1 % $Id: mp.web,v 1.8 2005/08/24 10:54:02 taco Exp $
2 % MetaPost, by John Hobby. Public domain.
4 % Much of this program was copied with permission from MF.web Version 1.9
5 % It interprets a language very similar to D.E. Knuth's METAFONT, but with
6 % changes designed to make it more suitable for PostScript output.
8 % TeX is a trademark of the American Mathematical Society.
9 % METAFONT is a trademark of Addison-Wesley Publishing Company.
10 % PostScript is a trademark of Adobe Systems Incorporated.
12 % Here is TeX material that gets inserted after \input webmac
13 \def\hang{\hangindent 3em\noindent\ignorespaces}
14 \def\textindent#1{\hangindent2.5em\noindent\hbox to2.5em{\hss#1 }\ignorespaces}
17 \def\ph{\hbox{Pascal-H}}
18 \def\psqrt#1{\sqrt{\mathstrut#1}}
20 \def\pct!{{\char`\%}} % percent sign in ordinary text
21 \font\tenlogo=logo10 % font used for the METAFONT logo
23 \def\MF{{\tenlogo META}\-{\tenlogo FONT}}
24 \def\MP{{\tenlogo META}\-{\tenlogo POST}}
25 \def\[#1]{#1.} % from pascal web
26 \def\<#1>{$\langle#1\rangle$}
27 \def\section{\mathhexbox278}
28 \let\swap=\leftrightarrow
29 \def\round{\mathop{\rm round}\nolimits}
30 \mathchardef\vb="026A % synonym for `\|'
32 \def\(#1){} % this is used to make section names sort themselves better
33 \def\9#1{} % this is used for sort keys in the index via @@:sort key}{entry@@>
35 \def\glob{15} % this should be the section number of "<Global...>"
36 \def\gglob{23, 28} % this should be the next two sections of "<Global...>"
41 This is \MP, a graphics-language processor based on D. E. Knuth's \MF.
43 The main purpose of the following program is to explain the algorithms of \MP\
44 as clearly as possible. As a result, the program will not necessarily be very
45 efficient when a particular \PASCAL\ compiler has translated it into a
46 particular machine language. However, the program has been written so that it
47 can be tuned to run efficiently in a wide variety of operating environments
48 by making comparatively few changes. Such flexibility is possible because
49 the documentation that follows is written in the \.{WEB} language, which is
50 at a higher level than \PASCAL; the preprocessing step that converts \.{WEB}
51 to \PASCAL\ is able to introduce most of the necessary refinements.
52 Semi-automatic translation to other languages is also feasible, because the
53 program below does not make extensive use of features that are peculiar to
56 A large piece of software like \MP\ has inherent complexity that cannot
57 be reduced below a certain level of difficulty, although each individual
58 part is fairly simple by itself. The \.{WEB} language is intended to make
59 the algorithms as readable as possible, by reflecting the way the
60 individual program pieces fit together and by providing the
61 cross-references that connect different parts. Detailed comments about
62 what is going on, and about why things were done in certain ways, have
63 been liberally sprinkled throughout the program. These comments explain
64 features of the implementation, but they rarely attempt to explain the
65 \MP\ language itself, since the reader is supposed to be familiar with
66 {\sl The {\logos METAFONT\/}book} as well as the manual
68 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
69 {\sl A User's Manual for MetaPost}, Computing Science Technical Report 162,
70 AT\AM T Bell Laboratories.
72 @ The present implementation is a preliminary version, but the possibilities
73 for new features are limited by the desire to remain as nearly compatible
74 with \MF\ as possible.
76 On the other hand, the \.{WEB} description can be extended without changing
77 the core of the program, and it has been designed so that such
78 extensions are not extremely difficult to make.
79 The |banner| string defined here should be changed whenever \MP\
80 undergoes any modifications, so that it will be clear which version of
81 \MP\ might be the guilty party when a problem arises.
83 @^system dependencies@>
85 @d banner "This is MetaPost, Version 1.002" /* printed when \MP\ starts */
86 @d metapost_version "1.002"
87 @d mplib_version "0.20"
88 @d version_string " (Cweb version 0.20)"
90 @ Different \PASCAL s have slightly different conventions, and the present
92 program is expressed in a version of \PASCAL\ that D. E. Knuth used for \MF.
93 Constructions that apply to
94 this particular compiler, which we shall call \ph, should help the
95 reader see how to make an appropriate interface for other systems
96 if necessary. (\ph\ is Charles Hedrick's modification of a compiler
97 @^Hedrick, Charles Locke@>
98 for the DECsystem-10 that was originally developed at the University of
99 Hamburg; cf.\ {\sl SOFTWARE---Practice \AM\ Experience \bf6} (1976),
100 29--42. The \MP\ program below is intended to be adaptable, without
101 extensive changes, to most other versions of \PASCAL\ and commonly used
102 \PASCAL-to-C translators, so it does not fully
104 use the admirable features of \ph. Indeed, a conscious effort has been
105 made here to avoid using several idiosyncratic features of standard
106 \PASCAL\ itself, so that most of the code can be translated mechanically
107 into other high-level languages. For example, the `\&{with}' and `\\{new}'
108 features are not used, nor are pointer types, set types, or enumerated
109 scalar types; there are no `\&{var}' parameters, except in the case of files;
110 there are no tag fields on variant records; there are no |real| variables;
111 no procedures are declared local to other procedures.)
113 The portions of this program that involve system-dependent code, where
114 changes might be necessary because of differences between \PASCAL\ compilers
115 and/or differences between
116 operating systems, can be identified by looking at the sections whose
117 numbers are listed under `system dependencies' in the index. Furthermore,
118 the index entries for `dirty \PASCAL' list all places where the restrictions
119 of \PASCAL\ have not been followed perfectly, for one reason or another.
120 @^system dependencies@>
123 @ The program begins with a normal \PASCAL\ program heading, whose
124 components will be filled in later, using the conventions of \.{WEB}.
126 For example, the portion of the program called `\X\glob:Global
127 variables\X' below will be replaced by a sequence of variable declarations
128 that starts in $\section\glob$ of this documentation. In this way, we are able
129 to define each individual global variable when we are prepared to
130 understand what it means; we do not have to define all of the globals at
131 once. Cross references in $\section\glob$, where it says ``See also
132 sections \gglob, \dots,'' also make it possible to look at the set of
133 all global variables, if desired. Similar remarks apply to the other
134 portions of the program heading.
136 Actually the heading shown here is not quite normal: The |program| line
137 does not mention any |output| file, because \ph\ would ask the \MP\ user
138 to specify a file name if |output| were specified here.
139 @^system dependencies@>
145 typedef struct MP_instance * MP;
147 typedef struct MP_options {
150 @<Exported function headers@>
154 typedef struct psout_data_struct * psout_data;
156 typedef signed int integer;
158 @<Types in the outer block@>;
159 @<Constants in the outer block@>
160 # ifndef LIBAVL_ALLOCATOR
161 # define LIBAVL_ALLOCATOR
162 struct libavl_allocator {
163 void *(*libavl_malloc) (struct libavl_allocator *, size_t libavl_size);
164 void (*libavl_free) (struct libavl_allocator *, void *libavl_block);
167 typedef struct MP_instance {
170 @<Internal library declarations@>
178 #include <unistd.h> /* for access() */
179 #include <time.h> /* for struct tm \& co */
181 #include "mpmp.h" /* internal header */
182 #include "mppsout.h" /* internal header */
185 @<Basic printing procedures@>
186 @<Error handling procedures@>
188 @ Here are the functions that set up the \MP\ instance.
191 @<Declare |mp_reallocate| functions@>;
192 struct MP_options *mp_options (void);
193 MP mp_new (struct MP_options *opt);
196 struct MP_options *mp_options (void) {
197 struct MP_options *opt;
198 opt = malloc(sizeof(MP_options));
200 memset (opt,0,sizeof(MP_options));
204 MP mp_new (struct MP_options *opt) {
206 mp = xmalloc(1,sizeof(MP_instance));
207 @<Set |ini_version|@>;
208 @<Setup the non-local jump buffer in |mp_new|@>;
209 @<Allocate or initialize variables@>
210 if (opt->main_memory>mp->mem_max)
211 mp_reallocate_memory(mp,opt->main_memory);
212 mp_reallocate_paths(mp,1000);
213 mp_reallocate_fonts(mp,8);
216 void mp_free (MP mp) {
217 int k; /* loop variable */
218 @<Dealloc variables@>
223 void mp_do_initialize ( MP mp) {
224 @<Local variables for initialization@>
225 @<Set initial values of key variables@>
227 int mp_initialize (MP mp) { /* this procedure gets things started properly */
228 mp->history=mp_fatal_error_stop; /* in case we quit during initialization */
229 @<Install and test the non-local jump buffer@>;
230 t_open_out; /* open the terminal for output */
231 @<Check the ``constant'' values...@>;
234 snprintf(ss,256,"Ouch---my internal constants have been clobbered!\n"
235 "---case %i",(int)mp->bad);
236 do_fprintf(mp->err_out,(char *)ss);
240 mp_do_initialize(mp); /* erase preloaded mem */
241 if (mp->ini_version) {
242 @<Run inimpost commands@>;
244 @<Initialize the output routines@>;
245 @<Get the first line of input and prepare to start@>;
247 mp_init_map_file(mp, mp->troff_mode);
248 mp->history=mp_spotless; /* ready to go! */
249 if (mp->troff_mode) {
250 mp->internal[mp_gtroffmode]=unity;
251 mp->internal[mp_prologues]=unity;
253 if ( mp->start_sym>0 ) { /* insert the `\&{everyjob}' symbol */
254 mp->cur_sym=mp->start_sym; mp_back_input(mp);
260 @<Exported function headers@>=
261 extern struct MP_options *mp_options (void);
262 extern MP mp_new (struct MP_options *opt) ;
263 extern void mp_free (MP mp);
264 extern int mp_initialize (MP mp);
267 void mp_do_initialize (MP mp);
270 @ The overall \MP\ program begins with the heading just shown, after which
271 comes a bunch of procedure declarations and function declarations.
272 Finally we will get to the main program, which begins with the
273 comment `|start_here|'. If you want to skip down to the
274 main program now, you can look up `|start_here|' in the index.
275 But the author suggests that the best way to understand this program
276 is to follow pretty much the order of \MP's components as they appear in the
277 \.{WEB} description you are now reading, since the present ordering is
278 intended to combine the advantages of the ``bottom up'' and ``top down''
279 approaches to the problem of understanding a somewhat complicated system.
281 @ Some of the code below is intended to be used only when diagnosing the
282 strange behavior that sometimes occurs when \MP\ is being installed or
283 when system wizards are fooling around with \MP\ without quite knowing
284 what they are doing. Such code will not normally be compiled; it is
285 delimited by the preprocessor test `|#ifdef DEBUG .. #endif|'.
287 @ This program has two important variations: (1) There is a long and slow
288 version called \.{INIMP}, which does the extra calculations needed to
290 initialize \MP's internal tables; and (2)~there is a shorter and faster
291 production version, which cuts the initialization to a bare minimum.
293 Which is which is decided at runtime.
295 @ The following parameters can be changed at compile time to extend or
296 reduce \MP's capacity. They may have different values in \.{INIMP} and
297 in production versions of \MP.
299 @^system dependencies@>
302 #define file_name_size 255 /* file names shouldn't be longer than this */
303 #define bistack_size 1500 /* size of stack for bisection algorithms;
304 should probably be left at this value */
306 @ Like the preceding parameters, the following quantities can be changed
307 at compile time to extend or reduce \MP's capacity. But if they are changed,
308 it is necessary to rerun the initialization program \.{INIMP}
310 to generate new tables for the production \MP\ program.
311 One can't simply make helter-skelter changes to the following constants,
312 since certain rather complex initialization
313 numbers are computed from them.
316 int max_strings; /* maximum number of strings; must not exceed |max_halfword| */
317 int pool_size; /* maximum number of characters in strings, including all
318 error messages and help texts, and the names of all identifiers */
319 int error_line; /* width of context lines on terminal error messages */
320 int half_error_line; /* width of first lines of contexts in terminal
321 error messages; should be between 30 and |error_line-15| */
322 int max_print_line; /* width of longest text lines output; should be at least 60 */
323 int mem_max; /* greatest index in \MP's internal |mem| array;
324 must be strictly less than |max_halfword|;
325 must be equal to |mem_top| in \.{INIMP}, otherwise |>=mem_top| */
326 int mem_top; /* largest index in the |mem| array dumped by \.{INIMP};
327 must not be greater than |mem_max| */
328 int hash_size; /* maximum number of symbolic tokens,
329 must be less than |max_halfword-3*param_size| */
330 int hash_prime; /* a prime number equal to about 85\pct! of |hash_size| */
331 int param_size; /* maximum number of simultaneous macro parameters */
332 int max_in_open; /* maximum number of input files and error insertions that
333 can be going on simultaneously */
335 @ @<Option variables@>=
346 @d set_value(a,b,c) do { a=c; if (b>c) a=b; } while (0)
351 set_value(mp->error_line,opt->error_line,79);
352 set_value(mp->half_error_line,opt->half_error_line,50);
353 set_value(mp->max_print_line,opt->max_print_line,79);
356 set_value(mp->hash_size,opt->hash_size,9500);
357 set_value(mp->hash_prime,opt->hash_prime,7919);
358 set_value(mp->param_size,opt->param_size,150);
359 set_value(mp->max_in_open,opt->max_in_open,10);
362 @ In case somebody has inadvertently made bad settings of the ``constants,''
363 \MP\ checks them using a global variable called |bad|.
365 This is the first of many sections of \MP\ where global variables are
369 integer bad; /* is some ``constant'' wrong? */
371 @ Later on we will say `\ignorespaces|if (mem_max>=max_halfword) bad=10;|',
372 or something similar. (We can't do that until |max_halfword| has been defined.)
374 @<Check the ``constant'' values for consistency@>=
376 if ( (mp->half_error_line<30)||(mp->half_error_line>mp->error_line-15) ) mp->bad=1;
377 if ( mp->max_print_line<60 ) mp->bad=2;
378 if ( mp->mem_top<=1100 ) mp->bad=4;
379 if (mp->hash_prime>mp->hash_size ) mp->bad=5;
381 @ Labels are given symbolic names by the following definitions, so that
382 occasional |goto| statements will be meaningful. We insert the label
383 `|exit|:' just before the `\ignorespaces|end|\unskip' of a procedure in
384 which we have used the `|return|' statement defined below; the label
385 `|restart|' is occasionally used at the very beginning of a procedure; and
386 the label `|reswitch|' is occasionally used just prior to a |case|
387 statement in which some cases change the conditions and we wish to branch
388 to the newly applicable case. Loops that are set up with the |loop|
389 construction defined below are commonly exited by going to `|done|' or to
390 `|found|' or to `|not_found|', and they are sometimes repeated by going to
391 `|continue|'. If two or more parts of a subroutine start differently but
392 end up the same, the shared code may be gathered together at
395 Incidentally, this program never declares a label that isn't actually used,
396 because some fussy \PASCAL\ compilers will complain about redundant labels.
398 @d label_exit 10 /* go here to leave a procedure */
399 @d restart 20 /* go here to start a procedure again */
400 @d reswitch 21 /* go here to start a case statement again */
401 @d continue 22 /* go here to resume a loop */
402 @d done 30 /* go here to exit a loop */
403 @d done1 31 /* like |done|, when there is more than one loop */
404 @d done2 32 /* for exiting the second loop in a long block */
405 @d done3 33 /* for exiting the third loop in a very long block */
406 @d done4 34 /* for exiting the fourth loop in an extremely long block */
407 @d done5 35 /* for exiting the fifth loop in an immense block */
408 @d done6 36 /* for exiting the sixth loop in a block */
409 @d found 40 /* go here when you've found it */
410 @d found1 41 /* like |found|, when there's more than one per routine */
411 @d found2 42 /* like |found|, when there's more than two per routine */
412 @d found3 43 /* like |found|, when there's more than three per routine */
413 @d not_found 45 /* go here when you've found nothing */
414 @d common_ending 50 /* go here when you want to merge with another branch */
416 @ Here are some macros for common programming idioms.
418 @d incr(A) (A)=(A)+1 /* increase a variable by unity */
419 @d decr(A) (A)=(A)-1 /* decrease a variable by unity */
420 @d negate(A) (A)=-(A) /* change the sign of a variable */
421 @d double(A) (A)=(A)+(A)
424 @d do_nothing /* empty statement */
425 @d Return goto exit /* terminate a procedure call */
426 @f return nil /* \.{WEB} will henceforth say |return| instead of \\{return} */
428 @* \[2] The character set.
429 In order to make \MP\ readily portable to a wide variety of
430 computers, all of its input text is converted to an internal eight-bit
431 code that includes standard ASCII, the ``American Standard Code for
432 Information Interchange.'' This conversion is done immediately when each
433 character is read in. Conversely, characters are converted from ASCII to
434 the user's external representation just before they are output to a
438 Such an internal code is relevant to users of \MP\ only with respect to
439 the \&{char} and \&{ASCII} operations, and the comparison of strings.
441 @ Characters of text that have been converted to \MP's internal form
442 are said to be of type |ASCII_code|, which is a subrange of the integers.
445 typedef unsigned char ASCII_code; /* eight-bit numbers */
447 @ The original \PASCAL\ compiler was designed in the late 60s, when six-bit
448 character sets were common, so it did not make provision for lowercase
449 letters. Nowadays, of course, we need to deal with both capital and small
450 letters in a convenient way, especially in a program for font design;
451 so the present specification of \MP\ has been written under the assumption
452 that the \PASCAL\ compiler and run-time system permit the use of text files
453 with more than 64 distinguishable characters. More precisely, we assume that
454 the character set contains at least the letters and symbols associated
455 with ASCII codes 040 through 0176; all of these characters are now
456 available on most computer terminals.
458 Since we are dealing with more characters than were present in the first
459 \PASCAL\ compilers, we have to decide what to call the associated data
460 type. Some \PASCAL s use the original name |char| for the
461 characters in text files, even though there now are more than 64 such
462 characters, while other \PASCAL s consider |char| to be a 64-element
463 subrange of a larger data type that has some other name.
465 In order to accommodate this difference, we shall use the name |text_char|
466 to stand for the data type of the characters that are converted to and
467 from |ASCII_code| when they are input and output. We shall also assume
468 that |text_char| consists of the elements |chr(first_text_char)| through
469 |chr(last_text_char)|, inclusive. The following definitions should be
470 adjusted if necessary.
471 @^system dependencies@>
473 @d first_text_char 0 /* ordinal number of the smallest element of |text_char| */
474 @d last_text_char 255 /* ordinal number of the largest element of |text_char| */
477 typedef unsigned char text_char; /* the data type of characters in text files */
479 @ @<Local variables for init...@>=
482 @ The \MP\ processor converts between ASCII code and
483 the user's external character set by means of arrays |xord| and |xchr|
484 that are analogous to \PASCAL's |ord| and |chr| functions.
486 @d xchr(A) mp->xchr[(A)]
487 @d xord(A) mp->xord[(A)]
490 ASCII_code xord[256]; /* specifies conversion of input characters */
491 text_char xchr[256]; /* specifies conversion of output characters */
493 @ The core system assumes all 8-bit is acceptable. If it is not,
494 a change file has to alter the below section.
495 @^system dependencies@>
497 Additionally, people with extended character sets can
498 assign codes arbitrarily, giving an |xchr| equivalent to whatever
499 characters the users of \MP\ are allowed to have in their input files.
500 Appropriate changes to \MP's |char_class| table should then be made.
501 (Unlike \TeX, each installation of \MP\ has a fixed assignment of category
502 codes, called the |char_class|.) Such changes make portability of programs
503 more difficult, so they should be introduced cautiously if at all.
504 @^character set dependencies@>
505 @^system dependencies@>
508 for (i=0;i<=0377;i++) { xchr(i)=i; }
510 @ The following system-independent code makes the |xord| array contain a
511 suitable inverse to the information in |xchr|. Note that if |xchr[i]=xchr[j]|
512 where |i<j<0177|, the value of |xord[xchr[i]]| will turn out to be
513 |j| or more; hence, standard ASCII code numbers will be used instead of
514 codes below 040 in case there is a coincidence.
517 for (i=first_text_char;i<=last_text_char;i++) {
520 for (i=0200;i<=0377;i++) { xord(xchr(i))=i;}
521 for (i=0;i<=0176;i++) { xord(xchr(i))=i;}
523 @* \[3] Input and output.
524 The bane of portability is the fact that different operating systems treat
525 input and output quite differently, perhaps because computer scientists
526 have not given sufficient attention to this problem. People have felt somehow
527 that input and output are not part of ``real'' programming. Well, it is true
528 that some kinds of programming are more fun than others. With existing
529 input/output conventions being so diverse and so messy, the only sources of
530 joy in such parts of the code are the rare occasions when one can find a
531 way to make the program a little less bad than it might have been. We have
532 two choices, either to attack I/O now and get it over with, or to postpone
533 I/O until near the end. Neither prospect is very attractive, so let's
536 The basic operations we need to do are (1)~inputting and outputting of
537 text, to or from a file or the user's terminal; (2)~inputting and
538 outputting of eight-bit bytes, to or from a file; (3)~instructing the
539 operating system to initiate (``open'') or to terminate (``close'') input or
540 output from a specified file; (4)~testing whether the end of an input
541 file has been reached; (5)~display of bits on the user's screen.
542 The bit-display operation will be discussed in a later section; we shall
543 deal here only with more traditional kinds of I/O.
545 @ Finding files happens in a slightly roundabout fashion: the \MP\
546 instance object contains a field that holds a function pointer that finds a
547 file, and returns its name, or NULL. For this, it receives three
548 parameters: the non-qualified name |fname|, the intended |fopen|
549 operation type |fmode|, and the type of the file |ftype|.
551 The file types that are passed on in |ftype| can be used to
552 differentiate file searches if a library like kpathsea is used,
553 the fopen mode is passed along for the same reason.
556 typedef unsigned char eight_bits ; /* unsigned one-byte quantity */
558 @ @<Exported types@>=
560 mp_filetype_terminal = 0, /* the terminal */
561 mp_filetype_error, /* the terminal */
562 mp_filetype_program , /* \MP\ language input */
563 mp_filetype_log, /* the log file */
564 mp_filetype_postscript, /* the postscript output */
565 mp_filetype_memfile, /* memory dumps */
566 mp_filetype_metrics, /* TeX font metric files */
567 mp_filetype_fontmap, /* PostScript font mapping files */
568 mp_filetype_font, /* PostScript type1 font programs */
569 mp_filetype_encoding, /* PostScript font encoding files */
570 mp_filetype_text, /* first text file for readfrom and writeto primitives */
572 typedef char *(*mp_file_finder)(char *, char *, int);
573 typedef void *(*mp_file_opener)(char *, char *, int);
574 typedef char *(*mp_file_reader)(void *, size_t *);
575 typedef void (*mp_binfile_reader)(void *, void **, size_t *);
576 typedef void (*mp_file_closer)(void *);
577 typedef int (*mp_file_eoftest)(void *);
578 typedef void (*mp_file_flush)(void *);
579 typedef void (*mp_file_writer)(void *, char *);
580 typedef void (*mp_binfile_writer)(void *, void *, size_t);
584 mp_file_finder find_file;
585 mp_file_opener open_file;
586 mp_file_reader read_ascii_file;
587 mp_binfile_reader read_binary_file;
588 mp_file_closer close_file;
589 mp_file_eoftest eof_file;
590 mp_file_flush flush_file;
591 mp_file_writer write_ascii_file;
592 mp_binfile_writer write_binary_file;
594 @ @<Option variables@>=
595 mp_file_finder find_file;
596 mp_file_opener open_file;
597 mp_file_reader read_ascii_file;
598 mp_binfile_reader read_binary_file;
599 mp_file_closer close_file;
600 mp_file_eoftest eof_file;
601 mp_file_flush flush_file;
602 mp_file_writer write_ascii_file;
603 mp_binfile_writer write_binary_file;
605 @ The default function for finding files is |mp_find_file|. It is
606 pretty stupid: it will only find files in the current directory.
608 This function may disappear altogether, it is currently only
609 used for the default font map file.
612 char *mp_find_file (char *fname, char *fmode, int ftype) {
613 if (fmode[0] != 'r' || access (fname,R_OK) || ftype) {
614 return strdup(fname);
619 @ This has to be done very early on, so it is best to put it in with
620 the |mp_new| allocations
622 @d set_callback_option(A) do { mp->A = mp_##A;
623 if (opt->A!=NULL) mp->A = opt->A;
626 @<Allocate or initialize ...@>=
627 set_callback_option(find_file);
628 set_callback_option(open_file);
629 set_callback_option(read_ascii_file);
630 set_callback_option(read_binary_file);
631 set_callback_option(close_file);
632 set_callback_option(eof_file);
633 set_callback_option(flush_file);
634 set_callback_option(write_ascii_file);
635 set_callback_option(write_binary_file);
637 @ Because |mp_find_file| is used so early, it has to be in the helpers
641 char *mp_find_file (char *fname, char *fmode, int ftype) ;
642 void *mp_open_file (char *fname, char *fmode, int ftype) ;
643 char *mp_read_ascii_file (void *f, size_t *size) ;
644 void mp_read_binary_file (void *f, void **d, size_t *size) ;
645 void mp_close_file (void *f) ;
646 int mp_eof_file (void *f) ;
647 void mp_flush_file (void *f) ;
648 void mp_write_ascii_file (void *f, char *s) ;
649 void mp_write_binary_file (void *f, void *s, size_t t) ;
651 @ The function to open files can now be very short.
654 void *mp_open_file(char *fname, char *fmode, int ftype) {
656 if (ftype==mp_filetype_terminal) {
657 return (fmode[0] == 'r' ? stdin : stdout);
658 } else if (ftype==mp_filetype_error) {
660 } else if (fname != NULL && (fmode[0] != 'r' || access (fname,R_OK))) {
661 return (void *)fopen(fname, fmode);
667 @ This is a legacy interface: (almost) all file names pass through |name_of_file|.
670 char name_of_file[file_name_size+1]; /* the name of a system file */
671 int name_length;/* this many characters are actually
672 relevant in |name_of_file| (the rest are blank) */
673 boolean print_found_names; /* configuration parameter */
675 @ @<Option variables@>=
676 int print_found_names; /* configuration parameter */
678 @ If this parameter is true, the terminal and log will report the found
679 file names for input files instead of the requested ones.
680 It is off by default because it creates an extra filename lookup.
682 @<Allocate or initialize ...@>=
683 mp->print_found_names = (opt->print_found_names>0 ? true : false);
685 @ \MP's file-opening procedures return |false| if no file identified by
686 |name_of_file| could be opened.
688 The |OPEN_FILE| macro takes care of the |print_found_names| parameter.
689 It is not used for opening a mem file for read, because that file name
693 if (mp->print_found_names) {
694 char *s = (mp->find_file)(mp->name_of_file,A,ftype);
696 *f = (mp->open_file)(mp->name_of_file,A, ftype);
697 strncpy(mp->name_of_file,s,file_name_size);
703 *f = (mp->open_file)(mp->name_of_file,A, ftype);
706 return (*f ? true : false)
709 boolean mp_a_open_in (MP mp, void **f, int ftype) {
710 /* open a text file for input */
714 boolean mp_w_open_in (MP mp, void **f) {
715 /* open a word file for input */
716 *f = (mp->open_file)(mp->name_of_file,"rb",mp_filetype_memfile);
717 return (*f ? true : false);
720 boolean mp_a_open_out (MP mp, void **f, int ftype) {
721 /* open a text file for output */
725 boolean mp_b_open_out (MP mp, void **f, int ftype) {
726 /* open a binary file for output */
730 boolean mp_w_open_out (MP mp, void **f) {
731 /* open a word file for output */
732 int ftype = mp_filetype_memfile;
737 char *mp_read_ascii_file (void *f, size_t *size) {
747 while (c!=EOF && c!='\n' && c!='\r') {
753 if (c!=EOF && c!='\n')
763 void mp_write_ascii_file (void *f, char *s) {
772 void mp_read_binary_file (void *f, void **data, size_t *size) {
775 len = fread(*data,1,*size,f);
781 void mp_write_binary_file (void *f, void *s, size_t size) {
790 void mp_close_file (void *f) {
797 int mp_eof_file (void *f) {
806 void mp_flush_file (void *f) {
814 @ Binary input and output are done with \PASCAL's ordinary |get| and |put|
815 procedures, so we don't have to make any other special arrangements for
816 binary~I/O. Text output is also easy to do with standard \PASCAL\ routines.
817 The treatment of text input is more difficult, however, because
818 of the necessary translation to |ASCII_code| values.
819 \MP's conventions should be efficient, and they should
820 blend nicely with the user's operating environment.
822 @ Input from text files is read one line at a time, using a routine called
823 |input_ln|. This function is defined in terms of global variables called
824 |buffer|, |first|, and |last| that will be described in detail later; for
825 now, it suffices for us to know that |buffer| is an array of |ASCII_code|
826 values, and that |first| and |last| are indices into this array
827 representing the beginning and ending of a line of text.
830 size_t buf_size; /* maximum number of characters simultaneously present in
831 current lines of open files */
832 ASCII_code *buffer; /* lines of characters being read */
833 size_t first; /* the first unused position in |buffer| */
834 size_t last; /* end of the line just input to |buffer| */
835 size_t max_buf_stack; /* largest index used in |buffer| */
837 @ @<Allocate or initialize ...@>=
839 mp->buffer = xmalloc((mp->buf_size+1),sizeof(ASCII_code));
841 @ @<Dealloc variables@>=
845 void mp_reallocate_buffer(MP mp, size_t l) {
847 if (l>max_halfword) {
848 mp_confusion(mp,"buffer size"); /* can't happen (I hope) */
850 buffer = xmalloc((l+1),sizeof(ASCII_code));
851 memcpy(buffer,mp->buffer,(mp->buf_size+1));
853 mp->buffer = buffer ;
857 @ The |input_ln| function brings the next line of input from the specified
858 field into available positions of the buffer array and returns the value
859 |true|, unless the file has already been entirely read, in which case it
860 returns |false| and sets |last:=first|. In general, the |ASCII_code|
861 numbers that represent the next line of the file are input into
862 |buffer[first]|, |buffer[first+1]|, \dots, |buffer[last-1]|; and the
863 global variable |last| is set equal to |first| plus the length of the
864 line. Trailing blanks are removed from the line; thus, either |last=first|
865 (in which case the line was entirely blank) or |buffer[last-1]<>" "|.
868 The variable |max_buf_stack|, which is used to keep track of how large
869 the |buf_size| parameter must be to accommodate the present job, is
870 also kept up to date by |input_ln|.
873 boolean mp_input_ln (MP mp, void *f ) {
874 /* inputs the next line or returns |false| */
877 mp->last=mp->first; /* cf.\ Matthew 19\thinspace:\thinspace30 */
878 s = (mp->read_ascii_file)(f, &size);
882 mp->last = mp->first+size;
883 if ( mp->last>=mp->max_buf_stack ) {
884 mp->max_buf_stack=mp->last+1;
885 while ( mp->max_buf_stack>=mp->buf_size ) {
886 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
889 memcpy((mp->buffer+mp->first),s,size);
891 /* while ( mp->buffer[mp->last]==' ' ) mp->last--; */
896 @ The user's terminal acts essentially like other files of text, except
897 that it is used both for input and for output. When the terminal is
898 considered an input file, the file variable is called |term_in|, and when it
899 is considered an output file the file variable is |term_out|.
900 @^system dependencies@>
903 void * term_in; /* the terminal as an input file */
904 void * term_out; /* the terminal as an output file */
905 void * err_out; /* the terminal as an output file */
907 @ Here is how to open the terminal files. In the default configuration,
908 nothing happens except that the command line (if there is one) is copied
909 to the input buffer. The variable |command_line| will be filled by the
910 |main| procedure. The copying can not be done earlier in the program
911 logic because in the |INI| version, the |buffer| is also used for primitive
914 @^system dependencies@>
916 @d t_open_out do {/* open the terminal for text output */
917 mp->term_out = (mp->open_file)("terminal", "w", mp_filetype_terminal);
918 mp->err_out = (mp->open_file)("error", "w", mp_filetype_error);
920 @d t_open_in do { /* open the terminal for text input */
921 mp->term_in = (mp->open_file)("terminal", "r", mp_filetype_terminal);
922 if (mp->command_line!=NULL) {
923 mp->last = strlen(mp->command_line);
924 strncpy((char *)mp->buffer,mp->command_line,mp->last);
925 xfree(mp->command_line);
932 @ @<Option variables@>=
935 @ @<Allocate or initialize ...@>=
936 mp->command_line = opt->command_line;
938 @ Sometimes it is necessary to synchronize the input/output mixture that
939 happens on the user's terminal, and three system-dependent
940 procedures are used for this
941 purpose. The first of these, |update_terminal|, is called when we want
942 to make sure that everything we have output to the terminal so far has
943 actually left the computer's internal buffers and been sent.
944 The second, |clear_terminal|, is called when we wish to cancel any
945 input that the user may have typed ahead (since we are about to
946 issue an unexpected error message). The third, |wake_up_terminal|,
947 is supposed to revive the terminal if the user has disabled it by
948 some instruction to the operating system. The following macros show how
949 these operations can be specified in \ph:
950 @^system dependencies@>
952 @d update_terminal (mp->flush_file)(mp->term_out) /* empty the terminal output buffer */
953 @d clear_terminal do_nothing /* clear the terminal input buffer */
954 @d wake_up_terminal (mp->flush_file)(mp->term_out) /* cancel the user's cancellation of output */
956 @ We need a special routine to read the first line of \MP\ input from
957 the user's terminal. This line is different because it is read before we
958 have opened the transcript file; there is sort of a ``chicken and
959 egg'' problem here. If the user types `\.{input cmr10}' on the first
960 line, or if some macro invoked by that line does such an \.{input},
961 the transcript file will be named `\.{cmr10.log}'; but if no \.{input}
962 commands are performed during the first line of terminal input, the transcript
963 file will acquire its default name `\.{mpout.log}'. (The transcript file
964 will not contain error messages generated by the first line before the
965 first \.{input} command.)
967 The first line is even more special if we are lucky enough to have an operating
968 system that treats \MP\ differently from a run-of-the-mill \PASCAL\ object
969 program. It's nice to let the user start running a \MP\ job by typing
970 a command line like `\.{MP cmr10}'; in such a case, \MP\ will operate
971 as if the first line of input were `\.{cmr10}', i.e., the first line will
972 consist of the remainder of the command line, after the part that invoked \MP.
974 @ Different systems have different ways to get started. But regardless of
975 what conventions are adopted, the routine that initializes the terminal
976 should satisfy the following specifications:
978 \yskip\textindent{1)}It should open file |term_in| for input from the
979 terminal. (The file |term_out| will already be open for output to the
982 \textindent{2)}If the user has given a command line, this line should be
983 considered the first line of terminal input. Otherwise the
984 user should be prompted with `\.{**}', and the first line of input
985 should be whatever is typed in response.
987 \textindent{3)}The first line of input, which might or might not be a
988 command line, should appear in locations |first| to |last-1| of the
991 \textindent{4)}The global variable |loc| should be set so that the
992 character to be read next by \MP\ is in |buffer[loc]|. This
993 character should not be blank, and we should have |loc<last|.
995 \yskip\noindent(It may be necessary to prompt the user several times
996 before a non-blank line comes in. The prompt is `\.{**}' instead of the
997 later `\.*' because the meaning is slightly different: `\.{input}' need
998 not be typed immediately after~`\.{**}'.)
1000 @d loc mp->cur_input.loc_field /* location of first unread character in |buffer| */
1002 @ The following program does the required initialization
1003 without retrieving a possible command line.
1004 It should be clear how to modify this routine to deal with command lines,
1005 if the system permits them.
1006 @^system dependencies@>
1009 boolean mp_init_terminal (MP mp) { /* gets the terminal input started */
1012 loc = mp->first = 0;
1016 wake_up_terminal; do_fprintf(mp->term_out,"**"); update_terminal;
1018 if ( ! mp_input_ln(mp, mp->term_in ) ) { /* this shouldn't happen */
1019 do_fprintf(mp->term_out,"\n! End of file on the terminal... why?");
1020 @.End of file on the terminal@>
1024 while ( (loc<(int)mp->last)&&(mp->buffer[loc]==' ') )
1026 if ( loc<(int)mp->last ) {
1027 return true; /* return unless the line was all blank */
1029 do_fprintf(mp->term_out,"Please type the name of your input file.\n");
1034 boolean mp_init_terminal (MP mp) ;
1037 @* \[4] String handling.
1038 Symbolic token names and diagnostic messages are variable-length strings
1039 of eight-bit characters. Since \PASCAL\ does not have a well-developed string
1040 mechanism, \MP\ does all of its string processing by homegrown methods.
1042 \MP\ uses strings more extensively than \MF\ does, but the necessary
1043 operations can still be handled with a fairly simple data structure.
1044 The array |str_pool| contains all of the (eight-bit) ASCII codes in all
1045 of the strings, and the array |str_start| contains indices of the starting
1046 points of each string. Strings are referred to by integer numbers, so that
1047 string number |s| comprises the characters |str_pool[j]| for
1048 |str_start[s]<=j<str_start[ss]| where |ss=next_str[s]|. The string pool
1049 is allocated sequentially and |str_pool[pool_ptr]| is the next unused
1050 location. The first string number not currently in use is |str_ptr|
1051 and |next_str[str_ptr]| begins a list of free string numbers. String
1052 pool entries |str_start[str_ptr]| up to |pool_ptr| are reserved for a
1053 string currently being constructed.
1055 String numbers 0 to 255 are reserved for strings that correspond to single
1056 ASCII characters. This is in accordance with the conventions of \.{WEB},
1058 which converts single-character strings into the ASCII code number of the
1059 single character involved, while it converts other strings into integers
1060 and builds a string pool file. Thus, when the string constant \.{"."} appears
1061 in the program below, \.{WEB} converts it into the integer 46, which is the
1062 ASCII code for a period, while \.{WEB} will convert a string like \.{"hello"}
1063 into some integer greater than~255. String number 46 will presumably be the
1064 single character `\..'\thinspace; but some ASCII codes have no standard visible
1065 representation, and \MP\ may need to be able to print an arbitrary
1066 ASCII character, so the first 256 strings are used to specify exactly what
1067 should be printed for each of the 256 possibilities.
1070 typedef int pool_pointer; /* for variables that point into |str_pool| */
1071 typedef int str_number; /* for variables that point into |str_start| */
1074 ASCII_code *str_pool; /* the characters */
1075 pool_pointer *str_start; /* the starting pointers */
1076 str_number *next_str; /* for linking strings in order */
1077 pool_pointer pool_ptr; /* first unused position in |str_pool| */
1078 str_number str_ptr; /* number of the current string being created */
1079 pool_pointer init_pool_ptr; /* the starting value of |pool_ptr| */
1080 str_number init_str_use; /* the initial number of strings in use */
1081 pool_pointer max_pool_ptr; /* the maximum so far of |pool_ptr| */
1082 str_number max_str_ptr; /* the maximum so far of |str_ptr| */
1084 @ @<Allocate or initialize ...@>=
1085 mp->str_pool = xmalloc ((mp->pool_size +1),sizeof(ASCII_code));
1086 mp->str_start = xmalloc ((mp->max_strings+1),sizeof(pool_pointer));
1087 mp->next_str = xmalloc ((mp->max_strings+1),sizeof(str_number));
1089 @ @<Dealloc variables@>=
1090 xfree(mp->str_pool);
1091 xfree(mp->str_start);
1092 xfree(mp->next_str);
1094 @ Most printing is done from |char *|s, but sometimes not. Here are
1095 functions that convert an internal string into a |char *| for use
1096 by the printing routines, and vice versa.
1098 @d str(A) mp_str(mp,A)
1099 @d rts(A) mp_rts(mp,A)
1102 int mp_xstrcmp (const char *a, const char *b);
1103 char * mp_str (MP mp, str_number s);
1106 str_number mp_rts (MP mp, char *s);
1107 str_number mp_make_string (MP mp);
1109 @ The attempt to catch interrupted strings that is in |mp_rts|, is not
1110 very good: it does not handle nesting over more than one level.
1113 int mp_xstrcmp (const char *a, const char *b) {
1114 if (a==NULL && b==NULL)
1124 char * mp_str (MP mp, str_number ss) {
1127 if (ss==mp->str_ptr) {
1131 s = xmalloc(len+1,sizeof(char));
1132 strncpy(s,(char *)(mp->str_pool+(mp->str_start[ss])),len);
1137 str_number mp_rts (MP mp, char *s) {
1138 int r; /* the new string */
1139 int old; /* a possible string in progress */
1143 } else if (strlen(s)==1) {
1147 str_room((integer)strlen(s));
1148 if (mp->str_start[mp->str_ptr]<mp->pool_ptr)
1149 old = mp_make_string(mp);
1154 r = mp_make_string(mp);
1156 str_room(length(old));
1157 while (i<length(old)) {
1158 append_char((mp->str_start[old]+i));
1160 mp_flush_string(mp,old);
1166 @ Except for |strs_used_up|, the following string statistics are only
1167 maintained when code between |stat| $\ldots$ |tats| delimiters is not
1171 integer strs_used_up; /* strings in use or unused but not reclaimed */
1172 integer pool_in_use; /* total number of cells of |str_pool| actually in use */
1173 integer strs_in_use; /* total number of strings actually in use */
1174 integer max_pl_used; /* maximum |pool_in_use| so far */
1175 integer max_strs_used; /* maximum |strs_in_use| so far */
1177 @ Several of the elementary string operations are performed using \.{WEB}
1178 macros instead of \PASCAL\ procedures, because many of the
1179 operations are done quite frequently and we want to avoid the
1180 overhead of procedure calls. For example, here is
1181 a simple macro that computes the length of a string.
1184 @d str_stop(A) mp->str_start[mp->next_str[(A)]] /* one cell past the end of string
1186 @d length(A) (str_stop((A))-mp->str_start[(A)]) /* the number of characters in string \# */
1188 @ The length of the current string is called |cur_length|. If we decide that
1189 the current string is not needed, |flush_cur_string| resets |pool_ptr| so that
1190 |cur_length| becomes zero.
1192 @d cur_length (mp->pool_ptr - mp->str_start[mp->str_ptr])
1193 @d flush_cur_string mp->pool_ptr=mp->str_start[mp->str_ptr]
1195 @ Strings are created by appending character codes to |str_pool|.
1196 The |append_char| macro, defined here, does not check to see if the
1197 value of |pool_ptr| has gotten too high; this test is supposed to be
1198 made before |append_char| is used.
1200 To test if there is room to append |l| more characters to |str_pool|,
1201 we shall write |str_room(l)|, which tries to make sure there is enough room
1202 by compacting the string pool if necessary. If this does not work,
1203 |do_compaction| aborts \MP\ and gives an apologetic error message.
1205 @d append_char(A) /* put |ASCII_code| \# at the end of |str_pool| */
1206 { mp->str_pool[mp->pool_ptr]=(A); incr(mp->pool_ptr);
1208 @d str_room(A) /* make sure that the pool hasn't overflowed */
1209 { if ( mp->pool_ptr+(A) > mp->max_pool_ptr ) {
1210 if ( mp->pool_ptr+(A) > mp->pool_size ) mp_do_compaction(mp, (A));
1211 else mp->max_pool_ptr=mp->pool_ptr+(A); }
1214 @ The following routine is similar to |str_room(1)| but it uses the
1215 argument |mp->pool_size| to prevent |do_compaction| from aborting when
1216 string space is exhausted.
1218 @<Declare the procedure called |unit_str_room|@>=
1219 void mp_unit_str_room (MP mp);
1222 void mp_unit_str_room (MP mp) {
1223 if ( mp->pool_ptr>=mp->pool_size ) mp_do_compaction(mp, mp->pool_size);
1224 if ( mp->pool_ptr>=mp->max_pool_ptr ) mp->max_pool_ptr=mp->pool_ptr+1;
1227 @ \MP's string expressions are implemented in a brute-force way: Every
1228 new string or substring that is needed is simply copied into the string pool.
1229 Space is eventually reclaimed by a procedure called |do_compaction| with
1230 the aid of a simple system system of reference counts.
1231 @^reference counts@>
1233 The number of references to string number |s| will be |str_ref[s]|. The
1234 special value |str_ref[s]=max_str_ref=127| is used to denote an unknown
1235 positive number of references; such strings will never be recycled. If
1236 a string is ever referred to more than 126 times, simultaneously, we
1237 put it in this category. Hence a single byte suffices to store each |str_ref|.
1239 @d max_str_ref 127 /* ``infinite'' number of references */
1240 @d add_str_ref(A) { if ( mp->str_ref[(A)]<max_str_ref ) incr(mp->str_ref[(A)]);
1246 @ @<Allocate or initialize ...@>=
1247 mp->str_ref = xmalloc ((mp->max_strings+1),sizeof(int));
1249 @ @<Dealloc variables@>=
1252 @ Here's what we do when a string reference disappears:
1254 @d delete_str_ref(A) {
1255 if ( mp->str_ref[(A)]<max_str_ref ) {
1256 if ( mp->str_ref[(A)]>1 ) decr(mp->str_ref[(A)]);
1257 else mp_flush_string(mp, (A));
1261 @<Declare the procedure called |flush_string|@>=
1262 void mp_flush_string (MP mp,str_number s) ;
1265 @ We can't flush the first set of static strings at all, so there
1266 is no point in trying
1269 void mp_flush_string (MP mp,str_number s) {
1271 mp->pool_in_use=mp->pool_in_use-length(s);
1272 decr(mp->strs_in_use);
1273 if ( mp->next_str[s]!=mp->str_ptr ) {
1277 decr(mp->strs_used_up);
1279 mp->pool_ptr=mp->str_start[mp->str_ptr];
1283 @ C literals cannot be simply added, they need to be set so they can't
1286 @d intern(A) mp_intern(mp,(A))
1289 str_number mp_intern (MP mp, char *s) {
1292 mp->str_ref[r] = max_str_ref;
1297 str_number mp_intern (MP mp, char *s);
1300 @ Once a sequence of characters has been appended to |str_pool|, it
1301 officially becomes a string when the function |make_string| is called.
1302 This function returns the identification number of the new string as its
1305 When getting the next unused string number from the linked list, we pretend
1307 $$ \hbox{|max_str_ptr+1|, |max_str_ptr+2|, $\ldots$, |mp->max_strings|} $$
1308 are linked sequentially even though the |next_str| entries have not been
1309 initialized yet. We never allow |str_ptr| to reach |mp->max_strings|;
1310 |do_compaction| is responsible for making sure of this.
1313 @<Declare the procedure called |do_compaction|@>;
1314 @<Declare the procedure called |unit_str_room|@>;
1315 str_number mp_make_string (MP mp);
1318 str_number mp_make_string (MP mp) { /* current string enters the pool */
1319 str_number s; /* the new string */
1322 mp->str_ptr=mp->next_str[s];
1323 if ( mp->str_ptr>mp->max_str_ptr ) {
1324 if ( mp->str_ptr==mp->max_strings ) {
1326 mp_do_compaction(mp, 0);
1330 if ( mp->strs_used_up!=mp->max_str_ptr ) mp_confusion(mp, "s");
1331 @:this can't happen s}{\quad \.s@>
1333 mp->max_str_ptr=mp->str_ptr;
1334 mp->next_str[mp->str_ptr]=mp->max_str_ptr+1;
1338 mp->str_start[mp->str_ptr]=mp->pool_ptr;
1339 incr(mp->strs_used_up);
1340 incr(mp->strs_in_use);
1341 mp->pool_in_use=mp->pool_in_use+length(s);
1342 if ( mp->pool_in_use>mp->max_pl_used )
1343 mp->max_pl_used=mp->pool_in_use;
1344 if ( mp->strs_in_use>mp->max_strs_used )
1345 mp->max_strs_used=mp->strs_in_use;
1349 @ The most interesting string operation is string pool compaction. The idea
1350 is to recover unused space in the |str_pool| array by recopying the strings
1351 to close the gaps created when some strings become unused. All string
1352 numbers~$k$ where |str_ref[k]=0| are to be linked into the list of free string
1353 numbers after |str_ptr|. If this fails to free enough pool space we issue an
1354 |overflow| error unless |needed=mp->pool_size|. Calling |do_compaction|
1355 with |needed=mp->pool_size| supresses all overflow tests.
1357 The compaction process starts with |last_fixed_str| because all lower numbered
1358 strings are permanently allocated with |max_str_ref| in their |str_ref| entries.
1361 str_number last_fixed_str; /* last permanently allocated string */
1362 str_number fixed_str_use; /* number of permanently allocated strings */
1364 @ @<Declare the procedure called |do_compaction|@>=
1365 void mp_do_compaction (MP mp, pool_pointer needed) ;
1368 void mp_do_compaction (MP mp, pool_pointer needed) {
1369 str_number str_use; /* a count of strings in use */
1370 str_number r,s,t; /* strings being manipulated */
1371 pool_pointer p,q; /* destination and source for copying string characters */
1372 @<Advance |last_fixed_str| as far as possible and set |str_use|@>;
1373 r=mp->last_fixed_str;
1376 while ( s!=mp->str_ptr ) {
1377 while ( mp->str_ref[s]==0 ) {
1378 @<Advance |s| and add the old |s| to the list of free string numbers;
1379 then |break| if |s=str_ptr|@>;
1381 r=s; s=mp->next_str[s];
1383 @<Move string |r| back so that |str_start[r]=p|; make |p| the location
1384 after the end of the string@>;
1386 @<Move the current string back so that it starts at |p|@>;
1387 if ( needed<mp->pool_size ) {
1388 @<Make sure that there is room for another string with |needed| characters@>;
1390 @<Account for the compaction and make sure the statistics agree with the
1392 mp->strs_used_up=str_use;
1395 @ @<Advance |last_fixed_str| as far as possible and set |str_use|@>=
1396 t=mp->next_str[mp->last_fixed_str];
1397 while (t!=mp->str_ptr && mp->str_ref[t]==max_str_ref) {
1398 incr(mp->fixed_str_use);
1399 mp->last_fixed_str=t;
1402 str_use=mp->fixed_str_use
1404 @ Because of the way |flush_string| has been written, it should never be
1405 necessary to |break| here. The extra line of code seems worthwhile to
1406 preserve the generality of |do_compaction|.
1408 @<Advance |s| and add the old |s| to the list of free string numbers;...@>=
1413 mp->next_str[t]=mp->next_str[mp->str_ptr];
1414 mp->next_str[mp->str_ptr]=t;
1415 if ( s==mp->str_ptr ) break;
1418 @ The string currently starts at |str_start[r]| and ends just before
1419 |str_start[s]|. We don't change |str_start[s]| because it might be needed
1420 to locate the next string.
1422 @<Move string |r| back so that |str_start[r]=p|; make |p| the location...@>=
1425 while ( q<mp->str_start[s] ) {
1426 mp->str_pool[p]=mp->str_pool[q];
1430 @ Pointers |str_start[str_ptr]| and |pool_ptr| have not been updated. When
1431 we do this, anything between them should be moved.
1433 @ @<Move the current string back so that it starts at |p|@>=
1434 q=mp->str_start[mp->str_ptr];
1435 mp->str_start[mp->str_ptr]=p;
1436 while ( q<mp->pool_ptr ) {
1437 mp->str_pool[p]=mp->str_pool[q];
1442 @ We must remember that |str_ptr| is not allowed to reach |mp->max_strings|.
1444 @<Make sure that there is room for another string with |needed| char...@>=
1445 if ( str_use>=mp->max_strings-1 )
1446 mp_reallocate_strings (mp,str_use);
1447 if ( mp->pool_ptr+needed>mp->max_pool_ptr ) {
1448 mp_reallocate_pool(mp, mp->pool_ptr+needed);
1449 mp->max_pool_ptr=mp->pool_ptr+needed;
1453 void mp_reallocate_strings (MP mp, str_number str_use) ;
1454 void mp_reallocate_pool(MP mp, pool_pointer needed) ;
1457 void mp_reallocate_strings (MP mp, str_number str_use) {
1458 while ( str_use>=mp->max_strings-1 ) {
1459 int l = mp->max_strings + (mp->max_strings>>2);
1460 XREALLOC (mp->str_ref, l, int);
1461 XREALLOC (mp->str_start, l, pool_pointer);
1462 XREALLOC (mp->next_str, l, str_number);
1463 mp->max_strings = l;
1466 void mp_reallocate_pool(MP mp, pool_pointer needed) {
1467 while ( needed>mp->pool_size ) {
1468 int l = mp->pool_size + (mp->pool_size>>2);
1469 XREALLOC (mp->str_pool, l, ASCII_code);
1474 @ @<Account for the compaction and make sure the statistics agree with...@>=
1475 if ( (mp->str_start[mp->str_ptr]!=mp->pool_in_use)||(str_use!=mp->strs_in_use) )
1476 mp_confusion(mp, "string");
1477 @:this can't happen string}{\quad string@>
1478 incr(mp->pact_count);
1479 mp->pact_chars=mp->pact_chars+mp->pool_ptr-str_stop(mp->last_fixed_str);
1480 mp->pact_strs=mp->pact_strs+str_use-mp->fixed_str_use;
1482 s=mp->str_ptr; t=str_use;
1483 while ( s<=mp->max_str_ptr ){
1484 if ( t>mp->max_str_ptr ) mp_confusion(mp, "\"");
1485 incr(t); s=mp->next_str[s];
1487 if ( t<=mp->max_str_ptr ) mp_confusion(mp, "\"");
1490 @ A few more global variables are needed to keep track of statistics when
1491 |stat| $\ldots$ |tats| blocks are not commented out.
1494 integer pact_count; /* number of string pool compactions so far */
1495 integer pact_chars; /* total number of characters moved during compactions */
1496 integer pact_strs; /* total number of strings moved during compactions */
1498 @ @<Initialize compaction statistics@>=
1503 @ The following subroutine compares string |s| with another string of the
1504 same length that appears in |buffer| starting at position |k|;
1505 the result is |true| if and only if the strings are equal.
1508 boolean mp_str_eq_buf (MP mp,str_number s, integer k) {
1509 /* test equality of strings */
1510 pool_pointer j; /* running index */
1512 while ( j<str_stop(s) ) {
1513 if ( mp->str_pool[j++]!=mp->buffer[k++] )
1519 @ Here is a similar routine, but it compares two strings in the string pool,
1520 and it does not assume that they have the same length. If the first string
1521 is lexicographically greater than, less than, or equal to the second,
1522 the result is respectively positive, negative, or zero.
1525 integer mp_str_vs_str (MP mp, str_number s, str_number t) {
1526 /* test equality of strings */
1527 pool_pointer j,k; /* running indices */
1528 integer ls,lt; /* lengths */
1529 integer l; /* length remaining to test */
1530 ls=length(s); lt=length(t);
1531 if ( ls<=lt ) l=ls; else l=lt;
1532 j=mp->str_start[s]; k=mp->str_start[t];
1534 if ( mp->str_pool[j]!=mp->str_pool[k] ) {
1535 return (mp->str_pool[j]-mp->str_pool[k]);
1542 @ The initial values of |str_pool|, |str_start|, |pool_ptr|,
1543 and |str_ptr| are computed by the \.{INIMP} program, based in part
1544 on the information that \.{WEB} has output while processing \MP.
1549 void mp_get_strings_started (MP mp) {
1550 /* initializes the string pool,
1551 but returns |false| if something goes wrong */
1552 int k; /* small indices or counters */
1553 str_number g; /* a new string */
1554 mp->pool_ptr=0; mp->str_ptr=0; mp->max_pool_ptr=0; mp->max_str_ptr=0;
1557 mp->pool_in_use=0; mp->strs_in_use=0;
1558 mp->max_pl_used=0; mp->max_strs_used=0;
1559 @<Initialize compaction statistics@>;
1561 @<Make the first 256 strings@>;
1562 g=mp_make_string(mp); /* string 256 == "" */
1563 mp->str_ref[g]=max_str_ref;
1564 mp->last_fixed_str=mp->str_ptr-1;
1565 mp->fixed_str_use=mp->str_ptr;
1570 void mp_get_strings_started (MP mp);
1572 @ The first 256 strings will consist of a single character only.
1574 @<Make the first 256...@>=
1575 for (k=0;k<=255;k++) {
1577 g=mp_make_string(mp);
1578 mp->str_ref[g]=max_str_ref;
1581 @ The first 128 strings will contain 95 standard ASCII characters, and the
1582 other 33 characters will be printed in three-symbol form like `\.{\^\^A}'
1583 unless a system-dependent change is made here. Installations that have
1584 an extended character set, where for example |xchr[032]=@t\.{'^^Z'}@>|,
1585 would like string 032 to be printed as the single character 032 instead
1586 of the three characters 0136, 0136, 0132 (\.{\^\^Z}). On the other hand,
1587 even people with an extended character set will want to represent string
1588 015 by \.{\^\^M}, since 015 is ASCII's ``carriage return'' code; the idea is
1589 to produce visible strings instead of tabs or line-feeds or carriage-returns
1590 or bell-rings or characters that are treated anomalously in text files.
1592 Unprintable characters of codes 128--255 are, similarly, rendered
1593 \.{\^\^80}--\.{\^\^ff}.
1595 The boolean expression defined here should be |true| unless \MP\ internal
1596 code number~|k| corresponds to a non-troublesome visible symbol in the
1597 local character set.
1598 If character |k| cannot be printed, and |k<0200|, then character |k+0100| or
1599 |k-0100| must be printable; moreover, ASCII codes |[060..071, 0141..0146]|
1601 @^character set dependencies@>
1602 @^system dependencies@>
1604 @<Character |k| cannot be printed@>=
1607 @* \[5] On-line and off-line printing.
1608 Messages that are sent to a user's terminal and to the transcript-log file
1609 are produced by several `|print|' procedures. These procedures will
1610 direct their output to a variety of places, based on the setting of
1611 the global variable |selector|, which has the following possible
1615 \hang |term_and_log|, the normal setting, prints on the terminal and on the
1618 \hang |log_only|, prints only on the transcript file.
1620 \hang |term_only|, prints only on the terminal.
1622 \hang |no_print|, doesn't print at all. This is used only in rare cases
1623 before the transcript file is open.
1625 \hang |pseudo|, puts output into a cyclic buffer that is used
1626 by the |show_context| routine; when we get to that routine we shall discuss
1627 the reasoning behind this curious mode.
1629 \hang |new_string|, appends the output to the current string in the
1632 \hang |>=write_file| prints on one of the files used for the \&{write}
1633 @:write_}{\&{write} primitive@>
1637 \noindent The symbolic names `|term_and_log|', etc., have been assigned
1638 numeric codes that satisfy the convenient relations |no_print+1=term_only|,
1639 |no_print+2=log_only|, |term_only+2=log_only+1=term_and_log|. These
1640 relations are not used when |selector| could be |pseudo|, or |new_string|.
1641 We need not check for unprintable characters when |selector<pseudo|.
1643 Three additional global variables, |tally|, |term_offset| and |file_offset|
1644 record the number of characters that have been printed
1645 since they were most recently cleared to zero. We use |tally| to record
1646 the length of (possibly very long) stretches of printing; |term_offset|,
1647 and |file_offset|, on the other hand, keep track of how many
1648 characters have appeared so far on the current line that has been output
1649 to the terminal, the transcript file, or the \ps\ output file, respectively.
1651 @d new_string 0 /* printing is deflected to the string pool */
1652 @d pseudo 2 /* special |selector| setting for |show_context| */
1653 @d no_print 3 /* |selector| setting that makes data disappear */
1654 @d term_only 4 /* printing is destined for the terminal only */
1655 @d log_only 5 /* printing is destined for the transcript file only */
1656 @d term_and_log 6 /* normal |selector| setting */
1657 @d write_file 7 /* first write file selector */
1660 void * log_file; /* transcript of \MP\ session */
1661 void * ps_file; /* the generic font output goes here */
1662 unsigned int selector; /* where to print a message */
1663 unsigned char dig[23]; /* digits in a number being output */
1664 integer tally; /* the number of characters recently printed */
1665 unsigned int term_offset;
1666 /* the number of characters on the current terminal line */
1667 unsigned int file_offset;
1668 /* the number of characters on the current file line */
1669 ASCII_code *trick_buf; /* circular buffer for pseudoprinting */
1670 integer trick_count; /* threshold for pseudoprinting, explained later */
1671 integer first_count; /* another variable for pseudoprinting */
1673 @ @<Allocate or initialize ...@>=
1674 memset(mp->dig,0,23);
1675 mp->trick_buf = xmalloc((mp->error_line+1),sizeof(ASCII_code));
1677 @ @<Dealloc variables@>=
1678 xfree(mp->trick_buf);
1680 @ @<Initialize the output routines@>=
1681 mp->selector=term_only; mp->tally=0; mp->term_offset=0; mp->file_offset=0;
1683 @ Macro abbreviations for output to the terminal and to the log file are
1684 defined here for convenience. Some systems need special conventions
1685 for terminal output, and it is possible to adhere to those conventions
1686 by changing |wterm|, |wterm_ln|, and |wterm_cr| here.
1687 @^system dependencies@>
1689 @d do_fprintf(f,b) (mp->write_ascii_file)(f,b)
1690 @d wterm(A) do_fprintf(mp->term_out,(A))
1691 @d wterm_chr(A) { unsigned char ss[2]; ss[0]=(A); ss[1]=0; do_fprintf(mp->term_out,(char *)ss); }
1692 @d wterm_cr do_fprintf(mp->term_out,"\n")
1693 @d wterm_ln(A) { wterm_cr; do_fprintf(mp->term_out,(A)); }
1694 @d wlog(A) do_fprintf(mp->log_file,(A))
1695 @d wlog_chr(A) { unsigned char ss[2]; ss[0]=(A); ss[1]=0; do_fprintf(mp->log_file,(char *)ss); }
1696 @d wlog_cr do_fprintf(mp->log_file, "\n")
1697 @d wlog_ln(A) {wlog_cr; do_fprintf(mp->log_file,(A)); }
1700 @ To end a line of text output, we call |print_ln|. Cases |0..max_write_files|
1701 use an array |wr_file| that will be declared later.
1703 @d mp_print_text(A) mp_print_str(mp,text((A)))
1706 void mp_print_ln (MP mp);
1707 void mp_print_visible_char (MP mp, ASCII_code s);
1708 void mp_print_char (MP mp, ASCII_code k);
1709 void mp_print (MP mp, char *s);
1710 void mp_print_str (MP mp, str_number s);
1711 void mp_print_nl (MP mp, char *s);
1712 void mp_print_two (MP mp,scaled x, scaled y) ;
1713 void mp_print_scaled (MP mp,scaled s);
1715 @ @<Basic print...@>=
1716 void mp_print_ln (MP mp) { /* prints an end-of-line */
1717 switch (mp->selector) {
1720 mp->term_offset=0; mp->file_offset=0;
1723 wlog_cr; mp->file_offset=0;
1726 wterm_cr; mp->term_offset=0;
1733 do_fprintf(mp->wr_file[(mp->selector-write_file)],"\n");
1735 } /* note that |tally| is not affected */
1737 @ The |print_visible_char| procedure sends one character to the desired
1738 destination, using the |xchr| array to map it into an external character
1739 compatible with |input_ln|. (It assumes that it is always called with
1740 a visible ASCII character.) All printing comes through |print_ln| or
1741 |print_char|, which ultimately calls |print_visible_char|, hence these
1742 routines are the ones that limit lines to at most |max_print_line| characters.
1743 But we must make an exception for the \ps\ output file since it is not safe
1744 to cut up lines arbitrarily in \ps.
1746 Procedure |unit_str_room| needs to be declared |forward| here because it calls
1747 |do_compaction| and |do_compaction| can call the error routines. Actually,
1748 |unit_str_room| avoids |overflow| errors but it can call |confusion|.
1750 @<Basic printing...@>=
1751 void mp_print_visible_char (MP mp, ASCII_code s) { /* prints a single character */
1752 switch (mp->selector) {
1754 wterm_chr(xchr(s)); wlog_chr(xchr(s));
1755 incr(mp->term_offset); incr(mp->file_offset);
1756 if ( mp->term_offset==(unsigned)mp->max_print_line ) {
1757 wterm_cr; mp->term_offset=0;
1759 if ( mp->file_offset==(unsigned)mp->max_print_line ) {
1760 wlog_cr; mp->file_offset=0;
1764 wlog_chr(xchr(s)); incr(mp->file_offset);
1765 if ( mp->file_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1768 wterm_chr(xchr(s)); incr(mp->term_offset);
1769 if ( mp->term_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1774 if ( mp->tally<mp->trick_count )
1775 mp->trick_buf[mp->tally % mp->error_line]=s;
1778 if ( mp->pool_ptr>=mp->max_pool_ptr ) {
1779 mp_unit_str_room(mp);
1780 if ( mp->pool_ptr>=mp->pool_size )
1781 goto DONE; /* drop characters if string space is full */
1786 { char ss[2]; ss[0] = xchr(s); ss[1]=0;
1787 do_fprintf(mp->wr_file[(mp->selector-write_file)],(char *)ss);
1794 @ The |print_char| procedure sends one character to the desired destination.
1795 File names and string expressions might contain |ASCII_code| values that
1796 can't be printed using |print_visible_char|. These characters will be
1797 printed in three- or four-symbol form like `\.{\^\^A}' or `\.{\^\^e4}'.
1798 (This procedure assumes that it is safe to bypass all checks for unprintable
1799 characters when |selector| is in the range |0..max_write_files-1|.
1800 The user might want to write unprintable characters.
1802 @d print_lc_hex(A) do { l=(A);
1803 mp_print_visible_char(mp, (l<10 ? l+'0' : l-10+'a'));
1806 @<Basic printing...@>=
1807 void mp_print_char (MP mp, ASCII_code k) { /* prints a single character */
1808 int l; /* small index or counter */
1809 if ( mp->selector<pseudo || mp->selector>=write_file) {
1810 mp_print_visible_char(mp, k);
1811 } else if ( @<Character |k| cannot be printed@> ) {
1814 mp_print_visible_char(mp, k+0100);
1815 } else if ( k<0200 ) {
1816 mp_print_visible_char(mp, k-0100);
1818 print_lc_hex(k / 16);
1819 print_lc_hex(k % 16);
1822 mp_print_visible_char(mp, k);
1826 @ An entire string is output by calling |print|. Note that if we are outputting
1827 the single standard ASCII character \.c, we could call |print("c")|, since
1828 |"c"=99| is the number of a single-character string, as explained above. But
1829 |print_char("c")| is quicker, so \MP\ goes directly to the |print_char|
1830 routine when it knows that this is safe. (The present implementation
1831 assumes that it is always safe to print a visible ASCII character.)
1832 @^system dependencies@>
1835 void mp_do_print (MP mp, char *ss, unsigned int len) { /* prints string |s| */
1838 mp_print_char(mp, ss[j]); incr(j);
1844 void mp_print (MP mp, char *ss) {
1845 mp_do_print(mp, ss, strlen(ss));
1847 void mp_print_str (MP mp, str_number s) {
1848 pool_pointer j; /* current character code position */
1849 if ( (s<0)||(s>mp->max_str_ptr) ) {
1850 mp_do_print(mp,"???",3); /* this can't happen */
1854 mp_do_print(mp, (char *)(mp->str_pool+j), (str_stop(s)-j));
1858 @ Here is the very first thing that \MP\ prints: a headline that identifies
1859 the version number and base name. The |term_offset| variable is temporarily
1860 incorrect, but the discrepancy is not serious since we assume that the banner
1861 and mem identifier together will occupy at most |max_print_line|
1862 character positions.
1864 @<Initialize the output...@>=
1866 wterm (version_string);
1867 if (mp->mem_ident!=NULL)
1868 mp_print(mp,mp->mem_ident);
1872 @ The procedure |print_nl| is like |print|, but it makes sure that the
1873 string appears at the beginning of a new line.
1876 void mp_print_nl (MP mp, char *s) { /* prints string |s| at beginning of line */
1877 switch(mp->selector) {
1879 if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_ln(mp);
1882 if ( mp->file_offset>0 ) mp_print_ln(mp);
1885 if ( mp->term_offset>0 ) mp_print_ln(mp);
1891 } /* there are no other cases */
1895 @ An array of digits in the range |0..9| is printed by |print_the_digs|.
1898 void mp_print_the_digs (MP mp, eight_bits k) {
1899 /* prints |dig[k-1]|$\,\ldots\,$|dig[0]| */
1901 decr(k); mp_print_char(mp, '0'+mp->dig[k]);
1905 @ The following procedure, which prints out the decimal representation of a
1906 given integer |n|, has been written carefully so that it works properly
1907 if |n=0| or if |(-n)| would cause overflow. It does not apply |mod| or |div|
1908 to negative arguments, since such operations are not implemented consistently
1909 by all \PASCAL\ compilers.
1912 void mp_print_int (MP mp,integer n) { /* prints an integer in decimal form */
1913 integer m; /* used to negate |n| in possibly dangerous cases */
1914 int k = 0; /* index to current digit; we assume that $|n|<10^{23}$ */
1916 mp_print_char(mp, '-');
1917 if ( n>-100000000 ) {
1920 m=-1-n; n=m / 10; m=(m % 10)+1; k=1;
1924 mp->dig[0]=0; incr(n);
1929 mp->dig[k]=n % 10; n=n / 10; incr(k);
1931 mp_print_the_digs(mp, k);
1935 void mp_print_int (MP mp,integer n);
1937 @ \MP\ also makes use of a trivial procedure to print two digits. The
1938 following subroutine is usually called with a parameter in the range |0<=n<=99|.
1941 void mp_print_dd (MP mp,integer n) { /* prints two least significant digits */
1943 mp_print_char(mp, '0'+(n / 10));
1944 mp_print_char(mp, '0'+(n % 10));
1949 void mp_print_dd (MP mp,integer n);
1951 @ Here is a procedure that asks the user to type a line of input,
1952 assuming that the |selector| setting is either |term_only| or |term_and_log|.
1953 The input is placed into locations |first| through |last-1| of the
1954 |buffer| array, and echoed on the transcript file if appropriate.
1956 This procedure is never called when |interaction<mp_scroll_mode|.
1958 @d prompt_input(A) do {
1959 wake_up_terminal; mp_print(mp, (A)); mp_term_input(mp);
1960 } while (0) /* prints a string and gets a line of input */
1963 void mp_term_input (MP mp) { /* gets a line from the terminal */
1964 size_t k; /* index into |buffer| */
1965 update_terminal; /* Now the user sees the prompt for sure */
1966 if (!mp_input_ln(mp, mp->term_in ))
1967 mp_fatal_error(mp, "End of file on the terminal!");
1968 @.End of file on the terminal@>
1969 mp->term_offset=0; /* the user's line ended with \<\rm return> */
1970 decr(mp->selector); /* prepare to echo the input */
1971 if ( mp->last!=mp->first ) {
1972 for (k=mp->first;k<=mp->last-1;k++) {
1973 mp_print_char(mp, mp->buffer[k]);
1977 mp->buffer[mp->last]='%';
1978 incr(mp->selector); /* restore previous status */
1981 @* \[6] Reporting errors.
1982 When something anomalous is detected, \MP\ typically does something like this:
1983 $$\vbox{\halign{#\hfil\cr
1984 |print_err("Something anomalous has been detected");|\cr
1985 |help3("This is the first line of my offer to help.")|\cr
1986 |("This is the second line. I'm trying to")|\cr
1987 |("explain the best way for you to proceed.");|\cr
1989 A two-line help message would be given using |help2|, etc.; these informal
1990 helps should use simple vocabulary that complements the words used in the
1991 official error message that was printed. (Outside the U.S.A., the help
1992 messages should preferably be translated into the local vernacular. Each
1993 line of help is at most 60 characters long, in the present implementation,
1994 so that |max_print_line| will not be exceeded.)
1996 The |print_err| procedure supplies a `\.!' before the official message,
1997 and makes sure that the terminal is awake if a stop is going to occur.
1998 The |error| procedure supplies a `\..' after the official message, then it
1999 shows the location of the error; and if |interaction=error_stop_mode|,
2000 it also enters into a dialog with the user, during which time the help
2001 message may be printed.
2002 @^system dependencies@>
2004 @ The global variable |interaction| has four settings, representing increasing
2005 amounts of user interaction:
2008 enum mp_interaction_mode {
2009 mp_unspecified_mode=0, /* extra value for command-line switch */
2010 mp_batch_mode, /* omits all stops and omits terminal output */
2011 mp_nonstop_mode, /* omits all stops */
2012 mp_scroll_mode, /* omits error stops */
2013 mp_error_stop_mode, /* stops at every opportunity to interact */
2017 int interaction; /* current level of interaction */
2019 @ @<Option variables@>=
2020 int interaction; /* current level of interaction */
2022 @ Set it here so it can be overwritten by the commandline
2024 @<Allocate or initialize ...@>=
2025 mp->interaction=opt->interaction;
2026 if (mp->interaction==mp_unspecified_mode || mp->interaction>mp_error_stop_mode)
2027 mp->interaction=mp_error_stop_mode;
2028 if (mp->interaction<mp_unspecified_mode)
2029 mp->interaction=mp_batch_mode;
2033 @d print_err(A) mp_print_err(mp,(A))
2036 void mp_print_err(MP mp, char * A);
2039 void mp_print_err(MP mp, char * A) {
2040 if ( mp->interaction==mp_error_stop_mode )
2042 mp_print_nl(mp, "! ");
2048 @ \MP\ is careful not to call |error| when the print |selector| setting
2049 might be unusual. The only possible values of |selector| at the time of
2052 \yskip\hang|no_print| (when |interaction=mp_batch_mode|
2053 and |log_file| not yet open);
2055 \hang|term_only| (when |interaction>mp_batch_mode| and |log_file| not yet open);
2057 \hang|log_only| (when |interaction=mp_batch_mode| and |log_file| is open);
2059 \hang|term_and_log| (when |interaction>mp_batch_mode| and |log_file| is open).
2061 @<Initialize the print |selector| based on |interaction|@>=
2062 if ( mp->interaction==mp_batch_mode ) mp->selector=no_print; else mp->selector=term_only
2064 @ A global variable |deletions_allowed| is set |false| if the |get_next|
2065 routine is active when |error| is called; this ensures that |get_next|
2066 will never be called recursively.
2069 The global variable |history| records the worst level of error that
2070 has been detected. It has four possible values: |spotless|, |warning_issued|,
2071 |error_message_issued|, and |fatal_error_stop|.
2073 Another global variable, |error_count|, is increased by one when an
2074 |error| occurs without an interactive dialog, and it is reset to zero at
2075 the end of every statement. If |error_count| reaches 100, \MP\ decides
2076 that there is no point in continuing further.
2079 enum mp_history_states {
2080 mp_spotless=0, /* |history| value when nothing has been amiss yet */
2081 mp_warning_issued, /* |history| value when |begin_diagnostic| has been called */
2082 mp_error_message_issued, /* |history| value when |error| has been called */
2083 mp_fatal_error_stop, /* |history| value when termination was premature */
2087 boolean deletions_allowed; /* is it safe for |error| to call |get_next|? */
2088 int history; /* has the source input been clean so far? */
2089 int error_count; /* the number of scrolled errors since the last statement ended */
2091 @ The value of |history| is initially |fatal_error_stop|, but it will
2092 be changed to |spotless| if \MP\ survives the initialization process.
2094 @<Allocate or ...@>=
2095 mp->deletions_allowed=true; mp->error_count=0; /* |history| is initialized elsewhere */
2097 @ Since errors can be detected almost anywhere in \MP, we want to declare the
2098 error procedures near the beginning of the program. But the error procedures
2099 in turn use some other procedures, which need to be declared |forward|
2100 before we get to |error| itself.
2102 It is possible for |error| to be called recursively if some error arises
2103 when |get_next| is being used to delete a token, and/or if some fatal error
2104 occurs while \MP\ is trying to fix a non-fatal one. But such recursion
2106 is never more than two levels deep.
2109 void mp_get_next (MP mp);
2110 void mp_term_input (MP mp);
2111 void mp_show_context (MP mp);
2112 void mp_begin_file_reading (MP mp);
2113 void mp_open_log_file (MP mp);
2114 void mp_clear_for_error_prompt (MP mp);
2115 void mp_debug_help (MP mp);
2116 @<Declare the procedure called |flush_string|@>
2119 void mp_normalize_selector (MP mp);
2121 @ Individual lines of help are recorded in the array |help_line|, which
2122 contains entries in positions |0..(help_ptr-1)|. They should be printed
2123 in reverse order, i.e., with |help_line[0]| appearing last.
2125 @d hlp1(A) mp->help_line[0]=(A); }
2126 @d hlp2(A) mp->help_line[1]=(A); hlp1
2127 @d hlp3(A) mp->help_line[2]=(A); hlp2
2128 @d hlp4(A) mp->help_line[3]=(A); hlp3
2129 @d hlp5(A) mp->help_line[4]=(A); hlp4
2130 @d hlp6(A) mp->help_line[5]=(A); hlp5
2131 @d help0 mp->help_ptr=0 /* sometimes there might be no help */
2132 @d help1 { mp->help_ptr=1; hlp1 /* use this with one help line */
2133 @d help2 { mp->help_ptr=2; hlp2 /* use this with two help lines */
2134 @d help3 { mp->help_ptr=3; hlp3 /* use this with three help lines */
2135 @d help4 { mp->help_ptr=4; hlp4 /* use this with four help lines */
2136 @d help5 { mp->help_ptr=5; hlp5 /* use this with five help lines */
2137 @d help6 { mp->help_ptr=6; hlp6 /* use this with six help lines */
2140 char * help_line[6]; /* helps for the next |error| */
2141 unsigned int help_ptr; /* the number of help lines present */
2142 boolean use_err_help; /* should the |err_help| string be shown? */
2143 str_number err_help; /* a string set up by \&{errhelp} */
2144 str_number filename_template; /* a string set up by \&{filenametemplate} */
2146 @ @<Allocate or ...@>=
2147 mp->help_ptr=0; mp->use_err_help=false; mp->err_help=0; mp->filename_template=0;
2149 @ The |jump_out| procedure just cuts across all active procedure levels and
2150 goes to |end_of_MP|. This is the only nonlocal |goto| statement in the
2151 whole program. It is used when there is no recovery from a particular error.
2153 The program uses a |jump_buf| to handle this, this is initialized at three
2154 spots: the start of |mp_new|, the start of |mp_initialize|, and the start
2155 of |mp_run|. Those are the only library enty points.
2157 @^system dependencies@>
2162 @ @<Install and test the non-local jump buffer@>=
2163 if (setjmp(mp->jump_buf) != 0) return mp->history;
2165 @ @<Setup the non-local jump buffer in |mp_new|@>=
2166 if (setjmp(mp->jump_buf) != 0) return NULL;
2168 @ If |mp->internal| is zero, then a crash occured during initialization,
2169 and it is not safe to run |mp_close_files_and_terminate|.
2172 void mp_jump_out (MP mp) {
2173 if(mp->internal!=NULL)
2174 mp_close_files_and_terminate(mp);
2175 longjmp(mp->jump_buf,1);
2178 @ Here now is the general |error| routine.
2181 void mp_error (MP mp) { /* completes the job of error reporting */
2182 ASCII_code c; /* what the user types */
2183 integer s1,s2,s3; /* used to save global variables when deleting tokens */
2184 pool_pointer j; /* character position being printed */
2185 if ( mp->history<mp_error_message_issued ) mp->history=mp_error_message_issued;
2186 mp_print_char(mp, '.'); mp_show_context(mp);
2187 if ( mp->interaction==mp_error_stop_mode ) {
2188 @<Get user's advice and |return|@>;
2190 incr(mp->error_count);
2191 if ( mp->error_count==100 ) {
2192 mp_print_nl(mp,"(That makes 100 errors; please try again.)");
2193 @.That makes 100 errors...@>
2194 mp->history=mp_fatal_error_stop; mp_jump_out(mp);
2196 @<Put help message on the transcript file@>;
2198 void mp_warn (MP mp, char *msg) {
2199 int saved_selector = mp->selector;
2200 mp_normalize_selector(mp);
2201 mp_print_nl(mp,"Warning: ");
2203 mp->selector = saved_selector;
2206 @ @<Exported function ...@>=
2207 void mp_error (MP mp);
2208 void mp_warn (MP mp, char *msg);
2211 @ @<Get user's advice...@>=
2214 mp_clear_for_error_prompt(mp); prompt_input("? ");
2216 if ( mp->last==mp->first ) return;
2217 c=mp->buffer[mp->first];
2218 if ( c>='a' ) c=c+'A'-'a'; /* convert to uppercase */
2219 @<Interpret code |c| and |return| if done@>;
2222 @ It is desirable to provide an `\.E' option here that gives the user
2223 an easy way to return from \MP\ to the system editor, with the offending
2224 line ready to be edited. But such an extension requires some system
2225 wizardry, so the present implementation simply types out the name of the
2227 edited and the relevant line number.
2228 @^system dependencies@>
2231 typedef void (*mp_run_editor_command)(MP, char *, int);
2234 mp_run_editor_command run_editor;
2236 @ @<Option variables@>=
2237 mp_run_editor_command run_editor;
2239 @ @<Allocate or initialize ...@>=
2240 set_callback_option(run_editor);
2243 void mp_run_editor (MP mp, char *fname, int fline);
2245 @ @c void mp_run_editor (MP mp, char *fname, int fline) {
2246 mp_print_nl(mp, "You want to edit file ");
2247 @.You want to edit file x@>
2248 mp_print(mp, fname);
2249 mp_print(mp, " at line ");
2250 mp_print_int(mp, fline);
2251 mp->interaction=mp_scroll_mode;
2256 There is a secret `\.D' option available when the debugging routines haven't
2260 @<Interpret code |c| and |return| if done@>=
2262 case '0': case '1': case '2': case '3': case '4':
2263 case '5': case '6': case '7': case '8': case '9':
2264 if ( mp->deletions_allowed ) {
2265 @<Delete |c-"0"| tokens and |continue|@>;
2270 mp_debug_help(mp); continue;
2274 if ( mp->file_ptr>0 ){
2275 (mp->run_editor)(mp,
2276 str(mp->input_stack[mp->file_ptr].name_field),
2281 @<Print the help information and |continue|@>;
2284 @<Introduce new material from the terminal and |return|@>;
2286 case 'Q': case 'R': case 'S':
2287 @<Change the interaction level and |return|@>;
2290 mp->interaction=mp_scroll_mode; mp_jump_out(mp);
2295 @<Print the menu of available options@>
2297 @ @<Print the menu...@>=
2299 mp_print(mp, "Type <return> to proceed, S to scroll future error messages,");
2300 @.Type <return> to proceed...@>
2301 mp_print_nl(mp, "R to run without stopping, Q to run quietly,");
2302 mp_print_nl(mp, "I to insert something, ");
2303 if ( mp->file_ptr>0 )
2304 mp_print(mp, "E to edit your file,");
2305 if ( mp->deletions_allowed )
2306 mp_print_nl(mp, "1 or ... or 9 to ignore the next 1 to 9 tokens of input,");
2307 mp_print_nl(mp, "H for help, X to quit.");
2310 @ Here the author of \MP\ apologizes for making use of the numerical
2311 relation between |"Q"|, |"R"|, |"S"|, and the desired interaction settings
2312 |mp_batch_mode|, |mp_nonstop_mode|, |mp_scroll_mode|.
2313 @^Knuth, Donald Ervin@>
2315 @<Change the interaction...@>=
2317 mp->error_count=0; mp->interaction=mp_batch_mode+c-'Q';
2318 mp_print(mp, "OK, entering ");
2320 case 'Q': mp_print(mp, "batchmode"); decr(mp->selector); break;
2321 case 'R': mp_print(mp, "nonstopmode"); break;
2322 case 'S': mp_print(mp, "scrollmode"); break;
2323 } /* there are no other cases */
2324 mp_print(mp, "..."); mp_print_ln(mp); update_terminal; return;
2327 @ When the following code is executed, |buffer[(first+1)..(last-1)]| may
2328 contain the material inserted by the user; otherwise another prompt will
2329 be given. In order to understand this part of the program fully, you need
2330 to be familiar with \MP's input stacks.
2332 @<Introduce new material...@>=
2334 mp_begin_file_reading(mp); /* enter a new syntactic level for terminal input */
2335 if ( mp->last>mp->first+1 ) {
2336 loc=mp->first+1; mp->buffer[mp->first]=' ';
2338 prompt_input("insert>"); loc=mp->first;
2341 mp->first=mp->last+1; mp->cur_input.limit_field=mp->last; return;
2344 @ We allow deletion of up to 99 tokens at a time.
2346 @<Delete |c-"0"| tokens...@>=
2348 s1=mp->cur_cmd; s2=mp->cur_mod; s3=mp->cur_sym; mp->OK_to_interrupt=false;
2349 if ( (mp->last>mp->first+1) && (mp->buffer[mp->first+1]>='0')&&(mp->buffer[mp->first+1]<='9') )
2350 c=c*10+mp->buffer[mp->first+1]-'0'*11;
2354 mp_get_next(mp); /* one-level recursive call of |error| is possible */
2355 @<Decrease the string reference count, if the current token is a string@>;
2358 mp->cur_cmd=s1; mp->cur_mod=s2; mp->cur_sym=s3; mp->OK_to_interrupt=true;
2359 help2("I have just deleted some text, as you asked.")
2360 ("You can now delete more, or insert, or whatever.");
2361 mp_show_context(mp);
2365 @ @<Print the help info...@>=
2367 if ( mp->use_err_help ) {
2368 @<Print the string |err_help|, possibly on several lines@>;
2369 mp->use_err_help=false;
2371 if ( mp->help_ptr==0 ) {
2372 help2("Sorry, I don't know how to help in this situation.")
2373 ("Maybe you should try asking a human?");
2376 decr(mp->help_ptr); mp_print(mp, mp->help_line[mp->help_ptr]); mp_print_ln(mp);
2377 } while (mp->help_ptr!=0);
2379 help4("Sorry, I already gave what help I could...")
2380 ("Maybe you should try asking a human?")
2381 ("An error might have occurred before I noticed any problems.")
2382 ("``If all else fails, read the instructions.''");
2386 @ @<Print the string |err_help|, possibly on several lines@>=
2387 j=mp->str_start[mp->err_help];
2388 while ( j<str_stop(mp->err_help) ) {
2389 if ( mp->str_pool[j]!='%' ) mp_print_str(mp, mp->str_pool[j]);
2390 else if ( j+1==str_stop(mp->err_help) ) mp_print_ln(mp);
2391 else if ( mp->str_pool[j+1]!='%' ) mp_print_ln(mp);
2392 else { incr(j); mp_print_char(mp, '%'); };
2396 @ @<Put help message on the transcript file@>=
2397 if ( mp->interaction>mp_batch_mode ) decr(mp->selector); /* avoid terminal output */
2398 if ( mp->use_err_help ) {
2399 mp_print_nl(mp, "");
2400 @<Print the string |err_help|, possibly on several lines@>;
2402 while ( mp->help_ptr>0 ){
2403 decr(mp->help_ptr); mp_print_nl(mp, mp->help_line[mp->help_ptr]);
2407 if ( mp->interaction>mp_batch_mode ) incr(mp->selector); /* re-enable terminal output */
2410 @ In anomalous cases, the print selector might be in an unknown state;
2411 the following subroutine is called to fix things just enough to keep
2412 running a bit longer.
2415 void mp_normalize_selector (MP mp) {
2416 if ( mp->log_opened ) mp->selector=term_and_log;
2417 else mp->selector=term_only;
2418 if ( mp->job_name==NULL ) mp_open_log_file(mp);
2419 if ( mp->interaction==mp_batch_mode ) decr(mp->selector);
2422 @ The following procedure prints \MP's last words before dying.
2424 @d succumb { if ( mp->interaction==mp_error_stop_mode )
2425 mp->interaction=mp_scroll_mode; /* no more interaction */
2426 if ( mp->log_opened ) mp_error(mp);
2427 /* if ( mp->interaction>mp_batch_mode ) mp_debug_help(mp); */
2428 mp->history=mp_fatal_error_stop; mp_jump_out(mp); /* irrecoverable error */
2432 void mp_fatal_error (MP mp, char *s) { /* prints |s|, and that's it */
2433 mp_normalize_selector(mp);
2434 print_err("Emergency stop"); help1(s); succumb;
2438 @ @<Exported function ...@>=
2439 void mp_fatal_error (MP mp, char *s);
2442 @ Here is the most dreaded error message.
2445 void mp_overflow (MP mp, char *s, integer n) { /* stop due to finiteness */
2446 mp_normalize_selector(mp);
2447 print_err("MetaPost capacity exceeded, sorry [");
2448 @.MetaPost capacity exceeded ...@>
2449 mp_print(mp, s); mp_print_char(mp, '='); mp_print_int(mp, n); mp_print_char(mp, ']');
2450 help2("If you really absolutely need more capacity,")
2451 ("you can ask a wizard to enlarge me.");
2455 @ @<Internal library declarations@>=
2456 void mp_overflow (MP mp, char *s, integer n);
2458 @ The program might sometime run completely amok, at which point there is
2459 no choice but to stop. If no previous error has been detected, that's bad
2460 news; a message is printed that is really intended for the \MP\
2461 maintenance person instead of the user (unless the user has been
2462 particularly diabolical). The index entries for `this can't happen' may
2463 help to pinpoint the problem.
2466 @<Internal library ...@>=
2467 void mp_confusion (MP mp,char *s);
2469 @ @<Error hand...@>=
2470 void mp_confusion (MP mp,char *s) {
2471 /* consistency check violated; |s| tells where */
2472 mp_normalize_selector(mp);
2473 if ( mp->history<mp_error_message_issued ) {
2474 print_err("This can't happen ("); mp_print(mp, s); mp_print_char(mp, ')');
2475 @.This can't happen@>
2476 help1("I'm broken. Please show this to someone who can fix can fix");
2478 print_err("I can\'t go on meeting you like this");
2479 @.I can't go on...@>
2480 help2("One of your faux pas seems to have wounded me deeply...")
2481 ("in fact, I'm barely conscious. Please fix it and try again.");
2486 @ Users occasionally want to interrupt \MP\ while it's running.
2487 If the \PASCAL\ runtime system allows this, one can implement
2488 a routine that sets the global variable |interrupt| to some nonzero value
2489 when such an interrupt is signaled. Otherwise there is probably at least
2490 a way to make |interrupt| nonzero using the \PASCAL\ debugger.
2491 @^system dependencies@>
2494 @d check_interrupt { if ( mp->interrupt!=0 )
2495 mp_pause_for_instructions(mp); }
2498 integer interrupt; /* should \MP\ pause for instructions? */
2499 boolean OK_to_interrupt; /* should interrupts be observed? */
2501 @ @<Allocate or ...@>=
2502 mp->interrupt=0; mp->OK_to_interrupt=true;
2504 @ When an interrupt has been detected, the program goes into its
2505 highest interaction level and lets the user have the full flexibility of
2506 the |error| routine. \MP\ checks for interrupts only at times when it is
2510 void mp_pause_for_instructions (MP mp) {
2511 if ( mp->OK_to_interrupt ) {
2512 mp->interaction=mp_error_stop_mode;
2513 if ( (mp->selector==log_only)||(mp->selector==no_print) )
2515 print_err("Interruption");
2518 ("Try to insert some instructions for me (e.g.,`I show x'),")
2519 ("unless you just want to quit by typing `X'.");
2520 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
2525 @ Many of \MP's error messages state that a missing token has been
2526 inserted behind the scenes. We can save string space and program space
2527 by putting this common code into a subroutine.
2530 void mp_missing_err (MP mp, char *s) {
2531 print_err("Missing `"); mp_print(mp, s); mp_print(mp, "' has been inserted");
2532 @.Missing...inserted@>
2535 @* \[7] Arithmetic with scaled numbers.
2536 The principal computations performed by \MP\ are done entirely in terms of
2537 integers less than $2^{31}$ in magnitude; thus, the arithmetic specified in this
2538 program can be carried out in exactly the same way on a wide variety of
2539 computers, including some small ones.
2542 But \PASCAL\ does not define the |div|
2543 operation in the case of negative dividends; for example, the result of
2544 |(-2*n-1) div 2| is |-(n+1)| on some computers and |-n| on others.
2545 There are two principal types of arithmetic: ``translation-preserving,''
2546 in which the identity |(a+q*b)div b=(a div b)+q| is valid; and
2547 ``negation-preserving,'' in which |(-a)div b=-(a div b)|. This leads to
2548 two \MP s, which can produce different results, although the differences
2549 should be negligible when the language is being used properly.
2550 The \TeX\ processor has been defined carefully so that both varieties
2551 of arithmetic will produce identical output, but it would be too
2552 inefficient to constrain \MP\ in a similar way.
2554 @d el_gordo 017777777777 /* $2^{31}-1$, the largest value that \MP\ likes */
2556 @ One of \MP's most common operations is the calculation of
2557 $\lfloor{a+b\over2}\rfloor$,
2558 the midpoint of two given integers |a| and~|b|. The only decent way to do
2559 this in \PASCAL\ is to write `|(a+b) div 2|'; but on most machines it is
2560 far more efficient to calculate `|(a+b)| right shifted one bit'.
2562 Therefore the midpoint operation will always be denoted by `|half(a+b)|'
2563 in this program. If \MP\ is being implemented with languages that permit
2564 binary shifting, the |half| macro should be changed to make this operation
2565 as efficient as possible. Since some languages have shift operators that can
2566 only be trusted to work on positive numbers, there is also a macro |halfp|
2567 that is used only when the quantity being halved is known to be positive
2570 @d half(A) ((A) / 2)
2571 @d halfp(A) ((A) / 2)
2573 @ A single computation might use several subroutine calls, and it is
2574 desirable to avoid producing multiple error messages in case of arithmetic
2575 overflow. So the routines below set the global variable |arith_error| to |true|
2576 instead of reporting errors directly to the user.
2579 boolean arith_error; /* has arithmetic overflow occurred recently? */
2581 @ @<Allocate or ...@>=
2582 mp->arith_error=false;
2584 @ At crucial points the program will say |check_arith|, to test if
2585 an arithmetic error has been detected.
2587 @d check_arith { if ( mp->arith_error ) mp_clear_arith(mp); }
2590 void mp_clear_arith (MP mp) {
2591 print_err("Arithmetic overflow");
2592 @.Arithmetic overflow@>
2593 help4("Uh, oh. A little while ago one of the quantities that I was")
2594 ("computing got too large, so I'm afraid your answers will be")
2595 ("somewhat askew. You'll probably have to adopt different")
2596 ("tactics next time. But I shall try to carry on anyway.");
2598 mp->arith_error=false;
2601 @ Addition is not always checked to make sure that it doesn't overflow,
2602 but in places where overflow isn't too unlikely the |slow_add| routine
2605 @c integer mp_slow_add (MP mp,integer x, integer y) {
2607 if ( y<=el_gordo-x ) {
2610 mp->arith_error=true;
2613 } else if ( -y<=el_gordo+x ) {
2616 mp->arith_error=true;
2621 @ Fixed-point arithmetic is done on {\sl scaled integers\/} that are multiples
2622 of $2^{-16}$. In other words, a binary point is assumed to be sixteen bit
2623 positions from the right end of a binary computer word.
2625 @d quarter_unit 040000 /* $2^{14}$, represents 0.250000 */
2626 @d half_unit 0100000 /* $2^{15}$, represents 0.50000 */
2627 @d three_quarter_unit 0140000 /* $3\cdot2^{14}$, represents 0.75000 */
2628 @d unity 0200000 /* $2^{16}$, represents 1.00000 */
2629 @d two 0400000 /* $2^{17}$, represents 2.00000 */
2630 @d three 0600000 /* $2^{17}+2^{16}$, represents 3.00000 */
2633 typedef integer scaled; /* this type is used for scaled integers */
2634 typedef unsigned char small_number; /* this type is self-explanatory */
2636 @ The following function is used to create a scaled integer from a given decimal
2637 fraction $(.d_0d_1\ldots d_{k-1})$, where |0<=k<=17|. The digit $d_i$ is
2638 given in |dig[i]|, and the calculation produces a correctly rounded result.
2641 scaled mp_round_decimals (MP mp,small_number k) {
2642 /* converts a decimal fraction */
2643 integer a = 0; /* the accumulator */
2645 a=(a+mp->dig[k]*two) / 10;
2650 @ Conversely, here is a procedure analogous to |print_int|. If the output
2651 of this procedure is subsequently read by \MP\ and converted by the
2652 |round_decimals| routine above, it turns out that the original value will
2653 be reproduced exactly. A decimal point is printed only if the value is
2654 not an integer. If there is more than one way to print the result with
2655 the optimum number of digits following the decimal point, the closest
2656 possible value is given.
2658 The invariant relation in the \&{repeat} loop is that a sequence of
2659 decimal digits yet to be printed will yield the original number if and only if
2660 they form a fraction~$f$ in the range $s-\delta\L10\cdot2^{16}f<s$.
2661 We can stop if and only if $f=0$ satisfies this condition; the loop will
2662 terminate before $s$ can possibly become zero.
2664 @<Basic printing...@>=
2665 void mp_print_scaled (MP mp,scaled s) { /* prints scaled real, rounded to five digits */
2666 scaled delta; /* amount of allowable inaccuracy */
2668 mp_print_char(mp, '-');
2669 negate(s); /* print the sign, if negative */
2671 mp_print_int(mp, s / unity); /* print the integer part */
2675 mp_print_char(mp, '.');
2678 s=s+0100000-(delta / 2); /* round the final digit */
2679 mp_print_char(mp, '0'+(s / unity));
2686 @ We often want to print two scaled quantities in parentheses,
2687 separated by a comma.
2689 @<Basic printing...@>=
2690 void mp_print_two (MP mp,scaled x, scaled y) { /* prints `|(x,y)|' */
2691 mp_print_char(mp, '(');
2692 mp_print_scaled(mp, x);
2693 mp_print_char(mp, ',');
2694 mp_print_scaled(mp, y);
2695 mp_print_char(mp, ')');
2698 @ The |scaled| quantities in \MP\ programs are generally supposed to be
2699 less than $2^{12}$ in absolute value, so \MP\ does much of its internal
2700 arithmetic with 28~significant bits of precision. A |fraction| denotes
2701 a scaled integer whose binary point is assumed to be 28 bit positions
2704 @d fraction_half 01000000000 /* $2^{27}$, represents 0.50000000 */
2705 @d fraction_one 02000000000 /* $2^{28}$, represents 1.00000000 */
2706 @d fraction_two 04000000000 /* $2^{29}$, represents 2.00000000 */
2707 @d fraction_three 06000000000 /* $3\cdot2^{28}$, represents 3.00000000 */
2708 @d fraction_four 010000000000 /* $2^{30}$, represents 4.00000000 */
2711 typedef integer fraction; /* this type is used for scaled fractions */
2713 @ In fact, the two sorts of scaling discussed above aren't quite
2714 sufficient; \MP\ has yet another, used internally to keep track of angles
2715 in units of $2^{-20}$ degrees.
2717 @d forty_five_deg 0264000000 /* $45\cdot2^{20}$, represents $45^\circ$ */
2718 @d ninety_deg 0550000000 /* $90\cdot2^{20}$, represents $90^\circ$ */
2719 @d one_eighty_deg 01320000000 /* $180\cdot2^{20}$, represents $180^\circ$ */
2720 @d three_sixty_deg 02640000000 /* $360\cdot2^{20}$, represents $360^\circ$ */
2723 typedef integer angle; /* this type is used for scaled angles */
2725 @ The |make_fraction| routine produces the |fraction| equivalent of
2726 |p/q|, given integers |p| and~|q|; it computes the integer
2727 $f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are
2728 positive. If |p| and |q| are both of the same scaled type |t|,
2729 the ``type relation'' |make_fraction(t,t)=fraction| is valid;
2730 and it's also possible to use the subroutine ``backwards,'' using
2731 the relation |make_fraction(t,fraction)=t| between scaled types.
2733 If the result would have magnitude $2^{31}$ or more, |make_fraction|
2734 sets |arith_error:=true|. Most of \MP's internal computations have
2735 been designed to avoid this sort of error.
2737 If this subroutine were programmed in assembly language on a typical
2738 machine, we could simply compute |(@t$2^{28}$@>*p)div q|, since a
2739 double-precision product can often be input to a fixed-point division
2740 instruction. But when we are restricted to \PASCAL\ arithmetic it
2741 is necessary either to resort to multiple-precision maneuvering
2742 or to use a simple but slow iteration. The multiple-precision technique
2743 would be about three times faster than the code adopted here, but it
2744 would be comparatively long and tricky, involving about sixteen
2745 additional multiplications and divisions.
2747 This operation is part of \MP's ``inner loop''; indeed, it will
2748 consume nearly 10\pct! of the running time (exclusive of input and output)
2749 if the code below is left unchanged. A machine-dependent recoding
2750 will therefore make \MP\ run faster. The present implementation
2751 is highly portable, but slow; it avoids multiplication and division
2752 except in the initial stage. System wizards should be careful to
2753 replace it with a routine that is guaranteed to produce identical
2754 results in all cases.
2755 @^system dependencies@>
2757 As noted below, a few more routines should also be replaced by machine-dependent
2758 code, for efficiency. But when a procedure is not part of the ``inner loop,''
2759 such changes aren't advisable; simplicity and robustness are
2760 preferable to trickery, unless the cost is too high.
2764 fraction mp_make_fraction (MP mp,integer p, integer q);
2765 integer mp_take_scaled (MP mp,integer q, scaled f) ;
2767 @ If FIXPT is not defined, we need these preprocessor values
2769 @d ELGORDO 0x7fffffff
2770 @d TWEXP31 2147483648.0
2771 @d TWEXP28 268435456.0
2773 @d TWEXP_16 (1.0/65536.0)
2774 @d TWEXP_28 (1.0/268435456.0)
2778 fraction mp_make_fraction (MP mp,integer p, integer q) {
2780 integer f; /* the fraction bits, with a leading 1 bit */
2781 integer n; /* the integer part of $\vert p/q\vert$ */
2782 integer be_careful; /* disables certain compiler optimizations */
2783 boolean negative = false; /* should the result be negated? */
2785 negate(p); negative=true;
2789 if ( q==0 ) mp_confusion(mp, '/');
2791 @:this can't happen /}{\quad \./@>
2792 negate(q); negative = ! negative;
2796 mp->arith_error=true;
2797 return ( negative ? -el_gordo : el_gordo);
2799 n=(n-1)*fraction_one;
2800 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>;
2801 return (negative ? (-(f+n)) : (f+n));
2807 if (q==0) mp_confusion(mp,'/');
2809 d = TWEXP28 * (double)p /(double)q;
2812 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
2814 if (d==i && ( ((q>0 ? -q : q)&077777)
2815 * (((i&037777)<<1)-1) & 04000)!=0) --i;
2818 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
2820 if (d==i && ( ((q>0 ? q : -q)&077777)
2821 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
2827 @ The |repeat| loop here preserves the following invariant relations
2828 between |f|, |p|, and~|q|:
2829 (i)~|0<=p<q|; (ii)~$fq+p=2^k(q+p_0)$, where $k$ is an integer and
2830 $p_0$ is the original value of~$p$.
2832 Notice that the computation specifies
2833 |(p-q)+p| instead of |(p+p)-q|, because the latter could overflow.
2834 Let us hope that optimizing compilers do not miss this point; a
2835 special variable |be_careful| is used to emphasize the necessary
2836 order of computation. Optimizing compilers should keep |be_careful|
2837 in a register, not store it in memory.
2840 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>=
2844 be_careful=p-q; p=be_careful+p;
2850 } while (f<fraction_one);
2852 if ( be_careful+p>=0 ) incr(f);
2855 @ The dual of |make_fraction| is |take_fraction|, which multiplies a
2856 given integer~|q| by a fraction~|f|. When the operands are positive, it
2857 computes $p=\lfloor qf/2^{28}+{1\over2}\rfloor$, a symmetric function
2860 This routine is even more ``inner loopy'' than |make_fraction|;
2861 the present implementation consumes almost 20\pct! of \MP's computation
2862 time during typical jobs, so a machine-language substitute is advisable.
2863 @^inner loop@> @^system dependencies@>
2866 integer mp_take_fraction (MP mp,integer q, fraction f) ;
2870 integer mp_take_fraction (MP mp,integer q, fraction f) {
2871 integer p; /* the fraction so far */
2872 boolean negative; /* should the result be negated? */
2873 integer n; /* additional multiple of $q$ */
2874 integer be_careful; /* disables certain compiler optimizations */
2875 @<Reduce to the case that |f>=0| and |q>0|@>;
2876 if ( f<fraction_one ) {
2879 n=f / fraction_one; f=f % fraction_one;
2880 if ( q<=el_gordo / n ) {
2883 mp->arith_error=true; n=el_gordo;
2887 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>;
2888 be_careful=n-el_gordo;
2889 if ( be_careful+p>0 ){
2890 mp->arith_error=true; n=el_gordo-p;
2897 integer mp_take_fraction (MP mp,integer p, fraction q) {
2900 d = (double)p * (double)q * TWEXP_28;
2904 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2905 mp->arith_error = true;
2909 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2913 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2914 mp->arith_error = true;
2918 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2924 @ @<Reduce to the case that |f>=0| and |q>0|@>=
2928 negate( f); negative=true;
2931 negate(q); negative=! negative;
2934 @ The invariant relations in this case are (i)~$\lfloor(qf+p)/2^k\rfloor
2935 =\lfloor qf_0/2^{28}+{1\over2}\rfloor$, where $k$ is an integer and
2936 $f_0$ is the original value of~$f$; (ii)~$2^k\L f<2^{k+1}$.
2939 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>=
2940 p=fraction_half; /* that's $2^{27}$; the invariants hold now with $k=28$ */
2941 if ( q<fraction_four ) {
2943 if ( odd(f) ) p=halfp(p+q); else p=halfp(p);
2948 if ( odd(f) ) p=p+halfp(q-p); else p=halfp(p);
2954 @ When we want to multiply something by a |scaled| quantity, we use a scheme
2955 analogous to |take_fraction| but with a different scaling.
2956 Given positive operands, |take_scaled|
2957 computes the quantity $p=\lfloor qf/2^{16}+{1\over2}\rfloor$.
2959 Once again it is a good idea to use a machine-language replacement if
2960 possible; otherwise |take_scaled| will use more than 2\pct! of the running time
2961 when the Computer Modern fonts are being generated.
2966 integer mp_take_scaled (MP mp,integer q, scaled f) {
2967 integer p; /* the fraction so far */
2968 boolean negative; /* should the result be negated? */
2969 integer n; /* additional multiple of $q$ */
2970 integer be_careful; /* disables certain compiler optimizations */
2971 @<Reduce to the case that |f>=0| and |q>0|@>;
2975 n=f / unity; f=f % unity;
2976 if ( q<=el_gordo / n ) {
2979 mp->arith_error=true; n=el_gordo;
2983 @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>;
2984 be_careful=n-el_gordo;
2985 if ( be_careful+p>0 ) {
2986 mp->arith_error=true; n=el_gordo-p;
2988 return ( negative ?(-(n+p)) :(n+p));
2990 integer mp_take_scaled (MP mp,integer p, scaled q) {
2993 d = (double)p * (double)q * TWEXP_16;
2997 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2998 mp->arith_error = true;
3002 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
3006 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
3007 mp->arith_error = true;
3011 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
3017 @ @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>=
3018 p=half_unit; /* that's $2^{15}$; the invariants hold now with $k=16$ */
3020 if ( q<fraction_four ) {
3022 p = (odd(f) ? halfp(p+q) : halfp(p));
3027 p = (odd(f) ? p+halfp(q-p) : halfp(p));
3032 @ For completeness, there's also |make_scaled|, which computes a
3033 quotient as a |scaled| number instead of as a |fraction|.
3034 In other words, the result is $\lfloor2^{16}p/q+{1\over2}\rfloor$, if the
3035 operands are positive. \ (This procedure is not used especially often,
3036 so it is not part of \MP's inner loop.)
3038 @<Internal library ...@>=
3039 scaled mp_make_scaled (MP mp,integer p, integer q) ;
3042 scaled mp_make_scaled (MP mp,integer p, integer q) {
3044 integer f; /* the fraction bits, with a leading 1 bit */
3045 integer n; /* the integer part of $\vert p/q\vert$ */
3046 boolean negative; /* should the result be negated? */
3047 integer be_careful; /* disables certain compiler optimizations */
3048 if ( p>=0 ) negative=false;
3049 else { negate(p); negative=true; };
3052 if ( q==0 ) mp_confusion(mp, "/");
3053 @:this can't happen /}{\quad \./@>
3055 negate(q); negative=! negative;
3059 mp->arith_error=true;
3060 return (negative ? (-el_gordo) : el_gordo);
3063 @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>;
3064 return ( negative ? (-(f+n)) :(f+n));
3070 if (q==0) mp_confusion(mp,"/");
3072 d = TWEXP16 * (double)p /(double)q;
3075 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
3077 if (d==i && ( ((q>0 ? -q : q)&077777)
3078 * (((i&037777)<<1)-1) & 04000)!=0) --i;
3081 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
3083 if (d==i && ( ((q>0 ? q : -q)&077777)
3084 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
3090 @ @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>=
3093 be_careful=p-q; p=be_careful+p;
3094 if ( p>=0 ) f=f+f+1;
3095 else { f+=f; p=p+q; };
3098 if ( be_careful+p>=0 ) incr(f)
3100 @ Here is a typical example of how the routines above can be used.
3101 It computes the function
3102 $${1\over3\tau}f(\theta,\phi)=
3103 {\tau^{-1}\bigl(2+\sqrt2\,(\sin\theta-{1\over16}\sin\phi)
3104 (\sin\phi-{1\over16}\sin\theta)(\cos\theta-\cos\phi)\bigr)\over
3105 3\,\bigl(1+{1\over2}(\sqrt5-1)\cos\theta+{1\over2}(3-\sqrt5\,)\cos\phi\bigr)},$$
3106 where $\tau$ is a |scaled| ``tension'' parameter. This is \MP's magic
3107 fudge factor for placing the first control point of a curve that starts
3108 at an angle $\theta$ and ends at an angle $\phi$ from the straight path.
3109 (Actually, if the stated quantity exceeds 4, \MP\ reduces it to~4.)
3111 The trigonometric quantity to be multiplied by $\sqrt2$ is less than $\sqrt2$.
3112 (It's a sum of eight terms whose absolute values can be bounded using
3113 relations such as $\sin\theta\cos\theta\L{1\over2}$.) Thus the numerator
3114 is positive; and since the tension $\tau$ is constrained to be at least
3115 $3\over4$, the numerator is less than $16\over3$. The denominator is
3116 nonnegative and at most~6. Hence the fixed-point calculations below
3117 are guaranteed to stay within the bounds of a 32-bit computer word.
3119 The angles $\theta$ and $\phi$ are given implicitly in terms of |fraction|
3120 arguments |st|, |ct|, |sf|, and |cf|, representing $\sin\theta$, $\cos\theta$,
3121 $\sin\phi$, and $\cos\phi$, respectively.
3124 fraction mp_velocity (MP mp,fraction st, fraction ct, fraction sf,
3125 fraction cf, scaled t) {
3126 integer acc,num,denom; /* registers for intermediate calculations */
3127 acc=mp_take_fraction(mp, st-(sf / 16), sf-(st / 16));
3128 acc=mp_take_fraction(mp, acc,ct-cf);
3129 num=fraction_two+mp_take_fraction(mp, acc,379625062);
3130 /* $2^{28}\sqrt2\approx379625062.497$ */
3131 denom=fraction_three+mp_take_fraction(mp, ct,497706707)+mp_take_fraction(mp, cf,307599661);
3132 /* $3\cdot2^{27}\cdot(\sqrt5-1)\approx497706706.78$ and
3133 $3\cdot2^{27}\cdot(3-\sqrt5\,)\approx307599661.22$ */
3134 if ( t!=unity ) num=mp_make_scaled(mp, num,t);
3135 /* |make_scaled(fraction,scaled)=fraction| */
3136 if ( num / 4>=denom )
3137 return fraction_four;
3139 return mp_make_fraction(mp, num, denom);
3142 @ The following somewhat different subroutine tests rigorously if $ab$ is
3143 greater than, equal to, or less than~$cd$,
3144 given integers $(a,b,c,d)$. In most cases a quick decision is reached.
3145 The result is $+1$, 0, or~$-1$ in the three respective cases.
3147 @d mp_ab_vs_cd(M,A,B,C,D) mp_do_ab_vs_cd(A,B,C,D)
3150 integer mp_do_ab_vs_cd (integer a,integer b, integer c, integer d) {
3151 integer q,r; /* temporary registers */
3152 @<Reduce to the case that |a,c>=0|, |b,d>0|@>;
3154 q = a / d; r = c / b;
3156 return ( q>r ? 1 : -1);
3157 q = a % d; r = c % b;
3160 if ( q==0 ) return -1;
3162 } /* now |a>d>0| and |c>b>0| */
3165 @ @<Reduce to the case that |a...@>=
3166 if ( a<0 ) { negate(a); negate(b); };
3167 if ( c<0 ) { negate(c); negate(d); };
3170 if ( (a==0||b==0)&&(c==0||d==0) ) return 0;
3174 return ( a==0 ? 0 : -1);
3175 q=a; a=c; c=q; q=-b; b=-d; d=q;
3176 } else if ( b<=0 ) {
3177 if ( b<0 ) if ( a>0 ) return -1;
3178 return (c==0 ? 0 : -1);
3181 @ We conclude this set of elementary routines with some simple rounding
3182 and truncation operations.
3184 @<Internal library declarations@>=
3185 #define mp_floor_scaled(M,i) ((i)&(-65536))
3186 #define mp_round_unscaled(M,i) (((i>>15)+1)>>1)
3187 #define mp_round_fraction(M,i) (((i>>11)+1)>>1)
3190 @* \[8] Algebraic and transcendental functions.
3191 \MP\ computes all of the necessary special functions from scratch, without
3192 relying on |real| arithmetic or system subroutines for sines, cosines, etc.
3194 @ To get the square root of a |scaled| number |x|, we want to calculate
3195 $s=\lfloor 2^8\!\sqrt x +{1\over2}\rfloor$. If $x>0$, this is the unique
3196 integer such that $2^{16}x-s\L s^2<2^{16}x+s$. The following subroutine
3197 determines $s$ by an iterative method that maintains the invariant
3198 relations $x=2^{46-2k}x_0\bmod 2^{30}$, $0<y=\lfloor 2^{16-2k}x_0\rfloor
3199 -s^2+s\L q=2s$, where $x_0$ is the initial value of $x$. The value of~$y$
3200 might, however, be zero at the start of the first iteration.
3203 scaled mp_square_rt (MP mp,scaled x) ;
3206 scaled mp_square_rt (MP mp,scaled x) {
3207 small_number k; /* iteration control counter */
3208 integer y,q; /* registers for intermediate calculations */
3210 @<Handle square root of zero or negative argument@>;
3213 while ( x<fraction_two ) { /* i.e., |while x<@t$2^{29}$@>|\unskip */
3216 if ( x<fraction_four ) y=0;
3217 else { x=x-fraction_four; y=1; };
3219 @<Decrease |k| by 1, maintaining the invariant
3220 relations between |x|, |y|, and~|q|@>;
3226 @ @<Handle square root of zero...@>=
3229 print_err("Square root of ");
3230 @.Square root...replaced by 0@>
3231 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3232 help2("Since I don't take square roots of negative numbers,")
3233 ("I'm zeroing this one. Proceed, with fingers crossed.");
3239 @ @<Decrease |k| by 1, maintaining...@>=
3241 if ( x>=fraction_four ) { /* note that |fraction_four=@t$2^{30}$@>| */
3242 x=x-fraction_four; incr(y);
3244 x+=x; y=y+y-q; q+=q;
3245 if ( x>=fraction_four ) { x=x-fraction_four; incr(y); };
3246 if ( y>q ){ y=y-q; q=q+2; }
3247 else if ( y<=0 ) { q=q-2; y=y+q; };
3250 @ Pythagorean addition $\psqrt{a^2+b^2}$ is implemented by an elegant
3251 iterative scheme due to Cleve Moler and Donald Morrison [{\sl IBM Journal
3252 @^Moler, Cleve Barry@>
3253 @^Morrison, Donald Ross@>
3254 of Research and Development\/ \bf27} (1983), 577--581]. It modifies |a| and~|b|
3255 in such a way that their Pythagorean sum remains invariant, while the
3256 smaller argument decreases.
3258 @<Internal library ...@>=
3259 integer mp_pyth_add (MP mp,integer a, integer b);
3263 integer mp_pyth_add (MP mp,integer a, integer b) {
3264 fraction r; /* register used to transform |a| and |b| */
3265 boolean big; /* is the result dangerously near $2^{31}$? */
3267 if ( a<b ) { r=b; b=a; a=r; }; /* now |0<=b<=a| */
3269 if ( a<fraction_two ) {
3272 a=a / 4; b=b / 4; big=true;
3273 }; /* we reduced the precision to avoid arithmetic overflow */
3274 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>;
3276 if ( a<fraction_two ) {
3279 mp->arith_error=true; a=el_gordo;
3286 @ The key idea here is to reflect the vector $(a,b)$ about the
3287 line through $(a,b/2)$.
3289 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>=
3291 r=mp_make_fraction(mp, b,a);
3292 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3294 r=mp_make_fraction(mp, r,fraction_four+r);
3295 a=a+mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3299 @ Here is a similar algorithm for $\psqrt{a^2-b^2}$.
3300 It converges slowly when $b$ is near $a$, but otherwise it works fine.
3303 integer mp_pyth_sub (MP mp,integer a, integer b) {
3304 fraction r; /* register used to transform |a| and |b| */
3305 boolean big; /* is the input dangerously near $2^{31}$? */
3308 @<Handle erroneous |pyth_sub| and set |a:=0|@>;
3310 if ( a<fraction_four ) {
3313 a=halfp(a); b=halfp(b); big=true;
3315 @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>;
3316 if ( big ) double(a);
3321 @ @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>=
3323 r=mp_make_fraction(mp, b,a);
3324 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3326 r=mp_make_fraction(mp, r,fraction_four-r);
3327 a=a-mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3330 @ @<Handle erroneous |pyth_sub| and set |a:=0|@>=
3333 print_err("Pythagorean subtraction "); mp_print_scaled(mp, a);
3334 mp_print(mp, "+-+"); mp_print_scaled(mp, b);
3335 mp_print(mp, " has been replaced by 0");
3337 help2("Since I don't take square roots of negative numbers,")
3338 ("I'm zeroing this one. Proceed, with fingers crossed.");
3344 @ The subroutines for logarithm and exponential involve two tables.
3345 The first is simple: |two_to_the[k]| equals $2^k$. The second involves
3346 a bit more calculation, which the author claims to have done correctly:
3347 |spec_log[k]| is $2^{27}$ times $\ln\bigl(1/(1-2^{-k})\bigr)=
3348 2^{-k}+{1\over2}2^{-2k}+{1\over3}2^{-3k}+\cdots\,$, rounded to the
3351 @d two_to_the(A) (1<<(A))
3354 static const integer spec_log[29] = { 0, /* special logarithms */
3355 93032640, 38612034, 17922280, 8662214, 4261238, 2113709,
3356 1052693, 525315, 262400, 131136, 65552, 32772, 16385,
3357 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1 };
3359 @ @<Local variables for initialization@>=
3360 integer k; /* all-purpose loop index */
3363 @ Here is the routine that calculates $2^8$ times the natural logarithm
3364 of a |scaled| quantity; it is an integer approximation to $2^{24}\ln(x/2^{16})$,
3365 when |x| is a given positive integer.
3367 The method is based on exercise 1.2.2--25 in {\sl The Art of Computer
3368 Programming\/}: During the main iteration we have $1\L 2^{-30}x<1/(1-2^{1-k})$,
3369 and the logarithm of $2^{30}x$ remains to be added to an accumulator
3370 register called~$y$. Three auxiliary bits of accuracy are retained in~$y$
3371 during the calculation, and sixteen auxiliary bits to extend |y| are
3372 kept in~|z| during the initial argument reduction. (We add
3373 $100\cdot2^{16}=6553600$ to~|z| and subtract 100 from~|y| so that |z| will
3374 not become negative; also, the actual amount subtracted from~|y| is~96,
3375 not~100, because we want to add~4 for rounding before the final division by~8.)
3378 scaled mp_m_log (MP mp,scaled x) {
3379 integer y,z; /* auxiliary registers */
3380 integer k; /* iteration counter */
3382 @<Handle non-positive logarithm@>;
3384 y=1302456956+4-100; /* $14\times2^{27}\ln2\approx1302456956.421063$ */
3385 z=27595+6553600; /* and $2^{16}\times .421063\approx 27595$ */
3386 while ( x<fraction_four ) {
3387 double(x); y-=93032639; z-=48782;
3388 } /* $2^{27}\ln2\approx 93032639.74436163$ and $2^{16}\times.74436163\approx 48782$ */
3389 y=y+(z / unity); k=2;
3390 while ( x>fraction_four+4 ) {
3391 @<Increase |k| until |x| can be multiplied by a
3392 factor of $2^{-k}$, and adjust $y$ accordingly@>;
3398 @ @<Increase |k| until |x| can...@>=
3400 z=((x-1) / two_to_the(k))+1; /* $z=\lceil x/2^k\rceil$ */
3401 while ( x<fraction_four+z ) { z=halfp(z+1); incr(k); };
3402 y+=spec_log[k]; x-=z;
3405 @ @<Handle non-positive logarithm@>=
3407 print_err("Logarithm of ");
3408 @.Logarithm...replaced by 0@>
3409 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3410 help2("Since I don't take logs of non-positive numbers,")
3411 ("I'm zeroing this one. Proceed, with fingers crossed.");
3416 @ Conversely, the exponential routine calculates $\exp(x/2^8)$,
3417 when |x| is |scaled|. The result is an integer approximation to
3418 $2^{16}\exp(x/2^{24})$, when |x| is regarded as an integer.
3421 scaled mp_m_exp (MP mp,scaled x) {
3422 small_number k; /* loop control index */
3423 integer y,z; /* auxiliary registers */
3424 if ( x>174436200 ) {
3425 /* $2^{24}\ln((2^{31}-1)/2^{16})\approx 174436199.51$ */
3426 mp->arith_error=true;
3428 } else if ( x<-197694359 ) {
3429 /* $2^{24}\ln(2^{-1}/2^{16})\approx-197694359.45$ */
3433 z=-8*x; y=04000000; /* $y=2^{20}$ */
3435 if ( x<=127919879 ) {
3437 /* $2^{27}\ln((2^{31}-1)/2^{20})\approx 1023359037.125$ */
3439 z=8*(174436200-x); /* |z| is always nonnegative */
3443 @<Multiply |y| by $\exp(-z/2^{27})$@>;
3445 return ((y+8) / 16);
3451 @ The idea here is that subtracting |spec_log[k]| from |z| corresponds
3452 to multiplying |y| by $1-2^{-k}$.
3454 A subtle point (which had to be checked) was that if $x=127919879$, the
3455 value of~|y| will decrease so that |y+8| doesn't overflow. In fact,
3456 $z$ will be 5 in this case, and |y| will decrease by~64 when |k=25|
3457 and by~16 when |k=27|.
3459 @<Multiply |y| by...@>=
3462 while ( z>=spec_log[k] ) {
3464 y=y-1-((y-two_to_the(k-1)) / two_to_the(k));
3469 @ The trigonometric subroutines use an auxiliary table such that
3470 |spec_atan[k]| contains an approximation to the |angle| whose tangent
3471 is~$1/2^k$. $\arctan2^{-k}$ times $2^{20}\cdot180/\pi$
3474 static const angle spec_atan[27] = { 0, 27855475, 14718068, 7471121, 3750058,
3475 1876857, 938658, 469357, 234682, 117342, 58671, 29335, 14668, 7334, 3667,
3476 1833, 917, 458, 229, 115, 57, 29, 14, 7, 4, 2, 1 };
3478 @ Given integers |x| and |y|, not both zero, the |n_arg| function
3479 returns the |angle| whose tangent points in the direction $(x,y)$.
3480 This subroutine first determines the correct octant, then solves the
3481 problem for |0<=y<=x|, then converts the result appropriately to
3482 return an answer in the range |-one_eighty_deg<=@t$\theta$@><=one_eighty_deg|.
3483 (The answer is |+one_eighty_deg| if |y=0| and |x<0|, but an answer of
3484 |-one_eighty_deg| is possible if, for example, |y=-1| and $x=-2^{30}$.)
3486 The octants are represented in a ``Gray code,'' since that turns out
3487 to be computationally simplest.
3493 @d second_octant (first_octant+switch_x_and_y)
3494 @d third_octant (first_octant+switch_x_and_y+negate_x)
3495 @d fourth_octant (first_octant+negate_x)
3496 @d fifth_octant (first_octant+negate_x+negate_y)
3497 @d sixth_octant (first_octant+switch_x_and_y+negate_x+negate_y)
3498 @d seventh_octant (first_octant+switch_x_and_y+negate_y)
3499 @d eighth_octant (first_octant+negate_y)
3502 angle mp_n_arg (MP mp,integer x, integer y) {
3503 angle z; /* auxiliary register */
3504 integer t; /* temporary storage */
3505 small_number k; /* loop counter */
3506 int octant; /* octant code */
3508 octant=first_octant;
3510 negate(x); octant=first_octant+negate_x;
3513 negate(y); octant=octant+negate_y;
3516 t=y; y=x; x=t; octant=octant+switch_x_and_y;
3519 @<Handle undefined arg@>;
3521 @<Set variable |z| to the arg of $(x,y)$@>;
3522 @<Return an appropriate answer based on |z| and |octant|@>;
3526 @ @<Handle undefined arg@>=
3528 print_err("angle(0,0) is taken as zero");
3529 @.angle(0,0)...zero@>
3530 help2("The `angle' between two identical points is undefined.")
3531 ("I'm zeroing this one. Proceed, with fingers crossed.");
3536 @ @<Return an appropriate answer...@>=
3538 case first_octant: return z;
3539 case second_octant: return (ninety_deg-z);
3540 case third_octant: return (ninety_deg+z);
3541 case fourth_octant: return (one_eighty_deg-z);
3542 case fifth_octant: return (z-one_eighty_deg);
3543 case sixth_octant: return (-z-ninety_deg);
3544 case seventh_octant: return (z-ninety_deg);
3545 case eighth_octant: return (-z);
3546 }; /* there are no other cases */
3549 @ At this point we have |x>=y>=0|, and |x>0|. The numbers are scaled up
3550 or down until $2^{28}\L x<2^{29}$, so that accurate fixed-point calculations
3553 @<Set variable |z| to the arg...@>=
3554 while ( x>=fraction_two ) {
3555 x=halfp(x); y=halfp(y);
3559 while ( x<fraction_one ) {
3562 @<Increase |z| to the arg of $(x,y)$@>;
3565 @ During the calculations of this section, variables |x| and~|y|
3566 represent actual coordinates $(x,2^{-k}y)$. We will maintain the
3567 condition |x>=y|, so that the tangent will be at most $2^{-k}$.
3568 If $x<2y$, the tangent is greater than $2^{-k-1}$. The transformation
3569 $(a,b)\mapsto(a+b\tan\phi,b-a\tan\phi)$ replaces $(a,b)$ by
3570 coordinates whose angle has decreased by~$\phi$; in the special case
3571 $a=x$, $b=2^{-k}y$, and $\tan\phi=2^{-k-1}$, this operation reduces
3572 to the particularly simple iteration shown here. [Cf.~John E. Meggitt,
3573 @^Meggitt, John E.@>
3574 {\sl IBM Journal of Research and Development\/ \bf6} (1962), 210--226.]
3576 The initial value of |x| will be multiplied by at most
3577 $(1+{1\over2})(1+{1\over8})(1+{1\over32})\cdots\approx 1.7584$; hence
3578 there is no chance of integer overflow.
3580 @<Increase |z|...@>=
3585 z=z+spec_atan[k]; t=x; x=x+(y / two_to_the(k+k)); y=y-t;
3590 if ( y>x ) { z=z+spec_atan[k]; y=y-x; };
3593 @ Conversely, the |n_sin_cos| routine takes an |angle| and produces the sine
3594 and cosine of that angle. The results of this routine are
3595 stored in global integer variables |n_sin| and |n_cos|.
3598 fraction n_sin;fraction n_cos; /* results computed by |n_sin_cos| */
3600 @ Given an integer |z| that is $2^{20}$ times an angle $\theta$ in degrees,
3601 the purpose of |n_sin_cos(z)| is to set
3602 |x=@t$r\cos\theta$@>| and |y=@t$r\sin\theta$@>| (approximately),
3603 for some rather large number~|r|. The maximum of |x| and |y|
3604 will be between $2^{28}$ and $2^{30}$, so that there will be hardly
3605 any loss of accuracy. Then |x| and~|y| are divided by~|r|.
3608 void mp_n_sin_cos (MP mp,angle z) { /* computes a multiple of the sine
3610 small_number k; /* loop control variable */
3611 int q; /* specifies the quadrant */
3612 fraction r; /* magnitude of |(x,y)| */
3613 integer x,y,t; /* temporary registers */
3614 while ( z<0 ) z=z+three_sixty_deg;
3615 z=z % three_sixty_deg; /* now |0<=z<three_sixty_deg| */
3616 q=z / forty_five_deg; z=z % forty_five_deg;
3617 x=fraction_one; y=x;
3618 if ( ! odd(q) ) z=forty_five_deg-z;
3619 @<Subtract angle |z| from |(x,y)|@>;
3620 @<Convert |(x,y)| to the octant determined by~|q|@>;
3621 r=mp_pyth_add(mp, x,y);
3622 mp->n_cos=mp_make_fraction(mp, x,r);
3623 mp->n_sin=mp_make_fraction(mp, y,r);
3626 @ In this case the octants are numbered sequentially.
3628 @<Convert |(x,...@>=
3631 case 1: t=x; x=y; y=t; break;
3632 case 2: t=x; x=-y; y=t; break;
3633 case 3: negate(x); break;
3634 case 4: negate(x); negate(y); break;
3635 case 5: t=x; x=-y; y=-t; break;
3636 case 6: t=x; x=y; y=-t; break;
3637 case 7: negate(y); break;
3638 } /* there are no other cases */
3640 @ The main iteration of |n_sin_cos| is similar to that of |n_arg| but
3641 applied in reverse. The values of |spec_atan[k]| decrease slowly enough
3642 that this loop is guaranteed to terminate before the (nonexistent) value
3643 |spec_atan[27]| would be required.
3645 @<Subtract angle |z|...@>=
3648 if ( z>=spec_atan[k] ) {
3649 z=z-spec_atan[k]; t=x;
3650 x=t+y / two_to_the(k);
3651 y=y-t / two_to_the(k);
3655 if ( y<0 ) y=0 /* this precaution may never be needed */
3657 @ And now let's complete our collection of numeric utility routines
3658 by considering random number generation.
3659 \MP\ generates pseudo-random numbers with the additive scheme recommended
3660 in Section 3.6 of {\sl The Art of Computer Programming}; however, the
3661 results are random fractions between 0 and |fraction_one-1|, inclusive.
3663 There's an auxiliary array |randoms| that contains 55 pseudo-random
3664 fractions. Using the recurrence $x_n=(x_{n-55}-x_{n-31})\bmod 2^{28}$,
3665 we generate batches of 55 new $x_n$'s at a time by calling |new_randoms|.
3666 The global variable |j_random| tells which element has most recently
3668 The global variable |sys_random_seed| was introduced in version 0.9,
3669 for the sole reason of stressing the fact that the initial value of the
3670 random seed is system-dependant. The pascal code below will initialize
3671 this variable to |(internal[mp_time] div unity)+internal[mp_day]|, but this
3672 is not good enough on modern fast machines that are capable of running
3673 multiple MetaPost processes within the same second.
