",internal_quantity,mp_tracing_macros);
5020 @:mp_tracing_macros_}{\&{tracingmacros} primitive@>
5021 mp_primitive(mp, "tracingoutput",internal_quantity,mp_tracing_output);
5022 @:mp_tracing_output_}{\&{tracingoutput} primitive@>
5023 mp_primitive(mp, "tracingstats",internal_quantity,mp_tracing_stats);
5024 @:mp_tracing_stats_}{\&{tracingstats} primitive@>
5025 mp_primitive(mp, "tracinglostchars",internal_quantity,mp_tracing_lost_chars);
5026 @:mp_tracing_lost_chars_}{\&{tracinglostchars} primitive@>
5027 mp_primitive(mp, "tracingonline",internal_quantity,mp_tracing_online);
5028 @:mp_tracing_online_}{\&{tracingonline} primitive@>
5029 mp_primitive(mp, "year",internal_quantity,mp_year);
5030 @:mp_year_}{\&{year} primitive@>
5031 mp_primitive(mp, "month",internal_quantity,mp_month);
5032 @:mp_month_}{\&{month} primitive@>
5033 mp_primitive(mp, "day",internal_quantity,mp_day);
5034 @:mp_day_}{\&{day} primitive@>
5035 mp_primitive(mp, "time",internal_quantity,mp_time);
5036 @:time_}{\&{time} primitive@>
5037 mp_primitive(mp, "charcode",internal_quantity,mp_char_code);
5038 @:mp_char_code_}{\&{charcode} primitive@>
5039 mp_primitive(mp, "charext",internal_quantity,mp_char_ext);
5040 @:mp_char_ext_}{\&{charext} primitive@>
5041 mp_primitive(mp, "charwd",internal_quantity,mp_char_wd);
5042 @:mp_char_wd_}{\&{charwd} primitive@>
5043 mp_primitive(mp, "charht",internal_quantity,mp_char_ht);
5044 @:mp_char_ht_}{\&{charht} primitive@>
5045 mp_primitive(mp, "chardp",internal_quantity,mp_char_dp);
5046 @:mp_char_dp_}{\&{chardp} primitive@>
5047 mp_primitive(mp, "charic",internal_quantity,mp_char_ic);
5048 @:mp_char_ic_}{\&{charic} primitive@>
5049 mp_primitive(mp, "designsize",internal_quantity,mp_design_size);
5050 @:mp_design_size_}{\&{designsize} primitive@>
5051 mp_primitive(mp, "pausing",internal_quantity,mp_pausing);
5052 @:mp_pausing_}{\&{pausing} primitive@>
5053 mp_primitive(mp, "showstopping",internal_quantity,mp_showstopping);
5054 @:mp_showstopping_}{\&{showstopping} primitive@>
5055 mp_primitive(mp, "fontmaking",internal_quantity,mp_fontmaking);
5056 @:mp_fontmaking_}{\&{fontmaking} primitive@>
5057 mp_primitive(mp, "linejoin",internal_quantity,mp_linejoin);
5058 @:mp_linejoin_}{\&{linejoin} primitive@>
5059 mp_primitive(mp, "linecap",internal_quantity,mp_linecap);
5060 @:mp_linecap_}{\&{linecap} primitive@>
5061 mp_primitive(mp, "miterlimit",internal_quantity,mp_miterlimit);
5062 @:mp_miterlimit_}{\&{miterlimit} primitive@>
5063 mp_primitive(mp, "warningcheck",internal_quantity,mp_warning_check);
5064 @:mp_warning_check_}{\&{warningcheck} primitive@>
5065 mp_primitive(mp, "boundarychar",internal_quantity,mp_boundary_char);
5066 @:mp_boundary_char_}{\&{boundarychar} primitive@>
5067 mp_primitive(mp, "prologues",internal_quantity,mp_prologues);
5068 @:mp_prologues_}{\&{prologues} primitive@>
5069 mp_primitive(mp, "truecorners",internal_quantity,mp_true_corners);
5070 @:mp_true_corners_}{\&{truecorners} primitive@>
5071 mp_primitive(mp, "mpprocset",internal_quantity,mp_procset);
5072 @:mp_procset_}{\&{mpprocset} primitive@>
5073 mp_primitive(mp, "troffmode",internal_quantity,mp_gtroffmode);
5074 @:troffmode_}{\&{troffmode} primitive@>
5075 mp_primitive(mp, "defaultcolormodel",internal_quantity,mp_default_color_model);
5076 @:mp_default_color_model_}{\&{defaultcolormodel} primitive@>
5077 mp_primitive(mp, "restoreclipcolor",internal_quantity,mp_restore_clip_color);
5078 @:mp_restore_clip_color_}{\&{restoreclipcolor} primitive@>
5080 @ Colors can be specified in four color models. In the special
5081 case of |no_model|, MetaPost does not output any color operator to
5082 the postscript output.
5084 Note: these values are passed directly on to |with_option|. This only
5085 works because the other possible values passed to |with_option| are
5086 8 and 10 respectively (from |with_pen| and |with_picture|).
5088 There is a first state, that is only used for |gs_colormodel|. It flags
5089 the fact that there has not been any kind of color specification by
5090 the user so far in the game.
5093 enum mp_color_model {
5098 mp_uninitialized_model=9,
5102 @ @<Initialize table entries (done by \.{INIMP} only)@>=
5103 mp->internal[mp_default_color_model]=(mp_rgb_model*unity);
5104 mp->internal[mp_restore_clip_color]=unity;
5106 @ Well, we do have to list the names one more time, for use in symbolic
5109 @<Initialize table...@>=
5110 mp->int_name[mp_tracing_titles]=xstrdup("tracingtitles");
5111 mp->int_name[mp_tracing_equations]=xstrdup("tracingequations");
5112 mp->int_name[mp_tracing_capsules]=xstrdup("tracingcapsules");
5113 mp->int_name[mp_tracing_choices]=xstrdup("tracingchoices");
5114 mp->int_name[mp_tracing_specs]=xstrdup("tracingspecs");
5115 mp->int_name[mp_tracing_commands]=xstrdup("tracingcommands");
5116 mp->int_name[mp_tracing_restores]=xstrdup("tracingrestores");
5117 mp->int_name[mp_tracing_macros]=xstrdup("tracingmacros");
5118 mp->int_name[mp_tracing_output]=xstrdup("tracingoutput");
5119 mp->int_name[mp_tracing_stats]=xstrdup("tracingstats");
5120 mp->int_name[mp_tracing_lost_chars]=xstrdup("tracinglostchars");
5121 mp->int_name[mp_tracing_online]=xstrdup("tracingonline");
5122 mp->int_name[mp_year]=xstrdup("year");
5123 mp->int_name[mp_month]=xstrdup("month");
5124 mp->int_name[mp_day]=xstrdup("day");
5125 mp->int_name[mp_time]=xstrdup("time");
5126 mp->int_name[mp_char_code]=xstrdup("charcode");
5127 mp->int_name[mp_char_ext]=xstrdup("charext");
5128 mp->int_name[mp_char_wd]=xstrdup("charwd");
5129 mp->int_name[mp_char_ht]=xstrdup("charht");
5130 mp->int_name[mp_char_dp]=xstrdup("chardp");
5131 mp->int_name[mp_char_ic]=xstrdup("charic");
5132 mp->int_name[mp_design_size]=xstrdup("designsize");
5133 mp->int_name[mp_pausing]=xstrdup("pausing");
5134 mp->int_name[mp_showstopping]=xstrdup("showstopping");
5135 mp->int_name[mp_fontmaking]=xstrdup("fontmaking");
5136 mp->int_name[mp_linejoin]=xstrdup("linejoin");
5137 mp->int_name[mp_linecap]=xstrdup("linecap");
5138 mp->int_name[mp_miterlimit]=xstrdup("miterlimit");
5139 mp->int_name[mp_warning_check]=xstrdup("warningcheck");
5140 mp->int_name[mp_boundary_char]=xstrdup("boundarychar");
5141 mp->int_name[mp_prologues]=xstrdup("prologues");
5142 mp->int_name[mp_true_corners]=xstrdup("truecorners");
5143 mp->int_name[mp_default_color_model]=xstrdup("defaultcolormodel");
5144 mp->int_name[mp_procset]=xstrdup("mpprocset");
5145 mp->int_name[mp_gtroffmode]=xstrdup("troffmode");
5146 mp->int_name[mp_restore_clip_color]=xstrdup("restoreclipcolor");
5148 @ The following procedure, which is called just before \MP\ initializes its
5149 input and output, establishes the initial values of the date and time.
5150 @^system dependencies@>
5152 Note that the values are |scaled| integers. Hence \MP\ can no longer
5153 be used after the year 32767.
5156 void mp_fix_date_and_time (MP mp) {
5157 time_t clock = time ((time_t *) 0);
5158 struct tm *tmptr = localtime (&clock);
5159 mp->internal[mp_time]=
5160 (tmptr->tm_hour*60+tmptr->tm_min)*unity; /* minutes since midnight */
5161 mp->internal[mp_day]=(tmptr->tm_mday)*unity; /* fourth day of the month */
5162 mp->internal[mp_month]=(tmptr->tm_mon+1)*unity; /* seventh month of the year */
5163 mp->internal[mp_year]=(tmptr->tm_year+1900)*unity; /* Anno Domini */
5167 void mp_fix_date_and_time (MP mp) ;
5169 @ \MP\ is occasionally supposed to print diagnostic information that
5170 goes only into the transcript file, unless |mp_tracing_online| is positive.
5171 Now that we have defined |mp_tracing_online| we can define
5172 two routines that adjust the destination of print commands:
5175 void mp_begin_diagnostic (MP mp) ;
5176 void mp_end_diagnostic (MP mp,boolean blank_line);
5177 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) ;
5179 @ @<Basic printing...@>=
5180 @<Declare a function called |true_line|@>;
5181 void mp_begin_diagnostic (MP mp) { /* prepare to do some tracing */
5182 mp->old_setting=mp->selector;
5183 if ((mp->internal[mp_tracing_online]<=0)&&(mp->selector==term_and_log)){
5185 if ( mp->history==mp_spotless ) mp->history=mp_warning_issued;
5189 void mp_end_diagnostic (MP mp,boolean blank_line) {
5190 /* restore proper conditions after tracing */
5191 mp_print_nl(mp, "");
5192 if ( blank_line ) mp_print_ln(mp);
5193 mp->selector=mp->old_setting;
5199 unsigned int old_setting;
5201 @ We will occasionally use |begin_diagnostic| in connection with line-number
5202 printing, as follows. (The parameter |s| is typically |"Path"| or
5203 |"Cycle spec"|, etc.)
5205 @<Basic printing...@>=
5206 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) {
5207 mp_begin_diagnostic(mp);
5208 if ( nuline ) mp_print_nl(mp, s); else mp_print(mp, s);
5209 mp_print(mp, " at line ");
5210 mp_print_int(mp, mp_true_line(mp));
5211 mp_print(mp, t); mp_print_char(mp, ':');
5214 @ The 256 |ASCII_code| characters are grouped into classes by means of
5215 the |char_class| table. Individual class numbers have no semantic
5216 or syntactic significance, except in a few instances defined here.
5217 There's also |max_class|, which can be used as a basis for additional
5218 class numbers in nonstandard extensions of \MP.
5220 @d digit_class 0 /* the class number of \.{0123456789} */
5221 @d period_class 1 /* the class number of `\..' */
5222 @d space_class 2 /* the class number of spaces and nonstandard characters */
5223 @d percent_class 3 /* the class number of `\.\%' */
5224 @d string_class 4 /* the class number of `\."' */
5225 @d right_paren_class 8 /* the class number of `\.)' */
5226 @d isolated_classes 5: case 6: case 7: case 8 /* characters that make length-one tokens only */
5227 @d letter_class 9 /* letters and the underline character */
5228 @d left_bracket_class 17 /* `\.[' */
5229 @d right_bracket_class 18 /* `\.]' */
5230 @d invalid_class 20 /* bad character in the input */
5231 @d max_class 20 /* the largest class number */
5234 int char_class[256]; /* the class numbers */
5236 @ If changes are made to accommodate non-ASCII character sets, they should
5237 follow the guidelines in Appendix~C of {\sl The {\logos METAFONT\/}book}.
5238 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
5239 @^system dependencies@>
5241 @<Set initial ...@>=
5242 for (k='0';k<='9';k++)
5243 mp->char_class[k]=digit_class;
5244 mp->char_class['.']=period_class;
5245 mp->char_class[' ']=space_class;
5246 mp->char_class['%']=percent_class;
5247 mp->char_class['"']=string_class;
5248 mp->char_class[',']=5;
5249 mp->char_class[';']=6;
5250 mp->char_class['(']=7;
5251 mp->char_class[')']=right_paren_class;
5252 for (k='A';k<= 'Z';k++ )
5253 mp->char_class[k]=letter_class;
5254 for (k='a';k<='z';k++)
5255 mp->char_class[k]=letter_class;
5256 mp->char_class['_']=letter_class;
5257 mp->char_class['<']=10;
5258 mp->char_class['=']=10;
5259 mp->char_class['>']=10;
5260 mp->char_class[':']=10;
5261 mp->char_class['|']=10;
5262 mp->char_class['`']=11;
5263 mp->char_class['\'']=11;
5264 mp->char_class['+']=12;
5265 mp->char_class['-']=12;
5266 mp->char_class['/']=13;
5267 mp->char_class['*']=13;
5268 mp->char_class['\\']=13;
5269 mp->char_class['!']=14;
5270 mp->char_class['?']=14;
5271 mp->char_class['#']=15;
5272 mp->char_class['&']=15;
5273 mp->char_class['@@']=15;
5274 mp->char_class['$']=15;
5275 mp->char_class['^']=16;
5276 mp->char_class['~']=16;
5277 mp->char_class['[']=left_bracket_class;
5278 mp->char_class[']']=right_bracket_class;
5279 mp->char_class['{']=19;
5280 mp->char_class['}']=19;
5282 mp->char_class[k]=invalid_class;
5283 mp->char_class['\t']=space_class;
5284 mp->char_class['\f']=space_class;
5285 for (k=127;k<=255;k++)
5286 mp->char_class[k]=invalid_class;
5288 @* \[13] The hash table.
5289 Symbolic tokens are stored and retrieved by means of a fairly standard hash
5290 table algorithm called the method of ``coalescing lists'' (cf.\ Algorithm 6.4C
5291 in {\sl The Art of Computer Programming\/}). Once a symbolic token enters the
5292 table, it is never removed.
5294 The actual sequence of characters forming a symbolic token is
5295 stored in the |str_pool| array together with all the other strings. An
5296 auxiliary array |hash| consists of items with two halfword fields per
5297 word. The first of these, called |next(p)|, points to the next identifier
5298 belonging to the same coalesced list as the identifier corresponding to~|p|;
5299 and the other, called |text(p)|, points to the |str_start| entry for
5300 |p|'s identifier. If position~|p| of the hash table is empty, we have
5301 |text(p)=0|; if position |p| is either empty or the end of a coalesced
5302 hash list, we have |next(p)=0|.
5304 An auxiliary pointer variable called |hash_used| is maintained in such a
5305 way that all locations |p>=hash_used| are nonempty. The global variable
5306 |st_count| tells how many symbolic tokens have been defined, if statistics
5309 The first 256 locations of |hash| are reserved for symbols of length one.
5311 There's a parallel array called |eqtb| that contains the current equivalent
5312 values of each symbolic token. The entries of this array consist of
5313 two halfwords called |eq_type| (a command code) and |equiv| (a secondary
5314 piece of information that qualifies the |eq_type|).
5316 @d next(A) mp->hash[(A)].lh /* link for coalesced lists */
5317 @d text(A) mp->hash[(A)].rh /* string number for symbolic token name */
5318 @d eq_type(A) mp->eqtb[(A)].lh /* the current ``meaning'' of a symbolic token */
5319 @d equiv(A) mp->eqtb[(A)].rh /* parametric part of a token's meaning */
5320 @d hash_base 257 /* hashing actually starts here */
5321 @d hash_is_full (mp->hash_used==hash_base) /* are all positions occupied? */
5324 pointer hash_used; /* allocation pointer for |hash| */
5325 integer st_count; /* total number of known identifiers */
5327 @ Certain entries in the hash table are ``frozen'' and not redefinable,
5328 since they are used in error recovery.
5330 @d hash_top (hash_base+mp->hash_size) /* the first location of the frozen area */
5331 @d frozen_inaccessible hash_top /* |hash| location to protect the frozen area */
5332 @d frozen_repeat_loop (hash_top+1) /* |hash| location of a loop-repeat token */
5333 @d frozen_right_delimiter (hash_top+2) /* |hash| location of a permanent `\.)' */
5334 @d frozen_left_bracket (hash_top+3) /* |hash| location of a permanent `\.[' */
5335 @d frozen_slash (hash_top+4) /* |hash| location of a permanent `\./' */
5336 @d frozen_colon (hash_top+5) /* |hash| location of a permanent `\.:' */
5337 @d frozen_semicolon (hash_top+6) /* |hash| location of a permanent `\.;' */
5338 @d frozen_end_for (hash_top+7) /* |hash| location of a permanent \&{endfor} */
5339 @d frozen_end_def (hash_top+8) /* |hash| location of a permanent \&{enddef} */
5340 @d frozen_fi (hash_top+9) /* |hash| location of a permanent \&{fi} */
5341 @d frozen_end_group (hash_top+10) /* |hash| location of a permanent `\.{endgroup}' */
5342 @d frozen_etex (hash_top+11) /* |hash| location of a permanent \&{etex} */
5343 @d frozen_mpx_break (hash_top+12) /* |hash| location of a permanent \&{mpxbreak} */
5344 @d frozen_bad_vardef (hash_top+13) /* |hash| location of `\.{a bad variable}' */
5345 @d frozen_undefined (hash_top+14) /* |hash| location that never gets defined */
5346 @d hash_end (hash_top+14) /* the actual size of the |hash| and |eqtb| arrays */
5349 two_halves *hash; /* the hash table */
5350 two_halves *eqtb; /* the equivalents */
5352 @ @<Allocate or initialize ...@>=
5353 mp->hash = xmalloc((hash_end+1),sizeof(two_halves));
5354 mp->eqtb = xmalloc((hash_end+1),sizeof(two_halves));
5356 @ @<Dealloc variables@>=
5361 next(1)=0; text(1)=0; eq_type(1)=tag_token; equiv(1)=null;
5362 for (k=2;k<=hash_end;k++) {
5363 mp->hash[k]=mp->hash[1]; mp->eqtb[k]=mp->eqtb[1];
5366 @ @<Initialize table entries...@>=
5367 mp->hash_used=frozen_inaccessible; /* nothing is used */
5369 text(frozen_bad_vardef)=intern("a bad variable");
5370 text(frozen_etex)=intern("etex");
5371 text(frozen_mpx_break)=intern("mpxbreak");
5372 text(frozen_fi)=intern("fi");
5373 text(frozen_end_group)=intern("endgroup");
5374 text(frozen_end_def)=intern("enddef");
5375 text(frozen_end_for)=intern("endfor");
5376 text(frozen_semicolon)=intern(";");
5377 text(frozen_colon)=intern(":");
5378 text(frozen_slash)=intern("/");
5379 text(frozen_left_bracket)=intern("[");
5380 text(frozen_right_delimiter)=intern(")");
5381 text(frozen_inaccessible)=intern(" INACCESSIBLE");
5382 eq_type(frozen_right_delimiter)=right_delimiter;
5384 @ @<Check the ``constant'' values...@>=
5385 if ( hash_end+mp->max_internal>max_halfword ) mp->bad=17;
5387 @ Here is the subroutine that searches the hash table for an identifier
5388 that matches a given string of length~|l| appearing in |buffer[j..
5389 (j+l-1)]|. If the identifier is not found, it is inserted; hence it
5390 will always be found, and the corresponding hash table address
5394 pointer mp_id_lookup (MP mp,integer j, integer l) { /* search the hash table */
5395 integer h; /* hash code */
5396 pointer p; /* index in |hash| array */
5397 pointer k; /* index in |buffer| array */
5399 @<Treat special case of length 1 and |break|@>;
5401 @<Compute the hash code |h|@>;
5402 p=h+hash_base; /* we start searching here; note that |0<=h<hash_prime| */
5404 if (text(p)>0 && length(text(p))==l && mp_str_eq_buf(mp, text(p),j))
5407 @<Insert a new symbolic token after |p|, then
5408 make |p| point to it and |break|@>;
5415 @ @<Treat special case of length 1...@>=
5416 p=mp->buffer[j]+1; text(p)=p-1; return p;
5419 @ @<Insert a new symbolic...@>=
5424 mp_overflow(mp, "hash size",mp->hash_size);
5425 @:MetaPost capacity exceeded hash size}{\quad hash size@>
5426 decr(mp->hash_used);
5427 } while (text(mp->hash_used)!=0); /* search for an empty location in |hash| */
5428 next(p)=mp->hash_used;
5432 for (k=j;k<=j+l-1;k++) {
5433 append_char(mp->buffer[k]);
5435 text(p)=mp_make_string(mp);
5436 mp->str_ref[text(p)]=max_str_ref;
5442 @ The value of |hash_prime| should be roughly 85\pct! of |hash_size|, and it
5443 should be a prime number. The theory of hashing tells us to expect fewer
5444 than two table probes, on the average, when the search is successful.
5445 [See J.~S. Vitter, {\sl Journal of the ACM\/ \bf30} (1983), 231--258.]
5446 @^Vitter, Jeffrey Scott@>
5448 @<Compute the hash code |h|@>=
5450 for (k=j+1;k<=j+l-1;k++){
5451 h=h+h+mp->buffer[k];
5452 while ( h>=mp->hash_prime ) h=h-mp->hash_prime;
5455 @ @<Search |eqtb| for equivalents equal to |p|@>=
5456 for (q=1;q<=hash_end;q++) {
5457 if ( equiv(q)==p ) {
5458 mp_print_nl(mp, "EQUIV(");
5459 mp_print_int(mp, q);
5460 mp_print_char(mp, ')');
5464 @ We need to put \MP's ``primitive'' symbolic tokens into the hash
5465 table, together with their command code (which will be the |eq_type|)
5466 and an operand (which will be the |equiv|). The |primitive| procedure
5467 does this, in a way that no \MP\ user can. The global value |cur_sym|
5468 contains the new |eqtb| pointer after |primitive| has acted.
5471 void mp_primitive (MP mp, char *ss, halfword c, halfword o) {
5472 pool_pointer k; /* index into |str_pool| */
5473 small_number j; /* index into |buffer| */
5474 small_number l; /* length of the string */
5477 k=mp->str_start[s]; l=str_stop(s)-k;
5478 /* we will move |s| into the (empty) |buffer| */
5479 for (j=0;j<=l-1;j++) {
5480 mp->buffer[j]=mp->str_pool[k+j];
5482 mp->cur_sym=mp_id_lookup(mp, 0,l);
5483 if ( s>=256 ) { /* we don't want to have the string twice */
5484 mp_flush_string(mp, text(mp->cur_sym)); text(mp->cur_sym)=s;
5486 eq_type(mp->cur_sym)=c;
5487 equiv(mp->cur_sym)=o;
5491 @ Many of \MP's primitives need no |equiv|, since they are identifiable
5492 by their |eq_type| alone. These primitives are loaded into the hash table
5495 @<Put each of \MP's primitives into the hash table@>=
5496 mp_primitive(mp, "..",path_join,0);
5497 @:.._}{\.{..} primitive@>
5498 mp_primitive(mp, "[",left_bracket,0); mp->eqtb[frozen_left_bracket]=mp->eqtb[mp->cur_sym];
5499 @:[ }{\.{[} primitive@>
5500 mp_primitive(mp, "]",right_bracket,0);
5501 @:] }{\.{]} primitive@>
5502 mp_primitive(mp, "}",right_brace,0);
5503 @:]]}{\.{\char`\}} primitive@>
5504 mp_primitive(mp, "{",left_brace,0);
5505 @:][}{\.{\char`\{} primitive@>
5506 mp_primitive(mp, ":",colon,0); mp->eqtb[frozen_colon]=mp->eqtb[mp->cur_sym];
5507 @:: }{\.{:} primitive@>
5508 mp_primitive(mp, "::",double_colon,0);
5509 @::: }{\.{::} primitive@>
5510 mp_primitive(mp, "||:",bchar_label,0);
5511 @:::: }{\.{\char'174\char'174:} primitive@>
5512 mp_primitive(mp, ":=",assignment,0);
5513 @::=_}{\.{:=} primitive@>
5514 mp_primitive(mp, ",",comma,0);
5515 @:, }{\., primitive@>
5516 mp_primitive(mp, ";",semicolon,0); mp->eqtb[frozen_semicolon]=mp->eqtb[mp->cur_sym];
5517 @:; }{\.; primitive@>
5518 mp_primitive(mp, "\\",relax,0);
5519 @:]]\\}{\.{\char`\\} primitive@>
5521 mp_primitive(mp, "addto",add_to_command,0);
5522 @:add_to_}{\&{addto} primitive@>
5523 mp_primitive(mp, "atleast",at_least,0);
5524 @:at_least_}{\&{atleast} primitive@>
5525 mp_primitive(mp, "begingroup",begin_group,0); mp->bg_loc=mp->cur_sym;
5526 @:begin_group_}{\&{begingroup} primitive@>
5527 mp_primitive(mp, "controls",controls,0);
5528 @:controls_}{\&{controls} primitive@>
5529 mp_primitive(mp, "curl",curl_command,0);
5530 @:curl_}{\&{curl} primitive@>
5531 mp_primitive(mp, "delimiters",delimiters,0);
5532 @:delimiters_}{\&{delimiters} primitive@>
5533 mp_primitive(mp, "endgroup",end_group,0);
5534 mp->eqtb[frozen_end_group]=mp->eqtb[mp->cur_sym]; mp->eg_loc=mp->cur_sym;
5535 @:endgroup_}{\&{endgroup} primitive@>
5536 mp_primitive(mp, "everyjob",every_job_command,0);
5537 @:every_job_}{\&{everyjob} primitive@>
5538 mp_primitive(mp, "exitif",exit_test,0);
5539 @:exit_if_}{\&{exitif} primitive@>
5540 mp_primitive(mp, "expandafter",expand_after,0);
5541 @:expand_after_}{\&{expandafter} primitive@>
5542 mp_primitive(mp, "interim",interim_command,0);
5543 @:interim_}{\&{interim} primitive@>
5544 mp_primitive(mp, "let",let_command,0);
5545 @:let_}{\&{let} primitive@>
5546 mp_primitive(mp, "newinternal",new_internal,0);
5547 @:new_internal_}{\&{newinternal} primitive@>
5548 mp_primitive(mp, "of",of_token,0);
5549 @:of_}{\&{of} primitive@>
5550 mp_primitive(mp, "randomseed",mp_random_seed,0);
5551 @:mp_random_seed_}{\&{randomseed} primitive@>
5552 mp_primitive(mp, "save",save_command,0);
5553 @:save_}{\&{save} primitive@>
5554 mp_primitive(mp, "scantokens",scan_tokens,0);
5555 @:scan_tokens_}{\&{scantokens} primitive@>
5556 mp_primitive(mp, "shipout",ship_out_command,0);
5557 @:ship_out_}{\&{shipout} primitive@>
5558 mp_primitive(mp, "skipto",skip_to,0);
5559 @:skip_to_}{\&{skipto} primitive@>
5560 mp_primitive(mp, "special",special_command,0);
5561 @:special}{\&{special} primitive@>
5562 mp_primitive(mp, "fontmapfile",special_command,1);
5563 @:fontmapfile}{\&{fontmapfile} primitive@>
5564 mp_primitive(mp, "fontmapline",special_command,2);
5565 @:fontmapline}{\&{fontmapline} primitive@>
5566 mp_primitive(mp, "step",step_token,0);
5567 @:step_}{\&{step} primitive@>
5568 mp_primitive(mp, "str",str_op,0);
5569 @:str_}{\&{str} primitive@>
5570 mp_primitive(mp, "tension",tension,0);
5571 @:tension_}{\&{tension} primitive@>
5572 mp_primitive(mp, "to",to_token,0);
5573 @:to_}{\&{to} primitive@>
5574 mp_primitive(mp, "until",until_token,0);
5575 @:until_}{\&{until} primitive@>
5576 mp_primitive(mp, "within",within_token,0);
5577 @:within_}{\&{within} primitive@>
5578 mp_primitive(mp, "write",write_command,0);
5579 @:write_}{\&{write} primitive@>
5581 @ Each primitive has a corresponding inverse, so that it is possible to
5582 display the cryptic numeric contents of |eqtb| in symbolic form.
5583 Every call of |primitive| in this program is therefore accompanied by some
5584 straightforward code that forms part of the |print_cmd_mod| routine
5587 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>=
5588 case add_to_command:mp_print(mp, "addto"); break;
5589 case assignment:mp_print(mp, ":="); break;
5590 case at_least:mp_print(mp, "atleast"); break;
5591 case bchar_label:mp_print(mp, "||:"); break;
5592 case begin_group:mp_print(mp, "begingroup"); break;
5593 case colon:mp_print(mp, ":"); break;
5594 case comma:mp_print(mp, ","); break;
5595 case controls:mp_print(mp, "controls"); break;
5596 case curl_command:mp_print(mp, "curl"); break;
5597 case delimiters:mp_print(mp, "delimiters"); break;
5598 case double_colon:mp_print(mp, "::"); break;
5599 case end_group:mp_print(mp, "endgroup"); break;
5600 case every_job_command:mp_print(mp, "everyjob"); break;
5601 case exit_test:mp_print(mp, "exitif"); break;
5602 case expand_after:mp_print(mp, "expandafter"); break;
5603 case interim_command:mp_print(mp, "interim"); break;
5604 case left_brace:mp_print(mp, "{"); break;
5605 case left_bracket:mp_print(mp, "["); break;
5606 case let_command:mp_print(mp, "let"); break;
5607 case new_internal:mp_print(mp, "newinternal"); break;
5608 case of_token:mp_print(mp, "of"); break;
5609 case path_join:mp_print(mp, ".."); break;
5610 case mp_random_seed:mp_print(mp, "randomseed"); break;
5611 case relax:mp_print_char(mp, '\\'); break;
5612 case right_brace:mp_print(mp, "}"); break;
5613 case right_bracket:mp_print(mp, "]"); break;
5614 case save_command:mp_print(mp, "save"); break;
5615 case scan_tokens:mp_print(mp, "scantokens"); break;
5616 case semicolon:mp_print(mp, ";"); break;
5617 case ship_out_command:mp_print(mp, "shipout"); break;
5618 case skip_to:mp_print(mp, "skipto"); break;
5619 case special_command: if ( m==2 ) mp_print(mp, "fontmapline"); else
5620 if ( m==1 ) mp_print(mp, "fontmapfile"); else
5621 mp_print(mp, "special"); break;
5622 case step_token:mp_print(mp, "step"); break;
5623 case str_op:mp_print(mp, "str"); break;
5624 case tension:mp_print(mp, "tension"); break;
5625 case to_token:mp_print(mp, "to"); break;
5626 case until_token:mp_print(mp, "until"); break;
5627 case within_token:mp_print(mp, "within"); break;
5628 case write_command:mp_print(mp, "write"); break;
5630 @ We will deal with the other primitives later, at some point in the program
5631 where their |eq_type| and |equiv| values are more meaningful. For example,
5632 the primitives for macro definitions will be loaded when we consider the
5633 routines that define macros.
5634 It is easy to find where each particular
5635 primitive was treated by looking in the index at the end; for example, the
5636 section where |"def"| entered |eqtb| is listed under `\&{def} primitive'.
5638 @* \[14] Token lists.
5639 A \MP\ token is either symbolic or numeric or a string, or it denotes
5640 a macro parameter or capsule; so there are five corresponding ways to encode it
5642 internally: (1)~A symbolic token whose hash code is~|p|
5643 is represented by the number |p|, in the |info| field of a single-word
5644 node in~|mem|. (2)~A numeric token whose |scaled| value is~|v| is
5645 represented in a two-word node of~|mem|; the |type| field is |known|,
5646 the |name_type| field is |token|, and the |value| field holds~|v|.
5647 The fact that this token appears in a two-word node rather than a
5648 one-word node is, of course, clear from the node address.
5649 (3)~A string token is also represented in a two-word node; the |type|
5650 field is |mp_string_type|, the |name_type| field is |token|, and the
5651 |value| field holds the corresponding |str_number|. (4)~Capsules have
5652 |name_type=capsule|, and their |type| and |value| fields represent
5653 arbitrary values (in ways to be explained later). (5)~Macro parameters
5654 are like symbolic tokens in that they appear in |info| fields of
5655 one-word nodes. The $k$th parameter is represented by |expr_base+k| if it
5656 is of type \&{expr}, or by |suffix_base+k| if it is of type \&{suffix}, or
5657 by |text_base+k| if it is of type \&{text}. (Here |0<=k<param_size|.)
5658 Actual values of these parameters are kept in a separate stack, as we will
5659 see later. The constants |expr_base|, |suffix_base|, and |text_base| are,
5660 of course, chosen so that there will be no confusion between symbolic
5661 tokens and parameters of various types.
5664 the `\\{type}' field of a node has nothing to do with ``type'' in a
5665 printer's sense. It's curious that the same word is used in such different ways.
5667 @d type(A) mp->mem[(A)].hh.b0 /* identifies what kind of value this is */
5668 @d name_type(A) mp->mem[(A)].hh.b1 /* a clue to the name of this value */
5669 @d token_node_size 2 /* the number of words in a large token node */
5670 @d value_loc(A) ((A)+1) /* the word that contains the |value| field */
5671 @d value(A) mp->mem[value_loc((A))].cint /* the value stored in a large token node */
5672 @d expr_base (hash_end+1) /* code for the zeroth \&{expr} parameter */
5673 @d suffix_base (expr_base+mp->param_size) /* code for the zeroth \&{suffix} parameter */
5674 @d text_base (suffix_base+mp->param_size) /* code for the zeroth \&{text} parameter */
5676 @<Check the ``constant''...@>=
5677 if ( text_base+mp->param_size>max_halfword ) mp->bad=18;
5679 @ We have set aside a two word node beginning at |null| so that we can have
5680 |value(null)=0|. We will make use of this coincidence later.
5682 @<Initialize table entries...@>=
5683 link(null)=null; value(null)=0;
5685 @ A numeric token is created by the following trivial routine.
5688 pointer mp_new_num_tok (MP mp,scaled v) {
5689 pointer p; /* the new node */
5690 p=mp_get_node(mp, token_node_size); value(p)=v;
5691 type(p)=mp_known; name_type(p)=mp_token;
5695 @ A token list is a singly linked list of nodes in |mem|, where
5696 each node contains a token and a link. Here's a subroutine that gets rid
5697 of a token list when it is no longer needed.
5699 @c void mp_flush_token_list (MP mp,pointer p) {
5700 pointer q; /* the node being recycled */
5703 if ( q>=mp->hi_mem_min ) {
5707 case mp_vacuous: case mp_boolean_type: case mp_known:
5709 case mp_string_type:
5710 delete_str_ref(value(q));
5712 case unknown_types: case mp_pen_type: case mp_path_type:
5713 case mp_picture_type: case mp_pair_type: case mp_color_type:
5714 case mp_cmykcolor_type: case mp_transform_type: case mp_dependent:
5715 case mp_proto_dependent: case mp_independent:
5716 mp_recycle_value(mp,q);
5718 default: mp_confusion(mp, "token");
5719 @:this can't happen token}{\quad token@>
5721 mp_free_node(mp, q,token_node_size);
5726 @ The procedure |show_token_list|, which prints a symbolic form of
5727 the token list that starts at a given node |p|, illustrates these
5728 conventions. The token list being displayed should not begin with a reference
5729 count. However, the procedure is intended to be fairly robust, so that if the
5730 memory links are awry or if |p| is not really a pointer to a token list,
5731 almost nothing catastrophic can happen.
5733 An additional parameter |q| is also given; this parameter is either null
5734 or it points to a node in the token list where a certain magic computation
5735 takes place that will be explained later. (Basically, |q| is non-null when
5736 we are printing the two-line context information at the time of an error
5737 message; |q| marks the place corresponding to where the second line
5740 The generation will stop, and `\.{\char`\ ETC.}' will be printed, if the length
5741 of printing exceeds a given limit~|l|; the length of printing upon entry is
5742 assumed to be a given amount called |null_tally|. (Note that
5743 |show_token_list| sometimes uses itself recursively to print
5744 variable names within a capsule.)
5747 Unusual entries are printed in the form of all-caps tokens
5748 preceded by a space, e.g., `\.{\char`\ BAD}'.
5750 @<Declare the procedure called |show_token_list|@>=
5751 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5752 integer null_tally) ;
5755 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5756 integer null_tally) {
5757 small_number class,c; /* the |char_class| of previous and new tokens */
5758 integer r,v; /* temporary registers */
5759 class=percent_class;
5760 mp->tally=null_tally;
5761 while ( (p!=null) && (mp->tally<l) ) {
5763 @<Do magic computation@>;
5764 @<Display token |p| and set |c| to its class;
5765 but |return| if there are problems@>;
5769 mp_print(mp, " ETC.");
5774 @ @<Display token |p| and set |c| to its class...@>=
5775 c=letter_class; /* the default */
5776 if ( (p<0)||(p>mp->mem_end) ) {
5777 mp_print(mp, " CLOBBERED"); return;
5780 if ( p<mp->hi_mem_min ) {
5781 @<Display two-word token@>;
5784 if ( r>=expr_base ) {
5785 @<Display a parameter token@>;
5789 @<Display a collective subscript@>
5791 mp_print(mp, " IMPOSSIBLE");
5796 if ( (r<0)||(r>mp->max_str_ptr) ) {
5797 mp_print(mp, " NONEXISTENT");
5800 @<Print string |r| as a symbolic token
5801 and set |c| to its class@>;
5807 @ @<Display two-word token@>=
5808 if ( name_type(p)==mp_token ) {
5809 if ( type(p)==mp_known ) {
5810 @<Display a numeric token@>;
5811 } else if ( type(p)!=mp_string_type ) {
5812 mp_print(mp, " BAD");
5815 mp_print_char(mp, '"'); mp_print_str(mp, value(p)); mp_print_char(mp, '"');
5818 } else if ((name_type(p)!=mp_capsule)||(type(p)<mp_vacuous)||(type(p)>mp_independent) ) {
5819 mp_print(mp, " BAD");
5821 mp_print_capsule(mp,p); c=right_paren_class;
5824 @ @<Display a numeric token@>=
5825 if ( class==digit_class )
5826 mp_print_char(mp, ' ');
5829 if ( class==left_bracket_class )
5830 mp_print_char(mp, ' ');
5831 mp_print_char(mp, '['); mp_print_scaled(mp, v); mp_print_char(mp, ']');
5832 c=right_bracket_class;
5834 mp_print_scaled(mp, v); c=digit_class;
5838 @ Strictly speaking, a genuine token will never have |info(p)=0|.
5839 But we will see later (in the |print_variable_name| routine) that
5840 it is convenient to let |info(p)=0| stand for `\.{[]}'.
5842 @<Display a collective subscript@>=
5844 if ( class==left_bracket_class )
5845 mp_print_char(mp, ' ');
5846 mp_print(mp, "[]"); c=right_bracket_class;
5849 @ @<Display a parameter token@>=
5851 if ( r<suffix_base ) {
5852 mp_print(mp, "(EXPR"); r=r-(expr_base);
5854 } else if ( r<text_base ) {
5855 mp_print(mp, "(SUFFIX"); r=r-(suffix_base);
5858 mp_print(mp, "(TEXT"); r=r-(text_base);
5861 mp_print_int(mp, r); mp_print_char(mp, ')'); c=right_paren_class;
5865 @ @<Print string |r| as a symbolic token...@>=
5867 c=mp->char_class[mp->str_pool[mp->str_start[r]]];
5870 case letter_class:mp_print_char(mp, '.'); break;
5871 case isolated_classes: break;
5872 default: mp_print_char(mp, ' '); break;
5875 mp_print_str(mp, r);
5879 void mp_print_capsule (MP mp, pointer p);
5881 @ @<Declare miscellaneous procedures that were declared |forward|@>=
5882 void mp_print_capsule (MP mp, pointer p) {
5883 mp_print_char(mp, '('); mp_print_exp(mp,p,0); mp_print_char(mp, ')');
5886 @ Macro definitions are kept in \MP's memory in the form of token lists
5887 that have a few extra one-word nodes at the beginning.
5889 The first node contains a reference count that is used to tell when the
5890 list is no longer needed. To emphasize the fact that a reference count is
5891 present, we shall refer to the |info| field of this special node as the
5893 @^reference counts@>
5895 The next node or nodes after the reference count serve to describe the
5896 formal parameters. They either contain a code word that specifies all
5897 of the parameters, or they contain zero or more parameter tokens followed
5898 by the code `|general_macro|'.
5901 /* reference count preceding a macro definition or picture header */
5902 @d add_mac_ref(A) incr(ref_count((A))) /* make a new reference to a macro list */
5903 @d general_macro 0 /* preface to a macro defined with a parameter list */
5904 @d primary_macro 1 /* preface to a macro with a \&{primary} parameter */
5905 @d secondary_macro 2 /* preface to a macro with a \&{secondary} parameter */
5906 @d tertiary_macro 3 /* preface to a macro with a \&{tertiary} parameter */
5907 @d expr_macro 4 /* preface to a macro with an undelimited \&{expr} parameter */
5908 @d of_macro 5 /* preface to a macro with
5909 undelimited `\&{expr} |x| \&{of}~|y|' parameters */
5910 @d suffix_macro 6 /* preface to a macro with an undelimited \&{suffix} parameter */
5911 @d text_macro 7 /* preface to a macro with an undelimited \&{text} parameter */
5914 void mp_delete_mac_ref (MP mp,pointer p) {
5915 /* |p| points to the reference count of a macro list that is
5916 losing one reference */
5917 if ( ref_count(p)==null ) mp_flush_token_list(mp, p);
5918 else decr(ref_count(p));
5921 @ The following subroutine displays a macro, given a pointer to its
5925 @<Declare the procedure called |print_cmd_mod|@>;
5926 void mp_show_macro (MP mp, pointer p, integer q, integer l) {
5927 pointer r; /* temporary storage */
5928 p=link(p); /* bypass the reference count */
5929 while ( info(p)>text_macro ){
5930 r=link(p); link(p)=null;
5931 mp_show_token_list(mp, p,null,l,0); link(p)=r; p=r;
5932 if ( l>0 ) l=l-mp->tally; else return;
5933 } /* control printing of `\.{ETC.}' */
5937 case general_macro:mp_print(mp, "->"); break;
5939 case primary_macro: case secondary_macro: case tertiary_macro:
5940 mp_print_char(mp, '<');
5941 mp_print_cmd_mod(mp, param_type,info(p));
5942 mp_print(mp, ">->");
5944 case expr_macro:mp_print(mp, "<expr>->"); break;
5945 case of_macro:mp_print(mp, "<expr>of<primary>->"); break;
5946 case suffix_macro:mp_print(mp, "<suffix>->"); break;
5947 case text_macro:mp_print(mp, "<text>->"); break;
5948 } /* there are no other cases */
5949 mp_show_token_list(mp, link(p),q,l-mp->tally,0);
5952 @* \[15] Data structures for variables.
5953 The variables of \MP\ programs can be simple, like `\.x', or they can
5954 combine the structural properties of arrays and records, like `\.{x20a.b}'.
5955 A \MP\ user assigns a type to a variable like \.{x20a.b} by saying, for
5956 example, `\.{boolean} \.{x20a.b}'. It's time for us to study how such
5957 things are represented inside of the computer.
5959 Each variable value occupies two consecutive words, either in a two-word
5960 node called a value node, or as a two-word subfield of a larger node. One
5961 of those two words is called the |value| field; it is an integer,
5962 containing either a |scaled| numeric value or the representation of some
5963 other type of quantity. (It might also be subdivided into halfwords, in
5964 which case it is referred to by other names instead of |value|.) The other
5965 word is broken into subfields called |type|, |name_type|, and |link|. The
5966 |type| field is a quarterword that specifies the variable's type, and
5967 |name_type| is a quarterword from which \MP\ can reconstruct the
5968 variable's name (sometimes by using the |link| field as well). Thus, only
5969 1.25 words are actually devoted to the value itself; the other
5970 three-quarters of a word are overhead, but they aren't wasted because they
5971 allow \MP\ to deal with sparse arrays and to provide meaningful diagnostics.
5973 In this section we shall be concerned only with the structural aspects of
5974 variables, not their values. Later parts of the program will change the
5975 |type| and |value| fields, but we shall treat those fields as black boxes
5976 whose contents should not be touched.
5978 However, if the |type| field is |mp_structured|, there is no |value| field,
5979 and the second word is broken into two pointer fields called |attr_head|
5980 and |subscr_head|. Those fields point to additional nodes that
5981 contain structural information, as we shall see.
5983 @d subscr_head_loc(A) (A)+1 /* where |value|, |subscr_head| and |attr_head| are */
5984 @d attr_head(A) info(subscr_head_loc((A))) /* pointer to attribute info */
5985 @d subscr_head(A) link(subscr_head_loc((A))) /* pointer to subscript info */
5986 @d value_node_size 2 /* the number of words in a value node */
5988 @ An attribute node is three words long. Two of these words contain |type|
5989 and |value| fields as described above, and the third word contains
5990 additional information: There is an |attr_loc| field, which contains the
5991 hash address of the token that names this attribute; and there's also a
5992 |parent| field, which points to the value node of |mp_structured| type at the
5993 next higher level (i.e., at the level to which this attribute is
5994 subsidiary). The |name_type| in an attribute node is `|attr|'. The
5995 |link| field points to the next attribute with the same parent; these are
5996 arranged in increasing order, so that |attr_loc(link(p))>attr_loc(p)|. The
5997 final attribute node links to the constant |end_attr|, whose |attr_loc|
5998 field is greater than any legal hash address. The |attr_head| in the
5999 parent points to a node whose |name_type| is |mp_structured_root|; this
6000 node represents the null attribute, i.e., the variable that is relevant
6001 when no attributes are attached to the parent. The |attr_head| node is either
6002 a value node, a subscript node, or an attribute node, depending on what
6003 the parent would be if it were not structured; but the subscript and
6004 attribute fields are ignored, so it effectively contains only the data of
6005 a value node. The |link| field in this special node points to an attribute
6006 node whose |attr_loc| field is zero; the latter node represents a collective
6007 subscript `\.{[]}' attached to the parent, and its |link| field points to
6008 the first non-special attribute node (or to |end_attr| if there are none).
6010 A subscript node likewise occupies three words, with |type| and |value| fields
6011 plus extra information; its |name_type| is |subscr|. In this case the
6012 third word is called the |subscript| field, which is a |scaled| integer.
6013 The |link| field points to the subscript node with the next larger
6014 subscript, if any; otherwise the |link| points to the attribute node
6015 for collective subscripts at this level. We have seen that the latter node
6016 contains an upward pointer, so that the parent can be deduced.
6018 The |name_type| in a parent-less value node is |root|, and the |link|
6019 is the hash address of the token that names this value.
6021 In other words, variables have a hierarchical structure that includes
6022 enough threads running around so that the program is able to move easily
6023 between siblings, parents, and children. An example should be helpful:
6024 (The reader is advised to draw a picture while reading the following
6025 description, since that will help to firm up the ideas.)
6026 Suppose that `\.x' and `\.{x.a}' and `\.{x[]b}' and `\.{x5}'
6027 and `\.{x20b}' have been mentioned in a user's program, where
6028 \.{x[]b} has been declared to be of \&{boolean} type. Let |h(x)|, |h(a)|,
6029 and |h(b)| be the hash addresses of \.x, \.a, and~\.b. Then
6030 |eq_type(h(x))=name| and |equiv(h(x))=p|, where |p|~is a two-word value
6031 node with |name_type(p)=root| and |link(p)=h(x)|. We have |type(p)=mp_structured|,
6032 |attr_head(p)=q|, and |subscr_head(p)=r|, where |q| points to a value
6033 node and |r| to a subscript node. (Are you still following this? Use
6034 a pencil to draw a diagram.) The lone variable `\.x' is represented by
6035 |type(q)| and |value(q)|; furthermore
6036 |name_type(q)=mp_structured_root| and |link(q)=q1|, where |q1| points
6037 to an attribute node representing `\.{x[]}'. Thus |name_type(q1)=attr|,
6038 |attr_loc(q1)=collective_subscript=0|, |parent(q1)=p|,
6039 |type(q1)=mp_structured|, |attr_head(q1)=qq|, and |subscr_head(q1)=qq1|;
6040 |qq| is a value node with |type(qq)=mp_numeric_type| (assuming that \.{x5} is
6041 numeric, because |qq| represents `\.{x[]}' with no further attributes),
6042 |name_type(qq)=mp_structured_root|, and
6043 |link(qq)=qq1|. (Now pay attention to the next part.) Node |qq1| is
6044 an attribute node representing `\.{x[][]}', which has never yet
6045 occurred; its |type| field is |undefined|, and its |value| field is
6046 undefined. We have |name_type(qq1)=attr|, |attr_loc(qq1)=collective_subscript|,
6047 |parent(qq1)=q1|, and |link(qq1)=qq2|. Since |qq2| represents
6048 `\.{x[]b}', |type(qq2)=mp_unknown_boolean|; also |attr_loc(qq2)=h(b)|,
6049 |parent(qq2)=q1|, |name_type(qq2)=attr|, |link(qq2)=end_attr|.
6050 (Maybe colored lines will help untangle your picture.)
6051 Node |r| is a subscript node with |type| and |value|
6052 representing `\.{x5}'; |name_type(r)=subscr|, |subscript(r)=5.0|,
6053 and |link(r)=r1| is another subscript node. To complete the picture,
6054 see if you can guess what |link(r1)| is; give up? It's~|q1|.
6055 Furthermore |subscript(r1)=20.0|, |name_type(r1)=subscr|,
6056 |type(r1)=mp_structured|, |attr_head(r1)=qqq|, |subscr_head(r1)=qqq1|,
6057 and we finish things off with three more nodes
6058 |qqq|, |qqq1|, and |qqq2| hung onto~|r1|. (Perhaps you should start again
6059 with a larger sheet of paper.) The value of variable \.{x20b}
6060 appears in node~|qqq2|, as you can well imagine.
6062 If the example in the previous paragraph doesn't make things crystal
6063 clear, a glance at some of the simpler subroutines below will reveal how
6064 things work out in practice.
6066 The only really unusual thing about these conventions is the use of
6067 collective subscript attributes. The idea is to avoid repeating a lot of
6068 type information when many elements of an array are identical macros
6069 (for which distinct values need not be stored) or when they don't have
6070 all of the possible attributes. Branches of the structure below collective
6071 subscript attributes do not carry actual values except for macro identifiers;
6072 branches of the structure below subscript nodes do not carry significant
6073 information in their collective subscript attributes.
6075 @d attr_loc_loc(A) ((A)+2) /* where the |attr_loc| and |parent| fields are */
6076 @d attr_loc(A) info(attr_loc_loc((A))) /* hash address of this attribute */
6077 @d parent(A) link(attr_loc_loc((A))) /* pointer to |mp_structured| variable */
6078 @d subscript_loc(A) ((A)+2) /* where the |subscript| field lives */
6079 @d subscript(A) mp->mem[subscript_loc((A))].sc /* subscript of this variable */
6080 @d attr_node_size 3 /* the number of words in an attribute node */
6081 @d subscr_node_size 3 /* the number of words in a subscript node */
6082 @d collective_subscript 0 /* code for the attribute `\.{[]}' */
6084 @<Initialize table...@>=
6085 attr_loc(end_attr)=hash_end+1; parent(end_attr)=null;
6087 @ Variables of type \&{pair} will have values that point to four-word
6088 nodes containing two numeric values. The first of these values has
6089 |name_type=mp_x_part_sector| and the second has |name_type=mp_y_part_sector|;
6090 the |link| in the first points back to the node whose |value| points
6091 to this four-word node.
6093 Variables of type \&{transform} are similar, but in this case their
6094 |value| points to a 12-word node containing six values, identified by
6095 |x_part_sector|, |y_part_sector|, |mp_xx_part_sector|, |mp_xy_part_sector|,
6096 |mp_yx_part_sector|, and |mp_yy_part_sector|.
6097 Finally, variables of type \&{color} have 3~values in 6~words
6098 identified by |mp_red_part_sector|, |mp_green_part_sector|, and |mp_blue_part_sector|.
6100 When an entire structured variable is saved, the |root| indication
6101 is temporarily replaced by |saved_root|.
6103 Some variables have no name; they just are used for temporary storage
6104 while expressions are being evaluated. We call them {\sl capsules}.
6106 @d x_part_loc(A) (A) /* where the \&{xpart} is found in a pair or transform node */
6107 @d y_part_loc(A) ((A)+2) /* where the \&{ypart} is found in a pair or transform node */
6108 @d xx_part_loc(A) ((A)+4) /* where the \&{xxpart} is found in a transform node */
6109 @d xy_part_loc(A) ((A)+6) /* where the \&{xypart} is found in a transform node */
6110 @d yx_part_loc(A) ((A)+8) /* where the \&{yxpart} is found in a transform node */
6111 @d yy_part_loc(A) ((A)+10) /* where the \&{yypart} is found in a transform node */
6112 @d red_part_loc(A) (A) /* where the \&{redpart} is found in a color node */
6113 @d green_part_loc(A) ((A)+2) /* where the \&{greenpart} is found in a color node */
6114 @d blue_part_loc(A) ((A)+4) /* where the \&{bluepart} is found in a color node */
6115 @d cyan_part_loc(A) (A) /* where the \&{cyanpart} is found in a color node */
6116 @d magenta_part_loc(A) ((A)+2) /* where the \&{magentapart} is found in a color node */
6117 @d yellow_part_loc(A) ((A)+4) /* where the \&{yellowpart} is found in a color node */
6118 @d black_part_loc(A) ((A)+6) /* where the \&{blackpart} is found in a color node */
6119 @d grey_part_loc(A) (A) /* where the \&{greypart} is found in a color node */
6121 @d pair_node_size 4 /* the number of words in a pair node */
6122 @d transform_node_size 12 /* the number of words in a transform node */
6123 @d color_node_size 6 /* the number of words in a color node */
6124 @d cmykcolor_node_size 8 /* the number of words in a color node */
6127 small_number big_node_size[mp_pair_type+1];
6128 small_number sector0[mp_pair_type+1];
6129 small_number sector_offset[mp_black_part_sector+1];
6131 @ The |sector0| array gives for each big node type, |name_type| values
6132 for its first subfield; the |sector_offset| array gives for each
6133 |name_type| value, the offset from the first subfield in words;
6134 and the |big_node_size| array gives the size in words for each type of
6138 mp->big_node_size[mp_transform_type]=transform_node_size;
6139 mp->big_node_size[mp_pair_type]=pair_node_size;
6140 mp->big_node_size[mp_color_type]=color_node_size;
6141 mp->big_node_size[mp_cmykcolor_type]=cmykcolor_node_size;
6142 mp->sector0[mp_transform_type]=mp_x_part_sector;
6143 mp->sector0[mp_pair_type]=mp_x_part_sector;
6144 mp->sector0[mp_color_type]=mp_red_part_sector;
6145 mp->sector0[mp_cmykcolor_type]=mp_cyan_part_sector;
6146 for (k=mp_x_part_sector;k<= mp_yy_part_sector;k++ ) {
6147 mp->sector_offset[k]=2*(k-mp_x_part_sector);
6149 for (k=mp_red_part_sector;k<= mp_blue_part_sector ; k++) {
6150 mp->sector_offset[k]=2*(k-mp_red_part_sector);
6152 for (k=mp_cyan_part_sector;k<= mp_black_part_sector;k++ ) {
6153 mp->sector_offset[k]=2*(k-mp_cyan_part_sector);
6156 @ If |type(p)=mp_pair_type| or |mp_transform_type| and if |value(p)=null|, the
6157 procedure call |init_big_node(p)| will allocate a pair or transform node
6158 for~|p|. The individual parts of such nodes are initially of type
6162 void mp_init_big_node (MP mp,pointer p) {
6163 pointer q; /* the new node */
6164 small_number s; /* its size */
6165 s=mp->big_node_size[type(p)]; q=mp_get_node(mp, s);
6168 @<Make variable |q+s| newly independent@>;
6169 name_type(q+s)=halfp(s)+mp->sector0[type(p)];
6172 link(q)=p; value(p)=q;
6175 @ The |id_transform| function creates a capsule for the
6176 identity transformation.
6179 pointer mp_id_transform (MP mp) {
6180 pointer p,q,r; /* list manipulation registers */
6181 p=mp_get_node(mp, value_node_size); type(p)=mp_transform_type;
6182 name_type(p)=mp_capsule; value(p)=null; mp_init_big_node(mp, p); q=value(p);
6183 r=q+transform_node_size;
6186 type(r)=mp_known; value(r)=0;
6188 value(xx_part_loc(q))=unity;
6189 value(yy_part_loc(q))=unity;
6193 @ Tokens are of type |tag_token| when they first appear, but they point
6194 to |null| until they are first used as the root of a variable.
6195 The following subroutine establishes the root node on such grand occasions.
6198 void mp_new_root (MP mp,pointer x) {
6199 pointer p; /* the new node */
6200 p=mp_get_node(mp, value_node_size); type(p)=undefined; name_type(p)=mp_root;
6201 link(p)=x; equiv(x)=p;
6204 @ These conventions for variable representation are illustrated by the
6205 |print_variable_name| routine, which displays the full name of a
6206 variable given only a pointer to its two-word value packet.
6209 void mp_print_variable_name (MP mp, pointer p);
6212 void mp_print_variable_name (MP mp, pointer p) {
6213 pointer q; /* a token list that will name the variable's suffix */
6214 pointer r; /* temporary for token list creation */
6215 while ( name_type(p)>=mp_x_part_sector ) {
6216 @<Preface the output with a part specifier; |return| in the
6217 case of a capsule@>;
6220 while ( name_type(p)>mp_saved_root ) {
6221 @<Ascend one level, pushing a token onto list |q|
6222 and replacing |p| by its parent@>;
6224 r=mp_get_avail(mp); info(r)=link(p); link(r)=q;
6225 if ( name_type(p)==mp_saved_root ) mp_print(mp, "(SAVED)");
6227 mp_show_token_list(mp, r,null,el_gordo,mp->tally);
6228 mp_flush_token_list(mp, r);
6231 @ @<Ascend one level, pushing a token onto list |q|...@>=
6233 if ( name_type(p)==mp_subscr ) {
6234 r=mp_new_num_tok(mp, subscript(p));
6237 } while (name_type(p)!=mp_attr);
6238 } else if ( name_type(p)==mp_structured_root ) {
6239 p=link(p); goto FOUND;
6241 if ( name_type(p)!=mp_attr ) mp_confusion(mp, "var");
6242 @:this can't happen var}{\quad var@>
6243 r=mp_get_avail(mp); info(r)=attr_loc(p);
6250 @ @<Preface the output with a part specifier...@>=
6251 { switch (name_type(p)) {
6252 case mp_x_part_sector: mp_print_char(mp, 'x'); break;
6253 case mp_y_part_sector: mp_print_char(mp, 'y'); break;
6254 case mp_xx_part_sector: mp_print(mp, "xx"); break;
6255 case mp_xy_part_sector: mp_print(mp, "xy"); break;
6256 case mp_yx_part_sector: mp_print(mp, "yx"); break;
6257 case mp_yy_part_sector: mp_print(mp, "yy"); break;
6258 case mp_red_part_sector: mp_print(mp, "red"); break;
6259 case mp_green_part_sector: mp_print(mp, "green"); break;
6260 case mp_blue_part_sector: mp_print(mp, "blue"); break;
6261 case mp_cyan_part_sector: mp_print(mp, "cyan"); break;
6262 case mp_magenta_part_sector: mp_print(mp, "magenta"); break;
6263 case mp_yellow_part_sector: mp_print(mp, "yellow"); break;
6264 case mp_black_part_sector: mp_print(mp, "black"); break;
6265 case mp_grey_part_sector: mp_print(mp, "grey"); break;
6267 mp_print(mp, "%CAPSULE"); mp_print_int(mp, p-null); return;
6270 } /* there are no other cases */
6271 mp_print(mp, "part ");
6272 p=link(p-mp->sector_offset[name_type(p)]);
6275 @ The |interesting| function returns |true| if a given variable is not
6276 in a capsule, or if the user wants to trace capsules.
6279 boolean mp_interesting (MP mp,pointer p) {
6280 small_number t; /* a |name_type| */
6281 if ( mp->internal[mp_tracing_capsules]>0 ) {
6285 if ( t>=mp_x_part_sector ) if ( t!=mp_capsule )
6286 t=name_type(link(p-mp->sector_offset[t]));
6287 return (t!=mp_capsule);
6291 @ Now here is a subroutine that converts an unstructured type into an
6292 equivalent structured type, by inserting a |mp_structured| node that is
6293 capable of growing. This operation is done only when |name_type(p)=root|,
6294 |subscr|, or |attr|.
6296 The procedure returns a pointer to the new node that has taken node~|p|'s
6297 place in the structure. Node~|p| itself does not move, nor are its
6298 |value| or |type| fields changed in any way.
6301 pointer mp_new_structure (MP mp,pointer p) {
6302 pointer q,r=0; /* list manipulation registers */
6303 switch (name_type(p)) {
6305 q=link(p); r=mp_get_node(mp, value_node_size); equiv(q)=r;
6308 @<Link a new subscript node |r| in place of node |p|@>;
6311 @<Link a new attribute node |r| in place of node |p|@>;
6314 mp_confusion(mp, "struct");
6315 @:this can't happen struct}{\quad struct@>
6318 link(r)=link(p); type(r)=mp_structured; name_type(r)=name_type(p);
6319 attr_head(r)=p; name_type(p)=mp_structured_root;
6320 q=mp_get_node(mp, attr_node_size); link(p)=q; subscr_head(r)=q;
6321 parent(q)=r; type(q)=undefined; name_type(q)=mp_attr; link(q)=end_attr;
6322 attr_loc(q)=collective_subscript;
6326 @ @<Link a new subscript node |r| in place of node |p|@>=
6331 } while (name_type(q)!=mp_attr);
6332 q=parent(q); r=subscr_head_loc(q); /* |link(r)=subscr_head(q)| */
6336 r=mp_get_node(mp, subscr_node_size);
6337 link(q)=r; subscript(r)=subscript(p);
6340 @ If the attribute is |collective_subscript|, there are two pointers to
6341 node~|p|, so we must change both of them.
6343 @<Link a new attribute node |r| in place of node |p|@>=
6345 q=parent(p); r=attr_head(q);
6349 r=mp_get_node(mp, attr_node_size); link(q)=r;
6350 mp->mem[attr_loc_loc(r)]=mp->mem[attr_loc_loc(p)]; /* copy |attr_loc| and |parent| */
6351 if ( attr_loc(p)==collective_subscript ) {
6352 q=subscr_head_loc(parent(p));
6353 while ( link(q)!=p ) q=link(q);
6358 @ The |find_variable| routine is given a pointer~|t| to a nonempty token
6359 list of suffixes; it returns a pointer to the corresponding two-word
6360 value. For example, if |t| points to token \.x followed by a numeric
6361 token containing the value~7, |find_variable| finds where the value of
6362 \.{x7} is stored in memory. This may seem a simple task, and it
6363 usually is, except when \.{x7} has never been referenced before.
6364 Indeed, \.x may never have even been subscripted before; complexities
6365 arise with respect to updating the collective subscript information.
6367 If a macro type is detected anywhere along path~|t|, or if the first
6368 item on |t| isn't a |tag_token|, the value |null| is returned.
6369 Otherwise |p| will be a non-null pointer to a node such that
6370 |undefined<type(p)<mp_structured|.
6372 @d abort_find { return null; }
6375 pointer mp_find_variable (MP mp,pointer t) {
6376 pointer p,q,r,s; /* nodes in the ``value'' line */
6377 pointer pp,qq,rr,ss; /* nodes in the ``collective'' line */
6378 integer n; /* subscript or attribute */
6379 memory_word save_word; /* temporary storage for a word of |mem| */
6381 p=info(t); t=link(t);
6382 if ( (eq_type(p) % outer_tag) != tag_token ) abort_find;
6383 if ( equiv(p)==null ) mp_new_root(mp, p);
6386 @<Make sure that both nodes |p| and |pp| are of |mp_structured| type@>;
6387 if ( t<mp->hi_mem_min ) {
6388 @<Descend one level for the subscript |value(t)|@>
6390 @<Descend one level for the attribute |info(t)|@>;
6394 if ( type(pp)>=mp_structured ) {
6395 if ( type(pp)==mp_structured ) pp=attr_head(pp); else abort_find;
6397 if ( type(p)==mp_structured ) p=attr_head(p);
6398 if ( type(p)==undefined ) {
6399 if ( type(pp)==undefined ) { type(pp)=mp_numeric_type; value(pp)=null; };
6400 type(p)=type(pp); value(p)=null;
6405 @ Although |pp| and |p| begin together, they diverge when a subscript occurs;
6406 |pp|~stays in the collective line while |p|~goes through actual subscript
6409 @<Make sure that both nodes |p| and |pp|...@>=
6410 if ( type(pp)!=mp_structured ) {
6411 if ( type(pp)>mp_structured ) abort_find;
6412 ss=mp_new_structure(mp, pp);
6415 }; /* now |type(pp)=mp_structured| */
6416 if ( type(p)!=mp_structured ) /* it cannot be |>mp_structured| */
6417 p=mp_new_structure(mp, p) /* now |type(p)=mp_structured| */
6419 @ We want this part of the program to be reasonably fast, in case there are
6421 lots of subscripts at the same level of the data structure. Therefore
6422 we store an ``infinite'' value in the word that appears at the end of the
6423 subscript list, even though that word isn't part of a subscript node.
6425 @<Descend one level for the subscript |value(t)|@>=
6428 pp=link(attr_head(pp)); /* now |attr_loc(pp)=collective_subscript| */
6429 q=link(attr_head(p)); save_word=mp->mem[subscript_loc(q)];
6430 subscript(q)=el_gordo; s=subscr_head_loc(p); /* |link(s)=subscr_head(p)| */
6433 } while (n>subscript(s));
6434 if ( n==subscript(s) ) {
6437 p=mp_get_node(mp, subscr_node_size); link(r)=p; link(p)=s;
6438 subscript(p)=n; name_type(p)=mp_subscr; type(p)=undefined;
6440 mp->mem[subscript_loc(q)]=save_word;
6443 @ @<Descend one level for the attribute |info(t)|@>=
6449 } while (n>attr_loc(ss));
6450 if ( n<attr_loc(ss) ) {
6451 qq=mp_get_node(mp, attr_node_size); link(rr)=qq; link(qq)=ss;
6452 attr_loc(qq)=n; name_type(qq)=mp_attr; type(qq)=undefined;
6453 parent(qq)=pp; ss=qq;
6458 pp=ss; s=attr_head(p);
6461 } while (n>attr_loc(s));
6462 if ( n==attr_loc(s) ) {
6465 q=mp_get_node(mp, attr_node_size); link(r)=q; link(q)=s;
6466 attr_loc(q)=n; name_type(q)=mp_attr; type(q)=undefined;
6472 @ Variables lose their former values when they appear in a type declaration,
6473 or when they are defined to be macros or \&{let} equal to something else.
6474 A subroutine will be defined later that recycles the storage associated
6475 with any particular |type| or |value|; our goal now is to study a higher
6476 level process called |flush_variable|, which selectively frees parts of a
6479 This routine has some complexity because of examples such as
6480 `\hbox{\tt numeric x[]a[]b}'
6481 which recycles all variables of the form \.{x[i]a[j]b} (and no others), while
6482 `\hbox{\tt vardef x[]a[]=...}'
6483 discards all variables of the form \.{x[i]a[j]} followed by an arbitrary
6484 suffix, except for the collective node \.{x[]a[]} itself. The obvious way
6485 to handle such examples is to use recursion; so that's what we~do.
6488 Parameter |p| points to the root information of the variable;
6489 parameter |t| points to a list of one-word nodes that represent
6490 suffixes, with |info=collective_subscript| for subscripts.
6493 @<Declare subroutines for printing expressions@>
6494 @<Declare basic dependency-list subroutines@>
6495 @<Declare the recycling subroutines@>
6496 void mp_flush_cur_exp (MP mp,scaled v) ;
6497 @<Declare the procedure called |flush_below_variable|@>
6500 void mp_flush_variable (MP mp,pointer p, pointer t, boolean discard_suffixes) {
6501 pointer q,r; /* list manipulation */
6502 halfword n; /* attribute to match */
6504 if ( type(p)!=mp_structured ) return;
6505 n=info(t); t=link(t);
6506 if ( n==collective_subscript ) {
6507 r=subscr_head_loc(p); q=link(r); /* |q=subscr_head(p)| */
6508 while ( name_type(q)==mp_subscr ){
6509 mp_flush_variable(mp, q,t,discard_suffixes);
6511 if ( type(q)==mp_structured ) r=q;
6512 else { link(r)=link(q); mp_free_node(mp, q,subscr_node_size); }
6522 } while (attr_loc(p)<n);
6523 if ( attr_loc(p)!=n ) return;
6525 if ( discard_suffixes ) {
6526 mp_flush_below_variable(mp, p);
6528 if ( type(p)==mp_structured ) p=attr_head(p);
6529 mp_recycle_value(mp, p);
6533 @ The next procedure is simpler; it wipes out everything but |p| itself,
6534 which becomes undefined.
6536 @<Declare the procedure called |flush_below_variable|@>=
6537 void mp_flush_below_variable (MP mp, pointer p);
6540 void mp_flush_below_variable (MP mp,pointer p) {
6541 pointer q,r; /* list manipulation registers */
6542 if ( type(p)!=mp_structured ) {
6543 mp_recycle_value(mp, p); /* this sets |type(p)=undefined| */
6546 while ( name_type(q)==mp_subscr ) {
6547 mp_flush_below_variable(mp, q); r=q; q=link(q);
6548 mp_free_node(mp, r,subscr_node_size);
6550 r=attr_head(p); q=link(r); mp_recycle_value(mp, r);
6551 if ( name_type(p)<=mp_saved_root ) mp_free_node(mp, r,value_node_size);
6552 else mp_free_node(mp, r,subscr_node_size);
6553 /* we assume that |subscr_node_size=attr_node_size| */
6555 mp_flush_below_variable(mp, q); r=q; q=link(q); mp_free_node(mp, r,attr_node_size);
6556 } while (q!=end_attr);
6561 @ Just before assigning a new value to a variable, we will recycle the
6562 old value and make the old value undefined. The |und_type| routine
6563 determines what type of undefined value should be given, based on
6564 the current type before recycling.
6567 small_number mp_und_type (MP mp,pointer p) {
6569 case undefined: case mp_vacuous:
6571 case mp_boolean_type: case mp_unknown_boolean:
6572 return mp_unknown_boolean;
6573 case mp_string_type: case mp_unknown_string:
6574 return mp_unknown_string;
6575 case mp_pen_type: case mp_unknown_pen:
6576 return mp_unknown_pen;
6577 case mp_path_type: case mp_unknown_path:
6578 return mp_unknown_path;
6579 case mp_picture_type: case mp_unknown_picture:
6580 return mp_unknown_picture;
6581 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
6582 case mp_pair_type: case mp_numeric_type:
6584 case mp_known: case mp_dependent: case mp_proto_dependent: case mp_independent:
6585 return mp_numeric_type;
6586 } /* there are no other cases */
6590 @ The |clear_symbol| routine is used when we want to redefine the equivalent
6591 of a symbolic token. It must remove any variable structure or macro
6592 definition that is currently attached to that symbol. If the |saving|
6593 parameter is true, a subsidiary structure is saved instead of destroyed.
6596 void mp_clear_symbol (MP mp,pointer p, boolean saving) {
6597 pointer q; /* |equiv(p)| */
6599 switch (eq_type(p) % outer_tag) {
6601 case secondary_primary_macro:
6602 case tertiary_secondary_macro:
6603 case expression_tertiary_macro:
6604 if ( ! saving ) mp_delete_mac_ref(mp, q);
6609 name_type(q)=mp_saved_root;
6611 mp_flush_below_variable(mp, q); mp_free_node(mp,q,value_node_size);
6618 mp->eqtb[p]=mp->eqtb[frozen_undefined];
6621 @* \[16] Saving and restoring equivalents.
6622 The nested structure given by \&{begingroup} and \&{endgroup}
6623 allows |eqtb| entries to be saved and restored, so that temporary changes
6624 can be made without difficulty. When the user requests a current value to
6625 be saved, \MP\ puts that value into its ``save stack.'' An appearance of
6626 \&{endgroup} ultimately causes the old values to be removed from the save
6627 stack and put back in their former places.
6629 The save stack is a linked list containing three kinds of entries,
6630 distinguished by their |info| fields. If |p| points to a saved item,
6634 |info(p)=0| stands for a group boundary; each \&{begingroup} contributes
6635 such an item to the save stack and each \&{endgroup} cuts back the stack
6636 until the most recent such entry has been removed.
6639 |info(p)=q|, where |1<=q<=hash_end|, means that |mem[p+1]| holds the former
6640 contents of |eqtb[q]|. Such save stack entries are generated by \&{save}
6641 commands or suitable \&{interim} commands.
6644 |info(p)=hash_end+q|, where |q>0|, means that |value(p)| is a |scaled|
6645 integer to be restored to internal parameter number~|q|. Such entries
6646 are generated by \&{interim} commands.
6649 The global variable |save_ptr| points to the top item on the save stack.
6651 @d save_node_size 2 /* number of words per non-boundary save-stack node */
6652 @d saved_equiv(A) mp->mem[(A)+1].hh /* where an |eqtb| entry gets saved */
6653 @d save_boundary_item(A) { (A)=mp_get_avail(mp); info((A))=0;
6654 link((A))=mp->save_ptr; mp->save_ptr=(A);
6658 pointer save_ptr; /* the most recently saved item */
6660 @ @<Set init...@>=mp->save_ptr=null;
6662 @ The |save_variable| routine is given a hash address |q|; it salts this
6663 address in the save stack, together with its current equivalent,
6664 then makes token~|q| behave as though it were brand new.
6666 Nothing is stacked when |save_ptr=null|, however; there's no way to remove
6667 things from the stack when the program is not inside a group, so there's
6668 no point in wasting the space.
6670 @c void mp_save_variable (MP mp,pointer q) {
6671 pointer p; /* temporary register */
6672 if ( mp->save_ptr!=null ){
6673 p=mp_get_node(mp, save_node_size); info(p)=q; link(p)=mp->save_ptr;
6674 saved_equiv(p)=mp->eqtb[q]; mp->save_ptr=p;
6676 mp_clear_symbol(mp, q,(mp->save_ptr!=null));
6679 @ Similarly, |save_internal| is given the location |q| of an internal
6680 quantity like |mp_tracing_pens|. It creates a save stack entry of the
6683 @c void mp_save_internal (MP mp,halfword q) {
6684 pointer p; /* new item for the save stack */
6685 if ( mp->save_ptr!=null ){
6686 p=mp_get_node(mp, save_node_size); info(p)=hash_end+q;
6687 link(p)=mp->save_ptr; value(p)=mp->internal[q]; mp->save_ptr=p;
6691 @ At the end of a group, the |unsave| routine restores all of the saved
6692 equivalents in reverse order. This routine will be called only when there
6693 is at least one boundary item on the save stack.
6696 void mp_unsave (MP mp) {
6697 pointer q; /* index to saved item */
6698 pointer p; /* temporary register */
6699 while ( info(mp->save_ptr)!=0 ) {
6700 q=info(mp->save_ptr);
6702 if ( mp->internal[mp_tracing_restores]>0 ) {
6703 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6704 mp_print(mp, mp->int_name[q-(hash_end)]); mp_print_char(mp, '=');
6705 mp_print_scaled(mp, value(mp->save_ptr)); mp_print_char(mp, '}');
6706 mp_end_diagnostic(mp, false);
6708 mp->internal[q-(hash_end)]=value(mp->save_ptr);
6710 if ( mp->internal[mp_tracing_restores]>0 ) {
6711 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6712 mp_print_text(q); mp_print_char(mp, '}');
6713 mp_end_diagnostic(mp, false);
6715 mp_clear_symbol(mp, q,false);
6716 mp->eqtb[q]=saved_equiv(mp->save_ptr);
6717 if ( eq_type(q) % outer_tag==tag_token ) {
6719 if ( p!=null ) name_type(p)=mp_root;
6722 p=link(mp->save_ptr);
6723 mp_free_node(mp, mp->save_ptr,save_node_size); mp->save_ptr=p;
6725 p=link(mp->save_ptr); free_avail(mp->save_ptr); mp->save_ptr=p;
6728 @* \[17] Data structures for paths.
6729 When a \MP\ user specifies a path, \MP\ will create a list of knots
6730 and control points for the associated cubic spline curves. If the
6731 knots are $z_0$, $z_1$, \dots, $z_n$, there are control points
6732 $z_k^+$ and $z_{k+1}^-$ such that the cubic splines between knots
6733 $z_k$ and $z_{k+1}$ are defined by B\'ezier's formula
6734 @:Bezier}{B\'ezier, Pierre Etienne@>
6735 $$\eqalign{z(t)&=B(z_k,z_k^+,z_{k+1}^-,z_{k+1};t)\cr
6736 &=(1-t)^3z_k+3(1-t)^2tz_k^++3(1-t)t^2z_{k+1}^-+t^3z_{k+1}\cr}$$
6739 There is a 8-word node for each knot $z_k$, containing one word of
6740 control information and six words for the |x| and |y| coordinates of
6741 $z_k^-$ and $z_k$ and~$z_k^+$. The control information appears in the
6742 |left_type| and |right_type| fields, which each occupy a quarter of
6743 the first word in the node; they specify properties of the curve as it
6744 enters and leaves the knot. There's also a halfword |link| field,
6745 which points to the following knot, and a final supplementary word (of
6746 which only a quarter is used).
6748 If the path is a closed contour, knots 0 and |n| are identical;
6749 i.e., the |link| in knot |n-1| points to knot~0. But if the path
6750 is not closed, the |left_type| of knot~0 and the |right_type| of knot~|n|
6751 are equal to |endpoint|. In the latter case the |link| in knot~|n| points
6752 to knot~0, and the control points $z_0^-$ and $z_n^+$ are not used.
6754 @d left_type(A) mp->mem[(A)].hh.b0 /* characterizes the path entering this knot */
6755 @d right_type(A) mp->mem[(A)].hh.b1 /* characterizes the path leaving this knot */
6756 @d x_coord(A) mp->mem[(A)+1].sc /* the |x| coordinate of this knot */
6757 @d y_coord(A) mp->mem[(A)+2].sc /* the |y| coordinate of this knot */
6758 @d left_x(A) mp->mem[(A)+3].sc /* the |x| coordinate of previous control point */
6759 @d left_y(A) mp->mem[(A)+4].sc /* the |y| coordinate of previous control point */
6760 @d right_x(A) mp->mem[(A)+5].sc /* the |x| coordinate of next control point */
6761 @d right_y(A) mp->mem[(A)+6].sc /* the |y| coordinate of next control point */
6762 @d x_loc(A) ((A)+1) /* where the |x| coordinate is stored in a knot */
6763 @d y_loc(A) ((A)+2) /* where the |y| coordinate is stored in a knot */
6764 @d knot_coord(A) mp->mem[(A)].sc /* |x| or |y| coordinate given |x_loc| or |y_loc| */
6765 @d left_coord(A) mp->mem[(A)+2].sc
6766 /* coordinate of previous control point given |x_loc| or |y_loc| */
6767 @d right_coord(A) mp->mem[(A)+4].sc
6768 /* coordinate of next control point given |x_loc| or |y_loc| */
6769 @d knot_node_size 8 /* number of words in a knot node */
6773 mp_endpoint=0, /* |left_type| at path beginning and |right_type| at path end */
6774 mp_explicit, /* |left_type| or |right_type| when control points are known */
6775 mp_given, /* |left_type| or |right_type| when a direction is given */
6776 mp_curl, /* |left_type| or |right_type| when a curl is desired */
6777 mp_open, /* |left_type| or |right_type| when \MP\ should choose the direction */
6781 @ Before the B\'ezier control points have been calculated, the memory
6782 space they will ultimately occupy is taken up by information that can be
6783 used to compute them. There are four cases:
6786 \textindent{$\bullet$} If |right_type=mp_open|, the curve should leave
6787 the knot in the same direction it entered; \MP\ will figure out a
6791 \textindent{$\bullet$} If |right_type=mp_curl|, the curve should leave the
6792 knot in a direction depending on the angle at which it enters the next
6793 knot and on the curl parameter stored in |right_curl|.
6796 \textindent{$\bullet$} If |right_type=mp_given|, the curve should leave the
6797 knot in a nonzero direction stored as an |angle| in |right_given|.
6800 \textindent{$\bullet$} If |right_type=mp_explicit|, the B\'ezier control
6801 point for leaving this knot has already been computed; it is in the
6802 |right_x| and |right_y| fields.
6805 The rules for |left_type| are similar, but they refer to the curve entering
6806 the knot, and to \\{left} fields instead of \\{right} fields.
6808 Non-|explicit| control points will be chosen based on ``tension'' parameters
6809 in the |left_tension| and |right_tension| fields. The
6810 `\&{atleast}' option is represented by negative tension values.
6811 @:at_least_}{\&{atleast} primitive@>
6813 For example, the \MP\ path specification
6814 $$\.{z0..z1..tension atleast 1..\{curl 2\}z2..z3\{-1,-2\}..tension
6816 where \.p is the path `\.{z4..controls z45 and z54..z5}', will be represented
6818 \def\lodash{\hbox to 1.1em{\thinspace\hrulefill\thinspace}}
6819 $$\vbox{\halign{#\hfil&&\qquad#\hfil\cr
6820 |left_type|&\\{left} info&|x_coord,y_coord|&|right_type|&\\{right} info\cr
6822 |endpoint|&\lodash$,\,$\lodash&$x_0,y_0$&|curl|&$1.0,1.0$\cr
6823 |open|&\lodash$,1.0$&$x_1,y_1$&|open|&\lodash$,-1.0$\cr
6824 |curl|&$2.0,-1.0$&$x_2,y_2$&|curl|&$2.0,1.0$\cr
6825 |given|&$d,1.0$&$x_3,y_3$&|given|&$d,3.0$\cr
6826 |open|&\lodash$,4.0$&$x_4,y_4$&|explicit|&$x_{45},y_{45}$\cr
6827 |explicit|&$x_{54},y_{54}$&$x_5,y_5$&|endpoint|&\lodash$,\,$\lodash\cr}}$$
6828 Here |d| is the |angle| obtained by calling |n_arg(-unity,-two)|.
6829 Of course, this example is more complicated than anything a normal user
6832 These types must satisfy certain restrictions because of the form of \MP's
6834 (i)~|open| type never appears in the same node together with |endpoint|,
6836 (ii)~The |right_type| of a node is |explicit| if and only if the
6837 |left_type| of the following node is |explicit|.
6838 (iii)~|endpoint| types occur only at the ends, as mentioned above.
6840 @d left_curl left_x /* curl information when entering this knot */
6841 @d left_given left_x /* given direction when entering this knot */
6842 @d left_tension left_y /* tension information when entering this knot */
6843 @d right_curl right_x /* curl information when leaving this knot */
6844 @d right_given right_x /* given direction when leaving this knot */
6845 @d right_tension right_y /* tension information when leaving this knot */
6847 @ Knots can be user-supplied, or they can be created by program code,
6848 like the |split_cubic| function, or |copy_path|. The distinction is
6849 needed for the cleanup routine that runs after |split_cubic|, because
6850 it should only delete knots it has previously inserted, and never
6851 anything that was user-supplied. In order to be able to differentiate
6852 one knot from another, we will set |originator(p):=mp_metapost_user| when
6853 it appeared in the actual metapost program, and
6854 |originator(p):=mp_program_code| in all other cases.
6856 @d originator(A) mp->mem[(A)+7].hh.b0 /* the creator of this knot */
6860 mp_program_code=0, /* not created by a user */
6861 mp_metapost_user, /* created by a user */
6864 @ Here is a routine that prints a given knot list
6865 in symbolic form. It illustrates the conventions discussed above,
6866 and checks for anomalies that might arise while \MP\ is being debugged.
6868 @<Declare subroutines for printing expressions@>=
6869 void mp_pr_path (MP mp,pointer h);
6872 void mp_pr_path (MP mp,pointer h) {
6873 pointer p,q; /* for list traversal */
6877 if ( (p==null)||(q==null) ) {
6878 mp_print_nl(mp, "???"); return; /* this won't happen */
6881 @<Print information for adjacent knots |p| and |q|@>;
6884 if ( (p!=h)||(left_type(h)!=mp_endpoint) ) {
6885 @<Print two dots, followed by |given| or |curl| if present@>;
6888 if ( left_type(h)!=mp_endpoint )
6889 mp_print(mp, "cycle");
6892 @ @<Print information for adjacent knots...@>=
6893 mp_print_two(mp, x_coord(p),y_coord(p));
6894 switch (right_type(p)) {
6896 if ( left_type(p)==mp_open ) mp_print(mp, "{open?}"); /* can't happen */
6898 if ( (left_type(q)!=mp_endpoint)||(q!=h) ) q=null; /* force an error */
6902 @<Print control points between |p| and |q|, then |goto done1|@>;
6905 @<Print information for a curve that begins |open|@>;
6909 @<Print information for a curve that begins |curl| or |given|@>;
6912 mp_print(mp, "???"); /* can't happen */
6916 if ( left_type(q)<=mp_explicit ) {
6917 mp_print(mp, "..control?"); /* can't happen */
6919 } else if ( (right_tension(p)!=unity)||(left_tension(q)!=unity) ) {
6920 @<Print tension between |p| and |q|@>;
6923 @ Since |n_sin_cos| produces |fraction| results, which we will print as if they
6924 were |scaled|, the magnitude of a |given| direction vector will be~4096.
6926 @<Print two dots...@>=
6928 mp_print_nl(mp, " ..");
6929 if ( left_type(p)==mp_given ) {
6930 mp_n_sin_cos(mp, left_given(p)); mp_print_char(mp, '{');
6931 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
6932 mp_print_scaled(mp, mp->n_sin); mp_print_char(mp, '}');
6933 } else if ( left_type(p)==mp_curl ){
6934 mp_print(mp, "{curl ");
6935 mp_print_scaled(mp, left_curl(p)); mp_print_char(mp, '}');
6939 @ @<Print tension between |p| and |q|@>=
6941 mp_print(mp, "..tension ");
6942 if ( right_tension(p)<0 ) mp_print(mp, "atleast");
6943 mp_print_scaled(mp, abs(right_tension(p)));
6944 if ( right_tension(p)!=left_tension(q) ){
6945 mp_print(mp, " and ");
6946 if ( left_tension(q)<0 ) mp_print(mp, "atleast");
6947 mp_print_scaled(mp, abs(left_tension(q)));
6951 @ @<Print control points between |p| and |q|, then |goto done1|@>=
6953 mp_print(mp, "..controls ");
6954 mp_print_two(mp, right_x(p),right_y(p));
6955 mp_print(mp, " and ");
6956 if ( left_type(q)!=mp_explicit ) {
6957 mp_print(mp, "??"); /* can't happen */
6960 mp_print_two(mp, left_x(q),left_y(q));
6965 @ @<Print information for a curve that begins |open|@>=
6966 if ( (left_type(p)!=mp_explicit)&&(left_type(p)!=mp_open) ) {
6967 mp_print(mp, "{open?}"); /* can't happen */
6971 @ A curl of 1 is shown explicitly, so that the user sees clearly that
6972 \MP's default curl is present.
6974 The code here uses the fact that |left_curl==left_given| and
6975 |right_curl==right_given|.
6977 @<Print information for a curve that begins |curl|...@>=
6979 if ( left_type(p)==mp_open )
6980 mp_print(mp, "??"); /* can't happen */
6982 if ( right_type(p)==mp_curl ) {
6983 mp_print(mp, "{curl "); mp_print_scaled(mp, right_curl(p));
6985 mp_n_sin_cos(mp, right_given(p)); mp_print_char(mp, '{');
6986 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
6987 mp_print_scaled(mp, mp->n_sin);
6989 mp_print_char(mp, '}');
6992 @ It is convenient to have another version of |pr_path| that prints the path
6993 as a diagnostic message.
6995 @<Declare subroutines for printing expressions@>=
6996 void mp_print_path (MP mp,pointer h, char *s, boolean nuline) {
6997 mp_print_diagnostic(mp, "Path", s, nuline); mp_print_ln(mp);
7000 mp_end_diagnostic(mp, true);
7003 @ If we want to duplicate a knot node, we can say |copy_knot|:
7006 pointer mp_copy_knot (MP mp,pointer p) {
7007 pointer q; /* the copy */
7008 int k; /* runs through the words of a knot node */
7009 q=mp_get_node(mp, knot_node_size);
7010 for (k=0;k<knot_node_size;k++) {
7011 mp->mem[q+k]=mp->mem[p+k];
7013 originator(q)=originator(p);
7017 @ The |copy_path| routine makes a clone of a given path.
7020 pointer mp_copy_path (MP mp, pointer p) {
7021 pointer q,pp,qq; /* for list manipulation */
7022 q=mp_copy_knot(mp, p);
7025 link(qq)=mp_copy_knot(mp, pp);
7034 @ Just before |ship_out|, knot lists are exported for printing.
7036 The |gr_XXXX| macros are defined in |mppsout.h|.
7039 struct mp_knot *mp_export_knot (MP mp,pointer p) {
7040 struct mp_knot *q; /* the copy */
7043 q = mp_xmalloc(mp, 1, sizeof (struct mp_knot));
7044 memset(q,0,sizeof (struct mp_knot));
7045 gr_left_type(q) = left_type(p);
7046 gr_right_type(q) = right_type(p);
7047 gr_x_coord(q) = x_coord(p);
7048 gr_y_coord(q) = y_coord(p);
7049 gr_left_x(q) = left_x(p);
7050 gr_left_y(q) = left_y(p);
7051 gr_right_x(q) = right_x(p);
7052 gr_right_y(q) = right_y(p);
7053 gr_originator(q) = originator(p);
7057 @ The |export_knot_list| routine therefore also makes a clone
7061 struct mp_knot *mp_export_knot_list (MP mp, pointer p) {
7062 struct mp_knot *q, *qq; /* for list manipulation */
7063 pointer pp; /* for list manipulation */
7066 q=mp_export_knot(mp, p);
7069 gr_next_knot(qq)=mp_export_knot(mp, pp);
7070 qq=gr_next_knot(qq);
7078 @ Similarly, there's a way to copy the {\sl reverse\/} of a path. This procedure
7079 returns a pointer to the first node of the copy, if the path is a cycle,
7080 but to the final node of a non-cyclic copy. The global
7081 variable |path_tail| will point to the final node of the original path;
7082 this trick makes it easier to implement `\&{doublepath}'.
7084 All node types are assumed to be |endpoint| or |explicit| only.
7087 pointer mp_htap_ypoc (MP mp,pointer p) {
7088 pointer q,pp,qq,rr; /* for list manipulation */
7089 q=mp_get_node(mp, knot_node_size); /* this will correspond to |p| */
7092 right_type(qq)=left_type(pp); left_type(qq)=right_type(pp);
7093 x_coord(qq)=x_coord(pp); y_coord(qq)=y_coord(pp);
7094 right_x(qq)=left_x(pp); right_y(qq)=left_y(pp);
7095 left_x(qq)=right_x(pp); left_y(qq)=right_y(pp);
7096 originator(qq)=originator(pp);
7097 if ( link(pp)==p ) {
7098 link(q)=qq; mp->path_tail=pp; return q;
7100 rr=mp_get_node(mp, knot_node_size); link(rr)=qq; qq=rr; pp=link(pp);
7105 pointer path_tail; /* the node that links to the beginning of a path */
7107 @ When a cyclic list of knot nodes is no longer needed, it can be recycled by
7108 calling the following subroutine.
7110 @<Declare the recycling subroutines@>=
7111 void mp_toss_knot_list (MP mp,pointer p) ;
7114 void mp_toss_knot_list (MP mp,pointer p) {
7115 pointer q; /* the node being freed */
7116 pointer r; /* the next node */
7120 mp_free_node(mp, q,knot_node_size); q=r;
7124 @* \[18] Choosing control points.
7125 Now we must actually delve into one of \MP's more difficult routines,
7126 the |make_choices| procedure that chooses angles and control points for
7127 the splines of a curve when the user has not specified them explicitly.
7128 The parameter to |make_choices| points to a list of knots and
7129 path information, as described above.
7131 A path decomposes into independent segments at ``breakpoint'' knots,
7132 which are knots whose left and right angles are both prespecified in
7133 some way (i.e., their |left_type| and |right_type| aren't both open).
7136 @<Declare the procedure called |solve_choices|@>;
7137 void mp_make_choices (MP mp,pointer knots) {
7138 pointer h; /* the first breakpoint */
7139 pointer p,q; /* consecutive breakpoints being processed */
7140 @<Other local variables for |make_choices|@>;
7141 check_arith; /* make sure that |arith_error=false| */
7142 if ( mp->internal[mp_tracing_choices]>0 )
7143 mp_print_path(mp, knots,", before choices",true);
7144 @<If consecutive knots are equal, join them explicitly@>;
7145 @<Find the first breakpoint, |h|, on the path;
7146 insert an artificial breakpoint if the path is an unbroken cycle@>;
7149 @<Fill in the control points between |p| and the next breakpoint,
7150 then advance |p| to that breakpoint@>;
7152 if ( mp->internal[mp_tracing_choices]>0 )
7153 mp_print_path(mp, knots,", after choices",true);
7154 if ( mp->arith_error ) {
7155 @<Report an unexpected problem during the choice-making@>;
7159 @ @<Report an unexpected problem during the choice...@>=
7161 print_err("Some number got too big");
7162 @.Some number got too big@>
7163 help2("The path that I just computed is out of range.")
7164 ("So it will probably look funny. Proceed, for a laugh.");
7165 mp_put_get_error(mp); mp->arith_error=false;
7168 @ Two knots in a row with the same coordinates will always be joined
7169 by an explicit ``curve'' whose control points are identical with the
7172 @<If consecutive knots are equal, join them explicitly@>=
7176 if ( x_coord(p)==x_coord(q) && y_coord(p)==y_coord(q) && right_type(p)>mp_explicit ) {
7177 right_type(p)=mp_explicit;
7178 if ( left_type(p)==mp_open ) {
7179 left_type(p)=mp_curl; left_curl(p)=unity;
7181 left_type(q)=mp_explicit;
7182 if ( right_type(q)==mp_open ) {
7183 right_type(q)=mp_curl; right_curl(q)=unity;
7185 right_x(p)=x_coord(p); left_x(q)=x_coord(p);
7186 right_y(p)=y_coord(p); left_y(q)=y_coord(p);
7191 @ If there are no breakpoints, it is necessary to compute the direction
7192 angles around an entire cycle. In this case the |left_type| of the first
7193 node is temporarily changed to |end_cycle|.
7195 @<Find the first breakpoint, |h|, on the path...@>=
7198 if ( left_type(h)!=mp_open ) break;
7199 if ( right_type(h)!=mp_open ) break;
7202 left_type(h)=mp_end_cycle; break;
7206 @ If |right_type(p)<given| and |q=link(p)|, we must have
7207 |right_type(p)=left_type(q)=mp_explicit| or |endpoint|.
7209 @<Fill in the control points between |p| and the next breakpoint...@>=
7211 if ( right_type(p)>=mp_given ) {
7212 while ( (left_type(q)==mp_open)&&(right_type(q)==mp_open) ) q=link(q);
7213 @<Fill in the control information between
7214 consecutive breakpoints |p| and |q|@>;
7215 } else if ( right_type(p)==mp_endpoint ) {
7216 @<Give reasonable values for the unused control points between |p| and~|q|@>;
7220 @ This step makes it possible to transform an explicitly computed path without
7221 checking the |left_type| and |right_type| fields.
7223 @<Give reasonable values for the unused control points between |p| and~|q|@>=
7225 right_x(p)=x_coord(p); right_y(p)=y_coord(p);
7226 left_x(q)=x_coord(q); left_y(q)=y_coord(q);
7229 @ Before we can go further into the way choices are made, we need to
7230 consider the underlying theory. The basic ideas implemented in |make_choices|
7231 are due to John Hobby, who introduced the notion of ``mock curvature''
7232 @^Hobby, John Douglas@>
7233 at a knot. Angles are chosen so that they preserve mock curvature when
7234 a knot is passed, and this has been found to produce excellent results.
7236 It is convenient to introduce some notations that simplify the necessary
7237 formulas. Let $d_{k,k+1}=\vert z\k-z_k\vert$ be the (nonzero) distance
7238 between knots |k| and |k+1|; and let
7239 $${z\k-z_k\over z_k-z_{k-1}}={d_{k,k+1}\over d_{k-1,k}}e^{i\psi_k}$$
7240 so that a polygonal line from $z_{k-1}$ to $z_k$ to $z\k$ turns left
7241 through an angle of~$\psi_k$. We assume that $\vert\psi_k\vert\L180^\circ$.
7242 The control points for the spline from $z_k$ to $z\k$ will be denoted by
7243 $$\eqalign{z_k^+&=z_k+
7244 \textstyle{1\over3}\rho_k e^{i\theta_k}(z\k-z_k),\cr
7246 \textstyle{1\over3}\sigma\k e^{-i\phi\k}(z\k-z_k),\cr}$$
7247 where $\rho_k$ and $\sigma\k$ are nonnegative ``velocity ratios'' at the
7248 beginning and end of the curve, while $\theta_k$ and $\phi\k$ are the
7249 corresponding ``offset angles.'' These angles satisfy the condition
7250 $$\theta_k+\phi_k+\psi_k=0,\eqno(*)$$
7251 whenever the curve leaves an intermediate knot~|k| in the direction that
7254 @ Let $\alpha_k$ and $\beta\k$ be the reciprocals of the ``tension'' of
7255 the curve at its beginning and ending points. This means that
7256 $\rho_k=\alpha_k f(\theta_k,\phi\k)$ and $\sigma\k=\beta\k f(\phi\k,\theta_k)$,
7257 where $f(\theta,\phi)$ is \MP's standard velocity function defined in
7258 the |velocity| subroutine. The cubic spline $B(z_k^{\phantom+},z_k^+,
7259 z\k^-,z\k^{\phantom+};t)$
7262 $${2\sigma\k\sin(\theta_k+\phi\k)-6\sin\theta_k\over\rho_k^2d_{k,k+1}}
7263 \qquad{\rm and}\qquad
7264 {2\rho_k\sin(\theta_k+\phi\k)-6\sin\phi\k\over\sigma\k^2d_{k,k+1}}$$
7265 at |t=0| and |t=1|, respectively. The mock curvature is the linear
7267 approximation to this true curvature that arises in the limit for
7268 small $\theta_k$ and~$\phi\k$, if second-order terms are discarded.
7269 The standard velocity function satisfies
7270 $$f(\theta,\phi)=1+O(\theta^2+\theta\phi+\phi^2);$$
7271 hence the mock curvatures are respectively
7272 $${2\beta\k(\theta_k+\phi\k)-6\theta_k\over\alpha_k^2d_{k,k+1}}
7273 \qquad{\rm and}\qquad
7274 {2\alpha_k(\theta_k+\phi\k)-6\phi\k\over\beta\k^2d_{k,k+1}}.\eqno(**)$$
7276 @ The turning angles $\psi_k$ are given, and equation $(*)$ above
7277 determines $\phi_k$ when $\theta_k$ is known, so the task of
7278 angle selection is essentially to choose appropriate values for each
7279 $\theta_k$. When equation~$(*)$ is used to eliminate $\phi$~variables
7280 from $(**)$, we obtain a system of linear equations of the form
7281 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7283 $$A_k={\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7284 \qquad B_k={3-\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7285 \qquad C_k={3-\beta\k\over\alpha_k^2d_{k,k+1}},
7286 \qquad D_k={\beta\k\over\alpha_k^2d_{k,k+1}}.$$
7287 The tensions are always $3\over4$ or more, hence each $\alpha$ and~$\beta$
7288 will be at most $4\over3$. It follows that $B_k\G{5\over4}A_k$ and
7289 $C_k\G{5\over4}D_k$; hence the equations are diagonally dominant;
7290 hence they have a unique solution. Moreover, in most cases the tensions
7291 are equal to~1, so that $B_k=2A_k$ and $C_k=2D_k$. This makes the
7292 solution numerically stable, and there is an exponential damping
7293 effect: The data at knot $k\pm j$ affects the angle at knot~$k$ by
7294 a factor of~$O(2^{-j})$.
7296 @ However, we still must consider the angles at the starting and ending
7297 knots of a non-cyclic path. These angles might be given explicitly, or
7298 they might be specified implicitly in terms of an amount of ``curl.''
7300 Let's assume that angles need to be determined for a non-cyclic path
7301 starting at $z_0$ and ending at~$z_n$. Then equations of the form
7302 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta_{k+1}=R_k$$
7303 have been given for $0<k<n$, and it will be convenient to introduce
7304 equations of the same form for $k=0$ and $k=n$, where
7305 $$A_0=B_0=C_n=D_n=0.$$
7306 If $\theta_0$ is supposed to have a given value $E_0$, we simply
7307 define $C_0=0$, $D_0=0$, and $R_0=E_0$. Otherwise a curl
7308 parameter, $\gamma_0$, has been specified at~$z_0$; this means
7309 that the mock curvature at $z_0$ should be $\gamma_0$ times the
7310 mock curvature at $z_1$; i.e.,
7311 $${2\beta_1(\theta_0+\phi_1)-6\theta_0\over\alpha_0^2d_{01}}
7312 =\gamma_0{2\alpha_0(\theta_0+\phi_1)-6\phi_1\over\beta_1^2d_{01}}.$$
7313 This equation simplifies to
7314 $$(\alpha_0\chi_0+3-\beta_1)\theta_0+
7315 \bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\theta_1=
7316 -\bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\psi_1,$$
7317 where $\chi_0=\alpha_0^2\gamma_0/\beta_1^2$; so we can set $C_0=
7318 \chi_0\alpha_0+3-\beta_1$, $D_0=(3-\alpha_0)\chi_0+\beta_1$, $R_0=-D_0\psi_1$.
7319 It can be shown that $C_0>0$ and $C_0B_1-A_1D_0>0$ when $\gamma_0\G0$,
7320 hence the linear equations remain nonsingular.
7322 Similar considerations apply at the right end, when the final angle $\phi_n$
7323 may or may not need to be determined. It is convenient to let $\psi_n=0$,
7324 hence $\theta_n=-\phi_n$. We either have an explicit equation $\theta_n=E_n$,
7326 $$\bigl((3-\beta_n)\chi_n+\alpha_{n-1}\bigr)\theta_{n-1}+
7327 (\beta_n\chi_n+3-\alpha_{n-1})\theta_n=0,\qquad
7328 \chi_n={\beta_n^2\gamma_n\over\alpha_{n-1}^2}.$$
7330 When |make_choices| chooses angles, it must compute the coefficients of
7331 these linear equations, then solve the equations. To compute the coefficients,
7332 it is necessary to compute arctangents of the given turning angles~$\psi_k$.
7333 When the equations are solved, the chosen directions $\theta_k$ are put
7334 back into the form of control points by essentially computing sines and
7337 @ OK, we are ready to make the hard choices of |make_choices|.
7338 Most of the work is relegated to an auxiliary procedure
7339 called |solve_choices|, which has been introduced to keep
7340 |make_choices| from being extremely long.
7342 @<Fill in the control information between...@>=
7343 @<Calculate the turning angles $\psi_k$ and the distances $d_{k,k+1}$;
7344 set $n$ to the length of the path@>;
7345 @<Remove |open| types at the breakpoints@>;
7346 mp_solve_choices(mp, p,q,n)
7348 @ It's convenient to precompute quantities that will be needed several
7349 times later. The values of |delta_x[k]| and |delta_y[k]| will be the
7350 coordinates of $z\k-z_k$, and the magnitude of this vector will be
7351 |delta[k]=@t$d_{k,k+1}$@>|. The path angle $\psi_k$ between $z_k-z_{k-1}$
7352 and $z\k-z_k$ will be stored in |psi[k]|.
7355 int path_size; /* maximum number of knots between breakpoints of a path */
7358 scaled *delta; /* knot differences */
7359 angle *psi; /* turning angles */
7361 @ @<Allocate or initialize ...@>=
7367 @ @<Dealloc variables@>=
7373 @ @<Other local variables for |make_choices|@>=
7374 int k,n; /* current and final knot numbers */
7375 pointer s,t; /* registers for list traversal */
7376 scaled delx,dely; /* directions where |open| meets |explicit| */
7377 fraction sine,cosine; /* trig functions of various angles */
7379 @ @<Calculate the turning angles...@>=
7382 k=0; s=p; n=mp->path_size;
7385 mp->delta_x[k]=x_coord(t)-x_coord(s);
7386 mp->delta_y[k]=y_coord(t)-y_coord(s);
7387 mp->delta[k]=mp_pyth_add(mp, mp->delta_x[k],mp->delta_y[k]);
7389 sine=mp_make_fraction(mp, mp->delta_y[k-1],mp->delta[k-1]);
7390 cosine=mp_make_fraction(mp, mp->delta_x[k-1],mp->delta[k-1]);
7391 mp->psi[k]=mp_n_arg(mp, mp_take_fraction(mp, mp->delta_x[k],cosine)+
7392 mp_take_fraction(mp, mp->delta_y[k],sine),
7393 mp_take_fraction(mp, mp->delta_y[k],cosine)-
7394 mp_take_fraction(mp, mp->delta_x[k],sine));
7397 if ( k==mp->path_size ) {
7398 mp_reallocate_paths(mp, mp->path_size+(mp->path_size>>2));
7399 goto RESTART; /* retry, loop size has changed */
7402 } while (!((k>=n)&&(left_type(s)!=mp_end_cycle)));
7403 if ( k==n ) mp->psi[n]=0; else mp->psi[k]=mp->psi[1];
7406 @ When we get to this point of the code, |right_type(p)| is either
7407 |given| or |curl| or |open|. If it is |open|, we must have
7408 |left_type(p)=mp_end_cycle| or |left_type(p)=mp_explicit|. In the latter
7409 case, the |open| type is converted to |given|; however, if the
7410 velocity coming into this knot is zero, the |open| type is
7411 converted to a |curl|, since we don't know the incoming direction.
7413 Similarly, |left_type(q)| is either |given| or |curl| or |open| or
7414 |mp_end_cycle|. The |open| possibility is reduced either to |given| or to |curl|.
