1 % $Id: mp.web,v 1.8 2005/08/24 10:54:02 taco Exp $
2 % MetaPost, by John Hobby. Public domain.
4 % Much of this program was copied with permission from MF.web Version 1.9
5 % It interprets a language very similar to D.E. Knuth's METAFONT, but with
6 % changes designed to make it more suitable for PostScript output.
8 % TeX is a trademark of the American Mathematical Society.
9 % METAFONT is a trademark of Addison-Wesley Publishing Company.
10 % PostScript is a trademark of Adobe Systems Incorporated.
12 % Here is TeX material that gets inserted after \input webmac
13 \def\hang{\hangindent 3em\noindent\ignorespaces}
14 \def\textindent#1{\hangindent2.5em\noindent\hbox to2.5em{\hss#1 }\ignorespaces}
17 \def\ph{\hbox{Pascal-H}}
18 \def\psqrt#1{\sqrt{\mathstrut#1}}
20 \def\pct!{{\char`\%}} % percent sign in ordinary text
21 \font\tenlogo=logo10 % font used for the METAFONT logo
23 \def\MF{{\tenlogo META}\-{\tenlogo FONT}}
24 \def\MP{{\tenlogo META}\-{\tenlogo POST}}
25 \def\[#1]{#1.} % from pascal web
26 \def\<#1>{$\langle#1\rangle$}
27 \def\section{\mathhexbox278}
28 \let\swap=\leftrightarrow
29 \def\round{\mathop{\rm round}\nolimits}
30 \mathchardef\vb="026A % synonym for `\|'
32 \def\(#1){} % this is used to make section names sort themselves better
33 \def\9#1{} % this is used for sort keys in the index via @@:sort key}{entry@@>
35 \def\glob{15} % this should be the section number of "<Global...>"
36 \def\gglob{23, 28} % this should be the next two sections of "<Global...>"
41 This is \MP, a graphics-language processor based on D. E. Knuth's \MF.
42 The \PASCAL\ program that follows defines a standard version
44 of \MP\ that is designed to be highly portable so that identical output
45 will be obtainable on a great variety of computers.
47 The main purpose of the following program is to explain the algorithms of \MP\
48 as clearly as possible. As a result, the program will not necessarily be very
49 efficient when a particular \PASCAL\ compiler has translated it into a
50 particular machine language. However, the program has been written so that it
51 can be tuned to run efficiently in a wide variety of operating environments
52 by making comparatively few changes. Such flexibility is possible because
53 the documentation that follows is written in the \.{WEB} language, which is
54 at a higher level than \PASCAL; the preprocessing step that converts \.{WEB}
55 to \PASCAL\ is able to introduce most of the necessary refinements.
56 Semi-automatic translation to other languages is also feasible, because the
57 program below does not make extensive use of features that are peculiar to
60 A large piece of software like \MP\ has inherent complexity that cannot
61 be reduced below a certain level of difficulty, although each individual
62 part is fairly simple by itself. The \.{WEB} language is intended to make
63 the algorithms as readable as possible, by reflecting the way the
64 individual program pieces fit together and by providing the
65 cross-references that connect different parts. Detailed comments about
66 what is going on, and about why things were done in certain ways, have
67 been liberally sprinkled throughout the program. These comments explain
68 features of the implementation, but they rarely attempt to explain the
69 \MP\ language itself, since the reader is supposed to be familiar with
70 {\sl The {\logos METAFONT\/}book} as well as the manual
72 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
73 {\sl A User's Manual for MetaPost}, Computing Science Technical Report 162,
74 AT\AM T Bell Laboratories.
76 @ The present implementation is a preliminary version, but the possibilities
77 for new features are limited by the desire to remain as nearly compatible
78 with \MF\ as possible.
80 On the other hand, the \.{WEB} description can be extended without changing
81 the core of the program, and it has been designed so that such
82 extensions are not extremely difficult to make.
83 The |banner| string defined here should be changed whenever \MP\
84 undergoes any modifications, so that it will be clear which version of
85 \MP\ might be the guilty party when a problem arises.
87 @^system dependencies@>
89 @d banner "This is MetaPost, Version 1.002" /* printed when \MP\ starts */
90 @d metapost_version "1.002"
91 @d mplib_version "0.10"
92 @d version_string " (Cweb version 0.10)"
94 @ Different \PASCAL s have slightly different conventions, and the present
96 program is expressed in a version of \PASCAL\ that D. E. Knuth used for \MF.
97 Constructions that apply to
98 this particular compiler, which we shall call \ph, should help the
99 reader see how to make an appropriate interface for other systems
100 if necessary. (\ph\ is Charles Hedrick's modification of a compiler
101 @^Hedrick, Charles Locke@>
102 for the DECsystem-10 that was originally developed at the University of
103 Hamburg; cf.\ {\sl SOFTWARE---Practice \AM\ Experience \bf6} (1976),
104 29--42. The \MP\ program below is intended to be adaptable, without
105 extensive changes, to most other versions of \PASCAL\ and commonly used
106 \PASCAL-to-C translators, so it does not fully
108 use the admirable features of \ph. Indeed, a conscious effort has been
109 made here to avoid using several idiosyncratic features of standard
110 \PASCAL\ itself, so that most of the code can be translated mechanically
111 into other high-level languages. For example, the `\&{with}' and `\\{new}'
112 features are not used, nor are pointer types, set types, or enumerated
113 scalar types; there are no `\&{var}' parameters, except in the case of files;
114 there are no tag fields on variant records; there are no |real| variables;
115 no procedures are declared local to other procedures.)
117 The portions of this program that involve system-dependent code, where
118 changes might be necessary because of differences between \PASCAL\ compilers
119 and/or differences between
120 operating systems, can be identified by looking at the sections whose
121 numbers are listed under `system dependencies' in the index. Furthermore,
122 the index entries for `dirty \PASCAL' list all places where the restrictions
123 of \PASCAL\ have not been followed perfectly, for one reason or another.
124 @^system dependencies@>
127 @ The program begins with a normal \PASCAL\ program heading, whose
128 components will be filled in later, using the conventions of \.{WEB}.
130 For example, the portion of the program called `\X\glob:Global
131 variables\X' below will be replaced by a sequence of variable declarations
132 that starts in $\section\glob$ of this documentation. In this way, we are able
133 to define each individual global variable when we are prepared to
134 understand what it means; we do not have to define all of the globals at
135 once. Cross references in $\section\glob$, where it says ``See also
136 sections \gglob, \dots,'' also make it possible to look at the set of
137 all global variables, if desired. Similar remarks apply to the other
138 portions of the program heading.
140 Actually the heading shown here is not quite normal: The |program| line
141 does not mention any |output| file, because \ph\ would ask the \MP\ user
142 to specify a file name if |output| were specified here.
143 @^system dependencies@>
150 typedef signed int integer;
154 #include "mpbasictypes.h"
155 #include "mppstypes.h"
156 typedef struct MP_instance * MP;
157 @<Types in the outer block@>
158 @<Constants in the outer block@>
159 typedef struct MP_options {
162 typedef struct MP_instance {
165 @<Exported function headers@>
173 #include <unistd.h> /* for access() */
174 #include <time.h> /* for struct tm \& co */
180 @<Basic printing procedures@>
181 @<Error handling procedures@>
183 @ Here are the functions that set up the \MP\ instance.
186 @<Declare |mp_reallocate| functions@>;
187 struct MP_options mp_options (void) {
188 struct MP_options *opt;
189 opt = xmalloc(1,sizeof(MP_options));
190 memset (opt,0,sizeof(MP_options));
193 MP mp_new (struct MP_options opt) {
195 mp = xmalloc(1,sizeof(MP_instance));
196 @<Set |ini_version|@>;
197 @<Allocate or initialize variables@>
198 mp_reallocate_paths(mp,1000);
199 mp_reallocate_fonts(mp,8);
201 mp->term_out = stdout;
204 void mp_free (MP mp) {
205 int k; /* loop variable */
206 @<Dealloc variables@>
211 boolean mp_initialize (MP mp) { /* this procedure gets things started properly */
212 @<Local variables for initialization@>
213 mp->history=fatal_error_stop; /* in case we quit during initialization */
214 t_open_out; /* open the terminal for output */
215 @<Check the ``constant'' values...@>;
217 fprintf(stdout,"Ouch---my internal constants have been clobbered!\n"
218 "---case %i",(int)mp->bad);
222 @<Set initial values of key variables@>
223 if (mp->ini_version) {
224 @<Run inimpost commands@>;
226 @<Initialize the output routines@>;
227 @<Get the first line of input and prepare to start@>;
228 mp_set_job_id(mp,mp->internal[year],mp->internal[month],
229 mp->internal[day],mp->internal[mp_time]);
230 mp_init_map_file(mp, mp->troff_mode);
231 mp->history=spotless; /* ready to go! */
232 if (mp->troff_mode) {
233 mp->internal[gtroffmode]=unity;
234 mp->internal[prologues]=unity;
236 if ( mp->start_sym>0 ) { /* insert the `\&{everyjob}' symbol */
237 mp->cur_sym=mp->start_sym; mp_back_input(mp);
243 @<Exported function headers@>=
244 extern struct MP_options mp_options (void);
245 extern MP mp_new (struct MP_options opt) ;
246 extern void mp_free (MP mp);
247 extern boolean mp_initialize (MP mp);
250 @ The overall \MP\ program begins with the heading just shown, after which
251 comes a bunch of procedure declarations and function declarations.
252 Finally we will get to the main program, which begins with the
253 comment `|start_here|'. If you want to skip down to the
254 main program now, you can look up `|start_here|' in the index.
255 But the author suggests that the best way to understand this program
256 is to follow pretty much the order of \MP's components as they appear in the
257 \.{WEB} description you are now reading, since the present ordering is
258 intended to combine the advantages of the ``bottom up'' and ``top down''
259 approaches to the problem of understanding a somewhat complicated system.
261 @ Some of the code below is intended to be used only when diagnosing the
262 strange behavior that sometimes occurs when \MP\ is being installed or
263 when system wizards are fooling around with \MP\ without quite knowing
264 what they are doing. Such code will not normally be compiled; it is
265 delimited by the preprocessor test `|#ifdef DEBUG .. #endif|'.
267 @ This program has two important variations: (1) There is a long and slow
268 version called \.{INIMP}, which does the extra calculations needed to
270 initialize \MP's internal tables; and (2)~there is a shorter and faster
271 production version, which cuts the initialization to a bare minimum.
273 Which is which is decided at runtime.
275 @ The following parameters can be changed at compile time to extend or
276 reduce \MP's capacity. They may have different values in \.{INIMP} and
277 in production versions of \MP.
279 @^system dependencies@>
282 #define file_name_size 255 /* file names shouldn't be longer than this */
283 #define bistack_size 1500 /* size of stack for bisection algorithms;
284 should probably be left at this value */
286 @ Like the preceding parameters, the following quantities can be changed
287 at compile time to extend or reduce \MP's capacity. But if they are changed,
288 it is necessary to rerun the initialization program \.{INIMP}
290 to generate new tables for the production \MP\ program.
291 One can't simply make helter-skelter changes to the following constants,
292 since certain rather complex initialization
293 numbers are computed from them.
296 int max_strings; /* maximum number of strings; must not exceed |max_halfword| */
297 int pool_size; /* maximum number of characters in strings, including all
298 error messages and help texts, and the names of all identifiers */
299 int error_line; /* width of context lines on terminal error messages */
300 int half_error_line; /* width of first lines of contexts in terminal
301 error messages; should be between 30 and |error_line-15| */
302 int max_print_line; /* width of longest text lines output; should be at least 60 */
303 int mem_max; /* greatest index in \MP's internal |mem| array;
304 must be strictly less than |max_halfword|;
305 must be equal to |mem_top| in \.{INIMP}, otherwise |>=mem_top| */
306 int mem_top; /* largest index in the |mem| array dumped by \.{INIMP};
307 must not be greater than |mem_max| */
308 int hash_size; /* maximum number of symbolic tokens,
309 must be less than |max_halfword-3*param_size| */
310 int hash_prime; /* a prime number equal to about 85\pct! of |hash_size| */
311 int param_size; /* maximum number of simultaneous macro parameters */
312 int max_in_open; /* maximum number of input files and error insertions that
313 can be going on simultaneously */
315 @ @<Option variables@>=
326 @d set_value(a,b,c) do { a=c; if (b>c) a=b; } while (0)
331 set_value(mp->error_line,opt.error_line,79);
332 set_value(mp->half_error_line,opt.half_error_line,50);
333 set_value(mp->max_print_line,opt.max_print_line,79);
336 if (opt.main_memory>mp->mem_max)
337 mp_reallocate_memory(mp,opt.main_memory);
338 set_value(mp->hash_size,opt.hash_size,9500);
339 set_value(mp->hash_prime,opt.hash_prime,7919);
340 set_value(mp->param_size,opt.param_size,150);
341 set_value(mp->max_in_open,opt.max_in_open,10);
344 @ In case somebody has inadvertently made bad settings of the ``constants,''
345 \MP\ checks them using a global variable called |bad|.
347 This is the first of many sections of \MP\ where global variables are
351 integer bad; /* is some ``constant'' wrong? */
353 @ Later on we will say `\ignorespaces|if (mem_max>=max_halfword) bad=10;|',
354 or something similar. (We can't do that until |max_halfword| has been defined.)
356 @<Check the ``constant'' values for consistency@>=
358 if ( (mp->half_error_line<30)||(mp->half_error_line>mp->error_line-15) ) mp->bad=1;
359 if ( mp->max_print_line<60 ) mp->bad=2;
360 if ( mp->mem_top<=1100 ) mp->bad=4;
361 if (mp->hash_prime>mp->hash_size ) mp->bad=5;
363 @ Labels are given symbolic names by the following definitions, so that
364 occasional |goto| statements will be meaningful. We insert the label
365 `|exit|:' just before the `\ignorespaces|end|\unskip' of a procedure in
366 which we have used the `|return|' statement defined below; the label
367 `|restart|' is occasionally used at the very beginning of a procedure; and
368 the label `|reswitch|' is occasionally used just prior to a |case|
369 statement in which some cases change the conditions and we wish to branch
370 to the newly applicable case. Loops that are set up with the |loop|
371 construction defined below are commonly exited by going to `|done|' or to
372 `|found|' or to `|not_found|', and they are sometimes repeated by going to
373 `|continue|'. If two or more parts of a subroutine start differently but
374 end up the same, the shared code may be gathered together at
377 Incidentally, this program never declares a label that isn't actually used,
378 because some fussy \PASCAL\ compilers will complain about redundant labels.
380 @d label_exit 10 /* go here to leave a procedure */
381 @d restart 20 /* go here to start a procedure again */
382 @d reswitch 21 /* go here to start a case statement again */
383 @d continue 22 /* go here to resume a loop */
384 @d done 30 /* go here to exit a loop */
385 @d done1 31 /* like |done|, when there is more than one loop */
386 @d done2 32 /* for exiting the second loop in a long block */
387 @d done3 33 /* for exiting the third loop in a very long block */
388 @d done4 34 /* for exiting the fourth loop in an extremely long block */
389 @d done5 35 /* for exiting the fifth loop in an immense block */
390 @d done6 36 /* for exiting the sixth loop in a block */
391 @d found 40 /* go here when you've found it */
392 @d found1 41 /* like |found|, when there's more than one per routine */
393 @d found2 42 /* like |found|, when there's more than two per routine */
394 @d found3 43 /* like |found|, when there's more than three per routine */
395 @d not_found 45 /* go here when you've found nothing */
396 @d common_ending 50 /* go here when you want to merge with another branch */
398 @ Here are some macros for common programming idioms.
400 @d incr(A) (A)=(A)+1 /* increase a variable by unity */
401 @d decr(A) (A)=(A)-1 /* decrease a variable by unity */
402 @d negate(A) (A)=-(A) /* change the sign of a variable */
405 @d do_nothing /* empty statement */
406 @d Return goto exit /* terminate a procedure call */
407 @f return nil /* \.{WEB} will henceforth say |return| instead of \\{return} */
409 @* \[2] The character set.
410 In order to make \MP\ readily portable to a wide variety of
411 computers, all of its input text is converted to an internal eight-bit
412 code that includes standard ASCII, the ``American Standard Code for
413 Information Interchange.'' This conversion is done immediately when each
414 character is read in. Conversely, characters are converted from ASCII to
415 the user's external representation just before they are output to a
419 Such an internal code is relevant to users of \MP\ only with respect to
420 the \&{char} and \&{ASCII} operations, and the comparison of strings.
422 @ Characters of text that have been converted to \MP's internal form
423 are said to be of type |ASCII_code|, which is a subrange of the integers.
426 typedef unsigned char ASCII_code; /* eight-bit numbers */
428 @ The original \PASCAL\ compiler was designed in the late 60s, when six-bit
429 character sets were common, so it did not make provision for lowercase
430 letters. Nowadays, of course, we need to deal with both capital and small
431 letters in a convenient way, especially in a program for font design;
432 so the present specification of \MP\ has been written under the assumption
433 that the \PASCAL\ compiler and run-time system permit the use of text files
434 with more than 64 distinguishable characters. More precisely, we assume that
435 the character set contains at least the letters and symbols associated
436 with ASCII codes 040 through 0176; all of these characters are now
437 available on most computer terminals.
439 Since we are dealing with more characters than were present in the first
440 \PASCAL\ compilers, we have to decide what to call the associated data
441 type. Some \PASCAL s use the original name |char| for the
442 characters in text files, even though there now are more than 64 such
443 characters, while other \PASCAL s consider |char| to be a 64-element
444 subrange of a larger data type that has some other name.
446 In order to accommodate this difference, we shall use the name |text_char|
447 to stand for the data type of the characters that are converted to and
448 from |ASCII_code| when they are input and output. We shall also assume
449 that |text_char| consists of the elements |chr(first_text_char)| through
450 |chr(last_text_char)|, inclusive. The following definitions should be
451 adjusted if necessary.
452 @^system dependencies@>
454 @d first_text_char 0 /* ordinal number of the smallest element of |text_char| */
455 @d last_text_char 255 /* ordinal number of the largest element of |text_char| */
458 typedef unsigned char text_char; /* the data type of characters in text files */
460 @ @<Local variables for init...@>=
463 @ The \MP\ processor converts between ASCII code and
464 the user's external character set by means of arrays |xord| and |xchr|
465 that are analogous to \PASCAL's |ord| and |chr| functions.
468 ASCII_code xord[256]; /* specifies conversion of input characters */
469 text_char xchr[256]; /* specifies conversion of output characters */
471 @ The core system assumes all 8-bit is acceptable. If it is not,
472 a change file has to alter the below section.
473 @^system dependencies@>
475 Additionally, people with extended character sets can
476 assign codes arbitrarily, giving an |xchr| equivalent to whatever
477 characters the users of \MP\ are allowed to have in their input files.
478 Appropriate changes to \MP's |char_class| table should then be made.
479 (Unlike \TeX, each installation of \MP\ has a fixed assignment of category
480 codes, called the |char_class|.) Such changes make portability of programs
481 more difficult, so they should be introduced cautiously if at all.
482 @^character set dependencies@>
483 @^system dependencies@>
486 for (i=0;i<=0377;i++) { mp->xchr[i]=i; }
488 @ The following system-independent code makes the |xord| array contain a
489 suitable inverse to the information in |xchr|. Note that if |xchr[i]=xchr[j]|
490 where |i<j<0177|, the value of |xord[xchr[i]]| will turn out to be
491 |j| or more; hence, standard ASCII code numbers will be used instead of
492 codes below 040 in case there is a coincidence.
495 for (i=first_text_char;i<=last_text_char;i++) {
496 mp->xord[chr(i)]=0177;
498 for (i=0200;i<=0377;i++) { mp->xord[mp->xchr[i]]=i;}
499 for (i=0;i<=0176;i++) {mp->xord[mp->xchr[i]]=i;}
501 @* \[3] Input and output.
502 The bane of portability is the fact that different operating systems treat
503 input and output quite differently, perhaps because computer scientists
504 have not given sufficient attention to this problem. People have felt somehow
505 that input and output are not part of ``real'' programming. Well, it is true
506 that some kinds of programming are more fun than others. With existing
507 input/output conventions being so diverse and so messy, the only sources of
508 joy in such parts of the code are the rare occasions when one can find a
509 way to make the program a little less bad than it might have been. We have
510 two choices, either to attack I/O now and get it over with, or to postpone
511 I/O until near the end. Neither prospect is very attractive, so let's
514 The basic operations we need to do are (1)~inputting and outputting of
515 text, to or from a file or the user's terminal; (2)~inputting and
516 outputting of eight-bit bytes, to or from a file; (3)~instructing the
517 operating system to initiate (``open'') or to terminate (``close'') input or
518 output from a specified file; (4)~testing whether the end of an input
519 file has been reached; (5)~display of bits on the user's screen.
520 The bit-display operation will be discussed in a later section; we shall
521 deal here only with more traditional kinds of I/O.
523 @ Finding files happens in a slightly roundabout fashion: the \MP\
524 instance object contains a field that holds a function pointer that finds a
525 file, and returns its name, or NULL. For this, it receives three
526 parameters: the non-qualified name |fname|, the intended |fopen|
527 operation type |fmode|, and the type of the file |ftype|.
529 The file types that are passed on in |ftype| can be used to
530 differentiate file searches if a library like kpathsea is used,
531 the fopen mode is passed along for the same reason.
534 typedef unsigned char eight_bits ; /* unsigned one-byte quantity */
536 mp_filetype_program = 1, /* \MP\ language input */
537 mp_filetype_log, /* the log file */
538 mp_filetype_postscript, /* the postscript output */
539 mp_filetype_text, /* text files for readfrom and writeto primitives */
540 mp_filetype_memfile, /* memory dumps */
541 mp_filetype_metrics, /* TeX font metric files */
542 mp_filetype_fontmap, /* PostScript font mapping files */
543 mp_filetype_font, /* PostScript type1 font programs */
544 mp_filetype_encoding, /* PostScript font encoding files */
546 typedef char *(*file_finder)(char *, char *, int);
549 file_finder find_file;
551 @ @<Option variables@>=
552 file_finder find_file;
554 @ The default function for finding files is |mp_find_file|. It is
555 pretty stupid: it will only find files in the current directory.
558 char *mp_find_file (char *fname, char *fmode, int ftype) {
559 if (fmode[0] != 'r' || access (fname,R_OK) || ftype)
560 return xstrdup(fname);
564 @ This has to be done very early on, so it is best to put it in with
565 the |mp_new| allocations
567 @d set_callback_option(A) do { mp->A = mp_##A;
568 if (opt.A!=NULL) mp->A = opt.A;
571 @<Allocate or initialize ...@>=
572 set_callback_option(find_file);
574 @ Because |mp_find_file| is used so early, it has to be in the helpers
578 char *mp_find_file (char *fname, char *fmode, int ftype) ;
580 @ The function to open files can now be very short.
583 FILE *mp_open_file(MP mp, char *fname, char *fmode, int ftype) {
584 char *s = (mp->find_file)(fname,fmode,ftype);
586 FILE *f = fopen(s, fmode);
593 @ This is a legacy interface: (almost) all file names pass through |name_of_file|.
596 char name_of_file[file_name_size+1]; /* the name of a system file */
597 int name_length;/* this many characters are actually
598 relevant in |name_of_file| (the rest are blank) */
599 boolean print_found_names; /* configuration parameter */
601 @ @<Option variables@>=
602 boolean print_found_names; /* configuration parameter */
604 @ If this parameter is true, the terminal and log will report the found
605 file names for input files instead of the requested ones.
606 It is off by default because it creates an extra filename lookup.
608 @<Allocate or initialize ...@>=
609 mp->print_found_names = (opt.print_found_names>0 ? true : false);
611 @ \MP's file-opening procedures return |false| if no file identified by
612 |name_of_file| could be opened.
614 The |OPEN_FILE| macro takes care of the |print_found_names| parameter.
615 It is not used for opening a mem file for read, because that file name
619 if (mp->print_found_names) {
620 char *s = (mp->find_file)(mp->name_of_file,A,ftype);
622 *f = mp_open_file(mp,mp->name_of_file,A, ftype);
623 strncpy(mp->name_of_file,s,file_name_size);
629 *f = mp_open_file(mp,mp->name_of_file,A, ftype);
632 return (*f ? true : false)
635 boolean mp_a_open_in (MP mp, FILE **f, int ftype) {
636 /* open a text file for input */
640 boolean mp_w_open_in (MP mp, FILE **f) {
641 /* open a word file for input */
642 *f = mp_open_file(mp,mp->name_of_file,"rb",mp_filetype_memfile);
643 return (*f ? true : false);
646 boolean mp_a_open_out (MP mp, FILE **f, int ftype) {
647 /* open a text file for output */
651 boolean mp_b_open_out (MP mp, FILE **f, int ftype) {
652 /* open a binary file for output */
656 boolean mp_w_open_out (MP mp, FILE**f) {
657 /* open a word file for output */
658 int ftype = mp_filetype_memfile;
663 FILE *mp_open_file(MP mp, char *fname, char *fmode, int ftype);
665 @ Binary input and output are done with \PASCAL's ordinary |get| and |put|
666 procedures, so we don't have to make any other special arrangements for
667 binary~I/O. Text output is also easy to do with standard \PASCAL\ routines.
668 The treatment of text input is more difficult, however, because
669 of the necessary translation to |ASCII_code| values.
670 \MP's conventions should be efficient, and they should
671 blend nicely with the user's operating environment.
673 @ Input from text files is read one line at a time, using a routine called
674 |input_ln|. This function is defined in terms of global variables called
675 |buffer|, |first|, and |last| that will be described in detail later; for
676 now, it suffices for us to know that |buffer| is an array of |ASCII_code|
677 values, and that |first| and |last| are indices into this array
678 representing the beginning and ending of a line of text.
681 size_t buf_size; /* maximum number of characters simultaneously present in
682 current lines of open files */
683 ASCII_code *buffer; /* lines of characters being read */
684 size_t first; /* the first unused position in |buffer| */
685 size_t last; /* end of the line just input to |buffer| */
686 size_t max_buf_stack; /* largest index used in |buffer| */
688 @ @<Allocate or initialize ...@>=
690 mp->buffer = xmalloc((mp->buf_size+1),sizeof(ASCII_code));
692 @ @<Dealloc variables@>=
696 void mp_reallocate_buffer(MP mp, size_t l) {
698 if (l>max_halfword) {
699 mp_confusion(mp,"buffer size"); /* can't happen (I hope) */
701 buffer = xmalloc((l+1),sizeof(ASCII_code));
702 memcpy(buffer,mp->buffer,(mp->buf_size+1));
704 mp->buffer = buffer ;
708 @ The |input_ln| function brings the next line of input from the specified
709 field into available positions of the buffer array and returns the value
710 |true|, unless the file has already been entirely read, in which case it
711 returns |false| and sets |last:=first|. In general, the |ASCII_code|
712 numbers that represent the next line of the file are input into
713 |buffer[first]|, |buffer[first+1]|, \dots, |buffer[last-1]|; and the
714 global variable |last| is set equal to |first| plus the length of the
715 line. Trailing blanks are removed from the line; thus, either |last=first|
716 (in which case the line was entirely blank) or |buffer[last-1]<>" "|.
719 An overflow error is given, however, if the normal actions of |input_ln|
720 would make |last>=buf_size|; this is done so that other parts of \MP\
721 can safely look at the contents of |buffer[last+1]| without overstepping
722 the bounds of the |buffer| array. Upon entry to |input_ln|, the condition
723 |first<buf_size| will always hold, so that there is always room for an
726 The variable |max_buf_stack|, which is used to keep track of how large
727 the |buf_size| parameter must be to accommodate the present job, is
728 also kept up to date by |input_ln|.
730 If the |bypass_eoln| parameter is |true|, |input_ln| will do a |get|
731 before looking at the first character of the line; this skips over
732 an |eoln| that was in |f^|. The procedure does not do a |get| when it
733 reaches the end of the line; therefore it can be used to acquire input
734 from the user's terminal as well as from ordinary text files.
736 Standard \PASCAL\ says that a file should have |eoln| immediately
737 before |eof|, but \MP\ needs only a weaker restriction: If |eof|
738 occurs in the middle of a line, the system function |eoln| should return
739 a |true| result (even though |f^| will be undefined).
742 boolean mp_input_ln (MP mp,FILE * f, boolean bypass_eoln) {
743 /* inputs the next line or returns |false| */
744 int last_nonblank; /* |last| with trailing blanks removed */
750 if (c!='\n' && c!='\r') {
754 /* input the first character of the line into |f^| */
755 mp->last=mp->first; /* cf.\ Matthew 19\thinspace:\thinspace30 */
759 last_nonblank=mp->first;
760 while (c!=EOF && c!='\n' && c!='\r') {
761 if ( mp->last>=mp->max_buf_stack ) {
762 mp->max_buf_stack=mp->last+1;
763 if ( mp->max_buf_stack==mp->buf_size ) {
764 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
767 mp->buffer[mp->last]=mp->xord[c];
769 if ( mp->buffer[mp->last-1]!=' ' )
770 last_nonblank=mp->last;
776 mp->last=last_nonblank;
780 @ The user's terminal acts essentially like other files of text, except
781 that it is used both for input and for output. When the terminal is
782 considered an input file, the file variable is called |term_in|, and when it
783 is considered an output file the file variable is |term_out|.
784 @^system dependencies@>
787 FILE * term_in; /* the terminal as an input file */
788 FILE * term_out; /* the terminal as an output file */
790 @ Here is how to open the terminal files. In the default configuration,
791 nothing happens except that the command line (if there is one) is copied
792 to the input buffer. The variable |command_line| will be filled by the
793 |main| procedure. The copying can not be done earlier in the program
794 logic because in the |INI| version, the |buffer| is also used for primitive
797 @^system dependencies@>
799 @d t_open_out /* open the terminal for text output */
800 @d t_open_in do { /* open the terminal for text input */
801 if (mp->command_line!=NULL) {
802 mp->last = strlen(mp->command_line);
803 strncpy((char *)mp->buffer,mp->command_line,mp->last);
804 xfree(mp->command_line);
811 @ @<Option variables@>=
814 @ @<Allocate or initialize ...@>=
815 mp->command_line = mp_xstrdup(opt.command_line);
817 @ Sometimes it is necessary to synchronize the input/output mixture that
818 happens on the user's terminal, and three system-dependent
819 procedures are used for this
820 purpose. The first of these, |update_terminal|, is called when we want
821 to make sure that everything we have output to the terminal so far has
822 actually left the computer's internal buffers and been sent.
823 The second, |clear_terminal|, is called when we wish to cancel any
824 input that the user may have typed ahead (since we are about to
825 issue an unexpected error message). The third, |wake_up_terminal|,
826 is supposed to revive the terminal if the user has disabled it by
827 some instruction to the operating system. The following macros show how
828 these operations can be specified in \ph:
829 @^system dependencies@>
831 @d update_terminal fflush(mp->term_out) /* empty the terminal output buffer */
832 @d clear_terminal do_nothing /* clear the terminal input buffer */
833 @d wake_up_terminal fflush(mp->term_out) /* cancel the user's cancellation of output */
835 @ We need a special routine to read the first line of \MP\ input from
836 the user's terminal. This line is different because it is read before we
837 have opened the transcript file; there is sort of a ``chicken and
838 egg'' problem here. If the user types `\.{input cmr10}' on the first
839 line, or if some macro invoked by that line does such an \.{input},
840 the transcript file will be named `\.{cmr10.log}'; but if no \.{input}
841 commands are performed during the first line of terminal input, the transcript
842 file will acquire its default name `\.{mpout.log}'. (The transcript file
843 will not contain error messages generated by the first line before the
844 first \.{input} command.)
846 The first line is even more special if we are lucky enough to have an operating
847 system that treats \MP\ differently from a run-of-the-mill \PASCAL\ object
848 program. It's nice to let the user start running a \MP\ job by typing
849 a command line like `\.{MP cmr10}'; in such a case, \MP\ will operate
850 as if the first line of input were `\.{cmr10}', i.e., the first line will
851 consist of the remainder of the command line, after the part that invoked \MP.
853 @ Different systems have different ways to get started. But regardless of
854 what conventions are adopted, the routine that initializes the terminal
855 should satisfy the following specifications:
857 \yskip\textindent{1)}It should open file |term_in| for input from the
858 terminal. (The file |term_out| will already be open for output to the
861 \textindent{2)}If the user has given a command line, this line should be
862 considered the first line of terminal input. Otherwise the
863 user should be prompted with `\.{**}', and the first line of input
864 should be whatever is typed in response.
866 \textindent{3)}The first line of input, which might or might not be a
867 command line, should appear in locations |first| to |last-1| of the
870 \textindent{4)}The global variable |loc| should be set so that the
871 character to be read next by \MP\ is in |buffer[loc]|. This
872 character should not be blank, and we should have |loc<last|.
874 \yskip\noindent(It may be necessary to prompt the user several times
875 before a non-blank line comes in. The prompt is `\.{**}' instead of the
876 later `\.*' because the meaning is slightly different: `\.{input}' need
877 not be typed immediately after~`\.{**}'.)
879 @d loc mp->cur_input.loc_field /* location of first unread character in |buffer| */
881 @ The following program does the required initialization
882 without retrieving a possible command line.
883 It should be clear how to modify this routine to deal with command lines,
884 if the system permits them.
885 @^system dependencies@>
888 boolean mp_init_terminal (MP mp) { /* gets the terminal input started */
895 wake_up_terminal; fprintf(mp->term_out,"**"); update_terminal;
897 if ( ! mp_input_ln(mp, mp->term_in,true) ) { /* this shouldn't happen */
898 fprintf(mp->term_out,"\n! End of file on the terminal... why?");
899 @.End of file on the terminal@>
903 while ( (loc<(int)mp->last)&&(mp->buffer[loc]==' ') )
905 if ( loc<(int)mp->last ) {
906 return true; /* return unless the line was all blank */
908 fprintf(mp->term_out,"Please type the name of your input file.\n");
913 boolean mp_init_terminal (MP mp) ;
916 @* \[4] String handling.
917 Symbolic token names and diagnostic messages are variable-length strings
918 of eight-bit characters. Since \PASCAL\ does not have a well-developed string
919 mechanism, \MP\ does all of its string processing by homegrown methods.
921 \MP\ uses strings more extensively than \MF\ does, but the necessary
922 operations can still be handled with a fairly simple data structure.
923 The array |str_pool| contains all of the (eight-bit) ASCII codes in all
924 of the strings, and the array |str_start| contains indices of the starting
925 points of each string. Strings are referred to by integer numbers, so that
926 string number |s| comprises the characters |str_pool[j]| for
927 |str_start[s]<=j<str_start[ss]| where |ss=next_str[s]|. The string pool
928 is allocated sequentially and |str_pool[pool_ptr]| is the next unused
929 location. The first string number not currently in use is |str_ptr|
930 and |next_str[str_ptr]| begins a list of free string numbers. String
931 pool entries |str_start[str_ptr]| up to |pool_ptr| are reserved for a
932 string currently being constructed.
934 String numbers 0 to 255 are reserved for strings that correspond to single
935 ASCII characters. This is in accordance with the conventions of \.{WEB},
937 which converts single-character strings into the ASCII code number of the
938 single character involved, while it converts other strings into integers
939 and builds a string pool file. Thus, when the string constant \.{"."} appears
940 in the program below, \.{WEB} converts it into the integer 46, which is the
941 ASCII code for a period, while \.{WEB} will convert a string like \.{"hello"}
942 into some integer greater than~255. String number 46 will presumably be the
943 single character `\..'\thinspace; but some ASCII codes have no standard visible
944 representation, and \MP\ may need to be able to print an arbitrary
945 ASCII character, so the first 256 strings are used to specify exactly what
946 should be printed for each of the 256 possibilities.
949 typedef int pool_pointer; /* for variables that point into |str_pool| */
950 typedef int str_number; /* for variables that point into |str_start| */
953 ASCII_code *str_pool; /* the characters */
954 pool_pointer *str_start; /* the starting pointers */
955 str_number *next_str; /* for linking strings in order */
956 pool_pointer pool_ptr; /* first unused position in |str_pool| */
957 str_number str_ptr; /* number of the current string being created */
958 pool_pointer init_pool_ptr; /* the starting value of |pool_ptr| */
959 str_number init_str_use; /* the initial number of strings in use */
960 pool_pointer max_pool_ptr; /* the maximum so far of |pool_ptr| */
961 str_number max_str_ptr; /* the maximum so far of |str_ptr| */
963 @ @<Allocate or initialize ...@>=
964 mp->str_pool = xmalloc ((mp->pool_size +1),sizeof(ASCII_code));
965 mp->str_start = xmalloc ((mp->max_strings+1),sizeof(pool_pointer));
966 mp->next_str = xmalloc ((mp->max_strings+1),sizeof(str_number));
968 @ @<Dealloc variables@>=
970 xfree(mp->str_start);
973 @ Most printing is done from |char *|s, but sometimes not. Here are
974 functions that convert an internal string into a |char *| for use
975 by the printing routines, and vice versa.
977 @d str(A) mp_str(mp,A)
978 @d rts(A) mp_rts(mp,A)
980 @<Exported function headers@>=
981 int mp_xstrcmp (const char *a, const char *b);
982 char * mp_str (MP mp, str_number s);
985 str_number mp_rts (MP mp, char *s);
986 str_number mp_make_string (MP mp);
988 @ The attempt to catch interrupted strings that is in |mp_rts|, is not
989 very good: it does not handle nesting over more than one level.
992 int mp_xstrcmp (const char *a, const char *b) {
993 if (a==NULL && b==NULL)
1003 char * mp_str (MP mp, str_number ss) {
1005 int len = length(ss);
1006 s = xmalloc(len+1,sizeof(char));
1007 strncpy(s,(char *)(mp->str_pool+(mp->str_start[ss])),len);
1011 str_number mp_rts (MP mp, char *s) {
1012 int r; /* the new string */
1013 int old; /* a possible string in progress */
1017 } else if (strlen(s)==1) {
1021 str_room((integer)strlen(s));
1022 if (mp->str_start[mp->str_ptr]<mp->pool_ptr)
1023 old = mp_make_string(mp);
1028 r = mp_make_string(mp);
1030 str_room(length(old));
1031 while (i<length(old)) {
1032 append_char((mp->str_start[old]+i));
1034 mp_flush_string(mp,old);
1040 @ Except for |strs_used_up|, the following string statistics are only
1041 maintained when code between |stat| $\ldots$ |tats| delimiters is not
1045 integer strs_used_up; /* strings in use or unused but not reclaimed */
1046 integer pool_in_use; /* total number of cells of |str_pool| actually in use */
1047 integer strs_in_use; /* total number of strings actually in use */
1048 integer max_pl_used; /* maximum |pool_in_use| so far */
1049 integer max_strs_used; /* maximum |strs_in_use| so far */
1051 @ Several of the elementary string operations are performed using \.{WEB}
1052 macros instead of \PASCAL\ procedures, because many of the
1053 operations are done quite frequently and we want to avoid the
1054 overhead of procedure calls. For example, here is
1055 a simple macro that computes the length of a string.
1058 @d str_stop(A) mp->str_start[mp->next_str[(A)]] /* one cell past the end of string
1060 @d length(A) (str_stop((A))-mp->str_start[(A)]) /* the number of characters in string \# */
1062 @ The length of the current string is called |cur_length|. If we decide that
1063 the current string is not needed, |flush_cur_string| resets |pool_ptr| so that
1064 |cur_length| becomes zero.
1066 @d cur_length (mp->pool_ptr - mp->str_start[mp->str_ptr])
1067 @d flush_cur_string mp->pool_ptr=mp->str_start[mp->str_ptr]
1069 @ Strings are created by appending character codes to |str_pool|.
1070 The |append_char| macro, defined here, does not check to see if the
1071 value of |pool_ptr| has gotten too high; this test is supposed to be
1072 made before |append_char| is used.
1074 To test if there is room to append |l| more characters to |str_pool|,
1075 we shall write |str_room(l)|, which tries to make sure there is enough room
1076 by compacting the string pool if necessary. If this does not work,
1077 |do_compaction| aborts \MP\ and gives an apologetic error message.
1079 @d append_char(A) /* put |ASCII_code| \# at the end of |str_pool| */
1080 { mp->str_pool[mp->pool_ptr]=(A); incr(mp->pool_ptr);
1082 @d str_room(A) /* make sure that the pool hasn't overflowed */
1083 { if ( mp->pool_ptr+(A) > mp->max_pool_ptr ) {
1084 if ( mp->pool_ptr+(A) > mp->pool_size ) mp_do_compaction(mp, (A));
1085 else mp->max_pool_ptr=mp->pool_ptr+(A); }
1088 @ The following routine is similar to |str_room(1)| but it uses the
1089 argument |mp->pool_size| to prevent |do_compaction| from aborting when
1090 string space is exhausted.
1092 @<Declare the procedure called |unit_str_room|@>=
1093 void mp_unit_str_room (MP mp);
1096 void mp_unit_str_room (MP mp) {
1097 if ( mp->pool_ptr>=mp->pool_size ) mp_do_compaction(mp, mp->pool_size);
1098 if ( mp->pool_ptr>=mp->max_pool_ptr ) mp->max_pool_ptr=mp->pool_ptr+1;
1101 @ \MP's string expressions are implemented in a brute-force way: Every
1102 new string or substring that is needed is simply copied into the string pool.
1103 Space is eventually reclaimed by a procedure called |do_compaction| with
1104 the aid of a simple system system of reference counts.
1105 @^reference counts@>
1107 The number of references to string number |s| will be |str_ref[s]|. The
1108 special value |str_ref[s]=max_str_ref=127| is used to denote an unknown
1109 positive number of references; such strings will never be recycled. If
1110 a string is ever referred to more than 126 times, simultaneously, we
1111 put it in this category. Hence a single byte suffices to store each |str_ref|.
1113 @d max_str_ref 127 /* ``infinite'' number of references */
1114 @d add_str_ref(A) { if ( mp->str_ref[(A)]<max_str_ref ) incr(mp->str_ref[(A)]);
1120 @ @<Allocate or initialize ...@>=
1121 mp->str_ref = xmalloc ((mp->max_strings+1),sizeof(int));
1123 @ @<Dealloc variables@>=
1126 @ Here's what we do when a string reference disappears:
1128 @d delete_str_ref(A) {
1129 if ( mp->str_ref[(A)]<max_str_ref ) {
1130 if ( mp->str_ref[(A)]>1 ) decr(mp->str_ref[(A)]);
1131 else mp_flush_string(mp, (A));
1135 @<Declare the procedure called |flush_string|@>=
1136 void mp_flush_string (MP mp,str_number s) ;
1139 @ We can't flush the first set of static strings at all, so there
1140 is no point in trying
1143 void mp_flush_string (MP mp,str_number s) {
1145 mp->pool_in_use=mp->pool_in_use-length(s);
1146 decr(mp->strs_in_use);
1147 if ( mp->next_str[s]!=mp->str_ptr ) {
1151 decr(mp->strs_used_up);
1153 mp->pool_ptr=mp->str_start[mp->str_ptr];
1157 @ C literals cannot be simply added, they need to be set so they can't
1160 @d intern(A) mp_intern(mp,(A))
1163 str_number mp_intern (MP mp, char *s) {
1166 mp->str_ref[r] = max_str_ref;
1171 str_number mp_intern (MP mp, char *s);
1174 @ Once a sequence of characters has been appended to |str_pool|, it
1175 officially becomes a string when the function |make_string| is called.
1176 This function returns the identification number of the new string as its
1179 When getting the next unused string number from the linked list, we pretend
1181 $$ \hbox{|max_str_ptr+1|, |max_str_ptr+2|, $\ldots$, |mp->max_strings|} $$
1182 are linked sequentially even though the |next_str| entries have not been
1183 initialized yet. We never allow |str_ptr| to reach |mp->max_strings|;
1184 |do_compaction| is responsible for making sure of this.
1187 @<Declare the procedure called |do_compaction|@>;
1188 @<Declare the procedure called |unit_str_room|@>;
1189 str_number mp_make_string (MP mp);
1192 str_number mp_make_string (MP mp) { /* current string enters the pool */
1193 str_number s; /* the new string */
1196 mp->str_ptr=mp->next_str[s];
1197 if ( mp->str_ptr>mp->max_str_ptr ) {
1198 if ( mp->str_ptr==mp->max_strings ) {
1200 mp_do_compaction(mp, 0);
1204 if ( mp->strs_used_up!=mp->max_str_ptr ) mp_confusion(mp, "s");
1205 @:this can't happen s}{\quad \.s@>
1207 mp->max_str_ptr=mp->str_ptr;
1208 mp->next_str[mp->str_ptr]=mp->max_str_ptr+1;
1212 mp->str_start[mp->str_ptr]=mp->pool_ptr;
1213 incr(mp->strs_used_up);
1214 incr(mp->strs_in_use);
1215 mp->pool_in_use=mp->pool_in_use+length(s);
1216 if ( mp->pool_in_use>mp->max_pl_used )
1217 mp->max_pl_used=mp->pool_in_use;
1218 if ( mp->strs_in_use>mp->max_strs_used )
1219 mp->max_strs_used=mp->strs_in_use;
1223 @ The most interesting string operation is string pool compaction. The idea
1224 is to recover unused space in the |str_pool| array by recopying the strings
1225 to close the gaps created when some strings become unused. All string
1226 numbers~$k$ where |str_ref[k]=0| are to be linked into the list of free string
1227 numbers after |str_ptr|. If this fails to free enough pool space we issue an
1228 |overflow| error unless |needed=mp->pool_size|. Calling |do_compaction|
1229 with |needed=mp->pool_size| supresses all overflow tests.
1231 The compaction process starts with |last_fixed_str| because all lower numbered
1232 strings are permanently allocated with |max_str_ref| in their |str_ref| entries.
1235 str_number last_fixed_str; /* last permanently allocated string */
1236 str_number fixed_str_use; /* number of permanently allocated strings */
1238 @ @<Declare the procedure called |do_compaction|@>=
1239 void mp_do_compaction (MP mp, pool_pointer needed) ;
1242 void mp_do_compaction (MP mp, pool_pointer needed) {
1243 str_number str_use; /* a count of strings in use */
1244 str_number r,s,t; /* strings being manipulated */
1245 pool_pointer p,q; /* destination and source for copying string characters */
1246 @<Advance |last_fixed_str| as far as possible and set |str_use|@>;
1247 r=mp->last_fixed_str;
1250 while ( s!=mp->str_ptr ) {
1251 while ( mp->str_ref[s]==0 ) {
1252 @<Advance |s| and add the old |s| to the list of free string numbers;
1253 then |break| if |s=str_ptr|@>;
1255 r=s; s=mp->next_str[s];
1257 @<Move string |r| back so that |str_start[r]=p|; make |p| the location
1258 after the end of the string@>;
1260 @<Move the current string back so that it starts at |p|@>;
1261 if ( needed<mp->pool_size ) {
1262 @<Make sure that there is room for another string with |needed| characters@>;
1264 @<Account for the compaction and make sure the statistics agree with the
1266 mp->strs_used_up=str_use;
1269 @ @<Advance |last_fixed_str| as far as possible and set |str_use|@>=
1270 t=mp->next_str[mp->last_fixed_str];
1271 while ( (mp->str_ref[t]==max_str_ref)&&(t!=mp->str_ptr) ) {
1272 incr(mp->fixed_str_use);
1273 mp->last_fixed_str=t;
1276 str_use=mp->fixed_str_use
1278 @ Because of the way |flush_string| has been written, it should never be
1279 necessary to |break| here. The extra line of code seems worthwhile to
1280 preserve the generality of |do_compaction|.
1282 @<Advance |s| and add the old |s| to the list of free string numbers;...@>=
1287 mp->next_str[t]=mp->next_str[mp->str_ptr];
1288 mp->next_str[mp->str_ptr]=t;
1289 if ( s==mp->str_ptr ) break;
1292 @ The string currently starts at |str_start[r]| and ends just before
1293 |str_start[s]|. We don't change |str_start[s]| because it might be needed
1294 to locate the next string.
1296 @<Move string |r| back so that |str_start[r]=p|; make |p| the location...@>=
1299 while ( q<mp->str_start[s] ) {
1300 mp->str_pool[p]=mp->str_pool[q];
1304 @ Pointers |str_start[str_ptr]| and |pool_ptr| have not been updated. When
1305 we do this, anything between them should be moved.