3674 @^system dependencies@>
3677 fraction randoms[55]; /* the last 55 random values generated */
3678 int j_random; /* the number of unused |randoms| */
3679 scaled sys_random_seed; /* the default random seed */
3681 @ @<Exported types@>=
3682 typedef int (*mp_get_random_seed_command)(MP mp);
3685 mp_get_random_seed_command get_random_seed;
3687 @ @<Option variables@>=
3688 mp_get_random_seed_command get_random_seed;
3690 @ @<Allocate or initialize ...@>=
3691 set_callback_option(get_random_seed);
3693 @ @<Internal library declarations@>=
3694 int mp_get_random_seed (MP mp);
3697 int mp_get_random_seed (MP mp) {
3698 return (mp->internal[mp_time] / unity)+mp->internal[mp_day];
3701 @ To consume a random fraction, the program below will say `|next_random|'
3702 and then it will fetch |randoms[j_random]|.
3704 @d next_random { if ( mp->j_random==0 ) mp_new_randoms(mp);
3705 else decr(mp->j_random); }
3708 void mp_new_randoms (MP mp) {
3709 int k; /* index into |randoms| */
3710 fraction x; /* accumulator */
3711 for (k=0;k<=23;k++) {
3712 x=mp->randoms[k]-mp->randoms[k+31];
3713 if ( x<0 ) x=x+fraction_one;
3716 for (k=24;k<= 54;k++){
3717 x=mp->randoms[k]-mp->randoms[k-24];
3718 if ( x<0 ) x=x+fraction_one;
3725 void mp_init_randoms (MP mp,scaled seed);
3727 @ To initialize the |randoms| table, we call the following routine.
3730 void mp_init_randoms (MP mp,scaled seed) {
3731 fraction j,jj,k; /* more or less random integers */
3732 int i; /* index into |randoms| */
3734 while ( j>=fraction_one ) j=halfp(j);
3736 for (i=0;i<=54;i++ ){
3738 if ( k<0 ) k=k+fraction_one;
3739 mp->randoms[(i*21)% 55]=j;
3743 mp_new_randoms(mp); /* ``warm up'' the array */
3746 @ To produce a uniform random number in the range |0<=u<x| or |0>=u>x|
3747 or |0=u=x|, given a |scaled| value~|x|, we proceed as shown here.
3749 Note that the call of |take_fraction| will produce the values 0 and~|x|
3750 with about half the probability that it will produce any other particular
3751 values between 0 and~|x|, because it rounds its answers.
3754 scaled mp_unif_rand (MP mp,scaled x) {
3755 scaled y; /* trial value */
3756 next_random; y=mp_take_fraction(mp, abs(x),mp->randoms[mp->j_random]);
3757 if ( y==abs(x) ) return 0;
3758 else if ( x>0 ) return y;
3762 @ Finally, a normal deviate with mean zero and unit standard deviation
3763 can readily be obtained with the ratio method (Algorithm 3.4.1R in
3764 {\sl The Art of Computer Programming\/}).
3767 scaled mp_norm_rand (MP mp) {
3768 integer x,u,l; /* what the book would call $2^{16}X$, $2^{28}U$, and $-2^{24}\ln U$ */
3772 x=mp_take_fraction(mp, 112429,mp->randoms[mp->j_random]-fraction_half);
3773 /* $2^{16}\sqrt{8/e}\approx 112428.82793$ */
3774 next_random; u=mp->randoms[mp->j_random];
3775 } while (abs(x)>=u);
3776 x=mp_make_fraction(mp, x,u);
3777 l=139548960-mp_m_log(mp, u); /* $2^{24}\cdot12\ln2\approx139548959.6165$ */
3778 } while (mp_ab_vs_cd(mp, 1024,l,x,x)<0);
3782 @* \[9] Packed data.
3783 In order to make efficient use of storage space, \MP\ bases its major data
3784 structures on a |memory_word|, which contains either a (signed) integer,
3785 possibly scaled, or a small number of fields that are one half or one
3786 quarter of the size used for storing integers.
3788 If |x| is a variable of type |memory_word|, it contains up to four
3789 fields that can be referred to as follows:
3790 $$\vbox{\halign{\hfil#&#\hfil&#\hfil\cr
3791 |x|&.|int|&(an |integer|)\cr
3792 |x|&.|sc|\qquad&(a |scaled| integer)\cr
3793 |x.hh.lh|, |x.hh|&.|rh|&(two halfword fields)\cr
3794 |x.hh.b0|, |x.hh.b1|, |x.hh|&.|rh|&(two quarterword fields, one halfword
3796 |x.qqqq.b0|, |x.qqqq.b1|, |x.qqqq|&.|b2|, |x.qqqq.b3|\hskip-100pt
3797 &\qquad\qquad\qquad(four quarterword fields)\cr}}$$
3798 This is somewhat cumbersome to write, and not very readable either, but
3799 macros will be used to make the notation shorter and more transparent.
3800 The code below gives a formal definition of |memory_word| and
3801 its subsidiary types, using packed variant records. \MP\ makes no
3802 assumptions about the relative positions of the fields within a word.
3804 @d max_quarterword 0x3FFF /* largest allowable value in a |quarterword| */
3805 @d max_halfword 0xFFFFFFF /* largest allowable value in a |halfword| */
3807 @ Here are the inequalities that the quarterword and halfword values
3808 must satisfy (or rather, the inequalities that they mustn't satisfy):
3810 @<Check the ``constant''...@>=
3811 if (mp->ini_version) {
3812 if ( mp->mem_max!=mp->mem_top ) mp->bad=8;
3814 if ( mp->mem_max<mp->mem_top ) mp->bad=8;
3816 if ( max_quarterword<255 ) mp->bad=9;
3817 if ( max_halfword<65535 ) mp->bad=10;
3818 if ( max_quarterword>max_halfword ) mp->bad=11;
3819 if ( mp->mem_max>=max_halfword ) mp->bad=12;
3820 if ( mp->max_strings>max_halfword ) mp->bad=13;
3822 @ The macros |qi| and |qo| are used for input to and output
3823 from quarterwords. These are legacy macros.
3824 @^system dependencies@>
3826 @d qo(A) (A) /* to read eight bits from a quarterword */
3827 @d qi(A) (A) /* to store eight bits in a quarterword */
3829 @ The reader should study the following definitions closely:
3830 @^system dependencies@>
3832 @d sc cint /* |scaled| data is equivalent to |integer| */
3835 typedef short quarterword; /* 1/4 of a word */
3836 typedef int halfword; /* 1/2 of a word */
3841 struct { /* Make B0,B1 overlap the most significant bytes of LH. */
3848 quarterword B2, B3, B0, B1;
3863 @ When debugging, we may want to print a |memory_word| without knowing
3864 what type it is; so we print it in all modes.
3865 @^dirty \PASCAL@>@^debugging@>
3868 void mp_print_word (MP mp,memory_word w) {
3869 /* prints |w| in all ways */
3870 mp_print_int(mp, w.cint); mp_print_char(mp, ' ');
3871 mp_print_scaled(mp, w.sc); mp_print_char(mp, ' ');
3872 mp_print_scaled(mp, w.sc / 010000); mp_print_ln(mp);
3873 mp_print_int(mp, w.hh.lh); mp_print_char(mp, '=');
3874 mp_print_int(mp, w.hh.b0); mp_print_char(mp, ':');
3875 mp_print_int(mp, w.hh.b1); mp_print_char(mp, ';');
3876 mp_print_int(mp, w.hh.rh); mp_print_char(mp, ' ');
3877 mp_print_int(mp, w.qqqq.b0); mp_print_char(mp, ':');
3878 mp_print_int(mp, w.qqqq.b1); mp_print_char(mp, ':');
3879 mp_print_int(mp, w.qqqq.b2); mp_print_char(mp, ':');
3880 mp_print_int(mp, w.qqqq.b3);
3884 @* \[10] Dynamic memory allocation.
3886 The \MP\ system does nearly all of its own memory allocation, so that it
3887 can readily be transported into environments that do not have automatic
3888 facilities for strings, garbage collection, etc., and so that it can be in
3889 control of what error messages the user receives. The dynamic storage
3890 requirements of \MP\ are handled by providing a large array |mem| in
3891 which consecutive blocks of words are used as nodes by the \MP\ routines.
3893 Pointer variables are indices into this array, or into another array
3894 called |eqtb| that will be explained later. A pointer variable might
3895 also be a special flag that lies outside the bounds of |mem|, so we
3896 allow pointers to assume any |halfword| value. The minimum memory
3897 index represents a null pointer.
3899 @d null 0 /* the null pointer */
3900 @d mp_void (null+1) /* a null pointer different from |null| */
3904 typedef halfword pointer; /* a flag or a location in |mem| or |eqtb| */
3906 @ The |mem| array is divided into two regions that are allocated separately,
3907 but the dividing line between these two regions is not fixed; they grow
3908 together until finding their ``natural'' size in a particular job.
3909 Locations less than or equal to |lo_mem_max| are used for storing
3910 variable-length records consisting of two or more words each. This region
3911 is maintained using an algorithm similar to the one described in exercise
3912 2.5--19 of {\sl The Art of Computer Programming}. However, no size field
3913 appears in the allocated nodes; the program is responsible for knowing the
3914 relevant size when a node is freed. Locations greater than or equal to
3915 |hi_mem_min| are used for storing one-word records; a conventional
3916 \.{AVAIL} stack is used for allocation in this region.
3918 Locations of |mem| between |0| and |mem_top| may be dumped as part
3919 of preloaded format files, by the \.{INIMP} preprocessor.
3921 Production versions of \MP\ may extend the memory at the top end in order to
3922 provide more space; these locations, between |mem_top| and |mem_max|,
3923 are always used for single-word nodes.
3925 The key pointers that govern |mem| allocation have a prescribed order:
3926 $$\hbox{|null=0<lo_mem_max<hi_mem_min<mem_top<=mem_end<=mem_max|.}$$
3929 memory_word *mem; /* the big dynamic storage area */
3930 pointer lo_mem_max; /* the largest location of variable-size memory in use */
3931 pointer hi_mem_min; /* the smallest location of one-word memory in use */
3935 @d xfree(A) do { mp_xfree(A); A=NULL; } while (0)
3936 @d xrealloc(P,A,B) mp_xrealloc(mp,P,A,B)
3937 @d xmalloc(A,B) mp_xmalloc(mp,A,B)
3938 @d xstrdup(A) mp_xstrdup(mp,A)
3939 @d XREALLOC(a,b,c) a = xrealloc(a,(b+1),sizeof(c));
3941 @<Declare helpers@>=
3942 void mp_xfree (void *x);
3943 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) ;
3944 void *mp_xmalloc (MP mp, size_t nmem, size_t size) ;
3945 char *mp_xstrdup(MP mp, const char *s);
3947 @ The |max_size_test| guards against overflow, on the assumption that
3948 |size_t| is at least 31bits wide.
3950 @d max_size_test 0x7FFFFFFF
3953 void mp_xfree (void *x) {
3954 if (x!=NULL) free(x);
3956 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) {
3958 if ((max_size_test/size)<nmem) {
3959 do_fprintf(mp->err_out,"Memory size overflow!\n");
3960 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3962 w = realloc (p,(nmem*size));
3964 do_fprintf(mp->err_out,"Out of memory!\n");
3965 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3969 void *mp_xmalloc (MP mp, size_t nmem, size_t size) {
3971 if ((max_size_test/size)<nmem) {
3972 do_fprintf(mp->err_out,"Memory size overflow!\n");
3973 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3975 w = malloc (nmem*size);
3977 do_fprintf(mp->err_out,"Out of memory!\n");
3978 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3982 char *mp_xstrdup(MP mp, const char *s) {
3988 do_fprintf(mp->err_out,"Out of memory!\n");
3989 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3996 @<Allocate or initialize ...@>=
3997 mp->mem = xmalloc ((mp->mem_max+1),sizeof (memory_word));
3998 memset(mp->mem,0,(mp->mem_max+1)*sizeof (memory_word));
4000 @ @<Dealloc variables@>=
4003 @ Users who wish to study the memory requirements of particular applications can
4004 can use optional special features that keep track of current and
4005 maximum memory usage. When code between the delimiters |stat| $\ldots$
4006 |tats| is not ``commented out,'' \MP\ will run a bit slower but it will
4007 report these statistics when |mp_tracing_stats| is positive.
4010 integer var_used; integer dyn_used; /* how much memory is in use */
4012 @ Let's consider the one-word memory region first, since it's the
4013 simplest. The pointer variable |mem_end| holds the highest-numbered location
4014 of |mem| that has ever been used. The free locations of |mem| that
4015 occur between |hi_mem_min| and |mem_end|, inclusive, are of type
4016 |two_halves|, and we write |info(p)| and |link(p)| for the |lh|
4017 and |rh| fields of |mem[p]| when it is of this type. The single-word
4018 free locations form a linked list
4019 $$|avail|,\;\hbox{|link(avail)|},\;\hbox{|link(link(avail))|},\;\ldots$$
4020 terminated by |null|.
4022 @d link(A) mp->mem[(A)].hh.rh /* the |link| field of a memory word */
4023 @d info(A) mp->mem[(A)].hh.lh /* the |info| field of a memory word */
4026 pointer avail; /* head of the list of available one-word nodes */
4027 pointer mem_end; /* the last one-word node used in |mem| */
4029 @ If one-word memory is exhausted, it might mean that the user has forgotten
4030 a token like `\&{enddef}' or `\&{endfor}'. We will define some procedures
4031 later that try to help pinpoint the trouble.
4034 @<Declare the procedure called |show_token_list|@>;
4035 @<Declare the procedure called |runaway|@>
4037 @ The function |get_avail| returns a pointer to a new one-word node whose
4038 |link| field is null. However, \MP\ will halt if there is no more room left.
4042 pointer mp_get_avail (MP mp) { /* single-word node allocation */
4043 pointer p; /* the new node being got */
4044 p=mp->avail; /* get top location in the |avail| stack */
4046 mp->avail=link(mp->avail); /* and pop it off */
4047 } else if ( mp->mem_end<mp->mem_max ) { /* or go into virgin territory */
4048 incr(mp->mem_end); p=mp->mem_end;
4050 decr(mp->hi_mem_min); p=mp->hi_mem_min;
4051 if ( mp->hi_mem_min<=mp->lo_mem_max ) {
4052 mp_runaway(mp); /* if memory is exhausted, display possible runaway text */
4053 mp_overflow(mp, "main memory size",mp->mem_max);
4054 /* quit; all one-word nodes are busy */
4055 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
4058 link(p)=null; /* provide an oft-desired initialization of the new node */
4059 incr(mp->dyn_used);/* maintain statistics */
4063 @ Conversely, a one-word node is recycled by calling |free_avail|.
4065 @d free_avail(A) /* single-word node liberation */
4066 { link((A))=mp->avail; mp->avail=(A); decr(mp->dyn_used); }
4068 @ There's also a |fast_get_avail| routine, which saves the procedure-call
4069 overhead at the expense of extra programming. This macro is used in
4070 the places that would otherwise account for the most calls of |get_avail|.
4073 @d fast_get_avail(A) {
4074 (A)=mp->avail; /* avoid |get_avail| if possible, to save time */
4075 if ( (A)==null ) { (A)=mp_get_avail(mp); }
4076 else { mp->avail=link((A)); link((A))=null; incr(mp->dyn_used); }
4079 @ The available-space list that keeps track of the variable-size portion
4080 of |mem| is a nonempty, doubly-linked circular list of empty nodes,
4081 pointed to by the roving pointer |rover|.
4083 Each empty node has size 2 or more; the first word contains the special
4084 value |max_halfword| in its |link| field and the size in its |info| field;
4085 the second word contains the two pointers for double linking.
4087 Each nonempty node also has size 2 or more. Its first word is of type
4088 |two_halves|\kern-1pt, and its |link| field is never equal to |max_halfword|.
4089 Otherwise there is complete flexibility with respect to the contents
4090 of its other fields and its other words.
4092 (We require |mem_max<max_halfword| because terrible things can happen
4093 when |max_halfword| appears in the |link| field of a nonempty node.)
4095 @d empty_flag max_halfword /* the |link| of an empty variable-size node */
4096 @d is_empty(A) (link((A))==empty_flag) /* tests for empty node */
4097 @d node_size info /* the size field in empty variable-size nodes */
4098 @d llink(A) info((A)+1) /* left link in doubly-linked list of empty nodes */
4099 @d rlink(A) link((A)+1) /* right link in doubly-linked list of empty nodes */
4102 pointer rover; /* points to some node in the list of empties */
4104 @ A call to |get_node| with argument |s| returns a pointer to a new node
4105 of size~|s|, which must be 2~or more. The |link| field of the first word
4106 of this new node is set to null. An overflow stop occurs if no suitable
4109 If |get_node| is called with $s=2^{30}$, it simply merges adjacent free
4110 areas and returns the value |max_halfword|.
4112 @<Internal library declarations@>=
4113 pointer mp_get_node (MP mp,integer s) ;
4116 pointer mp_get_node (MP mp,integer s) { /* variable-size node allocation */
4117 pointer p; /* the node currently under inspection */
4118 pointer q; /* the node physically after node |p| */
4119 integer r; /* the newly allocated node, or a candidate for this honor */
4120 integer t,tt; /* temporary registers */
4123 p=mp->rover; /* start at some free node in the ring */
4125 @<Try to allocate within node |p| and its physical successors,
4126 and |goto found| if allocation was possible@>;
4127 if (rlink(p)==null || rlink(p)==p) {
4128 print_err("Free list garbled");
4129 help3("I found an entry in the list of free nodes that links")
4130 ("badly. I will try to ignore the broken link, but something")
4131 ("is seriously amiss. It is wise to warn the maintainers.")
4135 p=rlink(p); /* move to the next node in the ring */
4136 } while (p!=mp->rover); /* repeat until the whole list has been traversed */
4137 if ( s==010000000000 ) {
4138 return max_halfword;
4140 if ( mp->lo_mem_max+2<mp->hi_mem_min ) {
4141 if ( mp->lo_mem_max+2<=max_halfword ) {
4142 @<Grow more variable-size memory and |goto restart|@>;
4145 mp_overflow(mp, "main memory size",mp->mem_max);
4146 /* sorry, nothing satisfactory is left */
4147 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
4149 link(r)=null; /* this node is now nonempty */
4150 mp->var_used+=s; /* maintain usage statistics */
4154 @ The lower part of |mem| grows by 1000 words at a time, unless
4155 we are very close to going under. When it grows, we simply link
4156 a new node into the available-space list. This method of controlled
4157 growth helps to keep the |mem| usage consecutive when \MP\ is
4158 implemented on ``virtual memory'' systems.
4161 @<Grow more variable-size memory and |goto restart|@>=
4163 if ( mp->hi_mem_min-mp->lo_mem_max>=1998 ) {
4164 t=mp->lo_mem_max+1000;
4166 t=mp->lo_mem_max+1+(mp->hi_mem_min-mp->lo_mem_max) / 2;
4167 /* |lo_mem_max+2<=t<hi_mem_min| */
4169 if ( t>max_halfword ) t=max_halfword;
4170 p=llink(mp->rover); q=mp->lo_mem_max; rlink(p)=q; llink(mp->rover)=q;
4171 rlink(q)=mp->rover; llink(q)=p; link(q)=empty_flag;
4172 node_size(q)=t-mp->lo_mem_max;
4173 mp->lo_mem_max=t; link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4178 @ @<Try to allocate...@>=
4179 q=p+node_size(p); /* find the physical successor */
4180 while ( is_empty(q) ) { /* merge node |p| with node |q| */
4181 t=rlink(q); tt=llink(q);
4183 if ( q==mp->rover ) mp->rover=t;
4184 llink(t)=tt; rlink(tt)=t;
4189 @<Allocate from the top of node |p| and |goto found|@>;
4192 if ( rlink(p)!=p ) {
4193 @<Allocate entire node |p| and |goto found|@>;
4196 node_size(p)=q-p /* reset the size in case it grew */
4198 @ @<Allocate from the top...@>=
4200 node_size(p)=r-p; /* store the remaining size */
4201 mp->rover=p; /* start searching here next time */
4205 @ Here we delete node |p| from the ring, and let |rover| rove around.
4207 @<Allocate entire...@>=
4209 mp->rover=rlink(p); t=llink(p);
4210 llink(mp->rover)=t; rlink(t)=mp->rover;
4214 @ Conversely, when some variable-size node |p| of size |s| is no longer needed,
4215 the operation |free_node(p,s)| will make its words available, by inserting
4216 |p| as a new empty node just before where |rover| now points.
4218 @<Internal library declarations@>=
4219 void mp_free_node (MP mp, pointer p, halfword s) ;
4222 void mp_free_node (MP mp, pointer p, halfword s) { /* variable-size node
4224 pointer q; /* |llink(rover)| */
4225 node_size(p)=s; link(p)=empty_flag;
4227 q=llink(mp->rover); llink(p)=q; rlink(p)=mp->rover; /* set both links */
4228 llink(mp->rover)=p; rlink(q)=p; /* insert |p| into the ring */
4229 mp->var_used-=s; /* maintain statistics */
4232 @ Just before \.{INIMP} writes out the memory, it sorts the doubly linked
4233 available space list. The list is probably very short at such times, so a
4234 simple insertion sort is used. The smallest available location will be
4235 pointed to by |rover|, the next-smallest by |rlink(rover)|, etc.
4238 void mp_sort_avail (MP mp) { /* sorts the available variable-size nodes
4240 pointer p,q,r; /* indices into |mem| */
4241 pointer old_rover; /* initial |rover| setting */
4242 p=mp_get_node(mp, 010000000000); /* merge adjacent free areas */
4243 p=rlink(mp->rover); rlink(mp->rover)=max_halfword; old_rover=mp->rover;
4244 while ( p!=old_rover ) {
4245 @<Sort |p| into the list starting at |rover|
4246 and advance |p| to |rlink(p)|@>;
4249 while ( rlink(p)!=max_halfword ) {
4250 llink(rlink(p))=p; p=rlink(p);
4252 rlink(p)=mp->rover; llink(mp->rover)=p;
4255 @ The following |while| loop is guaranteed to
4256 terminate, since the list that starts at
4257 |rover| ends with |max_halfword| during the sorting procedure.
4260 if ( p<mp->rover ) {
4261 q=p; p=rlink(q); rlink(q)=mp->rover; mp->rover=q;
4264 while ( rlink(q)<p ) q=rlink(q);
4265 r=rlink(p); rlink(p)=rlink(q); rlink(q)=p; p=r;
4268 @* \[11] Memory layout.
4269 Some areas of |mem| are dedicated to fixed usage, since static allocation is
4270 more efficient than dynamic allocation when we can get away with it. For
4271 example, locations |0| to |1| are always used to store a
4272 two-word dummy token whose second word is zero.
4273 The following macro definitions accomplish the static allocation by giving
4274 symbolic names to the fixed positions. Static variable-size nodes appear
4275 in locations |0| through |lo_mem_stat_max|, and static single-word nodes
4276 appear in locations |hi_mem_stat_min| through |mem_top|, inclusive.
4278 @d null_dash (2) /* the first two words are reserved for a null value */
4279 @d dep_head (null_dash+3) /* we will define |dash_node_size=3| */
4280 @d zero_val (dep_head+2) /* two words for a permanently zero value */
4281 @d temp_val (zero_val+2) /* two words for a temporary value node */
4282 @d end_attr temp_val /* we use |end_attr+2| only */
4283 @d inf_val (end_attr+2) /* and |inf_val+1| only */
4284 @d test_pen (inf_val+2)
4285 /* nine words for a pen used when testing the turning number */
4286 @d bad_vardef (test_pen+9) /* two words for \&{vardef} error recovery */
4287 @d lo_mem_stat_max (bad_vardef+1) /* largest statically
4288 allocated word in the variable-size |mem| */
4290 @d sentinel mp->mem_top /* end of sorted lists */
4291 @d temp_head (mp->mem_top-1) /* head of a temporary list of some kind */
4292 @d hold_head (mp->mem_top-2) /* head of a temporary list of another kind */
4293 @d spec_head (mp->mem_top-3) /* head of a list of unprocessed \&{special} items */
4294 @d hi_mem_stat_min (mp->mem_top-3) /* smallest statically allocated word in
4295 the one-word |mem| */
4297 @ The following code gets the dynamic part of |mem| off to a good start,
4298 when \MP\ is initializing itself the slow way.
4300 @<Initialize table entries (done by \.{INIMP} only)@>=
4301 @^data structure assumptions@>
4302 mp->rover=lo_mem_stat_max+1; /* initialize the dynamic memory */
4303 link(mp->rover)=empty_flag;
4304 node_size(mp->rover)=1000; /* which is a 1000-word available node */
4305 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
4306 mp->lo_mem_max=mp->rover+1000;
4307 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4308 for (k=hi_mem_stat_min;k<=(int)mp->mem_top;k++) {
4309 mp->mem[k]=mp->mem[mp->lo_mem_max]; /* clear list heads */
4311 mp->avail=null; mp->mem_end=mp->mem_top;
4312 mp->hi_mem_min=hi_mem_stat_min; /* initialize the one-word memory */
4313 mp->var_used=lo_mem_stat_max+1;
4314 mp->dyn_used=mp->mem_top+1-(hi_mem_stat_min); /* initialize statistics */
4315 @<Initialize a pen at |test_pen| so that it fits in nine words@>;
4317 @ The procedure |flush_list(p)| frees an entire linked list of one-word
4318 nodes that starts at a given position, until coming to |sentinel| or a
4319 pointer that is not in the one-word region. Another procedure,
4320 |flush_node_list|, frees an entire linked list of one-word and two-word
4321 nodes, until coming to a |null| pointer.
4325 void mp_flush_list (MP mp,pointer p) { /* makes list of single-word nodes available */
4326 pointer q,r; /* list traversers */
4327 if ( p>=mp->hi_mem_min ) if ( p!=sentinel ) {
4332 if ( r<mp->hi_mem_min ) break;
4333 } while (r!=sentinel);
4334 /* now |q| is the last node on the list */
4335 link(q)=mp->avail; mp->avail=p;
4339 void mp_flush_node_list (MP mp,pointer p) {
4340 pointer q; /* the node being recycled */
4343 if ( q<mp->hi_mem_min )
4344 mp_free_node(mp, q,2);
4350 @ If \MP\ is extended improperly, the |mem| array might get screwed up.
4351 For example, some pointers might be wrong, or some ``dead'' nodes might not
4352 have been freed when the last reference to them disappeared. Procedures
4353 |check_mem| and |search_mem| are available to help diagnose such
4354 problems. These procedures make use of two arrays called |free| and
4355 |was_free| that are present only if \MP's debugging routines have
4356 been included. (You may want to decrease the size of |mem| while you
4360 Because |boolean|s are typedef-d as ints, it is better to use
4361 unsigned chars here.
4364 unsigned char *free; /* free cells */
4365 unsigned char *was_free; /* previously free cells */
4366 pointer was_mem_end; pointer was_lo_max; pointer was_hi_min;
4367 /* previous |mem_end|, |lo_mem_max|,and |hi_mem_min| */
4368 boolean panicking; /* do we want to check memory constantly? */
4370 @ @<Allocate or initialize ...@>=
4371 mp->free = xmalloc ((mp->mem_max+1),sizeof (unsigned char));
4372 mp->was_free = xmalloc ((mp->mem_max+1), sizeof (unsigned char));
4374 @ @<Dealloc variables@>=
4376 xfree(mp->was_free);
4378 @ @<Allocate or ...@>=
4379 mp->was_mem_end=0; /* indicate that everything was previously free */
4380 mp->was_lo_max=0; mp->was_hi_min=mp->mem_max;
4381 mp->panicking=false;
4383 @ @<Declare |mp_reallocate| functions@>=
4384 void mp_reallocate_memory(MP mp, int l) ;
4387 void mp_reallocate_memory(MP mp, int l) {
4388 XREALLOC(mp->free, l, unsigned char);
4389 XREALLOC(mp->was_free, l, unsigned char);
4391 int newarea = l-mp->mem_max;
4392 XREALLOC(mp->mem, l, memory_word);
4393 memset (mp->mem+(mp->mem_max+1),0,sizeof(memory_word)*(newarea));
4395 XREALLOC(mp->mem, l, memory_word);
4396 memset(mp->mem,0,sizeof(memory_word)*(l+1));
4399 if (mp->ini_version)
4405 @ Procedure |check_mem| makes sure that the available space lists of
4406 |mem| are well formed, and it optionally prints out all locations
4407 that are reserved now but were free the last time this procedure was called.
4410 void mp_check_mem (MP mp,boolean print_locs ) {
4411 pointer p,q,r; /* current locations of interest in |mem| */
4412 boolean clobbered; /* is something amiss? */
4413 for (p=0;p<=mp->lo_mem_max;p++) {
4414 mp->free[p]=false; /* you can probably do this faster */
4416 for (p=mp->hi_mem_min;p<= mp->mem_end;p++) {
4417 mp->free[p]=false; /* ditto */
4419 @<Check single-word |avail| list@>;
4420 @<Check variable-size |avail| list@>;
4421 @<Check flags of unavailable nodes@>;
4422 @<Check the list of linear dependencies@>;
4424 @<Print newly busy locations@>;
4426 memcpy(mp->was_free,mp->free, sizeof(char)*(mp->mem_end+1));
4427 mp->was_mem_end=mp->mem_end;
4428 mp->was_lo_max=mp->lo_mem_max;
4429 mp->was_hi_min=mp->hi_mem_min;
4432 @ @<Check single-word...@>=
4433 p=mp->avail; q=null; clobbered=false;
4435 if ( (p>mp->mem_end)||(p<mp->hi_mem_min) ) clobbered=true;
4436 else if ( mp->free[p] ) clobbered=true;
4438 mp_print_nl(mp, "AVAIL list clobbered at ");
4439 @.AVAIL list clobbered...@>
4440 mp_print_int(mp, q); break;
4442 mp->free[p]=true; q=p; p=link(q);
4445 @ @<Check variable-size...@>=
4446 p=mp->rover; q=null; clobbered=false;
4448 if ( (p>=mp->lo_mem_max)||(p<0) ) clobbered=true;
4449 else if ( (rlink(p)>=mp->lo_mem_max)||(rlink(p)<0) ) clobbered=true;
4450 else if ( !(is_empty(p))||(node_size(p)<2)||
4451 (p+node_size(p)>mp->lo_mem_max)|| (llink(rlink(p))!=p) ) clobbered=true;
4453 mp_print_nl(mp, "Double-AVAIL list clobbered at ");
4454 @.Double-AVAIL list clobbered...@>
4455 mp_print_int(mp, q); break;
4457 for (q=p;q<=p+node_size(p)-1;q++) { /* mark all locations free */
4458 if ( mp->free[q] ) {
4459 mp_print_nl(mp, "Doubly free location at ");
4460 @.Doubly free location...@>
4461 mp_print_int(mp, q); break;
4466 } while (p!=mp->rover)
4469 @ @<Check flags...@>=
4471 while ( p<=mp->lo_mem_max ) { /* node |p| should not be empty */
4472 if ( is_empty(p) ) {
4473 mp_print_nl(mp, "Bad flag at "); mp_print_int(mp, p);
4476 while ( (p<=mp->lo_mem_max) && ! mp->free[p] ) incr(p);
4477 while ( (p<=mp->lo_mem_max) && mp->free[p] ) incr(p);
4480 @ @<Print newly busy...@>=
4482 @<Do intialization required before printing new busy locations@>;
4483 mp_print_nl(mp, "New busy locs:");
4485 for (p=0;p<= mp->lo_mem_max;p++ ) {
4486 if ( ! mp->free[p] && ((p>mp->was_lo_max) || mp->was_free[p]) ) {
4487 @<Indicate that |p| is a new busy location@>;
4490 for (p=mp->hi_mem_min;p<=mp->mem_end;p++ ) {
4491 if ( ! mp->free[p] &&
4492 ((p<mp->was_hi_min) || (p>mp->was_mem_end) || mp->was_free[p]) ) {
4493 @<Indicate that |p| is a new busy location@>;
4496 @<Finish printing new busy locations@>;
4499 @ There might be many new busy locations so we are careful to print contiguous
4500 blocks compactly. During this operation |q| is the last new busy location and
4501 |r| is the start of the block containing |q|.
4503 @<Indicate that |p| is a new busy location@>=
4507 mp_print(mp, ".."); mp_print_int(mp, q);
4509 mp_print_char(mp, ' '); mp_print_int(mp, p);
4515 @ @<Do intialization required before printing new busy locations@>=
4516 q=mp->mem_max; r=mp->mem_max
4518 @ @<Finish printing new busy locations@>=
4520 mp_print(mp, ".."); mp_print_int(mp, q);
4523 @ The |search_mem| procedure attempts to answer the question ``Who points
4524 to node~|p|?'' In doing so, it fetches |link| and |info| fields of |mem|
4525 that might not be of type |two_halves|. Strictly speaking, this is
4527 undefined in \PASCAL, and it can lead to ``false drops'' (words that seem to
4528 point to |p| purely by coincidence). But for debugging purposes, we want
4529 to rule out the places that do {\sl not\/} point to |p|, so a few false
4530 drops are tolerable.
4533 void mp_search_mem (MP mp, pointer p) { /* look for pointers to |p| */
4534 integer q; /* current position being searched */
4535 for (q=0;q<=mp->lo_mem_max;q++) {
4537 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4540 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4543 for (q=mp->hi_mem_min;q<=mp->mem_end;q++) {
4545 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4548 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4551 @<Search |eqtb| for equivalents equal to |p|@>;
4554 @* \[12] The command codes.
4555 Before we can go much further, we need to define symbolic names for the internal
4556 code numbers that represent the various commands obeyed by \MP. These codes
4557 are somewhat arbitrary, but not completely so. For example,
4558 some codes have been made adjacent so that |case| statements in the
4559 program need not consider cases that are widely spaced, or so that |case|
4560 statements can be replaced by |if| statements. A command can begin an
4561 expression if and only if its code lies between |min_primary_command| and
4562 |max_primary_command|, inclusive. The first token of a statement that doesn't
4563 begin with an expression has a command code between |min_command| and
4564 |max_statement_command|, inclusive. Anything less than |min_command| is
4565 eliminated during macro expansions, and anything no more than |max_pre_command|
4566 is eliminated when expanding \TeX\ material. Ranges such as
4567 |min_secondary_command..max_secondary_command| are used when parsing
4568 expressions, but the relative ordering within such a range is generally not
4571 The ordering of the highest-numbered commands
4572 (|comma<semicolon<end_group<stop|) is crucial for the parsing and
4573 error-recovery methods of this program as is the ordering |if_test<fi_or_else|
4574 for the smallest two commands. The ordering is also important in the ranges
4575 |numeric_token..plus_or_minus| and |left_brace..ampersand|.
4577 At any rate, here is the list, for future reference.
4579 @d start_tex 1 /* begin \TeX\ material (\&{btex}, \&{verbatimtex}) */
4580 @d etex_marker 2 /* end \TeX\ material (\&{etex}) */
4581 @d mpx_break 3 /* stop reading an \.{MPX} file (\&{mpxbreak}) */
4582 @d max_pre_command mpx_break
4583 @d if_test 4 /* conditional text (\&{if}) */
4584 @d fi_or_else 5 /* delimiters for conditionals (\&{elseif}, \&{else}, \&{fi} */
4585 @d input 6 /* input a source file (\&{input}, \&{endinput}) */
4586 @d iteration 7 /* iterate (\&{for}, \&{forsuffixes}, \&{forever}, \&{endfor}) */
4587 @d repeat_loop 8 /* special command substituted for \&{endfor} */
4588 @d exit_test 9 /* premature exit from a loop (\&{exitif}) */
4589 @d relax 10 /* do nothing (\.{\char`\\}) */
4590 @d scan_tokens 11 /* put a string into the input buffer */
4591 @d expand_after 12 /* look ahead one token */
4592 @d defined_macro 13 /* a macro defined by the user */
4593 @d min_command (defined_macro+1)
4594 @d save_command 14 /* save a list of tokens (\&{save}) */
4595 @d interim_command 15 /* save an internal quantity (\&{interim}) */
4596 @d let_command 16 /* redefine a symbolic token (\&{let}) */
4597 @d new_internal 17 /* define a new internal quantity (\&{newinternal}) */
4598 @d macro_def 18 /* define a macro (\&{def}, \&{vardef}, etc.) */
4599 @d ship_out_command 19 /* output a character (\&{shipout}) */
4600 @d add_to_command 20 /* add to edges (\&{addto}) */
4601 @d bounds_command 21 /* add bounding path to edges (\&{setbounds}, \&{clip}) */
4602 @d tfm_command 22 /* command for font metric info (\&{ligtable}, etc.) */
4603 @d protection_command 23 /* set protection flag (\&{outer}, \&{inner}) */
4604 @d show_command 24 /* diagnostic output (\&{show}, \&{showvariable}, etc.) */
4605 @d mode_command 25 /* set interaction level (\&{batchmode}, etc.) */
4606 @d random_seed 26 /* initialize random number generator (\&{randomseed}) */
4607 @d message_command 27 /* communicate to user (\&{message}, \&{errmessage}) */
4608 @d every_job_command 28 /* designate a starting token (\&{everyjob}) */
4609 @d delimiters 29 /* define a pair of delimiters (\&{delimiters}) */
4610 @d special_command 30 /* output special info (\&{special})
4611 or font map info (\&{fontmapfile}, \&{fontmapline}) */
4612 @d write_command 31 /* write text to a file (\&{write}) */
4613 @d type_name 32 /* declare a type (\&{numeric}, \&{pair}, etc. */
4614 @d max_statement_command type_name
4615 @d min_primary_command type_name
4616 @d left_delimiter 33 /* the left delimiter of a matching pair */
4617 @d begin_group 34 /* beginning of a group (\&{begingroup}) */
4618 @d nullary 35 /* an operator without arguments (e.g., \&{normaldeviate}) */
4619 @d unary 36 /* an operator with one argument (e.g., \&{sqrt}) */
4620 @d str_op 37 /* convert a suffix to a string (\&{str}) */
4621 @d cycle 38 /* close a cyclic path (\&{cycle}) */
4622 @d primary_binary 39 /* binary operation taking `\&{of}' (e.g., \&{point}) */
4623 @d capsule_token 40 /* a value that has been put into a token list */
4624 @d string_token 41 /* a string constant (e.g., |"hello"|) */
4625 @d internal_quantity 42 /* internal numeric parameter (e.g., \&{pausing}) */
4626 @d min_suffix_token internal_quantity
4627 @d tag_token 43 /* a symbolic token without a primitive meaning */
4628 @d numeric_token 44 /* a numeric constant (e.g., \.{3.14159}) */
4629 @d max_suffix_token numeric_token
4630 @d plus_or_minus 45 /* either `\.+' or `\.-' */
4631 @d max_primary_command plus_or_minus /* should also be |numeric_token+1| */
4632 @d min_tertiary_command plus_or_minus
4633 @d tertiary_secondary_macro 46 /* a macro defined by \&{secondarydef} */
4634 @d tertiary_binary 47 /* an operator at the tertiary level (e.g., `\.{++}') */
4635 @d max_tertiary_command tertiary_binary
4636 @d left_brace 48 /* the operator `\.{\char`\{}' */
4637 @d min_expression_command left_brace
4638 @d path_join 49 /* the operator `\.{..}' */
4639 @d ampersand 50 /* the operator `\.\&' */
4640 @d expression_tertiary_macro 51 /* a macro defined by \&{tertiarydef} */
4641 @d expression_binary 52 /* an operator at the expression level (e.g., `\.<') */
4642 @d equals 53 /* the operator `\.=' */
4643 @d max_expression_command equals
4644 @d and_command 54 /* the operator `\&{and}' */
4645 @d min_secondary_command and_command
4646 @d secondary_primary_macro 55 /* a macro defined by \&{primarydef} */
4647 @d slash 56 /* the operator `\./' */
4648 @d secondary_binary 57 /* an operator at the binary level (e.g., \&{shifted}) */
4649 @d max_secondary_command secondary_binary
4650 @d param_type 58 /* type of parameter (\&{primary}, \&{expr}, \&{suffix}, etc.) */
4651 @d controls 59 /* specify control points explicitly (\&{controls}) */
4652 @d tension 60 /* specify tension between knots (\&{tension}) */
4653 @d at_least 61 /* bounded tension value (\&{atleast}) */
4654 @d curl_command 62 /* specify curl at an end knot (\&{curl}) */
4655 @d macro_special 63 /* special macro operators (\&{quote}, \.{\#\AT!}, etc.) */
4656 @d right_delimiter 64 /* the right delimiter of a matching pair */
4657 @d left_bracket 65 /* the operator `\.[' */
4658 @d right_bracket 66 /* the operator `\.]' */
4659 @d right_brace 67 /* the operator `\.{\char`\}}' */
4660 @d with_option 68 /* option for filling (\&{withpen}, \&{withweight}, etc.) */
4662 /* variant of \&{addto} (\&{contour}, \&{doublepath}, \&{also}) */
4663 @d of_token 70 /* the operator `\&{of}' */
4664 @d to_token 71 /* the operator `\&{to}' */
4665 @d step_token 72 /* the operator `\&{step}' */
4666 @d until_token 73 /* the operator `\&{until}' */
4667 @d within_token 74 /* the operator `\&{within}' */
4668 @d lig_kern_token 75
4669 /* the operators `\&{kern}' and `\.{=:}' and `\.{=:\char'174}, etc. */
4670 @d assignment 76 /* the operator `\.{:=}' */
4671 @d skip_to 77 /* the operation `\&{skipto}' */
4672 @d bchar_label 78 /* the operator `\.{\char'174\char'174:}' */
4673 @d double_colon 79 /* the operator `\.{::}' */
4674 @d colon 80 /* the operator `\.:' */
4676 @d comma 81 /* the operator `\.,', must be |colon+1| */
4677 @d end_of_statement (mp->cur_cmd>comma)
4678 @d semicolon 82 /* the operator `\.;', must be |comma+1| */
4679 @d end_group 83 /* end a group (\&{endgroup}), must be |semicolon+1| */
4680 @d stop 84 /* end a job (\&{end}, \&{dump}), must be |end_group+1| */
4681 @d max_command_code stop
4682 @d outer_tag (max_command_code+1) /* protection code added to command code */
4685 typedef int command_code;
4687 @ Variables and capsules in \MP\ have a variety of ``types,''
4688 distinguished by the code numbers defined here. These numbers are also
4689 not completely arbitrary. Things that get expanded must have types
4690 |>mp_independent|; a type remaining after expansion is numeric if and only if
4691 its code number is at least |numeric_type|; objects containing numeric
4692 parts must have types between |transform_type| and |pair_type|;
4693 all other types must be smaller than |transform_type|; and among the types
4694 that are not unknown or vacuous, the smallest two must be |boolean_type|
4695 and |string_type| in that order.
4697 @d undefined 0 /* no type has been declared */
4698 @d unknown_tag 1 /* this constant is added to certain type codes below */
4699 @d unknown_types mp_unknown_boolean: case mp_unknown_string:
4700 case mp_unknown_pen: case mp_unknown_picture: case mp_unknown_path
4703 enum mp_variable_type {
4704 mp_vacuous=1, /* no expression was present */
4705 mp_boolean_type, /* \&{boolean} with a known value */
4707 mp_string_type, /* \&{string} with a known value */
4709 mp_pen_type, /* \&{pen} with a known value */
4711 mp_path_type, /* \&{path} with a known value */
4713 mp_picture_type, /* \&{picture} with a known value */
4715 mp_transform_type, /* \&{transform} variable or capsule */
4716 mp_color_type, /* \&{color} variable or capsule */
4717 mp_cmykcolor_type, /* \&{cmykcolor} variable or capsule */
4718 mp_pair_type, /* \&{pair} variable or capsule */
4719 mp_numeric_type, /* variable that has been declared \&{numeric} but not used */
4720 mp_known, /* \&{numeric} with a known value */
4721 mp_dependent, /* a linear combination with |fraction| coefficients */
4722 mp_proto_dependent, /* a linear combination with |scaled| coefficients */
4723 mp_independent, /* \&{numeric} with unknown value */
4724 mp_token_list, /* variable name or suffix argument or text argument */
4725 mp_structured, /* variable with subscripts and attributes */
4726 mp_unsuffixed_macro, /* variable defined with \&{vardef} but no \.{\AT!\#} */
4727 mp_suffixed_macro /* variable defined with \&{vardef} and \.{\AT!\#} */
4731 void mp_print_type (MP mp,small_number t) ;
4733 @ @<Basic printing procedures@>=
4734 void mp_print_type (MP mp,small_number t) {
4736 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
4737 case mp_boolean_type:mp_print(mp, "boolean"); break;
4738 case mp_unknown_boolean:mp_print(mp, "unknown boolean"); break;
4739 case mp_string_type:mp_print(mp, "string"); break;
4740 case mp_unknown_string:mp_print(mp, "unknown string"); break;
4741 case mp_pen_type:mp_print(mp, "pen"); break;
4742 case mp_unknown_pen:mp_print(mp, "unknown pen"); break;
4743 case mp_path_type:mp_print(mp, "path"); break;
4744 case mp_unknown_path:mp_print(mp, "unknown path"); break;
4745 case mp_picture_type:mp_print(mp, "picture"); break;
4746 case mp_unknown_picture:mp_print(mp, "unknown picture"); break;
4747 case mp_transform_type:mp_print(mp, "transform"); break;
4748 case mp_color_type:mp_print(mp, "color"); break;
4749 case mp_cmykcolor_type:mp_print(mp, "cmykcolor"); break;
4750 case mp_pair_type:mp_print(mp, "pair"); break;
4751 case mp_known:mp_print(mp, "known numeric"); break;
4752 case mp_dependent:mp_print(mp, "dependent"); break;
4753 case mp_proto_dependent:mp_print(mp, "proto-dependent"); break;
4754 case mp_numeric_type:mp_print(mp, "numeric"); break;
4755 case mp_independent:mp_print(mp, "independent"); break;
4756 case mp_token_list:mp_print(mp, "token list"); break;
4757 case mp_structured:mp_print(mp, "mp_structured"); break;
4758 case mp_unsuffixed_macro:mp_print(mp, "unsuffixed macro"); break;
4759 case mp_suffixed_macro:mp_print(mp, "suffixed macro"); break;
4760 default: mp_print(mp, "undefined"); break;
4764 @ Values inside \MP\ are stored in two-word nodes that have a |name_type|
4765 as well as a |type|. The possibilities for |name_type| are defined
4766 here; they will be explained in more detail later.
4770 mp_root=0, /* |name_type| at the top level of a variable */
4771 mp_saved_root, /* same, when the variable has been saved */
4772 mp_structured_root, /* |name_type| where a |mp_structured| branch occurs */
4773 mp_subscr, /* |name_type| in a subscript node */
4774 mp_attr, /* |name_type| in an attribute node */
4775 mp_x_part_sector, /* |name_type| in the \&{xpart} of a node */
4776 mp_y_part_sector, /* |name_type| in the \&{ypart} of a node */
4777 mp_xx_part_sector, /* |name_type| in the \&{xxpart} of a node */
4778 mp_xy_part_sector, /* |name_type| in the \&{xypart} of a node */
4779 mp_yx_part_sector, /* |name_type| in the \&{yxpart} of a node */
4780 mp_yy_part_sector, /* |name_type| in the \&{yypart} of a node */
4781 mp_red_part_sector, /* |name_type| in the \&{redpart} of a node */
4782 mp_green_part_sector, /* |name_type| in the \&{greenpart} of a node */
4783 mp_blue_part_sector, /* |name_type| in the \&{bluepart} of a node */
4784 mp_cyan_part_sector, /* |name_type| in the \&{redpart} of a node */
4785 mp_magenta_part_sector, /* |name_type| in the \&{greenpart} of a node */
4786 mp_yellow_part_sector, /* |name_type| in the \&{bluepart} of a node */
4787 mp_black_part_sector, /* |name_type| in the \&{greenpart} of a node */
4788 mp_grey_part_sector, /* |name_type| in the \&{bluepart} of a node */
4789 mp_capsule, /* |name_type| in stashed-away subexpressions */
4790 mp_token /* |name_type| in a numeric token or string token */
4793 @ Primitive operations that produce values have a secondary identification
4794 code in addition to their command code; it's something like genera and species.
4795 For example, `\.*' has the command code |primary_binary|, and its
4796 secondary identification is |times|. The secondary codes start at 30 so that
4797 they don't overlap with the type codes; some type codes (e.g., |mp_string_type|)
4798 are used as operators as well as type identifications. The relative values
4799 are not critical, except for |true_code..false_code|, |or_op..and_op|,
4800 and |filled_op..bounded_op|. The restrictions are that
4801 |and_op-false_code=or_op-true_code|, that the ordering of
4802 |x_part...blue_part| must match that of |x_part_sector..mp_blue_part_sector|,
4803 and the ordering of |filled_op..bounded_op| must match that of the code
4804 values they test for.
4806 @d true_code 30 /* operation code for \.{true} */
4807 @d false_code 31 /* operation code for \.{false} */
4808 @d null_picture_code 32 /* operation code for \.{nullpicture} */
4809 @d null_pen_code 33 /* operation code for \.{nullpen} */
4810 @d job_name_op 34 /* operation code for \.{jobname} */
4811 @d read_string_op 35 /* operation code for \.{readstring} */
4812 @d pen_circle 36 /* operation code for \.{pencircle} */
4813 @d normal_deviate 37 /* operation code for \.{normaldeviate} */
4814 @d read_from_op 38 /* operation code for \.{readfrom} */
4815 @d close_from_op 39 /* operation code for \.{closefrom} */
4816 @d odd_op 40 /* operation code for \.{odd} */
4817 @d known_op 41 /* operation code for \.{known} */
4818 @d unknown_op 42 /* operation code for \.{unknown} */
4819 @d not_op 43 /* operation code for \.{not} */
4820 @d decimal 44 /* operation code for \.{decimal} */
4821 @d reverse 45 /* operation code for \.{reverse} */
4822 @d make_path_op 46 /* operation code for \.{makepath} */
4823 @d make_pen_op 47 /* operation code for \.{makepen} */
4824 @d oct_op 48 /* operation code for \.{oct} */
4825 @d hex_op 49 /* operation code for \.{hex} */
4826 @d ASCII_op 50 /* operation code for \.{ASCII} */
4827 @d char_op 51 /* operation code for \.{char} */
4828 @d length_op 52 /* operation code for \.{length} */
4829 @d turning_op 53 /* operation code for \.{turningnumber} */
4830 @d color_model_part 54 /* operation code for \.{colormodel} */
4831 @d x_part 55 /* operation code for \.{xpart} */
4832 @d y_part 56 /* operation code for \.{ypart} */
4833 @d xx_part 57 /* operation code for \.{xxpart} */
4834 @d xy_part 58 /* operation code for \.{xypart} */
4835 @d yx_part 59 /* operation code for \.{yxpart} */
4836 @d yy_part 60 /* operation code for \.{yypart} */
4837 @d red_part 61 /* operation code for \.{redpart} */
4838 @d green_part 62 /* operation code for \.{greenpart} */
4839 @d blue_part 63 /* operation code for \.{bluepart} */
4840 @d cyan_part 64 /* operation code for \.{cyanpart} */
4841 @d magenta_part 65 /* operation code for \.{magentapart} */
4842 @d yellow_part 66 /* operation code for \.{yellowpart} */
4843 @d black_part 67 /* operation code for \.{blackpart} */
4844 @d grey_part 68 /* operation code for \.{greypart} */
4845 @d font_part 69 /* operation code for \.{fontpart} */
4846 @d text_part 70 /* operation code for \.{textpart} */
4847 @d path_part 71 /* operation code for \.{pathpart} */
4848 @d pen_part 72 /* operation code for \.{penpart} */
4849 @d dash_part 73 /* operation code for \.{dashpart} */
4850 @d sqrt_op 74 /* operation code for \.{sqrt} */
4851 @d m_exp_op 75 /* operation code for \.{mexp} */
4852 @d m_log_op 76 /* operation code for \.{mlog} */
4853 @d sin_d_op 77 /* operation code for \.{sind} */
4854 @d cos_d_op 78 /* operation code for \.{cosd} */
4855 @d floor_op 79 /* operation code for \.{floor} */
4856 @d uniform_deviate 80 /* operation code for \.{uniformdeviate} */
4857 @d char_exists_op 81 /* operation code for \.{charexists} */
4858 @d font_size 82 /* operation code for \.{fontsize} */
4859 @d ll_corner_op 83 /* operation code for \.{llcorner} */
4860 @d lr_corner_op 84 /* operation code for \.{lrcorner} */
4861 @d ul_corner_op 85 /* operation code for \.{ulcorner} */
4862 @d ur_corner_op 86 /* operation code for \.{urcorner} */
4863 @d arc_length 87 /* operation code for \.{arclength} */
4864 @d angle_op 88 /* operation code for \.{angle} */
4865 @d cycle_op 89 /* operation code for \.{cycle} */
4866 @d filled_op 90 /* operation code for \.{filled} */
4867 @d stroked_op 91 /* operation code for \.{stroked} */
4868 @d textual_op 92 /* operation code for \.{textual} */
4869 @d clipped_op 93 /* operation code for \.{clipped} */
4870 @d bounded_op 94 /* operation code for \.{bounded} */
4871 @d plus 95 /* operation code for \.+ */
4872 @d minus 96 /* operation code for \.- */
4873 @d times 97 /* operation code for \.* */
4874 @d over 98 /* operation code for \./ */
4875 @d pythag_add 99 /* operation code for \.{++} */
4876 @d pythag_sub 100 /* operation code for \.{+-+} */
4877 @d or_op 101 /* operation code for \.{or} */
4878 @d and_op 102 /* operation code for \.{and} */
4879 @d less_than 103 /* operation code for \.< */
4880 @d less_or_equal 104 /* operation code for \.{<=} */
4881 @d greater_than 105 /* operation code for \.> */
4882 @d greater_or_equal 106 /* operation code for \.{>=} */
4883 @d equal_to 107 /* operation code for \.= */
4884 @d unequal_to 108 /* operation code for \.{<>} */
4885 @d concatenate 109 /* operation code for \.\& */
4886 @d rotated_by 110 /* operation code for \.{rotated} */
4887 @d slanted_by 111 /* operation code for \.{slanted} */
4888 @d scaled_by 112 /* operation code for \.{scaled} */
4889 @d shifted_by 113 /* operation code for \.{shifted} */
4890 @d transformed_by 114 /* operation code for \.{transformed} */
4891 @d x_scaled 115 /* operation code for \.{xscaled} */
4892 @d y_scaled 116 /* operation code for \.{yscaled} */
4893 @d z_scaled 117 /* operation code for \.{zscaled} */
4894 @d in_font 118 /* operation code for \.{infont} */
4895 @d intersect 119 /* operation code for \.{intersectiontimes} */
4896 @d double_dot 120 /* operation code for improper \.{..} */
4897 @d substring_of 121 /* operation code for \.{substring} */
4898 @d min_of substring_of
4899 @d subpath_of 122 /* operation code for \.{subpath} */
4900 @d direction_time_of 123 /* operation code for \.{directiontime} */
4901 @d point_of 124 /* operation code for \.{point} */
4902 @d precontrol_of 125 /* operation code for \.{precontrol} */
4903 @d postcontrol_of 126 /* operation code for \.{postcontrol} */
4904 @d pen_offset_of 127 /* operation code for \.{penoffset} */
4905 @d arc_time_of 128 /* operation code for \.{arctime} */
4906 @d mp_version 129 /* operation code for \.{mpversion} */
4907 @d envelope_of 130 /* operation code for \{.envelope} */
4909 @c void mp_print_op (MP mp,quarterword c) {
4910 if (c<=mp_numeric_type ) {
4911 mp_print_type(mp, c);
4914 case true_code:mp_print(mp, "true"); break;
4915 case false_code:mp_print(mp, "false"); break;
4916 case null_picture_code:mp_print(mp, "nullpicture"); break;
4917 case null_pen_code:mp_print(mp, "nullpen"); break;
4918 case job_name_op:mp_print(mp, "jobname"); break;
4919 case read_string_op:mp_print(mp, "readstring"); break;
4920 case pen_circle:mp_print(mp, "pencircle"); break;
4921 case normal_deviate:mp_print(mp, "normaldeviate"); break;
4922 case read_from_op:mp_print(mp, "readfrom"); break;
4923 case close_from_op:mp_print(mp, "closefrom"); break;
4924 case odd_op:mp_print(mp, "odd"); break;
4925 case known_op:mp_print(mp, "known"); break;
4926 case unknown_op:mp_print(mp, "unknown"); break;
4927 case not_op:mp_print(mp, "not"); break;
4928 case decimal:mp_print(mp, "decimal"); break;
4929 case reverse:mp_print(mp, "reverse"); break;
4930 case make_path_op:mp_print(mp, "makepath"); break;
4931 case make_pen_op:mp_print(mp, "makepen"); break;
4932 case oct_op:mp_print(mp, "oct"); break;
4933 case hex_op:mp_print(mp, "hex"); break;
4934 case ASCII_op:mp_print(mp, "ASCII"); break;
4935 case char_op:mp_print(mp, "char"); break;
4936 case length_op:mp_print(mp, "length"); break;
4937 case turning_op:mp_print(mp, "turningnumber"); break;
4938 case x_part:mp_print(mp, "xpart"); break;
4939 case y_part:mp_print(mp, "ypart"); break;
4940 case xx_part:mp_print(mp, "xxpart"); break;
4941 case xy_part:mp_print(mp, "xypart"); break;
4942 case yx_part:mp_print(mp, "yxpart"); break;
4943 case yy_part:mp_print(mp, "yypart"); break;
4944 case red_part:mp_print(mp, "redpart"); break;
4945 case green_part:mp_print(mp, "greenpart"); break;
4946 case blue_part:mp_print(mp, "bluepart"); break;
4947 case cyan_part:mp_print(mp, "cyanpart"); break;
4948 case magenta_part:mp_print(mp, "magentapart"); break;
4949 case yellow_part:mp_print(mp, "yellowpart"); break;
4950 case black_part:mp_print(mp, "blackpart"); break;
4951 case grey_part:mp_print(mp, "greypart"); break;
4952 case color_model_part:mp_print(mp, "colormodel"); break;
4953 case font_part:mp_print(mp, "fontpart"); break;
4954 case text_part:mp_print(mp, "textpart"); break;
4955 case path_part:mp_print(mp, "pathpart"); break;
4956 case pen_part:mp_print(mp, "penpart"); break;
4957 case dash_part:mp_print(mp, "dashpart"); break;
4958 case sqrt_op:mp_print(mp, "sqrt"); break;
4959 case m_exp_op:mp_print(mp, "mexp"); break;
4960 case m_log_op:mp_print(mp, "mlog"); break;
4961 case sin_d_op:mp_print(mp, "sind"); break;
4962 case cos_d_op:mp_print(mp, "cosd"); break;
4963 case floor_op:mp_print(mp, "floor"); break;
4964 case uniform_deviate:mp_print(mp, "uniformdeviate"); break;
4965 case char_exists_op:mp_print(mp, "charexists"); break;
4966 case font_size:mp_print(mp, "fontsize"); break;
4967 case ll_corner_op:mp_print(mp, "llcorner"); break;
4968 case lr_corner_op:mp_print(mp, "lrcorner"); break;
4969 case ul_corner_op:mp_print(mp, "ulcorner"); break;
4970 case ur_corner_op:mp_print(mp, "urcorner"); break;
4971 case arc_length:mp_print(mp, "arclength"); break;
4972 case angle_op:mp_print(mp, "angle"); break;
4973 case cycle_op:mp_print(mp, "cycle"); break;
4974 case filled_op:mp_print(mp, "filled"); break;
4975 case stroked_op:mp_print(mp, "stroked"); break;
4976 case textual_op:mp_print(mp, "textual"); break;
4977 case clipped_op:mp_print(mp, "clipped"); break;
4978 case bounded_op:mp_print(mp, "bounded"); break;
4979 case plus:mp_print_char(mp, '+'); break;
4980 case minus:mp_print_char(mp, '-'); break;
4981 case times:mp_print_char(mp, '*'); break;
4982 case over:mp_print_char(mp, '/'); break;
4983 case pythag_add:mp_print(mp, "++"); break;
4984 case pythag_sub:mp_print(mp, "+-+"); break;
4985 case or_op:mp_print(mp, "or"); break;
4986 case and_op:mp_print(mp, "and"); break;
4987 case less_than:mp_print_char(mp, '<'); break;
4988 case less_or_equal:mp_print(mp, "<="); break;
4989 case greater_than:mp_print_char(mp, '>'); break;
4990 case greater_or_equal:mp_print(mp, ">="); break;
4991 case equal_to:mp_print_char(mp, '='); break;
4992 case unequal_to:mp_print(mp, "<>"); break;
4993 case concatenate:mp_print(mp, "&"); break;
4994 case rotated_by:mp_print(mp, "rotated"); break;
4995 case slanted_by:mp_print(mp, "slanted"); break;
4996 case scaled_by:mp_print(mp, "scaled"); break;
4997 case shifted_by:mp_print(mp, "shifted"); break;
4998 case transformed_by:mp_print(mp, "transformed"); break;
4999 case x_scaled:mp_print(mp, "xscaled"); break;
5000 case y_scaled:mp_print(mp, "yscaled"); break;
5001 case z_scaled:mp_print(mp, "zscaled"); break;
5002 case in_font:mp_print(mp, "infont"); break;
5003 case intersect:mp_print(mp, "intersectiontimes"); break;
5004 case substring_of:mp_print(mp, "substring"); break;
5005 case subpath_of:mp_print(mp, "subpath"); break;
5006 case direction_time_of:mp_print(mp, "directiontime"); break;
5007 case point_of:mp_print(mp, "point"); break;
5008 case precontrol_of:mp_print(mp, "precontrol"); break;
5009 case postcontrol_of:mp_print(mp, "postcontrol"); break;
5010 case pen_offset_of:mp_print(mp, "penoffset"); break;
5011 case arc_time_of:mp_print(mp, "arctime"); break;
5012 case mp_version:mp_print(mp, "mpversion"); break;
5013 case envelope_of:mp_print(mp, "envelope"); break;
5014 default: mp_print(mp, ".."); break;
5019 @ \MP\ also has a bunch of internal parameters that a user might want to
5020 fuss with. Every such parameter has an identifying code number, defined here.
5023 enum mp_given_internal {
5024 mp_tracing_titles=1, /* show titles online when they appear */
5025 mp_tracing_equations, /* show each variable when it becomes known */
5026 mp_tracing_capsules, /* show capsules too */
5027 mp_tracing_choices, /* show the control points chosen for paths */
5028 mp_tracing_specs, /* show path subdivision prior to filling with polygonal a pen */
5029 mp_tracing_commands, /* show commands and operations before they are performed */
5030 mp_tracing_restores, /* show when a variable or internal is restored */
5031 mp_tracing_macros, /* show macros before they are expanded */
5032 mp_tracing_output, /* show digitized edges as they are output */
5033 mp_tracing_stats, /* show memory usage at end of job */
5034 mp_tracing_lost_chars, /* show characters that aren't \&{infont} */
5035 mp_tracing_online, /* show long diagnostics on terminal and in the log file */
5036 mp_year, /* the current year (e.g., 1984) */
5037 mp_month, /* the current month (e.g, 3 $\equiv$ March) */
5038 mp_day, /* the current day of the month */
5039 mp_time, /* the number of minutes past midnight when this job started */
5040 mp_char_code, /* the number of the next character to be output */
5041 mp_char_ext, /* the extension code of the next character to be output */
5042 mp_char_wd, /* the width of the next character to be output */
5043 mp_char_ht, /* the height of the next character to be output */
5044 mp_char_dp, /* the depth of the next character to be output */
5045 mp_char_ic, /* the italic correction of the next character to be output */
5046 mp_design_size, /* the unit of measure used for |mp_char_wd..mp_char_ic|, in points */
5047 mp_pausing, /* positive to display lines on the terminal before they are read */
5048 mp_showstopping, /* positive to stop after each \&{show} command */
5049 mp_fontmaking, /* positive if font metric output is to be produced */
5050 mp_linejoin, /* as in \ps: 0 for mitered, 1 for round, 2 for beveled */
5051 mp_linecap, /* as in \ps: 0 for butt, 1 for round, 2 for square */
5052 mp_miterlimit, /* controls miter length as in \ps */
5053 mp_warning_check, /* controls error message when variable value is large */
5054 mp_boundary_char, /* the right boundary character for ligatures */
5055 mp_prologues, /* positive to output conforming PostScript using built-in fonts */
5056 mp_true_corners, /* positive to make \&{llcorner} etc. ignore \&{setbounds} */
5057 mp_default_color_model, /* the default color model for unspecified items */
5058 mp_restore_clip_color,
5059 mp_procset, /* wether or not create PostScript command shortcuts */
5060 mp_gtroffmode, /* whether the user specified |-troff| on the command line */
5065 @d max_given_internal mp_gtroffmode
5068 scaled *internal; /* the values of internal quantities */
5069 char **int_name; /* their names */
5070 int int_ptr; /* the maximum internal quantity defined so far */
5071 int max_internal; /* current maximum number of internal quantities */
5074 @ @<Option variables@>=
5077 @ @<Allocate or initialize ...@>=
5078 mp->max_internal=2*max_given_internal;
5079 mp->internal = xmalloc ((mp->max_internal+1), sizeof(scaled));
5080 mp->int_name = xmalloc ((mp->max_internal+1), sizeof(char *));
5081 mp->troff_mode=(opt->troff_mode>0 ? true : false);
5083 @ @<Exported function ...@>=
5084 int mp_troff_mode(MP mp);
5087 int mp_troff_mode(MP mp) { return mp->troff_mode; }
5089 @ @<Set initial ...@>=
5090 for (k=0;k<= mp->max_internal; k++ ) {
5092 mp->int_name[k]=NULL;
5094 mp->int_ptr=max_given_internal;
5096 @ The symbolic names for internal quantities are put into \MP's hash table
5097 by using a routine called |primitive|, which will be defined later. Let us
5098 enter them now, so that we don't have to list all those names again
5101 @<Put each of \MP's primitives into the hash table@>=
5102 mp_primitive(mp, "tracingtitles",internal_quantity,mp_tracing_titles);
5103 @:tracingtitles_}{\&{tracingtitles} primitive@>
5104 mp_primitive(mp, "tracingequations",internal_quantity,mp_tracing_equations);
5105 @:mp_tracing_equations_}{\&{tracingequations} primitive@>
5106 mp_primitive(mp, "tracingcapsules",internal_quantity,mp_tracing_capsules);
5107 @:mp_tracing_capsules_}{\&{tracingcapsules} primitive@>
5108 mp_primitive(mp, "tracingchoices",internal_quantity,mp_tracing_choices);
5109 @:mp_tracing_choices_}{\&{tracingchoices} primitive@>
5110 mp_primitive(mp, "tracingspecs",internal_quantity,mp_tracing_specs);
5111 @:mp_tracing_specs_}{\&{tracingspecs} primitive@>
5112 mp_primitive(mp, "tracingcommands",internal_quantity,mp_tracing_commands);
5113 @:mp_tracing_commands_}{\&{tracingcommands} primitive@>
5114 mp_primitive(mp, "tracingrestores",internal_quantity,mp_tracing_restores);
5115 @:mp_tracing_restores_}{\&{tracingrestores} primitive@>
5116 mp_primitive(mp, "tracingmacros",internal_quantity,mp_tracing_macros);
5117 @:mp_tracing_macros_}{\&{tracingmacros} primitive@>
5118 mp_primitive(mp, "tracingoutput",internal_quantity,mp_tracing_output);
5119 @:mp_tracing_output_}{\&{tracingoutput} primitive@>
5120 mp_primitive(mp, "tracingstats",internal_quantity,mp_tracing_stats);
5121 @:mp_tracing_stats_}{\&{tracingstats} primitive@>
5122 mp_primitive(mp, "tracinglostchars",internal_quantity,mp_tracing_lost_chars);
5123 @:mp_tracing_lost_chars_}{\&{tracinglostchars} primitive@>
5124 mp_primitive(mp, "tracingonline",internal_quantity,mp_tracing_online);
5125 @:mp_tracing_online_}{\&{tracingonline} primitive@>
5126 mp_primitive(mp, "year",internal_quantity,mp_year);
5127 @:mp_year_}{\&{year} primitive@>
5128 mp_primitive(mp, "month",internal_quantity,mp_month);
5129 @:mp_month_}{\&{month} primitive@>
5130 mp_primitive(mp, "day",internal_quantity,mp_day);
5131 @:mp_day_}{\&{day} primitive@>
5132 mp_primitive(mp, "time",internal_quantity,mp_time);
5133 @:time_}{\&{time} primitive@>
5134 mp_primitive(mp, "charcode",internal_quantity,mp_char_code);
5135 @:mp_char_code_}{\&{charcode} primitive@>
5136 mp_primitive(mp, "charext",internal_quantity,mp_char_ext);
5137 @:mp_char_ext_}{\&{charext} primitive@>
5138 mp_primitive(mp, "charwd",internal_quantity,mp_char_wd);
5139 @:mp_char_wd_}{\&{charwd} primitive@>
5140 mp_primitive(mp, "charht",internal_quantity,mp_char_ht);
5141 @:mp_char_ht_}{\&{charht} primitive@>
5142 mp_primitive(mp, "chardp",internal_quantity,mp_char_dp);
5143 @:mp_char_dp_}{\&{chardp} primitive@>
5144 mp_primitive(mp, "charic",internal_quantity,mp_char_ic);
5145 @:mp_char_ic_}{\&{charic} primitive@>
5146 mp_primitive(mp, "designsize",internal_quantity,mp_design_size);
5147 @:mp_design_size_}{\&{designsize} primitive@>
5148 mp_primitive(mp, "pausing",internal_quantity,mp_pausing);
5149 @:mp_pausing_}{\&{pausing} primitive@>
5150 mp_primitive(mp, "showstopping",internal_quantity,mp_showstopping);
5151 @:mp_showstopping_}{\&{showstopping} primitive@>
5152 mp_primitive(mp, "fontmaking",internal_quantity,mp_fontmaking);
5153 @:mp_fontmaking_}{\&{fontmaking} primitive@>
5154 mp_primitive(mp, "linejoin",internal_quantity,mp_linejoin);
5155 @:mp_linejoin_}{\&{linejoin} primitive@>
5156 mp_primitive(mp, "linecap",internal_quantity,mp_linecap);
5157 @:mp_linecap_}{\&{linecap} primitive@>
5158 mp_primitive(mp, "miterlimit",internal_quantity,mp_miterlimit);
5159 @:mp_miterlimit_}{\&{miterlimit} primitive@>
5160 mp_primitive(mp, "warningcheck",internal_quantity,mp_warning_check);
5161 @:mp_warning_check_}{\&{warningcheck} primitive@>
5162 mp_primitive(mp, "boundarychar",internal_quantity,mp_boundary_char);
5163 @:mp_boundary_char_}{\&{boundarychar} primitive@>
5164 mp_primitive(mp, "prologues",internal_quantity,mp_prologues);
5165 @:mp_prologues_}{\&{prologues} primitive@>
5166 mp_primitive(mp, "truecorners",internal_quantity,mp_true_corners);
5167 @:mp_true_corners_}{\&{truecorners} primitive@>
5168 mp_primitive(mp, "mpprocset",internal_quantity,mp_procset);
5169 @:mp_procset_}{\&{mpprocset} primitive@>
5170 mp_primitive(mp, "troffmode",internal_quantity,mp_gtroffmode);
5171 @:troffmode_}{\&{troffmode} primitive@>
5172 mp_primitive(mp, "defaultcolormodel",internal_quantity,mp_default_color_model);
5173 @:mp_default_color_model_}{\&{defaultcolormodel} primitive@>
5174 mp_primitive(mp, "restoreclipcolor",internal_quantity,mp_restore_clip_color);
5175 @:mp_restore_clip_color_}{\&{restoreclipcolor} primitive@>
5177 @ Colors can be specified in four color models. In the special
5178 case of |no_model|, MetaPost does not output any color operator to
5179 the postscript output.
5181 Note: these values are passed directly on to |with_option|. This only
5182 works because the other possible values passed to |with_option| are
5183 8 and 10 respectively (from |with_pen| and |with_picture|).
5185 There is a first state, that is only used for |gs_colormodel|. It flags
5186 the fact that there has not been any kind of color specification by
5187 the user so far in the game.
5190 enum mp_color_model {
5195 mp_uninitialized_model=9,
5199 @ @<Initialize table entries (done by \.{INIMP} only)@>=
5200 mp->internal[mp_default_color_model]=(mp_rgb_model*unity);
5201 mp->internal[mp_restore_clip_color]=unity;
5203 @ Well, we do have to list the names one more time, for use in symbolic
5206 @<Initialize table...@>=
5207 mp->int_name[mp_tracing_titles]=xstrdup("tracingtitles");
5208 mp->int_name[mp_tracing_equations]=xstrdup("tracingequations");
5209 mp->int_name[mp_tracing_capsules]=xstrdup("tracingcapsules");
5210 mp->int_name[mp_tracing_choices]=xstrdup("tracingchoices");
5211 mp->int_name[mp_tracing_specs]=xstrdup("tracingspecs");
5212 mp->int_name[mp_tracing_commands]=xstrdup("tracingcommands");
5213 mp->int_name[mp_tracing_restores]=xstrdup("tracingrestores");
5214 mp->int_name[mp_tracing_macros]=xstrdup("tracingmacros");
5215 mp->int_name[mp_tracing_output]=xstrdup("tracingoutput");
5216 mp->int_name[mp_tracing_stats]=xstrdup("tracingstats");
5217 mp->int_name[mp_tracing_lost_chars]=xstrdup("tracinglostchars");
5218 mp->int_name[mp_tracing_online]=xstrdup("tracingonline");
5219 mp->int_name[mp_year]=xstrdup("year");
5220 mp->int_name[mp_month]=xstrdup("month");
5221 mp->int_name[mp_day]=xstrdup("day");
5222 mp->int_name[mp_time]=xstrdup("time");
5223 mp->int_name[mp_char_code]=xstrdup("charcode");
5224 mp->int_name[mp_char_ext]=xstrdup("charext");
5225 mp->int_name[mp_char_wd]=xstrdup("charwd");
5226 mp->int_name[mp_char_ht]=xstrdup("charht");
5227 mp->int_name[mp_char_dp]=xstrdup("chardp");
5228 mp->int_name[mp_char_ic]=xstrdup("charic");
5229 mp->int_name[mp_design_size]=xstrdup("designsize");
5230 mp->int_name[mp_pausing]=xstrdup("pausing");
5231 mp->int_name[mp_showstopping]=xstrdup("showstopping");
5232 mp->int_name[mp_fontmaking]=xstrdup("fontmaking");
5233 mp->int_name[mp_linejoin]=xstrdup("linejoin");
5234 mp->int_name[mp_linecap]=xstrdup("linecap");
5235 mp->int_name[mp_miterlimit]=xstrdup("miterlimit");
5236 mp->int_name[mp_warning_check]=xstrdup("warningcheck");
5237 mp->int_name[mp_boundary_char]=xstrdup("boundarychar");
5238 mp->int_name[mp_prologues]=xstrdup("prologues");
5239 mp->int_name[mp_true_corners]=xstrdup("truecorners");
5240 mp->int_name[mp_default_color_model]=xstrdup("defaultcolormodel");
5241 mp->int_name[mp_procset]=xstrdup("mpprocset");
5242 mp->int_name[mp_gtroffmode]=xstrdup("troffmode");
5243 mp->int_name[mp_restore_clip_color]=xstrdup("restoreclipcolor");
5245 @ The following procedure, which is called just before \MP\ initializes its
5246 input and output, establishes the initial values of the date and time.
5247 @^system dependencies@>
5249 Note that the values are |scaled| integers. Hence \MP\ can no longer
5250 be used after the year 32767.
5253 void mp_fix_date_and_time (MP mp) {
5254 time_t clock = time ((time_t *) 0);
5255 struct tm *tmptr = localtime (&clock);
5256 mp->internal[mp_time]=
5257 (tmptr->tm_hour*60+tmptr->tm_min)*unity; /* minutes since midnight */
5258 mp->internal[mp_day]=(tmptr->tm_mday)*unity; /* fourth day of the month */
5259 mp->internal[mp_month]=(tmptr->tm_mon+1)*unity; /* seventh month of the year */
5260 mp->internal[mp_year]=(tmptr->tm_year+1900)*unity; /* Anno Domini */
5264 void mp_fix_date_and_time (MP mp) ;
5266 @ \MP\ is occasionally supposed to print diagnostic information that
5267 goes only into the transcript file, unless |mp_tracing_online| is positive.
5268 Now that we have defined |mp_tracing_online| we can define
5269 two routines that adjust the destination of print commands:
5272 void mp_begin_diagnostic (MP mp) ;
5273 void mp_end_diagnostic (MP mp,boolean blank_line);
5274 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) ;
5276 @ @<Basic printing...@>=
5277 @<Declare a function called |true_line|@>;
5278 void mp_begin_diagnostic (MP mp) { /* prepare to do some tracing */
5279 mp->old_setting=mp->selector;
5280 if ((mp->internal[mp_tracing_online]<=0)&&(mp->selector==term_and_log)){
5282 if ( mp->history==mp_spotless ) mp->history=mp_warning_issued;
5286 void mp_end_diagnostic (MP mp,boolean blank_line) {
5287 /* restore proper conditions after tracing */
5288 mp_print_nl(mp, "");
5289 if ( blank_line ) mp_print_ln(mp);
5290 mp->selector=mp->old_setting;
5296 unsigned int old_setting;
5298 @ We will occasionally use |begin_diagnostic| in connection with line-number
5299 printing, as follows. (The parameter |s| is typically |"Path"| or
5300 |"Cycle spec"|, etc.)
5302 @<Basic printing...@>=
5303 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) {
5304 mp_begin_diagnostic(mp);
5305 if ( nuline ) mp_print_nl(mp, s); else mp_print(mp, s);
5306 mp_print(mp, " at line ");
5307 mp_print_int(mp, mp_true_line(mp));
5308 mp_print(mp, t); mp_print_char(mp, ':');
5311 @ The 256 |ASCII_code| characters are grouped into classes by means of
5312 the |char_class| table. Individual class numbers have no semantic
5313 or syntactic significance, except in a few instances defined here.
5314 There's also |max_class|, which can be used as a basis for additional
5315 class numbers in nonstandard extensions of \MP.
5317 @d digit_class 0 /* the class number of \.{0123456789} */
5318 @d period_class 1 /* the class number of `\..' */
5319 @d space_class 2 /* the class number of spaces and nonstandard characters */
5320 @d percent_class 3 /* the class number of `\.\%' */
5321 @d string_class 4 /* the class number of `\."' */
5322 @d right_paren_class 8 /* the class number of `\.)' */
5323 @d isolated_classes 5: case 6: case 7: case 8 /* characters that make length-one tokens only */
5324 @d letter_class 9 /* letters and the underline character */
5325 @d left_bracket_class 17 /* `\.[' */
5326 @d right_bracket_class 18 /* `\.]' */
5327 @d invalid_class 20 /* bad character in the input */
5328 @d max_class 20 /* the largest class number */
5331 int char_class[256]; /* the class numbers */
5333 @ If changes are made to accommodate non-ASCII character sets, they should
5334 follow the guidelines in Appendix~C of {\sl The {\logos METAFONT\/}book}.
5335 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
5336 @^system dependencies@>
5338 @<Set initial ...@>=
5339 for (k='0';k<='9';k++)
5340 mp->char_class[k]=digit_class;
5341 mp->char_class['.']=period_class;
5342 mp->char_class[' ']=space_class;
5343 mp->char_class['%']=percent_class;
5344 mp->char_class['"']=string_class;
5345 mp->char_class[',']=5;
5346 mp->char_class[';']=6;
5347 mp->char_class['(']=7;
5348 mp->char_class[')']=right_paren_class;
5349 for (k='A';k<= 'Z';k++ )
5350 mp->char_class[k]=letter_class;
5351 for (k='a';k<='z';k++)
5352 mp->char_class[k]=letter_class;
5353 mp->char_class['_']=letter_class;
5354 mp->char_class['<']=10;
5355 mp->char_class['=']=10;
5356 mp->char_class['>']=10;
5357 mp->char_class[':']=10;
5358 mp->char_class['|']=10;
5359 mp->char_class['`']=11;
5360 mp->char_class['\'']=11;
5361 mp->char_class['+']=12;
5362 mp->char_class['-']=12;
5363 mp->char_class['/']=13;
5364 mp->char_class['*']=13;
5365 mp->char_class['\\']=13;
5366 mp->char_class['!']=14;
5367 mp->char_class['?']=14;
5368 mp->char_class['#']=15;
5369 mp->char_class['&']=15;
5370 mp->char_class['@@']=15;
5371 mp->char_class['$']=15;
5372 mp->char_class['^']=16;
5373 mp->char_class['~']=16;
5374 mp->char_class['[']=left_bracket_class;
5375 mp->char_class[']']=right_bracket_class;
5376 mp->char_class['{']=19;
5377 mp->char_class['}']=19;
5379 mp->char_class[k]=invalid_class;
5380 mp->char_class['\t']=space_class;
5381 mp->char_class['\f']=space_class;
5382 for (k=127;k<=255;k++)
5383 mp->char_class[k]=invalid_class;
5385 @* \[13] The hash table.
5386 Symbolic tokens are stored and retrieved by means of a fairly standard hash
5387 table algorithm called the method of ``coalescing lists'' (cf.\ Algorithm 6.4C
5388 in {\sl The Art of Computer Programming\/}). Once a symbolic token enters the
5389 table, it is never removed.
5391 The actual sequence of characters forming a symbolic token is
5392 stored in the |str_pool| array together with all the other strings. An
5393 auxiliary array |hash| consists of items with two halfword fields per
5394 word. The first of these, called |next(p)|, points to the next identifier
5395 belonging to the same coalesced list as the identifier corresponding to~|p|;
5396 and the other, called |text(p)|, points to the |str_start| entry for
5397 |p|'s identifier. If position~|p| of the hash table is empty, we have
5398 |text(p)=0|; if position |p| is either empty or the end of a coalesced
5399 hash list, we have |next(p)=0|.
5401 An auxiliary pointer variable called |hash_used| is maintained in such a
5402 way that all locations |p>=hash_used| are nonempty. The global variable
5403 |st_count| tells how many symbolic tokens have been defined, if statistics
5406 The first 256 locations of |hash| are reserved for symbols of length one.
5408 There's a parallel array called |eqtb| that contains the current equivalent
5409 values of each symbolic token. The entries of this array consist of
5410 two halfwords called |eq_type| (a command code) and |equiv| (a secondary
5411 piece of information that qualifies the |eq_type|).
5413 @d next(A) mp->hash[(A)].lh /* link for coalesced lists */
5414 @d text(A) mp->hash[(A)].rh /* string number for symbolic token name */
5415 @d eq_type(A) mp->eqtb[(A)].lh /* the current ``meaning'' of a symbolic token */
5416 @d equiv(A) mp->eqtb[(A)].rh /* parametric part of a token's meaning */
5417 @d hash_base 257 /* hashing actually starts here */
5418 @d hash_is_full (mp->hash_used==hash_base) /* are all positions occupied? */
5421 pointer hash_used; /* allocation pointer for |hash| */
5422 integer st_count; /* total number of known identifiers */
5424 @ Certain entries in the hash table are ``frozen'' and not redefinable,
5425 since they are used in error recovery.
5427 @d hash_top (hash_base+mp->hash_size) /* the first location of the frozen area */
5428 @d frozen_inaccessible hash_top /* |hash| location to protect the frozen area */
5429 @d frozen_repeat_loop (hash_top+1) /* |hash| location of a loop-repeat token */
5430 @d frozen_right_delimiter (hash_top+2) /* |hash| location of a permanent `\.)' */
5431 @d frozen_left_bracket (hash_top+3) /* |hash| location of a permanent `\.[' */
5432 @d frozen_slash (hash_top+4) /* |hash| location of a permanent `\./' */
5433 @d frozen_colon (hash_top+5) /* |hash| location of a permanent `\.:' */
5434 @d frozen_semicolon (hash_top+6) /* |hash| location of a permanent `\.;' */
5435 @d frozen_end_for (hash_top+7) /* |hash| location of a permanent \&{endfor} */
5436 @d frozen_end_def (hash_top+8) /* |hash| location of a permanent \&{enddef} */
5437 @d frozen_fi (hash_top+9) /* |hash| location of a permanent \&{fi} */
5438 @d frozen_end_group (hash_top+10) /* |hash| location of a permanent `\.{endgroup}' */
5439 @d frozen_etex (hash_top+11) /* |hash| location of a permanent \&{etex} */
5440 @d frozen_mpx_break (hash_top+12) /* |hash| location of a permanent \&{mpxbreak} */
5441 @d frozen_bad_vardef (hash_top+13) /* |hash| location of `\.{a bad variable}' */
5442 @d frozen_undefined (hash_top+14) /* |hash| location that never gets defined */
5443 @d hash_end (hash_top+14) /* the actual size of the |hash| and |eqtb| arrays */
5446 two_halves *hash; /* the hash table */
5447 two_halves *eqtb; /* the equivalents */
5449 @ @<Allocate or initialize ...@>=
5450 mp->hash = xmalloc((hash_end+1),sizeof(two_halves));
5451 mp->eqtb = xmalloc((hash_end+1),sizeof(two_halves));
5453 @ @<Dealloc variables@>=
5458 next(1)=0; text(1)=0; eq_type(1)=tag_token; equiv(1)=null;
5459 for (k=2;k<=hash_end;k++) {
5460 mp->hash[k]=mp->hash[1]; mp->eqtb[k]=mp->eqtb[1];
5463 @ @<Initialize table entries...@>=
5464 mp->hash_used=frozen_inaccessible; /* nothing is used */
5466 text(frozen_bad_vardef)=intern("a bad variable");
5467 text(frozen_etex)=intern("etex");
5468 text(frozen_mpx_break)=intern("mpxbreak");
5469 text(frozen_fi)=intern("fi");
5470 text(frozen_end_group)=intern("endgroup");
5471 text(frozen_end_def)=intern("enddef");
5472 text(frozen_end_for)=intern("endfor");
5473 text(frozen_semicolon)=intern(";");
5474 text(frozen_colon)=intern(":");
5475 text(frozen_slash)=intern("/");
5476 text(frozen_left_bracket)=intern("[");
5477 text(frozen_right_delimiter)=intern(")");
5478 text(frozen_inaccessible)=intern(" INACCESSIBLE");
5479 eq_type(frozen_right_delimiter)=right_delimiter;
5481 @ @<Check the ``constant'' values...@>=
5482 if ( hash_end+mp->max_internal>max_halfword ) mp->bad=17;
5484 @ Here is the subroutine that searches the hash table for an identifier
5485 that matches a given string of length~|l| appearing in |buffer[j..
5486 (j+l-1)]|. If the identifier is not found, it is inserted; hence it
5487 will always be found, and the corresponding hash table address
5491 pointer mp_id_lookup (MP mp,integer j, integer l) { /* search the hash table */
5492 integer h; /* hash code */
5493 pointer p; /* index in |hash| array */
5494 pointer k; /* index in |buffer| array */
5496 @<Treat special case of length 1 and |break|@>;
5498 @<Compute the hash code |h|@>;
5499 p=h+hash_base; /* we start searching here; note that |0<=h<hash_prime| */
5501 if (text(p)>0 && length(text(p))==l && mp_str_eq_buf(mp, text(p),j))
5504 @<Insert a new symbolic token after |p|, then
5505 make |p| point to it and |break|@>;
5512 @ @<Treat special case of length 1...@>=
5513 p=mp->buffer[j]+1; text(p)=p-1; return p;
5516 @ @<Insert a new symbolic...@>=
5521 mp_overflow(mp, "hash size",mp->hash_size);
5522 @:MetaPost capacity exceeded hash size}{\quad hash size@>
5523 decr(mp->hash_used);
5524 } while (text(mp->hash_used)!=0); /* search for an empty location in |hash| */
5525 next(p)=mp->hash_used;
5529 for (k=j;k<=j+l-1;k++) {
5530 append_char(mp->buffer[k]);
5532 text(p)=mp_make_string(mp);
5533 mp->str_ref[text(p)]=max_str_ref;
5539 @ The value of |hash_prime| should be roughly 85\pct! of |hash_size|, and it
5540 should be a prime number. The theory of hashing tells us to expect fewer
5541 than two table probes, on the average, when the search is successful.
5542 [See J.~S. Vitter, {\sl Journal of the ACM\/ \bf30} (1983), 231--258.]
5543 @^Vitter, Jeffrey Scott@>
5545 @<Compute the hash code |h|@>=
5547 for (k=j+1;k<=j+l-1;k++){
5548 h=h+h+mp->buffer[k];
5549 while ( h>=mp->hash_prime ) h=h-mp->hash_prime;
5552 @ @<Search |eqtb| for equivalents equal to |p|@>=
5553 for (q=1;q<=hash_end;q++) {
5554 if ( equiv(q)==p ) {
5555 mp_print_nl(mp, "EQUIV(");
5556 mp_print_int(mp, q);
5557 mp_print_char(mp, ')');
5561 @ We need to put \MP's ``primitive'' symbolic tokens into the hash
5562 table, together with their command code (which will be the |eq_type|)
5563 and an operand (which will be the |equiv|). The |primitive| procedure
5564 does this, in a way that no \MP\ user can. The global value |cur_sym|
5565 contains the new |eqtb| pointer after |primitive| has acted.
5568 void mp_primitive (MP mp, char *ss, halfword c, halfword o) {
5569 pool_pointer k; /* index into |str_pool| */
5570 small_number j; /* index into |buffer| */
5571 small_number l; /* length of the string */
5574 k=mp->str_start[s]; l=str_stop(s)-k;
5575 /* we will move |s| into the (empty) |buffer| */
5576 for (j=0;j<=l-1;j++) {
5577 mp->buffer[j]=mp->str_pool[k+j];
5579 mp->cur_sym=mp_id_lookup(mp, 0,l);
5580 if ( s>=256 ) { /* we don't want to have the string twice */
5581 mp_flush_string(mp, text(mp->cur_sym)); text(mp->cur_sym)=s;
5583 eq_type(mp->cur_sym)=c;
5584 equiv(mp->cur_sym)=o;
5588 @ Many of \MP's primitives need no |equiv|, since they are identifiable
5589 by their |eq_type| alone. These primitives are loaded into the hash table
5592 @<Put each of \MP's primitives into the hash table@>=
5593 mp_primitive(mp, "..",path_join,0);
5594 @:.._}{\.{..} primitive@>
5595 mp_primitive(mp, "[",left_bracket,0); mp->eqtb[frozen_left_bracket]=mp->eqtb[mp->cur_sym];
5596 @:[ }{\.{[} primitive@>
5597 mp_primitive(mp, "]",right_bracket,0);
5598 @:] }{\.{]} primitive@>
5599 mp_primitive(mp, "}",right_brace,0);
5600 @:]]}{\.{\char`\}} primitive@>
5601 mp_primitive(mp, "{",left_brace,0);
5602 @:][}{\.{\char`\{} primitive@>
5603 mp_primitive(mp, ":",colon,0); mp->eqtb[frozen_colon]=mp->eqtb[mp->cur_sym];
5604 @:: }{\.{:} primitive@>
5605 mp_primitive(mp, "::",double_colon,0);
5606 @::: }{\.{::} primitive@>
5607 mp_primitive(mp, "||:",bchar_label,0);
5608 @:::: }{\.{\char'174\char'174:} primitive@>
5609 mp_primitive(mp, ":=",assignment,0);
5610 @::=_}{\.{:=} primitive@>
5611 mp_primitive(mp, ",",comma,0);
5612 @:, }{\., primitive@>
5613 mp_primitive(mp, ";",semicolon,0); mp->eqtb[frozen_semicolon]=mp->eqtb[mp->cur_sym];
5614 @:; }{\.; primitive@>
5615 mp_primitive(mp, "\\",relax,0);
5616 @:]]\\}{\.{\char`\\} primitive@>
5618 mp_primitive(mp, "addto",add_to_command,0);
5619 @:add_to_}{\&{addto} primitive@>
5620 mp_primitive(mp, "atleast",at_least,0);
5621 @:at_least_}{\&{atleast} primitive@>
5622 mp_primitive(mp, "begingroup",begin_group,0); mp->bg_loc=mp->cur_sym;
5623 @:begin_group_}{\&{begingroup} primitive@>
5624 mp_primitive(mp, "controls",controls,0);
5625 @:controls_}{\&{controls} primitive@>
5626 mp_primitive(mp, "curl",curl_command,0);
5627 @:curl_}{\&{curl} primitive@>
5628 mp_primitive(mp, "delimiters",delimiters,0);
5629 @:delimiters_}{\&{delimiters} primitive@>
5630 mp_primitive(mp, "endgroup",end_group,0);
5631 mp->eqtb[frozen_end_group]=mp->eqtb[mp->cur_sym]; mp->eg_loc=mp->cur_sym;
5632 @:endgroup_}{\&{endgroup} primitive@>
5633 mp_primitive(mp, "everyjob",every_job_command,0);
5634 @:every_job_}{\&{everyjob} primitive@>
5635 mp_primitive(mp, "exitif",exit_test,0);
5636 @:exit_if_}{\&{exitif} primitive@>
5637 mp_primitive(mp, "expandafter",expand_after,0);
5638 @:expand_after_}{\&{expandafter} primitive@>
5639 mp_primitive(mp, "interim",interim_command,0);
5640 @:interim_}{\&{interim} primitive@>
5641 mp_primitive(mp, "let",let_command,0);
5642 @:let_}{\&{let} primitive@>
5643 mp_primitive(mp, "newinternal",new_internal,0);
5644 @:new_internal_}{\&{newinternal} primitive@>
5645 mp_primitive(mp, "of",of_token,0);
5646 @:of_}{\&{of} primitive@>
5647 mp_primitive(mp, "randomseed",random_seed,0);
5648 @:random_seed_}{\&{randomseed} primitive@>
5649 mp_primitive(mp, "save",save_command,0);
5650 @:save_}{\&{save} primitive@>
5651 mp_primitive(mp, "scantokens",scan_tokens,0);
5652 @:scan_tokens_}{\&{scantokens} primitive@>
5653 mp_primitive(mp, "shipout",ship_out_command,0);
5654 @:ship_out_}{\&{shipout} primitive@>
5655 mp_primitive(mp, "skipto",skip_to,0);
5656 @:skip_to_}{\&{skipto} primitive@>
5657 mp_primitive(mp, "special",special_command,0);
5658 @:special}{\&{special} primitive@>
5659 mp_primitive(mp, "fontmapfile",special_command,1);
5660 @:fontmapfile}{\&{fontmapfile} primitive@>
5661 mp_primitive(mp, "fontmapline",special_command,2);
5662 @:fontmapline}{\&{fontmapline} primitive@>
5663 mp_primitive(mp, "step",step_token,0);
5664 @:step_}{\&{step} primitive@>
5665 mp_primitive(mp, "str",str_op,0);
5666 @:str_}{\&{str} primitive@>
5667 mp_primitive(mp, "tension",tension,0);
5668 @:tension_}{\&{tension} primitive@>
5669 mp_primitive(mp, "to",to_token,0);
5670 @:to_}{\&{to} primitive@>
5671 mp_primitive(mp, "until",until_token,0);
5672 @:until_}{\&{until} primitive@>
5673 mp_primitive(mp, "within",within_token,0);
5674 @:within_}{\&{within} primitive@>
5675 mp_primitive(mp, "write",write_command,0);
5676 @:write_}{\&{write} primitive@>
5678 @ Each primitive has a corresponding inverse, so that it is possible to
5679 display the cryptic numeric contents of |eqtb| in symbolic form.
5680 Every call of |primitive| in this program is therefore accompanied by some
5681 straightforward code that forms part of the |print_cmd_mod| routine
5684 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>=
5685 case add_to_command:mp_print(mp, "addto"); break;
5686 case assignment:mp_print(mp, ":="); break;
5687 case at_least:mp_print(mp, "atleast"); break;
5688 case bchar_label:mp_print(mp, "||:"); break;
5689 case begin_group:mp_print(mp, "begingroup"); break;
5690 case colon:mp_print(mp, ":"); break;
5691 case comma:mp_print(mp, ","); break;
5692 case controls:mp_print(mp, "controls"); break;
5693 case curl_command:mp_print(mp, "curl"); break;
5694 case delimiters:mp_print(mp, "delimiters"); break;
5695 case double_colon:mp_print(mp, "::"); break;
5696 case end_group:mp_print(mp, "endgroup"); break;
5697 case every_job_command:mp_print(mp, "everyjob"); break;
5698 case exit_test:mp_print(mp, "exitif"); break;
5699 case expand_after:mp_print(mp, "expandafter"); break;
5700 case interim_command:mp_print(mp, "interim"); break;
5701 case left_brace:mp_print(mp, "{"); break;
5702 case left_bracket:mp_print(mp, "["); break;
5703 case let_command:mp_print(mp, "let"); break;
5704 case new_internal:mp_print(mp, "newinternal"); break;
5705 case of_token:mp_print(mp, "of"); break;
5706 case path_join:mp_print(mp, ".."); break;
5707 case random_seed:mp_print(mp, "randomseed"); break;
5708 case relax:mp_print_char(mp, '\\'); break;
5709 case right_brace:mp_print(mp, "}"); break;
5710 case right_bracket:mp_print(mp, "]"); break;
5711 case save_command:mp_print(mp, "save"); break;
5712 case scan_tokens:mp_print(mp, "scantokens"); break;
5713 case semicolon:mp_print(mp, ";"); break;
5714 case ship_out_command:mp_print(mp, "shipout"); break;
5715 case skip_to:mp_print(mp, "skipto"); break;
5716 case special_command: if ( m==2 ) mp_print(mp, "fontmapline"); else
5717 if ( m==1 ) mp_print(mp, "fontmapfile"); else
5718 mp_print(mp, "special"); break;
5719 case step_token:mp_print(mp, "step"); break;
5720 case str_op:mp_print(mp, "str"); break;
5721 case tension:mp_print(mp, "tension"); break;
5722 case to_token:mp_print(mp, "to"); break;
5723 case until_token:mp_print(mp, "until"); break;
5724 case within_token:mp_print(mp, "within"); break;
5725 case write_command:mp_print(mp, "write"); break;
5727 @ We will deal with the other primitives later, at some point in the program
5728 where their |eq_type| and |equiv| values are more meaningful. For example,
5729 the primitives for macro definitions will be loaded when we consider the
5730 routines that define macros.
5731 It is easy to find where each particular
5732 primitive was treated by looking in the index at the end; for example, the
5733 section where |"def"| entered |eqtb| is listed under `\&{def} primitive'.
5735 @* \[14] Token lists.
5736 A \MP\ token is either symbolic or numeric or a string, or it denotes
5737 a macro parameter or capsule; so there are five corresponding ways to encode it
5739 internally: (1)~A symbolic token whose hash code is~|p|
5740 is represented by the number |p|, in the |info| field of a single-word
5741 node in~|mem|. (2)~A numeric token whose |scaled| value is~|v| is
5742 represented in a two-word node of~|mem|; the |type| field is |known|,
5743 the |name_type| field is |token|, and the |value| field holds~|v|.
5744 The fact that this token appears in a two-word node rather than a
5745 one-word node is, of course, clear from the node address.
5746 (3)~A string token is also represented in a two-word node; the |type|
5747 field is |mp_string_type|, the |name_type| field is |token|, and the
5748 |value| field holds the corresponding |str_number|. (4)~Capsules have
5749 |name_type=capsule|, and their |type| and |value| fields represent
5750 arbitrary values (in ways to be explained later). (5)~Macro parameters
5751 are like symbolic tokens in that they appear in |info| fields of
5752 one-word nodes. The $k$th parameter is represented by |expr_base+k| if it
5753 is of type \&{expr}, or by |suffix_base+k| if it is of type \&{suffix}, or
5754 by |text_base+k| if it is of type \&{text}. (Here |0<=k<param_size|.)
5755 Actual values of these parameters are kept in a separate stack, as we will
5756 see later. The constants |expr_base|, |suffix_base|, and |text_base| are,
5757 of course, chosen so that there will be no confusion between symbolic
5758 tokens and parameters of various types.
5761 the `\\{type}' field of a node has nothing to do with ``type'' in a
5762 printer's sense. It's curious that the same word is used in such different ways.
5764 @d type(A) mp->mem[(A)].hh.b0 /* identifies what kind of value this is */
5765 @d name_type(A) mp->mem[(A)].hh.b1 /* a clue to the name of this value */
5766 @d token_node_size 2 /* the number of words in a large token node */
5767 @d value_loc(A) ((A)+1) /* the word that contains the |value| field */
5768 @d value(A) mp->mem[value_loc((A))].cint /* the value stored in a large token node */
5769 @d expr_base (hash_end+1) /* code for the zeroth \&{expr} parameter */
5770 @d suffix_base (expr_base+mp->param_size) /* code for the zeroth \&{suffix} parameter */
5771 @d text_base (suffix_base+mp->param_size) /* code for the zeroth \&{text} parameter */
5773 @<Check the ``constant''...@>=
5774 if ( text_base+mp->param_size>max_halfword ) mp->bad=18;
5776 @ We have set aside a two word node beginning at |null| so that we can have
5777 |value(null)=0|. We will make use of this coincidence later.
5779 @<Initialize table entries...@>=
5780 link(null)=null; value(null)=0;
5782 @ A numeric token is created by the following trivial routine.
5785 pointer mp_new_num_tok (MP mp,scaled v) {
5786 pointer p; /* the new node */
5787 p=mp_get_node(mp, token_node_size); value(p)=v;
5788 type(p)=mp_known; name_type(p)=mp_token;
5792 @ A token list is a singly linked list of nodes in |mem|, where
5793 each node contains a token and a link. Here's a subroutine that gets rid
5794 of a token list when it is no longer needed.
5797 void mp_token_recycle (MP mp);
5800 @c void mp_flush_token_list (MP mp,pointer p) {
5801 pointer q; /* the node being recycled */
5804 if ( q>=mp->hi_mem_min ) {
5808 case mp_vacuous: case mp_boolean_type: case mp_known:
5810 case mp_string_type:
5811 delete_str_ref(value(q));
5813 case unknown_types: case mp_pen_type: case mp_path_type:
5814 case mp_picture_type: case mp_pair_type: case mp_color_type:
5815 case mp_cmykcolor_type: case mp_transform_type: case mp_dependent:
5816 case mp_proto_dependent: case mp_independent:
5817 mp->g_pointer=q; mp_token_recycle(mp);
5819 default: mp_confusion(mp, "token");
5820 @:this can't happen token}{\quad token@>
5822 mp_free_node(mp, q,token_node_size);
5827 @ The procedure |show_token_list|, which prints a symbolic form of
5828 the token list that starts at a given node |p|, illustrates these
5829 conventions. The token list being displayed should not begin with a reference
5830 count. However, the procedure is intended to be fairly robust, so that if the
5831 memory links are awry or if |p| is not really a pointer to a token list,
5832 almost nothing catastrophic can happen.
5834 An additional parameter |q| is also given; this parameter is either null
5835 or it points to a node in the token list where a certain magic computation
5836 takes place that will be explained later. (Basically, |q| is non-null when
5837 we are printing the two-line context information at the time of an error
5838 message; |q| marks the place corresponding to where the second line
5841 The generation will stop, and `\.{\char`\ ETC.}' will be printed, if the length
5842 of printing exceeds a given limit~|l|; the length of printing upon entry is
5843 assumed to be a given amount called |null_tally|. (Note that
5844 |show_token_list| sometimes uses itself recursively to print
5845 variable names within a capsule.)
5848 Unusual entries are printed in the form of all-caps tokens
5849 preceded by a space, e.g., `\.{\char`\ BAD}'.
5852 void mp_print_capsule (MP mp);
5854 @ @<Declare the procedure called |show_token_list|@>=
5855 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5856 integer null_tally) ;
5859 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5860 integer null_tally) {
5861 small_number class,c; /* the |char_class| of previous and new tokens */
5862 integer r,v; /* temporary registers */
5863 class=percent_class;
5864 mp->tally=null_tally;
5865 while ( (p!=null) && (mp->tally<l) ) {
5867 @<Do magic computation@>;
5868 @<Display token |p| and set |c| to its class;
5869 but |return| if there are problems@>;
5873 mp_print(mp, " ETC.");
5878 @ @<Display token |p| and set |c| to its class...@>=
5879 c=letter_class; /* the default */
5880 if ( (p<0)||(p>mp->mem_end) ) {
5881 mp_print(mp, " CLOBBERED"); return;
5884 if ( p<mp->hi_mem_min ) {
5885 @<Display two-word token@>;
5888 if ( r>=expr_base ) {
5889 @<Display a parameter token@>;
5893 @<Display a collective subscript@>
5895 mp_print(mp, " IMPOSSIBLE");
5900 if ( (r<0)||(r>mp->max_str_ptr) ) {
5901 mp_print(mp, " NONEXISTENT");
5904 @<Print string |r| as a symbolic token
5905 and set |c| to its class@>;
5911 @ @<Display two-word token@>=
5912 if ( name_type(p)==mp_token ) {
5913 if ( type(p)==mp_known ) {
5914 @<Display a numeric token@>;
5915 } else if ( type(p)!=mp_string_type ) {
5916 mp_print(mp, " BAD");
5919 mp_print_char(mp, '"'); mp_print_str(mp, value(p)); mp_print_char(mp, '"');
5922 } else if ((name_type(p)!=mp_capsule)||(type(p)<mp_vacuous)||(type(p)>mp_independent) ) {
5923 mp_print(mp, " BAD");
5925 mp->g_pointer=p; mp_print_capsule(mp); c=right_paren_class;
5928 @ @<Display a numeric token@>=
5929 if ( class==digit_class )
5930 mp_print_char(mp, ' ');
5933 if ( class==left_bracket_class )
5934 mp_print_char(mp, ' ');
5935 mp_print_char(mp, '['); mp_print_scaled(mp, v); mp_print_char(mp, ']');
5936 c=right_bracket_class;
5938 mp_print_scaled(mp, v); c=digit_class;
5942 @ Strictly speaking, a genuine token will never have |info(p)=0|.
5943 But we will see later (in the |print_variable_name| routine) that
5944 it is convenient to let |info(p)=0| stand for `\.{[]}'.
5946 @<Display a collective subscript@>=
5948 if ( class==left_bracket_class )
5949 mp_print_char(mp, ' ');
5950 mp_print(mp, "[]"); c=right_bracket_class;
5953 @ @<Display a parameter token@>=
5955 if ( r<suffix_base ) {
5956 mp_print(mp, "(EXPR"); r=r-(expr_base);
5958 } else if ( r<text_base ) {
5959 mp_print(mp, "(SUFFIX"); r=r-(suffix_base);
5962 mp_print(mp, "(TEXT"); r=r-(text_base);
5965 mp_print_int(mp, r); mp_print_char(mp, ')'); c=right_paren_class;
5969 @ @<Print string |r| as a symbolic token...@>=
5971 c=mp->char_class[mp->str_pool[mp->str_start[r]]];
5974 case letter_class:mp_print_char(mp, '.'); break;
5975 case isolated_classes: break;
5976 default: mp_print_char(mp, ' '); break;
5979 mp_print_str(mp, r);
5982 @ The following procedures have been declared |forward| with no parameters,
5983 because the author dislikes \PASCAL's convention about |forward| procedures
5984 with parameters. It was necessary to do something, because |show_token_list|
5985 is recursive (although the recursion is limited to one level), and because
5986 |flush_token_list| is syntactically (but not semantically) recursive.
5989 @<Declare miscellaneous procedures that were declared |forward|@>=
5990 void mp_print_capsule (MP mp) {
5991 mp_print_char(mp, '('); mp_print_exp(mp, mp->g_pointer,0); mp_print_char(mp, ')');
5994 void mp_token_recycle (MP mp) {
5995 mp_recycle_value(mp, mp->g_pointer);
5999 pointer g_pointer; /* (global) parameter to the |forward| procedures */
6001 @ Macro definitions are kept in \MP's memory in the form of token lists
6002 that have a few extra one-word nodes at the beginning.
6004 The first node contains a reference count that is used to tell when the
6005 list is no longer needed. To emphasize the fact that a reference count is
6006 present, we shall refer to the |info| field of this special node as the
6008 @^reference counts@>
6010 The next node or nodes after the reference count serve to describe the
6011 formal parameters. They either contain a code word that specifies all
6012 of the parameters, or they contain zero or more parameter tokens followed
6013 by the code `|general_macro|'.
6016 /* reference count preceding a macro definition or picture header */
6017 @d add_mac_ref(A) incr(ref_count((A))) /* make a new reference to a macro list */
6018 @d general_macro 0 /* preface to a macro defined with a parameter list */
6019 @d primary_macro 1 /* preface to a macro with a \&{primary} parameter */
6020 @d secondary_macro 2 /* preface to a macro with a \&{secondary} parameter */
6021 @d tertiary_macro 3 /* preface to a macro with a \&{tertiary} parameter */
6022 @d expr_macro 4 /* preface to a macro with an undelimited \&{expr} parameter */
6023 @d of_macro 5 /* preface to a macro with
6024 undelimited `\&{expr} |x| \&{of}~|y|' parameters */
6025 @d suffix_macro 6 /* preface to a macro with an undelimited \&{suffix} parameter */
6026 @d text_macro 7 /* preface to a macro with an undelimited \&{text} parameter */
6029 void mp_delete_mac_ref (MP mp,pointer p) {
6030 /* |p| points to the reference count of a macro list that is
6031 losing one reference */
6032 if ( ref_count(p)==null ) mp_flush_token_list(mp, p);
6033 else decr(ref_count(p));
6036 @ The following subroutine displays a macro, given a pointer to its
6040 @<Declare the procedure called |print_cmd_mod|@>;
6041 void mp_show_macro (MP mp, pointer p, integer q, integer l) {
6042 pointer r; /* temporary storage */
6043 p=link(p); /* bypass the reference count */
6044 while ( info(p)>text_macro ){
6045 r=link(p); link(p)=null;
6046 mp_show_token_list(mp, p,null,l,0); link(p)=r; p=r;
6047 if ( l>0 ) l=l-mp->tally; else return;
6048 } /* control printing of `\.{ETC.}' */
6052 case general_macro:mp_print(mp, "->"); break;
6054 case primary_macro: case secondary_macro: case tertiary_macro:
6055 mp_print_char(mp, '<');
6056 mp_print_cmd_mod(mp, param_type,info(p));
6057 mp_print(mp, ">->");
6059 case expr_macro:mp_print(mp, "<expr>->"); break;
6060 case of_macro:mp_print(mp, "<expr>of<primary>->"); break;
6061 case suffix_macro:mp_print(mp, "<suffix>->"); break;
6062 case text_macro:mp_print(mp, "<text>->"); break;
6063 } /* there are no other cases */
6064 mp_show_token_list(mp, link(p),q,l-mp->tally,0);
6067 @* \[15] Data structures for variables.
6068 The variables of \MP\ programs can be simple, like `\.x', or they can
6069 combine the structural properties of arrays and records, like `\.{x20a.b}'.
6070 A \MP\ user assigns a type to a variable like \.{x20a.b} by saying, for
6071 example, `\.{boolean} \.{x20a.b}'. It's time for us to study how such
6072 things are represented inside of the computer.
6074 Each variable value occupies two consecutive words, either in a two-word
6075 node called a value node, or as a two-word subfield of a larger node. One
6076 of those two words is called the |value| field; it is an integer,
6077 containing either a |scaled| numeric value or the representation of some
6078 other type of quantity. (It might also be subdivided into halfwords, in
6079 which case it is referred to by other names instead of |value|.) The other
6080 word is broken into subfields called |type|, |name_type|, and |link|. The
6081 |type| field is a quarterword that specifies the variable's type, and
6082 |name_type| is a quarterword from which \MP\ can reconstruct the
6083 variable's name (sometimes by using the |link| field as well). Thus, only
6084 1.25 words are actually devoted to the value itself; the other
6085 three-quarters of a word are overhead, but they aren't wasted because they
6086 allow \MP\ to deal with sparse arrays and to provide meaningful diagnostics.
6088 In this section we shall be concerned only with the structural aspects of
6089 variables, not their values. Later parts of the program will change the
6090 |type| and |value| fields, but we shall treat those fields as black boxes
6091 whose contents should not be touched.
6093 However, if the |type| field is |mp_structured|, there is no |value| field,
6094 and the second word is broken into two pointer fields called |attr_head|
6095 and |subscr_head|. Those fields point to additional nodes that
6096 contain structural information, as we shall see.
6098 @d subscr_head_loc(A) (A)+1 /* where |value|, |subscr_head| and |attr_head| are */
6099 @d attr_head(A) info(subscr_head_loc((A))) /* pointer to attribute info */
6100 @d subscr_head(A) link(subscr_head_loc((A))) /* pointer to subscript info */
6101 @d value_node_size 2 /* the number of words in a value node */
6103 @ An attribute node is three words long. Two of these words contain |type|
6104 and |value| fields as described above, and the third word contains
6105 additional information: There is an |attr_loc| field, which contains the
6106 hash address of the token that names this attribute; and there's also a
6107 |parent| field, which points to the value node of |mp_structured| type at the
6108 next higher level (i.e., at the level to which this attribute is
6109 subsidiary). The |name_type| in an attribute node is `|attr|'. The
6110 |link| field points to the next attribute with the same parent; these are
6111 arranged in increasing order, so that |attr_loc(link(p))>attr_loc(p)|. The
6112 final attribute node links to the constant |end_attr|, whose |attr_loc|
6113 field is greater than any legal hash address. The |attr_head| in the
6114 parent points to a node whose |name_type| is |mp_structured_root|; this
6115 node represents the null attribute, i.e., the variable that is relevant
6116 when no attributes are attached to the parent. The |attr_head| node is either
6117 a value node, a subscript node, or an attribute node, depending on what
6118 the parent would be if it were not structured; but the subscript and
6119 attribute fields are ignored, so it effectively contains only the data of
6120 a value node. The |link| field in this special node points to an attribute
6121 node whose |attr_loc| field is zero; the latter node represents a collective
6122 subscript `\.{[]}' attached to the parent, and its |link| field points to
6123 the first non-special attribute node (or to |end_attr| if there are none).
6125 A subscript node likewise occupies three words, with |type| and |value| fields
6126 plus extra information; its |name_type| is |subscr|. In this case the
6127 third word is called the |subscript| field, which is a |scaled| integer.
6128 The |link| field points to the subscript node with the next larger
6129 subscript, if any; otherwise the |link| points to the attribute node
6130 for collective subscripts at this level. We have seen that the latter node
6131 contains an upward pointer, so that the parent can be deduced.
6133 The |name_type| in a parent-less value node is |root|, and the |link|
6134 is the hash address of the token that names this value.
6136 In other words, variables have a hierarchical structure that includes
6137 enough threads running around so that the program is able to move easily
6138 between siblings, parents, and children. An example should be helpful:
6139 (The reader is advised to draw a picture while reading the following
6140 description, since that will help to firm up the ideas.)
6141 Suppose that `\.x' and `\.{x.a}' and `\.{x[]b}' and `\.{x5}'
6142 and `\.{x20b}' have been mentioned in a user's program, where
6143 \.{x[]b} has been declared to be of \&{boolean} type. Let |h(x)|, |h(a)|,
6144 and |h(b)| be the hash addresses of \.x, \.a, and~\.b. Then
6145 |eq_type(h(x))=name| and |equiv(h(x))=p|, where |p|~is a two-word value
6146 node with |name_type(p)=root| and |link(p)=h(x)|. We have |type(p)=mp_structured|,
6147 |attr_head(p)=q|, and |subscr_head(p)=r|, where |q| points to a value
6148 node and |r| to a subscript node. (Are you still following this? Use
6149 a pencil to draw a diagram.) The lone variable `\.x' is represented by
6150 |type(q)| and |value(q)|; furthermore
6151 |name_type(q)=mp_structured_root| and |link(q)=q1|, where |q1| points
6152 to an attribute node representing `\.{x[]}'. Thus |name_type(q1)=attr|,
6153 |attr_loc(q1)=collective_subscript=0|, |parent(q1)=p|,
6154 |type(q1)=mp_structured|, |attr_head(q1)=qq|, and |subscr_head(q1)=qq1|;
6155 |qq| is a value node with |type(qq)=mp_numeric_type| (assuming that \.{x5} is
6156 numeric, because |qq| represents `\.{x[]}' with no further attributes),
6157 |name_type(qq)=mp_structured_root|, and
6158 |link(qq)=qq1|. (Now pay attention to the next part.) Node |qq1| is
6159 an attribute node representing `\.{x[][]}', which has never yet
6160 occurred; its |type| field is |undefined|, and its |value| field is
6161 undefined. We have |name_type(qq1)=attr|, |attr_loc(qq1)=collective_subscript|,
6162 |parent(qq1)=q1|, and |link(qq1)=qq2|. Since |qq2| represents
6163 `\.{x[]b}', |type(qq2)=mp_unknown_boolean|; also |attr_loc(qq2)=h(b)|,
6164 |parent(qq2)=q1|, |name_type(qq2)=attr|, |link(qq2)=end_attr|.
6165 (Maybe colored lines will help untangle your picture.)
6166 Node |r| is a subscript node with |type| and |value|
6167 representing `\.{x5}'; |name_type(r)=subscr|, |subscript(r)=5.0|,
6168 and |link(r)=r1| is another subscript node. To complete the picture,
6169 see if you can guess what |link(r1)| is; give up? It's~|q1|.
6170 Furthermore |subscript(r1)=20.0|, |name_type(r1)=subscr|,
6171 |type(r1)=mp_structured|, |attr_head(r1)=qqq|, |subscr_head(r1)=qqq1|,
6172 and we finish things off with three more nodes
6173 |qqq|, |qqq1|, and |qqq2| hung onto~|r1|. (Perhaps you should start again
6174 with a larger sheet of paper.) The value of variable \.{x20b}
6175 appears in node~|qqq2|, as you can well imagine.
6177 If the example in the previous paragraph doesn't make things crystal
6178 clear, a glance at some of the simpler subroutines below will reveal how
6179 things work out in practice.
6181 The only really unusual thing about these conventions is the use of
6182 collective subscript attributes. The idea is to avoid repeating a lot of
6183 type information when many elements of an array are identical macros
6184 (for which distinct values need not be stored) or when they don't have
6185 all of the possible attributes. Branches of the structure below collective
6186 subscript attributes do not carry actual values except for macro identifiers;
6187 branches of the structure below subscript nodes do not carry significant
6188 information in their collective subscript attributes.
6190 @d attr_loc_loc(A) ((A)+2) /* where the |attr_loc| and |parent| fields are */
6191 @d attr_loc(A) info(attr_loc_loc((A))) /* hash address of this attribute */
6192 @d parent(A) link(attr_loc_loc((A))) /* pointer to |mp_structured| variable */
6193 @d subscript_loc(A) ((A)+2) /* where the |subscript| field lives */
6194 @d subscript(A) mp->mem[subscript_loc((A))].sc /* subscript of this variable */
6195 @d attr_node_size 3 /* the number of words in an attribute node */
6196 @d subscr_node_size 3 /* the number of words in a subscript node */
6197 @d collective_subscript 0 /* code for the attribute `\.{[]}' */
6199 @<Initialize table...@>=
6200 attr_loc(end_attr)=hash_end+1; parent(end_attr)=null;
6202 @ Variables of type \&{pair} will have values that point to four-word
6203 nodes containing two numeric values. The first of these values has
6204 |name_type=mp_x_part_sector| and the second has |name_type=mp_y_part_sector|;
6205 the |link| in the first points back to the node whose |value| points
6206 to this four-word node.
6208 Variables of type \&{transform} are similar, but in this case their
6209 |value| points to a 12-word node containing six values, identified by
6210 |x_part_sector|, |y_part_sector|, |mp_xx_part_sector|, |mp_xy_part_sector|,
6211 |mp_yx_part_sector|, and |mp_yy_part_sector|.
6212 Finally, variables of type \&{color} have three values in six words
6213 identified by |mp_red_part_sector|, |mp_green_part_sector|, and |mp_blue_part_sector|.
6215 When an entire structured variable is saved, the |root| indication
6216 is temporarily replaced by |saved_root|.
6218 Some variables have no name; they just are used for temporary storage
6219 while expressions are being evaluated. We call them {\sl capsules}.
6221 @d x_part_loc(A) (A) /* where the \&{xpart} is found in a pair or transform node */
6222 @d y_part_loc(A) ((A)+2) /* where the \&{ypart} is found in a pair or transform node */
6223 @d xx_part_loc(A) ((A)+4) /* where the \&{xxpart} is found in a transform node */
6224 @d xy_part_loc(A) ((A)+6) /* where the \&{xypart} is found in a transform node */
6225 @d yx_part_loc(A) ((A)+8) /* where the \&{yxpart} is found in a transform node */
6226 @d yy_part_loc(A) ((A)+10) /* where the \&{yypart} is found in a transform node */
6227 @d red_part_loc(A) (A) /* where the \&{redpart} is found in a color node */
6228 @d green_part_loc(A) ((A)+2) /* where the \&{greenpart} is found in a color node */
6229 @d blue_part_loc(A) ((A)+4) /* where the \&{bluepart} is found in a color node */
6230 @d cyan_part_loc(A) (A) /* where the \&{cyanpart} is found in a color node */
6231 @d magenta_part_loc(A) ((A)+2) /* where the \&{magentapart} is found in a color node */
6232 @d yellow_part_loc(A) ((A)+4) /* where the \&{yellowpart} is found in a color node */
6233 @d black_part_loc(A) ((A)+6) /* where the \&{blackpart} is found in a color node */
6234 @d grey_part_loc(A) (A) /* where the \&{greypart} is found in a color node */
6236 @d pair_node_size 4 /* the number of words in a pair node */
6237 @d transform_node_size 12 /* the number of words in a transform node */
6238 @d color_node_size 6 /* the number of words in a color node */
6239 @d cmykcolor_node_size 8 /* the number of words in a color node */
6242 small_number big_node_size[mp_pair_type+1];
6243 small_number sector0[mp_pair_type+1];
6244 small_number sector_offset[mp_black_part_sector+1];
6246 @ The |sector0| array gives for each big node type, |name_type| values
6247 for its first subfield; the |sector_offset| array gives for each
6248 |name_type| value, the offset from the first subfield in words;
6249 and the |big_node_size| array gives the size in words for each type of
6253 mp->big_node_size[mp_transform_type]=transform_node_size;
6254 mp->big_node_size[mp_pair_type]=pair_node_size;
6255 mp->big_node_size[mp_color_type]=color_node_size;
6256 mp->big_node_size[mp_cmykcolor_type]=cmykcolor_node_size;
6257 mp->sector0[mp_transform_type]=mp_x_part_sector;
6258 mp->sector0[mp_pair_type]=mp_x_part_sector;
6259 mp->sector0[mp_color_type]=mp_red_part_sector;
6260 mp->sector0[mp_cmykcolor_type]=mp_cyan_part_sector;
6261 for (k=mp_x_part_sector;k<= mp_yy_part_sector;k++ ) {
6262 mp->sector_offset[k]=2*(k-mp_x_part_sector);
6264 for (k=mp_red_part_sector;k<= mp_blue_part_sector ; k++) {
6265 mp->sector_offset[k]=2*(k-mp_red_part_sector);
6267 for (k=mp_cyan_part_sector;k<= mp_black_part_sector;k++ ) {
6268 mp->sector_offset[k]=2*(k-mp_cyan_part_sector);
6271 @ If |type(p)=mp_pair_type| or |mp_transform_type| and if |value(p)=null|, the
6272 procedure call |init_big_node(p)| will allocate a pair or transform node
6273 for~|p|. The individual parts of such nodes are initially of type
6277 void mp_init_big_node (MP mp,pointer p) {
6278 pointer q; /* the new node */
6279 small_number s; /* its size */
6280 s=mp->big_node_size[type(p)]; q=mp_get_node(mp, s);
6283 @<Make variable |q+s| newly independent@>;
6284 name_type(q+s)=halfp(s)+mp->sector0[type(p)];
6287 link(q)=p; value(p)=q;
6290 @ The |id_transform| function creates a capsule for the
6291 identity transformation.
6294 pointer mp_id_transform (MP mp) {
6295 pointer p,q,r; /* list manipulation registers */
6296 p=mp_get_node(mp, value_node_size); type(p)=mp_transform_type;
6297 name_type(p)=mp_capsule; value(p)=null; mp_init_big_node(mp, p); q=value(p);
6298 r=q+transform_node_size;
6301 type(r)=mp_known; value(r)=0;
6303 value(xx_part_loc(q))=unity;
6304 value(yy_part_loc(q))=unity;
6308 @ Tokens are of type |tag_token| when they first appear, but they point
6309 to |null| until they are first used as the root of a variable.
6310 The following subroutine establishes the root node on such grand occasions.
6313 void mp_new_root (MP mp,pointer x) {
6314 pointer p; /* the new node */
6315 p=mp_get_node(mp, value_node_size); type(p)=undefined; name_type(p)=mp_root;
6316 link(p)=x; equiv(x)=p;
6319 @ These conventions for variable representation are illustrated by the
6320 |print_variable_name| routine, which displays the full name of a
6321 variable given only a pointer to its two-word value packet.
6324 void mp_print_variable_name (MP mp, pointer p);
6327 void mp_print_variable_name (MP mp, pointer p) {
6328 pointer q; /* a token list that will name the variable's suffix */
6329 pointer r; /* temporary for token list creation */
6330 while ( name_type(p)>=mp_x_part_sector ) {
6331 @<Preface the output with a part specifier; |return| in the
6332 case of a capsule@>;
6335 while ( name_type(p)>mp_saved_root ) {
6336 @<Ascend one level, pushing a token onto list |q|
6337 and replacing |p| by its parent@>;
6339 r=mp_get_avail(mp); info(r)=link(p); link(r)=q;
6340 if ( name_type(p)==mp_saved_root ) mp_print(mp, "(SAVED)");
6342 mp_show_token_list(mp, r,null,el_gordo,mp->tally);
6343 mp_flush_token_list(mp, r);
6346 @ @<Ascend one level, pushing a token onto list |q|...@>=
6348 if ( name_type(p)==mp_subscr ) {
6349 r=mp_new_num_tok(mp, subscript(p));
6352 } while (name_type(p)!=mp_attr);
6353 } else if ( name_type(p)==mp_structured_root ) {
6354 p=link(p); goto FOUND;
6356 if ( name_type(p)!=mp_attr ) mp_confusion(mp, "var");
6357 @:this can't happen var}{\quad var@>
6358 r=mp_get_avail(mp); info(r)=attr_loc(p);
6365 @ @<Preface the output with a part specifier...@>=
6366 { switch (name_type(p)) {
6367 case mp_x_part_sector: mp_print_char(mp, 'x'); break;
6368 case mp_y_part_sector: mp_print_char(mp, 'y'); break;
6369 case mp_xx_part_sector: mp_print(mp, "xx"); break;
6370 case mp_xy_part_sector: mp_print(mp, "xy"); break;
6371 case mp_yx_part_sector: mp_print(mp, "yx"); break;
6372 case mp_yy_part_sector: mp_print(mp, "yy"); break;
6373 case mp_red_part_sector: mp_print(mp, "red"); break;
6374 case mp_green_part_sector: mp_print(mp, "green"); break;
6375 case mp_blue_part_sector: mp_print(mp, "blue"); break;
6376 case mp_cyan_part_sector: mp_print(mp, "cyan"); break;
6377 case mp_magenta_part_sector: mp_print(mp, "magenta"); break;
6378 case mp_yellow_part_sector: mp_print(mp, "yellow"); break;
6379 case mp_black_part_sector: mp_print(mp, "black"); break;
6380 case mp_grey_part_sector: mp_print(mp, "grey"); break;
6382 mp_print(mp, "%CAPSULE"); mp_print_int(mp, p-null); return;
6385 } /* there are no other cases */
6386 mp_print(mp, "part ");
6387 p=link(p-mp->sector_offset[name_type(p)]);
6390 @ The |interesting| function returns |true| if a given variable is not
6391 in a capsule, or if the user wants to trace capsules.
6394 boolean mp_interesting (MP mp,pointer p) {
6395 small_number t; /* a |name_type| */
6396 if ( mp->internal[mp_tracing_capsules]>0 ) {
6400 if ( t>=mp_x_part_sector ) if ( t!=mp_capsule )
6401 t=name_type(link(p-mp->sector_offset[t]));
6402 return (t!=mp_capsule);
6406 @ Now here is a subroutine that converts an unstructured type into an
6407 equivalent structured type, by inserting a |mp_structured| node that is
6408 capable of growing. This operation is done only when |name_type(p)=root|,
6409 |subscr|, or |attr|.
6411 The procedure returns a pointer to the new node that has taken node~|p|'s
6412 place in the structure. Node~|p| itself does not move, nor are its
6413 |value| or |type| fields changed in any way.
6416 pointer mp_new_structure (MP mp,pointer p) {
6417 pointer q,r=0; /* list manipulation registers */
6418 switch (name_type(p)) {
6420 q=link(p); r=mp_get_node(mp, value_node_size); equiv(q)=r;
6423 @<Link a new subscript node |r| in place of node |p|@>;
6426 @<Link a new attribute node |r| in place of node |p|@>;
6429 mp_confusion(mp, "struct");
6430 @:this can't happen struct}{\quad struct@>
6433 link(r)=link(p); type(r)=mp_structured; name_type(r)=name_type(p);
6434 attr_head(r)=p; name_type(p)=mp_structured_root;
6435 q=mp_get_node(mp, attr_node_size); link(p)=q; subscr_head(r)=q;
6436 parent(q)=r; type(q)=undefined; name_type(q)=mp_attr; link(q)=end_attr;
6437 attr_loc(q)=collective_subscript;
6441 @ @<Link a new subscript node |r| in place of node |p|@>=
6446 } while (name_type(q)!=mp_attr);
6447 q=parent(q); r=subscr_head_loc(q); /* |link(r)=subscr_head(q)| */
6451 r=mp_get_node(mp, subscr_node_size);
6452 link(q)=r; subscript(r)=subscript(p);
6455 @ If the attribute is |collective_subscript|, there are two pointers to
6456 node~|p|, so we must change both of them.
6458 @<Link a new attribute node |r| in place of node |p|@>=
6460 q=parent(p); r=attr_head(q);
6464 r=mp_get_node(mp, attr_node_size); link(q)=r;
6465 mp->mem[attr_loc_loc(r)]=mp->mem[attr_loc_loc(p)]; /* copy |attr_loc| and |parent| */
6466 if ( attr_loc(p)==collective_subscript ) {
6467 q=subscr_head_loc(parent(p));
6468 while ( link(q)!=p ) q=link(q);
6473 @ The |find_variable| routine is given a pointer~|t| to a nonempty token
6474 list of suffixes; it returns a pointer to the corresponding two-word
6475 value. For example, if |t| points to token \.x followed by a numeric
6476 token containing the value~7, |find_variable| finds where the value of
6477 \.{x7} is stored in memory. This may seem a simple task, and it
6478 usually is, except when \.{x7} has never been referenced before.
6479 Indeed, \.x may never have even been subscripted before; complexities
6480 arise with respect to updating the collective subscript information.
6482 If a macro type is detected anywhere along path~|t|, or if the first
6483 item on |t| isn't a |tag_token|, the value |null| is returned.
6484 Otherwise |p| will be a non-null pointer to a node such that
6485 |undefined<type(p)<mp_structured|.