7416 @<Remove |open| types at the breakpoints@>=
7417 if ( left_type(q)==mp_open ) {
7418 delx=right_x(q)-x_coord(q); dely=right_y(q)-y_coord(q);
7419 if ( (delx==0)&&(dely==0) ) {
7420 left_type(q)=mp_curl; left_curl(q)=unity;
7422 left_type(q)=mp_given; left_given(q)=mp_n_arg(mp, delx,dely);
7425 if ( (right_type(p)==mp_open)&&(left_type(p)==mp_explicit) ) {
7426 delx=x_coord(p)-left_x(p); dely=y_coord(p)-left_y(p);
7427 if ( (delx==0)&&(dely==0) ) {
7428 right_type(p)=mp_curl; right_curl(p)=unity;
7430 right_type(p)=mp_given; right_given(p)=mp_n_arg(mp, delx,dely);
7434 @ Linear equations need to be solved whenever |n>1|; and also when |n=1|
7435 and exactly one of the breakpoints involves a curl. The simplest case occurs
7436 when |n=1| and there is a curl at both breakpoints; then we simply draw
7439 But before coding up the simple cases, we might as well face the general case,
7440 since we must deal with it sooner or later, and since the general case
7441 is likely to give some insight into the way simple cases can be handled best.
7443 When there is no cycle, the linear equations to be solved form a tridiagonal
7444 system, and we can apply the standard technique of Gaussian elimination
7445 to convert that system to a sequence of equations of the form
7446 $$\theta_0+u_0\theta_1=v_0,\quad
7447 \theta_1+u_1\theta_2=v_1,\quad\ldots,\quad
7448 \theta_{n-1}+u_{n-1}\theta_n=v_{n-1},\quad
7450 It is possible to do this diagonalization while generating the equations.
7451 Once $\theta_n$ is known, it is easy to determine $\theta_{n-1}$, \dots,
7452 $\theta_1$, $\theta_0$; thus, the equations will be solved.
7454 The procedure is slightly more complex when there is a cycle, but the
7455 basic idea will be nearly the same. In the cyclic case the right-hand
7456 sides will be $v_k+w_k\theta_0$ instead of simply $v_k$, and we will start
7457 the process off with $u_0=v_0=0$, $w_0=1$. The final equation will be not
7458 $\theta_n=v_n$ but $\theta_n+u_n\theta_1=v_n+w_n\theta_0$; an appropriate
7459 ending routine will take account of the fact that $\theta_n=\theta_0$ and
7460 eliminate the $w$'s from the system, after which the solution can be
7463 When $u_k$, $v_k$, and $w_k$ are being computed, the three pointer
7464 variables |r|, |s|,~|t| will point respectively to knots |k-1|, |k|,
7465 and~|k+1|. The $u$'s and $w$'s are scaled by $2^{28}$, i.e., they are
7466 of type |fraction|; the $\theta$'s and $v$'s are of type |angle|.
7469 angle *theta; /* values of $\theta_k$ */
7470 fraction *uu; /* values of $u_k$ */
7471 angle *vv; /* values of $v_k$ */
7472 fraction *ww; /* values of $w_k$ */
7474 @ @<Allocate or initialize ...@>=
7480 @ @<Dealloc variables@>=
7486 @ @<Declare |mp_reallocate| functions@>=
7487 void mp_reallocate_paths (MP mp, int l);
7490 void mp_reallocate_paths (MP mp, int l) {
7491 XREALLOC (mp->delta_x, l, scaled);
7492 XREALLOC (mp->delta_y, l, scaled);
7493 XREALLOC (mp->delta, l, scaled);
7494 XREALLOC (mp->psi, l, angle);
7495 XREALLOC (mp->theta, l, angle);
7496 XREALLOC (mp->uu, l, fraction);
7497 XREALLOC (mp->vv, l, angle);
7498 XREALLOC (mp->ww, l, fraction);
7502 @ Our immediate problem is to get the ball rolling by setting up the
7503 first equation or by realizing that no equations are needed, and to fit
7504 this initialization into a framework suitable for the overall computation.
7506 @<Declare the procedure called |solve_choices|@>=
7507 @<Declare subroutines needed by |solve_choices|@>;
7508 void mp_solve_choices (MP mp,pointer p, pointer q, halfword n) {
7509 int k; /* current knot number */
7510 pointer r,s,t; /* registers for list traversal */
7511 @<Other local variables for |solve_choices|@>;
7516 @<Get the linear equations started; or |return|
7517 with the control points in place, if linear equations
7520 switch (left_type(s)) {
7521 case mp_end_cycle: case mp_open:
7522 @<Set up equation to match mock curvatures
7523 at $z_k$; then |goto found| with $\theta_n$
7524 adjusted to equal $\theta_0$, if a cycle has ended@>;
7527 @<Set up equation for a curl at $\theta_n$
7531 @<Calculate the given value of $\theta_n$
7534 } /* there are no other cases */
7539 @<Finish choosing angles and assigning control points@>;
7542 @ On the first time through the loop, we have |k=0| and |r| is not yet
7543 defined. The first linear equation, if any, will have $A_0=B_0=0$.
7545 @<Get the linear equations started...@>=
7546 switch (right_type(s)) {
7548 if ( left_type(t)==mp_given ) {
7549 @<Reduce to simple case of two givens and |return|@>
7551 @<Set up the equation for a given value of $\theta_0$@>;
7555 if ( left_type(t)==mp_curl ) {
7556 @<Reduce to simple case of straight line and |return|@>
7558 @<Set up the equation for a curl at $\theta_0$@>;
7562 mp->uu[0]=0; mp->vv[0]=0; mp->ww[0]=fraction_one;
7563 /* this begins a cycle */
7565 } /* there are no other cases */
7567 @ The general equation that specifies equality of mock curvature at $z_k$ is
7568 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7569 as derived above. We want to combine this with the already-derived equation
7570 $\theta_{k-1}+u_{k-1}\theta_k=v_{k-1}+w_{k-1}\theta_0$ in order to obtain
7572 $\theta_k+u_k\theta\k=v_k+w_k\theta_0$. This can be done by dividing the
7574 $$(B_k-u_{k-1}A_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k-A_kv_{k-1}
7575 -A_kw_{k-1}\theta_0$$
7576 by $B_k-u_{k-1}A_k+C_k$. The trick is to do this carefully with
7577 fixed-point arithmetic, avoiding the chance of overflow while retaining
7580 The calculations will be performed in several registers that
7581 provide temporary storage for intermediate quantities.
7583 @<Other local variables for |solve_choices|@>=
7584 fraction aa,bb,cc,ff,acc; /* temporary registers */
7585 scaled dd,ee; /* likewise, but |scaled| */
7586 scaled lt,rt; /* tension values */
7588 @ @<Set up equation to match mock curvatures...@>=
7589 { @<Calculate the values $\\{aa}=A_k/B_k$, $\\{bb}=D_k/C_k$,
7590 $\\{dd}=(3-\alpha_{k-1})d_{k,k+1}$, $\\{ee}=(3-\beta\k)d_{k-1,k}$,
7591 and $\\{cc}=(B_k-u_{k-1}A_k)/B_k$@>;
7592 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>;
7593 mp->uu[k]=mp_take_fraction(mp, ff,bb);
7594 @<Calculate the values of $v_k$ and $w_k$@>;
7595 if ( left_type(s)==mp_end_cycle ) {
7596 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>;
7600 @ Since tension values are never less than 3/4, the values |aa| and
7601 |bb| computed here are never more than 4/5.
7603 @<Calculate the values $\\{aa}=...@>=
7604 if ( abs(right_tension(r))==unity) {
7605 aa=fraction_half; dd=2*mp->delta[k];
7607 aa=mp_make_fraction(mp, unity,3*abs(right_tension(r))-unity);
7608 dd=mp_take_fraction(mp, mp->delta[k],
7609 fraction_three-mp_make_fraction(mp, unity,abs(right_tension(r))));
7611 if ( abs(left_tension(t))==unity ){
7612 bb=fraction_half; ee=2*mp->delta[k-1];
7614 bb=mp_make_fraction(mp, unity,3*abs(left_tension(t))-unity);
7615 ee=mp_take_fraction(mp, mp->delta[k-1],
7616 fraction_three-mp_make_fraction(mp, unity,abs(left_tension(t))));
7618 cc=fraction_one-mp_take_fraction(mp, mp->uu[k-1],aa)
7620 @ The ratio to be calculated in this step can be written in the form
7621 $$\beta_k^2\cdot\\{ee}\over\beta_k^2\cdot\\{ee}+\alpha_k^2\cdot
7622 \\{cc}\cdot\\{dd},$$
7623 because of the quantities just calculated. The values of |dd| and |ee|
7624 will not be needed after this step has been performed.
7626 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>=
7627 dd=mp_take_fraction(mp, dd,cc); lt=abs(left_tension(s)); rt=abs(right_tension(s));
7628 if ( lt!=rt ) { /* $\beta_k^{-1}\ne\alpha_k^{-1}$ */
7630 ff=mp_make_fraction(mp, lt,rt);
7631 ff=mp_take_fraction(mp, ff,ff); /* $\alpha_k^2/\beta_k^2$ */
7632 dd=mp_take_fraction(mp, dd,ff);
7634 ff=mp_make_fraction(mp, rt,lt);
7635 ff=mp_take_fraction(mp, ff,ff); /* $\beta_k^2/\alpha_k^2$ */
7636 ee=mp_take_fraction(mp, ee,ff);
7639 ff=mp_make_fraction(mp, ee,ee+dd)
7641 @ The value of $u_{k-1}$ will be |<=1| except when $k=1$ and the previous
7642 equation was specified by a curl. In that case we must use a special
7643 method of computation to prevent overflow.
7645 Fortunately, the calculations turn out to be even simpler in this ``hard''
7646 case. The curl equation makes $w_0=0$ and $v_0=-u_0\psi_1$, hence
7647 $-B_1\psi_1-A_1v_0=-(B_1-u_0A_1)\psi_1=-\\{cc}\cdot B_1\psi_1$.
7649 @<Calculate the values of $v_k$ and $w_k$@>=
7650 acc=-mp_take_fraction(mp, mp->psi[k+1],mp->uu[k]);
7651 if ( right_type(r)==mp_curl ) {
7653 mp->vv[k]=acc-mp_take_fraction(mp, mp->psi[1],fraction_one-ff);
7655 ff=mp_make_fraction(mp, fraction_one-ff,cc); /* this is
7656 $B_k/(C_k+B_k-u_{k-1}A_k)<5$ */
7657 acc=acc-mp_take_fraction(mp, mp->psi[k],ff);
7658 ff=mp_take_fraction(mp, ff,aa); /* this is $A_k/(C_k+B_k-u_{k-1}A_k)$ */
7659 mp->vv[k]=acc-mp_take_fraction(mp, mp->vv[k-1],ff);
7660 if ( mp->ww[k-1]==0 ) mp->ww[k]=0;
7661 else mp->ww[k]=-mp_take_fraction(mp, mp->ww[k-1],ff);
7664 @ When a complete cycle has been traversed, we have $\theta_k+u_k\theta\k=
7665 v_k+w_k\theta_0$, for |1<=k<=n|. We would like to determine the value of
7666 $\theta_n$ and reduce the system to the form $\theta_k+u_k\theta\k=v_k$
7667 for |0<=k<n|, so that the cyclic case can be finished up just as if there
7670 The idea in the following code is to observe that
7671 $$\eqalign{\theta_n&=v_n+w_n\theta_0-u_n\theta_1=\cdots\cr
7672 &=v_n+w_n\theta_0-u_n\bigl(v_1+w_1\theta_0-u_1(v_2+\cdots
7673 -u_{n-2}(v_{n-1}+w_{n-1}\theta_0-u_{n-1}\theta_0))\bigr),\cr}$$
7674 so we can solve for $\theta_n=\theta_0$.
7676 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>=
7678 aa=0; bb=fraction_one; /* we have |k=n| */
7681 aa=mp->vv[k]-mp_take_fraction(mp, aa,mp->uu[k]);
7682 bb=mp->ww[k]-mp_take_fraction(mp, bb,mp->uu[k]);
7683 } while (k!=n); /* now $\theta_n=\\{aa}+\\{bb}\cdot\theta_n$ */
7684 aa=mp_make_fraction(mp, aa,fraction_one-bb);
7685 mp->theta[n]=aa; mp->vv[0]=aa;
7686 for (k=1;k<=n-1;k++) {
7687 mp->vv[k]=mp->vv[k]+mp_take_fraction(mp, aa,mp->ww[k]);
7692 @ @d reduce_angle(A) if ( abs((A))>one_eighty_deg ) {
7693 if ( (A)>0 ) (A)=(A)-three_sixty_deg; else (A)=(A)+three_sixty_deg; }
7695 @<Calculate the given value of $\theta_n$...@>=
7697 mp->theta[n]=left_given(s)-mp_n_arg(mp, mp->delta_x[n-1],mp->delta_y[n-1]);
7698 reduce_angle(mp->theta[n]);
7702 @ @<Set up the equation for a given value of $\theta_0$@>=
7704 mp->vv[0]=right_given(s)-mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7705 reduce_angle(mp->vv[0]);
7706 mp->uu[0]=0; mp->ww[0]=0;
7709 @ @<Set up the equation for a curl at $\theta_0$@>=
7710 { cc=right_curl(s); lt=abs(left_tension(t)); rt=abs(right_tension(s));
7711 if ( (rt==unity)&&(lt==unity) )
7712 mp->uu[0]=mp_make_fraction(mp, cc+cc+unity,cc+two);
7714 mp->uu[0]=mp_curl_ratio(mp, cc,rt,lt);
7715 mp->vv[0]=-mp_take_fraction(mp, mp->psi[1],mp->uu[0]); mp->ww[0]=0;
7718 @ @<Set up equation for a curl at $\theta_n$...@>=
7719 { cc=left_curl(s); lt=abs(left_tension(s)); rt=abs(right_tension(r));
7720 if ( (rt==unity)&&(lt==unity) )
7721 ff=mp_make_fraction(mp, cc+cc+unity,cc+two);
7723 ff=mp_curl_ratio(mp, cc,lt,rt);
7724 mp->theta[n]=-mp_make_fraction(mp, mp_take_fraction(mp, mp->vv[n-1],ff),
7725 fraction_one-mp_take_fraction(mp, ff,mp->uu[n-1]));
7729 @ The |curl_ratio| subroutine has three arguments, which our previous notation
7730 encourages us to call $\gamma$, $\alpha^{-1}$, and $\beta^{-1}$. It is
7731 a somewhat tedious program to calculate
7732 $${(3-\alpha)\alpha^2\gamma+\beta^3\over
7733 \alpha^3\gamma+(3-\beta)\beta^2},$$
7734 with the result reduced to 4 if it exceeds 4. (This reduction of curl
7735 is necessary only if the curl and tension are both large.)
7736 The values of $\alpha$ and $\beta$ will be at most~4/3.
7738 @<Declare subroutines needed by |solve_choices|@>=
7739 fraction mp_curl_ratio (MP mp,scaled gamma, scaled a_tension,
7741 fraction alpha,beta,num,denom,ff; /* registers */
7742 alpha=mp_make_fraction(mp, unity,a_tension);
7743 beta=mp_make_fraction(mp, unity,b_tension);
7744 if ( alpha<=beta ) {
7745 ff=mp_make_fraction(mp, alpha,beta); ff=mp_take_fraction(mp, ff,ff);
7746 gamma=mp_take_fraction(mp, gamma,ff);
7747 beta=beta / 010000; /* convert |fraction| to |scaled| */
7748 denom=mp_take_fraction(mp, gamma,alpha)+three-beta;
7749 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7751 ff=mp_make_fraction(mp, beta,alpha); ff=mp_take_fraction(mp, ff,ff);
7752 beta=mp_take_fraction(mp, beta,ff) / 010000; /* convert |fraction| to |scaled| */
7753 denom=mp_take_fraction(mp, gamma,alpha)+(ff / 1365)-beta;
7754 /* $1365\approx 2^{12}/3$ */
7755 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7757 if ( num>=denom+denom+denom+denom ) return fraction_four;
7758 else return mp_make_fraction(mp, num,denom);
7761 @ We're in the home stretch now.
7763 @<Finish choosing angles and assigning control points@>=
7764 for (k=n-1;k>=0;k--) {
7765 mp->theta[k]=mp->vv[k]-mp_take_fraction(mp,mp->theta[k+1],mp->uu[k]);
7770 mp_n_sin_cos(mp, mp->theta[k]); mp->st=mp->n_sin; mp->ct=mp->n_cos;
7771 mp_n_sin_cos(mp, -mp->psi[k+1]-mp->theta[k+1]); mp->sf=mp->n_sin; mp->cf=mp->n_cos;
7772 mp_set_controls(mp, s,t,k);
7776 @ The |set_controls| routine actually puts the control points into
7777 a pair of consecutive nodes |p| and~|q|. Global variables are used to
7778 record the values of $\sin\theta$, $\cos\theta$, $\sin\phi$, and
7779 $\cos\phi$ needed in this calculation.
7785 fraction cf; /* sines and cosines */
7787 @ @<Declare subroutines needed by |solve_choices|@>=
7788 void mp_set_controls (MP mp,pointer p, pointer q, integer k) {
7789 fraction rr,ss; /* velocities, divided by thrice the tension */
7790 scaled lt,rt; /* tensions */
7791 fraction sine; /* $\sin(\theta+\phi)$ */
7792 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7793 rr=mp_velocity(mp, mp->st,mp->ct,mp->sf,mp->cf,rt);
7794 ss=mp_velocity(mp, mp->sf,mp->cf,mp->st,mp->ct,lt);
7795 if ( (right_tension(p)<0)||(left_tension(q)<0) ) {
7796 @<Decrease the velocities,
7797 if necessary, to stay inside the bounding triangle@>;
7799 right_x(p)=x_coord(p)+mp_take_fraction(mp,
7800 mp_take_fraction(mp, mp->delta_x[k],mp->ct)-
7801 mp_take_fraction(mp, mp->delta_y[k],mp->st),rr);
7802 right_y(p)=y_coord(p)+mp_take_fraction(mp,
7803 mp_take_fraction(mp, mp->delta_y[k],mp->ct)+
7804 mp_take_fraction(mp, mp->delta_x[k],mp->st),rr);
7805 left_x(q)=x_coord(q)-mp_take_fraction(mp,
7806 mp_take_fraction(mp, mp->delta_x[k],mp->cf)+
7807 mp_take_fraction(mp, mp->delta_y[k],mp->sf),ss);
7808 left_y(q)=y_coord(q)-mp_take_fraction(mp,
7809 mp_take_fraction(mp, mp->delta_y[k],mp->cf)-
7810 mp_take_fraction(mp, mp->delta_x[k],mp->sf),ss);
7811 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7814 @ The boundedness conditions $\\{rr}\L\sin\phi\,/\sin(\theta+\phi)$ and
7815 $\\{ss}\L\sin\theta\,/\sin(\theta+\phi)$ are to be enforced if $\sin\theta$,
7816 $\sin\phi$, and $\sin(\theta+\phi)$ all have the same sign. Otherwise
7817 there is no ``bounding triangle.''
7818 @:at_least_}{\&{atleast} primitive@>
7820 @<Decrease the velocities, if necessary...@>=
7821 if (((mp->st>=0)&&(mp->sf>=0))||((mp->st<=0)&&(mp->sf<=0)) ) {
7822 sine=mp_take_fraction(mp, abs(mp->st),mp->cf)+
7823 mp_take_fraction(mp, abs(mp->sf),mp->ct);
7825 sine=mp_take_fraction(mp, sine,fraction_one+unity); /* safety factor */
7826 if ( right_tension(p)<0 )
7827 if ( mp_ab_vs_cd(mp, abs(mp->sf),fraction_one,rr,sine)<0 )
7828 rr=mp_make_fraction(mp, abs(mp->sf),sine);
7829 if ( left_tension(q)<0 )
7830 if ( mp_ab_vs_cd(mp, abs(mp->st),fraction_one,ss,sine)<0 )
7831 ss=mp_make_fraction(mp, abs(mp->st),sine);
7835 @ Only the simple cases remain to be handled.
7837 @<Reduce to simple case of two givens and |return|@>=
7839 aa=mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7840 mp_n_sin_cos(mp, right_given(p)-aa); mp->ct=mp->n_cos; mp->st=mp->n_sin;
7841 mp_n_sin_cos(mp, left_given(q)-aa); mp->cf=mp->n_cos; mp->sf=-mp->n_sin;
7842 mp_set_controls(mp, p,q,0); return;
7845 @ @<Reduce to simple case of straight line and |return|@>=
7847 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7848 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7850 if ( mp->delta_x[0]>=0 ) right_x(p)=x_coord(p)+((mp->delta_x[0]+1) / 3);
7851 else right_x(p)=x_coord(p)+((mp->delta_x[0]-1) / 3);
7852 if ( mp->delta_y[0]>=0 ) right_y(p)=y_coord(p)+((mp->delta_y[0]+1) / 3);
7853 else right_y(p)=y_coord(p)+((mp->delta_y[0]-1) / 3);
7855 ff=mp_make_fraction(mp, unity,3*rt); /* $\alpha/3$ */
7856 right_x(p)=x_coord(p)+mp_take_fraction(mp, mp->delta_x[0],ff);
7857 right_y(p)=y_coord(p)+mp_take_fraction(mp, mp->delta_y[0],ff);
7860 if ( mp->delta_x[0]>=0 ) left_x(q)=x_coord(q)-((mp->delta_x[0]+1) / 3);
7861 else left_x(q)=x_coord(q)-((mp->delta_x[0]-1) / 3);
7862 if ( mp->delta_y[0]>=0 ) left_y(q)=y_coord(q)-((mp->delta_y[0]+1) / 3);
7863 else left_y(q)=y_coord(q)-((mp->delta_y[0]-1) / 3);
7865 ff=mp_make_fraction(mp, unity,3*lt); /* $\beta/3$ */
7866 left_x(q)=x_coord(q)-mp_take_fraction(mp, mp->delta_x[0],ff);
7867 left_y(q)=y_coord(q)-mp_take_fraction(mp, mp->delta_y[0],ff);
7872 @* \[19] Measuring paths.
7873 \MP's \&{llcorner}, \&{lrcorner}, \&{ulcorner}, and \&{urcorner} operators
7874 allow the user to measure the bounding box of anything that can go into a
7875 picture. It's easy to get rough bounds on the $x$ and $y$ extent of a path
7876 by just finding the bounding box of the knots and the control points. We
7877 need a more accurate version of the bounding box, but we can still use the
7878 easy estimate to save time by focusing on the interesting parts of the path.
7880 @ Computing an accurate bounding box involves a theme that will come up again
7881 and again. Given a Bernshte{\u\i}n polynomial
7882 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
7883 $$B(z_0,z_1,\ldots,z_n;t)=\sum_k{n\choose k}t^k(1-t)^{n-k}z_k,$$
7884 we can conveniently bisect its range as follows:
7887 \textindent{1)} Let $z_k^{(0)}=z_k$, for |0<=k<=n|.
7890 \textindent{2)} Let $z_k^{(j+1)}={1\over2}(z_k^{(j)}+z\k^{(j)})$, for
7891 |0<=k<n-j|, for |0<=j<n|.
7895 $$B(z_0,z_1,\ldots,z_n;t)=B(z_0^{(0)},z_0^{(1)},\ldots,z_0^{(n)};2t)
7896 =B(z_0^{(n)},z_1^{(n-1)},\ldots,z_n^{(0)};2t-1).$$
7897 This formula gives us the coefficients of polynomials to use over the ranges
7898 $0\L t\L{1\over2}$ and ${1\over2}\L t\L1$.
7900 @ Now here's a subroutine that's handy for all sorts of path computations:
7901 Given a quadratic polynomial $B(a,b,c;t)$, the |crossing_point| function
7902 returns the unique |fraction| value |t| between 0 and~1 at which
7903 $B(a,b,c;t)$ changes from positive to negative, or returns
7904 |t=fraction_one+1| if no such value exists. If |a<0| (so that $B(a,b,c;t)$
7905 is already negative at |t=0|), |crossing_point| returns the value zero.
7907 @d no_crossing { return (fraction_one+1); }
7908 @d one_crossing { return fraction_one; }
7909 @d zero_crossing { return 0; }
7910 @d mp_crossing_point(M,A,B,C) mp_do_crossing_point(A,B,C)
7912 @c fraction mp_do_crossing_point (integer a, integer b, integer c) {
7913 integer d; /* recursive counter */
7914 integer x,xx,x0,x1,x2; /* temporary registers for bisection */
7915 if ( a<0 ) zero_crossing;
7918 if ( c>0 ) { no_crossing; }
7919 else if ( (a==0)&&(b==0) ) { no_crossing;}
7920 else { one_crossing; }
7922 if ( a==0 ) zero_crossing;
7923 } else if ( a==0 ) {
7924 if ( b<=0 ) zero_crossing;
7926 @<Use bisection to find the crossing point, if one exists@>;
7929 @ The general bisection method is quite simple when $n=2$, hence
7930 |crossing_point| does not take much time. At each stage in the
7931 recursion we have a subinterval defined by |l| and~|j| such that
7932 $B(a,b,c;2^{-l}(j+t))=B(x_0,x_1,x_2;t)$, and we want to ``zero in'' on
7933 the subinterval where $x_0\G0$ and $\min(x_1,x_2)<0$.
7935 It is convenient for purposes of calculation to combine the values
7936 of |l| and~|j| in a single variable $d=2^l+j$, because the operation
7937 of bisection then corresponds simply to doubling $d$ and possibly
7938 adding~1. Furthermore it proves to be convenient to modify
7939 our previous conventions for bisection slightly, maintaining the
7940 variables $X_0=2^lx_0$, $X_1=2^l(x_0-x_1)$, and $X_2=2^l(x_1-x_2)$.
7941 With these variables the conditions $x_0\ge0$ and $\min(x_1,x_2)<0$ are
7942 equivalent to $\max(X_1,X_1+X_2)>X_0\ge0$.
7944 The following code maintains the invariant relations
7945 $0\L|x0|<\max(|x1|,|x1|+|x2|)$,
7946 $\vert|x1|\vert<2^{30}$, $\vert|x2|\vert<2^{30}$;
7947 it has been constructed in such a way that no arithmetic overflow
7948 will occur if the inputs satisfy
7949 $a<2^{30}$, $\vert a-b\vert<2^{30}$, and $\vert b-c\vert<2^{30}$.
7951 @<Use bisection to find the crossing point...@>=
7952 d=1; x0=a; x1=a-b; x2=b-c;
7963 if ( x<=x0 ) { if ( x+x2<=x0 ) no_crossing; }
7967 } while (d<fraction_one);
7968 return (d-fraction_one)
7970 @ Here is a routine that computes the $x$ or $y$ coordinate of the point on
7971 a cubic corresponding to the |fraction| value~|t|.
7973 It is convenient to define a \.{WEB} macro |t_of_the_way| such that
7974 |t_of_the_way(a,b)| expands to |a-(a-b)*t|, i.e., to |t[a,b]|.
7976 @d t_of_the_way(A,B) ((A)-mp_take_fraction(mp,((A)-(B)),t))
7978 @c scaled mp_eval_cubic (MP mp,pointer p, pointer q, fraction t) {
7979 scaled x1,x2,x3; /* intermediate values */
7980 x1=t_of_the_way(knot_coord(p),right_coord(p));
7981 x2=t_of_the_way(right_coord(p),left_coord(q));
7982 x3=t_of_the_way(left_coord(q),knot_coord(q));
7983 x1=t_of_the_way(x1,x2);
7984 x2=t_of_the_way(x2,x3);
7985 return t_of_the_way(x1,x2);
7988 @ The actual bounding box information is stored in global variables.
7989 Since it is convenient to address the $x$ and $y$ information
7990 separately, we define arrays indexed by |x_code..y_code| and use
7991 macros to give them more convenient names.
7995 mp_x_code=0, /* index for |minx| and |maxx| */
7996 mp_y_code /* index for |miny| and |maxy| */
8000 @d minx mp->bbmin[mp_x_code]
8001 @d maxx mp->bbmax[mp_x_code]
8002 @d miny mp->bbmin[mp_y_code]
8003 @d maxy mp->bbmax[mp_y_code]
8006 scaled bbmin[mp_y_code+1];
8007 scaled bbmax[mp_y_code+1];
8008 /* the result of procedures that compute bounding box information */
8010 @ Now we're ready for the key part of the bounding box computation.
8011 The |bound_cubic| procedure updates |bbmin[c]| and |bbmax[c]| based on
8012 $$B(\hbox{|knot_coord(p)|}, \hbox{|right_coord(p)|},
8013 \hbox{|left_coord(q)|}, \hbox{|knot_coord(q)|};t)
8015 for $0<t\le1$. In other words, the procedure adjusts the bounds to
8016 accommodate |knot_coord(q)| and any extremes over the range $0<t<1$.
8017 The |c| parameter is |x_code| or |y_code|.
8019 @c void mp_bound_cubic (MP mp,pointer p, pointer q, small_number c) {
8020 boolean wavy; /* whether we need to look for extremes */
8021 scaled del1,del2,del3,del,dmax; /* proportional to the control
8022 points of a quadratic derived from a cubic */
8023 fraction t,tt; /* where a quadratic crosses zero */
8024 scaled x; /* a value that |bbmin[c]| and |bbmax[c]| must accommodate */
8026 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8027 @<Check the control points against the bounding box and set |wavy:=true|
8028 if any of them lie outside@>;
8030 del1=right_coord(p)-knot_coord(p);
8031 del2=left_coord(q)-right_coord(p);
8032 del3=knot_coord(q)-left_coord(q);
8033 @<Scale up |del1|, |del2|, and |del3| for greater accuracy;
8034 also set |del| to the first nonzero element of |(del1,del2,del3)|@>;
8036 negate(del1); negate(del2); negate(del3);
8038 t=mp_crossing_point(mp, del1,del2,del3);
8039 if ( t<fraction_one ) {
8040 @<Test the extremes of the cubic against the bounding box@>;
8045 @ @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>=
8046 if ( x<mp->bbmin[c] ) mp->bbmin[c]=x;
8047 if ( x>mp->bbmax[c] ) mp->bbmax[c]=x
8049 @ @<Check the control points against the bounding box and set...@>=
8051 if ( mp->bbmin[c]<=right_coord(p) )
8052 if ( right_coord(p)<=mp->bbmax[c] )
8053 if ( mp->bbmin[c]<=left_coord(q) )
8054 if ( left_coord(q)<=mp->bbmax[c] )
8057 @ If |del1=del2=del3=0|, it's impossible to obey the title of this
8058 section. We just set |del=0| in that case.
8060 @<Scale up |del1|, |del2|, and |del3| for greater accuracy...@>=
8061 if ( del1!=0 ) del=del1;
8062 else if ( del2!=0 ) del=del2;
8066 if ( abs(del2)>dmax ) dmax=abs(del2);
8067 if ( abs(del3)>dmax ) dmax=abs(del3);
8068 while ( dmax<fraction_half ) {
8069 dmax+=dmax; del1+=del1; del2+=del2; del3+=del3;
8073 @ Since |crossing_point| has tried to choose |t| so that
8074 $B(|del1|,|del2|,|del3|;\tau)$ crosses zero at $\tau=|t|$ with negative
8075 slope, the value of |del2| computed below should not be positive.
8076 But rounding error could make it slightly positive in which case we
8077 must cut it to zero to avoid confusion.
8079 @<Test the extremes of the cubic against the bounding box@>=
8081 x=mp_eval_cubic(mp, p,q,t);
8082 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8083 del2=t_of_the_way(del2,del3);
8084 /* now |0,del2,del3| represent the derivative on the remaining interval */
8085 if ( del2>0 ) del2=0;
8086 tt=mp_crossing_point(mp, 0,-del2,-del3);
8087 if ( tt<fraction_one ) {
8088 @<Test the second extreme against the bounding box@>;
8092 @ @<Test the second extreme against the bounding box@>=
8094 x=mp_eval_cubic(mp, p,q,t_of_the_way(tt,fraction_one));
8095 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8098 @ Finding the bounding box of a path is basically a matter of applying
8099 |bound_cubic| twice for each pair of adjacent knots.
8101 @c void mp_path_bbox (MP mp,pointer h) {
8102 pointer p,q; /* a pair of adjacent knots */
8103 minx=x_coord(h); miny=y_coord(h);
8104 maxx=minx; maxy=miny;
8107 if ( right_type(p)==mp_endpoint ) return;
8109 mp_bound_cubic(mp, x_loc(p),x_loc(q),mp_x_code);
8110 mp_bound_cubic(mp, y_loc(p),y_loc(q),mp_y_code);
8115 @ Another important way to measure a path is to find its arc length. This
8116 is best done by using the general bisection algorithm to subdivide the path
8117 until obtaining ``well behaved'' subpaths whose arc lengths can be approximated
8120 Since the arc length is the integral with respect to time of the magnitude of
8121 the velocity, it is natural to use Simpson's rule for the approximation.
8123 If $\dot B(t)$ is the spline velocity, Simpson's rule gives
8124 $$ \vb\dot B(0)\vb + 4\vb\dot B({1\over2})\vb + \vb\dot B(1)\vb \over 6 $$
8125 for the arc length of a path of length~1. For a cubic spline
8126 $B(z_0,z_1,z_2,z_3;t)$, the time derivative $\dot B(t)$ is
8127 $3B(dz_0,dz_1,dz_2;t)$, where $dz_i=z_{i+1}-z_i$. Hence the arc length
8129 $$ {\vb dz_0\vb \over 2} + 2\vb dz_{02}\vb + {\vb dz_2\vb \over 2}, $$
8131 $$ dz_{02}={1\over2}\left({dz_0+dz_1\over 2}+{dz_1+dz_2\over 2}\right)$$
8132 is the result of the bisection algorithm.
8134 @ The remaining problem is how to decide when a subpath is ``well behaved.''
8135 This could be done via the theoretical error bound for Simpson's rule,
8137 but this is impractical because it requires an estimate of the fourth
8138 derivative of the quantity being integrated. It is much easier to just perform
8139 a bisection step and see how much the arc length estimate changes. Since the
8140 error for Simpson's rule is proportional to the fourth power of the sample
8141 spacing, the remaining error is typically about $1\over16$ of the amount of
8142 the change. We say ``typically'' because the error has a pseudo-random behavior
8143 that could cause the two estimates to agree when each contain large errors.
8145 To protect against disasters such as undetected cusps, the bisection process
8146 should always continue until all the $dz_i$ vectors belong to a single
8147 $90^\circ$ sector. This ensures that no point on the spline can have velocity
8148 less than 70\% of the minimum of $\vb dz_0\vb$, $\vb dz_1\vb$ and $\vb dz_2\vb$.
8149 If such a spline happens to produce an erroneous arc length estimate that
8150 is little changed by bisection, the amount of the error is likely to be fairly
8151 small. We will try to arrange things so that freak accidents of this type do
8152 not destroy the inverse relationship between the \&{arclength} and
8153 \&{arctime} operations.
8154 @:arclength_}{\&{arclength} primitive@>
8155 @:arctime_}{\&{arctime} primitive@>
8157 @ The \&{arclength} and \&{arctime} operations are both based on a recursive
8159 function that finds the arc length of a cubic spline given $dz_0$, $dz_1$,
8160 $dz_2$. This |arc_test| routine also takes an arc length goal |a_goal| and
8161 returns the time when the arc length reaches |a_goal| if there is such a time.
8162 Thus the return value is either an arc length less than |a_goal| or, if the
8163 arc length would be at least |a_goal|, it returns a time value decreased by
8164 |two|. This allows the caller to use the sign of the result to distinguish
8165 between arc lengths and time values. On certain types of overflow, it is
8166 possible for |a_goal| and the result of |arc_test| both to be |el_gordo|.
8167 Otherwise, the result is always less than |a_goal|.
8169 Rather than halving the control point coordinates on each recursive call to
8170 |arc_test|, it is better to keep them proportional to velocity on the original
8171 curve and halve the results instead. This means that recursive calls can
8172 potentially use larger error tolerances in their arc length estimates. How
8173 much larger depends on to what extent the errors behave as though they are
8174 independent of each other. To save computing time, we use optimistic assumptions
8175 and increase the tolerance by a factor of about $\sqrt2$ for each recursive
8178 In addition to the tolerance parameter, |arc_test| should also have parameters
8179 for ${1\over3}\vb\dot B(0)\vb$, ${2\over3}\vb\dot B({1\over2})\vb$, and
8180 ${1\over3}\vb\dot B(1)\vb$. These quantities are relatively expensive to compute
8181 and they are needed in different instances of |arc_test|.
8183 @c @t\4@>@<Declare subroutines needed by |arc_test|@>;
8184 scaled mp_arc_test (MP mp, scaled dx0, scaled dy0, scaled dx1, scaled dy1,
8185 scaled dx2, scaled dy2, scaled v0, scaled v02,
8186 scaled v2, scaled a_goal, scaled tol) {
8187 boolean simple; /* are the control points confined to a $90^\circ$ sector? */
8188 scaled dx01, dy01, dx12, dy12, dx02, dy02; /* bisection results */
8190 /* twice the velocity magnitudes at $t={1\over4}$ and $t={3\over4}$ */
8191 scaled arc; /* best arc length estimate before recursion */
8192 @<Other local variables in |arc_test|@>;
8193 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,
8195 @<Initialize |v002|, |v022|, and the arc length estimate |arc|; if it overflows
8196 set |arc_test| and |return|@>;
8197 @<Test if the control points are confined to one quadrant or rotating them
8198 $45^\circ$ would put them in one quadrant. Then set |simple| appropriately@>;
8199 if ( simple && (abs(arc-v02-halfp(v0+v2)) <= tol) ) {
8200 if ( arc < a_goal ) {
8203 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to
8204 that time minus |two|@>;
8207 @<Use one or two recursive calls to compute the |arc_test| function@>;
8211 @ The |tol| value should by multiplied by $\sqrt 2$ before making recursive
8212 calls, but $1.5$ is an adequate approximation. It is best to avoid using
8213 |make_fraction| in this inner loop.
8216 @<Use one or two recursive calls to compute the |arc_test| function@>=
8218 @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is as
8219 large as possible@>;
8220 tol = tol + halfp(tol);
8221 a = mp_arc_test(mp, dx0,dy0, dx01,dy01, dx02,dy02, v0, v002,
8222 halfp(v02), a_new, tol);
8224 return (-halfp(two-a));
8226 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>;
8227 b = mp_arc_test(mp, dx02,dy02, dx12,dy12, dx2,dy2,
8228 halfp(v02), v022, v2, a_new, tol);
8230 return (-halfp(-b) - half_unit);
8232 return (a + half(b-a));
8236 @ @<Other local variables in |arc_test|@>=
8237 scaled a,b; /* results of recursive calls */
8238 scaled a_new,a_aux; /* the sum of these gives the |a_goal| */
8240 @ @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is...@>=
8241 a_aux = el_gordo - a_goal;
8242 if ( a_goal > a_aux ) {
8243 a_aux = a_goal - a_aux;
8246 a_new = a_goal + a_goal;
8250 @ There is no need to maintain |a_aux| at this point so we use it as a temporary
8251 to force the additions and subtractions to be done in an order that avoids
8254 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>=
8257 a_new = a_new + a_aux;
8260 @ This code assumes all {\it dx} and {\it dy} variables have magnitude less than
8261 |fraction_four|. To simplify the rest of the |arc_test| routine, we strengthen
8262 this assumption by requiring the norm of each $({\it dx},{\it dy})$ pair to obey
8263 this bound. Note that recursive calls will maintain this invariant.
8265 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,...@>=
8266 dx01 = half(dx0 + dx1);
8267 dx12 = half(dx1 + dx2);
8268 dx02 = half(dx01 + dx12);
8269 dy01 = half(dy0 + dy1);
8270 dy12 = half(dy1 + dy2);
8271 dy02 = half(dy01 + dy12)
8273 @ We should be careful to keep |arc<el_gordo| so that calling |arc_test| with
8274 |a_goal=el_gordo| is guaranteed to yield the arc length.
8276 @<Initialize |v002|, |v022|, and the arc length estimate |arc|;...@>=
8277 v002 = mp_pyth_add(mp, dx01+half(dx0+dx02), dy01+half(dy0+dy02));
8278 v022 = mp_pyth_add(mp, dx12+half(dx02+dx2), dy12+half(dy02+dy2));
8280 arc1 = v002 + half(halfp(v0+tmp) - v002);
8281 arc = v022 + half(halfp(v2+tmp) - v022);
8282 if ( (arc < el_gordo-arc1) ) {
8285 mp->arith_error = true;
8286 if ( a_goal==el_gordo ) return (el_gordo);
8290 @ @<Other local variables in |arc_test|@>=
8291 scaled tmp, tmp2; /* all purpose temporary registers */
8292 scaled arc1; /* arc length estimate for the first half */
8294 @ @<Test if the control points are confined to one quadrant or rotating...@>=
8295 simple = ((dx0>=0) && (dx1>=0) && (dx2>=0)) ||
8296 ((dx0<=0) && (dx1<=0) && (dx2<=0));
8298 simple = ((dy0>=0) && (dy1>=0) && (dy2>=0)) ||
8299 ((dy0<=0) && (dy1<=0) && (dy2<=0));
8301 simple = ((dx0>=dy0) && (dx1>=dy1) && (dx2>=dy2)) ||
8302 ((dx0<=dy0) && (dx1<=dy1) && (dx2<=dy2));
8304 simple = ((-dx0>=dy0) && (-dx1>=dy1) && (-dx2>=dy2)) ||
8305 ((-dx0<=dy0) && (-dx1<=dy1) && (-dx2<=dy2));
8308 @ Since Simpson's rule is based on approximating the integrand by a parabola,
8310 it is appropriate to use the same approximation to decide when the integral
8311 reaches the intermediate value |a_goal|. At this point
8313 {\vb\dot B(0)\vb\over 3} &= \hbox{|v0|}, \qquad
8314 {\vb\dot B({1\over4})\vb\over 3} = {\hbox{|v002|}\over 2}, \qquad
8315 {\vb\dot B({1\over2})\vb\over 3} = {\hbox{|v02|}\over 2}, \cr
8316 {\vb\dot B({3\over4})\vb\over 3} &= {\hbox{|v022|}\over 2}, \qquad
8317 {\vb\dot B(1)\vb\over 3} = \hbox{|v2|} \cr
8321 $$ {\vb\dot B(t)\vb\over 3} \approx
8322 \cases{B\left(\hbox{|v0|},
8323 \hbox{|v002|}-{1\over 2}\hbox{|v0|}-{1\over 4}\hbox{|v02|},
8324 {1\over 2}\hbox{|v02|}; 2t \right)&
8325 if $t\le{1\over 2}$\cr
8326 B\left({1\over 2}\hbox{|v02|},
8327 \hbox{|v022|}-{1\over 4}\hbox{|v02|}-{1\over 2}\hbox{|v2|},
8328 \hbox{|v2|}; 2t-1 \right)&
8329 if $t\ge{1\over 2}$.\cr}
8332 We can integrate $\vb\dot B(t)\vb$ by using
8333 $$\int 3B(a,b,c;\tau)\,dt =
8334 {B(0,a,a+b,a+b+c;\tau) + {\rm constant} \over {d\tau\over dt}}.
8337 This construction allows us to find the time when the arc length reaches
8338 |a_goal| by solving a cubic equation of the form
8339 $$ B(0,a,a+b,a+b+c;\tau) = x, $$
8340 where $\tau$ is $2t$ or $2t+1$, $x$ is |a_goal| or |a_goal-arc1|, and $a$, $b$,
8341 and $c$ are the Bernshte{\u\i}n coefficients from $(*)$ divided by
8342 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
8343 $d\tau\over dt$. We shall define a function |solve_rising_cubic| that finds
8344 $\tau$ given $a$, $b$, $c$, and $x$.
8346 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to...@>=
8348 tmp = (v02 + 2) / 4;
8349 if ( a_goal<=arc1 ) {
8352 (halfp(mp_solve_rising_cubic(mp, tmp2, arc1-tmp2-tmp, tmp, a_goal))- two);
8355 return ((half_unit - two) +
8356 halfp(mp_solve_rising_cubic(mp, tmp, arc-arc1-tmp-tmp2, tmp2, a_goal-arc1)));
8360 @ Here is the |solve_rising_cubic| routine that finds the time~$t$ when
8361 $$ B(0, a, a+b, a+b+c; t) = x. $$
8362 This routine is based on |crossing_point| but is simplified by the
8363 assumptions that $B(a,b,c;t)\ge0$ for $0\le t\le1$ and that |0<=x<=a+b+c|.
8364 If rounding error causes this condition to be violated slightly, we just ignore
8365 it and proceed with binary search. This finds a time when the function value
8366 reaches |x| and the slope is positive.
8368 @<Declare subroutines needed by |arc_test|@>=
8369 scaled mp_solve_rising_cubic (MP mp,scaled a, scaled b, scaled c, scaled x) {
8370 scaled ab, bc, ac; /* bisection results */
8371 integer t; /* $2^k+q$ where unscaled answer is in $[q2^{-k},(q+1)2^{-k})$ */
8372 integer xx; /* temporary for updating |x| */
8373 if ( (a<0) || (c<0) ) mp_confusion(mp, "rising?");
8374 @:this can't happen rising?}{\quad rising?@>
8377 } else if ( x >= a+b+c ) {
8381 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than
8385 @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>;
8386 xx = x - a - ab - ac;
8387 if ( xx < -x ) { x+=x; b=ab; c=ac; }
8388 else { x = x + xx; a=ac; b=mp->bc; t = t+1; };
8389 } while (t < unity);
8394 @ @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>=
8399 @ @d one_third_el_gordo 05252525252 /* upper bound on |a|, |b|, and |c| */
8401 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than...@>=
8402 while ((a>one_third_el_gordo)||(b>one_third_el_gordo)||(c>one_third_el_gordo)) {
8409 @ It is convenient to have a simpler interface to |arc_test| that requires no
8410 unnecessary arguments and ensures that each $({\it dx},{\it dy})$ pair has
8411 length less than |fraction_four|.
8413 @d arc_tol 16 /* quit when change in arc length estimate reaches this */
8415 @c scaled mp_do_arc_test (MP mp,scaled dx0, scaled dy0, scaled dx1,
8416 scaled dy1, scaled dx2, scaled dy2, scaled a_goal) {
8417 scaled v0,v1,v2; /* length of each $({\it dx},{\it dy})$ pair */
8418 scaled v02; /* twice the norm of the quadratic at $t={1\over2}$ */
8419 v0 = mp_pyth_add(mp, dx0,dy0);
8420 v1 = mp_pyth_add(mp, dx1,dy1);
8421 v2 = mp_pyth_add(mp, dx2,dy2);
8422 if ( (v0>=fraction_four) || (v1>=fraction_four) || (v2>=fraction_four) ) {
8423 mp->arith_error = true;
8424 if ( a_goal==el_gordo ) return el_gordo;
8427 v02 = mp_pyth_add(mp, dx1+half(dx0+dx2), dy1+half(dy0+dy2));
8428 return (mp_arc_test(mp, dx0,dy0, dx1,dy1, dx2,dy2,
8429 v0, v02, v2, a_goal, arc_tol));
8433 @ Now it is easy to find the arc length of an entire path.
8435 @c scaled mp_get_arc_length (MP mp,pointer h) {
8436 pointer p,q; /* for traversing the path */
8437 scaled a,a_tot; /* current and total arc lengths */
8440 while ( right_type(p)!=mp_endpoint ){
8442 a = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8443 left_x(q)-right_x(p), left_y(q)-right_y(p),
8444 x_coord(q)-left_x(q), y_coord(q)-left_y(q), el_gordo);
8445 a_tot = mp_slow_add(mp, a, a_tot);
8446 if ( q==h ) break; else p=q;
8452 @ The inverse operation of finding the time on a path~|h| when the arc length
8453 reaches some value |arc0| can also be accomplished via |do_arc_test|. Some care
8454 is required to handle very large times or negative times on cyclic paths. For
8455 non-cyclic paths, |arc0| values that are negative or too large cause
8456 |get_arc_time| to return 0 or the length of path~|h|.
8458 If |arc0| is greater than the arc length of a cyclic path~|h|, the result is a
8459 time value greater than the length of the path. Since it could be much greater,
8460 we must be prepared to compute the arc length of path~|h| and divide this into
8461 |arc0| to find how many multiples of the length of path~|h| to add.
8463 @c scaled mp_get_arc_time (MP mp,pointer h, scaled arc0) {
8464 pointer p,q; /* for traversing the path */
8465 scaled t_tot; /* accumulator for the result */
8466 scaled t; /* the result of |do_arc_test| */
8467 scaled arc; /* portion of |arc0| not used up so far */
8468 integer n; /* number of extra times to go around the cycle */
8470 @<Deal with a negative |arc0| value and |return|@>;
8472 if ( arc0==el_gordo ) decr(arc0);
8476 while ( (right_type(p)!=mp_endpoint) && (arc>0) ) {
8478 t = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8479 left_x(q)-right_x(p), left_y(q)-right_y(p),
8480 x_coord(q)-left_x(q), y_coord(q)-left_y(q), arc);
8481 @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>;
8483 @<Update |t_tot| and |arc| to avoid going around the cyclic
8484 path too many times but set |arith_error:=true| and |goto done| on
8493 @ @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>=
8494 if ( t<0 ) { t_tot = t_tot + t + two; arc = 0; }
8495 else { t_tot = t_tot + unity; arc = arc - t; }
8497 @ @<Deal with a negative |arc0| value and |return|@>=
8499 if ( left_type(h)==mp_endpoint ) {
8502 p = mp_htap_ypoc(mp, h);
8503 t_tot = -mp_get_arc_time(mp, p, -arc0);
8504 mp_toss_knot_list(mp, p);
8510 @ @<Update |t_tot| and |arc| to avoid going around the cyclic...@>=
8512 n = arc / (arc0 - arc);
8513 arc = arc - n*(arc0 - arc);
8514 if ( t_tot > el_gordo / (n+1) ) {
8515 mp->arith_error = true;
8519 t_tot = (n + 1)*t_tot;
8522 @* \[20] Data structures for pens.
8523 A Pen in \MP\ can be either elliptical or polygonal. Elliptical pens result
8524 in \ps\ \&{stroke} commands, while anything drawn with a polygonal pen is
8525 @:stroke}{\&{stroke} command@>
8526 converted into an area fill as described in the next part of this program.
8527 The mathematics behind this process is based on simple aspects of the theory
8528 of tracings developed by Leo Guibas, Lyle Ramshaw, and Jorge Stolfi
8529 [``A kinematic framework for computational geometry,'' Proc.\ IEEE Symp.\
8530 Foundations of Computer Science {\bf 24} (1983), 100--111].
8532 Polygonal pens are created from paths via \MP's \&{makepen} primitive.
8533 @:makepen_}{\&{makepen} primitive@>
8534 This path representation is almost sufficient for our purposes except that
8535 a pen path should always be a convex polygon with the vertices in
8536 counter-clockwise order.
8537 Since we will need to scan pen polygons both forward and backward, a pen
8538 should be represented as a doubly linked ring of knot nodes. There is
8539 room for the extra back pointer because we do not need the
8540 |left_type| or |right_type| fields. In fact, we don't need the |left_x|,
8541 |left_y|, |right_x|, or |right_y| fields either but we leave these alone
8542 so that certain procedures can operate on both pens and paths. In particular,
8543 pens can be copied using |copy_path| and recycled using |toss_knot_list|.
8546 /* this replaces the |left_type| and |right_type| fields in a pen knot */
8548 @ The |make_pen| procedure turns a path into a pen by initializing
8549 the |knil| pointers and making sure the knots form a convex polygon.
8550 Thus each cubic in the given path becomes a straight line and the control
8551 points are ignored. If the path is not cyclic, the ends are connected by a
8554 @d copy_pen(A) mp_make_pen(mp, mp_copy_path(mp, (A)),false)
8556 @c @<Declare a function called |convex_hull|@>;
8557 pointer mp_make_pen (MP mp,pointer h, boolean need_hull) {
8558 pointer p,q; /* two consecutive knots */
8565 h=mp_convex_hull(mp, h);
8566 @<Make sure |h| isn't confused with an elliptical pen@>;
8571 @ The only information required about an elliptical pen is the overall
8572 transformation that has been applied to the original \&{pencircle}.
8573 @:pencircle_}{\&{pencircle} primitive@>
8574 Since it suffices to keep track of how the three points $(0,0)$, $(1,0)$,
8575 and $(0,1)$ are transformed, an elliptical pen can be stored in a single
8576 knot node and transformed as if it were a path.
8578 @d pen_is_elliptical(A) ((A)==link((A)))
8580 @c pointer mp_get_pen_circle (MP mp,scaled diam) {
8581 pointer h; /* the knot node to return */
8582 h=mp_get_node(mp, knot_node_size);
8583 link(h)=h; knil(h)=h;
8584 originator(h)=mp_program_code;
8585 x_coord(h)=0; y_coord(h)=0;
8586 left_x(h)=diam; left_y(h)=0;
8587 right_x(h)=0; right_y(h)=diam;
8591 @ If the polygon being returned by |make_pen| has only one vertex, it will
8592 be interpreted as an elliptical pen. This is no problem since a degenerate
8593 polygon can equally well be thought of as a degenerate ellipse. We need only
8594 initialize the |left_x|, |left_y|, |right_x|, and |right_y| fields.
8596 @<Make sure |h| isn't confused with an elliptical pen@>=
8597 if ( pen_is_elliptical( h) ){
8598 left_x(h)=x_coord(h); left_y(h)=y_coord(h);
8599 right_x(h)=x_coord(h); right_y(h)=y_coord(h);
8602 @ We have to cheat a little here but most operations on pens only use
8603 the first three words in each knot node.
8604 @^data structure assumptions@>
8606 @<Initialize a pen at |test_pen| so that it fits in nine words@>=
8607 x_coord(test_pen)=-half_unit;
8608 y_coord(test_pen)=0;
8609 x_coord(test_pen+3)=half_unit;
8610 y_coord(test_pen+3)=0;
8611 x_coord(test_pen+6)=0;
8612 y_coord(test_pen+6)=unity;
8613 link(test_pen)=test_pen+3;
8614 link(test_pen+3)=test_pen+6;
8615 link(test_pen+6)=test_pen;
8616 knil(test_pen)=test_pen+6;
8617 knil(test_pen+3)=test_pen;
8618 knil(test_pen+6)=test_pen+3
8620 @ Printing a polygonal pen is very much like printing a path
8622 @<Declare subroutines for printing expressions@>=
8623 void mp_pr_pen (MP mp,pointer h) {
8624 pointer p,q; /* for list traversal */
8625 if ( pen_is_elliptical(h) ) {
8626 @<Print the elliptical pen |h|@>;
8630 mp_print_two(mp, x_coord(p),y_coord(p));
8631 mp_print_nl(mp, " .. ");
8632 @<Advance |p| making sure the links are OK and |return| if there is
8635 mp_print(mp, "cycle");
8639 @ @<Advance |p| making sure the links are OK and |return| if there is...@>=
8641 if ( (q==null) || (knil(q)!=p) ) {
8642 mp_print_nl(mp, "???"); return; /* this won't happen */
8647 @ @<Print the elliptical pen |h|@>=
8649 mp_print(mp, "pencircle transformed (");
8650 mp_print_scaled(mp, x_coord(h));
8651 mp_print_char(mp, ',');
8652 mp_print_scaled(mp, y_coord(h));
8653 mp_print_char(mp, ',');
8654 mp_print_scaled(mp, left_x(h)-x_coord(h));
8655 mp_print_char(mp, ',');
8656 mp_print_scaled(mp, right_x(h)-x_coord(h));
8657 mp_print_char(mp, ',');
8658 mp_print_scaled(mp, left_y(h)-y_coord(h));
8659 mp_print_char(mp, ',');
8660 mp_print_scaled(mp, right_y(h)-y_coord(h));
8661 mp_print_char(mp, ')');
8664 @ Here us another version of |pr_pen| that prints the pen as a diagnostic
8667 @<Declare subroutines for printing expressions@>=
8668 void mp_print_pen (MP mp,pointer h, char *s, boolean nuline) {
8669 mp_print_diagnostic(mp, "Pen",s,nuline); mp_print_ln(mp);
8672 mp_end_diagnostic(mp, true);
8675 @ Making a polygonal pen into a path involves restoring the |left_type| and
8676 |right_type| fields and setting the control points so as to make a polygonal
8680 void mp_make_path (MP mp,pointer h) {
8681 pointer p; /* for traversing the knot list */
8682 small_number k; /* a loop counter */
8683 @<Other local variables in |make_path|@>;
8684 if ( pen_is_elliptical(h) ) {
8685 @<Make the elliptical pen |h| into a path@>;
8689 left_type(p)=mp_explicit;
8690 right_type(p)=mp_explicit;
8691 @<copy the coordinates of knot |p| into its control points@>;
8697 @ @<copy the coordinates of knot |p| into its control points@>=
8698 left_x(p)=x_coord(p);
8699 left_y(p)=y_coord(p);
8700 right_x(p)=x_coord(p);
8701 right_y(p)=y_coord(p)
8703 @ We need an eight knot path to get a good approximation to an ellipse.
8705 @<Make the elliptical pen |h| into a path@>=
8707 @<Extract the transformation parameters from the elliptical pen~|h|@>;
8709 for (k=0;k<=7;k++ ) {
8710 @<Initialize |p| as the |k|th knot of a circle of unit diameter,
8711 transforming it appropriately@>;
8712 if ( k==7 ) link(p)=h; else link(p)=mp_get_node(mp, knot_node_size);
8717 @ @<Extract the transformation parameters from the elliptical pen~|h|@>=
8718 center_x=x_coord(h);
8719 center_y=y_coord(h);
8720 width_x=left_x(h)-center_x;
8721 width_y=left_y(h)-center_y;
8722 height_x=right_x(h)-center_x;
8723 height_y=right_y(h)-center_y
8725 @ @<Other local variables in |make_path|@>=
8726 scaled center_x,center_y; /* translation parameters for an elliptical pen */
8727 scaled width_x,width_y; /* the effect of a unit change in $x$ */
8728 scaled height_x,height_y; /* the effect of a unit change in $y$ */
8729 scaled dx,dy; /* the vector from knot |p| to its right control point */
8731 /* |k| advanced $270^\circ$ around the ring (cf. $\sin\theta=\cos(\theta+270)$) */
8733 @ The only tricky thing here are the tables |half_cos| and |d_cos| used to
8734 find the point $k/8$ of the way around the circle and the direction vector
8737 @<Initialize |p| as the |k|th knot of a circle of unit diameter,...@>=
8739 x_coord(p)=center_x+mp_take_fraction(mp, mp->half_cos[k],width_x)
8740 +mp_take_fraction(mp, mp->half_cos[kk],height_x);
8741 y_coord(p)=center_y+mp_take_fraction(mp, mp->half_cos[k],width_y)
8742 +mp_take_fraction(mp, mp->half_cos[kk],height_y);
8743 dx=-mp_take_fraction(mp, mp->d_cos[kk],width_x)
8744 +mp_take_fraction(mp, mp->d_cos[k],height_x);
8745 dy=-mp_take_fraction(mp, mp->d_cos[kk],width_y)
8746 +mp_take_fraction(mp, mp->d_cos[k],height_y);
8747 right_x(p)=x_coord(p)+dx;
8748 right_y(p)=y_coord(p)+dy;
8749 left_x(p)=x_coord(p)-dx;
8750 left_y(p)=y_coord(p)-dy;
8751 left_type(p)=mp_explicit;
8752 right_type(p)=mp_explicit;
8753 originator(p)=mp_program_code
8756 fraction half_cos[8]; /* ${1\over2}\cos(45k)$ */
8757 fraction d_cos[8]; /* a magic constant times $\cos(45k)$ */
8759 @ The magic constant for |d_cos| is the distance between $({1\over2},0)$ and
8760 $({1\over4}\sqrt2,{1\over4}\sqrt2)$ times the result of the |velocity|
8761 function for $\theta=\phi=22.5^\circ$. This comes out to be
8762 $$ d = {\sqrt{2-\sqrt2}\over 3+3\cos22.5^\circ}
8763 \approx 0.132608244919772.
8767 mp->half_cos[0]=fraction_half;
8768 mp->half_cos[1]=94906266; /* $2^{26}\sqrt2\approx94906265.62$ */
8770 mp->d_cos[0]=35596755; /* $2^{28}d\approx35596754.69$ */
8771 mp->d_cos[1]=25170707; /* $2^{27}\sqrt2\,d\approx25170706.63$ */
8773 for (k=3;k<= 4;k++ ) {
8774 mp->half_cos[k]=-mp->half_cos[4-k];
8775 mp->d_cos[k]=-mp->d_cos[4-k];
8777 for (k=5;k<= 7;k++ ) {
8778 mp->half_cos[k]=mp->half_cos[8-k];
8779 mp->d_cos[k]=mp->d_cos[8-k];
8782 @ The |convex_hull| function forces a pen polygon to be convex when it is
8783 returned by |make_pen| and after any subsequent transformation where rounding
8784 error might allow the convexity to be lost.
8785 The convex hull algorithm used here is described by F.~P. Preparata and
8786 M.~I. Shamos [{\sl Computational Geometry}, Springer-Verlag, 1985].
8788 @<Declare a function called |convex_hull|@>=
8789 @<Declare a procedure called |move_knot|@>;
8790 pointer mp_convex_hull (MP mp,pointer h) { /* Make a polygonal pen convex */
8791 pointer l,r; /* the leftmost and rightmost knots */
8792 pointer p,q; /* knots being scanned */
8793 pointer s; /* the starting point for an upcoming scan */
8794 scaled dx,dy; /* a temporary pointer */
8795 if ( pen_is_elliptical(h) ) {
8798 @<Set |l| to the leftmost knot in polygon~|h|@>;
8799 @<Set |r| to the rightmost knot in polygon~|h|@>;
8802 @<Find any knots on the path from |l| to |r| above the |l|-|r| line and
8803 move them past~|r|@>;
8804 @<Find any knots on the path from |s| to |l| below the |l|-|r| line and
8805 move them past~|l|@>;
8806 @<Sort the path from |l| to |r| by increasing $x$@>;
8807 @<Sort the path from |r| to |l| by decreasing $x$@>;
8810 @<Do a Gramm scan and remove vertices where there is no left turn@>;
8816 @ All comparisons are done primarily on $x$ and secondarily on $y$.
8818 @<Set |l| to the leftmost knot in polygon~|h|@>=
8822 if ( x_coord(p)<=x_coord(l) )
8823 if ( (x_coord(p)<x_coord(l)) || (y_coord(p)<y_coord(l)) )
8828 @ @<Set |r| to the rightmost knot in polygon~|h|@>=
8832 if ( x_coord(p)>=x_coord(r) )
8833 if ( (x_coord(p)>x_coord(r)) || (y_coord(p)>y_coord(r)) )
8838 @ @<Find any knots on the path from |l| to |r| above the |l|-|r| line...@>=
8839 dx=x_coord(r)-x_coord(l);
8840 dy=y_coord(r)-y_coord(l);
8844 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))>0 )
8845 mp_move_knot(mp, p, r);
8849 @ The |move_knot| procedure removes |p| from a doubly linked list and inserts
8852 @ @<Declare a procedure called |move_knot|@>=
8853 void mp_move_knot (MP mp,pointer p, pointer q) {
8854 link(knil(p))=link(p);
8855 knil(link(p))=knil(p);
8862 @ @<Find any knots on the path from |s| to |l| below the |l|-|r| line...@>=
8866 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))<0 )
8867 mp_move_knot(mp, p,l);
8871 @ The list is likely to be in order already so we just do linear insertions.
8872 Secondary comparisons on $y$ ensure that the sort is consistent with the
8873 choice of |l| and |r|.
8875 @<Sort the path from |l| to |r| by increasing $x$@>=
8879 while ( x_coord(q)>x_coord(p) ) q=knil(q);
8880 while ( x_coord(q)==x_coord(p) ) {
8881 if ( y_coord(q)>y_coord(p) ) q=knil(q); else break;
8883 if ( q==knil(p) ) p=link(p);
8884 else { p=link(p); mp_move_knot(mp, knil(p),q); };
8887 @ @<Sort the path from |r| to |l| by decreasing $x$@>=
8891 while ( x_coord(q)<x_coord(p) ) q=knil(q);
8892 while ( x_coord(q)==x_coord(p) ) {
8893 if ( y_coord(q)<y_coord(p) ) q=knil(q); else break;
8895 if ( q==knil(p) ) p=link(p);
8896 else { p=link(p); mp_move_knot(mp, knil(p),q); };
8899 @ The condition involving |ab_vs_cd| tests if there is not a left turn
8900 at knot |q|. There usually will be a left turn so we streamline the case
8901 where the |then| clause is not executed.
8903 @<Do a Gramm scan and remove vertices where there...@>=
8907 dx=x_coord(q)-x_coord(p);
8908 dy=y_coord(q)-y_coord(p);
8912 if ( mp_ab_vs_cd(mp, dx,y_coord(q)-y_coord(p),dy,x_coord(q)-x_coord(p))<=0 ) {
8913 @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>;
8918 @ @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>=
8921 mp_free_node(mp, p,knot_node_size);
8922 link(s)=q; knil(q)=s;
8924 else { p=knil(s); q=s; };
8927 @ The |find_offset| procedure sets global variables |(cur_x,cur_y)| to the
8928 offset associated with the given direction |(x,y)|. If two different offsets
8929 apply, it chooses one of them.
8932 void mp_find_offset (MP mp,scaled x, scaled y, pointer h) {
8933 pointer p,q; /* consecutive knots */
8935 /* the transformation matrix for an elliptical pen */
8936 fraction xx,yy; /* untransformed offset for an elliptical pen */
8937 fraction d; /* a temporary register */
8938 if ( pen_is_elliptical(h) ) {
8939 @<Find the offset for |(x,y)| on the elliptical pen~|h|@>
8944 } while (!(mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)>=0));
8947 } while (!(mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)<=0));
8948 mp->cur_x=x_coord(p);
8949 mp->cur_y=y_coord(p);
8955 scaled cur_y; /* all-purpose return value registers */
8957 @ @<Find the offset for |(x,y)| on the elliptical pen~|h|@>=
8958 if ( (x==0) && (y==0) ) {
8959 mp->cur_x=x_coord(h); mp->cur_y=y_coord(h);
8961 @<Find the non-constant part of the transformation for |h|@>;
8962 while ( (abs(x)<fraction_half) && (abs(y)<fraction_half) ){
8965 @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the
8966 untransformed version of |(x,y)|@>;
8967 mp->cur_x=x_coord(h)+mp_take_fraction(mp, xx,wx)+mp_take_fraction(mp, yy,hx);
8968 mp->cur_y=y_coord(h)+mp_take_fraction(mp, xx,wy)+mp_take_fraction(mp, yy,hy);
8971 @ @<Find the non-constant part of the transformation for |h|@>=
8972 wx=left_x(h)-x_coord(h);
8973 wy=left_y(h)-y_coord(h);
8974 hx=right_x(h)-x_coord(h);
8975 hy=right_y(h)-y_coord(h)
8977 @ @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the...@>=
8978 yy=-(mp_take_fraction(mp, x,hy)+mp_take_fraction(mp, y,-hx));
8979 xx=mp_take_fraction(mp, x,-wy)+mp_take_fraction(mp, y,wx);
8980 d=mp_pyth_add(mp, xx,yy);
8982 xx=half(mp_make_fraction(mp, xx,d));
8983 yy=half(mp_make_fraction(mp, yy,d));
8986 @ Finding the bounding box of a pen is easy except if the pen is elliptical.
8987 But we can handle that case by just calling |find_offset| twice. The answer
8988 is stored in the global variables |minx|, |maxx|, |miny|, and |maxy|.
8991 void mp_pen_bbox (MP mp,pointer h) {
8992 pointer p; /* for scanning the knot list */
8993 if ( pen_is_elliptical(h) ) {
8994 @<Find the bounding box of an elliptical pen@>;
8996 minx=x_coord(h); maxx=minx;
8997 miny=y_coord(h); maxy=miny;
9000 if ( x_coord(p)<minx ) minx=x_coord(p);
9001 if ( y_coord(p)<miny ) miny=y_coord(p);
9002 if ( x_coord(p)>maxx ) maxx=x_coord(p);
9003 if ( y_coord(p)>maxy ) maxy=y_coord(p);
9009 @ @<Find the bounding box of an elliptical pen@>=
9011 mp_find_offset(mp, 0,fraction_one,h);
9013 minx=2*x_coord(h)-mp->cur_x;
9014 mp_find_offset(mp, -fraction_one,0,h);
9016 miny=2*y_coord(h)-mp->cur_y;
9019 @* \[21] Edge structures.
9020 Now we come to \MP's internal scheme for representing pictures.
9021 The representation is very different from \MF's edge structures
9022 because \MP\ pictures contain \ps\ graphics objects instead of pixel
9023 images. However, the basic idea is somewhat similar in that shapes
9024 are represented via their boundaries.
9026 The main purpose of edge structures is to keep track of graphical objects
9027 until it is time to translate them into \ps. Since \MP\ does not need to
9028 know anything about an edge structure other than how to translate it into
9029 \ps\ and how to find its bounding box, edge structures can be just linked
9030 lists of graphical objects. \MP\ has no easy way to determine whether
9031 two such objects overlap, but it suffices to draw the first one first and
9032 let the second one overwrite it if necessary.
9035 enum mp_graphical_object_code {
9036 @<Graphical object codes@>
9039 @ Let's consider the types of graphical objects one at a time.
9040 First of all, a filled contour is represented by a eight-word node. The first
9041 word contains |type| and |link| fields, and the next six words contain a
9042 pointer to a cyclic path and the value to use for \ps' \&{currentrgbcolor}
9043 parameter. If a pen is used for filling |pen_p|, |ljoin_val| and |miterlim_val|
9044 give the relevant information.
9046 @d path_p(A) link((A)+1)
9047 /* a pointer to the path that needs filling */
9048 @d pen_p(A) info((A)+1)
9049 /* a pointer to the pen to fill or stroke with */
9050 @d color_model(A) type((A)+2) /* the color model */
9051 @d obj_red_loc(A) ((A)+3) /* the first of three locations for the color */
9052 @d obj_cyan_loc obj_red_loc /* the first of four locations for the color */
9053 @d obj_grey_loc obj_red_loc /* the location for the color */
9054 @d red_val(A) mp->mem[(A)+3].sc
9055 /* the red component of the color in the range $0\ldots1$ */
9058 @d green_val(A) mp->mem[(A)+4].sc
9059 /* the green component of the color in the range $0\ldots1$ */
9060 @d magenta_val green_val
9061 @d blue_val(A) mp->mem[(A)+5].sc
9062 /* the blue component of the color in the range $0\ldots1$ */
9063 @d yellow_val blue_val
9064 @d black_val(A) mp->mem[(A)+6].sc
9065 /* the blue component of the color in the range $0\ldots1$ */
9066 @d ljoin_val(A) name_type((A)) /* the value of \&{linejoin} */
9067 @:mp_linejoin_}{\&{linejoin} primitive@>
9068 @d miterlim_val(A) mp->mem[(A)+7].sc /* the value of \&{miterlimit} */
9069 @:mp_miterlimit_}{\&{miterlimit} primitive@>
9070 @d obj_color_part(A) mp->mem[(A)+3-red_part].sc
9071 /* interpret an object pointer that has been offset by |red_part..blue_part| */
9072 @d pre_script(A) mp->mem[(A)+8].hh.lh
9073 @d post_script(A) mp->mem[(A)+8].hh.rh
9076 @ @<Graphical object codes@>=
9080 pointer mp_new_fill_node (MP mp,pointer p) {
9081 /* make a fill node for cyclic path |p| and color black */
9082 pointer t; /* the new node */
9083 t=mp_get_node(mp, fill_node_size);
9084 type(t)=mp_fill_code;
9086 pen_p(t)=null; /* |null| means don't use a pen */
9091 color_model(t)=mp_uninitialized_model;
9093 post_script(t)=null;
9094 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9098 @ @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>=
9099 if ( mp->internal[mp_linejoin]>unity ) ljoin_val(t)=2;
9100 else if ( mp->internal[mp_linejoin]>0 ) ljoin_val(t)=1;
9101 else ljoin_val(t)=0;
9102 if ( mp->internal[mp_miterlimit]<unity )
9103 miterlim_val(t)=unity;
9105 miterlim_val(t)=mp->internal[mp_miterlimit]
9107 @ A stroked path is represented by an eight-word node that is like a filled
9108 contour node except that it contains the current \&{linecap} value, a scale
9109 factor for the dash pattern, and a pointer that is non-null if the stroke
9110 is to be dashed. The purpose of the scale factor is to allow a picture to
9111 be transformed without touching the picture that |dash_p| points to.
9113 @d dash_p(A) link((A)+9)
9114 /* a pointer to the edge structure that gives the dash pattern */
9115 @d lcap_val(A) type((A)+9)
9116 /* the value of \&{linecap} */
9117 @:mp_linecap_}{\&{linecap} primitive@>
9118 @d dash_scale(A) mp->mem[(A)+10].sc /* dash lengths are scaled by this factor */
9119 @d stroked_node_size 11
9121 @ @<Graphical object codes@>=
9125 pointer mp_new_stroked_node (MP mp,pointer p) {
9126 /* make a stroked node for path |p| with |pen_p(p)| temporarily |null| */
9127 pointer t; /* the new node */
9128 t=mp_get_node(mp, stroked_node_size);
9129 type(t)=mp_stroked_code;
9130 path_p(t)=p; pen_p(t)=null;
9132 dash_scale(t)=unity;
9137 color_model(t)=mp_uninitialized_model;
9139 post_script(t)=null;
9140 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9141 if ( mp->internal[mp_linecap]>unity ) lcap_val(t)=2;
9142 else if ( mp->internal[mp_linecap]>0 ) lcap_val(t)=1;
9147 @ When a dashed line is computed in a transformed coordinate system, the dash
9148 lengths get scaled like the pen shape and we need to compensate for this. Since
9149 there is no unique scale factor for an arbitrary transformation, we use the
9150 the square root of the determinant. The properties of the determinant make it
9151 easier to maintain the |dash_scale|. The computation is fairly straight-forward
9152 except for the initialization of the scale factor |s|. The factor of 64 is
9153 needed because |square_rt| scales its result by $2^8$ while we need $2^{14}$
9154 to counteract the effect of |take_fraction|.
9156 @<Declare subroutines needed by |print_edges|@>=
9157 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) {
9158 scaled maxabs; /* $max(|a|,|b|,|c|,|d|)$ */
9159 integer s; /* amount by which the result of |square_rt| needs to be scaled */
9160 @<Initialize |maxabs|@>;
9162 while ( (maxabs<fraction_one) && (s>1) ){
9163 a+=a; b+=b; c+=c; d+=d;
9164 maxabs+=maxabs; s=halfp(s);
9166 return s*mp_square_rt(mp, abs(mp_take_fraction(mp, a,d)-mp_take_fraction(mp, b,c)));
9169 scaled mp_get_pen_scale (MP mp,pointer p) {
9170 return mp_sqrt_det(mp,
9171 left_x(p)-x_coord(p), right_x(p)-x_coord(p),
9172 left_y(p)-y_coord(p), right_y(p)-y_coord(p));
9175 @ @<Internal library ...@>=
9176 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) ;
9179 @ @<Initialize |maxabs|@>=
9181 if ( abs(b)>maxabs ) maxabs=abs(b);
9182 if ( abs(c)>maxabs ) maxabs=abs(c);
9183 if ( abs(d)>maxabs ) maxabs=abs(d)
9185 @ When a picture contains text, this is represented by a fourteen-word node
9186 where the color information and |type| and |link| fields are augmented by
9187 additional fields that describe the text and how it is transformed.
9188 The |path_p| and |pen_p| pointers are replaced by a number that identifies
9189 the font and a string number that gives the text to be displayed.
9190 The |width|, |height|, and |depth| fields
9191 give the dimensions of the text at its design size, and the remaining six
9192 words give a transformation to be applied to the text. The |new_text_node|
9193 function initializes everything to default values so that the text comes out
9194 black with its reference point at the origin.
9196 @d text_p(A) link((A)+1) /* a string pointer for the text to display */
9197 @d font_n(A) info((A)+1) /* the font number */
9198 @d width_val(A) mp->mem[(A)+7].sc /* unscaled width of the text */
9199 @d height_val(A) mp->mem[(A)+9].sc /* unscaled height of the text */
9200 @d depth_val(A) mp->mem[(A)+10].sc /* unscaled depth of the text */
9201 @d text_tx_loc(A) ((A)+11)
9202 /* the first of six locations for transformation parameters */
9203 @d tx_val(A) mp->mem[(A)+11].sc /* $x$ shift amount */
9204 @d ty_val(A) mp->mem[(A)+12].sc /* $y$ shift amount */
9205 @d txx_val(A) mp->mem[(A)+13].sc /* |txx| transformation parameter */
9206 @d txy_val(A) mp->mem[(A)+14].sc /* |txy| transformation parameter */
9207 @d tyx_val(A) mp->mem[(A)+15].sc /* |tyx| transformation parameter */
9208 @d tyy_val(A) mp->mem[(A)+16].sc /* |tyy| transformation parameter */
9209 @d text_trans_part(A) mp->mem[(A)+11-x_part].sc
9210 /* interpret a text node pointer that has been offset by |x_part..yy_part| */
9211 @d text_node_size 17
9213 @ @<Graphical object codes@>=
9216 @ @c @<Declare text measuring subroutines@>;
9217 pointer mp_new_text_node (MP mp,char *f,str_number s) {
9218 /* make a text node for font |f| and text string |s| */
9219 pointer t; /* the new node */
9220 t=mp_get_node(mp, text_node_size);
9221 type(t)=mp_text_code;
9223 font_n(t)=mp_find_font(mp, f); /* this identifies the font */
9228 color_model(t)=mp_uninitialized_model;
9230 post_script(t)=null;
9231 tx_val(t)=0; ty_val(t)=0;
9232 txx_val(t)=unity; txy_val(t)=0;
9233 tyx_val(t)=0; tyy_val(t)=unity;
9234 mp_set_text_box(mp, t); /* this finds the bounding box */
9238 @ The last two types of graphical objects that can occur in an edge structure
9239 are clipping paths and \&{setbounds} paths. These are slightly more difficult
9240 @:set_bounds_}{\&{setbounds} primitive@>
9241 to implement because we must keep track of exactly what is being clipped or
9242 bounded when pictures get merged together. For this reason, each clipping or
9243 \&{setbounds} operation is represented by a pair of nodes: first comes a
9244 two-word node whose |path_p| gives the relevant path, then there is the list
9245 of objects to clip or bound followed by a two-word node whose second word is
9248 Using at least two words for each graphical object node allows them all to be
9249 allocated and deallocated similarly with a global array |gr_object_size| to
9250 give the size in words for each object type.
9252 @d start_clip_size 2
9253 @d start_bounds_size 2
9254 @d stop_clip_size 2 /* the second word is not used here */
9255 @d stop_bounds_size 2 /* the second word is not used here */
9257 @d stop_type(A) ((A)+2)
9258 /* matching |type| for |start_clip_code| or |start_bounds_code| */
9259 @d has_color(A) (type((A))<mp_start_clip_code)
9260 /* does a graphical object have color fields? */
9261 @d has_pen(A) (type((A))<mp_text_code)
9262 /* does a graphical object have a |pen_p| field? */
9263 @d is_start_or_stop(A) (type((A))>=mp_start_clip_code)
9264 @d is_stop(A) (type((A))>=mp_stop_clip_code)
9266 @ @<Graphical object codes@>=
9267 mp_start_clip_code=4, /* |type| of a node that starts clipping */
9268 mp_start_bounds_code=5, /* |type| of a node that gives a \&{setbounds} path */
9269 mp_stop_clip_code=6, /* |type| of a node that stops clipping */
9270 mp_stop_bounds_code=7, /* |type| of a node that stops \&{setbounds} */
9273 pointer mp_new_bounds_node (MP mp,pointer p, small_number c) {
9274 /* make a node of type |c| where |p| is the clipping or \&{setbounds} path */
9275 pointer t; /* the new node */
9276 t=mp_get_node(mp, mp->gr_object_size[c]);
9282 @ We need an array to keep track of the sizes of graphical objects.
9285 small_number gr_object_size[mp_stop_bounds_code+1];
9288 mp->gr_object_size[mp_fill_code]=fill_node_size;
9289 mp->gr_object_size[mp_stroked_code]=stroked_node_size;
9290 mp->gr_object_size[mp_text_code]=text_node_size;
9291 mp->gr_object_size[mp_start_clip_code]=start_clip_size;
9292 mp->gr_object_size[mp_stop_clip_code]=stop_clip_size;
9293 mp->gr_object_size[mp_start_bounds_code]=start_bounds_size;
9294 mp->gr_object_size[mp_stop_bounds_code]=stop_bounds_size;
9296 @ All the essential information in an edge structure is encoded as a linked list
9297 of graphical objects as we have just seen, but it is helpful to add some
9298 redundant information. A single edge structure might be used as a dash pattern
9299 many times, and it would be nice to avoid scanning the same structure
9300 repeatedly. Thus, an edge structure known to be a suitable dash pattern
9301 has a header that gives a list of dashes in a sorted order designed for rapid
9302 translation into \ps.
9304 Each dash is represented by a three-word node containing the initial and final
9305 $x$~coordinates as well as the usual |link| field. The |link| fields points to
9306 the dash node with the next higher $x$-coordinates and the final link points
9307 to a special location called |null_dash|. (There should be no overlap between
9308 dashes). Since the $y$~coordinate of the dash pattern is needed to determine
9309 the period of repetition, this needs to be stored in the edge header along
9310 with a pointer to the list of dash nodes.
9312 @d start_x(A) mp->mem[(A)+1].sc /* the starting $x$~coordinate in a dash node */
9313 @d stop_x(A) mp->mem[(A)+2].sc /* the ending $x$~coordinate in a dash node */
9316 /* in an edge header this points to the first dash node */
9317 @d dash_y(A) mp->mem[(A)+1].sc /* $y$ value for the dash list in an edge header */
9319 @ It is also convenient for an edge header to contain the bounding
9320 box information needed by the \&{llcorner} and \&{urcorner} operators
9321 so that this does not have to be recomputed unnecessarily. This is done by
9322 adding fields for the $x$~and $y$ extremes as well as a pointer that indicates
9323 how far the bounding box computation has gotten. Thus if the user asks for
9324 the bounding box and then adds some more text to the picture before asking
9325 for more bounding box information, the second computation need only look at
9326 the additional text.
9328 When the bounding box has not been computed, the |bblast| pointer points
9329 to a dummy link at the head of the graphical object list while the |minx_val|
9330 and |miny_val| fields contain |el_gordo| and the |maxx_val| and |maxy_val|
9331 fields contain |-el_gordo|.
9333 Since the bounding box of pictures containing objects of type
9334 |mp_start_bounds_code| depends on the value of \&{truecorners}, the bounding box
9335 @:mp_true_corners_}{\&{truecorners} primitive@>
9336 data might not be valid for all values of this parameter. Hence, the |bbtype|
9337 field is needed to keep track of this.
9339 @d minx_val(A) mp->mem[(A)+2].sc
9340 @d miny_val(A) mp->mem[(A)+3].sc
9341 @d maxx_val(A) mp->mem[(A)+4].sc
9342 @d maxy_val(A) mp->mem[(A)+5].sc
9343 @d bblast(A) link((A)+6) /* last item considered in bounding box computation */
9344 @d bbtype(A) info((A)+6) /* tells how bounding box data depends on \&{truecorners} */
9345 @d dummy_loc(A) ((A)+7) /* where the object list begins in an edge header */
9347 /* |bbtype| value when bounding box data is valid for all \&{truecorners} values */
9349 /* |bbtype| value when bounding box data is for \&{truecorners}${}\le 0$ */
9351 /* |bbtype| value when bounding box data is for \&{truecorners}${}>0$ */
9354 void mp_init_bbox (MP mp,pointer h) {
9355 /* Initialize the bounding box information in edge structure |h| */
9356 bblast(h)=dummy_loc(h);
9357 bbtype(h)=no_bounds;
9358 minx_val(h)=el_gordo;
9359 miny_val(h)=el_gordo;
9360 maxx_val(h)=-el_gordo;
9361 maxy_val(h)=-el_gordo;
9364 @ The only other entries in an edge header are a reference count in the first
9365 word and a pointer to the tail of the object list in the last word.
9367 @d obj_tail(A) info((A)+7) /* points to the last entry in the object list */
9368 @d edge_header_size 8
9371 void mp_init_edges (MP mp,pointer h) {
9372 /* initialize an edge header to null values */
9373 dash_list(h)=null_dash;
9374 obj_tail(h)=dummy_loc(h);
9375 link(dummy_loc(h))=null;
9377 mp_init_bbox(mp, h);
9380 @ Here is how edge structures are deleted. The process can be recursive because
9381 of the need to dereference edge structures that are used as dash patterns.
9384 @d add_edge_ref(A) incr(ref_count(A))
9385 @d delete_edge_ref(A) {
9386 if ( ref_count((A))==null )
9387 mp_toss_edges(mp, A);
9392 @<Declare the recycling subroutines@>=
9393 void mp_flush_dash_list (MP mp,pointer h);
9394 pointer mp_toss_gr_object (MP mp,pointer p) ;
9395 void mp_toss_edges (MP mp,pointer h) ;
9397 @ @c void mp_toss_edges (MP mp,pointer h) {
9398 pointer p,q; /* pointers that scan the list being recycled */
9399 pointer r; /* an edge structure that object |p| refers to */
9400 mp_flush_dash_list(mp, h);
9401 q=link(dummy_loc(h));
9402 while ( (q!=null) ) {
9404 r=mp_toss_gr_object(mp, p);
9405 if ( r!=null ) delete_edge_ref(r);
9407 mp_free_node(mp, h,edge_header_size);
9409 void mp_flush_dash_list (MP mp,pointer h) {
9410 pointer p,q; /* pointers that scan the list being recycled */
9412 while ( q!=null_dash ) {
9414 mp_free_node(mp, p,dash_node_size);
9416 dash_list(h)=null_dash;
9418 pointer mp_toss_gr_object (MP mp,pointer p) {
9419 /* returns an edge structure that needs to be dereferenced */
9420 pointer e; /* the edge structure to return */
9422 @<Prepare to recycle graphical object |p|@>;
9423 mp_free_node(mp, p,mp->gr_object_size[type(p)]);
9427 @ @<Prepare to recycle graphical object |p|@>=
9430 mp_toss_knot_list(mp, path_p(p));
9431 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9432 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9433 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9435 case mp_stroked_code:
9436 mp_toss_knot_list(mp, path_p(p));
9437 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9438 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9439 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9443 delete_str_ref(text_p(p));
9444 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9445 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9447 case mp_start_clip_code:
9448 case mp_start_bounds_code:
9449 mp_toss_knot_list(mp, path_p(p));
9451 case mp_stop_clip_code:
9452 case mp_stop_bounds_code:
9454 } /* there are no other cases */
9456 @ If we use |add_edge_ref| to ``copy'' edge structures, the real copying needs
9457 to be done before making a significant change to an edge structure. Much of
9458 the work is done in a separate routine |copy_objects| that copies a list of
9459 graphical objects into a new edge header.
9461 @c @<Declare a function called |copy_objects|@>;
9462 pointer mp_private_edges (MP mp,pointer h) {
9463 /* make a private copy of the edge structure headed by |h| */
9464 pointer hh; /* the edge header for the new copy */
9465 pointer p,pp; /* pointers for copying the dash list */
9466 if ( ref_count(h)==null ) {
9470 hh=mp_copy_objects(mp, link(dummy_loc(h)),null);
9471 @<Copy the dash list from |h| to |hh|@>;
9472 @<Copy the bounding box information from |h| to |hh| and make |bblast(hh)|
9473 point into the new object list@>;
9478 @ Here we use the fact that |dash_list(hh)=link(hh)|.
9479 @^data structure assumptions@>
9481 @<Copy the dash list from |h| to |hh|@>=
9482 pp=hh; p=dash_list(h);
9483 while ( (p!=null_dash) ) {
9484 link(pp)=mp_get_node(mp, dash_node_size);
9486 start_x(pp)=start_x(p);
9487 stop_x(pp)=stop_x(p);
9491 dash_y(hh)=dash_y(h)
9494 @ |h| is an edge structure
9496 @d gr_start_x(A) (A)->start_x_field
9497 @d gr_stop_x(A) (A)->stop_x_field
9498 @d gr_dash_link(A) (A)->next_field
9500 @d gr_dash_list(A) (A)->list_field
9501 @d gr_dash_y(A) (A)->y_field
9504 struct mp_dash_list *mp_export_dashes (MP mp, pointer h) {
9505 struct mp_dash_list *dl;
9506 struct mp_dash_item *dh, *di;
9508 if (h==null || dash_list(h)==null_dash)
9511 dl = mp_xmalloc(mp,1,sizeof(struct mp_dash_list));
9512 gr_dash_list(dl) = NULL;
9513 gr_dash_y(dl) = dash_y(h);
9515 while (p != null_dash) {
9516 di=mp_xmalloc(mp,1,sizeof(struct mp_dash_item));
9517 gr_dash_link(di) = NULL;
9518 gr_start_x(di) = start_x(p);
9519 gr_stop_x(di) = stop_x(p);
9521 gr_dash_list(dl) = di;
9523 gr_dash_link(dh) = di;
9532 @ @<Copy the bounding box information from |h| to |hh|...@>=
9533 minx_val(hh)=minx_val(h);
9534 miny_val(hh)=miny_val(h);
9535 maxx_val(hh)=maxx_val(h);
9536 maxy_val(hh)=maxy_val(h);
9537 bbtype(hh)=bbtype(h);
9538 p=dummy_loc(h); pp=dummy_loc(hh);
9539 while ((p!=bblast(h)) ) {
9540 if ( p==null ) mp_confusion(mp, "bblast");
9541 @:this can't happen bblast}{\quad bblast@>
9542 p=link(p); pp=link(pp);
9546 @ Here is the promised routine for copying graphical objects into a new edge
9547 structure. It starts copying at object~|p| and stops just before object~|q|.
9548 If |q| is null, it copies the entire sublist headed at |p|. The resulting edge
9549 structure requires further initialization by |init_bbox|.
9551 @<Declare a function called |copy_objects|@>=
9552 pointer mp_copy_objects (MP mp, pointer p, pointer q) {
9553 pointer hh; /* the new edge header */
9554 pointer pp; /* the last newly copied object */
9555 small_number k; /* temporary register */
9556 hh=mp_get_node(mp, edge_header_size);
9557 dash_list(hh)=null_dash;
9561 @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>;
9568 @ @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>=
9569 { k=mp->gr_object_size[type(p)];
9570 link(pp)=mp_get_node(mp, k);
9572 while ( (k>0) ) { decr(k); mp->mem[pp+k]=mp->mem[p+k]; };
9573 @<Fix anything in graphical object |pp| that should differ from the
9574 corresponding field in |p|@>;
9578 @ @<Fix anything in graphical object |pp| that should differ from the...@>=
9580 case mp_start_clip_code:
9581 case mp_start_bounds_code:
9582 path_p(pp)=mp_copy_path(mp, path_p(p));
9585 path_p(pp)=mp_copy_path(mp, path_p(p));
9586 if ( pen_p(p)!=null ) pen_p(pp)=copy_pen(pen_p(p));
9588 case mp_stroked_code:
9589 path_p(pp)=mp_copy_path(mp, path_p(p));
9590 pen_p(pp)=copy_pen(pen_p(p));
9591 if ( dash_p(p)!=null ) add_edge_ref(dash_p(pp));
9594 add_str_ref(text_p(pp));
9596 case mp_stop_clip_code:
9597 case mp_stop_bounds_code:
9599 } /* there are no other cases */
9601 @ Here is one way to find an acceptable value for the second argument to
9602 |copy_objects|. Given a non-null graphical object list, |skip_1component|
9603 skips past one picture component, where a ``picture component'' is a single
9604 graphical object, or a start bounds or start clip object and everything up
9605 through the matching stop bounds or stop clip object. The macro version avoids
9606 procedure call overhead and error handling: |skip_component(p)(e)| advances |p|
9607 unless |p| points to a stop bounds or stop clip node, in which case it executes
9610 @d skip_component(A)
9611 if ( ! is_start_or_stop((A)) ) (A)=link((A));
9612 else if ( ! is_stop((A)) ) (A)=mp_skip_1component(mp, (A));
9616 pointer mp_skip_1component (MP mp,pointer p) {
9617 integer lev; /* current nesting level */
9620 if ( is_start_or_stop(p) ) {
9621 if ( is_stop(p) ) decr(lev); else incr(lev);
9628 @ Here is a diagnostic routine for printing an edge structure in symbolic form.
9630 @<Declare subroutines for printing expressions@>=
9631 @<Declare subroutines needed by |print_edges|@>;
9632 void mp_print_edges (MP mp,pointer h, char *s, boolean nuline) {
9633 pointer p; /* a graphical object to be printed */
9634 pointer hh,pp; /* temporary pointers */
9635 scaled scf; /* a scale factor for the dash pattern */
9636 boolean ok_to_dash; /* |false| for polygonal pen strokes */
9637 mp_print_diagnostic(mp, "Edge structure",s,nuline);
9639 while ( link(p)!=null ) {
9643 @<Cases for printing graphical object node |p|@>;
9645 mp_print(mp, "[unknown object type!]");
9649 mp_print_nl(mp, "End edges");
9650 if ( p!=obj_tail(h) ) mp_print(mp, "?");
9652 mp_end_diagnostic(mp, true);
9655 @ @<Cases for printing graphical object node |p|@>=
9657 mp_print(mp, "Filled contour ");
9658 mp_print_obj_color(mp, p);
9659 mp_print_char(mp, ':'); mp_print_ln(mp);
9660 mp_pr_path(mp, path_p(p)); mp_print_ln(mp);
9661 if ( (pen_p(p)!=null) ) {
9662 @<Print join type for graphical object |p|@>;
9663 mp_print(mp, " with pen"); mp_print_ln(mp);
9664 mp_pr_pen(mp, pen_p(p));
9668 @ @<Print join type for graphical object |p|@>=
9669 switch (ljoin_val(p)) {
9671 mp_print(mp, "mitered joins limited ");
9672 mp_print_scaled(mp, miterlim_val(p));
9675 mp_print(mp, "round joins");
9678 mp_print(mp, "beveled joins");
9681 mp_print(mp, "?? joins");
9686 @ For stroked nodes, we need to print |lcap_val(p)| as well.
9688 @<Print join and cap types for stroked node |p|@>=
9689 switch (lcap_val(p)) {
9690 case 0:mp_print(mp, "butt"); break;
9691 case 1:mp_print(mp, "round"); break;
9692 case 2:mp_print(mp, "square"); break;
9693 default: mp_print(mp, "??"); break;
9696 mp_print(mp, " ends, ");
9697 @<Print join type for graphical object |p|@>
9699 @ Here is a routine that prints the color of a graphical object if it isn't
9700 black (the default color).
9702 @<Declare subroutines needed by |print_edges|@>=
9703 @<Declare a procedure called |print_compact_node|@>;
9704 void mp_print_obj_color (MP mp,pointer p) {
9705 if ( color_model(p)==mp_grey_model ) {
9706 if ( grey_val(p)>0 ) {
9707 mp_print(mp, "greyed ");
9708 mp_print_compact_node(mp, obj_grey_loc(p),1);
9710 } else if ( color_model(p)==mp_cmyk_model ) {
9711 if ( (cyan_val(p)>0) || (magenta_val(p)>0) ||
9712 (yellow_val(p)>0) || (black_val(p)>0) ) {
9713 mp_print(mp, "processcolored ");
9714 mp_print_compact_node(mp, obj_cyan_loc(p),4);
9716 } else if ( color_model(p)==mp_rgb_model ) {
9717 if ( (red_val(p)>0) || (green_val(p)>0) || (blue_val(p)>0) ) {
9718 mp_print(mp, "colored ");
9719 mp_print_compact_node(mp, obj_red_loc(p),3);
9724 @ We also need a procedure for printing consecutive scaled values as if they
9725 were a known big node.
9727 @<Declare a procedure called |print_compact_node|@>=
9728 void mp_print_compact_node (MP mp,pointer p, small_number k) {
9729 pointer q; /* last location to print */
9731 mp_print_char(mp, '(');
9733 mp_print_scaled(mp, mp->mem[p].sc);
9734 if ( p<q ) mp_print_char(mp, ',');
9737 mp_print_char(mp, ')');
9740 @ @<Cases for printing graphical object node |p|@>=
9741 case mp_stroked_code:
9742 mp_print(mp, "Filled pen stroke ");
9743 mp_print_obj_color(mp, p);
9744 mp_print_char(mp, ':'); mp_print_ln(mp);
9745 mp_pr_path(mp, path_p(p));
9746 if ( dash_p(p)!=null ) {
9747 mp_print_nl(mp, "dashed (");
9748 @<Finish printing the dash pattern that |p| refers to@>;
9751 @<Print join and cap types for stroked node |p|@>;
9752 mp_print(mp, " with pen"); mp_print_ln(mp);
9753 if ( pen_p(p)==null ) mp_print(mp, "???"); /* shouldn't happen */
9755 else mp_pr_pen(mp, pen_p(p));
9758 @ Normally, the |dash_list| field in an edge header is set to |null_dash|
9759 when it is not known to define a suitable dash pattern. This is disallowed
9760 here because the |dash_p| field should never point to such an edge header.
9761 Note that memory is allocated for |start_x(null_dash)| and we are free to
9762 give it any convenient value.
9764 @<Finish printing the dash pattern that |p| refers to@>=
9765 ok_to_dash=pen_is_elliptical(pen_p(p));
9766 if ( ! ok_to_dash ) scf=unity; else scf=dash_scale(p);
9769 if ( (pp==null_dash) || (dash_y(hh)<0) ) {
9770 mp_print(mp, " ??");
9771 } else { start_x(null_dash)=start_x(pp)+dash_y(hh);
9772 while ( pp!=null_dash ) {
9773 mp_print(mp, "on ");
9774 mp_print_scaled(mp, mp_take_scaled(mp, stop_x(pp)-start_x(pp),scf));
9775 mp_print(mp, " off ");
9776 mp_print_scaled(mp, mp_take_scaled(mp, start_x(link(pp))-stop_x(pp),scf));
9778 if ( pp!=null_dash ) mp_print_char(mp, ' ');
9780 mp_print(mp, ") shifted ");
9781 mp_print_scaled(mp, -mp_take_scaled(mp, mp_dash_offset(mp, hh),scf));
9782 if ( ! ok_to_dash || (dash_y(hh)==0) ) mp_print(mp, " (this will be ignored)");
9785 @ @<Declare subroutines needed by |print_edges|@>=
9786 scaled mp_dash_offset (MP mp,pointer h) {
9787 scaled x; /* the answer */
9788 if (dash_list(h)==null_dash || dash_y(h)<0) mp_confusion(mp, "dash0");
9789 @:this can't happen dash0}{\quad dash0@>
9790 if ( dash_y(h)==0 ) {
9793 x=-(start_x(dash_list(h)) % dash_y(h));
9794 if ( x<0 ) x=x+dash_y(h);
9799 @ @<Cases for printing graphical object node |p|@>=
9801 mp_print_char(mp, '"'); mp_print_str(mp,text_p(p));
9802 mp_print(mp, "\" infont \""); mp_print(mp, mp->font_name[font_n(p)]);
9803 mp_print_char(mp, '"'); mp_print_ln(mp);
9804 mp_print_obj_color(mp, p);
9805 mp_print(mp, "transformed ");
9806 mp_print_compact_node(mp, text_tx_loc(p),6);
9809 @ @<Cases for printing graphical object node |p|@>=
9810 case mp_start_clip_code:
9811 mp_print(mp, "clipping path:");
9813 mp_pr_path(mp, path_p(p));
9815 case mp_stop_clip_code:
9816 mp_print(mp, "stop clipping");
9819 @ @<Cases for printing graphical object node |p|@>=
9820 case mp_start_bounds_code:
9821 mp_print(mp, "setbounds path:");
9823 mp_pr_path(mp, path_p(p));
9825 case mp_stop_bounds_code:
9826 mp_print(mp, "end of setbounds");
9829 @ To initialize the |dash_list| field in an edge header~|h|, we need a
9830 subroutine that scans an edge structure and tries to interpret it as a dash
9831 pattern. This can only be done when there are no filled regions or clipping
9832 paths and all the pen strokes have the same color. The first step is to let
9833 $y_0$ be the initial $y$~coordinate of the first pen stroke. Then we implicitly
9834 project all the pen stroke paths onto the line $y=y_0$ and require that there
9835 be no retracing. If the resulting paths cover a range of $x$~coordinates of
9836 length $\Delta x$, we set |dash_y(h)| to the length of the dash pattern by
9837 finding the maximum of $\Delta x$ and the absolute value of~$y_0$.
9839 @c @<Declare a procedure called |x_retrace_error|@>;
9840 pointer mp_make_dashes (MP mp,pointer h) { /* returns |h| or |null| */
9841 pointer p; /* this scans the stroked nodes in the object list */
9842 pointer p0; /* if not |null| this points to the first stroked node */
9843 pointer pp,qq,rr; /* pointers into |path_p(p)| */
9844 pointer d,dd; /* pointers used to create the dash list */
9845 @<Other local variables in |make_dashes|@>;
9846 scaled y0=0; /* the initial $y$ coordinate */
9847 if ( dash_list(h)!=null_dash )
9850 p=link(dummy_loc(h));
9852 if ( type(p)!=mp_stroked_code ) {
9853 @<Compain that the edge structure contains a node of the wrong type
9854 and |goto not_found|@>;
9857 if ( p0==null ){ p0=p; y0=y_coord(pp); };
9858 @<Make |d| point to a new dash node created from stroke |p| and path |pp|
9859 or |goto not_found| if there is an error@>;
9860 @<Insert |d| into the dash list and |goto not_found| if there is an error@>;
9863 if ( dash_list(h)==null_dash )
9864 goto NOT_FOUND; /* No error message */
9865 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>;
9866 @<Set |dash_y(h)| and merge the first and last dashes if necessary@>;
9869 @<Flush the dash list, recycle |h| and return |null|@>;
9872 @ @<Compain that the edge structure contains a node of the wrong type...@>=
9874 print_err("Picture is too complicated to use as a dash pattern");
9875 help3("When you say `dashed p', picture p should not contain any")
9876 ("text, filled regions, or clipping paths. This time it did")
9877 ("so I'll just make it a solid line instead.");
9878 mp_put_get_error(mp);
9882 @ A similar error occurs when monotonicity fails.
9884 @<Declare a procedure called |x_retrace_error|@>=
9885 void mp_x_retrace_error (MP mp) {
9886 print_err("Picture is too complicated to use as a dash pattern");
9887 help3("When you say `dashed p', every path in p should be monotone")
9888 ("in x and there must be no overlapping. This failed")
9889 ("so I'll just make it a solid line instead.");
9890 mp_put_get_error(mp);
9893 @ We stash |p| in |info(d)| if |dash_p(p)<>0| so that subsequent processing can
9894 handle the case where the pen stroke |p| is itself dashed.
9896 @<Make |d| point to a new dash node created from stroke |p| and path...@>=
9897 @<Make sure |p| and |p0| are the same color and |goto not_found| if there is
9900 if ( link(pp)!=pp ) {
9903 @<Check for retracing between knots |qq| and |rr| and |goto not_found|
9904 if there is a problem@>;
9905 } while (right_type(rr)!=mp_endpoint);
9907 d=mp_get_node(mp, dash_node_size);
9908 if ( dash_p(p)==0 ) info(d)=0; else info(d)=p;
9909 if ( x_coord(pp)<x_coord(rr) ) {
9910 start_x(d)=x_coord(pp);
9911 stop_x(d)=x_coord(rr);
9913 start_x(d)=x_coord(rr);
9914 stop_x(d)=x_coord(pp);
9917 @ We also need to check for the case where the segment from |qq| to |rr| is
9918 monotone in $x$ but is reversed relative to the path from |pp| to |qq|.
9920 @<Check for retracing between knots |qq| and |rr| and |goto not_found|...@>=
9925 if ( (x0>x1) || (x1>x2) || (x2>x3) ) {
9926 if ( (x0<x1) || (x1<x2) || (x2<x3) ) {
9927 if ( mp_ab_vs_cd(mp, x2-x1,x2-x1,x1-x0,x3-x2)>0 ) {
9928 mp_x_retrace_error(mp); goto NOT_FOUND;
9932 if ( (x_coord(pp)>x0) || (x0>x3) ) {
9933 if ( (x_coord(pp)<x0) || (x0<x3) ) {
9934 mp_x_retrace_error(mp); goto NOT_FOUND;
9938 @ @<Other local variables in |make_dashes|@>=
9939 scaled x0,x1,x2,x3; /* $x$ coordinates of the segment from |qq| to |rr| */
9941 @ @<Make sure |p| and |p0| are the same color and |goto not_found|...@>=
9942 if ( (red_val(p)!=red_val(p0)) || (black_val(p)!=black_val(p0)) ||
9943 (green_val(p)!=green_val(p0)) || (blue_val(p)!=blue_val(p0)) ) {
9944 print_err("Picture is too complicated to use as a dash pattern");
9945 help3("When you say `dashed p', everything in picture p should")
9946 ("be the same color. I can\'t handle your color changes")
9947 ("so I'll just make it a solid line instead.");
9948 mp_put_get_error(mp);
9952 @ @<Insert |d| into the dash list and |goto not_found| if there is an error@>=
9953 start_x(null_dash)=stop_x(d);
9954 dd=h; /* this makes |link(dd)=dash_list(h)| */
9955 while ( start_x(link(dd))<stop_x(d) )
9958 if ( (stop_x(dd)>start_x(d)) )
9959 { mp_x_retrace_error(mp); goto NOT_FOUND; };
9964 @ @<Set |dash_y(h)| and merge the first and last dashes if necessary@>=
9966 while ( (link(d)!=null_dash) )
9969 dash_y(h)=stop_x(d)-start_x(dd);
9970 if ( abs(y0)>dash_y(h) ) {
9972 } else if ( d!=dd ) {
9973 dash_list(h)=link(dd);
9974 stop_x(d)=stop_x(dd)+dash_y(h);
9975 mp_free_node(mp, dd,dash_node_size);
9978 @ We get here when the argument is a null picture or when there is an error.
9979 Recovering from an error involves making |dash_list(h)| empty to indicate
9980 that |h| is not known to be a valid dash pattern. We also dereference |h|
9981 since it is not being used for the return value.