1307 @ @<Move the current string back so that it starts at |p|@>=
1308 q=mp->str_start[mp->str_ptr];
1309 mp->str_start[mp->str_ptr]=p;
1310 while ( q<mp->pool_ptr ) {
1311 mp->str_pool[p]=mp->str_pool[q];
1316 @ We must remember that |str_ptr| is not allowed to reach |mp->max_strings|.
1318 @<Make sure that there is room for another string with |needed| char...@>=
1319 if ( str_use>=mp->max_strings-1 )
1320 mp_reallocate_strings (mp,str_use);
1321 if ( mp->pool_ptr+needed>mp->max_pool_ptr ) {
1322 mp_reallocate_pool(mp, mp->pool_ptr+needed);
1323 mp->max_pool_ptr=mp->pool_ptr+needed;
1327 void mp_reallocate_strings (MP mp, str_number str_use) ;
1328 void mp_reallocate_pool(MP mp, pool_pointer needed) ;
1331 void mp_reallocate_strings (MP mp, str_number str_use) {
1332 while ( str_use>=mp->max_strings-1 ) {
1333 int l = mp->max_strings + (mp->max_strings>>2);
1334 XREALLOC (mp->str_ref, (l+1),sizeof(int));
1335 XREALLOC (mp->str_start, (l+1),sizeof(pool_pointer));
1336 XREALLOC (mp->next_str, (l+1),sizeof(str_number));
1337 mp->max_strings = l;
1340 void mp_reallocate_pool(MP mp, pool_pointer needed) {
1341 while ( needed>mp->pool_size ) {
1342 int l = mp->pool_size + (mp->pool_size>>2);
1343 XREALLOC (mp->str_pool, (l+1),sizeof(ASCII_code));
1348 @ @<Account for the compaction and make sure the statistics agree with...@>=
1349 if ( (mp->str_start[mp->str_ptr]!=mp->pool_in_use)||(str_use!=mp->strs_in_use) )
1350 mp_confusion(mp, "string");
1351 @:this can't happen string}{\quad string@>
1352 incr(mp->pact_count);
1353 mp->pact_chars=mp->pact_chars+mp->pool_ptr-str_stop(mp->last_fixed_str);
1354 mp->pact_strs=mp->pact_strs+str_use-mp->fixed_str_use;
1356 s=mp->str_ptr; t=str_use;
1357 while ( s<=mp->max_str_ptr ){
1358 if ( t>mp->max_str_ptr ) mp_confusion(mp, "\"");
1359 incr(t); s=mp->next_str[s];
1361 if ( t<=mp->max_str_ptr ) mp_confusion(mp, "\"");
1364 @ A few more global variables are needed to keep track of statistics when
1365 |stat| $\ldots$ |tats| blocks are not commented out.
1368 integer pact_count; /* number of string pool compactions so far */
1369 integer pact_chars; /* total number of characters moved during compactions */
1370 integer pact_strs; /* total number of strings moved during compactions */
1372 @ @<Initialize compaction statistics@>=
1377 @ The following subroutine compares string |s| with another string of the
1378 same length that appears in |buffer| starting at position |k|;
1379 the result is |true| if and only if the strings are equal.
1382 boolean mp_str_eq_buf (MP mp,str_number s, integer k) {
1383 /* test equality of strings */
1384 pool_pointer j; /* running index */
1386 while ( j<str_stop(s) ) {
1387 if ( mp->str_pool[j++]!=mp->buffer[k++] )
1393 @ Here is a similar routine, but it compares two strings in the string pool,
1394 and it does not assume that they have the same length. If the first string
1395 is lexicographically greater than, less than, or equal to the second,
1396 the result is respectively positive, negative, or zero.
1399 integer mp_str_vs_str (MP mp, str_number s, str_number t) {
1400 /* test equality of strings */
1401 pool_pointer j,k; /* running indices */
1402 integer ls,lt; /* lengths */
1403 integer l; /* length remaining to test */
1404 ls=length(s); lt=length(t);
1405 if ( ls<=lt ) l=ls; else l=lt;
1406 j=mp->str_start[s]; k=mp->str_start[t];
1408 if ( mp->str_pool[j]!=mp->str_pool[k] ) {
1409 return (mp->str_pool[j]-mp->str_pool[k]);
1416 @ The initial values of |str_pool|, |str_start|, |pool_ptr|,
1417 and |str_ptr| are computed by the \.{INIMP} program, based in part
1418 on the information that \.{WEB} has output while processing \MP.
1423 void mp_get_strings_started (MP mp) {
1424 /* initializes the string pool,
1425 but returns |false| if something goes wrong */
1426 int k; /* small indices or counters */
1427 str_number g; /* a new string */
1428 mp->pool_ptr=0; mp->str_ptr=0; mp->max_pool_ptr=0; mp->max_str_ptr=0;
1431 mp->pool_in_use=0; mp->strs_in_use=0;
1432 mp->max_pl_used=0; mp->max_strs_used=0;
1433 @<Initialize compaction statistics@>;
1435 @<Make the first 256 strings@>;
1436 g=mp_make_string(mp); /* string 256 == "" */
1437 mp->last_fixed_str=mp->str_ptr-1;
1438 mp->fixed_str_use=mp->str_ptr;
1443 void mp_get_strings_started (MP mp);
1445 @ The first 256 strings will consist of a single character only.
1447 @<Make the first 256...@>=
1448 for (k=0;k<=255;k++) {
1450 g=mp_make_string(mp);
1451 mp->str_ref[g]=max_str_ref;
1454 @ The first 128 strings will contain 95 standard ASCII characters, and the
1455 other 33 characters will be printed in three-symbol form like `\.{\^\^A}'
1456 unless a system-dependent change is made here. Installations that have
1457 an extended character set, where for example |xchr[032]=@t\.{'^^Z'}@>|,
1458 would like string 032 to be printed as the single character 032 instead
1459 of the three characters 0136, 0136, 0132 (\.{\^\^Z}). On the other hand,
1460 even people with an extended character set will want to represent string
1461 015 by \.{\^\^M}, since 015 is ASCII's ``carriage return'' code; the idea is
1462 to produce visible strings instead of tabs or line-feeds or carriage-returns
1463 or bell-rings or characters that are treated anomalously in text files.
1465 Unprintable characters of codes 128--255 are, similarly, rendered
1466 \.{\^\^80}--\.{\^\^ff}.
1468 The boolean expression defined here should be |true| unless \MP\ internal
1469 code number~|k| corresponds to a non-troublesome visible symbol in the
1470 local character set.
1471 If character |k| cannot be printed, and |k<0200|, then character |k+0100| or
1472 |k-0100| must be printable; moreover, ASCII codes |[060..071, 0141..0146]|
1474 @^character set dependencies@>
1475 @^system dependencies@>
1477 @<Character |k| cannot be printed@>=
1480 @* \[5] On-line and off-line printing.
1481 Messages that are sent to a user's terminal and to the transcript-log file
1482 are produced by several `|print|' procedures. These procedures will
1483 direct their output to a variety of places, based on the setting of
1484 the global variable |selector|, which has the following possible
1488 \hang |term_and_log|, the normal setting, prints on the terminal and on the
1491 \hang |log_only|, prints only on the transcript file.
1493 \hang |term_only|, prints only on the terminal.
1495 \hang |no_print|, doesn't print at all. This is used only in rare cases
1496 before the transcript file is open.
1498 \hang |ps_file_only| prints only on the \ps\ output file.
1500 \hang |pseudo|, puts output into a cyclic buffer that is used
1501 by the |show_context| routine; when we get to that routine we shall discuss
1502 the reasoning behind this curious mode.
1504 \hang |new_string|, appends the output to the current string in the
1507 \hang |>=write_file| prints on one of the files used for the \&{write}
1508 @:write_}{\&{write} primitive@>
1512 \noindent The symbolic names `|term_and_log|', etc., have been assigned
1513 numeric codes that satisfy the convenient relations |no_print+1=term_only|,
1514 |no_print+2=log_only|, |term_only+2=log_only+1=term_and_log|. These
1515 relations are not used when |selector| could be |pseudo|, |new_string|,
1516 or |ps_file_only|. We need not check for unprintable characters when
1519 Four additional global variables, |tally|, |term_offset|, |file_offset|,
1520 and |ps_offset| record the number of characters that have been printed
1521 since they were most recently cleared to zero. We use |tally| to record
1522 the length of (possibly very long) stretches of printing; |term_offset|,
1523 |file_offset|, and |ps_offset|, on the other hand, keep track of how many
1524 characters have appeared so far on the current line that has been output
1525 to the terminal, the transcript file, or the \ps\ output file, respectively.
1527 @d new_string 0 /* printing is deflected to the string pool */
1528 @d ps_file_only 1 /* printing goes to the \ps\ output file */
1529 @d pseudo 2 /* special |selector| setting for |show_context| */
1530 @d no_print 3 /* |selector| setting that makes data disappear */
1531 @d term_only 4 /* printing is destined for the terminal only */
1532 @d log_only 5 /* printing is destined for the transcript file only */
1533 @d term_and_log 6 /* normal |selector| setting */
1534 @d write_file 7 /* first write file selector */
1537 FILE * log_file; /* transcript of \MP\ session */
1538 FILE * ps_file; /* the generic font output goes here */
1539 unsigned int selector; /* where to print a message */
1540 unsigned char dig[23]; /* digits in a number being output */
1541 integer tally; /* the number of characters recently printed */
1542 unsigned int term_offset;
1543 /* the number of characters on the current terminal line */
1544 unsigned int file_offset;
1545 /* the number of characters on the current file line */
1547 /* the number of characters on the current \ps\ file line */
1548 ASCII_code *trick_buf; /* circular buffer for pseudoprinting */
1549 integer trick_count; /* threshold for pseudoprinting, explained later */
1550 integer first_count; /* another variable for pseudoprinting */
1552 @ @<Allocate or initialize ...@>=
1553 memset(mp->dig,0,23);
1554 mp->trick_buf = xmalloc((mp->error_line+1),sizeof(ASCII_code));
1556 @ @<Dealloc variables@>=
1557 xfree(mp->trick_buf);
1559 @ @<Initialize the output routines@>=
1560 mp->selector=term_only; mp->tally=0; mp->term_offset=0; mp->file_offset=0; mp->ps_offset=0;
1562 @ Macro abbreviations for output to the terminal and to the log file are
1563 defined here for convenience. Some systems need special conventions
1564 for terminal output, and it is possible to adhere to those conventions
1565 by changing |wterm|, |wterm_ln|, and |wterm_cr| here.
1566 @^system dependencies@>
1568 @d wterm(A) fprintf(mp->term_out,"%s",(A))
1569 @d wterm_chr(A)fprintf(mp->term_out,"%c",(A))
1570 @d wterm_ln(A) fprintf(mp->term_out,"\n%s",(A))
1571 @d wterm_cr fprintf(mp->term_out,"\n")
1572 @d wlog(A) fprintf(mp->log_file,"%s",(A))
1573 @d wlog_chr(A) fprintf(mp->log_file,"%c",(A))
1574 @d wlog_ln(A) fprintf(mp->log_file,"\n%s",(A))
1575 @d wlog_cr fprintf(mp->log_file, "\n")
1576 @d wps(A) fprintf(mp->ps_file,"%s",(A))
1577 @d wps_chr(A) fprintf(mp->ps_file,"%c",(A))
1578 @d wps_ln(A) fprintf(mp->ps_file,,"\n%s",(A))
1579 @d wps_cr fprintf(mp->ps_file,"\n")
1581 @ To end a line of text output, we call |print_ln|. Cases |0..max_write_files|
1582 use an array |wr_file| that will be declared later.
1584 @d mp_print_text(A) mp_print_str(mp,text((A)))
1587 void mp_print_ln (MP mp);
1588 void mp_print_visible_char (MP mp, ASCII_code s);
1589 void mp_print_char (MP mp, ASCII_code k);
1590 void mp_print (MP mp, char *s);
1591 void mp_print_str (MP mp, str_number s);
1592 void mp_print_nl (MP mp, char *s);
1593 void mp_print_two (MP mp,scaled x, scaled y) ;
1594 void mp_print_scaled (MP mp,scaled s);
1596 @ @<Basic print...@>=
1597 void mp_print_ln (MP mp) { /* prints an end-of-line */
1598 switch (mp->selector) {
1601 mp->term_offset=0; mp->file_offset=0;
1604 wlog_cr; mp->file_offset=0;
1607 wterm_cr; mp->term_offset=0;
1610 wps_cr; mp->ps_offset=0;
1617 fprintf(mp->wr_file[(mp->selector-write_file)],"\n");
1619 } /* note that |tally| is not affected */
1621 @ The |print_visible_char| procedure sends one character to the desired
1622 destination, using the |xchr| array to map it into an external character
1623 compatible with |input_ln|. (It assumes that it is always called with
1624 a visible ASCII character.) All printing comes through |print_ln| or
1625 |print_char|, which ultimately calls |print_visible_char|, hence these
1626 routines are the ones that limit lines to at most |max_print_line| characters.
1627 But we must make an exception for the \ps\ output file since it is not safe
1628 to cut up lines arbitrarily in \ps.
1630 Procedure |unit_str_room| needs to be declared |forward| here because it calls
1631 |do_compaction| and |do_compaction| can call the error routines. Actually,
1632 |unit_str_room| avoids |overflow| errors but it can call |confusion|.
1634 @<Basic printing...@>=
1635 void mp_print_visible_char (MP mp, ASCII_code s) { /* prints a single character */
1636 switch (mp->selector) {
1638 wterm_chr(mp->xchr[s]); wlog_chr(mp->xchr[s]);
1639 incr(mp->term_offset); incr(mp->file_offset);
1640 if ( mp->term_offset==(unsigned)mp->max_print_line ) {
1641 wterm_cr; mp->term_offset=0;
1643 if ( mp->file_offset==(unsigned)mp->max_print_line ) {
1644 wlog_cr; mp->file_offset=0;
1648 wlog_chr(mp->xchr[s]); incr(mp->file_offset);
1649 if ( mp->file_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1652 wterm_chr(mp->xchr[s]); incr(mp->term_offset);
1653 if ( mp->term_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1657 wps_cr; mp->ps_offset=0;
1659 wps_chr(mp->xchr[s]); incr(mp->ps_offset);
1665 if ( mp->tally<mp->trick_count )
1666 mp->trick_buf[mp->tally % mp->error_line]=s;
1669 if ( mp->pool_ptr>=mp->max_pool_ptr ) {
1670 mp_unit_str_room(mp);
1671 if ( mp->pool_ptr>=mp->pool_size )
1672 goto DONE; /* drop characters if string space is full */
1677 fprintf(mp->wr_file[(mp->selector-write_file)],"%c",mp->xchr[s]);
1683 @ The |print_char| procedure sends one character to the desired destination.
1684 File names and string expressions might contain |ASCII_code| values that
1685 can't be printed using |print_visible_char|. These characters will be
1686 printed in three- or four-symbol form like `\.{\^\^A}' or `\.{\^\^e4}'.
1687 (This procedure assumes that it is safe to bypass all checks for unprintable
1688 characters when |selector| is in the range |0..max_write_files-1| or when
1689 |selector=ps_file_only|. In the former case the user might want to write
1690 unprintable characters, and in the latter case the \ps\ printing routines
1691 check their arguments themselves before calling |print_char| or |print|.)
1693 @d print_lc_hex(A) do { l=(A);
1694 mp_print_visible_char(mp, (l<10 ? l+'0' : l-10+'a'));
1697 @<Basic printing...@>=
1698 void mp_print_char (MP mp, ASCII_code k) { /* prints a single character */
1699 int l; /* small index or counter */
1700 if ( mp->selector<pseudo || mp->selector>=write_file) {
1701 mp_print_visible_char(mp, k);
1702 } else if ( @<Character |k| cannot be printed@> ) {
1705 mp_print_visible_char(mp, k+0100);
1706 } else if ( k<0200 ) {
1707 mp_print_visible_char(mp, k-0100);
1709 print_lc_hex(k / 16);
1710 print_lc_hex(k % 16);
1713 mp_print_visible_char(mp, k);
1717 @ An entire string is output by calling |print|. Note that if we are outputting
1718 the single standard ASCII character \.c, we could call |print("c")|, since
1719 |"c"=99| is the number of a single-character string, as explained above. But
1720 |print_char("c")| is quicker, so \MP\ goes directly to the |print_char|
1721 routine when it knows that this is safe. (The present implementation
1722 assumes that it is always safe to print a visible ASCII character.)
1723 @^system dependencies@>
1726 void mp_do_print (MP mp, char *ss, unsigned int len) { /* prints string |s| */
1729 mp_print_char(mp, ss[j]); incr(j);
1735 void mp_print (MP mp, char *ss) {
1736 mp_do_print(mp, ss, strlen(ss));
1738 void mp_print_str (MP mp, str_number s) {
1739 pool_pointer j; /* current character code position */
1740 if ( (s<0)||(s>mp->max_str_ptr) ) {
1741 mp_do_print(mp,"???",3); /* this can't happen */
1745 mp_do_print(mp, (char *)(mp->str_pool+j), (str_stop(s)-j));
1749 @ Here is the very first thing that \MP\ prints: a headline that identifies
1750 the version number and base name. The |term_offset| variable is temporarily
1751 incorrect, but the discrepancy is not serious since we assume that the banner
1752 and mem identifier together will occupy at most |max_print_line|
1753 character positions.
1755 @<Initialize the output...@>=
1757 wterm (version_string);
1758 if (mp->mem_ident!=NULL)
1759 mp_print(mp,mp->mem_ident);
1763 @ The procedure |print_nl| is like |print|, but it makes sure that the
1764 string appears at the beginning of a new line.
1767 void mp_print_nl (MP mp, char *s) { /* prints string |s| at beginning of line */
1768 switch(mp->selector) {
1770 if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_ln(mp);
1773 if ( mp->file_offset>0 ) mp_print_ln(mp);
1776 if ( mp->term_offset>0 ) mp_print_ln(mp);
1779 if ( mp->ps_offset>0 ) mp_print_ln(mp);
1785 } /* there are no other cases */
1789 @ An array of digits in the range |0..9| is printed by |print_the_digs|.
1792 void mp_print_the_digs (MP mp, eight_bits k) {
1793 /* prints |dig[k-1]|$\,\ldots\,$|dig[0]| */
1795 decr(k); mp_print_char(mp, '0'+mp->dig[k]);
1799 @ The following procedure, which prints out the decimal representation of a
1800 given integer |n|, has been written carefully so that it works properly
1801 if |n=0| or if |(-n)| would cause overflow. It does not apply |mod| or |div|
1802 to negative arguments, since such operations are not implemented consistently
1803 by all \PASCAL\ compilers.
1806 void mp_print_int (MP mp,integer n) { /* prints an integer in decimal form */
1807 integer m; /* used to negate |n| in possibly dangerous cases */
1808 int k = 0; /* index to current digit; we assume that $|n|<10^{23}$ */
1810 mp_print_char(mp, '-');
1811 if ( n>-100000000 ) {
1814 m=-1-n; n=m / 10; m=(m % 10)+1; k=1;
1818 mp->dig[0]=0; incr(n);
1823 mp->dig[k]=n % 10; n=n / 10; incr(k);
1825 mp_print_the_digs(mp, k);
1829 void mp_print_int (MP mp,integer n);
1831 @ \MP\ also makes use of a trivial procedure to print two digits. The
1832 following subroutine is usually called with a parameter in the range |0<=n<=99|.
1835 void mp_print_dd (MP mp,integer n) { /* prints two least significant digits */
1837 mp_print_char(mp, '0'+(n / 10));
1838 mp_print_char(mp, '0'+(n % 10));
1841 @ Here is a procedure that asks the user to type a line of input,
1842 assuming that the |selector| setting is either |term_only| or |term_and_log|.
1843 The input is placed into locations |first| through |last-1| of the
1844 |buffer| array, and echoed on the transcript file if appropriate.
1846 This procedure is never called when |interaction<mp_scroll_mode|.
1848 @d prompt_input(A) do {
1849 wake_up_terminal; mp_print(mp, (A)); mp_term_input(mp);
1850 } while (0) /* prints a string and gets a line of input */
1853 void mp_term_input (MP mp) { /* gets a line from the terminal */
1854 size_t k; /* index into |buffer| */
1855 update_terminal; /* Now the user sees the prompt for sure */
1856 if (!mp_input_ln(mp, mp->term_in,true))
1857 mp_fatal_error(mp, "End of file on the terminal!");
1858 @.End of file on the terminal@>
1859 mp->term_offset=0; /* the user's line ended with \<\rm return> */
1860 decr(mp->selector); /* prepare to echo the input */
1861 if ( mp->last!=mp->first ) {
1862 for (k=mp->first;k<=mp->last-1;k++) {
1863 mp_print_char(mp, mp->buffer[k]);
1867 mp->buffer[mp->last]='%';
1868 incr(mp->selector); /* restore previous status */
1871 @* \[6] Reporting errors.
1872 When something anomalous is detected, \MP\ typically does something like this:
1873 $$\vbox{\halign{#\hfil\cr
1874 |print_err("Something anomalous has been detected");|\cr
1875 |help3("This is the first line of my offer to help.")|\cr
1876 |("This is the second line. I'm trying to")|\cr
1877 |("explain the best way for you to proceed.");|\cr
1879 A two-line help message would be given using |help2|, etc.; these informal
1880 helps should use simple vocabulary that complements the words used in the
1881 official error message that was printed. (Outside the U.S.A., the help
1882 messages should preferably be translated into the local vernacular. Each
1883 line of help is at most 60 characters long, in the present implementation,
1884 so that |max_print_line| will not be exceeded.)
1886 The |print_err| procedure supplies a `\.!' before the official message,
1887 and makes sure that the terminal is awake if a stop is going to occur.
1888 The |error| procedure supplies a `\..' after the official message, then it
1889 shows the location of the error; and if |interaction=error_stop_mode|,
1890 it also enters into a dialog with the user, during which time the help
1891 message may be printed.
1892 @^system dependencies@>
1894 @ The global variable |interaction| has four settings, representing increasing
1895 amounts of user interaction:
1899 mp_unspecified_mode=0, /* extra value for command-line switch */
1900 mp_batch_mode, /* omits all stops and omits terminal output */
1901 mp_nonstop_mode, /* omits all stops */
1902 mp_scroll_mode, /* omits error stops */
1903 mp_error_stop_mode, /* stops at every opportunity to interact */
1907 int interaction; /* current level of interaction */
1909 @ @<Option variables@>=
1910 int interaction; /* current level of interaction */
1912 @ Set it here so it can be overwritten by the commandline
1914 @<Allocate or initialize ...@>=
1915 mp->interaction=opt.interaction;
1916 if (mp->interaction==mp_unspecified_mode || mp->interaction>mp_error_stop_mode)
1917 mp->interaction=mp_error_stop_mode;
1918 if (mp->interaction<mp_unspecified_mode)
1919 mp->interaction=mp_batch_mode;
1923 @d print_err(A) mp_print_err(mp,(A))
1926 void mp_print_err(MP mp, char * A);
1929 void mp_print_err(MP mp, char * A) {
1930 if ( mp->interaction==mp_error_stop_mode )
1932 mp_print_nl(mp, "! ");
1938 @ \MP\ is careful not to call |error| when the print |selector| setting
1939 might be unusual. The only possible values of |selector| at the time of
1942 \yskip\hang|no_print| (when |interaction=mp_batch_mode|
1943 and |log_file| not yet open);
1945 \hang|term_only| (when |interaction>mp_batch_mode| and |log_file| not yet open);
1947 \hang|log_only| (when |interaction=mp_batch_mode| and |log_file| is open);
1949 \hang|term_and_log| (when |interaction>mp_batch_mode| and |log_file| is open).
1951 @<Initialize the print |selector| based on |interaction|@>=
1952 if ( mp->interaction==mp_batch_mode ) mp->selector=no_print; else mp->selector=term_only
1954 @ A global variable |deletions_allowed| is set |false| if the |get_next|
1955 routine is active when |error| is called; this ensures that |get_next|
1956 will never be called recursively.
1959 The global variable |history| records the worst level of error that
1960 has been detected. It has four possible values: |spotless|, |warning_issued|,
1961 |error_message_issued|, and |fatal_error_stop|.
1963 Another global variable, |error_count|, is increased by one when an
1964 |error| occurs without an interactive dialog, and it is reset to zero at
1965 the end of every statement. If |error_count| reaches 100, \MP\ decides
1966 that there is no point in continuing further.
1968 @d spotless 0 /* |history| value when nothing has been amiss yet */
1969 @d warning_issued 1 /* |history| value when |begin_diagnostic| has been called */
1970 @d error_message_issued 2 /* |history| value when |error| has been called */
1971 @d fatal_error_stop 3 /* |history| value when termination was premature */
1974 boolean deletions_allowed; /* is it safe for |error| to call |get_next|? */
1975 int history; /* has the source input been clean so far? */
1976 int error_count; /* the number of scrolled errors since the last statement ended */
1978 @ The value of |history| is initially |fatal_error_stop|, but it will
1979 be changed to |spotless| if \MP\ survives the initialization process.
1981 @<Allocate or ...@>=
1982 mp->deletions_allowed=true; mp->error_count=0; /* |history| is initialized elsewhere */
1984 @ Since errors can be detected almost anywhere in \MP, we want to declare the
1985 error procedures near the beginning of the program. But the error procedures
1986 in turn use some other procedures, which need to be declared |forward|
1987 before we get to |error| itself.
1989 It is possible for |error| to be called recursively if some error arises
1990 when |get_next| is being used to delete a token, and/or if some fatal error
1991 occurs while \MP\ is trying to fix a non-fatal one. But such recursion
1993 is never more than two levels deep.
1996 void mp_get_next (MP mp);
1997 void mp_term_input (MP mp);
1998 void mp_show_context (MP mp);
1999 void mp_begin_file_reading (MP mp);
2000 void mp_open_log_file (MP mp);
2001 void mp_clear_for_error_prompt (MP mp);
2002 void mp_debug_help (MP mp);
2003 @<Declare the procedure called |flush_string|@>
2006 void mp_normalize_selector (MP mp);
2008 @ Individual lines of help are recorded in the array |help_line|, which
2009 contains entries in positions |0..(help_ptr-1)|. They should be printed
2010 in reverse order, i.e., with |help_line[0]| appearing last.
2012 @d hlp1(A) mp->help_line[0]=(A); }
2013 @d hlp2(A) mp->help_line[1]=(A); hlp1
2014 @d hlp3(A) mp->help_line[2]=(A); hlp2
2015 @d hlp4(A) mp->help_line[3]=(A); hlp3
2016 @d hlp5(A) mp->help_line[4]=(A); hlp4
2017 @d hlp6(A) mp->help_line[5]=(A); hlp5
2018 @d help0 mp->help_ptr=0 /* sometimes there might be no help */
2019 @d help1 { mp->help_ptr=1; hlp1 /* use this with one help line */
2020 @d help2 { mp->help_ptr=2; hlp2 /* use this with two help lines */
2021 @d help3 { mp->help_ptr=3; hlp3 /* use this with three help lines */
2022 @d help4 { mp->help_ptr=4; hlp4 /* use this with four help lines */
2023 @d help5 { mp->help_ptr=5; hlp5 /* use this with five help lines */
2024 @d help6 { mp->help_ptr=6; hlp6 /* use this with six help lines */
2027 char * help_line[6]; /* helps for the next |error| */
2028 unsigned int help_ptr; /* the number of help lines present */
2029 boolean use_err_help; /* should the |err_help| string be shown? */
2030 str_number err_help; /* a string set up by \&{errhelp} */
2031 str_number filename_template; /* a string set up by \&{filenametemplate} */
2033 @ @<Allocate or ...@>=
2034 mp->help_ptr=0; mp->use_err_help=false; mp->err_help=0; mp->filename_template=0;
2036 @ The |jump_out| procedure just cuts across all active procedure levels and
2037 goes to |end_of_MP|. This is the only nonlocal |goto| statement in the
2038 whole program. It is used when there is no recovery from a particular error.
2040 Some \PASCAL\ compilers do not implement non-local |goto| statements.
2041 @^system dependencies@>
2042 In such cases the body of |jump_out| should simply be
2043 `|close_files_and_terminate|;\thinspace' followed by a call on some system
2044 procedure that quietly terminates the program.
2047 void mp_jump_out (MP mp) {
2051 @ Here now is the general |error| routine.
2054 void mp_error (MP mp) { /* completes the job of error reporting */
2055 ASCII_code c; /* what the user types */
2056 integer s1,s2,s3; /* used to save global variables when deleting tokens */
2057 pool_pointer j; /* character position being printed */
2058 if ( mp->history<error_message_issued ) mp->history=error_message_issued;
2059 mp_print_char(mp, '.'); mp_show_context(mp);
2060 if ( mp->interaction==mp_error_stop_mode ) {
2061 @<Get user's advice and |return|@>;
2063 incr(mp->error_count);
2064 if ( mp->error_count==100 ) {
2065 mp_print_nl(mp,"(That makes 100 errors; please try again.)");
2066 @.That makes 100 errors...@>
2067 mp->history=fatal_error_stop; mp_jump_out(mp);
2069 @<Put help message on the transcript file@>;
2071 void mp_warn (MP mp, char *msg) {
2072 int saved_selector = mp->selector;
2073 mp_normalize_selector(mp);
2074 mp_print_nl(mp,"Warning: ");
2076 mp->selector = saved_selector;
2080 void mp_error (MP mp);
2081 void mp_warn (MP mp, char *msg);
2084 @ @<Get user's advice...@>=
2087 mp_clear_for_error_prompt(mp); prompt_input("? ");
2089 if ( mp->last==mp->first ) return;
2090 c=mp->buffer[mp->first];
2091 if ( c>='a' ) c=c+'A'-'a'; /* convert to uppercase */
2092 @<Interpret code |c| and |return| if done@>;
2095 @ It is desirable to provide an `\.E' option here that gives the user
2096 an easy way to return from \MP\ to the system editor, with the offending
2097 line ready to be edited. But such an extension requires some system
2098 wizardry, so the present implementation simply types out the name of the
2100 edited and the relevant line number.
2101 @^system dependencies@>
2104 typedef void (*run_editor_command)(MP, char *, int);
2107 run_editor_command run_editor;
2109 @ @<Option variables@>=
2110 run_editor_command run_editor;
2112 @ @<Allocate or initialize ...@>=
2113 set_callback_option(run_editor);
2115 @ @<Exported function headers@>=
2116 void mp_run_editor (MP mp, char *fname, int fline);
2118 @ @c void mp_run_editor (MP mp, char *fname, int fline) {
2119 mp_print_nl(mp, "You want to edit file ");
2120 @.You want to edit file x@>
2121 mp_print(mp, fname);
2122 mp_print(mp, " at line ");
2123 mp_print_int(mp, fline);
2124 mp->interaction=mp_scroll_mode;
2129 There is a secret `\.D' option available when the debugging routines haven't
2133 @<Interpret code |c| and |return| if done@>=
2135 case '0': case '1': case '2': case '3': case '4':
2136 case '5': case '6': case '7': case '8': case '9':
2137 if ( mp->deletions_allowed ) {
2138 @<Delete |c-"0"| tokens and |continue|@>;
2143 mp_debug_help(mp); continue;
2147 if ( mp->file_ptr>0 ){
2148 (mp->run_editor)(mp,
2149 str(mp->input_stack[mp->file_ptr].name_field),
2154 @<Print the help information and |continue|@>;
2157 @<Introduce new material from the terminal and |return|@>;
2159 case 'Q': case 'R': case 'S':
2160 @<Change the interaction level and |return|@>;
2163 mp->interaction=mp_scroll_mode; mp_jump_out(mp);
2168 @<Print the menu of available options@>
2170 @ @<Print the menu...@>=
2172 mp_print(mp, "Type <return> to proceed, S to scroll future error messages,");
2173 @.Type <return> to proceed...@>
2174 mp_print_nl(mp, "R to run without stopping, Q to run quietly,");
2175 mp_print_nl(mp, "I to insert something, ");
2176 if ( mp->file_ptr>0 )
2177 mp_print(mp, "E to edit your file,");
2178 if ( mp->deletions_allowed )
2179 mp_print_nl(mp, "1 or ... or 9 to ignore the next 1 to 9 tokens of input,");
2180 mp_print_nl(mp, "H for help, X to quit.");
2183 @ Here the author of \MP\ apologizes for making use of the numerical
2184 relation between |"Q"|, |"R"|, |"S"|, and the desired interaction settings
2185 |mp_batch_mode|, |mp_nonstop_mode|, |mp_scroll_mode|.
2186 @^Knuth, Donald Ervin@>
2188 @<Change the interaction...@>=
2190 mp->error_count=0; mp->interaction=mp_batch_mode+c-'Q';
2191 mp_print(mp, "OK, entering ");
2193 case 'Q': mp_print(mp, "batchmode"); decr(mp->selector); break;
2194 case 'R': mp_print(mp, "nonstopmode"); break;
2195 case 'S': mp_print(mp, "scrollmode"); break;
2196 } /* there are no other cases */
2197 mp_print(mp, "..."); mp_print_ln(mp); update_terminal; return;
2200 @ When the following code is executed, |buffer[(first+1)..(last-1)]| may
2201 contain the material inserted by the user; otherwise another prompt will
2202 be given. In order to understand this part of the program fully, you need
2203 to be familiar with \MP's input stacks.
2205 @<Introduce new material...@>=
2207 mp_begin_file_reading(mp); /* enter a new syntactic level for terminal input */
2208 if ( mp->last>mp->first+1 ) {
2209 loc=mp->first+1; mp->buffer[mp->first]=' ';
2211 prompt_input("insert>"); loc=mp->first;
2214 mp->first=mp->last+1; mp->cur_input.limit_field=mp->last; return;
2217 @ We allow deletion of up to 99 tokens at a time.
2219 @<Delete |c-"0"| tokens...@>=
2221 s1=mp->cur_cmd; s2=mp->cur_mod; s3=mp->cur_sym; mp->OK_to_interrupt=false;
2222 if ( (mp->last>mp->first+1) && (mp->buffer[mp->first+1]>='0')&&(mp->buffer[mp->first+1]<='9') )
2223 c=c*10+mp->buffer[mp->first+1]-'0'*11;
2227 mp_get_next(mp); /* one-level recursive call of |error| is possible */
2228 @<Decrease the string reference count, if the current token is a string@>;
2231 mp->cur_cmd=s1; mp->cur_mod=s2; mp->cur_sym=s3; mp->OK_to_interrupt=true;
2232 help2("I have just deleted some text, as you asked.")
2233 ("You can now delete more, or insert, or whatever.");
2234 mp_show_context(mp);
2238 @ @<Print the help info...@>=
2240 if ( mp->use_err_help ) {
2241 @<Print the string |err_help|, possibly on several lines@>;
2242 mp->use_err_help=false;
2244 if ( mp->help_ptr==0 ) {
2245 help2("Sorry, I don't know how to help in this situation.")
2246 ("Maybe you should try asking a human?");
2249 decr(mp->help_ptr); mp_print(mp, mp->help_line[mp->help_ptr]); mp_print_ln(mp);
2250 } while (mp->help_ptr!=0);
2252 help4("Sorry, I already gave what help I could...")
2253 ("Maybe you should try asking a human?")
2254 ("An error might have occurred before I noticed any problems.")
2255 ("``If all else fails, read the instructions.''");
2259 @ @<Print the string |err_help|, possibly on several lines@>=
2260 j=mp->str_start[mp->err_help];
2261 while ( j<str_stop(mp->err_help) ) {
2262 if ( mp->str_pool[j]!='%' ) mp_print_str(mp, mp->str_pool[j]);
2263 else if ( j+1==str_stop(mp->err_help) ) mp_print_ln(mp);
2264 else if ( mp->str_pool[j+1]!='%' ) mp_print_ln(mp);
2265 else { incr(j); mp_print_char(mp, '%'); };
2269 @ @<Put help message on the transcript file@>=
2270 if ( mp->interaction>mp_batch_mode ) decr(mp->selector); /* avoid terminal output */
2271 if ( mp->use_err_help ) {
2272 mp_print_nl(mp, "");
2273 @<Print the string |err_help|, possibly on several lines@>;
2275 while ( mp->help_ptr>0 ){
2276 decr(mp->help_ptr); mp_print_nl(mp, mp->help_line[mp->help_ptr]);
2280 if ( mp->interaction>mp_batch_mode ) incr(mp->selector); /* re-enable terminal output */
2283 @ In anomalous cases, the print selector might be in an unknown state;
2284 the following subroutine is called to fix things just enough to keep
2285 running a bit longer.
2288 void mp_normalize_selector (MP mp) {
2289 if ( mp->log_opened ) mp->selector=term_and_log;
2290 else mp->selector=term_only;
2291 if ( mp->job_name==NULL ) mp_open_log_file(mp);
2292 if ( mp->interaction==mp_batch_mode ) decr(mp->selector);
2295 @ The following procedure prints \MP's last words before dying.
2297 @d succumb { if ( mp->interaction==mp_error_stop_mode )
2298 mp->interaction=mp_scroll_mode; /* no more interaction */
2299 if ( mp->log_opened ) mp_error(mp);
2300 /* if ( mp->interaction>mp_batch_mode ) mp_debug_help(mp); */
2301 mp->history=fatal_error_stop; mp_jump_out(mp); /* irrecoverable error */
2305 void mp_fatal_error (MP mp, char *s) { /* prints |s|, and that's it */
2306 mp_normalize_selector(mp);
2307 print_err("Emergency stop"); help1(s); succumb;
2312 void mp_fatal_error (MP mp, char *s);
2315 @ Here is the most dreaded error message.
2318 void mp_overflow (MP mp, char *s, integer n) { /* stop due to finiteness */
2319 mp_normalize_selector(mp);
2320 print_err("MetaPost capacity exceeded, sorry [");
2321 @.MetaPost capacity exceeded ...@>
2322 mp_print(mp, s); mp_print_char(mp, '='); mp_print_int(mp, n); mp_print_char(mp, ']');
2323 help2("If you really absolutely need more capacity,")
2324 ("you can ask a wizard to enlarge me.");
2329 void mp_overflow (MP mp, char *s, integer n);
2331 @ The program might sometime run completely amok, at which point there is
2332 no choice but to stop. If no previous error has been detected, that's bad
2333 news; a message is printed that is really intended for the \MP\
2334 maintenance person instead of the user (unless the user has been
2335 particularly diabolical). The index entries for `this can't happen' may
2336 help to pinpoint the problem.
2340 void mp_confusion (MP mp,char *s);
2342 @ @<Error hand...@>=
2343 void mp_confusion (MP mp,char *s) {
2344 /* consistency check violated; |s| tells where */
2345 mp_normalize_selector(mp);
2346 if ( mp->history<error_message_issued ) {
2347 print_err("This can't happen ("); mp_print(mp, s); mp_print_char(mp, ')');
2348 @.This can't happen@>
2349 help1("I'm broken. Please show this to someone who can fix can fix");
2351 print_err("I can\'t go on meeting you like this");
2352 @.I can't go on...@>
2353 help2("One of your faux pas seems to have wounded me deeply...")
2354 ("in fact, I'm barely conscious. Please fix it and try again.");
2359 @ Users occasionally want to interrupt \MP\ while it's running.
2360 If the \PASCAL\ runtime system allows this, one can implement
2361 a routine that sets the global variable |interrupt| to some nonzero value
2362 when such an interrupt is signaled. Otherwise there is probably at least
2363 a way to make |interrupt| nonzero using the \PASCAL\ debugger.
2364 @^system dependencies@>
2367 @d check_interrupt { if ( mp->interrupt!=0 )
2368 mp_pause_for_instructions(mp); }
2371 integer interrupt; /* should \MP\ pause for instructions? */
2372 boolean OK_to_interrupt; /* should interrupts be observed? */
2374 @ @<Allocate or ...@>=
2375 mp->interrupt=0; mp->OK_to_interrupt=true;
2377 @ When an interrupt has been detected, the program goes into its
2378 highest interaction level and lets the user have the full flexibility of
2379 the |error| routine. \MP\ checks for interrupts only at times when it is
2383 void mp_pause_for_instructions (MP mp) {
2384 if ( mp->OK_to_interrupt ) {
2385 mp->interaction=mp_error_stop_mode;
2386 if ( (mp->selector==log_only)||(mp->selector==no_print) )
2388 print_err("Interruption");
2391 ("Try to insert some instructions for me (e.g.,`I show x'),")
2392 ("unless you just want to quit by typing `X'.");
2393 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
2398 @ Many of \MP's error messages state that a missing token has been
2399 inserted behind the scenes. We can save string space and program space
2400 by putting this common code into a subroutine.
2403 void mp_missing_err (MP mp, char *s) {
2404 print_err("Missing `"); mp_print(mp, s); mp_print(mp, "' has been inserted");
2405 @.Missing...inserted@>
2408 @* \[7] Arithmetic with scaled numbers.
2409 The principal computations performed by \MP\ are done entirely in terms of
2410 integers less than $2^{31}$ in magnitude; thus, the arithmetic specified in this
2411 program can be carried out in exactly the same way on a wide variety of
2412 computers, including some small ones.
2415 But \PASCAL\ does not define the |div|
2416 operation in the case of negative dividends; for example, the result of
2417 |(-2*n-1) div 2| is |-(n+1)| on some computers and |-n| on others.
2418 There are two principal types of arithmetic: ``translation-preserving,''
2419 in which the identity |(a+q*b)div b=(a div b)+q| is valid; and
2420 ``negation-preserving,'' in which |(-a)div b=-(a div b)|. This leads to
2421 two \MP s, which can produce different results, although the differences
2422 should be negligible when the language is being used properly.
2423 The \TeX\ processor has been defined carefully so that both varieties
2424 of arithmetic will produce identical output, but it would be too
2425 inefficient to constrain \MP\ in a similar way.
2427 @d el_gordo 017777777777 /* $2^{31}-1$, the largest value that \MP\ likes */
2429 @ One of \MP's most common operations is the calculation of
2430 $\lfloor{a+b\over2}\rfloor$,
2431 the midpoint of two given integers |a| and~|b|. The only decent way to do
2432 this in \PASCAL\ is to write `|(a+b) div 2|'; but on most machines it is
2433 far more efficient to calculate `|(a+b)| right shifted one bit'.
2435 Therefore the midpoint operation will always be denoted by `|half(a+b)|'
2436 in this program. If \MP\ is being implemented with languages that permit
2437 binary shifting, the |half| macro should be changed to make this operation
2438 as efficient as possible. Since some languages have shift operators that can
2439 only be trusted to work on positive numbers, there is also a macro |halfp|
2440 that is used only when the quantity being halved is known to be positive
2443 @d half(A) ((A)) / 2
2444 @d halfp(A) ((A)) / 2
2446 @ A single computation might use several subroutine calls, and it is
2447 desirable to avoid producing multiple error messages in case of arithmetic
2448 overflow. So the routines below set the global variable |arith_error| to |true|
2449 instead of reporting errors directly to the user.
2452 boolean arith_error; /* has arithmetic overflow occurred recently? */
2454 @ @<Allocate or ...@>=
2455 mp->arith_error=false;
2457 @ At crucial points the program will say |check_arith|, to test if
2458 an arithmetic error has been detected.
2460 @d check_arith { if ( mp->arith_error ) mp_clear_arith(mp); }
2463 void mp_clear_arith (MP mp) {
2464 print_err("Arithmetic overflow");
2465 @.Arithmetic overflow@>
2466 help4("Uh, oh. A little while ago one of the quantities that I was")
2467 ("computing got too large, so I'm afraid your answers will be")
2468 ("somewhat askew. You'll probably have to adopt different")
2469 ("tactics next time. But I shall try to carry on anyway.");
2471 mp->arith_error=false;
2474 @ Addition is not always checked to make sure that it doesn't overflow,
2475 but in places where overflow isn't too unlikely the |slow_add| routine
2478 @c integer mp_slow_add (MP mp,integer x, integer y) {
2480 if ( y<=el_gordo-x ) {
2483 mp->arith_error=true;
2486 } else if ( -y<=el_gordo+x ) {
2489 mp->arith_error=true;
2494 @ Fixed-point arithmetic is done on {\sl scaled integers\/} that are multiples
2495 of $2^{-16}$. In other words, a binary point is assumed to be sixteen bit
2496 positions from the right end of a binary computer word.
2498 @d quarter_unit 040000 /* $2^{14}$, represents 0.250000 */
2499 @d half_unit 0100000 /* $2^{15}$, represents 0.50000 */
2500 @d three_quarter_unit 0140000 /* $3\cdot2^{14}$, represents 0.75000 */
2501 @d unity 0200000 /* $2^{16}$, represents 1.00000 */
2502 @d two 0400000 /* $2^{17}$, represents 2.00000 */
2503 @d three 0600000 /* $2^{17}+2^{16}$, represents 3.00000 */
2506 typedef integer scaled; /* this type is used for scaled integers */
2507 typedef unsigned char small_number; /* this type is self-explanatory */
2509 @ The following function is used to create a scaled integer from a given decimal
2510 fraction $(.d_0d_1\ldots d_{k-1})$, where |0<=k<=17|. The digit $d_i$ is
2511 given in |dig[i]|, and the calculation produces a correctly rounded result.
2514 scaled mp_round_decimals (MP mp,small_number k) {
2515 /* converts a decimal fraction */
2516 integer a = 0; /* the accumulator */
2518 a=(a+mp->dig[k]*two) / 10;
2523 @ Conversely, here is a procedure analogous to |print_int|. If the output
2524 of this procedure is subsequently read by \MP\ and converted by the
2525 |round_decimals| routine above, it turns out that the original value will
2526 be reproduced exactly. A decimal point is printed only if the value is
2527 not an integer. If there is more than one way to print the result with
2528 the optimum number of digits following the decimal point, the closest
2529 possible value is given.
2531 The invariant relation in the \&{repeat} loop is that a sequence of
2532 decimal digits yet to be printed will yield the original number if and only if
2533 they form a fraction~$f$ in the range $s-\delta\L10\cdot2^{16}f<s$.
2534 We can stop if and only if $f=0$ satisfies this condition; the loop will
2535 terminate before $s$ can possibly become zero.
2537 @<Basic printing...@>=
2538 void mp_print_scaled (MP mp,scaled s) { /* prints scaled real, rounded to five digits */
2539 scaled delta; /* amount of allowable inaccuracy */
2541 mp_print_char(mp, '-');
2542 negate(s); /* print the sign, if negative */
2544 mp_print_int(mp, s / unity); /* print the integer part */
2548 mp_print_char(mp, '.');
2551 s=s+0100000-(delta / 2); /* round the final digit */
2552 mp_print_char(mp, '0'+(s / unity));
2559 @ We often want to print two scaled quantities in parentheses,
2560 separated by a comma.
2562 @<Basic printing...@>=
2563 void mp_print_two (MP mp,scaled x, scaled y) { /* prints `|(x,y)|' */
2564 mp_print_char(mp, '(');
2565 mp_print_scaled(mp, x);
2566 mp_print_char(mp, ',');
2567 mp_print_scaled(mp, y);
2568 mp_print_char(mp, ')');
2571 @ The |scaled| quantities in \MP\ programs are generally supposed to be
2572 less than $2^{12}$ in absolute value, so \MP\ does much of its internal
2573 arithmetic with 28~significant bits of precision. A |fraction| denotes
2574 a scaled integer whose binary point is assumed to be 28 bit positions
2577 @d fraction_half 01000000000 /* $2^{27}$, represents 0.50000000 */
2578 @d fraction_one 02000000000 /* $2^{28}$, represents 1.00000000 */
2579 @d fraction_two 04000000000 /* $2^{29}$, represents 2.00000000 */
2580 @d fraction_three 06000000000 /* $3\cdot2^{28}$, represents 3.00000000 */
2581 @d fraction_four 010000000000 /* $2^{30}$, represents 4.00000000 */
2584 typedef integer fraction; /* this type is used for scaled fractions */
2586 @ In fact, the two sorts of scaling discussed above aren't quite
2587 sufficient; \MP\ has yet another, used internally to keep track of angles
2588 in units of $2^{-20}$ degrees.
