1 % $Id: mp.web,v 1.8 2005/08/24 10:54:02 taco Exp $
2 % MetaPost, by John Hobby. Public domain.
4 % Much of this program was copied with permission from MF.web Version 1.9
5 % It interprets a language very similar to D.E. Knuth's METAFONT, but with
6 % changes designed to make it more suitable for PostScript output.
8 % TeX is a trademark of the American Mathematical Society.
9 % METAFONT is a trademark of Addison-Wesley Publishing Company.
10 % PostScript is a trademark of Adobe Systems Incorporated.
12 % Here is TeX material that gets inserted after \input webmac
13 \def\hang{\hangindent 3em\noindent\ignorespaces}
14 \def\textindent#1{\hangindent2.5em\noindent\hbox to2.5em{\hss#1 }\ignorespaces}
16 \def\psqrt#1{\sqrt{\mathstrut#1}}
18 \def\pct!{{\char`\%}} % percent sign in ordinary text
19 \font\tenlogo=logo10 % font used for the METAFONT logo
21 \def\MF{{\tenlogo META}\-{\tenlogo FONT}}
22 \def\MP{{\tenlogo META}\-{\tenlogo POST}}
23 \def\[#1]{\ignorespaces} % left over from pascal web
24 \def\<#1>{$\langle#1\rangle$}
25 \def\section{\mathhexbox278}
26 \let\swap=\leftrightarrow
27 \def\round{\mathop{\rm round}\nolimits}
28 \mathchardef\vb="026A % synonym for `\|'
30 \def\(#1){} % this is used to make section names sort themselves better
31 \def\9#1{} % this is used for sort keys in the index via @@:sort key}{entry@@>
38 This is \MP, a graphics-language processor based on D. E. Knuth's \MF.
40 The main purpose of the following program is to explain the algorithms of \MP\
41 as clearly as possible. However, the program has been written so that it
42 can be tuned to run efficiently in a wide variety of operating environments
43 by making comparatively few changes. Such flexibility is possible because
44 the documentation that follows is written in the \.{WEB} language, which is
45 at a higher level than C.
47 A large piece of software like \MP\ has inherent complexity that cannot
48 be reduced below a certain level of difficulty, although each individual
49 part is fairly simple by itself. The \.{WEB} language is intended to make
50 the algorithms as readable as possible, by reflecting the way the
51 individual program pieces fit together and by providing the
52 cross-references that connect different parts. Detailed comments about
53 what is going on, and about why things were done in certain ways, have
54 been liberally sprinkled throughout the program. These comments explain
55 features of the implementation, but they rarely attempt to explain the
56 \MP\ language itself, since the reader is supposed to be familiar with
57 {\sl The {\logos METAFONT\/}book} as well as the manual
59 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
60 {\sl A User's Manual for MetaPost}, Computing Science Technical Report 162,
61 AT\AM T Bell Laboratories.
63 @ The present implementation is a preliminary version, but the possibilities
64 for new features are limited by the desire to remain as nearly compatible
65 with \MF\ as possible.
67 On the other hand, the \.{WEB} description can be extended without changing
68 the core of the program, and it has been designed so that such
69 extensions are not extremely difficult to make.
70 The |banner| string defined here should be changed whenever \MP\
71 undergoes any modifications, so that it will be clear which version of
72 \MP\ might be the guilty party when a problem arises.
74 @^system dependencies@>
76 @d banner "This is MetaPost, Version 1.002" /* printed when \MP\ starts */
77 @d metapost_version "1.002"
78 @d mplib_version "0.20"
79 @d version_string " (Cweb version 0.20)"
84 @ The external library header for \MP\ is |mplib.h|. It contains a
85 few typedefs and the header defintions for the externally used
88 The most important of the typedefs is the definition of the structure
89 |MP_options|, that acts as a small, configurable front-end to the fairly
90 large |MP_instance| structure.
93 typedef struct MP_instance * MP;
95 typedef struct MP_options {
98 @<Exported function headers@>
100 @ The internal header file is much longer: it not only lists the complete
101 |MP_instance|, but also a lot of functions that have to be available to
102 the \ps\ backend, that is defined in a separate \.{WEB} file.
104 The variables from |MP_options| are included inside the |MP_instance|
109 typedef struct psout_data_struct * psout_data;
111 typedef signed int integer;
113 @<Types in the outer block@>;
114 @<Constants in the outer block@>
115 # ifndef LIBAVL_ALLOCATOR
116 # define LIBAVL_ALLOCATOR
117 struct libavl_allocator {
118 void *(*libavl_malloc) (struct libavl_allocator *, size_t libavl_size);
119 void (*libavl_free) (struct libavl_allocator *, void *libavl_block);
122 typedef struct MP_instance {
126 @<Internal library declarations@>
134 #include <unistd.h> /* for access() */
135 #include <time.h> /* for struct tm \& co */
137 #include "mpmp.h" /* internal header */
138 #include "mppsout.h" /* internal header */
141 @<Basic printing procedures@>
142 @<Error handling procedures@>
144 @ Here are the functions that set up the \MP\ instance.
147 @<Declare |mp_reallocate| functions@>;
148 struct MP_options *mp_options (void);
149 MP mp_new (struct MP_options *opt);
152 struct MP_options *mp_options (void) {
153 struct MP_options *opt;
154 opt = malloc(sizeof(MP_options));
156 memset (opt,0,sizeof(MP_options));
161 @ The |__attribute__| pragma is gcc-only.
163 @<Internal library ... @>=
164 #if !defined(__GNUC__) || (__GNUC__ < 2)
165 # define __attribute__(x)
166 #endif /* !defined(__GNUC__) || (__GNUC__ < 2) */
169 MP __attribute__ ((noinline))
170 mp_new (struct MP_options *opt) {
172 mp = xmalloc(1,sizeof(MP_instance));
173 @<Set |ini_version|@>;
174 @<Setup the non-local jump buffer in |mp_new|@>;
175 @<Allocate or initialize variables@>
176 if (opt->main_memory>mp->mem_max)
177 mp_reallocate_memory(mp,opt->main_memory);
178 mp_reallocate_paths(mp,1000);
179 mp_reallocate_fonts(mp,8);
184 void mp_free (MP mp) {
185 int k; /* loop variable */
186 @<Dealloc variables@>
191 void __attribute__((noinline))
192 mp_do_initialize ( MP mp) {
193 @<Local variables for initialization@>
194 @<Set initial values of key variables@>
196 int mp_initialize (MP mp) { /* this procedure gets things started properly */
197 mp->history=mp_fatal_error_stop; /* in case we quit during initialization */
198 @<Install and test the non-local jump buffer@>;
199 t_open_out; /* open the terminal for output */
200 @<Check the ``constant'' values...@>;
203 snprintf(ss,256,"Ouch---my internal constants have been clobbered!\n"
204 "---case %i",(int)mp->bad);
205 do_fprintf(mp->err_out,(char *)ss);
209 mp_do_initialize(mp); /* erase preloaded mem */
210 if (mp->ini_version) {
211 @<Run inimpost commands@>;
213 @<Initialize the output routines@>;
214 @<Get the first line of input and prepare to start@>;
216 mp_init_map_file(mp, mp->troff_mode);
217 mp->history=mp_spotless; /* ready to go! */
218 if (mp->troff_mode) {
219 mp->internal[mp_gtroffmode]=unity;
220 mp->internal[mp_prologues]=unity;
222 if ( mp->start_sym>0 ) { /* insert the `\&{everyjob}' symbol */
223 mp->cur_sym=mp->start_sym; mp_back_input(mp);
229 @<Exported function headers@>=
230 extern struct MP_options *mp_options (void);
231 extern MP mp_new (struct MP_options *opt) ;
232 extern void mp_free (MP mp);
233 extern int mp_initialize (MP mp);
235 @ The overall \MP\ program begins with the heading just shown, after which
236 comes a bunch of procedure declarations and function declarations.
237 Finally we will get to the main program, which begins with the
238 comment `|start_here|'. If you want to skip down to the
239 main program now, you can look up `|start_here|' in the index.
240 But the author suggests that the best way to understand this program
241 is to follow pretty much the order of \MP's components as they appear in the
242 \.{WEB} description you are now reading, since the present ordering is
243 intended to combine the advantages of the ``bottom up'' and ``top down''
244 approaches to the problem of understanding a somewhat complicated system.
246 @ Some of the code below is intended to be used only when diagnosing the
247 strange behavior that sometimes occurs when \MP\ is being installed or
248 when system wizards are fooling around with \MP\ without quite knowing
249 what they are doing. Such code will not normally be compiled; it is
250 delimited by the preprocessor test `|#ifdef DEBUG .. #endif|'.
252 @ This program has two important variations: (1) There is a long and slow
253 version called \.{INIMP}, which does the extra calculations needed to
255 initialize \MP's internal tables; and (2)~there is a shorter and faster
256 production version, which cuts the initialization to a bare minimum.
258 Which is which is decided at runtime.
260 @ The following parameters can be changed at compile time to extend or
261 reduce \MP's capacity. They may have different values in \.{INIMP} and
262 in production versions of \MP.
264 @^system dependencies@>
267 #define file_name_size 255 /* file names shouldn't be longer than this */
268 #define bistack_size 1500 /* size of stack for bisection algorithms;
269 should probably be left at this value */
271 @ Like the preceding parameters, the following quantities can be changed
272 at compile time to extend or reduce \MP's capacity. But if they are changed,
273 it is necessary to rerun the initialization program \.{INIMP}
275 to generate new tables for the production \MP\ program.
276 One can't simply make helter-skelter changes to the following constants,
277 since certain rather complex initialization
278 numbers are computed from them.
281 int max_strings; /* maximum number of strings; must not exceed |max_halfword| */
282 int pool_size; /* maximum number of characters in strings, including all
283 error messages and help texts, and the names of all identifiers */
284 int mem_max; /* greatest index in \MP's internal |mem| array;
285 must be strictly less than |max_halfword|;
286 must be equal to |mem_top| in \.{INIMP}, otherwise |>=mem_top| */
287 int mem_top; /* largest index in the |mem| array dumped by \.{INIMP};
288 must not be greater than |mem_max| */
290 @ @<Option variables@>=
291 int error_line; /* width of context lines on terminal error messages */
292 int half_error_line; /* width of first lines of contexts in terminal
293 error messages; should be between 30 and |error_line-15| */
294 int max_print_line; /* width of longest text lines output; should be at least 60 */
295 int hash_size; /* maximum number of symbolic tokens,
296 must be less than |max_halfword-3*param_size| */
297 int hash_prime; /* a prime number equal to about 85\pct! of |hash_size| */
298 int param_size; /* maximum number of simultaneous macro parameters */
299 int max_in_open; /* maximum number of input files and error insertions that
300 can be going on simultaneously */
301 int main_memory; /* only for options, to set up |mem_max| and |mem_top| */
304 @d set_value(a,b,c) do { a=c; if (b>c) a=b; } while (0)
309 set_value(mp->error_line,opt->error_line,79);
310 set_value(mp->half_error_line,opt->half_error_line,50);
311 set_value(mp->max_print_line,opt->max_print_line,100);
312 mp->main_memory=5000;
315 set_value(mp->hash_size,opt->hash_size,9500);
316 set_value(mp->hash_prime,opt->hash_prime,7919);
317 set_value(mp->param_size,opt->param_size,150);
318 set_value(mp->max_in_open,opt->max_in_open,10);
321 @ In case somebody has inadvertently made bad settings of the ``constants,''
322 \MP\ checks them using a global variable called |bad|.
324 This is the first of many sections of \MP\ where global variables are
328 integer bad; /* is some ``constant'' wrong? */
330 @ Later on we will say `\ignorespaces|if (mem_max>=max_halfword) bad=10;|',
331 or something similar. (We can't do that until |max_halfword| has been defined.)
333 @<Check the ``constant'' values for consistency@>=
335 if ( (mp->half_error_line<30)||(mp->half_error_line>mp->error_line-15) ) mp->bad=1;
336 if ( mp->max_print_line<60 ) mp->bad=2;
337 if ( mp->mem_top<=1100 ) mp->bad=4;
338 if (mp->hash_prime>mp->hash_size ) mp->bad=5;
340 @ Some |goto| labels are used by the following definitions. The label
341 `|restart|' is occasionally used at the very beginning of a procedure; and
342 the label `|reswitch|' is occasionally used just prior to a |case|
343 statement in which some cases change the conditions and we wish to branch
344 to the newly applicable case. Loops that are set up with the |loop|
345 construction defined below are commonly exited by going to `|done|' or to
346 `|found|' or to `|not_found|', and they are sometimes repeated by going to
347 `|continue|'. If two or more parts of a subroutine start differently but
348 end up the same, the shared code may be gathered together at
351 @ Here are some macros for common programming idioms.
353 @d incr(A) (A)=(A)+1 /* increase a variable by unity */
354 @d decr(A) (A)=(A)-1 /* decrease a variable by unity */
355 @d negate(A) (A)=-(A) /* change the sign of a variable */
356 @d double(A) (A)=(A)+(A)
359 @d do_nothing /* empty statement */
360 @d Return goto exit /* terminate a procedure call */
361 @f return nil /* \.{WEB} will henceforth say |return| instead of \\{return} */
363 @* \[2] The character set.
364 In order to make \MP\ readily portable to a wide variety of
365 computers, all of its input text is converted to an internal eight-bit
366 code that includes standard ASCII, the ``American Standard Code for
367 Information Interchange.'' This conversion is done immediately when each
368 character is read in. Conversely, characters are converted from ASCII to
369 the user's external representation just before they are output to a
373 Such an internal code is relevant to users of \MP\ only with respect to
374 the \&{char} and \&{ASCII} operations, and the comparison of strings.
376 @ Characters of text that have been converted to \MP's internal form
377 are said to be of type |ASCII_code|, which is a subrange of the integers.
380 typedef unsigned char ASCII_code; /* eight-bit numbers */
382 @ The present specification of \MP\ has been written under the assumption
383 that the character set contains at least the letters and symbols associated
384 with ASCII codes 040 through 0176; all of these characters are now
385 available on most computer terminals.
387 We shall use the name |text_char| to stand for the data type of the characters
388 that are converted to and from |ASCII_code| when they are input and output.
389 We shall also assume that |text_char| consists of the elements
390 |chr(first_text_char)| through |chr(last_text_char)|, inclusive.
391 The following definitions should be adjusted if necessary.
392 @^system dependencies@>
394 @d first_text_char 0 /* ordinal number of the smallest element of |text_char| */
395 @d last_text_char 255 /* ordinal number of the largest element of |text_char| */
398 typedef unsigned char text_char; /* the data type of characters in text files */
400 @ @<Local variables for init...@>=
403 @ The \MP\ processor converts between ASCII code and
404 the user's external character set by means of arrays |xord| and |xchr|
405 that are analogous to Pascal's |ord| and |chr| functions.
407 @d xchr(A) mp->xchr[(A)]
408 @d xord(A) mp->xord[(A)]
411 ASCII_code xord[256]; /* specifies conversion of input characters */
412 text_char xchr[256]; /* specifies conversion of output characters */
414 @ The core system assumes all 8-bit is acceptable. If it is not,
415 a change file has to alter the below section.
416 @^system dependencies@>
418 Additionally, people with extended character sets can
419 assign codes arbitrarily, giving an |xchr| equivalent to whatever
420 characters the users of \MP\ are allowed to have in their input files.
421 Appropriate changes to \MP's |char_class| table should then be made.
422 (Unlike \TeX, each installation of \MP\ has a fixed assignment of category
423 codes, called the |char_class|.) Such changes make portability of programs
424 more difficult, so they should be introduced cautiously if at all.
425 @^character set dependencies@>
426 @^system dependencies@>
429 for (i=0;i<=0377;i++) { xchr(i)=i; }
431 @ The following system-independent code makes the |xord| array contain a
432 suitable inverse to the information in |xchr|. Note that if |xchr[i]=xchr[j]|
433 where |i<j<0177|, the value of |xord[xchr[i]]| will turn out to be
434 |j| or more; hence, standard ASCII code numbers will be used instead of
435 codes below 040 in case there is a coincidence.
438 for (i=first_text_char;i<=last_text_char;i++) {
441 for (i=0200;i<=0377;i++) { xord(xchr(i))=i;}
442 for (i=0;i<=0176;i++) { xord(xchr(i))=i;}
444 @* \[3] Input and output.
445 The bane of portability is the fact that different operating systems treat
446 input and output quite differently, perhaps because computer scientists
447 have not given sufficient attention to this problem. People have felt somehow
448 that input and output are not part of ``real'' programming. Well, it is true
449 that some kinds of programming are more fun than others. With existing
450 input/output conventions being so diverse and so messy, the only sources of
451 joy in such parts of the code are the rare occasions when one can find a
452 way to make the program a little less bad than it might have been. We have
453 two choices, either to attack I/O now and get it over with, or to postpone
454 I/O until near the end. Neither prospect is very attractive, so let's
457 The basic operations we need to do are (1)~inputting and outputting of
458 text, to or from a file or the user's terminal; (2)~inputting and
459 outputting of eight-bit bytes, to or from a file; (3)~instructing the
460 operating system to initiate (``open'') or to terminate (``close'') input or
461 output from a specified file; (4)~testing whether the end of an input
462 file has been reached; (5)~display of bits on the user's screen.
463 The bit-display operation will be discussed in a later section; we shall
464 deal here only with more traditional kinds of I/O.
466 @ Finding files happens in a slightly roundabout fashion: the \MP\
467 instance object contains a field that holds a function pointer that finds a
468 file, and returns its name, or NULL. For this, it receives three
469 parameters: the non-qualified name |fname|, the intended |fopen|
470 operation type |fmode|, and the type of the file |ftype|.
472 The file types that are passed on in |ftype| can be used to
473 differentiate file searches if a library like kpathsea is used,
474 the fopen mode is passed along for the same reason.
477 typedef unsigned char eight_bits ; /* unsigned one-byte quantity */
479 @ @<Exported types@>=
481 mp_filetype_terminal = 0, /* the terminal */
482 mp_filetype_error, /* the terminal */
483 mp_filetype_program , /* \MP\ language input */
484 mp_filetype_log, /* the log file */
485 mp_filetype_postscript, /* the postscript output */
486 mp_filetype_memfile, /* memory dumps */
487 mp_filetype_metrics, /* TeX font metric files */
488 mp_filetype_fontmap, /* PostScript font mapping files */
489 mp_filetype_font, /* PostScript type1 font programs */
490 mp_filetype_encoding, /* PostScript font encoding files */
491 mp_filetype_text, /* first text file for readfrom and writeto primitives */
493 typedef char *(*mp_file_finder)(char *, char *, int);
494 typedef void *(*mp_file_opener)(char *, char *, int);
495 typedef char *(*mp_file_reader)(void *, size_t *);
496 typedef void (*mp_binfile_reader)(void *, void **, size_t *);
497 typedef void (*mp_file_closer)(void *);
498 typedef int (*mp_file_eoftest)(void *);
499 typedef void (*mp_file_flush)(void *);
500 typedef void (*mp_file_writer)(void *, char *);
501 typedef void (*mp_binfile_writer)(void *, void *, size_t);
504 @ @<Option variables@>=
505 mp_file_finder find_file;
506 mp_file_opener open_file;
507 mp_file_reader read_ascii_file;
508 mp_binfile_reader read_binary_file;
509 mp_file_closer close_file;
510 mp_file_eoftest eof_file;
511 mp_file_flush flush_file;
512 mp_file_writer write_ascii_file;
513 mp_binfile_writer write_binary_file;
515 @ The default function for finding files is |mp_find_file|. It is
516 pretty stupid: it will only find files in the current directory.
518 This function may disappear altogether, it is currently only
519 used for the default font map file.
522 char *mp_find_file (char *fname, char *fmode, int ftype) {
523 if (fmode[0] != 'r' || (! access (fname,R_OK)) || ftype) {
524 return strdup(fname);
529 @ This has to be done very early on, so it is best to put it in with
530 the |mp_new| allocations
532 @d set_callback_option(A) do { mp->A = mp_##A;
533 if (opt->A!=NULL) mp->A = opt->A;
536 @<Allocate or initialize ...@>=
537 set_callback_option(find_file);
538 set_callback_option(open_file);
539 set_callback_option(read_ascii_file);
540 set_callback_option(read_binary_file);
541 set_callback_option(close_file);
542 set_callback_option(eof_file);
543 set_callback_option(flush_file);
544 set_callback_option(write_ascii_file);
545 set_callback_option(write_binary_file);
547 @ Because |mp_find_file| is used so early, it has to be in the helpers
551 char *mp_find_file (char *fname, char *fmode, int ftype) ;
552 void *mp_open_file (char *fname, char *fmode, int ftype) ;
553 char *mp_read_ascii_file (void *f, size_t *size) ;
554 void mp_read_binary_file (void *f, void **d, size_t *size) ;
555 void mp_close_file (void *f) ;
556 int mp_eof_file (void *f) ;
557 void mp_flush_file (void *f) ;
558 void mp_write_ascii_file (void *f, char *s) ;
559 void mp_write_binary_file (void *f, void *s, size_t t) ;
561 @ The function to open files can now be very short.
564 void *mp_open_file(char *fname, char *fmode, int ftype) {
566 if (ftype==mp_filetype_terminal) {
567 return (fmode[0] == 'r' ? stdin : stdout);
568 } else if (ftype==mp_filetype_error) {
570 } else if (fname != NULL && (fmode[0] != 'r' || (! access (fname,R_OK)))) {
571 return (void *)fopen(fname, fmode);
577 @ This is a legacy interface: (almost) all file names pass through |name_of_file|.
580 char name_of_file[file_name_size+1]; /* the name of a system file */
581 int name_length;/* this many characters are actually
582 relevant in |name_of_file| (the rest are blank) */
584 @ @<Option variables@>=
585 int print_found_names; /* configuration parameter */
587 @ If this parameter is true, the terminal and log will report the found
588 file names for input files instead of the requested ones.
589 It is off by default because it creates an extra filename lookup.
591 @<Allocate or initialize ...@>=
592 mp->print_found_names = (opt->print_found_names>0 ? true : false);
594 @ \MP's file-opening procedures return |false| if no file identified by
595 |name_of_file| could be opened.
597 The |OPEN_FILE| macro takes care of the |print_found_names| parameter.
598 It is not used for opening a mem file for read, because that file name
602 if (mp->print_found_names) {
603 char *s = (mp->find_file)(mp->name_of_file,A,ftype);
605 *f = (mp->open_file)(mp->name_of_file,A, ftype);
606 strncpy(mp->name_of_file,s,file_name_size);
612 *f = (mp->open_file)(mp->name_of_file,A, ftype);
615 return (*f ? true : false)
618 boolean mp_a_open_in (MP mp, void **f, int ftype) {
619 /* open a text file for input */
623 boolean mp_w_open_in (MP mp, void **f) {
624 /* open a word file for input */
625 *f = (mp->open_file)(mp->name_of_file,"rb",mp_filetype_memfile);
626 return (*f ? true : false);
629 boolean mp_a_open_out (MP mp, void **f, int ftype) {
630 /* open a text file for output */
634 boolean mp_b_open_out (MP mp, void **f, int ftype) {
635 /* open a binary file for output */
639 boolean mp_w_open_out (MP mp, void **f) {
640 /* open a word file for output */
641 int ftype = mp_filetype_memfile;
646 char *mp_read_ascii_file (void *ff, size_t *size) {
648 size_t len = 0, lim = 128;
650 FILE *f = (FILE *)ff;
657 if (s==NULL) return NULL;
658 while (c!=EOF && c!='\n' && c!='\r') {
660 s =realloc(s, (lim+(lim>>2)));
661 if (s==NULL) return NULL;
669 if (c!=EOF && c!='\n')
679 void mp_write_ascii_file (void *f, char *s) {
688 void mp_read_binary_file (void *f, void **data, size_t *size) {
691 len = fread(*data,1,*size,(FILE *)f);
697 void mp_write_binary_file (void *f, void *s, size_t size) {
700 fwrite(s,size,1,(FILE *)f);
706 void mp_close_file (void *f) {
713 int mp_eof_file (void *f) {
715 return feof((FILE *)f);
722 void mp_flush_file (void *f) {
728 @ Input from text files is read one line at a time, using a routine called
729 |input_ln|. This function is defined in terms of global variables called
730 |buffer|, |first|, and |last| that will be described in detail later; for
731 now, it suffices for us to know that |buffer| is an array of |ASCII_code|
732 values, and that |first| and |last| are indices into this array
733 representing the beginning and ending of a line of text.
736 size_t buf_size; /* maximum number of characters simultaneously present in
737 current lines of open files */
738 ASCII_code *buffer; /* lines of characters being read */
739 size_t first; /* the first unused position in |buffer| */
740 size_t last; /* end of the line just input to |buffer| */
741 size_t max_buf_stack; /* largest index used in |buffer| */
743 @ @<Allocate or initialize ...@>=
745 mp->buffer = xmalloc((mp->buf_size+1),sizeof(ASCII_code));
747 @ @<Dealloc variables@>=
751 void mp_reallocate_buffer(MP mp, size_t l) {
753 if (l>max_halfword) {
754 mp_confusion(mp,"buffer size"); /* can't happen (I hope) */
756 buffer = xmalloc((l+1),sizeof(ASCII_code));
757 memcpy(buffer,mp->buffer,(mp->buf_size+1));
759 mp->buffer = buffer ;
763 @ The |input_ln| function brings the next line of input from the specified
764 field into available positions of the buffer array and returns the value
765 |true|, unless the file has already been entirely read, in which case it
766 returns |false| and sets |last:=first|. In general, the |ASCII_code|
767 numbers that represent the next line of the file are input into
768 |buffer[first]|, |buffer[first+1]|, \dots, |buffer[last-1]|; and the
769 global variable |last| is set equal to |first| plus the length of the
770 line. Trailing blanks are removed from the line; thus, either |last=first|
771 (in which case the line was entirely blank) or |buffer[last-1]<>" "|.
774 The variable |max_buf_stack|, which is used to keep track of how large
775 the |buf_size| parameter must be to accommodate the present job, is
776 also kept up to date by |input_ln|.
779 boolean mp_input_ln (MP mp, void *f ) {
780 /* inputs the next line or returns |false| */
783 mp->last=mp->first; /* cf.\ Matthew 19\thinspace:\thinspace30 */
784 s = (mp->read_ascii_file)(f, &size);
788 mp->last = mp->first+size;
789 if ( mp->last>=mp->max_buf_stack ) {
790 mp->max_buf_stack=mp->last+1;
791 while ( mp->max_buf_stack>=mp->buf_size ) {
792 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
795 memcpy((mp->buffer+mp->first),s,size);
796 /* while ( mp->buffer[mp->last]==' ' ) mp->last--; */
802 @ The user's terminal acts essentially like other files of text, except
803 that it is used both for input and for output. When the terminal is
804 considered an input file, the file variable is called |term_in|, and when it
805 is considered an output file the file variable is |term_out|.
806 @^system dependencies@>
809 void * term_in; /* the terminal as an input file */
810 void * term_out; /* the terminal as an output file */
811 void * err_out; /* the terminal as an output file */
813 @ Here is how to open the terminal files. In the default configuration,
814 nothing happens except that the command line (if there is one) is copied
815 to the input buffer. The variable |command_line| will be filled by the
816 |main| procedure. The copying can not be done earlier in the program
817 logic because in the |INI| version, the |buffer| is also used for primitive
820 @^system dependencies@>
822 @d t_open_out do {/* open the terminal for text output */
823 mp->term_out = (mp->open_file)("terminal", "w", mp_filetype_terminal);
824 mp->err_out = (mp->open_file)("error", "w", mp_filetype_error);
826 @d t_open_in do { /* open the terminal for text input */
827 mp->term_in = (mp->open_file)("terminal", "r", mp_filetype_terminal);
828 if (mp->command_line!=NULL) {
829 mp->last = strlen(mp->command_line);
830 strncpy((char *)mp->buffer,mp->command_line,mp->last);
831 xfree(mp->command_line);
835 @d t_close_out do { /* close the terminal */
836 (mp->close_file)(mp->term_out);
837 (mp->close_file)(mp->err_out);
840 @d t_close_in do { /* close the terminal */
841 (mp->close_file)(mp->term_in);
844 @<Option variables@>=
847 @ @<Allocate or initialize ...@>=
848 mp->command_line = xstrdup(opt->command_line);
850 @ Sometimes it is necessary to synchronize the input/output mixture that
851 happens on the user's terminal, and three system-dependent
852 procedures are used for this
853 purpose. The first of these, |update_terminal|, is called when we want
854 to make sure that everything we have output to the terminal so far has
855 actually left the computer's internal buffers and been sent.
856 The second, |clear_terminal|, is called when we wish to cancel any
857 input that the user may have typed ahead (since we are about to
858 issue an unexpected error message). The third, |wake_up_terminal|,
859 is supposed to revive the terminal if the user has disabled it by
860 some instruction to the operating system. The following macros show how
861 these operations can be specified:
862 @^system dependencies@>
864 @d update_terminal (mp->flush_file)(mp->term_out) /* empty the terminal output buffer */
865 @d clear_terminal do_nothing /* clear the terminal input buffer */
866 @d wake_up_terminal (mp->flush_file)(mp->term_out) /* cancel the user's cancellation of output */
868 @ We need a special routine to read the first line of \MP\ input from
869 the user's terminal. This line is different because it is read before we
870 have opened the transcript file; there is sort of a ``chicken and
871 egg'' problem here. If the user types `\.{input cmr10}' on the first
872 line, or if some macro invoked by that line does such an \.{input},
873 the transcript file will be named `\.{cmr10.log}'; but if no \.{input}
874 commands are performed during the first line of terminal input, the transcript
875 file will acquire its default name `\.{mpout.log}'. (The transcript file
876 will not contain error messages generated by the first line before the
877 first \.{input} command.)
879 The first line is even more special. It's nice to let the user start
880 running a \MP\ job by typing a command line like `\.{MP cmr10}'; in
881 such a case, \MP\ will operate as if the first line of input were
882 `\.{cmr10}', i.e., the first line will consist of the remainder of the
883 command line, after the part that invoked \MP.
885 @ Different systems have different ways to get started. But regardless of
886 what conventions are adopted, the routine that initializes the terminal
887 should satisfy the following specifications:
889 \yskip\textindent{1)}It should open file |term_in| for input from the
890 terminal. (The file |term_out| will already be open for output to the
893 \textindent{2)}If the user has given a command line, this line should be
894 considered the first line of terminal input. Otherwise the
895 user should be prompted with `\.{**}', and the first line of input
896 should be whatever is typed in response.
898 \textindent{3)}The first line of input, which might or might not be a
899 command line, should appear in locations |first| to |last-1| of the
902 \textindent{4)}The global variable |loc| should be set so that the
903 character to be read next by \MP\ is in |buffer[loc]|. This
904 character should not be blank, and we should have |loc<last|.
906 \yskip\noindent(It may be necessary to prompt the user several times
907 before a non-blank line comes in. The prompt is `\.{**}' instead of the
908 later `\.*' because the meaning is slightly different: `\.{input}' need
909 not be typed immediately after~`\.{**}'.)
911 @d loc mp->cur_input.loc_field /* location of first unread character in |buffer| */
913 @ The following program does the required initialization
914 without retrieving a possible command line.
915 It should be clear how to modify this routine to deal with command lines,
916 if the system permits them.
917 @^system dependencies@>
920 boolean mp_init_terminal (MP mp) { /* gets the terminal input started */
927 wake_up_terminal; do_fprintf(mp->term_out,"**"); update_terminal;
929 if ( ! mp_input_ln(mp, mp->term_in ) ) { /* this shouldn't happen */
930 do_fprintf(mp->term_out,"\n! End of file on the terminal... why?");
931 @.End of file on the terminal@>
935 while ( (loc<(int)mp->last)&&(mp->buffer[loc]==' ') )
937 if ( loc<(int)mp->last ) {
938 return true; /* return unless the line was all blank */
940 do_fprintf(mp->term_out,"Please type the name of your input file.\n");
945 boolean mp_init_terminal (MP mp) ;
948 @* \[4] String handling.
949 Symbolic token names and diagnostic messages are variable-length strings
950 of eight-bit characters. Many strings \MP\ uses are simply literals
951 in the compiled source, like the error messages and the names of the
952 internal parameters. Other strings are used or defined from the \MP\ input
953 language, and these have to be interned.
955 \MP\ uses strings more extensively than \MF\ does, but the necessary
956 operations can still be handled with a fairly simple data structure.
957 The array |str_pool| contains all of the (eight-bit) ASCII codes in all
958 of the strings, and the array |str_start| contains indices of the starting
959 points of each string. Strings are referred to by integer numbers, so that
960 string number |s| comprises the characters |str_pool[j]| for
961 |str_start[s]<=j<str_start[ss]| where |ss=next_str[s]|. The string pool
962 is allocated sequentially and |str_pool[pool_ptr]| is the next unused
963 location. The first string number not currently in use is |str_ptr|
964 and |next_str[str_ptr]| begins a list of free string numbers. String
965 pool entries |str_start[str_ptr]| up to |pool_ptr| are reserved for a
966 string currently being constructed.
968 String numbers 0 to 255 are reserved for strings that correspond to single
969 ASCII characters. This is in accordance with the conventions of \.{WEB},
971 which converts single-character strings into the ASCII code number of the
972 single character involved, while it converts other strings into integers
973 and builds a string pool file. Thus, when the string constant \.{"."} appears
974 in the program below, \.{WEB} converts it into the integer 46, which is the
975 ASCII code for a period, while \.{WEB} will convert a string like \.{"hello"}
976 into some integer greater than~255. String number 46 will presumably be the
977 single character `\..'\thinspace; but some ASCII codes have no standard visible
978 representation, and \MP\ may need to be able to print an arbitrary
979 ASCII character, so the first 256 strings are used to specify exactly what
980 should be printed for each of the 256 possibilities.
983 typedef int pool_pointer; /* for variables that point into |str_pool| */
984 typedef int str_number; /* for variables that point into |str_start| */
987 ASCII_code *str_pool; /* the characters */
988 pool_pointer *str_start; /* the starting pointers */
989 str_number *next_str; /* for linking strings in order */
990 pool_pointer pool_ptr; /* first unused position in |str_pool| */
991 str_number str_ptr; /* number of the current string being created */
992 pool_pointer init_pool_ptr; /* the starting value of |pool_ptr| */
993 str_number init_str_use; /* the initial number of strings in use */
994 pool_pointer max_pool_ptr; /* the maximum so far of |pool_ptr| */
995 str_number max_str_ptr; /* the maximum so far of |str_ptr| */
997 @ @<Allocate or initialize ...@>=
998 mp->str_pool = xmalloc ((mp->pool_size +1),sizeof(ASCII_code));
999 mp->str_start = xmalloc ((mp->max_strings+1),sizeof(pool_pointer));
1000 mp->next_str = xmalloc ((mp->max_strings+1),sizeof(str_number));
1002 @ @<Dealloc variables@>=
1003 xfree(mp->str_pool);
1004 xfree(mp->str_start);
1005 xfree(mp->next_str);
1007 @ Most printing is done from |char *|s, but sometimes not. Here are
1008 functions that convert an internal string into a |char *| for use
1009 by the printing routines, and vice versa.
1011 @d str(A) mp_str(mp,A)
1012 @d rts(A) mp_rts(mp,A)
1015 int mp_xstrcmp (const char *a, const char *b);
1016 char * mp_str (MP mp, str_number s);
1019 str_number mp_rts (MP mp, char *s);
1020 str_number mp_make_string (MP mp);
1022 @ The attempt to catch interrupted strings that is in |mp_rts|, is not
1023 very good: it does not handle nesting over more than one level.
1026 int mp_xstrcmp (const char *a, const char *b) {
1027 if (a==NULL && b==NULL)
1037 char * mp_str (MP mp, str_number ss) {
1040 if (ss==mp->str_ptr) {
1044 s = xmalloc(len+1,sizeof(char));
1045 strncpy(s,(char *)(mp->str_pool+(mp->str_start[ss])),len);
1050 str_number mp_rts (MP mp, char *s) {
1051 int r; /* the new string */
1052 int old; /* a possible string in progress */
1056 } else if (strlen(s)==1) {
1060 str_room((integer)strlen(s));
1061 if (mp->str_start[mp->str_ptr]<mp->pool_ptr)
1062 old = mp_make_string(mp);
1067 r = mp_make_string(mp);
1069 str_room(length(old));
1070 while (i<length(old)) {
1071 append_char((mp->str_start[old]+i));
1073 mp_flush_string(mp,old);
1079 @ Except for |strs_used_up|, the following string statistics are only
1080 maintained when code between |stat| $\ldots$ |tats| delimiters is not
1084 integer strs_used_up; /* strings in use or unused but not reclaimed */
1085 integer pool_in_use; /* total number of cells of |str_pool| actually in use */
1086 integer strs_in_use; /* total number of strings actually in use */
1087 integer max_pl_used; /* maximum |pool_in_use| so far */
1088 integer max_strs_used; /* maximum |strs_in_use| so far */
1090 @ Several of the elementary string operations are performed using \.{WEB}
1091 macros instead of functions, because many of the
1092 operations are done quite frequently and we want to avoid the
1093 overhead of procedure calls. For example, here is
1094 a simple macro that computes the length of a string.
1097 @d str_stop(A) mp->str_start[mp->next_str[(A)]] /* one cell past the end of string
1099 @d length(A) (str_stop((A))-mp->str_start[(A)]) /* the number of characters in string \# */
1101 @ The length of the current string is called |cur_length|. If we decide that
1102 the current string is not needed, |flush_cur_string| resets |pool_ptr| so that
1103 |cur_length| becomes zero.
1105 @d cur_length (mp->pool_ptr - mp->str_start[mp->str_ptr])
1106 @d flush_cur_string mp->pool_ptr=mp->str_start[mp->str_ptr]
1108 @ Strings are created by appending character codes to |str_pool|.
1109 The |append_char| macro, defined here, does not check to see if the
1110 value of |pool_ptr| has gotten too high; this test is supposed to be
1111 made before |append_char| is used.
1113 To test if there is room to append |l| more characters to |str_pool|,
1114 we shall write |str_room(l)|, which tries to make sure there is enough room
1115 by compacting the string pool if necessary. If this does not work,
1116 |do_compaction| aborts \MP\ and gives an apologetic error message.
1118 @d append_char(A) /* put |ASCII_code| \# at the end of |str_pool| */
1119 { mp->str_pool[mp->pool_ptr]=(A); incr(mp->pool_ptr);
1121 @d str_room(A) /* make sure that the pool hasn't overflowed */
1122 { if ( mp->pool_ptr+(A) > mp->max_pool_ptr ) {
1123 if ( mp->pool_ptr+(A) > mp->pool_size ) mp_do_compaction(mp, (A));
1124 else mp->max_pool_ptr=mp->pool_ptr+(A); }
1127 @ The following routine is similar to |str_room(1)| but it uses the
1128 argument |mp->pool_size| to prevent |do_compaction| from aborting when
1129 string space is exhausted.
1131 @<Declare the procedure called |unit_str_room|@>=
1132 void mp_unit_str_room (MP mp);
1135 void mp_unit_str_room (MP mp) {
1136 if ( mp->pool_ptr>=mp->pool_size ) mp_do_compaction(mp, mp->pool_size);
1137 if ( mp->pool_ptr>=mp->max_pool_ptr ) mp->max_pool_ptr=mp->pool_ptr+1;
1140 @ \MP's string expressions are implemented in a brute-force way: Every
1141 new string or substring that is needed is simply copied into the string pool.
1142 Space is eventually reclaimed by a procedure called |do_compaction| with
1143 the aid of a simple system system of reference counts.
1144 @^reference counts@>
1146 The number of references to string number |s| will be |str_ref[s]|. The
1147 special value |str_ref[s]=max_str_ref=127| is used to denote an unknown
1148 positive number of references; such strings will never be recycled. If
1149 a string is ever referred to more than 126 times, simultaneously, we
1150 put it in this category. Hence a single byte suffices to store each |str_ref|.
1152 @d max_str_ref 127 /* ``infinite'' number of references */
1153 @d add_str_ref(A) { if ( mp->str_ref[(A)]<max_str_ref ) incr(mp->str_ref[(A)]);
1159 @ @<Allocate or initialize ...@>=
1160 mp->str_ref = xmalloc ((mp->max_strings+1),sizeof(int));
1162 @ @<Dealloc variables@>=
1165 @ Here's what we do when a string reference disappears:
1167 @d delete_str_ref(A) {
1168 if ( mp->str_ref[(A)]<max_str_ref ) {
1169 if ( mp->str_ref[(A)]>1 ) decr(mp->str_ref[(A)]);
1170 else mp_flush_string(mp, (A));
1174 @<Declare the procedure called |flush_string|@>=
1175 void mp_flush_string (MP mp,str_number s) ;
1178 @ We can't flush the first set of static strings at all, so there
1179 is no point in trying
1182 void mp_flush_string (MP mp,str_number s) {
1184 mp->pool_in_use=mp->pool_in_use-length(s);
1185 decr(mp->strs_in_use);
1186 if ( mp->next_str[s]!=mp->str_ptr ) {
1190 decr(mp->strs_used_up);
1192 mp->pool_ptr=mp->str_start[mp->str_ptr];
1196 @ C literals cannot be simply added, they need to be set so they can't
1199 @d intern(A) mp_intern(mp,(A))
1202 str_number mp_intern (MP mp, char *s) {
1205 mp->str_ref[r] = max_str_ref;
1210 str_number mp_intern (MP mp, char *s);
1213 @ Once a sequence of characters has been appended to |str_pool|, it
1214 officially becomes a string when the function |make_string| is called.
1215 This function returns the identification number of the new string as its
1218 When getting the next unused string number from the linked list, we pretend
1220 $$ \hbox{|max_str_ptr+1|, |max_str_ptr+2|, $\ldots$, |mp->max_strings|} $$
1221 are linked sequentially even though the |next_str| entries have not been
1222 initialized yet. We never allow |str_ptr| to reach |mp->max_strings|;
1223 |do_compaction| is responsible for making sure of this.
1226 @<Declare the procedure called |do_compaction|@>;
1227 @<Declare the procedure called |unit_str_room|@>;
1228 str_number mp_make_string (MP mp);
1231 str_number mp_make_string (MP mp) { /* current string enters the pool */
1232 str_number s; /* the new string */
1235 mp->str_ptr=mp->next_str[s];
1236 if ( mp->str_ptr>mp->max_str_ptr ) {
1237 if ( mp->str_ptr==mp->max_strings ) {
1239 mp_do_compaction(mp, 0);
1243 if ( mp->strs_used_up!=mp->max_str_ptr ) mp_confusion(mp, "s");
1244 @:this can't happen s}{\quad \.s@>
1246 mp->max_str_ptr=mp->str_ptr;
1247 mp->next_str[mp->str_ptr]=mp->max_str_ptr+1;
1251 mp->str_start[mp->str_ptr]=mp->pool_ptr;
1252 incr(mp->strs_used_up);
1253 incr(mp->strs_in_use);
1254 mp->pool_in_use=mp->pool_in_use+length(s);
1255 if ( mp->pool_in_use>mp->max_pl_used )
1256 mp->max_pl_used=mp->pool_in_use;
1257 if ( mp->strs_in_use>mp->max_strs_used )
1258 mp->max_strs_used=mp->strs_in_use;
1262 @ The most interesting string operation is string pool compaction. The idea
1263 is to recover unused space in the |str_pool| array by recopying the strings
1264 to close the gaps created when some strings become unused. All string
1265 numbers~$k$ where |str_ref[k]=0| are to be linked into the list of free string
1266 numbers after |str_ptr|. If this fails to free enough pool space we issue an
1267 |overflow| error unless |needed=mp->pool_size|. Calling |do_compaction|
1268 with |needed=mp->pool_size| supresses all overflow tests.
1270 The compaction process starts with |last_fixed_str| because all lower numbered
1271 strings are permanently allocated with |max_str_ref| in their |str_ref| entries.
1274 str_number last_fixed_str; /* last permanently allocated string */
1275 str_number fixed_str_use; /* number of permanently allocated strings */
1277 @ @<Declare the procedure called |do_compaction|@>=
1278 void mp_do_compaction (MP mp, pool_pointer needed) ;
1281 void mp_do_compaction (MP mp, pool_pointer needed) {
1282 str_number str_use; /* a count of strings in use */
1283 str_number r,s,t; /* strings being manipulated */
1284 pool_pointer p,q; /* destination and source for copying string characters */
1285 @<Advance |last_fixed_str| as far as possible and set |str_use|@>;
1286 r=mp->last_fixed_str;
1289 while ( s!=mp->str_ptr ) {
1290 while ( mp->str_ref[s]==0 ) {
1291 @<Advance |s| and add the old |s| to the list of free string numbers;
1292 then |break| if |s=str_ptr|@>;
1294 r=s; s=mp->next_str[s];
1296 @<Move string |r| back so that |str_start[r]=p|; make |p| the location
1297 after the end of the string@>;
1299 @<Move the current string back so that it starts at |p|@>;
1300 if ( needed<mp->pool_size ) {
1301 @<Make sure that there is room for another string with |needed| characters@>;
1303 @<Account for the compaction and make sure the statistics agree with the
1305 mp->strs_used_up=str_use;
1308 @ @<Advance |last_fixed_str| as far as possible and set |str_use|@>=
1309 t=mp->next_str[mp->last_fixed_str];
1310 while (t!=mp->str_ptr && mp->str_ref[t]==max_str_ref) {
1311 incr(mp->fixed_str_use);
1312 mp->last_fixed_str=t;
1315 str_use=mp->fixed_str_use
1317 @ Because of the way |flush_string| has been written, it should never be
1318 necessary to |break| here. The extra line of code seems worthwhile to
1319 preserve the generality of |do_compaction|.
1321 @<Advance |s| and add the old |s| to the list of free string numbers;...@>=
1326 mp->next_str[t]=mp->next_str[mp->str_ptr];
1327 mp->next_str[mp->str_ptr]=t;
1328 if ( s==mp->str_ptr ) break;
1331 @ The string currently starts at |str_start[r]| and ends just before
1332 |str_start[s]|. We don't change |str_start[s]| because it might be needed
1333 to locate the next string.
1335 @<Move string |r| back so that |str_start[r]=p|; make |p| the location...@>=
1338 while ( q<mp->str_start[s] ) {
1339 mp->str_pool[p]=mp->str_pool[q];
1343 @ Pointers |str_start[str_ptr]| and |pool_ptr| have not been updated. When
1344 we do this, anything between them should be moved.
1346 @ @<Move the current string back so that it starts at |p|@>=
1347 q=mp->str_start[mp->str_ptr];
1348 mp->str_start[mp->str_ptr]=p;
1349 while ( q<mp->pool_ptr ) {
1350 mp->str_pool[p]=mp->str_pool[q];
1355 @ We must remember that |str_ptr| is not allowed to reach |mp->max_strings|.
1357 @<Make sure that there is room for another string with |needed| char...@>=
1358 if ( str_use>=mp->max_strings-1 )
1359 mp_reallocate_strings (mp,str_use);
1360 if ( mp->pool_ptr+needed>mp->max_pool_ptr ) {
1361 mp_reallocate_pool(mp, mp->pool_ptr+needed);
1362 mp->max_pool_ptr=mp->pool_ptr+needed;
1366 void mp_reallocate_strings (MP mp, str_number str_use) ;
1367 void mp_reallocate_pool(MP mp, pool_pointer needed) ;
1370 void mp_reallocate_strings (MP mp, str_number str_use) {
1371 while ( str_use>=mp->max_strings-1 ) {
1372 int l = mp->max_strings + (mp->max_strings>>2);
1373 XREALLOC (mp->str_ref, l, int);
1374 XREALLOC (mp->str_start, l, pool_pointer);
1375 XREALLOC (mp->next_str, l, str_number);
1376 mp->max_strings = l;
1379 void mp_reallocate_pool(MP mp, pool_pointer needed) {
1380 while ( needed>mp->pool_size ) {
1381 int l = mp->pool_size + (mp->pool_size>>2);
1382 XREALLOC (mp->str_pool, l, ASCII_code);
1387 @ @<Account for the compaction and make sure the statistics agree with...@>=
1388 if ( (mp->str_start[mp->str_ptr]!=mp->pool_in_use)||(str_use!=mp->strs_in_use) )
1389 mp_confusion(mp, "string");
1390 @:this can't happen string}{\quad string@>
1391 incr(mp->pact_count);
1392 mp->pact_chars=mp->pact_chars+mp->pool_ptr-str_stop(mp->last_fixed_str);
1393 mp->pact_strs=mp->pact_strs+str_use-mp->fixed_str_use;
1395 s=mp->str_ptr; t=str_use;
1396 while ( s<=mp->max_str_ptr ){
1397 if ( t>mp->max_str_ptr ) mp_confusion(mp, "\"");
1398 incr(t); s=mp->next_str[s];
1400 if ( t<=mp->max_str_ptr ) mp_confusion(mp, "\"");
1403 @ A few more global variables are needed to keep track of statistics when
1404 |stat| $\ldots$ |tats| blocks are not commented out.
1407 integer pact_count; /* number of string pool compactions so far */
1408 integer pact_chars; /* total number of characters moved during compactions */
1409 integer pact_strs; /* total number of strings moved during compactions */
1411 @ @<Initialize compaction statistics@>=
1416 @ The following subroutine compares string |s| with another string of the
1417 same length that appears in |buffer| starting at position |k|;
1418 the result is |true| if and only if the strings are equal.
1421 boolean mp_str_eq_buf (MP mp,str_number s, integer k) {
1422 /* test equality of strings */
1423 pool_pointer j; /* running index */
1425 while ( j<str_stop(s) ) {
1426 if ( mp->str_pool[j++]!=mp->buffer[k++] )
1432 @ Here is a similar routine, but it compares two strings in the string pool,
1433 and it does not assume that they have the same length. If the first string
1434 is lexicographically greater than, less than, or equal to the second,
1435 the result is respectively positive, negative, or zero.
1438 integer mp_str_vs_str (MP mp, str_number s, str_number t) {
1439 /* test equality of strings */
1440 pool_pointer j,k; /* running indices */
1441 integer ls,lt; /* lengths */
1442 integer l; /* length remaining to test */
1443 ls=length(s); lt=length(t);
1444 if ( ls<=lt ) l=ls; else l=lt;
1445 j=mp->str_start[s]; k=mp->str_start[t];
1447 if ( mp->str_pool[j]!=mp->str_pool[k] ) {
1448 return (mp->str_pool[j]-mp->str_pool[k]);
1455 @ The initial values of |str_pool|, |str_start|, |pool_ptr|,
1456 and |str_ptr| are computed by the \.{INIMP} program, based in part
1457 on the information that \.{WEB} has output while processing \MP.
1462 void mp_get_strings_started (MP mp) {
1463 /* initializes the string pool,
1464 but returns |false| if something goes wrong */
1465 int k; /* small indices or counters */
1466 str_number g; /* a new string */
1467 mp->pool_ptr=0; mp->str_ptr=0; mp->max_pool_ptr=0; mp->max_str_ptr=0;
1470 mp->pool_in_use=0; mp->strs_in_use=0;
1471 mp->max_pl_used=0; mp->max_strs_used=0;
1472 @<Initialize compaction statistics@>;
1474 @<Make the first 256 strings@>;
1475 g=mp_make_string(mp); /* string 256 == "" */
1476 mp->str_ref[g]=max_str_ref;
1477 mp->last_fixed_str=mp->str_ptr-1;
1478 mp->fixed_str_use=mp->str_ptr;
1483 void mp_get_strings_started (MP mp);
1485 @ The first 256 strings will consist of a single character only.
1487 @<Make the first 256...@>=
1488 for (k=0;k<=255;k++) {
1490 g=mp_make_string(mp);
1491 mp->str_ref[g]=max_str_ref;
1494 @ The first 128 strings will contain 95 standard ASCII characters, and the
1495 other 33 characters will be printed in three-symbol form like `\.{\^\^A}'
1496 unless a system-dependent change is made here. Installations that have
1497 an extended character set, where for example |xchr[032]=@t\.{'^^Z'}@>|,
1498 would like string 032 to be printed as the single character 032 instead
1499 of the three characters 0136, 0136, 0132 (\.{\^\^Z}). On the other hand,
1500 even people with an extended character set will want to represent string
1501 015 by \.{\^\^M}, since 015 is ASCII's ``carriage return'' code; the idea is
1502 to produce visible strings instead of tabs or line-feeds or carriage-returns
1503 or bell-rings or characters that are treated anomalously in text files.
1505 Unprintable characters of codes 128--255 are, similarly, rendered
1506 \.{\^\^80}--\.{\^\^ff}.
1508 The boolean expression defined here should be |true| unless \MP\ internal
1509 code number~|k| corresponds to a non-troublesome visible symbol in the
1510 local character set.
1511 If character |k| cannot be printed, and |k<0200|, then character |k+0100| or
1512 |k-0100| must be printable; moreover, ASCII codes |[060..071, 0141..0146]|
1514 @^character set dependencies@>
1515 @^system dependencies@>
1517 @<Character |k| cannot be printed@>=
1520 @* \[5] On-line and off-line printing.
1521 Messages that are sent to a user's terminal and to the transcript-log file
1522 are produced by several `|print|' procedures. These procedures will
1523 direct their output to a variety of places, based on the setting of
1524 the global variable |selector|, which has the following possible
1528 \hang |term_and_log|, the normal setting, prints on the terminal and on the
1531 \hang |log_only|, prints only on the transcript file.
1533 \hang |term_only|, prints only on the terminal.
1535 \hang |no_print|, doesn't print at all. This is used only in rare cases
1536 before the transcript file is open.
1538 \hang |pseudo|, puts output into a cyclic buffer that is used
1539 by the |show_context| routine; when we get to that routine we shall discuss
1540 the reasoning behind this curious mode.
1542 \hang |new_string|, appends the output to the current string in the
1545 \hang |>=write_file| prints on one of the files used for the \&{write}
1546 @:write_}{\&{write} primitive@>
1550 \noindent The symbolic names `|term_and_log|', etc., have been assigned
1551 numeric codes that satisfy the convenient relations |no_print+1=term_only|,
1552 |no_print+2=log_only|, |term_only+2=log_only+1=term_and_log|. These
1553 relations are not used when |selector| could be |pseudo|, or |new_string|.
1554 We need not check for unprintable characters when |selector<pseudo|.
1556 Three additional global variables, |tally|, |term_offset| and |file_offset|
1557 record the number of characters that have been printed
1558 since they were most recently cleared to zero. We use |tally| to record
1559 the length of (possibly very long) stretches of printing; |term_offset|,
1560 and |file_offset|, on the other hand, keep track of how many
1561 characters have appeared so far on the current line that has been output
1562 to the terminal, the transcript file, or the \ps\ output file, respectively.
1564 @d new_string 0 /* printing is deflected to the string pool */
1565 @d pseudo 2 /* special |selector| setting for |show_context| */
1566 @d no_print 3 /* |selector| setting that makes data disappear */
1567 @d term_only 4 /* printing is destined for the terminal only */
1568 @d log_only 5 /* printing is destined for the transcript file only */
1569 @d term_and_log 6 /* normal |selector| setting */
1570 @d write_file 7 /* first write file selector */
1573 void * log_file; /* transcript of \MP\ session */
1574 void * ps_file; /* the generic font output goes here */
1575 unsigned int selector; /* where to print a message */
1576 unsigned char dig[23]; /* digits in a number being output */
1577 integer tally; /* the number of characters recently printed */
1578 unsigned int term_offset;
1579 /* the number of characters on the current terminal line */
1580 unsigned int file_offset;
1581 /* the number of characters on the current file line */
1582 ASCII_code *trick_buf; /* circular buffer for pseudoprinting */
1583 integer trick_count; /* threshold for pseudoprinting, explained later */
1584 integer first_count; /* another variable for pseudoprinting */
1586 @ @<Allocate or initialize ...@>=
1587 memset(mp->dig,0,23);
1588 mp->trick_buf = xmalloc((mp->error_line+1),sizeof(ASCII_code));
1590 @ @<Dealloc variables@>=
1591 xfree(mp->trick_buf);
1593 @ @<Initialize the output routines@>=
1594 mp->selector=term_only; mp->tally=0; mp->term_offset=0; mp->file_offset=0;
1596 @ Macro abbreviations for output to the terminal and to the log file are
1597 defined here for convenience. Some systems need special conventions
1598 for terminal output, and it is possible to adhere to those conventions
1599 by changing |wterm|, |wterm_ln|, and |wterm_cr| here.
1600 @^system dependencies@>
1602 @d do_fprintf(f,b) (mp->write_ascii_file)(f,b)
1603 @d wterm(A) do_fprintf(mp->term_out,(A))
1604 @d wterm_chr(A) { unsigned char ss[2]; ss[0]=(A); ss[1]=0; do_fprintf(mp->term_out,(char *)ss); }
1605 @d wterm_cr do_fprintf(mp->term_out,"\n")
1606 @d wterm_ln(A) { wterm_cr; do_fprintf(mp->term_out,(A)); }
1607 @d wlog(A) do_fprintf(mp->log_file,(A))
1608 @d wlog_chr(A) { unsigned char ss[2]; ss[0]=(A); ss[1]=0; do_fprintf(mp->log_file,(char *)ss); }
1609 @d wlog_cr do_fprintf(mp->log_file, "\n")
1610 @d wlog_ln(A) {wlog_cr; do_fprintf(mp->log_file,(A)); }
1613 @ To end a line of text output, we call |print_ln|. Cases |0..max_write_files|
1614 use an array |wr_file| that will be declared later.
1616 @d mp_print_text(A) mp_print_str(mp,text((A)))
1619 void mp_print_ln (MP mp);
1620 void mp_print_visible_char (MP mp, ASCII_code s);
1621 void mp_print_char (MP mp, ASCII_code k);
1622 void mp_print (MP mp, char *s);
1623 void mp_print_str (MP mp, str_number s);
1624 void mp_print_nl (MP mp, char *s);
1625 void mp_print_two (MP mp,scaled x, scaled y) ;
1626 void mp_print_scaled (MP mp,scaled s);
1628 @ @<Basic print...@>=
1629 void mp_print_ln (MP mp) { /* prints an end-of-line */
1630 switch (mp->selector) {
1633 mp->term_offset=0; mp->file_offset=0;
1636 wlog_cr; mp->file_offset=0;
1639 wterm_cr; mp->term_offset=0;
1646 do_fprintf(mp->wr_file[(mp->selector-write_file)],"\n");
1648 } /* note that |tally| is not affected */
1650 @ The |print_visible_char| procedure sends one character to the desired
1651 destination, using the |xchr| array to map it into an external character
1652 compatible with |input_ln|. (It assumes that it is always called with
1653 a visible ASCII character.) All printing comes through |print_ln| or
1654 |print_char|, which ultimately calls |print_visible_char|, hence these
1655 routines are the ones that limit lines to at most |max_print_line| characters.
1656 But we must make an exception for the \ps\ output file since it is not safe
1657 to cut up lines arbitrarily in \ps.
1659 Procedure |unit_str_room| needs to be declared |forward| here because it calls
1660 |do_compaction| and |do_compaction| can call the error routines. Actually,
1661 |unit_str_room| avoids |overflow| errors but it can call |confusion|.
1663 @<Basic printing...@>=
1664 void mp_print_visible_char (MP mp, ASCII_code s) { /* prints a single character */
1665 switch (mp->selector) {
1667 wterm_chr(xchr(s)); wlog_chr(xchr(s));
1668 incr(mp->term_offset); incr(mp->file_offset);
1669 if ( mp->term_offset==(unsigned)mp->max_print_line ) {
1670 wterm_cr; mp->term_offset=0;
1672 if ( mp->file_offset==(unsigned)mp->max_print_line ) {
1673 wlog_cr; mp->file_offset=0;
1677 wlog_chr(xchr(s)); incr(mp->file_offset);
1678 if ( mp->file_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1681 wterm_chr(xchr(s)); incr(mp->term_offset);
1682 if ( mp->term_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1687 if ( mp->tally<mp->trick_count )
1688 mp->trick_buf[mp->tally % mp->error_line]=s;
1691 if ( mp->pool_ptr>=mp->max_pool_ptr ) {
1692 mp_unit_str_room(mp);
1693 if ( mp->pool_ptr>=mp->pool_size )
1694 goto DONE; /* drop characters if string space is full */
1699 { char ss[2]; ss[0] = xchr(s); ss[1]=0;
1700 do_fprintf(mp->wr_file[(mp->selector-write_file)],(char *)ss);
1707 @ The |print_char| procedure sends one character to the desired destination.
1708 File names and string expressions might contain |ASCII_code| values that
1709 can't be printed using |print_visible_char|. These characters will be
1710 printed in three- or four-symbol form like `\.{\^\^A}' or `\.{\^\^e4}'.
1711 (This procedure assumes that it is safe to bypass all checks for unprintable
1712 characters when |selector| is in the range |0..max_write_files-1|.
1713 The user might want to write unprintable characters.
1715 @d print_lc_hex(A) do { l=(A);
1716 mp_print_visible_char(mp, (l<10 ? l+'0' : l-10+'a'));
1719 @<Basic printing...@>=
1720 void mp_print_char (MP mp, ASCII_code k) { /* prints a single character */
1721 int l; /* small index or counter */
1722 if ( mp->selector<pseudo || mp->selector>=write_file) {
1723 mp_print_visible_char(mp, k);
1724 } else if ( @<Character |k| cannot be printed@> ) {
1727 mp_print_visible_char(mp, k+0100);
1728 } else if ( k<0200 ) {
1729 mp_print_visible_char(mp, k-0100);
1731 print_lc_hex(k / 16);
1732 print_lc_hex(k % 16);
1735 mp_print_visible_char(mp, k);
1739 @ An entire string is output by calling |print|. Note that if we are outputting
1740 the single standard ASCII character \.c, we could call |print("c")|, since
1741 |"c"=99| is the number of a single-character string, as explained above. But
1742 |print_char("c")| is quicker, so \MP\ goes directly to the |print_char|
1743 routine when it knows that this is safe. (The present implementation
1744 assumes that it is always safe to print a visible ASCII character.)
1745 @^system dependencies@>
1748 void mp_do_print (MP mp, char *ss, unsigned int len) { /* prints string |s| */
1751 mp_print_char(mp, ss[j]); incr(j);
1757 void mp_print (MP mp, char *ss) {
1758 mp_do_print(mp, ss, strlen(ss));
1760 void mp_print_str (MP mp, str_number s) {
1761 pool_pointer j; /* current character code position */
1762 if ( (s<0)||(s>mp->max_str_ptr) ) {
1763 mp_do_print(mp,"???",3); /* this can't happen */
1767 mp_do_print(mp, (char *)(mp->str_pool+j), (str_stop(s)-j));
1771 @ Here is the very first thing that \MP\ prints: a headline that identifies
1772 the version number and base name. The |term_offset| variable is temporarily
1773 incorrect, but the discrepancy is not serious since we assume that the banner
1774 and mem identifier together will occupy at most |max_print_line|
1775 character positions.
1777 @<Initialize the output...@>=
1779 wterm (version_string);
1780 if (mp->mem_ident!=NULL)
1781 mp_print(mp,mp->mem_ident);
1785 @ The procedure |print_nl| is like |print|, but it makes sure that the
1786 string appears at the beginning of a new line.
1789 void mp_print_nl (MP mp, char *s) { /* prints string |s| at beginning of line */
1790 switch(mp->selector) {
1792 if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_ln(mp);
1795 if ( mp->file_offset>0 ) mp_print_ln(mp);
1798 if ( mp->term_offset>0 ) mp_print_ln(mp);
1804 } /* there are no other cases */
1808 @ An array of digits in the range |0..9| is printed by |print_the_digs|.
1811 void mp_print_the_digs (MP mp, eight_bits k) {
1812 /* prints |dig[k-1]|$\,\ldots\,$|dig[0]| */
1814 decr(k); mp_print_char(mp, '0'+mp->dig[k]);
1818 @ The following procedure, which prints out the decimal representation of a
1819 given integer |n|, has been written carefully so that it works properly
1820 if |n=0| or if |(-n)| would cause overflow. It does not apply |%| or |/|
1821 to negative arguments, since such operations are not implemented consistently
1825 void mp_print_int (MP mp,integer n) { /* prints an integer in decimal form */
1826 integer m; /* used to negate |n| in possibly dangerous cases */
1827 int k = 0; /* index to current digit; we assume that $|n|<10^{23}$ */
1829 mp_print_char(mp, '-');
1830 if ( n>-100000000 ) {
1833 m=-1-n; n=m / 10; m=(m % 10)+1; k=1;
1837 mp->dig[0]=0; incr(n);
1842 mp->dig[k]=n % 10; n=n / 10; incr(k);
1844 mp_print_the_digs(mp, k);
1848 void mp_print_int (MP mp,integer n);
1850 @ \MP\ also makes use of a trivial procedure to print two digits. The
1851 following subroutine is usually called with a parameter in the range |0<=n<=99|.
1854 void mp_print_dd (MP mp,integer n) { /* prints two least significant digits */
1856 mp_print_char(mp, '0'+(n / 10));
1857 mp_print_char(mp, '0'+(n % 10));
1862 void mp_print_dd (MP mp,integer n);
1864 @ Here is a procedure that asks the user to type a line of input,
1865 assuming that the |selector| setting is either |term_only| or |term_and_log|.
1866 The input is placed into locations |first| through |last-1| of the
1867 |buffer| array, and echoed on the transcript file if appropriate.
1869 This procedure is never called when |interaction<mp_scroll_mode|.
1871 @d prompt_input(A) do {
1872 if (!mp->noninteractive) {
1873 wake_up_terminal; mp_print(mp, (A));
1876 } while (0) /* prints a string and gets a line of input */
1879 void mp_term_input (MP mp) { /* gets a line from the terminal */
1880 size_t k; /* index into |buffer| */
1881 update_terminal; /* Now the user sees the prompt for sure */
1882 if (!mp_input_ln(mp, mp->term_in )) {
1883 if (!mp->noninteractive) {
1884 mp_fatal_error(mp, "End of file on the terminal!");
1885 @.End of file on the terminal@>
1886 } else { /* we are done with this input chunk */
1887 longjmp(mp->jump_buf,1);
1890 if (!mp->noninteractive) {
1891 mp->term_offset=0; /* the user's line ended with \<\rm return> */
1892 decr(mp->selector); /* prepare to echo the input */
1893 if ( mp->last!=mp->first ) {
1894 for (k=mp->first;k<=mp->last-1;k++) {
1895 mp_print_char(mp, mp->buffer[k]);
1899 mp->buffer[mp->last]='%';
1900 incr(mp->selector); /* restore previous status */
1904 @* \[6] Reporting errors.
1905 When something anomalous is detected, \MP\ typically does something like this:
1906 $$\vbox{\halign{#\hfil\cr
1907 |print_err("Something anomalous has been detected");|\cr
1908 |help3("This is the first line of my offer to help.")|\cr
1909 |("This is the second line. I'm trying to")|\cr
1910 |("explain the best way for you to proceed.");|\cr
1912 A two-line help message would be given using |help2|, etc.; these informal
1913 helps should use simple vocabulary that complements the words used in the
1914 official error message that was printed. (Outside the U.S.A., the help
1915 messages should preferably be translated into the local vernacular. Each
1916 line of help is at most 60 characters long, in the present implementation,
1917 so that |max_print_line| will not be exceeded.)
1919 The |print_err| procedure supplies a `\.!' before the official message,
1920 and makes sure that the terminal is awake if a stop is going to occur.
1921 The |error| procedure supplies a `\..' after the official message, then it
1922 shows the location of the error; and if |interaction=error_stop_mode|,
1923 it also enters into a dialog with the user, during which time the help
1924 message may be printed.
1925 @^system dependencies@>
1927 @ The global variable |interaction| has four settings, representing increasing
1928 amounts of user interaction:
1931 enum mp_interaction_mode {
1932 mp_unspecified_mode=0, /* extra value for command-line switch */
1933 mp_batch_mode, /* omits all stops and omits terminal output */
1934 mp_nonstop_mode, /* omits all stops */
1935 mp_scroll_mode, /* omits error stops */
1936 mp_error_stop_mode, /* stops at every opportunity to interact */
1939 @ @<Option variables@>=
1940 int interaction; /* current level of interaction */
1941 int noninteractive; /* do we have a terminal? */
1943 @ Set it here so it can be overwritten by the commandline
1945 @<Allocate or initialize ...@>=
1946 mp->interaction=opt->interaction;
1947 if (mp->interaction==mp_unspecified_mode || mp->interaction>mp_error_stop_mode)
1948 mp->interaction=mp_error_stop_mode;
1949 if (mp->interaction<mp_unspecified_mode)
1950 mp->interaction=mp_batch_mode;
1951 mp->noninteractive=opt->noninteractive;
1955 @d print_err(A) mp_print_err(mp,(A))
1958 void mp_print_err(MP mp, char * A);
1961 void mp_print_err(MP mp, char * A) {
1962 if ( mp->interaction==mp_error_stop_mode )
1964 mp_print_nl(mp, "! ");
1970 @ \MP\ is careful not to call |error| when the print |selector| setting
1971 might be unusual. The only possible values of |selector| at the time of
1974 \yskip\hang|no_print| (when |interaction=mp_batch_mode|
1975 and |log_file| not yet open);
1977 \hang|term_only| (when |interaction>mp_batch_mode| and |log_file| not yet open);
1979 \hang|log_only| (when |interaction=mp_batch_mode| and |log_file| is open);
1981 \hang|term_and_log| (when |interaction>mp_batch_mode| and |log_file| is open).
1983 @<Initialize the print |selector| based on |interaction|@>=
1984 if ( mp->interaction==mp_batch_mode ) mp->selector=no_print; else mp->selector=term_only
1986 @ A global variable |deletions_allowed| is set |false| if the |get_next|
1987 routine is active when |error| is called; this ensures that |get_next|
1988 will never be called recursively.
1991 The global variable |history| records the worst level of error that
1992 has been detected. It has four possible values: |spotless|, |warning_issued|,
1993 |error_message_issued|, and |fatal_error_stop|.
1995 Another global variable, |error_count|, is increased by one when an
1996 |error| occurs without an interactive dialog, and it is reset to zero at
1997 the end of every statement. If |error_count| reaches 100, \MP\ decides
1998 that there is no point in continuing further.
2001 enum mp_history_states {
2002 mp_spotless=0, /* |history| value when nothing has been amiss yet */
2003 mp_warning_issued, /* |history| value when |begin_diagnostic| has been called */
2004 mp_error_message_issued, /* |history| value when |error| has been called */
2005 mp_fatal_error_stop, /* |history| value when termination was premature */
2009 boolean deletions_allowed; /* is it safe for |error| to call |get_next|? */
2010 int history; /* has the source input been clean so far? */
2011 int error_count; /* the number of scrolled errors since the last statement ended */
2013 @ The value of |history| is initially |fatal_error_stop|, but it will
2014 be changed to |spotless| if \MP\ survives the initialization process.
2016 @<Allocate or ...@>=
2017 mp->deletions_allowed=true; mp->error_count=0; /* |history| is initialized elsewhere */
2019 @ Since errors can be detected almost anywhere in \MP, we want to declare the
2020 error procedures near the beginning of the program. But the error procedures
2021 in turn use some other procedures, which need to be declared |forward|
2022 before we get to |error| itself.
2024 It is possible for |error| to be called recursively if some error arises
2025 when |get_next| is being used to delete a token, and/or if some fatal error
2026 occurs while \MP\ is trying to fix a non-fatal one. But such recursion
2028 is never more than two levels deep.
2031 void mp_get_next (MP mp);
2032 void mp_term_input (MP mp);
2033 void mp_show_context (MP mp);
2034 void mp_begin_file_reading (MP mp);
2035 void mp_open_log_file (MP mp);
2036 void mp_clear_for_error_prompt (MP mp);
2037 void mp_debug_help (MP mp);
2038 @<Declare the procedure called |flush_string|@>
2041 void mp_normalize_selector (MP mp);
2043 @ Individual lines of help are recorded in the array |help_line|, which
2044 contains entries in positions |0..(help_ptr-1)|. They should be printed
2045 in reverse order, i.e., with |help_line[0]| appearing last.
2047 @d hlp1(A) mp->help_line[0]=(A); }
2048 @d hlp2(A) mp->help_line[1]=(A); hlp1
2049 @d hlp3(A) mp->help_line[2]=(A); hlp2
2050 @d hlp4(A) mp->help_line[3]=(A); hlp3
2051 @d hlp5(A) mp->help_line[4]=(A); hlp4
2052 @d hlp6(A) mp->help_line[5]=(A); hlp5
2053 @d help0 mp->help_ptr=0 /* sometimes there might be no help */
2054 @d help1 { mp->help_ptr=1; hlp1 /* use this with one help line */
2055 @d help2 { mp->help_ptr=2; hlp2 /* use this with two help lines */
2056 @d help3 { mp->help_ptr=3; hlp3 /* use this with three help lines */
2057 @d help4 { mp->help_ptr=4; hlp4 /* use this with four help lines */
2058 @d help5 { mp->help_ptr=5; hlp5 /* use this with five help lines */
2059 @d help6 { mp->help_ptr=6; hlp6 /* use this with six help lines */
2062 char * help_line[6]; /* helps for the next |error| */
2063 unsigned int help_ptr; /* the number of help lines present */
2064 boolean use_err_help; /* should the |err_help| string be shown? */
2065 str_number err_help; /* a string set up by \&{errhelp} */
2066 str_number filename_template; /* a string set up by \&{filenametemplate} */
2068 @ @<Allocate or ...@>=
2069 mp->help_ptr=0; mp->use_err_help=false; mp->err_help=0; mp->filename_template=0;
2071 @ The |jump_out| procedure just cuts across all active procedure levels and
2072 goes to |end_of_MP|. This is the only nonlocal |goto| statement in the
2073 whole program. It is used when there is no recovery from a particular error.
2075 The program uses a |jump_buf| to handle this, this is initialized at three
2076 spots: the start of |mp_new|, the start of |mp_initialize|, and the start
2077 of |mp_run|. Those are the only library enty points.
2079 @^system dependencies@>
2084 @ @<Install and test the non-local jump buffer@>=
2085 if (setjmp(mp->jump_buf) != 0) { return mp->history; }
2088 @ @<Setup the non-local jump buffer in |mp_new|@>=
2089 if (setjmp(mp->jump_buf) != 0) return NULL;
2091 @ If the array of internals is still |NULL| when |jump_out| is called, a
2092 crash occured during initialization, and it is not safe to run the normal
2096 void mp_jump_out (MP mp) {
2097 if(mp->internal!=NULL)
2098 mp_close_files_and_terminate(mp);
2099 longjmp(mp->jump_buf,1);
2102 @ Here now is the general |error| routine.
2105 void mp_error (MP mp) { /* completes the job of error reporting */
2106 ASCII_code c; /* what the user types */
2107 integer s1,s2,s3; /* used to save global variables when deleting tokens */
2108 pool_pointer j; /* character position being printed */
2109 if ( mp->history<mp_error_message_issued )
2110 mp->history=mp_error_message_issued;
2111 mp_print_char(mp, '.'); mp_show_context(mp);
2112 if ((!mp->noninteractive) && (mp->interaction==mp_error_stop_mode )) {
2113 @<Get user's advice and |return|@>;
2115 incr(mp->error_count);
2116 if ( mp->error_count==100 ) {
2117 mp_print_nl(mp,"(That makes 100 errors; please try again.)");
2118 @.That makes 100 errors...@>
2119 mp->history=mp_fatal_error_stop; mp_jump_out(mp);
2121 @<Put help message on the transcript file@>;
2123 void mp_warn (MP mp, char *msg) {
2124 int saved_selector = mp->selector;
2125 mp_normalize_selector(mp);
2126 mp_print_nl(mp,"Warning: ");
2128 mp->selector = saved_selector;
2131 @ @<Exported function ...@>=
2132 void mp_error (MP mp);
2133 void mp_warn (MP mp, char *msg);
2136 @ @<Get user's advice...@>=
2139 mp_clear_for_error_prompt(mp); prompt_input("? ");
2141 if ( mp->last==mp->first ) return;
2142 c=mp->buffer[mp->first];
2143 if ( c>='a' ) c=c+'A'-'a'; /* convert to uppercase */
2144 @<Interpret code |c| and |return| if done@>;
2147 @ It is desirable to provide an `\.E' option here that gives the user
2148 an easy way to return from \MP\ to the system editor, with the offending
2149 line ready to be edited. But such an extension requires some system
2150 wizardry, so the present implementation simply types out the name of the
2152 edited and the relevant line number.
2153 @^system dependencies@>
2156 typedef void (*mp_run_editor_command)(MP, char *, int);
2158 @ @<Option variables@>=
2159 mp_run_editor_command run_editor;
2161 @ @<Allocate or initialize ...@>=
2162 set_callback_option(run_editor);
2165 void mp_run_editor (MP mp, char *fname, int fline);
2167 @ @c void mp_run_editor (MP mp, char *fname, int fline) {
2168 mp_print_nl(mp, "You want to edit file ");
2169 @.You want to edit file x@>
2170 mp_print(mp, fname);
2171 mp_print(mp, " at line ");
2172 mp_print_int(mp, fline);
2173 mp->interaction=mp_scroll_mode;
2178 There is a secret `\.D' option available when the debugging routines haven't
2182 @<Interpret code |c| and |return| if done@>=
2184 case '0': case '1': case '2': case '3': case '4':
2185 case '5': case '6': case '7': case '8': case '9':
2186 if ( mp->deletions_allowed ) {
2187 @<Delete |c-"0"| tokens and |continue|@>;
2192 mp_debug_help(mp); continue;
2196 if ( mp->file_ptr>0 ){
2197 (mp->run_editor)(mp,
2198 str(mp->input_stack[mp->file_ptr].name_field),
2203 @<Print the help information and |continue|@>;
2206 @<Introduce new material from the terminal and |return|@>;
2208 case 'Q': case 'R': case 'S':
2209 @<Change the interaction level and |return|@>;
2212 mp->interaction=mp_scroll_mode; mp_jump_out(mp);
2217 @<Print the menu of available options@>
2219 @ @<Print the menu...@>=
2221 mp_print(mp, "Type <return> to proceed, S to scroll future error messages,");
2222 @.Type <return> to proceed...@>
2223 mp_print_nl(mp, "R to run without stopping, Q to run quietly,");
2224 mp_print_nl(mp, "I to insert something, ");
2225 if ( mp->file_ptr>0 )
2226 mp_print(mp, "E to edit your file,");
2227 if ( mp->deletions_allowed )
2228 mp_print_nl(mp, "1 or ... or 9 to ignore the next 1 to 9 tokens of input,");
2229 mp_print_nl(mp, "H for help, X to quit.");
2232 @ Here the author of \MP\ apologizes for making use of the numerical
2233 relation between |"Q"|, |"R"|, |"S"|, and the desired interaction settings
2234 |mp_batch_mode|, |mp_nonstop_mode|, |mp_scroll_mode|.
2235 @^Knuth, Donald Ervin@>
2237 @<Change the interaction...@>=
2239 mp->error_count=0; mp->interaction=mp_batch_mode+c-'Q';
2240 mp_print(mp, "OK, entering ");
2242 case 'Q': mp_print(mp, "batchmode"); decr(mp->selector); break;
2243 case 'R': mp_print(mp, "nonstopmode"); break;
2244 case 'S': mp_print(mp, "scrollmode"); break;
2245 } /* there are no other cases */
2246 mp_print(mp, "..."); mp_print_ln(mp); update_terminal; return;
2249 @ When the following code is executed, |buffer[(first+1)..(last-1)]| may
2250 contain the material inserted by the user; otherwise another prompt will
2251 be given. In order to understand this part of the program fully, you need
2252 to be familiar with \MP's input stacks.
2254 @<Introduce new material...@>=
2256 mp_begin_file_reading(mp); /* enter a new syntactic level for terminal input */
2257 if ( mp->last>mp->first+1 ) {
2258 loc=mp->first+1; mp->buffer[mp->first]=' ';
2260 prompt_input("insert>"); loc=mp->first;
2263 mp->first=mp->last+1; mp->cur_input.limit_field=mp->last; return;
2266 @ We allow deletion of up to 99 tokens at a time.
2268 @<Delete |c-"0"| tokens...@>=
2270 s1=mp->cur_cmd; s2=mp->cur_mod; s3=mp->cur_sym; mp->OK_to_interrupt=false;
2271 if ( (mp->last>mp->first+1) && (mp->buffer[mp->first+1]>='0')&&(mp->buffer[mp->first+1]<='9') )
2272 c=c*10+mp->buffer[mp->first+1]-'0'*11;
2276 mp_get_next(mp); /* one-level recursive call of |error| is possible */
2277 @<Decrease the string reference count, if the current token is a string@>;
2280 mp->cur_cmd=s1; mp->cur_mod=s2; mp->cur_sym=s3; mp->OK_to_interrupt=true;
2281 help2("I have just deleted some text, as you asked.")
2282 ("You can now delete more, or insert, or whatever.");
2283 mp_show_context(mp);
2287 @ @<Print the help info...@>=
2289 if ( mp->use_err_help ) {
2290 @<Print the string |err_help|, possibly on several lines@>;
2291 mp->use_err_help=false;
2293 if ( mp->help_ptr==0 ) {
2294 help2("Sorry, I don't know how to help in this situation.")
2295 ("Maybe you should try asking a human?");
2298 decr(mp->help_ptr); mp_print(mp, mp->help_line[mp->help_ptr]); mp_print_ln(mp);
2299 } while (mp->help_ptr!=0);
2301 help4("Sorry, I already gave what help I could...")
2302 ("Maybe you should try asking a human?")
2303 ("An error might have occurred before I noticed any problems.")
2304 ("``If all else fails, read the instructions.''");
2308 @ @<Print the string |err_help|, possibly on several lines@>=
2309 j=mp->str_start[mp->err_help];
2310 while ( j<str_stop(mp->err_help) ) {
2311 if ( mp->str_pool[j]!='%' ) mp_print_str(mp, mp->str_pool[j]);
2312 else if ( j+1==str_stop(mp->err_help) ) mp_print_ln(mp);
2313 else if ( mp->str_pool[j+1]!='%' ) mp_print_ln(mp);
2314 else { incr(j); mp_print_char(mp, '%'); };
2318 @ @<Put help message on the transcript file@>=
2319 if ( mp->interaction>mp_batch_mode ) decr(mp->selector); /* avoid terminal output */
2320 if ( mp->use_err_help ) {
2321 mp_print_nl(mp, "");
2322 @<Print the string |err_help|, possibly on several lines@>;
2324 while ( mp->help_ptr>0 ){
2325 decr(mp->help_ptr); mp_print_nl(mp, mp->help_line[mp->help_ptr]);
2329 if ( mp->interaction>mp_batch_mode ) incr(mp->selector); /* re-enable terminal output */
2332 @ In anomalous cases, the print selector might be in an unknown state;
2333 the following subroutine is called to fix things just enough to keep
2334 running a bit longer.
2337 void mp_normalize_selector (MP mp) {
2338 if ( mp->log_opened ) mp->selector=term_and_log;
2339 else mp->selector=term_only;
2340 if ( mp->job_name==NULL ) mp_open_log_file(mp);
2341 if ( mp->interaction==mp_batch_mode ) decr(mp->selector);
2344 @ The following procedure prints \MP's last words before dying.
2346 @d succumb { if ( mp->interaction==mp_error_stop_mode )
2347 mp->interaction=mp_scroll_mode; /* no more interaction */
2348 if ( mp->log_opened ) mp_error(mp);
2349 /*| if ( mp->interaction>mp_batch_mode ) mp_debug_help(mp); |*/
2350 mp->history=mp_fatal_error_stop; mp_jump_out(mp); /* irrecoverable error */
2354 void mp_fatal_error (MP mp, char *s) { /* prints |s|, and that's it */
2355 mp_normalize_selector(mp);
2356 print_err("Emergency stop"); help1(s); succumb;
2360 @ @<Exported function ...@>=
2361 void mp_fatal_error (MP mp, char *s);
2364 @ Here is the most dreaded error message.
2367 void mp_overflow (MP mp, char *s, integer n) { /* stop due to finiteness */
2368 mp_normalize_selector(mp);
2369 print_err("MetaPost capacity exceeded, sorry [");
2370 @.MetaPost capacity exceeded ...@>
2371 mp_print(mp, s); mp_print_char(mp, '='); mp_print_int(mp, n); mp_print_char(mp, ']');
2372 help2("If you really absolutely need more capacity,")
2373 ("you can ask a wizard to enlarge me.");
2377 @ @<Internal library declarations@>=
2378 void mp_overflow (MP mp, char *s, integer n);
2380 @ The program might sometime run completely amok, at which point there is
2381 no choice but to stop. If no previous error has been detected, that's bad
2382 news; a message is printed that is really intended for the \MP\
2383 maintenance person instead of the user (unless the user has been
2384 particularly diabolical). The index entries for `this can't happen' may
2385 help to pinpoint the problem.
2388 @<Internal library ...@>=
2389 void mp_confusion (MP mp,char *s);
2391 @ @<Error hand...@>=
2392 void mp_confusion (MP mp,char *s) {
2393 /* consistency check violated; |s| tells where */
2394 mp_normalize_selector(mp);
2395 if ( mp->history<mp_error_message_issued ) {
2396 print_err("This can't happen ("); mp_print(mp, s); mp_print_char(mp, ')');
2397 @.This can't happen@>
2398 help1("I'm broken. Please show this to someone who can fix can fix");
2400 print_err("I can\'t go on meeting you like this");
2401 @.I can't go on...@>
2402 help2("One of your faux pas seems to have wounded me deeply...")
2403 ("in fact, I'm barely conscious. Please fix it and try again.");
2408 @ Users occasionally want to interrupt \MP\ while it's running.
2409 If the runtime system allows this, one can implement
2410 a routine that sets the global variable |interrupt| to some nonzero value
2411 when such an interrupt is signaled. Otherwise there is probably at least
2412 a way to make |interrupt| nonzero using the C debugger.
2413 @^system dependencies@>
2416 @d check_interrupt { if ( mp->interrupt!=0 )
2417 mp_pause_for_instructions(mp); }
2420 integer interrupt; /* should \MP\ pause for instructions? */
2421 boolean OK_to_interrupt; /* should interrupts be observed? */
2423 @ @<Allocate or ...@>=
2424 mp->interrupt=0; mp->OK_to_interrupt=true;
2426 @ When an interrupt has been detected, the program goes into its
2427 highest interaction level and lets the user have the full flexibility of
2428 the |error| routine. \MP\ checks for interrupts only at times when it is
2432 void mp_pause_for_instructions (MP mp) {
2433 if ( mp->OK_to_interrupt ) {
2434 mp->interaction=mp_error_stop_mode;
2435 if ( (mp->selector==log_only)||(mp->selector==no_print) )
2437 print_err("Interruption");
2440 ("Try to insert some instructions for me (e.g.,`I show x'),")
2441 ("unless you just want to quit by typing `X'.");
2442 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
2447 @ Many of \MP's error messages state that a missing token has been
2448 inserted behind the scenes. We can save string space and program space
2449 by putting this common code into a subroutine.
2452 void mp_missing_err (MP mp, char *s) {
2453 print_err("Missing `"); mp_print(mp, s); mp_print(mp, "' has been inserted");
2454 @.Missing...inserted@>
2457 @* \[7] Arithmetic with scaled numbers.
2458 The principal computations performed by \MP\ are done entirely in terms of
2459 integers less than $2^{31}$ in magnitude; thus, the arithmetic specified in this
2460 program can be carried out in exactly the same way on a wide variety of
2461 computers, including some small ones.
2464 But C does not rigidly define the |/| operation in the case of negative
2465 dividends; for example, the result of |(-2*n-1) / 2| is |-(n+1)| on some
2466 computers and |-n| on others (is this true ?). There are two principal
2467 types of arithmetic: ``translation-preserving,'' in which the identity
2468 |(a+q*b)/b=(a/b)+q| is valid; and ``negation-preserving,'' in which
2469 |(-a)/b=-(a/b)|. This leads to two \MP s, which can produce
2470 different results, although the differences should be negligible when the
2471 language is being used properly. The \TeX\ processor has been defined
2472 carefully so that both varieties of arithmetic will produce identical
2473 output, but it would be too inefficient to constrain \MP\ in a similar way.
2475 @d el_gordo 017777777777 /* $2^{31}-1$, the largest value that \MP\ likes */
2477 @ One of \MP's most common operations is the calculation of
2478 $\lfloor{a+b\over2}\rfloor$,
2479 the midpoint of two given integers |a| and~|b|. The most decent way to do
2480 this is to write `|(a+b)/2|'; but on many machines it is more efficient
2481 to calculate `|(a+b)>>1|'.
2483 Therefore the midpoint operation will always be denoted by `|half(a+b)|'
2484 in this program. If \MP\ is being implemented with languages that permit
2485 binary shifting, the |half| macro should be changed to make this operation
2486 as efficient as possible. Since some systems have shift operators that can
2487 only be trusted to work on positive numbers, there is also a macro |halfp|
2488 that is used only when the quantity being halved is known to be positive
2491 @d half(A) ((A) / 2)
2492 @d halfp(A) ((A) >> 1)
2494 @ A single computation might use several subroutine calls, and it is
2495 desirable to avoid producing multiple error messages in case of arithmetic
2496 overflow. So the routines below set the global variable |arith_error| to |true|
2497 instead of reporting errors directly to the user.
2500 boolean arith_error; /* has arithmetic overflow occurred recently? */
2502 @ @<Allocate or ...@>=
2503 mp->arith_error=false;
2505 @ At crucial points the program will say |check_arith|, to test if
2506 an arithmetic error has been detected.
2508 @d check_arith { if ( mp->arith_error ) mp_clear_arith(mp); }
2511 void mp_clear_arith (MP mp) {
2512 print_err("Arithmetic overflow");
2513 @.Arithmetic overflow@>
2514 help4("Uh, oh. A little while ago one of the quantities that I was")
2515 ("computing got too large, so I'm afraid your answers will be")
2516 ("somewhat askew. You'll probably have to adopt different")
2517 ("tactics next time. But I shall try to carry on anyway.");
2519 mp->arith_error=false;
2522 @ Addition is not always checked to make sure that it doesn't overflow,
2523 but in places where overflow isn't too unlikely the |slow_add| routine
2526 @c integer mp_slow_add (MP mp,integer x, integer y) {
2528 if ( y<=el_gordo-x ) {
2531 mp->arith_error=true;
2534 } else if ( -y<=el_gordo+x ) {
2537 mp->arith_error=true;
2542 @ Fixed-point arithmetic is done on {\sl scaled integers\/} that are multiples
2543 of $2^{-16}$. In other words, a binary point is assumed to be sixteen bit
2544 positions from the right end of a binary computer word.
2546 @d quarter_unit 040000 /* $2^{14}$, represents 0.250000 */
2547 @d half_unit 0100000 /* $2^{15}$, represents 0.50000 */
2548 @d three_quarter_unit 0140000 /* $3\cdot2^{14}$, represents 0.75000 */
2549 @d unity 0200000 /* $2^{16}$, represents 1.00000 */
2550 @d two 0400000 /* $2^{17}$, represents 2.00000 */
2551 @d three 0600000 /* $2^{17}+2^{16}$, represents 3.00000 */
2554 typedef integer scaled; /* this type is used for scaled integers */
2555 typedef unsigned char small_number; /* this type is self-explanatory */
2557 @ The following function is used to create a scaled integer from a given decimal
2558 fraction $(.d_0d_1\ldots d_{k-1})$, where |0<=k<=17|. The digit $d_i$ is
2559 given in |dig[i]|, and the calculation produces a correctly rounded result.
2562 scaled mp_round_decimals (MP mp,small_number k) {
2563 /* converts a decimal fraction */
2564 integer a = 0; /* the accumulator */
2566 a=(a+mp->dig[k]*two) / 10;
2571 @ Conversely, here is a procedure analogous to |print_int|. If the output
2572 of this procedure is subsequently read by \MP\ and converted by the
2573 |round_decimals| routine above, it turns out that the original value will
2574 be reproduced exactly. A decimal point is printed only if the value is
2575 not an integer. If there is more than one way to print the result with
2576 the optimum number of digits following the decimal point, the closest
2577 possible value is given.
2579 The invariant relation in the \&{repeat} loop is that a sequence of
2580 decimal digits yet to be printed will yield the original number if and only if
2581 they form a fraction~$f$ in the range $s-\delta\L10\cdot2^{16}f<s$.
2582 We can stop if and only if $f=0$ satisfies this condition; the loop will
2583 terminate before $s$ can possibly become zero.
2585 @<Basic printing...@>=
2586 void mp_print_scaled (MP mp,scaled s) { /* prints scaled real, rounded to five digits */
2587 scaled delta; /* amount of allowable inaccuracy */
2589 mp_print_char(mp, '-');
2590 negate(s); /* print the sign, if negative */
2592 mp_print_int(mp, s / unity); /* print the integer part */
2596 mp_print_char(mp, '.');
2599 s=s+0100000-(delta / 2); /* round the final digit */
2600 mp_print_char(mp, '0'+(s / unity));
2607 @ We often want to print two scaled quantities in parentheses,
2608 separated by a comma.
2610 @<Basic printing...@>=
2611 void mp_print_two (MP mp,scaled x, scaled y) { /* prints `|(x,y)|' */
2612 mp_print_char(mp, '(');
2613 mp_print_scaled(mp, x);
2614 mp_print_char(mp, ',');
2615 mp_print_scaled(mp, y);
2616 mp_print_char(mp, ')');
2619 @ The |scaled| quantities in \MP\ programs are generally supposed to be
2620 less than $2^{12}$ in absolute value, so \MP\ does much of its internal
2621 arithmetic with 28~significant bits of precision. A |fraction| denotes
2622 a scaled integer whose binary point is assumed to be 28 bit positions
2625 @d fraction_half 01000000000 /* $2^{27}$, represents 0.50000000 */
2626 @d fraction_one 02000000000 /* $2^{28}$, represents 1.00000000 */
2627 @d fraction_two 04000000000 /* $2^{29}$, represents 2.00000000 */
2628 @d fraction_three 06000000000 /* $3\cdot2^{28}$, represents 3.00000000 */
2629 @d fraction_four 010000000000 /* $2^{30}$, represents 4.00000000 */
2632 typedef integer fraction; /* this type is used for scaled fractions */
2634 @ In fact, the two sorts of scaling discussed above aren't quite
2635 sufficient; \MP\ has yet another, used internally to keep track of angles
2636 in units of $2^{-20}$ degrees.
2638 @d forty_five_deg 0264000000 /* $45\cdot2^{20}$, represents $45^\circ$ */
2639 @d ninety_deg 0550000000 /* $90\cdot2^{20}$, represents $90^\circ$ */
2640 @d one_eighty_deg 01320000000 /* $180\cdot2^{20}$, represents $180^\circ$ */
2641 @d three_sixty_deg 02640000000 /* $360\cdot2^{20}$, represents $360^\circ$ */
2644 typedef integer angle; /* this type is used for scaled angles */
2646 @ The |make_fraction| routine produces the |fraction| equivalent of
2647 |p/q|, given integers |p| and~|q|; it computes the integer
2648 $f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are
2649 positive. If |p| and |q| are both of the same scaled type |t|,
2650 the ``type relation'' |make_fraction(t,t)=fraction| is valid;
2651 and it's also possible to use the subroutine ``backwards,'' using
2652 the relation |make_fraction(t,fraction)=t| between scaled types.
2654 If the result would have magnitude $2^{31}$ or more, |make_fraction|
2655 sets |arith_error:=true|. Most of \MP's internal computations have
2656 been designed to avoid this sort of error.
2658 If this subroutine were programmed in assembly language on a typical
2659 machine, we could simply compute |(@t$2^{28}$@>*p)div q|, since a
2660 double-precision product can often be input to a fixed-point division
2661 instruction. But when we are restricted to int-eger arithmetic it
2662 is necessary either to resort to multiple-precision maneuvering
2663 or to use a simple but slow iteration. The multiple-precision technique
2664 would be about three times faster than the code adopted here, but it
2665 would be comparatively long and tricky, involving about sixteen
2666 additional multiplications and divisions.
2668 This operation is part of \MP's ``inner loop''; indeed, it will
2669 consume nearly 10\pct! of the running time (exclusive of input and output)
2670 if the code below is left unchanged. A machine-dependent recoding
2671 will therefore make \MP\ run faster. The present implementation
2672 is highly portable, but slow; it avoids multiplication and division
2673 except in the initial stage. System wizards should be careful to
2674 replace it with a routine that is guaranteed to produce identical
2675 results in all cases.
2676 @^system dependencies@>
2678 As noted below, a few more routines should also be replaced by machine-dependent
2679 code, for efficiency. But when a procedure is not part of the ``inner loop,''
2680 such changes aren't advisable; simplicity and robustness are
2681 preferable to trickery, unless the cost is too high.
2685 fraction mp_make_fraction (MP mp,integer p, integer q);
2686 integer mp_take_scaled (MP mp,integer q, scaled f) ;
2688 @ If FIXPT is not defined, we need these preprocessor values
2690 @d ELGORDO 0x7fffffff
2691 @d TWEXP31 2147483648.0
2692 @d TWEXP28 268435456.0
2694 @d TWEXP_16 (1.0/65536.0)
2695 @d TWEXP_28 (1.0/268435456.0)
2699 fraction mp_make_fraction (MP mp,integer p, integer q) {
2701 integer f; /* the fraction bits, with a leading 1 bit */
2702 integer n; /* the integer part of $\vert p/q\vert$ */
2703 integer be_careful; /* disables certain compiler optimizations */
2704 boolean negative = false; /* should the result be negated? */
2706 negate(p); negative=true;
2710 if ( q==0 ) mp_confusion(mp, '/');
2712 @:this can't happen /}{\quad \./@>
2713 negate(q); negative = ! negative;
2717 mp->arith_error=true;
2718 return ( negative ? -el_gordo : el_gordo);
2720 n=(n-1)*fraction_one;
2721 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>;
2722 return (negative ? (-(f+n)) : (f+n));
2728 if (q==0) mp_confusion(mp,'/');
2730 d = TWEXP28 * (double)p /(double)q;
2733 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
2735 if (d==i && ( ((q>0 ? -q : q)&077777)
2736 * (((i&037777)<<1)-1) & 04000)!=0) --i;
2739 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
2741 if (d==i && ( ((q>0 ? q : -q)&077777)
2742 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
2748 @ The |repeat| loop here preserves the following invariant relations
2749 between |f|, |p|, and~|q|:
2750 (i)~|0<=p<q|; (ii)~$fq+p=2^k(q+p_0)$, where $k$ is an integer and
2751 $p_0$ is the original value of~$p$.
2753 Notice that the computation specifies
2754 |(p-q)+p| instead of |(p+p)-q|, because the latter could overflow.
2755 Let us hope that optimizing compilers do not miss this point; a
2756 special variable |be_careful| is used to emphasize the necessary
2757 order of computation. Optimizing compilers should keep |be_careful|
2758 in a register, not store it in memory.
2761 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>=
2765 be_careful=p-q; p=be_careful+p;
2771 } while (f<fraction_one);
2773 if ( be_careful+p>=0 ) incr(f);
2776 @ The dual of |make_fraction| is |take_fraction|, which multiplies a
2777 given integer~|q| by a fraction~|f|. When the operands are positive, it
2778 computes $p=\lfloor qf/2^{28}+{1\over2}\rfloor$, a symmetric function
2781 This routine is even more ``inner loopy'' than |make_fraction|;
2782 the present implementation consumes almost 20\pct! of \MP's computation
2783 time during typical jobs, so a machine-language substitute is advisable.
2784 @^inner loop@> @^system dependencies@>
2787 integer mp_take_fraction (MP mp,integer q, fraction f) ;
2791 integer mp_take_fraction (MP mp,integer q, fraction f) {
2792 integer p; /* the fraction so far */
2793 boolean negative; /* should the result be negated? */
2794 integer n; /* additional multiple of $q$ */
2795 integer be_careful; /* disables certain compiler optimizations */
2796 @<Reduce to the case that |f>=0| and |q>0|@>;
2797 if ( f<fraction_one ) {
2800 n=f / fraction_one; f=f % fraction_one;
2801 if ( q<=el_gordo / n ) {
2804 mp->arith_error=true; n=el_gordo;
2808 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>;
2809 be_careful=n-el_gordo;
2810 if ( be_careful+p>0 ){
2811 mp->arith_error=true; n=el_gordo-p;
2818 integer mp_take_fraction (MP mp,integer p, fraction q) {
2821 d = (double)p * (double)q * TWEXP_28;
2825 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2826 mp->arith_error = true;
2830 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2834 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2835 mp->arith_error = true;
2839 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2845 @ @<Reduce to the case that |f>=0| and |q>0|@>=
2849 negate( f); negative=true;
2852 negate(q); negative=! negative;
2855 @ The invariant relations in this case are (i)~$\lfloor(qf+p)/2^k\rfloor
2856 =\lfloor qf_0/2^{28}+{1\over2}\rfloor$, where $k$ is an integer and
2857 $f_0$ is the original value of~$f$; (ii)~$2^k\L f<2^{k+1}$.
2860 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>=
2861 p=fraction_half; /* that's $2^{27}$; the invariants hold now with $k=28$ */
2862 if ( q<fraction_four ) {
2864 if ( odd(f) ) p=halfp(p+q); else p=halfp(p);
2869 if ( odd(f) ) p=p+halfp(q-p); else p=halfp(p);
2875 @ When we want to multiply something by a |scaled| quantity, we use a scheme
2876 analogous to |take_fraction| but with a different scaling.
2877 Given positive operands, |take_scaled|
2878 computes the quantity $p=\lfloor qf/2^{16}+{1\over2}\rfloor$.
2880 Once again it is a good idea to use a machine-language replacement if
2881 possible; otherwise |take_scaled| will use more than 2\pct! of the running time
2882 when the Computer Modern fonts are being generated.
2887 integer mp_take_scaled (MP mp,integer q, scaled f) {
2888 integer p; /* the fraction so far */
2889 boolean negative; /* should the result be negated? */
2890 integer n; /* additional multiple of $q$ */
2891 integer be_careful; /* disables certain compiler optimizations */
2892 @<Reduce to the case that |f>=0| and |q>0|@>;
2896 n=f / unity; f=f % unity;
2897 if ( q<=el_gordo / n ) {
2900 mp->arith_error=true; n=el_gordo;
2904 @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>;
2905 be_careful=n-el_gordo;
2906 if ( be_careful+p>0 ) {
2907 mp->arith_error=true; n=el_gordo-p;
2909 return ( negative ?(-(n+p)) :(n+p));
2911 integer mp_take_scaled (MP mp,integer p, scaled q) {
2914 d = (double)p * (double)q * TWEXP_16;
2918 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2919 mp->arith_error = true;
2923 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2927 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2928 mp->arith_error = true;
2932 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2938 @ @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>=
2939 p=half_unit; /* that's $2^{15}$; the invariants hold now with $k=16$ */
2941 if ( q<fraction_four ) {
2943 p = (odd(f) ? halfp(p+q) : halfp(p));
2948 p = (odd(f) ? p+halfp(q-p) : halfp(p));
2953 @ For completeness, there's also |make_scaled|, which computes a
2954 quotient as a |scaled| number instead of as a |fraction|.
2955 In other words, the result is $\lfloor2^{16}p/q+{1\over2}\rfloor$, if the
2956 operands are positive. \ (This procedure is not used especially often,
2957 so it is not part of \MP's inner loop.)
2959 @<Internal library ...@>=
2960 scaled mp_make_scaled (MP mp,integer p, integer q) ;
2963 scaled mp_make_scaled (MP mp,integer p, integer q) {
2965 integer f; /* the fraction bits, with a leading 1 bit */
2966 integer n; /* the integer part of $\vert p/q\vert$ */
2967 boolean negative; /* should the result be negated? */
2968 integer be_careful; /* disables certain compiler optimizations */
2969 if ( p>=0 ) negative=false;
2970 else { negate(p); negative=true; };
2973 if ( q==0 ) mp_confusion(mp, "/");
2974 @:this can't happen /}{\quad \./@>
2976 negate(q); negative=! negative;
2980 mp->arith_error=true;
2981 return (negative ? (-el_gordo) : el_gordo);
2984 @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>;
2985 return ( negative ? (-(f+n)) :(f+n));
2991 if (q==0) mp_confusion(mp,"/");
2993 d = TWEXP16 * (double)p /(double)q;
2996 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
2998 if (d==i && ( ((q>0 ? -q : q)&077777)
2999 * (((i&037777)<<1)-1) & 04000)!=0) --i;
3002 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
3004 if (d==i && ( ((q>0 ? q : -q)&077777)
3005 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
3011 @ @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>=
3014 be_careful=p-q; p=be_careful+p;
3015 if ( p>=0 ) f=f+f+1;
3016 else { f+=f; p=p+q; };
3019 if ( be_careful+p>=0 ) incr(f)
3021 @ Here is a typical example of how the routines above can be used.
3022 It computes the function
3023 $${1\over3\tau}f(\theta,\phi)=
3024 {\tau^{-1}\bigl(2+\sqrt2\,(\sin\theta-{1\over16}\sin\phi)
3025 (\sin\phi-{1\over16}\sin\theta)(\cos\theta-\cos\phi)\bigr)\over
3026 3\,\bigl(1+{1\over2}(\sqrt5-1)\cos\theta+{1\over2}(3-\sqrt5\,)\cos\phi\bigr)},$$
3027 where $\tau$ is a |scaled| ``tension'' parameter. This is \MP's magic
3028 fudge factor for placing the first control point of a curve that starts
3029 at an angle $\theta$ and ends at an angle $\phi$ from the straight path.
3030 (Actually, if the stated quantity exceeds 4, \MP\ reduces it to~4.)
3032 The trigonometric quantity to be multiplied by $\sqrt2$ is less than $\sqrt2$.
3033 (It's a sum of eight terms whose absolute values can be bounded using
3034 relations such as $\sin\theta\cos\theta\L{1\over2}$.) Thus the numerator
3035 is positive; and since the tension $\tau$ is constrained to be at least
3036 $3\over4$, the numerator is less than $16\over3$. The denominator is
3037 nonnegative and at most~6. Hence the fixed-point calculations below
3038 are guaranteed to stay within the bounds of a 32-bit computer word.
3040 The angles $\theta$ and $\phi$ are given implicitly in terms of |fraction|
3041 arguments |st|, |ct|, |sf|, and |cf|, representing $\sin\theta$, $\cos\theta$,
3042 $\sin\phi$, and $\cos\phi$, respectively.
3045 fraction mp_velocity (MP mp,fraction st, fraction ct, fraction sf,
3046 fraction cf, scaled t) {
3047 integer acc,num,denom; /* registers for intermediate calculations */
3048 acc=mp_take_fraction(mp, st-(sf / 16), sf-(st / 16));
3049 acc=mp_take_fraction(mp, acc,ct-cf);
3050 num=fraction_two+mp_take_fraction(mp, acc,379625062);
3051 /* $2^{28}\sqrt2\approx379625062.497$ */
3052 denom=fraction_three+mp_take_fraction(mp, ct,497706707)+mp_take_fraction(mp, cf,307599661);
3053 /* $3\cdot2^{27}\cdot(\sqrt5-1)\approx497706706.78$ and
3054 $3\cdot2^{27}\cdot(3-\sqrt5\,)\approx307599661.22$ */
3055 if ( t!=unity ) num=mp_make_scaled(mp, num,t);
3056 /* |make_scaled(fraction,scaled)=fraction| */
3057 if ( num / 4>=denom )
3058 return fraction_four;
3060 return mp_make_fraction(mp, num, denom);
3063 @ The following somewhat different subroutine tests rigorously if $ab$ is
3064 greater than, equal to, or less than~$cd$,
3065 given integers $(a,b,c,d)$. In most cases a quick decision is reached.
3066 The result is $+1$, 0, or~$-1$ in the three respective cases.
3068 @d mp_ab_vs_cd(M,A,B,C,D) mp_do_ab_vs_cd(A,B,C,D)
3071 integer mp_do_ab_vs_cd (integer a,integer b, integer c, integer d) {
3072 integer q,r; /* temporary registers */
3073 @<Reduce to the case that |a,c>=0|, |b,d>0|@>;
3075 q = a / d; r = c / b;
3077 return ( q>r ? 1 : -1);
3078 q = a % d; r = c % b;
3081 if ( q==0 ) return -1;
3083 } /* now |a>d>0| and |c>b>0| */
3086 @ @<Reduce to the case that |a...@>=
3087 if ( a<0 ) { negate(a); negate(b); };
3088 if ( c<0 ) { negate(c); negate(d); };
3091 if ( (a==0||b==0)&&(c==0||d==0) ) return 0;
3095 return ( a==0 ? 0 : -1);
3096 q=a; a=c; c=q; q=-b; b=-d; d=q;
3097 } else if ( b<=0 ) {
3098 if ( b<0 ) if ( a>0 ) return -1;
3099 return (c==0 ? 0 : -1);
3102 @ We conclude this set of elementary routines with some simple rounding
3103 and truncation operations.
3105 @<Internal library declarations@>=
3106 #define mp_floor_scaled(M,i) ((i)&(-65536))
3107 #define mp_round_unscaled(M,i) (((i>>15)+1)>>1)
3108 #define mp_round_fraction(M,i) (((i>>11)+1)>>1)
3111 @* \[8] Algebraic and transcendental functions.
3112 \MP\ computes all of the necessary special functions from scratch, without
3113 relying on |real| arithmetic or system subroutines for sines, cosines, etc.
3115 @ To get the square root of a |scaled| number |x|, we want to calculate
3116 $s=\lfloor 2^8\!\sqrt x +{1\over2}\rfloor$. If $x>0$, this is the unique
3117 integer such that $2^{16}x-s\L s^2<2^{16}x+s$. The following subroutine
3118 determines $s$ by an iterative method that maintains the invariant
3119 relations $x=2^{46-2k}x_0\bmod 2^{30}$, $0<y=\lfloor 2^{16-2k}x_0\rfloor
3120 -s^2+s\L q=2s$, where $x_0$ is the initial value of $x$. The value of~$y$
3121 might, however, be zero at the start of the first iteration.
3124 scaled mp_square_rt (MP mp,scaled x) ;
3127 scaled mp_square_rt (MP mp,scaled x) {
3128 small_number k; /* iteration control counter */
3129 integer y,q; /* registers for intermediate calculations */
3131 @<Handle square root of zero or negative argument@>;
3134 while ( x<fraction_two ) { /* i.e., |while x<@t$2^{29}$@>|\unskip */
3137 if ( x<fraction_four ) y=0;
3138 else { x=x-fraction_four; y=1; };
3140 @<Decrease |k| by 1, maintaining the invariant
3141 relations between |x|, |y|, and~|q|@>;
3147 @ @<Handle square root of zero...@>=
3150 print_err("Square root of ");
3151 @.Square root...replaced by 0@>
3152 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3153 help2("Since I don't take square roots of negative numbers,")
3154 ("I'm zeroing this one. Proceed, with fingers crossed.");
3160 @ @<Decrease |k| by 1, maintaining...@>=
3162 if ( x>=fraction_four ) { /* note that |fraction_four=@t$2^{30}$@>| */
3163 x=x-fraction_four; incr(y);
3165 x+=x; y=y+y-q; q+=q;
3166 if ( x>=fraction_four ) { x=x-fraction_four; incr(y); };
3167 if ( y>q ){ y=y-q; q=q+2; }
3168 else if ( y<=0 ) { q=q-2; y=y+q; };
3171 @ Pythagorean addition $\psqrt{a^2+b^2}$ is implemented by an elegant
3172 iterative scheme due to Cleve Moler and Donald Morrison [{\sl IBM Journal
3173 @^Moler, Cleve Barry@>
3174 @^Morrison, Donald Ross@>
3175 of Research and Development\/ \bf27} (1983), 577--581]. It modifies |a| and~|b|
3176 in such a way that their Pythagorean sum remains invariant, while the
3177 smaller argument decreases.
3179 @<Internal library ...@>=
3180 integer mp_pyth_add (MP mp,integer a, integer b);
3184 integer mp_pyth_add (MP mp,integer a, integer b) {
3185 fraction r; /* register used to transform |a| and |b| */
3186 boolean big; /* is the result dangerously near $2^{31}$? */
3188 if ( a<b ) { r=b; b=a; a=r; }; /* now |0<=b<=a| */
3190 if ( a<fraction_two ) {
3193 a=a / 4; b=b / 4; big=true;
3194 }; /* we reduced the precision to avoid arithmetic overflow */
3195 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>;
3197 if ( a<fraction_two ) {
3200 mp->arith_error=true; a=el_gordo;
3207 @ The key idea here is to reflect the vector $(a,b)$ about the
3208 line through $(a,b/2)$.
3210 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>=
3212 r=mp_make_fraction(mp, b,a);
3213 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3215 r=mp_make_fraction(mp, r,fraction_four+r);
3216 a=a+mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3220 @ Here is a similar algorithm for $\psqrt{a^2-b^2}$.
3221 It converges slowly when $b$ is near $a$, but otherwise it works fine.
3224 integer mp_pyth_sub (MP mp,integer a, integer b) {
3225 fraction r; /* register used to transform |a| and |b| */
3226 boolean big; /* is the input dangerously near $2^{31}$? */
3229 @<Handle erroneous |pyth_sub| and set |a:=0|@>;
3231 if ( a<fraction_four ) {
3234 a=halfp(a); b=halfp(b); big=true;
3236 @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>;
3237 if ( big ) double(a);
3242 @ @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>=
3244 r=mp_make_fraction(mp, b,a);
3245 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3247 r=mp_make_fraction(mp, r,fraction_four-r);
3248 a=a-mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3251 @ @<Handle erroneous |pyth_sub| and set |a:=0|@>=
3254 print_err("Pythagorean subtraction "); mp_print_scaled(mp, a);
3255 mp_print(mp, "+-+"); mp_print_scaled(mp, b);
3256 mp_print(mp, " has been replaced by 0");
3258 help2("Since I don't take square roots of negative numbers,")
3259 ("I'm zeroing this one. Proceed, with fingers crossed.");
3265 @ The subroutines for logarithm and exponential involve two tables.
3266 The first is simple: |two_to_the[k]| equals $2^k$. The second involves
3267 a bit more calculation, which the author claims to have done correctly:
3268 |spec_log[k]| is $2^{27}$ times $\ln\bigl(1/(1-2^{-k})\bigr)=
3269 2^{-k}+{1\over2}2^{-2k}+{1\over3}2^{-3k}+\cdots\,$, rounded to the
3272 @d two_to_the(A) (1<<(A))
3275 static const integer spec_log[29] = { 0, /* special logarithms */
3276 93032640, 38612034, 17922280, 8662214, 4261238, 2113709,
3277 1052693, 525315, 262400, 131136, 65552, 32772, 16385,
3278 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1 };
3280 @ @<Local variables for initialization@>=
3281 integer k; /* all-purpose loop index */
3284 @ Here is the routine that calculates $2^8$ times the natural logarithm
3285 of a |scaled| quantity; it is an integer approximation to $2^{24}\ln(x/2^{16})$,
3286 when |x| is a given positive integer.
3288 The method is based on exercise 1.2.2--25 in {\sl The Art of Computer
3289 Programming\/}: During the main iteration we have $1\L 2^{-30}x<1/(1-2^{1-k})$,
3290 and the logarithm of $2^{30}x$ remains to be added to an accumulator
3291 register called~$y$. Three auxiliary bits of accuracy are retained in~$y$
3292 during the calculation, and sixteen auxiliary bits to extend |y| are
3293 kept in~|z| during the initial argument reduction. (We add
3294 $100\cdot2^{16}=6553600$ to~|z| and subtract 100 from~|y| so that |z| will
3295 not become negative; also, the actual amount subtracted from~|y| is~96,
3296 not~100, because we want to add~4 for rounding before the final division by~8.)
3299 scaled mp_m_log (MP mp,scaled x) {
3300 integer y,z; /* auxiliary registers */
3301 integer k; /* iteration counter */
3303 @<Handle non-positive logarithm@>;
3305 y=1302456956+4-100; /* $14\times2^{27}\ln2\approx1302456956.421063$ */
3306 z=27595+6553600; /* and $2^{16}\times .421063\approx 27595$ */
3307 while ( x<fraction_four ) {
3308 double(x); y-=93032639; z-=48782;
3309 } /* $2^{27}\ln2\approx 93032639.74436163$ and $2^{16}\times.74436163\approx 48782$ */
3310 y=y+(z / unity); k=2;
3311 while ( x>fraction_four+4 ) {
3312 @<Increase |k| until |x| can be multiplied by a
3313 factor of $2^{-k}$, and adjust $y$ accordingly@>;
3319 @ @<Increase |k| until |x| can...@>=
3321 z=((x-1) / two_to_the(k))+1; /* $z=\lceil x/2^k\rceil$ */
3322 while ( x<fraction_four+z ) { z=halfp(z+1); incr(k); };
3323 y+=spec_log[k]; x-=z;
3326 @ @<Handle non-positive logarithm@>=
3328 print_err("Logarithm of ");
3329 @.Logarithm...replaced by 0@>
3330 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3331 help2("Since I don't take logs of non-positive numbers,")
3332 ("I'm zeroing this one. Proceed, with fingers crossed.");
3337 @ Conversely, the exponential routine calculates $\exp(x/2^8)$,
3338 when |x| is |scaled|. The result is an integer approximation to
3339 $2^{16}\exp(x/2^{24})$, when |x| is regarded as an integer.
3342 scaled mp_m_exp (MP mp,scaled x) {
3343 small_number k; /* loop control index */
3344 integer y,z; /* auxiliary registers */
3345 if ( x>174436200 ) {
3346 /* $2^{24}\ln((2^{31}-1)/2^{16})\approx 174436199.51$ */
3347 mp->arith_error=true;
3349 } else if ( x<-197694359 ) {
3350 /* $2^{24}\ln(2^{-1}/2^{16})\approx-197694359.45$ */
3354 z=-8*x; y=04000000; /* $y=2^{20}$ */
3356 if ( x<=127919879 ) {
3358 /* $2^{27}\ln((2^{31}-1)/2^{20})\approx 1023359037.125$ */
3360 z=8*(174436200-x); /* |z| is always nonnegative */
3364 @<Multiply |y| by $\exp(-z/2^{27})$@>;
3366 return ((y+8) / 16);
3372 @ The idea here is that subtracting |spec_log[k]| from |z| corresponds
3373 to multiplying |y| by $1-2^{-k}$.
3375 A subtle point (which had to be checked) was that if $x=127919879$, the
3376 value of~|y| will decrease so that |y+8| doesn't overflow. In fact,
3377 $z$ will be 5 in this case, and |y| will decrease by~64 when |k=25|
3378 and by~16 when |k=27|.
3380 @<Multiply |y| by...@>=
3383 while ( z>=spec_log[k] ) {
3385 y=y-1-((y-two_to_the(k-1)) / two_to_the(k));
3390 @ The trigonometric subroutines use an auxiliary table such that
3391 |spec_atan[k]| contains an approximation to the |angle| whose tangent
3392 is~$1/2^k$. $\arctan2^{-k}$ times $2^{20}\cdot180/\pi$
3395 static const angle spec_atan[27] = { 0, 27855475, 14718068, 7471121, 3750058,
3396 1876857, 938658, 469357, 234682, 117342, 58671, 29335, 14668, 7334, 3667,
3397 1833, 917, 458, 229, 115, 57, 29, 14, 7, 4, 2, 1 };
3399 @ Given integers |x| and |y|, not both zero, the |n_arg| function
3400 returns the |angle| whose tangent points in the direction $(x,y)$.
3401 This subroutine first determines the correct octant, then solves the
3402 problem for |0<=y<=x|, then converts the result appropriately to
3403 return an answer in the range |-one_eighty_deg<=@t$\theta$@><=one_eighty_deg|.
3404 (The answer is |+one_eighty_deg| if |y=0| and |x<0|, but an answer of
3405 |-one_eighty_deg| is possible if, for example, |y=-1| and $x=-2^{30}$.)
3407 The octants are represented in a ``Gray code,'' since that turns out
3408 to be computationally simplest.
3414 @d second_octant (first_octant+switch_x_and_y)
3415 @d third_octant (first_octant+switch_x_and_y+negate_x)
3416 @d fourth_octant (first_octant+negate_x)
3417 @d fifth_octant (first_octant+negate_x+negate_y)
3418 @d sixth_octant (first_octant+switch_x_and_y+negate_x+negate_y)
3419 @d seventh_octant (first_octant+switch_x_and_y+negate_y)
3420 @d eighth_octant (first_octant+negate_y)
3423 angle mp_n_arg (MP mp,integer x, integer y) {
3424 angle z; /* auxiliary register */
3425 integer t; /* temporary storage */
3426 small_number k; /* loop counter */
3427 int octant; /* octant code */
3429 octant=first_octant;
3431 negate(x); octant=first_octant+negate_x;
3434 negate(y); octant=octant+negate_y;
3437 t=y; y=x; x=t; octant=octant+switch_x_and_y;
3440 @<Handle undefined arg@>;
3442 @<Set variable |z| to the arg of $(x,y)$@>;
3443 @<Return an appropriate answer based on |z| and |octant|@>;
3447 @ @<Handle undefined arg@>=
3449 print_err("angle(0,0) is taken as zero");
3450 @.angle(0,0)...zero@>
3451 help2("The `angle' between two identical points is undefined.")
3452 ("I'm zeroing this one. Proceed, with fingers crossed.");
3457 @ @<Return an appropriate answer...@>=
3459 case first_octant: return z;
3460 case second_octant: return (ninety_deg-z);
3461 case third_octant: return (ninety_deg+z);
3462 case fourth_octant: return (one_eighty_deg-z);
3463 case fifth_octant: return (z-one_eighty_deg);
3464 case sixth_octant: return (-z-ninety_deg);
3465 case seventh_octant: return (z-ninety_deg);
3466 case eighth_octant: return (-z);
3467 }; /* there are no other cases */
3470 @ At this point we have |x>=y>=0|, and |x>0|. The numbers are scaled up
3471 or down until $2^{28}\L x<2^{29}$, so that accurate fixed-point calculations
3474 @<Set variable |z| to the arg...@>=
3475 while ( x>=fraction_two ) {
3476 x=halfp(x); y=halfp(y);
3480 while ( x<fraction_one ) {
3483 @<Increase |z| to the arg of $(x,y)$@>;
3486 @ During the calculations of this section, variables |x| and~|y|
3487 represent actual coordinates $(x,2^{-k}y)$. We will maintain the
3488 condition |x>=y|, so that the tangent will be at most $2^{-k}$.
3489 If $x<2y$, the tangent is greater than $2^{-k-1}$. The transformation
3490 $(a,b)\mapsto(a+b\tan\phi,b-a\tan\phi)$ replaces $(a,b)$ by
3491 coordinates whose angle has decreased by~$\phi$; in the special case
3492 $a=x$, $b=2^{-k}y$, and $\tan\phi=2^{-k-1}$, this operation reduces
3493 to the particularly simple iteration shown here. [Cf.~John E. Meggitt,
3494 @^Meggitt, John E.@>
3495 {\sl IBM Journal of Research and Development\/ \bf6} (1962), 210--226.]
3497 The initial value of |x| will be multiplied by at most
3498 $(1+{1\over2})(1+{1\over8})(1+{1\over32})\cdots\approx 1.7584$; hence
3499 there is no chance of integer overflow.
3501 @<Increase |z|...@>=
3506 z=z+spec_atan[k]; t=x; x=x+(y / two_to_the(k+k)); y=y-t;
3511 if ( y>x ) { z=z+spec_atan[k]; y=y-x; };
3514 @ Conversely, the |n_sin_cos| routine takes an |angle| and produces the sine
3515 and cosine of that angle. The results of this routine are
3516 stored in global integer variables |n_sin| and |n_cos|.
3519 fraction n_sin;fraction n_cos; /* results computed by |n_sin_cos| */
3521 @ Given an integer |z| that is $2^{20}$ times an angle $\theta$ in degrees,
3522 the purpose of |n_sin_cos(z)| is to set
3523 |x=@t$r\cos\theta$@>| and |y=@t$r\sin\theta$@>| (approximately),
3524 for some rather large number~|r|. The maximum of |x| and |y|
3525 will be between $2^{28}$ and $2^{30}$, so that there will be hardly
3526 any loss of accuracy. Then |x| and~|y| are divided by~|r|.
3529 void mp_n_sin_cos (MP mp,angle z) { /* computes a multiple of the sine
3531 small_number k; /* loop control variable */
3532 int q; /* specifies the quadrant */
3533 fraction r; /* magnitude of |(x,y)| */
3534 integer x,y,t; /* temporary registers */
3535 while ( z<0 ) z=z+three_sixty_deg;
3536 z=z % three_sixty_deg; /* now |0<=z<three_sixty_deg| */
3537 q=z / forty_five_deg; z=z % forty_five_deg;
3538 x=fraction_one; y=x;
3539 if ( ! odd(q) ) z=forty_five_deg-z;
3540 @<Subtract angle |z| from |(x,y)|@>;
3541 @<Convert |(x,y)| to the octant determined by~|q|@>;
3542 r=mp_pyth_add(mp, x,y);
3543 mp->n_cos=mp_make_fraction(mp, x,r);
3544 mp->n_sin=mp_make_fraction(mp, y,r);
3547 @ In this case the octants are numbered sequentially.
3549 @<Convert |(x,...@>=
3552 case 1: t=x; x=y; y=t; break;
3553 case 2: t=x; x=-y; y=t; break;
3554 case 3: negate(x); break;
3555 case 4: negate(x); negate(y); break;
3556 case 5: t=x; x=-y; y=-t; break;
3557 case 6: t=x; x=y; y=-t; break;
3558 case 7: negate(y); break;
3559 } /* there are no other cases */
3561 @ The main iteration of |n_sin_cos| is similar to that of |n_arg| but
3562 applied in reverse. The values of |spec_atan[k]| decrease slowly enough
3563 that this loop is guaranteed to terminate before the (nonexistent) value
3564 |spec_atan[27]| would be required.
3566 @<Subtract angle |z|...@>=
3569 if ( z>=spec_atan[k] ) {
3570 z=z-spec_atan[k]; t=x;
3571 x=t+y / two_to_the(k);
3572 y=y-t / two_to_the(k);
3576 if ( y<0 ) y=0 /* this precaution may never be needed */
3578 @ And now let's complete our collection of numeric utility routines
3579 by considering random number generation.
3580 \MP\ generates pseudo-random numbers with the additive scheme recommended
3581 in Section 3.6 of {\sl The Art of Computer Programming}; however, the
3582 results are random fractions between 0 and |fraction_one-1|, inclusive.
3584 There's an auxiliary array |randoms| that contains 55 pseudo-random
3585 fractions. Using the recurrence $x_n=(x_{n-55}-x_{n-31})\bmod 2^{28}$,
3586 we generate batches of 55 new $x_n$'s at a time by calling |new_randoms|.
3587 The global variable |j_random| tells which element has most recently
3589 The global variable |random_seed| was introduced in version 0.9,
3590 for the sole reason of stressing the fact that the initial value of the
3591 random seed is system-dependant. The initialization code below will initialize
3592 this variable to |(internal[mp_time] div unity)+internal[mp_day]|, but this
3593 is not good enough on modern fast machines that are capable of running
3594 multiple MetaPost processes within the same second.
3595 @^system dependencies@>
3598 fraction randoms[55]; /* the last 55 random values generated */
3599 int j_random; /* the number of unused |randoms| */
3601 @ @<Option variables@>=
3602 int random_seed; /* the default random seed */
3604 @ @<Allocate or initialize ...@>=
3605 mp->random_seed = (scaled)opt->random_seed;
3607 @ To consume a random fraction, the program below will say `|next_random|'
3608 and then it will fetch |randoms[j_random]|.
3610 @d next_random { if ( mp->j_random==0 ) mp_new_randoms(mp);
3611 else decr(mp->j_random); }
3614 void mp_new_randoms (MP mp) {
3615 int k; /* index into |randoms| */
3616 fraction x; /* accumulator */
3617 for (k=0;k<=23;k++) {
3618 x=mp->randoms[k]-mp->randoms[k+31];
3619 if ( x<0 ) x=x+fraction_one;
3622 for (k=24;k<= 54;k++){
3623 x=mp->randoms[k]-mp->randoms[k-24];
3624 if ( x<0 ) x=x+fraction_one;
3631 void mp_init_randoms (MP mp,scaled seed);
3633 @ To initialize the |randoms| table, we call the following routine.
3636 void mp_init_randoms (MP mp,scaled seed) {
3637 fraction j,jj,k; /* more or less random integers */
3638 int i; /* index into |randoms| */
3640 while ( j>=fraction_one ) j=halfp(j);
3642 for (i=0;i<=54;i++ ){
3644 if ( k<0 ) k=k+fraction_one;
3645 mp->randoms[(i*21)% 55]=j;
3649 mp_new_randoms(mp); /* ``warm up'' the array */
3652 @ To produce a uniform random number in the range |0<=u<x| or |0>=u>x|
3653 or |0=u=x|, given a |scaled| value~|x|, we proceed as shown here.
3655 Note that the call of |take_fraction| will produce the values 0 and~|x|
3656 with about half the probability that it will produce any other particular
3657 values between 0 and~|x|, because it rounds its answers.
3660 scaled mp_unif_rand (MP mp,scaled x) {
3661 scaled y; /* trial value */
3662 next_random; y=mp_take_fraction(mp, abs(x),mp->randoms[mp->j_random]);
3663 if ( y==abs(x) ) return 0;
3664 else if ( x>0 ) return y;
3668 @ Finally, a normal deviate with mean zero and unit standard deviation
3669 can readily be obtained with the ratio method (Algorithm 3.4.1R in
3670 {\sl The Art of Computer Programming\/}).
3673 scaled mp_norm_rand (MP mp) {
3674 integer x,u,l; /* what the book would call $2^{16}X$, $2^{28}U$, and $-2^{24}\ln U$ */
3678 x=mp_take_fraction(mp, 112429,mp->randoms[mp->j_random]-fraction_half);
3679 /* $2^{16}\sqrt{8/e}\approx 112428.82793$ */
3680 next_random; u=mp->randoms[mp->j_random];
3681 } while (abs(x)>=u);
3682 x=mp_make_fraction(mp, x,u);
3683 l=139548960-mp_m_log(mp, u); /* $2^{24}\cdot12\ln2\approx139548959.6165$ */
3684 } while (mp_ab_vs_cd(mp, 1024,l,x,x)<0);
3688 @* \[9] Packed data.
3689 In order to make efficient use of storage space, \MP\ bases its major data
3690 structures on a |memory_word|, which contains either a (signed) integer,
3691 possibly scaled, or a small number of fields that are one half or one
3692 quarter of the size used for storing integers.
3694 If |x| is a variable of type |memory_word|, it contains up to four
3695 fields that can be referred to as follows:
3696 $$\vbox{\halign{\hfil#&#\hfil&#\hfil\cr
3697 |x|&.|int|&(an |integer|)\cr
3698 |x|&.|sc|\qquad&(a |scaled| integer)\cr
3699 |x.hh.lh|, |x.hh|&.|rh|&(two halfword fields)\cr
3700 |x.hh.b0|, |x.hh.b1|, |x.hh|&.|rh|&(two quarterword fields, one halfword
3702 |x.qqqq.b0|, |x.qqqq.b1|, |x.qqqq|&.|b2|, |x.qqqq.b3|\hskip-100pt
3703 &\qquad\qquad\qquad(four quarterword fields)\cr}}$$
3704 This is somewhat cumbersome to write, and not very readable either, but
3705 macros will be used to make the notation shorter and more transparent.