9983 @<Flush the dash list, recycle |h| and return |null|@>=
9984 mp_flush_dash_list(mp, h);
9988 @ Having carefully saved the dashed stroked nodes in the
9989 corresponding dash nodes, we must be prepared to break up these dashes into
9992 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>=
9993 d=h; /* now |link(d)=dash_list(h)| */
9994 while ( link(d)!=null_dash ) {
10000 hsf=dash_scale(ds);
10001 if ( (hh==null) ) mp_confusion(mp, "dash1");
10002 @:this can't happen dash0}{\quad dash1@>
10003 if ( dash_y(hh)==0 ) {
10006 if ( dash_list(hh)==null ) mp_confusion(mp, "dash1");
10007 @:this can't happen dash0}{\quad dash1@>
10008 @<Replace |link(d)| by a dashed version as determined by edge header
10009 |hh| and scale factor |ds|@>;
10014 @ @<Other local variables in |make_dashes|@>=
10015 pointer dln; /* |link(d)| */
10016 pointer hh; /* an edge header that tells how to break up |dln| */
10017 scaled hsf; /* the dash pattern from |hh| gets scaled by this */
10018 pointer ds; /* the stroked node from which |hh| and |hsf| are derived */
10019 scaled xoff; /* added to $x$ values in |dash_list(hh)| to match |dln| */
10021 @ @<Replace |link(d)| by a dashed version as determined by edge header...@>=
10024 xoff=start_x(dln)-mp_take_scaled(mp, hsf,start_x(dd))-
10025 mp_take_scaled(mp, hsf,mp_dash_offset(mp, hh));
10026 start_x(null_dash)=mp_take_scaled(mp, hsf,start_x(dd))
10027 +mp_take_scaled(mp, hsf,dash_y(hh));
10028 stop_x(null_dash)=start_x(null_dash);
10029 @<Advance |dd| until finding the first dash that overlaps |dln| when
10030 offset by |xoff|@>;
10031 while ( start_x(dln)<=stop_x(dln) ) {
10032 @<If |dd| has `fallen off the end', back up to the beginning and fix |xoff|@>;
10033 @<Insert a dash between |d| and |dln| for the overlap with the offset version
10036 start_x(dln)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10039 mp_free_node(mp, dln,dash_node_size)
10041 @ The name of this module is a bit of a lie because we just find the
10042 first |dd| where |take_scaled (hsf, stop_x(dd))| is large enough to make an
10043 overlap possible. It could be that the unoffset version of dash |dln| falls
10044 in the gap between |dd| and its predecessor.
10046 @<Advance |dd| until finding the first dash that overlaps |dln| when...@>=
10047 while ( xoff+mp_take_scaled(mp, hsf,stop_x(dd))<start_x(dln) ) {
10051 @ @<If |dd| has `fallen off the end', back up to the beginning and fix...@>=
10052 if ( dd==null_dash ) {
10054 xoff=xoff+mp_take_scaled(mp, hsf,dash_y(hh));
10057 @ At this point we already know that
10058 |start_x(dln)<=xoff+take_scaled(hsf,stop_x(dd))|.
10060 @<Insert a dash between |d| and |dln| for the overlap with the offset...@>=
10061 if ( (xoff+mp_take_scaled(mp, hsf,start_x(dd)))<=stop_x(dln) ) {
10062 link(d)=mp_get_node(mp, dash_node_size);
10065 if ( start_x(dln)>(xoff+mp_take_scaled(mp, hsf,start_x(dd))))
10066 start_x(d)=start_x(dln);
10068 start_x(d)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10069 if ( stop_x(dln)<(xoff+mp_take_scaled(mp, hsf,stop_x(dd))))
10070 stop_x(d)=stop_x(dln);
10072 stop_x(d)=xoff+mp_take_scaled(mp, hsf,stop_x(dd));
10075 @ The next major task is to update the bounding box information in an edge
10076 header~|h|. This is done via a procedure |adjust_bbox| that enlarges an edge
10077 header's bounding box to accommodate the box computed by |path_bbox| or
10078 |pen_bbox|. (This is stored in global variables |minx|, |miny|, |maxx|, and
10081 @c void mp_adjust_bbox (MP mp,pointer h) {
10082 if ( minx<minx_val(h) ) minx_val(h)=minx;
10083 if ( miny<miny_val(h) ) miny_val(h)=miny;
10084 if ( maxx>maxx_val(h) ) maxx_val(h)=maxx;
10085 if ( maxy>maxy_val(h) ) maxy_val(h)=maxy;
10088 @ Here is a special routine for updating the bounding box information in
10089 edge header~|h| to account for the squared-off ends of a non-cyclic path~|p|
10090 that is to be stroked with the pen~|pp|.
10092 @c void mp_box_ends (MP mp, pointer p, pointer pp, pointer h) {
10093 pointer q; /* a knot node adjacent to knot |p| */
10094 fraction dx,dy; /* a unit vector in the direction out of the path at~|p| */
10095 scaled d; /* a factor for adjusting the length of |(dx,dy)| */
10096 scaled z; /* a coordinate being tested against the bounding box */
10097 scaled xx,yy; /* the extreme pen vertex in the |(dx,dy)| direction */
10098 integer i; /* a loop counter */
10099 if ( right_type(p)!=mp_endpoint ) {
10102 @<Make |(dx,dy)| the final direction for the path segment from
10103 |q| to~|p|; set~|d|@>;
10104 d=mp_pyth_add(mp, dx,dy);
10106 @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>;
10107 for (i=1;i<= 2;i++) {
10108 @<Use |(dx,dy)| to generate a vertex of the square end cap and
10109 update the bounding box to accommodate it@>;
10113 if ( right_type(p)==mp_endpoint ) {
10116 @<Advance |p| to the end of the path and make |q| the previous knot@>;
10122 @ @<Make |(dx,dy)| the final direction for the path segment from...@>=
10123 if ( q==link(p) ) {
10124 dx=x_coord(p)-right_x(p);
10125 dy=y_coord(p)-right_y(p);
10126 if ( (dx==0)&&(dy==0) ) {
10127 dx=x_coord(p)-left_x(q);
10128 dy=y_coord(p)-left_y(q);
10131 dx=x_coord(p)-left_x(p);
10132 dy=y_coord(p)-left_y(p);
10133 if ( (dx==0)&&(dy==0) ) {
10134 dx=x_coord(p)-right_x(q);
10135 dy=y_coord(p)-right_y(q);
10138 dx=x_coord(p)-x_coord(q);
10139 dy=y_coord(p)-y_coord(q)
10141 @ @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>=
10142 dx=mp_make_fraction(mp, dx,d);
10143 dy=mp_make_fraction(mp, dy,d);
10144 mp_find_offset(mp, -dy,dx,pp);
10145 xx=mp->cur_x; yy=mp->cur_y
10147 @ @<Use |(dx,dy)| to generate a vertex of the square end cap and...@>=
10148 mp_find_offset(mp, dx,dy,pp);
10149 d=mp_take_fraction(mp, xx-mp->cur_x,dx)+mp_take_fraction(mp, yy-mp->cur_y,dy);
10150 if ( ((d<0)&&(i==1)) || ((d>0)&&(i==2)))
10151 mp_confusion(mp, "box_ends");
10152 @:this can't happen box ends}{\quad\\{box\_ends}@>
10153 z=x_coord(p)+mp->cur_x+mp_take_fraction(mp, d,dx);
10154 if ( z<minx_val(h) ) minx_val(h)=z;
10155 if ( z>maxx_val(h) ) maxx_val(h)=z;
10156 z=y_coord(p)+mp->cur_y+mp_take_fraction(mp, d,dy);
10157 if ( z<miny_val(h) ) miny_val(h)=z;
10158 if ( z>maxy_val(h) ) maxy_val(h)=z
10160 @ @<Advance |p| to the end of the path and make |q| the previous knot@>=
10164 } while (right_type(p)!=mp_endpoint)
10166 @ The major difficulty in finding the bounding box of an edge structure is the
10167 effect of clipping paths. We treat them conservatively by only clipping to the
10168 clipping path's bounding box, but this still
10169 requires recursive calls to |set_bbox| in order to find the bounding box of
10171 the objects to be clipped. Such calls are distinguished by the fact that the
10172 boolean parameter |top_level| is false.
10174 @c void mp_set_bbox (MP mp,pointer h, boolean top_level) {
10175 pointer p; /* a graphical object being considered */
10176 scaled sminx,sminy,smaxx,smaxy;
10177 /* for saving the bounding box during recursive calls */
10178 scaled x0,x1,y0,y1; /* temporary registers */
10179 integer lev; /* nesting level for |mp_start_bounds_code| nodes */
10180 @<Wipe out any existing bounding box information if |bbtype(h)| is
10181 incompatible with |internal[mp_true_corners]|@>;
10182 while ( link(bblast(h))!=null ) {
10186 case mp_stop_clip_code:
10187 if ( top_level ) mp_confusion(mp, "bbox"); else return;
10188 @:this can't happen bbox}{\quad bbox@>
10190 @<Other cases for updating the bounding box based on the type of object |p|@>;
10191 } /* all cases are enumerated above */
10193 if ( ! top_level ) mp_confusion(mp, "bbox");
10196 @ @<Internal library declarations@>=
10197 void mp_set_bbox (MP mp,pointer h, boolean top_level);
10199 @ @<Wipe out any existing bounding box information if |bbtype(h)| is...@>=
10200 switch (bbtype(h)) {
10204 if ( mp->internal[mp_true_corners]>0 ) mp_init_bbox(mp, h);
10207 if ( mp->internal[mp_true_corners]<=0 ) mp_init_bbox(mp, h);
10209 } /* there are no other cases */
10211 @ @<Other cases for updating the bounding box...@>=
10213 mp_path_bbox(mp, path_p(p));
10214 if ( pen_p(p)!=null ) {
10217 mp_pen_bbox(mp, pen_p(p));
10223 mp_adjust_bbox(mp, h);
10226 @ @<Other cases for updating the bounding box...@>=
10227 case mp_start_bounds_code:
10228 if ( mp->internal[mp_true_corners]>0 ) {
10229 bbtype(h)=bounds_unset;
10231 bbtype(h)=bounds_set;
10232 mp_path_bbox(mp, path_p(p));
10233 mp_adjust_bbox(mp, h);
10234 @<Scan to the matching |mp_stop_bounds_code| node and update |p| and
10238 case mp_stop_bounds_code:
10239 if ( mp->internal[mp_true_corners]<=0 ) mp_confusion(mp, "bbox2");
10240 @:this can't happen bbox2}{\quad bbox2@>
10243 @ @<Scan to the matching |mp_stop_bounds_code| node and update |p| and...@>=
10246 if ( link(p)==null ) mp_confusion(mp, "bbox2");
10247 @:this can't happen bbox2}{\quad bbox2@>
10249 if ( type(p)==mp_start_bounds_code ) incr(lev);
10250 else if ( type(p)==mp_stop_bounds_code ) decr(lev);
10254 @ It saves a lot of grief here to be slightly conservative and not account for
10255 omitted parts of dashed lines. We also don't worry about the material omitted
10256 when using butt end caps. The basic computation is for round end caps and
10257 |box_ends| augments it for square end caps.
10259 @<Other cases for updating the bounding box...@>=
10260 case mp_stroked_code:
10261 mp_path_bbox(mp, path_p(p));
10264 mp_pen_bbox(mp, pen_p(p));
10269 mp_adjust_bbox(mp, h);
10270 if ( (left_type(path_p(p))==mp_endpoint)&&(lcap_val(p)==2) )
10271 mp_box_ends(mp, path_p(p), pen_p(p), h);
10274 @ The height width and depth information stored in a text node determines a
10275 rectangle that needs to be transformed according to the transformation
10276 parameters stored in the text node.
10278 @<Other cases for updating the bounding box...@>=
10280 x1=mp_take_scaled(mp, txx_val(p),width_val(p));
10281 y0=mp_take_scaled(mp, txy_val(p),-depth_val(p));
10282 y1=mp_take_scaled(mp, txy_val(p),height_val(p));
10285 if ( y0<y1 ) { minx=minx+y0; maxx=maxx+y1; }
10286 else { minx=minx+y1; maxx=maxx+y0; }
10287 if ( x1<0 ) minx=minx+x1; else maxx=maxx+x1;
10288 x1=mp_take_scaled(mp, tyx_val(p),width_val(p));
10289 y0=mp_take_scaled(mp, tyy_val(p),-depth_val(p));
10290 y1=mp_take_scaled(mp, tyy_val(p),height_val(p));
10293 if ( y0<y1 ) { miny=miny+y0; maxy=maxy+y1; }
10294 else { miny=miny+y1; maxy=maxy+y0; }
10295 if ( x1<0 ) miny=miny+x1; else maxy=maxy+x1;
10296 mp_adjust_bbox(mp, h);
10299 @ This case involves a recursive call that advances |bblast(h)| to the node of
10300 type |mp_stop_clip_code| that matches |p|.
10302 @<Other cases for updating the bounding box...@>=
10303 case mp_start_clip_code:
10304 mp_path_bbox(mp, path_p(p));
10307 sminx=minx_val(h); sminy=miny_val(h);
10308 smaxx=maxx_val(h); smaxy=maxy_val(h);
10309 @<Reinitialize the bounding box in header |h| and call |set_bbox| recursively
10310 starting at |link(p)|@>;
10311 @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,
10313 minx=sminx; miny=sminy;
10314 maxx=smaxx; maxy=smaxy;
10315 mp_adjust_bbox(mp, h);
10318 @ @<Reinitialize the bounding box in header |h| and call |set_bbox|...@>=
10319 minx_val(h)=el_gordo;
10320 miny_val(h)=el_gordo;
10321 maxx_val(h)=-el_gordo;
10322 maxy_val(h)=-el_gordo;
10323 mp_set_bbox(mp, h,false)
10325 @ @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,...@>=
10326 if ( minx_val(h)<x0 ) minx_val(h)=x0;
10327 if ( miny_val(h)<y0 ) miny_val(h)=y0;
10328 if ( maxx_val(h)>x1 ) maxx_val(h)=x1;
10329 if ( maxy_val(h)>y1 ) maxy_val(h)=y1
10331 @* \[22] Finding an envelope.
10332 When \MP\ has a path and a polygonal pen, it needs to express the desired
10333 shape in terms of things \ps\ can understand. The present task is to compute
10334 a new path that describes the region to be filled. It is convenient to
10335 define this as a two step process where the first step is determining what
10336 offset to use for each segment of the path.
10338 @ Given a pointer |c| to a cyclic path,
10339 and a pointer~|h| to the first knot of a pen polygon,
10340 the |offset_prep| routine changes the path into cubics that are
10341 associated with particular pen offsets. Thus if the cubic between |p|
10342 and~|q| is associated with the |k|th offset and the cubic between |q| and~|r|
10343 has offset |l| then |info(q)=zero_off+l-k|. (The constant |zero_off| is added
10344 to because |l-k| could be negative.)
10346 After overwriting the type information with offset differences, we no longer
10347 have a true path so we refer to the knot list returned by |offset_prep| as an
10350 Since an envelope spec only determines relative changes in pen offsets,
10351 |offset_prep| sets a global variable |spec_offset| to the relative change from
10352 |h| to the first offset.
10354 @d zero_off 16384 /* added to offset changes to make them positive */
10357 integer spec_offset; /* number of pen edges between |h| and the initial offset */
10359 @ @c @<Declare subroutines needed by |offset_prep|@>;
10360 pointer mp_offset_prep (MP mp,pointer c, pointer h) {
10361 halfword n; /* the number of vertices in the pen polygon */
10362 pointer p,q,q0,r,w, ww; /* for list manipulation */
10363 integer k_needed; /* amount to be added to |info(p)| when it is computed */
10364 pointer w0; /* a pointer to pen offset to use just before |p| */
10365 scaled dxin,dyin; /* the direction into knot |p| */
10366 integer turn_amt; /* change in pen offsets for the current cubic */
10367 @<Other local variables for |offset_prep|@>;
10369 @<Initialize the pen size~|n|@>;
10370 @<Initialize the incoming direction and pen offset at |c|@>;
10374 @<Split the cubic between |p| and |q|, if necessary, into cubics
10375 associated with single offsets, after which |q| should
10376 point to the end of the final such cubic@>;
10378 @<Advance |p| to node |q|, removing any ``dead'' cubics that
10379 might have been introduced by the splitting process@>;
10381 @<Fix the offset change in |info(c)| and set |c| to the return value of
10386 @ We shall want to keep track of where certain knots on the cyclic path
10387 wind up in the envelope spec. It doesn't suffice just to keep pointers to
10388 knot nodes because some nodes are deleted while removing dead cubics. Thus
10389 |offset_prep| updates the following pointers
10393 pointer spec_p2; /* pointers to distinguished knots */
10396 mp->spec_p1=null; mp->spec_p2=null;
10398 @ @<Initialize the pen size~|n|@>=
10405 @ Since the true incoming direction isn't known yet, we just pick a direction
10406 consistent with the pen offset~|h|. If this is wrong, it can be corrected
10409 @<Initialize the incoming direction and pen offset at |c|@>=
10410 dxin=x_coord(link(h))-x_coord(knil(h));
10411 dyin=y_coord(link(h))-y_coord(knil(h));
10412 if ( (dxin==0)&&(dyin==0) ) {
10413 dxin=y_coord(knil(h))-y_coord(h);
10414 dyin=x_coord(h)-x_coord(knil(h));
10418 @ We must be careful not to remove the only cubic in a cycle.
10420 But we must also be careful for another reason. If the user-supplied
10421 path starts with a set of degenerate cubics, the target node |q| can
10422 be collapsed to the initial node |p| which might be the same as the
10423 initial node |c| of the curve. This would cause the |offset_prep| routine
10424 to bail out too early, causing distress later on. (See for example
10425 the testcase reported by Bogus\l{}aw Jackowski in tracker id 267, case 52c
10428 @<Advance |p| to node |q|, removing any ``dead'' cubics...@>=
10432 if ( x_coord(p)==right_x(p) && y_coord(p)==right_y(p) &&
10433 x_coord(p)==left_x(r) && y_coord(p)==left_y(r) &&
10434 x_coord(p)==x_coord(r) && y_coord(p)==y_coord(r) &&
10436 @<Remove the cubic following |p| and update the data structures
10437 to merge |r| into |p|@>;
10441 /* Check if we removed too much */
10445 @ @<Remove the cubic following |p| and update the data structures...@>=
10446 { k_needed=info(p)-zero_off;
10450 info(p)=k_needed+info(r);
10453 if ( r==c ) { info(p)=info(c); c=p; };
10454 if ( r==mp->spec_p1 ) mp->spec_p1=p;
10455 if ( r==mp->spec_p2 ) mp->spec_p2=p;
10456 r=p; mp_remove_cubic(mp, p);
10459 @ Not setting the |info| field of the newly created knot allows the splitting
10460 routine to work for paths.
10462 @<Declare subroutines needed by |offset_prep|@>=
10463 void mp_split_cubic (MP mp,pointer p, fraction t) { /* splits the cubic after |p| */
10464 scaled v; /* an intermediate value */
10465 pointer q,r; /* for list manipulation */
10466 q=link(p); r=mp_get_node(mp, knot_node_size); link(p)=r; link(r)=q;
10467 originator(r)=mp_program_code;
10468 left_type(r)=mp_explicit; right_type(r)=mp_explicit;
10469 v=t_of_the_way(right_x(p),left_x(q));
10470 right_x(p)=t_of_the_way(x_coord(p),right_x(p));
10471 left_x(q)=t_of_the_way(left_x(q),x_coord(q));
10472 left_x(r)=t_of_the_way(right_x(p),v);
10473 right_x(r)=t_of_the_way(v,left_x(q));
10474 x_coord(r)=t_of_the_way(left_x(r),right_x(r));
10475 v=t_of_the_way(right_y(p),left_y(q));
10476 right_y(p)=t_of_the_way(y_coord(p),right_y(p));
10477 left_y(q)=t_of_the_way(left_y(q),y_coord(q));
10478 left_y(r)=t_of_the_way(right_y(p),v);
10479 right_y(r)=t_of_the_way(v,left_y(q));
10480 y_coord(r)=t_of_the_way(left_y(r),right_y(r));
10483 @ This does not set |info(p)| or |right_type(p)|.
10485 @<Declare subroutines needed by |offset_prep|@>=
10486 void mp_remove_cubic (MP mp,pointer p) { /* removes the dead cubic following~|p| */
10487 pointer q; /* the node that disappears */
10488 q=link(p); link(p)=link(q);
10489 right_x(p)=right_x(q); right_y(p)=right_y(q);
10490 mp_free_node(mp, q,knot_node_size);
10493 @ Let $d\prec d'$ mean that the counter-clockwise angle from $d$ to~$d'$ is
10494 strictly between zero and $180^\circ$. Then we can define $d\preceq d'$ to
10495 mean that the angle could be zero or $180^\circ$. If $w_k=(u_k,v_k)$ is the
10496 $k$th pen offset, the $k$th pen edge direction is defined by the formula
10497 $$d_k=(u\k-u_k,\,v\k-v_k).$$
10498 When listed by increasing $k$, these directions occur in counter-clockwise
10499 order so that $d_k\preceq d\k$ for all~$k$.
10500 The goal of |offset_prep| is to find an offset index~|k| to associate with
10501 each cubic, such that the direction $d(t)$ of the cubic satisfies
10502 $$d_{k-1}\preceq d(t)\preceq d_k\qquad\hbox{for $0\le t\le 1$.}\eqno(*)$$
10503 We may have to split a cubic into many pieces before each
10504 piece corresponds to a unique offset.
10506 @<Split the cubic between |p| and |q|, if necessary, into cubics...@>=
10507 info(p)=zero_off+k_needed;
10509 @<Prepare for derivative computations;
10510 |goto not_found| if the current cubic is dead@>;
10511 @<Find the initial direction |(dx,dy)|@>;
10512 @<Update |info(p)| and find the offset $w_k$ such that
10513 $d_{k-1}\preceq(\\{dx},\\{dy})\prec d_k$; also advance |w0| for
10514 the direction change at |p|@>;
10515 @<Find the final direction |(dxin,dyin)|@>;
10516 @<Decide on the net change in pen offsets and set |turn_amt|@>;
10517 @<Complete the offset splitting process@>;
10518 w0=mp_pen_walk(mp, w0,turn_amt)
10520 @ @<Declare subroutines needed by |offset_prep|@>=
10521 pointer mp_pen_walk (MP mp,pointer w, integer k) {
10522 /* walk |k| steps around a pen from |w| */
10523 while ( k>0 ) { w=link(w); decr(k); };
10524 while ( k<0 ) { w=knil(w); incr(k); };
10528 @ The direction of a cubic $B(z_0,z_1,z_2,z_3;t)=\bigl(x(t),y(t)\bigr)$ can be
10529 calculated from the quadratic polynomials
10530 ${1\over3}x'(t)=B(x_1-x_0,x_2-x_1,x_3-x_2;t)$ and
10531 ${1\over3}y'(t)=B(y_1-y_0,y_2-y_1,y_3-y_2;t)$.
10532 Since we may be calculating directions from several cubics
10533 split from the current one, it is desirable to do these calculations
10534 without losing too much precision. ``Scaled up'' values of the
10535 derivatives, which will be less tainted by accumulated errors than
10536 derivatives found from the cubics themselves, are maintained in
10537 local variables |x0|, |x1|, and |x2|, representing $X_0=2^l(x_1-x_0)$,
10538 $X_1=2^l(x_2-x_1)$, and $X_2=2^l(x_3-x_2)$; similarly |y0|, |y1|, and~|y2|
10539 represent $Y_0=2^l(y_1-y_0)$, $Y_1=2^l(y_2-y_1)$, and $Y_2=2^l(y_3-y_2)$.
10541 @<Other local variables for |offset_prep|@>=
10542 integer x0,x1,x2,y0,y1,y2; /* representatives of derivatives */
10543 integer t0,t1,t2; /* coefficients of polynomial for slope testing */
10544 integer du,dv,dx,dy; /* for directions of the pen and the curve */
10545 integer dx0,dy0; /* initial direction for the first cubic in the curve */
10546 integer max_coef; /* used while scaling */
10547 integer x0a,x1a,x2a,y0a,y1a,y2a; /* intermediate values */
10548 fraction t; /* where the derivative passes through zero */
10549 fraction s; /* a temporary value */
10551 @ @<Prepare for derivative computations...@>=
10552 x0=right_x(p)-x_coord(p);
10553 x2=x_coord(q)-left_x(q);
10554 x1=left_x(q)-right_x(p);
10555 y0=right_y(p)-y_coord(p); y2=y_coord(q)-left_y(q);
10556 y1=left_y(q)-right_y(p);
10558 if ( abs(x1)>max_coef ) max_coef=abs(x1);
10559 if ( abs(x2)>max_coef ) max_coef=abs(x2);
10560 if ( abs(y0)>max_coef ) max_coef=abs(y0);
10561 if ( abs(y1)>max_coef ) max_coef=abs(y1);
10562 if ( abs(y2)>max_coef ) max_coef=abs(y2);
10563 if ( max_coef==0 ) goto NOT_FOUND;
10564 while ( max_coef<fraction_half ) {
10566 double(x0); double(x1); double(x2);
10567 double(y0); double(y1); double(y2);
10570 @ Let us first solve a special case of the problem: Suppose we
10571 know an index~$k$ such that either (i)~$d(t)\succeq d_{k-1}$ for all~$t$
10572 and $d(0)\prec d_k$, or (ii)~$d(t)\preceq d_k$ for all~$t$ and
10573 $d(0)\succ d_{k-1}$.
10574 Then, in a sense, we're halfway done, since one of the two relations
10575 in $(*)$ is satisfied, and the other couldn't be satisfied for
10576 any other value of~|k|.
10578 Actually, the conditions can be relaxed somewhat since a relation such as
10579 $d(t)\succeq d_{k-1}$ restricts $d(t)$ to a half plane when all that really
10580 matters is whether $d(t)$ crosses the ray in the $d_{k-1}$ direction from
10581 the origin. The condition for case~(i) becomes $d_{k-1}\preceq d(0)\prec d_k$
10582 and $d(t)$ never crosses the $d_{k-1}$ ray in the clockwise direction.
10583 Case~(ii) is similar except $d(t)$ cannot cross the $d_k$ ray in the
10584 counterclockwise direction.
10586 The |fin_offset_prep| subroutine solves the stated subproblem.
10587 It has a parameter called |rise| that is |1| in
10588 case~(i), |-1| in case~(ii). Parameters |x0| through |y2| represent
10589 the derivative of the cubic following |p|.
10590 The |w| parameter should point to offset~$w_k$ and |info(p)| should already
10591 be set properly. The |turn_amt| parameter gives the absolute value of the
10592 overall net change in pen offsets.
10594 @<Declare subroutines needed by |offset_prep|@>=
10595 void mp_fin_offset_prep (MP mp,pointer p, pointer w, integer
10596 x0,integer x1, integer x2, integer y0, integer y1, integer y2,
10597 integer rise, integer turn_amt) {
10598 pointer ww; /* for list manipulation */
10599 scaled du,dv; /* for slope calculation */
10600 integer t0,t1,t2; /* test coefficients */
10601 fraction t; /* place where the derivative passes a critical slope */
10602 fraction s; /* slope or reciprocal slope */
10603 integer v; /* intermediate value for updating |x0..y2| */
10604 pointer q; /* original |link(p)| */
10607 if ( rise>0 ) ww=link(w); /* a pointer to $w\k$ */
10608 else ww=knil(w); /* a pointer to $w_{k-1}$ */
10609 @<Compute test coefficients |(t0,t1,t2)|
10610 for $d(t)$ versus $d_k$ or $d_{k-1}$@>;
10611 t=mp_crossing_point(mp, t0,t1,t2);
10612 if ( t>=fraction_one ) {
10613 if ( turn_amt>0 ) t=fraction_one; else return;
10615 @<Split the cubic at $t$,
10616 and split off another cubic if the derivative crosses back@>;
10621 @ We want $B(\\{t0},\\{t1},\\{t2};t)$ to be the dot product of $d(t)$ with a
10622 $-90^\circ$ rotation of the vector from |w| to |ww|. This makes the resulting
10623 function cross from positive to negative when $d_{k-1}\preceq d(t)\preceq d_k$
10626 @<Compute test coefficients |(t0,t1,t2)| for $d(t)$ versus...@>=
10627 du=x_coord(ww)-x_coord(w); dv=y_coord(ww)-y_coord(w);
10628 if ( abs(du)>=abs(dv) ) {
10629 s=mp_make_fraction(mp, dv,du);
10630 t0=mp_take_fraction(mp, x0,s)-y0;
10631 t1=mp_take_fraction(mp, x1,s)-y1;
10632 t2=mp_take_fraction(mp, x2,s)-y2;
10633 if ( du<0 ) { negate(t0); negate(t1); negate(t2); }
10635 s=mp_make_fraction(mp, du,dv);
10636 t0=x0-mp_take_fraction(mp, y0,s);
10637 t1=x1-mp_take_fraction(mp, y1,s);
10638 t2=x2-mp_take_fraction(mp, y2,s);
10639 if ( dv<0 ) { negate(t0); negate(t1); negate(t2); }
10641 if ( t0<0 ) t0=0 /* should be positive without rounding error */
10643 @ The curve has crossed $d_k$ or $d_{k-1}$; its initial segment satisfies
10644 $(*)$, and it might cross again, yielding another solution of $(*)$.
10646 @<Split the cubic at $t$, and split off another...@>=
10648 mp_split_cubic(mp, p,t); p=link(p); info(p)=zero_off+rise;
10650 v=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10651 x0=t_of_the_way(v,x1);
10652 v=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10653 y0=t_of_the_way(v,y1);
10654 if ( turn_amt<0 ) {
10655 t1=t_of_the_way(t1,t2);
10656 if ( t1>0 ) t1=0; /* without rounding error, |t1| would be |<=0| */
10657 t=mp_crossing_point(mp, 0,-t1,-t2);
10658 if ( t>fraction_one ) t=fraction_one;
10660 if ( (t==fraction_one)&&(link(p)!=q) ) {
10661 info(link(p))=info(link(p))-rise;
10663 mp_split_cubic(mp, p,t); info(link(p))=zero_off-rise;
10664 v=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10665 x2=t_of_the_way(x1,v);
10666 v=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10667 y2=t_of_the_way(y1,v);
10672 @ Now we must consider the general problem of |offset_prep|, when
10673 nothing is known about a given cubic. We start by finding its
10674 direction in the vicinity of |t=0|.
10676 If $z'(t)=0$, the given cubic is numerically unstable but |offset_prep|
10677 has not yet introduced any more numerical errors. Thus we can compute
10678 the true initial direction for the given cubic, even if it is almost
10681 @<Find the initial direction |(dx,dy)|@>=
10683 if ( dx==0 && dy==0 ) {
10685 if ( dx==0 && dy==0 ) {
10689 if ( p==c ) { dx0=dx; dy0=dy; }
10691 @ @<Find the final direction |(dxin,dyin)|@>=
10693 if ( dxin==0 && dyin==0 ) {
10695 if ( dxin==0 && dyin==0 ) {
10700 @ The next step is to bracket the initial direction between consecutive
10701 edges of the pen polygon. We must be careful to turn clockwise only if
10702 this makes the turn less than $180^\circ$. (A $180^\circ$ turn must be
10703 counter-clockwise in order to make \&{doublepath} envelopes come out
10704 @:double_path_}{\&{doublepath} primitive@>
10705 right.) This code depends on |w0| being the offset for |(dxin,dyin)|.
10707 @<Update |info(p)| and find the offset $w_k$ such that...@>=
10708 turn_amt=mp_get_turn_amt(mp,w0,dx,dy,(mp_ab_vs_cd(mp, dy,dxin,dx,dyin)>=0));
10709 w=mp_pen_walk(mp, w0, turn_amt);
10711 info(p)=info(p)+turn_amt
10713 @ Decide how many pen offsets to go away from |w| in order to find the offset
10714 for |(dx,dy)|, going counterclockwise if |ccw| is |true|. This assumes that
10715 |w| is the offset for some direction $(x',y')$ from which the angle to |(dx,dy)|
10716 in the sense determined by |ccw| is less than or equal to $180^\circ$.
10718 If the pen polygon has only two edges, they could both be parallel
10719 to |(dx,dy)|. In this case, we must be careful to stop after crossing the first
10720 such edge in order to avoid an infinite loop.
10722 @<Declare subroutines needed by |offset_prep|@>=
10723 integer mp_get_turn_amt (MP mp,pointer w, scaled dx,
10724 scaled dy, boolean ccw) {
10725 pointer ww; /* a neighbor of knot~|w| */
10726 integer s; /* turn amount so far */
10727 integer t; /* |ab_vs_cd| result */
10732 t=mp_ab_vs_cd(mp, dy,(x_coord(ww)-x_coord(w)),
10733 dx,(y_coord(ww)-y_coord(w)));
10740 while ( mp_ab_vs_cd(mp, dy,(x_coord(w)-x_coord(ww)),
10741 dx,(y_coord(w)-y_coord(ww))) < 0) {
10749 @ When we're all done, the final offset is |w0| and the final curve direction
10750 is |(dxin,dyin)|. With this knowledge of the incoming direction at |c|, we
10751 can correct |info(c)| which was erroneously based on an incoming offset
10754 @d fix_by(A) info(c)=info(c)+(A)
10756 @<Fix the offset change in |info(c)| and set |c| to the return value of...@>=
10757 mp->spec_offset=info(c)-zero_off;
10758 if ( link(c)==c ) {
10759 info(c)=zero_off+n;
10762 while ( w0!=h ) { fix_by(1); w0=link(w0); };
10763 while ( info(c)<=zero_off-n ) fix_by(n);
10764 while ( info(c)>zero_off ) fix_by(-n);
10765 if ( (info(c)!=zero_off)&&(mp_ab_vs_cd(mp, dy0,dxin,dx0,dyin)>=0) ) fix_by(n);
10769 @ Finally we want to reduce the general problem to situations that
10770 |fin_offset_prep| can handle. We split the cubic into at most three parts
10771 with respect to $d_{k-1}$, and apply |fin_offset_prep| to each part.
10773 @<Complete the offset splitting process@>=
10775 @<Compute test coeff...@>;
10776 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set
10777 |t:=fraction_one+1|@>;
10778 if ( t>fraction_one ) {
10779 mp_fin_offset_prep(mp, p,w,x0,x1,x2,y0,y1,y2,1,turn_amt);
10781 mp_split_cubic(mp, p,t); r=link(p);
10782 x1a=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10783 x2a=t_of_the_way(x1a,x1);
10784 y1a=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10785 y2a=t_of_the_way(y1a,y1);
10786 mp_fin_offset_prep(mp, p,w,x0,x1a,x2a,y0,y1a,y2a,1,0); x0=x2a; y0=y2a;
10787 info(r)=zero_off-1;
10788 if ( turn_amt>=0 ) {
10789 t1=t_of_the_way(t1,t2);
10791 t=mp_crossing_point(mp, 0,-t1,-t2);
10792 if ( t>fraction_one ) t=fraction_one;
10793 @<Split off another rising cubic for |fin_offset_prep|@>;
10794 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,0);
10796 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,(-1-turn_amt));
10800 @ @<Split off another rising cubic for |fin_offset_prep|@>=
10801 mp_split_cubic(mp, r,t); info(link(r))=zero_off+1;
10802 x1a=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10803 x0a=t_of_the_way(x1,x1a);
10804 y1a=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10805 y0a=t_of_the_way(y1,y1a);
10806 mp_fin_offset_prep(mp, link(r),w,x0a,x1a,x2,y0a,y1a,y2,1,turn_amt);
10809 @ At this point, the direction of the incoming pen edge is |(-du,-dv)|.
10810 When the component of $d(t)$ perpendicular to |(-du,-dv)| crosses zero, we
10811 need to decide whether the directions are parallel or antiparallel. We
10812 can test this by finding the dot product of $d(t)$ and |(-du,-dv)|, but this
10813 should be avoided when the value of |turn_amt| already determines the
10814 answer. If |t2<0|, there is one crossing and it is antiparallel only if
10815 |turn_amt>=0|. If |turn_amt<0|, there should always be at least one
10816 crossing and the first crossing cannot be antiparallel.
10818 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set...@>=
10819 t=mp_crossing_point(mp, t0,t1,t2);
10820 if ( turn_amt>=0 ) {
10824 u0=t_of_the_way(x0,x1);
10825 u1=t_of_the_way(x1,x2);
10826 ss=mp_take_fraction(mp, -du,t_of_the_way(u0,u1));
10827 v0=t_of_the_way(y0,y1);
10828 v1=t_of_the_way(y1,y2);
10829 ss=ss+mp_take_fraction(mp, -dv,t_of_the_way(v0,v1));
10830 if ( ss<0 ) t=fraction_one+1;
10832 } else if ( t>fraction_one ) {
10836 @ @<Other local variables for |offset_prep|@>=
10837 integer u0,u1,v0,v1; /* intermediate values for $d(t)$ calculation */
10838 integer ss = 0; /* the part of the dot product computed so far */
10839 int d_sign; /* sign of overall change in direction for this cubic */
10841 @ If the cubic almost has a cusp, it is a numerically ill-conditioned
10842 problem to decide which way it loops around but that's OK as long we're
10843 consistent. To make \&{doublepath} envelopes work properly, reversing
10844 the path should always change the sign of |turn_amt|.
10846 @<Decide on the net change in pen offsets and set |turn_amt|@>=
10847 d_sign=mp_ab_vs_cd(mp, dx,dyin, dxin,dy);
10849 @<Check rotation direction based on node position@>
10853 if ( dy>0 ) d_sign=1; else d_sign=-1;
10855 if ( dx>0 ) d_sign=1; else d_sign=-1;
10858 @<Make |ss| negative if and only if the total change in direction is
10859 more than $180^\circ$@>;
10860 turn_amt=mp_get_turn_amt(mp, w, dxin, dyin, (d_sign>0));
10861 if ( ss<0 ) turn_amt=turn_amt-d_sign*n
10863 @ We check rotation direction by looking at the vector connecting the current
10864 node with the next. If its angle with incoming and outgoing tangents has the
10865 same sign, we pick this as |d_sign|, since it means we have a flex, not a cusp.
10866 Otherwise we proceed to the cusp code.
10868 @<Check rotation direction based on node position@>=
10869 u0=x_coord(q)-x_coord(p);
10870 u1=y_coord(q)-y_coord(p);
10871 d_sign = half(mp_ab_vs_cd(mp, dx, u1, u0, dy)+
10872 mp_ab_vs_cd(mp, u0, dyin, dxin, u1));
10874 @ In order to be invariant under path reversal, the result of this computation
10875 should not change when |x0|, |y0|, $\ldots$ are all negated and |(x0,y0)| is
10876 then swapped with |(x2,y2)|. We make use of the identities
10877 |take_fraction(-a,-b)=take_fraction(a,b)| and
10878 |t_of_the_way(-a,-b)=-(t_of_the_way(a,b))|.
10880 @<Make |ss| negative if and only if the total change in direction is...@>=
10881 t0=half(mp_take_fraction(mp, x0,y2))-half(mp_take_fraction(mp, x2,y0));
10882 t1=half(mp_take_fraction(mp, x1,(y0+y2)))-half(mp_take_fraction(mp, y1,(x0+x2)));
10883 if ( t0==0 ) t0=d_sign; /* path reversal always negates |d_sign| */
10885 t=mp_crossing_point(mp, t0,t1,-t0);
10886 u0=t_of_the_way(x0,x1);
10887 u1=t_of_the_way(x1,x2);
10888 v0=t_of_the_way(y0,y1);
10889 v1=t_of_the_way(y1,y2);
10891 t=mp_crossing_point(mp, -t0,t1,t0);
10892 u0=t_of_the_way(x2,x1);
10893 u1=t_of_the_way(x1,x0);
10894 v0=t_of_the_way(y2,y1);
10895 v1=t_of_the_way(y1,y0);
10897 ss=mp_take_fraction(mp, (x0+x2),t_of_the_way(u0,u1))+
10898 mp_take_fraction(mp, (y0+y2),t_of_the_way(v0,v1))
10900 @ Here's a routine that prints an envelope spec in symbolic form. It assumes
10901 that the |cur_pen| has not been walked around to the first offset.
10904 void mp_print_spec (MP mp,pointer cur_spec, pointer cur_pen, char *s) {
10905 pointer p,q; /* list traversal */
10906 pointer w; /* the current pen offset */
10907 mp_print_diagnostic(mp, "Envelope spec",s,true);
10908 p=cur_spec; w=mp_pen_walk(mp, cur_pen,mp->spec_offset);
10910 mp_print_two(mp, x_coord(cur_spec),y_coord(cur_spec));
10911 mp_print(mp, " % beginning with offset ");
10912 mp_print_two(mp, x_coord(w),y_coord(w));
10916 @<Print the cubic between |p| and |q|@>;
10918 if ((p==cur_spec) || (info(p)!=zero_off))
10921 if ( info(p)!=zero_off ) {
10922 @<Update |w| as indicated by |info(p)| and print an explanation@>;
10924 } while (p!=cur_spec);
10925 mp_print_nl(mp, " & cycle");
10926 mp_end_diagnostic(mp, true);
10929 @ @<Update |w| as indicated by |info(p)| and print an explanation@>=
10931 w=mp_pen_walk(mp, w, (info(p)-zero_off));
10932 mp_print(mp, " % ");
10933 if ( info(p)>zero_off ) mp_print(mp, "counter");
10934 mp_print(mp, "clockwise to offset ");
10935 mp_print_two(mp, x_coord(w),y_coord(w));
10938 @ @<Print the cubic between |p| and |q|@>=
10940 mp_print_nl(mp, " ..controls ");
10941 mp_print_two(mp, right_x(p),right_y(p));
10942 mp_print(mp, " and ");
10943 mp_print_two(mp, left_x(q),left_y(q));
10944 mp_print_nl(mp, " ..");
10945 mp_print_two(mp, x_coord(q),y_coord(q));
10948 @ Once we have an envelope spec, the remaining task to construct the actual
10949 envelope by offsetting each cubic as determined by the |info| fields in
10950 the knots. First we use |offset_prep| to convert the |c| into an envelope
10951 spec. Then we add the offsets so that |c| becomes a cyclic path that represents
10954 The |ljoin| and |miterlim| parameters control the treatment of points where the
10955 pen offset changes, and |lcap| controls the endpoints of a \&{doublepath}.
10956 The endpoints are easily located because |c| is given in undoubled form
10957 and then doubled in this procedure. We use |spec_p1| and |spec_p2| to keep
10958 track of the endpoints and treat them like very sharp corners.
10959 Butt end caps are treated like beveled joins; round end caps are treated like
10960 round joins; and square end caps are achieved by setting |join_type:=3|.
10962 None of these parameters apply to inside joins where the convolution tracing
10963 has retrograde lines. In such cases we use a simple connect-the-endpoints
10964 approach that is achieved by setting |join_type:=2|.
10966 @c @<Declare a function called |insert_knot|@>;
10967 pointer mp_make_envelope (MP mp,pointer c, pointer h, small_number ljoin,
10968 small_number lcap, scaled miterlim) {
10969 pointer p,q,r,q0; /* for manipulating the path */
10970 int join_type=0; /* codes |0..3| for mitered, round, beveled, or square */
10971 pointer w,w0; /* the pen knot for the current offset */
10972 scaled qx,qy; /* unshifted coordinates of |q| */
10973 halfword k,k0; /* controls pen edge insertion */
10974 @<Other local variables for |make_envelope|@>;
10975 dxin=0; dyin=0; dxout=0; dyout=0;
10976 mp->spec_p1=null; mp->spec_p2=null;
10977 @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>;
10978 @<Use |offset_prep| to compute the envelope spec then walk |h| around to
10979 the initial offset@>;
10984 qx=x_coord(q); qy=y_coord(q);
10987 if ( k!=zero_off ) {
10988 @<Set |join_type| to indicate how to handle offset changes at~|q|@>;
10990 @<Add offset |w| to the cubic from |p| to |q|@>;
10991 while ( k!=zero_off ) {
10992 @<Step |w| and move |k| one step closer to |zero_off|@>;
10993 if ( (join_type==1)||(k==zero_off) )
10994 q=mp_insert_knot(mp, q,qx+x_coord(w),qy+y_coord(w));
10996 if ( q!=link(p) ) {
10997 @<Set |p=link(p)| and add knots between |p| and |q| as
10998 required by |join_type|@>;
11005 @ @<Use |offset_prep| to compute the envelope spec then walk |h| around to...@>=
11006 c=mp_offset_prep(mp, c,h);
11007 if ( mp->internal[mp_tracing_specs]>0 )
11008 mp_print_spec(mp, c,h,"");
11009 h=mp_pen_walk(mp, h,mp->spec_offset)
11011 @ Mitered and squared-off joins depend on path directions that are difficult to
11012 compute for degenerate cubics. The envelope spec computed by |offset_prep| can
11013 have degenerate cubics only if the entire cycle collapses to a single
11014 degenerate cubic. Setting |join_type:=2| in this case makes the computed
11015 envelope degenerate as well.
11017 @<Set |join_type| to indicate how to handle offset changes at~|q|@>=
11018 if ( k<zero_off ) {
11021 if ( (q!=mp->spec_p1)&&(q!=mp->spec_p2) ) join_type=ljoin;
11022 else if ( lcap==2 ) join_type=3;
11023 else join_type=2-lcap;
11024 if ( (join_type==0)||(join_type==3) ) {
11025 @<Set the incoming and outgoing directions at |q|; in case of
11026 degeneracy set |join_type:=2|@>;
11027 if ( join_type==0 ) {
11028 @<If |miterlim| is less than the secant of half the angle at |q|
11029 then set |join_type:=2|@>;
11034 @ @<If |miterlim| is less than the secant of half the angle at |q|...@>=
11036 tmp=mp_take_fraction(mp, miterlim,fraction_half+
11037 half(mp_take_fraction(mp, dxin,dxout)+mp_take_fraction(mp, dyin,dyout)));
11039 if ( mp_take_scaled(mp, miterlim,tmp)<unity ) join_type=2;
11042 @ @<Other local variables for |make_envelope|@>=
11043 fraction dxin,dyin,dxout,dyout; /* directions at |q| when square or mitered */
11044 scaled tmp; /* a temporary value */
11046 @ The coordinates of |p| have already been shifted unless |p| is the first
11047 knot in which case they get shifted at the very end.
11049 @<Add offset |w| to the cubic from |p| to |q|@>=
11050 right_x(p)=right_x(p)+x_coord(w);
11051 right_y(p)=right_y(p)+y_coord(w);
11052 left_x(q)=left_x(q)+x_coord(w);
11053 left_y(q)=left_y(q)+y_coord(w);
11054 x_coord(q)=x_coord(q)+x_coord(w);
11055 y_coord(q)=y_coord(q)+y_coord(w);
11056 left_type(q)=mp_explicit;
11057 right_type(q)=mp_explicit
11059 @ @<Step |w| and move |k| one step closer to |zero_off|@>=
11060 if ( k>zero_off ){ w=link(w); decr(k); }
11061 else { w=knil(w); incr(k); }
11063 @ The cubic from |q| to the new knot at |(x,y)| becomes a line segment and
11064 the |right_x| and |right_y| fields of |r| are set from |q|. This is done in
11065 case the cubic containing these control points is ``yet to be examined.''
11067 @<Declare a function called |insert_knot|@>=
11068 pointer mp_insert_knot (MP mp,pointer q, scaled x, scaled y) {
11069 /* returns the inserted knot */
11070 pointer r; /* the new knot */
11071 r=mp_get_node(mp, knot_node_size);
11072 link(r)=link(q); link(q)=r;
11073 right_x(r)=right_x(q);
11074 right_y(r)=right_y(q);
11077 right_x(q)=x_coord(q);
11078 right_y(q)=y_coord(q);
11079 left_x(r)=x_coord(r);
11080 left_y(r)=y_coord(r);
11081 left_type(r)=mp_explicit;
11082 right_type(r)=mp_explicit;
11083 originator(r)=mp_program_code;
11087 @ After setting |p:=link(p)|, either |join_type=1| or |q=link(p)|.
11089 @<Set |p=link(p)| and add knots between |p| and |q| as...@>=
11092 if ( (join_type==0)||(join_type==3) ) {
11093 if ( join_type==0 ) {
11094 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>
11096 @<Make |r| the last of two knots inserted between |p| and |q| to form a
11100 right_x(r)=x_coord(r);
11101 right_y(r)=y_coord(r);
11106 @ For very small angles, adding a knot is unnecessary and would cause numerical
11107 problems, so we just set |r:=null| in that case.
11109 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>=
11111 det=mp_take_fraction(mp, dyout,dxin)-mp_take_fraction(mp, dxout,dyin);
11112 if ( abs(det)<26844 ) {
11113 r=null; /* sine $<10^{-4}$ */
11115 tmp=mp_take_fraction(mp, x_coord(q)-x_coord(p),dyout)-
11116 mp_take_fraction(mp, y_coord(q)-y_coord(p),dxout);
11117 tmp=mp_make_fraction(mp, tmp,det);
11118 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11119 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11123 @ @<Other local variables for |make_envelope|@>=
11124 fraction det; /* a determinant used for mitered join calculations */
11126 @ @<Make |r| the last of two knots inserted between |p| and |q| to form a...@>=
11128 ht_x=y_coord(w)-y_coord(w0);
11129 ht_y=x_coord(w0)-x_coord(w);
11130 while ( (abs(ht_x)<fraction_half)&&(abs(ht_y)<fraction_half) ) {
11131 ht_x+=ht_x; ht_y+=ht_y;
11133 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range dot
11134 product with |(ht_x,ht_y)|@>;
11135 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxin,ht_x)+
11136 mp_take_fraction(mp, dyin,ht_y));
11137 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11138 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11139 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxout,ht_x)+
11140 mp_take_fraction(mp, dyout,ht_y));
11141 r=mp_insert_knot(mp, r,x_coord(q)+mp_take_fraction(mp, tmp,dxout),
11142 y_coord(q)+mp_take_fraction(mp, tmp,dyout));
11145 @ @<Other local variables for |make_envelope|@>=
11146 fraction ht_x,ht_y; /* perpendicular to the segment from |p| to |q| */
11147 scaled max_ht; /* maximum height of the pen polygon above the |w0|-|w| line */
11148 halfword kk; /* keeps track of the pen vertices being scanned */
11149 pointer ww; /* the pen vertex being tested */
11151 @ The dot product of the vector from |w0| to |ww| with |(ht_x,ht_y)| ranges
11152 from zero to |max_ht|.
11154 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range...@>=
11159 @<Step |ww| and move |kk| one step closer to |k0|@>;
11160 if ( kk==k0 ) break;
11161 tmp=mp_take_fraction(mp, (x_coord(ww)-x_coord(w0)),ht_x)+
11162 mp_take_fraction(mp, (y_coord(ww)-y_coord(w0)),ht_y);
11163 if ( tmp>max_ht ) max_ht=tmp;
11167 @ @<Step |ww| and move |kk| one step closer to |k0|@>=
11168 if ( kk>k0 ) { ww=link(ww); decr(kk); }
11169 else { ww=knil(ww); incr(kk); }
11171 @ @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>=
11172 if ( left_type(c)==mp_endpoint ) {
11173 mp->spec_p1=mp_htap_ypoc(mp, c);
11174 mp->spec_p2=mp->path_tail;
11175 originator(mp->spec_p1)=mp_program_code;
11176 link(mp->spec_p2)=link(mp->spec_p1);
11177 link(mp->spec_p1)=c;
11178 mp_remove_cubic(mp, mp->spec_p1);
11180 if ( c!=link(c) ) {
11181 originator(mp->spec_p2)=mp_program_code;
11182 mp_remove_cubic(mp, mp->spec_p2);
11184 @<Make |c| look like a cycle of length one@>;
11188 @ @<Make |c| look like a cycle of length one@>=
11190 left_type(c)=mp_explicit; right_type(c)=mp_explicit;
11191 left_x(c)=x_coord(c); left_y(c)=y_coord(c);
11192 right_x(c)=x_coord(c); right_y(c)=y_coord(c);
11195 @ In degenerate situations we might have to look at the knot preceding~|q|.
11196 That knot is |p| but if |p<>c|, its coordinates have already been offset by |w|.
11198 @<Set the incoming and outgoing directions at |q|; in case of...@>=
11199 dxin=x_coord(q)-left_x(q);
11200 dyin=y_coord(q)-left_y(q);
11201 if ( (dxin==0)&&(dyin==0) ) {
11202 dxin=x_coord(q)-right_x(p);
11203 dyin=y_coord(q)-right_y(p);
11204 if ( (dxin==0)&&(dyin==0) ) {
11205 dxin=x_coord(q)-x_coord(p);
11206 dyin=y_coord(q)-y_coord(p);
11207 if ( p!=c ) { /* the coordinates of |p| have been offset by |w| */
11208 dxin=dxin+x_coord(w);
11209 dyin=dyin+y_coord(w);
11213 tmp=mp_pyth_add(mp, dxin,dyin);
11217 dxin=mp_make_fraction(mp, dxin,tmp);
11218 dyin=mp_make_fraction(mp, dyin,tmp);
11219 @<Set the outgoing direction at |q|@>;
11222 @ If |q=c| then the coordinates of |r| and the control points between |q|
11223 and~|r| have already been offset by |h|.
11225 @<Set the outgoing direction at |q|@>=
11226 dxout=right_x(q)-x_coord(q);
11227 dyout=right_y(q)-y_coord(q);
11228 if ( (dxout==0)&&(dyout==0) ) {
11230 dxout=left_x(r)-x_coord(q);
11231 dyout=left_y(r)-y_coord(q);
11232 if ( (dxout==0)&&(dyout==0) ) {
11233 dxout=x_coord(r)-x_coord(q);
11234 dyout=y_coord(r)-y_coord(q);
11238 dxout=dxout-x_coord(h);
11239 dyout=dyout-y_coord(h);
11241 tmp=mp_pyth_add(mp, dxout,dyout);
11242 if ( tmp==0 ) mp_confusion(mp, "degenerate spec");
11243 @:this can't happen degerate spec}{\quad degenerate spec@>
11244 dxout=mp_make_fraction(mp, dxout,tmp);
11245 dyout=mp_make_fraction(mp, dyout,tmp)
11247 @* \[23] Direction and intersection times.
11248 A path of length $n$ is defined parametrically by functions $x(t)$ and
11249 $y(t)$, for |0<=t<=n|; we can regard $t$ as the ``time'' at which the path
11250 reaches the point $\bigl(x(t),y(t)\bigr)$. In this section of the program
11251 we shall consider operations that determine special times associated with
11252 given paths: the first time that a path travels in a given direction, and
11253 a pair of times at which two paths cross each other.
11255 @ Let's start with the easier task. The function |find_direction_time| is
11256 given a direction |(x,y)| and a path starting at~|h|. If the path never
11257 travels in direction |(x,y)|, the direction time will be~|-1|; otherwise
11258 it will be nonnegative.
11260 Certain anomalous cases can arise: If |(x,y)=(0,0)|, so that the given
11261 direction is undefined, the direction time will be~0. If $\bigl(x'(t),
11262 y'(t)\bigr)=(0,0)$, so that the path direction is undefined, it will be
11263 assumed to match any given direction at time~|t|.
11265 The routine solves this problem in nondegenerate cases by rotating the path
11266 and the given direction so that |(x,y)=(1,0)|; i.e., the main task will be
11267 to find when a given path first travels ``due east.''
11270 scaled mp_find_direction_time (MP mp,scaled x, scaled y, pointer h) {
11271 scaled max; /* $\max\bigl(\vert x\vert,\vert y\vert\bigr)$ */
11272 pointer p,q; /* for list traversal */
11273 scaled n; /* the direction time at knot |p| */
11274 scaled tt; /* the direction time within a cubic */
11275 @<Other local variables for |find_direction_time|@>;
11276 @<Normalize the given direction for better accuracy;
11277 but |return| with zero result if it's zero@>;
11280 if ( right_type(p)==mp_endpoint ) break;
11282 @<Rotate the cubic between |p| and |q|; then
11283 |goto found| if the rotated cubic travels due east at some time |tt|;
11284 but |break| if an entire cyclic path has been traversed@>;
11292 @ @<Normalize the given direction for better accuracy...@>=
11293 if ( abs(x)<abs(y) ) {
11294 x=mp_make_fraction(mp, x,abs(y));
11295 if ( y>0 ) y=fraction_one; else y=-fraction_one;
11296 } else if ( x==0 ) {
11299 y=mp_make_fraction(mp, y,abs(x));
11300 if ( x>0 ) x=fraction_one; else x=-fraction_one;
11303 @ Since we're interested in the tangent directions, we work with the
11304 derivative $${\textstyle1\over3}B'(x_0,x_1,x_2,x_3;t)=
11305 B(x_1-x_0,x_2-x_1,x_3-x_2;t)$$ instead of
11306 $B(x_0,x_1,x_2,x_3;t)$ itself. The derived coefficients are also scaled up
11307 in order to achieve better accuracy.
11309 The given path may turn abruptly at a knot, and it might pass the critical
11310 tangent direction at such a time. Therefore we remember the direction |phi|
11311 in which the previous rotated cubic was traveling. (The value of |phi| will be
11312 undefined on the first cubic, i.e., when |n=0|.)
11314 @<Rotate the cubic between |p| and |q|; then...@>=
11316 @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples of the control
11317 points of the rotated derivatives@>;
11318 if ( y1==0 ) if ( x1>=0 ) goto FOUND;
11320 @<Exit to |found| if an eastward direction occurs at knot |p|@>;
11323 if ( (x3!=0)||(y3!=0) ) phi=mp_n_arg(mp, x3,y3);
11324 @<Exit to |found| if the curve whose derivatives are specified by
11325 |x1,x2,x3,y1,y2,y3| travels eastward at some time~|tt|@>
11327 @ @<Other local variables for |find_direction_time|@>=
11328 scaled x1,x2,x3,y1,y2,y3; /* multiples of rotated derivatives */
11329 angle theta,phi; /* angles of exit and entry at a knot */
11330 fraction t; /* temp storage */
11332 @ @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples...@>=
11333 x1=right_x(p)-x_coord(p); x2=left_x(q)-right_x(p);
11334 x3=x_coord(q)-left_x(q);
11335 y1=right_y(p)-y_coord(p); y2=left_y(q)-right_y(p);
11336 y3=y_coord(q)-left_y(q);
11338 if ( abs(x2)>max ) max=abs(x2);
11339 if ( abs(x3)>max ) max=abs(x3);
11340 if ( abs(y1)>max ) max=abs(y1);
11341 if ( abs(y2)>max ) max=abs(y2);
11342 if ( abs(y3)>max ) max=abs(y3);
11343 if ( max==0 ) goto FOUND;
11344 while ( max<fraction_half ){
11345 max+=max; x1+=x1; x2+=x2; x3+=x3;
11346 y1+=y1; y2+=y2; y3+=y3;
11348 t=x1; x1=mp_take_fraction(mp, x1,x)+mp_take_fraction(mp, y1,y);
11349 y1=mp_take_fraction(mp, y1,x)-mp_take_fraction(mp, t,y);
11350 t=x2; x2=mp_take_fraction(mp, x2,x)+mp_take_fraction(mp, y2,y);
11351 y2=mp_take_fraction(mp, y2,x)-mp_take_fraction(mp, t,y);
11352 t=x3; x3=mp_take_fraction(mp, x3,x)+mp_take_fraction(mp, y3,y);
11353 y3=mp_take_fraction(mp, y3,x)-mp_take_fraction(mp, t,y)
11355 @ @<Exit to |found| if an eastward direction occurs at knot |p|@>=
11356 theta=mp_n_arg(mp, x1,y1);
11357 if ( theta>=0 ) if ( phi<=0 ) if ( phi>=theta-one_eighty_deg ) goto FOUND;
11358 if ( theta<=0 ) if ( phi>=0 ) if ( phi<=theta+one_eighty_deg ) goto FOUND
11360 @ In this step we want to use the |crossing_point| routine to find the
11361 roots of the quadratic equation $B(y_1,y_2,y_3;t)=0$.
11362 Several complications arise: If the quadratic equation has a double root,
11363 the curve never crosses zero, and |crossing_point| will find nothing;
11364 this case occurs iff $y_1y_3=y_2^2$ and $y_1y_2<0$. If the quadratic
11365 equation has simple roots, or only one root, we may have to negate it
11366 so that $B(y_1,y_2,y_3;t)$ crosses from positive to negative at its first root.
11367 And finally, we need to do special things if $B(y_1,y_2,y_3;t)$ is
11370 @ @<Exit to |found| if the curve whose derivatives are specified by...@>=
11371 if ( x1<0 ) if ( x2<0 ) if ( x3<0 ) goto DONE;
11372 if ( mp_ab_vs_cd(mp, y1,y3,y2,y2)==0 ) {
11373 @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11374 either |goto found| or |goto done|@>;
11377 if ( y1<0 ) { y1=-y1; y2=-y2; y3=-y3; }
11378 else if ( y2>0 ){ y2=-y2; y3=-y3; };
11380 @<Check the places where $B(y_1,y_2,y_3;t)=0$ to see if
11381 $B(x_1,x_2,x_3;t)\ge0$@>;
11384 @ The quadratic polynomial $B(y_1,y_2,y_3;t)$ begins |>=0| and has at most
11385 two roots, because we know that it isn't identically zero.
11387 It must be admitted that the |crossing_point| routine is not perfectly accurate;
11388 rounding errors might cause it to find a root when $y_1y_3>y_2^2$, or to
11389 miss the roots when $y_1y_3<y_2^2$. The rotation process is itself
11390 subject to rounding errors. Yet this code optimistically tries to
11391 do the right thing.
11393 @d we_found_it { tt=(t+04000) / 010000; goto FOUND; }
11395 @<Check the places where $B(y_1,y_2,y_3;t)=0$...@>=
11396 t=mp_crossing_point(mp, y1,y2,y3);
11397 if ( t>fraction_one ) goto DONE;
11398 y2=t_of_the_way(y2,y3);
11399 x1=t_of_the_way(x1,x2);
11400 x2=t_of_the_way(x2,x3);
11401 x1=t_of_the_way(x1,x2);
11402 if ( x1>=0 ) we_found_it;
11404 tt=t; t=mp_crossing_point(mp, 0,-y2,-y3);
11405 if ( t>fraction_one ) goto DONE;
11406 x1=t_of_the_way(x1,x2);
11407 x2=t_of_the_way(x2,x3);
11408 if ( t_of_the_way(x1,x2)>=0 ) {
11409 t=t_of_the_way(tt,fraction_one); we_found_it;
11412 @ @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11413 either |goto found| or |goto done|@>=
11415 if ( mp_ab_vs_cd(mp, y1,y2,0,0)<0 ) {
11416 t=mp_make_fraction(mp, y1,y1-y2);
11417 x1=t_of_the_way(x1,x2);
11418 x2=t_of_the_way(x2,x3);
11419 if ( t_of_the_way(x1,x2)>=0 ) we_found_it;
11420 } else if ( y3==0 ) {
11422 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|@>;
11423 } else if ( x3>=0 ) {
11424 tt=unity; goto FOUND;
11430 @ At this point we know that the derivative of |y(t)| is identically zero,
11431 and that |x1<0|; but either |x2>=0| or |x3>=0|, so there's some hope of
11434 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|...@>=
11436 t=mp_crossing_point(mp, -x1,-x2,-x3);
11437 if ( t<=fraction_one ) we_found_it;
11438 if ( mp_ab_vs_cd(mp, x1,x3,x2,x2)<=0 ) {
11439 t=mp_make_fraction(mp, x1,x1-x2); we_found_it;
11443 @ The intersection of two cubics can be found by an interesting variant
11444 of the general bisection scheme described in the introduction to
11446 Given $w(t)=B(w_0,w_1,w_2,w_3;t)$ and $z(t)=B(z_0,z_1,z_2,z_3;t)$,
11447 we wish to find a pair of times $(t_1,t_2)$ such that $w(t_1)=z(t_2)$,
11448 if an intersection exists. First we find the smallest rectangle that
11449 encloses the points $\{w_0,w_1,w_2,w_3\}$ and check that it overlaps
11450 the smallest rectangle that encloses
11451 $\{z_0,z_1,z_2,z_3\}$; if not, the cubics certainly don't intersect.
11452 But if the rectangles do overlap, we bisect the intervals, getting
11453 new cubics $w'$ and~$w''$, $z'$~and~$z''$; the intersection routine first
11454 tries for an intersection between $w'$ and~$z'$, then (if unsuccessful)
11455 between $w'$ and~$z''$, then (if still unsuccessful) between $w''$ and~$z'$,
11456 finally (if thrice unsuccessful) between $w''$ and~$z''$. After $l$~successful
11457 levels of bisection we will have determined the intersection times $t_1$
11458 and~$t_2$ to $l$~bits of accuracy.
11460 \def\submin{_{\rm min}} \def\submax{_{\rm max}}
11461 As before, it is better to work with the numbers $W_k=2^l(w_k-w_{k-1})$
11462 and $Z_k=2^l(z_k-z_{k-1})$ rather than the coefficients $w_k$ and $z_k$
11463 themselves. We also need one other quantity, $\Delta=2^l(w_0-z_0)$,
11464 to determine when the enclosing rectangles overlap. Here's why:
11465 The $x$~coordinates of~$w(t)$ are between $u\submin$ and $u\submax$,
11466 and the $x$~coordinates of~$z(t)$ are between $x\submin$ and $x\submax$,
11467 if we write $w_k=(u_k,v_k)$ and $z_k=(x_k,y_k)$ and $u\submin=
11468 \min(u_0,u_1,u_2,u_3)$, etc. These intervals of $x$~coordinates
11469 overlap if and only if $u\submin\L x\submax$ and
11470 $x\submin\L u\submax$. Letting
11471 $$U\submin=\min(0,U_1,U_1+U_2,U_1+U_2+U_3),\;
11472 U\submax=\max(0,U_1,U_1+U_2,U_1+U_2+U_3),$$
11473 we have $u\submin=2^lu_0+U\submin$, etc.; the condition for overlap
11475 $$X\submin-U\submax\L 2^l(u_0-x_0)\L X\submax-U\submin.$$
11476 Thus we want to maintain the quantity $2^l(u_0-x_0)$; similarly,
11477 the quantity $2^l(v_0-y_0)$ accounts for the $y$~coordinates. The
11478 coordinates of $\Delta=2^l(w_0-z_0)$ must stay bounded as $l$ increases,
11479 because of the overlap condition; i.e., we know that $X\submin$,
11480 $X\submax$, and their relatives are bounded, hence $X\submax-
11481 U\submin$ and $X\submin-U\submax$ are bounded.
11483 @ Incidentally, if the given cubics intersect more than once, the process
11484 just sketched will not necessarily find the lexicographically smallest pair
11485 $(t_1,t_2)$. The solution actually obtained will be smallest in ``shuffled
11486 order''; i.e., if $t_1=(.a_1a_2\ldots a_{16})_2$ and
11487 $t_2=(.b_1b_2\ldots b_{16})_2$, then we will minimize
11488 $a_1b_1a_2b_2\ldots a_{16}b_{16}$, not
11489 $a_1a_2\ldots a_{16}b_1b_2\ldots b_{16}$.
11490 Shuffled order agrees with lexicographic order if all pairs of solutions
11491 $(t_1,t_2)$ and $(t_1',t_2')$ have the property that $t_1<t_1'$ iff
11492 $t_2<t_2'$; but in general, lexicographic order can be quite different,
11493 and the bisection algorithm would be substantially less efficient if it were
11494 constrained by lexicographic order.
11496 For example, suppose that an overlap has been found for $l=3$ and
11497 $(t_1,t_2)= (.101,.011)$ in binary, but that no overlap is produced by
11498 either of the alternatives $(.1010,.0110)$, $(.1010,.0111)$ at level~4.
11499 Then there is probably an intersection in one of the subintervals
11500 $(.1011,.011x)$; but lexicographic order would require us to explore
11501 $(.1010,.1xxx)$ and $(.1011,.00xx)$ and $(.1011,.010x)$ first. We wouldn't
11502 want to store all of the subdivision data for the second path, so the
11503 subdivisions would have to be regenerated many times. Such inefficiencies
11504 would be associated with every `1' in the binary representation of~$t_1$.
11506 @ The subdivision process introduces rounding errors, hence we need to
11507 make a more liberal test for overlap. It is not hard to show that the
11508 computed values of $U_i$ differ from the truth by at most~$l$, on
11509 level~$l$, hence $U\submin$ and $U\submax$ will be at most $3l$ in error.
11510 If $\beta$ is an upper bound on the absolute error in the computed
11511 components of $\Delta=(|delx|,|dely|)$ on level~$l$, we will replace
11512 the test `$X\submin-U\submax\L|delx|$' by the more liberal test
11513 `$X\submin-U\submax\L|delx|+|tol|$', where $|tol|=6l+\beta$.
11515 More accuracy is obtained if we try the algorithm first with |tol=0|;
11516 the more liberal tolerance is used only if an exact approach fails.
11517 It is convenient to do this double-take by letting `3' in the preceding
11518 paragraph be a parameter, which is first 0, then 3.
11521 unsigned int tol_step; /* either 0 or 3, usually */
11523 @ We shall use an explicit stack to implement the recursive bisection
11524 method described above. The |bisect_stack| array will contain numerous 5-word
11525 packets like $(U_1,U_2,U_3,U\submin,U\submax)$, as well as 20-word packets
11526 comprising the 5-word packets for $U$, $V$, $X$, and~$Y$.
11528 The following macros define the allocation of stack positions to
11529 the quantities needed for bisection-intersection.
11531 @d stack_1(A) mp->bisect_stack[(A)] /* $U_1$, $V_1$, $X_1$, or $Y_1$ */
11532 @d stack_2(A) mp->bisect_stack[(A)+1] /* $U_2$, $V_2$, $X_2$, or $Y_2$ */
11533 @d stack_3(A) mp->bisect_stack[(A)+2] /* $U_3$, $V_3$, $X_3$, or $Y_3$ */
11534 @d stack_min(A) mp->bisect_stack[(A)+3]
11535 /* $U\submin$, $V\submin$, $X\submin$, or $Y\submin$ */
11536 @d stack_max(A) mp->bisect_stack[(A)+4]
11537 /* $U\submax$, $V\submax$, $X\submax$, or $Y\submax$ */
11538 @d int_packets 20 /* number of words to represent $U_k$, $V_k$, $X_k$, and $Y_k$ */
11540 @d u_packet(A) ((A)-5)
11541 @d v_packet(A) ((A)-10)
11542 @d x_packet(A) ((A)-15)
11543 @d y_packet(A) ((A)-20)
11544 @d l_packets (mp->bisect_ptr-int_packets)
11545 @d r_packets mp->bisect_ptr
11546 @d ul_packet u_packet(l_packets) /* base of $U'_k$ variables */
11547 @d vl_packet v_packet(l_packets) /* base of $V'_k$ variables */
11548 @d xl_packet x_packet(l_packets) /* base of $X'_k$ variables */
11549 @d yl_packet y_packet(l_packets) /* base of $Y'_k$ variables */
11550 @d ur_packet u_packet(r_packets) /* base of $U''_k$ variables */
11551 @d vr_packet v_packet(r_packets) /* base of $V''_k$ variables */
11552 @d xr_packet x_packet(r_packets) /* base of $X''_k$ variables */
11553 @d yr_packet y_packet(r_packets) /* base of $Y''_k$ variables */
11555 @d u1l stack_1(ul_packet) /* $U'_1$ */
11556 @d u2l stack_2(ul_packet) /* $U'_2$ */
11557 @d u3l stack_3(ul_packet) /* $U'_3$ */
11558 @d v1l stack_1(vl_packet) /* $V'_1$ */
11559 @d v2l stack_2(vl_packet) /* $V'_2$ */
11560 @d v3l stack_3(vl_packet) /* $V'_3$ */
11561 @d x1l stack_1(xl_packet) /* $X'_1$ */
11562 @d x2l stack_2(xl_packet) /* $X'_2$ */
11563 @d x3l stack_3(xl_packet) /* $X'_3$ */
11564 @d y1l stack_1(yl_packet) /* $Y'_1$ */
11565 @d y2l stack_2(yl_packet) /* $Y'_2$ */
11566 @d y3l stack_3(yl_packet) /* $Y'_3$ */
11567 @d u1r stack_1(ur_packet) /* $U''_1$ */
11568 @d u2r stack_2(ur_packet) /* $U''_2$ */
11569 @d u3r stack_3(ur_packet) /* $U''_3$ */
11570 @d v1r stack_1(vr_packet) /* $V''_1$ */
11571 @d v2r stack_2(vr_packet) /* $V''_2$ */
11572 @d v3r stack_3(vr_packet) /* $V''_3$ */
11573 @d x1r stack_1(xr_packet) /* $X''_1$ */
11574 @d x2r stack_2(xr_packet) /* $X''_2$ */
11575 @d x3r stack_3(xr_packet) /* $X''_3$ */
11576 @d y1r stack_1(yr_packet) /* $Y''_1$ */
11577 @d y2r stack_2(yr_packet) /* $Y''_2$ */
11578 @d y3r stack_3(yr_packet) /* $Y''_3$ */
11580 @d stack_dx mp->bisect_stack[mp->bisect_ptr] /* stacked value of |delx| */
11581 @d stack_dy mp->bisect_stack[mp->bisect_ptr+1] /* stacked value of |dely| */
11582 @d stack_tol mp->bisect_stack[mp->bisect_ptr+2] /* stacked value of |tol| */
11583 @d stack_uv mp->bisect_stack[mp->bisect_ptr+3] /* stacked value of |uv| */
11584 @d stack_xy mp->bisect_stack[mp->bisect_ptr+4] /* stacked value of |xy| */
11585 @d int_increment (int_packets+int_packets+5) /* number of stack words per level */
11588 integer *bisect_stack;
11589 unsigned int bisect_ptr;
11591 @ @<Allocate or initialize ...@>=
11592 mp->bisect_stack = xmalloc((bistack_size+1),sizeof(integer));
11594 @ @<Dealloc variables@>=
11595 xfree(mp->bisect_stack);
11597 @ @<Check the ``constant''...@>=
11598 if ( int_packets+17*int_increment>bistack_size ) mp->bad=19;
11600 @ Computation of the min and max is a tedious but fairly fast sequence of
11601 instructions; exactly four comparisons are made in each branch.
11604 if ( stack_1((A))<0 ) {
11605 if ( stack_3((A))>=0 ) {
11606 if ( stack_2((A))<0 ) stack_min((A))=stack_1((A))+stack_2((A));
11607 else stack_min((A))=stack_1((A));
11608 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11609 if ( stack_max((A))<0 ) stack_max((A))=0;
11611 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11612 if ( stack_min((A))>stack_1((A)) ) stack_min((A))=stack_1((A));
11613 stack_max((A))=stack_1((A))+stack_2((A));
11614 if ( stack_max((A))<0 ) stack_max((A))=0;
11616 } else if ( stack_3((A))<=0 ) {
11617 if ( stack_2((A))>0 ) stack_max((A))=stack_1((A))+stack_2((A));
11618 else stack_max((A))=stack_1((A));
11619 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11620 if ( stack_min((A))>0 ) stack_min((A))=0;
11622 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11623 if ( stack_max((A))<stack_1((A)) ) stack_max((A))=stack_1((A));
11624 stack_min((A))=stack_1((A))+stack_2((A));
11625 if ( stack_min((A))>0 ) stack_min((A))=0;
11628 @ It's convenient to keep the current values of $l$, $t_1$, and $t_2$ in
11629 the integer form $2^l+2^lt_1$ and $2^l+2^lt_2$. The |cubic_intersection|
11630 routine uses global variables |cur_t| and |cur_tt| for this purpose;
11631 after successful completion, |cur_t| and |cur_tt| will contain |unity|
11632 plus the |scaled| values of $t_1$ and~$t_2$.
11634 The values of |cur_t| and |cur_tt| will be set to zero if |cubic_intersection|
11635 finds no intersection. The routine gives up and gives an approximate answer
11636 if it has backtracked
11637 more than 5000 times (otherwise there are cases where several minutes
11638 of fruitless computation would be possible).
11640 @d max_patience 5000
11643 integer cur_t;integer cur_tt; /* controls and results of |cubic_intersection| */
11644 integer time_to_go; /* this many backtracks before giving up */
11645 integer max_t; /* maximum of $2^{l+1}$ so far achieved */
11647 @ The given cubics $B(w_0,w_1,w_2,w_3;t)$ and
11648 $B(z_0,z_1,z_2,z_3;t)$ are specified in adjacent knot nodes |(p,link(p))|
11649 and |(pp,link(pp))|, respectively.
11651 @c void mp_cubic_intersection (MP mp,pointer p, pointer pp) {
11652 pointer q,qq; /* |link(p)|, |link(pp)| */
11653 mp->time_to_go=max_patience; mp->max_t=2;
11654 @<Initialize for intersections at level zero@>;
11657 if ( mp->delx-mp->tol<=stack_max(x_packet(mp->xy))-stack_min(u_packet(mp->uv)))
11658 if ( mp->delx+mp->tol>=stack_min(x_packet(mp->xy))-stack_max(u_packet(mp->uv)))
11659 if ( mp->dely-mp->tol<=stack_max(y_packet(mp->xy))-stack_min(v_packet(mp->uv)))
11660 if ( mp->dely+mp->tol>=stack_min(y_packet(mp->xy))-stack_max(v_packet(mp->uv)))
11662 if ( mp->cur_t>=mp->max_t ){
11663 if ( mp->max_t==two ) { /* we've done 17 bisections */
11664 mp->cur_t=halfp(mp->cur_t+1); mp->cur_tt=halfp(mp->cur_tt+1); return;
11666 mp->max_t+=mp->max_t; mp->appr_t=mp->cur_t; mp->appr_tt=mp->cur_tt;
11668 @<Subdivide for a new level of intersection@>;
11671 if ( mp->time_to_go>0 ) {
11672 decr(mp->time_to_go);
11674 while ( mp->appr_t<unity ) {
11675 mp->appr_t+=mp->appr_t; mp->appr_tt+=mp->appr_tt;
11677 mp->cur_t=mp->appr_t; mp->cur_tt=mp->appr_tt; return;
11679 @<Advance to the next pair |(cur_t,cur_tt)|@>;
11683 @ The following variables are global, although they are used only by
11684 |cubic_intersection|, because it is necessary on some machines to
11685 split |cubic_intersection| up into two procedures.
11688 integer delx;integer dely; /* the components of $\Delta=2^l(w_0-z_0)$ */
11689 integer tol; /* bound on the uncertainly in the overlap test */
11691 unsigned int xy; /* pointers to the current packets of interest */
11692 integer three_l; /* |tol_step| times the bisection level */
11693 integer appr_t;integer appr_tt; /* best approximations known to the answers */
11695 @ We shall assume that the coordinates are sufficiently non-extreme that
11696 integer overflow will not occur.
11698 @<Initialize for intersections at level zero@>=
11699 q=link(p); qq=link(pp); mp->bisect_ptr=int_packets;
11700 u1r=right_x(p)-x_coord(p); u2r=left_x(q)-right_x(p);
11701 u3r=x_coord(q)-left_x(q); set_min_max(ur_packet);
11702 v1r=right_y(p)-y_coord(p); v2r=left_y(q)-right_y(p);
11703 v3r=y_coord(q)-left_y(q); set_min_max(vr_packet);
11704 x1r=right_x(pp)-x_coord(pp); x2r=left_x(qq)-right_x(pp);
11705 x3r=x_coord(qq)-left_x(qq); set_min_max(xr_packet);
11706 y1r=right_y(pp)-y_coord(pp); y2r=left_y(qq)-right_y(pp);
11707 y3r=y_coord(qq)-left_y(qq); set_min_max(yr_packet);
11708 mp->delx=x_coord(p)-x_coord(pp); mp->dely=y_coord(p)-y_coord(pp);
11709 mp->tol=0; mp->uv=r_packets; mp->xy=r_packets;
11710 mp->three_l=0; mp->cur_t=1; mp->cur_tt=1
11712 @ @<Subdivide for a new level of intersection@>=
11713 stack_dx=mp->delx; stack_dy=mp->dely; stack_tol=mp->tol;
11714 stack_uv=mp->uv; stack_xy=mp->xy;
11715 mp->bisect_ptr=mp->bisect_ptr+int_increment;
11716 mp->cur_t+=mp->cur_t; mp->cur_tt+=mp->cur_tt;
11717 u1l=stack_1(u_packet(mp->uv)); u3r=stack_3(u_packet(mp->uv));
11718 u2l=half(u1l+stack_2(u_packet(mp->uv)));
11719 u2r=half(u3r+stack_2(u_packet(mp->uv)));
11720 u3l=half(u2l+u2r); u1r=u3l;
11721 set_min_max(ul_packet); set_min_max(ur_packet);
11722 v1l=stack_1(v_packet(mp->uv)); v3r=stack_3(v_packet(mp->uv));
11723 v2l=half(v1l+stack_2(v_packet(mp->uv)));
11724 v2r=half(v3r+stack_2(v_packet(mp->uv)));
11725 v3l=half(v2l+v2r); v1r=v3l;
11726 set_min_max(vl_packet); set_min_max(vr_packet);
11727 x1l=stack_1(x_packet(mp->xy)); x3r=stack_3(x_packet(mp->xy));
11728 x2l=half(x1l+stack_2(x_packet(mp->xy)));
11729 x2r=half(x3r+stack_2(x_packet(mp->xy)));
11730 x3l=half(x2l+x2r); x1r=x3l;
11731 set_min_max(xl_packet); set_min_max(xr_packet);
11732 y1l=stack_1(y_packet(mp->xy)); y3r=stack_3(y_packet(mp->xy));
11733 y2l=half(y1l+stack_2(y_packet(mp->xy)));
11734 y2r=half(y3r+stack_2(y_packet(mp->xy)));
11735 y3l=half(y2l+y2r); y1r=y3l;
11736 set_min_max(yl_packet); set_min_max(yr_packet);
11737 mp->uv=l_packets; mp->xy=l_packets;
11738 mp->delx+=mp->delx; mp->dely+=mp->dely;
11739 mp->tol=mp->tol-mp->three_l+mp->tol_step;
11740 mp->tol+=mp->tol; mp->three_l=mp->three_l+mp->tol_step
11742 @ @<Advance to the next pair |(cur_t,cur_tt)|@>=
11744 if ( odd(mp->cur_tt) ) {
11745 if ( odd(mp->cur_t) ) {
11746 @<Descend to the previous level and |goto not_found|@>;
11749 mp->delx=mp->delx+stack_1(u_packet(mp->uv))+stack_2(u_packet(mp->uv))
11750 +stack_3(u_packet(mp->uv));
11751 mp->dely=mp->dely+stack_1(v_packet(mp->uv))+stack_2(v_packet(mp->uv))
11752 +stack_3(v_packet(mp->uv));
11753 mp->uv=mp->uv+int_packets; /* switch from |l_packet| to |r_packet| */
11754 decr(mp->cur_tt); mp->xy=mp->xy-int_packets;
11755 /* switch from |r_packet| to |l_packet| */
11756 mp->delx=mp->delx+stack_1(x_packet(mp->xy))+stack_2(x_packet(mp->xy))
11757 +stack_3(x_packet(mp->xy));
11758 mp->dely=mp->dely+stack_1(y_packet(mp->xy))+stack_2(y_packet(mp->xy))
11759 +stack_3(y_packet(mp->xy));
11762 incr(mp->cur_tt); mp->tol=mp->tol+mp->three_l;
11763 mp->delx=mp->delx-stack_1(x_packet(mp->xy))-stack_2(x_packet(mp->xy))
11764 -stack_3(x_packet(mp->xy));
11765 mp->dely=mp->dely-stack_1(y_packet(mp->xy))-stack_2(y_packet(mp->xy))
11766 -stack_3(y_packet(mp->xy));
11767 mp->xy=mp->xy+int_packets; /* switch from |l_packet| to |r_packet| */
11770 @ @<Descend to the previous level...@>=
11772 mp->cur_t=halfp(mp->cur_t); mp->cur_tt=halfp(mp->cur_tt);
11773 if ( mp->cur_t==0 ) return;
11774 mp->bisect_ptr=mp->bisect_ptr-int_increment;
11775 mp->three_l=mp->three_l-mp->tol_step;
11776 mp->delx=stack_dx; mp->dely=stack_dy; mp->tol=stack_tol;
11777 mp->uv=stack_uv; mp->xy=stack_xy;
11781 @ The |path_intersection| procedure is much simpler.
11782 It invokes |cubic_intersection| in lexicographic order until finding a
11783 pair of cubics that intersect. The final intersection times are placed in
11784 |cur_t| and~|cur_tt|.
11786 @c void mp_path_intersection (MP mp,pointer h, pointer hh) {
11787 pointer p,pp; /* link registers that traverse the given paths */
11788 integer n,nn; /* integer parts of intersection times, minus |unity| */
11789 @<Change one-point paths into dead cycles@>;
11794 if ( right_type(p)!=mp_endpoint ) {
11797 if ( right_type(pp)!=mp_endpoint ) {
11798 mp_cubic_intersection(mp, p,pp);
11799 if ( mp->cur_t>0 ) {
11800 mp->cur_t=mp->cur_t+n; mp->cur_tt=mp->cur_tt+nn;
11804 nn=nn+unity; pp=link(pp);
11807 n=n+unity; p=link(p);
11809 mp->tol_step=mp->tol_step+3;
11810 } while (mp->tol_step<=3);
11811 mp->cur_t=-unity; mp->cur_tt=-unity;
11814 @ @<Change one-point paths...@>=
11815 if ( right_type(h)==mp_endpoint ) {
11816 right_x(h)=x_coord(h); left_x(h)=x_coord(h);
11817 right_y(h)=y_coord(h); left_y(h)=y_coord(h); right_type(h)=mp_explicit;
11819 if ( right_type(hh)==mp_endpoint ) {
11820 right_x(hh)=x_coord(hh); left_x(hh)=x_coord(hh);
11821 right_y(hh)=y_coord(hh); left_y(hh)=y_coord(hh); right_type(hh)=mp_explicit;
11824 @* \[24] Dynamic linear equations.
11825 \MP\ users define variables implicitly by stating equations that should be
11826 satisfied; the computer is supposed to be smart enough to solve those equations.
11827 And indeed, the computer tries valiantly to do so, by distinguishing five
11828 different types of numeric values:
11831 |type(p)=mp_known| is the nice case, when |value(p)| is the |scaled| value
11832 of the variable whose address is~|p|.
11835 |type(p)=mp_dependent| means that |value(p)| is not present, but |dep_list(p)|
11836 points to a {\sl dependency list\/} that expresses the value of variable~|p|
11837 as a |scaled| number plus a sum of independent variables with |fraction|
11841 |type(p)=mp_independent| means that |value(p)=64s+m|, where |s>0| is a ``serial
11842 number'' reflecting the time this variable was first used in an equation;
11843 also |0<=m<64|, and each dependent variable
11844 that refers to this one is actually referring to the future value of
11845 this variable times~$2^m$. (Usually |m=0|, but higher degrees of
11846 scaling are sometimes needed to keep the coefficients in dependency lists
11847 from getting too large. The value of~|m| will always be even.)
11850 |type(p)=mp_numeric_type| means that variable |p| hasn't appeared in an
11851 equation before, but it has been explicitly declared to be numeric.
11854 |type(p)=undefined| means that variable |p| hasn't appeared before.
11856 \smallskip\noindent
11857 We have actually discussed these five types in the reverse order of their
11858 history during a computation: Once |known|, a variable never again
11859 becomes |dependent|; once |dependent|, it almost never again becomes
11860 |mp_independent|; once |mp_independent|, it never again becomes |mp_numeric_type|;
11861 and once |mp_numeric_type|, it never again becomes |undefined| (except
11862 of course when the user specifically decides to scrap the old value
11863 and start again). A backward step may, however, take place: Sometimes
11864 a |dependent| variable becomes |mp_independent| again, when one of the
11865 independent variables it depends on is reverting to |undefined|.
11868 The next patch detects overflow of independent-variable serial
11869 numbers. Diagnosed and patched by Thorsten Dahlheimer.
11871 @d s_scale 64 /* the serial numbers are multiplied by this factor */
11872 @d max_indep_vars 0177777777 /* $2^{25}-1$ */
11873 @d max_serial_no 017777777700 /* |max_indep_vars*s_scale| */
11874 @d new_indep(A) /* create a new independent variable */
11875 { if ( mp->serial_no==max_serial_no )
11876 mp_fatal_error(mp, "variable instance identifiers exhausted");
11877 type((A))=mp_independent; mp->serial_no=mp->serial_no+s_scale;
11878 value((A))=mp->serial_no;
11882 integer serial_no; /* the most recent serial number, times |s_scale| */
11884 @ @<Make variable |q+s| newly independent@>=new_indep(q+s)
11886 @ But how are dependency lists represented? It's simple: The linear combination
11887 $\alpha_1v_1+\cdots+\alpha_kv_k+\beta$ appears in |k+1| value nodes. If
11888 |q=dep_list(p)| points to this list, and if |k>0|, then |value(q)=
11889 @t$\alpha_1$@>| (which is a |fraction|); |info(q)| points to the location
11890 of $\alpha_1$; and |link(p)| points to the dependency list
11891 $\alpha_2v_2+\cdots+\alpha_kv_k+\beta$. On the other hand if |k=0|,
11892 then |value(q)=@t$\beta$@>| (which is |scaled|) and |info(q)=null|.
11893 The independent variables $v_1$, \dots,~$v_k$ have been sorted so that
11894 they appear in decreasing order of their |value| fields (i.e., of
11895 their serial numbers). \ (It is convenient to use decreasing order,
11896 since |value(null)=0|. If the independent variables were not sorted by
11897 serial number but by some other criterion, such as their location in |mem|,
11898 the equation-solving mechanism would be too system-dependent, because
11899 the ordering can affect the computed results.)
11901 The |link| field in the node that contains the constant term $\beta$ is
11902 called the {\sl final link\/} of the dependency list. \MP\ maintains
11903 a doubly-linked master list of all dependency lists, in terms of a permanently
11905 in |mem| called |dep_head|. If there are no dependencies, we have
11906 |link(dep_head)=dep_head| and |prev_dep(dep_head)=dep_head|;
11907 otherwise |link(dep_head)| points to the first dependent variable, say~|p|,
11908 and |prev_dep(p)=dep_head|. We have |type(p)=mp_dependent|, and |dep_list(p)|
11909 points to its dependency list. If the final link of that dependency list
11910 occurs in location~|q|, then |link(q)| points to the next dependent
11911 variable (say~|r|); and we have |prev_dep(r)=q|, etc.
11913 @d dep_list(A) link(value_loc((A)))
11914 /* half of the |value| field in a |dependent| variable */
11915 @d prev_dep(A) info(value_loc((A)))
11916 /* the other half; makes a doubly linked list */
11917 @d dep_node_size 2 /* the number of words per dependency node */
11919 @<Initialize table entries...@>= mp->serial_no=0;
11920 link(dep_head)=dep_head; prev_dep(dep_head)=dep_head;
11921 info(dep_head)=null; dep_list(dep_head)=null;
11923 @ Actually the description above contains a little white lie. There's
11924 another kind of variable called |mp_proto_dependent|, which is
11925 just like a |dependent| one except that the $\alpha$ coefficients
11926 in its dependency list are |scaled| instead of being fractions.
11927 Proto-dependency lists are mixed with dependency lists in the
11928 nodes reachable from |dep_head|.
11930 @ Here is a procedure that prints a dependency list in symbolic form.
11931 The second parameter should be either |dependent| or |mp_proto_dependent|,
11932 to indicate the scaling of the coefficients.
11934 @<Declare subroutines for printing expressions@>=
11935 void mp_print_dependency (MP mp,pointer p, small_number t) {
11936 integer v; /* a coefficient */
11937 pointer pp,q; /* for list manipulation */
11940 v=abs(value(p)); q=info(p);
11941 if ( q==null ) { /* the constant term */
11942 if ( (v!=0)||(p==pp) ) {
11943 if ( value(p)>0 ) if ( p!=pp ) mp_print_char(mp, '+');
11944 mp_print_scaled(mp, value(p));
11948 @<Print the coefficient, unless it's $\pm1.0$@>;
11949 if ( type(q)!=mp_independent ) mp_confusion(mp, "dep");
11950 @:this can't happen dep}{\quad dep@>
11951 mp_print_variable_name(mp, q); v=value(q) % s_scale;
11952 while ( v>0 ) { mp_print(mp, "*4"); v=v-2; }
11957 @ @<Print the coefficient, unless it's $\pm1.0$@>=
11958 if ( value(p)<0 ) mp_print_char(mp, '-');
11959 else if ( p!=pp ) mp_print_char(mp, '+');
11960 if ( t==mp_dependent ) v=mp_round_fraction(mp, v);
11961 if ( v!=unity ) mp_print_scaled(mp, v)
11963 @ The maximum absolute value of a coefficient in a given dependency list
11964 is returned by the following simple function.
11966 @c fraction mp_max_coef (MP mp,pointer p) {
11967 fraction x; /* the maximum so far */
11969 while ( info(p)!=null ) {
11970 if ( abs(value(p))>x ) x=abs(value(p));
11976 @ One of the main operations needed on dependency lists is to add a multiple
11977 of one list to the other; we call this |p_plus_fq|, where |p| and~|q| point
11978 to dependency lists and |f| is a fraction.
11980 If the coefficient of any independent variable becomes |coef_bound| or
11981 more, in absolute value, this procedure changes the type of that variable
11982 to `|independent_needing_fix|', and sets the global variable |fix_needed|
11983 to~|true|. The value of $|coef_bound|=\mu$ is chosen so that
11984 $\mu^2+\mu<8$; this means that the numbers we deal with won't
11985 get too large. (Instead of the ``optimum'' $\mu=(\sqrt{33}-1)/2\approx
11986 2.3723$, the safer value 7/3 is taken as the threshold.)
11988 The changes mentioned in the preceding paragraph are actually done only if
11989 the global variable |watch_coefs| is |true|. But it usually is; in fact,
11990 it is |false| only when \MP\ is making a dependency list that will soon
11991 be equated to zero.
11993 Several procedures that act on dependency lists, including |p_plus_fq|,
11994 set the global variable |dep_final| to the final (constant term) node of
11995 the dependency list that they produce.
11997 @d coef_bound 04525252525 /* |fraction| approximation to 7/3 */
11998 @d independent_needing_fix 0
12001 boolean fix_needed; /* does at least one |independent| variable need scaling? */
12002 boolean watch_coefs; /* should we scale coefficients that exceed |coef_bound|? */
12003 pointer dep_final; /* location of the constant term and final link */
12006 mp->fix_needed=false; mp->watch_coefs=true;
12008 @ The |p_plus_fq| procedure has a fourth parameter, |t|, that should be
12009 set to |mp_proto_dependent| if |p| is a proto-dependency list. In this
12010 case |f| will be |scaled|, not a |fraction|. Similarly, the fifth parameter~|tt|
12011 should be |mp_proto_dependent| if |q| is a proto-dependency list.
12013 List |q| is unchanged by the operation; but list |p| is totally destroyed.
12015 The final link of the dependency list or proto-dependency list returned
12016 by |p_plus_fq| is the same as the original final link of~|p|. Indeed, the
12017 constant term of the result will be located in the same |mem| location
12018 as the original constant term of~|p|.
12020 Coefficients of the result are assumed to be zero if they are less than
12021 a certain threshold. This compensates for inevitable rounding errors,
12022 and tends to make more variables `|known|'. The threshold is approximately
12023 $10^{-5}$ in the case of normal dependency lists, $10^{-4}$ for
12024 proto-dependencies.
12026 @d fraction_threshold 2685 /* a |fraction| coefficient less than this is zeroed */
12027 @d half_fraction_threshold 1342 /* half of |fraction_threshold| */
12028 @d scaled_threshold 8 /* a |scaled| coefficient less than this is zeroed */
12029 @d half_scaled_threshold 4 /* half of |scaled_threshold| */
12031 @<Declare basic dependency-list subroutines@>=
12032 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12033 pointer q, small_number t, small_number tt) ;
12036 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12037 pointer q, small_number t, small_number tt) {
12038 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12039 pointer r,s; /* for list manipulation */
12040 integer mp_threshold; /* defines a neighborhood of zero */
12041 integer v; /* temporary register */
12042 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
12043 else mp_threshold=scaled_threshold;
12044 r=temp_head; pp=info(p); qq=info(q);
12050 @<Contribute a term from |p|, plus |f| times the
12051 corresponding term from |q|@>
12053 } else if ( value(pp)<value(qq) ) {
12054 @<Contribute a term from |q|, multiplied by~|f|@>
12056 link(r)=p; r=p; p=link(p); pp=info(p);
12059 if ( t==mp_dependent )
12060 value(p)=mp_slow_add(mp, value(p),mp_take_fraction(mp, value(q),f));
12062 value(p)=mp_slow_add(mp, value(p),mp_take_scaled(mp, value(q),f));
12063 link(r)=p; mp->dep_final=p;
12064 return link(temp_head);
12067 @ @<Contribute a term from |p|, plus |f|...@>=
12069 if ( tt==mp_dependent ) v=value(p)+mp_take_fraction(mp, f,value(q));
12070 else v=value(p)+mp_take_scaled(mp, f,value(q));
12071 value(p)=v; s=p; p=link(p);
12072 if ( abs(v)<mp_threshold ) {
12073 mp_free_node(mp, s,dep_node_size);
12075 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12076 type(qq)=independent_needing_fix; mp->fix_needed=true;
12080 pp=info(p); q=link(q); qq=info(q);
12083 @ @<Contribute a term from |q|, multiplied by~|f|@>=
12085 if ( tt==mp_dependent ) v=mp_take_fraction(mp, f,value(q));
12086 else v=mp_take_scaled(mp, f,value(q));
12087 if ( abs(v)>halfp(mp_threshold) ) {
12088 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=v;
12089 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12090 type(qq)=independent_needing_fix; mp->fix_needed=true;
12094 q=link(q); qq=info(q);
12097 @ It is convenient to have another subroutine for the special case
12098 of |p_plus_fq| when |f=1.0|. In this routine lists |p| and |q| are
12099 both of the same type~|t| (either |dependent| or |mp_proto_dependent|).
12101 @c pointer mp_p_plus_q (MP mp,pointer p, pointer q, small_number t) {
12102 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12103 pointer r,s; /* for list manipulation */
12104 integer mp_threshold; /* defines a neighborhood of zero */
12105 integer v; /* temporary register */
12106 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
12107 else mp_threshold=scaled_threshold;
12108 r=temp_head; pp=info(p); qq=info(q);
12114 @<Contribute a term from |p|, plus the
12115 corresponding term from |q|@>
12117 } else if ( value(pp)<value(qq) ) {
12118 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=value(q);
12119 q=link(q); qq=info(q); link(r)=s; r=s;
12121 link(r)=p; r=p; p=link(p); pp=info(p);
12124 value(p)=mp_slow_add(mp, value(p),value(q));
12125 link(r)=p; mp->dep_final=p;
12126 return link(temp_head);
12129 @ @<Contribute a term from |p|, plus the...@>=
12131 v=value(p)+value(q);
12132 value(p)=v; s=p; p=link(p); pp=info(p);
12133 if ( abs(v)<mp_threshold ) {
12134 mp_free_node(mp, s,dep_node_size);
12136 if ( (abs(v)>=coef_bound ) && mp->watch_coefs ) {
12137 type(qq)=independent_needing_fix; mp->fix_needed=true;
12141 q=link(q); qq=info(q);
12144 @ A somewhat simpler routine will multiply a dependency list
12145 by a given constant~|v|. The constant is either a |fraction| less than
12146 |fraction_one|, or it is |scaled|. In the latter case we might be forced to
12147 convert a dependency list to a proto-dependency list.
12148 Parameters |t0| and |t1| are the list types before and after;
12149 they should agree unless |t0=mp_dependent| and |t1=mp_proto_dependent|
12150 and |v_is_scaled=true|.
12152 @c pointer mp_p_times_v (MP mp,pointer p, integer v, small_number t0,
12153 small_number t1, boolean v_is_scaled) {
12154 pointer r,s; /* for list manipulation */
12155 integer w; /* tentative coefficient */
12156 integer mp_threshold;
12157 boolean scaling_down;
12158 if ( t0!=t1 ) scaling_down=true; else scaling_down=! v_is_scaled;
12159 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
12160 else mp_threshold=half_scaled_threshold;
12162 while ( info(p)!=null ) {
12163 if ( scaling_down ) w=mp_take_fraction(mp, v,value(p));
12164 else w=mp_take_scaled(mp, v,value(p));
12165 if ( abs(w)<=mp_threshold ) {
12166 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12168 if ( abs(w)>=coef_bound ) {
12169 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12171 link(r)=p; r=p; value(p)=w; p=link(p);
12175 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
12176 else value(p)=mp_take_fraction(mp, value(p),v);
12177 return link(temp_head);
12180 @ Similarly, we sometimes need to divide a dependency list
12181 by a given |scaled| constant.
12183 @<Declare basic dependency-list subroutines@>=
12184 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12185 t0, small_number t1) ;
12188 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12189 t0, small_number t1) {
12190 pointer r,s; /* for list manipulation */
12191 integer w; /* tentative coefficient */
12192 integer mp_threshold;
12193 boolean scaling_down;
12194 if ( t0!=t1 ) scaling_down=true; else scaling_down=false;
12195 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
12196 else mp_threshold=half_scaled_threshold;
12198 while ( info( p)!=null ) {
12199 if ( scaling_down ) {
12200 if ( abs(v)<02000000 ) w=mp_make_scaled(mp, value(p),v*010000);
12201 else w=mp_make_scaled(mp, mp_round_fraction(mp, value(p)),v);
12203 w=mp_make_scaled(mp, value(p),v);
12205 if ( abs(w)<=mp_threshold ) {
12206 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12208 if ( abs(w)>=coef_bound ) {
12209 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12211 link(r)=p; r=p; value(p)=w; p=link(p);
12214 link(r)=p; value(p)=mp_make_scaled(mp, value(p),v);
12215 return link(temp_head);
12218 @ Here's another utility routine for dependency lists. When an independent
12219 variable becomes dependent, we want to remove it from all existing
12220 dependencies. The |p_with_x_becoming_q| function computes the
12221 dependency list of~|p| after variable~|x| has been replaced by~|q|.
12223 This procedure has basically the same calling conventions as |p_plus_fq|:
12224 List~|q| is unchanged; list~|p| is destroyed; the constant node and the
12225 final link are inherited from~|p|; and the fourth parameter tells whether
12226 or not |p| is |mp_proto_dependent|. However, the global variable |dep_final|
12227 is not altered if |x| does not occur in list~|p|.
12229 @c pointer mp_p_with_x_becoming_q (MP mp,pointer p,
12230 pointer x, pointer q, small_number t) {
12231 pointer r,s; /* for list manipulation */
12232 integer v; /* coefficient of |x| */
12233 integer sx; /* serial number of |x| */
12234 s=p; r=temp_head; sx=value(x);
12235 while ( value(info(s))>sx ) { r=s; s=link(s); };
12236 if ( info(s)!=x ) {
12239 link(temp_head)=p; link(r)=link(s); v=value(s);
12240 mp_free_node(mp, s,dep_node_size);
12241 return mp_p_plus_fq(mp, link(temp_head),v,q,t,mp_dependent);
12245 @ Here's a simple procedure that reports an error when a variable
12246 has just received a known value that's out of the required range.
12248 @<Declare basic dependency-list subroutines@>=
12249 void mp_val_too_big (MP mp,scaled x) ;
12251 @ @c void mp_val_too_big (MP mp,scaled x) {
12252 if ( mp->internal[mp_warning_check]>0 ) {
12253 print_err("Value is too large ("); mp_print_scaled(mp, x); mp_print_char(mp, ')');
12254 @.Value is too large@>
12255 help4("The equation I just processed has given some variable")
12256 ("a value of 4096 or more. Continue and I'll try to cope")
12257 ("with that big value; but it might be dangerous.")
12258 ("(Set warningcheck:=0 to suppress this message.)");
12263 @ When a dependent variable becomes known, the following routine
12264 removes its dependency list. Here |p| points to the variable, and
12265 |q| points to the dependency list (which is one node long).
12267 @<Declare basic dependency-list subroutines@>=
12268 void mp_make_known (MP mp,pointer p, pointer q) ;
12270 @ @c void mp_make_known (MP mp,pointer p, pointer q) {
12271 int t; /* the previous type */
12272 prev_dep(link(q))=prev_dep(p);
12273 link(prev_dep(p))=link(q); t=type(p);
12274 type(p)=mp_known; value(p)=value(q); mp_free_node(mp, q,dep_node_size);
12275 if ( abs(value(p))>=fraction_one ) mp_val_too_big(mp, value(p));
12276 if (( mp->internal[mp_tracing_equations]>0) && mp_interesting(mp, p) ) {
12277 mp_begin_diagnostic(mp); mp_print_nl(mp, "#### ");
12278 @:]]]\#\#\#\#_}{\.{\#\#\#\#}@>
12279 mp_print_variable_name(mp, p);
12280 mp_print_char(mp, '='); mp_print_scaled(mp, value(p));
12281 mp_end_diagnostic(mp, false);
12283 if (( mp->cur_exp==p ) && mp->cur_type==t ) {
12284 mp->cur_type=mp_known; mp->cur_exp=value(p);
12285 mp_free_node(mp, p,value_node_size);
12289 @ The |fix_dependencies| routine is called into action when |fix_needed|
12290 has been triggered. The program keeps a list~|s| of independent variables
12291 whose coefficients must be divided by~4.
12293 In unusual cases, this fixup process might reduce one or more coefficients
12294 to zero, so that a variable will become known more or less by default.
12296 @<Declare basic dependency-list subroutines@>=
12297 void mp_fix_dependencies (MP mp);
12299 @ @c void mp_fix_dependencies (MP mp) {
12300 pointer p,q,r,s,t; /* list manipulation registers */
12301 pointer x; /* an independent variable */
12302 r=link(dep_head); s=null;
12303 while ( r!=dep_head ){
12305 @<Run through the dependency list for variable |t|, fixing
12306 all nodes, and ending with final link~|q|@>;
12308 if ( q==dep_list(t) ) mp_make_known(mp, t,q);
12310 while ( s!=null ) {
12311 p=link(s); x=info(s); free_avail(s); s=p;
12312 type(x)=mp_independent; value(x)=value(x)+2;
12314 mp->fix_needed=false;
12317 @ @d independent_being_fixed 1 /* this variable already appears in |s| */
12319 @<Run through the dependency list for variable |t|...@>=
12320 r=value_loc(t); /* |link(r)=dep_list(t)| */
12322 q=link(r); x=info(q);
12323 if ( x==null ) break;
12324 if ( type(x)<=independent_being_fixed ) {
12325 if ( type(x)<independent_being_fixed ) {
12326 p=mp_get_avail(mp); link(p)=s; s=p;
12327 info(s)=x; type(x)=independent_being_fixed;
12329 value(q)=value(q) / 4;
12330 if ( value(q)==0 ) {
12331 link(r)=link(q); mp_free_node(mp, q,dep_node_size); q=r;
12338 @ The |new_dep| routine installs a dependency list~|p| into the value node~|q|,
12339 linking it into the list of all known dependencies. We assume that
12340 |dep_final| points to the final node of list~|p|.
12342 @c void mp_new_dep (MP mp,pointer q, pointer p) {
12343 pointer r; /* what used to be the first dependency */
12344 dep_list(q)=p; prev_dep(q)=dep_head;
12345 r=link(dep_head); link(mp->dep_final)=r; prev_dep(r)=mp->dep_final;
12349 @ Here is one of the ways a dependency list gets started.