2590 @d forty_five_deg 0264000000 /* $45\cdot2^{20}$, represents $45^\circ$ */
2591 @d ninety_deg 0550000000 /* $90\cdot2^{20}$, represents $90^\circ$ */
2592 @d one_eighty_deg 01320000000 /* $180\cdot2^{20}$, represents $180^\circ$ */
2593 @d three_sixty_deg 02640000000 /* $360\cdot2^{20}$, represents $360^\circ$ */
2596 typedef integer angle; /* this type is used for scaled angles */
2598 @ The |make_fraction| routine produces the |fraction| equivalent of
2599 |p/q|, given integers |p| and~|q|; it computes the integer
2600 $f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are
2601 positive. If |p| and |q| are both of the same scaled type |t|,
2602 the ``type relation'' |make_fraction(t,t)=fraction| is valid;
2603 and it's also possible to use the subroutine ``backwards,'' using
2604 the relation |make_fraction(t,fraction)=t| between scaled types.
2606 If the result would have magnitude $2^{31}$ or more, |make_fraction|
2607 sets |arith_error:=true|. Most of \MP's internal computations have
2608 been designed to avoid this sort of error.
2610 If this subroutine were programmed in assembly language on a typical
2611 machine, we could simply compute |(@t$2^{28}$@>*p)div q|, since a
2612 double-precision product can often be input to a fixed-point division
2613 instruction. But when we are restricted to \PASCAL\ arithmetic it
2614 is necessary either to resort to multiple-precision maneuvering
2615 or to use a simple but slow iteration. The multiple-precision technique
2616 would be about three times faster than the code adopted here, but it
2617 would be comparatively long and tricky, involving about sixteen
2618 additional multiplications and divisions.
2620 This operation is part of \MP's ``inner loop''; indeed, it will
2621 consume nearly 10\pct! of the running time (exclusive of input and output)
2622 if the code below is left unchanged. A machine-dependent recoding
2623 will therefore make \MP\ run faster. The present implementation
2624 is highly portable, but slow; it avoids multiplication and division
2625 except in the initial stage. System wizards should be careful to
2626 replace it with a routine that is guaranteed to produce identical
2627 results in all cases.
2628 @^system dependencies@>
2630 As noted below, a few more routines should also be replaced by machine-dependent
2631 code, for efficiency. But when a procedure is not part of the ``inner loop,''
2632 such changes aren't advisable; simplicity and robustness are
2633 preferable to trickery, unless the cost is too high.
2637 fraction mp_make_fraction (MP mp,integer p, integer q);
2638 integer mp_take_scaled (MP mp,integer q, scaled f) ;
2640 @ If FIXPT is not defined, we need these preprocessor values
2642 @d ELGORDO 0x7fffffff
2643 @d TWEXP31 2147483648.0
2644 @d TWEXP28 268435456.0
2646 @d TWEXP_16 (1.0/65536.0)
2647 @d TWEXP_28 (1.0/268435456.0)
2651 fraction mp_make_fraction (MP mp,integer p, integer q) {
2653 integer f; /* the fraction bits, with a leading 1 bit */
2654 integer n; /* the integer part of $\vert p/q\vert$ */
2655 integer be_careful; /* disables certain compiler optimizations */
2656 boolean negative = false; /* should the result be negated? */
2658 negate(p); negative=true;
2662 if ( q==0 ) mp_confusion(mp, '/');
2664 @:this can't happen /}{\quad \./@>
2665 negate(q); negative = ! negative;
2669 mp->arith_error=true;
2670 return ( negative ? -el_gordo : el_gordo);
2672 n=(n-1)*fraction_one;
2673 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>;
2674 return (negative ? (-(f+n)) : (f+n));
2680 if (q==0) mp_confusion(mp,'/');
2682 d = TWEXP28 * (double)p /(double)q;
2685 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
2687 if (d==i && ( ((q>0 ? -q : q)&077777)
2688 * (((i&037777)<<1)-1) & 04000)!=0) --i;
2691 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
2693 if (d==i && ( ((q>0 ? q : -q)&077777)
2694 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
2700 @ The |repeat| loop here preserves the following invariant relations
2701 between |f|, |p|, and~|q|:
2702 (i)~|0<=p<q|; (ii)~$fq+p=2^k(q+p_0)$, where $k$ is an integer and
2703 $p_0$ is the original value of~$p$.
2705 Notice that the computation specifies
2706 |(p-q)+p| instead of |(p+p)-q|, because the latter could overflow.
2707 Let us hope that optimizing compilers do not miss this point; a
2708 special variable |be_careful| is used to emphasize the necessary
2709 order of computation. Optimizing compilers should keep |be_careful|
2710 in a register, not store it in memory.
2713 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>=
2717 be_careful=p-q; p=be_careful+p;
2723 } while (f<fraction_one);
2725 if ( be_careful+p>=0 ) incr(f);
2728 @ The dual of |make_fraction| is |take_fraction|, which multiplies a
2729 given integer~|q| by a fraction~|f|. When the operands are positive, it
2730 computes $p=\lfloor qf/2^{28}+{1\over2}\rfloor$, a symmetric function
2733 This routine is even more ``inner loopy'' than |make_fraction|;
2734 the present implementation consumes almost 20\pct! of \MP's computation
2735 time during typical jobs, so a machine-language substitute is advisable.
2736 @^inner loop@> @^system dependencies@>
2739 integer mp_take_fraction (MP mp,integer q, fraction f) ;
2743 integer mp_take_fraction (MP mp,integer q, fraction f) {
2744 integer p; /* the fraction so far */
2745 boolean negative; /* should the result be negated? */
2746 integer n; /* additional multiple of $q$ */
2747 integer be_careful; /* disables certain compiler optimizations */
2748 @<Reduce to the case that |f>=0| and |q>0|@>;
2749 if ( f<fraction_one ) {
2752 n=f / fraction_one; f=f % fraction_one;
2753 if ( q<=el_gordo / n ) {
2756 mp->arith_error=true; n=el_gordo;
2760 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>;
2761 be_careful=n-el_gordo;
2762 if ( be_careful+p>0 ){
2763 mp->arith_error=true; n=el_gordo-p;
2770 integer mp_take_fraction (MP mp,integer p, fraction q) {
2773 d = (double)p * (double)q * TWEXP_28;
2777 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2778 mp->arith_error = true;
2782 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2786 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2787 mp->arith_error = true;
2791 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2797 @ @<Reduce to the case that |f>=0| and |q>0|@>=
2801 negate( f); negative=true;
2804 negate(q); negative=! negative;
2807 @ The invariant relations in this case are (i)~$\lfloor(qf+p)/2^k\rfloor
2808 =\lfloor qf_0/2^{28}+{1\over2}\rfloor$, where $k$ is an integer and
2809 $f_0$ is the original value of~$f$; (ii)~$2^k\L f<2^{k+1}$.
2812 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>=
2813 p=fraction_half; /* that's $2^{27}$; the invariants hold now with $k=28$ */
2814 if ( q<fraction_four ) {
2816 if ( odd(f) ) p=halfp(p+q); else p=halfp(p);
2821 if ( odd(f) ) p=p+halfp(q-p); else p=halfp(p);
2827 @ When we want to multiply something by a |scaled| quantity, we use a scheme
2828 analogous to |take_fraction| but with a different scaling.
2829 Given positive operands, |take_scaled|
2830 computes the quantity $p=\lfloor qf/2^{16}+{1\over2}\rfloor$.
2832 Once again it is a good idea to use a machine-language replacement if
2833 possible; otherwise |take_scaled| will use more than 2\pct! of the running time
2834 when the Computer Modern fonts are being generated.
2839 integer mp_take_scaled (MP mp,integer q, scaled f) {
2840 integer p; /* the fraction so far */
2841 boolean negative; /* should the result be negated? */
2842 integer n; /* additional multiple of $q$ */
2843 integer be_careful; /* disables certain compiler optimizations */
2844 @<Reduce to the case that |f>=0| and |q>0|@>;
2848 n=f / unity; f=f % unity;
2849 if ( q<=el_gordo / n ) {
2852 mp->arith_error=true; n=el_gordo;
2856 @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>;
2857 be_careful=n-el_gordo;
2858 if ( be_careful+p>0 ) {
2859 mp->arith_error=true; n=el_gordo-p;
2861 return ( negative ?(-(n+p)) :(n+p));
2863 integer mp_take_scaled (MP mp,integer p, scaled q) {
2866 d = (double)p * (double)q * TWEXP_16;
2870 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2871 mp->arith_error = true;
2875 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2879 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2880 mp->arith_error = true;
2884 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2890 @ @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>=
2891 p=half_unit; /* that's $2^{15}$; the invariants hold now with $k=16$ */
2893 if ( q<fraction_four ) {
2895 p = (odd(f) ? halfp(p+q) : halfp(p));
2900 p = (odd(f) ? p+halfp(q-p) : halfp(p));
2905 @ For completeness, there's also |make_scaled|, which computes a
2906 quotient as a |scaled| number instead of as a |fraction|.
2907 In other words, the result is $\lfloor2^{16}p/q+{1\over2}\rfloor$, if the
2908 operands are positive. \ (This procedure is not used especially often,
2909 so it is not part of \MP's inner loop.)
2912 scaled mp_make_scaled (MP mp,integer p, integer q) {
2914 integer f; /* the fraction bits, with a leading 1 bit */
2915 integer n; /* the integer part of $\vert p/q\vert$ */
2916 boolean negative; /* should the result be negated? */
2917 integer be_careful; /* disables certain compiler optimizations */
2918 if ( p>=0 ) negative=false;
2919 else { negate(p); negative=true; };
2922 if ( q==0 ) mp_confusion(mp, "/");
2923 @:this can't happen /}{\quad \./@>
2925 negate(q); negative=! negative;
2929 mp->arith_error=true;
2930 return (negative ? (-el_gordo) : el_gordo);
2933 @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>;
2934 return ( negative ? (-(f+n)) :(f+n));
2940 if (q==0) mp_confusion(mp,"/");
2942 d = TWEXP16 * (double)p /(double)q;
2945 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
2947 if (d==i && ( ((q>0 ? -q : q)&077777)
2948 * (((i&037777)<<1)-1) & 04000)!=0) --i;
2951 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
2953 if (d==i && ( ((q>0 ? q : -q)&077777)
2954 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
2960 @ @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>=
2963 be_careful=p-q; p=be_careful+p;
2964 if ( p>=0 ) f=f+f+1;
2965 else { f+=f; p=p+q; };
2968 if ( be_careful+p>=0 ) incr(f)
2970 @ Here is a typical example of how the routines above can be used.
2971 It computes the function
2972 $${1\over3\tau}f(\theta,\phi)=
2973 {\tau^{-1}\bigl(2+\sqrt2\,(\sin\theta-{1\over16}\sin\phi)
2974 (\sin\phi-{1\over16}\sin\theta)(\cos\theta-\cos\phi)\bigr)\over
2975 3\,\bigl(1+{1\over2}(\sqrt5-1)\cos\theta+{1\over2}(3-\sqrt5\,)\cos\phi\bigr)},$$
2976 where $\tau$ is a |scaled| ``tension'' parameter. This is \MP's magic
2977 fudge factor for placing the first control point of a curve that starts
2978 at an angle $\theta$ and ends at an angle $\phi$ from the straight path.
2979 (Actually, if the stated quantity exceeds 4, \MP\ reduces it to~4.)
2981 The trigonometric quantity to be multiplied by $\sqrt2$ is less than $\sqrt2$.
2982 (It's a sum of eight terms whose absolute values can be bounded using
2983 relations such as $\sin\theta\cos\theta\L{1\over2}$.) Thus the numerator
2984 is positive; and since the tension $\tau$ is constrained to be at least
2985 $3\over4$, the numerator is less than $16\over3$. The denominator is
2986 nonnegative and at most~6. Hence the fixed-point calculations below
2987 are guaranteed to stay within the bounds of a 32-bit computer word.
2989 The angles $\theta$ and $\phi$ are given implicitly in terms of |fraction|
2990 arguments |st|, |ct|, |sf|, and |cf|, representing $\sin\theta$, $\cos\theta$,
2991 $\sin\phi$, and $\cos\phi$, respectively.
2994 fraction mp_velocity (MP mp,fraction st, fraction ct, fraction sf,
2995 fraction cf, scaled t) {
2996 integer acc,num,denom; /* registers for intermediate calculations */
2997 acc=mp_take_fraction(mp, st-(sf / 16), sf-(st / 16));
2998 acc=mp_take_fraction(mp, acc,ct-cf);
2999 num=fraction_two+mp_take_fraction(mp, acc,379625062);
3000 /* $2^{28}\sqrt2\approx379625062.497$ */
3001 denom=fraction_three+mp_take_fraction(mp, ct,497706707)+mp_take_fraction(mp, cf,307599661);
3002 /* $3\cdot2^{27}\cdot(\sqrt5-1)\approx497706706.78$ and
3003 $3\cdot2^{27}\cdot(3-\sqrt5\,)\approx307599661.22$ */
3004 if ( t!=unity ) num=mp_make_scaled(mp, num,t);
3005 /* |make_scaled(fraction,scaled)=fraction| */
3006 if ( num / 4>=denom )
3007 return fraction_four;
3009 return mp_make_fraction(mp, num, denom);
3012 @ The following somewhat different subroutine tests rigorously if $ab$ is
3013 greater than, equal to, or less than~$cd$,
3014 given integers $(a,b,c,d)$. In most cases a quick decision is reached.
3015 The result is $+1$, 0, or~$-1$ in the three respective cases.
3017 @d mp_ab_vs_cd(M,A,B,C,D) mp_do_ab_vs_cd(A,B,C,D)
3020 integer mp_do_ab_vs_cd (integer a,integer b, integer c, integer d) {
3021 integer q,r; /* temporary registers */
3022 @<Reduce to the case that |a,c>=0|, |b,d>0|@>;
3024 q = a / d; r = c / b;
3026 return ( q>r ? 1 : -1);
3027 q = a % d; r = c % b;
3030 if ( q==0 ) return -1;
3032 } /* now |a>d>0| and |c>b>0| */
3035 @ @<Reduce to the case that |a...@>=
3036 if ( a<0 ) { negate(a); negate(b); };
3037 if ( c<0 ) { negate(c); negate(d); };
3040 if ( (a==0||b==0)&&(c==0||d==0) ) return 0;
3044 return ( a==0 ? 0 : -1);
3045 q=a; a=c; c=q; q=-b; b=-d; d=q;
3046 } else if ( b<=0 ) {
3047 if ( b<0 ) if ( a>0 ) return -1;
3048 return (c==0 ? 0 : -1);
3051 @ We conclude this set of elementary routines with some simple rounding
3052 and truncation operations that are coded in a machine-independent fashion.
3053 The routines are slightly complicated because we want them to work
3054 without overflow whenever $-2^{31}\L x<2^{31}$.
3057 #define mp_floor_scaled(M,i) ((i)&(-65536))
3058 #define mp_round_unscaled(M,i) (((i>>15)+1)>>1)
3059 #define mp_round_fraction(M,i) (((i>>11)+1)>>1)
3062 @* \[8] Algebraic and transcendental functions.
3063 \MP\ computes all of the necessary special functions from scratch, without
3064 relying on |real| arithmetic or system subroutines for sines, cosines, etc.
3066 @ To get the square root of a |scaled| number |x|, we want to calculate
3067 $s=\lfloor 2^8\!\sqrt x +{1\over2}\rfloor$. If $x>0$, this is the unique
3068 integer such that $2^{16}x-s\L s^2<2^{16}x+s$. The following subroutine
3069 determines $s$ by an iterative method that maintains the invariant
3070 relations $x=2^{46-2k}x_0\bmod 2^{30}$, $0<y=\lfloor 2^{16-2k}x_0\rfloor
3071 -s^2+s\L q=2s$, where $x_0$ is the initial value of $x$. The value of~$y$
3072 might, however, be zero at the start of the first iteration.
3075 scaled mp_square_rt (MP mp,scaled x) ;
3078 scaled mp_square_rt (MP mp,scaled x) {
3079 small_number k; /* iteration control counter */
3080 integer y,q; /* registers for intermediate calculations */
3082 @<Handle square root of zero or negative argument@>;
3085 while ( x<fraction_two ) { /* i.e., |while x<@t$2^{29}$@>|\unskip */
3088 if ( x<fraction_four ) y=0;
3089 else { x=x-fraction_four; y=1; };
3091 @<Decrease |k| by 1, maintaining the invariant
3092 relations between |x|, |y|, and~|q|@>;
3098 @ @<Handle square root of zero...@>=
3101 print_err("Square root of ");
3102 @.Square root...replaced by 0@>
3103 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3104 help2("Since I don't take square roots of negative numbers,")
3105 ("I'm zeroing this one. Proceed, with fingers crossed.");
3111 @ @<Decrease |k| by 1, maintaining...@>=
3113 if ( x>=fraction_four ) { /* note that |fraction_four=@t$2^{30}$@>| */
3114 x=x-fraction_four; incr(y);
3116 x+=x; y=y+y-q; q+=q;
3117 if ( x>=fraction_four ) { x=x-fraction_four; incr(y); };
3118 if ( y>q ){ y=y-q; q=q+2; }
3119 else if ( y<=0 ) { q=q-2; y=y+q; };
3122 @ Pythagorean addition $\psqrt{a^2+b^2}$ is implemented by an elegant
3123 iterative scheme due to Cleve Moler and Donald Morrison [{\sl IBM Journal
3124 @^Moler, Cleve Barry@>
3125 @^Morrison, Donald Ross@>
3126 of Research and Development\/ \bf27} (1983), 577--581]. It modifies |a| and~|b|
3127 in such a way that their Pythagorean sum remains invariant, while the
3128 smaller argument decreases.
3131 integer mp_pyth_add (MP mp,integer a, integer b) {
3132 fraction r; /* register used to transform |a| and |b| */
3133 boolean big; /* is the result dangerously near $2^{31}$? */
3135 if ( a<b ) { r=b; b=a; a=r; }; /* now |0<=b<=a| */
3137 if ( a<fraction_two ) {
3140 a=a / 4; b=b / 4; big=true;
3141 }; /* we reduced the precision to avoid arithmetic overflow */
3142 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>;
3144 if ( a<fraction_two ) {
3147 mp->arith_error=true; a=el_gordo;
3154 @ The key idea here is to reflect the vector $(a,b)$ about the
3155 line through $(a,b/2)$.
3157 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>=
3159 r=mp_make_fraction(mp, b,a);
3160 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3162 r=mp_make_fraction(mp, r,fraction_four+r);
3163 a=a+mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3167 @ Here is a similar algorithm for $\psqrt{a^2-b^2}$.
3168 It converges slowly when $b$ is near $a$, but otherwise it works fine.
3171 integer mp_pyth_sub (MP mp,integer a, integer b) {
3172 fraction r; /* register used to transform |a| and |b| */
3173 boolean big; /* is the input dangerously near $2^{31}$? */
3176 @<Handle erroneous |pyth_sub| and set |a:=0|@>;
3178 if ( a<fraction_four ) {
3181 a=halfp(a); b=halfp(b); big=true;
3183 @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>;
3189 @ @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>=
3191 r=mp_make_fraction(mp, b,a);
3192 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3194 r=mp_make_fraction(mp, r,fraction_four-r);
3195 a=a-mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3198 @ @<Handle erroneous |pyth_sub| and set |a:=0|@>=
3201 print_err("Pythagorean subtraction "); mp_print_scaled(mp, a);
3202 mp_print(mp, "+-+"); mp_print_scaled(mp, b);
3203 mp_print(mp, " has been replaced by 0");
3205 help2("Since I don't take square roots of negative numbers,")
3206 ("I'm zeroing this one. Proceed, with fingers crossed.");
3212 @ The subroutines for logarithm and exponential involve two tables.
3213 The first is simple: |two_to_the[k]| equals $2^k$. The second involves
3214 a bit more calculation, which the author claims to have done correctly:
3215 |spec_log[k]| is $2^{27}$ times $\ln\bigl(1/(1-2^{-k})\bigr)=
3216 2^{-k}+{1\over2}2^{-2k}+{1\over3}2^{-3k}+\cdots\,$, rounded to the
3219 @d two_to_the(A) (1<<(A))
3222 static const integer spec_log[29] = { 0, /* special logarithms */
3223 93032640, 38612034, 17922280, 8662214, 4261238, 2113709,
3224 1052693, 525315, 262400, 131136, 65552, 32772, 16385,
3225 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1 };
3227 @ @<Local variables for initialization@>=
3228 integer k; /* all-purpose loop index */
3231 @ Here is the routine that calculates $2^8$ times the natural logarithm
3232 of a |scaled| quantity; it is an integer approximation to $2^{24}\ln(x/2^{16})$,
3233 when |x| is a given positive integer.
3235 The method is based on exercise 1.2.2--25 in {\sl The Art of Computer
3236 Programming\/}: During the main iteration we have $1\L 2^{-30}x<1/(1-2^{1-k})$,
3237 and the logarithm of $2^{30}x$ remains to be added to an accumulator
3238 register called~$y$. Three auxiliary bits of accuracy are retained in~$y$
3239 during the calculation, and sixteen auxiliary bits to extend |y| are
3240 kept in~|z| during the initial argument reduction. (We add
3241 $100\cdot2^{16}=6553600$ to~|z| and subtract 100 from~|y| so that |z| will
3242 not become negative; also, the actual amount subtracted from~|y| is~96,
3243 not~100, because we want to add~4 for rounding before the final division by~8.)
3246 scaled mp_m_log (MP mp,scaled x) {
3247 integer y,z; /* auxiliary registers */
3248 integer k; /* iteration counter */
3250 @<Handle non-positive logarithm@>;
3252 y=1302456956+4-100; /* $14\times2^{27}\ln2\approx1302456956.421063$ */
3253 z=27595+6553600; /* and $2^{16}\times .421063\approx 27595$ */
3254 while ( x<fraction_four ) {
3255 x+=x; y=y-93032639; z=z-48782;
3256 } /* $2^{27}\ln2\approx 93032639.74436163$ and $2^{16}\times.74436163\approx 48782$ */
3257 y=y+(z / unity); k=2;
3258 while ( x>fraction_four+4 ) {
3259 @<Increase |k| until |x| can be multiplied by a
3260 factor of $2^{-k}$, and adjust $y$ accordingly@>;
3266 @ @<Increase |k| until |x| can...@>=
3268 z=((x-1) / two_to_the(k))+1; /* $z=\lceil x/2^k\rceil$ */
3269 while ( x<fraction_four+z ) { z=halfp(z+1); k=k+1; };
3270 y=y+spec_log[k]; x=x-z;
3273 @ @<Handle non-positive logarithm@>=
3275 print_err("Logarithm of ");
3276 @.Logarithm...replaced by 0@>
3277 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3278 help2("Since I don't take logs of non-positive numbers,")
3279 ("I'm zeroing this one. Proceed, with fingers crossed.");
3284 @ Conversely, the exponential routine calculates $\exp(x/2^8)$,
3285 when |x| is |scaled|. The result is an integer approximation to
3286 $2^{16}\exp(x/2^{24})$, when |x| is regarded as an integer.
3289 scaled mp_m_exp (MP mp,scaled x) {
3290 small_number k; /* loop control index */
3291 integer y,z; /* auxiliary registers */
3292 if ( x>174436200 ) {
3293 /* $2^{24}\ln((2^{31}-1)/2^{16})\approx 174436199.51$ */
3294 mp->arith_error=true;
3296 } else if ( x<-197694359 ) {
3297 /* $2^{24}\ln(2^{-1}/2^{16})\approx-197694359.45$ */
3301 z=-8*x; y=04000000; /* $y=2^{20}$ */
3303 if ( x<=127919879 ) {
3305 /* $2^{27}\ln((2^{31}-1)/2^{20})\approx 1023359037.125$ */
3307 z=8*(174436200-x); /* |z| is always nonnegative */
3311 @<Multiply |y| by $\exp(-z/2^{27})$@>;
3313 return ((y+8) / 16);
3319 @ The idea here is that subtracting |spec_log[k]| from |z| corresponds
3320 to multiplying |y| by $1-2^{-k}$.
3322 A subtle point (which had to be checked) was that if $x=127919879$, the
3323 value of~|y| will decrease so that |y+8| doesn't overflow. In fact,
3324 $z$ will be 5 in this case, and |y| will decrease by~64 when |k=25|
3325 and by~16 when |k=27|.
3327 @<Multiply |y| by...@>=
3330 while ( z>=spec_log[k] ) {
3332 y=y-1-((y-two_to_the(k-1)) / two_to_the(k));
3337 @ The trigonometric subroutines use an auxiliary table such that
3338 |spec_atan[k]| contains an approximation to the |angle| whose tangent
3339 is~$1/2^k$. $\arctan2^{-k}$ times $2^{20}\cdot180/\pi$
3342 static const angle spec_atan[27] = { 0, 27855475, 14718068, 7471121, 3750058,
3343 1876857, 938658, 469357, 234682, 117342, 58671, 29335, 14668, 7334, 3667,
3344 1833, 917, 458, 229, 115, 57, 29, 14, 7, 4, 2, 1 };
3346 @ Given integers |x| and |y|, not both zero, the |n_arg| function
3347 returns the |angle| whose tangent points in the direction $(x,y)$.
3348 This subroutine first determines the correct octant, then solves the
3349 problem for |0<=y<=x|, then converts the result appropriately to
3350 return an answer in the range |-one_eighty_deg<=@t$\theta$@><=one_eighty_deg|.
3351 (The answer is |+one_eighty_deg| if |y=0| and |x<0|, but an answer of
3352 |-one_eighty_deg| is possible if, for example, |y=-1| and $x=-2^{30}$.)
3354 The octants are represented in a ``Gray code,'' since that turns out
3355 to be computationally simplest.
3361 @d second_octant (first_octant+switch_x_and_y)
3362 @d third_octant (first_octant+switch_x_and_y+negate_x)
3363 @d fourth_octant (first_octant+negate_x)
3364 @d fifth_octant (first_octant+negate_x+negate_y)
3365 @d sixth_octant (first_octant+switch_x_and_y+negate_x+negate_y)
3366 @d seventh_octant (first_octant+switch_x_and_y+negate_y)
3367 @d eighth_octant (first_octant+negate_y)
3370 angle mp_n_arg (MP mp,integer x, integer y) {
3371 angle z; /* auxiliary register */
3372 integer t; /* temporary storage */
3373 small_number k; /* loop counter */
3374 int octant; /* octant code */
3376 octant=first_octant;
3378 negate(x); octant=first_octant+negate_x;
3381 negate(y); octant=octant+negate_y;
3384 t=y; y=x; x=t; octant=octant+switch_x_and_y;
3387 @<Handle undefined arg@>;
3389 @<Set variable |z| to the arg of $(x,y)$@>;
3390 @<Return an appropriate answer based on |z| and |octant|@>;
3394 @ @<Handle undefined arg@>=
3396 print_err("angle(0,0) is taken as zero");
3397 @.angle(0,0)...zero@>
3398 help2("The `angle' between two identical points is undefined.")
3399 ("I'm zeroing this one. Proceed, with fingers crossed.");
3404 @ @<Return an appropriate answer...@>=
3406 case first_octant: return z;
3407 case second_octant: return (ninety_deg-z);
3408 case third_octant: return (ninety_deg+z);
3409 case fourth_octant: return (one_eighty_deg-z);
3410 case fifth_octant: return (z-one_eighty_deg);
3411 case sixth_octant: return (-z-ninety_deg);
3412 case seventh_octant: return (z-ninety_deg);
3413 case eighth_octant: return (-z);
3414 }; /* there are no other cases */
3417 @ At this point we have |x>=y>=0|, and |x>0|. The numbers are scaled up
3418 or down until $2^{28}\L x<2^{29}$, so that accurate fixed-point calculations
3421 @<Set variable |z| to the arg...@>=
3422 while ( x>=fraction_two ) {
3423 x=halfp(x); y=halfp(y);
3427 while ( x<fraction_one ) {
3430 @<Increase |z| to the arg of $(x,y)$@>;
3433 @ During the calculations of this section, variables |x| and~|y|
3434 represent actual coordinates $(x,2^{-k}y)$. We will maintain the
3435 condition |x>=y|, so that the tangent will be at most $2^{-k}$.
3436 If $x<2y$, the tangent is greater than $2^{-k-1}$. The transformation
3437 $(a,b)\mapsto(a+b\tan\phi,b-a\tan\phi)$ replaces $(a,b)$ by
3438 coordinates whose angle has decreased by~$\phi$; in the special case
3439 $a=x$, $b=2^{-k}y$, and $\tan\phi=2^{-k-1}$, this operation reduces
3440 to the particularly simple iteration shown here. [Cf.~John E. Meggitt,
3441 @^Meggitt, John E.@>
3442 {\sl IBM Journal of Research and Development\/ \bf6} (1962), 210--226.]
3444 The initial value of |x| will be multiplied by at most
3445 $(1+{1\over2})(1+{1\over8})(1+{1\over32})\cdots\approx 1.7584$; hence
3446 there is no chance of integer overflow.
3448 @<Increase |z|...@>=
3453 z=z+spec_atan[k]; t=x; x=x+(y / two_to_the(k+k)); y=y-t;
3458 if ( y>x ) { z=z+spec_atan[k]; y=y-x; };
3461 @ Conversely, the |n_sin_cos| routine takes an |angle| and produces the sine
3462 and cosine of that angle. The results of this routine are
3463 stored in global integer variables |n_sin| and |n_cos|.
3466 fraction n_sin;fraction n_cos; /* results computed by |n_sin_cos| */
3468 @ Given an integer |z| that is $2^{20}$ times an angle $\theta$ in degrees,
3469 the purpose of |n_sin_cos(z)| is to set
3470 |x=@t$r\cos\theta$@>| and |y=@t$r\sin\theta$@>| (approximately),
3471 for some rather large number~|r|. The maximum of |x| and |y|
3472 will be between $2^{28}$ and $2^{30}$, so that there will be hardly
3473 any loss of accuracy. Then |x| and~|y| are divided by~|r|.
3476 void mp_n_sin_cos (MP mp,angle z) { /* computes a multiple of the sine
3478 small_number k; /* loop control variable */
3479 int q; /* specifies the quadrant */
3480 fraction r; /* magnitude of |(x,y)| */
3481 integer x,y,t; /* temporary registers */
3482 while ( z<0 ) z=z+three_sixty_deg;
3483 z=z % three_sixty_deg; /* now |0<=z<three_sixty_deg| */
3484 q=z / forty_five_deg; z=z % forty_five_deg;
3485 x=fraction_one; y=x;
3486 if ( ! odd(q) ) z=forty_five_deg-z;
3487 @<Subtract angle |z| from |(x,y)|@>;
3488 @<Convert |(x,y)| to the octant determined by~|q|@>;
3489 r=mp_pyth_add(mp, x,y);
3490 mp->n_cos=mp_make_fraction(mp, x,r);
3491 mp->n_sin=mp_make_fraction(mp, y,r);
3494 @ In this case the octants are numbered sequentially.
3496 @<Convert |(x,...@>=
3499 case 1: t=x; x=y; y=t; break;
3500 case 2: t=x; x=-y; y=t; break;
3501 case 3: negate(x); break;
3502 case 4: negate(x); negate(y); break;
3503 case 5: t=x; x=-y; y=-t; break;
3504 case 6: t=x; x=y; y=-t; break;
3505 case 7: negate(y); break;
3506 } /* there are no other cases */
3508 @ The main iteration of |n_sin_cos| is similar to that of |n_arg| but
3509 applied in reverse. The values of |spec_atan[k]| decrease slowly enough
3510 that this loop is guaranteed to terminate before the (nonexistent) value
3511 |spec_atan[27]| would be required.
3513 @<Subtract angle |z|...@>=
3516 if ( z>=spec_atan[k] ) {
3517 z=z-spec_atan[k]; t=x;
3518 x=t+y / two_to_the(k);
3519 y=y-t / two_to_the(k);
3523 if ( y<0 ) y=0 /* this precaution may never be needed */
3525 @ And now let's complete our collection of numeric utility routines
3526 by considering random number generation.
3527 \MP\ generates pseudo-random numbers with the additive scheme recommended
3528 in Section 3.6 of {\sl The Art of Computer Programming}; however, the
3529 results are random fractions between 0 and |fraction_one-1|, inclusive.
3531 There's an auxiliary array |randoms| that contains 55 pseudo-random
3532 fractions. Using the recurrence $x_n=(x_{n-55}-x_{n-31})\bmod 2^{28}$,
3533 we generate batches of 55 new $x_n$'s at a time by calling |new_randoms|.
3534 The global variable |j_random| tells which element has most recently
3536 The global variable |sys_random_seed| was introduced in version 0.9,
3537 for the sole reason of stressing the fact that the initial value of the
3538 random seed is system-dependant. The pascal code below will initialize
3539 this variable to |(internal[time] div unity)+internal[day]|, but this is
3540 not good enough on modern fast machines that are capable of running
3541 multiple MetaPost processes within the same second.
3542 @^system dependencies@>
3545 fraction randoms[55]; /* the last 55 random values generated */
3546 int j_random; /* the number of unused |randoms| */
3547 scaled sys_random_seed; /* the default random seed */
3550 typedef scaled (*get_random_seed_command)(MP mp);
3553 get_random_seed_command get_random_seed;
3555 @ @<Option variables@>=
3556 get_random_seed_command get_random_seed;
3558 @ @<Allocate or initialize ...@>=
3559 set_callback_option(get_random_seed);
3561 @ @<Exported function headers@>=
3562 scaled mp_get_random_seed (MP mp);
3565 scaled mp_get_random_seed (MP mp) {
3566 return (mp->internal[mp_time] / unity)+mp->internal[day];
3569 @ To consume a random fraction, the program below will say `|next_random|'
3570 and then it will fetch |randoms[j_random]|.
3572 @d next_random { if ( mp->j_random==0 ) mp_new_randoms(mp);
3573 else decr(mp->j_random); }
3576 void mp_new_randoms (MP mp) {
3577 int k; /* index into |randoms| */
3578 fraction x; /* accumulator */
3579 for (k=0;k<=23;k++) {
3580 x=mp->randoms[k]-mp->randoms[k+31];
3581 if ( x<0 ) x=x+fraction_one;
3584 for (k=24;k<= 54;k++){
3585 x=mp->randoms[k]-mp->randoms[k-24];
3586 if ( x<0 ) x=x+fraction_one;
3593 void mp_init_randoms (MP mp,scaled seed);
3595 @ To initialize the |randoms| table, we call the following routine.
3598 void mp_init_randoms (MP mp,scaled seed) {
3599 fraction j,jj,k; /* more or less random integers */
3600 int i; /* index into |randoms| */
3602 while ( j>=fraction_one ) j=halfp(j);
3604 for (i=0;i<=54;i++ ){
3606 if ( k<0 ) k=k+fraction_one;
3607 mp->randoms[(i*21)% 55]=j;
3611 mp_new_randoms(mp); /* ``warm up'' the array */
3614 @ To produce a uniform random number in the range |0<=u<x| or |0>=u>x|
3615 or |0=u=x|, given a |scaled| value~|x|, we proceed as shown here.
3617 Note that the call of |take_fraction| will produce the values 0 and~|x|
3618 with about half the probability that it will produce any other particular
3619 values between 0 and~|x|, because it rounds its answers.
3622 scaled mp_unif_rand (MP mp,scaled x) {
3623 scaled y; /* trial value */
3624 next_random; y=mp_take_fraction(mp, abs(x),mp->randoms[mp->j_random]);
3625 if ( y==abs(x) ) return 0;
3626 else if ( x>0 ) return y;
3630 @ Finally, a normal deviate with mean zero and unit standard deviation
3631 can readily be obtained with the ratio method (Algorithm 3.4.1R in
3632 {\sl The Art of Computer Programming\/}).
3635 scaled mp_norm_rand (MP mp) {
3636 integer x,u,l; /* what the book would call $2^{16}X$, $2^{28}U$, and $-2^{24}\ln U$ */
3640 x=mp_take_fraction(mp, 112429,mp->randoms[mp->j_random]-fraction_half);
3641 /* $2^{16}\sqrt{8/e}\approx 112428.82793$ */
3642 next_random; u=mp->randoms[mp->j_random];
3643 } while (abs(x)>=u);
3644 x=mp_make_fraction(mp, x,u);
3645 l=139548960-mp_m_log(mp, u); /* $2^{24}\cdot12\ln2\approx139548959.6165$ */
3646 } while (mp_ab_vs_cd(mp, 1024,l,x,x)<0);
3650 @* \[9] Packed data.
3651 In order to make efficient use of storage space, \MP\ bases its major data
3652 structures on a |memory_word|, which contains either a (signed) integer,
3653 possibly scaled, or a small number of fields that are one half or one
3654 quarter of the size used for storing integers.
3656 If |x| is a variable of type |memory_word|, it contains up to four
3657 fields that can be referred to as follows:
3658 $$\vbox{\halign{\hfil#&#\hfil&#\hfil\cr
3659 |x|&.|int|&(an |integer|)\cr
3660 |x|&.|sc|\qquad&(a |scaled| integer)\cr
3661 |x.hh.lh|, |x.hh|&.|rh|&(two halfword fields)\cr
3662 |x.hh.b0|, |x.hh.b1|, |x.hh|&.|rh|&(two quarterword fields, one halfword
3664 |x.qqqq.b0|, |x.qqqq.b1|, |x.qqqq|&.|b2|, |x.qqqq.b3|\hskip-100pt
3665 &\qquad\qquad\qquad(four quarterword fields)\cr}}$$
3666 This is somewhat cumbersome to write, and not very readable either, but
3667 macros will be used to make the notation shorter and more transparent.
3668 The code below gives a formal definition of |memory_word| and
3669 its subsidiary types, using packed variant records. \MP\ makes no
3670 assumptions about the relative positions of the fields within a word.
3672 @d max_quarterword 0x3FFF /* largest allowable value in a |quarterword| */
3673 @d max_halfword 0xFFFFFFF /* largest allowable value in a |halfword| */
3675 @ Here are the inequalities that the quarterword and halfword values
3676 must satisfy (or rather, the inequalities that they mustn't satisfy):
3678 @<Check the ``constant''...@>=
3679 if (mp->ini_version) {
3680 if ( mp->mem_max!=mp->mem_top ) mp->bad=8;
3682 if ( mp->mem_max<mp->mem_top ) mp->bad=8;
3684 if ( max_quarterword<255 ) mp->bad=9;
3685 if ( max_halfword<65535 ) mp->bad=10;
3686 if ( max_quarterword>max_halfword ) mp->bad=11;
3687 if ( mp->mem_max>=max_halfword ) mp->bad=12;
3688 if ( mp->max_strings>max_halfword ) mp->bad=13;
3690 @ The macros |qi| and |qo| are used for input to and output
3691 from quarterwords. These are legacy macros.
3692 @^system dependencies@>
3694 @d qo(A) (A) /* to read eight bits from a quarterword */
3695 @d qi(A) (A) /* to store eight bits in a quarterword */
3697 @ The reader should study the following definitions closely:
3698 @^system dependencies@>
3700 @d sc cint /* |scaled| data is equivalent to |integer| */
3703 typedef short quarterword; /* 1/4 of a word */
3704 typedef int halfword; /* 1/2 of a word */
3709 struct { /* Make B0,B1 overlap the most significant bytes of LH. */
3716 quarterword B2, B3, B0, B1;
3731 @ When debugging, we may want to print a |memory_word| without knowing
3732 what type it is; so we print it in all modes.
3733 @^dirty \PASCAL@>@^debugging@>
3736 void mp_print_word (MP mp,memory_word w) {
3737 /* prints |w| in all ways */
3738 mp_print_int(mp, w.cint); mp_print_char(mp, ' ');
3739 mp_print_scaled(mp, w.sc); mp_print_char(mp, ' ');
3740 mp_print_scaled(mp, w.sc / 010000); mp_print_ln(mp);
3741 mp_print_int(mp, w.hh.lh); mp_print_char(mp, '=');
3742 mp_print_int(mp, w.hh.b0); mp_print_char(mp, ':');
3743 mp_print_int(mp, w.hh.b1); mp_print_char(mp, ';');
3744 mp_print_int(mp, w.hh.rh); mp_print_char(mp, ' ');
3745 mp_print_int(mp, w.qqqq.b0); mp_print_char(mp, ':');
3746 mp_print_int(mp, w.qqqq.b1); mp_print_char(mp, ':');
3747 mp_print_int(mp, w.qqqq.b2); mp_print_char(mp, ':');
3748 mp_print_int(mp, w.qqqq.b3);
3752 @* \[10] Dynamic memory allocation.
3754 The \MP\ system does nearly all of its own memory allocation, so that it
3755 can readily be transported into environments that do not have automatic
3756 facilities for strings, garbage collection, etc., and so that it can be in
3757 control of what error messages the user receives. The dynamic storage
3758 requirements of \MP\ are handled by providing a large array |mem| in
3759 which consecutive blocks of words are used as nodes by the \MP\ routines.
3761 Pointer variables are indices into this array, or into another array
3762 called |eqtb| that will be explained later. A pointer variable might
3763 also be a special flag that lies outside the bounds of |mem|, so we
3764 allow pointers to assume any |halfword| value. The minimum memory
3765 index represents a null pointer.
3767 @d null 0 /* the null pointer */
3770 typedef halfword pointer; /* a flag or a location in |mem| or |eqtb| */
3772 @ The |mem| array is divided into two regions that are allocated separately,
3773 but the dividing line between these two regions is not fixed; they grow
3774 together until finding their ``natural'' size in a particular job.
3775 Locations less than or equal to |lo_mem_max| are used for storing
3776 variable-length records consisting of two or more words each. This region
3777 is maintained using an algorithm similar to the one described in exercise
3778 2.5--19 of {\sl The Art of Computer Programming}. However, no size field
3779 appears in the allocated nodes; the program is responsible for knowing the
3780 relevant size when a node is freed. Locations greater than or equal to
3781 |hi_mem_min| are used for storing one-word records; a conventional
3782 \.{AVAIL} stack is used for allocation in this region.
3784 Locations of |mem| between |0| and |mem_top| may be dumped as part
3785 of preloaded format files, by the \.{INIMP} preprocessor.
3787 Production versions of \MP\ may extend the memory at the top end in order to
3788 provide more space; these locations, between |mem_top| and |mem_max|,
3789 are always used for single-word nodes.
3791 The key pointers that govern |mem| allocation have a prescribed order:
3792 $$\hbox{|null=0<lo_mem_max<hi_mem_min<mem_top<=mem_end<=mem_max|.}$$
3795 memory_word *mem; /* the big dynamic storage area */
3796 pointer lo_mem_max; /* the largest location of variable-size memory in use */
3797 pointer hi_mem_min; /* the smallest location of one-word memory in use */
3802 @d xrealloc mp_xrealloc
3803 @d xmalloc mp_xmalloc
3804 @d xstrdup mp_xstrdup
3805 @d XREALLOC(a,b,c) a = xrealloc(a,b,sizeof(c));
3807 @<Declare helpers@>=
3808 void mp_xfree (void *x);
3809 void *mp_xrealloc (void *p, size_t nmem, size_t size) ;
3810 void *mp_xmalloc (size_t nmem, size_t size) ;
3811 char *mp_xstrdup(const char *s);
3813 @ The |max_size_test| guards against overflow, on the assumption that
3814 |size_t| is at least 31bits wide.
3816 @d max_size_test 0x7FFFFFFF
3819 void mp_xfree (void *x) {
3820 if (x!=NULL) free(x);
3822 void *mp_xrealloc (void *p, size_t nmem, size_t size) {
3824 if ((max_size_test/size)<nmem) {
3825 fprintf(stderr,"Memory size overflow!\n");
3828 w = realloc (p,(nmem*size));
3830 fprintf(stderr,"Out of memory!\n");
3835 void *mp_xmalloc (size_t nmem, size_t size) {
3837 if ((max_size_test/size)<nmem) {
3838 fprintf(stderr,"Memory size overflow!\n");
3841 w = malloc (nmem*size);
3843 fprintf(stderr,"Out of memory!\n");
3848 char *mp_xstrdup(const char *s) {
3854 fprintf(stderr,"Out of memory!\n");
3862 @<Allocate or initialize ...@>=
3863 mp->mem = xmalloc ((mp->mem_max+1),sizeof (memory_word));
3865 @ @<Dealloc variables@>=
3868 @ Users who wish to study the memory requirements of particular applications can
3869 can use optional special features that keep track of current and
3870 maximum memory usage. When code between the delimiters |stat| $\ldots$
3871 |tats| is not ``commented out,'' \MP\ will run a bit slower but it will
3872 report these statistics when |tracing_stats| is positive.
3875 integer var_used; integer dyn_used; /* how much memory is in use */
3877 @ Let's consider the one-word memory region first, since it's the
3878 simplest. The pointer variable |mem_end| holds the highest-numbered location
3879 of |mem| that has ever been used. The free locations of |mem| that
3880 occur between |hi_mem_min| and |mem_end|, inclusive, are of type
3881 |two_halves|, and we write |info(p)| and |link(p)| for the |lh|
3882 and |rh| fields of |mem[p]| when it is of this type. The single-word
3883 free locations form a linked list
3884 $$|avail|,\;\hbox{|link(avail)|},\;\hbox{|link(link(avail))|},\;\ldots$$
3885 terminated by |null|.
3887 @d link(A) mp->mem[(A)].hh.rh /* the |link| field of a memory word */
3888 @d info(A) mp->mem[(A)].hh.lh /* the |info| field of a memory word */
3891 pointer avail; /* head of the list of available one-word nodes */
3892 pointer mem_end; /* the last one-word node used in |mem| */
3894 @ If one-word memory is exhausted, it might mean that the user has forgotten
3895 a token like `\&{enddef}' or `\&{endfor}'. We will define some procedures
3896 later that try to help pinpoint the trouble.
3899 @<Declare the procedure called |show_token_list|@>;
3900 @<Declare the procedure called |runaway|@>
3902 @ The function |get_avail| returns a pointer to a new one-word node whose
3903 |link| field is null. However, \MP\ will halt if there is no more room left.
3907 pointer mp_get_avail (MP mp) { /* single-word node allocation */
3908 pointer p; /* the new node being got */
3909 p=mp->avail; /* get top location in the |avail| stack */
3911 mp->avail=link(mp->avail); /* and pop it off */
3912 } else if ( mp->mem_end<mp->mem_max ) { /* or go into virgin territory */
3913 incr(mp->mem_end); p=mp->mem_end;
3915 decr(mp->hi_mem_min); p=mp->hi_mem_min;
3916 if ( mp->hi_mem_min<=mp->lo_mem_max ) {
3917 mp_runaway(mp); /* if memory is exhausted, display possible runaway text */
3918 mp_overflow(mp, "main memory size",mp->mem_max);
3919 /* quit; all one-word nodes are busy */
3920 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
3923 link(p)=null; /* provide an oft-desired initialization of the new node */
3924 incr(mp->dyn_used);/* maintain statistics */
3928 @ Conversely, a one-word node is recycled by calling |free_avail|.
3930 @d free_avail(A) /* single-word node liberation */
3931 { link((A))=mp->avail; mp->avail=(A); decr(mp->dyn_used); }
3933 @ There's also a |fast_get_avail| routine, which saves the procedure-call
3934 overhead at the expense of extra programming. This macro is used in
3935 the places that would otherwise account for the most calls of |get_avail|.
3938 @d fast_get_avail(A) {
3939 (A)=mp->avail; /* avoid |get_avail| if possible, to save time */
3940 if ( (A)==null ) { (A)=mp_get_avail(mp); }
3941 else { mp->avail=link((A)); link((A))=null; incr(mp->dyn_used); }
3944 @ The available-space list that keeps track of the variable-size portion
3945 of |mem| is a nonempty, doubly-linked circular list of empty nodes,
3946 pointed to by the roving pointer |rover|.
3948 Each empty node has size 2 or more; the first word contains the special
3949 value |max_halfword| in its |link| field and the size in its |info| field;
3950 the second word contains the two pointers for double linking.
3952 Each nonempty node also has size 2 or more. Its first word is of type
3953 |two_halves|\kern-1pt, and its |link| field is never equal to |max_halfword|.
3954 Otherwise there is complete flexibility with respect to the contents
3955 of its other fields and its other words.