3706 The code below gives a formal definition of |memory_word| and
3707 its subsidiary types, using packed variant records. \MP\ makes no
3708 assumptions about the relative positions of the fields within a word.
3710 @d max_quarterword 0x3FFF /* largest allowable value in a |quarterword| */
3711 @d max_halfword 0xFFFFFFF /* largest allowable value in a |halfword| */
3713 @ Here are the inequalities that the quarterword and halfword values
3714 must satisfy (or rather, the inequalities that they mustn't satisfy):
3716 @<Check the ``constant''...@>=
3717 if (mp->ini_version) {
3718 if ( mp->mem_max!=mp->mem_top ) mp->bad=8;
3720 if ( mp->mem_max<mp->mem_top ) mp->bad=8;
3722 if ( max_quarterword<255 ) mp->bad=9;
3723 if ( max_halfword<65535 ) mp->bad=10;
3724 if ( max_quarterword>max_halfword ) mp->bad=11;
3725 if ( mp->mem_max>=max_halfword ) mp->bad=12;
3726 if ( mp->max_strings>max_halfword ) mp->bad=13;
3728 @ The macros |qi| and |qo| are used for input to and output
3729 from quarterwords. These are legacy macros.
3730 @^system dependencies@>
3732 @d qo(A) (A) /* to read eight bits from a quarterword */
3733 @d qi(A) (A) /* to store eight bits in a quarterword */
3735 @ The reader should study the following definitions closely:
3736 @^system dependencies@>
3738 @d sc cint /* |scaled| data is equivalent to |integer| */
3741 typedef short quarterword; /* 1/4 of a word */
3742 typedef int halfword; /* 1/2 of a word */
3747 struct { /* Make B0,B1 overlap the most significant bytes of LH. */
3754 quarterword B2, B3, B0, B1;
3769 @ When debugging, we may want to print a |memory_word| without knowing
3770 what type it is; so we print it in all modes.
3774 void mp_print_word (MP mp,memory_word w) {
3775 /* prints |w| in all ways */
3776 mp_print_int(mp, w.cint); mp_print_char(mp, ' ');
3777 mp_print_scaled(mp, w.sc); mp_print_char(mp, ' ');
3778 mp_print_scaled(mp, w.sc / 010000); mp_print_ln(mp);
3779 mp_print_int(mp, w.hh.lh); mp_print_char(mp, '=');
3780 mp_print_int(mp, w.hh.b0); mp_print_char(mp, ':');
3781 mp_print_int(mp, w.hh.b1); mp_print_char(mp, ';');
3782 mp_print_int(mp, w.hh.rh); mp_print_char(mp, ' ');
3783 mp_print_int(mp, w.qqqq.b0); mp_print_char(mp, ':');
3784 mp_print_int(mp, w.qqqq.b1); mp_print_char(mp, ':');
3785 mp_print_int(mp, w.qqqq.b2); mp_print_char(mp, ':');
3786 mp_print_int(mp, w.qqqq.b3);
3790 @* \[10] Dynamic memory allocation.
3792 The \MP\ system does nearly all of its own memory allocation, so that it
3793 can readily be transported into environments that do not have automatic
3794 facilities for strings, garbage collection, etc., and so that it can be in
3795 control of what error messages the user receives. The dynamic storage
3796 requirements of \MP\ are handled by providing a large array |mem| in
3797 which consecutive blocks of words are used as nodes by the \MP\ routines.
3799 Pointer variables are indices into this array, or into another array
3800 called |eqtb| that will be explained later. A pointer variable might
3801 also be a special flag that lies outside the bounds of |mem|, so we
3802 allow pointers to assume any |halfword| value. The minimum memory
3803 index represents a null pointer.
3805 @d null 0 /* the null pointer */
3806 @d mp_void (null+1) /* a null pointer different from |null| */
3810 typedef halfword pointer; /* a flag or a location in |mem| or |eqtb| */
3812 @ The |mem| array is divided into two regions that are allocated separately,
3813 but the dividing line between these two regions is not fixed; they grow
3814 together until finding their ``natural'' size in a particular job.
3815 Locations less than or equal to |lo_mem_max| are used for storing
3816 variable-length records consisting of two or more words each. This region
3817 is maintained using an algorithm similar to the one described in exercise
3818 2.5--19 of {\sl The Art of Computer Programming}. However, no size field
3819 appears in the allocated nodes; the program is responsible for knowing the
3820 relevant size when a node is freed. Locations greater than or equal to
3821 |hi_mem_min| are used for storing one-word records; a conventional
3822 \.{AVAIL} stack is used for allocation in this region.
3824 Locations of |mem| between |0| and |mem_top| may be dumped as part
3825 of preloaded format files, by the \.{INIMP} preprocessor.
3827 Production versions of \MP\ may extend the memory at the top end in order to
3828 provide more space; these locations, between |mem_top| and |mem_max|,
3829 are always used for single-word nodes.
3831 The key pointers that govern |mem| allocation have a prescribed order:
3832 $$\hbox{|null=0<lo_mem_max<hi_mem_min<mem_top<=mem_end<=mem_max|.}$$
3835 memory_word *mem; /* the big dynamic storage area */
3836 pointer lo_mem_max; /* the largest location of variable-size memory in use */
3837 pointer hi_mem_min; /* the smallest location of one-word memory in use */
3841 @d xfree(A) do { mp_xfree(A); A=NULL; } while (0)
3842 @d xrealloc(P,A,B) mp_xrealloc(mp,P,A,B)
3843 @d xmalloc(A,B) mp_xmalloc(mp,A,B)
3844 @d xstrdup(A) mp_xstrdup(mp,A)
3845 @d XREALLOC(a,b,c) a = xrealloc(a,(b+1),sizeof(c));
3847 @<Declare helpers@>=
3848 void mp_xfree (void *x);
3849 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) ;
3850 void *mp_xmalloc (MP mp, size_t nmem, size_t size) ;
3851 char *mp_xstrdup(MP mp, const char *s);
3853 @ The |max_size_test| guards against overflow, on the assumption that
3854 |size_t| is at least 31bits wide.
3856 @d max_size_test 0x7FFFFFFF
3859 void mp_xfree (void *x) {
3860 if (x!=NULL) free(x);
3862 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) {
3864 if ((max_size_test/size)<nmem) {
3865 do_fprintf(mp->err_out,"Memory size overflow!\n");
3866 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3868 w = realloc (p,(nmem*size));
3870 do_fprintf(mp->err_out,"Out of memory!\n");
3871 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3875 void *mp_xmalloc (MP mp, size_t nmem, size_t size) {
3877 if ((max_size_test/size)<nmem) {
3878 do_fprintf(mp->err_out,"Memory size overflow!\n");
3879 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3881 w = malloc (nmem*size);
3883 do_fprintf(mp->err_out,"Out of memory!\n");
3884 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3888 char *mp_xstrdup(MP mp, const char *s) {
3894 do_fprintf(mp->err_out,"Out of memory!\n");
3895 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3902 @<Allocate or initialize ...@>=
3903 mp->mem = xmalloc ((mp->mem_max+1),sizeof (memory_word));
3904 memset(mp->mem,0,(mp->mem_max+1)*sizeof (memory_word));
3906 @ @<Dealloc variables@>=
3909 @ Users who wish to study the memory requirements of particular applications can
3910 can use optional special features that keep track of current and
3911 maximum memory usage. When code between the delimiters |stat| $\ldots$
3912 |tats| is not ``commented out,'' \MP\ will run a bit slower but it will
3913 report these statistics when |mp_tracing_stats| is positive.
3916 integer var_used; integer dyn_used; /* how much memory is in use */
3918 @ Let's consider the one-word memory region first, since it's the
3919 simplest. The pointer variable |mem_end| holds the highest-numbered location
3920 of |mem| that has ever been used. The free locations of |mem| that
3921 occur between |hi_mem_min| and |mem_end|, inclusive, are of type
3922 |two_halves|, and we write |info(p)| and |link(p)| for the |lh|
3923 and |rh| fields of |mem[p]| when it is of this type. The single-word
3924 free locations form a linked list
3925 $$|avail|,\;\hbox{|link(avail)|},\;\hbox{|link(link(avail))|},\;\ldots$$
3926 terminated by |null|.
3928 @d link(A) mp->mem[(A)].hh.rh /* the |link| field of a memory word */
3929 @d info(A) mp->mem[(A)].hh.lh /* the |info| field of a memory word */
3932 pointer avail; /* head of the list of available one-word nodes */
3933 pointer mem_end; /* the last one-word node used in |mem| */
3935 @ If one-word memory is exhausted, it might mean that the user has forgotten
3936 a token like `\&{enddef}' or `\&{endfor}'. We will define some procedures
3937 later that try to help pinpoint the trouble.
3940 @<Declare the procedure called |show_token_list|@>;
3941 @<Declare the procedure called |runaway|@>
3943 @ The function |get_avail| returns a pointer to a new one-word node whose
3944 |link| field is null. However, \MP\ will halt if there is no more room left.
3948 pointer mp_get_avail (MP mp) { /* single-word node allocation */
3949 pointer p; /* the new node being got */
3950 p=mp->avail; /* get top location in the |avail| stack */
3952 mp->avail=link(mp->avail); /* and pop it off */
3953 } else if ( mp->mem_end<mp->mem_max ) { /* or go into virgin territory */
3954 incr(mp->mem_end); p=mp->mem_end;
3956 decr(mp->hi_mem_min); p=mp->hi_mem_min;
3957 if ( mp->hi_mem_min<=mp->lo_mem_max ) {
3958 mp_runaway(mp); /* if memory is exhausted, display possible runaway text */
3959 mp_overflow(mp, "main memory size",mp->mem_max);
3960 /* quit; all one-word nodes are busy */
3961 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
3964 link(p)=null; /* provide an oft-desired initialization of the new node */
3965 incr(mp->dyn_used);/* maintain statistics */
3969 @ Conversely, a one-word node is recycled by calling |free_avail|.
3971 @d free_avail(A) /* single-word node liberation */
3972 { link((A))=mp->avail; mp->avail=(A); decr(mp->dyn_used); }
3974 @ There's also a |fast_get_avail| routine, which saves the procedure-call
3975 overhead at the expense of extra programming. This macro is used in
3976 the places that would otherwise account for the most calls of |get_avail|.
3979 @d fast_get_avail(A) {
3980 (A)=mp->avail; /* avoid |get_avail| if possible, to save time */
3981 if ( (A)==null ) { (A)=mp_get_avail(mp); }
3982 else { mp->avail=link((A)); link((A))=null; incr(mp->dyn_used); }
3985 @ The available-space list that keeps track of the variable-size portion
3986 of |mem| is a nonempty, doubly-linked circular list of empty nodes,
3987 pointed to by the roving pointer |rover|.
3989 Each empty node has size 2 or more; the first word contains the special
3990 value |max_halfword| in its |link| field and the size in its |info| field;
3991 the second word contains the two pointers for double linking.
3993 Each nonempty node also has size 2 or more. Its first word is of type
3994 |two_halves|\kern-1pt, and its |link| field is never equal to |max_halfword|.
3995 Otherwise there is complete flexibility with respect to the contents
3996 of its other fields and its other words.
3998 (We require |mem_max<max_halfword| because terrible things can happen
3999 when |max_halfword| appears in the |link| field of a nonempty node.)
4001 @d empty_flag max_halfword /* the |link| of an empty variable-size node */
4002 @d is_empty(A) (link((A))==empty_flag) /* tests for empty node */
4003 @d node_size info /* the size field in empty variable-size nodes */
4004 @d llink(A) info((A)+1) /* left link in doubly-linked list of empty nodes */
4005 @d rlink(A) link((A)+1) /* right link in doubly-linked list of empty nodes */
4008 pointer rover; /* points to some node in the list of empties */
4010 @ A call to |get_node| with argument |s| returns a pointer to a new node
4011 of size~|s|, which must be 2~or more. The |link| field of the first word
4012 of this new node is set to null. An overflow stop occurs if no suitable
4015 If |get_node| is called with $s=2^{30}$, it simply merges adjacent free
4016 areas and returns the value |max_halfword|.
4018 @<Internal library declarations@>=
4019 pointer mp_get_node (MP mp,integer s) ;
4022 pointer mp_get_node (MP mp,integer s) { /* variable-size node allocation */
4023 pointer p; /* the node currently under inspection */
4024 pointer q; /* the node physically after node |p| */
4025 integer r; /* the newly allocated node, or a candidate for this honor */
4026 integer t,tt; /* temporary registers */
4029 p=mp->rover; /* start at some free node in the ring */
4031 @<Try to allocate within node |p| and its physical successors,
4032 and |goto found| if allocation was possible@>;
4033 if (rlink(p)==null || rlink(p)==p) {
4034 print_err("Free list garbled");
4035 help3("I found an entry in the list of free nodes that links")
4036 ("badly. I will try to ignore the broken link, but something")
4037 ("is seriously amiss. It is wise to warn the maintainers.")
4041 p=rlink(p); /* move to the next node in the ring */
4042 } while (p!=mp->rover); /* repeat until the whole list has been traversed */
4043 if ( s==010000000000 ) {
4044 return max_halfword;
4046 if ( mp->lo_mem_max+2<mp->hi_mem_min ) {
4047 if ( mp->lo_mem_max+2<=max_halfword ) {
4048 @<Grow more variable-size memory and |goto restart|@>;
4051 mp_overflow(mp, "main memory size",mp->mem_max);
4052 /* sorry, nothing satisfactory is left */
4053 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
4055 link(r)=null; /* this node is now nonempty */
4056 mp->var_used+=s; /* maintain usage statistics */
4060 @ The lower part of |mem| grows by 1000 words at a time, unless
4061 we are very close to going under. When it grows, we simply link
4062 a new node into the available-space list. This method of controlled
4063 growth helps to keep the |mem| usage consecutive when \MP\ is
4064 implemented on ``virtual memory'' systems.
4067 @<Grow more variable-size memory and |goto restart|@>=
4069 if ( mp->hi_mem_min-mp->lo_mem_max>=1998 ) {
4070 t=mp->lo_mem_max+1000;
4072 t=mp->lo_mem_max+1+(mp->hi_mem_min-mp->lo_mem_max) / 2;
4073 /* |lo_mem_max+2<=t<hi_mem_min| */
4075 if ( t>max_halfword ) t=max_halfword;
4076 p=llink(mp->rover); q=mp->lo_mem_max; rlink(p)=q; llink(mp->rover)=q;
4077 rlink(q)=mp->rover; llink(q)=p; link(q)=empty_flag;
4078 node_size(q)=t-mp->lo_mem_max;
4079 mp->lo_mem_max=t; link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4084 @ @<Try to allocate...@>=
4085 q=p+node_size(p); /* find the physical successor */
4086 while ( is_empty(q) ) { /* merge node |p| with node |q| */
4087 t=rlink(q); tt=llink(q);
4089 if ( q==mp->rover ) mp->rover=t;
4090 llink(t)=tt; rlink(tt)=t;
4095 @<Allocate from the top of node |p| and |goto found|@>;
4098 if ( rlink(p)!=p ) {
4099 @<Allocate entire node |p| and |goto found|@>;
4102 node_size(p)=q-p /* reset the size in case it grew */
4104 @ @<Allocate from the top...@>=
4106 node_size(p)=r-p; /* store the remaining size */
4107 mp->rover=p; /* start searching here next time */
4111 @ Here we delete node |p| from the ring, and let |rover| rove around.
4113 @<Allocate entire...@>=
4115 mp->rover=rlink(p); t=llink(p);
4116 llink(mp->rover)=t; rlink(t)=mp->rover;
4120 @ Conversely, when some variable-size node |p| of size |s| is no longer needed,
4121 the operation |free_node(p,s)| will make its words available, by inserting
4122 |p| as a new empty node just before where |rover| now points.
4124 @<Internal library declarations@>=
4125 void mp_free_node (MP mp, pointer p, halfword s) ;
4128 void mp_free_node (MP mp, pointer p, halfword s) { /* variable-size node
4130 pointer q; /* |llink(rover)| */
4131 node_size(p)=s; link(p)=empty_flag;
4133 q=llink(mp->rover); llink(p)=q; rlink(p)=mp->rover; /* set both links */
4134 llink(mp->rover)=p; rlink(q)=p; /* insert |p| into the ring */
4135 mp->var_used-=s; /* maintain statistics */
4138 @ Just before \.{INIMP} writes out the memory, it sorts the doubly linked
4139 available space list. The list is probably very short at such times, so a
4140 simple insertion sort is used. The smallest available location will be
4141 pointed to by |rover|, the next-smallest by |rlink(rover)|, etc.
4144 void mp_sort_avail (MP mp) { /* sorts the available variable-size nodes
4146 pointer p,q,r; /* indices into |mem| */
4147 pointer old_rover; /* initial |rover| setting */
4148 p=mp_get_node(mp, 010000000000); /* merge adjacent free areas */
4149 p=rlink(mp->rover); rlink(mp->rover)=max_halfword; old_rover=mp->rover;
4150 while ( p!=old_rover ) {
4151 @<Sort |p| into the list starting at |rover|
4152 and advance |p| to |rlink(p)|@>;
4155 while ( rlink(p)!=max_halfword ) {
4156 llink(rlink(p))=p; p=rlink(p);
4158 rlink(p)=mp->rover; llink(mp->rover)=p;
4161 @ The following |while| loop is guaranteed to
4162 terminate, since the list that starts at
4163 |rover| ends with |max_halfword| during the sorting procedure.
4166 if ( p<mp->rover ) {
4167 q=p; p=rlink(q); rlink(q)=mp->rover; mp->rover=q;
4170 while ( rlink(q)<p ) q=rlink(q);
4171 r=rlink(p); rlink(p)=rlink(q); rlink(q)=p; p=r;
4174 @* \[11] Memory layout.
4175 Some areas of |mem| are dedicated to fixed usage, since static allocation is
4176 more efficient than dynamic allocation when we can get away with it. For
4177 example, locations |0| to |1| are always used to store a
4178 two-word dummy token whose second word is zero.
4179 The following macro definitions accomplish the static allocation by giving
4180 symbolic names to the fixed positions. Static variable-size nodes appear
4181 in locations |0| through |lo_mem_stat_max|, and static single-word nodes
4182 appear in locations |hi_mem_stat_min| through |mem_top|, inclusive.
4184 @d null_dash (2) /* the first two words are reserved for a null value */
4185 @d dep_head (null_dash+3) /* we will define |dash_node_size=3| */
4186 @d zero_val (dep_head+2) /* two words for a permanently zero value */
4187 @d temp_val (zero_val+2) /* two words for a temporary value node */
4188 @d end_attr temp_val /* we use |end_attr+2| only */
4189 @d inf_val (end_attr+2) /* and |inf_val+1| only */
4190 @d test_pen (inf_val+2)
4191 /* nine words for a pen used when testing the turning number */
4192 @d bad_vardef (test_pen+9) /* two words for \&{vardef} error recovery */
4193 @d lo_mem_stat_max (bad_vardef+1) /* largest statically
4194 allocated word in the variable-size |mem| */
4196 @d sentinel mp->mem_top /* end of sorted lists */
4197 @d temp_head (mp->mem_top-1) /* head of a temporary list of some kind */
4198 @d hold_head (mp->mem_top-2) /* head of a temporary list of another kind */
4199 @d spec_head (mp->mem_top-3) /* head of a list of unprocessed \&{special} items */
4200 @d hi_mem_stat_min (mp->mem_top-3) /* smallest statically allocated word in
4201 the one-word |mem| */
4203 @ The following code gets the dynamic part of |mem| off to a good start,
4204 when \MP\ is initializing itself the slow way.
4206 @<Initialize table entries (done by \.{INIMP} only)@>=
4207 @^data structure assumptions@>
4208 mp->rover=lo_mem_stat_max+1; /* initialize the dynamic memory */
4209 link(mp->rover)=empty_flag;
4210 node_size(mp->rover)=1000; /* which is a 1000-word available node */
4211 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
4212 mp->lo_mem_max=mp->rover+1000;
4213 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4214 for (k=hi_mem_stat_min;k<=(int)mp->mem_top;k++) {
4215 mp->mem[k]=mp->mem[mp->lo_mem_max]; /* clear list heads */
4217 mp->avail=null; mp->mem_end=mp->mem_top;
4218 mp->hi_mem_min=hi_mem_stat_min; /* initialize the one-word memory */
4219 mp->var_used=lo_mem_stat_max+1;
4220 mp->dyn_used=mp->mem_top+1-(hi_mem_stat_min); /* initialize statistics */
4221 @<Initialize a pen at |test_pen| so that it fits in nine words@>;
4223 @ The procedure |flush_list(p)| frees an entire linked list of one-word
4224 nodes that starts at a given position, until coming to |sentinel| or a
4225 pointer that is not in the one-word region. Another procedure,
4226 |flush_node_list|, frees an entire linked list of one-word and two-word
4227 nodes, until coming to a |null| pointer.
4231 void mp_flush_list (MP mp,pointer p) { /* makes list of single-word nodes available */
4232 pointer q,r; /* list traversers */
4233 if ( p>=mp->hi_mem_min ) if ( p!=sentinel ) {
4238 if ( r<mp->hi_mem_min ) break;
4239 } while (r!=sentinel);
4240 /* now |q| is the last node on the list */
4241 link(q)=mp->avail; mp->avail=p;
4245 void mp_flush_node_list (MP mp,pointer p) {
4246 pointer q; /* the node being recycled */
4249 if ( q<mp->hi_mem_min )
4250 mp_free_node(mp, q,2);
4256 @ If \MP\ is extended improperly, the |mem| array might get screwed up.
4257 For example, some pointers might be wrong, or some ``dead'' nodes might not
4258 have been freed when the last reference to them disappeared. Procedures
4259 |check_mem| and |search_mem| are available to help diagnose such
4260 problems. These procedures make use of two arrays called |free| and
4261 |was_free| that are present only if \MP's debugging routines have
4262 been included. (You may want to decrease the size of |mem| while you
4266 Because |boolean|s are typedef-d as ints, it is better to use
4267 unsigned chars here.
4270 unsigned char *free; /* free cells */
4271 unsigned char *was_free; /* previously free cells */
4272 pointer was_mem_end; pointer was_lo_max; pointer was_hi_min;
4273 /* previous |mem_end|, |lo_mem_max|,and |hi_mem_min| */
4274 boolean panicking; /* do we want to check memory constantly? */
4276 @ @<Allocate or initialize ...@>=
4277 mp->free = xmalloc ((mp->mem_max+1),sizeof (unsigned char));
4278 mp->was_free = xmalloc ((mp->mem_max+1), sizeof (unsigned char));
4280 @ @<Dealloc variables@>=
4282 xfree(mp->was_free);
4284 @ @<Allocate or ...@>=
4285 mp->was_mem_end=0; /* indicate that everything was previously free */
4286 mp->was_lo_max=0; mp->was_hi_min=mp->mem_max;
4287 mp->panicking=false;
4289 @ @<Declare |mp_reallocate| functions@>=
4290 void mp_reallocate_memory(MP mp, int l) ;
4293 void mp_reallocate_memory(MP mp, int l) {
4294 XREALLOC(mp->free, l, unsigned char);
4295 XREALLOC(mp->was_free, l, unsigned char);
4297 int newarea = l-mp->mem_max;
4298 XREALLOC(mp->mem, l, memory_word);
4299 memset (mp->mem+(mp->mem_max+1),0,sizeof(memory_word)*(newarea));
4301 XREALLOC(mp->mem, l, memory_word);
4302 memset(mp->mem,0,sizeof(memory_word)*(l+1));
4305 if (mp->ini_version)
4311 @ Procedure |check_mem| makes sure that the available space lists of
4312 |mem| are well formed, and it optionally prints out all locations
4313 that are reserved now but were free the last time this procedure was called.
4316 void mp_check_mem (MP mp,boolean print_locs ) {
4317 pointer p,q,r; /* current locations of interest in |mem| */
4318 boolean clobbered; /* is something amiss? */
4319 for (p=0;p<=mp->lo_mem_max;p++) {
4320 mp->free[p]=false; /* you can probably do this faster */
4322 for (p=mp->hi_mem_min;p<= mp->mem_end;p++) {
4323 mp->free[p]=false; /* ditto */
4325 @<Check single-word |avail| list@>;
4326 @<Check variable-size |avail| list@>;
4327 @<Check flags of unavailable nodes@>;
4328 @<Check the list of linear dependencies@>;
4330 @<Print newly busy locations@>;
4332 memcpy(mp->was_free,mp->free, sizeof(char)*(mp->mem_end+1));
4333 mp->was_mem_end=mp->mem_end;
4334 mp->was_lo_max=mp->lo_mem_max;
4335 mp->was_hi_min=mp->hi_mem_min;
4338 @ @<Check single-word...@>=
4339 p=mp->avail; q=null; clobbered=false;
4341 if ( (p>mp->mem_end)||(p<mp->hi_mem_min) ) clobbered=true;
4342 else if ( mp->free[p] ) clobbered=true;
4344 mp_print_nl(mp, "AVAIL list clobbered at ");
4345 @.AVAIL list clobbered...@>
4346 mp_print_int(mp, q); break;
4348 mp->free[p]=true; q=p; p=link(q);
4351 @ @<Check variable-size...@>=
4352 p=mp->rover; q=null; clobbered=false;
4354 if ( (p>=mp->lo_mem_max)||(p<0) ) clobbered=true;
4355 else if ( (rlink(p)>=mp->lo_mem_max)||(rlink(p)<0) ) clobbered=true;
4356 else if ( !(is_empty(p))||(node_size(p)<2)||
4357 (p+node_size(p)>mp->lo_mem_max)|| (llink(rlink(p))!=p) ) clobbered=true;
4359 mp_print_nl(mp, "Double-AVAIL list clobbered at ");
4360 @.Double-AVAIL list clobbered...@>
4361 mp_print_int(mp, q); break;
4363 for (q=p;q<=p+node_size(p)-1;q++) { /* mark all locations free */
4364 if ( mp->free[q] ) {
4365 mp_print_nl(mp, "Doubly free location at ");
4366 @.Doubly free location...@>
4367 mp_print_int(mp, q); break;
4372 } while (p!=mp->rover)
4375 @ @<Check flags...@>=
4377 while ( p<=mp->lo_mem_max ) { /* node |p| should not be empty */
4378 if ( is_empty(p) ) {
4379 mp_print_nl(mp, "Bad flag at "); mp_print_int(mp, p);
4382 while ( (p<=mp->lo_mem_max) && ! mp->free[p] ) incr(p);
4383 while ( (p<=mp->lo_mem_max) && mp->free[p] ) incr(p);
4386 @ @<Print newly busy...@>=
4388 @<Do intialization required before printing new busy locations@>;
4389 mp_print_nl(mp, "New busy locs:");
4391 for (p=0;p<= mp->lo_mem_max;p++ ) {
4392 if ( ! mp->free[p] && ((p>mp->was_lo_max) || mp->was_free[p]) ) {
4393 @<Indicate that |p| is a new busy location@>;
4396 for (p=mp->hi_mem_min;p<=mp->mem_end;p++ ) {
4397 if ( ! mp->free[p] &&
4398 ((p<mp->was_hi_min) || (p>mp->was_mem_end) || mp->was_free[p]) ) {
4399 @<Indicate that |p| is a new busy location@>;
4402 @<Finish printing new busy locations@>;
4405 @ There might be many new busy locations so we are careful to print contiguous
4406 blocks compactly. During this operation |q| is the last new busy location and
4407 |r| is the start of the block containing |q|.
4409 @<Indicate that |p| is a new busy location@>=
4413 mp_print(mp, ".."); mp_print_int(mp, q);
4415 mp_print_char(mp, ' '); mp_print_int(mp, p);
4421 @ @<Do intialization required before printing new busy locations@>=
4422 q=mp->mem_max; r=mp->mem_max
4424 @ @<Finish printing new busy locations@>=
4426 mp_print(mp, ".."); mp_print_int(mp, q);
4429 @ The |search_mem| procedure attempts to answer the question ``Who points
4430 to node~|p|?'' In doing so, it fetches |link| and |info| fields of |mem|
4431 that might not be of type |two_halves|. Strictly speaking, this is
4432 undefined, and it can lead to ``false drops'' (words that seem to
4433 point to |p| purely by coincidence). But for debugging purposes, we want
4434 to rule out the places that do {\sl not\/} point to |p|, so a few false
4435 drops are tolerable.
4438 void mp_search_mem (MP mp, pointer p) { /* look for pointers to |p| */
4439 integer q; /* current position being searched */
4440 for (q=0;q<=mp->lo_mem_max;q++) {
4442 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4445 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4448 for (q=mp->hi_mem_min;q<=mp->mem_end;q++) {
4450 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4453 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4456 @<Search |eqtb| for equivalents equal to |p|@>;
4459 @* \[12] The command codes.
4460 Before we can go much further, we need to define symbolic names for the internal
4461 code numbers that represent the various commands obeyed by \MP. These codes
4462 are somewhat arbitrary, but not completely so. For example,
4463 some codes have been made adjacent so that |case| statements in the
4464 program need not consider cases that are widely spaced, or so that |case|
4465 statements can be replaced by |if| statements. A command can begin an
4466 expression if and only if its code lies between |min_primary_command| and
4467 |max_primary_command|, inclusive. The first token of a statement that doesn't
4468 begin with an expression has a command code between |min_command| and
4469 |max_statement_command|, inclusive. Anything less than |min_command| is
4470 eliminated during macro expansions, and anything no more than |max_pre_command|
4471 is eliminated when expanding \TeX\ material. Ranges such as
4472 |min_secondary_command..max_secondary_command| are used when parsing
4473 expressions, but the relative ordering within such a range is generally not
4476 The ordering of the highest-numbered commands
4477 (|comma<semicolon<end_group<stop|) is crucial for the parsing and
4478 error-recovery methods of this program as is the ordering |if_test<fi_or_else|
4479 for the smallest two commands. The ordering is also important in the ranges
4480 |numeric_token..plus_or_minus| and |left_brace..ampersand|.
4482 At any rate, here is the list, for future reference.
4484 @d start_tex 1 /* begin \TeX\ material (\&{btex}, \&{verbatimtex}) */
4485 @d etex_marker 2 /* end \TeX\ material (\&{etex}) */
4486 @d mpx_break 3 /* stop reading an \.{MPX} file (\&{mpxbreak}) */
4487 @d max_pre_command mpx_break
4488 @d if_test 4 /* conditional text (\&{if}) */
4489 @d fi_or_else 5 /* delimiters for conditionals (\&{elseif}, \&{else}, \&{fi} */
4490 @d input 6 /* input a source file (\&{input}, \&{endinput}) */
4491 @d iteration 7 /* iterate (\&{for}, \&{forsuffixes}, \&{forever}, \&{endfor}) */
4492 @d repeat_loop 8 /* special command substituted for \&{endfor} */
4493 @d exit_test 9 /* premature exit from a loop (\&{exitif}) */
4494 @d relax 10 /* do nothing (\.{\char`\\}) */
4495 @d scan_tokens 11 /* put a string into the input buffer */
4496 @d expand_after 12 /* look ahead one token */
4497 @d defined_macro 13 /* a macro defined by the user */
4498 @d min_command (defined_macro+1)
4499 @d save_command 14 /* save a list of tokens (\&{save}) */
4500 @d interim_command 15 /* save an internal quantity (\&{interim}) */
4501 @d let_command 16 /* redefine a symbolic token (\&{let}) */
4502 @d new_internal 17 /* define a new internal quantity (\&{newinternal}) */
4503 @d macro_def 18 /* define a macro (\&{def}, \&{vardef}, etc.) */
4504 @d ship_out_command 19 /* output a character (\&{shipout}) */
4505 @d add_to_command 20 /* add to edges (\&{addto}) */
4506 @d bounds_command 21 /* add bounding path to edges (\&{setbounds}, \&{clip}) */
4507 @d tfm_command 22 /* command for font metric info (\&{ligtable}, etc.) */
4508 @d protection_command 23 /* set protection flag (\&{outer}, \&{inner}) */
4509 @d show_command 24 /* diagnostic output (\&{show}, \&{showvariable}, etc.) */
4510 @d mode_command 25 /* set interaction level (\&{batchmode}, etc.) */
4511 @d mp_random_seed 26 /* initialize random number generator (\&{randomseed}) */
4512 @d message_command 27 /* communicate to user (\&{message}, \&{errmessage}) */
4513 @d every_job_command 28 /* designate a starting token (\&{everyjob}) */
4514 @d delimiters 29 /* define a pair of delimiters (\&{delimiters}) */
4515 @d special_command 30 /* output special info (\&{special})
4516 or font map info (\&{fontmapfile}, \&{fontmapline}) */
4517 @d write_command 31 /* write text to a file (\&{write}) */
4518 @d type_name 32 /* declare a type (\&{numeric}, \&{pair}, etc. */
4519 @d max_statement_command type_name
4520 @d min_primary_command type_name
4521 @d left_delimiter 33 /* the left delimiter of a matching pair */
4522 @d begin_group 34 /* beginning of a group (\&{begingroup}) */
4523 @d nullary 35 /* an operator without arguments (e.g., \&{normaldeviate}) */
4524 @d unary 36 /* an operator with one argument (e.g., \&{sqrt}) */
4525 @d str_op 37 /* convert a suffix to a string (\&{str}) */
4526 @d cycle 38 /* close a cyclic path (\&{cycle}) */
4527 @d primary_binary 39 /* binary operation taking `\&{of}' (e.g., \&{point}) */
4528 @d capsule_token 40 /* a value that has been put into a token list */
4529 @d string_token 41 /* a string constant (e.g., |"hello"|) */
4530 @d internal_quantity 42 /* internal numeric parameter (e.g., \&{pausing}) */
4531 @d min_suffix_token internal_quantity
4532 @d tag_token 43 /* a symbolic token without a primitive meaning */
4533 @d numeric_token 44 /* a numeric constant (e.g., \.{3.14159}) */
4534 @d max_suffix_token numeric_token
4535 @d plus_or_minus 45 /* either `\.+' or `\.-' */
4536 @d max_primary_command plus_or_minus /* should also be |numeric_token+1| */
4537 @d min_tertiary_command plus_or_minus
4538 @d tertiary_secondary_macro 46 /* a macro defined by \&{secondarydef} */
4539 @d tertiary_binary 47 /* an operator at the tertiary level (e.g., `\.{++}') */
4540 @d max_tertiary_command tertiary_binary
4541 @d left_brace 48 /* the operator `\.{\char`\{}' */
4542 @d min_expression_command left_brace
4543 @d path_join 49 /* the operator `\.{..}' */
4544 @d ampersand 50 /* the operator `\.\&' */
4545 @d expression_tertiary_macro 51 /* a macro defined by \&{tertiarydef} */
4546 @d expression_binary 52 /* an operator at the expression level (e.g., `\.<') */
4547 @d equals 53 /* the operator `\.=' */
4548 @d max_expression_command equals
4549 @d and_command 54 /* the operator `\&{and}' */
4550 @d min_secondary_command and_command
4551 @d secondary_primary_macro 55 /* a macro defined by \&{primarydef} */
4552 @d slash 56 /* the operator `\./' */
4553 @d secondary_binary 57 /* an operator at the binary level (e.g., \&{shifted}) */
4554 @d max_secondary_command secondary_binary
4555 @d param_type 58 /* type of parameter (\&{primary}, \&{expr}, \&{suffix}, etc.) */
4556 @d controls 59 /* specify control points explicitly (\&{controls}) */
4557 @d tension 60 /* specify tension between knots (\&{tension}) */
4558 @d at_least 61 /* bounded tension value (\&{atleast}) */
4559 @d curl_command 62 /* specify curl at an end knot (\&{curl}) */
4560 @d macro_special 63 /* special macro operators (\&{quote}, \.{\#\AT!}, etc.) */
4561 @d right_delimiter 64 /* the right delimiter of a matching pair */
4562 @d left_bracket 65 /* the operator `\.[' */
4563 @d right_bracket 66 /* the operator `\.]' */
4564 @d right_brace 67 /* the operator `\.{\char`\}}' */
4565 @d with_option 68 /* option for filling (\&{withpen}, \&{withweight}, etc.) */
4567 /* variant of \&{addto} (\&{contour}, \&{doublepath}, \&{also}) */
4568 @d of_token 70 /* the operator `\&{of}' */
4569 @d to_token 71 /* the operator `\&{to}' */
4570 @d step_token 72 /* the operator `\&{step}' */
4571 @d until_token 73 /* the operator `\&{until}' */
4572 @d within_token 74 /* the operator `\&{within}' */
4573 @d lig_kern_token 75
4574 /* the operators `\&{kern}' and `\.{=:}' and `\.{=:\char'174}, etc. */
4575 @d assignment 76 /* the operator `\.{:=}' */
4576 @d skip_to 77 /* the operation `\&{skipto}' */
4577 @d bchar_label 78 /* the operator `\.{\char'174\char'174:}' */
4578 @d double_colon 79 /* the operator `\.{::}' */
4579 @d colon 80 /* the operator `\.:' */
4581 @d comma 81 /* the operator `\.,', must be |colon+1| */
4582 @d end_of_statement (mp->cur_cmd>comma)
4583 @d semicolon 82 /* the operator `\.;', must be |comma+1| */
4584 @d end_group 83 /* end a group (\&{endgroup}), must be |semicolon+1| */
4585 @d stop 84 /* end a job (\&{end}, \&{dump}), must be |end_group+1| */
4586 @d max_command_code stop
4587 @d outer_tag (max_command_code+1) /* protection code added to command code */
4590 typedef int command_code;
4592 @ Variables and capsules in \MP\ have a variety of ``types,''
4593 distinguished by the code numbers defined here. These numbers are also
4594 not completely arbitrary. Things that get expanded must have types
4595 |>mp_independent|; a type remaining after expansion is numeric if and only if
4596 its code number is at least |numeric_type|; objects containing numeric
4597 parts must have types between |transform_type| and |pair_type|;
4598 all other types must be smaller than |transform_type|; and among the types
4599 that are not unknown or vacuous, the smallest two must be |boolean_type|
4600 and |string_type| in that order.
4602 @d undefined 0 /* no type has been declared */
4603 @d unknown_tag 1 /* this constant is added to certain type codes below */
4604 @d unknown_types mp_unknown_boolean: case mp_unknown_string:
4605 case mp_unknown_pen: case mp_unknown_picture: case mp_unknown_path
4608 enum mp_variable_type {
4609 mp_vacuous=1, /* no expression was present */
4610 mp_boolean_type, /* \&{boolean} with a known value */
4612 mp_string_type, /* \&{string} with a known value */
4614 mp_pen_type, /* \&{pen} with a known value */
4616 mp_path_type, /* \&{path} with a known value */
4618 mp_picture_type, /* \&{picture} with a known value */
4620 mp_transform_type, /* \&{transform} variable or capsule */
4621 mp_color_type, /* \&{color} variable or capsule */
4622 mp_cmykcolor_type, /* \&{cmykcolor} variable or capsule */
4623 mp_pair_type, /* \&{pair} variable or capsule */
4624 mp_numeric_type, /* variable that has been declared \&{numeric} but not used */
4625 mp_known, /* \&{numeric} with a known value */
4626 mp_dependent, /* a linear combination with |fraction| coefficients */
4627 mp_proto_dependent, /* a linear combination with |scaled| coefficients */
4628 mp_independent, /* \&{numeric} with unknown value */
4629 mp_token_list, /* variable name or suffix argument or text argument */
4630 mp_structured, /* variable with subscripts and attributes */
4631 mp_unsuffixed_macro, /* variable defined with \&{vardef} but no \.{\AT!\#} */
4632 mp_suffixed_macro /* variable defined with \&{vardef} and \.{\AT!\#} */
4636 void mp_print_type (MP mp,small_number t) ;
4638 @ @<Basic printing procedures@>=
4639 void mp_print_type (MP mp,small_number t) {
4641 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
4642 case mp_boolean_type:mp_print(mp, "boolean"); break;
4643 case mp_unknown_boolean:mp_print(mp, "unknown boolean"); break;
4644 case mp_string_type:mp_print(mp, "string"); break;
4645 case mp_unknown_string:mp_print(mp, "unknown string"); break;
4646 case mp_pen_type:mp_print(mp, "pen"); break;
4647 case mp_unknown_pen:mp_print(mp, "unknown pen"); break;
4648 case mp_path_type:mp_print(mp, "path"); break;
4649 case mp_unknown_path:mp_print(mp, "unknown path"); break;
4650 case mp_picture_type:mp_print(mp, "picture"); break;
4651 case mp_unknown_picture:mp_print(mp, "unknown picture"); break;
4652 case mp_transform_type:mp_print(mp, "transform"); break;
4653 case mp_color_type:mp_print(mp, "color"); break;
4654 case mp_cmykcolor_type:mp_print(mp, "cmykcolor"); break;
4655 case mp_pair_type:mp_print(mp, "pair"); break;
4656 case mp_known:mp_print(mp, "known numeric"); break;
4657 case mp_dependent:mp_print(mp, "dependent"); break;
4658 case mp_proto_dependent:mp_print(mp, "proto-dependent"); break;
4659 case mp_numeric_type:mp_print(mp, "numeric"); break;
4660 case mp_independent:mp_print(mp, "independent"); break;
4661 case mp_token_list:mp_print(mp, "token list"); break;
4662 case mp_structured:mp_print(mp, "mp_structured"); break;
4663 case mp_unsuffixed_macro:mp_print(mp, "unsuffixed macro"); break;
4664 case mp_suffixed_macro:mp_print(mp, "suffixed macro"); break;
4665 default: mp_print(mp, "undefined"); break;
4669 @ Values inside \MP\ are stored in two-word nodes that have a |name_type|
4670 as well as a |type|. The possibilities for |name_type| are defined
4671 here; they will be explained in more detail later.
4675 mp_root=0, /* |name_type| at the top level of a variable */
4676 mp_saved_root, /* same, when the variable has been saved */
4677 mp_structured_root, /* |name_type| where a |mp_structured| branch occurs */
4678 mp_subscr, /* |name_type| in a subscript node */
4679 mp_attr, /* |name_type| in an attribute node */
4680 mp_x_part_sector, /* |name_type| in the \&{xpart} of a node */
4681 mp_y_part_sector, /* |name_type| in the \&{ypart} of a node */
4682 mp_xx_part_sector, /* |name_type| in the \&{xxpart} of a node */
4683 mp_xy_part_sector, /* |name_type| in the \&{xypart} of a node */
4684 mp_yx_part_sector, /* |name_type| in the \&{yxpart} of a node */
4685 mp_yy_part_sector, /* |name_type| in the \&{yypart} of a node */
4686 mp_red_part_sector, /* |name_type| in the \&{redpart} of a node */
4687 mp_green_part_sector, /* |name_type| in the \&{greenpart} of a node */
4688 mp_blue_part_sector, /* |name_type| in the \&{bluepart} of a node */
4689 mp_cyan_part_sector, /* |name_type| in the \&{redpart} of a node */
4690 mp_magenta_part_sector, /* |name_type| in the \&{greenpart} of a node */
4691 mp_yellow_part_sector, /* |name_type| in the \&{bluepart} of a node */
4692 mp_black_part_sector, /* |name_type| in the \&{greenpart} of a node */
4693 mp_grey_part_sector, /* |name_type| in the \&{bluepart} of a node */
4694 mp_capsule, /* |name_type| in stashed-away subexpressions */
4695 mp_token /* |name_type| in a numeric token or string token */
4698 @ Primitive operations that produce values have a secondary identification
4699 code in addition to their command code; it's something like genera and species.
4700 For example, `\.*' has the command code |primary_binary|, and its
4701 secondary identification is |times|. The secondary codes start at 30 so that
4702 they don't overlap with the type codes; some type codes (e.g., |mp_string_type|)
4703 are used as operators as well as type identifications. The relative values
4704 are not critical, except for |true_code..false_code|, |or_op..and_op|,
4705 and |filled_op..bounded_op|. The restrictions are that
4706 |and_op-false_code=or_op-true_code|, that the ordering of
4707 |x_part...blue_part| must match that of |x_part_sector..mp_blue_part_sector|,
4708 and the ordering of |filled_op..bounded_op| must match that of the code
4709 values they test for.
4711 @d true_code 30 /* operation code for \.{true} */
4712 @d false_code 31 /* operation code for \.{false} */
4713 @d null_picture_code 32 /* operation code for \.{nullpicture} */
4714 @d null_pen_code 33 /* operation code for \.{nullpen} */
4715 @d job_name_op 34 /* operation code for \.{jobname} */
4716 @d read_string_op 35 /* operation code for \.{readstring} */
4717 @d pen_circle 36 /* operation code for \.{pencircle} */
4718 @d normal_deviate 37 /* operation code for \.{normaldeviate} */
4719 @d read_from_op 38 /* operation code for \.{readfrom} */
4720 @d close_from_op 39 /* operation code for \.{closefrom} */
4721 @d odd_op 40 /* operation code for \.{odd} */
4722 @d known_op 41 /* operation code for \.{known} */
4723 @d unknown_op 42 /* operation code for \.{unknown} */
4724 @d not_op 43 /* operation code for \.{not} */
4725 @d decimal 44 /* operation code for \.{decimal} */
4726 @d reverse 45 /* operation code for \.{reverse} */
4727 @d make_path_op 46 /* operation code for \.{makepath} */
4728 @d make_pen_op 47 /* operation code for \.{makepen} */
4729 @d oct_op 48 /* operation code for \.{oct} */
4730 @d hex_op 49 /* operation code for \.{hex} */
4731 @d ASCII_op 50 /* operation code for \.{ASCII} */
4732 @d char_op 51 /* operation code for \.{char} */
4733 @d length_op 52 /* operation code for \.{length} */
4734 @d turning_op 53 /* operation code for \.{turningnumber} */
4735 @d color_model_part 54 /* operation code for \.{colormodel} */
4736 @d x_part 55 /* operation code for \.{xpart} */
4737 @d y_part 56 /* operation code for \.{ypart} */
4738 @d xx_part 57 /* operation code for \.{xxpart} */
4739 @d xy_part 58 /* operation code for \.{xypart} */
4740 @d yx_part 59 /* operation code for \.{yxpart} */
4741 @d yy_part 60 /* operation code for \.{yypart} */
4742 @d red_part 61 /* operation code for \.{redpart} */
4743 @d green_part 62 /* operation code for \.{greenpart} */
4744 @d blue_part 63 /* operation code for \.{bluepart} */
4745 @d cyan_part 64 /* operation code for \.{cyanpart} */
4746 @d magenta_part 65 /* operation code for \.{magentapart} */
4747 @d yellow_part 66 /* operation code for \.{yellowpart} */
4748 @d black_part 67 /* operation code for \.{blackpart} */
4749 @d grey_part 68 /* operation code for \.{greypart} */
4750 @d font_part 69 /* operation code for \.{fontpart} */
4751 @d text_part 70 /* operation code for \.{textpart} */
4752 @d path_part 71 /* operation code for \.{pathpart} */
4753 @d pen_part 72 /* operation code for \.{penpart} */
4754 @d dash_part 73 /* operation code for \.{dashpart} */
4755 @d sqrt_op 74 /* operation code for \.{sqrt} */
4756 @d m_exp_op 75 /* operation code for \.{mexp} */
4757 @d m_log_op 76 /* operation code for \.{mlog} */
4758 @d sin_d_op 77 /* operation code for \.{sind} */
4759 @d cos_d_op 78 /* operation code for \.{cosd} */
4760 @d floor_op 79 /* operation code for \.{floor} */
4761 @d uniform_deviate 80 /* operation code for \.{uniformdeviate} */
4762 @d char_exists_op 81 /* operation code for \.{charexists} */
4763 @d font_size 82 /* operation code for \.{fontsize} */
4764 @d ll_corner_op 83 /* operation code for \.{llcorner} */
4765 @d lr_corner_op 84 /* operation code for \.{lrcorner} */
4766 @d ul_corner_op 85 /* operation code for \.{ulcorner} */
4767 @d ur_corner_op 86 /* operation code for \.{urcorner} */
4768 @d arc_length 87 /* operation code for \.{arclength} */
4769 @d angle_op 88 /* operation code for \.{angle} */
4770 @d cycle_op 89 /* operation code for \.{cycle} */
4771 @d filled_op 90 /* operation code for \.{filled} */
4772 @d stroked_op 91 /* operation code for \.{stroked} */
4773 @d textual_op 92 /* operation code for \.{textual} */
4774 @d clipped_op 93 /* operation code for \.{clipped} */
4775 @d bounded_op 94 /* operation code for \.{bounded} */
4776 @d plus 95 /* operation code for \.+ */
4777 @d minus 96 /* operation code for \.- */
4778 @d times 97 /* operation code for \.* */
4779 @d over 98 /* operation code for \./ */
4780 @d pythag_add 99 /* operation code for \.{++} */
4781 @d pythag_sub 100 /* operation code for \.{+-+} */
4782 @d or_op 101 /* operation code for \.{or} */
4783 @d and_op 102 /* operation code for \.{and} */
4784 @d less_than 103 /* operation code for \.< */
4785 @d less_or_equal 104 /* operation code for \.{<=} */
4786 @d greater_than 105 /* operation code for \.> */
4787 @d greater_or_equal 106 /* operation code for \.{>=} */
4788 @d equal_to 107 /* operation code for \.= */
4789 @d unequal_to 108 /* operation code for \.{<>} */
4790 @d concatenate 109 /* operation code for \.\& */
4791 @d rotated_by 110 /* operation code for \.{rotated} */
4792 @d slanted_by 111 /* operation code for \.{slanted} */
4793 @d scaled_by 112 /* operation code for \.{scaled} */
4794 @d shifted_by 113 /* operation code for \.{shifted} */
4795 @d transformed_by 114 /* operation code for \.{transformed} */
4796 @d x_scaled 115 /* operation code for \.{xscaled} */
4797 @d y_scaled 116 /* operation code for \.{yscaled} */
4798 @d z_scaled 117 /* operation code for \.{zscaled} */
4799 @d in_font 118 /* operation code for \.{infont} */
4800 @d intersect 119 /* operation code for \.{intersectiontimes} */
4801 @d double_dot 120 /* operation code for improper \.{..} */
4802 @d substring_of 121 /* operation code for \.{substring} */
4803 @d min_of substring_of
4804 @d subpath_of 122 /* operation code for \.{subpath} */
4805 @d direction_time_of 123 /* operation code for \.{directiontime} */
4806 @d point_of 124 /* operation code for \.{point} */
4807 @d precontrol_of 125 /* operation code for \.{precontrol} */
4808 @d postcontrol_of 126 /* operation code for \.{postcontrol} */
4809 @d pen_offset_of 127 /* operation code for \.{penoffset} */
4810 @d arc_time_of 128 /* operation code for \.{arctime} */
4811 @d mp_version 129 /* operation code for \.{mpversion} */
4812 @d envelope_of 130 /* operation code for \.{envelope} */
4814 @c void mp_print_op (MP mp,quarterword c) {
4815 if (c<=mp_numeric_type ) {
4816 mp_print_type(mp, c);
4819 case true_code:mp_print(mp, "true"); break;
4820 case false_code:mp_print(mp, "false"); break;
4821 case null_picture_code:mp_print(mp, "nullpicture"); break;
4822 case null_pen_code:mp_print(mp, "nullpen"); break;
4823 case job_name_op:mp_print(mp, "jobname"); break;
4824 case read_string_op:mp_print(mp, "readstring"); break;
4825 case pen_circle:mp_print(mp, "pencircle"); break;
4826 case normal_deviate:mp_print(mp, "normaldeviate"); break;
4827 case read_from_op:mp_print(mp, "readfrom"); break;
4828 case close_from_op:mp_print(mp, "closefrom"); break;
4829 case odd_op:mp_print(mp, "odd"); break;
4830 case known_op:mp_print(mp, "known"); break;
4831 case unknown_op:mp_print(mp, "unknown"); break;
4832 case not_op:mp_print(mp, "not"); break;
4833 case decimal:mp_print(mp, "decimal"); break;
4834 case reverse:mp_print(mp, "reverse"); break;
4835 case make_path_op:mp_print(mp, "makepath"); break;
4836 case make_pen_op:mp_print(mp, "makepen"); break;
4837 case oct_op:mp_print(mp, "oct"); break;
4838 case hex_op:mp_print(mp, "hex"); break;
4839 case ASCII_op:mp_print(mp, "ASCII"); break;
4840 case char_op:mp_print(mp, "char"); break;
4841 case length_op:mp_print(mp, "length"); break;
4842 case turning_op:mp_print(mp, "turningnumber"); break;
4843 case x_part:mp_print(mp, "xpart"); break;
4844 case y_part:mp_print(mp, "ypart"); break;
4845 case xx_part:mp_print(mp, "xxpart"); break;
4846 case xy_part:mp_print(mp, "xypart"); break;
4847 case yx_part:mp_print(mp, "yxpart"); break;
4848 case yy_part:mp_print(mp, "yypart"); break;
4849 case red_part:mp_print(mp, "redpart"); break;
4850 case green_part:mp_print(mp, "greenpart"); break;
4851 case blue_part:mp_print(mp, "bluepart"); break;
4852 case cyan_part:mp_print(mp, "cyanpart"); break;
4853 case magenta_part:mp_print(mp, "magentapart"); break;
4854 case yellow_part:mp_print(mp, "yellowpart"); break;
4855 case black_part:mp_print(mp, "blackpart"); break;
4856 case grey_part:mp_print(mp, "greypart"); break;
4857 case color_model_part:mp_print(mp, "colormodel"); break;
4858 case font_part:mp_print(mp, "fontpart"); break;
4859 case text_part:mp_print(mp, "textpart"); break;
4860 case path_part:mp_print(mp, "pathpart"); break;
4861 case pen_part:mp_print(mp, "penpart"); break;
4862 case dash_part:mp_print(mp, "dashpart"); break;
4863 case sqrt_op:mp_print(mp, "sqrt"); break;
4864 case m_exp_op:mp_print(mp, "mexp"); break;
4865 case m_log_op:mp_print(mp, "mlog"); break;
4866 case sin_d_op:mp_print(mp, "sind"); break;
4867 case cos_d_op:mp_print(mp, "cosd"); break;
4868 case floor_op:mp_print(mp, "floor"); break;
4869 case uniform_deviate:mp_print(mp, "uniformdeviate"); break;
4870 case char_exists_op:mp_print(mp, "charexists"); break;
4871 case font_size:mp_print(mp, "fontsize"); break;
4872 case ll_corner_op:mp_print(mp, "llcorner"); break;
4873 case lr_corner_op:mp_print(mp, "lrcorner"); break;
4874 case ul_corner_op:mp_print(mp, "ulcorner"); break;
4875 case ur_corner_op:mp_print(mp, "urcorner"); break;
4876 case arc_length:mp_print(mp, "arclength"); break;
4877 case angle_op:mp_print(mp, "angle"); break;
4878 case cycle_op:mp_print(mp, "cycle"); break;
4879 case filled_op:mp_print(mp, "filled"); break;
4880 case stroked_op:mp_print(mp, "stroked"); break;
4881 case textual_op:mp_print(mp, "textual"); break;
4882 case clipped_op:mp_print(mp, "clipped"); break;
4883 case bounded_op:mp_print(mp, "bounded"); break;
4884 case plus:mp_print_char(mp, '+'); break;
4885 case minus:mp_print_char(mp, '-'); break;
4886 case times:mp_print_char(mp, '*'); break;
4887 case over:mp_print_char(mp, '/'); break;
4888 case pythag_add:mp_print(mp, "++"); break;
4889 case pythag_sub:mp_print(mp, "+-+"); break;
4890 case or_op:mp_print(mp, "or"); break;
4891 case and_op:mp_print(mp, "and"); break;
4892 case less_than:mp_print_char(mp, '<'); break;
4893 case less_or_equal:mp_print(mp, "<="); break;
4894 case greater_than:mp_print_char(mp, '>'); break;
4895 case greater_or_equal:mp_print(mp, ">="); break;
4896 case equal_to:mp_print_char(mp, '='); break;
4897 case unequal_to:mp_print(mp, "<>"); break;
4898 case concatenate:mp_print(mp, "&"); break;
4899 case rotated_by:mp_print(mp, "rotated"); break;
4900 case slanted_by:mp_print(mp, "slanted"); break;
4901 case scaled_by:mp_print(mp, "scaled"); break;
4902 case shifted_by:mp_print(mp, "shifted"); break;
4903 case transformed_by:mp_print(mp, "transformed"); break;
4904 case x_scaled:mp_print(mp, "xscaled"); break;
4905 case y_scaled:mp_print(mp, "yscaled"); break;
4906 case z_scaled:mp_print(mp, "zscaled"); break;
4907 case in_font:mp_print(mp, "infont"); break;
4908 case intersect:mp_print(mp, "intersectiontimes"); break;
4909 case substring_of:mp_print(mp, "substring"); break;
4910 case subpath_of:mp_print(mp, "subpath"); break;
4911 case direction_time_of:mp_print(mp, "directiontime"); break;
4912 case point_of:mp_print(mp, "point"); break;
4913 case precontrol_of:mp_print(mp, "precontrol"); break;
4914 case postcontrol_of:mp_print(mp, "postcontrol"); break;
4915 case pen_offset_of:mp_print(mp, "penoffset"); break;
4916 case arc_time_of:mp_print(mp, "arctime"); break;
4917 case mp_version:mp_print(mp, "mpversion"); break;
4918 case envelope_of:mp_print(mp, "envelope"); break;
4919 default: mp_print(mp, ".."); break;
4924 @ \MP\ also has a bunch of internal parameters that a user might want to
4925 fuss with. Every such parameter has an identifying code number, defined here.
4928 enum mp_given_internal {
4929 mp_tracing_titles=1, /* show titles online when they appear */
4930 mp_tracing_equations, /* show each variable when it becomes known */
4931 mp_tracing_capsules, /* show capsules too */
4932 mp_tracing_choices, /* show the control points chosen for paths */
4933 mp_tracing_specs, /* show path subdivision prior to filling with polygonal a pen */
4934 mp_tracing_commands, /* show commands and operations before they are performed */
4935 mp_tracing_restores, /* show when a variable or internal is restored */
4936 mp_tracing_macros, /* show macros before they are expanded */
4937 mp_tracing_output, /* show digitized edges as they are output */
4938 mp_tracing_stats, /* show memory usage at end of job */
4939 mp_tracing_lost_chars, /* show characters that aren't \&{infont} */
4940 mp_tracing_online, /* show long diagnostics on terminal and in the log file */
4941 mp_year, /* the current year (e.g., 1984) */
4942 mp_month, /* the current month (e.g, 3 $\equiv$ March) */
4943 mp_day, /* the current day of the month */
4944 mp_time, /* the number of minutes past midnight when this job started */
4945 mp_char_code, /* the number of the next character to be output */
4946 mp_char_ext, /* the extension code of the next character to be output */
4947 mp_char_wd, /* the width of the next character to be output */
4948 mp_char_ht, /* the height of the next character to be output */
4949 mp_char_dp, /* the depth of the next character to be output */
4950 mp_char_ic, /* the italic correction of the next character to be output */
4951 mp_design_size, /* the unit of measure used for |mp_char_wd..mp_char_ic|, in points */
4952 mp_pausing, /* positive to display lines on the terminal before they are read */
4953 mp_showstopping, /* positive to stop after each \&{show} command */
4954 mp_fontmaking, /* positive if font metric output is to be produced */
4955 mp_linejoin, /* as in \ps: 0 for mitered, 1 for round, 2 for beveled */
4956 mp_linecap, /* as in \ps: 0 for butt, 1 for round, 2 for square */
4957 mp_miterlimit, /* controls miter length as in \ps */
4958 mp_warning_check, /* controls error message when variable value is large */
4959 mp_boundary_char, /* the right boundary character for ligatures */
4960 mp_prologues, /* positive to output conforming PostScript using built-in fonts */
4961 mp_true_corners, /* positive to make \&{llcorner} etc. ignore \&{setbounds} */
4962 mp_default_color_model, /* the default color model for unspecified items */
4963 mp_restore_clip_color,
4964 mp_procset, /* wether or not create PostScript command shortcuts */
4965 mp_gtroffmode, /* whether the user specified |-troff| on the command line */
4970 @d max_given_internal mp_gtroffmode
4973 scaled *internal; /* the values of internal quantities */
4974 char **int_name; /* their names */
4975 int int_ptr; /* the maximum internal quantity defined so far */
4976 int max_internal; /* current maximum number of internal quantities */
4978 @ @<Option variables@>=
4981 @ @<Allocate or initialize ...@>=
4982 mp->max_internal=2*max_given_internal;
4983 mp->internal = xmalloc ((mp->max_internal+1), sizeof(scaled));
4984 mp->int_name = xmalloc ((mp->max_internal+1), sizeof(char *));
4985 mp->troff_mode=(opt->troff_mode>0 ? true : false);
4987 @ @<Exported function ...@>=
4988 int mp_troff_mode(MP mp);
4991 int mp_troff_mode(MP mp) { return mp->troff_mode; }
4993 @ @<Set initial ...@>=
4994 for (k=0;k<= mp->max_internal; k++ ) {
4996 mp->int_name[k]=NULL;
4998 mp->int_ptr=max_given_internal;
5000 @ The symbolic names for internal quantities are put into \MP's hash table
5001 by using a routine called |primitive|, which will be defined later. Let us
5002 enter them now, so that we don't have to list all those names again
5005 @<Put each of \MP's primitives into the hash table@>=
5006 mp_primitive(mp, "tracingtitles",internal_quantity,mp_tracing_titles);
5007 @:tracingtitles_}{\&{tracingtitles} primitive@>
5008 mp_primitive(mp, "tracingequations",internal_quantity,mp_tracing_equations);
5009 @:mp_tracing_equations_}{\&{tracingequations} primitive@>
5010 mp_primitive(mp, "tracingcapsules",internal_quantity,mp_tracing_capsules);
5011 @:mp_tracing_capsules_}{\&{tracingcapsules} primitive@>
5012 mp_primitive(mp, "tracingchoices",internal_quantity,mp_tracing_choices);
5013 @:mp_tracing_choices_}{\&{tracingchoices} primitive@>
5014 mp_primitive(mp, "tracingspecs",internal_quantity,mp_tracing_specs);
5015 @:mp_tracing_specs_}{\&{tracingspecs} primitive@>
5016 mp_primitive(mp, "tracingcommands",internal_quantity,mp_tracing_commands);
5017 @:mp_tracing_commands_}{\&{tracingcommands} primitive@>
5018 mp_primitive(mp, "tracingrestores",internal_quantity,mp_tracing_restores);
5019 @:mp_tracing_restores_}{\&{tracingrestores} primitive@>
5020 mp_primitive(mp, "tracingmacros",internal_quantity,mp_tracing_macros);
5021 @:mp_tracing_macros_}{\&{tracingmacros} primitive@>
5022 mp_primitive(mp, "tracingoutput",internal_quantity,mp_tracing_output);
5023 @:mp_tracing_output_}{\&{tracingoutput} primitive@>
5024 mp_primitive(mp, "tracingstats",internal_quantity,mp_tracing_stats);
5025 @:mp_tracing_stats_}{\&{tracingstats} primitive@>
5026 mp_primitive(mp, "tracinglostchars",internal_quantity,mp_tracing_lost_chars);
5027 @:mp_tracing_lost_chars_}{\&{tracinglostchars} primitive@>
5028 mp_primitive(mp, "tracingonline",internal_quantity,mp_tracing_online);
5029 @:mp_tracing_online_}{\&{tracingonline} primitive@>
5030 mp_primitive(mp, "year",internal_quantity,mp_year);
5031 @:mp_year_}{\&{year} primitive@>
5032 mp_primitive(mp, "month",internal_quantity,mp_month);
5033 @:mp_month_}{\&{month} primitive@>
5034 mp_primitive(mp, "day",internal_quantity,mp_day);
5035 @:mp_day_}{\&{day} primitive@>
5036 mp_primitive(mp, "time",internal_quantity,mp_time);
5037 @:time_}{\&{time} primitive@>
5038 mp_primitive(mp, "charcode",internal_quantity,mp_char_code);
5039 @:mp_char_code_}{\&{charcode} primitive@>
5040 mp_primitive(mp, "charext",internal_quantity,mp_char_ext);
5041 @:mp_char_ext_}{\&{charext} primitive@>
5042 mp_primitive(mp, "charwd",internal_quantity,mp_char_wd);
5043 @:mp_char_wd_}{\&{charwd} primitive@>
5044 mp_primitive(mp, "charht",internal_quantity,mp_char_ht);
5045 @:mp_char_ht_}{\&{charht} primitive@>
5046 mp_primitive(mp, "chardp",internal_quantity,mp_char_dp);
5047 @:mp_char_dp_}{\&{chardp} primitive@>
5048 mp_primitive(mp, "charic",internal_quantity,mp_char_ic);
5049 @:mp_char_ic_}{\&{charic} primitive@>
5050 mp_primitive(mp, "designsize",internal_quantity,mp_design_size);
5051 @:mp_design_size_}{\&{designsize} primitive@>
5052 mp_primitive(mp, "pausing",internal_quantity,mp_pausing);
5053 @:mp_pausing_}{\&{pausing} primitive@>
5054 mp_primitive(mp, "showstopping",internal_quantity,mp_showstopping);
5055 @:mp_showstopping_}{\&{showstopping} primitive@>
5056 mp_primitive(mp, "fontmaking",internal_quantity,mp_fontmaking);
5057 @:mp_fontmaking_}{\&{fontmaking} primitive@>
5058 mp_primitive(mp, "linejoin",internal_quantity,mp_linejoin);
5059 @:mp_linejoin_}{\&{linejoin} primitive@>
5060 mp_primitive(mp, "linecap",internal_quantity,mp_linecap);
5061 @:mp_linecap_}{\&{linecap} primitive@>
5062 mp_primitive(mp, "miterlimit",internal_quantity,mp_miterlimit);
5063 @:mp_miterlimit_}{\&{miterlimit} primitive@>
5064 mp_primitive(mp, "warningcheck",internal_quantity,mp_warning_check);
5065 @:mp_warning_check_}{\&{warningcheck} primitive@>
5066 mp_primitive(mp, "boundarychar",internal_quantity,mp_boundary_char);
5067 @:mp_boundary_char_}{\&{boundarychar} primitive@>
5068 mp_primitive(mp, "prologues",internal_quantity,mp_prologues);
5069 @:mp_prologues_}{\&{prologues} primitive@>
5070 mp_primitive(mp, "truecorners",internal_quantity,mp_true_corners);
5071 @:mp_true_corners_}{\&{truecorners} primitive@>
5072 mp_primitive(mp, "mpprocset",internal_quantity,mp_procset);
5073 @:mp_procset_}{\&{mpprocset} primitive@>
5074 mp_primitive(mp, "troffmode",internal_quantity,mp_gtroffmode);
5075 @:troffmode_}{\&{troffmode} primitive@>
5076 mp_primitive(mp, "defaultcolormodel",internal_quantity,mp_default_color_model);
5077 @:mp_default_color_model_}{\&{defaultcolormodel} primitive@>
5078 mp_primitive(mp, "restoreclipcolor",internal_quantity,mp_restore_clip_color);
5079 @:mp_restore_clip_color_}{\&{restoreclipcolor} primitive@>
5081 @ Colors can be specified in four color models. In the special
5082 case of |no_model|, MetaPost does not output any color operator to
5083 the postscript output.
5085 Note: these values are passed directly on to |with_option|. This only
5086 works because the other possible values passed to |with_option| are
5087 8 and 10 respectively (from |with_pen| and |with_picture|).
5089 There is a first state, that is only used for |gs_colormodel|. It flags
5090 the fact that there has not been any kind of color specification by
5091 the user so far in the game.
5094 enum mp_color_model {
5099 mp_uninitialized_model=9,
5103 @ @<Initialize table entries (done by \.{INIMP} only)@>=
5104 mp->internal[mp_default_color_model]=(mp_rgb_model*unity);
5105 mp->internal[mp_restore_clip_color]=unity;
5107 @ Well, we do have to list the names one more time, for use in symbolic
5110 @<Initialize table...@>=
5111 mp->int_name[mp_tracing_titles]=xstrdup("tracingtitles");
5112 mp->int_name[mp_tracing_equations]=xstrdup("tracingequations");
5113 mp->int_name[mp_tracing_capsules]=xstrdup("tracingcapsules");
5114 mp->int_name[mp_tracing_choices]=xstrdup("tracingchoices");
5115 mp->int_name[mp_tracing_specs]=xstrdup("tracingspecs");
5116 mp->int_name[mp_tracing_commands]=xstrdup("tracingcommands");
5117 mp->int_name[mp_tracing_restores]=xstrdup("tracingrestores");
5118 mp->int_name[mp_tracing_macros]=xstrdup("tracingmacros");
5119 mp->int_name[mp_tracing_output]=xstrdup("tracingoutput");
5120 mp->int_name[mp_tracing_stats]=xstrdup("tracingstats");
5121 mp->int_name[mp_tracing_lost_chars]=xstrdup("tracinglostchars");
5122 mp->int_name[mp_tracing_online]=xstrdup("tracingonline");
5123 mp->int_name[mp_year]=xstrdup("year");
5124 mp->int_name[mp_month]=xstrdup("month");
5125 mp->int_name[mp_day]=xstrdup("day");
5126 mp->int_name[mp_time]=xstrdup("time");
5127 mp->int_name[mp_char_code]=xstrdup("charcode");
5128 mp->int_name[mp_char_ext]=xstrdup("charext");
5129 mp->int_name[mp_char_wd]=xstrdup("charwd");
5130 mp->int_name[mp_char_ht]=xstrdup("charht");
5131 mp->int_name[mp_char_dp]=xstrdup("chardp");
5132 mp->int_name[mp_char_ic]=xstrdup("charic");
5133 mp->int_name[mp_design_size]=xstrdup("designsize");
5134 mp->int_name[mp_pausing]=xstrdup("pausing");
5135 mp->int_name[mp_showstopping]=xstrdup("showstopping");
5136 mp->int_name[mp_fontmaking]=xstrdup("fontmaking");
5137 mp->int_name[mp_linejoin]=xstrdup("linejoin");
5138 mp->int_name[mp_linecap]=xstrdup("linecap");
5139 mp->int_name[mp_miterlimit]=xstrdup("miterlimit");
5140 mp->int_name[mp_warning_check]=xstrdup("warningcheck");
5141 mp->int_name[mp_boundary_char]=xstrdup("boundarychar");
5142 mp->int_name[mp_prologues]=xstrdup("prologues");
5143 mp->int_name[mp_true_corners]=xstrdup("truecorners");
5144 mp->int_name[mp_default_color_model]=xstrdup("defaultcolormodel");
5145 mp->int_name[mp_procset]=xstrdup("mpprocset");
5146 mp->int_name[mp_gtroffmode]=xstrdup("troffmode");
5147 mp->int_name[mp_restore_clip_color]=xstrdup("restoreclipcolor");
5149 @ The following procedure, which is called just before \MP\ initializes its
5150 input and output, establishes the initial values of the date and time.
5151 @^system dependencies@>
5153 Note that the values are |scaled| integers. Hence \MP\ can no longer
5154 be used after the year 32767.
5157 void mp_fix_date_and_time (MP mp) {
5158 time_t clock = time ((time_t *) 0);
5159 struct tm *tmptr = localtime (&clock);
5160 mp->internal[mp_time]=
5161 (tmptr->tm_hour*60+tmptr->tm_min)*unity; /* minutes since midnight */
5162 mp->internal[mp_day]=(tmptr->tm_mday)*unity; /* fourth day of the month */
5163 mp->internal[mp_month]=(tmptr->tm_mon+1)*unity; /* seventh month of the year */
5164 mp->internal[mp_year]=(tmptr->tm_year+1900)*unity; /* Anno Domini */
5168 void mp_fix_date_and_time (MP mp) ;
5170 @ \MP\ is occasionally supposed to print diagnostic information that
5171 goes only into the transcript file, unless |mp_tracing_online| is positive.
5172 Now that we have defined |mp_tracing_online| we can define
5173 two routines that adjust the destination of print commands:
5176 void mp_begin_diagnostic (MP mp) ;
5177 void mp_end_diagnostic (MP mp,boolean blank_line);
5178 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) ;
5180 @ @<Basic printing...@>=
5181 @<Declare a function called |true_line|@>;
5182 void mp_begin_diagnostic (MP mp) { /* prepare to do some tracing */
5183 mp->old_setting=mp->selector;
5184 if ((mp->internal[mp_tracing_online]<=0)&&(mp->selector==term_and_log)){
5186 if ( mp->history==mp_spotless ) mp->history=mp_warning_issued;
5190 void mp_end_diagnostic (MP mp,boolean blank_line) {
5191 /* restore proper conditions after tracing */
5192 mp_print_nl(mp, "");
5193 if ( blank_line ) mp_print_ln(mp);
5194 mp->selector=mp->old_setting;
5200 unsigned int old_setting;
5202 @ We will occasionally use |begin_diagnostic| in connection with line-number
5203 printing, as follows. (The parameter |s| is typically |"Path"| or
5204 |"Cycle spec"|, etc.)
5206 @<Basic printing...@>=
5207 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) {
5208 mp_begin_diagnostic(mp);
5209 if ( nuline ) mp_print_nl(mp, s); else mp_print(mp, s);
5210 mp_print(mp, " at line ");
5211 mp_print_int(mp, mp_true_line(mp));
5212 mp_print(mp, t); mp_print_char(mp, ':');
5215 @ The 256 |ASCII_code| characters are grouped into classes by means of
5216 the |char_class| table. Individual class numbers have no semantic
5217 or syntactic significance, except in a few instances defined here.
5218 There's also |max_class|, which can be used as a basis for additional
5219 class numbers in nonstandard extensions of \MP.
5221 @d digit_class 0 /* the class number of \.{0123456789} */
5222 @d period_class 1 /* the class number of `\..' */
5223 @d space_class 2 /* the class number of spaces and nonstandard characters */
5224 @d percent_class 3 /* the class number of `\.\%' */
5225 @d string_class 4 /* the class number of `\."' */
5226 @d right_paren_class 8 /* the class number of `\.)' */
5227 @d isolated_classes 5: case 6: case 7: case 8 /* characters that make length-one tokens only */
5228 @d letter_class 9 /* letters and the underline character */
5229 @d left_bracket_class 17 /* `\.[' */
5230 @d right_bracket_class 18 /* `\.]' */
5231 @d invalid_class 20 /* bad character in the input */
5232 @d max_class 20 /* the largest class number */
5235 int char_class[256]; /* the class numbers */
5237 @ If changes are made to accommodate non-ASCII character sets, they should
5238 follow the guidelines in Appendix~C of {\sl The {\logos METAFONT\/}book}.
5239 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
5240 @^system dependencies@>
5242 @<Set initial ...@>=
5243 for (k='0';k<='9';k++)
5244 mp->char_class[k]=digit_class;
5245 mp->char_class['.']=period_class;
5246 mp->char_class[' ']=space_class;
5247 mp->char_class['%']=percent_class;
5248 mp->char_class['"']=string_class;
5249 mp->char_class[',']=5;
5250 mp->char_class[';']=6;
5251 mp->char_class['(']=7;
5252 mp->char_class[')']=right_paren_class;
5253 for (k='A';k<= 'Z';k++ )
5254 mp->char_class[k]=letter_class;
5255 for (k='a';k<='z';k++)
5256 mp->char_class[k]=letter_class;
5257 mp->char_class['_']=letter_class;
5258 mp->char_class['<']=10;
5259 mp->char_class['=']=10;
5260 mp->char_class['>']=10;
5261 mp->char_class[':']=10;
5262 mp->char_class['|']=10;
5263 mp->char_class['`']=11;
5264 mp->char_class['\'']=11;
5265 mp->char_class['+']=12;
5266 mp->char_class['-']=12;
5267 mp->char_class['/']=13;
5268 mp->char_class['*']=13;
5269 mp->char_class['\\']=13;
5270 mp->char_class['!']=14;
5271 mp->char_class['?']=14;
5272 mp->char_class['#']=15;
5273 mp->char_class['&']=15;
5274 mp->char_class['@@']=15;
5275 mp->char_class['$']=15;
5276 mp->char_class['^']=16;
5277 mp->char_class['~']=16;
5278 mp->char_class['[']=left_bracket_class;
5279 mp->char_class[']']=right_bracket_class;
5280 mp->char_class['{']=19;
5281 mp->char_class['}']=19;
5283 mp->char_class[k]=invalid_class;
5284 mp->char_class['\t']=space_class;
5285 mp->char_class['\f']=space_class;
5286 for (k=127;k<=255;k++)
5287 mp->char_class[k]=invalid_class;
5289 @* \[13] The hash table.
5290 Symbolic tokens are stored and retrieved by means of a fairly standard hash
5291 table algorithm called the method of ``coalescing lists'' (cf.\ Algorithm 6.4C
5292 in {\sl The Art of Computer Programming\/}). Once a symbolic token enters the
5293 table, it is never removed.
5295 The actual sequence of characters forming a symbolic token is
5296 stored in the |str_pool| array together with all the other strings. An
5297 auxiliary array |hash| consists of items with two halfword fields per
5298 word. The first of these, called |next(p)|, points to the next identifier
5299 belonging to the same coalesced list as the identifier corresponding to~|p|;
5300 and the other, called |text(p)|, points to the |str_start| entry for
5301 |p|'s identifier. If position~|p| of the hash table is empty, we have
5302 |text(p)=0|; if position |p| is either empty or the end of a coalesced
5303 hash list, we have |next(p)=0|.
5305 An auxiliary pointer variable called |hash_used| is maintained in such a
5306 way that all locations |p>=hash_used| are nonempty. The global variable
5307 |st_count| tells how many symbolic tokens have been defined, if statistics
5310 The first 256 locations of |hash| are reserved for symbols of length one.
5312 There's a parallel array called |eqtb| that contains the current equivalent
5313 values of each symbolic token. The entries of this array consist of
5314 two halfwords called |eq_type| (a command code) and |equiv| (a secondary
5315 piece of information that qualifies the |eq_type|).
5317 @d next(A) mp->hash[(A)].lh /* link for coalesced lists */
5318 @d text(A) mp->hash[(A)].rh /* string number for symbolic token name */
5319 @d eq_type(A) mp->eqtb[(A)].lh /* the current ``meaning'' of a symbolic token */
5320 @d equiv(A) mp->eqtb[(A)].rh /* parametric part of a token's meaning */
5321 @d hash_base 257 /* hashing actually starts here */
5322 @d hash_is_full (mp->hash_used==hash_base) /* are all positions occupied? */
5325 pointer hash_used; /* allocation pointer for |hash| */
5326 integer st_count; /* total number of known identifiers */
5328 @ Certain entries in the hash table are ``frozen'' and not redefinable,
5329 since they are used in error recovery.
5331 @d hash_top (hash_base+mp->hash_size) /* the first location of the frozen area */
5332 @d frozen_inaccessible hash_top /* |hash| location to protect the frozen area */
5333 @d frozen_repeat_loop (hash_top+1) /* |hash| location of a loop-repeat token */
5334 @d frozen_right_delimiter (hash_top+2) /* |hash| location of a permanent `\.)' */
5335 @d frozen_left_bracket (hash_top+3) /* |hash| location of a permanent `\.[' */
5336 @d frozen_slash (hash_top+4) /* |hash| location of a permanent `\./' */
5337 @d frozen_colon (hash_top+5) /* |hash| location of a permanent `\.:' */
5338 @d frozen_semicolon (hash_top+6) /* |hash| location of a permanent `\.;' */
5339 @d frozen_end_for (hash_top+7) /* |hash| location of a permanent \&{endfor} */
5340 @d frozen_end_def (hash_top+8) /* |hash| location of a permanent \&{enddef} */
5341 @d frozen_fi (hash_top+9) /* |hash| location of a permanent \&{fi} */
5342 @d frozen_end_group (hash_top+10) /* |hash| location of a permanent `\.{endgroup}' */
5343 @d frozen_etex (hash_top+11) /* |hash| location of a permanent \&{etex} */
5344 @d frozen_mpx_break (hash_top+12) /* |hash| location of a permanent \&{mpxbreak} */
5345 @d frozen_bad_vardef (hash_top+13) /* |hash| location of `\.{a bad variable}' */
5346 @d frozen_undefined (hash_top+14) /* |hash| location that never gets defined */
5347 @d hash_end (hash_top+14) /* the actual size of the |hash| and |eqtb| arrays */
5350 two_halves *hash; /* the hash table */
5351 two_halves *eqtb; /* the equivalents */
5353 @ @<Allocate or initialize ...@>=
5354 mp->hash = xmalloc((hash_end+1),sizeof(two_halves));
5355 mp->eqtb = xmalloc((hash_end+1),sizeof(two_halves));
5357 @ @<Dealloc variables@>=
5362 next(1)=0; text(1)=0; eq_type(1)=tag_token; equiv(1)=null;
5363 for (k=2;k<=hash_end;k++) {
5364 mp->hash[k]=mp->hash[1]; mp->eqtb[k]=mp->eqtb[1];
5367 @ @<Initialize table entries...@>=
5368 mp->hash_used=frozen_inaccessible; /* nothing is used */
5370 text(frozen_bad_vardef)=intern("a bad variable");
5371 text(frozen_etex)=intern("etex");
5372 text(frozen_mpx_break)=intern("mpxbreak");
5373 text(frozen_fi)=intern("fi");
5374 text(frozen_end_group)=intern("endgroup");
5375 text(frozen_end_def)=intern("enddef");
5376 text(frozen_end_for)=intern("endfor");
5377 text(frozen_semicolon)=intern(";");
5378 text(frozen_colon)=intern(":");
5379 text(frozen_slash)=intern("/");
5380 text(frozen_left_bracket)=intern("[");
5381 text(frozen_right_delimiter)=intern(")");
5382 text(frozen_inaccessible)=intern(" INACCESSIBLE");
5383 eq_type(frozen_right_delimiter)=right_delimiter;
5385 @ @<Check the ``constant'' values...@>=
5386 if ( hash_end+mp->max_internal>max_halfword ) mp->bad=17;
5388 @ Here is the subroutine that searches the hash table for an identifier
5389 that matches a given string of length~|l| appearing in |buffer[j..
5390 (j+l-1)]|. If the identifier is not found, it is inserted; hence it
5391 will always be found, and the corresponding hash table address
5395 pointer mp_id_lookup (MP mp,integer j, integer l) { /* search the hash table */
5396 integer h; /* hash code */
5397 pointer p; /* index in |hash| array */
5398 pointer k; /* index in |buffer| array */
5400 @<Treat special case of length 1 and |break|@>;
5402 @<Compute the hash code |h|@>;
5403 p=h+hash_base; /* we start searching here; note that |0<=h<hash_prime| */
5405 if (text(p)>0 && length(text(p))==l && mp_str_eq_buf(mp, text(p),j))
5408 @<Insert a new symbolic token after |p|, then
5409 make |p| point to it and |break|@>;
5416 @ @<Treat special case of length 1...@>=
5417 p=mp->buffer[j]+1; text(p)=p-1; return p;
5420 @ @<Insert a new symbolic...@>=
5425 mp_overflow(mp, "hash size",mp->hash_size);
5426 @:MetaPost capacity exceeded hash size}{\quad hash size@>
5427 decr(mp->hash_used);
5428 } while (text(mp->hash_used)!=0); /* search for an empty location in |hash| */
5429 next(p)=mp->hash_used;
5433 for (k=j;k<=j+l-1;k++) {
5434 append_char(mp->buffer[k]);
5436 text(p)=mp_make_string(mp);
5437 mp->str_ref[text(p)]=max_str_ref;
5443 @ The value of |hash_prime| should be roughly 85\pct! of |hash_size|, and it
5444 should be a prime number. The theory of hashing tells us to expect fewer
5445 than two table probes, on the average, when the search is successful.
5446 [See J.~S. Vitter, {\sl Journal of the ACM\/ \bf30} (1983), 231--258.]
5447 @^Vitter, Jeffrey Scott@>
5449 @<Compute the hash code |h|@>=
5451 for (k=j+1;k<=j+l-1;k++){
5452 h=h+h+mp->buffer[k];
5453 while ( h>=mp->hash_prime ) h=h-mp->hash_prime;
5456 @ @<Search |eqtb| for equivalents equal to |p|@>=
5457 for (q=1;q<=hash_end;q++) {
5458 if ( equiv(q)==p ) {
5459 mp_print_nl(mp, "EQUIV(");
5460 mp_print_int(mp, q);
5461 mp_print_char(mp, ')');
5465 @ We need to put \MP's ``primitive'' symbolic tokens into the hash
5466 table, together with their command code (which will be the |eq_type|)
5467 and an operand (which will be the |equiv|). The |primitive| procedure
5468 does this, in a way that no \MP\ user can. The global value |cur_sym|
5469 contains the new |eqtb| pointer after |primitive| has acted.
5472 void mp_primitive (MP mp, char *ss, halfword c, halfword o) {
5473 pool_pointer k; /* index into |str_pool| */
5474 small_number j; /* index into |buffer| */
5475 small_number l; /* length of the string */
5478 k=mp->str_start[s]; l=str_stop(s)-k;
5479 /* we will move |s| into the (empty) |buffer| */
5480 for (j=0;j<=l-1;j++) {
5481 mp->buffer[j]=mp->str_pool[k+j];
5483 mp->cur_sym=mp_id_lookup(mp, 0,l);
5484 if ( s>=256 ) { /* we don't want to have the string twice */
5485 mp_flush_string(mp, text(mp->cur_sym)); text(mp->cur_sym)=s;
5487 eq_type(mp->cur_sym)=c;
5488 equiv(mp->cur_sym)=o;
5492 @ Many of \MP's primitives need no |equiv|, since they are identifiable
5493 by their |eq_type| alone. These primitives are loaded into the hash table
5496 @<Put each of \MP's primitives into the hash table@>=
5497 mp_primitive(mp, "..",path_join,0);
5498 @:.._}{\.{..} primitive@>
5499 mp_primitive(mp, "[",left_bracket,0); mp->eqtb[frozen_left_bracket]=mp->eqtb[mp->cur_sym];
5500 @:[ }{\.{[} primitive@>
5501 mp_primitive(mp, "]",right_bracket,0);
5502 @:] }{\.{]} primitive@>
5503 mp_primitive(mp, "}",right_brace,0);
5504 @:]]}{\.{\char`\}} primitive@>
5505 mp_primitive(mp, "{",left_brace,0);
5506 @:][}{\.{\char`\{} primitive@>
5507 mp_primitive(mp, ":",colon,0); mp->eqtb[frozen_colon]=mp->eqtb[mp->cur_sym];
5508 @:: }{\.{:} primitive@>
5509 mp_primitive(mp, "::",double_colon,0);
5510 @::: }{\.{::} primitive@>
5511 mp_primitive(mp, "||:",bchar_label,0);
5512 @:::: }{\.{\char'174\char'174:} primitive@>
5513 mp_primitive(mp, ":=",assignment,0);
5514 @::=_}{\.{:=} primitive@>
5515 mp_primitive(mp, ",",comma,0);
5516 @:, }{\., primitive@>
5517 mp_primitive(mp, ";",semicolon,0); mp->eqtb[frozen_semicolon]=mp->eqtb[mp->cur_sym];
5518 @:; }{\.; primitive@>
5519 mp_primitive(mp, "\\",relax,0);
5520 @:]]\\}{\.{\char`\\} primitive@>
5522 mp_primitive(mp, "addto",add_to_command,0);
5523 @:add_to_}{\&{addto} primitive@>
5524 mp_primitive(mp, "atleast",at_least,0);
5525 @:at_least_}{\&{atleast} primitive@>
5526 mp_primitive(mp, "begingroup",begin_group,0); mp->bg_loc=mp->cur_sym;
5527 @:begin_group_}{\&{begingroup} primitive@>
5528 mp_primitive(mp, "controls",controls,0);
5529 @:controls_}{\&{controls} primitive@>
5530 mp_primitive(mp, "curl",curl_command,0);
5531 @:curl_}{\&{curl} primitive@>
5532 mp_primitive(mp, "delimiters",delimiters,0);
5533 @:delimiters_}{\&{delimiters} primitive@>
5534 mp_primitive(mp, "endgroup",end_group,0);
5535 mp->eqtb[frozen_end_group]=mp->eqtb[mp->cur_sym]; mp->eg_loc=mp->cur_sym;
5536 @:endgroup_}{\&{endgroup} primitive@>
5537 mp_primitive(mp, "everyjob",every_job_command,0);
5538 @:every_job_}{\&{everyjob} primitive@>
5539 mp_primitive(mp, "exitif",exit_test,0);
5540 @:exit_if_}{\&{exitif} primitive@>
5541 mp_primitive(mp, "expandafter",expand_after,0);
5542 @:expand_after_}{\&{expandafter} primitive@>
5543 mp_primitive(mp, "interim",interim_command,0);
5544 @:interim_}{\&{interim} primitive@>
5545 mp_primitive(mp, "let",let_command,0);
5546 @:let_}{\&{let} primitive@>
5547 mp_primitive(mp, "newinternal",new_internal,0);
5548 @:new_internal_}{\&{newinternal} primitive@>
5549 mp_primitive(mp, "of",of_token,0);
5550 @:of_}{\&{of} primitive@>
5551 mp_primitive(mp, "randomseed",mp_random_seed,0);
5552 @:mp_random_seed_}{\&{randomseed} primitive@>
5553 mp_primitive(mp, "save",save_command,0);
5554 @:save_}{\&{save} primitive@>
5555 mp_primitive(mp, "scantokens",scan_tokens,0);
5556 @:scan_tokens_}{\&{scantokens} primitive@>
5557 mp_primitive(mp, "shipout",ship_out_command,0);
5558 @:ship_out_}{\&{shipout} primitive@>
5559 mp_primitive(mp, "skipto",skip_to,0);
5560 @:skip_to_}{\&{skipto} primitive@>
5561 mp_primitive(mp, "special",special_command,0);
5562 @:special}{\&{special} primitive@>
5563 mp_primitive(mp, "fontmapfile",special_command,1);
5564 @:fontmapfile}{\&{fontmapfile} primitive@>
5565 mp_primitive(mp, "fontmapline",special_command,2);
5566 @:fontmapline}{\&{fontmapline} primitive@>
5567 mp_primitive(mp, "step",step_token,0);
5568 @:step_}{\&{step} primitive@>
5569 mp_primitive(mp, "str",str_op,0);
5570 @:str_}{\&{str} primitive@>
5571 mp_primitive(mp, "tension",tension,0);
5572 @:tension_}{\&{tension} primitive@>
5573 mp_primitive(mp, "to",to_token,0);
5574 @:to_}{\&{to} primitive@>
5575 mp_primitive(mp, "until",until_token,0);
5576 @:until_}{\&{until} primitive@>
5577 mp_primitive(mp, "within",within_token,0);
5578 @:within_}{\&{within} primitive@>
5579 mp_primitive(mp, "write",write_command,0);
5580 @:write_}{\&{write} primitive@>
5582 @ Each primitive has a corresponding inverse, so that it is possible to
5583 display the cryptic numeric contents of |eqtb| in symbolic form.
5584 Every call of |primitive| in this program is therefore accompanied by some
5585 straightforward code that forms part of the |print_cmd_mod| routine
5588 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>=
5589 case add_to_command:mp_print(mp, "addto"); break;
5590 case assignment:mp_print(mp, ":="); break;
5591 case at_least:mp_print(mp, "atleast"); break;
5592 case bchar_label:mp_print(mp, "||:"); break;
5593 case begin_group:mp_print(mp, "begingroup"); break;
5594 case colon:mp_print(mp, ":"); break;
5595 case comma:mp_print(mp, ","); break;
5596 case controls:mp_print(mp, "controls"); break;
5597 case curl_command:mp_print(mp, "curl"); break;
5598 case delimiters:mp_print(mp, "delimiters"); break;
5599 case double_colon:mp_print(mp, "::"); break;
5600 case end_group:mp_print(mp, "endgroup"); break;
5601 case every_job_command:mp_print(mp, "everyjob"); break;
5602 case exit_test:mp_print(mp, "exitif"); break;
5603 case expand_after:mp_print(mp, "expandafter"); break;
5604 case interim_command:mp_print(mp, "interim"); break;
5605 case left_brace:mp_print(mp, "{"); break;
5606 case left_bracket:mp_print(mp, "["); break;
5607 case let_command:mp_print(mp, "let"); break;
5608 case new_internal:mp_print(mp, "newinternal"); break;
5609 case of_token:mp_print(mp, "of"); break;
5610 case path_join:mp_print(mp, ".."); break;
5611 case mp_random_seed:mp_print(mp, "randomseed"); break;
5612 case relax:mp_print_char(mp, '\\'); break;
5613 case right_brace:mp_print(mp, "}"); break;
5614 case right_bracket:mp_print(mp, "]"); break;
5615 case save_command:mp_print(mp, "save"); break;
5616 case scan_tokens:mp_print(mp, "scantokens"); break;
5617 case semicolon:mp_print(mp, ";"); break;
5618 case ship_out_command:mp_print(mp, "shipout"); break;
5619 case skip_to:mp_print(mp, "skipto"); break;
5620 case special_command: if ( m==2 ) mp_print(mp, "fontmapline"); else
5621 if ( m==1 ) mp_print(mp, "fontmapfile"); else
5622 mp_print(mp, "special"); break;
5623 case step_token:mp_print(mp, "step"); break;
5624 case str_op:mp_print(mp, "str"); break;
5625 case tension:mp_print(mp, "tension"); break;
5626 case to_token:mp_print(mp, "to"); break;
5627 case until_token:mp_print(mp, "until"); break;
5628 case within_token:mp_print(mp, "within"); break;
5629 case write_command:mp_print(mp, "write"); break;
5631 @ We will deal with the other primitives later, at some point in the program
5632 where their |eq_type| and |equiv| values are more meaningful. For example,
5633 the primitives for macro definitions will be loaded when we consider the
5634 routines that define macros.
5635 It is easy to find where each particular
5636 primitive was treated by looking in the index at the end; for example, the
5637 section where |"def"| entered |eqtb| is listed under `\&{def} primitive'.
5639 @* \[14] Token lists.
5640 A \MP\ token is either symbolic or numeric or a string, or it denotes
5641 a macro parameter or capsule; so there are five corresponding ways to encode it
5643 internally: (1)~A symbolic token whose hash code is~|p|
5644 is represented by the number |p|, in the |info| field of a single-word
5645 node in~|mem|. (2)~A numeric token whose |scaled| value is~|v| is
5646 represented in a two-word node of~|mem|; the |type| field is |known|,
5647 the |name_type| field is |token|, and the |value| field holds~|v|.
5648 The fact that this token appears in a two-word node rather than a
5649 one-word node is, of course, clear from the node address.
5650 (3)~A string token is also represented in a two-word node; the |type|
5651 field is |mp_string_type|, the |name_type| field is |token|, and the
5652 |value| field holds the corresponding |str_number|. (4)~Capsules have
5653 |name_type=capsule|, and their |type| and |value| fields represent
5654 arbitrary values (in ways to be explained later). (5)~Macro parameters
5655 are like symbolic tokens in that they appear in |info| fields of
5656 one-word nodes. The $k$th parameter is represented by |expr_base+k| if it
5657 is of type \&{expr}, or by |suffix_base+k| if it is of type \&{suffix}, or
5658 by |text_base+k| if it is of type \&{text}. (Here |0<=k<param_size|.)
5659 Actual values of these parameters are kept in a separate stack, as we will
5660 see later. The constants |expr_base|, |suffix_base|, and |text_base| are,
5661 of course, chosen so that there will be no confusion between symbolic
5662 tokens and parameters of various types.
5665 the `\\{type}' field of a node has nothing to do with ``type'' in a
5666 printer's sense. It's curious that the same word is used in such different ways.
5668 @d type(A) mp->mem[(A)].hh.b0 /* identifies what kind of value this is */
5669 @d name_type(A) mp->mem[(A)].hh.b1 /* a clue to the name of this value */
5670 @d token_node_size 2 /* the number of words in a large token node */
5671 @d value_loc(A) ((A)+1) /* the word that contains the |value| field */
5672 @d value(A) mp->mem[value_loc((A))].cint /* the value stored in a large token node */
5673 @d expr_base (hash_end+1) /* code for the zeroth \&{expr} parameter */
5674 @d suffix_base (expr_base+mp->param_size) /* code for the zeroth \&{suffix} parameter */
5675 @d text_base (suffix_base+mp->param_size) /* code for the zeroth \&{text} parameter */
5677 @<Check the ``constant''...@>=
5678 if ( text_base+mp->param_size>max_halfword ) mp->bad=18;
5680 @ We have set aside a two word node beginning at |null| so that we can have
5681 |value(null)=0|. We will make use of this coincidence later.
5683 @<Initialize table entries...@>=
5684 link(null)=null; value(null)=0;
5686 @ A numeric token is created by the following trivial routine.
5689 pointer mp_new_num_tok (MP mp,scaled v) {
5690 pointer p; /* the new node */
5691 p=mp_get_node(mp, token_node_size); value(p)=v;
5692 type(p)=mp_known; name_type(p)=mp_token;
5696 @ A token list is a singly linked list of nodes in |mem|, where
5697 each node contains a token and a link. Here's a subroutine that gets rid
5698 of a token list when it is no longer needed.
5700 @c void mp_flush_token_list (MP mp,pointer p) {
5701 pointer q; /* the node being recycled */
5704 if ( q>=mp->hi_mem_min ) {
5708 case mp_vacuous: case mp_boolean_type: case mp_known:
5710 case mp_string_type:
5711 delete_str_ref(value(q));
5713 case unknown_types: case mp_pen_type: case mp_path_type:
5714 case mp_picture_type: case mp_pair_type: case mp_color_type:
5715 case mp_cmykcolor_type: case mp_transform_type: case mp_dependent:
5716 case mp_proto_dependent: case mp_independent:
5717 mp_recycle_value(mp,q);
5719 default: mp_confusion(mp, "token");
5720 @:this can't happen token}{\quad token@>
5722 mp_free_node(mp, q,token_node_size);
5727 @ The procedure |show_token_list|, which prints a symbolic form of
5728 the token list that starts at a given node |p|, illustrates these
5729 conventions. The token list being displayed should not begin with a reference
5730 count. However, the procedure is intended to be fairly robust, so that if the
5731 memory links are awry or if |p| is not really a pointer to a token list,
5732 almost nothing catastrophic can happen.
5734 An additional parameter |q| is also given; this parameter is either null
5735 or it points to a node in the token list where a certain magic computation
5736 takes place that will be explained later. (Basically, |q| is non-null when
5737 we are printing the two-line context information at the time of an error
5738 message; |q| marks the place corresponding to where the second line
5741 The generation will stop, and `\.{\char`\ ETC.}' will be printed, if the length
5742 of printing exceeds a given limit~|l|; the length of printing upon entry is
5743 assumed to be a given amount called |null_tally|. (Note that
5744 |show_token_list| sometimes uses itself recursively to print
5745 variable names within a capsule.)
5748 Unusual entries are printed in the form of all-caps tokens
5749 preceded by a space, e.g., `\.{\char`\ BAD}'.
5751 @<Declare the procedure called |show_token_list|@>=
5752 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5753 integer null_tally) ;
5756 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5757 integer null_tally) {
5758 small_number class,c; /* the |char_class| of previous and new tokens */
5759 integer r,v; /* temporary registers */
5760 class=percent_class;
5761 mp->tally=null_tally;
5762 while ( (p!=null) && (mp->tally<l) ) {
5764 @<Do magic computation@>;
5765 @<Display token |p| and set |c| to its class;
5766 but |return| if there are problems@>;
5770 mp_print(mp, " ETC.");
5775 @ @<Display token |p| and set |c| to its class...@>=
5776 c=letter_class; /* the default */
5777 if ( (p<0)||(p>mp->mem_end) ) {
5778 mp_print(mp, " CLOBBERED"); return;
5781 if ( p<mp->hi_mem_min ) {
5782 @<Display two-word token@>;
5785 if ( r>=expr_base ) {
5786 @<Display a parameter token@>;
5790 @<Display a collective subscript@>
5792 mp_print(mp, " IMPOSSIBLE");
5797 if ( (r<0)||(r>mp->max_str_ptr) ) {
5798 mp_print(mp, " NONEXISTENT");
5801 @<Print string |r| as a symbolic token
5802 and set |c| to its class@>;
5808 @ @<Display two-word token@>=
5809 if ( name_type(p)==mp_token ) {
5810 if ( type(p)==mp_known ) {
5811 @<Display a numeric token@>;
5812 } else if ( type(p)!=mp_string_type ) {
5813 mp_print(mp, " BAD");
5816 mp_print_char(mp, '"'); mp_print_str(mp, value(p)); mp_print_char(mp, '"');
5819 } else if ((name_type(p)!=mp_capsule)||(type(p)<mp_vacuous)||(type(p)>mp_independent) ) {
5820 mp_print(mp, " BAD");
5822 mp_print_capsule(mp,p); c=right_paren_class;
5825 @ @<Display a numeric token@>=
5826 if ( class==digit_class )
5827 mp_print_char(mp, ' ');
5830 if ( class==left_bracket_class )
5831 mp_print_char(mp, ' ');
5832 mp_print_char(mp, '['); mp_print_scaled(mp, v); mp_print_char(mp, ']');
5833 c=right_bracket_class;
5835 mp_print_scaled(mp, v); c=digit_class;
5839 @ Strictly speaking, a genuine token will never have |info(p)=0|.
5840 But we will see later (in the |print_variable_name| routine) that
5841 it is convenient to let |info(p)=0| stand for `\.{[]}'.
5843 @<Display a collective subscript@>=
5845 if ( class==left_bracket_class )
5846 mp_print_char(mp, ' ');
5847 mp_print(mp, "[]"); c=right_bracket_class;
5850 @ @<Display a parameter token@>=
5852 if ( r<suffix_base ) {
5853 mp_print(mp, "(EXPR"); r=r-(expr_base);
5855 } else if ( r<text_base ) {
5856 mp_print(mp, "(SUFFIX"); r=r-(suffix_base);
5859 mp_print(mp, "(TEXT"); r=r-(text_base);
5862 mp_print_int(mp, r); mp_print_char(mp, ')'); c=right_paren_class;
5866 @ @<Print string |r| as a symbolic token...@>=
5868 c=mp->char_class[mp->str_pool[mp->str_start[r]]];
5871 case letter_class:mp_print_char(mp, '.'); break;
5872 case isolated_classes: break;
5873 default: mp_print_char(mp, ' '); break;
5876 mp_print_str(mp, r);
5880 void mp_print_capsule (MP mp, pointer p);
5882 @ @<Declare miscellaneous procedures that were declared |forward|@>=
5883 void mp_print_capsule (MP mp, pointer p) {
5884 mp_print_char(mp, '('); mp_print_exp(mp,p,0); mp_print_char(mp, ')');
5887 @ Macro definitions are kept in \MP's memory in the form of token lists
5888 that have a few extra one-word nodes at the beginning.
5890 The first node contains a reference count that is used to tell when the
5891 list is no longer needed. To emphasize the fact that a reference count is
5892 present, we shall refer to the |info| field of this special node as the
5894 @^reference counts@>
5896 The next node or nodes after the reference count serve to describe the
5897 formal parameters. They either contain a code word that specifies all
5898 of the parameters, or they contain zero or more parameter tokens followed
5899 by the code `|general_macro|'.
5902 /* reference count preceding a macro definition or picture header */
5903 @d add_mac_ref(A) incr(ref_count((A))) /* make a new reference to a macro list */
5904 @d general_macro 0 /* preface to a macro defined with a parameter list */
5905 @d primary_macro 1 /* preface to a macro with a \&{primary} parameter */
5906 @d secondary_macro 2 /* preface to a macro with a \&{secondary} parameter */
5907 @d tertiary_macro 3 /* preface to a macro with a \&{tertiary} parameter */
5908 @d expr_macro 4 /* preface to a macro with an undelimited \&{expr} parameter */
5909 @d of_macro 5 /* preface to a macro with
5910 undelimited `\&{expr} |x| \&{of}~|y|' parameters */
5911 @d suffix_macro 6 /* preface to a macro with an undelimited \&{suffix} parameter */
5912 @d text_macro 7 /* preface to a macro with an undelimited \&{text} parameter */
5915 void mp_delete_mac_ref (MP mp,pointer p) {
5916 /* |p| points to the reference count of a macro list that is
5917 losing one reference */
5918 if ( ref_count(p)==null ) mp_flush_token_list(mp, p);
5919 else decr(ref_count(p));
5922 @ The following subroutine displays a macro, given a pointer to its
5926 @<Declare the procedure called |print_cmd_mod|@>;
5927 void mp_show_macro (MP mp, pointer p, integer q, integer l) {
5928 pointer r; /* temporary storage */
5929 p=link(p); /* bypass the reference count */
5930 while ( info(p)>text_macro ){
5931 r=link(p); link(p)=null;
5932 mp_show_token_list(mp, p,null,l,0); link(p)=r; p=r;
5933 if ( l>0 ) l=l-mp->tally; else return;
5934 } /* control printing of `\.{ETC.}' */
5938 case general_macro:mp_print(mp, "->"); break;
5940 case primary_macro: case secondary_macro: case tertiary_macro:
5941 mp_print_char(mp, '<');
5942 mp_print_cmd_mod(mp, param_type,info(p));
5943 mp_print(mp, ">->");
5945 case expr_macro:mp_print(mp, "<expr>->"); break;
5946 case of_macro:mp_print(mp, "<expr>of<primary>->"); break;
5947 case suffix_macro:mp_print(mp, "<suffix>->"); break;
5948 case text_macro:mp_print(mp, "<text>->"); break;
5949 } /* there are no other cases */
5950 mp_show_token_list(mp, link(p),q,l-mp->tally,0);
5953 @* \[15] Data structures for variables.
5954 The variables of \MP\ programs can be simple, like `\.x', or they can
5955 combine the structural properties of arrays and records, like `\.{x20a.b}'.
5956 A \MP\ user assigns a type to a variable like \.{x20a.b} by saying, for
5957 example, `\.{boolean} \.{x20a.b}'. It's time for us to study how such
5958 things are represented inside of the computer.
5960 Each variable value occupies two consecutive words, either in a two-word
5961 node called a value node, or as a two-word subfield of a larger node. One
5962 of those two words is called the |value| field; it is an integer,
5963 containing either a |scaled| numeric value or the representation of some
5964 other type of quantity. (It might also be subdivided into halfwords, in
5965 which case it is referred to by other names instead of |value|.) The other
5966 word is broken into subfields called |type|, |name_type|, and |link|. The
5967 |type| field is a quarterword that specifies the variable's type, and
5968 |name_type| is a quarterword from which \MP\ can reconstruct the
5969 variable's name (sometimes by using the |link| field as well). Thus, only
5970 1.25 words are actually devoted to the value itself; the other
5971 three-quarters of a word are overhead, but they aren't wasted because they
5972 allow \MP\ to deal with sparse arrays and to provide meaningful diagnostics.
5974 In this section we shall be concerned only with the structural aspects of
5975 variables, not their values. Later parts of the program will change the
5976 |type| and |value| fields, but we shall treat those fields as black boxes
5977 whose contents should not be touched.
5979 However, if the |type| field is |mp_structured|, there is no |value| field,
5980 and the second word is broken into two pointer fields called |attr_head|
5981 and |subscr_head|. Those fields point to additional nodes that
5982 contain structural information, as we shall see.
5984 @d subscr_head_loc(A) (A)+1 /* where |value|, |subscr_head| and |attr_head| are */
5985 @d attr_head(A) info(subscr_head_loc((A))) /* pointer to attribute info */
5986 @d subscr_head(A) link(subscr_head_loc((A))) /* pointer to subscript info */
5987 @d value_node_size 2 /* the number of words in a value node */
5989 @ An attribute node is three words long. Two of these words contain |type|
5990 and |value| fields as described above, and the third word contains
5991 additional information: There is an |attr_loc| field, which contains the
5992 hash address of the token that names this attribute; and there's also a
5993 |parent| field, which points to the value node of |mp_structured| type at the
5994 next higher level (i.e., at the level to which this attribute is
5995 subsidiary). The |name_type| in an attribute node is `|attr|'. The
5996 |link| field points to the next attribute with the same parent; these are
5997 arranged in increasing order, so that |attr_loc(link(p))>attr_loc(p)|. The
5998 final attribute node links to the constant |end_attr|, whose |attr_loc|
5999 field is greater than any legal hash address. The |attr_head| in the
6000 parent points to a node whose |name_type| is |mp_structured_root|; this
6001 node represents the null attribute, i.e., the variable that is relevant
6002 when no attributes are attached to the parent. The |attr_head| node is either
6003 a value node, a subscript node, or an attribute node, depending on what
6004 the parent would be if it were not structured; but the subscript and
6005 attribute fields are ignored, so it effectively contains only the data of
6006 a value node. The |link| field in this special node points to an attribute
6007 node whose |attr_loc| field is zero; the latter node represents a collective
6008 subscript `\.{[]}' attached to the parent, and its |link| field points to
6009 the first non-special attribute node (or to |end_attr| if there are none).
6011 A subscript node likewise occupies three words, with |type| and |value| fields
6012 plus extra information; its |name_type| is |subscr|. In this case the
6013 third word is called the |subscript| field, which is a |scaled| integer.
6014 The |link| field points to the subscript node with the next larger
6015 subscript, if any; otherwise the |link| points to the attribute node
6016 for collective subscripts at this level. We have seen that the latter node
6017 contains an upward pointer, so that the parent can be deduced.
6019 The |name_type| in a parent-less value node is |root|, and the |link|
6020 is the hash address of the token that names this value.
6022 In other words, variables have a hierarchical structure that includes
6023 enough threads running around so that the program is able to move easily
6024 between siblings, parents, and children. An example should be helpful:
6025 (The reader is advised to draw a picture while reading the following
6026 description, since that will help to firm up the ideas.)
6027 Suppose that `\.x' and `\.{x.a}' and `\.{x[]b}' and `\.{x5}'
6028 and `\.{x20b}' have been mentioned in a user's program, where
6029 \.{x[]b} has been declared to be of \&{boolean} type. Let |h(x)|, |h(a)|,
6030 and |h(b)| be the hash addresses of \.x, \.a, and~\.b. Then
6031 |eq_type(h(x))=name| and |equiv(h(x))=p|, where |p|~is a two-word value
6032 node with |name_type(p)=root| and |link(p)=h(x)|. We have |type(p)=mp_structured|,
6033 |attr_head(p)=q|, and |subscr_head(p)=r|, where |q| points to a value
6034 node and |r| to a subscript node. (Are you still following this? Use
6035 a pencil to draw a diagram.) The lone variable `\.x' is represented by
6036 |type(q)| and |value(q)|; furthermore
6037 |name_type(q)=mp_structured_root| and |link(q)=q1|, where |q1| points
6038 to an attribute node representing `\.{x[]}'. Thus |name_type(q1)=attr|,
6039 |attr_loc(q1)=collective_subscript=0|, |parent(q1)=p|,
6040 |type(q1)=mp_structured|, |attr_head(q1)=qq|, and |subscr_head(q1)=qq1|;
6041 |qq| is a value node with |type(qq)=mp_numeric_type| (assuming that \.{x5} is
6042 numeric, because |qq| represents `\.{x[]}' with no further attributes),
6043 |name_type(qq)=mp_structured_root|, and
6044 |link(qq)=qq1|. (Now pay attention to the next part.) Node |qq1| is
6045 an attribute node representing `\.{x[][]}', which has never yet
6046 occurred; its |type| field is |undefined|, and its |value| field is
6047 undefined. We have |name_type(qq1)=attr|, |attr_loc(qq1)=collective_subscript|,
6048 |parent(qq1)=q1|, and |link(qq1)=qq2|. Since |qq2| represents
6049 `\.{x[]b}', |type(qq2)=mp_unknown_boolean|; also |attr_loc(qq2)=h(b)|,
6050 |parent(qq2)=q1|, |name_type(qq2)=attr|, |link(qq2)=end_attr|.
6051 (Maybe colored lines will help untangle your picture.)
6052 Node |r| is a subscript node with |type| and |value|
6053 representing `\.{x5}'; |name_type(r)=subscr|, |subscript(r)=5.0|,
6054 and |link(r)=r1| is another subscript node. To complete the picture,
6055 see if you can guess what |link(r1)| is; give up? It's~|q1|.
6056 Furthermore |subscript(r1)=20.0|, |name_type(r1)=subscr|,
6057 |type(r1)=mp_structured|, |attr_head(r1)=qqq|, |subscr_head(r1)=qqq1|,
6058 and we finish things off with three more nodes
6059 |qqq|, |qqq1|, and |qqq2| hung onto~|r1|. (Perhaps you should start again
6060 with a larger sheet of paper.) The value of variable \.{x20b}
6061 appears in node~|qqq2|, as you can well imagine.
6063 If the example in the previous paragraph doesn't make things crystal
6064 clear, a glance at some of the simpler subroutines below will reveal how
6065 things work out in practice.
6067 The only really unusual thing about these conventions is the use of
6068 collective subscript attributes. The idea is to avoid repeating a lot of
6069 type information when many elements of an array are identical macros
6070 (for which distinct values need not be stored) or when they don't have
6071 all of the possible attributes. Branches of the structure below collective
6072 subscript attributes do not carry actual values except for macro identifiers;
6073 branches of the structure below subscript nodes do not carry significant
6074 information in their collective subscript attributes.
6076 @d attr_loc_loc(A) ((A)+2) /* where the |attr_loc| and |parent| fields are */
6077 @d attr_loc(A) info(attr_loc_loc((A))) /* hash address of this attribute */
6078 @d parent(A) link(attr_loc_loc((A))) /* pointer to |mp_structured| variable */
6079 @d subscript_loc(A) ((A)+2) /* where the |subscript| field lives */
6080 @d subscript(A) mp->mem[subscript_loc((A))].sc /* subscript of this variable */
6081 @d attr_node_size 3 /* the number of words in an attribute node */
6082 @d subscr_node_size 3 /* the number of words in a subscript node */
6083 @d collective_subscript 0 /* code for the attribute `\.{[]}' */
6085 @<Initialize table...@>=
6086 attr_loc(end_attr)=hash_end+1; parent(end_attr)=null;
6088 @ Variables of type \&{pair} will have values that point to four-word
6089 nodes containing two numeric values. The first of these values has
6090 |name_type=mp_x_part_sector| and the second has |name_type=mp_y_part_sector|;
6091 the |link| in the first points back to the node whose |value| points
6092 to this four-word node.
6094 Variables of type \&{transform} are similar, but in this case their
6095 |value| points to a 12-word node containing six values, identified by
6096 |x_part_sector|, |y_part_sector|, |mp_xx_part_sector|, |mp_xy_part_sector|,
6097 |mp_yx_part_sector|, and |mp_yy_part_sector|.
6098 Finally, variables of type \&{color} have 3~values in 6~words
6099 identified by |mp_red_part_sector|, |mp_green_part_sector|, and |mp_blue_part_sector|.
6101 When an entire structured variable is saved, the |root| indication
6102 is temporarily replaced by |saved_root|.
6104 Some variables have no name; they just are used for temporary storage
6105 while expressions are being evaluated. We call them {\sl capsules}.
6107 @d x_part_loc(A) (A) /* where the \&{xpart} is found in a pair or transform node */
6108 @d y_part_loc(A) ((A)+2) /* where the \&{ypart} is found in a pair or transform node */
6109 @d xx_part_loc(A) ((A)+4) /* where the \&{xxpart} is found in a transform node */
6110 @d xy_part_loc(A) ((A)+6) /* where the \&{xypart} is found in a transform node */
6111 @d yx_part_loc(A) ((A)+8) /* where the \&{yxpart} is found in a transform node */
6112 @d yy_part_loc(A) ((A)+10) /* where the \&{yypart} is found in a transform node */
6113 @d red_part_loc(A) (A) /* where the \&{redpart} is found in a color node */
6114 @d green_part_loc(A) ((A)+2) /* where the \&{greenpart} is found in a color node */
6115 @d blue_part_loc(A) ((A)+4) /* where the \&{bluepart} is found in a color node */
6116 @d cyan_part_loc(A) (A) /* where the \&{cyanpart} is found in a color node */
6117 @d magenta_part_loc(A) ((A)+2) /* where the \&{magentapart} is found in a color node */
6118 @d yellow_part_loc(A) ((A)+4) /* where the \&{yellowpart} is found in a color node */
6119 @d black_part_loc(A) ((A)+6) /* where the \&{blackpart} is found in a color node */
6120 @d grey_part_loc(A) (A) /* where the \&{greypart} is found in a color node */
6122 @d pair_node_size 4 /* the number of words in a pair node */
6123 @d transform_node_size 12 /* the number of words in a transform node */
6124 @d color_node_size 6 /* the number of words in a color node */
6125 @d cmykcolor_node_size 8 /* the number of words in a color node */
6128 small_number big_node_size[mp_pair_type+1];
6129 small_number sector0[mp_pair_type+1];
6130 small_number sector_offset[mp_black_part_sector+1];
6132 @ The |sector0| array gives for each big node type, |name_type| values
6133 for its first subfield; the |sector_offset| array gives for each
6134 |name_type| value, the offset from the first subfield in words;
6135 and the |big_node_size| array gives the size in words for each type of
6139 mp->big_node_size[mp_transform_type]=transform_node_size;
6140 mp->big_node_size[mp_pair_type]=pair_node_size;
6141 mp->big_node_size[mp_color_type]=color_node_size;
6142 mp->big_node_size[mp_cmykcolor_type]=cmykcolor_node_size;
6143 mp->sector0[mp_transform_type]=mp_x_part_sector;
6144 mp->sector0[mp_pair_type]=mp_x_part_sector;
6145 mp->sector0[mp_color_type]=mp_red_part_sector;
6146 mp->sector0[mp_cmykcolor_type]=mp_cyan_part_sector;
6147 for (k=mp_x_part_sector;k<= mp_yy_part_sector;k++ ) {
6148 mp->sector_offset[k]=2*(k-mp_x_part_sector);
6150 for (k=mp_red_part_sector;k<= mp_blue_part_sector ; k++) {
6151 mp->sector_offset[k]=2*(k-mp_red_part_sector);
6153 for (k=mp_cyan_part_sector;k<= mp_black_part_sector;k++ ) {
6154 mp->sector_offset[k]=2*(k-mp_cyan_part_sector);
6157 @ If |type(p)=mp_pair_type| or |mp_transform_type| and if |value(p)=null|, the
6158 procedure call |init_big_node(p)| will allocate a pair or transform node
6159 for~|p|. The individual parts of such nodes are initially of type
6163 void mp_init_big_node (MP mp,pointer p) {
6164 pointer q; /* the new node */
6165 small_number s; /* its size */
6166 s=mp->big_node_size[type(p)]; q=mp_get_node(mp, s);
6169 @<Make variable |q+s| newly independent@>;
6170 name_type(q+s)=halfp(s)+mp->sector0[type(p)];
6173 link(q)=p; value(p)=q;
6176 @ The |id_transform| function creates a capsule for the
6177 identity transformation.
6180 pointer mp_id_transform (MP mp) {
6181 pointer p,q,r; /* list manipulation registers */
6182 p=mp_get_node(mp, value_node_size); type(p)=mp_transform_type;
6183 name_type(p)=mp_capsule; value(p)=null; mp_init_big_node(mp, p); q=value(p);
6184 r=q+transform_node_size;
6187 type(r)=mp_known; value(r)=0;
6189 value(xx_part_loc(q))=unity;
6190 value(yy_part_loc(q))=unity;
6194 @ Tokens are of type |tag_token| when they first appear, but they point
6195 to |null| until they are first used as the root of a variable.
6196 The following subroutine establishes the root node on such grand occasions.
6199 void mp_new_root (MP mp,pointer x) {
6200 pointer p; /* the new node */
6201 p=mp_get_node(mp, value_node_size); type(p)=undefined; name_type(p)=mp_root;
6202 link(p)=x; equiv(x)=p;
6205 @ These conventions for variable representation are illustrated by the
6206 |print_variable_name| routine, which displays the full name of a
6207 variable given only a pointer to its two-word value packet.
6210 void mp_print_variable_name (MP mp, pointer p);
6213 void mp_print_variable_name (MP mp, pointer p) {
6214 pointer q; /* a token list that will name the variable's suffix */
6215 pointer r; /* temporary for token list creation */
6216 while ( name_type(p)>=mp_x_part_sector ) {
6217 @<Preface the output with a part specifier; |return| in the
6218 case of a capsule@>;
6221 while ( name_type(p)>mp_saved_root ) {
6222 @<Ascend one level, pushing a token onto list |q|
6223 and replacing |p| by its parent@>;
6225 r=mp_get_avail(mp); info(r)=link(p); link(r)=q;
6226 if ( name_type(p)==mp_saved_root ) mp_print(mp, "(SAVED)");
6228 mp_show_token_list(mp, r,null,el_gordo,mp->tally);
6229 mp_flush_token_list(mp, r);
6232 @ @<Ascend one level, pushing a token onto list |q|...@>=
6234 if ( name_type(p)==mp_subscr ) {
6235 r=mp_new_num_tok(mp, subscript(p));
6238 } while (name_type(p)!=mp_attr);
6239 } else if ( name_type(p)==mp_structured_root ) {
6240 p=link(p); goto FOUND;
6242 if ( name_type(p)!=mp_attr ) mp_confusion(mp, "var");
6243 @:this can't happen var}{\quad var@>
6244 r=mp_get_avail(mp); info(r)=attr_loc(p);
6251 @ @<Preface the output with a part specifier...@>=
6252 { switch (name_type(p)) {
6253 case mp_x_part_sector: mp_print_char(mp, 'x'); break;
6254 case mp_y_part_sector: mp_print_char(mp, 'y'); break;
6255 case mp_xx_part_sector: mp_print(mp, "xx"); break;
6256 case mp_xy_part_sector: mp_print(mp, "xy"); break;
6257 case mp_yx_part_sector: mp_print(mp, "yx"); break;
6258 case mp_yy_part_sector: mp_print(mp, "yy"); break;
6259 case mp_red_part_sector: mp_print(mp, "red"); break;
6260 case mp_green_part_sector: mp_print(mp, "green"); break;
6261 case mp_blue_part_sector: mp_print(mp, "blue"); break;
6262 case mp_cyan_part_sector: mp_print(mp, "cyan"); break;
6263 case mp_magenta_part_sector: mp_print(mp, "magenta"); break;
6264 case mp_yellow_part_sector: mp_print(mp, "yellow"); break;
6265 case mp_black_part_sector: mp_print(mp, "black"); break;
6266 case mp_grey_part_sector: mp_print(mp, "grey"); break;
6268 mp_print(mp, "%CAPSULE"); mp_print_int(mp, p-null); return;
6271 } /* there are no other cases */
6272 mp_print(mp, "part ");
6273 p=link(p-mp->sector_offset[name_type(p)]);
6276 @ The |interesting| function returns |true| if a given variable is not
6277 in a capsule, or if the user wants to trace capsules.
6280 boolean mp_interesting (MP mp,pointer p) {
6281 small_number t; /* a |name_type| */
6282 if ( mp->internal[mp_tracing_capsules]>0 ) {
6286 if ( t>=mp_x_part_sector ) if ( t!=mp_capsule )
6287 t=name_type(link(p-mp->sector_offset[t]));
6288 return (t!=mp_capsule);
6292 @ Now here is a subroutine that converts an unstructured type into an
6293 equivalent structured type, by inserting a |mp_structured| node that is
6294 capable of growing. This operation is done only when |name_type(p)=root|,
6295 |subscr|, or |attr|.
6297 The procedure returns a pointer to the new node that has taken node~|p|'s
6298 place in the structure. Node~|p| itself does not move, nor are its
6299 |value| or |type| fields changed in any way.
6302 pointer mp_new_structure (MP mp,pointer p) {
6303 pointer q,r=0; /* list manipulation registers */
6304 switch (name_type(p)) {
6306 q=link(p); r=mp_get_node(mp, value_node_size); equiv(q)=r;
6309 @<Link a new subscript node |r| in place of node |p|@>;
6312 @<Link a new attribute node |r| in place of node |p|@>;
6315 mp_confusion(mp, "struct");
6316 @:this can't happen struct}{\quad struct@>
6319 link(r)=link(p); type(r)=mp_structured; name_type(r)=name_type(p);
6320 attr_head(r)=p; name_type(p)=mp_structured_root;
6321 q=mp_get_node(mp, attr_node_size); link(p)=q; subscr_head(r)=q;
6322 parent(q)=r; type(q)=undefined; name_type(q)=mp_attr; link(q)=end_attr;
6323 attr_loc(q)=collective_subscript;
6327 @ @<Link a new subscript node |r| in place of node |p|@>=
6332 } while (name_type(q)!=mp_attr);
6333 q=parent(q); r=subscr_head_loc(q); /* |link(r)=subscr_head(q)| */
6337 r=mp_get_node(mp, subscr_node_size);
6338 link(q)=r; subscript(r)=subscript(p);
6341 @ If the attribute is |collective_subscript|, there are two pointers to
6342 node~|p|, so we must change both of them.
6344 @<Link a new attribute node |r| in place of node |p|@>=
6346 q=parent(p); r=attr_head(q);
6350 r=mp_get_node(mp, attr_node_size); link(q)=r;
6351 mp->mem[attr_loc_loc(r)]=mp->mem[attr_loc_loc(p)]; /* copy |attr_loc| and |parent| */
6352 if ( attr_loc(p)==collective_subscript ) {
6353 q=subscr_head_loc(parent(p));
6354 while ( link(q)!=p ) q=link(q);
6359 @ The |find_variable| routine is given a pointer~|t| to a nonempty token
6360 list of suffixes; it returns a pointer to the corresponding two-word
6361 value. For example, if |t| points to token \.x followed by a numeric
6362 token containing the value~7, |find_variable| finds where the value of
6363 \.{x7} is stored in memory. This may seem a simple task, and it
6364 usually is, except when \.{x7} has never been referenced before.
6365 Indeed, \.x may never have even been subscripted before; complexities
6366 arise with respect to updating the collective subscript information.
6368 If a macro type is detected anywhere along path~|t|, or if the first
6369 item on |t| isn't a |tag_token|, the value |null| is returned.
6370 Otherwise |p| will be a non-null pointer to a node such that
6371 |undefined<type(p)<mp_structured|.
6373 @d abort_find { return null; }
6376 pointer mp_find_variable (MP mp,pointer t) {
6377 pointer p,q,r,s; /* nodes in the ``value'' line */
6378 pointer pp,qq,rr,ss; /* nodes in the ``collective'' line */
6379 integer n; /* subscript or attribute */
6380 memory_word save_word; /* temporary storage for a word of |mem| */
6382 p=info(t); t=link(t);
6383 if ( (eq_type(p) % outer_tag) != tag_token ) abort_find;
6384 if ( equiv(p)==null ) mp_new_root(mp, p);
6387 @<Make sure that both nodes |p| and |pp| are of |mp_structured| type@>;
6388 if ( t<mp->hi_mem_min ) {
6389 @<Descend one level for the subscript |value(t)|@>
6391 @<Descend one level for the attribute |info(t)|@>;
6395 if ( type(pp)>=mp_structured ) {
6396 if ( type(pp)==mp_structured ) pp=attr_head(pp); else abort_find;
6398 if ( type(p)==mp_structured ) p=attr_head(p);
6399 if ( type(p)==undefined ) {
6400 if ( type(pp)==undefined ) { type(pp)=mp_numeric_type; value(pp)=null; };
6401 type(p)=type(pp); value(p)=null;
6406 @ Although |pp| and |p| begin together, they diverge when a subscript occurs;
6407 |pp|~stays in the collective line while |p|~goes through actual subscript
6410 @<Make sure that both nodes |p| and |pp|...@>=
6411 if ( type(pp)!=mp_structured ) {
6412 if ( type(pp)>mp_structured ) abort_find;
6413 ss=mp_new_structure(mp, pp);
6416 }; /* now |type(pp)=mp_structured| */
6417 if ( type(p)!=mp_structured ) /* it cannot be |>mp_structured| */
6418 p=mp_new_structure(mp, p) /* now |type(p)=mp_structured| */
6420 @ We want this part of the program to be reasonably fast, in case there are
6422 lots of subscripts at the same level of the data structure. Therefore
6423 we store an ``infinite'' value in the word that appears at the end of the
6424 subscript list, even though that word isn't part of a subscript node.
6426 @<Descend one level for the subscript |value(t)|@>=
6429 pp=link(attr_head(pp)); /* now |attr_loc(pp)=collective_subscript| */
6430 q=link(attr_head(p)); save_word=mp->mem[subscript_loc(q)];
6431 subscript(q)=el_gordo; s=subscr_head_loc(p); /* |link(s)=subscr_head(p)| */
6434 } while (n>subscript(s));
6435 if ( n==subscript(s) ) {
6438 p=mp_get_node(mp, subscr_node_size); link(r)=p; link(p)=s;
6439 subscript(p)=n; name_type(p)=mp_subscr; type(p)=undefined;
6441 mp->mem[subscript_loc(q)]=save_word;
6444 @ @<Descend one level for the attribute |info(t)|@>=
6450 } while (n>attr_loc(ss));
6451 if ( n<attr_loc(ss) ) {
6452 qq=mp_get_node(mp, attr_node_size); link(rr)=qq; link(qq)=ss;
6453 attr_loc(qq)=n; name_type(qq)=mp_attr; type(qq)=undefined;
6454 parent(qq)=pp; ss=qq;
6459 pp=ss; s=attr_head(p);
6462 } while (n>attr_loc(s));
6463 if ( n==attr_loc(s) ) {
6466 q=mp_get_node(mp, attr_node_size); link(r)=q; link(q)=s;
6467 attr_loc(q)=n; name_type(q)=mp_attr; type(q)=undefined;
6473 @ Variables lose their former values when they appear in a type declaration,
6474 or when they are defined to be macros or \&{let} equal to something else.
6475 A subroutine will be defined later that recycles the storage associated
6476 with any particular |type| or |value|; our goal now is to study a higher
6477 level process called |flush_variable|, which selectively frees parts of a
6480 This routine has some complexity because of examples such as
6481 `\hbox{\tt numeric x[]a[]b}'
6482 which recycles all variables of the form \.{x[i]a[j]b} (and no others), while
6483 `\hbox{\tt vardef x[]a[]=...}'
6484 discards all variables of the form \.{x[i]a[j]} followed by an arbitrary
6485 suffix, except for the collective node \.{x[]a[]} itself. The obvious way
6486 to handle such examples is to use recursion; so that's what we~do.
6489 Parameter |p| points to the root information of the variable;
6490 parameter |t| points to a list of one-word nodes that represent
6491 suffixes, with |info=collective_subscript| for subscripts.