12350 The |const_dependency| routine produces a list that has nothing but
12353 @c pointer mp_const_dependency (MP mp, scaled v) {
12354 mp->dep_final=mp_get_node(mp, dep_node_size);
12355 value(mp->dep_final)=v; info(mp->dep_final)=null;
12356 return mp->dep_final;
12359 @ And here's a more interesting way to start a dependency list from scratch:
12360 The parameter to |single_dependency| is the location of an
12361 independent variable~|x|, and the result is the simple dependency list
12364 In the unlikely event that the given independent variable has been doubled so
12365 often that we can't refer to it with a nonzero coefficient,
12366 |single_dependency| returns the simple list `0'. This case can be
12367 recognized by testing that the returned list pointer is equal to
12370 @c pointer mp_single_dependency (MP mp,pointer p) {
12371 pointer q; /* the new dependency list */
12372 integer m; /* the number of doublings */
12373 m=value(p) % s_scale;
12375 return mp_const_dependency(mp, 0);
12377 q=mp_get_node(mp, dep_node_size);
12378 value(q)=two_to_the(28-m); info(q)=p;
12379 link(q)=mp_const_dependency(mp, 0);
12384 @ We sometimes need to make an exact copy of a dependency list.
12386 @c pointer mp_copy_dep_list (MP mp,pointer p) {
12387 pointer q; /* the new dependency list */
12388 q=mp_get_node(mp, dep_node_size); mp->dep_final=q;
12390 info(mp->dep_final)=info(p); value(mp->dep_final)=value(p);
12391 if ( info(mp->dep_final)==null ) break;
12392 link(mp->dep_final)=mp_get_node(mp, dep_node_size);
12393 mp->dep_final=link(mp->dep_final); p=link(p);
12398 @ But how do variables normally become known? Ah, now we get to the heart of the
12399 equation-solving mechanism. The |linear_eq| procedure is given a |dependent|
12400 or |mp_proto_dependent| list,~|p|, in which at least one independent variable
12401 appears. It equates this list to zero, by choosing an independent variable
12402 with the largest coefficient and making it dependent on the others. The
12403 newly dependent variable is eliminated from all current dependencies,
12404 thereby possibly making other dependent variables known.
12406 The given list |p| is, of course, totally destroyed by all this processing.
12408 @c void mp_linear_eq (MP mp, pointer p, small_number t) {
12409 pointer q,r,s; /* for link manipulation */
12410 pointer x; /* the variable that loses its independence */
12411 integer n; /* the number of times |x| had been halved */
12412 integer v; /* the coefficient of |x| in list |p| */
12413 pointer prev_r; /* lags one step behind |r| */
12414 pointer final_node; /* the constant term of the new dependency list */
12415 integer w; /* a tentative coefficient */
12416 @<Find a node |q| in list |p| whose coefficient |v| is largest@>;
12417 x=info(q); n=value(x) % s_scale;
12418 @<Divide list |p| by |-v|, removing node |q|@>;
12419 if ( mp->internal[mp_tracing_equations]>0 ) {
12420 @<Display the new dependency@>;
12422 @<Simplify all existing dependencies by substituting for |x|@>;
12423 @<Change variable |x| from |independent| to |dependent| or |known|@>;
12424 if ( mp->fix_needed ) mp_fix_dependencies(mp);
12427 @ @<Find a node |q| in list |p| whose coefficient |v| is largest@>=
12428 q=p; r=link(p); v=value(q);
12429 while ( info(r)!=null ) {
12430 if ( abs(value(r))>abs(v) ) { q=r; v=value(r); };
12434 @ Here we want to change the coefficients from |scaled| to |fraction|,
12435 except in the constant term. In the common case of a trivial equation
12436 like `\.{x=3.14}', we will have |v=-fraction_one|, |q=p|, and |t=mp_dependent|.
12438 @<Divide list |p| by |-v|, removing node |q|@>=
12439 s=temp_head; link(s)=p; r=p;
12442 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12444 w=mp_make_fraction(mp, value(r),v);
12445 if ( abs(w)<=half_fraction_threshold ) {
12446 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12452 } while (info(r)!=null);
12453 if ( t==mp_proto_dependent ) {
12454 value(r)=-mp_make_scaled(mp, value(r),v);
12455 } else if ( v!=-fraction_one ) {
12456 value(r)=-mp_make_fraction(mp, value(r),v);
12458 final_node=r; p=link(temp_head)
12460 @ @<Display the new dependency@>=
12461 if ( mp_interesting(mp, x) ) {
12462 mp_begin_diagnostic(mp); mp_print_nl(mp, "## ");
12463 mp_print_variable_name(mp, x);
12464 @:]]]\#\#_}{\.{\#\#}@>
12466 while ( w>0 ) { mp_print(mp, "*4"); w=w-2; };
12467 mp_print_char(mp, '='); mp_print_dependency(mp, p,mp_dependent);
12468 mp_end_diagnostic(mp, false);
12471 @ @<Simplify all existing dependencies by substituting for |x|@>=
12472 prev_r=dep_head; r=link(dep_head);
12473 while ( r!=dep_head ) {
12474 s=dep_list(r); q=mp_p_with_x_becoming_q(mp, s,x,p,type(r));
12475 if ( info(q)==null ) {
12476 mp_make_known(mp, r,q);
12479 do { q=link(q); } while (info(q)!=null);
12485 @ @<Change variable |x| from |independent| to |dependent| or |known|@>=
12486 if ( n>0 ) @<Divide list |p| by $2^n$@>;
12487 if ( info(p)==null ) {
12490 if ( abs(value(x))>=fraction_one ) mp_val_too_big(mp, value(x));
12491 mp_free_node(mp, p,dep_node_size);
12492 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) {
12493 mp->cur_exp=value(x); mp->cur_type=mp_known;
12494 mp_free_node(mp, x,value_node_size);
12497 type(x)=mp_dependent; mp->dep_final=final_node; mp_new_dep(mp, x,p);
12498 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) mp->cur_type=mp_dependent;
12501 @ @<Divide list |p| by $2^n$@>=
12503 s=temp_head; link(temp_head)=p; r=p;
12506 else w=value(r) / two_to_the(n);
12507 if ( (abs(w)<=half_fraction_threshold)&&(info(r)!=null) ) {
12509 mp_free_node(mp, r,dep_node_size);
12514 } while (info(s)!=null);
12518 @ The |check_mem| procedure, which is used only when \MP\ is being
12519 debugged, makes sure that the current dependency lists are well formed.
12521 @<Check the list of linear dependencies@>=
12522 q=dep_head; p=link(q);
12523 while ( p!=dep_head ) {
12524 if ( prev_dep(p)!=q ) {
12525 mp_print_nl(mp, "Bad PREVDEP at "); mp_print_int(mp, p);
12530 r=info(p); q=p; p=link(q);
12531 if ( r==null ) break;
12532 if ( value(info(p))>=value(r) ) {
12533 mp_print_nl(mp, "Out of order at "); mp_print_int(mp, p);
12534 @.Out of order...@>
12539 @* \[25] Dynamic nonlinear equations.
12540 Variables of numeric type are maintained by the general scheme of
12541 independent, dependent, and known values that we have just studied;
12542 and the components of pair and transform variables are handled in the
12543 same way. But \MP\ also has five other types of values: \&{boolean},
12544 \&{string}, \&{pen}, \&{path}, and \&{picture}; what about them?
12546 Equations are allowed between nonlinear quantities, but only in a
12547 simple form. Two variables that haven't yet been assigned values are
12548 either equal to each other, or they're not.
12550 Before a boolean variable has received a value, its type is |mp_unknown_boolean|;
12551 similarly, there are variables whose type is |mp_unknown_string|, |mp_unknown_pen|,
12552 |mp_unknown_path|, and |mp_unknown_picture|. In such cases the value is either
12553 |null| (which means that no other variables are equivalent to this one), or
12554 it points to another variable of the same undefined type. The pointers in the
12555 latter case form a cycle of nodes, which we shall call a ``ring.''
12556 Rings of undefined variables may include capsules, which arise as
12557 intermediate results within expressions or as \&{expr} parameters to macros.
12559 When one member of a ring receives a value, the same value is given to
12560 all the other members. In the case of paths and pictures, this implies
12561 making separate copies of a potentially large data structure; users should
12562 restrain their enthusiasm for such generality, unless they have lots and
12563 lots of memory space.
12565 @ The following procedure is called when a capsule node is being
12566 added to a ring (e.g., when an unknown variable is mentioned in an expression).
12568 @c pointer mp_new_ring_entry (MP mp,pointer p) {
12569 pointer q; /* the new capsule node */
12570 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
12572 if ( value(p)==null ) value(q)=p; else value(q)=value(p);
12577 @ Conversely, we might delete a capsule or a variable before it becomes known.
12578 The following procedure simply detaches a quantity from its ring,
12579 without recycling the storage.
12581 @<Declare the recycling subroutines@>=
12582 void mp_ring_delete (MP mp,pointer p) {
12585 if ( q!=null ) if ( q!=p ){
12586 while ( value(q)!=p ) q=value(q);
12591 @ Eventually there might be an equation that assigns values to all of the
12592 variables in a ring. The |nonlinear_eq| subroutine does the necessary
12593 propagation of values.
12595 If the parameter |flush_p| is |true|, node |p| itself needn't receive a
12596 value, it will soon be recycled.
12598 @c void mp_nonlinear_eq (MP mp,integer v, pointer p, boolean flush_p) {
12599 small_number t; /* the type of ring |p| */
12600 pointer q,r; /* link manipulation registers */
12601 t=type(p)-unknown_tag; q=value(p);
12602 if ( flush_p ) type(p)=mp_vacuous; else p=q;
12604 r=value(q); type(q)=t;
12606 case mp_boolean_type: value(q)=v; break;
12607 case mp_string_type: value(q)=v; add_str_ref(v); break;
12608 case mp_pen_type: value(q)=copy_pen(v); break;
12609 case mp_path_type: value(q)=mp_copy_path(mp, v); break;
12610 case mp_picture_type: value(q)=v; add_edge_ref(v); break;
12611 } /* there ain't no more cases */
12616 @ If two members of rings are equated, and if they have the same type,
12617 the |ring_merge| procedure is called on to make them equivalent.
12619 @c void mp_ring_merge (MP mp,pointer p, pointer q) {
12620 pointer r; /* traverses one list */
12624 @<Exclaim about a redundant equation@>;
12629 r=value(p); value(p)=value(q); value(q)=r;
12632 @ @<Exclaim about a redundant equation@>=
12634 print_err("Redundant equation");
12635 @.Redundant equation@>
12636 help2("I already knew that this equation was true.")
12637 ("But perhaps no harm has been done; let's continue.");
12638 mp_put_get_error(mp);
12641 @* \[26] Introduction to the syntactic routines.
12642 Let's pause a moment now and try to look at the Big Picture.
12643 The \MP\ program consists of three main parts: syntactic routines,
12644 semantic routines, and output routines. The chief purpose of the
12645 syntactic routines is to deliver the user's input to the semantic routines,
12646 while parsing expressions and locating operators and operands. The
12647 semantic routines act as an interpreter responding to these operators,
12648 which may be regarded as commands. And the output routines are
12649 periodically called on to produce compact font descriptions that can be
12650 used for typesetting or for making interim proof drawings. We have
12651 discussed the basic data structures and many of the details of semantic
12652 operations, so we are good and ready to plunge into the part of \MP\ that
12653 actually controls the activities.
12655 Our current goal is to come to grips with the |get_next| procedure,
12656 which is the keystone of \MP's input mechanism. Each call of |get_next|
12657 sets the value of three variables |cur_cmd|, |cur_mod|, and |cur_sym|,
12658 representing the next input token.
12659 $$\vbox{\halign{#\hfil\cr
12660 \hbox{|cur_cmd| denotes a command code from the long list of codes
12662 \hbox{|cur_mod| denotes a modifier of the command code;}\cr
12663 \hbox{|cur_sym| is the hash address of the symbolic token that was
12665 \hbox{\qquad or zero in the case of a numeric or string
12666 or capsule token.}\cr}}$$
12667 Underlying this external behavior of |get_next| is all the machinery
12668 necessary to convert from character files to tokens. At a given time we
12669 may be only partially finished with the reading of several files (for
12670 which \&{input} was specified), and partially finished with the expansion
12671 of some user-defined macros and/or some macro parameters, and partially
12672 finished reading some text that the user has inserted online,
12673 and so on. When reading a character file, the characters must be
12674 converted to tokens; comments and blank spaces must
12675 be removed, numeric and string tokens must be evaluated.
12677 To handle these situations, which might all be present simultaneously,
12678 \MP\ uses various stacks that hold information about the incomplete
12679 activities, and there is a finite state control for each level of the
12680 input mechanism. These stacks record the current state of an implicitly
12681 recursive process, but the |get_next| procedure is not recursive.
12684 eight_bits cur_cmd; /* current command set by |get_next| */
12685 integer cur_mod; /* operand of current command */
12686 halfword cur_sym; /* hash address of current symbol */
12688 @ The |print_cmd_mod| routine prints a symbolic interpretation of a
12689 command code and its modifier.
12690 It consists of a rather tedious sequence of print
12691 commands, and most of it is essentially an inverse to the |primitive|
12692 routine that enters a \MP\ primitive into |hash| and |eqtb|. Therefore almost
12693 all of this procedure appears elsewhere in the program, together with the
12694 corresponding |primitive| calls.
12696 @<Declare the procedure called |print_cmd_mod|@>=
12697 void mp_print_cmd_mod (MP mp,integer c, integer m) {
12699 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>
12700 default: mp_print(mp, "[unknown command code!]"); break;
12704 @ Here is a procedure that displays a given command in braces, in the
12705 user's transcript file.
12707 @d show_cur_cmd_mod mp_show_cmd_mod(mp, mp->cur_cmd,mp->cur_mod)
12710 void mp_show_cmd_mod (MP mp,integer c, integer m) {
12711 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
12712 mp_print_cmd_mod(mp, c,m); mp_print_char(mp, '}');
12713 mp_end_diagnostic(mp, false);
12716 @* \[27] Input stacks and states.
12717 The state of \MP's input mechanism appears in the input stack, whose
12718 entries are records with five fields, called |index|, |start|, |loc|,
12719 |limit|, and |name|. The top element of this stack is maintained in a
12720 global variable for which no subscripting needs to be done; the other
12721 elements of the stack appear in an array. Hence the stack is declared thus:
12725 quarterword index_field;
12726 halfword start_field, loc_field, limit_field, name_field;
12730 in_state_record *input_stack;
12731 integer input_ptr; /* first unused location of |input_stack| */
12732 integer max_in_stack; /* largest value of |input_ptr| when pushing */
12733 in_state_record cur_input; /* the ``top'' input state */
12734 int stack_size; /* maximum number of simultaneous input sources */
12736 @ @<Allocate or initialize ...@>=
12737 mp->stack_size = 300;
12738 mp->input_stack = xmalloc((mp->stack_size+1),sizeof(in_state_record));
12740 @ @<Dealloc variables@>=
12741 xfree(mp->input_stack);
12743 @ We've already defined the special variable |loc==cur_input.loc_field|
12744 in our discussion of basic input-output routines. The other components of
12745 |cur_input| are defined in the same way:
12747 @d index mp->cur_input.index_field /* reference for buffer information */
12748 @d start mp->cur_input.start_field /* starting position in |buffer| */
12749 @d limit mp->cur_input.limit_field /* end of current line in |buffer| */
12750 @d name mp->cur_input.name_field /* name of the current file */
12752 @ Let's look more closely now at the five control variables
12753 (|index|,~|start|,~|loc|,~|limit|,~|name|),
12754 assuming that \MP\ is reading a line of characters that have been input
12755 from some file or from the user's terminal. There is an array called
12756 |buffer| that acts as a stack of all lines of characters that are
12757 currently being read from files, including all lines on subsidiary
12758 levels of the input stack that are not yet completed. \MP\ will return to
12759 the other lines when it is finished with the present input file.
12761 (Incidentally, on a machine with byte-oriented addressing, it would be
12762 appropriate to combine |buffer| with the |str_pool| array,
12763 letting the buffer entries grow downward from the top of the string pool
12764 and checking that these two tables don't bump into each other.)
12766 The line we are currently working on begins in position |start| of the
12767 buffer; the next character we are about to read is |buffer[loc]|; and
12768 |limit| is the location of the last character present. We always have
12769 |loc<=limit|. For convenience, |buffer[limit]| has been set to |"%"|, so
12770 that the end of a line is easily sensed.
12772 The |name| variable is a string number that designates the name of
12773 the current file, if we are reading an ordinary text file. Special codes
12774 |is_term..max_spec_src| indicate other sources of input text.
12776 @d is_term 0 /* |name| value when reading from the terminal for normal input */
12777 @d is_read 1 /* |name| value when executing a \&{readstring} or \&{readfrom} */
12778 @d is_scantok 2 /* |name| value when reading text generated by \&{scantokens} */
12779 @d max_spec_src is_scantok
12781 @ Additional information about the current line is available via the
12782 |index| variable, which counts how many lines of characters are present
12783 in the buffer below the current level. We have |index=0| when reading
12784 from the terminal and prompting the user for each line; then if the user types,
12785 e.g., `\.{input figs}', we will have |index=1| while reading
12786 the file \.{figs.mp}. However, it does not follow that |index| is the
12787 same as the input stack pointer, since many of the levels on the input
12788 stack may come from token lists and some |index| values may correspond
12789 to \.{MPX} files that are not currently on the stack.
12791 The global variable |in_open| is equal to the highest |index| value counting
12792 \.{MPX} files but excluding token-list input levels. Thus, the number of
12793 partially read lines in the buffer is |in_open+1| and we have |in_open>=index|
12794 when we are not reading a token list.
12796 If we are not currently reading from the terminal,
12797 we are reading from the file variable |input_file[index]|. We use
12798 the notation |terminal_input| as a convenient abbreviation for |name=is_term|,
12799 and |cur_file| as an abbreviation for |input_file[index]|.
12801 When \MP\ is not reading from the terminal, the global variable |line| contains
12802 the line number in the current file, for use in error messages. More precisely,
12803 |line| is a macro for |line_stack[index]| and the |line_stack| array gives
12804 the line number for each file in the |input_file| array.
12806 When an \.{MPX} file is opened the file name is stored in the |mpx_name|
12807 array so that the name doesn't get lost when the file is temporarily removed
12808 from the input stack.
12809 Thus when |input_file[k]| is an \.{MPX} file, its name is |mpx_name[k]|
12810 and it contains translated \TeX\ pictures for |input_file[k-1]|.
12811 Since this is not an \.{MPX} file, we have
12812 $$ \hbox{|mpx_name[k-1]<=absent|}. $$
12813 This |name| field is set to |finished| when |input_file[k]| is completely
12816 If more information about the input state is needed, it can be
12817 included in small arrays like those shown here. For example,
12818 the current page or segment number in the input file might be put
12819 into a variable |page|, that is really a macro for the current entry
12820 in `\ignorespaces|page_stack:array[0..max_in_open] of integer|\unskip'
12821 by analogy with |line_stack|.
12822 @^system dependencies@>
12824 @d terminal_input (name==is_term) /* are we reading from the terminal? */
12825 @d cur_file mp->input_file[index] /* the current |void *| variable */
12826 @d line mp->line_stack[index] /* current line number in the current source file */
12827 @d in_name mp->iname_stack[index] /* a string used to construct \.{MPX} file names */
12828 @d in_area mp->iarea_stack[index] /* another string for naming \.{MPX} files */
12829 @d absent 1 /* |name_field| value for unused |mpx_in_stack| entries */
12830 @d mpx_reading (mp->mpx_name[index]>absent)
12831 /* when reading a file, is it an \.{MPX} file? */
12833 /* |name_field| value when the corresponding \.{MPX} file is finished */
12836 integer in_open; /* the number of lines in the buffer, less one */
12837 unsigned int open_parens; /* the number of open text files */
12838 void * *input_file ;
12839 integer *line_stack ; /* the line number for each file */
12840 char * *iname_stack; /* used for naming \.{MPX} files */
12841 char * *iarea_stack; /* used for naming \.{MPX} files */
12842 halfword*mpx_name ;
12844 @ @<Allocate or ...@>=
12845 mp->input_file = xmalloc((mp->max_in_open+1),sizeof(void *));
12846 mp->line_stack = xmalloc((mp->max_in_open+1),sizeof(integer));
12847 mp->iname_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12848 mp->iarea_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12849 mp->mpx_name = xmalloc((mp->max_in_open+1),sizeof(halfword));
12852 for (k=0;k<=mp->max_in_open;k++) {
12853 mp->iname_stack[k] =NULL;
12854 mp->iarea_stack[k] =NULL;
12858 @ @<Dealloc variables@>=
12861 for (l=0;l<=mp->max_in_open;l++) {
12862 xfree(mp->iname_stack[l]);
12863 xfree(mp->iarea_stack[l]);
12866 xfree(mp->input_file);
12867 xfree(mp->line_stack);
12868 xfree(mp->iname_stack);
12869 xfree(mp->iarea_stack);
12870 xfree(mp->mpx_name);
12873 @ However, all this discussion about input state really applies only to the
12874 case that we are inputting from a file. There is another important case,
12875 namely when we are currently getting input from a token list. In this case
12876 |index>max_in_open|, and the conventions about the other state variables
12879 \yskip\hang|loc| is a pointer to the current node in the token list, i.e.,
12880 the node that will be read next. If |loc=null|, the token list has been
12883 \yskip\hang|start| points to the first node of the token list; this node
12884 may or may not contain a reference count, depending on the type of token
12887 \yskip\hang|token_type|, which takes the place of |index| in the
12888 discussion above, is a code number that explains what kind of token list
12891 \yskip\hang|name| points to the |eqtb| address of the control sequence
12892 being expanded, if the current token list is a macro not defined by
12893 \&{vardef}. Macros defined by \&{vardef} have |name=null|; their name
12894 can be deduced by looking at their first two parameters.
12896 \yskip\hang|param_start|, which takes the place of |limit|, tells where
12897 the parameters of the current macro or loop text begin in the |param_stack|.
12899 \yskip\noindent The |token_type| can take several values, depending on
12900 where the current token list came from:
12903 \indent|forever_text|, if the token list being scanned is the body of
12904 a \&{forever} loop;
12906 \indent|loop_text|, if the token list being scanned is the body of
12907 a \&{for} or \&{forsuffixes} loop;
12909 \indent|parameter|, if a \&{text} or \&{suffix} parameter is being scanned;
12911 \indent|backed_up|, if the token list being scanned has been inserted as
12912 `to be read again'.
12914 \indent|inserted|, if the token list being scanned has been inserted as
12915 part of error recovery;
12917 \indent|macro|, if the expansion of a user-defined symbolic token is being
12921 The token list begins with a reference count if and only if |token_type=
12923 @^reference counts@>
12925 @d token_type index /* type of current token list */
12926 @d token_state (index>(int)mp->max_in_open) /* are we scanning a token list? */
12927 @d file_state (index<=(int)mp->max_in_open) /* are we scanning a file line? */
12928 @d param_start limit /* base of macro parameters in |param_stack| */
12929 @d forever_text (mp->max_in_open+1) /* |token_type| code for loop texts */
12930 @d loop_text (mp->max_in_open+2) /* |token_type| code for loop texts */
12931 @d parameter (mp->max_in_open+3) /* |token_type| code for parameter texts */
12932 @d backed_up (mp->max_in_open+4) /* |token_type| code for texts to be reread */
12933 @d inserted (mp->max_in_open+5) /* |token_type| code for inserted texts */
12934 @d macro (mp->max_in_open+6) /* |token_type| code for macro replacement texts */
12936 @ The |param_stack| is an auxiliary array used to hold pointers to the token
12937 lists for parameters at the current level and subsidiary levels of input.
12938 This stack grows at a different rate from the others.
12941 pointer *param_stack; /* token list pointers for parameters */
12942 integer param_ptr; /* first unused entry in |param_stack| */
12943 integer max_param_stack; /* largest value of |param_ptr| */
12945 @ @<Allocate or initialize ...@>=
12946 mp->param_stack = xmalloc((mp->param_size+1),sizeof(pointer));
12948 @ @<Dealloc variables@>=
12949 xfree(mp->param_stack);
12951 @ Notice that the |line| isn't valid when |token_state| is true because it
12952 depends on |index|. If we really need to know the line number for the
12953 topmost file in the index stack we use the following function. If a page
12954 number or other information is needed, this routine should be modified to
12955 compute it as well.
12956 @^system dependencies@>
12958 @<Declare a function called |true_line|@>=
12959 integer mp_true_line (MP mp) {
12960 int k; /* an index into the input stack */
12961 if ( file_state && (name>max_spec_src) ) {
12966 ((mp->input_stack[(k-1)].index_field>mp->max_in_open)||
12967 (mp->input_stack[(k-1)].name_field<=max_spec_src))) {
12970 return mp->line_stack[(k-1)];
12975 @ Thus, the ``current input state'' can be very complicated indeed; there
12976 can be many levels and each level can arise in a variety of ways. The
12977 |show_context| procedure, which is used by \MP's error-reporting routine to
12978 print out the current input state on all levels down to the most recent
12979 line of characters from an input file, illustrates most of these conventions.
12980 The global variable |file_ptr| contains the lowest level that was
12981 displayed by this procedure.
12984 integer file_ptr; /* shallowest level shown by |show_context| */
12986 @ The status at each level is indicated by printing two lines, where the first
12987 line indicates what was read so far and the second line shows what remains
12988 to be read. The context is cropped, if necessary, so that the first line
12989 contains at most |half_error_line| characters, and the second contains
12990 at most |error_line|. Non-current input levels whose |token_type| is
12991 `|backed_up|' are shown only if they have not been fully read.
12993 @c void mp_show_context (MP mp) { /* prints where the scanner is */
12994 int old_setting; /* saved |selector| setting */
12995 @<Local variables for formatting calculations@>
12996 mp->file_ptr=mp->input_ptr; mp->input_stack[mp->file_ptr]=mp->cur_input;
12997 /* store current state */
12999 mp->cur_input=mp->input_stack[mp->file_ptr]; /* enter into the context */
13000 @<Display the current context@>;
13002 if ( (name>max_spec_src) || (mp->file_ptr==0) ) break;
13003 decr(mp->file_ptr);
13005 mp->cur_input=mp->input_stack[mp->input_ptr]; /* restore original state */
13008 @ @<Display the current context@>=
13009 if ( (mp->file_ptr==mp->input_ptr) || file_state ||
13010 (token_type!=backed_up) || (loc!=null) ) {
13011 /* we omit backed-up token lists that have already been read */
13012 mp->tally=0; /* get ready to count characters */
13013 old_setting=mp->selector;
13014 if ( file_state ) {
13015 @<Print location of current line@>;
13016 @<Pseudoprint the line@>;
13018 @<Print type of token list@>;
13019 @<Pseudoprint the token list@>;
13021 mp->selector=old_setting; /* stop pseudoprinting */
13022 @<Print two lines using the tricky pseudoprinted information@>;
13025 @ This routine should be changed, if necessary, to give the best possible
13026 indication of where the current line resides in the input file.
13027 For example, on some systems it is best to print both a page and line number.
13028 @^system dependencies@>
13030 @<Print location of current line@>=
13031 if ( name>max_spec_src ) {
13032 mp_print_nl(mp, "l."); mp_print_int(mp, mp_true_line(mp));
13033 } else if ( terminal_input ) {
13034 if ( mp->file_ptr==0 ) mp_print_nl(mp, "<*>");
13035 else mp_print_nl(mp, "<insert>");
13036 } else if ( name==is_scantok ) {
13037 mp_print_nl(mp, "<scantokens>");
13039 mp_print_nl(mp, "<read>");
13041 mp_print_char(mp, ' ')
13043 @ Can't use case statement here because the |token_type| is not
13044 a constant expression.
13046 @<Print type of token list@>=
13048 if(token_type==forever_text) {
13049 mp_print_nl(mp, "<forever> ");
13050 } else if (token_type==loop_text) {
13051 @<Print the current loop value@>;
13052 } else if (token_type==parameter) {
13053 mp_print_nl(mp, "<argument> ");
13054 } else if (token_type==backed_up) {
13055 if ( loc==null ) mp_print_nl(mp, "<recently read> ");
13056 else mp_print_nl(mp, "<to be read again> ");
13057 } else if (token_type==inserted) {
13058 mp_print_nl(mp, "<inserted text> ");
13059 } else if (token_type==macro) {
13061 if ( name!=null ) mp_print_text(name);
13062 else @<Print the name of a \&{vardef}'d macro@>;
13063 mp_print(mp, "->");
13065 mp_print_nl(mp, "?");/* this should never happen */
13070 @ The parameter that corresponds to a loop text is either a token list
13071 (in the case of \&{forsuffixes}) or a ``capsule'' (in the case of \&{for}).
13072 We'll discuss capsules later; for now, all we need to know is that
13073 the |link| field in a capsule parameter is |void| and that
13074 |print_exp(p,0)| displays the value of capsule~|p| in abbreviated form.
13076 @<Print the current loop value@>=
13077 { mp_print_nl(mp, "<for("); p=mp->param_stack[param_start];
13079 if ( link(p)==mp_void ) mp_print_exp(mp, p,0); /* we're in a \&{for} loop */
13080 else mp_show_token_list(mp, p,null,20,mp->tally);
13082 mp_print(mp, ")> ");
13085 @ The first two parameters of a macro defined by \&{vardef} will be token
13086 lists representing the macro's prefix and ``at point.'' By putting these
13087 together, we get the macro's full name.
13089 @<Print the name of a \&{vardef}'d macro@>=
13090 { p=mp->param_stack[param_start];
13092 mp_show_token_list(mp, mp->param_stack[param_start+1],null,20,mp->tally);
13095 while ( link(q)!=null ) q=link(q);
13096 link(q)=mp->param_stack[param_start+1];
13097 mp_show_token_list(mp, p,null,20,mp->tally);
13102 @ Now it is necessary to explain a little trick. We don't want to store a long
13103 string that corresponds to a token list, because that string might take up
13104 lots of memory; and we are printing during a time when an error message is
13105 being given, so we dare not do anything that might overflow one of \MP's
13106 tables. So `pseudoprinting' is the answer: We enter a mode of printing
13107 that stores characters into a buffer of length |error_line|, where character
13108 $k+1$ is placed into \hbox{|trick_buf[k mod error_line]|} if
13109 |k<trick_count|, otherwise character |k| is dropped. Initially we set
13110 |tally:=0| and |trick_count:=1000000|; then when we reach the
13111 point where transition from line 1 to line 2 should occur, we
13112 set |first_count:=tally| and |trick_count:=@tmax@>(error_line,
13113 tally+1+error_line-half_error_line)|. At the end of the
13114 pseudoprinting, the values of |first_count|, |tally|, and
13115 |trick_count| give us all the information we need to print the two lines,
13116 and all of the necessary text is in |trick_buf|.
13118 Namely, let |l| be the length of the descriptive information that appears
13119 on the first line. The length of the context information gathered for that
13120 line is |k=first_count|, and the length of the context information
13121 gathered for line~2 is $m=\min(|tally|, |trick_count|)-k$. If |l+k<=h|,
13122 where |h=half_error_line|, we print |trick_buf[0..k-1]| after the
13123 descriptive information on line~1, and set |n:=l+k|; here |n| is the
13124 length of line~1. If $l+k>h$, some cropping is necessary, so we set |n:=h|
13125 and print `\.{...}' followed by
13126 $$\hbox{|trick_buf[(l+k-h+3)..k-1]|,}$$
13127 where subscripts of |trick_buf| are circular modulo |error_line|. The
13128 second line consists of |n|~spaces followed by |trick_buf[k..(k+m-1)]|,
13129 unless |n+m>error_line|; in the latter case, further cropping is done.
13130 This is easier to program than to explain.
13132 @<Local variables for formatting...@>=
13133 int i; /* index into |buffer| */
13134 integer l; /* length of descriptive information on line 1 */
13135 integer m; /* context information gathered for line 2 */
13136 int n; /* length of line 1 */
13137 integer p; /* starting or ending place in |trick_buf| */
13138 integer q; /* temporary index */
13140 @ The following code tells the print routines to gather
13141 the desired information.
13143 @d begin_pseudoprint {
13144 l=mp->tally; mp->tally=0; mp->selector=pseudo;
13145 mp->trick_count=1000000;
13147 @d set_trick_count {
13148 mp->first_count=mp->tally;
13149 mp->trick_count=mp->tally+1+mp->error_line-mp->half_error_line;
13150 if ( mp->trick_count<mp->error_line ) mp->trick_count=mp->error_line;
13153 @ And the following code uses the information after it has been gathered.
13155 @<Print two lines using the tricky pseudoprinted information@>=
13156 if ( mp->trick_count==1000000 ) set_trick_count;
13157 /* |set_trick_count| must be performed */
13158 if ( mp->tally<mp->trick_count ) m=mp->tally-mp->first_count;
13159 else m=mp->trick_count-mp->first_count; /* context on line 2 */
13160 if ( l+mp->first_count<=mp->half_error_line ) {
13161 p=0; n=l+mp->first_count;
13163 mp_print(mp, "..."); p=l+mp->first_count-mp->half_error_line+3;
13164 n=mp->half_error_line;
13166 for (q=p;q<=mp->first_count-1;q++) {
13167 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13170 for (q=1;q<=n;q++) {
13171 mp_print_char(mp, ' '); /* print |n| spaces to begin line~2 */
13173 if ( m+n<=mp->error_line ) p=mp->first_count+m;
13174 else p=mp->first_count+(mp->error_line-n-3);
13175 for (q=mp->first_count;q<=p-1;q++) {
13176 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13178 if ( m+n>mp->error_line ) mp_print(mp, "...")
13180 @ But the trick is distracting us from our current goal, which is to
13181 understand the input state. So let's concentrate on the data structures that
13182 are being pseudoprinted as we finish up the |show_context| procedure.
13184 @<Pseudoprint the line@>=
13187 for (i=start;i<=limit-1;i++) {
13188 if ( i==loc ) set_trick_count;
13189 mp_print_str(mp, mp->buffer[i]);
13193 @ @<Pseudoprint the token list@>=
13195 if ( token_type!=macro ) mp_show_token_list(mp, start,loc,100000,0);
13196 else mp_show_macro(mp, start,loc,100000)
13198 @ Here is the missing piece of |show_token_list| that is activated when the
13199 token beginning line~2 is about to be shown:
13201 @<Do magic computation@>=set_trick_count
13203 @* \[28] Maintaining the input stacks.
13204 The following subroutines change the input status in commonly needed ways.
13206 First comes |push_input|, which stores the current state and creates a
13207 new level (having, initially, the same properties as the old).
13209 @d push_input { /* enter a new input level, save the old */
13210 if ( mp->input_ptr>mp->max_in_stack ) {
13211 mp->max_in_stack=mp->input_ptr;
13212 if ( mp->input_ptr==mp->stack_size ) {
13213 int l = (mp->stack_size+(mp->stack_size>>2));
13214 XREALLOC(mp->input_stack, l, in_state_record);
13215 mp->stack_size = l;
13218 mp->input_stack[mp->input_ptr]=mp->cur_input; /* stack the record */
13219 incr(mp->input_ptr);
13222 @ And of course what goes up must come down.
13224 @d pop_input { /* leave an input level, re-enter the old */
13225 decr(mp->input_ptr); mp->cur_input=mp->input_stack[mp->input_ptr];
13228 @ Here is a procedure that starts a new level of token-list input, given
13229 a token list |p| and its type |t|. If |t=macro|, the calling routine should
13230 set |name|, reset~|loc|, and increase the macro's reference count.
13232 @d back_list(A) mp_begin_token_list(mp, (A),backed_up) /* backs up a simple token list */
13234 @c void mp_begin_token_list (MP mp,pointer p, quarterword t) {
13235 push_input; start=p; token_type=t;
13236 param_start=mp->param_ptr; loc=p;
13239 @ When a token list has been fully scanned, the following computations
13240 should be done as we leave that level of input.
13243 @c void mp_end_token_list (MP mp) { /* leave a token-list input level */
13244 pointer p; /* temporary register */
13245 if ( token_type>=backed_up ) { /* token list to be deleted */
13246 if ( token_type<=inserted ) {
13247 mp_flush_token_list(mp, start); goto DONE;
13249 mp_delete_mac_ref(mp, start); /* update reference count */
13252 while ( mp->param_ptr>param_start ) { /* parameters must be flushed */
13253 decr(mp->param_ptr);
13254 p=mp->param_stack[mp->param_ptr];
13256 if ( link(p)==mp_void ) { /* it's an \&{expr} parameter */
13257 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
13259 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
13264 pop_input; check_interrupt;
13267 @ The contents of |cur_cmd,cur_mod,cur_sym| are placed into an equivalent
13268 token by the |cur_tok| routine.
13271 @c @<Declare the procedure called |make_exp_copy|@>;
13272 pointer mp_cur_tok (MP mp) {
13273 pointer p; /* a new token node */
13274 small_number save_type; /* |cur_type| to be restored */
13275 integer save_exp; /* |cur_exp| to be restored */
13276 if ( mp->cur_sym==0 ) {
13277 if ( mp->cur_cmd==capsule_token ) {
13278 save_type=mp->cur_type; save_exp=mp->cur_exp;
13279 mp_make_exp_copy(mp, mp->cur_mod); p=mp_stash_cur_exp(mp); link(p)=null;
13280 mp->cur_type=save_type; mp->cur_exp=save_exp;
13282 p=mp_get_node(mp, token_node_size);
13283 value(p)=mp->cur_mod; name_type(p)=mp_token;
13284 if ( mp->cur_cmd==numeric_token ) type(p)=mp_known;
13285 else type(p)=mp_string_type;
13288 fast_get_avail(p); info(p)=mp->cur_sym;
13293 @ Sometimes \MP\ has read too far and wants to ``unscan'' what it has
13294 seen. The |back_input| procedure takes care of this by putting the token
13295 just scanned back into the input stream, ready to be read again.
13296 If |cur_sym<>0|, the values of |cur_cmd| and |cur_mod| are irrelevant.
13299 void mp_back_input (MP mp);
13301 @ @c void mp_back_input (MP mp) {/* undoes one token of input */
13302 pointer p; /* a token list of length one */
13304 while ( token_state &&(loc==null) )
13305 mp_end_token_list(mp); /* conserve stack space */
13309 @ The |back_error| routine is used when we want to restore or replace an
13310 offending token just before issuing an error message. We disable interrupts
13311 during the call of |back_input| so that the help message won't be lost.
13314 void mp_error (MP mp);
13315 void mp_back_error (MP mp);
13317 @ @c void mp_back_error (MP mp) { /* back up one token and call |error| */
13318 mp->OK_to_interrupt=false;
13320 mp->OK_to_interrupt=true; mp_error(mp);
13322 void mp_ins_error (MP mp) { /* back up one inserted token and call |error| */
13323 mp->OK_to_interrupt=false;
13324 mp_back_input(mp); token_type=inserted;
13325 mp->OK_to_interrupt=true; mp_error(mp);
13328 @ The |begin_file_reading| procedure starts a new level of input for lines
13329 of characters to be read from a file, or as an insertion from the
13330 terminal. It does not take care of opening the file, nor does it set |loc|
13331 or |limit| or |line|.
13332 @^system dependencies@>
13334 @c void mp_begin_file_reading (MP mp) {
13335 if ( mp->in_open==mp->max_in_open )
13336 mp_overflow(mp, "text input levels",mp->max_in_open);
13337 @:MetaPost capacity exceeded text input levels}{\quad text input levels@>
13338 if ( mp->first==mp->buf_size )
13339 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13340 incr(mp->in_open); push_input; index=mp->in_open;
13341 mp->mpx_name[index]=absent;
13343 name=is_term; /* |terminal_input| is now |true| */
13346 @ Conversely, the variables must be downdated when such a level of input
13347 is finished. Any associated \.{MPX} file must also be closed and popped
13348 off the file stack.
13350 @c void mp_end_file_reading (MP mp) {
13351 if ( mp->in_open>index ) {
13352 if ( (mp->mpx_name[mp->in_open]==absent)||(name<=max_spec_src) ) {
13353 mp_confusion(mp, "endinput");
13354 @:this can't happen endinput}{\quad endinput@>
13356 (mp->close_file)(mp->input_file[mp->in_open]); /* close an \.{MPX} file */
13357 delete_str_ref(mp->mpx_name[mp->in_open]);
13362 if ( index!=mp->in_open ) mp_confusion(mp, "endinput");
13363 if ( name>max_spec_src ) {
13364 (mp->close_file)(cur_file);
13365 delete_str_ref(name);
13369 pop_input; decr(mp->in_open);
13372 @ Here is a function that tries to resume input from an \.{MPX} file already
13373 associated with the current input file. It returns |false| if this doesn't
13376 @c boolean mp_begin_mpx_reading (MP mp) {
13377 if ( mp->in_open!=index+1 ) {
13380 if ( mp->mpx_name[mp->in_open]<=absent ) mp_confusion(mp, "mpx");
13381 @:this can't happen mpx}{\quad mpx@>
13382 if ( mp->first==mp->buf_size )
13383 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13384 push_input; index=mp->in_open;
13386 name=mp->mpx_name[mp->in_open]; add_str_ref(name);
13387 @<Put an empty line in the input buffer@>;
13392 @ This procedure temporarily stops reading an \.{MPX} file.
13394 @c void mp_end_mpx_reading (MP mp) {
13395 if ( mp->in_open!=index ) mp_confusion(mp, "mpx");
13396 @:this can't happen mpx}{\quad mpx@>
13398 @<Complain that we are not at the end of a line in the \.{MPX} file@>;
13404 @ Here we enforce a restriction that simplifies the input stacks considerably.
13405 This should not inconvenience the user because \.{MPX} files are generated
13406 by an auxiliary program called \.{DVItoMP}.
13408 @ @<Complain that we are not at the end of a line in the \.{MPX} file@>=
13410 print_err("`mpxbreak' must be at the end of a line");
13411 help4("This file contains picture expressions for btex...etex")
13412 ("blocks. Such files are normally generated automatically")
13413 ("but this one seems to be messed up. I'm going to ignore")
13414 ("the rest of this line.");
13418 @ In order to keep the stack from overflowing during a long sequence of
13419 inserted `\.{show}' commands, the following routine removes completed
13420 error-inserted lines from memory.
13422 @c void mp_clear_for_error_prompt (MP mp) {
13423 while ( file_state && terminal_input &&
13424 (mp->input_ptr>0)&&(loc==limit) ) mp_end_file_reading(mp);
13425 mp_print_ln(mp); clear_terminal;
13428 @ To get \MP's whole input mechanism going, we perform the following
13431 @<Initialize the input routines@>=
13432 { mp->input_ptr=0; mp->max_in_stack=0;
13433 mp->in_open=0; mp->open_parens=0; mp->max_buf_stack=0;
13434 mp->param_ptr=0; mp->max_param_stack=0;
13436 start=1; index=0; line=0; name=is_term;
13437 mp->mpx_name[0]=absent;
13438 mp->force_eof=false;
13439 if ( ! mp_init_terminal(mp) ) mp_jump_out(mp);
13440 limit=mp->last; mp->first=mp->last+1;
13441 /* |init_terminal| has set |loc| and |last| */
13444 @* \[29] Getting the next token.
13445 The heart of \MP's input mechanism is the |get_next| procedure, which
13446 we shall develop in the next few sections of the program. Perhaps we
13447 shouldn't actually call it the ``heart,'' however; it really acts as \MP's
13448 eyes and mouth, reading the source files and gobbling them up. And it also
13449 helps \MP\ to regurgitate stored token lists that are to be processed again.
13451 The main duty of |get_next| is to input one token and to set |cur_cmd|
13452 and |cur_mod| to that token's command code and modifier. Furthermore, if
13453 the input token is a symbolic token, that token's |hash| address
13454 is stored in |cur_sym|; otherwise |cur_sym| is set to zero.
13456 Underlying this simple description is a certain amount of complexity
13457 because of all the cases that need to be handled.
13458 However, the inner loop of |get_next| is reasonably short and fast.
13460 @ Before getting into |get_next|, we need to consider a mechanism by which
13461 \MP\ helps keep errors from propagating too far. Whenever the program goes
13462 into a mode where it keeps calling |get_next| repeatedly until a certain
13463 condition is met, it sets |scanner_status| to some value other than |normal|.
13464 Then if an input file ends, or if an `\&{outer}' symbol appears,
13465 an appropriate error recovery will be possible.
13467 The global variable |warning_info| helps in this error recovery by providing
13468 additional information. For example, |warning_info| might indicate the
13469 name of a macro whose replacement text is being scanned.
13471 @d normal 0 /* |scanner_status| at ``quiet times'' */
13472 @d skipping 1 /* |scanner_status| when false conditional text is being skipped */
13473 @d flushing 2 /* |scanner_status| when junk after a statement is being ignored */
13474 @d absorbing 3 /* |scanner_status| when a \&{text} parameter is being scanned */
13475 @d var_defining 4 /* |scanner_status| when a \&{vardef} is being scanned */
13476 @d op_defining 5 /* |scanner_status| when a macro \&{def} is being scanned */
13477 @d loop_defining 6 /* |scanner_status| when a \&{for} loop is being scanned */
13478 @d tex_flushing 7 /* |scanner_status| when skipping \TeX\ material */
13481 integer scanner_status; /* are we scanning at high speed? */
13482 integer warning_info; /* if so, what else do we need to know,
13483 in case an error occurs? */
13485 @ @<Initialize the input routines@>=
13486 mp->scanner_status=normal;
13488 @ The following subroutine
13489 is called when an `\&{outer}' symbolic token has been scanned or
13490 when the end of a file has been reached. These two cases are distinguished
13491 by |cur_sym|, which is zero at the end of a file.
13493 @c boolean mp_check_outer_validity (MP mp) {
13494 pointer p; /* points to inserted token list */
13495 if ( mp->scanner_status==normal ) {
13497 } else if ( mp->scanner_status==tex_flushing ) {
13498 @<Check if the file has ended while flushing \TeX\ material and set the
13499 result value for |check_outer_validity|@>;
13501 mp->deletions_allowed=false;
13502 @<Back up an outer symbolic token so that it can be reread@>;
13503 if ( mp->scanner_status>skipping ) {
13504 @<Tell the user what has run away and try to recover@>;
13506 print_err("Incomplete if; all text was ignored after line ");
13507 @.Incomplete if...@>
13508 mp_print_int(mp, mp->warning_info);
13509 help3("A forbidden `outer' token occurred in skipped text.")
13510 ("This kind of error happens when you say `if...' and forget")
13511 ("the matching `fi'. I've inserted a `fi'; this might work.");
13512 if ( mp->cur_sym==0 )
13513 mp->help_line[2]="The file ended while I was skipping conditional text.";
13514 mp->cur_sym=frozen_fi; mp_ins_error(mp);
13516 mp->deletions_allowed=true;
13521 @ @<Check if the file has ended while flushing \TeX\ material and set...@>=
13522 if ( mp->cur_sym!=0 ) {
13525 mp->deletions_allowed=false;
13526 print_err("TeX mode didn't end; all text was ignored after line ");
13527 mp_print_int(mp, mp->warning_info);
13528 help2("The file ended while I was looking for the `etex' to")
13529 ("finish this TeX material. I've inserted `etex' now.");
13530 mp->cur_sym = frozen_etex;
13532 mp->deletions_allowed=true;
13536 @ @<Back up an outer symbolic token so that it can be reread@>=
13537 if ( mp->cur_sym!=0 ) {
13538 p=mp_get_avail(mp); info(p)=mp->cur_sym;
13539 back_list(p); /* prepare to read the symbolic token again */
13542 @ @<Tell the user what has run away...@>=
13544 mp_runaway(mp); /* print the definition-so-far */
13545 if ( mp->cur_sym==0 ) {
13546 print_err("File ended");
13547 @.File ended while scanning...@>
13549 print_err("Forbidden token found");
13550 @.Forbidden token found...@>
13552 mp_print(mp, " while scanning ");
13553 help4("I suspect you have forgotten an `enddef',")
13554 ("causing me to read past where you wanted me to stop.")
13555 ("I'll try to recover; but if the error is serious,")
13556 ("you'd better type `E' or `X' now and fix your file.");
13557 switch (mp->scanner_status) {
13558 @<Complete the error message,
13559 and set |cur_sym| to a token that might help recover from the error@>
13560 } /* there are no other cases */
13564 @ As we consider various kinds of errors, it is also appropriate to
13565 change the first line of the help message just given; |help_line[3]|
13566 points to the string that might be changed.
13568 @<Complete the error message,...@>=
13570 mp_print(mp, "to the end of the statement");
13571 mp->help_line[3]="A previous error seems to have propagated,";
13572 mp->cur_sym=frozen_semicolon;
13575 mp_print(mp, "a text argument");
13576 mp->help_line[3]="It seems that a right delimiter was left out,";
13577 if ( mp->warning_info==0 ) {
13578 mp->cur_sym=frozen_end_group;
13580 mp->cur_sym=frozen_right_delimiter;
13581 equiv(frozen_right_delimiter)=mp->warning_info;
13586 mp_print(mp, "the definition of ");
13587 if ( mp->scanner_status==op_defining )
13588 mp_print_text(mp->warning_info);
13590 mp_print_variable_name(mp, mp->warning_info);
13591 mp->cur_sym=frozen_end_def;
13593 case loop_defining:
13594 mp_print(mp, "the text of a ");
13595 mp_print_text(mp->warning_info);
13596 mp_print(mp, " loop");
13597 mp->help_line[3]="I suspect you have forgotten an `endfor',";
13598 mp->cur_sym=frozen_end_for;
13601 @ The |runaway| procedure displays the first part of the text that occurred
13602 when \MP\ began its special |scanner_status|, if that text has been saved.
13604 @<Declare the procedure called |runaway|@>=
13605 void mp_runaway (MP mp) {
13606 if ( mp->scanner_status>flushing ) {
13607 mp_print_nl(mp, "Runaway ");
13608 switch (mp->scanner_status) {
13609 case absorbing: mp_print(mp, "text?"); break;
13611 case op_defining: mp_print(mp,"definition?"); break;
13612 case loop_defining: mp_print(mp, "loop?"); break;
13613 } /* there are no other cases */
13615 mp_show_token_list(mp, link(hold_head),null,mp->error_line-10,0);
13619 @ We need to mention a procedure that may be called by |get_next|.
13622 void mp_firm_up_the_line (MP mp);
13624 @ And now we're ready to take the plunge into |get_next| itself.
13625 Note that the behavior depends on the |scanner_status| because percent signs
13626 and double quotes need to be passed over when skipping TeX material.
13629 void mp_get_next (MP mp) {
13630 /* sets |cur_cmd|, |cur_mod|, |cur_sym| to next token */
13632 /*restart*/ /* go here to get the next input token */
13633 /*exit*/ /* go here when the next input token has been got */
13634 /*|common_ending|*/ /* go here to finish getting a symbolic token */
13635 /*found*/ /* go here when the end of a symbolic token has been found */
13636 /*switch*/ /* go here to branch on the class of an input character */
13637 /*|start_numeric_token|,|start_decimal_token|,|fin_numeric_token|,|done|*/
13638 /* go here at crucial stages when scanning a number */
13639 int k; /* an index into |buffer| */
13640 ASCII_code c; /* the current character in the buffer */
13641 ASCII_code class; /* its class number */
13642 integer n,f; /* registers for decimal-to-binary conversion */
13645 if ( file_state ) {
13646 @<Input from external file; |goto restart| if no input found,
13647 or |return| if a non-symbolic token is found@>;
13649 @<Input from token list; |goto restart| if end of list or
13650 if a parameter needs to be expanded,
13651 or |return| if a non-symbolic token is found@>;
13654 @<Finish getting the symbolic token in |cur_sym|;
13655 |goto restart| if it is illegal@>;
13658 @ When a symbolic token is declared to be `\&{outer}', its command code
13659 is increased by |outer_tag|.
13662 @<Finish getting the symbolic token in |cur_sym|...@>=
13663 mp->cur_cmd=eq_type(mp->cur_sym); mp->cur_mod=equiv(mp->cur_sym);
13664 if ( mp->cur_cmd>=outer_tag ) {
13665 if ( mp_check_outer_validity(mp) )
13666 mp->cur_cmd=mp->cur_cmd-outer_tag;
13671 @ A percent sign appears in |buffer[limit]|; this makes it unnecessary
13672 to have a special test for end-of-line.
13675 @<Input from external file;...@>=
13678 c=mp->buffer[loc]; incr(loc); class=mp->char_class[c];
13680 case digit_class: goto START_NUMERIC_TOKEN; break;
13682 class=mp->char_class[mp->buffer[loc]];
13683 if ( class>period_class ) {
13685 } else if ( class<period_class ) { /* |class=digit_class| */
13686 n=0; goto START_DECIMAL_TOKEN;
13690 case space_class: goto SWITCH; break;
13691 case percent_class:
13692 if ( mp->scanner_status==tex_flushing ) {
13693 if ( loc<limit ) goto SWITCH;
13695 @<Move to next line of file, or |goto restart| if there is no next line@>;
13700 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13701 else @<Get a string token and |return|@>;
13703 case isolated_classes:
13704 k=loc-1; goto FOUND; break;
13705 case invalid_class:
13706 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13707 else @<Decry the invalid character and |goto restart|@>;
13709 default: break; /* letters, etc. */
13712 while ( mp->char_class[mp->buffer[loc]]==class ) incr(loc);
13714 START_NUMERIC_TOKEN:
13715 @<Get the integer part |n| of a numeric token;
13716 set |f:=0| and |goto fin_numeric_token| if there is no decimal point@>;
13717 START_DECIMAL_TOKEN:
13718 @<Get the fraction part |f| of a numeric token@>;
13720 @<Pack the numeric and fraction parts of a numeric token
13723 mp->cur_sym=mp_id_lookup(mp, k,loc-k);
13726 @ We go to |restart| instead of to |SWITCH|, because |state| might equal
13727 |token_list| after the error has been dealt with
13728 (cf.\ |clear_for_error_prompt|).
13730 @<Decry the invalid...@>=
13732 print_err("Text line contains an invalid character");
13733 @.Text line contains...@>
13734 help2("A funny symbol that I can\'t read has just been input.")
13735 ("Continue, and I'll forget that it ever happened.");
13736 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13740 @ @<Get a string token and |return|@>=
13742 if ( mp->buffer[loc]=='"' ) {
13743 mp->cur_mod=rts("");
13745 k=loc; mp->buffer[limit+1]='"';
13748 } while (mp->buffer[loc]!='"');
13750 @<Decry the missing string delimiter and |goto restart|@>;
13753 mp->cur_mod=mp->buffer[k];
13757 append_char(mp->buffer[k]); incr(k);
13759 mp->cur_mod=mp_make_string(mp);
13762 incr(loc); mp->cur_cmd=string_token;
13766 @ We go to |restart| after this error message, not to |SWITCH|,
13767 because the |clear_for_error_prompt| routine might have reinstated
13768 |token_state| after |error| has finished.
13770 @<Decry the missing string delimiter and |goto restart|@>=
13772 loc=limit; /* the next character to be read on this line will be |"%"| */
13773 print_err("Incomplete string token has been flushed");
13774 @.Incomplete string token...@>
13775 help3("Strings should finish on the same line as they began.")
13776 ("I've deleted the partial string; you might want to")
13777 ("insert another by typing, e.g., `I\"new string\"'.");
13778 mp->deletions_allowed=false; mp_error(mp);
13779 mp->deletions_allowed=true;
13783 @ @<Get the integer part |n| of a numeric token...@>=
13785 while ( mp->char_class[mp->buffer[loc]]==digit_class ) {
13786 if ( n<32768 ) n=10*n+mp->buffer[loc]-'0';
13789 if ( mp->buffer[loc]=='.' )
13790 if ( mp->char_class[mp->buffer[loc+1]]==digit_class )
13793 goto FIN_NUMERIC_TOKEN;
13796 @ @<Get the fraction part |f| of a numeric token@>=
13799 if ( k<17 ) { /* digits for |k>=17| cannot affect the result */
13800 mp->dig[k]=mp->buffer[loc]-'0'; incr(k);
13803 } while (mp->char_class[mp->buffer[loc]]==digit_class);
13804 f=mp_round_decimals(mp, k);
13809 @ @<Pack the numeric and fraction parts of a numeric token and |return|@>=
13811 @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>;
13812 } else if ( mp->scanner_status!=tex_flushing ) {
13813 print_err("Enormous number has been reduced");
13814 @.Enormous number...@>
13815 help2("I can\'t handle numbers bigger than 32767.99998;")
13816 ("so I've changed your constant to that maximum amount.");
13817 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13818 mp->cur_mod=el_gordo;
13820 mp->cur_cmd=numeric_token; return
13822 @ @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>=
13824 mp->cur_mod=n*unity+f;
13825 if ( mp->cur_mod>=fraction_one ) {
13826 if ( (mp->internal[mp_warning_check]>0) &&
13827 (mp->scanner_status!=tex_flushing) ) {
13828 print_err("Number is too large (");
13829 mp_print_scaled(mp, mp->cur_mod);
13830 mp_print_char(mp, ')');
13831 help3("It is at least 4096. Continue and I'll try to cope")
13832 ("with that big value; but it might be dangerous.")
13833 ("(Set warningcheck:=0 to suppress this message.)");
13839 @ Let's consider now what happens when |get_next| is looking at a token list.
13842 @<Input from token list;...@>=
13843 if ( loc>=mp->hi_mem_min ) { /* one-word token */
13844 mp->cur_sym=info(loc); loc=link(loc); /* move to next */
13845 if ( mp->cur_sym>=expr_base ) {
13846 if ( mp->cur_sym>=suffix_base ) {
13847 @<Insert a suffix or text parameter and |goto restart|@>;
13849 mp->cur_cmd=capsule_token;
13850 mp->cur_mod=mp->param_stack[param_start+mp->cur_sym-(expr_base)];
13851 mp->cur_sym=0; return;
13854 } else if ( loc>null ) {
13855 @<Get a stored numeric or string or capsule token and |return|@>
13856 } else { /* we are done with this token list */
13857 mp_end_token_list(mp); goto RESTART; /* resume previous level */
13860 @ @<Insert a suffix or text parameter...@>=
13862 if ( mp->cur_sym>=text_base ) mp->cur_sym=mp->cur_sym-mp->param_size;
13863 /* |param_size=text_base-suffix_base| */
13864 mp_begin_token_list(mp,
13865 mp->param_stack[param_start+mp->cur_sym-(suffix_base)],
13870 @ @<Get a stored numeric or string or capsule token...@>=
13872 if ( name_type(loc)==mp_token ) {
13873 mp->cur_mod=value(loc);
13874 if ( type(loc)==mp_known ) {
13875 mp->cur_cmd=numeric_token;
13877 mp->cur_cmd=string_token; add_str_ref(mp->cur_mod);
13880 mp->cur_mod=loc; mp->cur_cmd=capsule_token;
13882 loc=link(loc); return;
13885 @ All of the easy branches of |get_next| have now been taken care of.
13886 There is one more branch.
13888 @<Move to next line of file, or |goto restart|...@>=
13889 if ( name>max_spec_src ) {
13890 @<Read next line of file into |buffer|, or
13891 |goto restart| if the file has ended@>;
13893 if ( mp->input_ptr>0 ) {
13894 /* text was inserted during error recovery or by \&{scantokens} */
13895 mp_end_file_reading(mp); goto RESTART; /* resume previous level */
13897 if ( mp->selector<log_only || mp->selector>=write_file) mp_open_log_file(mp);
13898 if ( mp->interaction>mp_nonstop_mode ) {
13899 if ( limit==start ) /* previous line was empty */
13900 mp_print_nl(mp, "(Please type a command or say `end')");
13902 mp_print_ln(mp); mp->first=start;
13903 prompt_input("*"); /* input on-line into |buffer| */
13905 limit=mp->last; mp->buffer[limit]='%';
13906 mp->first=limit+1; loc=start;
13908 mp_fatal_error(mp, "*** (job aborted, no legal end found)");
13910 /* nonstop mode, which is intended for overnight batch processing,
13911 never waits for on-line input */
13915 @ The global variable |force_eof| is normally |false|; it is set |true|
13916 by an \&{endinput} command.
13919 boolean force_eof; /* should the next \&{input} be aborted early? */
13921 @ We must decrement |loc| in order to leave the buffer in a valid state
13922 when an error condition causes us to |goto restart| without calling
13923 |end_file_reading|.
13925 @<Read next line of file into |buffer|, or
13926 |goto restart| if the file has ended@>=
13928 incr(line); mp->first=start;
13929 if ( ! mp->force_eof ) {
13930 if ( mp_input_ln(mp, cur_file ) ) /* not end of file */
13931 mp_firm_up_the_line(mp); /* this sets |limit| */
13933 mp->force_eof=true;
13935 if ( mp->force_eof ) {
13936 mp->force_eof=false;
13938 if ( mpx_reading ) {
13939 @<Complain that the \.{MPX} file ended unexpectly; then set
13940 |cur_sym:=frozen_mpx_break| and |goto comon_ending|@>;
13942 mp_print_char(mp, ')'); decr(mp->open_parens);
13943 update_terminal; /* show user that file has been read */
13944 mp_end_file_reading(mp); /* resume previous level */
13945 if ( mp_check_outer_validity(mp) ) goto RESTART;
13949 mp->buffer[limit]='%'; mp->first=limit+1; loc=start; /* ready to read */
13952 @ We should never actually come to the end of an \.{MPX} file because such
13953 files should have an \&{mpxbreak} after the translation of the last
13954 \&{btex}$\,\ldots\,$\&{etex} block.
13956 @<Complain that the \.{MPX} file ended unexpectly; then set...@>=
13958 mp->mpx_name[index]=finished;
13959 print_err("mpx file ended unexpectedly");
13960 help4("The file had too few picture expressions for btex...etex")
13961 ("blocks. Such files are normally generated automatically")
13962 ("but this one got messed up. You might want to insert a")
13963 ("picture expression now.");
13964 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13965 mp->cur_sym=frozen_mpx_break; goto COMMON_ENDING;
13968 @ Sometimes we want to make it look as though we have just read a blank line
13969 without really doing so.
13971 @<Put an empty line in the input buffer@>=
13972 mp->last=mp->first; limit=mp->last; /* simulate |input_ln| and |firm_up_the_line| */
13973 mp->buffer[limit]='%'; mp->first=limit+1; loc=start
13975 @ If the user has set the |mp_pausing| parameter to some positive value,
13976 and if nonstop mode has not been selected, each line of input is displayed
13977 on the terminal and the transcript file, followed by `\.{=>}'.
13978 \MP\ waits for a response. If the response is null (i.e., if nothing is
13979 typed except perhaps a few blank spaces), the original
13980 line is accepted as it stands; otherwise the line typed is
13981 used instead of the line in the file.
13983 @c void mp_firm_up_the_line (MP mp) {
13984 size_t k; /* an index into |buffer| */
13986 if ( mp->internal[mp_pausing]>0) if ( mp->interaction>mp_nonstop_mode ) {
13987 wake_up_terminal; mp_print_ln(mp);
13988 if ( start<limit ) {
13989 for (k=(size_t)start;k<=(size_t)(limit-1);k++) {
13990 mp_print_str(mp, mp->buffer[k]);
13993 mp->first=limit; prompt_input("=>"); /* wait for user response */
13995 if ( mp->last>mp->first ) {
13996 for (k=mp->first;k<=mp->last-1;k++) { /* move line down in buffer */
13997 mp->buffer[k+start-mp->first]=mp->buffer[k];
13999 limit=start+mp->last-mp->first;
14004 @* \[30] Dealing with \TeX\ material.
14005 The \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}$\,\ldots\,$\&{etex}
14006 features need to be implemented at a low level in the scanning process
14007 so that \MP\ can stay in synch with the a preprocessor that treats
14008 blocks of \TeX\ material as they occur in the input file without trying
14009 to expand \MP\ macros. Thus we need a special version of |get_next|
14010 that does not expand macros and such but does handle \&{btex},
14011 \&{verbatimtex}, etc.
14013 The special version of |get_next| is called |get_t_next|. It works by flushing
14014 \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}\allowbreak
14015 $\,\ldots\,$\&{etex} blocks, switching to the \.{MPX} file when it sees
14016 \&{btex}, and switching back when it sees \&{mpxbreak}.
14022 mp_primitive(mp, "btex",start_tex,btex_code);
14023 @:btex_}{\&{btex} primitive@>
14024 mp_primitive(mp, "verbatimtex",start_tex,verbatim_code);
14025 @:verbatimtex_}{\&{verbatimtex} primitive@>
14026 mp_primitive(mp, "etex",etex_marker,0); mp->eqtb[frozen_etex]=mp->eqtb[mp->cur_sym];
14027 @:etex_}{\&{etex} primitive@>
14028 mp_primitive(mp, "mpxbreak",mpx_break,0); mp->eqtb[frozen_mpx_break]=mp->eqtb[mp->cur_sym];
14029 @:mpx_break_}{\&{mpxbreak} primitive@>
14031 @ @<Cases of |print_cmd...@>=
14032 case start_tex: if ( m==btex_code ) mp_print(mp, "btex");
14033 else mp_print(mp, "verbatimtex"); break;
14034 case etex_marker: mp_print(mp, "etex"); break;
14035 case mpx_break: mp_print(mp, "mpxbreak"); break;
14037 @ Actually, |get_t_next| is a macro that avoids procedure overhead except
14038 in the unusual case where \&{btex}, \&{verbatimtex}, \&{etex}, or \&{mpxbreak}
14041 @d get_t_next {mp_get_next(mp); if ( mp->cur_cmd<=max_pre_command ) mp_t_next(mp); }
14044 void mp_start_mpx_input (MP mp);
14047 void mp_t_next (MP mp) {
14048 int old_status; /* saves the |scanner_status| */
14049 integer old_info; /* saves the |warning_info| */
14050 while ( mp->cur_cmd<=max_pre_command ) {
14051 if ( mp->cur_cmd==mpx_break ) {
14052 if ( ! file_state || (mp->mpx_name[index]==absent) ) {
14053 @<Complain about a misplaced \&{mpxbreak}@>;
14055 mp_end_mpx_reading(mp);
14058 } else if ( mp->cur_cmd==start_tex ) {
14059 if ( token_state || (name<=max_spec_src) ) {
14060 @<Complain that we are not reading a file@>;
14061 } else if ( mpx_reading ) {
14062 @<Complain that \.{MPX} files cannot contain \TeX\ material@>;
14063 } else if ( (mp->cur_mod!=verbatim_code)&&
14064 (mp->mpx_name[index]!=finished) ) {
14065 if ( ! mp_begin_mpx_reading(mp) ) mp_start_mpx_input(mp);
14070 @<Complain about a misplaced \&{etex}@>;
14072 goto COMMON_ENDING;
14074 @<Flush the \TeX\ material@>;
14080 @ We could be in the middle of an operation such as skipping false conditional
14081 text when \TeX\ material is encountered, so we must be careful to save the
14084 @<Flush the \TeX\ material@>=
14085 old_status=mp->scanner_status;
14086 old_info=mp->warning_info;
14087 mp->scanner_status=tex_flushing;
14088 mp->warning_info=line;
14089 do { mp_get_next(mp); } while (mp->cur_cmd!=etex_marker);
14090 mp->scanner_status=old_status;
14091 mp->warning_info=old_info
14093 @ @<Complain that \.{MPX} files cannot contain \TeX\ material@>=
14094 { print_err("An mpx file cannot contain btex or verbatimtex blocks");
14095 help4("This file contains picture expressions for btex...etex")
14096 ("blocks. Such files are normally generated automatically")
14097 ("but this one seems to be messed up. I'll just keep going")
14098 ("and hope for the best.");
14102 @ @<Complain that we are not reading a file@>=
14103 { print_err("You can only use `btex' or `verbatimtex' in a file");
14104 help3("I'll have to ignore this preprocessor command because it")
14105 ("only works when there is a file to preprocess. You might")
14106 ("want to delete everything up to the next `etex`.");
14110 @ @<Complain about a misplaced \&{mpxbreak}@>=
14111 { print_err("Misplaced mpxbreak");
14112 help2("I'll ignore this preprocessor command because it")
14113 ("doesn't belong here");
14117 @ @<Complain about a misplaced \&{etex}@>=
14118 { print_err("Extra etex will be ignored");
14119 help1("There is no btex or verbatimtex for this to match");
14123 @* \[31] Scanning macro definitions.
14124 \MP\ has a variety of ways to tuck tokens away into token lists for later
14125 use: Macros can be defined with \&{def}, \&{vardef}, \&{primarydef}, etc.;
14126 repeatable code can be defined with \&{for}, \&{forever}, \&{forsuffixes}.
14127 All such operations are handled by the routines in this part of the program.
14129 The modifier part of each command code is zero for the ``ending delimiters''
14130 like \&{enddef} and \&{endfor}.
14132 @d start_def 1 /* command modifier for \&{def} */
14133 @d var_def 2 /* command modifier for \&{vardef} */
14134 @d end_def 0 /* command modifier for \&{enddef} */
14135 @d start_forever 1 /* command modifier for \&{forever} */
14136 @d end_for 0 /* command modifier for \&{endfor} */
14139 mp_primitive(mp, "def",macro_def,start_def);
14140 @:def_}{\&{def} primitive@>
14141 mp_primitive(mp, "vardef",macro_def,var_def);
14142 @:var_def_}{\&{vardef} primitive@>
14143 mp_primitive(mp, "primarydef",macro_def,secondary_primary_macro);
14144 @:primary_def_}{\&{primarydef} primitive@>
14145 mp_primitive(mp, "secondarydef",macro_def,tertiary_secondary_macro);
14146 @:secondary_def_}{\&{secondarydef} primitive@>
14147 mp_primitive(mp, "tertiarydef",macro_def,expression_tertiary_macro);
14148 @:tertiary_def_}{\&{tertiarydef} primitive@>
14149 mp_primitive(mp, "enddef",macro_def,end_def); mp->eqtb[frozen_end_def]=mp->eqtb[mp->cur_sym];
14150 @:end_def_}{\&{enddef} primitive@>
14152 mp_primitive(mp, "for",iteration,expr_base);
14153 @:for_}{\&{for} primitive@>
14154 mp_primitive(mp, "forsuffixes",iteration,suffix_base);
14155 @:for_suffixes_}{\&{forsuffixes} primitive@>
14156 mp_primitive(mp, "forever",iteration,start_forever);
14157 @:forever_}{\&{forever} primitive@>
14158 mp_primitive(mp, "endfor",iteration,end_for); mp->eqtb[frozen_end_for]=mp->eqtb[mp->cur_sym];
14159 @:end_for_}{\&{endfor} primitive@>
14161 @ @<Cases of |print_cmd...@>=
14163 if ( m<=var_def ) {
14164 if ( m==start_def ) mp_print(mp, "def");
14165 else if ( m<start_def ) mp_print(mp, "enddef");
14166 else mp_print(mp, "vardef");
14167 } else if ( m==secondary_primary_macro ) {
14168 mp_print(mp, "primarydef");
14169 } else if ( m==tertiary_secondary_macro ) {
14170 mp_print(mp, "secondarydef");
14172 mp_print(mp, "tertiarydef");
14176 if ( m<=start_forever ) {
14177 if ( m==start_forever ) mp_print(mp, "forever");
14178 else mp_print(mp, "endfor");
14179 } else if ( m==expr_base ) {
14180 mp_print(mp, "for");
14182 mp_print(mp, "forsuffixes");
14186 @ Different macro-absorbing operations have different syntaxes, but they
14187 also have a lot in common. There is a list of special symbols that are to
14188 be replaced by parameter tokens; there is a special command code that
14189 ends the definition; the quotation conventions are identical. Therefore
14190 it makes sense to have most of the work done by a single subroutine. That
14191 subroutine is called |scan_toks|.
14193 The first parameter to |scan_toks| is the command code that will
14194 terminate scanning (either |macro_def|, |loop_repeat|, or |iteration|).
14196 The second parameter, |subst_list|, points to a (possibly empty) list
14197 of two-word nodes whose |info| and |value| fields specify symbol tokens
14198 before and after replacement. The list will be returned to free storage
14201 The third parameter is simply appended to the token list that is built.
14202 And the final parameter tells how many of the special operations
14203 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#} are to be replaced by suffix parameters.
14204 When such parameters are present, they are called \.{(SUFFIX0)},
14205 \.{(SUFFIX1)}, and \.{(SUFFIX2)}.
14207 @c pointer mp_scan_toks (MP mp,command_code terminator, pointer
14208 subst_list, pointer tail_end, small_number suffix_count) {
14209 pointer p; /* tail of the token list being built */
14210 pointer q; /* temporary for link management */
14211 integer balance; /* left delimiters minus right delimiters */
14212 p=hold_head; balance=1; link(hold_head)=null;
14215 if ( mp->cur_sym>0 ) {
14216 @<Substitute for |cur_sym|, if it's on the |subst_list|@>;
14217 if ( mp->cur_cmd==terminator ) {
14218 @<Adjust the balance; |break| if it's zero@>;
14219 } else if ( mp->cur_cmd==macro_special ) {
14220 @<Handle quoted symbols, \.{\#\AT!}, \.{\AT!}, or \.{\AT!\#}@>;
14223 link(p)=mp_cur_tok(mp); p=link(p);
14225 link(p)=tail_end; mp_flush_node_list(mp, subst_list);
14226 return link(hold_head);
14229 @ @<Substitute for |cur_sym|...@>=
14232 while ( q!=null ) {
14233 if ( info(q)==mp->cur_sym ) {
14234 mp->cur_sym=value(q); mp->cur_cmd=relax; break;
14240 @ @<Adjust the balance; |break| if it's zero@>=
14241 if ( mp->cur_mod>0 ) {
14249 @ Four commands are intended to be used only within macro texts: \&{quote},
14250 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#}. They are variants of a single command
14251 code called |macro_special|.
14253 @d quote 0 /* |macro_special| modifier for \&{quote} */
14254 @d macro_prefix 1 /* |macro_special| modifier for \.{\#\AT!} */
14255 @d macro_at 2 /* |macro_special| modifier for \.{\AT!} */
14256 @d macro_suffix 3 /* |macro_special| modifier for \.{\AT!\#} */
14259 mp_primitive(mp, "quote",macro_special,quote);
14260 @:quote_}{\&{quote} primitive@>
14261 mp_primitive(mp, "#@@",macro_special,macro_prefix);
14262 @:]]]\#\AT!_}{\.{\#\AT!} primitive@>
14263 mp_primitive(mp, "@@",macro_special,macro_at);
14264 @:]]]\AT!_}{\.{\AT!} primitive@>
14265 mp_primitive(mp, "@@#",macro_special,macro_suffix);
14266 @:]]]\AT!\#_}{\.{\AT!\#} primitive@>
14268 @ @<Cases of |print_cmd...@>=
14269 case macro_special:
14271 case macro_prefix: mp_print(mp, "#@@"); break;
14272 case macro_at: mp_print_char(mp, '@@'); break;
14273 case macro_suffix: mp_print(mp, "@@#"); break;
14274 default: mp_print(mp, "quote"); break;
14278 @ @<Handle quoted...@>=
14280 if ( mp->cur_mod==quote ) { get_t_next; }
14281 else if ( mp->cur_mod<=suffix_count )
14282 mp->cur_sym=suffix_base-1+mp->cur_mod;
14285 @ Here is a routine that's used whenever a token will be redefined. If
14286 the user's token is unredefinable, the `|frozen_inaccessible|' token is
14287 substituted; the latter is redefinable but essentially impossible to use,
14288 hence \MP's tables won't get fouled up.
14290 @c void mp_get_symbol (MP mp) { /* sets |cur_sym| to a safe symbol */
14293 if ( (mp->cur_sym==0)||(mp->cur_sym>frozen_inaccessible) ) {
14294 print_err("Missing symbolic token inserted");
14295 @.Missing symbolic token...@>
14296 help3("Sorry: You can\'t redefine a number, string, or expr.")
14297 ("I've inserted an inaccessible symbol so that your")
14298 ("definition will be completed without mixing me up too badly.");
14299 if ( mp->cur_sym>0 )
14300 mp->help_line[2]="Sorry: You can\'t redefine my error-recovery tokens.";
14301 else if ( mp->cur_cmd==string_token )
14302 delete_str_ref(mp->cur_mod);
14303 mp->cur_sym=frozen_inaccessible; mp_ins_error(mp); goto RESTART;
14307 @ Before we actually redefine a symbolic token, we need to clear away its
14308 former value, if it was a variable. The following stronger version of
14309 |get_symbol| does that.
14311 @c void mp_get_clear_symbol (MP mp) {
14312 mp_get_symbol(mp); mp_clear_symbol(mp, mp->cur_sym,false);
14315 @ Here's another little subroutine; it checks that an equals sign
14316 or assignment sign comes along at the proper place in a macro definition.
14318 @c void mp_check_equals (MP mp) {
14319 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
14320 mp_missing_err(mp, "=");
14322 help5("The next thing in this `def' should have been `=',")
14323 ("because I've already looked at the definition heading.")
14324 ("But don't worry; I'll pretend that an equals sign")
14325 ("was present. Everything from here to `enddef'")
14326 ("will be the replacement text of this macro.");
14331 @ A \&{primarydef}, \&{secondarydef}, or \&{tertiarydef} is rather easily
14332 handled now that we have |scan_toks|. In this case there are
14333 two parameters, which will be \.{EXPR0} and \.{EXPR1} (i.e.,
14334 |expr_base| and |expr_base+1|).
14336 @c void mp_make_op_def (MP mp) {
14337 command_code m; /* the type of definition */
14338 pointer p,q,r; /* for list manipulation */
14340 mp_get_symbol(mp); q=mp_get_node(mp, token_node_size);
14341 info(q)=mp->cur_sym; value(q)=expr_base;
14342 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym;
14343 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14344 info(p)=mp->cur_sym; value(p)=expr_base+1; link(p)=q;
14345 get_t_next; mp_check_equals(mp);
14346 mp->scanner_status=op_defining; q=mp_get_avail(mp); ref_count(q)=null;
14347 r=mp_get_avail(mp); link(q)=r; info(r)=general_macro;
14348 link(r)=mp_scan_toks(mp, macro_def,p,null,0);
14349 mp->scanner_status=normal; eq_type(mp->warning_info)=m;
14350 equiv(mp->warning_info)=q; mp_get_x_next(mp);
14353 @ Parameters to macros are introduced by the keywords \&{expr},
14354 \&{suffix}, \&{text}, \&{primary}, \&{secondary}, and \&{tertiary}.
14357 mp_primitive(mp, "expr",param_type,expr_base);
14358 @:expr_}{\&{expr} primitive@>
14359 mp_primitive(mp, "suffix",param_type,suffix_base);
14360 @:suffix_}{\&{suffix} primitive@>
14361 mp_primitive(mp, "text",param_type,text_base);
14362 @:text_}{\&{text} primitive@>
14363 mp_primitive(mp, "primary",param_type,primary_macro);
14364 @:primary_}{\&{primary} primitive@>
14365 mp_primitive(mp, "secondary",param_type,secondary_macro);
14366 @:secondary_}{\&{secondary} primitive@>
14367 mp_primitive(mp, "tertiary",param_type,tertiary_macro);
14368 @:tertiary_}{\&{tertiary} primitive@>
14370 @ @<Cases of |print_cmd...@>=
14372 if ( m>=expr_base ) {
14373 if ( m==expr_base ) mp_print(mp, "expr");
14374 else if ( m==suffix_base ) mp_print(mp, "suffix");
14375 else mp_print(mp, "text");
14376 } else if ( m<secondary_macro ) {
14377 mp_print(mp, "primary");
14378 } else if ( m==secondary_macro ) {
14379 mp_print(mp, "secondary");
14381 mp_print(mp, "tertiary");
14385 @ Let's turn next to the more complex processing associated with \&{def}
14386 and \&{vardef}. When the following procedure is called, |cur_mod|
14387 should be either |start_def| or |var_def|.
14389 @c @<Declare the procedure called |check_delimiter|@>;
14390 @<Declare the function called |scan_declared_variable|@>;
14391 void mp_scan_def (MP mp) {
14392 int m; /* the type of definition */
14393 int n; /* the number of special suffix parameters */
14394 int k; /* the total number of parameters */
14395 int c; /* the kind of macro we're defining */
14396 pointer r; /* parameter-substitution list */
14397 pointer q; /* tail of the macro token list */
14398 pointer p; /* temporary storage */
14399 halfword base; /* |expr_base|, |suffix_base|, or |text_base| */
14400 pointer l_delim,r_delim; /* matching delimiters */
14401 m=mp->cur_mod; c=general_macro; link(hold_head)=null;
14402 q=mp_get_avail(mp); ref_count(q)=null; r=null;
14403 @<Scan the token or variable to be defined;
14404 set |n|, |scanner_status|, and |warning_info|@>;
14406 if ( mp->cur_cmd==left_delimiter ) {
14407 @<Absorb delimited parameters, putting them into lists |q| and |r|@>;
14409 if ( mp->cur_cmd==param_type ) {
14410 @<Absorb undelimited parameters, putting them into list |r|@>;
14412 mp_check_equals(mp);
14413 p=mp_get_avail(mp); info(p)=c; link(q)=p;
14414 @<Attach the replacement text to the tail of node |p|@>;
14415 mp->scanner_status=normal; mp_get_x_next(mp);
14418 @ We don't put `|frozen_end_group|' into the replacement text of
14419 a \&{vardef}, because the user may want to redefine `\.{endgroup}'.
14421 @<Attach the replacement text to the tail of node |p|@>=
14422 if ( m==start_def ) {
14423 link(p)=mp_scan_toks(mp, macro_def,r,null,n);
14425 q=mp_get_avail(mp); info(q)=mp->bg_loc; link(p)=q;
14426 p=mp_get_avail(mp); info(p)=mp->eg_loc;
14427 link(q)=mp_scan_toks(mp, macro_def,r,p,n);
14429 if ( mp->warning_info==bad_vardef )
14430 mp_flush_token_list(mp, value(bad_vardef))
14434 int eg_loc; /* hash addresses of `\.{begingroup}' and `\.{endgroup}' */
14436 @ @<Scan the token or variable to be defined;...@>=
14437 if ( m==start_def ) {
14438 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym; get_t_next;
14439 mp->scanner_status=op_defining; n=0;
14440 eq_type(mp->warning_info)=defined_macro; equiv(mp->warning_info)=q;
14442 p=mp_scan_declared_variable(mp);
14443 mp_flush_variable(mp, equiv(info(p)),link(p),true);
14444 mp->warning_info=mp_find_variable(mp, p); mp_flush_list(mp, p);
14445 if ( mp->warning_info==null ) @<Change to `\.{a bad variable}'@>;
14446 mp->scanner_status=var_defining; n=2;
14447 if ( mp->cur_cmd==macro_special ) if ( mp->cur_mod==macro_suffix ) {/* \.{\AT!\#} */
14450 type(mp->warning_info)=mp_unsuffixed_macro-2+n; value(mp->warning_info)=q;
14451 } /* |mp_suffixed_macro=mp_unsuffixed_macro+1| */
14453 @ @<Change to `\.{a bad variable}'@>=
14455 print_err("This variable already starts with a macro");
14456 @.This variable already...@>
14457 help2("After `vardef a' you can\'t say `vardef a.b'.")
14458 ("So I'll have to discard this definition.");
14459 mp_error(mp); mp->warning_info=bad_vardef;
14462 @ @<Initialize table entries...@>=
14463 name_type(bad_vardef)=mp_root; link(bad_vardef)=frozen_bad_vardef;
14464 equiv(frozen_bad_vardef)=bad_vardef; eq_type(frozen_bad_vardef)=tag_token;
14466 @ @<Absorb delimited parameters, putting them into lists |q| and |r|@>=
14468 l_delim=mp->cur_sym; r_delim=mp->cur_mod; get_t_next;
14469 if ( (mp->cur_cmd==param_type)&&(mp->cur_mod>=expr_base) ) {
14472 print_err("Missing parameter type; `expr' will be assumed");
14473 @.Missing parameter type@>
14474 help1("You should've had `expr' or `suffix' or `text' here.");
14475 mp_back_error(mp); base=expr_base;
14477 @<Absorb parameter tokens for type |base|@>;
14478 mp_check_delimiter(mp, l_delim,r_delim);
14480 } while (mp->cur_cmd==left_delimiter)
14482 @ @<Absorb parameter tokens for type |base|@>=
14484 link(q)=mp_get_avail(mp); q=link(q); info(q)=base+k;
14485 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14486 value(p)=base+k; info(p)=mp->cur_sym;
14487 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14488 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
14489 incr(k); link(p)=r; r=p; get_t_next;
14490 } while (mp->cur_cmd==comma)
14492 @ @<Absorb undelimited parameters, putting them into list |r|@>=
14494 p=mp_get_node(mp, token_node_size);
14495 if ( mp->cur_mod<expr_base ) {
14496 c=mp->cur_mod; value(p)=expr_base+k;
14498 value(p)=mp->cur_mod+k;
14499 if ( mp->cur_mod==expr_base ) c=expr_macro;
14500 else if ( mp->cur_mod==suffix_base ) c=suffix_macro;
14503 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14504 incr(k); mp_get_symbol(mp); info(p)=mp->cur_sym; link(p)=r; r=p; get_t_next;
14505 if ( c==expr_macro ) if ( mp->cur_cmd==of_token ) {
14506 c=of_macro; p=mp_get_node(mp, token_node_size);
14507 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14508 value(p)=expr_base+k; mp_get_symbol(mp); info(p)=mp->cur_sym;
14509 link(p)=r; r=p; get_t_next;
14513 @* \[32] Expanding the next token.
14514 Only a few command codes |<min_command| can possibly be returned by
14515 |get_t_next|; in increasing order, they are
14516 |if_test|, |fi_or_else|, |input|, |iteration|, |repeat_loop|,
14517 |exit_test|, |relax|, |scan_tokens|, |expand_after|, and |defined_macro|.
14519 \MP\ usually gets the next token of input by saying |get_x_next|. This is
14520 like |get_t_next| except that it keeps getting more tokens until
14521 finding |cur_cmd>=min_command|. In other words, |get_x_next| expands
14522 macros and removes conditionals or iterations or input instructions that
14525 It follows that |get_x_next| might invoke itself recursively. In fact,
14526 there is massive recursion, since macro expansion can involve the
14527 scanning of arbitrarily complex expressions, which in turn involve
14528 macro expansion and conditionals, etc.
14531 Therefore it's necessary to declare a whole bunch of |forward|
14532 procedures at this point, and to insert some other procedures
14533 that will be invoked by |get_x_next|.
14536 void mp_scan_primary (MP mp);
14537 void mp_scan_secondary (MP mp);
14538 void mp_scan_tertiary (MP mp);
14539 void mp_scan_expression (MP mp);
14540 void mp_scan_suffix (MP mp);
14541 @<Declare the procedure called |macro_call|@>;
14542 void mp_get_boolean (MP mp);
14543 void mp_pass_text (MP mp);
14544 void mp_conditional (MP mp);
14545 void mp_start_input (MP mp);
14546 void mp_begin_iteration (MP mp);
14547 void mp_resume_iteration (MP mp);
14548 void mp_stop_iteration (MP mp);
14550 @ An auxiliary subroutine called |expand| is used by |get_x_next|
14551 when it has to do exotic expansion commands.
14553 @c void mp_expand (MP mp) {
14554 pointer p; /* for list manipulation */
14555 size_t k; /* something that we hope is |<=buf_size| */
14556 pool_pointer j; /* index into |str_pool| */
14557 if ( mp->internal[mp_tracing_commands]>unity )
14558 if ( mp->cur_cmd!=defined_macro )
14560 switch (mp->cur_cmd) {
14562 mp_conditional(mp); /* this procedure is discussed in Part 36 below */
14565 @<Terminate the current conditional and skip to \&{fi}@>;
14568 @<Initiate or terminate input from a file@>;
14571 if ( mp->cur_mod==end_for ) {
14572 @<Scold the user for having an extra \&{endfor}@>;
14574 mp_begin_iteration(mp); /* this procedure is discussed in Part 37 below */
14581 @<Exit a loop if the proper time has come@>;
14586 @<Expand the token after the next token@>;
14589 @<Put a string into the input buffer@>;
14591 case defined_macro:
14592 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14594 }; /* there are no other cases */
14597 @ @<Scold the user...@>=
14599 print_err("Extra `endfor'");
14601 help2("I'm not currently working on a for loop,")
14602 ("so I had better not try to end anything.");
14606 @ The processing of \&{input} involves the |start_input| subroutine,
14607 which will be declared later; the processing of \&{endinput} is trivial.
14610 mp_primitive(mp, "input",input,0);
14611 @:input_}{\&{input} primitive@>
14612 mp_primitive(mp, "endinput",input,1);
14613 @:end_input_}{\&{endinput} primitive@>
14615 @ @<Cases of |print_cmd_mod|...@>=
14617 if ( m==0 ) mp_print(mp, "input");
14618 else mp_print(mp, "endinput");
14621 @ @<Initiate or terminate input...@>=
14622 if ( mp->cur_mod>0 ) mp->force_eof=true;
14623 else mp_start_input(mp)
14625 @ We'll discuss the complicated parts of loop operations later. For now
14626 it suffices to know that there's a global variable called |loop_ptr|
14627 that will be |null| if no loop is in progress.
14630 { while ( token_state &&(loc==null) )
14631 mp_end_token_list(mp); /* conserve stack space */
14632 if ( mp->loop_ptr==null ) {
14633 print_err("Lost loop");
14635 help2("I'm confused; after exiting from a loop, I still seem")
14636 ("to want to repeat it. I'll try to forget the problem.");
14639 mp_resume_iteration(mp); /* this procedure is in Part 37 below */
14643 @ @<Exit a loop if the proper time has come@>=
14644 { mp_get_boolean(mp);
14645 if ( mp->internal[mp_tracing_commands]>unity )
14646 mp_show_cmd_mod(mp, nullary,mp->cur_exp);
14647 if ( mp->cur_exp==true_code ) {
14648 if ( mp->loop_ptr==null ) {
14649 print_err("No loop is in progress");
14650 @.No loop is in progress@>
14651 help1("Why say `exitif' when there's nothing to exit from?");
14652 if ( mp->cur_cmd==semicolon ) mp_error(mp); else mp_back_error(mp);
14654 @<Exit prematurely from an iteration@>;
14656 } else if ( mp->cur_cmd!=semicolon ) {
14657 mp_missing_err(mp, ";");
14659 help2("After `exitif <boolean exp>' I expect to see a semicolon.")
14660 ("I shall pretend that one was there."); mp_back_error(mp);
14664 @ Here we use the fact that |forever_text| is the only |token_type| that
14665 is less than |loop_text|.
14667 @<Exit prematurely...@>=
14670 if ( file_state ) {
14671 mp_end_file_reading(mp);
14673 if ( token_type<=loop_text ) p=start;
14674 mp_end_token_list(mp);
14677 if ( p!=info(mp->loop_ptr) ) mp_fatal_error(mp, "*** (loop confusion)");
14679 mp_stop_iteration(mp); /* this procedure is in Part 34 below */
14682 @ @<Expand the token after the next token@>=
14684 p=mp_cur_tok(mp); get_t_next;
14685 if ( mp->cur_cmd<min_command ) mp_expand(mp);
14686 else mp_back_input(mp);
14690 @ @<Put a string into the input buffer@>=
14691 { mp_get_x_next(mp); mp_scan_primary(mp);
14692 if ( mp->cur_type!=mp_string_type ) {
14693 mp_disp_err(mp, null,"Not a string");
14695 help2("I'm going to flush this expression, since")
14696 ("scantokens should be followed by a known string.");
14697 mp_put_get_flush_error(mp, 0);
14700 if ( length(mp->cur_exp)>0 )
14701 @<Pretend we're reading a new one-line file@>;
14705 @ @<Pretend we're reading a new one-line file@>=
14706 { mp_begin_file_reading(mp); name=is_scantok;
14707 k=mp->first+length(mp->cur_exp);
14708 if ( k>=mp->max_buf_stack ) {
14709 while ( k>=mp->buf_size ) {
14710 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
14712 mp->max_buf_stack=k+1;
14714 j=mp->str_start[mp->cur_exp]; limit=k;
14715 while ( mp->first<(size_t)limit ) {
14716 mp->buffer[mp->first]=mp->str_pool[j]; incr(j); incr(mp->first);
14718 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
14719 mp_flush_cur_exp(mp, 0);
14722 @ Here finally is |get_x_next|.
14724 The expression scanning routines to be considered later
14725 communicate via the global quantities |cur_type| and |cur_exp|;
14726 we must be very careful to save and restore these quantities while
14727 macros are being expanded.
14731 void mp_get_x_next (MP mp);
14733 @ @c void mp_get_x_next (MP mp) {
14734 pointer save_exp; /* a capsule to save |cur_type| and |cur_exp| */
14736 if ( mp->cur_cmd<min_command ) {
14737 save_exp=mp_stash_cur_exp(mp);
14739 if ( mp->cur_cmd==defined_macro )
14740 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14744 } while (mp->cur_cmd<min_command);
14745 mp_unstash_cur_exp(mp, save_exp); /* that restores |cur_type| and |cur_exp| */
14749 @ Now let's consider the |macro_call| procedure, which is used to start up
14750 all user-defined macros. Since the arguments to a macro might be expressions,
14751 |macro_call| is recursive.
14754 The first parameter to |macro_call| points to the reference count of the
14755 token list that defines the macro. The second parameter contains any
14756 arguments that have already been parsed (see below). The third parameter
14757 points to the symbolic token that names the macro. If the third parameter
14758 is |null|, the macro was defined by \&{vardef}, so its name can be
14759 reconstructed from the prefix and ``at'' arguments found within the
14762 What is this second parameter? It's simply a linked list of one-word items,
14763 whose |info| fields point to the arguments. In other words, if |arg_list=null|,
14764 no arguments have been scanned yet; otherwise |info(arg_list)| points to
14765 the first scanned argument, and |link(arg_list)| points to the list of
14766 further arguments (if any).
14768 Arguments of type \&{expr} are so-called capsules, which we will
14769 discuss later when we concentrate on expressions; they can be
14770 recognized easily because their |link| field is |void|. Arguments of type
14771 \&{suffix} and \&{text} are token lists without reference counts.
14773 @ After argument scanning is complete, the arguments are moved to the
14774 |param_stack|. (They can't be put on that stack any sooner, because
14775 the stack is growing and shrinking in unpredictable ways as more arguments
14776 are being acquired.) Then the macro body is fed to the scanner; i.e.,
14777 the replacement text of the macro is placed at the top of the \MP's
14778 input stack, so that |get_t_next| will proceed to read it next.
14780 @<Declare the procedure called |macro_call|@>=
14781 @<Declare the procedure called |print_macro_name|@>;
14782 @<Declare the procedure called |print_arg|@>;
14783 @<Declare the procedure called |scan_text_arg|@>;
14784 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14785 pointer macro_name) ;
14788 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14789 pointer macro_name) {
14790 /* invokes a user-defined control sequence */
14791 pointer r; /* current node in the macro's token list */
14792 pointer p,q; /* for list manipulation */
14793 integer n; /* the number of arguments */
14794 pointer tail = 0; /* tail of the argument list */
14795 pointer l_delim=0,r_delim=0; /* a delimiter pair */
14796 r=link(def_ref); add_mac_ref(def_ref);
14797 if ( arg_list==null ) {
14800 @<Determine the number |n| of arguments already supplied,
14801 and set |tail| to the tail of |arg_list|@>;
14803 if ( mp->internal[mp_tracing_macros]>0 ) {
14804 @<Show the text of the macro being expanded, and the existing arguments@>;
14806 @<Scan the remaining arguments, if any; set |r| to the first token
14807 of the replacement text@>;
14808 @<Feed the arguments and replacement text to the scanner@>;
14811 @ @<Show the text of the macro...@>=
14812 mp_begin_diagnostic(mp); mp_print_ln(mp);
14813 mp_print_macro_name(mp, arg_list,macro_name);
14814 if ( n==3 ) mp_print(mp, "@@#"); /* indicate a suffixed macro */
14815 mp_show_macro(mp, def_ref,null,100000);
14816 if ( arg_list!=null ) {
14820 mp_print_arg(mp, q,n,0);
14821 incr(n); p=link(p);
14824 mp_end_diagnostic(mp, false)
14827 @ @<Declare the procedure called |print_macro_name|@>=
14828 void mp_print_macro_name (MP mp,pointer a, pointer n);
14831 void mp_print_macro_name (MP mp,pointer a, pointer n) {
14832 pointer p,q; /* they traverse the first part of |a| */
14838 mp_print_text(info(info(link(a))));
14841 while ( link(q)!=null ) q=link(q);
14842 link(q)=info(link(a));
14843 mp_show_token_list(mp, p,null,1000,0);
14849 @ @<Declare the procedure called |print_arg|@>=
14850 void mp_print_arg (MP mp,pointer q, integer n, pointer b) ;
14853 void mp_print_arg (MP mp,pointer q, integer n, pointer b) {
14854 if ( link(q)==mp_void ) mp_print_nl(mp, "(EXPR");
14855 else if ( (b<text_base)&&(b!=text_macro) ) mp_print_nl(mp, "(SUFFIX");
14856 else mp_print_nl(mp, "(TEXT");
14857 mp_print_int(mp, n); mp_print(mp, ")<-");
14858 if ( link(q)==mp_void ) mp_print_exp(mp, q,1);
14859 else mp_show_token_list(mp, q,null,1000,0);
14862 @ @<Determine the number |n| of arguments already supplied...@>=
14864 n=1; tail=arg_list;
14865 while ( link(tail)!=null ) {
14866 incr(n); tail=link(tail);
14870 @ @<Scan the remaining arguments, if any; set |r|...@>=
14871 mp->cur_cmd=comma+1; /* anything |<>comma| will do */
14872 while ( info(r)>=expr_base ) {
14873 @<Scan the delimited argument represented by |info(r)|@>;
14876 if ( mp->cur_cmd==comma ) {
14877 print_err("Too many arguments to ");
14878 @.Too many arguments...@>
14879 mp_print_macro_name(mp, arg_list,macro_name); mp_print_char(mp, ';');
14880 mp_print_nl(mp, " Missing `"); mp_print_text(r_delim);
14882 mp_print(mp, "' has been inserted");
14883 help3("I'm going to assume that the comma I just read was a")
14884 ("right delimiter, and then I'll begin expanding the macro.")
14885 ("You might want to delete some tokens before continuing.");
14888 if ( info(r)!=general_macro ) {
14889 @<Scan undelimited argument(s)@>;
14893 @ At this point, the reader will find it advisable to review the explanation
14894 of token list format that was presented earlier, paying special attention to
14895 the conventions that apply only at the beginning of a macro's token list.
14897 On the other hand, the reader will have to take the expression-parsing
14898 aspects of the following program on faith; we will explain |cur_type|
14899 and |cur_exp| later. (Several things in this program depend on each other,
14900 and it's necessary to jump into the circle somewhere.)
14902 @<Scan the delimited argument represented by |info(r)|@>=
14903 if ( mp->cur_cmd!=comma ) {
14905 if ( mp->cur_cmd!=left_delimiter ) {
14906 print_err("Missing argument to ");
14907 @.Missing argument...@>
14908 mp_print_macro_name(mp, arg_list,macro_name);
14909 help3("That macro has more parameters than you thought.")
14910 ("I'll continue by pretending that each missing argument")
14911 ("is either zero or null.");
14912 if ( info(r)>=suffix_base ) {
14913 mp->cur_exp=null; mp->cur_type=mp_token_list;
14915 mp->cur_exp=0; mp->cur_type=mp_known;
14917 mp_back_error(mp); mp->cur_cmd=right_delimiter;
14920 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
14922 @<Scan the argument represented by |info(r)|@>;
14923 if ( mp->cur_cmd!=comma )
14924 @<Check that the proper right delimiter was present@>;
14926 @<Append the current expression to |arg_list|@>
14928 @ @<Check that the proper right delim...@>=
14929 if ( (mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
14930 if ( info(link(r))>=expr_base ) {
14931 mp_missing_err(mp, ",");
14933 help3("I've finished reading a macro argument and am about to")
14934 ("read another; the arguments weren't delimited correctly.")
14935 ("You might want to delete some tokens before continuing.");
14936 mp_back_error(mp); mp->cur_cmd=comma;
14938 mp_missing_err(mp, str(text(r_delim)));
14940 help2("I've gotten to the end of the macro parameter list.")
14941 ("You might want to delete some tokens before continuing.");
14946 @ A \&{suffix} or \&{text} parameter will be have been scanned as
14947 a token list pointed to by |cur_exp|, in which case we will have
14948 |cur_type=token_list|.
14950 @<Append the current expression to |arg_list|@>=
14952 p=mp_get_avail(mp);
14953 if ( mp->cur_type==mp_token_list ) info(p)=mp->cur_exp;
14954 else info(p)=mp_stash_cur_exp(mp);
14955 if ( mp->internal[mp_tracing_macros]>0 ) {
14956 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,info(r));
14957 mp_end_diagnostic(mp, false);
14959 if ( arg_list==null ) arg_list=p;
14964 @ @<Scan the argument represented by |info(r)|@>=
14965 if ( info(r)>=text_base ) {
14966 mp_scan_text_arg(mp, l_delim,r_delim);
14969 if ( info(r)>=suffix_base ) mp_scan_suffix(mp);
14970 else mp_scan_expression(mp);
14973 @ The parameters to |scan_text_arg| are either a pair of delimiters
14974 or zero; the latter case is for undelimited text arguments, which
14975 end with the first semicolon or \&{endgroup} or \&{end} that is not
14976 contained in a group.
14978 @<Declare the procedure called |scan_text_arg|@>=
14979 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) ;
14982 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) {
14983 integer balance; /* excess of |l_delim| over |r_delim| */
14984 pointer p; /* list tail */
14985 mp->warning_info=l_delim; mp->scanner_status=absorbing;
14986 p=hold_head; balance=1; link(hold_head)=null;
14989 if ( l_delim==0 ) {
14990 @<Adjust the balance for an undelimited argument; |break| if done@>;
14992 @<Adjust the balance for a delimited argument; |break| if done@>;
14994 link(p)=mp_cur_tok(mp); p=link(p);
14996 mp->cur_exp=link(hold_head); mp->cur_type=mp_token_list;
14997 mp->scanner_status=normal;
15000 @ @<Adjust the balance for a delimited argument...@>=
15001 if ( mp->cur_cmd==right_delimiter ) {
15002 if ( mp->cur_mod==l_delim ) {
15004 if ( balance==0 ) break;
15006 } else if ( mp->cur_cmd==left_delimiter ) {
15007 if ( mp->cur_mod==r_delim ) incr(balance);
15010 @ @<Adjust the balance for an undelimited...@>=
15011 if ( end_of_statement ) { /* |cur_cmd=semicolon|, |end_group|, or |stop| */
15012 if ( balance==1 ) { break; }
15013 else { if ( mp->cur_cmd==end_group ) decr(balance); }
15014 } else if ( mp->cur_cmd==begin_group ) {
15018 @ @<Scan undelimited argument(s)@>=
15020 if ( info(r)<text_macro ) {
15022 if ( info(r)!=suffix_macro ) {
15023 if ( (mp->cur_cmd==equals)||(mp->cur_cmd==assignment) ) mp_get_x_next(mp);
15027 case primary_macro:mp_scan_primary(mp); break;
15028 case secondary_macro:mp_scan_secondary(mp); break;
15029 case tertiary_macro:mp_scan_tertiary(mp); break;
15030 case expr_macro:mp_scan_expression(mp); break;
15032 @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>;
15035 @<Scan a suffix with optional delimiters@>;
15037 case text_macro:mp_scan_text_arg(mp, 0,0); break;
15038 } /* there are no other cases */
15040 @<Append the current expression to |arg_list|@>;
15043 @ @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>=
15045 mp_scan_expression(mp); p=mp_get_avail(mp); info(p)=mp_stash_cur_exp(mp);
15046 if ( mp->internal[mp_tracing_macros]>0 ) {
15047 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,0);
15048 mp_end_diagnostic(mp, false);
15050 if ( arg_list==null ) arg_list=p; else link(tail)=p;
15052 if ( mp->cur_cmd!=of_token ) {
15053 mp_missing_err(mp, "of"); mp_print(mp, " for ");
15055 mp_print_macro_name(mp, arg_list,macro_name);
15056 help1("I've got the first argument; will look now for the other.");
15059 mp_get_x_next(mp); mp_scan_primary(mp);
15062 @ @<Scan a suffix with optional delimiters@>=
15064 if ( mp->cur_cmd!=left_delimiter ) {
15067 l_delim=mp->cur_sym; r_delim=mp->cur_mod; mp_get_x_next(mp);
15069 mp_scan_suffix(mp);
15070 if ( l_delim!=null ) {
15071 if ((mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
15072 mp_missing_err(mp, str(text(r_delim)));
15074 help2("I've gotten to the end of the macro parameter list.")
15075 ("You might want to delete some tokens before continuing.");
15082 @ Before we put a new token list on the input stack, it is wise to clean off
15083 all token lists that have recently been depleted. Then a user macro that ends
15084 with a call to itself will not require unbounded stack space.
15086 @<Feed the arguments and replacement text to the scanner@>=
15087 while ( token_state &&(loc==null) ) mp_end_token_list(mp); /* conserve stack space */
15088 if ( mp->param_ptr+n>mp->max_param_stack ) {
15089 mp->max_param_stack=mp->param_ptr+n;
15090 if ( mp->max_param_stack>mp->param_size )
15091 mp_overflow(mp, "parameter stack size",mp->param_size);
15092 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15094 mp_begin_token_list(mp, def_ref,macro); name=macro_name; loc=r;
15098 mp->param_stack[mp->param_ptr]=info(p); incr(mp->param_ptr); p=link(p);
15100 mp_flush_list(mp, arg_list);
15103 @ It's sometimes necessary to put a single argument onto |param_stack|.
15104 The |stack_argument| subroutine does this.
15106 @c void mp_stack_argument (MP mp,pointer p) {
15107 if ( mp->param_ptr==mp->max_param_stack ) {
15108 incr(mp->max_param_stack);
15109 if ( mp->max_param_stack>mp->param_size )
15110 mp_overflow(mp, "parameter stack size",mp->param_size);
15111 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15113 mp->param_stack[mp->param_ptr]=p; incr(mp->param_ptr);
15116 @* \[33] Conditional processing.
15117 Let's consider now the way \&{if} commands are handled.
15119 Conditions can be inside conditions, and this nesting has a stack
15120 that is independent of other stacks.
15121 Four global variables represent the top of the condition stack:
15122 |cond_ptr| points to pushed-down entries, if~any; |cur_if| tells whether
15123 we are processing \&{if} or \&{elseif}; |if_limit| specifies
15124 the largest code of a |fi_or_else| command that is syntactically legal;
15125 and |if_line| is the line number at which the current conditional began.
15127 If no conditions are currently in progress, the condition stack has the
15128 special state |cond_ptr=null|, |if_limit=normal|, |cur_if=0|, |if_line=0|.
15129 Otherwise |cond_ptr| points to a two-word node; the |type|, |name_type|, and
15130 |link| fields of the first word contain |if_limit|, |cur_if|, and
15131 |cond_ptr| at the next level, and the second word contains the
15132 corresponding |if_line|.