3957 (We require |mem_max<max_halfword| because terrible things can happen
3958 when |max_halfword| appears in the |link| field of a nonempty node.)
3960 @d empty_flag max_halfword /* the |link| of an empty variable-size node */
3961 @d is_empty(A) (link((A))==empty_flag) /* tests for empty node */
3962 @d node_size info /* the size field in empty variable-size nodes */
3963 @d llink(A) info((A)+1) /* left link in doubly-linked list of empty nodes */
3964 @d rlink(A) link((A)+1) /* right link in doubly-linked list of empty nodes */
3967 pointer rover; /* points to some node in the list of empties */
3969 @ A call to |get_node| with argument |s| returns a pointer to a new node
3970 of size~|s|, which must be 2~or more. The |link| field of the first word
3971 of this new node is set to null. An overflow stop occurs if no suitable
3974 If |get_node| is called with $s=2^{30}$, it simply merges adjacent free
3975 areas and returns the value |max_halfword|.
3978 pointer mp_get_node (MP mp,integer s) ;
3981 pointer mp_get_node (MP mp,integer s) { /* variable-size node allocation */
3982 pointer p; /* the node currently under inspection */
3983 pointer q; /* the node physically after node |p| */
3984 integer r; /* the newly allocated node, or a candidate for this honor */
3985 integer t,tt; /* temporary registers */
3988 p=mp->rover; /* start at some free node in the ring */
3990 @<Try to allocate within node |p| and its physical successors,
3991 and |goto found| if allocation was possible@>;
3992 p=rlink(p); /* move to the next node in the ring */
3993 } while (p!=mp->rover); /* repeat until the whole list has been traversed */
3994 if ( s==010000000000 ) {
3995 return max_halfword;
3997 if ( mp->lo_mem_max+2<mp->hi_mem_min ) {
3998 if ( mp->lo_mem_max+2<=max_halfword ) {
3999 @<Grow more variable-size memory and |goto restart|@>;
4002 mp_overflow(mp, "main memory size",mp->mem_max);
4003 /* sorry, nothing satisfactory is left */
4004 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
4006 link(r)=null; /* this node is now nonempty */
4007 mp->var_used=mp->var_used+s; /* maintain usage statistics */
4011 @ The lower part of |mem| grows by 1000 words at a time, unless
4012 we are very close to going under. When it grows, we simply link
4013 a new node into the available-space list. This method of controlled
4014 growth helps to keep the |mem| usage consecutive when \MP\ is
4015 implemented on ``virtual memory'' systems.
4018 @<Grow more variable-size memory and |goto restart|@>=
4020 if ( mp->hi_mem_min-mp->lo_mem_max>=1998 ) {
4021 t=mp->lo_mem_max+1000;
4023 t=mp->lo_mem_max+1+(mp->hi_mem_min-mp->lo_mem_max) / 2;
4024 /* |lo_mem_max+2<=t<hi_mem_min| */
4026 if ( t>max_halfword ) t=max_halfword;
4027 p=llink(mp->rover); q=mp->lo_mem_max; rlink(p)=q; llink(mp->rover)=q;
4028 rlink(q)=mp->rover; llink(q)=p; link(q)=empty_flag; node_size(q)=t-mp->lo_mem_max;
4029 mp->lo_mem_max=t; link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4034 @ @<Try to allocate...@>=
4035 q=p+node_size(p); /* find the physical successor */
4036 while ( is_empty(q) ) { /* merge node |p| with node |q| */
4037 t=rlink(q); tt=llink(q);
4039 if ( q==mp->rover ) mp->rover=t;
4040 llink(t)=tt; rlink(tt)=t;
4045 @<Allocate from the top of node |p| and |goto found|@>;
4048 if ( rlink(p)!=p ) {
4049 @<Allocate entire node |p| and |goto found|@>;
4052 node_size(p)=q-p /* reset the size in case it grew */
4054 @ @<Allocate from the top...@>=
4056 node_size(p)=r-p; /* store the remaining size */
4057 mp->rover=p; /* start searching here next time */
4061 @ Here we delete node |p| from the ring, and let |rover| rove around.
4063 @<Allocate entire...@>=
4065 mp->rover=rlink(p); t=llink(p);
4066 llink(mp->rover)=t; rlink(t)=mp->rover;
4070 @ Conversely, when some variable-size node |p| of size |s| is no longer needed,
4071 the operation |free_node(p,s)| will make its words available, by inserting
4072 |p| as a new empty node just before where |rover| now points.
4075 void mp_free_node (MP mp, pointer p, halfword s) ;
4078 void mp_free_node (MP mp, pointer p, halfword s) { /* variable-size node
4080 pointer q; /* |llink(rover)| */
4081 node_size(p)=s; link(p)=empty_flag;
4083 q=llink(mp->rover); llink(p)=q; rlink(p)=mp->rover; /* set both links */
4084 llink(mp->rover)=p; rlink(q)=p; /* insert |p| into the ring */
4085 mp->var_used=mp->var_used-s; /* maintain statistics */
4088 @ Just before \.{INIMP} writes out the memory, it sorts the doubly linked
4089 available space list. The list is probably very short at such times, so a
4090 simple insertion sort is used. The smallest available location will be
4091 pointed to by |rover|, the next-smallest by |rlink(rover)|, etc.
4094 void mp_sort_avail (MP mp) { /* sorts the available variable-size nodes
4096 pointer p,q,r; /* indices into |mem| */
4097 pointer old_rover; /* initial |rover| setting */
4098 p=mp_get_node(mp, 010000000000); /* merge adjacent free areas */
4099 p=rlink(mp->rover); rlink(mp->rover)=max_halfword; old_rover=mp->rover;
4100 while ( p!=old_rover ) {
4101 @<Sort |p| into the list starting at |rover|
4102 and advance |p| to |rlink(p)|@>;
4105 while ( rlink(p)!=max_halfword ) {
4106 llink(rlink(p))=p; p=rlink(p);
4108 rlink(p)=mp->rover; llink(mp->rover)=p;
4111 @ The following |while| loop is guaranteed to
4112 terminate, since the list that starts at
4113 |rover| ends with |max_halfword| during the sorting procedure.
4116 if ( p<mp->rover ) {
4117 q=p; p=rlink(q); rlink(q)=mp->rover; mp->rover=q;
4120 while ( rlink(q)<p ) q=rlink(q);
4121 r=rlink(p); rlink(p)=rlink(q); rlink(q)=p; p=r;
4124 @* \[11] Memory layout.
4125 Some areas of |mem| are dedicated to fixed usage, since static allocation is
4126 more efficient than dynamic allocation when we can get away with it. For
4127 example, locations |0| to |1| are always used to store a
4128 two-word dummy token whose second word is zero.
4129 The following macro definitions accomplish the static allocation by giving
4130 symbolic names to the fixed positions. Static variable-size nodes appear
4131 in locations |0| through |lo_mem_stat_max|, and static single-word nodes
4132 appear in locations |hi_mem_stat_min| through |mem_top|, inclusive.
4134 @d null_dash (2) /* the first two words are reserved for a null value */
4135 @d dep_head (null_dash+3) /* we will define |dash_node_size=3| */
4136 @d zero_val (dep_head+2) /* two words for a permanently zero value */
4137 @d temp_val (zero_val+2) /* two words for a temporary value node */
4138 @d end_attr temp_val /* we use |end_attr+2| only */
4139 @d inf_val (end_attr+2) /* and |inf_val+1| only */
4140 @d test_pen (inf_val+2)
4141 /* nine words for a pen used when testing the turning number */
4142 @d bad_vardef (test_pen+9) /* two words for \&{vardef} error recovery */
4143 @d lo_mem_stat_max (bad_vardef+1) /* largest statically
4144 allocated word in the variable-size |mem| */
4146 @d sentinel mp->mem_top /* end of sorted lists */
4147 @d temp_head (mp->mem_top-1) /* head of a temporary list of some kind */
4148 @d hold_head (mp->mem_top-2) /* head of a temporary list of another kind */
4149 @d spec_head (mp->mem_top-3) /* head of a list of unprocessed \&{special} items */
4150 @d hi_mem_stat_min (mp->mem_top-3) /* smallest statically allocated word in
4151 the one-word |mem| */
4153 @ The following code gets the dynamic part of |mem| off to a good start,
4154 when \MP\ is initializing itself the slow way.
4156 @<Initialize table entries (done by \.{INIMP} only)@>=
4157 @^data structure assumptions@>
4158 mp->rover=lo_mem_stat_max+1; /* initialize the dynamic memory */
4159 link(mp->rover)=empty_flag;
4160 node_size(mp->rover)=1000; /* which is a 1000-word available node */
4161 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
4162 mp->lo_mem_max=mp->rover+1000; link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4163 for (k=hi_mem_stat_min;k<=(int)mp->mem_top;k++) {
4164 mp->mem[k]=mp->mem[mp->lo_mem_max]; /* clear list heads */
4166 mp->avail=null; mp->mem_end=mp->mem_top;
4167 mp->hi_mem_min=hi_mem_stat_min; /* initialize the one-word memory */
4168 mp->var_used=lo_mem_stat_max+1;
4169 mp->dyn_used=mp->mem_top+1-(hi_mem_stat_min); /* initialize statistics */
4170 @<Initialize a pen at |test_pen| so that it fits in nine words@>;
4172 @ The procedure |flush_list(p)| frees an entire linked list of one-word
4173 nodes that starts at a given position, until coming to |sentinel| or a
4174 pointer that is not in the one-word region. Another procedure,
4175 |flush_node_list|, frees an entire linked list of one-word and two-word
4176 nodes, until coming to a |null| pointer.
4180 void mp_flush_list (MP mp,pointer p) { /* makes list of single-word nodes available */
4181 pointer q,r; /* list traversers */
4182 if ( p>=mp->hi_mem_min ) if ( p!=sentinel ) {
4187 if ( r<mp->hi_mem_min ) break;
4188 } while (r!=sentinel);
4189 /* now |q| is the last node on the list */
4190 link(q)=mp->avail; mp->avail=p;
4194 void mp_flush_node_list (MP mp,pointer p) {
4195 pointer q; /* the node being recycled */
4198 if ( q<mp->hi_mem_min )
4199 mp_free_node(mp, q,2);
4205 @ If \MP\ is extended improperly, the |mem| array might get screwed up.
4206 For example, some pointers might be wrong, or some ``dead'' nodes might not
4207 have been freed when the last reference to them disappeared. Procedures
4208 |check_mem| and |search_mem| are available to help diagnose such
4209 problems. These procedures make use of two arrays called |free| and
4210 |was_free| that are present only if \MP's debugging routines have
4211 been included. (You may want to decrease the size of |mem| while you
4215 Because |boolean|s are typedef-d as ints, it is better to use
4216 unsigned chars here.
4219 unsigned char *free; /* free cells */
4220 unsigned char *was_free; /* previously free cells */
4221 pointer was_mem_end; pointer was_lo_max; pointer was_hi_min;
4222 /* previous |mem_end|, |lo_mem_max|,and |hi_mem_min| */
4223 boolean panicking; /* do we want to check memory constantly? */
4225 @ @<Allocate or initialize ...@>=
4226 mp->free = xmalloc ((mp->mem_max+1),sizeof (unsigned char));
4227 mp->was_free = xmalloc ((mp->mem_max+1), sizeof (unsigned char));
4229 @ @<Dealloc variables@>=
4231 xfree(mp->was_free);
4233 @ @<Allocate or ...@>=
4234 mp->was_mem_end=0; /* indicate that everything was previously free */
4235 mp->was_lo_max=0; mp->was_hi_min=mp->mem_max;
4236 mp->panicking=false;
4238 @ @<Declare |mp_reallocate| functions@>=
4239 void mp_reallocate_memory(MP mp, int l) ;
4242 void mp_reallocate_memory(MP mp, int l) {
4243 XREALLOC(mp->free, (l+1), unsigned char);
4244 XREALLOC(mp->was_free, (l+1), unsigned char);
4245 XREALLOC(mp->mem, (l+1), memory_word);
4247 if (mp->ini_version)
4253 @ Procedure |check_mem| makes sure that the available space lists of
4254 |mem| are well formed, and it optionally prints out all locations
4255 that are reserved now but were free the last time this procedure was called.
4258 void mp_check_mem (MP mp,boolean print_locs ) {
4259 pointer p,q,r; /* current locations of interest in |mem| */
4260 boolean clobbered; /* is something amiss? */
4261 for (p=0;p<=mp->lo_mem_max;p++) {
4262 mp->free[p]=false; /* you can probably do this faster */
4264 for (p=mp->hi_mem_min;p<= mp->mem_end;p++) {
4265 mp->free[p]=false; /* ditto */
4267 @<Check single-word |avail| list@>;
4268 @<Check variable-size |avail| list@>;
4269 @<Check flags of unavailable nodes@>;
4270 @<Check the list of linear dependencies@>;
4272 @<Print newly busy locations@>;
4274 for (p=0;p<=mp->lo_mem_max;p++) {
4275 mp->was_free[p]=mp->free[p];
4277 for (p=mp->hi_mem_min;p<=mp->mem_end;p++) {
4278 mp->was_free[p]=mp->free[p];
4280 /* |was_free:=free| might be faster */
4281 mp->was_mem_end=mp->mem_end;
4282 mp->was_lo_max=mp->lo_mem_max;
4283 mp->was_hi_min=mp->hi_mem_min;
4286 @ @<Check single-word...@>=
4287 p=mp->avail; q=null; clobbered=false;
4289 if ( (p>mp->mem_end)||(p<mp->hi_mem_min) ) clobbered=true;
4290 else if ( mp->free[p] ) clobbered=true;
4292 mp_print_nl(mp, "AVAIL list clobbered at ");
4293 @.AVAIL list clobbered...@>
4294 mp_print_int(mp, q); break;
4296 mp->free[p]=true; q=p; p=link(q);
4299 @ @<Check variable-size...@>=
4300 p=mp->rover; q=null; clobbered=false;
4302 if ( (p>=mp->lo_mem_max)||(p<0) ) clobbered=true;
4303 else if ( (rlink(p)>=mp->lo_mem_max)||(rlink(p)<0) ) clobbered=true;
4304 else if ( !(is_empty(p))||(node_size(p)<2)||
4305 (p+node_size(p)>mp->lo_mem_max)|| (llink(rlink(p))!=p) ) clobbered=true;
4307 mp_print_nl(mp, "Double-AVAIL list clobbered at ");
4308 @.Double-AVAIL list clobbered...@>
4309 mp_print_int(mp, q); break;
4311 for (q=p;q<=p+node_size(p)-1;q++) { /* mark all locations free */
4312 if ( mp->free[q] ) {
4313 mp_print_nl(mp, "Doubly free location at ");
4314 @.Doubly free location...@>
4315 mp_print_int(mp, q); break;
4320 } while (p!=mp->rover)
4323 @ @<Check flags...@>=
4325 while ( p<=mp->lo_mem_max ) { /* node |p| should not be empty */
4326 if ( is_empty(p) ) {
4327 mp_print_nl(mp, "Bad flag at "); mp_print_int(mp, p);
4330 while ( (p<=mp->lo_mem_max) && ! mp->free[p] ) incr(p);
4331 while ( (p<=mp->lo_mem_max) && mp->free[p] ) incr(p);
4334 @ @<Print newly busy...@>=
4336 @<Do intialization required before printing new busy locations@>;
4337 mp_print_nl(mp, "New busy locs:");
4339 for (p=0;p<= mp->lo_mem_max;p++ ) {
4340 if ( ! mp->free[p] && ((p>mp->was_lo_max) || mp->was_free[p]) ) {
4341 @<Indicate that |p| is a new busy location@>;
4344 for (p=mp->hi_mem_min;p<=mp->mem_end;p++ ) {
4345 if ( ! mp->free[p] &&
4346 ((p<mp->was_hi_min) || (p>mp->was_mem_end) || mp->was_free[p]) ) {
4347 @<Indicate that |p| is a new busy location@>;
4350 @<Finish printing new busy locations@>;
4353 @ There might be many new busy locations so we are careful to print contiguous
4354 blocks compactly. During this operation |q| is the last new busy location and
4355 |r| is the start of the block containing |q|.
4357 @<Indicate that |p| is a new busy location@>=
4361 mp_print(mp, ".."); mp_print_int(mp, q);
4363 mp_print_char(mp, ' '); mp_print_int(mp, p);
4369 @ @<Do intialization required before printing new busy locations@>=
4370 q=mp->mem_max; r=mp->mem_max
4372 @ @<Finish printing new busy locations@>=
4374 mp_print(mp, ".."); mp_print_int(mp, q);
4377 @ The |search_mem| procedure attempts to answer the question ``Who points
4378 to node~|p|?'' In doing so, it fetches |link| and |info| fields of |mem|
4379 that might not be of type |two_halves|. Strictly speaking, this is
4381 undefined in \PASCAL, and it can lead to ``false drops'' (words that seem to
4382 point to |p| purely by coincidence). But for debugging purposes, we want
4383 to rule out the places that do {\sl not\/} point to |p|, so a few false
4384 drops are tolerable.
4387 void mp_search_mem (MP mp, pointer p) { /* look for pointers to |p| */
4388 integer q; /* current position being searched */
4389 for (q=0;q<=mp->lo_mem_max;q++) {
4391 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4394 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4397 for (q=mp->hi_mem_min;q<=mp->mem_end;q++) {
4399 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4402 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4405 @<Search |eqtb| for equivalents equal to |p|@>;
4408 @* \[12] The command codes.
4409 Before we can go much further, we need to define symbolic names for the internal
4410 code numbers that represent the various commands obeyed by \MP. These codes
4411 are somewhat arbitrary, but not completely so. For example,
4412 some codes have been made adjacent so that |case| statements in the
4413 program need not consider cases that are widely spaced, or so that |case|
4414 statements can be replaced by |if| statements. A command can begin an
4415 expression if and only if its code lies between |min_primary_command| and
4416 |max_primary_command|, inclusive. The first token of a statement that doesn't
4417 begin with an expression has a command code between |min_command| and
4418 |max_statement_command|, inclusive. Anything less than |min_command| is
4419 eliminated during macro expansions, and anything no more than |max_pre_command|
4420 is eliminated when expanding \TeX\ material. Ranges such as
4421 |min_secondary_command..max_secondary_command| are used when parsing
4422 expressions, but the relative ordering within such a range is generally not
4425 The ordering of the highest-numbered commands
4426 (|comma<semicolon<end_group<stop|) is crucial for the parsing and
4427 error-recovery methods of this program as is the ordering |if_test<fi_or_else|
4428 for the smallest two commands. The ordering is also important in the ranges
4429 |numeric_token..plus_or_minus| and |left_brace..ampersand|.
4431 At any rate, here is the list, for future reference.
4433 @d start_tex 1 /* begin \TeX\ material (\&{btex}, \&{verbatimtex}) */
4434 @d etex_marker 2 /* end \TeX\ material (\&{etex}) */
4435 @d mpx_break 3 /* stop reading an \.{MPX} file (\&{mpxbreak}) */
4436 @d max_pre_command mpx_break
4437 @d if_test 4 /* conditional text (\&{if}) */
4438 @d fi_or_else 5 /* delimiters for conditionals (\&{elseif}, \&{else}, \&{fi} */
4439 @d input 6 /* input a source file (\&{input}, \&{endinput}) */
4440 @d iteration 7 /* iterate (\&{for}, \&{forsuffixes}, \&{forever}, \&{endfor}) */
4441 @d repeat_loop 8 /* special command substituted for \&{endfor} */
4442 @d exit_test 9 /* premature exit from a loop (\&{exitif}) */
4443 @d relax 10 /* do nothing (\.{\char`\\}) */
4444 @d scan_tokens 11 /* put a string into the input buffer */
4445 @d expand_after 12 /* look ahead one token */
4446 @d defined_macro 13 /* a macro defined by the user */
4447 @d min_command (defined_macro+1)
4448 @d save_command 14 /* save a list of tokens (\&{save}) */
4449 @d interim_command 15 /* save an internal quantity (\&{interim}) */
4450 @d let_command 16 /* redefine a symbolic token (\&{let}) */
4451 @d new_internal 17 /* define a new internal quantity (\&{newinternal}) */
4452 @d macro_def 18 /* define a macro (\&{def}, \&{vardef}, etc.) */
4453 @d ship_out_command 19 /* output a character (\&{shipout}) */
4454 @d add_to_command 20 /* add to edges (\&{addto}) */
4455 @d bounds_command 21 /* add bounding path to edges (\&{setbounds}, \&{clip}) */
4456 @d tfm_command 22 /* command for font metric info (\&{ligtable}, etc.) */
4457 @d protection_command 23 /* set protection flag (\&{outer}, \&{inner}) */
4458 @d show_command 24 /* diagnostic output (\&{show}, \&{showvariable}, etc.) */
4459 @d mode_command 25 /* set interaction level (\&{batchmode}, etc.) */
4460 @d random_seed 26 /* initialize random number generator (\&{randomseed}) */
4461 @d message_command 27 /* communicate to user (\&{message}, \&{errmessage}) */
4462 @d every_job_command 28 /* designate a starting token (\&{everyjob}) */
4463 @d delimiters 29 /* define a pair of delimiters (\&{delimiters}) */
4464 @d special_command 30 /* output special info (\&{special})
4465 or font map info (\&{fontmapfile}, \&{fontmapline}) */
4466 @d write_command 31 /* write text to a file (\&{write}) */
4467 @d type_name 32 /* declare a type (\&{numeric}, \&{pair}, etc. */
4468 @d max_statement_command type_name
4469 @d min_primary_command type_name
4470 @d left_delimiter 33 /* the left delimiter of a matching pair */
4471 @d begin_group 34 /* beginning of a group (\&{begingroup}) */
4472 @d nullary 35 /* an operator without arguments (e.g., \&{normaldeviate}) */
4473 @d unary 36 /* an operator with one argument (e.g., \&{sqrt}) */
4474 @d str_op 37 /* convert a suffix to a string (\&{str}) */
4475 @d cycle 38 /* close a cyclic path (\&{cycle}) */
4476 @d primary_binary 39 /* binary operation taking `\&{of}' (e.g., \&{point}) */
4477 @d capsule_token 40 /* a value that has been put into a token list */
4478 @d string_token 41 /* a string constant (e.g., |"hello"|) */
4479 @d internal_quantity 42 /* internal numeric parameter (e.g., \&{pausing}) */
4480 @d min_suffix_token internal_quantity
4481 @d tag_token 43 /* a symbolic token without a primitive meaning */
4482 @d numeric_token 44 /* a numeric constant (e.g., \.{3.14159}) */
4483 @d max_suffix_token numeric_token
4484 @d plus_or_minus 45 /* either `\.+' or `\.-' */
4485 @d max_primary_command plus_or_minus /* should also be |numeric_token+1| */
4486 @d min_tertiary_command plus_or_minus
4487 @d tertiary_secondary_macro 46 /* a macro defined by \&{secondarydef} */
4488 @d tertiary_binary 47 /* an operator at the tertiary level (e.g., `\.{++}') */
4489 @d max_tertiary_command tertiary_binary
4490 @d left_brace 48 /* the operator `\.{\char`\{}' */
4491 @d min_expression_command left_brace
4492 @d path_join 49 /* the operator `\.{..}' */
4493 @d ampersand 50 /* the operator `\.\&' */
4494 @d expression_tertiary_macro 51 /* a macro defined by \&{tertiarydef} */
4495 @d expression_binary 52 /* an operator at the expression level (e.g., `\.<') */
4496 @d equals 53 /* the operator `\.=' */
4497 @d max_expression_command equals
4498 @d and_command 54 /* the operator `\&{and}' */
4499 @d min_secondary_command and_command
4500 @d secondary_primary_macro 55 /* a macro defined by \&{primarydef} */
4501 @d slash 56 /* the operator `\./' */
4502 @d secondary_binary 57 /* an operator at the binary level (e.g., \&{shifted}) */
4503 @d max_secondary_command secondary_binary
4504 @d param_type 58 /* type of parameter (\&{primary}, \&{expr}, \&{suffix}, etc.) */
4505 @d controls 59 /* specify control points explicitly (\&{controls}) */
4506 @d tension 60 /* specify tension between knots (\&{tension}) */
4507 @d at_least 61 /* bounded tension value (\&{atleast}) */
4508 @d curl_command 62 /* specify curl at an end knot (\&{curl}) */
4509 @d macro_special 63 /* special macro operators (\&{quote}, \.{\#\AT!}, etc.) */
4510 @d right_delimiter 64 /* the right delimiter of a matching pair */
4511 @d left_bracket 65 /* the operator `\.[' */
4512 @d right_bracket 66 /* the operator `\.]' */
4513 @d right_brace 67 /* the operator `\.{\char`\}}' */
4514 @d with_option 68 /* option for filling (\&{withpen}, \&{withweight}, etc.) */
4516 /* variant of \&{addto} (\&{contour}, \&{doublepath}, \&{also}) */
4517 @d of_token 70 /* the operator `\&{of}' */
4518 @d to_token 71 /* the operator `\&{to}' */
4519 @d step_token 72 /* the operator `\&{step}' */
4520 @d until_token 73 /* the operator `\&{until}' */
4521 @d within_token 74 /* the operator `\&{within}' */
4522 @d lig_kern_token 75
4523 /* the operators `\&{kern}' and `\.{=:}' and `\.{=:\char'174}, etc. */
4524 @d assignment 76 /* the operator `\.{:=}' */
4525 @d skip_to 77 /* the operation `\&{skipto}' */
4526 @d bchar_label 78 /* the operator `\.{\char'174\char'174:}' */
4527 @d double_colon 79 /* the operator `\.{::}' */
4528 @d colon 80 /* the operator `\.:' */
4530 @d comma 81 /* the operator `\.,', must be |colon+1| */
4531 @d end_of_statement (mp->cur_cmd>comma)
4532 @d semicolon 82 /* the operator `\.;', must be |comma+1| */
4533 @d end_group 83 /* end a group (\&{endgroup}), must be |semicolon+1| */
4534 @d stop 84 /* end a job (\&{end}, \&{dump}), must be |end_group+1| */
4535 @d max_command_code stop
4536 @d outer_tag (max_command_code+1) /* protection code added to command code */
4539 typedef int command_code;
4541 @ Variables and capsules in \MP\ have a variety of ``types,''
4542 distinguished by the code numbers defined here. These numbers are also
4543 not completely arbitrary. Things that get expanded must have types
4544 |>mp_independent|; a type remaining after expansion is numeric if and only if
4545 its code number is at least |numeric_type|; objects containing numeric
4546 parts must have types between |transform_type| and |pair_type|;
4547 all other types must be smaller than |transform_type|; and among the types
4548 that are not unknown or vacuous, the smallest two must be |boolean_type|
4549 and |string_type| in that order.
4551 @d undefined 0 /* no type has been declared */
4552 @d unknown_tag 1 /* this constant is added to certain type codes below */
4553 @d unknown_types mp_unknown_boolean: case mp_unknown_string:
4554 case mp_unknown_pen: case mp_unknown_picture: case mp_unknown_path
4558 mp_vacuous=1, /* no expression was present */
4559 mp_boolean_type, /* \&{boolean} with a known value */
4561 mp_string_type, /* \&{string} with a known value */
4563 mp_pen_type, /* \&{pen} with a known value */
4565 mp_path_type, /* \&{path} with a known value */
4567 mp_picture_type, /* \&{picture} with a known value */
4569 mp_transform_type, /* \&{transform} variable or capsule */
4570 mp_color_type, /* \&{color} variable or capsule */
4571 mp_cmykcolor_type, /* \&{cmykcolor} variable or capsule */
4572 mp_pair_type, /* \&{pair} variable or capsule */
4573 mp_numeric_type, /* variable that has been declared \&{numeric} but not used */
4574 mp_known, /* \&{numeric} with a known value */
4575 mp_dependent, /* a linear combination with |fraction| coefficients */
4576 mp_proto_dependent, /* a linear combination with |scaled| coefficients */
4577 mp_independent, /* \&{numeric} with unknown value */
4578 mp_token_list, /* variable name or suffix argument or text argument */
4579 mp_structured, /* variable with subscripts and attributes */
4580 mp_unsuffixed_macro, /* variable defined with \&{vardef} but no \.{\AT!\#} */
4581 mp_suffixed_macro /* variable defined with \&{vardef} and \.{\AT!\#} */
4585 void mp_print_type (MP mp,small_number t) ;
4587 @ @<Basic printing procedures@>=
4588 void mp_print_type (MP mp,small_number t) {
4590 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
4591 case mp_boolean_type:mp_print(mp, "boolean"); break;
4592 case mp_unknown_boolean:mp_print(mp, "unknown boolean"); break;
4593 case mp_string_type:mp_print(mp, "string"); break;
4594 case mp_unknown_string:mp_print(mp, "unknown string"); break;
4595 case mp_pen_type:mp_print(mp, "pen"); break;
4596 case mp_unknown_pen:mp_print(mp, "unknown pen"); break;
4597 case mp_path_type:mp_print(mp, "path"); break;
4598 case mp_unknown_path:mp_print(mp, "unknown path"); break;
4599 case mp_picture_type:mp_print(mp, "picture"); break;
4600 case mp_unknown_picture:mp_print(mp, "unknown picture"); break;
4601 case mp_transform_type:mp_print(mp, "transform"); break;
4602 case mp_color_type:mp_print(mp, "color"); break;
4603 case mp_cmykcolor_type:mp_print(mp, "cmykcolor"); break;
4604 case mp_pair_type:mp_print(mp, "pair"); break;
4605 case mp_known:mp_print(mp, "known numeric"); break;
4606 case mp_dependent:mp_print(mp, "dependent"); break;
4607 case mp_proto_dependent:mp_print(mp, "proto-dependent"); break;
4608 case mp_numeric_type:mp_print(mp, "numeric"); break;
4609 case mp_independent:mp_print(mp, "independent"); break;
4610 case mp_token_list:mp_print(mp, "token list"); break;
4611 case mp_structured:mp_print(mp, "mp_structured"); break;
4612 case mp_unsuffixed_macro:mp_print(mp, "unsuffixed macro"); break;
4613 case mp_suffixed_macro:mp_print(mp, "suffixed macro"); break;
4614 default: mp_print(mp, "undefined"); break;
4618 @ Values inside \MP\ are stored in two-word nodes that have a |name_type|
4619 as well as a |type|. The possibilities for |name_type| are defined
4620 here; they will be explained in more detail later.
4624 mp_root=0, /* |name_type| at the top level of a variable */
4625 mp_saved_root, /* same, when the variable has been saved */
4626 mp_structured_root, /* |name_type| where a |mp_structured| branch occurs */
4627 mp_subscr, /* |name_type| in a subscript node */
4628 mp_attr, /* |name_type| in an attribute node */
4629 mp_x_part_sector, /* |name_type| in the \&{xpart} of a node */
4630 mp_y_part_sector, /* |name_type| in the \&{ypart} of a node */
4631 mp_xx_part_sector, /* |name_type| in the \&{xxpart} of a node */
4632 mp_xy_part_sector, /* |name_type| in the \&{xypart} of a node */
4633 mp_yx_part_sector, /* |name_type| in the \&{yxpart} of a node */
4634 mp_yy_part_sector, /* |name_type| in the \&{yypart} of a node */
4635 mp_red_part_sector, /* |name_type| in the \&{redpart} of a node */
4636 mp_green_part_sector, /* |name_type| in the \&{greenpart} of a node */
4637 mp_blue_part_sector, /* |name_type| in the \&{bluepart} of a node */
4638 mp_cyan_part_sector, /* |name_type| in the \&{redpart} of a node */
4639 mp_magenta_part_sector, /* |name_type| in the \&{greenpart} of a node */
4640 mp_yellow_part_sector, /* |name_type| in the \&{bluepart} of a node */
4641 mp_black_part_sector, /* |name_type| in the \&{greenpart} of a node */
4642 mp_grey_part_sector, /* |name_type| in the \&{bluepart} of a node */
4643 mp_capsule, /* |name_type| in stashed-away subexpressions */
4644 mp_token /* |name_type| in a numeric token or string token */
4647 @ Primitive operations that produce values have a secondary identification
4648 code in addition to their command code; it's something like genera and species.
4649 For example, `\.*' has the command code |primary_binary|, and its
4650 secondary identification is |times|. The secondary codes start at 30 so that
4651 they don't overlap with the type codes; some type codes (e.g., |mp_string_type|)
4652 are used as operators as well as type identifications. The relative values
4653 are not critical, except for |true_code..false_code|, |or_op..and_op|,
4654 and |filled_op..bounded_op|. The restrictions are that
4655 |and_op-false_code=or_op-true_code|, that the ordering of
4656 |x_part...blue_part| must match that of |x_part_sector..mp_blue_part_sector|,
4657 and the ordering of |filled_op..bounded_op| must match that of the code
4658 values they test for.
4660 @d true_code 30 /* operation code for \.{true} */
4661 @d false_code 31 /* operation code for \.{false} */
4662 @d null_picture_code 32 /* operation code for \.{nullpicture} */
4663 @d null_pen_code 33 /* operation code for \.{nullpen} */
4664 @d job_name_op 34 /* operation code for \.{jobname} */
4665 @d read_string_op 35 /* operation code for \.{readstring} */
4666 @d pen_circle 36 /* operation code for \.{pencircle} */
4667 @d normal_deviate 37 /* operation code for \.{normaldeviate} */
4668 @d read_from_op 38 /* operation code for \.{readfrom} */
4669 @d close_from_op 39 /* operation code for \.{closefrom} */
4670 @d odd_op 40 /* operation code for \.{odd} */
4671 @d known_op 41 /* operation code for \.{known} */
4672 @d unknown_op 42 /* operation code for \.{unknown} */
4673 @d not_op 43 /* operation code for \.{not} */
4674 @d decimal 44 /* operation code for \.{decimal} */
4675 @d reverse 45 /* operation code for \.{reverse} */
4676 @d make_path_op 46 /* operation code for \.{makepath} */
4677 @d make_pen_op 47 /* operation code for \.{makepen} */
4678 @d oct_op 48 /* operation code for \.{oct} */
4679 @d hex_op 49 /* operation code for \.{hex} */
4680 @d ASCII_op 50 /* operation code for \.{ASCII} */
4681 @d char_op 51 /* operation code for \.{char} */
4682 @d length_op 52 /* operation code for \.{length} */
4683 @d turning_op 53 /* operation code for \.{turningnumber} */
4684 @d color_model_part 54 /* operation code for \.{colormodel} */
4685 @d x_part 55 /* operation code for \.{xpart} */
4686 @d y_part 56 /* operation code for \.{ypart} */
4687 @d xx_part 57 /* operation code for \.{xxpart} */
4688 @d xy_part 58 /* operation code for \.{xypart} */
4689 @d yx_part 59 /* operation code for \.{yxpart} */
4690 @d yy_part 60 /* operation code for \.{yypart} */
4691 @d red_part 61 /* operation code for \.{redpart} */
4692 @d green_part 62 /* operation code for \.{greenpart} */
4693 @d blue_part 63 /* operation code for \.{bluepart} */
4694 @d cyan_part 64 /* operation code for \.{cyanpart} */
4695 @d magenta_part 65 /* operation code for \.{magentapart} */
4696 @d yellow_part 66 /* operation code for \.{yellowpart} */
4697 @d black_part 67 /* operation code for \.{blackpart} */
4698 @d grey_part 68 /* operation code for \.{greypart} */
4699 @d font_part 69 /* operation code for \.{fontpart} */
4700 @d text_part 70 /* operation code for \.{textpart} */
4701 @d path_part 71 /* operation code for \.{pathpart} */
4702 @d pen_part 72 /* operation code for \.{penpart} */
4703 @d dash_part 73 /* operation code for \.{dashpart} */
4704 @d sqrt_op 74 /* operation code for \.{sqrt} */
4705 @d m_exp_op 75 /* operation code for \.{mexp} */
4706 @d m_log_op 76 /* operation code for \.{mlog} */
4707 @d sin_d_op 77 /* operation code for \.{sind} */
4708 @d cos_d_op 78 /* operation code for \.{cosd} */
4709 @d floor_op 79 /* operation code for \.{floor} */
4710 @d uniform_deviate 80 /* operation code for \.{uniformdeviate} */
4711 @d char_exists_op 81 /* operation code for \.{charexists} */
4712 @d font_size 82 /* operation code for \.{fontsize} */
4713 @d ll_corner_op 83 /* operation code for \.{llcorner} */
4714 @d lr_corner_op 84 /* operation code for \.{lrcorner} */
4715 @d ul_corner_op 85 /* operation code for \.{ulcorner} */
4716 @d ur_corner_op 86 /* operation code for \.{urcorner} */
4717 @d arc_length 87 /* operation code for \.{arclength} */
4718 @d angle_op 88 /* operation code for \.{angle} */
4719 @d cycle_op 89 /* operation code for \.{cycle} */
4720 @d filled_op 90 /* operation code for \.{filled} */
4721 @d stroked_op 91 /* operation code for \.{stroked} */
4722 @d textual_op 92 /* operation code for \.{textual} */
4723 @d clipped_op 93 /* operation code for \.{clipped} */
4724 @d bounded_op 94 /* operation code for \.{bounded} */
4725 @d plus 95 /* operation code for \.+ */
4726 @d minus 96 /* operation code for \.- */
4727 @d times 97 /* operation code for \.* */
4728 @d over 98 /* operation code for \./ */
4729 @d pythag_add 99 /* operation code for \.{++} */
4730 @d pythag_sub 100 /* operation code for \.{+-+} */
4731 @d or_op 101 /* operation code for \.{or} */
4732 @d and_op 102 /* operation code for \.{and} */
4733 @d less_than 103 /* operation code for \.< */
4734 @d less_or_equal 104 /* operation code for \.{<=} */
4735 @d greater_than 105 /* operation code for \.> */
4736 @d greater_or_equal 106 /* operation code for \.{>=} */
4737 @d equal_to 107 /* operation code for \.= */
4738 @d unequal_to 108 /* operation code for \.{<>} */
4739 @d concatenate 109 /* operation code for \.\& */
4740 @d rotated_by 110 /* operation code for \.{rotated} */
4741 @d slanted_by 111 /* operation code for \.{slanted} */
4742 @d scaled_by 112 /* operation code for \.{scaled} */
4743 @d shifted_by 113 /* operation code for \.{shifted} */
4744 @d transformed_by 114 /* operation code for \.{transformed} */
4745 @d x_scaled 115 /* operation code for \.{xscaled} */
4746 @d y_scaled 116 /* operation code for \.{yscaled} */
4747 @d z_scaled 117 /* operation code for \.{zscaled} */
4748 @d in_font 118 /* operation code for \.{infont} */
4749 @d intersect 119 /* operation code for \.{intersectiontimes} */
4750 @d double_dot 120 /* operation code for improper \.{..} */
4751 @d substring_of 121 /* operation code for \.{substring} */
4752 @d min_of substring_of
4753 @d subpath_of 122 /* operation code for \.{subpath} */
4754 @d direction_time_of 123 /* operation code for \.{directiontime} */
4755 @d point_of 124 /* operation code for \.{point} */
4756 @d precontrol_of 125 /* operation code for \.{precontrol} */
4757 @d postcontrol_of 126 /* operation code for \.{postcontrol} */
4758 @d pen_offset_of 127 /* operation code for \.{penoffset} */
4759 @d arc_time_of 128 /* operation code for \.{arctime} */
4760 @d mp_version 129 /* operation code for \.{mpversion} */
4762 @c void mp_print_op (MP mp,quarterword c) {
4763 if (c<=mp_numeric_type ) {
4764 mp_print_type(mp, c);
4767 case true_code:mp_print(mp, "true"); break;
4768 case false_code:mp_print(mp, "false"); break;
4769 case null_picture_code:mp_print(mp, "nullpicture"); break;
4770 case null_pen_code:mp_print(mp, "nullpen"); break;
4771 case job_name_op:mp_print(mp, "jobname"); break;
4772 case read_string_op:mp_print(mp, "readstring"); break;
4773 case pen_circle:mp_print(mp, "pencircle"); break;
4774 case normal_deviate:mp_print(mp, "normaldeviate"); break;
4775 case read_from_op:mp_print(mp, "readfrom"); break;
4776 case close_from_op:mp_print(mp, "closefrom"); break;
4777 case odd_op:mp_print(mp, "odd"); break;
4778 case known_op:mp_print(mp, "known"); break;
4779 case unknown_op:mp_print(mp, "unknown"); break;
4780 case not_op:mp_print(mp, "not"); break;
4781 case decimal:mp_print(mp, "decimal"); break;
4782 case reverse:mp_print(mp, "reverse"); break;
4783 case make_path_op:mp_print(mp, "makepath"); break;
4784 case make_pen_op:mp_print(mp, "makepen"); break;
4785 case oct_op:mp_print(mp, "oct"); break;
4786 case hex_op:mp_print(mp, "hex"); break;
4787 case ASCII_op:mp_print(mp, "ASCII"); break;
4788 case char_op:mp_print(mp, "char"); break;
4789 case length_op:mp_print(mp, "length"); break;
4790 case turning_op:mp_print(mp, "turningnumber"); break;
4791 case x_part:mp_print(mp, "xpart"); break;
4792 case y_part:mp_print(mp, "ypart"); break;
4793 case xx_part:mp_print(mp, "xxpart"); break;
4794 case xy_part:mp_print(mp, "xypart"); break;
4795 case yx_part:mp_print(mp, "yxpart"); break;
4796 case yy_part:mp_print(mp, "yypart"); break;
4797 case red_part:mp_print(mp, "redpart"); break;
4798 case green_part:mp_print(mp, "greenpart"); break;
4799 case blue_part:mp_print(mp, "bluepart"); break;
4800 case cyan_part:mp_print(mp, "cyanpart"); break;
4801 case magenta_part:mp_print(mp, "magentapart"); break;
4802 case yellow_part:mp_print(mp, "yellowpart"); break;
4803 case black_part:mp_print(mp, "blackpart"); break;
4804 case grey_part:mp_print(mp, "greypart"); break;
4805 case color_model_part:mp_print(mp, "colormodel"); break;
4806 case font_part:mp_print(mp, "fontpart"); break;
4807 case text_part:mp_print(mp, "textpart"); break;
4808 case path_part:mp_print(mp, "pathpart"); break;
4809 case pen_part:mp_print(mp, "penpart"); break;
4810 case dash_part:mp_print(mp, "dashpart"); break;
4811 case sqrt_op:mp_print(mp, "sqrt"); break;
4812 case m_exp_op:mp_print(mp, "mexp"); break;
4813 case m_log_op:mp_print(mp, "mlog"); break;
4814 case sin_d_op:mp_print(mp, "sind"); break;
4815 case cos_d_op:mp_print(mp, "cosd"); break;
4816 case floor_op:mp_print(mp, "floor"); break;
4817 case uniform_deviate:mp_print(mp, "uniformdeviate"); break;
4818 case char_exists_op:mp_print(mp, "charexists"); break;
4819 case font_size:mp_print(mp, "fontsize"); break;
4820 case ll_corner_op:mp_print(mp, "llcorner"); break;
4821 case lr_corner_op:mp_print(mp, "lrcorner"); break;
4822 case ul_corner_op:mp_print(mp, "ulcorner"); break;
4823 case ur_corner_op:mp_print(mp, "urcorner"); break;
4824 case arc_length:mp_print(mp, "arclength"); break;
4825 case angle_op:mp_print(mp, "angle"); break;
4826 case cycle_op:mp_print(mp, "cycle"); break;
4827 case filled_op:mp_print(mp, "filled"); break;
4828 case stroked_op:mp_print(mp, "stroked"); break;
4829 case textual_op:mp_print(mp, "textual"); break;
4830 case clipped_op:mp_print(mp, "clipped"); break;
4831 case bounded_op:mp_print(mp, "bounded"); break;
4832 case plus:mp_print_char(mp, '+'); break;
4833 case minus:mp_print_char(mp, '-'); break;
4834 case times:mp_print_char(mp, '*'); break;
4835 case over:mp_print_char(mp, '/'); break;
4836 case pythag_add:mp_print(mp, "++"); break;
4837 case pythag_sub:mp_print(mp, "+-+"); break;
4838 case or_op:mp_print(mp, "or"); break;
4839 case and_op:mp_print(mp, "and"); break;
4840 case less_than:mp_print_char(mp, '<'); break;
4841 case less_or_equal:mp_print(mp, "<="); break;
4842 case greater_than:mp_print_char(mp, '>'); break;
4843 case greater_or_equal:mp_print(mp, ">="); break;
4844 case equal_to:mp_print_char(mp, '='); break;
4845 case unequal_to:mp_print(mp, "<>"); break;
4846 case concatenate:mp_print(mp, "&"); break;
4847 case rotated_by:mp_print(mp, "rotated"); break;
4848 case slanted_by:mp_print(mp, "slanted"); break;
4849 case scaled_by:mp_print(mp, "scaled"); break;
4850 case shifted_by:mp_print(mp, "shifted"); break;
4851 case transformed_by:mp_print(mp, "transformed"); break;
4852 case x_scaled:mp_print(mp, "xscaled"); break;
4853 case y_scaled:mp_print(mp, "yscaled"); break;
4854 case z_scaled:mp_print(mp, "zscaled"); break;
4855 case in_font:mp_print(mp, "infont"); break;
4856 case intersect:mp_print(mp, "intersectiontimes"); break;
4857 case substring_of:mp_print(mp, "substring"); break;
4858 case subpath_of:mp_print(mp, "subpath"); break;
4859 case direction_time_of:mp_print(mp, "directiontime"); break;
4860 case point_of:mp_print(mp, "point"); break;
4861 case precontrol_of:mp_print(mp, "precontrol"); break;
4862 case postcontrol_of:mp_print(mp, "postcontrol"); break;
4863 case pen_offset_of:mp_print(mp, "penoffset"); break;
4864 case arc_time_of:mp_print(mp, "arctime"); break;
4865 case mp_version:mp_print(mp, "mpversion"); break;
4866 default: mp_print(mp, ".."); break;
4871 @ \MP\ also has a bunch of internal parameters that a user might want to
4872 fuss with. Every such parameter has an identifying code number, defined here.