6494 @<Declare subroutines for printing expressions@>
6495 @<Declare basic dependency-list subroutines@>
6496 @<Declare the recycling subroutines@>
6497 void mp_flush_cur_exp (MP mp,scaled v) ;
6498 @<Declare the procedure called |flush_below_variable|@>
6501 void mp_flush_variable (MP mp,pointer p, pointer t, boolean discard_suffixes) {
6502 pointer q,r; /* list manipulation */
6503 halfword n; /* attribute to match */
6505 if ( type(p)!=mp_structured ) return;
6506 n=info(t); t=link(t);
6507 if ( n==collective_subscript ) {
6508 r=subscr_head_loc(p); q=link(r); /* |q=subscr_head(p)| */
6509 while ( name_type(q)==mp_subscr ){
6510 mp_flush_variable(mp, q,t,discard_suffixes);
6512 if ( type(q)==mp_structured ) r=q;
6513 else { link(r)=link(q); mp_free_node(mp, q,subscr_node_size); }
6523 } while (attr_loc(p)<n);
6524 if ( attr_loc(p)!=n ) return;
6526 if ( discard_suffixes ) {
6527 mp_flush_below_variable(mp, p);
6529 if ( type(p)==mp_structured ) p=attr_head(p);
6530 mp_recycle_value(mp, p);
6534 @ The next procedure is simpler; it wipes out everything but |p| itself,
6535 which becomes undefined.
6537 @<Declare the procedure called |flush_below_variable|@>=
6538 void mp_flush_below_variable (MP mp, pointer p);
6541 void mp_flush_below_variable (MP mp,pointer p) {
6542 pointer q,r; /* list manipulation registers */
6543 if ( type(p)!=mp_structured ) {
6544 mp_recycle_value(mp, p); /* this sets |type(p)=undefined| */
6547 while ( name_type(q)==mp_subscr ) {
6548 mp_flush_below_variable(mp, q); r=q; q=link(q);
6549 mp_free_node(mp, r,subscr_node_size);
6551 r=attr_head(p); q=link(r); mp_recycle_value(mp, r);
6552 if ( name_type(p)<=mp_saved_root ) mp_free_node(mp, r,value_node_size);
6553 else mp_free_node(mp, r,subscr_node_size);
6554 /* we assume that |subscr_node_size=attr_node_size| */
6556 mp_flush_below_variable(mp, q); r=q; q=link(q); mp_free_node(mp, r,attr_node_size);
6557 } while (q!=end_attr);
6562 @ Just before assigning a new value to a variable, we will recycle the
6563 old value and make the old value undefined. The |und_type| routine
6564 determines what type of undefined value should be given, based on
6565 the current type before recycling.
6568 small_number mp_und_type (MP mp,pointer p) {
6570 case undefined: case mp_vacuous:
6572 case mp_boolean_type: case mp_unknown_boolean:
6573 return mp_unknown_boolean;
6574 case mp_string_type: case mp_unknown_string:
6575 return mp_unknown_string;
6576 case mp_pen_type: case mp_unknown_pen:
6577 return mp_unknown_pen;
6578 case mp_path_type: case mp_unknown_path:
6579 return mp_unknown_path;
6580 case mp_picture_type: case mp_unknown_picture:
6581 return mp_unknown_picture;
6582 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
6583 case mp_pair_type: case mp_numeric_type:
6585 case mp_known: case mp_dependent: case mp_proto_dependent: case mp_independent:
6586 return mp_numeric_type;
6587 } /* there are no other cases */
6591 @ The |clear_symbol| routine is used when we want to redefine the equivalent
6592 of a symbolic token. It must remove any variable structure or macro
6593 definition that is currently attached to that symbol. If the |saving|
6594 parameter is true, a subsidiary structure is saved instead of destroyed.
6597 void mp_clear_symbol (MP mp,pointer p, boolean saving) {
6598 pointer q; /* |equiv(p)| */
6600 switch (eq_type(p) % outer_tag) {
6602 case secondary_primary_macro:
6603 case tertiary_secondary_macro:
6604 case expression_tertiary_macro:
6605 if ( ! saving ) mp_delete_mac_ref(mp, q);
6610 name_type(q)=mp_saved_root;
6612 mp_flush_below_variable(mp, q); mp_free_node(mp,q,value_node_size);
6619 mp->eqtb[p]=mp->eqtb[frozen_undefined];
6622 @* \[16] Saving and restoring equivalents.
6623 The nested structure given by \&{begingroup} and \&{endgroup}
6624 allows |eqtb| entries to be saved and restored, so that temporary changes
6625 can be made without difficulty. When the user requests a current value to
6626 be saved, \MP\ puts that value into its ``save stack.'' An appearance of
6627 \&{endgroup} ultimately causes the old values to be removed from the save
6628 stack and put back in their former places.
6630 The save stack is a linked list containing three kinds of entries,
6631 distinguished by their |info| fields. If |p| points to a saved item,
6635 |info(p)=0| stands for a group boundary; each \&{begingroup} contributes
6636 such an item to the save stack and each \&{endgroup} cuts back the stack
6637 until the most recent such entry has been removed.
6640 |info(p)=q|, where |1<=q<=hash_end|, means that |mem[p+1]| holds the former
6641 contents of |eqtb[q]|. Such save stack entries are generated by \&{save}
6642 commands or suitable \&{interim} commands.
6645 |info(p)=hash_end+q|, where |q>0|, means that |value(p)| is a |scaled|
6646 integer to be restored to internal parameter number~|q|. Such entries
6647 are generated by \&{interim} commands.
6650 The global variable |save_ptr| points to the top item on the save stack.
6652 @d save_node_size 2 /* number of words per non-boundary save-stack node */
6653 @d saved_equiv(A) mp->mem[(A)+1].hh /* where an |eqtb| entry gets saved */
6654 @d save_boundary_item(A) { (A)=mp_get_avail(mp); info((A))=0;
6655 link((A))=mp->save_ptr; mp->save_ptr=(A);
6659 pointer save_ptr; /* the most recently saved item */
6661 @ @<Set init...@>=mp->save_ptr=null;
6663 @ The |save_variable| routine is given a hash address |q|; it salts this
6664 address in the save stack, together with its current equivalent,
6665 then makes token~|q| behave as though it were brand new.
6667 Nothing is stacked when |save_ptr=null|, however; there's no way to remove
6668 things from the stack when the program is not inside a group, so there's
6669 no point in wasting the space.
6671 @c void mp_save_variable (MP mp,pointer q) {
6672 pointer p; /* temporary register */
6673 if ( mp->save_ptr!=null ){
6674 p=mp_get_node(mp, save_node_size); info(p)=q; link(p)=mp->save_ptr;
6675 saved_equiv(p)=mp->eqtb[q]; mp->save_ptr=p;
6677 mp_clear_symbol(mp, q,(mp->save_ptr!=null));
6680 @ Similarly, |save_internal| is given the location |q| of an internal
6681 quantity like |mp_tracing_pens|. It creates a save stack entry of the
6684 @c void mp_save_internal (MP mp,halfword q) {
6685 pointer p; /* new item for the save stack */
6686 if ( mp->save_ptr!=null ){
6687 p=mp_get_node(mp, save_node_size); info(p)=hash_end+q;
6688 link(p)=mp->save_ptr; value(p)=mp->internal[q]; mp->save_ptr=p;
6692 @ At the end of a group, the |unsave| routine restores all of the saved
6693 equivalents in reverse order. This routine will be called only when there
6694 is at least one boundary item on the save stack.
6697 void mp_unsave (MP mp) {
6698 pointer q; /* index to saved item */
6699 pointer p; /* temporary register */
6700 while ( info(mp->save_ptr)!=0 ) {
6701 q=info(mp->save_ptr);
6703 if ( mp->internal[mp_tracing_restores]>0 ) {
6704 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6705 mp_print(mp, mp->int_name[q-(hash_end)]); mp_print_char(mp, '=');
6706 mp_print_scaled(mp, value(mp->save_ptr)); mp_print_char(mp, '}');
6707 mp_end_diagnostic(mp, false);
6709 mp->internal[q-(hash_end)]=value(mp->save_ptr);
6711 if ( mp->internal[mp_tracing_restores]>0 ) {
6712 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6713 mp_print_text(q); mp_print_char(mp, '}');
6714 mp_end_diagnostic(mp, false);
6716 mp_clear_symbol(mp, q,false);
6717 mp->eqtb[q]=saved_equiv(mp->save_ptr);
6718 if ( eq_type(q) % outer_tag==tag_token ) {
6720 if ( p!=null ) name_type(p)=mp_root;
6723 p=link(mp->save_ptr);
6724 mp_free_node(mp, mp->save_ptr,save_node_size); mp->save_ptr=p;
6726 p=link(mp->save_ptr); free_avail(mp->save_ptr); mp->save_ptr=p;
6729 @* \[17] Data structures for paths.
6730 When a \MP\ user specifies a path, \MP\ will create a list of knots
6731 and control points for the associated cubic spline curves. If the
6732 knots are $z_0$, $z_1$, \dots, $z_n$, there are control points
6733 $z_k^+$ and $z_{k+1}^-$ such that the cubic splines between knots
6734 $z_k$ and $z_{k+1}$ are defined by B\'ezier's formula
6735 @:Bezier}{B\'ezier, Pierre Etienne@>
6736 $$\eqalign{z(t)&=B(z_k,z_k^+,z_{k+1}^-,z_{k+1};t)\cr
6737 &=(1-t)^3z_k+3(1-t)^2tz_k^++3(1-t)t^2z_{k+1}^-+t^3z_{k+1}\cr}$$
6740 There is a 8-word node for each knot $z_k$, containing one word of
6741 control information and six words for the |x| and |y| coordinates of
6742 $z_k^-$ and $z_k$ and~$z_k^+$. The control information appears in the
6743 |left_type| and |right_type| fields, which each occupy a quarter of
6744 the first word in the node; they specify properties of the curve as it
6745 enters and leaves the knot. There's also a halfword |link| field,
6746 which points to the following knot, and a final supplementary word (of
6747 which only a quarter is used).
6749 If the path is a closed contour, knots 0 and |n| are identical;
6750 i.e., the |link| in knot |n-1| points to knot~0. But if the path
6751 is not closed, the |left_type| of knot~0 and the |right_type| of knot~|n|
6752 are equal to |endpoint|. In the latter case the |link| in knot~|n| points
6753 to knot~0, and the control points $z_0^-$ and $z_n^+$ are not used.
6755 @d left_type(A) mp->mem[(A)].hh.b0 /* characterizes the path entering this knot */
6756 @d right_type(A) mp->mem[(A)].hh.b1 /* characterizes the path leaving this knot */
6757 @d x_coord(A) mp->mem[(A)+1].sc /* the |x| coordinate of this knot */
6758 @d y_coord(A) mp->mem[(A)+2].sc /* the |y| coordinate of this knot */
6759 @d left_x(A) mp->mem[(A)+3].sc /* the |x| coordinate of previous control point */
6760 @d left_y(A) mp->mem[(A)+4].sc /* the |y| coordinate of previous control point */
6761 @d right_x(A) mp->mem[(A)+5].sc /* the |x| coordinate of next control point */
6762 @d right_y(A) mp->mem[(A)+6].sc /* the |y| coordinate of next control point */
6763 @d x_loc(A) ((A)+1) /* where the |x| coordinate is stored in a knot */
6764 @d y_loc(A) ((A)+2) /* where the |y| coordinate is stored in a knot */
6765 @d knot_coord(A) mp->mem[(A)].sc /* |x| or |y| coordinate given |x_loc| or |y_loc| */
6766 @d left_coord(A) mp->mem[(A)+2].sc
6767 /* coordinate of previous control point given |x_loc| or |y_loc| */
6768 @d right_coord(A) mp->mem[(A)+4].sc
6769 /* coordinate of next control point given |x_loc| or |y_loc| */
6770 @d knot_node_size 8 /* number of words in a knot node */
6774 mp_endpoint=0, /* |left_type| at path beginning and |right_type| at path end */
6775 mp_explicit, /* |left_type| or |right_type| when control points are known */
6776 mp_given, /* |left_type| or |right_type| when a direction is given */
6777 mp_curl, /* |left_type| or |right_type| when a curl is desired */
6778 mp_open, /* |left_type| or |right_type| when \MP\ should choose the direction */
6782 @ Before the B\'ezier control points have been calculated, the memory
6783 space they will ultimately occupy is taken up by information that can be
6784 used to compute them. There are four cases:
6787 \textindent{$\bullet$} If |right_type=mp_open|, the curve should leave
6788 the knot in the same direction it entered; \MP\ will figure out a
6792 \textindent{$\bullet$} If |right_type=mp_curl|, the curve should leave the
6793 knot in a direction depending on the angle at which it enters the next
6794 knot and on the curl parameter stored in |right_curl|.
6797 \textindent{$\bullet$} If |right_type=mp_given|, the curve should leave the
6798 knot in a nonzero direction stored as an |angle| in |right_given|.
6801 \textindent{$\bullet$} If |right_type=mp_explicit|, the B\'ezier control
6802 point for leaving this knot has already been computed; it is in the
6803 |right_x| and |right_y| fields.
6806 The rules for |left_type| are similar, but they refer to the curve entering
6807 the knot, and to \\{left} fields instead of \\{right} fields.
6809 Non-|explicit| control points will be chosen based on ``tension'' parameters
6810 in the |left_tension| and |right_tension| fields. The
6811 `\&{atleast}' option is represented by negative tension values.
6812 @:at_least_}{\&{atleast} primitive@>
6814 For example, the \MP\ path specification
6815 $$\.{z0..z1..tension atleast 1..\{curl 2\}z2..z3\{-1,-2\}..tension
6817 where \.p is the path `\.{z4..controls z45 and z54..z5}', will be represented
6819 \def\lodash{\hbox to 1.1em{\thinspace\hrulefill\thinspace}}
6820 $$\vbox{\halign{#\hfil&&\qquad#\hfil\cr
6821 |left_type|&\\{left} info&|x_coord,y_coord|&|right_type|&\\{right} info\cr
6823 |endpoint|&\lodash$,\,$\lodash&$x_0,y_0$&|curl|&$1.0,1.0$\cr
6824 |open|&\lodash$,1.0$&$x_1,y_1$&|open|&\lodash$,-1.0$\cr
6825 |curl|&$2.0,-1.0$&$x_2,y_2$&|curl|&$2.0,1.0$\cr
6826 |given|&$d,1.0$&$x_3,y_3$&|given|&$d,3.0$\cr
6827 |open|&\lodash$,4.0$&$x_4,y_4$&|explicit|&$x_{45},y_{45}$\cr
6828 |explicit|&$x_{54},y_{54}$&$x_5,y_5$&|endpoint|&\lodash$,\,$\lodash\cr}}$$
6829 Here |d| is the |angle| obtained by calling |n_arg(-unity,-two)|.
6830 Of course, this example is more complicated than anything a normal user
6833 These types must satisfy certain restrictions because of the form of \MP's
6835 (i)~|open| type never appears in the same node together with |endpoint|,
6837 (ii)~The |right_type| of a node is |explicit| if and only if the
6838 |left_type| of the following node is |explicit|.
6839 (iii)~|endpoint| types occur only at the ends, as mentioned above.
6841 @d left_curl left_x /* curl information when entering this knot */
6842 @d left_given left_x /* given direction when entering this knot */
6843 @d left_tension left_y /* tension information when entering this knot */
6844 @d right_curl right_x /* curl information when leaving this knot */
6845 @d right_given right_x /* given direction when leaving this knot */
6846 @d right_tension right_y /* tension information when leaving this knot */
6848 @ Knots can be user-supplied, or they can be created by program code,
6849 like the |split_cubic| function, or |copy_path|. The distinction is
6850 needed for the cleanup routine that runs after |split_cubic|, because
6851 it should only delete knots it has previously inserted, and never
6852 anything that was user-supplied. In order to be able to differentiate
6853 one knot from another, we will set |originator(p):=mp_metapost_user| when
6854 it appeared in the actual metapost program, and
6855 |originator(p):=mp_program_code| in all other cases.
6857 @d originator(A) mp->mem[(A)+7].hh.b0 /* the creator of this knot */
6861 mp_program_code=0, /* not created by a user */
6862 mp_metapost_user, /* created by a user */
6865 @ Here is a routine that prints a given knot list
6866 in symbolic form. It illustrates the conventions discussed above,
6867 and checks for anomalies that might arise while \MP\ is being debugged.
6869 @<Declare subroutines for printing expressions@>=
6870 void mp_pr_path (MP mp,pointer h);
6873 void mp_pr_path (MP mp,pointer h) {
6874 pointer p,q; /* for list traversal */
6878 if ( (p==null)||(q==null) ) {
6879 mp_print_nl(mp, "???"); return; /* this won't happen */
6882 @<Print information for adjacent knots |p| and |q|@>;
6885 if ( (p!=h)||(left_type(h)!=mp_endpoint) ) {
6886 @<Print two dots, followed by |given| or |curl| if present@>;
6889 if ( left_type(h)!=mp_endpoint )
6890 mp_print(mp, "cycle");
6893 @ @<Print information for adjacent knots...@>=
6894 mp_print_two(mp, x_coord(p),y_coord(p));
6895 switch (right_type(p)) {
6897 if ( left_type(p)==mp_open ) mp_print(mp, "{open?}"); /* can't happen */
6899 if ( (left_type(q)!=mp_endpoint)||(q!=h) ) q=null; /* force an error */
6903 @<Print control points between |p| and |q|, then |goto done1|@>;
6906 @<Print information for a curve that begins |open|@>;
6910 @<Print information for a curve that begins |curl| or |given|@>;
6913 mp_print(mp, "???"); /* can't happen */
6917 if ( left_type(q)<=mp_explicit ) {
6918 mp_print(mp, "..control?"); /* can't happen */
6920 } else if ( (right_tension(p)!=unity)||(left_tension(q)!=unity) ) {
6921 @<Print tension between |p| and |q|@>;
6924 @ Since |n_sin_cos| produces |fraction| results, which we will print as if they
6925 were |scaled|, the magnitude of a |given| direction vector will be~4096.
6927 @<Print two dots...@>=
6929 mp_print_nl(mp, " ..");
6930 if ( left_type(p)==mp_given ) {
6931 mp_n_sin_cos(mp, left_given(p)); mp_print_char(mp, '{');
6932 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
6933 mp_print_scaled(mp, mp->n_sin); mp_print_char(mp, '}');
6934 } else if ( left_type(p)==mp_curl ){
6935 mp_print(mp, "{curl ");
6936 mp_print_scaled(mp, left_curl(p)); mp_print_char(mp, '}');
6940 @ @<Print tension between |p| and |q|@>=
6942 mp_print(mp, "..tension ");
6943 if ( right_tension(p)<0 ) mp_print(mp, "atleast");
6944 mp_print_scaled(mp, abs(right_tension(p)));
6945 if ( right_tension(p)!=left_tension(q) ){
6946 mp_print(mp, " and ");
6947 if ( left_tension(q)<0 ) mp_print(mp, "atleast");
6948 mp_print_scaled(mp, abs(left_tension(q)));
6952 @ @<Print control points between |p| and |q|, then |goto done1|@>=
6954 mp_print(mp, "..controls ");
6955 mp_print_two(mp, right_x(p),right_y(p));
6956 mp_print(mp, " and ");
6957 if ( left_type(q)!=mp_explicit ) {
6958 mp_print(mp, "??"); /* can't happen */
6961 mp_print_two(mp, left_x(q),left_y(q));
6966 @ @<Print information for a curve that begins |open|@>=
6967 if ( (left_type(p)!=mp_explicit)&&(left_type(p)!=mp_open) ) {
6968 mp_print(mp, "{open?}"); /* can't happen */
6972 @ A curl of 1 is shown explicitly, so that the user sees clearly that
6973 \MP's default curl is present.
6975 The code here uses the fact that |left_curl==left_given| and
6976 |right_curl==right_given|.
6978 @<Print information for a curve that begins |curl|...@>=
6980 if ( left_type(p)==mp_open )
6981 mp_print(mp, "??"); /* can't happen */
6983 if ( right_type(p)==mp_curl ) {
6984 mp_print(mp, "{curl "); mp_print_scaled(mp, right_curl(p));
6986 mp_n_sin_cos(mp, right_given(p)); mp_print_char(mp, '{');
6987 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
6988 mp_print_scaled(mp, mp->n_sin);
6990 mp_print_char(mp, '}');
6993 @ It is convenient to have another version of |pr_path| that prints the path
6994 as a diagnostic message.
6996 @<Declare subroutines for printing expressions@>=
6997 void mp_print_path (MP mp,pointer h, char *s, boolean nuline) {
6998 mp_print_diagnostic(mp, "Path", s, nuline); mp_print_ln(mp);
7001 mp_end_diagnostic(mp, true);
7004 @ If we want to duplicate a knot node, we can say |copy_knot|:
7007 pointer mp_copy_knot (MP mp,pointer p) {
7008 pointer q; /* the copy */
7009 int k; /* runs through the words of a knot node */
7010 q=mp_get_node(mp, knot_node_size);
7011 for (k=0;k<knot_node_size;k++) {
7012 mp->mem[q+k]=mp->mem[p+k];
7014 originator(q)=originator(p);
7018 @ The |copy_path| routine makes a clone of a given path.
7021 pointer mp_copy_path (MP mp, pointer p) {
7022 pointer q,pp,qq; /* for list manipulation */
7023 q=mp_copy_knot(mp, p);
7026 link(qq)=mp_copy_knot(mp, pp);
7035 @ Just before |ship_out|, knot lists are exported for printing.
7037 The |gr_XXXX| macros are defined in |mppsout.h|.
7040 struct mp_knot *mp_export_knot (MP mp,pointer p) {
7041 struct mp_knot *q; /* the copy */
7044 q = mp_xmalloc(mp, 1, sizeof (struct mp_knot));
7045 memset(q,0,sizeof (struct mp_knot));
7046 gr_left_type(q) = left_type(p);
7047 gr_right_type(q) = right_type(p);
7048 gr_x_coord(q) = x_coord(p);
7049 gr_y_coord(q) = y_coord(p);
7050 gr_left_x(q) = left_x(p);
7051 gr_left_y(q) = left_y(p);
7052 gr_right_x(q) = right_x(p);
7053 gr_right_y(q) = right_y(p);
7054 gr_originator(q) = originator(p);
7058 @ The |export_knot_list| routine therefore also makes a clone
7062 struct mp_knot *mp_export_knot_list (MP mp, pointer p) {
7063 struct mp_knot *q, *qq; /* for list manipulation */
7064 pointer pp; /* for list manipulation */
7067 q=mp_export_knot(mp, p);
7070 gr_next_knot(qq)=mp_export_knot(mp, pp);
7071 qq=gr_next_knot(qq);
7079 @ Similarly, there's a way to copy the {\sl reverse\/} of a path. This procedure
7080 returns a pointer to the first node of the copy, if the path is a cycle,
7081 but to the final node of a non-cyclic copy. The global
7082 variable |path_tail| will point to the final node of the original path;
7083 this trick makes it easier to implement `\&{doublepath}'.
7085 All node types are assumed to be |endpoint| or |explicit| only.
7088 pointer mp_htap_ypoc (MP mp,pointer p) {
7089 pointer q,pp,qq,rr; /* for list manipulation */
7090 q=mp_get_node(mp, knot_node_size); /* this will correspond to |p| */
7093 right_type(qq)=left_type(pp); left_type(qq)=right_type(pp);
7094 x_coord(qq)=x_coord(pp); y_coord(qq)=y_coord(pp);
7095 right_x(qq)=left_x(pp); right_y(qq)=left_y(pp);
7096 left_x(qq)=right_x(pp); left_y(qq)=right_y(pp);
7097 originator(qq)=originator(pp);
7098 if ( link(pp)==p ) {
7099 link(q)=qq; mp->path_tail=pp; return q;
7101 rr=mp_get_node(mp, knot_node_size); link(rr)=qq; qq=rr; pp=link(pp);
7106 pointer path_tail; /* the node that links to the beginning of a path */
7108 @ When a cyclic list of knot nodes is no longer needed, it can be recycled by
7109 calling the following subroutine.
7111 @<Declare the recycling subroutines@>=
7112 void mp_toss_knot_list (MP mp,pointer p) ;
7115 void mp_toss_knot_list (MP mp,pointer p) {
7116 pointer q; /* the node being freed */
7117 pointer r; /* the next node */
7121 mp_free_node(mp, q,knot_node_size); q=r;
7125 @* \[18] Choosing control points.
7126 Now we must actually delve into one of \MP's more difficult routines,
7127 the |make_choices| procedure that chooses angles and control points for
7128 the splines of a curve when the user has not specified them explicitly.
7129 The parameter to |make_choices| points to a list of knots and
7130 path information, as described above.
7132 A path decomposes into independent segments at ``breakpoint'' knots,
7133 which are knots whose left and right angles are both prespecified in
7134 some way (i.e., their |left_type| and |right_type| aren't both open).
7137 @<Declare the procedure called |solve_choices|@>;
7138 void mp_make_choices (MP mp,pointer knots) {
7139 pointer h; /* the first breakpoint */
7140 pointer p,q; /* consecutive breakpoints being processed */
7141 @<Other local variables for |make_choices|@>;
7142 check_arith; /* make sure that |arith_error=false| */
7143 if ( mp->internal[mp_tracing_choices]>0 )
7144 mp_print_path(mp, knots,", before choices",true);
7145 @<If consecutive knots are equal, join them explicitly@>;
7146 @<Find the first breakpoint, |h|, on the path;
7147 insert an artificial breakpoint if the path is an unbroken cycle@>;
7150 @<Fill in the control points between |p| and the next breakpoint,
7151 then advance |p| to that breakpoint@>;
7153 if ( mp->internal[mp_tracing_choices]>0 )
7154 mp_print_path(mp, knots,", after choices",true);
7155 if ( mp->arith_error ) {
7156 @<Report an unexpected problem during the choice-making@>;
7160 @ @<Report an unexpected problem during the choice...@>=
7162 print_err("Some number got too big");
7163 @.Some number got too big@>
7164 help2("The path that I just computed is out of range.")
7165 ("So it will probably look funny. Proceed, for a laugh.");
7166 mp_put_get_error(mp); mp->arith_error=false;
7169 @ Two knots in a row with the same coordinates will always be joined
7170 by an explicit ``curve'' whose control points are identical with the
7173 @<If consecutive knots are equal, join them explicitly@>=
7177 if ( x_coord(p)==x_coord(q) && y_coord(p)==y_coord(q) && right_type(p)>mp_explicit ) {
7178 right_type(p)=mp_explicit;
7179 if ( left_type(p)==mp_open ) {
7180 left_type(p)=mp_curl; left_curl(p)=unity;
7182 left_type(q)=mp_explicit;
7183 if ( right_type(q)==mp_open ) {
7184 right_type(q)=mp_curl; right_curl(q)=unity;
7186 right_x(p)=x_coord(p); left_x(q)=x_coord(p);
7187 right_y(p)=y_coord(p); left_y(q)=y_coord(p);
7192 @ If there are no breakpoints, it is necessary to compute the direction
7193 angles around an entire cycle. In this case the |left_type| of the first
7194 node is temporarily changed to |end_cycle|.
7196 @<Find the first breakpoint, |h|, on the path...@>=
7199 if ( left_type(h)!=mp_open ) break;
7200 if ( right_type(h)!=mp_open ) break;
7203 left_type(h)=mp_end_cycle; break;
7207 @ If |right_type(p)<given| and |q=link(p)|, we must have
7208 |right_type(p)=left_type(q)=mp_explicit| or |endpoint|.
7210 @<Fill in the control points between |p| and the next breakpoint...@>=
7212 if ( right_type(p)>=mp_given ) {
7213 while ( (left_type(q)==mp_open)&&(right_type(q)==mp_open) ) q=link(q);
7214 @<Fill in the control information between
7215 consecutive breakpoints |p| and |q|@>;
7216 } else if ( right_type(p)==mp_endpoint ) {
7217 @<Give reasonable values for the unused control points between |p| and~|q|@>;
7221 @ This step makes it possible to transform an explicitly computed path without
7222 checking the |left_type| and |right_type| fields.
7224 @<Give reasonable values for the unused control points between |p| and~|q|@>=
7226 right_x(p)=x_coord(p); right_y(p)=y_coord(p);
7227 left_x(q)=x_coord(q); left_y(q)=y_coord(q);
7230 @ Before we can go further into the way choices are made, we need to
7231 consider the underlying theory. The basic ideas implemented in |make_choices|
7232 are due to John Hobby, who introduced the notion of ``mock curvature''
7233 @^Hobby, John Douglas@>
7234 at a knot. Angles are chosen so that they preserve mock curvature when
7235 a knot is passed, and this has been found to produce excellent results.
7237 It is convenient to introduce some notations that simplify the necessary
7238 formulas. Let $d_{k,k+1}=\vert z\k-z_k\vert$ be the (nonzero) distance
7239 between knots |k| and |k+1|; and let
7240 $${z\k-z_k\over z_k-z_{k-1}}={d_{k,k+1}\over d_{k-1,k}}e^{i\psi_k}$$
7241 so that a polygonal line from $z_{k-1}$ to $z_k$ to $z\k$ turns left
7242 through an angle of~$\psi_k$. We assume that $\vert\psi_k\vert\L180^\circ$.
7243 The control points for the spline from $z_k$ to $z\k$ will be denoted by
7244 $$\eqalign{z_k^+&=z_k+
7245 \textstyle{1\over3}\rho_k e^{i\theta_k}(z\k-z_k),\cr
7247 \textstyle{1\over3}\sigma\k e^{-i\phi\k}(z\k-z_k),\cr}$$
7248 where $\rho_k$ and $\sigma\k$ are nonnegative ``velocity ratios'' at the
7249 beginning and end of the curve, while $\theta_k$ and $\phi\k$ are the
7250 corresponding ``offset angles.'' These angles satisfy the condition
7251 $$\theta_k+\phi_k+\psi_k=0,\eqno(*)$$
7252 whenever the curve leaves an intermediate knot~|k| in the direction that
7255 @ Let $\alpha_k$ and $\beta\k$ be the reciprocals of the ``tension'' of
7256 the curve at its beginning and ending points. This means that
7257 $\rho_k=\alpha_k f(\theta_k,\phi\k)$ and $\sigma\k=\beta\k f(\phi\k,\theta_k)$,
7258 where $f(\theta,\phi)$ is \MP's standard velocity function defined in
7259 the |velocity| subroutine. The cubic spline $B(z_k^{\phantom+},z_k^+,
7260 z\k^-,z\k^{\phantom+};t)$
7263 $${2\sigma\k\sin(\theta_k+\phi\k)-6\sin\theta_k\over\rho_k^2d_{k,k+1}}
7264 \qquad{\rm and}\qquad
7265 {2\rho_k\sin(\theta_k+\phi\k)-6\sin\phi\k\over\sigma\k^2d_{k,k+1}}$$
7266 at |t=0| and |t=1|, respectively. The mock curvature is the linear
7268 approximation to this true curvature that arises in the limit for
7269 small $\theta_k$ and~$\phi\k$, if second-order terms are discarded.
7270 The standard velocity function satisfies
7271 $$f(\theta,\phi)=1+O(\theta^2+\theta\phi+\phi^2);$$
7272 hence the mock curvatures are respectively
7273 $${2\beta\k(\theta_k+\phi\k)-6\theta_k\over\alpha_k^2d_{k,k+1}}
7274 \qquad{\rm and}\qquad
7275 {2\alpha_k(\theta_k+\phi\k)-6\phi\k\over\beta\k^2d_{k,k+1}}.\eqno(**)$$
7277 @ The turning angles $\psi_k$ are given, and equation $(*)$ above
7278 determines $\phi_k$ when $\theta_k$ is known, so the task of
7279 angle selection is essentially to choose appropriate values for each
7280 $\theta_k$. When equation~$(*)$ is used to eliminate $\phi$~variables
7281 from $(**)$, we obtain a system of linear equations of the form
7282 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7284 $$A_k={\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7285 \qquad B_k={3-\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7286 \qquad C_k={3-\beta\k\over\alpha_k^2d_{k,k+1}},
7287 \qquad D_k={\beta\k\over\alpha_k^2d_{k,k+1}}.$$
7288 The tensions are always $3\over4$ or more, hence each $\alpha$ and~$\beta$
7289 will be at most $4\over3$. It follows that $B_k\G{5\over4}A_k$ and
7290 $C_k\G{5\over4}D_k$; hence the equations are diagonally dominant;
7291 hence they have a unique solution. Moreover, in most cases the tensions
7292 are equal to~1, so that $B_k=2A_k$ and $C_k=2D_k$. This makes the
7293 solution numerically stable, and there is an exponential damping
7294 effect: The data at knot $k\pm j$ affects the angle at knot~$k$ by
7295 a factor of~$O(2^{-j})$.
7297 @ However, we still must consider the angles at the starting and ending
7298 knots of a non-cyclic path. These angles might be given explicitly, or
7299 they might be specified implicitly in terms of an amount of ``curl.''
7301 Let's assume that angles need to be determined for a non-cyclic path
7302 starting at $z_0$ and ending at~$z_n$. Then equations of the form
7303 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta_{k+1}=R_k$$
7304 have been given for $0<k<n$, and it will be convenient to introduce
7305 equations of the same form for $k=0$ and $k=n$, where
7306 $$A_0=B_0=C_n=D_n=0.$$
7307 If $\theta_0$ is supposed to have a given value $E_0$, we simply
7308 define $C_0=0$, $D_0=0$, and $R_0=E_0$. Otherwise a curl
7309 parameter, $\gamma_0$, has been specified at~$z_0$; this means
7310 that the mock curvature at $z_0$ should be $\gamma_0$ times the
7311 mock curvature at $z_1$; i.e.,
7312 $${2\beta_1(\theta_0+\phi_1)-6\theta_0\over\alpha_0^2d_{01}}
7313 =\gamma_0{2\alpha_0(\theta_0+\phi_1)-6\phi_1\over\beta_1^2d_{01}}.$$
7314 This equation simplifies to
7315 $$(\alpha_0\chi_0+3-\beta_1)\theta_0+
7316 \bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\theta_1=
7317 -\bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\psi_1,$$
7318 where $\chi_0=\alpha_0^2\gamma_0/\beta_1^2$; so we can set $C_0=
7319 \chi_0\alpha_0+3-\beta_1$, $D_0=(3-\alpha_0)\chi_0+\beta_1$, $R_0=-D_0\psi_1$.
7320 It can be shown that $C_0>0$ and $C_0B_1-A_1D_0>0$ when $\gamma_0\G0$,
7321 hence the linear equations remain nonsingular.
7323 Similar considerations apply at the right end, when the final angle $\phi_n$
7324 may or may not need to be determined. It is convenient to let $\psi_n=0$,
7325 hence $\theta_n=-\phi_n$. We either have an explicit equation $\theta_n=E_n$,
7327 $$\bigl((3-\beta_n)\chi_n+\alpha_{n-1}\bigr)\theta_{n-1}+
7328 (\beta_n\chi_n+3-\alpha_{n-1})\theta_n=0,\qquad
7329 \chi_n={\beta_n^2\gamma_n\over\alpha_{n-1}^2}.$$
7331 When |make_choices| chooses angles, it must compute the coefficients of
7332 these linear equations, then solve the equations. To compute the coefficients,
7333 it is necessary to compute arctangents of the given turning angles~$\psi_k$.
7334 When the equations are solved, the chosen directions $\theta_k$ are put
7335 back into the form of control points by essentially computing sines and
7338 @ OK, we are ready to make the hard choices of |make_choices|.
7339 Most of the work is relegated to an auxiliary procedure
7340 called |solve_choices|, which has been introduced to keep
7341 |make_choices| from being extremely long.
7343 @<Fill in the control information between...@>=
7344 @<Calculate the turning angles $\psi_k$ and the distances $d_{k,k+1}$;
7345 set $n$ to the length of the path@>;
7346 @<Remove |open| types at the breakpoints@>;
7347 mp_solve_choices(mp, p,q,n)
7349 @ It's convenient to precompute quantities that will be needed several
7350 times later. The values of |delta_x[k]| and |delta_y[k]| will be the
7351 coordinates of $z\k-z_k$, and the magnitude of this vector will be
7352 |delta[k]=@t$d_{k,k+1}$@>|. The path angle $\psi_k$ between $z_k-z_{k-1}$
7353 and $z\k-z_k$ will be stored in |psi[k]|.
7356 int path_size; /* maximum number of knots between breakpoints of a path */
7359 scaled *delta; /* knot differences */
7360 angle *psi; /* turning angles */
7362 @ @<Allocate or initialize ...@>=
7368 @ @<Dealloc variables@>=
7374 @ @<Other local variables for |make_choices|@>=
7375 int k,n; /* current and final knot numbers */
7376 pointer s,t; /* registers for list traversal */
7377 scaled delx,dely; /* directions where |open| meets |explicit| */
7378 fraction sine,cosine; /* trig functions of various angles */
7380 @ @<Calculate the turning angles...@>=
7383 k=0; s=p; n=mp->path_size;
7386 mp->delta_x[k]=x_coord(t)-x_coord(s);
7387 mp->delta_y[k]=y_coord(t)-y_coord(s);
7388 mp->delta[k]=mp_pyth_add(mp, mp->delta_x[k],mp->delta_y[k]);
7390 sine=mp_make_fraction(mp, mp->delta_y[k-1],mp->delta[k-1]);
7391 cosine=mp_make_fraction(mp, mp->delta_x[k-1],mp->delta[k-1]);
7392 mp->psi[k]=mp_n_arg(mp, mp_take_fraction(mp, mp->delta_x[k],cosine)+
7393 mp_take_fraction(mp, mp->delta_y[k],sine),
7394 mp_take_fraction(mp, mp->delta_y[k],cosine)-
7395 mp_take_fraction(mp, mp->delta_x[k],sine));
7398 if ( k==mp->path_size ) {
7399 mp_reallocate_paths(mp, mp->path_size+(mp->path_size>>2));
7400 goto RESTART; /* retry, loop size has changed */
7403 } while (!((k>=n)&&(left_type(s)!=mp_end_cycle)));
7404 if ( k==n ) mp->psi[n]=0; else mp->psi[k]=mp->psi[1];
7407 @ When we get to this point of the code, |right_type(p)| is either
7408 |given| or |curl| or |open|. If it is |open|, we must have
7409 |left_type(p)=mp_end_cycle| or |left_type(p)=mp_explicit|. In the latter
7410 case, the |open| type is converted to |given|; however, if the
7411 velocity coming into this knot is zero, the |open| type is
7412 converted to a |curl|, since we don't know the incoming direction.
7414 Similarly, |left_type(q)| is either |given| or |curl| or |open| or
7415 |mp_end_cycle|. The |open| possibility is reduced either to |given| or to |curl|.
7417 @<Remove |open| types at the breakpoints@>=
7418 if ( left_type(q)==mp_open ) {
7419 delx=right_x(q)-x_coord(q); dely=right_y(q)-y_coord(q);
7420 if ( (delx==0)&&(dely==0) ) {
7421 left_type(q)=mp_curl; left_curl(q)=unity;
7423 left_type(q)=mp_given; left_given(q)=mp_n_arg(mp, delx,dely);
7426 if ( (right_type(p)==mp_open)&&(left_type(p)==mp_explicit) ) {
7427 delx=x_coord(p)-left_x(p); dely=y_coord(p)-left_y(p);
7428 if ( (delx==0)&&(dely==0) ) {
7429 right_type(p)=mp_curl; right_curl(p)=unity;
7431 right_type(p)=mp_given; right_given(p)=mp_n_arg(mp, delx,dely);
7435 @ Linear equations need to be solved whenever |n>1|; and also when |n=1|
7436 and exactly one of the breakpoints involves a curl. The simplest case occurs
7437 when |n=1| and there is a curl at both breakpoints; then we simply draw
7440 But before coding up the simple cases, we might as well face the general case,
7441 since we must deal with it sooner or later, and since the general case
7442 is likely to give some insight into the way simple cases can be handled best.
7444 When there is no cycle, the linear equations to be solved form a tridiagonal
7445 system, and we can apply the standard technique of Gaussian elimination
7446 to convert that system to a sequence of equations of the form
7447 $$\theta_0+u_0\theta_1=v_0,\quad
7448 \theta_1+u_1\theta_2=v_1,\quad\ldots,\quad
7449 \theta_{n-1}+u_{n-1}\theta_n=v_{n-1},\quad
7451 It is possible to do this diagonalization while generating the equations.
7452 Once $\theta_n$ is known, it is easy to determine $\theta_{n-1}$, \dots,
7453 $\theta_1$, $\theta_0$; thus, the equations will be solved.
7455 The procedure is slightly more complex when there is a cycle, but the
7456 basic idea will be nearly the same. In the cyclic case the right-hand
7457 sides will be $v_k+w_k\theta_0$ instead of simply $v_k$, and we will start
7458 the process off with $u_0=v_0=0$, $w_0=1$. The final equation will be not
7459 $\theta_n=v_n$ but $\theta_n+u_n\theta_1=v_n+w_n\theta_0$; an appropriate
7460 ending routine will take account of the fact that $\theta_n=\theta_0$ and
7461 eliminate the $w$'s from the system, after which the solution can be
7464 When $u_k$, $v_k$, and $w_k$ are being computed, the three pointer
7465 variables |r|, |s|,~|t| will point respectively to knots |k-1|, |k|,
7466 and~|k+1|. The $u$'s and $w$'s are scaled by $2^{28}$, i.e., they are
7467 of type |fraction|; the $\theta$'s and $v$'s are of type |angle|.
7470 angle *theta; /* values of $\theta_k$ */
7471 fraction *uu; /* values of $u_k$ */
7472 angle *vv; /* values of $v_k$ */
7473 fraction *ww; /* values of $w_k$ */
7475 @ @<Allocate or initialize ...@>=
7481 @ @<Dealloc variables@>=
7487 @ @<Declare |mp_reallocate| functions@>=
7488 void mp_reallocate_paths (MP mp, int l);
7491 void mp_reallocate_paths (MP mp, int l) {
7492 XREALLOC (mp->delta_x, l, scaled);
7493 XREALLOC (mp->delta_y, l, scaled);
7494 XREALLOC (mp->delta, l, scaled);
7495 XREALLOC (mp->psi, l, angle);
7496 XREALLOC (mp->theta, l, angle);
7497 XREALLOC (mp->uu, l, fraction);
7498 XREALLOC (mp->vv, l, angle);
7499 XREALLOC (mp->ww, l, fraction);
7503 @ Our immediate problem is to get the ball rolling by setting up the
7504 first equation or by realizing that no equations are needed, and to fit
7505 this initialization into a framework suitable for the overall computation.
7507 @<Declare the procedure called |solve_choices|@>=
7508 @<Declare subroutines needed by |solve_choices|@>;
7509 void mp_solve_choices (MP mp,pointer p, pointer q, halfword n) {
7510 int k; /* current knot number */
7511 pointer r,s,t; /* registers for list traversal */
7512 @<Other local variables for |solve_choices|@>;
7517 @<Get the linear equations started; or |return|
7518 with the control points in place, if linear equations
7521 switch (left_type(s)) {
7522 case mp_end_cycle: case mp_open:
7523 @<Set up equation to match mock curvatures
7524 at $z_k$; then |goto found| with $\theta_n$
7525 adjusted to equal $\theta_0$, if a cycle has ended@>;
7528 @<Set up equation for a curl at $\theta_n$
7532 @<Calculate the given value of $\theta_n$
7535 } /* there are no other cases */
7540 @<Finish choosing angles and assigning control points@>;
7543 @ On the first time through the loop, we have |k=0| and |r| is not yet
7544 defined. The first linear equation, if any, will have $A_0=B_0=0$.
7546 @<Get the linear equations started...@>=
7547 switch (right_type(s)) {
7549 if ( left_type(t)==mp_given ) {
7550 @<Reduce to simple case of two givens and |return|@>
7552 @<Set up the equation for a given value of $\theta_0$@>;
7556 if ( left_type(t)==mp_curl ) {
7557 @<Reduce to simple case of straight line and |return|@>
7559 @<Set up the equation for a curl at $\theta_0$@>;
7563 mp->uu[0]=0; mp->vv[0]=0; mp->ww[0]=fraction_one;
7564 /* this begins a cycle */
7566 } /* there are no other cases */
7568 @ The general equation that specifies equality of mock curvature at $z_k$ is
7569 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7570 as derived above. We want to combine this with the already-derived equation
7571 $\theta_{k-1}+u_{k-1}\theta_k=v_{k-1}+w_{k-1}\theta_0$ in order to obtain
7573 $\theta_k+u_k\theta\k=v_k+w_k\theta_0$. This can be done by dividing the
7575 $$(B_k-u_{k-1}A_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k-A_kv_{k-1}
7576 -A_kw_{k-1}\theta_0$$
7577 by $B_k-u_{k-1}A_k+C_k$. The trick is to do this carefully with
7578 fixed-point arithmetic, avoiding the chance of overflow while retaining
7581 The calculations will be performed in several registers that
7582 provide temporary storage for intermediate quantities.
7584 @<Other local variables for |solve_choices|@>=
7585 fraction aa,bb,cc,ff,acc; /* temporary registers */
7586 scaled dd,ee; /* likewise, but |scaled| */
7587 scaled lt,rt; /* tension values */
7589 @ @<Set up equation to match mock curvatures...@>=
7590 { @<Calculate the values $\\{aa}=A_k/B_k$, $\\{bb}=D_k/C_k$,
7591 $\\{dd}=(3-\alpha_{k-1})d_{k,k+1}$, $\\{ee}=(3-\beta\k)d_{k-1,k}$,
7592 and $\\{cc}=(B_k-u_{k-1}A_k)/B_k$@>;
7593 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>;
7594 mp->uu[k]=mp_take_fraction(mp, ff,bb);
7595 @<Calculate the values of $v_k$ and $w_k$@>;
7596 if ( left_type(s)==mp_end_cycle ) {
7597 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>;
7601 @ Since tension values are never less than 3/4, the values |aa| and
7602 |bb| computed here are never more than 4/5.
7604 @<Calculate the values $\\{aa}=...@>=
7605 if ( abs(right_tension(r))==unity) {
7606 aa=fraction_half; dd=2*mp->delta[k];
7608 aa=mp_make_fraction(mp, unity,3*abs(right_tension(r))-unity);
7609 dd=mp_take_fraction(mp, mp->delta[k],
7610 fraction_three-mp_make_fraction(mp, unity,abs(right_tension(r))));
7612 if ( abs(left_tension(t))==unity ){
7613 bb=fraction_half; ee=2*mp->delta[k-1];
7615 bb=mp_make_fraction(mp, unity,3*abs(left_tension(t))-unity);
7616 ee=mp_take_fraction(mp, mp->delta[k-1],
7617 fraction_three-mp_make_fraction(mp, unity,abs(left_tension(t))));
7619 cc=fraction_one-mp_take_fraction(mp, mp->uu[k-1],aa)
7621 @ The ratio to be calculated in this step can be written in the form
7622 $$\beta_k^2\cdot\\{ee}\over\beta_k^2\cdot\\{ee}+\alpha_k^2\cdot
7623 \\{cc}\cdot\\{dd},$$
7624 because of the quantities just calculated. The values of |dd| and |ee|
7625 will not be needed after this step has been performed.
7627 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>=
7628 dd=mp_take_fraction(mp, dd,cc); lt=abs(left_tension(s)); rt=abs(right_tension(s));
7629 if ( lt!=rt ) { /* $\beta_k^{-1}\ne\alpha_k^{-1}$ */
7631 ff=mp_make_fraction(mp, lt,rt);
7632 ff=mp_take_fraction(mp, ff,ff); /* $\alpha_k^2/\beta_k^2$ */
7633 dd=mp_take_fraction(mp, dd,ff);
7635 ff=mp_make_fraction(mp, rt,lt);
7636 ff=mp_take_fraction(mp, ff,ff); /* $\beta_k^2/\alpha_k^2$ */
7637 ee=mp_take_fraction(mp, ee,ff);
7640 ff=mp_make_fraction(mp, ee,ee+dd)
7642 @ The value of $u_{k-1}$ will be |<=1| except when $k=1$ and the previous
7643 equation was specified by a curl. In that case we must use a special
7644 method of computation to prevent overflow.
7646 Fortunately, the calculations turn out to be even simpler in this ``hard''
7647 case. The curl equation makes $w_0=0$ and $v_0=-u_0\psi_1$, hence
7648 $-B_1\psi_1-A_1v_0=-(B_1-u_0A_1)\psi_1=-\\{cc}\cdot B_1\psi_1$.
7650 @<Calculate the values of $v_k$ and $w_k$@>=
7651 acc=-mp_take_fraction(mp, mp->psi[k+1],mp->uu[k]);
7652 if ( right_type(r)==mp_curl ) {
7654 mp->vv[k]=acc-mp_take_fraction(mp, mp->psi[1],fraction_one-ff);
7656 ff=mp_make_fraction(mp, fraction_one-ff,cc); /* this is
7657 $B_k/(C_k+B_k-u_{k-1}A_k)<5$ */
7658 acc=acc-mp_take_fraction(mp, mp->psi[k],ff);
7659 ff=mp_take_fraction(mp, ff,aa); /* this is $A_k/(C_k+B_k-u_{k-1}A_k)$ */
7660 mp->vv[k]=acc-mp_take_fraction(mp, mp->vv[k-1],ff);
7661 if ( mp->ww[k-1]==0 ) mp->ww[k]=0;
7662 else mp->ww[k]=-mp_take_fraction(mp, mp->ww[k-1],ff);
7665 @ When a complete cycle has been traversed, we have $\theta_k+u_k\theta\k=
7666 v_k+w_k\theta_0$, for |1<=k<=n|. We would like to determine the value of
7667 $\theta_n$ and reduce the system to the form $\theta_k+u_k\theta\k=v_k$
7668 for |0<=k<n|, so that the cyclic case can be finished up just as if there
7671 The idea in the following code is to observe that
7672 $$\eqalign{\theta_n&=v_n+w_n\theta_0-u_n\theta_1=\cdots\cr
7673 &=v_n+w_n\theta_0-u_n\bigl(v_1+w_1\theta_0-u_1(v_2+\cdots
7674 -u_{n-2}(v_{n-1}+w_{n-1}\theta_0-u_{n-1}\theta_0))\bigr),\cr}$$
7675 so we can solve for $\theta_n=\theta_0$.
7677 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>=
7679 aa=0; bb=fraction_one; /* we have |k=n| */
7682 aa=mp->vv[k]-mp_take_fraction(mp, aa,mp->uu[k]);
7683 bb=mp->ww[k]-mp_take_fraction(mp, bb,mp->uu[k]);
7684 } while (k!=n); /* now $\theta_n=\\{aa}+\\{bb}\cdot\theta_n$ */
7685 aa=mp_make_fraction(mp, aa,fraction_one-bb);
7686 mp->theta[n]=aa; mp->vv[0]=aa;
7687 for (k=1;k<=n-1;k++) {
7688 mp->vv[k]=mp->vv[k]+mp_take_fraction(mp, aa,mp->ww[k]);
7693 @ @d reduce_angle(A) if ( abs((A))>one_eighty_deg ) {
7694 if ( (A)>0 ) (A)=(A)-three_sixty_deg; else (A)=(A)+three_sixty_deg; }
7696 @<Calculate the given value of $\theta_n$...@>=
7698 mp->theta[n]=left_given(s)-mp_n_arg(mp, mp->delta_x[n-1],mp->delta_y[n-1]);
7699 reduce_angle(mp->theta[n]);
7703 @ @<Set up the equation for a given value of $\theta_0$@>=
7705 mp->vv[0]=right_given(s)-mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7706 reduce_angle(mp->vv[0]);
7707 mp->uu[0]=0; mp->ww[0]=0;
7710 @ @<Set up the equation for a curl at $\theta_0$@>=
7711 { cc=right_curl(s); lt=abs(left_tension(t)); rt=abs(right_tension(s));
7712 if ( (rt==unity)&&(lt==unity) )
7713 mp->uu[0]=mp_make_fraction(mp, cc+cc+unity,cc+two);
7715 mp->uu[0]=mp_curl_ratio(mp, cc,rt,lt);
7716 mp->vv[0]=-mp_take_fraction(mp, mp->psi[1],mp->uu[0]); mp->ww[0]=0;
7719 @ @<Set up equation for a curl at $\theta_n$...@>=
7720 { cc=left_curl(s); lt=abs(left_tension(s)); rt=abs(right_tension(r));
7721 if ( (rt==unity)&&(lt==unity) )
7722 ff=mp_make_fraction(mp, cc+cc+unity,cc+two);
7724 ff=mp_curl_ratio(mp, cc,lt,rt);
7725 mp->theta[n]=-mp_make_fraction(mp, mp_take_fraction(mp, mp->vv[n-1],ff),
7726 fraction_one-mp_take_fraction(mp, ff,mp->uu[n-1]));
7730 @ The |curl_ratio| subroutine has three arguments, which our previous notation
7731 encourages us to call $\gamma$, $\alpha^{-1}$, and $\beta^{-1}$. It is
7732 a somewhat tedious program to calculate
7733 $${(3-\alpha)\alpha^2\gamma+\beta^3\over
7734 \alpha^3\gamma+(3-\beta)\beta^2},$$
7735 with the result reduced to 4 if it exceeds 4. (This reduction of curl
7736 is necessary only if the curl and tension are both large.)
7737 The values of $\alpha$ and $\beta$ will be at most~4/3.
7739 @<Declare subroutines needed by |solve_choices|@>=
7740 fraction mp_curl_ratio (MP mp,scaled gamma, scaled a_tension,
7742 fraction alpha,beta,num,denom,ff; /* registers */
7743 alpha=mp_make_fraction(mp, unity,a_tension);
7744 beta=mp_make_fraction(mp, unity,b_tension);
7745 if ( alpha<=beta ) {
7746 ff=mp_make_fraction(mp, alpha,beta); ff=mp_take_fraction(mp, ff,ff);
7747 gamma=mp_take_fraction(mp, gamma,ff);
7748 beta=beta / 010000; /* convert |fraction| to |scaled| */
7749 denom=mp_take_fraction(mp, gamma,alpha)+three-beta;
7750 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7752 ff=mp_make_fraction(mp, beta,alpha); ff=mp_take_fraction(mp, ff,ff);
7753 beta=mp_take_fraction(mp, beta,ff) / 010000; /* convert |fraction| to |scaled| */
7754 denom=mp_take_fraction(mp, gamma,alpha)+(ff / 1365)-beta;
7755 /* $1365\approx 2^{12}/3$ */
7756 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7758 if ( num>=denom+denom+denom+denom ) return fraction_four;
7759 else return mp_make_fraction(mp, num,denom);
7762 @ We're in the home stretch now.
7764 @<Finish choosing angles and assigning control points@>=
7765 for (k=n-1;k>=0;k--) {
7766 mp->theta[k]=mp->vv[k]-mp_take_fraction(mp,mp->theta[k+1],mp->uu[k]);
7771 mp_n_sin_cos(mp, mp->theta[k]); mp->st=mp->n_sin; mp->ct=mp->n_cos;
7772 mp_n_sin_cos(mp, -mp->psi[k+1]-mp->theta[k+1]); mp->sf=mp->n_sin; mp->cf=mp->n_cos;
7773 mp_set_controls(mp, s,t,k);
7777 @ The |set_controls| routine actually puts the control points into
7778 a pair of consecutive nodes |p| and~|q|. Global variables are used to
7779 record the values of $\sin\theta$, $\cos\theta$, $\sin\phi$, and
7780 $\cos\phi$ needed in this calculation.
7786 fraction cf; /* sines and cosines */
7788 @ @<Declare subroutines needed by |solve_choices|@>=
7789 void mp_set_controls (MP mp,pointer p, pointer q, integer k) {
7790 fraction rr,ss; /* velocities, divided by thrice the tension */
7791 scaled lt,rt; /* tensions */
7792 fraction sine; /* $\sin(\theta+\phi)$ */
7793 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7794 rr=mp_velocity(mp, mp->st,mp->ct,mp->sf,mp->cf,rt);
7795 ss=mp_velocity(mp, mp->sf,mp->cf,mp->st,mp->ct,lt);
7796 if ( (right_tension(p)<0)||(left_tension(q)<0) ) {
7797 @<Decrease the velocities,
7798 if necessary, to stay inside the bounding triangle@>;
7800 right_x(p)=x_coord(p)+mp_take_fraction(mp,
7801 mp_take_fraction(mp, mp->delta_x[k],mp->ct)-
7802 mp_take_fraction(mp, mp->delta_y[k],mp->st),rr);
7803 right_y(p)=y_coord(p)+mp_take_fraction(mp,
7804 mp_take_fraction(mp, mp->delta_y[k],mp->ct)+
7805 mp_take_fraction(mp, mp->delta_x[k],mp->st),rr);
7806 left_x(q)=x_coord(q)-mp_take_fraction(mp,
7807 mp_take_fraction(mp, mp->delta_x[k],mp->cf)+
7808 mp_take_fraction(mp, mp->delta_y[k],mp->sf),ss);
7809 left_y(q)=y_coord(q)-mp_take_fraction(mp,
7810 mp_take_fraction(mp, mp->delta_y[k],mp->cf)-
7811 mp_take_fraction(mp, mp->delta_x[k],mp->sf),ss);
7812 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7815 @ The boundedness conditions $\\{rr}\L\sin\phi\,/\sin(\theta+\phi)$ and
7816 $\\{ss}\L\sin\theta\,/\sin(\theta+\phi)$ are to be enforced if $\sin\theta$,
7817 $\sin\phi$, and $\sin(\theta+\phi)$ all have the same sign. Otherwise
7818 there is no ``bounding triangle.''
7819 @:at_least_}{\&{atleast} primitive@>
7821 @<Decrease the velocities, if necessary...@>=
7822 if (((mp->st>=0)&&(mp->sf>=0))||((mp->st<=0)&&(mp->sf<=0)) ) {
7823 sine=mp_take_fraction(mp, abs(mp->st),mp->cf)+
7824 mp_take_fraction(mp, abs(mp->sf),mp->ct);
7826 sine=mp_take_fraction(mp, sine,fraction_one+unity); /* safety factor */
7827 if ( right_tension(p)<0 )
7828 if ( mp_ab_vs_cd(mp, abs(mp->sf),fraction_one,rr,sine)<0 )
7829 rr=mp_make_fraction(mp, abs(mp->sf),sine);
7830 if ( left_tension(q)<0 )
7831 if ( mp_ab_vs_cd(mp, abs(mp->st),fraction_one,ss,sine)<0 )
7832 ss=mp_make_fraction(mp, abs(mp->st),sine);
7836 @ Only the simple cases remain to be handled.
7838 @<Reduce to simple case of two givens and |return|@>=
7840 aa=mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7841 mp_n_sin_cos(mp, right_given(p)-aa); mp->ct=mp->n_cos; mp->st=mp->n_sin;
7842 mp_n_sin_cos(mp, left_given(q)-aa); mp->cf=mp->n_cos; mp->sf=-mp->n_sin;
7843 mp_set_controls(mp, p,q,0); return;
7846 @ @<Reduce to simple case of straight line and |return|@>=
7848 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7849 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7851 if ( mp->delta_x[0]>=0 ) right_x(p)=x_coord(p)+((mp->delta_x[0]+1) / 3);
7852 else right_x(p)=x_coord(p)+((mp->delta_x[0]-1) / 3);
7853 if ( mp->delta_y[0]>=0 ) right_y(p)=y_coord(p)+((mp->delta_y[0]+1) / 3);
7854 else right_y(p)=y_coord(p)+((mp->delta_y[0]-1) / 3);
7856 ff=mp_make_fraction(mp, unity,3*rt); /* $\alpha/3$ */
7857 right_x(p)=x_coord(p)+mp_take_fraction(mp, mp->delta_x[0],ff);
7858 right_y(p)=y_coord(p)+mp_take_fraction(mp, mp->delta_y[0],ff);
7861 if ( mp->delta_x[0]>=0 ) left_x(q)=x_coord(q)-((mp->delta_x[0]+1) / 3);
7862 else left_x(q)=x_coord(q)-((mp->delta_x[0]-1) / 3);
7863 if ( mp->delta_y[0]>=0 ) left_y(q)=y_coord(q)-((mp->delta_y[0]+1) / 3);
7864 else left_y(q)=y_coord(q)-((mp->delta_y[0]-1) / 3);
7866 ff=mp_make_fraction(mp, unity,3*lt); /* $\beta/3$ */
7867 left_x(q)=x_coord(q)-mp_take_fraction(mp, mp->delta_x[0],ff);
7868 left_y(q)=y_coord(q)-mp_take_fraction(mp, mp->delta_y[0],ff);
7873 @* \[19] Measuring paths.
7874 \MP's \&{llcorner}, \&{lrcorner}, \&{ulcorner}, and \&{urcorner} operators
7875 allow the user to measure the bounding box of anything that can go into a
7876 picture. It's easy to get rough bounds on the $x$ and $y$ extent of a path
7877 by just finding the bounding box of the knots and the control points. We
7878 need a more accurate version of the bounding box, but we can still use the
7879 easy estimate to save time by focusing on the interesting parts of the path.
7881 @ Computing an accurate bounding box involves a theme that will come up again
7882 and again. Given a Bernshte{\u\i}n polynomial
7883 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
7884 $$B(z_0,z_1,\ldots,z_n;t)=\sum_k{n\choose k}t^k(1-t)^{n-k}z_k,$$
7885 we can conveniently bisect its range as follows:
7888 \textindent{1)} Let $z_k^{(0)}=z_k$, for |0<=k<=n|.
7891 \textindent{2)} Let $z_k^{(j+1)}={1\over2}(z_k^{(j)}+z\k^{(j)})$, for
7892 |0<=k<n-j|, for |0<=j<n|.
7896 $$B(z_0,z_1,\ldots,z_n;t)=B(z_0^{(0)},z_0^{(1)},\ldots,z_0^{(n)};2t)
7897 =B(z_0^{(n)},z_1^{(n-1)},\ldots,z_n^{(0)};2t-1).$$
7898 This formula gives us the coefficients of polynomials to use over the ranges
7899 $0\L t\L{1\over2}$ and ${1\over2}\L t\L1$.
7901 @ Now here's a subroutine that's handy for all sorts of path computations:
7902 Given a quadratic polynomial $B(a,b,c;t)$, the |crossing_point| function
7903 returns the unique |fraction| value |t| between 0 and~1 at which
7904 $B(a,b,c;t)$ changes from positive to negative, or returns
7905 |t=fraction_one+1| if no such value exists. If |a<0| (so that $B(a,b,c;t)$
7906 is already negative at |t=0|), |crossing_point| returns the value zero.
7908 @d no_crossing { return (fraction_one+1); }
7909 @d one_crossing { return fraction_one; }
7910 @d zero_crossing { return 0; }
7911 @d mp_crossing_point(M,A,B,C) mp_do_crossing_point(A,B,C)
7913 @c fraction mp_do_crossing_point (integer a, integer b, integer c) {
7914 integer d; /* recursive counter */
7915 integer x,xx,x0,x1,x2; /* temporary registers for bisection */
7916 if ( a<0 ) zero_crossing;
7919 if ( c>0 ) { no_crossing; }
7920 else if ( (a==0)&&(b==0) ) { no_crossing;}
7921 else { one_crossing; }
7923 if ( a==0 ) zero_crossing;
7924 } else if ( a==0 ) {
7925 if ( b<=0 ) zero_crossing;
7927 @<Use bisection to find the crossing point, if one exists@>;
7930 @ The general bisection method is quite simple when $n=2$, hence
7931 |crossing_point| does not take much time. At each stage in the
7932 recursion we have a subinterval defined by |l| and~|j| such that
7933 $B(a,b,c;2^{-l}(j+t))=B(x_0,x_1,x_2;t)$, and we want to ``zero in'' on
7934 the subinterval where $x_0\G0$ and $\min(x_1,x_2)<0$.
7936 It is convenient for purposes of calculation to combine the values
7937 of |l| and~|j| in a single variable $d=2^l+j$, because the operation
7938 of bisection then corresponds simply to doubling $d$ and possibly
7939 adding~1. Furthermore it proves to be convenient to modify
7940 our previous conventions for bisection slightly, maintaining the
7941 variables $X_0=2^lx_0$, $X_1=2^l(x_0-x_1)$, and $X_2=2^l(x_1-x_2)$.
7942 With these variables the conditions $x_0\ge0$ and $\min(x_1,x_2)<0$ are
7943 equivalent to $\max(X_1,X_1+X_2)>X_0\ge0$.
7945 The following code maintains the invariant relations
7946 $0\L|x0|<\max(|x1|,|x1|+|x2|)$,
7947 $\vert|x1|\vert<2^{30}$, $\vert|x2|\vert<2^{30}$;
7948 it has been constructed in such a way that no arithmetic overflow
7949 will occur if the inputs satisfy
7950 $a<2^{30}$, $\vert a-b\vert<2^{30}$, and $\vert b-c\vert<2^{30}$.
7952 @<Use bisection to find the crossing point...@>=
7953 d=1; x0=a; x1=a-b; x2=b-c;
7964 if ( x<=x0 ) { if ( x+x2<=x0 ) no_crossing; }
7968 } while (d<fraction_one);
7969 return (d-fraction_one)
7971 @ Here is a routine that computes the $x$ or $y$ coordinate of the point on
7972 a cubic corresponding to the |fraction| value~|t|.
7974 It is convenient to define a \.{WEB} macro |t_of_the_way| such that
7975 |t_of_the_way(a,b)| expands to |a-(a-b)*t|, i.e., to |t[a,b]|.
7977 @d t_of_the_way(A,B) ((A)-mp_take_fraction(mp,((A)-(B)),t))
7979 @c scaled mp_eval_cubic (MP mp,pointer p, pointer q, fraction t) {
7980 scaled x1,x2,x3; /* intermediate values */
7981 x1=t_of_the_way(knot_coord(p),right_coord(p));
7982 x2=t_of_the_way(right_coord(p),left_coord(q));
7983 x3=t_of_the_way(left_coord(q),knot_coord(q));
7984 x1=t_of_the_way(x1,x2);
7985 x2=t_of_the_way(x2,x3);
7986 return t_of_the_way(x1,x2);
7989 @ The actual bounding box information is stored in global variables.
7990 Since it is convenient to address the $x$ and $y$ information
7991 separately, we define arrays indexed by |x_code..y_code| and use
7992 macros to give them more convenient names.
7996 mp_x_code=0, /* index for |minx| and |maxx| */
7997 mp_y_code /* index for |miny| and |maxy| */
8001 @d minx mp->bbmin[mp_x_code]
8002 @d maxx mp->bbmax[mp_x_code]
8003 @d miny mp->bbmin[mp_y_code]
8004 @d maxy mp->bbmax[mp_y_code]
8007 scaled bbmin[mp_y_code+1];
8008 scaled bbmax[mp_y_code+1];
8009 /* the result of procedures that compute bounding box information */
8011 @ Now we're ready for the key part of the bounding box computation.
8012 The |bound_cubic| procedure updates |bbmin[c]| and |bbmax[c]| based on
8013 $$B(\hbox{|knot_coord(p)|}, \hbox{|right_coord(p)|},
8014 \hbox{|left_coord(q)|}, \hbox{|knot_coord(q)|};t)
8016 for $0<t\le1$. In other words, the procedure adjusts the bounds to
8017 accommodate |knot_coord(q)| and any extremes over the range $0<t<1$.
8018 The |c| parameter is |x_code| or |y_code|.
8020 @c void mp_bound_cubic (MP mp,pointer p, pointer q, small_number c) {
8021 boolean wavy; /* whether we need to look for extremes */
8022 scaled del1,del2,del3,del,dmax; /* proportional to the control
8023 points of a quadratic derived from a cubic */
8024 fraction t,tt; /* where a quadratic crosses zero */
8025 scaled x; /* a value that |bbmin[c]| and |bbmax[c]| must accommodate */
8027 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8028 @<Check the control points against the bounding box and set |wavy:=true|
8029 if any of them lie outside@>;
8031 del1=right_coord(p)-knot_coord(p);
8032 del2=left_coord(q)-right_coord(p);
8033 del3=knot_coord(q)-left_coord(q);
8034 @<Scale up |del1|, |del2|, and |del3| for greater accuracy;
8035 also set |del| to the first nonzero element of |(del1,del2,del3)|@>;
8037 negate(del1); negate(del2); negate(del3);
8039 t=mp_crossing_point(mp, del1,del2,del3);
8040 if ( t<fraction_one ) {
8041 @<Test the extremes of the cubic against the bounding box@>;
8046 @ @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>=
8047 if ( x<mp->bbmin[c] ) mp->bbmin[c]=x;
8048 if ( x>mp->bbmax[c] ) mp->bbmax[c]=x
8050 @ @<Check the control points against the bounding box and set...@>=
8052 if ( mp->bbmin[c]<=right_coord(p) )
8053 if ( right_coord(p)<=mp->bbmax[c] )
8054 if ( mp->bbmin[c]<=left_coord(q) )
8055 if ( left_coord(q)<=mp->bbmax[c] )
8058 @ If |del1=del2=del3=0|, it's impossible to obey the title of this
8059 section. We just set |del=0| in that case.
8061 @<Scale up |del1|, |del2|, and |del3| for greater accuracy...@>=
8062 if ( del1!=0 ) del=del1;
8063 else if ( del2!=0 ) del=del2;
8067 if ( abs(del2)>dmax ) dmax=abs(del2);
8068 if ( abs(del3)>dmax ) dmax=abs(del3);
8069 while ( dmax<fraction_half ) {
8070 dmax+=dmax; del1+=del1; del2+=del2; del3+=del3;
8074 @ Since |crossing_point| has tried to choose |t| so that
8075 $B(|del1|,|del2|,|del3|;\tau)$ crosses zero at $\tau=|t|$ with negative
8076 slope, the value of |del2| computed below should not be positive.
8077 But rounding error could make it slightly positive in which case we
8078 must cut it to zero to avoid confusion.
8080 @<Test the extremes of the cubic against the bounding box@>=
8082 x=mp_eval_cubic(mp, p,q,t);
8083 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8084 del2=t_of_the_way(del2,del3);
8085 /* now |0,del2,del3| represent the derivative on the remaining interval */
8086 if ( del2>0 ) del2=0;
8087 tt=mp_crossing_point(mp, 0,-del2,-del3);
8088 if ( tt<fraction_one ) {
8089 @<Test the second extreme against the bounding box@>;
8093 @ @<Test the second extreme against the bounding box@>=
8095 x=mp_eval_cubic(mp, p,q,t_of_the_way(tt,fraction_one));
8096 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8099 @ Finding the bounding box of a path is basically a matter of applying
8100 |bound_cubic| twice for each pair of adjacent knots.
8102 @c void mp_path_bbox (MP mp,pointer h) {
8103 pointer p,q; /* a pair of adjacent knots */
8104 minx=x_coord(h); miny=y_coord(h);
8105 maxx=minx; maxy=miny;
8108 if ( right_type(p)==mp_endpoint ) return;
8110 mp_bound_cubic(mp, x_loc(p),x_loc(q),mp_x_code);
8111 mp_bound_cubic(mp, y_loc(p),y_loc(q),mp_y_code);
8116 @ Another important way to measure a path is to find its arc length. This
8117 is best done by using the general bisection algorithm to subdivide the path
8118 until obtaining ``well behaved'' subpaths whose arc lengths can be approximated
8121 Since the arc length is the integral with respect to time of the magnitude of
8122 the velocity, it is natural to use Simpson's rule for the approximation.
8124 If $\dot B(t)$ is the spline velocity, Simpson's rule gives
8125 $$ \vb\dot B(0)\vb + 4\vb\dot B({1\over2})\vb + \vb\dot B(1)\vb \over 6 $$
8126 for the arc length of a path of length~1. For a cubic spline
8127 $B(z_0,z_1,z_2,z_3;t)$, the time derivative $\dot B(t)$ is
8128 $3B(dz_0,dz_1,dz_2;t)$, where $dz_i=z_{i+1}-z_i$. Hence the arc length
8130 $$ {\vb dz_0\vb \over 2} + 2\vb dz_{02}\vb + {\vb dz_2\vb \over 2}, $$
8132 $$ dz_{02}={1\over2}\left({dz_0+dz_1\over 2}+{dz_1+dz_2\over 2}\right)$$
8133 is the result of the bisection algorithm.
8135 @ The remaining problem is how to decide when a subpath is ``well behaved.''
8136 This could be done via the theoretical error bound for Simpson's rule,
8138 but this is impractical because it requires an estimate of the fourth
8139 derivative of the quantity being integrated. It is much easier to just perform
8140 a bisection step and see how much the arc length estimate changes. Since the
8141 error for Simpson's rule is proportional to the fourth power of the sample
8142 spacing, the remaining error is typically about $1\over16$ of the amount of
8143 the change. We say ``typically'' because the error has a pseudo-random behavior
8144 that could cause the two estimates to agree when each contain large errors.
8146 To protect against disasters such as undetected cusps, the bisection process
8147 should always continue until all the $dz_i$ vectors belong to a single
8148 $90^\circ$ sector. This ensures that no point on the spline can have velocity
8149 less than 70\% of the minimum of $\vb dz_0\vb$, $\vb dz_1\vb$ and $\vb dz_2\vb$.
8150 If such a spline happens to produce an erroneous arc length estimate that
8151 is little changed by bisection, the amount of the error is likely to be fairly
8152 small. We will try to arrange things so that freak accidents of this type do
8153 not destroy the inverse relationship between the \&{arclength} and
8154 \&{arctime} operations.
8155 @:arclength_}{\&{arclength} primitive@>
8156 @:arctime_}{\&{arctime} primitive@>
8158 @ The \&{arclength} and \&{arctime} operations are both based on a recursive
8160 function that finds the arc length of a cubic spline given $dz_0$, $dz_1$,
8161 $dz_2$. This |arc_test| routine also takes an arc length goal |a_goal| and
8162 returns the time when the arc length reaches |a_goal| if there is such a time.
8163 Thus the return value is either an arc length less than |a_goal| or, if the
8164 arc length would be at least |a_goal|, it returns a time value decreased by
8165 |two|. This allows the caller to use the sign of the result to distinguish
8166 between arc lengths and time values. On certain types of overflow, it is
8167 possible for |a_goal| and the result of |arc_test| both to be |el_gordo|.
8168 Otherwise, the result is always less than |a_goal|.
8170 Rather than halving the control point coordinates on each recursive call to
8171 |arc_test|, it is better to keep them proportional to velocity on the original
8172 curve and halve the results instead. This means that recursive calls can
8173 potentially use larger error tolerances in their arc length estimates. How
8174 much larger depends on to what extent the errors behave as though they are
8175 independent of each other. To save computing time, we use optimistic assumptions
8176 and increase the tolerance by a factor of about $\sqrt2$ for each recursive
8179 In addition to the tolerance parameter, |arc_test| should also have parameters
8180 for ${1\over3}\vb\dot B(0)\vb$, ${2\over3}\vb\dot B({1\over2})\vb$, and
8181 ${1\over3}\vb\dot B(1)\vb$. These quantities are relatively expensive to compute
8182 and they are needed in different instances of |arc_test|.
8184 @c @t\4@>@<Declare subroutines needed by |arc_test|@>;
8185 scaled mp_arc_test (MP mp, scaled dx0, scaled dy0, scaled dx1, scaled dy1,
8186 scaled dx2, scaled dy2, scaled v0, scaled v02,
8187 scaled v2, scaled a_goal, scaled tol) {
8188 boolean simple; /* are the control points confined to a $90^\circ$ sector? */
8189 scaled dx01, dy01, dx12, dy12, dx02, dy02; /* bisection results */
8191 /* twice the velocity magnitudes at $t={1\over4}$ and $t={3\over4}$ */
8192 scaled arc; /* best arc length estimate before recursion */
8193 @<Other local variables in |arc_test|@>;
8194 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,
8196 @<Initialize |v002|, |v022|, and the arc length estimate |arc|; if it overflows
8197 set |arc_test| and |return|@>;
8198 @<Test if the control points are confined to one quadrant or rotating them
8199 $45^\circ$ would put them in one quadrant. Then set |simple| appropriately@>;
8200 if ( simple && (abs(arc-v02-halfp(v0+v2)) <= tol) ) {
8201 if ( arc < a_goal ) {
8204 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to
8205 that time minus |two|@>;
8208 @<Use one or two recursive calls to compute the |arc_test| function@>;
8212 @ The |tol| value should by multiplied by $\sqrt 2$ before making recursive
8213 calls, but $1.5$ is an adequate approximation. It is best to avoid using
8214 |make_fraction| in this inner loop.
8217 @<Use one or two recursive calls to compute the |arc_test| function@>=
8219 @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is as
8220 large as possible@>;
8221 tol = tol + halfp(tol);
8222 a = mp_arc_test(mp, dx0,dy0, dx01,dy01, dx02,dy02, v0, v002,
8223 halfp(v02), a_new, tol);
8225 return (-halfp(two-a));
8227 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>;
8228 b = mp_arc_test(mp, dx02,dy02, dx12,dy12, dx2,dy2,
8229 halfp(v02), v022, v2, a_new, tol);
8231 return (-halfp(-b) - half_unit);
8233 return (a + half(b-a));
8237 @ @<Other local variables in |arc_test|@>=
8238 scaled a,b; /* results of recursive calls */
8239 scaled a_new,a_aux; /* the sum of these gives the |a_goal| */
8241 @ @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is...@>=
8242 a_aux = el_gordo - a_goal;
8243 if ( a_goal > a_aux ) {
8244 a_aux = a_goal - a_aux;
8247 a_new = a_goal + a_goal;
8251 @ There is no need to maintain |a_aux| at this point so we use it as a temporary
8252 to force the additions and subtractions to be done in an order that avoids
8255 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>=
8258 a_new = a_new + a_aux;
8261 @ This code assumes all {\it dx} and {\it dy} variables have magnitude less than
8262 |fraction_four|. To simplify the rest of the |arc_test| routine, we strengthen
8263 this assumption by requiring the norm of each $({\it dx},{\it dy})$ pair to obey
8264 this bound. Note that recursive calls will maintain this invariant.
8266 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,...@>=
8267 dx01 = half(dx0 + dx1);
8268 dx12 = half(dx1 + dx2);
8269 dx02 = half(dx01 + dx12);
8270 dy01 = half(dy0 + dy1);
8271 dy12 = half(dy1 + dy2);
8272 dy02 = half(dy01 + dy12)
8274 @ We should be careful to keep |arc<el_gordo| so that calling |arc_test| with
8275 |a_goal=el_gordo| is guaranteed to yield the arc length.
8277 @<Initialize |v002|, |v022|, and the arc length estimate |arc|;...@>=
8278 v002 = mp_pyth_add(mp, dx01+half(dx0+dx02), dy01+half(dy0+dy02));
8279 v022 = mp_pyth_add(mp, dx12+half(dx02+dx2), dy12+half(dy02+dy2));
8281 arc1 = v002 + half(halfp(v0+tmp) - v002);
8282 arc = v022 + half(halfp(v2+tmp) - v022);
8283 if ( (arc < el_gordo-arc1) ) {
8286 mp->arith_error = true;
8287 if ( a_goal==el_gordo ) return (el_gordo);
8291 @ @<Other local variables in |arc_test|@>=
8292 scaled tmp, tmp2; /* all purpose temporary registers */
8293 scaled arc1; /* arc length estimate for the first half */
8295 @ @<Test if the control points are confined to one quadrant or rotating...@>=
8296 simple = ((dx0>=0) && (dx1>=0) && (dx2>=0)) ||
8297 ((dx0<=0) && (dx1<=0) && (dx2<=0));
8299 simple = ((dy0>=0) && (dy1>=0) && (dy2>=0)) ||
8300 ((dy0<=0) && (dy1<=0) && (dy2<=0));
8302 simple = ((dx0>=dy0) && (dx1>=dy1) && (dx2>=dy2)) ||
8303 ((dx0<=dy0) && (dx1<=dy1) && (dx2<=dy2));
8305 simple = ((-dx0>=dy0) && (-dx1>=dy1) && (-dx2>=dy2)) ||
8306 ((-dx0<=dy0) && (-dx1<=dy1) && (-dx2<=dy2));
8309 @ Since Simpson's rule is based on approximating the integrand by a parabola,
8311 it is appropriate to use the same approximation to decide when the integral
8312 reaches the intermediate value |a_goal|. At this point
8314 {\vb\dot B(0)\vb\over 3} &= \hbox{|v0|}, \qquad
8315 {\vb\dot B({1\over4})\vb\over 3} = {\hbox{|v002|}\over 2}, \qquad
8316 {\vb\dot B({1\over2})\vb\over 3} = {\hbox{|v02|}\over 2}, \cr
8317 {\vb\dot B({3\over4})\vb\over 3} &= {\hbox{|v022|}\over 2}, \qquad
8318 {\vb\dot B(1)\vb\over 3} = \hbox{|v2|} \cr
8322 $$ {\vb\dot B(t)\vb\over 3} \approx
8323 \cases{B\left(\hbox{|v0|},
8324 \hbox{|v002|}-{1\over 2}\hbox{|v0|}-{1\over 4}\hbox{|v02|},
8325 {1\over 2}\hbox{|v02|}; 2t \right)&
8326 if $t\le{1\over 2}$\cr
8327 B\left({1\over 2}\hbox{|v02|},
8328 \hbox{|v022|}-{1\over 4}\hbox{|v02|}-{1\over 2}\hbox{|v2|},
8329 \hbox{|v2|}; 2t-1 \right)&
8330 if $t\ge{1\over 2}$.\cr}
8333 We can integrate $\vb\dot B(t)\vb$ by using
8334 $$\int 3B(a,b,c;\tau)\,dt =
8335 {B(0,a,a+b,a+b+c;\tau) + {\rm constant} \over {d\tau\over dt}}.
8338 This construction allows us to find the time when the arc length reaches
8339 |a_goal| by solving a cubic equation of the form
8340 $$ B(0,a,a+b,a+b+c;\tau) = x, $$
8341 where $\tau$ is $2t$ or $2t+1$, $x$ is |a_goal| or |a_goal-arc1|, and $a$, $b$,
8342 and $c$ are the Bernshte{\u\i}n coefficients from $(*)$ divided by
8343 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
8344 $d\tau\over dt$. We shall define a function |solve_rising_cubic| that finds
8345 $\tau$ given $a$, $b$, $c$, and $x$.
8347 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to...@>=
8349 tmp = (v02 + 2) / 4;
8350 if ( a_goal<=arc1 ) {
8353 (halfp(mp_solve_rising_cubic(mp, tmp2, arc1-tmp2-tmp, tmp, a_goal))- two);
8356 return ((half_unit - two) +
8357 halfp(mp_solve_rising_cubic(mp, tmp, arc-arc1-tmp-tmp2, tmp2, a_goal-arc1)));
8361 @ Here is the |solve_rising_cubic| routine that finds the time~$t$ when
8362 $$ B(0, a, a+b, a+b+c; t) = x. $$
8363 This routine is based on |crossing_point| but is simplified by the
8364 assumptions that $B(a,b,c;t)\ge0$ for $0\le t\le1$ and that |0<=x<=a+b+c|.
8365 If rounding error causes this condition to be violated slightly, we just ignore
8366 it and proceed with binary search. This finds a time when the function value
8367 reaches |x| and the slope is positive.
8369 @<Declare subroutines needed by |arc_test|@>=
8370 scaled mp_solve_rising_cubic (MP mp,scaled a, scaled b, scaled c, scaled x) {
8371 scaled ab, bc, ac; /* bisection results */
8372 integer t; /* $2^k+q$ where unscaled answer is in $[q2^{-k},(q+1)2^{-k})$ */
8373 integer xx; /* temporary for updating |x| */
8374 if ( (a<0) || (c<0) ) mp_confusion(mp, "rising?");
8375 @:this can't happen rising?}{\quad rising?@>
8378 } else if ( x >= a+b+c ) {
8382 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than
8386 @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>;
8387 xx = x - a - ab - ac;
8388 if ( xx < -x ) { x+=x; b=ab; c=ac; }
8389 else { x = x + xx; a=ac; b=mp->bc; t = t+1; };
8390 } while (t < unity);
8395 @ @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>=
8400 @ @d one_third_el_gordo 05252525252 /* upper bound on |a|, |b|, and |c| */
8402 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than...@>=
8403 while ((a>one_third_el_gordo)||(b>one_third_el_gordo)||(c>one_third_el_gordo)) {
8410 @ It is convenient to have a simpler interface to |arc_test| that requires no
8411 unnecessary arguments and ensures that each $({\it dx},{\it dy})$ pair has
8412 length less than |fraction_four|.
8414 @d arc_tol 16 /* quit when change in arc length estimate reaches this */
8416 @c scaled mp_do_arc_test (MP mp,scaled dx0, scaled dy0, scaled dx1,
8417 scaled dy1, scaled dx2, scaled dy2, scaled a_goal) {
8418 scaled v0,v1,v2; /* length of each $({\it dx},{\it dy})$ pair */
8419 scaled v02; /* twice the norm of the quadratic at $t={1\over2}$ */
8420 v0 = mp_pyth_add(mp, dx0,dy0);
8421 v1 = mp_pyth_add(mp, dx1,dy1);
8422 v2 = mp_pyth_add(mp, dx2,dy2);
8423 if ( (v0>=fraction_four) || (v1>=fraction_four) || (v2>=fraction_four) ) {
8424 mp->arith_error = true;
8425 if ( a_goal==el_gordo ) return el_gordo;
8428 v02 = mp_pyth_add(mp, dx1+half(dx0+dx2), dy1+half(dy0+dy2));
8429 return (mp_arc_test(mp, dx0,dy0, dx1,dy1, dx2,dy2,
8430 v0, v02, v2, a_goal, arc_tol));
8434 @ Now it is easy to find the arc length of an entire path.
8436 @c scaled mp_get_arc_length (MP mp,pointer h) {
8437 pointer p,q; /* for traversing the path */
8438 scaled a,a_tot; /* current and total arc lengths */
8441 while ( right_type(p)!=mp_endpoint ){
8443 a = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8444 left_x(q)-right_x(p), left_y(q)-right_y(p),
8445 x_coord(q)-left_x(q), y_coord(q)-left_y(q), el_gordo);
8446 a_tot = mp_slow_add(mp, a, a_tot);
8447 if ( q==h ) break; else p=q;
8453 @ The inverse operation of finding the time on a path~|h| when the arc length
8454 reaches some value |arc0| can also be accomplished via |do_arc_test|. Some care
8455 is required to handle very large times or negative times on cyclic paths. For
8456 non-cyclic paths, |arc0| values that are negative or too large cause
8457 |get_arc_time| to return 0 or the length of path~|h|.
8459 If |arc0| is greater than the arc length of a cyclic path~|h|, the result is a
8460 time value greater than the length of the path. Since it could be much greater,
8461 we must be prepared to compute the arc length of path~|h| and divide this into
8462 |arc0| to find how many multiples of the length of path~|h| to add.
8464 @c scaled mp_get_arc_time (MP mp,pointer h, scaled arc0) {
8465 pointer p,q; /* for traversing the path */
8466 scaled t_tot; /* accumulator for the result */
8467 scaled t; /* the result of |do_arc_test| */
8468 scaled arc; /* portion of |arc0| not used up so far */
8469 integer n; /* number of extra times to go around the cycle */
8471 @<Deal with a negative |arc0| value and |return|@>;
8473 if ( arc0==el_gordo ) decr(arc0);
8477 while ( (right_type(p)!=mp_endpoint) && (arc>0) ) {
8479 t = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8480 left_x(q)-right_x(p), left_y(q)-right_y(p),
8481 x_coord(q)-left_x(q), y_coord(q)-left_y(q), arc);
8482 @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>;
8484 @<Update |t_tot| and |arc| to avoid going around the cyclic
8485 path too many times but set |arith_error:=true| and |goto done| on
8494 @ @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>=
8495 if ( t<0 ) { t_tot = t_tot + t + two; arc = 0; }
8496 else { t_tot = t_tot + unity; arc = arc - t; }
8498 @ @<Deal with a negative |arc0| value and |return|@>=
8500 if ( left_type(h)==mp_endpoint ) {
8503 p = mp_htap_ypoc(mp, h);
8504 t_tot = -mp_get_arc_time(mp, p, -arc0);
8505 mp_toss_knot_list(mp, p);
8511 @ @<Update |t_tot| and |arc| to avoid going around the cyclic...@>=
8513 n = arc / (arc0 - arc);
8514 arc = arc - n*(arc0 - arc);
8515 if ( t_tot > el_gordo / (n+1) ) {
8516 mp->arith_error = true;
8520 t_tot = (n + 1)*t_tot;
8523 @* \[20] Data structures for pens.
8524 A Pen in \MP\ can be either elliptical or polygonal. Elliptical pens result
8525 in \ps\ \&{stroke} commands, while anything drawn with a polygonal pen is
8526 @:stroke}{\&{stroke} command@>
8527 converted into an area fill as described in the next part of this program.
8528 The mathematics behind this process is based on simple aspects of the theory
8529 of tracings developed by Leo Guibas, Lyle Ramshaw, and Jorge Stolfi
8530 [``A kinematic framework for computational geometry,'' Proc.\ IEEE Symp.\
8531 Foundations of Computer Science {\bf 24} (1983), 100--111].
8533 Polygonal pens are created from paths via \MP's \&{makepen} primitive.
8534 @:makepen_}{\&{makepen} primitive@>
8535 This path representation is almost sufficient for our purposes except that
8536 a pen path should always be a convex polygon with the vertices in
8537 counter-clockwise order.
8538 Since we will need to scan pen polygons both forward and backward, a pen
8539 should be represented as a doubly linked ring of knot nodes. There is
8540 room for the extra back pointer because we do not need the
8541 |left_type| or |right_type| fields. In fact, we don't need the |left_x|,
8542 |left_y|, |right_x|, or |right_y| fields either but we leave these alone
8543 so that certain procedures can operate on both pens and paths. In particular,
8544 pens can be copied using |copy_path| and recycled using |toss_knot_list|.
8547 /* this replaces the |left_type| and |right_type| fields in a pen knot */
8549 @ The |make_pen| procedure turns a path into a pen by initializing
8550 the |knil| pointers and making sure the knots form a convex polygon.
8551 Thus each cubic in the given path becomes a straight line and the control
8552 points are ignored. If the path is not cyclic, the ends are connected by a
8555 @d copy_pen(A) mp_make_pen(mp, mp_copy_path(mp, (A)),false)
8557 @c @<Declare a function called |convex_hull|@>;
8558 pointer mp_make_pen (MP mp,pointer h, boolean need_hull) {
8559 pointer p,q; /* two consecutive knots */
8566 h=mp_convex_hull(mp, h);
8567 @<Make sure |h| isn't confused with an elliptical pen@>;
8572 @ The only information required about an elliptical pen is the overall
8573 transformation that has been applied to the original \&{pencircle}.
8574 @:pencircle_}{\&{pencircle} primitive@>
8575 Since it suffices to keep track of how the three points $(0,0)$, $(1,0)$,
8576 and $(0,1)$ are transformed, an elliptical pen can be stored in a single
8577 knot node and transformed as if it were a path.
8579 @d pen_is_elliptical(A) ((A)==link((A)))
8581 @c pointer mp_get_pen_circle (MP mp,scaled diam) {
8582 pointer h; /* the knot node to return */
8583 h=mp_get_node(mp, knot_node_size);
8584 link(h)=h; knil(h)=h;
8585 originator(h)=mp_program_code;
8586 x_coord(h)=0; y_coord(h)=0;
8587 left_x(h)=diam; left_y(h)=0;
8588 right_x(h)=0; right_y(h)=diam;
8592 @ If the polygon being returned by |make_pen| has only one vertex, it will
8593 be interpreted as an elliptical pen. This is no problem since a degenerate
8594 polygon can equally well be thought of as a degenerate ellipse. We need only
8595 initialize the |left_x|, |left_y|, |right_x|, and |right_y| fields.
8597 @<Make sure |h| isn't confused with an elliptical pen@>=
8598 if ( pen_is_elliptical( h) ){
8599 left_x(h)=x_coord(h); left_y(h)=y_coord(h);
8600 right_x(h)=x_coord(h); right_y(h)=y_coord(h);
8603 @ We have to cheat a little here but most operations on pens only use
8604 the first three words in each knot node.
8605 @^data structure assumptions@>
8607 @<Initialize a pen at |test_pen| so that it fits in nine words@>=
8608 x_coord(test_pen)=-half_unit;
8609 y_coord(test_pen)=0;
8610 x_coord(test_pen+3)=half_unit;
8611 y_coord(test_pen+3)=0;
8612 x_coord(test_pen+6)=0;
8613 y_coord(test_pen+6)=unity;
8614 link(test_pen)=test_pen+3;
8615 link(test_pen+3)=test_pen+6;
8616 link(test_pen+6)=test_pen;
8617 knil(test_pen)=test_pen+6;
8618 knil(test_pen+3)=test_pen;
8619 knil(test_pen+6)=test_pen+3
8621 @ Printing a polygonal pen is very much like printing a path
8623 @<Declare subroutines for printing expressions@>=
8624 void mp_pr_pen (MP mp,pointer h) {
8625 pointer p,q; /* for list traversal */
8626 if ( pen_is_elliptical(h) ) {
8627 @<Print the elliptical pen |h|@>;
8631 mp_print_two(mp, x_coord(p),y_coord(p));
8632 mp_print_nl(mp, " .. ");
8633 @<Advance |p| making sure the links are OK and |return| if there is
8636 mp_print(mp, "cycle");
8640 @ @<Advance |p| making sure the links are OK and |return| if there is...@>=
8642 if ( (q==null) || (knil(q)!=p) ) {
8643 mp_print_nl(mp, "???"); return; /* this won't happen */
8648 @ @<Print the elliptical pen |h|@>=
8650 mp_print(mp, "pencircle transformed (");
8651 mp_print_scaled(mp, x_coord(h));
8652 mp_print_char(mp, ',');
8653 mp_print_scaled(mp, y_coord(h));
8654 mp_print_char(mp, ',');
8655 mp_print_scaled(mp, left_x(h)-x_coord(h));
8656 mp_print_char(mp, ',');
8657 mp_print_scaled(mp, right_x(h)-x_coord(h));
8658 mp_print_char(mp, ',');
8659 mp_print_scaled(mp, left_y(h)-y_coord(h));
8660 mp_print_char(mp, ',');
8661 mp_print_scaled(mp, right_y(h)-y_coord(h));
8662 mp_print_char(mp, ')');
8665 @ Here us another version of |pr_pen| that prints the pen as a diagnostic
8668 @<Declare subroutines for printing expressions@>=
8669 void mp_print_pen (MP mp,pointer h, char *s, boolean nuline) {
8670 mp_print_diagnostic(mp, "Pen",s,nuline); mp_print_ln(mp);
8673 mp_end_diagnostic(mp, true);
8676 @ Making a polygonal pen into a path involves restoring the |left_type| and
8677 |right_type| fields and setting the control points so as to make a polygonal
8681 void mp_make_path (MP mp,pointer h) {
8682 pointer p; /* for traversing the knot list */
8683 small_number k; /* a loop counter */
8684 @<Other local variables in |make_path|@>;
8685 if ( pen_is_elliptical(h) ) {
8686 @<Make the elliptical pen |h| into a path@>;
8690 left_type(p)=mp_explicit;
8691 right_type(p)=mp_explicit;
8692 @<copy the coordinates of knot |p| into its control points@>;
8698 @ @<copy the coordinates of knot |p| into its control points@>=
8699 left_x(p)=x_coord(p);
8700 left_y(p)=y_coord(p);
8701 right_x(p)=x_coord(p);
8702 right_y(p)=y_coord(p)
8704 @ We need an eight knot path to get a good approximation to an ellipse.
8706 @<Make the elliptical pen |h| into a path@>=
8708 @<Extract the transformation parameters from the elliptical pen~|h|@>;
8710 for (k=0;k<=7;k++ ) {
8711 @<Initialize |p| as the |k|th knot of a circle of unit diameter,
8712 transforming it appropriately@>;
8713 if ( k==7 ) link(p)=h; else link(p)=mp_get_node(mp, knot_node_size);
8718 @ @<Extract the transformation parameters from the elliptical pen~|h|@>=
8719 center_x=x_coord(h);
8720 center_y=y_coord(h);
8721 width_x=left_x(h)-center_x;
8722 width_y=left_y(h)-center_y;
8723 height_x=right_x(h)-center_x;
8724 height_y=right_y(h)-center_y
8726 @ @<Other local variables in |make_path|@>=
8727 scaled center_x,center_y; /* translation parameters for an elliptical pen */
8728 scaled width_x,width_y; /* the effect of a unit change in $x$ */
8729 scaled height_x,height_y; /* the effect of a unit change in $y$ */
8730 scaled dx,dy; /* the vector from knot |p| to its right control point */
8732 /* |k| advanced $270^\circ$ around the ring (cf. $\sin\theta=\cos(\theta+270)$) */
8734 @ The only tricky thing here are the tables |half_cos| and |d_cos| used to
8735 find the point $k/8$ of the way around the circle and the direction vector
8738 @<Initialize |p| as the |k|th knot of a circle of unit diameter,...@>=
8740 x_coord(p)=center_x+mp_take_fraction(mp, mp->half_cos[k],width_x)
8741 +mp_take_fraction(mp, mp->half_cos[kk],height_x);
8742 y_coord(p)=center_y+mp_take_fraction(mp, mp->half_cos[k],width_y)
8743 +mp_take_fraction(mp, mp->half_cos[kk],height_y);
8744 dx=-mp_take_fraction(mp, mp->d_cos[kk],width_x)
8745 +mp_take_fraction(mp, mp->d_cos[k],height_x);
8746 dy=-mp_take_fraction(mp, mp->d_cos[kk],width_y)
8747 +mp_take_fraction(mp, mp->d_cos[k],height_y);
8748 right_x(p)=x_coord(p)+dx;
8749 right_y(p)=y_coord(p)+dy;
8750 left_x(p)=x_coord(p)-dx;
8751 left_y(p)=y_coord(p)-dy;
8752 left_type(p)=mp_explicit;
8753 right_type(p)=mp_explicit;
8754 originator(p)=mp_program_code
8757 fraction half_cos[8]; /* ${1\over2}\cos(45k)$ */
8758 fraction d_cos[8]; /* a magic constant times $\cos(45k)$ */
8760 @ The magic constant for |d_cos| is the distance between $({1\over2},0)$ and
8761 $({1\over4}\sqrt2,{1\over4}\sqrt2)$ times the result of the |velocity|
8762 function for $\theta=\phi=22.5^\circ$. This comes out to be
8763 $$ d = {\sqrt{2-\sqrt2}\over 3+3\cos22.5^\circ}
8764 \approx 0.132608244919772.
8768 mp->half_cos[0]=fraction_half;
8769 mp->half_cos[1]=94906266; /* $2^{26}\sqrt2\approx94906265.62$ */
8771 mp->d_cos[0]=35596755; /* $2^{28}d\approx35596754.69$ */
8772 mp->d_cos[1]=25170707; /* $2^{27}\sqrt2\,d\approx25170706.63$ */
8774 for (k=3;k<= 4;k++ ) {
8775 mp->half_cos[k]=-mp->half_cos[4-k];
8776 mp->d_cos[k]=-mp->d_cos[4-k];
8778 for (k=5;k<= 7;k++ ) {
8779 mp->half_cos[k]=mp->half_cos[8-k];
8780 mp->d_cos[k]=mp->d_cos[8-k];
8783 @ The |convex_hull| function forces a pen polygon to be convex when it is
8784 returned by |make_pen| and after any subsequent transformation where rounding
8785 error might allow the convexity to be lost.
8786 The convex hull algorithm used here is described by F.~P. Preparata and
8787 M.~I. Shamos [{\sl Computational Geometry}, Springer-Verlag, 1985].
8789 @<Declare a function called |convex_hull|@>=
8790 @<Declare a procedure called |move_knot|@>;
8791 pointer mp_convex_hull (MP mp,pointer h) { /* Make a polygonal pen convex */
8792 pointer l,r; /* the leftmost and rightmost knots */
8793 pointer p,q; /* knots being scanned */
8794 pointer s; /* the starting point for an upcoming scan */
8795 scaled dx,dy; /* a temporary pointer */
8796 if ( pen_is_elliptical(h) ) {
8799 @<Set |l| to the leftmost knot in polygon~|h|@>;
8800 @<Set |r| to the rightmost knot in polygon~|h|@>;
8803 @<Find any knots on the path from |l| to |r| above the |l|-|r| line and
8804 move them past~|r|@>;
8805 @<Find any knots on the path from |s| to |l| below the |l|-|r| line and
8806 move them past~|l|@>;
8807 @<Sort the path from |l| to |r| by increasing $x$@>;
8808 @<Sort the path from |r| to |l| by decreasing $x$@>;
8811 @<Do a Gramm scan and remove vertices where there is no left turn@>;
8817 @ All comparisons are done primarily on $x$ and secondarily on $y$.
8819 @<Set |l| to the leftmost knot in polygon~|h|@>=
8823 if ( x_coord(p)<=x_coord(l) )
8824 if ( (x_coord(p)<x_coord(l)) || (y_coord(p)<y_coord(l)) )
8829 @ @<Set |r| to the rightmost knot in polygon~|h|@>=
8833 if ( x_coord(p)>=x_coord(r) )
8834 if ( (x_coord(p)>x_coord(r)) || (y_coord(p)>y_coord(r)) )
8839 @ @<Find any knots on the path from |l| to |r| above the |l|-|r| line...@>=
8840 dx=x_coord(r)-x_coord(l);
8841 dy=y_coord(r)-y_coord(l);
8845 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))>0 )
8846 mp_move_knot(mp, p, r);
8850 @ The |move_knot| procedure removes |p| from a doubly linked list and inserts
8853 @ @<Declare a procedure called |move_knot|@>=
8854 void mp_move_knot (MP mp,pointer p, pointer q) {
8855 link(knil(p))=link(p);
8856 knil(link(p))=knil(p);
8863 @ @<Find any knots on the path from |s| to |l| below the |l|-|r| line...@>=
8867 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))<0 )
8868 mp_move_knot(mp, p,l);
8872 @ The list is likely to be in order already so we just do linear insertions.
8873 Secondary comparisons on $y$ ensure that the sort is consistent with the
8874 choice of |l| and |r|.
8876 @<Sort the path from |l| to |r| by increasing $x$@>=
8880 while ( x_coord(q)>x_coord(p) ) q=knil(q);
8881 while ( x_coord(q)==x_coord(p) ) {
8882 if ( y_coord(q)>y_coord(p) ) q=knil(q); else break;
8884 if ( q==knil(p) ) p=link(p);
8885 else { p=link(p); mp_move_knot(mp, knil(p),q); };
8888 @ @<Sort the path from |r| to |l| by decreasing $x$@>=
8892 while ( x_coord(q)<x_coord(p) ) q=knil(q);
8893 while ( x_coord(q)==x_coord(p) ) {
8894 if ( y_coord(q)<y_coord(p) ) q=knil(q); else break;
8896 if ( q==knil(p) ) p=link(p);
8897 else { p=link(p); mp_move_knot(mp, knil(p),q); };
8900 @ The condition involving |ab_vs_cd| tests if there is not a left turn
8901 at knot |q|. There usually will be a left turn so we streamline the case
8902 where the |then| clause is not executed.
8904 @<Do a Gramm scan and remove vertices where there...@>=
8908 dx=x_coord(q)-x_coord(p);
8909 dy=y_coord(q)-y_coord(p);
8913 if ( mp_ab_vs_cd(mp, dx,y_coord(q)-y_coord(p),dy,x_coord(q)-x_coord(p))<=0 ) {
8914 @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>;
8919 @ @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>=
8922 mp_free_node(mp, p,knot_node_size);
8923 link(s)=q; knil(q)=s;
8925 else { p=knil(s); q=s; };
8928 @ The |find_offset| procedure sets global variables |(cur_x,cur_y)| to the
8929 offset associated with the given direction |(x,y)|. If two different offsets
8930 apply, it chooses one of them.
8933 void mp_find_offset (MP mp,scaled x, scaled y, pointer h) {
8934 pointer p,q; /* consecutive knots */
8936 /* the transformation matrix for an elliptical pen */
8937 fraction xx,yy; /* untransformed offset for an elliptical pen */
8938 fraction d; /* a temporary register */
8939 if ( pen_is_elliptical(h) ) {
8940 @<Find the offset for |(x,y)| on the elliptical pen~|h|@>
8945 } while (!(mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)>=0));
8948 } while (!(mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)<=0));
8949 mp->cur_x=x_coord(p);
8950 mp->cur_y=y_coord(p);
8956 scaled cur_y; /* all-purpose return value registers */
8958 @ @<Find the offset for |(x,y)| on the elliptical pen~|h|@>=
8959 if ( (x==0) && (y==0) ) {
8960 mp->cur_x=x_coord(h); mp->cur_y=y_coord(h);
8962 @<Find the non-constant part of the transformation for |h|@>;
8963 while ( (abs(x)<fraction_half) && (abs(y)<fraction_half) ){
8966 @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the
8967 untransformed version of |(x,y)|@>;
8968 mp->cur_x=x_coord(h)+mp_take_fraction(mp, xx,wx)+mp_take_fraction(mp, yy,hx);
8969 mp->cur_y=y_coord(h)+mp_take_fraction(mp, xx,wy)+mp_take_fraction(mp, yy,hy);
8972 @ @<Find the non-constant part of the transformation for |h|@>=
8973 wx=left_x(h)-x_coord(h);
8974 wy=left_y(h)-y_coord(h);
8975 hx=right_x(h)-x_coord(h);
8976 hy=right_y(h)-y_coord(h)
8978 @ @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the...@>=
8979 yy=-(mp_take_fraction(mp, x,hy)+mp_take_fraction(mp, y,-hx));
8980 xx=mp_take_fraction(mp, x,-wy)+mp_take_fraction(mp, y,wx);
8981 d=mp_pyth_add(mp, xx,yy);
8983 xx=half(mp_make_fraction(mp, xx,d));
8984 yy=half(mp_make_fraction(mp, yy,d));
8987 @ Finding the bounding box of a pen is easy except if the pen is elliptical.
8988 But we can handle that case by just calling |find_offset| twice. The answer
8989 is stored in the global variables |minx|, |maxx|, |miny|, and |maxy|.
8992 void mp_pen_bbox (MP mp,pointer h) {
8993 pointer p; /* for scanning the knot list */
8994 if ( pen_is_elliptical(h) ) {
8995 @<Find the bounding box of an elliptical pen@>;
8997 minx=x_coord(h); maxx=minx;
8998 miny=y_coord(h); maxy=miny;
9001 if ( x_coord(p)<minx ) minx=x_coord(p);
9002 if ( y_coord(p)<miny ) miny=y_coord(p);
9003 if ( x_coord(p)>maxx ) maxx=x_coord(p);
9004 if ( y_coord(p)>maxy ) maxy=y_coord(p);
9010 @ @<Find the bounding box of an elliptical pen@>=
9012 mp_find_offset(mp, 0,fraction_one,h);
9014 minx=2*x_coord(h)-mp->cur_x;
9015 mp_find_offset(mp, -fraction_one,0,h);
9017 miny=2*y_coord(h)-mp->cur_y;
9020 @* \[21] Edge structures.
9021 Now we come to \MP's internal scheme for representing pictures.
9022 The representation is very different from \MF's edge structures
9023 because \MP\ pictures contain \ps\ graphics objects instead of pixel
9024 images. However, the basic idea is somewhat similar in that shapes
9025 are represented via their boundaries.
9027 The main purpose of edge structures is to keep track of graphical objects
9028 until it is time to translate them into \ps. Since \MP\ does not need to
9029 know anything about an edge structure other than how to translate it into
9030 \ps\ and how to find its bounding box, edge structures can be just linked
9031 lists of graphical objects. \MP\ has no easy way to determine whether
9032 two such objects overlap, but it suffices to draw the first one first and
9033 let the second one overwrite it if necessary.
9036 enum mp_graphical_object_code {
9037 @<Graphical object codes@>
9040 @ Let's consider the types of graphical objects one at a time.
9041 First of all, a filled contour is represented by a eight-word node. The first
9042 word contains |type| and |link| fields, and the next six words contain a
9043 pointer to a cyclic path and the value to use for \ps' \&{currentrgbcolor}
9044 parameter. If a pen is used for filling |pen_p|, |ljoin_val| and |miterlim_val|
9045 give the relevant information.
9047 @d path_p(A) link((A)+1)
9048 /* a pointer to the path that needs filling */
9049 @d pen_p(A) info((A)+1)
9050 /* a pointer to the pen to fill or stroke with */
9051 @d color_model(A) type((A)+2) /* the color model */
9052 @d obj_red_loc(A) ((A)+3) /* the first of three locations for the color */
9053 @d obj_cyan_loc obj_red_loc /* the first of four locations for the color */
9054 @d obj_grey_loc obj_red_loc /* the location for the color */
9055 @d red_val(A) mp->mem[(A)+3].sc
9056 /* the red component of the color in the range $0\ldots1$ */
9059 @d green_val(A) mp->mem[(A)+4].sc
9060 /* the green component of the color in the range $0\ldots1$ */
9061 @d magenta_val green_val
9062 @d blue_val(A) mp->mem[(A)+5].sc
9063 /* the blue component of the color in the range $0\ldots1$ */
9064 @d yellow_val blue_val
9065 @d black_val(A) mp->mem[(A)+6].sc
9066 /* the blue component of the color in the range $0\ldots1$ */
9067 @d ljoin_val(A) name_type((A)) /* the value of \&{linejoin} */
9068 @:mp_linejoin_}{\&{linejoin} primitive@>
9069 @d miterlim_val(A) mp->mem[(A)+7].sc /* the value of \&{miterlimit} */
9070 @:mp_miterlimit_}{\&{miterlimit} primitive@>
9071 @d obj_color_part(A) mp->mem[(A)+3-red_part].sc
9072 /* interpret an object pointer that has been offset by |red_part..blue_part| */
9073 @d pre_script(A) mp->mem[(A)+8].hh.lh
9074 @d post_script(A) mp->mem[(A)+8].hh.rh
9077 @ @<Graphical object codes@>=
9081 pointer mp_new_fill_node (MP mp,pointer p) {
9082 /* make a fill node for cyclic path |p| and color black */
9083 pointer t; /* the new node */
9084 t=mp_get_node(mp, fill_node_size);
9085 type(t)=mp_fill_code;
9087 pen_p(t)=null; /* |null| means don't use a pen */
9092 color_model(t)=mp_uninitialized_model;
9094 post_script(t)=null;
9095 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9099 @ @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>=
9100 if ( mp->internal[mp_linejoin]>unity ) ljoin_val(t)=2;
9101 else if ( mp->internal[mp_linejoin]>0 ) ljoin_val(t)=1;
9102 else ljoin_val(t)=0;
9103 if ( mp->internal[mp_miterlimit]<unity )
9104 miterlim_val(t)=unity;
9106 miterlim_val(t)=mp->internal[mp_miterlimit]
9108 @ A stroked path is represented by an eight-word node that is like a filled
9109 contour node except that it contains the current \&{linecap} value, a scale
9110 factor for the dash pattern, and a pointer that is non-null if the stroke
9111 is to be dashed. The purpose of the scale factor is to allow a picture to
9112 be transformed without touching the picture that |dash_p| points to.
9114 @d dash_p(A) link((A)+9)
9115 /* a pointer to the edge structure that gives the dash pattern */
9116 @d lcap_val(A) type((A)+9)
9117 /* the value of \&{linecap} */
9118 @:mp_linecap_}{\&{linecap} primitive@>
9119 @d dash_scale(A) mp->mem[(A)+10].sc /* dash lengths are scaled by this factor */
9120 @d stroked_node_size 11
9122 @ @<Graphical object codes@>=
9126 pointer mp_new_stroked_node (MP mp,pointer p) {
9127 /* make a stroked node for path |p| with |pen_p(p)| temporarily |null| */
9128 pointer t; /* the new node */
9129 t=mp_get_node(mp, stroked_node_size);
9130 type(t)=mp_stroked_code;
9131 path_p(t)=p; pen_p(t)=null;
9133 dash_scale(t)=unity;
9138 color_model(t)=mp_uninitialized_model;
9140 post_script(t)=null;
9141 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9142 if ( mp->internal[mp_linecap]>unity ) lcap_val(t)=2;
9143 else if ( mp->internal[mp_linecap]>0 ) lcap_val(t)=1;
9148 @ When a dashed line is computed in a transformed coordinate system, the dash
9149 lengths get scaled like the pen shape and we need to compensate for this. Since
9150 there is no unique scale factor for an arbitrary transformation, we use the
9151 the square root of the determinant. The properties of the determinant make it
9152 easier to maintain the |dash_scale|. The computation is fairly straight-forward
9153 except for the initialization of the scale factor |s|. The factor of 64 is
9154 needed because |square_rt| scales its result by $2^8$ while we need $2^{14}$
9155 to counteract the effect of |take_fraction|.
9157 @<Declare subroutines needed by |print_edges|@>=
9158 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) {
9159 scaled maxabs; /* $max(|a|,|b|,|c|,|d|)$ */
9160 integer s; /* amount by which the result of |square_rt| needs to be scaled */
9161 @<Initialize |maxabs|@>;
9163 while ( (maxabs<fraction_one) && (s>1) ){
9164 a+=a; b+=b; c+=c; d+=d;
9165 maxabs+=maxabs; s=halfp(s);
9167 return s*mp_square_rt(mp, abs(mp_take_fraction(mp, a,d)-mp_take_fraction(mp, b,c)));
9170 scaled mp_get_pen_scale (MP mp,pointer p) {
9171 return mp_sqrt_det(mp,
9172 left_x(p)-x_coord(p), right_x(p)-x_coord(p),
9173 left_y(p)-y_coord(p), right_y(p)-y_coord(p));
9176 @ @<Internal library ...@>=
9177 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) ;
9180 @ @<Initialize |maxabs|@>=
9182 if ( abs(b)>maxabs ) maxabs=abs(b);
9183 if ( abs(c)>maxabs ) maxabs=abs(c);
9184 if ( abs(d)>maxabs ) maxabs=abs(d)
9186 @ When a picture contains text, this is represented by a fourteen-word node
9187 where the color information and |type| and |link| fields are augmented by
9188 additional fields that describe the text and how it is transformed.
9189 The |path_p| and |pen_p| pointers are replaced by a number that identifies
9190 the font and a string number that gives the text to be displayed.
9191 The |width|, |height|, and |depth| fields
9192 give the dimensions of the text at its design size, and the remaining six
9193 words give a transformation to be applied to the text. The |new_text_node|
9194 function initializes everything to default values so that the text comes out
9195 black with its reference point at the origin.
9197 @d text_p(A) link((A)+1) /* a string pointer for the text to display */
9198 @d font_n(A) info((A)+1) /* the font number */
9199 @d width_val(A) mp->mem[(A)+7].sc /* unscaled width of the text */
9200 @d height_val(A) mp->mem[(A)+9].sc /* unscaled height of the text */
9201 @d depth_val(A) mp->mem[(A)+10].sc /* unscaled depth of the text */
9202 @d text_tx_loc(A) ((A)+11)
9203 /* the first of six locations for transformation parameters */
9204 @d tx_val(A) mp->mem[(A)+11].sc /* $x$ shift amount */
9205 @d ty_val(A) mp->mem[(A)+12].sc /* $y$ shift amount */
9206 @d txx_val(A) mp->mem[(A)+13].sc /* |txx| transformation parameter */
9207 @d txy_val(A) mp->mem[(A)+14].sc /* |txy| transformation parameter */
9208 @d tyx_val(A) mp->mem[(A)+15].sc /* |tyx| transformation parameter */
9209 @d tyy_val(A) mp->mem[(A)+16].sc /* |tyy| transformation parameter */
9210 @d text_trans_part(A) mp->mem[(A)+11-x_part].sc
9211 /* interpret a text node pointer that has been offset by |x_part..yy_part| */
9212 @d text_node_size 17
9214 @ @<Graphical object codes@>=
9217 @ @c @<Declare text measuring subroutines@>;
9218 pointer mp_new_text_node (MP mp,char *f,str_number s) {
9219 /* make a text node for font |f| and text string |s| */
9220 pointer t; /* the new node */
9221 t=mp_get_node(mp, text_node_size);
9222 type(t)=mp_text_code;
9224 font_n(t)=mp_find_font(mp, f); /* this identifies the font */
9229 color_model(t)=mp_uninitialized_model;
9231 post_script(t)=null;
9232 tx_val(t)=0; ty_val(t)=0;
9233 txx_val(t)=unity; txy_val(t)=0;
9234 tyx_val(t)=0; tyy_val(t)=unity;
9235 mp_set_text_box(mp, t); /* this finds the bounding box */
9239 @ The last two types of graphical objects that can occur in an edge structure
9240 are clipping paths and \&{setbounds} paths. These are slightly more difficult
9241 @:set_bounds_}{\&{setbounds} primitive@>
9242 to implement because we must keep track of exactly what is being clipped or
9243 bounded when pictures get merged together. For this reason, each clipping or
9244 \&{setbounds} operation is represented by a pair of nodes: first comes a
9245 two-word node whose |path_p| gives the relevant path, then there is the list
9246 of objects to clip or bound followed by a two-word node whose second word is
9249 Using at least two words for each graphical object node allows them all to be
9250 allocated and deallocated similarly with a global array |gr_object_size| to
9251 give the size in words for each object type.
9253 @d start_clip_size 2
9254 @d start_bounds_size 2
9255 @d stop_clip_size 2 /* the second word is not used here */
9256 @d stop_bounds_size 2 /* the second word is not used here */
9258 @d stop_type(A) ((A)+2)
9259 /* matching |type| for |start_clip_code| or |start_bounds_code| */
9260 @d has_color(A) (type((A))<mp_start_clip_code)
9261 /* does a graphical object have color fields? */
9262 @d has_pen(A) (type((A))<mp_text_code)
9263 /* does a graphical object have a |pen_p| field? */
9264 @d is_start_or_stop(A) (type((A))>=mp_start_clip_code)
9265 @d is_stop(A) (type((A))>=mp_stop_clip_code)
9267 @ @<Graphical object codes@>=
9268 mp_start_clip_code=4, /* |type| of a node that starts clipping */
9269 mp_start_bounds_code=5, /* |type| of a node that gives a \&{setbounds} path */
9270 mp_stop_clip_code=6, /* |type| of a node that stops clipping */
9271 mp_stop_bounds_code=7, /* |type| of a node that stops \&{setbounds} */
9274 pointer mp_new_bounds_node (MP mp,pointer p, small_number c) {
9275 /* make a node of type |c| where |p| is the clipping or \&{setbounds} path */
9276 pointer t; /* the new node */
9277 t=mp_get_node(mp, mp->gr_object_size[c]);
9283 @ We need an array to keep track of the sizes of graphical objects.
9286 small_number gr_object_size[mp_stop_bounds_code+1];
9289 mp->gr_object_size[mp_fill_code]=fill_node_size;
9290 mp->gr_object_size[mp_stroked_code]=stroked_node_size;
9291 mp->gr_object_size[mp_text_code]=text_node_size;
9292 mp->gr_object_size[mp_start_clip_code]=start_clip_size;
9293 mp->gr_object_size[mp_stop_clip_code]=stop_clip_size;
9294 mp->gr_object_size[mp_start_bounds_code]=start_bounds_size;
9295 mp->gr_object_size[mp_stop_bounds_code]=stop_bounds_size;
9297 @ All the essential information in an edge structure is encoded as a linked list
9298 of graphical objects as we have just seen, but it is helpful to add some
9299 redundant information. A single edge structure might be used as a dash pattern
9300 many times, and it would be nice to avoid scanning the same structure
9301 repeatedly. Thus, an edge structure known to be a suitable dash pattern
9302 has a header that gives a list of dashes in a sorted order designed for rapid
9303 translation into \ps.
9305 Each dash is represented by a three-word node containing the initial and final
9306 $x$~coordinates as well as the usual |link| field. The |link| fields points to
9307 the dash node with the next higher $x$-coordinates and the final link points
9308 to a special location called |null_dash|. (There should be no overlap between
9309 dashes). Since the $y$~coordinate of the dash pattern is needed to determine
9310 the period of repetition, this needs to be stored in the edge header along
9311 with a pointer to the list of dash nodes.
9313 @d start_x(A) mp->mem[(A)+1].sc /* the starting $x$~coordinate in a dash node */
9314 @d stop_x(A) mp->mem[(A)+2].sc /* the ending $x$~coordinate in a dash node */
9317 /* in an edge header this points to the first dash node */
9318 @d dash_y(A) mp->mem[(A)+1].sc /* $y$ value for the dash list in an edge header */
9320 @ It is also convenient for an edge header to contain the bounding
9321 box information needed by the \&{llcorner} and \&{urcorner} operators
9322 so that this does not have to be recomputed unnecessarily. This is done by
9323 adding fields for the $x$~and $y$ extremes as well as a pointer that indicates
9324 how far the bounding box computation has gotten. Thus if the user asks for
9325 the bounding box and then adds some more text to the picture before asking
9326 for more bounding box information, the second computation need only look at
9327 the additional text.
9329 When the bounding box has not been computed, the |bblast| pointer points
9330 to a dummy link at the head of the graphical object list while the |minx_val|
9331 and |miny_val| fields contain |el_gordo| and the |maxx_val| and |maxy_val|
9332 fields contain |-el_gordo|.
9334 Since the bounding box of pictures containing objects of type
9335 |mp_start_bounds_code| depends on the value of \&{truecorners}, the bounding box
9336 @:mp_true_corners_}{\&{truecorners} primitive@>
9337 data might not be valid for all values of this parameter. Hence, the |bbtype|
9338 field is needed to keep track of this.
9340 @d minx_val(A) mp->mem[(A)+2].sc
9341 @d miny_val(A) mp->mem[(A)+3].sc
9342 @d maxx_val(A) mp->mem[(A)+4].sc
9343 @d maxy_val(A) mp->mem[(A)+5].sc
9344 @d bblast(A) link((A)+6) /* last item considered in bounding box computation */
9345 @d bbtype(A) info((A)+6) /* tells how bounding box data depends on \&{truecorners} */
9346 @d dummy_loc(A) ((A)+7) /* where the object list begins in an edge header */
9348 /* |bbtype| value when bounding box data is valid for all \&{truecorners} values */
9350 /* |bbtype| value when bounding box data is for \&{truecorners}${}\le 0$ */
9352 /* |bbtype| value when bounding box data is for \&{truecorners}${}>0$ */
9355 void mp_init_bbox (MP mp,pointer h) {
9356 /* Initialize the bounding box information in edge structure |h| */
9357 bblast(h)=dummy_loc(h);
9358 bbtype(h)=no_bounds;
9359 minx_val(h)=el_gordo;
9360 miny_val(h)=el_gordo;
9361 maxx_val(h)=-el_gordo;
9362 maxy_val(h)=-el_gordo;
9365 @ The only other entries in an edge header are a reference count in the first
9366 word and a pointer to the tail of the object list in the last word.
9368 @d obj_tail(A) info((A)+7) /* points to the last entry in the object list */
9369 @d edge_header_size 8
9372 void mp_init_edges (MP mp,pointer h) {
9373 /* initialize an edge header to null values */
9374 dash_list(h)=null_dash;
9375 obj_tail(h)=dummy_loc(h);
9376 link(dummy_loc(h))=null;
9378 mp_init_bbox(mp, h);
9381 @ Here is how edge structures are deleted. The process can be recursive because
9382 of the need to dereference edge structures that are used as dash patterns.
9385 @d add_edge_ref(A) incr(ref_count(A))
9386 @d delete_edge_ref(A) {
9387 if ( ref_count((A))==null )
9388 mp_toss_edges(mp, A);
9393 @<Declare the recycling subroutines@>=
9394 void mp_flush_dash_list (MP mp,pointer h);
9395 pointer mp_toss_gr_object (MP mp,pointer p) ;
9396 void mp_toss_edges (MP mp,pointer h) ;
9398 @ @c void mp_toss_edges (MP mp,pointer h) {
9399 pointer p,q; /* pointers that scan the list being recycled */
9400 pointer r; /* an edge structure that object |p| refers to */
9401 mp_flush_dash_list(mp, h);
9402 q=link(dummy_loc(h));
9403 while ( (q!=null) ) {
9405 r=mp_toss_gr_object(mp, p);
9406 if ( r!=null ) delete_edge_ref(r);
9408 mp_free_node(mp, h,edge_header_size);
9410 void mp_flush_dash_list (MP mp,pointer h) {
9411 pointer p,q; /* pointers that scan the list being recycled */
9413 while ( q!=null_dash ) {
9415 mp_free_node(mp, p,dash_node_size);
9417 dash_list(h)=null_dash;
9419 pointer mp_toss_gr_object (MP mp,pointer p) {
9420 /* returns an edge structure that needs to be dereferenced */
9421 pointer e; /* the edge structure to return */
9423 @<Prepare to recycle graphical object |p|@>;
9424 mp_free_node(mp, p,mp->gr_object_size[type(p)]);
9428 @ @<Prepare to recycle graphical object |p|@>=
9431 mp_toss_knot_list(mp, path_p(p));
9432 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9433 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9434 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9436 case mp_stroked_code:
9437 mp_toss_knot_list(mp, path_p(p));
9438 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9439 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9440 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9444 delete_str_ref(text_p(p));
9445 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9446 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9448 case mp_start_clip_code:
9449 case mp_start_bounds_code:
9450 mp_toss_knot_list(mp, path_p(p));
9452 case mp_stop_clip_code:
9453 case mp_stop_bounds_code:
9455 } /* there are no other cases */
9457 @ If we use |add_edge_ref| to ``copy'' edge structures, the real copying needs
9458 to be done before making a significant change to an edge structure. Much of
9459 the work is done in a separate routine |copy_objects| that copies a list of
9460 graphical objects into a new edge header.
9462 @c @<Declare a function called |copy_objects|@>;
9463 pointer mp_private_edges (MP mp,pointer h) {
9464 /* make a private copy of the edge structure headed by |h| */
9465 pointer hh; /* the edge header for the new copy */
9466 pointer p,pp; /* pointers for copying the dash list */
9467 if ( ref_count(h)==null ) {
9471 hh=mp_copy_objects(mp, link(dummy_loc(h)),null);
9472 @<Copy the dash list from |h| to |hh|@>;
9473 @<Copy the bounding box information from |h| to |hh| and make |bblast(hh)|
9474 point into the new object list@>;
9479 @ Here we use the fact that |dash_list(hh)=link(hh)|.
9480 @^data structure assumptions@>
9482 @<Copy the dash list from |h| to |hh|@>=
9483 pp=hh; p=dash_list(h);
9484 while ( (p!=null_dash) ) {
9485 link(pp)=mp_get_node(mp, dash_node_size);
9487 start_x(pp)=start_x(p);
9488 stop_x(pp)=stop_x(p);
9492 dash_y(hh)=dash_y(h)
9495 @ |h| is an edge structure
9497 @d gr_start_x(A) (A)->start_x_field
9498 @d gr_stop_x(A) (A)->stop_x_field
9499 @d gr_dash_link(A) (A)->next_field
9501 @d gr_dash_list(A) (A)->list_field
9502 @d gr_dash_y(A) (A)->y_field
9505 struct mp_dash_list *mp_export_dashes (MP mp, pointer h) {
9506 struct mp_dash_list *dl;
9507 struct mp_dash_item *dh, *di;
9509 if (h==null || dash_list(h)==null_dash)
9512 dl = mp_xmalloc(mp,1,sizeof(struct mp_dash_list));
9513 gr_dash_list(dl) = NULL;
9514 gr_dash_y(dl) = dash_y(h);
9516 while (p != null_dash) {
9517 di=mp_xmalloc(mp,1,sizeof(struct mp_dash_item));
9518 gr_dash_link(di) = NULL;
9519 gr_start_x(di) = start_x(p);
9520 gr_stop_x(di) = stop_x(p);
9522 gr_dash_list(dl) = di;
9524 gr_dash_link(dh) = di;
9533 @ @<Copy the bounding box information from |h| to |hh|...@>=
9534 minx_val(hh)=minx_val(h);
9535 miny_val(hh)=miny_val(h);
9536 maxx_val(hh)=maxx_val(h);
9537 maxy_val(hh)=maxy_val(h);
9538 bbtype(hh)=bbtype(h);
9539 p=dummy_loc(h); pp=dummy_loc(hh);
9540 while ((p!=bblast(h)) ) {
9541 if ( p==null ) mp_confusion(mp, "bblast");
9542 @:this can't happen bblast}{\quad bblast@>
9543 p=link(p); pp=link(pp);
9547 @ Here is the promised routine for copying graphical objects into a new edge
9548 structure. It starts copying at object~|p| and stops just before object~|q|.
9549 If |q| is null, it copies the entire sublist headed at |p|. The resulting edge
9550 structure requires further initialization by |init_bbox|.
9552 @<Declare a function called |copy_objects|@>=
9553 pointer mp_copy_objects (MP mp, pointer p, pointer q) {
9554 pointer hh; /* the new edge header */
9555 pointer pp; /* the last newly copied object */
9556 small_number k; /* temporary register */
9557 hh=mp_get_node(mp, edge_header_size);
9558 dash_list(hh)=null_dash;
9562 @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>;
9569 @ @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>=
9570 { k=mp->gr_object_size[type(p)];
9571 link(pp)=mp_get_node(mp, k);
9573 while ( (k>0) ) { decr(k); mp->mem[pp+k]=mp->mem[p+k]; };
9574 @<Fix anything in graphical object |pp| that should differ from the
9575 corresponding field in |p|@>;
9579 @ @<Fix anything in graphical object |pp| that should differ from the...@>=
9581 case mp_start_clip_code:
9582 case mp_start_bounds_code:
9583 path_p(pp)=mp_copy_path(mp, path_p(p));
9586 path_p(pp)=mp_copy_path(mp, path_p(p));
9587 if ( pen_p(p)!=null ) pen_p(pp)=copy_pen(pen_p(p));
9589 case mp_stroked_code:
9590 path_p(pp)=mp_copy_path(mp, path_p(p));
9591 pen_p(pp)=copy_pen(pen_p(p));
9592 if ( dash_p(p)!=null ) add_edge_ref(dash_p(pp));
9595 add_str_ref(text_p(pp));
9597 case mp_stop_clip_code:
9598 case mp_stop_bounds_code:
9600 } /* there are no other cases */
9602 @ Here is one way to find an acceptable value for the second argument to
9603 |copy_objects|. Given a non-null graphical object list, |skip_1component|
9604 skips past one picture component, where a ``picture component'' is a single
9605 graphical object, or a start bounds or start clip object and everything up
9606 through the matching stop bounds or stop clip object. The macro version avoids
9607 procedure call overhead and error handling: |skip_component(p)(e)| advances |p|
9608 unless |p| points to a stop bounds or stop clip node, in which case it executes
9611 @d skip_component(A)
9612 if ( ! is_start_or_stop((A)) ) (A)=link((A));
9613 else if ( ! is_stop((A)) ) (A)=mp_skip_1component(mp, (A));
9617 pointer mp_skip_1component (MP mp,pointer p) {
9618 integer lev; /* current nesting level */
9621 if ( is_start_or_stop(p) ) {
9622 if ( is_stop(p) ) decr(lev); else incr(lev);
9629 @ Here is a diagnostic routine for printing an edge structure in symbolic form.