15134 @d if_node_size 2 /* number of words in stack entry for conditionals */
15135 @d if_line_field(A) mp->mem[(A)+1].cint
15136 @d if_code 1 /* code for \&{if} being evaluated */
15137 @d fi_code 2 /* code for \&{fi} */
15138 @d else_code 3 /* code for \&{else} */
15139 @d else_if_code 4 /* code for \&{elseif} */
15142 pointer cond_ptr; /* top of the condition stack */
15143 integer if_limit; /* upper bound on |fi_or_else| codes */
15144 small_number cur_if; /* type of conditional being worked on */
15145 integer if_line; /* line where that conditional began */
15148 mp->cond_ptr=null; mp->if_limit=normal; mp->cur_if=0; mp->if_line=0;
15151 mp_primitive(mp, "if",if_test,if_code);
15152 @:if_}{\&{if} primitive@>
15153 mp_primitive(mp, "fi",fi_or_else,fi_code); mp->eqtb[frozen_fi]=mp->eqtb[mp->cur_sym];
15154 @:fi_}{\&{fi} primitive@>
15155 mp_primitive(mp, "else",fi_or_else,else_code);
15156 @:else_}{\&{else} primitive@>
15157 mp_primitive(mp, "elseif",fi_or_else,else_if_code);
15158 @:else_if_}{\&{elseif} primitive@>
15160 @ @<Cases of |print_cmd_mod|...@>=
15164 case if_code:mp_print(mp, "if"); break;
15165 case fi_code:mp_print(mp, "fi"); break;
15166 case else_code:mp_print(mp, "else"); break;
15167 default: mp_print(mp, "elseif"); break;
15171 @ Here is a procedure that ignores text until coming to an \&{elseif},
15172 \&{else}, or \&{fi} at level zero of $\&{if}\ldots\&{fi}$
15173 nesting. After it has acted, |cur_mod| will indicate the token that
15176 \MP's smallest two command codes are |if_test| and |fi_or_else|; this
15177 makes the skipping process a bit simpler.
15180 void mp_pass_text (MP mp) {
15182 mp->scanner_status=skipping;
15183 mp->warning_info=mp_true_line(mp);
15186 if ( mp->cur_cmd<=fi_or_else ) {
15187 if ( mp->cur_cmd<fi_or_else ) {
15191 if ( mp->cur_mod==fi_code ) decr(l);
15194 @<Decrease the string reference count,
15195 if the current token is a string@>;
15198 mp->scanner_status=normal;
15201 @ @<Decrease the string reference count...@>=
15202 if ( mp->cur_cmd==string_token ) { delete_str_ref(mp->cur_mod); }
15204 @ When we begin to process a new \&{if}, we set |if_limit:=if_code|; then
15205 if \&{elseif} or \&{else} or \&{fi} occurs before the current \&{if}
15206 condition has been evaluated, a colon will be inserted.
15207 A construction like `\.{if fi}' would otherwise get \MP\ confused.
15209 @<Push the condition stack@>=
15210 { p=mp_get_node(mp, if_node_size); link(p)=mp->cond_ptr; type(p)=mp->if_limit;
15211 name_type(p)=mp->cur_if; if_line_field(p)=mp->if_line;
15212 mp->cond_ptr=p; mp->if_limit=if_code; mp->if_line=mp_true_line(mp);
15213 mp->cur_if=if_code;
15216 @ @<Pop the condition stack@>=
15217 { p=mp->cond_ptr; mp->if_line=if_line_field(p);
15218 mp->cur_if=name_type(p); mp->if_limit=type(p); mp->cond_ptr=link(p);
15219 mp_free_node(mp, p,if_node_size);
15222 @ Here's a procedure that changes the |if_limit| code corresponding to
15223 a given value of |cond_ptr|.
15225 @c void mp_change_if_limit (MP mp,small_number l, pointer p) {
15227 if ( p==mp->cond_ptr ) {
15228 mp->if_limit=l; /* that's the easy case */
15232 if ( q==null ) mp_confusion(mp, "if");
15233 @:this can't happen if}{\quad if@>
15234 if ( link(q)==p ) {
15242 @ The user is supposed to put colons into the proper parts of conditional
15243 statements. Therefore, \MP\ has to check for their presence.
15246 void mp_check_colon (MP mp) {
15247 if ( mp->cur_cmd!=colon ) {
15248 mp_missing_err(mp, ":");
15250 help2("There should've been a colon after the condition.")
15251 ("I shall pretend that one was there.");;
15256 @ A condition is started when the |get_x_next| procedure encounters
15257 an |if_test| command; in that case |get_x_next| calls |conditional|,
15258 which is a recursive procedure.
15261 @c void mp_conditional (MP mp) {
15262 pointer save_cond_ptr; /* |cond_ptr| corresponding to this conditional */
15263 int new_if_limit; /* future value of |if_limit| */
15264 pointer p; /* temporary register */
15265 @<Push the condition stack@>;
15266 save_cond_ptr=mp->cond_ptr;
15268 mp_get_boolean(mp); new_if_limit=else_if_code;
15269 if ( mp->internal[mp_tracing_commands]>unity ) {
15270 @<Display the boolean value of |cur_exp|@>;
15273 mp_check_colon(mp);
15274 if ( mp->cur_exp==true_code ) {
15275 mp_change_if_limit(mp, new_if_limit,save_cond_ptr);
15276 return; /* wait for \&{elseif}, \&{else}, or \&{fi} */
15278 @<Skip to \&{elseif} or \&{else} or \&{fi}, then |goto done|@>;
15280 mp->cur_if=mp->cur_mod; mp->if_line=mp_true_line(mp);
15281 if ( mp->cur_mod==fi_code ) {
15282 @<Pop the condition stack@>
15283 } else if ( mp->cur_mod==else_if_code ) {
15286 mp->cur_exp=true_code; new_if_limit=fi_code; mp_get_x_next(mp);
15291 @ In a construction like `\&{if} \&{if} \&{true}: $0=1$: \\{foo}
15292 \&{else}: \\{bar} \&{fi}', the first \&{else}
15293 that we come to after learning that the \&{if} is false is not the
15294 \&{else} we're looking for. Hence the following curious logic is needed.
15296 @<Skip to \&{elseif}...@>=
15299 if ( mp->cond_ptr==save_cond_ptr ) goto DONE;
15300 else if ( mp->cur_mod==fi_code ) @<Pop the condition stack@>;
15304 @ @<Display the boolean value...@>=
15305 { mp_begin_diagnostic(mp);
15306 if ( mp->cur_exp==true_code ) mp_print(mp, "{true}");
15307 else mp_print(mp, "{false}");
15308 mp_end_diagnostic(mp, false);
15311 @ The processing of conditionals is complete except for the following
15312 code, which is actually part of |get_x_next|. It comes into play when
15313 \&{elseif}, \&{else}, or \&{fi} is scanned.
15315 @<Terminate the current conditional and skip to \&{fi}@>=
15316 if ( mp->cur_mod>mp->if_limit ) {
15317 if ( mp->if_limit==if_code ) { /* condition not yet evaluated */
15318 mp_missing_err(mp, ":");
15320 mp_back_input(mp); mp->cur_sym=frozen_colon; mp_ins_error(mp);
15322 print_err("Extra "); mp_print_cmd_mod(mp, fi_or_else,mp->cur_mod);
15326 help1("I'm ignoring this; it doesn't match any if.");
15330 while ( mp->cur_mod!=fi_code ) mp_pass_text(mp); /* skip to \&{fi} */
15331 @<Pop the condition stack@>;
15334 @* \[34] Iterations.
15335 To bring our treatment of |get_x_next| to a close, we need to consider what
15336 \MP\ does when it sees \&{for}, \&{forsuffixes}, and \&{forever}.
15338 There's a global variable |loop_ptr| that keeps track of the \&{for} loops
15339 that are currently active. If |loop_ptr=null|, no loops are in progress;
15340 otherwise |info(loop_ptr)| points to the iterative text of the current
15341 (innermost) loop, and |link(loop_ptr)| points to the data for any other
15342 loops that enclose the current one.
15344 A loop-control node also has two other fields, called |loop_type| and
15345 |loop_list|, whose contents depend on the type of loop:
15347 \yskip\indent|loop_type(loop_ptr)=null| means that |loop_list(loop_ptr)|
15348 points to a list of one-word nodes whose |info| fields point to the
15349 remaining argument values of a suffix list and expression list.
15351 \yskip\indent|loop_type(loop_ptr)=mp_void| means that the current loop is
15354 \yskip\indent|loop_type(loop_ptr)=progression_flag| means that
15355 |p=loop_list(loop_ptr)| points to a ``progression node'' and |value(p)|,
15356 |step_size(p)|, and |final_value(p)| contain the data for an arithmetic
15359 \yskip\indent|loop_type(loop_ptr)=p>mp_void| means that |p| points to an edge
15360 header and |loop_list(loop_ptr)| points into the graphical object list for
15363 \yskip\noindent In the case of a progression node, the first word is not used
15364 because the link field of words in the dynamic memory area cannot be arbitrary.
15366 @d loop_list_loc(A) ((A)+1) /* where the |loop_list| field resides */
15367 @d loop_type(A) info(loop_list_loc((A))) /* the type of \&{for} loop */
15368 @d loop_list(A) link(loop_list_loc((A))) /* the remaining list elements */
15369 @d loop_node_size 2 /* the number of words in a loop control node */
15370 @d progression_node_size 4 /* the number of words in a progression node */
15371 @d step_size(A) mp->mem[(A)+2].sc /* the step size in an arithmetic progression */
15372 @d final_value(A) mp->mem[(A)+3].sc /* the final value in an arithmetic progression */
15373 @d progression_flag (null+2)
15374 /* |loop_type| value when |loop_list| points to a progression node */
15377 pointer loop_ptr; /* top of the loop-control-node stack */
15382 @ If the expressions that define an arithmetic progression in
15383 a \&{for} loop don't have known numeric values, the |bad_for|
15384 subroutine screams at the user.
15386 @c void mp_bad_for (MP mp, char * s) {
15387 mp_disp_err(mp, null,"Improper "); /* show the bad expression above the message */
15388 @.Improper...replaced by 0@>
15389 mp_print(mp, s); mp_print(mp, " has been replaced by 0");
15390 help4("When you say `for x=a step b until c',")
15391 ("the initial value `a' and the step size `b'")
15392 ("and the final value `c' must have known numeric values.")
15393 ("I'm zeroing this one. Proceed, with fingers crossed.");
15394 mp_put_get_flush_error(mp, 0);
15397 @ Here's what \MP\ does when \&{for}, \&{forsuffixes}, or \&{forever}
15398 has just been scanned. (This code requires slight familiarity with
15399 expression-parsing routines that we have not yet discussed; but it seems
15400 to belong in the present part of the program, even though the original author
15401 didn't write it until later. The reader may wish to come back to it.)
15403 @c void mp_begin_iteration (MP mp) {
15404 halfword m; /* |expr_base| (\&{for}) or |suffix_base| (\&{forsuffixes}) */
15405 halfword n; /* hash address of the current symbol */
15406 pointer s; /* the new loop-control node */
15407 pointer p; /* substitution list for |scan_toks| */
15408 pointer q; /* link manipulation register */
15409 pointer pp; /* a new progression node */
15410 m=mp->cur_mod; n=mp->cur_sym; s=mp_get_node(mp, loop_node_size);
15411 if ( m==start_forever ){
15412 loop_type(s)=mp_void; p=null; mp_get_x_next(mp);
15414 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
15415 info(p)=mp->cur_sym; value(p)=m;
15417 if ( mp->cur_cmd==within_token ) {
15418 @<Set up a picture iteration@>;
15420 @<Check for the |"="| or |":="| in a loop header@>;
15421 @<Scan the values to be used in the loop@>;
15424 @<Check for the presence of a colon@>;
15425 @<Scan the loop text and put it on the loop control stack@>;
15426 mp_resume_iteration(mp);
15429 @ @<Check for the |"="| or |":="| in a loop header@>=
15430 if ( (mp->cur_cmd!=equals)&&(mp->cur_cmd!=assignment) ) {
15431 mp_missing_err(mp, "=");
15433 help3("The next thing in this loop should have been `=' or `:='.")
15434 ("But don't worry; I'll pretend that an equals sign")
15435 ("was present, and I'll look for the values next.");
15439 @ @<Check for the presence of a colon@>=
15440 if ( mp->cur_cmd!=colon ) {
15441 mp_missing_err(mp, ":");
15443 help3("The next thing in this loop should have been a `:'.")
15444 ("So I'll pretend that a colon was present;")
15445 ("everything from here to `endfor' will be iterated.");
15449 @ We append a special |frozen_repeat_loop| token in place of the
15450 `\&{endfor}' at the end of the loop. This will come through \MP's scanner
15451 at the proper time to cause the loop to be repeated.
15453 (If the user tries some shenanigan like `\&{for} $\ldots$ \&{let} \&{endfor}',
15454 he will be foiled by the |get_symbol| routine, which keeps frozen
15455 tokens unchanged. Furthermore the |frozen_repeat_loop| is an \&{outer}
15456 token, so it won't be lost accidentally.)
15458 @ @<Scan the loop text...@>=
15459 q=mp_get_avail(mp); info(q)=frozen_repeat_loop;
15460 mp->scanner_status=loop_defining; mp->warning_info=n;
15461 info(s)=mp_scan_toks(mp, iteration,p,q,0); mp->scanner_status=normal;
15462 link(s)=mp->loop_ptr; mp->loop_ptr=s
15464 @ @<Initialize table...@>=
15465 eq_type(frozen_repeat_loop)=repeat_loop+outer_tag;
15466 text(frozen_repeat_loop)=intern(" ENDFOR");
15468 @ The loop text is inserted into \MP's scanning apparatus by the
15469 |resume_iteration| routine.
15471 @c void mp_resume_iteration (MP mp) {
15472 pointer p,q; /* link registers */
15473 p=loop_type(mp->loop_ptr);
15474 if ( p==progression_flag ) {
15475 p=loop_list(mp->loop_ptr); /* now |p| points to a progression node */
15476 mp->cur_exp=value(p);
15477 if ( @<The arithmetic progression has ended@> ) {
15478 mp_stop_iteration(mp);
15481 mp->cur_type=mp_known; q=mp_stash_cur_exp(mp); /* make |q| an \&{expr} argument */
15482 value(p)=mp->cur_exp+step_size(p); /* set |value(p)| for the next iteration */
15483 } else if ( p==null ) {
15484 p=loop_list(mp->loop_ptr);
15486 mp_stop_iteration(mp);
15489 loop_list(mp->loop_ptr)=link(p); q=info(p); free_avail(p);
15490 } else if ( p==mp_void ) {
15491 mp_begin_token_list(mp, info(mp->loop_ptr),forever_text); return;
15493 @<Make |q| a capsule containing the next picture component from
15494 |loop_list(loop_ptr)| or |goto not_found|@>;
15496 mp_begin_token_list(mp, info(mp->loop_ptr),loop_text);
15497 mp_stack_argument(mp, q);
15498 if ( mp->internal[mp_tracing_commands]>unity ) {
15499 @<Trace the start of a loop@>;
15503 mp_stop_iteration(mp);
15506 @ @<The arithmetic progression has ended@>=
15507 ((step_size(p)>0)&&(mp->cur_exp>final_value(p)))||
15508 ((step_size(p)<0)&&(mp->cur_exp<final_value(p)))
15510 @ @<Trace the start of a loop@>=
15512 mp_begin_diagnostic(mp); mp_print_nl(mp, "{loop value=");
15514 if ( (q!=null)&&(link(q)==mp_void) ) mp_print_exp(mp, q,1);
15515 else mp_show_token_list(mp, q,null,50,0);
15516 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
15519 @ @<Make |q| a capsule containing the next picture component from...@>=
15520 { q=loop_list(mp->loop_ptr);
15521 if ( q==null ) goto NOT_FOUND;
15522 skip_component(q) goto NOT_FOUND;
15523 mp->cur_exp=mp_copy_objects(mp, loop_list(mp->loop_ptr),q);
15524 mp_init_bbox(mp, mp->cur_exp);
15525 mp->cur_type=mp_picture_type;
15526 loop_list(mp->loop_ptr)=q;
15527 q=mp_stash_cur_exp(mp);
15530 @ A level of loop control disappears when |resume_iteration| has decided
15531 not to resume, or when an \&{exitif} construction has removed the loop text
15532 from the input stack.
15534 @c void mp_stop_iteration (MP mp) {
15535 pointer p,q; /* the usual */
15536 p=loop_type(mp->loop_ptr);
15537 if ( p==progression_flag ) {
15538 mp_free_node(mp, loop_list(mp->loop_ptr),progression_node_size);
15539 } else if ( p==null ){
15540 q=loop_list(mp->loop_ptr);
15541 while ( q!=null ) {
15544 if ( link(p)==mp_void ) { /* it's an \&{expr} parameter */
15545 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
15547 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
15550 p=q; q=link(q); free_avail(p);
15552 } else if ( p>progression_flag ) {
15553 delete_edge_ref(p);
15555 p=mp->loop_ptr; mp->loop_ptr=link(p); mp_flush_token_list(mp, info(p));
15556 mp_free_node(mp, p,loop_node_size);
15559 @ Now that we know all about loop control, we can finish up
15560 the missing portion of |begin_iteration| and we'll be done.
15562 The following code is performed after the `\.=' has been scanned in
15563 a \&{for} construction (if |m=expr_base|) or a \&{forsuffixes} construction
15564 (if |m=suffix_base|).
15566 @<Scan the values to be used in the loop@>=
15567 loop_type(s)=null; q=loop_list_loc(s); link(q)=null; /* |link(q)=loop_list(s)| */
15570 if ( m!=expr_base ) {
15571 mp_scan_suffix(mp);
15573 if ( mp->cur_cmd>=colon ) if ( mp->cur_cmd<=comma )
15575 mp_scan_expression(mp);
15576 if ( mp->cur_cmd==step_token ) if ( q==loop_list_loc(s) ) {
15577 @<Prepare for step-until construction and |break|@>;
15579 mp->cur_exp=mp_stash_cur_exp(mp);
15581 link(q)=mp_get_avail(mp); q=link(q);
15582 info(q)=mp->cur_exp; mp->cur_type=mp_vacuous;
15585 } while (mp->cur_cmd==comma)
15587 @ @<Prepare for step-until construction and |break|@>=
15589 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "initial value");
15590 pp=mp_get_node(mp, progression_node_size); value(pp)=mp->cur_exp;
15591 mp_get_x_next(mp); mp_scan_expression(mp);
15592 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "step size");
15593 step_size(pp)=mp->cur_exp;
15594 if ( mp->cur_cmd!=until_token ) {
15595 mp_missing_err(mp, "until");
15596 @.Missing `until'@>
15597 help2("I assume you meant to say `until' after `step'.")
15598 ("So I'll look for the final value and colon next.");
15601 mp_get_x_next(mp); mp_scan_expression(mp);
15602 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "final value");
15603 final_value(pp)=mp->cur_exp; loop_list(s)=pp;
15604 loop_type(s)=progression_flag;
15608 @ The last case is when we have just seen ``\&{within}'', and we need to
15609 parse a picture expression and prepare to iterate over it.
15611 @<Set up a picture iteration@>=
15612 { mp_get_x_next(mp);
15613 mp_scan_expression(mp);
15614 @<Make sure the current expression is a known picture@>;
15615 loop_type(s)=mp->cur_exp; mp->cur_type=mp_vacuous;
15616 q=link(dummy_loc(mp->cur_exp));
15618 if ( is_start_or_stop(q) )
15619 if ( mp_skip_1component(mp, q)==null ) q=link(q);
15623 @ @<Make sure the current expression is a known picture@>=
15624 if ( mp->cur_type!=mp_picture_type ) {
15625 mp_disp_err(mp, null,"Improper iteration spec has been replaced by nullpicture");
15626 help1("When you say `for x in p', p must be a known picture.");
15627 mp_put_get_flush_error(mp, mp_get_node(mp, edge_header_size));
15628 mp_init_edges(mp, mp->cur_exp); mp->cur_type=mp_picture_type;
15631 @* \[35] File names.
15632 It's time now to fret about file names. Besides the fact that different
15633 operating systems treat files in different ways, we must cope with the
15634 fact that completely different naming conventions are used by different
15635 groups of people. The following programs show what is required for one
15636 particular operating system; similar routines for other systems are not
15637 difficult to devise.
15638 @^system dependencies@>
15640 \MP\ assumes that a file name has three parts: the name proper; its
15641 ``extension''; and a ``file area'' where it is found in an external file
15642 system. The extension of an input file is assumed to be
15643 `\.{.mp}' unless otherwise specified; it is `\.{.log}' on the
15644 transcript file that records each run of \MP; it is `\.{.tfm}' on the font
15645 metric files that describe characters in any fonts created by \MP; it is
15646 `\.{.ps}' or `.{\it nnn}' for some number {\it nnn} on the \ps\ output files;
15647 and it is `\.{.mem}' on the mem files written by \.{INIMP} to initialize \MP.
15648 The file area can be arbitrary on input files, but files are usually
15649 output to the user's current area. If an input file cannot be
15650 found on the specified area, \MP\ will look for it on a special system
15651 area; this special area is intended for commonly used input files.
15653 Simple uses of \MP\ refer only to file names that have no explicit
15654 extension or area. For example, a person usually says `\.{input} \.{cmr10}'
15655 instead of `\.{input} \.{cmr10.new}'. Simple file
15656 names are best, because they make the \MP\ source files portable;
15657 whenever a file name consists entirely of letters and digits, it should be
15658 treated in the same way by all implementations of \MP. However, users
15659 need the ability to refer to other files in their environment, especially
15660 when responding to error messages concerning unopenable files; therefore
15661 we want to let them use the syntax that appears in their favorite
15664 @ \MP\ uses the same conventions that have proved to be satisfactory for
15665 \TeX\ and \MF. In order to isolate the system-dependent aspects of file names,
15666 @^system dependencies@>
15667 the system-independent parts of \MP\ are expressed in terms
15668 of three system-dependent
15669 procedures called |begin_name|, |more_name|, and |end_name|. In
15670 essence, if the user-specified characters of the file name are $c_1\ldots c_n$,
15671 the system-independent driver program does the operations
15672 $$|begin_name|;\,|more_name|(c_1);\,\ldots\,;|more_name|(c_n);
15674 These three procedures communicate with each other via global variables.
15675 Afterwards the file name will appear in the string pool as three strings
15676 called |cur_name|\penalty10000\hskip-.05em,
15677 |cur_area|, and |cur_ext|; the latter two are null (i.e.,
15678 |""|), unless they were explicitly specified by the user.
15680 Actually the situation is slightly more complicated, because \MP\ needs
15681 to know when the file name ends. The |more_name| routine is a function
15682 (with side effects) that returns |true| on the calls |more_name|$(c_1)$,
15683 \dots, |more_name|$(c_{n-1})$. The final call |more_name|$(c_n)$
15684 returns |false|; or, it returns |true| and $c_n$ is the last character
15685 on the current input line. In other words,
15686 |more_name| is supposed to return |true| unless it is sure that the
15687 file name has been completely scanned; and |end_name| is supposed to be able
15688 to finish the assembly of |cur_name|, |cur_area|, and |cur_ext| regardless of
15689 whether $|more_name|(c_n)$ returned |true| or |false|.
15692 char * cur_name; /* name of file just scanned */
15693 char * cur_area; /* file area just scanned, or \.{""} */
15694 char * cur_ext; /* file extension just scanned, or \.{""} */
15696 @ It is easier to maintain reference counts if we assign initial values.
15699 mp->cur_name=xstrdup("");
15700 mp->cur_area=xstrdup("");
15701 mp->cur_ext=xstrdup("");
15703 @ @<Dealloc variables@>=
15704 xfree(mp->cur_area);
15705 xfree(mp->cur_name);
15706 xfree(mp->cur_ext);
15708 @ The file names we shall deal with for illustrative purposes have the
15709 following structure: If the name contains `\.>' or `\.:', the file area
15710 consists of all characters up to and including the final such character;
15711 otherwise the file area is null. If the remaining file name contains
15712 `\..', the file extension consists of all such characters from the first
15713 remaining `\..' to the end, otherwise the file extension is null.
15714 @^system dependencies@>
15716 We can scan such file names easily by using two global variables that keep track
15717 of the occurrences of area and extension delimiters. Note that these variables
15718 cannot be of type |pool_pointer| because a string pool compaction could occur
15719 while scanning a file name.
15722 integer area_delimiter;
15723 /* most recent `\.>' or `\.:' relative to |str_start[str_ptr]| */
15724 integer ext_delimiter; /* the relevant `\..', if any */
15726 @ Input files that can't be found in the user's area may appear in standard
15727 system areas called |MP_area| and |MF_area|. (The latter is used when the file
15728 extension is |".mf"|.) The standard system area for font metric files
15729 to be read is |MP_font_area|.
15730 This system area name will, of course, vary from place to place.
15731 @^system dependencies@>
15733 @d MP_area "MPinputs:"
15735 @d MF_area "MFinputs:"
15740 @ Here now is the first of the system-dependent routines for file name scanning.
15741 @^system dependencies@>
15743 @<Declare subroutines for parsing file names@>=
15744 void mp_begin_name (MP mp) {
15745 xfree(mp->cur_name);
15746 xfree(mp->cur_area);
15747 xfree(mp->cur_ext);
15748 mp->area_delimiter=-1;
15749 mp->ext_delimiter=-1;
15752 @ And here's the second.
15753 @^system dependencies@>
15755 @<Declare subroutines for parsing file names@>=
15756 boolean mp_more_name (MP mp, ASCII_code c) {
15760 if ( (c=='>')||(c==':') ) {
15761 mp->area_delimiter=mp->pool_ptr;
15762 mp->ext_delimiter=-1;
15763 } else if ( (c=='.')&&(mp->ext_delimiter<0) ) {
15764 mp->ext_delimiter=mp->pool_ptr;
15766 str_room(1); append_char(c); /* contribute |c| to the current string */
15772 @^system dependencies@>
15774 @d copy_pool_segment(A,B,C) {
15775 A = xmalloc(C+1,sizeof(char));
15776 strncpy(A,(char *)(mp->str_pool+B),C);
15779 @<Declare subroutines for parsing file names@>=
15780 void mp_end_name (MP mp) {
15781 pool_pointer s; /* length of area, name, and extension */
15784 s = mp->str_start[mp->str_ptr];
15785 if ( mp->area_delimiter<0 ) {
15786 mp->cur_area=xstrdup("");
15788 len = mp->area_delimiter-s;
15789 copy_pool_segment(mp->cur_area,s,len);
15792 if ( mp->ext_delimiter<0 ) {
15793 mp->cur_ext=xstrdup("");
15794 len = mp->pool_ptr-s;
15796 copy_pool_segment(mp->cur_ext,mp->ext_delimiter,(mp->pool_ptr-mp->ext_delimiter));
15797 len = mp->ext_delimiter-s;
15799 copy_pool_segment(mp->cur_name,s,len);
15800 mp->pool_ptr=s; /* don't need this partial string */
15803 @ Conversely, here is a routine that takes three strings and prints a file
15804 name that might have produced them. (The routine is system dependent, because
15805 some operating systems put the file area last instead of first.)
15806 @^system dependencies@>
15808 @<Basic printing...@>=
15809 void mp_print_file_name (MP mp, char * n, char * a, char * e) {
15810 mp_print(mp, a); mp_print(mp, n); mp_print(mp, e);
15813 @ Another system-dependent routine is needed to convert three internal
15815 to the |name_of_file| value that is used to open files. The present code
15816 allows both lowercase and uppercase letters in the file name.
15817 @^system dependencies@>
15819 @d append_to_name(A) { c=(A);
15820 if ( k<file_name_size ) {
15821 mp->name_of_file[k]=xchr(c);
15826 @<Declare subroutines for parsing file names@>=
15827 void mp_pack_file_name (MP mp, char *n, char *a, char *e) {
15828 integer k; /* number of positions filled in |name_of_file| */
15829 ASCII_code c; /* character being packed */
15830 char *j; /* a character index */
15834 for (j=a;*j;j++) { append_to_name(*j); }
15836 for (j=n;*j;j++) { append_to_name(*j); }
15838 for (j=e;*j;j++) { append_to_name(*j); }
15840 mp->name_of_file[k]=0;
15844 @ @<Internal library declarations@>=
15845 void mp_pack_file_name (MP mp, char *n, char *a, char *e) ;
15847 @ A messier routine is also needed, since mem file names must be scanned
15848 before \MP's string mechanism has been initialized. We shall use the
15849 global variable |MP_mem_default| to supply the text for default system areas
15850 and extensions related to mem files.
15851 @^system dependencies@>
15853 @d mem_default_length 9 /* length of the |MP_mem_default| string */
15854 @d mem_ext_length 4 /* length of its `\.{.mem}' part */
15855 @d mem_extension ".mem" /* the extension, as a \.{WEB} constant */
15858 char *MP_mem_default;
15860 @ @<Option variables@>=
15861 char *mem_name; /* for commandline */
15863 @ @<Allocate or initialize ...@>=
15864 mp->MP_mem_default = xstrdup("plain.mem");
15865 mp->mem_name = xstrdup(opt->mem_name);
15867 @^system dependencies@>
15869 @ @<Dealloc variables@>=
15870 xfree(mp->MP_mem_default);
15871 xfree(mp->mem_name);
15873 @ @<Check the ``constant'' values for consistency@>=
15874 if ( mem_default_length>file_name_size ) mp->bad=20;
15876 @ Here is the messy routine that was just mentioned. It sets |name_of_file|
15877 from the first |n| characters of |MP_mem_default|, followed by
15878 |buffer[a..b-1]|, followed by the last |mem_ext_length| characters of
15881 We dare not give error messages here, since \MP\ calls this routine before
15882 the |error| routine is ready to roll. Instead, we simply drop excess characters,
15883 since the error will be detected in another way when a strange file name
15885 @^system dependencies@>
15887 @c void mp_pack_buffered_name (MP mp,small_number n, integer a,
15889 integer k; /* number of positions filled in |name_of_file| */
15890 ASCII_code c; /* character being packed */
15891 integer j; /* index into |buffer| or |MP_mem_default| */
15892 if ( n+b-a+1+mem_ext_length>file_name_size )
15893 b=a+file_name_size-n-1-mem_ext_length;
15895 for (j=0;j<n;j++) {
15896 append_to_name(xord((int)mp->MP_mem_default[j]));
15898 for (j=a;j<b;j++) {
15899 append_to_name(mp->buffer[j]);
15901 for (j=mem_default_length-mem_ext_length;
15902 j<mem_default_length;j++) {
15903 append_to_name(xord((int)mp->MP_mem_default[j]));
15905 mp->name_of_file[k]=0;
15909 @ Here is the only place we use |pack_buffered_name|. This part of the program
15910 becomes active when a ``virgin'' \MP\ is trying to get going, just after
15911 the preliminary initialization, or when the user is substituting another
15912 mem file by typing `\.\&' after the initial `\.{**}' prompt. The buffer
15913 contains the first line of input in |buffer[loc..(last-1)]|, where
15914 |loc<last| and |buffer[loc]<>" "|.
15917 boolean mp_open_mem_file (MP mp) ;
15920 boolean mp_open_mem_file (MP mp) {
15921 int j; /* the first space after the file name */
15922 if (mp->mem_name!=NULL) {
15923 mp->mem_file = (mp->open_file)(mp->mem_name, "rb", mp_filetype_memfile);
15924 if ( mp->mem_file ) return true;
15927 if ( mp->buffer[loc]=='&' ) {
15928 incr(loc); j=loc; mp->buffer[mp->last]=' ';
15929 while ( mp->buffer[j]!=' ' ) incr(j);
15930 mp_pack_buffered_name(mp, 0,loc,j); /* try first without the system file area */
15931 if ( mp_w_open_in(mp, &mp->mem_file) ) goto FOUND;
15933 wterm_ln("Sorry, I can\'t find that mem file; will try PLAIN.");
15934 @.Sorry, I can't find...@>
15937 /* now pull out all the stops: try for the system \.{plain} file */
15938 mp_pack_buffered_name(mp, mem_default_length-mem_ext_length,0,0);
15939 if ( ! mp_w_open_in(mp, &mp->mem_file) ) {
15941 wterm_ln("I can\'t find the PLAIN mem file!\n");
15942 @.I can't find PLAIN...@>
15947 loc=j; return true;
15950 @ Operating systems often make it possible to determine the exact name (and
15951 possible version number) of a file that has been opened. The following routine,
15952 which simply makes a \MP\ string from the value of |name_of_file|, should
15953 ideally be changed to deduce the full name of file~|f|, which is the file
15954 most recently opened, if it is possible to do this.
15955 @^system dependencies@>
15958 #define mp_a_make_name_string(A,B) mp_make_name_string(A)
15959 #define mp_b_make_name_string(A,B) mp_make_name_string(A)
15960 #define mp_w_make_name_string(A,B) mp_make_name_string(A)
15963 str_number mp_make_name_string (MP mp) {
15964 int k; /* index into |name_of_file| */
15965 str_room(mp->name_length);
15966 for (k=0;k<mp->name_length;k++) {
15967 append_char(xord((int)mp->name_of_file[k]));
15969 return mp_make_string(mp);
15972 @ Now let's consider the ``driver''
15973 routines by which \MP\ deals with file names
15974 in a system-independent manner. First comes a procedure that looks for a
15975 file name in the input by taking the information from the input buffer.
15976 (We can't use |get_next|, because the conversion to tokens would
15977 destroy necessary information.)
15979 This procedure doesn't allow semicolons or percent signs to be part of
15980 file names, because of other conventions of \MP.
15981 {\sl The {\logos METAFONT\/}book} doesn't
15982 use semicolons or percents immediately after file names, but some users
15983 no doubt will find it natural to do so; therefore system-dependent
15984 changes to allow such characters in file names should probably
15985 be made with reluctance, and only when an entire file name that
15986 includes special characters is ``quoted'' somehow.
15987 @^system dependencies@>
15989 @c void mp_scan_file_name (MP mp) {
15991 while ( mp->buffer[loc]==' ' ) incr(loc);
15993 if ( (mp->buffer[loc]==';')||(mp->buffer[loc]=='%') ) break;
15994 if ( ! mp_more_name(mp, mp->buffer[loc]) ) break;
16000 @ Here is another version that takes its input from a string.
16002 @<Declare subroutines for parsing file names@>=
16003 void mp_str_scan_file (MP mp, str_number s) {
16004 pool_pointer p,q; /* current position and stopping point */
16006 p=mp->str_start[s]; q=str_stop(s);
16008 if ( ! mp_more_name(mp, mp->str_pool[p]) ) break;
16014 @ And one that reads from a |char*|.
16016 @<Declare subroutines for parsing file names@>=
16017 void mp_ptr_scan_file (MP mp, char *s) {
16018 char *p, *q; /* current position and stopping point */
16020 p=s; q=p+strlen(s);
16022 if ( ! mp_more_name(mp, *p)) break;
16029 @ The global variable |job_name| contains the file name that was first
16030 \&{input} by the user. This name is extended by `\.{.log}' and `\.{ps}' and
16031 `\.{.mem}' and `\.{.tfm}' in order to make the names of \MP's output files.
16034 boolean log_opened; /* has the transcript file been opened? */
16035 char *log_name; /* full name of the log file */
16037 @ @<Option variables@>=
16038 char *job_name; /* principal file name */
16040 @ Initially |job_name=NULL|; it becomes nonzero as soon as the true name is known.
16041 We have |job_name=NULL| if and only if the `\.{log}' file has not been opened,
16042 except of course for a short time just after |job_name| has become nonzero.
16044 @<Allocate or ...@>=
16045 mp->job_name=opt->job_name;
16046 mp->log_opened=false;
16048 @ @<Dealloc variables@>=
16049 xfree(mp->job_name);
16051 @ Here is a routine that manufactures the output file names, assuming that
16052 |job_name<>0|. It ignores and changes the current settings of |cur_area|
16055 @d pack_cur_name mp_pack_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext)
16058 void mp_pack_job_name (MP mp, char *s) ;
16060 @ @c void mp_pack_job_name (MP mp, char *s) { /* |s = ".log"|, |".mem"|, |".ps"|, or .\\{nnn} */
16061 xfree(mp->cur_name); mp->cur_name=xstrdup(mp->job_name);
16062 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16063 xfree(mp->cur_ext); mp->cur_ext=xstrdup(s);
16067 @ If some trouble arises when \MP\ tries to open a file, the following
16068 routine calls upon the user to supply another file name. Parameter~|s|
16069 is used in the error message to identify the type of file; parameter~|e|
16070 is the default extension if none is given. Upon exit from the routine,
16071 variables |cur_name|, |cur_area|, |cur_ext|, and |name_of_file| are
16072 ready for another attempt at file opening.
16075 void mp_prompt_file_name (MP mp,char * s, char * e) ;
16077 @ @c void mp_prompt_file_name (MP mp,char * s, char * e) {
16078 size_t k; /* index into |buffer| */
16079 char * saved_cur_name;
16080 if ( mp->interaction==mp_scroll_mode )
16082 if (strcmp(s,"input file name")==0) {
16083 print_err("I can\'t find file `");
16084 @.I can't find file x@>
16086 print_err("I can\'t write on file `");
16088 @.I can't write on file x@>
16089 mp_print_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext);
16090 mp_print(mp, "'.");
16091 if (strcmp(e,"")==0)
16092 mp_show_context(mp);
16093 mp_print_nl(mp, "Please type another "); mp_print(mp, s);
16095 if ( mp->interaction<mp_scroll_mode )
16096 mp_fatal_error(mp, "*** (job aborted, file error in nonstop mode)");
16097 @.job aborted, file error...@>
16098 saved_cur_name = xstrdup(mp->cur_name);
16099 clear_terminal; prompt_input(": "); @<Scan file name in the buffer@>;
16100 if (strcmp(mp->cur_ext,"")==0)
16102 if (strlen(mp->cur_name)==0) {
16103 mp->cur_name=saved_cur_name;
16105 xfree(saved_cur_name);
16110 @ @<Scan file name in the buffer@>=
16112 mp_begin_name(mp); k=mp->first;
16113 while ( (mp->buffer[k]==' ')&&(k<mp->last) ) incr(k);
16115 if ( k==mp->last ) break;
16116 if ( ! mp_more_name(mp, mp->buffer[k]) ) break;
16122 @ The |open_log_file| routine is used to open the transcript file and to help
16123 it catch up to what has previously been printed on the terminal.
16125 @c void mp_open_log_file (MP mp) {
16126 int old_setting; /* previous |selector| setting */
16127 int k; /* index into |months| and |buffer| */
16128 int l; /* end of first input line */
16129 integer m; /* the current month */
16130 char *months="JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC";
16131 /* abbreviations of month names */
16132 old_setting=mp->selector;
16133 if ( mp->job_name==NULL ) {
16134 mp->job_name=xstrdup("mpout");
16136 mp_pack_job_name(mp,".log");
16137 while ( ! mp_a_open_out(mp, &mp->log_file, mp_filetype_log) ) {
16138 @<Try to get a different log file name@>;
16140 mp->log_name=xstrdup(mp->name_of_file);
16141 mp->selector=log_only; mp->log_opened=true;
16142 @<Print the banner line, including the date and time@>;
16143 mp->input_stack[mp->input_ptr]=mp->cur_input;
16144 /* make sure bottom level is in memory */
16146 if (!mp->noninteractive) {
16147 mp_print_nl(mp, "**");
16148 l=mp->input_stack[0].limit_field-1; /* last position of first line */
16149 for (k=0;k<=l;k++) mp_print_str(mp, mp->buffer[k]);
16150 mp_print_ln(mp); /* now the transcript file contains the first line of input */
16152 mp->selector=old_setting+2; /* |log_only| or |term_and_log| */
16155 @ @<Dealloc variables@>=
16156 xfree(mp->log_name);
16158 @ Sometimes |open_log_file| is called at awkward moments when \MP\ is
16159 unable to print error messages or even to |show_context|.
16160 The |prompt_file_name| routine can result in a |fatal_error|, but the |error|
16161 routine will not be invoked because |log_opened| will be false.
16163 The normal idea of |mp_batch_mode| is that nothing at all should be written
16164 on the terminal. However, in the unusual case that
16165 no log file could be opened, we make an exception and allow
16166 an explanatory message to be seen.
16168 Incidentally, the program always refers to the log file as a `\.{transcript
16169 file}', because some systems cannot use the extension `\.{.log}' for
16172 @<Try to get a different log file name@>=
16174 mp->selector=term_only;
16175 mp_prompt_file_name(mp, "transcript file name",".log");
16178 @ @<Print the banner...@>=
16181 mp_print(mp, mp->mem_ident); mp_print(mp, " ");
16182 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_day]));
16183 mp_print_char(mp, ' ');
16184 m=mp_round_unscaled(mp, mp->internal[mp_month]);
16185 for (k=3*m-3;k<3*m;k++) { wlog_chr(months[k]); }
16186 mp_print_char(mp, ' ');
16187 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_year]));
16188 mp_print_char(mp, ' ');
16189 m=mp_round_unscaled(mp, mp->internal[mp_time]);
16190 mp_print_dd(mp, m / 60); mp_print_char(mp, ':'); mp_print_dd(mp, m % 60);
16193 @ The |try_extension| function tries to open an input file determined by
16194 |cur_name|, |cur_area|, and the argument |ext|. It returns |false| if it
16195 can't find the file in |cur_area| or the appropriate system area.
16197 @c boolean mp_try_extension (MP mp,char *ext) {
16198 mp_pack_file_name(mp, mp->cur_name,mp->cur_area, ext);
16199 in_name=xstrdup(mp->cur_name);
16200 in_area=xstrdup(mp->cur_area);
16201 if ( mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16204 if (strcmp(ext,".mf")==0 ) in_area=xstrdup(MF_area);
16205 else in_area=xstrdup(MP_area);
16206 mp_pack_file_name(mp, mp->cur_name,in_area,ext);
16207 return mp_a_open_in(mp, &cur_file, mp_filetype_program);
16212 @ Let's turn now to the procedure that is used to initiate file reading
16213 when an `\.{input}' command is being processed.
16215 @c void mp_start_input (MP mp) { /* \MP\ will \.{input} something */
16216 char *fname = NULL;
16217 @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>;
16219 mp_begin_file_reading(mp); /* set up |cur_file| and new level of input */
16220 if ( strlen(mp->cur_ext)==0 ) {
16221 if ( mp_try_extension(mp, ".mp") ) break;
16222 else if ( mp_try_extension(mp, "") ) break;
16223 else if ( mp_try_extension(mp, ".mf") ) break;
16224 /* |else do_nothing; | */
16225 } else if ( mp_try_extension(mp, mp->cur_ext) ) {
16228 mp_end_file_reading(mp); /* remove the level that didn't work */
16229 mp_prompt_file_name(mp, "input file name","");
16231 name=mp_a_make_name_string(mp, cur_file);
16232 fname = xstrdup(mp->name_of_file);
16233 if ( mp->job_name==NULL ) {
16234 mp->job_name=xstrdup(mp->cur_name);
16235 mp_open_log_file(mp);
16236 } /* |open_log_file| doesn't |show_context|, so |limit|
16237 and |loc| needn't be set to meaningful values yet */
16238 if ( ((int)mp->term_offset+(int)strlen(fname)) > (mp->max_print_line-2)) mp_print_ln(mp);
16239 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
16240 mp_print_char(mp, '('); incr(mp->open_parens); mp_print(mp, fname);
16243 @<Flush |name| and replace it with |cur_name| if it won't be needed@>;
16244 @<Read the first line of the new file@>;
16247 @ This code should be omitted if |a_make_name_string| returns something other
16248 than just a copy of its argument and the full file name is needed for opening
16249 \.{MPX} files or implementing the switch-to-editor option.
16250 @^system dependencies@>
16252 @<Flush |name| and replace it with |cur_name| if it won't be needed@>=
16253 mp_flush_string(mp, name); name=rts(mp->cur_name); xfree(mp->cur_name)
16255 @ If the file is empty, it is considered to contain a single blank line,
16256 so there is no need to test the return value.
16258 @<Read the first line...@>=
16261 (void)mp_input_ln(mp, cur_file );
16262 mp_firm_up_the_line(mp);
16263 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
16266 @ @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>=
16267 while ( token_state &&(loc==null) ) mp_end_token_list(mp);
16268 if ( token_state ) {
16269 print_err("File names can't appear within macros");
16270 @.File names can't...@>
16271 help3("Sorry...I've converted what follows to tokens,")
16272 ("possibly garbaging the name you gave.")
16273 ("Please delete the tokens and insert the name again.");
16276 if ( file_state ) {
16277 mp_scan_file_name(mp);
16279 xfree(mp->cur_name); mp->cur_name=xstrdup("");
16280 xfree(mp->cur_ext); mp->cur_ext =xstrdup("");
16281 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16284 @ The following simple routine starts reading the \.{MPX} file associated
16285 with the current input file.
16287 @c void mp_start_mpx_input (MP mp) {
16288 char *origname = NULL; /* a copy of nameoffile */
16289 mp_pack_file_name(mp, in_name, in_area, ".mpx");
16290 @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16291 |goto not_found| if there is a problem@>;
16292 mp_begin_file_reading(mp);
16293 if ( ! mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16294 mp_end_file_reading(mp);
16297 name=mp_a_make_name_string(mp, cur_file);
16298 mp->mpx_name[index]=name; add_str_ref(name);
16299 @<Read the first line of the new file@>;
16302 @<Explain that the \.{MPX} file can't be read and |succumb|@>;
16306 @ This should ideally be changed to do whatever is necessary to create the
16307 \.{MPX} file given by |name_of_file| if it does not exist or if it is out
16308 of date. This requires invoking \.{MPtoTeX} on the |origname| and passing
16309 the results through \TeX\ and \.{DVItoMP}. (It is possible to use a
16310 completely different typesetting program if suitable postprocessor is
16311 available to perform the function of \.{DVItoMP}.)
16312 @^system dependencies@>
16314 @ @<Exported types@>=
16315 typedef int (*mp_run_make_mpx_command)(MP mp, char *origname, char *mtxname);
16317 @ @<Option variables@>=
16318 mp_run_make_mpx_command run_make_mpx;
16320 @ @<Allocate or initialize ...@>=
16321 set_callback_option(run_make_mpx);
16323 @ @<Internal library declarations@>=
16324 int mp_run_make_mpx (MP mp, char *origname, char *mtxname);
16326 @ The default does nothing.
16328 int mp_run_make_mpx (MP mp, char *origname, char *mtxname) {
16329 if (mp && origname && mtxname) /* for -W */
16334 @ @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16335 |goto not_found| if there is a problem@>=
16336 origname = mp_xstrdup(mp,mp->name_of_file);
16337 *(origname+strlen(origname)-1)=0; /* drop the x */
16338 if (!(mp->run_make_mpx)(mp, origname, mp->name_of_file))
16341 @ @<Explain that the \.{MPX} file can't be read and |succumb|@>=
16342 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16343 mp_print_nl(mp, ">> ");
16344 mp_print(mp, origname);
16345 mp_print_nl(mp, ">> ");
16346 mp_print(mp, mp->name_of_file);
16347 mp_print_nl(mp, "! Unable to make mpx file");
16348 help4("The two files given above are one of your source files")
16349 ("and an auxiliary file I need to read to find out what your")
16350 ("btex..etex blocks mean. If you don't know why I had trouble,")
16351 ("try running it manually through MPtoTeX, TeX, and DVItoMP");
16354 @ The last file-opening commands are for files accessed via the \&{readfrom}
16355 @:read_from_}{\&{readfrom} primitive@>
16356 operator and the \&{write} command. Such files are stored in separate arrays.
16357 @:write_}{\&{write} primitive@>
16359 @<Types in the outer block@>=
16360 typedef unsigned int readf_index; /* |0..max_read_files| */
16361 typedef unsigned int write_index; /* |0..max_write_files| */
16364 readf_index max_read_files; /* maximum number of simultaneously open \&{readfrom} files */
16365 void ** rd_file; /* \&{readfrom} files */
16366 char ** rd_fname; /* corresponding file name or 0 if file not open */
16367 readf_index read_files; /* number of valid entries in the above arrays */
16368 write_index max_write_files; /* maximum number of simultaneously open \&{write} */
16369 void ** wr_file; /* \&{write} files */
16370 char ** wr_fname; /* corresponding file name or 0 if file not open */
16371 write_index write_files; /* number of valid entries in the above arrays */
16373 @ @<Allocate or initialize ...@>=
16374 mp->max_read_files=8;
16375 mp->rd_file = xmalloc((mp->max_read_files+1),sizeof(void *));
16376 mp->rd_fname = xmalloc((mp->max_read_files+1),sizeof(char *));
16377 memset(mp->rd_fname, 0, sizeof(char *)*(mp->max_read_files+1));
16379 mp->max_write_files=8;
16380 mp->wr_file = xmalloc((mp->max_write_files+1),sizeof(void *));
16381 mp->wr_fname = xmalloc((mp->max_write_files+1),sizeof(char *));
16382 memset(mp->wr_fname, 0, sizeof(char *)*(mp->max_write_files+1));
16386 @ This routine starts reading the file named by string~|s| without setting
16387 |loc|, |limit|, or |name|. It returns |false| if the file is empty or cannot
16388 be opened. Otherwise it updates |rd_file[n]| and |rd_fname[n]|.
16390 @c boolean mp_start_read_input (MP mp,char *s, readf_index n) {
16391 mp_ptr_scan_file(mp, s);
16393 mp_begin_file_reading(mp);
16394 if ( ! mp_a_open_in(mp, &mp->rd_file[n], (mp_filetype_text+n)) )
16396 if ( ! mp_input_ln(mp, mp->rd_file[n] ) ) {
16397 (mp->close_file)(mp->rd_file[n]);
16400 mp->rd_fname[n]=xstrdup(mp->name_of_file);
16403 mp_end_file_reading(mp);
16407 @ Open |wr_file[n]| using file name~|s| and update |wr_fname[n]|.
16410 void mp_open_write_file (MP mp, char *s, readf_index n) ;
16412 @ @c void mp_open_write_file (MP mp,char *s, readf_index n) {
16413 mp_ptr_scan_file(mp, s);
16415 while ( ! mp_a_open_out(mp, &mp->wr_file[n], (mp_filetype_text+n)) )
16416 mp_prompt_file_name(mp, "file name for write output","");
16417 mp->wr_fname[n]=xstrdup(mp->name_of_file);
16421 @* \[36] Introduction to the parsing routines.
16422 We come now to the central nervous system that sparks many of \MP's activities.
16423 By evaluating expressions, from their primary constituents to ever larger
16424 subexpressions, \MP\ builds the structures that ultimately define complete
16425 pictures or fonts of type.
16427 Four mutually recursive subroutines are involved in this process: We call them
16428 $$\hbox{|scan_primary|, |scan_secondary|, |scan_tertiary|,
16429 and |scan_expression|.}$$
16431 Each of them is parameterless and begins with the first token to be scanned
16432 already represented in |cur_cmd|, |cur_mod|, and |cur_sym|. After execution,
16433 the value of the primary or secondary or tertiary or expression that was
16434 found will appear in the global variables |cur_type| and |cur_exp|. The
16435 token following the expression will be represented in |cur_cmd|, |cur_mod|,
16438 Technically speaking, the parsing algorithms are ``LL(1),'' more or less;
16439 backup mechanisms have been added in order to provide reasonable error
16443 small_number cur_type; /* the type of the expression just found */
16444 integer cur_exp; /* the value of the expression just found */
16449 @ Many different kinds of expressions are possible, so it is wise to have
16450 precise descriptions of what |cur_type| and |cur_exp| mean in all cases:
16453 |cur_type=mp_vacuous| means that this expression didn't turn out to have a
16454 value at all, because it arose from a \&{begingroup}$\,\ldots\,$\&{endgroup}
16455 construction in which there was no expression before the \&{endgroup}.
16456 In this case |cur_exp| has some irrelevant value.
16459 |cur_type=mp_boolean_type| means that |cur_exp| is either |true_code|
16463 |cur_type=mp_unknown_boolean| means that |cur_exp| points to a capsule
16464 node that is in the ring of variables equivalent
16465 to at least one undefined boolean variable.
16468 |cur_type=mp_string_type| means that |cur_exp| is a string number (i.e., an
16469 integer in the range |0<=cur_exp<str_ptr|). That string's reference count
16470 includes this particular reference.
16473 |cur_type=mp_unknown_string| means that |cur_exp| points to a capsule
16474 node that is in the ring of variables equivalent
16475 to at least one undefined string variable.
16478 |cur_type=mp_pen_type| means that |cur_exp| points to a node in a pen. Nobody
16479 else points to any of the nodes in this pen. The pen may be polygonal or
16483 |cur_type=mp_unknown_pen| means that |cur_exp| points to a capsule
16484 node that is in the ring of variables equivalent
16485 to at least one undefined pen variable.
16488 |cur_type=mp_path_type| means that |cur_exp| points to a the first node of
16489 a path; nobody else points to this particular path. The control points of
16490 the path will have been chosen.
16493 |cur_type=mp_unknown_path| means that |cur_exp| points to a capsule
16494 node that is in the ring of variables equivalent
16495 to at least one undefined path variable.
16498 |cur_type=mp_picture_type| means that |cur_exp| points to an edge header node.
16499 There may be other pointers to this particular set of edges. The header node
16500 contains a reference count that includes this particular reference.
16503 |cur_type=mp_unknown_picture| means that |cur_exp| points to a capsule
16504 node that is in the ring of variables equivalent
16505 to at least one undefined picture variable.
16508 |cur_type=mp_transform_type| means that |cur_exp| points to a |mp_transform_type|
16509 capsule node. The |value| part of this capsule
16510 points to a transform node that contains six numeric values,
16511 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16514 |cur_type=mp_color_type| means that |cur_exp| points to a |color_type|
16515 capsule node. The |value| part of this capsule
16516 points to a color node that contains three numeric values,
16517 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16520 |cur_type=mp_cmykcolor_type| means that |cur_exp| points to a |mp_cmykcolor_type|
16521 capsule node. The |value| part of this capsule
16522 points to a color node that contains four numeric values,
16523 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16526 |cur_type=mp_pair_type| means that |cur_exp| points to a capsule
16527 node whose type is |mp_pair_type|. The |value| part of this capsule
16528 points to a pair node that contains two numeric values,
16529 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16532 |cur_type=mp_known| means that |cur_exp| is a |scaled| value.
16535 |cur_type=mp_dependent| means that |cur_exp| points to a capsule node whose type
16536 is |dependent|. The |dep_list| field in this capsule points to the associated
16540 |cur_type=mp_proto_dependent| means that |cur_exp| points to a |mp_proto_dependent|
16541 capsule node. The |dep_list| field in this capsule
16542 points to the associated dependency list.
16545 |cur_type=independent| means that |cur_exp| points to a capsule node
16546 whose type is |independent|. This somewhat unusual case can arise, for
16547 example, in the expression
16548 `$x+\&{begingroup}\penalty0\,\&{string}\,x; 0\,\&{endgroup}$'.
16551 |cur_type=mp_token_list| means that |cur_exp| points to a linked list of
16552 tokens. This case arises only on the left-hand side of an assignment
16553 (`\.{:=}') operation, under very special circumstances.
16555 \smallskip\noindent
16556 The possible settings of |cur_type| have been listed here in increasing
16557 numerical order. Notice that |cur_type| will never be |mp_numeric_type| or
16558 |suffixed_macro| or |mp_unsuffixed_macro|, although variables of those types
16559 are allowed. Conversely, \MP\ has no variables of type |mp_vacuous| or
16562 @ Capsules are two-word nodes that have a similar meaning
16563 to |cur_type| and |cur_exp|. Such nodes have |name_type=capsule|
16564 and |link<=mp_void|; and their |type| field is one of the possibilities for
16565 |cur_type| listed above.
16567 The |value| field of a capsule is, in most cases, the value that
16568 corresponds to its |type|, as |cur_exp| corresponds to |cur_type|.
16569 However, when |cur_exp| would point to a capsule,
16570 no extra layer of indirection is present; the |value|
16571 field is what would have been called |value(cur_exp)| if it had not been
16572 encapsulated. Furthermore, if the type is |dependent| or
16573 |mp_proto_dependent|, the |value| field of a capsule is replaced by
16574 |dep_list| and |prev_dep| fields, since dependency lists in capsules are
16575 always part of the general |dep_list| structure.
16577 The |get_x_next| routine is careful not to change the values of |cur_type|
16578 and |cur_exp| when it gets an expanded token. However, |get_x_next| might
16579 call a macro, which might parse an expression, which might execute lots of
16580 commands in a group; hence it's possible that |cur_type| might change
16581 from, say, |mp_unknown_boolean| to |mp_boolean_type|, or from |dependent| to
16582 |known| or |independent|, during the time |get_x_next| is called. The
16583 programs below are careful to stash sensitive intermediate results in
16584 capsules, so that \MP's generality doesn't cause trouble.
16586 Here's a procedure that illustrates these conventions. It takes
16587 the contents of $(|cur_type|\kern-.3pt,|cur_exp|\kern-.3pt)$
16588 and stashes them away in a
16589 capsule. It is not used when |cur_type=mp_token_list|.
16590 After the operation, |cur_type=mp_vacuous|; hence there is no need to
16591 copy path lists or to update reference counts, etc.
16593 The special link |mp_void| is put on the capsule returned by
16594 |stash_cur_exp|, because this procedure is used to store macro parameters
16595 that must be easily distinguishable from token lists.
16597 @<Declare the stashing/unstashing routines@>=
16598 pointer mp_stash_cur_exp (MP mp) {
16599 pointer p; /* the capsule that will be returned */
16600 switch (mp->cur_type) {
16601 case unknown_types:
16602 case mp_transform_type:
16603 case mp_color_type:
16606 case mp_proto_dependent:
16607 case mp_independent:
16608 case mp_cmykcolor_type:
16612 p=mp_get_node(mp, value_node_size); name_type(p)=mp_capsule;
16613 type(p)=mp->cur_type; value(p)=mp->cur_exp;
16616 mp->cur_type=mp_vacuous; link(p)=mp_void;
16620 @ The inverse of |stash_cur_exp| is the following procedure, which
16621 deletes an unnecessary capsule and puts its contents into |cur_type|
16624 The program steps of \MP\ can be divided into two categories: those in
16625 which |cur_type| and |cur_exp| are ``alive'' and those in which they are
16626 ``dead,'' in the sense that |cur_type| and |cur_exp| contain relevant
16627 information or not. It's important not to ignore them when they're alive,
16628 and it's important not to pay attention to them when they're dead.
16630 There's also an intermediate category: If |cur_type=mp_vacuous|, then
16631 |cur_exp| is irrelevant, hence we can proceed without caring if |cur_type|
16632 and |cur_exp| are alive or dead. In such cases we say that |cur_type|
16633 and |cur_exp| are {\sl dormant}. It is permissible to call |get_x_next|
16634 only when they are alive or dormant.
16636 The \\{stash} procedure above assumes that |cur_type| and |cur_exp|
16637 are alive or dormant. The \\{unstash} procedure assumes that they are
16638 dead or dormant; it resuscitates them.
16640 @<Declare the stashing/unstashing...@>=
16641 void mp_unstash_cur_exp (MP mp,pointer p) ;
16644 void mp_unstash_cur_exp (MP mp,pointer p) {
16645 mp->cur_type=type(p);
16646 switch (mp->cur_type) {
16647 case unknown_types:
16648 case mp_transform_type:
16649 case mp_color_type:
16652 case mp_proto_dependent:
16653 case mp_independent:
16654 case mp_cmykcolor_type:
16658 mp->cur_exp=value(p);
16659 mp_free_node(mp, p,value_node_size);
16664 @ The following procedure prints the values of expressions in an
16665 abbreviated format. If its first parameter |p| is null, the value of
16666 |(cur_type,cur_exp)| is displayed; otherwise |p| should be a capsule
16667 containing the desired value. The second parameter controls the amount of
16668 output. If it is~0, dependency lists will be abbreviated to
16669 `\.{linearform}' unless they consist of a single term. If it is greater
16670 than~1, complicated structures (pens, pictures, and paths) will be displayed
16673 @<Declare subroutines for printing expressions@>=
16674 @<Declare the procedure called |print_dp|@>;
16675 @<Declare the stashing/unstashing routines@>;
16676 void mp_print_exp (MP mp,pointer p, small_number verbosity) {
16677 boolean restore_cur_exp; /* should |cur_exp| be restored? */
16678 small_number t; /* the type of the expression */
16679 pointer q; /* a big node being displayed */
16680 integer v=0; /* the value of the expression */
16682 restore_cur_exp=false;
16684 p=mp_stash_cur_exp(mp); restore_cur_exp=true;
16687 if ( t<mp_dependent ) v=value(p); else if ( t<mp_independent ) v=dep_list(p);
16688 @<Print an abbreviated value of |v| with format depending on |t|@>;
16689 if ( restore_cur_exp ) mp_unstash_cur_exp(mp, p);
16692 @ @<Print an abbreviated value of |v| with format depending on |t|@>=
16694 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
16695 case mp_boolean_type:
16696 if ( v==true_code ) mp_print(mp, "true"); else mp_print(mp, "false");
16698 case unknown_types: case mp_numeric_type:
16699 @<Display a variable that's been declared but not defined@>;
16701 case mp_string_type:
16702 mp_print_char(mp, '"'); mp_print_str(mp, v); mp_print_char(mp, '"');
16704 case mp_pen_type: case mp_path_type: case mp_picture_type:
16705 @<Display a complex type@>;
16707 case mp_transform_type: case mp_color_type: case mp_pair_type: case mp_cmykcolor_type:
16708 if ( v==null ) mp_print_type(mp, t);
16709 else @<Display a big node@>;
16711 case mp_known:mp_print_scaled(mp, v); break;
16712 case mp_dependent: case mp_proto_dependent:
16713 mp_print_dp(mp, t,v,verbosity);
16715 case mp_independent:mp_print_variable_name(mp, p); break;
16716 default: mp_confusion(mp, "exp"); break;
16717 @:this can't happen exp}{\quad exp@>
16720 @ @<Display a big node@>=
16722 mp_print_char(mp, '('); q=v+mp->big_node_size[t];
16724 if ( type(v)==mp_known ) mp_print_scaled(mp, value(v));
16725 else if ( type(v)==mp_independent ) mp_print_variable_name(mp, v);
16726 else mp_print_dp(mp, type(v),dep_list(v),verbosity);
16728 if ( v!=q ) mp_print_char(mp, ',');
16730 mp_print_char(mp, ')');
16733 @ Values of type \&{picture}, \&{path}, and \&{pen} are displayed verbosely
16734 in the log file only, unless the user has given a positive value to
16737 @<Display a complex type@>=
16738 if ( verbosity<=1 ) {
16739 mp_print_type(mp, t);
16741 if ( mp->selector==term_and_log )
16742 if ( mp->internal[mp_tracing_online]<=0 ) {
16743 mp->selector=term_only;
16744 mp_print_type(mp, t); mp_print(mp, " (see the transcript file)");
16745 mp->selector=term_and_log;
16748 case mp_pen_type:mp_print_pen(mp, v,"",false); break;
16749 case mp_path_type:mp_print_path(mp, v,"",false); break;
16750 case mp_picture_type:mp_print_edges(mp, v,"",false); break;
16751 } /* there are no other cases */
16754 @ @<Declare the procedure called |print_dp|@>=
16755 void mp_print_dp (MP mp,small_number t, pointer p,
16756 small_number verbosity) {
16757 pointer q; /* the node following |p| */
16759 if ( (info(q)==null) || (verbosity>0) ) mp_print_dependency(mp, p,t);
16760 else mp_print(mp, "linearform");
16763 @ The displayed name of a variable in a ring will not be a capsule unless
16764 the ring consists entirely of capsules.
16766 @<Display a variable that's been declared but not defined@>=
16767 { mp_print_type(mp, t);
16769 { mp_print_char(mp, ' ');
16770 while ( (name_type(v)==mp_capsule) && (v!=p) ) v=value(v);
16771 mp_print_variable_name(mp, v);
16775 @ When errors are detected during parsing, it is often helpful to
16776 display an expression just above the error message, using |exp_err|
16777 or |disp_err| instead of |print_err|.
16779 @d exp_err(A) mp_disp_err(mp, null,(A)) /* displays the current expression */
16781 @<Declare subroutines for printing expressions@>=
16782 void mp_disp_err (MP mp,pointer p, char *s) {
16783 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16784 mp_print_nl(mp, ">> ");
16786 mp_print_exp(mp, p,1); /* ``medium verbose'' printing of the expression */
16788 mp_print_nl(mp, "! "); mp_print(mp, s);
16793 @ If |cur_type| and |cur_exp| contain relevant information that should
16794 be recycled, we will use the following procedure, which changes |cur_type|
16795 to |known| and stores a given value in |cur_exp|. We can think of |cur_type|
16796 and |cur_exp| as either alive or dormant after this has been done,
16797 because |cur_exp| will not contain a pointer value.
16799 @ @c void mp_flush_cur_exp (MP mp,scaled v) {
16800 switch (mp->cur_type) {
16801 case unknown_types: case mp_transform_type: case mp_color_type: case mp_pair_type:
16802 case mp_dependent: case mp_proto_dependent: case mp_independent: case mp_cmykcolor_type:
16803 mp_recycle_value(mp, mp->cur_exp);
16804 mp_free_node(mp, mp->cur_exp,value_node_size);
16806 case mp_string_type:
16807 delete_str_ref(mp->cur_exp); break;
16808 case mp_pen_type: case mp_path_type:
16809 mp_toss_knot_list(mp, mp->cur_exp); break;
16810 case mp_picture_type:
16811 delete_edge_ref(mp->cur_exp); break;
16815 mp->cur_type=mp_known; mp->cur_exp=v;
16818 @ There's a much more general procedure that is capable of releasing
16819 the storage associated with any two-word value packet.
16821 @<Declare the recycling subroutines@>=
16822 void mp_recycle_value (MP mp,pointer p) ;
16824 @ @c void mp_recycle_value (MP mp,pointer p) {
16825 small_number t; /* a type code */
16826 integer vv; /* another value */
16827 pointer q,r,s,pp; /* link manipulation registers */
16828 integer v=0; /* a value */
16830 if ( t<mp_dependent ) v=value(p);
16832 case undefined: case mp_vacuous: case mp_boolean_type: case mp_known:
16833 case mp_numeric_type:
16835 case unknown_types:
16836 mp_ring_delete(mp, p); break;
16837 case mp_string_type:
16838 delete_str_ref(v); break;
16839 case mp_path_type: case mp_pen_type:
16840 mp_toss_knot_list(mp, v); break;
16841 case mp_picture_type:
16842 delete_edge_ref(v); break;
16843 case mp_cmykcolor_type: case mp_pair_type: case mp_color_type:
16844 case mp_transform_type:
16845 @<Recycle a big node@>; break;
16846 case mp_dependent: case mp_proto_dependent:
16847 @<Recycle a dependency list@>; break;
16848 case mp_independent:
16849 @<Recycle an independent variable@>; break;
16850 case mp_token_list: case mp_structured:
16851 mp_confusion(mp, "recycle"); break;
16852 @:this can't happen recycle}{\quad recycle@>
16853 case mp_unsuffixed_macro: case mp_suffixed_macro:
16854 mp_delete_mac_ref(mp, value(p)); break;
16855 } /* there are no other cases */
16859 @ @<Recycle a big node@>=
16861 q=v+mp->big_node_size[t];
16863 q=q-2; mp_recycle_value(mp, q);
16865 mp_free_node(mp, v,mp->big_node_size[t]);
16868 @ @<Recycle a dependency list@>=
16871 while ( info(q)!=null ) q=link(q);
16872 link(prev_dep(p))=link(q);
16873 prev_dep(link(q))=prev_dep(p);
16874 link(q)=null; mp_flush_node_list(mp, dep_list(p));
16877 @ When an independent variable disappears, it simply fades away, unless
16878 something depends on it. In the latter case, a dependent variable whose
16879 coefficient of dependence is maximal will take its place.
16880 The relevant algorithm is due to Ignacio~A. Zabala, who implemented it
16881 as part of his Ph.D. thesis (Stanford University, December 1982).
16882 @^Zabala Salelles, Ignacio Andres@>
16884 For example, suppose that variable $x$ is being recycled, and that the
16885 only variables depending on~$x$ are $y=2x+a$ and $z=x+b$. In this case
16886 we want to make $y$ independent and $z=.5y-.5a+b$; no other variables
16887 will depend on~$y$. If $\\{tracingequations}>0$ in this situation,
16888 we will print `\.{\#\#\# -2x=-y+a}'.
16890 There's a slight complication, however: An independent variable $x$
16891 can occur both in dependency lists and in proto-dependency lists.
16892 This makes it necessary to be careful when deciding which coefficient
16895 Furthermore, this complication is not so slight when
16896 a proto-dependent variable is chosen to become independent. For example,
16897 suppose that $y=2x+100a$ is proto-dependent while $z=x+b$ is dependent;
16898 then we must change $z=.5y-50a+b$ to a proto-dependency, because of the
16899 large coefficient `50'.
16901 In order to deal with these complications without wasting too much time,
16902 we shall link together the occurrences of~$x$ among all the linear
16903 dependencies, maintaining separate lists for the dependent and
16904 proto-dependent cases.
16906 @<Recycle an independent variable@>=
16908 mp->max_c[mp_dependent]=0; mp->max_c[mp_proto_dependent]=0;
16909 mp->max_link[mp_dependent]=null; mp->max_link[mp_proto_dependent]=null;
16911 while ( q!=dep_head ) {
16912 s=value_loc(q); /* now |link(s)=dep_list(q)| */
16915 if ( info(r)==null ) break;;
16916 if ( info(r)!=p ) {
16919 t=type(q); link(s)=link(r); info(r)=q;
16920 if ( abs(value(r))>mp->max_c[t] ) {
16921 @<Record a new maximum coefficient of type |t|@>;
16923 link(r)=mp->max_link[t]; mp->max_link[t]=r;
16929 if ( (mp->max_c[mp_dependent]>0)||(mp->max_c[mp_proto_dependent]>0) ) {
16930 @<Choose a dependent variable to take the place of the disappearing
16931 independent variable, and change all remaining dependencies
16936 @ The code for independency removal makes use of three two-word arrays.
16939 integer max_c[mp_proto_dependent+1]; /* max coefficient magnitude */
16940 pointer max_ptr[mp_proto_dependent+1]; /* where |p| occurs with |max_c| */
16941 pointer max_link[mp_proto_dependent+1]; /* other occurrences of |p| */
16943 @ @<Record a new maximum coefficient...@>=
16945 if ( mp->max_c[t]>0 ) {
16946 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
16948 mp->max_c[t]=abs(value(r)); mp->max_ptr[t]=r;
16951 @ @<Choose a dependent...@>=
16953 if ( (mp->max_c[mp_dependent] / 010000 >= mp->max_c[mp_proto_dependent]) )
16956 t=mp_proto_dependent;
16957 @<Determine the dependency list |s| to substitute for the independent
16959 t=mp_dependent+mp_proto_dependent-t; /* complement |t| */
16960 if ( mp->max_c[t]>0 ) { /* we need to pick up an unchosen dependency */
16961 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
16963 if ( t!=mp_dependent ) { @<Substitute new dependencies in place of |p|@>; }
16964 else { @<Substitute new proto-dependencies in place of |p|@>;}
16965 mp_flush_node_list(mp, s);
16966 if ( mp->fix_needed ) mp_fix_dependencies(mp);
16970 @ Let |s=max_ptr[t]|. At this point we have $|value|(s)=\pm|max_c|[t]$,
16971 and |info(s)| points to the dependent variable~|pp| of type~|t| from
16972 whose dependency list we have removed node~|s|. We must reinsert
16973 node~|s| into the dependency list, with coefficient $-1.0$, and with
16974 |pp| as the new independent variable. Since |pp| will have a larger serial
16975 number than any other variable, we can put node |s| at the head of the
16978 @<Determine the dep...@>=
16979 s=mp->max_ptr[t]; pp=info(s); v=value(s);
16980 if ( t==mp_dependent ) value(s)=-fraction_one; else value(s)=-unity;
16981 r=dep_list(pp); link(s)=r;
16982 while ( info(r)!=null ) r=link(r);
16983 q=link(r); link(r)=null;
16984 prev_dep(q)=prev_dep(pp); link(prev_dep(pp))=q;
16986 if ( mp->cur_exp==pp ) if ( mp->cur_type==t ) mp->cur_type=mp_independent;
16987 if ( mp->internal[mp_tracing_equations]>0 ) {
16988 @<Show the transformed dependency@>;
16991 @ Now $(-v)$ times the formerly independent variable~|p| is being replaced
16992 by the dependency list~|s|.
16994 @<Show the transformed...@>=
16995 if ( mp_interesting(mp, p) ) {
16996 mp_begin_diagnostic(mp); mp_print_nl(mp, "### ");
16997 @:]]]\#\#\#_}{\.{\#\#\#}@>
16998 if ( v>0 ) mp_print_char(mp, '-');
16999 if ( t==mp_dependent ) vv=mp_round_fraction(mp, mp->max_c[mp_dependent]);
17000 else vv=mp->max_c[mp_proto_dependent];
17001 if ( vv!=unity ) mp_print_scaled(mp, vv);
17002 mp_print_variable_name(mp, p);
17003 while ( value(p) % s_scale>0 ) {
17004 mp_print(mp, "*4"); value(p)=value(p)-2;
17006 if ( t==mp_dependent ) mp_print_char(mp, '='); else mp_print(mp, " = ");
17007 mp_print_dependency(mp, s,t);
17008 mp_end_diagnostic(mp, false);
17011 @ Finally, there are dependent and proto-dependent variables whose
17012 dependency lists must be brought up to date.
17014 @<Substitute new dependencies...@>=
17015 for (t=mp_dependent;t<=mp_proto_dependent;t++){
17017 while ( r!=null ) {
17019 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17020 mp_make_fraction(mp, value(r),-v),s,t,mp_dependent);
17021 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
17022 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
17026 @ @<Substitute new proto...@>=
17027 for (t=mp_dependent;t<=mp_proto_dependent;t++) {
17029 while ( r!=null ) {
17031 if ( t==mp_dependent ) { /* for safety's sake, we change |q| to |mp_proto_dependent| */
17032 if ( mp->cur_exp==q ) if ( mp->cur_type==mp_dependent )
17033 mp->cur_type=mp_proto_dependent;
17034 dep_list(q)=mp_p_over_v(mp, dep_list(q),unity,mp_dependent,mp_proto_dependent);
17035 type(q)=mp_proto_dependent; value(r)=mp_round_fraction(mp, value(r));
17037 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17038 mp_make_scaled(mp, value(r),-v),s,mp_proto_dependent,mp_proto_dependent);
17039 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
17040 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
17044 @ Here are some routines that provide handy combinations of actions
17045 that are often needed during error recovery. For example,
17046 `|flush_error|' flushes the current expression, replaces it by
17047 a given value, and calls |error|.
17049 Errors often are detected after an extra token has already been scanned.
17050 The `\\{put\_get}' routines put that token back before calling |error|;
17051 then they get it back again. (Or perhaps they get another token, if
17052 the user has changed things.)
17055 void mp_flush_error (MP mp,scaled v);
17056 void mp_put_get_error (MP mp);
17057 void mp_put_get_flush_error (MP mp,scaled v) ;
17060 void mp_flush_error (MP mp,scaled v) {
17061 mp_error(mp); mp_flush_cur_exp(mp, v);
17063 void mp_put_get_error (MP mp) {
17064 mp_back_error(mp); mp_get_x_next(mp);
17066 void mp_put_get_flush_error (MP mp,scaled v) {
17067 mp_put_get_error(mp);
17068 mp_flush_cur_exp(mp, v);
17071 @ A global variable |var_flag| is set to a special command code
17072 just before \MP\ calls |scan_expression|, if the expression should be
17073 treated as a variable when this command code immediately follows. For
17074 example, |var_flag| is set to |assignment| at the beginning of a
17075 statement, because we want to know the {\sl location\/} of a variable at
17076 the left of `\.{:=}', not the {\sl value\/} of that variable.
17078 The |scan_expression| subroutine calls |scan_tertiary|,
17079 which calls |scan_secondary|, which calls |scan_primary|, which sets
17080 |var_flag:=0|. In this way each of the scanning routines ``knows''
17081 when it has been called with a special |var_flag|, but |var_flag| is
17084 A variable preceding a command that equals |var_flag| is converted to a
17085 token list rather than a value. Furthermore, an `\.{=}' sign following an
17086 expression with |var_flag=assignment| is not considered to be a relation
17087 that produces boolean expressions.
17091 int var_flag; /* command that wants a variable */
17096 @* \[37] Parsing primary expressions.
17097 The first parsing routine, |scan_primary|, is also the most complicated one,
17098 since it involves so many different cases. But each case---with one
17099 exception---is fairly simple by itself.
17101 When |scan_primary| begins, the first token of the primary to be scanned
17102 should already appear in |cur_cmd|, |cur_mod|, and |cur_sym|. The values
17103 of |cur_type| and |cur_exp| should be either dead or dormant, as explained
17104 earlier. If |cur_cmd| is not between |min_primary_command| and
17105 |max_primary_command|, inclusive, a syntax error will be signaled.
17107 @<Declare the basic parsing subroutines@>=
17108 void mp_scan_primary (MP mp) {
17109 pointer p,q,r; /* for list manipulation */
17110 quarterword c; /* a primitive operation code */
17111 int my_var_flag; /* initial value of |my_var_flag| */
17112 pointer l_delim,r_delim; /* hash addresses of a delimiter pair */
17113 @<Other local variables for |scan_primary|@>;
17114 my_var_flag=mp->var_flag; mp->var_flag=0;
17117 @<Supply diagnostic information, if requested@>;
17118 switch (mp->cur_cmd) {
17119 case left_delimiter:
17120 @<Scan a delimited primary@>; break;
17122 @<Scan a grouped primary@>; break;
17124 @<Scan a string constant@>; break;
17125 case numeric_token:
17126 @<Scan a primary that starts with a numeric token@>; break;
17128 @<Scan a nullary operation@>; break;
17129 case unary: case type_name: case cycle: case plus_or_minus:
17130 @<Scan a unary operation@>; break;
17131 case primary_binary:
17132 @<Scan a binary operation with `\&{of}' between its operands@>; break;
17134 @<Convert a suffix to a string@>; break;
17135 case internal_quantity:
17136 @<Scan an internal numeric quantity@>; break;
17137 case capsule_token:
17138 mp_make_exp_copy(mp, mp->cur_mod); break;
17140 @<Scan a variable primary; |goto restart| if it turns out to be a macro@>; break;
17142 mp_bad_exp(mp, "A primary"); goto RESTART; break;
17143 @.A primary expression...@>
17145 mp_get_x_next(mp); /* the routines |goto done| if they don't want this */
17147 if ( mp->cur_cmd==left_bracket ) {
17148 if ( mp->cur_type>=mp_known ) {
17149 @<Scan a mediation construction@>;
17156 @ Errors at the beginning of expressions are flagged by |bad_exp|.
17158 @c void mp_bad_exp (MP mp,char * s) {
17160 print_err(s); mp_print(mp, " expression can't begin with `");
17161 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
17162 mp_print_char(mp, '\'');
17163 help4("I'm afraid I need some sort of value in order to continue,")
17164 ("so I've tentatively inserted `0'. You may want to")
17165 ("delete this zero and insert something else;")
17166 ("see Chapter 27 of The METAFONTbook for an example.");
17167 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17168 mp_back_input(mp); mp->cur_sym=0; mp->cur_cmd=numeric_token;
17169 mp->cur_mod=0; mp_ins_error(mp);
17170 save_flag=mp->var_flag; mp->var_flag=0; mp_get_x_next(mp);
17171 mp->var_flag=save_flag;
17174 @ @<Supply diagnostic information, if requested@>=
17176 if ( mp->panicking ) mp_check_mem(mp, false);
17178 if ( mp->interrupt!=0 ) if ( mp->OK_to_interrupt ) {
17179 mp_back_input(mp); check_interrupt; mp_get_x_next(mp);
17182 @ @<Scan a delimited primary@>=
17184 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
17185 mp_get_x_next(mp); mp_scan_expression(mp);
17186 if ( (mp->cur_cmd==comma) && (mp->cur_type>=mp_known) ) {
17187 @<Scan the rest of a delimited set of numerics@>;
17189 mp_check_delimiter(mp, l_delim,r_delim);
17193 @ The |stash_in| subroutine puts the current (numeric) expression into a field
17194 within a ``big node.''
17196 @c void mp_stash_in (MP mp,pointer p) {
17197 pointer q; /* temporary register */
17198 type(p)=mp->cur_type;
17199 if ( mp->cur_type==mp_known ) {
17200 value(p)=mp->cur_exp;
17202 if ( mp->cur_type==mp_independent ) {
17203 @<Stash an independent |cur_exp| into a big node@>;
17205 mp->mem[value_loc(p)]=mp->mem[value_loc(mp->cur_exp)];
17206 /* |dep_list(p):=dep_list(cur_exp)| and |prev_dep(p):=prev_dep(cur_exp)| */
17207 link(prev_dep(p))=p;
17209 mp_free_node(mp, mp->cur_exp,value_node_size);
17211 mp->cur_type=mp_vacuous;
17214 @ In rare cases the current expression can become |independent|. There
17215 may be many dependency lists pointing to such an independent capsule,
17216 so we can't simply move it into place within a big node. Instead,
17217 we copy it, then recycle it.
17219 @ @<Stash an independent |cur_exp|...@>=
17221 q=mp_single_dependency(mp, mp->cur_exp);
17222 if ( q==mp->dep_final ){
17223 type(p)=mp_known; value(p)=0; mp_free_node(mp, q,dep_node_size);
17225 type(p)=mp_dependent; mp_new_dep(mp, p,q);
17227 mp_recycle_value(mp, mp->cur_exp);
17230 @ This code uses the fact that |red_part_loc| and |green_part_loc|
17231 are synonymous with |x_part_loc| and |y_part_loc|.
17233 @<Scan the rest of a delimited set of numerics@>=
17235 p=mp_stash_cur_exp(mp);
17236 mp_get_x_next(mp); mp_scan_expression(mp);
17237 @<Make sure the second part of a pair or color has a numeric type@>;
17238 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
17239 if ( mp->cur_cmd==comma ) type(q)=mp_color_type;
17240 else type(q)=mp_pair_type;
17241 mp_init_big_node(mp, q); r=value(q);
17242 mp_stash_in(mp, y_part_loc(r));
17243 mp_unstash_cur_exp(mp, p);
17244 mp_stash_in(mp, x_part_loc(r));
17245 if ( mp->cur_cmd==comma ) {
17246 @<Scan the last of a triplet of numerics@>;
17248 if ( mp->cur_cmd==comma ) {
17249 type(q)=mp_cmykcolor_type;
17250 mp_init_big_node(mp, q); t=value(q);
17251 mp->mem[cyan_part_loc(t)]=mp->mem[red_part_loc(r)];
17252 value(cyan_part_loc(t))=value(red_part_loc(r));
17253 mp->mem[magenta_part_loc(t)]=mp->mem[green_part_loc(r)];
17254 value(magenta_part_loc(t))=value(green_part_loc(r));
17255 mp->mem[yellow_part_loc(t)]=mp->mem[blue_part_loc(r)];
17256 value(yellow_part_loc(t))=value(blue_part_loc(r));
17257 mp_recycle_value(mp, r);
17259 @<Scan the last of a quartet of numerics@>;
17261 mp_check_delimiter(mp, l_delim,r_delim);
17262 mp->cur_type=type(q);
17266 @ @<Make sure the second part of a pair or color has a numeric type@>=
17267 if ( mp->cur_type<mp_known ) {
17268 exp_err("Nonnumeric ypart has been replaced by 0");
17269 @.Nonnumeric...replaced by 0@>
17270 help4("I've started to scan a pair `(a,b)' or a color `(a,b,c)';")
17271 ("but after finding a nice `a' I found a `b' that isn't")
17272 ("of numeric type. So I've changed that part to zero.")
17273 ("(The b that I didn't like appears above the error message.)");
17274 mp_put_get_flush_error(mp, 0);
17277 @ @<Scan the last of a triplet of numerics@>=
17279 mp_get_x_next(mp); mp_scan_expression(mp);
17280 if ( mp->cur_type<mp_known ) {
17281 exp_err("Nonnumeric third part has been replaced by 0");
17282 @.Nonnumeric...replaced by 0@>
17283 help3("I've just scanned a color `(a,b,c)' or cmykcolor(a,b,c,d); but the `c'")
17284 ("isn't of numeric type. So I've changed that part to zero.")
17285 ("(The c that I didn't like appears above the error message.)");
17286 mp_put_get_flush_error(mp, 0);
17288 mp_stash_in(mp, blue_part_loc(r));
17291 @ @<Scan the last of a quartet of numerics@>=
17293 mp_get_x_next(mp); mp_scan_expression(mp);
17294 if ( mp->cur_type<mp_known ) {
17295 exp_err("Nonnumeric blackpart has been replaced by 0");
17296 @.Nonnumeric...replaced by 0@>
17297 help3("I've just scanned a cmykcolor `(c,m,y,k)'; but the `k' isn't")
17298 ("of numeric type. So I've changed that part to zero.")
17299 ("(The k that I didn't like appears above the error message.)");
17300 mp_put_get_flush_error(mp, 0);
17302 mp_stash_in(mp, black_part_loc(r));
17305 @ The local variable |group_line| keeps track of the line
17306 where a \&{begingroup} command occurred; this will be useful
17307 in an error message if the group doesn't actually end.
17309 @<Other local variables for |scan_primary|@>=
17310 integer group_line; /* where a group began */
17312 @ @<Scan a grouped primary@>=
17314 group_line=mp_true_line(mp);
17315 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17316 save_boundary_item(p);
17318 mp_do_statement(mp); /* ends with |cur_cmd>=semicolon| */
17319 } while (! (mp->cur_cmd!=semicolon));
17320 if ( mp->cur_cmd!=end_group ) {
17321 print_err("A group begun on line ");
17322 @.A group...never ended@>
17323 mp_print_int(mp, group_line);
17324 mp_print(mp, " never ended");
17325 help2("I saw a `begingroup' back there that hasn't been matched")
17326 ("by `endgroup'. So I've inserted `endgroup' now.");
17327 mp_back_error(mp); mp->cur_cmd=end_group;
17330 /* this might change |cur_type|, if independent variables are recycled */
17331 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17334 @ @<Scan a string constant@>=
17336 mp->cur_type=mp_string_type; mp->cur_exp=mp->cur_mod;
17339 @ Later we'll come to procedures that perform actual operations like
17340 addition, square root, and so on; our purpose now is to do the parsing.
17341 But we might as well mention those future procedures now, so that the
17342 suspense won't be too bad:
17345 |do_nullary(c)| does primitive operations that have no operands (e.g.,
17346 `\&{true}' or `\&{pencircle}');
17349 |do_unary(c)| applies a primitive operation to the current expression;
17352 |do_binary(p,c)| applies a primitive operation to the capsule~|p|
17353 and the current expression.
17355 @<Scan a nullary operation@>=mp_do_nullary(mp, mp->cur_mod)
17357 @ @<Scan a unary operation@>=
17359 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_primary(mp);
17360 mp_do_unary(mp, c); goto DONE;
17363 @ A numeric token might be a primary by itself, or it might be the
17364 numerator of a fraction composed solely of numeric tokens, or it might
17365 multiply the primary that follows (provided that the primary doesn't begin
17366 with a plus sign or a minus sign). The code here uses the facts that
17367 |max_primary_command=plus_or_minus| and
17368 |max_primary_command-1=numeric_token|. If a fraction is found that is less
17369 than unity, we try to retain higher precision when we use it in scalar
17372 @<Other local variables for |scan_primary|@>=
17373 scaled num,denom; /* for primaries that are fractions, like `1/2' */
17375 @ @<Scan a primary that starts with a numeric token@>=
17377 mp->cur_exp=mp->cur_mod; mp->cur_type=mp_known; mp_get_x_next(mp);
17378 if ( mp->cur_cmd!=slash ) {
17382 if ( mp->cur_cmd!=numeric_token ) {
17384 mp->cur_cmd=slash; mp->cur_mod=over; mp->cur_sym=frozen_slash;
17387 num=mp->cur_exp; denom=mp->cur_mod;
17388 if ( denom==0 ) { @<Protest division by zero@>; }
17389 else { mp->cur_exp=mp_make_scaled(mp, num,denom); }
17390 check_arith; mp_get_x_next(mp);
17392 if ( mp->cur_cmd>=min_primary_command ) {
17393 if ( mp->cur_cmd<numeric_token ) { /* in particular, |cur_cmd<>plus_or_minus| */
17394 p=mp_stash_cur_exp(mp); mp_scan_primary(mp);
17395 if ( (abs(num)>=abs(denom))||(mp->cur_type<mp_color_type) ) {
17396 mp_do_binary(mp, p,times);
17398 mp_frac_mult(mp, num,denom);
17399 mp_free_node(mp, p,value_node_size);
17406 @ @<Protest division...@>=
17408 print_err("Division by zero");
17409 @.Division by zero@>
17410 help1("I'll pretend that you meant to divide by 1."); mp_error(mp);
17413 @ @<Scan a binary operation with `\&{of}' between its operands@>=
17415 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
17416 if ( mp->cur_cmd!=of_token ) {
17417 mp_missing_err(mp, "of"); mp_print(mp, " for ");
17418 mp_print_cmd_mod(mp, primary_binary,c);
17420 help1("I've got the first argument; will look now for the other.");
17423 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_primary(mp);
17424 mp_do_binary(mp, p,c); goto DONE;
17427 @ @<Convert a suffix to a string@>=
17429 mp_get_x_next(mp); mp_scan_suffix(mp);
17430 mp->old_setting=mp->selector; mp->selector=new_string;
17431 mp_show_token_list(mp, mp->cur_exp,null,100000,0);
17432 mp_flush_token_list(mp, mp->cur_exp);
17433 mp->cur_exp=mp_make_string(mp); mp->selector=mp->old_setting;
17434 mp->cur_type=mp_string_type;
17438 @ If an internal quantity appears all by itself on the left of an
17439 assignment, we return a token list of length one, containing the address
17440 of the internal quantity plus |hash_end|. (This accords with the conventions
17441 of the save stack, as described earlier.)
17443 @<Scan an internal...@>=
17446 if ( my_var_flag==assignment ) {
17448 if ( mp->cur_cmd==assignment ) {
17449 mp->cur_exp=mp_get_avail(mp);
17450 info(mp->cur_exp)=q+hash_end; mp->cur_type=mp_token_list;
17455 mp->cur_type=mp_known; mp->cur_exp=mp->internal[q];
17458 @ The most difficult part of |scan_primary| has been saved for last, since
17459 it was necessary to build up some confidence first. We can now face the task
17460 of scanning a variable.
17462 As we scan a variable, we build a token list containing the relevant
17463 names and subscript values, simultaneously following along in the
17464 ``collective'' structure to see if we are actually dealing with a macro
17465 instead of a value.
17467 The local variables |pre_head| and |post_head| will point to the beginning
17468 of the prefix and suffix lists; |tail| will point to the end of the list
17469 that is currently growing.
17471 Another local variable, |tt|, contains partial information about the
17472 declared type of the variable-so-far. If |tt>=mp_unsuffixed_macro|, the
17473 relation |tt=type(q)| will always hold. If |tt=undefined|, the routine
17474 doesn't bother to update its information about type. And if
17475 |undefined<tt<mp_unsuffixed_macro|, the precise value of |tt| isn't critical.
17477 @ @<Other local variables for |scan_primary|@>=
17478 pointer pre_head,post_head,tail;
17479 /* prefix and suffix list variables */
17480 small_number tt; /* approximation to the type of the variable-so-far */
17481 pointer t; /* a token */
17482 pointer macro_ref = 0; /* reference count for a suffixed macro */
17484 @ @<Scan a variable primary...@>=
17486 fast_get_avail(pre_head); tail=pre_head; post_head=null; tt=mp_vacuous;
17488 t=mp_cur_tok(mp); link(tail)=t;
17489 if ( tt!=undefined ) {
17490 @<Find the approximate type |tt| and corresponding~|q|@>;
17491 if ( tt>=mp_unsuffixed_macro ) {
17492 @<Either begin an unsuffixed macro call or
17493 prepare for a suffixed one@>;
17496 mp_get_x_next(mp); tail=t;
17497 if ( mp->cur_cmd==left_bracket ) {
17498 @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>;
17500 if ( mp->cur_cmd>max_suffix_token ) break;
17501 if ( mp->cur_cmd<min_suffix_token ) break;
17502 } /* now |cur_cmd| is |internal_quantity|, |tag_token|, or |numeric_token| */
17503 @<Handle unusual cases that masquerade as variables, and |goto restart|
17504 or |goto done| if appropriate;
17505 otherwise make a copy of the variable and |goto done|@>;
17508 @ @<Either begin an unsuffixed macro call or...@>=
17511 if ( tt>mp_unsuffixed_macro ) { /* |tt=mp_suffixed_macro| */
17512 post_head=mp_get_avail(mp); tail=post_head; link(tail)=t;
17513 tt=undefined; macro_ref=value(q); add_mac_ref(macro_ref);
17515 @<Set up unsuffixed macro call and |goto restart|@>;
17519 @ @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>=
17521 mp_get_x_next(mp); mp_scan_expression(mp);
17522 if ( mp->cur_cmd!=right_bracket ) {
17523 @<Put the left bracket and the expression back to be rescanned@>;
17525 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17526 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp; mp->cur_sym=0;
17530 @ The left bracket that we thought was introducing a subscript might have
17531 actually been the left bracket in a mediation construction like `\.{x[a,b]}'.
17532 So we don't issue an error message at this point; but we do want to back up
17533 so as to avoid any embarrassment about our incorrect assumption.
17535 @<Put the left bracket and the expression back to be rescanned@>=
17537 mp_back_input(mp); /* that was the token following the current expression */
17538 mp_back_expr(mp); mp->cur_cmd=left_bracket;
17539 mp->cur_mod=0; mp->cur_sym=frozen_left_bracket;
17542 @ Here's a routine that puts the current expression back to be read again.
17544 @c void mp_back_expr (MP mp) {
17545 pointer p; /* capsule token */
17546 p=mp_stash_cur_exp(mp); link(p)=null; back_list(p);
17549 @ Unknown subscripts lead to the following error message.
17551 @c void mp_bad_subscript (MP mp) {
17552 exp_err("Improper subscript has been replaced by zero");
17553 @.Improper subscript...@>
17554 help3("A bracketed subscript must have a known numeric value;")
17555 ("unfortunately, what I found was the value that appears just")
17556 ("above this error message. So I'll try a zero subscript.");
17557 mp_flush_error(mp, 0);
17560 @ Every time we call |get_x_next|, there's a chance that the variable we've
17561 been looking at will disappear. Thus, we cannot safely keep |q| pointing
17562 into the variable structure; we need to start searching from the root each time.
17564 @<Find the approximate type |tt| and corresponding~|q|@>=
17567 p=link(pre_head); q=info(p); tt=undefined;
17568 if ( eq_type(q) % outer_tag==tag_token ) {
17570 if ( q==null ) goto DONE2;
17574 tt=type(q); goto DONE2;
17576 if ( type(q)!=mp_structured ) goto DONE2;
17577 q=link(attr_head(q)); /* the |collective_subscript| attribute */
17578 if ( p>=mp->hi_mem_min ) { /* it's not a subscript */
17579 do { q=link(q); } while (! (attr_loc(q)>=info(p)));
17580 if ( attr_loc(q)>info(p) ) goto DONE2;
17588 @ How do things stand now? Well, we have scanned an entire variable name,
17589 including possible subscripts and/or attributes; |cur_cmd|, |cur_mod|, and
17590 |cur_sym| represent the token that follows. If |post_head=null|, a
17591 token list for this variable name starts at |link(pre_head)|, with all
17592 subscripts evaluated. But if |post_head<>null|, the variable turned out
17593 to be a suffixed macro; |pre_head| is the head of the prefix list, while
17594 |post_head| is the head of a token list containing both `\.{\AT!}' and
17597 Our immediate problem is to see if this variable still exists. (Variable
17598 structures can change drastically whenever we call |get_x_next|; users
17599 aren't supposed to do this, but the fact that it is possible means that
17600 we must be cautious.)
17602 The following procedure prints an error message when a variable
17603 unexpectedly disappears. Its help message isn't quite right for
17604 our present purposes, but we'll be able to fix that up.
17607 void mp_obliterated (MP mp,pointer q) {
17608 print_err("Variable "); mp_show_token_list(mp, q,null,1000,0);
17609 mp_print(mp, " has been obliterated");
17610 @.Variable...obliterated@>
17611 help5("It seems you did a nasty thing---probably by accident,")
17612 ("but nevertheless you nearly hornswoggled me...")
17613 ("While I was evaluating the right-hand side of this")
17614 ("command, something happened, and the left-hand side")
17615 ("is no longer a variable! So I won't change anything.");
17618 @ If the variable does exist, we also need to check
17619 for a few other special cases before deciding that a plain old ordinary
17620 variable has, indeed, been scanned.
17622 @<Handle unusual cases that masquerade as variables...@>=
17623 if ( post_head!=null ) {
17624 @<Set up suffixed macro call and |goto restart|@>;
17626 q=link(pre_head); free_avail(pre_head);
17627 if ( mp->cur_cmd==my_var_flag ) {
17628 mp->cur_type=mp_token_list; mp->cur_exp=q; goto DONE;
17630 p=mp_find_variable(mp, q);
17632 mp_make_exp_copy(mp, p);
17634 mp_obliterated(mp, q);
17635 mp->help_line[2]="While I was evaluating the suffix of this variable,";
17636 mp->help_line[1]="something was redefined, and it's no longer a variable!";
17637 mp->help_line[0]="In order to get back on my feet, I've inserted `0' instead.";
17638 mp_put_get_flush_error(mp, 0);
17640 mp_flush_node_list(mp, q);
17643 @ The only complication associated with macro calling is that the prefix
17644 and ``at'' parameters must be packaged in an appropriate list of lists.
17646 @<Set up unsuffixed macro call and |goto restart|@>=
17648 p=mp_get_avail(mp); info(pre_head)=link(pre_head); link(pre_head)=p;
17649 info(p)=t; mp_macro_call(mp, value(q),pre_head,null);
17654 @ If the ``variable'' that turned out to be a suffixed macro no longer exists,
17655 we don't care, because we have reserved a pointer (|macro_ref|) to its
17658 @<Set up suffixed macro call and |goto restart|@>=
17660 mp_back_input(mp); p=mp_get_avail(mp); q=link(post_head);
17661 info(pre_head)=link(pre_head); link(pre_head)=post_head;
17662 info(post_head)=q; link(post_head)=p; info(p)=link(q); link(q)=null;
17663 mp_macro_call(mp, macro_ref,pre_head,null); decr(ref_count(macro_ref));
17664 mp_get_x_next(mp); goto RESTART;
17667 @ Our remaining job is simply to make a copy of the value that has been
17668 found. Some cases are harder than others, but complexity arises solely
17669 because of the multiplicity of possible cases.
17671 @<Declare the procedure called |make_exp_copy|@>=
17672 @<Declare subroutines needed by |make_exp_copy|@>;
17673 void mp_make_exp_copy (MP mp,pointer p) {
17674 pointer q,r,t; /* registers for list manipulation */
17676 mp->cur_type=type(p);
17677 switch (mp->cur_type) {
17678 case mp_vacuous: case mp_boolean_type: case mp_known:
17679 mp->cur_exp=value(p); break;
17680 case unknown_types:
17681 mp->cur_exp=mp_new_ring_entry(mp, p);
17683 case mp_string_type:
17684 mp->cur_exp=value(p); add_str_ref(mp->cur_exp);
17686 case mp_picture_type:
17687 mp->cur_exp=value(p);add_edge_ref(mp->cur_exp);
17690 mp->cur_exp=copy_pen(value(p));
17693 mp->cur_exp=mp_copy_path(mp, value(p));
17695 case mp_transform_type: case mp_color_type:
17696 case mp_cmykcolor_type: case mp_pair_type:
17697 @<Copy the big node |p|@>;
17699 case mp_dependent: case mp_proto_dependent:
17700 mp_encapsulate(mp, mp_copy_dep_list(mp, dep_list(p)));
17702 case mp_numeric_type:
17703 new_indep(p); goto RESTART;
17705 case mp_independent:
17706 q=mp_single_dependency(mp, p);
17707 if ( q==mp->dep_final ){
17708 mp->cur_type=mp_known; mp->cur_exp=0; mp_free_node(mp, q,value_node_size);
17710 mp->cur_type=mp_dependent; mp_encapsulate(mp, q);
17714 mp_confusion(mp, "copy");
17715 @:this can't happen copy}{\quad copy@>
17720 @ The |encapsulate| subroutine assumes that |dep_final| is the
17721 tail of dependency list~|p|.
17723 @<Declare subroutines needed by |make_exp_copy|@>=
17724 void mp_encapsulate (MP mp,pointer p) {
17725 mp->cur_exp=mp_get_node(mp, value_node_size); type(mp->cur_exp)=mp->cur_type;
17726 name_type(mp->cur_exp)=mp_capsule; mp_new_dep(mp, mp->cur_exp,p);
17729 @ The most tedious case arises when the user refers to a
17730 \&{pair}, \&{color}, or \&{transform} variable; we must copy several fields,
17731 each of which can be |independent|, |dependent|, |mp_proto_dependent|,
17734 @<Copy the big node |p|@>=
17736 if ( value(p)==null )
17737 mp_init_big_node(mp, p);
17738 t=mp_get_node(mp, value_node_size); name_type(t)=mp_capsule; type(t)=mp->cur_type;
17739 mp_init_big_node(mp, t);
17740 q=value(p)+mp->big_node_size[mp->cur_type];
17741 r=value(t)+mp->big_node_size[mp->cur_type];
17743 q=q-2; r=r-2; mp_install(mp, r,q);
17744 } while (q!=value(p));
17748 @ The |install| procedure copies a numeric field~|q| into field~|r| of
17749 a big node that will be part of a capsule.
17751 @<Declare subroutines needed by |make_exp_copy|@>=
17752 void mp_install (MP mp,pointer r, pointer q) {
17753 pointer p; /* temporary register */
17754 if ( type(q)==mp_known ){
17755 value(r)=value(q); type(r)=mp_known;
17756 } else if ( type(q)==mp_independent ) {
17757 p=mp_single_dependency(mp, q);
17758 if ( p==mp->dep_final ) {
17759 type(r)=mp_known; value(r)=0; mp_free_node(mp, p,value_node_size);
17761 type(r)=mp_dependent; mp_new_dep(mp, r,p);
17764 type(r)=type(q); mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(q)));
17768 @ Expressions of the form `\.{a[b,c]}' are converted into
17769 `\.{b+a*(c-b)}', without checking the types of \.b~or~\.c,
17770 provided that \.a is numeric.
17772 @<Scan a mediation...@>=
17774 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17775 if ( mp->cur_cmd!=comma ) {
17776 @<Put the left bracket and the expression back...@>;
17777 mp_unstash_cur_exp(mp, p);
17779 q=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17780 if ( mp->cur_cmd!=right_bracket ) {
17781 mp_missing_err(mp, "]");
17783 help3("I've scanned an expression of the form `a[b,c',")
17784 ("so a right bracket should have come next.")
17785 ("I shall pretend that one was there.");
17788 r=mp_stash_cur_exp(mp); mp_make_exp_copy(mp, q);
17789 mp_do_binary(mp, r,minus); mp_do_binary(mp, p,times);
17790 mp_do_binary(mp, q,plus); mp_get_x_next(mp);
17794 @ Here is a comparatively simple routine that is used to scan the
17795 \&{suffix} parameters of a macro.
17797 @<Declare the basic parsing subroutines@>=
17798 void mp_scan_suffix (MP mp) {
17799 pointer h,t; /* head and tail of the list being built */
17800 pointer p; /* temporary register */
17801 h=mp_get_avail(mp); t=h;
17803 if ( mp->cur_cmd==left_bracket ) {
17804 @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>;
17806 if ( mp->cur_cmd==numeric_token ) {
17807 p=mp_new_num_tok(mp, mp->cur_mod);
17808 } else if ((mp->cur_cmd==tag_token)||(mp->cur_cmd==internal_quantity) ) {
17809 p=mp_get_avail(mp); info(p)=mp->cur_sym;
17813 link(t)=p; t=p; mp_get_x_next(mp);
17815 mp->cur_exp=link(h); free_avail(h); mp->cur_type=mp_token_list;
17818 @ @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>=
17820 mp_get_x_next(mp); mp_scan_expression(mp);
17821 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17822 if ( mp->cur_cmd!=right_bracket ) {
17823 mp_missing_err(mp, "]");
17825 help3("I've seen a `[' and a subscript value, in a suffix,")
17826 ("so a right bracket should have come next.")
17827 ("I shall pretend that one was there.");
17830 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp;
17833 @* \[38] Parsing secondary and higher expressions.
17835 After the intricacies of |scan_primary|\kern-1pt,
17836 the |scan_secondary| routine is
17837 refreshingly simple. It's not trivial, but the operations are relatively
17838 straightforward; the main difficulty is, again, that expressions and data
17839 structures might change drastically every time we call |get_x_next|, so a
17840 cautious approach is mandatory. For example, a macro defined by
17841 \&{primarydef} might have disappeared by the time its second argument has
17842 been scanned; we solve this by increasing the reference count of its token
17843 list, so that the macro can be called even after it has been clobbered.
17845 @<Declare the basic parsing subroutines@>=
17846 void mp_scan_secondary (MP mp) {
17847 pointer p; /* for list manipulation */
17848 halfword c,d; /* operation codes or modifiers */
17849 pointer mac_name; /* token defined with \&{primarydef} */
17851 if ((mp->cur_cmd<min_primary_command)||
17852 (mp->cur_cmd>max_primary_command) )
17853 mp_bad_exp(mp, "A secondary");
17854 @.A secondary expression...@>
17855 mp_scan_primary(mp);
17857 if ( mp->cur_cmd<=max_secondary_command )
17858 if ( mp->cur_cmd>=min_secondary_command ) {
17859 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17860 if ( d==secondary_primary_macro ) {
17861 mac_name=mp->cur_sym; add_mac_ref(c);
17863 mp_get_x_next(mp); mp_scan_primary(mp);
17864 if ( d!=secondary_primary_macro ) {
17865 mp_do_binary(mp, p,c);
17867 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17868 decr(ref_count(c)); mp_get_x_next(mp);
17875 @ The following procedure calls a macro that has two parameters,
17878 @c void mp_binary_mac (MP mp,pointer p, pointer c, pointer n) {
17879 pointer q,r; /* nodes in the parameter list */
17880 q=mp_get_avail(mp); r=mp_get_avail(mp); link(q)=r;
17881 info(q)=p; info(r)=mp_stash_cur_exp(mp);
17882 mp_macro_call(mp, c,q,n);
17885 @ The next procedure, |scan_tertiary|, is pretty much the same deal.