4874 @d tracing_titles 1 /* show titles online when they appear */
4875 @d tracing_equations 2 /* show each variable when it becomes known */
4876 @d tracing_capsules 3 /* show capsules too */
4877 @d tracing_choices 4 /* show the control points chosen for paths */
4878 @d tracing_specs 5 /* show path subdivision prior to filling with polygonal a pen */
4879 @d tracing_commands 6 /* show commands and operations before they are performed */
4880 @d tracing_restores 7 /* show when a variable or internal is restored */
4881 @d tracing_macros 8 /* show macros before they are expanded */
4882 @d tracing_output 9 /* show digitized edges as they are output */
4883 @d tracing_stats 10 /* show memory usage at end of job */
4884 @d tracing_lost_chars 11 /* show characters that aren't \&{infont} */
4885 @d tracing_online 12 /* show long diagnostics on terminal and in the log file */
4886 @d year 13 /* the current year (e.g., 1984) */
4887 @d month 14 /* the current month (e.g, 3 $\equiv$ March) */
4888 @d day 15 /* the current day of the month */
4889 @d mp_time 16 /* the number of minutes past midnight when this job started */
4890 @d char_code 17 /* the number of the next character to be output */
4891 @d char_ext 18 /* the extension code of the next character to be output */
4892 @d char_wd 19 /* the width of the next character to be output */
4893 @d char_ht 20 /* the height of the next character to be output */
4894 @d char_dp 21 /* the depth of the next character to be output */
4895 @d char_ic 22 /* the italic correction of the next character to be output */
4896 @d design_size 23 /* the unit of measure used for |char_wd..char_ic|, in points */
4897 @d pausing 24 /* positive to display lines on the terminal before they are read */
4898 @d showstopping 25 /* positive to stop after each \&{show} command */
4899 @d fontmaking 26 /* positive if font metric output is to be produced */
4900 @d linejoin 27 /* as in \ps: 0 for mitered, 1 for round, 2 for beveled */
4901 @d linecap 28 /* as in \ps: 0 for butt, 1 for round, 2 for square */
4902 @d miterlimit 29 /* controls miter length as in \ps */
4903 @d warning_check 30 /* controls error message when variable value is large */
4904 @d boundary_char 31 /* the right boundary character for ligatures */
4905 @d prologues 32 /* positive to output conforming PostScript using built-in fonts */
4906 @d true_corners 33 /* positive to make \&{llcorner} etc. ignore \&{setbounds} */
4907 @d default_color_model 34 /* the default color model for unspecified items */
4908 @d restore_clip_color 35
4909 @d mpprocset 36 /* wether or not create PostScript command shortcuts */
4910 @d gtroffmode 37 /* whether the user specified |-troff| on the command line */
4911 @d max_given_internal 37
4914 scaled *internal; /* the values of internal quantities */
4915 char **int_name; /* their names */
4916 int int_ptr; /* the maximum internal quantity defined so far */
4917 int max_internal; /* current maximum number of internal quantities */
4920 @ @<Option variables@>=
4923 @ @<Allocate or initialize ...@>=
4924 mp->max_internal=2*max_given_internal;
4925 mp->internal = xmalloc ((mp->max_internal+1), sizeof(scaled));
4926 mp->int_name = xmalloc ((mp->max_internal+1), sizeof(char *));
4927 mp->troff_mode=(opt.troff_mode>0 ? true : false);
4929 @ @<Set initial ...@>=
4930 for (k=0;k<= mp->max_internal; k++ ) {
4932 mp->int_name[k]=NULL;
4934 mp->int_ptr=max_given_internal;
4936 @ The symbolic names for internal quantities are put into \MP's hash table
4937 by using a routine called |primitive|, which will be defined later. Let us
4938 enter them now, so that we don't have to list all those names again
4941 @<Put each of \MP's primitives into the hash table@>=
4942 mp_primitive(mp, "tracingtitles",internal_quantity,tracing_titles);
4943 @:tracingtitles_}{\&{tracingtitles} primitive@>
4944 mp_primitive(mp, "tracingequations",internal_quantity,tracing_equations);
4945 @:tracing_equations_}{\&{tracingequations} primitive@>
4946 mp_primitive(mp, "tracingcapsules",internal_quantity,tracing_capsules);
4947 @:tracing_capsules_}{\&{tracingcapsules} primitive@>
4948 mp_primitive(mp, "tracingchoices",internal_quantity,tracing_choices);
4949 @:tracing_choices_}{\&{tracingchoices} primitive@>
4950 mp_primitive(mp, "tracingspecs",internal_quantity,tracing_specs);
4951 @:tracing_specs_}{\&{tracingspecs} primitive@>
4952 mp_primitive(mp, "tracingcommands",internal_quantity,tracing_commands);
4953 @:tracing_commands_}{\&{tracingcommands} primitive@>
4954 mp_primitive(mp, "tracingrestores",internal_quantity,tracing_restores);
4955 @:tracing_restores_}{\&{tracingrestores} primitive@>
4956 mp_primitive(mp, "tracingmacros",internal_quantity,tracing_macros);
4957 @:tracing_macros_}{\&{tracingmacros} primitive@>
4958 mp_primitive(mp, "tracingoutput",internal_quantity,tracing_output);
4959 @:tracing_output_}{\&{tracingoutput} primitive@>
4960 mp_primitive(mp, "tracingstats",internal_quantity,tracing_stats);
4961 @:tracing_stats_}{\&{tracingstats} primitive@>
4962 mp_primitive(mp, "tracinglostchars",internal_quantity,tracing_lost_chars);
4963 @:tracing_lost_chars_}{\&{tracinglostchars} primitive@>
4964 mp_primitive(mp, "tracingonline",internal_quantity,tracing_online);
4965 @:tracing_online_}{\&{tracingonline} primitive@>
4966 mp_primitive(mp, "year",internal_quantity,year);
4967 @:year_}{\&{year} primitive@>
4968 mp_primitive(mp, "month",internal_quantity,month);
4969 @:month_}{\&{month} primitive@>
4970 mp_primitive(mp, "day",internal_quantity,day);
4971 @:day_}{\&{day} primitive@>
4972 mp_primitive(mp, "time",internal_quantity,mp_time);
4973 @:time_}{\&{time} primitive@>
4974 mp_primitive(mp, "charcode",internal_quantity,char_code);
4975 @:char_code_}{\&{charcode} primitive@>
4976 mp_primitive(mp, "charext",internal_quantity,char_ext);
4977 @:char_ext_}{\&{charext} primitive@>
4978 mp_primitive(mp, "charwd",internal_quantity,char_wd);
4979 @:char_wd_}{\&{charwd} primitive@>
4980 mp_primitive(mp, "charht",internal_quantity,char_ht);
4981 @:char_ht_}{\&{charht} primitive@>
4982 mp_primitive(mp, "chardp",internal_quantity,char_dp);
4983 @:char_dp_}{\&{chardp} primitive@>
4984 mp_primitive(mp, "charic",internal_quantity,char_ic);
4985 @:char_ic_}{\&{charic} primitive@>
4986 mp_primitive(mp, "designsize",internal_quantity,design_size);
4987 @:design_size_}{\&{designsize} primitive@>
4988 mp_primitive(mp, "pausing",internal_quantity,pausing);
4989 @:pausing_}{\&{pausing} primitive@>
4990 mp_primitive(mp, "showstopping",internal_quantity,showstopping);
4991 @:showstopping_}{\&{showstopping} primitive@>
4992 mp_primitive(mp, "fontmaking",internal_quantity,fontmaking);
4993 @:fontmaking_}{\&{fontmaking} primitive@>
4994 mp_primitive(mp, "linejoin",internal_quantity,linejoin);
4995 @:linejoin_}{\&{linejoin} primitive@>
4996 mp_primitive(mp, "linecap",internal_quantity,linecap);
4997 @:linecap_}{\&{linecap} primitive@>
4998 mp_primitive(mp, "miterlimit",internal_quantity,miterlimit);
4999 @:miterlimit_}{\&{miterlimit} primitive@>
5000 mp_primitive(mp, "warningcheck",internal_quantity,warning_check);
5001 @:warning_check_}{\&{warningcheck} primitive@>
5002 mp_primitive(mp, "boundarychar",internal_quantity,boundary_char);
5003 @:boundary_char_}{\&{boundarychar} primitive@>
5004 mp_primitive(mp, "prologues",internal_quantity,prologues);
5005 @:prologues_}{\&{prologues} primitive@>
5006 mp_primitive(mp, "truecorners",internal_quantity,true_corners);
5007 @:true_corners_}{\&{truecorners} primitive@>
5008 mp_primitive(mp, "mpprocset",internal_quantity,mpprocset);
5009 @:mpprocset_}{\&{mpprocset} primitive@>
5010 mp_primitive(mp, "troffmode",internal_quantity,gtroffmode);
5011 @:troffmode_}{\&{troffmode} primitive@>
5012 mp_primitive(mp, "defaultcolormodel",internal_quantity,default_color_model);
5013 @:default_color_model_}{\&{defaultcolormodel} primitive@>
5014 mp_primitive(mp, "restoreclipcolor",internal_quantity,restore_clip_color);
5015 @:restore_clip_color_}{\&{restoreclipcolor} primitive@>
5017 @ Colors can be specified in four color models. In the special
5018 case of |no_model|, MetaPost does not output any color operator to
5019 the postscript output.
5021 Note: these values are passed directly on to |with_option|. This only
5022 works because the other possible values passed to |with_option| are
5023 8 and 10 respectively (from |with_pen| and |with_picture|).
5025 There is a first state, that is only used for |gs_colormodel|. It flags
5026 the fact that there has not been any kind of color specification by
5027 the user so far in the game.
5033 @d uninitialized_model 9
5035 @<Initialize table entries (done by \.{INIMP} only)@>=
5036 mp->internal[default_color_model]=(rgb_model*unity);
5037 mp->internal[restore_clip_color]=unity;
5039 @ Well, we do have to list the names one more time, for use in symbolic
5042 @<Initialize table...@>=
5043 mp->int_name[tracing_titles]=xstrdup("tracingtitles");
5044 mp->int_name[tracing_equations]=xstrdup("tracingequations");
5045 mp->int_name[tracing_capsules]=xstrdup("tracingcapsules");
5046 mp->int_name[tracing_choices]=xstrdup("tracingchoices");
5047 mp->int_name[tracing_specs]=xstrdup("tracingspecs");
5048 mp->int_name[tracing_commands]=xstrdup("tracingcommands");
5049 mp->int_name[tracing_restores]=xstrdup("tracingrestores");
5050 mp->int_name[tracing_macros]=xstrdup("tracingmacros");
5051 mp->int_name[tracing_output]=xstrdup("tracingoutput");
5052 mp->int_name[tracing_stats]=xstrdup("tracingstats");
5053 mp->int_name[tracing_lost_chars]=xstrdup("tracinglostchars");
5054 mp->int_name[tracing_online]=xstrdup("tracingonline");
5055 mp->int_name[year]=xstrdup("year");
5056 mp->int_name[month]=xstrdup("month");
5057 mp->int_name[day]=xstrdup("day");
5058 mp->int_name[mp_time]=xstrdup("time");
5059 mp->int_name[char_code]=xstrdup("charcode");
5060 mp->int_name[char_ext]=xstrdup("charext");
5061 mp->int_name[char_wd]=xstrdup("charwd");
5062 mp->int_name[char_ht]=xstrdup("charht");
5063 mp->int_name[char_dp]=xstrdup("chardp");
5064 mp->int_name[char_ic]=xstrdup("charic");
5065 mp->int_name[design_size]=xstrdup("designsize");
5066 mp->int_name[pausing]=xstrdup("pausing");
5067 mp->int_name[showstopping]=xstrdup("showstopping");
5068 mp->int_name[fontmaking]=xstrdup("fontmaking");
5069 mp->int_name[linejoin]=xstrdup("linejoin");
5070 mp->int_name[linecap]=xstrdup("linecap");
5071 mp->int_name[miterlimit]=xstrdup("miterlimit");
5072 mp->int_name[warning_check]=xstrdup("warningcheck");
5073 mp->int_name[boundary_char]=xstrdup("boundarychar");
5074 mp->int_name[prologues]=xstrdup("prologues");
5075 mp->int_name[true_corners]=xstrdup("truecorners");
5076 mp->int_name[default_color_model]=xstrdup("defaultcolormodel");
5077 mp->int_name[mpprocset]=xstrdup("mpprocset");
5078 mp->int_name[gtroffmode]=xstrdup("troffmode");
5079 mp->int_name[restore_clip_color]=xstrdup("restoreclipcolor");
5081 @ The following procedure, which is called just before \MP\ initializes its
5082 input and output, establishes the initial values of the date and time.
5083 @^system dependencies@>
5085 Note that the values are |scaled| integers. Hence \MP\ can no longer
5086 be used after the year 32767.
5089 void mp_fix_date_and_time (MP mp) {
5090 time_t clock = time ((time_t *) 0);
5091 struct tm *tmptr = localtime (&clock);
5092 mp->internal[mp_time]=
5093 (tmptr->tm_hour*60+tmptr->tm_min)*unity; /* minutes since midnight */
5094 mp->internal[day]=(tmptr->tm_mday)*unity; /* fourth day of the month */
5095 mp->internal[month]=(tmptr->tm_mon+1)*unity; /* seventh month of the year */
5096 mp->internal[year]=(tmptr->tm_year+1900)*unity; /* Anno Domini */
5100 void mp_fix_date_and_time (MP mp) ;
5102 @ \MP\ is occasionally supposed to print diagnostic information that
5103 goes only into the transcript file, unless |tracing_online| is positive.
5104 Now that we have defined |tracing_online| we can define
5105 two routines that adjust the destination of print commands:
5108 void mp_begin_diagnostic (MP mp) ;
5109 void mp_end_diagnostic (MP mp,boolean blank_line);
5110 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) ;
5112 @ @<Basic printing...@>=
5113 @<Declare a function called |true_line|@>;
5114 void mp_begin_diagnostic (MP mp) { /* prepare to do some tracing */
5115 mp->old_setting=mp->selector;
5116 if ( mp->selector==ps_file_only ) mp->selector=mp->non_ps_setting;
5117 if ((mp->internal[tracing_online]<=0)&&(mp->selector==term_and_log)){
5119 if ( mp->history==spotless ) mp->history=warning_issued;
5123 void mp_end_diagnostic (MP mp,boolean blank_line) {
5124 /* restore proper conditions after tracing */
5125 mp_print_nl(mp, "");
5126 if ( blank_line ) mp_print_ln(mp);
5127 mp->selector=mp->old_setting;
5130 @ The global variable |non_ps_setting| is initialized when it is time to print
5134 unsigned int old_setting;
5135 unsigned int non_ps_setting;
5137 @ We will occasionally use |begin_diagnostic| in connection with line-number
5138 printing, as follows. (The parameter |s| is typically |"Path"| or
5139 |"Cycle spec"|, etc.)
5141 @<Basic printing...@>=
5142 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) {
5143 mp_begin_diagnostic(mp);
5144 if ( nuline ) mp_print_nl(mp, s); else mp_print(mp, s);
5145 mp_print(mp, " at line ");
5146 mp_print_int(mp, mp_true_line(mp));
5147 mp_print(mp, t); mp_print_char(mp, ':');
5150 @ The 256 |ASCII_code| characters are grouped into classes by means of
5151 the |char_class| table. Individual class numbers have no semantic
5152 or syntactic significance, except in a few instances defined here.
5153 There's also |max_class|, which can be used as a basis for additional
5154 class numbers in nonstandard extensions of \MP.
5156 @d digit_class 0 /* the class number of \.{0123456789} */
5157 @d period_class 1 /* the class number of `\..' */
5158 @d space_class 2 /* the class number of spaces and nonstandard characters */
5159 @d percent_class 3 /* the class number of `\.\%' */
5160 @d string_class 4 /* the class number of `\."' */
5161 @d right_paren_class 8 /* the class number of `\.)' */
5162 @d isolated_classes 5: case 6: case 7: case 8 /* characters that make length-one tokens only */
5163 @d letter_class 9 /* letters and the underline character */
5164 @d left_bracket_class 17 /* `\.[' */
5165 @d right_bracket_class 18 /* `\.]' */
5166 @d invalid_class 20 /* bad character in the input */
5167 @d max_class 20 /* the largest class number */
5170 int char_class[256]; /* the class numbers */
5172 @ If changes are made to accommodate non-ASCII character sets, they should
5173 follow the guidelines in Appendix~C of {\sl The {\logos METAFONT\/}book}.
5174 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
5175 @^system dependencies@>
5177 @<Set initial ...@>=
5178 for (k='0';k<='9';k++)
5179 mp->char_class[k]=digit_class;
5180 mp->char_class['.']=period_class;
5181 mp->char_class[' ']=space_class;
5182 mp->char_class['%']=percent_class;
5183 mp->char_class['"']=string_class;
5184 mp->char_class[',']=5;
5185 mp->char_class[';']=6;
5186 mp->char_class['(']=7;
5187 mp->char_class[')']=right_paren_class;
5188 for (k='A';k<= 'Z';k++ )
5189 mp->char_class[k]=letter_class;
5190 for (k='a';k<='z';k++)
5191 mp->char_class[k]=letter_class;
5192 mp->char_class['_']=letter_class;
5193 mp->char_class['<']=10;
5194 mp->char_class['=']=10;
5195 mp->char_class['>']=10;
5196 mp->char_class[':']=10;
5197 mp->char_class['|']=10;
5198 mp->char_class['`']=11;
5199 mp->char_class['\'']=11;
5200 mp->char_class['+']=12;
5201 mp->char_class['-']=12;
5202 mp->char_class['/']=13;
5203 mp->char_class['*']=13;
5204 mp->char_class['\\']=13;
5205 mp->char_class['!']=14;
5206 mp->char_class['?']=14;
5207 mp->char_class['#']=15;
5208 mp->char_class['&']=15;
5209 mp->char_class['@@']=15;
5210 mp->char_class['$']=15;
5211 mp->char_class['^']=16;
5212 mp->char_class['~']=16;
5213 mp->char_class['[']=left_bracket_class;
5214 mp->char_class[']']=right_bracket_class;
5215 mp->char_class['{']=19;
5216 mp->char_class['}']=19;
5218 mp->char_class[k]=invalid_class;
5219 mp->char_class['\t']=space_class;
5220 mp->char_class['\f']=space_class;
5221 for (k=127;k<=255;k++)
5222 mp->char_class[k]=invalid_class;
5224 @* \[13] The hash table.
5225 Symbolic tokens are stored and retrieved by means of a fairly standard hash
5226 table algorithm called the method of ``coalescing lists'' (cf.\ Algorithm 6.4C
5227 in {\sl The Art of Computer Programming\/}). Once a symbolic token enters the
5228 table, it is never removed.
5230 The actual sequence of characters forming a symbolic token is
5231 stored in the |str_pool| array together with all the other strings. An
5232 auxiliary array |hash| consists of items with two halfword fields per
5233 word. The first of these, called |next(p)|, points to the next identifier
5234 belonging to the same coalesced list as the identifier corresponding to~|p|;
5235 and the other, called |text(p)|, points to the |str_start| entry for
5236 |p|'s identifier. If position~|p| of the hash table is empty, we have
5237 |text(p)=0|; if position |p| is either empty or the end of a coalesced
5238 hash list, we have |next(p)=0|.
5240 An auxiliary pointer variable called |hash_used| is maintained in such a
5241 way that all locations |p>=hash_used| are nonempty. The global variable
5242 |st_count| tells how many symbolic tokens have been defined, if statistics
5245 The first 256 locations of |hash| are reserved for symbols of length one.
5247 There's a parallel array called |eqtb| that contains the current equivalent
5248 values of each symbolic token. The entries of this array consist of
5249 two halfwords called |eq_type| (a command code) and |equiv| (a secondary
5250 piece of information that qualifies the |eq_type|).
5252 @d next(A) mp->hash[(A)].lh /* link for coalesced lists */
5253 @d text(A) mp->hash[(A)].rh /* string number for symbolic token name */
5254 @d eq_type(A) mp->eqtb[(A)].lh /* the current ``meaning'' of a symbolic token */
5255 @d equiv(A) mp->eqtb[(A)].rh /* parametric part of a token's meaning */
5256 @d hash_base 257 /* hashing actually starts here */
5257 @d hash_is_full (mp->hash_used==hash_base) /* are all positions occupied? */
5260 pointer hash_used; /* allocation pointer for |hash| */
5261 integer st_count; /* total number of known identifiers */
5263 @ Certain entries in the hash table are ``frozen'' and not redefinable,
5264 since they are used in error recovery.
5266 @d hash_top (hash_base+mp->hash_size) /* the first location of the frozen area */
5267 @d frozen_inaccessible hash_top /* |hash| location to protect the frozen area */
5268 @d frozen_repeat_loop (hash_top+1) /* |hash| location of a loop-repeat token */
5269 @d frozen_right_delimiter (hash_top+2) /* |hash| location of a permanent `\.)' */
5270 @d frozen_left_bracket (hash_top+3) /* |hash| location of a permanent `\.[' */
5271 @d frozen_slash (hash_top+4) /* |hash| location of a permanent `\./' */
5272 @d frozen_colon (hash_top+5) /* |hash| location of a permanent `\.:' */
5273 @d frozen_semicolon (hash_top+6) /* |hash| location of a permanent `\.;' */
5274 @d frozen_end_for (hash_top+7) /* |hash| location of a permanent \&{endfor} */
5275 @d frozen_end_def (hash_top+8) /* |hash| location of a permanent \&{enddef} */
5276 @d frozen_fi (hash_top+9) /* |hash| location of a permanent \&{fi} */
5277 @d frozen_end_group (hash_top+10) /* |hash| location of a permanent `\.{endgroup}' */
5278 @d frozen_etex (hash_top+11) /* |hash| location of a permanent \&{etex} */
5279 @d frozen_mpx_break (hash_top+12) /* |hash| location of a permanent \&{mpxbreak} */
5280 @d frozen_bad_vardef (hash_top+13) /* |hash| location of `\.{a bad variable}' */
5281 @d frozen_undefined (hash_top+14) /* |hash| location that never gets defined */
5282 @d hash_end (hash_top+14) /* the actual size of the |hash| and |eqtb| arrays */
5285 two_halves *hash; /* the hash table */
5286 two_halves *eqtb; /* the equivalents */
5288 @ @<Allocate or initialize ...@>=
5289 mp->hash = xmalloc((hash_end+1),sizeof(two_halves));
5290 mp->eqtb = xmalloc((hash_end+1),sizeof(two_halves));
5292 @ @<Dealloc variables@>=
5297 next(1)=0; text(1)=0; eq_type(1)=tag_token; equiv(1)=null;
5298 for (k=2;k<=hash_end;k++) {
5299 mp->hash[k]=mp->hash[1]; mp->eqtb[k]=mp->eqtb[1];
5302 @ @<Initialize table entries...@>=
5303 mp->hash_used=frozen_inaccessible; /* nothing is used */
5305 text(frozen_bad_vardef)=intern("a bad variable");
5306 text(frozen_etex)=intern("etex");
5307 text(frozen_mpx_break)=intern("mpxbreak");
5308 text(frozen_fi)=intern("fi");
5309 text(frozen_end_group)=intern("endgroup");
5310 text(frozen_end_def)=intern("enddef");
5311 text(frozen_end_for)=intern("endfor");
5312 text(frozen_semicolon)=intern(";");
5313 text(frozen_colon)=intern(":");
5314 text(frozen_slash)=intern("/");
5315 text(frozen_left_bracket)=intern("[");
5316 text(frozen_right_delimiter)=intern(")");
5317 text(frozen_inaccessible)=intern(" INACCESSIBLE");
5318 eq_type(frozen_right_delimiter)=right_delimiter;
5320 @ @<Check the ``constant'' values...@>=
5321 if ( hash_end+mp->max_internal>max_halfword ) mp->bad=17;
5323 @ Here is the subroutine that searches the hash table for an identifier
5324 that matches a given string of length~|l| appearing in |buffer[j..
5325 (j+l-1)]|. If the identifier is not found, it is inserted; hence it
5326 will always be found, and the corresponding hash table address
5330 pointer mp_id_lookup (MP mp,integer j, integer l) { /* search the hash table */
5331 integer h; /* hash code */
5332 pointer p; /* index in |hash| array */
5333 pointer k; /* index in |buffer| array */
5335 @<Treat special case of length 1 and |break|@>;
5337 @<Compute the hash code |h|@>;
5338 p=h+hash_base; /* we start searching here; note that |0<=h<hash_prime| */
5340 if (text(p)>0 && length(text(p))==l && mp_str_eq_buf(mp, text(p),j))
5343 @<Insert a new symbolic token after |p|, then
5344 make |p| point to it and |break|@>;
5351 @ @<Treat special case of length 1...@>=
5352 p=mp->buffer[j]+1; text(p)=p-1; return p;
5355 @ @<Insert a new symbolic...@>=
5360 mp_overflow(mp, "hash size",mp->hash_size);
5361 @:MetaPost capacity exceeded hash size}{\quad hash size@>
5362 decr(mp->hash_used);
5363 } while (text(mp->hash_used)!=0); /* search for an empty location in |hash| */
5364 next(p)=mp->hash_used;
5368 for (k=j;k<=j+l-1;k++) {
5369 append_char(mp->buffer[k]);
5371 text(p)=mp_make_string(mp);
5372 mp->str_ref[text(p)]=max_str_ref;
5378 @ The value of |hash_prime| should be roughly 85\pct! of |hash_size|, and it
5379 should be a prime number. The theory of hashing tells us to expect fewer
5380 than two table probes, on the average, when the search is successful.
5381 [See J.~S. Vitter, {\sl Journal of the ACM\/ \bf30} (1983), 231--258.]
5382 @^Vitter, Jeffrey Scott@>
5384 @<Compute the hash code |h|@>=
5386 for (k=j+1;k<=j+l-1;k++){
5387 h=h+h+mp->buffer[k];
5388 while ( h>=mp->hash_prime ) h=h-mp->hash_prime;
5391 @ @<Search |eqtb| for equivalents equal to |p|@>=
5392 for (q=1;q<=hash_end;q++) {
5393 if ( equiv(q)==p ) {
5394 mp_print_nl(mp, "EQUIV(");
5395 mp_print_int(mp, q);
5396 mp_print_char(mp, ')');
5400 @ We need to put \MP's ``primitive'' symbolic tokens into the hash
5401 table, together with their command code (which will be the |eq_type|)
5402 and an operand (which will be the |equiv|). The |primitive| procedure
5403 does this, in a way that no \MP\ user can. The global value |cur_sym|
5404 contains the new |eqtb| pointer after |primitive| has acted.
5407 void mp_primitive (MP mp, char *ss, halfword c, halfword o) {
5408 pool_pointer k; /* index into |str_pool| */
5409 small_number j; /* index into |buffer| */
5410 small_number l; /* length of the string */
5413 k=mp->str_start[s]; l=str_stop(s)-k;
5414 /* we will move |s| into the (empty) |buffer| */
5415 for (j=0;j<=l-1;j++) {
5416 mp->buffer[j]=mp->str_pool[k+j];
5418 mp->cur_sym=mp_id_lookup(mp, 0,l);
5419 if ( s>=256 ) { /* we don't want to have the string twice */
5420 mp_flush_string(mp, text(mp->cur_sym)); text(mp->cur_sym)=s;
5422 eq_type(mp->cur_sym)=c;
5423 equiv(mp->cur_sym)=o;
5427 @ Many of \MP's primitives need no |equiv|, since they are identifiable
5428 by their |eq_type| alone. These primitives are loaded into the hash table
5431 @<Put each of \MP's primitives into the hash table@>=
5432 mp_primitive(mp, "..",path_join,0);
5433 @:.._}{\.{..} primitive@>
5434 mp_primitive(mp, "[",left_bracket,0); mp->eqtb[frozen_left_bracket]=mp->eqtb[mp->cur_sym];
5435 @:[ }{\.{[} primitive@>
5436 mp_primitive(mp, "]",right_bracket,0);
5437 @:] }{\.{]} primitive@>
5438 mp_primitive(mp, "}",right_brace,0);
5439 @:]]}{\.{\char`\}} primitive@>
5440 mp_primitive(mp, "{",left_brace,0);
5441 @:][}{\.{\char`\{} primitive@>
5442 mp_primitive(mp, ":",colon,0); mp->eqtb[frozen_colon]=mp->eqtb[mp->cur_sym];
5443 @:: }{\.{:} primitive@>
5444 mp_primitive(mp, "::",double_colon,0);
5445 @::: }{\.{::} primitive@>
5446 mp_primitive(mp, "||:",bchar_label,0);
5447 @:::: }{\.{\char'174\char'174:} primitive@>
5448 mp_primitive(mp, ":=",assignment,0);
5449 @::=_}{\.{:=} primitive@>
5450 mp_primitive(mp, ",",comma,0);
5451 @:, }{\., primitive@>
5452 mp_primitive(mp, ";",semicolon,0); mp->eqtb[frozen_semicolon]=mp->eqtb[mp->cur_sym];
5453 @:; }{\.; primitive@>
5454 mp_primitive(mp, "\\",relax,0);
5455 @:]]\\}{\.{\char`\\} primitive@>
5457 mp_primitive(mp, "addto",add_to_command,0);
5458 @:add_to_}{\&{addto} primitive@>
5459 mp_primitive(mp, "atleast",at_least,0);
5460 @:at_least_}{\&{atleast} primitive@>
5461 mp_primitive(mp, "begingroup",begin_group,0); mp->bg_loc=mp->cur_sym;
5462 @:begin_group_}{\&{begingroup} primitive@>
5463 mp_primitive(mp, "controls",controls,0);
5464 @:controls_}{\&{controls} primitive@>
5465 mp_primitive(mp, "curl",curl_command,0);
5466 @:curl_}{\&{curl} primitive@>
5467 mp_primitive(mp, "delimiters",delimiters,0);
5468 @:delimiters_}{\&{delimiters} primitive@>
5469 mp_primitive(mp, "endgroup",end_group,0);
5470 mp->eqtb[frozen_end_group]=mp->eqtb[mp->cur_sym]; mp->eg_loc=mp->cur_sym;
5471 @:endgroup_}{\&{endgroup} primitive@>
5472 mp_primitive(mp, "everyjob",every_job_command,0);
5473 @:every_job_}{\&{everyjob} primitive@>
5474 mp_primitive(mp, "exitif",exit_test,0);
5475 @:exit_if_}{\&{exitif} primitive@>
5476 mp_primitive(mp, "expandafter",expand_after,0);
5477 @:expand_after_}{\&{expandafter} primitive@>
5478 mp_primitive(mp, "interim",interim_command,0);
5479 @:interim_}{\&{interim} primitive@>
5480 mp_primitive(mp, "let",let_command,0);
5481 @:let_}{\&{let} primitive@>
5482 mp_primitive(mp, "newinternal",new_internal,0);
5483 @:new_internal_}{\&{newinternal} primitive@>
5484 mp_primitive(mp, "of",of_token,0);
5485 @:of_}{\&{of} primitive@>
5486 mp_primitive(mp, "randomseed",random_seed,0);
5487 @:random_seed_}{\&{randomseed} primitive@>
5488 mp_primitive(mp, "save",save_command,0);
5489 @:save_}{\&{save} primitive@>
5490 mp_primitive(mp, "scantokens",scan_tokens,0);
5491 @:scan_tokens_}{\&{scantokens} primitive@>
5492 mp_primitive(mp, "shipout",ship_out_command,0);
5493 @:ship_out_}{\&{shipout} primitive@>
5494 mp_primitive(mp, "skipto",skip_to,0);
5495 @:skip_to_}{\&{skipto} primitive@>
5496 mp_primitive(mp, "special",special_command,0);
5497 @:special}{\&{special} primitive@>
5498 mp_primitive(mp, "fontmapfile",special_command,1);
5499 @:fontmapfile}{\&{fontmapfile} primitive@>
5500 mp_primitive(mp, "fontmapline",special_command,2);
5501 @:fontmapline}{\&{fontmapline} primitive@>
5502 mp_primitive(mp, "step",step_token,0);
5503 @:step_}{\&{step} primitive@>
5504 mp_primitive(mp, "str",str_op,0);
5505 @:str_}{\&{str} primitive@>
5506 mp_primitive(mp, "tension",tension,0);
5507 @:tension_}{\&{tension} primitive@>
5508 mp_primitive(mp, "to",to_token,0);
5509 @:to_}{\&{to} primitive@>
5510 mp_primitive(mp, "until",until_token,0);
5511 @:until_}{\&{until} primitive@>
5512 mp_primitive(mp, "within",within_token,0);
5513 @:within_}{\&{within} primitive@>
5514 mp_primitive(mp, "write",write_command,0);
5515 @:write_}{\&{write} primitive@>
5517 @ Each primitive has a corresponding inverse, so that it is possible to
5518 display the cryptic numeric contents of |eqtb| in symbolic form.
5519 Every call of |primitive| in this program is therefore accompanied by some
5520 straightforward code that forms part of the |print_cmd_mod| routine
5523 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>=
5524 case add_to_command:mp_print(mp, "addto"); break;
5525 case assignment:mp_print(mp, ":="); break;
5526 case at_least:mp_print(mp, "atleast"); break;
5527 case bchar_label:mp_print(mp, "||:"); break;
5528 case begin_group:mp_print(mp, "begingroup"); break;
5529 case colon:mp_print(mp, ":"); break;
5530 case comma:mp_print(mp, ","); break;
5531 case controls:mp_print(mp, "controls"); break;
5532 case curl_command:mp_print(mp, "curl"); break;
5533 case delimiters:mp_print(mp, "delimiters"); break;
5534 case double_colon:mp_print(mp, "::"); break;
5535 case end_group:mp_print(mp, "endgroup"); break;
5536 case every_job_command:mp_print(mp, "everyjob"); break;
5537 case exit_test:mp_print(mp, "exitif"); break;
5538 case expand_after:mp_print(mp, "expandafter"); break;
5539 case interim_command:mp_print(mp, "interim"); break;
5540 case left_brace:mp_print(mp, "{"); break;
5541 case left_bracket:mp_print(mp, "["); break;
5542 case let_command:mp_print(mp, "let"); break;
5543 case new_internal:mp_print(mp, "newinternal"); break;
5544 case of_token:mp_print(mp, "of"); break;
5545 case path_join:mp_print(mp, ".."); break;
5546 case random_seed:mp_print(mp, "randomseed"); break;
5547 case relax:mp_print_char(mp, '\\'); break;
5548 case right_brace:mp_print(mp, "}"); break;
5549 case right_bracket:mp_print(mp, "]"); break;
5550 case save_command:mp_print(mp, "save"); break;
5551 case scan_tokens:mp_print(mp, "scantokens"); break;
5552 case semicolon:mp_print(mp, ";"); break;
5553 case ship_out_command:mp_print(mp, "shipout"); break;
5554 case skip_to:mp_print(mp, "skipto"); break;
5555 case special_command: if ( m==2 ) mp_print(mp, "fontmapline"); else
5556 if ( m==1 ) mp_print(mp, "fontmapfile"); else
5557 mp_print(mp, "special"); break;
5558 case step_token:mp_print(mp, "step"); break;
5559 case str_op:mp_print(mp, "str"); break;
5560 case tension:mp_print(mp, "tension"); break;
5561 case to_token:mp_print(mp, "to"); break;
5562 case until_token:mp_print(mp, "until"); break;
5563 case within_token:mp_print(mp, "within"); break;
5564 case write_command:mp_print(mp, "write"); break;
5566 @ We will deal with the other primitives later, at some point in the program
5567 where their |eq_type| and |equiv| values are more meaningful. For example,
5568 the primitives for macro definitions will be loaded when we consider the
5569 routines that define macros.
5570 It is easy to find where each particular
5571 primitive was treated by looking in the index at the end; for example, the
5572 section where |"def"| entered |eqtb| is listed under `\&{def} primitive'.
5574 @* \[14] Token lists.
5575 A \MP\ token is either symbolic or numeric or a string, or it denotes
5576 a macro parameter or capsule; so there are five corresponding ways to encode it
5578 internally: (1)~A symbolic token whose hash code is~|p|
5579 is represented by the number |p|, in the |info| field of a single-word
5580 node in~|mem|. (2)~A numeric token whose |scaled| value is~|v| is
5581 represented in a two-word node of~|mem|; the |type| field is |known|,
5582 the |name_type| field is |token|, and the |value| field holds~|v|.
5583 The fact that this token appears in a two-word node rather than a
5584 one-word node is, of course, clear from the node address.
5585 (3)~A string token is also represented in a two-word node; the |type|
5586 field is |mp_string_type|, the |name_type| field is |token|, and the
5587 |value| field holds the corresponding |str_number|. (4)~Capsules have
5588 |name_type=capsule|, and their |type| and |value| fields represent
5589 arbitrary values (in ways to be explained later). (5)~Macro parameters
5590 are like symbolic tokens in that they appear in |info| fields of
5591 one-word nodes. The $k$th parameter is represented by |expr_base+k| if it
5592 is of type \&{expr}, or by |suffix_base+k| if it is of type \&{suffix}, or
5593 by |text_base+k| if it is of type \&{text}. (Here |0<=k<param_size|.)
5594 Actual values of these parameters are kept in a separate stack, as we will
5595 see later. The constants |expr_base|, |suffix_base|, and |text_base| are,
5596 of course, chosen so that there will be no confusion between symbolic
5597 tokens and parameters of various types.
5600 the `\\{type}' field of a node has nothing to do with ``type'' in a
5601 printer's sense. It's curious that the same word is used in such different ways.
5603 @d type(A) mp->mem[(A)].hh.b0 /* identifies what kind of value this is */
5604 @d name_type(A) mp->mem[(A)].hh.b1 /* a clue to the name of this value */
5605 @d token_node_size 2 /* the number of words in a large token node */
5606 @d value_loc(A) ((A)+1) /* the word that contains the |value| field */
5607 @d value(A) mp->mem[value_loc((A))].cint /* the value stored in a large token node */
5608 @d expr_base (hash_end+1) /* code for the zeroth \&{expr} parameter */
5609 @d suffix_base (expr_base+mp->param_size) /* code for the zeroth \&{suffix} parameter */
5610 @d text_base (suffix_base+mp->param_size) /* code for the zeroth \&{text} parameter */
5612 @<Check the ``constant''...@>=
5613 if ( text_base+mp->param_size>max_halfword ) mp->bad=18;
5615 @ We have set aside a two word node beginning at |null| so that we can have
5616 |value(null)=0|. We will make use of this coincidence later.
5618 @<Initialize table entries...@>=
5619 link(null)=null; value(null)=0;
5621 @ A numeric token is created by the following trivial routine.
5624 pointer mp_new_num_tok (MP mp,scaled v) {
5625 pointer p; /* the new node */
5626 p=mp_get_node(mp, token_node_size); value(p)=v;
5627 type(p)=mp_known; name_type(p)=mp_token;
5631 @ A token list is a singly linked list of nodes in |mem|, where
5632 each node contains a token and a link. Here's a subroutine that gets rid
5633 of a token list when it is no longer needed.
5636 void mp_token_recycle (MP mp);
5639 @c void mp_flush_token_list (MP mp,pointer p) {
5640 pointer q; /* the node being recycled */
5643 if ( q>=mp->hi_mem_min ) {
5647 case mp_vacuous: case mp_boolean_type: case mp_known:
5649 case mp_string_type:
5650 delete_str_ref(value(q));
5652 case unknown_types: case mp_pen_type: case mp_path_type:
5653 case mp_picture_type: case mp_pair_type: case mp_color_type:
5654 case mp_cmykcolor_type: case mp_transform_type: case mp_dependent:
5655 case mp_proto_dependent: case mp_independent:
5656 mp->g_pointer=q; mp_token_recycle(mp);
5658 default: mp_confusion(mp, "token");
5659 @:this can't happen token}{\quad token@>
5661 mp_free_node(mp, q,token_node_size);
5666 @ The procedure |show_token_list|, which prints a symbolic form of
5667 the token list that starts at a given node |p|, illustrates these
5668 conventions. The token list being displayed should not begin with a reference
5669 count. However, the procedure is intended to be fairly robust, so that if the
5670 memory links are awry or if |p| is not really a pointer to a token list,
5671 almost nothing catastrophic can happen.
5673 An additional parameter |q| is also given; this parameter is either null
5674 or it points to a node in the token list where a certain magic computation
5675 takes place that will be explained later. (Basically, |q| is non-null when
5676 we are printing the two-line context information at the time of an error
5677 message; |q| marks the place corresponding to where the second line
5680 The generation will stop, and `\.{\char`\ ETC.}' will be printed, if the length
5681 of printing exceeds a given limit~|l|; the length of printing upon entry is
5682 assumed to be a given amount called |null_tally|. (Note that
5683 |show_token_list| sometimes uses itself recursively to print
5684 variable names within a capsule.)
5687 Unusual entries are printed in the form of all-caps tokens
5688 preceded by a space, e.g., `\.{\char`\ BAD}'.
5691 void mp_print_capsule (MP mp);
5693 @ @<Declare the procedure called |show_token_list|@>=
5694 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5695 integer null_tally) ;
5698 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5699 integer null_tally) {
5700 small_number class,c; /* the |char_class| of previous and new tokens */
5701 integer r,v; /* temporary registers */
5702 class=percent_class;
5703 mp->tally=null_tally;
5704 while ( (p!=null) && (mp->tally<l) ) {
5706 @<Do magic computation@>;
5707 @<Display token |p| and set |c| to its class;
5708 but |return| if there are problems@>;
5712 mp_print(mp, " ETC.");
5717 @ @<Display token |p| and set |c| to its class...@>=
5718 c=letter_class; /* the default */
5719 if ( (p<0)||(p>mp->mem_end) ) {
5720 mp_print(mp, " CLOBBERED"); return;
5723 if ( p<mp->hi_mem_min ) {
5724 @<Display two-word token@>;
5727 if ( r>=expr_base ) {
5728 @<Display a parameter token@>;
5732 @<Display a collective subscript@>
5734 mp_print(mp, " IMPOSSIBLE");
5739 if ( (r<0)||(r>mp->max_str_ptr) ) {
5740 mp_print(mp, " NONEXISTENT");
5743 @<Print string |r| as a symbolic token
5744 and set |c| to its class@>;
5750 @ @<Display two-word token@>=
5751 if ( name_type(p)==mp_token ) {
5752 if ( type(p)==mp_known ) {
5753 @<Display a numeric token@>;
5754 } else if ( type(p)!=mp_string_type ) {
5755 mp_print(mp, " BAD");
5758 mp_print_char(mp, '"'); mp_print_str(mp, value(p)); mp_print_char(mp, '"');
5761 } else if ((name_type(p)!=mp_capsule)||(type(p)<mp_vacuous)||(type(p)>mp_independent) ) {
5762 mp_print(mp, " BAD");
5764 mp->g_pointer=p; mp_print_capsule(mp); c=right_paren_class;
5767 @ @<Display a numeric token@>=
5768 if ( class==digit_class )
5769 mp_print_char(mp, ' ');
5772 if ( class==left_bracket_class )
5773 mp_print_char(mp, ' ');
5774 mp_print_char(mp, '['); mp_print_scaled(mp, v); mp_print_char(mp, ']');
5775 c=right_bracket_class;
5777 mp_print_scaled(mp, v); c=digit_class;
5781 @ Strictly speaking, a genuine token will never have |info(p)=0|.
5782 But we will see later (in the |print_variable_name| routine) that
5783 it is convenient to let |info(p)=0| stand for `\.{[]}'.
5785 @<Display a collective subscript@>=
5787 if ( class==left_bracket_class )
5788 mp_print_char(mp, ' ');
5789 mp_print(mp, "[]"); c=right_bracket_class;
5792 @ @<Display a parameter token@>=
5794 if ( r<suffix_base ) {
5795 mp_print(mp, "(EXPR"); r=r-(expr_base);
5797 } else if ( r<text_base ) {
5798 mp_print(mp, "(SUFFIX"); r=r-(suffix_base);
5801 mp_print(mp, "(TEXT"); r=r-(text_base);
5804 mp_print_int(mp, r); mp_print_char(mp, ')'); c=right_paren_class;
5808 @ @<Print string |r| as a symbolic token...@>=
5810 c=mp->char_class[mp->str_pool[mp->str_start[r]]];
5813 case letter_class:mp_print_char(mp, '.'); break;
5814 case isolated_classes: break;
5815 default: mp_print_char(mp, ' '); break;
5818 mp_print_str(mp, r);
5821 @ The following procedures have been declared |forward| with no parameters,
5822 because the author dislikes \PASCAL's convention about |forward| procedures
5823 with parameters. It was necessary to do something, because |show_token_list|
5824 is recursive (although the recursion is limited to one level), and because
5825 |flush_token_list| is syntactically (but not semantically) recursive.
5828 @<Declare miscellaneous procedures that were declared |forward|@>=
5829 void mp_print_capsule (MP mp) {
5830 mp_print_char(mp, '('); mp_print_exp(mp, mp->g_pointer,0); mp_print_char(mp, ')');
5833 void mp_token_recycle (MP mp) {
5834 mp_recycle_value(mp, mp->g_pointer);
5838 pointer g_pointer; /* (global) parameter to the |forward| procedures */
5840 @ Macro definitions are kept in \MP's memory in the form of token lists
5841 that have a few extra one-word nodes at the beginning.
5843 The first node contains a reference count that is used to tell when the
5844 list is no longer needed. To emphasize the fact that a reference count is
5845 present, we shall refer to the |info| field of this special node as the
5847 @^reference counts@>
5849 The next node or nodes after the reference count serve to describe the
5850 formal parameters. They either contain a code word that specifies all
5851 of the parameters, or they contain zero or more parameter tokens followed
5852 by the code `|general_macro|'.
5855 /* reference count preceding a macro definition or picture header */
5856 @d add_mac_ref(A) incr(ref_count((A))) /* make a new reference to a macro list */
5857 @d general_macro 0 /* preface to a macro defined with a parameter list */
5858 @d primary_macro 1 /* preface to a macro with a \&{primary} parameter */
5859 @d secondary_macro 2 /* preface to a macro with a \&{secondary} parameter */
5860 @d tertiary_macro 3 /* preface to a macro with a \&{tertiary} parameter */
5861 @d expr_macro 4 /* preface to a macro with an undelimited \&{expr} parameter */
5862 @d of_macro 5 /* preface to a macro with
5863 undelimited `\&{expr} |x| \&{of}~|y|' parameters */
5864 @d suffix_macro 6 /* preface to a macro with an undelimited \&{suffix} parameter */
5865 @d text_macro 7 /* preface to a macro with an undelimited \&{text} parameter */
5868 void mp_delete_mac_ref (MP mp,pointer p) {
5869 /* |p| points to the reference count of a macro list that is
5870 losing one reference */
5871 if ( ref_count(p)==null ) mp_flush_token_list(mp, p);
5872 else decr(ref_count(p));
5875 @ The following subroutine displays a macro, given a pointer to its
5879 @<Declare the procedure called |print_cmd_mod|@>;
5880 void mp_show_macro (MP mp, pointer p, integer q, integer l) {
5881 pointer r; /* temporary storage */
5882 p=link(p); /* bypass the reference count */
5883 while ( info(p)>text_macro ){
5884 r=link(p); link(p)=null;
5885 mp_show_token_list(mp, p,null,l,0); link(p)=r; p=r;
5886 if ( l>0 ) l=l-mp->tally; else return;
5887 } /* control printing of `\.{ETC.}' */
5891 case general_macro:mp_print(mp, "->"); break;
5893 case primary_macro: case secondary_macro: case tertiary_macro:
5894 mp_print_char(mp, '<');
5895 mp_print_cmd_mod(mp, param_type,info(p));
5896 mp_print(mp, ">->");
5898 case expr_macro:mp_print(mp, "<expr>->"); break;
5899 case of_macro:mp_print(mp, "<expr>of<primary>->"); break;
5900 case suffix_macro:mp_print(mp, "<suffix>->"); break;
5901 case text_macro:mp_print(mp, "<text>->"); break;
5902 } /* there are no other cases */
5903 mp_show_token_list(mp, link(p),q,l-mp->tally,0);
5906 @* \[15] Data structures for variables.
5907 The variables of \MP\ programs can be simple, like `\.x', or they can
5908 combine the structural properties of arrays and records, like `\.{x20a.b}'.
5909 A \MP\ user assigns a type to a variable like \.{x20a.b} by saying, for
5910 example, `\.{boolean} \.{x20a.b}'. It's time for us to study how such
5911 things are represented inside of the computer.
5913 Each variable value occupies two consecutive words, either in a two-word
5914 node called a value node, or as a two-word subfield of a larger node. One
5915 of those two words is called the |value| field; it is an integer,
5916 containing either a |scaled| numeric value or the representation of some
5917 other type of quantity. (It might also be subdivided into halfwords, in
5918 which case it is referred to by other names instead of |value|.) The other
5919 word is broken into subfields called |type|, |name_type|, and |link|. The
5920 |type| field is a quarterword that specifies the variable's type, and
5921 |name_type| is a quarterword from which \MP\ can reconstruct the
5922 variable's name (sometimes by using the |link| field as well). Thus, only
5923 1.25 words are actually devoted to the value itself; the other
5924 three-quarters of a word are overhead, but they aren't wasted because they
5925 allow \MP\ to deal with sparse arrays and to provide meaningful diagnostics.
5927 In this section we shall be concerned only with the structural aspects of
5928 variables, not their values. Later parts of the program will change the
5929 |type| and |value| fields, but we shall treat those fields as black boxes
5930 whose contents should not be touched.
5932 However, if the |type| field is |mp_structured|, there is no |value| field,
5933 and the second word is broken into two pointer fields called |attr_head|
5934 and |subscr_head|. Those fields point to additional nodes that
5935 contain structural information, as we shall see.