9631 @<Declare subroutines for printing expressions@>=
9632 @<Declare subroutines needed by |print_edges|@>;
9633 void mp_print_edges (MP mp,pointer h, char *s, boolean nuline) {
9634 pointer p; /* a graphical object to be printed */
9635 pointer hh,pp; /* temporary pointers */
9636 scaled scf; /* a scale factor for the dash pattern */
9637 boolean ok_to_dash; /* |false| for polygonal pen strokes */
9638 mp_print_diagnostic(mp, "Edge structure",s,nuline);
9640 while ( link(p)!=null ) {
9644 @<Cases for printing graphical object node |p|@>;
9646 mp_print(mp, "[unknown object type!]");
9650 mp_print_nl(mp, "End edges");
9651 if ( p!=obj_tail(h) ) mp_print(mp, "?");
9653 mp_end_diagnostic(mp, true);
9656 @ @<Cases for printing graphical object node |p|@>=
9658 mp_print(mp, "Filled contour ");
9659 mp_print_obj_color(mp, p);
9660 mp_print_char(mp, ':'); mp_print_ln(mp);
9661 mp_pr_path(mp, path_p(p)); mp_print_ln(mp);
9662 if ( (pen_p(p)!=null) ) {
9663 @<Print join type for graphical object |p|@>;
9664 mp_print(mp, " with pen"); mp_print_ln(mp);
9665 mp_pr_pen(mp, pen_p(p));
9669 @ @<Print join type for graphical object |p|@>=
9670 switch (ljoin_val(p)) {
9672 mp_print(mp, "mitered joins limited ");
9673 mp_print_scaled(mp, miterlim_val(p));
9676 mp_print(mp, "round joins");
9679 mp_print(mp, "beveled joins");
9682 mp_print(mp, "?? joins");
9687 @ For stroked nodes, we need to print |lcap_val(p)| as well.
9689 @<Print join and cap types for stroked node |p|@>=
9690 switch (lcap_val(p)) {
9691 case 0:mp_print(mp, "butt"); break;
9692 case 1:mp_print(mp, "round"); break;
9693 case 2:mp_print(mp, "square"); break;
9694 default: mp_print(mp, "??"); break;
9697 mp_print(mp, " ends, ");
9698 @<Print join type for graphical object |p|@>
9700 @ Here is a routine that prints the color of a graphical object if it isn't
9701 black (the default color).
9703 @<Declare subroutines needed by |print_edges|@>=
9704 @<Declare a procedure called |print_compact_node|@>;
9705 void mp_print_obj_color (MP mp,pointer p) {
9706 if ( color_model(p)==mp_grey_model ) {
9707 if ( grey_val(p)>0 ) {
9708 mp_print(mp, "greyed ");
9709 mp_print_compact_node(mp, obj_grey_loc(p),1);
9711 } else if ( color_model(p)==mp_cmyk_model ) {
9712 if ( (cyan_val(p)>0) || (magenta_val(p)>0) ||
9713 (yellow_val(p)>0) || (black_val(p)>0) ) {
9714 mp_print(mp, "processcolored ");
9715 mp_print_compact_node(mp, obj_cyan_loc(p),4);
9717 } else if ( color_model(p)==mp_rgb_model ) {
9718 if ( (red_val(p)>0) || (green_val(p)>0) || (blue_val(p)>0) ) {
9719 mp_print(mp, "colored ");
9720 mp_print_compact_node(mp, obj_red_loc(p),3);
9725 @ We also need a procedure for printing consecutive scaled values as if they
9726 were a known big node.
9728 @<Declare a procedure called |print_compact_node|@>=
9729 void mp_print_compact_node (MP mp,pointer p, small_number k) {
9730 pointer q; /* last location to print */
9732 mp_print_char(mp, '(');
9734 mp_print_scaled(mp, mp->mem[p].sc);
9735 if ( p<q ) mp_print_char(mp, ',');
9738 mp_print_char(mp, ')');
9741 @ @<Cases for printing graphical object node |p|@>=
9742 case mp_stroked_code:
9743 mp_print(mp, "Filled pen stroke ");
9744 mp_print_obj_color(mp, p);
9745 mp_print_char(mp, ':'); mp_print_ln(mp);
9746 mp_pr_path(mp, path_p(p));
9747 if ( dash_p(p)!=null ) {
9748 mp_print_nl(mp, "dashed (");
9749 @<Finish printing the dash pattern that |p| refers to@>;
9752 @<Print join and cap types for stroked node |p|@>;
9753 mp_print(mp, " with pen"); mp_print_ln(mp);
9754 if ( pen_p(p)==null ) mp_print(mp, "???"); /* shouldn't happen */
9756 else mp_pr_pen(mp, pen_p(p));
9759 @ Normally, the |dash_list| field in an edge header is set to |null_dash|
9760 when it is not known to define a suitable dash pattern. This is disallowed
9761 here because the |dash_p| field should never point to such an edge header.
9762 Note that memory is allocated for |start_x(null_dash)| and we are free to
9763 give it any convenient value.
9765 @<Finish printing the dash pattern that |p| refers to@>=
9766 ok_to_dash=pen_is_elliptical(pen_p(p));
9767 if ( ! ok_to_dash ) scf=unity; else scf=dash_scale(p);
9770 if ( (pp==null_dash) || (dash_y(hh)<0) ) {
9771 mp_print(mp, " ??");
9772 } else { start_x(null_dash)=start_x(pp)+dash_y(hh);
9773 while ( pp!=null_dash ) {
9774 mp_print(mp, "on ");
9775 mp_print_scaled(mp, mp_take_scaled(mp, stop_x(pp)-start_x(pp),scf));
9776 mp_print(mp, " off ");
9777 mp_print_scaled(mp, mp_take_scaled(mp, start_x(link(pp))-stop_x(pp),scf));
9779 if ( pp!=null_dash ) mp_print_char(mp, ' ');
9781 mp_print(mp, ") shifted ");
9782 mp_print_scaled(mp, -mp_take_scaled(mp, mp_dash_offset(mp, hh),scf));
9783 if ( ! ok_to_dash || (dash_y(hh)==0) ) mp_print(mp, " (this will be ignored)");
9786 @ @<Declare subroutines needed by |print_edges|@>=
9787 scaled mp_dash_offset (MP mp,pointer h) {
9788 scaled x; /* the answer */
9789 if (dash_list(h)==null_dash || dash_y(h)<0) mp_confusion(mp, "dash0");
9790 @:this can't happen dash0}{\quad dash0@>
9791 if ( dash_y(h)==0 ) {
9794 x=-(start_x(dash_list(h)) % dash_y(h));
9795 if ( x<0 ) x=x+dash_y(h);
9800 @ @<Cases for printing graphical object node |p|@>=
9802 mp_print_char(mp, '"'); mp_print_str(mp,text_p(p));
9803 mp_print(mp, "\" infont \""); mp_print(mp, mp->font_name[font_n(p)]);
9804 mp_print_char(mp, '"'); mp_print_ln(mp);
9805 mp_print_obj_color(mp, p);
9806 mp_print(mp, "transformed ");
9807 mp_print_compact_node(mp, text_tx_loc(p),6);
9810 @ @<Cases for printing graphical object node |p|@>=
9811 case mp_start_clip_code:
9812 mp_print(mp, "clipping path:");
9814 mp_pr_path(mp, path_p(p));
9816 case mp_stop_clip_code:
9817 mp_print(mp, "stop clipping");
9820 @ @<Cases for printing graphical object node |p|@>=
9821 case mp_start_bounds_code:
9822 mp_print(mp, "setbounds path:");
9824 mp_pr_path(mp, path_p(p));
9826 case mp_stop_bounds_code:
9827 mp_print(mp, "end of setbounds");
9830 @ To initialize the |dash_list| field in an edge header~|h|, we need a
9831 subroutine that scans an edge structure and tries to interpret it as a dash
9832 pattern. This can only be done when there are no filled regions or clipping
9833 paths and all the pen strokes have the same color. The first step is to let
9834 $y_0$ be the initial $y$~coordinate of the first pen stroke. Then we implicitly
9835 project all the pen stroke paths onto the line $y=y_0$ and require that there
9836 be no retracing. If the resulting paths cover a range of $x$~coordinates of
9837 length $\Delta x$, we set |dash_y(h)| to the length of the dash pattern by
9838 finding the maximum of $\Delta x$ and the absolute value of~$y_0$.
9840 @c @<Declare a procedure called |x_retrace_error|@>;
9841 pointer mp_make_dashes (MP mp,pointer h) { /* returns |h| or |null| */
9842 pointer p; /* this scans the stroked nodes in the object list */
9843 pointer p0; /* if not |null| this points to the first stroked node */
9844 pointer pp,qq,rr; /* pointers into |path_p(p)| */
9845 pointer d,dd; /* pointers used to create the dash list */
9846 @<Other local variables in |make_dashes|@>;
9847 scaled y0=0; /* the initial $y$ coordinate */
9848 if ( dash_list(h)!=null_dash )
9851 p=link(dummy_loc(h));
9853 if ( type(p)!=mp_stroked_code ) {
9854 @<Compain that the edge structure contains a node of the wrong type
9855 and |goto not_found|@>;
9858 if ( p0==null ){ p0=p; y0=y_coord(pp); };
9859 @<Make |d| point to a new dash node created from stroke |p| and path |pp|
9860 or |goto not_found| if there is an error@>;
9861 @<Insert |d| into the dash list and |goto not_found| if there is an error@>;
9864 if ( dash_list(h)==null_dash )
9865 goto NOT_FOUND; /* No error message */
9866 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>;
9867 @<Set |dash_y(h)| and merge the first and last dashes if necessary@>;
9870 @<Flush the dash list, recycle |h| and return |null|@>;
9873 @ @<Compain that the edge structure contains a node of the wrong type...@>=
9875 print_err("Picture is too complicated to use as a dash pattern");
9876 help3("When you say `dashed p', picture p should not contain any")
9877 ("text, filled regions, or clipping paths. This time it did")
9878 ("so I'll just make it a solid line instead.");
9879 mp_put_get_error(mp);
9883 @ A similar error occurs when monotonicity fails.
9885 @<Declare a procedure called |x_retrace_error|@>=
9886 void mp_x_retrace_error (MP mp) {
9887 print_err("Picture is too complicated to use as a dash pattern");
9888 help3("When you say `dashed p', every path in p should be monotone")
9889 ("in x and there must be no overlapping. This failed")
9890 ("so I'll just make it a solid line instead.");
9891 mp_put_get_error(mp);
9894 @ We stash |p| in |info(d)| if |dash_p(p)<>0| so that subsequent processing can
9895 handle the case where the pen stroke |p| is itself dashed.
9897 @<Make |d| point to a new dash node created from stroke |p| and path...@>=
9898 @<Make sure |p| and |p0| are the same color and |goto not_found| if there is
9901 if ( link(pp)!=pp ) {
9904 @<Check for retracing between knots |qq| and |rr| and |goto not_found|
9905 if there is a problem@>;
9906 } while (right_type(rr)!=mp_endpoint);
9908 d=mp_get_node(mp, dash_node_size);
9909 if ( dash_p(p)==0 ) info(d)=0; else info(d)=p;
9910 if ( x_coord(pp)<x_coord(rr) ) {
9911 start_x(d)=x_coord(pp);
9912 stop_x(d)=x_coord(rr);
9914 start_x(d)=x_coord(rr);
9915 stop_x(d)=x_coord(pp);
9918 @ We also need to check for the case where the segment from |qq| to |rr| is
9919 monotone in $x$ but is reversed relative to the path from |pp| to |qq|.
9921 @<Check for retracing between knots |qq| and |rr| and |goto not_found|...@>=
9926 if ( (x0>x1) || (x1>x2) || (x2>x3) ) {
9927 if ( (x0<x1) || (x1<x2) || (x2<x3) ) {
9928 if ( mp_ab_vs_cd(mp, x2-x1,x2-x1,x1-x0,x3-x2)>0 ) {
9929 mp_x_retrace_error(mp); goto NOT_FOUND;
9933 if ( (x_coord(pp)>x0) || (x0>x3) ) {
9934 if ( (x_coord(pp)<x0) || (x0<x3) ) {
9935 mp_x_retrace_error(mp); goto NOT_FOUND;
9939 @ @<Other local variables in |make_dashes|@>=
9940 scaled x0,x1,x2,x3; /* $x$ coordinates of the segment from |qq| to |rr| */
9942 @ @<Make sure |p| and |p0| are the same color and |goto not_found|...@>=
9943 if ( (red_val(p)!=red_val(p0)) || (black_val(p)!=black_val(p0)) ||
9944 (green_val(p)!=green_val(p0)) || (blue_val(p)!=blue_val(p0)) ) {
9945 print_err("Picture is too complicated to use as a dash pattern");
9946 help3("When you say `dashed p', everything in picture p should")
9947 ("be the same color. I can\'t handle your color changes")
9948 ("so I'll just make it a solid line instead.");
9949 mp_put_get_error(mp);
9953 @ @<Insert |d| into the dash list and |goto not_found| if there is an error@>=
9954 start_x(null_dash)=stop_x(d);
9955 dd=h; /* this makes |link(dd)=dash_list(h)| */
9956 while ( start_x(link(dd))<stop_x(d) )
9959 if ( (stop_x(dd)>start_x(d)) )
9960 { mp_x_retrace_error(mp); goto NOT_FOUND; };
9965 @ @<Set |dash_y(h)| and merge the first and last dashes if necessary@>=
9967 while ( (link(d)!=null_dash) )
9970 dash_y(h)=stop_x(d)-start_x(dd);
9971 if ( abs(y0)>dash_y(h) ) {
9973 } else if ( d!=dd ) {
9974 dash_list(h)=link(dd);
9975 stop_x(d)=stop_x(dd)+dash_y(h);
9976 mp_free_node(mp, dd,dash_node_size);
9979 @ We get here when the argument is a null picture or when there is an error.
9980 Recovering from an error involves making |dash_list(h)| empty to indicate
9981 that |h| is not known to be a valid dash pattern. We also dereference |h|
9982 since it is not being used for the return value.
9984 @<Flush the dash list, recycle |h| and return |null|@>=
9985 mp_flush_dash_list(mp, h);
9989 @ Having carefully saved the dashed stroked nodes in the
9990 corresponding dash nodes, we must be prepared to break up these dashes into
9993 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>=
9994 d=h; /* now |link(d)=dash_list(h)| */
9995 while ( link(d)!=null_dash ) {
10001 hsf=dash_scale(ds);
10002 if ( (hh==null) ) mp_confusion(mp, "dash1");
10003 @:this can't happen dash0}{\quad dash1@>
10004 if ( dash_y(hh)==0 ) {
10007 if ( dash_list(hh)==null ) mp_confusion(mp, "dash1");
10008 @:this can't happen dash0}{\quad dash1@>
10009 @<Replace |link(d)| by a dashed version as determined by edge header
10010 |hh| and scale factor |ds|@>;
10015 @ @<Other local variables in |make_dashes|@>=
10016 pointer dln; /* |link(d)| */
10017 pointer hh; /* an edge header that tells how to break up |dln| */
10018 scaled hsf; /* the dash pattern from |hh| gets scaled by this */
10019 pointer ds; /* the stroked node from which |hh| and |hsf| are derived */
10020 scaled xoff; /* added to $x$ values in |dash_list(hh)| to match |dln| */
10022 @ @<Replace |link(d)| by a dashed version as determined by edge header...@>=
10025 xoff=start_x(dln)-mp_take_scaled(mp, hsf,start_x(dd))-
10026 mp_take_scaled(mp, hsf,mp_dash_offset(mp, hh));
10027 start_x(null_dash)=mp_take_scaled(mp, hsf,start_x(dd))
10028 +mp_take_scaled(mp, hsf,dash_y(hh));
10029 stop_x(null_dash)=start_x(null_dash);
10030 @<Advance |dd| until finding the first dash that overlaps |dln| when
10031 offset by |xoff|@>;
10032 while ( start_x(dln)<=stop_x(dln) ) {
10033 @<If |dd| has `fallen off the end', back up to the beginning and fix |xoff|@>;
10034 @<Insert a dash between |d| and |dln| for the overlap with the offset version
10037 start_x(dln)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10040 mp_free_node(mp, dln,dash_node_size)
10042 @ The name of this module is a bit of a lie because we just find the
10043 first |dd| where |take_scaled (hsf, stop_x(dd))| is large enough to make an
10044 overlap possible. It could be that the unoffset version of dash |dln| falls
10045 in the gap between |dd| and its predecessor.
10047 @<Advance |dd| until finding the first dash that overlaps |dln| when...@>=
10048 while ( xoff+mp_take_scaled(mp, hsf,stop_x(dd))<start_x(dln) ) {
10052 @ @<If |dd| has `fallen off the end', back up to the beginning and fix...@>=
10053 if ( dd==null_dash ) {
10055 xoff=xoff+mp_take_scaled(mp, hsf,dash_y(hh));
10058 @ At this point we already know that
10059 |start_x(dln)<=xoff+take_scaled(hsf,stop_x(dd))|.
10061 @<Insert a dash between |d| and |dln| for the overlap with the offset...@>=
10062 if ( (xoff+mp_take_scaled(mp, hsf,start_x(dd)))<=stop_x(dln) ) {
10063 link(d)=mp_get_node(mp, dash_node_size);
10066 if ( start_x(dln)>(xoff+mp_take_scaled(mp, hsf,start_x(dd))))
10067 start_x(d)=start_x(dln);
10069 start_x(d)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10070 if ( stop_x(dln)<(xoff+mp_take_scaled(mp, hsf,stop_x(dd))))
10071 stop_x(d)=stop_x(dln);
10073 stop_x(d)=xoff+mp_take_scaled(mp, hsf,stop_x(dd));
10076 @ The next major task is to update the bounding box information in an edge
10077 header~|h|. This is done via a procedure |adjust_bbox| that enlarges an edge
10078 header's bounding box to accommodate the box computed by |path_bbox| or
10079 |pen_bbox|. (This is stored in global variables |minx|, |miny|, |maxx|, and
10082 @c void mp_adjust_bbox (MP mp,pointer h) {
10083 if ( minx<minx_val(h) ) minx_val(h)=minx;
10084 if ( miny<miny_val(h) ) miny_val(h)=miny;
10085 if ( maxx>maxx_val(h) ) maxx_val(h)=maxx;
10086 if ( maxy>maxy_val(h) ) maxy_val(h)=maxy;
10089 @ Here is a special routine for updating the bounding box information in
10090 edge header~|h| to account for the squared-off ends of a non-cyclic path~|p|
10091 that is to be stroked with the pen~|pp|.
10093 @c void mp_box_ends (MP mp, pointer p, pointer pp, pointer h) {
10094 pointer q; /* a knot node adjacent to knot |p| */
10095 fraction dx,dy; /* a unit vector in the direction out of the path at~|p| */
10096 scaled d; /* a factor for adjusting the length of |(dx,dy)| */
10097 scaled z; /* a coordinate being tested against the bounding box */
10098 scaled xx,yy; /* the extreme pen vertex in the |(dx,dy)| direction */
10099 integer i; /* a loop counter */
10100 if ( right_type(p)!=mp_endpoint ) {
10103 @<Make |(dx,dy)| the final direction for the path segment from
10104 |q| to~|p|; set~|d|@>;
10105 d=mp_pyth_add(mp, dx,dy);
10107 @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>;
10108 for (i=1;i<= 2;i++) {
10109 @<Use |(dx,dy)| to generate a vertex of the square end cap and
10110 update the bounding box to accommodate it@>;
10114 if ( right_type(p)==mp_endpoint ) {
10117 @<Advance |p| to the end of the path and make |q| the previous knot@>;
10123 @ @<Make |(dx,dy)| the final direction for the path segment from...@>=
10124 if ( q==link(p) ) {
10125 dx=x_coord(p)-right_x(p);
10126 dy=y_coord(p)-right_y(p);
10127 if ( (dx==0)&&(dy==0) ) {
10128 dx=x_coord(p)-left_x(q);
10129 dy=y_coord(p)-left_y(q);
10132 dx=x_coord(p)-left_x(p);
10133 dy=y_coord(p)-left_y(p);
10134 if ( (dx==0)&&(dy==0) ) {
10135 dx=x_coord(p)-right_x(q);
10136 dy=y_coord(p)-right_y(q);
10139 dx=x_coord(p)-x_coord(q);
10140 dy=y_coord(p)-y_coord(q)
10142 @ @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>=
10143 dx=mp_make_fraction(mp, dx,d);
10144 dy=mp_make_fraction(mp, dy,d);
10145 mp_find_offset(mp, -dy,dx,pp);
10146 xx=mp->cur_x; yy=mp->cur_y
10148 @ @<Use |(dx,dy)| to generate a vertex of the square end cap and...@>=
10149 mp_find_offset(mp, dx,dy,pp);
10150 d=mp_take_fraction(mp, xx-mp->cur_x,dx)+mp_take_fraction(mp, yy-mp->cur_y,dy);
10151 if ( ((d<0)&&(i==1)) || ((d>0)&&(i==2)))
10152 mp_confusion(mp, "box_ends");
10153 @:this can't happen box ends}{\quad\\{box\_ends}@>
10154 z=x_coord(p)+mp->cur_x+mp_take_fraction(mp, d,dx);
10155 if ( z<minx_val(h) ) minx_val(h)=z;
10156 if ( z>maxx_val(h) ) maxx_val(h)=z;
10157 z=y_coord(p)+mp->cur_y+mp_take_fraction(mp, d,dy);
10158 if ( z<miny_val(h) ) miny_val(h)=z;
10159 if ( z>maxy_val(h) ) maxy_val(h)=z
10161 @ @<Advance |p| to the end of the path and make |q| the previous knot@>=
10165 } while (right_type(p)!=mp_endpoint)
10167 @ The major difficulty in finding the bounding box of an edge structure is the
10168 effect of clipping paths. We treat them conservatively by only clipping to the
10169 clipping path's bounding box, but this still
10170 requires recursive calls to |set_bbox| in order to find the bounding box of
10172 the objects to be clipped. Such calls are distinguished by the fact that the
10173 boolean parameter |top_level| is false.
10175 @c void mp_set_bbox (MP mp,pointer h, boolean top_level) {
10176 pointer p; /* a graphical object being considered */
10177 scaled sminx,sminy,smaxx,smaxy;
10178 /* for saving the bounding box during recursive calls */
10179 scaled x0,x1,y0,y1; /* temporary registers */
10180 integer lev; /* nesting level for |mp_start_bounds_code| nodes */
10181 @<Wipe out any existing bounding box information if |bbtype(h)| is
10182 incompatible with |internal[mp_true_corners]|@>;
10183 while ( link(bblast(h))!=null ) {
10187 case mp_stop_clip_code:
10188 if ( top_level ) mp_confusion(mp, "bbox"); else return;
10189 @:this can't happen bbox}{\quad bbox@>
10191 @<Other cases for updating the bounding box based on the type of object |p|@>;
10192 } /* all cases are enumerated above */
10194 if ( ! top_level ) mp_confusion(mp, "bbox");
10197 @ @<Internal library declarations@>=
10198 void mp_set_bbox (MP mp,pointer h, boolean top_level);
10200 @ @<Wipe out any existing bounding box information if |bbtype(h)| is...@>=
10201 switch (bbtype(h)) {
10205 if ( mp->internal[mp_true_corners]>0 ) mp_init_bbox(mp, h);
10208 if ( mp->internal[mp_true_corners]<=0 ) mp_init_bbox(mp, h);
10210 } /* there are no other cases */
10212 @ @<Other cases for updating the bounding box...@>=
10214 mp_path_bbox(mp, path_p(p));
10215 if ( pen_p(p)!=null ) {
10218 mp_pen_bbox(mp, pen_p(p));
10224 mp_adjust_bbox(mp, h);
10227 @ @<Other cases for updating the bounding box...@>=
10228 case mp_start_bounds_code:
10229 if ( mp->internal[mp_true_corners]>0 ) {
10230 bbtype(h)=bounds_unset;
10232 bbtype(h)=bounds_set;
10233 mp_path_bbox(mp, path_p(p));
10234 mp_adjust_bbox(mp, h);
10235 @<Scan to the matching |mp_stop_bounds_code| node and update |p| and
10239 case mp_stop_bounds_code:
10240 if ( mp->internal[mp_true_corners]<=0 ) mp_confusion(mp, "bbox2");
10241 @:this can't happen bbox2}{\quad bbox2@>
10244 @ @<Scan to the matching |mp_stop_bounds_code| node and update |p| and...@>=
10247 if ( link(p)==null ) mp_confusion(mp, "bbox2");
10248 @:this can't happen bbox2}{\quad bbox2@>
10250 if ( type(p)==mp_start_bounds_code ) incr(lev);
10251 else if ( type(p)==mp_stop_bounds_code ) decr(lev);
10255 @ It saves a lot of grief here to be slightly conservative and not account for
10256 omitted parts of dashed lines. We also don't worry about the material omitted
10257 when using butt end caps. The basic computation is for round end caps and
10258 |box_ends| augments it for square end caps.
10260 @<Other cases for updating the bounding box...@>=
10261 case mp_stroked_code:
10262 mp_path_bbox(mp, path_p(p));
10265 mp_pen_bbox(mp, pen_p(p));
10270 mp_adjust_bbox(mp, h);
10271 if ( (left_type(path_p(p))==mp_endpoint)&&(lcap_val(p)==2) )
10272 mp_box_ends(mp, path_p(p), pen_p(p), h);
10275 @ The height width and depth information stored in a text node determines a
10276 rectangle that needs to be transformed according to the transformation
10277 parameters stored in the text node.
10279 @<Other cases for updating the bounding box...@>=
10281 x1=mp_take_scaled(mp, txx_val(p),width_val(p));
10282 y0=mp_take_scaled(mp, txy_val(p),-depth_val(p));
10283 y1=mp_take_scaled(mp, txy_val(p),height_val(p));
10286 if ( y0<y1 ) { minx=minx+y0; maxx=maxx+y1; }
10287 else { minx=minx+y1; maxx=maxx+y0; }
10288 if ( x1<0 ) minx=minx+x1; else maxx=maxx+x1;
10289 x1=mp_take_scaled(mp, tyx_val(p),width_val(p));
10290 y0=mp_take_scaled(mp, tyy_val(p),-depth_val(p));
10291 y1=mp_take_scaled(mp, tyy_val(p),height_val(p));
10294 if ( y0<y1 ) { miny=miny+y0; maxy=maxy+y1; }
10295 else { miny=miny+y1; maxy=maxy+y0; }
10296 if ( x1<0 ) miny=miny+x1; else maxy=maxy+x1;
10297 mp_adjust_bbox(mp, h);
10300 @ This case involves a recursive call that advances |bblast(h)| to the node of
10301 type |mp_stop_clip_code| that matches |p|.
10303 @<Other cases for updating the bounding box...@>=
10304 case mp_start_clip_code:
10305 mp_path_bbox(mp, path_p(p));
10308 sminx=minx_val(h); sminy=miny_val(h);
10309 smaxx=maxx_val(h); smaxy=maxy_val(h);
10310 @<Reinitialize the bounding box in header |h| and call |set_bbox| recursively
10311 starting at |link(p)|@>;
10312 @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,
10314 minx=sminx; miny=sminy;
10315 maxx=smaxx; maxy=smaxy;
10316 mp_adjust_bbox(mp, h);
10319 @ @<Reinitialize the bounding box in header |h| and call |set_bbox|...@>=
10320 minx_val(h)=el_gordo;
10321 miny_val(h)=el_gordo;
10322 maxx_val(h)=-el_gordo;
10323 maxy_val(h)=-el_gordo;
10324 mp_set_bbox(mp, h,false)
10326 @ @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,...@>=
10327 if ( minx_val(h)<x0 ) minx_val(h)=x0;
10328 if ( miny_val(h)<y0 ) miny_val(h)=y0;
10329 if ( maxx_val(h)>x1 ) maxx_val(h)=x1;
10330 if ( maxy_val(h)>y1 ) maxy_val(h)=y1
10332 @* \[22] Finding an envelope.
10333 When \MP\ has a path and a polygonal pen, it needs to express the desired
10334 shape in terms of things \ps\ can understand. The present task is to compute
10335 a new path that describes the region to be filled. It is convenient to
10336 define this as a two step process where the first step is determining what
10337 offset to use for each segment of the path.
10339 @ Given a pointer |c| to a cyclic path,
10340 and a pointer~|h| to the first knot of a pen polygon,
10341 the |offset_prep| routine changes the path into cubics that are
10342 associated with particular pen offsets. Thus if the cubic between |p|
10343 and~|q| is associated with the |k|th offset and the cubic between |q| and~|r|
10344 has offset |l| then |info(q)=zero_off+l-k|. (The constant |zero_off| is added
10345 to because |l-k| could be negative.)
10347 After overwriting the type information with offset differences, we no longer
10348 have a true path so we refer to the knot list returned by |offset_prep| as an
10351 Since an envelope spec only determines relative changes in pen offsets,
10352 |offset_prep| sets a global variable |spec_offset| to the relative change from
10353 |h| to the first offset.
10355 @d zero_off 16384 /* added to offset changes to make them positive */
10358 integer spec_offset; /* number of pen edges between |h| and the initial offset */
10360 @ @c @<Declare subroutines needed by |offset_prep|@>;
10361 pointer mp_offset_prep (MP mp,pointer c, pointer h) {
10362 halfword n; /* the number of vertices in the pen polygon */
10363 pointer p,q,q0,r,w, ww; /* for list manipulation */
10364 integer k_needed; /* amount to be added to |info(p)| when it is computed */
10365 pointer w0; /* a pointer to pen offset to use just before |p| */
10366 scaled dxin,dyin; /* the direction into knot |p| */
10367 integer turn_amt; /* change in pen offsets for the current cubic */
10368 @<Other local variables for |offset_prep|@>;
10370 @<Initialize the pen size~|n|@>;
10371 @<Initialize the incoming direction and pen offset at |c|@>;
10375 @<Split the cubic between |p| and |q|, if necessary, into cubics
10376 associated with single offsets, after which |q| should
10377 point to the end of the final such cubic@>;
10379 @<Advance |p| to node |q|, removing any ``dead'' cubics that
10380 might have been introduced by the splitting process@>;
10382 @<Fix the offset change in |info(c)| and set |c| to the return value of
10387 @ We shall want to keep track of where certain knots on the cyclic path
10388 wind up in the envelope spec. It doesn't suffice just to keep pointers to
10389 knot nodes because some nodes are deleted while removing dead cubics. Thus
10390 |offset_prep| updates the following pointers
10394 pointer spec_p2; /* pointers to distinguished knots */
10397 mp->spec_p1=null; mp->spec_p2=null;
10399 @ @<Initialize the pen size~|n|@>=
10406 @ Since the true incoming direction isn't known yet, we just pick a direction
10407 consistent with the pen offset~|h|. If this is wrong, it can be corrected
10410 @<Initialize the incoming direction and pen offset at |c|@>=
10411 dxin=x_coord(link(h))-x_coord(knil(h));
10412 dyin=y_coord(link(h))-y_coord(knil(h));
10413 if ( (dxin==0)&&(dyin==0) ) {
10414 dxin=y_coord(knil(h))-y_coord(h);
10415 dyin=x_coord(h)-x_coord(knil(h));
10419 @ We must be careful not to remove the only cubic in a cycle.
10421 But we must also be careful for another reason. If the user-supplied
10422 path starts with a set of degenerate cubics, the target node |q| can
10423 be collapsed to the initial node |p| which might be the same as the
10424 initial node |c| of the curve. This would cause the |offset_prep| routine
10425 to bail out too early, causing distress later on. (See for example
10426 the testcase reported by Bogus\l{}aw Jackowski in tracker id 267, case 52c
10429 @<Advance |p| to node |q|, removing any ``dead'' cubics...@>=
10433 if ( x_coord(p)==right_x(p) && y_coord(p)==right_y(p) &&
10434 x_coord(p)==left_x(r) && y_coord(p)==left_y(r) &&
10435 x_coord(p)==x_coord(r) && y_coord(p)==y_coord(r) &&
10437 @<Remove the cubic following |p| and update the data structures
10438 to merge |r| into |p|@>;
10442 /* Check if we removed too much */
10446 @ @<Remove the cubic following |p| and update the data structures...@>=
10447 { k_needed=info(p)-zero_off;
10451 info(p)=k_needed+info(r);
10454 if ( r==c ) { info(p)=info(c); c=p; };
10455 if ( r==mp->spec_p1 ) mp->spec_p1=p;
10456 if ( r==mp->spec_p2 ) mp->spec_p2=p;
10457 r=p; mp_remove_cubic(mp, p);
10460 @ Not setting the |info| field of the newly created knot allows the splitting
10461 routine to work for paths.
10463 @<Declare subroutines needed by |offset_prep|@>=
10464 void mp_split_cubic (MP mp,pointer p, fraction t) { /* splits the cubic after |p| */
10465 scaled v; /* an intermediate value */
10466 pointer q,r; /* for list manipulation */
10467 q=link(p); r=mp_get_node(mp, knot_node_size); link(p)=r; link(r)=q;
10468 originator(r)=mp_program_code;
10469 left_type(r)=mp_explicit; right_type(r)=mp_explicit;
10470 v=t_of_the_way(right_x(p),left_x(q));
10471 right_x(p)=t_of_the_way(x_coord(p),right_x(p));
10472 left_x(q)=t_of_the_way(left_x(q),x_coord(q));
10473 left_x(r)=t_of_the_way(right_x(p),v);
10474 right_x(r)=t_of_the_way(v,left_x(q));
10475 x_coord(r)=t_of_the_way(left_x(r),right_x(r));
10476 v=t_of_the_way(right_y(p),left_y(q));
10477 right_y(p)=t_of_the_way(y_coord(p),right_y(p));
10478 left_y(q)=t_of_the_way(left_y(q),y_coord(q));
10479 left_y(r)=t_of_the_way(right_y(p),v);
10480 right_y(r)=t_of_the_way(v,left_y(q));
10481 y_coord(r)=t_of_the_way(left_y(r),right_y(r));
10484 @ This does not set |info(p)| or |right_type(p)|.
10486 @<Declare subroutines needed by |offset_prep|@>=
10487 void mp_remove_cubic (MP mp,pointer p) { /* removes the dead cubic following~|p| */
10488 pointer q; /* the node that disappears */
10489 q=link(p); link(p)=link(q);
10490 right_x(p)=right_x(q); right_y(p)=right_y(q);
10491 mp_free_node(mp, q,knot_node_size);
10494 @ Let $d\prec d'$ mean that the counter-clockwise angle from $d$ to~$d'$ is
10495 strictly between zero and $180^\circ$. Then we can define $d\preceq d'$ to
10496 mean that the angle could be zero or $180^\circ$. If $w_k=(u_k,v_k)$ is the
10497 $k$th pen offset, the $k$th pen edge direction is defined by the formula
10498 $$d_k=(u\k-u_k,\,v\k-v_k).$$
10499 When listed by increasing $k$, these directions occur in counter-clockwise
10500 order so that $d_k\preceq d\k$ for all~$k$.
10501 The goal of |offset_prep| is to find an offset index~|k| to associate with
10502 each cubic, such that the direction $d(t)$ of the cubic satisfies
10503 $$d_{k-1}\preceq d(t)\preceq d_k\qquad\hbox{for $0\le t\le 1$.}\eqno(*)$$
10504 We may have to split a cubic into many pieces before each
10505 piece corresponds to a unique offset.
10507 @<Split the cubic between |p| and |q|, if necessary, into cubics...@>=
10508 info(p)=zero_off+k_needed;
10510 @<Prepare for derivative computations;
10511 |goto not_found| if the current cubic is dead@>;
10512 @<Find the initial direction |(dx,dy)|@>;
10513 @<Update |info(p)| and find the offset $w_k$ such that
10514 $d_{k-1}\preceq(\\{dx},\\{dy})\prec d_k$; also advance |w0| for
10515 the direction change at |p|@>;
10516 @<Find the final direction |(dxin,dyin)|@>;
10517 @<Decide on the net change in pen offsets and set |turn_amt|@>;
10518 @<Complete the offset splitting process@>;
10519 w0=mp_pen_walk(mp, w0,turn_amt)
10521 @ @<Declare subroutines needed by |offset_prep|@>=
10522 pointer mp_pen_walk (MP mp,pointer w, integer k) {
10523 /* walk |k| steps around a pen from |w| */
10524 while ( k>0 ) { w=link(w); decr(k); };
10525 while ( k<0 ) { w=knil(w); incr(k); };
10529 @ The direction of a cubic $B(z_0,z_1,z_2,z_3;t)=\bigl(x(t),y(t)\bigr)$ can be
10530 calculated from the quadratic polynomials
10531 ${1\over3}x'(t)=B(x_1-x_0,x_2-x_1,x_3-x_2;t)$ and
10532 ${1\over3}y'(t)=B(y_1-y_0,y_2-y_1,y_3-y_2;t)$.
10533 Since we may be calculating directions from several cubics
10534 split from the current one, it is desirable to do these calculations
10535 without losing too much precision. ``Scaled up'' values of the
10536 derivatives, which will be less tainted by accumulated errors than
10537 derivatives found from the cubics themselves, are maintained in
10538 local variables |x0|, |x1|, and |x2|, representing $X_0=2^l(x_1-x_0)$,
10539 $X_1=2^l(x_2-x_1)$, and $X_2=2^l(x_3-x_2)$; similarly |y0|, |y1|, and~|y2|
10540 represent $Y_0=2^l(y_1-y_0)$, $Y_1=2^l(y_2-y_1)$, and $Y_2=2^l(y_3-y_2)$.
10542 @<Other local variables for |offset_prep|@>=
10543 integer x0,x1,x2,y0,y1,y2; /* representatives of derivatives */
10544 integer t0,t1,t2; /* coefficients of polynomial for slope testing */
10545 integer du,dv,dx,dy; /* for directions of the pen and the curve */
10546 integer dx0,dy0; /* initial direction for the first cubic in the curve */
10547 integer max_coef; /* used while scaling */
10548 integer x0a,x1a,x2a,y0a,y1a,y2a; /* intermediate values */
10549 fraction t; /* where the derivative passes through zero */
10550 fraction s; /* a temporary value */
10552 @ @<Prepare for derivative computations...@>=
10553 x0=right_x(p)-x_coord(p);
10554 x2=x_coord(q)-left_x(q);
10555 x1=left_x(q)-right_x(p);
10556 y0=right_y(p)-y_coord(p); y2=y_coord(q)-left_y(q);
10557 y1=left_y(q)-right_y(p);
10559 if ( abs(x1)>max_coef ) max_coef=abs(x1);
10560 if ( abs(x2)>max_coef ) max_coef=abs(x2);
10561 if ( abs(y0)>max_coef ) max_coef=abs(y0);
10562 if ( abs(y1)>max_coef ) max_coef=abs(y1);
10563 if ( abs(y2)>max_coef ) max_coef=abs(y2);
10564 if ( max_coef==0 ) goto NOT_FOUND;
10565 while ( max_coef<fraction_half ) {
10567 double(x0); double(x1); double(x2);
10568 double(y0); double(y1); double(y2);
10571 @ Let us first solve a special case of the problem: Suppose we
10572 know an index~$k$ such that either (i)~$d(t)\succeq d_{k-1}$ for all~$t$
10573 and $d(0)\prec d_k$, or (ii)~$d(t)\preceq d_k$ for all~$t$ and
10574 $d(0)\succ d_{k-1}$.
10575 Then, in a sense, we're halfway done, since one of the two relations
10576 in $(*)$ is satisfied, and the other couldn't be satisfied for
10577 any other value of~|k|.
10579 Actually, the conditions can be relaxed somewhat since a relation such as
10580 $d(t)\succeq d_{k-1}$ restricts $d(t)$ to a half plane when all that really
10581 matters is whether $d(t)$ crosses the ray in the $d_{k-1}$ direction from
10582 the origin. The condition for case~(i) becomes $d_{k-1}\preceq d(0)\prec d_k$
10583 and $d(t)$ never crosses the $d_{k-1}$ ray in the clockwise direction.
10584 Case~(ii) is similar except $d(t)$ cannot cross the $d_k$ ray in the
10585 counterclockwise direction.
10587 The |fin_offset_prep| subroutine solves the stated subproblem.
10588 It has a parameter called |rise| that is |1| in
10589 case~(i), |-1| in case~(ii). Parameters |x0| through |y2| represent
10590 the derivative of the cubic following |p|.
10591 The |w| parameter should point to offset~$w_k$ and |info(p)| should already
10592 be set properly. The |turn_amt| parameter gives the absolute value of the
10593 overall net change in pen offsets.
10595 @<Declare subroutines needed by |offset_prep|@>=
10596 void mp_fin_offset_prep (MP mp,pointer p, pointer w, integer
10597 x0,integer x1, integer x2, integer y0, integer y1, integer y2,
10598 integer rise, integer turn_amt) {
10599 pointer ww; /* for list manipulation */
10600 scaled du,dv; /* for slope calculation */
10601 integer t0,t1,t2; /* test coefficients */
10602 fraction t; /* place where the derivative passes a critical slope */
10603 fraction s; /* slope or reciprocal slope */
10604 integer v; /* intermediate value for updating |x0..y2| */
10605 pointer q; /* original |link(p)| */
10608 if ( rise>0 ) ww=link(w); /* a pointer to $w\k$ */
10609 else ww=knil(w); /* a pointer to $w_{k-1}$ */
10610 @<Compute test coefficients |(t0,t1,t2)|
10611 for $d(t)$ versus $d_k$ or $d_{k-1}$@>;
10612 t=mp_crossing_point(mp, t0,t1,t2);
10613 if ( t>=fraction_one ) {
10614 if ( turn_amt>0 ) t=fraction_one; else return;
10616 @<Split the cubic at $t$,
10617 and split off another cubic if the derivative crosses back@>;
10622 @ We want $B(\\{t0},\\{t1},\\{t2};t)$ to be the dot product of $d(t)$ with a
10623 $-90^\circ$ rotation of the vector from |w| to |ww|. This makes the resulting
10624 function cross from positive to negative when $d_{k-1}\preceq d(t)\preceq d_k$
10627 @<Compute test coefficients |(t0,t1,t2)| for $d(t)$ versus...@>=
10628 du=x_coord(ww)-x_coord(w); dv=y_coord(ww)-y_coord(w);
10629 if ( abs(du)>=abs(dv) ) {
10630 s=mp_make_fraction(mp, dv,du);
10631 t0=mp_take_fraction(mp, x0,s)-y0;
10632 t1=mp_take_fraction(mp, x1,s)-y1;
10633 t2=mp_take_fraction(mp, x2,s)-y2;
10634 if ( du<0 ) { negate(t0); negate(t1); negate(t2); }
10636 s=mp_make_fraction(mp, du,dv);
10637 t0=x0-mp_take_fraction(mp, y0,s);
10638 t1=x1-mp_take_fraction(mp, y1,s);
10639 t2=x2-mp_take_fraction(mp, y2,s);
10640 if ( dv<0 ) { negate(t0); negate(t1); negate(t2); }
10642 if ( t0<0 ) t0=0 /* should be positive without rounding error */
10644 @ The curve has crossed $d_k$ or $d_{k-1}$; its initial segment satisfies
10645 $(*)$, and it might cross again, yielding another solution of $(*)$.
10647 @<Split the cubic at $t$, and split off another...@>=
10649 mp_split_cubic(mp, p,t); p=link(p); info(p)=zero_off+rise;
10651 v=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10652 x0=t_of_the_way(v,x1);
10653 v=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10654 y0=t_of_the_way(v,y1);
10655 if ( turn_amt<0 ) {
10656 t1=t_of_the_way(t1,t2);
10657 if ( t1>0 ) t1=0; /* without rounding error, |t1| would be |<=0| */
10658 t=mp_crossing_point(mp, 0,-t1,-t2);
10659 if ( t>fraction_one ) t=fraction_one;
10661 if ( (t==fraction_one)&&(link(p)!=q) ) {
10662 info(link(p))=info(link(p))-rise;
10664 mp_split_cubic(mp, p,t); info(link(p))=zero_off-rise;
10665 v=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10666 x2=t_of_the_way(x1,v);
10667 v=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10668 y2=t_of_the_way(y1,v);
10673 @ Now we must consider the general problem of |offset_prep|, when
10674 nothing is known about a given cubic. We start by finding its
10675 direction in the vicinity of |t=0|.
10677 If $z'(t)=0$, the given cubic is numerically unstable but |offset_prep|
10678 has not yet introduced any more numerical errors. Thus we can compute
10679 the true initial direction for the given cubic, even if it is almost
10682 @<Find the initial direction |(dx,dy)|@>=
10684 if ( dx==0 && dy==0 ) {
10686 if ( dx==0 && dy==0 ) {
10690 if ( p==c ) { dx0=dx; dy0=dy; }
10692 @ @<Find the final direction |(dxin,dyin)|@>=
10694 if ( dxin==0 && dyin==0 ) {
10696 if ( dxin==0 && dyin==0 ) {
10701 @ The next step is to bracket the initial direction between consecutive
10702 edges of the pen polygon. We must be careful to turn clockwise only if
10703 this makes the turn less than $180^\circ$. (A $180^\circ$ turn must be
10704 counter-clockwise in order to make \&{doublepath} envelopes come out
10705 @:double_path_}{\&{doublepath} primitive@>
10706 right.) This code depends on |w0| being the offset for |(dxin,dyin)|.
10708 @<Update |info(p)| and find the offset $w_k$ such that...@>=
10709 turn_amt=mp_get_turn_amt(mp,w0,dx,dy,(mp_ab_vs_cd(mp, dy,dxin,dx,dyin)>=0));
10710 w=mp_pen_walk(mp, w0, turn_amt);
10712 info(p)=info(p)+turn_amt
10714 @ Decide how many pen offsets to go away from |w| in order to find the offset
10715 for |(dx,dy)|, going counterclockwise if |ccw| is |true|. This assumes that
10716 |w| is the offset for some direction $(x',y')$ from which the angle to |(dx,dy)|
10717 in the sense determined by |ccw| is less than or equal to $180^\circ$.
10719 If the pen polygon has only two edges, they could both be parallel
10720 to |(dx,dy)|. In this case, we must be careful to stop after crossing the first
10721 such edge in order to avoid an infinite loop.
10723 @<Declare subroutines needed by |offset_prep|@>=
10724 integer mp_get_turn_amt (MP mp,pointer w, scaled dx,
10725 scaled dy, boolean ccw) {
10726 pointer ww; /* a neighbor of knot~|w| */
10727 integer s; /* turn amount so far */
10728 integer t; /* |ab_vs_cd| result */
10733 t=mp_ab_vs_cd(mp, dy,(x_coord(ww)-x_coord(w)),
10734 dx,(y_coord(ww)-y_coord(w)));
10741 while ( mp_ab_vs_cd(mp, dy,(x_coord(w)-x_coord(ww)),
10742 dx,(y_coord(w)-y_coord(ww))) < 0) {
10750 @ When we're all done, the final offset is |w0| and the final curve direction
10751 is |(dxin,dyin)|. With this knowledge of the incoming direction at |c|, we
10752 can correct |info(c)| which was erroneously based on an incoming offset
10755 @d fix_by(A) info(c)=info(c)+(A)
10757 @<Fix the offset change in |info(c)| and set |c| to the return value of...@>=
10758 mp->spec_offset=info(c)-zero_off;
10759 if ( link(c)==c ) {
10760 info(c)=zero_off+n;
10763 while ( w0!=h ) { fix_by(1); w0=link(w0); };
10764 while ( info(c)<=zero_off-n ) fix_by(n);
10765 while ( info(c)>zero_off ) fix_by(-n);
10766 if ( (info(c)!=zero_off)&&(mp_ab_vs_cd(mp, dy0,dxin,dx0,dyin)>=0) ) fix_by(n);
10770 @ Finally we want to reduce the general problem to situations that
10771 |fin_offset_prep| can handle. We split the cubic into at most three parts
10772 with respect to $d_{k-1}$, and apply |fin_offset_prep| to each part.
10774 @<Complete the offset splitting process@>=
10776 @<Compute test coeff...@>;
10777 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set
10778 |t:=fraction_one+1|@>;
10779 if ( t>fraction_one ) {
10780 mp_fin_offset_prep(mp, p,w,x0,x1,x2,y0,y1,y2,1,turn_amt);
10782 mp_split_cubic(mp, p,t); r=link(p);
10783 x1a=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10784 x2a=t_of_the_way(x1a,x1);
10785 y1a=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10786 y2a=t_of_the_way(y1a,y1);
10787 mp_fin_offset_prep(mp, p,w,x0,x1a,x2a,y0,y1a,y2a,1,0); x0=x2a; y0=y2a;
10788 info(r)=zero_off-1;
10789 if ( turn_amt>=0 ) {
10790 t1=t_of_the_way(t1,t2);
10792 t=mp_crossing_point(mp, 0,-t1,-t2);
10793 if ( t>fraction_one ) t=fraction_one;
10794 @<Split off another rising cubic for |fin_offset_prep|@>;
10795 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,0);
10797 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,(-1-turn_amt));
10801 @ @<Split off another rising cubic for |fin_offset_prep|@>=
10802 mp_split_cubic(mp, r,t); info(link(r))=zero_off+1;
10803 x1a=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10804 x0a=t_of_the_way(x1,x1a);
10805 y1a=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10806 y0a=t_of_the_way(y1,y1a);
10807 mp_fin_offset_prep(mp, link(r),w,x0a,x1a,x2,y0a,y1a,y2,1,turn_amt);
10810 @ At this point, the direction of the incoming pen edge is |(-du,-dv)|.
10811 When the component of $d(t)$ perpendicular to |(-du,-dv)| crosses zero, we
10812 need to decide whether the directions are parallel or antiparallel. We
10813 can test this by finding the dot product of $d(t)$ and |(-du,-dv)|, but this
10814 should be avoided when the value of |turn_amt| already determines the
10815 answer. If |t2<0|, there is one crossing and it is antiparallel only if
10816 |turn_amt>=0|. If |turn_amt<0|, there should always be at least one
10817 crossing and the first crossing cannot be antiparallel.
10819 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set...@>=
10820 t=mp_crossing_point(mp, t0,t1,t2);
10821 if ( turn_amt>=0 ) {
10825 u0=t_of_the_way(x0,x1);
10826 u1=t_of_the_way(x1,x2);
10827 ss=mp_take_fraction(mp, -du,t_of_the_way(u0,u1));
10828 v0=t_of_the_way(y0,y1);
10829 v1=t_of_the_way(y1,y2);
10830 ss=ss+mp_take_fraction(mp, -dv,t_of_the_way(v0,v1));
10831 if ( ss<0 ) t=fraction_one+1;
10833 } else if ( t>fraction_one ) {
10837 @ @<Other local variables for |offset_prep|@>=
10838 integer u0,u1,v0,v1; /* intermediate values for $d(t)$ calculation */
10839 integer ss = 0; /* the part of the dot product computed so far */
10840 int d_sign; /* sign of overall change in direction for this cubic */
10842 @ If the cubic almost has a cusp, it is a numerically ill-conditioned
10843 problem to decide which way it loops around but that's OK as long we're
10844 consistent. To make \&{doublepath} envelopes work properly, reversing
10845 the path should always change the sign of |turn_amt|.
10847 @<Decide on the net change in pen offsets and set |turn_amt|@>=
10848 d_sign=mp_ab_vs_cd(mp, dx,dyin, dxin,dy);
10850 @<Check rotation direction based on node position@>
10854 if ( dy>0 ) d_sign=1; else d_sign=-1;
10856 if ( dx>0 ) d_sign=1; else d_sign=-1;
10859 @<Make |ss| negative if and only if the total change in direction is
10860 more than $180^\circ$@>;
10861 turn_amt=mp_get_turn_amt(mp, w, dxin, dyin, (d_sign>0));
10862 if ( ss<0 ) turn_amt=turn_amt-d_sign*n
10864 @ We check rotation direction by looking at the vector connecting the current
10865 node with the next. If its angle with incoming and outgoing tangents has the
10866 same sign, we pick this as |d_sign|, since it means we have a flex, not a cusp.
10867 Otherwise we proceed to the cusp code.
10869 @<Check rotation direction based on node position@>=
10870 u0=x_coord(q)-x_coord(p);
10871 u1=y_coord(q)-y_coord(p);
10872 d_sign = half(mp_ab_vs_cd(mp, dx, u1, u0, dy)+
10873 mp_ab_vs_cd(mp, u0, dyin, dxin, u1));
10875 @ In order to be invariant under path reversal, the result of this computation
10876 should not change when |x0|, |y0|, $\ldots$ are all negated and |(x0,y0)| is
10877 then swapped with |(x2,y2)|. We make use of the identities
10878 |take_fraction(-a,-b)=take_fraction(a,b)| and
10879 |t_of_the_way(-a,-b)=-(t_of_the_way(a,b))|.
10881 @<Make |ss| negative if and only if the total change in direction is...@>=
10882 t0=half(mp_take_fraction(mp, x0,y2))-half(mp_take_fraction(mp, x2,y0));
10883 t1=half(mp_take_fraction(mp, x1,(y0+y2)))-half(mp_take_fraction(mp, y1,(x0+x2)));
10884 if ( t0==0 ) t0=d_sign; /* path reversal always negates |d_sign| */
10886 t=mp_crossing_point(mp, t0,t1,-t0);
10887 u0=t_of_the_way(x0,x1);
10888 u1=t_of_the_way(x1,x2);
10889 v0=t_of_the_way(y0,y1);
10890 v1=t_of_the_way(y1,y2);
10892 t=mp_crossing_point(mp, -t0,t1,t0);
10893 u0=t_of_the_way(x2,x1);
10894 u1=t_of_the_way(x1,x0);
10895 v0=t_of_the_way(y2,y1);
10896 v1=t_of_the_way(y1,y0);
10898 ss=mp_take_fraction(mp, (x0+x2),t_of_the_way(u0,u1))+
10899 mp_take_fraction(mp, (y0+y2),t_of_the_way(v0,v1))
10901 @ Here's a routine that prints an envelope spec in symbolic form. It assumes
10902 that the |cur_pen| has not been walked around to the first offset.
10905 void mp_print_spec (MP mp,pointer cur_spec, pointer cur_pen, char *s) {
10906 pointer p,q; /* list traversal */
10907 pointer w; /* the current pen offset */
10908 mp_print_diagnostic(mp, "Envelope spec",s,true);
10909 p=cur_spec; w=mp_pen_walk(mp, cur_pen,mp->spec_offset);
10911 mp_print_two(mp, x_coord(cur_spec),y_coord(cur_spec));
10912 mp_print(mp, " % beginning with offset ");
10913 mp_print_two(mp, x_coord(w),y_coord(w));
10917 @<Print the cubic between |p| and |q|@>;
10919 if ((p==cur_spec) || (info(p)!=zero_off))
10922 if ( info(p)!=zero_off ) {
10923 @<Update |w| as indicated by |info(p)| and print an explanation@>;
10925 } while (p!=cur_spec);
10926 mp_print_nl(mp, " & cycle");
10927 mp_end_diagnostic(mp, true);
10930 @ @<Update |w| as indicated by |info(p)| and print an explanation@>=
10932 w=mp_pen_walk(mp, w, (info(p)-zero_off));
10933 mp_print(mp, " % ");
10934 if ( info(p)>zero_off ) mp_print(mp, "counter");
10935 mp_print(mp, "clockwise to offset ");
10936 mp_print_two(mp, x_coord(w),y_coord(w));
10939 @ @<Print the cubic between |p| and |q|@>=
10941 mp_print_nl(mp, " ..controls ");
10942 mp_print_two(mp, right_x(p),right_y(p));
10943 mp_print(mp, " and ");
10944 mp_print_two(mp, left_x(q),left_y(q));
10945 mp_print_nl(mp, " ..");
10946 mp_print_two(mp, x_coord(q),y_coord(q));
10949 @ Once we have an envelope spec, the remaining task to construct the actual
10950 envelope by offsetting each cubic as determined by the |info| fields in
10951 the knots. First we use |offset_prep| to convert the |c| into an envelope
10952 spec. Then we add the offsets so that |c| becomes a cyclic path that represents
10955 The |ljoin| and |miterlim| parameters control the treatment of points where the
10956 pen offset changes, and |lcap| controls the endpoints of a \&{doublepath}.
10957 The endpoints are easily located because |c| is given in undoubled form
10958 and then doubled in this procedure. We use |spec_p1| and |spec_p2| to keep
10959 track of the endpoints and treat them like very sharp corners.
10960 Butt end caps are treated like beveled joins; round end caps are treated like
10961 round joins; and square end caps are achieved by setting |join_type:=3|.
10963 None of these parameters apply to inside joins where the convolution tracing
10964 has retrograde lines. In such cases we use a simple connect-the-endpoints
10965 approach that is achieved by setting |join_type:=2|.
10967 @c @<Declare a function called |insert_knot|@>;
10968 pointer mp_make_envelope (MP mp,pointer c, pointer h, small_number ljoin,
10969 small_number lcap, scaled miterlim) {
10970 pointer p,q,r,q0; /* for manipulating the path */
10971 int join_type=0; /* codes |0..3| for mitered, round, beveled, or square */
10972 pointer w,w0; /* the pen knot for the current offset */
10973 scaled qx,qy; /* unshifted coordinates of |q| */
10974 halfword k,k0; /* controls pen edge insertion */
10975 @<Other local variables for |make_envelope|@>;
10976 dxin=0; dyin=0; dxout=0; dyout=0;
10977 mp->spec_p1=null; mp->spec_p2=null;
10978 @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>;
10979 @<Use |offset_prep| to compute the envelope spec then walk |h| around to
10980 the initial offset@>;
10985 qx=x_coord(q); qy=y_coord(q);
10988 if ( k!=zero_off ) {
10989 @<Set |join_type| to indicate how to handle offset changes at~|q|@>;
10991 @<Add offset |w| to the cubic from |p| to |q|@>;
10992 while ( k!=zero_off ) {
10993 @<Step |w| and move |k| one step closer to |zero_off|@>;
10994 if ( (join_type==1)||(k==zero_off) )
10995 q=mp_insert_knot(mp, q,qx+x_coord(w),qy+y_coord(w));
10997 if ( q!=link(p) ) {
10998 @<Set |p=link(p)| and add knots between |p| and |q| as
10999 required by |join_type|@>;
11006 @ @<Use |offset_prep| to compute the envelope spec then walk |h| around to...@>=
11007 c=mp_offset_prep(mp, c,h);
11008 if ( mp->internal[mp_tracing_specs]>0 )
11009 mp_print_spec(mp, c,h,"");
11010 h=mp_pen_walk(mp, h,mp->spec_offset)
11012 @ Mitered and squared-off joins depend on path directions that are difficult to
11013 compute for degenerate cubics. The envelope spec computed by |offset_prep| can
11014 have degenerate cubics only if the entire cycle collapses to a single
11015 degenerate cubic. Setting |join_type:=2| in this case makes the computed
11016 envelope degenerate as well.
11018 @<Set |join_type| to indicate how to handle offset changes at~|q|@>=
11019 if ( k<zero_off ) {
11022 if ( (q!=mp->spec_p1)&&(q!=mp->spec_p2) ) join_type=ljoin;
11023 else if ( lcap==2 ) join_type=3;
11024 else join_type=2-lcap;
11025 if ( (join_type==0)||(join_type==3) ) {
11026 @<Set the incoming and outgoing directions at |q|; in case of
11027 degeneracy set |join_type:=2|@>;
11028 if ( join_type==0 ) {
11029 @<If |miterlim| is less than the secant of half the angle at |q|
11030 then set |join_type:=2|@>;
11035 @ @<If |miterlim| is less than the secant of half the angle at |q|...@>=
11037 tmp=mp_take_fraction(mp, miterlim,fraction_half+
11038 half(mp_take_fraction(mp, dxin,dxout)+mp_take_fraction(mp, dyin,dyout)));
11040 if ( mp_take_scaled(mp, miterlim,tmp)<unity ) join_type=2;
11043 @ @<Other local variables for |make_envelope|@>=
11044 fraction dxin,dyin,dxout,dyout; /* directions at |q| when square or mitered */
11045 scaled tmp; /* a temporary value */
11047 @ The coordinates of |p| have already been shifted unless |p| is the first
11048 knot in which case they get shifted at the very end.
11050 @<Add offset |w| to the cubic from |p| to |q|@>=
11051 right_x(p)=right_x(p)+x_coord(w);
11052 right_y(p)=right_y(p)+y_coord(w);
11053 left_x(q)=left_x(q)+x_coord(w);
11054 left_y(q)=left_y(q)+y_coord(w);
11055 x_coord(q)=x_coord(q)+x_coord(w);
11056 y_coord(q)=y_coord(q)+y_coord(w);
11057 left_type(q)=mp_explicit;
11058 right_type(q)=mp_explicit
11060 @ @<Step |w| and move |k| one step closer to |zero_off|@>=
11061 if ( k>zero_off ){ w=link(w); decr(k); }
11062 else { w=knil(w); incr(k); }
11064 @ The cubic from |q| to the new knot at |(x,y)| becomes a line segment and
11065 the |right_x| and |right_y| fields of |r| are set from |q|. This is done in
11066 case the cubic containing these control points is ``yet to be examined.''
11068 @<Declare a function called |insert_knot|@>=
11069 pointer mp_insert_knot (MP mp,pointer q, scaled x, scaled y) {
11070 /* returns the inserted knot */
11071 pointer r; /* the new knot */
11072 r=mp_get_node(mp, knot_node_size);
11073 link(r)=link(q); link(q)=r;
11074 right_x(r)=right_x(q);
11075 right_y(r)=right_y(q);
11078 right_x(q)=x_coord(q);
11079 right_y(q)=y_coord(q);
11080 left_x(r)=x_coord(r);
11081 left_y(r)=y_coord(r);
11082 left_type(r)=mp_explicit;
11083 right_type(r)=mp_explicit;
11084 originator(r)=mp_program_code;
11088 @ After setting |p:=link(p)|, either |join_type=1| or |q=link(p)|.
11090 @<Set |p=link(p)| and add knots between |p| and |q| as...@>=
11093 if ( (join_type==0)||(join_type==3) ) {
11094 if ( join_type==0 ) {
11095 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>
11097 @<Make |r| the last of two knots inserted between |p| and |q| to form a
11101 right_x(r)=x_coord(r);
11102 right_y(r)=y_coord(r);
11107 @ For very small angles, adding a knot is unnecessary and would cause numerical
11108 problems, so we just set |r:=null| in that case.
11110 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>=
11112 det=mp_take_fraction(mp, dyout,dxin)-mp_take_fraction(mp, dxout,dyin);
11113 if ( abs(det)<26844 ) {
11114 r=null; /* sine $<10^{-4}$ */
11116 tmp=mp_take_fraction(mp, x_coord(q)-x_coord(p),dyout)-
11117 mp_take_fraction(mp, y_coord(q)-y_coord(p),dxout);
11118 tmp=mp_make_fraction(mp, tmp,det);
11119 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11120 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11124 @ @<Other local variables for |make_envelope|@>=
11125 fraction det; /* a determinant used for mitered join calculations */
11127 @ @<Make |r| the last of two knots inserted between |p| and |q| to form a...@>=
11129 ht_x=y_coord(w)-y_coord(w0);
11130 ht_y=x_coord(w0)-x_coord(w);
11131 while ( (abs(ht_x)<fraction_half)&&(abs(ht_y)<fraction_half) ) {
11132 ht_x+=ht_x; ht_y+=ht_y;
11134 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range dot
11135 product with |(ht_x,ht_y)|@>;
11136 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxin,ht_x)+
11137 mp_take_fraction(mp, dyin,ht_y));
11138 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11139 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11140 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxout,ht_x)+
11141 mp_take_fraction(mp, dyout,ht_y));
11142 r=mp_insert_knot(mp, r,x_coord(q)+mp_take_fraction(mp, tmp,dxout),
11143 y_coord(q)+mp_take_fraction(mp, tmp,dyout));
11146 @ @<Other local variables for |make_envelope|@>=
11147 fraction ht_x,ht_y; /* perpendicular to the segment from |p| to |q| */
11148 scaled max_ht; /* maximum height of the pen polygon above the |w0|-|w| line */
11149 halfword kk; /* keeps track of the pen vertices being scanned */
11150 pointer ww; /* the pen vertex being tested */
11152 @ The dot product of the vector from |w0| to |ww| with |(ht_x,ht_y)| ranges
11153 from zero to |max_ht|.
11155 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range...@>=
11160 @<Step |ww| and move |kk| one step closer to |k0|@>;
11161 if ( kk==k0 ) break;
11162 tmp=mp_take_fraction(mp, (x_coord(ww)-x_coord(w0)),ht_x)+
11163 mp_take_fraction(mp, (y_coord(ww)-y_coord(w0)),ht_y);
11164 if ( tmp>max_ht ) max_ht=tmp;
11168 @ @<Step |ww| and move |kk| one step closer to |k0|@>=
11169 if ( kk>k0 ) { ww=link(ww); decr(kk); }
11170 else { ww=knil(ww); incr(kk); }
11172 @ @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>=
11173 if ( left_type(c)==mp_endpoint ) {
11174 mp->spec_p1=mp_htap_ypoc(mp, c);
11175 mp->spec_p2=mp->path_tail;
11176 originator(mp->spec_p1)=mp_program_code;
11177 link(mp->spec_p2)=link(mp->spec_p1);
11178 link(mp->spec_p1)=c;
11179 mp_remove_cubic(mp, mp->spec_p1);
11181 if ( c!=link(c) ) {
11182 originator(mp->spec_p2)=mp_program_code;
11183 mp_remove_cubic(mp, mp->spec_p2);
11185 @<Make |c| look like a cycle of length one@>;
11189 @ @<Make |c| look like a cycle of length one@>=
11191 left_type(c)=mp_explicit; right_type(c)=mp_explicit;
11192 left_x(c)=x_coord(c); left_y(c)=y_coord(c);
11193 right_x(c)=x_coord(c); right_y(c)=y_coord(c);
11196 @ In degenerate situations we might have to look at the knot preceding~|q|.
11197 That knot is |p| but if |p<>c|, its coordinates have already been offset by |w|.
11199 @<Set the incoming and outgoing directions at |q|; in case of...@>=
11200 dxin=x_coord(q)-left_x(q);
11201 dyin=y_coord(q)-left_y(q);
11202 if ( (dxin==0)&&(dyin==0) ) {
11203 dxin=x_coord(q)-right_x(p);
11204 dyin=y_coord(q)-right_y(p);
11205 if ( (dxin==0)&&(dyin==0) ) {
11206 dxin=x_coord(q)-x_coord(p);
11207 dyin=y_coord(q)-y_coord(p);
11208 if ( p!=c ) { /* the coordinates of |p| have been offset by |w| */
11209 dxin=dxin+x_coord(w);
11210 dyin=dyin+y_coord(w);
11214 tmp=mp_pyth_add(mp, dxin,dyin);
11218 dxin=mp_make_fraction(mp, dxin,tmp);
11219 dyin=mp_make_fraction(mp, dyin,tmp);
11220 @<Set the outgoing direction at |q|@>;
11223 @ If |q=c| then the coordinates of |r| and the control points between |q|
11224 and~|r| have already been offset by |h|.
11226 @<Set the outgoing direction at |q|@>=
11227 dxout=right_x(q)-x_coord(q);
11228 dyout=right_y(q)-y_coord(q);
11229 if ( (dxout==0)&&(dyout==0) ) {
11231 dxout=left_x(r)-x_coord(q);
11232 dyout=left_y(r)-y_coord(q);
11233 if ( (dxout==0)&&(dyout==0) ) {
11234 dxout=x_coord(r)-x_coord(q);
11235 dyout=y_coord(r)-y_coord(q);
11239 dxout=dxout-x_coord(h);
11240 dyout=dyout-y_coord(h);
11242 tmp=mp_pyth_add(mp, dxout,dyout);
11243 if ( tmp==0 ) mp_confusion(mp, "degenerate spec");
11244 @:this can't happen degerate spec}{\quad degenerate spec@>
11245 dxout=mp_make_fraction(mp, dxout,tmp);
11246 dyout=mp_make_fraction(mp, dyout,tmp)
11248 @* \[23] Direction and intersection times.
11249 A path of length $n$ is defined parametrically by functions $x(t)$ and
11250 $y(t)$, for |0<=t<=n|; we can regard $t$ as the ``time'' at which the path
11251 reaches the point $\bigl(x(t),y(t)\bigr)$. In this section of the program
11252 we shall consider operations that determine special times associated with
11253 given paths: the first time that a path travels in a given direction, and
11254 a pair of times at which two paths cross each other.
11256 @ Let's start with the easier task. The function |find_direction_time| is
11257 given a direction |(x,y)| and a path starting at~|h|. If the path never
11258 travels in direction |(x,y)|, the direction time will be~|-1|; otherwise
11259 it will be nonnegative.
11261 Certain anomalous cases can arise: If |(x,y)=(0,0)|, so that the given
11262 direction is undefined, the direction time will be~0. If $\bigl(x'(t),
11263 y'(t)\bigr)=(0,0)$, so that the path direction is undefined, it will be
11264 assumed to match any given direction at time~|t|.
11266 The routine solves this problem in nondegenerate cases by rotating the path
11267 and the given direction so that |(x,y)=(1,0)|; i.e., the main task will be
11268 to find when a given path first travels ``due east.''
11271 scaled mp_find_direction_time (MP mp,scaled x, scaled y, pointer h) {
11272 scaled max; /* $\max\bigl(\vert x\vert,\vert y\vert\bigr)$ */
11273 pointer p,q; /* for list traversal */
11274 scaled n; /* the direction time at knot |p| */
11275 scaled tt; /* the direction time within a cubic */
11276 @<Other local variables for |find_direction_time|@>;
11277 @<Normalize the given direction for better accuracy;
11278 but |return| with zero result if it's zero@>;
11281 if ( right_type(p)==mp_endpoint ) break;
11283 @<Rotate the cubic between |p| and |q|; then
11284 |goto found| if the rotated cubic travels due east at some time |tt|;
11285 but |break| if an entire cyclic path has been traversed@>;
11293 @ @<Normalize the given direction for better accuracy...@>=
11294 if ( abs(x)<abs(y) ) {
11295 x=mp_make_fraction(mp, x,abs(y));
11296 if ( y>0 ) y=fraction_one; else y=-fraction_one;
11297 } else if ( x==0 ) {
11300 y=mp_make_fraction(mp, y,abs(x));
11301 if ( x>0 ) x=fraction_one; else x=-fraction_one;
11304 @ Since we're interested in the tangent directions, we work with the
11305 derivative $${\textstyle1\over3}B'(x_0,x_1,x_2,x_3;t)=
11306 B(x_1-x_0,x_2-x_1,x_3-x_2;t)$$ instead of
11307 $B(x_0,x_1,x_2,x_3;t)$ itself. The derived coefficients are also scaled up
11308 in order to achieve better accuracy.
11310 The given path may turn abruptly at a knot, and it might pass the critical
11311 tangent direction at such a time. Therefore we remember the direction |phi|
11312 in which the previous rotated cubic was traveling. (The value of |phi| will be
11313 undefined on the first cubic, i.e., when |n=0|.)
11315 @<Rotate the cubic between |p| and |q|; then...@>=
11317 @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples of the control
11318 points of the rotated derivatives@>;
11319 if ( y1==0 ) if ( x1>=0 ) goto FOUND;
11321 @<Exit to |found| if an eastward direction occurs at knot |p|@>;
11324 if ( (x3!=0)||(y3!=0) ) phi=mp_n_arg(mp, x3,y3);
11325 @<Exit to |found| if the curve whose derivatives are specified by
11326 |x1,x2,x3,y1,y2,y3| travels eastward at some time~|tt|@>
11328 @ @<Other local variables for |find_direction_time|@>=
11329 scaled x1,x2,x3,y1,y2,y3; /* multiples of rotated derivatives */
11330 angle theta,phi; /* angles of exit and entry at a knot */
11331 fraction t; /* temp storage */
11333 @ @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples...@>=
11334 x1=right_x(p)-x_coord(p); x2=left_x(q)-right_x(p);
11335 x3=x_coord(q)-left_x(q);
11336 y1=right_y(p)-y_coord(p); y2=left_y(q)-right_y(p);
11337 y3=y_coord(q)-left_y(q);
11339 if ( abs(x2)>max ) max=abs(x2);
11340 if ( abs(x3)>max ) max=abs(x3);
11341 if ( abs(y1)>max ) max=abs(y1);
11342 if ( abs(y2)>max ) max=abs(y2);
11343 if ( abs(y3)>max ) max=abs(y3);
11344 if ( max==0 ) goto FOUND;
11345 while ( max<fraction_half ){
11346 max+=max; x1+=x1; x2+=x2; x3+=x3;
11347 y1+=y1; y2+=y2; y3+=y3;
11349 t=x1; x1=mp_take_fraction(mp, x1,x)+mp_take_fraction(mp, y1,y);
11350 y1=mp_take_fraction(mp, y1,x)-mp_take_fraction(mp, t,y);
11351 t=x2; x2=mp_take_fraction(mp, x2,x)+mp_take_fraction(mp, y2,y);
11352 y2=mp_take_fraction(mp, y2,x)-mp_take_fraction(mp, t,y);
11353 t=x3; x3=mp_take_fraction(mp, x3,x)+mp_take_fraction(mp, y3,y);
11354 y3=mp_take_fraction(mp, y3,x)-mp_take_fraction(mp, t,y)
11356 @ @<Exit to |found| if an eastward direction occurs at knot |p|@>=
11357 theta=mp_n_arg(mp, x1,y1);
11358 if ( theta>=0 ) if ( phi<=0 ) if ( phi>=theta-one_eighty_deg ) goto FOUND;
11359 if ( theta<=0 ) if ( phi>=0 ) if ( phi<=theta+one_eighty_deg ) goto FOUND
11361 @ In this step we want to use the |crossing_point| routine to find the
11362 roots of the quadratic equation $B(y_1,y_2,y_3;t)=0$.
11363 Several complications arise: If the quadratic equation has a double root,
11364 the curve never crosses zero, and |crossing_point| will find nothing;
11365 this case occurs iff $y_1y_3=y_2^2$ and $y_1y_2<0$. If the quadratic
11366 equation has simple roots, or only one root, we may have to negate it
11367 so that $B(y_1,y_2,y_3;t)$ crosses from positive to negative at its first root.
11368 And finally, we need to do special things if $B(y_1,y_2,y_3;t)$ is
11371 @ @<Exit to |found| if the curve whose derivatives are specified by...@>=
11372 if ( x1<0 ) if ( x2<0 ) if ( x3<0 ) goto DONE;
11373 if ( mp_ab_vs_cd(mp, y1,y3,y2,y2)==0 ) {
11374 @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11375 either |goto found| or |goto done|@>;
11378 if ( y1<0 ) { y1=-y1; y2=-y2; y3=-y3; }
11379 else if ( y2>0 ){ y2=-y2; y3=-y3; };
11381 @<Check the places where $B(y_1,y_2,y_3;t)=0$ to see if
11382 $B(x_1,x_2,x_3;t)\ge0$@>;
11385 @ The quadratic polynomial $B(y_1,y_2,y_3;t)$ begins |>=0| and has at most
11386 two roots, because we know that it isn't identically zero.
11388 It must be admitted that the |crossing_point| routine is not perfectly accurate;
11389 rounding errors might cause it to find a root when $y_1y_3>y_2^2$, or to
11390 miss the roots when $y_1y_3<y_2^2$. The rotation process is itself
11391 subject to rounding errors. Yet this code optimistically tries to
11392 do the right thing.
11394 @d we_found_it { tt=(t+04000) / 010000; goto FOUND; }
11396 @<Check the places where $B(y_1,y_2,y_3;t)=0$...@>=
11397 t=mp_crossing_point(mp, y1,y2,y3);
11398 if ( t>fraction_one ) goto DONE;
11399 y2=t_of_the_way(y2,y3);
11400 x1=t_of_the_way(x1,x2);
11401 x2=t_of_the_way(x2,x3);
11402 x1=t_of_the_way(x1,x2);
11403 if ( x1>=0 ) we_found_it;
11405 tt=t; t=mp_crossing_point(mp, 0,-y2,-y3);
11406 if ( t>fraction_one ) goto DONE;
11407 x1=t_of_the_way(x1,x2);
11408 x2=t_of_the_way(x2,x3);
11409 if ( t_of_the_way(x1,x2)>=0 ) {
11410 t=t_of_the_way(tt,fraction_one); we_found_it;
11413 @ @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11414 either |goto found| or |goto done|@>=
11416 if ( mp_ab_vs_cd(mp, y1,y2,0,0)<0 ) {
11417 t=mp_make_fraction(mp, y1,y1-y2);
11418 x1=t_of_the_way(x1,x2);
11419 x2=t_of_the_way(x2,x3);
11420 if ( t_of_the_way(x1,x2)>=0 ) we_found_it;
11421 } else if ( y3==0 ) {
11423 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|@>;
11424 } else if ( x3>=0 ) {
11425 tt=unity; goto FOUND;
11431 @ At this point we know that the derivative of |y(t)| is identically zero,
11432 and that |x1<0|; but either |x2>=0| or |x3>=0|, so there's some hope of
11435 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|...@>=
11437 t=mp_crossing_point(mp, -x1,-x2,-x3);
11438 if ( t<=fraction_one ) we_found_it;
11439 if ( mp_ab_vs_cd(mp, x1,x3,x2,x2)<=0 ) {
11440 t=mp_make_fraction(mp, x1,x1-x2); we_found_it;
11444 @ The intersection of two cubics can be found by an interesting variant
11445 of the general bisection scheme described in the introduction to
11447 Given $w(t)=B(w_0,w_1,w_2,w_3;t)$ and $z(t)=B(z_0,z_1,z_2,z_3;t)$,
11448 we wish to find a pair of times $(t_1,t_2)$ such that $w(t_1)=z(t_2)$,
11449 if an intersection exists. First we find the smallest rectangle that
11450 encloses the points $\{w_0,w_1,w_2,w_3\}$ and check that it overlaps
11451 the smallest rectangle that encloses
11452 $\{z_0,z_1,z_2,z_3\}$; if not, the cubics certainly don't intersect.
11453 But if the rectangles do overlap, we bisect the intervals, getting
11454 new cubics $w'$ and~$w''$, $z'$~and~$z''$; the intersection routine first
11455 tries for an intersection between $w'$ and~$z'$, then (if unsuccessful)
11456 between $w'$ and~$z''$, then (if still unsuccessful) between $w''$ and~$z'$,
11457 finally (if thrice unsuccessful) between $w''$ and~$z''$. After $l$~successful
11458 levels of bisection we will have determined the intersection times $t_1$
11459 and~$t_2$ to $l$~bits of accuracy.
11461 \def\submin{_{\rm min}} \def\submax{_{\rm max}}
11462 As before, it is better to work with the numbers $W_k=2^l(w_k-w_{k-1})$
11463 and $Z_k=2^l(z_k-z_{k-1})$ rather than the coefficients $w_k$ and $z_k$
11464 themselves. We also need one other quantity, $\Delta=2^l(w_0-z_0)$,
11465 to determine when the enclosing rectangles overlap. Here's why:
11466 The $x$~coordinates of~$w(t)$ are between $u\submin$ and $u\submax$,
11467 and the $x$~coordinates of~$z(t)$ are between $x\submin$ and $x\submax$,
11468 if we write $w_k=(u_k,v_k)$ and $z_k=(x_k,y_k)$ and $u\submin=
11469 \min(u_0,u_1,u_2,u_3)$, etc. These intervals of $x$~coordinates
11470 overlap if and only if $u\submin\L x\submax$ and
11471 $x\submin\L u\submax$. Letting
11472 $$U\submin=\min(0,U_1,U_1+U_2,U_1+U_2+U_3),\;
11473 U\submax=\max(0,U_1,U_1+U_2,U_1+U_2+U_3),$$
11474 we have $u\submin=2^lu_0+U\submin$, etc.; the condition for overlap
11476 $$X\submin-U\submax\L 2^l(u_0-x_0)\L X\submax-U\submin.$$
11477 Thus we want to maintain the quantity $2^l(u_0-x_0)$; similarly,
11478 the quantity $2^l(v_0-y_0)$ accounts for the $y$~coordinates. The
11479 coordinates of $\Delta=2^l(w_0-z_0)$ must stay bounded as $l$ increases,
11480 because of the overlap condition; i.e., we know that $X\submin$,
11481 $X\submax$, and their relatives are bounded, hence $X\submax-
11482 U\submin$ and $X\submin-U\submax$ are bounded.
11484 @ Incidentally, if the given cubics intersect more than once, the process
11485 just sketched will not necessarily find the lexicographically smallest pair
11486 $(t_1,t_2)$. The solution actually obtained will be smallest in ``shuffled
11487 order''; i.e., if $t_1=(.a_1a_2\ldots a_{16})_2$ and
11488 $t_2=(.b_1b_2\ldots b_{16})_2$, then we will minimize
11489 $a_1b_1a_2b_2\ldots a_{16}b_{16}$, not
11490 $a_1a_2\ldots a_{16}b_1b_2\ldots b_{16}$.
11491 Shuffled order agrees with lexicographic order if all pairs of solutions
11492 $(t_1,t_2)$ and $(t_1',t_2')$ have the property that $t_1<t_1'$ iff
11493 $t_2<t_2'$; but in general, lexicographic order can be quite different,
11494 and the bisection algorithm would be substantially less efficient if it were
11495 constrained by lexicographic order.
11497 For example, suppose that an overlap has been found for $l=3$ and
11498 $(t_1,t_2)= (.101,.011)$ in binary, but that no overlap is produced by
11499 either of the alternatives $(.1010,.0110)$, $(.1010,.0111)$ at level~4.
11500 Then there is probably an intersection in one of the subintervals
11501 $(.1011,.011x)$; but lexicographic order would require us to explore
11502 $(.1010,.1xxx)$ and $(.1011,.00xx)$ and $(.1011,.010x)$ first. We wouldn't
11503 want to store all of the subdivision data for the second path, so the
11504 subdivisions would have to be regenerated many times. Such inefficiencies
11505 would be associated with every `1' in the binary representation of~$t_1$.
11507 @ The subdivision process introduces rounding errors, hence we need to
11508 make a more liberal test for overlap. It is not hard to show that the
11509 computed values of $U_i$ differ from the truth by at most~$l$, on
11510 level~$l$, hence $U\submin$ and $U\submax$ will be at most $3l$ in error.
11511 If $\beta$ is an upper bound on the absolute error in the computed
11512 components of $\Delta=(|delx|,|dely|)$ on level~$l$, we will replace
11513 the test `$X\submin-U\submax\L|delx|$' by the more liberal test
11514 `$X\submin-U\submax\L|delx|+|tol|$', where $|tol|=6l+\beta$.
11516 More accuracy is obtained if we try the algorithm first with |tol=0|;
11517 the more liberal tolerance is used only if an exact approach fails.
11518 It is convenient to do this double-take by letting `3' in the preceding
11519 paragraph be a parameter, which is first 0, then 3.
11522 unsigned int tol_step; /* either 0 or 3, usually */
11524 @ We shall use an explicit stack to implement the recursive bisection
11525 method described above. The |bisect_stack| array will contain numerous 5-word
11526 packets like $(U_1,U_2,U_3,U\submin,U\submax)$, as well as 20-word packets
11527 comprising the 5-word packets for $U$, $V$, $X$, and~$Y$.
11529 The following macros define the allocation of stack positions to
11530 the quantities needed for bisection-intersection.
11532 @d stack_1(A) mp->bisect_stack[(A)] /* $U_1$, $V_1$, $X_1$, or $Y_1$ */
11533 @d stack_2(A) mp->bisect_stack[(A)+1] /* $U_2$, $V_2$, $X_2$, or $Y_2$ */
11534 @d stack_3(A) mp->bisect_stack[(A)+2] /* $U_3$, $V_3$, $X_3$, or $Y_3$ */
11535 @d stack_min(A) mp->bisect_stack[(A)+3]
11536 /* $U\submin$, $V\submin$, $X\submin$, or $Y\submin$ */
11537 @d stack_max(A) mp->bisect_stack[(A)+4]
11538 /* $U\submax$, $V\submax$, $X\submax$, or $Y\submax$ */
11539 @d int_packets 20 /* number of words to represent $U_k$, $V_k$, $X_k$, and $Y_k$ */
11541 @d u_packet(A) ((A)-5)
11542 @d v_packet(A) ((A)-10)
11543 @d x_packet(A) ((A)-15)
11544 @d y_packet(A) ((A)-20)
11545 @d l_packets (mp->bisect_ptr-int_packets)
11546 @d r_packets mp->bisect_ptr
11547 @d ul_packet u_packet(l_packets) /* base of $U'_k$ variables */
11548 @d vl_packet v_packet(l_packets) /* base of $V'_k$ variables */
11549 @d xl_packet x_packet(l_packets) /* base of $X'_k$ variables */
11550 @d yl_packet y_packet(l_packets) /* base of $Y'_k$ variables */
11551 @d ur_packet u_packet(r_packets) /* base of $U''_k$ variables */
11552 @d vr_packet v_packet(r_packets) /* base of $V''_k$ variables */
11553 @d xr_packet x_packet(r_packets) /* base of $X''_k$ variables */
11554 @d yr_packet y_packet(r_packets) /* base of $Y''_k$ variables */
11556 @d u1l stack_1(ul_packet) /* $U'_1$ */
11557 @d u2l stack_2(ul_packet) /* $U'_2$ */
11558 @d u3l stack_3(ul_packet) /* $U'_3$ */
11559 @d v1l stack_1(vl_packet) /* $V'_1$ */
11560 @d v2l stack_2(vl_packet) /* $V'_2$ */
11561 @d v3l stack_3(vl_packet) /* $V'_3$ */
11562 @d x1l stack_1(xl_packet) /* $X'_1$ */
11563 @d x2l stack_2(xl_packet) /* $X'_2$ */
11564 @d x3l stack_3(xl_packet) /* $X'_3$ */
11565 @d y1l stack_1(yl_packet) /* $Y'_1$ */
11566 @d y2l stack_2(yl_packet) /* $Y'_2$ */
11567 @d y3l stack_3(yl_packet) /* $Y'_3$ */
11568 @d u1r stack_1(ur_packet) /* $U''_1$ */
11569 @d u2r stack_2(ur_packet) /* $U''_2$ */
11570 @d u3r stack_3(ur_packet) /* $U''_3$ */
11571 @d v1r stack_1(vr_packet) /* $V''_1$ */
11572 @d v2r stack_2(vr_packet) /* $V''_2$ */
11573 @d v3r stack_3(vr_packet) /* $V''_3$ */
11574 @d x1r stack_1(xr_packet) /* $X''_1$ */
11575 @d x2r stack_2(xr_packet) /* $X''_2$ */
11576 @d x3r stack_3(xr_packet) /* $X''_3$ */
11577 @d y1r stack_1(yr_packet) /* $Y''_1$ */
11578 @d y2r stack_2(yr_packet) /* $Y''_2$ */
11579 @d y3r stack_3(yr_packet) /* $Y''_3$ */
11581 @d stack_dx mp->bisect_stack[mp->bisect_ptr] /* stacked value of |delx| */
11582 @d stack_dy mp->bisect_stack[mp->bisect_ptr+1] /* stacked value of |dely| */
11583 @d stack_tol mp->bisect_stack[mp->bisect_ptr+2] /* stacked value of |tol| */
11584 @d stack_uv mp->bisect_stack[mp->bisect_ptr+3] /* stacked value of |uv| */
11585 @d stack_xy mp->bisect_stack[mp->bisect_ptr+4] /* stacked value of |xy| */
11586 @d int_increment (int_packets+int_packets+5) /* number of stack words per level */
11589 integer *bisect_stack;
11590 unsigned int bisect_ptr;
11592 @ @<Allocate or initialize ...@>=
11593 mp->bisect_stack = xmalloc((bistack_size+1),sizeof(integer));
11595 @ @<Dealloc variables@>=
11596 xfree(mp->bisect_stack);
11598 @ @<Check the ``constant''...@>=
11599 if ( int_packets+17*int_increment>bistack_size ) mp->bad=19;
11601 @ Computation of the min and max is a tedious but fairly fast sequence of
11602 instructions; exactly four comparisons are made in each branch.
11605 if ( stack_1((A))<0 ) {
11606 if ( stack_3((A))>=0 ) {
11607 if ( stack_2((A))<0 ) stack_min((A))=stack_1((A))+stack_2((A));
11608 else stack_min((A))=stack_1((A));
11609 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11610 if ( stack_max((A))<0 ) stack_max((A))=0;
11612 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11613 if ( stack_min((A))>stack_1((A)) ) stack_min((A))=stack_1((A));
11614 stack_max((A))=stack_1((A))+stack_2((A));
11615 if ( stack_max((A))<0 ) stack_max((A))=0;
11617 } else if ( stack_3((A))<=0 ) {
11618 if ( stack_2((A))>0 ) stack_max((A))=stack_1((A))+stack_2((A));
11619 else stack_max((A))=stack_1((A));
11620 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11621 if ( stack_min((A))>0 ) stack_min((A))=0;
11623 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11624 if ( stack_max((A))<stack_1((A)) ) stack_max((A))=stack_1((A));
11625 stack_min((A))=stack_1((A))+stack_2((A));
11626 if ( stack_min((A))>0 ) stack_min((A))=0;
11629 @ It's convenient to keep the current values of $l$, $t_1$, and $t_2$ in
11630 the integer form $2^l+2^lt_1$ and $2^l+2^lt_2$. The |cubic_intersection|
11631 routine uses global variables |cur_t| and |cur_tt| for this purpose;
11632 after successful completion, |cur_t| and |cur_tt| will contain |unity|
11633 plus the |scaled| values of $t_1$ and~$t_2$.
11635 The values of |cur_t| and |cur_tt| will be set to zero if |cubic_intersection|
11636 finds no intersection. The routine gives up and gives an approximate answer
11637 if it has backtracked
11638 more than 5000 times (otherwise there are cases where several minutes
11639 of fruitless computation would be possible).
11641 @d max_patience 5000
11644 integer cur_t;integer cur_tt; /* controls and results of |cubic_intersection| */
11645 integer time_to_go; /* this many backtracks before giving up */
11646 integer max_t; /* maximum of $2^{l+1}$ so far achieved */
11648 @ The given cubics $B(w_0,w_1,w_2,w_3;t)$ and
11649 $B(z_0,z_1,z_2,z_3;t)$ are specified in adjacent knot nodes |(p,link(p))|
11650 and |(pp,link(pp))|, respectively.
11652 @c void mp_cubic_intersection (MP mp,pointer p, pointer pp) {
11653 pointer q,qq; /* |link(p)|, |link(pp)| */
11654 mp->time_to_go=max_patience; mp->max_t=2;
11655 @<Initialize for intersections at level zero@>;
11658 if ( mp->delx-mp->tol<=stack_max(x_packet(mp->xy))-stack_min(u_packet(mp->uv)))
11659 if ( mp->delx+mp->tol>=stack_min(x_packet(mp->xy))-stack_max(u_packet(mp->uv)))
11660 if ( mp->dely-mp->tol<=stack_max(y_packet(mp->xy))-stack_min(v_packet(mp->uv)))
11661 if ( mp->dely+mp->tol>=stack_min(y_packet(mp->xy))-stack_max(v_packet(mp->uv)))
11663 if ( mp->cur_t>=mp->max_t ){
11664 if ( mp->max_t==two ) { /* we've done 17 bisections */
11665 mp->cur_t=halfp(mp->cur_t+1); mp->cur_tt=halfp(mp->cur_tt+1); return;
11667 mp->max_t+=mp->max_t; mp->appr_t=mp->cur_t; mp->appr_tt=mp->cur_tt;
11669 @<Subdivide for a new level of intersection@>;
11672 if ( mp->time_to_go>0 ) {
11673 decr(mp->time_to_go);
11675 while ( mp->appr_t<unity ) {
11676 mp->appr_t+=mp->appr_t; mp->appr_tt+=mp->appr_tt;
11678 mp->cur_t=mp->appr_t; mp->cur_tt=mp->appr_tt; return;
11680 @<Advance to the next pair |(cur_t,cur_tt)|@>;
11684 @ The following variables are global, although they are used only by
11685 |cubic_intersection|, because it is necessary on some machines to
11686 split |cubic_intersection| up into two procedures.
11689 integer delx;integer dely; /* the components of $\Delta=2^l(w_0-z_0)$ */
11690 integer tol; /* bound on the uncertainly in the overlap test */
11692 unsigned int xy; /* pointers to the current packets of interest */
11693 integer three_l; /* |tol_step| times the bisection level */
11694 integer appr_t;integer appr_tt; /* best approximations known to the answers */
11696 @ We shall assume that the coordinates are sufficiently non-extreme that
11697 integer overflow will not occur.
11699 @<Initialize for intersections at level zero@>=
11700 q=link(p); qq=link(pp); mp->bisect_ptr=int_packets;
11701 u1r=right_x(p)-x_coord(p); u2r=left_x(q)-right_x(p);
11702 u3r=x_coord(q)-left_x(q); set_min_max(ur_packet);
11703 v1r=right_y(p)-y_coord(p); v2r=left_y(q)-right_y(p);
11704 v3r=y_coord(q)-left_y(q); set_min_max(vr_packet);
11705 x1r=right_x(pp)-x_coord(pp); x2r=left_x(qq)-right_x(pp);
11706 x3r=x_coord(qq)-left_x(qq); set_min_max(xr_packet);
11707 y1r=right_y(pp)-y_coord(pp); y2r=left_y(qq)-right_y(pp);
11708 y3r=y_coord(qq)-left_y(qq); set_min_max(yr_packet);
11709 mp->delx=x_coord(p)-x_coord(pp); mp->dely=y_coord(p)-y_coord(pp);
11710 mp->tol=0; mp->uv=r_packets; mp->xy=r_packets;
11711 mp->three_l=0; mp->cur_t=1; mp->cur_tt=1
11713 @ @<Subdivide for a new level of intersection@>=
11714 stack_dx=mp->delx; stack_dy=mp->dely; stack_tol=mp->tol;
11715 stack_uv=mp->uv; stack_xy=mp->xy;
11716 mp->bisect_ptr=mp->bisect_ptr+int_increment;
11717 mp->cur_t+=mp->cur_t; mp->cur_tt+=mp->cur_tt;
11718 u1l=stack_1(u_packet(mp->uv)); u3r=stack_3(u_packet(mp->uv));
11719 u2l=half(u1l+stack_2(u_packet(mp->uv)));
11720 u2r=half(u3r+stack_2(u_packet(mp->uv)));
11721 u3l=half(u2l+u2r); u1r=u3l;
11722 set_min_max(ul_packet); set_min_max(ur_packet);
11723 v1l=stack_1(v_packet(mp->uv)); v3r=stack_3(v_packet(mp->uv));
11724 v2l=half(v1l+stack_2(v_packet(mp->uv)));
11725 v2r=half(v3r+stack_2(v_packet(mp->uv)));
11726 v3l=half(v2l+v2r); v1r=v3l;
11727 set_min_max(vl_packet); set_min_max(vr_packet);
11728 x1l=stack_1(x_packet(mp->xy)); x3r=stack_3(x_packet(mp->xy));
11729 x2l=half(x1l+stack_2(x_packet(mp->xy)));
11730 x2r=half(x3r+stack_2(x_packet(mp->xy)));
11731 x3l=half(x2l+x2r); x1r=x3l;
11732 set_min_max(xl_packet); set_min_max(xr_packet);
11733 y1l=stack_1(y_packet(mp->xy)); y3r=stack_3(y_packet(mp->xy));
11734 y2l=half(y1l+stack_2(y_packet(mp->xy)));
11735 y2r=half(y3r+stack_2(y_packet(mp->xy)));
11736 y3l=half(y2l+y2r); y1r=y3l;
11737 set_min_max(yl_packet); set_min_max(yr_packet);
11738 mp->uv=l_packets; mp->xy=l_packets;
11739 mp->delx+=mp->delx; mp->dely+=mp->dely;
11740 mp->tol=mp->tol-mp->three_l+mp->tol_step;
11741 mp->tol+=mp->tol; mp->three_l=mp->three_l+mp->tol_step
11743 @ @<Advance to the next pair |(cur_t,cur_tt)|@>=
11745 if ( odd(mp->cur_tt) ) {
11746 if ( odd(mp->cur_t) ) {
11747 @<Descend to the previous level and |goto not_found|@>;
11750 mp->delx=mp->delx+stack_1(u_packet(mp->uv))+stack_2(u_packet(mp->uv))
11751 +stack_3(u_packet(mp->uv));
11752 mp->dely=mp->dely+stack_1(v_packet(mp->uv))+stack_2(v_packet(mp->uv))
11753 +stack_3(v_packet(mp->uv));
11754 mp->uv=mp->uv+int_packets; /* switch from |l_packet| to |r_packet| */
11755 decr(mp->cur_tt); mp->xy=mp->xy-int_packets;
11756 /* switch from |r_packet| to |l_packet| */
11757 mp->delx=mp->delx+stack_1(x_packet(mp->xy))+stack_2(x_packet(mp->xy))
11758 +stack_3(x_packet(mp->xy));
11759 mp->dely=mp->dely+stack_1(y_packet(mp->xy))+stack_2(y_packet(mp->xy))
11760 +stack_3(y_packet(mp->xy));
11763 incr(mp->cur_tt); mp->tol=mp->tol+mp->three_l;
11764 mp->delx=mp->delx-stack_1(x_packet(mp->xy))-stack_2(x_packet(mp->xy))
11765 -stack_3(x_packet(mp->xy));
11766 mp->dely=mp->dely-stack_1(y_packet(mp->xy))-stack_2(y_packet(mp->xy))
11767 -stack_3(y_packet(mp->xy));
11768 mp->xy=mp->xy+int_packets; /* switch from |l_packet| to |r_packet| */
11771 @ @<Descend to the previous level...@>=
11773 mp->cur_t=halfp(mp->cur_t); mp->cur_tt=halfp(mp->cur_tt);
11774 if ( mp->cur_t==0 ) return;
11775 mp->bisect_ptr=mp->bisect_ptr-int_increment;
11776 mp->three_l=mp->three_l-mp->tol_step;
11777 mp->delx=stack_dx; mp->dely=stack_dy; mp->tol=stack_tol;
11778 mp->uv=stack_uv; mp->xy=stack_xy;
11782 @ The |path_intersection| procedure is much simpler.
11783 It invokes |cubic_intersection| in lexicographic order until finding a
11784 pair of cubics that intersect. The final intersection times are placed in
11785 |cur_t| and~|cur_tt|.
11787 @c void mp_path_intersection (MP mp,pointer h, pointer hh) {
11788 pointer p,pp; /* link registers that traverse the given paths */
11789 integer n,nn; /* integer parts of intersection times, minus |unity| */
11790 @<Change one-point paths into dead cycles@>;
11795 if ( right_type(p)!=mp_endpoint ) {
11798 if ( right_type(pp)!=mp_endpoint ) {
11799 mp_cubic_intersection(mp, p,pp);
11800 if ( mp->cur_t>0 ) {
11801 mp->cur_t=mp->cur_t+n; mp->cur_tt=mp->cur_tt+nn;
11805 nn=nn+unity; pp=link(pp);
11808 n=n+unity; p=link(p);
11810 mp->tol_step=mp->tol_step+3;
11811 } while (mp->tol_step<=3);
11812 mp->cur_t=-unity; mp->cur_tt=-unity;
11815 @ @<Change one-point paths...@>=
11816 if ( right_type(h)==mp_endpoint ) {
11817 right_x(h)=x_coord(h); left_x(h)=x_coord(h);
11818 right_y(h)=y_coord(h); left_y(h)=y_coord(h); right_type(h)=mp_explicit;
11820 if ( right_type(hh)==mp_endpoint ) {
11821 right_x(hh)=x_coord(hh); left_x(hh)=x_coord(hh);
11822 right_y(hh)=y_coord(hh); left_y(hh)=y_coord(hh); right_type(hh)=mp_explicit;
11825 @* \[24] Dynamic linear equations.
11826 \MP\ users define variables implicitly by stating equations that should be
11827 satisfied; the computer is supposed to be smart enough to solve those equations.
11828 And indeed, the computer tries valiantly to do so, by distinguishing five
11829 different types of numeric values:
11832 |type(p)=mp_known| is the nice case, when |value(p)| is the |scaled| value
11833 of the variable whose address is~|p|.
11836 |type(p)=mp_dependent| means that |value(p)| is not present, but |dep_list(p)|
11837 points to a {\sl dependency list\/} that expresses the value of variable~|p|
11838 as a |scaled| number plus a sum of independent variables with |fraction|
11842 |type(p)=mp_independent| means that |value(p)=64s+m|, where |s>0| is a ``serial
11843 number'' reflecting the time this variable was first used in an equation;
11844 also |0<=m<64|, and each dependent variable
11845 that refers to this one is actually referring to the future value of
11846 this variable times~$2^m$. (Usually |m=0|, but higher degrees of
11847 scaling are sometimes needed to keep the coefficients in dependency lists
11848 from getting too large. The value of~|m| will always be even.)
11851 |type(p)=mp_numeric_type| means that variable |p| hasn't appeared in an
11852 equation before, but it has been explicitly declared to be numeric.
11855 |type(p)=undefined| means that variable |p| hasn't appeared before.
11857 \smallskip\noindent
11858 We have actually discussed these five types in the reverse order of their
11859 history during a computation: Once |known|, a variable never again
11860 becomes |dependent|; once |dependent|, it almost never again becomes
11861 |mp_independent|; once |mp_independent|, it never again becomes |mp_numeric_type|;
11862 and once |mp_numeric_type|, it never again becomes |undefined| (except
11863 of course when the user specifically decides to scrap the old value
11864 and start again). A backward step may, however, take place: Sometimes
11865 a |dependent| variable becomes |mp_independent| again, when one of the
11866 independent variables it depends on is reverting to |undefined|.
11869 The next patch detects overflow of independent-variable serial
11870 numbers. Diagnosed and patched by Thorsten Dahlheimer.
11872 @d s_scale 64 /* the serial numbers are multiplied by this factor */
11873 @d max_indep_vars 0177777777 /* $2^{25}-1$ */
11874 @d max_serial_no 017777777700 /* |max_indep_vars*s_scale| */
11875 @d new_indep(A) /* create a new independent variable */
11876 { if ( mp->serial_no==max_serial_no )
11877 mp_fatal_error(mp, "variable instance identifiers exhausted");
11878 type((A))=mp_independent; mp->serial_no=mp->serial_no+s_scale;
11879 value((A))=mp->serial_no;
11883 integer serial_no; /* the most recent serial number, times |s_scale| */
11885 @ @<Make variable |q+s| newly independent@>=new_indep(q+s)
11887 @ But how are dependency lists represented? It's simple: The linear combination
11888 $\alpha_1v_1+\cdots+\alpha_kv_k+\beta$ appears in |k+1| value nodes. If
11889 |q=dep_list(p)| points to this list, and if |k>0|, then |value(q)=
11890 @t$\alpha_1$@>| (which is a |fraction|); |info(q)| points to the location
11891 of $\alpha_1$; and |link(p)| points to the dependency list
11892 $\alpha_2v_2+\cdots+\alpha_kv_k+\beta$. On the other hand if |k=0|,
11893 then |value(q)=@t$\beta$@>| (which is |scaled|) and |info(q)=null|.
11894 The independent variables $v_1$, \dots,~$v_k$ have been sorted so that
11895 they appear in decreasing order of their |value| fields (i.e., of
11896 their serial numbers). \ (It is convenient to use decreasing order,
11897 since |value(null)=0|. If the independent variables were not sorted by
11898 serial number but by some other criterion, such as their location in |mem|,
11899 the equation-solving mechanism would be too system-dependent, because
11900 the ordering can affect the computed results.)
11902 The |link| field in the node that contains the constant term $\beta$ is
11903 called the {\sl final link\/} of the dependency list. \MP\ maintains
11904 a doubly-linked master list of all dependency lists, in terms of a permanently
11906 in |mem| called |dep_head|. If there are no dependencies, we have
11907 |link(dep_head)=dep_head| and |prev_dep(dep_head)=dep_head|;
11908 otherwise |link(dep_head)| points to the first dependent variable, say~|p|,
11909 and |prev_dep(p)=dep_head|. We have |type(p)=mp_dependent|, and |dep_list(p)|
11910 points to its dependency list. If the final link of that dependency list
11911 occurs in location~|q|, then |link(q)| points to the next dependent
11912 variable (say~|r|); and we have |prev_dep(r)=q|, etc.
11914 @d dep_list(A) link(value_loc((A)))
11915 /* half of the |value| field in a |dependent| variable */
11916 @d prev_dep(A) info(value_loc((A)))
11917 /* the other half; makes a doubly linked list */
11918 @d dep_node_size 2 /* the number of words per dependency node */
11920 @<Initialize table entries...@>= mp->serial_no=0;
11921 link(dep_head)=dep_head; prev_dep(dep_head)=dep_head;
11922 info(dep_head)=null; dep_list(dep_head)=null;
11924 @ Actually the description above contains a little white lie. There's
11925 another kind of variable called |mp_proto_dependent|, which is
11926 just like a |dependent| one except that the $\alpha$ coefficients
11927 in its dependency list are |scaled| instead of being fractions.
11928 Proto-dependency lists are mixed with dependency lists in the
11929 nodes reachable from |dep_head|.
11931 @ Here is a procedure that prints a dependency list in symbolic form.
11932 The second parameter should be either |dependent| or |mp_proto_dependent|,
11933 to indicate the scaling of the coefficients.
11935 @<Declare subroutines for printing expressions@>=
11936 void mp_print_dependency (MP mp,pointer p, small_number t) {
11937 integer v; /* a coefficient */
11938 pointer pp,q; /* for list manipulation */
11941 v=abs(value(p)); q=info(p);
11942 if ( q==null ) { /* the constant term */
11943 if ( (v!=0)||(p==pp) ) {
11944 if ( value(p)>0 ) if ( p!=pp ) mp_print_char(mp, '+');
11945 mp_print_scaled(mp, value(p));
11949 @<Print the coefficient, unless it's $\pm1.0$@>;
11950 if ( type(q)!=mp_independent ) mp_confusion(mp, "dep");
11951 @:this can't happen dep}{\quad dep@>
11952 mp_print_variable_name(mp, q); v=value(q) % s_scale;
11953 while ( v>0 ) { mp_print(mp, "*4"); v=v-2; }
11958 @ @<Print the coefficient, unless it's $\pm1.0$@>=
11959 if ( value(p)<0 ) mp_print_char(mp, '-');
11960 else if ( p!=pp ) mp_print_char(mp, '+');
11961 if ( t==mp_dependent ) v=mp_round_fraction(mp, v);
11962 if ( v!=unity ) mp_print_scaled(mp, v)
11964 @ The maximum absolute value of a coefficient in a given dependency list
11965 is returned by the following simple function.
11967 @c fraction mp_max_coef (MP mp,pointer p) {
11968 fraction x; /* the maximum so far */
11970 while ( info(p)!=null ) {
11971 if ( abs(value(p))>x ) x=abs(value(p));
11977 @ One of the main operations needed on dependency lists is to add a multiple
11978 of one list to the other; we call this |p_plus_fq|, where |p| and~|q| point
11979 to dependency lists and |f| is a fraction.
11981 If the coefficient of any independent variable becomes |coef_bound| or
11982 more, in absolute value, this procedure changes the type of that variable
11983 to `|independent_needing_fix|', and sets the global variable |fix_needed|
11984 to~|true|. The value of $|coef_bound|=\mu$ is chosen so that
11985 $\mu^2+\mu<8$; this means that the numbers we deal with won't
11986 get too large. (Instead of the ``optimum'' $\mu=(\sqrt{33}-1)/2\approx
11987 2.3723$, the safer value 7/3 is taken as the threshold.)
11989 The changes mentioned in the preceding paragraph are actually done only if
11990 the global variable |watch_coefs| is |true|. But it usually is; in fact,
11991 it is |false| only when \MP\ is making a dependency list that will soon
11992 be equated to zero.
11994 Several procedures that act on dependency lists, including |p_plus_fq|,
11995 set the global variable |dep_final| to the final (constant term) node of
11996 the dependency list that they produce.
11998 @d coef_bound 04525252525 /* |fraction| approximation to 7/3 */
11999 @d independent_needing_fix 0
12002 boolean fix_needed; /* does at least one |independent| variable need scaling? */
12003 boolean watch_coefs; /* should we scale coefficients that exceed |coef_bound|? */
12004 pointer dep_final; /* location of the constant term and final link */
12007 mp->fix_needed=false; mp->watch_coefs=true;
12009 @ The |p_plus_fq| procedure has a fourth parameter, |t|, that should be
12010 set to |mp_proto_dependent| if |p| is a proto-dependency list. In this
12011 case |f| will be |scaled|, not a |fraction|. Similarly, the fifth parameter~|tt|
12012 should be |mp_proto_dependent| if |q| is a proto-dependency list.
12014 List |q| is unchanged by the operation; but list |p| is totally destroyed.
12016 The final link of the dependency list or proto-dependency list returned
12017 by |p_plus_fq| is the same as the original final link of~|p|. Indeed, the
12018 constant term of the result will be located in the same |mem| location
12019 as the original constant term of~|p|.
12021 Coefficients of the result are assumed to be zero if they are less than
12022 a certain threshold. This compensates for inevitable rounding errors,
12023 and tends to make more variables `|known|'. The threshold is approximately
12024 $10^{-5}$ in the case of normal dependency lists, $10^{-4}$ for
12025 proto-dependencies.
12027 @d fraction_threshold 2685 /* a |fraction| coefficient less than this is zeroed */
12028 @d half_fraction_threshold 1342 /* half of |fraction_threshold| */
12029 @d scaled_threshold 8 /* a |scaled| coefficient less than this is zeroed */
12030 @d half_scaled_threshold 4 /* half of |scaled_threshold| */
12032 @<Declare basic dependency-list subroutines@>=
12033 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12034 pointer q, small_number t, small_number tt) ;
12037 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12038 pointer q, small_number t, small_number tt) {
12039 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12040 pointer r,s; /* for list manipulation */
12041 integer mp_threshold; /* defines a neighborhood of zero */
12042 integer v; /* temporary register */
12043 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
12044 else mp_threshold=scaled_threshold;
12045 r=temp_head; pp=info(p); qq=info(q);
12051 @<Contribute a term from |p|, plus |f| times the
12052 corresponding term from |q|@>
12054 } else if ( value(pp)<value(qq) ) {
12055 @<Contribute a term from |q|, multiplied by~|f|@>
12057 link(r)=p; r=p; p=link(p); pp=info(p);
12060 if ( t==mp_dependent )
12061 value(p)=mp_slow_add(mp, value(p),mp_take_fraction(mp, value(q),f));
12063 value(p)=mp_slow_add(mp, value(p),mp_take_scaled(mp, value(q),f));
12064 link(r)=p; mp->dep_final=p;
12065 return link(temp_head);
12068 @ @<Contribute a term from |p|, plus |f|...@>=
12070 if ( tt==mp_dependent ) v=value(p)+mp_take_fraction(mp, f,value(q));
12071 else v=value(p)+mp_take_scaled(mp, f,value(q));
12072 value(p)=v; s=p; p=link(p);
12073 if ( abs(v)<mp_threshold ) {
12074 mp_free_node(mp, s,dep_node_size);
12076 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12077 type(qq)=independent_needing_fix; mp->fix_needed=true;
12081 pp=info(p); q=link(q); qq=info(q);
12084 @ @<Contribute a term from |q|, multiplied by~|f|@>=
12086 if ( tt==mp_dependent ) v=mp_take_fraction(mp, f,value(q));
12087 else v=mp_take_scaled(mp, f,value(q));
12088 if ( abs(v)>halfp(mp_threshold) ) {
12089 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=v;
12090 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12091 type(qq)=independent_needing_fix; mp->fix_needed=true;
12095 q=link(q); qq=info(q);
12098 @ It is convenient to have another subroutine for the special case
12099 of |p_plus_fq| when |f=1.0|. In this routine lists |p| and |q| are
12100 both of the same type~|t| (either |dependent| or |mp_proto_dependent|).
12102 @c pointer mp_p_plus_q (MP mp,pointer p, pointer q, small_number t) {
12103 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12104 pointer r,s; /* for list manipulation */
12105 integer mp_threshold; /* defines a neighborhood of zero */
12106 integer v; /* temporary register */
12107 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
12108 else mp_threshold=scaled_threshold;
12109 r=temp_head; pp=info(p); qq=info(q);
12115 @<Contribute a term from |p|, plus the
12116 corresponding term from |q|@>
12118 } else if ( value(pp)<value(qq) ) {
12119 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=value(q);
12120 q=link(q); qq=info(q); link(r)=s; r=s;
12122 link(r)=p; r=p; p=link(p); pp=info(p);
12125 value(p)=mp_slow_add(mp, value(p),value(q));
12126 link(r)=p; mp->dep_final=p;
12127 return link(temp_head);
12130 @ @<Contribute a term from |p|, plus the...@>=
12132 v=value(p)+value(q);
12133 value(p)=v; s=p; p=link(p); pp=info(p);
12134 if ( abs(v)<mp_threshold ) {
12135 mp_free_node(mp, s,dep_node_size);
12137 if ( (abs(v)>=coef_bound ) && mp->watch_coefs ) {
12138 type(qq)=independent_needing_fix; mp->fix_needed=true;
12142 q=link(q); qq=info(q);
12145 @ A somewhat simpler routine will multiply a dependency list
12146 by a given constant~|v|. The constant is either a |fraction| less than
12147 |fraction_one|, or it is |scaled|. In the latter case we might be forced to
12148 convert a dependency list to a proto-dependency list.
12149 Parameters |t0| and |t1| are the list types before and after;
12150 they should agree unless |t0=mp_dependent| and |t1=mp_proto_dependent|
12151 and |v_is_scaled=true|.
12153 @c pointer mp_p_times_v (MP mp,pointer p, integer v, small_number t0,
12154 small_number t1, boolean v_is_scaled) {
12155 pointer r,s; /* for list manipulation */
12156 integer w; /* tentative coefficient */
12157 integer mp_threshold;
12158 boolean scaling_down;
12159 if ( t0!=t1 ) scaling_down=true; else scaling_down=! v_is_scaled;
12160 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
12161 else mp_threshold=half_scaled_threshold;
12163 while ( info(p)!=null ) {
12164 if ( scaling_down ) w=mp_take_fraction(mp, v,value(p));
12165 else w=mp_take_scaled(mp, v,value(p));
12166 if ( abs(w)<=mp_threshold ) {
12167 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12169 if ( abs(w)>=coef_bound ) {
12170 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12172 link(r)=p; r=p; value(p)=w; p=link(p);
12176 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
12177 else value(p)=mp_take_fraction(mp, value(p),v);
12178 return link(temp_head);
12181 @ Similarly, we sometimes need to divide a dependency list
12182 by a given |scaled| constant.
12184 @<Declare basic dependency-list subroutines@>=
12185 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12186 t0, small_number t1) ;
12189 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12190 t0, small_number t1) {
12191 pointer r,s; /* for list manipulation */
12192 integer w; /* tentative coefficient */
12193 integer mp_threshold;
12194 boolean scaling_down;
12195 if ( t0!=t1 ) scaling_down=true; else scaling_down=false;
12196 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
12197 else mp_threshold=half_scaled_threshold;
12199 while ( info( p)!=null ) {
12200 if ( scaling_down ) {
12201 if ( abs(v)<02000000 ) w=mp_make_scaled(mp, value(p),v*010000);
12202 else w=mp_make_scaled(mp, mp_round_fraction(mp, value(p)),v);
12204 w=mp_make_scaled(mp, value(p),v);
12206 if ( abs(w)<=mp_threshold ) {
12207 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12209 if ( abs(w)>=coef_bound ) {
12210 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12212 link(r)=p; r=p; value(p)=w; p=link(p);
12215 link(r)=p; value(p)=mp_make_scaled(mp, value(p),v);
12216 return link(temp_head);
12219 @ Here's another utility routine for dependency lists. When an independent
12220 variable becomes dependent, we want to remove it from all existing
12221 dependencies. The |p_with_x_becoming_q| function computes the
12222 dependency list of~|p| after variable~|x| has been replaced by~|q|.
12224 This procedure has basically the same calling conventions as |p_plus_fq|:
12225 List~|q| is unchanged; list~|p| is destroyed; the constant node and the
12226 final link are inherited from~|p|; and the fourth parameter tells whether
12227 or not |p| is |mp_proto_dependent|. However, the global variable |dep_final|
12228 is not altered if |x| does not occur in list~|p|.
12230 @c pointer mp_p_with_x_becoming_q (MP mp,pointer p,
12231 pointer x, pointer q, small_number t) {
12232 pointer r,s; /* for list manipulation */
12233 integer v; /* coefficient of |x| */
12234 integer sx; /* serial number of |x| */
12235 s=p; r=temp_head; sx=value(x);
12236 while ( value(info(s))>sx ) { r=s; s=link(s); };
12237 if ( info(s)!=x ) {
12240 link(temp_head)=p; link(r)=link(s); v=value(s);
12241 mp_free_node(mp, s,dep_node_size);
12242 return mp_p_plus_fq(mp, link(temp_head),v,q,t,mp_dependent);
12246 @ Here's a simple procedure that reports an error when a variable
12247 has just received a known value that's out of the required range.
12249 @<Declare basic dependency-list subroutines@>=
12250 void mp_val_too_big (MP mp,scaled x) ;
12252 @ @c void mp_val_too_big (MP mp,scaled x) {
12253 if ( mp->internal[mp_warning_check]>0 ) {
12254 print_err("Value is too large ("); mp_print_scaled(mp, x); mp_print_char(mp, ')');
12255 @.Value is too large@>
12256 help4("The equation I just processed has given some variable")
12257 ("a value of 4096 or more. Continue and I'll try to cope")
12258 ("with that big value; but it might be dangerous.")
12259 ("(Set warningcheck:=0 to suppress this message.)");
12264 @ When a dependent variable becomes known, the following routine
12265 removes its dependency list. Here |p| points to the variable, and
12266 |q| points to the dependency list (which is one node long).
12268 @<Declare basic dependency-list subroutines@>=
12269 void mp_make_known (MP mp,pointer p, pointer q) ;
12271 @ @c void mp_make_known (MP mp,pointer p, pointer q) {
12272 int t; /* the previous type */
12273 prev_dep(link(q))=prev_dep(p);
12274 link(prev_dep(p))=link(q); t=type(p);
12275 type(p)=mp_known; value(p)=value(q); mp_free_node(mp, q,dep_node_size);
12276 if ( abs(value(p))>=fraction_one ) mp_val_too_big(mp, value(p));
12277 if (( mp->internal[mp_tracing_equations]>0) && mp_interesting(mp, p) ) {
12278 mp_begin_diagnostic(mp); mp_print_nl(mp, "#### ");
12279 @:]]]\#\#\#\#_}{\.{\#\#\#\#}@>
12280 mp_print_variable_name(mp, p);
12281 mp_print_char(mp, '='); mp_print_scaled(mp, value(p));
12282 mp_end_diagnostic(mp, false);
12284 if (( mp->cur_exp==p ) && mp->cur_type==t ) {
12285 mp->cur_type=mp_known; mp->cur_exp=value(p);
12286 mp_free_node(mp, p,value_node_size);
12290 @ The |fix_dependencies| routine is called into action when |fix_needed|
12291 has been triggered. The program keeps a list~|s| of independent variables
12292 whose coefficients must be divided by~4.
12294 In unusual cases, this fixup process might reduce one or more coefficients
12295 to zero, so that a variable will become known more or less by default.
12297 @<Declare basic dependency-list subroutines@>=
12298 void mp_fix_dependencies (MP mp);
12300 @ @c void mp_fix_dependencies (MP mp) {
12301 pointer p,q,r,s,t; /* list manipulation registers */
12302 pointer x; /* an independent variable */
12303 r=link(dep_head); s=null;
12304 while ( r!=dep_head ){
12306 @<Run through the dependency list for variable |t|, fixing
12307 all nodes, and ending with final link~|q|@>;
12309 if ( q==dep_list(t) ) mp_make_known(mp, t,q);
12311 while ( s!=null ) {
12312 p=link(s); x=info(s); free_avail(s); s=p;
12313 type(x)=mp_independent; value(x)=value(x)+2;
12315 mp->fix_needed=false;
12318 @ @d independent_being_fixed 1 /* this variable already appears in |s| */
12320 @<Run through the dependency list for variable |t|...@>=
12321 r=value_loc(t); /* |link(r)=dep_list(t)| */
12323 q=link(r); x=info(q);
12324 if ( x==null ) break;
12325 if ( type(x)<=independent_being_fixed ) {
12326 if ( type(x)<independent_being_fixed ) {
12327 p=mp_get_avail(mp); link(p)=s; s=p;
12328 info(s)=x; type(x)=independent_being_fixed;
12330 value(q)=value(q) / 4;
12331 if ( value(q)==0 ) {
12332 link(r)=link(q); mp_free_node(mp, q,dep_node_size); q=r;
12339 @ The |new_dep| routine installs a dependency list~|p| into the value node~|q|,
12340 linking it into the list of all known dependencies. We assume that
12341 |dep_final| points to the final node of list~|p|.
12343 @c void mp_new_dep (MP mp,pointer q, pointer p) {
12344 pointer r; /* what used to be the first dependency */
12345 dep_list(q)=p; prev_dep(q)=dep_head;
12346 r=link(dep_head); link(mp->dep_final)=r; prev_dep(r)=mp->dep_final;
12350 @ Here is one of the ways a dependency list gets started.
12351 The |const_dependency| routine produces a list that has nothing but
12354 @c pointer mp_const_dependency (MP mp, scaled v) {
12355 mp->dep_final=mp_get_node(mp, dep_node_size);
12356 value(mp->dep_final)=v; info(mp->dep_final)=null;
12357 return mp->dep_final;
12360 @ And here's a more interesting way to start a dependency list from scratch:
12361 The parameter to |single_dependency| is the location of an
12362 independent variable~|x|, and the result is the simple dependency list
12365 In the unlikely event that the given independent variable has been doubled so
12366 often that we can't refer to it with a nonzero coefficient,
12367 |single_dependency| returns the simple list `0'. This case can be
12368 recognized by testing that the returned list pointer is equal to
12371 @c pointer mp_single_dependency (MP mp,pointer p) {
12372 pointer q; /* the new dependency list */
12373 integer m; /* the number of doublings */
12374 m=value(p) % s_scale;
12376 return mp_const_dependency(mp, 0);
12378 q=mp_get_node(mp, dep_node_size);
12379 value(q)=two_to_the(28-m); info(q)=p;
12380 link(q)=mp_const_dependency(mp, 0);
12385 @ We sometimes need to make an exact copy of a dependency list.
12387 @c pointer mp_copy_dep_list (MP mp,pointer p) {
12388 pointer q; /* the new dependency list */
12389 q=mp_get_node(mp, dep_node_size); mp->dep_final=q;
12391 info(mp->dep_final)=info(p); value(mp->dep_final)=value(p);
12392 if ( info(mp->dep_final)==null ) break;
12393 link(mp->dep_final)=mp_get_node(mp, dep_node_size);
12394 mp->dep_final=link(mp->dep_final); p=link(p);
12399 @ But how do variables normally become known? Ah, now we get to the heart of the
12400 equation-solving mechanism. The |linear_eq| procedure is given a |dependent|
12401 or |mp_proto_dependent| list,~|p|, in which at least one independent variable
12402 appears. It equates this list to zero, by choosing an independent variable
12403 with the largest coefficient and making it dependent on the others. The
12404 newly dependent variable is eliminated from all current dependencies,
12405 thereby possibly making other dependent variables known.
12407 The given list |p| is, of course, totally destroyed by all this processing.
12409 @c void mp_linear_eq (MP mp, pointer p, small_number t) {
12410 pointer q,r,s; /* for link manipulation */
12411 pointer x; /* the variable that loses its independence */
12412 integer n; /* the number of times |x| had been halved */
12413 integer v; /* the coefficient of |x| in list |p| */
12414 pointer prev_r; /* lags one step behind |r| */
12415 pointer final_node; /* the constant term of the new dependency list */
12416 integer w; /* a tentative coefficient */
12417 @<Find a node |q| in list |p| whose coefficient |v| is largest@>;
12418 x=info(q); n=value(x) % s_scale;
12419 @<Divide list |p| by |-v|, removing node |q|@>;
12420 if ( mp->internal[mp_tracing_equations]>0 ) {
12421 @<Display the new dependency@>;
12423 @<Simplify all existing dependencies by substituting for |x|@>;
12424 @<Change variable |x| from |independent| to |dependent| or |known|@>;
12425 if ( mp->fix_needed ) mp_fix_dependencies(mp);
12428 @ @<Find a node |q| in list |p| whose coefficient |v| is largest@>=
12429 q=p; r=link(p); v=value(q);
12430 while ( info(r)!=null ) {
12431 if ( abs(value(r))>abs(v) ) { q=r; v=value(r); };
12435 @ Here we want to change the coefficients from |scaled| to |fraction|,
12436 except in the constant term. In the common case of a trivial equation
12437 like `\.{x=3.14}', we will have |v=-fraction_one|, |q=p|, and |t=mp_dependent|.
12439 @<Divide list |p| by |-v|, removing node |q|@>=
12440 s=temp_head; link(s)=p; r=p;
12443 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12445 w=mp_make_fraction(mp, value(r),v);
12446 if ( abs(w)<=half_fraction_threshold ) {
12447 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12453 } while (info(r)!=null);
12454 if ( t==mp_proto_dependent ) {
12455 value(r)=-mp_make_scaled(mp, value(r),v);
12456 } else if ( v!=-fraction_one ) {
12457 value(r)=-mp_make_fraction(mp, value(r),v);
12459 final_node=r; p=link(temp_head)
12461 @ @<Display the new dependency@>=
12462 if ( mp_interesting(mp, x) ) {
12463 mp_begin_diagnostic(mp); mp_print_nl(mp, "## ");
12464 mp_print_variable_name(mp, x);
12465 @:]]]\#\#_}{\.{\#\#}@>
12467 while ( w>0 ) { mp_print(mp, "*4"); w=w-2; };
12468 mp_print_char(mp, '='); mp_print_dependency(mp, p,mp_dependent);
12469 mp_end_diagnostic(mp, false);
12472 @ @<Simplify all existing dependencies by substituting for |x|@>=
12473 prev_r=dep_head; r=link(dep_head);
12474 while ( r!=dep_head ) {
12475 s=dep_list(r); q=mp_p_with_x_becoming_q(mp, s,x,p,type(r));
12476 if ( info(q)==null ) {
12477 mp_make_known(mp, r,q);
12480 do { q=link(q); } while (info(q)!=null);
12486 @ @<Change variable |x| from |independent| to |dependent| or |known|@>=
12487 if ( n>0 ) @<Divide list |p| by $2^n$@>;
12488 if ( info(p)==null ) {
12491 if ( abs(value(x))>=fraction_one ) mp_val_too_big(mp, value(x));
12492 mp_free_node(mp, p,dep_node_size);
12493 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) {
12494 mp->cur_exp=value(x); mp->cur_type=mp_known;
12495 mp_free_node(mp, x,value_node_size);
12498 type(x)=mp_dependent; mp->dep_final=final_node; mp_new_dep(mp, x,p);
12499 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) mp->cur_type=mp_dependent;
12502 @ @<Divide list |p| by $2^n$@>=
12504 s=temp_head; link(temp_head)=p; r=p;
12507 else w=value(r) / two_to_the(n);
12508 if ( (abs(w)<=half_fraction_threshold)&&(info(r)!=null) ) {
12510 mp_free_node(mp, r,dep_node_size);
12515 } while (info(s)!=null);
12519 @ The |check_mem| procedure, which is used only when \MP\ is being
12520 debugged, makes sure that the current dependency lists are well formed.
12522 @<Check the list of linear dependencies@>=
12523 q=dep_head; p=link(q);
12524 while ( p!=dep_head ) {
12525 if ( prev_dep(p)!=q ) {
12526 mp_print_nl(mp, "Bad PREVDEP at "); mp_print_int(mp, p);
12531 r=info(p); q=p; p=link(q);
12532 if ( r==null ) break;
12533 if ( value(info(p))>=value(r) ) {
12534 mp_print_nl(mp, "Out of order at "); mp_print_int(mp, p);
12535 @.Out of order...@>
12540 @* \[25] Dynamic nonlinear equations.
12541 Variables of numeric type are maintained by the general scheme of
12542 independent, dependent, and known values that we have just studied;
12543 and the components of pair and transform variables are handled in the
12544 same way. But \MP\ also has five other types of values: \&{boolean},
12545 \&{string}, \&{pen}, \&{path}, and \&{picture}; what about them?
12547 Equations are allowed between nonlinear quantities, but only in a
12548 simple form. Two variables that haven't yet been assigned values are
12549 either equal to each other, or they're not.
12551 Before a boolean variable has received a value, its type is |mp_unknown_boolean|;
12552 similarly, there are variables whose type is |mp_unknown_string|, |mp_unknown_pen|,
12553 |mp_unknown_path|, and |mp_unknown_picture|. In such cases the value is either
12554 |null| (which means that no other variables are equivalent to this one), or
12555 it points to another variable of the same undefined type. The pointers in the
12556 latter case form a cycle of nodes, which we shall call a ``ring.''
12557 Rings of undefined variables may include capsules, which arise as
12558 intermediate results within expressions or as \&{expr} parameters to macros.
12560 When one member of a ring receives a value, the same value is given to
12561 all the other members. In the case of paths and pictures, this implies
12562 making separate copies of a potentially large data structure; users should
12563 restrain their enthusiasm for such generality, unless they have lots and
12564 lots of memory space.
12566 @ The following procedure is called when a capsule node is being
12567 added to a ring (e.g., when an unknown variable is mentioned in an expression).
12569 @c pointer mp_new_ring_entry (MP mp,pointer p) {
12570 pointer q; /* the new capsule node */
12571 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
12573 if ( value(p)==null ) value(q)=p; else value(q)=value(p);
12578 @ Conversely, we might delete a capsule or a variable before it becomes known.
12579 The following procedure simply detaches a quantity from its ring,
12580 without recycling the storage.
12582 @<Declare the recycling subroutines@>=
12583 void mp_ring_delete (MP mp,pointer p) {
12586 if ( q!=null ) if ( q!=p ){
12587 while ( value(q)!=p ) q=value(q);
12592 @ Eventually there might be an equation that assigns values to all of the
12593 variables in a ring. The |nonlinear_eq| subroutine does the necessary
12594 propagation of values.
12596 If the parameter |flush_p| is |true|, node |p| itself needn't receive a
12597 value, it will soon be recycled.
12599 @c void mp_nonlinear_eq (MP mp,integer v, pointer p, boolean flush_p) {
12600 small_number t; /* the type of ring |p| */
12601 pointer q,r; /* link manipulation registers */
12602 t=type(p)-unknown_tag; q=value(p);
12603 if ( flush_p ) type(p)=mp_vacuous; else p=q;
12605 r=value(q); type(q)=t;
12607 case mp_boolean_type: value(q)=v; break;
12608 case mp_string_type: value(q)=v; add_str_ref(v); break;
12609 case mp_pen_type: value(q)=copy_pen(v); break;
12610 case mp_path_type: value(q)=mp_copy_path(mp, v); break;
12611 case mp_picture_type: value(q)=v; add_edge_ref(v); break;
12612 } /* there ain't no more cases */
12617 @ If two members of rings are equated, and if they have the same type,
12618 the |ring_merge| procedure is called on to make them equivalent.
12620 @c void mp_ring_merge (MP mp,pointer p, pointer q) {
12621 pointer r; /* traverses one list */
12625 @<Exclaim about a redundant equation@>;
12630 r=value(p); value(p)=value(q); value(q)=r;
12633 @ @<Exclaim about a redundant equation@>=
12635 print_err("Redundant equation");
12636 @.Redundant equation@>
12637 help2("I already knew that this equation was true.")