6487 @d abort_find { return null; }
6490 pointer mp_find_variable (MP mp,pointer t) {
6491 pointer p,q,r,s; /* nodes in the ``value'' line */
6492 pointer pp,qq,rr,ss; /* nodes in the ``collective'' line */
6493 integer n; /* subscript or attribute */
6494 memory_word save_word; /* temporary storage for a word of |mem| */
6496 p=info(t); t=link(t);
6497 if ( (eq_type(p) % outer_tag) != tag_token ) abort_find;
6498 if ( equiv(p)==null ) mp_new_root(mp, p);
6501 @<Make sure that both nodes |p| and |pp| are of |mp_structured| type@>;
6502 if ( t<mp->hi_mem_min ) {
6503 @<Descend one level for the subscript |value(t)|@>
6505 @<Descend one level for the attribute |info(t)|@>;
6509 if ( type(pp)>=mp_structured ) {
6510 if ( type(pp)==mp_structured ) pp=attr_head(pp); else abort_find;
6512 if ( type(p)==mp_structured ) p=attr_head(p);
6513 if ( type(p)==undefined ) {
6514 if ( type(pp)==undefined ) { type(pp)=mp_numeric_type; value(pp)=null; };
6515 type(p)=type(pp); value(p)=null;
6520 @ Although |pp| and |p| begin together, they diverge when a subscript occurs;
6521 |pp|~stays in the collective line while |p|~goes through actual subscript
6524 @<Make sure that both nodes |p| and |pp|...@>=
6525 if ( type(pp)!=mp_structured ) {
6526 if ( type(pp)>mp_structured ) abort_find;
6527 ss=mp_new_structure(mp, pp);
6530 }; /* now |type(pp)=mp_structured| */
6531 if ( type(p)!=mp_structured ) /* it cannot be |>mp_structured| */
6532 p=mp_new_structure(mp, p) /* now |type(p)=mp_structured| */
6534 @ We want this part of the program to be reasonably fast, in case there are
6536 lots of subscripts at the same level of the data structure. Therefore
6537 we store an ``infinite'' value in the word that appears at the end of the
6538 subscript list, even though that word isn't part of a subscript node.
6540 @<Descend one level for the subscript |value(t)|@>=
6543 pp=link(attr_head(pp)); /* now |attr_loc(pp)=collective_subscript| */
6544 q=link(attr_head(p)); save_word=mp->mem[subscript_loc(q)];
6545 subscript(q)=el_gordo; s=subscr_head_loc(p); /* |link(s)=subscr_head(p)| */
6548 } while (n>subscript(s));
6549 if ( n==subscript(s) ) {
6552 p=mp_get_node(mp, subscr_node_size); link(r)=p; link(p)=s;
6553 subscript(p)=n; name_type(p)=mp_subscr; type(p)=undefined;
6555 mp->mem[subscript_loc(q)]=save_word;
6558 @ @<Descend one level for the attribute |info(t)|@>=
6564 } while (n>attr_loc(ss));
6565 if ( n<attr_loc(ss) ) {
6566 qq=mp_get_node(mp, attr_node_size); link(rr)=qq; link(qq)=ss;
6567 attr_loc(qq)=n; name_type(qq)=mp_attr; type(qq)=undefined;
6568 parent(qq)=pp; ss=qq;
6573 pp=ss; s=attr_head(p);
6576 } while (n>attr_loc(s));
6577 if ( n==attr_loc(s) ) {
6580 q=mp_get_node(mp, attr_node_size); link(r)=q; link(q)=s;
6581 attr_loc(q)=n; name_type(q)=mp_attr; type(q)=undefined;
6587 @ Variables lose their former values when they appear in a type declaration,
6588 or when they are defined to be macros or \&{let} equal to something else.
6589 A subroutine will be defined later that recycles the storage associated
6590 with any particular |type| or |value|; our goal now is to study a higher
6591 level process called |flush_variable|, which selectively frees parts of a
6594 This routine has some complexity because of examples such as
6595 `\hbox{\tt numeric x[]a[]b}'
6596 which recycles all variables of the form \.{x[i]a[j]b} (and no others), while
6597 `\hbox{\tt vardef x[]a[]=...}'
6598 discards all variables of the form \.{x[i]a[j]} followed by an arbitrary
6599 suffix, except for the collective node \.{x[]a[]} itself. The obvious way
6600 to handle such examples is to use recursion; so that's what we~do.
6603 Parameter |p| points to the root information of the variable;
6604 parameter |t| points to a list of one-word nodes that represent
6605 suffixes, with |info=collective_subscript| for subscripts.
6608 @<Declare subroutines for printing expressions@>
6609 @<Declare basic dependency-list subroutines@>
6610 @<Declare the recycling subroutines@>
6611 void mp_flush_cur_exp (MP mp,scaled v) ;
6612 @<Declare the procedure called |flush_below_variable|@>
6615 void mp_flush_variable (MP mp,pointer p, pointer t, boolean discard_suffixes) {
6616 pointer q,r; /* list manipulation */
6617 halfword n; /* attribute to match */
6619 if ( type(p)!=mp_structured ) return;
6620 n=info(t); t=link(t);
6621 if ( n==collective_subscript ) {
6622 r=subscr_head_loc(p); q=link(r); /* |q=subscr_head(p)| */
6623 while ( name_type(q)==mp_subscr ){
6624 mp_flush_variable(mp, q,t,discard_suffixes);
6626 if ( type(q)==mp_structured ) r=q;
6627 else { link(r)=link(q); mp_free_node(mp, q,subscr_node_size); }
6637 } while (attr_loc(p)<n);
6638 if ( attr_loc(p)!=n ) return;
6640 if ( discard_suffixes ) {
6641 mp_flush_below_variable(mp, p);
6643 if ( type(p)==mp_structured ) p=attr_head(p);
6644 mp_recycle_value(mp, p);
6648 @ The next procedure is simpler; it wipes out everything but |p| itself,
6649 which becomes undefined.
6651 @<Declare the procedure called |flush_below_variable|@>=
6652 void mp_flush_below_variable (MP mp, pointer p);
6655 void mp_flush_below_variable (MP mp,pointer p) {
6656 pointer q,r; /* list manipulation registers */
6657 if ( type(p)!=mp_structured ) {
6658 mp_recycle_value(mp, p); /* this sets |type(p)=undefined| */
6661 while ( name_type(q)==mp_subscr ) {
6662 mp_flush_below_variable(mp, q); r=q; q=link(q);
6663 mp_free_node(mp, r,subscr_node_size);
6665 r=attr_head(p); q=link(r); mp_recycle_value(mp, r);
6666 if ( name_type(p)<=mp_saved_root ) mp_free_node(mp, r,value_node_size);
6667 else mp_free_node(mp, r,subscr_node_size);
6668 /* we assume that |subscr_node_size=attr_node_size| */
6670 mp_flush_below_variable(mp, q); r=q; q=link(q); mp_free_node(mp, r,attr_node_size);
6671 } while (q!=end_attr);
6676 @ Just before assigning a new value to a variable, we will recycle the
6677 old value and make the old value undefined. The |und_type| routine
6678 determines what type of undefined value should be given, based on
6679 the current type before recycling.
6682 small_number mp_und_type (MP mp,pointer p) {
6684 case undefined: case mp_vacuous:
6686 case mp_boolean_type: case mp_unknown_boolean:
6687 return mp_unknown_boolean;
6688 case mp_string_type: case mp_unknown_string:
6689 return mp_unknown_string;
6690 case mp_pen_type: case mp_unknown_pen:
6691 return mp_unknown_pen;
6692 case mp_path_type: case mp_unknown_path:
6693 return mp_unknown_path;
6694 case mp_picture_type: case mp_unknown_picture:
6695 return mp_unknown_picture;
6696 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
6697 case mp_pair_type: case mp_numeric_type:
6699 case mp_known: case mp_dependent: case mp_proto_dependent: case mp_independent:
6700 return mp_numeric_type;
6701 } /* there are no other cases */
6705 @ The |clear_symbol| routine is used when we want to redefine the equivalent
6706 of a symbolic token. It must remove any variable structure or macro
6707 definition that is currently attached to that symbol. If the |saving|
6708 parameter is true, a subsidiary structure is saved instead of destroyed.
6711 void mp_clear_symbol (MP mp,pointer p, boolean saving) {
6712 pointer q; /* |equiv(p)| */
6714 switch (eq_type(p) % outer_tag) {
6716 case secondary_primary_macro:
6717 case tertiary_secondary_macro:
6718 case expression_tertiary_macro:
6719 if ( ! saving ) mp_delete_mac_ref(mp, q);
6724 name_type(q)=mp_saved_root;
6726 mp_flush_below_variable(mp, q); mp_free_node(mp,q,value_node_size);
6733 mp->eqtb[p]=mp->eqtb[frozen_undefined];
6736 @* \[16] Saving and restoring equivalents.
6737 The nested structure given by \&{begingroup} and \&{endgroup}
6738 allows |eqtb| entries to be saved and restored, so that temporary changes
6739 can be made without difficulty. When the user requests a current value to
6740 be saved, \MP\ puts that value into its ``save stack.'' An appearance of
6741 \&{endgroup} ultimately causes the old values to be removed from the save
6742 stack and put back in their former places.
6744 The save stack is a linked list containing three kinds of entries,
6745 distinguished by their |info| fields. If |p| points to a saved item,
6749 |info(p)=0| stands for a group boundary; each \&{begingroup} contributes
6750 such an item to the save stack and each \&{endgroup} cuts back the stack
6751 until the most recent such entry has been removed.
6754 |info(p)=q|, where |1<=q<=hash_end|, means that |mem[p+1]| holds the former
6755 contents of |eqtb[q]|. Such save stack entries are generated by \&{save}
6756 commands or suitable \&{interim} commands.
6759 |info(p)=hash_end+q|, where |q>0|, means that |value(p)| is a |scaled|
6760 integer to be restored to internal parameter number~|q|. Such entries
6761 are generated by \&{interim} commands.
6764 The global variable |save_ptr| points to the top item on the save stack.
6766 @d save_node_size 2 /* number of words per non-boundary save-stack node */
6767 @d saved_equiv(A) mp->mem[(A)+1].hh /* where an |eqtb| entry gets saved */
6768 @d save_boundary_item(A) { (A)=mp_get_avail(mp); info((A))=0;
6769 link((A))=mp->save_ptr; mp->save_ptr=(A);
6773 pointer save_ptr; /* the most recently saved item */
6775 @ @<Set init...@>=mp->save_ptr=null;
6777 @ The |save_variable| routine is given a hash address |q|; it salts this
6778 address in the save stack, together with its current equivalent,
6779 then makes token~|q| behave as though it were brand new.
6781 Nothing is stacked when |save_ptr=null|, however; there's no way to remove
6782 things from the stack when the program is not inside a group, so there's
6783 no point in wasting the space.
6785 @c void mp_save_variable (MP mp,pointer q) {
6786 pointer p; /* temporary register */
6787 if ( mp->save_ptr!=null ){
6788 p=mp_get_node(mp, save_node_size); info(p)=q; link(p)=mp->save_ptr;
6789 saved_equiv(p)=mp->eqtb[q]; mp->save_ptr=p;
6791 mp_clear_symbol(mp, q,(mp->save_ptr!=null));
6794 @ Similarly, |save_internal| is given the location |q| of an internal
6795 quantity like |mp_tracing_pens|. It creates a save stack entry of the
6798 @c void mp_save_internal (MP mp,halfword q) {
6799 pointer p; /* new item for the save stack */
6800 if ( mp->save_ptr!=null ){
6801 p=mp_get_node(mp, save_node_size); info(p)=hash_end+q;
6802 link(p)=mp->save_ptr; value(p)=mp->internal[q]; mp->save_ptr=p;
6806 @ At the end of a group, the |unsave| routine restores all of the saved
6807 equivalents in reverse order. This routine will be called only when there
6808 is at least one boundary item on the save stack.
6811 void mp_unsave (MP mp) {
6812 pointer q; /* index to saved item */
6813 pointer p; /* temporary register */
6814 while ( info(mp->save_ptr)!=0 ) {
6815 q=info(mp->save_ptr);
6817 if ( mp->internal[mp_tracing_restores]>0 ) {
6818 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6819 mp_print(mp, mp->int_name[q-(hash_end)]); mp_print_char(mp, '=');
6820 mp_print_scaled(mp, value(mp->save_ptr)); mp_print_char(mp, '}');
6821 mp_end_diagnostic(mp, false);
6823 mp->internal[q-(hash_end)]=value(mp->save_ptr);
6825 if ( mp->internal[mp_tracing_restores]>0 ) {
6826 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6827 mp_print_text(q); mp_print_char(mp, '}');
6828 mp_end_diagnostic(mp, false);
6830 mp_clear_symbol(mp, q,false);
6831 mp->eqtb[q]=saved_equiv(mp->save_ptr);
6832 if ( eq_type(q) % outer_tag==tag_token ) {
6834 if ( p!=null ) name_type(p)=mp_root;
6837 p=link(mp->save_ptr);
6838 mp_free_node(mp, mp->save_ptr,save_node_size); mp->save_ptr=p;
6840 p=link(mp->save_ptr); free_avail(mp->save_ptr); mp->save_ptr=p;
6843 @* \[17] Data structures for paths.
6844 When a \MP\ user specifies a path, \MP\ will create a list of knots
6845 and control points for the associated cubic spline curves. If the
6846 knots are $z_0$, $z_1$, \dots, $z_n$, there are control points
6847 $z_k^+$ and $z_{k+1}^-$ such that the cubic splines between knots
6848 $z_k$ and $z_{k+1}$ are defined by B\'ezier's formula
6849 @:Bezier}{B\'ezier, Pierre Etienne@>
6850 $$\eqalign{z(t)&=B(z_k,z_k^+,z_{k+1}^-,z_{k+1};t)\cr
6851 &=(1-t)^3z_k+3(1-t)^2tz_k^++3(1-t)t^2z_{k+1}^-+t^3z_{k+1}\cr}$$
6854 There is a 8-word node for each knot $z_k$, containing one word of
6855 control information and six words for the |x| and |y| coordinates of
6856 $z_k^-$ and $z_k$ and~$z_k^+$. The control information appears in the
6857 |left_type| and |right_type| fields, which each occupy a quarter of
6858 the first word in the node; they specify properties of the curve as it
6859 enters and leaves the knot. There's also a halfword |link| field,
6860 which points to the following knot, and a final supplementary word (of
6861 which only a quarter is used).
6863 If the path is a closed contour, knots 0 and |n| are identical;
6864 i.e., the |link| in knot |n-1| points to knot~0. But if the path
6865 is not closed, the |left_type| of knot~0 and the |right_type| of knot~|n|
6866 are equal to |endpoint|. In the latter case the |link| in knot~|n| points
6867 to knot~0, and the control points $z_0^-$ and $z_n^+$ are not used.
6869 @d left_type(A) mp->mem[(A)].hh.b0 /* characterizes the path entering this knot */
6870 @d right_type(A) mp->mem[(A)].hh.b1 /* characterizes the path leaving this knot */
6871 @d x_coord(A) mp->mem[(A)+1].sc /* the |x| coordinate of this knot */
6872 @d y_coord(A) mp->mem[(A)+2].sc /* the |y| coordinate of this knot */
6873 @d left_x(A) mp->mem[(A)+3].sc /* the |x| coordinate of previous control point */
6874 @d left_y(A) mp->mem[(A)+4].sc /* the |y| coordinate of previous control point */
6875 @d right_x(A) mp->mem[(A)+5].sc /* the |x| coordinate of next control point */
6876 @d right_y(A) mp->mem[(A)+6].sc /* the |y| coordinate of next control point */
6877 @d x_loc(A) ((A)+1) /* where the |x| coordinate is stored in a knot */
6878 @d y_loc(A) ((A)+2) /* where the |y| coordinate is stored in a knot */
6879 @d knot_coord(A) mp->mem[(A)].sc /* |x| or |y| coordinate given |x_loc| or |y_loc| */
6880 @d left_coord(A) mp->mem[(A)+2].sc
6881 /* coordinate of previous control point given |x_loc| or |y_loc| */
6882 @d right_coord(A) mp->mem[(A)+4].sc
6883 /* coordinate of next control point given |x_loc| or |y_loc| */
6884 @d knot_node_size 8 /* number of words in a knot node */
6888 mp_endpoint=0, /* |left_type| at path beginning and |right_type| at path end */
6889 mp_explicit, /* |left_type| or |right_type| when control points are known */
6890 mp_given, /* |left_type| or |right_type| when a direction is given */
6891 mp_curl, /* |left_type| or |right_type| when a curl is desired */
6892 mp_open, /* |left_type| or |right_type| when \MP\ should choose the direction */
6896 @ Before the B\'ezier control points have been calculated, the memory
6897 space they will ultimately occupy is taken up by information that can be
6898 used to compute them. There are four cases:
6901 \textindent{$\bullet$} If |right_type=mp_open|, the curve should leave
6902 the knot in the same direction it entered; \MP\ will figure out a
6906 \textindent{$\bullet$} If |right_type=mp_curl|, the curve should leave the
6907 knot in a direction depending on the angle at which it enters the next
6908 knot and on the curl parameter stored in |right_curl|.
6911 \textindent{$\bullet$} If |right_type=mp_given|, the curve should leave the
6912 knot in a nonzero direction stored as an |angle| in |right_given|.
6915 \textindent{$\bullet$} If |right_type=mp_explicit|, the B\'ezier control
6916 point for leaving this knot has already been computed; it is in the
6917 |right_x| and |right_y| fields.
6920 The rules for |left_type| are similar, but they refer to the curve entering
6921 the knot, and to \\{left} fields instead of \\{right} fields.
6923 Non-|explicit| control points will be chosen based on ``tension'' parameters
6924 in the |left_tension| and |right_tension| fields. The
6925 `\&{atleast}' option is represented by negative tension values.
6926 @:at_least_}{\&{atleast} primitive@>
6928 For example, the \MP\ path specification
6929 $$\.{z0..z1..tension atleast 1..\{curl 2\}z2..z3\{-1,-2\}..tension
6931 where \.p is the path `\.{z4..controls z45 and z54..z5}', will be represented
6933 \def\lodash{\hbox to 1.1em{\thinspace\hrulefill\thinspace}}
6934 $$\vbox{\halign{#\hfil&&\qquad#\hfil\cr
6935 |left_type|&\\{left} info&|x_coord,y_coord|&|right_type|&\\{right} info\cr
6937 |endpoint|&\lodash$,\,$\lodash&$x_0,y_0$&|curl|&$1.0,1.0$\cr
6938 |open|&\lodash$,1.0$&$x_1,y_1$&|open|&\lodash$,-1.0$\cr
6939 |curl|&$2.0,-1.0$&$x_2,y_2$&|curl|&$2.0,1.0$\cr
6940 |given|&$d,1.0$&$x_3,y_3$&|given|&$d,3.0$\cr
6941 |open|&\lodash$,4.0$&$x_4,y_4$&|explicit|&$x_{45},y_{45}$\cr
6942 |explicit|&$x_{54},y_{54}$&$x_5,y_5$&|endpoint|&\lodash$,\,$\lodash\cr}}$$
6943 Here |d| is the |angle| obtained by calling |n_arg(-unity,-two)|.
6944 Of course, this example is more complicated than anything a normal user
6947 These types must satisfy certain restrictions because of the form of \MP's
6949 (i)~|open| type never appears in the same node together with |endpoint|,
6951 (ii)~The |right_type| of a node is |explicit| if and only if the
6952 |left_type| of the following node is |explicit|.
6953 (iii)~|endpoint| types occur only at the ends, as mentioned above.
6955 @d left_curl left_x /* curl information when entering this knot */
6956 @d left_given left_x /* given direction when entering this knot */
6957 @d left_tension left_y /* tension information when entering this knot */
6958 @d right_curl right_x /* curl information when leaving this knot */
6959 @d right_given right_x /* given direction when leaving this knot */
6960 @d right_tension right_y /* tension information when leaving this knot */
6962 @ Knots can be user-supplied, or they can be created by program code,
6963 like the |split_cubic| function, or |copy_path|. The distinction is
6964 needed for the cleanup routine that runs after |split_cubic|, because
6965 it should only delete knots it has previously inserted, and never
6966 anything that was user-supplied. In order to be able to differentiate
6967 one knot from another, we will set |originator(p):=mp_metapost_user| when
6968 it appeared in the actual metapost program, and
6969 |originator(p):=mp_program_code| in all other cases.
6971 @d originator(A) mp->mem[(A)+7].hh.b0 /* the creator of this knot */
6975 mp_program_code=0, /* not created by a user */
6976 mp_metapost_user, /* created by a user */
6979 @ Here is a routine that prints a given knot list
6980 in symbolic form. It illustrates the conventions discussed above,
6981 and checks for anomalies that might arise while \MP\ is being debugged.
6983 @<Declare subroutines for printing expressions@>=
6984 void mp_pr_path (MP mp,pointer h);
6987 void mp_pr_path (MP mp,pointer h) {
6988 pointer p,q; /* for list traversal */
6992 if ( (p==null)||(q==null) ) {
6993 mp_print_nl(mp, "???"); return; /* this won't happen */
6996 @<Print information for adjacent knots |p| and |q|@>;
6999 if ( (p!=h)||(left_type(h)!=mp_endpoint) ) {
7000 @<Print two dots, followed by |given| or |curl| if present@>;
7003 if ( left_type(h)!=mp_endpoint )
7004 mp_print(mp, "cycle");
7007 @ @<Print information for adjacent knots...@>=
7008 mp_print_two(mp, x_coord(p),y_coord(p));
7009 switch (right_type(p)) {
7011 if ( left_type(p)==mp_open ) mp_print(mp, "{open?}"); /* can't happen */
7013 if ( (left_type(q)!=mp_endpoint)||(q!=h) ) q=null; /* force an error */
7017 @<Print control points between |p| and |q|, then |goto done1|@>;
7020 @<Print information for a curve that begins |open|@>;
7024 @<Print information for a curve that begins |curl| or |given|@>;
7027 mp_print(mp, "???"); /* can't happen */
7031 if ( left_type(q)<=mp_explicit ) {
7032 mp_print(mp, "..control?"); /* can't happen */
7034 } else if ( (right_tension(p)!=unity)||(left_tension(q)!=unity) ) {
7035 @<Print tension between |p| and |q|@>;
7038 @ Since |n_sin_cos| produces |fraction| results, which we will print as if they
7039 were |scaled|, the magnitude of a |given| direction vector will be~4096.
7041 @<Print two dots...@>=
7043 mp_print_nl(mp, " ..");
7044 if ( left_type(p)==mp_given ) {
7045 mp_n_sin_cos(mp, left_given(p)); mp_print_char(mp, '{');
7046 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
7047 mp_print_scaled(mp, mp->n_sin); mp_print_char(mp, '}');
7048 } else if ( left_type(p)==mp_curl ){
7049 mp_print(mp, "{curl ");
7050 mp_print_scaled(mp, left_curl(p)); mp_print_char(mp, '}');
7054 @ @<Print tension between |p| and |q|@>=
7056 mp_print(mp, "..tension ");
7057 if ( right_tension(p)<0 ) mp_print(mp, "atleast");
7058 mp_print_scaled(mp, abs(right_tension(p)));
7059 if ( right_tension(p)!=left_tension(q) ){
7060 mp_print(mp, " and ");
7061 if ( left_tension(q)<0 ) mp_print(mp, "atleast");
7062 mp_print_scaled(mp, abs(left_tension(q)));
7066 @ @<Print control points between |p| and |q|, then |goto done1|@>=
7068 mp_print(mp, "..controls ");
7069 mp_print_two(mp, right_x(p),right_y(p));
7070 mp_print(mp, " and ");
7071 if ( left_type(q)!=mp_explicit ) {
7072 mp_print(mp, "??"); /* can't happen */
7075 mp_print_two(mp, left_x(q),left_y(q));
7080 @ @<Print information for a curve that begins |open|@>=
7081 if ( (left_type(p)!=mp_explicit)&&(left_type(p)!=mp_open) ) {
7082 mp_print(mp, "{open?}"); /* can't happen */
7086 @ A curl of 1 is shown explicitly, so that the user sees clearly that
7087 \MP's default curl is present.
7089 The code here uses the fact that |left_curl==left_given| and
7090 |right_curl==right_given|.
7092 @<Print information for a curve that begins |curl|...@>=
7094 if ( left_type(p)==mp_open )
7095 mp_print(mp, "??"); /* can't happen */
7097 if ( right_type(p)==mp_curl ) {
7098 mp_print(mp, "{curl "); mp_print_scaled(mp, right_curl(p));
7100 mp_n_sin_cos(mp, right_given(p)); mp_print_char(mp, '{');
7101 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
7102 mp_print_scaled(mp, mp->n_sin);
7104 mp_print_char(mp, '}');
7107 @ It is convenient to have another version of |pr_path| that prints the path
7108 as a diagnostic message.
7110 @<Declare subroutines for printing expressions@>=
7111 void mp_print_path (MP mp,pointer h, char *s, boolean nuline) {
7112 mp_print_diagnostic(mp, "Path", s, nuline); mp_print_ln(mp);
7115 mp_end_diagnostic(mp, true);
7118 @ If we want to duplicate a knot node, we can say |copy_knot|:
7121 pointer mp_copy_knot (MP mp,pointer p) {
7122 pointer q; /* the copy */
7123 int k; /* runs through the words of a knot node */
7124 q=mp_get_node(mp, knot_node_size);
7125 for (k=0;k<knot_node_size;k++) {
7126 mp->mem[q+k]=mp->mem[p+k];
7128 originator(q)=originator(p);
7132 @ The |copy_path| routine makes a clone of a given path.
7135 pointer mp_copy_path (MP mp, pointer p) {
7136 pointer q,pp,qq; /* for list manipulation */
7137 q=mp_copy_knot(mp, p);
7140 link(qq)=mp_copy_knot(mp, pp);
7149 @ Just before |ship_out|, knot lists are exported for printing.
7151 The |gr_XXXX| macros are defined in |mppsout.h|.
7154 struct mp_knot *mp_export_knot (MP mp,pointer p) {
7155 struct mp_knot *q; /* the copy */
7158 q = mp_xmalloc(mp, 1, sizeof (struct mp_knot));
7159 memset(q,0,sizeof (struct mp_knot));
7160 gr_left_type(q) = left_type(p);
7161 gr_right_type(q) = right_type(p);
7162 gr_x_coord(q) = x_coord(p);
7163 gr_y_coord(q) = y_coord(p);
7164 gr_left_x(q) = left_x(p);
7165 gr_left_y(q) = left_y(p);
7166 gr_right_x(q) = right_x(p);
7167 gr_right_y(q) = right_y(p);
7168 gr_originator(q) = originator(p);
7172 @ The |export_knot_list| routine therefore also makes a clone
7176 struct mp_knot *mp_export_knot_list (MP mp, pointer p) {
7177 struct mp_knot *q, *qq; /* for list manipulation */
7178 pointer pp; /* for list manipulation */
7181 q=mp_export_knot(mp, p);
7184 gr_next_knot(qq)=mp_export_knot(mp, pp);
7185 qq=gr_next_knot(qq);
7193 @ Similarly, there's a way to copy the {\sl reverse\/} of a path. This procedure
7194 returns a pointer to the first node of the copy, if the path is a cycle,
7195 but to the final node of a non-cyclic copy. The global
7196 variable |path_tail| will point to the final node of the original path;
7197 this trick makes it easier to implement `\&{doublepath}'.
7199 All node types are assumed to be |endpoint| or |explicit| only.
7202 pointer mp_htap_ypoc (MP mp,pointer p) {
7203 pointer q,pp,qq,rr; /* for list manipulation */
7204 q=mp_get_node(mp, knot_node_size); /* this will correspond to |p| */
7207 right_type(qq)=left_type(pp); left_type(qq)=right_type(pp);
7208 x_coord(qq)=x_coord(pp); y_coord(qq)=y_coord(pp);
7209 right_x(qq)=left_x(pp); right_y(qq)=left_y(pp);
7210 left_x(qq)=right_x(pp); left_y(qq)=right_y(pp);
7211 originator(qq)=originator(pp);
7212 if ( link(pp)==p ) {
7213 link(q)=qq; mp->path_tail=pp; return q;
7215 rr=mp_get_node(mp, knot_node_size); link(rr)=qq; qq=rr; pp=link(pp);
7220 pointer path_tail; /* the node that links to the beginning of a path */
7222 @ When a cyclic list of knot nodes is no longer needed, it can be recycled by
7223 calling the following subroutine.
7225 @<Declare the recycling subroutines@>=
7226 void mp_toss_knot_list (MP mp,pointer p) ;
7229 void mp_toss_knot_list (MP mp,pointer p) {
7230 pointer q; /* the node being freed */
7231 pointer r; /* the next node */
7235 mp_free_node(mp, q,knot_node_size); q=r;
7239 @* \[18] Choosing control points.
7240 Now we must actually delve into one of \MP's more difficult routines,
7241 the |make_choices| procedure that chooses angles and control points for
7242 the splines of a curve when the user has not specified them explicitly.
7243 The parameter to |make_choices| points to a list of knots and
7244 path information, as described above.
7246 A path decomposes into independent segments at ``breakpoint'' knots,
7247 which are knots whose left and right angles are both prespecified in
7248 some way (i.e., their |left_type| and |right_type| aren't both open).
7251 @<Declare the procedure called |solve_choices|@>;
7252 void mp_make_choices (MP mp,pointer knots) {
7253 pointer h; /* the first breakpoint */
7254 pointer p,q; /* consecutive breakpoints being processed */
7255 @<Other local variables for |make_choices|@>;
7256 check_arith; /* make sure that |arith_error=false| */
7257 if ( mp->internal[mp_tracing_choices]>0 )
7258 mp_print_path(mp, knots,", before choices",true);
7259 @<If consecutive knots are equal, join them explicitly@>;
7260 @<Find the first breakpoint, |h|, on the path;
7261 insert an artificial breakpoint if the path is an unbroken cycle@>;
7264 @<Fill in the control points between |p| and the next breakpoint,
7265 then advance |p| to that breakpoint@>;
7267 if ( mp->internal[mp_tracing_choices]>0 )
7268 mp_print_path(mp, knots,", after choices",true);
7269 if ( mp->arith_error ) {
7270 @<Report an unexpected problem during the choice-making@>;
7274 @ @<Report an unexpected problem during the choice...@>=
7276 print_err("Some number got too big");
7277 @.Some number got too big@>
7278 help2("The path that I just computed is out of range.")
7279 ("So it will probably look funny. Proceed, for a laugh.");
7280 mp_put_get_error(mp); mp->arith_error=false;
7283 @ Two knots in a row with the same coordinates will always be joined
7284 by an explicit ``curve'' whose control points are identical with the
7287 @<If consecutive knots are equal, join them explicitly@>=
7291 if ( x_coord(p)==x_coord(q) && y_coord(p)==y_coord(q) && right_type(p)>mp_explicit ) {
7292 right_type(p)=mp_explicit;
7293 if ( left_type(p)==mp_open ) {
7294 left_type(p)=mp_curl; left_curl(p)=unity;
7296 left_type(q)=mp_explicit;
7297 if ( right_type(q)==mp_open ) {
7298 right_type(q)=mp_curl; right_curl(q)=unity;
7300 right_x(p)=x_coord(p); left_x(q)=x_coord(p);
7301 right_y(p)=y_coord(p); left_y(q)=y_coord(p);
7306 @ If there are no breakpoints, it is necessary to compute the direction
7307 angles around an entire cycle. In this case the |left_type| of the first
7308 node is temporarily changed to |end_cycle|.
7310 @<Find the first breakpoint, |h|, on the path...@>=
7313 if ( left_type(h)!=mp_open ) break;
7314 if ( right_type(h)!=mp_open ) break;
7317 left_type(h)=mp_end_cycle; break;
7321 @ If |right_type(p)<given| and |q=link(p)|, we must have
7322 |right_type(p)=left_type(q)=mp_explicit| or |endpoint|.
7324 @<Fill in the control points between |p| and the next breakpoint...@>=
7326 if ( right_type(p)>=mp_given ) {
7327 while ( (left_type(q)==mp_open)&&(right_type(q)==mp_open) ) q=link(q);
7328 @<Fill in the control information between
7329 consecutive breakpoints |p| and |q|@>;
7330 } else if ( right_type(p)==mp_endpoint ) {
7331 @<Give reasonable values for the unused control points between |p| and~|q|@>;
7335 @ This step makes it possible to transform an explicitly computed path without
7336 checking the |left_type| and |right_type| fields.
7338 @<Give reasonable values for the unused control points between |p| and~|q|@>=
7340 right_x(p)=x_coord(p); right_y(p)=y_coord(p);
7341 left_x(q)=x_coord(q); left_y(q)=y_coord(q);
7344 @ Before we can go further into the way choices are made, we need to
7345 consider the underlying theory. The basic ideas implemented in |make_choices|
7346 are due to John Hobby, who introduced the notion of ``mock curvature''
7347 @^Hobby, John Douglas@>
7348 at a knot. Angles are chosen so that they preserve mock curvature when
7349 a knot is passed, and this has been found to produce excellent results.
7351 It is convenient to introduce some notations that simplify the necessary
7352 formulas. Let $d_{k,k+1}=\vert z\k-z_k\vert$ be the (nonzero) distance
7353 between knots |k| and |k+1|; and let
7354 $${z\k-z_k\over z_k-z_{k-1}}={d_{k,k+1}\over d_{k-1,k}}e^{i\psi_k}$$
7355 so that a polygonal line from $z_{k-1}$ to $z_k$ to $z\k$ turns left
7356 through an angle of~$\psi_k$. We assume that $\vert\psi_k\vert\L180^\circ$.
7357 The control points for the spline from $z_k$ to $z\k$ will be denoted by
7358 $$\eqalign{z_k^+&=z_k+
7359 \textstyle{1\over3}\rho_k e^{i\theta_k}(z\k-z_k),\cr
7361 \textstyle{1\over3}\sigma\k e^{-i\phi\k}(z\k-z_k),\cr}$$
7362 where $\rho_k$ and $\sigma\k$ are nonnegative ``velocity ratios'' at the
7363 beginning and end of the curve, while $\theta_k$ and $\phi\k$ are the
7364 corresponding ``offset angles.'' These angles satisfy the condition
7365 $$\theta_k+\phi_k+\psi_k=0,\eqno(*)$$
7366 whenever the curve leaves an intermediate knot~|k| in the direction that
7369 @ Let $\alpha_k$ and $\beta\k$ be the reciprocals of the ``tension'' of
7370 the curve at its beginning and ending points. This means that
7371 $\rho_k=\alpha_k f(\theta_k,\phi\k)$ and $\sigma\k=\beta\k f(\phi\k,\theta_k)$,
7372 where $f(\theta,\phi)$ is \MP's standard velocity function defined in
7373 the |velocity| subroutine. The cubic spline $B(z_k^{\phantom+},z_k^+,
7374 z\k^-,z\k^{\phantom+};t)$
7377 $${2\sigma\k\sin(\theta_k+\phi\k)-6\sin\theta_k\over\rho_k^2d_{k,k+1}}
7378 \qquad{\rm and}\qquad
7379 {2\rho_k\sin(\theta_k+\phi\k)-6\sin\phi\k\over\sigma\k^2d_{k,k+1}}$$
7380 at |t=0| and |t=1|, respectively. The mock curvature is the linear
7382 approximation to this true curvature that arises in the limit for
7383 small $\theta_k$ and~$\phi\k$, if second-order terms are discarded.
7384 The standard velocity function satisfies
7385 $$f(\theta,\phi)=1+O(\theta^2+\theta\phi+\phi^2);$$
7386 hence the mock curvatures are respectively
7387 $${2\beta\k(\theta_k+\phi\k)-6\theta_k\over\alpha_k^2d_{k,k+1}}
7388 \qquad{\rm and}\qquad
7389 {2\alpha_k(\theta_k+\phi\k)-6\phi\k\over\beta\k^2d_{k,k+1}}.\eqno(**)$$
7391 @ The turning angles $\psi_k$ are given, and equation $(*)$ above
7392 determines $\phi_k$ when $\theta_k$ is known, so the task of
7393 angle selection is essentially to choose appropriate values for each
7394 $\theta_k$. When equation~$(*)$ is used to eliminate $\phi$~variables
7395 from $(**)$, we obtain a system of linear equations of the form
7396 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7398 $$A_k={\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7399 \qquad B_k={3-\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7400 \qquad C_k={3-\beta\k\over\alpha_k^2d_{k,k+1}},
7401 \qquad D_k={\beta\k\over\alpha_k^2d_{k,k+1}}.$$
7402 The tensions are always $3\over4$ or more, hence each $\alpha$ and~$\beta$
7403 will be at most $4\over3$. It follows that $B_k\G{5\over4}A_k$ and
7404 $C_k\G{5\over4}D_k$; hence the equations are diagonally dominant;
7405 hence they have a unique solution. Moreover, in most cases the tensions
7406 are equal to~1, so that $B_k=2A_k$ and $C_k=2D_k$. This makes the
7407 solution numerically stable, and there is an exponential damping
7408 effect: The data at knot $k\pm j$ affects the angle at knot~$k$ by
7409 a factor of~$O(2^{-j})$.
7411 @ However, we still must consider the angles at the starting and ending
7412 knots of a non-cyclic path. These angles might be given explicitly, or
7413 they might be specified implicitly in terms of an amount of ``curl.''
7415 Let's assume that angles need to be determined for a non-cyclic path
7416 starting at $z_0$ and ending at~$z_n$. Then equations of the form
7417 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta_{k+1}=R_k$$
7418 have been given for $0<k<n$, and it will be convenient to introduce
7419 equations of the same form for $k=0$ and $k=n$, where
7420 $$A_0=B_0=C_n=D_n=0.$$
7421 If $\theta_0$ is supposed to have a given value $E_0$, we simply
7422 define $C_0=0$, $D_0=0$, and $R_0=E_0$. Otherwise a curl
7423 parameter, $\gamma_0$, has been specified at~$z_0$; this means
7424 that the mock curvature at $z_0$ should be $\gamma_0$ times the
7425 mock curvature at $z_1$; i.e.,
7426 $${2\beta_1(\theta_0+\phi_1)-6\theta_0\over\alpha_0^2d_{01}}
7427 =\gamma_0{2\alpha_0(\theta_0+\phi_1)-6\phi_1\over\beta_1^2d_{01}}.$$
7428 This equation simplifies to
7429 $$(\alpha_0\chi_0+3-\beta_1)\theta_0+
7430 \bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\theta_1=
7431 -\bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\psi_1,$$
7432 where $\chi_0=\alpha_0^2\gamma_0/\beta_1^2$; so we can set $C_0=
7433 \chi_0\alpha_0+3-\beta_1$, $D_0=(3-\alpha_0)\chi_0+\beta_1$, $R_0=-D_0\psi_1$.
7434 It can be shown that $C_0>0$ and $C_0B_1-A_1D_0>0$ when $\gamma_0\G0$,
7435 hence the linear equations remain nonsingular.
7437 Similar considerations apply at the right end, when the final angle $\phi_n$
7438 may or may not need to be determined. It is convenient to let $\psi_n=0$,
7439 hence $\theta_n=-\phi_n$. We either have an explicit equation $\theta_n=E_n$,
7441 $$\bigl((3-\beta_n)\chi_n+\alpha_{n-1}\bigr)\theta_{n-1}+
7442 (\beta_n\chi_n+3-\alpha_{n-1})\theta_n=0,\qquad
7443 \chi_n={\beta_n^2\gamma_n\over\alpha_{n-1}^2}.$$
7445 When |make_choices| chooses angles, it must compute the coefficients of
7446 these linear equations, then solve the equations. To compute the coefficients,
7447 it is necessary to compute arctangents of the given turning angles~$\psi_k$.
7448 When the equations are solved, the chosen directions $\theta_k$ are put
7449 back into the form of control points by essentially computing sines and
7452 @ OK, we are ready to make the hard choices of |make_choices|.
7453 Most of the work is relegated to an auxiliary procedure
7454 called |solve_choices|, which has been introduced to keep
7455 |make_choices| from being extremely long.
7457 @<Fill in the control information between...@>=
7458 @<Calculate the turning angles $\psi_k$ and the distances $d_{k,k+1}$;
7459 set $n$ to the length of the path@>;
7460 @<Remove |open| types at the breakpoints@>;
7461 mp_solve_choices(mp, p,q,n)
7463 @ It's convenient to precompute quantities that will be needed several
7464 times later. The values of |delta_x[k]| and |delta_y[k]| will be the
7465 coordinates of $z\k-z_k$, and the magnitude of this vector will be
7466 |delta[k]=@t$d_{k,k+1}$@>|. The path angle $\psi_k$ between $z_k-z_{k-1}$
7467 and $z\k-z_k$ will be stored in |psi[k]|.
7470 int path_size; /* maximum number of knots between breakpoints of a path */
7473 scaled *delta; /* knot differences */
7474 angle *psi; /* turning angles */
7476 @ @<Allocate or initialize ...@>=
7482 @ @<Dealloc variables@>=
7488 @ @<Other local variables for |make_choices|@>=
7489 int k,n; /* current and final knot numbers */
7490 pointer s,t; /* registers for list traversal */
7491 scaled delx,dely; /* directions where |open| meets |explicit| */
7492 fraction sine,cosine; /* trig functions of various angles */
7494 @ @<Calculate the turning angles...@>=
7497 k=0; s=p; n=mp->path_size;
7500 mp->delta_x[k]=x_coord(t)-x_coord(s);
7501 mp->delta_y[k]=y_coord(t)-y_coord(s);
7502 mp->delta[k]=mp_pyth_add(mp, mp->delta_x[k],mp->delta_y[k]);
7504 sine=mp_make_fraction(mp, mp->delta_y[k-1],mp->delta[k-1]);
7505 cosine=mp_make_fraction(mp, mp->delta_x[k-1],mp->delta[k-1]);
7506 mp->psi[k]=mp_n_arg(mp, mp_take_fraction(mp, mp->delta_x[k],cosine)+
7507 mp_take_fraction(mp, mp->delta_y[k],sine),
7508 mp_take_fraction(mp, mp->delta_y[k],cosine)-
7509 mp_take_fraction(mp, mp->delta_x[k],sine));
7512 if ( k==mp->path_size ) {
7513 mp_reallocate_paths(mp, mp->path_size+(mp->path_size>>2));
7514 goto RESTART; /* retry, loop size has changed */
7517 } while (!((k>=n)&&(left_type(s)!=mp_end_cycle)));
7518 if ( k==n ) mp->psi[n]=0; else mp->psi[k]=mp->psi[1];
7521 @ When we get to this point of the code, |right_type(p)| is either
7522 |given| or |curl| or |open|. If it is |open|, we must have
7523 |left_type(p)=mp_end_cycle| or |left_type(p)=mp_explicit|. In the latter
7524 case, the |open| type is converted to |given|; however, if the
7525 velocity coming into this knot is zero, the |open| type is
7526 converted to a |curl|, since we don't know the incoming direction.
7528 Similarly, |left_type(q)| is either |given| or |curl| or |open| or
7529 |mp_end_cycle|. The |open| possibility is reduced either to |given| or to |curl|.
7531 @<Remove |open| types at the breakpoints@>=
7532 if ( left_type(q)==mp_open ) {
7533 delx=right_x(q)-x_coord(q); dely=right_y(q)-y_coord(q);
7534 if ( (delx==0)&&(dely==0) ) {
7535 left_type(q)=mp_curl; left_curl(q)=unity;
7537 left_type(q)=mp_given; left_given(q)=mp_n_arg(mp, delx,dely);
7540 if ( (right_type(p)==mp_open)&&(left_type(p)==mp_explicit) ) {
7541 delx=x_coord(p)-left_x(p); dely=y_coord(p)-left_y(p);
7542 if ( (delx==0)&&(dely==0) ) {
7543 right_type(p)=mp_curl; right_curl(p)=unity;
7545 right_type(p)=mp_given; right_given(p)=mp_n_arg(mp, delx,dely);
7549 @ Linear equations need to be solved whenever |n>1|; and also when |n=1|
7550 and exactly one of the breakpoints involves a curl. The simplest case occurs
7551 when |n=1| and there is a curl at both breakpoints; then we simply draw
7554 But before coding up the simple cases, we might as well face the general case,
7555 since we must deal with it sooner or later, and since the general case
7556 is likely to give some insight into the way simple cases can be handled best.
7558 When there is no cycle, the linear equations to be solved form a tridiagonal
7559 system, and we can apply the standard technique of Gaussian elimination
7560 to convert that system to a sequence of equations of the form
7561 $$\theta_0+u_0\theta_1=v_0,\quad
7562 \theta_1+u_1\theta_2=v_1,\quad\ldots,\quad
7563 \theta_{n-1}+u_{n-1}\theta_n=v_{n-1},\quad
7565 It is possible to do this diagonalization while generating the equations.
7566 Once $\theta_n$ is known, it is easy to determine $\theta_{n-1}$, \dots,
7567 $\theta_1$, $\theta_0$; thus, the equations will be solved.
7569 The procedure is slightly more complex when there is a cycle, but the
7570 basic idea will be nearly the same. In the cyclic case the right-hand
7571 sides will be $v_k+w_k\theta_0$ instead of simply $v_k$, and we will start
7572 the process off with $u_0=v_0=0$, $w_0=1$. The final equation will be not
7573 $\theta_n=v_n$ but $\theta_n+u_n\theta_1=v_n+w_n\theta_0$; an appropriate
7574 ending routine will take account of the fact that $\theta_n=\theta_0$ and
7575 eliminate the $w$'s from the system, after which the solution can be
7578 When $u_k$, $v_k$, and $w_k$ are being computed, the three pointer
7579 variables |r|, |s|,~|t| will point respectively to knots |k-1|, |k|,
7580 and~|k+1|. The $u$'s and $w$'s are scaled by $2^{28}$, i.e., they are
7581 of type |fraction|; the $\theta$'s and $v$'s are of type |angle|.
7584 angle *theta; /* values of $\theta_k$ */
7585 fraction *uu; /* values of $u_k$ */
7586 angle *vv; /* values of $v_k$ */
7587 fraction *ww; /* values of $w_k$ */
7589 @ @<Allocate or initialize ...@>=
7595 @ @<Dealloc variables@>=
7601 @ @<Declare |mp_reallocate| functions@>=
7602 void mp_reallocate_paths (MP mp, int l);
7605 void mp_reallocate_paths (MP mp, int l) {
7606 XREALLOC (mp->delta_x, l, scaled);
7607 XREALLOC (mp->delta_y, l, scaled);
7608 XREALLOC (mp->delta, l, scaled);
7609 XREALLOC (mp->psi, l, angle);
7610 XREALLOC (mp->theta, l, angle);
7611 XREALLOC (mp->uu, l, fraction);
7612 XREALLOC (mp->vv, l, angle);
7613 XREALLOC (mp->ww, l, fraction);
7617 @ Our immediate problem is to get the ball rolling by setting up the
7618 first equation or by realizing that no equations are needed, and to fit
7619 this initialization into a framework suitable for the overall computation.
7621 @<Declare the procedure called |solve_choices|@>=
7622 @<Declare subroutines needed by |solve_choices|@>;
7623 void mp_solve_choices (MP mp,pointer p, pointer q, halfword n) {
7624 int k; /* current knot number */
7625 pointer r,s,t; /* registers for list traversal */
7626 @<Other local variables for |solve_choices|@>;
7631 @<Get the linear equations started; or |return|
7632 with the control points in place, if linear equations
7635 switch (left_type(s)) {
7636 case mp_end_cycle: case mp_open:
7637 @<Set up equation to match mock curvatures
7638 at $z_k$; then |goto found| with $\theta_n$
7639 adjusted to equal $\theta_0$, if a cycle has ended@>;
7642 @<Set up equation for a curl at $\theta_n$
7646 @<Calculate the given value of $\theta_n$
7649 } /* there are no other cases */
7654 @<Finish choosing angles and assigning control points@>;
7657 @ On the first time through the loop, we have |k=0| and |r| is not yet
7658 defined. The first linear equation, if any, will have $A_0=B_0=0$.
7660 @<Get the linear equations started...@>=
7661 switch (right_type(s)) {
7663 if ( left_type(t)==mp_given ) {
7664 @<Reduce to simple case of two givens and |return|@>
7666 @<Set up the equation for a given value of $\theta_0$@>;
7670 if ( left_type(t)==mp_curl ) {
7671 @<Reduce to simple case of straight line and |return|@>
7673 @<Set up the equation for a curl at $\theta_0$@>;
7677 mp->uu[0]=0; mp->vv[0]=0; mp->ww[0]=fraction_one;
7678 /* this begins a cycle */
7680 } /* there are no other cases */
7682 @ The general equation that specifies equality of mock curvature at $z_k$ is
7683 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7684 as derived above. We want to combine this with the already-derived equation
7685 $\theta_{k-1}+u_{k-1}\theta_k=v_{k-1}+w_{k-1}\theta_0$ in order to obtain
7687 $\theta_k+u_k\theta\k=v_k+w_k\theta_0$. This can be done by dividing the
7689 $$(B_k-u_{k-1}A_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k-A_kv_{k-1}
7690 -A_kw_{k-1}\theta_0$$
7691 by $B_k-u_{k-1}A_k+C_k$. The trick is to do this carefully with
7692 fixed-point arithmetic, avoiding the chance of overflow while retaining
7695 The calculations will be performed in several registers that
7696 provide temporary storage for intermediate quantities.
7698 @<Other local variables for |solve_choices|@>=
7699 fraction aa,bb,cc,ff,acc; /* temporary registers */
7700 scaled dd,ee; /* likewise, but |scaled| */
7701 scaled lt,rt; /* tension values */
7703 @ @<Set up equation to match mock curvatures...@>=
7704 { @<Calculate the values $\\{aa}=A_k/B_k$, $\\{bb}=D_k/C_k$,
7705 $\\{dd}=(3-\alpha_{k-1})d_{k,k+1}$, $\\{ee}=(3-\beta\k)d_{k-1,k}$,
7706 and $\\{cc}=(B_k-u_{k-1}A_k)/B_k$@>;
7707 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>;
7708 mp->uu[k]=mp_take_fraction(mp, ff,bb);
7709 @<Calculate the values of $v_k$ and $w_k$@>;
7710 if ( left_type(s)==mp_end_cycle ) {
7711 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>;
7715 @ Since tension values are never less than 3/4, the values |aa| and
7716 |bb| computed here are never more than 4/5.
7718 @<Calculate the values $\\{aa}=...@>=
7719 if ( abs(right_tension(r))==unity) {
7720 aa=fraction_half; dd=2*mp->delta[k];
7722 aa=mp_make_fraction(mp, unity,3*abs(right_tension(r))-unity);
7723 dd=mp_take_fraction(mp, mp->delta[k],
7724 fraction_three-mp_make_fraction(mp, unity,abs(right_tension(r))));
7726 if ( abs(left_tension(t))==unity ){
7727 bb=fraction_half; ee=2*mp->delta[k-1];
7729 bb=mp_make_fraction(mp, unity,3*abs(left_tension(t))-unity);
7730 ee=mp_take_fraction(mp, mp->delta[k-1],
7731 fraction_three-mp_make_fraction(mp, unity,abs(left_tension(t))));
7733 cc=fraction_one-mp_take_fraction(mp, mp->uu[k-1],aa)
7735 @ The ratio to be calculated in this step can be written in the form
7736 $$\beta_k^2\cdot\\{ee}\over\beta_k^2\cdot\\{ee}+\alpha_k^2\cdot
7737 \\{cc}\cdot\\{dd},$$
7738 because of the quantities just calculated. The values of |dd| and |ee|
7739 will not be needed after this step has been performed.
7741 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>=
7742 dd=mp_take_fraction(mp, dd,cc); lt=abs(left_tension(s)); rt=abs(right_tension(s));
7743 if ( lt!=rt ) { /* $\beta_k^{-1}\ne\alpha_k^{-1}$ */
7745 ff=mp_make_fraction(mp, lt,rt);
7746 ff=mp_take_fraction(mp, ff,ff); /* $\alpha_k^2/\beta_k^2$ */
7747 dd=mp_take_fraction(mp, dd,ff);
7749 ff=mp_make_fraction(mp, rt,lt);
7750 ff=mp_take_fraction(mp, ff,ff); /* $\beta_k^2/\alpha_k^2$ */
7751 ee=mp_take_fraction(mp, ee,ff);
7754 ff=mp_make_fraction(mp, ee,ee+dd)
7756 @ The value of $u_{k-1}$ will be |<=1| except when $k=1$ and the previous
7757 equation was specified by a curl. In that case we must use a special
7758 method of computation to prevent overflow.
7760 Fortunately, the calculations turn out to be even simpler in this ``hard''
7761 case. The curl equation makes $w_0=0$ and $v_0=-u_0\psi_1$, hence
7762 $-B_1\psi_1-A_1v_0=-(B_1-u_0A_1)\psi_1=-\\{cc}\cdot B_1\psi_1$.
7764 @<Calculate the values of $v_k$ and $w_k$@>=
7765 acc=-mp_take_fraction(mp, mp->psi[k+1],mp->uu[k]);
7766 if ( right_type(r)==mp_curl ) {
7768 mp->vv[k]=acc-mp_take_fraction(mp, mp->psi[1],fraction_one-ff);
7770 ff=mp_make_fraction(mp, fraction_one-ff,cc); /* this is
7771 $B_k/(C_k+B_k-u_{k-1}A_k)<5$ */
7772 acc=acc-mp_take_fraction(mp, mp->psi[k],ff);
7773 ff=mp_take_fraction(mp, ff,aa); /* this is $A_k/(C_k+B_k-u_{k-1}A_k)$ */
7774 mp->vv[k]=acc-mp_take_fraction(mp, mp->vv[k-1],ff);
7775 if ( mp->ww[k-1]==0 ) mp->ww[k]=0;
7776 else mp->ww[k]=-mp_take_fraction(mp, mp->ww[k-1],ff);
7779 @ When a complete cycle has been traversed, we have $\theta_k+u_k\theta\k=
7780 v_k+w_k\theta_0$, for |1<=k<=n|. We would like to determine the value of
7781 $\theta_n$ and reduce the system to the form $\theta_k+u_k\theta\k=v_k$
7782 for |0<=k<n|, so that the cyclic case can be finished up just as if there
7785 The idea in the following code is to observe that
7786 $$\eqalign{\theta_n&=v_n+w_n\theta_0-u_n\theta_1=\cdots\cr
7787 &=v_n+w_n\theta_0-u_n\bigl(v_1+w_1\theta_0-u_1(v_2+\cdots
7788 -u_{n-2}(v_{n-1}+w_{n-1}\theta_0-u_{n-1}\theta_0))\bigr),\cr}$$
7789 so we can solve for $\theta_n=\theta_0$.
7791 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>=
7793 aa=0; bb=fraction_one; /* we have |k=n| */
7796 aa=mp->vv[k]-mp_take_fraction(mp, aa,mp->uu[k]);
7797 bb=mp->ww[k]-mp_take_fraction(mp, bb,mp->uu[k]);
7798 } while (k!=n); /* now $\theta_n=\\{aa}+\\{bb}\cdot\theta_n$ */
7799 aa=mp_make_fraction(mp, aa,fraction_one-bb);
7800 mp->theta[n]=aa; mp->vv[0]=aa;
7801 for (k=1;k<=n-1;k++) {
7802 mp->vv[k]=mp->vv[k]+mp_take_fraction(mp, aa,mp->ww[k]);
7807 @ @d reduce_angle(A) if ( abs((A))>one_eighty_deg ) {
7808 if ( (A)>0 ) (A)=(A)-three_sixty_deg; else (A)=(A)+three_sixty_deg; }
7810 @<Calculate the given value of $\theta_n$...@>=
7812 mp->theta[n]=left_given(s)-mp_n_arg(mp, mp->delta_x[n-1],mp->delta_y[n-1]);
7813 reduce_angle(mp->theta[n]);
7817 @ @<Set up the equation for a given value of $\theta_0$@>=
7819 mp->vv[0]=right_given(s)-mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7820 reduce_angle(mp->vv[0]);
7821 mp->uu[0]=0; mp->ww[0]=0;
7824 @ @<Set up the equation for a curl at $\theta_0$@>=
7825 { cc=right_curl(s); lt=abs(left_tension(t)); rt=abs(right_tension(s));
7826 if ( (rt==unity)&&(lt==unity) )
7827 mp->uu[0]=mp_make_fraction(mp, cc+cc+unity,cc+two);
7829 mp->uu[0]=mp_curl_ratio(mp, cc,rt,lt);
7830 mp->vv[0]=-mp_take_fraction(mp, mp->psi[1],mp->uu[0]); mp->ww[0]=0;
7833 @ @<Set up equation for a curl at $\theta_n$...@>=
7834 { cc=left_curl(s); lt=abs(left_tension(s)); rt=abs(right_tension(r));
7835 if ( (rt==unity)&&(lt==unity) )
7836 ff=mp_make_fraction(mp, cc+cc+unity,cc+two);
7838 ff=mp_curl_ratio(mp, cc,lt,rt);
7839 mp->theta[n]=-mp_make_fraction(mp, mp_take_fraction(mp, mp->vv[n-1],ff),
7840 fraction_one-mp_take_fraction(mp, ff,mp->uu[n-1]));
7844 @ The |curl_ratio| subroutine has three arguments, which our previous notation
7845 encourages us to call $\gamma$, $\alpha^{-1}$, and $\beta^{-1}$. It is
7846 a somewhat tedious program to calculate
7847 $${(3-\alpha)\alpha^2\gamma+\beta^3\over
7848 \alpha^3\gamma+(3-\beta)\beta^2},$$
7849 with the result reduced to 4 if it exceeds 4. (This reduction of curl
7850 is necessary only if the curl and tension are both large.)
7851 The values of $\alpha$ and $\beta$ will be at most~4/3.
7853 @<Declare subroutines needed by |solve_choices|@>=
7854 fraction mp_curl_ratio (MP mp,scaled gamma, scaled a_tension,
7856 fraction alpha,beta,num,denom,ff; /* registers */
7857 alpha=mp_make_fraction(mp, unity,a_tension);
7858 beta=mp_make_fraction(mp, unity,b_tension);
7859 if ( alpha<=beta ) {
7860 ff=mp_make_fraction(mp, alpha,beta); ff=mp_take_fraction(mp, ff,ff);
7861 gamma=mp_take_fraction(mp, gamma,ff);
7862 beta=beta / 010000; /* convert |fraction| to |scaled| */
7863 denom=mp_take_fraction(mp, gamma,alpha)+three-beta;
7864 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7866 ff=mp_make_fraction(mp, beta,alpha); ff=mp_take_fraction(mp, ff,ff);
7867 beta=mp_take_fraction(mp, beta,ff) / 010000; /* convert |fraction| to |scaled| */
7868 denom=mp_take_fraction(mp, gamma,alpha)+(ff / 1365)-beta;
7869 /* $1365\approx 2^{12}/3$ */
7870 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7872 if ( num>=denom+denom+denom+denom ) return fraction_four;
7873 else return mp_make_fraction(mp, num,denom);
7876 @ We're in the home stretch now.
7878 @<Finish choosing angles and assigning control points@>=
7879 for (k=n-1;k>=0;k--) {
7880 mp->theta[k]=mp->vv[k]-mp_take_fraction(mp,mp->theta[k+1],mp->uu[k]);
7885 mp_n_sin_cos(mp, mp->theta[k]); mp->st=mp->n_sin; mp->ct=mp->n_cos;
7886 mp_n_sin_cos(mp, -mp->psi[k+1]-mp->theta[k+1]); mp->sf=mp->n_sin; mp->cf=mp->n_cos;
7887 mp_set_controls(mp, s,t,k);
7891 @ The |set_controls| routine actually puts the control points into
7892 a pair of consecutive nodes |p| and~|q|. Global variables are used to
7893 record the values of $\sin\theta$, $\cos\theta$, $\sin\phi$, and
7894 $\cos\phi$ needed in this calculation.
7900 fraction cf; /* sines and cosines */
7902 @ @<Declare subroutines needed by |solve_choices|@>=
7903 void mp_set_controls (MP mp,pointer p, pointer q, integer k) {
7904 fraction rr,ss; /* velocities, divided by thrice the tension */
7905 scaled lt,rt; /* tensions */
7906 fraction sine; /* $\sin(\theta+\phi)$ */
7907 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7908 rr=mp_velocity(mp, mp->st,mp->ct,mp->sf,mp->cf,rt);
7909 ss=mp_velocity(mp, mp->sf,mp->cf,mp->st,mp->ct,lt);
7910 if ( (right_tension(p)<0)||(left_tension(q)<0) ) {
7911 @<Decrease the velocities,
7912 if necessary, to stay inside the bounding triangle@>;
7914 right_x(p)=x_coord(p)+mp_take_fraction(mp,
7915 mp_take_fraction(mp, mp->delta_x[k],mp->ct)-
7916 mp_take_fraction(mp, mp->delta_y[k],mp->st),rr);
7917 right_y(p)=y_coord(p)+mp_take_fraction(mp,
7918 mp_take_fraction(mp, mp->delta_y[k],mp->ct)+
7919 mp_take_fraction(mp, mp->delta_x[k],mp->st),rr);
7920 left_x(q)=x_coord(q)-mp_take_fraction(mp,
7921 mp_take_fraction(mp, mp->delta_x[k],mp->cf)+
7922 mp_take_fraction(mp, mp->delta_y[k],mp->sf),ss);
7923 left_y(q)=y_coord(q)-mp_take_fraction(mp,
7924 mp_take_fraction(mp, mp->delta_y[k],mp->cf)-
7925 mp_take_fraction(mp, mp->delta_x[k],mp->sf),ss);
7926 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7929 @ The boundedness conditions $\\{rr}\L\sin\phi\,/\sin(\theta+\phi)$ and
7930 $\\{ss}\L\sin\theta\,/\sin(\theta+\phi)$ are to be enforced if $\sin\theta$,
7931 $\sin\phi$, and $\sin(\theta+\phi)$ all have the same sign. Otherwise
7932 there is no ``bounding triangle.''
7933 @:at_least_}{\&{atleast} primitive@>
7935 @<Decrease the velocities, if necessary...@>=
7936 if (((mp->st>=0)&&(mp->sf>=0))||((mp->st<=0)&&(mp->sf<=0)) ) {
7937 sine=mp_take_fraction(mp, abs(mp->st),mp->cf)+
7938 mp_take_fraction(mp, abs(mp->sf),mp->ct);
7940 sine=mp_take_fraction(mp, sine,fraction_one+unity); /* safety factor */
7941 if ( right_tension(p)<0 )
7942 if ( mp_ab_vs_cd(mp, abs(mp->sf),fraction_one,rr,sine)<0 )
7943 rr=mp_make_fraction(mp, abs(mp->sf),sine);
7944 if ( left_tension(q)<0 )
7945 if ( mp_ab_vs_cd(mp, abs(mp->st),fraction_one,ss,sine)<0 )
7946 ss=mp_make_fraction(mp, abs(mp->st),sine);
7950 @ Only the simple cases remain to be handled.
7952 @<Reduce to simple case of two givens and |return|@>=
7954 aa=mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7955 mp_n_sin_cos(mp, right_given(p)-aa); mp->ct=mp->n_cos; mp->st=mp->n_sin;
7956 mp_n_sin_cos(mp, left_given(q)-aa); mp->cf=mp->n_cos; mp->sf=-mp->n_sin;
7957 mp_set_controls(mp, p,q,0); return;
7960 @ @<Reduce to simple case of straight line and |return|@>=
7962 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7963 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7965 if ( mp->delta_x[0]>=0 ) right_x(p)=x_coord(p)+((mp->delta_x[0]+1) / 3);
7966 else right_x(p)=x_coord(p)+((mp->delta_x[0]-1) / 3);
7967 if ( mp->delta_y[0]>=0 ) right_y(p)=y_coord(p)+((mp->delta_y[0]+1) / 3);
7968 else right_y(p)=y_coord(p)+((mp->delta_y[0]-1) / 3);
7970 ff=mp_make_fraction(mp, unity,3*rt); /* $\alpha/3$ */
7971 right_x(p)=x_coord(p)+mp_take_fraction(mp, mp->delta_x[0],ff);
7972 right_y(p)=y_coord(p)+mp_take_fraction(mp, mp->delta_y[0],ff);
7975 if ( mp->delta_x[0]>=0 ) left_x(q)=x_coord(q)-((mp->delta_x[0]+1) / 3);
7976 else left_x(q)=x_coord(q)-((mp->delta_x[0]-1) / 3);
7977 if ( mp->delta_y[0]>=0 ) left_y(q)=y_coord(q)-((mp->delta_y[0]+1) / 3);
7978 else left_y(q)=y_coord(q)-((mp->delta_y[0]-1) / 3);
7980 ff=mp_make_fraction(mp, unity,3*lt); /* $\beta/3$ */
7981 left_x(q)=x_coord(q)-mp_take_fraction(mp, mp->delta_x[0],ff);
7982 left_y(q)=y_coord(q)-mp_take_fraction(mp, mp->delta_y[0],ff);
7987 @* \[19] Measuring paths.
7988 \MP's \&{llcorner}, \&{lrcorner}, \&{ulcorner}, and \&{urcorner} operators
7989 allow the user to measure the bounding box of anything that can go into a
7990 picture. It's easy to get rough bounds on the $x$ and $y$ extent of a path
7991 by just finding the bounding box of the knots and the control points. We
7992 need a more accurate version of the bounding box, but we can still use the
7993 easy estimate to save time by focusing on the interesting parts of the path.
7995 @ Computing an accurate bounding box involves a theme that will come up again
7996 and again. Given a Bernshte{\u\i}n polynomial
7997 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
7998 $$B(z_0,z_1,\ldots,z_n;t)=\sum_k{n\choose k}t^k(1-t)^{n-k}z_k,$$
7999 we can conveniently bisect its range as follows:
8002 \textindent{1)} Let $z_k^{(0)}=z_k$, for |0<=k<=n|.
8005 \textindent{2)} Let $z_k^{(j+1)}={1\over2}(z_k^{(j)}+z\k^{(j)})$, for
8006 |0<=k<n-j|, for |0<=j<n|.
8010 $$B(z_0,z_1,\ldots,z_n;t)=B(z_0^{(0)},z_0^{(1)},\ldots,z_0^{(n)};2t)
8011 =B(z_0^{(n)},z_1^{(n-1)},\ldots,z_n^{(0)};2t-1).$$
8012 This formula gives us the coefficients of polynomials to use over the ranges
8013 $0\L t\L{1\over2}$ and ${1\over2}\L t\L1$.
8015 @ Now here's a subroutine that's handy for all sorts of path computations:
8016 Given a quadratic polynomial $B(a,b,c;t)$, the |crossing_point| function
8017 returns the unique |fraction| value |t| between 0 and~1 at which
8018 $B(a,b,c;t)$ changes from positive to negative, or returns
8019 |t=fraction_one+1| if no such value exists. If |a<0| (so that $B(a,b,c;t)$
8020 is already negative at |t=0|), |crossing_point| returns the value zero.
8022 @d no_crossing { return (fraction_one+1); }
8023 @d one_crossing { return fraction_one; }
8024 @d zero_crossing { return 0; }
8025 @d mp_crossing_point(M,A,B,C) mp_do_crossing_point(A,B,C)
8027 @c fraction mp_do_crossing_point (integer a, integer b, integer c) {
8028 integer d; /* recursive counter */
8029 integer x,xx,x0,x1,x2; /* temporary registers for bisection */
8030 if ( a<0 ) zero_crossing;
8033 if ( c>0 ) { no_crossing; }
8034 else if ( (a==0)&&(b==0) ) { no_crossing;}
8035 else { one_crossing; }
8037 if ( a==0 ) zero_crossing;
8038 } else if ( a==0 ) {
8039 if ( b<=0 ) zero_crossing;
8041 @<Use bisection to find the crossing point, if one exists@>;
8044 @ The general bisection method is quite simple when $n=2$, hence
8045 |crossing_point| does not take much time. At each stage in the
8046 recursion we have a subinterval defined by |l| and~|j| such that
8047 $B(a,b,c;2^{-l}(j+t))=B(x_0,x_1,x_2;t)$, and we want to ``zero in'' on
8048 the subinterval where $x_0\G0$ and $\min(x_1,x_2)<0$.
8050 It is convenient for purposes of calculation to combine the values
8051 of |l| and~|j| in a single variable $d=2^l+j$, because the operation
8052 of bisection then corresponds simply to doubling $d$ and possibly
8053 adding~1. Furthermore it proves to be convenient to modify
8054 our previous conventions for bisection slightly, maintaining the
8055 variables $X_0=2^lx_0$, $X_1=2^l(x_0-x_1)$, and $X_2=2^l(x_1-x_2)$.
8056 With these variables the conditions $x_0\ge0$ and $\min(x_1,x_2)<0$ are
8057 equivalent to $\max(X_1,X_1+X_2)>X_0\ge0$.
8059 The following code maintains the invariant relations
8060 $0\L|x0|<\max(|x1|,|x1|+|x2|)$,
8061 $\vert|x1|\vert<2^{30}$, $\vert|x2|\vert<2^{30}$;
8062 it has been constructed in such a way that no arithmetic overflow
8063 will occur if the inputs satisfy
8064 $a<2^{30}$, $\vert a-b\vert<2^{30}$, and $\vert b-c\vert<2^{30}$.
8066 @<Use bisection to find the crossing point...@>=
8067 d=1; x0=a; x1=a-b; x2=b-c;
8078 if ( x<=x0 ) { if ( x+x2<=x0 ) no_crossing; }
8082 } while (d<fraction_one);
8083 return (d-fraction_one)
8085 @ Here is a routine that computes the $x$ or $y$ coordinate of the point on
8086 a cubic corresponding to the |fraction| value~|t|.
8088 It is convenient to define a \.{WEB} macro |t_of_the_way| such that
8089 |t_of_the_way(a,b)| expands to |a-(a-b)*t|, i.e., to |t[a,b]|.
8091 @d t_of_the_way(A,B) ((A)-mp_take_fraction(mp,((A)-(B)),t))
8093 @c scaled mp_eval_cubic (MP mp,pointer p, pointer q, fraction t) {
8094 scaled x1,x2,x3; /* intermediate values */
8095 x1=t_of_the_way(knot_coord(p),right_coord(p));
8096 x2=t_of_the_way(right_coord(p),left_coord(q));
8097 x3=t_of_the_way(left_coord(q),knot_coord(q));
8098 x1=t_of_the_way(x1,x2);
8099 x2=t_of_the_way(x2,x3);
8100 return t_of_the_way(x1,x2);
8103 @ The actual bounding box information is stored in global variables.
8104 Since it is convenient to address the $x$ and $y$ information
8105 separately, we define arrays indexed by |x_code..y_code| and use
8106 macros to give them more convenient names.
8110 mp_x_code=0, /* index for |minx| and |maxx| */
8111 mp_y_code /* index for |miny| and |maxy| */
8115 @d minx mp->bbmin[mp_x_code]
8116 @d maxx mp->bbmax[mp_x_code]
8117 @d miny mp->bbmin[mp_y_code]
8118 @d maxy mp->bbmax[mp_y_code]
8121 scaled bbmin[mp_y_code+1];
8122 scaled bbmax[mp_y_code+1];
8123 /* the result of procedures that compute bounding box information */
8125 @ Now we're ready for the key part of the bounding box computation.
8126 The |bound_cubic| procedure updates |bbmin[c]| and |bbmax[c]| based on
8127 $$B(\hbox{|knot_coord(p)|}, \hbox{|right_coord(p)|},
8128 \hbox{|left_coord(q)|}, \hbox{|knot_coord(q)|};t)
8130 for $0<t\le1$. In other words, the procedure adjusts the bounds to
8131 accommodate |knot_coord(q)| and any extremes over the range $0<t<1$.
8132 The |c| parameter is |x_code| or |y_code|.
8134 @c void mp_bound_cubic (MP mp,pointer p, pointer q, small_number c) {
8135 boolean wavy; /* whether we need to look for extremes */
8136 scaled del1,del2,del3,del,dmax; /* proportional to the control
8137 points of a quadratic derived from a cubic */
8138 fraction t,tt; /* where a quadratic crosses zero */
8139 scaled x; /* a value that |bbmin[c]| and |bbmax[c]| must accommodate */
8141 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8142 @<Check the control points against the bounding box and set |wavy:=true|
8143 if any of them lie outside@>;
8145 del1=right_coord(p)-knot_coord(p);
8146 del2=left_coord(q)-right_coord(p);
8147 del3=knot_coord(q)-left_coord(q);
8148 @<Scale up |del1|, |del2|, and |del3| for greater accuracy;
8149 also set |del| to the first nonzero element of |(del1,del2,del3)|@>;
8151 negate(del1); negate(del2); negate(del3);
8153 t=mp_crossing_point(mp, del1,del2,del3);
8154 if ( t<fraction_one ) {
8155 @<Test the extremes of the cubic against the bounding box@>;
8160 @ @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>=
8161 if ( x<mp->bbmin[c] ) mp->bbmin[c]=x;
8162 if ( x>mp->bbmax[c] ) mp->bbmax[c]=x
8164 @ @<Check the control points against the bounding box and set...@>=
8166 if ( mp->bbmin[c]<=right_coord(p) )
8167 if ( right_coord(p)<=mp->bbmax[c] )
8168 if ( mp->bbmin[c]<=left_coord(q) )
8169 if ( left_coord(q)<=mp->bbmax[c] )
8172 @ If |del1=del2=del3=0|, it's impossible to obey the title of this
8173 section. We just set |del=0| in that case.
8175 @<Scale up |del1|, |del2|, and |del3| for greater accuracy...@>=
8176 if ( del1!=0 ) del=del1;
8177 else if ( del2!=0 ) del=del2;
8181 if ( abs(del2)>dmax ) dmax=abs(del2);
8182 if ( abs(del3)>dmax ) dmax=abs(del3);
8183 while ( dmax<fraction_half ) {
8184 dmax+=dmax; del1+=del1; del2+=del2; del3+=del3;
8188 @ Since |crossing_point| has tried to choose |t| so that
8189 $B(|del1|,|del2|,|del3|;\tau)$ crosses zero at $\tau=|t|$ with negative
8190 slope, the value of |del2| computed below should not be positive.
8191 But rounding error could make it slightly positive in which case we
8192 must cut it to zero to avoid confusion.
8194 @<Test the extremes of the cubic against the bounding box@>=
8196 x=mp_eval_cubic(mp, p,q,t);
8197 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8198 del2=t_of_the_way(del2,del3);
8199 /* now |0,del2,del3| represent the derivative on the remaining interval */
8200 if ( del2>0 ) del2=0;
8201 tt=mp_crossing_point(mp, 0,-del2,-del3);
8202 if ( tt<fraction_one ) {
8203 @<Test the second extreme against the bounding box@>;
8207 @ @<Test the second extreme against the bounding box@>=
8209 x=mp_eval_cubic(mp, p,q,t_of_the_way(tt,fraction_one));
8210 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8213 @ Finding the bounding box of a path is basically a matter of applying
8214 |bound_cubic| twice for each pair of adjacent knots.
8216 @c void mp_path_bbox (MP mp,pointer h) {
8217 pointer p,q; /* a pair of adjacent knots */
8218 minx=x_coord(h); miny=y_coord(h);
8219 maxx=minx; maxy=miny;
8222 if ( right_type(p)==mp_endpoint ) return;
8224 mp_bound_cubic(mp, x_loc(p),x_loc(q),mp_x_code);
8225 mp_bound_cubic(mp, y_loc(p),y_loc(q),mp_y_code);
8230 @ Another important way to measure a path is to find its arc length. This
8231 is best done by using the general bisection algorithm to subdivide the path
8232 until obtaining ``well behaved'' subpaths whose arc lengths can be approximated
8235 Since the arc length is the integral with respect to time of the magnitude of
8236 the velocity, it is natural to use Simpson's rule for the approximation.
8238 If $\dot B(t)$ is the spline velocity, Simpson's rule gives
8239 $$ \vb\dot B(0)\vb + 4\vb\dot B({1\over2})\vb + \vb\dot B(1)\vb \over 6 $$
8240 for the arc length of a path of length~1. For a cubic spline
8241 $B(z_0,z_1,z_2,z_3;t)$, the time derivative $\dot B(t)$ is
8242 $3B(dz_0,dz_1,dz_2;t)$, where $dz_i=z_{i+1}-z_i$. Hence the arc length
8244 $$ {\vb dz_0\vb \over 2} + 2\vb dz_{02}\vb + {\vb dz_2\vb \over 2}, $$
8246 $$ dz_{02}={1\over2}\left({dz_0+dz_1\over 2}+{dz_1+dz_2\over 2}\right)$$
8247 is the result of the bisection algorithm.
8249 @ The remaining problem is how to decide when a subpath is ``well behaved.''
8250 This could be done via the theoretical error bound for Simpson's rule,
8252 but this is impractical because it requires an estimate of the fourth
8253 derivative of the quantity being integrated. It is much easier to just perform
8254 a bisection step and see how much the arc length estimate changes. Since the
8255 error for Simpson's rule is proportional to the fourth power of the sample
8256 spacing, the remaining error is typically about $1\over16$ of the amount of
8257 the change. We say ``typically'' because the error has a pseudo-random behavior
8258 that could cause the two estimates to agree when each contain large errors.
8260 To protect against disasters such as undetected cusps, the bisection process
8261 should always continue until all the $dz_i$ vectors belong to a single
8262 $90^\circ$ sector. This ensures that no point on the spline can have velocity
8263 less than 70\% of the minimum of $\vb dz_0\vb$, $\vb dz_1\vb$ and $\vb dz_2\vb$.
8264 If such a spline happens to produce an erroneous arc length estimate that
8265 is little changed by bisection, the amount of the error is likely to be fairly
8266 small. We will try to arrange things so that freak accidents of this type do
8267 not destroy the inverse relationship between the \&{arclength} and
8268 \&{arctime} operations.
8269 @:arclength_}{\&{arclength} primitive@>
8270 @:arctime_}{\&{arctime} primitive@>
8272 @ The \&{arclength} and \&{arctime} operations are both based on a recursive
8274 function that finds the arc length of a cubic spline given $dz_0$, $dz_1$,
8275 $dz_2$. This |arc_test| routine also takes an arc length goal |a_goal| and
8276 returns the time when the arc length reaches |a_goal| if there is such a time.
8277 Thus the return value is either an arc length less than |a_goal| or, if the
8278 arc length would be at least |a_goal|, it returns a time value decreased by
8279 |two|. This allows the caller to use the sign of the result to distinguish
8280 between arc lengths and time values. On certain types of overflow, it is
8281 possible for |a_goal| and the result of |arc_test| both to be |el_gordo|.
8282 Otherwise, the result is always less than |a_goal|.
8284 Rather than halving the control point coordinates on each recursive call to
8285 |arc_test|, it is better to keep them proportional to velocity on the original
8286 curve and halve the results instead. This means that recursive calls can
8287 potentially use larger error tolerances in their arc length estimates. How
8288 much larger depends on to what extent the errors behave as though they are
8289 independent of each other. To save computing time, we use optimistic assumptions
8290 and increase the tolerance by a factor of about $\sqrt2$ for each recursive
8293 In addition to the tolerance parameter, |arc_test| should also have parameters
8294 for ${1\over3}\vb\dot B(0)\vb$, ${2\over3}\vb\dot B({1\over2})\vb$, and
8295 ${1\over3}\vb\dot B(1)\vb$. These quantities are relatively expensive to compute
8296 and they are needed in different instances of |arc_test|.
8298 @c @t\4@>@<Declare subroutines needed by |arc_test|@>;
8299 scaled mp_arc_test (MP mp, scaled dx0, scaled dy0, scaled dx1, scaled dy1,
8300 scaled dx2, scaled dy2, scaled v0, scaled v02,
8301 scaled v2, scaled a_goal, scaled tol) {
8302 boolean simple; /* are the control points confined to a $90^\circ$ sector? */
8303 scaled dx01, dy01, dx12, dy12, dx02, dy02; /* bisection results */
8305 /* twice the velocity magnitudes at $t={1\over4}$ and $t={3\over4}$ */
8306 scaled arc; /* best arc length estimate before recursion */
8307 @<Other local variables in |arc_test|@>;
8308 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,
8310 @<Initialize |v002|, |v022|, and the arc length estimate |arc|; if it overflows
8311 set |arc_test| and |return|@>;
8312 @<Test if the control points are confined to one quadrant or rotating them
8313 $45^\circ$ would put them in one quadrant. Then set |simple| appropriately@>;
8314 if ( simple && (abs(arc-v02-halfp(v0+v2)) <= tol) ) {
8315 if ( arc < a_goal ) {
8318 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to
8319 that time minus |two|@>;
8322 @<Use one or two recursive calls to compute the |arc_test| function@>;
8326 @ The |tol| value should by multiplied by $\sqrt 2$ before making recursive
8327 calls, but $1.5$ is an adequate approximation. It is best to avoid using
8328 |make_fraction| in this inner loop.
8331 @<Use one or two recursive calls to compute the |arc_test| function@>=
8333 @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is as
8334 large as possible@>;
8335 tol = tol + halfp(tol);
8336 a = mp_arc_test(mp, dx0,dy0, dx01,dy01, dx02,dy02, v0, v002,
8337 halfp(v02), a_new, tol);
8339 return (-halfp(two-a));
8341 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>;
8342 b = mp_arc_test(mp, dx02,dy02, dx12,dy12, dx2,dy2,
8343 halfp(v02), v022, v2, a_new, tol);
8345 return (-halfp(-b) - half_unit);
8347 return (a + half(b-a));
8351 @ @<Other local variables in |arc_test|@>=
8352 scaled a,b; /* results of recursive calls */
8353 scaled a_new,a_aux; /* the sum of these gives the |a_goal| */
8355 @ @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is...@>=
8356 a_aux = el_gordo - a_goal;
8357 if ( a_goal > a_aux ) {
8358 a_aux = a_goal - a_aux;
8361 a_new = a_goal + a_goal;
8365 @ There is no need to maintain |a_aux| at this point so we use it as a temporary
8366 to force the additions and subtractions to be done in an order that avoids
8369 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>=
8372 a_new = a_new + a_aux;
8375 @ This code assumes all {\it dx} and {\it dy} variables have magnitude less than
8376 |fraction_four|. To simplify the rest of the |arc_test| routine, we strengthen
8377 this assumption by requiring the norm of each $({\it dx},{\it dy})$ pair to obey
8378 this bound. Note that recursive calls will maintain this invariant.
8380 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,...@>=
8381 dx01 = half(dx0 + dx1);
8382 dx12 = half(dx1 + dx2);
8383 dx02 = half(dx01 + dx12);
8384 dy01 = half(dy0 + dy1);
8385 dy12 = half(dy1 + dy2);
8386 dy02 = half(dy01 + dy12)
8388 @ We should be careful to keep |arc<el_gordo| so that calling |arc_test| with
8389 |a_goal=el_gordo| is guaranteed to yield the arc length.
8391 @<Initialize |v002|, |v022|, and the arc length estimate |arc|;...@>=
8392 v002 = mp_pyth_add(mp, dx01+half(dx0+dx02), dy01+half(dy0+dy02));
8393 v022 = mp_pyth_add(mp, dx12+half(dx02+dx2), dy12+half(dy02+dy2));
8395 arc1 = v002 + half(halfp(v0+tmp) - v002);
8396 arc = v022 + half(halfp(v2+tmp) - v022);
8397 if ( (arc < el_gordo-arc1) ) {
8400 mp->arith_error = true;
8401 if ( a_goal==el_gordo ) return (el_gordo);
8405 @ @<Other local variables in |arc_test|@>=
8406 scaled tmp, tmp2; /* all purpose temporary registers */
8407 scaled arc1; /* arc length estimate for the first half */
8409 @ @<Test if the control points are confined to one quadrant or rotating...@>=
8410 simple = ((dx0>=0) && (dx1>=0) && (dx2>=0)) ||
8411 ((dx0<=0) && (dx1<=0) && (dx2<=0));
8413 simple = ((dy0>=0) && (dy1>=0) && (dy2>=0)) ||
8414 ((dy0<=0) && (dy1<=0) && (dy2<=0));
8416 simple = ((dx0>=dy0) && (dx1>=dy1) && (dx2>=dy2)) ||
8417 ((dx0<=dy0) && (dx1<=dy1) && (dx2<=dy2));
8419 simple = ((-dx0>=dy0) && (-dx1>=dy1) && (-dx2>=dy2)) ||
8420 ((-dx0<=dy0) && (-dx1<=dy1) && (-dx2<=dy2));
8423 @ Since Simpson's rule is based on approximating the integrand by a parabola,
8425 it is appropriate to use the same approximation to decide when the integral
8426 reaches the intermediate value |a_goal|. At this point
8428 {\vb\dot B(0)\vb\over 3} &= \hbox{|v0|}, \qquad
8429 {\vb\dot B({1\over4})\vb\over 3} = {\hbox{|v002|}\over 2}, \qquad
8430 {\vb\dot B({1\over2})\vb\over 3} = {\hbox{|v02|}\over 2}, \cr
8431 {\vb\dot B({3\over4})\vb\over 3} &= {\hbox{|v022|}\over 2}, \qquad
8432 {\vb\dot B(1)\vb\over 3} = \hbox{|v2|} \cr
8436 $$ {\vb\dot B(t)\vb\over 3} \approx
8437 \cases{B\left(\hbox{|v0|},
8438 \hbox{|v002|}-{1\over 2}\hbox{|v0|}-{1\over 4}\hbox{|v02|},
8439 {1\over 2}\hbox{|v02|}; 2t \right)&
8440 if $t\le{1\over 2}$\cr
8441 B\left({1\over 2}\hbox{|v02|},
8442 \hbox{|v022|}-{1\over 4}\hbox{|v02|}-{1\over 2}\hbox{|v2|},
8443 \hbox{|v2|}; 2t-1 \right)&
8444 if $t\ge{1\over 2}$.\cr}
8447 We can integrate $\vb\dot B(t)\vb$ by using
8448 $$\int 3B(a,b,c;\tau)\,dt =
8449 {B(0,a,a+b,a+b+c;\tau) + {\rm constant} \over {d\tau\over dt}}.
8452 This construction allows us to find the time when the arc length reaches
8453 |a_goal| by solving a cubic equation of the form
8454 $$ B(0,a,a+b,a+b+c;\tau) = x, $$
8455 where $\tau$ is $2t$ or $2t+1$, $x$ is |a_goal| or |a_goal-arc1|, and $a$, $b$,
8456 and $c$ are the Bernshte{\u\i}n coefficients from $(*)$ divided by
8457 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
8458 $d\tau\over dt$. We shall define a function |solve_rising_cubic| that finds
8459 $\tau$ given $a$, $b$, $c$, and $x$.
8461 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to...@>=
8463 tmp = (v02 + 2) / 4;
8464 if ( a_goal<=arc1 ) {
8467 (halfp(mp_solve_rising_cubic(mp, tmp2, arc1-tmp2-tmp, tmp, a_goal))- two);
8470 return ((half_unit - two) +
8471 halfp(mp_solve_rising_cubic(mp, tmp, arc-arc1-tmp-tmp2, tmp2, a_goal-arc1)));
8475 @ Here is the |solve_rising_cubic| routine that finds the time~$t$ when
8476 $$ B(0, a, a+b, a+b+c; t) = x. $$
8477 This routine is based on |crossing_point| but is simplified by the
8478 assumptions that $B(a,b,c;t)\ge0$ for $0\le t\le1$ and that |0<=x<=a+b+c|.
8479 If rounding error causes this condition to be violated slightly, we just ignore
8480 it and proceed with binary search. This finds a time when the function value
8481 reaches |x| and the slope is positive.
8483 @<Declare subroutines needed by |arc_test|@>=
8484 scaled mp_solve_rising_cubic (MP mp,scaled a, scaled b, scaled c, scaled x) {
8485 scaled ab, bc, ac; /* bisection results */
8486 integer t; /* $2^k+q$ where unscaled answer is in $[q2^{-k},(q+1)2^{-k})$ */
8487 integer xx; /* temporary for updating |x| */
8488 if ( (a<0) || (c<0) ) mp_confusion(mp, "rising?");
8489 @:this can't happen rising?}{\quad rising?@>
8492 } else if ( x >= a+b+c ) {
8496 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than
8500 @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>;
8501 xx = x - a - ab - ac;
8502 if ( xx < -x ) { x+=x; b=ab; c=ac; }
8503 else { x = x + xx; a=ac; b=mp->bc; t = t+1; };
8504 } while (t < unity);
8509 @ @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>=
8514 @ @d one_third_el_gordo 05252525252 /* upper bound on |a|, |b|, and |c| */
8516 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than...@>=
8517 while ((a>one_third_el_gordo)||(b>one_third_el_gordo)||(c>one_third_el_gordo)) {
8524 @ It is convenient to have a simpler interface to |arc_test| that requires no
8525 unnecessary arguments and ensures that each $({\it dx},{\it dy})$ pair has
8526 length less than |fraction_four|.
8528 @d arc_tol 16 /* quit when change in arc length estimate reaches this */
8530 @c scaled mp_do_arc_test (MP mp,scaled dx0, scaled dy0, scaled dx1,
8531 scaled dy1, scaled dx2, scaled dy2, scaled a_goal) {
8532 scaled v0,v1,v2; /* length of each $({\it dx},{\it dy})$ pair */
8533 scaled v02; /* twice the norm of the quadratic at $t={1\over2}$ */
8534 v0 = mp_pyth_add(mp, dx0,dy0);
8535 v1 = mp_pyth_add(mp, dx1,dy1);
8536 v2 = mp_pyth_add(mp, dx2,dy2);
8537 if ( (v0>=fraction_four) || (v1>=fraction_four) || (v2>=fraction_four) ) {
8538 mp->arith_error = true;
8539 if ( a_goal==el_gordo ) return el_gordo;
8542 v02 = mp_pyth_add(mp, dx1+half(dx0+dx2), dy1+half(dy0+dy2));
8543 return (mp_arc_test(mp, dx0,dy0, dx1,dy1, dx2,dy2,
8544 v0, v02, v2, a_goal, arc_tol));
8548 @ Now it is easy to find the arc length of an entire path.
8550 @c scaled mp_get_arc_length (MP mp,pointer h) {
8551 pointer p,q; /* for traversing the path */
8552 scaled a,a_tot; /* current and total arc lengths */
8555 while ( right_type(p)!=mp_endpoint ){
8557 a = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8558 left_x(q)-right_x(p), left_y(q)-right_y(p),
8559 x_coord(q)-left_x(q), y_coord(q)-left_y(q), el_gordo);
8560 a_tot = mp_slow_add(mp, a, a_tot);
8561 if ( q==h ) break; else p=q;
8567 @ The inverse operation of finding the time on a path~|h| when the arc length
8568 reaches some value |arc0| can also be accomplished via |do_arc_test|. Some care
8569 is required to handle very large times or negative times on cyclic paths. For
8570 non-cyclic paths, |arc0| values that are negative or too large cause
8571 |get_arc_time| to return 0 or the length of path~|h|.
8573 If |arc0| is greater than the arc length of a cyclic path~|h|, the result is a
8574 time value greater than the length of the path. Since it could be much greater,
8575 we must be prepared to compute the arc length of path~|h| and divide this into
8576 |arc0| to find how many multiples of the length of path~|h| to add.
8578 @c scaled mp_get_arc_time (MP mp,pointer h, scaled arc0) {
8579 pointer p,q; /* for traversing the path */
8580 scaled t_tot; /* accumulator for the result */
8581 scaled t; /* the result of |do_arc_test| */
8582 scaled arc; /* portion of |arc0| not used up so far */
8583 integer n; /* number of extra times to go around the cycle */
8585 @<Deal with a negative |arc0| value and |return|@>;
8587 if ( arc0==el_gordo ) decr(arc0);
8591 while ( (right_type(p)!=mp_endpoint) && (arc>0) ) {
8593 t = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8594 left_x(q)-right_x(p), left_y(q)-right_y(p),
8595 x_coord(q)-left_x(q), y_coord(q)-left_y(q), arc);
8596 @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>;
8598 @<Update |t_tot| and |arc| to avoid going around the cyclic
8599 path too many times but set |arith_error:=true| and |goto done| on
8608 @ @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>=
8609 if ( t<0 ) { t_tot = t_tot + t + two; arc = 0; }
8610 else { t_tot = t_tot + unity; arc = arc - t; }
8612 @ @<Deal with a negative |arc0| value and |return|@>=
8614 if ( left_type(h)==mp_endpoint ) {
8617 p = mp_htap_ypoc(mp, h);
8618 t_tot = -mp_get_arc_time(mp, p, -arc0);
8619 mp_toss_knot_list(mp, p);
8625 @ @<Update |t_tot| and |arc| to avoid going around the cyclic...@>=
8627 n = arc / (arc0 - arc);
8628 arc = arc - n*(arc0 - arc);
8629 if ( t_tot > el_gordo / (n+1) ) {
8630 mp->arith_error = true;
8634 t_tot = (n + 1)*t_tot;
8637 @* \[20] Data structures for pens.
8638 A Pen in \MP\ can be either elliptical or polygonal. Elliptical pens result
8639 in \ps\ \&{stroke} commands, while anything drawn with a polygonal pen is
8640 @:stroke}{\&{stroke} command@>
8641 converted into an area fill as described in the next part of this program.
8642 The mathematics behind this process is based on simple aspects of the theory
8643 of tracings developed by Leo Guibas, Lyle Ramshaw, and Jorge Stolfi
8644 [``A kinematic framework for computational geometry,'' Proc.\ IEEE Symp.\
8645 Foundations of Computer Science {\bf 24} (1983), 100--111].
8647 Polygonal pens are created from paths via \MP's \&{makepen} primitive.
8648 @:makepen_}{\&{makepen} primitive@>
8649 This path representation is almost sufficient for our purposes except that
8650 a pen path should always be a convex polygon with the vertices in
8651 counter-clockwise order.
8652 Since we will need to scan pen polygons both forward and backward, a pen
8653 should be represented as a doubly linked ring of knot nodes. There is
8654 room for the extra back pointer because we do not need the
8655 |left_type| or |right_type| fields. In fact, we don't need the |left_x|,
8656 |left_y|, |right_x|, or |right_y| fields either but we leave these alone
8657 so that certain procedures can operate on both pens and paths. In particular,
8658 pens can be copied using |copy_path| and recycled using |toss_knot_list|.
8661 /* this replaces the |left_type| and |right_type| fields in a pen knot */
8663 @ The |make_pen| procedure turns a path into a pen by initializing
8664 the |knil| pointers and making sure the knots form a convex polygon.
8665 Thus each cubic in the given path becomes a straight line and the control
8666 points are ignored. If the path is not cyclic, the ends are connected by a
8669 @d copy_pen(A) mp_make_pen(mp, mp_copy_path(mp, (A)),false)
8671 @c @<Declare a function called |convex_hull|@>;
8672 pointer mp_make_pen (MP mp,pointer h, boolean need_hull) {
8673 pointer p,q; /* two consecutive knots */
8680 h=mp_convex_hull(mp, h);
8681 @<Make sure |h| isn't confused with an elliptical pen@>;
8686 @ The only information required about an elliptical pen is the overall
8687 transformation that has been applied to the original \&{pencircle}.
8688 @:pencircle_}{\&{pencircle} primitive@>
8689 Since it suffices to keep track of how the three points $(0,0)$, $(1,0)$,
8690 and $(0,1)$ are transformed, an elliptical pen can be stored in a single
8691 knot node and transformed as if it were a path.
8693 @d pen_is_elliptical(A) ((A)==link((A)))
8695 @c pointer mp_get_pen_circle (MP mp,scaled diam) {
8696 pointer h; /* the knot node to return */
8697 h=mp_get_node(mp, knot_node_size);
8698 link(h)=h; knil(h)=h;
8699 originator(h)=mp_program_code;
8700 x_coord(h)=0; y_coord(h)=0;
8701 left_x(h)=diam; left_y(h)=0;
8702 right_x(h)=0; right_y(h)=diam;
8706 @ If the polygon being returned by |make_pen| has only one vertex, it will
8707 be interpreted as an elliptical pen. This is no problem since a degenerate
8708 polygon can equally well be thought of as a degenerate ellipse. We need only
8709 initialize the |left_x|, |left_y|, |right_x|, and |right_y| fields.
8711 @<Make sure |h| isn't confused with an elliptical pen@>=
8712 if ( pen_is_elliptical( h) ){
8713 left_x(h)=x_coord(h); left_y(h)=y_coord(h);
8714 right_x(h)=x_coord(h); right_y(h)=y_coord(h);
8717 @ We have to cheat a little here but most operations on pens only use
8718 the first three words in each knot node.
8719 @^data structure assumptions@>
8721 @<Initialize a pen at |test_pen| so that it fits in nine words@>=
8722 x_coord(test_pen)=-half_unit;
8723 y_coord(test_pen)=0;
8724 x_coord(test_pen+3)=half_unit;
8725 y_coord(test_pen+3)=0;
8726 x_coord(test_pen+6)=0;
8727 y_coord(test_pen+6)=unity;
8728 link(test_pen)=test_pen+3;
8729 link(test_pen+3)=test_pen+6;
8730 link(test_pen+6)=test_pen;
8731 knil(test_pen)=test_pen+6;
8732 knil(test_pen+3)=test_pen;
8733 knil(test_pen+6)=test_pen+3
8735 @ Printing a polygonal pen is very much like printing a path
8737 @<Declare subroutines for printing expressions@>=
8738 void mp_pr_pen (MP mp,pointer h) {
8739 pointer p,q; /* for list traversal */
8740 if ( pen_is_elliptical(h) ) {
8741 @<Print the elliptical pen |h|@>;
8745 mp_print_two(mp, x_coord(p),y_coord(p));
8746 mp_print_nl(mp, " .. ");
8747 @<Advance |p| making sure the links are OK and |return| if there is
8750 mp_print(mp, "cycle");
8754 @ @<Advance |p| making sure the links are OK and |return| if there is...@>=
8756 if ( (q==null) || (knil(q)!=p) ) {
8757 mp_print_nl(mp, "???"); return; /* this won't happen */
8762 @ @<Print the elliptical pen |h|@>=
8764 mp_print(mp, "pencircle transformed (");
8765 mp_print_scaled(mp, x_coord(h));
8766 mp_print_char(mp, ',');
8767 mp_print_scaled(mp, y_coord(h));
8768 mp_print_char(mp, ',');
8769 mp_print_scaled(mp, left_x(h)-x_coord(h));
8770 mp_print_char(mp, ',');
8771 mp_print_scaled(mp, right_x(h)-x_coord(h));
8772 mp_print_char(mp, ',');
8773 mp_print_scaled(mp, left_y(h)-y_coord(h));
8774 mp_print_char(mp, ',');
8775 mp_print_scaled(mp, right_y(h)-y_coord(h));
8776 mp_print_char(mp, ')');
8779 @ Here us another version of |pr_pen| that prints the pen as a diagnostic
8782 @<Declare subroutines for printing expressions@>=
8783 void mp_print_pen (MP mp,pointer h, char *s, boolean nuline) {
8784 mp_print_diagnostic(mp, "Pen",s,nuline); mp_print_ln(mp);
8787 mp_end_diagnostic(mp, true);
8790 @ Making a polygonal pen into a path involves restoring the |left_type| and
8791 |right_type| fields and setting the control points so as to make a polygonal
8795 void mp_make_path (MP mp,pointer h) {
8796 pointer p; /* for traversing the knot list */
8797 small_number k; /* a loop counter */
8798 @<Other local variables in |make_path|@>;
8799 if ( pen_is_elliptical(h) ) {
8800 @<Make the elliptical pen |h| into a path@>;
8804 left_type(p)=mp_explicit;
8805 right_type(p)=mp_explicit;
8806 @<copy the coordinates of knot |p| into its control points@>;
8812 @ @<copy the coordinates of knot |p| into its control points@>=
8813 left_x(p)=x_coord(p);
8814 left_y(p)=y_coord(p);
8815 right_x(p)=x_coord(p);
8816 right_y(p)=y_coord(p)
8818 @ We need an eight knot path to get a good approximation to an ellipse.
8820 @<Make the elliptical pen |h| into a path@>=
8822 @<Extract the transformation parameters from the elliptical pen~|h|@>;
8824 for (k=0;k<=7;k++ ) {
8825 @<Initialize |p| as the |k|th knot of a circle of unit diameter,
8826 transforming it appropriately@>;
8827 if ( k==7 ) link(p)=h; else link(p)=mp_get_node(mp, knot_node_size);
8832 @ @<Extract the transformation parameters from the elliptical pen~|h|@>=
8833 center_x=x_coord(h);
8834 center_y=y_coord(h);
8835 width_x=left_x(h)-center_x;
8836 width_y=left_y(h)-center_y;
8837 height_x=right_x(h)-center_x;
8838 height_y=right_y(h)-center_y
8840 @ @<Other local variables in |make_path|@>=
8841 scaled center_x,center_y; /* translation parameters for an elliptical pen */
8842 scaled width_x,width_y; /* the effect of a unit change in $x$ */
8843 scaled height_x,height_y; /* the effect of a unit change in $y$ */
8844 scaled dx,dy; /* the vector from knot |p| to its right control point */
8846 /* |k| advanced $270^\circ$ around the ring (cf. $\sin\theta=\cos(\theta+270)$) */
8848 @ The only tricky thing here are the tables |half_cos| and |d_cos| used to
8849 find the point $k/8$ of the way around the circle and the direction vector
8852 @<Initialize |p| as the |k|th knot of a circle of unit diameter,...@>=
8854 x_coord(p)=center_x+mp_take_fraction(mp, mp->half_cos[k],width_x)
8855 +mp_take_fraction(mp, mp->half_cos[kk],height_x);
8856 y_coord(p)=center_y+mp_take_fraction(mp, mp->half_cos[k],width_y)
8857 +mp_take_fraction(mp, mp->half_cos[kk],height_y);
8858 dx=-mp_take_fraction(mp, mp->d_cos[kk],width_x)
8859 +mp_take_fraction(mp, mp->d_cos[k],height_x);
8860 dy=-mp_take_fraction(mp, mp->d_cos[kk],width_y)
8861 +mp_take_fraction(mp, mp->d_cos[k],height_y);
8862 right_x(p)=x_coord(p)+dx;
8863 right_y(p)=y_coord(p)+dy;
8864 left_x(p)=x_coord(p)-dx;
8865 left_y(p)=y_coord(p)-dy;
8866 left_type(p)=mp_explicit;
8867 right_type(p)=mp_explicit;
8868 originator(p)=mp_program_code
8871 fraction half_cos[8]; /* ${1\over2}\cos(45k)$ */
8872 fraction d_cos[8]; /* a magic constant times $\cos(45k)$ */
8874 @ The magic constant for |d_cos| is the distance between $({1\over2},0)$ and
8875 $({1\over4}\sqrt2,{1\over4}\sqrt2)$ times the result of the |velocity|
8876 function for $\theta=\phi=22.5^\circ$. This comes out to be
8877 $$ d = {\sqrt{2-\sqrt2}\over 3+3\cos22.5^\circ}
8878 \approx 0.132608244919772.
8882 mp->half_cos[0]=fraction_half;
8883 mp->half_cos[1]=94906266; /* $2^{26}\sqrt2\approx94906265.62$ */
8885 mp->d_cos[0]=35596755; /* $2^{28}d\approx35596754.69$ */
8886 mp->d_cos[1]=25170707; /* $2^{27}\sqrt2\,d\approx25170706.63$ */
8888 for (k=3;k<= 4;k++ ) {
8889 mp->half_cos[k]=-mp->half_cos[4-k];
8890 mp->d_cos[k]=-mp->d_cos[4-k];
8892 for (k=5;k<= 7;k++ ) {
8893 mp->half_cos[k]=mp->half_cos[8-k];
8894 mp->d_cos[k]=mp->d_cos[8-k];
8897 @ The |convex_hull| function forces a pen polygon to be convex when it is
8898 returned by |make_pen| and after any subsequent transformation where rounding
8899 error might allow the convexity to be lost.
8900 The convex hull algorithm used here is described by F.~P. Preparata and
8901 M.~I. Shamos [{\sl Computational Geometry}, Springer-Verlag, 1985].
8903 @<Declare a function called |convex_hull|@>=
8904 @<Declare a procedure called |move_knot|@>;
8905 pointer mp_convex_hull (MP mp,pointer h) { /* Make a polygonal pen convex */
8906 pointer l,r; /* the leftmost and rightmost knots */
8907 pointer p,q; /* knots being scanned */
8908 pointer s; /* the starting point for an upcoming scan */
8909 scaled dx,dy; /* a temporary pointer */
8910 if ( pen_is_elliptical(h) ) {
8913 @<Set |l| to the leftmost knot in polygon~|h|@>;
8914 @<Set |r| to the rightmost knot in polygon~|h|@>;
8917 @<Find any knots on the path from |l| to |r| above the |l|-|r| line and
8918 move them past~|r|@>;
8919 @<Find any knots on the path from |s| to |l| below the |l|-|r| line and
8920 move them past~|l|@>;
8921 @<Sort the path from |l| to |r| by increasing $x$@>;
8922 @<Sort the path from |r| to |l| by decreasing $x$@>;
8925 @<Do a Gramm scan and remove vertices where there is no left turn@>;
8931 @ All comparisons are done primarily on $x$ and secondarily on $y$.
8933 @<Set |l| to the leftmost knot in polygon~|h|@>=
8937 if ( x_coord(p)<=x_coord(l) )
8938 if ( (x_coord(p)<x_coord(l)) || (y_coord(p)<y_coord(l)) )
8943 @ @<Set |r| to the rightmost knot in polygon~|h|@>=
8947 if ( x_coord(p)>=x_coord(r) )
8948 if ( (x_coord(p)>x_coord(r)) || (y_coord(p)>y_coord(r)) )
8953 @ @<Find any knots on the path from |l| to |r| above the |l|-|r| line...@>=
8954 dx=x_coord(r)-x_coord(l);
8955 dy=y_coord(r)-y_coord(l);
8959 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))>0 )
8960 mp_move_knot(mp, p, r);
8964 @ The |move_knot| procedure removes |p| from a doubly linked list and inserts
8967 @ @<Declare a procedure called |move_knot|@>=
8968 void mp_move_knot (MP mp,pointer p, pointer q) {
8969 link(knil(p))=link(p);
8970 knil(link(p))=knil(p);
8977 @ @<Find any knots on the path from |s| to |l| below the |l|-|r| line...@>=
8981 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))<0 )
8982 mp_move_knot(mp, p,l);
8986 @ The list is likely to be in order already so we just do linear insertions.
8987 Secondary comparisons on $y$ ensure that the sort is consistent with the
8988 choice of |l| and |r|.
8990 @<Sort the path from |l| to |r| by increasing $x$@>=
8994 while ( x_coord(q)>x_coord(p) ) q=knil(q);
8995 while ( x_coord(q)==x_coord(p) ) {
8996 if ( y_coord(q)>y_coord(p) ) q=knil(q); else break;
8998 if ( q==knil(p) ) p=link(p);
8999 else { p=link(p); mp_move_knot(mp, knil(p),q); };
9002 @ @<Sort the path from |r| to |l| by decreasing $x$@>=
9006 while ( x_coord(q)<x_coord(p) ) q=knil(q);
9007 while ( x_coord(q)==x_coord(p) ) {
9008 if ( y_coord(q)<y_coord(p) ) q=knil(q); else break;
9010 if ( q==knil(p) ) p=link(p);
9011 else { p=link(p); mp_move_knot(mp, knil(p),q); };
9014 @ The condition involving |ab_vs_cd| tests if there is not a left turn
9015 at knot |q|. There usually will be a left turn so we streamline the case
9016 where the |then| clause is not executed.
9018 @<Do a Gramm scan and remove vertices where there...@>=
9022 dx=x_coord(q)-x_coord(p);
9023 dy=y_coord(q)-y_coord(p);
9027 if ( mp_ab_vs_cd(mp, dx,y_coord(q)-y_coord(p),dy,x_coord(q)-x_coord(p))<=0 ) {
9028 @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>;
9033 @ @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>=
9036 mp_free_node(mp, p,knot_node_size);
9037 link(s)=q; knil(q)=s;
9039 else { p=knil(s); q=s; };
9042 @ The |find_offset| procedure sets global variables |(cur_x,cur_y)| to the
9043 offset associated with the given direction |(x,y)|. If two different offsets
9044 apply, it chooses one of them.
9047 void mp_find_offset (MP mp,scaled x, scaled y, pointer h) {
9048 pointer p,q; /* consecutive knots */
9050 /* the transformation matrix for an elliptical pen */
9051 fraction xx,yy; /* untransformed offset for an elliptical pen */
9052 fraction d; /* a temporary register */
9053 if ( pen_is_elliptical(h) ) {
9054 @<Find the offset for |(x,y)| on the elliptical pen~|h|@>
9059 } while (!(mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)>=0));
9062 } while (!(mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)<=0));
9063 mp->cur_x=x_coord(p);
9064 mp->cur_y=y_coord(p);
9070 scaled cur_y; /* all-purpose return value registers */
9072 @ @<Find the offset for |(x,y)| on the elliptical pen~|h|@>=
9073 if ( (x==0) && (y==0) ) {
9074 mp->cur_x=x_coord(h); mp->cur_y=y_coord(h);
9076 @<Find the non-constant part of the transformation for |h|@>;
9077 while ( (abs(x)<fraction_half) && (abs(y)<fraction_half) ){
9080 @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the
9081 untransformed version of |(x,y)|@>;
9082 mp->cur_x=x_coord(h)+mp_take_fraction(mp, xx,wx)+mp_take_fraction(mp, yy,hx);
9083 mp->cur_y=y_coord(h)+mp_take_fraction(mp, xx,wy)+mp_take_fraction(mp, yy,hy);
9086 @ @<Find the non-constant part of the transformation for |h|@>=
9087 wx=left_x(h)-x_coord(h);
9088 wy=left_y(h)-y_coord(h);
9089 hx=right_x(h)-x_coord(h);
9090 hy=right_y(h)-y_coord(h)
9092 @ @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the...@>=
9093 yy=-(mp_take_fraction(mp, x,hy)+mp_take_fraction(mp, y,-hx));
9094 xx=mp_take_fraction(mp, x,-wy)+mp_take_fraction(mp, y,wx);
9095 d=mp_pyth_add(mp, xx,yy);
9097 xx=half(mp_make_fraction(mp, xx,d));
9098 yy=half(mp_make_fraction(mp, yy,d));
9101 @ Finding the bounding box of a pen is easy except if the pen is elliptical.
9102 But we can handle that case by just calling |find_offset| twice. The answer
9103 is stored in the global variables |minx|, |maxx|, |miny|, and |maxy|.
9106 void mp_pen_bbox (MP mp,pointer h) {
9107 pointer p; /* for scanning the knot list */
9108 if ( pen_is_elliptical(h) ) {
9109 @<Find the bounding box of an elliptical pen@>;
9111 minx=x_coord(h); maxx=minx;
9112 miny=y_coord(h); maxy=miny;
9115 if ( x_coord(p)<minx ) minx=x_coord(p);
9116 if ( y_coord(p)<miny ) miny=y_coord(p);
9117 if ( x_coord(p)>maxx ) maxx=x_coord(p);
9118 if ( y_coord(p)>maxy ) maxy=y_coord(p);
9124 @ @<Find the bounding box of an elliptical pen@>=
9126 mp_find_offset(mp, 0,fraction_one,h);
9128 minx=2*x_coord(h)-mp->cur_x;
9129 mp_find_offset(mp, -fraction_one,0,h);
9131 miny=2*y_coord(h)-mp->cur_y;
9134 @* \[21] Edge structures.
9135 Now we come to \MP's internal scheme for representing pictures.
9136 The representation is very different from \MF's edge structures
9137 because \MP\ pictures contain \ps\ graphics objects instead of pixel
9138 images. However, the basic idea is somewhat similar in that shapes
9139 are represented via their boundaries.
9141 The main purpose of edge structures is to keep track of graphical objects
9142 until it is time to translate them into \ps. Since \MP\ does not need to
9143 know anything about an edge structure other than how to translate it into
9144 \ps\ and how to find its bounding box, edge structures can be just linked
9145 lists of graphical objects. \MP\ has no easy way to determine whether
9146 two such objects overlap, but it suffices to draw the first one first and
9147 let the second one overwrite it if necessary.
9150 enum mp_graphical_object_code {
9151 @<Graphical object codes@>
9154 @ Let's consider the types of graphical objects one at a time.
9155 First of all, a filled contour is represented by a eight-word node. The first
9156 word contains |type| and |link| fields, and the next six words contain a
9157 pointer to a cyclic path and the value to use for \ps' \&{currentrgbcolor}
9158 parameter. If a pen is used for filling |pen_p|, |ljoin_val| and |miterlim_val|
9159 give the relevant information.
9161 @d path_p(A) link((A)+1)
9162 /* a pointer to the path that needs filling */
9163 @d pen_p(A) info((A)+1)
9164 /* a pointer to the pen to fill or stroke with */
9165 @d color_model(A) type((A)+2) /* the color model */
9166 @d obj_red_loc(A) ((A)+3) /* the first of three locations for the color */
9167 @d obj_cyan_loc obj_red_loc /* the first of four locations for the color */
9168 @d obj_grey_loc obj_red_loc /* the location for the color */
9169 @d red_val(A) mp->mem[(A)+3].sc
9170 /* the red component of the color in the range $0\ldots1$ */
9173 @d green_val(A) mp->mem[(A)+4].sc
9174 /* the green component of the color in the range $0\ldots1$ */
9175 @d magenta_val green_val
9176 @d blue_val(A) mp->mem[(A)+5].sc
9177 /* the blue component of the color in the range $0\ldots1$ */
9178 @d yellow_val blue_val
9179 @d black_val(A) mp->mem[(A)+6].sc
9180 /* the blue component of the color in the range $0\ldots1$ */
9181 @d ljoin_val(A) name_type((A)) /* the value of \&{linejoin} */
9182 @:mp_linejoin_}{\&{linejoin} primitive@>
9183 @d miterlim_val(A) mp->mem[(A)+7].sc /* the value of \&{miterlimit} */
9184 @:mp_miterlimit_}{\&{miterlimit} primitive@>
9185 @d obj_color_part(A) mp->mem[(A)+3-red_part].sc
9186 /* interpret an object pointer that has been offset by |red_part..blue_part| */
9187 @d pre_script(A) mp->mem[(A)+8].hh.lh
9188 @d post_script(A) mp->mem[(A)+8].hh.rh
9191 @ @<Graphical object codes@>=
9195 pointer mp_new_fill_node (MP mp,pointer p) {
9196 /* make a fill node for cyclic path |p| and color black */
9197 pointer t; /* the new node */
9198 t=mp_get_node(mp, fill_node_size);
9199 type(t)=mp_fill_code;
9201 pen_p(t)=null; /* |null| means don't use a pen */
9206 color_model(t)=mp_uninitialized_model;
9208 post_script(t)=null;
9209 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9213 @ @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>=
9214 if ( mp->internal[mp_linejoin]>unity ) ljoin_val(t)=2;
9215 else if ( mp->internal[mp_linejoin]>0 ) ljoin_val(t)=1;
9216 else ljoin_val(t)=0;
9217 if ( mp->internal[mp_miterlimit]<unity )
9218 miterlim_val(t)=unity;
9220 miterlim_val(t)=mp->internal[mp_miterlimit]
9222 @ A stroked path is represented by an eight-word node that is like a filled
9223 contour node except that it contains the current \&{linecap} value, a scale
9224 factor for the dash pattern, and a pointer that is non-null if the stroke
9225 is to be dashed. The purpose of the scale factor is to allow a picture to
9226 be transformed without touching the picture that |dash_p| points to.
9228 @d dash_p(A) link((A)+9)
9229 /* a pointer to the edge structure that gives the dash pattern */
9230 @d lcap_val(A) type((A)+9)
9231 /* the value of \&{linecap} */
9232 @:mp_linecap_}{\&{linecap} primitive@>
9233 @d dash_scale(A) mp->mem[(A)+10].sc /* dash lengths are scaled by this factor */
9234 @d stroked_node_size 11
9236 @ @<Graphical object codes@>=
9240 pointer mp_new_stroked_node (MP mp,pointer p) {
9241 /* make a stroked node for path |p| with |pen_p(p)| temporarily |null| */
9242 pointer t; /* the new node */
9243 t=mp_get_node(mp, stroked_node_size);
9244 type(t)=mp_stroked_code;
9245 path_p(t)=p; pen_p(t)=null;
9247 dash_scale(t)=unity;
9252 color_model(t)=mp_uninitialized_model;
9254 post_script(t)=null;
9255 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9256 if ( mp->internal[mp_linecap]>unity ) lcap_val(t)=2;
9257 else if ( mp->internal[mp_linecap]>0 ) lcap_val(t)=1;
9262 @ When a dashed line is computed in a transformed coordinate system, the dash
9263 lengths get scaled like the pen shape and we need to compensate for this. Since
9264 there is no unique scale factor for an arbitrary transformation, we use the
9265 the square root of the determinant. The properties of the determinant make it
9266 easier to maintain the |dash_scale|. The computation is fairly straight-forward
9267 except for the initialization of the scale factor |s|. The factor of 64 is
9268 needed because |square_rt| scales its result by $2^8$ while we need $2^{14}$
9269 to counteract the effect of |take_fraction|.
9271 @<Declare subroutines needed by |print_edges|@>=
9272 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) {
9273 scaled maxabs; /* $max(|a|,|b|,|c|,|d|)$ */
9274 integer s; /* amount by which the result of |square_rt| needs to be scaled */
9275 @<Initialize |maxabs|@>;
9277 while ( (maxabs<fraction_one) && (s>1) ){
9278 a+=a; b+=b; c+=c; d+=d;
9279 maxabs+=maxabs; s=halfp(s);
9281 return s*mp_square_rt(mp, abs(mp_take_fraction(mp, a,d)-mp_take_fraction(mp, b,c)));
9284 scaled mp_get_pen_scale (MP mp,pointer p) {
9285 return mp_sqrt_det(mp,
9286 left_x(p)-x_coord(p), right_x(p)-x_coord(p),
9287 left_y(p)-y_coord(p), right_y(p)-y_coord(p));
9290 @ @<Internal library ...@>=
9291 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) ;
9294 @ @<Initialize |maxabs|@>=
9296 if ( abs(b)>maxabs ) maxabs=abs(b);
9297 if ( abs(c)>maxabs ) maxabs=abs(c);
9298 if ( abs(d)>maxabs ) maxabs=abs(d)
9300 @ When a picture contains text, this is represented by a fourteen-word node
9301 where the color information and |type| and |link| fields are augmented by
9302 additional fields that describe the text and how it is transformed.
9303 The |path_p| and |pen_p| pointers are replaced by a number that identifies
9304 the font and a string number that gives the text to be displayed.
9305 The |width|, |height|, and |depth| fields
9306 give the dimensions of the text at its design size, and the remaining six
9307 words give a transformation to be applied to the text. The |new_text_node|
9308 function initializes everything to default values so that the text comes out
9309 black with its reference point at the origin.
9311 @d text_p(A) link((A)+1) /* a string pointer for the text to display */
9312 @d font_n(A) info((A)+1) /* the font number */
9313 @d width_val(A) mp->mem[(A)+7].sc /* unscaled width of the text */
9314 @d height_val(A) mp->mem[(A)+9].sc /* unscaled height of the text */
9315 @d depth_val(A) mp->mem[(A)+10].sc /* unscaled depth of the text */
9316 @d text_tx_loc(A) ((A)+11)
9317 /* the first of six locations for transformation parameters */
9318 @d tx_val(A) mp->mem[(A)+11].sc /* $x$ shift amount */
9319 @d ty_val(A) mp->mem[(A)+12].sc /* $y$ shift amount */
9320 @d txx_val(A) mp->mem[(A)+13].sc /* |txx| transformation parameter */
9321 @d txy_val(A) mp->mem[(A)+14].sc /* |txy| transformation parameter */
9322 @d tyx_val(A) mp->mem[(A)+15].sc /* |tyx| transformation parameter */
9323 @d tyy_val(A) mp->mem[(A)+16].sc /* |tyy| transformation parameter */
9324 @d text_trans_part(A) mp->mem[(A)+11-x_part].sc
9325 /* interpret a text node pointer that has been offset by |x_part..yy_part| */
9326 @d text_node_size 17
9328 @ @<Graphical object codes@>=
9331 @ @c @<Declare text measuring subroutines@>;
9332 pointer mp_new_text_node (MP mp,char *f,str_number s) {
9333 /* make a text node for font |f| and text string |s| */
9334 pointer t; /* the new node */
9335 t=mp_get_node(mp, text_node_size);
9336 type(t)=mp_text_code;
9338 font_n(t)=mp_find_font(mp, f); /* this identifies the font */
9343 color_model(t)=mp_uninitialized_model;
9345 post_script(t)=null;
9346 tx_val(t)=0; ty_val(t)=0;
9347 txx_val(t)=unity; txy_val(t)=0;
9348 tyx_val(t)=0; tyy_val(t)=unity;
9349 mp_set_text_box(mp, t); /* this finds the bounding box */
9353 @ The last two types of graphical objects that can occur in an edge structure
9354 are clipping paths and \&{setbounds} paths. These are slightly more difficult
9355 @:set_bounds_}{\&{setbounds} primitive@>
9356 to implement because we must keep track of exactly what is being clipped or
9357 bounded when pictures get merged together. For this reason, each clipping or
9358 \&{setbounds} operation is represented by a pair of nodes: first comes a
9359 two-word node whose |path_p| gives the relevant path, then there is the list
9360 of objects to clip or bound followed by a two-word node whose second word is
9363 Using at least two words for each graphical object node allows them all to be
9364 allocated and deallocated similarly with a global array |gr_object_size| to
9365 give the size in words for each object type.
9367 @d start_clip_size 2
9368 @d start_bounds_size 2
9369 @d stop_clip_size 2 /* the second word is not used here */
9370 @d stop_bounds_size 2 /* the second word is not used here */
9372 @d stop_type(A) ((A)+2)
9373 /* matching |type| for |start_clip_code| or |start_bounds_code| */
9374 @d has_color(A) (type((A))<mp_start_clip_code)
9375 /* does a graphical object have color fields? */
9376 @d has_pen(A) (type((A))<mp_text_code)
9377 /* does a graphical object have a |pen_p| field? */
9378 @d is_start_or_stop(A) (type((A))>=mp_start_clip_code)
9379 @d is_stop(A) (type((A))>=mp_stop_clip_code)
9381 @ @<Graphical object codes@>=
9382 mp_start_clip_code=4, /* |type| of a node that starts clipping */
9383 mp_start_bounds_code=5, /* |type| of a node that gives a \&{setbounds} path */
9384 mp_stop_clip_code=6, /* |type| of a node that stops clipping */
9385 mp_stop_bounds_code=7, /* |type| of a node that stops \&{setbounds} */
9388 pointer mp_new_bounds_node (MP mp,pointer p, small_number c) {
9389 /* make a node of type |c| where |p| is the clipping or \&{setbounds} path */
9390 pointer t; /* the new node */
9391 t=mp_get_node(mp, mp->gr_object_size[c]);
9397 @ We need an array to keep track of the sizes of graphical objects.
9400 small_number gr_object_size[mp_stop_bounds_code+1];
9403 mp->gr_object_size[mp_fill_code]=fill_node_size;
9404 mp->gr_object_size[mp_stroked_code]=stroked_node_size;
9405 mp->gr_object_size[mp_text_code]=text_node_size;
9406 mp->gr_object_size[mp_start_clip_code]=start_clip_size;
9407 mp->gr_object_size[mp_stop_clip_code]=stop_clip_size;
9408 mp->gr_object_size[mp_start_bounds_code]=start_bounds_size;
9409 mp->gr_object_size[mp_stop_bounds_code]=stop_bounds_size;
9411 @ All the essential information in an edge structure is encoded as a linked list
9412 of graphical objects as we have just seen, but it is helpful to add some
9413 redundant information. A single edge structure might be used as a dash pattern
9414 many times, and it would be nice to avoid scanning the same structure
9415 repeatedly. Thus, an edge structure known to be a suitable dash pattern
9416 has a header that gives a list of dashes in a sorted order designed for rapid
9417 translation into \ps.
9419 Each dash is represented by a three-word node containing the initial and final
9420 $x$~coordinates as well as the usual |link| field. The |link| fields points to
9421 the dash node with the next higher $x$-coordinates and the final link points
9422 to a special location called |null_dash|. (There should be no overlap between
9423 dashes). Since the $y$~coordinate of the dash pattern is needed to determine
9424 the period of repetition, this needs to be stored in the edge header along
9425 with a pointer to the list of dash nodes.
9427 @d start_x(A) mp->mem[(A)+1].sc /* the starting $x$~coordinate in a dash node */
9428 @d stop_x(A) mp->mem[(A)+2].sc /* the ending $x$~coordinate in a dash node */
9431 /* in an edge header this points to the first dash node */
9432 @d dash_y(A) mp->mem[(A)+1].sc /* $y$ value for the dash list in an edge header */
9434 @ It is also convenient for an edge header to contain the bounding
9435 box information needed by the \&{llcorner} and \&{urcorner} operators
9436 so that this does not have to be recomputed unnecessarily. This is done by
9437 adding fields for the $x$~and $y$ extremes as well as a pointer that indicates
9438 how far the bounding box computation has gotten. Thus if the user asks for
9439 the bounding box and then adds some more text to the picture before asking
9440 for more bounding box information, the second computation need only look at
9441 the additional text.
9443 When the bounding box has not been computed, the |bblast| pointer points
9444 to a dummy link at the head of the graphical object list while the |minx_val|
9445 and |miny_val| fields contain |el_gordo| and the |maxx_val| and |maxy_val|
9446 fields contain |-el_gordo|.
9448 Since the bounding box of pictures containing objects of type
9449 |mp_start_bounds_code| depends on the value of \&{truecorners}, the bounding box
9450 @:mp_true_corners_}{\&{truecorners} primitive@>
9451 data might not be valid for all values of this parameter. Hence, the |bbtype|
9452 field is needed to keep track of this.
9454 @d minx_val(A) mp->mem[(A)+2].sc
9455 @d miny_val(A) mp->mem[(A)+3].sc
9456 @d maxx_val(A) mp->mem[(A)+4].sc
9457 @d maxy_val(A) mp->mem[(A)+5].sc
9458 @d bblast(A) link((A)+6) /* last item considered in bounding box computation */
9459 @d bbtype(A) info((A)+6) /* tells how bounding box data depends on \&{truecorners} */
9460 @d dummy_loc(A) ((A)+7) /* where the object list begins in an edge header */
9462 /* |bbtype| value when bounding box data is valid for all \&{truecorners} values */
9464 /* |bbtype| value when bounding box data is for \&{truecorners}${}\le 0$ */
9466 /* |bbtype| value when bounding box data is for \&{truecorners}${}>0$ */
9469 void mp_init_bbox (MP mp,pointer h) {
9470 /* Initialize the bounding box information in edge structure |h| */
9471 bblast(h)=dummy_loc(h);
9472 bbtype(h)=no_bounds;
9473 minx_val(h)=el_gordo;
9474 miny_val(h)=el_gordo;
9475 maxx_val(h)=-el_gordo;
9476 maxy_val(h)=-el_gordo;
9479 @ The only other entries in an edge header are a reference count in the first
9480 word and a pointer to the tail of the object list in the last word.
9482 @d obj_tail(A) info((A)+7) /* points to the last entry in the object list */
9483 @d edge_header_size 8
9486 void mp_init_edges (MP mp,pointer h) {
9487 /* initialize an edge header to null values */
9488 dash_list(h)=null_dash;
9489 obj_tail(h)=dummy_loc(h);
9490 link(dummy_loc(h))=null;
9492 mp_init_bbox(mp, h);
9495 @ Here is how edge structures are deleted. The process can be recursive because
9496 of the need to dereference edge structures that are used as dash patterns.
9499 @d add_edge_ref(A) incr(ref_count(A))
9500 @d delete_edge_ref(A) {
9501 if ( ref_count((A))==null )
9502 mp_toss_edges(mp, A);
9507 @<Declare the recycling subroutines@>=
9508 void mp_flush_dash_list (MP mp,pointer h);
9509 pointer mp_toss_gr_object (MP mp,pointer p) ;
9510 void mp_toss_edges (MP mp,pointer h) ;
9512 @ @c void mp_toss_edges (MP mp,pointer h) {
9513 pointer p,q; /* pointers that scan the list being recycled */
9514 pointer r; /* an edge structure that object |p| refers to */
9515 mp_flush_dash_list(mp, h);
9516 q=link(dummy_loc(h));
9517 while ( (q!=null) ) {
9519 r=mp_toss_gr_object(mp, p);
9520 if ( r!=null ) delete_edge_ref(r);
9522 mp_free_node(mp, h,edge_header_size);
9524 void mp_flush_dash_list (MP mp,pointer h) {
9525 pointer p,q; /* pointers that scan the list being recycled */
9527 while ( q!=null_dash ) {
9529 mp_free_node(mp, p,dash_node_size);
9531 dash_list(h)=null_dash;
9533 pointer mp_toss_gr_object (MP mp,pointer p) {
9534 /* returns an edge structure that needs to be dereferenced */
9535 pointer e; /* the edge structure to return */
9537 @<Prepare to recycle graphical object |p|@>;
9538 mp_free_node(mp, p,mp->gr_object_size[type(p)]);
9542 @ @<Prepare to recycle graphical object |p|@>=
9545 mp_toss_knot_list(mp, path_p(p));
9546 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9547 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9548 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9550 case mp_stroked_code:
9551 mp_toss_knot_list(mp, path_p(p));
9552 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9553 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9554 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9558 delete_str_ref(text_p(p));
9559 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9560 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9562 case mp_start_clip_code:
9563 case mp_start_bounds_code:
9564 mp_toss_knot_list(mp, path_p(p));
9566 case mp_stop_clip_code:
9567 case mp_stop_bounds_code:
9569 } /* there are no other cases */
9571 @ If we use |add_edge_ref| to ``copy'' edge structures, the real copying needs
9572 to be done before making a significant change to an edge structure. Much of
9573 the work is done in a separate routine |copy_objects| that copies a list of
9574 graphical objects into a new edge header.
9576 @c @<Declare a function called |copy_objects|@>;
9577 pointer mp_private_edges (MP mp,pointer h) {
9578 /* make a private copy of the edge structure headed by |h| */
9579 pointer hh; /* the edge header for the new copy */
9580 pointer p,pp; /* pointers for copying the dash list */
9581 if ( ref_count(h)==null ) {
9585 hh=mp_copy_objects(mp, link(dummy_loc(h)),null);
9586 @<Copy the dash list from |h| to |hh|@>;
9587 @<Copy the bounding box information from |h| to |hh| and make |bblast(hh)|
9588 point into the new object list@>;
9593 @ Here we use the fact that |dash_list(hh)=link(hh)|.
9594 @^data structure assumptions@>
9596 @<Copy the dash list from |h| to |hh|@>=
9597 pp=hh; p=dash_list(h);
9598 while ( (p!=null_dash) ) {
9599 link(pp)=mp_get_node(mp, dash_node_size);
9601 start_x(pp)=start_x(p);
9602 stop_x(pp)=stop_x(p);
9606 dash_y(hh)=dash_y(h)
9609 @ |h| is an edge structure
9611 @d gr_start_x(A) (A)->start_x_field
9612 @d gr_stop_x(A) (A)->stop_x_field
9613 @d gr_dash_link(A) (A)->next_field
9615 @d gr_dash_list(A) (A)->list_field
9616 @d gr_dash_y(A) (A)->y_field
9619 struct mp_dash_list *mp_export_dashes (MP mp, pointer h) {
9620 struct mp_dash_list *dl;
9621 struct mp_dash_item *dh, *di;
9623 if (h==null || dash_list(h)==null_dash)
9626 dl = mp_xmalloc(mp,1,sizeof(struct mp_dash_list));
9627 gr_dash_list(dl) = NULL;
9628 gr_dash_y(dl) = dash_y(h);
9630 while (p != null_dash) {
9631 di=mp_xmalloc(mp,1,sizeof(struct mp_dash_item));
9632 gr_dash_link(di) = NULL;
9633 gr_start_x(di) = start_x(p);
9634 gr_stop_x(di) = stop_x(p);
9636 gr_dash_list(dl) = di;
9638 gr_dash_link(dh) = di;
9647 @ @<Copy the bounding box information from |h| to |hh|...@>=
9648 minx_val(hh)=minx_val(h);
9649 miny_val(hh)=miny_val(h);
9650 maxx_val(hh)=maxx_val(h);
9651 maxy_val(hh)=maxy_val(h);
9652 bbtype(hh)=bbtype(h);
9653 p=dummy_loc(h); pp=dummy_loc(hh);
9654 while ((p!=bblast(h)) ) {
9655 if ( p==null ) mp_confusion(mp, "bblast");
9656 @:this can't happen bblast}{\quad bblast@>
9657 p=link(p); pp=link(pp);
9661 @ Here is the promised routine for copying graphical objects into a new edge
9662 structure. It starts copying at object~|p| and stops just before object~|q|.