5937 @d subscr_head_loc(A) (A)+1 /* where |value|, |subscr_head| and |attr_head| are */
5938 @d attr_head(A) info(subscr_head_loc((A))) /* pointer to attribute info */
5939 @d subscr_head(A) link(subscr_head_loc((A))) /* pointer to subscript info */
5940 @d value_node_size 2 /* the number of words in a value node */
5942 @ An attribute node is three words long. Two of these words contain |type|
5943 and |value| fields as described above, and the third word contains
5944 additional information: There is an |attr_loc| field, which contains the
5945 hash address of the token that names this attribute; and there's also a
5946 |parent| field, which points to the value node of |mp_structured| type at the
5947 next higher level (i.e., at the level to which this attribute is
5948 subsidiary). The |name_type| in an attribute node is `|attr|'. The
5949 |link| field points to the next attribute with the same parent; these are
5950 arranged in increasing order, so that |attr_loc(link(p))>attr_loc(p)|. The
5951 final attribute node links to the constant |end_attr|, whose |attr_loc|
5952 field is greater than any legal hash address. The |attr_head| in the
5953 parent points to a node whose |name_type| is |mp_structured_root|; this
5954 node represents the null attribute, i.e., the variable that is relevant
5955 when no attributes are attached to the parent. The |attr_head| node is either
5956 a value node, a subscript node, or an attribute node, depending on what
5957 the parent would be if it were not structured; but the subscript and
5958 attribute fields are ignored, so it effectively contains only the data of
5959 a value node. The |link| field in this special node points to an attribute
5960 node whose |attr_loc| field is zero; the latter node represents a collective
5961 subscript `\.{[]}' attached to the parent, and its |link| field points to
5962 the first non-special attribute node (or to |end_attr| if there are none).
5964 A subscript node likewise occupies three words, with |type| and |value| fields
5965 plus extra information; its |name_type| is |subscr|. In this case the
5966 third word is called the |subscript| field, which is a |scaled| integer.
5967 The |link| field points to the subscript node with the next larger
5968 subscript, if any; otherwise the |link| points to the attribute node
5969 for collective subscripts at this level. We have seen that the latter node
5970 contains an upward pointer, so that the parent can be deduced.
5972 The |name_type| in a parent-less value node is |root|, and the |link|
5973 is the hash address of the token that names this value.
5975 In other words, variables have a hierarchical structure that includes
5976 enough threads running around so that the program is able to move easily
5977 between siblings, parents, and children. An example should be helpful:
5978 (The reader is advised to draw a picture while reading the following
5979 description, since that will help to firm up the ideas.)
5980 Suppose that `\.x' and `\.{x.a}' and `\.{x[]b}' and `\.{x5}'
5981 and `\.{x20b}' have been mentioned in a user's program, where
5982 \.{x[]b} has been declared to be of \&{boolean} type. Let |h(x)|, |h(a)|,
5983 and |h(b)| be the hash addresses of \.x, \.a, and~\.b. Then
5984 |eq_type(h(x))=name| and |equiv(h(x))=p|, where |p|~is a two-word value
5985 node with |name_type(p)=root| and |link(p)=h(x)|. We have |type(p)=mp_structured|,
5986 |attr_head(p)=q|, and |subscr_head(p)=r|, where |q| points to a value
5987 node and |r| to a subscript node. (Are you still following this? Use
5988 a pencil to draw a diagram.) The lone variable `\.x' is represented by
5989 |type(q)| and |value(q)|; furthermore
5990 |name_type(q)=mp_structured_root| and |link(q)=q1|, where |q1| points
5991 to an attribute node representing `\.{x[]}'. Thus |name_type(q1)=attr|,
5992 |attr_loc(q1)=collective_subscript=0|, |parent(q1)=p|,
5993 |type(q1)=mp_structured|, |attr_head(q1)=qq|, and |subscr_head(q1)=qq1|;
5994 |qq| is a value node with |type(qq)=mp_numeric_type| (assuming that \.{x5} is
5995 numeric, because |qq| represents `\.{x[]}' with no further attributes),
5996 |name_type(qq)=mp_structured_root|, and
5997 |link(qq)=qq1|. (Now pay attention to the next part.) Node |qq1| is
5998 an attribute node representing `\.{x[][]}', which has never yet
5999 occurred; its |type| field is |undefined|, and its |value| field is
6000 undefined. We have |name_type(qq1)=attr|, |attr_loc(qq1)=collective_subscript|,
6001 |parent(qq1)=q1|, and |link(qq1)=qq2|. Since |qq2| represents
6002 `\.{x[]b}', |type(qq2)=mp_unknown_boolean|; also |attr_loc(qq2)=h(b)|,
6003 |parent(qq2)=q1|, |name_type(qq2)=attr|, |link(qq2)=end_attr|.
6004 (Maybe colored lines will help untangle your picture.)
6005 Node |r| is a subscript node with |type| and |value|
6006 representing `\.{x5}'; |name_type(r)=subscr|, |subscript(r)=5.0|,
6007 and |link(r)=r1| is another subscript node. To complete the picture,
6008 see if you can guess what |link(r1)| is; give up? It's~|q1|.
6009 Furthermore |subscript(r1)=20.0|, |name_type(r1)=subscr|,
6010 |type(r1)=mp_structured|, |attr_head(r1)=qqq|, |subscr_head(r1)=qqq1|,
6011 and we finish things off with three more nodes
6012 |qqq|, |qqq1|, and |qqq2| hung onto~|r1|. (Perhaps you should start again
6013 with a larger sheet of paper.) The value of variable \.{x20b}
6014 appears in node~|qqq2|, as you can well imagine.
6016 If the example in the previous paragraph doesn't make things crystal
6017 clear, a glance at some of the simpler subroutines below will reveal how
6018 things work out in practice.
6020 The only really unusual thing about these conventions is the use of
6021 collective subscript attributes. The idea is to avoid repeating a lot of
6022 type information when many elements of an array are identical macros
6023 (for which distinct values need not be stored) or when they don't have
6024 all of the possible attributes. Branches of the structure below collective
6025 subscript attributes do not carry actual values except for macro identifiers;
6026 branches of the structure below subscript nodes do not carry significant
6027 information in their collective subscript attributes.
6029 @d attr_loc_loc(A) ((A)+2) /* where the |attr_loc| and |parent| fields are */
6030 @d attr_loc(A) info(attr_loc_loc((A))) /* hash address of this attribute */
6031 @d parent(A) link(attr_loc_loc((A))) /* pointer to |mp_structured| variable */
6032 @d subscript_loc(A) ((A)+2) /* where the |subscript| field lives */
6033 @d subscript(A) mp->mem[subscript_loc((A))].sc /* subscript of this variable */
6034 @d attr_node_size 3 /* the number of words in an attribute node */
6035 @d subscr_node_size 3 /* the number of words in a subscript node */
6036 @d collective_subscript 0 /* code for the attribute `\.{[]}' */
6038 @<Initialize table...@>=
6039 attr_loc(end_attr)=hash_end+1; parent(end_attr)=null;
6041 @ Variables of type \&{pair} will have values that point to four-word
6042 nodes containing two numeric values. The first of these values has
6043 |name_type=mp_x_part_sector| and the second has |name_type=mp_y_part_sector|;
6044 the |link| in the first points back to the node whose |value| points
6045 to this four-word node.
6047 Variables of type \&{transform} are similar, but in this case their
6048 |value| points to a 12-word node containing six values, identified by
6049 |x_part_sector|, |y_part_sector|, |mp_xx_part_sector|, |mp_xy_part_sector|,
6050 |mp_yx_part_sector|, and |mp_yy_part_sector|.
6051 Finally, variables of type \&{color} have three values in six words
6052 identified by |mp_red_part_sector|, |mp_green_part_sector|, and |mp_blue_part_sector|.
6054 When an entire structured variable is saved, the |root| indication
6055 is temporarily replaced by |saved_root|.
6057 Some variables have no name; they just are used for temporary storage
6058 while expressions are being evaluated. We call them {\sl capsules}.
6060 @d x_part_loc(A) (A) /* where the \&{xpart} is found in a pair or transform node */
6061 @d y_part_loc(A) ((A)+2) /* where the \&{ypart} is found in a pair or transform node */
6062 @d xx_part_loc(A) ((A)+4) /* where the \&{xxpart} is found in a transform node */
6063 @d xy_part_loc(A) ((A)+6) /* where the \&{xypart} is found in a transform node */
6064 @d yx_part_loc(A) ((A)+8) /* where the \&{yxpart} is found in a transform node */
6065 @d yy_part_loc(A) ((A)+10) /* where the \&{yypart} is found in a transform node */
6066 @d red_part_loc(A) (A) /* where the \&{redpart} is found in a color node */
6067 @d green_part_loc(A) ((A)+2) /* where the \&{greenpart} is found in a color node */
6068 @d blue_part_loc(A) ((A)+4) /* where the \&{bluepart} is found in a color node */
6069 @d cyan_part_loc(A) (A) /* where the \&{cyanpart} is found in a color node */
6070 @d magenta_part_loc(A) ((A)+2) /* where the \&{magentapart} is found in a color node */
6071 @d yellow_part_loc(A) ((A)+4) /* where the \&{yellowpart} is found in a color node */
6072 @d black_part_loc(A) ((A)+6) /* where the \&{blackpart} is found in a color node */
6073 @d grey_part_loc(A) (A) /* where the \&{greypart} is found in a color node */
6075 @d pair_node_size 4 /* the number of words in a pair node */
6076 @d transform_node_size 12 /* the number of words in a transform node */
6077 @d color_node_size 6 /* the number of words in a color node */
6078 @d cmykcolor_node_size 8 /* the number of words in a color node */
6081 small_number big_node_size[mp_pair_type+1];
6082 small_number sector0[mp_pair_type+1];
6083 small_number sector_offset[mp_black_part_sector+1];
6085 @ The |sector0| array gives for each big node type, |name_type| values
6086 for its first subfield; the |sector_offset| array gives for each
6087 |name_type| value, the offset from the first subfield in words;
6088 and the |big_node_size| array gives the size in words for each type of
6092 mp->big_node_size[mp_transform_type]=transform_node_size;
6093 mp->big_node_size[mp_pair_type]=pair_node_size;
6094 mp->big_node_size[mp_color_type]=color_node_size;
6095 mp->big_node_size[mp_cmykcolor_type]=cmykcolor_node_size;
6096 mp->sector0[mp_transform_type]=mp_x_part_sector;
6097 mp->sector0[mp_pair_type]=mp_x_part_sector;
6098 mp->sector0[mp_color_type]=mp_red_part_sector;
6099 mp->sector0[mp_cmykcolor_type]=mp_cyan_part_sector;
6100 for (k=mp_x_part_sector;k<= mp_yy_part_sector;k++ ) {
6101 mp->sector_offset[k]=2*(k-mp_x_part_sector);
6103 for (k=mp_red_part_sector;k<= mp_blue_part_sector ; k++) {
6104 mp->sector_offset[k]=2*(k-mp_red_part_sector);
6106 for (k=mp_cyan_part_sector;k<= mp_black_part_sector;k++ ) {
6107 mp->sector_offset[k]=2*(k-mp_cyan_part_sector);
6110 @ If |type(p)=mp_pair_type| or |mp_transform_type| and if |value(p)=null|, the
6111 procedure call |init_big_node(p)| will allocate a pair or transform node
6112 for~|p|. The individual parts of such nodes are initially of type
6116 void mp_init_big_node (MP mp,pointer p) {
6117 pointer q; /* the new node */
6118 small_number s; /* its size */
6119 s=mp->big_node_size[type(p)]; q=mp_get_node(mp, s);
6122 @<Make variable |q+s| newly independent@>;
6123 name_type(q+s)=halfp(s)+mp->sector0[type(p)];
6126 link(q)=p; value(p)=q;
6129 @ The |id_transform| function creates a capsule for the
6130 identity transformation.
6133 pointer mp_id_transform (MP mp) {
6134 pointer p,q,r; /* list manipulation registers */
6135 p=mp_get_node(mp, value_node_size); type(p)=mp_transform_type;
6136 name_type(p)=mp_capsule; value(p)=null; mp_init_big_node(mp, p); q=value(p);
6137 r=q+transform_node_size;
6140 type(r)=mp_known; value(r)=0;
6142 value(xx_part_loc(q))=unity;
6143 value(yy_part_loc(q))=unity;
6147 @ Tokens are of type |tag_token| when they first appear, but they point
6148 to |null| until they are first used as the root of a variable.
6149 The following subroutine establishes the root node on such grand occasions.
6152 void mp_new_root (MP mp,pointer x) {
6153 pointer p; /* the new node */
6154 p=mp_get_node(mp, value_node_size); type(p)=undefined; name_type(p)=mp_root;
6155 link(p)=x; equiv(x)=p;
6158 @ These conventions for variable representation are illustrated by the
6159 |print_variable_name| routine, which displays the full name of a
6160 variable given only a pointer to its two-word value packet.
6163 void mp_print_variable_name (MP mp, pointer p);
6166 void mp_print_variable_name (MP mp, pointer p) {
6167 pointer q; /* a token list that will name the variable's suffix */
6168 pointer r; /* temporary for token list creation */
6169 while ( name_type(p)>=mp_x_part_sector ) {
6170 @<Preface the output with a part specifier; |return| in the
6171 case of a capsule@>;
6174 while ( name_type(p)>mp_saved_root ) {
6175 @<Ascend one level, pushing a token onto list |q|
6176 and replacing |p| by its parent@>;
6178 r=mp_get_avail(mp); info(r)=link(p); link(r)=q;
6179 if ( name_type(p)==mp_saved_root ) mp_print(mp, "(SAVED)");
6181 mp_show_token_list(mp, r,null,el_gordo,mp->tally);
6182 mp_flush_token_list(mp, r);
6185 @ @<Ascend one level, pushing a token onto list |q|...@>=
6187 if ( name_type(p)==mp_subscr ) {
6188 r=mp_new_num_tok(mp, subscript(p));
6191 } while (name_type(p)!=mp_attr);
6192 } else if ( name_type(p)==mp_structured_root ) {
6193 p=link(p); goto FOUND;
6195 if ( name_type(p)!=mp_attr ) mp_confusion(mp, "var");
6196 @:this can't happen var}{\quad var@>
6197 r=mp_get_avail(mp); info(r)=attr_loc(p);
6204 @ @<Preface the output with a part specifier...@>=
6205 { switch (name_type(p)) {
6206 case mp_x_part_sector: mp_print_char(mp, 'x'); break;
6207 case mp_y_part_sector: mp_print_char(mp, 'y'); break;
6208 case mp_xx_part_sector: mp_print(mp, "xx"); break;
6209 case mp_xy_part_sector: mp_print(mp, "xy"); break;
6210 case mp_yx_part_sector: mp_print(mp, "yx"); break;
6211 case mp_yy_part_sector: mp_print(mp, "yy"); break;
6212 case mp_red_part_sector: mp_print(mp, "red"); break;
6213 case mp_green_part_sector: mp_print(mp, "green"); break;
6214 case mp_blue_part_sector: mp_print(mp, "blue"); break;
6215 case mp_cyan_part_sector: mp_print(mp, "cyan"); break;
6216 case mp_magenta_part_sector: mp_print(mp, "magenta"); break;
6217 case mp_yellow_part_sector: mp_print(mp, "yellow"); break;
6218 case mp_black_part_sector: mp_print(mp, "black"); break;
6219 case mp_grey_part_sector: mp_print(mp, "grey"); break;
6221 mp_print(mp, "%CAPSULE"); mp_print_int(mp, p-null); return;
6224 } /* there are no other cases */
6225 mp_print(mp, "part ");
6226 p=link(p-mp->sector_offset[name_type(p)]);
6229 @ The |interesting| function returns |true| if a given variable is not
6230 in a capsule, or if the user wants to trace capsules.
6233 boolean mp_interesting (MP mp,pointer p) {
6234 small_number t; /* a |name_type| */
6235 if ( mp->internal[tracing_capsules]>0 ) {
6239 if ( t>=mp_x_part_sector ) if ( t!=mp_capsule )
6240 t=name_type(link(p-mp->sector_offset[t]));
6241 return (t!=mp_capsule);
6245 @ Now here is a subroutine that converts an unstructured type into an
6246 equivalent structured type, by inserting a |mp_structured| node that is
6247 capable of growing. This operation is done only when |name_type(p)=root|,
6248 |subscr|, or |attr|.
6250 The procedure returns a pointer to the new node that has taken node~|p|'s
6251 place in the structure. Node~|p| itself does not move, nor are its
6252 |value| or |type| fields changed in any way.
6255 pointer mp_new_structure (MP mp,pointer p) {
6256 pointer q,r=0; /* list manipulation registers */
6257 switch (name_type(p)) {
6259 q=link(p); r=mp_get_node(mp, value_node_size); equiv(q)=r;
6262 @<Link a new subscript node |r| in place of node |p|@>;
6265 @<Link a new attribute node |r| in place of node |p|@>;
6268 mp_confusion(mp, "struct");
6269 @:this can't happen struct}{\quad struct@>
6272 link(r)=link(p); type(r)=mp_structured; name_type(r)=name_type(p);
6273 attr_head(r)=p; name_type(p)=mp_structured_root;
6274 q=mp_get_node(mp, attr_node_size); link(p)=q; subscr_head(r)=q;
6275 parent(q)=r; type(q)=undefined; name_type(q)=mp_attr; link(q)=end_attr;
6276 attr_loc(q)=collective_subscript;
6280 @ @<Link a new subscript node |r| in place of node |p|@>=
6285 } while (name_type(q)!=mp_attr);
6286 q=parent(q); r=subscr_head_loc(q); /* |link(r)=subscr_head(q)| */
6290 r=mp_get_node(mp, subscr_node_size);
6291 link(q)=r; subscript(r)=subscript(p);
6294 @ If the attribute is |collective_subscript|, there are two pointers to
6295 node~|p|, so we must change both of them.
6297 @<Link a new attribute node |r| in place of node |p|@>=
6299 q=parent(p); r=attr_head(q);
6303 r=mp_get_node(mp, attr_node_size); link(q)=r;
6304 mp->mem[attr_loc_loc(r)]=mp->mem[attr_loc_loc(p)]; /* copy |attr_loc| and |parent| */
6305 if ( attr_loc(p)==collective_subscript ) {
6306 q=subscr_head_loc(parent(p));
6307 while ( link(q)!=p ) q=link(q);
6312 @ The |find_variable| routine is given a pointer~|t| to a nonempty token
6313 list of suffixes; it returns a pointer to the corresponding two-word
6314 value. For example, if |t| points to token \.x followed by a numeric
6315 token containing the value~7, |find_variable| finds where the value of
6316 \.{x7} is stored in memory. This may seem a simple task, and it
6317 usually is, except when \.{x7} has never been referenced before.
6318 Indeed, \.x may never have even been subscripted before; complexities
6319 arise with respect to updating the collective subscript information.
6321 If a macro type is detected anywhere along path~|t|, or if the first
6322 item on |t| isn't a |tag_token|, the value |null| is returned.
6323 Otherwise |p| will be a non-null pointer to a node such that
6324 |undefined<type(p)<mp_structured|.
6326 @d abort_find { return null; }
6329 pointer mp_find_variable (MP mp,pointer t) {
6330 pointer p,q,r,s; /* nodes in the ``value'' line */
6331 pointer pp,qq,rr,ss; /* nodes in the ``collective'' line */
6332 integer n; /* subscript or attribute */
6333 memory_word save_word; /* temporary storage for a word of |mem| */
6335 p=info(t); t=link(t);
6336 if ( (eq_type(p) % outer_tag) != tag_token ) abort_find;
6337 if ( equiv(p)==null ) mp_new_root(mp, p);
6340 @<Make sure that both nodes |p| and |pp| are of |mp_structured| type@>;
6341 if ( t<mp->hi_mem_min ) {
6342 @<Descend one level for the subscript |value(t)|@>
6344 @<Descend one level for the attribute |info(t)|@>;
6348 if ( type(pp)>=mp_structured ) {
6349 if ( type(pp)==mp_structured ) pp=attr_head(pp); else abort_find;
6351 if ( type(p)==mp_structured ) p=attr_head(p);
6352 if ( type(p)==undefined ) {
6353 if ( type(pp)==undefined ) { type(pp)=mp_numeric_type; value(pp)=null; };
6354 type(p)=type(pp); value(p)=null;
6359 @ Although |pp| and |p| begin together, they diverge when a subscript occurs;
6360 |pp|~stays in the collective line while |p|~goes through actual subscript
6363 @<Make sure that both nodes |p| and |pp|...@>=
6364 if ( type(pp)!=mp_structured ) {
6365 if ( type(pp)>mp_structured ) abort_find;
6366 ss=mp_new_structure(mp, pp);
6369 }; /* now |type(pp)=mp_structured| */
6370 if ( type(p)!=mp_structured ) /* it cannot be |>mp_structured| */
6371 p=mp_new_structure(mp, p) /* now |type(p)=mp_structured| */
6373 @ We want this part of the program to be reasonably fast, in case there are
6375 lots of subscripts at the same level of the data structure. Therefore
6376 we store an ``infinite'' value in the word that appears at the end of the
6377 subscript list, even though that word isn't part of a subscript node.
6379 @<Descend one level for the subscript |value(t)|@>=
6382 pp=link(attr_head(pp)); /* now |attr_loc(pp)=collective_subscript| */
6383 q=link(attr_head(p)); save_word=mp->mem[subscript_loc(q)];
6384 subscript(q)=el_gordo; s=subscr_head_loc(p); /* |link(s)=subscr_head(p)| */
6387 } while (n>subscript(s));
6388 if ( n==subscript(s) ) {
6391 p=mp_get_node(mp, subscr_node_size); link(r)=p; link(p)=s;
6392 subscript(p)=n; name_type(p)=mp_subscr; type(p)=undefined;
6394 mp->mem[subscript_loc(q)]=save_word;
6397 @ @<Descend one level for the attribute |info(t)|@>=
6403 } while (n>attr_loc(ss));
6404 if ( n<attr_loc(ss) ) {
6405 qq=mp_get_node(mp, attr_node_size); link(rr)=qq; link(qq)=ss;
6406 attr_loc(qq)=n; name_type(qq)=mp_attr; type(qq)=undefined;
6407 parent(qq)=pp; ss=qq;
6412 pp=ss; s=attr_head(p);
6415 } while (n>attr_loc(s));
6416 if ( n==attr_loc(s) ) {
6419 q=mp_get_node(mp, attr_node_size); link(r)=q; link(q)=s;
6420 attr_loc(q)=n; name_type(q)=mp_attr; type(q)=undefined;
6426 @ Variables lose their former values when they appear in a type declaration,
6427 or when they are defined to be macros or \&{let} equal to something else.
6428 A subroutine will be defined later that recycles the storage associated
6429 with any particular |type| or |value|; our goal now is to study a higher
6430 level process called |flush_variable|, which selectively frees parts of a
6433 This routine has some complexity because of examples such as
6434 `\hbox{\tt numeric x[]a[]b}'
6435 which recycles all variables of the form \.{x[i]a[j]b} (and no others), while
6436 `\hbox{\tt vardef x[]a[]=...}'
6437 discards all variables of the form \.{x[i]a[j]} followed by an arbitrary
6438 suffix, except for the collective node \.{x[]a[]} itself. The obvious way
6439 to handle such examples is to use recursion; so that's what we~do.
6442 Parameter |p| points to the root information of the variable;
6443 parameter |t| points to a list of one-word nodes that represent
6444 suffixes, with |info=collective_subscript| for subscripts.
6447 @<Declare subroutines for printing expressions@>
6448 @<Declare basic dependency-list subroutines@>
6449 @<Declare the recycling subroutines@>
6450 void mp_flush_cur_exp (MP mp,scaled v) ;
6451 @<Declare the procedure called |flush_below_variable|@>
6454 void mp_flush_variable (MP mp,pointer p, pointer t, boolean discard_suffixes) {
6455 pointer q,r; /* list manipulation */
6456 halfword n; /* attribute to match */
6458 if ( type(p)!=mp_structured ) return;
6459 n=info(t); t=link(t);
6460 if ( n==collective_subscript ) {
6461 r=subscr_head_loc(p); q=link(r); /* |q=subscr_head(p)| */
6462 while ( name_type(q)==mp_subscr ){
6463 mp_flush_variable(mp, q,t,discard_suffixes);
6465 if ( type(q)==mp_structured ) r=q;
6466 else { link(r)=link(q); mp_free_node(mp, q,subscr_node_size); }
6476 } while (attr_loc(p)<n);
6477 if ( attr_loc(p)!=n ) return;
6479 if ( discard_suffixes ) {
6480 mp_flush_below_variable(mp, p);
6482 if ( type(p)==mp_structured ) p=attr_head(p);
6483 mp_recycle_value(mp, p);
6487 @ The next procedure is simpler; it wipes out everything but |p| itself,
6488 which becomes undefined.
6490 @<Declare the procedure called |flush_below_variable|@>=
6491 void mp_flush_below_variable (MP mp, pointer p);
6494 void mp_flush_below_variable (MP mp,pointer p) {
6495 pointer q,r; /* list manipulation registers */
6496 if ( type(p)!=mp_structured ) {
6497 mp_recycle_value(mp, p); /* this sets |type(p)=undefined| */
6500 while ( name_type(q)==mp_subscr ) {
6501 mp_flush_below_variable(mp, q); r=q; q=link(q);
6502 mp_free_node(mp, r,subscr_node_size);
6504 r=attr_head(p); q=link(r); mp_recycle_value(mp, r);
6505 if ( name_type(p)<=mp_saved_root ) mp_free_node(mp, r,value_node_size);
6506 else mp_free_node(mp, r,subscr_node_size);
6507 /* we assume that |subscr_node_size=attr_node_size| */
6509 mp_flush_below_variable(mp, q); r=q; q=link(q); mp_free_node(mp, r,attr_node_size);
6510 } while (q!=end_attr);
6515 @ Just before assigning a new value to a variable, we will recycle the
6516 old value and make the old value undefined. The |und_type| routine
6517 determines what type of undefined value should be given, based on
6518 the current type before recycling.
6521 small_number mp_und_type (MP mp,pointer p) {
6523 case undefined: case mp_vacuous:
6525 case mp_boolean_type: case mp_unknown_boolean:
6526 return mp_unknown_boolean;
6527 case mp_string_type: case mp_unknown_string:
6528 return mp_unknown_string;
6529 case mp_pen_type: case mp_unknown_pen:
6530 return mp_unknown_pen;
6531 case mp_path_type: case mp_unknown_path:
6532 return mp_unknown_path;
6533 case mp_picture_type: case mp_unknown_picture:
6534 return mp_unknown_picture;
6535 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
6536 case mp_pair_type: case mp_numeric_type:
6538 case mp_known: case mp_dependent: case mp_proto_dependent: case mp_independent:
6539 return mp_numeric_type;
6540 } /* there are no other cases */
6544 @ The |clear_symbol| routine is used when we want to redefine the equivalent
6545 of a symbolic token. It must remove any variable structure or macro
6546 definition that is currently attached to that symbol. If the |saving|
6547 parameter is true, a subsidiary structure is saved instead of destroyed.
6550 void mp_clear_symbol (MP mp,pointer p, boolean saving) {
6551 pointer q; /* |equiv(p)| */
6553 switch (eq_type(p) % outer_tag) {
6555 case secondary_primary_macro:
6556 case tertiary_secondary_macro:
6557 case expression_tertiary_macro:
6558 if ( ! saving ) mp_delete_mac_ref(mp, q);
6563 name_type(q)=mp_saved_root;
6565 mp_flush_below_variable(mp, q); mp_free_node(mp,q,value_node_size);
6572 mp->eqtb[p]=mp->eqtb[frozen_undefined];
6575 @* \[16] Saving and restoring equivalents.
6576 The nested structure given by \&{begingroup} and \&{endgroup}
6577 allows |eqtb| entries to be saved and restored, so that temporary changes
6578 can be made without difficulty. When the user requests a current value to
6579 be saved, \MP\ puts that value into its ``save stack.'' An appearance of
6580 \&{endgroup} ultimately causes the old values to be removed from the save
6581 stack and put back in their former places.
6583 The save stack is a linked list containing three kinds of entries,
6584 distinguished by their |info| fields. If |p| points to a saved item,
6588 |info(p)=0| stands for a group boundary; each \&{begingroup} contributes
6589 such an item to the save stack and each \&{endgroup} cuts back the stack
6590 until the most recent such entry has been removed.
6593 |info(p)=q|, where |1<=q<=hash_end|, means that |mem[p+1]| holds the former
6594 contents of |eqtb[q]|. Such save stack entries are generated by \&{save}
6595 commands or suitable \&{interim} commands.
6598 |info(p)=hash_end+q|, where |q>0|, means that |value(p)| is a |scaled|
6599 integer to be restored to internal parameter number~|q|. Such entries
6600 are generated by \&{interim} commands.
6603 The global variable |save_ptr| points to the top item on the save stack.
6605 @d save_node_size 2 /* number of words per non-boundary save-stack node */
6606 @d saved_equiv(A) mp->mem[(A)+1].hh /* where an |eqtb| entry gets saved */
6607 @d save_boundary_item(A) { (A)=mp_get_avail(mp); info((A))=0;
6608 link((A))=mp->save_ptr; mp->save_ptr=(A);
6612 pointer save_ptr; /* the most recently saved item */
6614 @ @<Set init...@>=mp->save_ptr=null;
6616 @ The |save_variable| routine is given a hash address |q|; it salts this
6617 address in the save stack, together with its current equivalent,
6618 then makes token~|q| behave as though it were brand new.
6620 Nothing is stacked when |save_ptr=null|, however; there's no way to remove
6621 things from the stack when the program is not inside a group, so there's
6622 no point in wasting the space.
6624 @c void mp_save_variable (MP mp,pointer q) {
6625 pointer p; /* temporary register */
6626 if ( mp->save_ptr!=null ){
6627 p=mp_get_node(mp, save_node_size); info(p)=q; link(p)=mp->save_ptr;
6628 saved_equiv(p)=mp->eqtb[q]; mp->save_ptr=p;
6630 mp_clear_symbol(mp, q,(mp->save_ptr!=null));
6633 @ Similarly, |save_internal| is given the location |q| of an internal
6634 quantity like |tracing_pens|. It creates a save stack entry of the
6637 @c void mp_save_internal (MP mp,halfword q) {
6638 pointer p; /* new item for the save stack */
6639 if ( mp->save_ptr!=null ){
6640 p=mp_get_node(mp, save_node_size); info(p)=hash_end+q;
6641 link(p)=mp->save_ptr; value(p)=mp->internal[q]; mp->save_ptr=p;
6645 @ At the end of a group, the |unsave| routine restores all of the saved
6646 equivalents in reverse order. This routine will be called only when there
6647 is at least one boundary item on the save stack.
6650 void mp_unsave (MP mp) {
6651 pointer q; /* index to saved item */
6652 pointer p; /* temporary register */
6653 while ( info(mp->save_ptr)!=0 ) {
6654 q=info(mp->save_ptr);
6656 if ( mp->internal[tracing_restores]>0 ) {
6657 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6658 mp_print(mp, mp->int_name[q-(hash_end)]); mp_print_char(mp, '=');
6659 mp_print_scaled(mp, value(mp->save_ptr)); mp_print_char(mp, '}');
6660 mp_end_diagnostic(mp, false);
6662 mp->internal[q-(hash_end)]=value(mp->save_ptr);
6664 if ( mp->internal[tracing_restores]>0 ) {
6665 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6666 mp_print_text(q); mp_print_char(mp, '}');
6667 mp_end_diagnostic(mp, false);
6669 mp_clear_symbol(mp, q,false);
6670 mp->eqtb[q]=saved_equiv(mp->save_ptr);
6671 if ( eq_type(q) % outer_tag==tag_token ) {
6673 if ( p!=null ) name_type(p)=mp_root;
6676 p=link(mp->save_ptr);
6677 mp_free_node(mp, mp->save_ptr,save_node_size); mp->save_ptr=p;
6679 p=link(mp->save_ptr); free_avail(mp->save_ptr); mp->save_ptr=p;
6682 @* \[17] Data structures for paths.
6683 When a \MP\ user specifies a path, \MP\ will create a list of knots
6684 and control points for the associated cubic spline curves. If the
6685 knots are $z_0$, $z_1$, \dots, $z_n$, there are control points
6686 $z_k^+$ and $z_{k+1}^-$ such that the cubic splines between knots
6687 $z_k$ and $z_{k+1}$ are defined by B\'ezier's formula
6688 @:Bezier}{B\'ezier, Pierre Etienne@>
6689 $$\eqalign{z(t)&=B(z_k,z_k^+,z_{k+1}^-,z_{k+1};t)\cr
6690 &=(1-t)^3z_k+3(1-t)^2tz_k^++3(1-t)t^2z_{k+1}^-+t^3z_{k+1}\cr}$$
6693 There is a 8-word node for each knot $z_k$, containing one word of
6694 control information and six words for the |x| and |y| coordinates of
6695 $z_k^-$ and $z_k$ and~$z_k^+$. The control information appears in the
6696 |left_type| and |right_type| fields, which each occupy a quarter of
6697 the first word in the node; they specify properties of the curve as it
6698 enters and leaves the knot. There's also a halfword |link| field,
6699 which points to the following knot, and a final supplementary word (of
6700 which only a quarter is used).
6702 If the path is a closed contour, knots 0 and |n| are identical;
6703 i.e., the |link| in knot |n-1| points to knot~0. But if the path
6704 is not closed, the |left_type| of knot~0 and the |right_type| of knot~|n|
6705 are equal to |endpoint|. In the latter case the |link| in knot~|n| points
6706 to knot~0, and the control points $z_0^-$ and $z_n^+$ are not used.
6708 @d left_type(A) mp->mem[(A)].hh.b0 /* characterizes the path entering this knot */
6709 @d right_type(A) mp->mem[(A)].hh.b1 /* characterizes the path leaving this knot */
6710 @d endpoint 0 /* |left_type| at path beginning and |right_type| at path end */
6711 @d x_coord(A) mp->mem[(A)+1].sc /* the |x| coordinate of this knot */
6712 @d y_coord(A) mp->mem[(A)+2].sc /* the |y| coordinate of this knot */
6713 @d left_x(A) mp->mem[(A)+3].sc /* the |x| coordinate of previous control point */
6714 @d left_y(A) mp->mem[(A)+4].sc /* the |y| coordinate of previous control point */
6715 @d right_x(A) mp->mem[(A)+5].sc /* the |x| coordinate of next control point */
6716 @d right_y(A) mp->mem[(A)+6].sc /* the |y| coordinate of next control point */
6717 @d x_loc(A) ((A)+1) /* where the |x| coordinate is stored in a knot */
6718 @d y_loc(A) ((A)+2) /* where the |y| coordinate is stored in a knot */
6719 @d knot_coord(A) mp->mem[(A)].sc /* |x| or |y| coordinate given |x_loc| or |y_loc| */
6720 @d left_coord(A) mp->mem[(A)+2].sc
6721 /* coordinate of previous control point given |x_loc| or |y_loc| */
6722 @d right_coord(A) mp->mem[(A)+4].sc
6723 /* coordinate of next control point given |x_loc| or |y_loc| */
6724 @d knot_node_size 8 /* number of words in a knot node */
6726 @ Before the B\'ezier control points have been calculated, the memory
6727 space they will ultimately occupy is taken up by information that can be
6728 used to compute them. There are four cases:
6731 \textindent{$\bullet$} If |right_type=open|, the curve should leave
6732 the knot in the same direction it entered; \MP\ will figure out a
6736 \textindent{$\bullet$} If |right_type=curl|, the curve should leave the
6737 knot in a direction depending on the angle at which it enters the next
6738 knot and on the curl parameter stored in |right_curl|.
6741 \textindent{$\bullet$} If |right_type=given|, the curve should leave the
6742 knot in a nonzero direction stored as an |angle| in |right_given|.
6745 \textindent{$\bullet$} If |right_type=explicit|, the B\'ezier control
6746 point for leaving this knot has already been computed; it is in the
6747 |right_x| and |right_y| fields.
6750 The rules for |left_type| are similar, but they refer to the curve entering
6751 the knot, and to \\{left} fields instead of \\{right} fields.
6753 Non-|explicit| control points will be chosen based on ``tension'' parameters
6754 in the |left_tension| and |right_tension| fields. The
6755 `\&{atleast}' option is represented by negative tension values.
6756 @:at_least_}{\&{atleast} primitive@>
6758 For example, the \MP\ path specification
6759 $$\.{z0..z1..tension atleast 1..\{curl 2\}z2..z3\{-1,-2\}..tension
6761 where \.p is the path `\.{z4..controls z45 and z54..z5}', will be represented
6763 \def\lodash{\hbox to 1.1em{\thinspace\hrulefill\thinspace}}
6764 $$\vbox{\halign{#\hfil&&\qquad#\hfil\cr
6765 |left_type|&\\{left} info&|x_coord,y_coord|&|right_type|&\\{right} info\cr
6767 |endpoint|&\lodash$,\,$\lodash&$x_0,y_0$&|curl|&$1.0,1.0$\cr
6768 |open|&\lodash$,1.0$&$x_1,y_1$&|open|&\lodash$,-1.0$\cr
6769 |curl|&$2.0,-1.0$&$x_2,y_2$&|curl|&$2.0,1.0$\cr
6770 |given|&$d,1.0$&$x_3,y_3$&|given|&$d,3.0$\cr
6771 |open|&\lodash$,4.0$&$x_4,y_4$&|explicit|&$x_{45},y_{45}$\cr
6772 |explicit|&$x_{54},y_{54}$&$x_5,y_5$&|endpoint|&\lodash$,\,$\lodash\cr}}$$
6773 Here |d| is the |angle| obtained by calling |n_arg(-unity,-two)|.
6774 Of course, this example is more complicated than anything a normal user
6777 These types must satisfy certain restrictions because of the form of \MP's
6779 (i)~|open| type never appears in the same node together with |endpoint|,
6781 (ii)~The |right_type| of a node is |explicit| if and only if the
6782 |left_type| of the following node is |explicit|.
6783 (iii)~|endpoint| types occur only at the ends, as mentioned above.
6785 @d left_curl left_x /* curl information when entering this knot */
6786 @d left_given left_x /* given direction when entering this knot */
6787 @d left_tension left_y /* tension information when entering this knot */
6788 @d right_curl right_x /* curl information when leaving this knot */
6789 @d right_given right_x /* given direction when leaving this knot */
6790 @d right_tension right_y /* tension information when leaving this knot */
6791 @d explicit 1 /* |left_type| or |right_type| when control points are known */
6792 @d given 2 /* |left_type| or |right_type| when a direction is given */
6793 @d curl 3 /* |left_type| or |right_type| when a curl is desired */
6794 @d open 4 /* |left_type| or |right_type| when \MP\ should choose the direction */
6796 @ Knots can be user-supplied, or they can be created by program code,
6797 like the |split_cubic| function, or |copy_path|. The distinction is
6798 needed for the cleanup routine that runs after |split_cubic|, because
6799 it should only delete knots it has previously inserted, and never
6800 anything that was user-supplied. In order to be able to differentiate
6801 one knot from another, we will set |originator(p):=metapost_user| when
6802 it appeared in the actual metapost program, and
6803 |originator(p):=program_code| in all other cases.
6805 @d originator(A) mp->mem[(A)+7].hh.b0 /* the creator of this knot */
6806 @d program_code 0 /* not created by a user */
6807 @d metapost_user 1 /* created by a user */
6809 @ Here is a routine that prints a given knot list
6810 in symbolic form. It illustrates the conventions discussed above,
6811 and checks for anomalies that might arise while \MP\ is being debugged.
6813 @<Declare subroutines for printing expressions@>=
6814 void mp_pr_path (MP mp,pointer h);
6817 void mp_pr_path (MP mp,pointer h) {
6818 pointer p,q; /* for list traversal */
6822 if ( (p==null)||(q==null) ) {
6823 mp_print_nl(mp, "???"); return; /* this won't happen */
6826 @<Print information for adjacent knots |p| and |q|@>;
6829 if ( (p!=h)||(left_type(h)!=endpoint) ) {
6830 @<Print two dots, followed by |given| or |curl| if present@>;
6833 if ( left_type(h)!=endpoint )
6834 mp_print(mp, "cycle");
6837 @ @<Print information for adjacent knots...@>=
6838 mp_print_two(mp, x_coord(p),y_coord(p));
6839 switch (right_type(p)) {
6841 if ( left_type(p)==open ) mp_print(mp, "{open?}"); /* can't happen */
6843 if ( (left_type(q)!=endpoint)||(q!=h) ) q=null; /* force an error */
6847 @<Print control points between |p| and |q|, then |goto done1|@>;
6850 @<Print information for a curve that begins |open|@>;
6854 @<Print information for a curve that begins |curl| or |given|@>;
6857 mp_print(mp, "???"); /* can't happen */
6861 if ( left_type(q)<=explicit ) {
6862 mp_print(mp, "..control?"); /* can't happen */
6864 } else if ( (right_tension(p)!=unity)||(left_tension(q)!=unity) ) {
6865 @<Print tension between |p| and |q|@>;
6868 @ Since |n_sin_cos| produces |fraction| results, which we will print as if they
6869 were |scaled|, the magnitude of a |given| direction vector will be~4096.
6871 @<Print two dots...@>=
6873 mp_print_nl(mp, " ..");
6874 if ( left_type(p)==given ) {
6875 mp_n_sin_cos(mp, left_given(p)); mp_print_char(mp, '{');
6876 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
6877 mp_print_scaled(mp, mp->n_sin); mp_print_char(mp, '}');
6878 } else if ( left_type(p)==curl ){
6879 mp_print(mp, "{curl ");
6880 mp_print_scaled(mp, left_curl(p)); mp_print_char(mp, '}');
6884 @ @<Print tension between |p| and |q|@>=
6886 mp_print(mp, "..tension ");
6887 if ( right_tension(p)<0 ) mp_print(mp, "atleast");
6888 mp_print_scaled(mp, abs(right_tension(p)));
6889 if ( right_tension(p)!=left_tension(q) ){
6890 mp_print(mp, " and ");
6891 if ( left_tension(q)<0 ) mp_print(mp, "atleast");
6892 mp_print_scaled(mp, abs(left_tension(q)));
6896 @ @<Print control points between |p| and |q|, then |goto done1|@>=
6898 mp_print(mp, "..controls ");
6899 mp_print_two(mp, right_x(p),right_y(p));
6900 mp_print(mp, " and ");
6901 if ( left_type(q)!=explicit ) {
6902 mp_print(mp, "??"); /* can't happen */
6905 mp_print_two(mp, left_x(q),left_y(q));
6910 @ @<Print information for a curve that begins |open|@>=
6911 if ( (left_type(p)!=explicit)&&(left_type(p)!=open) ) {
6912 mp_print(mp, "{open?}"); /* can't happen */
6916 @ A curl of 1 is shown explicitly, so that the user sees clearly that
6917 \MP's default curl is present.
6919 The code here uses the fact that |left_curl==left_given| and
6920 |right_curl==right_given|.
6922 @<Print information for a curve that begins |curl|...@>=
6924 if ( left_type(p)==open )
6925 mp_print(mp, "??"); /* can't happen */
6927 if ( right_type(p)==curl ) {
6928 mp_print(mp, "{curl "); mp_print_scaled(mp, right_curl(p));
6930 mp_n_sin_cos(mp, right_given(p)); mp_print_char(mp, '{');
6931 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
6932 mp_print_scaled(mp, mp->n_sin);
6934 mp_print_char(mp, '}');
6937 @ It is convenient to have another version of |pr_path| that prints the path
6938 as a diagnostic message.
6940 @<Declare subroutines for printing expressions@>=
6941 void mp_print_path (MP mp,pointer h, char *s, boolean nuline) {
6942 mp_print_diagnostic(mp, "Path", s, nuline); mp_print_ln(mp);
6945 mp_end_diagnostic(mp, true);
6948 @ If we want to duplicate a knot node, we can say |copy_knot|:
6951 pointer mp_copy_knot (MP mp,pointer p) {
6952 pointer q; /* the copy */
6953 int k; /* runs through the words of a knot node */
6954 q=mp_get_node(mp, knot_node_size);
6955 for (k=0;k<=knot_node_size-1;k++) {
6956 mp->mem[q+k]=mp->mem[p+k];
6958 originator(q)=originator(p);
6962 @ The |copy_path| routine makes a clone of a given path.
6965 pointer mp_copy_path (MP mp, pointer p) {
6966 pointer q,pp,qq; /* for list manipulation */
6967 q=mp_copy_knot(mp, p);
6970 link(qq)=mp_copy_knot(mp, pp);
6978 @ Similarly, there's a way to copy the {\sl reverse\/} of a path. This procedure
6979 returns a pointer to the first node of the copy, if the path is a cycle,
6980 but to the final node of a non-cyclic copy. The global
6981 variable |path_tail| will point to the final node of the original path;
6982 this trick makes it easier to implement `\&{doublepath}'.
6984 All node types are assumed to be |endpoint| or |explicit| only.
6987 pointer mp_htap_ypoc (MP mp,pointer p) {
6988 pointer q,pp,qq,rr; /* for list manipulation */
6989 q=mp_get_node(mp, knot_node_size); /* this will correspond to |p| */
6992 right_type(qq)=left_type(pp); left_type(qq)=right_type(pp);
6993 x_coord(qq)=x_coord(pp); y_coord(qq)=y_coord(pp);
6994 right_x(qq)=left_x(pp); right_y(qq)=left_y(pp);
6995 left_x(qq)=right_x(pp); left_y(qq)=right_y(pp);
6996 originator(qq)=originator(pp);
6997 if ( link(pp)==p ) {
6998 link(q)=qq; mp->path_tail=pp; return q;
7000 rr=mp_get_node(mp, knot_node_size); link(rr)=qq; qq=rr; pp=link(pp);
7005 pointer path_tail; /* the node that links to the beginning of a path */
7007 @ When a cyclic list of knot nodes is no longer needed, it can be recycled by
7008 calling the following subroutine.
7010 @<Declare the recycling subroutines@>=
7011 void mp_toss_knot_list (MP mp,pointer p) ;
7014 void mp_toss_knot_list (MP mp,pointer p) {
7015 pointer q; /* the node being freed */
7016 pointer r; /* the next node */
7020 mp_free_node(mp, q,knot_node_size); q=r;
7024 @* \[18] Choosing control points.
7025 Now we must actually delve into one of \MP's more difficult routines,
7026 the |make_choices| procedure that chooses angles and control points for
7027 the splines of a curve when the user has not specified them explicitly.
7028 The parameter to |make_choices| points to a list of knots and
7029 path information, as described above.
7031 A path decomposes into independent segments at ``breakpoint'' knots,
7032 which are knots whose left and right angles are both prespecified in
7033 some way (i.e., their |left_type| and |right_type| aren't both open).
7036 @<Declare the procedure called |solve_choices|@>;
7037 void mp_make_choices (MP mp,pointer knots) {
7038 pointer h; /* the first breakpoint */
7039 pointer p,q; /* consecutive breakpoints being processed */
7040 @<Other local variables for |make_choices|@>;
7041 check_arith; /* make sure that |arith_error=false| */
7042 if ( mp->internal[tracing_choices]>0 )
7043 mp_print_path(mp, knots,", before choices",true);
7044 @<If consecutive knots are equal, join them explicitly@>;
7045 @<Find the first breakpoint, |h|, on the path;
7046 insert an artificial breakpoint if the path is an unbroken cycle@>;
7049 @<Fill in the control points between |p| and the next breakpoint,
7050 then advance |p| to that breakpoint@>;
7052 if ( mp->internal[tracing_choices]>0 )
7053 mp_print_path(mp, knots,", after choices",true);
7054 if ( mp->arith_error ) {
7055 @<Report an unexpected problem during the choice-making@>;
7059 @ @<Report an unexpected problem during the choice...@>=
7061 print_err("Some number got too big");
7062 @.Some number got too big@>
7063 help2("The path that I just computed is out of range.")
7064 ("So it will probably look funny. Proceed, for a laugh.");
7065 mp_put_get_error(mp); mp->arith_error=false;
7068 @ Two knots in a row with the same coordinates will always be joined
7069 by an explicit ``curve'' whose control points are identical with the
7072 @<If consecutive knots are equal, join them explicitly@>=
7076 if ( x_coord(p)==x_coord(q) && y_coord(p)==y_coord(q) && right_type(p)>explicit ) {
7077 right_type(p)=explicit;
7078 if ( left_type(p)==open ) {
7079 left_type(p)=curl; left_curl(p)=unity;
7081 left_type(q)=explicit;
7082 if ( right_type(q)==open ) {
7083 right_type(q)=curl; right_curl(q)=unity;
7085 right_x(p)=x_coord(p); left_x(q)=x_coord(p);
7086 right_y(p)=y_coord(p); left_y(q)=y_coord(p);
7091 @ If there are no breakpoints, it is necessary to compute the direction
7092 angles around an entire cycle. In this case the |left_type| of the first
7093 node is temporarily changed to |end_cycle|.