12638 ("But perhaps no harm has been done; let's continue.");
12639 mp_put_get_error(mp);
12642 @* \[26] Introduction to the syntactic routines.
12643 Let's pause a moment now and try to look at the Big Picture.
12644 The \MP\ program consists of three main parts: syntactic routines,
12645 semantic routines, and output routines. The chief purpose of the
12646 syntactic routines is to deliver the user's input to the semantic routines,
12647 while parsing expressions and locating operators and operands. The
12648 semantic routines act as an interpreter responding to these operators,
12649 which may be regarded as commands. And the output routines are
12650 periodically called on to produce compact font descriptions that can be
12651 used for typesetting or for making interim proof drawings. We have
12652 discussed the basic data structures and many of the details of semantic
12653 operations, so we are good and ready to plunge into the part of \MP\ that
12654 actually controls the activities.
12656 Our current goal is to come to grips with the |get_next| procedure,
12657 which is the keystone of \MP's input mechanism. Each call of |get_next|
12658 sets the value of three variables |cur_cmd|, |cur_mod|, and |cur_sym|,
12659 representing the next input token.
12660 $$\vbox{\halign{#\hfil\cr
12661 \hbox{|cur_cmd| denotes a command code from the long list of codes
12663 \hbox{|cur_mod| denotes a modifier of the command code;}\cr
12664 \hbox{|cur_sym| is the hash address of the symbolic token that was
12666 \hbox{\qquad or zero in the case of a numeric or string
12667 or capsule token.}\cr}}$$
12668 Underlying this external behavior of |get_next| is all the machinery
12669 necessary to convert from character files to tokens. At a given time we
12670 may be only partially finished with the reading of several files (for
12671 which \&{input} was specified), and partially finished with the expansion
12672 of some user-defined macros and/or some macro parameters, and partially
12673 finished reading some text that the user has inserted online,
12674 and so on. When reading a character file, the characters must be
12675 converted to tokens; comments and blank spaces must
12676 be removed, numeric and string tokens must be evaluated.
12678 To handle these situations, which might all be present simultaneously,
12679 \MP\ uses various stacks that hold information about the incomplete
12680 activities, and there is a finite state control for each level of the
12681 input mechanism. These stacks record the current state of an implicitly
12682 recursive process, but the |get_next| procedure is not recursive.
12685 eight_bits cur_cmd; /* current command set by |get_next| */
12686 integer cur_mod; /* operand of current command */
12687 halfword cur_sym; /* hash address of current symbol */
12689 @ The |print_cmd_mod| routine prints a symbolic interpretation of a
12690 command code and its modifier.
12691 It consists of a rather tedious sequence of print
12692 commands, and most of it is essentially an inverse to the |primitive|
12693 routine that enters a \MP\ primitive into |hash| and |eqtb|. Therefore almost
12694 all of this procedure appears elsewhere in the program, together with the
12695 corresponding |primitive| calls.
12697 @<Declare the procedure called |print_cmd_mod|@>=
12698 void mp_print_cmd_mod (MP mp,integer c, integer m) {
12700 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>
12701 default: mp_print(mp, "[unknown command code!]"); break;
12705 @ Here is a procedure that displays a given command in braces, in the
12706 user's transcript file.
12708 @d show_cur_cmd_mod mp_show_cmd_mod(mp, mp->cur_cmd,mp->cur_mod)
12711 void mp_show_cmd_mod (MP mp,integer c, integer m) {
12712 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
12713 mp_print_cmd_mod(mp, c,m); mp_print_char(mp, '}');
12714 mp_end_diagnostic(mp, false);
12717 @* \[27] Input stacks and states.
12718 The state of \MP's input mechanism appears in the input stack, whose
12719 entries are records with five fields, called |index|, |start|, |loc|,
12720 |limit|, and |name|. The top element of this stack is maintained in a
12721 global variable for which no subscripting needs to be done; the other
12722 elements of the stack appear in an array. Hence the stack is declared thus:
12726 quarterword index_field;
12727 halfword start_field, loc_field, limit_field, name_field;
12731 in_state_record *input_stack;
12732 integer input_ptr; /* first unused location of |input_stack| */
12733 integer max_in_stack; /* largest value of |input_ptr| when pushing */
12734 in_state_record cur_input; /* the ``top'' input state */
12735 int stack_size; /* maximum number of simultaneous input sources */
12737 @ @<Allocate or initialize ...@>=
12738 mp->stack_size = 300;
12739 mp->input_stack = xmalloc((mp->stack_size+1),sizeof(in_state_record));
12741 @ @<Dealloc variables@>=
12742 xfree(mp->input_stack);
12744 @ We've already defined the special variable |loc==cur_input.loc_field|
12745 in our discussion of basic input-output routines. The other components of
12746 |cur_input| are defined in the same way:
12748 @d index mp->cur_input.index_field /* reference for buffer information */
12749 @d start mp->cur_input.start_field /* starting position in |buffer| */
12750 @d limit mp->cur_input.limit_field /* end of current line in |buffer| */
12751 @d name mp->cur_input.name_field /* name of the current file */
12753 @ Let's look more closely now at the five control variables
12754 (|index|,~|start|,~|loc|,~|limit|,~|name|),
12755 assuming that \MP\ is reading a line of characters that have been input
12756 from some file or from the user's terminal. There is an array called
12757 |buffer| that acts as a stack of all lines of characters that are
12758 currently being read from files, including all lines on subsidiary
12759 levels of the input stack that are not yet completed. \MP\ will return to
12760 the other lines when it is finished with the present input file.
12762 (Incidentally, on a machine with byte-oriented addressing, it would be
12763 appropriate to combine |buffer| with the |str_pool| array,
12764 letting the buffer entries grow downward from the top of the string pool
12765 and checking that these two tables don't bump into each other.)
12767 The line we are currently working on begins in position |start| of the
12768 buffer; the next character we are about to read is |buffer[loc]|; and
12769 |limit| is the location of the last character present. We always have
12770 |loc<=limit|. For convenience, |buffer[limit]| has been set to |"%"|, so
12771 that the end of a line is easily sensed.
12773 The |name| variable is a string number that designates the name of
12774 the current file, if we are reading an ordinary text file. Special codes
12775 |is_term..max_spec_src| indicate other sources of input text.
12777 @d is_term 0 /* |name| value when reading from the terminal for normal input */
12778 @d is_read 1 /* |name| value when executing a \&{readstring} or \&{readfrom} */
12779 @d is_scantok 2 /* |name| value when reading text generated by \&{scantokens} */
12780 @d max_spec_src is_scantok
12782 @ Additional information about the current line is available via the
12783 |index| variable, which counts how many lines of characters are present
12784 in the buffer below the current level. We have |index=0| when reading
12785 from the terminal and prompting the user for each line; then if the user types,
12786 e.g., `\.{input figs}', we will have |index=1| while reading
12787 the file \.{figs.mp}. However, it does not follow that |index| is the
12788 same as the input stack pointer, since many of the levels on the input
12789 stack may come from token lists and some |index| values may correspond
12790 to \.{MPX} files that are not currently on the stack.
12792 The global variable |in_open| is equal to the highest |index| value counting
12793 \.{MPX} files but excluding token-list input levels. Thus, the number of
12794 partially read lines in the buffer is |in_open+1| and we have |in_open>=index|
12795 when we are not reading a token list.
12797 If we are not currently reading from the terminal,
12798 we are reading from the file variable |input_file[index]|. We use
12799 the notation |terminal_input| as a convenient abbreviation for |name=is_term|,
12800 and |cur_file| as an abbreviation for |input_file[index]|.
12802 When \MP\ is not reading from the terminal, the global variable |line| contains
12803 the line number in the current file, for use in error messages. More precisely,
12804 |line| is a macro for |line_stack[index]| and the |line_stack| array gives
12805 the line number for each file in the |input_file| array.
12807 When an \.{MPX} file is opened the file name is stored in the |mpx_name|
12808 array so that the name doesn't get lost when the file is temporarily removed
12809 from the input stack.
12810 Thus when |input_file[k]| is an \.{MPX} file, its name is |mpx_name[k]|
12811 and it contains translated \TeX\ pictures for |input_file[k-1]|.
12812 Since this is not an \.{MPX} file, we have
12813 $$ \hbox{|mpx_name[k-1]<=absent|}. $$
12814 This |name| field is set to |finished| when |input_file[k]| is completely
12817 If more information about the input state is needed, it can be
12818 included in small arrays like those shown here. For example,
12819 the current page or segment number in the input file might be put
12820 into a variable |page|, that is really a macro for the current entry
12821 in `\ignorespaces|page_stack:array[0..max_in_open] of integer|\unskip'
12822 by analogy with |line_stack|.
12823 @^system dependencies@>
12825 @d terminal_input (name==is_term) /* are we reading from the terminal? */
12826 @d cur_file mp->input_file[index] /* the current |void *| variable */
12827 @d line mp->line_stack[index] /* current line number in the current source file */
12828 @d in_name mp->iname_stack[index] /* a string used to construct \.{MPX} file names */
12829 @d in_area mp->iarea_stack[index] /* another string for naming \.{MPX} files */
12830 @d absent 1 /* |name_field| value for unused |mpx_in_stack| entries */
12831 @d mpx_reading (mp->mpx_name[index]>absent)
12832 /* when reading a file, is it an \.{MPX} file? */
12834 /* |name_field| value when the corresponding \.{MPX} file is finished */
12837 integer in_open; /* the number of lines in the buffer, less one */
12838 unsigned int open_parens; /* the number of open text files */
12839 void * *input_file ;
12840 integer *line_stack ; /* the line number for each file */
12841 char * *iname_stack; /* used for naming \.{MPX} files */
12842 char * *iarea_stack; /* used for naming \.{MPX} files */
12843 halfword*mpx_name ;
12845 @ @<Allocate or ...@>=
12846 mp->input_file = xmalloc((mp->max_in_open+1),sizeof(void *));
12847 mp->line_stack = xmalloc((mp->max_in_open+1),sizeof(integer));
12848 mp->iname_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12849 mp->iarea_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12850 mp->mpx_name = xmalloc((mp->max_in_open+1),sizeof(halfword));
12853 for (k=0;k<=mp->max_in_open;k++) {
12854 mp->iname_stack[k] =NULL;
12855 mp->iarea_stack[k] =NULL;
12859 @ @<Dealloc variables@>=
12862 for (l=0;l<=mp->max_in_open;l++) {
12863 xfree(mp->iname_stack[l]);
12864 xfree(mp->iarea_stack[l]);
12867 xfree(mp->input_file);
12868 xfree(mp->line_stack);
12869 xfree(mp->iname_stack);
12870 xfree(mp->iarea_stack);
12871 xfree(mp->mpx_name);
12874 @ However, all this discussion about input state really applies only to the
12875 case that we are inputting from a file. There is another important case,
12876 namely when we are currently getting input from a token list. In this case
12877 |index>max_in_open|, and the conventions about the other state variables
12880 \yskip\hang|loc| is a pointer to the current node in the token list, i.e.,
12881 the node that will be read next. If |loc=null|, the token list has been
12884 \yskip\hang|start| points to the first node of the token list; this node
12885 may or may not contain a reference count, depending on the type of token
12888 \yskip\hang|token_type|, which takes the place of |index| in the
12889 discussion above, is a code number that explains what kind of token list
12892 \yskip\hang|name| points to the |eqtb| address of the control sequence
12893 being expanded, if the current token list is a macro not defined by
12894 \&{vardef}. Macros defined by \&{vardef} have |name=null|; their name
12895 can be deduced by looking at their first two parameters.
12897 \yskip\hang|param_start|, which takes the place of |limit|, tells where
12898 the parameters of the current macro or loop text begin in the |param_stack|.
12900 \yskip\noindent The |token_type| can take several values, depending on
12901 where the current token list came from:
12904 \indent|forever_text|, if the token list being scanned is the body of
12905 a \&{forever} loop;
12907 \indent|loop_text|, if the token list being scanned is the body of
12908 a \&{for} or \&{forsuffixes} loop;
12910 \indent|parameter|, if a \&{text} or \&{suffix} parameter is being scanned;
12912 \indent|backed_up|, if the token list being scanned has been inserted as
12913 `to be read again'.
12915 \indent|inserted|, if the token list being scanned has been inserted as
12916 part of error recovery;
12918 \indent|macro|, if the expansion of a user-defined symbolic token is being
12922 The token list begins with a reference count if and only if |token_type=
12924 @^reference counts@>
12926 @d token_type index /* type of current token list */
12927 @d token_state (index>(int)mp->max_in_open) /* are we scanning a token list? */
12928 @d file_state (index<=(int)mp->max_in_open) /* are we scanning a file line? */
12929 @d param_start limit /* base of macro parameters in |param_stack| */
12930 @d forever_text (mp->max_in_open+1) /* |token_type| code for loop texts */
12931 @d loop_text (mp->max_in_open+2) /* |token_type| code for loop texts */
12932 @d parameter (mp->max_in_open+3) /* |token_type| code for parameter texts */
12933 @d backed_up (mp->max_in_open+4) /* |token_type| code for texts to be reread */
12934 @d inserted (mp->max_in_open+5) /* |token_type| code for inserted texts */
12935 @d macro (mp->max_in_open+6) /* |token_type| code for macro replacement texts */
12937 @ The |param_stack| is an auxiliary array used to hold pointers to the token
12938 lists for parameters at the current level and subsidiary levels of input.
12939 This stack grows at a different rate from the others.
12942 pointer *param_stack; /* token list pointers for parameters */
12943 integer param_ptr; /* first unused entry in |param_stack| */
12944 integer max_param_stack; /* largest value of |param_ptr| */
12946 @ @<Allocate or initialize ...@>=
12947 mp->param_stack = xmalloc((mp->param_size+1),sizeof(pointer));
12949 @ @<Dealloc variables@>=
12950 xfree(mp->param_stack);
12952 @ Notice that the |line| isn't valid when |token_state| is true because it
12953 depends on |index|. If we really need to know the line number for the
12954 topmost file in the index stack we use the following function. If a page
12955 number or other information is needed, this routine should be modified to
12956 compute it as well.
12957 @^system dependencies@>
12959 @<Declare a function called |true_line|@>=
12960 integer mp_true_line (MP mp) {
12961 int k; /* an index into the input stack */
12962 if ( file_state && (name>max_spec_src) ) {
12967 ((mp->input_stack[(k-1)].index_field>mp->max_in_open)||
12968 (mp->input_stack[(k-1)].name_field<=max_spec_src))) {
12971 return (k>0 ? mp->line_stack[(k-1)] : 0 );
12976 @ Thus, the ``current input state'' can be very complicated indeed; there
12977 can be many levels and each level can arise in a variety of ways. The
12978 |show_context| procedure, which is used by \MP's error-reporting routine to
12979 print out the current input state on all levels down to the most recent
12980 line of characters from an input file, illustrates most of these conventions.
12981 The global variable |file_ptr| contains the lowest level that was
12982 displayed by this procedure.
12985 integer file_ptr; /* shallowest level shown by |show_context| */
12987 @ The status at each level is indicated by printing two lines, where the first
12988 line indicates what was read so far and the second line shows what remains
12989 to be read. The context is cropped, if necessary, so that the first line
12990 contains at most |half_error_line| characters, and the second contains
12991 at most |error_line|. Non-current input levels whose |token_type| is
12992 `|backed_up|' are shown only if they have not been fully read.
12994 @c void mp_show_context (MP mp) { /* prints where the scanner is */
12995 int old_setting; /* saved |selector| setting */
12996 @<Local variables for formatting calculations@>
12997 mp->file_ptr=mp->input_ptr; mp->input_stack[mp->file_ptr]=mp->cur_input;
12998 /* store current state */
13000 mp->cur_input=mp->input_stack[mp->file_ptr]; /* enter into the context */
13001 @<Display the current context@>;
13003 if ( (name>max_spec_src) || (mp->file_ptr==0) ) break;
13004 decr(mp->file_ptr);
13006 mp->cur_input=mp->input_stack[mp->input_ptr]; /* restore original state */
13009 @ @<Display the current context@>=
13010 if ( (mp->file_ptr==mp->input_ptr) || file_state ||
13011 (token_type!=backed_up) || (loc!=null) ) {
13012 /* we omit backed-up token lists that have already been read */
13013 mp->tally=0; /* get ready to count characters */
13014 old_setting=mp->selector;
13015 if ( file_state ) {
13016 @<Print location of current line@>;
13017 @<Pseudoprint the line@>;
13019 @<Print type of token list@>;
13020 @<Pseudoprint the token list@>;
13022 mp->selector=old_setting; /* stop pseudoprinting */
13023 @<Print two lines using the tricky pseudoprinted information@>;
13026 @ This routine should be changed, if necessary, to give the best possible
13027 indication of where the current line resides in the input file.
13028 For example, on some systems it is best to print both a page and line number.
13029 @^system dependencies@>
13031 @<Print location of current line@>=
13032 if ( name>max_spec_src ) {
13033 mp_print_nl(mp, "l."); mp_print_int(mp, mp_true_line(mp));
13034 } else if ( terminal_input ) {
13035 if ( mp->file_ptr==0 ) mp_print_nl(mp, "<*>");
13036 else mp_print_nl(mp, "<insert>");
13037 } else if ( name==is_scantok ) {
13038 mp_print_nl(mp, "<scantokens>");
13040 mp_print_nl(mp, "<read>");
13042 mp_print_char(mp, ' ')
13044 @ Can't use case statement here because the |token_type| is not
13045 a constant expression.
13047 @<Print type of token list@>=
13049 if(token_type==forever_text) {
13050 mp_print_nl(mp, "<forever> ");
13051 } else if (token_type==loop_text) {
13052 @<Print the current loop value@>;
13053 } else if (token_type==parameter) {
13054 mp_print_nl(mp, "<argument> ");
13055 } else if (token_type==backed_up) {
13056 if ( loc==null ) mp_print_nl(mp, "<recently read> ");
13057 else mp_print_nl(mp, "<to be read again> ");
13058 } else if (token_type==inserted) {
13059 mp_print_nl(mp, "<inserted text> ");
13060 } else if (token_type==macro) {
13062 if ( name!=null ) mp_print_text(name);
13063 else @<Print the name of a \&{vardef}'d macro@>;
13064 mp_print(mp, "->");
13066 mp_print_nl(mp, "?");/* this should never happen */
13071 @ The parameter that corresponds to a loop text is either a token list
13072 (in the case of \&{forsuffixes}) or a ``capsule'' (in the case of \&{for}).
13073 We'll discuss capsules later; for now, all we need to know is that
13074 the |link| field in a capsule parameter is |void| and that
13075 |print_exp(p,0)| displays the value of capsule~|p| in abbreviated form.
13077 @<Print the current loop value@>=
13078 { mp_print_nl(mp, "<for("); p=mp->param_stack[param_start];
13080 if ( link(p)==mp_void ) mp_print_exp(mp, p,0); /* we're in a \&{for} loop */
13081 else mp_show_token_list(mp, p,null,20,mp->tally);
13083 mp_print(mp, ")> ");
13086 @ The first two parameters of a macro defined by \&{vardef} will be token
13087 lists representing the macro's prefix and ``at point.'' By putting these
13088 together, we get the macro's full name.
13090 @<Print the name of a \&{vardef}'d macro@>=
13091 { p=mp->param_stack[param_start];
13093 mp_show_token_list(mp, mp->param_stack[param_start+1],null,20,mp->tally);
13096 while ( link(q)!=null ) q=link(q);
13097 link(q)=mp->param_stack[param_start+1];
13098 mp_show_token_list(mp, p,null,20,mp->tally);
13103 @ Now it is necessary to explain a little trick. We don't want to store a long
13104 string that corresponds to a token list, because that string might take up
13105 lots of memory; and we are printing during a time when an error message is
13106 being given, so we dare not do anything that might overflow one of \MP's
13107 tables. So `pseudoprinting' is the answer: We enter a mode of printing
13108 that stores characters into a buffer of length |error_line|, where character
13109 $k+1$ is placed into \hbox{|trick_buf[k mod error_line]|} if
13110 |k<trick_count|, otherwise character |k| is dropped. Initially we set
13111 |tally:=0| and |trick_count:=1000000|; then when we reach the
13112 point where transition from line 1 to line 2 should occur, we
13113 set |first_count:=tally| and |trick_count:=@tmax@>(error_line,
13114 tally+1+error_line-half_error_line)|. At the end of the
13115 pseudoprinting, the values of |first_count|, |tally|, and
13116 |trick_count| give us all the information we need to print the two lines,
13117 and all of the necessary text is in |trick_buf|.
13119 Namely, let |l| be the length of the descriptive information that appears
13120 on the first line. The length of the context information gathered for that
13121 line is |k=first_count|, and the length of the context information
13122 gathered for line~2 is $m=\min(|tally|, |trick_count|)-k$. If |l+k<=h|,
13123 where |h=half_error_line|, we print |trick_buf[0..k-1]| after the
13124 descriptive information on line~1, and set |n:=l+k|; here |n| is the
13125 length of line~1. If $l+k>h$, some cropping is necessary, so we set |n:=h|
13126 and print `\.{...}' followed by
13127 $$\hbox{|trick_buf[(l+k-h+3)..k-1]|,}$$
13128 where subscripts of |trick_buf| are circular modulo |error_line|. The
13129 second line consists of |n|~spaces followed by |trick_buf[k..(k+m-1)]|,
13130 unless |n+m>error_line|; in the latter case, further cropping is done.
13131 This is easier to program than to explain.
13133 @<Local variables for formatting...@>=
13134 int i; /* index into |buffer| */
13135 integer l; /* length of descriptive information on line 1 */
13136 integer m; /* context information gathered for line 2 */
13137 int n; /* length of line 1 */
13138 integer p; /* starting or ending place in |trick_buf| */
13139 integer q; /* temporary index */
13141 @ The following code tells the print routines to gather
13142 the desired information.
13144 @d begin_pseudoprint {
13145 l=mp->tally; mp->tally=0; mp->selector=pseudo;
13146 mp->trick_count=1000000;
13148 @d set_trick_count {
13149 mp->first_count=mp->tally;
13150 mp->trick_count=mp->tally+1+mp->error_line-mp->half_error_line;
13151 if ( mp->trick_count<mp->error_line ) mp->trick_count=mp->error_line;
13154 @ And the following code uses the information after it has been gathered.
13156 @<Print two lines using the tricky pseudoprinted information@>=
13157 if ( mp->trick_count==1000000 ) set_trick_count;
13158 /* |set_trick_count| must be performed */
13159 if ( mp->tally<mp->trick_count ) m=mp->tally-mp->first_count;
13160 else m=mp->trick_count-mp->first_count; /* context on line 2 */
13161 if ( l+mp->first_count<=mp->half_error_line ) {
13162 p=0; n=l+mp->first_count;
13164 mp_print(mp, "..."); p=l+mp->first_count-mp->half_error_line+3;
13165 n=mp->half_error_line;
13167 for (q=p;q<=mp->first_count-1;q++) {
13168 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13171 for (q=1;q<=n;q++) {
13172 mp_print_char(mp, ' '); /* print |n| spaces to begin line~2 */
13174 if ( m+n<=mp->error_line ) p=mp->first_count+m;
13175 else p=mp->first_count+(mp->error_line-n-3);
13176 for (q=mp->first_count;q<=p-1;q++) {
13177 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13179 if ( m+n>mp->error_line ) mp_print(mp, "...")
13181 @ But the trick is distracting us from our current goal, which is to
13182 understand the input state. So let's concentrate on the data structures that
13183 are being pseudoprinted as we finish up the |show_context| procedure.
13185 @<Pseudoprint the line@>=
13188 for (i=start;i<=limit-1;i++) {
13189 if ( i==loc ) set_trick_count;
13190 mp_print_str(mp, mp->buffer[i]);
13194 @ @<Pseudoprint the token list@>=
13196 if ( token_type!=macro ) mp_show_token_list(mp, start,loc,100000,0);
13197 else mp_show_macro(mp, start,loc,100000)
13199 @ Here is the missing piece of |show_token_list| that is activated when the
13200 token beginning line~2 is about to be shown:
13202 @<Do magic computation@>=set_trick_count
13204 @* \[28] Maintaining the input stacks.
13205 The following subroutines change the input status in commonly needed ways.
13207 First comes |push_input|, which stores the current state and creates a
13208 new level (having, initially, the same properties as the old).
13210 @d push_input { /* enter a new input level, save the old */
13211 if ( mp->input_ptr>mp->max_in_stack ) {
13212 mp->max_in_stack=mp->input_ptr;
13213 if ( mp->input_ptr==mp->stack_size ) {
13214 int l = (mp->stack_size+(mp->stack_size>>2));
13215 XREALLOC(mp->input_stack, l, in_state_record);
13216 mp->stack_size = l;
13219 mp->input_stack[mp->input_ptr]=mp->cur_input; /* stack the record */
13220 incr(mp->input_ptr);
13223 @ And of course what goes up must come down.
13225 @d pop_input { /* leave an input level, re-enter the old */
13226 decr(mp->input_ptr); mp->cur_input=mp->input_stack[mp->input_ptr];
13229 @ Here is a procedure that starts a new level of token-list input, given
13230 a token list |p| and its type |t|. If |t=macro|, the calling routine should
13231 set |name|, reset~|loc|, and increase the macro's reference count.
13233 @d back_list(A) mp_begin_token_list(mp, (A),backed_up) /* backs up a simple token list */
13235 @c void mp_begin_token_list (MP mp,pointer p, quarterword t) {
13236 push_input; start=p; token_type=t;
13237 param_start=mp->param_ptr; loc=p;
13240 @ When a token list has been fully scanned, the following computations
13241 should be done as we leave that level of input.
13244 @c void mp_end_token_list (MP mp) { /* leave a token-list input level */
13245 pointer p; /* temporary register */
13246 if ( token_type>=backed_up ) { /* token list to be deleted */
13247 if ( token_type<=inserted ) {
13248 mp_flush_token_list(mp, start); goto DONE;
13250 mp_delete_mac_ref(mp, start); /* update reference count */
13253 while ( mp->param_ptr>param_start ) { /* parameters must be flushed */
13254 decr(mp->param_ptr);
13255 p=mp->param_stack[mp->param_ptr];
13257 if ( link(p)==mp_void ) { /* it's an \&{expr} parameter */
13258 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
13260 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
13265 pop_input; check_interrupt;
13268 @ The contents of |cur_cmd,cur_mod,cur_sym| are placed into an equivalent
13269 token by the |cur_tok| routine.
13272 @c @<Declare the procedure called |make_exp_copy|@>;
13273 pointer mp_cur_tok (MP mp) {
13274 pointer p; /* a new token node */
13275 small_number save_type; /* |cur_type| to be restored */
13276 integer save_exp; /* |cur_exp| to be restored */
13277 if ( mp->cur_sym==0 ) {
13278 if ( mp->cur_cmd==capsule_token ) {
13279 save_type=mp->cur_type; save_exp=mp->cur_exp;
13280 mp_make_exp_copy(mp, mp->cur_mod); p=mp_stash_cur_exp(mp); link(p)=null;
13281 mp->cur_type=save_type; mp->cur_exp=save_exp;
13283 p=mp_get_node(mp, token_node_size);
13284 value(p)=mp->cur_mod; name_type(p)=mp_token;
13285 if ( mp->cur_cmd==numeric_token ) type(p)=mp_known;
13286 else type(p)=mp_string_type;
13289 fast_get_avail(p); info(p)=mp->cur_sym;
13294 @ Sometimes \MP\ has read too far and wants to ``unscan'' what it has
13295 seen. The |back_input| procedure takes care of this by putting the token
13296 just scanned back into the input stream, ready to be read again.
13297 If |cur_sym<>0|, the values of |cur_cmd| and |cur_mod| are irrelevant.
13300 void mp_back_input (MP mp);
13302 @ @c void mp_back_input (MP mp) {/* undoes one token of input */
13303 pointer p; /* a token list of length one */
13305 while ( token_state &&(loc==null) )
13306 mp_end_token_list(mp); /* conserve stack space */
13310 @ The |back_error| routine is used when we want to restore or replace an
13311 offending token just before issuing an error message. We disable interrupts
13312 during the call of |back_input| so that the help message won't be lost.
13315 void mp_error (MP mp);
13316 void mp_back_error (MP mp);
13318 @ @c void mp_back_error (MP mp) { /* back up one token and call |error| */
13319 mp->OK_to_interrupt=false;
13321 mp->OK_to_interrupt=true; mp_error(mp);
13323 void mp_ins_error (MP mp) { /* back up one inserted token and call |error| */
13324 mp->OK_to_interrupt=false;
13325 mp_back_input(mp); token_type=inserted;
13326 mp->OK_to_interrupt=true; mp_error(mp);
13329 @ The |begin_file_reading| procedure starts a new level of input for lines
13330 of characters to be read from a file, or as an insertion from the
13331 terminal. It does not take care of opening the file, nor does it set |loc|
13332 or |limit| or |line|.
13333 @^system dependencies@>
13335 @c void mp_begin_file_reading (MP mp) {
13336 if ( mp->in_open==mp->max_in_open )
13337 mp_overflow(mp, "text input levels",mp->max_in_open);
13338 @:MetaPost capacity exceeded text input levels}{\quad text input levels@>
13339 if ( mp->first==mp->buf_size )
13340 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13341 incr(mp->in_open); push_input; index=mp->in_open;
13342 mp->mpx_name[index]=absent;
13344 name=is_term; /* |terminal_input| is now |true| */
13347 @ Conversely, the variables must be downdated when such a level of input
13348 is finished. Any associated \.{MPX} file must also be closed and popped
13349 off the file stack.
13351 @c void mp_end_file_reading (MP mp) {
13352 if ( mp->in_open>index ) {
13353 if ( (mp->mpx_name[mp->in_open]==absent)||(name<=max_spec_src) ) {
13354 mp_confusion(mp, "endinput");
13355 @:this can't happen endinput}{\quad endinput@>
13357 (mp->close_file)(mp->input_file[mp->in_open]); /* close an \.{MPX} file */
13358 delete_str_ref(mp->mpx_name[mp->in_open]);
13363 if ( index!=mp->in_open ) mp_confusion(mp, "endinput");
13364 if ( name>max_spec_src ) {
13365 (mp->close_file)(cur_file);
13366 delete_str_ref(name);
13370 pop_input; decr(mp->in_open);
13373 @ Here is a function that tries to resume input from an \.{MPX} file already
13374 associated with the current input file. It returns |false| if this doesn't
13377 @c boolean mp_begin_mpx_reading (MP mp) {
13378 if ( mp->in_open!=index+1 ) {
13381 if ( mp->mpx_name[mp->in_open]<=absent ) mp_confusion(mp, "mpx");
13382 @:this can't happen mpx}{\quad mpx@>
13383 if ( mp->first==mp->buf_size )
13384 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13385 push_input; index=mp->in_open;
13387 name=mp->mpx_name[mp->in_open]; add_str_ref(name);
13388 @<Put an empty line in the input buffer@>;
13393 @ This procedure temporarily stops reading an \.{MPX} file.
13395 @c void mp_end_mpx_reading (MP mp) {
13396 if ( mp->in_open!=index ) mp_confusion(mp, "mpx");
13397 @:this can't happen mpx}{\quad mpx@>
13399 @<Complain that we are not at the end of a line in the \.{MPX} file@>;
13405 @ Here we enforce a restriction that simplifies the input stacks considerably.
13406 This should not inconvenience the user because \.{MPX} files are generated
13407 by an auxiliary program called \.{DVItoMP}.
13409 @ @<Complain that we are not at the end of a line in the \.{MPX} file@>=
13411 print_err("`mpxbreak' must be at the end of a line");
13412 help4("This file contains picture expressions for btex...etex")
13413 ("blocks. Such files are normally generated automatically")
13414 ("but this one seems to be messed up. I'm going to ignore")
13415 ("the rest of this line.");
13419 @ In order to keep the stack from overflowing during a long sequence of
13420 inserted `\.{show}' commands, the following routine removes completed
13421 error-inserted lines from memory.
13423 @c void mp_clear_for_error_prompt (MP mp) {
13424 while ( file_state && terminal_input &&
13425 (mp->input_ptr>0)&&(loc==limit) ) mp_end_file_reading(mp);
13426 mp_print_ln(mp); clear_terminal;
13429 @ To get \MP's whole input mechanism going, we perform the following
13432 @<Initialize the input routines@>=
13433 { mp->input_ptr=0; mp->max_in_stack=0;
13434 mp->in_open=0; mp->open_parens=0; mp->max_buf_stack=0;
13435 mp->param_ptr=0; mp->max_param_stack=0;
13437 start=1; index=0; line=0; name=is_term;
13438 mp->mpx_name[0]=absent;
13439 mp->force_eof=false;
13440 if ( ! mp_init_terminal(mp) ) mp_jump_out(mp);
13441 limit=mp->last; mp->first=mp->last+1;
13442 /* |init_terminal| has set |loc| and |last| */
13445 @* \[29] Getting the next token.
13446 The heart of \MP's input mechanism is the |get_next| procedure, which
13447 we shall develop in the next few sections of the program. Perhaps we
13448 shouldn't actually call it the ``heart,'' however; it really acts as \MP's
13449 eyes and mouth, reading the source files and gobbling them up. And it also
13450 helps \MP\ to regurgitate stored token lists that are to be processed again.
13452 The main duty of |get_next| is to input one token and to set |cur_cmd|
13453 and |cur_mod| to that token's command code and modifier. Furthermore, if
13454 the input token is a symbolic token, that token's |hash| address
13455 is stored in |cur_sym|; otherwise |cur_sym| is set to zero.
13457 Underlying this simple description is a certain amount of complexity
13458 because of all the cases that need to be handled.
13459 However, the inner loop of |get_next| is reasonably short and fast.
13461 @ Before getting into |get_next|, we need to consider a mechanism by which
13462 \MP\ helps keep errors from propagating too far. Whenever the program goes
13463 into a mode where it keeps calling |get_next| repeatedly until a certain
13464 condition is met, it sets |scanner_status| to some value other than |normal|.
13465 Then if an input file ends, or if an `\&{outer}' symbol appears,
13466 an appropriate error recovery will be possible.
13468 The global variable |warning_info| helps in this error recovery by providing
13469 additional information. For example, |warning_info| might indicate the
13470 name of a macro whose replacement text is being scanned.
13472 @d normal 0 /* |scanner_status| at ``quiet times'' */
13473 @d skipping 1 /* |scanner_status| when false conditional text is being skipped */
13474 @d flushing 2 /* |scanner_status| when junk after a statement is being ignored */
13475 @d absorbing 3 /* |scanner_status| when a \&{text} parameter is being scanned */
13476 @d var_defining 4 /* |scanner_status| when a \&{vardef} is being scanned */
13477 @d op_defining 5 /* |scanner_status| when a macro \&{def} is being scanned */
13478 @d loop_defining 6 /* |scanner_status| when a \&{for} loop is being scanned */
13479 @d tex_flushing 7 /* |scanner_status| when skipping \TeX\ material */
13482 integer scanner_status; /* are we scanning at high speed? */
13483 integer warning_info; /* if so, what else do we need to know,
13484 in case an error occurs? */
13486 @ @<Initialize the input routines@>=
13487 mp->scanner_status=normal;
13489 @ The following subroutine
13490 is called when an `\&{outer}' symbolic token has been scanned or
13491 when the end of a file has been reached. These two cases are distinguished
13492 by |cur_sym|, which is zero at the end of a file.
13494 @c boolean mp_check_outer_validity (MP mp) {
13495 pointer p; /* points to inserted token list */
13496 if ( mp->scanner_status==normal ) {
13498 } else if ( mp->scanner_status==tex_flushing ) {
13499 @<Check if the file has ended while flushing \TeX\ material and set the
13500 result value for |check_outer_validity|@>;
13502 mp->deletions_allowed=false;
13503 @<Back up an outer symbolic token so that it can be reread@>;
13504 if ( mp->scanner_status>skipping ) {
13505 @<Tell the user what has run away and try to recover@>;
13507 print_err("Incomplete if; all text was ignored after line ");
13508 @.Incomplete if...@>
13509 mp_print_int(mp, mp->warning_info);
13510 help3("A forbidden `outer' token occurred in skipped text.")
13511 ("This kind of error happens when you say `if...' and forget")
13512 ("the matching `fi'. I've inserted a `fi'; this might work.");
13513 if ( mp->cur_sym==0 )
13514 mp->help_line[2]="The file ended while I was skipping conditional text.";
13515 mp->cur_sym=frozen_fi; mp_ins_error(mp);
13517 mp->deletions_allowed=true;
13522 @ @<Check if the file has ended while flushing \TeX\ material and set...@>=
13523 if ( mp->cur_sym!=0 ) {
13526 mp->deletions_allowed=false;
13527 print_err("TeX mode didn't end; all text was ignored after line ");
13528 mp_print_int(mp, mp->warning_info);
13529 help2("The file ended while I was looking for the `etex' to")
13530 ("finish this TeX material. I've inserted `etex' now.");
13531 mp->cur_sym = frozen_etex;
13533 mp->deletions_allowed=true;
13537 @ @<Back up an outer symbolic token so that it can be reread@>=
13538 if ( mp->cur_sym!=0 ) {
13539 p=mp_get_avail(mp); info(p)=mp->cur_sym;
13540 back_list(p); /* prepare to read the symbolic token again */
13543 @ @<Tell the user what has run away...@>=
13545 mp_runaway(mp); /* print the definition-so-far */
13546 if ( mp->cur_sym==0 ) {
13547 print_err("File ended");
13548 @.File ended while scanning...@>
13550 print_err("Forbidden token found");
13551 @.Forbidden token found...@>
13553 mp_print(mp, " while scanning ");
13554 help4("I suspect you have forgotten an `enddef',")
13555 ("causing me to read past where you wanted me to stop.")
13556 ("I'll try to recover; but if the error is serious,")
13557 ("you'd better type `E' or `X' now and fix your file.");
13558 switch (mp->scanner_status) {
13559 @<Complete the error message,
13560 and set |cur_sym| to a token that might help recover from the error@>
13561 } /* there are no other cases */
13565 @ As we consider various kinds of errors, it is also appropriate to
13566 change the first line of the help message just given; |help_line[3]|
13567 points to the string that might be changed.
13569 @<Complete the error message,...@>=
13571 mp_print(mp, "to the end of the statement");
13572 mp->help_line[3]="A previous error seems to have propagated,";
13573 mp->cur_sym=frozen_semicolon;
13576 mp_print(mp, "a text argument");
13577 mp->help_line[3]="It seems that a right delimiter was left out,";
13578 if ( mp->warning_info==0 ) {
13579 mp->cur_sym=frozen_end_group;
13581 mp->cur_sym=frozen_right_delimiter;
13582 equiv(frozen_right_delimiter)=mp->warning_info;
13587 mp_print(mp, "the definition of ");
13588 if ( mp->scanner_status==op_defining )
13589 mp_print_text(mp->warning_info);
13591 mp_print_variable_name(mp, mp->warning_info);
13592 mp->cur_sym=frozen_end_def;
13594 case loop_defining:
13595 mp_print(mp, "the text of a ");
13596 mp_print_text(mp->warning_info);
13597 mp_print(mp, " loop");
13598 mp->help_line[3]="I suspect you have forgotten an `endfor',";
13599 mp->cur_sym=frozen_end_for;
13602 @ The |runaway| procedure displays the first part of the text that occurred
13603 when \MP\ began its special |scanner_status|, if that text has been saved.
13605 @<Declare the procedure called |runaway|@>=
13606 void mp_runaway (MP mp) {
13607 if ( mp->scanner_status>flushing ) {
13608 mp_print_nl(mp, "Runaway ");
13609 switch (mp->scanner_status) {
13610 case absorbing: mp_print(mp, "text?"); break;
13612 case op_defining: mp_print(mp,"definition?"); break;
13613 case loop_defining: mp_print(mp, "loop?"); break;
13614 } /* there are no other cases */
13616 mp_show_token_list(mp, link(hold_head),null,mp->error_line-10,0);
13620 @ We need to mention a procedure that may be called by |get_next|.
13623 void mp_firm_up_the_line (MP mp);
13625 @ And now we're ready to take the plunge into |get_next| itself.
13626 Note that the behavior depends on the |scanner_status| because percent signs
13627 and double quotes need to be passed over when skipping TeX material.
13630 void mp_get_next (MP mp) {
13631 /* sets |cur_cmd|, |cur_mod|, |cur_sym| to next token */
13633 /*restart*/ /* go here to get the next input token */
13634 /*exit*/ /* go here when the next input token has been got */
13635 /*|common_ending|*/ /* go here to finish getting a symbolic token */
13636 /*found*/ /* go here when the end of a symbolic token has been found */
13637 /*switch*/ /* go here to branch on the class of an input character */
13638 /*|start_numeric_token|,|start_decimal_token|,|fin_numeric_token|,|done|*/
13639 /* go here at crucial stages when scanning a number */
13640 int k; /* an index into |buffer| */
13641 ASCII_code c; /* the current character in the buffer */
13642 ASCII_code class; /* its class number */
13643 integer n,f; /* registers for decimal-to-binary conversion */
13646 if ( file_state ) {
13647 @<Input from external file; |goto restart| if no input found,
13648 or |return| if a non-symbolic token is found@>;
13650 @<Input from token list; |goto restart| if end of list or
13651 if a parameter needs to be expanded,
13652 or |return| if a non-symbolic token is found@>;
13655 @<Finish getting the symbolic token in |cur_sym|;
13656 |goto restart| if it is illegal@>;
13659 @ When a symbolic token is declared to be `\&{outer}', its command code
13660 is increased by |outer_tag|.
13663 @<Finish getting the symbolic token in |cur_sym|...@>=
13664 mp->cur_cmd=eq_type(mp->cur_sym); mp->cur_mod=equiv(mp->cur_sym);
13665 if ( mp->cur_cmd>=outer_tag ) {
13666 if ( mp_check_outer_validity(mp) )
13667 mp->cur_cmd=mp->cur_cmd-outer_tag;
13672 @ A percent sign appears in |buffer[limit]|; this makes it unnecessary
13673 to have a special test for end-of-line.
13676 @<Input from external file;...@>=
13679 c=mp->buffer[loc]; incr(loc); class=mp->char_class[c];
13681 case digit_class: goto START_NUMERIC_TOKEN; break;
13683 class=mp->char_class[mp->buffer[loc]];
13684 if ( class>period_class ) {
13686 } else if ( class<period_class ) { /* |class=digit_class| */
13687 n=0; goto START_DECIMAL_TOKEN;
13691 case space_class: goto SWITCH; break;
13692 case percent_class:
13693 if ( mp->scanner_status==tex_flushing ) {
13694 if ( loc<limit ) goto SWITCH;
13696 @<Move to next line of file, or |goto restart| if there is no next line@>;
13701 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13702 else @<Get a string token and |return|@>;
13704 case isolated_classes:
13705 k=loc-1; goto FOUND; break;
13706 case invalid_class:
13707 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13708 else @<Decry the invalid character and |goto restart|@>;
13710 default: break; /* letters, etc. */
13713 while ( mp->char_class[mp->buffer[loc]]==class ) incr(loc);
13715 START_NUMERIC_TOKEN:
13716 @<Get the integer part |n| of a numeric token;
13717 set |f:=0| and |goto fin_numeric_token| if there is no decimal point@>;
13718 START_DECIMAL_TOKEN:
13719 @<Get the fraction part |f| of a numeric token@>;
13721 @<Pack the numeric and fraction parts of a numeric token
13724 mp->cur_sym=mp_id_lookup(mp, k,loc-k);
13727 @ We go to |restart| instead of to |SWITCH|, because |state| might equal
13728 |token_list| after the error has been dealt with
13729 (cf.\ |clear_for_error_prompt|).
13731 @<Decry the invalid...@>=
13733 print_err("Text line contains an invalid character");
13734 @.Text line contains...@>
13735 help2("A funny symbol that I can\'t read has just been input.")
13736 ("Continue, and I'll forget that it ever happened.");
13737 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13741 @ @<Get a string token and |return|@>=
13743 if ( mp->buffer[loc]=='"' ) {
13744 mp->cur_mod=rts("");
13746 k=loc; mp->buffer[limit+1]='"';
13749 } while (mp->buffer[loc]!='"');
13751 @<Decry the missing string delimiter and |goto restart|@>;
13754 mp->cur_mod=mp->buffer[k];
13758 append_char(mp->buffer[k]); incr(k);
13760 mp->cur_mod=mp_make_string(mp);
13763 incr(loc); mp->cur_cmd=string_token;
13767 @ We go to |restart| after this error message, not to |SWITCH|,
13768 because the |clear_for_error_prompt| routine might have reinstated
13769 |token_state| after |error| has finished.
13771 @<Decry the missing string delimiter and |goto restart|@>=
13773 loc=limit; /* the next character to be read on this line will be |"%"| */
13774 print_err("Incomplete string token has been flushed");
13775 @.Incomplete string token...@>
13776 help3("Strings should finish on the same line as they began.")
13777 ("I've deleted the partial string; you might want to")
13778 ("insert another by typing, e.g., `I\"new string\"'.");
13779 mp->deletions_allowed=false; mp_error(mp);
13780 mp->deletions_allowed=true;
13784 @ @<Get the integer part |n| of a numeric token...@>=
13786 while ( mp->char_class[mp->buffer[loc]]==digit_class ) {
13787 if ( n<32768 ) n=10*n+mp->buffer[loc]-'0';
13790 if ( mp->buffer[loc]=='.' )
13791 if ( mp->char_class[mp->buffer[loc+1]]==digit_class )
13794 goto FIN_NUMERIC_TOKEN;
13797 @ @<Get the fraction part |f| of a numeric token@>=
13800 if ( k<17 ) { /* digits for |k>=17| cannot affect the result */
13801 mp->dig[k]=mp->buffer[loc]-'0'; incr(k);
13804 } while (mp->char_class[mp->buffer[loc]]==digit_class);
13805 f=mp_round_decimals(mp, k);
13810 @ @<Pack the numeric and fraction parts of a numeric token and |return|@>=
13812 @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>;
13813 } else if ( mp->scanner_status!=tex_flushing ) {
13814 print_err("Enormous number has been reduced");
13815 @.Enormous number...@>
13816 help2("I can\'t handle numbers bigger than 32767.99998;")
13817 ("so I've changed your constant to that maximum amount.");
13818 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13819 mp->cur_mod=el_gordo;
13821 mp->cur_cmd=numeric_token; return
13823 @ @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>=
13825 mp->cur_mod=n*unity+f;
13826 if ( mp->cur_mod>=fraction_one ) {
13827 if ( (mp->internal[mp_warning_check]>0) &&
13828 (mp->scanner_status!=tex_flushing) ) {
13829 print_err("Number is too large (");
13830 mp_print_scaled(mp, mp->cur_mod);
13831 mp_print_char(mp, ')');
13832 help3("It is at least 4096. Continue and I'll try to cope")
13833 ("with that big value; but it might be dangerous.")
13834 ("(Set warningcheck:=0 to suppress this message.)");
13840 @ Let's consider now what happens when |get_next| is looking at a token list.
13843 @<Input from token list;...@>=
13844 if ( loc>=mp->hi_mem_min ) { /* one-word token */
13845 mp->cur_sym=info(loc); loc=link(loc); /* move to next */
13846 if ( mp->cur_sym>=expr_base ) {
13847 if ( mp->cur_sym>=suffix_base ) {
13848 @<Insert a suffix or text parameter and |goto restart|@>;
13850 mp->cur_cmd=capsule_token;
13851 mp->cur_mod=mp->param_stack[param_start+mp->cur_sym-(expr_base)];
13852 mp->cur_sym=0; return;
13855 } else if ( loc>null ) {
13856 @<Get a stored numeric or string or capsule token and |return|@>
13857 } else { /* we are done with this token list */
13858 mp_end_token_list(mp); goto RESTART; /* resume previous level */
13861 @ @<Insert a suffix or text parameter...@>=
13863 if ( mp->cur_sym>=text_base ) mp->cur_sym=mp->cur_sym-mp->param_size;
13864 /* |param_size=text_base-suffix_base| */
13865 mp_begin_token_list(mp,
13866 mp->param_stack[param_start+mp->cur_sym-(suffix_base)],
13871 @ @<Get a stored numeric or string or capsule token...@>=
13873 if ( name_type(loc)==mp_token ) {
13874 mp->cur_mod=value(loc);
13875 if ( type(loc)==mp_known ) {
13876 mp->cur_cmd=numeric_token;
13878 mp->cur_cmd=string_token; add_str_ref(mp->cur_mod);
13881 mp->cur_mod=loc; mp->cur_cmd=capsule_token;
13883 loc=link(loc); return;
13886 @ All of the easy branches of |get_next| have now been taken care of.
13887 There is one more branch.
13889 @<Move to next line of file, or |goto restart|...@>=
13890 if ( name>max_spec_src ) {
13891 @<Read next line of file into |buffer|, or
13892 |goto restart| if the file has ended@>;
13894 if ( mp->input_ptr>0 ) {
13895 /* text was inserted during error recovery or by \&{scantokens} */
13896 mp_end_file_reading(mp); goto RESTART; /* resume previous level */
13898 if ( mp->selector<log_only || mp->selector>=write_file) mp_open_log_file(mp);
13899 if ( mp->interaction>mp_nonstop_mode ) {
13900 if ( limit==start ) /* previous line was empty */
13901 mp_print_nl(mp, "(Please type a command or say `end')");
13903 mp_print_ln(mp); mp->first=start;
13904 prompt_input("*"); /* input on-line into |buffer| */
13906 limit=mp->last; mp->buffer[limit]='%';
13907 mp->first=limit+1; loc=start;
13909 mp_fatal_error(mp, "*** (job aborted, no legal end found)");
13911 /* nonstop mode, which is intended for overnight batch processing,
13912 never waits for on-line input */
13916 @ The global variable |force_eof| is normally |false|; it is set |true|
13917 by an \&{endinput} command.
13920 boolean force_eof; /* should the next \&{input} be aborted early? */
13922 @ We must decrement |loc| in order to leave the buffer in a valid state
13923 when an error condition causes us to |goto restart| without calling
13924 |end_file_reading|.
13926 @<Read next line of file into |buffer|, or
13927 |goto restart| if the file has ended@>=
13929 incr(line); mp->first=start;
13930 if ( ! mp->force_eof ) {
13931 if ( mp_input_ln(mp, cur_file ) ) /* not end of file */
13932 mp_firm_up_the_line(mp); /* this sets |limit| */
13934 mp->force_eof=true;
13936 if ( mp->force_eof ) {
13937 mp->force_eof=false;
13939 if ( mpx_reading ) {
13940 @<Complain that the \.{MPX} file ended unexpectly; then set
13941 |cur_sym:=frozen_mpx_break| and |goto comon_ending|@>;
13943 mp_print_char(mp, ')'); decr(mp->open_parens);
13944 update_terminal; /* show user that file has been read */
13945 mp_end_file_reading(mp); /* resume previous level */
13946 if ( mp_check_outer_validity(mp) ) goto RESTART;
13950 mp->buffer[limit]='%'; mp->first=limit+1; loc=start; /* ready to read */
13953 @ We should never actually come to the end of an \.{MPX} file because such
13954 files should have an \&{mpxbreak} after the translation of the last
13955 \&{btex}$\,\ldots\,$\&{etex} block.
13957 @<Complain that the \.{MPX} file ended unexpectly; then set...@>=
13959 mp->mpx_name[index]=finished;
13960 print_err("mpx file ended unexpectedly");
13961 help4("The file had too few picture expressions for btex...etex")
13962 ("blocks. Such files are normally generated automatically")
13963 ("but this one got messed up. You might want to insert a")
13964 ("picture expression now.");
13965 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13966 mp->cur_sym=frozen_mpx_break; goto COMMON_ENDING;
13969 @ Sometimes we want to make it look as though we have just read a blank line
13970 without really doing so.
13972 @<Put an empty line in the input buffer@>=
13973 mp->last=mp->first; limit=mp->last; /* simulate |input_ln| and |firm_up_the_line| */
13974 mp->buffer[limit]='%'; mp->first=limit+1; loc=start
13976 @ If the user has set the |mp_pausing| parameter to some positive value,
13977 and if nonstop mode has not been selected, each line of input is displayed
13978 on the terminal and the transcript file, followed by `\.{=>}'.
13979 \MP\ waits for a response. If the response is null (i.e., if nothing is
13980 typed except perhaps a few blank spaces), the original
13981 line is accepted as it stands; otherwise the line typed is
13982 used instead of the line in the file.
13984 @c void mp_firm_up_the_line (MP mp) {
13985 size_t k; /* an index into |buffer| */
13987 if ( mp->internal[mp_pausing]>0) if ( mp->interaction>mp_nonstop_mode ) {
13988 wake_up_terminal; mp_print_ln(mp);
13989 if ( start<limit ) {
13990 for (k=(size_t)start;k<=(size_t)(limit-1);k++) {
13991 mp_print_str(mp, mp->buffer[k]);
13994 mp->first=limit; prompt_input("=>"); /* wait for user response */
13996 if ( mp->last>mp->first ) {
13997 for (k=mp->first;k<=mp->last-1;k++) { /* move line down in buffer */
13998 mp->buffer[k+start-mp->first]=mp->buffer[k];
14000 limit=start+mp->last-mp->first;
14005 @* \[30] Dealing with \TeX\ material.
14006 The \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}$\,\ldots\,$\&{etex}
14007 features need to be implemented at a low level in the scanning process
14008 so that \MP\ can stay in synch with the a preprocessor that treats
14009 blocks of \TeX\ material as they occur in the input file without trying
14010 to expand \MP\ macros. Thus we need a special version of |get_next|
14011 that does not expand macros and such but does handle \&{btex},
14012 \&{verbatimtex}, etc.
14014 The special version of |get_next| is called |get_t_next|. It works by flushing
14015 \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}\allowbreak
14016 $\,\ldots\,$\&{etex} blocks, switching to the \.{MPX} file when it sees
14017 \&{btex}, and switching back when it sees \&{mpxbreak}.
14023 mp_primitive(mp, "btex",start_tex,btex_code);
14024 @:btex_}{\&{btex} primitive@>
14025 mp_primitive(mp, "verbatimtex",start_tex,verbatim_code);
14026 @:verbatimtex_}{\&{verbatimtex} primitive@>
14027 mp_primitive(mp, "etex",etex_marker,0); mp->eqtb[frozen_etex]=mp->eqtb[mp->cur_sym];
14028 @:etex_}{\&{etex} primitive@>
14029 mp_primitive(mp, "mpxbreak",mpx_break,0); mp->eqtb[frozen_mpx_break]=mp->eqtb[mp->cur_sym];
14030 @:mpx_break_}{\&{mpxbreak} primitive@>
14032 @ @<Cases of |print_cmd...@>=
14033 case start_tex: if ( m==btex_code ) mp_print(mp, "btex");
14034 else mp_print(mp, "verbatimtex"); break;
14035 case etex_marker: mp_print(mp, "etex"); break;
14036 case mpx_break: mp_print(mp, "mpxbreak"); break;
14038 @ Actually, |get_t_next| is a macro that avoids procedure overhead except
14039 in the unusual case where \&{btex}, \&{verbatimtex}, \&{etex}, or \&{mpxbreak}
14042 @d get_t_next {mp_get_next(mp); if ( mp->cur_cmd<=max_pre_command ) mp_t_next(mp); }
14045 void mp_start_mpx_input (MP mp);
14048 void mp_t_next (MP mp) {
14049 int old_status; /* saves the |scanner_status| */
14050 integer old_info; /* saves the |warning_info| */
14051 while ( mp->cur_cmd<=max_pre_command ) {
14052 if ( mp->cur_cmd==mpx_break ) {
14053 if ( ! file_state || (mp->mpx_name[index]==absent) ) {
14054 @<Complain about a misplaced \&{mpxbreak}@>;
14056 mp_end_mpx_reading(mp);
14059 } else if ( mp->cur_cmd==start_tex ) {
14060 if ( token_state || (name<=max_spec_src) ) {
14061 @<Complain that we are not reading a file@>;
14062 } else if ( mpx_reading ) {
14063 @<Complain that \.{MPX} files cannot contain \TeX\ material@>;
14064 } else if ( (mp->cur_mod!=verbatim_code)&&
14065 (mp->mpx_name[index]!=finished) ) {
14066 if ( ! mp_begin_mpx_reading(mp) ) mp_start_mpx_input(mp);
14071 @<Complain about a misplaced \&{etex}@>;
14073 goto COMMON_ENDING;
14075 @<Flush the \TeX\ material@>;
14081 @ We could be in the middle of an operation such as skipping false conditional
14082 text when \TeX\ material is encountered, so we must be careful to save the
14085 @<Flush the \TeX\ material@>=
14086 old_status=mp->scanner_status;
14087 old_info=mp->warning_info;
14088 mp->scanner_status=tex_flushing;
14089 mp->warning_info=line;
14090 do { mp_get_next(mp); } while (mp->cur_cmd!=etex_marker);
14091 mp->scanner_status=old_status;
14092 mp->warning_info=old_info
14094 @ @<Complain that \.{MPX} files cannot contain \TeX\ material@>=
14095 { print_err("An mpx file cannot contain btex or verbatimtex blocks");
14096 help4("This file contains picture expressions for btex...etex")
14097 ("blocks. Such files are normally generated automatically")
14098 ("but this one seems to be messed up. I'll just keep going")
14099 ("and hope for the best.");
14103 @ @<Complain that we are not reading a file@>=
14104 { print_err("You can only use `btex' or `verbatimtex' in a file");
14105 help3("I'll have to ignore this preprocessor command because it")
14106 ("only works when there is a file to preprocess. You might")
14107 ("want to delete everything up to the next `etex`.");
14111 @ @<Complain about a misplaced \&{mpxbreak}@>=
14112 { print_err("Misplaced mpxbreak");
14113 help2("I'll ignore this preprocessor command because it")
14114 ("doesn't belong here");
14118 @ @<Complain about a misplaced \&{etex}@>=
14119 { print_err("Extra etex will be ignored");
14120 help1("There is no btex or verbatimtex for this to match");
14124 @* \[31] Scanning macro definitions.
14125 \MP\ has a variety of ways to tuck tokens away into token lists for later
14126 use: Macros can be defined with \&{def}, \&{vardef}, \&{primarydef}, etc.;
14127 repeatable code can be defined with \&{for}, \&{forever}, \&{forsuffixes}.
14128 All such operations are handled by the routines in this part of the program.
14130 The modifier part of each command code is zero for the ``ending delimiters''
14131 like \&{enddef} and \&{endfor}.
14133 @d start_def 1 /* command modifier for \&{def} */
14134 @d var_def 2 /* command modifier for \&{vardef} */
14135 @d end_def 0 /* command modifier for \&{enddef} */
14136 @d start_forever 1 /* command modifier for \&{forever} */
14137 @d end_for 0 /* command modifier for \&{endfor} */
14140 mp_primitive(mp, "def",macro_def,start_def);
14141 @:def_}{\&{def} primitive@>
14142 mp_primitive(mp, "vardef",macro_def,var_def);
14143 @:var_def_}{\&{vardef} primitive@>
14144 mp_primitive(mp, "primarydef",macro_def,secondary_primary_macro);
14145 @:primary_def_}{\&{primarydef} primitive@>
14146 mp_primitive(mp, "secondarydef",macro_def,tertiary_secondary_macro);
14147 @:secondary_def_}{\&{secondarydef} primitive@>
14148 mp_primitive(mp, "tertiarydef",macro_def,expression_tertiary_macro);
14149 @:tertiary_def_}{\&{tertiarydef} primitive@>
14150 mp_primitive(mp, "enddef",macro_def,end_def); mp->eqtb[frozen_end_def]=mp->eqtb[mp->cur_sym];
14151 @:end_def_}{\&{enddef} primitive@>
14153 mp_primitive(mp, "for",iteration,expr_base);
14154 @:for_}{\&{for} primitive@>
14155 mp_primitive(mp, "forsuffixes",iteration,suffix_base);
14156 @:for_suffixes_}{\&{forsuffixes} primitive@>
14157 mp_primitive(mp, "forever",iteration,start_forever);
14158 @:forever_}{\&{forever} primitive@>
14159 mp_primitive(mp, "endfor",iteration,end_for); mp->eqtb[frozen_end_for]=mp->eqtb[mp->cur_sym];
14160 @:end_for_}{\&{endfor} primitive@>
14162 @ @<Cases of |print_cmd...@>=
14164 if ( m<=var_def ) {
14165 if ( m==start_def ) mp_print(mp, "def");
14166 else if ( m<start_def ) mp_print(mp, "enddef");
14167 else mp_print(mp, "vardef");
14168 } else if ( m==secondary_primary_macro ) {
14169 mp_print(mp, "primarydef");
14170 } else if ( m==tertiary_secondary_macro ) {
14171 mp_print(mp, "secondarydef");
14173 mp_print(mp, "tertiarydef");
14177 if ( m<=start_forever ) {
14178 if ( m==start_forever ) mp_print(mp, "forever");
14179 else mp_print(mp, "endfor");
14180 } else if ( m==expr_base ) {
14181 mp_print(mp, "for");
14183 mp_print(mp, "forsuffixes");
14187 @ Different macro-absorbing operations have different syntaxes, but they
14188 also have a lot in common. There is a list of special symbols that are to
14189 be replaced by parameter tokens; there is a special command code that
14190 ends the definition; the quotation conventions are identical. Therefore
14191 it makes sense to have most of the work done by a single subroutine. That
14192 subroutine is called |scan_toks|.
14194 The first parameter to |scan_toks| is the command code that will
14195 terminate scanning (either |macro_def|, |loop_repeat|, or |iteration|).
14197 The second parameter, |subst_list|, points to a (possibly empty) list
14198 of two-word nodes whose |info| and |value| fields specify symbol tokens
14199 before and after replacement. The list will be returned to free storage
14202 The third parameter is simply appended to the token list that is built.
14203 And the final parameter tells how many of the special operations
14204 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#} are to be replaced by suffix parameters.
14205 When such parameters are present, they are called \.{(SUFFIX0)},
14206 \.{(SUFFIX1)}, and \.{(SUFFIX2)}.
14208 @c pointer mp_scan_toks (MP mp,command_code terminator, pointer
14209 subst_list, pointer tail_end, small_number suffix_count) {
14210 pointer p; /* tail of the token list being built */
14211 pointer q; /* temporary for link management */
14212 integer balance; /* left delimiters minus right delimiters */
14213 p=hold_head; balance=1; link(hold_head)=null;
14216 if ( mp->cur_sym>0 ) {
14217 @<Substitute for |cur_sym|, if it's on the |subst_list|@>;
14218 if ( mp->cur_cmd==terminator ) {
14219 @<Adjust the balance; |break| if it's zero@>;
14220 } else if ( mp->cur_cmd==macro_special ) {
14221 @<Handle quoted symbols, \.{\#\AT!}, \.{\AT!}, or \.{\AT!\#}@>;
14224 link(p)=mp_cur_tok(mp); p=link(p);
14226 link(p)=tail_end; mp_flush_node_list(mp, subst_list);
14227 return link(hold_head);
14230 @ @<Substitute for |cur_sym|...@>=
14233 while ( q!=null ) {
14234 if ( info(q)==mp->cur_sym ) {
14235 mp->cur_sym=value(q); mp->cur_cmd=relax; break;
14241 @ @<Adjust the balance; |break| if it's zero@>=
14242 if ( mp->cur_mod>0 ) {
14250 @ Four commands are intended to be used only within macro texts: \&{quote},
14251 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#}. They are variants of a single command
14252 code called |macro_special|.
14254 @d quote 0 /* |macro_special| modifier for \&{quote} */
14255 @d macro_prefix 1 /* |macro_special| modifier for \.{\#\AT!} */
14256 @d macro_at 2 /* |macro_special| modifier for \.{\AT!} */
14257 @d macro_suffix 3 /* |macro_special| modifier for \.{\AT!\#} */
14260 mp_primitive(mp, "quote",macro_special,quote);
14261 @:quote_}{\&{quote} primitive@>
14262 mp_primitive(mp, "#@@",macro_special,macro_prefix);
14263 @:]]]\#\AT!_}{\.{\#\AT!} primitive@>
14264 mp_primitive(mp, "@@",macro_special,macro_at);
14265 @:]]]\AT!_}{\.{\AT!} primitive@>
14266 mp_primitive(mp, "@@#",macro_special,macro_suffix);
14267 @:]]]\AT!\#_}{\.{\AT!\#} primitive@>
14269 @ @<Cases of |print_cmd...@>=
14270 case macro_special:
14272 case macro_prefix: mp_print(mp, "#@@"); break;
14273 case macro_at: mp_print_char(mp, '@@'); break;
14274 case macro_suffix: mp_print(mp, "@@#"); break;
14275 default: mp_print(mp, "quote"); break;
14279 @ @<Handle quoted...@>=
14281 if ( mp->cur_mod==quote ) { get_t_next; }
14282 else if ( mp->cur_mod<=suffix_count )
14283 mp->cur_sym=suffix_base-1+mp->cur_mod;
14286 @ Here is a routine that's used whenever a token will be redefined. If
14287 the user's token is unredefinable, the `|frozen_inaccessible|' token is
14288 substituted; the latter is redefinable but essentially impossible to use,
14289 hence \MP's tables won't get fouled up.
14291 @c void mp_get_symbol (MP mp) { /* sets |cur_sym| to a safe symbol */
14294 if ( (mp->cur_sym==0)||(mp->cur_sym>frozen_inaccessible) ) {
14295 print_err("Missing symbolic token inserted");
14296 @.Missing symbolic token...@>
14297 help3("Sorry: You can\'t redefine a number, string, or expr.")
14298 ("I've inserted an inaccessible symbol so that your")
14299 ("definition will be completed without mixing me up too badly.");
14300 if ( mp->cur_sym>0 )
14301 mp->help_line[2]="Sorry: You can\'t redefine my error-recovery tokens.";
14302 else if ( mp->cur_cmd==string_token )
14303 delete_str_ref(mp->cur_mod);
14304 mp->cur_sym=frozen_inaccessible; mp_ins_error(mp); goto RESTART;
14308 @ Before we actually redefine a symbolic token, we need to clear away its
14309 former value, if it was a variable. The following stronger version of
14310 |get_symbol| does that.
14312 @c void mp_get_clear_symbol (MP mp) {
14313 mp_get_symbol(mp); mp_clear_symbol(mp, mp->cur_sym,false);
14316 @ Here's another little subroutine; it checks that an equals sign
14317 or assignment sign comes along at the proper place in a macro definition.
14319 @c void mp_check_equals (MP mp) {
14320 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
14321 mp_missing_err(mp, "=");
14323 help5("The next thing in this `def' should have been `=',")
14324 ("because I've already looked at the definition heading.")
14325 ("But don't worry; I'll pretend that an equals sign")
14326 ("was present. Everything from here to `enddef'")
14327 ("will be the replacement text of this macro.");
14332 @ A \&{primarydef}, \&{secondarydef}, or \&{tertiarydef} is rather easily
14333 handled now that we have |scan_toks|. In this case there are
14334 two parameters, which will be \.{EXPR0} and \.{EXPR1} (i.e.,
14335 |expr_base| and |expr_base+1|).
14337 @c void mp_make_op_def (MP mp) {
14338 command_code m; /* the type of definition */
14339 pointer p,q,r; /* for list manipulation */
14341 mp_get_symbol(mp); q=mp_get_node(mp, token_node_size);
14342 info(q)=mp->cur_sym; value(q)=expr_base;
14343 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym;
14344 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14345 info(p)=mp->cur_sym; value(p)=expr_base+1; link(p)=q;
14346 get_t_next; mp_check_equals(mp);
14347 mp->scanner_status=op_defining; q=mp_get_avail(mp); ref_count(q)=null;
14348 r=mp_get_avail(mp); link(q)=r; info(r)=general_macro;
14349 link(r)=mp_scan_toks(mp, macro_def,p,null,0);
14350 mp->scanner_status=normal; eq_type(mp->warning_info)=m;
14351 equiv(mp->warning_info)=q; mp_get_x_next(mp);
14354 @ Parameters to macros are introduced by the keywords \&{expr},
14355 \&{suffix}, \&{text}, \&{primary}, \&{secondary}, and \&{tertiary}.
14358 mp_primitive(mp, "expr",param_type,expr_base);
14359 @:expr_}{\&{expr} primitive@>
14360 mp_primitive(mp, "suffix",param_type,suffix_base);
14361 @:suffix_}{\&{suffix} primitive@>
14362 mp_primitive(mp, "text",param_type,text_base);
14363 @:text_}{\&{text} primitive@>
14364 mp_primitive(mp, "primary",param_type,primary_macro);
14365 @:primary_}{\&{primary} primitive@>
14366 mp_primitive(mp, "secondary",param_type,secondary_macro);
14367 @:secondary_}{\&{secondary} primitive@>
14368 mp_primitive(mp, "tertiary",param_type,tertiary_macro);
14369 @:tertiary_}{\&{tertiary} primitive@>
14371 @ @<Cases of |print_cmd...@>=
14373 if ( m>=expr_base ) {
14374 if ( m==expr_base ) mp_print(mp, "expr");
14375 else if ( m==suffix_base ) mp_print(mp, "suffix");
14376 else mp_print(mp, "text");
14377 } else if ( m<secondary_macro ) {
14378 mp_print(mp, "primary");
14379 } else if ( m==secondary_macro ) {
14380 mp_print(mp, "secondary");
14382 mp_print(mp, "tertiary");
14386 @ Let's turn next to the more complex processing associated with \&{def}
14387 and \&{vardef}. When the following procedure is called, |cur_mod|
14388 should be either |start_def| or |var_def|.
14390 @c @<Declare the procedure called |check_delimiter|@>;
14391 @<Declare the function called |scan_declared_variable|@>;
14392 void mp_scan_def (MP mp) {
14393 int m; /* the type of definition */
14394 int n; /* the number of special suffix parameters */
14395 int k; /* the total number of parameters */
14396 int c; /* the kind of macro we're defining */
14397 pointer r; /* parameter-substitution list */
14398 pointer q; /* tail of the macro token list */
14399 pointer p; /* temporary storage */
14400 halfword base; /* |expr_base|, |suffix_base|, or |text_base| */
14401 pointer l_delim,r_delim; /* matching delimiters */
14402 m=mp->cur_mod; c=general_macro; link(hold_head)=null;
14403 q=mp_get_avail(mp); ref_count(q)=null; r=null;
14404 @<Scan the token or variable to be defined;
14405 set |n|, |scanner_status|, and |warning_info|@>;
14407 if ( mp->cur_cmd==left_delimiter ) {
14408 @<Absorb delimited parameters, putting them into lists |q| and |r|@>;
14410 if ( mp->cur_cmd==param_type ) {
14411 @<Absorb undelimited parameters, putting them into list |r|@>;
14413 mp_check_equals(mp);
14414 p=mp_get_avail(mp); info(p)=c; link(q)=p;
14415 @<Attach the replacement text to the tail of node |p|@>;
14416 mp->scanner_status=normal; mp_get_x_next(mp);
14419 @ We don't put `|frozen_end_group|' into the replacement text of
14420 a \&{vardef}, because the user may want to redefine `\.{endgroup}'.
14422 @<Attach the replacement text to the tail of node |p|@>=
14423 if ( m==start_def ) {
14424 link(p)=mp_scan_toks(mp, macro_def,r,null,n);
14426 q=mp_get_avail(mp); info(q)=mp->bg_loc; link(p)=q;
14427 p=mp_get_avail(mp); info(p)=mp->eg_loc;
14428 link(q)=mp_scan_toks(mp, macro_def,r,p,n);
14430 if ( mp->warning_info==bad_vardef )
14431 mp_flush_token_list(mp, value(bad_vardef))
14435 int eg_loc; /* hash addresses of `\.{begingroup}' and `\.{endgroup}' */
14437 @ @<Scan the token or variable to be defined;...@>=
14438 if ( m==start_def ) {
14439 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym; get_t_next;
14440 mp->scanner_status=op_defining; n=0;
14441 eq_type(mp->warning_info)=defined_macro; equiv(mp->warning_info)=q;
14443 p=mp_scan_declared_variable(mp);
14444 mp_flush_variable(mp, equiv(info(p)),link(p),true);
14445 mp->warning_info=mp_find_variable(mp, p); mp_flush_list(mp, p);
14446 if ( mp->warning_info==null ) @<Change to `\.{a bad variable}'@>;
14447 mp->scanner_status=var_defining; n=2;
14448 if ( mp->cur_cmd==macro_special ) if ( mp->cur_mod==macro_suffix ) {/* \.{\AT!\#} */
14451 type(mp->warning_info)=mp_unsuffixed_macro-2+n; value(mp->warning_info)=q;
14452 } /* |mp_suffixed_macro=mp_unsuffixed_macro+1| */
14454 @ @<Change to `\.{a bad variable}'@>=
14456 print_err("This variable already starts with a macro");
14457 @.This variable already...@>
14458 help2("After `vardef a' you can\'t say `vardef a.b'.")
14459 ("So I'll have to discard this definition.");
14460 mp_error(mp); mp->warning_info=bad_vardef;
14463 @ @<Initialize table entries...@>=
14464 name_type(bad_vardef)=mp_root; link(bad_vardef)=frozen_bad_vardef;
14465 equiv(frozen_bad_vardef)=bad_vardef; eq_type(frozen_bad_vardef)=tag_token;
14467 @ @<Absorb delimited parameters, putting them into lists |q| and |r|@>=
14469 l_delim=mp->cur_sym; r_delim=mp->cur_mod; get_t_next;
14470 if ( (mp->cur_cmd==param_type)&&(mp->cur_mod>=expr_base) ) {
14473 print_err("Missing parameter type; `expr' will be assumed");
14474 @.Missing parameter type@>
14475 help1("You should've had `expr' or `suffix' or `text' here.");
14476 mp_back_error(mp); base=expr_base;
14478 @<Absorb parameter tokens for type |base|@>;
14479 mp_check_delimiter(mp, l_delim,r_delim);
14481 } while (mp->cur_cmd==left_delimiter)
14483 @ @<Absorb parameter tokens for type |base|@>=
14485 link(q)=mp_get_avail(mp); q=link(q); info(q)=base+k;
14486 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14487 value(p)=base+k; info(p)=mp->cur_sym;
14488 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14489 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
14490 incr(k); link(p)=r; r=p; get_t_next;
14491 } while (mp->cur_cmd==comma)
14493 @ @<Absorb undelimited parameters, putting them into list |r|@>=
14495 p=mp_get_node(mp, token_node_size);
14496 if ( mp->cur_mod<expr_base ) {
14497 c=mp->cur_mod; value(p)=expr_base+k;
14499 value(p)=mp->cur_mod+k;
14500 if ( mp->cur_mod==expr_base ) c=expr_macro;
14501 else if ( mp->cur_mod==suffix_base ) c=suffix_macro;
14504 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14505 incr(k); mp_get_symbol(mp); info(p)=mp->cur_sym; link(p)=r; r=p; get_t_next;
14506 if ( c==expr_macro ) if ( mp->cur_cmd==of_token ) {
14507 c=of_macro; p=mp_get_node(mp, token_node_size);
14508 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14509 value(p)=expr_base+k; mp_get_symbol(mp); info(p)=mp->cur_sym;
14510 link(p)=r; r=p; get_t_next;
14514 @* \[32] Expanding the next token.
14515 Only a few command codes |<min_command| can possibly be returned by
14516 |get_t_next|; in increasing order, they are
14517 |if_test|, |fi_or_else|, |input|, |iteration|, |repeat_loop|,
14518 |exit_test|, |relax|, |scan_tokens|, |expand_after|, and |defined_macro|.
14520 \MP\ usually gets the next token of input by saying |get_x_next|. This is
14521 like |get_t_next| except that it keeps getting more tokens until
14522 finding |cur_cmd>=min_command|. In other words, |get_x_next| expands
14523 macros and removes conditionals or iterations or input instructions that
14526 It follows that |get_x_next| might invoke itself recursively. In fact,
14527 there is massive recursion, since macro expansion can involve the
14528 scanning of arbitrarily complex expressions, which in turn involve
14529 macro expansion and conditionals, etc.
14532 Therefore it's necessary to declare a whole bunch of |forward|
14533 procedures at this point, and to insert some other procedures
14534 that will be invoked by |get_x_next|.
14537 void mp_scan_primary (MP mp);
14538 void mp_scan_secondary (MP mp);
14539 void mp_scan_tertiary (MP mp);
14540 void mp_scan_expression (MP mp);
14541 void mp_scan_suffix (MP mp);
14542 @<Declare the procedure called |macro_call|@>;
14543 void mp_get_boolean (MP mp);
14544 void mp_pass_text (MP mp);
14545 void mp_conditional (MP mp);
14546 void mp_start_input (MP mp);
14547 void mp_begin_iteration (MP mp);
14548 void mp_resume_iteration (MP mp);
14549 void mp_stop_iteration (MP mp);
14551 @ An auxiliary subroutine called |expand| is used by |get_x_next|
14552 when it has to do exotic expansion commands.
14554 @c void mp_expand (MP mp) {
14555 pointer p; /* for list manipulation */
14556 size_t k; /* something that we hope is |<=buf_size| */
14557 pool_pointer j; /* index into |str_pool| */
14558 if ( mp->internal[mp_tracing_commands]>unity )
14559 if ( mp->cur_cmd!=defined_macro )
14561 switch (mp->cur_cmd) {
14563 mp_conditional(mp); /* this procedure is discussed in Part 36 below */
14566 @<Terminate the current conditional and skip to \&{fi}@>;
14569 @<Initiate or terminate input from a file@>;
14572 if ( mp->cur_mod==end_for ) {
14573 @<Scold the user for having an extra \&{endfor}@>;
14575 mp_begin_iteration(mp); /* this procedure is discussed in Part 37 below */
14582 @<Exit a loop if the proper time has come@>;
14587 @<Expand the token after the next token@>;
14590 @<Put a string into the input buffer@>;
14592 case defined_macro:
14593 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14595 }; /* there are no other cases */
14598 @ @<Scold the user...@>=
14600 print_err("Extra `endfor'");
14602 help2("I'm not currently working on a for loop,")
14603 ("so I had better not try to end anything.");
14607 @ The processing of \&{input} involves the |start_input| subroutine,
14608 which will be declared later; the processing of \&{endinput} is trivial.
14611 mp_primitive(mp, "input",input,0);
14612 @:input_}{\&{input} primitive@>
14613 mp_primitive(mp, "endinput",input,1);
14614 @:end_input_}{\&{endinput} primitive@>
14616 @ @<Cases of |print_cmd_mod|...@>=
14618 if ( m==0 ) mp_print(mp, "input");
14619 else mp_print(mp, "endinput");
14622 @ @<Initiate or terminate input...@>=
14623 if ( mp->cur_mod>0 ) mp->force_eof=true;
14624 else mp_start_input(mp)
14626 @ We'll discuss the complicated parts of loop operations later. For now
14627 it suffices to know that there's a global variable called |loop_ptr|
14628 that will be |null| if no loop is in progress.
14631 { while ( token_state &&(loc==null) )
14632 mp_end_token_list(mp); /* conserve stack space */
14633 if ( mp->loop_ptr==null ) {
14634 print_err("Lost loop");
14636 help2("I'm confused; after exiting from a loop, I still seem")
14637 ("to want to repeat it. I'll try to forget the problem.");
14640 mp_resume_iteration(mp); /* this procedure is in Part 37 below */
14644 @ @<Exit a loop if the proper time has come@>=
14645 { mp_get_boolean(mp);
14646 if ( mp->internal[mp_tracing_commands]>unity )
14647 mp_show_cmd_mod(mp, nullary,mp->cur_exp);
14648 if ( mp->cur_exp==true_code ) {
14649 if ( mp->loop_ptr==null ) {
14650 print_err("No loop is in progress");
14651 @.No loop is in progress@>
14652 help1("Why say `exitif' when there's nothing to exit from?");
14653 if ( mp->cur_cmd==semicolon ) mp_error(mp); else mp_back_error(mp);
14655 @<Exit prematurely from an iteration@>;
14657 } else if ( mp->cur_cmd!=semicolon ) {
14658 mp_missing_err(mp, ";");
14660 help2("After `exitif <boolean exp>' I expect to see a semicolon.")
14661 ("I shall pretend that one was there."); mp_back_error(mp);
14665 @ Here we use the fact that |forever_text| is the only |token_type| that
14666 is less than |loop_text|.
14668 @<Exit prematurely...@>=
14671 if ( file_state ) {
14672 mp_end_file_reading(mp);
14674 if ( token_type<=loop_text ) p=start;
14675 mp_end_token_list(mp);
14678 if ( p!=info(mp->loop_ptr) ) mp_fatal_error(mp, "*** (loop confusion)");
14680 mp_stop_iteration(mp); /* this procedure is in Part 34 below */
14683 @ @<Expand the token after the next token@>=
14685 p=mp_cur_tok(mp); get_t_next;
14686 if ( mp->cur_cmd<min_command ) mp_expand(mp);
14687 else mp_back_input(mp);
14691 @ @<Put a string into the input buffer@>=
14692 { mp_get_x_next(mp); mp_scan_primary(mp);
14693 if ( mp->cur_type!=mp_string_type ) {
14694 mp_disp_err(mp, null,"Not a string");
14696 help2("I'm going to flush this expression, since")
14697 ("scantokens should be followed by a known string.");
14698 mp_put_get_flush_error(mp, 0);
14701 if ( length(mp->cur_exp)>0 )
14702 @<Pretend we're reading a new one-line file@>;
14706 @ @<Pretend we're reading a new one-line file@>=
14707 { mp_begin_file_reading(mp); name=is_scantok;
14708 k=mp->first+length(mp->cur_exp);
14709 if ( k>=mp->max_buf_stack ) {
14710 while ( k>=mp->buf_size ) {
14711 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
14713 mp->max_buf_stack=k+1;
14715 j=mp->str_start[mp->cur_exp]; limit=k;
14716 while ( mp->first<(size_t)limit ) {
14717 mp->buffer[mp->first]=mp->str_pool[j]; incr(j); incr(mp->first);
14719 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
14720 mp_flush_cur_exp(mp, 0);
14723 @ Here finally is |get_x_next|.
14725 The expression scanning routines to be considered later
14726 communicate via the global quantities |cur_type| and |cur_exp|;
14727 we must be very careful to save and restore these quantities while
14728 macros are being expanded.
14732 void mp_get_x_next (MP mp);
14734 @ @c void mp_get_x_next (MP mp) {
14735 pointer save_exp; /* a capsule to save |cur_type| and |cur_exp| */
14737 if ( mp->cur_cmd<min_command ) {
14738 save_exp=mp_stash_cur_exp(mp);
14740 if ( mp->cur_cmd==defined_macro )
14741 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14745 } while (mp->cur_cmd<min_command);
14746 mp_unstash_cur_exp(mp, save_exp); /* that restores |cur_type| and |cur_exp| */
14750 @ Now let's consider the |macro_call| procedure, which is used to start up
14751 all user-defined macros. Since the arguments to a macro might be expressions,
14752 |macro_call| is recursive.
14755 The first parameter to |macro_call| points to the reference count of the
14756 token list that defines the macro. The second parameter contains any
14757 arguments that have already been parsed (see below). The third parameter
14758 points to the symbolic token that names the macro. If the third parameter
14759 is |null|, the macro was defined by \&{vardef}, so its name can be
14760 reconstructed from the prefix and ``at'' arguments found within the
14763 What is this second parameter? It's simply a linked list of one-word items,
14764 whose |info| fields point to the arguments. In other words, if |arg_list=null|,
14765 no arguments have been scanned yet; otherwise |info(arg_list)| points to
14766 the first scanned argument, and |link(arg_list)| points to the list of
14767 further arguments (if any).
14769 Arguments of type \&{expr} are so-called capsules, which we will
14770 discuss later when we concentrate on expressions; they can be
14771 recognized easily because their |link| field is |void|. Arguments of type
14772 \&{suffix} and \&{text} are token lists without reference counts.
14774 @ After argument scanning is complete, the arguments are moved to the
14775 |param_stack|. (They can't be put on that stack any sooner, because
14776 the stack is growing and shrinking in unpredictable ways as more arguments
14777 are being acquired.) Then the macro body is fed to the scanner; i.e.,
14778 the replacement text of the macro is placed at the top of the \MP's
14779 input stack, so that |get_t_next| will proceed to read it next.
14781 @<Declare the procedure called |macro_call|@>=
14782 @<Declare the procedure called |print_macro_name|@>;
14783 @<Declare the procedure called |print_arg|@>;
14784 @<Declare the procedure called |scan_text_arg|@>;
14785 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14786 pointer macro_name) ;
14789 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14790 pointer macro_name) {
14791 /* invokes a user-defined control sequence */
14792 pointer r; /* current node in the macro's token list */
14793 pointer p,q; /* for list manipulation */
14794 integer n; /* the number of arguments */
14795 pointer tail = 0; /* tail of the argument list */
14796 pointer l_delim=0,r_delim=0; /* a delimiter pair */
14797 r=link(def_ref); add_mac_ref(def_ref);
14798 if ( arg_list==null ) {
14801 @<Determine the number |n| of arguments already supplied,
14802 and set |tail| to the tail of |arg_list|@>;
14804 if ( mp->internal[mp_tracing_macros]>0 ) {
14805 @<Show the text of the macro being expanded, and the existing arguments@>;
14807 @<Scan the remaining arguments, if any; set |r| to the first token
14808 of the replacement text@>;
14809 @<Feed the arguments and replacement text to the scanner@>;
14812 @ @<Show the text of the macro...@>=
14813 mp_begin_diagnostic(mp); mp_print_ln(mp);
14814 mp_print_macro_name(mp, arg_list,macro_name);
14815 if ( n==3 ) mp_print(mp, "@@#"); /* indicate a suffixed macro */
14816 mp_show_macro(mp, def_ref,null,100000);
14817 if ( arg_list!=null ) {
14821 mp_print_arg(mp, q,n,0);
14822 incr(n); p=link(p);
14825 mp_end_diagnostic(mp, false)
14828 @ @<Declare the procedure called |print_macro_name|@>=
14829 void mp_print_macro_name (MP mp,pointer a, pointer n);
14832 void mp_print_macro_name (MP mp,pointer a, pointer n) {
14833 pointer p,q; /* they traverse the first part of |a| */
14839 mp_print_text(info(info(link(a))));
14842 while ( link(q)!=null ) q=link(q);
14843 link(q)=info(link(a));
14844 mp_show_token_list(mp, p,null,1000,0);
14850 @ @<Declare the procedure called |print_arg|@>=
14851 void mp_print_arg (MP mp,pointer q, integer n, pointer b) ;
14854 void mp_print_arg (MP mp,pointer q, integer n, pointer b) {
14855 if ( link(q)==mp_void ) mp_print_nl(mp, "(EXPR");
14856 else if ( (b<text_base)&&(b!=text_macro) ) mp_print_nl(mp, "(SUFFIX");
14857 else mp_print_nl(mp, "(TEXT");
14858 mp_print_int(mp, n); mp_print(mp, ")<-");
14859 if ( link(q)==mp_void ) mp_print_exp(mp, q,1);
14860 else mp_show_token_list(mp, q,null,1000,0);
14863 @ @<Determine the number |n| of arguments already supplied...@>=
14865 n=1; tail=arg_list;
14866 while ( link(tail)!=null ) {
14867 incr(n); tail=link(tail);
14871 @ @<Scan the remaining arguments, if any; set |r|...@>=
14872 mp->cur_cmd=comma+1; /* anything |<>comma| will do */
14873 while ( info(r)>=expr_base ) {
14874 @<Scan the delimited argument represented by |info(r)|@>;
14877 if ( mp->cur_cmd==comma ) {
14878 print_err("Too many arguments to ");
14879 @.Too many arguments...@>
14880 mp_print_macro_name(mp, arg_list,macro_name); mp_print_char(mp, ';');
14881 mp_print_nl(mp, " Missing `"); mp_print_text(r_delim);
14883 mp_print(mp, "' has been inserted");
14884 help3("I'm going to assume that the comma I just read was a")
14885 ("right delimiter, and then I'll begin expanding the macro.")
14886 ("You might want to delete some tokens before continuing.");
14889 if ( info(r)!=general_macro ) {
14890 @<Scan undelimited argument(s)@>;
14894 @ At this point, the reader will find it advisable to review the explanation
14895 of token list format that was presented earlier, paying special attention to
14896 the conventions that apply only at the beginning of a macro's token list.
14898 On the other hand, the reader will have to take the expression-parsing
14899 aspects of the following program on faith; we will explain |cur_type|
14900 and |cur_exp| later. (Several things in this program depend on each other,
14901 and it's necessary to jump into the circle somewhere.)
14903 @<Scan the delimited argument represented by |info(r)|@>=
14904 if ( mp->cur_cmd!=comma ) {
14906 if ( mp->cur_cmd!=left_delimiter ) {
14907 print_err("Missing argument to ");
14908 @.Missing argument...@>
14909 mp_print_macro_name(mp, arg_list,macro_name);
14910 help3("That macro has more parameters than you thought.")
14911 ("I'll continue by pretending that each missing argument")
14912 ("is either zero or null.");
14913 if ( info(r)>=suffix_base ) {
14914 mp->cur_exp=null; mp->cur_type=mp_token_list;
14916 mp->cur_exp=0; mp->cur_type=mp_known;
14918 mp_back_error(mp); mp->cur_cmd=right_delimiter;
14921 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
14923 @<Scan the argument represented by |info(r)|@>;
14924 if ( mp->cur_cmd!=comma )
14925 @<Check that the proper right delimiter was present@>;
14927 @<Append the current expression to |arg_list|@>
14929 @ @<Check that the proper right delim...@>=
14930 if ( (mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
14931 if ( info(link(r))>=expr_base ) {
14932 mp_missing_err(mp, ",");
14934 help3("I've finished reading a macro argument and am about to")
14935 ("read another; the arguments weren't delimited correctly.")
14936 ("You might want to delete some tokens before continuing.");
14937 mp_back_error(mp); mp->cur_cmd=comma;
14939 mp_missing_err(mp, str(text(r_delim)));
14941 help2("I've gotten to the end of the macro parameter list.")
14942 ("You might want to delete some tokens before continuing.");
14947 @ A \&{suffix} or \&{text} parameter will be have been scanned as
14948 a token list pointed to by |cur_exp|, in which case we will have
14949 |cur_type=token_list|.
14951 @<Append the current expression to |arg_list|@>=
14953 p=mp_get_avail(mp);
14954 if ( mp->cur_type==mp_token_list ) info(p)=mp->cur_exp;
14955 else info(p)=mp_stash_cur_exp(mp);
14956 if ( mp->internal[mp_tracing_macros]>0 ) {
14957 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,info(r));
14958 mp_end_diagnostic(mp, false);
14960 if ( arg_list==null ) arg_list=p;
14965 @ @<Scan the argument represented by |info(r)|@>=
14966 if ( info(r)>=text_base ) {
14967 mp_scan_text_arg(mp, l_delim,r_delim);
14970 if ( info(r)>=suffix_base ) mp_scan_suffix(mp);
14971 else mp_scan_expression(mp);
14974 @ The parameters to |scan_text_arg| are either a pair of delimiters
14975 or zero; the latter case is for undelimited text arguments, which
14976 end with the first semicolon or \&{endgroup} or \&{end} that is not
14977 contained in a group.
14979 @<Declare the procedure called |scan_text_arg|@>=
14980 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) ;
14983 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) {
14984 integer balance; /* excess of |l_delim| over |r_delim| */
14985 pointer p; /* list tail */
14986 mp->warning_info=l_delim; mp->scanner_status=absorbing;
14987 p=hold_head; balance=1; link(hold_head)=null;
14990 if ( l_delim==0 ) {
14991 @<Adjust the balance for an undelimited argument; |break| if done@>;
14993 @<Adjust the balance for a delimited argument; |break| if done@>;
14995 link(p)=mp_cur_tok(mp); p=link(p);
14997 mp->cur_exp=link(hold_head); mp->cur_type=mp_token_list;
14998 mp->scanner_status=normal;
15001 @ @<Adjust the balance for a delimited argument...@>=
15002 if ( mp->cur_cmd==right_delimiter ) {
15003 if ( mp->cur_mod==l_delim ) {
15005 if ( balance==0 ) break;
15007 } else if ( mp->cur_cmd==left_delimiter ) {
15008 if ( mp->cur_mod==r_delim ) incr(balance);
15011 @ @<Adjust the balance for an undelimited...@>=
15012 if ( end_of_statement ) { /* |cur_cmd=semicolon|, |end_group|, or |stop| */
15013 if ( balance==1 ) { break; }
15014 else { if ( mp->cur_cmd==end_group ) decr(balance); }
15015 } else if ( mp->cur_cmd==begin_group ) {
15019 @ @<Scan undelimited argument(s)@>=
15021 if ( info(r)<text_macro ) {
15023 if ( info(r)!=suffix_macro ) {
15024 if ( (mp->cur_cmd==equals)||(mp->cur_cmd==assignment) ) mp_get_x_next(mp);
15028 case primary_macro:mp_scan_primary(mp); break;
15029 case secondary_macro:mp_scan_secondary(mp); break;
15030 case tertiary_macro:mp_scan_tertiary(mp); break;
15031 case expr_macro:mp_scan_expression(mp); break;
15033 @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>;
15036 @<Scan a suffix with optional delimiters@>;
15038 case text_macro:mp_scan_text_arg(mp, 0,0); break;
15039 } /* there are no other cases */
15041 @<Append the current expression to |arg_list|@>;
15044 @ @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>=
15046 mp_scan_expression(mp); p=mp_get_avail(mp); info(p)=mp_stash_cur_exp(mp);
15047 if ( mp->internal[mp_tracing_macros]>0 ) {
15048 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,0);
15049 mp_end_diagnostic(mp, false);
15051 if ( arg_list==null ) arg_list=p; else link(tail)=p;
15053 if ( mp->cur_cmd!=of_token ) {
15054 mp_missing_err(mp, "of"); mp_print(mp, " for ");
15056 mp_print_macro_name(mp, arg_list,macro_name);
15057 help1("I've got the first argument; will look now for the other.");
15060 mp_get_x_next(mp); mp_scan_primary(mp);
15063 @ @<Scan a suffix with optional delimiters@>=
15065 if ( mp->cur_cmd!=left_delimiter ) {
15068 l_delim=mp->cur_sym; r_delim=mp->cur_mod; mp_get_x_next(mp);
15070 mp_scan_suffix(mp);
15071 if ( l_delim!=null ) {
15072 if ((mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
15073 mp_missing_err(mp, str(text(r_delim)));
15075 help2("I've gotten to the end of the macro parameter list.")
15076 ("You might want to delete some tokens before continuing.");
15083 @ Before we put a new token list on the input stack, it is wise to clean off
15084 all token lists that have recently been depleted. Then a user macro that ends
15085 with a call to itself will not require unbounded stack space.
15087 @<Feed the arguments and replacement text to the scanner@>=
15088 while ( token_state &&(loc==null) ) mp_end_token_list(mp); /* conserve stack space */
15089 if ( mp->param_ptr+n>mp->max_param_stack ) {
15090 mp->max_param_stack=mp->param_ptr+n;
15091 if ( mp->max_param_stack>mp->param_size )
15092 mp_overflow(mp, "parameter stack size",mp->param_size);
15093 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15095 mp_begin_token_list(mp, def_ref,macro); name=macro_name; loc=r;
15099 mp->param_stack[mp->param_ptr]=info(p); incr(mp->param_ptr); p=link(p);
15101 mp_flush_list(mp, arg_list);
15104 @ It's sometimes necessary to put a single argument onto |param_stack|.
15105 The |stack_argument| subroutine does this.
15107 @c void mp_stack_argument (MP mp,pointer p) {
15108 if ( mp->param_ptr==mp->max_param_stack ) {
15109 incr(mp->max_param_stack);
15110 if ( mp->max_param_stack>mp->param_size )
15111 mp_overflow(mp, "parameter stack size",mp->param_size);
15112 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15114 mp->param_stack[mp->param_ptr]=p; incr(mp->param_ptr);
15117 @* \[33] Conditional processing.
15118 Let's consider now the way \&{if} commands are handled.
15120 Conditions can be inside conditions, and this nesting has a stack
15121 that is independent of other stacks.
15122 Four global variables represent the top of the condition stack:
15123 |cond_ptr| points to pushed-down entries, if~any; |cur_if| tells whether
15124 we are processing \&{if} or \&{elseif}; |if_limit| specifies
15125 the largest code of a |fi_or_else| command that is syntactically legal;
15126 and |if_line| is the line number at which the current conditional began.
15128 If no conditions are currently in progress, the condition stack has the
15129 special state |cond_ptr=null|, |if_limit=normal|, |cur_if=0|, |if_line=0|.
15130 Otherwise |cond_ptr| points to a two-word node; the |type|, |name_type|, and
15131 |link| fields of the first word contain |if_limit|, |cur_if|, and
15132 |cond_ptr| at the next level, and the second word contains the
15133 corresponding |if_line|.
15135 @d if_node_size 2 /* number of words in stack entry for conditionals */
15136 @d if_line_field(A) mp->mem[(A)+1].cint
15137 @d if_code 1 /* code for \&{if} being evaluated */
15138 @d fi_code 2 /* code for \&{fi} */
15139 @d else_code 3 /* code for \&{else} */
15140 @d else_if_code 4 /* code for \&{elseif} */
15143 pointer cond_ptr; /* top of the condition stack */
15144 integer if_limit; /* upper bound on |fi_or_else| codes */
15145 small_number cur_if; /* type of conditional being worked on */
15146 integer if_line; /* line where that conditional began */
15149 mp->cond_ptr=null; mp->if_limit=normal; mp->cur_if=0; mp->if_line=0;
15152 mp_primitive(mp, "if",if_test,if_code);
15153 @:if_}{\&{if} primitive@>
15154 mp_primitive(mp, "fi",fi_or_else,fi_code); mp->eqtb[frozen_fi]=mp->eqtb[mp->cur_sym];
15155 @:fi_}{\&{fi} primitive@>
15156 mp_primitive(mp, "else",fi_or_else,else_code);
15157 @:else_}{\&{else} primitive@>
15158 mp_primitive(mp, "elseif",fi_or_else,else_if_code);
15159 @:else_if_}{\&{elseif} primitive@>
15161 @ @<Cases of |print_cmd_mod|...@>=
15165 case if_code:mp_print(mp, "if"); break;
15166 case fi_code:mp_print(mp, "fi"); break;
15167 case else_code:mp_print(mp, "else"); break;
15168 default: mp_print(mp, "elseif"); break;
15172 @ Here is a procedure that ignores text until coming to an \&{elseif},
15173 \&{else}, or \&{fi} at level zero of $\&{if}\ldots\&{fi}$
15174 nesting. After it has acted, |cur_mod| will indicate the token that
15177 \MP's smallest two command codes are |if_test| and |fi_or_else|; this
15178 makes the skipping process a bit simpler.
15181 void mp_pass_text (MP mp) {
15183 mp->scanner_status=skipping;
15184 mp->warning_info=mp_true_line(mp);
15187 if ( mp->cur_cmd<=fi_or_else ) {
15188 if ( mp->cur_cmd<fi_or_else ) {
15192 if ( mp->cur_mod==fi_code ) decr(l);
15195 @<Decrease the string reference count,
15196 if the current token is a string@>;
15199 mp->scanner_status=normal;
15202 @ @<Decrease the string reference count...@>=
15203 if ( mp->cur_cmd==string_token ) { delete_str_ref(mp->cur_mod); }
15205 @ When we begin to process a new \&{if}, we set |if_limit:=if_code|; then
15206 if \&{elseif} or \&{else} or \&{fi} occurs before the current \&{if}
15207 condition has been evaluated, a colon will be inserted.
15208 A construction like `\.{if fi}' would otherwise get \MP\ confused.
15210 @<Push the condition stack@>=
15211 { p=mp_get_node(mp, if_node_size); link(p)=mp->cond_ptr; type(p)=mp->if_limit;
15212 name_type(p)=mp->cur_if; if_line_field(p)=mp->if_line;
15213 mp->cond_ptr=p; mp->if_limit=if_code; mp->if_line=mp_true_line(mp);
15214 mp->cur_if=if_code;
15217 @ @<Pop the condition stack@>=
15218 { p=mp->cond_ptr; mp->if_line=if_line_field(p);
15219 mp->cur_if=name_type(p); mp->if_limit=type(p); mp->cond_ptr=link(p);
15220 mp_free_node(mp, p,if_node_size);
15223 @ Here's a procedure that changes the |if_limit| code corresponding to
15224 a given value of |cond_ptr|.
15226 @c void mp_change_if_limit (MP mp,small_number l, pointer p) {
15228 if ( p==mp->cond_ptr ) {
15229 mp->if_limit=l; /* that's the easy case */
15233 if ( q==null ) mp_confusion(mp, "if");
15234 @:this can't happen if}{\quad if@>
15235 if ( link(q)==p ) {
15243 @ The user is supposed to put colons into the proper parts of conditional
15244 statements. Therefore, \MP\ has to check for their presence.
15247 void mp_check_colon (MP mp) {
15248 if ( mp->cur_cmd!=colon ) {
15249 mp_missing_err(mp, ":");
15251 help2("There should've been a colon after the condition.")
15252 ("I shall pretend that one was there.");;
15257 @ A condition is started when the |get_x_next| procedure encounters
15258 an |if_test| command; in that case |get_x_next| calls |conditional|,
15259 which is a recursive procedure.
15262 @c void mp_conditional (MP mp) {
15263 pointer save_cond_ptr; /* |cond_ptr| corresponding to this conditional */
15264 int new_if_limit; /* future value of |if_limit| */
15265 pointer p; /* temporary register */
15266 @<Push the condition stack@>;
15267 save_cond_ptr=mp->cond_ptr;
15269 mp_get_boolean(mp); new_if_limit=else_if_code;
15270 if ( mp->internal[mp_tracing_commands]>unity ) {
15271 @<Display the boolean value of |cur_exp|@>;
15274 mp_check_colon(mp);
15275 if ( mp->cur_exp==true_code ) {
15276 mp_change_if_limit(mp, new_if_limit,save_cond_ptr);
15277 return; /* wait for \&{elseif}, \&{else}, or \&{fi} */
15279 @<Skip to \&{elseif} or \&{else} or \&{fi}, then |goto done|@>;
15281 mp->cur_if=mp->cur_mod; mp->if_line=mp_true_line(mp);
15282 if ( mp->cur_mod==fi_code ) {
15283 @<Pop the condition stack@>
15284 } else if ( mp->cur_mod==else_if_code ) {
15287 mp->cur_exp=true_code; new_if_limit=fi_code; mp_get_x_next(mp);
15292 @ In a construction like `\&{if} \&{if} \&{true}: $0=1$: \\{foo}
15293 \&{else}: \\{bar} \&{fi}', the first \&{else}
15294 that we come to after learning that the \&{if} is false is not the
15295 \&{else} we're looking for. Hence the following curious logic is needed.
15297 @<Skip to \&{elseif}...@>=
15300 if ( mp->cond_ptr==save_cond_ptr ) goto DONE;
15301 else if ( mp->cur_mod==fi_code ) @<Pop the condition stack@>;
15305 @ @<Display the boolean value...@>=
15306 { mp_begin_diagnostic(mp);
15307 if ( mp->cur_exp==true_code ) mp_print(mp, "{true}");
15308 else mp_print(mp, "{false}");
15309 mp_end_diagnostic(mp, false);
15312 @ The processing of conditionals is complete except for the following
15313 code, which is actually part of |get_x_next|. It comes into play when
15314 \&{elseif}, \&{else}, or \&{fi} is scanned.
15316 @<Terminate the current conditional and skip to \&{fi}@>=
15317 if ( mp->cur_mod>mp->if_limit ) {
15318 if ( mp->if_limit==if_code ) { /* condition not yet evaluated */
15319 mp_missing_err(mp, ":");
15321 mp_back_input(mp); mp->cur_sym=frozen_colon; mp_ins_error(mp);
15323 print_err("Extra "); mp_print_cmd_mod(mp, fi_or_else,mp->cur_mod);
15327 help1("I'm ignoring this; it doesn't match any if.");
15331 while ( mp->cur_mod!=fi_code ) mp_pass_text(mp); /* skip to \&{fi} */
15332 @<Pop the condition stack@>;
15335 @* \[34] Iterations.
15336 To bring our treatment of |get_x_next| to a close, we need to consider what
15337 \MP\ does when it sees \&{for}, \&{forsuffixes}, and \&{forever}.
15339 There's a global variable |loop_ptr| that keeps track of the \&{for} loops
15340 that are currently active. If |loop_ptr=null|, no loops are in progress;
15341 otherwise |info(loop_ptr)| points to the iterative text of the current
15342 (innermost) loop, and |link(loop_ptr)| points to the data for any other
15343 loops that enclose the current one.
15345 A loop-control node also has two other fields, called |loop_type| and
15346 |loop_list|, whose contents depend on the type of loop:
15348 \yskip\indent|loop_type(loop_ptr)=null| means that |loop_list(loop_ptr)|
15349 points to a list of one-word nodes whose |info| fields point to the
15350 remaining argument values of a suffix list and expression list.
15352 \yskip\indent|loop_type(loop_ptr)=mp_void| means that the current loop is
15355 \yskip\indent|loop_type(loop_ptr)=progression_flag| means that
15356 |p=loop_list(loop_ptr)| points to a ``progression node'' and |value(p)|,
15357 |step_size(p)|, and |final_value(p)| contain the data for an arithmetic
15360 \yskip\indent|loop_type(loop_ptr)=p>mp_void| means that |p| points to an edge
15361 header and |loop_list(loop_ptr)| points into the graphical object list for
15364 \yskip\noindent In the case of a progression node, the first word is not used
15365 because the link field of words in the dynamic memory area cannot be arbitrary.
15367 @d loop_list_loc(A) ((A)+1) /* where the |loop_list| field resides */
15368 @d loop_type(A) info(loop_list_loc((A))) /* the type of \&{for} loop */
15369 @d loop_list(A) link(loop_list_loc((A))) /* the remaining list elements */
15370 @d loop_node_size 2 /* the number of words in a loop control node */
15371 @d progression_node_size 4 /* the number of words in a progression node */
15372 @d step_size(A) mp->mem[(A)+2].sc /* the step size in an arithmetic progression */
15373 @d final_value(A) mp->mem[(A)+3].sc /* the final value in an arithmetic progression */
15374 @d progression_flag (null+2)
15375 /* |loop_type| value when |loop_list| points to a progression node */
15378 pointer loop_ptr; /* top of the loop-control-node stack */
15383 @ If the expressions that define an arithmetic progression in
15384 a \&{for} loop don't have known numeric values, the |bad_for|
15385 subroutine screams at the user.
15387 @c void mp_bad_for (MP mp, char * s) {
15388 mp_disp_err(mp, null,"Improper "); /* show the bad expression above the message */
15389 @.Improper...replaced by 0@>
15390 mp_print(mp, s); mp_print(mp, " has been replaced by 0");
15391 help4("When you say `for x=a step b until c',")
15392 ("the initial value `a' and the step size `b'")
15393 ("and the final value `c' must have known numeric values.")
15394 ("I'm zeroing this one. Proceed, with fingers crossed.");
15395 mp_put_get_flush_error(mp, 0);
15398 @ Here's what \MP\ does when \&{for}, \&{forsuffixes}, or \&{forever}
15399 has just been scanned. (This code requires slight familiarity with
15400 expression-parsing routines that we have not yet discussed; but it seems
15401 to belong in the present part of the program, even though the original author
15402 didn't write it until later. The reader may wish to come back to it.)
15404 @c void mp_begin_iteration (MP mp) {
15405 halfword m; /* |expr_base| (\&{for}) or |suffix_base| (\&{forsuffixes}) */
15406 halfword n; /* hash address of the current symbol */
15407 pointer s; /* the new loop-control node */
15408 pointer p; /* substitution list for |scan_toks| */
15409 pointer q; /* link manipulation register */
15410 pointer pp; /* a new progression node */
15411 m=mp->cur_mod; n=mp->cur_sym; s=mp_get_node(mp, loop_node_size);
15412 if ( m==start_forever ){
15413 loop_type(s)=mp_void; p=null; mp_get_x_next(mp);
15415 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
15416 info(p)=mp->cur_sym; value(p)=m;
15418 if ( mp->cur_cmd==within_token ) {
15419 @<Set up a picture iteration@>;
15421 @<Check for the |"="| or |":="| in a loop header@>;
15422 @<Scan the values to be used in the loop@>;
15425 @<Check for the presence of a colon@>;
15426 @<Scan the loop text and put it on the loop control stack@>;
15427 mp_resume_iteration(mp);
15430 @ @<Check for the |"="| or |":="| in a loop header@>=
15431 if ( (mp->cur_cmd!=equals)&&(mp->cur_cmd!=assignment) ) {
15432 mp_missing_err(mp, "=");
15434 help3("The next thing in this loop should have been `=' or `:='.")
15435 ("But don't worry; I'll pretend that an equals sign")
15436 ("was present, and I'll look for the values next.");
15440 @ @<Check for the presence of a colon@>=
15441 if ( mp->cur_cmd!=colon ) {
15442 mp_missing_err(mp, ":");
15444 help3("The next thing in this loop should have been a `:'.")
15445 ("So I'll pretend that a colon was present;")
15446 ("everything from here to `endfor' will be iterated.");
15450 @ We append a special |frozen_repeat_loop| token in place of the
15451 `\&{endfor}' at the end of the loop. This will come through \MP's scanner
15452 at the proper time to cause the loop to be repeated.
15454 (If the user tries some shenanigan like `\&{for} $\ldots$ \&{let} \&{endfor}',
15455 he will be foiled by the |get_symbol| routine, which keeps frozen
15456 tokens unchanged. Furthermore the |frozen_repeat_loop| is an \&{outer}
15457 token, so it won't be lost accidentally.)
15459 @ @<Scan the loop text...@>=
15460 q=mp_get_avail(mp); info(q)=frozen_repeat_loop;
15461 mp->scanner_status=loop_defining; mp->warning_info=n;
15462 info(s)=mp_scan_toks(mp, iteration,p,q,0); mp->scanner_status=normal;
15463 link(s)=mp->loop_ptr; mp->loop_ptr=s
15465 @ @<Initialize table...@>=
15466 eq_type(frozen_repeat_loop)=repeat_loop+outer_tag;
15467 text(frozen_repeat_loop)=intern(" ENDFOR");
15469 @ The loop text is inserted into \MP's scanning apparatus by the
15470 |resume_iteration| routine.
15472 @c void mp_resume_iteration (MP mp) {
15473 pointer p,q; /* link registers */
15474 p=loop_type(mp->loop_ptr);
15475 if ( p==progression_flag ) {
15476 p=loop_list(mp->loop_ptr); /* now |p| points to a progression node */
15477 mp->cur_exp=value(p);
15478 if ( @<The arithmetic progression has ended@> ) {
15479 mp_stop_iteration(mp);
15482 mp->cur_type=mp_known; q=mp_stash_cur_exp(mp); /* make |q| an \&{expr} argument */
15483 value(p)=mp->cur_exp+step_size(p); /* set |value(p)| for the next iteration */
15484 } else if ( p==null ) {
15485 p=loop_list(mp->loop_ptr);
15487 mp_stop_iteration(mp);
15490 loop_list(mp->loop_ptr)=link(p); q=info(p); free_avail(p);
15491 } else if ( p==mp_void ) {
15492 mp_begin_token_list(mp, info(mp->loop_ptr),forever_text); return;
15494 @<Make |q| a capsule containing the next picture component from
15495 |loop_list(loop_ptr)| or |goto not_found|@>;
15497 mp_begin_token_list(mp, info(mp->loop_ptr),loop_text);
15498 mp_stack_argument(mp, q);
15499 if ( mp->internal[mp_tracing_commands]>unity ) {
15500 @<Trace the start of a loop@>;
15504 mp_stop_iteration(mp);
15507 @ @<The arithmetic progression has ended@>=
15508 ((step_size(p)>0)&&(mp->cur_exp>final_value(p)))||
15509 ((step_size(p)<0)&&(mp->cur_exp<final_value(p)))
15511 @ @<Trace the start of a loop@>=
15513 mp_begin_diagnostic(mp); mp_print_nl(mp, "{loop value=");
15515 if ( (q!=null)&&(link(q)==mp_void) ) mp_print_exp(mp, q,1);
15516 else mp_show_token_list(mp, q,null,50,0);
15517 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
15520 @ @<Make |q| a capsule containing the next picture component from...@>=
15521 { q=loop_list(mp->loop_ptr);
15522 if ( q==null ) goto NOT_FOUND;
15523 skip_component(q) goto NOT_FOUND;
15524 mp->cur_exp=mp_copy_objects(mp, loop_list(mp->loop_ptr),q);
15525 mp_init_bbox(mp, mp->cur_exp);
15526 mp->cur_type=mp_picture_type;
15527 loop_list(mp->loop_ptr)=q;
15528 q=mp_stash_cur_exp(mp);
15531 @ A level of loop control disappears when |resume_iteration| has decided
15532 not to resume, or when an \&{exitif} construction has removed the loop text
15533 from the input stack.
15535 @c void mp_stop_iteration (MP mp) {
15536 pointer p,q; /* the usual */
15537 p=loop_type(mp->loop_ptr);
15538 if ( p==progression_flag ) {
15539 mp_free_node(mp, loop_list(mp->loop_ptr),progression_node_size);
15540 } else if ( p==null ){
15541 q=loop_list(mp->loop_ptr);
15542 while ( q!=null ) {
15545 if ( link(p)==mp_void ) { /* it's an \&{expr} parameter */
15546 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
15548 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
15551 p=q; q=link(q); free_avail(p);
15553 } else if ( p>progression_flag ) {
15554 delete_edge_ref(p);
15556 p=mp->loop_ptr; mp->loop_ptr=link(p); mp_flush_token_list(mp, info(p));
15557 mp_free_node(mp, p,loop_node_size);
15560 @ Now that we know all about loop control, we can finish up
15561 the missing portion of |begin_iteration| and we'll be done.
15563 The following code is performed after the `\.=' has been scanned in
15564 a \&{for} construction (if |m=expr_base|) or a \&{forsuffixes} construction
15565 (if |m=suffix_base|).
15567 @<Scan the values to be used in the loop@>=
15568 loop_type(s)=null; q=loop_list_loc(s); link(q)=null; /* |link(q)=loop_list(s)| */
15571 if ( m!=expr_base ) {
15572 mp_scan_suffix(mp);
15574 if ( mp->cur_cmd>=colon ) if ( mp->cur_cmd<=comma )
15576 mp_scan_expression(mp);
15577 if ( mp->cur_cmd==step_token ) if ( q==loop_list_loc(s) ) {
15578 @<Prepare for step-until construction and |break|@>;
15580 mp->cur_exp=mp_stash_cur_exp(mp);
15582 link(q)=mp_get_avail(mp); q=link(q);
15583 info(q)=mp->cur_exp; mp->cur_type=mp_vacuous;
15586 } while (mp->cur_cmd==comma)
15588 @ @<Prepare for step-until construction and |break|@>=
15590 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "initial value");
15591 pp=mp_get_node(mp, progression_node_size); value(pp)=mp->cur_exp;
15592 mp_get_x_next(mp); mp_scan_expression(mp);
15593 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "step size");
15594 step_size(pp)=mp->cur_exp;
15595 if ( mp->cur_cmd!=until_token ) {
15596 mp_missing_err(mp, "until");
15597 @.Missing `until'@>
15598 help2("I assume you meant to say `until' after `step'.")
15599 ("So I'll look for the final value and colon next.");
15602 mp_get_x_next(mp); mp_scan_expression(mp);
15603 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "final value");
15604 final_value(pp)=mp->cur_exp; loop_list(s)=pp;
15605 loop_type(s)=progression_flag;
15609 @ The last case is when we have just seen ``\&{within}'', and we need to
15610 parse a picture expression and prepare to iterate over it.
15612 @<Set up a picture iteration@>=
15613 { mp_get_x_next(mp);
15614 mp_scan_expression(mp);
15615 @<Make sure the current expression is a known picture@>;
15616 loop_type(s)=mp->cur_exp; mp->cur_type=mp_vacuous;
15617 q=link(dummy_loc(mp->cur_exp));
15619 if ( is_start_or_stop(q) )
15620 if ( mp_skip_1component(mp, q)==null ) q=link(q);
15624 @ @<Make sure the current expression is a known picture@>=
15625 if ( mp->cur_type!=mp_picture_type ) {
15626 mp_disp_err(mp, null,"Improper iteration spec has been replaced by nullpicture");
15627 help1("When you say `for x in p', p must be a known picture.");
15628 mp_put_get_flush_error(mp, mp_get_node(mp, edge_header_size));
15629 mp_init_edges(mp, mp->cur_exp); mp->cur_type=mp_picture_type;
15632 @* \[35] File names.
15633 It's time now to fret about file names. Besides the fact that different
15634 operating systems treat files in different ways, we must cope with the
15635 fact that completely different naming conventions are used by different
15636 groups of people. The following programs show what is required for one
15637 particular operating system; similar routines for other systems are not
15638 difficult to devise.
15639 @^system dependencies@>
15641 \MP\ assumes that a file name has three parts: the name proper; its
15642 ``extension''; and a ``file area'' where it is found in an external file
15643 system. The extension of an input file is assumed to be
15644 `\.{.mp}' unless otherwise specified; it is `\.{.log}' on the
15645 transcript file that records each run of \MP; it is `\.{.tfm}' on the font
15646 metric files that describe characters in any fonts created by \MP; it is
15647 `\.{.ps}' or `.{\it nnn}' for some number {\it nnn} on the \ps\ output files;
15648 and it is `\.{.mem}' on the mem files written by \.{INIMP} to initialize \MP.
15649 The file area can be arbitrary on input files, but files are usually
15650 output to the user's current area. If an input file cannot be
15651 found on the specified area, \MP\ will look for it on a special system
15652 area; this special area is intended for commonly used input files.
15654 Simple uses of \MP\ refer only to file names that have no explicit
15655 extension or area. For example, a person usually says `\.{input} \.{cmr10}'
15656 instead of `\.{input} \.{cmr10.new}'. Simple file
15657 names are best, because they make the \MP\ source files portable;
15658 whenever a file name consists entirely of letters and digits, it should be
15659 treated in the same way by all implementations of \MP. However, users
15660 need the ability to refer to other files in their environment, especially
15661 when responding to error messages concerning unopenable files; therefore
15662 we want to let them use the syntax that appears in their favorite
15665 @ \MP\ uses the same conventions that have proved to be satisfactory for
15666 \TeX\ and \MF. In order to isolate the system-dependent aspects of file names,
15667 @^system dependencies@>
15668 the system-independent parts of \MP\ are expressed in terms
15669 of three system-dependent
15670 procedures called |begin_name|, |more_name|, and |end_name|. In
15671 essence, if the user-specified characters of the file name are $c_1\ldots c_n$,
15672 the system-independent driver program does the operations
15673 $$|begin_name|;\,|more_name|(c_1);\,\ldots\,;|more_name|(c_n);
15675 These three procedures communicate with each other via global variables.
15676 Afterwards the file name will appear in the string pool as three strings
15677 called |cur_name|\penalty10000\hskip-.05em,
15678 |cur_area|, and |cur_ext|; the latter two are null (i.e.,
15679 |""|), unless they were explicitly specified by the user.
15681 Actually the situation is slightly more complicated, because \MP\ needs
15682 to know when the file name ends. The |more_name| routine is a function
15683 (with side effects) that returns |true| on the calls |more_name|$(c_1)$,
15684 \dots, |more_name|$(c_{n-1})$. The final call |more_name|$(c_n)$
15685 returns |false|; or, it returns |true| and $c_n$ is the last character
15686 on the current input line. In other words,
15687 |more_name| is supposed to return |true| unless it is sure that the
15688 file name has been completely scanned; and |end_name| is supposed to be able
15689 to finish the assembly of |cur_name|, |cur_area|, and |cur_ext| regardless of
15690 whether $|more_name|(c_n)$ returned |true| or |false|.
15693 char * cur_name; /* name of file just scanned */
15694 char * cur_area; /* file area just scanned, or \.{""} */
15695 char * cur_ext; /* file extension just scanned, or \.{""} */
15697 @ It is easier to maintain reference counts if we assign initial values.
15700 mp->cur_name=xstrdup("");
15701 mp->cur_area=xstrdup("");
15702 mp->cur_ext=xstrdup("");
15704 @ @<Dealloc variables@>=
15705 xfree(mp->cur_area);
15706 xfree(mp->cur_name);
15707 xfree(mp->cur_ext);
15709 @ The file names we shall deal with for illustrative purposes have the
15710 following structure: If the name contains `\.>' or `\.:', the file area
15711 consists of all characters up to and including the final such character;
15712 otherwise the file area is null. If the remaining file name contains
15713 `\..', the file extension consists of all such characters from the first
15714 remaining `\..' to the end, otherwise the file extension is null.
15715 @^system dependencies@>
15717 We can scan such file names easily by using two global variables that keep track
15718 of the occurrences of area and extension delimiters. Note that these variables
15719 cannot be of type |pool_pointer| because a string pool compaction could occur
15720 while scanning a file name.
15723 integer area_delimiter;
15724 /* most recent `\.>' or `\.:' relative to |str_start[str_ptr]| */
15725 integer ext_delimiter; /* the relevant `\..', if any */
15727 @ Input files that can't be found in the user's area may appear in standard
15728 system areas called |MP_area| and |MF_area|. (The latter is used when the file
15729 extension is |".mf"|.) The standard system area for font metric files
15730 to be read is |MP_font_area|.
15731 This system area name will, of course, vary from place to place.
15732 @^system dependencies@>
15734 @d MP_area "MPinputs:"
15736 @d MF_area "MFinputs:"
15741 @ Here now is the first of the system-dependent routines for file name scanning.
15742 @^system dependencies@>
15744 @<Declare subroutines for parsing file names@>=
15745 void mp_begin_name (MP mp) {
15746 xfree(mp->cur_name);
15747 xfree(mp->cur_area);
15748 xfree(mp->cur_ext);
15749 mp->area_delimiter=-1;
15750 mp->ext_delimiter=-1;
15753 @ And here's the second.
15754 @^system dependencies@>
15756 @<Declare subroutines for parsing file names@>=
15757 boolean mp_more_name (MP mp, ASCII_code c) {
15761 if ( (c=='>')||(c==':') ) {
15762 mp->area_delimiter=mp->pool_ptr;
15763 mp->ext_delimiter=-1;
15764 } else if ( (c=='.')&&(mp->ext_delimiter<0) ) {
15765 mp->ext_delimiter=mp->pool_ptr;
15767 str_room(1); append_char(c); /* contribute |c| to the current string */
15773 @^system dependencies@>
15775 @d copy_pool_segment(A,B,C) {
15776 A = xmalloc(C+1,sizeof(char));
15777 strncpy(A,(char *)(mp->str_pool+B),C);
15780 @<Declare subroutines for parsing file names@>=
15781 void mp_end_name (MP mp) {
15782 pool_pointer s; /* length of area, name, and extension */
15785 s = mp->str_start[mp->str_ptr];
15786 if ( mp->area_delimiter<0 ) {
15787 mp->cur_area=xstrdup("");
15789 len = mp->area_delimiter-s;
15790 copy_pool_segment(mp->cur_area,s,len);
15793 if ( mp->ext_delimiter<0 ) {
15794 mp->cur_ext=xstrdup("");
15795 len = mp->pool_ptr-s;
15797 copy_pool_segment(mp->cur_ext,mp->ext_delimiter,(mp->pool_ptr-mp->ext_delimiter));
15798 len = mp->ext_delimiter-s;
15800 copy_pool_segment(mp->cur_name,s,len);
15801 mp->pool_ptr=s; /* don't need this partial string */
15804 @ Conversely, here is a routine that takes three strings and prints a file
15805 name that might have produced them. (The routine is system dependent, because
15806 some operating systems put the file area last instead of first.)
15807 @^system dependencies@>
15809 @<Basic printing...@>=
15810 void mp_print_file_name (MP mp, char * n, char * a, char * e) {
15811 mp_print(mp, a); mp_print(mp, n); mp_print(mp, e);
15814 @ Another system-dependent routine is needed to convert three internal
15816 to the |name_of_file| value that is used to open files. The present code
15817 allows both lowercase and uppercase letters in the file name.
15818 @^system dependencies@>
15820 @d append_to_name(A) { c=(A);
15821 if ( k<file_name_size ) {
15822 mp->name_of_file[k]=xchr(c);
15827 @<Declare subroutines for parsing file names@>=
15828 void mp_pack_file_name (MP mp, char *n, char *a, char *e) {
15829 integer k; /* number of positions filled in |name_of_file| */
15830 ASCII_code c; /* character being packed */
15831 char *j; /* a character index */
15835 for (j=a;*j;j++) { append_to_name(*j); }
15837 for (j=n;*j;j++) { append_to_name(*j); }
15839 for (j=e;*j;j++) { append_to_name(*j); }
15841 mp->name_of_file[k]=0;
15845 @ @<Internal library declarations@>=
15846 void mp_pack_file_name (MP mp, char *n, char *a, char *e) ;
15848 @ A messier routine is also needed, since mem file names must be scanned
15849 before \MP's string mechanism has been initialized. We shall use the
15850 global variable |MP_mem_default| to supply the text for default system areas
15851 and extensions related to mem files.
15852 @^system dependencies@>
15854 @d mem_default_length 9 /* length of the |MP_mem_default| string */
15855 @d mem_ext_length 4 /* length of its `\.{.mem}' part */
15856 @d mem_extension ".mem" /* the extension, as a \.{WEB} constant */
15859 char *MP_mem_default;
15861 @ @<Option variables@>=
15862 char *mem_name; /* for commandline */
15864 @ @<Allocate or initialize ...@>=
15865 mp->MP_mem_default = xstrdup("plain.mem");
15866 mp->mem_name = xstrdup(opt->mem_name);
15868 @^system dependencies@>
15870 @ @<Dealloc variables@>=
15871 xfree(mp->MP_mem_default);
15872 xfree(mp->mem_name);
15874 @ @<Check the ``constant'' values for consistency@>=
15875 if ( mem_default_length>file_name_size ) mp->bad=20;
15877 @ Here is the messy routine that was just mentioned. It sets |name_of_file|
15878 from the first |n| characters of |MP_mem_default|, followed by
15879 |buffer[a..b-1]|, followed by the last |mem_ext_length| characters of
15882 We dare not give error messages here, since \MP\ calls this routine before
15883 the |error| routine is ready to roll. Instead, we simply drop excess characters,
15884 since the error will be detected in another way when a strange file name
15886 @^system dependencies@>
15888 @c void mp_pack_buffered_name (MP mp,small_number n, integer a,
15890 integer k; /* number of positions filled in |name_of_file| */
15891 ASCII_code c; /* character being packed */
15892 integer j; /* index into |buffer| or |MP_mem_default| */
15893 if ( n+b-a+1+mem_ext_length>file_name_size )
15894 b=a+file_name_size-n-1-mem_ext_length;
15896 for (j=0;j<n;j++) {
15897 append_to_name(xord((int)mp->MP_mem_default[j]));
15899 for (j=a;j<b;j++) {
15900 append_to_name(mp->buffer[j]);
15902 for (j=mem_default_length-mem_ext_length;
15903 j<mem_default_length;j++) {
15904 append_to_name(xord((int)mp->MP_mem_default[j]));
15906 mp->name_of_file[k]=0;
15910 @ Here is the only place we use |pack_buffered_name|. This part of the program
15911 becomes active when a ``virgin'' \MP\ is trying to get going, just after
15912 the preliminary initialization, or when the user is substituting another
15913 mem file by typing `\.\&' after the initial `\.{**}' prompt. The buffer
15914 contains the first line of input in |buffer[loc..(last-1)]|, where
15915 |loc<last| and |buffer[loc]<>" "|.
15918 boolean mp_open_mem_file (MP mp) ;
15921 boolean mp_open_mem_file (MP mp) {
15922 int j; /* the first space after the file name */
15923 if (mp->mem_name!=NULL) {
15924 mp->mem_file = (mp->open_file)(mp->mem_name, "rb", mp_filetype_memfile);
15925 if ( mp->mem_file ) return true;
15928 if ( mp->buffer[loc]=='&' ) {
15929 incr(loc); j=loc; mp->buffer[mp->last]=' ';
15930 while ( mp->buffer[j]!=' ' ) incr(j);
15931 mp_pack_buffered_name(mp, 0,loc,j); /* try first without the system file area */
15932 if ( mp_w_open_in(mp, &mp->mem_file) ) goto FOUND;
15934 wterm_ln("Sorry, I can\'t find that mem file; will try PLAIN.");
15935 @.Sorry, I can't find...@>
15938 /* now pull out all the stops: try for the system \.{plain} file */
15939 mp_pack_buffered_name(mp, mem_default_length-mem_ext_length,0,0);
15940 if ( ! mp_w_open_in(mp, &mp->mem_file) ) {
15942 wterm_ln("I can\'t find the PLAIN mem file!\n");
15943 @.I can't find PLAIN...@>
15948 loc=j; return true;
15951 @ Operating systems often make it possible to determine the exact name (and
15952 possible version number) of a file that has been opened. The following routine,
15953 which simply makes a \MP\ string from the value of |name_of_file|, should
15954 ideally be changed to deduce the full name of file~|f|, which is the file
15955 most recently opened, if it is possible to do this.
15956 @^system dependencies@>
15959 #define mp_a_make_name_string(A,B) mp_make_name_string(A)
15960 #define mp_b_make_name_string(A,B) mp_make_name_string(A)
15961 #define mp_w_make_name_string(A,B) mp_make_name_string(A)
15964 str_number mp_make_name_string (MP mp) {
15965 int k; /* index into |name_of_file| */
15966 str_room(mp->name_length);
15967 for (k=0;k<mp->name_length;k++) {
15968 append_char(xord((int)mp->name_of_file[k]));
15970 return mp_make_string(mp);
15973 @ Now let's consider the ``driver''
15974 routines by which \MP\ deals with file names
15975 in a system-independent manner. First comes a procedure that looks for a
15976 file name in the input by taking the information from the input buffer.
15977 (We can't use |get_next|, because the conversion to tokens would
15978 destroy necessary information.)
15980 This procedure doesn't allow semicolons or percent signs to be part of
15981 file names, because of other conventions of \MP.
15982 {\sl The {\logos METAFONT\/}book} doesn't
15983 use semicolons or percents immediately after file names, but some users
15984 no doubt will find it natural to do so; therefore system-dependent
15985 changes to allow such characters in file names should probably
15986 be made with reluctance, and only when an entire file name that
15987 includes special characters is ``quoted'' somehow.
15988 @^system dependencies@>
15990 @c void mp_scan_file_name (MP mp) {
15992 while ( mp->buffer[loc]==' ' ) incr(loc);
15994 if ( (mp->buffer[loc]==';')||(mp->buffer[loc]=='%') ) break;
15995 if ( ! mp_more_name(mp, mp->buffer[loc]) ) break;
16001 @ Here is another version that takes its input from a string.