9663 If |q| is null, it copies the entire sublist headed at |p|. The resulting edge
9664 structure requires further initialization by |init_bbox|.
9666 @<Declare a function called |copy_objects|@>=
9667 pointer mp_copy_objects (MP mp, pointer p, pointer q) {
9668 pointer hh; /* the new edge header */
9669 pointer pp; /* the last newly copied object */
9670 small_number k; /* temporary register */
9671 hh=mp_get_node(mp, edge_header_size);
9672 dash_list(hh)=null_dash;
9676 @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>;
9683 @ @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>=
9684 { k=mp->gr_object_size[type(p)];
9685 link(pp)=mp_get_node(mp, k);
9687 while ( (k>0) ) { decr(k); mp->mem[pp+k]=mp->mem[p+k]; };
9688 @<Fix anything in graphical object |pp| that should differ from the
9689 corresponding field in |p|@>;
9693 @ @<Fix anything in graphical object |pp| that should differ from the...@>=
9695 case mp_start_clip_code:
9696 case mp_start_bounds_code:
9697 path_p(pp)=mp_copy_path(mp, path_p(p));
9700 path_p(pp)=mp_copy_path(mp, path_p(p));
9701 if ( pen_p(p)!=null ) pen_p(pp)=copy_pen(pen_p(p));
9703 case mp_stroked_code:
9704 path_p(pp)=mp_copy_path(mp, path_p(p));
9705 pen_p(pp)=copy_pen(pen_p(p));
9706 if ( dash_p(p)!=null ) add_edge_ref(dash_p(pp));
9709 add_str_ref(text_p(pp));
9711 case mp_stop_clip_code:
9712 case mp_stop_bounds_code:
9714 } /* there are no other cases */
9716 @ Here is one way to find an acceptable value for the second argument to
9717 |copy_objects|. Given a non-null graphical object list, |skip_1component|
9718 skips past one picture component, where a ``picture component'' is a single
9719 graphical object, or a start bounds or start clip object and everything up
9720 through the matching stop bounds or stop clip object. The macro version avoids
9721 procedure call overhead and error handling: |skip_component(p)(e)| advances |p|
9722 unless |p| points to a stop bounds or stop clip node, in which case it executes
9725 @d skip_component(A)
9726 if ( ! is_start_or_stop((A)) ) (A)=link((A));
9727 else if ( ! is_stop((A)) ) (A)=mp_skip_1component(mp, (A));
9731 pointer mp_skip_1component (MP mp,pointer p) {
9732 integer lev; /* current nesting level */
9735 if ( is_start_or_stop(p) ) {
9736 if ( is_stop(p) ) decr(lev); else incr(lev);
9743 @ Here is a diagnostic routine for printing an edge structure in symbolic form.
9745 @<Declare subroutines for printing expressions@>=
9746 @<Declare subroutines needed by |print_edges|@>;
9747 void mp_print_edges (MP mp,pointer h, char *s, boolean nuline) {
9748 pointer p; /* a graphical object to be printed */
9749 pointer hh,pp; /* temporary pointers */
9750 scaled scf; /* a scale factor for the dash pattern */
9751 boolean ok_to_dash; /* |false| for polygonal pen strokes */
9752 mp_print_diagnostic(mp, "Edge structure",s,nuline);
9754 while ( link(p)!=null ) {
9758 @<Cases for printing graphical object node |p|@>;
9760 mp_print(mp, "[unknown object type!]");
9764 mp_print_nl(mp, "End edges");
9765 if ( p!=obj_tail(h) ) mp_print(mp, "?");
9767 mp_end_diagnostic(mp, true);
9770 @ @<Cases for printing graphical object node |p|@>=
9772 mp_print(mp, "Filled contour ");
9773 mp_print_obj_color(mp, p);
9774 mp_print_char(mp, ':'); mp_print_ln(mp);
9775 mp_pr_path(mp, path_p(p)); mp_print_ln(mp);
9776 if ( (pen_p(p)!=null) ) {
9777 @<Print join type for graphical object |p|@>;
9778 mp_print(mp, " with pen"); mp_print_ln(mp);
9779 mp_pr_pen(mp, pen_p(p));
9783 @ @<Print join type for graphical object |p|@>=
9784 switch (ljoin_val(p)) {
9786 mp_print(mp, "mitered joins limited ");
9787 mp_print_scaled(mp, miterlim_val(p));
9790 mp_print(mp, "round joins");
9793 mp_print(mp, "beveled joins");
9796 mp_print(mp, "?? joins");
9801 @ For stroked nodes, we need to print |lcap_val(p)| as well.
9803 @<Print join and cap types for stroked node |p|@>=
9804 switch (lcap_val(p)) {
9805 case 0:mp_print(mp, "butt"); break;
9806 case 1:mp_print(mp, "round"); break;
9807 case 2:mp_print(mp, "square"); break;
9808 default: mp_print(mp, "??"); break;
9811 mp_print(mp, " ends, ");
9812 @<Print join type for graphical object |p|@>
9814 @ Here is a routine that prints the color of a graphical object if it isn't
9815 black (the default color).
9817 @<Declare subroutines needed by |print_edges|@>=
9818 @<Declare a procedure called |print_compact_node|@>;
9819 void mp_print_obj_color (MP mp,pointer p) {
9820 if ( color_model(p)==mp_grey_model ) {
9821 if ( grey_val(p)>0 ) {
9822 mp_print(mp, "greyed ");
9823 mp_print_compact_node(mp, obj_grey_loc(p),1);
9825 } else if ( color_model(p)==mp_cmyk_model ) {
9826 if ( (cyan_val(p)>0) || (magenta_val(p)>0) ||
9827 (yellow_val(p)>0) || (black_val(p)>0) ) {
9828 mp_print(mp, "processcolored ");
9829 mp_print_compact_node(mp, obj_cyan_loc(p),4);
9831 } else if ( color_model(p)==mp_rgb_model ) {
9832 if ( (red_val(p)>0) || (green_val(p)>0) || (blue_val(p)>0) ) {
9833 mp_print(mp, "colored ");
9834 mp_print_compact_node(mp, obj_red_loc(p),3);
9839 @ We also need a procedure for printing consecutive scaled values as if they
9840 were a known big node.
9842 @<Declare a procedure called |print_compact_node|@>=
9843 void mp_print_compact_node (MP mp,pointer p, small_number k) {
9844 pointer q; /* last location to print */
9846 mp_print_char(mp, '(');
9848 mp_print_scaled(mp, mp->mem[p].sc);
9849 if ( p<q ) mp_print_char(mp, ',');
9852 mp_print_char(mp, ')');
9855 @ @<Cases for printing graphical object node |p|@>=
9856 case mp_stroked_code:
9857 mp_print(mp, "Filled pen stroke ");
9858 mp_print_obj_color(mp, p);
9859 mp_print_char(mp, ':'); mp_print_ln(mp);
9860 mp_pr_path(mp, path_p(p));
9861 if ( dash_p(p)!=null ) {
9862 mp_print_nl(mp, "dashed (");
9863 @<Finish printing the dash pattern that |p| refers to@>;
9866 @<Print join and cap types for stroked node |p|@>;
9867 mp_print(mp, " with pen"); mp_print_ln(mp);
9868 if ( pen_p(p)==null ) mp_print(mp, "???"); /* shouldn't happen */
9870 else mp_pr_pen(mp, pen_p(p));
9873 @ Normally, the |dash_list| field in an edge header is set to |null_dash|
9874 when it is not known to define a suitable dash pattern. This is disallowed
9875 here because the |dash_p| field should never point to such an edge header.
9876 Note that memory is allocated for |start_x(null_dash)| and we are free to
9877 give it any convenient value.
9879 @<Finish printing the dash pattern that |p| refers to@>=
9880 ok_to_dash=pen_is_elliptical(pen_p(p));
9881 if ( ! ok_to_dash ) scf=unity; else scf=dash_scale(p);
9884 if ( (pp==null_dash) || (dash_y(hh)<0) ) {
9885 mp_print(mp, " ??");
9886 } else { start_x(null_dash)=start_x(pp)+dash_y(hh);
9887 while ( pp!=null_dash ) {
9888 mp_print(mp, "on ");
9889 mp_print_scaled(mp, mp_take_scaled(mp, stop_x(pp)-start_x(pp),scf));
9890 mp_print(mp, " off ");
9891 mp_print_scaled(mp, mp_take_scaled(mp, start_x(link(pp))-stop_x(pp),scf));
9893 if ( pp!=null_dash ) mp_print_char(mp, ' ');
9895 mp_print(mp, ") shifted ");
9896 mp_print_scaled(mp, -mp_take_scaled(mp, mp_dash_offset(mp, hh),scf));
9897 if ( ! ok_to_dash || (dash_y(hh)==0) ) mp_print(mp, " (this will be ignored)");
9900 @ @<Declare subroutines needed by |print_edges|@>=
9901 scaled mp_dash_offset (MP mp,pointer h) {
9902 scaled x; /* the answer */
9903 if (dash_list(h)==null_dash || dash_y(h)<0) mp_confusion(mp, "dash0");
9904 @:this can't happen dash0}{\quad dash0@>
9905 if ( dash_y(h)==0 ) {
9908 x=-(start_x(dash_list(h)) % dash_y(h));
9909 if ( x<0 ) x=x+dash_y(h);
9914 @ @<Cases for printing graphical object node |p|@>=
9916 mp_print_char(mp, '"'); mp_print_str(mp,text_p(p));
9917 mp_print(mp, "\" infont \""); mp_print(mp, mp->font_name[font_n(p)]);
9918 mp_print_char(mp, '"'); mp_print_ln(mp);
9919 mp_print_obj_color(mp, p);
9920 mp_print(mp, "transformed ");
9921 mp_print_compact_node(mp, text_tx_loc(p),6);
9924 @ @<Cases for printing graphical object node |p|@>=
9925 case mp_start_clip_code:
9926 mp_print(mp, "clipping path:");
9928 mp_pr_path(mp, path_p(p));
9930 case mp_stop_clip_code:
9931 mp_print(mp, "stop clipping");
9934 @ @<Cases for printing graphical object node |p|@>=
9935 case mp_start_bounds_code:
9936 mp_print(mp, "setbounds path:");
9938 mp_pr_path(mp, path_p(p));
9940 case mp_stop_bounds_code:
9941 mp_print(mp, "end of setbounds");
9944 @ To initialize the |dash_list| field in an edge header~|h|, we need a
9945 subroutine that scans an edge structure and tries to interpret it as a dash
9946 pattern. This can only be done when there are no filled regions or clipping
9947 paths and all the pen strokes have the same color. The first step is to let
9948 $y_0$ be the initial $y$~coordinate of the first pen stroke. Then we implicitly
9949 project all the pen stroke paths onto the line $y=y_0$ and require that there
9950 be no retracing. If the resulting paths cover a range of $x$~coordinates of
9951 length $\Delta x$, we set |dash_y(h)| to the length of the dash pattern by
9952 finding the maximum of $\Delta x$ and the absolute value of~$y_0$.
9954 @c @<Declare a procedure called |x_retrace_error|@>;
9955 pointer mp_make_dashes (MP mp,pointer h) { /* returns |h| or |null| */
9956 pointer p; /* this scans the stroked nodes in the object list */
9957 pointer p0; /* if not |null| this points to the first stroked node */
9958 pointer pp,qq,rr; /* pointers into |path_p(p)| */
9959 pointer d,dd; /* pointers used to create the dash list */
9960 @<Other local variables in |make_dashes|@>;
9961 scaled y0=0; /* the initial $y$ coordinate */
9962 if ( dash_list(h)!=null_dash )
9965 p=link(dummy_loc(h));
9967 if ( type(p)!=mp_stroked_code ) {
9968 @<Compain that the edge structure contains a node of the wrong type
9969 and |goto not_found|@>;
9972 if ( p0==null ){ p0=p; y0=y_coord(pp); };
9973 @<Make |d| point to a new dash node created from stroke |p| and path |pp|
9974 or |goto not_found| if there is an error@>;
9975 @<Insert |d| into the dash list and |goto not_found| if there is an error@>;
9978 if ( dash_list(h)==null_dash )
9979 goto NOT_FOUND; /* No error message */
9980 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>;
9981 @<Set |dash_y(h)| and merge the first and last dashes if necessary@>;
9984 @<Flush the dash list, recycle |h| and return |null|@>;
9987 @ @<Compain that the edge structure contains a node of the wrong type...@>=
9989 print_err("Picture is too complicated to use as a dash pattern");
9990 help3("When you say `dashed p', picture p should not contain any")
9991 ("text, filled regions, or clipping paths. This time it did")
9992 ("so I'll just make it a solid line instead.");
9993 mp_put_get_error(mp);
9997 @ A similar error occurs when monotonicity fails.
9999 @<Declare a procedure called |x_retrace_error|@>=
10000 void mp_x_retrace_error (MP mp) {
10001 print_err("Picture is too complicated to use as a dash pattern");
10002 help3("When you say `dashed p', every path in p should be monotone")
10003 ("in x and there must be no overlapping. This failed")
10004 ("so I'll just make it a solid line instead.");
10005 mp_put_get_error(mp);
10008 @ We stash |p| in |info(d)| if |dash_p(p)<>0| so that subsequent processing can
10009 handle the case where the pen stroke |p| is itself dashed.
10011 @<Make |d| point to a new dash node created from stroke |p| and path...@>=
10012 @<Make sure |p| and |p0| are the same color and |goto not_found| if there is
10015 if ( link(pp)!=pp ) {
10017 qq=rr; rr=link(rr);
10018 @<Check for retracing between knots |qq| and |rr| and |goto not_found|
10019 if there is a problem@>;
10020 } while (right_type(rr)!=mp_endpoint);
10022 d=mp_get_node(mp, dash_node_size);
10023 if ( dash_p(p)==0 ) info(d)=0; else info(d)=p;
10024 if ( x_coord(pp)<x_coord(rr) ) {
10025 start_x(d)=x_coord(pp);
10026 stop_x(d)=x_coord(rr);
10028 start_x(d)=x_coord(rr);
10029 stop_x(d)=x_coord(pp);
10032 @ We also need to check for the case where the segment from |qq| to |rr| is
10033 monotone in $x$ but is reversed relative to the path from |pp| to |qq|.
10035 @<Check for retracing between knots |qq| and |rr| and |goto not_found|...@>=
10040 if ( (x0>x1) || (x1>x2) || (x2>x3) ) {
10041 if ( (x0<x1) || (x1<x2) || (x2<x3) ) {
10042 if ( mp_ab_vs_cd(mp, x2-x1,x2-x1,x1-x0,x3-x2)>0 ) {
10043 mp_x_retrace_error(mp); goto NOT_FOUND;
10047 if ( (x_coord(pp)>x0) || (x0>x3) ) {
10048 if ( (x_coord(pp)<x0) || (x0<x3) ) {
10049 mp_x_retrace_error(mp); goto NOT_FOUND;
10053 @ @<Other local variables in |make_dashes|@>=
10054 scaled x0,x1,x2,x3; /* $x$ coordinates of the segment from |qq| to |rr| */
10056 @ @<Make sure |p| and |p0| are the same color and |goto not_found|...@>=
10057 if ( (red_val(p)!=red_val(p0)) || (black_val(p)!=black_val(p0)) ||
10058 (green_val(p)!=green_val(p0)) || (blue_val(p)!=blue_val(p0)) ) {
10059 print_err("Picture is too complicated to use as a dash pattern");
10060 help3("When you say `dashed p', everything in picture p should")
10061 ("be the same color. I can\'t handle your color changes")
10062 ("so I'll just make it a solid line instead.");
10063 mp_put_get_error(mp);
10067 @ @<Insert |d| into the dash list and |goto not_found| if there is an error@>=
10068 start_x(null_dash)=stop_x(d);
10069 dd=h; /* this makes |link(dd)=dash_list(h)| */
10070 while ( start_x(link(dd))<stop_x(d) )
10073 if ( (stop_x(dd)>start_x(d)) )
10074 { mp_x_retrace_error(mp); goto NOT_FOUND; };
10079 @ @<Set |dash_y(h)| and merge the first and last dashes if necessary@>=
10081 while ( (link(d)!=null_dash) )
10084 dash_y(h)=stop_x(d)-start_x(dd);
10085 if ( abs(y0)>dash_y(h) ) {
10087 } else if ( d!=dd ) {
10088 dash_list(h)=link(dd);
10089 stop_x(d)=stop_x(dd)+dash_y(h);
10090 mp_free_node(mp, dd,dash_node_size);
10093 @ We get here when the argument is a null picture or when there is an error.
10094 Recovering from an error involves making |dash_list(h)| empty to indicate
10095 that |h| is not known to be a valid dash pattern. We also dereference |h|
10096 since it is not being used for the return value.
10098 @<Flush the dash list, recycle |h| and return |null|@>=
10099 mp_flush_dash_list(mp, h);
10100 delete_edge_ref(h);
10103 @ Having carefully saved the dashed stroked nodes in the
10104 corresponding dash nodes, we must be prepared to break up these dashes into
10107 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>=
10108 d=h; /* now |link(d)=dash_list(h)| */
10109 while ( link(d)!=null_dash ) {
10115 hsf=dash_scale(ds);
10116 if ( (hh==null) ) mp_confusion(mp, "dash1");
10117 @:this can't happen dash0}{\quad dash1@>
10118 if ( dash_y(hh)==0 ) {
10121 if ( dash_list(hh)==null ) mp_confusion(mp, "dash1");
10122 @:this can't happen dash0}{\quad dash1@>
10123 @<Replace |link(d)| by a dashed version as determined by edge header
10124 |hh| and scale factor |ds|@>;
10129 @ @<Other local variables in |make_dashes|@>=
10130 pointer dln; /* |link(d)| */
10131 pointer hh; /* an edge header that tells how to break up |dln| */
10132 scaled hsf; /* the dash pattern from |hh| gets scaled by this */
10133 pointer ds; /* the stroked node from which |hh| and |hsf| are derived */
10134 scaled xoff; /* added to $x$ values in |dash_list(hh)| to match |dln| */
10136 @ @<Replace |link(d)| by a dashed version as determined by edge header...@>=
10139 xoff=start_x(dln)-mp_take_scaled(mp, hsf,start_x(dd))-
10140 mp_take_scaled(mp, hsf,mp_dash_offset(mp, hh));
10141 start_x(null_dash)=mp_take_scaled(mp, hsf,start_x(dd))
10142 +mp_take_scaled(mp, hsf,dash_y(hh));
10143 stop_x(null_dash)=start_x(null_dash);
10144 @<Advance |dd| until finding the first dash that overlaps |dln| when
10145 offset by |xoff|@>;
10146 while ( start_x(dln)<=stop_x(dln) ) {
10147 @<If |dd| has `fallen off the end', back up to the beginning and fix |xoff|@>;
10148 @<Insert a dash between |d| and |dln| for the overlap with the offset version
10151 start_x(dln)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10154 mp_free_node(mp, dln,dash_node_size)
10156 @ The name of this module is a bit of a lie because we actually just find the
10157 first |dd| where |take_scaled (hsf, stop_x(dd))| is large enough to make an
10158 overlap possible. It could be that the unoffset version of dash |dln| falls
10159 in the gap between |dd| and its predecessor.
10161 @<Advance |dd| until finding the first dash that overlaps |dln| when...@>=
10162 while ( xoff+mp_take_scaled(mp, hsf,stop_x(dd))<start_x(dln) ) {
10166 @ @<If |dd| has `fallen off the end', back up to the beginning and fix...@>=
10167 if ( dd==null_dash ) {
10169 xoff=xoff+mp_take_scaled(mp, hsf,dash_y(hh));
10172 @ At this point we already know that
10173 |start_x(dln)<=xoff+take_scaled(hsf,stop_x(dd))|.
10175 @<Insert a dash between |d| and |dln| for the overlap with the offset...@>=
10176 if ( (xoff+mp_take_scaled(mp, hsf,start_x(dd)))<=stop_x(dln) ) {
10177 link(d)=mp_get_node(mp, dash_node_size);
10180 if ( start_x(dln)>(xoff+mp_take_scaled(mp, hsf,start_x(dd))))
10181 start_x(d)=start_x(dln);
10183 start_x(d)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10184 if ( stop_x(dln)<(xoff+mp_take_scaled(mp, hsf,stop_x(dd))))
10185 stop_x(d)=stop_x(dln);
10187 stop_x(d)=xoff+mp_take_scaled(mp, hsf,stop_x(dd));
10190 @ The next major task is to update the bounding box information in an edge
10191 header~|h|. This is done via a procedure |adjust_bbox| that enlarges an edge
10192 header's bounding box to accommodate the box computed by |path_bbox| or
10193 |pen_bbox|. (This is stored in global variables |minx|, |miny|, |maxx|, and
10196 @c void mp_adjust_bbox (MP mp,pointer h) {
10197 if ( minx<minx_val(h) ) minx_val(h)=minx;
10198 if ( miny<miny_val(h) ) miny_val(h)=miny;
10199 if ( maxx>maxx_val(h) ) maxx_val(h)=maxx;
10200 if ( maxy>maxy_val(h) ) maxy_val(h)=maxy;
10203 @ Here is a special routine for updating the bounding box information in
10204 edge header~|h| to account for the squared-off ends of a non-cyclic path~|p|
10205 that is to be stroked with the pen~|pp|.
10207 @c void mp_box_ends (MP mp, pointer p, pointer pp, pointer h) {
10208 pointer q; /* a knot node adjacent to knot |p| */
10209 fraction dx,dy; /* a unit vector in the direction out of the path at~|p| */
10210 scaled d; /* a factor for adjusting the length of |(dx,dy)| */
10211 scaled z; /* a coordinate being tested against the bounding box */
10212 scaled xx,yy; /* the extreme pen vertex in the |(dx,dy)| direction */
10213 integer i; /* a loop counter */
10214 if ( right_type(p)!=mp_endpoint ) {
10217 @<Make |(dx,dy)| the final direction for the path segment from
10218 |q| to~|p|; set~|d|@>;
10219 d=mp_pyth_add(mp, dx,dy);
10221 @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>;
10222 for (i=1;i<= 2;i++) {
10223 @<Use |(dx,dy)| to generate a vertex of the square end cap and
10224 update the bounding box to accommodate it@>;
10228 if ( right_type(p)==mp_endpoint ) {
10231 @<Advance |p| to the end of the path and make |q| the previous knot@>;
10237 @ @<Make |(dx,dy)| the final direction for the path segment from...@>=
10238 if ( q==link(p) ) {
10239 dx=x_coord(p)-right_x(p);
10240 dy=y_coord(p)-right_y(p);
10241 if ( (dx==0)&&(dy==0) ) {
10242 dx=x_coord(p)-left_x(q);
10243 dy=y_coord(p)-left_y(q);
10246 dx=x_coord(p)-left_x(p);
10247 dy=y_coord(p)-left_y(p);
10248 if ( (dx==0)&&(dy==0) ) {
10249 dx=x_coord(p)-right_x(q);
10250 dy=y_coord(p)-right_y(q);
10253 dx=x_coord(p)-x_coord(q);
10254 dy=y_coord(p)-y_coord(q)
10256 @ @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>=
10257 dx=mp_make_fraction(mp, dx,d);
10258 dy=mp_make_fraction(mp, dy,d);
10259 mp_find_offset(mp, -dy,dx,pp);
10260 xx=mp->cur_x; yy=mp->cur_y
10262 @ @<Use |(dx,dy)| to generate a vertex of the square end cap and...@>=
10263 mp_find_offset(mp, dx,dy,pp);
10264 d=mp_take_fraction(mp, xx-mp->cur_x,dx)+mp_take_fraction(mp, yy-mp->cur_y,dy);
10265 if ( ((d<0)&&(i==1)) || ((d>0)&&(i==2)))
10266 mp_confusion(mp, "box_ends");
10267 @:this can't happen box ends}{\quad\\{box\_ends}@>
10268 z=x_coord(p)+mp->cur_x+mp_take_fraction(mp, d,dx);
10269 if ( z<minx_val(h) ) minx_val(h)=z;
10270 if ( z>maxx_val(h) ) maxx_val(h)=z;
10271 z=y_coord(p)+mp->cur_y+mp_take_fraction(mp, d,dy);
10272 if ( z<miny_val(h) ) miny_val(h)=z;
10273 if ( z>maxy_val(h) ) maxy_val(h)=z
10275 @ @<Advance |p| to the end of the path and make |q| the previous knot@>=
10279 } while (right_type(p)!=mp_endpoint)
10281 @ The major difficulty in finding the bounding box of an edge structure is the
10282 effect of clipping paths. We treat them conservatively by only clipping to the
10283 clipping path's bounding box, but this still
10284 requires recursive calls to |set_bbox| in order to find the bounding box of
10286 the objects to be clipped. Such calls are distinguished by the fact that the
10287 boolean parameter |top_level| is false.
10289 @c void mp_set_bbox (MP mp,pointer h, boolean top_level) {
10290 pointer p; /* a graphical object being considered */
10291 scaled sminx,sminy,smaxx,smaxy;
10292 /* for saving the bounding box during recursive calls */
10293 scaled x0,x1,y0,y1; /* temporary registers */
10294 integer lev; /* nesting level for |mp_start_bounds_code| nodes */
10295 @<Wipe out any existing bounding box information if |bbtype(h)| is
10296 incompatible with |internal[mp_true_corners]|@>;
10297 while ( link(bblast(h))!=null ) {
10301 case mp_stop_clip_code:
10302 if ( top_level ) mp_confusion(mp, "bbox"); else return;
10303 @:this can't happen bbox}{\quad bbox@>
10305 @<Other cases for updating the bounding box based on the type of object |p|@>;
10306 } /* all cases are enumerated above */
10308 if ( ! top_level ) mp_confusion(mp, "bbox");
10311 @ @<Internal library declarations@>=
10312 void mp_set_bbox (MP mp,pointer h, boolean top_level);
10314 @ @<Wipe out any existing bounding box information if |bbtype(h)| is...@>=
10315 switch (bbtype(h)) {
10319 if ( mp->internal[mp_true_corners]>0 ) mp_init_bbox(mp, h);
10322 if ( mp->internal[mp_true_corners]<=0 ) mp_init_bbox(mp, h);
10324 } /* there are no other cases */
10326 @ @<Other cases for updating the bounding box...@>=
10328 mp_path_bbox(mp, path_p(p));
10329 if ( pen_p(p)!=null ) {
10332 mp_pen_bbox(mp, pen_p(p));
10338 mp_adjust_bbox(mp, h);
10341 @ @<Other cases for updating the bounding box...@>=
10342 case mp_start_bounds_code:
10343 if ( mp->internal[mp_true_corners]>0 ) {
10344 bbtype(h)=bounds_unset;
10346 bbtype(h)=bounds_set;
10347 mp_path_bbox(mp, path_p(p));
10348 mp_adjust_bbox(mp, h);
10349 @<Scan to the matching |mp_stop_bounds_code| node and update |p| and
10353 case mp_stop_bounds_code:
10354 if ( mp->internal[mp_true_corners]<=0 ) mp_confusion(mp, "bbox2");
10355 @:this can't happen bbox2}{\quad bbox2@>
10358 @ @<Scan to the matching |mp_stop_bounds_code| node and update |p| and...@>=
10361 if ( link(p)==null ) mp_confusion(mp, "bbox2");
10362 @:this can't happen bbox2}{\quad bbox2@>
10364 if ( type(p)==mp_start_bounds_code ) incr(lev);
10365 else if ( type(p)==mp_stop_bounds_code ) decr(lev);
10369 @ It saves a lot of grief here to be slightly conservative and not account for
10370 omitted parts of dashed lines. We also don't worry about the material omitted
10371 when using butt end caps. The basic computation is for round end caps and
10372 |box_ends| augments it for square end caps.
10374 @<Other cases for updating the bounding box...@>=
10375 case mp_stroked_code:
10376 mp_path_bbox(mp, path_p(p));
10379 mp_pen_bbox(mp, pen_p(p));
10384 mp_adjust_bbox(mp, h);
10385 if ( (left_type(path_p(p))==mp_endpoint)&&(lcap_val(p)==2) )
10386 mp_box_ends(mp, path_p(p), pen_p(p), h);
10389 @ The height width and depth information stored in a text node determines a
10390 rectangle that needs to be transformed according to the transformation
10391 parameters stored in the text node.
10393 @<Other cases for updating the bounding box...@>=
10395 x1=mp_take_scaled(mp, txx_val(p),width_val(p));
10396 y0=mp_take_scaled(mp, txy_val(p),-depth_val(p));
10397 y1=mp_take_scaled(mp, txy_val(p),height_val(p));
10400 if ( y0<y1 ) { minx=minx+y0; maxx=maxx+y1; }
10401 else { minx=minx+y1; maxx=maxx+y0; }
10402 if ( x1<0 ) minx=minx+x1; else maxx=maxx+x1;
10403 x1=mp_take_scaled(mp, tyx_val(p),width_val(p));
10404 y0=mp_take_scaled(mp, tyy_val(p),-depth_val(p));
10405 y1=mp_take_scaled(mp, tyy_val(p),height_val(p));
10408 if ( y0<y1 ) { miny=miny+y0; maxy=maxy+y1; }
10409 else { miny=miny+y1; maxy=maxy+y0; }
10410 if ( x1<0 ) miny=miny+x1; else maxy=maxy+x1;
10411 mp_adjust_bbox(mp, h);
10414 @ This case involves a recursive call that advances |bblast(h)| to the node of
10415 type |mp_stop_clip_code| that matches |p|.
10417 @<Other cases for updating the bounding box...@>=
10418 case mp_start_clip_code:
10419 mp_path_bbox(mp, path_p(p));
10422 sminx=minx_val(h); sminy=miny_val(h);
10423 smaxx=maxx_val(h); smaxy=maxy_val(h);
10424 @<Reinitialize the bounding box in header |h| and call |set_bbox| recursively
10425 starting at |link(p)|@>;
10426 @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,
10428 minx=sminx; miny=sminy;
10429 maxx=smaxx; maxy=smaxy;
10430 mp_adjust_bbox(mp, h);
10433 @ @<Reinitialize the bounding box in header |h| and call |set_bbox|...@>=
10434 minx_val(h)=el_gordo;
10435 miny_val(h)=el_gordo;
10436 maxx_val(h)=-el_gordo;
10437 maxy_val(h)=-el_gordo;
10438 mp_set_bbox(mp, h,false)
10440 @ @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,...@>=
10441 if ( minx_val(h)<x0 ) minx_val(h)=x0;
10442 if ( miny_val(h)<y0 ) miny_val(h)=y0;
10443 if ( maxx_val(h)>x1 ) maxx_val(h)=x1;
10444 if ( maxy_val(h)>y1 ) maxy_val(h)=y1
10446 @* \[22] Finding an envelope.
10447 When \MP\ has a path and a polygonal pen, it needs to express the desired
10448 shape in terms of things \ps\ can understand. The present task is to compute
10449 a new path that describes the region to be filled. It is convenient to
10450 define this as a two step process where the first step is determining what
10451 offset to use for each segment of the path.
10453 @ Given a pointer |c| to a cyclic path,
10454 and a pointer~|h| to the first knot of a pen polygon,
10455 the |offset_prep| routine changes the path into cubics that are
10456 associated with particular pen offsets. Thus if the cubic between |p|
10457 and~|q| is associated with the |k|th offset and the cubic between |q| and~|r|
10458 has offset |l| then |info(q)=zero_off+l-k|. (The constant |zero_off| is added
10459 to because |l-k| could be negative.)
10461 After overwriting the type information with offset differences, we no longer
10462 have a true path so we refer to the knot list returned by |offset_prep| as an
10465 Since an envelope spec only determines relative changes in pen offsets,
10466 |offset_prep| sets a global variable |spec_offset| to the relative change from
10467 |h| to the first offset.
10469 @d zero_off 16384 /* added to offset changes to make them positive */
10472 integer spec_offset; /* number of pen edges between |h| and the initial offset */
10474 @ @c @<Declare subroutines needed by |offset_prep|@>;
10475 pointer mp_offset_prep (MP mp,pointer c, pointer h) {
10476 halfword n; /* the number of vertices in the pen polygon */
10477 pointer p,q,q0,r,w, ww; /* for list manipulation */
10478 integer k_needed; /* amount to be added to |info(p)| when it is computed */
10479 pointer w0; /* a pointer to pen offset to use just before |p| */
10480 scaled dxin,dyin; /* the direction into knot |p| */
10481 integer turn_amt; /* change in pen offsets for the current cubic */
10482 @<Other local variables for |offset_prep|@>;
10484 @<Initialize the pen size~|n|@>;
10485 @<Initialize the incoming direction and pen offset at |c|@>;
10489 @<Split the cubic between |p| and |q|, if necessary, into cubics
10490 associated with single offsets, after which |q| should
10491 point to the end of the final such cubic@>;
10493 @<Advance |p| to node |q|, removing any ``dead'' cubics that
10494 might have been introduced by the splitting process@>;
10496 @<Fix the offset change in |info(c)| and set |c| to the return value of
10501 @ We shall want to keep track of where certain knots on the cyclic path
10502 wind up in the envelope spec. It doesn't suffice just to keep pointers to
10503 knot nodes because some nodes are deleted while removing dead cubics. Thus
10504 |offset_prep| updates the following pointers
10508 pointer spec_p2; /* pointers to distinguished knots */
10511 mp->spec_p1=null; mp->spec_p2=null;
10513 @ @<Initialize the pen size~|n|@>=
10520 @ Since the true incoming direction isn't known yet, we just pick a direction
10521 consistent with the pen offset~|h|. If this is wrong, it can be corrected
10524 @<Initialize the incoming direction and pen offset at |c|@>=
10525 dxin=x_coord(link(h))-x_coord(knil(h));
10526 dyin=y_coord(link(h))-y_coord(knil(h));
10527 if ( (dxin==0)&&(dyin==0) ) {
10528 dxin=y_coord(knil(h))-y_coord(h);
10529 dyin=x_coord(h)-x_coord(knil(h));
10533 @ We must be careful not to remove the only cubic in a cycle.
10535 But we must also be careful for another reason. If the user-supplied
10536 path starts with a set of degenerate cubics, the target node |q| can
10537 be collapsed to the initial node |p| which might be the same as the
10538 initial node |c| of the curve. This would cause the |offset_prep| routine
10539 to bail out too early, causing distress later on. (See for example
10540 the testcase reported by Bogus\l{}aw Jackowski in tracker id 267, case 52c
10543 @<Advance |p| to node |q|, removing any ``dead'' cubics...@>=
10547 if ( x_coord(p)==right_x(p) && y_coord(p)==right_y(p) &&
10548 x_coord(p)==left_x(r) && y_coord(p)==left_y(r) &&
10549 x_coord(p)==x_coord(r) && y_coord(p)==y_coord(r) &&
10551 @<Remove the cubic following |p| and update the data structures
10552 to merge |r| into |p|@>;
10556 /* Check if we removed too much */
10560 @ @<Remove the cubic following |p| and update the data structures...@>=
10561 { k_needed=info(p)-zero_off;
10565 info(p)=k_needed+info(r);
10568 if ( r==c ) { info(p)=info(c); c=p; };
10569 if ( r==mp->spec_p1 ) mp->spec_p1=p;
10570 if ( r==mp->spec_p2 ) mp->spec_p2=p;
10571 r=p; mp_remove_cubic(mp, p);
10574 @ Not setting the |info| field of the newly created knot allows the splitting
10575 routine to work for paths.
10577 @<Declare subroutines needed by |offset_prep|@>=
10578 void mp_split_cubic (MP mp,pointer p, fraction t) { /* splits the cubic after |p| */
10579 scaled v; /* an intermediate value */
10580 pointer q,r; /* for list manipulation */
10581 q=link(p); r=mp_get_node(mp, knot_node_size); link(p)=r; link(r)=q;
10582 originator(r)=mp_program_code;
10583 left_type(r)=mp_explicit; right_type(r)=mp_explicit;
10584 v=t_of_the_way(right_x(p),left_x(q));
10585 right_x(p)=t_of_the_way(x_coord(p),right_x(p));
10586 left_x(q)=t_of_the_way(left_x(q),x_coord(q));
10587 left_x(r)=t_of_the_way(right_x(p),v);
10588 right_x(r)=t_of_the_way(v,left_x(q));
10589 x_coord(r)=t_of_the_way(left_x(r),right_x(r));
10590 v=t_of_the_way(right_y(p),left_y(q));
10591 right_y(p)=t_of_the_way(y_coord(p),right_y(p));
10592 left_y(q)=t_of_the_way(left_y(q),y_coord(q));
10593 left_y(r)=t_of_the_way(right_y(p),v);
10594 right_y(r)=t_of_the_way(v,left_y(q));
10595 y_coord(r)=t_of_the_way(left_y(r),right_y(r));
10598 @ This does not set |info(p)| or |right_type(p)|.
10600 @<Declare subroutines needed by |offset_prep|@>=
10601 void mp_remove_cubic (MP mp,pointer p) { /* removes the dead cubic following~|p| */
10602 pointer q; /* the node that disappears */
10603 q=link(p); link(p)=link(q);
10604 right_x(p)=right_x(q); right_y(p)=right_y(q);
10605 mp_free_node(mp, q,knot_node_size);
10608 @ Let $d\prec d'$ mean that the counter-clockwise angle from $d$ to~$d'$ is
10609 strictly between zero and $180^\circ$. Then we can define $d\preceq d'$ to
10610 mean that the angle could be zero or $180^\circ$. If $w_k=(u_k,v_k)$ is the
10611 $k$th pen offset, the $k$th pen edge direction is defined by the formula
10612 $$d_k=(u\k-u_k,\,v\k-v_k).$$
10613 When listed by increasing $k$, these directions occur in counter-clockwise
10614 order so that $d_k\preceq d\k$ for all~$k$.
10615 The goal of |offset_prep| is to find an offset index~|k| to associate with
10616 each cubic, such that the direction $d(t)$ of the cubic satisfies
10617 $$d_{k-1}\preceq d(t)\preceq d_k\qquad\hbox{for $0\le t\le 1$.}\eqno(*)$$
10618 We may have to split a cubic into many pieces before each
10619 piece corresponds to a unique offset.
10621 @<Split the cubic between |p| and |q|, if necessary, into cubics...@>=
10622 info(p)=zero_off+k_needed;
10624 @<Prepare for derivative computations;
10625 |goto not_found| if the current cubic is dead@>;
10626 @<Find the initial direction |(dx,dy)|@>;
10627 @<Update |info(p)| and find the offset $w_k$ such that
10628 $d_{k-1}\preceq(\\{dx},\\{dy})\prec d_k$; also advance |w0| for
10629 the direction change at |p|@>;
10630 @<Find the final direction |(dxin,dyin)|@>;
10631 @<Decide on the net change in pen offsets and set |turn_amt|@>;
10632 @<Complete the offset splitting process@>;
10633 w0=mp_pen_walk(mp, w0,turn_amt)
10635 @ @<Declare subroutines needed by |offset_prep|@>=
10636 pointer mp_pen_walk (MP mp,pointer w, integer k) {
10637 /* walk |k| steps around a pen from |w| */
10638 while ( k>0 ) { w=link(w); decr(k); };
10639 while ( k<0 ) { w=knil(w); incr(k); };
10643 @ The direction of a cubic $B(z_0,z_1,z_2,z_3;t)=\bigl(x(t),y(t)\bigr)$ can be
10644 calculated from the quadratic polynomials
10645 ${1\over3}x'(t)=B(x_1-x_0,x_2-x_1,x_3-x_2;t)$ and
10646 ${1\over3}y'(t)=B(y_1-y_0,y_2-y_1,y_3-y_2;t)$.
10647 Since we may be calculating directions from several cubics
10648 split from the current one, it is desirable to do these calculations
10649 without losing too much precision. ``Scaled up'' values of the
10650 derivatives, which will be less tainted by accumulated errors than
10651 derivatives found from the cubics themselves, are maintained in
10652 local variables |x0|, |x1|, and |x2|, representing $X_0=2^l(x_1-x_0)$,
10653 $X_1=2^l(x_2-x_1)$, and $X_2=2^l(x_3-x_2)$; similarly |y0|, |y1|, and~|y2|
10654 represent $Y_0=2^l(y_1-y_0)$, $Y_1=2^l(y_2-y_1)$, and $Y_2=2^l(y_3-y_2)$.
10656 @<Other local variables for |offset_prep|@>=
10657 integer x0,x1,x2,y0,y1,y2; /* representatives of derivatives */
10658 integer t0,t1,t2; /* coefficients of polynomial for slope testing */
10659 integer du,dv,dx,dy; /* for directions of the pen and the curve */
10660 integer dx0,dy0; /* initial direction for the first cubic in the curve */
10661 integer max_coef; /* used while scaling */
10662 integer x0a,x1a,x2a,y0a,y1a,y2a; /* intermediate values */
10663 fraction t; /* where the derivative passes through zero */
10664 fraction s; /* a temporary value */
10666 @ @<Prepare for derivative computations...@>=
10667 x0=right_x(p)-x_coord(p);
10668 x2=x_coord(q)-left_x(q);
10669 x1=left_x(q)-right_x(p);
10670 y0=right_y(p)-y_coord(p); y2=y_coord(q)-left_y(q);
10671 y1=left_y(q)-right_y(p);
10673 if ( abs(x1)>max_coef ) max_coef=abs(x1);
10674 if ( abs(x2)>max_coef ) max_coef=abs(x2);
10675 if ( abs(y0)>max_coef ) max_coef=abs(y0);
10676 if ( abs(y1)>max_coef ) max_coef=abs(y1);
10677 if ( abs(y2)>max_coef ) max_coef=abs(y2);
10678 if ( max_coef==0 ) goto NOT_FOUND;
10679 while ( max_coef<fraction_half ) {
10681 double(x0); double(x1); double(x2);
10682 double(y0); double(y1); double(y2);
10685 @ Let us first solve a special case of the problem: Suppose we
10686 know an index~$k$ such that either (i)~$d(t)\succeq d_{k-1}$ for all~$t$
10687 and $d(0)\prec d_k$, or (ii)~$d(t)\preceq d_k$ for all~$t$ and
10688 $d(0)\succ d_{k-1}$.
10689 Then, in a sense, we're halfway done, since one of the two relations
10690 in $(*)$ is satisfied, and the other couldn't be satisfied for
10691 any other value of~|k|.
10693 Actually, the conditions can be relaxed somewhat since a relation such as
10694 $d(t)\succeq d_{k-1}$ restricts $d(t)$ to a half plane when all that really
10695 matters is whether $d(t)$ crosses the ray in the $d_{k-1}$ direction from
10696 the origin. The condition for case~(i) becomes $d_{k-1}\preceq d(0)\prec d_k$
10697 and $d(t)$ never crosses the $d_{k-1}$ ray in the clockwise direction.
10698 Case~(ii) is similar except $d(t)$ cannot cross the $d_k$ ray in the
10699 counterclockwise direction.
10701 The |fin_offset_prep| subroutine solves the stated subproblem.
10702 It has a parameter called |rise| that is |1| in
10703 case~(i), |-1| in case~(ii). Parameters |x0| through |y2| represent
10704 the derivative of the cubic following |p|.
10705 The |w| parameter should point to offset~$w_k$ and |info(p)| should already
10706 be set properly. The |turn_amt| parameter gives the absolute value of the
10707 overall net change in pen offsets.
10709 @<Declare subroutines needed by |offset_prep|@>=
10710 void mp_fin_offset_prep (MP mp,pointer p, pointer w, integer
10711 x0,integer x1, integer x2, integer y0, integer y1, integer y2,
10712 integer rise, integer turn_amt) {
10713 pointer ww; /* for list manipulation */
10714 scaled du,dv; /* for slope calculation */
10715 integer t0,t1,t2; /* test coefficients */
10716 fraction t; /* place where the derivative passes a critical slope */
10717 fraction s; /* slope or reciprocal slope */
10718 integer v; /* intermediate value for updating |x0..y2| */
10719 pointer q; /* original |link(p)| */
10722 if ( rise>0 ) ww=link(w); /* a pointer to $w\k$ */
10723 else ww=knil(w); /* a pointer to $w_{k-1}$ */
10724 @<Compute test coefficients |(t0,t1,t2)|
10725 for $d(t)$ versus $d_k$ or $d_{k-1}$@>;
10726 t=mp_crossing_point(mp, t0,t1,t2);
10727 if ( t>=fraction_one ) {
10728 if ( turn_amt>0 ) t=fraction_one; else return;
10730 @<Split the cubic at $t$,
10731 and split off another cubic if the derivative crosses back@>;
10736 @ We want $B(\\{t0},\\{t1},\\{t2};t)$ to be the dot product of $d(t)$ with a
10737 $-90^\circ$ rotation of the vector from |w| to |ww|. This makes the resulting
10738 function cross from positive to negative when $d_{k-1}\preceq d(t)\preceq d_k$
10741 @<Compute test coefficients |(t0,t1,t2)| for $d(t)$ versus...@>=
10742 du=x_coord(ww)-x_coord(w); dv=y_coord(ww)-y_coord(w);
10743 if ( abs(du)>=abs(dv) ) {
10744 s=mp_make_fraction(mp, dv,du);
10745 t0=mp_take_fraction(mp, x0,s)-y0;
10746 t1=mp_take_fraction(mp, x1,s)-y1;
10747 t2=mp_take_fraction(mp, x2,s)-y2;
10748 if ( du<0 ) { negate(t0); negate(t1); negate(t2); }
10750 s=mp_make_fraction(mp, du,dv);
10751 t0=x0-mp_take_fraction(mp, y0,s);
10752 t1=x1-mp_take_fraction(mp, y1,s);
10753 t2=x2-mp_take_fraction(mp, y2,s);
10754 if ( dv<0 ) { negate(t0); negate(t1); negate(t2); }
10756 if ( t0<0 ) t0=0 /* should be positive without rounding error */
10758 @ The curve has crossed $d_k$ or $d_{k-1}$; its initial segment satisfies
10759 $(*)$, and it might cross again, yielding another solution of $(*)$.
10761 @<Split the cubic at $t$, and split off another...@>=
10763 mp_split_cubic(mp, p,t); p=link(p); info(p)=zero_off+rise;
10765 v=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10766 x0=t_of_the_way(v,x1);
10767 v=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10768 y0=t_of_the_way(v,y1);
10769 if ( turn_amt<0 ) {
10770 t1=t_of_the_way(t1,t2);
10771 if ( t1>0 ) t1=0; /* without rounding error, |t1| would be |<=0| */
10772 t=mp_crossing_point(mp, 0,-t1,-t2);
10773 if ( t>fraction_one ) t=fraction_one;
10775 if ( (t==fraction_one)&&(link(p)!=q) ) {
10776 info(link(p))=info(link(p))-rise;
10778 mp_split_cubic(mp, p,t); info(link(p))=zero_off-rise;
10779 v=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10780 x2=t_of_the_way(x1,v);
10781 v=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10782 y2=t_of_the_way(y1,v);
10787 @ Now we must consider the general problem of |offset_prep|, when
10788 nothing is known about a given cubic. We start by finding its
10789 direction in the vicinity of |t=0|.
10791 If $z'(t)=0$, the given cubic is numerically unstable but |offset_prep|
10792 has not yet introduced any more numerical errors. Thus we can compute
10793 the true initial direction for the given cubic, even if it is almost
10796 @<Find the initial direction |(dx,dy)|@>=
10798 if ( dx==0 && dy==0 ) {
10800 if ( dx==0 && dy==0 ) {
10804 if ( p==c ) { dx0=dx; dy0=dy; }
10806 @ @<Find the final direction |(dxin,dyin)|@>=
10808 if ( dxin==0 && dyin==0 ) {
10810 if ( dxin==0 && dyin==0 ) {
10815 @ The next step is to bracket the initial direction between consecutive
10816 edges of the pen polygon. We must be careful to turn clockwise only if
10817 this makes the turn less than $180^\circ$. (A $180^\circ$ turn must be
10818 counter-clockwise in order to make \&{doublepath} envelopes come out
10819 @:double_path_}{\&{doublepath} primitive@>
10820 right.) This code depends on |w0| being the offset for |(dxin,dyin)|.
10822 @<Update |info(p)| and find the offset $w_k$ such that...@>=
10823 turn_amt=mp_get_turn_amt(mp,w0,dx,dy,(mp_ab_vs_cd(mp, dy,dxin,dx,dyin)>=0));
10824 w=mp_pen_walk(mp, w0, turn_amt);
10826 info(p)=info(p)+turn_amt
10828 @ Decide how many pen offsets to go away from |w| in order to find the offset
10829 for |(dx,dy)|, going counterclockwise if |ccw| is |true|. This assumes that
10830 |w| is the offset for some direction $(x',y')$ from which the angle to |(dx,dy)|
10831 in the sense determined by |ccw| is less than or equal to $180^\circ$.
10833 If the pen polygon has only two edges, they could both be parallel
10834 to |(dx,dy)|. In this case, we must be careful to stop after crossing the first
10835 such edge in order to avoid an infinite loop.
10837 @<Declare subroutines needed by |offset_prep|@>=
10838 integer mp_get_turn_amt (MP mp,pointer w, scaled dx,
10839 scaled dy, boolean ccw) {
10840 pointer ww; /* a neighbor of knot~|w| */
10841 integer s; /* turn amount so far */
10842 integer t; /* |ab_vs_cd| result */
10847 t=mp_ab_vs_cd(mp, dy,(x_coord(ww)-x_coord(w)),
10848 dx,(y_coord(ww)-y_coord(w)));
10855 while ( mp_ab_vs_cd(mp, dy,(x_coord(w)-x_coord(ww)),
10856 dx,(y_coord(w)-y_coord(ww))) < 0) {
10864 @ When we're all done, the final offset is |w0| and the final curve direction
10865 is |(dxin,dyin)|. With this knowledge of the incoming direction at |c|, we
10866 can correct |info(c)| which was erroneously based on an incoming offset
10869 @d fix_by(A) info(c)=info(c)+(A)
10871 @<Fix the offset change in |info(c)| and set |c| to the return value of...@>=
10872 mp->spec_offset=info(c)-zero_off;
10873 if ( link(c)==c ) {
10874 info(c)=zero_off+n;
10877 while ( w0!=h ) { fix_by(1); w0=link(w0); };
10878 while ( info(c)<=zero_off-n ) fix_by(n);
10879 while ( info(c)>zero_off ) fix_by(-n);
10880 if ( (info(c)!=zero_off)&&(mp_ab_vs_cd(mp, dy0,dxin,dx0,dyin)>=0) ) fix_by(n);
10884 @ Finally we want to reduce the general problem to situations that
10885 |fin_offset_prep| can handle. We split the cubic into at most three parts
10886 with respect to $d_{k-1}$, and apply |fin_offset_prep| to each part.
10888 @<Complete the offset splitting process@>=
10890 @<Compute test coeff...@>;
10891 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set
10892 |t:=fraction_one+1|@>;
10893 if ( t>fraction_one ) {
10894 mp_fin_offset_prep(mp, p,w,x0,x1,x2,y0,y1,y2,1,turn_amt);
10896 mp_split_cubic(mp, p,t); r=link(p);
10897 x1a=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10898 x2a=t_of_the_way(x1a,x1);
10899 y1a=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10900 y2a=t_of_the_way(y1a,y1);
10901 mp_fin_offset_prep(mp, p,w,x0,x1a,x2a,y0,y1a,y2a,1,0); x0=x2a; y0=y2a;
10902 info(r)=zero_off-1;
10903 if ( turn_amt>=0 ) {
10904 t1=t_of_the_way(t1,t2);
10906 t=mp_crossing_point(mp, 0,-t1,-t2);
10907 if ( t>fraction_one ) t=fraction_one;
10908 @<Split off another rising cubic for |fin_offset_prep|@>;
10909 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,0);
10911 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,(-1-turn_amt));
10915 @ @<Split off another rising cubic for |fin_offset_prep|@>=
10916 mp_split_cubic(mp, r,t); info(link(r))=zero_off+1;
10917 x1a=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10918 x0a=t_of_the_way(x1,x1a);
10919 y1a=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10920 y0a=t_of_the_way(y1,y1a);
10921 mp_fin_offset_prep(mp, link(r),w,x0a,x1a,x2,y0a,y1a,y2,1,turn_amt);
10924 @ At this point, the direction of the incoming pen edge is |(-du,-dv)|.
10925 When the component of $d(t)$ perpendicular to |(-du,-dv)| crosses zero, we
10926 need to decide whether the directions are parallel or antiparallel. We
10927 can test this by finding the dot product of $d(t)$ and |(-du,-dv)|, but this
10928 should be avoided when the value of |turn_amt| already determines the
10929 answer. If |t2<0|, there is one crossing and it is antiparallel only if
10930 |turn_amt>=0|. If |turn_amt<0|, there should always be at least one
10931 crossing and the first crossing cannot be antiparallel.
10933 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set...@>=
10934 t=mp_crossing_point(mp, t0,t1,t2);
10935 if ( turn_amt>=0 ) {
10939 u0=t_of_the_way(x0,x1);
10940 u1=t_of_the_way(x1,x2);
10941 ss=mp_take_fraction(mp, -du,t_of_the_way(u0,u1));
10942 v0=t_of_the_way(y0,y1);
10943 v1=t_of_the_way(y1,y2);
10944 ss=ss+mp_take_fraction(mp, -dv,t_of_the_way(v0,v1));
10945 if ( ss<0 ) t=fraction_one+1;
10947 } else if ( t>fraction_one ) {
10951 @ @<Other local variables for |offset_prep|@>=
10952 integer u0,u1,v0,v1; /* intermediate values for $d(t)$ calculation */
10953 integer ss = 0; /* the part of the dot product computed so far */
10954 int d_sign; /* sign of overall change in direction for this cubic */
10956 @ If the cubic almost has a cusp, it is a numerically ill-conditioned
10957 problem to decide which way it loops around but that's OK as long we're
10958 consistent. To make \&{doublepath} envelopes work properly, reversing
10959 the path should always change the sign of |turn_amt|.
10961 @<Decide on the net change in pen offsets and set |turn_amt|@>=
10962 d_sign=mp_ab_vs_cd(mp, dx,dyin, dxin,dy);
10964 @<Check rotation direction based on node position@>
10968 if ( dy>0 ) d_sign=1; else d_sign=-1;
10970 if ( dx>0 ) d_sign=1; else d_sign=-1;
10973 @<Make |ss| negative if and only if the total change in direction is
10974 more than $180^\circ$@>;
10975 turn_amt=mp_get_turn_amt(mp, w, dxin, dyin, (d_sign>0));
10976 if ( ss<0 ) turn_amt=turn_amt-d_sign*n
10978 @ We check rotation direction by looking at the vector connecting the current
10979 node with the next. If its angle with incoming and outgoing tangents has the
10980 same sign, we pick this as |d_sign|, since it means we have a flex, not a cusp.
10981 Otherwise we proceed to the cusp code.
10983 @<Check rotation direction based on node position@>=
10984 u0=x_coord(q)-x_coord(p);
10985 u1=y_coord(q)-y_coord(p);
10986 d_sign = half(mp_ab_vs_cd(mp, dx, u1, u0, dy)+
10987 mp_ab_vs_cd(mp, u0, dyin, dxin, u1));
10989 @ In order to be invariant under path reversal, the result of this computation
10990 should not change when |x0|, |y0|, $\ldots$ are all negated and |(x0,y0)| is
10991 then swapped with |(x2,y2)|. We make use of the identities
10992 |take_fraction(-a,-b)=take_fraction(a,b)| and
10993 |t_of_the_way(-a,-b)=-(t_of_the_way(a,b))|.
10995 @<Make |ss| negative if and only if the total change in direction is...@>=
10996 t0=half(mp_take_fraction(mp, x0,y2))-half(mp_take_fraction(mp, x2,y0));
10997 t1=half(mp_take_fraction(mp, x1,(y0+y2)))-half(mp_take_fraction(mp, y1,(x0+x2)));
10998 if ( t0==0 ) t0=d_sign; /* path reversal always negates |d_sign| */
11000 t=mp_crossing_point(mp, t0,t1,-t0);
11001 u0=t_of_the_way(x0,x1);
11002 u1=t_of_the_way(x1,x2);
11003 v0=t_of_the_way(y0,y1);
11004 v1=t_of_the_way(y1,y2);
11006 t=mp_crossing_point(mp, -t0,t1,t0);
11007 u0=t_of_the_way(x2,x1);
11008 u1=t_of_the_way(x1,x0);
11009 v0=t_of_the_way(y2,y1);
11010 v1=t_of_the_way(y1,y0);
11012 ss=mp_take_fraction(mp, (x0+x2),t_of_the_way(u0,u1))+
11013 mp_take_fraction(mp, (y0+y2),t_of_the_way(v0,v1))
11015 @ Here's a routine that prints an envelope spec in symbolic form. It assumes
11016 that the |cur_pen| has not been walked around to the first offset.
11019 void mp_print_spec (MP mp,pointer cur_spec, pointer cur_pen, char *s) {
11020 pointer p,q; /* list traversal */
11021 pointer w; /* the current pen offset */
11022 mp_print_diagnostic(mp, "Envelope spec",s,true);
11023 p=cur_spec; w=mp_pen_walk(mp, cur_pen,mp->spec_offset);
11025 mp_print_two(mp, x_coord(cur_spec),y_coord(cur_spec));
11026 mp_print(mp, " % beginning with offset ");
11027 mp_print_two(mp, x_coord(w),y_coord(w));
11031 @<Print the cubic between |p| and |q|@>;
11033 if ((p==cur_spec) || (info(p)!=zero_off))
11036 if ( info(p)!=zero_off ) {
11037 @<Update |w| as indicated by |info(p)| and print an explanation@>;
11039 } while (p!=cur_spec);
11040 mp_print_nl(mp, " & cycle");
11041 mp_end_diagnostic(mp, true);
11044 @ @<Update |w| as indicated by |info(p)| and print an explanation@>=
11046 w=mp_pen_walk(mp, w, (info(p)-zero_off));
11047 mp_print(mp, " % ");
11048 if ( info(p)>zero_off ) mp_print(mp, "counter");
11049 mp_print(mp, "clockwise to offset ");
11050 mp_print_two(mp, x_coord(w),y_coord(w));
11053 @ @<Print the cubic between |p| and |q|@>=
11055 mp_print_nl(mp, " ..controls ");
11056 mp_print_two(mp, right_x(p),right_y(p));
11057 mp_print(mp, " and ");
11058 mp_print_two(mp, left_x(q),left_y(q));
11059 mp_print_nl(mp, " ..");
11060 mp_print_two(mp, x_coord(q),y_coord(q));
11063 @ Once we have an envelope spec, the remaining task to construct the actual
11064 envelope by offsetting each cubic as determined by the |info| fields in
11065 the knots. First we use |offset_prep| to convert the |c| into an envelope
11066 spec. Then we add the offsets so that |c| becomes a cyclic path that represents
11069 The |ljoin| and |miterlim| parameters control the treatment of points where the
11070 pen offset changes, and |lcap| controls the endpoints of a \&{doublepath}.
11071 The endpoints are easily located because |c| is given in undoubled form
11072 and then doubled in this procedure. We use |spec_p1| and |spec_p2| to keep
11073 track of the endpoints and treat them like very sharp corners.
11074 Butt end caps are treated like beveled joins; round end caps are treated like
11075 round joins; and square end caps are achieved by setting |join_type:=3|.
11077 None of these parameters apply to inside joins where the convolution tracing
11078 has retrograde lines. In such cases we use a simple connect-the-endpoints
11079 approach that is achieved by setting |join_type:=2|.
11081 @c @<Declare a function called |insert_knot|@>;
11082 pointer mp_make_envelope (MP mp,pointer c, pointer h, small_number ljoin,
11083 small_number lcap, scaled miterlim) {
11084 pointer p,q,r,q0; /* for manipulating the path */
11085 int join_type=0; /* codes |0..3| for mitered, round, beveled, or square */
11086 pointer w,w0; /* the pen knot for the current offset */
11087 scaled qx,qy; /* unshifted coordinates of |q| */
11088 halfword k,k0; /* controls pen edge insertion */
11089 @<Other local variables for |make_envelope|@>;
11090 dxin=0; dyin=0; dxout=0; dyout=0;
11091 mp->spec_p1=null; mp->spec_p2=null;
11092 @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>;
11093 @<Use |offset_prep| to compute the envelope spec then walk |h| around to
11094 the initial offset@>;
11099 qx=x_coord(q); qy=y_coord(q);
11102 if ( k!=zero_off ) {
11103 @<Set |join_type| to indicate how to handle offset changes at~|q|@>;
11105 @<Add offset |w| to the cubic from |p| to |q|@>;
11106 while ( k!=zero_off ) {
11107 @<Step |w| and move |k| one step closer to |zero_off|@>;
11108 if ( (join_type==1)||(k==zero_off) )
11109 q=mp_insert_knot(mp, q,qx+x_coord(w),qy+y_coord(w));
11111 if ( q!=link(p) ) {
11112 @<Set |p=link(p)| and add knots between |p| and |q| as
11113 required by |join_type|@>;
11120 @ @<Use |offset_prep| to compute the envelope spec then walk |h| around to...@>=
11121 c=mp_offset_prep(mp, c,h);
11122 if ( mp->internal[mp_tracing_specs]>0 )
11123 mp_print_spec(mp, c,h,"");
11124 h=mp_pen_walk(mp, h,mp->spec_offset)
11126 @ Mitered and squared-off joins depend on path directions that are difficult to
11127 compute for degenerate cubics. The envelope spec computed by |offset_prep| can
11128 have degenerate cubics only if the entire cycle collapses to a single
11129 degenerate cubic. Setting |join_type:=2| in this case makes the computed
11130 envelope degenerate as well.
11132 @<Set |join_type| to indicate how to handle offset changes at~|q|@>=
11133 if ( k<zero_off ) {
11136 if ( (q!=mp->spec_p1)&&(q!=mp->spec_p2) ) join_type=ljoin;
11137 else if ( lcap==2 ) join_type=3;
11138 else join_type=2-lcap;
11139 if ( (join_type==0)||(join_type==3) ) {
11140 @<Set the incoming and outgoing directions at |q|; in case of
11141 degeneracy set |join_type:=2|@>;
11142 if ( join_type==0 ) {
11143 @<If |miterlim| is less than the secant of half the angle at |q|
11144 then set |join_type:=2|@>;
11149 @ @<If |miterlim| is less than the secant of half the angle at |q|...@>=
11151 tmp=mp_take_fraction(mp, miterlim,fraction_half+
11152 half(mp_take_fraction(mp, dxin,dxout)+mp_take_fraction(mp, dyin,dyout)));
11154 if ( mp_take_scaled(mp, miterlim,tmp)<unity ) join_type=2;
11157 @ @<Other local variables for |make_envelope|@>=
11158 fraction dxin,dyin,dxout,dyout; /* directions at |q| when square or mitered */
11159 scaled tmp; /* a temporary value */
11161 @ The coordinates of |p| have already been shifted unless |p| is the first
11162 knot in which case they get shifted at the very end.
11164 @<Add offset |w| to the cubic from |p| to |q|@>=
11165 right_x(p)=right_x(p)+x_coord(w);
11166 right_y(p)=right_y(p)+y_coord(w);
11167 left_x(q)=left_x(q)+x_coord(w);
11168 left_y(q)=left_y(q)+y_coord(w);
11169 x_coord(q)=x_coord(q)+x_coord(w);
11170 y_coord(q)=y_coord(q)+y_coord(w);
11171 left_type(q)=mp_explicit;
11172 right_type(q)=mp_explicit
11174 @ @<Step |w| and move |k| one step closer to |zero_off|@>=
11175 if ( k>zero_off ){ w=link(w); decr(k); }
11176 else { w=knil(w); incr(k); }
11178 @ The cubic from |q| to the new knot at |(x,y)| becomes a line segment and
11179 the |right_x| and |right_y| fields of |r| are set from |q|. This is done in
11180 case the cubic containing these control points is ``yet to be examined.''
11182 @<Declare a function called |insert_knot|@>=
11183 pointer mp_insert_knot (MP mp,pointer q, scaled x, scaled y) {
11184 /* returns the inserted knot */
11185 pointer r; /* the new knot */
11186 r=mp_get_node(mp, knot_node_size);
11187 link(r)=link(q); link(q)=r;
11188 right_x(r)=right_x(q);
11189 right_y(r)=right_y(q);
11192 right_x(q)=x_coord(q);
11193 right_y(q)=y_coord(q);
11194 left_x(r)=x_coord(r);
11195 left_y(r)=y_coord(r);
11196 left_type(r)=mp_explicit;
11197 right_type(r)=mp_explicit;
11198 originator(r)=mp_program_code;
11202 @ After setting |p:=link(p)|, either |join_type=1| or |q=link(p)|.
11204 @<Set |p=link(p)| and add knots between |p| and |q| as...@>=
11207 if ( (join_type==0)||(join_type==3) ) {
11208 if ( join_type==0 ) {
11209 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>
11211 @<Make |r| the last of two knots inserted between |p| and |q| to form a
11215 right_x(r)=x_coord(r);
11216 right_y(r)=y_coord(r);
11221 @ For very small angles, adding a knot is unnecessary and would cause numerical
11222 problems, so we just set |r:=null| in that case.
11224 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>=
11226 det=mp_take_fraction(mp, dyout,dxin)-mp_take_fraction(mp, dxout,dyin);
11227 if ( abs(det)<26844 ) {
11228 r=null; /* sine $<10^{-4}$ */
11230 tmp=mp_take_fraction(mp, x_coord(q)-x_coord(p),dyout)-
11231 mp_take_fraction(mp, y_coord(q)-y_coord(p),dxout);
11232 tmp=mp_make_fraction(mp, tmp,det);
11233 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11234 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11238 @ @<Other local variables for |make_envelope|@>=
11239 fraction det; /* a determinant used for mitered join calculations */
11241 @ @<Make |r| the last of two knots inserted between |p| and |q| to form a...@>=
11243 ht_x=y_coord(w)-y_coord(w0);
11244 ht_y=x_coord(w0)-x_coord(w);
11245 while ( (abs(ht_x)<fraction_half)&&(abs(ht_y)<fraction_half) ) {
11246 ht_x+=ht_x; ht_y+=ht_y;
11248 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range dot
11249 product with |(ht_x,ht_y)|@>;
11250 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxin,ht_x)+
11251 mp_take_fraction(mp, dyin,ht_y));
11252 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11253 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11254 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxout,ht_x)+
11255 mp_take_fraction(mp, dyout,ht_y));
11256 r=mp_insert_knot(mp, r,x_coord(q)+mp_take_fraction(mp, tmp,dxout),
11257 y_coord(q)+mp_take_fraction(mp, tmp,dyout));
11260 @ @<Other local variables for |make_envelope|@>=
11261 fraction ht_x,ht_y; /* perpendicular to the segment from |p| to |q| */
11262 scaled max_ht; /* maximum height of the pen polygon above the |w0|-|w| line */
11263 halfword kk; /* keeps track of the pen vertices being scanned */
11264 pointer ww; /* the pen vertex being tested */
11266 @ The dot product of the vector from |w0| to |ww| with |(ht_x,ht_y)| ranges
11267 from zero to |max_ht|.
11269 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range...@>=
11274 @<Step |ww| and move |kk| one step closer to |k0|@>;
11275 if ( kk==k0 ) break;
11276 tmp=mp_take_fraction(mp, (x_coord(ww)-x_coord(w0)),ht_x)+
11277 mp_take_fraction(mp, (y_coord(ww)-y_coord(w0)),ht_y);
11278 if ( tmp>max_ht ) max_ht=tmp;
11282 @ @<Step |ww| and move |kk| one step closer to |k0|@>=
11283 if ( kk>k0 ) { ww=link(ww); decr(kk); }
11284 else { ww=knil(ww); incr(kk); }
11286 @ @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>=
11287 if ( left_type(c)==mp_endpoint ) {
11288 mp->spec_p1=mp_htap_ypoc(mp, c);
11289 mp->spec_p2=mp->path_tail;
11290 originator(mp->spec_p1)=mp_program_code;
11291 link(mp->spec_p2)=link(mp->spec_p1);
11292 link(mp->spec_p1)=c;
11293 mp_remove_cubic(mp, mp->spec_p1);
11295 if ( c!=link(c) ) {
11296 originator(mp->spec_p2)=mp_program_code;
11297 mp_remove_cubic(mp, mp->spec_p2);
11299 @<Make |c| look like a cycle of length one@>;
11303 @ @<Make |c| look like a cycle of length one@>=
11305 left_type(c)=mp_explicit; right_type(c)=mp_explicit;
11306 left_x(c)=x_coord(c); left_y(c)=y_coord(c);
11307 right_x(c)=x_coord(c); right_y(c)=y_coord(c);
11310 @ In degenerate situations we might have to look at the knot preceding~|q|.
11311 That knot is |p| but if |p<>c|, its coordinates have already been offset by |w|.
11313 @<Set the incoming and outgoing directions at |q|; in case of...@>=
11314 dxin=x_coord(q)-left_x(q);
11315 dyin=y_coord(q)-left_y(q);
11316 if ( (dxin==0)&&(dyin==0) ) {
11317 dxin=x_coord(q)-right_x(p);
11318 dyin=y_coord(q)-right_y(p);
11319 if ( (dxin==0)&&(dyin==0) ) {
11320 dxin=x_coord(q)-x_coord(p);
11321 dyin=y_coord(q)-y_coord(p);
11322 if ( p!=c ) { /* the coordinates of |p| have been offset by |w| */
11323 dxin=dxin+x_coord(w);
11324 dyin=dyin+y_coord(w);
11328 tmp=mp_pyth_add(mp, dxin,dyin);
11332 dxin=mp_make_fraction(mp, dxin,tmp);
11333 dyin=mp_make_fraction(mp, dyin,tmp);
11334 @<Set the outgoing direction at |q|@>;
11337 @ If |q=c| then the coordinates of |r| and the control points between |q|
11338 and~|r| have already been offset by |h|.
11340 @<Set the outgoing direction at |q|@>=
11341 dxout=right_x(q)-x_coord(q);
11342 dyout=right_y(q)-y_coord(q);
11343 if ( (dxout==0)&&(dyout==0) ) {
11345 dxout=left_x(r)-x_coord(q);
11346 dyout=left_y(r)-y_coord(q);
11347 if ( (dxout==0)&&(dyout==0) ) {
11348 dxout=x_coord(r)-x_coord(q);
11349 dyout=y_coord(r)-y_coord(q);
11353 dxout=dxout-x_coord(h);
11354 dyout=dyout-y_coord(h);
11356 tmp=mp_pyth_add(mp, dxout,dyout);
11357 if ( tmp==0 ) mp_confusion(mp, "degenerate spec");
11358 @:this can't happen degerate spec}{\quad degenerate spec@>
11359 dxout=mp_make_fraction(mp, dxout,tmp);
11360 dyout=mp_make_fraction(mp, dyout,tmp)
11362 @* \[23] Direction and intersection times.
11363 A path of length $n$ is defined parametrically by functions $x(t)$ and
11364 $y(t)$, for |0<=t<=n|; we can regard $t$ as the ``time'' at which the path
11365 reaches the point $\bigl(x(t),y(t)\bigr)$. In this section of the program
11366 we shall consider operations that determine special times associated with
11367 given paths: the first time that a path travels in a given direction, and
11368 a pair of times at which two paths cross each other.
11370 @ Let's start with the easier task. The function |find_direction_time| is
11371 given a direction |(x,y)| and a path starting at~|h|. If the path never
11372 travels in direction |(x,y)|, the direction time will be~|-1|; otherwise
11373 it will be nonnegative.
11375 Certain anomalous cases can arise: If |(x,y)=(0,0)|, so that the given
11376 direction is undefined, the direction time will be~0. If $\bigl(x'(t),
11377 y'(t)\bigr)=(0,0)$, so that the path direction is undefined, it will be
11378 assumed to match any given direction at time~|t|.
11380 The routine solves this problem in nondegenerate cases by rotating the path
11381 and the given direction so that |(x,y)=(1,0)|; i.e., the main task will be
11382 to find when a given path first travels ``due east.''
11385 scaled mp_find_direction_time (MP mp,scaled x, scaled y, pointer h) {
11386 scaled max; /* $\max\bigl(\vert x\vert,\vert y\vert\bigr)$ */
11387 pointer p,q; /* for list traversal */
11388 scaled n; /* the direction time at knot |p| */
11389 scaled tt; /* the direction time within a cubic */
11390 @<Other local variables for |find_direction_time|@>;
11391 @<Normalize the given direction for better accuracy;
11392 but |return| with zero result if it's zero@>;
11395 if ( right_type(p)==mp_endpoint ) break;
11397 @<Rotate the cubic between |p| and |q|; then
11398 |goto found| if the rotated cubic travels due east at some time |tt|;
11399 but |break| if an entire cyclic path has been traversed@>;
11407 @ @<Normalize the given direction for better accuracy...@>=
11408 if ( abs(x)<abs(y) ) {
11409 x=mp_make_fraction(mp, x,abs(y));
11410 if ( y>0 ) y=fraction_one; else y=-fraction_one;
11411 } else if ( x==0 ) {
11414 y=mp_make_fraction(mp, y,abs(x));
11415 if ( x>0 ) x=fraction_one; else x=-fraction_one;
11418 @ Since we're interested in the tangent directions, we work with the
11419 derivative $${\textstyle1\over3}B'(x_0,x_1,x_2,x_3;t)=
11420 B(x_1-x_0,x_2-x_1,x_3-x_2;t)$$ instead of
11421 $B(x_0,x_1,x_2,x_3;t)$ itself. The derived coefficients are also scaled up
11422 in order to achieve better accuracy.
11424 The given path may turn abruptly at a knot, and it might pass the critical
11425 tangent direction at such a time. Therefore we remember the direction |phi|
11426 in which the previous rotated cubic was traveling. (The value of |phi| will be
11427 undefined on the first cubic, i.e., when |n=0|.)
11429 @<Rotate the cubic between |p| and |q|; then...@>=
11431 @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples of the control
11432 points of the rotated derivatives@>;
11433 if ( y1==0 ) if ( x1>=0 ) goto FOUND;
11435 @<Exit to |found| if an eastward direction occurs at knot |p|@>;
11438 if ( (x3!=0)||(y3!=0) ) phi=mp_n_arg(mp, x3,y3);
11439 @<Exit to |found| if the curve whose derivatives are specified by
11440 |x1,x2,x3,y1,y2,y3| travels eastward at some time~|tt|@>
11442 @ @<Other local variables for |find_direction_time|@>=
11443 scaled x1,x2,x3,y1,y2,y3; /* multiples of rotated derivatives */
11444 angle theta,phi; /* angles of exit and entry at a knot */
11445 fraction t; /* temp storage */
11447 @ @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples...@>=
11448 x1=right_x(p)-x_coord(p); x2=left_x(q)-right_x(p);
11449 x3=x_coord(q)-left_x(q);
11450 y1=right_y(p)-y_coord(p); y2=left_y(q)-right_y(p);
11451 y3=y_coord(q)-left_y(q);
11453 if ( abs(x2)>max ) max=abs(x2);
11454 if ( abs(x3)>max ) max=abs(x3);
11455 if ( abs(y1)>max ) max=abs(y1);
11456 if ( abs(y2)>max ) max=abs(y2);
11457 if ( abs(y3)>max ) max=abs(y3);
11458 if ( max==0 ) goto FOUND;
11459 while ( max<fraction_half ){
11460 max+=max; x1+=x1; x2+=x2; x3+=x3;
11461 y1+=y1; y2+=y2; y3+=y3;
11463 t=x1; x1=mp_take_fraction(mp, x1,x)+mp_take_fraction(mp, y1,y);
11464 y1=mp_take_fraction(mp, y1,x)-mp_take_fraction(mp, t,y);
11465 t=x2; x2=mp_take_fraction(mp, x2,x)+mp_take_fraction(mp, y2,y);
11466 y2=mp_take_fraction(mp, y2,x)-mp_take_fraction(mp, t,y);
11467 t=x3; x3=mp_take_fraction(mp, x3,x)+mp_take_fraction(mp, y3,y);
11468 y3=mp_take_fraction(mp, y3,x)-mp_take_fraction(mp, t,y)
11470 @ @<Exit to |found| if an eastward direction occurs at knot |p|@>=
11471 theta=mp_n_arg(mp, x1,y1);
11472 if ( theta>=0 ) if ( phi<=0 ) if ( phi>=theta-one_eighty_deg ) goto FOUND;
11473 if ( theta<=0 ) if ( phi>=0 ) if ( phi<=theta+one_eighty_deg ) goto FOUND
11475 @ In this step we want to use the |crossing_point| routine to find the
11476 roots of the quadratic equation $B(y_1,y_2,y_3;t)=0$.
11477 Several complications arise: If the quadratic equation has a double root,
11478 the curve never crosses zero, and |crossing_point| will find nothing;
11479 this case occurs iff $y_1y_3=y_2^2$ and $y_1y_2<0$. If the quadratic
11480 equation has simple roots, or only one root, we may have to negate it
11481 so that $B(y_1,y_2,y_3;t)$ crosses from positive to negative at its first root.
11482 And finally, we need to do special things if $B(y_1,y_2,y_3;t)$ is
11485 @ @<Exit to |found| if the curve whose derivatives are specified by...@>=
11486 if ( x1<0 ) if ( x2<0 ) if ( x3<0 ) goto DONE;
11487 if ( mp_ab_vs_cd(mp, y1,y3,y2,y2)==0 ) {
11488 @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11489 either |goto found| or |goto done|@>;
11492 if ( y1<0 ) { y1=-y1; y2=-y2; y3=-y3; }
11493 else if ( y2>0 ){ y2=-y2; y3=-y3; };
11495 @<Check the places where $B(y_1,y_2,y_3;t)=0$ to see if
11496 $B(x_1,x_2,x_3;t)\ge0$@>;
11499 @ The quadratic polynomial $B(y_1,y_2,y_3;t)$ begins |>=0| and has at most
11500 two roots, because we know that it isn't identically zero.
11502 It must be admitted that the |crossing_point| routine is not perfectly accurate;
11503 rounding errors might cause it to find a root when $y_1y_3>y_2^2$, or to
11504 miss the roots when $y_1y_3<y_2^2$. The rotation process is itself
11505 subject to rounding errors. Yet this code optimistically tries to
11506 do the right thing.
11508 @d we_found_it { tt=(t+04000) / 010000; goto FOUND; }
11510 @<Check the places where $B(y_1,y_2,y_3;t)=0$...@>=
11511 t=mp_crossing_point(mp, y1,y2,y3);
11512 if ( t>fraction_one ) goto DONE;
11513 y2=t_of_the_way(y2,y3);
11514 x1=t_of_the_way(x1,x2);
11515 x2=t_of_the_way(x2,x3);
11516 x1=t_of_the_way(x1,x2);
11517 if ( x1>=0 ) we_found_it;
11519 tt=t; t=mp_crossing_point(mp, 0,-y2,-y3);
11520 if ( t>fraction_one ) goto DONE;
11521 x1=t_of_the_way(x1,x2);
11522 x2=t_of_the_way(x2,x3);
11523 if ( t_of_the_way(x1,x2)>=0 ) {
11524 t=t_of_the_way(tt,fraction_one); we_found_it;
11527 @ @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11528 either |goto found| or |goto done|@>=
11530 if ( mp_ab_vs_cd(mp, y1,y2,0,0)<0 ) {
11531 t=mp_make_fraction(mp, y1,y1-y2);
11532 x1=t_of_the_way(x1,x2);
11533 x2=t_of_the_way(x2,x3);
11534 if ( t_of_the_way(x1,x2)>=0 ) we_found_it;
11535 } else if ( y3==0 ) {
11537 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|@>;
11538 } else if ( x3>=0 ) {
11539 tt=unity; goto FOUND;
11545 @ At this point we know that the derivative of |y(t)| is identically zero,
11546 and that |x1<0|; but either |x2>=0| or |x3>=0|, so there's some hope of
11549 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|...@>=
11551 t=mp_crossing_point(mp, -x1,-x2,-x3);
11552 if ( t<=fraction_one ) we_found_it;
11553 if ( mp_ab_vs_cd(mp, x1,x3,x2,x2)<=0 ) {
11554 t=mp_make_fraction(mp, x1,x1-x2); we_found_it;
11558 @ The intersection of two cubics can be found by an interesting variant
11559 of the general bisection scheme described in the introduction to
11561 Given $w(t)=B(w_0,w_1,w_2,w_3;t)$ and $z(t)=B(z_0,z_1,z_2,z_3;t)$,
11562 we wish to find a pair of times $(t_1,t_2)$ such that $w(t_1)=z(t_2)$,
11563 if an intersection exists. First we find the smallest rectangle that
11564 encloses the points $\{w_0,w_1,w_2,w_3\}$ and check that it overlaps
11565 the smallest rectangle that encloses
11566 $\{z_0,z_1,z_2,z_3\}$; if not, the cubics certainly don't intersect.
11567 But if the rectangles do overlap, we bisect the intervals, getting
11568 new cubics $w'$ and~$w''$, $z'$~and~$z''$; the intersection routine first
11569 tries for an intersection between $w'$ and~$z'$, then (if unsuccessful)
11570 between $w'$ and~$z''$, then (if still unsuccessful) between $w''$ and~$z'$,
11571 finally (if thrice unsuccessful) between $w''$ and~$z''$. After $l$~successful
11572 levels of bisection we will have determined the intersection times $t_1$
11573 and~$t_2$ to $l$~bits of accuracy.
11575 \def\submin{_{\rm min}} \def\submax{_{\rm max}}
11576 As before, it is better to work with the numbers $W_k=2^l(w_k-w_{k-1})$
11577 and $Z_k=2^l(z_k-z_{k-1})$ rather than the coefficients $w_k$ and $z_k$
11578 themselves. We also need one other quantity, $\Delta=2^l(w_0-z_0)$,
11579 to determine when the enclosing rectangles overlap. Here's why:
11580 The $x$~coordinates of~$w(t)$ are between $u\submin$ and $u\submax$,
11581 and the $x$~coordinates of~$z(t)$ are between $x\submin$ and $x\submax$,
11582 if we write $w_k=(u_k,v_k)$ and $z_k=(x_k,y_k)$ and $u\submin=
11583 \min(u_0,u_1,u_2,u_3)$, etc. These intervals of $x$~coordinates
11584 overlap if and only if $u\submin\L x\submax$ and
11585 $x\submin\L u\submax$. Letting
11586 $$U\submin=\min(0,U_1,U_1+U_2,U_1+U_2+U_3),\;
11587 U\submax=\max(0,U_1,U_1+U_2,U_1+U_2+U_3),$$
11588 we have $u\submin=2^lu_0+U\submin$, etc.; the condition for overlap
11590 $$X\submin-U\submax\L 2^l(u_0-x_0)\L X\submax-U\submin.$$
11591 Thus we want to maintain the quantity $2^l(u_0-x_0)$; similarly,
11592 the quantity $2^l(v_0-y_0)$ accounts for the $y$~coordinates. The
11593 coordinates of $\Delta=2^l(w_0-z_0)$ must stay bounded as $l$ increases,
11594 because of the overlap condition; i.e., we know that $X\submin$,
11595 $X\submax$, and their relatives are bounded, hence $X\submax-
11596 U\submin$ and $X\submin-U\submax$ are bounded.
11598 @ Incidentally, if the given cubics intersect more than once, the process
11599 just sketched will not necessarily find the lexicographically smallest pair
11600 $(t_1,t_2)$. The solution actually obtained will be smallest in ``shuffled
11601 order''; i.e., if $t_1=(.a_1a_2\ldots a_{16})_2$ and
11602 $t_2=(.b_1b_2\ldots b_{16})_2$, then we will minimize
11603 $a_1b_1a_2b_2\ldots a_{16}b_{16}$, not
11604 $a_1a_2\ldots a_{16}b_1b_2\ldots b_{16}$.
11605 Shuffled order agrees with lexicographic order if all pairs of solutions
11606 $(t_1,t_2)$ and $(t_1',t_2')$ have the property that $t_1<t_1'$ iff
11607 $t_2<t_2'$; but in general, lexicographic order can be quite different,
11608 and the bisection algorithm would be substantially less efficient if it were
11609 constrained by lexicographic order.
11611 For example, suppose that an overlap has been found for $l=3$ and
11612 $(t_1,t_2)= (.101,.011)$ in binary, but that no overlap is produced by
11613 either of the alternatives $(.1010,.0110)$, $(.1010,.0111)$ at level~4.
11614 Then there is probably an intersection in one of the subintervals
11615 $(.1011,.011x)$; but lexicographic order would require us to explore
11616 $(.1010,.1xxx)$ and $(.1011,.00xx)$ and $(.1011,.010x)$ first. We wouldn't
11617 want to store all of the subdivision data for the second path, so the
11618 subdivisions would have to be regenerated many times. Such inefficiencies
11619 would be associated with every `1' in the binary representation of~$t_1$.
11621 @ The subdivision process introduces rounding errors, hence we need to
11622 make a more liberal test for overlap. It is not hard to show that the
11623 computed values of $U_i$ differ from the truth by at most~$l$, on
11624 level~$l$, hence $U\submin$ and $U\submax$ will be at most $3l$ in error.
11625 If $\beta$ is an upper bound on the absolute error in the computed
11626 components of $\Delta=(|delx|,|dely|)$ on level~$l$, we will replace
11627 the test `$X\submin-U\submax\L|delx|$' by the more liberal test
11628 `$X\submin-U\submax\L|delx|+|tol|$', where $|tol|=6l+\beta$.
11630 More accuracy is obtained if we try the algorithm first with |tol=0|;
11631 the more liberal tolerance is used only if an exact approach fails.
11632 It is convenient to do this double-take by letting `3' in the preceding
11633 paragraph be a parameter, which is first 0, then 3.
11636 unsigned int tol_step; /* either 0 or 3, usually */
11638 @ We shall use an explicit stack to implement the recursive bisection
11639 method described above. The |bisect_stack| array will contain numerous 5-word
11640 packets like $(U_1,U_2,U_3,U\submin,U\submax)$, as well as 20-word packets
11641 comprising the 5-word packets for $U$, $V$, $X$, and~$Y$.
11643 The following macros define the allocation of stack positions to
11644 the quantities needed for bisection-intersection.
11646 @d stack_1(A) mp->bisect_stack[(A)] /* $U_1$, $V_1$, $X_1$, or $Y_1$ */
11647 @d stack_2(A) mp->bisect_stack[(A)+1] /* $U_2$, $V_2$, $X_2$, or $Y_2$ */
11648 @d stack_3(A) mp->bisect_stack[(A)+2] /* $U_3$, $V_3$, $X_3$, or $Y_3$ */
11649 @d stack_min(A) mp->bisect_stack[(A)+3]
11650 /* $U\submin$, $V\submin$, $X\submin$, or $Y\submin$ */
11651 @d stack_max(A) mp->bisect_stack[(A)+4]
11652 /* $U\submax$, $V\submax$, $X\submax$, or $Y\submax$ */
11653 @d int_packets 20 /* number of words to represent $U_k$, $V_k$, $X_k$, and $Y_k$ */
11655 @d u_packet(A) ((A)-5)
11656 @d v_packet(A) ((A)-10)
11657 @d x_packet(A) ((A)-15)
11658 @d y_packet(A) ((A)-20)
11659 @d l_packets (mp->bisect_ptr-int_packets)
11660 @d r_packets mp->bisect_ptr
11661 @d ul_packet u_packet(l_packets) /* base of $U'_k$ variables */
11662 @d vl_packet v_packet(l_packets) /* base of $V'_k$ variables */
11663 @d xl_packet x_packet(l_packets) /* base of $X'_k$ variables */
11664 @d yl_packet y_packet(l_packets) /* base of $Y'_k$ variables */
11665 @d ur_packet u_packet(r_packets) /* base of $U''_k$ variables */
11666 @d vr_packet v_packet(r_packets) /* base of $V''_k$ variables */
11667 @d xr_packet x_packet(r_packets) /* base of $X''_k$ variables */
11668 @d yr_packet y_packet(r_packets) /* base of $Y''_k$ variables */
11670 @d u1l stack_1(ul_packet) /* $U'_1$ */
11671 @d u2l stack_2(ul_packet) /* $U'_2$ */
11672 @d u3l stack_3(ul_packet) /* $U'_3$ */
11673 @d v1l stack_1(vl_packet) /* $V'_1$ */
11674 @d v2l stack_2(vl_packet) /* $V'_2$ */
11675 @d v3l stack_3(vl_packet) /* $V'_3$ */
11676 @d x1l stack_1(xl_packet) /* $X'_1$ */
11677 @d x2l stack_2(xl_packet) /* $X'_2$ */
11678 @d x3l stack_3(xl_packet) /* $X'_3$ */
11679 @d y1l stack_1(yl_packet) /* $Y'_1$ */
11680 @d y2l stack_2(yl_packet) /* $Y'_2$ */
11681 @d y3l stack_3(yl_packet) /* $Y'_3$ */
11682 @d u1r stack_1(ur_packet) /* $U''_1$ */
11683 @d u2r stack_2(ur_packet) /* $U''_2$ */
11684 @d u3r stack_3(ur_packet) /* $U''_3$ */
11685 @d v1r stack_1(vr_packet) /* $V''_1$ */
11686 @d v2r stack_2(vr_packet) /* $V''_2$ */
11687 @d v3r stack_3(vr_packet) /* $V''_3$ */
11688 @d x1r stack_1(xr_packet) /* $X''_1$ */
11689 @d x2r stack_2(xr_packet) /* $X''_2$ */
11690 @d x3r stack_3(xr_packet) /* $X''_3$ */
11691 @d y1r stack_1(yr_packet) /* $Y''_1$ */
11692 @d y2r stack_2(yr_packet) /* $Y''_2$ */
11693 @d y3r stack_3(yr_packet) /* $Y''_3$ */
11695 @d stack_dx mp->bisect_stack[mp->bisect_ptr] /* stacked value of |delx| */
11696 @d stack_dy mp->bisect_stack[mp->bisect_ptr+1] /* stacked value of |dely| */
11697 @d stack_tol mp->bisect_stack[mp->bisect_ptr+2] /* stacked value of |tol| */
11698 @d stack_uv mp->bisect_stack[mp->bisect_ptr+3] /* stacked value of |uv| */
11699 @d stack_xy mp->bisect_stack[mp->bisect_ptr+4] /* stacked value of |xy| */
11700 @d int_increment (int_packets+int_packets+5) /* number of stack words per level */
11703 integer *bisect_stack;
11704 unsigned int bisect_ptr;
11706 @ @<Allocate or initialize ...@>=
11707 mp->bisect_stack = xmalloc((bistack_size+1),sizeof(integer));
11709 @ @<Dealloc variables@>=
11710 xfree(mp->bisect_stack);
11712 @ @<Check the ``constant''...@>=
11713 if ( int_packets+17*int_increment>bistack_size ) mp->bad=19;
11715 @ Computation of the min and max is a tedious but fairly fast sequence of
11716 instructions; exactly four comparisons are made in each branch.
11719 if ( stack_1((A))<0 ) {
11720 if ( stack_3((A))>=0 ) {
11721 if ( stack_2((A))<0 ) stack_min((A))=stack_1((A))+stack_2((A));
11722 else stack_min((A))=stack_1((A));
11723 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11724 if ( stack_max((A))<0 ) stack_max((A))=0;
11726 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11727 if ( stack_min((A))>stack_1((A)) ) stack_min((A))=stack_1((A));
11728 stack_max((A))=stack_1((A))+stack_2((A));
11729 if ( stack_max((A))<0 ) stack_max((A))=0;
11731 } else if ( stack_3((A))<=0 ) {
11732 if ( stack_2((A))>0 ) stack_max((A))=stack_1((A))+stack_2((A));
11733 else stack_max((A))=stack_1((A));
11734 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11735 if ( stack_min((A))>0 ) stack_min((A))=0;
11737 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11738 if ( stack_max((A))<stack_1((A)) ) stack_max((A))=stack_1((A));
11739 stack_min((A))=stack_1((A))+stack_2((A));
11740 if ( stack_min((A))>0 ) stack_min((A))=0;
11743 @ It's convenient to keep the current values of $l$, $t_1$, and $t_2$ in
11744 the integer form $2^l+2^lt_1$ and $2^l+2^lt_2$. The |cubic_intersection|
11745 routine uses global variables |cur_t| and |cur_tt| for this purpose;
11746 after successful completion, |cur_t| and |cur_tt| will contain |unity|
11747 plus the |scaled| values of $t_1$ and~$t_2$.
11749 The values of |cur_t| and |cur_tt| will be set to zero if |cubic_intersection|
11750 finds no intersection. The routine gives up and gives an approximate answer
11751 if it has backtracked
11752 more than 5000 times (otherwise there are cases where several minutes
11753 of fruitless computation would be possible).
11755 @d max_patience 5000
11758 integer cur_t;integer cur_tt; /* controls and results of |cubic_intersection| */
11759 integer time_to_go; /* this many backtracks before giving up */
11760 integer max_t; /* maximum of $2^{l+1}$ so far achieved */
11762 @ The given cubics $B(w_0,w_1,w_2,w_3;t)$ and
11763 $B(z_0,z_1,z_2,z_3;t)$ are specified in adjacent knot nodes |(p,link(p))|
11764 and |(pp,link(pp))|, respectively.
11766 @c void mp_cubic_intersection (MP mp,pointer p, pointer pp) {
11767 pointer q,qq; /* |link(p)|, |link(pp)| */
11768 mp->time_to_go=max_patience; mp->max_t=2;
11769 @<Initialize for intersections at level zero@>;
11772 if ( mp->delx-mp->tol<=stack_max(x_packet(mp->xy))-stack_min(u_packet(mp->uv)))
11773 if ( mp->delx+mp->tol>=stack_min(x_packet(mp->xy))-stack_max(u_packet(mp->uv)))
11774 if ( mp->dely-mp->tol<=stack_max(y_packet(mp->xy))-stack_min(v_packet(mp->uv)))
11775 if ( mp->dely+mp->tol>=stack_min(y_packet(mp->xy))-stack_max(v_packet(mp->uv)))
11777 if ( mp->cur_t>=mp->max_t ){
11778 if ( mp->max_t==two ) { /* we've done 17 bisections */
11779 mp->cur_t=halfp(mp->cur_t+1); mp->cur_tt=halfp(mp->cur_tt+1); return;
11781 mp->max_t+=mp->max_t; mp->appr_t=mp->cur_t; mp->appr_tt=mp->cur_tt;
11783 @<Subdivide for a new level of intersection@>;
11786 if ( mp->time_to_go>0 ) {
11787 decr(mp->time_to_go);
11789 while ( mp->appr_t<unity ) {
11790 mp->appr_t+=mp->appr_t; mp->appr_tt+=mp->appr_tt;
11792 mp->cur_t=mp->appr_t; mp->cur_tt=mp->appr_tt; return;
11794 @<Advance to the next pair |(cur_t,cur_tt)|@>;
11798 @ The following variables are global, although they are used only by
11799 |cubic_intersection|, because it is necessary on some machines to
11800 split |cubic_intersection| up into two procedures.
11803 integer delx;integer dely; /* the components of $\Delta=2^l(w_0-z_0)$ */
11804 integer tol; /* bound on the uncertainly in the overlap test */
11806 unsigned int xy; /* pointers to the current packets of interest */
11807 integer three_l; /* |tol_step| times the bisection level */
11808 integer appr_t;integer appr_tt; /* best approximations known to the answers */
11810 @ We shall assume that the coordinates are sufficiently non-extreme that
11811 integer overflow will not occur.
11813 @<Initialize for intersections at level zero@>=
11814 q=link(p); qq=link(pp); mp->bisect_ptr=int_packets;
11815 u1r=right_x(p)-x_coord(p); u2r=left_x(q)-right_x(p);
11816 u3r=x_coord(q)-left_x(q); set_min_max(ur_packet);
11817 v1r=right_y(p)-y_coord(p); v2r=left_y(q)-right_y(p);
11818 v3r=y_coord(q)-left_y(q); set_min_max(vr_packet);
11819 x1r=right_x(pp)-x_coord(pp); x2r=left_x(qq)-right_x(pp);
11820 x3r=x_coord(qq)-left_x(qq); set_min_max(xr_packet);
11821 y1r=right_y(pp)-y_coord(pp); y2r=left_y(qq)-right_y(pp);
11822 y3r=y_coord(qq)-left_y(qq); set_min_max(yr_packet);
11823 mp->delx=x_coord(p)-x_coord(pp); mp->dely=y_coord(p)-y_coord(pp);
11824 mp->tol=0; mp->uv=r_packets; mp->xy=r_packets;
11825 mp->three_l=0; mp->cur_t=1; mp->cur_tt=1
11827 @ @<Subdivide for a new level of intersection@>=
11828 stack_dx=mp->delx; stack_dy=mp->dely; stack_tol=mp->tol;
11829 stack_uv=mp->uv; stack_xy=mp->xy;
11830 mp->bisect_ptr=mp->bisect_ptr+int_increment;
11831 mp->cur_t+=mp->cur_t; mp->cur_tt+=mp->cur_tt;
11832 u1l=stack_1(u_packet(mp->uv)); u3r=stack_3(u_packet(mp->uv));
11833 u2l=half(u1l+stack_2(u_packet(mp->uv)));
11834 u2r=half(u3r+stack_2(u_packet(mp->uv)));
11835 u3l=half(u2l+u2r); u1r=u3l;
11836 set_min_max(ul_packet); set_min_max(ur_packet);
11837 v1l=stack_1(v_packet(mp->uv)); v3r=stack_3(v_packet(mp->uv));
11838 v2l=half(v1l+stack_2(v_packet(mp->uv)));
11839 v2r=half(v3r+stack_2(v_packet(mp->uv)));
11840 v3l=half(v2l+v2r); v1r=v3l;
11841 set_min_max(vl_packet); set_min_max(vr_packet);
11842 x1l=stack_1(x_packet(mp->xy)); x3r=stack_3(x_packet(mp->xy));
11843 x2l=half(x1l+stack_2(x_packet(mp->xy)));
11844 x2r=half(x3r+stack_2(x_packet(mp->xy)));
11845 x3l=half(x2l+x2r); x1r=x3l;
11846 set_min_max(xl_packet); set_min_max(xr_packet);
11847 y1l=stack_1(y_packet(mp->xy)); y3r=stack_3(y_packet(mp->xy));
11848 y2l=half(y1l+stack_2(y_packet(mp->xy)));
11849 y2r=half(y3r+stack_2(y_packet(mp->xy)));
11850 y3l=half(y2l+y2r); y1r=y3l;
11851 set_min_max(yl_packet); set_min_max(yr_packet);
11852 mp->uv=l_packets; mp->xy=l_packets;
11853 mp->delx+=mp->delx; mp->dely+=mp->dely;
11854 mp->tol=mp->tol-mp->three_l+mp->tol_step;
11855 mp->tol+=mp->tol; mp->three_l=mp->three_l+mp->tol_step
11857 @ @<Advance to the next pair |(cur_t,cur_tt)|@>=
11859 if ( odd(mp->cur_tt) ) {
11860 if ( odd(mp->cur_t) ) {
11861 @<Descend to the previous level and |goto not_found|@>;
11864 mp->delx=mp->delx+stack_1(u_packet(mp->uv))+stack_2(u_packet(mp->uv))
11865 +stack_3(u_packet(mp->uv));
11866 mp->dely=mp->dely+stack_1(v_packet(mp->uv))+stack_2(v_packet(mp->uv))
11867 +stack_3(v_packet(mp->uv));
11868 mp->uv=mp->uv+int_packets; /* switch from |l_packet| to |r_packet| */
11869 decr(mp->cur_tt); mp->xy=mp->xy-int_packets;
11870 /* switch from |r_packet| to |l_packet| */
11871 mp->delx=mp->delx+stack_1(x_packet(mp->xy))+stack_2(x_packet(mp->xy))
11872 +stack_3(x_packet(mp->xy));
11873 mp->dely=mp->dely+stack_1(y_packet(mp->xy))+stack_2(y_packet(mp->xy))
11874 +stack_3(y_packet(mp->xy));
11877 incr(mp->cur_tt); mp->tol=mp->tol+mp->three_l;
11878 mp->delx=mp->delx-stack_1(x_packet(mp->xy))-stack_2(x_packet(mp->xy))
11879 -stack_3(x_packet(mp->xy));
11880 mp->dely=mp->dely-stack_1(y_packet(mp->xy))-stack_2(y_packet(mp->xy))
11881 -stack_3(y_packet(mp->xy));
11882 mp->xy=mp->xy+int_packets; /* switch from |l_packet| to |r_packet| */
11885 @ @<Descend to the previous level...@>=
11887 mp->cur_t=halfp(mp->cur_t); mp->cur_tt=halfp(mp->cur_tt);
11888 if ( mp->cur_t==0 ) return;
11889 mp->bisect_ptr=mp->bisect_ptr-int_increment;
11890 mp->three_l=mp->three_l-mp->tol_step;
11891 mp->delx=stack_dx; mp->dely=stack_dy; mp->tol=stack_tol;
11892 mp->uv=stack_uv; mp->xy=stack_xy;
11896 @ The |path_intersection| procedure is much simpler.
11897 It invokes |cubic_intersection| in lexicographic order until finding a
11898 pair of cubics that intersect. The final intersection times are placed in
11899 |cur_t| and~|cur_tt|.
11901 @c void mp_path_intersection (MP mp,pointer h, pointer hh) {
11902 pointer p,pp; /* link registers that traverse the given paths */
11903 integer n,nn; /* integer parts of intersection times, minus |unity| */
11904 @<Change one-point paths into dead cycles@>;
11909 if ( right_type(p)!=mp_endpoint ) {
11912 if ( right_type(pp)!=mp_endpoint ) {
11913 mp_cubic_intersection(mp, p,pp);
11914 if ( mp->cur_t>0 ) {
11915 mp->cur_t=mp->cur_t+n; mp->cur_tt=mp->cur_tt+nn;
11919 nn=nn+unity; pp=link(pp);
11922 n=n+unity; p=link(p);
11924 mp->tol_step=mp->tol_step+3;
11925 } while (mp->tol_step<=3);
11926 mp->cur_t=-unity; mp->cur_tt=-unity;
11929 @ @<Change one-point paths...@>=
11930 if ( right_type(h)==mp_endpoint ) {
11931 right_x(h)=x_coord(h); left_x(h)=x_coord(h);
11932 right_y(h)=y_coord(h); left_y(h)=y_coord(h); right_type(h)=mp_explicit;
11934 if ( right_type(hh)==mp_endpoint ) {
11935 right_x(hh)=x_coord(hh); left_x(hh)=x_coord(hh);
11936 right_y(hh)=y_coord(hh); left_y(hh)=y_coord(hh); right_type(hh)=mp_explicit;
11939 @* \[24] Dynamic linear equations.
11940 \MP\ users define variables implicitly by stating equations that should be
11941 satisfied; the computer is supposed to be smart enough to solve those equations.
11942 And indeed, the computer tries valiantly to do so, by distinguishing five
11943 different types of numeric values:
11946 |type(p)=mp_known| is the nice case, when |value(p)| is the |scaled| value
11947 of the variable whose address is~|p|.
11950 |type(p)=mp_dependent| means that |value(p)| is not present, but |dep_list(p)|
11951 points to a {\sl dependency list\/} that expresses the value of variable~|p|
11952 as a |scaled| number plus a sum of independent variables with |fraction|
11956 |type(p)=mp_independent| means that |value(p)=64s+m|, where |s>0| is a ``serial
11957 number'' reflecting the time this variable was first used in an equation;
11958 also |0<=m<64|, and each dependent variable
11959 that refers to this one is actually referring to the future value of
11960 this variable times~$2^m$. (Usually |m=0|, but higher degrees of
11961 scaling are sometimes needed to keep the coefficients in dependency lists
11962 from getting too large. The value of~|m| will always be even.)
11965 |type(p)=mp_numeric_type| means that variable |p| hasn't appeared in an
11966 equation before, but it has been explicitly declared to be numeric.
11969 |type(p)=undefined| means that variable |p| hasn't appeared before.
11971 \smallskip\noindent
11972 We have actually discussed these five types in the reverse order of their
11973 history during a computation: Once |known|, a variable never again
11974 becomes |dependent|; once |dependent|, it almost never again becomes
11975 |mp_independent|; once |mp_independent|, it never again becomes |mp_numeric_type|;
11976 and once |mp_numeric_type|, it never again becomes |undefined| (except
11977 of course when the user specifically decides to scrap the old value
11978 and start again). A backward step may, however, take place: Sometimes
11979 a |dependent| variable becomes |mp_independent| again, when one of the
11980 independent variables it depends on is reverting to |undefined|.
11983 The next patch detects overflow of independent-variable serial
11984 numbers. Diagnosed and patched by Thorsten Dahlheimer.
11986 @d s_scale 64 /* the serial numbers are multiplied by this factor */
11987 @d max_indep_vars 0177777777 /* $2^{25}-1$ */
11988 @d max_serial_no 017777777700 /* |max_indep_vars*s_scale| */
11989 @d new_indep(A) /* create a new independent variable */
11990 { if ( mp->serial_no==max_serial_no )
11991 mp_fatal_error(mp, "variable instance identifiers exhausted");
11992 type((A))=mp_independent; mp->serial_no=mp->serial_no+s_scale;
11993 value((A))=mp->serial_no;
11997 integer serial_no; /* the most recent serial number, times |s_scale| */
11999 @ @<Make variable |q+s| newly independent@>=new_indep(q+s)
12001 @ But how are dependency lists represented? It's simple: The linear combination
12002 $\alpha_1v_1+\cdots+\alpha_kv_k+\beta$ appears in |k+1| value nodes. If
12003 |q=dep_list(p)| points to this list, and if |k>0|, then |value(q)=
12004 @t$\alpha_1$@>| (which is a |fraction|); |info(q)| points to the location
12005 of $\alpha_1$; and |link(p)| points to the dependency list
12006 $\alpha_2v_2+\cdots+\alpha_kv_k+\beta$. On the other hand if |k=0|,
12007 then |value(q)=@t$\beta$@>| (which is |scaled|) and |info(q)=null|.
12008 The independent variables $v_1$, \dots,~$v_k$ have been sorted so that
12009 they appear in decreasing order of their |value| fields (i.e., of
12010 their serial numbers). \ (It is convenient to use decreasing order,
12011 since |value(null)=0|. If the independent variables were not sorted by
12012 serial number but by some other criterion, such as their location in |mem|,
12013 the equation-solving mechanism would be too system-dependent, because
12014 the ordering can affect the computed results.)
12016 The |link| field in the node that contains the constant term $\beta$ is
12017 called the {\sl final link\/} of the dependency list. \MP\ maintains
12018 a doubly-linked master list of all dependency lists, in terms of a permanently
12020 in |mem| called |dep_head|. If there are no dependencies, we have
12021 |link(dep_head)=dep_head| and |prev_dep(dep_head)=dep_head|;
12022 otherwise |link(dep_head)| points to the first dependent variable, say~|p|,
12023 and |prev_dep(p)=dep_head|. We have |type(p)=mp_dependent|, and |dep_list(p)|
12024 points to its dependency list. If the final link of that dependency list
12025 occurs in location~|q|, then |link(q)| points to the next dependent
12026 variable (say~|r|); and we have |prev_dep(r)=q|, etc.
12028 @d dep_list(A) link(value_loc((A)))
12029 /* half of the |value| field in a |dependent| variable */
12030 @d prev_dep(A) info(value_loc((A)))
12031 /* the other half; makes a doubly linked list */
12032 @d dep_node_size 2 /* the number of words per dependency node */
12034 @<Initialize table entries...@>= mp->serial_no=0;
12035 link(dep_head)=dep_head; prev_dep(dep_head)=dep_head;
12036 info(dep_head)=null; dep_list(dep_head)=null;
12038 @ Actually the description above contains a little white lie. There's
12039 another kind of variable called |mp_proto_dependent|, which is
12040 just like a |dependent| one except that the $\alpha$ coefficients
12041 in its dependency list are |scaled| instead of being fractions.
12042 Proto-dependency lists are mixed with dependency lists in the
12043 nodes reachable from |dep_head|.
12045 @ Here is a procedure that prints a dependency list in symbolic form.
12046 The second parameter should be either |dependent| or |mp_proto_dependent|,
12047 to indicate the scaling of the coefficients.
12049 @<Declare subroutines for printing expressions@>=
12050 void mp_print_dependency (MP mp,pointer p, small_number t) {
12051 integer v; /* a coefficient */
12052 pointer pp,q; /* for list manipulation */
12055 v=abs(value(p)); q=info(p);
12056 if ( q==null ) { /* the constant term */
12057 if ( (v!=0)||(p==pp) ) {
12058 if ( value(p)>0 ) if ( p!=pp ) mp_print_char(mp, '+');
12059 mp_print_scaled(mp, value(p));
12063 @<Print the coefficient, unless it's $\pm1.0$@>;
12064 if ( type(q)!=mp_independent ) mp_confusion(mp, "dep");
12065 @:this can't happen dep}{\quad dep@>
12066 mp_print_variable_name(mp, q); v=value(q) % s_scale;
12067 while ( v>0 ) { mp_print(mp, "*4"); v=v-2; }
12072 @ @<Print the coefficient, unless it's $\pm1.0$@>=
12073 if ( value(p)<0 ) mp_print_char(mp, '-');
12074 else if ( p!=pp ) mp_print_char(mp, '+');
12075 if ( t==mp_dependent ) v=mp_round_fraction(mp, v);
12076 if ( v!=unity ) mp_print_scaled(mp, v)
12078 @ The maximum absolute value of a coefficient in a given dependency list
12079 is returned by the following simple function.
12081 @c fraction mp_max_coef (MP mp,pointer p) {
12082 fraction x; /* the maximum so far */
12084 while ( info(p)!=null ) {
12085 if ( abs(value(p))>x ) x=abs(value(p));
12091 @ One of the main operations needed on dependency lists is to add a multiple
12092 of one list to the other; we call this |p_plus_fq|, where |p| and~|q| point
12093 to dependency lists and |f| is a fraction.
12095 If the coefficient of any independent variable becomes |coef_bound| or
12096 more, in absolute value, this procedure changes the type of that variable
12097 to `|independent_needing_fix|', and sets the global variable |fix_needed|
12098 to~|true|. The value of $|coef_bound|=\mu$ is chosen so that
12099 $\mu^2+\mu<8$; this means that the numbers we deal with won't
12100 get too large. (Instead of the ``optimum'' $\mu=(\sqrt{33}-1)/2\approx
12101 2.3723$, the safer value 7/3 is taken as the threshold.)
12103 The changes mentioned in the preceding paragraph are actually done only if
12104 the global variable |watch_coefs| is |true|. But it usually is; in fact,
12105 it is |false| only when \MP\ is making a dependency list that will soon
12106 be equated to zero.
12108 Several procedures that act on dependency lists, including |p_plus_fq|,
12109 set the global variable |dep_final| to the final (constant term) node of
12110 the dependency list that they produce.
12112 @d coef_bound 04525252525 /* |fraction| approximation to 7/3 */
12113 @d independent_needing_fix 0
12116 boolean fix_needed; /* does at least one |independent| variable need scaling? */
12117 boolean watch_coefs; /* should we scale coefficients that exceed |coef_bound|? */
12118 pointer dep_final; /* location of the constant term and final link */
12121 mp->fix_needed=false; mp->watch_coefs=true;
12123 @ The |p_plus_fq| procedure has a fourth parameter, |t|, that should be
12124 set to |mp_proto_dependent| if |p| is a proto-dependency list. In this
12125 case |f| will be |scaled|, not a |fraction|. Similarly, the fifth parameter~|tt|
12126 should be |mp_proto_dependent| if |q| is a proto-dependency list.
12128 List |q| is unchanged by the operation; but list |p| is totally destroyed.
12130 The final link of the dependency list or proto-dependency list returned
12131 by |p_plus_fq| is the same as the original final link of~|p|. Indeed, the
12132 constant term of the result will be located in the same |mem| location
12133 as the original constant term of~|p|.
12135 Coefficients of the result are assumed to be zero if they are less than
12136 a certain threshold. This compensates for inevitable rounding errors,
12137 and tends to make more variables `|known|'. The threshold is approximately
12138 $10^{-5}$ in the case of normal dependency lists, $10^{-4}$ for
12139 proto-dependencies.
12141 @d fraction_threshold 2685 /* a |fraction| coefficient less than this is zeroed */
12142 @d half_fraction_threshold 1342 /* half of |fraction_threshold| */
12143 @d scaled_threshold 8 /* a |scaled| coefficient less than this is zeroed */
12144 @d half_scaled_threshold 4 /* half of |scaled_threshold| */
12146 @<Declare basic dependency-list subroutines@>=
12147 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12148 pointer q, small_number t, small_number tt) ;
12151 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12152 pointer q, small_number t, small_number tt) {
12153 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12154 pointer r,s; /* for list manipulation */
12155 integer mp_threshold; /* defines a neighborhood of zero */
12156 integer v; /* temporary register */
12157 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
12158 else mp_threshold=scaled_threshold;
12159 r=temp_head; pp=info(p); qq=info(q);
12165 @<Contribute a term from |p|, plus |f| times the
12166 corresponding term from |q|@>
12168 } else if ( value(pp)<value(qq) ) {
12169 @<Contribute a term from |q|, multiplied by~|f|@>
12171 link(r)=p; r=p; p=link(p); pp=info(p);
12174 if ( t==mp_dependent )
12175 value(p)=mp_slow_add(mp, value(p),mp_take_fraction(mp, value(q),f));
12177 value(p)=mp_slow_add(mp, value(p),mp_take_scaled(mp, value(q),f));
12178 link(r)=p; mp->dep_final=p;
12179 return link(temp_head);
12182 @ @<Contribute a term from |p|, plus |f|...@>=
12184 if ( tt==mp_dependent ) v=value(p)+mp_take_fraction(mp, f,value(q));
12185 else v=value(p)+mp_take_scaled(mp, f,value(q));
12186 value(p)=v; s=p; p=link(p);
12187 if ( abs(v)<mp_threshold ) {
12188 mp_free_node(mp, s,dep_node_size);
12190 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12191 type(qq)=independent_needing_fix; mp->fix_needed=true;
12195 pp=info(p); q=link(q); qq=info(q);
12198 @ @<Contribute a term from |q|, multiplied by~|f|@>=
12200 if ( tt==mp_dependent ) v=mp_take_fraction(mp, f,value(q));
12201 else v=mp_take_scaled(mp, f,value(q));
12202 if ( abs(v)>halfp(mp_threshold) ) {
12203 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=v;
12204 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12205 type(qq)=independent_needing_fix; mp->fix_needed=true;
12209 q=link(q); qq=info(q);
12212 @ It is convenient to have another subroutine for the special case
12213 of |p_plus_fq| when |f=1.0|. In this routine lists |p| and |q| are
12214 both of the same type~|t| (either |dependent| or |mp_proto_dependent|).
12216 @c pointer mp_p_plus_q (MP mp,pointer p, pointer q, small_number t) {
12217 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12218 pointer r,s; /* for list manipulation */
12219 integer mp_threshold; /* defines a neighborhood of zero */
12220 integer v; /* temporary register */
12221 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
12222 else mp_threshold=scaled_threshold;
12223 r=temp_head; pp=info(p); qq=info(q);
12229 @<Contribute a term from |p|, plus the
12230 corresponding term from |q|@>
12232 } else if ( value(pp)<value(qq) ) {
12233 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=value(q);
12234 q=link(q); qq=info(q); link(r)=s; r=s;
12236 link(r)=p; r=p; p=link(p); pp=info(p);
12239 value(p)=mp_slow_add(mp, value(p),value(q));
12240 link(r)=p; mp->dep_final=p;
12241 return link(temp_head);
12244 @ @<Contribute a term from |p|, plus the...@>=
12246 v=value(p)+value(q);
12247 value(p)=v; s=p; p=link(p); pp=info(p);
12248 if ( abs(v)<mp_threshold ) {
12249 mp_free_node(mp, s,dep_node_size);
12251 if ( (abs(v)>=coef_bound ) && mp->watch_coefs ) {
12252 type(qq)=independent_needing_fix; mp->fix_needed=true;
12256 q=link(q); qq=info(q);
12259 @ A somewhat simpler routine will multiply a dependency list
12260 by a given constant~|v|. The constant is either a |fraction| less than
12261 |fraction_one|, or it is |scaled|. In the latter case we might be forced to
12262 convert a dependency list to a proto-dependency list.
12263 Parameters |t0| and |t1| are the list types before and after;
12264 they should agree unless |t0=mp_dependent| and |t1=mp_proto_dependent|
12265 and |v_is_scaled=true|.
12267 @c pointer mp_p_times_v (MP mp,pointer p, integer v, small_number t0,
12268 small_number t1, boolean v_is_scaled) {
12269 pointer r,s; /* for list manipulation */
12270 integer w; /* tentative coefficient */
12271 integer mp_threshold;
12272 boolean scaling_down;
12273 if ( t0!=t1 ) scaling_down=true; else scaling_down=! v_is_scaled;
12274 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
12275 else mp_threshold=half_scaled_threshold;
12277 while ( info(p)!=null ) {
12278 if ( scaling_down ) w=mp_take_fraction(mp, v,value(p));
12279 else w=mp_take_scaled(mp, v,value(p));
12280 if ( abs(w)<=mp_threshold ) {
12281 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12283 if ( abs(w)>=coef_bound ) {
12284 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12286 link(r)=p; r=p; value(p)=w; p=link(p);
12290 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
12291 else value(p)=mp_take_fraction(mp, value(p),v);
12292 return link(temp_head);
12295 @ Similarly, we sometimes need to divide a dependency list
12296 by a given |scaled| constant.
12298 @<Declare basic dependency-list subroutines@>=
12299 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12300 t0, small_number t1) ;
12303 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12304 t0, small_number t1) {
12305 pointer r,s; /* for list manipulation */
12306 integer w; /* tentative coefficient */
12307 integer mp_threshold;
12308 boolean scaling_down;
12309 if ( t0!=t1 ) scaling_down=true; else scaling_down=false;
12310 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
12311 else mp_threshold=half_scaled_threshold;
12313 while ( info( p)!=null ) {
12314 if ( scaling_down ) {
12315 if ( abs(v)<02000000 ) w=mp_make_scaled(mp, value(p),v*010000);
12316 else w=mp_make_scaled(mp, mp_round_fraction(mp, value(p)),v);
12318 w=mp_make_scaled(mp, value(p),v);
12320 if ( abs(w)<=mp_threshold ) {
12321 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12323 if ( abs(w)>=coef_bound ) {
12324 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12326 link(r)=p; r=p; value(p)=w; p=link(p);
12329 link(r)=p; value(p)=mp_make_scaled(mp, value(p),v);
12330 return link(temp_head);
12333 @ Here's another utility routine for dependency lists. When an independent
12334 variable becomes dependent, we want to remove it from all existing
12335 dependencies. The |p_with_x_becoming_q| function computes the
12336 dependency list of~|p| after variable~|x| has been replaced by~|q|.
12338 This procedure has basically the same calling conventions as |p_plus_fq|:
12339 List~|q| is unchanged; list~|p| is destroyed; the constant node and the
12340 final link are inherited from~|p|; and the fourth parameter tells whether
12341 or not |p| is |mp_proto_dependent|. However, the global variable |dep_final|
12342 is not altered if |x| does not occur in list~|p|.
12344 @c pointer mp_p_with_x_becoming_q (MP mp,pointer p,
12345 pointer x, pointer q, small_number t) {
12346 pointer r,s; /* for list manipulation */
12347 integer v; /* coefficient of |x| */
12348 integer sx; /* serial number of |x| */
12349 s=p; r=temp_head; sx=value(x);
12350 while ( value(info(s))>sx ) { r=s; s=link(s); };
12351 if ( info(s)!=x ) {
12354 link(temp_head)=p; link(r)=link(s); v=value(s);
12355 mp_free_node(mp, s,dep_node_size);
12356 return mp_p_plus_fq(mp, link(temp_head),v,q,t,mp_dependent);
12360 @ Here's a simple procedure that reports an error when a variable
12361 has just received a known value that's out of the required range.
12363 @<Declare basic dependency-list subroutines@>=
12364 void mp_val_too_big (MP mp,scaled x) ;
12366 @ @c void mp_val_too_big (MP mp,scaled x) {
12367 if ( mp->internal[mp_warning_check]>0 ) {
12368 print_err("Value is too large ("); mp_print_scaled(mp, x); mp_print_char(mp, ')');
12369 @.Value is too large@>
12370 help4("The equation I just processed has given some variable")
12371 ("a value of 4096 or more. Continue and I'll try to cope")
12372 ("with that big value; but it might be dangerous.")
12373 ("(Set warningcheck:=0 to suppress this message.)");
12378 @ When a dependent variable becomes known, the following routine
12379 removes its dependency list. Here |p| points to the variable, and
12380 |q| points to the dependency list (which is one node long).
12382 @<Declare basic dependency-list subroutines@>=
12383 void mp_make_known (MP mp,pointer p, pointer q) ;
12385 @ @c void mp_make_known (MP mp,pointer p, pointer q) {
12386 int t; /* the previous type */
12387 prev_dep(link(q))=prev_dep(p);
12388 link(prev_dep(p))=link(q); t=type(p);
12389 type(p)=mp_known; value(p)=value(q); mp_free_node(mp, q,dep_node_size);
12390 if ( abs(value(p))>=fraction_one ) mp_val_too_big(mp, value(p));
12391 if (( mp->internal[mp_tracing_equations]>0) && mp_interesting(mp, p) ) {
12392 mp_begin_diagnostic(mp); mp_print_nl(mp, "#### ");
12393 @:]]]\#\#\#\#_}{\.{\#\#\#\#}@>
12394 mp_print_variable_name(mp, p);
12395 mp_print_char(mp, '='); mp_print_scaled(mp, value(p));
12396 mp_end_diagnostic(mp, false);
12398 if (( mp->cur_exp==p ) && mp->cur_type==t ) {
12399 mp->cur_type=mp_known; mp->cur_exp=value(p);
12400 mp_free_node(mp, p,value_node_size);
12404 @ The |fix_dependencies| routine is called into action when |fix_needed|
12405 has been triggered. The program keeps a list~|s| of independent variables
12406 whose coefficients must be divided by~4.
12408 In unusual cases, this fixup process might reduce one or more coefficients
12409 to zero, so that a variable will become known more or less by default.
12411 @<Declare basic dependency-list subroutines@>=
12412 void mp_fix_dependencies (MP mp);
12414 @ @c void mp_fix_dependencies (MP mp) {
12415 pointer p,q,r,s,t; /* list manipulation registers */
12416 pointer x; /* an independent variable */
12417 r=link(dep_head); s=null;
12418 while ( r!=dep_head ){
12420 @<Run through the dependency list for variable |t|, fixing
12421 all nodes, and ending with final link~|q|@>;
12423 if ( q==dep_list(t) ) mp_make_known(mp, t,q);
12425 while ( s!=null ) {
12426 p=link(s); x=info(s); free_avail(s); s=p;
12427 type(x)=mp_independent; value(x)=value(x)+2;
12429 mp->fix_needed=false;
12432 @ @d independent_being_fixed 1 /* this variable already appears in |s| */
12434 @<Run through the dependency list for variable |t|...@>=
12435 r=value_loc(t); /* |link(r)=dep_list(t)| */
12437 q=link(r); x=info(q);
12438 if ( x==null ) break;
12439 if ( type(x)<=independent_being_fixed ) {
12440 if ( type(x)<independent_being_fixed ) {
12441 p=mp_get_avail(mp); link(p)=s; s=p;
12442 info(s)=x; type(x)=independent_being_fixed;
12444 value(q)=value(q) / 4;
12445 if ( value(q)==0 ) {
12446 link(r)=link(q); mp_free_node(mp, q,dep_node_size); q=r;
12453 @ The |new_dep| routine installs a dependency list~|p| into the value node~|q|,
12454 linking it into the list of all known dependencies. We assume that
12455 |dep_final| points to the final node of list~|p|.
12457 @c void mp_new_dep (MP mp,pointer q, pointer p) {
12458 pointer r; /* what used to be the first dependency */
12459 dep_list(q)=p; prev_dep(q)=dep_head;
12460 r=link(dep_head); link(mp->dep_final)=r; prev_dep(r)=mp->dep_final;
12464 @ Here is one of the ways a dependency list gets started.
12465 The |const_dependency| routine produces a list that has nothing but
12468 @c pointer mp_const_dependency (MP mp, scaled v) {
12469 mp->dep_final=mp_get_node(mp, dep_node_size);
12470 value(mp->dep_final)=v; info(mp->dep_final)=null;
12471 return mp->dep_final;
12474 @ And here's a more interesting way to start a dependency list from scratch:
12475 The parameter to |single_dependency| is the location of an
12476 independent variable~|x|, and the result is the simple dependency list
12479 In the unlikely event that the given independent variable has been doubled so
12480 often that we can't refer to it with a nonzero coefficient,
12481 |single_dependency| returns the simple list `0'. This case can be
12482 recognized by testing that the returned list pointer is equal to
12485 @c pointer mp_single_dependency (MP mp,pointer p) {
12486 pointer q; /* the new dependency list */
12487 integer m; /* the number of doublings */
12488 m=value(p) % s_scale;
12490 return mp_const_dependency(mp, 0);
12492 q=mp_get_node(mp, dep_node_size);
12493 value(q)=two_to_the(28-m); info(q)=p;
12494 link(q)=mp_const_dependency(mp, 0);
12499 @ We sometimes need to make an exact copy of a dependency list.
12501 @c pointer mp_copy_dep_list (MP mp,pointer p) {
12502 pointer q; /* the new dependency list */
12503 q=mp_get_node(mp, dep_node_size); mp->dep_final=q;
12505 info(mp->dep_final)=info(p); value(mp->dep_final)=value(p);
12506 if ( info(mp->dep_final)==null ) break;
12507 link(mp->dep_final)=mp_get_node(mp, dep_node_size);
12508 mp->dep_final=link(mp->dep_final); p=link(p);
12513 @ But how do variables normally become known? Ah, now we get to the heart of the
12514 equation-solving mechanism. The |linear_eq| procedure is given a |dependent|
12515 or |mp_proto_dependent| list,~|p|, in which at least one independent variable
12516 appears. It equates this list to zero, by choosing an independent variable
12517 with the largest coefficient and making it dependent on the others. The
12518 newly dependent variable is eliminated from all current dependencies,
12519 thereby possibly making other dependent variables known.
12521 The given list |p| is, of course, totally destroyed by all this processing.
12523 @c void mp_linear_eq (MP mp, pointer p, small_number t) {
12524 pointer q,r,s; /* for link manipulation */
12525 pointer x; /* the variable that loses its independence */
12526 integer n; /* the number of times |x| had been halved */
12527 integer v; /* the coefficient of |x| in list |p| */
12528 pointer prev_r; /* lags one step behind |r| */
12529 pointer final_node; /* the constant term of the new dependency list */
12530 integer w; /* a tentative coefficient */
12531 @<Find a node |q| in list |p| whose coefficient |v| is largest@>;
12532 x=info(q); n=value(x) % s_scale;
12533 @<Divide list |p| by |-v|, removing node |q|@>;
12534 if ( mp->internal[mp_tracing_equations]>0 ) {
12535 @<Display the new dependency@>;
12537 @<Simplify all existing dependencies by substituting for |x|@>;
12538 @<Change variable |x| from |independent| to |dependent| or |known|@>;
12539 if ( mp->fix_needed ) mp_fix_dependencies(mp);
12542 @ @<Find a node |q| in list |p| whose coefficient |v| is largest@>=
12543 q=p; r=link(p); v=value(q);
12544 while ( info(r)!=null ) {
12545 if ( abs(value(r))>abs(v) ) { q=r; v=value(r); };
12549 @ Here we want to change the coefficients from |scaled| to |fraction|,
12550 except in the constant term. In the common case of a trivial equation
12551 like `\.{x=3.14}', we will have |v=-fraction_one|, |q=p|, and |t=mp_dependent|.
12553 @<Divide list |p| by |-v|, removing node |q|@>=
12554 s=temp_head; link(s)=p; r=p;
12557 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12559 w=mp_make_fraction(mp, value(r),v);
12560 if ( abs(w)<=half_fraction_threshold ) {
12561 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12567 } while (info(r)!=null);
12568 if ( t==mp_proto_dependent ) {
12569 value(r)=-mp_make_scaled(mp, value(r),v);
12570 } else if ( v!=-fraction_one ) {
12571 value(r)=-mp_make_fraction(mp, value(r),v);
12573 final_node=r; p=link(temp_head)
12575 @ @<Display the new dependency@>=
12576 if ( mp_interesting(mp, x) ) {
12577 mp_begin_diagnostic(mp); mp_print_nl(mp, "## ");
12578 mp_print_variable_name(mp, x);
12579 @:]]]\#\#_}{\.{\#\#}@>
12581 while ( w>0 ) { mp_print(mp, "*4"); w=w-2; };
12582 mp_print_char(mp, '='); mp_print_dependency(mp, p,mp_dependent);
12583 mp_end_diagnostic(mp, false);
12586 @ @<Simplify all existing dependencies by substituting for |x|@>=
12587 prev_r=dep_head; r=link(dep_head);
12588 while ( r!=dep_head ) {
12589 s=dep_list(r); q=mp_p_with_x_becoming_q(mp, s,x,p,type(r));
12590 if ( info(q)==null ) {
12591 mp_make_known(mp, r,q);
12594 do { q=link(q); } while (info(q)!=null);
12600 @ @<Change variable |x| from |independent| to |dependent| or |known|@>=
12601 if ( n>0 ) @<Divide list |p| by $2^n$@>;
12602 if ( info(p)==null ) {
12605 if ( abs(value(x))>=fraction_one ) mp_val_too_big(mp, value(x));
12606 mp_free_node(mp, p,dep_node_size);
12607 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) {
12608 mp->cur_exp=value(x); mp->cur_type=mp_known;
12609 mp_free_node(mp, x,value_node_size);
12612 type(x)=mp_dependent; mp->dep_final=final_node; mp_new_dep(mp, x,p);
12613 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) mp->cur_type=mp_dependent;
12616 @ @<Divide list |p| by $2^n$@>=
12618 s=temp_head; link(temp_head)=p; r=p;
12621 else w=value(r) / two_to_the(n);
12622 if ( (abs(w)<=half_fraction_threshold)&&(info(r)!=null) ) {
12624 mp_free_node(mp, r,dep_node_size);
12629 } while (info(s)!=null);
12633 @ The |check_mem| procedure, which is used only when \MP\ is being
12634 debugged, makes sure that the current dependency lists are well formed.