17887 @<Declare the basic parsing subroutines@>=
17888 void mp_scan_tertiary (MP mp) {
17889 pointer p; /* for list manipulation */
17890 halfword c,d; /* operation codes or modifiers */
17891 pointer mac_name; /* token defined with \&{secondarydef} */
17893 if ((mp->cur_cmd<min_primary_command)||
17894 (mp->cur_cmd>max_primary_command) )
17895 mp_bad_exp(mp, "A tertiary");
17896 @.A tertiary expression...@>
17897 mp_scan_secondary(mp);
17899 if ( mp->cur_cmd<=max_tertiary_command ) {
17900 if ( mp->cur_cmd>=min_tertiary_command ) {
17901 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17902 if ( d==tertiary_secondary_macro ) {
17903 mac_name=mp->cur_sym; add_mac_ref(c);
17905 mp_get_x_next(mp); mp_scan_secondary(mp);
17906 if ( d!=tertiary_secondary_macro ) {
17907 mp_do_binary(mp, p,c);
17909 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17910 decr(ref_count(c)); mp_get_x_next(mp);
17918 @ Finally we reach the deepest level in our quartet of parsing routines.
17919 This one is much like the others; but it has an extra complication from
17920 paths, which materialize here.
17922 @d continue_path 25 /* a label inside of |scan_expression| */
17923 @d finish_path 26 /* another */
17925 @<Declare the basic parsing subroutines@>=
17926 void mp_scan_expression (MP mp) {
17927 pointer p,q,r,pp,qq; /* for list manipulation */
17928 halfword c,d; /* operation codes or modifiers */
17929 int my_var_flag; /* initial value of |var_flag| */
17930 pointer mac_name; /* token defined with \&{tertiarydef} */
17931 boolean cycle_hit; /* did a path expression just end with `\&{cycle}'? */
17932 scaled x,y; /* explicit coordinates or tension at a path join */
17933 int t; /* knot type following a path join */
17935 my_var_flag=mp->var_flag; mac_name=null;
17937 if ((mp->cur_cmd<min_primary_command)||
17938 (mp->cur_cmd>max_primary_command) )
17939 mp_bad_exp(mp, "An");
17940 @.An expression...@>
17941 mp_scan_tertiary(mp);
17943 if ( mp->cur_cmd<=max_expression_command )
17944 if ( mp->cur_cmd>=min_expression_command ) {
17945 if ( (mp->cur_cmd!=equals)||(my_var_flag!=assignment) ) {
17946 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17947 if ( d==expression_tertiary_macro ) {
17948 mac_name=mp->cur_sym; add_mac_ref(c);
17950 if ( (d<ampersand)||((d==ampersand)&&
17951 ((type(p)==mp_pair_type)||(type(p)==mp_path_type))) ) {
17952 @<Scan a path construction operation;
17953 but |return| if |p| has the wrong type@>;
17955 mp_get_x_next(mp); mp_scan_tertiary(mp);
17956 if ( d!=expression_tertiary_macro ) {
17957 mp_do_binary(mp, p,c);
17959 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17960 decr(ref_count(c)); mp_get_x_next(mp);
17969 @ The reader should review the data structure conventions for paths before
17970 hoping to understand the next part of this code.
17972 @<Scan a path construction operation...@>=
17975 @<Convert the left operand, |p|, into a partial path ending at~|q|;
17976 but |return| if |p| doesn't have a suitable type@>;
17978 @<Determine the path join parameters;
17979 but |goto finish_path| if there's only a direction specifier@>;
17980 if ( mp->cur_cmd==cycle ) {
17981 @<Get ready to close a cycle@>;
17983 mp_scan_tertiary(mp);
17984 @<Convert the right operand, |cur_exp|,
17985 into a partial path from |pp| to~|qq|@>;
17987 @<Join the partial paths and reset |p| and |q| to the head and tail
17989 if ( mp->cur_cmd>=min_expression_command )
17990 if ( mp->cur_cmd<=ampersand ) if ( ! cycle_hit ) goto CONTINUE_PATH;
17992 @<Choose control points for the path and put the result into |cur_exp|@>;
17995 @ @<Convert the left operand, |p|, into a partial path ending at~|q|...@>=
17997 mp_unstash_cur_exp(mp, p);
17998 if ( mp->cur_type==mp_pair_type ) p=mp_new_knot(mp);
17999 else if ( mp->cur_type==mp_path_type ) p=mp->cur_exp;
18002 while ( link(q)!=p ) q=link(q);
18003 if ( left_type(p)!=mp_endpoint ) { /* open up a cycle */
18004 r=mp_copy_knot(mp, p); link(q)=r; q=r;
18006 left_type(p)=mp_open; right_type(q)=mp_open;
18009 @ A pair of numeric values is changed into a knot node for a one-point path
18010 when \MP\ discovers that the pair is part of a path.
18012 @c@<Declare the procedure called |known_pair|@>;
18013 pointer mp_new_knot (MP mp) { /* convert a pair to a knot with two endpoints */
18014 pointer q; /* the new node */
18015 q=mp_get_node(mp, knot_node_size); left_type(q)=mp_endpoint;
18016 right_type(q)=mp_endpoint; originator(q)=mp_metapost_user; link(q)=q;
18017 mp_known_pair(mp); x_coord(q)=mp->cur_x; y_coord(q)=mp->cur_y;
18021 @ The |known_pair| subroutine sets |cur_x| and |cur_y| to the components
18022 of the current expression, assuming that the current expression is a
18023 pair of known numerics. Unknown components are zeroed, and the
18024 current expression is flushed.
18026 @<Declare the procedure called |known_pair|@>=
18027 void mp_known_pair (MP mp) {
18028 pointer p; /* the pair node */
18029 if ( mp->cur_type!=mp_pair_type ) {
18030 exp_err("Undefined coordinates have been replaced by (0,0)");
18031 @.Undefined coordinates...@>
18032 help5("I need x and y numbers for this part of the path.")
18033 ("The value I found (see above) was no good;")
18034 ("so I'll try to keep going by using zero instead.")
18035 ("(Chapter 27 of The METAFONTbook explains that")
18036 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18037 ("you might want to type `I ??" "?' now.)");
18038 mp_put_get_flush_error(mp, 0); mp->cur_x=0; mp->cur_y=0;
18040 p=value(mp->cur_exp);
18041 @<Make sure that both |x| and |y| parts of |p| are known;
18042 copy them into |cur_x| and |cur_y|@>;
18043 mp_flush_cur_exp(mp, 0);
18047 @ @<Make sure that both |x| and |y| parts of |p| are known...@>=
18048 if ( type(x_part_loc(p))==mp_known ) {
18049 mp->cur_x=value(x_part_loc(p));
18051 mp_disp_err(mp, x_part_loc(p),
18052 "Undefined x coordinate has been replaced by 0");
18053 @.Undefined coordinates...@>
18054 help5("I need a `known' x value for this part of the path.")
18055 ("The value I found (see above) was no good;")
18056 ("so I'll try to keep going by using zero instead.")
18057 ("(Chapter 27 of The METAFONTbook explains that")
18058 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18059 ("you might want to type `I ??" "?' now.)");
18060 mp_put_get_error(mp); mp_recycle_value(mp, x_part_loc(p)); mp->cur_x=0;
18062 if ( type(y_part_loc(p))==mp_known ) {
18063 mp->cur_y=value(y_part_loc(p));
18065 mp_disp_err(mp, y_part_loc(p),
18066 "Undefined y coordinate has been replaced by 0");
18067 help5("I need a `known' y value for this part of the path.")
18068 ("The value I found (see above) was no good;")
18069 ("so I'll try to keep going by using zero instead.")
18070 ("(Chapter 27 of The METAFONTbook explains that")
18071 ("you might want to type `I ??" "?' now.)");
18072 mp_put_get_error(mp); mp_recycle_value(mp, y_part_loc(p)); mp->cur_y=0;
18075 @ At this point |cur_cmd| is either |ampersand|, |left_brace|, or |path_join|.
18077 @<Determine the path join parameters...@>=
18078 if ( mp->cur_cmd==left_brace ) {
18079 @<Put the pre-join direction information into node |q|@>;
18082 if ( d==path_join ) {
18083 @<Determine the tension and/or control points@>;
18084 } else if ( d!=ampersand ) {
18088 if ( mp->cur_cmd==left_brace ) {
18089 @<Put the post-join direction information into |x| and |t|@>;
18090 } else if ( right_type(q)!=mp_explicit ) {
18094 @ The |scan_direction| subroutine looks at the directional information
18095 that is enclosed in braces, and also scans ahead to the following character.
18096 A type code is returned, either |open| (if the direction was $(0,0)$),
18097 or |curl| (if the direction was a curl of known value |cur_exp|), or
18098 |given| (if the direction is given by the |angle| value that now
18099 appears in |cur_exp|).
18101 There's nothing difficult about this subroutine, but the program is rather
18102 lengthy because a variety of potential errors need to be nipped in the bud.
18104 @c small_number mp_scan_direction (MP mp) {
18105 int t; /* the type of information found */
18106 scaled x; /* an |x| coordinate */
18108 if ( mp->cur_cmd==curl_command ) {
18109 @<Scan a curl specification@>;
18111 @<Scan a given direction@>;
18113 if ( mp->cur_cmd!=right_brace ) {
18114 mp_missing_err(mp, "}");
18115 @.Missing `\char`\}'@>
18116 help3("I've scanned a direction spec for part of a path,")
18117 ("so a right brace should have come next.")
18118 ("I shall pretend that one was there.");
18125 @ @<Scan a curl specification@>=
18126 { mp_get_x_next(mp); mp_scan_expression(mp);
18127 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<0) ){
18128 exp_err("Improper curl has been replaced by 1");
18130 help1("A curl must be a known, nonnegative number.");
18131 mp_put_get_flush_error(mp, unity);
18136 @ @<Scan a given direction@>=
18137 { mp_scan_expression(mp);
18138 if ( mp->cur_type>mp_pair_type ) {
18139 @<Get given directions separated by commas@>;
18143 if ( (mp->cur_x==0)&&(mp->cur_y==0) ) t=mp_open;
18144 else { t=mp_given; mp->cur_exp=mp_n_arg(mp, mp->cur_x,mp->cur_y);}
18147 @ @<Get given directions separated by commas@>=
18149 if ( mp->cur_type!=mp_known ) {
18150 exp_err("Undefined x coordinate has been replaced by 0");
18151 @.Undefined coordinates...@>
18152 help5("I need a `known' x value for this part of the path.")
18153 ("The value I found (see above) was no good;")
18154 ("so I'll try to keep going by using zero instead.")
18155 ("(Chapter 27 of The METAFONTbook explains that")
18156 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18157 ("you might want to type `I ??" "?' now.)");
18158 mp_put_get_flush_error(mp, 0);
18161 if ( mp->cur_cmd!=comma ) {
18162 mp_missing_err(mp, ",");
18164 help2("I've got the x coordinate of a path direction;")
18165 ("will look for the y coordinate next.");
18168 mp_get_x_next(mp); mp_scan_expression(mp);
18169 if ( mp->cur_type!=mp_known ) {
18170 exp_err("Undefined y coordinate has been replaced by 0");
18171 help5("I need a `known' y value for this part of the path.")
18172 ("The value I found (see above) was no good;")
18173 ("so I'll try to keep going by using zero instead.")
18174 ("(Chapter 27 of The METAFONTbook explains that")
18175 ("you might want to type `I ??" "?' now.)");
18176 mp_put_get_flush_error(mp, 0);
18178 mp->cur_y=mp->cur_exp; mp->cur_x=x;
18181 @ At this point |right_type(q)| is usually |open|, but it may have been
18182 set to some other value by a previous splicing operation. We must maintain
18183 the value of |right_type(q)| in unusual cases such as
18184 `\.{..z1\{z2\}\&\{z3\}z1\{0,0\}..}'.
18186 @<Put the pre-join...@>=
18188 t=mp_scan_direction(mp);
18189 if ( t!=mp_open ) {
18190 right_type(q)=t; right_given(q)=mp->cur_exp;
18191 if ( left_type(q)==mp_open ) {
18192 left_type(q)=t; left_given(q)=mp->cur_exp;
18193 } /* note that |left_given(q)=left_curl(q)| */
18197 @ Since |left_tension| and |left_y| share the same position in knot nodes,
18198 and since |left_given| is similarly equivalent to |left_x|, we use
18199 |x| and |y| to hold the given direction and tension information when
18200 there are no explicit control points.
18202 @<Put the post-join...@>=
18204 t=mp_scan_direction(mp);
18205 if ( right_type(q)!=mp_explicit ) x=mp->cur_exp;
18206 else t=mp_explicit; /* the direction information is superfluous */
18209 @ @<Determine the tension and/or...@>=
18212 if ( mp->cur_cmd==tension ) {
18213 @<Set explicit tensions@>;
18214 } else if ( mp->cur_cmd==controls ) {
18215 @<Set explicit control points@>;
18217 right_tension(q)=unity; y=unity; mp_back_input(mp); /* default tension */
18220 if ( mp->cur_cmd!=path_join ) {
18221 mp_missing_err(mp, "..");
18223 help1("A path join command should end with two dots.");
18230 @ @<Set explicit tensions@>=
18232 mp_get_x_next(mp); y=mp->cur_cmd;
18233 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18234 mp_scan_primary(mp);
18235 @<Make sure that the current expression is a valid tension setting@>;
18236 if ( y==at_least ) negate(mp->cur_exp);
18237 right_tension(q)=mp->cur_exp;
18238 if ( mp->cur_cmd==and_command ) {
18239 mp_get_x_next(mp); y=mp->cur_cmd;
18240 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18241 mp_scan_primary(mp);
18242 @<Make sure that the current expression is a valid tension setting@>;
18243 if ( y==at_least ) negate(mp->cur_exp);
18248 @ @d min_tension three_quarter_unit
18250 @<Make sure that the current expression is a valid tension setting@>=
18251 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<min_tension) ) {
18252 exp_err("Improper tension has been set to 1");
18253 @.Improper tension@>
18254 help1("The expression above should have been a number >=3/4.");
18255 mp_put_get_flush_error(mp, unity);
18258 @ @<Set explicit control points@>=
18260 right_type(q)=mp_explicit; t=mp_explicit; mp_get_x_next(mp); mp_scan_primary(mp);
18261 mp_known_pair(mp); right_x(q)=mp->cur_x; right_y(q)=mp->cur_y;
18262 if ( mp->cur_cmd!=and_command ) {
18263 x=right_x(q); y=right_y(q);
18265 mp_get_x_next(mp); mp_scan_primary(mp);
18266 mp_known_pair(mp); x=mp->cur_x; y=mp->cur_y;
18270 @ @<Convert the right operand, |cur_exp|, into a partial path...@>=
18272 if ( mp->cur_type!=mp_path_type ) pp=mp_new_knot(mp);
18273 else pp=mp->cur_exp;
18275 while ( link(qq)!=pp ) qq=link(qq);
18276 if ( left_type(pp)!=mp_endpoint ) { /* open up a cycle */
18277 r=mp_copy_knot(mp, pp); link(qq)=r; qq=r;
18279 left_type(pp)=mp_open; right_type(qq)=mp_open;
18282 @ If a person tries to define an entire path by saying `\.{(x,y)\&cycle}',
18283 we silently change the specification to `\.{(x,y)..cycle}', since a cycle
18284 shouldn't have length zero.
18286 @<Get ready to close a cycle@>=
18288 cycle_hit=true; mp_get_x_next(mp); pp=p; qq=p;
18289 if ( d==ampersand ) if ( p==q ) {
18290 d=path_join; right_tension(q)=unity; y=unity;
18294 @ @<Join the partial paths and reset |p| and |q|...@>=
18296 if ( d==ampersand ) {
18297 if ( (x_coord(q)!=x_coord(pp))||(y_coord(q)!=y_coord(pp)) ) {
18298 print_err("Paths don't touch; `&' will be changed to `..'");
18299 @.Paths don't touch@>
18300 help3("When you join paths `p&q', the ending point of p")
18301 ("must be exactly equal to the starting point of q.")
18302 ("So I'm going to pretend that you said `p..q' instead.");
18303 mp_put_get_error(mp); d=path_join; right_tension(q)=unity; y=unity;
18306 @<Plug an opening in |right_type(pp)|, if possible@>;
18307 if ( d==ampersand ) {
18308 @<Splice independent paths together@>;
18310 @<Plug an opening in |right_type(q)|, if possible@>;
18311 link(q)=pp; left_y(pp)=y;
18312 if ( t!=mp_open ) { left_x(pp)=x; left_type(pp)=t; };
18317 @ @<Plug an opening in |right_type(q)|...@>=
18318 if ( right_type(q)==mp_open ) {
18319 if ( (left_type(q)==mp_curl)||(left_type(q)==mp_given) ) {
18320 right_type(q)=left_type(q); right_given(q)=left_given(q);
18324 @ @<Plug an opening in |right_type(pp)|...@>=
18325 if ( right_type(pp)==mp_open ) {
18326 if ( (t==mp_curl)||(t==mp_given) ) {
18327 right_type(pp)=t; right_given(pp)=x;
18331 @ @<Splice independent paths together@>=
18333 if ( left_type(q)==mp_open ) if ( right_type(q)==mp_open ) {
18334 left_type(q)=mp_curl; left_curl(q)=unity;
18336 if ( right_type(pp)==mp_open ) if ( t==mp_open ) {
18337 right_type(pp)=mp_curl; right_curl(pp)=unity;
18339 right_type(q)=right_type(pp); link(q)=link(pp);
18340 right_x(q)=right_x(pp); right_y(q)=right_y(pp);
18341 mp_free_node(mp, pp,knot_node_size);
18342 if ( qq==pp ) qq=q;
18345 @ @<Choose control points for the path...@>=
18347 if ( d==ampersand ) p=q;
18349 left_type(p)=mp_endpoint;
18350 if ( right_type(p)==mp_open ) {
18351 right_type(p)=mp_curl; right_curl(p)=unity;
18353 right_type(q)=mp_endpoint;
18354 if ( left_type(q)==mp_open ) {
18355 left_type(q)=mp_curl; left_curl(q)=unity;
18359 mp_make_choices(mp, p);
18360 mp->cur_type=mp_path_type; mp->cur_exp=p
18362 @ Finally, we sometimes need to scan an expression whose value is
18363 supposed to be either |true_code| or |false_code|.
18365 @<Declare the basic parsing subroutines@>=
18366 void mp_get_boolean (MP mp) {
18367 mp_get_x_next(mp); mp_scan_expression(mp);
18368 if ( mp->cur_type!=mp_boolean_type ) {
18369 exp_err("Undefined condition will be treated as `false'");
18370 @.Undefined condition...@>
18371 help2("The expression shown above should have had a definite")
18372 ("true-or-false value. I'm changing it to `false'.");
18373 mp_put_get_flush_error(mp, false_code); mp->cur_type=mp_boolean_type;
18377 @* \[39] Doing the operations.
18378 The purpose of parsing is primarily to permit people to avoid piles of
18379 parentheses. But the real work is done after the structure of an expression
18380 has been recognized; that's when new expressions are generated. We
18381 turn now to the guts of \MP, which handles individual operators that
18382 have come through the parsing mechanism.
18384 We'll start with the easy ones that take no operands, then work our way
18385 up to operators with one and ultimately two arguments. In other words,
18386 we will write the three procedures |do_nullary|, |do_unary|, and |do_binary|
18387 that are invoked periodically by the expression scanners.
18389 First let's make sure that all of the primitive operators are in the
18390 hash table. Although |scan_primary| and its relatives made use of the
18391 \\{cmd} code for these operators, the \\{do} routines base everything
18392 on the \\{mod} code. For example, |do_binary| doesn't care whether the
18393 operation it performs is a |primary_binary| or |secondary_binary|, etc.
18396 mp_primitive(mp, "true",nullary,true_code);
18397 @:true_}{\&{true} primitive@>
18398 mp_primitive(mp, "false",nullary,false_code);
18399 @:false_}{\&{false} primitive@>
18400 mp_primitive(mp, "nullpicture",nullary,null_picture_code);
18401 @:null_picture_}{\&{nullpicture} primitive@>
18402 mp_primitive(mp, "nullpen",nullary,null_pen_code);
18403 @:null_pen_}{\&{nullpen} primitive@>
18404 mp_primitive(mp, "jobname",nullary,job_name_op);
18405 @:job_name_}{\&{jobname} primitive@>
18406 mp_primitive(mp, "readstring",nullary,read_string_op);
18407 @:read_string_}{\&{readstring} primitive@>
18408 mp_primitive(mp, "pencircle",nullary,pen_circle);
18409 @:pen_circle_}{\&{pencircle} primitive@>
18410 mp_primitive(mp, "normaldeviate",nullary,normal_deviate);
18411 @:normal_deviate_}{\&{normaldeviate} primitive@>
18412 mp_primitive(mp, "readfrom",unary,read_from_op);
18413 @:read_from_}{\&{readfrom} primitive@>
18414 mp_primitive(mp, "closefrom",unary,close_from_op);
18415 @:close_from_}{\&{closefrom} primitive@>
18416 mp_primitive(mp, "odd",unary,odd_op);
18417 @:odd_}{\&{odd} primitive@>
18418 mp_primitive(mp, "known",unary,known_op);
18419 @:known_}{\&{known} primitive@>
18420 mp_primitive(mp, "unknown",unary,unknown_op);
18421 @:unknown_}{\&{unknown} primitive@>
18422 mp_primitive(mp, "not",unary,not_op);
18423 @:not_}{\&{not} primitive@>
18424 mp_primitive(mp, "decimal",unary,decimal);
18425 @:decimal_}{\&{decimal} primitive@>
18426 mp_primitive(mp, "reverse",unary,reverse);
18427 @:reverse_}{\&{reverse} primitive@>
18428 mp_primitive(mp, "makepath",unary,make_path_op);
18429 @:make_path_}{\&{makepath} primitive@>
18430 mp_primitive(mp, "makepen",unary,make_pen_op);
18431 @:make_pen_}{\&{makepen} primitive@>
18432 mp_primitive(mp, "oct",unary,oct_op);
18433 @:oct_}{\&{oct} primitive@>
18434 mp_primitive(mp, "hex",unary,hex_op);
18435 @:hex_}{\&{hex} primitive@>
18436 mp_primitive(mp, "ASCII",unary,ASCII_op);
18437 @:ASCII_}{\&{ASCII} primitive@>
18438 mp_primitive(mp, "char",unary,char_op);
18439 @:char_}{\&{char} primitive@>
18440 mp_primitive(mp, "length",unary,length_op);
18441 @:length_}{\&{length} primitive@>
18442 mp_primitive(mp, "turningnumber",unary,turning_op);
18443 @:turning_number_}{\&{turningnumber} primitive@>
18444 mp_primitive(mp, "xpart",unary,x_part);
18445 @:x_part_}{\&{xpart} primitive@>
18446 mp_primitive(mp, "ypart",unary,y_part);
18447 @:y_part_}{\&{ypart} primitive@>
18448 mp_primitive(mp, "xxpart",unary,xx_part);
18449 @:xx_part_}{\&{xxpart} primitive@>
18450 mp_primitive(mp, "xypart",unary,xy_part);
18451 @:xy_part_}{\&{xypart} primitive@>
18452 mp_primitive(mp, "yxpart",unary,yx_part);
18453 @:yx_part_}{\&{yxpart} primitive@>
18454 mp_primitive(mp, "yypart",unary,yy_part);
18455 @:yy_part_}{\&{yypart} primitive@>
18456 mp_primitive(mp, "redpart",unary,red_part);
18457 @:red_part_}{\&{redpart} primitive@>
18458 mp_primitive(mp, "greenpart",unary,green_part);
18459 @:green_part_}{\&{greenpart} primitive@>
18460 mp_primitive(mp, "bluepart",unary,blue_part);
18461 @:blue_part_}{\&{bluepart} primitive@>
18462 mp_primitive(mp, "cyanpart",unary,cyan_part);
18463 @:cyan_part_}{\&{cyanpart} primitive@>
18464 mp_primitive(mp, "magentapart",unary,magenta_part);
18465 @:magenta_part_}{\&{magentapart} primitive@>
18466 mp_primitive(mp, "yellowpart",unary,yellow_part);
18467 @:yellow_part_}{\&{yellowpart} primitive@>
18468 mp_primitive(mp, "blackpart",unary,black_part);
18469 @:black_part_}{\&{blackpart} primitive@>
18470 mp_primitive(mp, "greypart",unary,grey_part);
18471 @:grey_part_}{\&{greypart} primitive@>
18472 mp_primitive(mp, "colormodel",unary,color_model_part);
18473 @:color_model_part_}{\&{colormodel} primitive@>
18474 mp_primitive(mp, "fontpart",unary,font_part);
18475 @:font_part_}{\&{fontpart} primitive@>
18476 mp_primitive(mp, "textpart",unary,text_part);
18477 @:text_part_}{\&{textpart} primitive@>
18478 mp_primitive(mp, "pathpart",unary,path_part);
18479 @:path_part_}{\&{pathpart} primitive@>
18480 mp_primitive(mp, "penpart",unary,pen_part);
18481 @:pen_part_}{\&{penpart} primitive@>
18482 mp_primitive(mp, "dashpart",unary,dash_part);
18483 @:dash_part_}{\&{dashpart} primitive@>
18484 mp_primitive(mp, "sqrt",unary,sqrt_op);
18485 @:sqrt_}{\&{sqrt} primitive@>
18486 mp_primitive(mp, "mexp",unary,m_exp_op);
18487 @:m_exp_}{\&{mexp} primitive@>
18488 mp_primitive(mp, "mlog",unary,m_log_op);
18489 @:m_log_}{\&{mlog} primitive@>
18490 mp_primitive(mp, "sind",unary,sin_d_op);
18491 @:sin_d_}{\&{sind} primitive@>
18492 mp_primitive(mp, "cosd",unary,cos_d_op);
18493 @:cos_d_}{\&{cosd} primitive@>
18494 mp_primitive(mp, "floor",unary,floor_op);
18495 @:floor_}{\&{floor} primitive@>
18496 mp_primitive(mp, "uniformdeviate",unary,uniform_deviate);
18497 @:uniform_deviate_}{\&{uniformdeviate} primitive@>
18498 mp_primitive(mp, "charexists",unary,char_exists_op);
18499 @:char_exists_}{\&{charexists} primitive@>
18500 mp_primitive(mp, "fontsize",unary,font_size);
18501 @:font_size_}{\&{fontsize} primitive@>
18502 mp_primitive(mp, "llcorner",unary,ll_corner_op);
18503 @:ll_corner_}{\&{llcorner} primitive@>
18504 mp_primitive(mp, "lrcorner",unary,lr_corner_op);
18505 @:lr_corner_}{\&{lrcorner} primitive@>
18506 mp_primitive(mp, "ulcorner",unary,ul_corner_op);
18507 @:ul_corner_}{\&{ulcorner} primitive@>
18508 mp_primitive(mp, "urcorner",unary,ur_corner_op);
18509 @:ur_corner_}{\&{urcorner} primitive@>
18510 mp_primitive(mp, "arclength",unary,arc_length);
18511 @:arc_length_}{\&{arclength} primitive@>
18512 mp_primitive(mp, "angle",unary,angle_op);
18513 @:angle_}{\&{angle} primitive@>
18514 mp_primitive(mp, "cycle",cycle,cycle_op);
18515 @:cycle_}{\&{cycle} primitive@>
18516 mp_primitive(mp, "stroked",unary,stroked_op);
18517 @:stroked_}{\&{stroked} primitive@>
18518 mp_primitive(mp, "filled",unary,filled_op);
18519 @:filled_}{\&{filled} primitive@>
18520 mp_primitive(mp, "textual",unary,textual_op);
18521 @:textual_}{\&{textual} primitive@>
18522 mp_primitive(mp, "clipped",unary,clipped_op);
18523 @:clipped_}{\&{clipped} primitive@>
18524 mp_primitive(mp, "bounded",unary,bounded_op);
18525 @:bounded_}{\&{bounded} primitive@>
18526 mp_primitive(mp, "+",plus_or_minus,plus);
18527 @:+ }{\.{+} primitive@>
18528 mp_primitive(mp, "-",plus_or_minus,minus);
18529 @:- }{\.{-} primitive@>
18530 mp_primitive(mp, "*",secondary_binary,times);
18531 @:* }{\.{*} primitive@>
18532 mp_primitive(mp, "/",slash,over); mp->eqtb[frozen_slash]=mp->eqtb[mp->cur_sym];
18533 @:/ }{\.{/} primitive@>
18534 mp_primitive(mp, "++",tertiary_binary,pythag_add);
18535 @:++_}{\.{++} primitive@>
18536 mp_primitive(mp, "+-+",tertiary_binary,pythag_sub);
18537 @:+-+_}{\.{+-+} primitive@>
18538 mp_primitive(mp, "or",tertiary_binary,or_op);
18539 @:or_}{\&{or} primitive@>
18540 mp_primitive(mp, "and",and_command,and_op);
18541 @:and_}{\&{and} primitive@>
18542 mp_primitive(mp, "<",expression_binary,less_than);
18543 @:< }{\.{<} primitive@>
18544 mp_primitive(mp, "<=",expression_binary,less_or_equal);
18545 @:<=_}{\.{<=} primitive@>
18546 mp_primitive(mp, ">",expression_binary,greater_than);
18547 @:> }{\.{>} primitive@>
18548 mp_primitive(mp, ">=",expression_binary,greater_or_equal);
18549 @:>=_}{\.{>=} primitive@>
18550 mp_primitive(mp, "=",equals,equal_to);
18551 @:= }{\.{=} primitive@>
18552 mp_primitive(mp, "<>",expression_binary,unequal_to);
18553 @:<>_}{\.{<>} primitive@>
18554 mp_primitive(mp, "substring",primary_binary,substring_of);
18555 @:substring_}{\&{substring} primitive@>
18556 mp_primitive(mp, "subpath",primary_binary,subpath_of);
18557 @:subpath_}{\&{subpath} primitive@>
18558 mp_primitive(mp, "directiontime",primary_binary,direction_time_of);
18559 @:direction_time_}{\&{directiontime} primitive@>
18560 mp_primitive(mp, "point",primary_binary,point_of);
18561 @:point_}{\&{point} primitive@>
18562 mp_primitive(mp, "precontrol",primary_binary,precontrol_of);
18563 @:precontrol_}{\&{precontrol} primitive@>
18564 mp_primitive(mp, "postcontrol",primary_binary,postcontrol_of);
18565 @:postcontrol_}{\&{postcontrol} primitive@>
18566 mp_primitive(mp, "penoffset",primary_binary,pen_offset_of);
18567 @:pen_offset_}{\&{penoffset} primitive@>
18568 mp_primitive(mp, "arctime",primary_binary,arc_time_of);
18569 @:arc_time_of_}{\&{arctime} primitive@>
18570 mp_primitive(mp, "mpversion",nullary,mp_version);
18571 @:mp_verison_}{\&{mpversion} primitive@>
18572 mp_primitive(mp, "&",ampersand,concatenate);
18573 @:!!!}{\.{\&} primitive@>
18574 mp_primitive(mp, "rotated",secondary_binary,rotated_by);
18575 @:rotated_}{\&{rotated} primitive@>
18576 mp_primitive(mp, "slanted",secondary_binary,slanted_by);
18577 @:slanted_}{\&{slanted} primitive@>
18578 mp_primitive(mp, "scaled",secondary_binary,scaled_by);
18579 @:scaled_}{\&{scaled} primitive@>
18580 mp_primitive(mp, "shifted",secondary_binary,shifted_by);
18581 @:shifted_}{\&{shifted} primitive@>
18582 mp_primitive(mp, "transformed",secondary_binary,transformed_by);
18583 @:transformed_}{\&{transformed} primitive@>
18584 mp_primitive(mp, "xscaled",secondary_binary,x_scaled);
18585 @:x_scaled_}{\&{xscaled} primitive@>
18586 mp_primitive(mp, "yscaled",secondary_binary,y_scaled);
18587 @:y_scaled_}{\&{yscaled} primitive@>
18588 mp_primitive(mp, "zscaled",secondary_binary,z_scaled);
18589 @:z_scaled_}{\&{zscaled} primitive@>
18590 mp_primitive(mp, "infont",secondary_binary,in_font);
18591 @:in_font_}{\&{infont} primitive@>
18592 mp_primitive(mp, "intersectiontimes",tertiary_binary,intersect);
18593 @:intersection_times_}{\&{intersectiontimes} primitive@>
18594 mp_primitive(mp, "envelope",primary_binary,envelope_of);
18595 @:envelope_}{\&{envelope} primitive@>
18597 @ @<Cases of |print_cmd...@>=
18600 case primary_binary:
18601 case secondary_binary:
18602 case tertiary_binary:
18603 case expression_binary:
18605 case plus_or_minus:
18610 mp_print_op(mp, m);
18613 @ OK, let's look at the simplest \\{do} procedure first.
18615 @c @<Declare nullary action procedure@>;
18616 void mp_do_nullary (MP mp,quarterword c) {
18618 if ( mp->internal[mp_tracing_commands]>two )
18619 mp_show_cmd_mod(mp, nullary,c);
18621 case true_code: case false_code:
18622 mp->cur_type=mp_boolean_type; mp->cur_exp=c;
18624 case null_picture_code:
18625 mp->cur_type=mp_picture_type;
18626 mp->cur_exp=mp_get_node(mp, edge_header_size);
18627 mp_init_edges(mp, mp->cur_exp);
18629 case null_pen_code:
18630 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, 0);
18632 case normal_deviate:
18633 mp->cur_type=mp_known; mp->cur_exp=mp_norm_rand(mp);
18636 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, unity);
18639 if ( mp->job_name==NULL ) mp_open_log_file(mp);
18640 mp->cur_type=mp_string_type; mp->cur_exp=rts(mp->job_name);
18643 mp->cur_type=mp_string_type;
18644 mp->cur_exp=intern(metapost_version) ;
18646 case read_string_op:
18647 @<Read a string from the terminal@>;
18649 } /* there are no other cases */
18653 @ @<Read a string...@>=
18655 if ( mp->interaction<=mp_nonstop_mode )
18656 mp_fatal_error(mp, "*** (cannot readstring in nonstop modes)");
18657 mp_begin_file_reading(mp); name=is_read;
18658 limit=start; prompt_input("");
18659 mp_finish_read(mp);
18662 @ @<Declare nullary action procedure@>=
18663 void mp_finish_read (MP mp) { /* copy |buffer| line to |cur_exp| */
18665 str_room((int)mp->last-start);
18666 for (k=start;k<=mp->last-1;k++) {
18667 append_char(mp->buffer[k]);
18669 mp_end_file_reading(mp); mp->cur_type=mp_string_type;
18670 mp->cur_exp=mp_make_string(mp);
18673 @ Things get a bit more interesting when there's an operand. The
18674 operand to |do_unary| appears in |cur_type| and |cur_exp|.
18676 @c @<Declare unary action procedures@>;
18677 void mp_do_unary (MP mp,quarterword c) {
18678 pointer p,q,r; /* for list manipulation */
18679 integer x; /* a temporary register */
18681 if ( mp->internal[mp_tracing_commands]>two )
18682 @<Trace the current unary operation@>;
18685 if ( mp->cur_type<mp_color_type ) mp_bad_unary(mp, plus);
18688 @<Negate the current expression@>;
18690 @<Additional cases of unary operators@>;
18691 } /* there are no other cases */
18695 @ The |nice_pair| function returns |true| if both components of a pair
18698 @<Declare unary action procedures@>=
18699 boolean mp_nice_pair (MP mp,integer p, quarterword t) {
18700 if ( t==mp_pair_type ) {
18702 if ( type(x_part_loc(p))==mp_known )
18703 if ( type(y_part_loc(p))==mp_known )
18709 @ The |nice_color_or_pair| function is analogous except that it also accepts
18710 fully known colors.
18712 @<Declare unary action procedures@>=
18713 boolean mp_nice_color_or_pair (MP mp,integer p, quarterword t) {
18714 pointer q,r; /* for scanning the big node */
18715 if ( (t!=mp_pair_type)&&(t!=mp_color_type)&&(t!=mp_cmykcolor_type) ) {
18719 r=q+mp->big_node_size[type(p)];
18722 if ( type(r)!=mp_known )
18729 @ @<Declare unary action...@>=
18730 void mp_print_known_or_unknown_type (MP mp,small_number t, integer v) {
18731 mp_print_char(mp, '(');
18732 if ( t>mp_known ) mp_print(mp, "unknown numeric");
18733 else { if ( (t==mp_pair_type)||(t==mp_color_type)||(t==mp_cmykcolor_type) )
18734 if ( ! mp_nice_color_or_pair(mp, v,t) ) mp_print(mp, "unknown ");
18735 mp_print_type(mp, t);
18737 mp_print_char(mp, ')');
18740 @ @<Declare unary action...@>=
18741 void mp_bad_unary (MP mp,quarterword c) {
18742 exp_err("Not implemented: "); mp_print_op(mp, c);
18743 @.Not implemented...@>
18744 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
18745 help3("I'm afraid I don't know how to apply that operation to that")
18746 ("particular type. Continue, and I'll simply return the")
18747 ("argument (shown above) as the result of the operation.");
18748 mp_put_get_error(mp);
18751 @ @<Trace the current unary operation@>=
18753 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
18754 mp_print_op(mp, c); mp_print_char(mp, '(');
18755 mp_print_exp(mp, null,0); /* show the operand, but not verbosely */
18756 mp_print(mp, ")}"); mp_end_diagnostic(mp, false);
18759 @ Negation is easy except when the current expression
18760 is of type |independent|, or when it is a pair with one or more
18761 |independent| components.
18763 It is tempting to argue that the negative of an independent variable
18764 is an independent variable, hence we don't have to do anything when
18765 negating it. The fallacy is that other dependent variables pointing
18766 to the current expression must change the sign of their
18767 coefficients if we make no change to the current expression.
18769 Instead, we work around the problem by copying the current expression
18770 and recycling it afterwards (cf.~the |stash_in| routine).
18772 @<Negate the current expression@>=
18773 switch (mp->cur_type) {
18774 case mp_color_type:
18775 case mp_cmykcolor_type:
18777 case mp_independent:
18778 q=mp->cur_exp; mp_make_exp_copy(mp, q);
18779 if ( mp->cur_type==mp_dependent ) {
18780 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18781 } else if ( mp->cur_type<=mp_pair_type ) { /* |mp_color_type| or |mp_pair_type| */
18782 p=value(mp->cur_exp);
18783 r=p+mp->big_node_size[mp->cur_type];
18786 if ( type(r)==mp_known ) negate(value(r));
18787 else mp_negate_dep_list(mp, dep_list(r));
18789 } /* if |cur_type=mp_known| then |cur_exp=0| */
18790 mp_recycle_value(mp, q); mp_free_node(mp, q,value_node_size);
18793 case mp_proto_dependent:
18794 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18797 negate(mp->cur_exp);
18800 mp_bad_unary(mp, minus);
18804 @ @<Declare unary action...@>=
18805 void mp_negate_dep_list (MP mp,pointer p) {
18808 if ( info(p)==null ) return;
18813 @ @<Additional cases of unary operators@>=
18815 if ( mp->cur_type!=mp_boolean_type ) mp_bad_unary(mp, not_op);
18816 else mp->cur_exp=true_code+false_code-mp->cur_exp;
18819 @ @d three_sixty_units 23592960 /* that's |360*unity| */
18820 @d boolean_reset(A) if ( (A) ) mp->cur_exp=true_code; else mp->cur_exp=false_code
18822 @<Additional cases of unary operators@>=
18829 case uniform_deviate:
18831 case char_exists_op:
18832 if ( mp->cur_type!=mp_known ) {
18833 mp_bad_unary(mp, c);
18836 case sqrt_op:mp->cur_exp=mp_square_rt(mp, mp->cur_exp);break;
18837 case m_exp_op:mp->cur_exp=mp_m_exp(mp, mp->cur_exp);break;
18838 case m_log_op:mp->cur_exp=mp_m_log(mp, mp->cur_exp);break;
18841 mp_n_sin_cos(mp, (mp->cur_exp % three_sixty_units)*16);
18842 if ( c==sin_d_op ) mp->cur_exp=mp_round_fraction(mp, mp->n_sin);
18843 else mp->cur_exp=mp_round_fraction(mp, mp->n_cos);
18845 case floor_op:mp->cur_exp=mp_floor_scaled(mp, mp->cur_exp);break;
18846 case uniform_deviate:mp->cur_exp=mp_unif_rand(mp, mp->cur_exp);break;
18848 boolean_reset(odd(mp_round_unscaled(mp, mp->cur_exp)));
18849 mp->cur_type=mp_boolean_type;
18851 case char_exists_op:
18852 @<Determine if a character has been shipped out@>;
18854 } /* there are no other cases */
18858 @ @<Additional cases of unary operators@>=
18860 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) ) {
18861 p=value(mp->cur_exp);
18862 x=mp_n_arg(mp, value(x_part_loc(p)),value(y_part_loc(p)));
18863 if ( x>=0 ) mp_flush_cur_exp(mp, (x+8)/ 16);
18864 else mp_flush_cur_exp(mp, -((-x+8)/ 16));
18866 mp_bad_unary(mp, angle_op);
18870 @ If the current expression is a pair, but the context wants it to
18871 be a path, we call |pair_to_path|.
18873 @<Declare unary action...@>=
18874 void mp_pair_to_path (MP mp) {
18875 mp->cur_exp=mp_new_knot(mp);
18876 mp->cur_type=mp_path_type;
18879 @ @<Additional cases of unary operators@>=
18882 if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_transform_type) )
18883 mp_take_part(mp, c);
18884 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18885 else mp_bad_unary(mp, c);
18891 if ( mp->cur_type==mp_transform_type ) mp_take_part(mp, c);
18892 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18893 else mp_bad_unary(mp, c);
18898 if ( mp->cur_type==mp_color_type ) mp_take_part(mp, c);
18899 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18900 else mp_bad_unary(mp, c);
18906 if ( mp->cur_type==mp_cmykcolor_type) mp_take_part(mp, c);
18907 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18908 else mp_bad_unary(mp, c);
18911 if ( mp->cur_type==mp_known ) mp->cur_exp=value(c);
18912 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18913 else mp_bad_unary(mp, c);
18915 case color_model_part:
18916 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18917 else mp_bad_unary(mp, c);
18920 @ In the following procedure, |cur_exp| points to a capsule, which points to
18921 a big node. We want to delete all but one part of the big node.
18923 @<Declare unary action...@>=
18924 void mp_take_part (MP mp,quarterword c) {
18925 pointer p; /* the big node */
18926 p=value(mp->cur_exp); value(temp_val)=p; type(temp_val)=mp->cur_type;
18927 link(p)=temp_val; mp_free_node(mp, mp->cur_exp,value_node_size);
18928 mp_make_exp_copy(mp, p+mp->sector_offset[c+mp_x_part_sector-x_part]);
18929 mp_recycle_value(mp, temp_val);
18932 @ @<Initialize table entries...@>=
18933 name_type(temp_val)=mp_capsule;
18935 @ @<Additional cases of unary operators@>=
18941 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18942 else mp_bad_unary(mp, c);
18945 @ @<Declarations@>=
18946 void mp_scale_edges (MP mp);
18948 @ @<Declare unary action...@>=
18949 void mp_take_pict_part (MP mp,quarterword c) {
18950 pointer p; /* first graphical object in |cur_exp| */
18951 p=link(dummy_loc(mp->cur_exp));
18954 case x_part: case y_part: case xx_part:
18955 case xy_part: case yx_part: case yy_part:
18956 if ( type(p)==mp_text_code ) mp_flush_cur_exp(mp, text_trans_part(p+c));
18957 else goto NOT_FOUND;
18959 case red_part: case green_part: case blue_part:
18960 if ( has_color(p) ) mp_flush_cur_exp(mp, obj_color_part(p+c));
18961 else goto NOT_FOUND;
18963 case cyan_part: case magenta_part: case yellow_part:
18965 if ( has_color(p) ) {
18966 if ( color_model(p)==mp_uninitialized_model )
18967 mp_flush_cur_exp(mp, unity);
18969 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-cyan_part)));
18970 } else goto NOT_FOUND;
18973 if ( has_color(p) )
18974 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-grey_part)));
18975 else goto NOT_FOUND;
18977 case color_model_part:
18978 if ( has_color(p) ) {
18979 if ( color_model(p)==mp_uninitialized_model )
18980 mp_flush_cur_exp(mp, mp->internal[mp_default_color_model]);
18982 mp_flush_cur_exp(mp, color_model(p)*unity);
18983 } else goto NOT_FOUND;
18985 @<Handle other cases in |take_pict_part| or |goto not_found|@>;
18986 } /* all cases have been enumerated */
18990 @<Convert the current expression to a null value appropriate
18994 @ @<Handle other cases in |take_pict_part| or |goto not_found|@>=
18996 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
18998 mp_flush_cur_exp(mp, text_p(p));
18999 add_str_ref(mp->cur_exp);
19000 mp->cur_type=mp_string_type;
19004 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
19006 mp_flush_cur_exp(mp, rts(mp->font_name[font_n(p)]));
19007 add_str_ref(mp->cur_exp);
19008 mp->cur_type=mp_string_type;
19012 if ( type(p)==mp_text_code ) goto NOT_FOUND;
19013 else if ( is_stop(p) ) mp_confusion(mp, "pict");
19014 @:this can't happen pict}{\quad pict@>
19016 mp_flush_cur_exp(mp, mp_copy_path(mp, path_p(p)));
19017 mp->cur_type=mp_path_type;
19021 if ( ! has_pen(p) ) goto NOT_FOUND;
19023 if ( pen_p(p)==null ) goto NOT_FOUND;
19024 else { mp_flush_cur_exp(mp, copy_pen(pen_p(p)));
19025 mp->cur_type=mp_pen_type;
19030 if ( type(p)!=mp_stroked_code ) goto NOT_FOUND;
19031 else { if ( dash_p(p)==null ) goto NOT_FOUND;
19032 else { add_edge_ref(dash_p(p));
19033 mp->se_sf=dash_scale(p);
19034 mp->se_pic=dash_p(p);
19035 mp_scale_edges(mp);
19036 mp_flush_cur_exp(mp, mp->se_pic);
19037 mp->cur_type=mp_picture_type;
19042 @ Since |scale_edges| had to be declared |forward|, it had to be declared as a
19043 parameterless procedure even though it really takes two arguments and updates
19044 one of them. Hence the following globals are needed.
19047 pointer se_pic; /* edge header used and updated by |scale_edges| */
19048 scaled se_sf; /* the scale factor argument to |scale_edges| */
19050 @ @<Convert the current expression to a null value appropriate...@>=
19052 case text_part: case font_part:
19053 mp_flush_cur_exp(mp, rts(""));
19054 mp->cur_type=mp_string_type;
19057 mp_flush_cur_exp(mp, mp_get_node(mp, knot_node_size));
19058 left_type(mp->cur_exp)=mp_endpoint;
19059 right_type(mp->cur_exp)=mp_endpoint;
19060 link(mp->cur_exp)=mp->cur_exp;
19061 x_coord(mp->cur_exp)=0;
19062 y_coord(mp->cur_exp)=0;
19063 originator(mp->cur_exp)=mp_metapost_user;
19064 mp->cur_type=mp_path_type;
19067 mp_flush_cur_exp(mp, mp_get_pen_circle(mp, 0));
19068 mp->cur_type=mp_pen_type;
19071 mp_flush_cur_exp(mp, mp_get_node(mp, edge_header_size));
19072 mp_init_edges(mp, mp->cur_exp);
19073 mp->cur_type=mp_picture_type;
19076 mp_flush_cur_exp(mp, 0);
19080 @ @<Additional cases of unary...@>=
19082 if ( mp->cur_type!=mp_known ) {
19083 mp_bad_unary(mp, char_op);
19085 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
19086 mp->cur_type=mp_string_type;
19087 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
19091 if ( mp->cur_type!=mp_known ) {
19092 mp_bad_unary(mp, decimal);
19094 mp->old_setting=mp->selector; mp->selector=new_string;
19095 mp_print_scaled(mp, mp->cur_exp); mp->cur_exp=mp_make_string(mp);
19096 mp->selector=mp->old_setting; mp->cur_type=mp_string_type;
19102 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19103 else mp_str_to_num(mp, c);
19106 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, font_size);
19107 else @<Find the design size of the font whose name is |cur_exp|@>;
19110 @ @<Declare unary action...@>=
19111 void mp_str_to_num (MP mp,quarterword c) { /* converts a string to a number */
19112 integer n; /* accumulator */
19113 ASCII_code m; /* current character */
19114 pool_pointer k; /* index into |str_pool| */
19115 int b; /* radix of conversion */
19116 boolean bad_char; /* did the string contain an invalid digit? */
19117 if ( c==ASCII_op ) {
19118 if ( length(mp->cur_exp)==0 ) n=-1;
19119 else n=mp->str_pool[mp->str_start[mp->cur_exp]];
19121 if ( c==oct_op ) b=8; else b=16;
19122 n=0; bad_char=false;
19123 for (k=mp->str_start[mp->cur_exp];k<=str_stop(mp->cur_exp)-1;k++) {
19125 if ( (m>='0')&&(m<='9') ) m=m-'0';
19126 else if ( (m>='A')&&(m<='F') ) m=m-'A'+10;
19127 else if ( (m>='a')&&(m<='f') ) m=m-'a'+10;
19128 else { bad_char=true; m=0; };
19129 if ( m>=b ) { bad_char=true; m=0; };
19130 if ( n<32768 / b ) n=n*b+m; else n=32767;
19132 @<Give error messages if |bad_char| or |n>=4096|@>;
19134 mp_flush_cur_exp(mp, n*unity);
19137 @ @<Give error messages if |bad_char|...@>=
19139 exp_err("String contains illegal digits");
19140 @.String contains illegal digits@>
19142 help1("I zeroed out characters that weren't in the range 0..7.");
19144 help1("I zeroed out characters that weren't hex digits.");
19146 mp_put_get_error(mp);
19149 if ( mp->internal[mp_warning_check]>0 ) {
19150 print_err("Number too large (");
19151 mp_print_int(mp, n); mp_print_char(mp, ')');
19152 @.Number too large@>
19153 help2("I have trouble with numbers greater than 4095; watch out.")
19154 ("(Set warningcheck:=0 to suppress this message.)");
19155 mp_put_get_error(mp);
19159 @ The length operation is somewhat unusual in that it applies to a variety
19160 of different types of operands.
19162 @<Additional cases of unary...@>=
19164 switch (mp->cur_type) {
19165 case mp_string_type: mp_flush_cur_exp(mp, length(mp->cur_exp)*unity); break;
19166 case mp_path_type: mp_flush_cur_exp(mp, mp_path_length(mp)); break;
19167 case mp_known: mp->cur_exp=abs(mp->cur_exp); break;
19168 case mp_picture_type: mp_flush_cur_exp(mp, mp_pict_length(mp)); break;
19170 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) )
19171 mp_flush_cur_exp(mp, mp_pyth_add(mp,
19172 value(x_part_loc(value(mp->cur_exp))),
19173 value(y_part_loc(value(mp->cur_exp)))));
19174 else mp_bad_unary(mp, c);
19179 @ @<Declare unary action...@>=
19180 scaled mp_path_length (MP mp) { /* computes the length of the current path */
19181 scaled n; /* the path length so far */
19182 pointer p; /* traverser */
19184 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
19185 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
19189 @ @<Declare unary action...@>=
19190 scaled mp_pict_length (MP mp) {
19191 /* counts interior components in picture |cur_exp| */
19192 scaled n; /* the count so far */
19193 pointer p; /* traverser */
19195 p=link(dummy_loc(mp->cur_exp));
19197 if ( is_start_or_stop(p) )
19198 if ( mp_skip_1component(mp, p)==null ) p=link(p);
19199 while ( p!=null ) {
19200 skip_component(p) return n;
19207 @ Implement |turningnumber|
19209 @<Additional cases of unary...@>=
19211 if ( mp->cur_type==mp_pair_type ) mp_flush_cur_exp(mp, 0);
19212 else if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, turning_op);
19213 else if ( left_type(mp->cur_exp)==mp_endpoint )
19214 mp_flush_cur_exp(mp, 0); /* not a cyclic path */
19216 mp_flush_cur_exp(mp, mp_turn_cycles_wrapper(mp, mp->cur_exp));
19219 @ The function |an_angle| returns the value of the |angle| primitive, or $0$ if the
19220 argument is |origin|.
19222 @<Declare unary action...@>=
19223 angle mp_an_angle (MP mp,scaled xpar, scaled ypar) {
19224 if ( (! ((xpar==0) && (ypar==0))) )
19225 return mp_n_arg(mp, xpar,ypar);
19230 @ The actual turning number is (for the moment) computed in a C function
19231 that receives eight integers corresponding to the four controlling points,
19232 and returns a single angle. Besides those, we have to account for discrete
19233 moves at the actual points.
19235 @d floor(a) (a>=0 ? a : -(int)(-a))
19236 @d bezier_error (720<<20)+1
19237 @d sign(v) ((v)>0 ? 1 : ((v)<0 ? -1 : 0 ))
19239 @d out ((double)(xo>>20))
19240 @d mid ((double)(xm>>20))
19241 @d in ((double)(xi>>20))
19242 @d divisor (256*256)
19243 @d double2angle(a) (int)floor(a*256.0*256.0*16.0)
19245 @<Declare unary action...@>=
19246 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19247 integer CX,integer CY,integer DX,integer DY);
19250 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19251 integer CX,integer CY,integer DX,integer DY) {
19253 integer deltax,deltay;
19254 double ax,ay,bx,by,cx,cy,dx,dy;
19255 angle xi = 0, xo = 0, xm = 0;
19257 ax=AX/divisor; ay=AY/divisor;
19258 bx=BX/divisor; by=BY/divisor;
19259 cx=CX/divisor; cy=CY/divisor;
19260 dx=DX/divisor; dy=DY/divisor;
19262 deltax = (BX-AX); deltay = (BY-AY);
19263 if (deltax==0 && deltay == 0) { deltax=(CX-AX); deltay=(CY-AY); }
19264 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19265 xi = mp_an_angle(mp,deltax,deltay);
19267 deltax = (CX-BX); deltay = (CY-BY);
19268 xm = mp_an_angle(mp,deltax,deltay);
19270 deltax = (DX-CX); deltay = (DY-CY);
19271 if (deltax==0 && deltay == 0) { deltax=(DX-BX); deltay=(DY-BY); }
19272 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19273 xo = mp_an_angle(mp,deltax,deltay);
19275 a = (bx-ax)*(cy-by) - (cx-bx)*(by-ay); /* a = (bp-ap)x(cp-bp); */
19276 b = (bx-ax)*(dy-cy) - (by-ay)*(dx-cx);; /* b = (bp-ap)x(dp-cp);*/
19277 c = (cx-bx)*(dy-cy) - (dx-cx)*(cy-by); /* c = (cp-bp)x(dp-cp);*/
19279 if ((a==0)&&(c==0)) {
19280 res = (b==0 ? 0 : (out-in));
19281 print_roots("no roots (a)");
19282 } else if ((a==0)||(c==0)) {
19283 if ((sign(b) == sign(a)) || (sign(b) == sign(c))) {
19284 res = out-in; /* ? */
19287 else if (res>180.0)
19289 print_roots("no roots (b)");
19291 res = out-in; /* ? */
19292 print_roots("one root (a)");
19294 } else if ((sign(a)*sign(c))<0) {
19295 res = out-in; /* ? */
19298 else if (res>180.0)
19300 print_roots("one root (b)");
19302 if (sign(a) == sign(b)) {
19303 res = out-in; /* ? */
19306 else if (res>180.0)
19308 print_roots("no roots (d)");
19310 if ((b*b) == (4*a*c)) {
19311 res = bezier_error;
19312 print_roots("double root"); /* cusp */
19313 } else if ((b*b) < (4*a*c)) {
19314 res = out-in; /* ? */
19315 if (res<=0.0 &&res>-180.0)
19317 else if (res>=0.0 && res<180.0)
19319 print_roots("no roots (e)");
19324 else if (res>180.0)
19326 print_roots("two roots"); /* two inflections */
19330 return double2angle(res);
19334 @d p_nextnext link(link(p))
19336 @d seven_twenty_deg 05500000000 /* $720\cdot2^{20}$, represents $720^\circ$ */
19338 @<Declare unary action...@>=
19339 scaled mp_new_turn_cycles (MP mp,pointer c) {
19340 angle res,ang; /* the angles of intermediate results */
19341 scaled turns; /* the turn counter */
19342 pointer p; /* for running around the path */
19343 integer xp,yp; /* coordinates of next point */
19344 integer x,y; /* helper coordinates */
19345 angle in_angle,out_angle; /* helper angles */
19346 int old_setting; /* saved |selector| setting */
19350 old_setting = mp->selector; mp->selector=term_only;
19351 if ( mp->internal[mp_tracing_commands]>unity ) {
19352 mp_begin_diagnostic(mp);
19353 mp_print_nl(mp, "");
19354 mp_end_diagnostic(mp, false);
19357 xp = x_coord(p_next); yp = y_coord(p_next);
19358 ang = mp_bezier_slope(mp,x_coord(p), y_coord(p), right_x(p), right_y(p),
19359 left_x(p_next), left_y(p_next), xp, yp);
19360 if ( ang>seven_twenty_deg ) {
19361 print_err("Strange path");
19363 mp->selector=old_setting;
19367 if ( res > one_eighty_deg ) {
19368 res = res - three_sixty_deg;
19369 turns = turns + unity;
19371 if ( res <= -one_eighty_deg ) {
19372 res = res + three_sixty_deg;
19373 turns = turns - unity;
19375 /* incoming angle at next point */
19376 x = left_x(p_next); y = left_y(p_next);
19377 if ( (xp==x)&&(yp==y) ) { x = right_x(p); y = right_y(p); };
19378 if ( (xp==x)&&(yp==y) ) { x = x_coord(p); y = y_coord(p); };
19379 in_angle = mp_an_angle(mp, xp - x, yp - y);
19380 /* outgoing angle at next point */
19381 x = right_x(p_next); y = right_y(p_next);
19382 if ( (xp==x)&&(yp==y) ) { x = left_x(p_nextnext); y = left_y(p_nextnext); };
19383 if ( (xp==x)&&(yp==y) ) { x = x_coord(p_nextnext); y = y_coord(p_nextnext); };
19384 out_angle = mp_an_angle(mp, x - xp, y- yp);
19385 ang = (out_angle - in_angle);
19389 if ( res >= one_eighty_deg ) {
19390 res = res - three_sixty_deg;
19391 turns = turns + unity;
19393 if ( res <= -one_eighty_deg ) {
19394 res = res + three_sixty_deg;
19395 turns = turns - unity;
19400 mp->selector=old_setting;
19405 @ This code is based on Bogus\l{}av Jackowski's
19406 |emergency_turningnumber| macro, with some minor changes by Taco
19407 Hoekwater. The macro code looked more like this:
19409 vardef turning\_number primary p =
19410 ~~save res, ang, turns;
19412 ~~if length p <= 2:
19413 ~~~~if Angle ((point 0 of p) - (postcontrol 0 of p)) >= 0: 1 else: -1 fi
19415 ~~~~for t = 0 upto length p-1 :
19416 ~~~~~~angc := Angle ((point t+1 of p) - (point t of p))
19417 ~~~~~~~~- Angle ((point t of p) - (point t-1 of p));
19418 ~~~~~~if angc > 180: angc := angc - 360; fi;
19419 ~~~~~~if angc < -180: angc := angc + 360; fi;
19420 ~~~~~~res := res + angc;
19425 The general idea is to calculate only the sum of the angles of
19426 straight lines between the points, of a path, not worrying about cusps
19427 or self-intersections in the segments at all. If the segment is not
19428 well-behaved, the result is not necesarily correct. But the old code
19429 was not always correct either, and worse, it sometimes failed for
19430 well-behaved paths as well. All known bugs that were triggered by the
19431 original code no longer occur with this code, and it runs roughly 3
19432 times as fast because the algorithm is much simpler.
19434 @ It is possible to overflow the return value of the |turn_cycles|
19435 function when the path is sufficiently long and winding, but I am not
19436 going to bother testing for that. In any case, it would only return
19437 the looped result value, which is not a big problem.
19439 The macro code for the repeat loop was a bit nicer to look
19440 at than the pascal code, because it could use |point -1 of p|. In
19441 pascal, the fastest way to loop around the path is not to look
19442 backward once, but forward twice. These defines help hide the trick.
19444 @d p_to link(link(p))
19448 @<Declare unary action...@>=
19449 scaled mp_turn_cycles (MP mp,pointer c) {
19450 angle res,ang; /* the angles of intermediate results */
19451 scaled turns; /* the turn counter */
19452 pointer p; /* for running around the path */
19453 res=0; turns= 0; p=c;
19455 ang = mp_an_angle (mp, x_coord(p_to) - x_coord(p_here),
19456 y_coord(p_to) - y_coord(p_here))
19457 - mp_an_angle (mp, x_coord(p_here) - x_coord(p_from),
19458 y_coord(p_here) - y_coord(p_from));
19461 if ( res >= three_sixty_deg ) {
19462 res = res - three_sixty_deg;
19463 turns = turns + unity;
19465 if ( res <= -three_sixty_deg ) {
19466 res = res + three_sixty_deg;
19467 turns = turns - unity;
19474 @ @<Declare unary action...@>=
19475 scaled mp_turn_cycles_wrapper (MP mp,pointer c) {
19477 scaled saved_t_o; /* tracing\_online saved */
19478 if ( (link(c)==c)||(link(link(c))==c) ) {
19479 if ( mp_an_angle (mp, x_coord(c) - right_x(c), y_coord(c) - right_y(c)) > 0 )
19484 nval = mp_new_turn_cycles(mp, c);
19485 oval = mp_turn_cycles(mp, c);
19486 if ( nval!=oval ) {
19487 saved_t_o=mp->internal[mp_tracing_online];
19488 mp->internal[mp_tracing_online]=unity;
19489 mp_begin_diagnostic(mp);
19490 mp_print_nl (mp, "Warning: the turningnumber algorithms do not agree."
19491 " The current computed value is ");
19492 mp_print_scaled(mp, nval);
19493 mp_print(mp, ", but the 'connect-the-dots' algorithm returned ");
19494 mp_print_scaled(mp, oval);
19495 mp_end_diagnostic(mp, false);
19496 mp->internal[mp_tracing_online]=saved_t_o;
19502 @ @<Declare unary action...@>=
19503 scaled mp_count_turns (MP mp,pointer c) {
19504 pointer p; /* a knot in envelope spec |c| */
19505 integer t; /* total pen offset changes counted */
19508 t=t+info(p)-zero_off;
19511 return ((t / 3)*unity);
19514 @ @d type_range(A,B) {
19515 if ( (mp->cur_type>=(A)) && (mp->cur_type<=(B)) )
19516 mp_flush_cur_exp(mp, true_code);
19517 else mp_flush_cur_exp(mp, false_code);
19518 mp->cur_type=mp_boolean_type;
19521 if ( mp->cur_type==(A) ) mp_flush_cur_exp(mp, true_code);
19522 else mp_flush_cur_exp(mp, false_code);
19523 mp->cur_type=mp_boolean_type;
19526 @<Additional cases of unary operators@>=
19527 case mp_boolean_type:
19528 type_range(mp_boolean_type,mp_unknown_boolean); break;
19529 case mp_string_type:
19530 type_range(mp_string_type,mp_unknown_string); break;
19532 type_range(mp_pen_type,mp_unknown_pen); break;
19534 type_range(mp_path_type,mp_unknown_path); break;
19535 case mp_picture_type:
19536 type_range(mp_picture_type,mp_unknown_picture); break;
19537 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
19539 type_test(c); break;
19540 case mp_numeric_type:
19541 type_range(mp_known,mp_independent); break;
19542 case known_op: case unknown_op:
19543 mp_test_known(mp, c); break;
19545 @ @<Declare unary action procedures@>=
19546 void mp_test_known (MP mp,quarterword c) {
19547 int b; /* is the current expression known? */
19548 pointer p,q; /* locations in a big node */
19550 switch (mp->cur_type) {
19551 case mp_vacuous: case mp_boolean_type: case mp_string_type:
19552 case mp_pen_type: case mp_path_type: case mp_picture_type:
19556 case mp_transform_type:
19557 case mp_color_type: case mp_cmykcolor_type: case mp_pair_type:
19558 p=value(mp->cur_exp);
19559 q=p+mp->big_node_size[mp->cur_type];
19562 if ( type(q)!=mp_known )
19571 if ( c==known_op ) mp_flush_cur_exp(mp, b);
19572 else mp_flush_cur_exp(mp, true_code+false_code-b);
19573 mp->cur_type=mp_boolean_type;
19576 @ @<Additional cases of unary operators@>=
19578 if ( mp->cur_type!=mp_path_type ) mp_flush_cur_exp(mp, false_code);
19579 else if ( left_type(mp->cur_exp)!=mp_endpoint ) mp_flush_cur_exp(mp, true_code);
19580 else mp_flush_cur_exp(mp, false_code);
19581 mp->cur_type=mp_boolean_type;
19584 @ @<Additional cases of unary operators@>=
19586 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19587 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, arc_length);
19588 else mp_flush_cur_exp(mp, mp_get_arc_length(mp, mp->cur_exp));
19591 @ Here we use the fact that |c-filled_op+fill_code| is the desired graphical
19593 @^data structure assumptions@>
19595 @<Additional cases of unary operators@>=
19601 if ( mp->cur_type!=mp_picture_type ) mp_flush_cur_exp(mp, false_code);
19602 else if ( link(dummy_loc(mp->cur_exp))==null ) mp_flush_cur_exp(mp, false_code);
19603 else if ( type(link(dummy_loc(mp->cur_exp)))==c+mp_fill_code-filled_op )
19604 mp_flush_cur_exp(mp, true_code);
19605 else mp_flush_cur_exp(mp, false_code);
19606 mp->cur_type=mp_boolean_type;
19609 @ @<Additional cases of unary operators@>=
19611 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19612 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, make_pen_op);
19614 mp->cur_type=mp_pen_type;
19615 mp->cur_exp=mp_make_pen(mp, mp->cur_exp,true);
19619 if ( mp->cur_type!=mp_pen_type ) mp_bad_unary(mp, make_path_op);
19621 mp->cur_type=mp_path_type;
19622 mp_make_path(mp, mp->cur_exp);
19626 if ( mp->cur_type==mp_path_type ) {
19627 p=mp_htap_ypoc(mp, mp->cur_exp);
19628 if ( right_type(p)==mp_endpoint ) p=link(p);
19629 mp_toss_knot_list(mp, mp->cur_exp); mp->cur_exp=p;
19630 } else if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19631 else mp_bad_unary(mp, reverse);
19634 @ The |pair_value| routine changes the current expression to a
19635 given ordered pair of values.
19637 @<Declare unary action procedures@>=
19638 void mp_pair_value (MP mp,scaled x, scaled y) {
19639 pointer p; /* a pair node */
19640 p=mp_get_node(mp, value_node_size);
19641 mp_flush_cur_exp(mp, p); mp->cur_type=mp_pair_type;
19642 type(p)=mp_pair_type; name_type(p)=mp_capsule; mp_init_big_node(mp, p);
19644 type(x_part_loc(p))=mp_known; value(x_part_loc(p))=x;
19645 type(y_part_loc(p))=mp_known; value(y_part_loc(p))=y;
19648 @ @<Additional cases of unary operators@>=
19650 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ll_corner_op);
19651 else mp_pair_value(mp, minx,miny);
19654 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, lr_corner_op);
19655 else mp_pair_value(mp, maxx,miny);
19658 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ul_corner_op);
19659 else mp_pair_value(mp, minx,maxy);
19662 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ur_corner_op);
19663 else mp_pair_value(mp, maxx,maxy);
19666 @ Here is a function that sets |minx|, |maxx|, |miny|, |maxy| to the bounding
19667 box of the current expression. The boolean result is |false| if the expression
19668 has the wrong type.
19670 @<Declare unary action procedures@>=
19671 boolean mp_get_cur_bbox (MP mp) {
19672 switch (mp->cur_type) {
19673 case mp_picture_type:
19674 mp_set_bbox(mp, mp->cur_exp,true);
19675 if ( minx_val(mp->cur_exp)>maxx_val(mp->cur_exp) ) {
19676 minx=0; maxx=0; miny=0; maxy=0;
19678 minx=minx_val(mp->cur_exp);
19679 maxx=maxx_val(mp->cur_exp);
19680 miny=miny_val(mp->cur_exp);
19681 maxy=maxy_val(mp->cur_exp);
19685 mp_path_bbox(mp, mp->cur_exp);
19688 mp_pen_bbox(mp, mp->cur_exp);
19696 @ @<Additional cases of unary operators@>=
19698 case close_from_op:
19699 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19700 else mp_do_read_or_close(mp,c);
19703 @ Here is a routine that interprets |cur_exp| as a file name and tries to read
19704 a line from the file or to close the file.
19706 @<Declare unary action procedures@>=
19707 void mp_do_read_or_close (MP mp,quarterword c) {
19708 readf_index n,n0; /* indices for searching |rd_fname| */
19709 @<Find the |n| where |rd_fname[n]=cur_exp|; if |cur_exp| must be inserted,
19710 call |start_read_input| and |goto found| or |not_found|@>;
19711 mp_begin_file_reading(mp);
19713 if ( mp_input_ln(mp, mp->rd_file[n] ) )
19715 mp_end_file_reading(mp);
19717 @<Record the end of file and set |cur_exp| to a dummy value@>;
19720 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
19723 mp_flush_cur_exp(mp, 0);
19724 mp_finish_read(mp);
19727 @ Free slots in the |rd_file| and |rd_fname| arrays are marked with NULL's in
19730 @<Find the |n| where |rd_fname[n]=cur_exp|...@>=
19735 fn = str(mp->cur_exp);
19736 while (mp_xstrcmp(fn,mp->rd_fname[n])!=0) {
19739 } else if ( c==close_from_op ) {
19742 if ( n0==mp->read_files ) {
19743 if ( mp->read_files<mp->max_read_files ) {
19744 incr(mp->read_files);
19749 l = mp->max_read_files + (mp->max_read_files>>2);
19750 rd_file = xmalloc((l+1), sizeof(void *));
19751 rd_fname = xmalloc((l+1), sizeof(char *));
19752 for (k=0;k<=l;k++) {
19753 if (k<=mp->max_read_files) {
19754 rd_file[k]=mp->rd_file[k];
19755 rd_fname[k]=mp->rd_fname[k];
19761 xfree(mp->rd_file); xfree(mp->rd_fname);
19762 mp->max_read_files = l;
19763 mp->rd_file = rd_file;
19764 mp->rd_fname = rd_fname;
19768 if ( mp_start_read_input(mp,fn,n) )
19773 if ( mp->rd_fname[n]==NULL ) { n0=n; }
19775 if ( c==close_from_op ) {
19776 (mp->close_file)(mp->rd_file[n]);
19781 @ @<Record the end of file and set |cur_exp| to a dummy value@>=
19782 xfree(mp->rd_fname[n]);
19783 mp->rd_fname[n]=NULL;
19784 if ( n==mp->read_files-1 ) mp->read_files=n;
19785 if ( c==close_from_op )
19787 mp_flush_cur_exp(mp, mp->eof_line);
19788 mp->cur_type=mp_string_type
19790 @ The string denoting end-of-file is a one-byte string at position zero, by definition
19793 str_number eof_line;
19798 @ Finally, we have the operations that combine a capsule~|p|
19799 with the current expression.
19801 @c @<Declare binary action procedures@>;
19802 void mp_do_binary (MP mp,pointer p, quarterword c) {
19803 pointer q,r,rr; /* for list manipulation */
19804 pointer old_p,old_exp; /* capsules to recycle */
19805 integer v; /* for numeric manipulation */
19807 if ( mp->internal[mp_tracing_commands]>two ) {
19808 @<Trace the current binary operation@>;
19810 @<Sidestep |independent| cases in capsule |p|@>;
19811 @<Sidestep |independent| cases in the current expression@>;
19813 case plus: case minus:
19814 @<Add or subtract the current expression from |p|@>;
19816 @<Additional cases of binary operators@>;
19817 }; /* there are no other cases */
19818 mp_recycle_value(mp, p);
19819 mp_free_node(mp, p,value_node_size); /* |return| to avoid this */
19821 @<Recycle any sidestepped |independent| capsules@>;
19824 @ @<Declare binary action...@>=
19825 void mp_bad_binary (MP mp,pointer p, quarterword c) {
19826 mp_disp_err(mp, p,"");
19827 exp_err("Not implemented: ");
19828 @.Not implemented...@>
19829 if ( c>=min_of ) mp_print_op(mp, c);
19830 mp_print_known_or_unknown_type(mp, type(p),p);
19831 if ( c>=min_of ) mp_print(mp, "of"); else mp_print_op(mp, c);
19832 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
19833 help3("I'm afraid I don't know how to apply that operation to that")
19834 ("combination of types. Continue, and I'll return the second")
19835 ("argument (see above) as the result of the operation.");
19836 mp_put_get_error(mp);
19838 void mp_bad_envelope_pen (MP mp) {
19839 mp_disp_err(mp, null,"");
19840 exp_err("Not implemented: envelope(elliptical pen)of(path)");
19841 @.Not implemented...@>
19842 help3("I'm afraid I don't know how to apply that operation to that")
19843 ("combination of types. Continue, and I'll return the second")
19844 ("argument (see above) as the result of the operation.");
19845 mp_put_get_error(mp);
19848 @ @<Trace the current binary operation@>=
19850 mp_begin_diagnostic(mp); mp_print_nl(mp, "{(");
19851 mp_print_exp(mp,p,0); /* show the operand, but not verbosely */
19852 mp_print_char(mp,')'); mp_print_op(mp,c); mp_print_char(mp,'(');
19853 mp_print_exp(mp,null,0); mp_print(mp,")}");
19854 mp_end_diagnostic(mp, false);
19857 @ Several of the binary operations are potentially complicated by the
19858 fact that |independent| values can sneak into capsules. For example,
19859 we've seen an instance of this difficulty in the unary operation
19860 of negation. In order to reduce the number of cases that need to be
19861 handled, we first change the two operands (if necessary)
19862 to rid them of |independent| components. The original operands are
19863 put into capsules called |old_p| and |old_exp|, which will be
19864 recycled after the binary operation has been safely carried out.
19866 @<Recycle any sidestepped |independent| capsules@>=
19867 if ( old_p!=null ) {
19868 mp_recycle_value(mp, old_p); mp_free_node(mp, old_p,value_node_size);
19870 if ( old_exp!=null ) {
19871 mp_recycle_value(mp, old_exp); mp_free_node(mp, old_exp,value_node_size);
19874 @ A big node is considered to be ``tarnished'' if it contains at least one
19875 independent component. We will define a simple function called `|tarnished|'
19876 that returns |null| if and only if its argument is not tarnished.
19878 @<Sidestep |independent| cases in capsule |p|@>=
19880 case mp_transform_type:
19881 case mp_color_type:
19882 case mp_cmykcolor_type:
19884 old_p=mp_tarnished(mp, p);
19886 case mp_independent: old_p=mp_void; break;
19887 default: old_p=null; break;
19889 if ( old_p!=null ) {
19890 q=mp_stash_cur_exp(mp); old_p=p; mp_make_exp_copy(mp, old_p);
19891 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
19894 @ @<Sidestep |independent| cases in the current expression@>=
19895 switch (mp->cur_type) {
19896 case mp_transform_type:
19897 case mp_color_type:
19898 case mp_cmykcolor_type:
19900 old_exp=mp_tarnished(mp, mp->cur_exp);
19902 case mp_independent:old_exp=mp_void; break;
19903 default: old_exp=null; break;
19905 if ( old_exp!=null ) {
19906 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
19909 @ @<Declare binary action...@>=
19910 pointer mp_tarnished (MP mp,pointer p) {
19911 pointer q; /* beginning of the big node */
19912 pointer r; /* current position in the big node */
19913 q=value(p); r=q+mp->big_node_size[type(p)];
19916 if ( type(r)==mp_independent ) return mp_void;
19921 @ @<Add or subtract the current expression from |p|@>=
19922 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
19923 mp_bad_binary(mp, p,c);
19925 if ((mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
19926 mp_add_or_subtract(mp, p,null,c);
19928 if ( mp->cur_type!=type(p) ) {
19929 mp_bad_binary(mp, p,c);
19931 q=value(p); r=value(mp->cur_exp);
19932 rr=r+mp->big_node_size[mp->cur_type];
19934 mp_add_or_subtract(mp, q,r,c);
19941 @ The first argument to |add_or_subtract| is the location of a value node
19942 in a capsule or pair node that will soon be recycled. The second argument
19943 is either a location within a pair or transform node of |cur_exp|,
19944 or it is null (which means that |cur_exp| itself should be the second
19945 argument). The third argument is either |plus| or |minus|.
19947 The sum or difference of the numeric quantities will replace the second
19948 operand. Arithmetic overflow may go undetected; users aren't supposed to
19949 be monkeying around with really big values.
19951 @<Declare binary action...@>=
19952 @<Declare the procedure called |dep_finish|@>;
19953 void mp_add_or_subtract (MP mp,pointer p, pointer q, quarterword c) {
19954 small_number s,t; /* operand types */
19955 pointer r; /* list traverser */
19956 integer v; /* second operand value */
19959 if ( t<mp_dependent ) v=mp->cur_exp; else v=dep_list(mp->cur_exp);
19962 if ( t<mp_dependent ) v=value(q); else v=dep_list(q);
19964 if ( t==mp_known ) {
19965 if ( c==minus ) negate(v);
19966 if ( type(p)==mp_known ) {
19967 v=mp_slow_add(mp, value(p),v);
19968 if ( q==null ) mp->cur_exp=v; else value(q)=v;
19971 @<Add a known value to the constant term of |dep_list(p)|@>;
19973 if ( c==minus ) mp_negate_dep_list(mp, v);
19974 @<Add operand |p| to the dependency list |v|@>;
19978 @ @<Add a known value to the constant term of |dep_list(p)|@>=
19980 while ( info(r)!=null ) r=link(r);
19981 value(r)=mp_slow_add(mp, value(r),v);
19983 q=mp_get_node(mp, value_node_size); mp->cur_exp=q; mp->cur_type=type(p);
19984 name_type(q)=mp_capsule;
19986 dep_list(q)=dep_list(p); type(q)=type(p);
19987 prev_dep(q)=prev_dep(p); link(prev_dep(p))=q;
19988 type(p)=mp_known; /* this will keep the recycler from collecting non-garbage */
19990 @ We prefer |dependent| lists to |mp_proto_dependent| ones, because it is
19991 nice to retain the extra accuracy of |fraction| coefficients.
19992 But we have to handle both kinds, and mixtures too.
19994 @<Add operand |p| to the dependency list |v|@>=
19995 if ( type(p)==mp_known ) {
19996 @<Add the known |value(p)| to the constant term of |v|@>;
19998 s=type(p); r=dep_list(p);
19999 if ( t==mp_dependent ) {
20000 if ( s==mp_dependent ) {
20001 if ( mp_max_coef(mp, r)+mp_max_coef(mp, v)<coef_bound )
20002 v=mp_p_plus_q(mp, v,r,mp_dependent); goto DONE;
20003 } /* |fix_needed| will necessarily be false */
20004 t=mp_proto_dependent;
20005 v=mp_p_over_v(mp, v,unity,mp_dependent,mp_proto_dependent);
20007 if ( s==mp_proto_dependent ) v=mp_p_plus_q(mp, v,r,mp_proto_dependent);
20008 else v=mp_p_plus_fq(mp, v,unity,r,mp_proto_dependent,mp_dependent);
20010 @<Output the answer, |v| (which might have become |known|)@>;
20013 @ @<Add the known |value(p)| to the constant term of |v|@>=
20015 while ( info(v)!=null ) v=link(v);
20016 value(v)=mp_slow_add(mp, value(p),value(v));
20019 @ @<Output the answer, |v| (which might have become |known|)@>=
20020 if ( q!=null ) mp_dep_finish(mp, v,q,t);
20021 else { mp->cur_type=t; mp_dep_finish(mp, v,null,t); }
20023 @ Here's the current situation: The dependency list |v| of type |t|
20024 should either be put into the current expression (if |q=null|) or
20025 into location |q| within a pair node (otherwise). The destination (|cur_exp|
20026 or |q|) formerly held a dependency list with the same
20027 final pointer as the list |v|.
20029 @<Declare the procedure called |dep_finish|@>=
20030 void mp_dep_finish (MP mp, pointer v, pointer q, small_number t) {
20031 pointer p; /* the destination */
20032 scaled vv; /* the value, if it is |known| */
20033 if ( q==null ) p=mp->cur_exp; else p=q;
20034 dep_list(p)=v; type(p)=t;
20035 if ( info(v)==null ) {
20038 mp_flush_cur_exp(mp, vv);
20040 mp_recycle_value(mp, p); type(q)=mp_known; value(q)=vv;
20042 } else if ( q==null ) {
20045 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20048 @ Let's turn now to the six basic relations of comparison.
20050 @<Additional cases of binary operators@>=
20051 case less_than: case less_or_equal: case greater_than:
20052 case greater_or_equal: case equal_to: case unequal_to:
20053 check_arith; /* at this point |arith_error| should be |false|? */
20054 if ( (mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
20055 mp_add_or_subtract(mp, p,null,minus); /* |cur_exp:=(p)-cur_exp| */
20056 } else if ( mp->cur_type!=type(p) ) {
20057 mp_bad_binary(mp, p,c); goto DONE;
20058 } else if ( mp->cur_type==mp_string_type ) {
20059 mp_flush_cur_exp(mp, mp_str_vs_str(mp, value(p),mp->cur_exp));
20060 } else if ((mp->cur_type==mp_unknown_string)||
20061 (mp->cur_type==mp_unknown_boolean) ) {
20062 @<Check if unknowns have been equated@>;
20063 } else if ( (mp->cur_type<=mp_pair_type)&&(mp->cur_type>=mp_transform_type)) {
20064 @<Reduce comparison of big nodes to comparison of scalars@>;
20065 } else if ( mp->cur_type==mp_boolean_type ) {
20066 mp_flush_cur_exp(mp, mp->cur_exp-value(p));
20068 mp_bad_binary(mp, p,c); goto DONE;
20070 @<Compare the current expression with zero@>;
20072 mp->arith_error=false; /* ignore overflow in comparisons */
20075 @ @<Compare the current expression with zero@>=
20076 if ( mp->cur_type!=mp_known ) {
20077 if ( mp->cur_type<mp_known ) {
20078 mp_disp_err(mp, p,"");
20079 help1("The quantities shown above have not been equated.")
20081 help2("Oh dear. I can\'t decide if the expression above is positive,")
20082 ("negative, or zero. So this comparison test won't be `true'.");
20084 exp_err("Unknown relation will be considered false");
20085 @.Unknown relation...@>
20086 mp_put_get_flush_error(mp, false_code);
20089 case less_than: boolean_reset(mp->cur_exp<0); break;
20090 case less_or_equal: boolean_reset(mp->cur_exp<=0); break;
20091 case greater_than: boolean_reset(mp->cur_exp>0); break;
20092 case greater_or_equal: boolean_reset(mp->cur_exp>=0); break;
20093 case equal_to: boolean_reset(mp->cur_exp==0); break;
20094 case unequal_to: boolean_reset(mp->cur_exp!=0); break;
20095 }; /* there are no other cases */
20097 mp->cur_type=mp_boolean_type
20099 @ When two unknown strings are in the same ring, we know that they are
20100 equal. Otherwise, we don't know whether they are equal or not, so we
20103 @<Check if unknowns have been equated@>=
20105 q=value(mp->cur_exp);
20106 while ( (q!=mp->cur_exp)&&(q!=p) ) q=value(q);
20107 if ( q==p ) mp_flush_cur_exp(mp, 0);
20110 @ @<Reduce comparison of big nodes to comparison of scalars@>=
20112 q=value(p); r=value(mp->cur_exp);
20113 rr=r+mp->big_node_size[mp->cur_type]-2;
20114 while (1) { mp_add_or_subtract(mp, q,r,minus);
20115 if ( type(r)!=mp_known ) break;
20116 if ( value(r)!=0 ) break;
20117 if ( r==rr ) break;
20120 mp_take_part(mp, name_type(r)+x_part-mp_x_part_sector);
20123 @ Here we use the sneaky fact that |and_op-false_code=or_op-true_code|.
20125 @<Additional cases of binary operators@>=
20128 if ( (type(p)!=mp_boolean_type)||(mp->cur_type!=mp_boolean_type) )
20129 mp_bad_binary(mp, p,c);
20130 else if ( value(p)==c+false_code-and_op ) mp->cur_exp=value(p);
20133 @ @<Additional cases of binary operators@>=
20135 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
20136 mp_bad_binary(mp, p,times);
20137 } else if ( (mp->cur_type==mp_known)||(type(p)==mp_known) ) {
20138 @<Multiply when at least one operand is known@>;
20139 } else if ( (mp_nice_color_or_pair(mp, p,type(p))&&(mp->cur_type>mp_pair_type))
20140 ||(mp_nice_color_or_pair(mp, mp->cur_exp,mp->cur_type)&&
20141 (type(p)>mp_pair_type)) ) {
20142 mp_hard_times(mp, p); return;
20144 mp_bad_binary(mp, p,times);
20148 @ @<Multiply when at least one operand is known@>=
20150 if ( type(p)==mp_known ) {
20151 v=value(p); mp_free_node(mp, p,value_node_size);
20153 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20155 if ( mp->cur_type==mp_known ) {
20156 mp->cur_exp=mp_take_scaled(mp, mp->cur_exp,v);
20157 } else if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_color_type)||
20158 (mp->cur_type==mp_cmykcolor_type) ) {
20159 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20161 p=p-2; mp_dep_mult(mp, p,v,true);
20162 } while (p!=value(mp->cur_exp));
20164 mp_dep_mult(mp, null,v,true);
20169 @ @<Declare binary action...@>=
20170 void mp_dep_mult (MP mp,pointer p, integer v, boolean v_is_scaled) {
20171 pointer q; /* the dependency list being multiplied by |v| */
20172 small_number s,t; /* its type, before and after */
20175 } else if ( type(p)!=mp_known ) {
20178 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
20179 else value(p)=mp_take_fraction(mp, value(p),v);
20182 t=type(q); q=dep_list(q); s=t;
20183 if ( t==mp_dependent ) if ( v_is_scaled )
20184 if (mp_ab_vs_cd(mp, mp_max_coef(mp,q),abs(v),coef_bound-1,unity)>=0 )
20185 t=mp_proto_dependent;
20186 q=mp_p_times_v(mp, q,v,s,t,v_is_scaled);
20187 mp_dep_finish(mp, q,p,t);
20190 @ Here is a routine that is similar to |times|; but it is invoked only
20191 internally, when |v| is a |fraction| whose magnitude is at most~1,
20192 and when |cur_type>=mp_color_type|.
20194 @c void mp_frac_mult (MP mp,scaled n, scaled d) {
20195 /* multiplies |cur_exp| by |n/d| */
20196 pointer p; /* a pair node */
20197 pointer old_exp; /* a capsule to recycle */
20198 fraction v; /* |n/d| */
20199 if ( mp->internal[mp_tracing_commands]>two ) {
20200 @<Trace the fraction multiplication@>;
20202 switch (mp->cur_type) {
20203 case mp_transform_type:
20204 case mp_color_type:
20205 case mp_cmykcolor_type:
20207 old_exp=mp_tarnished(mp, mp->cur_exp);
20209 case mp_independent: old_exp=mp_void; break;
20210 default: old_exp=null; break;
20212 if ( old_exp!=null ) {
20213 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
20215 v=mp_make_fraction(mp, n,d);
20216 if ( mp->cur_type==mp_known ) {
20217 mp->cur_exp=mp_take_fraction(mp, mp->cur_exp,v);
20218 } else if ( mp->cur_type<=mp_pair_type ) {
20219 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20222 mp_dep_mult(mp, p,v,false);
20223 } while (p!=value(mp->cur_exp));
20225 mp_dep_mult(mp, null,v,false);
20227 if ( old_exp!=null ) {
20228 mp_recycle_value(mp, old_exp);
20229 mp_free_node(mp, old_exp,value_node_size);
20233 @ @<Trace the fraction multiplication@>=
20235 mp_begin_diagnostic(mp);
20236 mp_print_nl(mp, "{("); mp_print_scaled(mp,n); mp_print_char(mp,'/');
20237 mp_print_scaled(mp,d); mp_print(mp,")*("); mp_print_exp(mp,null,0);
20239 mp_end_diagnostic(mp, false);
20242 @ The |hard_times| routine multiplies a nice color or pair by a dependency list.
20244 @<Declare binary action procedures@>=
20245 void mp_hard_times (MP mp,pointer p) {
20246 pointer q; /* a copy of the dependent variable |p| */
20247 pointer r; /* a component of the big node for the nice color or pair */
20248 scaled v; /* the known value for |r| */
20249 if ( type(p)<=mp_pair_type ) {
20250 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p); p=q;
20251 }; /* now |cur_type=mp_pair_type| or |cur_type=mp_color_type| */
20252 r=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20257 if ( r==value(mp->cur_exp) )
20259 mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(p)));
20260 mp_dep_mult(mp, r,v,true);
20262 mp->mem[value_loc(r)]=mp->mem[value_loc(p)];
20263 link(prev_dep(p))=r;
20264 mp_free_node(mp, p,value_node_size);
20265 mp_dep_mult(mp, r,v,true);
20268 @ @<Additional cases of binary operators@>=
20270 if ( (mp->cur_type!=mp_known)||(type(p)<mp_color_type) ) {
20271 mp_bad_binary(mp, p,over);
20273 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20275 @<Squeal about division by zero@>;
20277 if ( mp->cur_type==mp_known ) {
20278 mp->cur_exp=mp_make_scaled(mp, mp->cur_exp,v);
20279 } else if ( mp->cur_type<=mp_pair_type ) {
20280 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20282 p=p-2; mp_dep_div(mp, p,v);
20283 } while (p!=value(mp->cur_exp));
20285 mp_dep_div(mp, null,v);
20292 @ @<Declare binary action...@>=
20293 void mp_dep_div (MP mp,pointer p, scaled v) {
20294 pointer q; /* the dependency list being divided by |v| */
20295 small_number s,t; /* its type, before and after */
20296 if ( p==null ) q=mp->cur_exp;
20297 else if ( type(p)!=mp_known ) q=p;
20298 else { value(p)=mp_make_scaled(mp, value(p),v); return; };
20299 t=type(q); q=dep_list(q); s=t;
20300 if ( t==mp_dependent )
20301 if ( mp_ab_vs_cd(mp, mp_max_coef(mp,q),unity,coef_bound-1,abs(v))>=0 )
20302 t=mp_proto_dependent;
20303 q=mp_p_over_v(mp, q,v,s,t);
20304 mp_dep_finish(mp, q,p,t);
20307 @ @<Squeal about division by zero@>=
20309 exp_err("Division by zero");
20310 @.Division by zero@>
20311 help2("You're trying to divide the quantity shown above the error")
20312 ("message by zero. I'm going to divide it by one instead.");
20313 mp_put_get_error(mp);
20316 @ @<Additional cases of binary operators@>=
20319 if ( (mp->cur_type==mp_known)&&(type(p)==mp_known) ) {
20320 if ( c==pythag_add ) mp->cur_exp=mp_pyth_add(mp, value(p),mp->cur_exp);
20321 else mp->cur_exp=mp_pyth_sub(mp, value(p),mp->cur_exp);
20322 } else mp_bad_binary(mp, p,c);
20325 @ The next few sections of the program deal with affine transformations
20326 of coordinate data.
20328 @<Additional cases of binary operators@>=
20329 case rotated_by: case slanted_by:
20330 case scaled_by: case shifted_by: case transformed_by:
20331 case x_scaled: case y_scaled: case z_scaled:
20332 if ( type(p)==mp_path_type ) {
20333 path_trans(c,p); return;
20334 } else if ( type(p)==mp_pen_type ) {
20336 mp->cur_exp=mp_convex_hull(mp, mp->cur_exp);
20337 /* rounding error could destroy convexity */
20339 } else if ( (type(p)==mp_pair_type)||(type(p)==mp_transform_type) ) {
20340 mp_big_trans(mp, p,c);
20341 } else if ( type(p)==mp_picture_type ) {
20342 mp_do_edges_trans(mp, p,c); return;
20344 mp_bad_binary(mp, p,c);
20348 @ Let |c| be one of the eight transform operators. The procedure call
20349 |set_up_trans(c)| first changes |cur_exp| to a transform that corresponds to
20350 |c| and the original value of |cur_exp|. (In particular, |cur_exp| doesn't
20351 change at all if |c=transformed_by|.)
20353 Then, if all components of the resulting transform are |known|, they are
20354 moved to the global variables |txx|, |txy|, |tyx|, |tyy|, |tx|, |ty|;
20355 and |cur_exp| is changed to the known value zero.
20357 @<Declare binary action...@>=
20358 void mp_set_up_trans (MP mp,quarterword c) {
20359 pointer p,q,r; /* list manipulation registers */
20360 if ( (c!=transformed_by)||(mp->cur_type!=mp_transform_type) ) {
20361 @<Put the current transform into |cur_exp|@>;
20363 @<If the current transform is entirely known, stash it in global variables;
20364 otherwise |return|@>;
20373 scaled ty; /* current transform coefficients */
20375 @ @<Put the current transform...@>=
20377 p=mp_stash_cur_exp(mp);
20378 mp->cur_exp=mp_id_transform(mp);
20379 mp->cur_type=mp_transform_type;
20380 q=value(mp->cur_exp);
20382 @<For each of the eight cases, change the relevant fields of |cur_exp|
20384 but do nothing if capsule |p| doesn't have the appropriate type@>;
20385 }; /* there are no other cases */
20386 mp_disp_err(mp, p,"Improper transformation argument");
20387 @.Improper transformation argument@>
20388 help3("The expression shown above has the wrong type,")
20389 ("so I can\'t transform anything using it.")
20390 ("Proceed, and I'll omit the transformation.");
20391 mp_put_get_error(mp);
20393 mp_recycle_value(mp, p);
20394 mp_free_node(mp, p,value_node_size);
20397 @ @<If the current transform is entirely known, ...@>=
20398 q=value(mp->cur_exp); r=q+transform_node_size;
20401 if ( type(r)!=mp_known ) return;
20403 mp->txx=value(xx_part_loc(q));
20404 mp->txy=value(xy_part_loc(q));
20405 mp->tyx=value(yx_part_loc(q));
20406 mp->tyy=value(yy_part_loc(q));
20407 mp->tx=value(x_part_loc(q));
20408 mp->ty=value(y_part_loc(q));
20409 mp_flush_cur_exp(mp, 0)
20411 @ @<For each of the eight cases...@>=
20413 if ( type(p)==mp_known )
20414 @<Install sines and cosines, then |goto done|@>;
20417 if ( type(p)>mp_pair_type ) {
20418 mp_install(mp, xy_part_loc(q),p); goto DONE;
20422 if ( type(p)>mp_pair_type ) {
20423 mp_install(mp, xx_part_loc(q),p); mp_install(mp, yy_part_loc(q),p);
20428 if ( type(p)==mp_pair_type ) {
20429 r=value(p); mp_install(mp, x_part_loc(q),x_part_loc(r));
20430 mp_install(mp, y_part_loc(q),y_part_loc(r)); goto DONE;
20434 if ( type(p)>mp_pair_type ) {
20435 mp_install(mp, xx_part_loc(q),p); goto DONE;
20439 if ( type(p)>mp_pair_type ) {
20440 mp_install(mp, yy_part_loc(q),p); goto DONE;
20444 if ( type(p)==mp_pair_type )
20445 @<Install a complex multiplier, then |goto done|@>;
20447 case transformed_by:
20451 @ @<Install sines and cosines, then |goto done|@>=
20452 { mp_n_sin_cos(mp, (value(p) % three_sixty_units)*16);
20453 value(xx_part_loc(q))=mp_round_fraction(mp, mp->n_cos);
20454 value(yx_part_loc(q))=mp_round_fraction(mp, mp->n_sin);
20455 value(xy_part_loc(q))=-value(yx_part_loc(q));
20456 value(yy_part_loc(q))=value(xx_part_loc(q));
20460 @ @<Install a complex multiplier, then |goto done|@>=
20463 mp_install(mp, xx_part_loc(q),x_part_loc(r));
20464 mp_install(mp, yy_part_loc(q),x_part_loc(r));
20465 mp_install(mp, yx_part_loc(q),y_part_loc(r));
20466 if ( type(y_part_loc(r))==mp_known ) negate(value(y_part_loc(r)));
20467 else mp_negate_dep_list(mp, dep_list(y_part_loc(r)));
20468 mp_install(mp, xy_part_loc(q),y_part_loc(r));
20472 @ Procedure |set_up_known_trans| is like |set_up_trans|, but it
20473 insists that the transformation be entirely known.
20475 @<Declare binary action...@>=
20476 void mp_set_up_known_trans (MP mp,quarterword c) {
20477 mp_set_up_trans(mp, c);
20478 if ( mp->cur_type!=mp_known ) {
20479 exp_err("Transform components aren't all known");
20480 @.Transform components...@>
20481 help3("I'm unable to apply a partially specified transformation")
20482 ("except to a fully known pair or transform.")
20483 ("Proceed, and I'll omit the transformation.");
20484 mp_put_get_flush_error(mp, 0);
20485 mp->txx=unity; mp->txy=0; mp->tyx=0; mp->tyy=unity;
20486 mp->tx=0; mp->ty=0;
20490 @ Here's a procedure that applies the transform |txx..ty| to a pair of
20491 coordinates in locations |p| and~|q|.
20493 @<Declare binary action...@>=
20494 void mp_trans (MP mp,pointer p, pointer q) {
20495 scaled v; /* the new |x| value */
20496 v=mp_take_scaled(mp, mp->mem[p].sc,mp->txx)+
20497 mp_take_scaled(mp, mp->mem[q].sc,mp->txy)+mp->tx;
20498 mp->mem[q].sc=mp_take_scaled(mp, mp->mem[p].sc,mp->tyx)+
20499 mp_take_scaled(mp, mp->mem[q].sc,mp->tyy)+mp->ty;
20503 @ The simplest transformation procedure applies a transform to all
20504 coordinates of a path. The |path_trans(c)(p)| macro applies
20505 a transformation defined by |cur_exp| and the transform operator |c|
20508 @d path_trans(A,B) { mp_set_up_known_trans(mp, (A));
20509 mp_unstash_cur_exp(mp, (B));
20510 mp_do_path_trans(mp, mp->cur_exp); }
20512 @<Declare binary action...@>=
20513 void mp_do_path_trans (MP mp,pointer p) {
20514 pointer q; /* list traverser */
20517 if ( left_type(q)!=mp_endpoint )
20518 mp_trans(mp, q+3,q+4); /* that's |left_x| and |left_y| */
20519 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20520 if ( right_type(q)!=mp_endpoint )
20521 mp_trans(mp, q+5,q+6); /* that's |right_x| and |right_y| */
20522 @^data structure assumptions@>
20527 @ Transforming a pen is very similar, except that there are no |left_type|
20528 and |right_type| fields.
20530 @d pen_trans(A,B) { mp_set_up_known_trans(mp, (A));
20531 mp_unstash_cur_exp(mp, (B));
20532 mp_do_pen_trans(mp, mp->cur_exp); }
20534 @<Declare binary action...@>=
20535 void mp_do_pen_trans (MP mp,pointer p) {
20536 pointer q; /* list traverser */
20537 if ( pen_is_elliptical(p) ) {
20538 mp_trans(mp, p+3,p+4); /* that's |left_x| and |left_y| */
20539 mp_trans(mp, p+5,p+6); /* that's |right_x| and |right_y| */
20543 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20544 @^data structure assumptions@>
20549 @ The next transformation procedure applies to edge structures. It will do
20550 any transformation, but the results may be substandard if the picture contains
20551 text that uses downloaded bitmap fonts. The binary action procedure is
20552 |do_edges_trans|, but we also need a function that just scales a picture.
20553 That routine is |scale_edges|. Both it and the underlying routine |edges_trans|
20554 should be thought of as procedures that update an edge structure |h|, except
20555 that they have to return a (possibly new) structure because of the need to call
20558 @<Declare binary action...@>=
20559 pointer mp_edges_trans (MP mp, pointer h) {
20560 pointer q; /* the object being transformed */
20561 pointer r,s; /* for list manipulation */
20562 scaled sx,sy; /* saved transformation parameters */
20563 scaled sqdet; /* square root of determinant for |dash_scale| */
20564 integer sgndet; /* sign of the determinant */
20565 scaled v; /* a temporary value */
20566 h=mp_private_edges(mp, h);
20567 sqdet=mp_sqrt_det(mp, mp->txx,mp->txy,mp->tyx,mp->tyy);
20568 sgndet=mp_ab_vs_cd(mp, mp->txx,mp->tyy,mp->txy,mp->tyx);
20569 if ( dash_list(h)!=null_dash ) {
20570 @<Try to transform the dash list of |h|@>;
20572 @<Make the bounding box of |h| unknown if it can't be updated properly
20573 without scanning the whole structure@>;
20574 q=link(dummy_loc(h));
20575 while ( q!=null ) {
20576 @<Transform graphical object |q|@>;
20581 void mp_do_edges_trans (MP mp,pointer p, quarterword c) {
20582 mp_set_up_known_trans(mp, c);
20583 value(p)=mp_edges_trans(mp, value(p));
20584 mp_unstash_cur_exp(mp, p);
20586 void mp_scale_edges (MP mp) {
20587 mp->txx=mp->se_sf; mp->tyy=mp->se_sf;
20588 mp->txy=0; mp->tyx=0; mp->tx=0; mp->ty=0;
20589 mp->se_pic=mp_edges_trans(mp, mp->se_pic);
20592 @ @<Try to transform the dash list of |h|@>=
20593 if ( (mp->txy!=0)||(mp->tyx!=0)||
20594 (mp->ty!=0)||(abs(mp->txx)!=abs(mp->tyy))) {
20595 mp_flush_dash_list(mp, h);
20597 if ( mp->txx<0 ) { @<Reverse the dash list of |h|@>; }
20598 @<Scale the dash list by |txx| and shift it by |tx|@>;
20599 dash_y(h)=mp_take_scaled(mp, dash_y(h),abs(mp->tyy));
20602 @ @<Reverse the dash list of |h|@>=
20605 dash_list(h)=null_dash;
20606 while ( r!=null_dash ) {
20608 v=start_x(s); start_x(s)=stop_x(s); stop_x(s)=v;
20609 link(s)=dash_list(h);
20614 @ @<Scale the dash list by |txx| and shift it by |tx|@>=
20616 while ( r!=null_dash ) {
20617 start_x(r)=mp_take_scaled(mp, start_x(r),mp->txx)+mp->tx;
20618 stop_x(r)=mp_take_scaled(mp, stop_x(r),mp->txx)+mp->tx;
20622 @ @<Make the bounding box of |h| unknown if it can't be updated properly...@>=
20623 if ( (mp->txx==0)&&(mp->tyy==0) ) {
20624 @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>;
20625 } else if ( (mp->txy!=0)||(mp->tyx!=0) ) {
20626 mp_init_bbox(mp, h);
20629 if ( minx_val(h)<=maxx_val(h) ) {
20630 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift by
20637 @ @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>=
20639 v=minx_val(h); minx_val(h)=miny_val(h); miny_val(h)=v;
20640 v=maxx_val(h); maxx_val(h)=maxy_val(h); maxy_val(h)=v;
20643 @ The sum ``|txx+txy|'' is whichever of |txx| or |txy| is nonzero. The other
20646 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift...@>=
20648 minx_val(h)=mp_take_scaled(mp, minx_val(h),mp->txx+mp->txy)+mp->tx;
20649 maxx_val(h)=mp_take_scaled(mp, maxx_val(h),mp->txx+mp->txy)+mp->tx;
20650 miny_val(h)=mp_take_scaled(mp, miny_val(h),mp->tyx+mp->tyy)+mp->ty;
20651 maxy_val(h)=mp_take_scaled(mp, maxy_val(h),mp->tyx+mp->tyy)+mp->ty;
20652 if ( mp->txx+mp->txy<0 ) {
20653 v=minx_val(h); minx_val(h)=maxx_val(h); maxx_val(h)=v;
20655 if ( mp->tyx+mp->tyy<0 ) {
20656 v=miny_val(h); miny_val(h)=maxy_val(h); maxy_val(h)=v;
20660 @ Now we ready for the main task of transforming the graphical objects in edge
20663 @<Transform graphical object |q|@>=
20665 case mp_fill_code: case mp_stroked_code:
20666 mp_do_path_trans(mp, path_p(q));
20667 @<Transform |pen_p(q)|, making sure polygonal pens stay counter-clockwise@>;
20669 case mp_start_clip_code: case mp_start_bounds_code:
20670 mp_do_path_trans(mp, path_p(q));
20674 @<Transform the compact transformation starting at |r|@>;
20676 case mp_stop_clip_code: case mp_stop_bounds_code:
20678 } /* there are no other cases */
20680 @ Note that the shift parameters |(tx,ty)| apply only to the path being stroked.
20681 The |dash_scale| has to be adjusted to scale the dash lengths in |dash_p(q)|
20682 since the \ps\ output procedures will try to compensate for the transformation
20683 we are applying to |pen_p(q)|. Since this compensation is based on the square
20684 root of the determinant, |sqdet| is the appropriate factor.
20686 @<Transform |pen_p(q)|, making sure...@>=
20687 if ( pen_p(q)!=null ) {
20688 sx=mp->tx; sy=mp->ty;
20689 mp->tx=0; mp->ty=0;
20690 mp_do_pen_trans(mp, pen_p(q));
20691 if ( ((type(q)==mp_stroked_code)&&(dash_p(q)!=null)) )
20692 dash_scale(q)=mp_take_scaled(mp, dash_scale(q),sqdet);
20693 if ( ! pen_is_elliptical(pen_p(q)) )
20695 pen_p(q)=mp_make_pen(mp, mp_copy_path(mp, pen_p(q)),true);
20696 /* this unreverses the pen */
20697 mp->tx=sx; mp->ty=sy;
20700 @ This uses the fact that transformations are stored in the order
20701 |(tx,ty,txx,txy,tyx,tyy)|.
20702 @^data structure assumptions@>
20704 @<Transform the compact transformation starting at |r|@>=
20705 mp_trans(mp, r,r+1);
20706 sx=mp->tx; sy=mp->ty;
20707 mp->tx=0; mp->ty=0;
20708 mp_trans(mp, r+2,r+4);
20709 mp_trans(mp, r+3,r+5);
20710 mp->tx=sx; mp->ty=sy
20712 @ The hard cases of transformation occur when big nodes are involved,
20713 and when some of their components are unknown.