16003 @<Declare subroutines for parsing file names@>=
16004 void mp_str_scan_file (MP mp, str_number s) {
16005 pool_pointer p,q; /* current position and stopping point */
16007 p=mp->str_start[s]; q=str_stop(s);
16009 if ( ! mp_more_name(mp, mp->str_pool[p]) ) break;
16015 @ And one that reads from a |char*|.
16017 @<Declare subroutines for parsing file names@>=
16018 void mp_ptr_scan_file (MP mp, char *s) {
16019 char *p, *q; /* current position and stopping point */
16021 p=s; q=p+strlen(s);
16023 if ( ! mp_more_name(mp, *p)) break;
16030 @ The global variable |job_name| contains the file name that was first
16031 \&{input} by the user. This name is extended by `\.{.log}' and `\.{ps}' and
16032 `\.{.mem}' and `\.{.tfm}' in order to make the names of \MP's output files.
16035 boolean log_opened; /* has the transcript file been opened? */
16036 char *log_name; /* full name of the log file */
16038 @ @<Option variables@>=
16039 char *job_name; /* principal file name */
16041 @ Initially |job_name=NULL|; it becomes nonzero as soon as the true name is known.
16042 We have |job_name=NULL| if and only if the `\.{log}' file has not been opened,
16043 except of course for a short time just after |job_name| has become nonzero.
16045 @<Allocate or ...@>=
16046 mp->job_name=opt->job_name;
16047 mp->log_opened=false;
16049 @ @<Dealloc variables@>=
16050 xfree(mp->job_name);
16052 @ Here is a routine that manufactures the output file names, assuming that
16053 |job_name<>0|. It ignores and changes the current settings of |cur_area|
16056 @d pack_cur_name mp_pack_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext)
16059 void mp_pack_job_name (MP mp, char *s) ;
16061 @ @c void mp_pack_job_name (MP mp, char *s) { /* |s = ".log"|, |".mem"|, |".ps"|, or .\\{nnn} */
16062 xfree(mp->cur_name); mp->cur_name=xstrdup(mp->job_name);
16063 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16064 xfree(mp->cur_ext); mp->cur_ext=xstrdup(s);
16068 @ If some trouble arises when \MP\ tries to open a file, the following
16069 routine calls upon the user to supply another file name. Parameter~|s|
16070 is used in the error message to identify the type of file; parameter~|e|
16071 is the default extension if none is given. Upon exit from the routine,
16072 variables |cur_name|, |cur_area|, |cur_ext|, and |name_of_file| are
16073 ready for another attempt at file opening.
16076 void mp_prompt_file_name (MP mp,char * s, char * e) ;
16078 @ @c void mp_prompt_file_name (MP mp,char * s, char * e) {
16079 size_t k; /* index into |buffer| */
16080 char * saved_cur_name;
16081 if ( mp->interaction==mp_scroll_mode )
16083 if (strcmp(s,"input file name")==0) {
16084 print_err("I can\'t find file `");
16085 @.I can't find file x@>
16087 print_err("I can\'t write on file `");
16089 @.I can't write on file x@>
16090 mp_print_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext);
16091 mp_print(mp, "'.");
16092 if (strcmp(e,"")==0)
16093 mp_show_context(mp);
16094 mp_print_nl(mp, "Please type another "); mp_print(mp, s);
16096 if ( mp->interaction<mp_scroll_mode )
16097 mp_fatal_error(mp, "*** (job aborted, file error in nonstop mode)");
16098 @.job aborted, file error...@>
16099 saved_cur_name = xstrdup(mp->cur_name);
16100 clear_terminal; prompt_input(": "); @<Scan file name in the buffer@>;
16101 if (strcmp(mp->cur_ext,"")==0)
16103 if (strlen(mp->cur_name)==0) {
16104 mp->cur_name=saved_cur_name;
16106 xfree(saved_cur_name);
16111 @ @<Scan file name in the buffer@>=
16113 mp_begin_name(mp); k=mp->first;
16114 while ( (mp->buffer[k]==' ')&&(k<mp->last) ) incr(k);
16116 if ( k==mp->last ) break;
16117 if ( ! mp_more_name(mp, mp->buffer[k]) ) break;
16123 @ The |open_log_file| routine is used to open the transcript file and to help
16124 it catch up to what has previously been printed on the terminal.
16126 @c void mp_open_log_file (MP mp) {
16127 int old_setting; /* previous |selector| setting */
16128 int k; /* index into |months| and |buffer| */
16129 int l; /* end of first input line */
16130 integer m; /* the current month */
16131 char *months="JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC";
16132 /* abbreviations of month names */
16133 old_setting=mp->selector;
16134 if ( mp->job_name==NULL ) {
16135 mp->job_name=xstrdup("mpout");
16137 mp_pack_job_name(mp,".log");
16138 while ( ! mp_a_open_out(mp, &mp->log_file, mp_filetype_log) ) {
16139 @<Try to get a different log file name@>;
16141 mp->log_name=xstrdup(mp->name_of_file);
16142 mp->selector=log_only; mp->log_opened=true;
16143 @<Print the banner line, including the date and time@>;
16144 mp->input_stack[mp->input_ptr]=mp->cur_input;
16145 /* make sure bottom level is in memory */
16147 if (!mp->noninteractive) {
16148 mp_print_nl(mp, "**");
16149 l=mp->input_stack[0].limit_field-1; /* last position of first line */
16150 for (k=0;k<=l;k++) mp_print_str(mp, mp->buffer[k]);
16151 mp_print_ln(mp); /* now the transcript file contains the first line of input */
16153 mp->selector=old_setting+2; /* |log_only| or |term_and_log| */
16156 @ @<Dealloc variables@>=
16157 xfree(mp->log_name);
16159 @ Sometimes |open_log_file| is called at awkward moments when \MP\ is
16160 unable to print error messages or even to |show_context|.
16161 The |prompt_file_name| routine can result in a |fatal_error|, but the |error|
16162 routine will not be invoked because |log_opened| will be false.
16164 The normal idea of |mp_batch_mode| is that nothing at all should be written
16165 on the terminal. However, in the unusual case that
16166 no log file could be opened, we make an exception and allow
16167 an explanatory message to be seen.
16169 Incidentally, the program always refers to the log file as a `\.{transcript
16170 file}', because some systems cannot use the extension `\.{.log}' for
16173 @<Try to get a different log file name@>=
16175 mp->selector=term_only;
16176 mp_prompt_file_name(mp, "transcript file name",".log");
16179 @ @<Print the banner...@>=
16182 mp_print(mp, mp->mem_ident); mp_print(mp, " ");
16183 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_day]));
16184 mp_print_char(mp, ' ');
16185 m=mp_round_unscaled(mp, mp->internal[mp_month]);
16186 for (k=3*m-3;k<3*m;k++) { wlog_chr(months[k]); }
16187 mp_print_char(mp, ' ');
16188 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_year]));
16189 mp_print_char(mp, ' ');
16190 m=mp_round_unscaled(mp, mp->internal[mp_time]);
16191 mp_print_dd(mp, m / 60); mp_print_char(mp, ':'); mp_print_dd(mp, m % 60);
16194 @ The |try_extension| function tries to open an input file determined by
16195 |cur_name|, |cur_area|, and the argument |ext|. It returns |false| if it
16196 can't find the file in |cur_area| or the appropriate system area.
16198 @c boolean mp_try_extension (MP mp,char *ext) {
16199 mp_pack_file_name(mp, mp->cur_name,mp->cur_area, ext);
16200 in_name=xstrdup(mp->cur_name);
16201 in_area=xstrdup(mp->cur_area);
16202 if ( mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16205 if (strcmp(ext,".mf")==0 ) in_area=xstrdup(MF_area);
16206 else in_area=xstrdup(MP_area);
16207 mp_pack_file_name(mp, mp->cur_name,in_area,ext);
16208 return mp_a_open_in(mp, &cur_file, mp_filetype_program);
16213 @ Let's turn now to the procedure that is used to initiate file reading
16214 when an `\.{input}' command is being processed.
16216 @c void mp_start_input (MP mp) { /* \MP\ will \.{input} something */
16217 char *fname = NULL;
16218 @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>;
16220 mp_begin_file_reading(mp); /* set up |cur_file| and new level of input */
16221 if ( strlen(mp->cur_ext)==0 ) {
16222 if ( mp_try_extension(mp, ".mp") ) break;
16223 else if ( mp_try_extension(mp, "") ) break;
16224 else if ( mp_try_extension(mp, ".mf") ) break;
16225 /* |else do_nothing; | */
16226 } else if ( mp_try_extension(mp, mp->cur_ext) ) {
16229 mp_end_file_reading(mp); /* remove the level that didn't work */
16230 mp_prompt_file_name(mp, "input file name","");
16232 name=mp_a_make_name_string(mp, cur_file);
16233 fname = xstrdup(mp->name_of_file);
16234 if ( mp->job_name==NULL ) {
16235 mp->job_name=xstrdup(mp->cur_name);
16236 mp_open_log_file(mp);
16237 } /* |open_log_file| doesn't |show_context|, so |limit|
16238 and |loc| needn't be set to meaningful values yet */
16239 if ( ((int)mp->term_offset+(int)strlen(fname)) > (mp->max_print_line-2)) mp_print_ln(mp);
16240 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
16241 mp_print_char(mp, '('); incr(mp->open_parens); mp_print(mp, fname);
16244 @<Flush |name| and replace it with |cur_name| if it won't be needed@>;
16245 @<Read the first line of the new file@>;
16248 @ This code should be omitted if |a_make_name_string| returns something other
16249 than just a copy of its argument and the full file name is needed for opening
16250 \.{MPX} files or implementing the switch-to-editor option.
16251 @^system dependencies@>
16253 @<Flush |name| and replace it with |cur_name| if it won't be needed@>=
16254 mp_flush_string(mp, name); name=rts(mp->cur_name); xfree(mp->cur_name)
16256 @ If the file is empty, it is considered to contain a single blank line,
16257 so there is no need to test the return value.
16259 @<Read the first line...@>=
16262 (void)mp_input_ln(mp, cur_file );
16263 mp_firm_up_the_line(mp);
16264 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
16267 @ @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>=
16268 while ( token_state &&(loc==null) ) mp_end_token_list(mp);
16269 if ( token_state ) {
16270 print_err("File names can't appear within macros");
16271 @.File names can't...@>
16272 help3("Sorry...I've converted what follows to tokens,")
16273 ("possibly garbaging the name you gave.")
16274 ("Please delete the tokens and insert the name again.");
16277 if ( file_state ) {
16278 mp_scan_file_name(mp);
16280 xfree(mp->cur_name); mp->cur_name=xstrdup("");
16281 xfree(mp->cur_ext); mp->cur_ext =xstrdup("");
16282 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16285 @ The following simple routine starts reading the \.{MPX} file associated
16286 with the current input file.
16288 @c void mp_start_mpx_input (MP mp) {
16289 char *origname = NULL; /* a copy of nameoffile */
16290 mp_pack_file_name(mp, in_name, in_area, ".mpx");
16291 @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16292 |goto not_found| if there is a problem@>;
16293 mp_begin_file_reading(mp);
16294 if ( ! mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16295 mp_end_file_reading(mp);
16298 name=mp_a_make_name_string(mp, cur_file);
16299 mp->mpx_name[index]=name; add_str_ref(name);
16300 @<Read the first line of the new file@>;
16303 @<Explain that the \.{MPX} file can't be read and |succumb|@>;
16307 @ This should ideally be changed to do whatever is necessary to create the
16308 \.{MPX} file given by |name_of_file| if it does not exist or if it is out
16309 of date. This requires invoking \.{MPtoTeX} on the |origname| and passing
16310 the results through \TeX\ and \.{DVItoMP}. (It is possible to use a
16311 completely different typesetting program if suitable postprocessor is
16312 available to perform the function of \.{DVItoMP}.)
16313 @^system dependencies@>
16315 @ @<Exported types@>=
16316 typedef int (*mp_run_make_mpx_command)(MP mp, char *origname, char *mtxname);
16318 @ @<Option variables@>=
16319 mp_run_make_mpx_command run_make_mpx;
16321 @ @<Allocate or initialize ...@>=
16322 set_callback_option(run_make_mpx);
16324 @ @<Internal library declarations@>=
16325 int mp_run_make_mpx (MP mp, char *origname, char *mtxname);
16327 @ The default does nothing.
16329 int mp_run_make_mpx (MP mp, char *origname, char *mtxname) {
16330 if (mp && origname && mtxname) /* for -W */
16335 @ @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16336 |goto not_found| if there is a problem@>=
16337 origname = mp_xstrdup(mp,mp->name_of_file);
16338 *(origname+strlen(origname)-1)=0; /* drop the x */
16339 if (!(mp->run_make_mpx)(mp, origname, mp->name_of_file))
16342 @ @<Explain that the \.{MPX} file can't be read and |succumb|@>=
16343 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16344 mp_print_nl(mp, ">> ");
16345 mp_print(mp, origname);
16346 mp_print_nl(mp, ">> ");
16347 mp_print(mp, mp->name_of_file);
16348 mp_print_nl(mp, "! Unable to make mpx file");
16349 help4("The two files given above are one of your source files")
16350 ("and an auxiliary file I need to read to find out what your")
16351 ("btex..etex blocks mean. If you don't know why I had trouble,")
16352 ("try running it manually through MPtoTeX, TeX, and DVItoMP");
16355 @ The last file-opening commands are for files accessed via the \&{readfrom}
16356 @:read_from_}{\&{readfrom} primitive@>
16357 operator and the \&{write} command. Such files are stored in separate arrays.
16358 @:write_}{\&{write} primitive@>
16360 @<Types in the outer block@>=
16361 typedef unsigned int readf_index; /* |0..max_read_files| */
16362 typedef unsigned int write_index; /* |0..max_write_files| */
16365 readf_index max_read_files; /* maximum number of simultaneously open \&{readfrom} files */
16366 void ** rd_file; /* \&{readfrom} files */
16367 char ** rd_fname; /* corresponding file name or 0 if file not open */
16368 readf_index read_files; /* number of valid entries in the above arrays */
16369 write_index max_write_files; /* maximum number of simultaneously open \&{write} */
16370 void ** wr_file; /* \&{write} files */
16371 char ** wr_fname; /* corresponding file name or 0 if file not open */
16372 write_index write_files; /* number of valid entries in the above arrays */
16374 @ @<Allocate or initialize ...@>=
16375 mp->max_read_files=8;
16376 mp->rd_file = xmalloc((mp->max_read_files+1),sizeof(void *));
16377 mp->rd_fname = xmalloc((mp->max_read_files+1),sizeof(char *));
16378 memset(mp->rd_fname, 0, sizeof(char *)*(mp->max_read_files+1));
16380 mp->max_write_files=8;
16381 mp->wr_file = xmalloc((mp->max_write_files+1),sizeof(void *));
16382 mp->wr_fname = xmalloc((mp->max_write_files+1),sizeof(char *));
16383 memset(mp->wr_fname, 0, sizeof(char *)*(mp->max_write_files+1));
16387 @ This routine starts reading the file named by string~|s| without setting
16388 |loc|, |limit|, or |name|. It returns |false| if the file is empty or cannot
16389 be opened. Otherwise it updates |rd_file[n]| and |rd_fname[n]|.
16391 @c boolean mp_start_read_input (MP mp,char *s, readf_index n) {
16392 mp_ptr_scan_file(mp, s);
16394 mp_begin_file_reading(mp);
16395 if ( ! mp_a_open_in(mp, &mp->rd_file[n], (mp_filetype_text+n)) )
16397 if ( ! mp_input_ln(mp, mp->rd_file[n] ) ) {
16398 (mp->close_file)(mp->rd_file[n]);
16401 mp->rd_fname[n]=xstrdup(mp->name_of_file);
16404 mp_end_file_reading(mp);
16408 @ Open |wr_file[n]| using file name~|s| and update |wr_fname[n]|.
16411 void mp_open_write_file (MP mp, char *s, readf_index n) ;
16413 @ @c void mp_open_write_file (MP mp,char *s, readf_index n) {
16414 mp_ptr_scan_file(mp, s);
16416 while ( ! mp_a_open_out(mp, &mp->wr_file[n], (mp_filetype_text+n)) )
16417 mp_prompt_file_name(mp, "file name for write output","");
16418 mp->wr_fname[n]=xstrdup(mp->name_of_file);
16422 @* \[36] Introduction to the parsing routines.
16423 We come now to the central nervous system that sparks many of \MP's activities.
16424 By evaluating expressions, from their primary constituents to ever larger
16425 subexpressions, \MP\ builds the structures that ultimately define complete
16426 pictures or fonts of type.
16428 Four mutually recursive subroutines are involved in this process: We call them
16429 $$\hbox{|scan_primary|, |scan_secondary|, |scan_tertiary|,
16430 and |scan_expression|.}$$
16432 Each of them is parameterless and begins with the first token to be scanned
16433 already represented in |cur_cmd|, |cur_mod|, and |cur_sym|. After execution,
16434 the value of the primary or secondary or tertiary or expression that was
16435 found will appear in the global variables |cur_type| and |cur_exp|. The
16436 token following the expression will be represented in |cur_cmd|, |cur_mod|,
16439 Technically speaking, the parsing algorithms are ``LL(1),'' more or less;
16440 backup mechanisms have been added in order to provide reasonable error
16444 small_number cur_type; /* the type of the expression just found */
16445 integer cur_exp; /* the value of the expression just found */
16450 @ Many different kinds of expressions are possible, so it is wise to have
16451 precise descriptions of what |cur_type| and |cur_exp| mean in all cases:
16454 |cur_type=mp_vacuous| means that this expression didn't turn out to have a
16455 value at all, because it arose from a \&{begingroup}$\,\ldots\,$\&{endgroup}
16456 construction in which there was no expression before the \&{endgroup}.
16457 In this case |cur_exp| has some irrelevant value.
16460 |cur_type=mp_boolean_type| means that |cur_exp| is either |true_code|
16464 |cur_type=mp_unknown_boolean| means that |cur_exp| points to a capsule
16465 node that is in the ring of variables equivalent
16466 to at least one undefined boolean variable.
16469 |cur_type=mp_string_type| means that |cur_exp| is a string number (i.e., an
16470 integer in the range |0<=cur_exp<str_ptr|). That string's reference count
16471 includes this particular reference.
16474 |cur_type=mp_unknown_string| means that |cur_exp| points to a capsule
16475 node that is in the ring of variables equivalent
16476 to at least one undefined string variable.
16479 |cur_type=mp_pen_type| means that |cur_exp| points to a node in a pen. Nobody
16480 else points to any of the nodes in this pen. The pen may be polygonal or
16484 |cur_type=mp_unknown_pen| means that |cur_exp| points to a capsule
16485 node that is in the ring of variables equivalent
16486 to at least one undefined pen variable.
16489 |cur_type=mp_path_type| means that |cur_exp| points to a the first node of
16490 a path; nobody else points to this particular path. The control points of
16491 the path will have been chosen.
16494 |cur_type=mp_unknown_path| means that |cur_exp| points to a capsule
16495 node that is in the ring of variables equivalent
16496 to at least one undefined path variable.
16499 |cur_type=mp_picture_type| means that |cur_exp| points to an edge header node.
16500 There may be other pointers to this particular set of edges. The header node
16501 contains a reference count that includes this particular reference.
16504 |cur_type=mp_unknown_picture| means that |cur_exp| points to a capsule
16505 node that is in the ring of variables equivalent
16506 to at least one undefined picture variable.
16509 |cur_type=mp_transform_type| means that |cur_exp| points to a |mp_transform_type|
16510 capsule node. The |value| part of this capsule
16511 points to a transform node that contains six numeric values,
16512 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16515 |cur_type=mp_color_type| means that |cur_exp| points to a |color_type|
16516 capsule node. The |value| part of this capsule
16517 points to a color node that contains three numeric values,
16518 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16521 |cur_type=mp_cmykcolor_type| means that |cur_exp| points to a |mp_cmykcolor_type|
16522 capsule node. The |value| part of this capsule
16523 points to a color node that contains four numeric values,
16524 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16527 |cur_type=mp_pair_type| means that |cur_exp| points to a capsule
16528 node whose type is |mp_pair_type|. The |value| part of this capsule
16529 points to a pair node that contains two numeric values,
16530 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16533 |cur_type=mp_known| means that |cur_exp| is a |scaled| value.
16536 |cur_type=mp_dependent| means that |cur_exp| points to a capsule node whose type
16537 is |dependent|. The |dep_list| field in this capsule points to the associated
16541 |cur_type=mp_proto_dependent| means that |cur_exp| points to a |mp_proto_dependent|
16542 capsule node. The |dep_list| field in this capsule
16543 points to the associated dependency list.
16546 |cur_type=independent| means that |cur_exp| points to a capsule node
16547 whose type is |independent|. This somewhat unusual case can arise, for
16548 example, in the expression
16549 `$x+\&{begingroup}\penalty0\,\&{string}\,x; 0\,\&{endgroup}$'.
16552 |cur_type=mp_token_list| means that |cur_exp| points to a linked list of
16553 tokens. This case arises only on the left-hand side of an assignment
16554 (`\.{:=}') operation, under very special circumstances.
16556 \smallskip\noindent
16557 The possible settings of |cur_type| have been listed here in increasing
16558 numerical order. Notice that |cur_type| will never be |mp_numeric_type| or
16559 |suffixed_macro| or |mp_unsuffixed_macro|, although variables of those types
16560 are allowed. Conversely, \MP\ has no variables of type |mp_vacuous| or
16563 @ Capsules are two-word nodes that have a similar meaning
16564 to |cur_type| and |cur_exp|. Such nodes have |name_type=capsule|
16565 and |link<=mp_void|; and their |type| field is one of the possibilities for
16566 |cur_type| listed above.
16568 The |value| field of a capsule is, in most cases, the value that
16569 corresponds to its |type|, as |cur_exp| corresponds to |cur_type|.
16570 However, when |cur_exp| would point to a capsule,
16571 no extra layer of indirection is present; the |value|
16572 field is what would have been called |value(cur_exp)| if it had not been
16573 encapsulated. Furthermore, if the type is |dependent| or
16574 |mp_proto_dependent|, the |value| field of a capsule is replaced by
16575 |dep_list| and |prev_dep| fields, since dependency lists in capsules are
16576 always part of the general |dep_list| structure.
16578 The |get_x_next| routine is careful not to change the values of |cur_type|
16579 and |cur_exp| when it gets an expanded token. However, |get_x_next| might
16580 call a macro, which might parse an expression, which might execute lots of
16581 commands in a group; hence it's possible that |cur_type| might change
16582 from, say, |mp_unknown_boolean| to |mp_boolean_type|, or from |dependent| to
16583 |known| or |independent|, during the time |get_x_next| is called. The
16584 programs below are careful to stash sensitive intermediate results in
16585 capsules, so that \MP's generality doesn't cause trouble.
16587 Here's a procedure that illustrates these conventions. It takes
16588 the contents of $(|cur_type|\kern-.3pt,|cur_exp|\kern-.3pt)$
16589 and stashes them away in a
16590 capsule. It is not used when |cur_type=mp_token_list|.
16591 After the operation, |cur_type=mp_vacuous|; hence there is no need to
16592 copy path lists or to update reference counts, etc.
16594 The special link |mp_void| is put on the capsule returned by
16595 |stash_cur_exp|, because this procedure is used to store macro parameters
16596 that must be easily distinguishable from token lists.
16598 @<Declare the stashing/unstashing routines@>=
16599 pointer mp_stash_cur_exp (MP mp) {
16600 pointer p; /* the capsule that will be returned */
16601 switch (mp->cur_type) {
16602 case unknown_types:
16603 case mp_transform_type:
16604 case mp_color_type:
16607 case mp_proto_dependent:
16608 case mp_independent:
16609 case mp_cmykcolor_type:
16613 p=mp_get_node(mp, value_node_size); name_type(p)=mp_capsule;
16614 type(p)=mp->cur_type; value(p)=mp->cur_exp;
16617 mp->cur_type=mp_vacuous; link(p)=mp_void;
16621 @ The inverse of |stash_cur_exp| is the following procedure, which
16622 deletes an unnecessary capsule and puts its contents into |cur_type|
16625 The program steps of \MP\ can be divided into two categories: those in
16626 which |cur_type| and |cur_exp| are ``alive'' and those in which they are
16627 ``dead,'' in the sense that |cur_type| and |cur_exp| contain relevant
16628 information or not. It's important not to ignore them when they're alive,
16629 and it's important not to pay attention to them when they're dead.
16631 There's also an intermediate category: If |cur_type=mp_vacuous|, then
16632 |cur_exp| is irrelevant, hence we can proceed without caring if |cur_type|
16633 and |cur_exp| are alive or dead. In such cases we say that |cur_type|
16634 and |cur_exp| are {\sl dormant}. It is permissible to call |get_x_next|
16635 only when they are alive or dormant.
16637 The \\{stash} procedure above assumes that |cur_type| and |cur_exp|
16638 are alive or dormant. The \\{unstash} procedure assumes that they are
16639 dead or dormant; it resuscitates them.
16641 @<Declare the stashing/unstashing...@>=
16642 void mp_unstash_cur_exp (MP mp,pointer p) ;
16645 void mp_unstash_cur_exp (MP mp,pointer p) {
16646 mp->cur_type=type(p);
16647 switch (mp->cur_type) {
16648 case unknown_types:
16649 case mp_transform_type:
16650 case mp_color_type:
16653 case mp_proto_dependent:
16654 case mp_independent:
16655 case mp_cmykcolor_type:
16659 mp->cur_exp=value(p);
16660 mp_free_node(mp, p,value_node_size);
16665 @ The following procedure prints the values of expressions in an
16666 abbreviated format. If its first parameter |p| is null, the value of
16667 |(cur_type,cur_exp)| is displayed; otherwise |p| should be a capsule
16668 containing the desired value. The second parameter controls the amount of
16669 output. If it is~0, dependency lists will be abbreviated to
16670 `\.{linearform}' unless they consist of a single term. If it is greater
16671 than~1, complicated structures (pens, pictures, and paths) will be displayed
16674 @<Declare subroutines for printing expressions@>=
16675 @<Declare the procedure called |print_dp|@>;
16676 @<Declare the stashing/unstashing routines@>;
16677 void mp_print_exp (MP mp,pointer p, small_number verbosity) {
16678 boolean restore_cur_exp; /* should |cur_exp| be restored? */
16679 small_number t; /* the type of the expression */
16680 pointer q; /* a big node being displayed */
16681 integer v=0; /* the value of the expression */
16683 restore_cur_exp=false;
16685 p=mp_stash_cur_exp(mp); restore_cur_exp=true;
16688 if ( t<mp_dependent ) v=value(p); else if ( t<mp_independent ) v=dep_list(p);
16689 @<Print an abbreviated value of |v| with format depending on |t|@>;
16690 if ( restore_cur_exp ) mp_unstash_cur_exp(mp, p);
16693 @ @<Print an abbreviated value of |v| with format depending on |t|@>=
16695 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
16696 case mp_boolean_type:
16697 if ( v==true_code ) mp_print(mp, "true"); else mp_print(mp, "false");
16699 case unknown_types: case mp_numeric_type:
16700 @<Display a variable that's been declared but not defined@>;
16702 case mp_string_type:
16703 mp_print_char(mp, '"'); mp_print_str(mp, v); mp_print_char(mp, '"');
16705 case mp_pen_type: case mp_path_type: case mp_picture_type:
16706 @<Display a complex type@>;
16708 case mp_transform_type: case mp_color_type: case mp_pair_type: case mp_cmykcolor_type:
16709 if ( v==null ) mp_print_type(mp, t);
16710 else @<Display a big node@>;
16712 case mp_known:mp_print_scaled(mp, v); break;
16713 case mp_dependent: case mp_proto_dependent:
16714 mp_print_dp(mp, t,v,verbosity);
16716 case mp_independent:mp_print_variable_name(mp, p); break;
16717 default: mp_confusion(mp, "exp"); break;
16718 @:this can't happen exp}{\quad exp@>
16721 @ @<Display a big node@>=
16723 mp_print_char(mp, '('); q=v+mp->big_node_size[t];
16725 if ( type(v)==mp_known ) mp_print_scaled(mp, value(v));
16726 else if ( type(v)==mp_independent ) mp_print_variable_name(mp, v);
16727 else mp_print_dp(mp, type(v),dep_list(v),verbosity);
16729 if ( v!=q ) mp_print_char(mp, ',');
16731 mp_print_char(mp, ')');
16734 @ Values of type \&{picture}, \&{path}, and \&{pen} are displayed verbosely
16735 in the log file only, unless the user has given a positive value to
16738 @<Display a complex type@>=
16739 if ( verbosity<=1 ) {
16740 mp_print_type(mp, t);
16742 if ( mp->selector==term_and_log )
16743 if ( mp->internal[mp_tracing_online]<=0 ) {
16744 mp->selector=term_only;
16745 mp_print_type(mp, t); mp_print(mp, " (see the transcript file)");
16746 mp->selector=term_and_log;
16749 case mp_pen_type:mp_print_pen(mp, v,"",false); break;
16750 case mp_path_type:mp_print_path(mp, v,"",false); break;
16751 case mp_picture_type:mp_print_edges(mp, v,"",false); break;
16752 } /* there are no other cases */
16755 @ @<Declare the procedure called |print_dp|@>=
16756 void mp_print_dp (MP mp,small_number t, pointer p,
16757 small_number verbosity) {
16758 pointer q; /* the node following |p| */
16760 if ( (info(q)==null) || (verbosity>0) ) mp_print_dependency(mp, p,t);
16761 else mp_print(mp, "linearform");
16764 @ The displayed name of a variable in a ring will not be a capsule unless
16765 the ring consists entirely of capsules.
16767 @<Display a variable that's been declared but not defined@>=
16768 { mp_print_type(mp, t);
16770 { mp_print_char(mp, ' ');
16771 while ( (name_type(v)==mp_capsule) && (v!=p) ) v=value(v);
16772 mp_print_variable_name(mp, v);
16776 @ When errors are detected during parsing, it is often helpful to
16777 display an expression just above the error message, using |exp_err|
16778 or |disp_err| instead of |print_err|.
16780 @d exp_err(A) mp_disp_err(mp, null,(A)) /* displays the current expression */
16782 @<Declare subroutines for printing expressions@>=
16783 void mp_disp_err (MP mp,pointer p, char *s) {
16784 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16785 mp_print_nl(mp, ">> ");
16787 mp_print_exp(mp, p,1); /* ``medium verbose'' printing of the expression */
16789 mp_print_nl(mp, "! "); mp_print(mp, s);
16794 @ If |cur_type| and |cur_exp| contain relevant information that should
16795 be recycled, we will use the following procedure, which changes |cur_type|
16796 to |known| and stores a given value in |cur_exp|. We can think of |cur_type|
16797 and |cur_exp| as either alive or dormant after this has been done,
16798 because |cur_exp| will not contain a pointer value.
16800 @ @c void mp_flush_cur_exp (MP mp,scaled v) {
16801 switch (mp->cur_type) {
16802 case unknown_types: case mp_transform_type: case mp_color_type: case mp_pair_type:
16803 case mp_dependent: case mp_proto_dependent: case mp_independent: case mp_cmykcolor_type:
16804 mp_recycle_value(mp, mp->cur_exp);
16805 mp_free_node(mp, mp->cur_exp,value_node_size);
16807 case mp_string_type:
16808 delete_str_ref(mp->cur_exp); break;
16809 case mp_pen_type: case mp_path_type:
16810 mp_toss_knot_list(mp, mp->cur_exp); break;
16811 case mp_picture_type:
16812 delete_edge_ref(mp->cur_exp); break;
16816 mp->cur_type=mp_known; mp->cur_exp=v;
16819 @ There's a much more general procedure that is capable of releasing
16820 the storage associated with any two-word value packet.
16822 @<Declare the recycling subroutines@>=
16823 void mp_recycle_value (MP mp,pointer p) ;
16825 @ @c void mp_recycle_value (MP mp,pointer p) {
16826 small_number t; /* a type code */
16827 integer vv; /* another value */
16828 pointer q,r,s,pp; /* link manipulation registers */
16829 integer v=0; /* a value */
16831 if ( t<mp_dependent ) v=value(p);
16833 case undefined: case mp_vacuous: case mp_boolean_type: case mp_known:
16834 case mp_numeric_type:
16836 case unknown_types:
16837 mp_ring_delete(mp, p); break;
16838 case mp_string_type:
16839 delete_str_ref(v); break;
16840 case mp_path_type: case mp_pen_type:
16841 mp_toss_knot_list(mp, v); break;
16842 case mp_picture_type:
16843 delete_edge_ref(v); break;
16844 case mp_cmykcolor_type: case mp_pair_type: case mp_color_type:
16845 case mp_transform_type:
16846 @<Recycle a big node@>; break;
16847 case mp_dependent: case mp_proto_dependent:
16848 @<Recycle a dependency list@>; break;
16849 case mp_independent:
16850 @<Recycle an independent variable@>; break;
16851 case mp_token_list: case mp_structured:
16852 mp_confusion(mp, "recycle"); break;
16853 @:this can't happen recycle}{\quad recycle@>
16854 case mp_unsuffixed_macro: case mp_suffixed_macro:
16855 mp_delete_mac_ref(mp, value(p)); break;
16856 } /* there are no other cases */
16860 @ @<Recycle a big node@>=
16862 q=v+mp->big_node_size[t];
16864 q=q-2; mp_recycle_value(mp, q);
16866 mp_free_node(mp, v,mp->big_node_size[t]);
16869 @ @<Recycle a dependency list@>=
16872 while ( info(q)!=null ) q=link(q);
16873 link(prev_dep(p))=link(q);
16874 prev_dep(link(q))=prev_dep(p);
16875 link(q)=null; mp_flush_node_list(mp, dep_list(p));
16878 @ When an independent variable disappears, it simply fades away, unless
16879 something depends on it. In the latter case, a dependent variable whose
16880 coefficient of dependence is maximal will take its place.
16881 The relevant algorithm is due to Ignacio~A. Zabala, who implemented it
16882 as part of his Ph.D. thesis (Stanford University, December 1982).
16883 @^Zabala Salelles, Ignacio Andres@>
16885 For example, suppose that variable $x$ is being recycled, and that the
16886 only variables depending on~$x$ are $y=2x+a$ and $z=x+b$. In this case
16887 we want to make $y$ independent and $z=.5y-.5a+b$; no other variables
16888 will depend on~$y$. If $\\{tracingequations}>0$ in this situation,
16889 we will print `\.{\#\#\# -2x=-y+a}'.
16891 There's a slight complication, however: An independent variable $x$
16892 can occur both in dependency lists and in proto-dependency lists.
16893 This makes it necessary to be careful when deciding which coefficient
16896 Furthermore, this complication is not so slight when
16897 a proto-dependent variable is chosen to become independent. For example,
16898 suppose that $y=2x+100a$ is proto-dependent while $z=x+b$ is dependent;
16899 then we must change $z=.5y-50a+b$ to a proto-dependency, because of the
16900 large coefficient `50'.
16902 In order to deal with these complications without wasting too much time,
16903 we shall link together the occurrences of~$x$ among all the linear
16904 dependencies, maintaining separate lists for the dependent and
16905 proto-dependent cases.
16907 @<Recycle an independent variable@>=
16909 mp->max_c[mp_dependent]=0; mp->max_c[mp_proto_dependent]=0;
16910 mp->max_link[mp_dependent]=null; mp->max_link[mp_proto_dependent]=null;
16912 while ( q!=dep_head ) {
16913 s=value_loc(q); /* now |link(s)=dep_list(q)| */
16916 if ( info(r)==null ) break;;
16917 if ( info(r)!=p ) {
16920 t=type(q); link(s)=link(r); info(r)=q;
16921 if ( abs(value(r))>mp->max_c[t] ) {
16922 @<Record a new maximum coefficient of type |t|@>;
16924 link(r)=mp->max_link[t]; mp->max_link[t]=r;
16930 if ( (mp->max_c[mp_dependent]>0)||(mp->max_c[mp_proto_dependent]>0) ) {
16931 @<Choose a dependent variable to take the place of the disappearing
16932 independent variable, and change all remaining dependencies
16937 @ The code for independency removal makes use of three two-word arrays.
16940 integer max_c[mp_proto_dependent+1]; /* max coefficient magnitude */
16941 pointer max_ptr[mp_proto_dependent+1]; /* where |p| occurs with |max_c| */
16942 pointer max_link[mp_proto_dependent+1]; /* other occurrences of |p| */
16944 @ @<Record a new maximum coefficient...@>=
16946 if ( mp->max_c[t]>0 ) {
16947 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
16949 mp->max_c[t]=abs(value(r)); mp->max_ptr[t]=r;
16952 @ @<Choose a dependent...@>=
16954 if ( (mp->max_c[mp_dependent] / 010000 >= mp->max_c[mp_proto_dependent]) )
16957 t=mp_proto_dependent;
16958 @<Determine the dependency list |s| to substitute for the independent
16960 t=mp_dependent+mp_proto_dependent-t; /* complement |t| */
16961 if ( mp->max_c[t]>0 ) { /* we need to pick up an unchosen dependency */
16962 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
16964 if ( t!=mp_dependent ) { @<Substitute new dependencies in place of |p|@>; }
16965 else { @<Substitute new proto-dependencies in place of |p|@>;}
16966 mp_flush_node_list(mp, s);
16967 if ( mp->fix_needed ) mp_fix_dependencies(mp);
16971 @ Let |s=max_ptr[t]|. At this point we have $|value|(s)=\pm|max_c|[t]$,
16972 and |info(s)| points to the dependent variable~|pp| of type~|t| from
16973 whose dependency list we have removed node~|s|. We must reinsert
16974 node~|s| into the dependency list, with coefficient $-1.0$, and with
16975 |pp| as the new independent variable. Since |pp| will have a larger serial
16976 number than any other variable, we can put node |s| at the head of the
16979 @<Determine the dep...@>=
16980 s=mp->max_ptr[t]; pp=info(s); v=value(s);
16981 if ( t==mp_dependent ) value(s)=-fraction_one; else value(s)=-unity;
16982 r=dep_list(pp); link(s)=r;
16983 while ( info(r)!=null ) r=link(r);
16984 q=link(r); link(r)=null;
16985 prev_dep(q)=prev_dep(pp); link(prev_dep(pp))=q;
16987 if ( mp->cur_exp==pp ) if ( mp->cur_type==t ) mp->cur_type=mp_independent;
16988 if ( mp->internal[mp_tracing_equations]>0 ) {
16989 @<Show the transformed dependency@>;
16992 @ Now $(-v)$ times the formerly independent variable~|p| is being replaced
16993 by the dependency list~|s|.
16995 @<Show the transformed...@>=
16996 if ( mp_interesting(mp, p) ) {
16997 mp_begin_diagnostic(mp); mp_print_nl(mp, "### ");
16998 @:]]]\#\#\#_}{\.{\#\#\#}@>
16999 if ( v>0 ) mp_print_char(mp, '-');
17000 if ( t==mp_dependent ) vv=mp_round_fraction(mp, mp->max_c[mp_dependent]);
17001 else vv=mp->max_c[mp_proto_dependent];
17002 if ( vv!=unity ) mp_print_scaled(mp, vv);
17003 mp_print_variable_name(mp, p);
17004 while ( value(p) % s_scale>0 ) {
17005 mp_print(mp, "*4"); value(p)=value(p)-2;
17007 if ( t==mp_dependent ) mp_print_char(mp, '='); else mp_print(mp, " = ");
17008 mp_print_dependency(mp, s,t);
17009 mp_end_diagnostic(mp, false);
17012 @ Finally, there are dependent and proto-dependent variables whose
17013 dependency lists must be brought up to date.
17015 @<Substitute new dependencies...@>=
17016 for (t=mp_dependent;t<=mp_proto_dependent;t++){
17018 while ( r!=null ) {
17020 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17021 mp_make_fraction(mp, value(r),-v),s,t,mp_dependent);
17022 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
17023 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
17027 @ @<Substitute new proto...@>=
17028 for (t=mp_dependent;t<=mp_proto_dependent;t++) {
17030 while ( r!=null ) {
17032 if ( t==mp_dependent ) { /* for safety's sake, we change |q| to |mp_proto_dependent| */
17033 if ( mp->cur_exp==q ) if ( mp->cur_type==mp_dependent )
17034 mp->cur_type=mp_proto_dependent;
17035 dep_list(q)=mp_p_over_v(mp, dep_list(q),unity,mp_dependent,mp_proto_dependent);
17036 type(q)=mp_proto_dependent; value(r)=mp_round_fraction(mp, value(r));
17038 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17039 mp_make_scaled(mp, value(r),-v),s,mp_proto_dependent,mp_proto_dependent);
17040 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
17041 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
17045 @ Here are some routines that provide handy combinations of actions
17046 that are often needed during error recovery. For example,
17047 `|flush_error|' flushes the current expression, replaces it by
17048 a given value, and calls |error|.
17050 Errors often are detected after an extra token has already been scanned.
17051 The `\\{put\_get}' routines put that token back before calling |error|;
17052 then they get it back again. (Or perhaps they get another token, if
17053 the user has changed things.)
17056 void mp_flush_error (MP mp,scaled v);
17057 void mp_put_get_error (MP mp);
17058 void mp_put_get_flush_error (MP mp,scaled v) ;
17061 void mp_flush_error (MP mp,scaled v) {
17062 mp_error(mp); mp_flush_cur_exp(mp, v);
17064 void mp_put_get_error (MP mp) {
17065 mp_back_error(mp); mp_get_x_next(mp);
17067 void mp_put_get_flush_error (MP mp,scaled v) {
17068 mp_put_get_error(mp);
17069 mp_flush_cur_exp(mp, v);
17072 @ A global variable |var_flag| is set to a special command code
17073 just before \MP\ calls |scan_expression|, if the expression should be
17074 treated as a variable when this command code immediately follows. For
17075 example, |var_flag| is set to |assignment| at the beginning of a
17076 statement, because we want to know the {\sl location\/} of a variable at
17077 the left of `\.{:=}', not the {\sl value\/} of that variable.
17079 The |scan_expression| subroutine calls |scan_tertiary|,
17080 which calls |scan_secondary|, which calls |scan_primary|, which sets
17081 |var_flag:=0|. In this way each of the scanning routines ``knows''
17082 when it has been called with a special |var_flag|, but |var_flag| is
17085 A variable preceding a command that equals |var_flag| is converted to a
17086 token list rather than a value. Furthermore, an `\.{=}' sign following an
17087 expression with |var_flag=assignment| is not considered to be a relation
17088 that produces boolean expressions.
17092 int var_flag; /* command that wants a variable */
17097 @* \[37] Parsing primary expressions.
17098 The first parsing routine, |scan_primary|, is also the most complicated one,
17099 since it involves so many different cases. But each case---with one
17100 exception---is fairly simple by itself.
17102 When |scan_primary| begins, the first token of the primary to be scanned
17103 should already appear in |cur_cmd|, |cur_mod|, and |cur_sym|. The values
17104 of |cur_type| and |cur_exp| should be either dead or dormant, as explained
17105 earlier. If |cur_cmd| is not between |min_primary_command| and
17106 |max_primary_command|, inclusive, a syntax error will be signaled.
17108 @<Declare the basic parsing subroutines@>=
17109 void mp_scan_primary (MP mp) {
17110 pointer p,q,r; /* for list manipulation */
17111 quarterword c; /* a primitive operation code */
17112 int my_var_flag; /* initial value of |my_var_flag| */
17113 pointer l_delim,r_delim; /* hash addresses of a delimiter pair */
17114 @<Other local variables for |scan_primary|@>;
17115 my_var_flag=mp->var_flag; mp->var_flag=0;
17118 @<Supply diagnostic information, if requested@>;
17119 switch (mp->cur_cmd) {
17120 case left_delimiter:
17121 @<Scan a delimited primary@>; break;
17123 @<Scan a grouped primary@>; break;
17125 @<Scan a string constant@>; break;
17126 case numeric_token:
17127 @<Scan a primary that starts with a numeric token@>; break;
17129 @<Scan a nullary operation@>; break;
17130 case unary: case type_name: case cycle: case plus_or_minus:
17131 @<Scan a unary operation@>; break;
17132 case primary_binary:
17133 @<Scan a binary operation with `\&{of}' between its operands@>; break;
17135 @<Convert a suffix to a string@>; break;
17136 case internal_quantity:
17137 @<Scan an internal numeric quantity@>; break;
17138 case capsule_token:
17139 mp_make_exp_copy(mp, mp->cur_mod); break;
17141 @<Scan a variable primary; |goto restart| if it turns out to be a macro@>; break;
17143 mp_bad_exp(mp, "A primary"); goto RESTART; break;
17144 @.A primary expression...@>
17146 mp_get_x_next(mp); /* the routines |goto done| if they don't want this */
17148 if ( mp->cur_cmd==left_bracket ) {
17149 if ( mp->cur_type>=mp_known ) {
17150 @<Scan a mediation construction@>;
17157 @ Errors at the beginning of expressions are flagged by |bad_exp|.
17159 @c void mp_bad_exp (MP mp,char * s) {
17161 print_err(s); mp_print(mp, " expression can't begin with `");
17162 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
17163 mp_print_char(mp, '\'');
17164 help4("I'm afraid I need some sort of value in order to continue,")
17165 ("so I've tentatively inserted `0'. You may want to")
17166 ("delete this zero and insert something else;")
17167 ("see Chapter 27 of The METAFONTbook for an example.");
17168 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17169 mp_back_input(mp); mp->cur_sym=0; mp->cur_cmd=numeric_token;
17170 mp->cur_mod=0; mp_ins_error(mp);
17171 save_flag=mp->var_flag; mp->var_flag=0; mp_get_x_next(mp);
17172 mp->var_flag=save_flag;
17175 @ @<Supply diagnostic information, if requested@>=
17177 if ( mp->panicking ) mp_check_mem(mp, false);
17179 if ( mp->interrupt!=0 ) if ( mp->OK_to_interrupt ) {
17180 mp_back_input(mp); check_interrupt; mp_get_x_next(mp);
17183 @ @<Scan a delimited primary@>=
17185 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
17186 mp_get_x_next(mp); mp_scan_expression(mp);
17187 if ( (mp->cur_cmd==comma) && (mp->cur_type>=mp_known) ) {
17188 @<Scan the rest of a delimited set of numerics@>;
17190 mp_check_delimiter(mp, l_delim,r_delim);
17194 @ The |stash_in| subroutine puts the current (numeric) expression into a field
17195 within a ``big node.''
17197 @c void mp_stash_in (MP mp,pointer p) {
17198 pointer q; /* temporary register */
17199 type(p)=mp->cur_type;
17200 if ( mp->cur_type==mp_known ) {
17201 value(p)=mp->cur_exp;
17203 if ( mp->cur_type==mp_independent ) {
17204 @<Stash an independent |cur_exp| into a big node@>;
17206 mp->mem[value_loc(p)]=mp->mem[value_loc(mp->cur_exp)];
17207 /* |dep_list(p):=dep_list(cur_exp)| and |prev_dep(p):=prev_dep(cur_exp)| */
17208 link(prev_dep(p))=p;
17210 mp_free_node(mp, mp->cur_exp,value_node_size);
17212 mp->cur_type=mp_vacuous;
17215 @ In rare cases the current expression can become |independent|. There
17216 may be many dependency lists pointing to such an independent capsule,
17217 so we can't simply move it into place within a big node. Instead,
17218 we copy it, then recycle it.
17220 @ @<Stash an independent |cur_exp|...@>=
17222 q=mp_single_dependency(mp, mp->cur_exp);
17223 if ( q==mp->dep_final ){
17224 type(p)=mp_known; value(p)=0; mp_free_node(mp, q,dep_node_size);
17226 type(p)=mp_dependent; mp_new_dep(mp, p,q);
17228 mp_recycle_value(mp, mp->cur_exp);
17231 @ This code uses the fact that |red_part_loc| and |green_part_loc|
17232 are synonymous with |x_part_loc| and |y_part_loc|.
17234 @<Scan the rest of a delimited set of numerics@>=
17236 p=mp_stash_cur_exp(mp);
17237 mp_get_x_next(mp); mp_scan_expression(mp);
17238 @<Make sure the second part of a pair or color has a numeric type@>;
17239 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
17240 if ( mp->cur_cmd==comma ) type(q)=mp_color_type;
17241 else type(q)=mp_pair_type;
17242 mp_init_big_node(mp, q); r=value(q);
17243 mp_stash_in(mp, y_part_loc(r));
17244 mp_unstash_cur_exp(mp, p);
17245 mp_stash_in(mp, x_part_loc(r));
17246 if ( mp->cur_cmd==comma ) {
17247 @<Scan the last of a triplet of numerics@>;
17249 if ( mp->cur_cmd==comma ) {
17250 type(q)=mp_cmykcolor_type;
17251 mp_init_big_node(mp, q); t=value(q);
17252 mp->mem[cyan_part_loc(t)]=mp->mem[red_part_loc(r)];
17253 value(cyan_part_loc(t))=value(red_part_loc(r));
17254 mp->mem[magenta_part_loc(t)]=mp->mem[green_part_loc(r)];
17255 value(magenta_part_loc(t))=value(green_part_loc(r));
17256 mp->mem[yellow_part_loc(t)]=mp->mem[blue_part_loc(r)];
17257 value(yellow_part_loc(t))=value(blue_part_loc(r));
17258 mp_recycle_value(mp, r);
17260 @<Scan the last of a quartet of numerics@>;
17262 mp_check_delimiter(mp, l_delim,r_delim);
17263 mp->cur_type=type(q);
17267 @ @<Make sure the second part of a pair or color has a numeric type@>=
17268 if ( mp->cur_type<mp_known ) {
17269 exp_err("Nonnumeric ypart has been replaced by 0");
17270 @.Nonnumeric...replaced by 0@>
17271 help4("I've started to scan a pair `(a,b)' or a color `(a,b,c)';")
17272 ("but after finding a nice `a' I found a `b' that isn't")
17273 ("of numeric type. So I've changed that part to zero.")
17274 ("(The b that I didn't like appears above the error message.)");
17275 mp_put_get_flush_error(mp, 0);
17278 @ @<Scan the last of a triplet of numerics@>=
17280 mp_get_x_next(mp); mp_scan_expression(mp);
17281 if ( mp->cur_type<mp_known ) {
17282 exp_err("Nonnumeric third part has been replaced by 0");
17283 @.Nonnumeric...replaced by 0@>
17284 help3("I've just scanned a color `(a,b,c)' or cmykcolor(a,b,c,d); but the `c'")
17285 ("isn't of numeric type. So I've changed that part to zero.")
17286 ("(The c that I didn't like appears above the error message.)");
17287 mp_put_get_flush_error(mp, 0);
17289 mp_stash_in(mp, blue_part_loc(r));
17292 @ @<Scan the last of a quartet of numerics@>=
17294 mp_get_x_next(mp); mp_scan_expression(mp);
17295 if ( mp->cur_type<mp_known ) {
17296 exp_err("Nonnumeric blackpart has been replaced by 0");
17297 @.Nonnumeric...replaced by 0@>
17298 help3("I've just scanned a cmykcolor `(c,m,y,k)'; but the `k' isn't")
17299 ("of numeric type. So I've changed that part to zero.")
17300 ("(The k that I didn't like appears above the error message.)");
17301 mp_put_get_flush_error(mp, 0);
17303 mp_stash_in(mp, black_part_loc(r));
17306 @ The local variable |group_line| keeps track of the line
17307 where a \&{begingroup} command occurred; this will be useful
17308 in an error message if the group doesn't actually end.
17310 @<Other local variables for |scan_primary|@>=
17311 integer group_line; /* where a group began */
17313 @ @<Scan a grouped primary@>=
17315 group_line=mp_true_line(mp);
17316 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17317 save_boundary_item(p);
17319 mp_do_statement(mp); /* ends with |cur_cmd>=semicolon| */
17320 } while (! (mp->cur_cmd!=semicolon));
17321 if ( mp->cur_cmd!=end_group ) {
17322 print_err("A group begun on line ");
17323 @.A group...never ended@>
17324 mp_print_int(mp, group_line);
17325 mp_print(mp, " never ended");
17326 help2("I saw a `begingroup' back there that hasn't been matched")
17327 ("by `endgroup'. So I've inserted `endgroup' now.");
17328 mp_back_error(mp); mp->cur_cmd=end_group;
17331 /* this might change |cur_type|, if independent variables are recycled */
17332 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17335 @ @<Scan a string constant@>=
17337 mp->cur_type=mp_string_type; mp->cur_exp=mp->cur_mod;
17340 @ Later we'll come to procedures that perform actual operations like
17341 addition, square root, and so on; our purpose now is to do the parsing.
17342 But we might as well mention those future procedures now, so that the
17343 suspense won't be too bad:
17346 |do_nullary(c)| does primitive operations that have no operands (e.g.,
17347 `\&{true}' or `\&{pencircle}');
17350 |do_unary(c)| applies a primitive operation to the current expression;
17353 |do_binary(p,c)| applies a primitive operation to the capsule~|p|
17354 and the current expression.
17356 @<Scan a nullary operation@>=mp_do_nullary(mp, mp->cur_mod)
17358 @ @<Scan a unary operation@>=
17360 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_primary(mp);
17361 mp_do_unary(mp, c); goto DONE;
17364 @ A numeric token might be a primary by itself, or it might be the
17365 numerator of a fraction composed solely of numeric tokens, or it might
17366 multiply the primary that follows (provided that the primary doesn't begin
17367 with a plus sign or a minus sign). The code here uses the facts that
17368 |max_primary_command=plus_or_minus| and
17369 |max_primary_command-1=numeric_token|. If a fraction is found that is less
17370 than unity, we try to retain higher precision when we use it in scalar
17373 @<Other local variables for |scan_primary|@>=
17374 scaled num,denom; /* for primaries that are fractions, like `1/2' */
17376 @ @<Scan a primary that starts with a numeric token@>=
17378 mp->cur_exp=mp->cur_mod; mp->cur_type=mp_known; mp_get_x_next(mp);
17379 if ( mp->cur_cmd!=slash ) {
17383 if ( mp->cur_cmd!=numeric_token ) {
17385 mp->cur_cmd=slash; mp->cur_mod=over; mp->cur_sym=frozen_slash;
17388 num=mp->cur_exp; denom=mp->cur_mod;
17389 if ( denom==0 ) { @<Protest division by zero@>; }
17390 else { mp->cur_exp=mp_make_scaled(mp, num,denom); }
17391 check_arith; mp_get_x_next(mp);
17393 if ( mp->cur_cmd>=min_primary_command ) {
17394 if ( mp->cur_cmd<numeric_token ) { /* in particular, |cur_cmd<>plus_or_minus| */
17395 p=mp_stash_cur_exp(mp); mp_scan_primary(mp);
17396 if ( (abs(num)>=abs(denom))||(mp->cur_type<mp_color_type) ) {
17397 mp_do_binary(mp, p,times);
17399 mp_frac_mult(mp, num,denom);
17400 mp_free_node(mp, p,value_node_size);
17407 @ @<Protest division...@>=
17409 print_err("Division by zero");
17410 @.Division by zero@>
17411 help1("I'll pretend that you meant to divide by 1."); mp_error(mp);
17414 @ @<Scan a binary operation with `\&{of}' between its operands@>=
17416 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
17417 if ( mp->cur_cmd!=of_token ) {
17418 mp_missing_err(mp, "of"); mp_print(mp, " for ");
17419 mp_print_cmd_mod(mp, primary_binary,c);
17421 help1("I've got the first argument; will look now for the other.");
17424 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_primary(mp);
17425 mp_do_binary(mp, p,c); goto DONE;
17428 @ @<Convert a suffix to a string@>=
17430 mp_get_x_next(mp); mp_scan_suffix(mp);
17431 mp->old_setting=mp->selector; mp->selector=new_string;
17432 mp_show_token_list(mp, mp->cur_exp,null,100000,0);
17433 mp_flush_token_list(mp, mp->cur_exp);
17434 mp->cur_exp=mp_make_string(mp); mp->selector=mp->old_setting;
17435 mp->cur_type=mp_string_type;
17439 @ If an internal quantity appears all by itself on the left of an
17440 assignment, we return a token list of length one, containing the address
17441 of the internal quantity plus |hash_end|. (This accords with the conventions
17442 of the save stack, as described earlier.)
17444 @<Scan an internal...@>=
17447 if ( my_var_flag==assignment ) {
17449 if ( mp->cur_cmd==assignment ) {
17450 mp->cur_exp=mp_get_avail(mp);
17451 info(mp->cur_exp)=q+hash_end; mp->cur_type=mp_token_list;
17456 mp->cur_type=mp_known; mp->cur_exp=mp->internal[q];
17459 @ The most difficult part of |scan_primary| has been saved for last, since
17460 it was necessary to build up some confidence first. We can now face the task
17461 of scanning a variable.
17463 As we scan a variable, we build a token list containing the relevant
17464 names and subscript values, simultaneously following along in the
17465 ``collective'' structure to see if we are actually dealing with a macro
17466 instead of a value.
17468 The local variables |pre_head| and |post_head| will point to the beginning
17469 of the prefix and suffix lists; |tail| will point to the end of the list
17470 that is currently growing.
17472 Another local variable, |tt|, contains partial information about the
17473 declared type of the variable-so-far. If |tt>=mp_unsuffixed_macro|, the
17474 relation |tt=type(q)| will always hold. If |tt=undefined|, the routine
17475 doesn't bother to update its information about type. And if
17476 |undefined<tt<mp_unsuffixed_macro|, the precise value of |tt| isn't critical.
17478 @ @<Other local variables for |scan_primary|@>=
17479 pointer pre_head,post_head,tail;
17480 /* prefix and suffix list variables */
17481 small_number tt; /* approximation to the type of the variable-so-far */
17482 pointer t; /* a token */
17483 pointer macro_ref = 0; /* reference count for a suffixed macro */
17485 @ @<Scan a variable primary...@>=
17487 fast_get_avail(pre_head); tail=pre_head; post_head=null; tt=mp_vacuous;
17489 t=mp_cur_tok(mp); link(tail)=t;
17490 if ( tt!=undefined ) {
17491 @<Find the approximate type |tt| and corresponding~|q|@>;
17492 if ( tt>=mp_unsuffixed_macro ) {
17493 @<Either begin an unsuffixed macro call or
17494 prepare for a suffixed one@>;
17497 mp_get_x_next(mp); tail=t;
17498 if ( mp->cur_cmd==left_bracket ) {
17499 @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>;
17501 if ( mp->cur_cmd>max_suffix_token ) break;
17502 if ( mp->cur_cmd<min_suffix_token ) break;
17503 } /* now |cur_cmd| is |internal_quantity|, |tag_token|, or |numeric_token| */
17504 @<Handle unusual cases that masquerade as variables, and |goto restart|
17505 or |goto done| if appropriate;
17506 otherwise make a copy of the variable and |goto done|@>;
17509 @ @<Either begin an unsuffixed macro call or...@>=
17512 if ( tt>mp_unsuffixed_macro ) { /* |tt=mp_suffixed_macro| */
17513 post_head=mp_get_avail(mp); tail=post_head; link(tail)=t;
17514 tt=undefined; macro_ref=value(q); add_mac_ref(macro_ref);
17516 @<Set up unsuffixed macro call and |goto restart|@>;
17520 @ @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>=
17522 mp_get_x_next(mp); mp_scan_expression(mp);
17523 if ( mp->cur_cmd!=right_bracket ) {
17524 @<Put the left bracket and the expression back to be rescanned@>;
17526 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17527 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp; mp->cur_sym=0;
17531 @ The left bracket that we thought was introducing a subscript might have
17532 actually been the left bracket in a mediation construction like `\.{x[a,b]}'.
17533 So we don't issue an error message at this point; but we do want to back up
17534 so as to avoid any embarrassment about our incorrect assumption.
17536 @<Put the left bracket and the expression back to be rescanned@>=
17538 mp_back_input(mp); /* that was the token following the current expression */
17539 mp_back_expr(mp); mp->cur_cmd=left_bracket;
17540 mp->cur_mod=0; mp->cur_sym=frozen_left_bracket;
17543 @ Here's a routine that puts the current expression back to be read again.
17545 @c void mp_back_expr (MP mp) {
17546 pointer p; /* capsule token */
17547 p=mp_stash_cur_exp(mp); link(p)=null; back_list(p);
17550 @ Unknown subscripts lead to the following error message.
17552 @c void mp_bad_subscript (MP mp) {
17553 exp_err("Improper subscript has been replaced by zero");
17554 @.Improper subscript...@>
17555 help3("A bracketed subscript must have a known numeric value;")
17556 ("unfortunately, what I found was the value that appears just")
17557 ("above this error message. So I'll try a zero subscript.");
17558 mp_flush_error(mp, 0);
17561 @ Every time we call |get_x_next|, there's a chance that the variable we've
17562 been looking at will disappear. Thus, we cannot safely keep |q| pointing
17563 into the variable structure; we need to start searching from the root each time.
17565 @<Find the approximate type |tt| and corresponding~|q|@>=
17568 p=link(pre_head); q=info(p); tt=undefined;
17569 if ( eq_type(q) % outer_tag==tag_token ) {
17571 if ( q==null ) goto DONE2;
17575 tt=type(q); goto DONE2;
17577 if ( type(q)!=mp_structured ) goto DONE2;
17578 q=link(attr_head(q)); /* the |collective_subscript| attribute */
17579 if ( p>=mp->hi_mem_min ) { /* it's not a subscript */
17580 do { q=link(q); } while (! (attr_loc(q)>=info(p)));
17581 if ( attr_loc(q)>info(p) ) goto DONE2;
17589 @ How do things stand now? Well, we have scanned an entire variable name,
17590 including possible subscripts and/or attributes; |cur_cmd|, |cur_mod|, and
17591 |cur_sym| represent the token that follows. If |post_head=null|, a
17592 token list for this variable name starts at |link(pre_head)|, with all
17593 subscripts evaluated. But if |post_head<>null|, the variable turned out
17594 to be a suffixed macro; |pre_head| is the head of the prefix list, while
17595 |post_head| is the head of a token list containing both `\.{\AT!}' and
17598 Our immediate problem is to see if this variable still exists. (Variable
17599 structures can change drastically whenever we call |get_x_next|; users
17600 aren't supposed to do this, but the fact that it is possible means that
17601 we must be cautious.)
17603 The following procedure prints an error message when a variable
17604 unexpectedly disappears. Its help message isn't quite right for
17605 our present purposes, but we'll be able to fix that up.
17608 void mp_obliterated (MP mp,pointer q) {
17609 print_err("Variable "); mp_show_token_list(mp, q,null,1000,0);
17610 mp_print(mp, " has been obliterated");
17611 @.Variable...obliterated@>
17612 help5("It seems you did a nasty thing---probably by accident,")
17613 ("but nevertheless you nearly hornswoggled me...")
17614 ("While I was evaluating the right-hand side of this")
17615 ("command, something happened, and the left-hand side")
17616 ("is no longer a variable! So I won't change anything.");
17619 @ If the variable does exist, we also need to check
17620 for a few other special cases before deciding that a plain old ordinary
17621 variable has, indeed, been scanned.
17623 @<Handle unusual cases that masquerade as variables...@>=
17624 if ( post_head!=null ) {
17625 @<Set up suffixed macro call and |goto restart|@>;
17627 q=link(pre_head); free_avail(pre_head);
17628 if ( mp->cur_cmd==my_var_flag ) {
17629 mp->cur_type=mp_token_list; mp->cur_exp=q; goto DONE;
17631 p=mp_find_variable(mp, q);
17633 mp_make_exp_copy(mp, p);
17635 mp_obliterated(mp, q);
17636 mp->help_line[2]="While I was evaluating the suffix of this variable,";
17637 mp->help_line[1]="something was redefined, and it's no longer a variable!";
17638 mp->help_line[0]="In order to get back on my feet, I've inserted `0' instead.";
17639 mp_put_get_flush_error(mp, 0);
17641 mp_flush_node_list(mp, q);
17644 @ The only complication associated with macro calling is that the prefix
17645 and ``at'' parameters must be packaged in an appropriate list of lists.
17647 @<Set up unsuffixed macro call and |goto restart|@>=
17649 p=mp_get_avail(mp); info(pre_head)=link(pre_head); link(pre_head)=p;
17650 info(p)=t; mp_macro_call(mp, value(q),pre_head,null);
17655 @ If the ``variable'' that turned out to be a suffixed macro no longer exists,
17656 we don't care, because we have reserved a pointer (|macro_ref|) to its
17659 @<Set up suffixed macro call and |goto restart|@>=
17661 mp_back_input(mp); p=mp_get_avail(mp); q=link(post_head);
17662 info(pre_head)=link(pre_head); link(pre_head)=post_head;
17663 info(post_head)=q; link(post_head)=p; info(p)=link(q); link(q)=null;
17664 mp_macro_call(mp, macro_ref,pre_head,null); decr(ref_count(macro_ref));
17665 mp_get_x_next(mp); goto RESTART;
17668 @ Our remaining job is simply to make a copy of the value that has been
17669 found. Some cases are harder than others, but complexity arises solely
17670 because of the multiplicity of possible cases.
17672 @<Declare the procedure called |make_exp_copy|@>=
17673 @<Declare subroutines needed by |make_exp_copy|@>;
17674 void mp_make_exp_copy (MP mp,pointer p) {
17675 pointer q,r,t; /* registers for list manipulation */
17677 mp->cur_type=type(p);
17678 switch (mp->cur_type) {
17679 case mp_vacuous: case mp_boolean_type: case mp_known:
17680 mp->cur_exp=value(p); break;
17681 case unknown_types:
17682 mp->cur_exp=mp_new_ring_entry(mp, p);
17684 case mp_string_type:
17685 mp->cur_exp=value(p); add_str_ref(mp->cur_exp);
17687 case mp_picture_type:
17688 mp->cur_exp=value(p);add_edge_ref(mp->cur_exp);
17691 mp->cur_exp=copy_pen(value(p));
17694 mp->cur_exp=mp_copy_path(mp, value(p));
17696 case mp_transform_type: case mp_color_type:
17697 case mp_cmykcolor_type: case mp_pair_type:
17698 @<Copy the big node |p|@>;
17700 case mp_dependent: case mp_proto_dependent:
17701 mp_encapsulate(mp, mp_copy_dep_list(mp, dep_list(p)));
17703 case mp_numeric_type:
17704 new_indep(p); goto RESTART;
17706 case mp_independent:
17707 q=mp_single_dependency(mp, p);
17708 if ( q==mp->dep_final ){
17709 mp->cur_type=mp_known; mp->cur_exp=0; mp_free_node(mp, q,value_node_size);
17711 mp->cur_type=mp_dependent; mp_encapsulate(mp, q);
17715 mp_confusion(mp, "copy");
17716 @:this can't happen copy}{\quad copy@>
17721 @ The |encapsulate| subroutine assumes that |dep_final| is the
17722 tail of dependency list~|p|.
17724 @<Declare subroutines needed by |make_exp_copy|@>=
17725 void mp_encapsulate (MP mp,pointer p) {
17726 mp->cur_exp=mp_get_node(mp, value_node_size); type(mp->cur_exp)=mp->cur_type;
17727 name_type(mp->cur_exp)=mp_capsule; mp_new_dep(mp, mp->cur_exp,p);
17730 @ The most tedious case arises when the user refers to a
17731 \&{pair}, \&{color}, or \&{transform} variable; we must copy several fields,
17732 each of which can be |independent|, |dependent|, |mp_proto_dependent|,
17735 @<Copy the big node |p|@>=
17737 if ( value(p)==null )
17738 mp_init_big_node(mp, p);
17739 t=mp_get_node(mp, value_node_size); name_type(t)=mp_capsule; type(t)=mp->cur_type;
17740 mp_init_big_node(mp, t);
17741 q=value(p)+mp->big_node_size[mp->cur_type];
17742 r=value(t)+mp->big_node_size[mp->cur_type];
17744 q=q-2; r=r-2; mp_install(mp, r,q);
17745 } while (q!=value(p));
17749 @ The |install| procedure copies a numeric field~|q| into field~|r| of
17750 a big node that will be part of a capsule.
17752 @<Declare subroutines needed by |make_exp_copy|@>=
17753 void mp_install (MP mp,pointer r, pointer q) {
17754 pointer p; /* temporary register */
17755 if ( type(q)==mp_known ){
17756 value(r)=value(q); type(r)=mp_known;
17757 } else if ( type(q)==mp_independent ) {
17758 p=mp_single_dependency(mp, q);
17759 if ( p==mp->dep_final ) {
17760 type(r)=mp_known; value(r)=0; mp_free_node(mp, p,value_node_size);
17762 type(r)=mp_dependent; mp_new_dep(mp, r,p);
17765 type(r)=type(q); mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(q)));
17769 @ Expressions of the form `\.{a[b,c]}' are converted into
17770 `\.{b+a*(c-b)}', without checking the types of \.b~or~\.c,
17771 provided that \.a is numeric.
17773 @<Scan a mediation...@>=
17775 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17776 if ( mp->cur_cmd!=comma ) {
17777 @<Put the left bracket and the expression back...@>;
17778 mp_unstash_cur_exp(mp, p);
17780 q=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17781 if ( mp->cur_cmd!=right_bracket ) {
17782 mp_missing_err(mp, "]");
17784 help3("I've scanned an expression of the form `a[b,c',")
17785 ("so a right bracket should have come next.")
17786 ("I shall pretend that one was there.");
17789 r=mp_stash_cur_exp(mp); mp_make_exp_copy(mp, q);
17790 mp_do_binary(mp, r,minus); mp_do_binary(mp, p,times);
17791 mp_do_binary(mp, q,plus); mp_get_x_next(mp);
17795 @ Here is a comparatively simple routine that is used to scan the
17796 \&{suffix} parameters of a macro.
17798 @<Declare the basic parsing subroutines@>=
17799 void mp_scan_suffix (MP mp) {
17800 pointer h,t; /* head and tail of the list being built */
17801 pointer p; /* temporary register */
17802 h=mp_get_avail(mp); t=h;
17804 if ( mp->cur_cmd==left_bracket ) {
17805 @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>;
17807 if ( mp->cur_cmd==numeric_token ) {
17808 p=mp_new_num_tok(mp, mp->cur_mod);
17809 } else if ((mp->cur_cmd==tag_token)||(mp->cur_cmd==internal_quantity) ) {
17810 p=mp_get_avail(mp); info(p)=mp->cur_sym;
17814 link(t)=p; t=p; mp_get_x_next(mp);
17816 mp->cur_exp=link(h); free_avail(h); mp->cur_type=mp_token_list;
17819 @ @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>=
17821 mp_get_x_next(mp); mp_scan_expression(mp);
17822 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17823 if ( mp->cur_cmd!=right_bracket ) {
17824 mp_missing_err(mp, "]");
17826 help3("I've seen a `[' and a subscript value, in a suffix,")
17827 ("so a right bracket should have come next.")
17828 ("I shall pretend that one was there.");
17831 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp;
17834 @* \[38] Parsing secondary and higher expressions.
17836 After the intricacies of |scan_primary|\kern-1pt,
17837 the |scan_secondary| routine is
17838 refreshingly simple. It's not trivial, but the operations are relatively
17839 straightforward; the main difficulty is, again, that expressions and data
17840 structures might change drastically every time we call |get_x_next|, so a
17841 cautious approach is mandatory. For example, a macro defined by
17842 \&{primarydef} might have disappeared by the time its second argument has
17843 been scanned; we solve this by increasing the reference count of its token
17844 list, so that the macro can be called even after it has been clobbered.
17846 @<Declare the basic parsing subroutines@>=
17847 void mp_scan_secondary (MP mp) {
17848 pointer p; /* for list manipulation */
17849 halfword c,d; /* operation codes or modifiers */
17850 pointer mac_name; /* token defined with \&{primarydef} */
17852 if ((mp->cur_cmd<min_primary_command)||
17853 (mp->cur_cmd>max_primary_command) )
17854 mp_bad_exp(mp, "A secondary");
17855 @.A secondary expression...@>
17856 mp_scan_primary(mp);
17858 if ( mp->cur_cmd<=max_secondary_command )
17859 if ( mp->cur_cmd>=min_secondary_command ) {
17860 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17861 if ( d==secondary_primary_macro ) {
17862 mac_name=mp->cur_sym; add_mac_ref(c);
17864 mp_get_x_next(mp); mp_scan_primary(mp);
17865 if ( d!=secondary_primary_macro ) {
17866 mp_do_binary(mp, p,c);
17868 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17869 decr(ref_count(c)); mp_get_x_next(mp);
17876 @ The following procedure calls a macro that has two parameters,
17879 @c void mp_binary_mac (MP mp,pointer p, pointer c, pointer n) {
17880 pointer q,r; /* nodes in the parameter list */
17881 q=mp_get_avail(mp); r=mp_get_avail(mp); link(q)=r;
17882 info(q)=p; info(r)=mp_stash_cur_exp(mp);
17883 mp_macro_call(mp, c,q,n);
17886 @ The next procedure, |scan_tertiary|, is pretty much the same deal.
17888 @<Declare the basic parsing subroutines@>=
17889 void mp_scan_tertiary (MP mp) {
17890 pointer p; /* for list manipulation */
17891 halfword c,d; /* operation codes or modifiers */
17892 pointer mac_name; /* token defined with \&{secondarydef} */
17894 if ((mp->cur_cmd<min_primary_command)||
17895 (mp->cur_cmd>max_primary_command) )
17896 mp_bad_exp(mp, "A tertiary");
17897 @.A tertiary expression...@>
17898 mp_scan_secondary(mp);
17900 if ( mp->cur_cmd<=max_tertiary_command ) {
17901 if ( mp->cur_cmd>=min_tertiary_command ) {
17902 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17903 if ( d==tertiary_secondary_macro ) {
17904 mac_name=mp->cur_sym; add_mac_ref(c);
17906 mp_get_x_next(mp); mp_scan_secondary(mp);
17907 if ( d!=tertiary_secondary_macro ) {
17908 mp_do_binary(mp, p,c);
17910 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17911 decr(ref_count(c)); mp_get_x_next(mp);
17919 @ Finally we reach the deepest level in our quartet of parsing routines.
17920 This one is much like the others; but it has an extra complication from
17921 paths, which materialize here.
17923 @d continue_path 25 /* a label inside of |scan_expression| */
17924 @d finish_path 26 /* another */
17926 @<Declare the basic parsing subroutines@>=
17927 void mp_scan_expression (MP mp) {
17928 pointer p,q,r,pp,qq; /* for list manipulation */
17929 halfword c,d; /* operation codes or modifiers */
17930 int my_var_flag; /* initial value of |var_flag| */
17931 pointer mac_name; /* token defined with \&{tertiarydef} */
17932 boolean cycle_hit; /* did a path expression just end with `\&{cycle}'? */
17933 scaled x,y; /* explicit coordinates or tension at a path join */
17934 int t; /* knot type following a path join */
17936 my_var_flag=mp->var_flag; mac_name=null;
17938 if ((mp->cur_cmd<min_primary_command)||
17939 (mp->cur_cmd>max_primary_command) )
17940 mp_bad_exp(mp, "An");
17941 @.An expression...@>
17942 mp_scan_tertiary(mp);
17944 if ( mp->cur_cmd<=max_expression_command )
17945 if ( mp->cur_cmd>=min_expression_command ) {
17946 if ( (mp->cur_cmd!=equals)||(my_var_flag!=assignment) ) {
17947 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17948 if ( d==expression_tertiary_macro ) {
17949 mac_name=mp->cur_sym; add_mac_ref(c);
17951 if ( (d<ampersand)||((d==ampersand)&&
17952 ((type(p)==mp_pair_type)||(type(p)==mp_path_type))) ) {
17953 @<Scan a path construction operation;
17954 but |return| if |p| has the wrong type@>;
17956 mp_get_x_next(mp); mp_scan_tertiary(mp);
17957 if ( d!=expression_tertiary_macro ) {
17958 mp_do_binary(mp, p,c);
17960 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17961 decr(ref_count(c)); mp_get_x_next(mp);
17970 @ The reader should review the data structure conventions for paths before
17971 hoping to understand the next part of this code.
17973 @<Scan a path construction operation...@>=
17976 @<Convert the left operand, |p|, into a partial path ending at~|q|;
17977 but |return| if |p| doesn't have a suitable type@>;
17979 @<Determine the path join parameters;
17980 but |goto finish_path| if there's only a direction specifier@>;
17981 if ( mp->cur_cmd==cycle ) {
17982 @<Get ready to close a cycle@>;
17984 mp_scan_tertiary(mp);
17985 @<Convert the right operand, |cur_exp|,
17986 into a partial path from |pp| to~|qq|@>;
17988 @<Join the partial paths and reset |p| and |q| to the head and tail
17990 if ( mp->cur_cmd>=min_expression_command )
17991 if ( mp->cur_cmd<=ampersand ) if ( ! cycle_hit ) goto CONTINUE_PATH;
17993 @<Choose control points for the path and put the result into |cur_exp|@>;
17996 @ @<Convert the left operand, |p|, into a partial path ending at~|q|...@>=
17998 mp_unstash_cur_exp(mp, p);
17999 if ( mp->cur_type==mp_pair_type ) p=mp_new_knot(mp);
18000 else if ( mp->cur_type==mp_path_type ) p=mp->cur_exp;
18003 while ( link(q)!=p ) q=link(q);
18004 if ( left_type(p)!=mp_endpoint ) { /* open up a cycle */
18005 r=mp_copy_knot(mp, p); link(q)=r; q=r;
18007 left_type(p)=mp_open; right_type(q)=mp_open;
18010 @ A pair of numeric values is changed into a knot node for a one-point path
18011 when \MP\ discovers that the pair is part of a path.
18013 @c@<Declare the procedure called |known_pair|@>;
18014 pointer mp_new_knot (MP mp) { /* convert a pair to a knot with two endpoints */
18015 pointer q; /* the new node */
18016 q=mp_get_node(mp, knot_node_size); left_type(q)=mp_endpoint;
18017 right_type(q)=mp_endpoint; originator(q)=mp_metapost_user; link(q)=q;
18018 mp_known_pair(mp); x_coord(q)=mp->cur_x; y_coord(q)=mp->cur_y;
18022 @ The |known_pair| subroutine sets |cur_x| and |cur_y| to the components
18023 of the current expression, assuming that the current expression is a
18024 pair of known numerics. Unknown components are zeroed, and the
18025 current expression is flushed.
18027 @<Declare the procedure called |known_pair|@>=
18028 void mp_known_pair (MP mp) {
18029 pointer p; /* the pair node */
18030 if ( mp->cur_type!=mp_pair_type ) {
18031 exp_err("Undefined coordinates have been replaced by (0,0)");
18032 @.Undefined coordinates...@>
18033 help5("I need x and y numbers for this part of the path.")
18034 ("The value I found (see above) was no good;")
18035 ("so I'll try to keep going by using zero instead.")
18036 ("(Chapter 27 of The METAFONTbook explains that")
18037 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18038 ("you might want to type `I ??" "?' now.)");
18039 mp_put_get_flush_error(mp, 0); mp->cur_x=0; mp->cur_y=0;
18041 p=value(mp->cur_exp);
18042 @<Make sure that both |x| and |y| parts of |p| are known;
18043 copy them into |cur_x| and |cur_y|@>;
18044 mp_flush_cur_exp(mp, 0);
18048 @ @<Make sure that both |x| and |y| parts of |p| are known...@>=
18049 if ( type(x_part_loc(p))==mp_known ) {
18050 mp->cur_x=value(x_part_loc(p));
18052 mp_disp_err(mp, x_part_loc(p),
18053 "Undefined x coordinate has been replaced by 0");
18054 @.Undefined coordinates...@>
18055 help5("I need a `known' x value for this part of the path.")
18056 ("The value I found (see above) was no good;")
18057 ("so I'll try to keep going by using zero instead.")
18058 ("(Chapter 27 of The METAFONTbook explains that")
18059 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18060 ("you might want to type `I ??" "?' now.)");
18061 mp_put_get_error(mp); mp_recycle_value(mp, x_part_loc(p)); mp->cur_x=0;
18063 if ( type(y_part_loc(p))==mp_known ) {
18064 mp->cur_y=value(y_part_loc(p));
18066 mp_disp_err(mp, y_part_loc(p),
18067 "Undefined y coordinate has been replaced by 0");
18068 help5("I need a `known' y value for this part of the path.")
18069 ("The value I found (see above) was no good;")
18070 ("so I'll try to keep going by using zero instead.")
18071 ("(Chapter 27 of The METAFONTbook explains that")
18072 ("you might want to type `I ??" "?' now.)");
18073 mp_put_get_error(mp); mp_recycle_value(mp, y_part_loc(p)); mp->cur_y=0;
18076 @ At this point |cur_cmd| is either |ampersand|, |left_brace|, or |path_join|.
18078 @<Determine the path join parameters...@>=
18079 if ( mp->cur_cmd==left_brace ) {
18080 @<Put the pre-join direction information into node |q|@>;
18083 if ( d==path_join ) {
18084 @<Determine the tension and/or control points@>;
18085 } else if ( d!=ampersand ) {
18089 if ( mp->cur_cmd==left_brace ) {
18090 @<Put the post-join direction information into |x| and |t|@>;
18091 } else if ( right_type(q)!=mp_explicit ) {
18095 @ The |scan_direction| subroutine looks at the directional information
18096 that is enclosed in braces, and also scans ahead to the following character.
18097 A type code is returned, either |open| (if the direction was $(0,0)$),
18098 or |curl| (if the direction was a curl of known value |cur_exp|), or
18099 |given| (if the direction is given by the |angle| value that now
18100 appears in |cur_exp|).
18102 There's nothing difficult about this subroutine, but the program is rather
18103 lengthy because a variety of potential errors need to be nipped in the bud.
18105 @c small_number mp_scan_direction (MP mp) {
18106 int t; /* the type of information found */
18107 scaled x; /* an |x| coordinate */
18109 if ( mp->cur_cmd==curl_command ) {
18110 @<Scan a curl specification@>;
18112 @<Scan a given direction@>;
18114 if ( mp->cur_cmd!=right_brace ) {
18115 mp_missing_err(mp, "}");
18116 @.Missing `\char`\}'@>
18117 help3("I've scanned a direction spec for part of a path,")
18118 ("so a right brace should have come next.")
18119 ("I shall pretend that one was there.");
18126 @ @<Scan a curl specification@>=
18127 { mp_get_x_next(mp); mp_scan_expression(mp);
18128 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<0) ){
18129 exp_err("Improper curl has been replaced by 1");
18131 help1("A curl must be a known, nonnegative number.");
18132 mp_put_get_flush_error(mp, unity);
18137 @ @<Scan a given direction@>=
18138 { mp_scan_expression(mp);
18139 if ( mp->cur_type>mp_pair_type ) {
18140 @<Get given directions separated by commas@>;
18144 if ( (mp->cur_x==0)&&(mp->cur_y==0) ) t=mp_open;
18145 else { t=mp_given; mp->cur_exp=mp_n_arg(mp, mp->cur_x,mp->cur_y);}
18148 @ @<Get given directions separated by commas@>=
18150 if ( mp->cur_type!=mp_known ) {
18151 exp_err("Undefined x coordinate has been replaced by 0");
18152 @.Undefined coordinates...@>
18153 help5("I need a `known' x value for this part of the path.")
18154 ("The value I found (see above) was no good;")
18155 ("so I'll try to keep going by using zero instead.")
18156 ("(Chapter 27 of The METAFONTbook explains that")
18157 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18158 ("you might want to type `I ??" "?' now.)");
18159 mp_put_get_flush_error(mp, 0);
18162 if ( mp->cur_cmd!=comma ) {
18163 mp_missing_err(mp, ",");
18165 help2("I've got the x coordinate of a path direction;")
18166 ("will look for the y coordinate next.");
18169 mp_get_x_next(mp); mp_scan_expression(mp);
18170 if ( mp->cur_type!=mp_known ) {
18171 exp_err("Undefined y coordinate has been replaced by 0");
18172 help5("I need a `known' y value for this part of the path.")
18173 ("The value I found (see above) was no good;")
18174 ("so I'll try to keep going by using zero instead.")
18175 ("(Chapter 27 of The METAFONTbook explains that")
18176 ("you might want to type `I ??" "?' now.)");
18177 mp_put_get_flush_error(mp, 0);
18179 mp->cur_y=mp->cur_exp; mp->cur_x=x;
18182 @ At this point |right_type(q)| is usually |open|, but it may have been
18183 set to some other value by a previous splicing operation. We must maintain
18184 the value of |right_type(q)| in unusual cases such as
18185 `\.{..z1\{z2\}\&\{z3\}z1\{0,0\}..}'.
18187 @<Put the pre-join...@>=
18189 t=mp_scan_direction(mp);
18190 if ( t!=mp_open ) {
18191 right_type(q)=t; right_given(q)=mp->cur_exp;
18192 if ( left_type(q)==mp_open ) {
18193 left_type(q)=t; left_given(q)=mp->cur_exp;
18194 } /* note that |left_given(q)=left_curl(q)| */
18198 @ Since |left_tension| and |left_y| share the same position in knot nodes,
18199 and since |left_given| is similarly equivalent to |left_x|, we use
18200 |x| and |y| to hold the given direction and tension information when
18201 there are no explicit control points.
18203 @<Put the post-join...@>=
18205 t=mp_scan_direction(mp);
18206 if ( right_type(q)!=mp_explicit ) x=mp->cur_exp;
18207 else t=mp_explicit; /* the direction information is superfluous */
18210 @ @<Determine the tension and/or...@>=
18213 if ( mp->cur_cmd==tension ) {
18214 @<Set explicit tensions@>;
18215 } else if ( mp->cur_cmd==controls ) {
18216 @<Set explicit control points@>;
18218 right_tension(q)=unity; y=unity; mp_back_input(mp); /* default tension */
18221 if ( mp->cur_cmd!=path_join ) {
18222 mp_missing_err(mp, "..");
18224 help1("A path join command should end with two dots.");
18231 @ @<Set explicit tensions@>=
18233 mp_get_x_next(mp); y=mp->cur_cmd;
18234 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18235 mp_scan_primary(mp);
18236 @<Make sure that the current expression is a valid tension setting@>;
18237 if ( y==at_least ) negate(mp->cur_exp);
18238 right_tension(q)=mp->cur_exp;
18239 if ( mp->cur_cmd==and_command ) {
18240 mp_get_x_next(mp); y=mp->cur_cmd;
18241 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18242 mp_scan_primary(mp);
18243 @<Make sure that the current expression is a valid tension setting@>;
18244 if ( y==at_least ) negate(mp->cur_exp);
18249 @ @d min_tension three_quarter_unit
18251 @<Make sure that the current expression is a valid tension setting@>=
18252 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<min_tension) ) {
18253 exp_err("Improper tension has been set to 1");
18254 @.Improper tension@>
18255 help1("The expression above should have been a number >=3/4.");
18256 mp_put_get_flush_error(mp, unity);
18259 @ @<Set explicit control points@>=
18261 right_type(q)=mp_explicit; t=mp_explicit; mp_get_x_next(mp); mp_scan_primary(mp);
18262 mp_known_pair(mp); right_x(q)=mp->cur_x; right_y(q)=mp->cur_y;
18263 if ( mp->cur_cmd!=and_command ) {
18264 x=right_x(q); y=right_y(q);
18266 mp_get_x_next(mp); mp_scan_primary(mp);
18267 mp_known_pair(mp); x=mp->cur_x; y=mp->cur_y;
18271 @ @<Convert the right operand, |cur_exp|, into a partial path...@>=
18273 if ( mp->cur_type!=mp_path_type ) pp=mp_new_knot(mp);
18274 else pp=mp->cur_exp;
18276 while ( link(qq)!=pp ) qq=link(qq);
18277 if ( left_type(pp)!=mp_endpoint ) { /* open up a cycle */
18278 r=mp_copy_knot(mp, pp); link(qq)=r; qq=r;
18280 left_type(pp)=mp_open; right_type(qq)=mp_open;
18283 @ If a person tries to define an entire path by saying `\.{(x,y)\&cycle}',
18284 we silently change the specification to `\.{(x,y)..cycle}', since a cycle
18285 shouldn't have length zero.
18287 @<Get ready to close a cycle@>=
18289 cycle_hit=true; mp_get_x_next(mp); pp=p; qq=p;
18290 if ( d==ampersand ) if ( p==q ) {
18291 d=path_join; right_tension(q)=unity; y=unity;
18295 @ @<Join the partial paths and reset |p| and |q|...@>=
18297 if ( d==ampersand ) {
18298 if ( (x_coord(q)!=x_coord(pp))||(y_coord(q)!=y_coord(pp)) ) {
18299 print_err("Paths don't touch; `&' will be changed to `..'");
18300 @.Paths don't touch@>
18301 help3("When you join paths `p&q', the ending point of p")
18302 ("must be exactly equal to the starting point of q.")
18303 ("So I'm going to pretend that you said `p..q' instead.");
18304 mp_put_get_error(mp); d=path_join; right_tension(q)=unity; y=unity;
18307 @<Plug an opening in |right_type(pp)|, if possible@>;
18308 if ( d==ampersand ) {
18309 @<Splice independent paths together@>;
18311 @<Plug an opening in |right_type(q)|, if possible@>;
18312 link(q)=pp; left_y(pp)=y;
18313 if ( t!=mp_open ) { left_x(pp)=x; left_type(pp)=t; };
18318 @ @<Plug an opening in |right_type(q)|...@>=
18319 if ( right_type(q)==mp_open ) {
18320 if ( (left_type(q)==mp_curl)||(left_type(q)==mp_given) ) {
18321 right_type(q)=left_type(q); right_given(q)=left_given(q);
18325 @ @<Plug an opening in |right_type(pp)|...@>=
18326 if ( right_type(pp)==mp_open ) {
18327 if ( (t==mp_curl)||(t==mp_given) ) {
18328 right_type(pp)=t; right_given(pp)=x;
18332 @ @<Splice independent paths together@>=
18334 if ( left_type(q)==mp_open ) if ( right_type(q)==mp_open ) {
18335 left_type(q)=mp_curl; left_curl(q)=unity;
18337 if ( right_type(pp)==mp_open ) if ( t==mp_open ) {
18338 right_type(pp)=mp_curl; right_curl(pp)=unity;
18340 right_type(q)=right_type(pp); link(q)=link(pp);
18341 right_x(q)=right_x(pp); right_y(q)=right_y(pp);
18342 mp_free_node(mp, pp,knot_node_size);
18343 if ( qq==pp ) qq=q;
18346 @ @<Choose control points for the path...@>=
18348 if ( d==ampersand ) p=q;
18350 left_type(p)=mp_endpoint;
18351 if ( right_type(p)==mp_open ) {
18352 right_type(p)=mp_curl; right_curl(p)=unity;
18354 right_type(q)=mp_endpoint;
18355 if ( left_type(q)==mp_open ) {
18356 left_type(q)=mp_curl; left_curl(q)=unity;
18360 mp_make_choices(mp, p);
18361 mp->cur_type=mp_path_type; mp->cur_exp=p
18363 @ Finally, we sometimes need to scan an expression whose value is
18364 supposed to be either |true_code| or |false_code|.
18366 @<Declare the basic parsing subroutines@>=
18367 void mp_get_boolean (MP mp) {
18368 mp_get_x_next(mp); mp_scan_expression(mp);
18369 if ( mp->cur_type!=mp_boolean_type ) {
18370 exp_err("Undefined condition will be treated as `false'");
18371 @.Undefined condition...@>
18372 help2("The expression shown above should have had a definite")
18373 ("true-or-false value. I'm changing it to `false'.");
18374 mp_put_get_flush_error(mp, false_code); mp->cur_type=mp_boolean_type;
18378 @* \[39] Doing the operations.
18379 The purpose of parsing is primarily to permit people to avoid piles of
18380 parentheses. But the real work is done after the structure of an expression
18381 has been recognized; that's when new expressions are generated. We
18382 turn now to the guts of \MP, which handles individual operators that
18383 have come through the parsing mechanism.
18385 We'll start with the easy ones that take no operands, then work our way
18386 up to operators with one and ultimately two arguments. In other words,
18387 we will write the three procedures |do_nullary|, |do_unary|, and |do_binary|
18388 that are invoked periodically by the expression scanners.
18390 First let's make sure that all of the primitive operators are in the
18391 hash table. Although |scan_primary| and its relatives made use of the
18392 \\{cmd} code for these operators, the \\{do} routines base everything
18393 on the \\{mod} code. For example, |do_binary| doesn't care whether the
18394 operation it performs is a |primary_binary| or |secondary_binary|, etc.
18397 mp_primitive(mp, "true",nullary,true_code);
18398 @:true_}{\&{true} primitive@>
18399 mp_primitive(mp, "false",nullary,false_code);
18400 @:false_}{\&{false} primitive@>
18401 mp_primitive(mp, "nullpicture",nullary,null_picture_code);
18402 @:null_picture_}{\&{nullpicture} primitive@>
18403 mp_primitive(mp, "nullpen",nullary,null_pen_code);
18404 @:null_pen_}{\&{nullpen} primitive@>
18405 mp_primitive(mp, "jobname",nullary,job_name_op);
18406 @:job_name_}{\&{jobname} primitive@>
18407 mp_primitive(mp, "readstring",nullary,read_string_op);
18408 @:read_string_}{\&{readstring} primitive@>
18409 mp_primitive(mp, "pencircle",nullary,pen_circle);
18410 @:pen_circle_}{\&{pencircle} primitive@>
18411 mp_primitive(mp, "normaldeviate",nullary,normal_deviate);
18412 @:normal_deviate_}{\&{normaldeviate} primitive@>
18413 mp_primitive(mp, "readfrom",unary,read_from_op);
18414 @:read_from_}{\&{readfrom} primitive@>
18415 mp_primitive(mp, "closefrom",unary,close_from_op);
18416 @:close_from_}{\&{closefrom} primitive@>
18417 mp_primitive(mp, "odd",unary,odd_op);
18418 @:odd_}{\&{odd} primitive@>
18419 mp_primitive(mp, "known",unary,known_op);
18420 @:known_}{\&{known} primitive@>
18421 mp_primitive(mp, "unknown",unary,unknown_op);
18422 @:unknown_}{\&{unknown} primitive@>
18423 mp_primitive(mp, "not",unary,not_op);
18424 @:not_}{\&{not} primitive@>
18425 mp_primitive(mp, "decimal",unary,decimal);
18426 @:decimal_}{\&{decimal} primitive@>
18427 mp_primitive(mp, "reverse",unary,reverse);
18428 @:reverse_}{\&{reverse} primitive@>
18429 mp_primitive(mp, "makepath",unary,make_path_op);
18430 @:make_path_}{\&{makepath} primitive@>
18431 mp_primitive(mp, "makepen",unary,make_pen_op);
18432 @:make_pen_}{\&{makepen} primitive@>
18433 mp_primitive(mp, "oct",unary,oct_op);
18434 @:oct_}{\&{oct} primitive@>
18435 mp_primitive(mp, "hex",unary,hex_op);
18436 @:hex_}{\&{hex} primitive@>
18437 mp_primitive(mp, "ASCII",unary,ASCII_op);
18438 @:ASCII_}{\&{ASCII} primitive@>
18439 mp_primitive(mp, "char",unary,char_op);
18440 @:char_}{\&{char} primitive@>
18441 mp_primitive(mp, "length",unary,length_op);
18442 @:length_}{\&{length} primitive@>
18443 mp_primitive(mp, "turningnumber",unary,turning_op);
18444 @:turning_number_}{\&{turningnumber} primitive@>
18445 mp_primitive(mp, "xpart",unary,x_part);
18446 @:x_part_}{\&{xpart} primitive@>
18447 mp_primitive(mp, "ypart",unary,y_part);
18448 @:y_part_}{\&{ypart} primitive@>
18449 mp_primitive(mp, "xxpart",unary,xx_part);
18450 @:xx_part_}{\&{xxpart} primitive@>
18451 mp_primitive(mp, "xypart",unary,xy_part);
18452 @:xy_part_}{\&{xypart} primitive@>
18453 mp_primitive(mp, "yxpart",unary,yx_part);
18454 @:yx_part_}{\&{yxpart} primitive@>
18455 mp_primitive(mp, "yypart",unary,yy_part);
18456 @:yy_part_}{\&{yypart} primitive@>
18457 mp_primitive(mp, "redpart",unary,red_part);
18458 @:red_part_}{\&{redpart} primitive@>
18459 mp_primitive(mp, "greenpart",unary,green_part);
18460 @:green_part_}{\&{greenpart} primitive@>
18461 mp_primitive(mp, "bluepart",unary,blue_part);
18462 @:blue_part_}{\&{bluepart} primitive@>
18463 mp_primitive(mp, "cyanpart",unary,cyan_part);
18464 @:cyan_part_}{\&{cyanpart} primitive@>
18465 mp_primitive(mp, "magentapart",unary,magenta_part);
18466 @:magenta_part_}{\&{magentapart} primitive@>
18467 mp_primitive(mp, "yellowpart",unary,yellow_part);
18468 @:yellow_part_}{\&{yellowpart} primitive@>
18469 mp_primitive(mp, "blackpart",unary,black_part);
18470 @:black_part_}{\&{blackpart} primitive@>
18471 mp_primitive(mp, "greypart",unary,grey_part);
18472 @:grey_part_}{\&{greypart} primitive@>
18473 mp_primitive(mp, "colormodel",unary,color_model_part);
18474 @:color_model_part_}{\&{colormodel} primitive@>
18475 mp_primitive(mp, "fontpart",unary,font_part);
18476 @:font_part_}{\&{fontpart} primitive@>
18477 mp_primitive(mp, "textpart",unary,text_part);
18478 @:text_part_}{\&{textpart} primitive@>
18479 mp_primitive(mp, "pathpart",unary,path_part);
18480 @:path_part_}{\&{pathpart} primitive@>
18481 mp_primitive(mp, "penpart",unary,pen_part);
18482 @:pen_part_}{\&{penpart} primitive@>
18483 mp_primitive(mp, "dashpart",unary,dash_part);
18484 @:dash_part_}{\&{dashpart} primitive@>
18485 mp_primitive(mp, "sqrt",unary,sqrt_op);
18486 @:sqrt_}{\&{sqrt} primitive@>
18487 mp_primitive(mp, "mexp",unary,m_exp_op);
18488 @:m_exp_}{\&{mexp} primitive@>
18489 mp_primitive(mp, "mlog",unary,m_log_op);
18490 @:m_log_}{\&{mlog} primitive@>
18491 mp_primitive(mp, "sind",unary,sin_d_op);
18492 @:sin_d_}{\&{sind} primitive@>
18493 mp_primitive(mp, "cosd",unary,cos_d_op);
18494 @:cos_d_}{\&{cosd} primitive@>
18495 mp_primitive(mp, "floor",unary,floor_op);
18496 @:floor_}{\&{floor} primitive@>
18497 mp_primitive(mp, "uniformdeviate",unary,uniform_deviate);
18498 @:uniform_deviate_}{\&{uniformdeviate} primitive@>
18499 mp_primitive(mp, "charexists",unary,char_exists_op);
18500 @:char_exists_}{\&{charexists} primitive@>
18501 mp_primitive(mp, "fontsize",unary,font_size);
18502 @:font_size_}{\&{fontsize} primitive@>
18503 mp_primitive(mp, "llcorner",unary,ll_corner_op);
18504 @:ll_corner_}{\&{llcorner} primitive@>
18505 mp_primitive(mp, "lrcorner",unary,lr_corner_op);
18506 @:lr_corner_}{\&{lrcorner} primitive@>
18507 mp_primitive(mp, "ulcorner",unary,ul_corner_op);
18508 @:ul_corner_}{\&{ulcorner} primitive@>
18509 mp_primitive(mp, "urcorner",unary,ur_corner_op);
18510 @:ur_corner_}{\&{urcorner} primitive@>
18511 mp_primitive(mp, "arclength",unary,arc_length);
18512 @:arc_length_}{\&{arclength} primitive@>
18513 mp_primitive(mp, "angle",unary,angle_op);
18514 @:angle_}{\&{angle} primitive@>
18515 mp_primitive(mp, "cycle",cycle,cycle_op);
18516 @:cycle_}{\&{cycle} primitive@>
18517 mp_primitive(mp, "stroked",unary,stroked_op);
18518 @:stroked_}{\&{stroked} primitive@>
18519 mp_primitive(mp, "filled",unary,filled_op);
18520 @:filled_}{\&{filled} primitive@>
18521 mp_primitive(mp, "textual",unary,textual_op);
18522 @:textual_}{\&{textual} primitive@>
18523 mp_primitive(mp, "clipped",unary,clipped_op);
18524 @:clipped_}{\&{clipped} primitive@>
18525 mp_primitive(mp, "bounded",unary,bounded_op);
18526 @:bounded_}{\&{bounded} primitive@>
18527 mp_primitive(mp, "+",plus_or_minus,plus);
18528 @:+ }{\.{+} primitive@>
18529 mp_primitive(mp, "-",plus_or_minus,minus);
18530 @:- }{\.{-} primitive@>
18531 mp_primitive(mp, "*",secondary_binary,times);
18532 @:* }{\.{*} primitive@>
18533 mp_primitive(mp, "/",slash,over); mp->eqtb[frozen_slash]=mp->eqtb[mp->cur_sym];
18534 @:/ }{\.{/} primitive@>
18535 mp_primitive(mp, "++",tertiary_binary,pythag_add);
18536 @:++_}{\.{++} primitive@>
18537 mp_primitive(mp, "+-+",tertiary_binary,pythag_sub);
18538 @:+-+_}{\.{+-+} primitive@>
18539 mp_primitive(mp, "or",tertiary_binary,or_op);
18540 @:or_}{\&{or} primitive@>
18541 mp_primitive(mp, "and",and_command,and_op);
18542 @:and_}{\&{and} primitive@>
18543 mp_primitive(mp, "<",expression_binary,less_than);
18544 @:< }{\.{<} primitive@>
18545 mp_primitive(mp, "<=",expression_binary,less_or_equal);
18546 @:<=_}{\.{<=} primitive@>
18547 mp_primitive(mp, ">",expression_binary,greater_than);
18548 @:> }{\.{>} primitive@>
18549 mp_primitive(mp, ">=",expression_binary,greater_or_equal);
18550 @:>=_}{\.{>=} primitive@>
18551 mp_primitive(mp, "=",equals,equal_to);
18552 @:= }{\.{=} primitive@>
18553 mp_primitive(mp, "<>",expression_binary,unequal_to);
18554 @:<>_}{\.{<>} primitive@>
18555 mp_primitive(mp, "substring",primary_binary,substring_of);
18556 @:substring_}{\&{substring} primitive@>
18557 mp_primitive(mp, "subpath",primary_binary,subpath_of);
18558 @:subpath_}{\&{subpath} primitive@>
18559 mp_primitive(mp, "directiontime",primary_binary,direction_time_of);
18560 @:direction_time_}{\&{directiontime} primitive@>
18561 mp_primitive(mp, "point",primary_binary,point_of);
18562 @:point_}{\&{point} primitive@>
18563 mp_primitive(mp, "precontrol",primary_binary,precontrol_of);
18564 @:precontrol_}{\&{precontrol} primitive@>
18565 mp_primitive(mp, "postcontrol",primary_binary,postcontrol_of);
18566 @:postcontrol_}{\&{postcontrol} primitive@>
18567 mp_primitive(mp, "penoffset",primary_binary,pen_offset_of);
18568 @:pen_offset_}{\&{penoffset} primitive@>
18569 mp_primitive(mp, "arctime",primary_binary,arc_time_of);
18570 @:arc_time_of_}{\&{arctime} primitive@>
18571 mp_primitive(mp, "mpversion",nullary,mp_version);
18572 @:mp_verison_}{\&{mpversion} primitive@>
18573 mp_primitive(mp, "&",ampersand,concatenate);
18574 @:!!!}{\.{\&} primitive@>
18575 mp_primitive(mp, "rotated",secondary_binary,rotated_by);
18576 @:rotated_}{\&{rotated} primitive@>
18577 mp_primitive(mp, "slanted",secondary_binary,slanted_by);
18578 @:slanted_}{\&{slanted} primitive@>
18579 mp_primitive(mp, "scaled",secondary_binary,scaled_by);
18580 @:scaled_}{\&{scaled} primitive@>
18581 mp_primitive(mp, "shifted",secondary_binary,shifted_by);
18582 @:shifted_}{\&{shifted} primitive@>
18583 mp_primitive(mp, "transformed",secondary_binary,transformed_by);
18584 @:transformed_}{\&{transformed} primitive@>
18585 mp_primitive(mp, "xscaled",secondary_binary,x_scaled);
18586 @:x_scaled_}{\&{xscaled} primitive@>
18587 mp_primitive(mp, "yscaled",secondary_binary,y_scaled);
18588 @:y_scaled_}{\&{yscaled} primitive@>
18589 mp_primitive(mp, "zscaled",secondary_binary,z_scaled);
18590 @:z_scaled_}{\&{zscaled} primitive@>
18591 mp_primitive(mp, "infont",secondary_binary,in_font);
18592 @:in_font_}{\&{infont} primitive@>
18593 mp_primitive(mp, "intersectiontimes",tertiary_binary,intersect);
18594 @:intersection_times_}{\&{intersectiontimes} primitive@>
18595 mp_primitive(mp, "envelope",primary_binary,envelope_of);
18596 @:envelope_}{\&{envelope} primitive@>
18598 @ @<Cases of |print_cmd...@>=
18601 case primary_binary:
18602 case secondary_binary:
18603 case tertiary_binary:
18604 case expression_binary:
18606 case plus_or_minus:
18611 mp_print_op(mp, m);
18614 @ OK, let's look at the simplest \\{do} procedure first.
18616 @c @<Declare nullary action procedure@>;
18617 void mp_do_nullary (MP mp,quarterword c) {
18619 if ( mp->internal[mp_tracing_commands]>two )
18620 mp_show_cmd_mod(mp, nullary,c);
18622 case true_code: case false_code:
18623 mp->cur_type=mp_boolean_type; mp->cur_exp=c;
18625 case null_picture_code:
18626 mp->cur_type=mp_picture_type;
18627 mp->cur_exp=mp_get_node(mp, edge_header_size);
18628 mp_init_edges(mp, mp->cur_exp);
18630 case null_pen_code:
18631 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, 0);
18633 case normal_deviate:
18634 mp->cur_type=mp_known; mp->cur_exp=mp_norm_rand(mp);
18637 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, unity);
18640 if ( mp->job_name==NULL ) mp_open_log_file(mp);
18641 mp->cur_type=mp_string_type; mp->cur_exp=rts(mp->job_name);
18644 mp->cur_type=mp_string_type;
18645 mp->cur_exp=intern(metapost_version) ;
18647 case read_string_op:
18648 @<Read a string from the terminal@>;
18650 } /* there are no other cases */
18654 @ @<Read a string...@>=
18656 if ( mp->interaction<=mp_nonstop_mode )
18657 mp_fatal_error(mp, "*** (cannot readstring in nonstop modes)");
18658 mp_begin_file_reading(mp); name=is_read;
18659 limit=start; prompt_input("");
18660 mp_finish_read(mp);
18663 @ @<Declare nullary action procedure@>=
18664 void mp_finish_read (MP mp) { /* copy |buffer| line to |cur_exp| */
18666 str_room((int)mp->last-start);
18667 for (k=start;k<=mp->last-1;k++) {
18668 append_char(mp->buffer[k]);
18670 mp_end_file_reading(mp); mp->cur_type=mp_string_type;
18671 mp->cur_exp=mp_make_string(mp);
18674 @ Things get a bit more interesting when there's an operand. The
18675 operand to |do_unary| appears in |cur_type| and |cur_exp|.
18677 @c @<Declare unary action procedures@>;
18678 void mp_do_unary (MP mp,quarterword c) {
18679 pointer p,q,r; /* for list manipulation */
18680 integer x; /* a temporary register */
18682 if ( mp->internal[mp_tracing_commands]>two )
18683 @<Trace the current unary operation@>;
18686 if ( mp->cur_type<mp_color_type ) mp_bad_unary(mp, plus);
18689 @<Negate the current expression@>;
18691 @<Additional cases of unary operators@>;
18692 } /* there are no other cases */
18696 @ The |nice_pair| function returns |true| if both components of a pair
18699 @<Declare unary action procedures@>=
18700 boolean mp_nice_pair (MP mp,integer p, quarterword t) {
18701 if ( t==mp_pair_type ) {
18703 if ( type(x_part_loc(p))==mp_known )
18704 if ( type(y_part_loc(p))==mp_known )
18710 @ The |nice_color_or_pair| function is analogous except that it also accepts
18711 fully known colors.
18713 @<Declare unary action procedures@>=
18714 boolean mp_nice_color_or_pair (MP mp,integer p, quarterword t) {
18715 pointer q,r; /* for scanning the big node */
18716 if ( (t!=mp_pair_type)&&(t!=mp_color_type)&&(t!=mp_cmykcolor_type) ) {
18720 r=q+mp->big_node_size[type(p)];
18723 if ( type(r)!=mp_known )
18730 @ @<Declare unary action...@>=
18731 void mp_print_known_or_unknown_type (MP mp,small_number t, integer v) {
18732 mp_print_char(mp, '(');
18733 if ( t>mp_known ) mp_print(mp, "unknown numeric");
18734 else { if ( (t==mp_pair_type)||(t==mp_color_type)||(t==mp_cmykcolor_type) )
18735 if ( ! mp_nice_color_or_pair(mp, v,t) ) mp_print(mp, "unknown ");
18736 mp_print_type(mp, t);
18738 mp_print_char(mp, ')');
18741 @ @<Declare unary action...@>=
18742 void mp_bad_unary (MP mp,quarterword c) {
18743 exp_err("Not implemented: "); mp_print_op(mp, c);
18744 @.Not implemented...@>
18745 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
18746 help3("I'm afraid I don't know how to apply that operation to that")
18747 ("particular type. Continue, and I'll simply return the")
18748 ("argument (shown above) as the result of the operation.");
18749 mp_put_get_error(mp);
18752 @ @<Trace the current unary operation@>=
18754 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
18755 mp_print_op(mp, c); mp_print_char(mp, '(');
18756 mp_print_exp(mp, null,0); /* show the operand, but not verbosely */
18757 mp_print(mp, ")}"); mp_end_diagnostic(mp, false);
18760 @ Negation is easy except when the current expression
18761 is of type |independent|, or when it is a pair with one or more
18762 |independent| components.
18764 It is tempting to argue that the negative of an independent variable
18765 is an independent variable, hence we don't have to do anything when
18766 negating it. The fallacy is that other dependent variables pointing
18767 to the current expression must change the sign of their
18768 coefficients if we make no change to the current expression.
18770 Instead, we work around the problem by copying the current expression
18771 and recycling it afterwards (cf.~the |stash_in| routine).
18773 @<Negate the current expression@>=
18774 switch (mp->cur_type) {
18775 case mp_color_type:
18776 case mp_cmykcolor_type:
18778 case mp_independent:
18779 q=mp->cur_exp; mp_make_exp_copy(mp, q);
18780 if ( mp->cur_type==mp_dependent ) {
18781 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18782 } else if ( mp->cur_type<=mp_pair_type ) { /* |mp_color_type| or |mp_pair_type| */
18783 p=value(mp->cur_exp);
18784 r=p+mp->big_node_size[mp->cur_type];
18787 if ( type(r)==mp_known ) negate(value(r));
18788 else mp_negate_dep_list(mp, dep_list(r));
18790 } /* if |cur_type=mp_known| then |cur_exp=0| */
18791 mp_recycle_value(mp, q); mp_free_node(mp, q,value_node_size);
18794 case mp_proto_dependent:
18795 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18798 negate(mp->cur_exp);
18801 mp_bad_unary(mp, minus);
18805 @ @<Declare unary action...@>=
18806 void mp_negate_dep_list (MP mp,pointer p) {
18809 if ( info(p)==null ) return;
18814 @ @<Additional cases of unary operators@>=
18816 if ( mp->cur_type!=mp_boolean_type ) mp_bad_unary(mp, not_op);
18817 else mp->cur_exp=true_code+false_code-mp->cur_exp;
18820 @ @d three_sixty_units 23592960 /* that's |360*unity| */
18821 @d boolean_reset(A) if ( (A) ) mp->cur_exp=true_code; else mp->cur_exp=false_code
18823 @<Additional cases of unary operators@>=
18830 case uniform_deviate:
18832 case char_exists_op:
18833 if ( mp->cur_type!=mp_known ) {
18834 mp_bad_unary(mp, c);
18837 case sqrt_op:mp->cur_exp=mp_square_rt(mp, mp->cur_exp);break;
18838 case m_exp_op:mp->cur_exp=mp_m_exp(mp, mp->cur_exp);break;
18839 case m_log_op:mp->cur_exp=mp_m_log(mp, mp->cur_exp);break;
18842 mp_n_sin_cos(mp, (mp->cur_exp % three_sixty_units)*16);
18843 if ( c==sin_d_op ) mp->cur_exp=mp_round_fraction(mp, mp->n_sin);
18844 else mp->cur_exp=mp_round_fraction(mp, mp->n_cos);
18846 case floor_op:mp->cur_exp=mp_floor_scaled(mp, mp->cur_exp);break;
18847 case uniform_deviate:mp->cur_exp=mp_unif_rand(mp, mp->cur_exp);break;
18849 boolean_reset(odd(mp_round_unscaled(mp, mp->cur_exp)));
18850 mp->cur_type=mp_boolean_type;
18852 case char_exists_op:
18853 @<Determine if a character has been shipped out@>;
18855 } /* there are no other cases */
18859 @ @<Additional cases of unary operators@>=
18861 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) ) {
18862 p=value(mp->cur_exp);
18863 x=mp_n_arg(mp, value(x_part_loc(p)),value(y_part_loc(p)));
18864 if ( x>=0 ) mp_flush_cur_exp(mp, (x+8)/ 16);
18865 else mp_flush_cur_exp(mp, -((-x+8)/ 16));
18867 mp_bad_unary(mp, angle_op);
18871 @ If the current expression is a pair, but the context wants it to
18872 be a path, we call |pair_to_path|.
18874 @<Declare unary action...@>=
18875 void mp_pair_to_path (MP mp) {
18876 mp->cur_exp=mp_new_knot(mp);
18877 mp->cur_type=mp_path_type;
18880 @ @<Additional cases of unary operators@>=
18883 if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_transform_type) )
18884 mp_take_part(mp, c);
18885 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18886 else mp_bad_unary(mp, c);
18892 if ( mp->cur_type==mp_transform_type ) mp_take_part(mp, c);
18893 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18894 else mp_bad_unary(mp, c);
18899 if ( mp->cur_type==mp_color_type ) mp_take_part(mp, c);
18900 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18901 else mp_bad_unary(mp, c);
18907 if ( mp->cur_type==mp_cmykcolor_type) mp_take_part(mp, c);
18908 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18909 else mp_bad_unary(mp, c);
18912 if ( mp->cur_type==mp_known ) mp->cur_exp=value(c);
18913 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18914 else mp_bad_unary(mp, c);
18916 case color_model_part:
18917 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18918 else mp_bad_unary(mp, c);
18921 @ In the following procedure, |cur_exp| points to a capsule, which points to
18922 a big node. We want to delete all but one part of the big node.
18924 @<Declare unary action...@>=
18925 void mp_take_part (MP mp,quarterword c) {
18926 pointer p; /* the big node */
18927 p=value(mp->cur_exp); value(temp_val)=p; type(temp_val)=mp->cur_type;
18928 link(p)=temp_val; mp_free_node(mp, mp->cur_exp,value_node_size);
18929 mp_make_exp_copy(mp, p+mp->sector_offset[c+mp_x_part_sector-x_part]);
18930 mp_recycle_value(mp, temp_val);
18933 @ @<Initialize table entries...@>=
18934 name_type(temp_val)=mp_capsule;
18936 @ @<Additional cases of unary operators@>=
18942 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18943 else mp_bad_unary(mp, c);
18946 @ @<Declarations@>=
18947 void mp_scale_edges (MP mp);
18949 @ @<Declare unary action...@>=
18950 void mp_take_pict_part (MP mp,quarterword c) {
18951 pointer p; /* first graphical object in |cur_exp| */
18952 p=link(dummy_loc(mp->cur_exp));
18955 case x_part: case y_part: case xx_part:
18956 case xy_part: case yx_part: case yy_part:
18957 if ( type(p)==mp_text_code ) mp_flush_cur_exp(mp, text_trans_part(p+c));
18958 else goto NOT_FOUND;
18960 case red_part: case green_part: case blue_part:
18961 if ( has_color(p) ) mp_flush_cur_exp(mp, obj_color_part(p+c));
18962 else goto NOT_FOUND;
18964 case cyan_part: case magenta_part: case yellow_part:
18966 if ( has_color(p) ) {
18967 if ( color_model(p)==mp_uninitialized_model )
18968 mp_flush_cur_exp(mp, unity);
18970 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-cyan_part)));
18971 } else goto NOT_FOUND;
18974 if ( has_color(p) )
18975 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-grey_part)));
18976 else goto NOT_FOUND;
18978 case color_model_part:
18979 if ( has_color(p) ) {
18980 if ( color_model(p)==mp_uninitialized_model )
18981 mp_flush_cur_exp(mp, mp->internal[mp_default_color_model]);
18983 mp_flush_cur_exp(mp, color_model(p)*unity);
18984 } else goto NOT_FOUND;
18986 @<Handle other cases in |take_pict_part| or |goto not_found|@>;
18987 } /* all cases have been enumerated */
18991 @<Convert the current expression to a null value appropriate
18995 @ @<Handle other cases in |take_pict_part| or |goto not_found|@>=
18997 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
18999 mp_flush_cur_exp(mp, text_p(p));
19000 add_str_ref(mp->cur_exp);
19001 mp->cur_type=mp_string_type;
19005 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
19007 mp_flush_cur_exp(mp, rts(mp->font_name[font_n(p)]));
19008 add_str_ref(mp->cur_exp);
19009 mp->cur_type=mp_string_type;
19013 if ( type(p)==mp_text_code ) goto NOT_FOUND;
19014 else if ( is_stop(p) ) mp_confusion(mp, "pict");
19015 @:this can't happen pict}{\quad pict@>
19017 mp_flush_cur_exp(mp, mp_copy_path(mp, path_p(p)));
19018 mp->cur_type=mp_path_type;
19022 if ( ! has_pen(p) ) goto NOT_FOUND;
19024 if ( pen_p(p)==null ) goto NOT_FOUND;
19025 else { mp_flush_cur_exp(mp, copy_pen(pen_p(p)));
19026 mp->cur_type=mp_pen_type;
19031 if ( type(p)!=mp_stroked_code ) goto NOT_FOUND;
19032 else { if ( dash_p(p)==null ) goto NOT_FOUND;
19033 else { add_edge_ref(dash_p(p));
19034 mp->se_sf=dash_scale(p);
19035 mp->se_pic=dash_p(p);
19036 mp_scale_edges(mp);
19037 mp_flush_cur_exp(mp, mp->se_pic);
19038 mp->cur_type=mp_picture_type;
19043 @ Since |scale_edges| had to be declared |forward|, it had to be declared as a
19044 parameterless procedure even though it really takes two arguments and updates
19045 one of them. Hence the following globals are needed.
19048 pointer se_pic; /* edge header used and updated by |scale_edges| */
19049 scaled se_sf; /* the scale factor argument to |scale_edges| */
19051 @ @<Convert the current expression to a null value appropriate...@>=
19053 case text_part: case font_part:
19054 mp_flush_cur_exp(mp, rts(""));
19055 mp->cur_type=mp_string_type;
19058 mp_flush_cur_exp(mp, mp_get_node(mp, knot_node_size));
19059 left_type(mp->cur_exp)=mp_endpoint;
19060 right_type(mp->cur_exp)=mp_endpoint;
19061 link(mp->cur_exp)=mp->cur_exp;
19062 x_coord(mp->cur_exp)=0;
19063 y_coord(mp->cur_exp)=0;
19064 originator(mp->cur_exp)=mp_metapost_user;
19065 mp->cur_type=mp_path_type;
19068 mp_flush_cur_exp(mp, mp_get_pen_circle(mp, 0));
19069 mp->cur_type=mp_pen_type;
19072 mp_flush_cur_exp(mp, mp_get_node(mp, edge_header_size));
19073 mp_init_edges(mp, mp->cur_exp);
19074 mp->cur_type=mp_picture_type;
19077 mp_flush_cur_exp(mp, 0);
19081 @ @<Additional cases of unary...@>=
19083 if ( mp->cur_type!=mp_known ) {
19084 mp_bad_unary(mp, char_op);
19086 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
19087 mp->cur_type=mp_string_type;
19088 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
19092 if ( mp->cur_type!=mp_known ) {
19093 mp_bad_unary(mp, decimal);
19095 mp->old_setting=mp->selector; mp->selector=new_string;
19096 mp_print_scaled(mp, mp->cur_exp); mp->cur_exp=mp_make_string(mp);
19097 mp->selector=mp->old_setting; mp->cur_type=mp_string_type;
19103 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19104 else mp_str_to_num(mp, c);
19107 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, font_size);
19108 else @<Find the design size of the font whose name is |cur_exp|@>;
19111 @ @<Declare unary action...@>=
19112 void mp_str_to_num (MP mp,quarterword c) { /* converts a string to a number */
19113 integer n; /* accumulator */
19114 ASCII_code m; /* current character */
19115 pool_pointer k; /* index into |str_pool| */
19116 int b; /* radix of conversion */
19117 boolean bad_char; /* did the string contain an invalid digit? */
19118 if ( c==ASCII_op ) {
19119 if ( length(mp->cur_exp)==0 ) n=-1;
19120 else n=mp->str_pool[mp->str_start[mp->cur_exp]];
19122 if ( c==oct_op ) b=8; else b=16;
19123 n=0; bad_char=false;
19124 for (k=mp->str_start[mp->cur_exp];k<=str_stop(mp->cur_exp)-1;k++) {
19126 if ( (m>='0')&&(m<='9') ) m=m-'0';
19127 else if ( (m>='A')&&(m<='F') ) m=m-'A'+10;
19128 else if ( (m>='a')&&(m<='f') ) m=m-'a'+10;
19129 else { bad_char=true; m=0; };
19130 if ( m>=b ) { bad_char=true; m=0; };
19131 if ( n<32768 / b ) n=n*b+m; else n=32767;
19133 @<Give error messages if |bad_char| or |n>=4096|@>;
19135 mp_flush_cur_exp(mp, n*unity);
19138 @ @<Give error messages if |bad_char|...@>=
19140 exp_err("String contains illegal digits");
19141 @.String contains illegal digits@>
19143 help1("I zeroed out characters that weren't in the range 0..7.");
19145 help1("I zeroed out characters that weren't hex digits.");
19147 mp_put_get_error(mp);
19150 if ( mp->internal[mp_warning_check]>0 ) {
19151 print_err("Number too large (");
19152 mp_print_int(mp, n); mp_print_char(mp, ')');
19153 @.Number too large@>
19154 help2("I have trouble with numbers greater than 4095; watch out.")
19155 ("(Set warningcheck:=0 to suppress this message.)");
19156 mp_put_get_error(mp);
19160 @ The length operation is somewhat unusual in that it applies to a variety
19161 of different types of operands.
19163 @<Additional cases of unary...@>=
19165 switch (mp->cur_type) {
19166 case mp_string_type: mp_flush_cur_exp(mp, length(mp->cur_exp)*unity); break;
19167 case mp_path_type: mp_flush_cur_exp(mp, mp_path_length(mp)); break;
19168 case mp_known: mp->cur_exp=abs(mp->cur_exp); break;
19169 case mp_picture_type: mp_flush_cur_exp(mp, mp_pict_length(mp)); break;
19171 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) )
19172 mp_flush_cur_exp(mp, mp_pyth_add(mp,
19173 value(x_part_loc(value(mp->cur_exp))),
19174 value(y_part_loc(value(mp->cur_exp)))));
19175 else mp_bad_unary(mp, c);
19180 @ @<Declare unary action...@>=
19181 scaled mp_path_length (MP mp) { /* computes the length of the current path */
19182 scaled n; /* the path length so far */
19183 pointer p; /* traverser */
19185 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
19186 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
19190 @ @<Declare unary action...@>=
19191 scaled mp_pict_length (MP mp) {
19192 /* counts interior components in picture |cur_exp| */
19193 scaled n; /* the count so far */
19194 pointer p; /* traverser */
19196 p=link(dummy_loc(mp->cur_exp));
19198 if ( is_start_or_stop(p) )
19199 if ( mp_skip_1component(mp, p)==null ) p=link(p);
19200 while ( p!=null ) {
19201 skip_component(p) return n;
19208 @ Implement |turningnumber|
19210 @<Additional cases of unary...@>=
19212 if ( mp->cur_type==mp_pair_type ) mp_flush_cur_exp(mp, 0);
19213 else if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, turning_op);
19214 else if ( left_type(mp->cur_exp)==mp_endpoint )
19215 mp_flush_cur_exp(mp, 0); /* not a cyclic path */
19217 mp_flush_cur_exp(mp, mp_turn_cycles_wrapper(mp, mp->cur_exp));
19220 @ The function |an_angle| returns the value of the |angle| primitive, or $0$ if the
19221 argument is |origin|.
19223 @<Declare unary action...@>=
19224 angle mp_an_angle (MP mp,scaled xpar, scaled ypar) {
19225 if ( (! ((xpar==0) && (ypar==0))) )
19226 return mp_n_arg(mp, xpar,ypar);
19231 @ The actual turning number is (for the moment) computed in a C function
19232 that receives eight integers corresponding to the four controlling points,
19233 and returns a single angle. Besides those, we have to account for discrete
19234 moves at the actual points.
19236 @d floor(a) (a>=0 ? a : -(int)(-a))
19237 @d bezier_error (720<<20)+1
19238 @d sign(v) ((v)>0 ? 1 : ((v)<0 ? -1 : 0 ))
19240 @d out ((double)(xo>>20))
19241 @d mid ((double)(xm>>20))
19242 @d in ((double)(xi>>20))
19243 @d divisor (256*256)
19244 @d double2angle(a) (int)floor(a*256.0*256.0*16.0)
19246 @<Declare unary action...@>=
19247 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19248 integer CX,integer CY,integer DX,integer DY);
19251 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19252 integer CX,integer CY,integer DX,integer DY) {
19254 integer deltax,deltay;
19255 double ax,ay,bx,by,cx,cy,dx,dy;
19256 angle xi = 0, xo = 0, xm = 0;
19258 ax=AX/divisor; ay=AY/divisor;
19259 bx=BX/divisor; by=BY/divisor;
19260 cx=CX/divisor; cy=CY/divisor;
19261 dx=DX/divisor; dy=DY/divisor;
19263 deltax = (BX-AX); deltay = (BY-AY);
19264 if (deltax==0 && deltay == 0) { deltax=(CX-AX); deltay=(CY-AY); }
19265 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19266 xi = mp_an_angle(mp,deltax,deltay);
19268 deltax = (CX-BX); deltay = (CY-BY);
19269 xm = mp_an_angle(mp,deltax,deltay);
19271 deltax = (DX-CX); deltay = (DY-CY);
19272 if (deltax==0 && deltay == 0) { deltax=(DX-BX); deltay=(DY-BY); }
19273 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19274 xo = mp_an_angle(mp,deltax,deltay);
19276 a = (bx-ax)*(cy-by) - (cx-bx)*(by-ay); /* a = (bp-ap)x(cp-bp); */
19277 b = (bx-ax)*(dy-cy) - (by-ay)*(dx-cx);; /* b = (bp-ap)x(dp-cp);*/
19278 c = (cx-bx)*(dy-cy) - (dx-cx)*(cy-by); /* c = (cp-bp)x(dp-cp);*/
19280 if ((a==0)&&(c==0)) {
19281 res = (b==0 ? 0 : (out-in));
19282 print_roots("no roots (a)");
19283 } else if ((a==0)||(c==0)) {
19284 if ((sign(b) == sign(a)) || (sign(b) == sign(c))) {
19285 res = out-in; /* ? */
19288 else if (res>180.0)
19290 print_roots("no roots (b)");
19292 res = out-in; /* ? */
19293 print_roots("one root (a)");
19295 } else if ((sign(a)*sign(c))<0) {
19296 res = out-in; /* ? */
19299 else if (res>180.0)
19301 print_roots("one root (b)");
19303 if (sign(a) == sign(b)) {
19304 res = out-in; /* ? */
19307 else if (res>180.0)
19309 print_roots("no roots (d)");
19311 if ((b*b) == (4*a*c)) {
19312 res = bezier_error;
19313 print_roots("double root"); /* cusp */
19314 } else if ((b*b) < (4*a*c)) {
19315 res = out-in; /* ? */
19316 if (res<=0.0 &&res>-180.0)
19318 else if (res>=0.0 && res<180.0)
19320 print_roots("no roots (e)");
19325 else if (res>180.0)
19327 print_roots("two roots"); /* two inflections */
19331 return double2angle(res);
19335 @d p_nextnext link(link(p))
19337 @d seven_twenty_deg 05500000000 /* $720\cdot2^{20}$, represents $720^\circ$ */
19339 @<Declare unary action...@>=
19340 scaled mp_new_turn_cycles (MP mp,pointer c) {
19341 angle res,ang; /* the angles of intermediate results */
19342 scaled turns; /* the turn counter */
19343 pointer p; /* for running around the path */
19344 integer xp,yp; /* coordinates of next point */
19345 integer x,y; /* helper coordinates */
19346 angle in_angle,out_angle; /* helper angles */
19347 int old_setting; /* saved |selector| setting */
19351 old_setting = mp->selector; mp->selector=term_only;
19352 if ( mp->internal[mp_tracing_commands]>unity ) {
19353 mp_begin_diagnostic(mp);
19354 mp_print_nl(mp, "");
19355 mp_end_diagnostic(mp, false);
19358 xp = x_coord(p_next); yp = y_coord(p_next);
19359 ang = mp_bezier_slope(mp,x_coord(p), y_coord(p), right_x(p), right_y(p),
19360 left_x(p_next), left_y(p_next), xp, yp);
19361 if ( ang>seven_twenty_deg ) {
19362 print_err("Strange path");
19364 mp->selector=old_setting;
19368 if ( res > one_eighty_deg ) {
19369 res = res - three_sixty_deg;
19370 turns = turns + unity;
19372 if ( res <= -one_eighty_deg ) {
19373 res = res + three_sixty_deg;
19374 turns = turns - unity;
19376 /* incoming angle at next point */
19377 x = left_x(p_next); y = left_y(p_next);
19378 if ( (xp==x)&&(yp==y) ) { x = right_x(p); y = right_y(p); };
19379 if ( (xp==x)&&(yp==y) ) { x = x_coord(p); y = y_coord(p); };
19380 in_angle = mp_an_angle(mp, xp - x, yp - y);
19381 /* outgoing angle at next point */
19382 x = right_x(p_next); y = right_y(p_next);
19383 if ( (xp==x)&&(yp==y) ) { x = left_x(p_nextnext); y = left_y(p_nextnext); };
19384 if ( (xp==x)&&(yp==y) ) { x = x_coord(p_nextnext); y = y_coord(p_nextnext); };
19385 out_angle = mp_an_angle(mp, x - xp, y- yp);
19386 ang = (out_angle - in_angle);
19390 if ( res >= one_eighty_deg ) {
19391 res = res - three_sixty_deg;
19392 turns = turns + unity;
19394 if ( res <= -one_eighty_deg ) {
19395 res = res + three_sixty_deg;
19396 turns = turns - unity;
19401 mp->selector=old_setting;
19406 @ This code is based on Bogus\l{}av Jackowski's
19407 |emergency_turningnumber| macro, with some minor changes by Taco
19408 Hoekwater. The macro code looked more like this:
19410 vardef turning\_number primary p =
19411 ~~save res, ang, turns;
19413 ~~if length p <= 2:
19414 ~~~~if Angle ((point 0 of p) - (postcontrol 0 of p)) >= 0: 1 else: -1 fi
19416 ~~~~for t = 0 upto length p-1 :
19417 ~~~~~~angc := Angle ((point t+1 of p) - (point t of p))
19418 ~~~~~~~~- Angle ((point t of p) - (point t-1 of p));
19419 ~~~~~~if angc > 180: angc := angc - 360; fi;
19420 ~~~~~~if angc < -180: angc := angc + 360; fi;
19421 ~~~~~~res := res + angc;
19426 The general idea is to calculate only the sum of the angles of
19427 straight lines between the points, of a path, not worrying about cusps
19428 or self-intersections in the segments at all. If the segment is not
19429 well-behaved, the result is not necesarily correct. But the old code
19430 was not always correct either, and worse, it sometimes failed for
19431 well-behaved paths as well. All known bugs that were triggered by the
19432 original code no longer occur with this code, and it runs roughly 3
19433 times as fast because the algorithm is much simpler.