12636 @<Check the list of linear dependencies@>=
12637 q=dep_head; p=link(q);
12638 while ( p!=dep_head ) {
12639 if ( prev_dep(p)!=q ) {
12640 mp_print_nl(mp, "Bad PREVDEP at "); mp_print_int(mp, p);
12645 r=info(p); q=p; p=link(q);
12646 if ( r==null ) break;
12647 if ( value(info(p))>=value(r) ) {
12648 mp_print_nl(mp, "Out of order at "); mp_print_int(mp, p);
12649 @.Out of order...@>
12654 @* \[25] Dynamic nonlinear equations.
12655 Variables of numeric type are maintained by the general scheme of
12656 independent, dependent, and known values that we have just studied;
12657 and the components of pair and transform variables are handled in the
12658 same way. But \MP\ also has five other types of values: \&{boolean},
12659 \&{string}, \&{pen}, \&{path}, and \&{picture}; what about them?
12661 Equations are allowed between nonlinear quantities, but only in a
12662 simple form. Two variables that haven't yet been assigned values are
12663 either equal to each other, or they're not.
12665 Before a boolean variable has received a value, its type is |mp_unknown_boolean|;
12666 similarly, there are variables whose type is |mp_unknown_string|, |mp_unknown_pen|,
12667 |mp_unknown_path|, and |mp_unknown_picture|. In such cases the value is either
12668 |null| (which means that no other variables are equivalent to this one), or
12669 it points to another variable of the same undefined type. The pointers in the
12670 latter case form a cycle of nodes, which we shall call a ``ring.''
12671 Rings of undefined variables may include capsules, which arise as
12672 intermediate results within expressions or as \&{expr} parameters to macros.
12674 When one member of a ring receives a value, the same value is given to
12675 all the other members. In the case of paths and pictures, this implies
12676 making separate copies of a potentially large data structure; users should
12677 restrain their enthusiasm for such generality, unless they have lots and
12678 lots of memory space.
12680 @ The following procedure is called when a capsule node is being
12681 added to a ring (e.g., when an unknown variable is mentioned in an expression).
12683 @c pointer mp_new_ring_entry (MP mp,pointer p) {
12684 pointer q; /* the new capsule node */
12685 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
12687 if ( value(p)==null ) value(q)=p; else value(q)=value(p);
12692 @ Conversely, we might delete a capsule or a variable before it becomes known.
12693 The following procedure simply detaches a quantity from its ring,
12694 without recycling the storage.
12696 @<Declare the recycling subroutines@>=
12697 void mp_ring_delete (MP mp,pointer p) {
12700 if ( q!=null ) if ( q!=p ){
12701 while ( value(q)!=p ) q=value(q);
12706 @ Eventually there might be an equation that assigns values to all of the
12707 variables in a ring. The |nonlinear_eq| subroutine does the necessary
12708 propagation of values.
12710 If the parameter |flush_p| is |true|, node |p| itself needn't receive a
12711 value, it will soon be recycled.
12713 @c void mp_nonlinear_eq (MP mp,integer v, pointer p, boolean flush_p) {
12714 small_number t; /* the type of ring |p| */
12715 pointer q,r; /* link manipulation registers */
12716 t=type(p)-unknown_tag; q=value(p);
12717 if ( flush_p ) type(p)=mp_vacuous; else p=q;
12719 r=value(q); type(q)=t;
12721 case mp_boolean_type: value(q)=v; break;
12722 case mp_string_type: value(q)=v; add_str_ref(v); break;
12723 case mp_pen_type: value(q)=copy_pen(v); break;
12724 case mp_path_type: value(q)=mp_copy_path(mp, v); break;
12725 case mp_picture_type: value(q)=v; add_edge_ref(v); break;
12726 } /* there ain't no more cases */
12731 @ If two members of rings are equated, and if they have the same type,
12732 the |ring_merge| procedure is called on to make them equivalent.
12734 @c void mp_ring_merge (MP mp,pointer p, pointer q) {
12735 pointer r; /* traverses one list */
12739 @<Exclaim about a redundant equation@>;
12744 r=value(p); value(p)=value(q); value(q)=r;
12747 @ @<Exclaim about a redundant equation@>=
12749 print_err("Redundant equation");
12750 @.Redundant equation@>
12751 help2("I already knew that this equation was true.")
12752 ("But perhaps no harm has been done; let's continue.");
12753 mp_put_get_error(mp);
12756 @* \[26] Introduction to the syntactic routines.
12757 Let's pause a moment now and try to look at the Big Picture.
12758 The \MP\ program consists of three main parts: syntactic routines,
12759 semantic routines, and output routines. The chief purpose of the
12760 syntactic routines is to deliver the user's input to the semantic routines,
12761 while parsing expressions and locating operators and operands. The
12762 semantic routines act as an interpreter responding to these operators,
12763 which may be regarded as commands. And the output routines are
12764 periodically called on to produce compact font descriptions that can be
12765 used for typesetting or for making interim proof drawings. We have
12766 discussed the basic data structures and many of the details of semantic
12767 operations, so we are good and ready to plunge into the part of \MP\ that
12768 actually controls the activities.
12770 Our current goal is to come to grips with the |get_next| procedure,
12771 which is the keystone of \MP's input mechanism. Each call of |get_next|
12772 sets the value of three variables |cur_cmd|, |cur_mod|, and |cur_sym|,
12773 representing the next input token.
12774 $$\vbox{\halign{#\hfil\cr
12775 \hbox{|cur_cmd| denotes a command code from the long list of codes
12777 \hbox{|cur_mod| denotes a modifier of the command code;}\cr
12778 \hbox{|cur_sym| is the hash address of the symbolic token that was
12780 \hbox{\qquad or zero in the case of a numeric or string
12781 or capsule token.}\cr}}$$
12782 Underlying this external behavior of |get_next| is all the machinery
12783 necessary to convert from character files to tokens. At a given time we
12784 may be only partially finished with the reading of several files (for
12785 which \&{input} was specified), and partially finished with the expansion
12786 of some user-defined macros and/or some macro parameters, and partially
12787 finished reading some text that the user has inserted online,
12788 and so on. When reading a character file, the characters must be
12789 converted to tokens; comments and blank spaces must
12790 be removed, numeric and string tokens must be evaluated.
12792 To handle these situations, which might all be present simultaneously,
12793 \MP\ uses various stacks that hold information about the incomplete
12794 activities, and there is a finite state control for each level of the
12795 input mechanism. These stacks record the current state of an implicitly
12796 recursive process, but the |get_next| procedure is not recursive.
12799 eight_bits cur_cmd; /* current command set by |get_next| */
12800 integer cur_mod; /* operand of current command */
12801 halfword cur_sym; /* hash address of current symbol */
12803 @ The |print_cmd_mod| routine prints a symbolic interpretation of a
12804 command code and its modifier.
12805 It consists of a rather tedious sequence of print
12806 commands, and most of it is essentially an inverse to the |primitive|
12807 routine that enters a \MP\ primitive into |hash| and |eqtb|. Therefore almost
12808 all of this procedure appears elsewhere in the program, together with the
12809 corresponding |primitive| calls.
12811 @<Declare the procedure called |print_cmd_mod|@>=
12812 void mp_print_cmd_mod (MP mp,integer c, integer m) {
12814 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>
12815 default: mp_print(mp, "[unknown command code!]"); break;
12819 @ Here is a procedure that displays a given command in braces, in the
12820 user's transcript file.
12822 @d show_cur_cmd_mod mp_show_cmd_mod(mp, mp->cur_cmd,mp->cur_mod)
12825 void mp_show_cmd_mod (MP mp,integer c, integer m) {
12826 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
12827 mp_print_cmd_mod(mp, c,m); mp_print_char(mp, '}');
12828 mp_end_diagnostic(mp, false);
12831 @* \[27] Input stacks and states.
12832 The state of \MP's input mechanism appears in the input stack, whose
12833 entries are records with five fields, called |index|, |start|, |loc|,
12834 |limit|, and |name|. The top element of this stack is maintained in a
12835 global variable for which no subscripting needs to be done; the other
12836 elements of the stack appear in an array. Hence the stack is declared thus:
12840 quarterword index_field;
12841 halfword start_field, loc_field, limit_field, name_field;
12845 in_state_record *input_stack;
12846 integer input_ptr; /* first unused location of |input_stack| */
12847 integer max_in_stack; /* largest value of |input_ptr| when pushing */
12848 in_state_record cur_input; /* the ``top'' input state */
12849 int stack_size; /* maximum number of simultaneous input sources */
12851 @ @<Allocate or initialize ...@>=
12852 mp->stack_size = 300;
12853 mp->input_stack = xmalloc((mp->stack_size+1),sizeof(in_state_record));
12855 @ @<Dealloc variables@>=
12856 xfree(mp->input_stack);
12858 @ We've already defined the special variable |loc==cur_input.loc_field|
12859 in our discussion of basic input-output routines. The other components of
12860 |cur_input| are defined in the same way:
12862 @d index mp->cur_input.index_field /* reference for buffer information */
12863 @d start mp->cur_input.start_field /* starting position in |buffer| */
12864 @d limit mp->cur_input.limit_field /* end of current line in |buffer| */
12865 @d name mp->cur_input.name_field /* name of the current file */
12867 @ Let's look more closely now at the five control variables
12868 (|index|,~|start|,~|loc|,~|limit|,~|name|),
12869 assuming that \MP\ is reading a line of characters that have been input
12870 from some file or from the user's terminal. There is an array called
12871 |buffer| that acts as a stack of all lines of characters that are
12872 currently being read from files, including all lines on subsidiary
12873 levels of the input stack that are not yet completed. \MP\ will return to
12874 the other lines when it is finished with the present input file.
12876 (Incidentally, on a machine with byte-oriented addressing, it would be
12877 appropriate to combine |buffer| with the |str_pool| array,
12878 letting the buffer entries grow downward from the top of the string pool
12879 and checking that these two tables don't bump into each other.)
12881 The line we are currently working on begins in position |start| of the
12882 buffer; the next character we are about to read is |buffer[loc]|; and
12883 |limit| is the location of the last character present. We always have
12884 |loc<=limit|. For convenience, |buffer[limit]| has been set to |"%"|, so
12885 that the end of a line is easily sensed.
12887 The |name| variable is a string number that designates the name of
12888 the current file, if we are reading an ordinary text file. Special codes
12889 |is_term..max_spec_src| indicate other sources of input text.
12891 @d is_term 0 /* |name| value when reading from the terminal for normal input */
12892 @d is_read 1 /* |name| value when executing a \&{readstring} or \&{readfrom} */
12893 @d is_scantok 2 /* |name| value when reading text generated by \&{scantokens} */
12894 @d max_spec_src is_scantok
12896 @ Additional information about the current line is available via the
12897 |index| variable, which counts how many lines of characters are present
12898 in the buffer below the current level. We have |index=0| when reading
12899 from the terminal and prompting the user for each line; then if the user types,
12900 e.g., `\.{input figs}', we will have |index=1| while reading
12901 the file \.{figs.mp}. However, it does not follow that |index| is the
12902 same as the input stack pointer, since many of the levels on the input
12903 stack may come from token lists and some |index| values may correspond
12904 to \.{MPX} files that are not currently on the stack.
12906 The global variable |in_open| is equal to the highest |index| value counting
12907 \.{MPX} files but excluding token-list input levels. Thus, the number of
12908 partially read lines in the buffer is |in_open+1| and we have |in_open>=index|
12909 when we are not reading a token list.
12911 If we are not currently reading from the terminal,
12912 we are reading from the file variable |input_file[index]|. We use
12913 the notation |terminal_input| as a convenient abbreviation for |name=is_term|,
12914 and |cur_file| as an abbreviation for |input_file[index]|.
12916 When \MP\ is not reading from the terminal, the global variable |line| contains
12917 the line number in the current file, for use in error messages. More precisely,
12918 |line| is a macro for |line_stack[index]| and the |line_stack| array gives
12919 the line number for each file in the |input_file| array.
12921 When an \.{MPX} file is opened the file name is stored in the |mpx_name|
12922 array so that the name doesn't get lost when the file is temporarily removed
12923 from the input stack.
12924 Thus when |input_file[k]| is an \.{MPX} file, its name is |mpx_name[k]|
12925 and it contains translated \TeX\ pictures for |input_file[k-1]|.
12926 Since this is not an \.{MPX} file, we have
12927 $$ \hbox{|mpx_name[k-1]<=absent|}. $$
12928 This |name| field is set to |finished| when |input_file[k]| is completely
12931 If more information about the input state is needed, it can be
12932 included in small arrays like those shown here. For example,
12933 the current page or segment number in the input file might be put
12934 into a variable |page|, that is really a macro for the current entry
12935 in `\ignorespaces|page_stack:array[0..max_in_open] of integer|\unskip'
12936 by analogy with |line_stack|.
12937 @^system dependencies@>
12939 @d terminal_input (name==is_term) /* are we reading from the terminal? */
12940 @d cur_file mp->input_file[index] /* the current |void *| variable */
12941 @d line mp->line_stack[index] /* current line number in the current source file */
12942 @d in_name mp->iname_stack[index] /* a string used to construct \.{MPX} file names */
12943 @d in_area mp->iarea_stack[index] /* another string for naming \.{MPX} files */
12944 @d absent 1 /* |name_field| value for unused |mpx_in_stack| entries */
12945 @d mpx_reading (mp->mpx_name[index]>absent)
12946 /* when reading a file, is it an \.{MPX} file? */
12948 /* |name_field| value when the corresponding \.{MPX} file is finished */
12951 integer in_open; /* the number of lines in the buffer, less one */
12952 unsigned int open_parens; /* the number of open text files */
12953 void * *input_file ;
12954 integer *line_stack ; /* the line number for each file */
12955 char * *iname_stack; /* used for naming \.{MPX} files */
12956 char * *iarea_stack; /* used for naming \.{MPX} files */
12957 halfword*mpx_name ;
12959 @ @<Allocate or ...@>=
12960 mp->input_file = xmalloc((mp->max_in_open+1),sizeof(void *));
12961 mp->line_stack = xmalloc((mp->max_in_open+1),sizeof(integer));
12962 mp->iname_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12963 mp->iarea_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12964 mp->mpx_name = xmalloc((mp->max_in_open+1),sizeof(halfword));
12967 for (k=0;k<=mp->max_in_open;k++) {
12968 mp->iname_stack[k] =NULL;
12969 mp->iarea_stack[k] =NULL;
12973 @ @<Dealloc variables@>=
12976 for (l=0;l<=mp->max_in_open;l++) {
12977 xfree(mp->iname_stack[l]);
12978 xfree(mp->iarea_stack[l]);
12981 xfree(mp->input_file);
12982 xfree(mp->line_stack);
12983 xfree(mp->iname_stack);
12984 xfree(mp->iarea_stack);
12985 xfree(mp->mpx_name);
12988 @ However, all this discussion about input state really applies only to the
12989 case that we are inputting from a file. There is another important case,
12990 namely when we are currently getting input from a token list. In this case
12991 |index>max_in_open|, and the conventions about the other state variables
12994 \yskip\hang|loc| is a pointer to the current node in the token list, i.e.,
12995 the node that will be read next. If |loc=null|, the token list has been
12998 \yskip\hang|start| points to the first node of the token list; this node
12999 may or may not contain a reference count, depending on the type of token
13002 \yskip\hang|token_type|, which takes the place of |index| in the
13003 discussion above, is a code number that explains what kind of token list
13006 \yskip\hang|name| points to the |eqtb| address of the control sequence
13007 being expanded, if the current token list is a macro not defined by
13008 \&{vardef}. Macros defined by \&{vardef} have |name=null|; their name
13009 can be deduced by looking at their first two parameters.
13011 \yskip\hang|param_start|, which takes the place of |limit|, tells where
13012 the parameters of the current macro or loop text begin in the |param_stack|.
13014 \yskip\noindent The |token_type| can take several values, depending on
13015 where the current token list came from:
13018 \indent|forever_text|, if the token list being scanned is the body of
13019 a \&{forever} loop;
13021 \indent|loop_text|, if the token list being scanned is the body of
13022 a \&{for} or \&{forsuffixes} loop;
13024 \indent|parameter|, if a \&{text} or \&{suffix} parameter is being scanned;
13026 \indent|backed_up|, if the token list being scanned has been inserted as
13027 `to be read again'.
13029 \indent|inserted|, if the token list being scanned has been inserted as
13030 part of error recovery;
13032 \indent|macro|, if the expansion of a user-defined symbolic token is being
13036 The token list begins with a reference count if and only if |token_type=
13038 @^reference counts@>
13040 @d token_type index /* type of current token list */
13041 @d token_state (index>(int)mp->max_in_open) /* are we scanning a token list? */
13042 @d file_state (index<=(int)mp->max_in_open) /* are we scanning a file line? */
13043 @d param_start limit /* base of macro parameters in |param_stack| */
13044 @d forever_text (mp->max_in_open+1) /* |token_type| code for loop texts */
13045 @d loop_text (mp->max_in_open+2) /* |token_type| code for loop texts */
13046 @d parameter (mp->max_in_open+3) /* |token_type| code for parameter texts */
13047 @d backed_up (mp->max_in_open+4) /* |token_type| code for texts to be reread */
13048 @d inserted (mp->max_in_open+5) /* |token_type| code for inserted texts */
13049 @d macro (mp->max_in_open+6) /* |token_type| code for macro replacement texts */
13051 @ The |param_stack| is an auxiliary array used to hold pointers to the token
13052 lists for parameters at the current level and subsidiary levels of input.
13053 This stack grows at a different rate from the others.
13056 pointer *param_stack; /* token list pointers for parameters */
13057 integer param_ptr; /* first unused entry in |param_stack| */
13058 integer max_param_stack; /* largest value of |param_ptr| */
13060 @ @<Allocate or initialize ...@>=
13061 mp->param_stack = xmalloc((mp->param_size+1),sizeof(pointer));
13063 @ @<Dealloc variables@>=
13064 xfree(mp->param_stack);
13066 @ Notice that the |line| isn't valid when |token_state| is true because it
13067 depends on |index|. If we really need to know the line number for the
13068 topmost file in the index stack we use the following function. If a page
13069 number or other information is needed, this routine should be modified to
13070 compute it as well.
13071 @^system dependencies@>
13073 @<Declare a function called |true_line|@>=
13074 integer mp_true_line (MP mp) {
13075 int k; /* an index into the input stack */
13076 if ( file_state && (name>max_spec_src) ) {
13081 ((mp->input_stack[(k-1)].index_field>mp->max_in_open)||
13082 (mp->input_stack[(k-1)].name_field<=max_spec_src))) {
13085 return mp->line_stack[(k-1)];
13090 @ Thus, the ``current input state'' can be very complicated indeed; there
13091 can be many levels and each level can arise in a variety of ways. The
13092 |show_context| procedure, which is used by \MP's error-reporting routine to
13093 print out the current input state on all levels down to the most recent
13094 line of characters from an input file, illustrates most of these conventions.
13095 The global variable |file_ptr| contains the lowest level that was
13096 displayed by this procedure.
13099 integer file_ptr; /* shallowest level shown by |show_context| */
13101 @ The status at each level is indicated by printing two lines, where the first
13102 line indicates what was read so far and the second line shows what remains
13103 to be read. The context is cropped, if necessary, so that the first line
13104 contains at most |half_error_line| characters, and the second contains
13105 at most |error_line|. Non-current input levels whose |token_type| is
13106 `|backed_up|' are shown only if they have not been fully read.
13108 @c void mp_show_context (MP mp) { /* prints where the scanner is */
13109 int old_setting; /* saved |selector| setting */
13110 @<Local variables for formatting calculations@>
13111 mp->file_ptr=mp->input_ptr; mp->input_stack[mp->file_ptr]=mp->cur_input;
13112 /* store current state */
13114 mp->cur_input=mp->input_stack[mp->file_ptr]; /* enter into the context */
13115 @<Display the current context@>;
13117 if ( (name>max_spec_src) || (mp->file_ptr==0) ) break;
13118 decr(mp->file_ptr);
13120 mp->cur_input=mp->input_stack[mp->input_ptr]; /* restore original state */
13123 @ @<Display the current context@>=
13124 if ( (mp->file_ptr==mp->input_ptr) || file_state ||
13125 (token_type!=backed_up) || (loc!=null) ) {
13126 /* we omit backed-up token lists that have already been read */
13127 mp->tally=0; /* get ready to count characters */
13128 old_setting=mp->selector;
13129 if ( file_state ) {
13130 @<Print location of current line@>;
13131 @<Pseudoprint the line@>;
13133 @<Print type of token list@>;
13134 @<Pseudoprint the token list@>;
13136 mp->selector=old_setting; /* stop pseudoprinting */
13137 @<Print two lines using the tricky pseudoprinted information@>;
13140 @ This routine should be changed, if necessary, to give the best possible
13141 indication of where the current line resides in the input file.
13142 For example, on some systems it is best to print both a page and line number.
13143 @^system dependencies@>
13145 @<Print location of current line@>=
13146 if ( name>max_spec_src ) {
13147 mp_print_nl(mp, "l."); mp_print_int(mp, mp_true_line(mp));
13148 } else if ( terminal_input ) {
13149 if ( mp->file_ptr==0 ) mp_print_nl(mp, "<*>");
13150 else mp_print_nl(mp, "<insert>");
13151 } else if ( name==is_scantok ) {
13152 mp_print_nl(mp, "<scantokens>");
13154 mp_print_nl(mp, "<read>");
13156 mp_print_char(mp, ' ')
13158 @ Can't use case statement here because the |token_type| is not
13159 a constant expression.
13161 @<Print type of token list@>=
13163 if(token_type==forever_text) {
13164 mp_print_nl(mp, "<forever> ");
13165 } else if (token_type==loop_text) {
13166 @<Print the current loop value@>;
13167 } else if (token_type==parameter) {
13168 mp_print_nl(mp, "<argument> ");
13169 } else if (token_type==backed_up) {
13170 if ( loc==null ) mp_print_nl(mp, "<recently read> ");
13171 else mp_print_nl(mp, "<to be read again> ");
13172 } else if (token_type==inserted) {
13173 mp_print_nl(mp, "<inserted text> ");
13174 } else if (token_type==macro) {
13176 if ( name!=null ) mp_print_text(name);
13177 else @<Print the name of a \&{vardef}'d macro@>;
13178 mp_print(mp, "->");
13180 mp_print_nl(mp, "?");/* this should never happen */
13185 @ The parameter that corresponds to a loop text is either a token list
13186 (in the case of \&{forsuffixes}) or a ``capsule'' (in the case of \&{for}).
13187 We'll discuss capsules later; for now, all we need to know is that
13188 the |link| field in a capsule parameter is |void| and that
13189 |print_exp(p,0)| displays the value of capsule~|p| in abbreviated form.
13191 @<Print the current loop value@>=
13192 { mp_print_nl(mp, "<for("); p=mp->param_stack[param_start];
13194 if ( link(p)==mp_void ) mp_print_exp(mp, p,0); /* we're in a \&{for} loop */
13195 else mp_show_token_list(mp, p,null,20,mp->tally);
13197 mp_print(mp, ")> ");
13200 @ The first two parameters of a macro defined by \&{vardef} will be token
13201 lists representing the macro's prefix and ``at point.'' By putting these
13202 together, we get the macro's full name.
13204 @<Print the name of a \&{vardef}'d macro@>=
13205 { p=mp->param_stack[param_start];
13207 mp_show_token_list(mp, mp->param_stack[param_start+1],null,20,mp->tally);
13210 while ( link(q)!=null ) q=link(q);
13211 link(q)=mp->param_stack[param_start+1];
13212 mp_show_token_list(mp, p,null,20,mp->tally);
13217 @ Now it is necessary to explain a little trick. We don't want to store a long
13218 string that corresponds to a token list, because that string might take up
13219 lots of memory; and we are printing during a time when an error message is
13220 being given, so we dare not do anything that might overflow one of \MP's
13221 tables. So `pseudoprinting' is the answer: We enter a mode of printing
13222 that stores characters into a buffer of length |error_line|, where character
13223 $k+1$ is placed into \hbox{|trick_buf[k mod error_line]|} if
13224 |k<trick_count|, otherwise character |k| is dropped. Initially we set
13225 |tally:=0| and |trick_count:=1000000|; then when we reach the
13226 point where transition from line 1 to line 2 should occur, we
13227 set |first_count:=tally| and |trick_count:=@tmax@>(error_line,
13228 tally+1+error_line-half_error_line)|. At the end of the
13229 pseudoprinting, the values of |first_count|, |tally|, and
13230 |trick_count| give us all the information we need to print the two lines,
13231 and all of the necessary text is in |trick_buf|.
13233 Namely, let |l| be the length of the descriptive information that appears
13234 on the first line. The length of the context information gathered for that
13235 line is |k=first_count|, and the length of the context information
13236 gathered for line~2 is $m=\min(|tally|, |trick_count|)-k$. If |l+k<=h|,
13237 where |h=half_error_line|, we print |trick_buf[0..k-1]| after the
13238 descriptive information on line~1, and set |n:=l+k|; here |n| is the
13239 length of line~1. If $l+k>h$, some cropping is necessary, so we set |n:=h|
13240 and print `\.{...}' followed by
13241 $$\hbox{|trick_buf[(l+k-h+3)..k-1]|,}$$
13242 where subscripts of |trick_buf| are circular modulo |error_line|. The
13243 second line consists of |n|~spaces followed by |trick_buf[k..(k+m-1)]|,
13244 unless |n+m>error_line|; in the latter case, further cropping is done.
13245 This is easier to program than to explain.
13247 @<Local variables for formatting...@>=
13248 int i; /* index into |buffer| */
13249 integer l; /* length of descriptive information on line 1 */
13250 integer m; /* context information gathered for line 2 */
13251 int n; /* length of line 1 */
13252 integer p; /* starting or ending place in |trick_buf| */
13253 integer q; /* temporary index */
13255 @ The following code tells the print routines to gather
13256 the desired information.
13258 @d begin_pseudoprint {
13259 l=mp->tally; mp->tally=0; mp->selector=pseudo;
13260 mp->trick_count=1000000;
13262 @d set_trick_count {
13263 mp->first_count=mp->tally;
13264 mp->trick_count=mp->tally+1+mp->error_line-mp->half_error_line;
13265 if ( mp->trick_count<mp->error_line ) mp->trick_count=mp->error_line;
13268 @ And the following code uses the information after it has been gathered.
13270 @<Print two lines using the tricky pseudoprinted information@>=
13271 if ( mp->trick_count==1000000 ) set_trick_count;
13272 /* |set_trick_count| must be performed */
13273 if ( mp->tally<mp->trick_count ) m=mp->tally-mp->first_count;
13274 else m=mp->trick_count-mp->first_count; /* context on line 2 */
13275 if ( l+mp->first_count<=mp->half_error_line ) {
13276 p=0; n=l+mp->first_count;
13278 mp_print(mp, "..."); p=l+mp->first_count-mp->half_error_line+3;
13279 n=mp->half_error_line;
13281 for (q=p;q<=mp->first_count-1;q++) {
13282 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13285 for (q=1;q<=n;q++) {
13286 mp_print_char(mp, ' '); /* print |n| spaces to begin line~2 */
13288 if ( m+n<=mp->error_line ) p=mp->first_count+m;
13289 else p=mp->first_count+(mp->error_line-n-3);
13290 for (q=mp->first_count;q<=p-1;q++) {
13291 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13293 if ( m+n>mp->error_line ) mp_print(mp, "...")
13295 @ But the trick is distracting us from our current goal, which is to
13296 understand the input state. So let's concentrate on the data structures that
13297 are being pseudoprinted as we finish up the |show_context| procedure.
13299 @<Pseudoprint the line@>=
13302 for (i=start;i<=limit-1;i++) {
13303 if ( i==loc ) set_trick_count;
13304 mp_print_str(mp, mp->buffer[i]);
13308 @ @<Pseudoprint the token list@>=
13310 if ( token_type!=macro ) mp_show_token_list(mp, start,loc,100000,0);
13311 else mp_show_macro(mp, start,loc,100000)
13313 @ Here is the missing piece of |show_token_list| that is activated when the
13314 token beginning line~2 is about to be shown:
13316 @<Do magic computation@>=set_trick_count
13318 @* \[28] Maintaining the input stacks.
13319 The following subroutines change the input status in commonly needed ways.
13321 First comes |push_input|, which stores the current state and creates a
13322 new level (having, initially, the same properties as the old).
13324 @d push_input { /* enter a new input level, save the old */
13325 if ( mp->input_ptr>mp->max_in_stack ) {
13326 mp->max_in_stack=mp->input_ptr;
13327 if ( mp->input_ptr==mp->stack_size ) {
13328 int l = (mp->stack_size+(mp->stack_size>>2));
13329 XREALLOC(mp->input_stack, l, in_state_record);
13330 mp->stack_size = l;
13333 mp->input_stack[mp->input_ptr]=mp->cur_input; /* stack the record */
13334 incr(mp->input_ptr);
13337 @ And of course what goes up must come down.
13339 @d pop_input { /* leave an input level, re-enter the old */
13340 decr(mp->input_ptr); mp->cur_input=mp->input_stack[mp->input_ptr];
13343 @ Here is a procedure that starts a new level of token-list input, given
13344 a token list |p| and its type |t|. If |t=macro|, the calling routine should
13345 set |name|, reset~|loc|, and increase the macro's reference count.
13347 @d back_list(A) mp_begin_token_list(mp, (A),backed_up) /* backs up a simple token list */
13349 @c void mp_begin_token_list (MP mp,pointer p, quarterword t) {
13350 push_input; start=p; token_type=t;
13351 param_start=mp->param_ptr; loc=p;
13354 @ When a token list has been fully scanned, the following computations
13355 should be done as we leave that level of input.
13358 @c void mp_end_token_list (MP mp) { /* leave a token-list input level */
13359 pointer p; /* temporary register */
13360 if ( token_type>=backed_up ) { /* token list to be deleted */
13361 if ( token_type<=inserted ) {
13362 mp_flush_token_list(mp, start); goto DONE;
13364 mp_delete_mac_ref(mp, start); /* update reference count */
13367 while ( mp->param_ptr>param_start ) { /* parameters must be flushed */
13368 decr(mp->param_ptr);
13369 p=mp->param_stack[mp->param_ptr];
13371 if ( link(p)==mp_void ) { /* it's an \&{expr} parameter */
13372 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
13374 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
13379 pop_input; check_interrupt;
13382 @ The contents of |cur_cmd,cur_mod,cur_sym| are placed into an equivalent
13383 token by the |cur_tok| routine.
13386 @c @<Declare the procedure called |make_exp_copy|@>;
13387 pointer mp_cur_tok (MP mp) {
13388 pointer p; /* a new token node */
13389 small_number save_type; /* |cur_type| to be restored */
13390 integer save_exp; /* |cur_exp| to be restored */
13391 if ( mp->cur_sym==0 ) {
13392 if ( mp->cur_cmd==capsule_token ) {
13393 save_type=mp->cur_type; save_exp=mp->cur_exp;
13394 mp_make_exp_copy(mp, mp->cur_mod); p=mp_stash_cur_exp(mp); link(p)=null;
13395 mp->cur_type=save_type; mp->cur_exp=save_exp;
13397 p=mp_get_node(mp, token_node_size);
13398 value(p)=mp->cur_mod; name_type(p)=mp_token;
13399 if ( mp->cur_cmd==numeric_token ) type(p)=mp_known;
13400 else type(p)=mp_string_type;
13403 fast_get_avail(p); info(p)=mp->cur_sym;
13408 @ Sometimes \MP\ has read too far and wants to ``unscan'' what it has
13409 seen. The |back_input| procedure takes care of this by putting the token
13410 just scanned back into the input stream, ready to be read again.
13411 If |cur_sym<>0|, the values of |cur_cmd| and |cur_mod| are irrelevant.
13414 void mp_back_input (MP mp);
13416 @ @c void mp_back_input (MP mp) {/* undoes one token of input */
13417 pointer p; /* a token list of length one */
13419 while ( token_state &&(loc==null) )
13420 mp_end_token_list(mp); /* conserve stack space */
13424 @ The |back_error| routine is used when we want to restore or replace an
13425 offending token just before issuing an error message. We disable interrupts
13426 during the call of |back_input| so that the help message won't be lost.
13429 void mp_error (MP mp);
13430 void mp_back_error (MP mp);
13432 @ @c void mp_back_error (MP mp) { /* back up one token and call |error| */
13433 mp->OK_to_interrupt=false;
13435 mp->OK_to_interrupt=true; mp_error(mp);
13437 void mp_ins_error (MP mp) { /* back up one inserted token and call |error| */
13438 mp->OK_to_interrupt=false;
13439 mp_back_input(mp); token_type=inserted;
13440 mp->OK_to_interrupt=true; mp_error(mp);
13443 @ The |begin_file_reading| procedure starts a new level of input for lines
13444 of characters to be read from a file, or as an insertion from the
13445 terminal. It does not take care of opening the file, nor does it set |loc|
13446 or |limit| or |line|.
13447 @^system dependencies@>
13449 @c void mp_begin_file_reading (MP mp) {
13450 if ( mp->in_open==mp->max_in_open )
13451 mp_overflow(mp, "text input levels",mp->max_in_open);
13452 @:MetaPost capacity exceeded text input levels}{\quad text input levels@>
13453 if ( mp->first==mp->buf_size )
13454 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13455 incr(mp->in_open); push_input; index=mp->in_open;
13456 mp->mpx_name[index]=absent;
13458 name=is_term; /* |terminal_input| is now |true| */
13461 @ Conversely, the variables must be downdated when such a level of input
13462 is finished. Any associated \.{MPX} file must also be closed and popped
13463 off the file stack.
13465 @c void mp_end_file_reading (MP mp) {
13466 if ( mp->in_open>index ) {
13467 if ( (mp->mpx_name[mp->in_open]==absent)||(name<=max_spec_src) ) {
13468 mp_confusion(mp, "endinput");
13469 @:this can't happen endinput}{\quad endinput@>
13471 (mp->close_file)(mp->input_file[mp->in_open]); /* close an \.{MPX} file */
13472 delete_str_ref(mp->mpx_name[mp->in_open]);
13477 if ( index!=mp->in_open ) mp_confusion(mp, "endinput");
13478 if ( name>max_spec_src ) {
13479 (mp->close_file)(cur_file);
13480 delete_str_ref(name);
13484 pop_input; decr(mp->in_open);
13487 @ Here is a function that tries to resume input from an \.{MPX} file already
13488 associated with the current input file. It returns |false| if this doesn't
13491 @c boolean mp_begin_mpx_reading (MP mp) {
13492 if ( mp->in_open!=index+1 ) {
13495 if ( mp->mpx_name[mp->in_open]<=absent ) mp_confusion(mp, "mpx");
13496 @:this can't happen mpx}{\quad mpx@>
13497 if ( mp->first==mp->buf_size )
13498 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13499 push_input; index=mp->in_open;
13501 name=mp->mpx_name[mp->in_open]; add_str_ref(name);
13502 @<Put an empty line in the input buffer@>;
13507 @ This procedure temporarily stops reading an \.{MPX} file.
13509 @c void mp_end_mpx_reading (MP mp) {
13510 if ( mp->in_open!=index ) mp_confusion(mp, "mpx");
13511 @:this can't happen mpx}{\quad mpx@>
13513 @<Complain that we are not at the end of a line in the \.{MPX} file@>;
13519 @ Here we enforce a restriction that simplifies the input stacks considerably.
13520 This should not inconvenience the user because \.{MPX} files are generated
13521 by an auxiliary program called \.{DVItoMP}.
13523 @ @<Complain that we are not at the end of a line in the \.{MPX} file@>=
13525 print_err("`mpxbreak' must be at the end of a line");
13526 help4("This file contains picture expressions for btex...etex")
13527 ("blocks. Such files are normally generated automatically")
13528 ("but this one seems to be messed up. I'm going to ignore")
13529 ("the rest of this line.");
13533 @ In order to keep the stack from overflowing during a long sequence of
13534 inserted `\.{show}' commands, the following routine removes completed
13535 error-inserted lines from memory.
13537 @c void mp_clear_for_error_prompt (MP mp) {
13538 while ( file_state && terminal_input &&
13539 (mp->input_ptr>0)&&(loc==limit) ) mp_end_file_reading(mp);
13540 mp_print_ln(mp); clear_terminal;
13543 @ To get \MP's whole input mechanism going, we perform the following
13546 @<Initialize the input routines@>=
13547 { mp->input_ptr=0; mp->max_in_stack=0;
13548 mp->in_open=0; mp->open_parens=0; mp->max_buf_stack=0;
13549 mp->param_ptr=0; mp->max_param_stack=0;
13551 start=1; index=0; line=0; name=is_term;
13552 mp->mpx_name[0]=absent;
13553 mp->force_eof=false;
13554 if ( ! mp_init_terminal(mp) ) mp_jump_out(mp);
13555 limit=mp->last; mp->first=mp->last+1;
13556 /* |init_terminal| has set |loc| and |last| */
13559 @* \[29] Getting the next token.
13560 The heart of \MP's input mechanism is the |get_next| procedure, which
13561 we shall develop in the next few sections of the program. Perhaps we
13562 shouldn't actually call it the ``heart,'' however; it really acts as \MP's
13563 eyes and mouth, reading the source files and gobbling them up. And it also
13564 helps \MP\ to regurgitate stored token lists that are to be processed again.
13566 The main duty of |get_next| is to input one token and to set |cur_cmd|
13567 and |cur_mod| to that token's command code and modifier. Furthermore, if
13568 the input token is a symbolic token, that token's |hash| address
13569 is stored in |cur_sym|; otherwise |cur_sym| is set to zero.
13571 Underlying this simple description is a certain amount of complexity
13572 because of all the cases that need to be handled.
13573 However, the inner loop of |get_next| is reasonably short and fast.
13575 @ Before getting into |get_next|, we need to consider a mechanism by which
13576 \MP\ helps keep errors from propagating too far. Whenever the program goes
13577 into a mode where it keeps calling |get_next| repeatedly until a certain
13578 condition is met, it sets |scanner_status| to some value other than |normal|.
13579 Then if an input file ends, or if an `\&{outer}' symbol appears,
13580 an appropriate error recovery will be possible.
13582 The global variable |warning_info| helps in this error recovery by providing
13583 additional information. For example, |warning_info| might indicate the
13584 name of a macro whose replacement text is being scanned.
13586 @d normal 0 /* |scanner_status| at ``quiet times'' */
13587 @d skipping 1 /* |scanner_status| when false conditional text is being skipped */
13588 @d flushing 2 /* |scanner_status| when junk after a statement is being ignored */
13589 @d absorbing 3 /* |scanner_status| when a \&{text} parameter is being scanned */
13590 @d var_defining 4 /* |scanner_status| when a \&{vardef} is being scanned */
13591 @d op_defining 5 /* |scanner_status| when a macro \&{def} is being scanned */
13592 @d loop_defining 6 /* |scanner_status| when a \&{for} loop is being scanned */
13593 @d tex_flushing 7 /* |scanner_status| when skipping \TeX\ material */
13596 integer scanner_status; /* are we scanning at high speed? */
13597 integer warning_info; /* if so, what else do we need to know,
13598 in case an error occurs? */
13600 @ @<Initialize the input routines@>=
13601 mp->scanner_status=normal;
13603 @ The following subroutine
13604 is called when an `\&{outer}' symbolic token has been scanned or
13605 when the end of a file has been reached. These two cases are distinguished
13606 by |cur_sym|, which is zero at the end of a file.
13608 @c boolean mp_check_outer_validity (MP mp) {
13609 pointer p; /* points to inserted token list */
13610 if ( mp->scanner_status==normal ) {
13612 } else if ( mp->scanner_status==tex_flushing ) {
13613 @<Check if the file has ended while flushing \TeX\ material and set the
13614 result value for |check_outer_validity|@>;
13616 mp->deletions_allowed=false;
13617 @<Back up an outer symbolic token so that it can be reread@>;
13618 if ( mp->scanner_status>skipping ) {
13619 @<Tell the user what has run away and try to recover@>;
13621 print_err("Incomplete if; all text was ignored after line ");
13622 @.Incomplete if...@>
13623 mp_print_int(mp, mp->warning_info);
13624 help3("A forbidden `outer' token occurred in skipped text.")
13625 ("This kind of error happens when you say `if...' and forget")
13626 ("the matching `fi'. I've inserted a `fi'; this might work.");
13627 if ( mp->cur_sym==0 )
13628 mp->help_line[2]="The file ended while I was skipping conditional text.";
13629 mp->cur_sym=frozen_fi; mp_ins_error(mp);
13631 mp->deletions_allowed=true;
13636 @ @<Check if the file has ended while flushing \TeX\ material and set...@>=
13637 if ( mp->cur_sym!=0 ) {
13640 mp->deletions_allowed=false;
13641 print_err("TeX mode didn't end; all text was ignored after line ");
13642 mp_print_int(mp, mp->warning_info);
13643 help2("The file ended while I was looking for the `etex' to")
13644 ("finish this TeX material. I've inserted `etex' now.");
13645 mp->cur_sym = frozen_etex;
13647 mp->deletions_allowed=true;
13651 @ @<Back up an outer symbolic token so that it can be reread@>=
13652 if ( mp->cur_sym!=0 ) {
13653 p=mp_get_avail(mp); info(p)=mp->cur_sym;
13654 back_list(p); /* prepare to read the symbolic token again */
13657 @ @<Tell the user what has run away...@>=
13659 mp_runaway(mp); /* print the definition-so-far */
13660 if ( mp->cur_sym==0 ) {
13661 print_err("File ended");
13662 @.File ended while scanning...@>
13664 print_err("Forbidden token found");
13665 @.Forbidden token found...@>
13667 mp_print(mp, " while scanning ");
13668 help4("I suspect you have forgotten an `enddef',")
13669 ("causing me to read past where you wanted me to stop.")
13670 ("I'll try to recover; but if the error is serious,")
13671 ("you'd better type `E' or `X' now and fix your file.");
13672 switch (mp->scanner_status) {
13673 @<Complete the error message,
13674 and set |cur_sym| to a token that might help recover from the error@>
13675 } /* there are no other cases */
13679 @ As we consider various kinds of errors, it is also appropriate to
13680 change the first line of the help message just given; |help_line[3]|
13681 points to the string that might be changed.
13683 @<Complete the error message,...@>=
13685 mp_print(mp, "to the end of the statement");
13686 mp->help_line[3]="A previous error seems to have propagated,";
13687 mp->cur_sym=frozen_semicolon;
13690 mp_print(mp, "a text argument");
13691 mp->help_line[3]="It seems that a right delimiter was left out,";
13692 if ( mp->warning_info==0 ) {
13693 mp->cur_sym=frozen_end_group;
13695 mp->cur_sym=frozen_right_delimiter;
13696 equiv(frozen_right_delimiter)=mp->warning_info;
13701 mp_print(mp, "the definition of ");
13702 if ( mp->scanner_status==op_defining )
13703 mp_print_text(mp->warning_info);
13705 mp_print_variable_name(mp, mp->warning_info);
13706 mp->cur_sym=frozen_end_def;
13708 case loop_defining:
13709 mp_print(mp, "the text of a ");
13710 mp_print_text(mp->warning_info);
13711 mp_print(mp, " loop");
13712 mp->help_line[3]="I suspect you have forgotten an `endfor',";
13713 mp->cur_sym=frozen_end_for;
13716 @ The |runaway| procedure displays the first part of the text that occurred
13717 when \MP\ began its special |scanner_status|, if that text has been saved.
13719 @<Declare the procedure called |runaway|@>=
13720 void mp_runaway (MP mp) {
13721 if ( mp->scanner_status>flushing ) {
13722 mp_print_nl(mp, "Runaway ");
13723 switch (mp->scanner_status) {
13724 case absorbing: mp_print(mp, "text?"); break;
13726 case op_defining: mp_print(mp,"definition?"); break;
13727 case loop_defining: mp_print(mp, "loop?"); break;
13728 } /* there are no other cases */
13730 mp_show_token_list(mp, link(hold_head),null,mp->error_line-10,0);
13734 @ We need to mention a procedure that may be called by |get_next|.
13737 void mp_firm_up_the_line (MP mp);
13739 @ And now we're ready to take the plunge into |get_next| itself.
13740 Note that the behavior depends on the |scanner_status| because percent signs
13741 and double quotes need to be passed over when skipping TeX material.
13744 void mp_get_next (MP mp) {
13745 /* sets |cur_cmd|, |cur_mod|, |cur_sym| to next token */
13747 /*restart*/ /* go here to get the next input token */
13748 /*exit*/ /* go here when the next input token has been got */
13749 /*|common_ending|*/ /* go here to finish getting a symbolic token */
13750 /*found*/ /* go here when the end of a symbolic token has been found */
13751 /*switch*/ /* go here to branch on the class of an input character */
13752 /*|start_numeric_token|,|start_decimal_token|,|fin_numeric_token|,|done|*/
13753 /* go here at crucial stages when scanning a number */
13754 int k; /* an index into |buffer| */
13755 ASCII_code c; /* the current character in the buffer */
13756 ASCII_code class; /* its class number */
13757 integer n,f; /* registers for decimal-to-binary conversion */
13760 if ( file_state ) {
13761 @<Input from external file; |goto restart| if no input found,
13762 or |return| if a non-symbolic token is found@>;
13764 @<Input from token list; |goto restart| if end of list or
13765 if a parameter needs to be expanded,
13766 or |return| if a non-symbolic token is found@>;
13769 @<Finish getting the symbolic token in |cur_sym|;
13770 |goto restart| if it is illegal@>;
13773 @ When a symbolic token is declared to be `\&{outer}', its command code
13774 is increased by |outer_tag|.
13777 @<Finish getting the symbolic token in |cur_sym|...@>=
13778 mp->cur_cmd=eq_type(mp->cur_sym); mp->cur_mod=equiv(mp->cur_sym);
13779 if ( mp->cur_cmd>=outer_tag ) {
13780 if ( mp_check_outer_validity(mp) )
13781 mp->cur_cmd=mp->cur_cmd-outer_tag;
13786 @ A percent sign appears in |buffer[limit]|; this makes it unnecessary
13787 to have a special test for end-of-line.
13790 @<Input from external file;...@>=
13793 c=mp->buffer[loc]; incr(loc); class=mp->char_class[c];
13795 case digit_class: goto START_NUMERIC_TOKEN; break;
13797 class=mp->char_class[mp->buffer[loc]];
13798 if ( class>period_class ) {
13800 } else if ( class<period_class ) { /* |class=digit_class| */
13801 n=0; goto START_DECIMAL_TOKEN;
13805 case space_class: goto SWITCH; break;
13806 case percent_class:
13807 if ( mp->scanner_status==tex_flushing ) {
13808 if ( loc<limit ) goto SWITCH;
13810 @<Move to next line of file, or |goto restart| if there is no next line@>;
13815 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13816 else @<Get a string token and |return|@>;
13818 case isolated_classes:
13819 k=loc-1; goto FOUND; break;
13820 case invalid_class:
13821 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13822 else @<Decry the invalid character and |goto restart|@>;
13824 default: break; /* letters, etc. */
13827 while ( mp->char_class[mp->buffer[loc]]==class ) incr(loc);
13829 START_NUMERIC_TOKEN:
13830 @<Get the integer part |n| of a numeric token;
13831 set |f:=0| and |goto fin_numeric_token| if there is no decimal point@>;
13832 START_DECIMAL_TOKEN:
13833 @<Get the fraction part |f| of a numeric token@>;
13835 @<Pack the numeric and fraction parts of a numeric token
13838 mp->cur_sym=mp_id_lookup(mp, k,loc-k);
13841 @ We go to |restart| instead of to |SWITCH|, because |state| might equal
13842 |token_list| after the error has been dealt with
13843 (cf.\ |clear_for_error_prompt|).
13845 @<Decry the invalid...@>=
13847 print_err("Text line contains an invalid character");
13848 @.Text line contains...@>
13849 help2("A funny symbol that I can\'t read has just been input.")
13850 ("Continue, and I'll forget that it ever happened.");
13851 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13855 @ @<Get a string token and |return|@>=
13857 if ( mp->buffer[loc]=='"' ) {
13858 mp->cur_mod=rts("");
13860 k=loc; mp->buffer[limit+1]='"';
13863 } while (mp->buffer[loc]!='"');
13865 @<Decry the missing string delimiter and |goto restart|@>;
13868 mp->cur_mod=mp->buffer[k];
13872 append_char(mp->buffer[k]); incr(k);
13874 mp->cur_mod=mp_make_string(mp);
13877 incr(loc); mp->cur_cmd=string_token;
13881 @ We go to |restart| after this error message, not to |SWITCH|,
13882 because the |clear_for_error_prompt| routine might have reinstated
13883 |token_state| after |error| has finished.
13885 @<Decry the missing string delimiter and |goto restart|@>=
13887 loc=limit; /* the next character to be read on this line will be |"%"| */
13888 print_err("Incomplete string token has been flushed");
13889 @.Incomplete string token...@>
13890 help3("Strings should finish on the same line as they began.")
13891 ("I've deleted the partial string; you might want to")
13892 ("insert another by typing, e.g., `I\"new string\"'.");
13893 mp->deletions_allowed=false; mp_error(mp);
13894 mp->deletions_allowed=true;
13898 @ @<Get the integer part |n| of a numeric token...@>=
13900 while ( mp->char_class[mp->buffer[loc]]==digit_class ) {
13901 if ( n<32768 ) n=10*n+mp->buffer[loc]-'0';
13904 if ( mp->buffer[loc]=='.' )
13905 if ( mp->char_class[mp->buffer[loc+1]]==digit_class )
13908 goto FIN_NUMERIC_TOKEN;
13911 @ @<Get the fraction part |f| of a numeric token@>=
13914 if ( k<17 ) { /* digits for |k>=17| cannot affect the result */
13915 mp->dig[k]=mp->buffer[loc]-'0'; incr(k);
13918 } while (mp->char_class[mp->buffer[loc]]==digit_class);
13919 f=mp_round_decimals(mp, k);
13924 @ @<Pack the numeric and fraction parts of a numeric token and |return|@>=
13926 @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>;
13927 } else if ( mp->scanner_status!=tex_flushing ) {
13928 print_err("Enormous number has been reduced");
13929 @.Enormous number...@>
13930 help2("I can\'t handle numbers bigger than 32767.99998;")
13931 ("so I've changed your constant to that maximum amount.");
13932 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13933 mp->cur_mod=el_gordo;
13935 mp->cur_cmd=numeric_token; return
13937 @ @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>=
13939 mp->cur_mod=n*unity+f;
13940 if ( mp->cur_mod>=fraction_one ) {
13941 if ( (mp->internal[mp_warning_check]>0) &&
13942 (mp->scanner_status!=tex_flushing) ) {
13943 print_err("Number is too large (");
13944 mp_print_scaled(mp, mp->cur_mod);
13945 mp_print_char(mp, ')');
13946 help3("It is at least 4096. Continue and I'll try to cope")
13947 ("with that big value; but it might be dangerous.")
13948 ("(Set warningcheck:=0 to suppress this message.)");
13954 @ Let's consider now what happens when |get_next| is looking at a token list.
13957 @<Input from token list;...@>=
13958 if ( loc>=mp->hi_mem_min ) { /* one-word token */
13959 mp->cur_sym=info(loc); loc=link(loc); /* move to next */
13960 if ( mp->cur_sym>=expr_base ) {
13961 if ( mp->cur_sym>=suffix_base ) {
13962 @<Insert a suffix or text parameter and |goto restart|@>;
13964 mp->cur_cmd=capsule_token;
13965 mp->cur_mod=mp->param_stack[param_start+mp->cur_sym-(expr_base)];
13966 mp->cur_sym=0; return;
13969 } else if ( loc>null ) {
13970 @<Get a stored numeric or string or capsule token and |return|@>
13971 } else { /* we are done with this token list */
13972 mp_end_token_list(mp); goto RESTART; /* resume previous level */
13975 @ @<Insert a suffix or text parameter...@>=
13977 if ( mp->cur_sym>=text_base ) mp->cur_sym=mp->cur_sym-mp->param_size;
13978 /* |param_size=text_base-suffix_base| */
13979 mp_begin_token_list(mp,
13980 mp->param_stack[param_start+mp->cur_sym-(suffix_base)],
13985 @ @<Get a stored numeric or string or capsule token...@>=
13987 if ( name_type(loc)==mp_token ) {
13988 mp->cur_mod=value(loc);
13989 if ( type(loc)==mp_known ) {
13990 mp->cur_cmd=numeric_token;
13992 mp->cur_cmd=string_token; add_str_ref(mp->cur_mod);
13995 mp->cur_mod=loc; mp->cur_cmd=capsule_token;
13997 loc=link(loc); return;
14000 @ All of the easy branches of |get_next| have now been taken care of.
14001 There is one more branch.
14003 @<Move to next line of file, or |goto restart|...@>=
14004 if ( name>max_spec_src ) {
14005 @<Read next line of file into |buffer|, or
14006 |goto restart| if the file has ended@>;
14008 if ( mp->input_ptr>0 ) {
14009 /* text was inserted during error recovery or by \&{scantokens} */
14010 mp_end_file_reading(mp); goto RESTART; /* resume previous level */
14012 if ( mp->selector<log_only || mp->selector>=write_file) mp_open_log_file(mp);
14013 if ( mp->interaction>mp_nonstop_mode ) {
14014 if ( limit==start ) /* previous line was empty */
14015 mp_print_nl(mp, "(Please type a command or say `end')");
14017 mp_print_ln(mp); mp->first=start;
14018 prompt_input("*"); /* input on-line into |buffer| */
14020 limit=mp->last; mp->buffer[limit]='%';
14021 mp->first=limit+1; loc=start;
14023 mp_fatal_error(mp, "*** (job aborted, no legal end found)");
14025 /* nonstop mode, which is intended for overnight batch processing,
14026 never waits for on-line input */
14030 @ The global variable |force_eof| is normally |false|; it is set |true|
14031 by an \&{endinput} command.
14034 boolean force_eof; /* should the next \&{input} be aborted early? */
14036 @ We must decrement |loc| in order to leave the buffer in a valid state
14037 when an error condition causes us to |goto restart| without calling
14038 |end_file_reading|.
14040 @<Read next line of file into |buffer|, or
14041 |goto restart| if the file has ended@>=
14043 incr(line); mp->first=start;
14044 if ( ! mp->force_eof ) {
14045 if ( mp_input_ln(mp, cur_file ) ) /* not end of file */
14046 mp_firm_up_the_line(mp); /* this sets |limit| */
14048 mp->force_eof=true;
14050 if ( mp->force_eof ) {
14051 mp->force_eof=false;
14053 if ( mpx_reading ) {
14054 @<Complain that the \.{MPX} file ended unexpectly; then set
14055 |cur_sym:=frozen_mpx_break| and |goto comon_ending|@>;
14057 mp_print_char(mp, ')'); decr(mp->open_parens);
14058 update_terminal; /* show user that file has been read */
14059 mp_end_file_reading(mp); /* resume previous level */
14060 if ( mp_check_outer_validity(mp) ) goto RESTART;
14064 mp->buffer[limit]='%'; mp->first=limit+1; loc=start; /* ready to read */
14067 @ We should never actually come to the end of an \.{MPX} file because such
14068 files should have an \&{mpxbreak} after the translation of the last
14069 \&{btex}$\,\ldots\,$\&{etex} block.
14071 @<Complain that the \.{MPX} file ended unexpectly; then set...@>=
14073 mp->mpx_name[index]=finished;
14074 print_err("mpx file ended unexpectedly");
14075 help4("The file had too few picture expressions for btex...etex")
14076 ("blocks. Such files are normally generated automatically")
14077 ("but this one got messed up. You might want to insert a")
14078 ("picture expression now.");
14079 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
14080 mp->cur_sym=frozen_mpx_break; goto COMMON_ENDING;
14083 @ Sometimes we want to make it look as though we have just read a blank line
14084 without really doing so.
14086 @<Put an empty line in the input buffer@>=
14087 mp->last=mp->first; limit=mp->last; /* simulate |input_ln| and |firm_up_the_line| */
14088 mp->buffer[limit]='%'; mp->first=limit+1; loc=start
14090 @ If the user has set the |mp_pausing| parameter to some positive value,
14091 and if nonstop mode has not been selected, each line of input is displayed
14092 on the terminal and the transcript file, followed by `\.{=>}'.
14093 \MP\ waits for a response. If the response is null (i.e., if nothing is
14094 typed except perhaps a few blank spaces), the original
14095 line is accepted as it stands; otherwise the line typed is
14096 used instead of the line in the file.
14098 @c void mp_firm_up_the_line (MP mp) {
14099 size_t k; /* an index into |buffer| */
14101 if ( mp->internal[mp_pausing]>0) if ( mp->interaction>mp_nonstop_mode ) {
14102 wake_up_terminal; mp_print_ln(mp);
14103 if ( start<limit ) {
14104 for (k=(size_t)start;k<=(size_t)(limit-1);k++) {
14105 mp_print_str(mp, mp->buffer[k]);
14108 mp->first=limit; prompt_input("=>"); /* wait for user response */
14110 if ( mp->last>mp->first ) {
14111 for (k=mp->first;k<=mp->last-1;k++) { /* move line down in buffer */
14112 mp->buffer[k+start-mp->first]=mp->buffer[k];
14114 limit=start+mp->last-mp->first;
14119 @* \[30] Dealing with \TeX\ material.
14120 The \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}$\,\ldots\,$\&{etex}
14121 features need to be implemented at a low level in the scanning process
14122 so that \MP\ can stay in synch with the a preprocessor that treats
14123 blocks of \TeX\ material as they occur in the input file without trying
14124 to expand \MP\ macros. Thus we need a special version of |get_next|
14125 that does not expand macros and such but does handle \&{btex},
14126 \&{verbatimtex}, etc.
14128 The special version of |get_next| is called |get_t_next|. It works by flushing
14129 \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}\allowbreak
14130 $\,\ldots\,$\&{etex} blocks, switching to the \.{MPX} file when it sees
14131 \&{btex}, and switching back when it sees \&{mpxbreak}.
14137 mp_primitive(mp, "btex",start_tex,btex_code);
14138 @:btex_}{\&{btex} primitive@>
14139 mp_primitive(mp, "verbatimtex",start_tex,verbatim_code);
14140 @:verbatimtex_}{\&{verbatimtex} primitive@>
14141 mp_primitive(mp, "etex",etex_marker,0); mp->eqtb[frozen_etex]=mp->eqtb[mp->cur_sym];
14142 @:etex_}{\&{etex} primitive@>
14143 mp_primitive(mp, "mpxbreak",mpx_break,0); mp->eqtb[frozen_mpx_break]=mp->eqtb[mp->cur_sym];
14144 @:mpx_break_}{\&{mpxbreak} primitive@>
14146 @ @<Cases of |print_cmd...@>=
14147 case start_tex: if ( m==btex_code ) mp_print(mp, "btex");
14148 else mp_print(mp, "verbatimtex"); break;
14149 case etex_marker: mp_print(mp, "etex"); break;
14150 case mpx_break: mp_print(mp, "mpxbreak"); break;
14152 @ Actually, |get_t_next| is a macro that avoids procedure overhead except
14153 in the unusual case where \&{btex}, \&{verbatimtex}, \&{etex}, or \&{mpxbreak}
14156 @d get_t_next {mp_get_next(mp); if ( mp->cur_cmd<=max_pre_command ) mp_t_next(mp); }
14159 void mp_start_mpx_input (MP mp);
14162 void mp_t_next (MP mp) {
14163 int old_status; /* saves the |scanner_status| */
14164 integer old_info; /* saves the |warning_info| */
14165 while ( mp->cur_cmd<=max_pre_command ) {
14166 if ( mp->cur_cmd==mpx_break ) {
14167 if ( ! file_state || (mp->mpx_name[index]==absent) ) {
14168 @<Complain about a misplaced \&{mpxbreak}@>;
14170 mp_end_mpx_reading(mp);
14173 } else if ( mp->cur_cmd==start_tex ) {
14174 if ( token_state || (name<=max_spec_src) ) {
14175 @<Complain that we are not reading a file@>;
14176 } else if ( mpx_reading ) {
14177 @<Complain that \.{MPX} files cannot contain \TeX\ material@>;
14178 } else if ( (mp->cur_mod!=verbatim_code)&&
14179 (mp->mpx_name[index]!=finished) ) {
14180 if ( ! mp_begin_mpx_reading(mp) ) mp_start_mpx_input(mp);
14185 @<Complain about a misplaced \&{etex}@>;
14187 goto COMMON_ENDING;
14189 @<Flush the \TeX\ material@>;
14195 @ We could be in the middle of an operation such as skipping false conditional
14196 text when \TeX\ material is encountered, so we must be careful to save the
14199 @<Flush the \TeX\ material@>=
14200 old_status=mp->scanner_status;
14201 old_info=mp->warning_info;
14202 mp->scanner_status=tex_flushing;
14203 mp->warning_info=line;
14204 do { mp_get_next(mp); } while (mp->cur_cmd!=etex_marker);
14205 mp->scanner_status=old_status;
14206 mp->warning_info=old_info
14208 @ @<Complain that \.{MPX} files cannot contain \TeX\ material@>=
14209 { print_err("An mpx file cannot contain btex or verbatimtex blocks");
14210 help4("This file contains picture expressions for btex...etex")
14211 ("blocks. Such files are normally generated automatically")
14212 ("but this one seems to be messed up. I'll just keep going")
14213 ("and hope for the best.");
14217 @ @<Complain that we are not reading a file@>=
14218 { print_err("You can only use `btex' or `verbatimtex' in a file");
14219 help3("I'll have to ignore this preprocessor command because it")
14220 ("only works when there is a file to preprocess. You might")
14221 ("want to delete everything up to the next `etex`.");
14225 @ @<Complain about a misplaced \&{mpxbreak}@>=
14226 { print_err("Misplaced mpxbreak");
14227 help2("I'll ignore this preprocessor command because it")
14228 ("doesn't belong here");
14232 @ @<Complain about a misplaced \&{etex}@>=
14233 { print_err("Extra etex will be ignored");
14234 help1("There is no btex or verbatimtex for this to match");
14238 @* \[31] Scanning macro definitions.
14239 \MP\ has a variety of ways to tuck tokens away into token lists for later
14240 use: Macros can be defined with \&{def}, \&{vardef}, \&{primarydef}, etc.;
14241 repeatable code can be defined with \&{for}, \&{forever}, \&{forsuffixes}.
14242 All such operations are handled by the routines in this part of the program.
14244 The modifier part of each command code is zero for the ``ending delimiters''
14245 like \&{enddef} and \&{endfor}.
14247 @d start_def 1 /* command modifier for \&{def} */
14248 @d var_def 2 /* command modifier for \&{vardef} */
14249 @d end_def 0 /* command modifier for \&{enddef} */
14250 @d start_forever 1 /* command modifier for \&{forever} */
14251 @d end_for 0 /* command modifier for \&{endfor} */
14254 mp_primitive(mp, "def",macro_def,start_def);
14255 @:def_}{\&{def} primitive@>
14256 mp_primitive(mp, "vardef",macro_def,var_def);
14257 @:var_def_}{\&{vardef} primitive@>
14258 mp_primitive(mp, "primarydef",macro_def,secondary_primary_macro);
14259 @:primary_def_}{\&{primarydef} primitive@>
14260 mp_primitive(mp, "secondarydef",macro_def,tertiary_secondary_macro);
14261 @:secondary_def_}{\&{secondarydef} primitive@>
14262 mp_primitive(mp, "tertiarydef",macro_def,expression_tertiary_macro);
14263 @:tertiary_def_}{\&{tertiarydef} primitive@>
14264 mp_primitive(mp, "enddef",macro_def,end_def); mp->eqtb[frozen_end_def]=mp->eqtb[mp->cur_sym];
14265 @:end_def_}{\&{enddef} primitive@>
14267 mp_primitive(mp, "for",iteration,expr_base);
14268 @:for_}{\&{for} primitive@>
14269 mp_primitive(mp, "forsuffixes",iteration,suffix_base);
14270 @:for_suffixes_}{\&{forsuffixes} primitive@>
14271 mp_primitive(mp, "forever",iteration,start_forever);
14272 @:forever_}{\&{forever} primitive@>
14273 mp_primitive(mp, "endfor",iteration,end_for); mp->eqtb[frozen_end_for]=mp->eqtb[mp->cur_sym];
14274 @:end_for_}{\&{endfor} primitive@>
14276 @ @<Cases of |print_cmd...@>=
14278 if ( m<=var_def ) {
14279 if ( m==start_def ) mp_print(mp, "def");
14280 else if ( m<start_def ) mp_print(mp, "enddef");
14281 else mp_print(mp, "vardef");
14282 } else if ( m==secondary_primary_macro ) {
14283 mp_print(mp, "primarydef");
14284 } else if ( m==tertiary_secondary_macro ) {
14285 mp_print(mp, "secondarydef");
14287 mp_print(mp, "tertiarydef");
14291 if ( m<=start_forever ) {
14292 if ( m==start_forever ) mp_print(mp, "forever");
14293 else mp_print(mp, "endfor");
14294 } else if ( m==expr_base ) {
14295 mp_print(mp, "for");
14297 mp_print(mp, "forsuffixes");
14301 @ Different macro-absorbing operations have different syntaxes, but they
14302 also have a lot in common. There is a list of special symbols that are to
14303 be replaced by parameter tokens; there is a special command code that
14304 ends the definition; the quotation conventions are identical. Therefore
14305 it makes sense to have most of the work done by a single subroutine. That
14306 subroutine is called |scan_toks|.
14308 The first parameter to |scan_toks| is the command code that will
14309 terminate scanning (either |macro_def|, |loop_repeat|, or |iteration|).
14311 The second parameter, |subst_list|, points to a (possibly empty) list
14312 of two-word nodes whose |info| and |value| fields specify symbol tokens
14313 before and after replacement. The list will be returned to free storage
14316 The third parameter is simply appended to the token list that is built.
14317 And the final parameter tells how many of the special operations
14318 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#} are to be replaced by suffix parameters.
14319 When such parameters are present, they are called \.{(SUFFIX0)},
14320 \.{(SUFFIX1)}, and \.{(SUFFIX2)}.
14322 @c pointer mp_scan_toks (MP mp,command_code terminator, pointer
14323 subst_list, pointer tail_end, small_number suffix_count) {
14324 pointer p; /* tail of the token list being built */
14325 pointer q; /* temporary for link management */
14326 integer balance; /* left delimiters minus right delimiters */
14327 p=hold_head; balance=1; link(hold_head)=null;
14330 if ( mp->cur_sym>0 ) {
14331 @<Substitute for |cur_sym|, if it's on the |subst_list|@>;
14332 if ( mp->cur_cmd==terminator ) {
14333 @<Adjust the balance; |break| if it's zero@>;
14334 } else if ( mp->cur_cmd==macro_special ) {
14335 @<Handle quoted symbols, \.{\#\AT!}, \.{\AT!}, or \.{\AT!\#}@>;
14338 link(p)=mp_cur_tok(mp); p=link(p);
14340 link(p)=tail_end; mp_flush_node_list(mp, subst_list);
14341 return link(hold_head);
14344 @ @<Substitute for |cur_sym|...@>=
14347 while ( q!=null ) {
14348 if ( info(q)==mp->cur_sym ) {
14349 mp->cur_sym=value(q); mp->cur_cmd=relax; break;
14355 @ @<Adjust the balance; |break| if it's zero@>=
14356 if ( mp->cur_mod>0 ) {
14364 @ Four commands are intended to be used only within macro texts: \&{quote},
14365 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#}. They are variants of a single command
14366 code called |macro_special|.
14368 @d quote 0 /* |macro_special| modifier for \&{quote} */
14369 @d macro_prefix 1 /* |macro_special| modifier for \.{\#\AT!} */
14370 @d macro_at 2 /* |macro_special| modifier for \.{\AT!} */
14371 @d macro_suffix 3 /* |macro_special| modifier for \.{\AT!\#} */
14374 mp_primitive(mp, "quote",macro_special,quote);
14375 @:quote_}{\&{quote} primitive@>
14376 mp_primitive(mp, "#@@",macro_special,macro_prefix);
14377 @:]]]\#\AT!_}{\.{\#\AT!} primitive@>
14378 mp_primitive(mp, "@@",macro_special,macro_at);
14379 @:]]]\AT!_}{\.{\AT!} primitive@>
14380 mp_primitive(mp, "@@#",macro_special,macro_suffix);
14381 @:]]]\AT!\#_}{\.{\AT!\#} primitive@>
14383 @ @<Cases of |print_cmd...@>=
14384 case macro_special:
14386 case macro_prefix: mp_print(mp, "#@@"); break;
14387 case macro_at: mp_print_char(mp, '@@'); break;
14388 case macro_suffix: mp_print(mp, "@@#"); break;
14389 default: mp_print(mp, "quote"); break;
14393 @ @<Handle quoted...@>=
14395 if ( mp->cur_mod==quote ) { get_t_next; }
14396 else if ( mp->cur_mod<=suffix_count )
14397 mp->cur_sym=suffix_base-1+mp->cur_mod;
14400 @ Here is a routine that's used whenever a token will be redefined. If
14401 the user's token is unredefinable, the `|frozen_inaccessible|' token is
14402 substituted; the latter is redefinable but essentially impossible to use,
14403 hence \MP's tables won't get fouled up.
14405 @c void mp_get_symbol (MP mp) { /* sets |cur_sym| to a safe symbol */
14408 if ( (mp->cur_sym==0)||(mp->cur_sym>frozen_inaccessible) ) {
14409 print_err("Missing symbolic token inserted");
14410 @.Missing symbolic token...@>
14411 help3("Sorry: You can\'t redefine a number, string, or expr.")
14412 ("I've inserted an inaccessible symbol so that your")
14413 ("definition will be completed without mixing me up too badly.");
14414 if ( mp->cur_sym>0 )
14415 mp->help_line[2]="Sorry: You can\'t redefine my error-recovery tokens.";
14416 else if ( mp->cur_cmd==string_token )
14417 delete_str_ref(mp->cur_mod);
14418 mp->cur_sym=frozen_inaccessible; mp_ins_error(mp); goto RESTART;
14422 @ Before we actually redefine a symbolic token, we need to clear away its
14423 former value, if it was a variable. The following stronger version of
14424 |get_symbol| does that.
14426 @c void mp_get_clear_symbol (MP mp) {
14427 mp_get_symbol(mp); mp_clear_symbol(mp, mp->cur_sym,false);
14430 @ Here's another little subroutine; it checks that an equals sign
14431 or assignment sign comes along at the proper place in a macro definition.
14433 @c void mp_check_equals (MP mp) {
14434 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
14435 mp_missing_err(mp, "=");
14437 help5("The next thing in this `def' should have been `=',")
14438 ("because I've already looked at the definition heading.")
14439 ("But don't worry; I'll pretend that an equals sign")
14440 ("was present. Everything from here to `enddef'")
14441 ("will be the replacement text of this macro.");
14446 @ A \&{primarydef}, \&{secondarydef}, or \&{tertiarydef} is rather easily
14447 handled now that we have |scan_toks|. In this case there are
14448 two parameters, which will be \.{EXPR0} and \.{EXPR1} (i.e.,
14449 |expr_base| and |expr_base+1|).
14451 @c void mp_make_op_def (MP mp) {
14452 command_code m; /* the type of definition */
14453 pointer p,q,r; /* for list manipulation */
14455 mp_get_symbol(mp); q=mp_get_node(mp, token_node_size);
14456 info(q)=mp->cur_sym; value(q)=expr_base;
14457 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym;
14458 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14459 info(p)=mp->cur_sym; value(p)=expr_base+1; link(p)=q;
14460 get_t_next; mp_check_equals(mp);
14461 mp->scanner_status=op_defining; q=mp_get_avail(mp); ref_count(q)=null;
14462 r=mp_get_avail(mp); link(q)=r; info(r)=general_macro;
14463 link(r)=mp_scan_toks(mp, macro_def,p,null,0);
14464 mp->scanner_status=normal; eq_type(mp->warning_info)=m;
14465 equiv(mp->warning_info)=q; mp_get_x_next(mp);
14468 @ Parameters to macros are introduced by the keywords \&{expr},
14469 \&{suffix}, \&{text}, \&{primary}, \&{secondary}, and \&{tertiary}.
14472 mp_primitive(mp, "expr",param_type,expr_base);
14473 @:expr_}{\&{expr} primitive@>
14474 mp_primitive(mp, "suffix",param_type,suffix_base);
14475 @:suffix_}{\&{suffix} primitive@>
14476 mp_primitive(mp, "text",param_type,text_base);
14477 @:text_}{\&{text} primitive@>
14478 mp_primitive(mp, "primary",param_type,primary_macro);
14479 @:primary_}{\&{primary} primitive@>
14480 mp_primitive(mp, "secondary",param_type,secondary_macro);
14481 @:secondary_}{\&{secondary} primitive@>
14482 mp_primitive(mp, "tertiary",param_type,tertiary_macro);
14483 @:tertiary_}{\&{tertiary} primitive@>
14485 @ @<Cases of |print_cmd...@>=
14487 if ( m>=expr_base ) {
14488 if ( m==expr_base ) mp_print(mp, "expr");
14489 else if ( m==suffix_base ) mp_print(mp, "suffix");
14490 else mp_print(mp, "text");
14491 } else if ( m<secondary_macro ) {
14492 mp_print(mp, "primary");
14493 } else if ( m==secondary_macro ) {
14494 mp_print(mp, "secondary");
14496 mp_print(mp, "tertiary");
14500 @ Let's turn next to the more complex processing associated with \&{def}
14501 and \&{vardef}. When the following procedure is called, |cur_mod|
14502 should be either |start_def| or |var_def|.
14504 @c @<Declare the procedure called |check_delimiter|@>;
14505 @<Declare the function called |scan_declared_variable|@>;
14506 void mp_scan_def (MP mp) {
14507 int m; /* the type of definition */
14508 int n; /* the number of special suffix parameters */
14509 int k; /* the total number of parameters */
14510 int c; /* the kind of macro we're defining */
14511 pointer r; /* parameter-substitution list */
14512 pointer q; /* tail of the macro token list */
14513 pointer p; /* temporary storage */
14514 halfword base; /* |expr_base|, |suffix_base|, or |text_base| */
14515 pointer l_delim,r_delim; /* matching delimiters */
14516 m=mp->cur_mod; c=general_macro; link(hold_head)=null;
14517 q=mp_get_avail(mp); ref_count(q)=null; r=null;
14518 @<Scan the token or variable to be defined;
14519 set |n|, |scanner_status|, and |warning_info|@>;
14521 if ( mp->cur_cmd==left_delimiter ) {
14522 @<Absorb delimited parameters, putting them into lists |q| and |r|@>;
14524 if ( mp->cur_cmd==param_type ) {
14525 @<Absorb undelimited parameters, putting them into list |r|@>;
14527 mp_check_equals(mp);
14528 p=mp_get_avail(mp); info(p)=c; link(q)=p;
14529 @<Attach the replacement text to the tail of node |p|@>;
14530 mp->scanner_status=normal; mp_get_x_next(mp);
14533 @ We don't put `|frozen_end_group|' into the replacement text of
14534 a \&{vardef}, because the user may want to redefine `\.{endgroup}'.
14536 @<Attach the replacement text to the tail of node |p|@>=
14537 if ( m==start_def ) {
14538 link(p)=mp_scan_toks(mp, macro_def,r,null,n);
14540 q=mp_get_avail(mp); info(q)=mp->bg_loc; link(p)=q;
14541 p=mp_get_avail(mp); info(p)=mp->eg_loc;
14542 link(q)=mp_scan_toks(mp, macro_def,r,p,n);
14544 if ( mp->warning_info==bad_vardef )
14545 mp_flush_token_list(mp, value(bad_vardef))
14549 int eg_loc; /* hash addresses of `\.{begingroup}' and `\.{endgroup}' */
14551 @ @<Scan the token or variable to be defined;...@>=
14552 if ( m==start_def ) {
14553 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym; get_t_next;
14554 mp->scanner_status=op_defining; n=0;
14555 eq_type(mp->warning_info)=defined_macro; equiv(mp->warning_info)=q;
14557 p=mp_scan_declared_variable(mp);
14558 mp_flush_variable(mp, equiv(info(p)),link(p),true);
14559 mp->warning_info=mp_find_variable(mp, p); mp_flush_list(mp, p);
14560 if ( mp->warning_info==null ) @<Change to `\.{a bad variable}'@>;
14561 mp->scanner_status=var_defining; n=2;
14562 if ( mp->cur_cmd==macro_special ) if ( mp->cur_mod==macro_suffix ) {/* \.{\AT!\#} */
14565 type(mp->warning_info)=mp_unsuffixed_macro-2+n; value(mp->warning_info)=q;
14566 } /* |mp_suffixed_macro=mp_unsuffixed_macro+1| */
14568 @ @<Change to `\.{a bad variable}'@>=
14570 print_err("This variable already starts with a macro");
14571 @.This variable already...@>
14572 help2("After `vardef a' you can\'t say `vardef a.b'.")
14573 ("So I'll have to discard this definition.");
14574 mp_error(mp); mp->warning_info=bad_vardef;
14577 @ @<Initialize table entries...@>=
14578 name_type(bad_vardef)=mp_root; link(bad_vardef)=frozen_bad_vardef;
14579 equiv(frozen_bad_vardef)=bad_vardef; eq_type(frozen_bad_vardef)=tag_token;
14581 @ @<Absorb delimited parameters, putting them into lists |q| and |r|@>=
14583 l_delim=mp->cur_sym; r_delim=mp->cur_mod; get_t_next;
14584 if ( (mp->cur_cmd==param_type)&&(mp->cur_mod>=expr_base) ) {
14587 print_err("Missing parameter type; `expr' will be assumed");
14588 @.Missing parameter type@>
14589 help1("You should've had `expr' or `suffix' or `text' here.");
14590 mp_back_error(mp); base=expr_base;
14592 @<Absorb parameter tokens for type |base|@>;
14593 mp_check_delimiter(mp, l_delim,r_delim);
14595 } while (mp->cur_cmd==left_delimiter)
14597 @ @<Absorb parameter tokens for type |base|@>=
14599 link(q)=mp_get_avail(mp); q=link(q); info(q)=base+k;
14600 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14601 value(p)=base+k; info(p)=mp->cur_sym;
14602 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14603 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
14604 incr(k); link(p)=r; r=p; get_t_next;
14605 } while (mp->cur_cmd==comma)
14607 @ @<Absorb undelimited parameters, putting them into list |r|@>=
14609 p=mp_get_node(mp, token_node_size);
14610 if ( mp->cur_mod<expr_base ) {
14611 c=mp->cur_mod; value(p)=expr_base+k;
14613 value(p)=mp->cur_mod+k;
14614 if ( mp->cur_mod==expr_base ) c=expr_macro;
14615 else if ( mp->cur_mod==suffix_base ) c=suffix_macro;
14618 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14619 incr(k); mp_get_symbol(mp); info(p)=mp->cur_sym; link(p)=r; r=p; get_t_next;
14620 if ( c==expr_macro ) if ( mp->cur_cmd==of_token ) {
14621 c=of_macro; p=mp_get_node(mp, token_node_size);
14622 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14623 value(p)=expr_base+k; mp_get_symbol(mp); info(p)=mp->cur_sym;
14624 link(p)=r; r=p; get_t_next;
14628 @* \[32] Expanding the next token.
14629 Only a few command codes |<min_command| can possibly be returned by
14630 |get_t_next|; in increasing order, they are
14631 |if_test|, |fi_or_else|, |input|, |iteration|, |repeat_loop|,
14632 |exit_test|, |relax|, |scan_tokens|, |expand_after|, and |defined_macro|.
14634 \MP\ usually gets the next token of input by saying |get_x_next|. This is
14635 like |get_t_next| except that it keeps getting more tokens until
14636 finding |cur_cmd>=min_command|. In other words, |get_x_next| expands
14637 macros and removes conditionals or iterations or input instructions that
14640 It follows that |get_x_next| might invoke itself recursively. In fact,
14641 there is massive recursion, since macro expansion can involve the
14642 scanning of arbitrarily complex expressions, which in turn involve
14643 macro expansion and conditionals, etc.
14646 Therefore it's necessary to declare a whole bunch of |forward|
14647 procedures at this point, and to insert some other procedures
14648 that will be invoked by |get_x_next|.
14651 void mp_scan_primary (MP mp);
14652 void mp_scan_secondary (MP mp);
14653 void mp_scan_tertiary (MP mp);
14654 void mp_scan_expression (MP mp);
14655 void mp_scan_suffix (MP mp);
14656 @<Declare the procedure called |macro_call|@>;
14657 void mp_get_boolean (MP mp);
14658 void mp_pass_text (MP mp);
14659 void mp_conditional (MP mp);
14660 void mp_start_input (MP mp);
14661 void mp_begin_iteration (MP mp);
14662 void mp_resume_iteration (MP mp);
14663 void mp_stop_iteration (MP mp);
14665 @ An auxiliary subroutine called |expand| is used by |get_x_next|
14666 when it has to do exotic expansion commands.
14668 @c void mp_expand (MP mp) {
14669 pointer p; /* for list manipulation */
14670 size_t k; /* something that we hope is |<=buf_size| */
14671 pool_pointer j; /* index into |str_pool| */
14672 if ( mp->internal[mp_tracing_commands]>unity )
14673 if ( mp->cur_cmd!=defined_macro )
14675 switch (mp->cur_cmd) {
14677 mp_conditional(mp); /* this procedure is discussed in Part 36 below */
14680 @<Terminate the current conditional and skip to \&{fi}@>;
14683 @<Initiate or terminate input from a file@>;
14686 if ( mp->cur_mod==end_for ) {
14687 @<Scold the user for having an extra \&{endfor}@>;
14689 mp_begin_iteration(mp); /* this procedure is discussed in Part 37 below */
14696 @<Exit a loop if the proper time has come@>;
14701 @<Expand the token after the next token@>;
14704 @<Put a string into the input buffer@>;
14706 case defined_macro:
14707 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14709 }; /* there are no other cases */
14712 @ @<Scold the user...@>=
14714 print_err("Extra `endfor'");
14716 help2("I'm not currently working on a for loop,")
14717 ("so I had better not try to end anything.");
14721 @ The processing of \&{input} involves the |start_input| subroutine,
14722 which will be declared later; the processing of \&{endinput} is trivial.
14725 mp_primitive(mp, "input",input,0);
14726 @:input_}{\&{input} primitive@>
14727 mp_primitive(mp, "endinput",input,1);
14728 @:end_input_}{\&{endinput} primitive@>
14730 @ @<Cases of |print_cmd_mod|...@>=
14732 if ( m==0 ) mp_print(mp, "input");
14733 else mp_print(mp, "endinput");
14736 @ @<Initiate or terminate input...@>=
14737 if ( mp->cur_mod>0 ) mp->force_eof=true;
14738 else mp_start_input(mp)
14740 @ We'll discuss the complicated parts of loop operations later. For now
14741 it suffices to know that there's a global variable called |loop_ptr|
14742 that will be |null| if no loop is in progress.
14745 { while ( token_state &&(loc==null) )
14746 mp_end_token_list(mp); /* conserve stack space */
14747 if ( mp->loop_ptr==null ) {
14748 print_err("Lost loop");
14750 help2("I'm confused; after exiting from a loop, I still seem")
14751 ("to want to repeat it. I'll try to forget the problem.");
14754 mp_resume_iteration(mp); /* this procedure is in Part 37 below */
14758 @ @<Exit a loop if the proper time has come@>=
14759 { mp_get_boolean(mp);
14760 if ( mp->internal[mp_tracing_commands]>unity )
14761 mp_show_cmd_mod(mp, nullary,mp->cur_exp);
14762 if ( mp->cur_exp==true_code ) {
14763 if ( mp->loop_ptr==null ) {
14764 print_err("No loop is in progress");
14765 @.No loop is in progress@>
14766 help1("Why say `exitif' when there's nothing to exit from?");
14767 if ( mp->cur_cmd==semicolon ) mp_error(mp); else mp_back_error(mp);
14769 @<Exit prematurely from an iteration@>;
14771 } else if ( mp->cur_cmd!=semicolon ) {
14772 mp_missing_err(mp, ";");
14774 help2("After `exitif <boolean exp>' I expect to see a semicolon.")
14775 ("I shall pretend that one was there."); mp_back_error(mp);
14779 @ Here we use the fact that |forever_text| is the only |token_type| that
14780 is less than |loop_text|.
14782 @<Exit prematurely...@>=
14785 if ( file_state ) {
14786 mp_end_file_reading(mp);
14788 if ( token_type<=loop_text ) p=start;
14789 mp_end_token_list(mp);
14792 if ( p!=info(mp->loop_ptr) ) mp_fatal_error(mp, "*** (loop confusion)");
14794 mp_stop_iteration(mp); /* this procedure is in Part 34 below */
14797 @ @<Expand the token after the next token@>=
14799 p=mp_cur_tok(mp); get_t_next;
14800 if ( mp->cur_cmd<min_command ) mp_expand(mp);
14801 else mp_back_input(mp);
14805 @ @<Put a string into the input buffer@>=
14806 { mp_get_x_next(mp); mp_scan_primary(mp);
14807 if ( mp->cur_type!=mp_string_type ) {
14808 mp_disp_err(mp, null,"Not a string");
14810 help2("I'm going to flush this expression, since")
14811 ("scantokens should be followed by a known string.");
14812 mp_put_get_flush_error(mp, 0);
14815 if ( length(mp->cur_exp)>0 )
14816 @<Pretend we're reading a new one-line file@>;
14820 @ @<Pretend we're reading a new one-line file@>=
14821 { mp_begin_file_reading(mp); name=is_scantok;
14822 k=mp->first+length(mp->cur_exp);
14823 if ( k>=mp->max_buf_stack ) {
14824 while ( k>=mp->buf_size ) {
14825 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
14827 mp->max_buf_stack=k+1;
14829 j=mp->str_start[mp->cur_exp]; limit=k;
14830 while ( mp->first<(size_t)limit ) {
14831 mp->buffer[mp->first]=mp->str_pool[j]; incr(j); incr(mp->first);
14833 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
14834 mp_flush_cur_exp(mp, 0);
14837 @ Here finally is |get_x_next|.
14839 The expression scanning routines to be considered later
14840 communicate via the global quantities |cur_type| and |cur_exp|;
14841 we must be very careful to save and restore these quantities while
14842 macros are being expanded.
14846 void mp_get_x_next (MP mp);
14848 @ @c void mp_get_x_next (MP mp) {
14849 pointer save_exp; /* a capsule to save |cur_type| and |cur_exp| */
14851 if ( mp->cur_cmd<min_command ) {
14852 save_exp=mp_stash_cur_exp(mp);
14854 if ( mp->cur_cmd==defined_macro )
14855 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14859 } while (mp->cur_cmd<min_command);
14860 mp_unstash_cur_exp(mp, save_exp); /* that restores |cur_type| and |cur_exp| */
14864 @ Now let's consider the |macro_call| procedure, which is used to start up
14865 all user-defined macros. Since the arguments to a macro might be expressions,
14866 |macro_call| is recursive.
14869 The first parameter to |macro_call| points to the reference count of the
14870 token list that defines the macro. The second parameter contains any
14871 arguments that have already been parsed (see below). The third parameter
14872 points to the symbolic token that names the macro. If the third parameter
14873 is |null|, the macro was defined by \&{vardef}, so its name can be
14874 reconstructed from the prefix and ``at'' arguments found within the
14877 What is this second parameter? It's simply a linked list of one-word items,
14878 whose |info| fields point to the arguments. In other words, if |arg_list=null|,
14879 no arguments have been scanned yet; otherwise |info(arg_list)| points to
14880 the first scanned argument, and |link(arg_list)| points to the list of
14881 further arguments (if any).
14883 Arguments of type \&{expr} are so-called capsules, which we will
14884 discuss later when we concentrate on expressions; they can be
14885 recognized easily because their |link| field is |void|. Arguments of type
14886 \&{suffix} and \&{text} are token lists without reference counts.
14888 @ After argument scanning is complete, the arguments are moved to the
14889 |param_stack|. (They can't be put on that stack any sooner, because
14890 the stack is growing and shrinking in unpredictable ways as more arguments
14891 are being acquired.) Then the macro body is fed to the scanner; i.e.,
14892 the replacement text of the macro is placed at the top of the \MP's
14893 input stack, so that |get_t_next| will proceed to read it next.
14895 @<Declare the procedure called |macro_call|@>=
14896 @<Declare the procedure called |print_macro_name|@>;
14897 @<Declare the procedure called |print_arg|@>;
14898 @<Declare the procedure called |scan_text_arg|@>;
14899 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14900 pointer macro_name) ;
14903 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14904 pointer macro_name) {
14905 /* invokes a user-defined control sequence */
14906 pointer r; /* current node in the macro's token list */
14907 pointer p,q; /* for list manipulation */
14908 integer n; /* the number of arguments */
14909 pointer tail = 0; /* tail of the argument list */
14910 pointer l_delim=0,r_delim=0; /* a delimiter pair */
14911 r=link(def_ref); add_mac_ref(def_ref);
14912 if ( arg_list==null ) {
14915 @<Determine the number |n| of arguments already supplied,
14916 and set |tail| to the tail of |arg_list|@>;
14918 if ( mp->internal[mp_tracing_macros]>0 ) {
14919 @<Show the text of the macro being expanded, and the existing arguments@>;
14921 @<Scan the remaining arguments, if any; set |r| to the first token
14922 of the replacement text@>;
14923 @<Feed the arguments and replacement text to the scanner@>;
14926 @ @<Show the text of the macro...@>=
14927 mp_begin_diagnostic(mp); mp_print_ln(mp);
14928 mp_print_macro_name(mp, arg_list,macro_name);
14929 if ( n==3 ) mp_print(mp, "@@#"); /* indicate a suffixed macro */
14930 mp_show_macro(mp, def_ref,null,100000);
14931 if ( arg_list!=null ) {
14935 mp_print_arg(mp, q,n,0);
14936 incr(n); p=link(p);
14939 mp_end_diagnostic(mp, false)
14942 @ @<Declare the procedure called |print_macro_name|@>=
14943 void mp_print_macro_name (MP mp,pointer a, pointer n);
14946 void mp_print_macro_name (MP mp,pointer a, pointer n) {
14947 pointer p,q; /* they traverse the first part of |a| */
14953 mp_print_text(info(info(link(a))));
14956 while ( link(q)!=null ) q=link(q);
14957 link(q)=info(link(a));
14958 mp_show_token_list(mp, p,null,1000,0);
14964 @ @<Declare the procedure called |print_arg|@>=
14965 void mp_print_arg (MP mp,pointer q, integer n, pointer b) ;
14968 void mp_print_arg (MP mp,pointer q, integer n, pointer b) {
14969 if ( link(q)==mp_void ) mp_print_nl(mp, "(EXPR");
14970 else if ( (b<text_base)&&(b!=text_macro) ) mp_print_nl(mp, "(SUFFIX");
14971 else mp_print_nl(mp, "(TEXT");
14972 mp_print_int(mp, n); mp_print(mp, ")<-");
14973 if ( link(q)==mp_void ) mp_print_exp(mp, q,1);
14974 else mp_show_token_list(mp, q,null,1000,0);
14977 @ @<Determine the number |n| of arguments already supplied...@>=
14979 n=1; tail=arg_list;
14980 while ( link(tail)!=null ) {
14981 incr(n); tail=link(tail);
14985 @ @<Scan the remaining arguments, if any; set |r|...@>=
14986 mp->cur_cmd=comma+1; /* anything |<>comma| will do */
14987 while ( info(r)>=expr_base ) {
14988 @<Scan the delimited argument represented by |info(r)|@>;
14991 if ( mp->cur_cmd==comma ) {
14992 print_err("Too many arguments to ");
14993 @.Too many arguments...@>
14994 mp_print_macro_name(mp, arg_list,macro_name); mp_print_char(mp, ';');
14995 mp_print_nl(mp, " Missing `"); mp_print_text(r_delim);
14997 mp_print(mp, "' has been inserted");
14998 help3("I'm going to assume that the comma I just read was a")
14999 ("right delimiter, and then I'll begin expanding the macro.")
15000 ("You might want to delete some tokens before continuing.");
15003 if ( info(r)!=general_macro ) {
15004 @<Scan undelimited argument(s)@>;
15008 @ At this point, the reader will find it advisable to review the explanation
15009 of token list format that was presented earlier, paying special attention to
15010 the conventions that apply only at the beginning of a macro's token list.
15012 On the other hand, the reader will have to take the expression-parsing
15013 aspects of the following program on faith; we will explain |cur_type|
15014 and |cur_exp| later. (Several things in this program depend on each other,
15015 and it's necessary to jump into the circle somewhere.)
15017 @<Scan the delimited argument represented by |info(r)|@>=
15018 if ( mp->cur_cmd!=comma ) {
15020 if ( mp->cur_cmd!=left_delimiter ) {
15021 print_err("Missing argument to ");
15022 @.Missing argument...@>
15023 mp_print_macro_name(mp, arg_list,macro_name);
15024 help3("That macro has more parameters than you thought.")
15025 ("I'll continue by pretending that each missing argument")
15026 ("is either zero or null.");
15027 if ( info(r)>=suffix_base ) {
15028 mp->cur_exp=null; mp->cur_type=mp_token_list;
15030 mp->cur_exp=0; mp->cur_type=mp_known;
15032 mp_back_error(mp); mp->cur_cmd=right_delimiter;
15035 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
15037 @<Scan the argument represented by |info(r)|@>;
15038 if ( mp->cur_cmd!=comma )
15039 @<Check that the proper right delimiter was present@>;
15041 @<Append the current expression to |arg_list|@>
15043 @ @<Check that the proper right delim...@>=
15044 if ( (mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
15045 if ( info(link(r))>=expr_base ) {
15046 mp_missing_err(mp, ",");
15048 help3("I've finished reading a macro argument and am about to")
15049 ("read another; the arguments weren't delimited correctly.")
15050 ("You might want to delete some tokens before continuing.");
15051 mp_back_error(mp); mp->cur_cmd=comma;
15053 mp_missing_err(mp, str(text(r_delim)));
15055 help2("I've gotten to the end of the macro parameter list.")
15056 ("You might want to delete some tokens before continuing.");
15061 @ A \&{suffix} or \&{text} parameter will be have been scanned as
15062 a token list pointed to by |cur_exp|, in which case we will have
15063 |cur_type=token_list|.
15065 @<Append the current expression to |arg_list|@>=
15067 p=mp_get_avail(mp);
15068 if ( mp->cur_type==mp_token_list ) info(p)=mp->cur_exp;
15069 else info(p)=mp_stash_cur_exp(mp);
15070 if ( mp->internal[mp_tracing_macros]>0 ) {
15071 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,info(r));
15072 mp_end_diagnostic(mp, false);
15074 if ( arg_list==null ) arg_list=p;
15079 @ @<Scan the argument represented by |info(r)|@>=
15080 if ( info(r)>=text_base ) {
15081 mp_scan_text_arg(mp, l_delim,r_delim);
15084 if ( info(r)>=suffix_base ) mp_scan_suffix(mp);
15085 else mp_scan_expression(mp);
15088 @ The parameters to |scan_text_arg| are either a pair of delimiters
15089 or zero; the latter case is for undelimited text arguments, which
15090 end with the first semicolon or \&{endgroup} or \&{end} that is not
15091 contained in a group.
15093 @<Declare the procedure called |scan_text_arg|@>=
15094 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) ;
15097 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) {
15098 integer balance; /* excess of |l_delim| over |r_delim| */
15099 pointer p; /* list tail */
15100 mp->warning_info=l_delim; mp->scanner_status=absorbing;
15101 p=hold_head; balance=1; link(hold_head)=null;
15104 if ( l_delim==0 ) {
15105 @<Adjust the balance for an undelimited argument; |break| if done@>;
15107 @<Adjust the balance for a delimited argument; |break| if done@>;
15109 link(p)=mp_cur_tok(mp); p=link(p);
15111 mp->cur_exp=link(hold_head); mp->cur_type=mp_token_list;
15112 mp->scanner_status=normal;
15115 @ @<Adjust the balance for a delimited argument...@>=
15116 if ( mp->cur_cmd==right_delimiter ) {
15117 if ( mp->cur_mod==l_delim ) {
15119 if ( balance==0 ) break;
15121 } else if ( mp->cur_cmd==left_delimiter ) {
15122 if ( mp->cur_mod==r_delim ) incr(balance);
15125 @ @<Adjust the balance for an undelimited...@>=
15126 if ( end_of_statement ) { /* |cur_cmd=semicolon|, |end_group|, or |stop| */
15127 if ( balance==1 ) { break; }
15128 else { if ( mp->cur_cmd==end_group ) decr(balance); }
15129 } else if ( mp->cur_cmd==begin_group ) {
15133 @ @<Scan undelimited argument(s)@>=
15135 if ( info(r)<text_macro ) {
15137 if ( info(r)!=suffix_macro ) {
15138 if ( (mp->cur_cmd==equals)||(mp->cur_cmd==assignment) ) mp_get_x_next(mp);
15142 case primary_macro:mp_scan_primary(mp); break;
15143 case secondary_macro:mp_scan_secondary(mp); break;
15144 case tertiary_macro:mp_scan_tertiary(mp); break;
15145 case expr_macro:mp_scan_expression(mp); break;
15147 @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>;
15150 @<Scan a suffix with optional delimiters@>;
15152 case text_macro:mp_scan_text_arg(mp, 0,0); break;
15153 } /* there are no other cases */
15155 @<Append the current expression to |arg_list|@>;
15158 @ @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>=
15160 mp_scan_expression(mp); p=mp_get_avail(mp); info(p)=mp_stash_cur_exp(mp);
15161 if ( mp->internal[mp_tracing_macros]>0 ) {
15162 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,0);
15163 mp_end_diagnostic(mp, false);
15165 if ( arg_list==null ) arg_list=p; else link(tail)=p;
15167 if ( mp->cur_cmd!=of_token ) {
15168 mp_missing_err(mp, "of"); mp_print(mp, " for ");
15170 mp_print_macro_name(mp, arg_list,macro_name);
15171 help1("I've got the first argument; will look now for the other.");
15174 mp_get_x_next(mp); mp_scan_primary(mp);
15177 @ @<Scan a suffix with optional delimiters@>=
15179 if ( mp->cur_cmd!=left_delimiter ) {
15182 l_delim=mp->cur_sym; r_delim=mp->cur_mod; mp_get_x_next(mp);
15184 mp_scan_suffix(mp);
15185 if ( l_delim!=null ) {
15186 if ((mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
15187 mp_missing_err(mp, str(text(r_delim)));
15189 help2("I've gotten to the end of the macro parameter list.")
15190 ("You might want to delete some tokens before continuing.");
15197 @ Before we put a new token list on the input stack, it is wise to clean off
15198 all token lists that have recently been depleted. Then a user macro that ends
15199 with a call to itself will not require unbounded stack space.
15201 @<Feed the arguments and replacement text to the scanner@>=
15202 while ( token_state &&(loc==null) ) mp_end_token_list(mp); /* conserve stack space */
15203 if ( mp->param_ptr+n>mp->max_param_stack ) {
15204 mp->max_param_stack=mp->param_ptr+n;
15205 if ( mp->max_param_stack>mp->param_size )
15206 mp_overflow(mp, "parameter stack size",mp->param_size);
15207 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15209 mp_begin_token_list(mp, def_ref,macro); name=macro_name; loc=r;
15213 mp->param_stack[mp->param_ptr]=info(p); incr(mp->param_ptr); p=link(p);
15215 mp_flush_list(mp, arg_list);
15218 @ It's sometimes necessary to put a single argument onto |param_stack|.
15219 The |stack_argument| subroutine does this.
15221 @c void mp_stack_argument (MP mp,pointer p) {
15222 if ( mp->param_ptr==mp->max_param_stack ) {
15223 incr(mp->max_param_stack);
15224 if ( mp->max_param_stack>mp->param_size )
15225 mp_overflow(mp, "parameter stack size",mp->param_size);
15226 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15228 mp->param_stack[mp->param_ptr]=p; incr(mp->param_ptr);
15231 @* \[33] Conditional processing.
15232 Let's consider now the way \&{if} commands are handled.
15234 Conditions can be inside conditions, and this nesting has a stack
15235 that is independent of other stacks.
15236 Four global variables represent the top of the condition stack:
15237 |cond_ptr| points to pushed-down entries, if~any; |cur_if| tells whether
15238 we are processing \&{if} or \&{elseif}; |if_limit| specifies
15239 the largest code of a |fi_or_else| command that is syntactically legal;
15240 and |if_line| is the line number at which the current conditional began.
15242 If no conditions are currently in progress, the condition stack has the
15243 special state |cond_ptr=null|, |if_limit=normal|, |cur_if=0|, |if_line=0|.
15244 Otherwise |cond_ptr| points to a two-word node; the |type|, |name_type|, and
15245 |link| fields of the first word contain |if_limit|, |cur_if|, and
15246 |cond_ptr| at the next level, and the second word contains the
15247 corresponding |if_line|.
15249 @d if_node_size 2 /* number of words in stack entry for conditionals */
15250 @d if_line_field(A) mp->mem[(A)+1].cint
15251 @d if_code 1 /* code for \&{if} being evaluated */
15252 @d fi_code 2 /* code for \&{fi} */
15253 @d else_code 3 /* code for \&{else} */
15254 @d else_if_code 4 /* code for \&{elseif} */
15257 pointer cond_ptr; /* top of the condition stack */
15258 integer if_limit; /* upper bound on |fi_or_else| codes */
15259 small_number cur_if; /* type of conditional being worked on */
15260 integer if_line; /* line where that conditional began */
15263 mp->cond_ptr=null; mp->if_limit=normal; mp->cur_if=0; mp->if_line=0;
15266 mp_primitive(mp, "if",if_test,if_code);
15267 @:if_}{\&{if} primitive@>
15268 mp_primitive(mp, "fi",fi_or_else,fi_code); mp->eqtb[frozen_fi]=mp->eqtb[mp->cur_sym];
15269 @:fi_}{\&{fi} primitive@>
15270 mp_primitive(mp, "else",fi_or_else,else_code);
15271 @:else_}{\&{else} primitive@>
15272 mp_primitive(mp, "elseif",fi_or_else,else_if_code);
15273 @:else_if_}{\&{elseif} primitive@>
15275 @ @<Cases of |print_cmd_mod|...@>=
15279 case if_code:mp_print(mp, "if"); break;
15280 case fi_code:mp_print(mp, "fi"); break;
15281 case else_code:mp_print(mp, "else"); break;
15282 default: mp_print(mp, "elseif"); break;
15286 @ Here is a procedure that ignores text until coming to an \&{elseif},
15287 \&{else}, or \&{fi} at level zero of $\&{if}\ldots\&{fi}$
15288 nesting. After it has acted, |cur_mod| will indicate the token that
15291 \MP's smallest two command codes are |if_test| and |fi_or_else|; this
15292 makes the skipping process a bit simpler.
15295 void mp_pass_text (MP mp) {
15297 mp->scanner_status=skipping;
15298 mp->warning_info=mp_true_line(mp);
15301 if ( mp->cur_cmd<=fi_or_else ) {
15302 if ( mp->cur_cmd<fi_or_else ) {
15306 if ( mp->cur_mod==fi_code ) decr(l);
15309 @<Decrease the string reference count,
15310 if the current token is a string@>;
15313 mp->scanner_status=normal;
15316 @ @<Decrease the string reference count...@>=
15317 if ( mp->cur_cmd==string_token ) { delete_str_ref(mp->cur_mod); }
15319 @ When we begin to process a new \&{if}, we set |if_limit:=if_code|; then
15320 if \&{elseif} or \&{else} or \&{fi} occurs before the current \&{if}
15321 condition has been evaluated, a colon will be inserted.
15322 A construction like `\.{if fi}' would otherwise get \MP\ confused.
15324 @<Push the condition stack@>=
15325 { p=mp_get_node(mp, if_node_size); link(p)=mp->cond_ptr; type(p)=mp->if_limit;
15326 name_type(p)=mp->cur_if; if_line_field(p)=mp->if_line;
15327 mp->cond_ptr=p; mp->if_limit=if_code; mp->if_line=mp_true_line(mp);
15328 mp->cur_if=if_code;
15331 @ @<Pop the condition stack@>=
15332 { p=mp->cond_ptr; mp->if_line=if_line_field(p);
15333 mp->cur_if=name_type(p); mp->if_limit=type(p); mp->cond_ptr=link(p);
15334 mp_free_node(mp, p,if_node_size);
15337 @ Here's a procedure that changes the |if_limit| code corresponding to
15338 a given value of |cond_ptr|.
15340 @c void mp_change_if_limit (MP mp,small_number l, pointer p) {
15342 if ( p==mp->cond_ptr ) {
15343 mp->if_limit=l; /* that's the easy case */
15347 if ( q==null ) mp_confusion(mp, "if");
15348 @:this can't happen if}{\quad if@>
15349 if ( link(q)==p ) {
15357 @ The user is supposed to put colons into the proper parts of conditional
15358 statements. Therefore, \MP\ has to check for their presence.
15361 void mp_check_colon (MP mp) {
15362 if ( mp->cur_cmd!=colon ) {
15363 mp_missing_err(mp, ":");
15365 help2("There should've been a colon after the condition.")
15366 ("I shall pretend that one was there.");;
15371 @ A condition is started when the |get_x_next| procedure encounters
15372 an |if_test| command; in that case |get_x_next| calls |conditional|,
15373 which is a recursive procedure.
15376 @c void mp_conditional (MP mp) {
15377 pointer save_cond_ptr; /* |cond_ptr| corresponding to this conditional */
15378 int new_if_limit; /* future value of |if_limit| */
15379 pointer p; /* temporary register */
15380 @<Push the condition stack@>;
15381 save_cond_ptr=mp->cond_ptr;
15383 mp_get_boolean(mp); new_if_limit=else_if_code;
15384 if ( mp->internal[mp_tracing_commands]>unity ) {
15385 @<Display the boolean value of |cur_exp|@>;
15388 mp_check_colon(mp);
15389 if ( mp->cur_exp==true_code ) {
15390 mp_change_if_limit(mp, new_if_limit,save_cond_ptr);
15391 return; /* wait for \&{elseif}, \&{else}, or \&{fi} */
15393 @<Skip to \&{elseif} or \&{else} or \&{fi}, then |goto done|@>;
15395 mp->cur_if=mp->cur_mod; mp->if_line=mp_true_line(mp);
15396 if ( mp->cur_mod==fi_code ) {
15397 @<Pop the condition stack@>
15398 } else if ( mp->cur_mod==else_if_code ) {
15401 mp->cur_exp=true_code; new_if_limit=fi_code; mp_get_x_next(mp);
15406 @ In a construction like `\&{if} \&{if} \&{true}: $0=1$: \\{foo}
15407 \&{else}: \\{bar} \&{fi}', the first \&{else}
15408 that we come to after learning that the \&{if} is false is not the
15409 \&{else} we're looking for. Hence the following curious logic is needed.
15411 @<Skip to \&{elseif}...@>=
15414 if ( mp->cond_ptr==save_cond_ptr ) goto DONE;
15415 else if ( mp->cur_mod==fi_code ) @<Pop the condition stack@>;
15419 @ @<Display the boolean value...@>=
15420 { mp_begin_diagnostic(mp);
15421 if ( mp->cur_exp==true_code ) mp_print(mp, "{true}");
15422 else mp_print(mp, "{false}");
15423 mp_end_diagnostic(mp, false);
15426 @ The processing of conditionals is complete except for the following
15427 code, which is actually part of |get_x_next|. It comes into play when
15428 \&{elseif}, \&{else}, or \&{fi} is scanned.
15430 @<Terminate the current conditional and skip to \&{fi}@>=
15431 if ( mp->cur_mod>mp->if_limit ) {
15432 if ( mp->if_limit==if_code ) { /* condition not yet evaluated */
15433 mp_missing_err(mp, ":");
15435 mp_back_input(mp); mp->cur_sym=frozen_colon; mp_ins_error(mp);
15437 print_err("Extra "); mp_print_cmd_mod(mp, fi_or_else,mp->cur_mod);
15441 help1("I'm ignoring this; it doesn't match any if.");
15445 while ( mp->cur_mod!=fi_code ) mp_pass_text(mp); /* skip to \&{fi} */
15446 @<Pop the condition stack@>;
15449 @* \[34] Iterations.
15450 To bring our treatment of |get_x_next| to a close, we need to consider what
15451 \MP\ does when it sees \&{for}, \&{forsuffixes}, and \&{forever}.
15453 There's a global variable |loop_ptr| that keeps track of the \&{for} loops
15454 that are currently active. If |loop_ptr=null|, no loops are in progress;
15455 otherwise |info(loop_ptr)| points to the iterative text of the current
15456 (innermost) loop, and |link(loop_ptr)| points to the data for any other
15457 loops that enclose the current one.
15459 A loop-control node also has two other fields, called |loop_type| and
15460 |loop_list|, whose contents depend on the type of loop:
15462 \yskip\indent|loop_type(loop_ptr)=null| means that |loop_list(loop_ptr)|
15463 points to a list of one-word nodes whose |info| fields point to the
15464 remaining argument values of a suffix list and expression list.
15466 \yskip\indent|loop_type(loop_ptr)=mp_void| means that the current loop is
15469 \yskip\indent|loop_type(loop_ptr)=progression_flag| means that
15470 |p=loop_list(loop_ptr)| points to a ``progression node'' and |value(p)|,
15471 |step_size(p)|, and |final_value(p)| contain the data for an arithmetic
15474 \yskip\indent|loop_type(loop_ptr)=p>mp_void| means that |p| points to an edge
15475 header and |loop_list(loop_ptr)| points into the graphical object list for
15478 \yskip\noindent In the case of a progression node, the first word is not used
15479 because the link field of words in the dynamic memory area cannot be arbitrary.
15481 @d loop_list_loc(A) ((A)+1) /* where the |loop_list| field resides */
15482 @d loop_type(A) info(loop_list_loc((A))) /* the type of \&{for} loop */
15483 @d loop_list(A) link(loop_list_loc((A))) /* the remaining list elements */
15484 @d loop_node_size 2 /* the number of words in a loop control node */
15485 @d progression_node_size 4 /* the number of words in a progression node */
15486 @d step_size(A) mp->mem[(A)+2].sc /* the step size in an arithmetic progression */
15487 @d final_value(A) mp->mem[(A)+3].sc /* the final value in an arithmetic progression */
15488 @d progression_flag (null+2)
15489 /* |loop_type| value when |loop_list| points to a progression node */
15492 pointer loop_ptr; /* top of the loop-control-node stack */
15497 @ If the expressions that define an arithmetic progression in
15498 a \&{for} loop don't have known numeric values, the |bad_for|
15499 subroutine screams at the user.
15501 @c void mp_bad_for (MP mp, char * s) {
15502 mp_disp_err(mp, null,"Improper "); /* show the bad expression above the message */
15503 @.Improper...replaced by 0@>
15504 mp_print(mp, s); mp_print(mp, " has been replaced by 0");
15505 help4("When you say `for x=a step b until c',")
15506 ("the initial value `a' and the step size `b'")
15507 ("and the final value `c' must have known numeric values.")
15508 ("I'm zeroing this one. Proceed, with fingers crossed.");
15509 mp_put_get_flush_error(mp, 0);
15512 @ Here's what \MP\ does when \&{for}, \&{forsuffixes}, or \&{forever}
15513 has just been scanned. (This code requires slight familiarity with
15514 expression-parsing routines that we have not yet discussed; but it seems
15515 to belong in the present part of the program, even though the original author
15516 didn't write it until later. The reader may wish to come back to it.)
15518 @c void mp_begin_iteration (MP mp) {
15519 halfword m; /* |expr_base| (\&{for}) or |suffix_base| (\&{forsuffixes}) */
15520 halfword n; /* hash address of the current symbol */
15521 pointer s; /* the new loop-control node */
15522 pointer p; /* substitution list for |scan_toks| */
15523 pointer q; /* link manipulation register */
15524 pointer pp; /* a new progression node */
15525 m=mp->cur_mod; n=mp->cur_sym; s=mp_get_node(mp, loop_node_size);
15526 if ( m==start_forever ){
15527 loop_type(s)=mp_void; p=null; mp_get_x_next(mp);
15529 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
15530 info(p)=mp->cur_sym; value(p)=m;
15532 if ( mp->cur_cmd==within_token ) {
15533 @<Set up a picture iteration@>;
15535 @<Check for the |"="| or |":="| in a loop header@>;
15536 @<Scan the values to be used in the loop@>;
15539 @<Check for the presence of a colon@>;
15540 @<Scan the loop text and put it on the loop control stack@>;
15541 mp_resume_iteration(mp);
15544 @ @<Check for the |"="| or |":="| in a loop header@>=
15545 if ( (mp->cur_cmd!=equals)&&(mp->cur_cmd!=assignment) ) {
15546 mp_missing_err(mp, "=");
15548 help3("The next thing in this loop should have been `=' or `:='.")
15549 ("But don't worry; I'll pretend that an equals sign")
15550 ("was present, and I'll look for the values next.");
15554 @ @<Check for the presence of a colon@>=
15555 if ( mp->cur_cmd!=colon ) {
15556 mp_missing_err(mp, ":");
15558 help3("The next thing in this loop should have been a `:'.")
15559 ("So I'll pretend that a colon was present;")
15560 ("everything from here to `endfor' will be iterated.");
15564 @ We append a special |frozen_repeat_loop| token in place of the
15565 `\&{endfor}' at the end of the loop. This will come through \MP's scanner
15566 at the proper time to cause the loop to be repeated.
15568 (If the user tries some shenanigan like `\&{for} $\ldots$ \&{let} \&{endfor}',
15569 he will be foiled by the |get_symbol| routine, which keeps frozen
15570 tokens unchanged. Furthermore the |frozen_repeat_loop| is an \&{outer}
15571 token, so it won't be lost accidentally.)
15573 @ @<Scan the loop text...@>=
15574 q=mp_get_avail(mp); info(q)=frozen_repeat_loop;
15575 mp->scanner_status=loop_defining; mp->warning_info=n;
15576 info(s)=mp_scan_toks(mp, iteration,p,q,0); mp->scanner_status=normal;
15577 link(s)=mp->loop_ptr; mp->loop_ptr=s
15579 @ @<Initialize table...@>=
15580 eq_type(frozen_repeat_loop)=repeat_loop+outer_tag;
15581 text(frozen_repeat_loop)=intern(" ENDFOR");
15583 @ The loop text is inserted into \MP's scanning apparatus by the
15584 |resume_iteration| routine.
15586 @c void mp_resume_iteration (MP mp) {
15587 pointer p,q; /* link registers */
15588 p=loop_type(mp->loop_ptr);
15589 if ( p==progression_flag ) {
15590 p=loop_list(mp->loop_ptr); /* now |p| points to a progression node */
15591 mp->cur_exp=value(p);
15592 if ( @<The arithmetic progression has ended@> ) {
15593 mp_stop_iteration(mp);
15596 mp->cur_type=mp_known; q=mp_stash_cur_exp(mp); /* make |q| an \&{expr} argument */
15597 value(p)=mp->cur_exp+step_size(p); /* set |value(p)| for the next iteration */
15598 } else if ( p==null ) {
15599 p=loop_list(mp->loop_ptr);
15601 mp_stop_iteration(mp);
15604 loop_list(mp->loop_ptr)=link(p); q=info(p); free_avail(p);
15605 } else if ( p==mp_void ) {
15606 mp_begin_token_list(mp, info(mp->loop_ptr),forever_text); return;
15608 @<Make |q| a capsule containing the next picture component from
15609 |loop_list(loop_ptr)| or |goto not_found|@>;
15611 mp_begin_token_list(mp, info(mp->loop_ptr),loop_text);
15612 mp_stack_argument(mp, q);
15613 if ( mp->internal[mp_tracing_commands]>unity ) {
15614 @<Trace the start of a loop@>;
15618 mp_stop_iteration(mp);
15621 @ @<The arithmetic progression has ended@>=
15622 ((step_size(p)>0)&&(mp->cur_exp>final_value(p)))||
15623 ((step_size(p)<0)&&(mp->cur_exp<final_value(p)))
15625 @ @<Trace the start of a loop@>=
15627 mp_begin_diagnostic(mp); mp_print_nl(mp, "{loop value=");
15629 if ( (q!=null)&&(link(q)==mp_void) ) mp_print_exp(mp, q,1);
15630 else mp_show_token_list(mp, q,null,50,0);
15631 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
15634 @ @<Make |q| a capsule containing the next picture component from...@>=
15635 { q=loop_list(mp->loop_ptr);
15636 if ( q==null ) goto NOT_FOUND;
15637 skip_component(q) goto NOT_FOUND;
15638 mp->cur_exp=mp_copy_objects(mp, loop_list(mp->loop_ptr),q);
15639 mp_init_bbox(mp, mp->cur_exp);
15640 mp->cur_type=mp_picture_type;
15641 loop_list(mp->loop_ptr)=q;
15642 q=mp_stash_cur_exp(mp);
15645 @ A level of loop control disappears when |resume_iteration| has decided
15646 not to resume, or when an \&{exitif} construction has removed the loop text
15647 from the input stack.
15649 @c void mp_stop_iteration (MP mp) {
15650 pointer p,q; /* the usual */
15651 p=loop_type(mp->loop_ptr);
15652 if ( p==progression_flag ) {
15653 mp_free_node(mp, loop_list(mp->loop_ptr),progression_node_size);
15654 } else if ( p==null ){
15655 q=loop_list(mp->loop_ptr);
15656 while ( q!=null ) {
15659 if ( link(p)==mp_void ) { /* it's an \&{expr} parameter */
15660 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
15662 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
15665 p=q; q=link(q); free_avail(p);
15667 } else if ( p>progression_flag ) {
15668 delete_edge_ref(p);
15670 p=mp->loop_ptr; mp->loop_ptr=link(p); mp_flush_token_list(mp, info(p));
15671 mp_free_node(mp, p,loop_node_size);
15674 @ Now that we know all about loop control, we can finish up
15675 the missing portion of |begin_iteration| and we'll be done.
15677 The following code is performed after the `\.=' has been scanned in
15678 a \&{for} construction (if |m=expr_base|) or a \&{forsuffixes} construction
15679 (if |m=suffix_base|).
15681 @<Scan the values to be used in the loop@>=
15682 loop_type(s)=null; q=loop_list_loc(s); link(q)=null; /* |link(q)=loop_list(s)| */
15685 if ( m!=expr_base ) {
15686 mp_scan_suffix(mp);
15688 if ( mp->cur_cmd>=colon ) if ( mp->cur_cmd<=comma )
15690 mp_scan_expression(mp);
15691 if ( mp->cur_cmd==step_token ) if ( q==loop_list_loc(s) ) {
15692 @<Prepare for step-until construction and |break|@>;
15694 mp->cur_exp=mp_stash_cur_exp(mp);
15696 link(q)=mp_get_avail(mp); q=link(q);
15697 info(q)=mp->cur_exp; mp->cur_type=mp_vacuous;
15700 } while (mp->cur_cmd==comma)
15702 @ @<Prepare for step-until construction and |break|@>=
15704 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "initial value");
15705 pp=mp_get_node(mp, progression_node_size); value(pp)=mp->cur_exp;
15706 mp_get_x_next(mp); mp_scan_expression(mp);
15707 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "step size");
15708 step_size(pp)=mp->cur_exp;
15709 if ( mp->cur_cmd!=until_token ) {
15710 mp_missing_err(mp, "until");
15711 @.Missing `until'@>
15712 help2("I assume you meant to say `until' after `step'.")
15713 ("So I'll look for the final value and colon next.");
15716 mp_get_x_next(mp); mp_scan_expression(mp);
15717 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "final value");
15718 final_value(pp)=mp->cur_exp; loop_list(s)=pp;
15719 loop_type(s)=progression_flag;
15723 @ The last case is when we have just seen ``\&{within}'', and we need to
15724 parse a picture expression and prepare to iterate over it.
15726 @<Set up a picture iteration@>=
15727 { mp_get_x_next(mp);
15728 mp_scan_expression(mp);
15729 @<Make sure the current expression is a known picture@>;
15730 loop_type(s)=mp->cur_exp; mp->cur_type=mp_vacuous;
15731 q=link(dummy_loc(mp->cur_exp));
15733 if ( is_start_or_stop(q) )
15734 if ( mp_skip_1component(mp, q)==null ) q=link(q);
15738 @ @<Make sure the current expression is a known picture@>=
15739 if ( mp->cur_type!=mp_picture_type ) {
15740 mp_disp_err(mp, null,"Improper iteration spec has been replaced by nullpicture");
15741 help1("When you say `for x in p', p must be a known picture.");
15742 mp_put_get_flush_error(mp, mp_get_node(mp, edge_header_size));
15743 mp_init_edges(mp, mp->cur_exp); mp->cur_type=mp_picture_type;
15746 @* \[35] File names.
15747 It's time now to fret about file names. Besides the fact that different
15748 operating systems treat files in different ways, we must cope with the
15749 fact that completely different naming conventions are used by different
15750 groups of people. The following programs show what is required for one
15751 particular operating system; similar routines for other systems are not
15752 difficult to devise.
15753 @^system dependencies@>
15755 \MP\ assumes that a file name has three parts: the name proper; its
15756 ``extension''; and a ``file area'' where it is found in an external file
15757 system. The extension of an input file is assumed to be
15758 `\.{.mp}' unless otherwise specified; it is `\.{.log}' on the
15759 transcript file that records each run of \MP; it is `\.{.tfm}' on the font
15760 metric files that describe characters in any fonts created by \MP; it is
15761 `\.{.ps}' or `.{\it nnn}' for some number {\it nnn} on the \ps\ output files;
15762 and it is `\.{.mem}' on the mem files written by \.{INIMP} to initialize \MP.
15763 The file area can be arbitrary on input files, but files are usually
15764 output to the user's current area. If an input file cannot be
15765 found on the specified area, \MP\ will look for it on a special system
15766 area; this special area is intended for commonly used input files.
15768 Simple uses of \MP\ refer only to file names that have no explicit
15769 extension or area. For example, a person usually says `\.{input} \.{cmr10}'
15770 instead of `\.{input} \.{cmr10.new}'. Simple file
15771 names are best, because they make the \MP\ source files portable;
15772 whenever a file name consists entirely of letters and digits, it should be
15773 treated in the same way by all implementations of \MP. However, users
15774 need the ability to refer to other files in their environment, especially
15775 when responding to error messages concerning unopenable files; therefore
15776 we want to let them use the syntax that appears in their favorite
15779 @ \MP\ uses the same conventions that have proved to be satisfactory for
15780 \TeX\ and \MF. In order to isolate the system-dependent aspects of file names,
15781 @^system dependencies@>
15782 the system-independent parts of \MP\ are expressed in terms
15783 of three system-dependent
15784 procedures called |begin_name|, |more_name|, and |end_name|. In
15785 essence, if the user-specified characters of the file name are $c_1\ldots c_n$,
15786 the system-independent driver program does the operations
15787 $$|begin_name|;\,|more_name|(c_1);\,\ldots\,;|more_name|(c_n);
15789 These three procedures communicate with each other via global variables.
15790 Afterwards the file name will appear in the string pool as three strings
15791 called |cur_name|\penalty10000\hskip-.05em,
15792 |cur_area|, and |cur_ext|; the latter two are null (i.e.,
15793 |""|), unless they were explicitly specified by the user.
15795 Actually the situation is slightly more complicated, because \MP\ needs
15796 to know when the file name ends. The |more_name| routine is a function
15797 (with side effects) that returns |true| on the calls |more_name|$(c_1)$,
15798 \dots, |more_name|$(c_{n-1})$. The final call |more_name|$(c_n)$
15799 returns |false|; or, it returns |true| and $c_n$ is the last character
15800 on the current input line. In other words,
15801 |more_name| is supposed to return |true| unless it is sure that the
15802 file name has been completely scanned; and |end_name| is supposed to be able
15803 to finish the assembly of |cur_name|, |cur_area|, and |cur_ext| regardless of
15804 whether $|more_name|(c_n)$ returned |true| or |false|.
15807 char * cur_name; /* name of file just scanned */
15808 char * cur_area; /* file area just scanned, or \.{""} */
15809 char * cur_ext; /* file extension just scanned, or \.{""} */
15811 @ It is easier to maintain reference counts if we assign initial values.
15814 mp->cur_name=xstrdup("");
15815 mp->cur_area=xstrdup("");
15816 mp->cur_ext=xstrdup("");
15818 @ @<Dealloc variables@>=
15819 xfree(mp->cur_area);
15820 xfree(mp->cur_name);
15821 xfree(mp->cur_ext);
15823 @ The file names we shall deal with for illustrative purposes have the
15824 following structure: If the name contains `\.>' or `\.:', the file area
15825 consists of all characters up to and including the final such character;
15826 otherwise the file area is null. If the remaining file name contains
15827 `\..', the file extension consists of all such characters from the first
15828 remaining `\..' to the end, otherwise the file extension is null.
15829 @^system dependencies@>
15831 We can scan such file names easily by using two global variables that keep track
15832 of the occurrences of area and extension delimiters. Note that these variables
15833 cannot be of type |pool_pointer| because a string pool compaction could occur
15834 while scanning a file name.
15837 integer area_delimiter;
15838 /* most recent `\.>' or `\.:' relative to |str_start[str_ptr]| */
15839 integer ext_delimiter; /* the relevant `\..', if any */
15841 @ Input files that can't be found in the user's area may appear in standard
15842 system areas called |MP_area| and |MF_area|. (The latter is used when the file
15843 extension is |".mf"|.) The standard system area for font metric files
15844 to be read is |MP_font_area|.
15845 This system area name will, of course, vary from place to place.
15846 @^system dependencies@>
15848 @d MP_area "MPinputs:"
15850 @d MF_area "MFinputs:"
15855 @ Here now is the first of the system-dependent routines for file name scanning.
15856 @^system dependencies@>
15858 @<Declare subroutines for parsing file names@>=
15859 void mp_begin_name (MP mp) {
15860 xfree(mp->cur_name);
15861 xfree(mp->cur_area);
15862 xfree(mp->cur_ext);
15863 mp->area_delimiter=-1;
15864 mp->ext_delimiter=-1;
15867 @ And here's the second.
15868 @^system dependencies@>
15870 @<Declare subroutines for parsing file names@>=
15871 boolean mp_more_name (MP mp, ASCII_code c) {
15875 if ( (c=='>')||(c==':') ) {
15876 mp->area_delimiter=mp->pool_ptr;
15877 mp->ext_delimiter=-1;
15878 } else if ( (c=='.')&&(mp->ext_delimiter<0) ) {
15879 mp->ext_delimiter=mp->pool_ptr;
15881 str_room(1); append_char(c); /* contribute |c| to the current string */
15887 @^system dependencies@>
15889 @d copy_pool_segment(A,B,C) {
15890 A = xmalloc(C+1,sizeof(char));
15891 strncpy(A,(char *)(mp->str_pool+B),C);
15894 @<Declare subroutines for parsing file names@>=
15895 void mp_end_name (MP mp) {
15896 pool_pointer s; /* length of area, name, and extension */
15899 s = mp->str_start[mp->str_ptr];
15900 if ( mp->area_delimiter<0 ) {
15901 mp->cur_area=xstrdup("");
15903 len = mp->area_delimiter-s;
15904 copy_pool_segment(mp->cur_area,s,len);
15907 if ( mp->ext_delimiter<0 ) {
15908 mp->cur_ext=xstrdup("");
15909 len = mp->pool_ptr-s;
15911 copy_pool_segment(mp->cur_ext,mp->ext_delimiter,(mp->pool_ptr-mp->ext_delimiter));
15912 len = mp->ext_delimiter-s;
15914 copy_pool_segment(mp->cur_name,s,len);
15915 mp->pool_ptr=s; /* don't need this partial string */
15918 @ Conversely, here is a routine that takes three strings and prints a file
15919 name that might have produced them. (The routine is system dependent, because
15920 some operating systems put the file area last instead of first.)
15921 @^system dependencies@>
15923 @<Basic printing...@>=
15924 void mp_print_file_name (MP mp, char * n, char * a, char * e) {
15925 mp_print(mp, a); mp_print(mp, n); mp_print(mp, e);
15928 @ Another system-dependent routine is needed to convert three internal
15930 to the |name_of_file| value that is used to open files. The present code
15931 allows both lowercase and uppercase letters in the file name.
15932 @^system dependencies@>
15934 @d append_to_name(A) { c=(A);
15935 if ( k<file_name_size ) {
15936 mp->name_of_file[k]=xchr(c);
15941 @<Declare subroutines for parsing file names@>=
15942 void mp_pack_file_name (MP mp, char *n, char *a, char *e) {
15943 integer k; /* number of positions filled in |name_of_file| */
15944 ASCII_code c; /* character being packed */
15945 char *j; /* a character index */
15949 for (j=a;*j;j++) { append_to_name(*j); }
15951 for (j=n;*j;j++) { append_to_name(*j); }
15953 for (j=e;*j;j++) { append_to_name(*j); }
15955 mp->name_of_file[k]=0;
15959 @ @<Internal library declarations@>=
15960 void mp_pack_file_name (MP mp, char *n, char *a, char *e) ;
15962 @ A messier routine is also needed, since mem file names must be scanned
15963 before \MP's string mechanism has been initialized. We shall use the
15964 global variable |MP_mem_default| to supply the text for default system areas
15965 and extensions related to mem files.
15966 @^system dependencies@>
15968 @d mem_default_length 9 /* length of the |MP_mem_default| string */
15969 @d mem_ext_length 4 /* length of its `\.{.mem}' part */
15970 @d mem_extension ".mem" /* the extension, as a \.{WEB} constant */
15973 char *MP_mem_default;
15974 char *mem_name; /* for commandline */
15976 @ @<Option variables@>=
15977 char *mem_name; /* for commandline */
15979 @ @<Allocate or initialize ...@>=
15980 mp->MP_mem_default = xstrdup("plain.mem");
15981 mp->mem_name = xstrdup(opt->mem_name);
15983 @^system dependencies@>
15985 @ @<Dealloc variables@>=
15986 xfree(mp->MP_mem_default);
15987 xfree(mp->mem_name);
15989 @ @<Check the ``constant'' values for consistency@>=
15990 if ( mem_default_length>file_name_size ) mp->bad=20;
15992 @ Here is the messy routine that was just mentioned. It sets |name_of_file|
15993 from the first |n| characters of |MP_mem_default|, followed by
15994 |buffer[a..b-1]|, followed by the last |mem_ext_length| characters of
15997 We dare not give error messages here, since \MP\ calls this routine before
15998 the |error| routine is ready to roll. Instead, we simply drop excess characters,
15999 since the error will be detected in another way when a strange file name
16001 @^system dependencies@>
16003 @c void mp_pack_buffered_name (MP mp,small_number n, integer a,
16005 integer k; /* number of positions filled in |name_of_file| */
16006 ASCII_code c; /* character being packed */
16007 integer j; /* index into |buffer| or |MP_mem_default| */
16008 if ( n+b-a+1+mem_ext_length>file_name_size )
16009 b=a+file_name_size-n-1-mem_ext_length;
16011 for (j=0;j<n;j++) {
16012 append_to_name(xord((int)mp->MP_mem_default[j]));
16014 for (j=a;j<b;j++) {
16015 append_to_name(mp->buffer[j]);
16017 for (j=mem_default_length-mem_ext_length;
16018 j<mem_default_length;j++) {
16019 append_to_name(xord((int)mp->MP_mem_default[j]));
16021 mp->name_of_file[k]=0;
16025 @ Here is the only place we use |pack_buffered_name|. This part of the program
16026 becomes active when a ``virgin'' \MP\ is trying to get going, just after
16027 the preliminary initialization, or when the user is substituting another
16028 mem file by typing `\.\&' after the initial `\.{**}' prompt. The buffer
16029 contains the first line of input in |buffer[loc..(last-1)]|, where
16030 |loc<last| and |buffer[loc]<>" "|.