20715 @<Declare binary action...@>=
20716 @<Declare subroutines needed by |big_trans|@>;
20717 void mp_big_trans (MP mp,pointer p, quarterword c) {
20718 pointer q,r,pp,qq; /* list manipulation registers */
20719 small_number s; /* size of a big node */
20720 s=mp->big_node_size[type(p)]; q=value(p); r=q+s;
20723 if ( type(r)!=mp_known ) {
20724 @<Transform an unknown big node and |return|@>;
20727 @<Transform a known big node@>;
20728 }; /* node |p| will now be recycled by |do_binary| */
20730 @ @<Transform an unknown big node and |return|@>=
20732 mp_set_up_known_trans(mp, c); mp_make_exp_copy(mp, p);
20733 r=value(mp->cur_exp);
20734 if ( mp->cur_type==mp_transform_type ) {
20735 mp_bilin1(mp, yy_part_loc(r),mp->tyy,xy_part_loc(q),mp->tyx,0);
20736 mp_bilin1(mp, yx_part_loc(r),mp->tyy,xx_part_loc(q),mp->tyx,0);
20737 mp_bilin1(mp, xy_part_loc(r),mp->txx,yy_part_loc(q),mp->txy,0);
20738 mp_bilin1(mp, xx_part_loc(r),mp->txx,yx_part_loc(q),mp->txy,0);
20740 mp_bilin1(mp, y_part_loc(r),mp->tyy,x_part_loc(q),mp->tyx,mp->ty);
20741 mp_bilin1(mp, x_part_loc(r),mp->txx,y_part_loc(q),mp->txy,mp->tx);
20745 @ Let |p| point to a two-word value field inside a big node of |cur_exp|,
20746 and let |q| point to a another value field. The |bilin1| procedure
20747 replaces |p| by $p\cdot t+q\cdot u+\delta$.
20749 @<Declare subroutines needed by |big_trans|@>=
20750 void mp_bilin1 (MP mp, pointer p, scaled t, pointer q,
20751 scaled u, scaled delta) {
20752 pointer r; /* list traverser */
20753 if ( t!=unity ) mp_dep_mult(mp, p,t,true);
20755 if ( type(q)==mp_known ) {
20756 delta+=mp_take_scaled(mp, value(q),u);
20758 @<Ensure that |type(p)=mp_proto_dependent|@>;
20759 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),u,dep_list(q),
20760 mp_proto_dependent,type(q));
20763 if ( type(p)==mp_known ) {
20767 while ( info(r)!=null ) r=link(r);
20769 if ( r!=dep_list(p) ) value(r)=delta;
20770 else { mp_recycle_value(mp, p); type(p)=mp_known; value(p)=delta; };
20772 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20775 @ @<Ensure that |type(p)=mp_proto_dependent|@>=
20776 if ( type(p)!=mp_proto_dependent ) {
20777 if ( type(p)==mp_known )
20778 mp_new_dep(mp, p,mp_const_dependency(mp, value(p)));
20780 dep_list(p)=mp_p_times_v(mp, dep_list(p),unity,mp_dependent,
20781 mp_proto_dependent,true);
20782 type(p)=mp_proto_dependent;
20785 @ @<Transform a known big node@>=
20786 mp_set_up_trans(mp, c);
20787 if ( mp->cur_type==mp_known ) {
20788 @<Transform known by known@>;
20790 pp=mp_stash_cur_exp(mp); qq=value(pp);
20791 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20792 if ( mp->cur_type==mp_transform_type ) {
20793 mp_bilin2(mp, yy_part_loc(r),yy_part_loc(qq),
20794 value(xy_part_loc(q)),yx_part_loc(qq),null);
20795 mp_bilin2(mp, yx_part_loc(r),yy_part_loc(qq),
20796 value(xx_part_loc(q)),yx_part_loc(qq),null);
20797 mp_bilin2(mp, xy_part_loc(r),xx_part_loc(qq),
20798 value(yy_part_loc(q)),xy_part_loc(qq),null);
20799 mp_bilin2(mp, xx_part_loc(r),xx_part_loc(qq),
20800 value(yx_part_loc(q)),xy_part_loc(qq),null);
20802 mp_bilin2(mp, y_part_loc(r),yy_part_loc(qq),
20803 value(x_part_loc(q)),yx_part_loc(qq),y_part_loc(qq));
20804 mp_bilin2(mp, x_part_loc(r),xx_part_loc(qq),
20805 value(y_part_loc(q)),xy_part_loc(qq),x_part_loc(qq));
20806 mp_recycle_value(mp, pp); mp_free_node(mp, pp,value_node_size);
20809 @ Let |p| be a |mp_proto_dependent| value whose dependency list ends
20810 at |dep_final|. The following procedure adds |v| times another
20811 numeric quantity to~|p|.
20813 @<Declare subroutines needed by |big_trans|@>=
20814 void mp_add_mult_dep (MP mp,pointer p, scaled v, pointer r) {
20815 if ( type(r)==mp_known ) {
20816 value(mp->dep_final)+=mp_take_scaled(mp, value(r),v);
20818 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),v,dep_list(r),
20819 mp_proto_dependent,type(r));
20820 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20824 @ The |bilin2| procedure is something like |bilin1|, but with known
20825 and unknown quantities reversed. Parameter |p| points to a value field
20826 within the big node for |cur_exp|; and |type(p)=mp_known|. Parameters
20827 |t| and~|u| point to value fields elsewhere; so does parameter~|q|,
20828 unless it is |null| (which stands for zero). Location~|p| will be
20829 replaced by $p\cdot t+v\cdot u+q$.
20831 @<Declare subroutines needed by |big_trans|@>=
20832 void mp_bilin2 (MP mp,pointer p, pointer t, scaled v,
20833 pointer u, pointer q) {
20834 scaled vv; /* temporary storage for |value(p)| */
20835 vv=value(p); type(p)=mp_proto_dependent;
20836 mp_new_dep(mp, p,mp_const_dependency(mp, 0)); /* this sets |dep_final| */
20838 mp_add_mult_dep(mp, p,vv,t); /* |dep_final| doesn't change */
20839 if ( v!=0 ) mp_add_mult_dep(mp, p,v,u);
20840 if ( q!=null ) mp_add_mult_dep(mp, p,unity,q);
20841 if ( dep_list(p)==mp->dep_final ) {
20842 vv=value(mp->dep_final); mp_recycle_value(mp, p);
20843 type(p)=mp_known; value(p)=vv;
20847 @ @<Transform known by known@>=
20849 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20850 if ( mp->cur_type==mp_transform_type ) {
20851 mp_bilin3(mp, yy_part_loc(r),mp->tyy,value(xy_part_loc(q)),mp->tyx,0);
20852 mp_bilin3(mp, yx_part_loc(r),mp->tyy,value(xx_part_loc(q)),mp->tyx,0);
20853 mp_bilin3(mp, xy_part_loc(r),mp->txx,value(yy_part_loc(q)),mp->txy,0);
20854 mp_bilin3(mp, xx_part_loc(r),mp->txx,value(yx_part_loc(q)),mp->txy,0);
20856 mp_bilin3(mp, y_part_loc(r),mp->tyy,value(x_part_loc(q)),mp->tyx,mp->ty);
20857 mp_bilin3(mp, x_part_loc(r),mp->txx,value(y_part_loc(q)),mp->txy,mp->tx);
20860 @ Finally, in |bilin3| everything is |known|.
20862 @<Declare subroutines needed by |big_trans|@>=
20863 void mp_bilin3 (MP mp,pointer p, scaled t,
20864 scaled v, scaled u, scaled delta) {
20866 delta+=mp_take_scaled(mp, value(p),t);
20869 if ( u!=0 ) value(p)=delta+mp_take_scaled(mp, v,u);
20870 else value(p)=delta;
20873 @ @<Additional cases of binary operators@>=
20875 if ( (mp->cur_type==mp_string_type)&&(type(p)==mp_string_type) ) mp_cat(mp, p);
20876 else mp_bad_binary(mp, p,concatenate);
20879 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_string_type) )
20880 mp_chop_string(mp, value(p));
20881 else mp_bad_binary(mp, p,substring_of);
20884 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
20885 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_path_type) )
20886 mp_chop_path(mp, value(p));
20887 else mp_bad_binary(mp, p,subpath_of);
20890 @ @<Declare binary action...@>=
20891 void mp_cat (MP mp,pointer p) {
20892 str_number a,b; /* the strings being concatenated */
20893 pool_pointer k; /* index into |str_pool| */
20894 a=value(p); b=mp->cur_exp; str_room(length(a)+length(b));
20895 for (k=mp->str_start[a];k<=str_stop(a)-1;k++) {
20896 append_char(mp->str_pool[k]);
20898 for (k=mp->str_start[b];k<=str_stop(b)-1;k++) {
20899 append_char(mp->str_pool[k]);
20901 mp->cur_exp=mp_make_string(mp); delete_str_ref(b);
20904 @ @<Declare binary action...@>=
20905 void mp_chop_string (MP mp,pointer p) {
20906 integer a, b; /* start and stop points */
20907 integer l; /* length of the original string */
20908 integer k; /* runs from |a| to |b| */
20909 str_number s; /* the original string */
20910 boolean reversed; /* was |a>b|? */
20911 a=mp_round_unscaled(mp, value(x_part_loc(p)));
20912 b=mp_round_unscaled(mp, value(y_part_loc(p)));
20913 if ( a<=b ) reversed=false;
20914 else { reversed=true; k=a; a=b; b=k; };
20915 s=mp->cur_exp; l=length(s);
20926 for (k=mp->str_start[s]+b-1;k>=mp->str_start[s]+a;k--) {
20927 append_char(mp->str_pool[k]);
20930 for (k=mp->str_start[s]+a;k<=mp->str_start[s]+b-1;k++) {
20931 append_char(mp->str_pool[k]);
20934 mp->cur_exp=mp_make_string(mp); delete_str_ref(s);
20937 @ @<Declare binary action...@>=
20938 void mp_chop_path (MP mp,pointer p) {
20939 pointer q; /* a knot in the original path */
20940 pointer pp,qq,rr,ss; /* link variables for copies of path nodes */
20941 scaled a,b,k,l; /* indices for chopping */
20942 boolean reversed; /* was |a>b|? */
20943 l=mp_path_length(mp); a=value(x_part_loc(p)); b=value(y_part_loc(p));
20944 if ( a<=b ) reversed=false;
20945 else { reversed=true; k=a; a=b; b=k; };
20946 @<Dispense with the cases |a<0| and/or |b>l|@>;
20948 while ( a>=unity ) {
20949 q=link(q); a=a-unity; b=b-unity;
20952 @<Construct a path from |pp| to |qq| of length zero@>;
20954 @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>;
20956 left_type(pp)=mp_endpoint; right_type(qq)=mp_endpoint; link(qq)=pp;
20957 mp_toss_knot_list(mp, mp->cur_exp);
20959 mp->cur_exp=link(mp_htap_ypoc(mp, pp)); mp_toss_knot_list(mp, pp);
20965 @ @<Dispense with the cases |a<0| and/or |b>l|@>=
20967 if ( left_type(mp->cur_exp)==mp_endpoint ) {
20968 a=0; if ( b<0 ) b=0;
20970 do { a=a+l; b=b+l; } while (a<0); /* a cycle always has length |l>0| */
20974 if ( left_type(mp->cur_exp)==mp_endpoint ) {
20975 b=l; if ( a>l ) a=l;
20983 @ @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>=
20985 pp=mp_copy_knot(mp, q); qq=pp;
20987 q=link(q); rr=qq; qq=mp_copy_knot(mp, q); link(rr)=qq; b=b-unity;
20990 ss=pp; pp=link(pp);
20991 mp_split_cubic(mp, ss,a*010000); pp=link(ss);
20992 mp_free_node(mp, ss,knot_node_size);
20994 b=mp_make_scaled(mp, b,unity-a); rr=pp;
20998 mp_split_cubic(mp, rr,(b+unity)*010000);
20999 mp_free_node(mp, qq,knot_node_size);
21004 @ @<Construct a path from |pp| to |qq| of length zero@>=
21006 if ( a>0 ) { mp_split_cubic(mp, q,a*010000); q=link(q); };
21007 pp=mp_copy_knot(mp, q); qq=pp;
21010 @ @<Additional cases of binary operators@>=
21011 case point_of: case precontrol_of: case postcontrol_of:
21012 if ( mp->cur_type==mp_pair_type )
21013 mp_pair_to_path(mp);
21014 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
21015 mp_find_point(mp, value(p),c);
21017 mp_bad_binary(mp, p,c);
21019 case pen_offset_of:
21020 if ( (mp->cur_type==mp_pen_type)&& mp_nice_pair(mp, p,type(p)) )
21021 mp_set_up_offset(mp, value(p));
21023 mp_bad_binary(mp, p,pen_offset_of);
21025 case direction_time_of:
21026 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21027 if ( (mp->cur_type==mp_path_type)&& mp_nice_pair(mp, p,type(p)) )
21028 mp_set_up_direction_time(mp, value(p));
21030 mp_bad_binary(mp, p,direction_time_of);
21033 if ( (type(p) != mp_pen_type) || (mp->cur_type != mp_path_type) )
21034 mp_bad_binary(mp, p,envelope_of);
21036 mp_set_up_envelope(mp, p);
21039 @ @<Declare binary action...@>=
21040 void mp_set_up_offset (MP mp,pointer p) {
21041 mp_find_offset(mp, value(x_part_loc(p)),value(y_part_loc(p)),mp->cur_exp);
21042 mp_pair_value(mp, mp->cur_x,mp->cur_y);
21044 void mp_set_up_direction_time (MP mp,pointer p) {
21045 mp_flush_cur_exp(mp, mp_find_direction_time(mp, value(x_part_loc(p)),
21046 value(y_part_loc(p)),mp->cur_exp));
21048 void mp_set_up_envelope (MP mp,pointer p) {
21049 pointer q = mp_copy_path(mp, mp->cur_exp); /* the original path */
21050 /* TODO: accept elliptical pens for straight paths */
21051 if (pen_is_elliptical(value(p))) {
21052 mp_bad_envelope_pen(mp);
21054 mp->cur_type = mp_path_type;
21057 small_number ljoin, lcap;
21059 if ( mp->internal[mp_linejoin]>unity ) ljoin=2;
21060 else if ( mp->internal[mp_linejoin]>0 ) ljoin=1;
21062 if ( mp->internal[mp_linecap]>unity ) lcap=2;
21063 else if ( mp->internal[mp_linecap]>0 ) lcap=1;
21065 if ( mp->internal[mp_miterlimit]<unity )
21068 miterlim=mp->internal[mp_miterlimit];
21069 mp->cur_exp = mp_make_envelope(mp, q, value(p), ljoin,lcap,miterlim);
21070 mp->cur_type = mp_path_type;
21073 @ @<Declare binary action...@>=
21074 void mp_find_point (MP mp,scaled v, quarterword c) {
21075 pointer p; /* the path */
21076 scaled n; /* its length */
21078 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
21079 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
21082 } else if ( v<0 ) {
21083 if ( left_type(p)==mp_endpoint ) v=0;
21084 else v=n-1-((-v-1) % n);
21085 } else if ( v>n ) {
21086 if ( left_type(p)==mp_endpoint ) v=n;
21090 while ( v>=unity ) { p=link(p); v=v-unity; };
21092 @<Insert a fractional node by splitting the cubic@>;
21094 @<Set the current expression to the desired path coordinates@>;
21097 @ @<Insert a fractional node...@>=
21098 { mp_split_cubic(mp, p,v*010000); p=link(p); }
21100 @ @<Set the current expression to the desired path coordinates...@>=
21103 mp_pair_value(mp, x_coord(p),y_coord(p));
21105 case precontrol_of:
21106 if ( left_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21107 else mp_pair_value(mp, left_x(p),left_y(p));
21109 case postcontrol_of:
21110 if ( right_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21111 else mp_pair_value(mp, right_x(p),right_y(p));
21113 } /* there are no other cases */
21115 @ @<Additional cases of binary operators@>=
21117 if ( mp->cur_type==mp_pair_type )
21118 mp_pair_to_path(mp);
21119 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
21120 mp_flush_cur_exp(mp, mp_get_arc_time(mp, mp->cur_exp,value(p)));
21122 mp_bad_binary(mp, p,c);
21125 @ @<Additional cases of bin...@>=
21127 if ( type(p)==mp_pair_type ) {
21128 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p);
21129 mp_pair_to_path(mp); p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
21131 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21132 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_path_type) ) {
21133 mp_path_intersection(mp, value(p),mp->cur_exp);
21134 mp_pair_value(mp, mp->cur_t,mp->cur_tt);
21136 mp_bad_binary(mp, p,intersect);
21140 @ @<Additional cases of bin...@>=
21142 if ( (mp->cur_type!=mp_string_type)||(type(p)!=mp_string_type))
21143 mp_bad_binary(mp, p,in_font);
21144 else { mp_do_infont(mp, p); return; }
21147 @ Function |new_text_node| owns the reference count for its second argument
21148 (the text string) but not its first (the font name).
21150 @<Declare binary action...@>=
21151 void mp_do_infont (MP mp,pointer p) {
21153 q=mp_get_node(mp, edge_header_size);
21154 mp_init_edges(mp, q);
21155 link(obj_tail(q))=mp_new_text_node(mp,str(mp->cur_exp),value(p));
21156 obj_tail(q)=link(obj_tail(q));
21157 mp_free_node(mp, p,value_node_size);
21158 mp_flush_cur_exp(mp, q);
21159 mp->cur_type=mp_picture_type;
21162 @* \[40] Statements and commands.
21163 The chief executive of \MP\ is the |do_statement| routine, which
21164 contains the master switch that causes all the various pieces of \MP\
21165 to do their things, in the right order.
21167 In a sense, this is the grand climax of the program: It applies all the
21168 tools that we have worked so hard to construct. In another sense, this is
21169 the messiest part of the program: It necessarily refers to other pieces
21170 of code all over the place, so that a person can't fully understand what is
21171 going on without paging back and forth to be reminded of conventions that
21172 are defined elsewhere. We are now at the hub of the web.
21174 The structure of |do_statement| itself is quite simple. The first token
21175 of the statement is fetched using |get_x_next|. If it can be the first
21176 token of an expression, we look for an equation, an assignment, or a
21177 title. Otherwise we use a \&{case} construction to branch at high speed to
21178 the appropriate routine for various and sundry other types of commands,
21179 each of which has an ``action procedure'' that does the necessary work.
21181 The program uses the fact that
21182 $$\hbox{|min_primary_command=max_statement_command=type_name|}$$
21183 to interpret a statement that starts with, e.g., `\&{string}',
21184 as a type declaration rather than a boolean expression.
21186 @c void mp_do_statement (MP mp) { /* governs \MP's activities */
21187 mp->cur_type=mp_vacuous; mp_get_x_next(mp);
21188 if ( mp->cur_cmd>max_primary_command ) {
21189 @<Worry about bad statement@>;
21190 } else if ( mp->cur_cmd>max_statement_command ) {
21191 @<Do an equation, assignment, title, or
21192 `$\langle\,$expression$\,\rangle\,$\&{endgroup}'@>;
21194 @<Do a statement that doesn't begin with an expression@>;
21196 if ( mp->cur_cmd<semicolon )
21197 @<Flush unparsable junk that was found after the statement@>;
21201 @ @<Declarations@>=
21202 @<Declare action procedures for use by |do_statement|@>;
21204 @ The only command codes |>max_primary_command| that can be present
21205 at the beginning of a statement are |semicolon| and higher; these
21206 occur when the statement is null.
21208 @<Worry about bad statement@>=
21210 if ( mp->cur_cmd<semicolon ) {
21211 print_err("A statement can't begin with `");
21212 @.A statement can't begin with x@>
21213 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod); mp_print_char(mp, '\'');
21214 help5("I was looking for the beginning of a new statement.")
21215 ("If you just proceed without changing anything, I'll ignore")
21216 ("everything up to the next `;'. Please insert a semicolon")
21217 ("now in front of anything that you don't want me to delete.")
21218 ("(See Chapter 27 of The METAFONTbook for an example.)");
21219 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21220 mp_back_error(mp); mp_get_x_next(mp);
21224 @ The help message printed here says that everything is flushed up to
21225 a semicolon, but actually the commands |end_group| and |stop| will
21226 also terminate a statement.
21228 @<Flush unparsable junk that was found after the statement@>=
21230 print_err("Extra tokens will be flushed");
21231 @.Extra tokens will be flushed@>
21232 help6("I've just read as much of that statement as I could fathom,")
21233 ("so a semicolon should have been next. It's very puzzling...")
21234 ("but I'll try to get myself back together, by ignoring")
21235 ("everything up to the next `;'. Please insert a semicolon")
21236 ("now in front of anything that you don't want me to delete.")
21237 ("(See Chapter 27 of The METAFONTbook for an example.)");
21238 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21239 mp_back_error(mp); mp->scanner_status=flushing;
21242 @<Decrease the string reference count...@>;
21243 } while (! end_of_statement); /* |cur_cmd=semicolon|, |end_group|, or |stop| */
21244 mp->scanner_status=normal;
21247 @ If |do_statement| ends with |cur_cmd=end_group|, we should have
21248 |cur_type=mp_vacuous| unless the statement was simply an expression;
21249 in the latter case, |cur_type| and |cur_exp| should represent that
21252 @<Do a statement that doesn't...@>=
21254 if ( mp->internal[mp_tracing_commands]>0 )
21256 switch (mp->cur_cmd ) {
21257 case type_name:mp_do_type_declaration(mp); break;
21259 if ( mp->cur_mod>var_def ) mp_make_op_def(mp);
21260 else if ( mp->cur_mod>end_def ) mp_scan_def(mp);
21262 @<Cases of |do_statement| that invoke particular commands@>;
21263 } /* there are no other cases */
21264 mp->cur_type=mp_vacuous;
21267 @ The most important statements begin with expressions.
21269 @<Do an equation, assignment, title, or...@>=
21271 mp->var_flag=assignment; mp_scan_expression(mp);
21272 if ( mp->cur_cmd<end_group ) {
21273 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21274 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21275 else if ( mp->cur_type==mp_string_type ) {@<Do a title@> ; }
21276 else if ( mp->cur_type!=mp_vacuous ){
21277 exp_err("Isolated expression");
21278 @.Isolated expression@>
21279 help3("I couldn't find an `=' or `:=' after the")
21280 ("expression that is shown above this error message,")
21281 ("so I guess I'll just ignore it and carry on.");
21282 mp_put_get_error(mp);
21284 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
21290 if ( mp->internal[mp_tracing_titles]>0 ) {
21291 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp); update_terminal;
21295 @ Equations and assignments are performed by the pair of mutually recursive
21297 routines |do_equation| and |do_assignment|. These routines are called when
21298 |cur_cmd=equals| and when |cur_cmd=assignment|, respectively; the left-hand
21299 side is in |cur_type| and |cur_exp|, while the right-hand side is yet
21300 to be scanned. After the routines are finished, |cur_type| and |cur_exp|
21301 will be equal to the right-hand side (which will normally be equal
21302 to the left-hand side).
21304 @<Declare action procedures for use by |do_statement|@>=
21305 @<Declare the procedure called |try_eq|@>;
21306 @<Declare the procedure called |make_eq|@>;
21307 void mp_do_equation (MP mp) ;
21310 void mp_do_equation (MP mp) {
21311 pointer lhs; /* capsule for the left-hand side */
21312 pointer p; /* temporary register */
21313 lhs=mp_stash_cur_exp(mp); mp_get_x_next(mp);
21314 mp->var_flag=assignment; mp_scan_expression(mp);
21315 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21316 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21317 if ( mp->internal[mp_tracing_commands]>two )
21318 @<Trace the current equation@>;
21319 if ( mp->cur_type==mp_unknown_path ) if ( type(lhs)==mp_pair_type ) {
21320 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, lhs); lhs=p;
21321 }; /* in this case |make_eq| will change the pair to a path */
21322 mp_make_eq(mp, lhs); /* equate |lhs| to |(cur_type,cur_exp)| */
21325 @ And |do_assignment| is similar to |do_expression|:
21328 void mp_do_assignment (MP mp);
21330 @ @<Declare action procedures for use by |do_statement|@>=
21331 void mp_do_assignment (MP mp) ;
21334 void mp_do_assignment (MP mp) {
21335 pointer lhs; /* token list for the left-hand side */
21336 pointer p; /* where the left-hand value is stored */
21337 pointer q; /* temporary capsule for the right-hand value */
21338 if ( mp->cur_type!=mp_token_list ) {
21339 exp_err("Improper `:=' will be changed to `='");
21341 help2("I didn't find a variable name at the left of the `:=',")
21342 ("so I'm going to pretend that you said `=' instead.");
21343 mp_error(mp); mp_do_equation(mp);
21345 lhs=mp->cur_exp; mp->cur_type=mp_vacuous;
21346 mp_get_x_next(mp); mp->var_flag=assignment; mp_scan_expression(mp);
21347 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21348 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21349 if ( mp->internal[mp_tracing_commands]>two )
21350 @<Trace the current assignment@>;
21351 if ( info(lhs)>hash_end ) {
21352 @<Assign the current expression to an internal variable@>;
21354 @<Assign the current expression to the variable |lhs|@>;
21356 mp_flush_node_list(mp, lhs);
21360 @ @<Trace the current equation@>=
21362 mp_begin_diagnostic(mp); mp_print_nl(mp, "{("); mp_print_exp(mp,lhs,0);
21363 mp_print(mp,")=("); mp_print_exp(mp,null,0);
21364 mp_print(mp,")}"); mp_end_diagnostic(mp, false);
21367 @ @<Trace the current assignment@>=
21369 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
21370 if ( info(lhs)>hash_end )
21371 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21373 mp_show_token_list(mp, lhs,null,1000,0);
21374 mp_print(mp, ":="); mp_print_exp(mp, null,0);
21375 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
21378 @ @<Assign the current expression to an internal variable@>=
21379 if ( mp->cur_type==mp_known ) {
21380 mp->internal[info(lhs)-(hash_end)]=mp->cur_exp;
21382 exp_err("Internal quantity `");
21383 @.Internal quantity...@>
21384 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21385 mp_print(mp, "' must receive a known value");
21386 help2("I can\'t set an internal quantity to anything but a known")
21387 ("numeric value, so I'll have to ignore this assignment.");
21388 mp_put_get_error(mp);
21391 @ @<Assign the current expression to the variable |lhs|@>=
21393 p=mp_find_variable(mp, lhs);
21395 q=mp_stash_cur_exp(mp); mp->cur_type=mp_und_type(mp, p);
21396 mp_recycle_value(mp, p);
21397 type(p)=mp->cur_type; value(p)=null; mp_make_exp_copy(mp, p);
21398 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q); mp_make_eq(mp, p);
21400 mp_obliterated(mp, lhs); mp_put_get_error(mp);
21405 @ And now we get to the nitty-gritty. The |make_eq| procedure is given
21406 a pointer to a capsule that is to be equated to the current expression.
21408 @<Declare the procedure called |make_eq|@>=
21409 void mp_make_eq (MP mp,pointer lhs) ;
21413 @c void mp_make_eq (MP mp,pointer lhs) {
21414 small_number t; /* type of the left-hand side */
21415 pointer p,q; /* pointers inside of big nodes */
21416 integer v=0; /* value of the left-hand side */
21419 if ( t<=mp_pair_type ) v=value(lhs);
21421 @<For each type |t|, make an equation and |goto done| unless |cur_type|
21422 is incompatible with~|t|@>;
21423 } /* all cases have been listed */
21424 @<Announce that the equation cannot be performed@>;
21426 check_arith; mp_recycle_value(mp, lhs);
21427 mp_free_node(mp, lhs,value_node_size);
21430 @ @<Announce that the equation cannot be performed@>=
21431 mp_disp_err(mp, lhs,"");
21432 exp_err("Equation cannot be performed (");
21433 @.Equation cannot be performed@>
21434 if ( type(lhs)<=mp_pair_type ) mp_print_type(mp, type(lhs));
21435 else mp_print(mp, "numeric");
21436 mp_print_char(mp, '=');
21437 if ( mp->cur_type<=mp_pair_type ) mp_print_type(mp, mp->cur_type);
21438 else mp_print(mp, "numeric");
21439 mp_print_char(mp, ')');
21440 help2("I'm sorry, but I don't know how to make such things equal.")
21441 ("(See the two expressions just above the error message.)");
21442 mp_put_get_error(mp)
21444 @ @<For each type |t|, make an equation and |goto done| unless...@>=
21445 case mp_boolean_type: case mp_string_type: case mp_pen_type:
21446 case mp_path_type: case mp_picture_type:
21447 if ( mp->cur_type==t+unknown_tag ) {
21448 mp_nonlinear_eq(mp, v,mp->cur_exp,false); goto DONE;
21449 } else if ( mp->cur_type==t ) {
21450 @<Report redundant or inconsistent equation and |goto done|@>;
21453 case unknown_types:
21454 if ( mp->cur_type==t-unknown_tag ) {
21455 mp_nonlinear_eq(mp, mp->cur_exp,lhs,true); goto DONE;
21456 } else if ( mp->cur_type==t ) {
21457 mp_ring_merge(mp, lhs,mp->cur_exp); goto DONE;
21458 } else if ( mp->cur_type==mp_pair_type ) {
21459 if ( t==mp_unknown_path ) {
21460 mp_pair_to_path(mp); goto RESTART;
21464 case mp_transform_type: case mp_color_type:
21465 case mp_cmykcolor_type: case mp_pair_type:
21466 if ( mp->cur_type==t ) {
21467 @<Do multiple equations and |goto done|@>;
21470 case mp_known: case mp_dependent:
21471 case mp_proto_dependent: case mp_independent:
21472 if ( mp->cur_type>=mp_known ) {
21473 mp_try_eq(mp, lhs,null); goto DONE;
21479 @ @<Report redundant or inconsistent equation and |goto done|@>=
21481 if ( mp->cur_type<=mp_string_type ) {
21482 if ( mp->cur_type==mp_string_type ) {
21483 if ( mp_str_vs_str(mp, v,mp->cur_exp)!=0 ) {
21486 } else if ( v!=mp->cur_exp ) {
21489 @<Exclaim about a redundant equation@>; goto DONE;
21491 print_err("Redundant or inconsistent equation");
21492 @.Redundant or inconsistent equation@>
21493 help2("An equation between already-known quantities can't help.")
21494 ("But don't worry; continue and I'll just ignore it.");
21495 mp_put_get_error(mp); goto DONE;
21497 print_err("Inconsistent equation");
21498 @.Inconsistent equation@>
21499 help2("The equation I just read contradicts what was said before.")
21500 ("But don't worry; continue and I'll just ignore it.");
21501 mp_put_get_error(mp); goto DONE;
21504 @ @<Do multiple equations and |goto done|@>=
21506 p=v+mp->big_node_size[t];
21507 q=value(mp->cur_exp)+mp->big_node_size[t];
21509 p=p-2; q=q-2; mp_try_eq(mp, p,q);
21514 @ The first argument to |try_eq| is the location of a value node
21515 in a capsule that will soon be recycled. The second argument is
21516 either a location within a pair or transform node pointed to by
21517 |cur_exp|, or it is |null| (which means that |cur_exp| itself
21518 serves as the second argument). The idea is to leave |cur_exp| unchanged,
21519 but to equate the two operands.
21521 @<Declare the procedure called |try_eq|@>=
21522 void mp_try_eq (MP mp,pointer l, pointer r) ;
21525 @c void mp_try_eq (MP mp,pointer l, pointer r) {
21526 pointer p; /* dependency list for right operand minus left operand */
21527 int t; /* the type of list |p| */
21528 pointer q; /* the constant term of |p| is here */
21529 pointer pp; /* dependency list for right operand */
21530 int tt; /* the type of list |pp| */
21531 boolean copied; /* have we copied a list that ought to be recycled? */
21532 @<Remove the left operand from its container, negate it, and
21533 put it into dependency list~|p| with constant term~|q|@>;
21534 @<Add the right operand to list |p|@>;
21535 if ( info(p)==null ) {
21536 @<Deal with redundant or inconsistent equation@>;
21538 mp_linear_eq(mp, p,t);
21539 if ( r==null ) if ( mp->cur_type!=mp_known ) {
21540 if ( type(mp->cur_exp)==mp_known ) {
21541 pp=mp->cur_exp; mp->cur_exp=value(mp->cur_exp); mp->cur_type=mp_known;
21542 mp_free_node(mp, pp,value_node_size);
21548 @ @<Remove the left operand from its container, negate it, and...@>=
21550 if ( t==mp_known ) {
21551 t=mp_dependent; p=mp_const_dependency(mp, -value(l)); q=p;
21552 } else if ( t==mp_independent ) {
21553 t=mp_dependent; p=mp_single_dependency(mp, l); negate(value(p));
21556 p=dep_list(l); q=p;
21559 if ( info(q)==null ) break;
21562 link(prev_dep(l))=link(q); prev_dep(link(q))=prev_dep(l);
21566 @ @<Deal with redundant or inconsistent equation@>=
21568 if ( abs(value(p))>64 ) { /* off by .001 or more */
21569 print_err("Inconsistent equation");
21570 @.Inconsistent equation@>
21571 mp_print(mp, " (off by "); mp_print_scaled(mp, value(p));
21572 mp_print_char(mp, ')');
21573 help2("The equation I just read contradicts what was said before.")
21574 ("But don't worry; continue and I'll just ignore it.");
21575 mp_put_get_error(mp);
21576 } else if ( r==null ) {
21577 @<Exclaim about a redundant equation@>;
21579 mp_free_node(mp, p,dep_node_size);
21582 @ @<Add the right operand to list |p|@>=
21584 if ( mp->cur_type==mp_known ) {
21585 value(q)=value(q)+mp->cur_exp; goto DONE1;
21588 if ( tt==mp_independent ) pp=mp_single_dependency(mp, mp->cur_exp);
21589 else pp=dep_list(mp->cur_exp);
21592 if ( type(r)==mp_known ) {
21593 value(q)=value(q)+value(r); goto DONE1;
21596 if ( tt==mp_independent ) pp=mp_single_dependency(mp, r);
21597 else pp=dep_list(r);
21600 if ( tt!=mp_independent ) copied=false;
21601 else { copied=true; tt=mp_dependent; };
21602 @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>;
21603 if ( copied ) mp_flush_node_list(mp, pp);
21606 @ @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>=
21607 mp->watch_coefs=false;
21609 p=mp_p_plus_q(mp, p,pp,t);
21610 } else if ( t==mp_proto_dependent ) {
21611 p=mp_p_plus_fq(mp, p,unity,pp,mp_proto_dependent,mp_dependent);
21614 while ( info(q)!=null ) {
21615 value(q)=mp_round_fraction(mp, value(q)); q=link(q);
21617 t=mp_proto_dependent; p=mp_p_plus_q(mp, p,pp,t);
21619 mp->watch_coefs=true;
21621 @ Our next goal is to process type declarations. For this purpose it's
21622 convenient to have a procedure that scans a $\langle\,$declared
21623 variable$\,\rangle$ and returns the corresponding token list. After the
21624 following procedure has acted, the token after the declared variable
21625 will have been scanned, so it will appear in |cur_cmd|, |cur_mod|,
21628 @<Declare the function called |scan_declared_variable|@>=
21629 pointer mp_scan_declared_variable (MP mp) {
21630 pointer x; /* hash address of the variable's root */
21631 pointer h,t; /* head and tail of the token list to be returned */
21632 pointer l; /* hash address of left bracket */
21633 mp_get_symbol(mp); x=mp->cur_sym;
21634 if ( mp->cur_cmd!=tag_token ) mp_clear_symbol(mp, x,false);
21635 h=mp_get_avail(mp); info(h)=x; t=h;
21638 if ( mp->cur_sym==0 ) break;
21639 if ( mp->cur_cmd!=tag_token ) if ( mp->cur_cmd!=internal_quantity) {
21640 if ( mp->cur_cmd==left_bracket ) {
21641 @<Descend past a collective subscript@>;
21646 link(t)=mp_get_avail(mp); t=link(t); info(t)=mp->cur_sym;
21648 if ( eq_type(x)!=tag_token ) mp_clear_symbol(mp, x,false);
21649 if ( equiv(x)==null ) mp_new_root(mp, x);
21653 @ If the subscript isn't collective, we don't accept it as part of the
21656 @<Descend past a collective subscript@>=
21658 l=mp->cur_sym; mp_get_x_next(mp);
21659 if ( mp->cur_cmd!=right_bracket ) {
21660 mp_back_input(mp); mp->cur_sym=l; mp->cur_cmd=left_bracket; break;
21662 mp->cur_sym=collective_subscript;
21666 @ Type declarations are introduced by the following primitive operations.
21669 mp_primitive(mp, "numeric",type_name,mp_numeric_type);
21670 @:numeric_}{\&{numeric} primitive@>
21671 mp_primitive(mp, "string",type_name,mp_string_type);
21672 @:string_}{\&{string} primitive@>
21673 mp_primitive(mp, "boolean",type_name,mp_boolean_type);
21674 @:boolean_}{\&{boolean} primitive@>
21675 mp_primitive(mp, "path",type_name,mp_path_type);
21676 @:path_}{\&{path} primitive@>
21677 mp_primitive(mp, "pen",type_name,mp_pen_type);
21678 @:pen_}{\&{pen} primitive@>
21679 mp_primitive(mp, "picture",type_name,mp_picture_type);
21680 @:picture_}{\&{picture} primitive@>
21681 mp_primitive(mp, "transform",type_name,mp_transform_type);
21682 @:transform_}{\&{transform} primitive@>
21683 mp_primitive(mp, "color",type_name,mp_color_type);
21684 @:color_}{\&{color} primitive@>
21685 mp_primitive(mp, "rgbcolor",type_name,mp_color_type);
21686 @:color_}{\&{rgbcolor} primitive@>
21687 mp_primitive(mp, "cmykcolor",type_name,mp_cmykcolor_type);
21688 @:color_}{\&{cmykcolor} primitive@>
21689 mp_primitive(mp, "pair",type_name,mp_pair_type);
21690 @:pair_}{\&{pair} primitive@>
21692 @ @<Cases of |print_cmd...@>=
21693 case type_name: mp_print_type(mp, m); break;
21695 @ Now we are ready to handle type declarations, assuming that a
21696 |type_name| has just been scanned.
21698 @<Declare action procedures for use by |do_statement|@>=
21699 void mp_do_type_declaration (MP mp) ;
21702 void mp_do_type_declaration (MP mp) {
21703 small_number t; /* the type being declared */
21704 pointer p; /* token list for a declared variable */
21705 pointer q; /* value node for the variable */
21706 if ( mp->cur_mod>=mp_transform_type )
21709 t=mp->cur_mod+unknown_tag;
21711 p=mp_scan_declared_variable(mp);
21712 mp_flush_variable(mp, equiv(info(p)),link(p),false);
21713 q=mp_find_variable(mp, p);
21715 type(q)=t; value(q)=null;
21717 print_err("Declared variable conflicts with previous vardef");
21718 @.Declared variable conflicts...@>
21719 help2("You can't use, e.g., `numeric foo[]' after `vardef foo'.")
21720 ("Proceed, and I'll ignore the illegal redeclaration.");
21721 mp_put_get_error(mp);
21723 mp_flush_list(mp, p);
21724 if ( mp->cur_cmd<comma ) {
21725 @<Flush spurious symbols after the declared variable@>;
21727 } while (! end_of_statement);
21730 @ @<Flush spurious symbols after the declared variable@>=
21732 print_err("Illegal suffix of declared variable will be flushed");
21733 @.Illegal suffix...flushed@>
21734 help5("Variables in declarations must consist entirely of")
21735 ("names and collective subscripts, e.g., `x[]a'.")
21736 ("Are you trying to use a reserved word in a variable name?")
21737 ("I'm going to discard the junk I found here,")
21738 ("up to the next comma or the end of the declaration.");
21739 if ( mp->cur_cmd==numeric_token )
21740 mp->help_line[2]="Explicit subscripts like `x15a' aren't permitted.";
21741 mp_put_get_error(mp); mp->scanner_status=flushing;
21744 @<Decrease the string reference count...@>;
21745 } while (mp->cur_cmd<comma); /* either |end_of_statement| or |cur_cmd=comma| */
21746 mp->scanner_status=normal;
21749 @ \MP's |main_control| procedure just calls |do_statement| repeatedly
21750 until coming to the end of the user's program.
21751 Each execution of |do_statement| concludes with
21752 |cur_cmd=semicolon|, |end_group|, or |stop|.
21754 @c void mp_main_control (MP mp) {
21756 mp_do_statement(mp);
21757 if ( mp->cur_cmd==end_group ) {
21758 print_err("Extra `endgroup'");
21759 @.Extra `endgroup'@>
21760 help2("I'm not currently working on a `begingroup',")
21761 ("so I had better not try to end anything.");
21762 mp_flush_error(mp, 0);
21764 } while (mp->cur_cmd!=stop);
21766 int __attribute__((noinline))
21768 if (mp->history < mp_fatal_error_stop ) {
21769 @<Install and test the non-local jump buffer@>;
21770 mp_main_control(mp); /* come to life */
21771 mp_final_cleanup(mp); /* prepare for death */
21772 mp_close_files_and_terminate(mp);
21774 return mp->history;
21776 int __attribute__((noinline))
21777 mp_execute (MP mp) {
21778 if (mp->history < mp_fatal_error_stop ) {
21779 mp->history = mp_spotless;
21780 mp->file_offset = 0;
21781 mp->term_offset = 0;
21783 @<Install and test the non-local jump buffer@>;
21784 mp_input_ln(mp,mp->term_in);
21785 mp_firm_up_the_line(mp);
21786 mp->buffer[limit]='%';
21789 mp_main_control(mp); /* come to life */
21791 return mp->history;
21793 int __attribute__((noinline))
21794 mp_finish (MP mp) {
21795 if (mp->history < mp_fatal_error_stop ) {
21796 @<Install and test the non-local jump buffer@>;
21797 mp_final_cleanup(mp); /* prepare for death */
21798 mp_close_files_and_terminate(mp);
21800 return mp->history;
21802 char * mp_mplib_version (MP mp) {
21804 return mplib_version;
21806 char * mp_metapost_version (MP mp) {
21808 return metapost_version;
21811 @ @<Exported function headers@>=
21812 int mp_run (MP mp);
21813 int mp_execute (MP mp);
21814 int mp_finish (MP mp);
21815 char * mp_mplib_version (MP mp);
21816 char * mp_metapost_version (MP mp);
21819 mp_primitive(mp, "end",stop,0);
21820 @:end_}{\&{end} primitive@>
21821 mp_primitive(mp, "dump",stop,1);
21822 @:dump_}{\&{dump} primitive@>
21824 @ @<Cases of |print_cmd...@>=
21826 if ( m==0 ) mp_print(mp, "end");
21827 else mp_print(mp, "dump");
21831 Let's turn now to statements that are classified as ``commands'' because
21832 of their imperative nature. We'll begin with simple ones, so that it
21833 will be clear how to hook command processing into the |do_statement| routine;
21834 then we'll tackle the tougher commands.
21836 Here's one of the simplest:
21838 @<Cases of |do_statement|...@>=
21839 case mp_random_seed: mp_do_random_seed(mp); break;
21841 @ @<Declare action procedures for use by |do_statement|@>=
21842 void mp_do_random_seed (MP mp) ;
21844 @ @c void mp_do_random_seed (MP mp) {
21846 if ( mp->cur_cmd!=assignment ) {
21847 mp_missing_err(mp, ":=");
21849 help1("Always say `randomseed:=<numeric expression>'.");
21852 mp_get_x_next(mp); mp_scan_expression(mp);
21853 if ( mp->cur_type!=mp_known ) {
21854 exp_err("Unknown value will be ignored");
21855 @.Unknown value...ignored@>
21856 help2("Your expression was too random for me to handle,")
21857 ("so I won't change the random seed just now.");
21858 mp_put_get_flush_error(mp, 0);
21860 @<Initialize the random seed to |cur_exp|@>;
21864 @ @<Initialize the random seed to |cur_exp|@>=
21866 mp_init_randoms(mp, mp->cur_exp);
21867 if ( mp->selector>=log_only && mp->selector<write_file) {
21868 mp->old_setting=mp->selector; mp->selector=log_only;
21869 mp_print_nl(mp, "{randomseed:=");
21870 mp_print_scaled(mp, mp->cur_exp);
21871 mp_print_char(mp, '}');
21872 mp_print_nl(mp, ""); mp->selector=mp->old_setting;
21876 @ And here's another simple one (somewhat different in flavor):
21878 @<Cases of |do_statement|...@>=
21880 mp_print_ln(mp); mp->interaction=mp->cur_mod;
21881 @<Initialize the print |selector| based on |interaction|@>;
21882 if ( mp->log_opened ) mp->selector=mp->selector+2;
21887 mp_primitive(mp, "batchmode",mode_command,mp_batch_mode);
21888 @:mp_batch_mode_}{\&{batchmode} primitive@>
21889 mp_primitive(mp, "nonstopmode",mode_command,mp_nonstop_mode);
21890 @:mp_nonstop_mode_}{\&{nonstopmode} primitive@>
21891 mp_primitive(mp, "scrollmode",mode_command,mp_scroll_mode);
21892 @:mp_scroll_mode_}{\&{scrollmode} primitive@>
21893 mp_primitive(mp, "errorstopmode",mode_command,mp_error_stop_mode);
21894 @:mp_error_stop_mode_}{\&{errorstopmode} primitive@>
21896 @ @<Cases of |print_cmd_mod|...@>=
21899 case mp_batch_mode: mp_print(mp, "batchmode"); break;
21900 case mp_nonstop_mode: mp_print(mp, "nonstopmode"); break;
21901 case mp_scroll_mode: mp_print(mp, "scrollmode"); break;
21902 default: mp_print(mp, "errorstopmode"); break;
21906 @ The `\&{inner}' and `\&{outer}' commands are only slightly harder.
21908 @<Cases of |do_statement|...@>=
21909 case protection_command: mp_do_protection(mp); break;
21912 mp_primitive(mp, "inner",protection_command,0);
21913 @:inner_}{\&{inner} primitive@>
21914 mp_primitive(mp, "outer",protection_command,1);
21915 @:outer_}{\&{outer} primitive@>
21917 @ @<Cases of |print_cmd...@>=
21918 case protection_command:
21919 if ( m==0 ) mp_print(mp, "inner");
21920 else mp_print(mp, "outer");
21923 @ @<Declare action procedures for use by |do_statement|@>=
21924 void mp_do_protection (MP mp) ;
21926 @ @c void mp_do_protection (MP mp) {
21927 int m; /* 0 to unprotect, 1 to protect */
21928 halfword t; /* the |eq_type| before we change it */
21931 mp_get_symbol(mp); t=eq_type(mp->cur_sym);
21933 if ( t>=outer_tag )
21934 eq_type(mp->cur_sym)=t-outer_tag;
21935 } else if ( t<outer_tag ) {
21936 eq_type(mp->cur_sym)=t+outer_tag;
21939 } while (mp->cur_cmd==comma);
21942 @ \MP\ never defines the tokens `\.(' and `\.)' to be primitives, but
21943 plain \MP\ begins with the declaration `\&{delimiters} \.{()}'. Such a
21944 declaration assigns the command code |left_delimiter| to `\.{(}' and
21945 |right_delimiter| to `\.{)}'; the |equiv| of each delimiter is the
21946 hash address of its mate.
21948 @<Cases of |do_statement|...@>=
21949 case delimiters: mp_def_delims(mp); break;
21951 @ @<Declare action procedures for use by |do_statement|@>=
21952 void mp_def_delims (MP mp) ;
21954 @ @c void mp_def_delims (MP mp) {
21955 pointer l_delim,r_delim; /* the new delimiter pair */
21956 mp_get_clear_symbol(mp); l_delim=mp->cur_sym;
21957 mp_get_clear_symbol(mp); r_delim=mp->cur_sym;
21958 eq_type(l_delim)=left_delimiter; equiv(l_delim)=r_delim;
21959 eq_type(r_delim)=right_delimiter; equiv(r_delim)=l_delim;
21963 @ Here is a procedure that is called when \MP\ has reached a point
21964 where some right delimiter is mandatory.
21966 @<Declare the procedure called |check_delimiter|@>=
21967 void mp_check_delimiter (MP mp,pointer l_delim, pointer r_delim) {
21968 if ( mp->cur_cmd==right_delimiter )
21969 if ( mp->cur_mod==l_delim )
21971 if ( mp->cur_sym!=r_delim ) {
21972 mp_missing_err(mp, str(text(r_delim)));
21974 help2("I found no right delimiter to match a left one. So I've")
21975 ("put one in, behind the scenes; this may fix the problem.");
21978 print_err("The token `"); mp_print_text(r_delim);
21979 @.The token...delimiter@>
21980 mp_print(mp, "' is no longer a right delimiter");
21981 help3("Strange: This token has lost its former meaning!")
21982 ("I'll read it as a right delimiter this time;")
21983 ("but watch out, I'll probably miss it later.");
21988 @ The next four commands save or change the values associated with tokens.
21990 @<Cases of |do_statement|...@>=
21993 mp_get_symbol(mp); mp_save_variable(mp, mp->cur_sym); mp_get_x_next(mp);
21994 } while (mp->cur_cmd==comma);
21996 case interim_command: mp_do_interim(mp); break;
21997 case let_command: mp_do_let(mp); break;
21998 case new_internal: mp_do_new_internal(mp); break;
22000 @ @<Declare action procedures for use by |do_statement|@>=
22001 void mp_do_statement (MP mp);
22002 void mp_do_interim (MP mp);
22004 @ @c void mp_do_interim (MP mp) {
22006 if ( mp->cur_cmd!=internal_quantity ) {
22007 print_err("The token `");
22008 @.The token...quantity@>
22009 if ( mp->cur_sym==0 ) mp_print(mp, "(%CAPSULE)");
22010 else mp_print_text(mp->cur_sym);
22011 mp_print(mp, "' isn't an internal quantity");
22012 help1("Something like `tracingonline' should follow `interim'.");
22015 mp_save_internal(mp, mp->cur_mod); mp_back_input(mp);
22017 mp_do_statement(mp);
22020 @ The following procedure is careful not to undefine the left-hand symbol
22021 too soon, lest commands like `{\tt let x=x}' have a surprising effect.
22023 @<Declare action procedures for use by |do_statement|@>=
22024 void mp_do_let (MP mp) ;
22026 @ @c void mp_do_let (MP mp) {
22027 pointer l; /* hash location of the left-hand symbol */
22028 mp_get_symbol(mp); l=mp->cur_sym; mp_get_x_next(mp);
22029 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
22030 mp_missing_err(mp, "=");
22032 help3("You should have said `let symbol = something'.")
22033 ("But don't worry; I'll pretend that an equals sign")
22034 ("was present. The next token I read will be `something'.");
22038 switch (mp->cur_cmd) {
22039 case defined_macro: case secondary_primary_macro:
22040 case tertiary_secondary_macro: case expression_tertiary_macro:
22041 add_mac_ref(mp->cur_mod);
22046 mp_clear_symbol(mp, l,false); eq_type(l)=mp->cur_cmd;
22047 if ( mp->cur_cmd==tag_token ) equiv(l)=null;
22048 else equiv(l)=mp->cur_mod;
22052 @ @<Declarations@>=
22053 void mp_grow_internals (MP mp, int l);
22054 void mp_do_new_internal (MP mp) ;
22057 void mp_grow_internals (MP mp, int l) {
22061 if ( hash_end+l>max_halfword ) {
22062 mp_confusion(mp, "out of memory space"); /* can't be reached */
22064 int_name = xmalloc ((l+1),sizeof(char *));
22065 internal = xmalloc ((l+1),sizeof(scaled));
22066 for (k=0;k<=l; k++ ) {
22067 if (k<=mp->max_internal) {
22068 internal[k]=mp->internal[k];
22069 int_name[k]=mp->int_name[k];
22075 xfree(mp->internal); xfree(mp->int_name);
22076 mp->int_name = int_name;
22077 mp->internal = internal;
22078 mp->max_internal = l;
22082 void mp_do_new_internal (MP mp) {
22084 if ( mp->int_ptr==mp->max_internal ) {
22085 mp_grow_internals(mp, (mp->max_internal + (mp->max_internal>>2)));
22087 mp_get_clear_symbol(mp); incr(mp->int_ptr);
22088 eq_type(mp->cur_sym)=internal_quantity;
22089 equiv(mp->cur_sym)=mp->int_ptr;
22090 if(mp->int_name[mp->int_ptr]!=NULL)
22091 xfree(mp->int_name[mp->int_ptr]);
22092 mp->int_name[mp->int_ptr]=str(text(mp->cur_sym));
22093 mp->internal[mp->int_ptr]=0;
22095 } while (mp->cur_cmd==comma);
22098 @ @<Dealloc variables@>=
22099 for (k=0;k<=mp->max_internal;k++) {
22100 xfree(mp->int_name[k]);
22102 xfree(mp->internal);
22103 xfree(mp->int_name);
22106 @ The various `\&{show}' commands are distinguished by modifier fields
22109 @d show_token_code 0 /* show the meaning of a single token */
22110 @d show_stats_code 1 /* show current memory and string usage */
22111 @d show_code 2 /* show a list of expressions */
22112 @d show_var_code 3 /* show a variable and its descendents */
22113 @d show_dependencies_code 4 /* show dependent variables in terms of independents */
22116 mp_primitive(mp, "showtoken",show_command,show_token_code);
22117 @:show_token_}{\&{showtoken} primitive@>
22118 mp_primitive(mp, "showstats",show_command,show_stats_code);
22119 @:show_stats_}{\&{showstats} primitive@>
22120 mp_primitive(mp, "show",show_command,show_code);
22121 @:show_}{\&{show} primitive@>
22122 mp_primitive(mp, "showvariable",show_command,show_var_code);
22123 @:show_var_}{\&{showvariable} primitive@>
22124 mp_primitive(mp, "showdependencies",show_command,show_dependencies_code);
22125 @:show_dependencies_}{\&{showdependencies} primitive@>
22127 @ @<Cases of |print_cmd...@>=
22130 case show_token_code:mp_print(mp, "showtoken"); break;
22131 case show_stats_code:mp_print(mp, "showstats"); break;
22132 case show_code:mp_print(mp, "show"); break;
22133 case show_var_code:mp_print(mp, "showvariable"); break;
22134 default: mp_print(mp, "showdependencies"); break;
22138 @ @<Cases of |do_statement|...@>=
22139 case show_command:mp_do_show_whatever(mp); break;
22141 @ The value of |cur_mod| controls the |verbosity| in the |print_exp| routine:
22142 if it's |show_code|, complicated structures are abbreviated, otherwise
22145 @<Declare action procedures for use by |do_statement|@>=
22146 void mp_do_show (MP mp) ;
22148 @ @c void mp_do_show (MP mp) {
22150 mp_get_x_next(mp); mp_scan_expression(mp);
22151 mp_print_nl(mp, ">> ");
22153 mp_print_exp(mp, null,2); mp_flush_cur_exp(mp, 0);
22154 } while (mp->cur_cmd==comma);
22157 @ @<Declare action procedures for use by |do_statement|@>=
22158 void mp_disp_token (MP mp) ;
22160 @ @c void mp_disp_token (MP mp) {
22161 mp_print_nl(mp, "> ");
22163 if ( mp->cur_sym==0 ) {
22164 @<Show a numeric or string or capsule token@>;
22166 mp_print_text(mp->cur_sym); mp_print_char(mp, '=');
22167 if ( eq_type(mp->cur_sym)>=outer_tag ) mp_print(mp, "(outer) ");
22168 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
22169 if ( mp->cur_cmd==defined_macro ) {
22170 mp_print_ln(mp); mp_show_macro(mp, mp->cur_mod,null,100000);
22171 } /* this avoids recursion between |show_macro| and |print_cmd_mod| */
22176 @ @<Show a numeric or string or capsule token@>=
22178 if ( mp->cur_cmd==numeric_token ) {
22179 mp_print_scaled(mp, mp->cur_mod);
22180 } else if ( mp->cur_cmd==capsule_token ) {
22181 mp_print_capsule(mp,mp->cur_mod);
22183 mp_print_char(mp, '"');
22184 mp_print_str(mp, mp->cur_mod); mp_print_char(mp, '"');
22185 delete_str_ref(mp->cur_mod);
22189 @ The following cases of |print_cmd_mod| might arise in connection
22190 with |disp_token|, although they don't correspond to any
22193 @<Cases of |print_cmd_...@>=
22194 case left_delimiter:
22195 case right_delimiter:
22196 if ( c==left_delimiter ) mp_print(mp, "left");
22197 else mp_print(mp, "right");
22198 mp_print(mp, " delimiter that matches ");
22202 if ( m==null ) mp_print(mp, "tag");
22203 else mp_print(mp, "variable");
22205 case defined_macro:
22206 mp_print(mp, "macro:");
22208 case secondary_primary_macro:
22209 case tertiary_secondary_macro:
22210 case expression_tertiary_macro:
22211 mp_print_cmd_mod(mp, macro_def,c);
22212 mp_print(mp, "'d macro:");
22213 mp_print_ln(mp); mp_show_token_list(mp, link(link(m)),null,1000,0);
22216 mp_print(mp, "[repeat the loop]");
22218 case internal_quantity:
22219 mp_print(mp, mp->int_name[m]);
22222 @ @<Declare action procedures for use by |do_statement|@>=
22223 void mp_do_show_token (MP mp) ;
22225 @ @c void mp_do_show_token (MP mp) {
22227 get_t_next; mp_disp_token(mp);
22229 } while (mp->cur_cmd==comma);
22232 @ @<Declare action procedures for use by |do_statement|@>=
22233 void mp_do_show_stats (MP mp) ;
22235 @ @c void mp_do_show_stats (MP mp) {
22236 mp_print_nl(mp, "Memory usage ");
22237 @.Memory usage...@>
22238 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used);
22240 mp_print(mp, "unknown");
22241 mp_print(mp, " ("); mp_print_int(mp, mp->hi_mem_min-mp->lo_mem_max-1);
22242 mp_print(mp, " still untouched)"); mp_print_ln(mp);
22243 mp_print_nl(mp, "String usage ");
22244 mp_print_int(mp, mp->strs_in_use-mp->init_str_use);
22245 mp_print_char(mp, '&'); mp_print_int(mp, mp->pool_in_use-mp->init_pool_ptr);
22247 mp_print(mp, "unknown");
22248 mp_print(mp, " (");
22249 mp_print_int(mp, mp->max_strings-1-mp->strs_used_up); mp_print_char(mp, '&');
22250 mp_print_int(mp, mp->pool_size-mp->pool_ptr);
22251 mp_print(mp, " now untouched)"); mp_print_ln(mp);
22255 @ Here's a recursive procedure that gives an abbreviated account
22256 of a variable, for use by |do_show_var|.
22258 @<Declare action procedures for use by |do_statement|@>=
22259 void mp_disp_var (MP mp,pointer p) ;
22261 @ @c void mp_disp_var (MP mp,pointer p) {
22262 pointer q; /* traverses attributes and subscripts */
22263 int n; /* amount of macro text to show */
22264 if ( type(p)==mp_structured ) {
22265 @<Descend the structure@>;
22266 } else if ( type(p)>=mp_unsuffixed_macro ) {
22267 @<Display a variable macro@>;
22268 } else if ( type(p)!=undefined ){
22269 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22270 mp_print_char(mp, '=');
22271 mp_print_exp(mp, p,0);
22275 @ @<Descend the structure@>=
22278 do { mp_disp_var(mp, q); q=link(q); } while (q!=end_attr);
22280 while ( name_type(q)==mp_subscr ) {
22281 mp_disp_var(mp, q); q=link(q);
22285 @ @<Display a variable macro@>=
22287 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22288 if ( type(p)>mp_unsuffixed_macro )
22289 mp_print(mp, "@@#"); /* |suffixed_macro| */
22290 mp_print(mp, "=macro:");
22291 if ( (int)mp->file_offset>=mp->max_print_line-20 ) n=5;
22292 else n=mp->max_print_line-mp->file_offset-15;
22293 mp_show_macro(mp, value(p),null,n);
22296 @ @<Declare action procedures for use by |do_statement|@>=
22297 void mp_do_show_var (MP mp) ;
22299 @ @c void mp_do_show_var (MP mp) {
22302 if ( mp->cur_sym>0 ) if ( mp->cur_sym<=hash_end )
22303 if ( mp->cur_cmd==tag_token ) if ( mp->cur_mod!=null ) {
22304 mp_disp_var(mp, mp->cur_mod); goto DONE;
22309 } while (mp->cur_cmd==comma);
22312 @ @<Declare action procedures for use by |do_statement|@>=
22313 void mp_do_show_dependencies (MP mp) ;
22315 @ @c void mp_do_show_dependencies (MP mp) {
22316 pointer p; /* link that runs through all dependencies */
22318 while ( p!=dep_head ) {
22319 if ( mp_interesting(mp, p) ) {
22320 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22321 if ( type(p)==mp_dependent ) mp_print_char(mp, '=');
22322 else mp_print(mp, " = "); /* extra spaces imply proto-dependency */
22323 mp_print_dependency(mp, dep_list(p),type(p));
22326 while ( info(p)!=null ) p=link(p);
22332 @ Finally we are ready for the procedure that governs all of the
22335 @<Declare action procedures for use by |do_statement|@>=
22336 void mp_do_show_whatever (MP mp) ;
22338 @ @c void mp_do_show_whatever (MP mp) {
22339 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
22340 switch (mp->cur_mod) {
22341 case show_token_code:mp_do_show_token(mp); break;
22342 case show_stats_code:mp_do_show_stats(mp); break;
22343 case show_code:mp_do_show(mp); break;
22344 case show_var_code:mp_do_show_var(mp); break;
22345 case show_dependencies_code:mp_do_show_dependencies(mp); break;
22346 } /* there are no other cases */
22347 if ( mp->internal[mp_showstopping]>0 ){
22350 if ( mp->interaction<mp_error_stop_mode ) {
22351 help0; decr(mp->error_count);
22353 help1("This isn't an error message; I'm just showing something.");
22355 if ( mp->cur_cmd==semicolon ) mp_error(mp);
22356 else mp_put_get_error(mp);
22360 @ The `\&{addto}' command needs the following additional primitives:
22362 @d double_path_code 0 /* command modifier for `\&{doublepath}' */
22363 @d contour_code 1 /* command modifier for `\&{contour}' */
22364 @d also_code 2 /* command modifier for `\&{also}' */
22366 @ Pre and postscripts need two new identifiers:
22368 @d with_pre_script 11
22369 @d with_post_script 13
22372 mp_primitive(mp, "doublepath",thing_to_add,double_path_code);
22373 @:double_path_}{\&{doublepath} primitive@>
22374 mp_primitive(mp, "contour",thing_to_add,contour_code);
22375 @:contour_}{\&{contour} primitive@>
22376 mp_primitive(mp, "also",thing_to_add,also_code);
22377 @:also_}{\&{also} primitive@>
22378 mp_primitive(mp, "withpen",with_option,mp_pen_type);
22379 @:with_pen_}{\&{withpen} primitive@>
22380 mp_primitive(mp, "dashed",with_option,mp_picture_type);
22381 @:dashed_}{\&{dashed} primitive@>
22382 mp_primitive(mp, "withprescript",with_option,with_pre_script);
22383 @:with_pre_script_}{\&{withprescript} primitive@>
22384 mp_primitive(mp, "withpostscript",with_option,with_post_script);
22385 @:with_post_script_}{\&{withpostscript} primitive@>
22386 mp_primitive(mp, "withoutcolor",with_option,mp_no_model);
22387 @:with_color_}{\&{withoutcolor} primitive@>
22388 mp_primitive(mp, "withgreyscale",with_option,mp_grey_model);
22389 @:with_color_}{\&{withgreyscale} primitive@>
22390 mp_primitive(mp, "withcolor",with_option,mp_uninitialized_model);
22391 @:with_color_}{\&{withcolor} primitive@>
22392 /* \&{withrgbcolor} is an alias for \&{withcolor} */
22393 mp_primitive(mp, "withrgbcolor",with_option,mp_rgb_model);
22394 @:with_color_}{\&{withrgbcolor} primitive@>
22395 mp_primitive(mp, "withcmykcolor",with_option,mp_cmyk_model);
22396 @:with_color_}{\&{withcmykcolor} primitive@>
22398 @ @<Cases of |print_cmd...@>=
22400 if ( m==contour_code ) mp_print(mp, "contour");
22401 else if ( m==double_path_code ) mp_print(mp, "doublepath");
22402 else mp_print(mp, "also");
22405 if ( m==mp_pen_type ) mp_print(mp, "withpen");
22406 else if ( m==with_pre_script ) mp_print(mp, "withprescript");
22407 else if ( m==with_post_script ) mp_print(mp, "withpostscript");
22408 else if ( m==mp_no_model ) mp_print(mp, "withoutcolor");
22409 else if ( m==mp_rgb_model ) mp_print(mp, "withrgbcolor");
22410 else if ( m==mp_uninitialized_model ) mp_print(mp, "withcolor");
22411 else if ( m==mp_cmyk_model ) mp_print(mp, "withcmykcolor");
22412 else if ( m==mp_grey_model ) mp_print(mp, "withgreyscale");
22413 else mp_print(mp, "dashed");
22416 @ The |scan_with_list| procedure parses a $\langle$with list$\rangle$ and
22417 updates the list of graphical objects starting at |p|. Each $\langle$with
22418 clause$\rangle$ updates all graphical objects whose |type| is compatible.
22419 Other objects are ignored.
22421 @<Declare action procedures for use by |do_statement|@>=
22422 void mp_scan_with_list (MP mp,pointer p) ;
22424 @ @c void mp_scan_with_list (MP mp,pointer p) {
22425 small_number t; /* |cur_mod| of the |with_option| (should match |cur_type|) */
22426 pointer q; /* for list manipulation */
22427 int old_setting; /* saved |selector| setting */
22428 pointer k; /* for finding the near-last item in a list */
22429 str_number s; /* for string cleanup after combining */
22430 pointer cp,pp,dp,ap,bp;
22431 /* objects being updated; |void| initially; |null| to suppress update */
22432 cp=mp_void; pp=mp_void; dp=mp_void; ap=mp_void; bp=mp_void;
22434 while ( mp->cur_cmd==with_option ){
22437 if ( t!=mp_no_model ) mp_scan_expression(mp);
22438 if (((t==with_pre_script)&&(mp->cur_type!=mp_string_type))||
22439 ((t==with_post_script)&&(mp->cur_type!=mp_string_type))||
22440 ((t==mp_uninitialized_model)&&
22441 ((mp->cur_type!=mp_cmykcolor_type)&&(mp->cur_type!=mp_color_type)
22442 &&(mp->cur_type!=mp_known)&&(mp->cur_type!=mp_boolean_type)))||
22443 ((t==mp_cmyk_model)&&(mp->cur_type!=mp_cmykcolor_type))||
22444 ((t==mp_rgb_model)&&(mp->cur_type!=mp_color_type))||
22445 ((t==mp_grey_model)&&(mp->cur_type!=mp_known))||
22446 ((t==mp_pen_type)&&(mp->cur_type!=t))||
22447 ((t==mp_picture_type)&&(mp->cur_type!=t)) ) {
22448 @<Complain about improper type@>;
22449 } else if ( t==mp_uninitialized_model ) {
22450 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22452 @<Transfer a color from the current expression to object~|cp|@>;
22453 mp_flush_cur_exp(mp, 0);
22454 } else if ( t==mp_rgb_model ) {
22455 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22457 @<Transfer a rgbcolor from the current expression to object~|cp|@>;
22458 mp_flush_cur_exp(mp, 0);
22459 } else if ( t==mp_cmyk_model ) {
22460 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22462 @<Transfer a cmykcolor from the current expression to object~|cp|@>;
22463 mp_flush_cur_exp(mp, 0);
22464 } else if ( t==mp_grey_model ) {
22465 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22467 @<Transfer a greyscale from the current expression to object~|cp|@>;
22468 mp_flush_cur_exp(mp, 0);
22469 } else if ( t==mp_no_model ) {
22470 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22472 @<Transfer a noncolor from the current expression to object~|cp|@>;
22473 } else if ( t==mp_pen_type ) {
22474 if ( pp==mp_void ) @<Make |pp| an object in list~|p| that needs a pen@>;
22476 if ( pen_p(pp)!=null ) mp_toss_knot_list(mp, pen_p(pp));
22477 pen_p(pp)=mp->cur_exp; mp->cur_type=mp_vacuous;
22479 } else if ( t==with_pre_script ) {
22482 while ( (ap!=null)&&(! has_color(ap)) )
22485 if ( pre_script(ap)!=null ) { /* build a new,combined string */
22487 old_setting=mp->selector;
22488 mp->selector=new_string;
22489 str_room(length(pre_script(ap))+length(mp->cur_exp)+2);
22490 mp_print_str(mp, mp->cur_exp);
22491 append_char(13); /* a forced \ps\ newline */
22492 mp_print_str(mp, pre_script(ap));
22493 pre_script(ap)=mp_make_string(mp);
22495 mp->selector=old_setting;
22497 pre_script(ap)=mp->cur_exp;
22499 mp->cur_type=mp_vacuous;
22501 } else if ( t==with_post_script ) {
22505 while ( link(k)!=null ) {
22507 if ( has_color(k) ) bp=k;
22510 if ( post_script(bp)!=null ) {
22512 old_setting=mp->selector;
22513 mp->selector=new_string;
22514 str_room(length(post_script(bp))+length(mp->cur_exp)+2);
22515 mp_print_str(mp, post_script(bp));
22516 append_char(13); /* a forced \ps\ newline */
22517 mp_print_str(mp, mp->cur_exp);
22518 post_script(bp)=mp_make_string(mp);
22520 mp->selector=old_setting;
22522 post_script(bp)=mp->cur_exp;
22524 mp->cur_type=mp_vacuous;
22527 if ( dp==mp_void ) {
22528 @<Make |dp| a stroked node in list~|p|@>;
22531 if ( dash_p(dp)!=null ) delete_edge_ref(dash_p(dp));
22532 dash_p(dp)=mp_make_dashes(mp, mp->cur_exp);
22533 dash_scale(dp)=unity;
22534 mp->cur_type=mp_vacuous;
22538 @<Copy the information from objects |cp|, |pp|, and |dp| into the rest
22542 @ @<Complain about improper type@>=
22543 { exp_err("Improper type");
22545 help2("Next time say `withpen <known pen expression>';")
22546 ("I'll ignore the bad `with' clause and look for another.");
22547 if ( t==with_pre_script )
22548 mp->help_line[1]="Next time say `withprescript <known string expression>';";
22549 else if ( t==with_post_script )
22550 mp->help_line[1]="Next time say `withpostscript <known string expression>';";
22551 else if ( t==mp_picture_type )
22552 mp->help_line[1]="Next time say `dashed <known picture expression>';";
22553 else if ( t==mp_uninitialized_model )
22554 mp->help_line[1]="Next time say `withcolor <known color expression>';";
22555 else if ( t==mp_rgb_model )
22556 mp->help_line[1]="Next time say `withrgbcolor <known color expression>';";
22557 else if ( t==mp_cmyk_model )
22558 mp->help_line[1]="Next time say `withcmykcolor <known cmykcolor expression>';";
22559 else if ( t==mp_grey_model )
22560 mp->help_line[1]="Next time say `withgreyscale <known numeric expression>';";;
22561 mp_put_get_flush_error(mp, 0);
22564 @ Forcing the color to be between |0| and |unity| here guarantees that no
22565 picture will ever contain a color outside the legal range for \ps\ graphics.
22567 @<Transfer a color from the current expression to object~|cp|@>=
22568 { if ( mp->cur_type==mp_color_type )
22569 @<Transfer a rgbcolor from the current expression to object~|cp|@>
22570 else if ( mp->cur_type==mp_cmykcolor_type )
22571 @<Transfer a cmykcolor from the current expression to object~|cp|@>
22572 else if ( mp->cur_type==mp_known )
22573 @<Transfer a greyscale from the current expression to object~|cp|@>
22574 else if ( mp->cur_exp==false_code )
22575 @<Transfer a noncolor from the current expression to object~|cp|@>;
22578 @ @<Transfer a rgbcolor from the current expression to object~|cp|@>=
22579 { q=value(mp->cur_exp);
22584 red_val(cp)=value(red_part_loc(q));
22585 green_val(cp)=value(green_part_loc(q));
22586 blue_val(cp)=value(blue_part_loc(q));
22587 color_model(cp)=mp_rgb_model;
22588 if ( red_val(cp)<0 ) red_val(cp)=0;
22589 if ( green_val(cp)<0 ) green_val(cp)=0;
22590 if ( blue_val(cp)<0 ) blue_val(cp)=0;
22591 if ( red_val(cp)>unity ) red_val(cp)=unity;
22592 if ( green_val(cp)>unity ) green_val(cp)=unity;
22593 if ( blue_val(cp)>unity ) blue_val(cp)=unity;
22596 @ @<Transfer a cmykcolor from the current expression to object~|cp|@>=
22597 { q=value(mp->cur_exp);
22598 cyan_val(cp)=value(cyan_part_loc(q));
22599 magenta_val(cp)=value(magenta_part_loc(q));
22600 yellow_val(cp)=value(yellow_part_loc(q));
22601 black_val(cp)=value(black_part_loc(q));
22602 color_model(cp)=mp_cmyk_model;
22603 if ( cyan_val(cp)<0 ) cyan_val(cp)=0;
22604 if ( magenta_val(cp)<0 ) magenta_val(cp)=0;
22605 if ( yellow_val(cp)<0 ) yellow_val(cp)=0;
22606 if ( black_val(cp)<0 ) black_val(cp)=0;
22607 if ( cyan_val(cp)>unity ) cyan_val(cp)=unity;
22608 if ( magenta_val(cp)>unity ) magenta_val(cp)=unity;
22609 if ( yellow_val(cp)>unity ) yellow_val(cp)=unity;
22610 if ( black_val(cp)>unity ) black_val(cp)=unity;
22613 @ @<Transfer a greyscale from the current expression to object~|cp|@>=
22620 color_model(cp)=mp_grey_model;
22621 if ( grey_val(cp)<0 ) grey_val(cp)=0;
22622 if ( grey_val(cp)>unity ) grey_val(cp)=unity;
22625 @ @<Transfer a noncolor from the current expression to object~|cp|@>=
22632 color_model(cp)=mp_no_model;
22635 @ @<Make |cp| a colored object in object list~|p|@>=
22637 while ( cp!=null ){
22638 if ( has_color(cp) ) break;
22643 @ @<Make |pp| an object in list~|p| that needs a pen@>=
22645 while ( pp!=null ) {
22646 if ( has_pen(pp) ) break;
22651 @ @<Make |dp| a stroked node in list~|p|@>=
22653 while ( dp!=null ) {
22654 if ( type(dp)==mp_stroked_code ) break;
22659 @ @<Copy the information from objects |cp|, |pp|, and |dp| into...@>=
22660 @<Copy |cp|'s color into the colored objects linked to~|cp|@>;
22661 if ( pp>mp_void ) {
22662 @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>;
22664 if ( dp>mp_void ) {
22665 @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>;
22669 @ @<Copy |cp|'s color into the colored objects linked to~|cp|@>=
22671 while ( q!=null ) {
22672 if ( has_color(q) ) {
22673 red_val(q)=red_val(cp);
22674 green_val(q)=green_val(cp);
22675 blue_val(q)=blue_val(cp);
22676 black_val(q)=black_val(cp);
22677 color_model(q)=color_model(cp);
22683 @ @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>=
22685 while ( q!=null ) {
22686 if ( has_pen(q) ) {
22687 if ( pen_p(q)!=null ) mp_toss_knot_list(mp, pen_p(q));
22688 pen_p(q)=copy_pen(pen_p(pp));
22694 @ @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>=
22696 while ( q!=null ) {
22697 if ( type(q)==mp_stroked_code ) {
22698 if ( dash_p(q)!=null ) delete_edge_ref(dash_p(q));
22699 dash_p(q)=dash_p(dp);
22700 dash_scale(q)=unity;
22701 if ( dash_p(q)!=null ) add_edge_ref(dash_p(q));
22707 @ One of the things we need to do when we've parsed an \&{addto} or
22708 similar command is find the header of a supposed \&{picture} variable, given
22709 a token list for that variable. Since the edge structure is about to be
22710 updated, we use |private_edges| to make sure that this is possible.
22712 @<Declare action procedures for use by |do_statement|@>=
22713 pointer mp_find_edges_var (MP mp, pointer t) ;
22715 @ @c pointer mp_find_edges_var (MP mp, pointer t) {
22717 pointer cur_edges; /* the return value */
22718 p=mp_find_variable(mp, t); cur_edges=null;
22720 mp_obliterated(mp, t); mp_put_get_error(mp);
22721 } else if ( type(p)!=mp_picture_type ) {
22722 print_err("Variable "); mp_show_token_list(mp, t,null,1000,0);
22723 @.Variable x is the wrong type@>
22724 mp_print(mp, " is the wrong type (");
22725 mp_print_type(mp, type(p)); mp_print_char(mp, ')');
22726 help2("I was looking for a \"known\" picture variable.")
22727 ("So I'll not change anything just now.");
22728 mp_put_get_error(mp);
22730 value(p)=mp_private_edges(mp, value(p));
22731 cur_edges=value(p);
22733 mp_flush_node_list(mp, t);
22737 @ @<Cases of |do_statement|...@>=
22738 case add_to_command: mp_do_add_to(mp); break;
22739 case bounds_command:mp_do_bounds(mp); break;
22742 mp_primitive(mp, "clip",bounds_command,mp_start_clip_code);
22743 @:clip_}{\&{clip} primitive@>
22744 mp_primitive(mp, "setbounds",bounds_command,mp_start_bounds_code);
22745 @:set_bounds_}{\&{setbounds} primitive@>
22747 @ @<Cases of |print_cmd...@>=
22748 case bounds_command:
22749 if ( m==mp_start_clip_code ) mp_print(mp, "clip");
22750 else mp_print(mp, "setbounds");
22753 @ The following function parses the beginning of an \&{addto} or \&{clip}
22754 command: it expects a variable name followed by a token with |cur_cmd=sep|
22755 and then an expression. The function returns the token list for the variable
22756 and stores the command modifier for the separator token in the global variable
22757 |last_add_type|. We must be careful because this variable might get overwritten
22758 any time we call |get_x_next|.
22761 quarterword last_add_type;
22762 /* command modifier that identifies the last \&{addto} command */
22764 @ @<Declare action procedures for use by |do_statement|@>=
22765 pointer mp_start_draw_cmd (MP mp,quarterword sep) ;
22767 @ @c pointer mp_start_draw_cmd (MP mp,quarterword sep) {
22768 pointer lhv; /* variable to add to left */
22769 quarterword add_type=0; /* value to be returned in |last_add_type| */
22771 mp_get_x_next(mp); mp->var_flag=sep; mp_scan_primary(mp);
22772 if ( mp->cur_type!=mp_token_list ) {
22773 @<Abandon edges command because there's no variable@>;
22775 lhv=mp->cur_exp; add_type=mp->cur_mod;
22776 mp->cur_type=mp_vacuous; mp_get_x_next(mp); mp_scan_expression(mp);
22778 mp->last_add_type=add_type;
22782 @ @<Abandon edges command because there's no variable@>=
22783 { exp_err("Not a suitable variable");
22784 @.Not a suitable variable@>
22785 help4("At this point I needed to see the name of a picture variable.")
22786 ("(Or perhaps you have indeed presented me with one; I might")
22787 ("have missed it, if it wasn't followed by the proper token.)")
22788 ("So I'll not change anything just now.");
22789 mp_put_get_flush_error(mp, 0);
22792 @ Here is an example of how to use |start_draw_cmd|.
22794 @<Declare action procedures for use by |do_statement|@>=
22795 void mp_do_bounds (MP mp) ;
22797 @ @c void mp_do_bounds (MP mp) {
22798 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22799 pointer p; /* for list manipulation */
22800 integer m; /* initial value of |cur_mod| */
22802 lhv=mp_start_draw_cmd(mp, to_token);
22804 lhe=mp_find_edges_var(mp, lhv);
22806 mp_flush_cur_exp(mp, 0);
22807 } else if ( mp->cur_type!=mp_path_type ) {
22808 exp_err("Improper `clip'");
22809 @.Improper `addto'@>
22810 help2("This expression should have specified a known path.")
22811 ("So I'll not change anything just now.");
22812 mp_put_get_flush_error(mp, 0);
22813 } else if ( left_type(mp->cur_exp)==mp_endpoint ) {
22814 @<Complain about a non-cycle@>;
22816 @<Make |cur_exp| into a \&{setbounds} or clipping path and add it to |lhe|@>;
22821 @ @<Complain about a non-cycle@>=
22822 { print_err("Not a cycle");
22824 help2("That contour should have ended with `..cycle' or `&cycle'.")
22825 ("So I'll not change anything just now."); mp_put_get_error(mp);
22828 @ @<Make |cur_exp| into a \&{setbounds} or clipping path and add...@>=
22829 { p=mp_new_bounds_node(mp, mp->cur_exp,m);
22830 link(p)=link(dummy_loc(lhe));
22831 link(dummy_loc(lhe))=p;
22832 if ( obj_tail(lhe)==dummy_loc(lhe) ) obj_tail(lhe)=p;
22833 p=mp_get_node(mp, mp->gr_object_size[stop_type(m)]);
22834 type(p)=stop_type(m);
22835 link(obj_tail(lhe))=p;
22837 mp_init_bbox(mp, lhe);
22840 @ The |do_add_to| procedure is a little like |do_clip| but there are a lot more
22841 cases to deal with.
22843 @<Declare action procedures for use by |do_statement|@>=
22844 void mp_do_add_to (MP mp) ;
22846 @ @c void mp_do_add_to (MP mp) {
22847 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22848 pointer p; /* the graphical object or list for |scan_with_list| to update */
22849 pointer e; /* an edge structure to be merged */
22850 quarterword add_type; /* |also_code|, |contour_code|, or |double_path_code| */
22851 lhv=mp_start_draw_cmd(mp, thing_to_add); add_type=mp->last_add_type;
22853 if ( add_type==also_code ) {
22854 @<Make sure the current expression is a suitable picture and set |e| and |p|
22857 @<Create a graphical object |p| based on |add_type| and the current
22860 mp_scan_with_list(mp, p);
22861 @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>;
22865 @ Setting |p:=null| causes the $\langle$with list$\rangle$ to be ignored;
22866 setting |e:=null| prevents anything from being added to |lhe|.
22868 @ @<Make sure the current expression is a suitable picture and set |e|...@>=
22871 if ( mp->cur_type!=mp_picture_type ) {
22872 exp_err("Improper `addto'");
22873 @.Improper `addto'@>
22874 help2("This expression should have specified a known picture.")
22875 ("So I'll not change anything just now."); mp_put_get_flush_error(mp, 0);
22877 e=mp_private_edges(mp, mp->cur_exp); mp->cur_type=mp_vacuous;
22878 p=link(dummy_loc(e));
22882 @ In this case |add_type<>also_code| so setting |p:=null| suppresses future
22883 attempts to add to the edge structure.
22885 @<Create a graphical object |p| based on |add_type| and the current...@>=
22887 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
22888 if ( mp->cur_type!=mp_path_type ) {
22889 exp_err("Improper `addto'");
22890 @.Improper `addto'@>
22891 help2("This expression should have specified a known path.")
22892 ("So I'll not change anything just now.");
22893 mp_put_get_flush_error(mp, 0);
22894 } else if ( add_type==contour_code ) {
22895 if ( left_type(mp->cur_exp)==mp_endpoint ) {
22896 @<Complain about a non-cycle@>;
22898 p=mp_new_fill_node(mp, mp->cur_exp);
22899 mp->cur_type=mp_vacuous;
22902 p=mp_new_stroked_node(mp, mp->cur_exp);
22903 mp->cur_type=mp_vacuous;
22907 @ @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>=
22908 lhe=mp_find_edges_var(mp, lhv);
22910 if ( (e==null)&&(p!=null) ) e=mp_toss_gr_object(mp, p);
22911 if ( e!=null ) delete_edge_ref(e);
22912 } else if ( add_type==also_code ) {
22914 @<Merge |e| into |lhe| and delete |e|@>;
22918 } else if ( p!=null ) {
22919 link(obj_tail(lhe))=p;
22921 if ( add_type==double_path_code )
22922 if ( pen_p(p)==null )
22923 pen_p(p)=mp_get_pen_circle(mp, 0);
22926 @ @<Merge |e| into |lhe| and delete |e|@>=
22927 { if ( link(dummy_loc(e))!=null ) {
22928 link(obj_tail(lhe))=link(dummy_loc(e));
22929 obj_tail(lhe)=obj_tail(e);
22930 obj_tail(e)=dummy_loc(e);
22931 link(dummy_loc(e))=null;
22932 mp_flush_dash_list(mp, lhe);
22934 mp_toss_edges(mp, e);
22937 @ @<Cases of |do_statement|...@>=
22938 case ship_out_command: mp_do_ship_out(mp); break;
22940 @ @<Declare action procedures for use by |do_statement|@>=
22941 @<Declare the function called |tfm_check|@>;
22942 @<Declare the \ps\ output procedures@>;
22943 void mp_do_ship_out (MP mp) ;
22945 @ @c void mp_do_ship_out (MP mp) {
22946 integer c; /* the character code */
22947 mp_get_x_next(mp); mp_scan_expression(mp);
22948 if ( mp->cur_type!=mp_picture_type ) {
22949 @<Complain that it's not a known picture@>;
22951 c=mp_round_unscaled(mp, mp->internal[mp_char_code]) % 256;
22952 if ( c<0 ) c=c+256;
22953 @<Store the width information for character code~|c|@>;
22954 mp_ship_out(mp, mp->cur_exp);
22955 mp_flush_cur_exp(mp, 0);
22959 @ @<Complain that it's not a known picture@>=
22961 exp_err("Not a known picture");
22962 help1("I can only output known pictures.");
22963 mp_put_get_flush_error(mp, 0);
22966 @ The \&{everyjob} command simply assigns a nonzero value to the global variable
22969 @<Cases of |do_statement|...@>=
22970 case every_job_command:
22971 mp_get_symbol(mp); mp->start_sym=mp->cur_sym; mp_get_x_next(mp);
22975 halfword start_sym; /* a symbolic token to insert at beginning of job */
22980 @ Finally, we have only the ``message'' commands remaining.
22983 @d err_message_code 1
22985 @d filename_template_code 3
22986 @d print_with_leading_zeroes(A) g = mp->pool_ptr;
22987 mp_print_int(mp, (A)); g = mp->pool_ptr-g;
22989 mp->pool_ptr = mp->pool_ptr - g;
22991 mp_print_char(mp, '0');
22994 mp_print_int(mp, (A));
22999 mp_primitive(mp, "message",message_command,message_code);
23000 @:message_}{\&{message} primitive@>
23001 mp_primitive(mp, "errmessage",message_command,err_message_code);
23002 @:err_message_}{\&{errmessage} primitive@>
23003 mp_primitive(mp, "errhelp",message_command,err_help_code);
23004 @:err_help_}{\&{errhelp} primitive@>
23005 mp_primitive(mp, "filenametemplate",message_command,filename_template_code);
23006 @:filename_template_}{\&{filenametemplate} primitive@>
23008 @ @<Cases of |print_cmd...@>=
23009 case message_command:
23010 if ( m<err_message_code ) mp_print(mp, "message");
23011 else if ( m==err_message_code ) mp_print(mp, "errmessage");
23012 else if ( m==filename_template_code ) mp_print(mp, "filenametemplate");
23013 else mp_print(mp, "errhelp");
23016 @ @<Cases of |do_statement|...@>=
23017 case message_command: mp_do_message(mp); break;
23019 @ @<Declare action procedures for use by |do_statement|@>=
23020 @<Declare a procedure called |no_string_err|@>;
23021 void mp_do_message (MP mp) ;
23024 @c void mp_do_message (MP mp) {
23025 int m; /* the type of message */
23026 m=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
23027 if ( mp->cur_type!=mp_string_type )
23028 mp_no_string_err(mp, "A message should be a known string expression.");
23032 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp);
23034 case err_message_code:
23035 @<Print string |cur_exp| as an error message@>;
23037 case err_help_code:
23038 @<Save string |cur_exp| as the |err_help|@>;
23040 case filename_template_code:
23041 @<Save the filename template@>;
23043 } /* there are no other cases */
23045 mp_flush_cur_exp(mp, 0);
23048 @ @<Declare a procedure called |no_string_err|@>=
23049 void mp_no_string_err (MP mp,char *s) {
23050 exp_err("Not a string");
23053 mp_put_get_error(mp);
23056 @ The global variable |err_help| is zero when the user has most recently
23057 given an empty help string, or if none has ever been given.
23059 @<Save string |cur_exp| as the |err_help|@>=
23061 if ( mp->err_help!=0 ) delete_str_ref(mp->err_help);
23062 if ( length(mp->cur_exp)==0 ) mp->err_help=0;
23063 else { mp->err_help=mp->cur_exp; add_str_ref(mp->err_help); }
23066 @ If \&{errmessage} occurs often in |mp_scroll_mode|, without user-defined
23067 \&{errhelp}, we don't want to give a long help message each time. So we
23068 give a verbose explanation only once.
23071 boolean long_help_seen; /* has the long \.{\\errmessage} help been used? */
23073 @ @<Set init...@>=mp->long_help_seen=false;
23075 @ @<Print string |cur_exp| as an error message@>=
23077 print_err(""); mp_print_str(mp, mp->cur_exp);
23078 if ( mp->err_help!=0 ) {
23079 mp->use_err_help=true;
23080 } else if ( mp->long_help_seen ) {
23081 help1("(That was another `errmessage'.)") ;
23083 if ( mp->interaction<mp_error_stop_mode ) mp->long_help_seen=true;
23084 help4("This error message was generated by an `errmessage'")
23085 ("command, so I can\'t give any explicit help.")
23086 ("Pretend that you're Miss Marple: Examine all clues,")
23088 ("and deduce the truth by inspired guesses.");
23090 mp_put_get_error(mp); mp->use_err_help=false;
23093 @ @<Cases of |do_statement|...@>=
23094 case write_command: mp_do_write(mp); break;
23096 @ @<Declare action procedures for use by |do_statement|@>=
23097 void mp_do_write (MP mp) ;
23099 @ @c void mp_do_write (MP mp) {
23100 str_number t; /* the line of text to be written */
23101 write_index n,n0; /* for searching |wr_fname| and |wr_file| arrays */
23102 int old_setting; /* for saving |selector| during output */
23104 mp_scan_expression(mp);
23105 if ( mp->cur_type!=mp_string_type ) {
23106 mp_no_string_err(mp, "The text to be written should be a known string expression");
23107 } else if ( mp->cur_cmd!=to_token ) {
23108 print_err("Missing `to' clause");
23109 help1("A write command should end with `to <filename>'");
23110 mp_put_get_error(mp);
23112 t=mp->cur_exp; mp->cur_type=mp_vacuous;
23114 mp_scan_expression(mp);
23115 if ( mp->cur_type!=mp_string_type )
23116 mp_no_string_err(mp, "I can\'t write to that file name. It isn't a known string");
23118 @<Write |t| to the file named by |cur_exp|@>;
23122 mp_flush_cur_exp(mp, 0);
23125 @ @<Write |t| to the file named by |cur_exp|@>=
23127 @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if
23128 |cur_exp| must be inserted@>;
23129 if ( mp_str_vs_str(mp, t,mp->eof_line)==0 ) {
23130 @<Record the end of file on |wr_file[n]|@>;
23132 old_setting=mp->selector;
23133 mp->selector=n+write_file;
23134 mp_print_str(mp, t); mp_print_ln(mp);
23135 mp->selector = old_setting;
23139 @ @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if...@>=
23141 char *fn = str(mp->cur_exp);
23143 n0=mp->write_files;
23144 while (mp_xstrcmp(fn,mp->wr_fname[n])!=0) {
23145 if ( n==0 ) { /* bottom reached */
23146 if ( n0==mp->write_files ) {
23147 if ( mp->write_files<mp->max_write_files ) {
23148 incr(mp->write_files);
23153 l = mp->max_write_files + (mp->max_write_files>>2);
23154 wr_file = xmalloc((l+1),sizeof(void *));
23155 wr_fname = xmalloc((l+1),sizeof(char *));
23156 for (k=0;k<=l;k++) {
23157 if (k<=mp->max_write_files) {
23158 wr_file[k]=mp->wr_file[k];
23159 wr_fname[k]=mp->wr_fname[k];
23165 xfree(mp->wr_file); xfree(mp->wr_fname);
23166 mp->max_write_files = l;
23167 mp->wr_file = wr_file;
23168 mp->wr_fname = wr_fname;
23172 mp_open_write_file(mp, fn ,n);
23175 if ( mp->wr_fname[n]==NULL ) n0=n;
23180 @ @<Record the end of file on |wr_file[n]|@>=
23181 { (mp->close_file)(mp->wr_file[n]);
23182 xfree(mp->wr_fname[n]);
23183 mp->wr_fname[n]=NULL;
23184 if ( n==mp->write_files-1 ) mp->write_files=n;
23188 @* \[42] Writing font metric data.
23189 \TeX\ gets its knowledge about fonts from font metric files, also called
23190 \.{TFM} files; the `\.T' in `\.{TFM}' stands for \TeX,
23191 but other programs know about them too. One of \MP's duties is to
23192 write \.{TFM} files so that the user's fonts can readily be
23193 applied to typesetting.
23194 @:TFM files}{\.{TFM} files@>
23195 @^font metric files@>
23197 The information in a \.{TFM} file appears in a sequence of 8-bit bytes.
23198 Since the number of bytes is always a multiple of~4, we could
23199 also regard the file as a sequence of 32-bit words, but \MP\ uses the
23200 byte interpretation. The format of \.{TFM} files was designed by
23201 Lyle Ramshaw in 1980. The intent is to convey a lot of different kinds
23202 @^Ramshaw, Lyle Harold@>
23203 of information in a compact but useful form.
23206 void * tfm_file; /* the font metric output goes here */
23207 char * metric_file_name; /* full name of the font metric file */
23209 @ The first 24 bytes (6 words) of a \.{TFM} file contain twelve 16-bit
23210 integers that give the lengths of the various subsequent portions
23211 of the file. These twelve integers are, in order:
23212 $$\vbox{\halign{\hfil#&$\null=\null$#\hfil\cr
23213 |lf|&length of the entire file, in words;\cr
23214 |lh|&length of the header data, in words;\cr
23215 |bc|&smallest character code in the font;\cr
23216 |ec|&largest character code in the font;\cr
23217 |nw|&number of words in the width table;\cr
23218 |nh|&number of words in the height table;\cr
23219 |nd|&number of words in the depth table;\cr
23220 |ni|&number of words in the italic correction table;\cr
23221 |nl|&number of words in the lig/kern table;\cr
23222 |nk|&number of words in the kern table;\cr
23223 |ne|&number of words in the extensible character table;\cr
23224 |np|&number of font parameter words.\cr}}$$
23225 They are all nonnegative and less than $2^{15}$. We must have |bc-1<=ec<=255|,
23227 $$\hbox{|lf=6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np|.}$$
23228 Note that a font may contain as many as 256 characters (if |bc=0| and |ec=255|),
23229 and as few as 0 characters (if |bc=ec+1|).
23231 Incidentally, when two or more 8-bit bytes are combined to form an integer of
23232 16 or more bits, the most significant bytes appear first in the file.
23233 This is called BigEndian order.
23234 @^BigEndian order@>
23236 @ The rest of the \.{TFM} file may be regarded as a sequence of ten data
23239 The most important data type used here is a |fix_word|, which is
23240 a 32-bit representation of a binary fraction. A |fix_word| is a signed
23241 quantity, with the two's complement of the entire word used to represent
23242 negation. Of the 32 bits in a |fix_word|, exactly 12 are to the left of the
23243 binary point; thus, the largest |fix_word| value is $2048-2^{-20}$, and
23244 the smallest is $-2048$. We will see below, however, that all but two of
23245 the |fix_word| values must lie between $-16$ and $+16$.
23247 @ The first data array is a block of header information, which contains
23248 general facts about the font. The header must contain at least two words,
23249 |header[0]| and |header[1]|, whose meaning is explained below. Additional
23250 header information of use to other software routines might also be
23251 included, and \MP\ will generate it if the \.{headerbyte} command occurs.
23252 For example, 16 more words of header information are in use at the Xerox
23253 Palo Alto Research Center; the first ten specify the character coding
23254 scheme used (e.g., `\.{XEROX TEXT}' or `\.{TEX MATHSY}'), the next five
23255 give the font family name (e.g., `\.{HELVETICA}' or `\.{CMSY}'), and the
23256 last gives the ``face byte.''
23258 \yskip\hang|header[0]| is a 32-bit check sum that \MP\ will copy into
23259 the \.{GF} output file. This helps ensure consistency between files,
23260 since \TeX\ records the check sums from the \.{TFM}'s it reads, and these
23261 should match the check sums on actual fonts that are used. The actual
23262 relation between this check sum and the rest of the \.{TFM} file is not
23263 important; the check sum is simply an identification number with the
23264 property that incompatible fonts almost always have distinct check sums.
23267 \yskip\hang|header[1]| is a |fix_word| containing the design size of the
23268 font, in units of \TeX\ points. This number must be at least 1.0; it is
23269 fairly arbitrary, but usually the design size is 10.0 for a ``10 point''
23270 font, i.e., a font that was designed to look best at a 10-point size,
23271 whatever that really means. When a \TeX\ user asks for a font `\.{at}
23272 $\delta$ \.{pt}', the effect is to override the design size and replace it
23273 by $\delta$, and to multiply the $x$ and~$y$ coordinates of the points in
23274 the font image by a factor of $\delta$ divided by the design size. {\sl
23275 All other dimensions in the\/ \.{TFM} file are |fix_word|\kern-1pt\
23276 numbers in design-size units.} Thus, for example, the value of |param[6]|,
23277 which defines the \.{em} unit, is often the |fix_word| value $2^{20}=1.0$,
23278 since many fonts have a design size equal to one em. The other dimensions
23279 must be less than 16 design-size units in absolute value; thus,
23280 |header[1]| and |param[1]| are the only |fix_word| entries in the whole
23281 \.{TFM} file whose first byte might be something besides 0 or 255.
23283 @ Next comes the |char_info| array, which contains one |char_info_word|
23284 per character. Each word in this part of the file contains six fields
23285 packed into four bytes as follows.
23287 \yskip\hang first byte: |width_index| (8 bits)\par
23288 \hang second byte: |height_index| (4 bits) times 16, plus |depth_index|
23290 \hang third byte: |italic_index| (6 bits) times 4, plus |tag|
23292 \hang fourth byte: |remainder| (8 bits)\par
23294 The actual width of a character is \\{width}|[width_index]|, in design-size
23295 units; this is a device for compressing information, since many characters
23296 have the same width. Since it is quite common for many characters
23297 to have the same height, depth, or italic correction, the \.{TFM} format
23298 imposes a limit of 16 different heights, 16 different depths, and
23299 64 different italic corrections.
23301 Incidentally, the relation $\\{width}[0]=\\{height}[0]=\\{depth}[0]=
23302 \\{italic}[0]=0$ should always hold, so that an index of zero implies a
23303 value of zero. The |width_index| should never be zero unless the
23304 character does not exist in the font, since a character is valid if and
23305 only if it lies between |bc| and |ec| and has a nonzero |width_index|.
23307 @ The |tag| field in a |char_info_word| has four values that explain how to
23308 interpret the |remainder| field.
23310 \yskip\hang|tag=0| (|no_tag|) means that |remainder| is unused.\par
23311 \hang|tag=1| (|lig_tag|) means that this character has a ligature/kerning
23312 program starting at location |remainder| in the |lig_kern| array.\par
23313 \hang|tag=2| (|list_tag|) means that this character is part of a chain of
23314 characters of ascending sizes, and not the largest in the chain. The
23315 |remainder| field gives the character code of the next larger character.\par
23316 \hang|tag=3| (|ext_tag|) means that this character code represents an
23317 extensible character, i.e., a character that is built up of smaller pieces
23318 so that it can be made arbitrarily large. The pieces are specified in
23319 |exten[remainder]|.\par
23321 Characters with |tag=2| and |tag=3| are treated as characters with |tag=0|
23322 unless they are used in special circumstances in math formulas. For example,
23323 \TeX's \.{\\sum} operation looks for a |list_tag|, and the \.{\\left}
23324 operation looks for both |list_tag| and |ext_tag|.
23326 @d no_tag 0 /* vanilla character */
23327 @d lig_tag 1 /* character has a ligature/kerning program */
23328 @d list_tag 2 /* character has a successor in a charlist */
23329 @d ext_tag 3 /* character is extensible */
23331 @ The |lig_kern| array contains instructions in a simple programming language
23332 that explains what to do for special letter pairs. Each word in this array is a
23333 |lig_kern_command| of four bytes.
23335 \yskip\hang first byte: |skip_byte|, indicates that this is the final program
23336 step if the byte is 128 or more, otherwise the next step is obtained by
23337 skipping this number of intervening steps.\par
23338 \hang second byte: |next_char|, ``if |next_char| follows the current character,
23339 then perform the operation and stop, otherwise continue.''\par
23340 \hang third byte: |op_byte|, indicates a ligature step if less than~128,
23341 a kern step otherwise.\par
23342 \hang fourth byte: |remainder|.\par
23345 additional space equal to |kern[256*(op_byte-128)+remainder]| is inserted
23346 between the current character and |next_char|. This amount is
23347 often negative, so that the characters are brought closer together
23348 by kerning; but it might be positive.
23350 There are eight kinds of ligature steps, having |op_byte| codes $4a+2b+c$ where
23351 $0\le a\le b+c$ and $0\le b,c\le1$. The character whose code is
23352 |remainder| is inserted between the current character and |next_char|;
23353 then the current character is deleted if $b=0$, and |next_char| is
23354 deleted if $c=0$; then we pass over $a$~characters to reach the next
23355 current character (which may have a ligature/kerning program of its own).
23357 If the very first instruction of the |lig_kern| array has |skip_byte=255|,
23358 the |next_char| byte is the so-called right boundary character of this font;
23359 the value of |next_char| need not lie between |bc| and~|ec|.
23360 If the very last instruction of the |lig_kern| array has |skip_byte=255|,
23361 there is a special ligature/kerning program for a left boundary character,
23362 beginning at location |256*op_byte+remainder|.
23363 The interpretation is that \TeX\ puts implicit boundary characters
23364 before and after each consecutive string of characters from the same font.
23365 These implicit characters do not appear in the output, but they can affect
23366 ligatures and kerning.
23368 If the very first instruction of a character's |lig_kern| program has
23369 |skip_byte>128|, the program actually begins in location
23370 |256*op_byte+remainder|. This feature allows access to large |lig_kern|
23371 arrays, because the first instruction must otherwise
23372 appear in a location |<=255|.
23374 Any instruction with |skip_byte>128| in the |lig_kern| array must satisfy
23376 $$\hbox{|256*op_byte+remainder<nl|.}$$
23377 If such an instruction is encountered during
23378 normal program execution, it denotes an unconditional halt; no ligature
23379 command is performed.
23382 /* value indicating `\.{STOP}' in a lig/kern program */
23383 @d kern_flag (128) /* op code for a kern step */
23384 @d skip_byte(A) mp->lig_kern[(A)].b0
23385 @d next_char(A) mp->lig_kern[(A)].b1
23386 @d op_byte(A) mp->lig_kern[(A)].b2
23387 @d rem_byte(A) mp->lig_kern[(A)].b3
23389 @ Extensible characters are specified by an |extensible_recipe|, which
23390 consists of four bytes called |top|, |mid|, |bot|, and |rep| (in this
23391 order). These bytes are the character codes of individual pieces used to
23392 build up a large symbol. If |top|, |mid|, or |bot| are zero, they are not
23393 present in the built-up result. For example, an extensible vertical line is
23394 like an extensible bracket, except that the top and bottom pieces are missing.
23396 Let $T$, $M$, $B$, and $R$ denote the respective pieces, or an empty box
23397 if the piece isn't present. Then the extensible characters have the form
23398 $TR^kMR^kB$ from top to bottom, for some |k>=0|, unless $M$ is absent;
23399 in the latter case we can have $TR^kB$ for both even and odd values of~|k|.
23400 The width of the extensible character is the width of $R$; and the
23401 height-plus-depth is the sum of the individual height-plus-depths of the
23402 components used, since the pieces are butted together in a vertical list.
23404 @d ext_top(A) mp->exten[(A)].b0 /* |top| piece in a recipe */
23405 @d ext_mid(A) mp->exten[(A)].b1 /* |mid| piece in a recipe */
23406 @d ext_bot(A) mp->exten[(A)].b2 /* |bot| piece in a recipe */
23407 @d ext_rep(A) mp->exten[(A)].b3 /* |rep| piece in a recipe */
23409 @ The final portion of a \.{TFM} file is the |param| array, which is another
23410 sequence of |fix_word| values.
23412 \yskip\hang|param[1]=slant| is the amount of italic slant, which is used
23413 to help position accents. For example, |slant=.25| means that when you go
23414 up one unit, you also go .25 units to the right. The |slant| is a pure
23415 number; it is the only |fix_word| other than the design size itself that is
23416 not scaled by the design size.
23418 \hang|param[2]=space| is the normal spacing between words in text.
23419 Note that character 040 in the font need not have anything to do with
23422 \hang|param[3]=space_stretch| is the amount of glue stretching between words.
23424 \hang|param[4]=space_shrink| is the amount of glue shrinking between words.
23426 \hang|param[5]=x_height| is the size of one ex in the font; it is also
23427 the height of letters for which accents don't have to be raised or lowered.
23429 \hang|param[6]=quad| is the size of one em in the font.
23431 \hang|param[7]=extra_space| is the amount added to |param[2]| at the
23435 If fewer than seven parameters are present, \TeX\ sets the missing parameters
23440 @d space_stretch_code 3
23441 @d space_shrink_code 4
23444 @d extra_space_code 7
23446 @ So that is what \.{TFM} files hold. One of \MP's duties is to output such
23447 information, and it does this all at once at the end of a job.
23448 In order to prepare for such frenetic activity, it squirrels away the
23449 necessary facts in various arrays as information becomes available.
23451 Character dimensions (\&{charwd}, \&{charht}, \&{chardp}, and \&{charic})
23452 are stored respectively in |tfm_width|, |tfm_height|, |tfm_depth|, and
23453 |tfm_ital_corr|. Other information about a character (e.g., about
23454 its ligatures or successors) is accessible via the |char_tag| and
23455 |char_remainder| arrays. Other information about the font as a whole
23456 is kept in additional arrays called |header_byte|, |lig_kern|,
23457 |kern|, |exten|, and |param|.