7095 @d end_cycle (open+1)
7097 @<Find the first breakpoint, |h|, on the path...@>=
7100 if ( left_type(h)!=open ) break;
7101 if ( right_type(h)!=open ) break;
7104 left_type(h)=end_cycle; break;
7108 @ If |right_type(p)<given| and |q=link(p)|, we must have
7109 |right_type(p)=left_type(q)=explicit| or |endpoint|.
7111 @<Fill in the control points between |p| and the next breakpoint...@>=
7113 if ( right_type(p)>=given ) {
7114 while ( (left_type(q)==open)&&(right_type(q)==open) ) q=link(q);
7115 @<Fill in the control information between
7116 consecutive breakpoints |p| and |q|@>;
7117 } else if ( right_type(p)==endpoint ) {
7118 @<Give reasonable values for the unused control points between |p| and~|q|@>;
7122 @ This step makes it possible to transform an explicitly computed path without
7123 checking the |left_type| and |right_type| fields.
7125 @<Give reasonable values for the unused control points between |p| and~|q|@>=
7127 right_x(p)=x_coord(p); right_y(p)=y_coord(p);
7128 left_x(q)=x_coord(q); left_y(q)=y_coord(q);
7131 @ Before we can go further into the way choices are made, we need to
7132 consider the underlying theory. The basic ideas implemented in |make_choices|
7133 are due to John Hobby, who introduced the notion of ``mock curvature''
7134 @^Hobby, John Douglas@>
7135 at a knot. Angles are chosen so that they preserve mock curvature when
7136 a knot is passed, and this has been found to produce excellent results.
7138 It is convenient to introduce some notations that simplify the necessary
7139 formulas. Let $d_{k,k+1}=\vert z\k-z_k\vert$ be the (nonzero) distance
7140 between knots |k| and |k+1|; and let
7141 $${z\k-z_k\over z_k-z_{k-1}}={d_{k,k+1}\over d_{k-1,k}}e^{i\psi_k}$$
7142 so that a polygonal line from $z_{k-1}$ to $z_k$ to $z\k$ turns left
7143 through an angle of~$\psi_k$. We assume that $\vert\psi_k\vert\L180^\circ$.
7144 The control points for the spline from $z_k$ to $z\k$ will be denoted by
7145 $$\eqalign{z_k^+&=z_k+
7146 \textstyle{1\over3}\rho_k e^{i\theta_k}(z\k-z_k),\cr
7148 \textstyle{1\over3}\sigma\k e^{-i\phi\k}(z\k-z_k),\cr}$$
7149 where $\rho_k$ and $\sigma\k$ are nonnegative ``velocity ratios'' at the
7150 beginning and end of the curve, while $\theta_k$ and $\phi\k$ are the
7151 corresponding ``offset angles.'' These angles satisfy the condition
7152 $$\theta_k+\phi_k+\psi_k=0,\eqno(*)$$
7153 whenever the curve leaves an intermediate knot~|k| in the direction that
7156 @ Let $\alpha_k$ and $\beta\k$ be the reciprocals of the ``tension'' of
7157 the curve at its beginning and ending points. This means that
7158 $\rho_k=\alpha_k f(\theta_k,\phi\k)$ and $\sigma\k=\beta\k f(\phi\k,\theta_k)$,
7159 where $f(\theta,\phi)$ is \MP's standard velocity function defined in
7160 the |velocity| subroutine. The cubic spline $B(z_k^{\phantom+},z_k^+,
7161 z\k^-,z\k^{\phantom+};t)$
7164 $${2\sigma\k\sin(\theta_k+\phi\k)-6\sin\theta_k\over\rho_k^2d_{k,k+1}}
7165 \qquad{\rm and}\qquad
7166 {2\rho_k\sin(\theta_k+\phi\k)-6\sin\phi\k\over\sigma\k^2d_{k,k+1}}$$
7167 at |t=0| and |t=1|, respectively. The mock curvature is the linear
7169 approximation to this true curvature that arises in the limit for
7170 small $\theta_k$ and~$\phi\k$, if second-order terms are discarded.
7171 The standard velocity function satisfies
7172 $$f(\theta,\phi)=1+O(\theta^2+\theta\phi+\phi^2);$$
7173 hence the mock curvatures are respectively
7174 $${2\beta\k(\theta_k+\phi\k)-6\theta_k\over\alpha_k^2d_{k,k+1}}
7175 \qquad{\rm and}\qquad
7176 {2\alpha_k(\theta_k+\phi\k)-6\phi\k\over\beta\k^2d_{k,k+1}}.\eqno(**)$$
7178 @ The turning angles $\psi_k$ are given, and equation $(*)$ above
7179 determines $\phi_k$ when $\theta_k$ is known, so the task of
7180 angle selection is essentially to choose appropriate values for each
7181 $\theta_k$. When equation~$(*)$ is used to eliminate $\phi$~variables
7182 from $(**)$, we obtain a system of linear equations of the form
7183 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7185 $$A_k={\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7186 \qquad B_k={3-\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7187 \qquad C_k={3-\beta\k\over\alpha_k^2d_{k,k+1}},
7188 \qquad D_k={\beta\k\over\alpha_k^2d_{k,k+1}}.$$
7189 The tensions are always $3\over4$ or more, hence each $\alpha$ and~$\beta$
7190 will be at most $4\over3$. It follows that $B_k\G{5\over4}A_k$ and
7191 $C_k\G{5\over4}D_k$; hence the equations are diagonally dominant;
7192 hence they have a unique solution. Moreover, in most cases the tensions
7193 are equal to~1, so that $B_k=2A_k$ and $C_k=2D_k$. This makes the
7194 solution numerically stable, and there is an exponential damping
7195 effect: The data at knot $k\pm j$ affects the angle at knot~$k$ by
7196 a factor of~$O(2^{-j})$.
7198 @ However, we still must consider the angles at the starting and ending
7199 knots of a non-cyclic path. These angles might be given explicitly, or
7200 they might be specified implicitly in terms of an amount of ``curl.''
7202 Let's assume that angles need to be determined for a non-cyclic path
7203 starting at $z_0$ and ending at~$z_n$. Then equations of the form
7204 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta_{k+1}=R_k$$
7205 have been given for $0<k<n$, and it will be convenient to introduce
7206 equations of the same form for $k=0$ and $k=n$, where
7207 $$A_0=B_0=C_n=D_n=0.$$
7208 If $\theta_0$ is supposed to have a given value $E_0$, we simply
7209 define $C_0=0$, $D_0=0$, and $R_0=E_0$. Otherwise a curl
7210 parameter, $\gamma_0$, has been specified at~$z_0$; this means
7211 that the mock curvature at $z_0$ should be $\gamma_0$ times the
7212 mock curvature at $z_1$; i.e.,
7213 $${2\beta_1(\theta_0+\phi_1)-6\theta_0\over\alpha_0^2d_{01}}
7214 =\gamma_0{2\alpha_0(\theta_0+\phi_1)-6\phi_1\over\beta_1^2d_{01}}.$$
7215 This equation simplifies to
7216 $$(\alpha_0\chi_0+3-\beta_1)\theta_0+
7217 \bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\theta_1=
7218 -\bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\psi_1,$$
7219 where $\chi_0=\alpha_0^2\gamma_0/\beta_1^2$; so we can set $C_0=
7220 \chi_0\alpha_0+3-\beta_1$, $D_0=(3-\alpha_0)\chi_0+\beta_1$, $R_0=-D_0\psi_1$.
7221 It can be shown that $C_0>0$ and $C_0B_1-A_1D_0>0$ when $\gamma_0\G0$,
7222 hence the linear equations remain nonsingular.
7224 Similar considerations apply at the right end, when the final angle $\phi_n$
7225 may or may not need to be determined. It is convenient to let $\psi_n=0$,
7226 hence $\theta_n=-\phi_n$. We either have an explicit equation $\theta_n=E_n$,
7228 $$\bigl((3-\beta_n)\chi_n+\alpha_{n-1}\bigr)\theta_{n-1}+
7229 (\beta_n\chi_n+3-\alpha_{n-1})\theta_n=0,\qquad
7230 \chi_n={\beta_n^2\gamma_n\over\alpha_{n-1}^2}.$$
7232 When |make_choices| chooses angles, it must compute the coefficients of
7233 these linear equations, then solve the equations. To compute the coefficients,
7234 it is necessary to compute arctangents of the given turning angles~$\psi_k$.
7235 When the equations are solved, the chosen directions $\theta_k$ are put
7236 back into the form of control points by essentially computing sines and
7239 @ OK, we are ready to make the hard choices of |make_choices|.
7240 Most of the work is relegated to an auxiliary procedure
7241 called |solve_choices|, which has been introduced to keep
7242 |make_choices| from being extremely long.
7244 @<Fill in the control information between...@>=
7245 @<Calculate the turning angles $\psi_k$ and the distances $d_{k,k+1}$;
7246 set $n$ to the length of the path@>;
7247 @<Remove |open| types at the breakpoints@>;
7248 mp_solve_choices(mp, p,q,n)
7250 @ It's convenient to precompute quantities that will be needed several
7251 times later. The values of |delta_x[k]| and |delta_y[k]| will be the
7252 coordinates of $z\k-z_k$, and the magnitude of this vector will be
7253 |delta[k]=@t$d_{k,k+1}$@>|. The path angle $\psi_k$ between $z_k-z_{k-1}$
7254 and $z\k-z_k$ will be stored in |psi[k]|.
7257 int path_size; /* maximum number of knots between breakpoints of a path */
7260 scaled *delta; /* knot differences */
7261 angle *psi; /* turning angles */
7263 @ @<Allocate or initialize ...@>=
7269 @ @<Dealloc variables@>=
7275 @ @<Other local variables for |make_choices|@>=
7276 int k,n; /* current and final knot numbers */
7277 pointer s,t; /* registers for list traversal */
7278 scaled delx,dely; /* directions where |open| meets |explicit| */
7279 fraction sine,cosine; /* trig functions of various angles */
7281 @ @<Calculate the turning angles...@>=
7284 k=0; s=p; n=mp->path_size;
7287 mp->delta_x[k]=x_coord(t)-x_coord(s);
7288 mp->delta_y[k]=y_coord(t)-y_coord(s);
7289 mp->delta[k]=mp_pyth_add(mp, mp->delta_x[k],mp->delta_y[k]);
7291 sine=mp_make_fraction(mp, mp->delta_y[k-1],mp->delta[k-1]);
7292 cosine=mp_make_fraction(mp, mp->delta_x[k-1],mp->delta[k-1]);
7293 mp->psi[k]=mp_n_arg(mp, mp_take_fraction(mp, mp->delta_x[k],cosine)+
7294 mp_take_fraction(mp, mp->delta_y[k],sine),
7295 mp_take_fraction(mp, mp->delta_y[k],cosine)-
7296 mp_take_fraction(mp, mp->delta_x[k],sine));
7299 if ( k==mp->path_size ) {
7300 mp_reallocate_paths(mp, mp->path_size+(mp->path_size>>2));
7301 goto RESTART; /* retry, loop size has changed */
7304 } while (! (k>=n)&&(left_type(s)!=end_cycle));
7305 if ( k==n ) mp->psi[n]=0; else mp->psi[k]=mp->psi[1];
7308 @ When we get to this point of the code, |right_type(p)| is either
7309 |given| or |curl| or |open|. If it is |open|, we must have
7310 |left_type(p)=end_cycle| or |left_type(p)=explicit|. In the latter
7311 case, the |open| type is converted to |given|; however, if the
7312 velocity coming into this knot is zero, the |open| type is
7313 converted to a |curl|, since we don't know the incoming direction.
7315 Similarly, |left_type(q)| is either |given| or |curl| or |open| or
7316 |end_cycle|. The |open| possibility is reduced either to |given| or to |curl|.
7318 @<Remove |open| types at the breakpoints@>=
7319 if ( left_type(q)==open ) {
7320 delx=right_x(q)-x_coord(q); dely=right_y(q)-y_coord(q);
7321 if ( (delx==0)&&(dely==0) ) {
7322 left_type(q)=curl; left_curl(q)=unity;
7324 left_type(q)=given; left_given(q)=mp_n_arg(mp, delx,dely);
7327 if ( (right_type(p)==open)&&(left_type(p)==explicit) ) {
7328 delx=x_coord(p)-left_x(p); dely=y_coord(p)-left_y(p);
7329 if ( (delx==0)&&(dely==0) ) {
7330 right_type(p)=curl; right_curl(p)=unity;
7332 right_type(p)=given; right_given(p)=mp_n_arg(mp, delx,dely);
7336 @ Linear equations need to be solved whenever |n>1|; and also when |n=1|
7337 and exactly one of the breakpoints involves a curl. The simplest case occurs
7338 when |n=1| and there is a curl at both breakpoints; then we simply draw
7341 But before coding up the simple cases, we might as well face the general case,
7342 since we must deal with it sooner or later, and since the general case
7343 is likely to give some insight into the way simple cases can be handled best.
7345 When there is no cycle, the linear equations to be solved form a tridiagonal
7346 system, and we can apply the standard technique of Gaussian elimination
7347 to convert that system to a sequence of equations of the form
7348 $$\theta_0+u_0\theta_1=v_0,\quad
7349 \theta_1+u_1\theta_2=v_1,\quad\ldots,\quad
7350 \theta_{n-1}+u_{n-1}\theta_n=v_{n-1},\quad
7352 It is possible to do this diagonalization while generating the equations.
7353 Once $\theta_n$ is known, it is easy to determine $\theta_{n-1}$, \dots,
7354 $\theta_1$, $\theta_0$; thus, the equations will be solved.
7356 The procedure is slightly more complex when there is a cycle, but the
7357 basic idea will be nearly the same. In the cyclic case the right-hand
7358 sides will be $v_k+w_k\theta_0$ instead of simply $v_k$, and we will start
7359 the process off with $u_0=v_0=0$, $w_0=1$. The final equation will be not
7360 $\theta_n=v_n$ but $\theta_n+u_n\theta_1=v_n+w_n\theta_0$; an appropriate
7361 ending routine will take account of the fact that $\theta_n=\theta_0$ and
7362 eliminate the $w$'s from the system, after which the solution can be
7365 When $u_k$, $v_k$, and $w_k$ are being computed, the three pointer
7366 variables |r|, |s|,~|t| will point respectively to knots |k-1|, |k|,
7367 and~|k+1|. The $u$'s and $w$'s are scaled by $2^{28}$, i.e., they are
7368 of type |fraction|; the $\theta$'s and $v$'s are of type |angle|.
7371 angle *theta; /* values of $\theta_k$ */
7372 fraction *uu; /* values of $u_k$ */
7373 angle *vv; /* values of $v_k$ */
7374 fraction *ww; /* values of $w_k$ */
7376 @ @<Allocate or initialize ...@>=
7382 @ @<Dealloc variables@>=
7388 @ @<Declare |mp_reallocate| functions@>=
7389 void mp_reallocate_paths (MP mp, int l);
7392 void mp_reallocate_paths (MP mp, int l) {
7393 XREALLOC (mp->delta_x, (l+1), scaled);
7394 XREALLOC (mp->delta_y, (l+1), scaled);
7395 XREALLOC (mp->delta, (l+1), scaled);
7396 XREALLOC (mp->psi, (l+1), angle);
7397 XREALLOC (mp->theta, (l+1), angle);
7398 XREALLOC (mp->uu, (l+1), fraction);
7399 XREALLOC (mp->vv, (l+1), angle);
7400 XREALLOC (mp->ww, (l+1), fraction);
7404 @ Our immediate problem is to get the ball rolling by setting up the
7405 first equation or by realizing that no equations are needed, and to fit
7406 this initialization into a framework suitable for the overall computation.
7408 @<Declare the procedure called |solve_choices|@>=
7409 @<Declare subroutines needed by |solve_choices|@>;
7410 void mp_solve_choices (MP mp,pointer p, pointer q, halfword n) {
7411 int k; /* current knot number */
7412 pointer r,s,t; /* registers for list traversal */
7413 @<Other local variables for |solve_choices|@>;
7418 @<Get the linear equations started; or |return|
7419 with the control points in place, if linear equations
7422 switch (left_type(s)) {
7423 case end_cycle: case open:
7424 @<Set up equation to match mock curvatures
7425 at $z_k$; then |goto found| with $\theta_n$
7426 adjusted to equal $\theta_0$, if a cycle has ended@>;
7429 @<Set up equation for a curl at $\theta_n$
7433 @<Calculate the given value of $\theta_n$
7436 } /* there are no other cases */
7441 @<Finish choosing angles and assigning control points@>;
7444 @ On the first time through the loop, we have |k=0| and |r| is not yet
7445 defined. The first linear equation, if any, will have $A_0=B_0=0$.
7447 @<Get the linear equations started...@>=
7448 switch (right_type(s)) {
7450 if ( left_type(t)==given ) {
7451 @<Reduce to simple case of two givens and |return|@>
7453 @<Set up the equation for a given value of $\theta_0$@>;
7457 if ( left_type(t)==curl ) {
7458 @<Reduce to simple case of straight line and |return|@>
7460 @<Set up the equation for a curl at $\theta_0$@>;
7464 mp->uu[0]=0; mp->vv[0]=0; mp->ww[0]=fraction_one;
7465 /* this begins a cycle */
7467 } /* there are no other cases */
7469 @ The general equation that specifies equality of mock curvature at $z_k$ is
7470 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7471 as derived above. We want to combine this with the already-derived equation
7472 $\theta_{k-1}+u_{k-1}\theta_k=v_{k-1}+w_{k-1}\theta_0$ in order to obtain
7474 $\theta_k+u_k\theta\k=v_k+w_k\theta_0$. This can be done by dividing the
7476 $$(B_k-u_{k-1}A_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k-A_kv_{k-1}
7477 -A_kw_{k-1}\theta_0$$
7478 by $B_k-u_{k-1}A_k+C_k$. The trick is to do this carefully with
7479 fixed-point arithmetic, avoiding the chance of overflow while retaining
7482 The calculations will be performed in several registers that
7483 provide temporary storage for intermediate quantities.
7485 @<Other local variables for |solve_choices|@>=
7486 fraction aa,bb,cc,ff,acc; /* temporary registers */
7487 scaled dd,ee; /* likewise, but |scaled| */
7488 scaled lt,rt; /* tension values */
7490 @ @<Set up equation to match mock curvatures...@>=
7491 { @<Calculate the values $\\{aa}=A_k/B_k$, $\\{bb}=D_k/C_k$,
7492 $\\{dd}=(3-\alpha_{k-1})d_{k,k+1}$, $\\{ee}=(3-\beta\k)d_{k-1,k}$,
7493 and $\\{cc}=(B_k-u_{k-1}A_k)/B_k$@>;
7494 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>;
7495 mp->uu[k]=mp_take_fraction(mp, ff,bb);
7496 @<Calculate the values of $v_k$ and $w_k$@>;
7497 if ( left_type(s)==end_cycle ) {
7498 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>;
7502 @ Since tension values are never less than 3/4, the values |aa| and
7503 |bb| computed here are never more than 4/5.
7505 @<Calculate the values $\\{aa}=...@>=
7506 if ( abs(right_tension(r))==unity) {
7507 aa=fraction_half; dd=2*mp->delta[k];
7509 aa=mp_make_fraction(mp, unity,3*abs(right_tension(r))-unity);
7510 dd=mp_take_fraction(mp, mp->delta[k],
7511 fraction_three-mp_make_fraction(mp, unity,abs(right_tension(r))));
7513 if ( abs(left_tension(t))==unity ){
7514 bb=fraction_half; ee=2*mp->delta[k-1];
7516 bb=mp_make_fraction(mp, unity,3*abs(left_tension(t))-unity);
7517 ee=mp_take_fraction(mp, mp->delta[k-1],
7518 fraction_three-mp_make_fraction(mp, unity,abs(left_tension(t))));
7520 cc=fraction_one-mp_take_fraction(mp, mp->uu[k-1],aa)
7522 @ The ratio to be calculated in this step can be written in the form
7523 $$\beta_k^2\cdot\\{ee}\over\beta_k^2\cdot\\{ee}+\alpha_k^2\cdot
7524 \\{cc}\cdot\\{dd},$$
7525 because of the quantities just calculated. The values of |dd| and |ee|
7526 will not be needed after this step has been performed.
7528 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>=
7529 dd=mp_take_fraction(mp, dd,cc); lt=abs(left_tension(s)); rt=abs(right_tension(s));
7530 if ( lt!=rt ) { /* $\beta_k^{-1}\ne\alpha_k^{-1}$ */
7532 ff=mp_make_fraction(mp, lt,rt);
7533 ff=mp_take_fraction(mp, ff,ff); /* $\alpha_k^2/\beta_k^2$ */
7534 dd=mp_take_fraction(mp, dd,ff);
7536 ff=mp_make_fraction(mp, rt,lt);
7537 ff=mp_take_fraction(mp, ff,ff); /* $\beta_k^2/\alpha_k^2$ */
7538 ee=mp_take_fraction(mp, ee,ff);
7541 ff=mp_make_fraction(mp, ee,ee+dd)
7543 @ The value of $u_{k-1}$ will be |<=1| except when $k=1$ and the previous
7544 equation was specified by a curl. In that case we must use a special
7545 method of computation to prevent overflow.
7547 Fortunately, the calculations turn out to be even simpler in this ``hard''
7548 case. The curl equation makes $w_0=0$ and $v_0=-u_0\psi_1$, hence
7549 $-B_1\psi_1-A_1v_0=-(B_1-u_0A_1)\psi_1=-\\{cc}\cdot B_1\psi_1$.
7551 @<Calculate the values of $v_k$ and $w_k$@>=
7552 acc=-mp_take_fraction(mp, mp->psi[k+1],mp->uu[k]);
7553 if ( right_type(r)==curl ) {
7555 mp->vv[k]=acc-mp_take_fraction(mp, mp->psi[1],fraction_one-ff);
7557 ff=mp_make_fraction(mp, fraction_one-ff,cc); /* this is
7558 $B_k/(C_k+B_k-u_{k-1}A_k)<5$ */
7559 acc=acc-mp_take_fraction(mp, mp->psi[k],ff);
7560 ff=mp_take_fraction(mp, ff,aa); /* this is $A_k/(C_k+B_k-u_{k-1}A_k)$ */
7561 mp->vv[k]=acc-mp_take_fraction(mp, mp->vv[k-1],ff);
7562 if ( mp->ww[k-1]==0 ) mp->ww[k]=0;
7563 else mp->ww[k]=-mp_take_fraction(mp, mp->ww[k-1],ff);
7566 @ When a complete cycle has been traversed, we have $\theta_k+u_k\theta\k=
7567 v_k+w_k\theta_0$, for |1<=k<=n|. We would like to determine the value of
7568 $\theta_n$ and reduce the system to the form $\theta_k+u_k\theta\k=v_k$
7569 for |0<=k<n|, so that the cyclic case can be finished up just as if there
7572 The idea in the following code is to observe that
7573 $$\eqalign{\theta_n&=v_n+w_n\theta_0-u_n\theta_1=\cdots\cr
7574 &=v_n+w_n\theta_0-u_n\bigl(v_1+w_1\theta_0-u_1(v_2+\cdots
7575 -u_{n-2}(v_{n-1}+w_{n-1}\theta_0-u_{n-1}\theta_0))\bigr),\cr}$$
7576 so we can solve for $\theta_n=\theta_0$.
7578 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>=
7580 aa=0; bb=fraction_one; /* we have |k=n| */
7583 aa=mp->vv[k]-mp_take_fraction(mp, aa,mp->uu[k]);
7584 bb=mp->ww[k]-mp_take_fraction(mp, bb,mp->uu[k]);
7585 } while (k!=n); /* now $\theta_n=\\{aa}+\\{bb}\cdot\theta_n$ */
7586 aa=mp_make_fraction(mp, aa,fraction_one-bb);
7587 mp->theta[n]=aa; mp->vv[0]=aa;
7588 for (k=1;k<=n-1;k++) {
7589 mp->vv[k]=mp->vv[k]+mp_take_fraction(mp, aa,mp->ww[k]);
7594 @ @d reduce_angle(A) if ( abs((A))>one_eighty_deg ) {
7595 if ( (A)>0 ) (A)=(A)-three_sixty_deg; else (A)=(A)+three_sixty_deg; }
7597 @<Calculate the given value of $\theta_n$...@>=
7599 mp->theta[n]=left_given(s)-mp_n_arg(mp, mp->delta_x[n-1],mp->delta_y[n-1]);
7600 reduce_angle(mp->theta[n]);
7604 @ @<Set up the equation for a given value of $\theta_0$@>=
7606 mp->vv[0]=right_given(s)-mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7607 reduce_angle(mp->vv[0]);
7608 mp->uu[0]=0; mp->ww[0]=0;
7611 @ @<Set up the equation for a curl at $\theta_0$@>=
7612 { cc=right_curl(s); lt=abs(left_tension(t)); rt=abs(right_tension(s));
7613 if ( (rt==unity)&&(lt==unity) )
7614 mp->uu[0]=mp_make_fraction(mp, cc+cc+unity,cc+two);
7616 mp->uu[0]=mp_curl_ratio(mp, cc,rt,lt);
7617 mp->vv[0]=-mp_take_fraction(mp, mp->psi[1],mp->uu[0]); mp->ww[0]=0;
7620 @ @<Set up equation for a curl at $\theta_n$...@>=
7621 { cc=left_curl(s); lt=abs(left_tension(s)); rt=abs(right_tension(r));
7622 if ( (rt==unity)&&(lt==unity) )
7623 ff=mp_make_fraction(mp, cc+cc+unity,cc+two);
7625 ff=mp_curl_ratio(mp, cc,lt,rt);
7626 mp->theta[n]=-mp_make_fraction(mp, mp_take_fraction(mp, mp->vv[n-1],ff),
7627 fraction_one-mp_take_fraction(mp, ff,mp->uu[n-1]));
7631 @ The |curl_ratio| subroutine has three arguments, which our previous notation
7632 encourages us to call $\gamma$, $\alpha^{-1}$, and $\beta^{-1}$. It is
7633 a somewhat tedious program to calculate
7634 $${(3-\alpha)\alpha^2\gamma+\beta^3\over
7635 \alpha^3\gamma+(3-\beta)\beta^2},$$
7636 with the result reduced to 4 if it exceeds 4. (This reduction of curl
7637 is necessary only if the curl and tension are both large.)
7638 The values of $\alpha$ and $\beta$ will be at most~4/3.
7640 @<Declare subroutines needed by |solve_choices|@>=
7641 fraction mp_curl_ratio (MP mp,scaled gamma, scaled a_tension,
7643 fraction alpha,beta,num,denom,ff; /* registers */
7644 alpha=mp_make_fraction(mp, unity,a_tension);
7645 beta=mp_make_fraction(mp, unity,b_tension);
7646 if ( alpha<=beta ) {
7647 ff=mp_make_fraction(mp, alpha,beta); ff=mp_take_fraction(mp, ff,ff);
7648 gamma=mp_take_fraction(mp, gamma,ff);
7649 beta=beta / 010000; /* convert |fraction| to |scaled| */
7650 denom=mp_take_fraction(mp, gamma,alpha)+three-beta;
7651 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7653 ff=mp_make_fraction(mp, beta,alpha); ff=mp_take_fraction(mp, ff,ff);
7654 beta=mp_take_fraction(mp, beta,ff) / 010000; /* convert |fraction| to |scaled| */
7655 denom=mp_take_fraction(mp, gamma,alpha)+(ff / 1365)-beta;
7656 /* $1365\approx 2^{12}/3$ */
7657 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7659 if ( num>=denom+denom+denom+denom ) return fraction_four;
7660 else return mp_make_fraction(mp, num,denom);
7663 @ We're in the home stretch now.
7665 @<Finish choosing angles and assigning control points@>=
7666 for (k=n-1;k>=0;k--) {
7667 mp->theta[k]=mp->vv[k]-mp_take_fraction(mp,mp->theta[k+1],mp->uu[k]);
7672 mp_n_sin_cos(mp, mp->theta[k]); mp->st=mp->n_sin; mp->ct=mp->n_cos;
7673 mp_n_sin_cos(mp, -mp->psi[k+1]-mp->theta[k+1]); mp->sf=mp->n_sin; mp->cf=mp->n_cos;
7674 mp_set_controls(mp, s,t,k);
7678 @ The |set_controls| routine actually puts the control points into
7679 a pair of consecutive nodes |p| and~|q|. Global variables are used to
7680 record the values of $\sin\theta$, $\cos\theta$, $\sin\phi$, and
7681 $\cos\phi$ needed in this calculation.
7687 fraction cf; /* sines and cosines */
7689 @ @<Declare subroutines needed by |solve_choices|@>=
7690 void mp_set_controls (MP mp,pointer p, pointer q, integer k) {
7691 fraction rr,ss; /* velocities, divided by thrice the tension */
7692 scaled lt,rt; /* tensions */
7693 fraction sine; /* $\sin(\theta+\phi)$ */
7694 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7695 rr=mp_velocity(mp, mp->st,mp->ct,mp->sf,mp->cf,rt);
7696 ss=mp_velocity(mp, mp->sf,mp->cf,mp->st,mp->ct,lt);
7697 if ( (right_tension(p)<0)||(left_tension(q)<0) ) {
7698 @<Decrease the velocities,
7699 if necessary, to stay inside the bounding triangle@>;
7701 right_x(p)=x_coord(p)+mp_take_fraction(mp,
7702 mp_take_fraction(mp, mp->delta_x[k],mp->ct)-
7703 mp_take_fraction(mp, mp->delta_y[k],mp->st),rr);
7704 right_y(p)=y_coord(p)+mp_take_fraction(mp,
7705 mp_take_fraction(mp, mp->delta_y[k],mp->ct)+
7706 mp_take_fraction(mp, mp->delta_x[k],mp->st),rr);
7707 left_x(q)=x_coord(q)-mp_take_fraction(mp,
7708 mp_take_fraction(mp, mp->delta_x[k],mp->cf)+
7709 mp_take_fraction(mp, mp->delta_y[k],mp->sf),ss);
7710 left_y(q)=y_coord(q)-mp_take_fraction(mp,
7711 mp_take_fraction(mp, mp->delta_y[k],mp->cf)-
7712 mp_take_fraction(mp, mp->delta_x[k],mp->sf),ss);
7713 right_type(p)=explicit; left_type(q)=explicit;
7716 @ The boundedness conditions $\\{rr}\L\sin\phi\,/\sin(\theta+\phi)$ and
7717 $\\{ss}\L\sin\theta\,/\sin(\theta+\phi)$ are to be enforced if $\sin\theta$,
7718 $\sin\phi$, and $\sin(\theta+\phi)$ all have the same sign. Otherwise
7719 there is no ``bounding triangle.''
7720 @:at_least_}{\&{atleast} primitive@>
7722 @<Decrease the velocities, if necessary...@>=
7723 if (((mp->st>=0)&&(mp->sf>=0))||((mp->st<=0)&&(mp->sf<=0)) ) {
7724 sine=mp_take_fraction(mp, abs(mp->st),mp->cf)+
7725 mp_take_fraction(mp, abs(mp->sf),mp->ct);
7727 sine=mp_take_fraction(mp, sine,fraction_one+unity); /* safety factor */
7728 if ( right_tension(p)<0 )
7729 if ( mp_ab_vs_cd(mp, abs(mp->sf),fraction_one,rr,sine)<0 )
7730 rr=mp_make_fraction(mp, abs(mp->sf),sine);
7731 if ( left_tension(q)<0 )
7732 if ( mp_ab_vs_cd(mp, abs(mp->st),fraction_one,ss,sine)<0 )
7733 ss=mp_make_fraction(mp, abs(mp->st),sine);
7737 @ Only the simple cases remain to be handled.
7739 @<Reduce to simple case of two givens and |return|@>=
7741 aa=mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7742 mp_n_sin_cos(mp, right_given(p)-aa); mp->ct=mp->n_cos; mp->st=mp->n_sin;
7743 mp_n_sin_cos(mp, left_given(q)-aa); mp->cf=mp->n_cos; mp->sf=-mp->n_sin;
7744 mp_set_controls(mp, p,q,0); return;
7747 @ @<Reduce to simple case of straight line and |return|@>=
7749 right_type(p)=explicit; left_type(q)=explicit;
7750 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7752 if ( mp->delta_x[0]>=0 ) right_x(p)=x_coord(p)+((mp->delta_x[0]+1) / 3);
7753 else right_x(p)=x_coord(p)+((mp->delta_x[0]-1) / 3);
7754 if ( mp->delta_y[0]>=0 ) right_y(p)=y_coord(p)+((mp->delta_y[0]+1) / 3);
7755 else right_y(p)=y_coord(p)+((mp->delta_y[0]-1) / 3);
7757 ff=mp_make_fraction(mp, unity,3*rt); /* $\alpha/3$ */
7758 right_x(p)=x_coord(p)+mp_take_fraction(mp, mp->delta_x[0],ff);
7759 right_y(p)=y_coord(p)+mp_take_fraction(mp, mp->delta_y[0],ff);
7762 if ( mp->delta_x[0]>=0 ) left_x(q)=x_coord(q)-((mp->delta_x[0]+1) / 3);
7763 else left_x(q)=x_coord(q)-((mp->delta_x[0]-1) / 3);
7764 if ( mp->delta_y[0]>=0 ) left_y(q)=y_coord(q)-((mp->delta_y[0]+1) / 3);
7765 else left_y(q)=y_coord(q)-((mp->delta_y[0]-1) / 3);
7767 ff=mp_make_fraction(mp, unity,3*lt); /* $\beta/3$ */
7768 left_x(q)=x_coord(q)-mp_take_fraction(mp, mp->delta_x[0],ff);
7769 left_y(q)=y_coord(q)-mp_take_fraction(mp, mp->delta_y[0],ff);
7774 @* \[19] Measuring paths.
7775 \MP's \&{llcorner}, \&{lrcorner}, \&{ulcorner}, and \&{urcorner} operators
7776 allow the user to measure the bounding box of anything that can go into a
7777 picture. It's easy to get rough bounds on the $x$ and $y$ extent of a path
7778 by just finding the bounding box of the knots and the control points. We
7779 need a more accurate version of the bounding box, but we can still use the
7780 easy estimate to save time by focusing on the interesting parts of the path.
7782 @ Computing an accurate bounding box involves a theme that will come up again
7783 and again. Given a Bernshte{\u\i}n polynomial
7784 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
7785 $$B(z_0,z_1,\ldots,z_n;t)=\sum_k{n\choose k}t^k(1-t)^{n-k}z_k,$$
7786 we can conveniently bisect its range as follows:
7789 \textindent{1)} Let $z_k^{(0)}=z_k$, for |0<=k<=n|.
7792 \textindent{2)} Let $z_k^{(j+1)}={1\over2}(z_k^{(j)}+z\k^{(j)})$, for
7793 |0<=k<n-j|, for |0<=j<n|.
7797 $$B(z_0,z_1,\ldots,z_n;t)=B(z_0^{(0)},z_0^{(1)},\ldots,z_0^{(n)};2t)
7798 =B(z_0^{(n)},z_1^{(n-1)},\ldots,z_n^{(0)};2t-1).$$
7799 This formula gives us the coefficients of polynomials to use over the ranges
7800 $0\L t\L{1\over2}$ and ${1\over2}\L t\L1$.
7802 @ Now here's a subroutine that's handy for all sorts of path computations:
7803 Given a quadratic polynomial $B(a,b,c;t)$, the |crossing_point| function
7804 returns the unique |fraction| value |t| between 0 and~1 at which
7805 $B(a,b,c;t)$ changes from positive to negative, or returns
7806 |t=fraction_one+1| if no such value exists. If |a<0| (so that $B(a,b,c;t)$
7807 is already negative at |t=0|), |crossing_point| returns the value zero.
7809 @d no_crossing { return (fraction_one+1); }
7810 @d one_crossing { return fraction_one; }
7811 @d zero_crossing { return 0; }
7812 @d mp_crossing_point(M,A,B,C) mp_do_crossing_point(A,B,C)
7814 @c fraction mp_do_crossing_point (integer a, integer b, integer c) {
7815 integer d; /* recursive counter */
7816 integer x,xx,x0,x1,x2; /* temporary registers for bisection */
7817 if ( a<0 ) zero_crossing;
7820 if ( c>0 ) { no_crossing; }
7821 else if ( (a==0)&&(b==0) ) { no_crossing;}
7822 else { one_crossing; }
7824 if ( a==0 ) zero_crossing;
7825 } else if ( a==0 ) {
7826 if ( b<=0 ) zero_crossing;
7828 @<Use bisection to find the crossing point, if one exists@>;
7831 @ The general bisection method is quite simple when $n=2$, hence
7832 |crossing_point| does not take much time. At each stage in the
7833 recursion we have a subinterval defined by |l| and~|j| such that
7834 $B(a,b,c;2^{-l}(j+t))=B(x_0,x_1,x_2;t)$, and we want to ``zero in'' on
7835 the subinterval where $x_0\G0$ and $\min(x_1,x_2)<0$.
7837 It is convenient for purposes of calculation to combine the values
7838 of |l| and~|j| in a single variable $d=2^l+j$, because the operation
7839 of bisection then corresponds simply to doubling $d$ and possibly
7840 adding~1. Furthermore it proves to be convenient to modify
7841 our previous conventions for bisection slightly, maintaining the
7842 variables $X_0=2^lx_0$, $X_1=2^l(x_0-x_1)$, and $X_2=2^l(x_1-x_2)$.
7843 With these variables the conditions $x_0\ge0$ and $\min(x_1,x_2)<0$ are
7844 equivalent to $\max(X_1,X_1+X_2)>X_0\ge0$.
7846 The following code maintains the invariant relations
7847 $0\L|x0|<\max(|x1|,|x1|+|x2|)$,
7848 $\vert|x1|\vert<2^{30}$, $\vert|x2|\vert<2^{30}$;
7849 it has been constructed in such a way that no arithmetic overflow
7850 will occur if the inputs satisfy
7851 $a<2^{30}$, $\vert a-b\vert<2^{30}$, and $\vert b-c\vert<2^{30}$.
7853 @<Use bisection to find the crossing point...@>=
7854 d=1; x0=a; x1=a-b; x2=b-c;
7865 if ( x<=x0 ) { if ( x+x2<=x0 ) no_crossing; }
7869 } while (d<fraction_one);
7870 return (d-fraction_one)
7872 @ Here is a routine that computes the $x$ or $y$ coordinate of the point on
7873 a cubic corresponding to the |fraction| value~|t|.
7875 It is convenient to define a \.{WEB} macro |t_of_the_way| such that
7876 |t_of_the_way(a,b)| expands to |a-(a-b)*t|, i.e., to |t[a,b]|.
7878 @d t_of_the_way(A,B) ((A)-mp_take_fraction(mp,(A)-(B),t))
7880 @c scaled mp_eval_cubic (MP mp,pointer p, pointer q, fraction t) {
7881 scaled x1,x2,x3; /* intermediate values */
7882 x1=t_of_the_way(knot_coord(p),right_coord(p));
7883 x2=t_of_the_way(right_coord(p),left_coord(q));
7884 x3=t_of_the_way(left_coord(q),knot_coord(q));
7885 x1=t_of_the_way(x1,x2);
7886 x2=t_of_the_way(x2,x3);
7887 return t_of_the_way(x1,x2);
7890 @ The actual bounding box information is stored in global variables.
7891 Since it is convenient to address the $x$ and $y$ information
7892 separately, we define arrays indexed by |x_code..y_code| and use
7893 macros to give them more convenient names.
7897 mp_x_code=0, /* index for |minx| and |maxx| */
7898 mp_y_code /* index for |miny| and |maxy| */
7902 @d minx mp->bbmin[mp_x_code]
7903 @d maxx mp->bbmax[mp_x_code]
7904 @d miny mp->bbmin[mp_y_code]
7905 @d maxy mp->bbmax[mp_y_code]
7908 scaled bbmin[mp_y_code+1];
7909 scaled bbmax[mp_y_code+1];
7910 /* the result of procedures that compute bounding box information */
7912 @ Now we're ready for the key part of the bounding box computation.
7913 The |bound_cubic| procedure updates |bbmin[c]| and |bbmax[c]| based on
7914 $$B(\hbox{|knot_coord(p)|}, \hbox{|right_coord(p)|},
7915 \hbox{|left_coord(q)|}, \hbox{|knot_coord(q)|};t)
7917 for $0<t\le1$. In other words, the procedure adjusts the bounds to
7918 accommodate |knot_coord(q)| and any extremes over the range $0<t<1$.
7919 The |c| parameter is |x_code| or |y_code|.
7921 @c void mp_bound_cubic (MP mp,pointer p, pointer q, small_number c) {
7922 boolean wavy; /* whether we need to look for extremes */
7923 scaled del1,del2,del3,del,dmax; /* proportional to the control
7924 points of a quadratic derived from a cubic */
7925 fraction t,tt; /* where a quadratic crosses zero */
7926 scaled x; /* a value that |bbmin[c]| and |bbmax[c]| must accommodate */
7928 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
7929 @<Check the control points against the bounding box and set |wavy:=true|
7930 if any of them lie outside@>;
7932 del1=right_coord(p)-knot_coord(p);
7933 del2=left_coord(q)-right_coord(p);
7934 del3=knot_coord(q)-left_coord(q);
7935 @<Scale up |del1|, |del2|, and |del3| for greater accuracy;
7936 also set |del| to the first nonzero element of |(del1,del2,del3)|@>;
7938 negate(del1); negate(del2); negate(del3);
7940 t=mp_crossing_point(mp, del1,del2,del3);
7941 if ( t<fraction_one ) {
7942 @<Test the extremes of the cubic against the bounding box@>;
7947 @ @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>=
7948 if ( x<mp->bbmin[c] ) mp->bbmin[c]=x;
7949 if ( x>mp->bbmax[c] ) mp->bbmax[c]=x
7951 @ @<Check the control points against the bounding box and set...@>=
7953 if ( mp->bbmin[c]<=right_coord(p) )
7954 if ( right_coord(p)<=mp->bbmax[c] )
7955 if ( mp->bbmin[c]<=left_coord(q) )
7956 if ( left_coord(q)<=mp->bbmax[c] )
7959 @ If |del1=del2=del3=0|, it's impossible to obey the title of this
7960 section. We just set |del=0| in that case.
7962 @<Scale up |del1|, |del2|, and |del3| for greater accuracy...@>=
7963 if ( del1!=0 ) del=del1;
7964 else if ( del2!=0 ) del=del2;
7968 if ( abs(del2)>dmax ) dmax=abs(del2);
7969 if ( abs(del3)>dmax ) dmax=abs(del3);
7970 while ( dmax<fraction_half ) {
7971 dmax+=dmax; del1+=del1; del2+=del2; del3+=del3;
7975 @ Since |crossing_point| has tried to choose |t| so that
7976 $B(|del1|,|del2|,|del3|;\tau)$ crosses zero at $\tau=|t|$ with negative
7977 slope, the value of |del2| computed below should not be positive.
7978 But rounding error could make it slightly positive in which case we
7979 must cut it to zero to avoid confusion.
7981 @<Test the extremes of the cubic against the bounding box@>=
7983 x=mp_eval_cubic(mp, p,q,t);
7984 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
7985 del2=t_of_the_way(del2,del3);
7986 /* now |0,del2,del3| represent the derivative on the remaining interval */
7987 if ( del2>0 ) del2=0;
7988 tt=mp_crossing_point(mp, 0,-del2,-del3);
7989 if ( tt<fraction_one ) {
7990 @<Test the second extreme against the bounding box@>;
7994 @ @<Test the second extreme against the bounding box@>=
7996 x=mp_eval_cubic(mp, p,q,t_of_the_way(tt,fraction_one));
7997 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8000 @ Finding the bounding box of a path is basically a matter of applying
8001 |bound_cubic| twice for each pair of adjacent knots.
8003 @c void mp_path_bbox (MP mp,pointer h) {
8004 pointer p,q; /* a pair of adjacent knots */
8005 minx=x_coord(h); miny=y_coord(h);
8006 maxx=minx; maxy=miny;
8009 if ( right_type(p)==endpoint ) return;
8011 mp_bound_cubic(mp, x_loc(p),x_loc(q),mp_x_code);
8012 mp_bound_cubic(mp, y_loc(p),y_loc(q),mp_y_code);
8017 @ Another important way to measure a path is to find its arc length. This
8018 is best done by using the general bisection algorithm to subdivide the path
8019 until obtaining ``well behaved'' subpaths whose arc lengths can be approximated
8022 Since the arc length is the integral with respect to time of the magnitude of
8023 the velocity, it is natural to use Simpson's rule for the approximation.
8025 If $\dot B(t)$ is the spline velocity, Simpson's rule gives
8026 $$ \vb\dot B(0)\vb + 4\vb\dot B({1\over2})\vb + \vb\dot B(1)\vb \over 6 $$
8027 for the arc length of a path of length~1. For a cubic spline
8028 $B(z_0,z_1,z_2,z_3;t)$, the time derivative $\dot B(t)$ is
8029 $3B(dz_0,dz_1,dz_2;t)$, where $dz_i=z_{i+1}-z_i$. Hence the arc length
8031 $$ {\vb dz_0\vb \over 2} + 2\vb dz_{02}\vb + {\vb dz_2\vb \over 2}, $$
8033 $$ dz_{02}={1\over2}\left({dz_0+dz_1\over 2}+{dz_1+dz_2\over 2}\right)$$
8034 is the result of the bisection algorithm.
8036 @ The remaining problem is how to decide when a subpath is ``well behaved.''
8037 This could be done via the theoretical error bound for Simpson's rule,
8039 but this is impractical because it requires an estimate of the fourth
8040 derivative of the quantity being integrated. It is much easier to just perform
8041 a bisection step and see how much the arc length estimate changes. Since the
8042 error for Simpson's rule is proportional to the fourth power of the sample
8043 spacing, the remaining error is typically about $1\over16$ of the amount of
8044 the change. We say ``typically'' because the error has a pseudo-random behavior
8045 that could cause the two estimates to agree when each contain large errors.
8047 To protect against disasters such as undetected cusps, the bisection process
8048 should always continue until all the $dz_i$ vectors belong to a single
8049 $90^\circ$ sector. This ensures that no point on the spline can have velocity
8050 less than 70\% of the minimum of $\vb dz_0\vb$, $\vb dz_1\vb$ and $\vb dz_2\vb$.
8051 If such a spline happens to produce an erroneous arc length estimate that
8052 is little changed by bisection, the amount of the error is likely to be fairly
8053 small. We will try to arrange things so that freak accidents of this type do
8054 not destroy the inverse relationship between the \&{arclength} and
8055 \&{arctime} operations.
8056 @:arclength_}{\&{arclength} primitive@>
8057 @:arctime_}{\&{arctime} primitive@>
8059 @ The \&{arclength} and \&{arctime} operations are both based on a recursive
8061 function that finds the arc length of a cubic spline given $dz_0$, $dz_1$,
8062 $dz_2$. This |arc_test| routine also takes an arc length goal |a_goal| and
8063 returns the time when the arc length reaches |a_goal| if there is such a time.
8064 Thus the return value is either an arc length less than |a_goal| or, if the
8065 arc length would be at least |a_goal|, it returns a time value decreased by
8066 |two|. This allows the caller to use the sign of the result to distinguish
8067 between arc lengths and time values. On certain types of overflow, it is
8068 possible for |a_goal| and the result of |arc_test| both to be |el_gordo|.
8069 Otherwise, the result is always less than |a_goal|.
8071 Rather than halving the control point coordinates on each recursive call to
8072 |arc_test|, it is better to keep them proportional to velocity on the original
8073 curve and halve the results instead. This means that recursive calls can
8074 potentially use larger error tolerances in their arc length estimates. How
8075 much larger depends on to what extent the errors behave as though they are
8076 independent of each other. To save computing time, we use optimistic assumptions
8077 and increase the tolerance by a factor of about $\sqrt2$ for each recursive
8080 In addition to the tolerance parameter, |arc_test| should also have parameters
8081 for ${1\over3}\vb\dot B(0)\vb$, ${2\over3}\vb\dot B({1\over2})\vb$, and
8082 ${1\over3}\vb\dot B(1)\vb$. These quantities are relatively expensive to compute
8083 and they are needed in different instances of |arc_test|.