16033 boolean mp_open_mem_file (MP mp) ;
16036 boolean mp_open_mem_file (MP mp) {
16037 int j; /* the first space after the file name */
16038 if (mp->mem_name!=NULL) {
16039 mp->mem_file = (mp->open_file)(mp->mem_name, "rb", mp_filetype_memfile);
16040 if ( mp->mem_file ) return true;
16043 if ( mp->buffer[loc]=='&' ) {
16044 incr(loc); j=loc; mp->buffer[mp->last]=' ';
16045 while ( mp->buffer[j]!=' ' ) incr(j);
16046 mp_pack_buffered_name(mp, 0,loc,j); /* try first without the system file area */
16047 if ( mp_w_open_in(mp, &mp->mem_file) ) goto FOUND;
16049 wterm_ln("Sorry, I can\'t find that mem file; will try PLAIN.");
16050 @.Sorry, I can't find...@>
16053 /* now pull out all the stops: try for the system \.{plain} file */
16054 mp_pack_buffered_name(mp, mem_default_length-mem_ext_length,0,0);
16055 if ( ! mp_w_open_in(mp, &mp->mem_file) ) {
16057 wterm_ln("I can\'t find the PLAIN mem file!\n");
16058 @.I can't find PLAIN...@>
16063 loc=j; return true;
16066 @ Operating systems often make it possible to determine the exact name (and
16067 possible version number) of a file that has been opened. The following routine,
16068 which simply makes a \MP\ string from the value of |name_of_file|, should
16069 ideally be changed to deduce the full name of file~|f|, which is the file
16070 most recently opened, if it is possible to do this in a \PASCAL\ program.
16071 @^system dependencies@>
16074 #define mp_a_make_name_string(A,B) mp_make_name_string(A)
16075 #define mp_b_make_name_string(A,B) mp_make_name_string(A)
16076 #define mp_w_make_name_string(A,B) mp_make_name_string(A)
16079 str_number mp_make_name_string (MP mp) {
16080 int k; /* index into |name_of_file| */
16081 str_room(mp->name_length);
16082 for (k=0;k<mp->name_length;k++) {
16083 append_char(xord((int)mp->name_of_file[k]));
16085 return mp_make_string(mp);
16088 @ Now let's consider the ``driver''
16089 routines by which \MP\ deals with file names
16090 in a system-independent manner. First comes a procedure that looks for a
16091 file name in the input by taking the information from the input buffer.
16092 (We can't use |get_next|, because the conversion to tokens would
16093 destroy necessary information.)
16095 This procedure doesn't allow semicolons or percent signs to be part of
16096 file names, because of other conventions of \MP.
16097 {\sl The {\logos METAFONT\/}book} doesn't
16098 use semicolons or percents immediately after file names, but some users
16099 no doubt will find it natural to do so; therefore system-dependent
16100 changes to allow such characters in file names should probably
16101 be made with reluctance, and only when an entire file name that
16102 includes special characters is ``quoted'' somehow.
16103 @^system dependencies@>
16105 @c void mp_scan_file_name (MP mp) {
16107 while ( mp->buffer[loc]==' ' ) incr(loc);
16109 if ( (mp->buffer[loc]==';')||(mp->buffer[loc]=='%') ) break;
16110 if ( ! mp_more_name(mp, mp->buffer[loc]) ) break;
16116 @ Here is another version that takes its input from a string.
16118 @<Declare subroutines for parsing file names@>=
16119 void mp_str_scan_file (MP mp, str_number s) {
16120 pool_pointer p,q; /* current position and stopping point */
16122 p=mp->str_start[s]; q=str_stop(s);
16124 if ( ! mp_more_name(mp, mp->str_pool[p]) ) break;
16130 @ And one that reads from a |char*|.
16132 @<Declare subroutines for parsing file names@>=
16133 void mp_ptr_scan_file (MP mp, char *s) {
16134 char *p, *q; /* current position and stopping point */
16136 p=s; q=p+strlen(s);
16138 if ( ! mp_more_name(mp, *p)) break;
16145 @ The global variable |job_name| contains the file name that was first
16146 \&{input} by the user. This name is extended by `\.{.log}' and `\.{ps}' and
16147 `\.{.mem}' and `\.{.tfm}' in order to make the names of \MP's output files.
16150 char *job_name; /* principal file name */
16151 boolean log_opened; /* has the transcript file been opened? */
16152 char *log_name; /* full name of the log file */
16154 @ @<Option variables@>=
16155 char *job_name; /* principal file name */
16157 @ Initially |job_name=NULL|; it becomes nonzero as soon as the true name is known.
16158 We have |job_name=NULL| if and only if the `\.{log}' file has not been opened,
16159 except of course for a short time just after |job_name| has become nonzero.
16161 @<Allocate or ...@>=
16162 mp->job_name=opt->job_name;
16163 mp->log_opened=false;
16165 @ @<Dealloc variables@>=
16166 xfree(mp->job_name);
16168 @ Here is a routine that manufactures the output file names, assuming that
16169 |job_name<>0|. It ignores and changes the current settings of |cur_area|
16172 @d pack_cur_name mp_pack_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext)
16175 void mp_pack_job_name (MP mp, char *s) ;
16177 @ @c void mp_pack_job_name (MP mp, char *s) { /* |s = ".log"|, |".mem"|, |".ps"|, or .\\{nnn} */
16178 xfree(mp->cur_name); mp->cur_name=xstrdup(mp->job_name);
16179 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16180 xfree(mp->cur_ext); mp->cur_ext=xstrdup(s);
16184 @ If some trouble arises when \MP\ tries to open a file, the following
16185 routine calls upon the user to supply another file name. Parameter~|s|
16186 is used in the error message to identify the type of file; parameter~|e|
16187 is the default extension if none is given. Upon exit from the routine,
16188 variables |cur_name|, |cur_area|, |cur_ext|, and |name_of_file| are
16189 ready for another attempt at file opening.
16192 void mp_prompt_file_name (MP mp,char * s, char * e) ;
16194 @ @c void mp_prompt_file_name (MP mp,char * s, char * e) {
16195 size_t k; /* index into |buffer| */
16196 char * saved_cur_name;
16197 if ( mp->interaction==mp_scroll_mode )
16199 if (strcmp(s,"input file name")==0) {
16200 print_err("I can\'t find file `");
16201 @.I can't find file x@>
16203 print_err("I can\'t write on file `");
16205 @.I can't write on file x@>
16206 mp_print_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext);
16207 mp_print(mp, "'.");
16208 if (strcmp(e,"")==0)
16209 mp_show_context(mp);
16210 mp_print_nl(mp, "Please type another "); mp_print(mp, s);
16212 if ( mp->interaction<mp_scroll_mode )
16213 mp_fatal_error(mp, "*** (job aborted, file error in nonstop mode)");
16214 @.job aborted, file error...@>
16215 saved_cur_name = xstrdup(mp->cur_name);
16216 clear_terminal; prompt_input(": "); @<Scan file name in the buffer@>;
16217 if (strcmp(mp->cur_ext,"")==0)
16219 if (strlen(mp->cur_name)==0) {
16220 mp->cur_name=saved_cur_name;
16222 xfree(saved_cur_name);
16227 @ @<Scan file name in the buffer@>=
16229 mp_begin_name(mp); k=mp->first;
16230 while ( (mp->buffer[k]==' ')&&(k<mp->last) ) incr(k);
16232 if ( k==mp->last ) break;
16233 if ( ! mp_more_name(mp, mp->buffer[k]) ) break;
16239 @ The |open_log_file| routine is used to open the transcript file and to help
16240 it catch up to what has previously been printed on the terminal.
16242 @c void mp_open_log_file (MP mp) {
16243 int old_setting; /* previous |selector| setting */
16244 int k; /* index into |months| and |buffer| */
16245 int l; /* end of first input line */
16246 integer m; /* the current month */
16247 char *months="JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC";
16248 /* abbreviations of month names */
16249 old_setting=mp->selector;
16250 if ( mp->job_name==NULL ) {
16251 mp->job_name=xstrdup("mpout");
16253 mp_pack_job_name(mp,".log");
16254 while ( ! mp_a_open_out(mp, &mp->log_file, mp_filetype_log) ) {
16255 @<Try to get a different log file name@>;
16257 mp->log_name=xstrdup(mp->name_of_file);
16258 mp->selector=log_only; mp->log_opened=true;
16259 @<Print the banner line, including the date and time@>;
16260 mp->input_stack[mp->input_ptr]=mp->cur_input;
16261 /* make sure bottom level is in memory */
16262 mp_print_nl(mp, "**");
16264 l=mp->input_stack[0].limit_field-1; /* last position of first line */
16265 for (k=0;k<=l;k++) mp_print_str(mp, mp->buffer[k]);
16266 mp_print_ln(mp); /* now the transcript file contains the first line of input */
16267 mp->selector=old_setting+2; /* |log_only| or |term_and_log| */
16270 @ @<Dealloc variables@>=
16271 xfree(mp->log_name);
16273 @ Sometimes |open_log_file| is called at awkward moments when \MP\ is
16274 unable to print error messages or even to |show_context|.
16275 The |prompt_file_name| routine can result in a |fatal_error|, but the |error|
16276 routine will not be invoked because |log_opened| will be false.
16278 The normal idea of |mp_batch_mode| is that nothing at all should be written
16279 on the terminal. However, in the unusual case that
16280 no log file could be opened, we make an exception and allow
16281 an explanatory message to be seen.
16283 Incidentally, the program always refers to the log file as a `\.{transcript
16284 file}', because some systems cannot use the extension `\.{.log}' for
16287 @<Try to get a different log file name@>=
16289 mp->selector=term_only;
16290 mp_prompt_file_name(mp, "transcript file name",".log");
16293 @ @<Print the banner...@>=
16296 mp_print(mp, mp->mem_ident); mp_print(mp, " ");
16297 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_day]));
16298 mp_print_char(mp, ' ');
16299 m=mp_round_unscaled(mp, mp->internal[mp_month]);
16300 for (k=3*m-3;k<3*m;k++) { wlog_chr(months[k]); }
16301 mp_print_char(mp, ' ');
16302 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_year]));
16303 mp_print_char(mp, ' ');
16304 m=mp_round_unscaled(mp, mp->internal[mp_time]);
16305 mp_print_dd(mp, m / 60); mp_print_char(mp, ':'); mp_print_dd(mp, m % 60);
16308 @ The |try_extension| function tries to open an input file determined by
16309 |cur_name|, |cur_area|, and the argument |ext|. It returns |false| if it
16310 can't find the file in |cur_area| or the appropriate system area.
16312 @c boolean mp_try_extension (MP mp,char *ext) {
16313 mp_pack_file_name(mp, mp->cur_name,mp->cur_area, ext);
16314 in_name=xstrdup(mp->cur_name);
16315 in_area=xstrdup(mp->cur_area);
16316 if ( mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16319 if (strcmp(ext,".mf")==0 ) in_area=xstrdup(MF_area);
16320 else in_area=xstrdup(MP_area);
16321 mp_pack_file_name(mp, mp->cur_name,in_area,ext);
16322 return mp_a_open_in(mp, &cur_file, mp_filetype_program);
16327 @ Let's turn now to the procedure that is used to initiate file reading
16328 when an `\.{input}' command is being processed.
16330 @c void mp_start_input (MP mp) { /* \MP\ will \.{input} something */
16331 char *fname = NULL;
16332 @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>;
16334 mp_begin_file_reading(mp); /* set up |cur_file| and new level of input */
16335 if ( strlen(mp->cur_ext)==0 ) {
16336 if ( mp_try_extension(mp, ".mp") ) break;
16337 else if ( mp_try_extension(mp, "") ) break;
16338 else if ( mp_try_extension(mp, ".mf") ) break;
16339 /* |else do_nothing; | */
16340 } else if ( mp_try_extension(mp, mp->cur_ext) ) {
16343 mp_end_file_reading(mp); /* remove the level that didn't work */
16344 mp_prompt_file_name(mp, "input file name","");
16346 name=mp_a_make_name_string(mp, cur_file);
16347 fname = xstrdup(mp->name_of_file);
16348 if ( mp->job_name==NULL ) {
16349 mp->job_name=xstrdup(mp->cur_name);
16350 mp_open_log_file(mp);
16351 } /* |open_log_file| doesn't |show_context|, so |limit|
16352 and |loc| needn't be set to meaningful values yet */
16353 if ( ((int)mp->term_offset+(int)strlen(fname)) > (mp->max_print_line-2)) mp_print_ln(mp);
16354 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
16355 mp_print_char(mp, '('); incr(mp->open_parens); mp_print(mp, fname);
16358 @<Flush |name| and replace it with |cur_name| if it won't be needed@>;
16359 @<Read the first line of the new file@>;
16362 @ This code should be omitted if |a_make_name_string| returns something other
16363 than just a copy of its argument and the full file name is needed for opening
16364 \.{MPX} files or implementing the switch-to-editor option.
16365 @^system dependencies@>
16367 @<Flush |name| and replace it with |cur_name| if it won't be needed@>=
16368 mp_flush_string(mp, name); name=rts(mp->cur_name); xfree(mp->cur_name)
16370 @ If the file is empty, it is considered to contain a single blank line,
16371 so there is no need to test the return value.
16373 @<Read the first line...@>=
16376 (void)mp_input_ln(mp, cur_file );
16377 mp_firm_up_the_line(mp);
16378 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
16381 @ @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>=
16382 while ( token_state &&(loc==null) ) mp_end_token_list(mp);
16383 if ( token_state ) {
16384 print_err("File names can't appear within macros");
16385 @.File names can't...@>
16386 help3("Sorry...I've converted what follows to tokens,")
16387 ("possibly garbaging the name you gave.")
16388 ("Please delete the tokens and insert the name again.");
16391 if ( file_state ) {
16392 mp_scan_file_name(mp);
16394 xfree(mp->cur_name); mp->cur_name=xstrdup("");
16395 xfree(mp->cur_ext); mp->cur_ext =xstrdup("");
16396 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16399 @ Sometimes we need to deal with two file names at once. This procedure
16400 copies the given string into a special array for an old file name.
16402 @c void mp_copy_old_name (MP mp,str_number s) {
16403 integer k; /* number of positions filled in |old_file_name| */
16404 pool_pointer j; /* index into |str_pool| */
16406 for (j=mp->str_start[s];j<=str_stop(s)-1;j++) {
16408 if ( k<=file_name_size )
16409 mp->old_file_name[k]=xchr(mp->str_pool[j]);
16411 mp->old_file_name[++k] = 0;
16415 char old_file_name[file_name_size+1]; /* analogous to |name_of_file| */
16417 @ The following simple routine starts reading the \.{MPX} file associated
16418 with the current input file.
16420 @c void mp_start_mpx_input (MP mp) {
16421 mp_pack_file_name(mp, in_name, in_area, ".mpx");
16422 @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16423 |goto not_found| if there is a problem@>;
16424 mp_begin_file_reading(mp);
16425 if ( ! mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16426 mp_end_file_reading(mp);
16429 name=mp_a_make_name_string(mp, cur_file);
16430 mp->mpx_name[index]=name; add_str_ref(name);
16431 @<Read the first line of the new file@>;
16434 @<Explain that the \.{MPX} file can't be read and |succumb|@>;
16437 @ This should ideally be changed to do whatever is necessary to create the
16438 \.{MPX} file given by |name_of_file| if it does not exist or if it is out
16439 of date. This requires invoking \.{MPtoTeX} on the |old_file_name| and passing
16440 the results through \TeX\ and \.{DVItoMP}. (It is possible to use a
16441 completely different typesetting program if suitable postprocessor is
16442 available to perform the function of \.{DVItoMP}.)
16443 @^system dependencies@>
16445 @ @<Exported types@>=
16446 typedef int (*mp_run_make_mpx_command)(MP mp, char *origname, char *mtxname);
16449 mp_run_make_mpx_command run_make_mpx;
16451 @ @<Option variables@>=
16452 mp_run_make_mpx_command run_make_mpx;
16454 @ @<Allocate or initialize ...@>=
16455 set_callback_option(run_make_mpx);
16457 @ @<Internal library declarations@>=
16458 int mp_run_make_mpx (MP mp, char *origname, char *mtxname);
16460 @ The default does nothing.
16462 int mp_run_make_mpx (MP mp, char *origname, char *mtxname) {
16463 if (mp && origname && mtxname) /* for -W */
16470 @ @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16471 |goto not_found| if there is a problem@>=
16472 mp_copy_old_name(mp, name);
16473 if (!(mp->run_make_mpx)(mp, mp->old_file_name, mp->name_of_file))
16476 @ @<Explain that the \.{MPX} file can't be read and |succumb|@>=
16477 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16478 mp_print_nl(mp, ">> ");
16479 mp_print(mp, mp->old_file_name);
16480 mp_print_nl(mp, ">> ");
16481 mp_print(mp, mp->name_of_file);
16482 mp_print_nl(mp, "! Unable to make mpx file");
16483 help4("The two files given above are one of your source files")
16484 ("and an auxiliary file I need to read to find out what your")
16485 ("btex..etex blocks mean. If you don't know why I had trouble,")
16486 ("try running it manually through MPtoTeX, TeX, and DVItoMP");
16489 @ The last file-opening commands are for files accessed via the \&{readfrom}
16490 @:read_from_}{\&{readfrom} primitive@>
16491 operator and the \&{write} command. Such files are stored in separate arrays.
16492 @:write_}{\&{write} primitive@>
16494 @<Types in the outer block@>=
16495 typedef unsigned int readf_index; /* |0..max_read_files| */
16496 typedef unsigned int write_index; /* |0..max_write_files| */
16499 readf_index max_read_files; /* maximum number of simultaneously open \&{readfrom} files */
16500 void ** rd_file; /* \&{readfrom} files */
16501 char ** rd_fname; /* corresponding file name or 0 if file not open */
16502 readf_index read_files; /* number of valid entries in the above arrays */
16503 write_index max_write_files; /* maximum number of simultaneously open \&{write} */
16504 void ** wr_file; /* \&{write} files */
16505 char ** wr_fname; /* corresponding file name or 0 if file not open */
16506 write_index write_files; /* number of valid entries in the above arrays */
16508 @ @<Allocate or initialize ...@>=
16509 mp->max_read_files=8;
16510 mp->rd_file = xmalloc((mp->max_read_files+1),sizeof(void *));
16511 mp->rd_fname = xmalloc((mp->max_read_files+1),sizeof(char *));
16512 memset(mp->rd_fname, 0, sizeof(char *)*(mp->max_read_files+1));
16514 mp->max_write_files=8;
16515 mp->wr_file = xmalloc((mp->max_write_files+1),sizeof(void *));
16516 mp->wr_fname = xmalloc((mp->max_write_files+1),sizeof(char *));
16517 memset(mp->wr_fname, 0, sizeof(char *)*(mp->max_write_files+1));
16521 @ This routine starts reading the file named by string~|s| without setting
16522 |loc|, |limit|, or |name|. It returns |false| if the file is empty or cannot
16523 be opened. Otherwise it updates |rd_file[n]| and |rd_fname[n]|.
16525 @c boolean mp_start_read_input (MP mp,char *s, readf_index n) {
16526 mp_ptr_scan_file(mp, s);
16528 mp_begin_file_reading(mp);
16529 if ( ! mp_a_open_in(mp, &mp->rd_file[n], (mp_filetype_text+n)) )
16531 if ( ! mp_input_ln(mp, mp->rd_file[n] ) ) {
16532 (mp->close_file)(mp->rd_file[n]);
16535 mp->rd_fname[n]=xstrdup(mp->name_of_file);
16538 mp_end_file_reading(mp);
16542 @ Open |wr_file[n]| using file name~|s| and update |wr_fname[n]|.
16545 void mp_open_write_file (MP mp, char *s, readf_index n) ;
16547 @ @c void mp_open_write_file (MP mp,char *s, readf_index n) {
16548 mp_ptr_scan_file(mp, s);
16550 while ( ! mp_a_open_out(mp, &mp->wr_file[n], (mp_filetype_text+n)) )
16551 mp_prompt_file_name(mp, "file name for write output","");
16552 mp->wr_fname[n]=xstrdup(mp->name_of_file);
16556 @* \[36] Introduction to the parsing routines.
16557 We come now to the central nervous system that sparks many of \MP's activities.
16558 By evaluating expressions, from their primary constituents to ever larger
16559 subexpressions, \MP\ builds the structures that ultimately define complete
16560 pictures or fonts of type.
16562 Four mutually recursive subroutines are involved in this process: We call them
16563 $$\hbox{|scan_primary|, |scan_secondary|, |scan_tertiary|,
16564 and |scan_expression|.}$$
16566 Each of them is parameterless and begins with the first token to be scanned
16567 already represented in |cur_cmd|, |cur_mod|, and |cur_sym|. After execution,
16568 the value of the primary or secondary or tertiary or expression that was
16569 found will appear in the global variables |cur_type| and |cur_exp|. The
16570 token following the expression will be represented in |cur_cmd|, |cur_mod|,
16573 Technically speaking, the parsing algorithms are ``LL(1),'' more or less;
16574 backup mechanisms have been added in order to provide reasonable error
16578 small_number cur_type; /* the type of the expression just found */
16579 integer cur_exp; /* the value of the expression just found */
16584 @ Many different kinds of expressions are possible, so it is wise to have
16585 precise descriptions of what |cur_type| and |cur_exp| mean in all cases:
16588 |cur_type=mp_vacuous| means that this expression didn't turn out to have a
16589 value at all, because it arose from a \&{begingroup}$\,\ldots\,$\&{endgroup}
16590 construction in which there was no expression before the \&{endgroup}.
16591 In this case |cur_exp| has some irrelevant value.
16594 |cur_type=mp_boolean_type| means that |cur_exp| is either |true_code|
16598 |cur_type=mp_unknown_boolean| means that |cur_exp| points to a capsule
16599 node that is in the ring of variables equivalent
16600 to at least one undefined boolean variable.
16603 |cur_type=mp_string_type| means that |cur_exp| is a string number (i.e., an
16604 integer in the range |0<=cur_exp<str_ptr|). That string's reference count
16605 includes this particular reference.
16608 |cur_type=mp_unknown_string| means that |cur_exp| points to a capsule
16609 node that is in the ring of variables equivalent
16610 to at least one undefined string variable.
16613 |cur_type=mp_pen_type| means that |cur_exp| points to a node in a pen. Nobody
16614 else points to any of the nodes in this pen. The pen may be polygonal or
16618 |cur_type=mp_unknown_pen| means that |cur_exp| points to a capsule
16619 node that is in the ring of variables equivalent
16620 to at least one undefined pen variable.
16623 |cur_type=mp_path_type| means that |cur_exp| points to a the first node of
16624 a path; nobody else points to this particular path. The control points of
16625 the path will have been chosen.
16628 |cur_type=mp_unknown_path| means that |cur_exp| points to a capsule
16629 node that is in the ring of variables equivalent
16630 to at least one undefined path variable.
16633 |cur_type=mp_picture_type| means that |cur_exp| points to an edge header node.
16634 There may be other pointers to this particular set of edges. The header node
16635 contains a reference count that includes this particular reference.
16638 |cur_type=mp_unknown_picture| means that |cur_exp| points to a capsule
16639 node that is in the ring of variables equivalent
16640 to at least one undefined picture variable.
16643 |cur_type=mp_transform_type| means that |cur_exp| points to a |mp_transform_type|
16644 capsule node. The |value| part of this capsule
16645 points to a transform node that contains six numeric values,
16646 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16649 |cur_type=mp_color_type| means that |cur_exp| points to a |color_type|
16650 capsule node. The |value| part of this capsule
16651 points to a color node that contains three numeric values,
16652 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16655 |cur_type=mp_cmykcolor_type| means that |cur_exp| points to a |mp_cmykcolor_type|
16656 capsule node. The |value| part of this capsule
16657 points to a color node that contains four numeric values,
16658 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16661 |cur_type=mp_pair_type| means that |cur_exp| points to a capsule
16662 node whose type is |mp_pair_type|. The |value| part of this capsule
16663 points to a pair node that contains two numeric values,
16664 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16667 |cur_type=mp_known| means that |cur_exp| is a |scaled| value.
16670 |cur_type=mp_dependent| means that |cur_exp| points to a capsule node whose type
16671 is |dependent|. The |dep_list| field in this capsule points to the associated
16675 |cur_type=mp_proto_dependent| means that |cur_exp| points to a |mp_proto_dependent|
16676 capsule node. The |dep_list| field in this capsule
16677 points to the associated dependency list.
16680 |cur_type=independent| means that |cur_exp| points to a capsule node
16681 whose type is |independent|. This somewhat unusual case can arise, for
16682 example, in the expression
16683 `$x+\&{begingroup}\penalty0\,\&{string}\,x; 0\,\&{endgroup}$'.
16686 |cur_type=mp_token_list| means that |cur_exp| points to a linked list of
16687 tokens. This case arises only on the left-hand side of an assignment
16688 (`\.{:=}') operation, under very special circumstances.
16690 \smallskip\noindent
16691 The possible settings of |cur_type| have been listed here in increasing
16692 numerical order. Notice that |cur_type| will never be |mp_numeric_type| or
16693 |suffixed_macro| or |mp_unsuffixed_macro|, although variables of those types
16694 are allowed. Conversely, \MP\ has no variables of type |mp_vacuous| or
16697 @ Capsules are two-word nodes that have a similar meaning
16698 to |cur_type| and |cur_exp|. Such nodes have |name_type=capsule|
16699 and |link<=mp_void|; and their |type| field is one of the possibilities for
16700 |cur_type| listed above.
16702 The |value| field of a capsule is, in most cases, the value that
16703 corresponds to its |type|, as |cur_exp| corresponds to |cur_type|.
16704 However, when |cur_exp| would point to a capsule,
16705 no extra layer of indirection is present; the |value|
16706 field is what would have been called |value(cur_exp)| if it had not been
16707 encapsulated. Furthermore, if the type is |dependent| or
16708 |mp_proto_dependent|, the |value| field of a capsule is replaced by
16709 |dep_list| and |prev_dep| fields, since dependency lists in capsules are
16710 always part of the general |dep_list| structure.
16712 The |get_x_next| routine is careful not to change the values of |cur_type|
16713 and |cur_exp| when it gets an expanded token. However, |get_x_next| might
16714 call a macro, which might parse an expression, which might execute lots of
16715 commands in a group; hence it's possible that |cur_type| might change
16716 from, say, |mp_unknown_boolean| to |mp_boolean_type|, or from |dependent| to
16717 |known| or |independent|, during the time |get_x_next| is called. The
16718 programs below are careful to stash sensitive intermediate results in
16719 capsules, so that \MP's generality doesn't cause trouble.
16721 Here's a procedure that illustrates these conventions. It takes
16722 the contents of $(|cur_type|\kern-.3pt,|cur_exp|\kern-.3pt)$
16723 and stashes them away in a
16724 capsule. It is not used when |cur_type=mp_token_list|.
16725 After the operation, |cur_type=mp_vacuous|; hence there is no need to
16726 copy path lists or to update reference counts, etc.
16728 The special link |mp_void| is put on the capsule returned by
16729 |stash_cur_exp|, because this procedure is used to store macro parameters
16730 that must be easily distinguishable from token lists.
16732 @<Declare the stashing/unstashing routines@>=
16733 pointer mp_stash_cur_exp (MP mp) {
16734 pointer p; /* the capsule that will be returned */
16735 switch (mp->cur_type) {
16736 case unknown_types:
16737 case mp_transform_type:
16738 case mp_color_type:
16741 case mp_proto_dependent:
16742 case mp_independent:
16743 case mp_cmykcolor_type:
16747 p=mp_get_node(mp, value_node_size); name_type(p)=mp_capsule;
16748 type(p)=mp->cur_type; value(p)=mp->cur_exp;
16751 mp->cur_type=mp_vacuous; link(p)=mp_void;
16755 @ The inverse of |stash_cur_exp| is the following procedure, which
16756 deletes an unnecessary capsule and puts its contents into |cur_type|
16759 The program steps of \MP\ can be divided into two categories: those in
16760 which |cur_type| and |cur_exp| are ``alive'' and those in which they are
16761 ``dead,'' in the sense that |cur_type| and |cur_exp| contain relevant
16762 information or not. It's important not to ignore them when they're alive,
16763 and it's important not to pay attention to them when they're dead.
16765 There's also an intermediate category: If |cur_type=mp_vacuous|, then
16766 |cur_exp| is irrelevant, hence we can proceed without caring if |cur_type|
16767 and |cur_exp| are alive or dead. In such cases we say that |cur_type|
16768 and |cur_exp| are {\sl dormant}. It is permissible to call |get_x_next|
16769 only when they are alive or dormant.
16771 The \\{stash} procedure above assumes that |cur_type| and |cur_exp|
16772 are alive or dormant. The \\{unstash} procedure assumes that they are
16773 dead or dormant; it resuscitates them.
16775 @<Declare the stashing/unstashing...@>=
16776 void mp_unstash_cur_exp (MP mp,pointer p) ;
16779 void mp_unstash_cur_exp (MP mp,pointer p) {
16780 mp->cur_type=type(p);
16781 switch (mp->cur_type) {
16782 case unknown_types:
16783 case mp_transform_type:
16784 case mp_color_type:
16787 case mp_proto_dependent:
16788 case mp_independent:
16789 case mp_cmykcolor_type:
16793 mp->cur_exp=value(p);
16794 mp_free_node(mp, p,value_node_size);
16799 @ The following procedure prints the values of expressions in an
16800 abbreviated format. If its first parameter |p| is null, the value of
16801 |(cur_type,cur_exp)| is displayed; otherwise |p| should be a capsule
16802 containing the desired value. The second parameter controls the amount of
16803 output. If it is~0, dependency lists will be abbreviated to
16804 `\.{linearform}' unless they consist of a single term. If it is greater
16805 than~1, complicated structures (pens, pictures, and paths) will be displayed
16808 @<Declare subroutines for printing expressions@>=
16809 @<Declare the procedure called |print_dp|@>;
16810 @<Declare the stashing/unstashing routines@>;
16811 void mp_print_exp (MP mp,pointer p, small_number verbosity) {
16812 boolean restore_cur_exp; /* should |cur_exp| be restored? */
16813 small_number t; /* the type of the expression */
16814 pointer q; /* a big node being displayed */
16815 integer v=0; /* the value of the expression */
16817 restore_cur_exp=false;
16819 p=mp_stash_cur_exp(mp); restore_cur_exp=true;
16822 if ( t<mp_dependent ) v=value(p); else if ( t<mp_independent ) v=dep_list(p);
16823 @<Print an abbreviated value of |v| with format depending on |t|@>;
16824 if ( restore_cur_exp ) mp_unstash_cur_exp(mp, p);
16827 @ @<Print an abbreviated value of |v| with format depending on |t|@>=
16829 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
16830 case mp_boolean_type:
16831 if ( v==true_code ) mp_print(mp, "true"); else mp_print(mp, "false");
16833 case unknown_types: case mp_numeric_type:
16834 @<Display a variable that's been declared but not defined@>;
16836 case mp_string_type:
16837 mp_print_char(mp, '"'); mp_print_str(mp, v); mp_print_char(mp, '"');
16839 case mp_pen_type: case mp_path_type: case mp_picture_type:
16840 @<Display a complex type@>;
16842 case mp_transform_type: case mp_color_type: case mp_pair_type: case mp_cmykcolor_type:
16843 if ( v==null ) mp_print_type(mp, t);
16844 else @<Display a big node@>;
16846 case mp_known:mp_print_scaled(mp, v); break;
16847 case mp_dependent: case mp_proto_dependent:
16848 mp_print_dp(mp, t,v,verbosity);
16850 case mp_independent:mp_print_variable_name(mp, p); break;
16851 default: mp_confusion(mp, "exp"); break;
16852 @:this can't happen exp}{\quad exp@>
16855 @ @<Display a big node@>=
16857 mp_print_char(mp, '('); q=v+mp->big_node_size[t];
16859 if ( type(v)==mp_known ) mp_print_scaled(mp, value(v));
16860 else if ( type(v)==mp_independent ) mp_print_variable_name(mp, v);
16861 else mp_print_dp(mp, type(v),dep_list(v),verbosity);
16863 if ( v!=q ) mp_print_char(mp, ',');
16865 mp_print_char(mp, ')');
16868 @ Values of type \&{picture}, \&{path}, and \&{pen} are displayed verbosely
16869 in the log file only, unless the user has given a positive value to
16872 @<Display a complex type@>=
16873 if ( verbosity<=1 ) {
16874 mp_print_type(mp, t);
16876 if ( mp->selector==term_and_log )
16877 if ( mp->internal[mp_tracing_online]<=0 ) {
16878 mp->selector=term_only;
16879 mp_print_type(mp, t); mp_print(mp, " (see the transcript file)");
16880 mp->selector=term_and_log;
16883 case mp_pen_type:mp_print_pen(mp, v,"",false); break;
16884 case mp_path_type:mp_print_path(mp, v,"",false); break;
16885 case mp_picture_type:mp_print_edges(mp, v,"",false); break;
16886 } /* there are no other cases */
16889 @ @<Declare the procedure called |print_dp|@>=
16890 void mp_print_dp (MP mp,small_number t, pointer p,
16891 small_number verbosity) {
16892 pointer q; /* the node following |p| */
16894 if ( (info(q)==null) || (verbosity>0) ) mp_print_dependency(mp, p,t);
16895 else mp_print(mp, "linearform");
16898 @ The displayed name of a variable in a ring will not be a capsule unless
16899 the ring consists entirely of capsules.
16901 @<Display a variable that's been declared but not defined@>=
16902 { mp_print_type(mp, t);
16904 { mp_print_char(mp, ' ');
16905 while ( (name_type(v)==mp_capsule) && (v!=p) ) v=value(v);
16906 mp_print_variable_name(mp, v);
16910 @ When errors are detected during parsing, it is often helpful to
16911 display an expression just above the error message, using |exp_err|
16912 or |disp_err| instead of |print_err|.
16914 @d exp_err(A) mp_disp_err(mp, null,(A)) /* displays the current expression */
16916 @<Declare subroutines for printing expressions@>=
16917 void mp_disp_err (MP mp,pointer p, char *s) {
16918 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16919 mp_print_nl(mp, ">> ");
16921 mp_print_exp(mp, p,1); /* ``medium verbose'' printing of the expression */
16923 mp_print_nl(mp, "! "); mp_print(mp, s);
16928 @ If |cur_type| and |cur_exp| contain relevant information that should
16929 be recycled, we will use the following procedure, which changes |cur_type|
16930 to |known| and stores a given value in |cur_exp|. We can think of |cur_type|
16931 and |cur_exp| as either alive or dormant after this has been done,
16932 because |cur_exp| will not contain a pointer value.
16934 @ @c void mp_flush_cur_exp (MP mp,scaled v) {
16935 switch (mp->cur_type) {
16936 case unknown_types: case mp_transform_type: case mp_color_type: case mp_pair_type:
16937 case mp_dependent: case mp_proto_dependent: case mp_independent: case mp_cmykcolor_type:
16938 mp_recycle_value(mp, mp->cur_exp);
16939 mp_free_node(mp, mp->cur_exp,value_node_size);
16941 case mp_string_type:
16942 delete_str_ref(mp->cur_exp); break;
16943 case mp_pen_type: case mp_path_type:
16944 mp_toss_knot_list(mp, mp->cur_exp); break;
16945 case mp_picture_type:
16946 delete_edge_ref(mp->cur_exp); break;
16950 mp->cur_type=mp_known; mp->cur_exp=v;
16953 @ There's a much more general procedure that is capable of releasing
16954 the storage associated with any two-word value packet.
16956 @<Declare the recycling subroutines@>=
16957 void mp_recycle_value (MP mp,pointer p) ;
16959 @ @c void mp_recycle_value (MP mp,pointer p) {
16960 small_number t; /* a type code */
16961 integer vv; /* another value */
16962 pointer q,r,s,pp; /* link manipulation registers */
16963 integer v=0; /* a value */
16965 if ( t<mp_dependent ) v=value(p);
16967 case undefined: case mp_vacuous: case mp_boolean_type: case mp_known:
16968 case mp_numeric_type:
16970 case unknown_types:
16971 mp_ring_delete(mp, p); break;
16972 case mp_string_type:
16973 delete_str_ref(v); break;
16974 case mp_path_type: case mp_pen_type:
16975 mp_toss_knot_list(mp, v); break;
16976 case mp_picture_type:
16977 delete_edge_ref(v); break;
16978 case mp_cmykcolor_type: case mp_pair_type: case mp_color_type:
16979 case mp_transform_type:
16980 @<Recycle a big node@>; break;
16981 case mp_dependent: case mp_proto_dependent:
16982 @<Recycle a dependency list@>; break;
16983 case mp_independent:
16984 @<Recycle an independent variable@>; break;
16985 case mp_token_list: case mp_structured:
16986 mp_confusion(mp, "recycle"); break;
16987 @:this can't happen recycle}{\quad recycle@>
16988 case mp_unsuffixed_macro: case mp_suffixed_macro:
16989 mp_delete_mac_ref(mp, value(p)); break;
16990 } /* there are no other cases */
16994 @ @<Recycle a big node@>=
16996 q=v+mp->big_node_size[t];
16998 q=q-2; mp_recycle_value(mp, q);
17000 mp_free_node(mp, v,mp->big_node_size[t]);
17003 @ @<Recycle a dependency list@>=
17006 while ( info(q)!=null ) q=link(q);
17007 link(prev_dep(p))=link(q);
17008 prev_dep(link(q))=prev_dep(p);
17009 link(q)=null; mp_flush_node_list(mp, dep_list(p));
17012 @ When an independent variable disappears, it simply fades away, unless
17013 something depends on it. In the latter case, a dependent variable whose
17014 coefficient of dependence is maximal will take its place.
17015 The relevant algorithm is due to Ignacio~A. Zabala, who implemented it
17016 as part of his Ph.D. thesis (Stanford University, December 1982).
17017 @^Zabala Salelles, Ignacio Andres@>
17019 For example, suppose that variable $x$ is being recycled, and that the
17020 only variables depending on~$x$ are $y=2x+a$ and $z=x+b$. In this case
17021 we want to make $y$ independent and $z=.5y-.5a+b$; no other variables
17022 will depend on~$y$. If $\\{tracingequations}>0$ in this situation,
17023 we will print `\.{\#\#\# -2x=-y+a}'.
17025 There's a slight complication, however: An independent variable $x$
17026 can occur both in dependency lists and in proto-dependency lists.
17027 This makes it necessary to be careful when deciding which coefficient
17030 Furthermore, this complication is not so slight when
17031 a proto-dependent variable is chosen to become independent. For example,
17032 suppose that $y=2x+100a$ is proto-dependent while $z=x+b$ is dependent;
17033 then we must change $z=.5y-50a+b$ to a proto-dependency, because of the
17034 large coefficient `50'.
17036 In order to deal with these complications without wasting too much time,
17037 we shall link together the occurrences of~$x$ among all the linear
17038 dependencies, maintaining separate lists for the dependent and
17039 proto-dependent cases.
17041 @<Recycle an independent variable@>=
17043 mp->max_c[mp_dependent]=0; mp->max_c[mp_proto_dependent]=0;
17044 mp->max_link[mp_dependent]=null; mp->max_link[mp_proto_dependent]=null;
17046 while ( q!=dep_head ) {
17047 s=value_loc(q); /* now |link(s)=dep_list(q)| */
17050 if ( info(r)==null ) break;;
17051 if ( info(r)!=p ) {
17054 t=type(q); link(s)=link(r); info(r)=q;
17055 if ( abs(value(r))>mp->max_c[t] ) {
17056 @<Record a new maximum coefficient of type |t|@>;
17058 link(r)=mp->max_link[t]; mp->max_link[t]=r;
17064 if ( (mp->max_c[mp_dependent]>0)||(mp->max_c[mp_proto_dependent]>0) ) {
17065 @<Choose a dependent variable to take the place of the disappearing
17066 independent variable, and change all remaining dependencies
17071 @ The code for independency removal makes use of three two-word arrays.
17074 integer max_c[mp_proto_dependent+1]; /* max coefficient magnitude */
17075 pointer max_ptr[mp_proto_dependent+1]; /* where |p| occurs with |max_c| */
17076 pointer max_link[mp_proto_dependent+1]; /* other occurrences of |p| */
17078 @ @<Record a new maximum coefficient...@>=
17080 if ( mp->max_c[t]>0 ) {
17081 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
17083 mp->max_c[t]=abs(value(r)); mp->max_ptr[t]=r;
17086 @ @<Choose a dependent...@>=
17088 if ( (mp->max_c[mp_dependent] / 010000 >= mp->max_c[mp_proto_dependent]) )
17091 t=mp_proto_dependent;
17092 @<Determine the dependency list |s| to substitute for the independent
17094 t=mp_dependent+mp_proto_dependent-t; /* complement |t| */
17095 if ( mp->max_c[t]>0 ) { /* we need to pick up an unchosen dependency */
17096 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
17098 if ( t!=mp_dependent ) { @<Substitute new dependencies in place of |p|@>; }
17099 else { @<Substitute new proto-dependencies in place of |p|@>;}
17100 mp_flush_node_list(mp, s);
17101 if ( mp->fix_needed ) mp_fix_dependencies(mp);
17105 @ Let |s=max_ptr[t]|. At this point we have $|value|(s)=\pm|max_c|[t]$,
17106 and |info(s)| points to the dependent variable~|pp| of type~|t| from
17107 whose dependency list we have removed node~|s|. We must reinsert
17108 node~|s| into the dependency list, with coefficient $-1.0$, and with
17109 |pp| as the new independent variable. Since |pp| will have a larger serial
17110 number than any other variable, we can put node |s| at the head of the
17113 @<Determine the dep...@>=
17114 s=mp->max_ptr[t]; pp=info(s); v=value(s);
17115 if ( t==mp_dependent ) value(s)=-fraction_one; else value(s)=-unity;
17116 r=dep_list(pp); link(s)=r;
17117 while ( info(r)!=null ) r=link(r);
17118 q=link(r); link(r)=null;
17119 prev_dep(q)=prev_dep(pp); link(prev_dep(pp))=q;
17121 if ( mp->cur_exp==pp ) if ( mp->cur_type==t ) mp->cur_type=mp_independent;
17122 if ( mp->internal[mp_tracing_equations]>0 ) {
17123 @<Show the transformed dependency@>;
17126 @ Now $(-v)$ times the formerly independent variable~|p| is being replaced
17127 by the dependency list~|s|.
17129 @<Show the transformed...@>=
17130 if ( mp_interesting(mp, p) ) {
17131 mp_begin_diagnostic(mp); mp_print_nl(mp, "### ");
17132 @:]]]\#\#\#_}{\.{\#\#\#}@>
17133 if ( v>0 ) mp_print_char(mp, '-');
17134 if ( t==mp_dependent ) vv=mp_round_fraction(mp, mp->max_c[mp_dependent]);
17135 else vv=mp->max_c[mp_proto_dependent];
17136 if ( vv!=unity ) mp_print_scaled(mp, vv);
17137 mp_print_variable_name(mp, p);
17138 while ( value(p) % s_scale>0 ) {
17139 mp_print(mp, "*4"); value(p)=value(p)-2;
17141 if ( t==mp_dependent ) mp_print_char(mp, '='); else mp_print(mp, " = ");
17142 mp_print_dependency(mp, s,t);
17143 mp_end_diagnostic(mp, false);
17146 @ Finally, there are dependent and proto-dependent variables whose
17147 dependency lists must be brought up to date.
17149 @<Substitute new dependencies...@>=
17150 for (t=mp_dependent;t<=mp_proto_dependent;t++){
17152 while ( r!=null ) {
17154 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17155 mp_make_fraction(mp, value(r),-v),s,t,mp_dependent);
17156 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
17157 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
17161 @ @<Substitute new proto...@>=
17162 for (t=mp_dependent;t<=mp_proto_dependent;t++) {
17164 while ( r!=null ) {
17166 if ( t==mp_dependent ) { /* for safety's sake, we change |q| to |mp_proto_dependent| */
17167 if ( mp->cur_exp==q ) if ( mp->cur_type==mp_dependent )
17168 mp->cur_type=mp_proto_dependent;
17169 dep_list(q)=mp_p_over_v(mp, dep_list(q),unity,mp_dependent,mp_proto_dependent);
17170 type(q)=mp_proto_dependent; value(r)=mp_round_fraction(mp, value(r));
17172 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17173 mp_make_scaled(mp, value(r),-v),s,mp_proto_dependent,mp_proto_dependent);
17174 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
17175 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
17179 @ Here are some routines that provide handy combinations of actions
17180 that are often needed during error recovery. For example,
17181 `|flush_error|' flushes the current expression, replaces it by
17182 a given value, and calls |error|.
17184 Errors often are detected after an extra token has already been scanned.
17185 The `\\{put\_get}' routines put that token back before calling |error|;
17186 then they get it back again. (Or perhaps they get another token, if
17187 the user has changed things.)
17190 void mp_flush_error (MP mp,scaled v);
17191 void mp_put_get_error (MP mp);
17192 void mp_put_get_flush_error (MP mp,scaled v) ;
17195 void mp_flush_error (MP mp,scaled v) {
17196 mp_error(mp); mp_flush_cur_exp(mp, v);
17198 void mp_put_get_error (MP mp) {
17199 mp_back_error(mp); mp_get_x_next(mp);
17201 void mp_put_get_flush_error (MP mp,scaled v) {
17202 mp_put_get_error(mp);
17203 mp_flush_cur_exp(mp, v);
17206 @ A global variable |var_flag| is set to a special command code
17207 just before \MP\ calls |scan_expression|, if the expression should be
17208 treated as a variable when this command code immediately follows. For
17209 example, |var_flag| is set to |assignment| at the beginning of a
17210 statement, because we want to know the {\sl location\/} of a variable at
17211 the left of `\.{:=}', not the {\sl value\/} of that variable.
17213 The |scan_expression| subroutine calls |scan_tertiary|,
17214 which calls |scan_secondary|, which calls |scan_primary|, which sets
17215 |var_flag:=0|. In this way each of the scanning routines ``knows''
17216 when it has been called with a special |var_flag|, but |var_flag| is
17219 A variable preceding a command that equals |var_flag| is converted to a
17220 token list rather than a value. Furthermore, an `\.{=}' sign following an
17221 expression with |var_flag=assignment| is not considered to be a relation
17222 that produces boolean expressions.
17226 int var_flag; /* command that wants a variable */
17231 @* \[37] Parsing primary expressions.
17232 The first parsing routine, |scan_primary|, is also the most complicated one,
17233 since it involves so many different cases. But each case---with one
17234 exception---is fairly simple by itself.
17236 When |scan_primary| begins, the first token of the primary to be scanned
17237 should already appear in |cur_cmd|, |cur_mod|, and |cur_sym|. The values
17238 of |cur_type| and |cur_exp| should be either dead or dormant, as explained
17239 earlier. If |cur_cmd| is not between |min_primary_command| and
17240 |max_primary_command|, inclusive, a syntax error will be signaled.
17242 @<Declare the basic parsing subroutines@>=
17243 void mp_scan_primary (MP mp) {
17244 pointer p,q,r; /* for list manipulation */
17245 quarterword c; /* a primitive operation code */
17246 int my_var_flag; /* initial value of |my_var_flag| */
17247 pointer l_delim,r_delim; /* hash addresses of a delimiter pair */
17248 @<Other local variables for |scan_primary|@>;
17249 my_var_flag=mp->var_flag; mp->var_flag=0;
17252 @<Supply diagnostic information, if requested@>;
17253 switch (mp->cur_cmd) {
17254 case left_delimiter:
17255 @<Scan a delimited primary@>; break;
17257 @<Scan a grouped primary@>; break;
17259 @<Scan a string constant@>; break;
17260 case numeric_token:
17261 @<Scan a primary that starts with a numeric token@>; break;
17263 @<Scan a nullary operation@>; break;
17264 case unary: case type_name: case cycle: case plus_or_minus:
17265 @<Scan a unary operation@>; break;
17266 case primary_binary:
17267 @<Scan a binary operation with `\&{of}' between its operands@>; break;
17269 @<Convert a suffix to a string@>; break;
17270 case internal_quantity:
17271 @<Scan an internal numeric quantity@>; break;
17272 case capsule_token:
17273 mp_make_exp_copy(mp, mp->cur_mod); break;
17275 @<Scan a variable primary; |goto restart| if it turns out to be a macro@>; break;
17277 mp_bad_exp(mp, "A primary"); goto RESTART; break;
17278 @.A primary expression...@>
17280 mp_get_x_next(mp); /* the routines |goto done| if they don't want this */
17282 if ( mp->cur_cmd==left_bracket ) {
17283 if ( mp->cur_type>=mp_known ) {
17284 @<Scan a mediation construction@>;
17291 @ Errors at the beginning of expressions are flagged by |bad_exp|.
17293 @c void mp_bad_exp (MP mp,char * s) {
17295 print_err(s); mp_print(mp, " expression can't begin with `");
17296 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
17297 mp_print_char(mp, '\'');
17298 help4("I'm afraid I need some sort of value in order to continue,")
17299 ("so I've tentatively inserted `0'. You may want to")
17300 ("delete this zero and insert something else;")
17301 ("see Chapter 27 of The METAFONTbook for an example.");
17302 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17303 mp_back_input(mp); mp->cur_sym=0; mp->cur_cmd=numeric_token;
17304 mp->cur_mod=0; mp_ins_error(mp);
17305 save_flag=mp->var_flag; mp->var_flag=0; mp_get_x_next(mp);
17306 mp->var_flag=save_flag;
17309 @ @<Supply diagnostic information, if requested@>=
17311 if ( mp->panicking ) mp_check_mem(mp, false);
17313 if ( mp->interrupt!=0 ) if ( mp->OK_to_interrupt ) {
17314 mp_back_input(mp); check_interrupt; mp_get_x_next(mp);
17317 @ @<Scan a delimited primary@>=
17319 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
17320 mp_get_x_next(mp); mp_scan_expression(mp);
17321 if ( (mp->cur_cmd==comma) && (mp->cur_type>=mp_known) ) {
17322 @<Scan the rest of a delimited set of numerics@>;
17324 mp_check_delimiter(mp, l_delim,r_delim);
17328 @ The |stash_in| subroutine puts the current (numeric) expression into a field
17329 within a ``big node.''
17331 @c void mp_stash_in (MP mp,pointer p) {
17332 pointer q; /* temporary register */
17333 type(p)=mp->cur_type;
17334 if ( mp->cur_type==mp_known ) {
17335 value(p)=mp->cur_exp;
17337 if ( mp->cur_type==mp_independent ) {
17338 @<Stash an independent |cur_exp| into a big node@>;
17340 mp->mem[value_loc(p)]=mp->mem[value_loc(mp->cur_exp)];
17341 /* |dep_list(p):=dep_list(cur_exp)| and |prev_dep(p):=prev_dep(cur_exp)| */
17342 link(prev_dep(p))=p;
17344 mp_free_node(mp, mp->cur_exp,value_node_size);
17346 mp->cur_type=mp_vacuous;
17349 @ In rare cases the current expression can become |independent|. There
17350 may be many dependency lists pointing to such an independent capsule,
17351 so we can't simply move it into place within a big node. Instead,
17352 we copy it, then recycle it.
17354 @ @<Stash an independent |cur_exp|...@>=
17356 q=mp_single_dependency(mp, mp->cur_exp);
17357 if ( q==mp->dep_final ){
17358 type(p)=mp_known; value(p)=0; mp_free_node(mp, q,dep_node_size);
17360 type(p)=mp_dependent; mp_new_dep(mp, p,q);
17362 mp_recycle_value(mp, mp->cur_exp);
17365 @ This code uses the fact that |red_part_loc| and |green_part_loc|
17366 are synonymous with |x_part_loc| and |y_part_loc|.
17368 @<Scan the rest of a delimited set of numerics@>=
17370 p=mp_stash_cur_exp(mp);
17371 mp_get_x_next(mp); mp_scan_expression(mp);
17372 @<Make sure the second part of a pair or color has a numeric type@>;
17373 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
17374 if ( mp->cur_cmd==comma ) type(q)=mp_color_type;
17375 else type(q)=mp_pair_type;
17376 mp_init_big_node(mp, q); r=value(q);
17377 mp_stash_in(mp, y_part_loc(r));
17378 mp_unstash_cur_exp(mp, p);
17379 mp_stash_in(mp, x_part_loc(r));
17380 if ( mp->cur_cmd==comma ) {
17381 @<Scan the last of a triplet of numerics@>;
17383 if ( mp->cur_cmd==comma ) {
17384 type(q)=mp_cmykcolor_type;
17385 mp_init_big_node(mp, q); t=value(q);
17386 mp->mem[cyan_part_loc(t)]=mp->mem[red_part_loc(r)];
17387 value(cyan_part_loc(t))=value(red_part_loc(r));
17388 mp->mem[magenta_part_loc(t)]=mp->mem[green_part_loc(r)];
17389 value(magenta_part_loc(t))=value(green_part_loc(r));
17390 mp->mem[yellow_part_loc(t)]=mp->mem[blue_part_loc(r)];
17391 value(yellow_part_loc(t))=value(blue_part_loc(r));
17392 mp_recycle_value(mp, r);
17394 @<Scan the last of a quartet of numerics@>;
17396 mp_check_delimiter(mp, l_delim,r_delim);
17397 mp->cur_type=type(q);
17401 @ @<Make sure the second part of a pair or color has a numeric type@>=
17402 if ( mp->cur_type<mp_known ) {
17403 exp_err("Nonnumeric ypart has been replaced by 0");
17404 @.Nonnumeric...replaced by 0@>
17405 help4("I've started to scan a pair `(a,b)' or a color `(a,b,c)';")
17406 ("but after finding a nice `a' I found a `b' that isn't")
17407 ("of numeric type. So I've changed that part to zero.")
17408 ("(The b that I didn't like appears above the error message.)");
17409 mp_put_get_flush_error(mp, 0);
17412 @ @<Scan the last of a triplet of numerics@>=
17414 mp_get_x_next(mp); mp_scan_expression(mp);
17415 if ( mp->cur_type<mp_known ) {
17416 exp_err("Nonnumeric third part has been replaced by 0");
17417 @.Nonnumeric...replaced by 0@>
17418 help3("I've just scanned a color `(a,b,c)' or cmykcolor(a,b,c,d); but the `c'")
17419 ("isn't of numeric type. So I've changed that part to zero.")
17420 ("(The c that I didn't like appears above the error message.)");
17421 mp_put_get_flush_error(mp, 0);
17423 mp_stash_in(mp, blue_part_loc(r));
17426 @ @<Scan the last of a quartet of numerics@>=
17428 mp_get_x_next(mp); mp_scan_expression(mp);
17429 if ( mp->cur_type<mp_known ) {
17430 exp_err("Nonnumeric blackpart has been replaced by 0");
17431 @.Nonnumeric...replaced by 0@>
17432 help3("I've just scanned a cmykcolor `(c,m,y,k)'; but the `k' isn't")
17433 ("of numeric type. So I've changed that part to zero.")
17434 ("(The k that I didn't like appears above the error message.)");
17435 mp_put_get_flush_error(mp, 0);
17437 mp_stash_in(mp, black_part_loc(r));
17440 @ The local variable |group_line| keeps track of the line
17441 where a \&{begingroup} command occurred; this will be useful
17442 in an error message if the group doesn't actually end.
17444 @<Other local variables for |scan_primary|@>=
17445 integer group_line; /* where a group began */
17447 @ @<Scan a grouped primary@>=
17449 group_line=mp_true_line(mp);
17450 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17451 save_boundary_item(p);
17453 mp_do_statement(mp); /* ends with |cur_cmd>=semicolon| */
17454 } while (! (mp->cur_cmd!=semicolon));
17455 if ( mp->cur_cmd!=end_group ) {
17456 print_err("A group begun on line ");
17457 @.A group...never ended@>
17458 mp_print_int(mp, group_line);
17459 mp_print(mp, " never ended");
17460 help2("I saw a `begingroup' back there that hasn't been matched")
17461 ("by `endgroup'. So I've inserted `endgroup' now.");
17462 mp_back_error(mp); mp->cur_cmd=end_group;
17465 /* this might change |cur_type|, if independent variables are recycled */
17466 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17469 @ @<Scan a string constant@>=
17471 mp->cur_type=mp_string_type; mp->cur_exp=mp->cur_mod;
17474 @ Later we'll come to procedures that perform actual operations like
17475 addition, square root, and so on; our purpose now is to do the parsing.
17476 But we might as well mention those future procedures now, so that the
17477 suspense won't be too bad:
17480 |do_nullary(c)| does primitive operations that have no operands (e.g.,
17481 `\&{true}' or `\&{pencircle}');
17484 |do_unary(c)| applies a primitive operation to the current expression;
17487 |do_binary(p,c)| applies a primitive operation to the capsule~|p|
17488 and the current expression.
17490 @<Scan a nullary operation@>=mp_do_nullary(mp, mp->cur_mod)
17492 @ @<Scan a unary operation@>=
17494 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_primary(mp);
17495 mp_do_unary(mp, c); goto DONE;
17498 @ A numeric token might be a primary by itself, or it might be the
17499 numerator of a fraction composed solely of numeric tokens, or it might
17500 multiply the primary that follows (provided that the primary doesn't begin
17501 with a plus sign or a minus sign). The code here uses the facts that
17502 |max_primary_command=plus_or_minus| and
17503 |max_primary_command-1=numeric_token|. If a fraction is found that is less
17504 than unity, we try to retain higher precision when we use it in scalar
17507 @<Other local variables for |scan_primary|@>=
17508 scaled num,denom; /* for primaries that are fractions, like `1/2' */
17510 @ @<Scan a primary that starts with a numeric token@>=
17512 mp->cur_exp=mp->cur_mod; mp->cur_type=mp_known; mp_get_x_next(mp);
17513 if ( mp->cur_cmd!=slash ) {
17517 if ( mp->cur_cmd!=numeric_token ) {
17519 mp->cur_cmd=slash; mp->cur_mod=over; mp->cur_sym=frozen_slash;
17522 num=mp->cur_exp; denom=mp->cur_mod;
17523 if ( denom==0 ) { @<Protest division by zero@>; }
17524 else { mp->cur_exp=mp_make_scaled(mp, num,denom); }
17525 check_arith; mp_get_x_next(mp);
17527 if ( mp->cur_cmd>=min_primary_command ) {
17528 if ( mp->cur_cmd<numeric_token ) { /* in particular, |cur_cmd<>plus_or_minus| */
17529 p=mp_stash_cur_exp(mp); mp_scan_primary(mp);
17530 if ( (abs(num)>=abs(denom))||(mp->cur_type<mp_color_type) ) {
17531 mp_do_binary(mp, p,times);
17533 mp_frac_mult(mp, num,denom);
17534 mp_free_node(mp, p,value_node_size);
17541 @ @<Protest division...@>=
17543 print_err("Division by zero");
17544 @.Division by zero@>
17545 help1("I'll pretend that you meant to divide by 1."); mp_error(mp);
17548 @ @<Scan a binary operation with `\&{of}' between its operands@>=
17550 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
17551 if ( mp->cur_cmd!=of_token ) {
17552 mp_missing_err(mp, "of"); mp_print(mp, " for ");
17553 mp_print_cmd_mod(mp, primary_binary,c);
17555 help1("I've got the first argument; will look now for the other.");
17558 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_primary(mp);
17559 mp_do_binary(mp, p,c); goto DONE;
17562 @ @<Convert a suffix to a string@>=
17564 mp_get_x_next(mp); mp_scan_suffix(mp);
17565 mp->old_setting=mp->selector; mp->selector=new_string;
17566 mp_show_token_list(mp, mp->cur_exp,null,100000,0);
17567 mp_flush_token_list(mp, mp->cur_exp);
17568 mp->cur_exp=mp_make_string(mp); mp->selector=mp->old_setting;
17569 mp->cur_type=mp_string_type;
17573 @ If an internal quantity appears all by itself on the left of an
17574 assignment, we return a token list of length one, containing the address
17575 of the internal quantity plus |hash_end|. (This accords with the conventions
17576 of the save stack, as described earlier.)
17578 @<Scan an internal...@>=
17581 if ( my_var_flag==assignment ) {
17583 if ( mp->cur_cmd==assignment ) {
17584 mp->cur_exp=mp_get_avail(mp);
17585 info(mp->cur_exp)=q+hash_end; mp->cur_type=mp_token_list;
17590 mp->cur_type=mp_known; mp->cur_exp=mp->internal[q];
17593 @ The most difficult part of |scan_primary| has been saved for last, since
17594 it was necessary to build up some confidence first. We can now face the task
17595 of scanning a variable.
17597 As we scan a variable, we build a token list containing the relevant
17598 names and subscript values, simultaneously following along in the
17599 ``collective'' structure to see if we are actually dealing with a macro
17600 instead of a value.
17602 The local variables |pre_head| and |post_head| will point to the beginning
17603 of the prefix and suffix lists; |tail| will point to the end of the list
17604 that is currently growing.
17606 Another local variable, |tt|, contains partial information about the
17607 declared type of the variable-so-far. If |tt>=mp_unsuffixed_macro|, the
17608 relation |tt=type(q)| will always hold. If |tt=undefined|, the routine
17609 doesn't bother to update its information about type. And if
17610 |undefined<tt<mp_unsuffixed_macro|, the precise value of |tt| isn't critical.
17612 @ @<Other local variables for |scan_primary|@>=
17613 pointer pre_head,post_head,tail;
17614 /* prefix and suffix list variables */
17615 small_number tt; /* approximation to the type of the variable-so-far */
17616 pointer t; /* a token */
17617 pointer macro_ref = 0; /* reference count for a suffixed macro */
17619 @ @<Scan a variable primary...@>=
17621 fast_get_avail(pre_head); tail=pre_head; post_head=null; tt=mp_vacuous;
17623 t=mp_cur_tok(mp); link(tail)=t;
17624 if ( tt!=undefined ) {
17625 @<Find the approximate type |tt| and corresponding~|q|@>;
17626 if ( tt>=mp_unsuffixed_macro ) {
17627 @<Either begin an unsuffixed macro call or
17628 prepare for a suffixed one@>;
17631 mp_get_x_next(mp); tail=t;
17632 if ( mp->cur_cmd==left_bracket ) {
17633 @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>;
17635 if ( mp->cur_cmd>max_suffix_token ) break;
17636 if ( mp->cur_cmd<min_suffix_token ) break;
17637 } /* now |cur_cmd| is |internal_quantity|, |tag_token|, or |numeric_token| */
17638 @<Handle unusual cases that masquerade as variables, and |goto restart|
17639 or |goto done| if appropriate;
17640 otherwise make a copy of the variable and |goto done|@>;
17643 @ @<Either begin an unsuffixed macro call or...@>=
17646 if ( tt>mp_unsuffixed_macro ) { /* |tt=mp_suffixed_macro| */
17647 post_head=mp_get_avail(mp); tail=post_head; link(tail)=t;
17648 tt=undefined; macro_ref=value(q); add_mac_ref(macro_ref);
17650 @<Set up unsuffixed macro call and |goto restart|@>;
17654 @ @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>=
17656 mp_get_x_next(mp); mp_scan_expression(mp);
17657 if ( mp->cur_cmd!=right_bracket ) {
17658 @<Put the left bracket and the expression back to be rescanned@>;
17660 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17661 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp; mp->cur_sym=0;
17665 @ The left bracket that we thought was introducing a subscript might have
17666 actually been the left bracket in a mediation construction like `\.{x[a,b]}'.
17667 So we don't issue an error message at this point; but we do want to back up
17668 so as to avoid any embarrassment about our incorrect assumption.
17670 @<Put the left bracket and the expression back to be rescanned@>=
17672 mp_back_input(mp); /* that was the token following the current expression */
17673 mp_back_expr(mp); mp->cur_cmd=left_bracket;
17674 mp->cur_mod=0; mp->cur_sym=frozen_left_bracket;
17677 @ Here's a routine that puts the current expression back to be read again.
17679 @c void mp_back_expr (MP mp) {
17680 pointer p; /* capsule token */
17681 p=mp_stash_cur_exp(mp); link(p)=null; back_list(p);
17684 @ Unknown subscripts lead to the following error message.
17686 @c void mp_bad_subscript (MP mp) {
17687 exp_err("Improper subscript has been replaced by zero");
17688 @.Improper subscript...@>
17689 help3("A bracketed subscript must have a known numeric value;")
17690 ("unfortunately, what I found was the value that appears just")
17691 ("above this error message. So I'll try a zero subscript.");
17692 mp_flush_error(mp, 0);
17695 @ Every time we call |get_x_next|, there's a chance that the variable we've
17696 been looking at will disappear. Thus, we cannot safely keep |q| pointing
17697 into the variable structure; we need to start searching from the root each time.
17699 @<Find the approximate type |tt| and corresponding~|q|@>=
17702 p=link(pre_head); q=info(p); tt=undefined;
17703 if ( eq_type(q) % outer_tag==tag_token ) {
17705 if ( q==null ) goto DONE2;
17709 tt=type(q); goto DONE2;
17711 if ( type(q)!=mp_structured ) goto DONE2;
17712 q=link(attr_head(q)); /* the |collective_subscript| attribute */
17713 if ( p>=mp->hi_mem_min ) { /* it's not a subscript */
17714 do { q=link(q); } while (! (attr_loc(q)>=info(p)));
17715 if ( attr_loc(q)>info(p) ) goto DONE2;
17723 @ How do things stand now? Well, we have scanned an entire variable name,
17724 including possible subscripts and/or attributes; |cur_cmd|, |cur_mod|, and
17725 |cur_sym| represent the token that follows. If |post_head=null|, a
17726 token list for this variable name starts at |link(pre_head)|, with all
17727 subscripts evaluated. But if |post_head<>null|, the variable turned out
17728 to be a suffixed macro; |pre_head| is the head of the prefix list, while
17729 |post_head| is the head of a token list containing both `\.{\AT!}' and
17732 Our immediate problem is to see if this variable still exists. (Variable
17733 structures can change drastically whenever we call |get_x_next|; users
17734 aren't supposed to do this, but the fact that it is possible means that
17735 we must be cautious.)
17737 The following procedure prints an error message when a variable
17738 unexpectedly disappears. Its help message isn't quite right for
17739 our present purposes, but we'll be able to fix that up.
17742 void mp_obliterated (MP mp,pointer q) {
17743 print_err("Variable "); mp_show_token_list(mp, q,null,1000,0);
17744 mp_print(mp, " has been obliterated");
17745 @.Variable...obliterated@>
17746 help5("It seems you did a nasty thing---probably by accident,")
17747 ("but nevertheless you nearly hornswoggled me...")
17748 ("While I was evaluating the right-hand side of this")
17749 ("command, something happened, and the left-hand side")
17750 ("is no longer a variable! So I won't change anything.");
17753 @ If the variable does exist, we also need to check
17754 for a few other special cases before deciding that a plain old ordinary
17755 variable has, indeed, been scanned.
17757 @<Handle unusual cases that masquerade as variables...@>=
17758 if ( post_head!=null ) {
17759 @<Set up suffixed macro call and |goto restart|@>;
17761 q=link(pre_head); free_avail(pre_head);
17762 if ( mp->cur_cmd==my_var_flag ) {
17763 mp->cur_type=mp_token_list; mp->cur_exp=q; goto DONE;
17765 p=mp_find_variable(mp, q);
17767 mp_make_exp_copy(mp, p);
17769 mp_obliterated(mp, q);
17770 mp->help_line[2]="While I was evaluating the suffix of this variable,";
17771 mp->help_line[1]="something was redefined, and it's no longer a variable!";
17772 mp->help_line[0]="In order to get back on my feet, I've inserted `0' instead.";
17773 mp_put_get_flush_error(mp, 0);
17775 mp_flush_node_list(mp, q);
17778 @ The only complication associated with macro calling is that the prefix
17779 and ``at'' parameters must be packaged in an appropriate list of lists.
17781 @<Set up unsuffixed macro call and |goto restart|@>=
17783 p=mp_get_avail(mp); info(pre_head)=link(pre_head); link(pre_head)=p;
17784 info(p)=t; mp_macro_call(mp, value(q),pre_head,null);
17789 @ If the ``variable'' that turned out to be a suffixed macro no longer exists,
17790 we don't care, because we have reserved a pointer (|macro_ref|) to its
17793 @<Set up suffixed macro call and |goto restart|@>=
17795 mp_back_input(mp); p=mp_get_avail(mp); q=link(post_head);
17796 info(pre_head)=link(pre_head); link(pre_head)=post_head;
17797 info(post_head)=q; link(post_head)=p; info(p)=link(q); link(q)=null;
17798 mp_macro_call(mp, macro_ref,pre_head,null); decr(ref_count(macro_ref));
17799 mp_get_x_next(mp); goto RESTART;
17802 @ Our remaining job is simply to make a copy of the value that has been
17803 found. Some cases are harder than others, but complexity arises solely
17804 because of the multiplicity of possible cases.
17806 @<Declare the procedure called |make_exp_copy|@>=
17807 @<Declare subroutines needed by |make_exp_copy|@>;
17808 void mp_make_exp_copy (MP mp,pointer p) {
17809 pointer q,r,t; /* registers for list manipulation */
17811 mp->cur_type=type(p);
17812 switch (mp->cur_type) {
17813 case mp_vacuous: case mp_boolean_type: case mp_known:
17814 mp->cur_exp=value(p); break;
17815 case unknown_types:
17816 mp->cur_exp=mp_new_ring_entry(mp, p);
17818 case mp_string_type:
17819 mp->cur_exp=value(p); add_str_ref(mp->cur_exp);
17821 case mp_picture_type:
17822 mp->cur_exp=value(p);add_edge_ref(mp->cur_exp);
17825 mp->cur_exp=copy_pen(value(p));
17828 mp->cur_exp=mp_copy_path(mp, value(p));
17830 case mp_transform_type: case mp_color_type:
17831 case mp_cmykcolor_type: case mp_pair_type:
17832 @<Copy the big node |p|@>;
17834 case mp_dependent: case mp_proto_dependent:
17835 mp_encapsulate(mp, mp_copy_dep_list(mp, dep_list(p)));
17837 case mp_numeric_type:
17838 new_indep(p); goto RESTART;
17840 case mp_independent:
17841 q=mp_single_dependency(mp, p);
17842 if ( q==mp->dep_final ){
17843 mp->cur_type=mp_known; mp->cur_exp=0; mp_free_node(mp, q,value_node_size);
17845 mp->cur_type=mp_dependent; mp_encapsulate(mp, q);
17849 mp_confusion(mp, "copy");
17850 @:this can't happen copy}{\quad copy@>
17855 @ The |encapsulate| subroutine assumes that |dep_final| is the
17856 tail of dependency list~|p|.
17858 @<Declare subroutines needed by |make_exp_copy|@>=
17859 void mp_encapsulate (MP mp,pointer p) {
17860 mp->cur_exp=mp_get_node(mp, value_node_size); type(mp->cur_exp)=mp->cur_type;
17861 name_type(mp->cur_exp)=mp_capsule; mp_new_dep(mp, mp->cur_exp,p);
17864 @ The most tedious case arises when the user refers to a
17865 \&{pair}, \&{color}, or \&{transform} variable; we must copy several fields,
17866 each of which can be |independent|, |dependent|, |mp_proto_dependent|,
17869 @<Copy the big node |p|@>=
17871 if ( value(p)==null )
17872 mp_init_big_node(mp, p);
17873 t=mp_get_node(mp, value_node_size); name_type(t)=mp_capsule; type(t)=mp->cur_type;
17874 mp_init_big_node(mp, t);
17875 q=value(p)+mp->big_node_size[mp->cur_type];
17876 r=value(t)+mp->big_node_size[mp->cur_type];
17878 q=q-2; r=r-2; mp_install(mp, r,q);
17879 } while (q!=value(p));
17883 @ The |install| procedure copies a numeric field~|q| into field~|r| of
17884 a big node that will be part of a capsule.
17886 @<Declare subroutines needed by |make_exp_copy|@>=
17887 void mp_install (MP mp,pointer r, pointer q) {
17888 pointer p; /* temporary register */
17889 if ( type(q)==mp_known ){
17890 value(r)=value(q); type(r)=mp_known;
17891 } else if ( type(q)==mp_independent ) {
17892 p=mp_single_dependency(mp, q);
17893 if ( p==mp->dep_final ) {
17894 type(r)=mp_known; value(r)=0; mp_free_node(mp, p,value_node_size);
17896 type(r)=mp_dependent; mp_new_dep(mp, r,p);
17899 type(r)=type(q); mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(q)));
17903 @ Expressions of the form `\.{a[b,c]}' are converted into
17904 `\.{b+a*(c-b)}', without checking the types of \.b~or~\.c,
17905 provided that \.a is numeric.
17907 @<Scan a mediation...@>=
17909 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17910 if ( mp->cur_cmd!=comma ) {
17911 @<Put the left bracket and the expression back...@>;
17912 mp_unstash_cur_exp(mp, p);
17914 q=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17915 if ( mp->cur_cmd!=right_bracket ) {
17916 mp_missing_err(mp, "]");
17918 help3("I've scanned an expression of the form `a[b,c',")
17919 ("so a right bracket should have come next.")
17920 ("I shall pretend that one was there.");
17923 r=mp_stash_cur_exp(mp); mp_make_exp_copy(mp, q);
17924 mp_do_binary(mp, r,minus); mp_do_binary(mp, p,times);
17925 mp_do_binary(mp, q,plus); mp_get_x_next(mp);
17929 @ Here is a comparatively simple routine that is used to scan the
17930 \&{suffix} parameters of a macro.
17932 @<Declare the basic parsing subroutines@>=
17933 void mp_scan_suffix (MP mp) {
17934 pointer h,t; /* head and tail of the list being built */
17935 pointer p; /* temporary register */
17936 h=mp_get_avail(mp); t=h;
17938 if ( mp->cur_cmd==left_bracket ) {
17939 @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>;
17941 if ( mp->cur_cmd==numeric_token ) {
17942 p=mp_new_num_tok(mp, mp->cur_mod);
17943 } else if ((mp->cur_cmd==tag_token)||(mp->cur_cmd==internal_quantity) ) {
17944 p=mp_get_avail(mp); info(p)=mp->cur_sym;
17948 link(t)=p; t=p; mp_get_x_next(mp);
17950 mp->cur_exp=link(h); free_avail(h); mp->cur_type=mp_token_list;
17953 @ @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>=
17955 mp_get_x_next(mp); mp_scan_expression(mp);
17956 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17957 if ( mp->cur_cmd!=right_bracket ) {
17958 mp_missing_err(mp, "]");
17960 help3("I've seen a `[' and a subscript value, in a suffix,")
17961 ("so a right bracket should have come next.")
17962 ("I shall pretend that one was there.");
17965 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp;
17968 @* \[38] Parsing secondary and higher expressions.
17969 After the intricacies of |scan_primary|\kern-1pt,
17970 the |scan_secondary| routine is
17971 refreshingly simple. It's not trivial, but the operations are relatively
17972 straightforward; the main difficulty is, again, that expressions and data
17973 structures might change drastically every time we call |get_x_next|, so a
17974 cautious approach is mandatory. For example, a macro defined by
17975 \&{primarydef} might have disappeared by the time its second argument has
17976 been scanned; we solve this by increasing the reference count of its token
17977 list, so that the macro can be called even after it has been clobbered.
17979 @<Declare the basic parsing subroutines@>=
17980 void mp_scan_secondary (MP mp) {
17981 pointer p; /* for list manipulation */
17982 halfword c,d; /* operation codes or modifiers */
17983 pointer mac_name; /* token defined with \&{primarydef} */
17985 if ((mp->cur_cmd<min_primary_command)||
17986 (mp->cur_cmd>max_primary_command) )
17987 mp_bad_exp(mp, "A secondary");
17988 @.A secondary expression...@>
17989 mp_scan_primary(mp);
17991 if ( mp->cur_cmd<=max_secondary_command )
17992 if ( mp->cur_cmd>=min_secondary_command ) {
17993 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17994 if ( d==secondary_primary_macro ) {
17995 mac_name=mp->cur_sym; add_mac_ref(c);
17997 mp_get_x_next(mp); mp_scan_primary(mp);
17998 if ( d!=secondary_primary_macro ) {
17999 mp_do_binary(mp, p,c);
18001 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
18002 decr(ref_count(c)); mp_get_x_next(mp);
18009 @ The following procedure calls a macro that has two parameters,
18012 @c void mp_binary_mac (MP mp,pointer p, pointer c, pointer n) {
18013 pointer q,r; /* nodes in the parameter list */
18014 q=mp_get_avail(mp); r=mp_get_avail(mp); link(q)=r;
18015 info(q)=p; info(r)=mp_stash_cur_exp(mp);
18016 mp_macro_call(mp, c,q,n);
18019 @ The next procedure, |scan_tertiary|, is pretty much the same deal.
18021 @<Declare the basic parsing subroutines@>=
18022 void mp_scan_tertiary (MP mp) {
18023 pointer p; /* for list manipulation */
18024 halfword c,d; /* operation codes or modifiers */
18025 pointer mac_name; /* token defined with \&{secondarydef} */
18027 if ((mp->cur_cmd<min_primary_command)||
18028 (mp->cur_cmd>max_primary_command) )
18029 mp_bad_exp(mp, "A tertiary");
18030 @.A tertiary expression...@>
18031 mp_scan_secondary(mp);
18033 if ( mp->cur_cmd<=max_tertiary_command ) {
18034 if ( mp->cur_cmd>=min_tertiary_command ) {
18035 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
18036 if ( d==tertiary_secondary_macro ) {
18037 mac_name=mp->cur_sym; add_mac_ref(c);
18039 mp_get_x_next(mp); mp_scan_secondary(mp);
18040 if ( d!=tertiary_secondary_macro ) {
18041 mp_do_binary(mp, p,c);
18043 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
18044 decr(ref_count(c)); mp_get_x_next(mp);
18052 @ Finally we reach the deepest level in our quartet of parsing routines.
18053 This one is much like the others; but it has an extra complication from
18054 paths, which materialize here.
18056 @d continue_path 25 /* a label inside of |scan_expression| */
18057 @d finish_path 26 /* another */
18059 @<Declare the basic parsing subroutines@>=
18060 void mp_scan_expression (MP mp) {
18061 pointer p,q,r,pp,qq; /* for list manipulation */
18062 halfword c,d; /* operation codes or modifiers */
18063 int my_var_flag; /* initial value of |var_flag| */
18064 pointer mac_name; /* token defined with \&{tertiarydef} */
18065 boolean cycle_hit; /* did a path expression just end with `\&{cycle}'? */
18066 scaled x,y; /* explicit coordinates or tension at a path join */
18067 int t; /* knot type following a path join */
18069 my_var_flag=mp->var_flag; mac_name=null;
18071 if ((mp->cur_cmd<min_primary_command)||
18072 (mp->cur_cmd>max_primary_command) )
18073 mp_bad_exp(mp, "An");
18074 @.An expression...@>
18075 mp_scan_tertiary(mp);
18077 if ( mp->cur_cmd<=max_expression_command )
18078 if ( mp->cur_cmd>=min_expression_command ) {
18079 if ( (mp->cur_cmd!=equals)||(my_var_flag!=assignment) ) {
18080 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
18081 if ( d==expression_tertiary_macro ) {
18082 mac_name=mp->cur_sym; add_mac_ref(c);
18084 if ( (d<ampersand)||((d==ampersand)&&
18085 ((type(p)==mp_pair_type)||(type(p)==mp_path_type))) ) {
18086 @<Scan a path construction operation;
18087 but |return| if |p| has the wrong type@>;
18089 mp_get_x_next(mp); mp_scan_tertiary(mp);
18090 if ( d!=expression_tertiary_macro ) {
18091 mp_do_binary(mp, p,c);
18093 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
18094 decr(ref_count(c)); mp_get_x_next(mp);
18103 @ The reader should review the data structure conventions for paths before
18104 hoping to understand the next part of this code.
18106 @<Scan a path construction operation...@>=
18109 @<Convert the left operand, |p|, into a partial path ending at~|q|;
18110 but |return| if |p| doesn't have a suitable type@>;
18112 @<Determine the path join parameters;
18113 but |goto finish_path| if there's only a direction specifier@>;
18114 if ( mp->cur_cmd==cycle ) {
18115 @<Get ready to close a cycle@>;
18117 mp_scan_tertiary(mp);
18118 @<Convert the right operand, |cur_exp|,
18119 into a partial path from |pp| to~|qq|@>;
18121 @<Join the partial paths and reset |p| and |q| to the head and tail
18123 if ( mp->cur_cmd>=min_expression_command )
18124 if ( mp->cur_cmd<=ampersand ) if ( ! cycle_hit ) goto CONTINUE_PATH;
18126 @<Choose control points for the path and put the result into |cur_exp|@>;
18129 @ @<Convert the left operand, |p|, into a partial path ending at~|q|...@>=
18131 mp_unstash_cur_exp(mp, p);
18132 if ( mp->cur_type==mp_pair_type ) p=mp_new_knot(mp);
18133 else if ( mp->cur_type==mp_path_type ) p=mp->cur_exp;
18136 while ( link(q)!=p ) q=link(q);
18137 if ( left_type(p)!=mp_endpoint ) { /* open up a cycle */
18138 r=mp_copy_knot(mp, p); link(q)=r; q=r;
18140 left_type(p)=mp_open; right_type(q)=mp_open;
18143 @ A pair of numeric values is changed into a knot node for a one-point path
18144 when \MP\ discovers that the pair is part of a path.
18146 @c@<Declare the procedure called |known_pair|@>;
18147 pointer mp_new_knot (MP mp) { /* convert a pair to a knot with two endpoints */
18148 pointer q; /* the new node */
18149 q=mp_get_node(mp, knot_node_size); left_type(q)=mp_endpoint;
18150 right_type(q)=mp_endpoint; originator(q)=mp_metapost_user; link(q)=q;
18151 mp_known_pair(mp); x_coord(q)=mp->cur_x; y_coord(q)=mp->cur_y;
18155 @ The |known_pair| subroutine sets |cur_x| and |cur_y| to the components
18156 of the current expression, assuming that the current expression is a
18157 pair of known numerics. Unknown components are zeroed, and the
18158 current expression is flushed.
18160 @<Declare the procedure called |known_pair|@>=
18161 void mp_known_pair (MP mp) {
18162 pointer p; /* the pair node */
18163 if ( mp->cur_type!=mp_pair_type ) {
18164 exp_err("Undefined coordinates have been replaced by (0,0)");
18165 @.Undefined coordinates...@>
18166 help5("I need x and y numbers for this part of the path.")
18167 ("The value I found (see above) was no good;")
18168 ("so I'll try to keep going by using zero instead.")
18169 ("(Chapter 27 of The METAFONTbook explains that")
18170 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18171 ("you might want to type `I ??" "?' now.)");
18172 mp_put_get_flush_error(mp, 0); mp->cur_x=0; mp->cur_y=0;
18174 p=value(mp->cur_exp);
18175 @<Make sure that both |x| and |y| parts of |p| are known;
18176 copy them into |cur_x| and |cur_y|@>;
18177 mp_flush_cur_exp(mp, 0);
18181 @ @<Make sure that both |x| and |y| parts of |p| are known...@>=
18182 if ( type(x_part_loc(p))==mp_known ) {
18183 mp->cur_x=value(x_part_loc(p));
18185 mp_disp_err(mp, x_part_loc(p),
18186 "Undefined x coordinate has been replaced by 0");
18187 @.Undefined coordinates...@>
18188 help5("I need a `known' x value for this part of the path.")
18189 ("The value I found (see above) was no good;")
18190 ("so I'll try to keep going by using zero instead.")
18191 ("(Chapter 27 of The METAFONTbook explains that")
18192 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18193 ("you might want to type `I ??" "?' now.)");
18194 mp_put_get_error(mp); mp_recycle_value(mp, x_part_loc(p)); mp->cur_x=0;
18196 if ( type(y_part_loc(p))==mp_known ) {
18197 mp->cur_y=value(y_part_loc(p));
18199 mp_disp_err(mp, y_part_loc(p),
18200 "Undefined y coordinate has been replaced by 0");
18201 help5("I need a `known' y value for this part of the path.")
18202 ("The value I found (see above) was no good;")
18203 ("so I'll try to keep going by using zero instead.")
18204 ("(Chapter 27 of The METAFONTbook explains that")
18205 ("you might want to type `I ??" "?' now.)");
18206 mp_put_get_error(mp); mp_recycle_value(mp, y_part_loc(p)); mp->cur_y=0;
18209 @ At this point |cur_cmd| is either |ampersand|, |left_brace|, or |path_join|.
18211 @<Determine the path join parameters...@>=
18212 if ( mp->cur_cmd==left_brace ) {
18213 @<Put the pre-join direction information into node |q|@>;
18216 if ( d==path_join ) {
18217 @<Determine the tension and/or control points@>;
18218 } else if ( d!=ampersand ) {
18222 if ( mp->cur_cmd==left_brace ) {
18223 @<Put the post-join direction information into |x| and |t|@>;
18224 } else if ( right_type(q)!=mp_explicit ) {
18228 @ The |scan_direction| subroutine looks at the directional information
18229 that is enclosed in braces, and also scans ahead to the following character.
18230 A type code is returned, either |open| (if the direction was $(0,0)$),
18231 or |curl| (if the direction was a curl of known value |cur_exp|), or
18232 |given| (if the direction is given by the |angle| value that now
18233 appears in |cur_exp|).
18235 There's nothing difficult about this subroutine, but the program is rather
18236 lengthy because a variety of potential errors need to be nipped in the bud.
18238 @c small_number mp_scan_direction (MP mp) {
18239 int t; /* the type of information found */
18240 scaled x; /* an |x| coordinate */
18242 if ( mp->cur_cmd==curl_command ) {
18243 @<Scan a curl specification@>;
18245 @<Scan a given direction@>;
18247 if ( mp->cur_cmd!=right_brace ) {
18248 mp_missing_err(mp, "}");
18249 @.Missing `\char`\}'@>
18250 help3("I've scanned a direction spec for part of a path,")
18251 ("so a right brace should have come next.")
18252 ("I shall pretend that one was there.");
18259 @ @<Scan a curl specification@>=
18260 { mp_get_x_next(mp); mp_scan_expression(mp);
18261 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<0) ){
18262 exp_err("Improper curl has been replaced by 1");
18264 help1("A curl must be a known, nonnegative number.");
18265 mp_put_get_flush_error(mp, unity);
18270 @ @<Scan a given direction@>=
18271 { mp_scan_expression(mp);
18272 if ( mp->cur_type>mp_pair_type ) {
18273 @<Get given directions separated by commas@>;
18277 if ( (mp->cur_x==0)&&(mp->cur_y==0) ) t=mp_open;
18278 else { t=mp_given; mp->cur_exp=mp_n_arg(mp, mp->cur_x,mp->cur_y);}
18281 @ @<Get given directions separated by commas@>=
18283 if ( mp->cur_type!=mp_known ) {
18284 exp_err("Undefined x coordinate has been replaced by 0");
18285 @.Undefined coordinates...@>
18286 help5("I need a `known' x value for this part of the path.")
18287 ("The value I found (see above) was no good;")
18288 ("so I'll try to keep going by using zero instead.")
18289 ("(Chapter 27 of The METAFONTbook explains that")
18290 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18291 ("you might want to type `I ??" "?' now.)");
18292 mp_put_get_flush_error(mp, 0);
18295 if ( mp->cur_cmd!=comma ) {
18296 mp_missing_err(mp, ",");
18298 help2("I've got the x coordinate of a path direction;")
18299 ("will look for the y coordinate next.");
18302 mp_get_x_next(mp); mp_scan_expression(mp);
18303 if ( mp->cur_type!=mp_known ) {
18304 exp_err("Undefined y coordinate has been replaced by 0");
18305 help5("I need a `known' y value for this part of the path.")
18306 ("The value I found (see above) was no good;")
18307 ("so I'll try to keep going by using zero instead.")
18308 ("(Chapter 27 of The METAFONTbook explains that")
18309 ("you might want to type `I ??" "?' now.)");
18310 mp_put_get_flush_error(mp, 0);
18312 mp->cur_y=mp->cur_exp; mp->cur_x=x;
18315 @ At this point |right_type(q)| is usually |open|, but it may have been
18316 set to some other value by a previous splicing operation. We must maintain
18317 the value of |right_type(q)| in unusual cases such as
18318 `\.{..z1\{z2\}\&\{z3\}z1\{0,0\}..}'.
18320 @<Put the pre-join...@>=
18322 t=mp_scan_direction(mp);
18323 if ( t!=mp_open ) {
18324 right_type(q)=t; right_given(q)=mp->cur_exp;
18325 if ( left_type(q)==mp_open ) {
18326 left_type(q)=t; left_given(q)=mp->cur_exp;
18327 } /* note that |left_given(q)=left_curl(q)| */
18331 @ Since |left_tension| and |left_y| share the same position in knot nodes,
18332 and since |left_given| is similarly equivalent to |left_x|, we use
18333 |x| and |y| to hold the given direction and tension information when
18334 there are no explicit control points.
18336 @<Put the post-join...@>=
18338 t=mp_scan_direction(mp);
18339 if ( right_type(q)!=mp_explicit ) x=mp->cur_exp;
18340 else t=mp_explicit; /* the direction information is superfluous */
18343 @ @<Determine the tension and/or...@>=
18346 if ( mp->cur_cmd==tension ) {
18347 @<Set explicit tensions@>;
18348 } else if ( mp->cur_cmd==controls ) {
18349 @<Set explicit control points@>;
18351 right_tension(q)=unity; y=unity; mp_back_input(mp); /* default tension */
18354 if ( mp->cur_cmd!=path_join ) {
18355 mp_missing_err(mp, "..");
18357 help1("A path join command should end with two dots.");
18364 @ @<Set explicit tensions@>=
18366 mp_get_x_next(mp); y=mp->cur_cmd;
18367 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18368 mp_scan_primary(mp);
18369 @<Make sure that the current expression is a valid tension setting@>;
18370 if ( y==at_least ) negate(mp->cur_exp);
18371 right_tension(q)=mp->cur_exp;
18372 if ( mp->cur_cmd==and_command ) {
18373 mp_get_x_next(mp); y=mp->cur_cmd;
18374 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18375 mp_scan_primary(mp);
18376 @<Make sure that the current expression is a valid tension setting@>;
18377 if ( y==at_least ) negate(mp->cur_exp);
18382 @ @d min_tension three_quarter_unit
18384 @<Make sure that the current expression is a valid tension setting@>=
18385 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<min_tension) ) {
18386 exp_err("Improper tension has been set to 1");
18387 @.Improper tension@>
18388 help1("The expression above should have been a number >=3/4.");
18389 mp_put_get_flush_error(mp, unity);
18392 @ @<Set explicit control points@>=
18394 right_type(q)=mp_explicit; t=mp_explicit; mp_get_x_next(mp); mp_scan_primary(mp);
18395 mp_known_pair(mp); right_x(q)=mp->cur_x; right_y(q)=mp->cur_y;
18396 if ( mp->cur_cmd!=and_command ) {
18397 x=right_x(q); y=right_y(q);
18399 mp_get_x_next(mp); mp_scan_primary(mp);
18400 mp_known_pair(mp); x=mp->cur_x; y=mp->cur_y;
18404 @ @<Convert the right operand, |cur_exp|, into a partial path...@>=
18406 if ( mp->cur_type!=mp_path_type ) pp=mp_new_knot(mp);
18407 else pp=mp->cur_exp;
18409 while ( link(qq)!=pp ) qq=link(qq);
18410 if ( left_type(pp)!=mp_endpoint ) { /* open up a cycle */
18411 r=mp_copy_knot(mp, pp); link(qq)=r; qq=r;
18413 left_type(pp)=mp_open; right_type(qq)=mp_open;
18416 @ If a person tries to define an entire path by saying `\.{(x,y)\&cycle}',
18417 we silently change the specification to `\.{(x,y)..cycle}', since a cycle
18418 shouldn't have length zero.
18420 @<Get ready to close a cycle@>=
18422 cycle_hit=true; mp_get_x_next(mp); pp=p; qq=p;
18423 if ( d==ampersand ) if ( p==q ) {
18424 d=path_join; right_tension(q)=unity; y=unity;
18428 @ @<Join the partial paths and reset |p| and |q|...@>=
18430 if ( d==ampersand ) {
18431 if ( (x_coord(q)!=x_coord(pp))||(y_coord(q)!=y_coord(pp)) ) {
18432 print_err("Paths don't touch; `&' will be changed to `..'");
18433 @.Paths don't touch@>
18434 help3("When you join paths `p&q', the ending point of p")
18435 ("must be exactly equal to the starting point of q.")
18436 ("So I'm going to pretend that you said `p..q' instead.");
18437 mp_put_get_error(mp); d=path_join; right_tension(q)=unity; y=unity;
18440 @<Plug an opening in |right_type(pp)|, if possible@>;
18441 if ( d==ampersand ) {
18442 @<Splice independent paths together@>;
18444 @<Plug an opening in |right_type(q)|, if possible@>;
18445 link(q)=pp; left_y(pp)=y;
18446 if ( t!=mp_open ) { left_x(pp)=x; left_type(pp)=t; };
18451 @ @<Plug an opening in |right_type(q)|...@>=
18452 if ( right_type(q)==mp_open ) {
18453 if ( (left_type(q)==mp_curl)||(left_type(q)==mp_given) ) {
18454 right_type(q)=left_type(q); right_given(q)=left_given(q);
18458 @ @<Plug an opening in |right_type(pp)|...@>=
18459 if ( right_type(pp)==mp_open ) {
18460 if ( (t==mp_curl)||(t==mp_given) ) {
18461 right_type(pp)=t; right_given(pp)=x;
18465 @ @<Splice independent paths together@>=
18467 if ( left_type(q)==mp_open ) if ( right_type(q)==mp_open ) {
18468 left_type(q)=mp_curl; left_curl(q)=unity;
18470 if ( right_type(pp)==mp_open ) if ( t==mp_open ) {
18471 right_type(pp)=mp_curl; right_curl(pp)=unity;
18473 right_type(q)=right_type(pp); link(q)=link(pp);
18474 right_x(q)=right_x(pp); right_y(q)=right_y(pp);
18475 mp_free_node(mp, pp,knot_node_size);
18476 if ( qq==pp ) qq=q;
18479 @ @<Choose control points for the path...@>=
18481 if ( d==ampersand ) p=q;
18483 left_type(p)=mp_endpoint;
18484 if ( right_type(p)==mp_open ) {
18485 right_type(p)=mp_curl; right_curl(p)=unity;
18487 right_type(q)=mp_endpoint;
18488 if ( left_type(q)==mp_open ) {
18489 left_type(q)=mp_curl; left_curl(q)=unity;
18493 mp_make_choices(mp, p);
18494 mp->cur_type=mp_path_type; mp->cur_exp=p
18496 @ Finally, we sometimes need to scan an expression whose value is
18497 supposed to be either |true_code| or |false_code|.
18499 @<Declare the basic parsing subroutines@>=
18500 void mp_get_boolean (MP mp) {
18501 mp_get_x_next(mp); mp_scan_expression(mp);
18502 if ( mp->cur_type!=mp_boolean_type ) {
18503 exp_err("Undefined condition will be treated as `false'");
18504 @.Undefined condition...@>
18505 help2("The expression shown above should have had a definite")
18506 ("true-or-false value. I'm changing it to `false'.");
18507 mp_put_get_flush_error(mp, false_code); mp->cur_type=mp_boolean_type;
18511 @* \[39] Doing the operations.
18512 The purpose of parsing is primarily to permit people to avoid piles of
18513 parentheses. But the real work is done after the structure of an expression
18514 has been recognized; that's when new expressions are generated. We
18515 turn now to the guts of \MP, which handles individual operators that
18516 have come through the parsing mechanism.
18518 We'll start with the easy ones that take no operands, then work our way
18519 up to operators with one and ultimately two arguments. In other words,
18520 we will write the three procedures |do_nullary|, |do_unary|, and |do_binary|
18521 that are invoked periodically by the expression scanners.
18523 First let's make sure that all of the primitive operators are in the
18524 hash table. Although |scan_primary| and its relatives made use of the
18525 \\{cmd} code for these operators, the \\{do} routines base everything
18526 on the \\{mod} code. For example, |do_binary| doesn't care whether the
18527 operation it performs is a |primary_binary| or |secondary_binary|, etc.
18530 mp_primitive(mp, "true",nullary,true_code);
18531 @:true_}{\&{true} primitive@>
18532 mp_primitive(mp, "false",nullary,false_code);
18533 @:false_}{\&{false} primitive@>
18534 mp_primitive(mp, "nullpicture",nullary,null_picture_code);
18535 @:null_picture_}{\&{nullpicture} primitive@>
18536 mp_primitive(mp, "nullpen",nullary,null_pen_code);
18537 @:null_pen_}{\&{nullpen} primitive@>
18538 mp_primitive(mp, "jobname",nullary,job_name_op);
18539 @:job_name_}{\&{jobname} primitive@>
18540 mp_primitive(mp, "readstring",nullary,read_string_op);
18541 @:read_string_}{\&{readstring} primitive@>
18542 mp_primitive(mp, "pencircle",nullary,pen_circle);
18543 @:pen_circle_}{\&{pencircle} primitive@>
18544 mp_primitive(mp, "normaldeviate",nullary,normal_deviate);
18545 @:normal_deviate_}{\&{normaldeviate} primitive@>
18546 mp_primitive(mp, "readfrom",unary,read_from_op);
18547 @:read_from_}{\&{readfrom} primitive@>
18548 mp_primitive(mp, "closefrom",unary,close_from_op);
18549 @:close_from_}{\&{closefrom} primitive@>
18550 mp_primitive(mp, "odd",unary,odd_op);
18551 @:odd_}{\&{odd} primitive@>
18552 mp_primitive(mp, "known",unary,known_op);
18553 @:known_}{\&{known} primitive@>
18554 mp_primitive(mp, "unknown",unary,unknown_op);
18555 @:unknown_}{\&{unknown} primitive@>
18556 mp_primitive(mp, "not",unary,not_op);
18557 @:not_}{\&{not} primitive@>
18558 mp_primitive(mp, "decimal",unary,decimal);
18559 @:decimal_}{\&{decimal} primitive@>
18560 mp_primitive(mp, "reverse",unary,reverse);
18561 @:reverse_}{\&{reverse} primitive@>
18562 mp_primitive(mp, "makepath",unary,make_path_op);
18563 @:make_path_}{\&{makepath} primitive@>
18564 mp_primitive(mp, "makepen",unary,make_pen_op);
18565 @:make_pen_}{\&{makepen} primitive@>
18566 mp_primitive(mp, "oct",unary,oct_op);
18567 @:oct_}{\&{oct} primitive@>
18568 mp_primitive(mp, "hex",unary,hex_op);
18569 @:hex_}{\&{hex} primitive@>
18570 mp_primitive(mp, "ASCII",unary,ASCII_op);
18571 @:ASCII_}{\&{ASCII} primitive@>
18572 mp_primitive(mp, "char",unary,char_op);
18573 @:char_}{\&{char} primitive@>
18574 mp_primitive(mp, "length",unary,length_op);
18575 @:length_}{\&{length} primitive@>
18576 mp_primitive(mp, "turningnumber",unary,turning_op);
18577 @:turning_number_}{\&{turningnumber} primitive@>
18578 mp_primitive(mp, "xpart",unary,x_part);
18579 @:x_part_}{\&{xpart} primitive@>
18580 mp_primitive(mp, "ypart",unary,y_part);
18581 @:y_part_}{\&{ypart} primitive@>
18582 mp_primitive(mp, "xxpart",unary,xx_part);
18583 @:xx_part_}{\&{xxpart} primitive@>
18584 mp_primitive(mp, "xypart",unary,xy_part);
18585 @:xy_part_}{\&{xypart} primitive@>
18586 mp_primitive(mp, "yxpart",unary,yx_part);
18587 @:yx_part_}{\&{yxpart} primitive@>
18588 mp_primitive(mp, "yypart",unary,yy_part);
18589 @:yy_part_}{\&{yypart} primitive@>
18590 mp_primitive(mp, "redpart",unary,red_part);
18591 @:red_part_}{\&{redpart} primitive@>
18592 mp_primitive(mp, "greenpart",unary,green_part);
18593 @:green_part_}{\&{greenpart} primitive@>
18594 mp_primitive(mp, "bluepart",unary,blue_part);
18595 @:blue_part_}{\&{bluepart} primitive@>
18596 mp_primitive(mp, "cyanpart",unary,cyan_part);
18597 @:cyan_part_}{\&{cyanpart} primitive@>
18598 mp_primitive(mp, "magentapart",unary,magenta_part);
18599 @:magenta_part_}{\&{magentapart} primitive@>
18600 mp_primitive(mp, "yellowpart",unary,yellow_part);
18601 @:yellow_part_}{\&{yellowpart} primitive@>
18602 mp_primitive(mp, "blackpart",unary,black_part);
18603 @:black_part_}{\&{blackpart} primitive@>
18604 mp_primitive(mp, "greypart",unary,grey_part);
18605 @:grey_part_}{\&{greypart} primitive@>
18606 mp_primitive(mp, "colormodel",unary,color_model_part);
18607 @:color_model_part_}{\&{colormodel} primitive@>
18608 mp_primitive(mp, "fontpart",unary,font_part);
18609 @:font_part_}{\&{fontpart} primitive@>
18610 mp_primitive(mp, "textpart",unary,text_part);
18611 @:text_part_}{\&{textpart} primitive@>
18612 mp_primitive(mp, "pathpart",unary,path_part);
18613 @:path_part_}{\&{pathpart} primitive@>
18614 mp_primitive(mp, "penpart",unary,pen_part);
18615 @:pen_part_}{\&{penpart} primitive@>
18616 mp_primitive(mp, "dashpart",unary,dash_part);
18617 @:dash_part_}{\&{dashpart} primitive@>
18618 mp_primitive(mp, "sqrt",unary,sqrt_op);
18619 @:sqrt_}{\&{sqrt} primitive@>
18620 mp_primitive(mp, "mexp",unary,m_exp_op);
18621 @:m_exp_}{\&{mexp} primitive@>
18622 mp_primitive(mp, "mlog",unary,m_log_op);
18623 @:m_log_}{\&{mlog} primitive@>
18624 mp_primitive(mp, "sind",unary,sin_d_op);
18625 @:sin_d_}{\&{sind} primitive@>
18626 mp_primitive(mp, "cosd",unary,cos_d_op);
18627 @:cos_d_}{\&{cosd} primitive@>
18628 mp_primitive(mp, "floor",unary,floor_op);
18629 @:floor_}{\&{floor} primitive@>
18630 mp_primitive(mp, "uniformdeviate",unary,uniform_deviate);
18631 @:uniform_deviate_}{\&{uniformdeviate} primitive@>
18632 mp_primitive(mp, "charexists",unary,char_exists_op);
18633 @:char_exists_}{\&{charexists} primitive@>
18634 mp_primitive(mp, "fontsize",unary,font_size);
18635 @:font_size_}{\&{fontsize} primitive@>
18636 mp_primitive(mp, "llcorner",unary,ll_corner_op);
18637 @:ll_corner_}{\&{llcorner} primitive@>
18638 mp_primitive(mp, "lrcorner",unary,lr_corner_op);
18639 @:lr_corner_}{\&{lrcorner} primitive@>
18640 mp_primitive(mp, "ulcorner",unary,ul_corner_op);
18641 @:ul_corner_}{\&{ulcorner} primitive@>
18642 mp_primitive(mp, "urcorner",unary,ur_corner_op);
18643 @:ur_corner_}{\&{urcorner} primitive@>
18644 mp_primitive(mp, "arclength",unary,arc_length);
18645 @:arc_length_}{\&{arclength} primitive@>
18646 mp_primitive(mp, "angle",unary,angle_op);
18647 @:angle_}{\&{angle} primitive@>
18648 mp_primitive(mp, "cycle",cycle,cycle_op);
18649 @:cycle_}{\&{cycle} primitive@>
18650 mp_primitive(mp, "stroked",unary,stroked_op);
18651 @:stroked_}{\&{stroked} primitive@>
18652 mp_primitive(mp, "filled",unary,filled_op);
18653 @:filled_}{\&{filled} primitive@>
18654 mp_primitive(mp, "textual",unary,textual_op);
18655 @:textual_}{\&{textual} primitive@>
18656 mp_primitive(mp, "clipped",unary,clipped_op);
18657 @:clipped_}{\&{clipped} primitive@>
18658 mp_primitive(mp, "bounded",unary,bounded_op);
18659 @:bounded_}{\&{bounded} primitive@>
18660 mp_primitive(mp, "+",plus_or_minus,plus);
18661 @:+ }{\.{+} primitive@>
18662 mp_primitive(mp, "-",plus_or_minus,minus);
18663 @:- }{\.{-} primitive@>
18664 mp_primitive(mp, "*",secondary_binary,times);
18665 @:* }{\.{*} primitive@>
18666 mp_primitive(mp, "/",slash,over); mp->eqtb[frozen_slash]=mp->eqtb[mp->cur_sym];
18667 @:/ }{\.{/} primitive@>
18668 mp_primitive(mp, "++",tertiary_binary,pythag_add);
18669 @:++_}{\.{++} primitive@>
18670 mp_primitive(mp, "+-+",tertiary_binary,pythag_sub);
18671 @:+-+_}{\.{+-+} primitive@>
18672 mp_primitive(mp, "or",tertiary_binary,or_op);
18673 @:or_}{\&{or} primitive@>
18674 mp_primitive(mp, "and",and_command,and_op);
18675 @:and_}{\&{and} primitive@>
18676 mp_primitive(mp, "<",expression_binary,less_than);
18677 @:< }{\.{<} primitive@>
18678 mp_primitive(mp, "<=",expression_binary,less_or_equal);
18679 @:<=_}{\.{<=} primitive@>
18680 mp_primitive(mp, ">",expression_binary,greater_than);
18681 @:> }{\.{>} primitive@>
18682 mp_primitive(mp, ">=",expression_binary,greater_or_equal);
18683 @:>=_}{\.{>=} primitive@>
18684 mp_primitive(mp, "=",equals,equal_to);
18685 @:= }{\.{=} primitive@>
18686 mp_primitive(mp, "<>",expression_binary,unequal_to);
18687 @:<>_}{\.{<>} primitive@>
18688 mp_primitive(mp, "substring",primary_binary,substring_of);
18689 @:substring_}{\&{substring} primitive@>
18690 mp_primitive(mp, "subpath",primary_binary,subpath_of);
18691 @:subpath_}{\&{subpath} primitive@>
18692 mp_primitive(mp, "directiontime",primary_binary,direction_time_of);
18693 @:direction_time_}{\&{directiontime} primitive@>
18694 mp_primitive(mp, "point",primary_binary,point_of);
18695 @:point_}{\&{point} primitive@>
18696 mp_primitive(mp, "precontrol",primary_binary,precontrol_of);
18697 @:precontrol_}{\&{precontrol} primitive@>
18698 mp_primitive(mp, "postcontrol",primary_binary,postcontrol_of);
18699 @:postcontrol_}{\&{postcontrol} primitive@>
18700 mp_primitive(mp, "penoffset",primary_binary,pen_offset_of);
18701 @:pen_offset_}{\&{penoffset} primitive@>
18702 mp_primitive(mp, "arctime",primary_binary,arc_time_of);
18703 @:arc_time_of_}{\&{arctime} primitive@>
18704 mp_primitive(mp, "mpversion",nullary,mp_version);
18705 @:mp_verison_}{\&{mpversion} primitive@>
18706 mp_primitive(mp, "&",ampersand,concatenate);
18707 @:!!!}{\.{\&} primitive@>
18708 mp_primitive(mp, "rotated",secondary_binary,rotated_by);
18709 @:rotated_}{\&{rotated} primitive@>
18710 mp_primitive(mp, "slanted",secondary_binary,slanted_by);
18711 @:slanted_}{\&{slanted} primitive@>
18712 mp_primitive(mp, "scaled",secondary_binary,scaled_by);
18713 @:scaled_}{\&{scaled} primitive@>
18714 mp_primitive(mp, "shifted",secondary_binary,shifted_by);
18715 @:shifted_}{\&{shifted} primitive@>
18716 mp_primitive(mp, "transformed",secondary_binary,transformed_by);
18717 @:transformed_}{\&{transformed} primitive@>
18718 mp_primitive(mp, "xscaled",secondary_binary,x_scaled);
18719 @:x_scaled_}{\&{xscaled} primitive@>
18720 mp_primitive(mp, "yscaled",secondary_binary,y_scaled);
18721 @:y_scaled_}{\&{yscaled} primitive@>
18722 mp_primitive(mp, "zscaled",secondary_binary,z_scaled);
18723 @:z_scaled_}{\&{zscaled} primitive@>
18724 mp_primitive(mp, "infont",secondary_binary,in_font);
18725 @:in_font_}{\&{infont} primitive@>
18726 mp_primitive(mp, "intersectiontimes",tertiary_binary,intersect);
18727 @:intersection_times_}{\&{intersectiontimes} primitive@>
18728 mp_primitive(mp, "envelope",primary_binary,envelope_of);
18729 @:envelope_}{\&{envelope} primitive@>
18731 @ @<Cases of |print_cmd...@>=
18734 case primary_binary:
18735 case secondary_binary:
18736 case tertiary_binary:
18737 case expression_binary:
18739 case plus_or_minus:
18744 mp_print_op(mp, m);
18747 @ OK, let's look at the simplest \\{do} procedure first.
18749 @c @<Declare nullary action procedure@>;
18750 void mp_do_nullary (MP mp,quarterword c) {
18752 if ( mp->internal[mp_tracing_commands]>two )
18753 mp_show_cmd_mod(mp, nullary,c);
18755 case true_code: case false_code:
18756 mp->cur_type=mp_boolean_type; mp->cur_exp=c;
18758 case null_picture_code:
18759 mp->cur_type=mp_picture_type;
18760 mp->cur_exp=mp_get_node(mp, edge_header_size);
18761 mp_init_edges(mp, mp->cur_exp);
18763 case null_pen_code:
18764 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, 0);
18766 case normal_deviate:
18767 mp->cur_type=mp_known; mp->cur_exp=mp_norm_rand(mp);
18770 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, unity);
18773 if ( mp->job_name==NULL ) mp_open_log_file(mp);
18774 mp->cur_type=mp_string_type; mp->cur_exp=rts(mp->job_name);
18777 mp->cur_type=mp_string_type;
18778 mp->cur_exp=intern(metapost_version) ;
18780 case read_string_op:
18781 @<Read a string from the terminal@>;
18783 } /* there are no other cases */
18787 @ @<Read a string...@>=
18789 if ( mp->interaction<=mp_nonstop_mode )
18790 mp_fatal_error(mp, "*** (cannot readstring in nonstop modes)");
18791 mp_begin_file_reading(mp); name=is_read;
18792 limit=start; prompt_input("");
18793 mp_finish_read(mp);
18796 @ @<Declare nullary action procedure@>=
18797 void mp_finish_read (MP mp) { /* copy |buffer| line to |cur_exp| */
18799 str_room((int)mp->last-start);
18800 for (k=start;k<=mp->last-1;k++) {
18801 append_char(mp->buffer[k]);
18803 mp_end_file_reading(mp); mp->cur_type=mp_string_type;
18804 mp->cur_exp=mp_make_string(mp);
18807 @ Things get a bit more interesting when there's an operand. The
18808 operand to |do_unary| appears in |cur_type| and |cur_exp|.
18810 @c @<Declare unary action procedures@>;
18811 void mp_do_unary (MP mp,quarterword c) {
18812 pointer p,q,r; /* for list manipulation */
18813 integer x; /* a temporary register */
18815 if ( mp->internal[mp_tracing_commands]>two )
18816 @<Trace the current unary operation@>;
18819 if ( mp->cur_type<mp_color_type ) mp_bad_unary(mp, plus);
18822 @<Negate the current expression@>;
18824 @<Additional cases of unary operators@>;
18825 } /* there are no other cases */
18829 @ The |nice_pair| function returns |true| if both components of a pair
18832 @<Declare unary action procedures@>=
18833 boolean mp_nice_pair (MP mp,integer p, quarterword t) {
18834 if ( t==mp_pair_type ) {
18836 if ( type(x_part_loc(p))==mp_known )
18837 if ( type(y_part_loc(p))==mp_known )
18843 @ The |nice_color_or_pair| function is analogous except that it also accepts
18844 fully known colors.
18846 @<Declare unary action procedures@>=
18847 boolean mp_nice_color_or_pair (MP mp,integer p, quarterword t) {
18848 pointer q,r; /* for scanning the big node */
18849 if ( (t!=mp_pair_type)&&(t!=mp_color_type)&&(t!=mp_cmykcolor_type) ) {
18853 r=q+mp->big_node_size[type(p)];
18856 if ( type(r)!=mp_known )
18863 @ @<Declare unary action...@>=
18864 void mp_print_known_or_unknown_type (MP mp,small_number t, integer v) {
18865 mp_print_char(mp, '(');
18866 if ( t>mp_known ) mp_print(mp, "unknown numeric");
18867 else { if ( (t==mp_pair_type)||(t==mp_color_type)||(t==mp_cmykcolor_type) )
18868 if ( ! mp_nice_color_or_pair(mp, v,t) ) mp_print(mp, "unknown ");
18869 mp_print_type(mp, t);
18871 mp_print_char(mp, ')');
18874 @ @<Declare unary action...@>=
18875 void mp_bad_unary (MP mp,quarterword c) {
18876 exp_err("Not implemented: "); mp_print_op(mp, c);
18877 @.Not implemented...@>
18878 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
18879 help3("I'm afraid I don't know how to apply that operation to that")
18880 ("particular type. Continue, and I'll simply return the")
18881 ("argument (shown above) as the result of the operation.");
18882 mp_put_get_error(mp);
18885 @ @<Trace the current unary operation@>=
18887 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
18888 mp_print_op(mp, c); mp_print_char(mp, '(');
18889 mp_print_exp(mp, null,0); /* show the operand, but not verbosely */
18890 mp_print(mp, ")}"); mp_end_diagnostic(mp, false);
18893 @ Negation is easy except when the current expression
18894 is of type |independent|, or when it is a pair with one or more
18895 |independent| components.
18897 It is tempting to argue that the negative of an independent variable
18898 is an independent variable, hence we don't have to do anything when
18899 negating it. The fallacy is that other dependent variables pointing
18900 to the current expression must change the sign of their
18901 coefficients if we make no change to the current expression.
18903 Instead, we work around the problem by copying the current expression
18904 and recycling it afterwards (cf.~the |stash_in| routine).
18906 @<Negate the current expression@>=
18907 switch (mp->cur_type) {
18908 case mp_color_type:
18909 case mp_cmykcolor_type:
18911 case mp_independent:
18912 q=mp->cur_exp; mp_make_exp_copy(mp, q);
18913 if ( mp->cur_type==mp_dependent ) {
18914 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18915 } else if ( mp->cur_type<=mp_pair_type ) { /* |mp_color_type| or |mp_pair_type| */
18916 p=value(mp->cur_exp);
18917 r=p+mp->big_node_size[mp->cur_type];
18920 if ( type(r)==mp_known ) negate(value(r));
18921 else mp_negate_dep_list(mp, dep_list(r));
18923 } /* if |cur_type=mp_known| then |cur_exp=0| */
18924 mp_recycle_value(mp, q); mp_free_node(mp, q,value_node_size);
18927 case mp_proto_dependent:
18928 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18931 negate(mp->cur_exp);
18934 mp_bad_unary(mp, minus);
18938 @ @<Declare unary action...@>=
18939 void mp_negate_dep_list (MP mp,pointer p) {
18942 if ( info(p)==null ) return;
18947 @ @<Additional cases of unary operators@>=
18949 if ( mp->cur_type!=mp_boolean_type ) mp_bad_unary(mp, not_op);
18950 else mp->cur_exp=true_code+false_code-mp->cur_exp;
18953 @ @d three_sixty_units 23592960 /* that's |360*unity| */
18954 @d boolean_reset(A) if ( (A) ) mp->cur_exp=true_code; else mp->cur_exp=false_code
18956 @<Additional cases of unary operators@>=
18963 case uniform_deviate:
18965 case char_exists_op:
18966 if ( mp->cur_type!=mp_known ) {
18967 mp_bad_unary(mp, c);
18970 case sqrt_op:mp->cur_exp=mp_square_rt(mp, mp->cur_exp);break;
18971 case m_exp_op:mp->cur_exp=mp_m_exp(mp, mp->cur_exp);break;
18972 case m_log_op:mp->cur_exp=mp_m_log(mp, mp->cur_exp);break;
18975 mp_n_sin_cos(mp, (mp->cur_exp % three_sixty_units)*16);
18976 if ( c==sin_d_op ) mp->cur_exp=mp_round_fraction(mp, mp->n_sin);
18977 else mp->cur_exp=mp_round_fraction(mp, mp->n_cos);
18979 case floor_op:mp->cur_exp=mp_floor_scaled(mp, mp->cur_exp);break;
18980 case uniform_deviate:mp->cur_exp=mp_unif_rand(mp, mp->cur_exp);break;
18982 boolean_reset(odd(mp_round_unscaled(mp, mp->cur_exp)));
18983 mp->cur_type=mp_boolean_type;
18985 case char_exists_op:
18986 @<Determine if a character has been shipped out@>;
18988 } /* there are no other cases */
18992 @ @<Additional cases of unary operators@>=
18994 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) ) {
18995 p=value(mp->cur_exp);
18996 x=mp_n_arg(mp, value(x_part_loc(p)),value(y_part_loc(p)));
18997 if ( x>=0 ) mp_flush_cur_exp(mp, (x+8)/ 16);
18998 else mp_flush_cur_exp(mp, -((-x+8)/ 16));
19000 mp_bad_unary(mp, angle_op);
19004 @ If the current expression is a pair, but the context wants it to
19005 be a path, we call |pair_to_path|.
19007 @<Declare unary action...@>=
19008 void mp_pair_to_path (MP mp) {
19009 mp->cur_exp=mp_new_knot(mp);
19010 mp->cur_type=mp_path_type;
19013 @ @<Additional cases of unary operators@>=
19016 if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_transform_type) )
19017 mp_take_part(mp, c);
19018 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19019 else mp_bad_unary(mp, c);
19025 if ( mp->cur_type==mp_transform_type ) mp_take_part(mp, c);
19026 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19027 else mp_bad_unary(mp, c);
19032 if ( mp->cur_type==mp_color_type ) mp_take_part(mp, c);
19033 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19034 else mp_bad_unary(mp, c);
19040 if ( mp->cur_type==mp_cmykcolor_type) mp_take_part(mp, c);
19041 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19042 else mp_bad_unary(mp, c);
19045 if ( mp->cur_type==mp_known ) mp->cur_exp=value(c);
19046 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19047 else mp_bad_unary(mp, c);
19049 case color_model_part:
19050 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19051 else mp_bad_unary(mp, c);
19054 @ In the following procedure, |cur_exp| points to a capsule, which points to
19055 a big node. We want to delete all but one part of the big node.
19057 @<Declare unary action...@>=
19058 void mp_take_part (MP mp,quarterword c) {
19059 pointer p; /* the big node */
19060 p=value(mp->cur_exp); value(temp_val)=p; type(temp_val)=mp->cur_type;
19061 link(p)=temp_val; mp_free_node(mp, mp->cur_exp,value_node_size);
19062 mp_make_exp_copy(mp, p+mp->sector_offset[c+mp_x_part_sector-x_part]);
19063 mp_recycle_value(mp, temp_val);
19066 @ @<Initialize table entries...@>=
19067 name_type(temp_val)=mp_capsule;
19069 @ @<Additional cases of unary operators@>=
19075 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19076 else mp_bad_unary(mp, c);
19079 @ @<Declarations@>=
19080 void mp_scale_edges (MP mp);
19082 @ @<Declare unary action...@>=
19083 void mp_take_pict_part (MP mp,quarterword c) {
19084 pointer p; /* first graphical object in |cur_exp| */
19085 p=link(dummy_loc(mp->cur_exp));
19088 case x_part: case y_part: case xx_part:
19089 case xy_part: case yx_part: case yy_part:
19090 if ( type(p)==mp_text_code ) mp_flush_cur_exp(mp, text_trans_part(p+c));
19091 else goto NOT_FOUND;
19093 case red_part: case green_part: case blue_part:
19094 if ( has_color(p) ) mp_flush_cur_exp(mp, obj_color_part(p+c));
19095 else goto NOT_FOUND;
19097 case cyan_part: case magenta_part: case yellow_part:
19099 if ( has_color(p) ) {
19100 if ( color_model(p)==mp_uninitialized_model )
19101 mp_flush_cur_exp(mp, unity);
19103 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-cyan_part)));
19104 } else goto NOT_FOUND;
19107 if ( has_color(p) )
19108 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-grey_part)));
19109 else goto NOT_FOUND;
19111 case color_model_part:
19112 if ( has_color(p) ) {
19113 if ( color_model(p)==mp_uninitialized_model )
19114 mp_flush_cur_exp(mp, mp->internal[mp_default_color_model]);
19116 mp_flush_cur_exp(mp, color_model(p)*unity);
19117 } else goto NOT_FOUND;
19119 @<Handle other cases in |take_pict_part| or |goto not_found|@>;
19120 } /* all cases have been enumerated */
19124 @<Convert the current expression to a null value appropriate
19128 @ @<Handle other cases in |take_pict_part| or |goto not_found|@>=
19130 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
19132 mp_flush_cur_exp(mp, text_p(p));
19133 add_str_ref(mp->cur_exp);
19134 mp->cur_type=mp_string_type;
19138 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
19140 mp_flush_cur_exp(mp, rts(mp->font_name[font_n(p)]));
19141 add_str_ref(mp->cur_exp);
19142 mp->cur_type=mp_string_type;
19146 if ( type(p)==mp_text_code ) goto NOT_FOUND;
19147 else if ( is_stop(p) ) mp_confusion(mp, "pict");
19148 @:this can't happen pict}{\quad pict@>
19150 mp_flush_cur_exp(mp, mp_copy_path(mp, path_p(p)));
19151 mp->cur_type=mp_path_type;
19155 if ( ! has_pen(p) ) goto NOT_FOUND;
19157 if ( pen_p(p)==null ) goto NOT_FOUND;
19158 else { mp_flush_cur_exp(mp, copy_pen(pen_p(p)));
19159 mp->cur_type=mp_pen_type;
19164 if ( type(p)!=mp_stroked_code ) goto NOT_FOUND;
19165 else { if ( dash_p(p)==null ) goto NOT_FOUND;
19166 else { add_edge_ref(dash_p(p));
19167 mp->se_sf=dash_scale(p);
19168 mp->se_pic=dash_p(p);
19169 mp_scale_edges(mp);
19170 mp_flush_cur_exp(mp, mp->se_pic);
19171 mp->cur_type=mp_picture_type;
19176 @ Since |scale_edges| had to be declared |forward|, it had to be declared as a
19177 parameterless procedure even though it really takes two arguments and updates
19178 one of them. Hence the following globals are needed.
19181 pointer se_pic; /* edge header used and updated by |scale_edges| */
19182 scaled se_sf; /* the scale factor argument to |scale_edges| */
19184 @ @<Convert the current expression to a null value appropriate...@>=
19186 case text_part: case font_part:
19187 mp_flush_cur_exp(mp, rts(""));
19188 mp->cur_type=mp_string_type;
19191 mp_flush_cur_exp(mp, mp_get_node(mp, knot_node_size));
19192 left_type(mp->cur_exp)=mp_endpoint;
19193 right_type(mp->cur_exp)=mp_endpoint;
19194 link(mp->cur_exp)=mp->cur_exp;
19195 x_coord(mp->cur_exp)=0;
19196 y_coord(mp->cur_exp)=0;
19197 originator(mp->cur_exp)=mp_metapost_user;
19198 mp->cur_type=mp_path_type;
19201 mp_flush_cur_exp(mp, mp_get_pen_circle(mp, 0));
19202 mp->cur_type=mp_pen_type;
19205 mp_flush_cur_exp(mp, mp_get_node(mp, edge_header_size));
19206 mp_init_edges(mp, mp->cur_exp);
19207 mp->cur_type=mp_picture_type;
19210 mp_flush_cur_exp(mp, 0);
19214 @ @<Additional cases of unary...@>=
19216 if ( mp->cur_type!=mp_known ) {
19217 mp_bad_unary(mp, char_op);
19219 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
19220 mp->cur_type=mp_string_type;
19221 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
19225 if ( mp->cur_type!=mp_known ) {
19226 mp_bad_unary(mp, decimal);
19228 mp->old_setting=mp->selector; mp->selector=new_string;
19229 mp_print_scaled(mp, mp->cur_exp); mp->cur_exp=mp_make_string(mp);
19230 mp->selector=mp->old_setting; mp->cur_type=mp_string_type;
19236 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19237 else mp_str_to_num(mp, c);
19240 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, font_size);
19241 else @<Find the design size of the font whose name is |cur_exp|@>;
19244 @ @<Declare unary action...@>=
19245 void mp_str_to_num (MP mp,quarterword c) { /* converts a string to a number */
19246 integer n; /* accumulator */
19247 ASCII_code m; /* current character */
19248 pool_pointer k; /* index into |str_pool| */
19249 int b; /* radix of conversion */
19250 boolean bad_char; /* did the string contain an invalid digit? */
19251 if ( c==ASCII_op ) {
19252 if ( length(mp->cur_exp)==0 ) n=-1;
19253 else n=mp->str_pool[mp->str_start[mp->cur_exp]];
19255 if ( c==oct_op ) b=8; else b=16;
19256 n=0; bad_char=false;
19257 for (k=mp->str_start[mp->cur_exp];k<=str_stop(mp->cur_exp)-1;k++) {
19259 if ( (m>='0')&&(m<='9') ) m=m-'0';
19260 else if ( (m>='A')&&(m<='F') ) m=m-'A'+10;
19261 else if ( (m>='a')&&(m<='f') ) m=m-'a'+10;
19262 else { bad_char=true; m=0; };
19263 if ( m>=b ) { bad_char=true; m=0; };
19264 if ( n<32768 / b ) n=n*b+m; else n=32767;
19266 @<Give error messages if |bad_char| or |n>=4096|@>;
19268 mp_flush_cur_exp(mp, n*unity);
19271 @ @<Give error messages if |bad_char|...@>=
19273 exp_err("String contains illegal digits");
19274 @.String contains illegal digits@>
19276 help1("I zeroed out characters that weren't in the range 0..7.");
19278 help1("I zeroed out characters that weren't hex digits.");
19280 mp_put_get_error(mp);
19283 if ( mp->internal[mp_warning_check]>0 ) {
19284 print_err("Number too large (");
19285 mp_print_int(mp, n); mp_print_char(mp, ')');
19286 @.Number too large@>
19287 help2("I have trouble with numbers greater than 4095; watch out.")
19288 ("(Set warningcheck:=0 to suppress this message.)");
19289 mp_put_get_error(mp);
19293 @ The length operation is somewhat unusual in that it applies to a variety
19294 of different types of operands.
19296 @<Additional cases of unary...@>=
19298 switch (mp->cur_type) {
19299 case mp_string_type: mp_flush_cur_exp(mp, length(mp->cur_exp)*unity); break;
19300 case mp_path_type: mp_flush_cur_exp(mp, mp_path_length(mp)); break;
19301 case mp_known: mp->cur_exp=abs(mp->cur_exp); break;
19302 case mp_picture_type: mp_flush_cur_exp(mp, mp_pict_length(mp)); break;
19304 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) )
19305 mp_flush_cur_exp(mp, mp_pyth_add(mp,
19306 value(x_part_loc(value(mp->cur_exp))),
19307 value(y_part_loc(value(mp->cur_exp)))));
19308 else mp_bad_unary(mp, c);
19313 @ @<Declare unary action...@>=
19314 scaled mp_path_length (MP mp) { /* computes the length of the current path */
19315 scaled n; /* the path length so far */
19316 pointer p; /* traverser */
19318 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
19319 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
19323 @ @<Declare unary action...@>=
19324 scaled mp_pict_length (MP mp) {
19325 /* counts interior components in picture |cur_exp| */
19326 scaled n; /* the count so far */
19327 pointer p; /* traverser */
19329 p=link(dummy_loc(mp->cur_exp));
19331 if ( is_start_or_stop(p) )
19332 if ( mp_skip_1component(mp, p)==null ) p=link(p);
19333 while ( p!=null ) {
19334 skip_component(p) return n;
19341 @ Implement |turningnumber|
19343 @<Additional cases of unary...@>=
19345 if ( mp->cur_type==mp_pair_type ) mp_flush_cur_exp(mp, 0);
19346 else if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, turning_op);
19347 else if ( left_type(mp->cur_exp)==mp_endpoint )
19348 mp_flush_cur_exp(mp, 0); /* not a cyclic path */
19350 mp_flush_cur_exp(mp, mp_turn_cycles_wrapper(mp, mp->cur_exp));
19353 @ The function |an_angle| returns the value of the |angle| primitive, or $0$ if the
19354 argument is |origin|.
19356 @<Declare unary action...@>=
19357 angle mp_an_angle (MP mp,scaled xpar, scaled ypar) {
19358 if ( (! ((xpar==0) && (ypar==0))) )
19359 return mp_n_arg(mp, xpar,ypar);
19364 @ The actual turning number is (for the moment) computed in a C function
19365 that receives eight integers corresponding to the four controlling points,
19366 and returns a single angle. Besides those, we have to account for discrete
19367 moves at the actual points.