19435 @ It is possible to overflow the return value of the |turn_cycles|
19436 function when the path is sufficiently long and winding, but I am not
19437 going to bother testing for that. In any case, it would only return
19438 the looped result value, which is not a big problem.
19440 The macro code for the repeat loop was a bit nicer to look
19441 at than the pascal code, because it could use |point -1 of p|. In
19442 pascal, the fastest way to loop around the path is not to look
19443 backward once, but forward twice. These defines help hide the trick.
19445 @d p_to link(link(p))
19449 @<Declare unary action...@>=
19450 scaled mp_turn_cycles (MP mp,pointer c) {
19451 angle res,ang; /* the angles of intermediate results */
19452 scaled turns; /* the turn counter */
19453 pointer p; /* for running around the path */
19454 res=0; turns= 0; p=c;
19456 ang = mp_an_angle (mp, x_coord(p_to) - x_coord(p_here),
19457 y_coord(p_to) - y_coord(p_here))
19458 - mp_an_angle (mp, x_coord(p_here) - x_coord(p_from),
19459 y_coord(p_here) - y_coord(p_from));
19462 if ( res >= three_sixty_deg ) {
19463 res = res - three_sixty_deg;
19464 turns = turns + unity;
19466 if ( res <= -three_sixty_deg ) {
19467 res = res + three_sixty_deg;
19468 turns = turns - unity;
19475 @ @<Declare unary action...@>=
19476 scaled mp_turn_cycles_wrapper (MP mp,pointer c) {
19478 scaled saved_t_o; /* tracing\_online saved */
19479 if ( (link(c)==c)||(link(link(c))==c) ) {
19480 if ( mp_an_angle (mp, x_coord(c) - right_x(c), y_coord(c) - right_y(c)) > 0 )
19485 nval = mp_new_turn_cycles(mp, c);
19486 oval = mp_turn_cycles(mp, c);
19487 if ( nval!=oval ) {
19488 saved_t_o=mp->internal[mp_tracing_online];
19489 mp->internal[mp_tracing_online]=unity;
19490 mp_begin_diagnostic(mp);
19491 mp_print_nl (mp, "Warning: the turningnumber algorithms do not agree."
19492 " The current computed value is ");
19493 mp_print_scaled(mp, nval);
19494 mp_print(mp, ", but the 'connect-the-dots' algorithm returned ");
19495 mp_print_scaled(mp, oval);
19496 mp_end_diagnostic(mp, false);
19497 mp->internal[mp_tracing_online]=saved_t_o;
19503 @ @<Declare unary action...@>=
19504 scaled mp_count_turns (MP mp,pointer c) {
19505 pointer p; /* a knot in envelope spec |c| */
19506 integer t; /* total pen offset changes counted */
19509 t=t+info(p)-zero_off;
19512 return ((t / 3)*unity);
19515 @ @d type_range(A,B) {
19516 if ( (mp->cur_type>=(A)) && (mp->cur_type<=(B)) )
19517 mp_flush_cur_exp(mp, true_code);
19518 else mp_flush_cur_exp(mp, false_code);
19519 mp->cur_type=mp_boolean_type;
19522 if ( mp->cur_type==(A) ) mp_flush_cur_exp(mp, true_code);
19523 else mp_flush_cur_exp(mp, false_code);
19524 mp->cur_type=mp_boolean_type;
19527 @<Additional cases of unary operators@>=
19528 case mp_boolean_type:
19529 type_range(mp_boolean_type,mp_unknown_boolean); break;
19530 case mp_string_type:
19531 type_range(mp_string_type,mp_unknown_string); break;
19533 type_range(mp_pen_type,mp_unknown_pen); break;
19535 type_range(mp_path_type,mp_unknown_path); break;
19536 case mp_picture_type:
19537 type_range(mp_picture_type,mp_unknown_picture); break;
19538 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
19540 type_test(c); break;
19541 case mp_numeric_type:
19542 type_range(mp_known,mp_independent); break;
19543 case known_op: case unknown_op:
19544 mp_test_known(mp, c); break;
19546 @ @<Declare unary action procedures@>=
19547 void mp_test_known (MP mp,quarterword c) {
19548 int b; /* is the current expression known? */
19549 pointer p,q; /* locations in a big node */
19551 switch (mp->cur_type) {
19552 case mp_vacuous: case mp_boolean_type: case mp_string_type:
19553 case mp_pen_type: case mp_path_type: case mp_picture_type:
19557 case mp_transform_type:
19558 case mp_color_type: case mp_cmykcolor_type: case mp_pair_type:
19559 p=value(mp->cur_exp);
19560 q=p+mp->big_node_size[mp->cur_type];
19563 if ( type(q)!=mp_known )
19572 if ( c==known_op ) mp_flush_cur_exp(mp, b);
19573 else mp_flush_cur_exp(mp, true_code+false_code-b);
19574 mp->cur_type=mp_boolean_type;
19577 @ @<Additional cases of unary operators@>=
19579 if ( mp->cur_type!=mp_path_type ) mp_flush_cur_exp(mp, false_code);
19580 else if ( left_type(mp->cur_exp)!=mp_endpoint ) mp_flush_cur_exp(mp, true_code);
19581 else mp_flush_cur_exp(mp, false_code);
19582 mp->cur_type=mp_boolean_type;
19585 @ @<Additional cases of unary operators@>=
19587 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19588 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, arc_length);
19589 else mp_flush_cur_exp(mp, mp_get_arc_length(mp, mp->cur_exp));
19592 @ Here we use the fact that |c-filled_op+fill_code| is the desired graphical
19594 @^data structure assumptions@>
19596 @<Additional cases of unary operators@>=
19602 if ( mp->cur_type!=mp_picture_type ) mp_flush_cur_exp(mp, false_code);
19603 else if ( link(dummy_loc(mp->cur_exp))==null ) mp_flush_cur_exp(mp, false_code);
19604 else if ( type(link(dummy_loc(mp->cur_exp)))==c+mp_fill_code-filled_op )
19605 mp_flush_cur_exp(mp, true_code);
19606 else mp_flush_cur_exp(mp, false_code);
19607 mp->cur_type=mp_boolean_type;
19610 @ @<Additional cases of unary operators@>=
19612 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19613 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, make_pen_op);
19615 mp->cur_type=mp_pen_type;
19616 mp->cur_exp=mp_make_pen(mp, mp->cur_exp,true);
19620 if ( mp->cur_type!=mp_pen_type ) mp_bad_unary(mp, make_path_op);
19622 mp->cur_type=mp_path_type;
19623 mp_make_path(mp, mp->cur_exp);
19627 if ( mp->cur_type==mp_path_type ) {
19628 p=mp_htap_ypoc(mp, mp->cur_exp);
19629 if ( right_type(p)==mp_endpoint ) p=link(p);
19630 mp_toss_knot_list(mp, mp->cur_exp); mp->cur_exp=p;
19631 } else if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19632 else mp_bad_unary(mp, reverse);
19635 @ The |pair_value| routine changes the current expression to a
19636 given ordered pair of values.
19638 @<Declare unary action procedures@>=
19639 void mp_pair_value (MP mp,scaled x, scaled y) {
19640 pointer p; /* a pair node */
19641 p=mp_get_node(mp, value_node_size);
19642 mp_flush_cur_exp(mp, p); mp->cur_type=mp_pair_type;
19643 type(p)=mp_pair_type; name_type(p)=mp_capsule; mp_init_big_node(mp, p);
19645 type(x_part_loc(p))=mp_known; value(x_part_loc(p))=x;
19646 type(y_part_loc(p))=mp_known; value(y_part_loc(p))=y;
19649 @ @<Additional cases of unary operators@>=
19651 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ll_corner_op);
19652 else mp_pair_value(mp, minx,miny);
19655 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, lr_corner_op);
19656 else mp_pair_value(mp, maxx,miny);
19659 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ul_corner_op);
19660 else mp_pair_value(mp, minx,maxy);
19663 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ur_corner_op);
19664 else mp_pair_value(mp, maxx,maxy);
19667 @ Here is a function that sets |minx|, |maxx|, |miny|, |maxy| to the bounding
19668 box of the current expression. The boolean result is |false| if the expression
19669 has the wrong type.
19671 @<Declare unary action procedures@>=
19672 boolean mp_get_cur_bbox (MP mp) {
19673 switch (mp->cur_type) {
19674 case mp_picture_type:
19675 mp_set_bbox(mp, mp->cur_exp,true);
19676 if ( minx_val(mp->cur_exp)>maxx_val(mp->cur_exp) ) {
19677 minx=0; maxx=0; miny=0; maxy=0;
19679 minx=minx_val(mp->cur_exp);
19680 maxx=maxx_val(mp->cur_exp);
19681 miny=miny_val(mp->cur_exp);
19682 maxy=maxy_val(mp->cur_exp);
19686 mp_path_bbox(mp, mp->cur_exp);
19689 mp_pen_bbox(mp, mp->cur_exp);
19697 @ @<Additional cases of unary operators@>=
19699 case close_from_op:
19700 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19701 else mp_do_read_or_close(mp,c);
19704 @ Here is a routine that interprets |cur_exp| as a file name and tries to read
19705 a line from the file or to close the file.
19707 @<Declare unary action procedures@>=
19708 void mp_do_read_or_close (MP mp,quarterword c) {
19709 readf_index n,n0; /* indices for searching |rd_fname| */
19710 @<Find the |n| where |rd_fname[n]=cur_exp|; if |cur_exp| must be inserted,
19711 call |start_read_input| and |goto found| or |not_found|@>;
19712 mp_begin_file_reading(mp);
19714 if ( mp_input_ln(mp, mp->rd_file[n] ) )
19716 mp_end_file_reading(mp);
19718 @<Record the end of file and set |cur_exp| to a dummy value@>;
19721 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
19724 mp_flush_cur_exp(mp, 0);
19725 mp_finish_read(mp);
19728 @ Free slots in the |rd_file| and |rd_fname| arrays are marked with NULL's in
19731 @<Find the |n| where |rd_fname[n]=cur_exp|...@>=
19736 fn = str(mp->cur_exp);
19737 while (mp_xstrcmp(fn,mp->rd_fname[n])!=0) {
19740 } else if ( c==close_from_op ) {
19743 if ( n0==mp->read_files ) {
19744 if ( mp->read_files<mp->max_read_files ) {
19745 incr(mp->read_files);
19750 l = mp->max_read_files + (mp->max_read_files>>2);
19751 rd_file = xmalloc((l+1), sizeof(void *));
19752 rd_fname = xmalloc((l+1), sizeof(char *));
19753 for (k=0;k<=l;k++) {
19754 if (k<=mp->max_read_files) {
19755 rd_file[k]=mp->rd_file[k];
19756 rd_fname[k]=mp->rd_fname[k];
19762 xfree(mp->rd_file); xfree(mp->rd_fname);
19763 mp->max_read_files = l;
19764 mp->rd_file = rd_file;
19765 mp->rd_fname = rd_fname;
19769 if ( mp_start_read_input(mp,fn,n) )
19774 if ( mp->rd_fname[n]==NULL ) { n0=n; }
19776 if ( c==close_from_op ) {
19777 (mp->close_file)(mp->rd_file[n]);
19782 @ @<Record the end of file and set |cur_exp| to a dummy value@>=
19783 xfree(mp->rd_fname[n]);
19784 mp->rd_fname[n]=NULL;
19785 if ( n==mp->read_files-1 ) mp->read_files=n;
19786 if ( c==close_from_op )
19788 mp_flush_cur_exp(mp, mp->eof_line);
19789 mp->cur_type=mp_string_type
19791 @ The string denoting end-of-file is a one-byte string at position zero, by definition
19794 str_number eof_line;
19799 @ Finally, we have the operations that combine a capsule~|p|
19800 with the current expression.
19802 @c @<Declare binary action procedures@>;
19803 void mp_do_binary (MP mp,pointer p, quarterword c) {
19804 pointer q,r,rr; /* for list manipulation */
19805 pointer old_p,old_exp; /* capsules to recycle */
19806 integer v; /* for numeric manipulation */
19808 if ( mp->internal[mp_tracing_commands]>two ) {
19809 @<Trace the current binary operation@>;
19811 @<Sidestep |independent| cases in capsule |p|@>;
19812 @<Sidestep |independent| cases in the current expression@>;
19814 case plus: case minus:
19815 @<Add or subtract the current expression from |p|@>;
19817 @<Additional cases of binary operators@>;
19818 }; /* there are no other cases */
19819 mp_recycle_value(mp, p);
19820 mp_free_node(mp, p,value_node_size); /* |return| to avoid this */
19822 @<Recycle any sidestepped |independent| capsules@>;
19825 @ @<Declare binary action...@>=
19826 void mp_bad_binary (MP mp,pointer p, quarterword c) {
19827 mp_disp_err(mp, p,"");
19828 exp_err("Not implemented: ");
19829 @.Not implemented...@>
19830 if ( c>=min_of ) mp_print_op(mp, c);
19831 mp_print_known_or_unknown_type(mp, type(p),p);
19832 if ( c>=min_of ) mp_print(mp, "of"); else mp_print_op(mp, c);
19833 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
19834 help3("I'm afraid I don't know how to apply that operation to that")
19835 ("combination of types. Continue, and I'll return the second")
19836 ("argument (see above) as the result of the operation.");
19837 mp_put_get_error(mp);
19839 void mp_bad_envelope_pen (MP mp) {
19840 mp_disp_err(mp, null,"");
19841 exp_err("Not implemented: envelope(elliptical pen)of(path)");
19842 @.Not implemented...@>
19843 help3("I'm afraid I don't know how to apply that operation to that")
19844 ("combination of types. Continue, and I'll return the second")
19845 ("argument (see above) as the result of the operation.");
19846 mp_put_get_error(mp);
19849 @ @<Trace the current binary operation@>=
19851 mp_begin_diagnostic(mp); mp_print_nl(mp, "{(");
19852 mp_print_exp(mp,p,0); /* show the operand, but not verbosely */
19853 mp_print_char(mp,')'); mp_print_op(mp,c); mp_print_char(mp,'(');
19854 mp_print_exp(mp,null,0); mp_print(mp,")}");
19855 mp_end_diagnostic(mp, false);
19858 @ Several of the binary operations are potentially complicated by the
19859 fact that |independent| values can sneak into capsules. For example,
19860 we've seen an instance of this difficulty in the unary operation
19861 of negation. In order to reduce the number of cases that need to be
19862 handled, we first change the two operands (if necessary)
19863 to rid them of |independent| components. The original operands are
19864 put into capsules called |old_p| and |old_exp|, which will be
19865 recycled after the binary operation has been safely carried out.
19867 @<Recycle any sidestepped |independent| capsules@>=
19868 if ( old_p!=null ) {
19869 mp_recycle_value(mp, old_p); mp_free_node(mp, old_p,value_node_size);
19871 if ( old_exp!=null ) {
19872 mp_recycle_value(mp, old_exp); mp_free_node(mp, old_exp,value_node_size);
19875 @ A big node is considered to be ``tarnished'' if it contains at least one
19876 independent component. We will define a simple function called `|tarnished|'
19877 that returns |null| if and only if its argument is not tarnished.
19879 @<Sidestep |independent| cases in capsule |p|@>=
19881 case mp_transform_type:
19882 case mp_color_type:
19883 case mp_cmykcolor_type:
19885 old_p=mp_tarnished(mp, p);
19887 case mp_independent: old_p=mp_void; break;
19888 default: old_p=null; break;
19890 if ( old_p!=null ) {
19891 q=mp_stash_cur_exp(mp); old_p=p; mp_make_exp_copy(mp, old_p);
19892 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
19895 @ @<Sidestep |independent| cases in the current expression@>=
19896 switch (mp->cur_type) {
19897 case mp_transform_type:
19898 case mp_color_type:
19899 case mp_cmykcolor_type:
19901 old_exp=mp_tarnished(mp, mp->cur_exp);
19903 case mp_independent:old_exp=mp_void; break;
19904 default: old_exp=null; break;
19906 if ( old_exp!=null ) {
19907 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
19910 @ @<Declare binary action...@>=
19911 pointer mp_tarnished (MP mp,pointer p) {
19912 pointer q; /* beginning of the big node */
19913 pointer r; /* current position in the big node */
19914 q=value(p); r=q+mp->big_node_size[type(p)];
19917 if ( type(r)==mp_independent ) return mp_void;
19922 @ @<Add or subtract the current expression from |p|@>=
19923 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
19924 mp_bad_binary(mp, p,c);
19926 if ((mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
19927 mp_add_or_subtract(mp, p,null,c);
19929 if ( mp->cur_type!=type(p) ) {
19930 mp_bad_binary(mp, p,c);
19932 q=value(p); r=value(mp->cur_exp);
19933 rr=r+mp->big_node_size[mp->cur_type];
19935 mp_add_or_subtract(mp, q,r,c);
19942 @ The first argument to |add_or_subtract| is the location of a value node
19943 in a capsule or pair node that will soon be recycled. The second argument
19944 is either a location within a pair or transform node of |cur_exp|,
19945 or it is null (which means that |cur_exp| itself should be the second
19946 argument). The third argument is either |plus| or |minus|.
19948 The sum or difference of the numeric quantities will replace the second
19949 operand. Arithmetic overflow may go undetected; users aren't supposed to
19950 be monkeying around with really big values.
19952 @<Declare binary action...@>=
19953 @<Declare the procedure called |dep_finish|@>;
19954 void mp_add_or_subtract (MP mp,pointer p, pointer q, quarterword c) {
19955 small_number s,t; /* operand types */
19956 pointer r; /* list traverser */
19957 integer v; /* second operand value */
19960 if ( t<mp_dependent ) v=mp->cur_exp; else v=dep_list(mp->cur_exp);
19963 if ( t<mp_dependent ) v=value(q); else v=dep_list(q);
19965 if ( t==mp_known ) {
19966 if ( c==minus ) negate(v);
19967 if ( type(p)==mp_known ) {
19968 v=mp_slow_add(mp, value(p),v);
19969 if ( q==null ) mp->cur_exp=v; else value(q)=v;
19972 @<Add a known value to the constant term of |dep_list(p)|@>;
19974 if ( c==minus ) mp_negate_dep_list(mp, v);
19975 @<Add operand |p| to the dependency list |v|@>;
19979 @ @<Add a known value to the constant term of |dep_list(p)|@>=
19981 while ( info(r)!=null ) r=link(r);
19982 value(r)=mp_slow_add(mp, value(r),v);
19984 q=mp_get_node(mp, value_node_size); mp->cur_exp=q; mp->cur_type=type(p);
19985 name_type(q)=mp_capsule;
19987 dep_list(q)=dep_list(p); type(q)=type(p);
19988 prev_dep(q)=prev_dep(p); link(prev_dep(p))=q;
19989 type(p)=mp_known; /* this will keep the recycler from collecting non-garbage */
19991 @ We prefer |dependent| lists to |mp_proto_dependent| ones, because it is
19992 nice to retain the extra accuracy of |fraction| coefficients.
19993 But we have to handle both kinds, and mixtures too.
19995 @<Add operand |p| to the dependency list |v|@>=
19996 if ( type(p)==mp_known ) {
19997 @<Add the known |value(p)| to the constant term of |v|@>;
19999 s=type(p); r=dep_list(p);
20000 if ( t==mp_dependent ) {
20001 if ( s==mp_dependent ) {
20002 if ( mp_max_coef(mp, r)+mp_max_coef(mp, v)<coef_bound )
20003 v=mp_p_plus_q(mp, v,r,mp_dependent); goto DONE;
20004 } /* |fix_needed| will necessarily be false */
20005 t=mp_proto_dependent;
20006 v=mp_p_over_v(mp, v,unity,mp_dependent,mp_proto_dependent);
20008 if ( s==mp_proto_dependent ) v=mp_p_plus_q(mp, v,r,mp_proto_dependent);
20009 else v=mp_p_plus_fq(mp, v,unity,r,mp_proto_dependent,mp_dependent);
20011 @<Output the answer, |v| (which might have become |known|)@>;
20014 @ @<Add the known |value(p)| to the constant term of |v|@>=
20016 while ( info(v)!=null ) v=link(v);
20017 value(v)=mp_slow_add(mp, value(p),value(v));
20020 @ @<Output the answer, |v| (which might have become |known|)@>=
20021 if ( q!=null ) mp_dep_finish(mp, v,q,t);
20022 else { mp->cur_type=t; mp_dep_finish(mp, v,null,t); }
20024 @ Here's the current situation: The dependency list |v| of type |t|
20025 should either be put into the current expression (if |q=null|) or
20026 into location |q| within a pair node (otherwise). The destination (|cur_exp|
20027 or |q|) formerly held a dependency list with the same
20028 final pointer as the list |v|.
20030 @<Declare the procedure called |dep_finish|@>=
20031 void mp_dep_finish (MP mp, pointer v, pointer q, small_number t) {
20032 pointer p; /* the destination */
20033 scaled vv; /* the value, if it is |known| */
20034 if ( q==null ) p=mp->cur_exp; else p=q;
20035 dep_list(p)=v; type(p)=t;
20036 if ( info(v)==null ) {
20039 mp_flush_cur_exp(mp, vv);
20041 mp_recycle_value(mp, p); type(q)=mp_known; value(q)=vv;
20043 } else if ( q==null ) {
20046 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20049 @ Let's turn now to the six basic relations of comparison.
20051 @<Additional cases of binary operators@>=
20052 case less_than: case less_or_equal: case greater_than:
20053 case greater_or_equal: case equal_to: case unequal_to:
20054 check_arith; /* at this point |arith_error| should be |false|? */
20055 if ( (mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
20056 mp_add_or_subtract(mp, p,null,minus); /* |cur_exp:=(p)-cur_exp| */
20057 } else if ( mp->cur_type!=type(p) ) {
20058 mp_bad_binary(mp, p,c); goto DONE;
20059 } else if ( mp->cur_type==mp_string_type ) {
20060 mp_flush_cur_exp(mp, mp_str_vs_str(mp, value(p),mp->cur_exp));
20061 } else if ((mp->cur_type==mp_unknown_string)||
20062 (mp->cur_type==mp_unknown_boolean) ) {
20063 @<Check if unknowns have been equated@>;
20064 } else if ( (mp->cur_type<=mp_pair_type)&&(mp->cur_type>=mp_transform_type)) {
20065 @<Reduce comparison of big nodes to comparison of scalars@>;
20066 } else if ( mp->cur_type==mp_boolean_type ) {
20067 mp_flush_cur_exp(mp, mp->cur_exp-value(p));
20069 mp_bad_binary(mp, p,c); goto DONE;
20071 @<Compare the current expression with zero@>;
20073 mp->arith_error=false; /* ignore overflow in comparisons */
20076 @ @<Compare the current expression with zero@>=
20077 if ( mp->cur_type!=mp_known ) {
20078 if ( mp->cur_type<mp_known ) {
20079 mp_disp_err(mp, p,"");
20080 help1("The quantities shown above have not been equated.")
20082 help2("Oh dear. I can\'t decide if the expression above is positive,")
20083 ("negative, or zero. So this comparison test won't be `true'.");
20085 exp_err("Unknown relation will be considered false");
20086 @.Unknown relation...@>
20087 mp_put_get_flush_error(mp, false_code);
20090 case less_than: boolean_reset(mp->cur_exp<0); break;
20091 case less_or_equal: boolean_reset(mp->cur_exp<=0); break;
20092 case greater_than: boolean_reset(mp->cur_exp>0); break;
20093 case greater_or_equal: boolean_reset(mp->cur_exp>=0); break;
20094 case equal_to: boolean_reset(mp->cur_exp==0); break;
20095 case unequal_to: boolean_reset(mp->cur_exp!=0); break;
20096 }; /* there are no other cases */
20098 mp->cur_type=mp_boolean_type
20100 @ When two unknown strings are in the same ring, we know that they are
20101 equal. Otherwise, we don't know whether they are equal or not, so we
20104 @<Check if unknowns have been equated@>=
20106 q=value(mp->cur_exp);
20107 while ( (q!=mp->cur_exp)&&(q!=p) ) q=value(q);
20108 if ( q==p ) mp_flush_cur_exp(mp, 0);
20111 @ @<Reduce comparison of big nodes to comparison of scalars@>=
20113 q=value(p); r=value(mp->cur_exp);
20114 rr=r+mp->big_node_size[mp->cur_type]-2;
20115 while (1) { mp_add_or_subtract(mp, q,r,minus);
20116 if ( type(r)!=mp_known ) break;
20117 if ( value(r)!=0 ) break;
20118 if ( r==rr ) break;
20121 mp_take_part(mp, name_type(r)+x_part-mp_x_part_sector);
20124 @ Here we use the sneaky fact that |and_op-false_code=or_op-true_code|.
20126 @<Additional cases of binary operators@>=
20129 if ( (type(p)!=mp_boolean_type)||(mp->cur_type!=mp_boolean_type) )
20130 mp_bad_binary(mp, p,c);
20131 else if ( value(p)==c+false_code-and_op ) mp->cur_exp=value(p);
20134 @ @<Additional cases of binary operators@>=
20136 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
20137 mp_bad_binary(mp, p,times);
20138 } else if ( (mp->cur_type==mp_known)||(type(p)==mp_known) ) {
20139 @<Multiply when at least one operand is known@>;
20140 } else if ( (mp_nice_color_or_pair(mp, p,type(p))&&(mp->cur_type>mp_pair_type))
20141 ||(mp_nice_color_or_pair(mp, mp->cur_exp,mp->cur_type)&&
20142 (type(p)>mp_pair_type)) ) {
20143 mp_hard_times(mp, p); return;
20145 mp_bad_binary(mp, p,times);
20149 @ @<Multiply when at least one operand is known@>=
20151 if ( type(p)==mp_known ) {
20152 v=value(p); mp_free_node(mp, p,value_node_size);
20154 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20156 if ( mp->cur_type==mp_known ) {
20157 mp->cur_exp=mp_take_scaled(mp, mp->cur_exp,v);
20158 } else if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_color_type)||
20159 (mp->cur_type==mp_cmykcolor_type) ) {
20160 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20162 p=p-2; mp_dep_mult(mp, p,v,true);
20163 } while (p!=value(mp->cur_exp));
20165 mp_dep_mult(mp, null,v,true);
20170 @ @<Declare binary action...@>=
20171 void mp_dep_mult (MP mp,pointer p, integer v, boolean v_is_scaled) {
20172 pointer q; /* the dependency list being multiplied by |v| */
20173 small_number s,t; /* its type, before and after */
20176 } else if ( type(p)!=mp_known ) {
20179 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
20180 else value(p)=mp_take_fraction(mp, value(p),v);
20183 t=type(q); q=dep_list(q); s=t;
20184 if ( t==mp_dependent ) if ( v_is_scaled )
20185 if (mp_ab_vs_cd(mp, mp_max_coef(mp,q),abs(v),coef_bound-1,unity)>=0 )
20186 t=mp_proto_dependent;
20187 q=mp_p_times_v(mp, q,v,s,t,v_is_scaled);
20188 mp_dep_finish(mp, q,p,t);
20191 @ Here is a routine that is similar to |times|; but it is invoked only
20192 internally, when |v| is a |fraction| whose magnitude is at most~1,
20193 and when |cur_type>=mp_color_type|.
20195 @c void mp_frac_mult (MP mp,scaled n, scaled d) {
20196 /* multiplies |cur_exp| by |n/d| */
20197 pointer p; /* a pair node */
20198 pointer old_exp; /* a capsule to recycle */
20199 fraction v; /* |n/d| */
20200 if ( mp->internal[mp_tracing_commands]>two ) {
20201 @<Trace the fraction multiplication@>;
20203 switch (mp->cur_type) {
20204 case mp_transform_type:
20205 case mp_color_type:
20206 case mp_cmykcolor_type:
20208 old_exp=mp_tarnished(mp, mp->cur_exp);
20210 case mp_independent: old_exp=mp_void; break;
20211 default: old_exp=null; break;
20213 if ( old_exp!=null ) {
20214 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
20216 v=mp_make_fraction(mp, n,d);
20217 if ( mp->cur_type==mp_known ) {
20218 mp->cur_exp=mp_take_fraction(mp, mp->cur_exp,v);
20219 } else if ( mp->cur_type<=mp_pair_type ) {
20220 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20223 mp_dep_mult(mp, p,v,false);
20224 } while (p!=value(mp->cur_exp));
20226 mp_dep_mult(mp, null,v,false);
20228 if ( old_exp!=null ) {
20229 mp_recycle_value(mp, old_exp);
20230 mp_free_node(mp, old_exp,value_node_size);
20234 @ @<Trace the fraction multiplication@>=
20236 mp_begin_diagnostic(mp);
20237 mp_print_nl(mp, "{("); mp_print_scaled(mp,n); mp_print_char(mp,'/');
20238 mp_print_scaled(mp,d); mp_print(mp,")*("); mp_print_exp(mp,null,0);
20240 mp_end_diagnostic(mp, false);
20243 @ The |hard_times| routine multiplies a nice color or pair by a dependency list.
20245 @<Declare binary action procedures@>=
20246 void mp_hard_times (MP mp,pointer p) {
20247 pointer q; /* a copy of the dependent variable |p| */
20248 pointer r; /* a component of the big node for the nice color or pair */
20249 scaled v; /* the known value for |r| */
20250 if ( type(p)<=mp_pair_type ) {
20251 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p); p=q;
20252 }; /* now |cur_type=mp_pair_type| or |cur_type=mp_color_type| */
20253 r=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20258 if ( r==value(mp->cur_exp) )
20260 mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(p)));
20261 mp_dep_mult(mp, r,v,true);
20263 mp->mem[value_loc(r)]=mp->mem[value_loc(p)];
20264 link(prev_dep(p))=r;
20265 mp_free_node(mp, p,value_node_size);
20266 mp_dep_mult(mp, r,v,true);
20269 @ @<Additional cases of binary operators@>=
20271 if ( (mp->cur_type!=mp_known)||(type(p)<mp_color_type) ) {
20272 mp_bad_binary(mp, p,over);
20274 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20276 @<Squeal about division by zero@>;
20278 if ( mp->cur_type==mp_known ) {
20279 mp->cur_exp=mp_make_scaled(mp, mp->cur_exp,v);
20280 } else if ( mp->cur_type<=mp_pair_type ) {
20281 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20283 p=p-2; mp_dep_div(mp, p,v);
20284 } while (p!=value(mp->cur_exp));
20286 mp_dep_div(mp, null,v);
20293 @ @<Declare binary action...@>=
20294 void mp_dep_div (MP mp,pointer p, scaled v) {
20295 pointer q; /* the dependency list being divided by |v| */
20296 small_number s,t; /* its type, before and after */
20297 if ( p==null ) q=mp->cur_exp;
20298 else if ( type(p)!=mp_known ) q=p;
20299 else { value(p)=mp_make_scaled(mp, value(p),v); return; };
20300 t=type(q); q=dep_list(q); s=t;
20301 if ( t==mp_dependent )
20302 if ( mp_ab_vs_cd(mp, mp_max_coef(mp,q),unity,coef_bound-1,abs(v))>=0 )
20303 t=mp_proto_dependent;
20304 q=mp_p_over_v(mp, q,v,s,t);
20305 mp_dep_finish(mp, q,p,t);
20308 @ @<Squeal about division by zero@>=
20310 exp_err("Division by zero");
20311 @.Division by zero@>
20312 help2("You're trying to divide the quantity shown above the error")
20313 ("message by zero. I'm going to divide it by one instead.");
20314 mp_put_get_error(mp);
20317 @ @<Additional cases of binary operators@>=
20320 if ( (mp->cur_type==mp_known)&&(type(p)==mp_known) ) {
20321 if ( c==pythag_add ) mp->cur_exp=mp_pyth_add(mp, value(p),mp->cur_exp);
20322 else mp->cur_exp=mp_pyth_sub(mp, value(p),mp->cur_exp);
20323 } else mp_bad_binary(mp, p,c);
20326 @ The next few sections of the program deal with affine transformations
20327 of coordinate data.
20329 @<Additional cases of binary operators@>=
20330 case rotated_by: case slanted_by:
20331 case scaled_by: case shifted_by: case transformed_by:
20332 case x_scaled: case y_scaled: case z_scaled:
20333 if ( type(p)==mp_path_type ) {
20334 path_trans(c,p); return;
20335 } else if ( type(p)==mp_pen_type ) {
20337 mp->cur_exp=mp_convex_hull(mp, mp->cur_exp);
20338 /* rounding error could destroy convexity */
20340 } else if ( (type(p)==mp_pair_type)||(type(p)==mp_transform_type) ) {
20341 mp_big_trans(mp, p,c);
20342 } else if ( type(p)==mp_picture_type ) {
20343 mp_do_edges_trans(mp, p,c); return;
20345 mp_bad_binary(mp, p,c);
20349 @ Let |c| be one of the eight transform operators. The procedure call
20350 |set_up_trans(c)| first changes |cur_exp| to a transform that corresponds to
20351 |c| and the original value of |cur_exp|. (In particular, |cur_exp| doesn't
20352 change at all if |c=transformed_by|.)
20354 Then, if all components of the resulting transform are |known|, they are
20355 moved to the global variables |txx|, |txy|, |tyx|, |tyy|, |tx|, |ty|;
20356 and |cur_exp| is changed to the known value zero.
20358 @<Declare binary action...@>=
20359 void mp_set_up_trans (MP mp,quarterword c) {
20360 pointer p,q,r; /* list manipulation registers */
20361 if ( (c!=transformed_by)||(mp->cur_type!=mp_transform_type) ) {
20362 @<Put the current transform into |cur_exp|@>;
20364 @<If the current transform is entirely known, stash it in global variables;
20365 otherwise |return|@>;
20374 scaled ty; /* current transform coefficients */
20376 @ @<Put the current transform...@>=
20378 p=mp_stash_cur_exp(mp);
20379 mp->cur_exp=mp_id_transform(mp);
20380 mp->cur_type=mp_transform_type;
20381 q=value(mp->cur_exp);
20383 @<For each of the eight cases, change the relevant fields of |cur_exp|
20385 but do nothing if capsule |p| doesn't have the appropriate type@>;
20386 }; /* there are no other cases */
20387 mp_disp_err(mp, p,"Improper transformation argument");
20388 @.Improper transformation argument@>
20389 help3("The expression shown above has the wrong type,")
20390 ("so I can\'t transform anything using it.")
20391 ("Proceed, and I'll omit the transformation.");
20392 mp_put_get_error(mp);
20394 mp_recycle_value(mp, p);
20395 mp_free_node(mp, p,value_node_size);
20398 @ @<If the current transform is entirely known, ...@>=
20399 q=value(mp->cur_exp); r=q+transform_node_size;
20402 if ( type(r)!=mp_known ) return;
20404 mp->txx=value(xx_part_loc(q));
20405 mp->txy=value(xy_part_loc(q));
20406 mp->tyx=value(yx_part_loc(q));
20407 mp->tyy=value(yy_part_loc(q));
20408 mp->tx=value(x_part_loc(q));
20409 mp->ty=value(y_part_loc(q));
20410 mp_flush_cur_exp(mp, 0)
20412 @ @<For each of the eight cases...@>=
20414 if ( type(p)==mp_known )
20415 @<Install sines and cosines, then |goto done|@>;
20418 if ( type(p)>mp_pair_type ) {
20419 mp_install(mp, xy_part_loc(q),p); goto DONE;
20423 if ( type(p)>mp_pair_type ) {
20424 mp_install(mp, xx_part_loc(q),p); mp_install(mp, yy_part_loc(q),p);
20429 if ( type(p)==mp_pair_type ) {
20430 r=value(p); mp_install(mp, x_part_loc(q),x_part_loc(r));
20431 mp_install(mp, y_part_loc(q),y_part_loc(r)); goto DONE;
20435 if ( type(p)>mp_pair_type ) {
20436 mp_install(mp, xx_part_loc(q),p); goto DONE;
20440 if ( type(p)>mp_pair_type ) {
20441 mp_install(mp, yy_part_loc(q),p); goto DONE;
20445 if ( type(p)==mp_pair_type )
20446 @<Install a complex multiplier, then |goto done|@>;
20448 case transformed_by:
20452 @ @<Install sines and cosines, then |goto done|@>=
20453 { mp_n_sin_cos(mp, (value(p) % three_sixty_units)*16);
20454 value(xx_part_loc(q))=mp_round_fraction(mp, mp->n_cos);
20455 value(yx_part_loc(q))=mp_round_fraction(mp, mp->n_sin);
20456 value(xy_part_loc(q))=-value(yx_part_loc(q));
20457 value(yy_part_loc(q))=value(xx_part_loc(q));
20461 @ @<Install a complex multiplier, then |goto done|@>=
20464 mp_install(mp, xx_part_loc(q),x_part_loc(r));
20465 mp_install(mp, yy_part_loc(q),x_part_loc(r));
20466 mp_install(mp, yx_part_loc(q),y_part_loc(r));
20467 if ( type(y_part_loc(r))==mp_known ) negate(value(y_part_loc(r)));
20468 else mp_negate_dep_list(mp, dep_list(y_part_loc(r)));
20469 mp_install(mp, xy_part_loc(q),y_part_loc(r));
20473 @ Procedure |set_up_known_trans| is like |set_up_trans|, but it
20474 insists that the transformation be entirely known.
20476 @<Declare binary action...@>=
20477 void mp_set_up_known_trans (MP mp,quarterword c) {
20478 mp_set_up_trans(mp, c);
20479 if ( mp->cur_type!=mp_known ) {
20480 exp_err("Transform components aren't all known");
20481 @.Transform components...@>
20482 help3("I'm unable to apply a partially specified transformation")
20483 ("except to a fully known pair or transform.")
20484 ("Proceed, and I'll omit the transformation.");
20485 mp_put_get_flush_error(mp, 0);
20486 mp->txx=unity; mp->txy=0; mp->tyx=0; mp->tyy=unity;
20487 mp->tx=0; mp->ty=0;
20491 @ Here's a procedure that applies the transform |txx..ty| to a pair of
20492 coordinates in locations |p| and~|q|.
20494 @<Declare binary action...@>=
20495 void mp_trans (MP mp,pointer p, pointer q) {
20496 scaled v; /* the new |x| value */
20497 v=mp_take_scaled(mp, mp->mem[p].sc,mp->txx)+
20498 mp_take_scaled(mp, mp->mem[q].sc,mp->txy)+mp->tx;
20499 mp->mem[q].sc=mp_take_scaled(mp, mp->mem[p].sc,mp->tyx)+
20500 mp_take_scaled(mp, mp->mem[q].sc,mp->tyy)+mp->ty;
20504 @ The simplest transformation procedure applies a transform to all
20505 coordinates of a path. The |path_trans(c)(p)| macro applies
20506 a transformation defined by |cur_exp| and the transform operator |c|
20509 @d path_trans(A,B) { mp_set_up_known_trans(mp, (A));
20510 mp_unstash_cur_exp(mp, (B));
20511 mp_do_path_trans(mp, mp->cur_exp); }
20513 @<Declare binary action...@>=
20514 void mp_do_path_trans (MP mp,pointer p) {
20515 pointer q; /* list traverser */
20518 if ( left_type(q)!=mp_endpoint )
20519 mp_trans(mp, q+3,q+4); /* that's |left_x| and |left_y| */
20520 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20521 if ( right_type(q)!=mp_endpoint )
20522 mp_trans(mp, q+5,q+6); /* that's |right_x| and |right_y| */
20523 @^data structure assumptions@>
20528 @ Transforming a pen is very similar, except that there are no |left_type|
20529 and |right_type| fields.
20531 @d pen_trans(A,B) { mp_set_up_known_trans(mp, (A));
20532 mp_unstash_cur_exp(mp, (B));
20533 mp_do_pen_trans(mp, mp->cur_exp); }
20535 @<Declare binary action...@>=
20536 void mp_do_pen_trans (MP mp,pointer p) {
20537 pointer q; /* list traverser */
20538 if ( pen_is_elliptical(p) ) {
20539 mp_trans(mp, p+3,p+4); /* that's |left_x| and |left_y| */
20540 mp_trans(mp, p+5,p+6); /* that's |right_x| and |right_y| */
20544 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20545 @^data structure assumptions@>
20550 @ The next transformation procedure applies to edge structures. It will do
20551 any transformation, but the results may be substandard if the picture contains
20552 text that uses downloaded bitmap fonts. The binary action procedure is
20553 |do_edges_trans|, but we also need a function that just scales a picture.
20554 That routine is |scale_edges|. Both it and the underlying routine |edges_trans|
20555 should be thought of as procedures that update an edge structure |h|, except
20556 that they have to return a (possibly new) structure because of the need to call
20559 @<Declare binary action...@>=
20560 pointer mp_edges_trans (MP mp, pointer h) {
20561 pointer q; /* the object being transformed */
20562 pointer r,s; /* for list manipulation */
20563 scaled sx,sy; /* saved transformation parameters */
20564 scaled sqdet; /* square root of determinant for |dash_scale| */
20565 integer sgndet; /* sign of the determinant */
20566 scaled v; /* a temporary value */
20567 h=mp_private_edges(mp, h);
20568 sqdet=mp_sqrt_det(mp, mp->txx,mp->txy,mp->tyx,mp->tyy);
20569 sgndet=mp_ab_vs_cd(mp, mp->txx,mp->tyy,mp->txy,mp->tyx);
20570 if ( dash_list(h)!=null_dash ) {
20571 @<Try to transform the dash list of |h|@>;
20573 @<Make the bounding box of |h| unknown if it can't be updated properly
20574 without scanning the whole structure@>;
20575 q=link(dummy_loc(h));
20576 while ( q!=null ) {
20577 @<Transform graphical object |q|@>;
20582 void mp_do_edges_trans (MP mp,pointer p, quarterword c) {
20583 mp_set_up_known_trans(mp, c);
20584 value(p)=mp_edges_trans(mp, value(p));
20585 mp_unstash_cur_exp(mp, p);
20587 void mp_scale_edges (MP mp) {
20588 mp->txx=mp->se_sf; mp->tyy=mp->se_sf;
20589 mp->txy=0; mp->tyx=0; mp->tx=0; mp->ty=0;
20590 mp->se_pic=mp_edges_trans(mp, mp->se_pic);
20593 @ @<Try to transform the dash list of |h|@>=
20594 if ( (mp->txy!=0)||(mp->tyx!=0)||
20595 (mp->ty!=0)||(abs(mp->txx)!=abs(mp->tyy))) {
20596 mp_flush_dash_list(mp, h);
20598 if ( mp->txx<0 ) { @<Reverse the dash list of |h|@>; }
20599 @<Scale the dash list by |txx| and shift it by |tx|@>;
20600 dash_y(h)=mp_take_scaled(mp, dash_y(h),abs(mp->tyy));
20603 @ @<Reverse the dash list of |h|@>=
20606 dash_list(h)=null_dash;
20607 while ( r!=null_dash ) {
20609 v=start_x(s); start_x(s)=stop_x(s); stop_x(s)=v;
20610 link(s)=dash_list(h);
20615 @ @<Scale the dash list by |txx| and shift it by |tx|@>=
20617 while ( r!=null_dash ) {
20618 start_x(r)=mp_take_scaled(mp, start_x(r),mp->txx)+mp->tx;
20619 stop_x(r)=mp_take_scaled(mp, stop_x(r),mp->txx)+mp->tx;
20623 @ @<Make the bounding box of |h| unknown if it can't be updated properly...@>=
20624 if ( (mp->txx==0)&&(mp->tyy==0) ) {
20625 @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>;
20626 } else if ( (mp->txy!=0)||(mp->tyx!=0) ) {
20627 mp_init_bbox(mp, h);
20630 if ( minx_val(h)<=maxx_val(h) ) {
20631 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift by
20638 @ @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>=
20640 v=minx_val(h); minx_val(h)=miny_val(h); miny_val(h)=v;
20641 v=maxx_val(h); maxx_val(h)=maxy_val(h); maxy_val(h)=v;
20644 @ The sum ``|txx+txy|'' is whichever of |txx| or |txy| is nonzero. The other
20647 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift...@>=
20649 minx_val(h)=mp_take_scaled(mp, minx_val(h),mp->txx+mp->txy)+mp->tx;
20650 maxx_val(h)=mp_take_scaled(mp, maxx_val(h),mp->txx+mp->txy)+mp->tx;
20651 miny_val(h)=mp_take_scaled(mp, miny_val(h),mp->tyx+mp->tyy)+mp->ty;
20652 maxy_val(h)=mp_take_scaled(mp, maxy_val(h),mp->tyx+mp->tyy)+mp->ty;
20653 if ( mp->txx+mp->txy<0 ) {
20654 v=minx_val(h); minx_val(h)=maxx_val(h); maxx_val(h)=v;
20656 if ( mp->tyx+mp->tyy<0 ) {
20657 v=miny_val(h); miny_val(h)=maxy_val(h); maxy_val(h)=v;
20661 @ Now we ready for the main task of transforming the graphical objects in edge
20664 @<Transform graphical object |q|@>=
20666 case mp_fill_code: case mp_stroked_code:
20667 mp_do_path_trans(mp, path_p(q));
20668 @<Transform |pen_p(q)|, making sure polygonal pens stay counter-clockwise@>;
20670 case mp_start_clip_code: case mp_start_bounds_code:
20671 mp_do_path_trans(mp, path_p(q));
20675 @<Transform the compact transformation starting at |r|@>;
20677 case mp_stop_clip_code: case mp_stop_bounds_code:
20679 } /* there are no other cases */
20681 @ Note that the shift parameters |(tx,ty)| apply only to the path being stroked.
20682 The |dash_scale| has to be adjusted to scale the dash lengths in |dash_p(q)|
20683 since the \ps\ output procedures will try to compensate for the transformation
20684 we are applying to |pen_p(q)|. Since this compensation is based on the square
20685 root of the determinant, |sqdet| is the appropriate factor.
20687 @<Transform |pen_p(q)|, making sure...@>=
20688 if ( pen_p(q)!=null ) {
20689 sx=mp->tx; sy=mp->ty;
20690 mp->tx=0; mp->ty=0;
20691 mp_do_pen_trans(mp, pen_p(q));
20692 if ( ((type(q)==mp_stroked_code)&&(dash_p(q)!=null)) )
20693 dash_scale(q)=mp_take_scaled(mp, dash_scale(q),sqdet);
20694 if ( ! pen_is_elliptical(pen_p(q)) )
20696 pen_p(q)=mp_make_pen(mp, mp_copy_path(mp, pen_p(q)),true);
20697 /* this unreverses the pen */
20698 mp->tx=sx; mp->ty=sy;
20701 @ This uses the fact that transformations are stored in the order
20702 |(tx,ty,txx,txy,tyx,tyy)|.
20703 @^data structure assumptions@>
20705 @<Transform the compact transformation starting at |r|@>=
20706 mp_trans(mp, r,r+1);
20707 sx=mp->tx; sy=mp->ty;
20708 mp->tx=0; mp->ty=0;
20709 mp_trans(mp, r+2,r+4);
20710 mp_trans(mp, r+3,r+5);
20711 mp->tx=sx; mp->ty=sy
20713 @ The hard cases of transformation occur when big nodes are involved,
20714 and when some of their components are unknown.
20716 @<Declare binary action...@>=
20717 @<Declare subroutines needed by |big_trans|@>;
20718 void mp_big_trans (MP mp,pointer p, quarterword c) {
20719 pointer q,r,pp,qq; /* list manipulation registers */
20720 small_number s; /* size of a big node */
20721 s=mp->big_node_size[type(p)]; q=value(p); r=q+s;
20724 if ( type(r)!=mp_known ) {
20725 @<Transform an unknown big node and |return|@>;
20728 @<Transform a known big node@>;
20729 }; /* node |p| will now be recycled by |do_binary| */
20731 @ @<Transform an unknown big node and |return|@>=
20733 mp_set_up_known_trans(mp, c); mp_make_exp_copy(mp, p);
20734 r=value(mp->cur_exp);
20735 if ( mp->cur_type==mp_transform_type ) {
20736 mp_bilin1(mp, yy_part_loc(r),mp->tyy,xy_part_loc(q),mp->tyx,0);
20737 mp_bilin1(mp, yx_part_loc(r),mp->tyy,xx_part_loc(q),mp->tyx,0);
20738 mp_bilin1(mp, xy_part_loc(r),mp->txx,yy_part_loc(q),mp->txy,0);
20739 mp_bilin1(mp, xx_part_loc(r),mp->txx,yx_part_loc(q),mp->txy,0);
20741 mp_bilin1(mp, y_part_loc(r),mp->tyy,x_part_loc(q),mp->tyx,mp->ty);
20742 mp_bilin1(mp, x_part_loc(r),mp->txx,y_part_loc(q),mp->txy,mp->tx);
20746 @ Let |p| point to a two-word value field inside a big node of |cur_exp|,
20747 and let |q| point to a another value field. The |bilin1| procedure
20748 replaces |p| by $p\cdot t+q\cdot u+\delta$.
20750 @<Declare subroutines needed by |big_trans|@>=
20751 void mp_bilin1 (MP mp, pointer p, scaled t, pointer q,
20752 scaled u, scaled delta) {
20753 pointer r; /* list traverser */
20754 if ( t!=unity ) mp_dep_mult(mp, p,t,true);
20756 if ( type(q)==mp_known ) {
20757 delta+=mp_take_scaled(mp, value(q),u);
20759 @<Ensure that |type(p)=mp_proto_dependent|@>;
20760 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),u,dep_list(q),
20761 mp_proto_dependent,type(q));
20764 if ( type(p)==mp_known ) {
20768 while ( info(r)!=null ) r=link(r);
20770 if ( r!=dep_list(p) ) value(r)=delta;
20771 else { mp_recycle_value(mp, p); type(p)=mp_known; value(p)=delta; };
20773 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20776 @ @<Ensure that |type(p)=mp_proto_dependent|@>=
20777 if ( type(p)!=mp_proto_dependent ) {
20778 if ( type(p)==mp_known )
20779 mp_new_dep(mp, p,mp_const_dependency(mp, value(p)));
20781 dep_list(p)=mp_p_times_v(mp, dep_list(p),unity,mp_dependent,
20782 mp_proto_dependent,true);
20783 type(p)=mp_proto_dependent;
20786 @ @<Transform a known big node@>=
20787 mp_set_up_trans(mp, c);
20788 if ( mp->cur_type==mp_known ) {
20789 @<Transform known by known@>;
20791 pp=mp_stash_cur_exp(mp); qq=value(pp);
20792 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20793 if ( mp->cur_type==mp_transform_type ) {
20794 mp_bilin2(mp, yy_part_loc(r),yy_part_loc(qq),
20795 value(xy_part_loc(q)),yx_part_loc(qq),null);
20796 mp_bilin2(mp, yx_part_loc(r),yy_part_loc(qq),
20797 value(xx_part_loc(q)),yx_part_loc(qq),null);
20798 mp_bilin2(mp, xy_part_loc(r),xx_part_loc(qq),
20799 value(yy_part_loc(q)),xy_part_loc(qq),null);
20800 mp_bilin2(mp, xx_part_loc(r),xx_part_loc(qq),
20801 value(yx_part_loc(q)),xy_part_loc(qq),null);
20803 mp_bilin2(mp, y_part_loc(r),yy_part_loc(qq),
20804 value(x_part_loc(q)),yx_part_loc(qq),y_part_loc(qq));
20805 mp_bilin2(mp, x_part_loc(r),xx_part_loc(qq),
20806 value(y_part_loc(q)),xy_part_loc(qq),x_part_loc(qq));
20807 mp_recycle_value(mp, pp); mp_free_node(mp, pp,value_node_size);
20810 @ Let |p| be a |mp_proto_dependent| value whose dependency list ends
20811 at |dep_final|. The following procedure adds |v| times another
20812 numeric quantity to~|p|.
20814 @<Declare subroutines needed by |big_trans|@>=
20815 void mp_add_mult_dep (MP mp,pointer p, scaled v, pointer r) {
20816 if ( type(r)==mp_known ) {
20817 value(mp->dep_final)+=mp_take_scaled(mp, value(r),v);
20819 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),v,dep_list(r),
20820 mp_proto_dependent,type(r));
20821 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20825 @ The |bilin2| procedure is something like |bilin1|, but with known
20826 and unknown quantities reversed. Parameter |p| points to a value field
20827 within the big node for |cur_exp|; and |type(p)=mp_known|. Parameters
20828 |t| and~|u| point to value fields elsewhere; so does parameter~|q|,
20829 unless it is |null| (which stands for zero). Location~|p| will be
20830 replaced by $p\cdot t+v\cdot u+q$.
20832 @<Declare subroutines needed by |big_trans|@>=
20833 void mp_bilin2 (MP mp,pointer p, pointer t, scaled v,
20834 pointer u, pointer q) {
20835 scaled vv; /* temporary storage for |value(p)| */
20836 vv=value(p); type(p)=mp_proto_dependent;
20837 mp_new_dep(mp, p,mp_const_dependency(mp, 0)); /* this sets |dep_final| */
20839 mp_add_mult_dep(mp, p,vv,t); /* |dep_final| doesn't change */
20840 if ( v!=0 ) mp_add_mult_dep(mp, p,v,u);
20841 if ( q!=null ) mp_add_mult_dep(mp, p,unity,q);
20842 if ( dep_list(p)==mp->dep_final ) {
20843 vv=value(mp->dep_final); mp_recycle_value(mp, p);
20844 type(p)=mp_known; value(p)=vv;
20848 @ @<Transform known by known@>=
20850 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20851 if ( mp->cur_type==mp_transform_type ) {
20852 mp_bilin3(mp, yy_part_loc(r),mp->tyy,value(xy_part_loc(q)),mp->tyx,0);
20853 mp_bilin3(mp, yx_part_loc(r),mp->tyy,value(xx_part_loc(q)),mp->tyx,0);
20854 mp_bilin3(mp, xy_part_loc(r),mp->txx,value(yy_part_loc(q)),mp->txy,0);
20855 mp_bilin3(mp, xx_part_loc(r),mp->txx,value(yx_part_loc(q)),mp->txy,0);
20857 mp_bilin3(mp, y_part_loc(r),mp->tyy,value(x_part_loc(q)),mp->tyx,mp->ty);
20858 mp_bilin3(mp, x_part_loc(r),mp->txx,value(y_part_loc(q)),mp->txy,mp->tx);
20861 @ Finally, in |bilin3| everything is |known|.
20863 @<Declare subroutines needed by |big_trans|@>=
20864 void mp_bilin3 (MP mp,pointer p, scaled t,
20865 scaled v, scaled u, scaled delta) {
20867 delta+=mp_take_scaled(mp, value(p),t);
20870 if ( u!=0 ) value(p)=delta+mp_take_scaled(mp, v,u);
20871 else value(p)=delta;
20874 @ @<Additional cases of binary operators@>=
20876 if ( (mp->cur_type==mp_string_type)&&(type(p)==mp_string_type) ) mp_cat(mp, p);
20877 else mp_bad_binary(mp, p,concatenate);
20880 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_string_type) )
20881 mp_chop_string(mp, value(p));
20882 else mp_bad_binary(mp, p,substring_of);
20885 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
20886 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_path_type) )
20887 mp_chop_path(mp, value(p));
20888 else mp_bad_binary(mp, p,subpath_of);
20891 @ @<Declare binary action...@>=
20892 void mp_cat (MP mp,pointer p) {
20893 str_number a,b; /* the strings being concatenated */
20894 pool_pointer k; /* index into |str_pool| */
20895 a=value(p); b=mp->cur_exp; str_room(length(a)+length(b));
20896 for (k=mp->str_start[a];k<=str_stop(a)-1;k++) {
20897 append_char(mp->str_pool[k]);
20899 for (k=mp->str_start[b];k<=str_stop(b)-1;k++) {
20900 append_char(mp->str_pool[k]);
20902 mp->cur_exp=mp_make_string(mp); delete_str_ref(b);
20905 @ @<Declare binary action...@>=
20906 void mp_chop_string (MP mp,pointer p) {
20907 integer a, b; /* start and stop points */
20908 integer l; /* length of the original string */
20909 integer k; /* runs from |a| to |b| */
20910 str_number s; /* the original string */
20911 boolean reversed; /* was |a>b|? */
20912 a=mp_round_unscaled(mp, value(x_part_loc(p)));
20913 b=mp_round_unscaled(mp, value(y_part_loc(p)));
20914 if ( a<=b ) reversed=false;
20915 else { reversed=true; k=a; a=b; b=k; };
20916 s=mp->cur_exp; l=length(s);
20927 for (k=mp->str_start[s]+b-1;k>=mp->str_start[s]+a;k--) {
20928 append_char(mp->str_pool[k]);
20931 for (k=mp->str_start[s]+a;k<=mp->str_start[s]+b-1;k++) {
20932 append_char(mp->str_pool[k]);
20935 mp->cur_exp=mp_make_string(mp); delete_str_ref(s);
20938 @ @<Declare binary action...@>=
20939 void mp_chop_path (MP mp,pointer p) {
20940 pointer q; /* a knot in the original path */
20941 pointer pp,qq,rr,ss; /* link variables for copies of path nodes */
20942 scaled a,b,k,l; /* indices for chopping */
20943 boolean reversed; /* was |a>b|? */
20944 l=mp_path_length(mp); a=value(x_part_loc(p)); b=value(y_part_loc(p));
20945 if ( a<=b ) reversed=false;
20946 else { reversed=true; k=a; a=b; b=k; };
20947 @<Dispense with the cases |a<0| and/or |b>l|@>;
20949 while ( a>=unity ) {
20950 q=link(q); a=a-unity; b=b-unity;
20953 @<Construct a path from |pp| to |qq| of length zero@>;
20955 @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>;
20957 left_type(pp)=mp_endpoint; right_type(qq)=mp_endpoint; link(qq)=pp;
20958 mp_toss_knot_list(mp, mp->cur_exp);
20960 mp->cur_exp=link(mp_htap_ypoc(mp, pp)); mp_toss_knot_list(mp, pp);
20966 @ @<Dispense with the cases |a<0| and/or |b>l|@>=
20968 if ( left_type(mp->cur_exp)==mp_endpoint ) {
20969 a=0; if ( b<0 ) b=0;
20971 do { a=a+l; b=b+l; } while (a<0); /* a cycle always has length |l>0| */
20975 if ( left_type(mp->cur_exp)==mp_endpoint ) {
20976 b=l; if ( a>l ) a=l;
20984 @ @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>=
20986 pp=mp_copy_knot(mp, q); qq=pp;
20988 q=link(q); rr=qq; qq=mp_copy_knot(mp, q); link(rr)=qq; b=b-unity;
20991 ss=pp; pp=link(pp);
20992 mp_split_cubic(mp, ss,a*010000); pp=link(ss);
20993 mp_free_node(mp, ss,knot_node_size);
20995 b=mp_make_scaled(mp, b,unity-a); rr=pp;
20999 mp_split_cubic(mp, rr,(b+unity)*010000);
21000 mp_free_node(mp, qq,knot_node_size);
21005 @ @<Construct a path from |pp| to |qq| of length zero@>=
21007 if ( a>0 ) { mp_split_cubic(mp, q,a*010000); q=link(q); };
21008 pp=mp_copy_knot(mp, q); qq=pp;
21011 @ @<Additional cases of binary operators@>=
21012 case point_of: case precontrol_of: case postcontrol_of:
21013 if ( mp->cur_type==mp_pair_type )
21014 mp_pair_to_path(mp);
21015 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
21016 mp_find_point(mp, value(p),c);
21018 mp_bad_binary(mp, p,c);
21020 case pen_offset_of:
21021 if ( (mp->cur_type==mp_pen_type)&& mp_nice_pair(mp, p,type(p)) )
21022 mp_set_up_offset(mp, value(p));
21024 mp_bad_binary(mp, p,pen_offset_of);
21026 case direction_time_of:
21027 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21028 if ( (mp->cur_type==mp_path_type)&& mp_nice_pair(mp, p,type(p)) )
21029 mp_set_up_direction_time(mp, value(p));
21031 mp_bad_binary(mp, p,direction_time_of);
21034 if ( (type(p) != mp_pen_type) || (mp->cur_type != mp_path_type) )
21035 mp_bad_binary(mp, p,envelope_of);
21037 mp_set_up_envelope(mp, p);
21040 @ @<Declare binary action...@>=
21041 void mp_set_up_offset (MP mp,pointer p) {
21042 mp_find_offset(mp, value(x_part_loc(p)),value(y_part_loc(p)),mp->cur_exp);
21043 mp_pair_value(mp, mp->cur_x,mp->cur_y);
21045 void mp_set_up_direction_time (MP mp,pointer p) {
21046 mp_flush_cur_exp(mp, mp_find_direction_time(mp, value(x_part_loc(p)),
21047 value(y_part_loc(p)),mp->cur_exp));
21049 void mp_set_up_envelope (MP mp,pointer p) {
21050 pointer q = mp_copy_path(mp, mp->cur_exp); /* the original path */
21051 /* TODO: accept elliptical pens for straight paths */
21052 if (pen_is_elliptical(value(p))) {
21053 mp_bad_envelope_pen(mp);
21055 mp->cur_type = mp_path_type;
21058 small_number ljoin, lcap;
21060 if ( mp->internal[mp_linejoin]>unity ) ljoin=2;
21061 else if ( mp->internal[mp_linejoin]>0 ) ljoin=1;
21063 if ( mp->internal[mp_linecap]>unity ) lcap=2;
21064 else if ( mp->internal[mp_linecap]>0 ) lcap=1;
21066 if ( mp->internal[mp_miterlimit]<unity )
21069 miterlim=mp->internal[mp_miterlimit];
21070 mp->cur_exp = mp_make_envelope(mp, q, value(p), ljoin,lcap,miterlim);
21071 mp->cur_type = mp_path_type;
21074 @ @<Declare binary action...@>=
21075 void mp_find_point (MP mp,scaled v, quarterword c) {
21076 pointer p; /* the path */
21077 scaled n; /* its length */
21079 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
21080 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
21083 } else if ( v<0 ) {
21084 if ( left_type(p)==mp_endpoint ) v=0;
21085 else v=n-1-((-v-1) % n);
21086 } else if ( v>n ) {
21087 if ( left_type(p)==mp_endpoint ) v=n;
21091 while ( v>=unity ) { p=link(p); v=v-unity; };
21093 @<Insert a fractional node by splitting the cubic@>;
21095 @<Set the current expression to the desired path coordinates@>;
21098 @ @<Insert a fractional node...@>=
21099 { mp_split_cubic(mp, p,v*010000); p=link(p); }
21101 @ @<Set the current expression to the desired path coordinates...@>=
21104 mp_pair_value(mp, x_coord(p),y_coord(p));
21106 case precontrol_of:
21107 if ( left_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21108 else mp_pair_value(mp, left_x(p),left_y(p));
21110 case postcontrol_of:
21111 if ( right_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21112 else mp_pair_value(mp, right_x(p),right_y(p));
21114 } /* there are no other cases */
21116 @ @<Additional cases of binary operators@>=
21118 if ( mp->cur_type==mp_pair_type )
21119 mp_pair_to_path(mp);
21120 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
21121 mp_flush_cur_exp(mp, mp_get_arc_time(mp, mp->cur_exp,value(p)));
21123 mp_bad_binary(mp, p,c);
21126 @ @<Additional cases of bin...@>=
21128 if ( type(p)==mp_pair_type ) {
21129 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p);
21130 mp_pair_to_path(mp); p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
21132 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21133 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_path_type) ) {
21134 mp_path_intersection(mp, value(p),mp->cur_exp);
21135 mp_pair_value(mp, mp->cur_t,mp->cur_tt);
21137 mp_bad_binary(mp, p,intersect);
21141 @ @<Additional cases of bin...@>=
21143 if ( (mp->cur_type!=mp_string_type)||(type(p)!=mp_string_type))
21144 mp_bad_binary(mp, p,in_font);
21145 else { mp_do_infont(mp, p); return; }
21148 @ Function |new_text_node| owns the reference count for its second argument
21149 (the text string) but not its first (the font name).
21151 @<Declare binary action...@>=
21152 void mp_do_infont (MP mp,pointer p) {
21154 q=mp_get_node(mp, edge_header_size);
21155 mp_init_edges(mp, q);
21156 link(obj_tail(q))=mp_new_text_node(mp,str(mp->cur_exp),value(p));
21157 obj_tail(q)=link(obj_tail(q));
21158 mp_free_node(mp, p,value_node_size);
21159 mp_flush_cur_exp(mp, q);
21160 mp->cur_type=mp_picture_type;
21163 @* \[40] Statements and commands.
21164 The chief executive of \MP\ is the |do_statement| routine, which
21165 contains the master switch that causes all the various pieces of \MP\
21166 to do their things, in the right order.
21168 In a sense, this is the grand climax of the program: It applies all the
21169 tools that we have worked so hard to construct. In another sense, this is
21170 the messiest part of the program: It necessarily refers to other pieces
21171 of code all over the place, so that a person can't fully understand what is
21172 going on without paging back and forth to be reminded of conventions that
21173 are defined elsewhere. We are now at the hub of the web.
21175 The structure of |do_statement| itself is quite simple. The first token
21176 of the statement is fetched using |get_x_next|. If it can be the first
21177 token of an expression, we look for an equation, an assignment, or a
21178 title. Otherwise we use a \&{case} construction to branch at high speed to
21179 the appropriate routine for various and sundry other types of commands,
21180 each of which has an ``action procedure'' that does the necessary work.
21182 The program uses the fact that
21183 $$\hbox{|min_primary_command=max_statement_command=type_name|}$$
21184 to interpret a statement that starts with, e.g., `\&{string}',
21185 as a type declaration rather than a boolean expression.
21187 @c void mp_do_statement (MP mp) { /* governs \MP's activities */
21188 mp->cur_type=mp_vacuous; mp_get_x_next(mp);
21189 if ( mp->cur_cmd>max_primary_command ) {
21190 @<Worry about bad statement@>;
21191 } else if ( mp->cur_cmd>max_statement_command ) {
21192 @<Do an equation, assignment, title, or
21193 `$\langle\,$expression$\,\rangle\,$\&{endgroup}'@>;
21195 @<Do a statement that doesn't begin with an expression@>;
21197 if ( mp->cur_cmd<semicolon )
21198 @<Flush unparsable junk that was found after the statement@>;
21202 @ @<Declarations@>=
21203 @<Declare action procedures for use by |do_statement|@>;
21205 @ The only command codes |>max_primary_command| that can be present
21206 at the beginning of a statement are |semicolon| and higher; these
21207 occur when the statement is null.
21209 @<Worry about bad statement@>=
21211 if ( mp->cur_cmd<semicolon ) {
21212 print_err("A statement can't begin with `");
21213 @.A statement can't begin with x@>
21214 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod); mp_print_char(mp, '\'');
21215 help5("I was looking for the beginning of a new statement.")
21216 ("If you just proceed without changing anything, I'll ignore")
21217 ("everything up to the next `;'. Please insert a semicolon")
21218 ("now in front of anything that you don't want me to delete.")
21219 ("(See Chapter 27 of The METAFONTbook for an example.)");
21220 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21221 mp_back_error(mp); mp_get_x_next(mp);
21225 @ The help message printed here says that everything is flushed up to
21226 a semicolon, but actually the commands |end_group| and |stop| will
21227 also terminate a statement.
21229 @<Flush unparsable junk that was found after the statement@>=
21231 print_err("Extra tokens will be flushed");
21232 @.Extra tokens will be flushed@>
21233 help6("I've just read as much of that statement as I could fathom,")
21234 ("so a semicolon should have been next. It's very puzzling...")
21235 ("but I'll try to get myself back together, by ignoring")
21236 ("everything up to the next `;'. Please insert a semicolon")
21237 ("now in front of anything that you don't want me to delete.")
21238 ("(See Chapter 27 of The METAFONTbook for an example.)");
21239 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21240 mp_back_error(mp); mp->scanner_status=flushing;
21243 @<Decrease the string reference count...@>;
21244 } while (! end_of_statement); /* |cur_cmd=semicolon|, |end_group|, or |stop| */
21245 mp->scanner_status=normal;
21248 @ If |do_statement| ends with |cur_cmd=end_group|, we should have
21249 |cur_type=mp_vacuous| unless the statement was simply an expression;
21250 in the latter case, |cur_type| and |cur_exp| should represent that
21253 @<Do a statement that doesn't...@>=
21255 if ( mp->internal[mp_tracing_commands]>0 )
21257 switch (mp->cur_cmd ) {
21258 case type_name:mp_do_type_declaration(mp); break;
21260 if ( mp->cur_mod>var_def ) mp_make_op_def(mp);
21261 else if ( mp->cur_mod>end_def ) mp_scan_def(mp);
21263 @<Cases of |do_statement| that invoke particular commands@>;
21264 } /* there are no other cases */
21265 mp->cur_type=mp_vacuous;
21268 @ The most important statements begin with expressions.
21270 @<Do an equation, assignment, title, or...@>=
21272 mp->var_flag=assignment; mp_scan_expression(mp);
21273 if ( mp->cur_cmd<end_group ) {
21274 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21275 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21276 else if ( mp->cur_type==mp_string_type ) {@<Do a title@> ; }
21277 else if ( mp->cur_type!=mp_vacuous ){
21278 exp_err("Isolated expression");
21279 @.Isolated expression@>
21280 help3("I couldn't find an `=' or `:=' after the")
21281 ("expression that is shown above this error message,")
21282 ("so I guess I'll just ignore it and carry on.");
21283 mp_put_get_error(mp);
21285 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
21291 if ( mp->internal[mp_tracing_titles]>0 ) {
21292 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp); update_terminal;
21296 @ Equations and assignments are performed by the pair of mutually recursive
21298 routines |do_equation| and |do_assignment|. These routines are called when
21299 |cur_cmd=equals| and when |cur_cmd=assignment|, respectively; the left-hand
21300 side is in |cur_type| and |cur_exp|, while the right-hand side is yet
21301 to be scanned. After the routines are finished, |cur_type| and |cur_exp|
21302 will be equal to the right-hand side (which will normally be equal
21303 to the left-hand side).
21305 @<Declare action procedures for use by |do_statement|@>=
21306 @<Declare the procedure called |try_eq|@>;
21307 @<Declare the procedure called |make_eq|@>;
21308 void mp_do_equation (MP mp) ;
21311 void mp_do_equation (MP mp) {
21312 pointer lhs; /* capsule for the left-hand side */
21313 pointer p; /* temporary register */
21314 lhs=mp_stash_cur_exp(mp); mp_get_x_next(mp);
21315 mp->var_flag=assignment; mp_scan_expression(mp);
21316 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21317 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21318 if ( mp->internal[mp_tracing_commands]>two )
21319 @<Trace the current equation@>;
21320 if ( mp->cur_type==mp_unknown_path ) if ( type(lhs)==mp_pair_type ) {
21321 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, lhs); lhs=p;
21322 }; /* in this case |make_eq| will change the pair to a path */
21323 mp_make_eq(mp, lhs); /* equate |lhs| to |(cur_type,cur_exp)| */
21326 @ And |do_assignment| is similar to |do_expression|:
21329 void mp_do_assignment (MP mp);
21331 @ @<Declare action procedures for use by |do_statement|@>=
21332 void mp_do_assignment (MP mp) ;
21335 void mp_do_assignment (MP mp) {
21336 pointer lhs; /* token list for the left-hand side */
21337 pointer p; /* where the left-hand value is stored */
21338 pointer q; /* temporary capsule for the right-hand value */
21339 if ( mp->cur_type!=mp_token_list ) {
21340 exp_err("Improper `:=' will be changed to `='");
21342 help2("I didn't find a variable name at the left of the `:=',")
21343 ("so I'm going to pretend that you said `=' instead.");
21344 mp_error(mp); mp_do_equation(mp);
21346 lhs=mp->cur_exp; mp->cur_type=mp_vacuous;
21347 mp_get_x_next(mp); mp->var_flag=assignment; mp_scan_expression(mp);
21348 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21349 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21350 if ( mp->internal[mp_tracing_commands]>two )
21351 @<Trace the current assignment@>;
21352 if ( info(lhs)>hash_end ) {
21353 @<Assign the current expression to an internal variable@>;
21355 @<Assign the current expression to the variable |lhs|@>;
21357 mp_flush_node_list(mp, lhs);
21361 @ @<Trace the current equation@>=
21363 mp_begin_diagnostic(mp); mp_print_nl(mp, "{("); mp_print_exp(mp,lhs,0);
21364 mp_print(mp,")=("); mp_print_exp(mp,null,0);
21365 mp_print(mp,")}"); mp_end_diagnostic(mp, false);
21368 @ @<Trace the current assignment@>=
21370 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
21371 if ( info(lhs)>hash_end )
21372 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21374 mp_show_token_list(mp, lhs,null,1000,0);
21375 mp_print(mp, ":="); mp_print_exp(mp, null,0);
21376 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
21379 @ @<Assign the current expression to an internal variable@>=
21380 if ( mp->cur_type==mp_known ) {
21381 mp->internal[info(lhs)-(hash_end)]=mp->cur_exp;
21383 exp_err("Internal quantity `");
21384 @.Internal quantity...@>
21385 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21386 mp_print(mp, "' must receive a known value");
21387 help2("I can\'t set an internal quantity to anything but a known")
21388 ("numeric value, so I'll have to ignore this assignment.");
21389 mp_put_get_error(mp);
21392 @ @<Assign the current expression to the variable |lhs|@>=
21394 p=mp_find_variable(mp, lhs);
21396 q=mp_stash_cur_exp(mp); mp->cur_type=mp_und_type(mp, p);
21397 mp_recycle_value(mp, p);
21398 type(p)=mp->cur_type; value(p)=null; mp_make_exp_copy(mp, p);
21399 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q); mp_make_eq(mp, p);
21401 mp_obliterated(mp, lhs); mp_put_get_error(mp);
21406 @ And now we get to the nitty-gritty. The |make_eq| procedure is given
21407 a pointer to a capsule that is to be equated to the current expression.
21409 @<Declare the procedure called |make_eq|@>=
21410 void mp_make_eq (MP mp,pointer lhs) ;
21414 @c void mp_make_eq (MP mp,pointer lhs) {
21415 small_number t; /* type of the left-hand side */
21416 pointer p,q; /* pointers inside of big nodes */
21417 integer v=0; /* value of the left-hand side */
21420 if ( t<=mp_pair_type ) v=value(lhs);
21422 @<For each type |t|, make an equation and |goto done| unless |cur_type|
21423 is incompatible with~|t|@>;
21424 } /* all cases have been listed */
21425 @<Announce that the equation cannot be performed@>;
21427 check_arith; mp_recycle_value(mp, lhs);
21428 mp_free_node(mp, lhs,value_node_size);
21431 @ @<Announce that the equation cannot be performed@>=
21432 mp_disp_err(mp, lhs,"");
21433 exp_err("Equation cannot be performed (");
21434 @.Equation cannot be performed@>
21435 if ( type(lhs)<=mp_pair_type ) mp_print_type(mp, type(lhs));
21436 else mp_print(mp, "numeric");
21437 mp_print_char(mp, '=');
21438 if ( mp->cur_type<=mp_pair_type ) mp_print_type(mp, mp->cur_type);
21439 else mp_print(mp, "numeric");
21440 mp_print_char(mp, ')');
21441 help2("I'm sorry, but I don't know how to make such things equal.")
21442 ("(See the two expressions just above the error message.)");
21443 mp_put_get_error(mp)
21445 @ @<For each type |t|, make an equation and |goto done| unless...@>=
21446 case mp_boolean_type: case mp_string_type: case mp_pen_type:
21447 case mp_path_type: case mp_picture_type:
21448 if ( mp->cur_type==t+unknown_tag ) {
21449 mp_nonlinear_eq(mp, v,mp->cur_exp,false); goto DONE;
21450 } else if ( mp->cur_type==t ) {
21451 @<Report redundant or inconsistent equation and |goto done|@>;
21454 case unknown_types:
21455 if ( mp->cur_type==t-unknown_tag ) {
21456 mp_nonlinear_eq(mp, mp->cur_exp,lhs,true); goto DONE;
21457 } else if ( mp->cur_type==t ) {
21458 mp_ring_merge(mp, lhs,mp->cur_exp); goto DONE;
21459 } else if ( mp->cur_type==mp_pair_type ) {
21460 if ( t==mp_unknown_path ) {
21461 mp_pair_to_path(mp); goto RESTART;
21465 case mp_transform_type: case mp_color_type:
21466 case mp_cmykcolor_type: case mp_pair_type:
21467 if ( mp->cur_type==t ) {
21468 @<Do multiple equations and |goto done|@>;
21471 case mp_known: case mp_dependent:
21472 case mp_proto_dependent: case mp_independent:
21473 if ( mp->cur_type>=mp_known ) {
21474 mp_try_eq(mp, lhs,null); goto DONE;
21480 @ @<Report redundant or inconsistent equation and |goto done|@>=
21482 if ( mp->cur_type<=mp_string_type ) {
21483 if ( mp->cur_type==mp_string_type ) {
21484 if ( mp_str_vs_str(mp, v,mp->cur_exp)!=0 ) {
21487 } else if ( v!=mp->cur_exp ) {
21490 @<Exclaim about a redundant equation@>; goto DONE;
21492 print_err("Redundant or inconsistent equation");
21493 @.Redundant or inconsistent equation@>
21494 help2("An equation between already-known quantities can't help.")
21495 ("But don't worry; continue and I'll just ignore it.");
21496 mp_put_get_error(mp); goto DONE;
21498 print_err("Inconsistent equation");
21499 @.Inconsistent equation@>
21500 help2("The equation I just read contradicts what was said before.")
21501 ("But don't worry; continue and I'll just ignore it.");
21502 mp_put_get_error(mp); goto DONE;
21505 @ @<Do multiple equations and |goto done|@>=
21507 p=v+mp->big_node_size[t];
21508 q=value(mp->cur_exp)+mp->big_node_size[t];
21510 p=p-2; q=q-2; mp_try_eq(mp, p,q);
21515 @ The first argument to |try_eq| is the location of a value node
21516 in a capsule that will soon be recycled. The second argument is
21517 either a location within a pair or transform node pointed to by
21518 |cur_exp|, or it is |null| (which means that |cur_exp| itself
21519 serves as the second argument). The idea is to leave |cur_exp| unchanged,
21520 but to equate the two operands.
21522 @<Declare the procedure called |try_eq|@>=
21523 void mp_try_eq (MP mp,pointer l, pointer r) ;
21526 @c void mp_try_eq (MP mp,pointer l, pointer r) {
21527 pointer p; /* dependency list for right operand minus left operand */
21528 int t; /* the type of list |p| */
21529 pointer q; /* the constant term of |p| is here */
21530 pointer pp; /* dependency list for right operand */
21531 int tt; /* the type of list |pp| */
21532 boolean copied; /* have we copied a list that ought to be recycled? */
21533 @<Remove the left operand from its container, negate it, and
21534 put it into dependency list~|p| with constant term~|q|@>;
21535 @<Add the right operand to list |p|@>;
21536 if ( info(p)==null ) {
21537 @<Deal with redundant or inconsistent equation@>;
21539 mp_linear_eq(mp, p,t);
21540 if ( r==null ) if ( mp->cur_type!=mp_known ) {
21541 if ( type(mp->cur_exp)==mp_known ) {
21542 pp=mp->cur_exp; mp->cur_exp=value(mp->cur_exp); mp->cur_type=mp_known;
21543 mp_free_node(mp, pp,value_node_size);
21549 @ @<Remove the left operand from its container, negate it, and...@>=
21551 if ( t==mp_known ) {
21552 t=mp_dependent; p=mp_const_dependency(mp, -value(l)); q=p;
21553 } else if ( t==mp_independent ) {
21554 t=mp_dependent; p=mp_single_dependency(mp, l); negate(value(p));
21557 p=dep_list(l); q=p;
21560 if ( info(q)==null ) break;
21563 link(prev_dep(l))=link(q); prev_dep(link(q))=prev_dep(l);
21567 @ @<Deal with redundant or inconsistent equation@>=
21569 if ( abs(value(p))>64 ) { /* off by .001 or more */
21570 print_err("Inconsistent equation");
21571 @.Inconsistent equation@>
21572 mp_print(mp, " (off by "); mp_print_scaled(mp, value(p));
21573 mp_print_char(mp, ')');
21574 help2("The equation I just read contradicts what was said before.")
21575 ("But don't worry; continue and I'll just ignore it.");
21576 mp_put_get_error(mp);
21577 } else if ( r==null ) {
21578 @<Exclaim about a redundant equation@>;
21580 mp_free_node(mp, p,dep_node_size);
21583 @ @<Add the right operand to list |p|@>=
21585 if ( mp->cur_type==mp_known ) {
21586 value(q)=value(q)+mp->cur_exp; goto DONE1;
21589 if ( tt==mp_independent ) pp=mp_single_dependency(mp, mp->cur_exp);
21590 else pp=dep_list(mp->cur_exp);
21593 if ( type(r)==mp_known ) {
21594 value(q)=value(q)+value(r); goto DONE1;
21597 if ( tt==mp_independent ) pp=mp_single_dependency(mp, r);
21598 else pp=dep_list(r);
21601 if ( tt!=mp_independent ) copied=false;
21602 else { copied=true; tt=mp_dependent; };
21603 @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>;
21604 if ( copied ) mp_flush_node_list(mp, pp);
21607 @ @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>=
21608 mp->watch_coefs=false;
21610 p=mp_p_plus_q(mp, p,pp,t);
21611 } else if ( t==mp_proto_dependent ) {
21612 p=mp_p_plus_fq(mp, p,unity,pp,mp_proto_dependent,mp_dependent);
21615 while ( info(q)!=null ) {
21616 value(q)=mp_round_fraction(mp, value(q)); q=link(q);
21618 t=mp_proto_dependent; p=mp_p_plus_q(mp, p,pp,t);
21620 mp->watch_coefs=true;
21622 @ Our next goal is to process type declarations. For this purpose it's
21623 convenient to have a procedure that scans a $\langle\,$declared
21624 variable$\,\rangle$ and returns the corresponding token list. After the
21625 following procedure has acted, the token after the declared variable
21626 will have been scanned, so it will appear in |cur_cmd|, |cur_mod|,
21629 @<Declare the function called |scan_declared_variable|@>=
21630 pointer mp_scan_declared_variable (MP mp) {
21631 pointer x; /* hash address of the variable's root */
21632 pointer h,t; /* head and tail of the token list to be returned */
21633 pointer l; /* hash address of left bracket */
21634 mp_get_symbol(mp); x=mp->cur_sym;
21635 if ( mp->cur_cmd!=tag_token ) mp_clear_symbol(mp, x,false);
21636 h=mp_get_avail(mp); info(h)=x; t=h;
21639 if ( mp->cur_sym==0 ) break;
21640 if ( mp->cur_cmd!=tag_token ) if ( mp->cur_cmd!=internal_quantity) {
21641 if ( mp->cur_cmd==left_bracket ) {
21642 @<Descend past a collective subscript@>;
21647 link(t)=mp_get_avail(mp); t=link(t); info(t)=mp->cur_sym;
21649 if ( eq_type(x)!=tag_token ) mp_clear_symbol(mp, x,false);
21650 if ( equiv(x)==null ) mp_new_root(mp, x);
21654 @ If the subscript isn't collective, we don't accept it as part of the
21657 @<Descend past a collective subscript@>=
21659 l=mp->cur_sym; mp_get_x_next(mp);
21660 if ( mp->cur_cmd!=right_bracket ) {
21661 mp_back_input(mp); mp->cur_sym=l; mp->cur_cmd=left_bracket; break;
21663 mp->cur_sym=collective_subscript;
21667 @ Type declarations are introduced by the following primitive operations.
21670 mp_primitive(mp, "numeric",type_name,mp_numeric_type);
21671 @:numeric_}{\&{numeric} primitive@>
21672 mp_primitive(mp, "string",type_name,mp_string_type);
21673 @:string_}{\&{string} primitive@>
21674 mp_primitive(mp, "boolean",type_name,mp_boolean_type);
21675 @:boolean_}{\&{boolean} primitive@>
21676 mp_primitive(mp, "path",type_name,mp_path_type);
21677 @:path_}{\&{path} primitive@>
21678 mp_primitive(mp, "pen",type_name,mp_pen_type);
21679 @:pen_}{\&{pen} primitive@>
21680 mp_primitive(mp, "picture",type_name,mp_picture_type);
21681 @:picture_}{\&{picture} primitive@>
21682 mp_primitive(mp, "transform",type_name,mp_transform_type);
21683 @:transform_}{\&{transform} primitive@>
21684 mp_primitive(mp, "color",type_name,mp_color_type);
21685 @:color_}{\&{color} primitive@>
21686 mp_primitive(mp, "rgbcolor",type_name,mp_color_type);
21687 @:color_}{\&{rgbcolor} primitive@>
21688 mp_primitive(mp, "cmykcolor",type_name,mp_cmykcolor_type);
21689 @:color_}{\&{cmykcolor} primitive@>
21690 mp_primitive(mp, "pair",type_name,mp_pair_type);
21691 @:pair_}{\&{pair} primitive@>
21693 @ @<Cases of |print_cmd...@>=
21694 case type_name: mp_print_type(mp, m); break;
21696 @ Now we are ready to handle type declarations, assuming that a
21697 |type_name| has just been scanned.
21699 @<Declare action procedures for use by |do_statement|@>=
21700 void mp_do_type_declaration (MP mp) ;
21703 void mp_do_type_declaration (MP mp) {
21704 small_number t; /* the type being declared */
21705 pointer p; /* token list for a declared variable */
21706 pointer q; /* value node for the variable */
21707 if ( mp->cur_mod>=mp_transform_type )
21710 t=mp->cur_mod+unknown_tag;
21712 p=mp_scan_declared_variable(mp);
21713 mp_flush_variable(mp, equiv(info(p)),link(p),false);
21714 q=mp_find_variable(mp, p);
21716 type(q)=t; value(q)=null;
21718 print_err("Declared variable conflicts with previous vardef");
21719 @.Declared variable conflicts...@>
21720 help2("You can't use, e.g., `numeric foo[]' after `vardef foo'.")
21721 ("Proceed, and I'll ignore the illegal redeclaration.");
21722 mp_put_get_error(mp);
21724 mp_flush_list(mp, p);
21725 if ( mp->cur_cmd<comma ) {
21726 @<Flush spurious symbols after the declared variable@>;
21728 } while (! end_of_statement);
21731 @ @<Flush spurious symbols after the declared variable@>=
21733 print_err("Illegal suffix of declared variable will be flushed");
21734 @.Illegal suffix...flushed@>
21735 help5("Variables in declarations must consist entirely of")
21736 ("names and collective subscripts, e.g., `x[]a'.")
21737 ("Are you trying to use a reserved word in a variable name?")
21738 ("I'm going to discard the junk I found here,")
21739 ("up to the next comma or the end of the declaration.");
21740 if ( mp->cur_cmd==numeric_token )
21741 mp->help_line[2]="Explicit subscripts like `x15a' aren't permitted.";
21742 mp_put_get_error(mp); mp->scanner_status=flushing;
21745 @<Decrease the string reference count...@>;
21746 } while (mp->cur_cmd<comma); /* either |end_of_statement| or |cur_cmd=comma| */
21747 mp->scanner_status=normal;
21750 @ \MP's |main_control| procedure just calls |do_statement| repeatedly
21751 until coming to the end of the user's program.
21752 Each execution of |do_statement| concludes with
21753 |cur_cmd=semicolon|, |end_group|, or |stop|.
21755 @c void mp_main_control (MP mp) {
21757 mp_do_statement(mp);
21758 if ( mp->cur_cmd==end_group ) {
21759 print_err("Extra `endgroup'");
21760 @.Extra `endgroup'@>
21761 help2("I'm not currently working on a `begingroup',")
21762 ("so I had better not try to end anything.");
21763 mp_flush_error(mp, 0);
21765 } while (mp->cur_cmd!=stop);
21767 int __attribute__((noinline))
21769 if (mp->history < mp_fatal_error_stop ) {
21770 @<Install and test the non-local jump buffer@>;
21771 mp_main_control(mp); /* come to life */
21772 mp_final_cleanup(mp); /* prepare for death */
21773 mp_close_files_and_terminate(mp);
21775 return mp->history;
21777 int __attribute__((noinline))
21778 mp_execute (MP mp) {
21779 if (mp->history < mp_fatal_error_stop ) {
21780 mp->history = mp_spotless;
21781 mp->file_offset = 0;
21782 mp->term_offset = 0;
21784 @<Install and test the non-local jump buffer@>;
21785 mp_input_ln(mp,mp->term_in);
21786 mp_firm_up_the_line(mp);
21787 mp->buffer[limit]='%';
21790 mp_main_control(mp); /* come to life */
21792 return mp->history;
21794 int __attribute__((noinline))
21795 mp_finish (MP mp) {
21796 if (mp->history < mp_fatal_error_stop ) {
21797 @<Install and test the non-local jump buffer@>;
21798 mp_final_cleanup(mp); /* prepare for death */
21799 mp_close_files_and_terminate(mp);
21801 return mp->history;
21803 char * mp_mplib_version (MP mp) {
21805 return mplib_version;
21807 char * mp_metapost_version (MP mp) {
21809 return metapost_version;
21812 @ @<Exported function headers@>=
21813 int mp_run (MP mp);
21814 int mp_execute (MP mp);
21815 int mp_finish (MP mp);
21816 char * mp_mplib_version (MP mp);
21817 char * mp_metapost_version (MP mp);
21820 mp_primitive(mp, "end",stop,0);
21821 @:end_}{\&{end} primitive@>
21822 mp_primitive(mp, "dump",stop,1);
21823 @:dump_}{\&{dump} primitive@>
21825 @ @<Cases of |print_cmd...@>=
21827 if ( m==0 ) mp_print(mp, "end");
21828 else mp_print(mp, "dump");
21832 Let's turn now to statements that are classified as ``commands'' because
21833 of their imperative nature. We'll begin with simple ones, so that it
21834 will be clear how to hook command processing into the |do_statement| routine;
21835 then we'll tackle the tougher commands.
21837 Here's one of the simplest:
21839 @<Cases of |do_statement|...@>=
21840 case mp_random_seed: mp_do_random_seed(mp); break;
21842 @ @<Declare action procedures for use by |do_statement|@>=
21843 void mp_do_random_seed (MP mp) ;
21845 @ @c void mp_do_random_seed (MP mp) {
21847 if ( mp->cur_cmd!=assignment ) {
21848 mp_missing_err(mp, ":=");
21850 help1("Always say `randomseed:=<numeric expression>'.");
21853 mp_get_x_next(mp); mp_scan_expression(mp);
21854 if ( mp->cur_type!=mp_known ) {
21855 exp_err("Unknown value will be ignored");
21856 @.Unknown value...ignored@>
21857 help2("Your expression was too random for me to handle,")
21858 ("so I won't change the random seed just now.");
21859 mp_put_get_flush_error(mp, 0);
21861 @<Initialize the random seed to |cur_exp|@>;
21865 @ @<Initialize the random seed to |cur_exp|@>=
21867 mp_init_randoms(mp, mp->cur_exp);
21868 if ( mp->selector>=log_only && mp->selector<write_file) {
21869 mp->old_setting=mp->selector; mp->selector=log_only;
21870 mp_print_nl(mp, "{randomseed:=");
21871 mp_print_scaled(mp, mp->cur_exp);
21872 mp_print_char(mp, '}');
21873 mp_print_nl(mp, ""); mp->selector=mp->old_setting;
21877 @ And here's another simple one (somewhat different in flavor):
21879 @<Cases of |do_statement|...@>=
21881 mp_print_ln(mp); mp->interaction=mp->cur_mod;
21882 @<Initialize the print |selector| based on |interaction|@>;
21883 if ( mp->log_opened ) mp->selector=mp->selector+2;
21888 mp_primitive(mp, "batchmode",mode_command,mp_batch_mode);
21889 @:mp_batch_mode_}{\&{batchmode} primitive@>
21890 mp_primitive(mp, "nonstopmode",mode_command,mp_nonstop_mode);
21891 @:mp_nonstop_mode_}{\&{nonstopmode} primitive@>
21892 mp_primitive(mp, "scrollmode",mode_command,mp_scroll_mode);
21893 @:mp_scroll_mode_}{\&{scrollmode} primitive@>
21894 mp_primitive(mp, "errorstopmode",mode_command,mp_error_stop_mode);
21895 @:mp_error_stop_mode_}{\&{errorstopmode} primitive@>
21897 @ @<Cases of |print_cmd_mod|...@>=
21900 case mp_batch_mode: mp_print(mp, "batchmode"); break;
21901 case mp_nonstop_mode: mp_print(mp, "nonstopmode"); break;
21902 case mp_scroll_mode: mp_print(mp, "scrollmode"); break;
21903 default: mp_print(mp, "errorstopmode"); break;
21907 @ The `\&{inner}' and `\&{outer}' commands are only slightly harder.
21909 @<Cases of |do_statement|...@>=
21910 case protection_command: mp_do_protection(mp); break;
21913 mp_primitive(mp, "inner",protection_command,0);
21914 @:inner_}{\&{inner} primitive@>
21915 mp_primitive(mp, "outer",protection_command,1);
21916 @:outer_}{\&{outer} primitive@>
21918 @ @<Cases of |print_cmd...@>=
21919 case protection_command:
21920 if ( m==0 ) mp_print(mp, "inner");
21921 else mp_print(mp, "outer");
21924 @ @<Declare action procedures for use by |do_statement|@>=
21925 void mp_do_protection (MP mp) ;
21927 @ @c void mp_do_protection (MP mp) {
21928 int m; /* 0 to unprotect, 1 to protect */
21929 halfword t; /* the |eq_type| before we change it */
21932 mp_get_symbol(mp); t=eq_type(mp->cur_sym);
21934 if ( t>=outer_tag )
21935 eq_type(mp->cur_sym)=t-outer_tag;
21936 } else if ( t<outer_tag ) {
21937 eq_type(mp->cur_sym)=t+outer_tag;
21940 } while (mp->cur_cmd==comma);
21943 @ \MP\ never defines the tokens `\.(' and `\.)' to be primitives, but
21944 plain \MP\ begins with the declaration `\&{delimiters} \.{()}'. Such a
21945 declaration assigns the command code |left_delimiter| to `\.{(}' and
21946 |right_delimiter| to `\.{)}'; the |equiv| of each delimiter is the
21947 hash address of its mate.
21949 @<Cases of |do_statement|...@>=
21950 case delimiters: mp_def_delims(mp); break;
21952 @ @<Declare action procedures for use by |do_statement|@>=
21953 void mp_def_delims (MP mp) ;
21955 @ @c void mp_def_delims (MP mp) {
21956 pointer l_delim,r_delim; /* the new delimiter pair */
21957 mp_get_clear_symbol(mp); l_delim=mp->cur_sym;
21958 mp_get_clear_symbol(mp); r_delim=mp->cur_sym;
21959 eq_type(l_delim)=left_delimiter; equiv(l_delim)=r_delim;
21960 eq_type(r_delim)=right_delimiter; equiv(r_delim)=l_delim;
21964 @ Here is a procedure that is called when \MP\ has reached a point
21965 where some right delimiter is mandatory.
21967 @<Declare the procedure called |check_delimiter|@>=
21968 void mp_check_delimiter (MP mp,pointer l_delim, pointer r_delim) {
21969 if ( mp->cur_cmd==right_delimiter )
21970 if ( mp->cur_mod==l_delim )
21972 if ( mp->cur_sym!=r_delim ) {
21973 mp_missing_err(mp, str(text(r_delim)));
21975 help2("I found no right delimiter to match a left one. So I've")
21976 ("put one in, behind the scenes; this may fix the problem.");
21979 print_err("The token `"); mp_print_text(r_delim);
21980 @.The token...delimiter@>
21981 mp_print(mp, "' is no longer a right delimiter");
21982 help3("Strange: This token has lost its former meaning!")
21983 ("I'll read it as a right delimiter this time;")
21984 ("but watch out, I'll probably miss it later.");
21989 @ The next four commands save or change the values associated with tokens.
21991 @<Cases of |do_statement|...@>=
21994 mp_get_symbol(mp); mp_save_variable(mp, mp->cur_sym); mp_get_x_next(mp);
21995 } while (mp->cur_cmd==comma);
21997 case interim_command: mp_do_interim(mp); break;
21998 case let_command: mp_do_let(mp); break;
21999 case new_internal: mp_do_new_internal(mp); break;
22001 @ @<Declare action procedures for use by |do_statement|@>=
22002 void mp_do_statement (MP mp);
22003 void mp_do_interim (MP mp);
22005 @ @c void mp_do_interim (MP mp) {
22007 if ( mp->cur_cmd!=internal_quantity ) {
22008 print_err("The token `");
22009 @.The token...quantity@>
22010 if ( mp->cur_sym==0 ) mp_print(mp, "(%CAPSULE)");
22011 else mp_print_text(mp->cur_sym);
22012 mp_print(mp, "' isn't an internal quantity");
22013 help1("Something like `tracingonline' should follow `interim'.");
22016 mp_save_internal(mp, mp->cur_mod); mp_back_input(mp);
22018 mp_do_statement(mp);
22021 @ The following procedure is careful not to undefine the left-hand symbol
22022 too soon, lest commands like `{\tt let x=x}' have a surprising effect.
22024 @<Declare action procedures for use by |do_statement|@>=
22025 void mp_do_let (MP mp) ;
22027 @ @c void mp_do_let (MP mp) {
22028 pointer l; /* hash location of the left-hand symbol */
22029 mp_get_symbol(mp); l=mp->cur_sym; mp_get_x_next(mp);
22030 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
22031 mp_missing_err(mp, "=");
22033 help3("You should have said `let symbol = something'.")
22034 ("But don't worry; I'll pretend that an equals sign")
22035 ("was present. The next token I read will be `something'.");
22039 switch (mp->cur_cmd) {
22040 case defined_macro: case secondary_primary_macro:
22041 case tertiary_secondary_macro: case expression_tertiary_macro:
22042 add_mac_ref(mp->cur_mod);
22047 mp_clear_symbol(mp, l,false); eq_type(l)=mp->cur_cmd;
22048 if ( mp->cur_cmd==tag_token ) equiv(l)=null;
22049 else equiv(l)=mp->cur_mod;
22053 @ @<Declarations@>=
22054 void mp_grow_internals (MP mp, int l);
22055 void mp_do_new_internal (MP mp) ;
22058 void mp_grow_internals (MP mp, int l) {
22062 if ( hash_end+l>max_halfword ) {
22063 mp_confusion(mp, "out of memory space"); /* can't be reached */
22065 int_name = xmalloc ((l+1),sizeof(char *));
22066 internal = xmalloc ((l+1),sizeof(scaled));
22067 for (k=0;k<=l; k++ ) {
22068 if (k<=mp->max_internal) {
22069 internal[k]=mp->internal[k];
22070 int_name[k]=mp->int_name[k];
22076 xfree(mp->internal); xfree(mp->int_name);
22077 mp->int_name = int_name;
22078 mp->internal = internal;
22079 mp->max_internal = l;
22083 void mp_do_new_internal (MP mp) {
22085 if ( mp->int_ptr==mp->max_internal ) {
22086 mp_grow_internals(mp, (mp->max_internal + (mp->max_internal>>2)));
22088 mp_get_clear_symbol(mp); incr(mp->int_ptr);
22089 eq_type(mp->cur_sym)=internal_quantity;
22090 equiv(mp->cur_sym)=mp->int_ptr;
22091 if(mp->int_name[mp->int_ptr]!=NULL)
22092 xfree(mp->int_name[mp->int_ptr]);
22093 mp->int_name[mp->int_ptr]=str(text(mp->cur_sym));
22094 mp->internal[mp->int_ptr]=0;
22096 } while (mp->cur_cmd==comma);
22099 @ @<Dealloc variables@>=
22100 for (k=0;k<=mp->max_internal;k++) {
22101 xfree(mp->int_name[k]);
22103 xfree(mp->internal);
22104 xfree(mp->int_name);
22107 @ The various `\&{show}' commands are distinguished by modifier fields
22110 @d show_token_code 0 /* show the meaning of a single token */
22111 @d show_stats_code 1 /* show current memory and string usage */
22112 @d show_code 2 /* show a list of expressions */
22113 @d show_var_code 3 /* show a variable and its descendents */
22114 @d show_dependencies_code 4 /* show dependent variables in terms of independents */
22117 mp_primitive(mp, "showtoken",show_command,show_token_code);
22118 @:show_token_}{\&{showtoken} primitive@>
22119 mp_primitive(mp, "showstats",show_command,show_stats_code);
22120 @:show_stats_}{\&{showstats} primitive@>
22121 mp_primitive(mp, "show",show_command,show_code);
22122 @:show_}{\&{show} primitive@>
22123 mp_primitive(mp, "showvariable",show_command,show_var_code);
22124 @:show_var_}{\&{showvariable} primitive@>
22125 mp_primitive(mp, "showdependencies",show_command,show_dependencies_code);
22126 @:show_dependencies_}{\&{showdependencies} primitive@>
22128 @ @<Cases of |print_cmd...@>=
22131 case show_token_code:mp_print(mp, "showtoken"); break;
22132 case show_stats_code:mp_print(mp, "showstats"); break;
22133 case show_code:mp_print(mp, "show"); break;
22134 case show_var_code:mp_print(mp, "showvariable"); break;
22135 default: mp_print(mp, "showdependencies"); break;
22139 @ @<Cases of |do_statement|...@>=
22140 case show_command:mp_do_show_whatever(mp); break;
22142 @ The value of |cur_mod| controls the |verbosity| in the |print_exp| routine:
22143 if it's |show_code|, complicated structures are abbreviated, otherwise
22146 @<Declare action procedures for use by |do_statement|@>=
22147 void mp_do_show (MP mp) ;
22149 @ @c void mp_do_show (MP mp) {
22151 mp_get_x_next(mp); mp_scan_expression(mp);
22152 mp_print_nl(mp, ">> ");
22154 mp_print_exp(mp, null,2); mp_flush_cur_exp(mp, 0);
22155 } while (mp->cur_cmd==comma);
22158 @ @<Declare action procedures for use by |do_statement|@>=
22159 void mp_disp_token (MP mp) ;
22161 @ @c void mp_disp_token (MP mp) {
22162 mp_print_nl(mp, "> ");
22164 if ( mp->cur_sym==0 ) {
22165 @<Show a numeric or string or capsule token@>;
22167 mp_print_text(mp->cur_sym); mp_print_char(mp, '=');
22168 if ( eq_type(mp->cur_sym)>=outer_tag ) mp_print(mp, "(outer) ");
22169 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
22170 if ( mp->cur_cmd==defined_macro ) {
22171 mp_print_ln(mp); mp_show_macro(mp, mp->cur_mod,null,100000);
22172 } /* this avoids recursion between |show_macro| and |print_cmd_mod| */
22177 @ @<Show a numeric or string or capsule token@>=
22179 if ( mp->cur_cmd==numeric_token ) {
22180 mp_print_scaled(mp, mp->cur_mod);
22181 } else if ( mp->cur_cmd==capsule_token ) {
22182 mp_print_capsule(mp,mp->cur_mod);
22184 mp_print_char(mp, '"');
22185 mp_print_str(mp, mp->cur_mod); mp_print_char(mp, '"');
22186 delete_str_ref(mp->cur_mod);
22190 @ The following cases of |print_cmd_mod| might arise in connection
22191 with |disp_token|, although they don't correspond to any
22194 @<Cases of |print_cmd_...@>=
22195 case left_delimiter:
22196 case right_delimiter:
22197 if ( c==left_delimiter ) mp_print(mp, "left");
22198 else mp_print(mp, "right");
22199 mp_print(mp, " delimiter that matches ");
22203 if ( m==null ) mp_print(mp, "tag");
22204 else mp_print(mp, "variable");
22206 case defined_macro:
22207 mp_print(mp, "macro:");
22209 case secondary_primary_macro:
22210 case tertiary_secondary_macro:
22211 case expression_tertiary_macro:
22212 mp_print_cmd_mod(mp, macro_def,c);
22213 mp_print(mp, "'d macro:");
22214 mp_print_ln(mp); mp_show_token_list(mp, link(link(m)),null,1000,0);
22217 mp_print(mp, "[repeat the loop]");
22219 case internal_quantity:
22220 mp_print(mp, mp->int_name[m]);
22223 @ @<Declare action procedures for use by |do_statement|@>=
22224 void mp_do_show_token (MP mp) ;
22226 @ @c void mp_do_show_token (MP mp) {
22228 get_t_next; mp_disp_token(mp);
22230 } while (mp->cur_cmd==comma);
22233 @ @<Declare action procedures for use by |do_statement|@>=
22234 void mp_do_show_stats (MP mp) ;
22236 @ @c void mp_do_show_stats (MP mp) {
22237 mp_print_nl(mp, "Memory usage ");
22238 @.Memory usage...@>
22239 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used);
22241 mp_print(mp, "unknown");
22242 mp_print(mp, " ("); mp_print_int(mp, mp->hi_mem_min-mp->lo_mem_max-1);
22243 mp_print(mp, " still untouched)"); mp_print_ln(mp);
22244 mp_print_nl(mp, "String usage ");
22245 mp_print_int(mp, mp->strs_in_use-mp->init_str_use);
22246 mp_print_char(mp, '&'); mp_print_int(mp, mp->pool_in_use-mp->init_pool_ptr);
22248 mp_print(mp, "unknown");
22249 mp_print(mp, " (");
22250 mp_print_int(mp, mp->max_strings-1-mp->strs_used_up); mp_print_char(mp, '&');
22251 mp_print_int(mp, mp->pool_size-mp->pool_ptr);
22252 mp_print(mp, " now untouched)"); mp_print_ln(mp);
22256 @ Here's a recursive procedure that gives an abbreviated account
22257 of a variable, for use by |do_show_var|.
22259 @<Declare action procedures for use by |do_statement|@>=
22260 void mp_disp_var (MP mp,pointer p) ;
22262 @ @c void mp_disp_var (MP mp,pointer p) {
22263 pointer q; /* traverses attributes and subscripts */
22264 int n; /* amount of macro text to show */
22265 if ( type(p)==mp_structured ) {
22266 @<Descend the structure@>;
22267 } else if ( type(p)>=mp_unsuffixed_macro ) {
22268 @<Display a variable macro@>;
22269 } else if ( type(p)!=undefined ){
22270 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22271 mp_print_char(mp, '=');
22272 mp_print_exp(mp, p,0);
22276 @ @<Descend the structure@>=
22279 do { mp_disp_var(mp, q); q=link(q); } while (q!=end_attr);
22281 while ( name_type(q)==mp_subscr ) {
22282 mp_disp_var(mp, q); q=link(q);
22286 @ @<Display a variable macro@>=
22288 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22289 if ( type(p)>mp_unsuffixed_macro )
22290 mp_print(mp, "@@#"); /* |suffixed_macro| */
22291 mp_print(mp, "=macro:");
22292 if ( (int)mp->file_offset>=mp->max_print_line-20 ) n=5;
22293 else n=mp->max_print_line-mp->file_offset-15;
22294 mp_show_macro(mp, value(p),null,n);
22297 @ @<Declare action procedures for use by |do_statement|@>=
22298 void mp_do_show_var (MP mp) ;
22300 @ @c void mp_do_show_var (MP mp) {
22303 if ( mp->cur_sym>0 ) if ( mp->cur_sym<=hash_end )
22304 if ( mp->cur_cmd==tag_token ) if ( mp->cur_mod!=null ) {
22305 mp_disp_var(mp, mp->cur_mod); goto DONE;
22310 } while (mp->cur_cmd==comma);
22313 @ @<Declare action procedures for use by |do_statement|@>=
22314 void mp_do_show_dependencies (MP mp) ;
22316 @ @c void mp_do_show_dependencies (MP mp) {
22317 pointer p; /* link that runs through all dependencies */
22319 while ( p!=dep_head ) {
22320 if ( mp_interesting(mp, p) ) {
22321 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22322 if ( type(p)==mp_dependent ) mp_print_char(mp, '=');
22323 else mp_print(mp, " = "); /* extra spaces imply proto-dependency */
22324 mp_print_dependency(mp, dep_list(p),type(p));
22327 while ( info(p)!=null ) p=link(p);
22333 @ Finally we are ready for the procedure that governs all of the
22336 @<Declare action procedures for use by |do_statement|@>=
22337 void mp_do_show_whatever (MP mp) ;
22339 @ @c void mp_do_show_whatever (MP mp) {
22340 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
22341 switch (mp->cur_mod) {
22342 case show_token_code:mp_do_show_token(mp); break;
22343 case show_stats_code:mp_do_show_stats(mp); break;
22344 case show_code:mp_do_show(mp); break;
22345 case show_var_code:mp_do_show_var(mp); break;
22346 case show_dependencies_code:mp_do_show_dependencies(mp); break;
22347 } /* there are no other cases */
22348 if ( mp->internal[mp_showstopping]>0 ){
22351 if ( mp->interaction<mp_error_stop_mode ) {
22352 help0; decr(mp->error_count);
22354 help1("This isn't an error message; I'm just showing something.");
22356 if ( mp->cur_cmd==semicolon ) mp_error(mp);
22357 else mp_put_get_error(mp);
22361 @ The `\&{addto}' command needs the following additional primitives:
22363 @d double_path_code 0 /* command modifier for `\&{doublepath}' */
22364 @d contour_code 1 /* command modifier for `\&{contour}' */
22365 @d also_code 2 /* command modifier for `\&{also}' */
22367 @ Pre and postscripts need two new identifiers:
22369 @d with_pre_script 11
22370 @d with_post_script 13
22373 mp_primitive(mp, "doublepath",thing_to_add,double_path_code);
22374 @:double_path_}{\&{doublepath} primitive@>
22375 mp_primitive(mp, "contour",thing_to_add,contour_code);
22376 @:contour_}{\&{contour} primitive@>
22377 mp_primitive(mp, "also",thing_to_add,also_code);
22378 @:also_}{\&{also} primitive@>
22379 mp_primitive(mp, "withpen",with_option,mp_pen_type);
22380 @:with_pen_}{\&{withpen} primitive@>
22381 mp_primitive(mp, "dashed",with_option,mp_picture_type);
22382 @:dashed_}{\&{dashed} primitive@>
22383 mp_primitive(mp, "withprescript",with_option,with_pre_script);
22384 @:with_pre_script_}{\&{withprescript} primitive@>
22385 mp_primitive(mp, "withpostscript",with_option,with_post_script);
22386 @:with_post_script_}{\&{withpostscript} primitive@>
22387 mp_primitive(mp, "withoutcolor",with_option,mp_no_model);
22388 @:with_color_}{\&{withoutcolor} primitive@>
22389 mp_primitive(mp, "withgreyscale",with_option,mp_grey_model);
22390 @:with_color_}{\&{withgreyscale} primitive@>
22391 mp_primitive(mp, "withcolor",with_option,mp_uninitialized_model);
22392 @:with_color_}{\&{withcolor} primitive@>
22393 /* \&{withrgbcolor} is an alias for \&{withcolor} */
22394 mp_primitive(mp, "withrgbcolor",with_option,mp_rgb_model);
22395 @:with_color_}{\&{withrgbcolor} primitive@>
22396 mp_primitive(mp, "withcmykcolor",with_option,mp_cmyk_model);
22397 @:with_color_}{\&{withcmykcolor} primitive@>
22399 @ @<Cases of |print_cmd...@>=
22401 if ( m==contour_code ) mp_print(mp, "contour");
22402 else if ( m==double_path_code ) mp_print(mp, "doublepath");
22403 else mp_print(mp, "also");
22406 if ( m==mp_pen_type ) mp_print(mp, "withpen");
22407 else if ( m==with_pre_script ) mp_print(mp, "withprescript");
22408 else if ( m==with_post_script ) mp_print(mp, "withpostscript");
22409 else if ( m==mp_no_model ) mp_print(mp, "withoutcolor");
22410 else if ( m==mp_rgb_model ) mp_print(mp, "withrgbcolor");
22411 else if ( m==mp_uninitialized_model ) mp_print(mp, "withcolor");
22412 else if ( m==mp_cmyk_model ) mp_print(mp, "withcmykcolor");
22413 else if ( m==mp_grey_model ) mp_print(mp, "withgreyscale");
22414 else mp_print(mp, "dashed");
22417 @ The |scan_with_list| procedure parses a $\langle$with list$\rangle$ and
22418 updates the list of graphical objects starting at |p|. Each $\langle$with
22419 clause$\rangle$ updates all graphical objects whose |type| is compatible.
22420 Other objects are ignored.
22422 @<Declare action procedures for use by |do_statement|@>=
22423 void mp_scan_with_list (MP mp,pointer p) ;
22425 @ @c void mp_scan_with_list (MP mp,pointer p) {
22426 small_number t; /* |cur_mod| of the |with_option| (should match |cur_type|) */
22427 pointer q; /* for list manipulation */
22428 int old_setting; /* saved |selector| setting */
22429 pointer k; /* for finding the near-last item in a list */
22430 str_number s; /* for string cleanup after combining */
22431 pointer cp,pp,dp,ap,bp;
22432 /* objects being updated; |void| initially; |null| to suppress update */
22433 cp=mp_void; pp=mp_void; dp=mp_void; ap=mp_void; bp=mp_void;
22435 while ( mp->cur_cmd==with_option ){
22438 if ( t!=mp_no_model ) mp_scan_expression(mp);
22439 if (((t==with_pre_script)&&(mp->cur_type!=mp_string_type))||
22440 ((t==with_post_script)&&(mp->cur_type!=mp_string_type))||
22441 ((t==mp_uninitialized_model)&&
22442 ((mp->cur_type!=mp_cmykcolor_type)&&(mp->cur_type!=mp_color_type)
22443 &&(mp->cur_type!=mp_known)&&(mp->cur_type!=mp_boolean_type)))||
22444 ((t==mp_cmyk_model)&&(mp->cur_type!=mp_cmykcolor_type))||
22445 ((t==mp_rgb_model)&&(mp->cur_type!=mp_color_type))||
22446 ((t==mp_grey_model)&&(mp->cur_type!=mp_known))||
22447 ((t==mp_pen_type)&&(mp->cur_type!=t))||
22448 ((t==mp_picture_type)&&(mp->cur_type!=t)) ) {
22449 @<Complain about improper type@>;
22450 } else if ( t==mp_uninitialized_model ) {
22451 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22453 @<Transfer a color from the current expression to object~|cp|@>;
22454 mp_flush_cur_exp(mp, 0);
22455 } else if ( t==mp_rgb_model ) {
22456 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22458 @<Transfer a rgbcolor from the current expression to object~|cp|@>;
22459 mp_flush_cur_exp(mp, 0);
22460 } else if ( t==mp_cmyk_model ) {
22461 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22463 @<Transfer a cmykcolor from the current expression to object~|cp|@>;
22464 mp_flush_cur_exp(mp, 0);
22465 } else if ( t==mp_grey_model ) {
22466 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22468 @<Transfer a greyscale from the current expression to object~|cp|@>;
22469 mp_flush_cur_exp(mp, 0);
22470 } else if ( t==mp_no_model ) {
22471 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22473 @<Transfer a noncolor from the current expression to object~|cp|@>;
22474 } else if ( t==mp_pen_type ) {
22475 if ( pp==mp_void ) @<Make |pp| an object in list~|p| that needs a pen@>;
22477 if ( pen_p(pp)!=null ) mp_toss_knot_list(mp, pen_p(pp));
22478 pen_p(pp)=mp->cur_exp; mp->cur_type=mp_vacuous;
22480 } else if ( t==with_pre_script ) {
22483 while ( (ap!=null)&&(! has_color(ap)) )
22486 if ( pre_script(ap)!=null ) { /* build a new,combined string */
22488 old_setting=mp->selector;
22489 mp->selector=new_string;
22490 str_room(length(pre_script(ap))+length(mp->cur_exp)+2);
22491 mp_print_str(mp, mp->cur_exp);
22492 append_char(13); /* a forced \ps\ newline */
22493 mp_print_str(mp, pre_script(ap));
22494 pre_script(ap)=mp_make_string(mp);
22496 mp->selector=old_setting;
22498 pre_script(ap)=mp->cur_exp;
22500 mp->cur_type=mp_vacuous;
22502 } else if ( t==with_post_script ) {
22506 while ( link(k)!=null ) {
22508 if ( has_color(k) ) bp=k;
22511 if ( post_script(bp)!=null ) {
22513 old_setting=mp->selector;
22514 mp->selector=new_string;
22515 str_room(length(post_script(bp))+length(mp->cur_exp)+2);
22516 mp_print_str(mp, post_script(bp));
22517 append_char(13); /* a forced \ps\ newline */
22518 mp_print_str(mp, mp->cur_exp);
22519 post_script(bp)=mp_make_string(mp);
22521 mp->selector=old_setting;
22523 post_script(bp)=mp->cur_exp;
22525 mp->cur_type=mp_vacuous;
22528 if ( dp==mp_void ) {
22529 @<Make |dp| a stroked node in list~|p|@>;
22532 if ( dash_p(dp)!=null ) delete_edge_ref(dash_p(dp));
22533 dash_p(dp)=mp_make_dashes(mp, mp->cur_exp);
22534 dash_scale(dp)=unity;
22535 mp->cur_type=mp_vacuous;
22539 @<Copy the information from objects |cp|, |pp|, and |dp| into the rest
22543 @ @<Complain about improper type@>=
22544 { exp_err("Improper type");
22546 help2("Next time say `withpen <known pen expression>';")
22547 ("I'll ignore the bad `with' clause and look for another.");
22548 if ( t==with_pre_script )
22549 mp->help_line[1]="Next time say `withprescript <known string expression>';";
22550 else if ( t==with_post_script )
22551 mp->help_line[1]="Next time say `withpostscript <known string expression>';";
22552 else if ( t==mp_picture_type )
22553 mp->help_line[1]="Next time say `dashed <known picture expression>';";
22554 else if ( t==mp_uninitialized_model )
22555 mp->help_line[1]="Next time say `withcolor <known color expression>';";
22556 else if ( t==mp_rgb_model )
22557 mp->help_line[1]="Next time say `withrgbcolor <known color expression>';";
22558 else if ( t==mp_cmyk_model )
22559 mp->help_line[1]="Next time say `withcmykcolor <known cmykcolor expression>';";
22560 else if ( t==mp_grey_model )
22561 mp->help_line[1]="Next time say `withgreyscale <known numeric expression>';";;
22562 mp_put_get_flush_error(mp, 0);
22565 @ Forcing the color to be between |0| and |unity| here guarantees that no
22566 picture will ever contain a color outside the legal range for \ps\ graphics.
22568 @<Transfer a color from the current expression to object~|cp|@>=
22569 { if ( mp->cur_type==mp_color_type )
22570 @<Transfer a rgbcolor from the current expression to object~|cp|@>
22571 else if ( mp->cur_type==mp_cmykcolor_type )
22572 @<Transfer a cmykcolor from the current expression to object~|cp|@>
22573 else if ( mp->cur_type==mp_known )
22574 @<Transfer a greyscale from the current expression to object~|cp|@>
22575 else if ( mp->cur_exp==false_code )
22576 @<Transfer a noncolor from the current expression to object~|cp|@>;
22579 @ @<Transfer a rgbcolor from the current expression to object~|cp|@>=
22580 { q=value(mp->cur_exp);
22585 red_val(cp)=value(red_part_loc(q));
22586 green_val(cp)=value(green_part_loc(q));
22587 blue_val(cp)=value(blue_part_loc(q));
22588 color_model(cp)=mp_rgb_model;
22589 if ( red_val(cp)<0 ) red_val(cp)=0;
22590 if ( green_val(cp)<0 ) green_val(cp)=0;
22591 if ( blue_val(cp)<0 ) blue_val(cp)=0;
22592 if ( red_val(cp)>unity ) red_val(cp)=unity;
22593 if ( green_val(cp)>unity ) green_val(cp)=unity;
22594 if ( blue_val(cp)>unity ) blue_val(cp)=unity;
22597 @ @<Transfer a cmykcolor from the current expression to object~|cp|@>=
22598 { q=value(mp->cur_exp);
22599 cyan_val(cp)=value(cyan_part_loc(q));
22600 magenta_val(cp)=value(magenta_part_loc(q));
22601 yellow_val(cp)=value(yellow_part_loc(q));
22602 black_val(cp)=value(black_part_loc(q));
22603 color_model(cp)=mp_cmyk_model;
22604 if ( cyan_val(cp)<0 ) cyan_val(cp)=0;
22605 if ( magenta_val(cp)<0 ) magenta_val(cp)=0;
22606 if ( yellow_val(cp)<0 ) yellow_val(cp)=0;
22607 if ( black_val(cp)<0 ) black_val(cp)=0;
22608 if ( cyan_val(cp)>unity ) cyan_val(cp)=unity;
22609 if ( magenta_val(cp)>unity ) magenta_val(cp)=unity;
22610 if ( yellow_val(cp)>unity ) yellow_val(cp)=unity;
22611 if ( black_val(cp)>unity ) black_val(cp)=unity;
22614 @ @<Transfer a greyscale from the current expression to object~|cp|@>=
22621 color_model(cp)=mp_grey_model;
22622 if ( grey_val(cp)<0 ) grey_val(cp)=0;
22623 if ( grey_val(cp)>unity ) grey_val(cp)=unity;
22626 @ @<Transfer a noncolor from the current expression to object~|cp|@>=
22633 color_model(cp)=mp_no_model;
22636 @ @<Make |cp| a colored object in object list~|p|@>=
22638 while ( cp!=null ){
22639 if ( has_color(cp) ) break;
22644 @ @<Make |pp| an object in list~|p| that needs a pen@>=
22646 while ( pp!=null ) {
22647 if ( has_pen(pp) ) break;
22652 @ @<Make |dp| a stroked node in list~|p|@>=
22654 while ( dp!=null ) {
22655 if ( type(dp)==mp_stroked_code ) break;
22660 @ @<Copy the information from objects |cp|, |pp|, and |dp| into...@>=
22661 @<Copy |cp|'s color into the colored objects linked to~|cp|@>;
22662 if ( pp>mp_void ) {
22663 @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>;
22665 if ( dp>mp_void ) {
22666 @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>;
22670 @ @<Copy |cp|'s color into the colored objects linked to~|cp|@>=
22672 while ( q!=null ) {
22673 if ( has_color(q) ) {
22674 red_val(q)=red_val(cp);
22675 green_val(q)=green_val(cp);
22676 blue_val(q)=blue_val(cp);
22677 black_val(q)=black_val(cp);
22678 color_model(q)=color_model(cp);
22684 @ @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>=
22686 while ( q!=null ) {
22687 if ( has_pen(q) ) {
22688 if ( pen_p(q)!=null ) mp_toss_knot_list(mp, pen_p(q));
22689 pen_p(q)=copy_pen(pen_p(pp));
22695 @ @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>=
22697 while ( q!=null ) {
22698 if ( type(q)==mp_stroked_code ) {
22699 if ( dash_p(q)!=null ) delete_edge_ref(dash_p(q));
22700 dash_p(q)=dash_p(dp);
22701 dash_scale(q)=unity;
22702 if ( dash_p(q)!=null ) add_edge_ref(dash_p(q));
22708 @ One of the things we need to do when we've parsed an \&{addto} or
22709 similar command is find the header of a supposed \&{picture} variable, given
22710 a token list for that variable. Since the edge structure is about to be
22711 updated, we use |private_edges| to make sure that this is possible.
22713 @<Declare action procedures for use by |do_statement|@>=
22714 pointer mp_find_edges_var (MP mp, pointer t) ;
22716 @ @c pointer mp_find_edges_var (MP mp, pointer t) {
22718 pointer cur_edges; /* the return value */
22719 p=mp_find_variable(mp, t); cur_edges=null;
22721 mp_obliterated(mp, t); mp_put_get_error(mp);
22722 } else if ( type(p)!=mp_picture_type ) {
22723 print_err("Variable "); mp_show_token_list(mp, t,null,1000,0);
22724 @.Variable x is the wrong type@>
22725 mp_print(mp, " is the wrong type (");
22726 mp_print_type(mp, type(p)); mp_print_char(mp, ')');
22727 help2("I was looking for a \"known\" picture variable.")
22728 ("So I'll not change anything just now.");
22729 mp_put_get_error(mp);
22731 value(p)=mp_private_edges(mp, value(p));
22732 cur_edges=value(p);
22734 mp_flush_node_list(mp, t);
22738 @ @<Cases of |do_statement|...@>=
22739 case add_to_command: mp_do_add_to(mp); break;
22740 case bounds_command:mp_do_bounds(mp); break;
22743 mp_primitive(mp, "clip",bounds_command,mp_start_clip_code);
22744 @:clip_}{\&{clip} primitive@>
22745 mp_primitive(mp, "setbounds",bounds_command,mp_start_bounds_code);
22746 @:set_bounds_}{\&{setbounds} primitive@>
22748 @ @<Cases of |print_cmd...@>=
22749 case bounds_command:
22750 if ( m==mp_start_clip_code ) mp_print(mp, "clip");
22751 else mp_print(mp, "setbounds");
22754 @ The following function parses the beginning of an \&{addto} or \&{clip}
22755 command: it expects a variable name followed by a token with |cur_cmd=sep|
22756 and then an expression. The function returns the token list for the variable
22757 and stores the command modifier for the separator token in the global variable
22758 |last_add_type|. We must be careful because this variable might get overwritten
22759 any time we call |get_x_next|.
22762 quarterword last_add_type;
22763 /* command modifier that identifies the last \&{addto} command */
22765 @ @<Declare action procedures for use by |do_statement|@>=
22766 pointer mp_start_draw_cmd (MP mp,quarterword sep) ;
22768 @ @c pointer mp_start_draw_cmd (MP mp,quarterword sep) {
22769 pointer lhv; /* variable to add to left */
22770 quarterword add_type=0; /* value to be returned in |last_add_type| */
22772 mp_get_x_next(mp); mp->var_flag=sep; mp_scan_primary(mp);
22773 if ( mp->cur_type!=mp_token_list ) {
22774 @<Abandon edges command because there's no variable@>;
22776 lhv=mp->cur_exp; add_type=mp->cur_mod;
22777 mp->cur_type=mp_vacuous; mp_get_x_next(mp); mp_scan_expression(mp);
22779 mp->last_add_type=add_type;
22783 @ @<Abandon edges command because there's no variable@>=
22784 { exp_err("Not a suitable variable");
22785 @.Not a suitable variable@>
22786 help4("At this point I needed to see the name of a picture variable.")
22787 ("(Or perhaps you have indeed presented me with one; I might")
22788 ("have missed it, if it wasn't followed by the proper token.)")
22789 ("So I'll not change anything just now.");
22790 mp_put_get_flush_error(mp, 0);
22793 @ Here is an example of how to use |start_draw_cmd|.
22795 @<Declare action procedures for use by |do_statement|@>=
22796 void mp_do_bounds (MP mp) ;
22798 @ @c void mp_do_bounds (MP mp) {
22799 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22800 pointer p; /* for list manipulation */
22801 integer m; /* initial value of |cur_mod| */
22803 lhv=mp_start_draw_cmd(mp, to_token);
22805 lhe=mp_find_edges_var(mp, lhv);
22807 mp_flush_cur_exp(mp, 0);
22808 } else if ( mp->cur_type!=mp_path_type ) {
22809 exp_err("Improper `clip'");
22810 @.Improper `addto'@>
22811 help2("This expression should have specified a known path.")
22812 ("So I'll not change anything just now.");
22813 mp_put_get_flush_error(mp, 0);
22814 } else if ( left_type(mp->cur_exp)==mp_endpoint ) {
22815 @<Complain about a non-cycle@>;
22817 @<Make |cur_exp| into a \&{setbounds} or clipping path and add it to |lhe|@>;
22822 @ @<Complain about a non-cycle@>=
22823 { print_err("Not a cycle");
22825 help2("That contour should have ended with `..cycle' or `&cycle'.")
22826 ("So I'll not change anything just now."); mp_put_get_error(mp);
22829 @ @<Make |cur_exp| into a \&{setbounds} or clipping path and add...@>=
22830 { p=mp_new_bounds_node(mp, mp->cur_exp,m);
22831 link(p)=link(dummy_loc(lhe));
22832 link(dummy_loc(lhe))=p;
22833 if ( obj_tail(lhe)==dummy_loc(lhe) ) obj_tail(lhe)=p;
22834 p=mp_get_node(mp, mp->gr_object_size[stop_type(m)]);
22835 type(p)=stop_type(m);
22836 link(obj_tail(lhe))=p;
22838 mp_init_bbox(mp, lhe);
22841 @ The |do_add_to| procedure is a little like |do_clip| but there are a lot more
22842 cases to deal with.
22844 @<Declare action procedures for use by |do_statement|@>=
22845 void mp_do_add_to (MP mp) ;
22847 @ @c void mp_do_add_to (MP mp) {
22848 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22849 pointer p; /* the graphical object or list for |scan_with_list| to update */
22850 pointer e; /* an edge structure to be merged */
22851 quarterword add_type; /* |also_code|, |contour_code|, or |double_path_code| */
22852 lhv=mp_start_draw_cmd(mp, thing_to_add); add_type=mp->last_add_type;
22854 if ( add_type==also_code ) {
22855 @<Make sure the current expression is a suitable picture and set |e| and |p|
22858 @<Create a graphical object |p| based on |add_type| and the current
22861 mp_scan_with_list(mp, p);
22862 @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>;
22866 @ Setting |p:=null| causes the $\langle$with list$\rangle$ to be ignored;
22867 setting |e:=null| prevents anything from being added to |lhe|.
22869 @ @<Make sure the current expression is a suitable picture and set |e|...@>=
22872 if ( mp->cur_type!=mp_picture_type ) {
22873 exp_err("Improper `addto'");
22874 @.Improper `addto'@>
22875 help2("This expression should have specified a known picture.")
22876 ("So I'll not change anything just now."); mp_put_get_flush_error(mp, 0);
22878 e=mp_private_edges(mp, mp->cur_exp); mp->cur_type=mp_vacuous;
22879 p=link(dummy_loc(e));
22883 @ In this case |add_type<>also_code| so setting |p:=null| suppresses future
22884 attempts to add to the edge structure.