23459 @d max_tfm_int 32510
23460 @d undefined_label max_tfm_int /* an undefined local label */
23463 #define TFM_ITEMS 257
23465 eight_bits ec; /* smallest and largest character codes shipped out */
23466 scaled tfm_width[TFM_ITEMS]; /* \&{charwd} values */
23467 scaled tfm_height[TFM_ITEMS]; /* \&{charht} values */
23468 scaled tfm_depth[TFM_ITEMS]; /* \&{chardp} values */
23469 scaled tfm_ital_corr[TFM_ITEMS]; /* \&{charic} values */
23470 boolean char_exists[TFM_ITEMS]; /* has this code been shipped out? */
23471 int char_tag[TFM_ITEMS]; /* |remainder| category */
23472 int char_remainder[TFM_ITEMS]; /* the |remainder| byte */
23473 char *header_byte; /* bytes of the \.{TFM} header */
23474 int header_last; /* last initialized \.{TFM} header byte */
23475 int header_size; /* size of the \.{TFM} header */
23476 four_quarters *lig_kern; /* the ligature/kern table */
23477 short nl; /* the number of ligature/kern steps so far */
23478 scaled *kern; /* distinct kerning amounts */
23479 short nk; /* the number of distinct kerns so far */
23480 four_quarters exten[TFM_ITEMS]; /* extensible character recipes */
23481 short ne; /* the number of extensible characters so far */
23482 scaled *param; /* \&{fontinfo} parameters */
23483 short np; /* the largest \&{fontinfo} parameter specified so far */
23484 short nw;short nh;short nd;short ni; /* sizes of \.{TFM} subtables */
23485 short skip_table[TFM_ITEMS]; /* local label status */
23486 boolean lk_started; /* has there been a lig/kern step in this command yet? */
23487 integer bchar; /* right boundary character */
23488 short bch_label; /* left boundary starting location */
23489 short ll;short lll; /* registers used for lig/kern processing */
23490 short label_loc[257]; /* lig/kern starting addresses */
23491 eight_bits label_char[257]; /* characters for |label_loc| */
23492 short label_ptr; /* highest position occupied in |label_loc| */
23494 @ @<Allocate or initialize ...@>=
23495 mp->header_last = 0; mp->header_size = 128; /* just for init */
23496 mp->header_byte = xmalloc(mp->header_size, sizeof(char));
23497 mp->lig_kern = NULL; /* allocated when needed */
23498 mp->kern = NULL; /* allocated when needed */
23499 mp->param = NULL; /* allocated when needed */
23501 @ @<Dealloc variables@>=
23502 xfree(mp->header_byte);
23503 xfree(mp->lig_kern);
23508 for (k=0;k<= 255;k++ ) {
23509 mp->tfm_width[k]=0; mp->tfm_height[k]=0; mp->tfm_depth[k]=0; mp->tfm_ital_corr[k]=0;
23510 mp->char_exists[k]=false; mp->char_tag[k]=no_tag; mp->char_remainder[k]=0;
23511 mp->skip_table[k]=undefined_label;
23513 memset(mp->header_byte,0,mp->header_size);
23514 mp->bc=255; mp->ec=0; mp->nl=0; mp->nk=0; mp->ne=0; mp->np=0;
23515 mp->internal[mp_boundary_char]=-unity;
23516 mp->bch_label=undefined_label;
23517 mp->label_loc[0]=-1; mp->label_ptr=0;
23519 @ @<Declarations@>=
23520 scaled mp_tfm_check (MP mp,small_number m) ;
23522 @ @<Declare the function called |tfm_check|@>=
23523 scaled mp_tfm_check (MP mp,small_number m) {
23524 if ( abs(mp->internal[m])>=fraction_half ) {
23525 print_err("Enormous "); mp_print(mp, mp->int_name[m]);
23526 @.Enormous charwd...@>
23527 @.Enormous chardp...@>
23528 @.Enormous charht...@>
23529 @.Enormous charic...@>
23530 @.Enormous designsize...@>
23531 mp_print(mp, " has been reduced");
23532 help1("Font metric dimensions must be less than 2048pt.");
23533 mp_put_get_error(mp);
23534 if ( mp->internal[m]>0 ) return (fraction_half-1);
23535 else return (1-fraction_half);
23537 return mp->internal[m];
23541 @ @<Store the width information for character code~|c|@>=
23542 if ( c<mp->bc ) mp->bc=c;
23543 if ( c>mp->ec ) mp->ec=c;
23544 mp->char_exists[c]=true;
23545 mp->tfm_width[c]=mp_tfm_check(mp, mp_char_wd);
23546 mp->tfm_height[c]=mp_tfm_check(mp, mp_char_ht);
23547 mp->tfm_depth[c]=mp_tfm_check(mp, mp_char_dp);
23548 mp->tfm_ital_corr[c]=mp_tfm_check(mp, mp_char_ic)
23550 @ Now let's consider \MP's special \.{TFM}-oriented commands.
23552 @<Cases of |do_statement|...@>=
23553 case tfm_command: mp_do_tfm_command(mp); break;
23555 @ @d char_list_code 0
23556 @d lig_table_code 1
23557 @d extensible_code 2
23558 @d header_byte_code 3
23559 @d font_dimen_code 4
23562 mp_primitive(mp, "charlist",tfm_command,char_list_code);
23563 @:char_list_}{\&{charlist} primitive@>
23564 mp_primitive(mp, "ligtable",tfm_command,lig_table_code);
23565 @:lig_table_}{\&{ligtable} primitive@>
23566 mp_primitive(mp, "extensible",tfm_command,extensible_code);
23567 @:extensible_}{\&{extensible} primitive@>
23568 mp_primitive(mp, "headerbyte",tfm_command,header_byte_code);
23569 @:header_byte_}{\&{headerbyte} primitive@>
23570 mp_primitive(mp, "fontdimen",tfm_command,font_dimen_code);
23571 @:font_dimen_}{\&{fontdimen} primitive@>
23573 @ @<Cases of |print_cmd...@>=
23576 case char_list_code:mp_print(mp, "charlist"); break;
23577 case lig_table_code:mp_print(mp, "ligtable"); break;
23578 case extensible_code:mp_print(mp, "extensible"); break;
23579 case header_byte_code:mp_print(mp, "headerbyte"); break;
23580 default: mp_print(mp, "fontdimen"); break;
23584 @ @<Declare action procedures for use by |do_statement|@>=
23585 eight_bits mp_get_code (MP mp) ;
23587 @ @c eight_bits mp_get_code (MP mp) { /* scans a character code value */
23588 integer c; /* the code value found */
23589 mp_get_x_next(mp); mp_scan_expression(mp);
23590 if ( mp->cur_type==mp_known ) {
23591 c=mp_round_unscaled(mp, mp->cur_exp);
23592 if ( c>=0 ) if ( c<256 ) return c;
23593 } else if ( mp->cur_type==mp_string_type ) {
23594 if ( length(mp->cur_exp)==1 ) {
23595 c=mp->str_pool[mp->str_start[mp->cur_exp]];
23599 exp_err("Invalid code has been replaced by 0");
23600 @.Invalid code...@>
23601 help2("I was looking for a number between 0 and 255, or for a")
23602 ("string of length 1. Didn't find it; will use 0 instead.");
23603 mp_put_get_flush_error(mp, 0); c=0;
23607 @ @<Declare action procedures for use by |do_statement|@>=
23608 void mp_set_tag (MP mp,halfword c, small_number t, halfword r) ;
23610 @ @c void mp_set_tag (MP mp,halfword c, small_number t, halfword r) {
23611 if ( mp->char_tag[c]==no_tag ) {
23612 mp->char_tag[c]=t; mp->char_remainder[c]=r;
23614 incr(mp->label_ptr); mp->label_loc[mp->label_ptr]=r;
23615 mp->label_char[mp->label_ptr]=c;
23618 @<Complain about a character tag conflict@>;
23622 @ @<Complain about a character tag conflict@>=
23624 print_err("Character ");
23625 if ( (c>' ')&&(c<127) ) mp_print_char(mp,c);
23626 else if ( c==256 ) mp_print(mp, "||");
23627 else { mp_print(mp, "code "); mp_print_int(mp, c); };
23628 mp_print(mp, " is already ");
23629 @.Character c is already...@>
23630 switch (mp->char_tag[c]) {
23631 case lig_tag: mp_print(mp, "in a ligtable"); break;
23632 case list_tag: mp_print(mp, "in a charlist"); break;
23633 case ext_tag: mp_print(mp, "extensible"); break;
23634 } /* there are no other cases */
23635 help2("It's not legal to label a character more than once.")
23636 ("So I'll not change anything just now.");
23637 mp_put_get_error(mp);
23640 @ @<Declare action procedures for use by |do_statement|@>=
23641 void mp_do_tfm_command (MP mp) ;
23643 @ @c void mp_do_tfm_command (MP mp) {
23644 int c,cc; /* character codes */
23645 int k; /* index into the |kern| array */
23646 int j; /* index into |header_byte| or |param| */
23647 switch (mp->cur_mod) {
23648 case char_list_code:
23650 /* we will store a list of character successors */
23651 while ( mp->cur_cmd==colon ) {
23652 cc=mp_get_code(mp); mp_set_tag(mp, c,list_tag,cc); c=cc;
23655 case lig_table_code:
23656 if (mp->lig_kern==NULL)
23657 mp->lig_kern = xmalloc((max_tfm_int+1),sizeof(four_quarters));
23658 if (mp->kern==NULL)
23659 mp->kern = xmalloc((max_tfm_int+1),sizeof(scaled));
23660 @<Store a list of ligature/kern steps@>;
23662 case extensible_code:
23663 @<Define an extensible recipe@>;
23665 case header_byte_code:
23666 case font_dimen_code:
23667 c=mp->cur_mod; mp_get_x_next(mp);
23668 mp_scan_expression(mp);
23669 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<half_unit) ) {
23670 exp_err("Improper location");
23671 @.Improper location@>
23672 help2("I was looking for a known, positive number.")
23673 ("For safety's sake I'll ignore the present command.");
23674 mp_put_get_error(mp);
23676 j=mp_round_unscaled(mp, mp->cur_exp);
23677 if ( mp->cur_cmd!=colon ) {
23678 mp_missing_err(mp, ":");
23680 help1("A colon should follow a headerbyte or fontinfo location.");
23683 if ( c==header_byte_code ) {
23684 @<Store a list of header bytes@>;
23686 if (mp->param==NULL)
23687 mp->param = xmalloc((max_tfm_int+1),sizeof(scaled));
23688 @<Store a list of font dimensions@>;
23692 } /* there are no other cases */
23695 @ @<Store a list of ligature/kern steps@>=
23697 mp->lk_started=false;
23700 if ((mp->cur_cmd==skip_to)&& mp->lk_started )
23701 @<Process a |skip_to| command and |goto done|@>;
23702 if ( mp->cur_cmd==bchar_label ) { c=256; mp->cur_cmd=colon; }
23703 else { mp_back_input(mp); c=mp_get_code(mp); };
23704 if ((mp->cur_cmd==colon)||(mp->cur_cmd==double_colon)) {
23705 @<Record a label in a lig/kern subprogram and |goto continue|@>;
23707 if ( mp->cur_cmd==lig_kern_token ) {
23708 @<Compile a ligature/kern command@>;
23710 print_err("Illegal ligtable step");
23711 @.Illegal ligtable step@>
23712 help1("I was looking for `=:' or `kern' here.");
23713 mp_back_error(mp); next_char(mp->nl)=qi(0);
23714 op_byte(mp->nl)=qi(0); rem_byte(mp->nl)=qi(0);
23715 skip_byte(mp->nl)=stop_flag+1; /* this specifies an unconditional stop */
23717 if ( mp->nl==max_tfm_int) mp_fatal_error(mp, "ligtable too large");
23719 if ( mp->cur_cmd==comma ) goto CONTINUE;
23720 if ( skip_byte(mp->nl-1)<stop_flag ) skip_byte(mp->nl-1)=stop_flag;
23725 mp_primitive(mp, "=:",lig_kern_token,0);
23726 @:=:_}{\.{=:} primitive@>
23727 mp_primitive(mp, "=:|",lig_kern_token,1);
23728 @:=:/_}{\.{=:\char'174} primitive@>
23729 mp_primitive(mp, "=:|>",lig_kern_token,5);
23730 @:=:/>_}{\.{=:\char'174>} primitive@>
23731 mp_primitive(mp, "|=:",lig_kern_token,2);
23732 @:=:/_}{\.{\char'174=:} primitive@>
23733 mp_primitive(mp, "|=:>",lig_kern_token,6);
23734 @:=:/>_}{\.{\char'174=:>} primitive@>
23735 mp_primitive(mp, "|=:|",lig_kern_token,3);
23736 @:=:/_}{\.{\char'174=:\char'174} primitive@>
23737 mp_primitive(mp, "|=:|>",lig_kern_token,7);
23738 @:=:/>_}{\.{\char'174=:\char'174>} primitive@>
23739 mp_primitive(mp, "|=:|>>",lig_kern_token,11);
23740 @:=:/>_}{\.{\char'174=:\char'174>>} primitive@>
23741 mp_primitive(mp, "kern",lig_kern_token,128);
23742 @:kern_}{\&{kern} primitive@>
23744 @ @<Cases of |print_cmd...@>=
23745 case lig_kern_token:
23747 case 0:mp_print(mp, "=:"); break;
23748 case 1:mp_print(mp, "=:|"); break;
23749 case 2:mp_print(mp, "|=:"); break;
23750 case 3:mp_print(mp, "|=:|"); break;
23751 case 5:mp_print(mp, "=:|>"); break;
23752 case 6:mp_print(mp, "|=:>"); break;
23753 case 7:mp_print(mp, "|=:|>"); break;
23754 case 11:mp_print(mp, "|=:|>>"); break;
23755 default: mp_print(mp, "kern"); break;
23759 @ Local labels are implemented by maintaining the |skip_table| array,
23760 where |skip_table[c]| is either |undefined_label| or the address of the
23761 most recent lig/kern instruction that skips to local label~|c|. In the
23762 latter case, the |skip_byte| in that instruction will (temporarily)
23763 be zero if there were no prior skips to this label, or it will be the
23764 distance to the prior skip.
23766 We may need to cancel skips that span more than 127 lig/kern steps.
23768 @d cancel_skips(A) mp->ll=(A);
23770 mp->lll=qo(skip_byte(mp->ll));
23771 skip_byte(mp->ll)=stop_flag; mp->ll=mp->ll-mp->lll;
23772 } while (mp->lll!=0)
23773 @d skip_error(A) { print_err("Too far to skip");
23774 @.Too far to skip@>
23775 help1("At most 127 lig/kern steps can separate skipto1 from 1::.");
23776 mp_error(mp); cancel_skips((A));
23779 @<Process a |skip_to| command and |goto done|@>=
23782 if ( mp->nl-mp->skip_table[c]>128 ) { /* |skip_table[c]<<nl<=undefined_label| */
23783 skip_error(mp->skip_table[c]); mp->skip_table[c]=undefined_label;
23785 if ( mp->skip_table[c]==undefined_label ) skip_byte(mp->nl-1)=qi(0);
23786 else skip_byte(mp->nl-1)=qi(mp->nl-mp->skip_table[c]-1);
23787 mp->skip_table[c]=mp->nl-1; goto DONE;
23790 @ @<Record a label in a lig/kern subprogram and |goto continue|@>=
23792 if ( mp->cur_cmd==colon ) {
23793 if ( c==256 ) mp->bch_label=mp->nl;
23794 else mp_set_tag(mp, c,lig_tag,mp->nl);
23795 } else if ( mp->skip_table[c]<undefined_label ) {
23796 mp->ll=mp->skip_table[c]; mp->skip_table[c]=undefined_label;
23798 mp->lll=qo(skip_byte(mp->ll));
23799 if ( mp->nl-mp->ll>128 ) {
23800 skip_error(mp->ll); goto CONTINUE;
23802 skip_byte(mp->ll)=qi(mp->nl-mp->ll-1); mp->ll=mp->ll-mp->lll;
23803 } while (mp->lll!=0);
23808 @ @<Compile a ligature/kern...@>=
23810 next_char(mp->nl)=qi(c); skip_byte(mp->nl)=qi(0);
23811 if ( mp->cur_mod<128 ) { /* ligature op */
23812 op_byte(mp->nl)=qi(mp->cur_mod); rem_byte(mp->nl)=qi(mp_get_code(mp));
23814 mp_get_x_next(mp); mp_scan_expression(mp);
23815 if ( mp->cur_type!=mp_known ) {
23816 exp_err("Improper kern");
23818 help2("The amount of kern should be a known numeric value.")
23819 ("I'm zeroing this one. Proceed, with fingers crossed.");
23820 mp_put_get_flush_error(mp, 0);
23822 mp->kern[mp->nk]=mp->cur_exp;
23824 while ( mp->kern[k]!=mp->cur_exp ) incr(k);
23826 if ( mp->nk==max_tfm_int ) mp_fatal_error(mp, "too many TFM kerns");
23829 op_byte(mp->nl)=kern_flag+(k / 256);
23830 rem_byte(mp->nl)=qi((k % 256));
23832 mp->lk_started=true;
23835 @ @d missing_extensible_punctuation(A)
23836 { mp_missing_err(mp, (A));
23837 @.Missing `\char`\#'@>
23838 help1("I'm processing `extensible c: t,m,b,r'."); mp_back_error(mp);
23841 @<Define an extensible recipe@>=
23843 if ( mp->ne==256 ) mp_fatal_error(mp, "too many extensible recipies");
23844 c=mp_get_code(mp); mp_set_tag(mp, c,ext_tag,mp->ne);
23845 if ( mp->cur_cmd!=colon ) missing_extensible_punctuation(":");
23846 ext_top(mp->ne)=qi(mp_get_code(mp));
23847 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23848 ext_mid(mp->ne)=qi(mp_get_code(mp));
23849 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23850 ext_bot(mp->ne)=qi(mp_get_code(mp));
23851 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23852 ext_rep(mp->ne)=qi(mp_get_code(mp));
23856 @ The header could contain ASCII zeroes, so can't use |strdup|.
23858 @<Store a list of header bytes@>=
23860 if ( j>=mp->header_size ) {
23861 int l = mp->header_size + (mp->header_size >> 2);
23862 char *t = xmalloc(l,sizeof(char));
23864 memcpy(t,mp->header_byte,mp->header_size);
23865 xfree (mp->header_byte);
23866 mp->header_byte = t;
23867 mp->header_size = l;
23869 mp->header_byte[j]=mp_get_code(mp);
23870 incr(j); incr(mp->header_last);
23871 } while (mp->cur_cmd==comma)
23873 @ @<Store a list of font dimensions@>=
23875 if ( j>max_tfm_int ) mp_fatal_error(mp, "too many fontdimens");
23876 while ( j>mp->np ) { incr(mp->np); mp->param[mp->np]=0; };
23877 mp_get_x_next(mp); mp_scan_expression(mp);
23878 if ( mp->cur_type!=mp_known ){
23879 exp_err("Improper font parameter");
23880 @.Improper font parameter@>
23881 help1("I'm zeroing this one. Proceed, with fingers crossed.");
23882 mp_put_get_flush_error(mp, 0);
23884 mp->param[j]=mp->cur_exp; incr(j);
23885 } while (mp->cur_cmd==comma)
23887 @ OK: We've stored all the data that is needed for the \.{TFM} file.
23888 All that remains is to output it in the correct format.
23890 An interesting problem needs to be solved in this connection, because
23891 the \.{TFM} format allows at most 256~widths, 16~heights, 16~depths,
23892 and 64~italic corrections. If the data has more distinct values than
23893 this, we want to meet the necessary restrictions by perturbing the
23894 given values as little as possible.
23896 \MP\ solves this problem in two steps. First the values of a given
23897 kind (widths, heights, depths, or italic corrections) are sorted;
23898 then the list of sorted values is perturbed, if necessary.
23900 The sorting operation is facilitated by having a special node of
23901 essentially infinite |value| at the end of the current list.
23903 @<Initialize table entries...@>=
23904 value(inf_val)=fraction_four;
23906 @ Straight linear insertion is good enough for sorting, since the lists
23907 are usually not terribly long. As we work on the data, the current list
23908 will start at |link(temp_head)| and end at |inf_val|; the nodes in this
23909 list will be in increasing order of their |value| fields.
23911 Given such a list, the |sort_in| function takes a value and returns a pointer
23912 to where that value can be found in the list. The value is inserted in
23913 the proper place, if necessary.
23915 At the time we need to do these operations, most of \MP's work has been
23916 completed, so we will have plenty of memory to play with. The value nodes
23917 that are allocated for sorting will never be returned to free storage.
23919 @d clear_the_list link(temp_head)=inf_val
23921 @c pointer mp_sort_in (MP mp,scaled v) {
23922 pointer p,q,r; /* list manipulation registers */
23926 if ( v<=value(q) ) break;
23929 if ( v<value(q) ) {
23930 r=mp_get_node(mp, value_node_size); value(r)=v; link(r)=q; link(p)=r;
23935 @ Now we come to the interesting part, where we reduce the list if necessary
23936 until it has the required size. The |min_cover| routine is basic to this
23937 process; it computes the minimum number~|m| such that the values of the
23938 current sorted list can be covered by |m|~intervals of width~|d|. It
23939 also sets the global value |perturbation| to the smallest value $d'>d$
23940 such that the covering found by this algorithm would be different.
23942 In particular, |min_cover(0)| returns the number of distinct values in the
23943 current list and sets |perturbation| to the minimum distance between
23946 @c integer mp_min_cover (MP mp,scaled d) {
23947 pointer p; /* runs through the current list */
23948 scaled l; /* the least element covered by the current interval */
23949 integer m; /* lower bound on the size of the minimum cover */
23950 m=0; p=link(temp_head); mp->perturbation=el_gordo;
23951 while ( p!=inf_val ){
23952 incr(m); l=value(p);
23953 do { p=link(p); } while (value(p)<=l+d);
23954 if ( value(p)-l<mp->perturbation )
23955 mp->perturbation=value(p)-l;
23961 scaled perturbation; /* quantity related to \.{TFM} rounding */
23962 integer excess; /* the list is this much too long */
23964 @ The smallest |d| such that a given list can be covered with |m| intervals
23965 is determined by the |threshold| routine, which is sort of an inverse
23966 to |min_cover|. The idea is to increase the interval size rapidly until
23967 finding the range, then to go sequentially until the exact borderline has
23970 @c scaled mp_threshold (MP mp,integer m) {
23971 scaled d; /* lower bound on the smallest interval size */
23972 mp->excess=mp_min_cover(mp, 0)-m;
23973 if ( mp->excess<=0 ) {
23977 d=mp->perturbation;
23978 } while (mp_min_cover(mp, d+d)>m);
23979 while ( mp_min_cover(mp, d)>m )
23980 d=mp->perturbation;
23985 @ The |skimp| procedure reduces the current list to at most |m| entries,
23986 by changing values if necessary. It also sets |info(p):=k| if |value(p)|
23987 is the |k|th distinct value on the resulting list, and it sets
23988 |perturbation| to the maximum amount by which a |value| field has
23989 been changed. The size of the resulting list is returned as the
23992 @c integer mp_skimp (MP mp,integer m) {
23993 scaled d; /* the size of intervals being coalesced */
23994 pointer p,q,r; /* list manipulation registers */
23995 scaled l; /* the least value in the current interval */
23996 scaled v; /* a compromise value */
23997 d=mp_threshold(mp, m); mp->perturbation=0;
23998 q=temp_head; m=0; p=link(temp_head);
23999 while ( p!=inf_val ) {
24000 incr(m); l=value(p); info(p)=m;
24001 if ( value(link(p))<=l+d ) {
24002 @<Replace an interval of values by its midpoint@>;
24009 @ @<Replace an interval...@>=
24012 p=link(p); info(p)=m;
24013 decr(mp->excess); if ( mp->excess==0 ) d=0;
24014 } while (value(link(p))<=l+d);
24015 v=l+halfp(value(p)-l);
24016 if ( value(p)-v>mp->perturbation )
24017 mp->perturbation=value(p)-v;
24020 r=link(r); value(r)=v;
24022 link(q)=p; /* remove duplicate values from the current list */
24025 @ A warning message is issued whenever something is perturbed by
24026 more than 1/16\thinspace pt.
24028 @c void mp_tfm_warning (MP mp,small_number m) {
24029 mp_print_nl(mp, "(some ");
24030 mp_print(mp, mp->int_name[m]);
24031 @.some charwds...@>
24032 @.some chardps...@>
24033 @.some charhts...@>
24034 @.some charics...@>
24035 mp_print(mp, " values had to be adjusted by as much as ");
24036 mp_print_scaled(mp, mp->perturbation); mp_print(mp, "pt)");
24039 @ Here's an example of how we use these routines.
24040 The width data needs to be perturbed only if there are 256 distinct
24041 widths, but \MP\ must check for this case even though it is
24044 An integer variable |k| will be defined when we use this code.
24045 The |dimen_head| array will contain pointers to the sorted
24046 lists of dimensions.
24048 @<Massage the \.{TFM} widths@>=
24050 for (k=mp->bc;k<=mp->ec;k++) {
24051 if ( mp->char_exists[k] )
24052 mp->tfm_width[k]=mp_sort_in(mp, mp->tfm_width[k]);
24054 mp->nw=mp_skimp(mp, 255)+1; mp->dimen_head[1]=link(temp_head);
24055 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_wd)
24058 pointer dimen_head[5]; /* lists of \.{TFM} dimensions */
24060 @ Heights, depths, and italic corrections are different from widths
24061 not only because their list length is more severely restricted, but
24062 also because zero values do not need to be put into the lists.
24064 @<Massage the \.{TFM} heights, depths, and italic corrections@>=
24066 for (k=mp->bc;k<=mp->ec;k++) {
24067 if ( mp->char_exists[k] ) {
24068 if ( mp->tfm_height[k]==0 ) mp->tfm_height[k]=zero_val;
24069 else mp->tfm_height[k]=mp_sort_in(mp, mp->tfm_height[k]);
24072 mp->nh=mp_skimp(mp, 15)+1; mp->dimen_head[2]=link(temp_head);
24073 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ht);
24075 for (k=mp->bc;k<=mp->ec;k++) {
24076 if ( mp->char_exists[k] ) {
24077 if ( mp->tfm_depth[k]==0 ) mp->tfm_depth[k]=zero_val;
24078 else mp->tfm_depth[k]=mp_sort_in(mp, mp->tfm_depth[k]);
24081 mp->nd=mp_skimp(mp, 15)+1; mp->dimen_head[3]=link(temp_head);
24082 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_dp);
24084 for (k=mp->bc;k<=mp->ec;k++) {
24085 if ( mp->char_exists[k] ) {
24086 if ( mp->tfm_ital_corr[k]==0 ) mp->tfm_ital_corr[k]=zero_val;
24087 else mp->tfm_ital_corr[k]=mp_sort_in(mp, mp->tfm_ital_corr[k]);
24090 mp->ni=mp_skimp(mp, 63)+1; mp->dimen_head[4]=link(temp_head);
24091 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ic)
24093 @ @<Initialize table entries...@>=
24094 value(zero_val)=0; info(zero_val)=0;
24096 @ Bytes 5--8 of the header are set to the design size, unless the user has
24097 some crazy reason for specifying them differently.
24099 Error messages are not allowed at the time this procedure is called,
24100 so a warning is printed instead.
24102 The value of |max_tfm_dimen| is calculated so that
24103 $$\hbox{|make_scaled(16*max_tfm_dimen,internal[mp_design_size])|}
24104 < \\{three\_bytes}.$$
24106 @d three_bytes 0100000000 /* $2^{24}$ */
24109 void mp_fix_design_size (MP mp) {
24110 scaled d; /* the design size */
24111 d=mp->internal[mp_design_size];
24112 if ( (d<unity)||(d>=fraction_half) ) {
24114 mp_print_nl(mp, "(illegal design size has been changed to 128pt)");
24115 @.illegal design size...@>
24116 d=040000000; mp->internal[mp_design_size]=d;
24118 if ( mp->header_byte[4]<0 ) if ( mp->header_byte[5]<0 )
24119 if ( mp->header_byte[6]<0 ) if ( mp->header_byte[7]<0 ) {
24120 mp->header_byte[4]=d / 04000000;
24121 mp->header_byte[5]=(d / 4096) % 256;
24122 mp->header_byte[6]=(d / 16) % 256;
24123 mp->header_byte[7]=(d % 16)*16;
24125 mp->max_tfm_dimen=16*mp->internal[mp_design_size]-mp->internal[mp_design_size] / 010000000;
24126 if ( mp->max_tfm_dimen>=fraction_half ) mp->max_tfm_dimen=fraction_half-1;
24129 @ The |dimen_out| procedure computes a |fix_word| relative to the
24130 design size. If the data was out of range, it is corrected and the
24131 global variable |tfm_changed| is increased by~one.
24133 @c integer mp_dimen_out (MP mp,scaled x) {
24134 if ( abs(x)>mp->max_tfm_dimen ) {
24135 incr(mp->tfm_changed);
24136 if ( x>0 ) x=three_bytes-1; else x=1-three_bytes;
24138 x=mp_make_scaled(mp, x*16,mp->internal[mp_design_size]);
24144 scaled max_tfm_dimen; /* bound on widths, heights, kerns, etc. */
24145 integer tfm_changed; /* the number of data entries that were out of bounds */
24147 @ If the user has not specified any of the first four header bytes,
24148 the |fix_check_sum| procedure replaces them by a ``check sum'' computed
24149 from the |tfm_width| data relative to the design size.
24152 @c void mp_fix_check_sum (MP mp) {
24153 eight_bits k; /* runs through character codes */
24154 eight_bits B1,B2,B3,B4; /* bytes of the check sum */
24155 integer x; /* hash value used in check sum computation */
24156 if ( mp->header_byte[0]==0 && mp->header_byte[1]==0 &&
24157 mp->header_byte[2]==0 && mp->header_byte[3]==0 ) {
24158 @<Compute a check sum in |(b1,b2,b3,b4)|@>;
24159 mp->header_byte[0]=B1; mp->header_byte[1]=B2;
24160 mp->header_byte[2]=B3; mp->header_byte[3]=B4;
24165 @ @<Compute a check sum in |(b1,b2,b3,b4)|@>=
24166 B1=mp->bc; B2=mp->ec; B3=mp->bc; B4=mp->ec; mp->tfm_changed=0;
24167 for (k=mp->bc;k<=mp->ec;k++) {
24168 if ( mp->char_exists[k] ) {
24169 x=mp_dimen_out(mp, value(mp->tfm_width[k]))+(k+4)*020000000; /* this is positive */
24170 B1=(B1+B1+x) % 255;
24171 B2=(B2+B2+x) % 253;
24172 B3=(B3+B3+x) % 251;
24173 B4=(B4+B4+x) % 247;
24177 @ Finally we're ready to actually write the \.{TFM} information.
24178 Here are some utility routines for this purpose.
24180 @d tfm_out(A) do { /* output one byte to |tfm_file| */
24181 unsigned char s=(A);
24182 (mp->write_binary_file)(mp->tfm_file,(void *)&s,1);
24185 @c void mp_tfm_two (MP mp,integer x) { /* output two bytes to |tfm_file| */
24186 tfm_out(x / 256); tfm_out(x % 256);
24188 void mp_tfm_four (MP mp,integer x) { /* output four bytes to |tfm_file| */
24189 if ( x>=0 ) tfm_out(x / three_bytes);
24191 x=x+010000000000; /* use two's complement for negative values */
24193 tfm_out((x / three_bytes) + 128);
24195 x=x % three_bytes; tfm_out(x / unity);
24196 x=x % unity; tfm_out(x / 0400);
24199 void mp_tfm_qqqq (MP mp,four_quarters x) { /* output four quarterwords to |tfm_file| */
24200 tfm_out(qo(x.b0)); tfm_out(qo(x.b1));
24201 tfm_out(qo(x.b2)); tfm_out(qo(x.b3));
24204 @ @<Finish the \.{TFM} file@>=
24205 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24206 mp_pack_job_name(mp, ".tfm");
24207 while ( ! mp_b_open_out(mp, &mp->tfm_file, mp_filetype_metrics) )
24208 mp_prompt_file_name(mp, "file name for font metrics",".tfm");
24209 mp->metric_file_name=xstrdup(mp->name_of_file);
24210 @<Output the subfile sizes and header bytes@>;
24211 @<Output the character information bytes, then
24212 output the dimensions themselves@>;
24213 @<Output the ligature/kern program@>;
24214 @<Output the extensible character recipes and the font metric parameters@>;
24215 if ( mp->internal[mp_tracing_stats]>0 )
24216 @<Log the subfile sizes of the \.{TFM} file@>;
24217 mp_print_nl(mp, "Font metrics written on ");
24218 mp_print(mp, mp->metric_file_name); mp_print_char(mp, '.');
24219 @.Font metrics written...@>
24220 (mp->close_file)(mp->tfm_file)
24222 @ Integer variables |lh|, |k|, and |lk_offset| will be defined when we use
24225 @<Output the subfile sizes and header bytes@>=
24227 LH=(k+3) / 4; /* this is the number of header words */
24228 if ( mp->bc>mp->ec ) mp->bc=1; /* if there are no characters, |ec=0| and |bc=1| */
24229 @<Compute the ligature/kern program offset and implant the
24230 left boundary label@>;
24231 mp_tfm_two(mp,6+LH+(mp->ec-mp->bc+1)+mp->nw+mp->nh+mp->nd+mp->ni+mp->nl
24232 +lk_offset+mp->nk+mp->ne+mp->np);
24233 /* this is the total number of file words that will be output */
24234 mp_tfm_two(mp, LH); mp_tfm_two(mp, mp->bc); mp_tfm_two(mp, mp->ec);
24235 mp_tfm_two(mp, mp->nw); mp_tfm_two(mp, mp->nh);
24236 mp_tfm_two(mp, mp->nd); mp_tfm_two(mp, mp->ni); mp_tfm_two(mp, mp->nl+lk_offset);
24237 mp_tfm_two(mp, mp->nk); mp_tfm_two(mp, mp->ne);
24238 mp_tfm_two(mp, mp->np);
24239 for (k=0;k< 4*LH;k++) {
24240 tfm_out(mp->header_byte[k]);
24243 @ @<Output the character information bytes...@>=
24244 for (k=mp->bc;k<=mp->ec;k++) {
24245 if ( ! mp->char_exists[k] ) {
24246 mp_tfm_four(mp, 0);
24248 tfm_out(info(mp->tfm_width[k])); /* the width index */
24249 tfm_out((info(mp->tfm_height[k]))*16+info(mp->tfm_depth[k]));
24250 tfm_out((info(mp->tfm_ital_corr[k]))*4+mp->char_tag[k]);
24251 tfm_out(mp->char_remainder[k]);
24255 for (k=1;k<=4;k++) {
24256 mp_tfm_four(mp, 0); p=mp->dimen_head[k];
24257 while ( p!=inf_val ) {
24258 mp_tfm_four(mp, mp_dimen_out(mp, value(p))); p=link(p);
24263 @ We need to output special instructions at the beginning of the
24264 |lig_kern| array in order to specify the right boundary character
24265 and/or to handle starting addresses that exceed 255. The |label_loc|
24266 and |label_char| arrays have been set up to record all the
24267 starting addresses; we have $-1=|label_loc|[0]<|label_loc|[1]\le\cdots
24268 \le|label_loc|[|label_ptr]|$.
24270 @<Compute the ligature/kern program offset...@>=
24271 mp->bchar=mp_round_unscaled(mp, mp->internal[mp_boundary_char]);
24272 if ((mp->bchar<0)||(mp->bchar>255))
24273 { mp->bchar=-1; mp->lk_started=false; lk_offset=0; }
24274 else { mp->lk_started=true; lk_offset=1; };
24275 @<Find the minimum |lk_offset| and adjust all remainders@>;
24276 if ( mp->bch_label<undefined_label )
24277 { skip_byte(mp->nl)=qi(255); next_char(mp->nl)=qi(0);
24278 op_byte(mp->nl)=qi(((mp->bch_label+lk_offset)/ 256));
24279 rem_byte(mp->nl)=qi(((mp->bch_label+lk_offset)% 256));
24280 incr(mp->nl); /* possibly |nl=lig_table_size+1| */
24283 @ @<Find the minimum |lk_offset|...@>=
24284 k=mp->label_ptr; /* pointer to the largest unallocated label */
24285 if ( mp->label_loc[k]+lk_offset>255 ) {
24286 lk_offset=0; mp->lk_started=false; /* location 0 can do double duty */
24288 mp->char_remainder[mp->label_char[k]]=lk_offset;
24289 while ( mp->label_loc[k-1]==mp->label_loc[k] ) {
24290 decr(k); mp->char_remainder[mp->label_char[k]]=lk_offset;
24292 incr(lk_offset); decr(k);
24293 } while (! (lk_offset+mp->label_loc[k]<256));
24294 /* N.B.: |lk_offset=256| satisfies this when |k=0| */
24296 if ( lk_offset>0 ) {
24298 mp->char_remainder[mp->label_char[k]]
24299 =mp->char_remainder[mp->label_char[k]]+lk_offset;
24304 @ @<Output the ligature/kern program@>=
24305 for (k=0;k<= 255;k++ ) {
24306 if ( mp->skip_table[k]<undefined_label ) {
24307 mp_print_nl(mp, "(local label "); mp_print_int(mp, k); mp_print(mp, ":: was missing)");
24308 @.local label l:: was missing@>
24309 cancel_skips(mp->skip_table[k]);
24312 if ( mp->lk_started ) { /* |lk_offset=1| for the special |bchar| */
24313 tfm_out(255); tfm_out(mp->bchar); mp_tfm_two(mp, 0);
24315 for (k=1;k<=lk_offset;k++) {/* output the redirection specs */
24316 mp->ll=mp->label_loc[mp->label_ptr];
24317 if ( mp->bchar<0 ) { tfm_out(254); tfm_out(0); }
24318 else { tfm_out(255); tfm_out(mp->bchar); };
24319 mp_tfm_two(mp, mp->ll+lk_offset);
24321 decr(mp->label_ptr);
24322 } while (! (mp->label_loc[mp->label_ptr]<mp->ll));
24325 for (k=0;k<=mp->nl-1;k++) mp_tfm_qqqq(mp, mp->lig_kern[k]);
24326 for (k=0;k<=mp->nk-1;k++) mp_tfm_four(mp, mp_dimen_out(mp, mp->kern[k]))
24328 @ @<Output the extensible character recipes...@>=
24329 for (k=0;k<=mp->ne-1;k++)
24330 mp_tfm_qqqq(mp, mp->exten[k]);
24331 for (k=1;k<=mp->np;k++) {
24333 if ( abs(mp->param[1])<fraction_half ) {
24334 mp_tfm_four(mp, mp->param[1]*16);
24336 incr(mp->tfm_changed);
24337 if ( mp->param[1]>0 ) mp_tfm_four(mp, el_gordo);
24338 else mp_tfm_four(mp, -el_gordo);
24341 mp_tfm_four(mp, mp_dimen_out(mp, mp->param[k]));
24344 if ( mp->tfm_changed>0 ) {
24345 if ( mp->tfm_changed==1 ) mp_print_nl(mp, "(a font metric dimension");
24346 @.a font metric dimension...@>
24348 mp_print_nl(mp, "("); mp_print_int(mp, mp->tfm_changed);
24349 @.font metric dimensions...@>
24350 mp_print(mp, " font metric dimensions");
24352 mp_print(mp, " had to be decreased)");
24355 @ @<Log the subfile sizes of the \.{TFM} file@>=
24359 if ( mp->bch_label<undefined_label ) decr(mp->nl);
24360 snprintf(s,128,"(You used %iw,%ih,%id,%ii,%il,%ik,%ie,%ip metric file positions)",
24361 mp->nw, mp->nh, mp->nd, mp->ni, mp->nl, mp->nk, mp->ne,mp->np);
24365 @* \[43] Reading font metric data.
24367 \MP\ isn't a typesetting program but it does need to find the bounding box
24368 of a sequence of typeset characters. Thus it needs to read \.{TFM} files as
24369 well as write them.
24374 @ All the width, height, and depth information is stored in an array called
24375 |font_info|. This array is allocated sequentially and each font is stored
24376 as a series of |char_info| words followed by the width, height, and depth
24377 tables. Since |font_name| entries are permanent, their |str_ref| values are
24378 set to |max_str_ref|.
24381 typedef unsigned int font_number; /* |0..font_max| */
24383 @ The |font_info| array is indexed via a group directory arrays.
24384 For example, the |char_info| data for character~|c| in font~|f| will be
24385 in |font_info[char_base[f]+c].qqqq|.
24388 font_number font_max; /* maximum font number for included text fonts */
24389 size_t font_mem_size; /* number of words for \.{TFM} information for text fonts */
24390 memory_word *font_info; /* height, width, and depth data */
24391 char **font_enc_name; /* encoding names, if any */
24392 boolean *font_ps_name_fixed; /* are the postscript names fixed already? */
24393 int next_fmem; /* next unused entry in |font_info| */
24394 font_number last_fnum; /* last font number used so far */
24395 scaled *font_dsize; /* 16 times the ``design'' size in \ps\ points */
24396 char **font_name; /* name as specified in the \&{infont} command */
24397 char **font_ps_name; /* PostScript name for use when |internal[mp_prologues]>0| */
24398 font_number last_ps_fnum; /* last valid |font_ps_name| index */
24399 eight_bits *font_bc;
24400 eight_bits *font_ec; /* first and last character code */
24401 int *char_base; /* base address for |char_info| */
24402 int *width_base; /* index for zeroth character width */
24403 int *height_base; /* index for zeroth character height */
24404 int *depth_base; /* index for zeroth character depth */
24405 pointer *font_sizes;
24407 @ @<Allocate or initialize ...@>=
24408 mp->font_mem_size = 10000;
24409 mp->font_info = xmalloc ((mp->font_mem_size+1),sizeof(memory_word));
24410 memset (mp->font_info,0,sizeof(memory_word)*(mp->font_mem_size+1));
24411 mp->font_enc_name = NULL;
24412 mp->font_ps_name_fixed = NULL;
24413 mp->font_dsize = NULL;
24414 mp->font_name = NULL;
24415 mp->font_ps_name = NULL;
24416 mp->font_bc = NULL;
24417 mp->font_ec = NULL;
24418 mp->last_fnum = null_font;
24419 mp->char_base = NULL;
24420 mp->width_base = NULL;
24421 mp->height_base = NULL;
24422 mp->depth_base = NULL;
24423 mp->font_sizes = null;
24425 @ @<Dealloc variables@>=
24426 for (k=1;k<=(int)mp->last_fnum;k++) {
24427 xfree(mp->font_enc_name[k]);
24428 xfree(mp->font_name[k]);
24429 xfree(mp->font_ps_name[k]);
24431 xfree(mp->font_info);
24432 xfree(mp->font_enc_name);
24433 xfree(mp->font_ps_name_fixed);
24434 xfree(mp->font_dsize);
24435 xfree(mp->font_name);
24436 xfree(mp->font_ps_name);
24437 xfree(mp->font_bc);
24438 xfree(mp->font_ec);
24439 xfree(mp->char_base);
24440 xfree(mp->width_base);
24441 xfree(mp->height_base);
24442 xfree(mp->depth_base);
24443 xfree(mp->font_sizes);
24447 void mp_reallocate_fonts (MP mp, font_number l) {
24449 XREALLOC(mp->font_enc_name, l, char *);
24450 XREALLOC(mp->font_ps_name_fixed, l, boolean);
24451 XREALLOC(mp->font_dsize, l, scaled);
24452 XREALLOC(mp->font_name, l, char *);
24453 XREALLOC(mp->font_ps_name, l, char *);
24454 XREALLOC(mp->font_bc, l, eight_bits);
24455 XREALLOC(mp->font_ec, l, eight_bits);
24456 XREALLOC(mp->char_base, l, int);
24457 XREALLOC(mp->width_base, l, int);
24458 XREALLOC(mp->height_base, l, int);
24459 XREALLOC(mp->depth_base, l, int);
24460 XREALLOC(mp->font_sizes, l, pointer);
24461 for (f=(mp->last_fnum+1);f<=l;f++) {
24462 mp->font_enc_name[f]=NULL;
24463 mp->font_ps_name_fixed[f] = false;
24464 mp->font_name[f]=NULL;
24465 mp->font_ps_name[f]=NULL;
24466 mp->font_sizes[f]=null;
24471 @ @<Declare |mp_reallocate| functions@>=
24472 void mp_reallocate_fonts (MP mp, font_number l);
24475 @ A |null_font| containing no characters is useful for error recovery. Its
24476 |font_name| entry starts out empty but is reset each time an erroneous font is
24477 found. This helps to cut down on the number of duplicate error messages without
24478 wasting a lot of space.
24480 @d null_font 0 /* the |font_number| for an empty font */
24482 @<Set initial...@>=
24483 mp->font_dsize[null_font]=0;
24484 mp->font_bc[null_font]=1;
24485 mp->font_ec[null_font]=0;
24486 mp->char_base[null_font]=0;
24487 mp->width_base[null_font]=0;
24488 mp->height_base[null_font]=0;
24489 mp->depth_base[null_font]=0;
24491 mp->last_fnum=null_font;
24492 mp->last_ps_fnum=null_font;
24493 mp->font_name[null_font]="nullfont";
24494 mp->font_ps_name[null_font]="";
24495 mp->font_ps_name_fixed[null_font] = false;
24496 mp->font_enc_name[null_font]=NULL;
24497 mp->font_sizes[null_font]=null;
24499 @ Each |char_info| word is of type |four_quarters|. The |b0| field contains
24500 the |width index|; the |b1| field contains the height
24501 index; the |b2| fields contains the depth index, and the |b3| field used only
24502 for temporary storage. (It is used to keep track of which characters occur in
24503 an edge structure that is being shipped out.)
24504 The corresponding words in the width, height, and depth tables are stored as
24505 |scaled| values in units of \ps\ points.
24507 With the macros below, the |char_info| word for character~|c| in font~|f| is
24508 |char_info(f)(c)| and the width is
24509 $$\hbox{|char_width(f)(char_info(f)(c)).sc|.}$$
24511 @d char_info_end(A) (A)].qqqq
24512 @d char_info(A) mp->font_info[mp->char_base[(A)]+char_info_end
24513 @d char_width_end(A) (A).b0].sc
24514 @d char_width(A) mp->font_info[mp->width_base[(A)]+char_width_end
24515 @d char_height_end(A) (A).b1].sc
24516 @d char_height(A) mp->font_info[mp->height_base[(A)]+char_height_end
24517 @d char_depth_end(A) (A).b2].sc
24518 @d char_depth(A) mp->font_info[mp->depth_base[(A)]+char_depth_end
24519 @d ichar_exists(A) ((A).b0>0)
24521 @ The |font_ps_name| for a built-in font should be what PostScript expects.
24522 A preliminary name is obtained here from the \.{TFM} name as given in the
24523 |fname| argument. This gets updated later from an external table if necessary.
24525 @<Declare text measuring subroutines@>=
24526 @<Declare subroutines for parsing file names@>;
24527 font_number mp_read_font_info (MP mp, char *fname) {
24528 boolean file_opened; /* has |tfm_infile| been opened? */
24529 font_number n; /* the number to return */
24530 halfword lf,tfm_lh,bc,ec,nw,nh,nd; /* subfile size parameters */
24531 size_t whd_size; /* words needed for heights, widths, and depths */
24532 int i,ii; /* |font_info| indices */
24533 int jj; /* counts bytes to be ignored */
24534 scaled z; /* used to compute the design size */
24536 /* height, width, or depth as a fraction of design size times $2^{-8}$ */
24537 eight_bits h_and_d; /* height and depth indices being unpacked */
24538 unsigned char tfbyte; /* a byte read from the file */
24540 @<Open |tfm_infile| for input@>;
24541 @<Read data from |tfm_infile|; if there is no room, say so and |goto done|;
24542 otherwise |goto bad_tfm| or |goto done| as appropriate@>;
24544 @<Complain that the \.{TFM} file is bad@>;
24546 if ( file_opened ) (mp->close_file)(mp->tfm_infile);
24547 if ( n!=null_font ) {
24548 mp->font_ps_name[n]=mp_xstrdup(mp,fname);
24549 mp->font_name[n]=mp_xstrdup(mp,fname);
24554 @ \MP\ doesn't bother to check the entire \.{TFM} file for errors or explain
24555 precisely what is wrong if it does find a problem. Programs called \.{TFtoPL}
24556 @.TFtoPL@> @.PLtoTF@>
24557 and \.{PLtoTF} can be used to debug \.{TFM} files.
24559 @<Complain that the \.{TFM} file is bad@>=
24560 print_err("Font ");
24561 mp_print(mp, fname);
24562 if ( file_opened ) mp_print(mp, " not usable: TFM file is bad");
24563 else mp_print(mp, " not usable: TFM file not found");
24564 help3("I wasn't able to read the size data for this font so this")
24565 ("`infont' operation won't produce anything. If the font name")
24566 ("is right, you might ask an expert to make a TFM file");
24568 mp->help_line[0]="is right, try asking an expert to fix the TFM file";
24571 @ @<Read data from |tfm_infile|; if there is no room, say so...@>=
24572 @<Read the \.{TFM} size fields@>;
24573 @<Use the size fields to allocate space in |font_info|@>;
24574 @<Read the \.{TFM} header@>;
24575 @<Read the character data and the width, height, and depth tables and
24578 @ A bad \.{TFM} file can be shorter than it claims to be. The code given here
24579 might try to read past the end of the file if this happens. Changes will be
24580 needed if it causes a system error to refer to |tfm_infile^| or call
24581 |get_tfm_infile| when |eof(tfm_infile)| is true. For example, the definition
24582 @^system dependencies@>
24583 of |tfget| could be changed to
24584 ``|begin get(tfm_infile); if eof(tfm_infile) then goto bad_tfm; end|.''
24588 void *tfbyte_ptr = &tfbyte;
24589 (mp->read_binary_file)(mp->tfm_infile,&tfbyte_ptr,&wanted);
24590 if (wanted==0) goto BAD_TFM;
24592 @d read_two(A) { (A)=tfbyte;
24593 if ( (A)>127 ) goto BAD_TFM;
24594 tfget; (A)=(A)*0400+tfbyte;
24596 @d tf_ignore(A) { for (jj=(A);jj>=1;jj--) tfget; }
24598 @<Read the \.{TFM} size fields@>=
24599 tfget; read_two(lf);
24600 tfget; read_two(tfm_lh);
24601 tfget; read_two(bc);
24602 tfget; read_two(ec);
24603 if ( (bc>1+ec)||(ec>255) ) goto BAD_TFM;
24604 tfget; read_two(nw);
24605 tfget; read_two(nh);
24606 tfget; read_two(nd);
24607 whd_size=(ec+1-bc)+nw+nh+nd;
24608 if ( lf<(int)(6+tfm_lh+whd_size) ) goto BAD_TFM;
24611 @ Offsets are added to |char_base[n]| and |width_base[n]| so that is not
24612 necessary to apply the |so| and |qo| macros when looking up the width of a
24613 character in the string pool. In order to ensure nonnegative |char_base|
24614 values when |bc>0|, it may be necessary to reserve a few unused |font_info|
24617 @<Use the size fields to allocate space in |font_info|@>=
24618 if ( mp->next_fmem<bc) mp->next_fmem=bc; /* ensure nonnegative |char_base| */
24619 if (mp->last_fnum==mp->font_max)
24620 mp_reallocate_fonts(mp,(mp->font_max+(mp->font_max>>2)));
24621 while (mp->next_fmem+whd_size>=mp->font_mem_size) {
24622 size_t l = mp->font_mem_size+(mp->font_mem_size>>2);
24623 memory_word *font_info;
24624 font_info = xmalloc ((l+1),sizeof(memory_word));
24625 memset (font_info,0,sizeof(memory_word)*(l+1));
24626 memcpy (font_info,mp->font_info,sizeof(memory_word)*(mp->font_mem_size+1));
24627 xfree(mp->font_info);
24628 mp->font_info = font_info;
24629 mp->font_mem_size = l;
24631 incr(mp->last_fnum);
24635 mp->char_base[n]=mp->next_fmem-bc;
24636 mp->width_base[n]=mp->next_fmem+ec-bc+1;
24637 mp->height_base[n]=mp->width_base[n]+nw;
24638 mp->depth_base[n]=mp->height_base[n]+nh;
24639 mp->next_fmem=mp->next_fmem+whd_size;
24642 @ @<Read the \.{TFM} header@>=
24643 if ( tfm_lh<2 ) goto BAD_TFM;
24645 tfget; read_two(z);
24646 tfget; z=z*0400+tfbyte;
24647 tfget; z=z*0400+tfbyte; /* now |z| is 16 times the design size */
24648 mp->font_dsize[n]=mp_take_fraction(mp, z,267432584);
24649 /* times ${72\over72.27}2^{28}$ to convert from \TeX\ points */
24650 tf_ignore(4*(tfm_lh-2))
24652 @ @<Read the character data and the width, height, and depth tables...@>=
24653 ii=mp->width_base[n];
24654 i=mp->char_base[n]+bc;
24656 tfget; mp->font_info[i].qqqq.b0=qi(tfbyte);
24657 tfget; h_and_d=tfbyte;
24658 mp->font_info[i].qqqq.b1=h_and_d / 16;
24659 mp->font_info[i].qqqq.b2=h_and_d % 16;
24663 while ( i<mp->next_fmem ) {
24664 @<Read a four byte dimension, scale it by the design size, store it in
24665 |font_info[i]|, and increment |i|@>;
24669 @ The raw dimension read into |d| should have magnitude at most $2^{24}$ when
24670 interpreted as an integer, and this includes a scale factor of $2^{20}$. Thus
24671 we can multiply it by sixteen and think of it as a |fraction| that has been
24672 divided by sixteen. This cancels the extra scale factor contained in
24675 @<Read a four byte dimension, scale it by the design size, store it in...@>=
24678 if ( d>=0200 ) d=d-0400;
24679 tfget; d=d*0400+tfbyte;
24680 tfget; d=d*0400+tfbyte;
24681 tfget; d=d*0400+tfbyte;
24682 mp->font_info[i].sc=mp_take_fraction(mp, d*16,mp->font_dsize[n]);
24686 @ This function does no longer use the file name parser, because |fname| is
24687 a C string already.
24688 @<Open |tfm_infile| for input@>=
24690 mp_ptr_scan_file(mp, fname);
24691 if ( strlen(mp->cur_area)==0 ) { xfree(mp->cur_area); mp->cur_area=xstrdup(MP_font_area);}
24692 if ( strlen(mp->cur_ext)==0 ) { xfree(mp->cur_ext); mp->cur_ext=xstrdup(".tfm"); }
24694 mp->tfm_infile = (mp->open_file)( mp->name_of_file, "rb",mp_filetype_metrics);
24695 if ( !mp->tfm_infile ) goto BAD_TFM;
24698 @ When we have a font name and we don't know whether it has been loaded yet,
24699 we scan the |font_name| array before calling |read_font_info|.
24701 @<Declare text measuring subroutines@>=
24702 font_number mp_find_font (MP mp, char *f) {
24704 for (n=0;n<=mp->last_fnum;n++) {
24705 if (mp_xstrcmp(f,mp->font_name[n])==0 ) {
24710 n = mp_read_font_info(mp, f);
24715 @ One simple application of |find_font| is the implementation of the |font_size|
24716 operator that gets the design size for a given font name.
24718 @<Find the design size of the font whose name is |cur_exp|@>=
24719 mp_flush_cur_exp(mp, (mp->font_dsize[mp_find_font(mp, str(mp->cur_exp))]+8) / 16)
24721 @ If we discover that the font doesn't have a requested character, we omit it
24722 from the bounding box computation and expect the \ps\ interpreter to drop it.
24723 This routine issues a warning message if the user has asked for it.
24725 @<Declare text measuring subroutines@>=
24726 void mp_lost_warning (MP mp,font_number f, pool_pointer k) {
24727 if ( mp->internal[mp_tracing_lost_chars]>0 ) {
24728 mp_begin_diagnostic(mp);
24729 if ( mp->selector==log_only ) incr(mp->selector);
24730 mp_print_nl(mp, "Missing character: There is no ");
24731 @.Missing character@>
24732 mp_print_str(mp, mp->str_pool[k]);
24733 mp_print(mp, " in font ");
24734 mp_print(mp, mp->font_name[f]); mp_print_char(mp, '!');
24735 mp_end_diagnostic(mp, false);
24739 @ The whole purpose of saving the height, width, and depth information is to be
24740 able to find the bounding box of an item of text in an edge structure. The
24741 |set_text_box| procedure takes a text node and adds this information.
24743 @<Declare text measuring subroutines@>=
24744 void mp_set_text_box (MP mp,pointer p) {
24745 font_number f; /* |font_n(p)| */
24746 ASCII_code bc,ec; /* range of valid characters for font |f| */
24747 pool_pointer k,kk; /* current character and character to stop at */
24748 four_quarters cc; /* the |char_info| for the current character */
24749 scaled h,d; /* dimensions of the current character */
24751 height_val(p)=-el_gordo;
24752 depth_val(p)=-el_gordo;
24756 kk=str_stop(text_p(p));
24757 k=mp->str_start[text_p(p)];
24759 @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>;
24761 @<Set the height and depth to zero if the bounding box is empty@>;
24764 @ @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>=
24766 if ( (mp->str_pool[k]<bc)||(mp->str_pool[k]>ec) ) {
24767 mp_lost_warning(mp, f,k);
24769 cc=char_info(f)(mp->str_pool[k]);
24770 if ( ! ichar_exists(cc) ) {
24771 mp_lost_warning(mp, f,k);
24773 width_val(p)=width_val(p)+char_width(f)(cc);
24774 h=char_height(f)(cc);
24775 d=char_depth(f)(cc);
24776 if ( h>height_val(p) ) height_val(p)=h;
24777 if ( d>depth_val(p) ) depth_val(p)=d;
24783 @ Let's hope modern compilers do comparisons correctly when the difference would
24786 @<Set the height and depth to zero if the bounding box is empty@>=
24787 if ( height_val(p)<-depth_val(p) ) {
24792 @ The new primitives fontmapfile and fontmapline.
24794 @<Declare action procedures for use by |do_statement|@>=
24795 void mp_do_mapfile (MP mp) ;
24796 void mp_do_mapline (MP mp) ;
24798 @ @c void mp_do_mapfile (MP mp) {
24799 mp_get_x_next(mp); mp_scan_expression(mp);
24800 if ( mp->cur_type!=mp_string_type ) {
24801 @<Complain about improper map operation@>;
24803 mp_map_file(mp,mp->cur_exp);
24806 void mp_do_mapline (MP mp) {
24807 mp_get_x_next(mp); mp_scan_expression(mp);
24808 if ( mp->cur_type!=mp_string_type ) {
24809 @<Complain about improper map operation@>;
24811 mp_map_line(mp,mp->cur_exp);
24815 @ @<Complain about improper map operation@>=
24817 exp_err("Unsuitable expression");
24818 help1("Only known strings can be map files or map lines.");
24819 mp_put_get_error(mp);
24822 @ To print |scaled| value to PDF output we need some subroutines to ensure
24825 @d max_integer 0x7FFFFFFF /* $2^{31}-1$ */
24828 scaled one_bp; /* scaled value corresponds to 1bp */
24829 scaled one_hundred_bp; /* scaled value corresponds to 100bp */
24830 scaled one_hundred_inch; /* scaled value corresponds to 100in */
24831 integer ten_pow[10]; /* $10^0..10^9$ */
24832 integer scaled_out; /* amount of |scaled| that was taken out in |divide_scaled| */
24835 mp->one_bp = 65782; /* 65781.76 */
24836 mp->one_hundred_bp = 6578176;
24837 mp->one_hundred_inch = 473628672;
24838 mp->ten_pow[0] = 1;
24839 for (i = 1;i<= 9; i++ ) {
24840 mp->ten_pow[i] = 10*mp->ten_pow[i - 1];
24843 @ The following function divides |s| by |m|. |dd| is number of decimal digits.
24845 @c scaled mp_divide_scaled (MP mp,scaled s, scaled m, integer dd) {
24849 if ( s < 0 ) { sign = -sign; s = -s; }
24850 if ( m < 0 ) { sign = -sign; m = -m; }
24852 mp_confusion(mp, "arithmetic: divided by zero");
24853 else if ( m >= (max_integer / 10) )
24854 mp_confusion(mp, "arithmetic: number too big");
24857 for (i = 1;i<=dd;i++) {
24858 q = 10*q + (10*r) / m;
24861 if ( 2*r >= m ) { incr(q); r = r - m; }
24862 mp->scaled_out = sign*(s - (r / mp->ten_pow[dd]));
24866 @* \[44] Shipping pictures out.
24867 The |ship_out| procedure, to be described below, is given a pointer to
24868 an edge structure. Its mission is to output a file containing the \ps\
24869 description of an edge structure.
24871 @ Each time an edge structure is shipped out we write a new \ps\ output
24872 file named according to the current \&{charcode}.
24873 @:char_code_}{\&{charcode} primitive@>
24875 This is the only backend function that remains in the main |mpost.w| file.
24876 There are just too many variable accesses needed for status reporting
24877 etcetera to make it worthwile to move the code to |psout.w|.
24879 @<Internal library declarations@>=
24880 void mp_open_output_file (MP mp) ;
24882 @ @c void mp_open_output_file (MP mp) {
24883 integer c; /* \&{charcode} rounded to the nearest integer */
24884 int old_setting; /* previous |selector| setting */
24885 pool_pointer i; /* indexes into |filename_template| */
24886 integer cc; /* a temporary integer for template building */
24887 integer f,g=0; /* field widths */
24888 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24889 c=mp_round_unscaled(mp, mp->internal[mp_char_code]);
24890 if ( mp->filename_template==0 ) {
24891 char *s; /* a file extension derived from |c| */
24895 @<Use |c| to compute the file extension |s|@>;
24896 mp_pack_job_name(mp, s);
24898 while ( ! mp_a_open_out(mp, (void *)&mp->ps_file, mp_filetype_postscript) )
24899 mp_prompt_file_name(mp, "file name for output",s);
24900 } else { /* initializations */
24901 str_number s, n; /* a file extension derived from |c| */
24902 old_setting=mp->selector;
24903 mp->selector=new_string;
24905 i = mp->str_start[mp->filename_template];
24906 n = rts(""); /* initialize */
24907 while ( i<str_stop(mp->filename_template) ) {
24908 if ( mp->str_pool[i]=='%' ) {
24911 if ( i<str_stop(mp->filename_template) ) {
24912 if ( mp->str_pool[i]=='j' ) {
24913 mp_print(mp, mp->job_name);
24914 } else if ( mp->str_pool[i]=='d' ) {
24915 cc= mp_round_unscaled(mp, mp->internal[mp_day]);
24916 print_with_leading_zeroes(cc);
24917 } else if ( mp->str_pool[i]=='m' ) {
24918 cc= mp_round_unscaled(mp, mp->internal[mp_month]);
24919 print_with_leading_zeroes(cc);
24920 } else if ( mp->str_pool[i]=='y' ) {
24921 cc= mp_round_unscaled(mp, mp->internal[mp_year]);
24922 print_with_leading_zeroes(cc);
24923 } else if ( mp->str_pool[i]=='H' ) {
24924 cc= mp_round_unscaled(mp, mp->internal[mp_time]) / 60;
24925 print_with_leading_zeroes(cc);
24926 } else if ( mp->str_pool[i]=='M' ) {
24927 cc= mp_round_unscaled(mp, mp->internal[mp_time]) % 60;
24928 print_with_leading_zeroes(cc);
24929 } else if ( mp->str_pool[i]=='c' ) {
24930 if ( c<0 ) mp_print(mp, "ps");
24931 else print_with_leading_zeroes(c);
24932 } else if ( (mp->str_pool[i]>='0') &&
24933 (mp->str_pool[i]<='9') ) {
24935 f = (f*10) + mp->str_pool[i]-'0';
24938 mp_print_str(mp, mp->str_pool[i]);
24942 if ( mp->str_pool[i]=='.' )
24944 n = mp_make_string(mp);
24945 mp_print_str(mp, mp->str_pool[i]);
24949 s = mp_make_string(mp);
24950 mp->selector= old_setting;
24951 if (length(n)==0) {
24955 mp_pack_file_name(mp, str(n),"",str(s));
24956 while ( ! mp_a_open_out(mp, (void *)&mp->ps_file, mp_filetype_postscript) )
24957 mp_prompt_file_name(mp, "file name for output",str(s));
24961 @<Store the true output file name if appropriate@>;
24964 @ The file extension created here could be up to five characters long in
24965 extreme cases so it may have to be shortened on some systems.
24966 @^system dependencies@>
24968 @<Use |c| to compute the file extension |s|@>=
24971 snprintf(s,7,".%i",(int)c);
24974 @ The user won't want to see all the output file names so we only save the
24975 first and last ones and a count of how many there were. For this purpose
24976 files are ordered primarily by \&{charcode} and secondarily by order of
24978 @:char_code_}{\&{charcode} primitive@>
24980 @<Store the true output file name if appropriate@>=
24981 if ((c<mp->first_output_code)&&(mp->first_output_code>=0)) {
24982 mp->first_output_code=c;
24983 xfree(mp->first_file_name);
24984 mp->first_file_name=xstrdup(mp->name_of_file);
24986 if ( c>=mp->last_output_code ) {
24987 mp->last_output_code=c;
24988 xfree(mp->last_file_name);
24989 mp->last_file_name=xstrdup(mp->name_of_file);
24993 char * first_file_name;
24994 char * last_file_name; /* full file names */
24995 integer first_output_code;integer last_output_code; /* rounded \&{charcode} values */
24996 @:char_code_}{\&{charcode} primitive@>
24997 integer total_shipped; /* total number of |ship_out| operations completed */
25000 mp->first_file_name=xstrdup("");
25001 mp->last_file_name=xstrdup("");
25002 mp->first_output_code=32768;
25003 mp->last_output_code=-32768;
25004 mp->total_shipped=0;
25006 @ @<Dealloc variables@>=
25007 xfree(mp->first_file_name);
25008 xfree(mp->last_file_name);
25010 @ @<Begin the progress report for the output of picture~|c|@>=
25011 if ( (int)mp->term_offset>mp->max_print_line-6 ) mp_print_ln(mp);
25012 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
25013 mp_print_char(mp, '[');
25014 if ( c>=0 ) mp_print_int(mp, c)
25016 @ @<End progress report@>=
25017 mp_print_char(mp, ']');
25019 incr(mp->total_shipped)
25021 @ @<Explain what output files were written@>=
25022 if ( mp->total_shipped>0 ) {
25023 mp_print_nl(mp, "");
25024 mp_print_int(mp, mp->total_shipped);
25025 mp_print(mp, " output file");
25026 if ( mp->total_shipped>1 ) mp_print_char(mp, 's');
25027 mp_print(mp, " written: ");
25028 mp_print(mp, mp->first_file_name);
25029 if ( mp->total_shipped>1 ) {
25030 if ( 31+strlen(mp->first_file_name)+
25031 strlen(mp->last_file_name)> (unsigned)mp->max_print_line)
25033 mp_print(mp, " .. ");
25034 mp_print(mp, mp->last_file_name);
25038 @ @<Internal library declarations@>=
25039 boolean mp_has_font_size(MP mp, font_number f );
25042 boolean mp_has_font_size(MP mp, font_number f ) {
25043 return (mp->font_sizes[f]!=null);
25046 @ The \&{special} command saves up lines of text to be printed during the next
25047 |ship_out| operation. The saved items are stored as a list of capsule tokens.
25050 pointer last_pending; /* the last token in a list of pending specials */
25053 mp->last_pending=spec_head;
25055 @ @<Cases of |do_statement|...@>=
25056 case special_command:
25057 if ( mp->cur_mod==0 ) mp_do_special(mp); else
25058 if ( mp->cur_mod==1 ) mp_do_mapfile(mp); else
25062 @ @<Declare action procedures for use by |do_statement|@>=
25063 void mp_do_special (MP mp) ;
25065 @ @c void mp_do_special (MP mp) {
25066 mp_get_x_next(mp); mp_scan_expression(mp);
25067 if ( mp->cur_type!=mp_string_type ) {
25068 @<Complain about improper special operation@>;
25070 link(mp->last_pending)=mp_stash_cur_exp(mp);
25071 mp->last_pending=link(mp->last_pending);
25072 link(mp->last_pending)=null;
25076 @ @<Complain about improper special operation@>=
25078 exp_err("Unsuitable expression");
25079 help1("Only known strings are allowed for output as specials.");
25080 mp_put_get_error(mp);
25083 @ On the export side, we need an extra object type for special strings.
25085 @<Graphical object codes@>=
25088 @ @<Export pending specials@>=
25090 while ( p!=null ) {
25091 hq = mp_new_graphic_object(mp,mp_special_code);
25092 gr_pre_script(hq) = str(value(p));
25093 if (hh->body==NULL) hh->body=hq; else gr_link(hp) = hq;
25097 mp_flush_token_list(mp, link(spec_head));
25098 link(spec_head)=null;
25099 mp->last_pending=spec_head
25101 @ We are now ready for the main output procedure. Note that the |selector|
25102 setting is saved in a global variable so that |begin_diagnostic| can access it.
25104 @<Declare the \ps\ output procedures@>=
25105 void mp_ship_out (MP mp, pointer h) ;
25107 @ Once again, the |gr_XXXX| macros are defined in |mppsout.h|
25110 struct mp_edge_object *mp_gr_export(MP mp, pointer h) {
25111 pointer p; /* the current graphical object */
25112 integer t; /* a temporary value */
25113 struct mp_edge_object *hh; /* the first graphical object */
25114 struct mp_graphic_object *hp; /* the current graphical object */
25115 struct mp_graphic_object *hq; /* something |hp| points to */
25116 mp_set_bbox(mp, h, true);
25117 hh = mp_xmalloc(mp,1,sizeof(struct mp_edge_object));
25121 hh->_minx = minx_val(h);
25122 hh->_miny = miny_val(h);
25123 hh->_maxx = maxx_val(h);
25124 hh->_maxy = maxy_val(h);
25125 @<Export pending specials@>;
25126 p=link(dummy_loc(h));
25127 while ( p!=null ) {
25128 hq = mp_new_graphic_object(mp,type(p));
25131 gr_pen_p(hq) = mp_export_knot_list(mp,pen_p(p));
25132 if ((pen_p(p)==null) || pen_is_elliptical(pen_p(p))) {
25133 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25136 pc = mp_copy_path(mp, path_p(p));
25137 pp = mp_make_envelope(mp, pc, pen_p(p),ljoin_val(p),0,miterlim_val(p));
25138 gr_path_p(hq) = mp_export_knot_list(mp,pp);
25139 mp_toss_knot_list(mp, pp);
25140 pc = mp_htap_ypoc(mp, path_p(p));
25141 pp = mp_make_envelope(mp, pc, pen_p(p),ljoin_val(p),0,miterlim_val(p));
25142 gr_htap_p(hq) = mp_export_knot_list(mp,pp);
25143 mp_toss_knot_list(mp, pp);
25145 @<Export object color@>;
25146 @<Export object scripts@>;
25147 gr_ljoin_val(hq) = ljoin_val(p);
25148 gr_miterlim_val(hq) = miterlim_val(p);
25150 case mp_stroked_code:
25151 gr_pen_p(hq) = mp_export_knot_list(mp,pen_p(p));
25152 if (pen_is_elliptical(pen_p(p))) {
25153 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25156 pc=mp_copy_path(mp, path_p(p));
25158 if ( left_type(pc)!=mp_endpoint ) {
25159 left_type(mp_insert_knot(mp, pc,x_coord(pc),y_coord(pc)))=mp_endpoint;
25160 right_type(pc)=mp_endpoint;
25164 pc=mp_make_envelope(mp,pc,pen_p(p),ljoin_val(p),t,miterlim_val(p));
25165 gr_path_p(hq) = mp_export_knot_list(mp,pc);
25166 mp_toss_knot_list(mp, pc);
25168 @<Export object color@>;
25169 @<Export object scripts@>;
25170 gr_ljoin_val(hq) = ljoin_val(p);
25171 gr_miterlim_val(hq) = miterlim_val(p);
25172 gr_lcap_val(hq) = lcap_val(p);
25173 gr_dash_scale(hq) = dash_scale(p);
25174 gr_dash_p(hq) = mp_export_dashes(mp,dash_p(p));
25177 gr_text_p(hq) = str(text_p(p));
25178 gr_font_n(hq) = font_n(p);
25179 @<Export object color@>;
25180 @<Export object scripts@>;
25181 gr_width_val(hq) = width_val(p);
25182 gr_height_val(hq) = height_val(p);
25183 gr_depth_val(hq) = depth_val(p);
25184 gr_tx_val(hq) = tx_val(p);
25185 gr_ty_val(hq) = ty_val(p);
25186 gr_txx_val(hq) = txx_val(p);
25187 gr_txy_val(hq) = txy_val(p);
25188 gr_tyx_val(hq) = tyx_val(p);
25189 gr_tyy_val(hq) = tyy_val(p);
25191 case mp_start_clip_code:
25192 case mp_start_bounds_code:
25193 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25195 case mp_stop_clip_code:
25196 case mp_stop_bounds_code:
25197 /* nothing to do here */
25200 if (hh->body==NULL) hh->body=hq; else gr_link(hp) = hq;
25207 @ @<Exported function ...@>=
25208 struct mp_edge_object *mp_gr_export(MP mp, int h);
25210 @ This function is now nearly trivial.
25213 void mp_ship_out (MP mp, pointer h) { /* output edge structure |h| */
25214 integer c; /* \&{charcode} rounded to the nearest integer */
25215 c=mp_round_unscaled(mp, mp->internal[mp_char_code]);
25216 @<Begin the progress report for the output of picture~|c|@>;
25217 (mp->shipout_backend) (mp, h);
25218 @<End progress report@>;
25219 if ( mp->internal[mp_tracing_output]>0 )
25220 mp_print_edges(mp, h," (just shipped out)",true);
25223 @ @<Declarations@>=
25224 void mp_shipout_backend (MP mp, pointer h);
25227 void mp_shipout_backend (MP mp, pointer h) {
25228 struct mp_edge_object *hh; /* the first graphical object */
25229 hh = mp_gr_export(mp,h);
25230 mp_gr_ship_out (hh,
25231 (mp->internal[mp_prologues]>>16),
25232 (mp->internal[mp_procset]>>16));
25233 mp_gr_toss_objects(hh);
25236 @ @<Exported types@>=
25237 typedef void (*mp_backend_writer)(MP, int);
25239 @ @<Option variables@>=
25240 mp_backend_writer shipout_backend;
25242 @ @<Allocate or initialize ...@>=
25243 set_callback_option(shipout_backend);
25247 @ Once again, the |gr_XXXX| macros are defined in |mppsout.h|
25249 @<Export object color@>=
25250 gr_color_model(hq) = color_model(p);
25251 gr_cyan_val(hq) = cyan_val(p);
25252 gr_magenta_val(hq) = magenta_val(p);
25253 gr_yellow_val(hq) = yellow_val(p);
25254 gr_black_val(hq) = black_val(p);
25255 gr_red_val(hq) = red_val(p);
25256 gr_green_val(hq) = green_val(p);
25257 gr_blue_val(hq) = blue_val(p);
25258 gr_grey_val(hq) = grey_val(p)
25261 @ @<Export object scripts@>=
25262 if (pre_script(p)!=null)
25263 gr_pre_script(hq) = str(pre_script(p));
25264 if (post_script(p)!=null)
25265 gr_post_script(hq) = str(post_script(p));
25267 @ Now that we've finished |ship_out|, let's look at the other commands
25268 by which a user can send things to the \.{GF} file.
25270 @ @<Determine if a character has been shipped out@>=
25272 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
25273 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
25274 boolean_reset(mp->char_exists[mp->cur_exp]);
25275 mp->cur_type=mp_boolean_type;
25281 @ @<Allocate or initialize ...@>=
25282 mp_backend_initialize(mp);
25285 mp_backend_free(mp);
25288 @* \[45] Dumping and undumping the tables.
25289 After \.{INIMP} has seen a collection of macros, it
25290 can write all the necessary information on an auxiliary file so
25291 that production versions of \MP\ are able to initialize their
25292 memory at high speed. The present section of the program takes
25293 care of such output and input. We shall consider simultaneously
25294 the processes of storing and restoring,
25295 so that the inverse relation between them is clear.
25298 The global variable |mem_ident| is a string that is printed right
25299 after the |banner| line when \MP\ is ready to start. For \.{INIMP} this
25300 string says simply `\.{(INIMP)}'; for other versions of \MP\ it says,
25301 for example, `\.{(mem=plain 90.4.14)}', showing the year,
25302 month, and day that the mem file was created. We have |mem_ident=0|
25303 before \MP's tables are loaded.
25309 mp->mem_ident=NULL;
25311 @ @<Initialize table entries...@>=
25312 mp->mem_ident=xstrdup(" (INIMP)");
25314 @ @<Declare act...@>=
25315 void mp_store_mem_file (MP mp) ;
25317 @ @c void mp_store_mem_file (MP mp) {
25318 integer k; /* all-purpose index */
25319 pointer p,q; /* all-purpose pointers */
25320 integer x; /* something to dump */
25321 four_quarters w; /* four ASCII codes */
25323 @<Create the |mem_ident|, open the mem file,
25324 and inform the user that dumping has begun@>;
25325 @<Dump constants for consistency check@>;
25326 @<Dump the string pool@>;
25327 @<Dump the dynamic memory@>;
25328 @<Dump the table of equivalents and the hash table@>;
25329 @<Dump a few more things and the closing check word@>;
25330 @<Close the mem file@>;
25333 @ Corresponding to the procedure that dumps a mem file, we also have a function
25334 that reads~one~in. The function returns |false| if the dumped mem is
25335 incompatible with the present \MP\ table sizes, etc.
25337 @d off_base 6666 /* go here if the mem file is unacceptable */
25338 @d too_small(A) { wake_up_terminal;
25339 wterm_ln("---! Must increase the "); wterm((A));
25340 @.Must increase the x@>
25345 boolean mp_load_mem_file (MP mp) {
25346 integer k; /* all-purpose index */
25347 pointer p,q; /* all-purpose pointers */
25348 integer x; /* something undumped */
25349 str_number s; /* some temporary string */
25350 four_quarters w; /* four ASCII codes */
25352 @<Undump constants for consistency check@>;
25353 @<Undump the string pool@>;
25354 @<Undump the dynamic memory@>;
25355 @<Undump the table of equivalents and the hash table@>;
25356 @<Undump a few more things and the closing check word@>;
25357 return true; /* it worked! */
25360 wterm_ln("(Fatal mem file error; I'm stymied)\n");
25361 @.Fatal mem file error@>
25365 @ @<Declarations@>=
25366 boolean mp_load_mem_file (MP mp) ;
25368 @ Mem files consist of |memory_word| items, and we use the following
25369 macros to dump words of different types:
25371 @d dump_wd(A) { WW=(A); (mp->write_binary_file)(mp->mem_file,&WW,sizeof(WW)); }
25372 @d dump_int(A) { int cint=(A); (mp->write_binary_file)(mp->mem_file,&cint,sizeof(cint)); }
25373 @d dump_hh(A) { WW.hh=(A); (mp->write_binary_file)(mp->mem_file,&WW,sizeof(WW)); }
25374 @d dump_qqqq(A) { WW.qqqq=(A); (mp->write_binary_file)(mp->mem_file,&WW,sizeof(WW)); }
25375 @d dump_string(A) { dump_int(strlen(A)+1);
25376 (mp->write_binary_file)(mp->mem_file,A,strlen(A)+1); }
25379 void * mem_file; /* for input or output of mem information */
25381 @ The inverse macros are slightly more complicated, since we need to check
25382 the range of the values we are reading in. We say `|undump(a)(b)(x)|' to
25383 read an integer value |x| that is supposed to be in the range |a<=x<=b|.
25386 size_t wanted = sizeof(A);
25388 (mp->read_binary_file)(mp->mem_file,&A_ptr,&wanted);
25389 if (wanted!=sizeof(A)) goto OFF_BASE;
25393 size_t wanted = sizeof(A);
25395 (mp->read_binary_file)(mp->mem_file,&A_ptr,&wanted);
25396 if (wanted!=sizeof(A)) goto OFF_BASE;
25399 @d undump_wd(A) { mgetw(WW); A=WW; }
25400 @d undump_int(A) { int cint; mgeti(cint); A=cint; }
25401 @d undump_hh(A) { mgetw(WW); A=WW.hh; }
25402 @d undump_qqqq(A) { mgetw(WW); A=WW.qqqq; }
25403 @d undump_strings(A,B,C) {
25404 undump_int(x); if ( (x<(A)) || (x>(B)) ) goto OFF_BASE; else C=str(x); }
25405 @d undump(A,B,C) { undump_int(x); if ( (x<(A)) || (x>(int)(B)) ) goto OFF_BASE; else C=x; }
25406 @d undump_size(A,B,C,D) { undump_int(x);
25407 if (x<(A)) goto OFF_BASE;
25408 if (x>(B)) { too_small((C)); } else { D=x;} }
25409 @d undump_string(A) do {
25414 A = xmalloc(XX,sizeof(char));
25415 (mp->read_binary_file)(mp->mem_file,(void **)&A,&wanted);
25416 if (wanted!=(size_t)XX) goto OFF_BASE;
25419 @ The next few sections of the program should make it clear how we use the
25420 dump/undump macros.
25422 @<Dump constants for consistency check@>=
25423 dump_int(mp->mem_top);
25424 dump_int(mp->hash_size);
25425 dump_int(mp->hash_prime)
25426 dump_int(mp->param_size);
25427 dump_int(mp->max_in_open);
25429 @ Sections of a \.{WEB} program that are ``commented out'' still contribute
25430 strings to the string pool; therefore \.{INIMP} and \MP\ will have
25431 the same strings. (And it is, of course, a good thing that they do.)
25435 @<Undump constants for consistency check@>=
25436 undump_int(x); mp->mem_top = x;
25437 undump_int(x); if (mp->hash_size != x) goto OFF_BASE;
25438 undump_int(x); if (mp->hash_prime != x) goto OFF_BASE;
25439 undump_int(x); if (mp->param_size != x) goto OFF_BASE;
25440 undump_int(x); if (mp->max_in_open != x) goto OFF_BASE
25442 @ We do string pool compaction to avoid dumping unused strings.
25445 w.b0=qi(mp->str_pool[k]); w.b1=qi(mp->str_pool[k+1]);
25446 w.b2=qi(mp->str_pool[k+2]); w.b3=qi(mp->str_pool[k+3]);
25449 @<Dump the string pool@>=
25450 mp_do_compaction(mp, mp->pool_size);
25451 dump_int(mp->pool_ptr);
25452 dump_int(mp->max_str_ptr);
25453 dump_int(mp->str_ptr);
25455 while ( (mp->next_str[k]==k+1) && (k<=mp->max_str_ptr) )
25458 while ( k<=mp->max_str_ptr ) {
25459 dump_int(mp->next_str[k]); incr(k);
25463 dump_int(mp->str_start[k]); /* TODO: valgrind warning here */
25464 if ( k==mp->str_ptr ) {
25471 while (k+4<mp->pool_ptr ) {
25472 dump_four_ASCII; k=k+4;
25474 k=mp->pool_ptr-4; dump_four_ASCII;
25475 mp_print_ln(mp); mp_print(mp, "at most "); mp_print_int(mp, mp->max_str_ptr);
25476 mp_print(mp, " strings of total length ");
25477 mp_print_int(mp, mp->pool_ptr)
25479 @ @d undump_four_ASCII
25481 mp->str_pool[k]=qo(w.b0); mp->str_pool[k+1]=qo(w.b1);
25482 mp->str_pool[k+2]=qo(w.b2); mp->str_pool[k+3]=qo(w.b3)
25484 @<Undump the string pool@>=
25485 undump_int(mp->pool_ptr);
25486 mp_reallocate_pool(mp, mp->pool_ptr) ;
25487 undump_int(mp->max_str_ptr);
25488 mp_reallocate_strings (mp,mp->max_str_ptr) ;
25489 undump(0,mp->max_str_ptr,mp->str_ptr);
25490 undump(0,mp->max_str_ptr+1,s);
25491 for (k=0;k<=s-1;k++)
25492 mp->next_str[k]=k+1;
25493 for (k=s;k<=mp->max_str_ptr;k++)
25494 undump(s+1,mp->max_str_ptr+1,mp->next_str[k]);
25495 mp->fixed_str_use=0;
25498 undump(0,mp->pool_ptr,mp->str_start[k]);
25499 if ( k==mp->str_ptr ) break;
25500 mp->str_ref[k]=max_str_ref;
25501 incr(mp->fixed_str_use);
25502 mp->last_fixed_str=k; k=mp->next_str[k];
25505 while ( k+4<mp->pool_ptr ) {
25506 undump_four_ASCII; k=k+4;
25508 k=mp->pool_ptr-4; undump_four_ASCII;
25509 mp->init_str_use=mp->fixed_str_use; mp->init_pool_ptr=mp->pool_ptr;
25510 mp->max_pool_ptr=mp->pool_ptr;
25511 mp->strs_used_up=mp->fixed_str_use;
25512 mp->pool_in_use=mp->str_start[mp->str_ptr]; mp->strs_in_use=mp->fixed_str_use;
25513 mp->max_pl_used=mp->pool_in_use; mp->max_strs_used=mp->strs_in_use;
25514 mp->pact_count=0; mp->pact_chars=0; mp->pact_strs=0;
25516 @ By sorting the list of available spaces in the variable-size portion of
25517 |mem|, we are usually able to get by without having to dump very much
25518 of the dynamic memory.
25520 We recompute |var_used| and |dyn_used|, so that \.{INIMP} dumps valid
25521 information even when it has not been gathering statistics.
25523 @<Dump the dynamic memory@>=
25524 mp_sort_avail(mp); mp->var_used=0;
25525 dump_int(mp->lo_mem_max); dump_int(mp->rover);
25526 p=0; q=mp->rover; x=0;
25528 for (k=p;k<= q+1;k++)
25529 dump_wd(mp->mem[k]);
25530 x=x+q+2-p; mp->var_used=mp->var_used+q-p;
25531 p=q+node_size(q); q=rlink(q);
25532 } while (q!=mp->rover);
25533 mp->var_used=mp->var_used+mp->lo_mem_max-p;
25534 mp->dyn_used=mp->mem_end+1-mp->hi_mem_min;
25535 for (k=p;k<= mp->lo_mem_max;k++ )
25536 dump_wd(mp->mem[k]);
25537 x=x+mp->lo_mem_max+1-p;
25538 dump_int(mp->hi_mem_min); dump_int(mp->avail);
25539 for (k=mp->hi_mem_min;k<=mp->mem_end;k++ )
25540 dump_wd(mp->mem[k]);
25541 x=x+mp->mem_end+1-mp->hi_mem_min;
25543 while ( p!=null ) {
25544 decr(mp->dyn_used); p=link(p);
25546 dump_int(mp->var_used); dump_int(mp->dyn_used);
25547 mp_print_ln(mp); mp_print_int(mp, x);
25548 mp_print(mp, " memory locations dumped; current usage is ");
25549 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used)
25551 @ @<Undump the dynamic memory@>=
25552 undump(lo_mem_stat_max+1000,hi_mem_stat_min-1,mp->lo_mem_max);
25553 undump(lo_mem_stat_max+1,mp->lo_mem_max,mp->rover);
25556 for (k=p;k<= q+1; k++)
25557 undump_wd(mp->mem[k]);
25559 if ( (p>mp->lo_mem_max)||((q>=rlink(q))&&(rlink(q)!=mp->rover)) )
25562 } while (q!=mp->rover);
25563 for (k=p;k<=mp->lo_mem_max;k++ )
25564 undump_wd(mp->mem[k]);
25565 undump(mp->lo_mem_max+1,hi_mem_stat_min,mp->hi_mem_min);
25566 undump(null,mp->mem_top,mp->avail); mp->mem_end=mp->mem_top;
25567 for (k=mp->hi_mem_min;k<= mp->mem_end;k++)
25568 undump_wd(mp->mem[k]);
25569 undump_int(mp->var_used); undump_int(mp->dyn_used)
25571 @ A different scheme is used to compress the hash table, since its lower region
25572 is usually sparse. When |text(p)<>0| for |p<=hash_used|, we output three
25573 words: |p|, |hash[p]|, and |eqtb[p]|. The hash table is, of course, densely
25574 packed for |p>=hash_used|, so the remaining entries are output in~a~block.
25576 @<Dump the table of equivalents and the hash table@>=
25577 dump_int(mp->hash_used);
25578 mp->st_count=frozen_inaccessible-1-mp->hash_used;
25579 for (p=1;p<=mp->hash_used;p++) {
25580 if ( text(p)!=0 ) {
25581 dump_int(p); dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]); incr(mp->st_count);
25584 for (p=mp->hash_used+1;p<=(int)hash_end;p++) {
25585 dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]);
25587 dump_int(mp->st_count);
25588 mp_print_ln(mp); mp_print_int(mp, mp->st_count); mp_print(mp, " symbolic tokens")
25590 @ @<Undump the table of equivalents and the hash table@>=
25591 undump(1,frozen_inaccessible,mp->hash_used);
25594 undump(p+1,mp->hash_used,p);
25595 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
25596 } while (p!=mp->hash_used);
25597 for (p=mp->hash_used+1;p<=(int)hash_end;p++ ) {
25598 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
25600 undump_int(mp->st_count)
25602 @ We have already printed a lot of statistics, so we set |mp_tracing_stats:=0|
25603 to prevent them appearing again.
25605 @<Dump a few more things and the closing check word@>=
25606 dump_int(mp->max_internal);
25607 dump_int(mp->int_ptr);
25608 for (k=1;k<= mp->int_ptr;k++ ) {
25609 dump_int(mp->internal[k]);
25610 dump_string(mp->int_name[k]);
25612 dump_int(mp->start_sym);
25613 dump_int(mp->interaction);
25614 dump_string(mp->mem_ident);
25615 dump_int(mp->bg_loc); dump_int(mp->eg_loc); dump_int(mp->serial_no); dump_int(69073);
25616 mp->internal[mp_tracing_stats]=0
25618 @ @<Undump a few more things and the closing check word@>=
25620 if (x>mp->max_internal) mp_grow_internals(mp,x);
25621 undump_int(mp->int_ptr);
25622 for (k=1;k<= mp->int_ptr;k++) {
25623 undump_int(mp->internal[k]);
25624 undump_string(mp->int_name[k]);
25626 undump(0,frozen_inaccessible,mp->start_sym);
25627 if (mp->interaction==mp_unspecified_mode) {
25628 undump(mp_unspecified_mode,mp_error_stop_mode,mp->interaction);
25630 undump(mp_unspecified_mode,mp_error_stop_mode,x);
25632 undump_string(mp->mem_ident);
25633 undump(1,hash_end,mp->bg_loc);
25634 undump(1,hash_end,mp->eg_loc);
25635 undump_int(mp->serial_no);
25637 if (x!=69073) goto OFF_BASE
25639 @ @<Create the |mem_ident|...@>=
25641 xfree(mp->mem_ident);
25642 mp->mem_ident = xmalloc(256,1);
25643 snprintf(mp->mem_ident,256," (mem=%s %i.%i.%i)",
25645 (int)(mp_round_unscaled(mp, mp->internal[mp_year]) % 100),
25646 (int)mp_round_unscaled(mp, mp->internal[mp_month]),
25647 (int)mp_round_unscaled(mp, mp->internal[mp_day]));
25648 mp_pack_job_name(mp, mem_extension);
25649 while (! mp_w_open_out(mp, &mp->mem_file) )
25650 mp_prompt_file_name(mp, "mem file name", mem_extension);
25651 mp_print_nl(mp, "Beginning to dump on file ");
25652 @.Beginning to dump...@>
25653 mp_print(mp, mp->name_of_file);
25654 mp_print_nl(mp, mp->mem_ident);
25657 @ @<Dealloc variables@>=
25658 xfree(mp->mem_ident);
25660 @ @<Close the mem file@>=
25661 (mp->close_file)(mp->mem_file)
25663 @* \[46] The main program.
25664 This is it: the part of \MP\ that executes all those procedures we have
25667 Well---almost. We haven't put the parsing subroutines into the
25668 program yet; and we'd better leave space for a few more routines that may
25669 have been forgotten.
25671 @c @<Declare the basic parsing subroutines@>;
25672 @<Declare miscellaneous procedures that were declared |forward|@>;
25673 @<Last-minute procedures@>
25675 @ We've noted that there are two versions of \MP. One, called \.{INIMP},
25677 has to be run first; it initializes everything from scratch, without
25678 reading a mem file, and it has the capability of dumping a mem file.
25679 The other one is called `\.{VIRMP}'; it is a ``virgin'' program that needs
25681 to input a mem file in order to get started. \.{VIRMP} typically has
25682 a bit more memory capacity than \.{INIMP}, because it does not need the
25683 space consumed by the dumping/undumping routines and the numerous calls on
25686 The \.{VIRMP} program cannot read a mem file instantaneously, of course;
25687 the best implementations therefore allow for production versions of \MP\ that
25688 not only avoid the loading routine for object code, they also have
25689 a mem file pre-loaded.
25691 @ @<Option variables@>=
25692 int ini_version; /* are we iniMP? */
25694 @ @<Set |ini_version|@>=
25695 mp->ini_version = (opt->ini_version ? true : false);
25697 @ Here we do whatever is needed to complete \MP's job gracefully on the
25698 local operating system. The code here might come into play after a fatal
25699 error; it must therefore consist entirely of ``safe'' operations that
25700 cannot produce error messages. For example, it would be a mistake to call
25701 |str_room| or |make_string| at this time, because a call on |overflow|
25702 might lead to an infinite loop.
25703 @^system dependencies@>
25705 This program doesn't bother to close the input files that may still be open.
25707 @<Last-minute...@>=
25708 void mp_close_files_and_terminate (MP mp) {
25709 integer k; /* all-purpose index */
25710 integer LH; /* the length of the \.{TFM} header, in words */
25711 int lk_offset; /* extra words inserted at beginning of |lig_kern| array */
25712 pointer p; /* runs through a list of \.{TFM} dimensions */
25713 @<Close all open files in the |rd_file| and |wr_file| arrays@>;
25714 if ( mp->internal[mp_tracing_stats]>0 )
25715 @<Output statistics about this job@>;
25717 @<Do all the finishing work on the \.{TFM} file@>;
25718 @<Explain what output files were written@>;
25719 if ( mp->log_opened ){
25721 (mp->close_file)(mp->log_file);
25722 mp->selector=mp->selector-2;
25723 if ( mp->selector==term_only ) {
25724 mp_print_nl(mp, "Transcript written on ");
25725 @.Transcript written...@>
25726 mp_print(mp, mp->log_name); mp_print_char(mp, '.');
25734 @ @<Declarations@>=
25735 void mp_close_files_and_terminate (MP mp) ;
25737 @ @<Close all open files in the |rd_file| and |wr_file| arrays@>=
25738 if (mp->rd_fname!=NULL) {
25739 for (k=0;k<=(int)mp->read_files-1;k++ ) {
25740 if ( mp->rd_fname[k]!=NULL ) {
25741 (mp->close_file)(mp->rd_file[k]);
25745 if (mp->wr_fname!=NULL) {
25746 for (k=0;k<=(int)mp->write_files-1;k++) {
25747 if ( mp->wr_fname[k]!=NULL ) {
25748 (mp->close_file)(mp->wr_file[k]);
25754 for (k=0;k<(int)mp->max_read_files;k++ ) {
25755 if ( mp->rd_fname[k]!=NULL ) {
25756 (mp->close_file)(mp->rd_file[k]);
25757 mp_xfree(mp->rd_fname[k]);
25760 mp_xfree(mp->rd_file);
25761 mp_xfree(mp->rd_fname);
25762 for (k=0;k<(int)mp->max_write_files;k++) {
25763 if ( mp->wr_fname[k]!=NULL ) {
25764 (mp->close_file)(mp->wr_file[k]);
25765 mp_xfree(mp->wr_fname[k]);
25768 mp_xfree(mp->wr_file);
25769 mp_xfree(mp->wr_fname);
25772 @ We want to produce a \.{TFM} file if and only if |mp_fontmaking| is positive.
25774 We reclaim all of the variable-size memory at this point, so that
25775 there is no chance of another memory overflow after the memory capacity
25776 has already been exceeded.
25778 @<Do all the finishing work on the \.{TFM} file@>=
25779 if ( mp->internal[mp_fontmaking]>0 ) {
25780 @<Make the dynamic memory into one big available node@>;
25781 @<Massage the \.{TFM} widths@>;
25782 mp_fix_design_size(mp); mp_fix_check_sum(mp);
25783 @<Massage the \.{TFM} heights, depths, and italic corrections@>;
25784 mp->internal[mp_fontmaking]=0; /* avoid loop in case of fatal error */
25785 @<Finish the \.{TFM} file@>;
25788 @ @<Make the dynamic memory into one big available node@>=
25789 mp->rover=lo_mem_stat_max+1; link(mp->rover)=empty_flag; mp->lo_mem_max=mp->hi_mem_min-1;
25790 if ( mp->lo_mem_max-mp->rover>max_halfword ) mp->lo_mem_max=max_halfword+mp->rover;
25791 node_size(mp->rover)=mp->lo_mem_max-mp->rover;
25792 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
25793 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null
25795 @ The present section goes directly to the log file instead of using
25796 |print| commands, because there's no need for these strings to take
25797 up |str_pool| memory when a non-{\bf stat} version of \MP\ is being used.
25799 @<Output statistics...@>=
25800 if ( mp->log_opened ) {
25803 wlog_ln("Here is how much of MetaPost's memory you used:");
25804 @.Here is how much...@>
25805 snprintf(s,128," %i string%s out of %i",(int)mp->max_strs_used-mp->init_str_use,
25806 (mp->max_strs_used!=mp->init_str_use+1 ? "s" : ""),
25807 (int)(mp->max_strings-1-mp->init_str_use));
25809 snprintf(s,128," %i string characters out of %i",
25810 (int)mp->max_pl_used-mp->init_pool_ptr,
25811 (int)mp->pool_size-mp->init_pool_ptr);
25813 snprintf(s,128," %i words of memory out of %i",
25814 (int)mp->lo_mem_max+mp->mem_end-mp->hi_mem_min+2,
25815 (int)mp->mem_end+1);
25817 snprintf(s,128," %i symbolic tokens out of %i", (int)mp->st_count, (int)mp->hash_size);
25819 snprintf(s,128," %ii, %in, %ip, %ib stack positions out of %ii, %in, %ip, %ib",
25820 (int)mp->max_in_stack,(int)mp->int_ptr,
25821 (int)mp->max_param_stack,(int)mp->max_buf_stack+1,
25822 (int)mp->stack_size,(int)mp->max_internal,(int)mp->param_size,(int)mp->buf_size);
25824 snprintf(s,128," %i string compactions (moved %i characters, %i strings)",
25825 (int)mp->pact_count,(int)mp->pact_chars,(int)mp->pact_strs);
25829 @ We get to the |final_cleanup| routine when \&{end} or \&{dump} has
25832 @<Last-minute...@>=
25833 void mp_final_cleanup (MP mp) {
25834 small_number c; /* 0 for \&{end}, 1 for \&{dump} */
25836 if ( mp->job_name==NULL ) mp_open_log_file(mp);
25837 while ( mp->input_ptr>0 ) {
25838 if ( token_state ) mp_end_token_list(mp);
25839 else mp_end_file_reading(mp);
25841 while ( mp->loop_ptr!=null ) mp_stop_iteration(mp);
25842 while ( mp->open_parens>0 ) {
25843 mp_print(mp, " )"); decr(mp->open_parens);
25845 while ( mp->cond_ptr!=null ) {
25846 mp_print_nl(mp, "(end occurred when ");
25847 @.end occurred...@>
25848 mp_print_cmd_mod(mp, fi_or_else,mp->cur_if);
25849 /* `\.{if}' or `\.{elseif}' or `\.{else}' */
25850 if ( mp->if_line!=0 ) {
25851 mp_print(mp, " on line "); mp_print_int(mp, mp->if_line);
25853 mp_print(mp, " was incomplete)");
25854 mp->if_line=if_line_field(mp->cond_ptr);
25855 mp->cur_if=name_type(mp->cond_ptr); mp->cond_ptr=link(mp->cond_ptr);
25857 if ( mp->history!=mp_spotless )
25858 if ( ((mp->history==mp_warning_issued)||(mp->interaction<mp_error_stop_mode)) )
25859 if ( mp->selector==term_and_log ) {
25860 mp->selector=term_only;
25861 mp_print_nl(mp, "(see the transcript file for additional information)");
25862 @.see the transcript file...@>
25863 mp->selector=term_and_log;
25866 if (mp->ini_version) {
25867 mp_store_mem_file(mp); return;
25869 mp_print_nl(mp, "(dump is performed only by INIMP)"); return;
25870 @.dump...only by INIMP@>
25874 @ @<Declarations@>=
25875 void mp_final_cleanup (MP mp) ;
25876 void mp_init_prim (MP mp) ;
25877 void mp_init_tab (MP mp) ;
25879 @ @<Last-minute...@>=
25880 void mp_init_prim (MP mp) { /* initialize all the primitives */
25884 void mp_init_tab (MP mp) { /* initialize other tables */
25885 integer k; /* all-purpose index */
25886 @<Initialize table entries (done by \.{INIMP} only)@>;
25890 @ When we begin the following code, \MP's tables may still contain garbage;
25891 the strings might not even be present. Thus we must proceed cautiously to get
25894 But when we finish this part of the program, \MP\ is ready to call on the
25895 |main_control| routine to do its work.
25897 @<Get the first line...@>=
25899 @<Initialize the input routines@>;
25900 if ( (mp->mem_ident==NULL)||(mp->buffer[loc]=='&') ) {
25901 if ( mp->mem_ident!=NULL ) {
25902 mp_do_initialize(mp); /* erase preloaded mem */
25904 if ( ! mp_open_mem_file(mp) ) return mp_fatal_error_stop;
25905 if ( ! mp_load_mem_file(mp) ) {
25906 (mp->close_file)(mp->mem_file);
25907 return mp_fatal_error_stop;
25909 (mp->close_file)( mp->mem_file);
25910 while ( (loc<limit)&&(mp->buffer[loc]==' ') ) incr(loc);
25912 mp->buffer[limit]='%';
25913 mp_fix_date_and_time(mp);
25914 if (mp->random_seed==0)
25915 mp->random_seed = (mp->internal[mp_time] / unity)+mp->internal[mp_day];
25916 mp_init_randoms(mp, mp->random_seed);
25917 @<Initialize the print |selector|...@>;
25918 if ( loc<limit ) if ( mp->buffer[loc]!='\\' )
25919 mp_start_input(mp); /* \&{input} assumed */
25922 @ @<Run inimpost commands@>=
25924 mp_get_strings_started(mp);
25925 mp_init_tab(mp); /* initialize the tables */
25926 mp_init_prim(mp); /* call |primitive| for each primitive */
25927 mp->init_str_use=mp->str_ptr; mp->init_pool_ptr=mp->pool_ptr;
25928 mp->max_str_ptr=mp->str_ptr; mp->max_pool_ptr=mp->pool_ptr;
25929 mp_fix_date_and_time(mp);
25933 @* \[47] Debugging.
25934 Once \MP\ is working, you should be able to diagnose most errors with
25935 the \.{show} commands and other diagnostic features. But for the initial
25936 stages of debugging, and for the revelation of really deep mysteries, you
25937 can compile \MP\ with a few more aids. An additional routine called |debug_help|
25938 will also come into play when you type `\.D' after an error message;
25939 |debug_help| also occurs just before a fatal error causes \MP\ to succumb.
25941 @^system dependencies@>
25943 The interface to |debug_help| is primitive, but it is good enough when used
25944 with a debugger that allows you to set breakpoints and to read
25945 variables and change their values. After getting the prompt `\.{debug \#}', you
25946 type either a negative number (this exits |debug_help|), or zero (this
25947 goes to a location where you can set a breakpoint, thereby entering into
25948 dialog with the debugger), or a positive number |m| followed by
25949 an argument |n|. The meaning of |m| and |n| will be clear from the
25950 program below. (If |m=13|, there is an additional argument, |l|.)
25953 @<Last-minute...@>=
25954 void mp_debug_help (MP mp) { /* routine to display various things */
25961 mp_print_nl(mp, "debug # (-1 to exit):"); update_terminal;
25964 aline = (mp->read_ascii_file)(mp->term_in, &len);
25965 if (len) { sscanf(aline,"%i",&m); xfree(aline); }
25969 aline = (mp->read_ascii_file)(mp->term_in, &len);
25970 if (len) { sscanf(aline,"%i",&n); xfree(aline); }
25972 @<Numbered cases for |debug_help|@>;
25973 default: mp_print(mp, "?"); break;
25978 @ @<Numbered cases...@>=
25979 case 1: mp_print_word(mp, mp->mem[n]); /* display |mem[n]| in all forms */
25981 case 2: mp_print_int(mp, info(n));
25983 case 3: mp_print_int(mp, link(n));
25985 case 4: mp_print_int(mp, eq_type(n)); mp_print_char(mp, ':'); mp_print_int(mp, equiv(n));
25987 case 5: mp_print_variable_name(mp, n);
25989 case 6: mp_print_int(mp, mp->internal[n]);
25991 case 7: mp_do_show_dependencies(mp);
25993 case 9: mp_show_token_list(mp, n,null,100000,0);
25995 case 10: mp_print_str(mp, n);
25997 case 11: mp_check_mem(mp, n>0); /* check wellformedness; print new busy locations if |n>0| */
25999 case 12: mp_search_mem(mp, n); /* look for pointers to |n| */
26003 aline = (mp->read_ascii_file)(mp->term_in, &len);
26004 if (len) { sscanf(aline,"%i",&l); xfree(aline); }
26005 mp_print_cmd_mod(mp, n,l);
26007 case 14: for (k=0;k<=n;k++) mp_print_str(mp, mp->buffer[k]);
26009 case 15: mp->panicking=! mp->panicking;
26013 @ Saving the filename template
26015 @<Save the filename template@>=
26017 if ( mp->filename_template!=0 ) delete_str_ref(mp->filename_template);
26018 if ( length(mp->cur_exp)==0 ) mp->filename_template=0;
26020 mp->filename_template=mp->cur_exp; add_str_ref(mp->filename_template);
26024 @* \[48] System-dependent changes.
26025 This section should be replaced, if necessary, by any special
26026 modification of the program
26027 that are necessary to make \MP\ work at a particular installation.
26028 It is usually best to design your change file so that all changes to
26029 previous sections preserve the section numbering; then everybody's version
26030 will be consistent with the published program. More extensive changes,
26031 which introduce new sections, can be inserted here; then only the index
26032 itself will get a new section number.
26033 @^system dependencies@>
26036 Here is where you can find all uses of each identifier in the program,
26037 with underlined entries pointing to where the identifier was defined.
26038 If the identifier is only one letter long, however, you get to see only
26039 the underlined entries. {\sl All references are to section numbers instead of
26042 This index also lists error messages and other aspects of the program
26043 that you might want to look up some day. For example, the entry
26044 for ``system dependencies'' lists all sections that should receive
26045 special attention from people who are installing \MP\ in a new
26046 operating environment. A list of various things that can't happen appears
26047 under ``this can't happen''.
26048 Approximately 25 sections are listed under ``inner loop''; these account
26049 for more than 60\pct! of \MP's running time, exclusive of input and output.