19369 @d floor(a) (a>=0 ? a : -(int)(-a))
19370 @d bezier_error (720<<20)+1
19371 @d sign(v) ((v)>0 ? 1 : ((v)<0 ? -1 : 0 ))
19373 @d out ((double)(xo>>20))
19374 @d mid ((double)(xm>>20))
19375 @d in ((double)(xi>>20))
19376 @d divisor (256*256)
19377 @d double2angle(a) (int)floor(a*256.0*256.0*16.0)
19379 @<Declare unary action...@>=
19380 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19381 integer CX,integer CY,integer DX,integer DY);
19384 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19385 integer CX,integer CY,integer DX,integer DY) {
19387 integer deltax,deltay;
19388 double ax,ay,bx,by,cx,cy,dx,dy;
19389 angle xi = 0, xo = 0, xm = 0;
19391 ax=AX/divisor; ay=AY/divisor;
19392 bx=BX/divisor; by=BY/divisor;
19393 cx=CX/divisor; cy=CY/divisor;
19394 dx=DX/divisor; dy=DY/divisor;
19396 deltax = (BX-AX); deltay = (BY-AY);
19397 if (deltax==0 && deltay == 0) { deltax=(CX-AX); deltay=(CY-AY); }
19398 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19399 xi = mp_an_angle(mp,deltax,deltay);
19401 deltax = (CX-BX); deltay = (CY-BY);
19402 xm = mp_an_angle(mp,deltax,deltay);
19404 deltax = (DX-CX); deltay = (DY-CY);
19405 if (deltax==0 && deltay == 0) { deltax=(DX-BX); deltay=(DY-BY); }
19406 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19407 xo = mp_an_angle(mp,deltax,deltay);
19409 a = (bx-ax)*(cy-by) - (cx-bx)*(by-ay); /* a = (bp-ap)x(cp-bp); */
19410 b = (bx-ax)*(dy-cy) - (by-ay)*(dx-cx);; /* b = (bp-ap)x(dp-cp);*/
19411 c = (cx-bx)*(dy-cy) - (dx-cx)*(cy-by); /* c = (cp-bp)x(dp-cp);*/
19413 if ((a==0)&&(c==0)) {
19414 res = (b==0 ? 0 : (out-in));
19415 print_roots("no roots (a)");
19416 } else if ((a==0)||(c==0)) {
19417 if ((sign(b) == sign(a)) || (sign(b) == sign(c))) {
19418 res = out-in; /* ? */
19421 else if (res>180.0)
19423 print_roots("no roots (b)");
19425 res = out-in; /* ? */
19426 print_roots("one root (a)");
19428 } else if ((sign(a)*sign(c))<0) {
19429 res = out-in; /* ? */
19432 else if (res>180.0)
19434 print_roots("one root (b)");
19436 if (sign(a) == sign(b)) {
19437 res = out-in; /* ? */
19440 else if (res>180.0)
19442 print_roots("no roots (d)");
19444 if ((b*b) == (4*a*c)) {
19445 res = bezier_error;
19446 print_roots("double root"); /* cusp */
19447 } else if ((b*b) < (4*a*c)) {
19448 res = out-in; /* ? */
19449 if (res<=0.0 &&res>-180.0)
19451 else if (res>=0.0 && res<180.0)
19453 print_roots("no roots (e)");
19458 else if (res>180.0)
19460 print_roots("two roots"); /* two inflections */
19464 return double2angle(res);
19468 @d p_nextnext link(link(p))
19470 @d seven_twenty_deg 05500000000 /* $720\cdot2^{20}$, represents $720^\circ$ */
19472 @<Declare unary action...@>=
19473 scaled mp_new_turn_cycles (MP mp,pointer c) {
19474 angle res,ang; /* the angles of intermediate results */
19475 scaled turns; /* the turn counter */
19476 pointer p; /* for running around the path */
19477 integer xp,yp; /* coordinates of next point */
19478 integer x,y; /* helper coordinates */
19479 angle in_angle,out_angle; /* helper angles */
19480 int old_setting; /* saved |selector| setting */
19484 old_setting = mp->selector; mp->selector=term_only;
19485 if ( mp->internal[mp_tracing_commands]>unity ) {
19486 mp_begin_diagnostic(mp);
19487 mp_print_nl(mp, "");
19488 mp_end_diagnostic(mp, false);
19491 xp = x_coord(p_next); yp = y_coord(p_next);
19492 ang = mp_bezier_slope(mp,x_coord(p), y_coord(p), right_x(p), right_y(p),
19493 left_x(p_next), left_y(p_next), xp, yp);
19494 if ( ang>seven_twenty_deg ) {
19495 print_err("Strange path");
19497 mp->selector=old_setting;
19501 if ( res > one_eighty_deg ) {
19502 res = res - three_sixty_deg;
19503 turns = turns + unity;
19505 if ( res <= -one_eighty_deg ) {
19506 res = res + three_sixty_deg;
19507 turns = turns - unity;
19509 /* incoming angle at next point */
19510 x = left_x(p_next); y = left_y(p_next);
19511 if ( (xp==x)&&(yp==y) ) { x = right_x(p); y = right_y(p); };
19512 if ( (xp==x)&&(yp==y) ) { x = x_coord(p); y = y_coord(p); };
19513 in_angle = mp_an_angle(mp, xp - x, yp - y);
19514 /* outgoing angle at next point */
19515 x = right_x(p_next); y = right_y(p_next);
19516 if ( (xp==x)&&(yp==y) ) { x = left_x(p_nextnext); y = left_y(p_nextnext); };
19517 if ( (xp==x)&&(yp==y) ) { x = x_coord(p_nextnext); y = y_coord(p_nextnext); };
19518 out_angle = mp_an_angle(mp, x - xp, y- yp);
19519 ang = (out_angle - in_angle);
19523 if ( res >= one_eighty_deg ) {
19524 res = res - three_sixty_deg;
19525 turns = turns + unity;
19527 if ( res <= -one_eighty_deg ) {
19528 res = res + three_sixty_deg;
19529 turns = turns - unity;
19534 mp->selector=old_setting;
19539 @ This code is based on Bogus\l{}av Jackowski's
19540 |emergency_turningnumber| macro, with some minor changes by Taco
19541 Hoekwater. The macro code looked more like this:
19543 vardef turning\_number primary p =
19544 ~~save res, ang, turns;
19546 ~~if length p <= 2:
19547 ~~~~if Angle ((point 0 of p) - (postcontrol 0 of p)) >= 0: 1 else: -1 fi
19549 ~~~~for t = 0 upto length p-1 :
19550 ~~~~~~angc := Angle ((point t+1 of p) - (point t of p))
19551 ~~~~~~~~- Angle ((point t of p) - (point t-1 of p));
19552 ~~~~~~if angc > 180: angc := angc - 360; fi;
19553 ~~~~~~if angc < -180: angc := angc + 360; fi;
19554 ~~~~~~res := res + angc;
19559 The general idea is to calculate only the sum of the angles of
19560 straight lines between the points, of a path, not worrying about cusps
19561 or self-intersections in the segments at all. If the segment is not
19562 well-behaved, the result is not necesarily correct. But the old code
19563 was not always correct either, and worse, it sometimes failed for
19564 well-behaved paths as well. All known bugs that were triggered by the
19565 original code no longer occur with this code, and it runs roughly 3
19566 times as fast because the algorithm is much simpler.
19568 @ It is possible to overflow the return value of the |turn_cycles|
19569 function when the path is sufficiently long and winding, but I am not
19570 going to bother testing for that. In any case, it would only return
19571 the looped result value, which is not a big problem.
19573 The macro code for the repeat loop was a bit nicer to look
19574 at than the pascal code, because it could use |point -1 of p|. In
19575 pascal, the fastest way to loop around the path is not to look
19576 backward once, but forward twice. These defines help hide the trick.
19578 @d p_to link(link(p))
19582 @<Declare unary action...@>=
19583 scaled mp_turn_cycles (MP mp,pointer c) {
19584 angle res,ang; /* the angles of intermediate results */
19585 scaled turns; /* the turn counter */
19586 pointer p; /* for running around the path */
19587 res=0; turns= 0; p=c;
19589 ang = mp_an_angle (mp, x_coord(p_to) - x_coord(p_here),
19590 y_coord(p_to) - y_coord(p_here))
19591 - mp_an_angle (mp, x_coord(p_here) - x_coord(p_from),
19592 y_coord(p_here) - y_coord(p_from));
19595 if ( res >= three_sixty_deg ) {
19596 res = res - three_sixty_deg;
19597 turns = turns + unity;
19599 if ( res <= -three_sixty_deg ) {
19600 res = res + three_sixty_deg;
19601 turns = turns - unity;
19608 @ @<Declare unary action...@>=
19609 scaled mp_turn_cycles_wrapper (MP mp,pointer c) {
19611 scaled saved_t_o; /* tracing\_online saved */
19612 if ( (link(c)==c)||(link(link(c))==c) ) {
19613 if ( mp_an_angle (mp, x_coord(c) - right_x(c), y_coord(c) - right_y(c)) > 0 )
19618 nval = mp_new_turn_cycles(mp, c);
19619 oval = mp_turn_cycles(mp, c);
19620 if ( nval!=oval ) {
19621 saved_t_o=mp->internal[mp_tracing_online];
19622 mp->internal[mp_tracing_online]=unity;
19623 mp_begin_diagnostic(mp);
19624 mp_print_nl (mp, "Warning: the turningnumber algorithms do not agree."
19625 " The current computed value is ");
19626 mp_print_scaled(mp, nval);
19627 mp_print(mp, ", but the 'connect-the-dots' algorithm returned ");
19628 mp_print_scaled(mp, oval);
19629 mp_end_diagnostic(mp, false);
19630 mp->internal[mp_tracing_online]=saved_t_o;
19636 @ @<Declare unary action...@>=
19637 scaled mp_count_turns (MP mp,pointer c) {
19638 pointer p; /* a knot in envelope spec |c| */
19639 integer t; /* total pen offset changes counted */
19642 t=t+info(p)-zero_off;
19645 return ((t / 3)*unity);
19648 @ @d type_range(A,B) {
19649 if ( (mp->cur_type>=(A)) && (mp->cur_type<=(B)) )
19650 mp_flush_cur_exp(mp, true_code);
19651 else mp_flush_cur_exp(mp, false_code);
19652 mp->cur_type=mp_boolean_type;
19655 if ( mp->cur_type==(A) ) mp_flush_cur_exp(mp, true_code);
19656 else mp_flush_cur_exp(mp, false_code);
19657 mp->cur_type=mp_boolean_type;
19660 @<Additional cases of unary operators@>=
19661 case mp_boolean_type:
19662 type_range(mp_boolean_type,mp_unknown_boolean); break;
19663 case mp_string_type:
19664 type_range(mp_string_type,mp_unknown_string); break;
19666 type_range(mp_pen_type,mp_unknown_pen); break;
19668 type_range(mp_path_type,mp_unknown_path); break;
19669 case mp_picture_type:
19670 type_range(mp_picture_type,mp_unknown_picture); break;
19671 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
19673 type_test(c); break;
19674 case mp_numeric_type:
19675 type_range(mp_known,mp_independent); break;
19676 case known_op: case unknown_op:
19677 mp_test_known(mp, c); break;
19679 @ @<Declare unary action procedures@>=
19680 void mp_test_known (MP mp,quarterword c) {
19681 int b; /* is the current expression known? */
19682 pointer p,q; /* locations in a big node */
19684 switch (mp->cur_type) {
19685 case mp_vacuous: case mp_boolean_type: case mp_string_type:
19686 case mp_pen_type: case mp_path_type: case mp_picture_type:
19690 case mp_transform_type:
19691 case mp_color_type: case mp_cmykcolor_type: case mp_pair_type:
19692 p=value(mp->cur_exp);
19693 q=p+mp->big_node_size[mp->cur_type];
19696 if ( type(q)!=mp_known )
19705 if ( c==known_op ) mp_flush_cur_exp(mp, b);
19706 else mp_flush_cur_exp(mp, true_code+false_code-b);
19707 mp->cur_type=mp_boolean_type;
19710 @ @<Additional cases of unary operators@>=
19712 if ( mp->cur_type!=mp_path_type ) mp_flush_cur_exp(mp, false_code);
19713 else if ( left_type(mp->cur_exp)!=mp_endpoint ) mp_flush_cur_exp(mp, true_code);
19714 else mp_flush_cur_exp(mp, false_code);
19715 mp->cur_type=mp_boolean_type;
19718 @ @<Additional cases of unary operators@>=
19720 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19721 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, arc_length);
19722 else mp_flush_cur_exp(mp, mp_get_arc_length(mp, mp->cur_exp));
19725 @ Here we use the fact that |c-filled_op+fill_code| is the desired graphical
19727 @^data structure assumptions@>
19729 @<Additional cases of unary operators@>=
19735 if ( mp->cur_type!=mp_picture_type ) mp_flush_cur_exp(mp, false_code);
19736 else if ( link(dummy_loc(mp->cur_exp))==null ) mp_flush_cur_exp(mp, false_code);
19737 else if ( type(link(dummy_loc(mp->cur_exp)))==c+mp_fill_code-filled_op )
19738 mp_flush_cur_exp(mp, true_code);
19739 else mp_flush_cur_exp(mp, false_code);
19740 mp->cur_type=mp_boolean_type;
19743 @ @<Additional cases of unary operators@>=
19745 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19746 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, make_pen_op);
19748 mp->cur_type=mp_pen_type;
19749 mp->cur_exp=mp_make_pen(mp, mp->cur_exp,true);
19753 if ( mp->cur_type!=mp_pen_type ) mp_bad_unary(mp, make_path_op);
19755 mp->cur_type=mp_path_type;
19756 mp_make_path(mp, mp->cur_exp);
19760 if ( mp->cur_type==mp_path_type ) {
19761 p=mp_htap_ypoc(mp, mp->cur_exp);
19762 if ( right_type(p)==mp_endpoint ) p=link(p);
19763 mp_toss_knot_list(mp, mp->cur_exp); mp->cur_exp=p;
19764 } else if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19765 else mp_bad_unary(mp, reverse);
19768 @ The |pair_value| routine changes the current expression to a
19769 given ordered pair of values.
19771 @<Declare unary action procedures@>=
19772 void mp_pair_value (MP mp,scaled x, scaled y) {
19773 pointer p; /* a pair node */
19774 p=mp_get_node(mp, value_node_size);
19775 mp_flush_cur_exp(mp, p); mp->cur_type=mp_pair_type;
19776 type(p)=mp_pair_type; name_type(p)=mp_capsule; mp_init_big_node(mp, p);
19778 type(x_part_loc(p))=mp_known; value(x_part_loc(p))=x;
19779 type(y_part_loc(p))=mp_known; value(y_part_loc(p))=y;
19782 @ @<Additional cases of unary operators@>=
19784 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ll_corner_op);
19785 else mp_pair_value(mp, minx,miny);
19788 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, lr_corner_op);
19789 else mp_pair_value(mp, maxx,miny);
19792 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ul_corner_op);
19793 else mp_pair_value(mp, minx,maxy);
19796 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ur_corner_op);
19797 else mp_pair_value(mp, maxx,maxy);
19800 @ Here is a function that sets |minx|, |maxx|, |miny|, |maxy| to the bounding
19801 box of the current expression. The boolean result is |false| if the expression
19802 has the wrong type.
19804 @<Declare unary action procedures@>=
19805 boolean mp_get_cur_bbox (MP mp) {
19806 switch (mp->cur_type) {
19807 case mp_picture_type:
19808 mp_set_bbox(mp, mp->cur_exp,true);
19809 if ( minx_val(mp->cur_exp)>maxx_val(mp->cur_exp) ) {
19810 minx=0; maxx=0; miny=0; maxy=0;
19812 minx=minx_val(mp->cur_exp);
19813 maxx=maxx_val(mp->cur_exp);
19814 miny=miny_val(mp->cur_exp);
19815 maxy=maxy_val(mp->cur_exp);
19819 mp_path_bbox(mp, mp->cur_exp);
19822 mp_pen_bbox(mp, mp->cur_exp);
19830 @ @<Additional cases of unary operators@>=
19832 case close_from_op:
19833 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19834 else mp_do_read_or_close(mp,c);
19837 @ Here is a routine that interprets |cur_exp| as a file name and tries to read
19838 a line from the file or to close the file.
19840 @<Declare unary action procedures@>=
19841 void mp_do_read_or_close (MP mp,quarterword c) {
19842 readf_index n,n0; /* indices for searching |rd_fname| */
19843 @<Find the |n| where |rd_fname[n]=cur_exp|; if |cur_exp| must be inserted,
19844 call |start_read_input| and |goto found| or |not_found|@>;
19845 mp_begin_file_reading(mp);
19847 if ( mp_input_ln(mp, mp->rd_file[n] ) )
19849 mp_end_file_reading(mp);
19851 @<Record the end of file and set |cur_exp| to a dummy value@>;
19854 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
19857 mp_flush_cur_exp(mp, 0);
19858 mp_finish_read(mp);
19861 @ Free slots in the |rd_file| and |rd_fname| arrays are marked with NULL's in
19864 @<Find the |n| where |rd_fname[n]=cur_exp|...@>=
19869 fn = str(mp->cur_exp);
19870 while (mp_xstrcmp(fn,mp->rd_fname[n])!=0) {
19873 } else if ( c==close_from_op ) {
19876 if ( n0==mp->read_files ) {
19877 if ( mp->read_files<mp->max_read_files ) {
19878 incr(mp->read_files);
19883 l = mp->max_read_files + (mp->max_read_files>>2);
19884 rd_file = xmalloc((l+1), sizeof(void *));
19885 rd_fname = xmalloc((l+1), sizeof(char *));
19886 for (k=0;k<=l;k++) {
19887 if (k<=mp->max_read_files) {
19888 rd_file[k]=mp->rd_file[k];
19889 rd_fname[k]=mp->rd_fname[k];
19895 xfree(mp->rd_file); xfree(mp->rd_fname);
19896 mp->max_read_files = l;
19897 mp->rd_file = rd_file;
19898 mp->rd_fname = rd_fname;
19902 if ( mp_start_read_input(mp,fn,n) )
19907 if ( mp->rd_fname[n]==NULL ) { n0=n; }
19909 if ( c==close_from_op ) {
19910 (mp->close_file)(mp->rd_file[n]);
19915 @ @<Record the end of file and set |cur_exp| to a dummy value@>=
19916 xfree(mp->rd_fname[n]);
19917 mp->rd_fname[n]=NULL;
19918 if ( n==mp->read_files-1 ) mp->read_files=n;
19919 if ( c==close_from_op )
19921 mp_flush_cur_exp(mp, mp->eof_line);
19922 mp->cur_type=mp_string_type
19924 @ The string denoting end-of-file is a one-byte string at position zero, by definition
19927 str_number eof_line;
19932 @ Finally, we have the operations that combine a capsule~|p|
19933 with the current expression.
19935 @c @<Declare binary action procedures@>;
19936 void mp_do_binary (MP mp,pointer p, quarterword c) {
19937 pointer q,r,rr; /* for list manipulation */
19938 pointer old_p,old_exp; /* capsules to recycle */
19939 integer v; /* for numeric manipulation */
19941 if ( mp->internal[mp_tracing_commands]>two ) {
19942 @<Trace the current binary operation@>;
19944 @<Sidestep |independent| cases in capsule |p|@>;
19945 @<Sidestep |independent| cases in the current expression@>;
19947 case plus: case minus:
19948 @<Add or subtract the current expression from |p|@>;
19950 @<Additional cases of binary operators@>;
19951 }; /* there are no other cases */
19952 mp_recycle_value(mp, p);
19953 mp_free_node(mp, p,value_node_size); /* |return| to avoid this */
19955 @<Recycle any sidestepped |independent| capsules@>;
19958 @ @<Declare binary action...@>=
19959 void mp_bad_binary (MP mp,pointer p, quarterword c) {
19960 mp_disp_err(mp, p,"");
19961 exp_err("Not implemented: ");
19962 @.Not implemented...@>
19963 if ( c>=min_of ) mp_print_op(mp, c);
19964 mp_print_known_or_unknown_type(mp, type(p),p);
19965 if ( c>=min_of ) mp_print(mp, "of"); else mp_print_op(mp, c);
19966 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
19967 help3("I'm afraid I don't know how to apply that operation to that")
19968 ("combination of types. Continue, and I'll return the second")
19969 ("argument (see above) as the result of the operation.");
19970 mp_put_get_error(mp);
19972 void mp_bad_envelope_pen (MP mp) {
19973 mp_disp_err(mp, null,"");
19974 exp_err("Not implemented: envelope(elliptical pen)of(path)");
19975 @.Not implemented...@>
19976 help3("I'm afraid I don't know how to apply that operation to that")
19977 ("combination of types. Continue, and I'll return the second")
19978 ("argument (see above) as the result of the operation.");
19979 mp_put_get_error(mp);
19982 @ @<Trace the current binary operation@>=
19984 mp_begin_diagnostic(mp); mp_print_nl(mp, "{(");
19985 mp_print_exp(mp,p,0); /* show the operand, but not verbosely */
19986 mp_print_char(mp,')'); mp_print_op(mp,c); mp_print_char(mp,'(');
19987 mp_print_exp(mp,null,0); mp_print(mp,")}");
19988 mp_end_diagnostic(mp, false);
19991 @ Several of the binary operations are potentially complicated by the
19992 fact that |independent| values can sneak into capsules. For example,
19993 we've seen an instance of this difficulty in the unary operation
19994 of negation. In order to reduce the number of cases that need to be
19995 handled, we first change the two operands (if necessary)
19996 to rid them of |independent| components. The original operands are
19997 put into capsules called |old_p| and |old_exp|, which will be
19998 recycled after the binary operation has been safely carried out.
20000 @<Recycle any sidestepped |independent| capsules@>=
20001 if ( old_p!=null ) {
20002 mp_recycle_value(mp, old_p); mp_free_node(mp, old_p,value_node_size);
20004 if ( old_exp!=null ) {
20005 mp_recycle_value(mp, old_exp); mp_free_node(mp, old_exp,value_node_size);
20008 @ A big node is considered to be ``tarnished'' if it contains at least one
20009 independent component. We will define a simple function called `|tarnished|'
20010 that returns |null| if and only if its argument is not tarnished.
20012 @<Sidestep |independent| cases in capsule |p|@>=
20014 case mp_transform_type:
20015 case mp_color_type:
20016 case mp_cmykcolor_type:
20018 old_p=mp_tarnished(mp, p);
20020 case mp_independent: old_p=mp_void; break;
20021 default: old_p=null; break;
20023 if ( old_p!=null ) {
20024 q=mp_stash_cur_exp(mp); old_p=p; mp_make_exp_copy(mp, old_p);
20025 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
20028 @ @<Sidestep |independent| cases in the current expression@>=
20029 switch (mp->cur_type) {
20030 case mp_transform_type:
20031 case mp_color_type:
20032 case mp_cmykcolor_type:
20034 old_exp=mp_tarnished(mp, mp->cur_exp);
20036 case mp_independent:old_exp=mp_void; break;
20037 default: old_exp=null; break;
20039 if ( old_exp!=null ) {
20040 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
20043 @ @<Declare binary action...@>=
20044 pointer mp_tarnished (MP mp,pointer p) {
20045 pointer q; /* beginning of the big node */
20046 pointer r; /* current position in the big node */
20047 q=value(p); r=q+mp->big_node_size[type(p)];
20050 if ( type(r)==mp_independent ) return mp_void;
20055 @ @<Add or subtract the current expression from |p|@>=
20056 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
20057 mp_bad_binary(mp, p,c);
20059 if ((mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
20060 mp_add_or_subtract(mp, p,null,c);
20062 if ( mp->cur_type!=type(p) ) {
20063 mp_bad_binary(mp, p,c);
20065 q=value(p); r=value(mp->cur_exp);
20066 rr=r+mp->big_node_size[mp->cur_type];
20068 mp_add_or_subtract(mp, q,r,c);
20075 @ The first argument to |add_or_subtract| is the location of a value node
20076 in a capsule or pair node that will soon be recycled. The second argument
20077 is either a location within a pair or transform node of |cur_exp|,
20078 or it is null (which means that |cur_exp| itself should be the second
20079 argument). The third argument is either |plus| or |minus|.
20081 The sum or difference of the numeric quantities will replace the second
20082 operand. Arithmetic overflow may go undetected; users aren't supposed to
20083 be monkeying around with really big values.
20085 @<Declare binary action...@>=
20086 @<Declare the procedure called |dep_finish|@>;
20087 void mp_add_or_subtract (MP mp,pointer p, pointer q, quarterword c) {
20088 small_number s,t; /* operand types */
20089 pointer r; /* list traverser */
20090 integer v; /* second operand value */
20093 if ( t<mp_dependent ) v=mp->cur_exp; else v=dep_list(mp->cur_exp);
20096 if ( t<mp_dependent ) v=value(q); else v=dep_list(q);
20098 if ( t==mp_known ) {
20099 if ( c==minus ) negate(v);
20100 if ( type(p)==mp_known ) {
20101 v=mp_slow_add(mp, value(p),v);
20102 if ( q==null ) mp->cur_exp=v; else value(q)=v;
20105 @<Add a known value to the constant term of |dep_list(p)|@>;
20107 if ( c==minus ) mp_negate_dep_list(mp, v);
20108 @<Add operand |p| to the dependency list |v|@>;
20112 @ @<Add a known value to the constant term of |dep_list(p)|@>=
20114 while ( info(r)!=null ) r=link(r);
20115 value(r)=mp_slow_add(mp, value(r),v);
20117 q=mp_get_node(mp, value_node_size); mp->cur_exp=q; mp->cur_type=type(p);
20118 name_type(q)=mp_capsule;
20120 dep_list(q)=dep_list(p); type(q)=type(p);
20121 prev_dep(q)=prev_dep(p); link(prev_dep(p))=q;
20122 type(p)=mp_known; /* this will keep the recycler from collecting non-garbage */
20124 @ We prefer |dependent| lists to |mp_proto_dependent| ones, because it is
20125 nice to retain the extra accuracy of |fraction| coefficients.
20126 But we have to handle both kinds, and mixtures too.
20128 @<Add operand |p| to the dependency list |v|@>=
20129 if ( type(p)==mp_known ) {
20130 @<Add the known |value(p)| to the constant term of |v|@>;
20132 s=type(p); r=dep_list(p);
20133 if ( t==mp_dependent ) {
20134 if ( s==mp_dependent ) {
20135 if ( mp_max_coef(mp, r)+mp_max_coef(mp, v)<coef_bound )
20136 v=mp_p_plus_q(mp, v,r,mp_dependent); goto DONE;
20137 } /* |fix_needed| will necessarily be false */
20138 t=mp_proto_dependent;
20139 v=mp_p_over_v(mp, v,unity,mp_dependent,mp_proto_dependent);
20141 if ( s==mp_proto_dependent ) v=mp_p_plus_q(mp, v,r,mp_proto_dependent);
20142 else v=mp_p_plus_fq(mp, v,unity,r,mp_proto_dependent,mp_dependent);
20144 @<Output the answer, |v| (which might have become |known|)@>;
20147 @ @<Add the known |value(p)| to the constant term of |v|@>=
20149 while ( info(v)!=null ) v=link(v);
20150 value(v)=mp_slow_add(mp, value(p),value(v));
20153 @ @<Output the answer, |v| (which might have become |known|)@>=
20154 if ( q!=null ) mp_dep_finish(mp, v,q,t);
20155 else { mp->cur_type=t; mp_dep_finish(mp, v,null,t); }
20157 @ Here's the current situation: The dependency list |v| of type |t|
20158 should either be put into the current expression (if |q=null|) or
20159 into location |q| within a pair node (otherwise). The destination (|cur_exp|
20160 or |q|) formerly held a dependency list with the same
20161 final pointer as the list |v|.
20163 @<Declare the procedure called |dep_finish|@>=
20164 void mp_dep_finish (MP mp, pointer v, pointer q, small_number t) {
20165 pointer p; /* the destination */
20166 scaled vv; /* the value, if it is |known| */
20167 if ( q==null ) p=mp->cur_exp; else p=q;
20168 dep_list(p)=v; type(p)=t;
20169 if ( info(v)==null ) {
20172 mp_flush_cur_exp(mp, vv);
20174 mp_recycle_value(mp, p); type(q)=mp_known; value(q)=vv;
20176 } else if ( q==null ) {
20179 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20182 @ Let's turn now to the six basic relations of comparison.
20184 @<Additional cases of binary operators@>=
20185 case less_than: case less_or_equal: case greater_than:
20186 case greater_or_equal: case equal_to: case unequal_to:
20187 check_arith; /* at this point |arith_error| should be |false|? */
20188 if ( (mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
20189 mp_add_or_subtract(mp, p,null,minus); /* |cur_exp:=(p)-cur_exp| */
20190 } else if ( mp->cur_type!=type(p) ) {
20191 mp_bad_binary(mp, p,c); goto DONE;
20192 } else if ( mp->cur_type==mp_string_type ) {
20193 mp_flush_cur_exp(mp, mp_str_vs_str(mp, value(p),mp->cur_exp));
20194 } else if ((mp->cur_type==mp_unknown_string)||
20195 (mp->cur_type==mp_unknown_boolean) ) {
20196 @<Check if unknowns have been equated@>;
20197 } else if ( (mp->cur_type<=mp_pair_type)&&(mp->cur_type>=mp_transform_type)) {
20198 @<Reduce comparison of big nodes to comparison of scalars@>;
20199 } else if ( mp->cur_type==mp_boolean_type ) {
20200 mp_flush_cur_exp(mp, mp->cur_exp-value(p));
20202 mp_bad_binary(mp, p,c); goto DONE;
20204 @<Compare the current expression with zero@>;
20206 mp->arith_error=false; /* ignore overflow in comparisons */
20209 @ @<Compare the current expression with zero@>=
20210 if ( mp->cur_type!=mp_known ) {
20211 if ( mp->cur_type<mp_known ) {
20212 mp_disp_err(mp, p,"");
20213 help1("The quantities shown above have not been equated.")
20215 help2("Oh dear. I can\'t decide if the expression above is positive,")
20216 ("negative, or zero. So this comparison test won't be `true'.");
20218 exp_err("Unknown relation will be considered false");
20219 @.Unknown relation...@>
20220 mp_put_get_flush_error(mp, false_code);
20223 case less_than: boolean_reset(mp->cur_exp<0); break;
20224 case less_or_equal: boolean_reset(mp->cur_exp<=0); break;
20225 case greater_than: boolean_reset(mp->cur_exp>0); break;
20226 case greater_or_equal: boolean_reset(mp->cur_exp>=0); break;
20227 case equal_to: boolean_reset(mp->cur_exp==0); break;
20228 case unequal_to: boolean_reset(mp->cur_exp!=0); break;
20229 }; /* there are no other cases */
20231 mp->cur_type=mp_boolean_type
20233 @ When two unknown strings are in the same ring, we know that they are
20234 equal. Otherwise, we don't know whether they are equal or not, so we
20237 @<Check if unknowns have been equated@>=
20239 q=value(mp->cur_exp);
20240 while ( (q!=mp->cur_exp)&&(q!=p) ) q=value(q);
20241 if ( q==p ) mp_flush_cur_exp(mp, 0);
20244 @ @<Reduce comparison of big nodes to comparison of scalars@>=
20246 q=value(p); r=value(mp->cur_exp);
20247 rr=r+mp->big_node_size[mp->cur_type]-2;
20248 while (1) { mp_add_or_subtract(mp, q,r,minus);
20249 if ( type(r)!=mp_known ) break;
20250 if ( value(r)!=0 ) break;
20251 if ( r==rr ) break;
20254 mp_take_part(mp, name_type(r)+x_part-mp_x_part_sector);
20257 @ Here we use the sneaky fact that |and_op-false_code=or_op-true_code|.
20259 @<Additional cases of binary operators@>=
20262 if ( (type(p)!=mp_boolean_type)||(mp->cur_type!=mp_boolean_type) )
20263 mp_bad_binary(mp, p,c);
20264 else if ( value(p)==c+false_code-and_op ) mp->cur_exp=value(p);
20267 @ @<Additional cases of binary operators@>=
20269 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
20270 mp_bad_binary(mp, p,times);
20271 } else if ( (mp->cur_type==mp_known)||(type(p)==mp_known) ) {
20272 @<Multiply when at least one operand is known@>;
20273 } else if ( (mp_nice_color_or_pair(mp, p,type(p))&&(mp->cur_type>mp_pair_type))
20274 ||(mp_nice_color_or_pair(mp, mp->cur_exp,mp->cur_type)&&
20275 (type(p)>mp_pair_type)) ) {
20276 mp_hard_times(mp, p); return;
20278 mp_bad_binary(mp, p,times);
20282 @ @<Multiply when at least one operand is known@>=
20284 if ( type(p)==mp_known ) {
20285 v=value(p); mp_free_node(mp, p,value_node_size);
20287 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20289 if ( mp->cur_type==mp_known ) {
20290 mp->cur_exp=mp_take_scaled(mp, mp->cur_exp,v);
20291 } else if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_color_type)||
20292 (mp->cur_type==mp_cmykcolor_type) ) {
20293 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20295 p=p-2; mp_dep_mult(mp, p,v,true);
20296 } while (p!=value(mp->cur_exp));
20298 mp_dep_mult(mp, null,v,true);
20303 @ @<Declare binary action...@>=
20304 void mp_dep_mult (MP mp,pointer p, integer v, boolean v_is_scaled) {
20305 pointer q; /* the dependency list being multiplied by |v| */
20306 small_number s,t; /* its type, before and after */
20309 } else if ( type(p)!=mp_known ) {
20312 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
20313 else value(p)=mp_take_fraction(mp, value(p),v);
20316 t=type(q); q=dep_list(q); s=t;
20317 if ( t==mp_dependent ) if ( v_is_scaled )
20318 if (mp_ab_vs_cd(mp, mp_max_coef(mp,q),abs(v),coef_bound-1,unity)>=0 )
20319 t=mp_proto_dependent;
20320 q=mp_p_times_v(mp, q,v,s,t,v_is_scaled);
20321 mp_dep_finish(mp, q,p,t);
20324 @ Here is a routine that is similar to |times|; but it is invoked only
20325 internally, when |v| is a |fraction| whose magnitude is at most~1,
20326 and when |cur_type>=mp_color_type|.
20328 @c void mp_frac_mult (MP mp,scaled n, scaled d) {
20329 /* multiplies |cur_exp| by |n/d| */
20330 pointer p; /* a pair node */
20331 pointer old_exp; /* a capsule to recycle */
20332 fraction v; /* |n/d| */
20333 if ( mp->internal[mp_tracing_commands]>two ) {
20334 @<Trace the fraction multiplication@>;
20336 switch (mp->cur_type) {
20337 case mp_transform_type:
20338 case mp_color_type:
20339 case mp_cmykcolor_type:
20341 old_exp=mp_tarnished(mp, mp->cur_exp);
20343 case mp_independent: old_exp=mp_void; break;
20344 default: old_exp=null; break;
20346 if ( old_exp!=null ) {
20347 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
20349 v=mp_make_fraction(mp, n,d);
20350 if ( mp->cur_type==mp_known ) {
20351 mp->cur_exp=mp_take_fraction(mp, mp->cur_exp,v);
20352 } else if ( mp->cur_type<=mp_pair_type ) {
20353 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20356 mp_dep_mult(mp, p,v,false);
20357 } while (p!=value(mp->cur_exp));
20359 mp_dep_mult(mp, null,v,false);
20361 if ( old_exp!=null ) {
20362 mp_recycle_value(mp, old_exp);
20363 mp_free_node(mp, old_exp,value_node_size);
20367 @ @<Trace the fraction multiplication@>=
20369 mp_begin_diagnostic(mp);
20370 mp_print_nl(mp, "{("); mp_print_scaled(mp,n); mp_print_char(mp,'/');
20371 mp_print_scaled(mp,d); mp_print(mp,")*("); mp_print_exp(mp,null,0);
20373 mp_end_diagnostic(mp, false);
20376 @ The |hard_times| routine multiplies a nice color or pair by a dependency list.
20378 @<Declare binary action procedures@>=
20379 void mp_hard_times (MP mp,pointer p) {
20380 pointer q; /* a copy of the dependent variable |p| */
20381 pointer r; /* a component of the big node for the nice color or pair */
20382 scaled v; /* the known value for |r| */
20383 if ( type(p)<=mp_pair_type ) {
20384 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p); p=q;
20385 }; /* now |cur_type=mp_pair_type| or |cur_type=mp_color_type| */
20386 r=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20391 if ( r==value(mp->cur_exp) )
20393 mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(p)));
20394 mp_dep_mult(mp, r,v,true);
20396 mp->mem[value_loc(r)]=mp->mem[value_loc(p)];
20397 link(prev_dep(p))=r;
20398 mp_free_node(mp, p,value_node_size);
20399 mp_dep_mult(mp, r,v,true);
20402 @ @<Additional cases of binary operators@>=
20404 if ( (mp->cur_type!=mp_known)||(type(p)<mp_color_type) ) {
20405 mp_bad_binary(mp, p,over);
20407 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20409 @<Squeal about division by zero@>;
20411 if ( mp->cur_type==mp_known ) {
20412 mp->cur_exp=mp_make_scaled(mp, mp->cur_exp,v);
20413 } else if ( mp->cur_type<=mp_pair_type ) {
20414 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20416 p=p-2; mp_dep_div(mp, p,v);
20417 } while (p!=value(mp->cur_exp));
20419 mp_dep_div(mp, null,v);
20426 @ @<Declare binary action...@>=
20427 void mp_dep_div (MP mp,pointer p, scaled v) {
20428 pointer q; /* the dependency list being divided by |v| */
20429 small_number s,t; /* its type, before and after */
20430 if ( p==null ) q=mp->cur_exp;
20431 else if ( type(p)!=mp_known ) q=p;
20432 else { value(p)=mp_make_scaled(mp, value(p),v); return; };
20433 t=type(q); q=dep_list(q); s=t;
20434 if ( t==mp_dependent )
20435 if ( mp_ab_vs_cd(mp, mp_max_coef(mp,q),unity,coef_bound-1,abs(v))>=0 )
20436 t=mp_proto_dependent;
20437 q=mp_p_over_v(mp, q,v,s,t);
20438 mp_dep_finish(mp, q,p,t);
20441 @ @<Squeal about division by zero@>=
20443 exp_err("Division by zero");
20444 @.Division by zero@>
20445 help2("You're trying to divide the quantity shown above the error")
20446 ("message by zero. I'm going to divide it by one instead.");
20447 mp_put_get_error(mp);
20450 @ @<Additional cases of binary operators@>=
20453 if ( (mp->cur_type==mp_known)&&(type(p)==mp_known) ) {
20454 if ( c==pythag_add ) mp->cur_exp=mp_pyth_add(mp, value(p),mp->cur_exp);
20455 else mp->cur_exp=mp_pyth_sub(mp, value(p),mp->cur_exp);
20456 } else mp_bad_binary(mp, p,c);
20459 @ The next few sections of the program deal with affine transformations
20460 of coordinate data.
20462 @<Additional cases of binary operators@>=
20463 case rotated_by: case slanted_by:
20464 case scaled_by: case shifted_by: case transformed_by:
20465 case x_scaled: case y_scaled: case z_scaled:
20466 if ( type(p)==mp_path_type ) {
20467 path_trans(c,p); return;
20468 } else if ( type(p)==mp_pen_type ) {
20470 mp->cur_exp=mp_convex_hull(mp, mp->cur_exp);
20471 /* rounding error could destroy convexity */
20473 } else if ( (type(p)==mp_pair_type)||(type(p)==mp_transform_type) ) {
20474 mp_big_trans(mp, p,c);
20475 } else if ( type(p)==mp_picture_type ) {
20476 mp_do_edges_trans(mp, p,c); return;
20478 mp_bad_binary(mp, p,c);
20482 @ Let |c| be one of the eight transform operators. The procedure call
20483 |set_up_trans(c)| first changes |cur_exp| to a transform that corresponds to
20484 |c| and the original value of |cur_exp|. (In particular, |cur_exp| doesn't
20485 change at all if |c=transformed_by|.)
20487 Then, if all components of the resulting transform are |known|, they are
20488 moved to the global variables |txx|, |txy|, |tyx|, |tyy|, |tx|, |ty|;
20489 and |cur_exp| is changed to the known value zero.
20491 @<Declare binary action...@>=
20492 void mp_set_up_trans (MP mp,quarterword c) {
20493 pointer p,q,r; /* list manipulation registers */
20494 if ( (c!=transformed_by)||(mp->cur_type!=mp_transform_type) ) {
20495 @<Put the current transform into |cur_exp|@>;
20497 @<If the current transform is entirely known, stash it in global variables;
20498 otherwise |return|@>;
20507 scaled ty; /* current transform coefficients */
20509 @ @<Put the current transform...@>=
20511 p=mp_stash_cur_exp(mp);
20512 mp->cur_exp=mp_id_transform(mp);
20513 mp->cur_type=mp_transform_type;
20514 q=value(mp->cur_exp);
20516 @<For each of the eight cases, change the relevant fields of |cur_exp|
20518 but do nothing if capsule |p| doesn't have the appropriate type@>;
20519 }; /* there are no other cases */
20520 mp_disp_err(mp, p,"Improper transformation argument");
20521 @.Improper transformation argument@>
20522 help3("The expression shown above has the wrong type,")
20523 ("so I can\'t transform anything using it.")
20524 ("Proceed, and I'll omit the transformation.");
20525 mp_put_get_error(mp);
20527 mp_recycle_value(mp, p);
20528 mp_free_node(mp, p,value_node_size);
20531 @ @<If the current transform is entirely known, ...@>=
20532 q=value(mp->cur_exp); r=q+transform_node_size;
20535 if ( type(r)!=mp_known ) return;
20537 mp->txx=value(xx_part_loc(q));
20538 mp->txy=value(xy_part_loc(q));
20539 mp->tyx=value(yx_part_loc(q));
20540 mp->tyy=value(yy_part_loc(q));
20541 mp->tx=value(x_part_loc(q));
20542 mp->ty=value(y_part_loc(q));
20543 mp_flush_cur_exp(mp, 0)
20545 @ @<For each of the eight cases...@>=
20547 if ( type(p)==mp_known )
20548 @<Install sines and cosines, then |goto done|@>;
20551 if ( type(p)>mp_pair_type ) {
20552 mp_install(mp, xy_part_loc(q),p); goto DONE;
20556 if ( type(p)>mp_pair_type ) {
20557 mp_install(mp, xx_part_loc(q),p); mp_install(mp, yy_part_loc(q),p);
20562 if ( type(p)==mp_pair_type ) {
20563 r=value(p); mp_install(mp, x_part_loc(q),x_part_loc(r));
20564 mp_install(mp, y_part_loc(q),y_part_loc(r)); goto DONE;
20568 if ( type(p)>mp_pair_type ) {
20569 mp_install(mp, xx_part_loc(q),p); goto DONE;
20573 if ( type(p)>mp_pair_type ) {
20574 mp_install(mp, yy_part_loc(q),p); goto DONE;
20578 if ( type(p)==mp_pair_type )
20579 @<Install a complex multiplier, then |goto done|@>;
20581 case transformed_by:
20585 @ @<Install sines and cosines, then |goto done|@>=
20586 { mp_n_sin_cos(mp, (value(p) % three_sixty_units)*16);
20587 value(xx_part_loc(q))=mp_round_fraction(mp, mp->n_cos);
20588 value(yx_part_loc(q))=mp_round_fraction(mp, mp->n_sin);
20589 value(xy_part_loc(q))=-value(yx_part_loc(q));
20590 value(yy_part_loc(q))=value(xx_part_loc(q));
20594 @ @<Install a complex multiplier, then |goto done|@>=
20597 mp_install(mp, xx_part_loc(q),x_part_loc(r));
20598 mp_install(mp, yy_part_loc(q),x_part_loc(r));
20599 mp_install(mp, yx_part_loc(q),y_part_loc(r));
20600 if ( type(y_part_loc(r))==mp_known ) negate(value(y_part_loc(r)));
20601 else mp_negate_dep_list(mp, dep_list(y_part_loc(r)));
20602 mp_install(mp, xy_part_loc(q),y_part_loc(r));
20606 @ Procedure |set_up_known_trans| is like |set_up_trans|, but it
20607 insists that the transformation be entirely known.
20609 @<Declare binary action...@>=
20610 void mp_set_up_known_trans (MP mp,quarterword c) {
20611 mp_set_up_trans(mp, c);
20612 if ( mp->cur_type!=mp_known ) {
20613 exp_err("Transform components aren't all known");
20614 @.Transform components...@>
20615 help3("I'm unable to apply a partially specified transformation")
20616 ("except to a fully known pair or transform.")
20617 ("Proceed, and I'll omit the transformation.");
20618 mp_put_get_flush_error(mp, 0);
20619 mp->txx=unity; mp->txy=0; mp->tyx=0; mp->tyy=unity;
20620 mp->tx=0; mp->ty=0;
20624 @ Here's a procedure that applies the transform |txx..ty| to a pair of
20625 coordinates in locations |p| and~|q|.
20627 @<Declare binary action...@>=
20628 void mp_trans (MP mp,pointer p, pointer q) {
20629 scaled v; /* the new |x| value */
20630 v=mp_take_scaled(mp, mp->mem[p].sc,mp->txx)+
20631 mp_take_scaled(mp, mp->mem[q].sc,mp->txy)+mp->tx;
20632 mp->mem[q].sc=mp_take_scaled(mp, mp->mem[p].sc,mp->tyx)+
20633 mp_take_scaled(mp, mp->mem[q].sc,mp->tyy)+mp->ty;
20637 @ The simplest transformation procedure applies a transform to all
20638 coordinates of a path. The |path_trans(c)(p)| macro applies
20639 a transformation defined by |cur_exp| and the transform operator |c|
20642 @d path_trans(A,B) { mp_set_up_known_trans(mp, (A));
20643 mp_unstash_cur_exp(mp, (B));
20644 mp_do_path_trans(mp, mp->cur_exp); }
20646 @<Declare binary action...@>=
20647 void mp_do_path_trans (MP mp,pointer p) {
20648 pointer q; /* list traverser */
20651 if ( left_type(q)!=mp_endpoint )
20652 mp_trans(mp, q+3,q+4); /* that's |left_x| and |left_y| */
20653 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20654 if ( right_type(q)!=mp_endpoint )
20655 mp_trans(mp, q+5,q+6); /* that's |right_x| and |right_y| */
20656 @^data structure assumptions@>
20661 @ Transforming a pen is very similar, except that there are no |left_type|
20662 and |right_type| fields.
20664 @d pen_trans(A,B) { mp_set_up_known_trans(mp, (A));
20665 mp_unstash_cur_exp(mp, (B));
20666 mp_do_pen_trans(mp, mp->cur_exp); }
20668 @<Declare binary action...@>=
20669 void mp_do_pen_trans (MP mp,pointer p) {
20670 pointer q; /* list traverser */
20671 if ( pen_is_elliptical(p) ) {
20672 mp_trans(mp, p+3,p+4); /* that's |left_x| and |left_y| */
20673 mp_trans(mp, p+5,p+6); /* that's |right_x| and |right_y| */
20677 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20678 @^data structure assumptions@>
20683 @ The next transformation procedure applies to edge structures. It will do
20684 any transformation, but the results may be substandard if the picture contains
20685 text that uses downloaded bitmap fonts. The binary action procedure is
20686 |do_edges_trans|, but we also need a function that just scales a picture.
20687 That routine is |scale_edges|. Both it and the underlying routine |edges_trans|
20688 should be thought of as procedures that update an edge structure |h|, except
20689 that they have to return a (possibly new) structure because of the need to call
20692 @<Declare binary action...@>=
20693 pointer mp_edges_trans (MP mp, pointer h) {
20694 pointer q; /* the object being transformed */
20695 pointer r,s; /* for list manipulation */
20696 scaled sx,sy; /* saved transformation parameters */
20697 scaled sqdet; /* square root of determinant for |dash_scale| */
20698 integer sgndet; /* sign of the determinant */
20699 scaled v; /* a temporary value */
20700 h=mp_private_edges(mp, h);
20701 sqdet=mp_sqrt_det(mp, mp->txx,mp->txy,mp->tyx,mp->tyy);
20702 sgndet=mp_ab_vs_cd(mp, mp->txx,mp->tyy,mp->txy,mp->tyx);
20703 if ( dash_list(h)!=null_dash ) {
20704 @<Try to transform the dash list of |h|@>;
20706 @<Make the bounding box of |h| unknown if it can't be updated properly
20707 without scanning the whole structure@>;
20708 q=link(dummy_loc(h));
20709 while ( q!=null ) {
20710 @<Transform graphical object |q|@>;
20715 void mp_do_edges_trans (MP mp,pointer p, quarterword c) {
20716 mp_set_up_known_trans(mp, c);
20717 value(p)=mp_edges_trans(mp, value(p));
20718 mp_unstash_cur_exp(mp, p);
20720 void mp_scale_edges (MP mp) {
20721 mp->txx=mp->se_sf; mp->tyy=mp->se_sf;
20722 mp->txy=0; mp->tyx=0; mp->tx=0; mp->ty=0;
20723 mp->se_pic=mp_edges_trans(mp, mp->se_pic);
20726 @ @<Try to transform the dash list of |h|@>=
20727 if ( (mp->txy!=0)||(mp->tyx!=0)||
20728 (mp->ty!=0)||(abs(mp->txx)!=abs(mp->tyy))) {
20729 mp_flush_dash_list(mp, h);
20731 if ( mp->txx<0 ) { @<Reverse the dash list of |h|@>; }
20732 @<Scale the dash list by |txx| and shift it by |tx|@>;
20733 dash_y(h)=mp_take_scaled(mp, dash_y(h),abs(mp->tyy));
20736 @ @<Reverse the dash list of |h|@>=
20739 dash_list(h)=null_dash;
20740 while ( r!=null_dash ) {
20742 v=start_x(s); start_x(s)=stop_x(s); stop_x(s)=v;
20743 link(s)=dash_list(h);
20748 @ @<Scale the dash list by |txx| and shift it by |tx|@>=
20750 while ( r!=null_dash ) {
20751 start_x(r)=mp_take_scaled(mp, start_x(r),mp->txx)+mp->tx;
20752 stop_x(r)=mp_take_scaled(mp, stop_x(r),mp->txx)+mp->tx;
20756 @ @<Make the bounding box of |h| unknown if it can't be updated properly...@>=
20757 if ( (mp->txx==0)&&(mp->tyy==0) ) {
20758 @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>;
20759 } else if ( (mp->txy!=0)||(mp->tyx!=0) ) {
20760 mp_init_bbox(mp, h);
20763 if ( minx_val(h)<=maxx_val(h) ) {
20764 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift by
20771 @ @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>=
20773 v=minx_val(h); minx_val(h)=miny_val(h); miny_val(h)=v;
20774 v=maxx_val(h); maxx_val(h)=maxy_val(h); maxy_val(h)=v;
20777 @ The sum ``|txx+txy|'' is whichever of |txx| or |txy| is nonzero. The other
20780 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift...@>=
20782 minx_val(h)=mp_take_scaled(mp, minx_val(h),mp->txx+mp->txy)+mp->tx;
20783 maxx_val(h)=mp_take_scaled(mp, maxx_val(h),mp->txx+mp->txy)+mp->tx;
20784 miny_val(h)=mp_take_scaled(mp, miny_val(h),mp->tyx+mp->tyy)+mp->ty;
20785 maxy_val(h)=mp_take_scaled(mp, maxy_val(h),mp->tyx+mp->tyy)+mp->ty;
20786 if ( mp->txx+mp->txy<0 ) {
20787 v=minx_val(h); minx_val(h)=maxx_val(h); maxx_val(h)=v;
20789 if ( mp->tyx+mp->tyy<0 ) {
20790 v=miny_val(h); miny_val(h)=maxy_val(h); maxy_val(h)=v;
20794 @ Now we ready for the main task of transforming the graphical objects in edge
20797 @<Transform graphical object |q|@>=
20799 case mp_fill_code: case mp_stroked_code:
20800 mp_do_path_trans(mp, path_p(q));
20801 @<Transform |pen_p(q)|, making sure polygonal pens stay counter-clockwise@>;
20803 case mp_start_clip_code: case mp_start_bounds_code:
20804 mp_do_path_trans(mp, path_p(q));
20808 @<Transform the compact transformation starting at |r|@>;
20810 case mp_stop_clip_code: case mp_stop_bounds_code:
20812 } /* there are no other cases */
20814 @ Note that the shift parameters |(tx,ty)| apply only to the path being stroked.
20815 The |dash_scale| has to be adjusted to scale the dash lengths in |dash_p(q)|
20816 since the \ps\ output procedures will try to compensate for the transformation
20817 we are applying to |pen_p(q)|. Since this compensation is based on the square
20818 root of the determinant, |sqdet| is the appropriate factor.
20820 @<Transform |pen_p(q)|, making sure...@>=
20821 if ( pen_p(q)!=null ) {
20822 sx=mp->tx; sy=mp->ty;
20823 mp->tx=0; mp->ty=0;
20824 mp_do_pen_trans(mp, pen_p(q));
20825 if ( ((type(q)==mp_stroked_code)&&(dash_p(q)!=null)) )
20826 dash_scale(q)=mp_take_scaled(mp, dash_scale(q),sqdet);
20827 if ( ! pen_is_elliptical(pen_p(q)) )
20829 pen_p(q)=mp_make_pen(mp, mp_copy_path(mp, pen_p(q)),true);
20830 /* this unreverses the pen */
20831 mp->tx=sx; mp->ty=sy;
20834 @ This uses the fact that transformations are stored in the order
20835 |(tx,ty,txx,txy,tyx,tyy)|.
20836 @^data structure assumptions@>
20838 @<Transform the compact transformation starting at |r|@>=
20839 mp_trans(mp, r,r+1);
20840 sx=mp->tx; sy=mp->ty;
20841 mp->tx=0; mp->ty=0;
20842 mp_trans(mp, r+2,r+4);
20843 mp_trans(mp, r+3,r+5);
20844 mp->tx=sx; mp->ty=sy
20846 @ The hard cases of transformation occur when big nodes are involved,
20847 and when some of their components are unknown.
20849 @<Declare binary action...@>=
20850 @<Declare subroutines needed by |big_trans|@>;
20851 void mp_big_trans (MP mp,pointer p, quarterword c) {
20852 pointer q,r,pp,qq; /* list manipulation registers */
20853 small_number s; /* size of a big node */
20854 s=mp->big_node_size[type(p)]; q=value(p); r=q+s;
20857 if ( type(r)!=mp_known ) {
20858 @<Transform an unknown big node and |return|@>;
20861 @<Transform a known big node@>;
20862 }; /* node |p| will now be recycled by |do_binary| */
20864 @ @<Transform an unknown big node and |return|@>=
20866 mp_set_up_known_trans(mp, c); mp_make_exp_copy(mp, p);
20867 r=value(mp->cur_exp);
20868 if ( mp->cur_type==mp_transform_type ) {
20869 mp_bilin1(mp, yy_part_loc(r),mp->tyy,xy_part_loc(q),mp->tyx,0);
20870 mp_bilin1(mp, yx_part_loc(r),mp->tyy,xx_part_loc(q),mp->tyx,0);
20871 mp_bilin1(mp, xy_part_loc(r),mp->txx,yy_part_loc(q),mp->txy,0);
20872 mp_bilin1(mp, xx_part_loc(r),mp->txx,yx_part_loc(q),mp->txy,0);
20874 mp_bilin1(mp, y_part_loc(r),mp->tyy,x_part_loc(q),mp->tyx,mp->ty);
20875 mp_bilin1(mp, x_part_loc(r),mp->txx,y_part_loc(q),mp->txy,mp->tx);
20879 @ Let |p| point to a two-word value field inside a big node of |cur_exp|,
20880 and let |q| point to a another value field. The |bilin1| procedure
20881 replaces |p| by $p\cdot t+q\cdot u+\delta$.
20883 @<Declare subroutines needed by |big_trans|@>=
20884 void mp_bilin1 (MP mp, pointer p, scaled t, pointer q,
20885 scaled u, scaled delta) {
20886 pointer r; /* list traverser */
20887 if ( t!=unity ) mp_dep_mult(mp, p,t,true);
20889 if ( type(q)==mp_known ) {
20890 delta+=mp_take_scaled(mp, value(q),u);
20892 @<Ensure that |type(p)=mp_proto_dependent|@>;
20893 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),u,dep_list(q),
20894 mp_proto_dependent,type(q));
20897 if ( type(p)==mp_known ) {
20901 while ( info(r)!=null ) r=link(r);
20903 if ( r!=dep_list(p) ) value(r)=delta;
20904 else { mp_recycle_value(mp, p); type(p)=mp_known; value(p)=delta; };
20906 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20909 @ @<Ensure that |type(p)=mp_proto_dependent|@>=
20910 if ( type(p)!=mp_proto_dependent ) {
20911 if ( type(p)==mp_known )
20912 mp_new_dep(mp, p,mp_const_dependency(mp, value(p)));
20914 dep_list(p)=mp_p_times_v(mp, dep_list(p),unity,mp_dependent,
20915 mp_proto_dependent,true);
20916 type(p)=mp_proto_dependent;
20919 @ @<Transform a known big node@>=
20920 mp_set_up_trans(mp, c);
20921 if ( mp->cur_type==mp_known ) {
20922 @<Transform known by known@>;
20924 pp=mp_stash_cur_exp(mp); qq=value(pp);
20925 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20926 if ( mp->cur_type==mp_transform_type ) {
20927 mp_bilin2(mp, yy_part_loc(r),yy_part_loc(qq),
20928 value(xy_part_loc(q)),yx_part_loc(qq),null);
20929 mp_bilin2(mp, yx_part_loc(r),yy_part_loc(qq),
20930 value(xx_part_loc(q)),yx_part_loc(qq),null);
20931 mp_bilin2(mp, xy_part_loc(r),xx_part_loc(qq),
20932 value(yy_part_loc(q)),xy_part_loc(qq),null);
20933 mp_bilin2(mp, xx_part_loc(r),xx_part_loc(qq),
20934 value(yx_part_loc(q)),xy_part_loc(qq),null);
20936 mp_bilin2(mp, y_part_loc(r),yy_part_loc(qq),
20937 value(x_part_loc(q)),yx_part_loc(qq),y_part_loc(qq));
20938 mp_bilin2(mp, x_part_loc(r),xx_part_loc(qq),
20939 value(y_part_loc(q)),xy_part_loc(qq),x_part_loc(qq));
20940 mp_recycle_value(mp, pp); mp_free_node(mp, pp,value_node_size);
20943 @ Let |p| be a |mp_proto_dependent| value whose dependency list ends
20944 at |dep_final|. The following procedure adds |v| times another
20945 numeric quantity to~|p|.
20947 @<Declare subroutines needed by |big_trans|@>=
20948 void mp_add_mult_dep (MP mp,pointer p, scaled v, pointer r) {
20949 if ( type(r)==mp_known ) {
20950 value(mp->dep_final)+=mp_take_scaled(mp, value(r),v);
20952 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),v,dep_list(r),
20953 mp_proto_dependent,type(r));
20954 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20958 @ The |bilin2| procedure is something like |bilin1|, but with known
20959 and unknown quantities reversed. Parameter |p| points to a value field
20960 within the big node for |cur_exp|; and |type(p)=mp_known|. Parameters
20961 |t| and~|u| point to value fields elsewhere; so does parameter~|q|,
20962 unless it is |null| (which stands for zero). Location~|p| will be
20963 replaced by $p\cdot t+v\cdot u+q$.
20965 @<Declare subroutines needed by |big_trans|@>=
20966 void mp_bilin2 (MP mp,pointer p, pointer t, scaled v,
20967 pointer u, pointer q) {
20968 scaled vv; /* temporary storage for |value(p)| */
20969 vv=value(p); type(p)=mp_proto_dependent;
20970 mp_new_dep(mp, p,mp_const_dependency(mp, 0)); /* this sets |dep_final| */
20972 mp_add_mult_dep(mp, p,vv,t); /* |dep_final| doesn't change */
20973 if ( v!=0 ) mp_add_mult_dep(mp, p,v,u);
20974 if ( q!=null ) mp_add_mult_dep(mp, p,unity,q);
20975 if ( dep_list(p)==mp->dep_final ) {
20976 vv=value(mp->dep_final); mp_recycle_value(mp, p);
20977 type(p)=mp_known; value(p)=vv;
20981 @ @<Transform known by known@>=
20983 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20984 if ( mp->cur_type==mp_transform_type ) {
20985 mp_bilin3(mp, yy_part_loc(r),mp->tyy,value(xy_part_loc(q)),mp->tyx,0);
20986 mp_bilin3(mp, yx_part_loc(r),mp->tyy,value(xx_part_loc(q)),mp->tyx,0);
20987 mp_bilin3(mp, xy_part_loc(r),mp->txx,value(yy_part_loc(q)),mp->txy,0);
20988 mp_bilin3(mp, xx_part_loc(r),mp->txx,value(yx_part_loc(q)),mp->txy,0);
20990 mp_bilin3(mp, y_part_loc(r),mp->tyy,value(x_part_loc(q)),mp->tyx,mp->ty);
20991 mp_bilin3(mp, x_part_loc(r),mp->txx,value(y_part_loc(q)),mp->txy,mp->tx);
20994 @ Finally, in |bilin3| everything is |known|.
20996 @<Declare subroutines needed by |big_trans|@>=
20997 void mp_bilin3 (MP mp,pointer p, scaled t,
20998 scaled v, scaled u, scaled delta) {
21000 delta+=mp_take_scaled(mp, value(p),t);
21003 if ( u!=0 ) value(p)=delta+mp_take_scaled(mp, v,u);
21004 else value(p)=delta;
21007 @ @<Additional cases of binary operators@>=
21009 if ( (mp->cur_type==mp_string_type)&&(type(p)==mp_string_type) ) mp_cat(mp, p);
21010 else mp_bad_binary(mp, p,concatenate);
21013 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_string_type) )
21014 mp_chop_string(mp, value(p));
21015 else mp_bad_binary(mp, p,substring_of);
21018 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21019 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_path_type) )
21020 mp_chop_path(mp, value(p));
21021 else mp_bad_binary(mp, p,subpath_of);
21024 @ @<Declare binary action...@>=
21025 void mp_cat (MP mp,pointer p) {
21026 str_number a,b; /* the strings being concatenated */
21027 pool_pointer k; /* index into |str_pool| */
21028 a=value(p); b=mp->cur_exp; str_room(length(a)+length(b));
21029 for (k=mp->str_start[a];k<=str_stop(a)-1;k++) {
21030 append_char(mp->str_pool[k]);
21032 for (k=mp->str_start[b];k<=str_stop(b)-1;k++) {
21033 append_char(mp->str_pool[k]);
21035 mp->cur_exp=mp_make_string(mp); delete_str_ref(b);
21038 @ @<Declare binary action...@>=
21039 void mp_chop_string (MP mp,pointer p) {
21040 integer a, b; /* start and stop points */
21041 integer l; /* length of the original string */
21042 integer k; /* runs from |a| to |b| */
21043 str_number s; /* the original string */
21044 boolean reversed; /* was |a>b|? */
21045 a=mp_round_unscaled(mp, value(x_part_loc(p)));
21046 b=mp_round_unscaled(mp, value(y_part_loc(p)));
21047 if ( a<=b ) reversed=false;
21048 else { reversed=true; k=a; a=b; b=k; };
21049 s=mp->cur_exp; l=length(s);
21060 for (k=mp->str_start[s]+b-1;k>=mp->str_start[s]+a;k--) {
21061 append_char(mp->str_pool[k]);
21064 for (k=mp->str_start[s]+a;k<=mp->str_start[s]+b-1;k++) {
21065 append_char(mp->str_pool[k]);
21068 mp->cur_exp=mp_make_string(mp); delete_str_ref(s);
21071 @ @<Declare binary action...@>=
21072 void mp_chop_path (MP mp,pointer p) {
21073 pointer q; /* a knot in the original path */
21074 pointer pp,qq,rr,ss; /* link variables for copies of path nodes */
21075 scaled a,b,k,l; /* indices for chopping */
21076 boolean reversed; /* was |a>b|? */
21077 l=mp_path_length(mp); a=value(x_part_loc(p)); b=value(y_part_loc(p));
21078 if ( a<=b ) reversed=false;
21079 else { reversed=true; k=a; a=b; b=k; };
21080 @<Dispense with the cases |a<0| and/or |b>l|@>;
21082 while ( a>=unity ) {
21083 q=link(q); a=a-unity; b=b-unity;
21086 @<Construct a path from |pp| to |qq| of length zero@>;
21088 @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>;
21090 left_type(pp)=mp_endpoint; right_type(qq)=mp_endpoint; link(qq)=pp;
21091 mp_toss_knot_list(mp, mp->cur_exp);
21093 mp->cur_exp=link(mp_htap_ypoc(mp, pp)); mp_toss_knot_list(mp, pp);
21099 @ @<Dispense with the cases |a<0| and/or |b>l|@>=
21101 if ( left_type(mp->cur_exp)==mp_endpoint ) {
21102 a=0; if ( b<0 ) b=0;
21104 do { a=a+l; b=b+l; } while (a<0); /* a cycle always has length |l>0| */
21108 if ( left_type(mp->cur_exp)==mp_endpoint ) {
21109 b=l; if ( a>l ) a=l;
21117 @ @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>=
21119 pp=mp_copy_knot(mp, q); qq=pp;
21121 q=link(q); rr=qq; qq=mp_copy_knot(mp, q); link(rr)=qq; b=b-unity;
21124 ss=pp; pp=link(pp);
21125 mp_split_cubic(mp, ss,a*010000); pp=link(ss);
21126 mp_free_node(mp, ss,knot_node_size);
21128 b=mp_make_scaled(mp, b,unity-a); rr=pp;
21132 mp_split_cubic(mp, rr,(b+unity)*010000);
21133 mp_free_node(mp, qq,knot_node_size);
21138 @ @<Construct a path from |pp| to |qq| of length zero@>=
21140 if ( a>0 ) { mp_split_cubic(mp, q,a*010000); q=link(q); };
21141 pp=mp_copy_knot(mp, q); qq=pp;
21144 @ @<Additional cases of binary operators@>=
21145 case point_of: case precontrol_of: case postcontrol_of:
21146 if ( mp->cur_type==mp_pair_type )
21147 mp_pair_to_path(mp);
21148 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
21149 mp_find_point(mp, value(p),c);
21151 mp_bad_binary(mp, p,c);
21153 case pen_offset_of:
21154 if ( (mp->cur_type==mp_pen_type)&& mp_nice_pair(mp, p,type(p)) )
21155 mp_set_up_offset(mp, value(p));
21157 mp_bad_binary(mp, p,pen_offset_of);
21159 case direction_time_of:
21160 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21161 if ( (mp->cur_type==mp_path_type)&& mp_nice_pair(mp, p,type(p)) )
21162 mp_set_up_direction_time(mp, value(p));
21164 mp_bad_binary(mp, p,direction_time_of);
21167 if ( (type(p) != mp_pen_type) || (mp->cur_type != mp_path_type) )
21168 mp_bad_binary(mp, p,envelope_of);
21170 mp_set_up_envelope(mp, p);
21173 @ @<Declare binary action...@>=
21174 void mp_set_up_offset (MP mp,pointer p) {
21175 mp_find_offset(mp, value(x_part_loc(p)),value(y_part_loc(p)),mp->cur_exp);
21176 mp_pair_value(mp, mp->cur_x,mp->cur_y);
21178 void mp_set_up_direction_time (MP mp,pointer p) {
21179 mp_flush_cur_exp(mp, mp_find_direction_time(mp, value(x_part_loc(p)),
21180 value(y_part_loc(p)),mp->cur_exp));
21182 void mp_set_up_envelope (MP mp,pointer p) {
21183 pointer q = mp_copy_path(mp, mp->cur_exp); /* the original path */
21184 /* TODO: accept elliptical pens for straight paths */
21185 if (pen_is_elliptical(value(p))) {
21186 mp_bad_envelope_pen(mp);
21188 mp->cur_type = mp_path_type;
21191 small_number ljoin, lcap;
21193 if ( mp->internal[mp_linejoin]>unity ) ljoin=2;
21194 else if ( mp->internal[mp_linejoin]>0 ) ljoin=1;
21196 if ( mp->internal[mp_linecap]>unity ) lcap=2;
21197 else if ( mp->internal[mp_linecap]>0 ) lcap=1;
21199 if ( mp->internal[mp_miterlimit]<unity )
21202 miterlim=mp->internal[mp_miterlimit];
21203 mp->cur_exp = mp_make_envelope(mp, q, value(p), ljoin,lcap,miterlim);
21204 mp->cur_type = mp_path_type;
21207 @ @<Declare binary action...@>=
21208 void mp_find_point (MP mp,scaled v, quarterword c) {
21209 pointer p; /* the path */
21210 scaled n; /* its length */
21212 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
21213 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
21216 } else if ( v<0 ) {
21217 if ( left_type(p)==mp_endpoint ) v=0;
21218 else v=n-1-((-v-1) % n);
21219 } else if ( v>n ) {
21220 if ( left_type(p)==mp_endpoint ) v=n;
21224 while ( v>=unity ) { p=link(p); v=v-unity; };
21226 @<Insert a fractional node by splitting the cubic@>;
21228 @<Set the current expression to the desired path coordinates@>;
21231 @ @<Insert a fractional node...@>=
21232 { mp_split_cubic(mp, p,v*010000); p=link(p); }
21234 @ @<Set the current expression to the desired path coordinates...@>=
21237 mp_pair_value(mp, x_coord(p),y_coord(p));
21239 case precontrol_of:
21240 if ( left_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21241 else mp_pair_value(mp, left_x(p),left_y(p));
21243 case postcontrol_of:
21244 if ( right_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21245 else mp_pair_value(mp, right_x(p),right_y(p));
21247 } /* there are no other cases */
21249 @ @<Additional cases of binary operators@>=
21251 if ( mp->cur_type==mp_pair_type )
21252 mp_pair_to_path(mp);
21253 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
21254 mp_flush_cur_exp(mp, mp_get_arc_time(mp, mp->cur_exp,value(p)));
21256 mp_bad_binary(mp, p,c);
21259 @ @<Additional cases of bin...@>=
21261 if ( type(p)==mp_pair_type ) {
21262 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p);
21263 mp_pair_to_path(mp); p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
21265 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21266 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_path_type) ) {
21267 mp_path_intersection(mp, value(p),mp->cur_exp);
21268 mp_pair_value(mp, mp->cur_t,mp->cur_tt);
21270 mp_bad_binary(mp, p,intersect);
21274 @ @<Additional cases of bin...@>=
21276 if ( (mp->cur_type!=mp_string_type)||(type(p)!=mp_string_type))
21277 mp_bad_binary(mp, p,in_font);
21278 else { mp_do_infont(mp, p); return; }
21281 @ Function |new_text_node| owns the reference count for its second argument
21282 (the text string) but not its first (the font name).
21284 @<Declare binary action...@>=
21285 void mp_do_infont (MP mp,pointer p) {
21287 q=mp_get_node(mp, edge_header_size);
21288 mp_init_edges(mp, q);
21289 link(obj_tail(q))=mp_new_text_node(mp, str(mp->cur_exp),value(p));
21290 obj_tail(q)=link(obj_tail(q));
21291 mp_free_node(mp, p,value_node_size);
21292 mp_flush_cur_exp(mp, q);
21293 mp->cur_type=mp_picture_type;
21296 @* \[40] Statements and commands.
21297 The chief executive of \MP\ is the |do_statement| routine, which
21298 contains the master switch that causes all the various pieces of \MP\
21299 to do their things, in the right order.
21301 In a sense, this is the grand climax of the program: It applies all the
21302 tools that we have worked so hard to construct. In another sense, this is
21303 the messiest part of the program: It necessarily refers to other pieces
21304 of code all over the place, so that a person can't fully understand what is
21305 going on without paging back and forth to be reminded of conventions that
21306 are defined elsewhere. We are now at the hub of the web.
21308 The structure of |do_statement| itself is quite simple. The first token
21309 of the statement is fetched using |get_x_next|. If it can be the first
21310 token of an expression, we look for an equation, an assignment, or a
21311 title. Otherwise we use a \&{case} construction to branch at high speed to
21312 the appropriate routine for various and sundry other types of commands,
21313 each of which has an ``action procedure'' that does the necessary work.
21315 The program uses the fact that
21316 $$\hbox{|min_primary_command=max_statement_command=type_name|}$$
21317 to interpret a statement that starts with, e.g., `\&{string}',
21318 as a type declaration rather than a boolean expression.
21320 @c void mp_do_statement (MP mp) { /* governs \MP's activities */
21321 mp->cur_type=mp_vacuous; mp_get_x_next(mp);
21322 if ( mp->cur_cmd>max_primary_command ) {
21323 @<Worry about bad statement@>;
21324 } else if ( mp->cur_cmd>max_statement_command ) {
21325 @<Do an equation, assignment, title, or
21326 `$\langle\,$expression$\,\rangle\,$\&{endgroup}'@>;
21328 @<Do a statement that doesn't begin with an expression@>;
21330 if ( mp->cur_cmd<semicolon )
21331 @<Flush unparsable junk that was found after the statement@>;
21335 @ @<Declarations@>=
21336 @<Declare action procedures for use by |do_statement|@>;
21338 @ The only command codes |>max_primary_command| that can be present
21339 at the beginning of a statement are |semicolon| and higher; these
21340 occur when the statement is null.
21342 @<Worry about bad statement@>=
21344 if ( mp->cur_cmd<semicolon ) {
21345 print_err("A statement can't begin with `");
21346 @.A statement can't begin with x@>
21347 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod); mp_print_char(mp, '\'');
21348 help5("I was looking for the beginning of a new statement.")
21349 ("If you just proceed without changing anything, I'll ignore")
21350 ("everything up to the next `;'. Please insert a semicolon")
21351 ("now in front of anything that you don't want me to delete.")
21352 ("(See Chapter 27 of The METAFONTbook for an example.)");
21353 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21354 mp_back_error(mp); mp_get_x_next(mp);
21358 @ The help message printed here says that everything is flushed up to
21359 a semicolon, but actually the commands |end_group| and |stop| will
21360 also terminate a statement.
21362 @<Flush unparsable junk that was found after the statement@>=
21364 print_err("Extra tokens will be flushed");
21365 @.Extra tokens will be flushed@>
21366 help6("I've just read as much of that statement as I could fathom,")
21367 ("so a semicolon should have been next. It's very puzzling...")
21368 ("but I'll try to get myself back together, by ignoring")
21369 ("everything up to the next `;'. Please insert a semicolon")
21370 ("now in front of anything that you don't want me to delete.")
21371 ("(See Chapter 27 of The METAFONTbook for an example.)");
21372 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21373 mp_back_error(mp); mp->scanner_status=flushing;
21376 @<Decrease the string reference count...@>;
21377 } while (! end_of_statement); /* |cur_cmd=semicolon|, |end_group|, or |stop| */
21378 mp->scanner_status=normal;
21381 @ If |do_statement| ends with |cur_cmd=end_group|, we should have
21382 |cur_type=mp_vacuous| unless the statement was simply an expression;
21383 in the latter case, |cur_type| and |cur_exp| should represent that
21386 @<Do a statement that doesn't...@>=
21388 if ( mp->internal[mp_tracing_commands]>0 )
21390 switch (mp->cur_cmd ) {
21391 case type_name:mp_do_type_declaration(mp); break;
21393 if ( mp->cur_mod>var_def ) mp_make_op_def(mp);
21394 else if ( mp->cur_mod>end_def ) mp_scan_def(mp);
21396 @<Cases of |do_statement| that invoke particular commands@>;
21397 } /* there are no other cases */
21398 mp->cur_type=mp_vacuous;
21401 @ The most important statements begin with expressions.
21403 @<Do an equation, assignment, title, or...@>=
21405 mp->var_flag=assignment; mp_scan_expression(mp);
21406 if ( mp->cur_cmd<end_group ) {
21407 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21408 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21409 else if ( mp->cur_type==mp_string_type ) {@<Do a title@> ; }
21410 else if ( mp->cur_type!=mp_vacuous ){
21411 exp_err("Isolated expression");
21412 @.Isolated expression@>
21413 help3("I couldn't find an `=' or `:=' after the")
21414 ("expression that is shown above this error message,")
21415 ("so I guess I'll just ignore it and carry on.");
21416 mp_put_get_error(mp);
21418 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
21424 if ( mp->internal[mp_tracing_titles]>0 ) {
21425 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp); update_terminal;
21429 @ Equations and assignments are performed by the pair of mutually recursive
21431 routines |do_equation| and |do_assignment|. These routines are called when
21432 |cur_cmd=equals| and when |cur_cmd=assignment|, respectively; the left-hand
21433 side is in |cur_type| and |cur_exp|, while the right-hand side is yet
21434 to be scanned. After the routines are finished, |cur_type| and |cur_exp|
21435 will be equal to the right-hand side (which will normally be equal
21436 to the left-hand side).
21438 @<Declare action procedures for use by |do_statement|@>=
21439 @<Declare the procedure called |try_eq|@>;
21440 @<Declare the procedure called |make_eq|@>;
21441 void mp_do_equation (MP mp) ;
21444 void mp_do_equation (MP mp) {
21445 pointer lhs; /* capsule for the left-hand side */
21446 pointer p; /* temporary register */
21447 lhs=mp_stash_cur_exp(mp); mp_get_x_next(mp);
21448 mp->var_flag=assignment; mp_scan_expression(mp);
21449 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21450 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21451 if ( mp->internal[mp_tracing_commands]>two )
21452 @<Trace the current equation@>;
21453 if ( mp->cur_type==mp_unknown_path ) if ( type(lhs)==mp_pair_type ) {
21454 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, lhs); lhs=p;
21455 }; /* in this case |make_eq| will change the pair to a path */
21456 mp_make_eq(mp, lhs); /* equate |lhs| to |(cur_type,cur_exp)| */
21459 @ And |do_assignment| is similar to |do_expression|:
21462 void mp_do_assignment (MP mp);
21464 @ @<Declare action procedures for use by |do_statement|@>=
21465 void mp_do_assignment (MP mp) ;
21468 void mp_do_assignment (MP mp) {
21469 pointer lhs; /* token list for the left-hand side */
21470 pointer p; /* where the left-hand value is stored */
21471 pointer q; /* temporary capsule for the right-hand value */
21472 if ( mp->cur_type!=mp_token_list ) {
21473 exp_err("Improper `:=' will be changed to `='");
21475 help2("I didn't find a variable name at the left of the `:=',")
21476 ("so I'm going to pretend that you said `=' instead.");
21477 mp_error(mp); mp_do_equation(mp);
21479 lhs=mp->cur_exp; mp->cur_type=mp_vacuous;
21480 mp_get_x_next(mp); mp->var_flag=assignment; mp_scan_expression(mp);
21481 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21482 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21483 if ( mp->internal[mp_tracing_commands]>two )
21484 @<Trace the current assignment@>;
21485 if ( info(lhs)>hash_end ) {
21486 @<Assign the current expression to an internal variable@>;
21488 @<Assign the current expression to the variable |lhs|@>;
21490 mp_flush_node_list(mp, lhs);
21494 @ @<Trace the current equation@>=
21496 mp_begin_diagnostic(mp); mp_print_nl(mp, "{("); mp_print_exp(mp,lhs,0);
21497 mp_print(mp,")=("); mp_print_exp(mp,null,0);
21498 mp_print(mp,")}"); mp_end_diagnostic(mp, false);
21501 @ @<Trace the current assignment@>=
21503 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
21504 if ( info(lhs)>hash_end )
21505 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21507 mp_show_token_list(mp, lhs,null,1000,0);
21508 mp_print(mp, ":="); mp_print_exp(mp, null,0);
21509 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
21512 @ @<Assign the current expression to an internal variable@>=
21513 if ( mp->cur_type==mp_known ) {
21514 mp->internal[info(lhs)-(hash_end)]=mp->cur_exp;
21516 exp_err("Internal quantity `");
21517 @.Internal quantity...@>
21518 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21519 mp_print(mp, "' must receive a known value");
21520 help2("I can\'t set an internal quantity to anything but a known")
21521 ("numeric value, so I'll have to ignore this assignment.");
21522 mp_put_get_error(mp);
21525 @ @<Assign the current expression to the variable |lhs|@>=
21527 p=mp_find_variable(mp, lhs);
21529 q=mp_stash_cur_exp(mp); mp->cur_type=mp_und_type(mp, p);
21530 mp_recycle_value(mp, p);
21531 type(p)=mp->cur_type; value(p)=null; mp_make_exp_copy(mp, p);
21532 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q); mp_make_eq(mp, p);
21534 mp_obliterated(mp, lhs); mp_put_get_error(mp);
21539 @ And now we get to the nitty-gritty. The |make_eq| procedure is given
21540 a pointer to a capsule that is to be equated to the current expression.
21542 @<Declare the procedure called |make_eq|@>=
21543 void mp_make_eq (MP mp,pointer lhs) ;
21547 @c void mp_make_eq (MP mp,pointer lhs) {
21548 small_number t; /* type of the left-hand side */
21549 pointer p,q; /* pointers inside of big nodes */
21550 integer v=0; /* value of the left-hand side */
21553 if ( t<=mp_pair_type ) v=value(lhs);
21555 @<For each type |t|, make an equation and |goto done| unless |cur_type|
21556 is incompatible with~|t|@>;
21557 } /* all cases have been listed */
21558 @<Announce that the equation cannot be performed@>;
21560 check_arith; mp_recycle_value(mp, lhs);
21561 mp_free_node(mp, lhs,value_node_size);
21564 @ @<Announce that the equation cannot be performed@>=
21565 mp_disp_err(mp, lhs,"");
21566 exp_err("Equation cannot be performed (");
21567 @.Equation cannot be performed@>
21568 if ( type(lhs)<=mp_pair_type ) mp_print_type(mp, type(lhs));
21569 else mp_print(mp, "numeric");
21570 mp_print_char(mp, '=');
21571 if ( mp->cur_type<=mp_pair_type ) mp_print_type(mp, mp->cur_type);
21572 else mp_print(mp, "numeric");
21573 mp_print_char(mp, ')');
21574 help2("I'm sorry, but I don't know how to make such things equal.")
21575 ("(See the two expressions just above the error message.)");
21576 mp_put_get_error(mp)
21578 @ @<For each type |t|, make an equation and |goto done| unless...@>=
21579 case mp_boolean_type: case mp_string_type: case mp_pen_type:
21580 case mp_path_type: case mp_picture_type:
21581 if ( mp->cur_type==t+unknown_tag ) {
21582 mp_nonlinear_eq(mp, v,mp->cur_exp,false); goto DONE;
21583 } else if ( mp->cur_type==t ) {
21584 @<Report redundant or inconsistent equation and |goto done|@>;
21587 case unknown_types:
21588 if ( mp->cur_type==t-unknown_tag ) {
21589 mp_nonlinear_eq(mp, mp->cur_exp,lhs,true); goto DONE;
21590 } else if ( mp->cur_type==t ) {
21591 mp_ring_merge(mp, lhs,mp->cur_exp); goto DONE;
21592 } else if ( mp->cur_type==mp_pair_type ) {
21593 if ( t==mp_unknown_path ) {
21594 mp_pair_to_path(mp); goto RESTART;
21598 case mp_transform_type: case mp_color_type:
21599 case mp_cmykcolor_type: case mp_pair_type:
21600 if ( mp->cur_type==t ) {
21601 @<Do multiple equations and |goto done|@>;
21604 case mp_known: case mp_dependent:
21605 case mp_proto_dependent: case mp_independent:
21606 if ( mp->cur_type>=mp_known ) {
21607 mp_try_eq(mp, lhs,null); goto DONE;
21613 @ @<Report redundant or inconsistent equation and |goto done|@>=
21615 if ( mp->cur_type<=mp_string_type ) {
21616 if ( mp->cur_type==mp_string_type ) {
21617 if ( mp_str_vs_str(mp, v,mp->cur_exp)!=0 ) {
21620 } else if ( v!=mp->cur_exp ) {
21623 @<Exclaim about a redundant equation@>; goto DONE;
21625 print_err("Redundant or inconsistent equation");
21626 @.Redundant or inconsistent equation@>
21627 help2("An equation between already-known quantities can't help.")
21628 ("But don't worry; continue and I'll just ignore it.");
21629 mp_put_get_error(mp); goto DONE;
21631 print_err("Inconsistent equation");
21632 @.Inconsistent equation@>
21633 help2("The equation I just read contradicts what was said before.")
21634 ("But don't worry; continue and I'll just ignore it.");
21635 mp_put_get_error(mp); goto DONE;
21638 @ @<Do multiple equations and |goto done|@>=
21640 p=v+mp->big_node_size[t];
21641 q=value(mp->cur_exp)+mp->big_node_size[t];
21643 p=p-2; q=q-2; mp_try_eq(mp, p,q);
21648 @ The first argument to |try_eq| is the location of a value node
21649 in a capsule that will soon be recycled. The second argument is
21650 either a location within a pair or transform node pointed to by
21651 |cur_exp|, or it is |null| (which means that |cur_exp| itself
21652 serves as the second argument). The idea is to leave |cur_exp| unchanged,
21653 but to equate the two operands.
21655 @<Declare the procedure called |try_eq|@>=
21656 void mp_try_eq (MP mp,pointer l, pointer r) ;
21659 @c void mp_try_eq (MP mp,pointer l, pointer r) {
21660 pointer p; /* dependency list for right operand minus left operand */
21661 int t; /* the type of list |p| */
21662 pointer q; /* the constant term of |p| is here */
21663 pointer pp; /* dependency list for right operand */
21664 int tt; /* the type of list |pp| */
21665 boolean copied; /* have we copied a list that ought to be recycled? */
21666 @<Remove the left operand from its container, negate it, and
21667 put it into dependency list~|p| with constant term~|q|@>;
21668 @<Add the right operand to list |p|@>;
21669 if ( info(p)==null ) {
21670 @<Deal with redundant or inconsistent equation@>;
21672 mp_linear_eq(mp, p,t);
21673 if ( r==null ) if ( mp->cur_type!=mp_known ) {
21674 if ( type(mp->cur_exp)==mp_known ) {
21675 pp=mp->cur_exp; mp->cur_exp=value(mp->cur_exp); mp->cur_type=mp_known;
21676 mp_free_node(mp, pp,value_node_size);
21682 @ @<Remove the left operand from its container, negate it, and...@>=
21684 if ( t==mp_known ) {
21685 t=mp_dependent; p=mp_const_dependency(mp, -value(l)); q=p;
21686 } else if ( t==mp_independent ) {
21687 t=mp_dependent; p=mp_single_dependency(mp, l); negate(value(p));
21690 p=dep_list(l); q=p;
21693 if ( info(q)==null ) break;
21696 link(prev_dep(l))=link(q); prev_dep(link(q))=prev_dep(l);
21700 @ @<Deal with redundant or inconsistent equation@>=
21702 if ( abs(value(p))>64 ) { /* off by .001 or more */
21703 print_err("Inconsistent equation");
21704 @.Inconsistent equation@>
21705 mp_print(mp, " (off by "); mp_print_scaled(mp, value(p));
21706 mp_print_char(mp, ')');
21707 help2("The equation I just read contradicts what was said before.")
21708 ("But don't worry; continue and I'll just ignore it.");
21709 mp_put_get_error(mp);
21710 } else if ( r==null ) {
21711 @<Exclaim about a redundant equation@>;
21713 mp_free_node(mp, p,dep_node_size);
21716 @ @<Add the right operand to list |p|@>=
21718 if ( mp->cur_type==mp_known ) {
21719 value(q)=value(q)+mp->cur_exp; goto DONE1;
21722 if ( tt==mp_independent ) pp=mp_single_dependency(mp, mp->cur_exp);
21723 else pp=dep_list(mp->cur_exp);
21726 if ( type(r)==mp_known ) {
21727 value(q)=value(q)+value(r); goto DONE1;
21730 if ( tt==mp_independent ) pp=mp_single_dependency(mp, r);
21731 else pp=dep_list(r);
21734 if ( tt!=mp_independent ) copied=false;
21735 else { copied=true; tt=mp_dependent; };
21736 @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>;
21737 if ( copied ) mp_flush_node_list(mp, pp);
21740 @ @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>=
21741 mp->watch_coefs=false;
21743 p=mp_p_plus_q(mp, p,pp,t);
21744 } else if ( t==mp_proto_dependent ) {
21745 p=mp_p_plus_fq(mp, p,unity,pp,mp_proto_dependent,mp_dependent);
21748 while ( info(q)!=null ) {
21749 value(q)=mp_round_fraction(mp, value(q)); q=link(q);
21751 t=mp_proto_dependent; p=mp_p_plus_q(mp, p,pp,t);
21753 mp->watch_coefs=true;
21755 @ Our next goal is to process type declarations. For this purpose it's
21756 convenient to have a procedure that scans a $\langle\,$declared
21757 variable$\,\rangle$ and returns the corresponding token list. After the
21758 following procedure has acted, the token after the declared variable
21759 will have been scanned, so it will appear in |cur_cmd|, |cur_mod|,
21762 @<Declare the function called |scan_declared_variable|@>=
21763 pointer mp_scan_declared_variable (MP mp) {
21764 pointer x; /* hash address of the variable's root */
21765 pointer h,t; /* head and tail of the token list to be returned */
21766 pointer l; /* hash address of left bracket */
21767 mp_get_symbol(mp); x=mp->cur_sym;
21768 if ( mp->cur_cmd!=tag_token ) mp_clear_symbol(mp, x,false);
21769 h=mp_get_avail(mp); info(h)=x; t=h;
21772 if ( mp->cur_sym==0 ) break;
21773 if ( mp->cur_cmd!=tag_token ) if ( mp->cur_cmd!=internal_quantity) {
21774 if ( mp->cur_cmd==left_bracket ) {
21775 @<Descend past a collective subscript@>;
21780 link(t)=mp_get_avail(mp); t=link(t); info(t)=mp->cur_sym;
21782 if ( eq_type(x)!=tag_token ) mp_clear_symbol(mp, x,false);
21783 if ( equiv(x)==null ) mp_new_root(mp, x);
21787 @ If the subscript isn't collective, we don't accept it as part of the
21790 @<Descend past a collective subscript@>=
21792 l=mp->cur_sym; mp_get_x_next(mp);
21793 if ( mp->cur_cmd!=right_bracket ) {
21794 mp_back_input(mp); mp->cur_sym=l; mp->cur_cmd=left_bracket; break;
21796 mp->cur_sym=collective_subscript;
21800 @ Type declarations are introduced by the following primitive operations.
21803 mp_primitive(mp, "numeric",type_name,mp_numeric_type);
21804 @:numeric_}{\&{numeric} primitive@>
21805 mp_primitive(mp, "string",type_name,mp_string_type);
21806 @:string_}{\&{string} primitive@>
21807 mp_primitive(mp, "boolean",type_name,mp_boolean_type);
21808 @:boolean_}{\&{boolean} primitive@>
21809 mp_primitive(mp, "path",type_name,mp_path_type);
21810 @:path_}{\&{path} primitive@>
21811 mp_primitive(mp, "pen",type_name,mp_pen_type);
21812 @:pen_}{\&{pen} primitive@>
21813 mp_primitive(mp, "picture",type_name,mp_picture_type);
21814 @:picture_}{\&{picture} primitive@>
21815 mp_primitive(mp, "transform",type_name,mp_transform_type);
21816 @:transform_}{\&{transform} primitive@>
21817 mp_primitive(mp, "color",type_name,mp_color_type);
21818 @:color_}{\&{color} primitive@>
21819 mp_primitive(mp, "rgbcolor",type_name,mp_color_type);
21820 @:color_}{\&{rgbcolor} primitive@>
21821 mp_primitive(mp, "cmykcolor",type_name,mp_cmykcolor_type);
21822 @:color_}{\&{cmykcolor} primitive@>
21823 mp_primitive(mp, "pair",type_name,mp_pair_type);
21824 @:pair_}{\&{pair} primitive@>
21826 @ @<Cases of |print_cmd...@>=
21827 case type_name: mp_print_type(mp, m); break;
21829 @ Now we are ready to handle type declarations, assuming that a
21830 |type_name| has just been scanned.
21832 @<Declare action procedures for use by |do_statement|@>=
21833 void mp_do_type_declaration (MP mp) ;
21836 void mp_do_type_declaration (MP mp) {
21837 small_number t; /* the type being declared */
21838 pointer p; /* token list for a declared variable */
21839 pointer q; /* value node for the variable */
21840 if ( mp->cur_mod>=mp_transform_type )
21843 t=mp->cur_mod+unknown_tag;
21845 p=mp_scan_declared_variable(mp);
21846 mp_flush_variable(mp, equiv(info(p)),link(p),false);
21847 q=mp_find_variable(mp, p);
21849 type(q)=t; value(q)=null;
21851 print_err("Declared variable conflicts with previous vardef");
21852 @.Declared variable conflicts...@>
21853 help2("You can't use, e.g., `numeric foo[]' after `vardef foo'.")
21854 ("Proceed, and I'll ignore the illegal redeclaration.");
21855 mp_put_get_error(mp);
21857 mp_flush_list(mp, p);
21858 if ( mp->cur_cmd<comma ) {
21859 @<Flush spurious symbols after the declared variable@>;
21861 } while (! end_of_statement);
21864 @ @<Flush spurious symbols after the declared variable@>=
21866 print_err("Illegal suffix of declared variable will be flushed");
21867 @.Illegal suffix...flushed@>
21868 help5("Variables in declarations must consist entirely of")
21869 ("names and collective subscripts, e.g., `x[]a'.")
21870 ("Are you trying to use a reserved word in a variable name?")
21871 ("I'm going to discard the junk I found here,")
21872 ("up to the next comma or the end of the declaration.");
21873 if ( mp->cur_cmd==numeric_token )
21874 mp->help_line[2]="Explicit subscripts like `x15a' aren't permitted.";
21875 mp_put_get_error(mp); mp->scanner_status=flushing;
21878 @<Decrease the string reference count...@>;
21879 } while (mp->cur_cmd<comma); /* either |end_of_statement| or |cur_cmd=comma| */
21880 mp->scanner_status=normal;
21883 @ \MP's |main_control| procedure just calls |do_statement| repeatedly
21884 until coming to the end of the user's program.
21885 Each execution of |do_statement| concludes with
21886 |cur_cmd=semicolon|, |end_group|, or |stop|.
21888 @c void mp_main_control (MP mp) {
21890 mp_do_statement(mp);
21891 if ( mp->cur_cmd==end_group ) {
21892 print_err("Extra `endgroup'");
21893 @.Extra `endgroup'@>
21894 help2("I'm not currently working on a `begingroup',")
21895 ("so I had better not try to end anything.");
21896 mp_flush_error(mp, 0);
21898 } while (mp->cur_cmd!=stop);
21900 int mp_run (MP mp) {
21901 @<Install and test the non-local jump buffer@>;
21902 mp_main_control(mp); /* come to life */
21903 mp_final_cleanup(mp); /* prepare for death */
21904 mp_close_files_and_terminate(mp);
21905 return mp->history;
21907 char * mp_mplib_version (MP mp) {
21909 return mplib_version;
21911 char * mp_metapost_version (MP mp) {
21913 return metapost_version;
21916 @ @<Exported function headers@>=
21917 int mp_run (MP mp);
21918 char * mp_mplib_version (MP mp);
21919 char * mp_metapost_version (MP mp);
21922 mp_primitive(mp, "end",stop,0);
21923 @:end_}{\&{end} primitive@>
21924 mp_primitive(mp, "dump",stop,1);
21925 @:dump_}{\&{dump} primitive@>
21927 @ @<Cases of |print_cmd...@>=
21929 if ( m==0 ) mp_print(mp, "end");
21930 else mp_print(mp, "dump");
21934 Let's turn now to statements that are classified as ``commands'' because
21935 of their imperative nature. We'll begin with simple ones, so that it
21936 will be clear how to hook command processing into the |do_statement| routine;
21937 then we'll tackle the tougher commands.
21939 Here's one of the simplest:
21941 @<Cases of |do_statement|...@>=
21942 case random_seed: mp_do_random_seed(mp); break;
21944 @ @<Declare action procedures for use by |do_statement|@>=
21945 void mp_do_random_seed (MP mp) ;
21947 @ @c void mp_do_random_seed (MP mp) {
21949 if ( mp->cur_cmd!=assignment ) {
21950 mp_missing_err(mp, ":=");
21952 help1("Always say `randomseed:=<numeric expression>'.");
21955 mp_get_x_next(mp); mp_scan_expression(mp);
21956 if ( mp->cur_type!=mp_known ) {
21957 exp_err("Unknown value will be ignored");
21958 @.Unknown value...ignored@>
21959 help2("Your expression was too random for me to handle,")
21960 ("so I won't change the random seed just now.");
21961 mp_put_get_flush_error(mp, 0);
21963 @<Initialize the random seed to |cur_exp|@>;
21967 @ @<Initialize the random seed to |cur_exp|@>=
21969 mp_init_randoms(mp, mp->cur_exp);
21970 if ( mp->selector>=log_only && mp->selector<write_file) {
21971 mp->old_setting=mp->selector; mp->selector=log_only;
21972 mp_print_nl(mp, "{randomseed:=");
21973 mp_print_scaled(mp, mp->cur_exp);
21974 mp_print_char(mp, '}');
21975 mp_print_nl(mp, ""); mp->selector=mp->old_setting;
21979 @ And here's another simple one (somewhat different in flavor):
21981 @<Cases of |do_statement|...@>=
21983 mp_print_ln(mp); mp->interaction=mp->cur_mod;
21984 @<Initialize the print |selector| based on |interaction|@>;
21985 if ( mp->log_opened ) mp->selector=mp->selector+2;
21990 mp_primitive(mp, "batchmode",mode_command,mp_batch_mode);
21991 @:mp_batch_mode_}{\&{batchmode} primitive@>
21992 mp_primitive(mp, "nonstopmode",mode_command,mp_nonstop_mode);
21993 @:mp_nonstop_mode_}{\&{nonstopmode} primitive@>
21994 mp_primitive(mp, "scrollmode",mode_command,mp_scroll_mode);
21995 @:mp_scroll_mode_}{\&{scrollmode} primitive@>
21996 mp_primitive(mp, "errorstopmode",mode_command,mp_error_stop_mode);
21997 @:mp_error_stop_mode_}{\&{errorstopmode} primitive@>
21999 @ @<Cases of |print_cmd_mod|...@>=
22002 case mp_batch_mode: mp_print(mp, "batchmode"); break;
22003 case mp_nonstop_mode: mp_print(mp, "nonstopmode"); break;
22004 case mp_scroll_mode: mp_print(mp, "scrollmode"); break;
22005 default: mp_print(mp, "errorstopmode"); break;
22009 @ The `\&{inner}' and `\&{outer}' commands are only slightly harder.
22011 @<Cases of |do_statement|...@>=
22012 case protection_command: mp_do_protection(mp); break;
22015 mp_primitive(mp, "inner",protection_command,0);
22016 @:inner_}{\&{inner} primitive@>
22017 mp_primitive(mp, "outer",protection_command,1);
22018 @:outer_}{\&{outer} primitive@>
22020 @ @<Cases of |print_cmd...@>=
22021 case protection_command:
22022 if ( m==0 ) mp_print(mp, "inner");
22023 else mp_print(mp, "outer");
22026 @ @<Declare action procedures for use by |do_statement|@>=
22027 void mp_do_protection (MP mp) ;
22029 @ @c void mp_do_protection (MP mp) {
22030 int m; /* 0 to unprotect, 1 to protect */
22031 halfword t; /* the |eq_type| before we change it */
22034 mp_get_symbol(mp); t=eq_type(mp->cur_sym);
22036 if ( t>=outer_tag )
22037 eq_type(mp->cur_sym)=t-outer_tag;
22038 } else if ( t<outer_tag ) {
22039 eq_type(mp->cur_sym)=t+outer_tag;
22042 } while (mp->cur_cmd==comma);
22045 @ \MP\ never defines the tokens `\.(' and `\.)' to be primitives, but
22046 plain \MP\ begins with the declaration `\&{delimiters} \.{()}'. Such a
22047 declaration assigns the command code |left_delimiter| to `\.{(}' and
22048 |right_delimiter| to `\.{)}'; the |equiv| of each delimiter is the
22049 hash address of its mate.
22051 @<Cases of |do_statement|...@>=
22052 case delimiters: mp_def_delims(mp); break;
22054 @ @<Declare action procedures for use by |do_statement|@>=
22055 void mp_def_delims (MP mp) ;
22057 @ @c void mp_def_delims (MP mp) {
22058 pointer l_delim,r_delim; /* the new delimiter pair */
22059 mp_get_clear_symbol(mp); l_delim=mp->cur_sym;
22060 mp_get_clear_symbol(mp); r_delim=mp->cur_sym;
22061 eq_type(l_delim)=left_delimiter; equiv(l_delim)=r_delim;
22062 eq_type(r_delim)=right_delimiter; equiv(r_delim)=l_delim;
22066 @ Here is a procedure that is called when \MP\ has reached a point
22067 where some right delimiter is mandatory.
22069 @<Declare the procedure called |check_delimiter|@>=
22070 void mp_check_delimiter (MP mp,pointer l_delim, pointer r_delim) {
22071 if ( mp->cur_cmd==right_delimiter )
22072 if ( mp->cur_mod==l_delim )
22074 if ( mp->cur_sym!=r_delim ) {
22075 mp_missing_err(mp, str(text(r_delim)));
22077 help2("I found no right delimiter to match a left one. So I've")
22078 ("put one in, behind the scenes; this may fix the problem.");
22081 print_err("The token `"); mp_print_text(r_delim);
22082 @.The token...delimiter@>
22083 mp_print(mp, "' is no longer a right delimiter");
22084 help3("Strange: This token has lost its former meaning!")
22085 ("I'll read it as a right delimiter this time;")
22086 ("but watch out, I'll probably miss it later.");
22091 @ The next four commands save or change the values associated with tokens.
22093 @<Cases of |do_statement|...@>=
22096 mp_get_symbol(mp); mp_save_variable(mp, mp->cur_sym); mp_get_x_next(mp);
22097 } while (mp->cur_cmd==comma);
22099 case interim_command: mp_do_interim(mp); break;
22100 case let_command: mp_do_let(mp); break;
22101 case new_internal: mp_do_new_internal(mp); break;
22103 @ @<Declare action procedures for use by |do_statement|@>=
22104 void mp_do_statement (MP mp);
22105 void mp_do_interim (MP mp);
22107 @ @c void mp_do_interim (MP mp) {
22109 if ( mp->cur_cmd!=internal_quantity ) {
22110 print_err("The token `");
22111 @.The token...quantity@>
22112 if ( mp->cur_sym==0 ) mp_print(mp, "(%CAPSULE)");
22113 else mp_print_text(mp->cur_sym);
22114 mp_print(mp, "' isn't an internal quantity");
22115 help1("Something like `tracingonline' should follow `interim'.");
22118 mp_save_internal(mp, mp->cur_mod); mp_back_input(mp);
22120 mp_do_statement(mp);
22123 @ The following procedure is careful not to undefine the left-hand symbol
22124 too soon, lest commands like `{\tt let x=x}' have a surprising effect.
22126 @<Declare action procedures for use by |do_statement|@>=
22127 void mp_do_let (MP mp) ;
22129 @ @c void mp_do_let (MP mp) {
22130 pointer l; /* hash location of the left-hand symbol */
22131 mp_get_symbol(mp); l=mp->cur_sym; mp_get_x_next(mp);
22132 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
22133 mp_missing_err(mp, "=");
22135 help3("You should have said `let symbol = something'.")
22136 ("But don't worry; I'll pretend that an equals sign")
22137 ("was present. The next token I read will be `something'.");
22141 switch (mp->cur_cmd) {
22142 case defined_macro: case secondary_primary_macro:
22143 case tertiary_secondary_macro: case expression_tertiary_macro:
22144 add_mac_ref(mp->cur_mod);
22149 mp_clear_symbol(mp, l,false); eq_type(l)=mp->cur_cmd;
22150 if ( mp->cur_cmd==tag_token ) equiv(l)=null;
22151 else equiv(l)=mp->cur_mod;
22155 @ @<Declarations@>=
22156 void mp_grow_internals (MP mp, int l);
22157 void mp_do_new_internal (MP mp) ;
22160 void mp_grow_internals (MP mp, int l) {
22164 if ( hash_end+l>max_halfword ) {
22165 mp_confusion(mp, "out of memory space"); /* can't be reached */
22167 int_name = xmalloc ((l+1),sizeof(char *));
22168 internal = xmalloc ((l+1),sizeof(scaled));
22169 for (k=0;k<=l; k++ ) {
22170 if (k<=mp->max_internal) {
22171 internal[k]=mp->internal[k];
22172 int_name[k]=mp->int_name[k];
22178 xfree(mp->internal); xfree(mp->int_name);
22179 mp->int_name = int_name;
22180 mp->internal = internal;
22181 mp->max_internal = l;
22185 void mp_do_new_internal (MP mp) {
22187 if ( mp->int_ptr==mp->max_internal ) {
22188 mp_grow_internals(mp, (mp->max_internal + (mp->max_internal>>2)));
22190 mp_get_clear_symbol(mp); incr(mp->int_ptr);
22191 eq_type(mp->cur_sym)=internal_quantity;
22192 equiv(mp->cur_sym)=mp->int_ptr;
22193 if(mp->int_name[mp->int_ptr]!=NULL)
22194 xfree(mp->int_name[mp->int_ptr]);
22195 mp->int_name[mp->int_ptr]=str(text(mp->cur_sym));
22196 mp->internal[mp->int_ptr]=0;
22198 } while (mp->cur_cmd==comma);
22201 @ @<Dealloc variables@>=
22202 for (k=0;k<=mp->max_internal;k++) {
22203 xfree(mp->int_name[k]);
22205 xfree(mp->internal);
22206 xfree(mp->int_name);
22209 @ The various `\&{show}' commands are distinguished by modifier fields
22212 @d show_token_code 0 /* show the meaning of a single token */
22213 @d show_stats_code 1 /* show current memory and string usage */
22214 @d show_code 2 /* show a list of expressions */
22215 @d show_var_code 3 /* show a variable and its descendents */
22216 @d show_dependencies_code 4 /* show dependent variables in terms of independents */
22219 mp_primitive(mp, "showtoken",show_command,show_token_code);
22220 @:show_token_}{\&{showtoken} primitive@>
22221 mp_primitive(mp, "showstats",show_command,show_stats_code);
22222 @:show_stats_}{\&{showstats} primitive@>
22223 mp_primitive(mp, "show",show_command,show_code);
22224 @:show_}{\&{show} primitive@>
22225 mp_primitive(mp, "showvariable",show_command,show_var_code);
22226 @:show_var_}{\&{showvariable} primitive@>
22227 mp_primitive(mp, "showdependencies",show_command,show_dependencies_code);
22228 @:show_dependencies_}{\&{showdependencies} primitive@>
22230 @ @<Cases of |print_cmd...@>=
22233 case show_token_code:mp_print(mp, "showtoken"); break;
22234 case show_stats_code:mp_print(mp, "showstats"); break;
22235 case show_code:mp_print(mp, "show"); break;
22236 case show_var_code:mp_print(mp, "showvariable"); break;
22237 default: mp_print(mp, "showdependencies"); break;
22241 @ @<Cases of |do_statement|...@>=
22242 case show_command:mp_do_show_whatever(mp); break;
22244 @ The value of |cur_mod| controls the |verbosity| in the |print_exp| routine:
22245 if it's |show_code|, complicated structures are abbreviated, otherwise
22248 @<Declare action procedures for use by |do_statement|@>=
22249 void mp_do_show (MP mp) ;
22251 @ @c void mp_do_show (MP mp) {
22253 mp_get_x_next(mp); mp_scan_expression(mp);
22254 mp_print_nl(mp, ">> ");
22256 mp_print_exp(mp, null,2); mp_flush_cur_exp(mp, 0);
22257 } while (mp->cur_cmd==comma);
22260 @ @<Declare action procedures for use by |do_statement|@>=
22261 void mp_disp_token (MP mp) ;
22263 @ @c void mp_disp_token (MP mp) {
22264 mp_print_nl(mp, "> ");
22266 if ( mp->cur_sym==0 ) {
22267 @<Show a numeric or string or capsule token@>;
22269 mp_print_text(mp->cur_sym); mp_print_char(mp, '=');
22270 if ( eq_type(mp->cur_sym)>=outer_tag ) mp_print(mp, "(outer) ");
22271 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
22272 if ( mp->cur_cmd==defined_macro ) {
22273 mp_print_ln(mp); mp_show_macro(mp, mp->cur_mod,null,100000);
22274 } /* this avoids recursion between |show_macro| and |print_cmd_mod| */
22279 @ @<Show a numeric or string or capsule token@>=
22281 if ( mp->cur_cmd==numeric_token ) {
22282 mp_print_scaled(mp, mp->cur_mod);
22283 } else if ( mp->cur_cmd==capsule_token ) {
22284 mp->g_pointer=mp->cur_mod; mp_print_capsule(mp);
22286 mp_print_char(mp, '"');
22287 mp_print_str(mp, mp->cur_mod); mp_print_char(mp, '"');
22288 delete_str_ref(mp->cur_mod);
22292 @ The following cases of |print_cmd_mod| might arise in connection
22293 with |disp_token|, although they don't correspond to any
22296 @<Cases of |print_cmd_...@>=
22297 case left_delimiter:
22298 case right_delimiter:
22299 if ( c==left_delimiter ) mp_print(mp, "left");
22300 else mp_print(mp, "right");
22301 mp_print(mp, " delimiter that matches ");
22305 if ( m==null ) mp_print(mp, "tag");
22306 else mp_print(mp, "variable");
22308 case defined_macro:
22309 mp_print(mp, "macro:");
22311 case secondary_primary_macro:
22312 case tertiary_secondary_macro:
22313 case expression_tertiary_macro:
22314 mp_print_cmd_mod(mp, macro_def,c);
22315 mp_print(mp, "'d macro:");
22316 mp_print_ln(mp); mp_show_token_list(mp, link(link(m)),null,1000,0);
22319 mp_print(mp, "[repeat the loop]");
22321 case internal_quantity:
22322 mp_print(mp, mp->int_name[m]);
22325 @ @<Declare action procedures for use by |do_statement|@>=
22326 void mp_do_show_token (MP mp) ;
22328 @ @c void mp_do_show_token (MP mp) {
22330 get_t_next; mp_disp_token(mp);
22332 } while (mp->cur_cmd==comma);
22335 @ @<Declare action procedures for use by |do_statement|@>=
22336 void mp_do_show_stats (MP mp) ;
22338 @ @c void mp_do_show_stats (MP mp) {
22339 mp_print_nl(mp, "Memory usage ");
22340 @.Memory usage...@>
22341 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used);
22343 mp_print(mp, "unknown");
22344 mp_print(mp, " ("); mp_print_int(mp, mp->hi_mem_min-mp->lo_mem_max-1);
22345 mp_print(mp, " still untouched)"); mp_print_ln(mp);
22346 mp_print_nl(mp, "String usage ");
22347 mp_print_int(mp, mp->strs_in_use-mp->init_str_use);
22348 mp_print_char(mp, '&'); mp_print_int(mp, mp->pool_in_use-mp->init_pool_ptr);
22350 mp_print(mp, "unknown");
22351 mp_print(mp, " (");
22352 mp_print_int(mp, mp->max_strings-1-mp->strs_used_up); mp_print_char(mp, '&');
22353 mp_print_int(mp, mp->pool_size-mp->pool_ptr);
22354 mp_print(mp, " now untouched)"); mp_print_ln(mp);
22358 @ Here's a recursive procedure that gives an abbreviated account
22359 of a variable, for use by |do_show_var|.
22361 @<Declare action procedures for use by |do_statement|@>=
22362 void mp_disp_var (MP mp,pointer p) ;
22364 @ @c void mp_disp_var (MP mp,pointer p) {
22365 pointer q; /* traverses attributes and subscripts */
22366 int n; /* amount of macro text to show */
22367 if ( type(p)==mp_structured ) {
22368 @<Descend the structure@>;
22369 } else if ( type(p)>=mp_unsuffixed_macro ) {
22370 @<Display a variable macro@>;
22371 } else if ( type(p)!=undefined ){
22372 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22373 mp_print_char(mp, '=');
22374 mp_print_exp(mp, p,0);
22378 @ @<Descend the structure@>=
22381 do { mp_disp_var(mp, q); q=link(q); } while (q!=end_attr);
22383 while ( name_type(q)==mp_subscr ) {
22384 mp_disp_var(mp, q); q=link(q);
22388 @ @<Display a variable macro@>=
22390 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22391 if ( type(p)>mp_unsuffixed_macro )
22392 mp_print(mp, "@@#"); /* |suffixed_macro| */
22393 mp_print(mp, "=macro:");
22394 if ( (int)mp->file_offset>=mp->max_print_line-20 ) n=5;
22395 else n=mp->max_print_line-mp->file_offset-15;
22396 mp_show_macro(mp, value(p),null,n);
22399 @ @<Declare action procedures for use by |do_statement|@>=
22400 void mp_do_show_var (MP mp) ;
22402 @ @c void mp_do_show_var (MP mp) {
22405 if ( mp->cur_sym>0 ) if ( mp->cur_sym<=hash_end )
22406 if ( mp->cur_cmd==tag_token ) if ( mp->cur_mod!=null ) {
22407 mp_disp_var(mp, mp->cur_mod); goto DONE;
22412 } while (mp->cur_cmd==comma);
22415 @ @<Declare action procedures for use by |do_statement|@>=
22416 void mp_do_show_dependencies (MP mp) ;
22418 @ @c void mp_do_show_dependencies (MP mp) {
22419 pointer p; /* link that runs through all dependencies */
22421 while ( p!=dep_head ) {
22422 if ( mp_interesting(mp, p) ) {
22423 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22424 if ( type(p)==mp_dependent ) mp_print_char(mp, '=');
22425 else mp_print(mp, " = "); /* extra spaces imply proto-dependency */
22426 mp_print_dependency(mp, dep_list(p),type(p));
22429 while ( info(p)!=null ) p=link(p);
22435 @ Finally we are ready for the procedure that governs all of the
22438 @<Declare action procedures for use by |do_statement|@>=
22439 void mp_do_show_whatever (MP mp) ;
22441 @ @c void mp_do_show_whatever (MP mp) {
22442 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
22443 switch (mp->cur_mod) {
22444 case show_token_code:mp_do_show_token(mp); break;
22445 case show_stats_code:mp_do_show_stats(mp); break;
22446 case show_code:mp_do_show(mp); break;
22447 case show_var_code:mp_do_show_var(mp); break;
22448 case show_dependencies_code:mp_do_show_dependencies(mp); break;
22449 } /* there are no other cases */
22450 if ( mp->internal[mp_showstopping]>0 ){
22453 if ( mp->interaction<mp_error_stop_mode ) {
22454 help0; decr(mp->error_count);
22456 help1("This isn't an error message; I'm just showing something.");
22458 if ( mp->cur_cmd==semicolon ) mp_error(mp);
22459 else mp_put_get_error(mp);
22463 @ The `\&{addto}' command needs the following additional primitives:
22465 @d double_path_code 0 /* command modifier for `\&{doublepath}' */
22466 @d contour_code 1 /* command modifier for `\&{contour}' */
22467 @d also_code 2 /* command modifier for `\&{also}' */
22469 @ Pre and postscripts need two new identifiers:
22471 @d with_pre_script 11
22472 @d with_post_script 13
22475 mp_primitive(mp, "doublepath",thing_to_add,double_path_code);
22476 @:double_path_}{\&{doublepath} primitive@>
22477 mp_primitive(mp, "contour",thing_to_add,contour_code);
22478 @:contour_}{\&{contour} primitive@>
22479 mp_primitive(mp, "also",thing_to_add,also_code);
22480 @:also_}{\&{also} primitive@>
22481 mp_primitive(mp, "withpen",with_option,mp_pen_type);
22482 @:with_pen_}{\&{withpen} primitive@>
22483 mp_primitive(mp, "dashed",with_option,mp_picture_type);
22484 @:dashed_}{\&{dashed} primitive@>
22485 mp_primitive(mp, "withprescript",with_option,with_pre_script);
22486 @:with_pre_script_}{\&{withprescript} primitive@>
22487 mp_primitive(mp, "withpostscript",with_option,with_post_script);
22488 @:with_post_script_}{\&{withpostscript} primitive@>
22489 mp_primitive(mp, "withoutcolor",with_option,mp_no_model);
22490 @:with_color_}{\&{withoutcolor} primitive@>
22491 mp_primitive(mp, "withgreyscale",with_option,mp_grey_model);
22492 @:with_color_}{\&{withgreyscale} primitive@>
22493 mp_primitive(mp, "withcolor",with_option,mp_uninitialized_model);
22494 @:with_color_}{\&{withcolor} primitive@>
22495 /* \&{withrgbcolor} is an alias for \&{withcolor} */
22496 mp_primitive(mp, "withrgbcolor",with_option,mp_rgb_model);
22497 @:with_color_}{\&{withrgbcolor} primitive@>
22498 mp_primitive(mp, "withcmykcolor",with_option,mp_cmyk_model);
22499 @:with_color_}{\&{withcmykcolor} primitive@>
22501 @ @<Cases of |print_cmd...@>=
22503 if ( m==contour_code ) mp_print(mp, "contour");
22504 else if ( m==double_path_code ) mp_print(mp, "doublepath");
22505 else mp_print(mp, "also");
22508 if ( m==mp_pen_type ) mp_print(mp, "withpen");
22509 else if ( m==with_pre_script ) mp_print(mp, "withprescript");
22510 else if ( m==with_post_script ) mp_print(mp, "withpostscript");
22511 else if ( m==mp_no_model ) mp_print(mp, "withoutcolor");
22512 else if ( m==mp_rgb_model ) mp_print(mp, "withrgbcolor");
22513 else if ( m==mp_uninitialized_model ) mp_print(mp, "withcolor");
22514 else if ( m==mp_cmyk_model ) mp_print(mp, "withcmykcolor");
22515 else if ( m==mp_grey_model ) mp_print(mp, "withgreyscale");
22516 else mp_print(mp, "dashed");
22519 @ The |scan_with_list| procedure parses a $\langle$with list$\rangle$ and
22520 updates the list of graphical objects starting at |p|. Each $\langle$with
22521 clause$\rangle$ updates all graphical objects whose |type| is compatible.
22522 Other objects are ignored.
22524 @<Declare action procedures for use by |do_statement|@>=
22525 void mp_scan_with_list (MP mp,pointer p) ;
22527 @ @c void mp_scan_with_list (MP mp,pointer p) {
22528 small_number t; /* |cur_mod| of the |with_option| (should match |cur_type|) */
22529 pointer q; /* for list manipulation */
22530 int old_setting; /* saved |selector| setting */
22531 pointer k; /* for finding the near-last item in a list */
22532 str_number s; /* for string cleanup after combining */
22533 pointer cp,pp,dp,ap,bp;
22534 /* objects being updated; |void| initially; |null| to suppress update */
22535 cp=mp_void; pp=mp_void; dp=mp_void; ap=mp_void; bp=mp_void;
22537 while ( mp->cur_cmd==with_option ){
22540 if ( t!=mp_no_model ) mp_scan_expression(mp);
22541 if (((t==with_pre_script)&&(mp->cur_type!=mp_string_type))||
22542 ((t==with_post_script)&&(mp->cur_type!=mp_string_type))||
22543 ((t==mp_uninitialized_model)&&
22544 ((mp->cur_type!=mp_cmykcolor_type)&&(mp->cur_type!=mp_color_type)
22545 &&(mp->cur_type!=mp_known)&&(mp->cur_type!=mp_boolean_type)))||
22546 ((t==mp_cmyk_model)&&(mp->cur_type!=mp_cmykcolor_type))||
22547 ((t==mp_rgb_model)&&(mp->cur_type!=mp_color_type))||
22548 ((t==mp_grey_model)&&(mp->cur_type!=mp_known))||
22549 ((t==mp_pen_type)&&(mp->cur_type!=t))||
22550 ((t==mp_picture_type)&&(mp->cur_type!=t)) ) {
22551 @<Complain about improper type@>;
22552 } else if ( t==mp_uninitialized_model ) {
22553 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22555 @<Transfer a color from the current expression to object~|cp|@>;
22556 mp_flush_cur_exp(mp, 0);
22557 } else if ( t==mp_rgb_model ) {
22558 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22560 @<Transfer a rgbcolor from the current expression to object~|cp|@>;
22561 mp_flush_cur_exp(mp, 0);
22562 } else if ( t==mp_cmyk_model ) {
22563 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22565 @<Transfer a cmykcolor from the current expression to object~|cp|@>;
22566 mp_flush_cur_exp(mp, 0);
22567 } else if ( t==mp_grey_model ) {
22568 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22570 @<Transfer a greyscale from the current expression to object~|cp|@>;
22571 mp_flush_cur_exp(mp, 0);
22572 } else if ( t==mp_no_model ) {
22573 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22575 @<Transfer a noncolor from the current expression to object~|cp|@>;
22576 } else if ( t==mp_pen_type ) {
22577 if ( pp==mp_void ) @<Make |pp| an object in list~|p| that needs a pen@>;
22579 if ( pen_p(pp)!=null ) mp_toss_knot_list(mp, pen_p(pp));
22580 pen_p(pp)=mp->cur_exp; mp->cur_type=mp_vacuous;
22582 } else if ( t==with_pre_script ) {
22585 while ( (ap!=null)&&(! has_color(ap)) )
22588 if ( pre_script(ap)!=null ) { /* build a new,combined string */
22590 old_setting=mp->selector;
22591 mp->selector=new_string;
22592 str_room(length(pre_script(ap))+length(mp->cur_exp)+2);
22593 mp_print_str(mp, mp->cur_exp);
22594 append_char(13); /* a forced \ps\ newline */
22595 mp_print_str(mp, pre_script(ap));
22596 pre_script(ap)=mp_make_string(mp);
22598 mp->selector=old_setting;
22600 pre_script(ap)=mp->cur_exp;
22602 mp->cur_type=mp_vacuous;
22604 } else if ( t==with_post_script ) {
22608 while ( link(k)!=null ) {
22610 if ( has_color(k) ) bp=k;
22613 if ( post_script(bp)!=null ) {
22615 old_setting=mp->selector;
22616 mp->selector=new_string;
22617 str_room(length(post_script(bp))+length(mp->cur_exp)+2);
22618 mp_print_str(mp, post_script(bp));
22619 append_char(13); /* a forced \ps\ newline */
22620 mp_print_str(mp, mp->cur_exp);
22621 post_script(bp)=mp_make_string(mp);
22623 mp->selector=old_setting;
22625 post_script(bp)=mp->cur_exp;
22627 mp->cur_type=mp_vacuous;
22630 if ( dp==mp_void ) {
22631 @<Make |dp| a stroked node in list~|p|@>;
22634 if ( dash_p(dp)!=null ) delete_edge_ref(dash_p(dp));
22635 dash_p(dp)=mp_make_dashes(mp, mp->cur_exp);
22636 dash_scale(dp)=unity;
22637 mp->cur_type=mp_vacuous;
22641 @<Copy the information from objects |cp|, |pp|, and |dp| into the rest
22645 @ @<Complain about improper type@>=
22646 { exp_err("Improper type");
22648 help2("Next time say `withpen <known pen expression>';")
22649 ("I'll ignore the bad `with' clause and look for another.");
22650 if ( t==with_pre_script )
22651 mp->help_line[1]="Next time say `withprescript <known string expression>';";
22652 else if ( t==with_post_script )
22653 mp->help_line[1]="Next time say `withpostscript <known string expression>';";
22654 else if ( t==mp_picture_type )
22655 mp->help_line[1]="Next time say `dashed <known picture expression>';";
22656 else if ( t==mp_uninitialized_model )
22657 mp->help_line[1]="Next time say `withcolor <known color expression>';";
22658 else if ( t==mp_rgb_model )
22659 mp->help_line[1]="Next time say `withrgbcolor <known color expression>';";
22660 else if ( t==mp_cmyk_model )
22661 mp->help_line[1]="Next time say `withcmykcolor <known cmykcolor expression>';";
22662 else if ( t==mp_grey_model )
22663 mp->help_line[1]="Next time say `withgreyscale <known numeric expression>';";;
22664 mp_put_get_flush_error(mp, 0);
22667 @ Forcing the color to be between |0| and |unity| here guarantees that no
22668 picture will ever contain a color outside the legal range for \ps\ graphics.
22670 @<Transfer a color from the current expression to object~|cp|@>=
22671 { if ( mp->cur_type==mp_color_type )
22672 @<Transfer a rgbcolor from the current expression to object~|cp|@>
22673 else if ( mp->cur_type==mp_cmykcolor_type )
22674 @<Transfer a cmykcolor from the current expression to object~|cp|@>
22675 else if ( mp->cur_type==mp_known )
22676 @<Transfer a greyscale from the current expression to object~|cp|@>
22677 else if ( mp->cur_exp==false_code )
22678 @<Transfer a noncolor from the current expression to object~|cp|@>;
22681 @ @<Transfer a rgbcolor from the current expression to object~|cp|@>=
22682 { q=value(mp->cur_exp);
22687 red_val(cp)=value(red_part_loc(q));
22688 green_val(cp)=value(green_part_loc(q));
22689 blue_val(cp)=value(blue_part_loc(q));
22690 color_model(cp)=mp_rgb_model;
22691 if ( red_val(cp)<0 ) red_val(cp)=0;
22692 if ( green_val(cp)<0 ) green_val(cp)=0;
22693 if ( blue_val(cp)<0 ) blue_val(cp)=0;
22694 if ( red_val(cp)>unity ) red_val(cp)=unity;
22695 if ( green_val(cp)>unity ) green_val(cp)=unity;
22696 if ( blue_val(cp)>unity ) blue_val(cp)=unity;
22699 @ @<Transfer a cmykcolor from the current expression to object~|cp|@>=
22700 { q=value(mp->cur_exp);
22701 cyan_val(cp)=value(cyan_part_loc(q));
22702 magenta_val(cp)=value(magenta_part_loc(q));
22703 yellow_val(cp)=value(yellow_part_loc(q));
22704 black_val(cp)=value(black_part_loc(q));
22705 color_model(cp)=mp_cmyk_model;
22706 if ( cyan_val(cp)<0 ) cyan_val(cp)=0;
22707 if ( magenta_val(cp)<0 ) magenta_val(cp)=0;
22708 if ( yellow_val(cp)<0 ) yellow_val(cp)=0;
22709 if ( black_val(cp)<0 ) black_val(cp)=0;
22710 if ( cyan_val(cp)>unity ) cyan_val(cp)=unity;
22711 if ( magenta_val(cp)>unity ) magenta_val(cp)=unity;
22712 if ( yellow_val(cp)>unity ) yellow_val(cp)=unity;
22713 if ( black_val(cp)>unity ) black_val(cp)=unity;
22716 @ @<Transfer a greyscale from the current expression to object~|cp|@>=
22723 color_model(cp)=mp_grey_model;
22724 if ( grey_val(cp)<0 ) grey_val(cp)=0;
22725 if ( grey_val(cp)>unity ) grey_val(cp)=unity;
22728 @ @<Transfer a noncolor from the current expression to object~|cp|@>=
22735 color_model(cp)=mp_no_model;
22738 @ @<Make |cp| a colored object in object list~|p|@>=
22740 while ( cp!=null ){
22741 if ( has_color(cp) ) break;
22746 @ @<Make |pp| an object in list~|p| that needs a pen@>=
22748 while ( pp!=null ) {
22749 if ( has_pen(pp) ) break;
22754 @ @<Make |dp| a stroked node in list~|p|@>=
22756 while ( dp!=null ) {
22757 if ( type(dp)==mp_stroked_code ) break;
22762 @ @<Copy the information from objects |cp|, |pp|, and |dp| into...@>=
22763 @<Copy |cp|'s color into the colored objects linked to~|cp|@>;
22764 if ( pp>mp_void ) {
22765 @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>;
22767 if ( dp>mp_void ) {
22768 @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>;
22772 @ @<Copy |cp|'s color into the colored objects linked to~|cp|@>=
22774 while ( q!=null ) {
22775 if ( has_color(q) ) {
22776 red_val(q)=red_val(cp);
22777 green_val(q)=green_val(cp);
22778 blue_val(q)=blue_val(cp);
22779 black_val(q)=black_val(cp);
22780 color_model(q)=color_model(cp);
22786 @ @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>=
22788 while ( q!=null ) {
22789 if ( has_pen(q) ) {
22790 if ( pen_p(q)!=null ) mp_toss_knot_list(mp, pen_p(q));
22791 pen_p(q)=copy_pen(pen_p(pp));
22797 @ @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>=
22799 while ( q!=null ) {
22800 if ( type(q)==mp_stroked_code ) {
22801 if ( dash_p(q)!=null ) delete_edge_ref(dash_p(q));
22802 dash_p(q)=dash_p(dp);
22803 dash_scale(q)=unity;
22804 if ( dash_p(q)!=null ) add_edge_ref(dash_p(q));
22810 @ One of the things we need to do when we've parsed an \&{addto} or
22811 similar command is find the header of a supposed \&{picture} variable, given
22812 a token list for that variable. Since the edge structure is about to be
22813 updated, we use |private_edges| to make sure that this is possible.
22815 @<Declare action procedures for use by |do_statement|@>=
22816 pointer mp_find_edges_var (MP mp, pointer t) ;
22818 @ @c pointer mp_find_edges_var (MP mp, pointer t) {
22820 pointer cur_edges; /* the return value */
22821 p=mp_find_variable(mp, t); cur_edges=null;
22823 mp_obliterated(mp, t); mp_put_get_error(mp);
22824 } else if ( type(p)!=mp_picture_type ) {
22825 print_err("Variable "); mp_show_token_list(mp, t,null,1000,0);
22826 @.Variable x is the wrong type@>
22827 mp_print(mp, " is the wrong type (");
22828 mp_print_type(mp, type(p)); mp_print_char(mp, ')');
22829 help2("I was looking for a \"known\" picture variable.")
22830 ("So I'll not change anything just now.");
22831 mp_put_get_error(mp);
22833 value(p)=mp_private_edges(mp, value(p));
22834 cur_edges=value(p);
22836 mp_flush_node_list(mp, t);
22840 @ @<Cases of |do_statement|...@>=
22841 case add_to_command: mp_do_add_to(mp); break;
22842 case bounds_command:mp_do_bounds(mp); break;
22845 mp_primitive(mp, "clip",bounds_command,mp_start_clip_code);
22846 @:clip_}{\&{clip} primitive@>
22847 mp_primitive(mp, "setbounds",bounds_command,mp_start_bounds_code);
22848 @:set_bounds_}{\&{setbounds} primitive@>
22850 @ @<Cases of |print_cmd...@>=
22851 case bounds_command:
22852 if ( m==mp_start_clip_code ) mp_print(mp, "clip");
22853 else mp_print(mp, "setbounds");
22856 @ The following function parses the beginning of an \&{addto} or \&{clip}
22857 command: it expects a variable name followed by a token with |cur_cmd=sep|
22858 and then an expression. The function returns the token list for the variable
22859 and stores the command modifier for the separator token in the global variable
22860 |last_add_type|. We must be careful because this variable might get overwritten
22861 any time we call |get_x_next|.
22864 quarterword last_add_type;
22865 /* command modifier that identifies the last \&{addto} command */
22867 @ @<Declare action procedures for use by |do_statement|@>=
22868 pointer mp_start_draw_cmd (MP mp,quarterword sep) ;
22870 @ @c pointer mp_start_draw_cmd (MP mp,quarterword sep) {
22871 pointer lhv; /* variable to add to left */
22872 quarterword add_type=0; /* value to be returned in |last_add_type| */
22874 mp_get_x_next(mp); mp->var_flag=sep; mp_scan_primary(mp);
22875 if ( mp->cur_type!=mp_token_list ) {
22876 @<Abandon edges command because there's no variable@>;
22878 lhv=mp->cur_exp; add_type=mp->cur_mod;
22879 mp->cur_type=mp_vacuous; mp_get_x_next(mp); mp_scan_expression(mp);
22881 mp->last_add_type=add_type;
22885 @ @<Abandon edges command because there's no variable@>=
22886 { exp_err("Not a suitable variable");
22887 @.Not a suitable variable@>
22888 help4("At this point I needed to see the name of a picture variable.")
22889 ("(Or perhaps you have indeed presented me with one; I might")
22890 ("have missed it, if it wasn't followed by the proper token.)")
22891 ("So I'll not change anything just now.");
22892 mp_put_get_flush_error(mp, 0);
22895 @ Here is an example of how to use |start_draw_cmd|.
22897 @<Declare action procedures for use by |do_statement|@>=
22898 void mp_do_bounds (MP mp) ;
22900 @ @c void mp_do_bounds (MP mp) {
22901 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22902 pointer p; /* for list manipulation */
22903 integer m; /* initial value of |cur_mod| */
22905 lhv=mp_start_draw_cmd(mp, to_token);
22907 lhe=mp_find_edges_var(mp, lhv);
22909 mp_flush_cur_exp(mp, 0);
22910 } else if ( mp->cur_type!=mp_path_type ) {
22911 exp_err("Improper `clip'");
22912 @.Improper `addto'@>
22913 help2("This expression should have specified a known path.")
22914 ("So I'll not change anything just now.");
22915 mp_put_get_flush_error(mp, 0);
22916 } else if ( left_type(mp->cur_exp)==mp_endpoint ) {
22917 @<Complain about a non-cycle@>;
22919 @<Make |cur_exp| into a \&{setbounds} or clipping path and add it to |lhe|@>;
22924 @ @<Complain about a non-cycle@>=
22925 { print_err("Not a cycle");
22927 help2("That contour should have ended with `..cycle' or `&cycle'.")
22928 ("So I'll not change anything just now."); mp_put_get_error(mp);
22931 @ @<Make |cur_exp| into a \&{setbounds} or clipping path and add...@>=
22932 { p=mp_new_bounds_node(mp, mp->cur_exp,m);
22933 link(p)=link(dummy_loc(lhe));
22934 link(dummy_loc(lhe))=p;
22935 if ( obj_tail(lhe)==dummy_loc(lhe) ) obj_tail(lhe)=p;
22936 p=mp_get_node(mp, mp->gr_object_size[stop_type(m)]);
22937 type(p)=stop_type(m);
22938 link(obj_tail(lhe))=p;
22940 mp_init_bbox(mp, lhe);
22943 @ The |do_add_to| procedure is a little like |do_clip| but there are a lot more
22944 cases to deal with.