22886 @<Create a graphical object |p| based on |add_type| and the current...@>=
22888 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
22889 if ( mp->cur_type!=mp_path_type ) {
22890 exp_err("Improper `addto'");
22891 @.Improper `addto'@>
22892 help2("This expression should have specified a known path.")
22893 ("So I'll not change anything just now.");
22894 mp_put_get_flush_error(mp, 0);
22895 } else if ( add_type==contour_code ) {
22896 if ( left_type(mp->cur_exp)==mp_endpoint ) {
22897 @<Complain about a non-cycle@>;
22899 p=mp_new_fill_node(mp, mp->cur_exp);
22900 mp->cur_type=mp_vacuous;
22903 p=mp_new_stroked_node(mp, mp->cur_exp);
22904 mp->cur_type=mp_vacuous;
22908 @ @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>=
22909 lhe=mp_find_edges_var(mp, lhv);
22911 if ( (e==null)&&(p!=null) ) e=mp_toss_gr_object(mp, p);
22912 if ( e!=null ) delete_edge_ref(e);
22913 } else if ( add_type==also_code ) {
22915 @<Merge |e| into |lhe| and delete |e|@>;
22919 } else if ( p!=null ) {
22920 link(obj_tail(lhe))=p;
22922 if ( add_type==double_path_code )
22923 if ( pen_p(p)==null )
22924 pen_p(p)=mp_get_pen_circle(mp, 0);
22927 @ @<Merge |e| into |lhe| and delete |e|@>=
22928 { if ( link(dummy_loc(e))!=null ) {
22929 link(obj_tail(lhe))=link(dummy_loc(e));
22930 obj_tail(lhe)=obj_tail(e);
22931 obj_tail(e)=dummy_loc(e);
22932 link(dummy_loc(e))=null;
22933 mp_flush_dash_list(mp, lhe);
22935 mp_toss_edges(mp, e);
22938 @ @<Cases of |do_statement|...@>=
22939 case ship_out_command: mp_do_ship_out(mp); break;
22941 @ @<Declare action procedures for use by |do_statement|@>=
22942 @<Declare the function called |tfm_check|@>;
22943 @<Declare the \ps\ output procedures@>;
22944 void mp_do_ship_out (MP mp) ;
22946 @ @c void mp_do_ship_out (MP mp) {
22947 integer c; /* the character code */
22948 mp_get_x_next(mp); mp_scan_expression(mp);
22949 if ( mp->cur_type!=mp_picture_type ) {
22950 @<Complain that it's not a known picture@>;
22952 c=mp_round_unscaled(mp, mp->internal[mp_char_code]) % 256;
22953 if ( c<0 ) c=c+256;
22954 @<Store the width information for character code~|c|@>;
22955 mp_ship_out(mp, mp->cur_exp);
22956 mp_flush_cur_exp(mp, 0);
22960 @ @<Complain that it's not a known picture@>=
22962 exp_err("Not a known picture");
22963 help1("I can only output known pictures.");
22964 mp_put_get_flush_error(mp, 0);
22967 @ The \&{everyjob} command simply assigns a nonzero value to the global variable
22970 @<Cases of |do_statement|...@>=
22971 case every_job_command:
22972 mp_get_symbol(mp); mp->start_sym=mp->cur_sym; mp_get_x_next(mp);
22976 halfword start_sym; /* a symbolic token to insert at beginning of job */
22981 @ Finally, we have only the ``message'' commands remaining.
22984 @d err_message_code 1
22986 @d filename_template_code 3
22987 @d print_with_leading_zeroes(A) g = mp->pool_ptr;
22988 mp_print_int(mp, (A)); g = mp->pool_ptr-g;
22990 mp->pool_ptr = mp->pool_ptr - g;
22992 mp_print_char(mp, '0');
22995 mp_print_int(mp, (A));
23000 mp_primitive(mp, "message",message_command,message_code);
23001 @:message_}{\&{message} primitive@>
23002 mp_primitive(mp, "errmessage",message_command,err_message_code);
23003 @:err_message_}{\&{errmessage} primitive@>
23004 mp_primitive(mp, "errhelp",message_command,err_help_code);
23005 @:err_help_}{\&{errhelp} primitive@>
23006 mp_primitive(mp, "filenametemplate",message_command,filename_template_code);
23007 @:filename_template_}{\&{filenametemplate} primitive@>
23009 @ @<Cases of |print_cmd...@>=
23010 case message_command:
23011 if ( m<err_message_code ) mp_print(mp, "message");
23012 else if ( m==err_message_code ) mp_print(mp, "errmessage");
23013 else if ( m==filename_template_code ) mp_print(mp, "filenametemplate");
23014 else mp_print(mp, "errhelp");
23017 @ @<Cases of |do_statement|...@>=
23018 case message_command: mp_do_message(mp); break;
23020 @ @<Declare action procedures for use by |do_statement|@>=
23021 @<Declare a procedure called |no_string_err|@>;
23022 void mp_do_message (MP mp) ;
23025 @c void mp_do_message (MP mp) {
23026 int m; /* the type of message */
23027 m=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
23028 if ( mp->cur_type!=mp_string_type )
23029 mp_no_string_err(mp, "A message should be a known string expression.");
23033 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp);
23035 case err_message_code:
23036 @<Print string |cur_exp| as an error message@>;
23038 case err_help_code:
23039 @<Save string |cur_exp| as the |err_help|@>;
23041 case filename_template_code:
23042 @<Save the filename template@>;
23044 } /* there are no other cases */
23046 mp_flush_cur_exp(mp, 0);
23049 @ @<Declare a procedure called |no_string_err|@>=
23050 void mp_no_string_err (MP mp,char *s) {
23051 exp_err("Not a string");
23054 mp_put_get_error(mp);
23057 @ The global variable |err_help| is zero when the user has most recently
23058 given an empty help string, or if none has ever been given.
23060 @<Save string |cur_exp| as the |err_help|@>=
23062 if ( mp->err_help!=0 ) delete_str_ref(mp->err_help);
23063 if ( length(mp->cur_exp)==0 ) mp->err_help=0;
23064 else { mp->err_help=mp->cur_exp; add_str_ref(mp->err_help); }
23067 @ If \&{errmessage} occurs often in |mp_scroll_mode|, without user-defined
23068 \&{errhelp}, we don't want to give a long help message each time. So we
23069 give a verbose explanation only once.
23072 boolean long_help_seen; /* has the long \.{\\errmessage} help been used? */
23074 @ @<Set init...@>=mp->long_help_seen=false;
23076 @ @<Print string |cur_exp| as an error message@>=
23078 print_err(""); mp_print_str(mp, mp->cur_exp);
23079 if ( mp->err_help!=0 ) {
23080 mp->use_err_help=true;
23081 } else if ( mp->long_help_seen ) {
23082 help1("(That was another `errmessage'.)") ;
23084 if ( mp->interaction<mp_error_stop_mode ) mp->long_help_seen=true;
23085 help4("This error message was generated by an `errmessage'")
23086 ("command, so I can\'t give any explicit help.")
23087 ("Pretend that you're Miss Marple: Examine all clues,")
23089 ("and deduce the truth by inspired guesses.");
23091 mp_put_get_error(mp); mp->use_err_help=false;
23094 @ @<Cases of |do_statement|...@>=
23095 case write_command: mp_do_write(mp); break;
23097 @ @<Declare action procedures for use by |do_statement|@>=
23098 void mp_do_write (MP mp) ;
23100 @ @c void mp_do_write (MP mp) {
23101 str_number t; /* the line of text to be written */
23102 write_index n,n0; /* for searching |wr_fname| and |wr_file| arrays */
23103 int old_setting; /* for saving |selector| during output */
23105 mp_scan_expression(mp);
23106 if ( mp->cur_type!=mp_string_type ) {
23107 mp_no_string_err(mp, "The text to be written should be a known string expression");
23108 } else if ( mp->cur_cmd!=to_token ) {
23109 print_err("Missing `to' clause");
23110 help1("A write command should end with `to <filename>'");
23111 mp_put_get_error(mp);
23113 t=mp->cur_exp; mp->cur_type=mp_vacuous;
23115 mp_scan_expression(mp);
23116 if ( mp->cur_type!=mp_string_type )
23117 mp_no_string_err(mp, "I can\'t write to that file name. It isn't a known string");
23119 @<Write |t| to the file named by |cur_exp|@>;
23123 mp_flush_cur_exp(mp, 0);
23126 @ @<Write |t| to the file named by |cur_exp|@>=
23128 @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if
23129 |cur_exp| must be inserted@>;
23130 if ( mp_str_vs_str(mp, t,mp->eof_line)==0 ) {
23131 @<Record the end of file on |wr_file[n]|@>;
23133 old_setting=mp->selector;
23134 mp->selector=n+write_file;
23135 mp_print_str(mp, t); mp_print_ln(mp);
23136 mp->selector = old_setting;
23140 @ @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if...@>=
23142 char *fn = str(mp->cur_exp);
23144 n0=mp->write_files;
23145 while (mp_xstrcmp(fn,mp->wr_fname[n])!=0) {
23146 if ( n==0 ) { /* bottom reached */
23147 if ( n0==mp->write_files ) {
23148 if ( mp->write_files<mp->max_write_files ) {
23149 incr(mp->write_files);
23154 l = mp->max_write_files + (mp->max_write_files>>2);
23155 wr_file = xmalloc((l+1),sizeof(void *));
23156 wr_fname = xmalloc((l+1),sizeof(char *));
23157 for (k=0;k<=l;k++) {
23158 if (k<=mp->max_write_files) {
23159 wr_file[k]=mp->wr_file[k];
23160 wr_fname[k]=mp->wr_fname[k];
23166 xfree(mp->wr_file); xfree(mp->wr_fname);
23167 mp->max_write_files = l;
23168 mp->wr_file = wr_file;
23169 mp->wr_fname = wr_fname;
23173 mp_open_write_file(mp, fn ,n);
23176 if ( mp->wr_fname[n]==NULL ) n0=n;
23181 @ @<Record the end of file on |wr_file[n]|@>=
23182 { (mp->close_file)(mp->wr_file[n]);
23183 xfree(mp->wr_fname[n]);
23184 mp->wr_fname[n]=NULL;
23185 if ( n==mp->write_files-1 ) mp->write_files=n;
23189 @* \[42] Writing font metric data.
23190 \TeX\ gets its knowledge about fonts from font metric files, also called
23191 \.{TFM} files; the `\.T' in `\.{TFM}' stands for \TeX,
23192 but other programs know about them too. One of \MP's duties is to
23193 write \.{TFM} files so that the user's fonts can readily be
23194 applied to typesetting.
23195 @:TFM files}{\.{TFM} files@>
23196 @^font metric files@>
23198 The information in a \.{TFM} file appears in a sequence of 8-bit bytes.
23199 Since the number of bytes is always a multiple of~4, we could
23200 also regard the file as a sequence of 32-bit words, but \MP\ uses the
23201 byte interpretation. The format of \.{TFM} files was designed by
23202 Lyle Ramshaw in 1980. The intent is to convey a lot of different kinds
23203 @^Ramshaw, Lyle Harold@>
23204 of information in a compact but useful form.
23207 void * tfm_file; /* the font metric output goes here */
23208 char * metric_file_name; /* full name of the font metric file */
23210 @ The first 24 bytes (6 words) of a \.{TFM} file contain twelve 16-bit
23211 integers that give the lengths of the various subsequent portions
23212 of the file. These twelve integers are, in order:
23213 $$\vbox{\halign{\hfil#&$\null=\null$#\hfil\cr
23214 |lf|&length of the entire file, in words;\cr
23215 |lh|&length of the header data, in words;\cr
23216 |bc|&smallest character code in the font;\cr
23217 |ec|&largest character code in the font;\cr
23218 |nw|&number of words in the width table;\cr
23219 |nh|&number of words in the height table;\cr
23220 |nd|&number of words in the depth table;\cr
23221 |ni|&number of words in the italic correction table;\cr
23222 |nl|&number of words in the lig/kern table;\cr
23223 |nk|&number of words in the kern table;\cr
23224 |ne|&number of words in the extensible character table;\cr
23225 |np|&number of font parameter words.\cr}}$$
23226 They are all nonnegative and less than $2^{15}$. We must have |bc-1<=ec<=255|,
23228 $$\hbox{|lf=6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np|.}$$
23229 Note that a font may contain as many as 256 characters (if |bc=0| and |ec=255|),
23230 and as few as 0 characters (if |bc=ec+1|).
23232 Incidentally, when two or more 8-bit bytes are combined to form an integer of
23233 16 or more bits, the most significant bytes appear first in the file.
23234 This is called BigEndian order.
23235 @^BigEndian order@>
23237 @ The rest of the \.{TFM} file may be regarded as a sequence of ten data
23240 The most important data type used here is a |fix_word|, which is
23241 a 32-bit representation of a binary fraction. A |fix_word| is a signed
23242 quantity, with the two's complement of the entire word used to represent
23243 negation. Of the 32 bits in a |fix_word|, exactly 12 are to the left of the
23244 binary point; thus, the largest |fix_word| value is $2048-2^{-20}$, and
23245 the smallest is $-2048$. We will see below, however, that all but two of
23246 the |fix_word| values must lie between $-16$ and $+16$.
23248 @ The first data array is a block of header information, which contains
23249 general facts about the font. The header must contain at least two words,
23250 |header[0]| and |header[1]|, whose meaning is explained below. Additional
23251 header information of use to other software routines might also be
23252 included, and \MP\ will generate it if the \.{headerbyte} command occurs.
23253 For example, 16 more words of header information are in use at the Xerox
23254 Palo Alto Research Center; the first ten specify the character coding
23255 scheme used (e.g., `\.{XEROX TEXT}' or `\.{TEX MATHSY}'), the next five
23256 give the font family name (e.g., `\.{HELVETICA}' or `\.{CMSY}'), and the
23257 last gives the ``face byte.''
23259 \yskip\hang|header[0]| is a 32-bit check sum that \MP\ will copy into
23260 the \.{GF} output file. This helps ensure consistency between files,
23261 since \TeX\ records the check sums from the \.{TFM}'s it reads, and these
23262 should match the check sums on actual fonts that are used. The actual
23263 relation between this check sum and the rest of the \.{TFM} file is not
23264 important; the check sum is simply an identification number with the
23265 property that incompatible fonts almost always have distinct check sums.
23268 \yskip\hang|header[1]| is a |fix_word| containing the design size of the
23269 font, in units of \TeX\ points. This number must be at least 1.0; it is
23270 fairly arbitrary, but usually the design size is 10.0 for a ``10 point''
23271 font, i.e., a font that was designed to look best at a 10-point size,
23272 whatever that really means. When a \TeX\ user asks for a font `\.{at}
23273 $\delta$ \.{pt}', the effect is to override the design size and replace it
23274 by $\delta$, and to multiply the $x$ and~$y$ coordinates of the points in
23275 the font image by a factor of $\delta$ divided by the design size. {\sl
23276 All other dimensions in the\/ \.{TFM} file are |fix_word|\kern-1pt\
23277 numbers in design-size units.} Thus, for example, the value of |param[6]|,
23278 which defines the \.{em} unit, is often the |fix_word| value $2^{20}=1.0$,
23279 since many fonts have a design size equal to one em. The other dimensions
23280 must be less than 16 design-size units in absolute value; thus,
23281 |header[1]| and |param[1]| are the only |fix_word| entries in the whole
23282 \.{TFM} file whose first byte might be something besides 0 or 255.
23284 @ Next comes the |char_info| array, which contains one |char_info_word|
23285 per character. Each word in this part of the file contains six fields
23286 packed into four bytes as follows.
23288 \yskip\hang first byte: |width_index| (8 bits)\par
23289 \hang second byte: |height_index| (4 bits) times 16, plus |depth_index|
23291 \hang third byte: |italic_index| (6 bits) times 4, plus |tag|
23293 \hang fourth byte: |remainder| (8 bits)\par
23295 The actual width of a character is \\{width}|[width_index]|, in design-size
23296 units; this is a device for compressing information, since many characters
23297 have the same width. Since it is quite common for many characters
23298 to have the same height, depth, or italic correction, the \.{TFM} format
23299 imposes a limit of 16 different heights, 16 different depths, and
23300 64 different italic corrections.
23302 Incidentally, the relation $\\{width}[0]=\\{height}[0]=\\{depth}[0]=
23303 \\{italic}[0]=0$ should always hold, so that an index of zero implies a
23304 value of zero. The |width_index| should never be zero unless the
23305 character does not exist in the font, since a character is valid if and
23306 only if it lies between |bc| and |ec| and has a nonzero |width_index|.
23308 @ The |tag| field in a |char_info_word| has four values that explain how to
23309 interpret the |remainder| field.
23311 \yskip\hang|tag=0| (|no_tag|) means that |remainder| is unused.\par
23312 \hang|tag=1| (|lig_tag|) means that this character has a ligature/kerning
23313 program starting at location |remainder| in the |lig_kern| array.\par
23314 \hang|tag=2| (|list_tag|) means that this character is part of a chain of
23315 characters of ascending sizes, and not the largest in the chain. The
23316 |remainder| field gives the character code of the next larger character.\par
23317 \hang|tag=3| (|ext_tag|) means that this character code represents an
23318 extensible character, i.e., a character that is built up of smaller pieces
23319 so that it can be made arbitrarily large. The pieces are specified in
23320 |exten[remainder]|.\par
23322 Characters with |tag=2| and |tag=3| are treated as characters with |tag=0|
23323 unless they are used in special circumstances in math formulas. For example,
23324 \TeX's \.{\\sum} operation looks for a |list_tag|, and the \.{\\left}
23325 operation looks for both |list_tag| and |ext_tag|.
23327 @d no_tag 0 /* vanilla character */
23328 @d lig_tag 1 /* character has a ligature/kerning program */
23329 @d list_tag 2 /* character has a successor in a charlist */
23330 @d ext_tag 3 /* character is extensible */
23332 @ The |lig_kern| array contains instructions in a simple programming language
23333 that explains what to do for special letter pairs. Each word in this array is a
23334 |lig_kern_command| of four bytes.
23336 \yskip\hang first byte: |skip_byte|, indicates that this is the final program
23337 step if the byte is 128 or more, otherwise the next step is obtained by
23338 skipping this number of intervening steps.\par
23339 \hang second byte: |next_char|, ``if |next_char| follows the current character,
23340 then perform the operation and stop, otherwise continue.''\par
23341 \hang third byte: |op_byte|, indicates a ligature step if less than~128,
23342 a kern step otherwise.\par
23343 \hang fourth byte: |remainder|.\par
23346 additional space equal to |kern[256*(op_byte-128)+remainder]| is inserted
23347 between the current character and |next_char|. This amount is
23348 often negative, so that the characters are brought closer together
23349 by kerning; but it might be positive.
23351 There are eight kinds of ligature steps, having |op_byte| codes $4a+2b+c$ where
23352 $0\le a\le b+c$ and $0\le b,c\le1$. The character whose code is
23353 |remainder| is inserted between the current character and |next_char|;
23354 then the current character is deleted if $b=0$, and |next_char| is
23355 deleted if $c=0$; then we pass over $a$~characters to reach the next
23356 current character (which may have a ligature/kerning program of its own).
23358 If the very first instruction of the |lig_kern| array has |skip_byte=255|,
23359 the |next_char| byte is the so-called right boundary character of this font;
23360 the value of |next_char| need not lie between |bc| and~|ec|.
23361 If the very last instruction of the |lig_kern| array has |skip_byte=255|,
23362 there is a special ligature/kerning program for a left boundary character,
23363 beginning at location |256*op_byte+remainder|.
23364 The interpretation is that \TeX\ puts implicit boundary characters
23365 before and after each consecutive string of characters from the same font.
23366 These implicit characters do not appear in the output, but they can affect
23367 ligatures and kerning.
23369 If the very first instruction of a character's |lig_kern| program has
23370 |skip_byte>128|, the program actually begins in location
23371 |256*op_byte+remainder|. This feature allows access to large |lig_kern|
23372 arrays, because the first instruction must otherwise
23373 appear in a location |<=255|.
23375 Any instruction with |skip_byte>128| in the |lig_kern| array must satisfy
23377 $$\hbox{|256*op_byte+remainder<nl|.}$$
23378 If such an instruction is encountered during
23379 normal program execution, it denotes an unconditional halt; no ligature
23380 command is performed.
23383 /* value indicating `\.{STOP}' in a lig/kern program */
23384 @d kern_flag (128) /* op code for a kern step */
23385 @d skip_byte(A) mp->lig_kern[(A)].b0
23386 @d next_char(A) mp->lig_kern[(A)].b1
23387 @d op_byte(A) mp->lig_kern[(A)].b2
23388 @d rem_byte(A) mp->lig_kern[(A)].b3
23390 @ Extensible characters are specified by an |extensible_recipe|, which
23391 consists of four bytes called |top|, |mid|, |bot|, and |rep| (in this
23392 order). These bytes are the character codes of individual pieces used to
23393 build up a large symbol. If |top|, |mid|, or |bot| are zero, they are not
23394 present in the built-up result. For example, an extensible vertical line is
23395 like an extensible bracket, except that the top and bottom pieces are missing.
23397 Let $T$, $M$, $B$, and $R$ denote the respective pieces, or an empty box
23398 if the piece isn't present. Then the extensible characters have the form
23399 $TR^kMR^kB$ from top to bottom, for some |k>=0|, unless $M$ is absent;
23400 in the latter case we can have $TR^kB$ for both even and odd values of~|k|.
23401 The width of the extensible character is the width of $R$; and the
23402 height-plus-depth is the sum of the individual height-plus-depths of the
23403 components used, since the pieces are butted together in a vertical list.
23405 @d ext_top(A) mp->exten[(A)].b0 /* |top| piece in a recipe */
23406 @d ext_mid(A) mp->exten[(A)].b1 /* |mid| piece in a recipe */
23407 @d ext_bot(A) mp->exten[(A)].b2 /* |bot| piece in a recipe */
23408 @d ext_rep(A) mp->exten[(A)].b3 /* |rep| piece in a recipe */
23410 @ The final portion of a \.{TFM} file is the |param| array, which is another
23411 sequence of |fix_word| values.
23413 \yskip\hang|param[1]=slant| is the amount of italic slant, which is used
23414 to help position accents. For example, |slant=.25| means that when you go
23415 up one unit, you also go .25 units to the right. The |slant| is a pure
23416 number; it is the only |fix_word| other than the design size itself that is
23417 not scaled by the design size.
23419 \hang|param[2]=space| is the normal spacing between words in text.
23420 Note that character 040 in the font need not have anything to do with
23423 \hang|param[3]=space_stretch| is the amount of glue stretching between words.
23425 \hang|param[4]=space_shrink| is the amount of glue shrinking between words.
23427 \hang|param[5]=x_height| is the size of one ex in the font; it is also
23428 the height of letters for which accents don't have to be raised or lowered.
23430 \hang|param[6]=quad| is the size of one em in the font.
23432 \hang|param[7]=extra_space| is the amount added to |param[2]| at the
23436 If fewer than seven parameters are present, \TeX\ sets the missing parameters
23441 @d space_stretch_code 3
23442 @d space_shrink_code 4
23445 @d extra_space_code 7
23447 @ So that is what \.{TFM} files hold. One of \MP's duties is to output such
23448 information, and it does this all at once at the end of a job.
23449 In order to prepare for such frenetic activity, it squirrels away the
23450 necessary facts in various arrays as information becomes available.
23452 Character dimensions (\&{charwd}, \&{charht}, \&{chardp}, and \&{charic})
23453 are stored respectively in |tfm_width|, |tfm_height|, |tfm_depth|, and
23454 |tfm_ital_corr|. Other information about a character (e.g., about
23455 its ligatures or successors) is accessible via the |char_tag| and
23456 |char_remainder| arrays. Other information about the font as a whole
23457 is kept in additional arrays called |header_byte|, |lig_kern|,
23458 |kern|, |exten|, and |param|.
23460 @d max_tfm_int 32510
23461 @d undefined_label max_tfm_int /* an undefined local label */
23464 #define TFM_ITEMS 257
23466 eight_bits ec; /* smallest and largest character codes shipped out */
23467 scaled tfm_width[TFM_ITEMS]; /* \&{charwd} values */
23468 scaled tfm_height[TFM_ITEMS]; /* \&{charht} values */
23469 scaled tfm_depth[TFM_ITEMS]; /* \&{chardp} values */
23470 scaled tfm_ital_corr[TFM_ITEMS]; /* \&{charic} values */
23471 boolean char_exists[TFM_ITEMS]; /* has this code been shipped out? */
23472 int char_tag[TFM_ITEMS]; /* |remainder| category */
23473 int char_remainder[TFM_ITEMS]; /* the |remainder| byte */
23474 char *header_byte; /* bytes of the \.{TFM} header */
23475 int header_last; /* last initialized \.{TFM} header byte */
23476 int header_size; /* size of the \.{TFM} header */
23477 four_quarters *lig_kern; /* the ligature/kern table */
23478 short nl; /* the number of ligature/kern steps so far */
23479 scaled *kern; /* distinct kerning amounts */
23480 short nk; /* the number of distinct kerns so far */
23481 four_quarters exten[TFM_ITEMS]; /* extensible character recipes */
23482 short ne; /* the number of extensible characters so far */
23483 scaled *param; /* \&{fontinfo} parameters */
23484 short np; /* the largest \&{fontinfo} parameter specified so far */
23485 short nw;short nh;short nd;short ni; /* sizes of \.{TFM} subtables */
23486 short skip_table[TFM_ITEMS]; /* local label status */
23487 boolean lk_started; /* has there been a lig/kern step in this command yet? */
23488 integer bchar; /* right boundary character */
23489 short bch_label; /* left boundary starting location */
23490 short ll;short lll; /* registers used for lig/kern processing */
23491 short label_loc[257]; /* lig/kern starting addresses */
23492 eight_bits label_char[257]; /* characters for |label_loc| */
23493 short label_ptr; /* highest position occupied in |label_loc| */
23495 @ @<Allocate or initialize ...@>=
23496 mp->header_last = 0; mp->header_size = 128; /* just for init */
23497 mp->header_byte = xmalloc(mp->header_size, sizeof(char));
23498 mp->lig_kern = NULL; /* allocated when needed */
23499 mp->kern = NULL; /* allocated when needed */
23500 mp->param = NULL; /* allocated when needed */
23502 @ @<Dealloc variables@>=
23503 xfree(mp->header_byte);
23504 xfree(mp->lig_kern);
23509 for (k=0;k<= 255;k++ ) {
23510 mp->tfm_width[k]=0; mp->tfm_height[k]=0; mp->tfm_depth[k]=0; mp->tfm_ital_corr[k]=0;
23511 mp->char_exists[k]=false; mp->char_tag[k]=no_tag; mp->char_remainder[k]=0;
23512 mp->skip_table[k]=undefined_label;
23514 memset(mp->header_byte,0,mp->header_size);
23515 mp->bc=255; mp->ec=0; mp->nl=0; mp->nk=0; mp->ne=0; mp->np=0;
23516 mp->internal[mp_boundary_char]=-unity;
23517 mp->bch_label=undefined_label;
23518 mp->label_loc[0]=-1; mp->label_ptr=0;
23520 @ @<Declarations@>=
23521 scaled mp_tfm_check (MP mp,small_number m) ;
23523 @ @<Declare the function called |tfm_check|@>=
23524 scaled mp_tfm_check (MP mp,small_number m) {
23525 if ( abs(mp->internal[m])>=fraction_half ) {
23526 print_err("Enormous "); mp_print(mp, mp->int_name[m]);
23527 @.Enormous charwd...@>
23528 @.Enormous chardp...@>
23529 @.Enormous charht...@>
23530 @.Enormous charic...@>
23531 @.Enormous designsize...@>
23532 mp_print(mp, " has been reduced");
23533 help1("Font metric dimensions must be less than 2048pt.");
23534 mp_put_get_error(mp);
23535 if ( mp->internal[m]>0 ) return (fraction_half-1);
23536 else return (1-fraction_half);
23538 return mp->internal[m];
23542 @ @<Store the width information for character code~|c|@>=
23543 if ( c<mp->bc ) mp->bc=c;
23544 if ( c>mp->ec ) mp->ec=c;
23545 mp->char_exists[c]=true;
23546 mp->tfm_width[c]=mp_tfm_check(mp, mp_char_wd);
23547 mp->tfm_height[c]=mp_tfm_check(mp, mp_char_ht);
23548 mp->tfm_depth[c]=mp_tfm_check(mp, mp_char_dp);
23549 mp->tfm_ital_corr[c]=mp_tfm_check(mp, mp_char_ic)
23551 @ Now let's consider \MP's special \.{TFM}-oriented commands.
23553 @<Cases of |do_statement|...@>=
23554 case tfm_command: mp_do_tfm_command(mp); break;
23556 @ @d char_list_code 0
23557 @d lig_table_code 1
23558 @d extensible_code 2
23559 @d header_byte_code 3
23560 @d font_dimen_code 4
23563 mp_primitive(mp, "charlist",tfm_command,char_list_code);
23564 @:char_list_}{\&{charlist} primitive@>
23565 mp_primitive(mp, "ligtable",tfm_command,lig_table_code);
23566 @:lig_table_}{\&{ligtable} primitive@>
23567 mp_primitive(mp, "extensible",tfm_command,extensible_code);
23568 @:extensible_}{\&{extensible} primitive@>
23569 mp_primitive(mp, "headerbyte",tfm_command,header_byte_code);
23570 @:header_byte_}{\&{headerbyte} primitive@>
23571 mp_primitive(mp, "fontdimen",tfm_command,font_dimen_code);
23572 @:font_dimen_}{\&{fontdimen} primitive@>
23574 @ @<Cases of |print_cmd...@>=
23577 case char_list_code:mp_print(mp, "charlist"); break;
23578 case lig_table_code:mp_print(mp, "ligtable"); break;
23579 case extensible_code:mp_print(mp, "extensible"); break;
23580 case header_byte_code:mp_print(mp, "headerbyte"); break;
23581 default: mp_print(mp, "fontdimen"); break;
23585 @ @<Declare action procedures for use by |do_statement|@>=
23586 eight_bits mp_get_code (MP mp) ;
23588 @ @c eight_bits mp_get_code (MP mp) { /* scans a character code value */
23589 integer c; /* the code value found */
23590 mp_get_x_next(mp); mp_scan_expression(mp);
23591 if ( mp->cur_type==mp_known ) {
23592 c=mp_round_unscaled(mp, mp->cur_exp);
23593 if ( c>=0 ) if ( c<256 ) return c;
23594 } else if ( mp->cur_type==mp_string_type ) {
23595 if ( length(mp->cur_exp)==1 ) {
23596 c=mp->str_pool[mp->str_start[mp->cur_exp]];
23600 exp_err("Invalid code has been replaced by 0");
23601 @.Invalid code...@>
23602 help2("I was looking for a number between 0 and 255, or for a")
23603 ("string of length 1. Didn't find it; will use 0 instead.");
23604 mp_put_get_flush_error(mp, 0); c=0;
23608 @ @<Declare action procedures for use by |do_statement|@>=
23609 void mp_set_tag (MP mp,halfword c, small_number t, halfword r) ;
23611 @ @c void mp_set_tag (MP mp,halfword c, small_number t, halfword r) {
23612 if ( mp->char_tag[c]==no_tag ) {
23613 mp->char_tag[c]=t; mp->char_remainder[c]=r;
23615 incr(mp->label_ptr); mp->label_loc[mp->label_ptr]=r;
23616 mp->label_char[mp->label_ptr]=c;
23619 @<Complain about a character tag conflict@>;
23623 @ @<Complain about a character tag conflict@>=
23625 print_err("Character ");
23626 if ( (c>' ')&&(c<127) ) mp_print_char(mp,c);
23627 else if ( c==256 ) mp_print(mp, "||");
23628 else { mp_print(mp, "code "); mp_print_int(mp, c); };
23629 mp_print(mp, " is already ");
23630 @.Character c is already...@>
23631 switch (mp->char_tag[c]) {
23632 case lig_tag: mp_print(mp, "in a ligtable"); break;
23633 case list_tag: mp_print(mp, "in a charlist"); break;
23634 case ext_tag: mp_print(mp, "extensible"); break;
23635 } /* there are no other cases */
23636 help2("It's not legal to label a character more than once.")
23637 ("So I'll not change anything just now.");
23638 mp_put_get_error(mp);
23641 @ @<Declare action procedures for use by |do_statement|@>=
23642 void mp_do_tfm_command (MP mp) ;
23644 @ @c void mp_do_tfm_command (MP mp) {
23645 int c,cc; /* character codes */
23646 int k; /* index into the |kern| array */
23647 int j; /* index into |header_byte| or |param| */
23648 switch (mp->cur_mod) {
23649 case char_list_code:
23651 /* we will store a list of character successors */
23652 while ( mp->cur_cmd==colon ) {
23653 cc=mp_get_code(mp); mp_set_tag(mp, c,list_tag,cc); c=cc;
23656 case lig_table_code:
23657 if (mp->lig_kern==NULL)
23658 mp->lig_kern = xmalloc((max_tfm_int+1),sizeof(four_quarters));
23659 if (mp->kern==NULL)
23660 mp->kern = xmalloc((max_tfm_int+1),sizeof(scaled));
23661 @<Store a list of ligature/kern steps@>;
23663 case extensible_code:
23664 @<Define an extensible recipe@>;
23666 case header_byte_code:
23667 case font_dimen_code:
23668 c=mp->cur_mod; mp_get_x_next(mp);
23669 mp_scan_expression(mp);
23670 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<half_unit) ) {
23671 exp_err("Improper location");
23672 @.Improper location@>
23673 help2("I was looking for a known, positive number.")
23674 ("For safety's sake I'll ignore the present command.");
23675 mp_put_get_error(mp);
23677 j=mp_round_unscaled(mp, mp->cur_exp);
23678 if ( mp->cur_cmd!=colon ) {
23679 mp_missing_err(mp, ":");
23681 help1("A colon should follow a headerbyte or fontinfo location.");
23684 if ( c==header_byte_code ) {
23685 @<Store a list of header bytes@>;
23687 if (mp->param==NULL)
23688 mp->param = xmalloc((max_tfm_int+1),sizeof(scaled));
23689 @<Store a list of font dimensions@>;
23693 } /* there are no other cases */
23696 @ @<Store a list of ligature/kern steps@>=
23698 mp->lk_started=false;
23701 if ((mp->cur_cmd==skip_to)&& mp->lk_started )
23702 @<Process a |skip_to| command and |goto done|@>;
23703 if ( mp->cur_cmd==bchar_label ) { c=256; mp->cur_cmd=colon; }
23704 else { mp_back_input(mp); c=mp_get_code(mp); };
23705 if ((mp->cur_cmd==colon)||(mp->cur_cmd==double_colon)) {
23706 @<Record a label in a lig/kern subprogram and |goto continue|@>;
23708 if ( mp->cur_cmd==lig_kern_token ) {
23709 @<Compile a ligature/kern command@>;
23711 print_err("Illegal ligtable step");
23712 @.Illegal ligtable step@>
23713 help1("I was looking for `=:' or `kern' here.");
23714 mp_back_error(mp); next_char(mp->nl)=qi(0);
23715 op_byte(mp->nl)=qi(0); rem_byte(mp->nl)=qi(0);
23716 skip_byte(mp->nl)=stop_flag+1; /* this specifies an unconditional stop */
23718 if ( mp->nl==max_tfm_int) mp_fatal_error(mp, "ligtable too large");
23720 if ( mp->cur_cmd==comma ) goto CONTINUE;
23721 if ( skip_byte(mp->nl-1)<stop_flag ) skip_byte(mp->nl-1)=stop_flag;
23726 mp_primitive(mp, "=:",lig_kern_token,0);
23727 @:=:_}{\.{=:} primitive@>
23728 mp_primitive(mp, "=:|",lig_kern_token,1);
23729 @:=:/_}{\.{=:\char'174} primitive@>
23730 mp_primitive(mp, "=:|>",lig_kern_token,5);
23731 @:=:/>_}{\.{=:\char'174>} primitive@>
23732 mp_primitive(mp, "|=:",lig_kern_token,2);
23733 @:=:/_}{\.{\char'174=:} primitive@>
23734 mp_primitive(mp, "|=:>",lig_kern_token,6);
23735 @:=:/>_}{\.{\char'174=:>} primitive@>
23736 mp_primitive(mp, "|=:|",lig_kern_token,3);
23737 @:=:/_}{\.{\char'174=:\char'174} primitive@>
23738 mp_primitive(mp, "|=:|>",lig_kern_token,7);
23739 @:=:/>_}{\.{\char'174=:\char'174>} primitive@>
23740 mp_primitive(mp, "|=:|>>",lig_kern_token,11);
23741 @:=:/>_}{\.{\char'174=:\char'174>>} primitive@>
23742 mp_primitive(mp, "kern",lig_kern_token,128);
23743 @:kern_}{\&{kern} primitive@>
23745 @ @<Cases of |print_cmd...@>=
23746 case lig_kern_token:
23748 case 0:mp_print(mp, "=:"); break;
23749 case 1:mp_print(mp, "=:|"); break;
23750 case 2:mp_print(mp, "|=:"); break;
23751 case 3:mp_print(mp, "|=:|"); break;
23752 case 5:mp_print(mp, "=:|>"); break;
23753 case 6:mp_print(mp, "|=:>"); break;
23754 case 7:mp_print(mp, "|=:|>"); break;
23755 case 11:mp_print(mp, "|=:|>>"); break;
23756 default: mp_print(mp, "kern"); break;
23760 @ Local labels are implemented by maintaining the |skip_table| array,
23761 where |skip_table[c]| is either |undefined_label| or the address of the
23762 most recent lig/kern instruction that skips to local label~|c|. In the
23763 latter case, the |skip_byte| in that instruction will (temporarily)
23764 be zero if there were no prior skips to this label, or it will be the
23765 distance to the prior skip.
23767 We may need to cancel skips that span more than 127 lig/kern steps.
23769 @d cancel_skips(A) mp->ll=(A);
23771 mp->lll=qo(skip_byte(mp->ll));
23772 skip_byte(mp->ll)=stop_flag; mp->ll=mp->ll-mp->lll;
23773 } while (mp->lll!=0)
23774 @d skip_error(A) { print_err("Too far to skip");
23775 @.Too far to skip@>
23776 help1("At most 127 lig/kern steps can separate skipto1 from 1::.");
23777 mp_error(mp); cancel_skips((A));
23780 @<Process a |skip_to| command and |goto done|@>=
23783 if ( mp->nl-mp->skip_table[c]>128 ) { /* |skip_table[c]<<nl<=undefined_label| */
23784 skip_error(mp->skip_table[c]); mp->skip_table[c]=undefined_label;
23786 if ( mp->skip_table[c]==undefined_label ) skip_byte(mp->nl-1)=qi(0);
23787 else skip_byte(mp->nl-1)=qi(mp->nl-mp->skip_table[c]-1);
23788 mp->skip_table[c]=mp->nl-1; goto DONE;
23791 @ @<Record a label in a lig/kern subprogram and |goto continue|@>=
23793 if ( mp->cur_cmd==colon ) {
23794 if ( c==256 ) mp->bch_label=mp->nl;
23795 else mp_set_tag(mp, c,lig_tag,mp->nl);
23796 } else if ( mp->skip_table[c]<undefined_label ) {
23797 mp->ll=mp->skip_table[c]; mp->skip_table[c]=undefined_label;
23799 mp->lll=qo(skip_byte(mp->ll));
23800 if ( mp->nl-mp->ll>128 ) {
23801 skip_error(mp->ll); goto CONTINUE;
23803 skip_byte(mp->ll)=qi(mp->nl-mp->ll-1); mp->ll=mp->ll-mp->lll;
23804 } while (mp->lll!=0);
23809 @ @<Compile a ligature/kern...@>=
23811 next_char(mp->nl)=qi(c); skip_byte(mp->nl)=qi(0);
23812 if ( mp->cur_mod<128 ) { /* ligature op */
23813 op_byte(mp->nl)=qi(mp->cur_mod); rem_byte(mp->nl)=qi(mp_get_code(mp));
23815 mp_get_x_next(mp); mp_scan_expression(mp);
23816 if ( mp->cur_type!=mp_known ) {
23817 exp_err("Improper kern");
23819 help2("The amount of kern should be a known numeric value.")
23820 ("I'm zeroing this one. Proceed, with fingers crossed.");
23821 mp_put_get_flush_error(mp, 0);
23823 mp->kern[mp->nk]=mp->cur_exp;
23825 while ( mp->kern[k]!=mp->cur_exp ) incr(k);
23827 if ( mp->nk==max_tfm_int ) mp_fatal_error(mp, "too many TFM kerns");
23830 op_byte(mp->nl)=kern_flag+(k / 256);
23831 rem_byte(mp->nl)=qi((k % 256));
23833 mp->lk_started=true;
23836 @ @d missing_extensible_punctuation(A)
23837 { mp_missing_err(mp, (A));
23838 @.Missing `\char`\#'@>
23839 help1("I'm processing `extensible c: t,m,b,r'."); mp_back_error(mp);
23842 @<Define an extensible recipe@>=
23844 if ( mp->ne==256 ) mp_fatal_error(mp, "too many extensible recipies");
23845 c=mp_get_code(mp); mp_set_tag(mp, c,ext_tag,mp->ne);
23846 if ( mp->cur_cmd!=colon ) missing_extensible_punctuation(":");
23847 ext_top(mp->ne)=qi(mp_get_code(mp));
23848 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23849 ext_mid(mp->ne)=qi(mp_get_code(mp));
23850 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23851 ext_bot(mp->ne)=qi(mp_get_code(mp));
23852 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23853 ext_rep(mp->ne)=qi(mp_get_code(mp));
23857 @ The header could contain ASCII zeroes, so can't use |strdup|.
23859 @<Store a list of header bytes@>=
23861 if ( j>=mp->header_size ) {
23862 int l = mp->header_size + (mp->header_size >> 2);
23863 char *t = xmalloc(l,sizeof(char));
23865 memcpy(t,mp->header_byte,mp->header_size);
23866 xfree (mp->header_byte);
23867 mp->header_byte = t;
23868 mp->header_size = l;
23870 mp->header_byte[j]=mp_get_code(mp);
23871 incr(j); incr(mp->header_last);
23872 } while (mp->cur_cmd==comma)
23874 @ @<Store a list of font dimensions@>=
23876 if ( j>max_tfm_int ) mp_fatal_error(mp, "too many fontdimens");
23877 while ( j>mp->np ) { incr(mp->np); mp->param[mp->np]=0; };
23878 mp_get_x_next(mp); mp_scan_expression(mp);
23879 if ( mp->cur_type!=mp_known ){
23880 exp_err("Improper font parameter");
23881 @.Improper font parameter@>
23882 help1("I'm zeroing this one. Proceed, with fingers crossed.");
23883 mp_put_get_flush_error(mp, 0);
23885 mp->param[j]=mp->cur_exp; incr(j);
23886 } while (mp->cur_cmd==comma)
23888 @ OK: We've stored all the data that is needed for the \.{TFM} file.
23889 All that remains is to output it in the correct format.
23891 An interesting problem needs to be solved in this connection, because
23892 the \.{TFM} format allows at most 256~widths, 16~heights, 16~depths,
23893 and 64~italic corrections. If the data has more distinct values than
23894 this, we want to meet the necessary restrictions by perturbing the
23895 given values as little as possible.
23897 \MP\ solves this problem in two steps. First the values of a given
23898 kind (widths, heights, depths, or italic corrections) are sorted;
23899 then the list of sorted values is perturbed, if necessary.
23901 The sorting operation is facilitated by having a special node of
23902 essentially infinite |value| at the end of the current list.
23904 @<Initialize table entries...@>=
23905 value(inf_val)=fraction_four;
23907 @ Straight linear insertion is good enough for sorting, since the lists
23908 are usually not terribly long. As we work on the data, the current list
23909 will start at |link(temp_head)| and end at |inf_val|; the nodes in this
23910 list will be in increasing order of their |value| fields.
23912 Given such a list, the |sort_in| function takes a value and returns a pointer
23913 to where that value can be found in the list. The value is inserted in
23914 the proper place, if necessary.
23916 At the time we need to do these operations, most of \MP's work has been
23917 completed, so we will have plenty of memory to play with. The value nodes
23918 that are allocated for sorting will never be returned to free storage.
23920 @d clear_the_list link(temp_head)=inf_val
23922 @c pointer mp_sort_in (MP mp,scaled v) {
23923 pointer p,q,r; /* list manipulation registers */
23927 if ( v<=value(q) ) break;
23930 if ( v<value(q) ) {
23931 r=mp_get_node(mp, value_node_size); value(r)=v; link(r)=q; link(p)=r;
23936 @ Now we come to the interesting part, where we reduce the list if necessary
23937 until it has the required size. The |min_cover| routine is basic to this
23938 process; it computes the minimum number~|m| such that the values of the
23939 current sorted list can be covered by |m|~intervals of width~|d|. It
23940 also sets the global value |perturbation| to the smallest value $d'>d$
23941 such that the covering found by this algorithm would be different.
23943 In particular, |min_cover(0)| returns the number of distinct values in the
23944 current list and sets |perturbation| to the minimum distance between
23947 @c integer mp_min_cover (MP mp,scaled d) {
23948 pointer p; /* runs through the current list */
23949 scaled l; /* the least element covered by the current interval */
23950 integer m; /* lower bound on the size of the minimum cover */
23951 m=0; p=link(temp_head); mp->perturbation=el_gordo;
23952 while ( p!=inf_val ){
23953 incr(m); l=value(p);
23954 do { p=link(p); } while (value(p)<=l+d);
23955 if ( value(p)-l<mp->perturbation )
23956 mp->perturbation=value(p)-l;
23962 scaled perturbation; /* quantity related to \.{TFM} rounding */
23963 integer excess; /* the list is this much too long */
23965 @ The smallest |d| such that a given list can be covered with |m| intervals
23966 is determined by the |threshold| routine, which is sort of an inverse
23967 to |min_cover|. The idea is to increase the interval size rapidly until
23968 finding the range, then to go sequentially until the exact borderline has
23971 @c scaled mp_threshold (MP mp,integer m) {
23972 scaled d; /* lower bound on the smallest interval size */
23973 mp->excess=mp_min_cover(mp, 0)-m;
23974 if ( mp->excess<=0 ) {
23978 d=mp->perturbation;
23979 } while (mp_min_cover(mp, d+d)>m);
23980 while ( mp_min_cover(mp, d)>m )
23981 d=mp->perturbation;
23986 @ The |skimp| procedure reduces the current list to at most |m| entries,
23987 by changing values if necessary. It also sets |info(p):=k| if |value(p)|
23988 is the |k|th distinct value on the resulting list, and it sets
23989 |perturbation| to the maximum amount by which a |value| field has
23990 been changed. The size of the resulting list is returned as the
23993 @c integer mp_skimp (MP mp,integer m) {
23994 scaled d; /* the size of intervals being coalesced */
23995 pointer p,q,r; /* list manipulation registers */
23996 scaled l; /* the least value in the current interval */
23997 scaled v; /* a compromise value */
23998 d=mp_threshold(mp, m); mp->perturbation=0;
23999 q=temp_head; m=0; p=link(temp_head);
24000 while ( p!=inf_val ) {
24001 incr(m); l=value(p); info(p)=m;
24002 if ( value(link(p))<=l+d ) {
24003 @<Replace an interval of values by its midpoint@>;
24010 @ @<Replace an interval...@>=
24013 p=link(p); info(p)=m;
24014 decr(mp->excess); if ( mp->excess==0 ) d=0;
24015 } while (value(link(p))<=l+d);
24016 v=l+halfp(value(p)-l);
24017 if ( value(p)-v>mp->perturbation )
24018 mp->perturbation=value(p)-v;
24021 r=link(r); value(r)=v;
24023 link(q)=p; /* remove duplicate values from the current list */
24026 @ A warning message is issued whenever something is perturbed by
24027 more than 1/16\thinspace pt.
24029 @c void mp_tfm_warning (MP mp,small_number m) {
24030 mp_print_nl(mp, "(some ");
24031 mp_print(mp, mp->int_name[m]);
24032 @.some charwds...@>
24033 @.some chardps...@>
24034 @.some charhts...@>
24035 @.some charics...@>
24036 mp_print(mp, " values had to be adjusted by as much as ");
24037 mp_print_scaled(mp, mp->perturbation); mp_print(mp, "pt)");
24040 @ Here's an example of how we use these routines.
24041 The width data needs to be perturbed only if there are 256 distinct
24042 widths, but \MP\ must check for this case even though it is
24045 An integer variable |k| will be defined when we use this code.
24046 The |dimen_head| array will contain pointers to the sorted
24047 lists of dimensions.
24049 @<Massage the \.{TFM} widths@>=
24051 for (k=mp->bc;k<=mp->ec;k++) {
24052 if ( mp->char_exists[k] )
24053 mp->tfm_width[k]=mp_sort_in(mp, mp->tfm_width[k]);
24055 mp->nw=mp_skimp(mp, 255)+1; mp->dimen_head[1]=link(temp_head);
24056 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_wd)
24059 pointer dimen_head[5]; /* lists of \.{TFM} dimensions */
24061 @ Heights, depths, and italic corrections are different from widths
24062 not only because their list length is more severely restricted, but
24063 also because zero values do not need to be put into the lists.
24065 @<Massage the \.{TFM} heights, depths, and italic corrections@>=
24067 for (k=mp->bc;k<=mp->ec;k++) {
24068 if ( mp->char_exists[k] ) {
24069 if ( mp->tfm_height[k]==0 ) mp->tfm_height[k]=zero_val;
24070 else mp->tfm_height[k]=mp_sort_in(mp, mp->tfm_height[k]);
24073 mp->nh=mp_skimp(mp, 15)+1; mp->dimen_head[2]=link(temp_head);
24074 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ht);
24076 for (k=mp->bc;k<=mp->ec;k++) {
24077 if ( mp->char_exists[k] ) {
24078 if ( mp->tfm_depth[k]==0 ) mp->tfm_depth[k]=zero_val;
24079 else mp->tfm_depth[k]=mp_sort_in(mp, mp->tfm_depth[k]);
24082 mp->nd=mp_skimp(mp, 15)+1; mp->dimen_head[3]=link(temp_head);
24083 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_dp);
24085 for (k=mp->bc;k<=mp->ec;k++) {
24086 if ( mp->char_exists[k] ) {
24087 if ( mp->tfm_ital_corr[k]==0 ) mp->tfm_ital_corr[k]=zero_val;
24088 else mp->tfm_ital_corr[k]=mp_sort_in(mp, mp->tfm_ital_corr[k]);
24091 mp->ni=mp_skimp(mp, 63)+1; mp->dimen_head[4]=link(temp_head);
24092 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ic)
24094 @ @<Initialize table entries...@>=
24095 value(zero_val)=0; info(zero_val)=0;
24097 @ Bytes 5--8 of the header are set to the design size, unless the user has
24098 some crazy reason for specifying them differently.
24100 Error messages are not allowed at the time this procedure is called,
24101 so a warning is printed instead.
24103 The value of |max_tfm_dimen| is calculated so that
24104 $$\hbox{|make_scaled(16*max_tfm_dimen,internal[mp_design_size])|}
24105 < \\{three\_bytes}.$$
24107 @d three_bytes 0100000000 /* $2^{24}$ */
24110 void mp_fix_design_size (MP mp) {
24111 scaled d; /* the design size */
24112 d=mp->internal[mp_design_size];
24113 if ( (d<unity)||(d>=fraction_half) ) {
24115 mp_print_nl(mp, "(illegal design size has been changed to 128pt)");
24116 @.illegal design size...@>
24117 d=040000000; mp->internal[mp_design_size]=d;
24119 if ( mp->header_byte[4]<0 ) if ( mp->header_byte[5]<0 )
24120 if ( mp->header_byte[6]<0 ) if ( mp->header_byte[7]<0 ) {
24121 mp->header_byte[4]=d / 04000000;
24122 mp->header_byte[5]=(d / 4096) % 256;
24123 mp->header_byte[6]=(d / 16) % 256;
24124 mp->header_byte[7]=(d % 16)*16;
24126 mp->max_tfm_dimen=16*mp->internal[mp_design_size]-mp->internal[mp_design_size] / 010000000;
24127 if ( mp->max_tfm_dimen>=fraction_half ) mp->max_tfm_dimen=fraction_half-1;
24130 @ The |dimen_out| procedure computes a |fix_word| relative to the
24131 design size. If the data was out of range, it is corrected and the
24132 global variable |tfm_changed| is increased by~one.
24134 @c integer mp_dimen_out (MP mp,scaled x) {
24135 if ( abs(x)>mp->max_tfm_dimen ) {
24136 incr(mp->tfm_changed);
24137 if ( x>0 ) x=three_bytes-1; else x=1-three_bytes;
24139 x=mp_make_scaled(mp, x*16,mp->internal[mp_design_size]);
24145 scaled max_tfm_dimen; /* bound on widths, heights, kerns, etc. */
24146 integer tfm_changed; /* the number of data entries that were out of bounds */
24148 @ If the user has not specified any of the first four header bytes,
24149 the |fix_check_sum| procedure replaces them by a ``check sum'' computed
24150 from the |tfm_width| data relative to the design size.
24153 @c void mp_fix_check_sum (MP mp) {
24154 eight_bits k; /* runs through character codes */
24155 eight_bits B1,B2,B3,B4; /* bytes of the check sum */
24156 integer x; /* hash value used in check sum computation */
24157 if ( mp->header_byte[0]==0 && mp->header_byte[1]==0 &&
24158 mp->header_byte[2]==0 && mp->header_byte[3]==0 ) {
24159 @<Compute a check sum in |(b1,b2,b3,b4)|@>;
24160 mp->header_byte[0]=B1; mp->header_byte[1]=B2;
24161 mp->header_byte[2]=B3; mp->header_byte[3]=B4;
24166 @ @<Compute a check sum in |(b1,b2,b3,b4)|@>=
24167 B1=mp->bc; B2=mp->ec; B3=mp->bc; B4=mp->ec; mp->tfm_changed=0;
24168 for (k=mp->bc;k<=mp->ec;k++) {
24169 if ( mp->char_exists[k] ) {
24170 x=mp_dimen_out(mp, value(mp->tfm_width[k]))+(k+4)*020000000; /* this is positive */
24171 B1=(B1+B1+x) % 255;
24172 B2=(B2+B2+x) % 253;
24173 B3=(B3+B3+x) % 251;
24174 B4=(B4+B4+x) % 247;
24178 @ Finally we're ready to actually write the \.{TFM} information.
24179 Here are some utility routines for this purpose.
24181 @d tfm_out(A) do { /* output one byte to |tfm_file| */
24182 unsigned char s=(A);
24183 (mp->write_binary_file)(mp->tfm_file,(void *)&s,1);
24186 @c void mp_tfm_two (MP mp,integer x) { /* output two bytes to |tfm_file| */
24187 tfm_out(x / 256); tfm_out(x % 256);
24189 void mp_tfm_four (MP mp,integer x) { /* output four bytes to |tfm_file| */
24190 if ( x>=0 ) tfm_out(x / three_bytes);
24192 x=x+010000000000; /* use two's complement for negative values */
24194 tfm_out((x / three_bytes) + 128);
24196 x=x % three_bytes; tfm_out(x / unity);
24197 x=x % unity; tfm_out(x / 0400);
24200 void mp_tfm_qqqq (MP mp,four_quarters x) { /* output four quarterwords to |tfm_file| */
24201 tfm_out(qo(x.b0)); tfm_out(qo(x.b1));
24202 tfm_out(qo(x.b2)); tfm_out(qo(x.b3));
24205 @ @<Finish the \.{TFM} file@>=
24206 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24207 mp_pack_job_name(mp, ".tfm");
24208 while ( ! mp_b_open_out(mp, &mp->tfm_file, mp_filetype_metrics) )
24209 mp_prompt_file_name(mp, "file name for font metrics",".tfm");
24210 mp->metric_file_name=xstrdup(mp->name_of_file);
24211 @<Output the subfile sizes and header bytes@>;
24212 @<Output the character information bytes, then
24213 output the dimensions themselves@>;
24214 @<Output the ligature/kern program@>;
24215 @<Output the extensible character recipes and the font metric parameters@>;
24216 if ( mp->internal[mp_tracing_stats]>0 )
24217 @<Log the subfile sizes of the \.{TFM} file@>;
24218 mp_print_nl(mp, "Font metrics written on ");
24219 mp_print(mp, mp->metric_file_name); mp_print_char(mp, '.');
24220 @.Font metrics written...@>
24221 (mp->close_file)(mp->tfm_file)
24223 @ Integer variables |lh|, |k|, and |lk_offset| will be defined when we use
24226 @<Output the subfile sizes and header bytes@>=
24228 LH=(k+3) / 4; /* this is the number of header words */
24229 if ( mp->bc>mp->ec ) mp->bc=1; /* if there are no characters, |ec=0| and |bc=1| */
24230 @<Compute the ligature/kern program offset and implant the
24231 left boundary label@>;
24232 mp_tfm_two(mp,6+LH+(mp->ec-mp->bc+1)+mp->nw+mp->nh+mp->nd+mp->ni+mp->nl
24233 +lk_offset+mp->nk+mp->ne+mp->np);
24234 /* this is the total number of file words that will be output */
24235 mp_tfm_two(mp, LH); mp_tfm_two(mp, mp->bc); mp_tfm_two(mp, mp->ec);
24236 mp_tfm_two(mp, mp->nw); mp_tfm_two(mp, mp->nh);
24237 mp_tfm_two(mp, mp->nd); mp_tfm_two(mp, mp->ni); mp_tfm_two(mp, mp->nl+lk_offset);
24238 mp_tfm_two(mp, mp->nk); mp_tfm_two(mp, mp->ne);
24239 mp_tfm_two(mp, mp->np);
24240 for (k=0;k< 4*LH;k++) {
24241 tfm_out(mp->header_byte[k]);
24244 @ @<Output the character information bytes...@>=
24245 for (k=mp->bc;k<=mp->ec;k++) {
24246 if ( ! mp->char_exists[k] ) {
24247 mp_tfm_four(mp, 0);
24249 tfm_out(info(mp->tfm_width[k])); /* the width index */
24250 tfm_out((info(mp->tfm_height[k]))*16+info(mp->tfm_depth[k]));
24251 tfm_out((info(mp->tfm_ital_corr[k]))*4+mp->char_tag[k]);
24252 tfm_out(mp->char_remainder[k]);
24256 for (k=1;k<=4;k++) {
24257 mp_tfm_four(mp, 0); p=mp->dimen_head[k];
24258 while ( p!=inf_val ) {
24259 mp_tfm_four(mp, mp_dimen_out(mp, value(p))); p=link(p);
24264 @ We need to output special instructions at the beginning of the
24265 |lig_kern| array in order to specify the right boundary character
24266 and/or to handle starting addresses that exceed 255. The |label_loc|
24267 and |label_char| arrays have been set up to record all the
24268 starting addresses; we have $-1=|label_loc|[0]<|label_loc|[1]\le\cdots
24269 \le|label_loc|[|label_ptr]|$.
24271 @<Compute the ligature/kern program offset...@>=
24272 mp->bchar=mp_round_unscaled(mp, mp->internal[mp_boundary_char]);
24273 if ((mp->bchar<0)||(mp->bchar>255))
24274 { mp->bchar=-1; mp->lk_started=false; lk_offset=0; }
24275 else { mp->lk_started=true; lk_offset=1; };
24276 @<Find the minimum |lk_offset| and adjust all remainders@>;
24277 if ( mp->bch_label<undefined_label )
24278 { skip_byte(mp->nl)=qi(255); next_char(mp->nl)=qi(0);
24279 op_byte(mp->nl)=qi(((mp->bch_label+lk_offset)/ 256));
24280 rem_byte(mp->nl)=qi(((mp->bch_label+lk_offset)% 256));
24281 incr(mp->nl); /* possibly |nl=lig_table_size+1| */
24284 @ @<Find the minimum |lk_offset|...@>=
24285 k=mp->label_ptr; /* pointer to the largest unallocated label */
24286 if ( mp->label_loc[k]+lk_offset>255 ) {
24287 lk_offset=0; mp->lk_started=false; /* location 0 can do double duty */
24289 mp->char_remainder[mp->label_char[k]]=lk_offset;
24290 while ( mp->label_loc[k-1]==mp->label_loc[k] ) {
24291 decr(k); mp->char_remainder[mp->label_char[k]]=lk_offset;
24293 incr(lk_offset); decr(k);
24294 } while (! (lk_offset+mp->label_loc[k]<256));
24295 /* N.B.: |lk_offset=256| satisfies this when |k=0| */
24297 if ( lk_offset>0 ) {
24299 mp->char_remainder[mp->label_char[k]]
24300 =mp->char_remainder[mp->label_char[k]]+lk_offset;
24305 @ @<Output the ligature/kern program@>=
24306 for (k=0;k<= 255;k++ ) {
24307 if ( mp->skip_table[k]<undefined_label ) {
24308 mp_print_nl(mp, "(local label "); mp_print_int(mp, k); mp_print(mp, ":: was missing)");
24309 @.local label l:: was missing@>
24310 cancel_skips(mp->skip_table[k]);
24313 if ( mp->lk_started ) { /* |lk_offset=1| for the special |bchar| */
24314 tfm_out(255); tfm_out(mp->bchar); mp_tfm_two(mp, 0);
24316 for (k=1;k<=lk_offset;k++) {/* output the redirection specs */
24317 mp->ll=mp->label_loc[mp->label_ptr];
24318 if ( mp->bchar<0 ) { tfm_out(254); tfm_out(0); }
24319 else { tfm_out(255); tfm_out(mp->bchar); };
24320 mp_tfm_two(mp, mp->ll+lk_offset);
24322 decr(mp->label_ptr);
24323 } while (! (mp->label_loc[mp->label_ptr]<mp->ll));
24326 for (k=0;k<=mp->nl-1;k++) mp_tfm_qqqq(mp, mp->lig_kern[k]);
24327 for (k=0;k<=mp->nk-1;k++) mp_tfm_four(mp, mp_dimen_out(mp, mp->kern[k]))
24329 @ @<Output the extensible character recipes...@>=
24330 for (k=0;k<=mp->ne-1;k++)
24331 mp_tfm_qqqq(mp, mp->exten[k]);
24332 for (k=1;k<=mp->np;k++) {
24334 if ( abs(mp->param[1])<fraction_half ) {
24335 mp_tfm_four(mp, mp->param[1]*16);
24337 incr(mp->tfm_changed);
24338 if ( mp->param[1]>0 ) mp_tfm_four(mp, el_gordo);
24339 else mp_tfm_four(mp, -el_gordo);
24342 mp_tfm_four(mp, mp_dimen_out(mp, mp->param[k]));
24345 if ( mp->tfm_changed>0 ) {
24346 if ( mp->tfm_changed==1 ) mp_print_nl(mp, "(a font metric dimension");
24347 @.a font metric dimension...@>
24349 mp_print_nl(mp, "("); mp_print_int(mp, mp->tfm_changed);
24350 @.font metric dimensions...@>
24351 mp_print(mp, " font metric dimensions");
24353 mp_print(mp, " had to be decreased)");
24356 @ @<Log the subfile sizes of the \.{TFM} file@>=
24360 if ( mp->bch_label<undefined_label ) decr(mp->nl);
24361 snprintf(s,128,"(You used %iw,%ih,%id,%ii,%il,%ik,%ie,%ip metric file positions)",
24362 mp->nw, mp->nh, mp->nd, mp->ni, mp->nl, mp->nk, mp->ne,mp->np);
24366 @* \[43] Reading font metric data.
24368 \MP\ isn't a typesetting program but it does need to find the bounding box
24369 of a sequence of typeset characters. Thus it needs to read \.{TFM} files as
24370 well as write them.
24375 @ All the width, height, and depth information is stored in an array called
24376 |font_info|. This array is allocated sequentially and each font is stored
24377 as a series of |char_info| words followed by the width, height, and depth
24378 tables. Since |font_name| entries are permanent, their |str_ref| values are
24379 set to |max_str_ref|.
24382 typedef unsigned int font_number; /* |0..font_max| */
24384 @ The |font_info| array is indexed via a group directory arrays.
24385 For example, the |char_info| data for character~|c| in font~|f| will be
24386 in |font_info[char_base[f]+c].qqqq|.
24389 font_number font_max; /* maximum font number for included text fonts */
24390 size_t font_mem_size; /* number of words for \.{TFM} information for text fonts */
24391 memory_word *font_info; /* height, width, and depth data */
24392 char **font_enc_name; /* encoding names, if any */
24393 boolean *font_ps_name_fixed; /* are the postscript names fixed already? */
24394 int next_fmem; /* next unused entry in |font_info| */
24395 font_number last_fnum; /* last font number used so far */
24396 scaled *font_dsize; /* 16 times the ``design'' size in \ps\ points */
24397 char **font_name; /* name as specified in the \&{infont} command */
24398 char **font_ps_name; /* PostScript name for use when |internal[mp_prologues]>0| */
24399 font_number last_ps_fnum; /* last valid |font_ps_name| index */
24400 eight_bits *font_bc;
24401 eight_bits *font_ec; /* first and last character code */
24402 int *char_base; /* base address for |char_info| */
24403 int *width_base; /* index for zeroth character width */
24404 int *height_base; /* index for zeroth character height */
24405 int *depth_base; /* index for zeroth character depth */
24406 pointer *font_sizes;
24408 @ @<Allocate or initialize ...@>=
24409 mp->font_mem_size = 10000;
24410 mp->font_info = xmalloc ((mp->font_mem_size+1),sizeof(memory_word));
24411 memset (mp->font_info,0,sizeof(memory_word)*(mp->font_mem_size+1));
24412 mp->font_enc_name = NULL;
24413 mp->font_ps_name_fixed = NULL;
24414 mp->font_dsize = NULL;
24415 mp->font_name = NULL;
24416 mp->font_ps_name = NULL;
24417 mp->font_bc = NULL;
24418 mp->font_ec = NULL;
24419 mp->last_fnum = null_font;
24420 mp->char_base = NULL;
24421 mp->width_base = NULL;
24422 mp->height_base = NULL;
24423 mp->depth_base = NULL;
24424 mp->font_sizes = null;
24426 @ @<Dealloc variables@>=
24427 for (k=1;k<=(int)mp->last_fnum;k++) {
24428 xfree(mp->font_enc_name[k]);
24429 xfree(mp->font_name[k]);
24430 xfree(mp->font_ps_name[k]);
24432 xfree(mp->font_info);
24433 xfree(mp->font_enc_name);
24434 xfree(mp->font_ps_name_fixed);
24435 xfree(mp->font_dsize);
24436 xfree(mp->font_name);
24437 xfree(mp->font_ps_name);
24438 xfree(mp->font_bc);
24439 xfree(mp->font_ec);
24440 xfree(mp->char_base);
24441 xfree(mp->width_base);
24442 xfree(mp->height_base);
24443 xfree(mp->depth_base);
24444 xfree(mp->font_sizes);
24448 void mp_reallocate_fonts (MP mp, font_number l) {
24450 XREALLOC(mp->font_enc_name, l, char *);
24451 XREALLOC(mp->font_ps_name_fixed, l, boolean);
24452 XREALLOC(mp->font_dsize, l, scaled);
24453 XREALLOC(mp->font_name, l, char *);
24454 XREALLOC(mp->font_ps_name, l, char *);
24455 XREALLOC(mp->font_bc, l, eight_bits);
24456 XREALLOC(mp->font_ec, l, eight_bits);
24457 XREALLOC(mp->char_base, l, int);
24458 XREALLOC(mp->width_base, l, int);
24459 XREALLOC(mp->height_base, l, int);
24460 XREALLOC(mp->depth_base, l, int);
24461 XREALLOC(mp->font_sizes, l, pointer);
24462 for (f=(mp->last_fnum+1);f<=l;f++) {
24463 mp->font_enc_name[f]=NULL;
24464 mp->font_ps_name_fixed[f] = false;
24465 mp->font_name[f]=NULL;
24466 mp->font_ps_name[f]=NULL;
24467 mp->font_sizes[f]=null;
24472 @ @<Declare |mp_reallocate| functions@>=
24473 void mp_reallocate_fonts (MP mp, font_number l);
24476 @ A |null_font| containing no characters is useful for error recovery. Its
24477 |font_name| entry starts out empty but is reset each time an erroneous font is
24478 found. This helps to cut down on the number of duplicate error messages without
24479 wasting a lot of space.
24481 @d null_font 0 /* the |font_number| for an empty font */
24483 @<Set initial...@>=
24484 mp->font_dsize[null_font]=0;
24485 mp->font_bc[null_font]=1;
24486 mp->font_ec[null_font]=0;
24487 mp->char_base[null_font]=0;
24488 mp->width_base[null_font]=0;
24489 mp->height_base[null_font]=0;
24490 mp->depth_base[null_font]=0;
24492 mp->last_fnum=null_font;
24493 mp->last_ps_fnum=null_font;
24494 mp->font_name[null_font]="nullfont";
24495 mp->font_ps_name[null_font]="";
24496 mp->font_ps_name_fixed[null_font] = false;
24497 mp->font_enc_name[null_font]=NULL;
24498 mp->font_sizes[null_font]=null;
24500 @ Each |char_info| word is of type |four_quarters|. The |b0| field contains
24501 the |width index|; the |b1| field contains the height
24502 index; the |b2| fields contains the depth index, and the |b3| field used only
24503 for temporary storage. (It is used to keep track of which characters occur in
24504 an edge structure that is being shipped out.)
24505 The corresponding words in the width, height, and depth tables are stored as
24506 |scaled| values in units of \ps\ points.
24508 With the macros below, the |char_info| word for character~|c| in font~|f| is
24509 |char_info(f)(c)| and the width is
24510 $$\hbox{|char_width(f)(char_info(f)(c)).sc|.}$$
24512 @d char_info_end(A) (A)].qqqq
24513 @d char_info(A) mp->font_info[mp->char_base[(A)]+char_info_end
24514 @d char_width_end(A) (A).b0].sc
24515 @d char_width(A) mp->font_info[mp->width_base[(A)]+char_width_end
24516 @d char_height_end(A) (A).b1].sc
24517 @d char_height(A) mp->font_info[mp->height_base[(A)]+char_height_end
24518 @d char_depth_end(A) (A).b2].sc
24519 @d char_depth(A) mp->font_info[mp->depth_base[(A)]+char_depth_end
24520 @d ichar_exists(A) ((A).b0>0)
24522 @ The |font_ps_name| for a built-in font should be what PostScript expects.
24523 A preliminary name is obtained here from the \.{TFM} name as given in the
24524 |fname| argument. This gets updated later from an external table if necessary.
24526 @<Declare text measuring subroutines@>=
24527 @<Declare subroutines for parsing file names@>;
24528 font_number mp_read_font_info (MP mp, char *fname) {
24529 boolean file_opened; /* has |tfm_infile| been opened? */
24530 font_number n; /* the number to return */
24531 halfword lf,tfm_lh,bc,ec,nw,nh,nd; /* subfile size parameters */
24532 size_t whd_size; /* words needed for heights, widths, and depths */
24533 int i,ii; /* |font_info| indices */
24534 int jj; /* counts bytes to be ignored */
24535 scaled z; /* used to compute the design size */
24537 /* height, width, or depth as a fraction of design size times $2^{-8}$ */
24538 eight_bits h_and_d; /* height and depth indices being unpacked */
24539 unsigned char tfbyte; /* a byte read from the file */
24541 @<Open |tfm_infile| for input@>;
24542 @<Read data from |tfm_infile|; if there is no room, say so and |goto done|;
24543 otherwise |goto bad_tfm| or |goto done| as appropriate@>;
24545 @<Complain that the \.{TFM} file is bad@>;
24547 if ( file_opened ) (mp->close_file)(mp->tfm_infile);
24548 if ( n!=null_font ) {
24549 mp->font_ps_name[n]=mp_xstrdup(mp,fname);
24550 mp->font_name[n]=mp_xstrdup(mp,fname);
24555 @ \MP\ doesn't bother to check the entire \.{TFM} file for errors or explain
24556 precisely what is wrong if it does find a problem. Programs called \.{TFtoPL}
24557 @.TFtoPL@> @.PLtoTF@>
24558 and \.{PLtoTF} can be used to debug \.{TFM} files.
24560 @<Complain that the \.{TFM} file is bad@>=
24561 print_err("Font ");
24562 mp_print(mp, fname);
24563 if ( file_opened ) mp_print(mp, " not usable: TFM file is bad");
24564 else mp_print(mp, " not usable: TFM file not found");
24565 help3("I wasn't able to read the size data for this font so this")
24566 ("`infont' operation won't produce anything. If the font name")
24567 ("is right, you might ask an expert to make a TFM file");
24569 mp->help_line[0]="is right, try asking an expert to fix the TFM file";
24572 @ @<Read data from |tfm_infile|; if there is no room, say so...@>=
24573 @<Read the \.{TFM} size fields@>;
24574 @<Use the size fields to allocate space in |font_info|@>;
24575 @<Read the \.{TFM} header@>;
24576 @<Read the character data and the width, height, and depth tables and
24579 @ A bad \.{TFM} file can be shorter than it claims to be. The code given here
24580 might try to read past the end of the file if this happens. Changes will be
24581 needed if it causes a system error to refer to |tfm_infile^| or call
24582 |get_tfm_infile| when |eof(tfm_infile)| is true. For example, the definition
24583 @^system dependencies@>
24584 of |tfget| could be changed to
24585 ``|begin get(tfm_infile); if eof(tfm_infile) then goto bad_tfm; end|.''
24589 void *tfbyte_ptr = &tfbyte;
24590 (mp->read_binary_file)(mp->tfm_infile,&tfbyte_ptr,&wanted);
24591 if (wanted==0) goto BAD_TFM;
24593 @d read_two(A) { (A)=tfbyte;
24594 if ( (A)>127 ) goto BAD_TFM;
24595 tfget; (A)=(A)*0400+tfbyte;
24597 @d tf_ignore(A) { for (jj=(A);jj>=1;jj--) tfget; }
24599 @<Read the \.{TFM} size fields@>=
24600 tfget; read_two(lf);
24601 tfget; read_two(tfm_lh);
24602 tfget; read_two(bc);
24603 tfget; read_two(ec);
24604 if ( (bc>1+ec)||(ec>255) ) goto BAD_TFM;
24605 tfget; read_two(nw);
24606 tfget; read_two(nh);
24607 tfget; read_two(nd);
24608 whd_size=(ec+1-bc)+nw+nh+nd;
24609 if ( lf<(int)(6+tfm_lh+whd_size) ) goto BAD_TFM;
24612 @ Offsets are added to |char_base[n]| and |width_base[n]| so that is not
24613 necessary to apply the |so| and |qo| macros when looking up the width of a
24614 character in the string pool. In order to ensure nonnegative |char_base|
24615 values when |bc>0|, it may be necessary to reserve a few unused |font_info|
24618 @<Use the size fields to allocate space in |font_info|@>=
24619 if ( mp->next_fmem<bc) mp->next_fmem=bc; /* ensure nonnegative |char_base| */
24620 if (mp->last_fnum==mp->font_max)
24621 mp_reallocate_fonts(mp,(mp->font_max+(mp->font_max>>2)));
24622 while (mp->next_fmem+whd_size>=mp->font_mem_size) {
24623 size_t l = mp->font_mem_size+(mp->font_mem_size>>2);
24624 memory_word *font_info;
24625 font_info = xmalloc ((l+1),sizeof(memory_word));
24626 memset (font_info,0,sizeof(memory_word)*(l+1));
24627 memcpy (font_info,mp->font_info,sizeof(memory_word)*(mp->font_mem_size+1));
24628 xfree(mp->font_info);
24629 mp->font_info = font_info;
24630 mp->font_mem_size = l;
24632 incr(mp->last_fnum);
24636 mp->char_base[n]=mp->next_fmem-bc;
24637 mp->width_base[n]=mp->next_fmem+ec-bc+1;
24638 mp->height_base[n]=mp->width_base[n]+nw;
24639 mp->depth_base[n]=mp->height_base[n]+nh;
24640 mp->next_fmem=mp->next_fmem+whd_size;
24643 @ @<Read the \.{TFM} header@>=
24644 if ( tfm_lh<2 ) goto BAD_TFM;
24646 tfget; read_two(z);
24647 tfget; z=z*0400+tfbyte;
24648 tfget; z=z*0400+tfbyte; /* now |z| is 16 times the design size */
24649 mp->font_dsize[n]=mp_take_fraction(mp, z,267432584);
24650 /* times ${72\over72.27}2^{28}$ to convert from \TeX\ points */
24651 tf_ignore(4*(tfm_lh-2))
24653 @ @<Read the character data and the width, height, and depth tables...@>=
24654 ii=mp->width_base[n];
24655 i=mp->char_base[n]+bc;
24657 tfget; mp->font_info[i].qqqq.b0=qi(tfbyte);
24658 tfget; h_and_d=tfbyte;
24659 mp->font_info[i].qqqq.b1=h_and_d / 16;
24660 mp->font_info[i].qqqq.b2=h_and_d % 16;
24664 while ( i<mp->next_fmem ) {
24665 @<Read a four byte dimension, scale it by the design size, store it in
24666 |font_info[i]|, and increment |i|@>;
24670 @ The raw dimension read into |d| should have magnitude at most $2^{24}$ when
24671 interpreted as an integer, and this includes a scale factor of $2^{20}$. Thus
24672 we can multiply it by sixteen and think of it as a |fraction| that has been
24673 divided by sixteen. This cancels the extra scale factor contained in
24676 @<Read a four byte dimension, scale it by the design size, store it in...@>=
24679 if ( d>=0200 ) d=d-0400;
24680 tfget; d=d*0400+tfbyte;
24681 tfget; d=d*0400+tfbyte;
24682 tfget; d=d*0400+tfbyte;
24683 mp->font_info[i].sc=mp_take_fraction(mp, d*16,mp->font_dsize[n]);
24687 @ This function does no longer use the file name parser, because |fname| is
24688 a C string already.
24689 @<Open |tfm_infile| for input@>=
24691 mp_ptr_scan_file(mp, fname);
24692 if ( strlen(mp->cur_area)==0 ) { xfree(mp->cur_area); mp->cur_area=xstrdup(MP_font_area);}
24693 if ( strlen(mp->cur_ext)==0 ) { xfree(mp->cur_ext); mp->cur_ext=xstrdup(".tfm"); }
24695 mp->tfm_infile = (mp->open_file)( mp->name_of_file, "rb",mp_filetype_metrics);
24696 if ( !mp->tfm_infile ) goto BAD_TFM;
24699 @ When we have a font name and we don't know whether it has been loaded yet,
24700 we scan the |font_name| array before calling |read_font_info|.
24702 @<Declare text measuring subroutines@>=
24703 font_number mp_find_font (MP mp, char *f) {
24705 for (n=0;n<=mp->last_fnum;n++) {
24706 if (mp_xstrcmp(f,mp->font_name[n])==0 ) {
24711 n = mp_read_font_info(mp, f);
24716 @ One simple application of |find_font| is the implementation of the |font_size|
24717 operator that gets the design size for a given font name.
24719 @<Find the design size of the font whose name is |cur_exp|@>=
24720 mp_flush_cur_exp(mp, (mp->font_dsize[mp_find_font(mp, str(mp->cur_exp))]+8) / 16)
24722 @ If we discover that the font doesn't have a requested character, we omit it
24723 from the bounding box computation and expect the \ps\ interpreter to drop it.
24724 This routine issues a warning message if the user has asked for it.
24726 @<Declare text measuring subroutines@>=
24727 void mp_lost_warning (MP mp,font_number f, pool_pointer k) {
24728 if ( mp->internal[mp_tracing_lost_chars]>0 ) {
24729 mp_begin_diagnostic(mp);
24730 if ( mp->selector==log_only ) incr(mp->selector);
24731 mp_print_nl(mp, "Missing character: There is no ");
24732 @.Missing character@>
24733 mp_print_str(mp, mp->str_pool[k]);
24734 mp_print(mp, " in font ");
24735 mp_print(mp, mp->font_name[f]); mp_print_char(mp, '!');
24736 mp_end_diagnostic(mp, false);
24740 @ The whole purpose of saving the height, width, and depth information is to be
24741 able to find the bounding box of an item of text in an edge structure. The
24742 |set_text_box| procedure takes a text node and adds this information.
24744 @<Declare text measuring subroutines@>=
24745 void mp_set_text_box (MP mp,pointer p) {
24746 font_number f; /* |font_n(p)| */
24747 ASCII_code bc,ec; /* range of valid characters for font |f| */
24748 pool_pointer k,kk; /* current character and character to stop at */
24749 four_quarters cc; /* the |char_info| for the current character */
24750 scaled h,d; /* dimensions of the current character */
24752 height_val(p)=-el_gordo;
24753 depth_val(p)=-el_gordo;
24757 kk=str_stop(text_p(p));
24758 k=mp->str_start[text_p(p)];
24760 @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>;
24762 @<Set the height and depth to zero if the bounding box is empty@>;
24765 @ @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>=
24767 if ( (mp->str_pool[k]<bc)||(mp->str_pool[k]>ec) ) {
24768 mp_lost_warning(mp, f,k);
24770 cc=char_info(f)(mp->str_pool[k]);
24771 if ( ! ichar_exists(cc) ) {
24772 mp_lost_warning(mp, f,k);
24774 width_val(p)=width_val(p)+char_width(f)(cc);
24775 h=char_height(f)(cc);
24776 d=char_depth(f)(cc);
24777 if ( h>height_val(p) ) height_val(p)=h;
24778 if ( d>depth_val(p) ) depth_val(p)=d;
24784 @ Let's hope modern compilers do comparisons correctly when the difference would
24787 @<Set the height and depth to zero if the bounding box is empty@>=
24788 if ( height_val(p)<-depth_val(p) ) {
24793 @ The new primitives fontmapfile and fontmapline.
24795 @<Declare action procedures for use by |do_statement|@>=
24796 void mp_do_mapfile (MP mp) ;
24797 void mp_do_mapline (MP mp) ;
24799 @ @c void mp_do_mapfile (MP mp) {
24800 mp_get_x_next(mp); mp_scan_expression(mp);
24801 if ( mp->cur_type!=mp_string_type ) {
24802 @<Complain about improper map operation@>;
24804 mp_map_file(mp,mp->cur_exp);
24807 void mp_do_mapline (MP mp) {
24808 mp_get_x_next(mp); mp_scan_expression(mp);
24809 if ( mp->cur_type!=mp_string_type ) {
24810 @<Complain about improper map operation@>;
24812 mp_map_line(mp,mp->cur_exp);
24816 @ @<Complain about improper map operation@>=
24818 exp_err("Unsuitable expression");
24819 help1("Only known strings can be map files or map lines.");
24820 mp_put_get_error(mp);
24823 @ To print |scaled| value to PDF output we need some subroutines to ensure
24826 @d max_integer 0x7FFFFFFF /* $2^{31}-1$ */
24829 scaled one_bp; /* scaled value corresponds to 1bp */
24830 scaled one_hundred_bp; /* scaled value corresponds to 100bp */
24831 scaled one_hundred_inch; /* scaled value corresponds to 100in */
24832 integer ten_pow[10]; /* $10^0..10^9$ */
24833 integer scaled_out; /* amount of |scaled| that was taken out in |divide_scaled| */
24836 mp->one_bp = 65782; /* 65781.76 */
24837 mp->one_hundred_bp = 6578176;
24838 mp->one_hundred_inch = 473628672;
24839 mp->ten_pow[0] = 1;
24840 for (i = 1;i<= 9; i++ ) {
24841 mp->ten_pow[i] = 10*mp->ten_pow[i - 1];
24844 @ The following function divides |s| by |m|. |dd| is number of decimal digits.
24846 @c scaled mp_divide_scaled (MP mp,scaled s, scaled m, integer dd) {
24850 if ( s < 0 ) { sign = -sign; s = -s; }
24851 if ( m < 0 ) { sign = -sign; m = -m; }
24853 mp_confusion(mp, "arithmetic: divided by zero");
24854 else if ( m >= (max_integer / 10) )
24855 mp_confusion(mp, "arithmetic: number too big");
24858 for (i = 1;i<=dd;i++) {
24859 q = 10*q + (10*r) / m;
24862 if ( 2*r >= m ) { incr(q); r = r - m; }
24863 mp->scaled_out = sign*(s - (r / mp->ten_pow[dd]));
24867 @* \[44] Shipping pictures out.
24868 The |ship_out| procedure, to be described below, is given a pointer to
24869 an edge structure. Its mission is to output a file containing the \ps\
24870 description of an edge structure.
24872 @ Each time an edge structure is shipped out we write a new \ps\ output
24873 file named according to the current \&{charcode}.
24874 @:char_code_}{\&{charcode} primitive@>
24876 This is the only backend function that remains in the main |mpost.w| file.
24877 There are just too many variable accesses needed for status reporting
24878 etcetera to make it worthwile to move the code to |psout.w|.
24880 @<Internal library declarations@>=
24881 void mp_open_output_file (MP mp) ;
24883 @ @c void mp_open_output_file (MP mp) {
24884 integer c; /* \&{charcode} rounded to the nearest integer */
24885 int old_setting; /* previous |selector| setting */
24886 pool_pointer i; /* indexes into |filename_template| */
24887 integer cc; /* a temporary integer for template building */
24888 integer f,g=0; /* field widths */
24889 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24890 c=mp_round_unscaled(mp, mp->internal[mp_char_code]);
24891 if ( mp->filename_template==0 ) {
24892 char *s; /* a file extension derived from |c| */
24896 @<Use |c| to compute the file extension |s|@>;
24897 mp_pack_job_name(mp, s);
24899 while ( ! mp_a_open_out(mp, (void *)&mp->ps_file, mp_filetype_postscript) )
24900 mp_prompt_file_name(mp, "file name for output",s);
24901 } else { /* initializations */
24902 str_number s, n; /* a file extension derived from |c| */
24903 old_setting=mp->selector;
24904 mp->selector=new_string;
24906 i = mp->str_start[mp->filename_template];
24907 n = rts(""); /* initialize */
24908 while ( i<str_stop(mp->filename_template) ) {
24909 if ( mp->str_pool[i]=='%' ) {
24912 if ( i<str_stop(mp->filename_template) ) {
24913 if ( mp->str_pool[i]=='j' ) {
24914 mp_print(mp, mp->job_name);
24915 } else if ( mp->str_pool[i]=='d' ) {
24916 cc= mp_round_unscaled(mp, mp->internal[mp_day]);
24917 print_with_leading_zeroes(cc);
24918 } else if ( mp->str_pool[i]=='m' ) {
24919 cc= mp_round_unscaled(mp, mp->internal[mp_month]);
24920 print_with_leading_zeroes(cc);
24921 } else if ( mp->str_pool[i]=='y' ) {
24922 cc= mp_round_unscaled(mp, mp->internal[mp_year]);
24923 print_with_leading_zeroes(cc);
24924 } else if ( mp->str_pool[i]=='H' ) {
24925 cc= mp_round_unscaled(mp, mp->internal[mp_time]) / 60;
24926 print_with_leading_zeroes(cc);
24927 } else if ( mp->str_pool[i]=='M' ) {
24928 cc= mp_round_unscaled(mp, mp->internal[mp_time]) % 60;
24929 print_with_leading_zeroes(cc);
24930 } else if ( mp->str_pool[i]=='c' ) {
24931 if ( c<0 ) mp_print(mp, "ps");
24932 else print_with_leading_zeroes(c);
24933 } else if ( (mp->str_pool[i]>='0') &&
24934 (mp->str_pool[i]<='9') ) {
24936 f = (f*10) + mp->str_pool[i]-'0';
24939 mp_print_str(mp, mp->str_pool[i]);
24943 if ( mp->str_pool[i]=='.' )
24945 n = mp_make_string(mp);
24946 mp_print_str(mp, mp->str_pool[i]);
24950 s = mp_make_string(mp);
24951 mp->selector= old_setting;
24952 if (length(n)==0) {
24956 mp_pack_file_name(mp, str(n),"",str(s));
24957 while ( ! mp_a_open_out(mp, (void *)&mp->ps_file, mp_filetype_postscript) )
24958 mp_prompt_file_name(mp, "file name for output",str(s));
24962 @<Store the true output file name if appropriate@>;
24965 @ The file extension created here could be up to five characters long in
24966 extreme cases so it may have to be shortened on some systems.
24967 @^system dependencies@>
24969 @<Use |c| to compute the file extension |s|@>=
24972 snprintf(s,7,".%i",(int)c);
24975 @ The user won't want to see all the output file names so we only save the
24976 first and last ones and a count of how many there were. For this purpose
24977 files are ordered primarily by \&{charcode} and secondarily by order of
24979 @:char_code_}{\&{charcode} primitive@>
24981 @<Store the true output file name if appropriate@>=
24982 if ((c<mp->first_output_code)&&(mp->first_output_code>=0)) {
24983 mp->first_output_code=c;
24984 xfree(mp->first_file_name);
24985 mp->first_file_name=xstrdup(mp->name_of_file);
24987 if ( c>=mp->last_output_code ) {
24988 mp->last_output_code=c;
24989 xfree(mp->last_file_name);
24990 mp->last_file_name=xstrdup(mp->name_of_file);
24994 char * first_file_name;
24995 char * last_file_name; /* full file names */
24996 integer first_output_code;integer last_output_code; /* rounded \&{charcode} values */
24997 @:char_code_}{\&{charcode} primitive@>
24998 integer total_shipped; /* total number of |ship_out| operations completed */
25001 mp->first_file_name=xstrdup("");
25002 mp->last_file_name=xstrdup("");
25003 mp->first_output_code=32768;
25004 mp->last_output_code=-32768;
25005 mp->total_shipped=0;
25007 @ @<Dealloc variables@>=
25008 xfree(mp->first_file_name);
25009 xfree(mp->last_file_name);
25011 @ @<Begin the progress report for the output of picture~|c|@>=
25012 if ( (int)mp->term_offset>mp->max_print_line-6 ) mp_print_ln(mp);
25013 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
25014 mp_print_char(mp, '[');
25015 if ( c>=0 ) mp_print_int(mp, c)
25017 @ @<End progress report@>=
25018 mp_print_char(mp, ']');
25020 incr(mp->total_shipped)
25022 @ @<Explain what output files were written@>=
25023 if ( mp->total_shipped>0 ) {
25024 mp_print_nl(mp, "");
25025 mp_print_int(mp, mp->total_shipped);
25026 mp_print(mp, " output file");
25027 if ( mp->total_shipped>1 ) mp_print_char(mp, 's');
25028 mp_print(mp, " written: ");
25029 mp_print(mp, mp->first_file_name);
25030 if ( mp->total_shipped>1 ) {
25031 if ( 31+strlen(mp->first_file_name)+
25032 strlen(mp->last_file_name)> (unsigned)mp->max_print_line)
25034 mp_print(mp, " .. ");
25035 mp_print(mp, mp->last_file_name);
25039 @ @<Internal library declarations@>=
25040 boolean mp_has_font_size(MP mp, font_number f );
25043 boolean mp_has_font_size(MP mp, font_number f ) {
25044 return (mp->font_sizes[f]!=null);
25047 @ The \&{special} command saves up lines of text to be printed during the next
25048 |ship_out| operation. The saved items are stored as a list of capsule tokens.
25051 pointer last_pending; /* the last token in a list of pending specials */
25054 mp->last_pending=spec_head;
25056 @ @<Cases of |do_statement|...@>=
25057 case special_command:
25058 if ( mp->cur_mod==0 ) mp_do_special(mp); else
25059 if ( mp->cur_mod==1 ) mp_do_mapfile(mp); else
25063 @ @<Declare action procedures for use by |do_statement|@>=
25064 void mp_do_special (MP mp) ;
25066 @ @c void mp_do_special (MP mp) {
25067 mp_get_x_next(mp); mp_scan_expression(mp);
25068 if ( mp->cur_type!=mp_string_type ) {
25069 @<Complain about improper special operation@>;
25071 link(mp->last_pending)=mp_stash_cur_exp(mp);
25072 mp->last_pending=link(mp->last_pending);
25073 link(mp->last_pending)=null;
25077 @ @<Complain about improper special operation@>=
25079 exp_err("Unsuitable expression");
25080 help1("Only known strings are allowed for output as specials.");
25081 mp_put_get_error(mp);
25084 @ On the export side, we need an extra object type for special strings.
25086 @<Graphical object codes@>=
25089 @ @<Export pending specials@>=
25091 while ( p!=null ) {
25092 hq = mp_new_graphic_object(mp,mp_special_code);
25093 gr_pre_script(hq) = str(value(p));
25094 if (hh->body==NULL) hh->body=hq; else gr_link(hp) = hq;
25098 mp_flush_token_list(mp, link(spec_head));
25099 link(spec_head)=null;
25100 mp->last_pending=spec_head
25102 @ We are now ready for the main output procedure. Note that the |selector|
25103 setting is saved in a global variable so that |begin_diagnostic| can access it.
25105 @<Declare the \ps\ output procedures@>=
25106 void mp_ship_out (MP mp, pointer h) ;
25108 @ Once again, the |gr_XXXX| macros are defined in |mppsout.h|
25111 struct mp_edge_object *mp_gr_export(MP mp, pointer h) {
25112 pointer p; /* the current graphical object */
25113 integer t; /* a temporary value */
25114 struct mp_edge_object *hh; /* the first graphical object */
25115 struct mp_graphic_object *hp; /* the current graphical object */
25116 struct mp_graphic_object *hq; /* something |hp| points to */
25117 mp_set_bbox(mp, h, true);
25118 hh = mp_xmalloc(mp,1,sizeof(struct mp_edge_object));
25122 hh->_minx = minx_val(h);
25123 hh->_miny = miny_val(h);
25124 hh->_maxx = maxx_val(h);
25125 hh->_maxy = maxy_val(h);
25126 @<Export pending specials@>;
25127 p=link(dummy_loc(h));
25128 while ( p!=null ) {
25129 hq = mp_new_graphic_object(mp,type(p));
25132 gr_pen_p(hq) = mp_export_knot_list(mp,pen_p(p));
25133 if ((pen_p(p)==null) || pen_is_elliptical(pen_p(p))) {
25134 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25137 pc = mp_copy_path(mp, path_p(p));
25138 pp = mp_make_envelope(mp, pc, pen_p(p),ljoin_val(p),0,miterlim_val(p));
25139 gr_path_p(hq) = mp_export_knot_list(mp,pp);
25140 mp_toss_knot_list(mp, pp);
25141 pc = mp_htap_ypoc(mp, path_p(p));
25142 pp = mp_make_envelope(mp, pc, pen_p(p),ljoin_val(p),0,miterlim_val(p));
25143 gr_htap_p(hq) = mp_export_knot_list(mp,pp);
25144 mp_toss_knot_list(mp, pp);
25146 @<Export object color@>;
25147 @<Export object scripts@>;
25148 gr_ljoin_val(hq) = ljoin_val(p);
25149 gr_miterlim_val(hq) = miterlim_val(p);
25151 case mp_stroked_code:
25152 gr_pen_p(hq) = mp_export_knot_list(mp,pen_p(p));
25153 if (pen_is_elliptical(pen_p(p))) {
25154 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25157 pc=mp_copy_path(mp, path_p(p));
25159 if ( left_type(pc)!=mp_endpoint ) {
25160 left_type(mp_insert_knot(mp, pc,x_coord(pc),y_coord(pc)))=mp_endpoint;
25161 right_type(pc)=mp_endpoint;
25165 pc=mp_make_envelope(mp,pc,pen_p(p),ljoin_val(p),t,miterlim_val(p));
25166 gr_path_p(hq) = mp_export_knot_list(mp,pc);
25167 mp_toss_knot_list(mp, pc);
25169 @<Export object color@>;
25170 @<Export object scripts@>;
25171 gr_ljoin_val(hq) = ljoin_val(p);
25172 gr_miterlim_val(hq) = miterlim_val(p);
25173 gr_lcap_val(hq) = lcap_val(p);
25174 gr_dash_scale(hq) = dash_scale(p);
25175 gr_dash_p(hq) = mp_export_dashes(mp,dash_p(p));
25178 gr_text_p(hq) = str(text_p(p));
25179 gr_font_n(hq) = font_n(p);
25180 gr_font_name(hq) = mp_xstrdup(mp,mp->font_name[font_n(p)]);
25181 gr_font_dsize(hq) = mp->font_dsize[font_n(p)];
25182 @<Export object color@>;
25183 @<Export object scripts@>;
25184 gr_width_val(hq) = width_val(p);
25185 gr_height_val(hq) = height_val(p);
25186 gr_depth_val(hq) = depth_val(p);
25187 gr_tx_val(hq) = tx_val(p);
25188 gr_ty_val(hq) = ty_val(p);
25189 gr_txx_val(hq) = txx_val(p);
25190 gr_txy_val(hq) = txy_val(p);
25191 gr_tyx_val(hq) = tyx_val(p);
25192 gr_tyy_val(hq) = tyy_val(p);
25194 case mp_start_clip_code:
25195 case mp_start_bounds_code:
25196 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25198 case mp_stop_clip_code:
25199 case mp_stop_bounds_code:
25200 /* nothing to do here */
25203 if (hh->body==NULL) hh->body=hq; else gr_link(hp) = hq;
25210 @ @<Exported function ...@>=
25211 struct mp_edge_object *mp_gr_export(MP mp, int h);
25213 @ This function is now nearly trivial.
25216 void mp_ship_out (MP mp, pointer h) { /* output edge structure |h| */
25217 integer c; /* \&{charcode} rounded to the nearest integer */
25218 c=mp_round_unscaled(mp, mp->internal[mp_char_code]);
25219 @<Begin the progress report for the output of picture~|c|@>;
25220 (mp->shipout_backend) (mp, h);
25221 @<End progress report@>;
25222 if ( mp->internal[mp_tracing_output]>0 )
25223 mp_print_edges(mp, h," (just shipped out)",true);
25226 @ @<Declarations@>=
25227 void mp_shipout_backend (MP mp, pointer h);
25230 void mp_shipout_backend (MP mp, pointer h) {
25231 struct mp_edge_object *hh; /* the first graphical object */
25232 hh = mp_gr_export(mp,h);
25233 mp_gr_ship_out (hh,
25234 (mp->internal[mp_prologues]>>16),
25235 (mp->internal[mp_procset]>>16));
25236 mp_gr_toss_objects(hh);
25239 @ @<Exported types@>=
25240 typedef void (*mp_backend_writer)(MP, int);
25242 @ @<Option variables@>=
25243 mp_backend_writer shipout_backend;
25245 @ @<Allocate or initialize ...@>=
25246 set_callback_option(shipout_backend);
25250 @ Once again, the |gr_XXXX| macros are defined in |mppsout.h|
25252 @<Export object color@>=
25253 gr_color_model(hq) = color_model(p);
25254 gr_cyan_val(hq) = cyan_val(p);
25255 gr_magenta_val(hq) = magenta_val(p);
25256 gr_yellow_val(hq) = yellow_val(p);
25257 gr_black_val(hq) = black_val(p);
25258 gr_red_val(hq) = red_val(p);
25259 gr_green_val(hq) = green_val(p);
25260 gr_blue_val(hq) = blue_val(p);
25261 gr_grey_val(hq) = grey_val(p)
25264 @ @<Export object scripts@>=
25265 if (pre_script(p)!=null)
25266 gr_pre_script(hq) = str(pre_script(p));
25267 if (post_script(p)!=null)
25268 gr_post_script(hq) = str(post_script(p));
25270 @ Now that we've finished |ship_out|, let's look at the other commands
25271 by which a user can send things to the \.{GF} file.
25273 @ @<Determine if a character has been shipped out@>=
25275 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
25276 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
25277 boolean_reset(mp->char_exists[mp->cur_exp]);
25278 mp->cur_type=mp_boolean_type;
25284 @ @<Allocate or initialize ...@>=
25285 mp_backend_initialize(mp);
25288 mp_backend_free(mp);
25291 @* \[45] Dumping and undumping the tables.
25292 After \.{INIMP} has seen a collection of macros, it
25293 can write all the necessary information on an auxiliary file so
25294 that production versions of \MP\ are able to initialize their
25295 memory at high speed. The present section of the program takes
25296 care of such output and input. We shall consider simultaneously
25297 the processes of storing and restoring,
25298 so that the inverse relation between them is clear.
25301 The global variable |mem_ident| is a string that is printed right
25302 after the |banner| line when \MP\ is ready to start. For \.{INIMP} this
25303 string says simply `\.{(INIMP)}'; for other versions of \MP\ it says,
25304 for example, `\.{(mem=plain 90.4.14)}', showing the year,
25305 month, and day that the mem file was created. We have |mem_ident=0|
25306 before \MP's tables are loaded.
25312 mp->mem_ident=NULL;
25314 @ @<Initialize table entries...@>=
25315 mp->mem_ident=xstrdup(" (INIMP)");
25317 @ @<Declare act...@>=
25318 void mp_store_mem_file (MP mp) ;
25320 @ @c void mp_store_mem_file (MP mp) {
25321 integer k; /* all-purpose index */
25322 pointer p,q; /* all-purpose pointers */
25323 integer x; /* something to dump */
25324 four_quarters w; /* four ASCII codes */
25326 @<Create the |mem_ident|, open the mem file,
25327 and inform the user that dumping has begun@>;
25328 @<Dump constants for consistency check@>;
25329 @<Dump the string pool@>;
25330 @<Dump the dynamic memory@>;
25331 @<Dump the table of equivalents and the hash table@>;
25332 @<Dump a few more things and the closing check word@>;
25333 @<Close the mem file@>;
25336 @ Corresponding to the procedure that dumps a mem file, we also have a function
25337 that reads~one~in. The function returns |false| if the dumped mem is
25338 incompatible with the present \MP\ table sizes, etc.
25340 @d off_base 6666 /* go here if the mem file is unacceptable */
25341 @d too_small(A) { wake_up_terminal;
25342 wterm_ln("---! Must increase the "); wterm((A));
25343 @.Must increase the x@>
25348 boolean mp_load_mem_file (MP mp) {
25349 integer k; /* all-purpose index */
25350 pointer p,q; /* all-purpose pointers */
25351 integer x; /* something undumped */
25352 str_number s; /* some temporary string */
25353 four_quarters w; /* four ASCII codes */
25355 @<Undump constants for consistency check@>;
25356 @<Undump the string pool@>;
25357 @<Undump the dynamic memory@>;
25358 @<Undump the table of equivalents and the hash table@>;
25359 @<Undump a few more things and the closing check word@>;
25360 return true; /* it worked! */
25363 wterm_ln("(Fatal mem file error; I'm stymied)\n");
25364 @.Fatal mem file error@>
25368 @ @<Declarations@>=
25369 boolean mp_load_mem_file (MP mp) ;
25371 @ Mem files consist of |memory_word| items, and we use the following
25372 macros to dump words of different types:
25374 @d dump_wd(A) { WW=(A); (mp->write_binary_file)(mp->mem_file,&WW,sizeof(WW)); }
25375 @d dump_int(A) { int cint=(A); (mp->write_binary_file)(mp->mem_file,&cint,sizeof(cint)); }
25376 @d dump_hh(A) { WW.hh=(A); (mp->write_binary_file)(mp->mem_file,&WW,sizeof(WW)); }
25377 @d dump_qqqq(A) { WW.qqqq=(A); (mp->write_binary_file)(mp->mem_file,&WW,sizeof(WW)); }
25378 @d dump_string(A) { dump_int(strlen(A)+1);
25379 (mp->write_binary_file)(mp->mem_file,A,strlen(A)+1); }
25382 void * mem_file; /* for input or output of mem information */
25384 @ The inverse macros are slightly more complicated, since we need to check
25385 the range of the values we are reading in. We say `|undump(a)(b)(x)|' to
25386 read an integer value |x| that is supposed to be in the range |a<=x<=b|.
25389 size_t wanted = sizeof(A);
25391 (mp->read_binary_file)(mp->mem_file,&A_ptr,&wanted);
25392 if (wanted!=sizeof(A)) goto OFF_BASE;
25396 size_t wanted = sizeof(A);
25398 (mp->read_binary_file)(mp->mem_file,&A_ptr,&wanted);
25399 if (wanted!=sizeof(A)) goto OFF_BASE;
25402 @d undump_wd(A) { mgetw(WW); A=WW; }
25403 @d undump_int(A) { int cint; mgeti(cint); A=cint; }
25404 @d undump_hh(A) { mgetw(WW); A=WW.hh; }
25405 @d undump_qqqq(A) { mgetw(WW); A=WW.qqqq; }
25406 @d undump_strings(A,B,C) {
25407 undump_int(x); if ( (x<(A)) || (x>(B)) ) goto OFF_BASE; else C=str(x); }
25408 @d undump(A,B,C) { undump_int(x); if ( (x<(A)) || (x>(int)(B)) ) goto OFF_BASE; else C=x; }
25409 @d undump_size(A,B,C,D) { undump_int(x);
25410 if (x<(A)) goto OFF_BASE;
25411 if (x>(B)) { too_small((C)); } else { D=x;} }
25412 @d undump_string(A) do {
25417 A = xmalloc(XX,sizeof(char));
25418 (mp->read_binary_file)(mp->mem_file,(void **)&A,&wanted);
25419 if (wanted!=(size_t)XX) goto OFF_BASE;
25422 @ The next few sections of the program should make it clear how we use the
25423 dump/undump macros.
25425 @<Dump constants for consistency check@>=
25426 dump_int(mp->mem_top);
25427 dump_int(mp->hash_size);
25428 dump_int(mp->hash_prime)
25429 dump_int(mp->param_size);
25430 dump_int(mp->max_in_open);
25432 @ Sections of a \.{WEB} program that are ``commented out'' still contribute
25433 strings to the string pool; therefore \.{INIMP} and \MP\ will have
25434 the same strings. (And it is, of course, a good thing that they do.)
25438 @<Undump constants for consistency check@>=
25439 undump_int(x); mp->mem_top = x;
25440 undump_int(x); if (mp->hash_size != x) goto OFF_BASE;
25441 undump_int(x); if (mp->hash_prime != x) goto OFF_BASE;
25442 undump_int(x); if (mp->param_size != x) goto OFF_BASE;
25443 undump_int(x); if (mp->max_in_open != x) goto OFF_BASE
25445 @ We do string pool compaction to avoid dumping unused strings.
25448 w.b0=qi(mp->str_pool[k]); w.b1=qi(mp->str_pool[k+1]);
25449 w.b2=qi(mp->str_pool[k+2]); w.b3=qi(mp->str_pool[k+3]);
25452 @<Dump the string pool@>=
25453 mp_do_compaction(mp, mp->pool_size);
25454 dump_int(mp->pool_ptr);
25455 dump_int(mp->max_str_ptr);
25456 dump_int(mp->str_ptr);
25458 while ( (mp->next_str[k]==k+1) && (k<=mp->max_str_ptr) )
25461 while ( k<=mp->max_str_ptr ) {
25462 dump_int(mp->next_str[k]); incr(k);
25466 dump_int(mp->str_start[k]); /* TODO: valgrind warning here */
25467 if ( k==mp->str_ptr ) {
25474 while (k+4<mp->pool_ptr ) {
25475 dump_four_ASCII; k=k+4;
25477 k=mp->pool_ptr-4; dump_four_ASCII;
25478 mp_print_ln(mp); mp_print(mp, "at most "); mp_print_int(mp, mp->max_str_ptr);
25479 mp_print(mp, " strings of total length ");
25480 mp_print_int(mp, mp->pool_ptr)
25482 @ @d undump_four_ASCII
25484 mp->str_pool[k]=qo(w.b0); mp->str_pool[k+1]=qo(w.b1);
25485 mp->str_pool[k+2]=qo(w.b2); mp->str_pool[k+3]=qo(w.b3)
25487 @<Undump the string pool@>=
25488 undump_int(mp->pool_ptr);
25489 mp_reallocate_pool(mp, mp->pool_ptr) ;
25490 undump_int(mp->max_str_ptr);
25491 mp_reallocate_strings (mp,mp->max_str_ptr) ;
25492 undump(0,mp->max_str_ptr,mp->str_ptr);
25493 undump(0,mp->max_str_ptr+1,s);
25494 for (k=0;k<=s-1;k++)
25495 mp->next_str[k]=k+1;
25496 for (k=s;k<=mp->max_str_ptr;k++)
25497 undump(s+1,mp->max_str_ptr+1,mp->next_str[k]);
25498 mp->fixed_str_use=0;
25501 undump(0,mp->pool_ptr,mp->str_start[k]);
25502 if ( k==mp->str_ptr ) break;
25503 mp->str_ref[k]=max_str_ref;
25504 incr(mp->fixed_str_use);
25505 mp->last_fixed_str=k; k=mp->next_str[k];
25508 while ( k+4<mp->pool_ptr ) {
25509 undump_four_ASCII; k=k+4;
25511 k=mp->pool_ptr-4; undump_four_ASCII;
25512 mp->init_str_use=mp->fixed_str_use; mp->init_pool_ptr=mp->pool_ptr;
25513 mp->max_pool_ptr=mp->pool_ptr;
25514 mp->strs_used_up=mp->fixed_str_use;
25515 mp->pool_in_use=mp->str_start[mp->str_ptr]; mp->strs_in_use=mp->fixed_str_use;
25516 mp->max_pl_used=mp->pool_in_use; mp->max_strs_used=mp->strs_in_use;
25517 mp->pact_count=0; mp->pact_chars=0; mp->pact_strs=0;
25519 @ By sorting the list of available spaces in the variable-size portion of
25520 |mem|, we are usually able to get by without having to dump very much
25521 of the dynamic memory.
25523 We recompute |var_used| and |dyn_used|, so that \.{INIMP} dumps valid
25524 information even when it has not been gathering statistics.
25526 @<Dump the dynamic memory@>=
25527 mp_sort_avail(mp); mp->var_used=0;
25528 dump_int(mp->lo_mem_max); dump_int(mp->rover);
25529 p=0; q=mp->rover; x=0;
25531 for (k=p;k<= q+1;k++)
25532 dump_wd(mp->mem[k]);
25533 x=x+q+2-p; mp->var_used=mp->var_used+q-p;
25534 p=q+node_size(q); q=rlink(q);
25535 } while (q!=mp->rover);
25536 mp->var_used=mp->var_used+mp->lo_mem_max-p;
25537 mp->dyn_used=mp->mem_end+1-mp->hi_mem_min;
25538 for (k=p;k<= mp->lo_mem_max;k++ )
25539 dump_wd(mp->mem[k]);
25540 x=x+mp->lo_mem_max+1-p;
25541 dump_int(mp->hi_mem_min); dump_int(mp->avail);
25542 for (k=mp->hi_mem_min;k<=mp->mem_end;k++ )
25543 dump_wd(mp->mem[k]);
25544 x=x+mp->mem_end+1-mp->hi_mem_min;
25546 while ( p!=null ) {
25547 decr(mp->dyn_used); p=link(p);
25549 dump_int(mp->var_used); dump_int(mp->dyn_used);
25550 mp_print_ln(mp); mp_print_int(mp, x);
25551 mp_print(mp, " memory locations dumped; current usage is ");
25552 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used)
25554 @ @<Undump the dynamic memory@>=
25555 undump(lo_mem_stat_max+1000,hi_mem_stat_min-1,mp->lo_mem_max);
25556 undump(lo_mem_stat_max+1,mp->lo_mem_max,mp->rover);
25559 for (k=p;k<= q+1; k++)
25560 undump_wd(mp->mem[k]);
25562 if ( (p>mp->lo_mem_max)||((q>=rlink(q))&&(rlink(q)!=mp->rover)) )
25565 } while (q!=mp->rover);
25566 for (k=p;k<=mp->lo_mem_max;k++ )
25567 undump_wd(mp->mem[k]);
25568 undump(mp->lo_mem_max+1,hi_mem_stat_min,mp->hi_mem_min);
25569 undump(null,mp->mem_top,mp->avail); mp->mem_end=mp->mem_top;
25570 for (k=mp->hi_mem_min;k<= mp->mem_end;k++)
25571 undump_wd(mp->mem[k]);
25572 undump_int(mp->var_used); undump_int(mp->dyn_used)
25574 @ A different scheme is used to compress the hash table, since its lower region
25575 is usually sparse. When |text(p)<>0| for |p<=hash_used|, we output three
25576 words: |p|, |hash[p]|, and |eqtb[p]|. The hash table is, of course, densely
25577 packed for |p>=hash_used|, so the remaining entries are output in~a~block.
25579 @<Dump the table of equivalents and the hash table@>=
25580 dump_int(mp->hash_used);
25581 mp->st_count=frozen_inaccessible-1-mp->hash_used;
25582 for (p=1;p<=mp->hash_used;p++) {
25583 if ( text(p)!=0 ) {
25584 dump_int(p); dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]); incr(mp->st_count);
25587 for (p=mp->hash_used+1;p<=(int)hash_end;p++) {
25588 dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]);
25590 dump_int(mp->st_count);
25591 mp_print_ln(mp); mp_print_int(mp, mp->st_count); mp_print(mp, " symbolic tokens")
25593 @ @<Undump the table of equivalents and the hash table@>=
25594 undump(1,frozen_inaccessible,mp->hash_used);
25597 undump(p+1,mp->hash_used,p);
25598 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
25599 } while (p!=mp->hash_used);
25600 for (p=mp->hash_used+1;p<=(int)hash_end;p++ ) {
25601 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
25603 undump_int(mp->st_count)
25605 @ We have already printed a lot of statistics, so we set |mp_tracing_stats:=0|
25606 to prevent them appearing again.
25608 @<Dump a few more things and the closing check word@>=
25609 dump_int(mp->max_internal);
25610 dump_int(mp->int_ptr);
25611 for (k=1;k<= mp->int_ptr;k++ ) {
25612 dump_int(mp->internal[k]);
25613 dump_string(mp->int_name[k]);
25615 dump_int(mp->start_sym);
25616 dump_int(mp->interaction);
25617 dump_string(mp->mem_ident);
25618 dump_int(mp->bg_loc); dump_int(mp->eg_loc); dump_int(mp->serial_no); dump_int(69073);
25619 mp->internal[mp_tracing_stats]=0
25621 @ @<Undump a few more things and the closing check word@>=
25623 if (x>mp->max_internal) mp_grow_internals(mp,x);
25624 undump_int(mp->int_ptr);
25625 for (k=1;k<= mp->int_ptr;k++) {
25626 undump_int(mp->internal[k]);
25627 undump_string(mp->int_name[k]);
25629 undump(0,frozen_inaccessible,mp->start_sym);
25630 if (mp->interaction==mp_unspecified_mode) {
25631 undump(mp_unspecified_mode,mp_error_stop_mode,mp->interaction);
25633 undump(mp_unspecified_mode,mp_error_stop_mode,x);
25635 undump_string(mp->mem_ident);
25636 undump(1,hash_end,mp->bg_loc);
25637 undump(1,hash_end,mp->eg_loc);
25638 undump_int(mp->serial_no);
25640 if (x!=69073) goto OFF_BASE
25642 @ @<Create the |mem_ident|...@>=
25644 xfree(mp->mem_ident);
25645 mp->mem_ident = xmalloc(256,1);
25646 snprintf(mp->mem_ident,256," (mem=%s %i.%i.%i)",
25648 (int)(mp_round_unscaled(mp, mp->internal[mp_year]) % 100),
25649 (int)mp_round_unscaled(mp, mp->internal[mp_month]),
25650 (int)mp_round_unscaled(mp, mp->internal[mp_day]));
25651 mp_pack_job_name(mp, mem_extension);
25652 while (! mp_w_open_out(mp, &mp->mem_file) )
25653 mp_prompt_file_name(mp, "mem file name", mem_extension);
25654 mp_print_nl(mp, "Beginning to dump on file ");
25655 @.Beginning to dump...@>
25656 mp_print(mp, mp->name_of_file);
25657 mp_print_nl(mp, mp->mem_ident);
25660 @ @<Dealloc variables@>=
25661 xfree(mp->mem_ident);
25663 @ @<Close the mem file@>=
25664 (mp->close_file)(mp->mem_file)
25666 @* \[46] The main program.
25667 This is it: the part of \MP\ that executes all those procedures we have
25670 Well---almost. We haven't put the parsing subroutines into the
25671 program yet; and we'd better leave space for a few more routines that may
25672 have been forgotten.
25674 @c @<Declare the basic parsing subroutines@>;
25675 @<Declare miscellaneous procedures that were declared |forward|@>;
25676 @<Last-minute procedures@>
25678 @ We've noted that there are two versions of \MP. One, called \.{INIMP},
25680 has to be run first; it initializes everything from scratch, without
25681 reading a mem file, and it has the capability of dumping a mem file.
25682 The other one is called `\.{VIRMP}'; it is a ``virgin'' program that needs
25684 to input a mem file in order to get started. \.{VIRMP} typically has
25685 a bit more memory capacity than \.{INIMP}, because it does not need the
25686 space consumed by the dumping/undumping routines and the numerous calls on
25689 The \.{VIRMP} program cannot read a mem file instantaneously, of course;
25690 the best implementations therefore allow for production versions of \MP\ that
25691 not only avoid the loading routine for object code, they also have
25692 a mem file pre-loaded.
25694 @ @<Option variables@>=
25695 int ini_version; /* are we iniMP? */
25697 @ @<Set |ini_version|@>=
25698 mp->ini_version = (opt->ini_version ? true : false);
25700 @ Here we do whatever is needed to complete \MP's job gracefully on the
25701 local operating system. The code here might come into play after a fatal
25702 error; it must therefore consist entirely of ``safe'' operations that
25703 cannot produce error messages. For example, it would be a mistake to call
25704 |str_room| or |make_string| at this time, because a call on |overflow|
25705 might lead to an infinite loop.
25706 @^system dependencies@>
25708 This program doesn't bother to close the input files that may still be open.
25710 @<Last-minute...@>=
25711 void mp_close_files_and_terminate (MP mp) {
25712 integer k; /* all-purpose index */
25713 integer LH; /* the length of the \.{TFM} header, in words */
25714 int lk_offset; /* extra words inserted at beginning of |lig_kern| array */
25715 pointer p; /* runs through a list of \.{TFM} dimensions */
25716 @<Close all open files in the |rd_file| and |wr_file| arrays@>;
25717 if ( mp->internal[mp_tracing_stats]>0 )
25718 @<Output statistics about this job@>;
25720 @<Do all the finishing work on the \.{TFM} file@>;
25721 @<Explain what output files were written@>;
25722 if ( mp->log_opened ){
25724 (mp->close_file)(mp->log_file);
25725 mp->selector=mp->selector-2;
25726 if ( mp->selector==term_only ) {
25727 mp_print_nl(mp, "Transcript written on ");
25728 @.Transcript written...@>
25729 mp_print(mp, mp->log_name); mp_print_char(mp, '.');
25737 @ @<Declarations@>=
25738 void mp_close_files_and_terminate (MP mp) ;
25740 @ @<Close all open files in the |rd_file| and |wr_file| arrays@>=
25741 if (mp->rd_fname!=NULL) {
25742 for (k=0;k<=(int)mp->read_files-1;k++ ) {
25743 if ( mp->rd_fname[k]!=NULL ) {
25744 (mp->close_file)(mp->rd_file[k]);
25748 if (mp->wr_fname!=NULL) {
25749 for (k=0;k<=(int)mp->write_files-1;k++) {
25750 if ( mp->wr_fname[k]!=NULL ) {
25751 (mp->close_file)(mp->wr_file[k]);
25757 for (k=0;k<(int)mp->max_read_files;k++ ) {
25758 if ( mp->rd_fname[k]!=NULL ) {
25759 (mp->close_file)(mp->rd_file[k]);
25760 mp_xfree(mp->rd_fname[k]);
25763 mp_xfree(mp->rd_file);
25764 mp_xfree(mp->rd_fname);
25765 for (k=0;k<(int)mp->max_write_files;k++) {
25766 if ( mp->wr_fname[k]!=NULL ) {
25767 (mp->close_file)(mp->wr_file[k]);
25768 mp_xfree(mp->wr_fname[k]);
25771 mp_xfree(mp->wr_file);
25772 mp_xfree(mp->wr_fname);
25775 @ We want to produce a \.{TFM} file if and only if |mp_fontmaking| is positive.
25777 We reclaim all of the variable-size memory at this point, so that
25778 there is no chance of another memory overflow after the memory capacity
25779 has already been exceeded.
25781 @<Do all the finishing work on the \.{TFM} file@>=
25782 if ( mp->internal[mp_fontmaking]>0 ) {
25783 @<Make the dynamic memory into one big available node@>;
25784 @<Massage the \.{TFM} widths@>;
25785 mp_fix_design_size(mp); mp_fix_check_sum(mp);
25786 @<Massage the \.{TFM} heights, depths, and italic corrections@>;
25787 mp->internal[mp_fontmaking]=0; /* avoid loop in case of fatal error */
25788 @<Finish the \.{TFM} file@>;
25791 @ @<Make the dynamic memory into one big available node@>=
25792 mp->rover=lo_mem_stat_max+1; link(mp->rover)=empty_flag; mp->lo_mem_max=mp->hi_mem_min-1;
25793 if ( mp->lo_mem_max-mp->rover>max_halfword ) mp->lo_mem_max=max_halfword+mp->rover;
25794 node_size(mp->rover)=mp->lo_mem_max-mp->rover;
25795 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
25796 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null
25798 @ The present section goes directly to the log file instead of using
25799 |print| commands, because there's no need for these strings to take
25800 up |str_pool| memory when a non-{\bf stat} version of \MP\ is being used.
25802 @<Output statistics...@>=
25803 if ( mp->log_opened ) {
25806 wlog_ln("Here is how much of MetaPost's memory you used:");
25807 @.Here is how much...@>
25808 snprintf(s,128," %i string%s out of %i",(int)mp->max_strs_used-mp->init_str_use,
25809 (mp->max_strs_used!=mp->init_str_use+1 ? "s" : ""),
25810 (int)(mp->max_strings-1-mp->init_str_use));
25812 snprintf(s,128," %i string characters out of %i",
25813 (int)mp->max_pl_used-mp->init_pool_ptr,
25814 (int)mp->pool_size-mp->init_pool_ptr);
25816 snprintf(s,128," %i words of memory out of %i",
25817 (int)mp->lo_mem_max+mp->mem_end-mp->hi_mem_min+2,
25818 (int)mp->mem_end+1);
25820 snprintf(s,128," %i symbolic tokens out of %i", (int)mp->st_count, (int)mp->hash_size);
25822 snprintf(s,128," %ii, %in, %ip, %ib stack positions out of %ii, %in, %ip, %ib",
25823 (int)mp->max_in_stack,(int)mp->int_ptr,
25824 (int)mp->max_param_stack,(int)mp->max_buf_stack+1,
25825 (int)mp->stack_size,(int)mp->max_internal,(int)mp->param_size,(int)mp->buf_size);
25827 snprintf(s,128," %i string compactions (moved %i characters, %i strings)",
25828 (int)mp->pact_count,(int)mp->pact_chars,(int)mp->pact_strs);
25832 @ We get to the |final_cleanup| routine when \&{end} or \&{dump} has
25835 @<Last-minute...@>=
25836 void mp_final_cleanup (MP mp) {
25837 small_number c; /* 0 for \&{end}, 1 for \&{dump} */
25839 if ( mp->job_name==NULL ) mp_open_log_file(mp);
25840 while ( mp->input_ptr>0 ) {
25841 if ( token_state ) mp_end_token_list(mp);
25842 else mp_end_file_reading(mp);
25844 while ( mp->loop_ptr!=null ) mp_stop_iteration(mp);
25845 while ( mp->open_parens>0 ) {
25846 mp_print(mp, " )"); decr(mp->open_parens);
25848 while ( mp->cond_ptr!=null ) {
25849 mp_print_nl(mp, "(end occurred when ");
25850 @.end occurred...@>
25851 mp_print_cmd_mod(mp, fi_or_else,mp->cur_if);
25852 /* `\.{if}' or `\.{elseif}' or `\.{else}' */
25853 if ( mp->if_line!=0 ) {
25854 mp_print(mp, " on line "); mp_print_int(mp, mp->if_line);
25856 mp_print(mp, " was incomplete)");
25857 mp->if_line=if_line_field(mp->cond_ptr);
25858 mp->cur_if=name_type(mp->cond_ptr); mp->cond_ptr=link(mp->cond_ptr);
25860 if ( mp->history!=mp_spotless )
25861 if ( ((mp->history==mp_warning_issued)||(mp->interaction<mp_error_stop_mode)) )
25862 if ( mp->selector==term_and_log ) {
25863 mp->selector=term_only;
25864 mp_print_nl(mp, "(see the transcript file for additional information)");
25865 @.see the transcript file...@>
25866 mp->selector=term_and_log;
25869 if (mp->ini_version) {
25870 mp_store_mem_file(mp); return;
25872 mp_print_nl(mp, "(dump is performed only by INIMP)"); return;
25873 @.dump...only by INIMP@>
25877 @ @<Declarations@>=
25878 void mp_final_cleanup (MP mp) ;
25879 void mp_init_prim (MP mp) ;
25880 void mp_init_tab (MP mp) ;
25882 @ @<Last-minute...@>=
25883 void mp_init_prim (MP mp) { /* initialize all the primitives */
25887 void mp_init_tab (MP mp) { /* initialize other tables */
25888 integer k; /* all-purpose index */
25889 @<Initialize table entries (done by \.{INIMP} only)@>;
25893 @ When we begin the following code, \MP's tables may still contain garbage;
25894 the strings might not even be present. Thus we must proceed cautiously to get
25897 But when we finish this part of the program, \MP\ is ready to call on the
25898 |main_control| routine to do its work.
25900 @<Get the first line...@>=
25902 @<Initialize the input routines@>;
25903 if ( (mp->mem_ident==NULL)||(mp->buffer[loc]=='&') ) {
25904 if ( mp->mem_ident!=NULL ) {
25905 mp_do_initialize(mp); /* erase preloaded mem */
25907 if ( ! mp_open_mem_file(mp) ) return mp_fatal_error_stop;
25908 if ( ! mp_load_mem_file(mp) ) {
25909 (mp->close_file)(mp->mem_file);
25910 return mp_fatal_error_stop;
25912 (mp->close_file)( mp->mem_file);
25913 while ( (loc<limit)&&(mp->buffer[loc]==' ') ) incr(loc);
25915 mp->buffer[limit]='%';
25916 mp_fix_date_and_time(mp);
25917 if (mp->random_seed==0)
25918 mp->random_seed = (mp->internal[mp_time] / unity)+mp->internal[mp_day];
25919 mp_init_randoms(mp, mp->random_seed);
25920 @<Initialize the print |selector|...@>;
25921 if ( loc<limit ) if ( mp->buffer[loc]!='\\' )
25922 mp_start_input(mp); /* \&{input} assumed */
25925 @ @<Run inimpost commands@>=
25927 mp_get_strings_started(mp);
25928 mp_init_tab(mp); /* initialize the tables */
25929 mp_init_prim(mp); /* call |primitive| for each primitive */
25930 mp->init_str_use=mp->str_ptr; mp->init_pool_ptr=mp->pool_ptr;
25931 mp->max_str_ptr=mp->str_ptr; mp->max_pool_ptr=mp->pool_ptr;
25932 mp_fix_date_and_time(mp);
25936 @* \[47] Debugging.
25937 Once \MP\ is working, you should be able to diagnose most errors with
25938 the \.{show} commands and other diagnostic features. But for the initial
25939 stages of debugging, and for the revelation of really deep mysteries, you
25940 can compile \MP\ with a few more aids. An additional routine called |debug_help|
25941 will also come into play when you type `\.D' after an error message;
25942 |debug_help| also occurs just before a fatal error causes \MP\ to succumb.
25944 @^system dependencies@>
25946 The interface to |debug_help| is primitive, but it is good enough when used
25947 with a debugger that allows you to set breakpoints and to read
25948 variables and change their values. After getting the prompt `\.{debug \#}', you
25949 type either a negative number (this exits |debug_help|), or zero (this
25950 goes to a location where you can set a breakpoint, thereby entering into
25951 dialog with the debugger), or a positive number |m| followed by
25952 an argument |n|. The meaning of |m| and |n| will be clear from the
25953 program below. (If |m=13|, there is an additional argument, |l|.)
25956 @<Last-minute...@>=
25957 void mp_debug_help (MP mp) { /* routine to display various things */
25964 mp_print_nl(mp, "debug # (-1 to exit):"); update_terminal;
25967 aline = (mp->read_ascii_file)(mp->term_in, &len);
25968 if (len) { sscanf(aline,"%i",&m); xfree(aline); }
25972 aline = (mp->read_ascii_file)(mp->term_in, &len);
25973 if (len) { sscanf(aline,"%i",&n); xfree(aline); }
25975 @<Numbered cases for |debug_help|@>;
25976 default: mp_print(mp, "?"); break;
25981 @ @<Numbered cases...@>=
25982 case 1: mp_print_word(mp, mp->mem[n]); /* display |mem[n]| in all forms */
25984 case 2: mp_print_int(mp, info(n));
25986 case 3: mp_print_int(mp, link(n));
25988 case 4: mp_print_int(mp, eq_type(n)); mp_print_char(mp, ':'); mp_print_int(mp, equiv(n));
25990 case 5: mp_print_variable_name(mp, n);
25992 case 6: mp_print_int(mp, mp->internal[n]);
25994 case 7: mp_do_show_dependencies(mp);
25996 case 9: mp_show_token_list(mp, n,null,100000,0);
25998 case 10: mp_print_str(mp, n);
26000 case 11: mp_check_mem(mp, n>0); /* check wellformedness; print new busy locations if |n>0| */
26002 case 12: mp_search_mem(mp, n); /* look for pointers to |n| */
26006 aline = (mp->read_ascii_file)(mp->term_in, &len);
26007 if (len) { sscanf(aline,"%i",&l); xfree(aline); }
26008 mp_print_cmd_mod(mp, n,l);
26010 case 14: for (k=0;k<=n;k++) mp_print_str(mp, mp->buffer[k]);
26012 case 15: mp->panicking=! mp->panicking;
26016 @ Saving the filename template
26018 @<Save the filename template@>=
26020 if ( mp->filename_template!=0 ) delete_str_ref(mp->filename_template);
26021 if ( length(mp->cur_exp)==0 ) mp->filename_template=0;
26023 mp->filename_template=mp->cur_exp; add_str_ref(mp->filename_template);
26027 @* \[48] System-dependent changes.
26028 This section should be replaced, if necessary, by any special
26029 modification of the program
26030 that are necessary to make \MP\ work at a particular installation.
26031 It is usually best to design your change file so that all changes to
26032 previous sections preserve the section numbering; then everybody's version
26033 will be consistent with the published program. More extensive changes,
26034 which introduce new sections, can be inserted here; then only the index
26035 itself will get a new section number.
26036 @^system dependencies@>
26039 Here is where you can find all uses of each identifier in the program,
26040 with underlined entries pointing to where the identifier was defined.
26041 If the identifier is only one letter long, however, you get to see only
26042 the underlined entries. {\sl All references are to section numbers instead of
26045 This index also lists error messages and other aspects of the program
26046 that you might want to look up some day. For example, the entry
26047 for ``system dependencies'' lists all sections that should receive
26048 special attention from people who are installing \MP\ in a new
26049 operating environment. A list of various things that can't happen appears
26050 under ``this can't happen''.
26051 Approximately 25 sections are listed under ``inner loop''; these account
26052 for more than 60\pct! of \MP's running time, exclusive of input and output.