22946 @<Declare action procedures for use by |do_statement|@>=
22947 void mp_do_add_to (MP mp) ;
22949 @ @c void mp_do_add_to (MP mp) {
22950 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22951 pointer p; /* the graphical object or list for |scan_with_list| to update */
22952 pointer e; /* an edge structure to be merged */
22953 quarterword add_type; /* |also_code|, |contour_code|, or |double_path_code| */
22954 lhv=mp_start_draw_cmd(mp, thing_to_add); add_type=mp->last_add_type;
22956 if ( add_type==also_code ) {
22957 @<Make sure the current expression is a suitable picture and set |e| and |p|
22960 @<Create a graphical object |p| based on |add_type| and the current
22963 mp_scan_with_list(mp, p);
22964 @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>;
22968 @ Setting |p:=null| causes the $\langle$with list$\rangle$ to be ignored;
22969 setting |e:=null| prevents anything from being added to |lhe|.
22971 @ @<Make sure the current expression is a suitable picture and set |e|...@>=
22974 if ( mp->cur_type!=mp_picture_type ) {
22975 exp_err("Improper `addto'");
22976 @.Improper `addto'@>
22977 help2("This expression should have specified a known picture.")
22978 ("So I'll not change anything just now."); mp_put_get_flush_error(mp, 0);
22980 e=mp_private_edges(mp, mp->cur_exp); mp->cur_type=mp_vacuous;
22981 p=link(dummy_loc(e));
22985 @ In this case |add_type<>also_code| so setting |p:=null| suppresses future
22986 attempts to add to the edge structure.
22988 @<Create a graphical object |p| based on |add_type| and the current...@>=
22990 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
22991 if ( mp->cur_type!=mp_path_type ) {
22992 exp_err("Improper `addto'");
22993 @.Improper `addto'@>
22994 help2("This expression should have specified a known path.")
22995 ("So I'll not change anything just now.");
22996 mp_put_get_flush_error(mp, 0);
22997 } else if ( add_type==contour_code ) {
22998 if ( left_type(mp->cur_exp)==mp_endpoint ) {
22999 @<Complain about a non-cycle@>;
23001 p=mp_new_fill_node(mp, mp->cur_exp);
23002 mp->cur_type=mp_vacuous;
23005 p=mp_new_stroked_node(mp, mp->cur_exp);
23006 mp->cur_type=mp_vacuous;
23010 @ @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>=
23011 lhe=mp_find_edges_var(mp, lhv);
23013 if ( (e==null)&&(p!=null) ) e=mp_toss_gr_object(mp, p);
23014 if ( e!=null ) delete_edge_ref(e);
23015 } else if ( add_type==also_code ) {
23017 @<Merge |e| into |lhe| and delete |e|@>;
23021 } else if ( p!=null ) {
23022 link(obj_tail(lhe))=p;
23024 if ( add_type==double_path_code )
23025 if ( pen_p(p)==null )
23026 pen_p(p)=mp_get_pen_circle(mp, 0);
23029 @ @<Merge |e| into |lhe| and delete |e|@>=
23030 { if ( link(dummy_loc(e))!=null ) {
23031 link(obj_tail(lhe))=link(dummy_loc(e));
23032 obj_tail(lhe)=obj_tail(e);
23033 obj_tail(e)=dummy_loc(e);
23034 link(dummy_loc(e))=null;
23035 mp_flush_dash_list(mp, lhe);
23037 mp_toss_edges(mp, e);
23040 @ @<Cases of |do_statement|...@>=
23041 case ship_out_command: mp_do_ship_out(mp); break;
23043 @ @<Declare action procedures for use by |do_statement|@>=
23044 @<Declare the function called |tfm_check|@>;
23045 @<Declare the \ps\ output procedures@>;
23046 void mp_do_ship_out (MP mp) ;
23048 @ @c void mp_do_ship_out (MP mp) {
23049 integer c; /* the character code */
23050 mp_get_x_next(mp); mp_scan_expression(mp);
23051 if ( mp->cur_type!=mp_picture_type ) {
23052 @<Complain that it's not a known picture@>;
23054 c=mp_round_unscaled(mp, mp->internal[mp_char_code]) % 256;
23055 if ( c<0 ) c=c+256;
23056 @<Store the width information for character code~|c|@>;
23057 mp_ship_out(mp, mp->cur_exp);
23058 mp_flush_cur_exp(mp, 0);
23062 @ @<Complain that it's not a known picture@>=
23064 exp_err("Not a known picture");
23065 help1("I can only output known pictures.");
23066 mp_put_get_flush_error(mp, 0);
23069 @ The \&{everyjob} command simply assigns a nonzero value to the global variable
23072 @<Cases of |do_statement|...@>=
23073 case every_job_command:
23074 mp_get_symbol(mp); mp->start_sym=mp->cur_sym; mp_get_x_next(mp);
23078 halfword start_sym; /* a symbolic token to insert at beginning of job */
23083 @ Finally, we have only the ``message'' commands remaining.
23086 @d err_message_code 1
23088 @d filename_template_code 3
23089 @d print_with_leading_zeroes(A) g = mp->pool_ptr;
23090 mp_print_int(mp, (A)); g = mp->pool_ptr-g;
23092 mp->pool_ptr = mp->pool_ptr - g;
23094 mp_print_char(mp, '0');
23097 mp_print_int(mp, (A));
23102 mp_primitive(mp, "message",message_command,message_code);
23103 @:message_}{\&{message} primitive@>
23104 mp_primitive(mp, "errmessage",message_command,err_message_code);
23105 @:err_message_}{\&{errmessage} primitive@>
23106 mp_primitive(mp, "errhelp",message_command,err_help_code);
23107 @:err_help_}{\&{errhelp} primitive@>
23108 mp_primitive(mp, "filenametemplate",message_command,filename_template_code);
23109 @:filename_template_}{\&{filenametemplate} primitive@>
23111 @ @<Cases of |print_cmd...@>=
23112 case message_command:
23113 if ( m<err_message_code ) mp_print(mp, "message");
23114 else if ( m==err_message_code ) mp_print(mp, "errmessage");
23115 else if ( m==filename_template_code ) mp_print(mp, "filenametemplate");
23116 else mp_print(mp, "errhelp");
23119 @ @<Cases of |do_statement|...@>=
23120 case message_command: mp_do_message(mp); break;
23122 @ @<Declare action procedures for use by |do_statement|@>=
23123 @<Declare a procedure called |no_string_err|@>;
23124 void mp_do_message (MP mp) ;
23127 @c void mp_do_message (MP mp) {
23128 int m; /* the type of message */
23129 m=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
23130 if ( mp->cur_type!=mp_string_type )
23131 mp_no_string_err(mp, "A message should be a known string expression.");
23135 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp);
23137 case err_message_code:
23138 @<Print string |cur_exp| as an error message@>;
23140 case err_help_code:
23141 @<Save string |cur_exp| as the |err_help|@>;
23143 case filename_template_code:
23144 @<Save the filename template@>;
23146 } /* there are no other cases */
23148 mp_flush_cur_exp(mp, 0);
23151 @ @<Declare a procedure called |no_string_err|@>=
23152 void mp_no_string_err (MP mp,char *s) {
23153 exp_err("Not a string");
23156 mp_put_get_error(mp);
23159 @ The global variable |err_help| is zero when the user has most recently
23160 given an empty help string, or if none has ever been given.
23162 @<Save string |cur_exp| as the |err_help|@>=
23164 if ( mp->err_help!=0 ) delete_str_ref(mp->err_help);
23165 if ( length(mp->cur_exp)==0 ) mp->err_help=0;
23166 else { mp->err_help=mp->cur_exp; add_str_ref(mp->err_help); }
23169 @ If \&{errmessage} occurs often in |mp_scroll_mode|, without user-defined
23170 \&{errhelp}, we don't want to give a long help message each time. So we
23171 give a verbose explanation only once.
23174 boolean long_help_seen; /* has the long \.{\\errmessage} help been used? */
23176 @ @<Set init...@>=mp->long_help_seen=false;
23178 @ @<Print string |cur_exp| as an error message@>=
23180 print_err(""); mp_print_str(mp, mp->cur_exp);
23181 if ( mp->err_help!=0 ) {
23182 mp->use_err_help=true;
23183 } else if ( mp->long_help_seen ) {
23184 help1("(That was another `errmessage'.)") ;
23186 if ( mp->interaction<mp_error_stop_mode ) mp->long_help_seen=true;
23187 help4("This error message was generated by an `errmessage'")
23188 ("command, so I can\'t give any explicit help.")
23189 ("Pretend that you're Miss Marple: Examine all clues,")
23191 ("and deduce the truth by inspired guesses.");
23193 mp_put_get_error(mp); mp->use_err_help=false;
23196 @ @<Cases of |do_statement|...@>=
23197 case write_command: mp_do_write(mp); break;
23199 @ @<Declare action procedures for use by |do_statement|@>=
23200 void mp_do_write (MP mp) ;
23202 @ @c void mp_do_write (MP mp) {
23203 str_number t; /* the line of text to be written */
23204 write_index n,n0; /* for searching |wr_fname| and |wr_file| arrays */
23205 int old_setting; /* for saving |selector| during output */
23207 mp_scan_expression(mp);
23208 if ( mp->cur_type!=mp_string_type ) {
23209 mp_no_string_err(mp, "The text to be written should be a known string expression");
23210 } else if ( mp->cur_cmd!=to_token ) {
23211 print_err("Missing `to' clause");
23212 help1("A write command should end with `to <filename>'");
23213 mp_put_get_error(mp);
23215 t=mp->cur_exp; mp->cur_type=mp_vacuous;
23217 mp_scan_expression(mp);
23218 if ( mp->cur_type!=mp_string_type )
23219 mp_no_string_err(mp, "I can\'t write to that file name. It isn't a known string");
23221 @<Write |t| to the file named by |cur_exp|@>;
23225 mp_flush_cur_exp(mp, 0);
23228 @ @<Write |t| to the file named by |cur_exp|@>=
23230 @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if
23231 |cur_exp| must be inserted@>;
23232 if ( mp_str_vs_str(mp, t,mp->eof_line)==0 ) {
23233 @<Record the end of file on |wr_file[n]|@>;
23235 old_setting=mp->selector;
23236 mp->selector=n+write_file;
23237 mp_print_str(mp, t); mp_print_ln(mp);
23238 mp->selector = old_setting;
23242 @ @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if...@>=
23244 char *fn = str(mp->cur_exp);
23246 n0=mp->write_files;
23247 while (mp_xstrcmp(fn,mp->wr_fname[n])!=0) {
23248 if ( n==0 ) { /* bottom reached */
23249 if ( n0==mp->write_files ) {
23250 if ( mp->write_files<mp->max_write_files ) {
23251 incr(mp->write_files);
23256 l = mp->max_write_files + (mp->max_write_files>>2);
23257 wr_file = xmalloc((l+1),sizeof(void *));
23258 wr_fname = xmalloc((l+1),sizeof(char *));
23259 for (k=0;k<=l;k++) {
23260 if (k<=mp->max_write_files) {
23261 wr_file[k]=mp->wr_file[k];
23262 wr_fname[k]=mp->wr_fname[k];
23268 xfree(mp->wr_file); xfree(mp->wr_fname);
23269 mp->max_write_files = l;
23270 mp->wr_file = wr_file;
23271 mp->wr_fname = wr_fname;
23275 mp_open_write_file(mp, fn ,n);
23278 if ( mp->wr_fname[n]==NULL ) n0=n;
23283 @ @<Record the end of file on |wr_file[n]|@>=
23284 { (mp->close_file)(mp->wr_file[n]);
23285 xfree(mp->wr_fname[n]);
23286 mp->wr_fname[n]=NULL;
23287 if ( n==mp->write_files-1 ) mp->write_files=n;
23291 @* \[42] Writing font metric data.
23292 \TeX\ gets its knowledge about fonts from font metric files, also called
23293 \.{TFM} files; the `\.T' in `\.{TFM}' stands for \TeX,
23294 but other programs know about them too. One of \MP's duties is to
23295 write \.{TFM} files so that the user's fonts can readily be
23296 applied to typesetting.
23297 @:TFM files}{\.{TFM} files@>
23298 @^font metric files@>
23300 The information in a \.{TFM} file appears in a sequence of 8-bit bytes.
23301 Since the number of bytes is always a multiple of~4, we could
23302 also regard the file as a sequence of 32-bit words, but \MP\ uses the
23303 byte interpretation. The format of \.{TFM} files was designed by
23304 Lyle Ramshaw in 1980. The intent is to convey a lot of different kinds
23305 @^Ramshaw, Lyle Harold@>
23306 of information in a compact but useful form.
23309 void * tfm_file; /* the font metric output goes here */
23310 char * metric_file_name; /* full name of the font metric file */
23312 @ The first 24 bytes (6 words) of a \.{TFM} file contain twelve 16-bit
23313 integers that give the lengths of the various subsequent portions
23314 of the file. These twelve integers are, in order:
23315 $$\vbox{\halign{\hfil#&$\null=\null$#\hfil\cr
23316 |lf|&length of the entire file, in words;\cr
23317 |lh|&length of the header data, in words;\cr
23318 |bc|&smallest character code in the font;\cr
23319 |ec|&largest character code in the font;\cr
23320 |nw|&number of words in the width table;\cr
23321 |nh|&number of words in the height table;\cr
23322 |nd|&number of words in the depth table;\cr
23323 |ni|&number of words in the italic correction table;\cr
23324 |nl|&number of words in the lig/kern table;\cr
23325 |nk|&number of words in the kern table;\cr
23326 |ne|&number of words in the extensible character table;\cr
23327 |np|&number of font parameter words.\cr}}$$
23328 They are all nonnegative and less than $2^{15}$. We must have |bc-1<=ec<=255|,
23330 $$\hbox{|lf=6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np|.}$$
23331 Note that a font may contain as many as 256 characters (if |bc=0| and |ec=255|),
23332 and as few as 0 characters (if |bc=ec+1|).
23334 Incidentally, when two or more 8-bit bytes are combined to form an integer of
23335 16 or more bits, the most significant bytes appear first in the file.
23336 This is called BigEndian order.
23337 @^BigEndian order@>
23339 @ The rest of the \.{TFM} file may be regarded as a sequence of ten data
23342 The most important data type used here is a |fix_word|, which is
23343 a 32-bit representation of a binary fraction. A |fix_word| is a signed
23344 quantity, with the two's complement of the entire word used to represent
23345 negation. Of the 32 bits in a |fix_word|, exactly 12 are to the left of the
23346 binary point; thus, the largest |fix_word| value is $2048-2^{-20}$, and
23347 the smallest is $-2048$. We will see below, however, that all but two of
23348 the |fix_word| values must lie between $-16$ and $+16$.
23350 @ The first data array is a block of header information, which contains
23351 general facts about the font. The header must contain at least two words,
23352 |header[0]| and |header[1]|, whose meaning is explained below. Additional
23353 header information of use to other software routines might also be
23354 included, and \MP\ will generate it if the \.{headerbyte} command occurs.
23355 For example, 16 more words of header information are in use at the Xerox
23356 Palo Alto Research Center; the first ten specify the character coding
23357 scheme used (e.g., `\.{XEROX TEXT}' or `\.{TEX MATHSY}'), the next five
23358 give the font family name (e.g., `\.{HELVETICA}' or `\.{CMSY}'), and the
23359 last gives the ``face byte.''
23361 \yskip\hang|header[0]| is a 32-bit check sum that \MP\ will copy into
23362 the \.{GF} output file. This helps ensure consistency between files,
23363 since \TeX\ records the check sums from the \.{TFM}'s it reads, and these
23364 should match the check sums on actual fonts that are used. The actual
23365 relation between this check sum and the rest of the \.{TFM} file is not
23366 important; the check sum is simply an identification number with the
23367 property that incompatible fonts almost always have distinct check sums.
23370 \yskip\hang|header[1]| is a |fix_word| containing the design size of the
23371 font, in units of \TeX\ points. This number must be at least 1.0; it is
23372 fairly arbitrary, but usually the design size is 10.0 for a ``10 point''
23373 font, i.e., a font that was designed to look best at a 10-point size,
23374 whatever that really means. When a \TeX\ user asks for a font `\.{at}
23375 $\delta$ \.{pt}', the effect is to override the design size and replace it
23376 by $\delta$, and to multiply the $x$ and~$y$ coordinates of the points in
23377 the font image by a factor of $\delta$ divided by the design size. {\sl
23378 All other dimensions in the\/ \.{TFM} file are |fix_word|\kern-1pt\
23379 numbers in design-size units.} Thus, for example, the value of |param[6]|,
23380 which defines the \.{em} unit, is often the |fix_word| value $2^{20}=1.0$,
23381 since many fonts have a design size equal to one em. The other dimensions
23382 must be less than 16 design-size units in absolute value; thus,
23383 |header[1]| and |param[1]| are the only |fix_word| entries in the whole
23384 \.{TFM} file whose first byte might be something besides 0 or 255.
23386 @ Next comes the |char_info| array, which contains one |char_info_word|
23387 per character. Each word in this part of the file contains six fields
23388 packed into four bytes as follows.
23390 \yskip\hang first byte: |width_index| (8 bits)\par
23391 \hang second byte: |height_index| (4 bits) times 16, plus |depth_index|
23393 \hang third byte: |italic_index| (6 bits) times 4, plus |tag|
23395 \hang fourth byte: |remainder| (8 bits)\par
23397 The actual width of a character is \\{width}|[width_index]|, in design-size
23398 units; this is a device for compressing information, since many characters
23399 have the same width. Since it is quite common for many characters
23400 to have the same height, depth, or italic correction, the \.{TFM} format
23401 imposes a limit of 16 different heights, 16 different depths, and
23402 64 different italic corrections.
23404 Incidentally, the relation $\\{width}[0]=\\{height}[0]=\\{depth}[0]=
23405 \\{italic}[0]=0$ should always hold, so that an index of zero implies a
23406 value of zero. The |width_index| should never be zero unless the
23407 character does not exist in the font, since a character is valid if and
23408 only if it lies between |bc| and |ec| and has a nonzero |width_index|.
23410 @ The |tag| field in a |char_info_word| has four values that explain how to
23411 interpret the |remainder| field.
23413 \yskip\hang|tag=0| (|no_tag|) means that |remainder| is unused.\par
23414 \hang|tag=1| (|lig_tag|) means that this character has a ligature/kerning
23415 program starting at location |remainder| in the |lig_kern| array.\par
23416 \hang|tag=2| (|list_tag|) means that this character is part of a chain of
23417 characters of ascending sizes, and not the largest in the chain. The
23418 |remainder| field gives the character code of the next larger character.\par
23419 \hang|tag=3| (|ext_tag|) means that this character code represents an
23420 extensible character, i.e., a character that is built up of smaller pieces
23421 so that it can be made arbitrarily large. The pieces are specified in
23422 |exten[remainder]|.\par
23424 Characters with |tag=2| and |tag=3| are treated as characters with |tag=0|
23425 unless they are used in special circumstances in math formulas. For example,
23426 \TeX's \.{\\sum} operation looks for a |list_tag|, and the \.{\\left}
23427 operation looks for both |list_tag| and |ext_tag|.
23429 @d no_tag 0 /* vanilla character */
23430 @d lig_tag 1 /* character has a ligature/kerning program */
23431 @d list_tag 2 /* character has a successor in a charlist */
23432 @d ext_tag 3 /* character is extensible */
23434 @ The |lig_kern| array contains instructions in a simple programming language
23435 that explains what to do for special letter pairs. Each word in this array is a
23436 |lig_kern_command| of four bytes.
23438 \yskip\hang first byte: |skip_byte|, indicates that this is the final program
23439 step if the byte is 128 or more, otherwise the next step is obtained by
23440 skipping this number of intervening steps.\par
23441 \hang second byte: |next_char|, ``if |next_char| follows the current character,
23442 then perform the operation and stop, otherwise continue.''\par
23443 \hang third byte: |op_byte|, indicates a ligature step if less than~128,
23444 a kern step otherwise.\par
23445 \hang fourth byte: |remainder|.\par
23448 additional space equal to |kern[256*(op_byte-128)+remainder]| is inserted
23449 between the current character and |next_char|. This amount is
23450 often negative, so that the characters are brought closer together
23451 by kerning; but it might be positive.
23453 There are eight kinds of ligature steps, having |op_byte| codes $4a+2b+c$ where
23454 $0\le a\le b+c$ and $0\le b,c\le1$. The character whose code is
23455 |remainder| is inserted between the current character and |next_char|;
23456 then the current character is deleted if $b=0$, and |next_char| is
23457 deleted if $c=0$; then we pass over $a$~characters to reach the next
23458 current character (which may have a ligature/kerning program of its own).
23460 If the very first instruction of the |lig_kern| array has |skip_byte=255|,
23461 the |next_char| byte is the so-called right boundary character of this font;
23462 the value of |next_char| need not lie between |bc| and~|ec|.
23463 If the very last instruction of the |lig_kern| array has |skip_byte=255|,
23464 there is a special ligature/kerning program for a left boundary character,
23465 beginning at location |256*op_byte+remainder|.
23466 The interpretation is that \TeX\ puts implicit boundary characters
23467 before and after each consecutive string of characters from the same font.
23468 These implicit characters do not appear in the output, but they can affect
23469 ligatures and kerning.
23471 If the very first instruction of a character's |lig_kern| program has
23472 |skip_byte>128|, the program actually begins in location
23473 |256*op_byte+remainder|. This feature allows access to large |lig_kern|
23474 arrays, because the first instruction must otherwise
23475 appear in a location |<=255|.
23477 Any instruction with |skip_byte>128| in the |lig_kern| array must satisfy
23479 $$\hbox{|256*op_byte+remainder<nl|.}$$
23480 If such an instruction is encountered during
23481 normal program execution, it denotes an unconditional halt; no ligature
23482 command is performed.
23485 /* value indicating `\.{STOP}' in a lig/kern program */
23486 @d kern_flag (128) /* op code for a kern step */
23487 @d skip_byte(A) mp->lig_kern[(A)].b0
23488 @d next_char(A) mp->lig_kern[(A)].b1
23489 @d op_byte(A) mp->lig_kern[(A)].b2
23490 @d rem_byte(A) mp->lig_kern[(A)].b3
23492 @ Extensible characters are specified by an |extensible_recipe|, which
23493 consists of four bytes called |top|, |mid|, |bot|, and |rep| (in this
23494 order). These bytes are the character codes of individual pieces used to
23495 build up a large symbol. If |top|, |mid|, or |bot| are zero, they are not
23496 present in the built-up result. For example, an extensible vertical line is
23497 like an extensible bracket, except that the top and bottom pieces are missing.
23499 Let $T$, $M$, $B$, and $R$ denote the respective pieces, or an empty box
23500 if the piece isn't present. Then the extensible characters have the form
23501 $TR^kMR^kB$ from top to bottom, for some |k>=0|, unless $M$ is absent;
23502 in the latter case we can have $TR^kB$ for both even and odd values of~|k|.
23503 The width of the extensible character is the width of $R$; and the
23504 height-plus-depth is the sum of the individual height-plus-depths of the
23505 components used, since the pieces are butted together in a vertical list.
23507 @d ext_top(A) mp->exten[(A)].b0 /* |top| piece in a recipe */
23508 @d ext_mid(A) mp->exten[(A)].b1 /* |mid| piece in a recipe */
23509 @d ext_bot(A) mp->exten[(A)].b2 /* |bot| piece in a recipe */
23510 @d ext_rep(A) mp->exten[(A)].b3 /* |rep| piece in a recipe */
23512 @ The final portion of a \.{TFM} file is the |param| array, which is another
23513 sequence of |fix_word| values.
23515 \yskip\hang|param[1]=slant| is the amount of italic slant, which is used
23516 to help position accents. For example, |slant=.25| means that when you go
23517 up one unit, you also go .25 units to the right. The |slant| is a pure
23518 number; it is the only |fix_word| other than the design size itself that is
23519 not scaled by the design size.
23521 \hang|param[2]=space| is the normal spacing between words in text.
23522 Note that character 040 in the font need not have anything to do with
23525 \hang|param[3]=space_stretch| is the amount of glue stretching between words.
23527 \hang|param[4]=space_shrink| is the amount of glue shrinking between words.
23529 \hang|param[5]=x_height| is the size of one ex in the font; it is also
23530 the height of letters for which accents don't have to be raised or lowered.
23532 \hang|param[6]=quad| is the size of one em in the font.
23534 \hang|param[7]=extra_space| is the amount added to |param[2]| at the
23538 If fewer than seven parameters are present, \TeX\ sets the missing parameters
23543 @d space_stretch_code 3
23544 @d space_shrink_code 4
23547 @d extra_space_code 7
23549 @ So that is what \.{TFM} files hold. One of \MP's duties is to output such
23550 information, and it does this all at once at the end of a job.
23551 In order to prepare for such frenetic activity, it squirrels away the
23552 necessary facts in various arrays as information becomes available.
23554 Character dimensions (\&{charwd}, \&{charht}, \&{chardp}, and \&{charic})
23555 are stored respectively in |tfm_width|, |tfm_height|, |tfm_depth|, and
23556 |tfm_ital_corr|. Other information about a character (e.g., about
23557 its ligatures or successors) is accessible via the |char_tag| and
23558 |char_remainder| arrays. Other information about the font as a whole
23559 is kept in additional arrays called |header_byte|, |lig_kern|,
23560 |kern|, |exten|, and |param|.
23562 @d max_tfm_int 32510
23563 @d undefined_label max_tfm_int /* an undefined local label */
23566 #define TFM_ITEMS 257
23568 eight_bits ec; /* smallest and largest character codes shipped out */
23569 scaled tfm_width[TFM_ITEMS]; /* \&{charwd} values */
23570 scaled tfm_height[TFM_ITEMS]; /* \&{charht} values */
23571 scaled tfm_depth[TFM_ITEMS]; /* \&{chardp} values */
23572 scaled tfm_ital_corr[TFM_ITEMS]; /* \&{charic} values */
23573 boolean char_exists[TFM_ITEMS]; /* has this code been shipped out? */
23574 int char_tag[TFM_ITEMS]; /* |remainder| category */
23575 int char_remainder[TFM_ITEMS]; /* the |remainder| byte */
23576 char *header_byte; /* bytes of the \.{TFM} header */
23577 int header_last; /* last initialized \.{TFM} header byte */
23578 int header_size; /* size of the \.{TFM} header */
23579 four_quarters *lig_kern; /* the ligature/kern table */
23580 short nl; /* the number of ligature/kern steps so far */
23581 scaled *kern; /* distinct kerning amounts */
23582 short nk; /* the number of distinct kerns so far */
23583 four_quarters exten[TFM_ITEMS]; /* extensible character recipes */
23584 short ne; /* the number of extensible characters so far */
23585 scaled *param; /* \&{fontinfo} parameters */
23586 short np; /* the largest \&{fontinfo} parameter specified so far */
23587 short nw;short nh;short nd;short ni; /* sizes of \.{TFM} subtables */
23588 short skip_table[TFM_ITEMS]; /* local label status */
23589 boolean lk_started; /* has there been a lig/kern step in this command yet? */
23590 integer bchar; /* right boundary character */
23591 short bch_label; /* left boundary starting location */
23592 short ll;short lll; /* registers used for lig/kern processing */
23593 short label_loc[257]; /* lig/kern starting addresses */
23594 eight_bits label_char[257]; /* characters for |label_loc| */
23595 short label_ptr; /* highest position occupied in |label_loc| */
23597 @ @<Allocate or initialize ...@>=
23598 mp->header_last = 0; mp->header_size = 128; /* just for init */
23599 mp->header_byte = xmalloc(mp->header_size, sizeof(char));
23600 mp->lig_kern = NULL; /* allocated when needed */
23601 mp->kern = NULL; /* allocated when needed */
23602 mp->param = NULL; /* allocated when needed */
23604 @ @<Dealloc variables@>=
23605 xfree(mp->header_byte);
23606 xfree(mp->lig_kern);
23611 for (k=0;k<= 255;k++ ) {
23612 mp->tfm_width[k]=0; mp->tfm_height[k]=0; mp->tfm_depth[k]=0; mp->tfm_ital_corr[k]=0;
23613 mp->char_exists[k]=false; mp->char_tag[k]=no_tag; mp->char_remainder[k]=0;
23614 mp->skip_table[k]=undefined_label;
23616 memset(mp->header_byte,0,mp->header_size);
23617 mp->bc=255; mp->ec=0; mp->nl=0; mp->nk=0; mp->ne=0; mp->np=0;
23618 mp->internal[mp_boundary_char]=-unity;
23619 mp->bch_label=undefined_label;
23620 mp->label_loc[0]=-1; mp->label_ptr=0;
23622 @ @<Declarations@>=
23623 scaled mp_tfm_check (MP mp,small_number m) ;
23625 @ @<Declare the function called |tfm_check|@>=
23626 scaled mp_tfm_check (MP mp,small_number m) {
23627 if ( abs(mp->internal[m])>=fraction_half ) {
23628 print_err("Enormous "); mp_print(mp, mp->int_name[m]);
23629 @.Enormous charwd...@>
23630 @.Enormous chardp...@>
23631 @.Enormous charht...@>
23632 @.Enormous charic...@>
23633 @.Enormous designsize...@>
23634 mp_print(mp, " has been reduced");
23635 help1("Font metric dimensions must be less than 2048pt.");
23636 mp_put_get_error(mp);
23637 if ( mp->internal[m]>0 ) return (fraction_half-1);
23638 else return (1-fraction_half);
23640 return mp->internal[m];
23644 @ @<Store the width information for character code~|c|@>=
23645 if ( c<mp->bc ) mp->bc=c;
23646 if ( c>mp->ec ) mp->ec=c;
23647 mp->char_exists[c]=true;
23648 mp->tfm_width[c]=mp_tfm_check(mp, mp_char_wd);
23649 mp->tfm_height[c]=mp_tfm_check(mp, mp_char_ht);
23650 mp->tfm_depth[c]=mp_tfm_check(mp, mp_char_dp);
23651 mp->tfm_ital_corr[c]=mp_tfm_check(mp, mp_char_ic)
23653 @ Now let's consider \MP's special \.{TFM}-oriented commands.
23655 @<Cases of |do_statement|...@>=
23656 case tfm_command: mp_do_tfm_command(mp); break;
23658 @ @d char_list_code 0
23659 @d lig_table_code 1
23660 @d extensible_code 2
23661 @d header_byte_code 3
23662 @d font_dimen_code 4
23665 mp_primitive(mp, "charlist",tfm_command,char_list_code);
23666 @:char_list_}{\&{charlist} primitive@>
23667 mp_primitive(mp, "ligtable",tfm_command,lig_table_code);
23668 @:lig_table_}{\&{ligtable} primitive@>
23669 mp_primitive(mp, "extensible",tfm_command,extensible_code);
23670 @:extensible_}{\&{extensible} primitive@>
23671 mp_primitive(mp, "headerbyte",tfm_command,header_byte_code);
23672 @:header_byte_}{\&{headerbyte} primitive@>
23673 mp_primitive(mp, "fontdimen",tfm_command,font_dimen_code);
23674 @:font_dimen_}{\&{fontdimen} primitive@>
23676 @ @<Cases of |print_cmd...@>=
23679 case char_list_code:mp_print(mp, "charlist"); break;
23680 case lig_table_code:mp_print(mp, "ligtable"); break;
23681 case extensible_code:mp_print(mp, "extensible"); break;
23682 case header_byte_code:mp_print(mp, "headerbyte"); break;
23683 default: mp_print(mp, "fontdimen"); break;
23687 @ @<Declare action procedures for use by |do_statement|@>=
23688 eight_bits mp_get_code (MP mp) ;
23690 @ @c eight_bits mp_get_code (MP mp) { /* scans a character code value */
23691 integer c; /* the code value found */
23692 mp_get_x_next(mp); mp_scan_expression(mp);
23693 if ( mp->cur_type==mp_known ) {
23694 c=mp_round_unscaled(mp, mp->cur_exp);
23695 if ( c>=0 ) if ( c<256 ) return c;
23696 } else if ( mp->cur_type==mp_string_type ) {
23697 if ( length(mp->cur_exp)==1 ) {
23698 c=mp->str_pool[mp->str_start[mp->cur_exp]];
23702 exp_err("Invalid code has been replaced by 0");
23703 @.Invalid code...@>
23704 help2("I was looking for a number between 0 and 255, or for a")
23705 ("string of length 1. Didn't find it; will use 0 instead.");
23706 mp_put_get_flush_error(mp, 0); c=0;
23710 @ @<Declare action procedures for use by |do_statement|@>=
23711 void mp_set_tag (MP mp,halfword c, small_number t, halfword r) ;
23713 @ @c void mp_set_tag (MP mp,halfword c, small_number t, halfword r) {
23714 if ( mp->char_tag[c]==no_tag ) {
23715 mp->char_tag[c]=t; mp->char_remainder[c]=r;
23717 incr(mp->label_ptr); mp->label_loc[mp->label_ptr]=r;
23718 mp->label_char[mp->label_ptr]=c;
23721 @<Complain about a character tag conflict@>;
23725 @ @<Complain about a character tag conflict@>=
23727 print_err("Character ");
23728 if ( (c>' ')&&(c<127) ) mp_print_char(mp,c);
23729 else if ( c==256 ) mp_print(mp, "||");
23730 else { mp_print(mp, "code "); mp_print_int(mp, c); };
23731 mp_print(mp, " is already ");
23732 @.Character c is already...@>
23733 switch (mp->char_tag[c]) {
23734 case lig_tag: mp_print(mp, "in a ligtable"); break;
23735 case list_tag: mp_print(mp, "in a charlist"); break;
23736 case ext_tag: mp_print(mp, "extensible"); break;
23737 } /* there are no other cases */
23738 help2("It's not legal to label a character more than once.")
23739 ("So I'll not change anything just now.");
23740 mp_put_get_error(mp);
23743 @ @<Declare action procedures for use by |do_statement|@>=
23744 void mp_do_tfm_command (MP mp) ;
23746 @ @c void mp_do_tfm_command (MP mp) {
23747 int c,cc; /* character codes */
23748 int k; /* index into the |kern| array */
23749 int j; /* index into |header_byte| or |param| */
23750 switch (mp->cur_mod) {
23751 case char_list_code:
23753 /* we will store a list of character successors */
23754 while ( mp->cur_cmd==colon ) {
23755 cc=mp_get_code(mp); mp_set_tag(mp, c,list_tag,cc); c=cc;
23758 case lig_table_code:
23759 if (mp->lig_kern==NULL)
23760 mp->lig_kern = xmalloc((max_tfm_int+1),sizeof(four_quarters));
23761 if (mp->kern==NULL)
23762 mp->kern = xmalloc((max_tfm_int+1),sizeof(scaled));
23763 @<Store a list of ligature/kern steps@>;
23765 case extensible_code:
23766 @<Define an extensible recipe@>;
23768 case header_byte_code:
23769 case font_dimen_code:
23770 c=mp->cur_mod; mp_get_x_next(mp);
23771 mp_scan_expression(mp);
23772 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<half_unit) ) {
23773 exp_err("Improper location");
23774 @.Improper location@>
23775 help2("I was looking for a known, positive number.")
23776 ("For safety's sake I'll ignore the present command.");
23777 mp_put_get_error(mp);
23779 j=mp_round_unscaled(mp, mp->cur_exp);
23780 if ( mp->cur_cmd!=colon ) {
23781 mp_missing_err(mp, ":");
23783 help1("A colon should follow a headerbyte or fontinfo location.");
23786 if ( c==header_byte_code ) {
23787 @<Store a list of header bytes@>;
23789 if (mp->param==NULL)
23790 mp->param = xmalloc((max_tfm_int+1),sizeof(scaled));
23791 @<Store a list of font dimensions@>;
23795 } /* there are no other cases */
23798 @ @<Store a list of ligature/kern steps@>=
23800 mp->lk_started=false;
23803 if ((mp->cur_cmd==skip_to)&& mp->lk_started )
23804 @<Process a |skip_to| command and |goto done|@>;
23805 if ( mp->cur_cmd==bchar_label ) { c=256; mp->cur_cmd=colon; }
23806 else { mp_back_input(mp); c=mp_get_code(mp); };
23807 if ((mp->cur_cmd==colon)||(mp->cur_cmd==double_colon)) {
23808 @<Record a label in a lig/kern subprogram and |goto continue|@>;
23810 if ( mp->cur_cmd==lig_kern_token ) {
23811 @<Compile a ligature/kern command@>;
23813 print_err("Illegal ligtable step");
23814 @.Illegal ligtable step@>
23815 help1("I was looking for `=:' or `kern' here.");
23816 mp_back_error(mp); next_char(mp->nl)=qi(0);
23817 op_byte(mp->nl)=qi(0); rem_byte(mp->nl)=qi(0);
23818 skip_byte(mp->nl)=stop_flag+1; /* this specifies an unconditional stop */
23820 if ( mp->nl==max_tfm_int) mp_fatal_error(mp, "ligtable too large");
23822 if ( mp->cur_cmd==comma ) goto CONTINUE;
23823 if ( skip_byte(mp->nl-1)<stop_flag ) skip_byte(mp->nl-1)=stop_flag;
23828 mp_primitive(mp, "=:",lig_kern_token,0);
23829 @:=:_}{\.{=:} primitive@>
23830 mp_primitive(mp, "=:|",lig_kern_token,1);
23831 @:=:/_}{\.{=:\char'174} primitive@>
23832 mp_primitive(mp, "=:|>",lig_kern_token,5);
23833 @:=:/>_}{\.{=:\char'174>} primitive@>
23834 mp_primitive(mp, "|=:",lig_kern_token,2);
23835 @:=:/_}{\.{\char'174=:} primitive@>
23836 mp_primitive(mp, "|=:>",lig_kern_token,6);
23837 @:=:/>_}{\.{\char'174=:>} primitive@>
23838 mp_primitive(mp, "|=:|",lig_kern_token,3);
23839 @:=:/_}{\.{\char'174=:\char'174} primitive@>
23840 mp_primitive(mp, "|=:|>",lig_kern_token,7);
23841 @:=:/>_}{\.{\char'174=:\char'174>} primitive@>
23842 mp_primitive(mp, "|=:|>>",lig_kern_token,11);
23843 @:=:/>_}{\.{\char'174=:\char'174>>} primitive@>
23844 mp_primitive(mp, "kern",lig_kern_token,128);
23845 @:kern_}{\&{kern} primitive@>
23847 @ @<Cases of |print_cmd...@>=
23848 case lig_kern_token:
23850 case 0:mp_print(mp, "=:"); break;
23851 case 1:mp_print(mp, "=:|"); break;
23852 case 2:mp_print(mp, "|=:"); break;
23853 case 3:mp_print(mp, "|=:|"); break;
23854 case 5:mp_print(mp, "=:|>"); break;
23855 case 6:mp_print(mp, "|=:>"); break;
23856 case 7:mp_print(mp, "|=:|>"); break;
23857 case 11:mp_print(mp, "|=:|>>"); break;
23858 default: mp_print(mp, "kern"); break;
23862 @ Local labels are implemented by maintaining the |skip_table| array,
23863 where |skip_table[c]| is either |undefined_label| or the address of the
23864 most recent lig/kern instruction that skips to local label~|c|. In the
23865 latter case, the |skip_byte| in that instruction will (temporarily)
23866 be zero if there were no prior skips to this label, or it will be the
23867 distance to the prior skip.
23869 We may need to cancel skips that span more than 127 lig/kern steps.
23871 @d cancel_skips(A) mp->ll=(A);
23873 mp->lll=qo(skip_byte(mp->ll));
23874 skip_byte(mp->ll)=stop_flag; mp->ll=mp->ll-mp->lll;
23875 } while (mp->lll!=0)
23876 @d skip_error(A) { print_err("Too far to skip");
23877 @.Too far to skip@>
23878 help1("At most 127 lig/kern steps can separate skipto1 from 1::.");
23879 mp_error(mp); cancel_skips((A));
23882 @<Process a |skip_to| command and |goto done|@>=
23885 if ( mp->nl-mp->skip_table[c]>128 ) { /* |skip_table[c]<<nl<=undefined_label| */
23886 skip_error(mp->skip_table[c]); mp->skip_table[c]=undefined_label;
23888 if ( mp->skip_table[c]==undefined_label ) skip_byte(mp->nl-1)=qi(0);
23889 else skip_byte(mp->nl-1)=qi(mp->nl-mp->skip_table[c]-1);
23890 mp->skip_table[c]=mp->nl-1; goto DONE;
23893 @ @<Record a label in a lig/kern subprogram and |goto continue|@>=
23895 if ( mp->cur_cmd==colon ) {
23896 if ( c==256 ) mp->bch_label=mp->nl;
23897 else mp_set_tag(mp, c,lig_tag,mp->nl);
23898 } else if ( mp->skip_table[c]<undefined_label ) {
23899 mp->ll=mp->skip_table[c]; mp->skip_table[c]=undefined_label;
23901 mp->lll=qo(skip_byte(mp->ll));
23902 if ( mp->nl-mp->ll>128 ) {
23903 skip_error(mp->ll); goto CONTINUE;
23905 skip_byte(mp->ll)=qi(mp->nl-mp->ll-1); mp->ll=mp->ll-mp->lll;
23906 } while (mp->lll!=0);
23911 @ @<Compile a ligature/kern...@>=
23913 next_char(mp->nl)=qi(c); skip_byte(mp->nl)=qi(0);
23914 if ( mp->cur_mod<128 ) { /* ligature op */
23915 op_byte(mp->nl)=qi(mp->cur_mod); rem_byte(mp->nl)=qi(mp_get_code(mp));
23917 mp_get_x_next(mp); mp_scan_expression(mp);
23918 if ( mp->cur_type!=mp_known ) {
23919 exp_err("Improper kern");
23921 help2("The amount of kern should be a known numeric value.")
23922 ("I'm zeroing this one. Proceed, with fingers crossed.");
23923 mp_put_get_flush_error(mp, 0);
23925 mp->kern[mp->nk]=mp->cur_exp;
23927 while ( mp->kern[k]!=mp->cur_exp ) incr(k);
23929 if ( mp->nk==max_tfm_int ) mp_fatal_error(mp, "too many TFM kerns");
23932 op_byte(mp->nl)=kern_flag+(k / 256);
23933 rem_byte(mp->nl)=qi((k % 256));
23935 mp->lk_started=true;
23938 @ @d missing_extensible_punctuation(A)
23939 { mp_missing_err(mp, (A));
23940 @.Missing `\char`\#'@>
23941 help1("I'm processing `extensible c: t,m,b,r'."); mp_back_error(mp);
23944 @<Define an extensible recipe@>=
23946 if ( mp->ne==256 ) mp_fatal_error(mp, "too many extensible recipies");
23947 c=mp_get_code(mp); mp_set_tag(mp, c,ext_tag,mp->ne);
23948 if ( mp->cur_cmd!=colon ) missing_extensible_punctuation(":");
23949 ext_top(mp->ne)=qi(mp_get_code(mp));
23950 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23951 ext_mid(mp->ne)=qi(mp_get_code(mp));
23952 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23953 ext_bot(mp->ne)=qi(mp_get_code(mp));
23954 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23955 ext_rep(mp->ne)=qi(mp_get_code(mp));
23959 @ The header could contain ASCII zeroes, so can't use |strdup|.
23961 @<Store a list of header bytes@>=
23963 if ( j>=mp->header_size ) {
23964 int l = mp->header_size + (mp->header_size >> 2);
23965 char *t = xmalloc(l,sizeof(char));
23967 memcpy(t,mp->header_byte,mp->header_size);
23968 xfree (mp->header_byte);
23969 mp->header_byte = t;
23970 mp->header_size = l;
23972 mp->header_byte[j]=mp_get_code(mp);
23973 incr(j); incr(mp->header_last);
23974 } while (mp->cur_cmd==comma)
23976 @ @<Store a list of font dimensions@>=
23978 if ( j>max_tfm_int ) mp_fatal_error(mp, "too many fontdimens");
23979 while ( j>mp->np ) { incr(mp->np); mp->param[mp->np]=0; };
23980 mp_get_x_next(mp); mp_scan_expression(mp);
23981 if ( mp->cur_type!=mp_known ){
23982 exp_err("Improper font parameter");
23983 @.Improper font parameter@>
23984 help1("I'm zeroing this one. Proceed, with fingers crossed.");
23985 mp_put_get_flush_error(mp, 0);
23987 mp->param[j]=mp->cur_exp; incr(j);
23988 } while (mp->cur_cmd==comma)
23990 @ OK: We've stored all the data that is needed for the \.{TFM} file.
23991 All that remains is to output it in the correct format.
23993 An interesting problem needs to be solved in this connection, because
23994 the \.{TFM} format allows at most 256~widths, 16~heights, 16~depths,
23995 and 64~italic corrections. If the data has more distinct values than
23996 this, we want to meet the necessary restrictions by perturbing the
23997 given values as little as possible.
23999 \MP\ solves this problem in two steps. First the values of a given
24000 kind (widths, heights, depths, or italic corrections) are sorted;
24001 then the list of sorted values is perturbed, if necessary.
24003 The sorting operation is facilitated by having a special node of
24004 essentially infinite |value| at the end of the current list.
24006 @<Initialize table entries...@>=
24007 value(inf_val)=fraction_four;
24009 @ Straight linear insertion is good enough for sorting, since the lists
24010 are usually not terribly long. As we work on the data, the current list
24011 will start at |link(temp_head)| and end at |inf_val|; the nodes in this
24012 list will be in increasing order of their |value| fields.
24014 Given such a list, the |sort_in| function takes a value and returns a pointer
24015 to where that value can be found in the list. The value is inserted in
24016 the proper place, if necessary.
24018 At the time we need to do these operations, most of \MP's work has been
24019 completed, so we will have plenty of memory to play with. The value nodes
24020 that are allocated for sorting will never be returned to free storage.
24022 @d clear_the_list link(temp_head)=inf_val
24024 @c pointer mp_sort_in (MP mp,scaled v) {
24025 pointer p,q,r; /* list manipulation registers */
24029 if ( v<=value(q) ) break;
24032 if ( v<value(q) ) {
24033 r=mp_get_node(mp, value_node_size); value(r)=v; link(r)=q; link(p)=r;
24038 @ Now we come to the interesting part, where we reduce the list if necessary
24039 until it has the required size. The |min_cover| routine is basic to this
24040 process; it computes the minimum number~|m| such that the values of the
24041 current sorted list can be covered by |m|~intervals of width~|d|. It
24042 also sets the global value |perturbation| to the smallest value $d'>d$
24043 such that the covering found by this algorithm would be different.
24045 In particular, |min_cover(0)| returns the number of distinct values in the
24046 current list and sets |perturbation| to the minimum distance between
24049 @c integer mp_min_cover (MP mp,scaled d) {
24050 pointer p; /* runs through the current list */
24051 scaled l; /* the least element covered by the current interval */
24052 integer m; /* lower bound on the size of the minimum cover */
24053 m=0; p=link(temp_head); mp->perturbation=el_gordo;
24054 while ( p!=inf_val ){
24055 incr(m); l=value(p);
24056 do { p=link(p); } while (value(p)<=l+d);
24057 if ( value(p)-l<mp->perturbation )
24058 mp->perturbation=value(p)-l;
24064 scaled perturbation; /* quantity related to \.{TFM} rounding */
24065 integer excess; /* the list is this much too long */
24067 @ The smallest |d| such that a given list can be covered with |m| intervals
24068 is determined by the |threshold| routine, which is sort of an inverse
24069 to |min_cover|. The idea is to increase the interval size rapidly until
24070 finding the range, then to go sequentially until the exact borderline has
24073 @c scaled mp_threshold (MP mp,integer m) {
24074 scaled d; /* lower bound on the smallest interval size */
24075 mp->excess=mp_min_cover(mp, 0)-m;
24076 if ( mp->excess<=0 ) {
24080 d=mp->perturbation;
24081 } while (mp_min_cover(mp, d+d)>m);
24082 while ( mp_min_cover(mp, d)>m )
24083 d=mp->perturbation;
24088 @ The |skimp| procedure reduces the current list to at most |m| entries,
24089 by changing values if necessary. It also sets |info(p):=k| if |value(p)|
24090 is the |k|th distinct value on the resulting list, and it sets
24091 |perturbation| to the maximum amount by which a |value| field has
24092 been changed. The size of the resulting list is returned as the
24095 @c integer mp_skimp (MP mp,integer m) {
24096 scaled d; /* the size of intervals being coalesced */
24097 pointer p,q,r; /* list manipulation registers */
24098 scaled l; /* the least value in the current interval */
24099 scaled v; /* a compromise value */
24100 d=mp_threshold(mp, m); mp->perturbation=0;
24101 q=temp_head; m=0; p=link(temp_head);
24102 while ( p!=inf_val ) {
24103 incr(m); l=value(p); info(p)=m;
24104 if ( value(link(p))<=l+d ) {
24105 @<Replace an interval of values by its midpoint@>;
24112 @ @<Replace an interval...@>=
24115 p=link(p); info(p)=m;
24116 decr(mp->excess); if ( mp->excess==0 ) d=0;
24117 } while (value(link(p))<=l+d);
24118 v=l+halfp(value(p)-l);
24119 if ( value(p)-v>mp->perturbation )
24120 mp->perturbation=value(p)-v;
24123 r=link(r); value(r)=v;
24125 link(q)=p; /* remove duplicate values from the current list */
24128 @ A warning message is issued whenever something is perturbed by
24129 more than 1/16\thinspace pt.
24131 @c void mp_tfm_warning (MP mp,small_number m) {
24132 mp_print_nl(mp, "(some ");
24133 mp_print(mp, mp->int_name[m]);
24134 @.some charwds...@>
24135 @.some chardps...@>
24136 @.some charhts...@>
24137 @.some charics...@>
24138 mp_print(mp, " values had to be adjusted by as much as ");
24139 mp_print_scaled(mp, mp->perturbation); mp_print(mp, "pt)");
24142 @ Here's an example of how we use these routines.
24143 The width data needs to be perturbed only if there are 256 distinct
24144 widths, but \MP\ must check for this case even though it is
24147 An integer variable |k| will be defined when we use this code.
24148 The |dimen_head| array will contain pointers to the sorted
24149 lists of dimensions.
24151 @<Massage the \.{TFM} widths@>=
24153 for (k=mp->bc;k<=mp->ec;k++) {
24154 if ( mp->char_exists[k] )
24155 mp->tfm_width[k]=mp_sort_in(mp, mp->tfm_width[k]);
24157 mp->nw=mp_skimp(mp, 255)+1; mp->dimen_head[1]=link(temp_head);
24158 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_wd)
24161 pointer dimen_head[5]; /* lists of \.{TFM} dimensions */
24163 @ Heights, depths, and italic corrections are different from widths
24164 not only because their list length is more severely restricted, but
24165 also because zero values do not need to be put into the lists.
24167 @<Massage the \.{TFM} heights, depths, and italic corrections@>=
24169 for (k=mp->bc;k<=mp->ec;k++) {
24170 if ( mp->char_exists[k] ) {
24171 if ( mp->tfm_height[k]==0 ) mp->tfm_height[k]=zero_val;
24172 else mp->tfm_height[k]=mp_sort_in(mp, mp->tfm_height[k]);
24175 mp->nh=mp_skimp(mp, 15)+1; mp->dimen_head[2]=link(temp_head);
24176 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ht);
24178 for (k=mp->bc;k<=mp->ec;k++) {
24179 if ( mp->char_exists[k] ) {
24180 if ( mp->tfm_depth[k]==0 ) mp->tfm_depth[k]=zero_val;
24181 else mp->tfm_depth[k]=mp_sort_in(mp, mp->tfm_depth[k]);
24184 mp->nd=mp_skimp(mp, 15)+1; mp->dimen_head[3]=link(temp_head);
24185 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_dp);
24187 for (k=mp->bc;k<=mp->ec;k++) {
24188 if ( mp->char_exists[k] ) {
24189 if ( mp->tfm_ital_corr[k]==0 ) mp->tfm_ital_corr[k]=zero_val;
24190 else mp->tfm_ital_corr[k]=mp_sort_in(mp, mp->tfm_ital_corr[k]);
24193 mp->ni=mp_skimp(mp, 63)+1; mp->dimen_head[4]=link(temp_head);
24194 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ic)
24196 @ @<Initialize table entries...@>=
24197 value(zero_val)=0; info(zero_val)=0;
24199 @ Bytes 5--8 of the header are set to the design size, unless the user has
24200 some crazy reason for specifying them differently.
24202 Error messages are not allowed at the time this procedure is called,
24203 so a warning is printed instead.
24205 The value of |max_tfm_dimen| is calculated so that
24206 $$\hbox{|make_scaled(16*max_tfm_dimen,internal[mp_design_size])|}
24207 < \\{three\_bytes}.$$
24209 @d three_bytes 0100000000 /* $2^{24}$ */
24212 void mp_fix_design_size (MP mp) {
24213 scaled d; /* the design size */
24214 d=mp->internal[mp_design_size];
24215 if ( (d<unity)||(d>=fraction_half) ) {
24217 mp_print_nl(mp, "(illegal design size has been changed to 128pt)");
24218 @.illegal design size...@>
24219 d=040000000; mp->internal[mp_design_size]=d;
24221 if ( mp->header_byte[4]<0 ) if ( mp->header_byte[5]<0 )
24222 if ( mp->header_byte[6]<0 ) if ( mp->header_byte[7]<0 ) {
24223 mp->header_byte[4]=d / 04000000;
24224 mp->header_byte[5]=(d / 4096) % 256;
24225 mp->header_byte[6]=(d / 16) % 256;
24226 mp->header_byte[7]=(d % 16)*16;
24228 mp->max_tfm_dimen=16*mp->internal[mp_design_size]-mp->internal[mp_design_size] / 010000000;
24229 if ( mp->max_tfm_dimen>=fraction_half ) mp->max_tfm_dimen=fraction_half-1;
24232 @ The |dimen_out| procedure computes a |fix_word| relative to the
24233 design size. If the data was out of range, it is corrected and the
24234 global variable |tfm_changed| is increased by~one.
24236 @c integer mp_dimen_out (MP mp,scaled x) {
24237 if ( abs(x)>mp->max_tfm_dimen ) {
24238 incr(mp->tfm_changed);
24239 if ( x>0 ) x=three_bytes-1; else x=1-three_bytes;
24241 x=mp_make_scaled(mp, x*16,mp->internal[mp_design_size]);
24247 scaled max_tfm_dimen; /* bound on widths, heights, kerns, etc. */
24248 integer tfm_changed; /* the number of data entries that were out of bounds */
24250 @ If the user has not specified any of the first four header bytes,
24251 the |fix_check_sum| procedure replaces them by a ``check sum'' computed
24252 from the |tfm_width| data relative to the design size.
24255 @c void mp_fix_check_sum (MP mp) {
24256 eight_bits k; /* runs through character codes */
24257 eight_bits B1,B2,B3,B4; /* bytes of the check sum */
24258 integer x; /* hash value used in check sum computation */
24259 if ( mp->header_byte[0]==0 && mp->header_byte[1]==0 &&
24260 mp->header_byte[2]==0 && mp->header_byte[3]==0 ) {
24261 @<Compute a check sum in |(b1,b2,b3,b4)|@>;
24262 mp->header_byte[0]=B1; mp->header_byte[1]=B2;
24263 mp->header_byte[2]=B3; mp->header_byte[3]=B4;
24268 @ @<Compute a check sum in |(b1,b2,b3,b4)|@>=
24269 B1=mp->bc; B2=mp->ec; B3=mp->bc; B4=mp->ec; mp->tfm_changed=0;
24270 for (k=mp->bc;k<=mp->ec;k++) {
24271 if ( mp->char_exists[k] ) {
24272 x=mp_dimen_out(mp, value(mp->tfm_width[k]))+(k+4)*020000000; /* this is positive */
24273 B1=(B1+B1+x) % 255;
24274 B2=(B2+B2+x) % 253;
24275 B3=(B3+B3+x) % 251;
24276 B4=(B4+B4+x) % 247;
24280 @ Finally we're ready to actually write the \.{TFM} information.
24281 Here are some utility routines for this purpose.
24283 @d tfm_out(A) do { /* output one byte to |tfm_file| */
24284 unsigned char s=(A);
24285 (mp->write_binary_file)(mp->tfm_file,(void *)&s,1);
24288 @c void mp_tfm_two (MP mp,integer x) { /* output two bytes to |tfm_file| */
24289 tfm_out(x / 256); tfm_out(x % 256);
24291 void mp_tfm_four (MP mp,integer x) { /* output four bytes to |tfm_file| */
24292 if ( x>=0 ) tfm_out(x / three_bytes);
24294 x=x+010000000000; /* use two's complement for negative values */
24296 tfm_out((x / three_bytes) + 128);
24298 x=x % three_bytes; tfm_out(x / unity);
24299 x=x % unity; tfm_out(x / 0400);
24302 void mp_tfm_qqqq (MP mp,four_quarters x) { /* output four quarterwords to |tfm_file| */
24303 tfm_out(qo(x.b0)); tfm_out(qo(x.b1));
24304 tfm_out(qo(x.b2)); tfm_out(qo(x.b3));
24307 @ @<Finish the \.{TFM} file@>=
24308 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24309 mp_pack_job_name(mp, ".tfm");
24310 while ( ! mp_b_open_out(mp, &mp->tfm_file, mp_filetype_metrics) )
24311 mp_prompt_file_name(mp, "file name for font metrics",".tfm");
24312 mp->metric_file_name=xstrdup(mp->name_of_file);
24313 @<Output the subfile sizes and header bytes@>;
24314 @<Output the character information bytes, then
24315 output the dimensions themselves@>;
24316 @<Output the ligature/kern program@>;
24317 @<Output the extensible character recipes and the font metric parameters@>;
24318 if ( mp->internal[mp_tracing_stats]>0 )
24319 @<Log the subfile sizes of the \.{TFM} file@>;
24320 mp_print_nl(mp, "Font metrics written on ");
24321 mp_print(mp, mp->metric_file_name); mp_print_char(mp, '.');
24322 @.Font metrics written...@>
24323 (mp->close_file)(mp->tfm_file)
24325 @ Integer variables |lh|, |k|, and |lk_offset| will be defined when we use
24328 @<Output the subfile sizes and header bytes@>=
24330 LH=(k+3) / 4; /* this is the number of header words */
24331 if ( mp->bc>mp->ec ) mp->bc=1; /* if there are no characters, |ec=0| and |bc=1| */
24332 @<Compute the ligature/kern program offset and implant the
24333 left boundary label@>;
24334 mp_tfm_two(mp,6+LH+(mp->ec-mp->bc+1)+mp->nw+mp->nh+mp->nd+mp->ni+mp->nl
24335 +lk_offset+mp->nk+mp->ne+mp->np);
24336 /* this is the total number of file words that will be output */
24337 mp_tfm_two(mp, LH); mp_tfm_two(mp, mp->bc); mp_tfm_two(mp, mp->ec);
24338 mp_tfm_two(mp, mp->nw); mp_tfm_two(mp, mp->nh);
24339 mp_tfm_two(mp, mp->nd); mp_tfm_two(mp, mp->ni); mp_tfm_two(mp, mp->nl+lk_offset);
24340 mp_tfm_two(mp, mp->nk); mp_tfm_two(mp, mp->ne);
24341 mp_tfm_two(mp, mp->np);
24342 for (k=0;k< 4*LH;k++) {
24343 tfm_out(mp->header_byte[k]);
24346 @ @<Output the character information bytes...@>=
24347 for (k=mp->bc;k<=mp->ec;k++) {
24348 if ( ! mp->char_exists[k] ) {
24349 mp_tfm_four(mp, 0);
24351 tfm_out(info(mp->tfm_width[k])); /* the width index */
24352 tfm_out((info(mp->tfm_height[k]))*16+info(mp->tfm_depth[k]));
24353 tfm_out((info(mp->tfm_ital_corr[k]))*4+mp->char_tag[k]);
24354 tfm_out(mp->char_remainder[k]);
24358 for (k=1;k<=4;k++) {
24359 mp_tfm_four(mp, 0); p=mp->dimen_head[k];
24360 while ( p!=inf_val ) {
24361 mp_tfm_four(mp, mp_dimen_out(mp, value(p))); p=link(p);
24366 @ We need to output special instructions at the beginning of the
24367 |lig_kern| array in order to specify the right boundary character
24368 and/or to handle starting addresses that exceed 255. The |label_loc|
24369 and |label_char| arrays have been set up to record all the
24370 starting addresses; we have $-1=|label_loc|[0]<|label_loc|[1]\le\cdots
24371 \le|label_loc|[|label_ptr]|$.
24373 @<Compute the ligature/kern program offset...@>=
24374 mp->bchar=mp_round_unscaled(mp, mp->internal[mp_boundary_char]);
24375 if ((mp->bchar<0)||(mp->bchar>255))
24376 { mp->bchar=-1; mp->lk_started=false; lk_offset=0; }
24377 else { mp->lk_started=true; lk_offset=1; };
24378 @<Find the minimum |lk_offset| and adjust all remainders@>;
24379 if ( mp->bch_label<undefined_label )
24380 { skip_byte(mp->nl)=qi(255); next_char(mp->nl)=qi(0);
24381 op_byte(mp->nl)=qi(((mp->bch_label+lk_offset)/ 256));
24382 rem_byte(mp->nl)=qi(((mp->bch_label+lk_offset)% 256));
24383 incr(mp->nl); /* possibly |nl=lig_table_size+1| */
24386 @ @<Find the minimum |lk_offset|...@>=
24387 k=mp->label_ptr; /* pointer to the largest unallocated label */
24388 if ( mp->label_loc[k]+lk_offset>255 ) {
24389 lk_offset=0; mp->lk_started=false; /* location 0 can do double duty */
24391 mp->char_remainder[mp->label_char[k]]=lk_offset;
24392 while ( mp->label_loc[k-1]==mp->label_loc[k] ) {
24393 decr(k); mp->char_remainder[mp->label_char[k]]=lk_offset;
24395 incr(lk_offset); decr(k);
24396 } while (! (lk_offset+mp->label_loc[k]<256));
24397 /* N.B.: |lk_offset=256| satisfies this when |k=0| */
24399 if ( lk_offset>0 ) {
24401 mp->char_remainder[mp->label_char[k]]
24402 =mp->char_remainder[mp->label_char[k]]+lk_offset;
24407 @ @<Output the ligature/kern program@>=
24408 for (k=0;k<= 255;k++ ) {
24409 if ( mp->skip_table[k]<undefined_label ) {
24410 mp_print_nl(mp, "(local label "); mp_print_int(mp, k); mp_print(mp, ":: was missing)");
24411 @.local label l:: was missing@>
24412 cancel_skips(mp->skip_table[k]);
24415 if ( mp->lk_started ) { /* |lk_offset=1| for the special |bchar| */
24416 tfm_out(255); tfm_out(mp->bchar); mp_tfm_two(mp, 0);
24418 for (k=1;k<=lk_offset;k++) {/* output the redirection specs */
24419 mp->ll=mp->label_loc[mp->label_ptr];
24420 if ( mp->bchar<0 ) { tfm_out(254); tfm_out(0); }
24421 else { tfm_out(255); tfm_out(mp->bchar); };
24422 mp_tfm_two(mp, mp->ll+lk_offset);
24424 decr(mp->label_ptr);
24425 } while (! (mp->label_loc[mp->label_ptr]<mp->ll));
24428 for (k=0;k<=mp->nl-1;k++) mp_tfm_qqqq(mp, mp->lig_kern[k]);
24429 for (k=0;k<=mp->nk-1;k++) mp_tfm_four(mp, mp_dimen_out(mp, mp->kern[k]))
24431 @ @<Output the extensible character recipes...@>=
24432 for (k=0;k<=mp->ne-1;k++)
24433 mp_tfm_qqqq(mp, mp->exten[k]);
24434 for (k=1;k<=mp->np;k++) {
24436 if ( abs(mp->param[1])<fraction_half ) {
24437 mp_tfm_four(mp, mp->param[1]*16);
24439 incr(mp->tfm_changed);
24440 if ( mp->param[1]>0 ) mp_tfm_four(mp, el_gordo);
24441 else mp_tfm_four(mp, -el_gordo);
24444 mp_tfm_four(mp, mp_dimen_out(mp, mp->param[k]));
24447 if ( mp->tfm_changed>0 ) {
24448 if ( mp->tfm_changed==1 ) mp_print_nl(mp, "(a font metric dimension");
24449 @.a font metric dimension...@>
24451 mp_print_nl(mp, "("); mp_print_int(mp, mp->tfm_changed);
24452 @.font metric dimensions...@>
24453 mp_print(mp, " font metric dimensions");
24455 mp_print(mp, " had to be decreased)");
24458 @ @<Log the subfile sizes of the \.{TFM} file@>=
24462 if ( mp->bch_label<undefined_label ) decr(mp->nl);
24463 snprintf(s,128,"(You used %iw,%ih,%id,%ii,%il,%ik,%ie,%ip metric file positions)",
24464 mp->nw, mp->nh, mp->nd, mp->ni, mp->nl, mp->nk, mp->ne,mp->np);
24468 @* \[43] Reading font metric data.
24470 \MP\ isn't a typesetting program but it does need to find the bounding box
24471 of a sequence of typeset characters. Thus it needs to read \.{TFM} files as
24472 well as write them.
24477 @ All the width, height, and depth information is stored in an array called
24478 |font_info|. This array is allocated sequentially and each font is stored
24479 as a series of |char_info| words followed by the width, height, and depth
24480 tables. Since |font_name| entries are permanent, their |str_ref| values are
24481 set to |max_str_ref|.
24484 typedef unsigned int font_number; /* |0..font_max| */
24486 @ The |font_info| array is indexed via a group directory arrays.
24487 For example, the |char_info| data for character~|c| in font~|f| will be
24488 in |font_info[char_base[f]+c].qqqq|.
24491 font_number font_max; /* maximum font number for included text fonts */
24492 size_t font_mem_size; /* number of words for \.{TFM} information for text fonts */
24493 memory_word *font_info; /* height, width, and depth data */
24494 char **font_enc_name; /* encoding names, if any */
24495 boolean *font_ps_name_fixed; /* are the postscript names fixed already? */
24496 int next_fmem; /* next unused entry in |font_info| */
24497 font_number last_fnum; /* last font number used so far */
24498 scaled *font_dsize; /* 16 times the ``design'' size in \ps\ points */
24499 char **font_name; /* name as specified in the \&{infont} command */
24500 char **font_ps_name; /* PostScript name for use when |internal[mp_prologues]>0| */
24501 font_number last_ps_fnum; /* last valid |font_ps_name| index */
24502 eight_bits *font_bc;
24503 eight_bits *font_ec; /* first and last character code */
24504 int *char_base; /* base address for |char_info| */
24505 int *width_base; /* index for zeroth character width */
24506 int *height_base; /* index for zeroth character height */
24507 int *depth_base; /* index for zeroth character depth */
24508 pointer *font_sizes;
24510 @ @<Allocate or initialize ...@>=
24511 mp->font_mem_size = 10000;
24512 mp->font_info = xmalloc ((mp->font_mem_size+1),sizeof(memory_word));
24513 memset (mp->font_info,0,sizeof(memory_word)*(mp->font_mem_size+1));
24514 mp->font_enc_name = NULL;
24515 mp->font_ps_name_fixed = NULL;
24516 mp->font_dsize = NULL;
24517 mp->font_name = NULL;
24518 mp->font_ps_name = NULL;
24519 mp->font_bc = NULL;
24520 mp->font_ec = NULL;
24521 mp->last_fnum = null_font;
24522 mp->char_base = NULL;
24523 mp->width_base = NULL;
24524 mp->height_base = NULL;
24525 mp->depth_base = NULL;
24526 mp->font_sizes = null;
24528 @ @<Dealloc variables@>=
24529 xfree(mp->font_info);
24530 xfree(mp->font_enc_name);
24531 xfree(mp->font_ps_name_fixed);
24532 xfree(mp->font_dsize);
24533 xfree(mp->font_name);
24534 xfree(mp->font_ps_name);
24535 xfree(mp->font_bc);
24536 xfree(mp->font_ec);
24537 xfree(mp->char_base);
24538 xfree(mp->width_base);
24539 xfree(mp->height_base);
24540 xfree(mp->depth_base);
24541 xfree(mp->font_sizes);
24545 void mp_reallocate_fonts (MP mp, font_number l) {
24547 XREALLOC(mp->font_enc_name, l, char *);
24548 XREALLOC(mp->font_ps_name_fixed, l, boolean);
24549 XREALLOC(mp->font_dsize, l, scaled);
24550 XREALLOC(mp->font_name, l, char *);
24551 XREALLOC(mp->font_ps_name, l, char *);
24552 XREALLOC(mp->font_bc, l, eight_bits);
24553 XREALLOC(mp->font_ec, l, eight_bits);
24554 XREALLOC(mp->char_base, l, int);
24555 XREALLOC(mp->width_base, l, int);
24556 XREALLOC(mp->height_base, l, int);
24557 XREALLOC(mp->depth_base, l, int);
24558 XREALLOC(mp->font_sizes, l, pointer);
24559 for (f=(mp->last_fnum+1);f<=l;f++) {
24560 mp->font_enc_name[f]=NULL;
24561 mp->font_ps_name_fixed[f] = false;
24562 mp->font_name[f]=NULL;
24563 mp->font_ps_name[f]=NULL;
24564 mp->font_sizes[f]=null;
24569 @ @<Declare |mp_reallocate| functions@>=
24570 void mp_reallocate_fonts (MP mp, font_number l);
24573 @ A |null_font| containing no characters is useful for error recovery. Its
24574 |font_name| entry starts out empty but is reset each time an erroneous font is
24575 found. This helps to cut down on the number of duplicate error messages without
24576 wasting a lot of space.
24578 @d null_font 0 /* the |font_number| for an empty font */
24580 @<Set initial...@>=
24581 mp->font_dsize[null_font]=0;
24582 mp->font_bc[null_font]=1;
24583 mp->font_ec[null_font]=0;
24584 mp->char_base[null_font]=0;
24585 mp->width_base[null_font]=0;
24586 mp->height_base[null_font]=0;
24587 mp->depth_base[null_font]=0;
24589 mp->last_fnum=null_font;
24590 mp->last_ps_fnum=null_font;
24591 mp->font_name[null_font]="nullfont";
24592 mp->font_ps_name[null_font]="";
24594 @ Each |char_info| word is of type |four_quarters|. The |b0| field contains
24595 the |width index|; the |b1| field contains the height
24596 index; the |b2| fields contains the depth index, and the |b3| field used only
24597 for temporary storage. (It is used to keep track of which characters occur in
24598 an edge structure that is being shipped out.)
24599 The corresponding words in the width, height, and depth tables are stored as
24600 |scaled| values in units of \ps\ points.
24602 With the macros below, the |char_info| word for character~|c| in font~|f| is
24603 |char_info(f)(c)| and the width is
24604 $$\hbox{|char_width(f)(char_info(f)(c)).sc|.}$$
24606 @d char_info_end(A) (A)].qqqq
24607 @d char_info(A) mp->font_info[mp->char_base[(A)]+char_info_end
24608 @d char_width_end(A) (A).b0].sc
24609 @d char_width(A) mp->font_info[mp->width_base[(A)]+char_width_end
24610 @d char_height_end(A) (A).b1].sc
24611 @d char_height(A) mp->font_info[mp->height_base[(A)]+char_height_end
24612 @d char_depth_end(A) (A).b2].sc
24613 @d char_depth(A) mp->font_info[mp->depth_base[(A)]+char_depth_end
24614 @d ichar_exists(A) ((A).b0>0)
24616 @ The |font_ps_name| for a built-in font should be what PostScript expects.
24617 A preliminary name is obtained here from the \.{TFM} name as given in the
24618 |fname| argument. This gets updated later from an external table if necessary.
24620 @<Declare text measuring subroutines@>=
24621 @<Declare subroutines for parsing file names@>;
24622 font_number mp_read_font_info (MP mp, char*fname) {
24623 boolean file_opened; /* has |tfm_infile| been opened? */
24624 font_number n; /* the number to return */
24625 halfword lf,tfm_lh,bc,ec,nw,nh,nd; /* subfile size parameters */
24626 size_t whd_size; /* words needed for heights, widths, and depths */
24627 int i,ii; /* |font_info| indices */
24628 int jj; /* counts bytes to be ignored */
24629 scaled z; /* used to compute the design size */
24631 /* height, width, or depth as a fraction of design size times $2^{-8}$ */
24632 eight_bits h_and_d; /* height and depth indices being unpacked */
24633 unsigned char tfbyte; /* a byte read from the file */
24635 @<Open |tfm_infile| for input@>;
24636 @<Read data from |tfm_infile|; if there is no room, say so and |goto done|;
24637 otherwise |goto bad_tfm| or |goto done| as appropriate@>;
24639 @<Complain that the \.{TFM} file is bad@>;
24641 if ( file_opened ) (mp->close_file)(mp->tfm_infile);
24642 if ( n!=null_font ) {
24643 mp->font_ps_name[n]=fname;
24644 mp->font_name[n]=fname;
24649 @ \MP\ doesn't bother to check the entire \.{TFM} file for errors or explain
24650 precisely what is wrong if it does find a problem. Programs called \.{TFtoPL}
24651 @.TFtoPL@> @.PLtoTF@>
24652 and \.{PLtoTF} can be used to debug \.{TFM} files.
24654 @<Complain that the \.{TFM} file is bad@>=
24655 print_err("Font ");
24656 mp_print(mp, fname);
24657 if ( file_opened ) mp_print(mp, " not usable: TFM file is bad");
24658 else mp_print(mp, " not usable: TFM file not found");
24659 help3("I wasn't able to read the size data for this font so this")
24660 ("`infont' operation won't produce anything. If the font name")
24661 ("is right, you might ask an expert to make a TFM file");
24663 mp->help_line[0]="is right, try asking an expert to fix the TFM file";
24666 @ @<Read data from |tfm_infile|; if there is no room, say so...@>=
24667 @<Read the \.{TFM} size fields@>;
24668 @<Use the size fields to allocate space in |font_info|@>;
24669 @<Read the \.{TFM} header@>;
24670 @<Read the character data and the width, height, and depth tables and
24673 @ A bad \.{TFM} file can be shorter than it claims to be. The code given here
24674 might try to read past the end of the file if this happens. Changes will be
24675 needed if it causes a system error to refer to |tfm_infile^| or call
24676 |get_tfm_infile| when |eof(tfm_infile)| is true. For example, the definition
24677 @^system dependencies@>
24678 of |tfget| could be changed to
24679 ``|begin get(tfm_infile); if eof(tfm_infile) then goto bad_tfm; end|.''
24683 void *tfbyte_ptr = &tfbyte;
24684 (mp->read_binary_file)(mp->tfm_infile,&tfbyte_ptr,&wanted);
24685 if (wanted==0) goto BAD_TFM;
24687 @d read_two(A) { (A)=tfbyte;
24688 if ( (A)>127 ) goto BAD_TFM;
24689 tfget; (A)=(A)*0400+tfbyte;
24691 @d tf_ignore(A) { for (jj=(A);jj>=1;jj--) tfget; }
24693 @<Read the \.{TFM} size fields@>=
24694 tfget; read_two(lf);
24695 tfget; read_two(tfm_lh);
24696 tfget; read_two(bc);
24697 tfget; read_two(ec);
24698 if ( (bc>1+ec)||(ec>255) ) goto BAD_TFM;
24699 tfget; read_two(nw);
24700 tfget; read_two(nh);
24701 tfget; read_two(nd);
24702 whd_size=(ec+1-bc)+nw+nh+nd;
24703 if ( lf<(int)(6+tfm_lh+whd_size) ) goto BAD_TFM;
24706 @ Offsets are added to |char_base[n]| and |width_base[n]| so that is not
24707 necessary to apply the |so| and |qo| macros when looking up the width of a
24708 character in the string pool. In order to ensure nonnegative |char_base|
24709 values when |bc>0|, it may be necessary to reserve a few unused |font_info|
24712 @<Use the size fields to allocate space in |font_info|@>=
24713 if ( mp->next_fmem<bc) mp->next_fmem=bc; /* ensure nonnegative |char_base| */
24714 if (mp->last_fnum==mp->font_max)
24715 mp_reallocate_fonts(mp,(mp->font_max+(mp->font_max>>2)));
24716 while (mp->next_fmem+whd_size>=mp->font_mem_size) {
24717 size_t l = mp->font_mem_size+(mp->font_mem_size>>2);
24718 memory_word *font_info;
24719 font_info = xmalloc ((l+1),sizeof(memory_word));
24720 memset (font_info,0,sizeof(memory_word)*(l+1));
24721 memcpy (font_info,mp->font_info,sizeof(memory_word)*(mp->font_mem_size+1));
24722 xfree(mp->font_info);
24723 mp->font_info = font_info;
24724 mp->font_mem_size = l;
24726 incr(mp->last_fnum);
24730 mp->char_base[n]=mp->next_fmem-bc;
24731 mp->width_base[n]=mp->next_fmem+ec-bc+1;
24732 mp->height_base[n]=mp->width_base[n]+nw;
24733 mp->depth_base[n]=mp->height_base[n]+nh;
24734 mp->next_fmem=mp->next_fmem+whd_size;
24737 @ @<Read the \.{TFM} header@>=
24738 if ( tfm_lh<2 ) goto BAD_TFM;
24740 tfget; read_two(z);
24741 tfget; z=z*0400+tfbyte;
24742 tfget; z=z*0400+tfbyte; /* now |z| is 16 times the design size */
24743 mp->font_dsize[n]=mp_take_fraction(mp, z,267432584);
24744 /* times ${72\over72.27}2^{28}$ to convert from \TeX\ points */
24745 tf_ignore(4*(tfm_lh-2))
24747 @ @<Read the character data and the width, height, and depth tables...@>=
24748 ii=mp->width_base[n];
24749 i=mp->char_base[n]+bc;
24751 tfget; mp->font_info[i].qqqq.b0=qi(tfbyte);
24752 tfget; h_and_d=tfbyte;
24753 mp->font_info[i].qqqq.b1=h_and_d / 16;
24754 mp->font_info[i].qqqq.b2=h_and_d % 16;
24758 while ( i<mp->next_fmem ) {
24759 @<Read a four byte dimension, scale it by the design size, store it in
24760 |font_info[i]|, and increment |i|@>;
24764 @ The raw dimension read into |d| should have magnitude at most $2^{24}$ when
24765 interpreted as an integer, and this includes a scale factor of $2^{20}$. Thus
24766 we can multiply it by sixteen and think of it as a |fraction| that has been
24767 divided by sixteen. This cancels the extra scale factor contained in
24770 @<Read a four byte dimension, scale it by the design size, store it in...@>=
24773 if ( d>=0200 ) d=d-0400;
24774 tfget; d=d*0400+tfbyte;
24775 tfget; d=d*0400+tfbyte;
24776 tfget; d=d*0400+tfbyte;
24777 mp->font_info[i].sc=mp_take_fraction(mp, d*16,mp->font_dsize[n]);
24781 @ This function does no longer use the file name parser, because |fname| is
24782 a C string already.
24783 @<Open |tfm_infile| for input@>=
24785 mp_ptr_scan_file(mp, fname);
24786 if ( strlen(mp->cur_area)==0 ) { xfree(mp->cur_area); mp->cur_area=xstrdup(MP_font_area);}
24787 if ( strlen(mp->cur_ext)==0 ) { xfree(mp->cur_ext); mp->cur_ext=xstrdup(".tfm"); }
24789 mp->tfm_infile = (mp->open_file)( mp->name_of_file, "rb",mp_filetype_metrics);
24790 if ( !mp->tfm_infile ) goto BAD_TFM;
24793 @ When we have a font name and we don't know whether it has been loaded yet,
24794 we scan the |font_name| array before calling |read_font_info|.
24796 @<Declare text measuring subroutines@>=
24797 font_number mp_find_font (MP mp, char *f) {
24799 for (n=0;n<=mp->last_fnum;n++) {
24800 if (mp_xstrcmp(f,mp->font_name[n])==0 )
24803 return mp_read_font_info(mp, f);
24806 @ One simple application of |find_font| is the implementation of the |font_size|
24807 operator that gets the design size for a given font name.
24809 @<Find the design size of the font whose name is |cur_exp|@>=
24810 mp_flush_cur_exp(mp, (mp->font_dsize[mp_find_font(mp, str(mp->cur_exp))]+8) / 16)
24812 @ If we discover that the font doesn't have a requested character, we omit it
24813 from the bounding box computation and expect the \ps\ interpreter to drop it.
24814 This routine issues a warning message if the user has asked for it.
24816 @<Declare text measuring subroutines@>=
24817 void mp_lost_warning (MP mp,font_number f, pool_pointer k) {
24818 if ( mp->internal[mp_tracing_lost_chars]>0 ) {
24819 mp_begin_diagnostic(mp);
24820 if ( mp->selector==log_only ) incr(mp->selector);
24821 mp_print_nl(mp, "Missing character: There is no ");
24822 @.Missing character@>
24823 mp_print_str(mp, mp->str_pool[k]);
24824 mp_print(mp, " in font ");
24825 mp_print(mp, mp->font_name[f]); mp_print_char(mp, '!');
24826 mp_end_diagnostic(mp, false);
24830 @ The whole purpose of saving the height, width, and depth information is to be
24831 able to find the bounding box of an item of text in an edge structure. The
24832 |set_text_box| procedure takes a text node and adds this information.
24834 @<Declare text measuring subroutines@>=
24835 void mp_set_text_box (MP mp,pointer p) {
24836 font_number f; /* |font_n(p)| */
24837 ASCII_code bc,ec; /* range of valid characters for font |f| */
24838 pool_pointer k,kk; /* current character and character to stop at */
24839 four_quarters cc; /* the |char_info| for the current character */
24840 scaled h,d; /* dimensions of the current character */
24842 height_val(p)=-el_gordo;
24843 depth_val(p)=-el_gordo;
24847 kk=str_stop(text_p(p));
24848 k=mp->str_start[text_p(p)];
24850 @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>;
24852 @<Set the height and depth to zero if the bounding box is empty@>;
24855 @ @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>=
24857 if ( (mp->str_pool[k]<bc)||(mp->str_pool[k]>ec) ) {
24858 mp_lost_warning(mp, f,k);
24860 cc=char_info(f)(mp->str_pool[k]);
24861 if ( ! ichar_exists(cc) ) {
24862 mp_lost_warning(mp, f,k);
24864 width_val(p)=width_val(p)+char_width(f)(cc);
24865 h=char_height(f)(cc);
24866 d=char_depth(f)(cc);
24867 if ( h>height_val(p) ) height_val(p)=h;
24868 if ( d>depth_val(p) ) depth_val(p)=d;
24874 @ Let's hope modern compilers do comparisons correctly when the difference would
24877 @<Set the height and depth to zero if the bounding box is empty@>=
24878 if ( height_val(p)<-depth_val(p) ) {
24883 @ The new primitives fontmapfile and fontmapline.
24885 @<Declare action procedures for use by |do_statement|@>=
24886 void mp_do_mapfile (MP mp) ;
24887 void mp_do_mapline (MP mp) ;
24889 @ @c void mp_do_mapfile (MP mp) {
24890 mp_get_x_next(mp); mp_scan_expression(mp);
24891 if ( mp->cur_type!=mp_string_type ) {
24892 @<Complain about improper map operation@>;
24894 mp_map_file(mp,mp->cur_exp);
24897 void mp_do_mapline (MP mp) {
24898 mp_get_x_next(mp); mp_scan_expression(mp);
24899 if ( mp->cur_type!=mp_string_type ) {
24900 @<Complain about improper map operation@>;
24902 mp_map_line(mp,mp->cur_exp);
24906 @ @<Complain about improper map operation@>=
24908 exp_err("Unsuitable expression");
24909 help1("Only known strings can be map files or map lines.");
24910 mp_put_get_error(mp);
24913 @ To print |scaled| value to PDF output we need some subroutines to ensure
24916 @d max_integer 0x7FFFFFFF /* $2^{31}-1$ */
24919 scaled one_bp; /* scaled value corresponds to 1bp */
24920 scaled one_hundred_bp; /* scaled value corresponds to 100bp */
24921 scaled one_hundred_inch; /* scaled value corresponds to 100in */
24922 integer ten_pow[10]; /* $10^0..10^9$ */
24923 integer scaled_out; /* amount of |scaled| that was taken out in |divide_scaled| */
24926 mp->one_bp = 65782; /* 65781.76 */
24927 mp->one_hundred_bp = 6578176;
24928 mp->one_hundred_inch = 473628672;
24929 mp->ten_pow[0] = 1;
24930 for (i = 1;i<= 9; i++ ) {
24931 mp->ten_pow[i] = 10*mp->ten_pow[i - 1];
24934 @ The following function divides |s| by |m|. |dd| is number of decimal digits.
24936 @c scaled mp_divide_scaled (MP mp,scaled s, scaled m, integer dd) {
24940 if ( s < 0 ) { sign = -sign; s = -s; }
24941 if ( m < 0 ) { sign = -sign; m = -m; }
24943 mp_confusion(mp, "arithmetic: divided by zero");
24944 else if ( m >= (max_integer / 10) )
24945 mp_confusion(mp, "arithmetic: number too big");
24948 for (i = 1;i<=dd;i++) {
24949 q = 10*q + (10*r) / m;
24952 if ( 2*r >= m ) { incr(q); r = r - m; }
24953 mp->scaled_out = sign*(s - (r / mp->ten_pow[dd]));
24957 @* \[44] Shipping pictures out.
24958 The |ship_out| procedure, to be described below, is given a pointer to
24959 an edge structure. Its mission is to output a file containing the \ps\
24960 description of an edge structure.
24962 @ Each time an edge structure is shipped out we write a new \ps\ output
24963 file named according to the current \&{charcode}.
24964 @:char_code_}{\&{charcode} primitive@>
24966 This is the only backend function that remains in the main |mpost.w| file.
24967 There are just too many variable accesses needed for status reporting
24968 etcetera to make it worthwile to move the code to |psout.w|.
24970 @<Internal library declarations@>=
24971 void mp_open_output_file (MP mp) ;
24973 @ @c void mp_open_output_file (MP mp) {
24974 integer c; /* \&{charcode} rounded to the nearest integer */
24975 int old_setting; /* previous |selector| setting */
24976 pool_pointer i; /* indexes into |filename_template| */
24977 integer cc; /* a temporary integer for template building */
24978 integer f,g=0; /* field widths */
24979 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24980 c=mp_round_unscaled(mp, mp->internal[mp_char_code]);
24981 if ( mp->filename_template==0 ) {
24982 char *s; /* a file extension derived from |c| */
24986 @<Use |c| to compute the file extension |s|@>;
24987 mp_pack_job_name(mp, s);
24989 while ( ! mp_a_open_out(mp, (void *)&mp->ps_file, mp_filetype_postscript) )
24990 mp_prompt_file_name(mp, "file name for output",s);
24991 } else { /* initializations */
24992 str_number s, n; /* a file extension derived from |c| */
24993 old_setting=mp->selector;
24994 mp->selector=new_string;
24996 i = mp->str_start[mp->filename_template];
24997 n = rts(""); /* initialize */
24998 while ( i<str_stop(mp->filename_template) ) {
24999 if ( mp->str_pool[i]=='%' ) {
25002 if ( i<str_stop(mp->filename_template) ) {
25003 if ( mp->str_pool[i]=='j' ) {
25004 mp_print(mp, mp->job_name);
25005 } else if ( mp->str_pool[i]=='d' ) {
25006 cc= mp_round_unscaled(mp, mp->internal[mp_day]);
25007 print_with_leading_zeroes(cc);
25008 } else if ( mp->str_pool[i]=='m' ) {
25009 cc= mp_round_unscaled(mp, mp->internal[mp_month]);
25010 print_with_leading_zeroes(cc);
25011 } else if ( mp->str_pool[i]=='y' ) {
25012 cc= mp_round_unscaled(mp, mp->internal[mp_year]);
25013 print_with_leading_zeroes(cc);
25014 } else if ( mp->str_pool[i]=='H' ) {
25015 cc= mp_round_unscaled(mp, mp->internal[mp_time]) / 60;
25016 print_with_leading_zeroes(cc);
25017 } else if ( mp->str_pool[i]=='M' ) {
25018 cc= mp_round_unscaled(mp, mp->internal[mp_time]) % 60;
25019 print_with_leading_zeroes(cc);
25020 } else if ( mp->str_pool[i]=='c' ) {
25021 if ( c<0 ) mp_print(mp, "ps");
25022 else print_with_leading_zeroes(c);
25023 } else if ( (mp->str_pool[i]>='0') &&
25024 (mp->str_pool[i]<='9') ) {
25026 f = (f*10) + mp->str_pool[i]-'0';
25029 mp_print_str(mp, mp->str_pool[i]);
25033 if ( mp->str_pool[i]=='.' )
25035 n = mp_make_string(mp);
25036 mp_print_str(mp, mp->str_pool[i]);
25040 s = mp_make_string(mp);
25041 mp->selector= old_setting;
25042 if (length(n)==0) {
25046 mp_pack_file_name(mp, str(n),"",str(s));
25047 while ( ! mp_a_open_out(mp, (void *)&mp->ps_file, mp_filetype_postscript) )
25048 mp_prompt_file_name(mp, "file name for output",str(s));
25052 @<Store the true output file name if appropriate@>;
25053 @<Begin the progress report for the output of picture~|c|@>;
25056 @ The file extension created here could be up to five characters long in
25057 extreme cases so it may have to be shortened on some systems.
25058 @^system dependencies@>
25060 @<Use |c| to compute the file extension |s|@>=
25063 snprintf(s,7,".%i",(int)c);
25066 @ The user won't want to see all the output file names so we only save the
25067 first and last ones and a count of how many there were. For this purpose
25068 files are ordered primarily by \&{charcode} and secondarily by order of
25070 @:char_code_}{\&{charcode} primitive@>
25072 @<Store the true output file name if appropriate@>=
25073 if ((c<mp->first_output_code)&&(mp->first_output_code>=0)) {
25074 mp->first_output_code=c;
25075 xfree(mp->first_file_name);
25076 mp->first_file_name=xstrdup(mp->name_of_file);
25078 if ( c>=mp->last_output_code ) {
25079 mp->last_output_code=c;
25080 xfree(mp->last_file_name);
25081 mp->last_file_name=xstrdup(mp->name_of_file);
25085 char * first_file_name;
25086 char * last_file_name; /* full file names */
25087 integer first_output_code;integer last_output_code; /* rounded \&{charcode} values */
25088 @:char_code_}{\&{charcode} primitive@>
25089 integer total_shipped; /* total number of |ship_out| operations completed */
25092 mp->first_file_name=xstrdup("");
25093 mp->last_file_name=xstrdup("");
25094 mp->first_output_code=32768;
25095 mp->last_output_code=-32768;
25096 mp->total_shipped=0;
25098 @ @<Dealloc variables@>=
25099 xfree(mp->first_file_name);
25100 xfree(mp->last_file_name);
25102 @ @<Begin the progress report for the output of picture~|c|@>=
25103 if ( (int)mp->term_offset>mp->max_print_line-6 ) mp_print_ln(mp);
25104 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
25105 mp_print_char(mp, '[');
25106 if ( c>=0 ) mp_print_int(mp, c)
25108 @ @<End progress report@>=
25109 mp_print_char(mp, ']');
25111 incr(mp->total_shipped)
25113 @ @<Explain what output files were written@>=
25114 if ( mp->total_shipped>0 ) {
25115 mp_print_nl(mp, "");
25116 mp_print_int(mp, mp->total_shipped);
25117 mp_print(mp, " output file");
25118 if ( mp->total_shipped>1 ) mp_print_char(mp, 's');
25119 mp_print(mp, " written: ");
25120 mp_print(mp, mp->first_file_name);
25121 if ( mp->total_shipped>1 ) {
25122 if ( 31+strlen(mp->first_file_name)+
25123 strlen(mp->last_file_name)> (unsigned)mp->max_print_line)
25125 mp_print(mp, " .. ");
25126 mp_print(mp, mp->last_file_name);
25130 @ @<Internal library declarations@>=
25131 boolean mp_has_font_size(MP mp, font_number f );
25134 boolean mp_has_font_size(MP mp, font_number f ) {
25135 return (mp->font_sizes[f]!=null);
25138 @ The \&{special} command saves up lines of text to be printed during the next
25139 |ship_out| operation. The saved items are stored as a list of capsule tokens.
25142 pointer last_pending; /* the last token in a list of pending specials */
25145 mp->last_pending=spec_head;
25147 @ @<Cases of |do_statement|...@>=
25148 case special_command:
25149 if ( mp->cur_mod==0 ) mp_do_special(mp); else
25150 if ( mp->cur_mod==1 ) mp_do_mapfile(mp); else
25154 @ @<Declare action procedures for use by |do_statement|@>=
25155 void mp_do_special (MP mp) ;
25157 @ @c void mp_do_special (MP mp) {
25158 mp_get_x_next(mp); mp_scan_expression(mp);
25159 if ( mp->cur_type!=mp_string_type ) {
25160 @<Complain about improper special operation@>;
25162 link(mp->last_pending)=mp_stash_cur_exp(mp);
25163 mp->last_pending=link(mp->last_pending);
25164 link(mp->last_pending)=null;
25168 @ @<Complain about improper special operation@>=
25170 exp_err("Unsuitable expression");
25171 help1("Only known strings are allowed for output as specials.");
25172 mp_put_get_error(mp);
25175 @ On the export side, we need an extra object type for special strings.
25177 @<Graphical object codes@>=
25180 @ @<Export pending specials@>=
25182 while ( p!=null ) {
25183 hq = mp_new_graphic_object(mp,mp_special_code);
25184 gr_pre_script(hq) = str(value(p));
25185 if (hh->body==NULL) hh->body=hq; else gr_link(hp) = hq;
25189 mp_flush_token_list(mp, link(spec_head));
25190 link(spec_head)=null;
25191 mp->last_pending=spec_head
25193 @ We are now ready for the main output procedure. Note that the |selector|
25194 setting is saved in a global variable so that |begin_diagnostic| can access it.
25196 @<Declare the \ps\ output procedures@>=
25197 void mp_ship_out (MP mp, pointer h) ;
25199 @ Once again, the |gr_XXXX| macros are defined in |mppsout.h|
25202 struct mp_edge_object *mp_gr_export(MP mp, pointer h) {
25203 pointer p; /* the current graphical object */
25204 integer t; /* a temporary value */
25205 struct mp_edge_object *hh; /* the first graphical object */
25206 struct mp_graphic_object *hp; /* the current graphical object */
25207 struct mp_graphic_object *hq; /* something |hp| points to */
25208 mp_set_bbox(mp, h, true);
25209 hh = mp_xmalloc(mp,1,sizeof(struct mp_edge_object));
25211 hh->_minx = minx_val(h);
25212 hh->_miny = miny_val(h);
25213 hh->_maxx = maxx_val(h);
25214 hh->_maxy = maxy_val(h);
25215 @<Export pending specials@>;
25216 p=link(dummy_loc(h));
25217 while ( p!=null ) {
25218 hq = mp_new_graphic_object(mp,type(p));
25221 gr_pen_p(hq) = mp_export_knot_list(mp,pen_p(p));
25222 if ((pen_p(p)==null) || pen_is_elliptical(pen_p(p))) {
25223 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25226 pc = mp_copy_path(mp, path_p(p));
25227 pp = mp_make_envelope(mp, pc, pen_p(p),ljoin_val(p),0,miterlim_val(p));
25228 gr_path_p(hq) = mp_export_knot_list(mp,pp);
25229 mp_toss_knot_list(mp, pp);
25230 pc = mp_htap_ypoc(mp, path_p(p));
25231 pp = mp_make_envelope(mp, pc, pen_p(p),ljoin_val(p),0,miterlim_val(p));
25232 gr_htap_p(hq) = mp_export_knot_list(mp,pp);
25233 mp_toss_knot_list(mp, pp);
25235 @<Export object color@>;
25236 @<Export object scripts@>;
25237 gr_ljoin_val(hq) = ljoin_val(p);
25238 gr_miterlim_val(hq) = miterlim_val(p);
25240 case mp_stroked_code:
25241 gr_pen_p(hq) = mp_export_knot_list(mp,pen_p(p));
25242 if (pen_is_elliptical(pen_p(p))) {
25243 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25246 pc=mp_copy_path(mp, path_p(p));
25248 if ( left_type(pc)!=mp_endpoint ) {
25249 left_type(mp_insert_knot(mp, pc,x_coord(pc),y_coord(pc)))=mp_endpoint;
25250 right_type(pc)=mp_endpoint;
25254 pc=mp_make_envelope(mp,pc,pen_p(p),ljoin_val(p),t,miterlim_val(p));
25255 gr_path_p(hq) = mp_export_knot_list(mp,pc);
25256 mp_toss_knot_list(mp, pc);
25258 @<Export object color@>;
25259 @<Export object scripts@>;
25260 gr_ljoin_val(hq) = ljoin_val(p);
25261 gr_miterlim_val(hq) = miterlim_val(p);
25262 gr_lcap_val(hq) = lcap_val(p);
25263 gr_dash_scale(hq) = dash_scale(p);
25264 gr_dash_p(hq) = mp_export_dashes(mp,dash_p(p));
25267 gr_text_p(hq) = str(text_p(p));
25268 gr_font_n(hq) = font_n(p);
25269 @<Export object color@>;
25270 @<Export object scripts@>;
25271 gr_width_val(hq) = width_val(p);
25272 gr_height_val(hq) = height_val(p);
25273 gr_depth_val(hq) = depth_val(p);
25274 gr_tx_val(hq) = tx_val(p);
25275 gr_ty_val(hq) = ty_val(p);
25276 gr_txx_val(hq) = txx_val(p);
25277 gr_txy_val(hq) = txy_val(p);
25278 gr_tyx_val(hq) = tyx_val(p);
25279 gr_tyy_val(hq) = tyy_val(p);
25281 case mp_start_clip_code:
25282 case mp_start_bounds_code:
25283 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25285 case mp_stop_clip_code:
25286 case mp_stop_bounds_code:
25287 /* nothing to do here */
25290 if (hh->body==NULL) hh->body=hq; else gr_link(hp) = hq;
25297 @ This function is now nearly trivial.
25300 void mp_ship_out (MP mp, pointer h) { /* output edge structure |h| */
25301 struct mp_edge_object *hh; /* the first graphical object */
25302 hh = mp_gr_export(mp,h);
25303 mp_gr_ship_out (mp, hh);
25305 @<End progress report@>;
25306 if ( mp->internal[mp_tracing_output]>0 )
25307 mp_print_edges(mp, h," (just shipped out)",true);
25311 @ Once again, the |gr_XXXX| macros are defined in |mppsout.h|
25313 @<Export object color@>=
25314 gr_color_model(hq) = color_model(p);
25315 gr_cyan_val(hq) = cyan_val(p);
25316 gr_magenta_val(hq) = magenta_val(p);
25317 gr_yellow_val(hq) = yellow_val(p);
25318 gr_black_val(hq) = black_val(p);
25319 gr_red_val(hq) = red_val(p);
25320 gr_green_val(hq) = green_val(p);
25321 gr_blue_val(hq) = blue_val(p);
25322 gr_grey_val(hq) = grey_val(p)
25325 @ @<Export object scripts@>=
25326 if (pre_script(p)!=null)
25327 gr_pre_script(hq) = str(pre_script(p));
25328 if (post_script(p)!=null)
25329 gr_post_script(hq) = str(post_script(p));
25331 @ Now that we've finished |ship_out|, let's look at the other commands
25332 by which a user can send things to the \.{GF} file.
25334 @ @<Determine if a character has been shipped out@>=
25336 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
25337 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
25338 boolean_reset(mp->char_exists[mp->cur_exp]);
25339 mp->cur_type=mp_boolean_type;
25345 @ @<Allocate or initialize ...@>=
25346 mp_backend_initialize(mp);
25349 mp_backend_free(mp);
25352 @* \[45] Dumping and undumping the tables.
25353 After \.{INIMP} has seen a collection of macros, it
25354 can write all the necessary information on an auxiliary file so
25355 that production versions of \MP\ are able to initialize their
25356 memory at high speed. The present section of the program takes
25357 care of such output and input. We shall consider simultaneously
25358 the processes of storing and restoring,
25359 so that the inverse relation between them is clear.
25362 The global variable |mem_ident| is a string that is printed right
25363 after the |banner| line when \MP\ is ready to start. For \.{INIMP} this
25364 string says simply `\.{(INIMP)}'; for other versions of \MP\ it says,
25365 for example, `\.{(mem=plain 90.4.14)}', showing the year,
25366 month, and day that the mem file was created. We have |mem_ident=0|
25367 before \MP's tables are loaded.
25373 mp->mem_ident=NULL;
25375 @ @<Initialize table entries...@>=
25376 mp->mem_ident=xstrdup(" (INIMP)");
25378 @ @<Declare act...@>=
25379 void mp_store_mem_file (MP mp) ;
25381 @ @c void mp_store_mem_file (MP mp) {
25382 integer k; /* all-purpose index */
25383 pointer p,q; /* all-purpose pointers */
25384 integer x; /* something to dump */
25385 four_quarters w; /* four ASCII codes */
25387 @<Create the |mem_ident|, open the mem file,
25388 and inform the user that dumping has begun@>;
25389 @<Dump constants for consistency check@>;
25390 @<Dump the string pool@>;
25391 @<Dump the dynamic memory@>;
25392 @<Dump the table of equivalents and the hash table@>;
25393 @<Dump a few more things and the closing check word@>;
25394 @<Close the mem file@>;
25397 @ Corresponding to the procedure that dumps a mem file, we also have a function
25398 that reads~one~in. The function returns |false| if the dumped mem is
25399 incompatible with the present \MP\ table sizes, etc.
25401 @d off_base 6666 /* go here if the mem file is unacceptable */
25402 @d too_small(A) { wake_up_terminal;
25403 wterm_ln("---! Must increase the "); wterm((A));
25404 @.Must increase the x@>
25409 boolean mp_load_mem_file (MP mp) {
25410 integer k; /* all-purpose index */
25411 pointer p,q; /* all-purpose pointers */
25412 integer x; /* something undumped */
25413 str_number s; /* some temporary string */
25414 four_quarters w; /* four ASCII codes */
25416 @<Undump constants for consistency check@>;
25417 @<Undump the string pool@>;
25418 @<Undump the dynamic memory@>;
25419 @<Undump the table of equivalents and the hash table@>;
25420 @<Undump a few more things and the closing check word@>;
25421 return true; /* it worked! */
25424 wterm_ln("(Fatal mem file error; I'm stymied)\n");
25425 @.Fatal mem file error@>
25429 @ @<Declarations@>=
25430 boolean mp_load_mem_file (MP mp) ;
25432 @ Mem files consist of |memory_word| items, and we use the following
25433 macros to dump words of different types:
25435 @d dump_wd(A) { WW=(A); (mp->write_binary_file)(mp->mem_file,&WW,sizeof(WW)); }
25436 @d dump_int(A) { int cint=(A); (mp->write_binary_file)(mp->mem_file,&cint,sizeof(cint)); }
25437 @d dump_hh(A) { WW.hh=(A); (mp->write_binary_file)(mp->mem_file,&WW,sizeof(WW)); }
25438 @d dump_qqqq(A) { WW.qqqq=(A); (mp->write_binary_file)(mp->mem_file,&WW,sizeof(WW)); }
25439 @d dump_string(A) { dump_int(strlen(A)+1);
25440 (mp->write_binary_file)(mp->mem_file,A,strlen(A)+1); }
25443 void * mem_file; /* for input or output of mem information */
25445 @ The inverse macros are slightly more complicated, since we need to check
25446 the range of the values we are reading in. We say `|undump(a)(b)(x)|' to
25447 read an integer value |x| that is supposed to be in the range |a<=x<=b|.
25450 size_t wanted = sizeof(A);
25452 (mp->read_binary_file)(mp->mem_file,&A_ptr,&wanted);
25453 if (wanted!=sizeof(A)) goto OFF_BASE;
25457 size_t wanted = sizeof(A);
25459 (mp->read_binary_file)(mp->mem_file,&A_ptr,&wanted);
25460 if (wanted!=sizeof(A)) goto OFF_BASE;
25463 @d undump_wd(A) { mgetw(WW); A=WW; }
25464 @d undump_int(A) { int cint; mgeti(cint); A=cint; }
25465 @d undump_hh(A) { mgetw(WW); A=WW.hh; }
25466 @d undump_qqqq(A) { mgetw(WW); A=WW.qqqq; }
25467 @d undump_strings(A,B,C) {
25468 undump_int(x); if ( (x<(A)) || (x>(B)) ) goto OFF_BASE; else C=str(x); }
25469 @d undump(A,B,C) { undump_int(x); if ( (x<(A)) || (x>(int)(B)) ) goto OFF_BASE; else C=x; }
25470 @d undump_size(A,B,C,D) { undump_int(x);
25471 if (x<(A)) goto OFF_BASE;
25472 if (x>(B)) { too_small((C)); } else { D=x;} }
25473 @d undump_string(A) do {
25478 A = xmalloc(XX,sizeof(char));
25479 (mp->read_binary_file)(mp->mem_file,(void **)&A,&wanted);
25480 if (wanted!=(size_t)XX) goto OFF_BASE;
25483 @ The next few sections of the program should make it clear how we use the
25484 dump/undump macros.
25486 @<Dump constants for consistency check@>=
25487 dump_int(mp->mem_top);
25488 dump_int(mp->hash_size);
25489 dump_int(mp->hash_prime)
25490 dump_int(mp->param_size);
25491 dump_int(mp->max_in_open);
25493 @ Sections of a \.{WEB} program that are ``commented out'' still contribute
25494 strings to the string pool; therefore \.{INIMP} and \MP\ will have
25495 the same strings. (And it is, of course, a good thing that they do.)
25499 @<Undump constants for consistency check@>=
25500 undump_int(x); mp->mem_top = x;
25501 undump_int(x); if (mp->hash_size != x) goto OFF_BASE;
25502 undump_int(x); if (mp->hash_prime != x) goto OFF_BASE;
25503 undump_int(x); if (mp->param_size != x) goto OFF_BASE;
25504 undump_int(x); if (mp->max_in_open != x) goto OFF_BASE
25506 @ We do string pool compaction to avoid dumping unused strings.
25509 w.b0=qi(mp->str_pool[k]); w.b1=qi(mp->str_pool[k+1]);
25510 w.b2=qi(mp->str_pool[k+2]); w.b3=qi(mp->str_pool[k+3]);
25513 @<Dump the string pool@>=
25514 mp_do_compaction(mp, mp->pool_size);
25515 dump_int(mp->pool_ptr);
25516 dump_int(mp->max_str_ptr);
25517 dump_int(mp->str_ptr);
25519 while ( (mp->next_str[k]==k+1) && (k<=mp->max_str_ptr) )
25522 while ( k<=mp->max_str_ptr ) {
25523 dump_int(mp->next_str[k]); incr(k);
25527 dump_int(mp->str_start[k]); /* TODO: valgrind warning here */
25528 if ( k==mp->str_ptr ) {
25535 while (k+4<mp->pool_ptr ) {
25536 dump_four_ASCII; k=k+4;
25538 k=mp->pool_ptr-4; dump_four_ASCII;
25539 mp_print_ln(mp); mp_print(mp, "at most "); mp_print_int(mp, mp->max_str_ptr);
25540 mp_print(mp, " strings of total length ");
25541 mp_print_int(mp, mp->pool_ptr)
25543 @ @d undump_four_ASCII
25545 mp->str_pool[k]=qo(w.b0); mp->str_pool[k+1]=qo(w.b1);
25546 mp->str_pool[k+2]=qo(w.b2); mp->str_pool[k+3]=qo(w.b3)
25548 @<Undump the string pool@>=
25549 undump_int(mp->pool_ptr);
25550 mp_reallocate_pool(mp, mp->pool_ptr) ;
25551 undump_int(mp->max_str_ptr);
25552 mp_reallocate_strings (mp,mp->max_str_ptr) ;
25553 undump(0,mp->max_str_ptr,mp->str_ptr);
25554 undump(0,mp->max_str_ptr+1,s);
25555 for (k=0;k<=s-1;k++)
25556 mp->next_str[k]=k+1;
25557 for (k=s;k<=mp->max_str_ptr;k++)
25558 undump(s+1,mp->max_str_ptr+1,mp->next_str[k]);
25559 mp->fixed_str_use=0;
25562 undump(0,mp->pool_ptr,mp->str_start[k]);
25563 if ( k==mp->str_ptr ) break;
25564 mp->str_ref[k]=max_str_ref;
25565 incr(mp->fixed_str_use);
25566 mp->last_fixed_str=k; k=mp->next_str[k];
25569 while ( k+4<mp->pool_ptr ) {
25570 undump_four_ASCII; k=k+4;
25572 k=mp->pool_ptr-4; undump_four_ASCII;
25573 mp->init_str_use=mp->fixed_str_use; mp->init_pool_ptr=mp->pool_ptr;
25574 mp->max_pool_ptr=mp->pool_ptr;
25575 mp->strs_used_up=mp->fixed_str_use;
25576 mp->pool_in_use=mp->str_start[mp->str_ptr]; mp->strs_in_use=mp->fixed_str_use;
25577 mp->max_pl_used=mp->pool_in_use; mp->max_strs_used=mp->strs_in_use;
25578 mp->pact_count=0; mp->pact_chars=0; mp->pact_strs=0;
25580 @ By sorting the list of available spaces in the variable-size portion of
25581 |mem|, we are usually able to get by without having to dump very much
25582 of the dynamic memory.
25584 We recompute |var_used| and |dyn_used|, so that \.{INIMP} dumps valid
25585 information even when it has not been gathering statistics.
25587 @<Dump the dynamic memory@>=
25588 mp_sort_avail(mp); mp->var_used=0;
25589 dump_int(mp->lo_mem_max); dump_int(mp->rover);
25590 p=0; q=mp->rover; x=0;
25592 for (k=p;k<= q+1;k++)
25593 dump_wd(mp->mem[k]);
25594 x=x+q+2-p; mp->var_used=mp->var_used+q-p;
25595 p=q+node_size(q); q=rlink(q);
25596 } while (q!=mp->rover);
25597 mp->var_used=mp->var_used+mp->lo_mem_max-p;
25598 mp->dyn_used=mp->mem_end+1-mp->hi_mem_min;
25599 for (k=p;k<= mp->lo_mem_max;k++ )
25600 dump_wd(mp->mem[k]);
25601 x=x+mp->lo_mem_max+1-p;
25602 dump_int(mp->hi_mem_min); dump_int(mp->avail);
25603 for (k=mp->hi_mem_min;k<=mp->mem_end;k++ )
25604 dump_wd(mp->mem[k]);
25605 x=x+mp->mem_end+1-mp->hi_mem_min;
25607 while ( p!=null ) {
25608 decr(mp->dyn_used); p=link(p);
25610 dump_int(mp->var_used); dump_int(mp->dyn_used);
25611 mp_print_ln(mp); mp_print_int(mp, x);
25612 mp_print(mp, " memory locations dumped; current usage is ");
25613 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used)
25615 @ @<Undump the dynamic memory@>=
25616 undump(lo_mem_stat_max+1000,hi_mem_stat_min-1,mp->lo_mem_max);
25617 undump(lo_mem_stat_max+1,mp->lo_mem_max,mp->rover);
25620 for (k=p;k<= q+1; k++)
25621 undump_wd(mp->mem[k]);
25623 if ( (p>mp->lo_mem_max)||((q>=rlink(q))&&(rlink(q)!=mp->rover)) )
25626 } while (q!=mp->rover);
25627 for (k=p;k<=mp->lo_mem_max;k++ )
25628 undump_wd(mp->mem[k]);
25629 undump(mp->lo_mem_max+1,hi_mem_stat_min,mp->hi_mem_min);
25630 undump(null,mp->mem_top,mp->avail); mp->mem_end=mp->mem_top;
25631 for (k=mp->hi_mem_min;k<= mp->mem_end;k++)
25632 undump_wd(mp->mem[k]);
25633 undump_int(mp->var_used); undump_int(mp->dyn_used)
25635 @ A different scheme is used to compress the hash table, since its lower region
25636 is usually sparse. When |text(p)<>0| for |p<=hash_used|, we output three
25637 words: |p|, |hash[p]|, and |eqtb[p]|. The hash table is, of course, densely
25638 packed for |p>=hash_used|, so the remaining entries are output in~a~block.
25640 @<Dump the table of equivalents and the hash table@>=
25641 dump_int(mp->hash_used);
25642 mp->st_count=frozen_inaccessible-1-mp->hash_used;
25643 for (p=1;p<=mp->hash_used;p++) {
25644 if ( text(p)!=0 ) {
25645 dump_int(p); dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]); incr(mp->st_count);
25648 for (p=mp->hash_used+1;p<=(int)hash_end;p++) {
25649 dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]);
25651 dump_int(mp->st_count);
25652 mp_print_ln(mp); mp_print_int(mp, mp->st_count); mp_print(mp, " symbolic tokens")
25654 @ @<Undump the table of equivalents and the hash table@>=
25655 undump(1,frozen_inaccessible,mp->hash_used);
25658 undump(p+1,mp->hash_used,p);
25659 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
25660 } while (p!=mp->hash_used);
25661 for (p=mp->hash_used+1;p<=(int)hash_end;p++ ) {
25662 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
25664 undump_int(mp->st_count)
25666 @ We have already printed a lot of statistics, so we set |mp_tracing_stats:=0|
25667 to prevent them appearing again.
25669 @<Dump a few more things and the closing check word@>=
25670 dump_int(mp->max_internal);
25671 dump_int(mp->int_ptr);
25672 for (k=1;k<= mp->int_ptr;k++ ) {
25673 dump_int(mp->internal[k]);
25674 dump_string(mp->int_name[k]);
25676 dump_int(mp->start_sym);
25677 dump_int(mp->interaction);
25678 dump_string(mp->mem_ident);
25679 dump_int(mp->bg_loc); dump_int(mp->eg_loc); dump_int(mp->serial_no); dump_int(69073);
25680 mp->internal[mp_tracing_stats]=0
25682 @ @<Undump a few more things and the closing check word@>=
25684 if (x>mp->max_internal) mp_grow_internals(mp,x);
25685 undump_int(mp->int_ptr);
25686 for (k=1;k<= mp->int_ptr;k++) {
25687 undump_int(mp->internal[k]);
25688 undump_string(mp->int_name[k]);
25690 undump(0,frozen_inaccessible,mp->start_sym);
25691 if (mp->interaction==mp_unspecified_mode) {
25692 undump(mp_unspecified_mode,mp_error_stop_mode,mp->interaction);
25694 undump(mp_unspecified_mode,mp_error_stop_mode,x);
25696 undump_string(mp->mem_ident);
25697 undump(1,hash_end,mp->bg_loc);
25698 undump(1,hash_end,mp->eg_loc);
25699 undump_int(mp->serial_no);
25701 if (x!=69073) goto OFF_BASE
25703 @ @<Create the |mem_ident|...@>=
25705 xfree(mp->mem_ident);
25706 mp->mem_ident = xmalloc(256,1);
25707 snprintf(mp->mem_ident,256," (mem=%s %i.%i.%i)",
25709 (int)(mp_round_unscaled(mp, mp->internal[mp_year]) % 100),
25710 (int)mp_round_unscaled(mp, mp->internal[mp_month]),
25711 (int)mp_round_unscaled(mp, mp->internal[mp_day]));
25712 mp_pack_job_name(mp, mem_extension);
25713 while (! mp_w_open_out(mp, &mp->mem_file) )
25714 mp_prompt_file_name(mp, "mem file name", mem_extension);
25715 mp_print_nl(mp, "Beginning to dump on file ");
25716 @.Beginning to dump...@>
25717 mp_print(mp, mp->name_of_file);
25718 mp_print_nl(mp, mp->mem_ident);
25721 @ @<Dealloc variables@>=
25722 xfree(mp->mem_ident);
25724 @ @<Close the mem file@>=
25725 (mp->close_file)(mp->mem_file)
25727 @* \[46] The main program.
25728 This is it: the part of \MP\ that executes all those procedures we have
25731 Well---almost. We haven't put the parsing subroutines into the
25732 program yet; and we'd better leave space for a few more routines that may
25733 have been forgotten.
25735 @c @<Declare the basic parsing subroutines@>;
25736 @<Declare miscellaneous procedures that were declared |forward|@>;
25737 @<Last-minute procedures@>
25739 @ We've noted that there are two versions of \MP. One, called \.{INIMP},
25741 has to be run first; it initializes everything from scratch, without
25742 reading a mem file, and it has the capability of dumping a mem file.
25743 The other one is called `\.{VIRMP}'; it is a ``virgin'' program that needs
25745 to input a mem file in order to get started. \.{VIRMP} typically has
25746 a bit more memory capacity than \.{INIMP}, because it does not need the
25747 space consumed by the dumping/undumping routines and the numerous calls on
25750 The \.{VIRMP} program cannot read a mem file instantaneously, of course;
25751 the best implementations therefore allow for production versions of \MP\ that
25752 not only avoid the loading routine for \PASCAL\ object code, they also have
25753 a mem file pre-loaded.
25756 boolean ini_version; /* are we iniMP? */
25758 @ @<Option variables@>=
25759 int ini_version; /* are we iniMP? */
25761 @ @<Set |ini_version|@>=
25762 mp->ini_version = (opt->ini_version ? true : false);
25764 @ Here we do whatever is needed to complete \MP's job gracefully on the
25765 local operating system. The code here might come into play after a fatal
25766 error; it must therefore consist entirely of ``safe'' operations that
25767 cannot produce error messages. For example, it would be a mistake to call
25768 |str_room| or |make_string| at this time, because a call on |overflow|
25769 might lead to an infinite loop.
25770 @^system dependencies@>
25772 This program doesn't bother to close the input files that may still be open.
25774 @<Last-minute...@>=
25775 void mp_close_files_and_terminate (MP mp) {
25776 integer k; /* all-purpose index */
25777 integer LH; /* the length of the \.{TFM} header, in words */
25778 int lk_offset; /* extra words inserted at beginning of |lig_kern| array */
25779 pointer p; /* runs through a list of \.{TFM} dimensions */
25780 @<Close all open files in the |rd_file| and |wr_file| arrays@>;
25781 if ( mp->internal[mp_tracing_stats]>0 )
25782 @<Output statistics about this job@>;
25784 @<Do all the finishing work on the \.{TFM} file@>;
25785 @<Explain what output files were written@>;
25786 if ( mp->log_opened ){
25788 (mp->close_file)(mp->log_file);
25789 mp->selector=mp->selector-2;
25790 if ( mp->selector==term_only ) {
25791 mp_print_nl(mp, "Transcript written on ");
25792 @.Transcript written...@>
25793 mp_print(mp, mp->log_name); mp_print_char(mp, '.');
25799 @ @<Declarations@>=
25800 void mp_close_files_and_terminate (MP mp) ;
25802 @ @<Close all open files in the |rd_file| and |wr_file| arrays@>=
25803 if (mp->rd_fname!=NULL) {
25804 for (k=0;k<=(int)mp->read_files-1;k++ ) {
25805 if ( mp->rd_fname[k]!=NULL ) {
25806 (mp->close_file)(mp->rd_file[k]);
25810 if (mp->wr_fname!=NULL) {
25811 for (k=0;k<=(int)mp->write_files-1;k++) {
25812 if ( mp->wr_fname[k]!=NULL ) {
25813 (mp->close_file)(mp->wr_file[k]);
25819 for (k=0;k<(int)mp->max_read_files;k++ ) {
25820 if ( mp->rd_fname[k]!=NULL ) {
25821 (mp->close_file)(mp->rd_file[k]);
25822 mp_xfree(mp->rd_fname[k]);
25825 mp_xfree(mp->rd_file);
25826 mp_xfree(mp->rd_fname);
25827 for (k=0;k<(int)mp->max_write_files;k++) {
25828 if ( mp->wr_fname[k]!=NULL ) {
25829 (mp->close_file)(mp->wr_file[k]);
25830 mp_xfree(mp->wr_fname[k]);
25833 mp_xfree(mp->wr_file);
25834 mp_xfree(mp->wr_fname);
25837 @ We want to produce a \.{TFM} file if and only if |mp_fontmaking| is positive.
25839 We reclaim all of the variable-size memory at this point, so that
25840 there is no chance of another memory overflow after the memory capacity
25841 has already been exceeded.
25843 @<Do all the finishing work on the \.{TFM} file@>=
25844 if ( mp->internal[mp_fontmaking]>0 ) {
25845 @<Make the dynamic memory into one big available node@>;
25846 @<Massage the \.{TFM} widths@>;
25847 mp_fix_design_size(mp); mp_fix_check_sum(mp);
25848 @<Massage the \.{TFM} heights, depths, and italic corrections@>;
25849 mp->internal[mp_fontmaking]=0; /* avoid loop in case of fatal error */
25850 @<Finish the \.{TFM} file@>;
25853 @ @<Make the dynamic memory into one big available node@>=
25854 mp->rover=lo_mem_stat_max+1; link(mp->rover)=empty_flag; mp->lo_mem_max=mp->hi_mem_min-1;
25855 if ( mp->lo_mem_max-mp->rover>max_halfword ) mp->lo_mem_max=max_halfword+mp->rover;
25856 node_size(mp->rover)=mp->lo_mem_max-mp->rover;
25857 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
25858 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null
25860 @ The present section goes directly to the log file instead of using
25861 |print| commands, because there's no need for these strings to take
25862 up |str_pool| memory when a non-{\bf stat} version of \MP\ is being used.
25864 @<Output statistics...@>=
25865 if ( mp->log_opened ) {
25868 wlog_ln("Here is how much of MetaPost's memory you used:");
25869 @.Here is how much...@>
25870 snprintf(s,128," %i string%s out of %i",(int)mp->max_strs_used-mp->init_str_use,
25871 (mp->max_strs_used!=mp->init_str_use+1 ? "s" : ""),
25872 (int)(mp->max_strings-1-mp->init_str_use));
25874 snprintf(s,128," %i string characters out of %i",
25875 (int)mp->max_pl_used-mp->init_pool_ptr,
25876 (int)mp->pool_size-mp->init_pool_ptr);
25878 snprintf(s,128," %i words of memory out of %i",
25879 (int)mp->lo_mem_max+mp->mem_end-mp->hi_mem_min+2,
25880 (int)mp->mem_end+1);
25882 snprintf(s,128," %i symbolic tokens out of %i", (int)mp->st_count, (int)mp->hash_size);
25884 snprintf(s,128," %ii, %in, %ip, %ib stack positions out of %ii, %in, %ip, %ib",
25885 (int)mp->max_in_stack,(int)mp->int_ptr,
25886 (int)mp->max_param_stack,(int)mp->max_buf_stack+1,
25887 (int)mp->stack_size,(int)mp->max_internal,(int)mp->param_size,(int)mp->buf_size);
25889 snprintf(s,128," %i string compactions (moved %i characters, %i strings)",
25890 (int)mp->pact_count,(int)mp->pact_chars,(int)mp->pact_strs);
25894 @ We get to the |final_cleanup| routine when \&{end} or \&{dump} has
25897 @<Last-minute...@>=
25898 void mp_final_cleanup (MP mp) {
25899 small_number c; /* 0 for \&{end}, 1 for \&{dump} */
25901 if ( mp->job_name==NULL ) mp_open_log_file(mp);
25902 while ( mp->input_ptr>0 ) {
25903 if ( token_state ) mp_end_token_list(mp);
25904 else mp_end_file_reading(mp);
25906 while ( mp->loop_ptr!=null ) mp_stop_iteration(mp);
25907 while ( mp->open_parens>0 ) {
25908 mp_print(mp, " )"); decr(mp->open_parens);
25910 while ( mp->cond_ptr!=null ) {
25911 mp_print_nl(mp, "(end occurred when ");
25912 @.end occurred...@>
25913 mp_print_cmd_mod(mp, fi_or_else,mp->cur_if);
25914 /* `\.{if}' or `\.{elseif}' or `\.{else}' */
25915 if ( mp->if_line!=0 ) {
25916 mp_print(mp, " on line "); mp_print_int(mp, mp->if_line);
25918 mp_print(mp, " was incomplete)");
25919 mp->if_line=if_line_field(mp->cond_ptr);
25920 mp->cur_if=name_type(mp->cond_ptr); mp->cond_ptr=link(mp->cond_ptr);
25922 if ( mp->history!=mp_spotless )
25923 if ( ((mp->history==mp_warning_issued)||(mp->interaction<mp_error_stop_mode)) )
25924 if ( mp->selector==term_and_log ) {
25925 mp->selector=term_only;
25926 mp_print_nl(mp, "(see the transcript file for additional information)");
25927 @.see the transcript file...@>
25928 mp->selector=term_and_log;
25931 if (mp->ini_version) {
25932 mp_store_mem_file(mp); return;
25934 mp_print_nl(mp, "(dump is performed only by INIMP)"); return;
25935 @.dump...only by INIMP@>
25939 @ @<Declarations@>=
25940 void mp_final_cleanup (MP mp) ;
25941 void mp_init_prim (MP mp) ;
25942 void mp_init_tab (MP mp) ;
25944 @ @<Last-minute...@>=
25945 void mp_init_prim (MP mp) { /* initialize all the primitives */
25949 void mp_init_tab (MP mp) { /* initialize other tables */
25950 integer k; /* all-purpose index */
25951 @<Initialize table entries (done by \.{INIMP} only)@>;
25955 @ When we begin the following code, \MP's tables may still contain garbage;
25956 the strings might not even be present. Thus we must proceed cautiously to get
25959 But when we finish this part of the program, \MP\ is ready to call on the
25960 |main_control| routine to do its work.
25962 @<Get the first line...@>=
25964 @<Initialize the input routines@>;
25965 if ( (mp->mem_ident==NULL)||(mp->buffer[loc]=='&') ) {
25966 if ( mp->mem_ident!=NULL ) {
25967 mp_do_initialize(mp); /* erase preloaded mem */
25969 if ( ! mp_open_mem_file(mp) ) return mp_fatal_error_stop;
25970 if ( ! mp_load_mem_file(mp) ) {
25971 (mp->close_file)(mp->mem_file);
25972 return mp_fatal_error_stop;
25974 (mp->close_file)( mp->mem_file);
25975 while ( (loc<limit)&&(mp->buffer[loc]==' ') ) incr(loc);
25977 mp->buffer[limit]='%';
25978 mp_fix_date_and_time(mp);
25979 mp->sys_random_seed = (scaled)(mp->get_random_seed)(mp);
25980 mp_init_randoms(mp, mp->sys_random_seed);
25981 @<Initialize the print |selector|...@>;
25982 if ( loc<limit ) if ( mp->buffer[loc]!='\\' )
25983 mp_start_input(mp); /* \&{input} assumed */
25986 @ @<Run inimpost commands@>=
25988 mp_get_strings_started(mp);
25989 mp_init_tab(mp); /* initialize the tables */
25990 mp_init_prim(mp); /* call |primitive| for each primitive */
25991 mp->init_str_use=mp->str_ptr; mp->init_pool_ptr=mp->pool_ptr;
25992 mp->max_str_ptr=mp->str_ptr; mp->max_pool_ptr=mp->pool_ptr;
25993 mp_fix_date_and_time(mp);
25997 @* \[47] Debugging.
25998 Once \MP\ is working, you should be able to diagnose most errors with
25999 the \.{show} commands and other diagnostic features. But for the initial
26000 stages of debugging, and for the revelation of really deep mysteries, you
26001 can compile \MP\ with a few more aids, including the \PASCAL\ runtime
26002 checks and its debugger. An additional routine called |debug_help|
26003 will also come into play when you type `\.D' after an error message;
26004 |debug_help| also occurs just before a fatal error causes \MP\ to succumb.
26006 @^system dependencies@>
26008 The interface to |debug_help| is primitive, but it is good enough when used
26009 with a \PASCAL\ debugger that allows you to set breakpoints and to read
26010 variables and change their values. After getting the prompt `\.{debug \#}', you
26011 type either a negative number (this exits |debug_help|), or zero (this
26012 goes to a location where you can set a breakpoint, thereby entering into
26013 dialog with the \PASCAL\ debugger), or a positive number |m| followed by
26014 an argument |n|. The meaning of |m| and |n| will be clear from the
26015 program below. (If |m=13|, there is an additional argument, |l|.)
26018 @<Last-minute...@>=
26019 void mp_debug_help (MP mp) { /* routine to display various things */
26026 mp_print_nl(mp, "debug # (-1 to exit):"); update_terminal;
26029 aline = (mp->read_ascii_file)(mp->term_in, &len);
26030 if (len) { sscanf(aline,"%i",&m); xfree(aline); }
26034 aline = (mp->read_ascii_file)(mp->term_in, &len);
26035 if (len) { sscanf(aline,"%i",&n); xfree(aline); }
26037 @<Numbered cases for |debug_help|@>;
26038 default: mp_print(mp, "?"); break;
26043 @ @<Numbered cases...@>=
26044 case 1: mp_print_word(mp, mp->mem[n]); /* display |mem[n]| in all forms */
26046 case 2: mp_print_int(mp, info(n));
26048 case 3: mp_print_int(mp, link(n));
26050 case 4: mp_print_int(mp, eq_type(n)); mp_print_char(mp, ':'); mp_print_int(mp, equiv(n));
26052 case 5: mp_print_variable_name(mp, n);
26054 case 6: mp_print_int(mp, mp->internal[n]);
26056 case 7: mp_do_show_dependencies(mp);
26058 case 9: mp_show_token_list(mp, n,null,100000,0);
26060 case 10: mp_print_str(mp, n);
26062 case 11: mp_check_mem(mp, n>0); /* check wellformedness; print new busy locations if |n>0| */
26064 case 12: mp_search_mem(mp, n); /* look for pointers to |n| */
26068 aline = (mp->read_ascii_file)(mp->term_in, &len);
26069 if (len) { sscanf(aline,"%i",&l); xfree(aline); }
26070 mp_print_cmd_mod(mp, n,l);
26072 case 14: for (k=0;k<=n;k++) mp_print_str(mp, mp->buffer[k]);
26074 case 15: mp->panicking=! mp->panicking;
26078 @ Saving the filename template
26080 @<Save the filename template@>=
26082 if ( mp->filename_template!=0 ) delete_str_ref(mp->filename_template);
26083 if ( length(mp->cur_exp)==0 ) mp->filename_template=0;
26085 mp->filename_template=mp->cur_exp; add_str_ref(mp->filename_template);
26089 @* \[48] System-dependent changes.
26090 This section should be replaced, if necessary, by any special
26091 modification of the program
26092 that are necessary to make \MP\ work at a particular installation.
26093 It is usually best to design your change file so that all changes to
26094 previous sections preserve the section numbering; then everybody's version
26095 will be consistent with the published program. More extensive changes,
26096 which introduce new sections, can be inserted here; then only the index
26097 itself will get a new section number.
26098 @^system dependencies@>
26101 Here is where you can find all uses of each identifier in the program,
26102 with underlined entries pointing to where the identifier was defined.
26103 If the identifier is only one letter long, however, you get to see only
26104 the underlined entries. {\sl All references are to section numbers instead of
26107 This index also lists error messages and other aspects of the program
26108 that you might want to look up some day. For example, the entry
26109 for ``system dependencies'' lists all sections that should receive
26110 special attention from people who are installing \MP\ in a new
26111 operating environment. A list of various things that can't happen appears
26112 under ``this can't happen''.
26113 Approximately 25 sections are listed under ``inner loop''; these account
26114 for more than 60\pct! of \MP's running time, exclusive of input and output.