8085 @c @t\4@>@<Declare subroutines needed by |arc_test|@>;
8086 scaled mp_arc_test (MP mp, scaled dx0, scaled dy0, scaled dx1, scaled dy1,
8087 scaled dx2, scaled dy2, scaled v0, scaled v02,
8088 scaled v2, scaled a_goal, scaled tol) {
8089 boolean simple; /* are the control points confined to a $90^\circ$ sector? */
8090 scaled dx01, dy01, dx12, dy12, dx02, dy02; /* bisection results */
8092 /* twice the velocity magnitudes at $t={1\over4}$ and $t={3\over4}$ */
8093 scaled arc; /* best arc length estimate before recursion */
8094 @<Other local variables in |arc_test|@>;
8095 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,
8097 @<Initialize |v002|, |v022|, and the arc length estimate |arc|; if it overflows
8098 set |arc_test| and |return|@>;
8099 @<Test if the control points are confined to one quadrant or rotating them
8100 $45^\circ$ would put them in one quadrant. Then set |simple| appropriately@>;
8101 if ( simple && (abs(arc-v02-halfp(v0+v2)) <= tol) ) {
8102 if ( arc < a_goal ) {
8105 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to
8106 that time minus |two|@>;
8109 @<Use one or two recursive calls to compute the |arc_test| function@>;
8113 @ The |tol| value should by multiplied by $\sqrt 2$ before making recursive
8114 calls, but $1.5$ is an adequate approximation. It is best to avoid using
8115 |make_fraction| in this inner loop.
8118 @<Use one or two recursive calls to compute the |arc_test| function@>=
8120 @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is as
8121 large as possible@>;
8122 tol = tol + halfp(tol);
8123 a = mp_arc_test(mp, dx0,dy0, dx01,dy01, dx02,dy02, v0, v002,
8124 halfp(v02), a_new, tol);
8126 return (-halfp(two-a));
8128 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>;
8129 b = mp_arc_test(mp, dx02,dy02, dx12,dy12, dx2,dy2,
8130 halfp(v02), v022, v2, a_new, tol);
8132 return (-halfp(-b) - half_unit);
8134 return (a + half(b-a));
8138 @ @<Other local variables in |arc_test|@>=
8139 scaled a,b; /* results of recursive calls */
8140 scaled a_new,a_aux; /* the sum of these gives the |a_goal| */
8142 @ @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is...@>=
8143 a_aux = el_gordo - a_goal;
8144 if ( a_goal > a_aux ) {
8145 a_aux = a_goal - a_aux;
8148 a_new = a_goal + a_goal;
8152 @ There is no need to maintain |a_aux| at this point so we use it as a temporary
8153 to force the additions and subtractions to be done in an order that avoids
8156 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>=
8159 a_new = a_new + a_aux;
8162 @ This code assumes all {\it dx} and {\it dy} variables have magnitude less than
8163 |fraction_four|. To simplify the rest of the |arc_test| routine, we strengthen
8164 this assumption by requiring the norm of each $({\it dx},{\it dy})$ pair to obey
8165 this bound. Note that recursive calls will maintain this invariant.
8167 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,...@>=
8168 dx01 = half(dx0 + dx1);
8169 dx12 = half(dx1 + dx2);
8170 dx02 = half(dx01 + dx12);
8171 dy01 = half(dy0 + dy1);
8172 dy12 = half(dy1 + dy2);
8173 dy02 = half(dy01 + dy12)
8175 @ We should be careful to keep |arc<el_gordo| so that calling |arc_test| with
8176 |a_goal=el_gordo| is guaranteed to yield the arc length.
8178 @<Initialize |v002|, |v022|, and the arc length estimate |arc|;...@>=
8179 v002 = mp_pyth_add(mp, dx01+half(dx0+dx02), dy01+half(dy0+dy02));
8180 v022 = mp_pyth_add(mp, dx12+half(dx02+dx2), dy12+half(dy02+dy2));
8182 arc1 = v002 + half(halfp(v0+tmp) - v002);
8183 arc = v022 + half(halfp(v2+tmp) - v022);
8184 if ( (arc < el_gordo-arc1) ) {
8187 mp->arith_error = true;
8188 if ( a_goal==el_gordo ) return (el_gordo);
8192 @ @<Other local variables in |arc_test|@>=
8193 scaled tmp, tmp2; /* all purpose temporary registers */
8194 scaled arc1; /* arc length estimate for the first half */
8196 @ @<Test if the control points are confined to one quadrant or rotating...@>=
8197 simple = ((dx0>=0) && (dx1>=0) && (dx2>=0)) ||
8198 ((dx0<=0) && (dx1<=0) && (dx2<=0));
8200 simple = ((dy0>=0) && (dy1>=0) && (dy2>=0)) ||
8201 ((dy0<=0) && (dy1<=0) && (dy2<=0));
8203 simple = ((dx0>=dy0) && (dx1>=dy1) && (dx2>=dy2)) ||
8204 ((dx0<=dy0) && (dx1<=dy1) && (dx2<=dy2));
8206 simple = ((-dx0>=dy0) && (-dx1>=dy1) && (-dx2>=dy2)) ||
8207 ((-dx0<=dy0) && (-dx1<=dy1) && (-dx2<=dy2));
8210 @ Since Simpson's rule is based on approximating the integrand by a parabola,
8212 it is appropriate to use the same approximation to decide when the integral
8213 reaches the intermediate value |a_goal|. At this point
8215 {\vb\dot B(0)\vb\over 3} &= \hbox{|v0|}, \qquad
8216 {\vb\dot B({1\over4})\vb\over 3} = {\hbox{|v002|}\over 2}, \qquad
8217 {\vb\dot B({1\over2})\vb\over 3} = {\hbox{|v02|}\over 2}, \cr
8218 {\vb\dot B({3\over4})\vb\over 3} &= {\hbox{|v022|}\over 2}, \qquad
8219 {\vb\dot B(1)\vb\over 3} = \hbox{|v2|} \cr
8223 $$ {\vb\dot B(t)\vb\over 3} \approx
8224 \cases{B\left(\hbox{|v0|},
8225 \hbox{|v002|}-{1\over 2}\hbox{|v0|}-{1\over 4}\hbox{|v02|},
8226 {1\over 2}\hbox{|v02|}; 2t \right)&
8227 if $t\le{1\over 2}$\cr
8228 B\left({1\over 2}\hbox{|v02|},
8229 \hbox{|v022|}-{1\over 4}\hbox{|v02|}-{1\over 2}\hbox{|v2|},
8230 \hbox{|v2|}; 2t-1 \right)&
8231 if $t\ge{1\over 2}$.\cr}
8234 We can integrate $\vb\dot B(t)\vb$ by using
8235 $$\int 3B(a,b,c;\tau)\,dt =
8236 {B(0,a,a+b,a+b+c;\tau) + {\rm constant} \over {d\tau\over dt}}.
8239 This construction allows us to find the time when the arc length reaches
8240 |a_goal| by solving a cubic equation of the form
8241 $$ B(0,a,a+b,a+b+c;\tau) = x, $$
8242 where $\tau$ is $2t$ or $2t+1$, $x$ is |a_goal| or |a_goal-arc1|, and $a$, $b$,
8243 and $c$ are the Bernshte{\u\i}n coefficients from $(*)$ divided by
8244 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
8245 $d\tau\over dt$. We shall define a function |solve_rising_cubic| that finds
8246 $\tau$ given $a$, $b$, $c$, and $x$.
8248 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to...@>=
8250 tmp = (v02 + 2) / 4;
8251 if ( a_goal<=arc1 ) {
8254 (halfp(mp_solve_rising_cubic(mp, tmp2, arc1-tmp2-tmp, tmp, a_goal))- two);
8257 return ((half_unit - two) +
8258 halfp(mp_solve_rising_cubic(mp, tmp, arc-arc1-tmp-tmp2, tmp2, a_goal-arc1)));
8262 @ Here is the |solve_rising_cubic| routine that finds the time~$t$ when
8263 $$ B(0, a, a+b, a+b+c; t) = x. $$
8264 This routine is based on |crossing_point| but is simplified by the
8265 assumptions that $B(a,b,c;t)\ge0$ for $0\le t\le1$ and that |0<=x<=a+b+c|.
8266 If rounding error causes this condition to be violated slightly, we just ignore
8267 it and proceed with binary search. This finds a time when the function value
8268 reaches |x| and the slope is positive.
8270 @<Declare subroutines needed by |arc_test|@>=
8271 scaled mp_solve_rising_cubic (MP mp,scaled a, scaled b, scaled c, scaled x) {
8272 scaled ab, bc, ac; /* bisection results */
8273 integer t; /* $2^k+q$ where unscaled answer is in $[q2^{-k},(q+1)2^{-k})$ */
8274 integer xx; /* temporary for updating |x| */
8275 if ( (a<0) || (c<0) ) mp_confusion(mp, "rising?");
8276 @:this can't happen rising?}{\quad rising?@>
8279 } else if ( x >= a+b+c ) {
8283 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than
8287 @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>;
8288 xx = x - a - ab - ac;
8289 if ( xx < -x ) { x+=x; b=ab; c=ac; }
8290 else { x = x + xx; a=ac; b=mp->bc; t = t+1; };
8291 } while (t < unity);
8296 @ @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>=
8301 @ @d one_third_el_gordo 05252525252 /* upper bound on |a|, |b|, and |c| */
8303 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than...@>=
8304 while ((a>one_third_el_gordo)||(b>one_third_el_gordo)||(c>one_third_el_gordo)) {
8311 @ It is convenient to have a simpler interface to |arc_test| that requires no
8312 unnecessary arguments and ensures that each $({\it dx},{\it dy})$ pair has
8313 length less than |fraction_four|.
8315 @d arc_tol 16 /* quit when change in arc length estimate reaches this */
8317 @c scaled mp_do_arc_test (MP mp,scaled dx0, scaled dy0, scaled dx1,
8318 scaled dy1, scaled dx2, scaled dy2, scaled a_goal) {
8319 scaled v0,v1,v2; /* length of each $({\it dx},{\it dy})$ pair */
8320 scaled v02; /* twice the norm of the quadratic at $t={1\over2}$ */
8321 v0 = mp_pyth_add(mp, dx0,dy0);
8322 v1 = mp_pyth_add(mp, dx1,dy1);
8323 v2 = mp_pyth_add(mp, dx2,dy2);
8324 if ( (v0>=fraction_four) || (v1>=fraction_four) || (v2>=fraction_four) ) {
8325 mp->arith_error = true;
8326 if ( a_goal==el_gordo ) return el_gordo;
8329 v02 = mp_pyth_add(mp, dx1+half(dx0+dx2), dy1+half(dy0+dy2));
8330 return (mp_arc_test(mp, dx0,dy0, dx1,dy1, dx2,dy2,
8331 v0, v02, v2, a_goal, arc_tol));
8335 @ Now it is easy to find the arc length of an entire path.
8337 @c scaled mp_get_arc_length (MP mp,pointer h) {
8338 pointer p,q; /* for traversing the path */
8339 scaled a,a_tot; /* current and total arc lengths */
8342 while ( right_type(p)!=endpoint ){
8344 a = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8345 left_x(q)-right_x(p), left_y(q)-right_y(p),
8346 x_coord(q)-left_x(q), y_coord(q)-left_y(q), el_gordo);
8347 a_tot = mp_slow_add(mp, a, a_tot);
8348 if ( q==h ) break; else p=q;
8354 @ The inverse operation of finding the time on a path~|h| when the arc length
8355 reaches some value |arc0| can also be accomplished via |do_arc_test|. Some care
8356 is required to handle very large times or negative times on cyclic paths. For
8357 non-cyclic paths, |arc0| values that are negative or too large cause
8358 |get_arc_time| to return 0 or the length of path~|h|.
8360 If |arc0| is greater than the arc length of a cyclic path~|h|, the result is a
8361 time value greater than the length of the path. Since it could be much greater,
8362 we must be prepared to compute the arc length of path~|h| and divide this into
8363 |arc0| to find how many multiples of the length of path~|h| to add.
8365 @c scaled mp_get_arc_time (MP mp,pointer h, scaled arc0) {
8366 pointer p,q; /* for traversing the path */
8367 scaled t_tot; /* accumulator for the result */
8368 scaled t; /* the result of |do_arc_test| */
8369 scaled arc; /* portion of |arc0| not used up so far */
8370 integer n; /* number of extra times to go around the cycle */
8372 @<Deal with a negative |arc0| value and |return|@>;
8374 if ( arc0==el_gordo ) decr(arc0);
8378 while ( (right_type(p)!=endpoint) && (arc>0) ) {
8380 t = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8381 left_x(q)-right_x(p), left_y(q)-right_y(p),
8382 x_coord(q)-left_x(q), y_coord(q)-left_y(q), arc);
8383 @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>;
8385 @<Update |t_tot| and |arc| to avoid going around the cyclic
8386 path too many times but set |arith_error:=true| and |goto done| on
8395 @ @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>=
8396 if ( t<0 ) { t_tot = t_tot + t + two; arc = 0; }
8397 else { t_tot = t_tot + unity; arc = arc - t; }
8399 @ @<Deal with a negative |arc0| value and |return|@>=
8401 if ( left_type(h)==endpoint ) {
8404 p = mp_htap_ypoc(mp, h);
8405 t_tot = -mp_get_arc_time(mp, p, -arc0);
8406 mp_toss_knot_list(mp, p);
8412 @ @<Update |t_tot| and |arc| to avoid going around the cyclic...@>=
8414 n = arc / (arc0 - arc);
8415 arc = arc - n*(arc0 - arc);
8416 if ( t_tot > el_gordo / (n+1) ) {
8417 mp->arith_error = true;
8421 t_tot = (n + 1)*t_tot;
8424 @* \[20] Data structures for pens.
8425 A Pen in \MP\ can be either elliptical or polygonal. Elliptical pens result
8426 in \ps\ \&{stroke} commands, while anything drawn with a polygonal pen is
8427 @:stroke}{\&{stroke} command@>
8428 converted into an area fill as described in the next part of this program.
8429 The mathematics behind this process is based on simple aspects of the theory
8430 of tracings developed by Leo Guibas, Lyle Ramshaw, and Jorge Stolfi
8431 [``A kinematic framework for computational geometry,'' Proc.\ IEEE Symp.\
8432 Foundations of Computer Science {\bf 24} (1983), 100--111].
8434 Polygonal pens are created from paths via \MP's \&{makepen} primitive.
8435 @:makepen_}{\&{makepen} primitive@>
8436 This path representation is almost sufficient for our purposes except that
8437 a pen path should always be a convex polygon with the vertices in
8438 counter-clockwise order.
8439 Since we will need to scan pen polygons both forward and backward, a pen
8440 should be represented as a doubly linked ring of knot nodes. There is
8441 room for the extra back pointer because we do not need the
8442 |left_type| or |right_type| fields. In fact, we don't need the |left_x|,
8443 |left_y|, |right_x|, or |right_y| fields either but we leave these alone
8444 so that certain procedures can operate on both pens and paths. In particular,
8445 pens can be copied using |copy_path| and recycled using |toss_knot_list|.
8448 /* this replaces the |left_type| and |right_type| fields in a pen knot */
8450 @ The |make_pen| procedure turns a path into a pen by initializing
8451 the |knil| pointers and making sure the knots form a convex polygon.
8452 Thus each cubic in the given path becomes a straight line and the control
8453 points are ignored. If the path is not cyclic, the ends are connected by a
8456 @d copy_pen(A) mp_make_pen(mp, mp_copy_path(mp, (A)),false)
8458 @c @<Declare a function called |convex_hull|@>;
8459 pointer mp_make_pen (MP mp,pointer h, boolean need_hull) {
8460 pointer p,q; /* two consecutive knots */
8467 h=mp_convex_hull(mp, h);
8468 @<Make sure |h| isn't confused with an elliptical pen@>;
8473 @ The only information required about an elliptical pen is the overall
8474 transformation that has been applied to the original \&{pencircle}.
8475 @:pencircle_}{\&{pencircle} primitive@>
8476 Since it suffices to keep track of how the three points $(0,0)$, $(1,0)$,
8477 and $(0,1)$ are transformed, an elliptical pen can be stored in a single
8478 knot node and transformed as if it were a path.
8480 @d pen_is_elliptical(A) ((A)==link((A)))
8482 @c pointer mp_get_pen_circle (MP mp,scaled diam) {
8483 pointer h; /* the knot node to return */
8484 h=mp_get_node(mp, knot_node_size);
8485 link(h)=h; knil(h)=h;
8486 originator(h)=program_code;
8487 x_coord(h)=0; y_coord(h)=0;
8488 left_x(h)=diam; left_y(h)=0;
8489 right_x(h)=0; right_y(h)=diam;
8493 @ If the polygon being returned by |make_pen| has only one vertex, it will
8494 be interpreted as an elliptical pen. This is no problem since a degenerate
8495 polygon can equally well be thought of as a degenerate ellipse. We need only
8496 initialize the |left_x|, |left_y|, |right_x|, and |right_y| fields.
8498 @<Make sure |h| isn't confused with an elliptical pen@>=
8499 if ( pen_is_elliptical( h) ){
8500 left_x(h)=x_coord(h); left_y(h)=y_coord(h);
8501 right_x(h)=x_coord(h); right_y(h)=y_coord(h);
8504 @ We have to cheat a little here but most operations on pens only use
8505 the first three words in each knot node.
8506 @^data structure assumptions@>
8508 @<Initialize a pen at |test_pen| so that it fits in nine words@>=
8509 x_coord(test_pen)=-half_unit;
8510 y_coord(test_pen)=0;
8511 x_coord(test_pen+3)=half_unit;
8512 y_coord(test_pen+3)=0;
8513 x_coord(test_pen+6)=0;
8514 y_coord(test_pen+6)=unity;
8515 link(test_pen)=test_pen+3;
8516 link(test_pen+3)=test_pen+6;
8517 link(test_pen+6)=test_pen;
8518 knil(test_pen)=test_pen+6;
8519 knil(test_pen+3)=test_pen;
8520 knil(test_pen+6)=test_pen+3
8522 @ Printing a polygonal pen is very much like printing a path
8524 @<Declare subroutines for printing expressions@>=
8525 void mp_pr_pen (MP mp,pointer h) {
8526 pointer p,q; /* for list traversal */
8527 if ( pen_is_elliptical(h) ) {
8528 @<Print the elliptical pen |h|@>;
8532 mp_print_two(mp, x_coord(p),y_coord(p));
8533 mp_print_nl(mp, " .. ");
8534 @<Advance |p| making sure the links are OK and |return| if there is
8537 mp_print(mp, "cycle");
8541 @ @<Advance |p| making sure the links are OK and |return| if there is...@>=
8543 if ( (q==null) || (knil(q)!=p) ) {
8544 mp_print_nl(mp, "???"); return; /* this won't happen */
8549 @ @<Print the elliptical pen |h|@>=
8551 mp_print(mp, "pencircle transformed (");
8552 mp_print_scaled(mp, x_coord(h));
8553 mp_print_char(mp, ',');
8554 mp_print_scaled(mp, y_coord(h));
8555 mp_print_char(mp, ',');
8556 mp_print_scaled(mp, left_x(h)-x_coord(h));
8557 mp_print_char(mp, ',');
8558 mp_print_scaled(mp, right_x(h)-x_coord(h));
8559 mp_print_char(mp, ',');
8560 mp_print_scaled(mp, left_y(h)-y_coord(h));
8561 mp_print_char(mp, ',');
8562 mp_print_scaled(mp, right_y(h)-y_coord(h));
8563 mp_print_char(mp, ')');
8566 @ Here us another version of |pr_pen| that prints the pen as a diagnostic
8569 @<Declare subroutines for printing expressions@>=
8570 void mp_print_pen (MP mp,pointer h, char *s, boolean nuline) {
8571 mp_print_diagnostic(mp, "Pen",s,nuline); mp_print_ln(mp);
8574 mp_end_diagnostic(mp, true);
8577 @ Making a polygonal pen into a path involves restoring the |left_type| and
8578 |right_type| fields and setting the control points so as to make a polygonal
8582 void mp_make_path (MP mp,pointer h) {
8583 pointer p; /* for traversing the knot list */
8584 small_number k; /* a loop counter */
8585 @<Other local variables in |make_path|@>;
8586 if ( pen_is_elliptical(h) ) {
8587 @<Make the elliptical pen |h| into a path@>;
8591 left_type(p)=explicit;
8592 right_type(p)=explicit;
8593 @<copy the coordinates of knot |p| into its control points@>;
8599 @ @<copy the coordinates of knot |p| into its control points@>=
8600 left_x(p)=x_coord(p);
8601 left_y(p)=y_coord(p);
8602 right_x(p)=x_coord(p);
8603 right_y(p)=y_coord(p)
8605 @ We need an eight knot path to get a good approximation to an ellipse.
8607 @<Make the elliptical pen |h| into a path@>=
8609 @<Extract the transformation parameters from the elliptical pen~|h|@>;
8611 for (k=0;k<=7;k++ ) {
8612 @<Initialize |p| as the |k|th knot of a circle of unit diameter,
8613 transforming it appropriately@>;
8614 if ( k==7 ) link(p)=h; else link(p)=mp_get_node(mp, knot_node_size);
8619 @ @<Extract the transformation parameters from the elliptical pen~|h|@>=
8620 center_x=x_coord(h);
8621 center_y=y_coord(h);
8622 width_x=left_x(h)-center_x;
8623 width_y=left_y(h)-center_y;
8624 height_x=right_x(h)-center_x;
8625 height_y=right_y(h)-center_y
8627 @ @<Other local variables in |make_path|@>=
8628 scaled center_x,center_y; /* translation parameters for an elliptical pen */
8629 scaled width_x,width_y; /* the effect of a unit change in $x$ */
8630 scaled height_x,height_y; /* the effect of a unit change in $y$ */
8631 scaled dx,dy; /* the vector from knot |p| to its right control point */
8633 /* |k| advanced $270^\circ$ around the ring (cf. $\sin\theta=\cos(\theta+270)$) */
8635 @ The only tricky thing here are the tables |half_cos| and |d_cos| used to
8636 find the point $k/8$ of the way around the circle and the direction vector
8639 @<Initialize |p| as the |k|th knot of a circle of unit diameter,...@>=
8641 x_coord(p)=center_x+mp_take_fraction(mp, mp->half_cos[k],width_x)
8642 +mp_take_fraction(mp, mp->half_cos[kk],height_x);
8643 y_coord(p)=center_y+mp_take_fraction(mp, mp->half_cos[k],width_y)
8644 +mp_take_fraction(mp, mp->half_cos[kk],height_y);
8645 dx=-mp_take_fraction(mp, mp->d_cos[kk],width_x)
8646 +mp_take_fraction(mp, mp->d_cos[k],height_x);
8647 dy=-mp_take_fraction(mp, mp->d_cos[kk],width_y)
8648 +mp_take_fraction(mp, mp->d_cos[k],height_y);
8649 right_x(p)=x_coord(p)+dx;
8650 right_y(p)=y_coord(p)+dy;
8651 left_x(p)=x_coord(p)-dx;
8652 left_y(p)=y_coord(p)-dy;
8653 left_type(p)=explicit;
8654 right_type(p)=explicit;
8655 originator(p)=program_code
8658 fraction half_cos[8]; /* ${1\over2}\cos(45k)$ */
8659 fraction d_cos[8]; /* a magic constant times $\cos(45k)$ */
8661 @ The magic constant for |d_cos| is the distance between $({1\over2},0)$ and
8662 $({1\over4}\sqrt2,{1\over4}\sqrt2)$ times the result of the |velocity|
8663 function for $\theta=\phi=22.5^\circ$. This comes out to be
8664 $$ d = {\sqrt{2-\sqrt2}\over 3+3\cos22.5^\circ}
8665 \approx 0.132608244919772.
8669 mp->half_cos[0]=fraction_half;
8670 mp->half_cos[1]=94906266; /* $2^{26}\sqrt2\approx94906265.62$ */
8672 mp->d_cos[0]=35596755; /* $2^{28}d\approx35596754.69$ */
8673 mp->d_cos[1]=25170707; /* $2^{27}\sqrt2\,d\approx25170706.63$ */
8675 for (k=3;k<= 4;k++ ) {
8676 mp->half_cos[k]=-mp->half_cos[4-k];
8677 mp->d_cos[k]=-mp->d_cos[4-k];
8679 for (k=5;k<= 7;k++ ) {
8680 mp->half_cos[k]=mp->half_cos[8-k];
8681 mp->d_cos[k]=mp->d_cos[8-k];
8684 @ The |convex_hull| function forces a pen polygon to be convex when it is
8685 returned by |make_pen| and after any subsequent transformation where rounding
8686 error might allow the convexity to be lost.
8687 The convex hull algorithm used here is described by F.~P. Preparata and
8688 M.~I. Shamos [{\sl Computational Geometry}, Springer-Verlag, 1985].
8690 @<Declare a function called |convex_hull|@>=
8691 @<Declare a procedure called |move_knot|@>;
8692 pointer mp_convex_hull (MP mp,pointer h) { /* Make a polygonal pen convex */
8693 pointer l,r; /* the leftmost and rightmost knots */
8694 pointer p,q; /* knots being scanned */
8695 pointer s; /* the starting point for an upcoming scan */
8696 scaled dx,dy; /* a temporary pointer */
8697 if ( pen_is_elliptical(h) ) {
8700 @<Set |l| to the leftmost knot in polygon~|h|@>;
8701 @<Set |r| to the rightmost knot in polygon~|h|@>;
8704 @<Find any knots on the path from |l| to |r| above the |l|-|r| line and
8705 move them past~|r|@>;
8706 @<Find any knots on the path from |s| to |l| below the |l|-|r| line and
8707 move them past~|l|@>;
8708 @<Sort the path from |l| to |r| by increasing $x$@>;
8709 @<Sort the path from |r| to |l| by decreasing $x$@>;
8712 @<Do a Gramm scan and remove vertices where there is no left turn@>;
8718 @ All comparisons are done primarily on $x$ and secondarily on $y$.
8720 @<Set |l| to the leftmost knot in polygon~|h|@>=
8724 if ( x_coord(p)<=x_coord(l) )
8725 if ( (x_coord(p)<x_coord(l)) || (y_coord(p)<y_coord(l)) )
8730 @ @<Set |r| to the rightmost knot in polygon~|h|@>=
8734 if ( x_coord(p)>=x_coord(r) )
8735 if ( (x_coord(p)>x_coord(r)) || (y_coord(p)>y_coord(r)) )
8740 @ @<Find any knots on the path from |l| to |r| above the |l|-|r| line...@>=
8741 dx=x_coord(r)-x_coord(l);
8742 dy=y_coord(r)-y_coord(l);
8746 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))>0 )
8747 mp_move_knot(mp, p, r);
8751 @ The |move_knot| procedure removes |p| from a doubly linked list and inserts
8754 @ @<Declare a procedure called |move_knot|@>=
8755 void mp_move_knot (MP mp,pointer p, pointer q) {
8756 link(knil(p))=link(p);
8757 knil(link(p))=knil(p);
8764 @ @<Find any knots on the path from |s| to |l| below the |l|-|r| line...@>=
8768 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))<0 )
8769 mp_move_knot(mp, p,l);
8773 @ The list is likely to be in order already so we just do linear insertions.
8774 Secondary comparisons on $y$ ensure that the sort is consistent with the
8775 choice of |l| and |r|.
8777 @<Sort the path from |l| to |r| by increasing $x$@>=
8781 while ( x_coord(q)>x_coord(p) ) q=knil(q);
8782 while ( x_coord(q)==x_coord(p) ) {
8783 if ( y_coord(q)>y_coord(p) ) q=knil(q); else break;
8785 if ( q==knil(p) ) p=link(p);
8786 else { p=link(p); mp_move_knot(mp, knil(p),q); };
8789 @ @<Sort the path from |r| to |l| by decreasing $x$@>=
8793 while ( x_coord(q)<x_coord(p) ) q=knil(q);
8794 while ( x_coord(q)==x_coord(p) ) {
8795 if ( y_coord(q)<y_coord(p) ) q=knil(q); else break;
8797 if ( q==knil(p) ) p=link(p);
8798 else { p=link(p); mp_move_knot(mp, knil(p),q); };
8801 @ The condition involving |ab_vs_cd| tests if there is not a left turn
8802 at knot |q|. There usually will be a left turn so we streamline the case
8803 where the |then| clause is not executed.
8805 @<Do a Gramm scan and remove vertices where there...@>=
8809 dx=x_coord(q)-x_coord(p);
8810 dy=y_coord(q)-y_coord(p);
8814 if ( mp_ab_vs_cd(mp, dx,y_coord(q)-y_coord(p),dy,x_coord(q)-x_coord(p))<=0 ) {
8815 @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>;
8820 @ @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>=
8823 mp_free_node(mp, p,knot_node_size);
8824 link(s)=q; knil(q)=s;
8826 else { p=knil(s); q=s; };
8829 @ The |find_offset| procedure sets global variables |(cur_x,cur_y)| to the
8830 offset associated with the given direction |(x,y)|. If two different offsets
8831 apply, it chooses one of them.
8834 void mp_find_offset (MP mp,scaled x, scaled y, pointer h) {
8835 pointer p,q; /* consecutive knots */
8837 /* the transformation matrix for an elliptical pen */
8838 fraction xx,yy; /* untransformed offset for an elliptical pen */
8839 fraction d; /* a temporary register */
8840 if ( pen_is_elliptical(h) ) {
8841 @<Find the offset for |(x,y)| on the elliptical pen~|h|@>
8846 } while (! mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)>=0);
8849 } while (! mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)<=0);
8850 mp->cur_x=x_coord(p);
8851 mp->cur_y=y_coord(p);
8857 scaled cur_y; /* all-purpose return value registers */
8859 @ @<Find the offset for |(x,y)| on the elliptical pen~|h|@>=
8860 if ( (x==0) && (y==0) ) {
8861 mp->cur_x=x_coord(h); mp->cur_y=y_coord(h);
8863 @<Find the non-constant part of the transformation for |h|@>;
8864 while ( (abs(x)<fraction_half) && (abs(y)<fraction_half) ){
8867 @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the
8868 untransformed version of |(x,y)|@>;
8869 mp->cur_x=x_coord(h)+mp_take_fraction(mp, xx,wx)+mp_take_fraction(mp, yy,hx);
8870 mp->cur_y=y_coord(h)+mp_take_fraction(mp, xx,wy)+mp_take_fraction(mp, yy,hy);
8873 @ @<Find the non-constant part of the transformation for |h|@>=
8874 wx=left_x(h)-x_coord(h);
8875 wy=left_y(h)-y_coord(h);
8876 hx=right_x(h)-x_coord(h);
8877 hy=right_y(h)-y_coord(h)
8879 @ @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the...@>=
8880 yy=-(mp_take_fraction(mp, x,hy)+mp_take_fraction(mp, y,-hx));
8881 xx=mp_take_fraction(mp, x,-wy)+mp_take_fraction(mp, y,wx);
8882 d=mp_pyth_add(mp, xx,yy);
8884 xx=half(mp_make_fraction(mp, xx,d));
8885 yy=half(mp_make_fraction(mp, yy,d));
8888 @ Finding the bounding box of a pen is easy except if the pen is elliptical.
8889 But we can handle that case by just calling |find_offset| twice. The answer
8890 is stored in the global variables |minx|, |maxx|, |miny|, and |maxy|.
8893 void mp_pen_bbox (MP mp,pointer h) {
8894 pointer p; /* for scanning the knot list */
8895 if ( pen_is_elliptical(h) ) {
8896 @<Find the bounding box of an elliptical pen@>;
8898 minx=x_coord(h); maxx=minx;
8899 miny=y_coord(h); maxy=miny;
8902 if ( x_coord(p)<minx ) minx=x_coord(p);
8903 if ( y_coord(p)<miny ) miny=y_coord(p);
8904 if ( x_coord(p)>maxx ) maxx=x_coord(p);
8905 if ( y_coord(p)>maxy ) maxy=y_coord(p);
8911 @ @<Find the bounding box of an elliptical pen@>=
8913 mp_find_offset(mp, 0,fraction_one,h);
8915 minx=2*x_coord(h)-mp->cur_x;
8916 mp_find_offset(mp, -fraction_one,0,h);
8918 miny=2*y_coord(h)-mp->cur_y;
8921 @* \[21] Edge structures.
8922 Now we come to \MP's internal scheme for representing pictures.
8923 The representation is very different from \MF's edge structures
8924 because \MP\ pictures contain \ps\ graphics objects instead of pixel
8925 images. However, the basic idea is somewhat similar in that shapes
8926 are represented via their boundaries.
8928 The main purpose of edge structures is to keep track of graphical objects
8929 until it is time to translate them into \ps. Since \MP\ does not need to
8930 know anything about an edge structure other than how to translate it into
8931 \ps\ and how to find its bounding box, edge structures can be just linked
8932 lists of graphical objects. \MP\ has no easy way to determine whether
8933 two such objects overlap, but it suffices to draw the first one first and
8934 let the second one overwrite it if necessary.
8936 @ Let's consider the types of graphical objects one at a time.
8937 First of all, a filled contour is represented by a eight-word node. The first
8938 word contains |type| and |link| fields, and the next six words contain a
8939 pointer to a cyclic path and the value to use for \ps' \&{currentrgbcolor}
8940 parameter. If a pen is used for filling |pen_p|, |ljoin_val| and |miterlim_val|
8941 give the relevant information.
8943 @d path_p(A) link((A)+1)
8944 /* a pointer to the path that needs filling */
8945 @d pen_p(A) info((A)+1)
8946 /* a pointer to the pen to fill or stroke with */
8947 @d color_model(A) type((A)+2) /* the color model */
8948 @d obj_red_loc(A) ((A)+3) /* the first of three locations for the color */
8949 @d obj_cyan_loc obj_red_loc /* the first of four locations for the color */
8950 @d obj_grey_loc obj_red_loc /* the location for the color */
8951 @d red_val(A) mp->mem[(A)+3].sc
8952 /* the red component of the color in the range $0\ldots1$ */
8955 @d green_val(A) mp->mem[(A)+4].sc
8956 /* the green component of the color in the range $0\ldots1$ */
8957 @d magenta_val green_val
8958 @d blue_val(A) mp->mem[(A)+5].sc
8959 /* the blue component of the color in the range $0\ldots1$ */
8960 @d yellow_val blue_val
8961 @d black_val(A) mp->mem[(A)+6].sc
8962 /* the blue component of the color in the range $0\ldots1$ */
8963 @d ljoin_val(A) name_type((A)) /* the value of \&{linejoin} */
8964 @:linejoin_}{\&{linejoin} primitive@>
8965 @d miterlim_val(A) mp->mem[(A)+7].sc /* the value of \&{miterlimit} */
8966 @:miterlimit_}{\&{miterlimit} primitive@>
8967 @d obj_color_part(A) mp->mem[(A)+3-red_part].sc
8968 /* interpret an object pointer that has been offset by |red_part..blue_part| */
8969 @d pre_script(A) mp->mem[(A)+8].hh.lh
8970 @d post_script(A) mp->mem[(A)+8].hh.rh
8975 pointer mp_new_fill_node (MP mp,pointer p) {
8976 /* make a fill node for cyclic path |p| and color black */
8977 pointer t; /* the new node */
8978 t=mp_get_node(mp, fill_node_size);
8981 pen_p(t)=null; /* |null| means don't use a pen */
8986 color_model(t)=uninitialized_model;
8988 post_script(t)=null;
8989 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
8993 @ @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>=
8994 if ( mp->internal[linejoin]>unity ) ljoin_val(t)=2;
8995 else if ( mp->internal[linejoin]>0 ) ljoin_val(t)=1;
8996 else ljoin_val(t)=0;
8997 if ( mp->internal[miterlimit]<unity )
8998 miterlim_val(t)=unity;
9000 miterlim_val(t)=mp->internal[miterlimit]
9002 @ A stroked path is represented by an eight-word node that is like a filled
9003 contour node except that it contains the current \&{linecap} value, a scale
9004 factor for the dash pattern, and a pointer that is non-null if the stroke
9005 is to be dashed. The purpose of the scale factor is to allow a picture to
9006 be transformed without touching the picture that |dash_p| points to.
9008 @d dash_p(A) link((A)+9)
9009 /* a pointer to the edge structure that gives the dash pattern */
9010 @d lcap_val(A) type((A)+9)
9011 /* the value of \&{linecap} */
9012 @:linecap_}{\&{linecap} primitive@>
9013 @d dash_scale(A) mp->mem[(A)+10].sc /* dash lengths are scaled by this factor */
9014 @d stroked_node_size 11
9018 pointer mp_new_stroked_node (MP mp,pointer p) {
9019 /* make a stroked node for path |p| with |pen_p(p)| temporarily |null| */
9020 pointer t; /* the new node */
9021 t=mp_get_node(mp, stroked_node_size);
9022 type(t)=stroked_code;
9023 path_p(t)=p; pen_p(t)=null;
9025 dash_scale(t)=unity;
9030 color_model(t)=uninitialized_model;
9032 post_script(t)=null;
9033 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9034 if ( mp->internal[linecap]>unity ) lcap_val(t)=2;
9035 else if ( mp->internal[linecap]>0 ) lcap_val(t)=1;
9040 @ When a dashed line is computed in a transformed coordinate system, the dash
9041 lengths get scaled like the pen shape and we need to compensate for this. Since
9042 there is no unique scale factor for an arbitrary transformation, we use the
9043 the square root of the determinant. The properties of the determinant make it
9044 easier to maintain the |dash_scale|. The computation is fairly straight-forward
9045 except for the initialization of the scale factor |s|. The factor of 64 is
9046 needed because |square_rt| scales its result by $2^8$ while we need $2^{14}$
9047 to counteract the effect of |take_fraction|.
9049 @<Declare subroutines needed by |print_edges|@>=
9050 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) {
9051 scaled maxabs; /* $max(|a|,|b|,|c|,|d|)$ */
9052 integer s; /* amount by which the result of |square_rt| needs to be scaled */
9053 @<Initialize |maxabs|@>;
9055 while ( (maxabs<fraction_one) && (s>1) ){
9056 a+=a; b+=b; c+=c; d+=d;
9057 maxabs+=maxabs; s=halfp(s);
9059 return s*mp_square_rt(mp, abs(mp_take_fraction(mp, a,d)-mp_take_fraction(mp, b,c)));
9062 scaled mp_get_pen_scale (MP mp,pointer p) {
9063 return mp_sqrt_det(mp,
9064 left_x(p)-x_coord(p), right_x(p)-x_coord(p),
9065 left_y(p)-y_coord(p), right_y(p)-y_coord(p));
9068 @ @<Initialize |maxabs|@>=
9070 if ( abs(b)>maxabs ) maxabs=abs(b);
9071 if ( abs(c)>maxabs ) maxabs=abs(c);
9072 if ( abs(d)>maxabs ) maxabs=abs(d)
9074 @ When a picture contains text, this is represented by a fourteen-word node
9075 where the color information and |type| and |link| fields are augmented by
9076 additional fields that describe the text and how it is transformed.
9077 The |path_p| and |pen_p| pointers are replaced by a number that identifies
9078 the font and a string number that gives the text to be displayed.
9079 The |width|, |height|, and |depth| fields
9080 give the dimensions of the text at its design size, and the remaining six
9081 words give a transformation to be applied to the text. The |new_text_node|
9082 function initializes everything to default values so that the text comes out
9083 black with its reference point at the origin.
9085 @d text_p(A) link((A)+1) /* a string pointer for the text to display */
9086 @d font_n(A) info((A)+1) /* the font number */
9087 @d width_val(A) mp->mem[(A)+7].sc /* unscaled width of the text */
9088 @d height_val(A) mp->mem[(A)+9].sc /* unscaled height of the text */
9089 @d depth_val(A) mp->mem[(A)+10].sc /* unscaled depth of the text */
9090 @d text_tx_loc(A) ((A)+11)
9091 /* the first of six locations for transformation parameters */
9092 @d tx_val(A) mp->mem[(A)+11].sc /* $x$ shift amount */
9093 @d ty_val(A) mp->mem[(A)+12].sc /* $y$ shift amount */
9094 @d txx_val(A) mp->mem[(A)+13].sc /* |txx| transformation parameter */
9095 @d txy_val(A) mp->mem[(A)+14].sc /* |txy| transformation parameter */
9096 @d tyx_val(A) mp->mem[(A)+15].sc /* |tyx| transformation parameter */
9097 @d tyy_val(A) mp->mem[(A)+16].sc /* |tyy| transformation parameter */
9098 @d text_trans_part(A) mp->mem[(A)+11-x_part].sc
9099 /* interpret a text node ponter that has been offset by |x_part..yy_part| */
9100 @d text_node_size 17
9103 @c @<Declare text measuring subroutines@>;
9104 pointer mp_new_text_node (MP mp,char *f,str_number s) {
9105 /* make a text node for font |f| and text string |s| */
9106 pointer t; /* the new node */
9107 t=mp_get_node(mp, text_node_size);
9110 font_n(t)=mp_find_font(mp, f); /* this identifies the font */
9115 color_model(t)=uninitialized_model;
9117 post_script(t)=null;
9118 tx_val(t)=0; ty_val(t)=0;
9119 txx_val(t)=unity; txy_val(t)=0;
9120 tyx_val(t)=0; tyy_val(t)=unity;
9121 mp_set_text_box(mp, t); /* this finds the bounding box */
9125 @ The last two types of graphical objects that can occur in an edge structure
9126 are clipping paths and \&{setbounds} paths. These are slightly more difficult
9127 @:set_bounds_}{\&{setbounds} primitive@>
9128 to implement because we must keep track of exactly what is being clipped or
9129 bounded when pictures get merged together. For this reason, each clipping or
9130 \&{setbounds} operation is represented by a pair of nodes: first comes a
9131 two-word node whose |path_p| gives the relevant path, then there is the list
9132 of objects to clip or bound followed by a two-word node whose second word is
9135 Using at least two words for each graphical object node allows them all to be
9136 allocated and deallocated similarly with a global array |gr_object_size| to
9137 give the size in words for each object type.
9139 @d start_clip_size 2
9140 @d start_bounds_size 2
9141 @d stop_clip_size 2 /* the second word is not used here */
9142 @d stop_bounds_size 2 /* the second word is not used here */
9144 @d stop_type(A) ((A)+2)
9145 /* matching |type| for |start_clip_code| or |start_bounds_code| */
9146 @d has_color(A) (type((A))<mp_start_clip_code)
9147 /* does a graphical object have color fields? */
9148 @d has_pen(A) (type((A))<text_code)
9149 /* does a graphical object have a |pen_p| field? */
9150 @d is_start_or_stop(A) (type((A))>=mp_start_clip_code)
9151 @d is_stop(A) (type((A))>=mp_stop_clip_code)
9155 mp_start_clip_code=4, /* |type| of a node that starts clipping */
9156 mp_start_bounds_code, /* |type| of a node that gives a \&{setbounds} path */
9157 mp_stop_clip_code, /* |type| of a node that stops clipping */
9158 mp_stop_bounds_code /* |type| of a node that stops \&{setbounds} */
9162 pointer mp_new_bounds_node (MP mp,pointer p, small_number c) {
9163 /* make a node of type |c| where |p| is the clipping or \&{setbounds} path */
9164 pointer t; /* the new node */
9165 t=mp_get_node(mp, mp->gr_object_size[c]);
9171 @ We need an array to keep track of the sizes of graphical objects.
9174 small_number gr_object_size[mp_stop_bounds_code+1];
9177 mp->gr_object_size[fill_code]=fill_node_size;
9178 mp->gr_object_size[stroked_code]=stroked_node_size;
9179 mp->gr_object_size[text_code]=text_node_size;
9180 mp->gr_object_size[mp_start_clip_code]=start_clip_size;
9181 mp->gr_object_size[mp_stop_clip_code]=stop_clip_size;
9182 mp->gr_object_size[mp_start_bounds_code]=start_bounds_size;
9183 mp->gr_object_size[mp_stop_bounds_code]=stop_bounds_size;
9185 @ All the essential information in an edge structure is encoded as a linked list
9186 of graphical objects as we have just seen, but it is helpful to add some
9187 redundant information. A single edge structure might be used as a dash pattern
9188 many times, and it would be nice to avoid scanning the same structure
9189 repeatedly. Thus, an edge structure known to be a suitable dash pattern
9190 has a header that gives a list of dashes in a sorted order designed for rapid
9191 translation into \ps.
9193 Each dash is represented by a three-word node containing the initial and final
9194 $x$~coordinates as well as the usual |link| field. The |link| fields points to
9195 the dash node with the next higher $x$-coordinates and the final link points
9196 to a special location called |null_dash|. (There should be no overlap between
9197 dashes). Since the $y$~coordinate of the dash pattern is needed to determine
9198 the period of repetition, this needs to be stored in the edge header along
9199 with a pointer to the list of dash nodes.
9201 @d start_x(A) mp->mem[(A)+1].sc /* the starting $x$~coordinate in a dash node */
9202 @d stop_x(A) mp->mem[(A)+2].sc /* the ending $x$~coordinate in a dash node */
9205 /* in an edge header this points to the first dash node */
9206 @d dash_y(A) mp->mem[(A)+1].sc /* $y$ value for the dash list in an edge header */
9208 @ It is also convenient for an edge header to contain the bounding
9209 box information needed by the \&{llcorner} and \&{urcorner} operators
9210 so that this does not have to be recomputed unnecessarily. This is done by
9211 adding fields for the $x$~and $y$ extremes as well as a pointer that indicates
9212 how far the bounding box computation has gotten. Thus if the user asks for
9213 the bounding box and then adds some more text to the picture before asking
9214 for more bounding box information, the second computation need only look at
9215 the additional text.
9217 When the bounding box has not been computed, the |bblast| pointer points
9218 to a dummy link at the head of the graphical object list while the |minx_val|
9219 and |miny_val| fields contain |el_gordo| and the |maxx_val| and |maxy_val|
9220 fields contain |-el_gordo|.
9222 Since the bounding box of pictures containing objects of type
9223 |mp_start_bounds_code| depends on the value of \&{truecorners}, the bounding box
9224 @:true_corners_}{\&{truecorners} primitive@>
9225 data might not be valid for all values of this parameter. Hence, the |bbtype|
9226 field is needed to keep track of this.
9228 @d minx_val(A) mp->mem[(A)+2].sc
9229 @d miny_val(A) mp->mem[(A)+3].sc
9230 @d maxx_val(A) mp->mem[(A)+4].sc
9231 @d maxy_val(A) mp->mem[(A)+5].sc
9232 @d bblast(A) link((A)+6) /* last item considered in bounding box computation */
9233 @d bbtype(A) info((A)+6) /* tells how bounding box data depends on \&{truecorners} */
9234 @d dummy_loc(A) ((A)+7) /* where the object list begins in an edge header */
9236 /* |bbtype| value when bounding box data is valid for all \&{truecorners} values */
9238 /* |bbtype| value when bounding box data is for \&{truecorners}${}\le 0$ */
9240 /* |bbtype| value when bounding box data is for \&{truecorners}${}>0$ */
9243 void mp_init_bbox (MP mp,pointer h) {
9244 /* Initialize the bounding box information in edge structure |h| */
9245 bblast(h)=dummy_loc(h);
9246 bbtype(h)=no_bounds;
9247 minx_val(h)=el_gordo;
9248 miny_val(h)=el_gordo;
9249 maxx_val(h)=-el_gordo;
9250 maxy_val(h)=-el_gordo;
9253 @ The only other entries in an edge header are a reference count in the first
9254 word and a pointer to the tail of the object list in the last word.
9256 @d obj_tail(A) info((A)+7) /* points to the last entry in the object list */
9257 @d edge_header_size 8
9260 void mp_init_edges (MP mp,pointer h) {
9261 /* initialize an edge header to null values */
9262 dash_list(h)=null_dash;
9263 obj_tail(h)=dummy_loc(h);
9264 link(dummy_loc(h))=null;
9266 mp_init_bbox(mp, h);
9269 @ Here is how edge structures are deleted. The process can be recursive because
9270 of the need to dereference edge structures that are used as dash patterns.
9273 @d add_edge_ref(A) incr(ref_count((A)))
9274 @d delete_edge_ref(A) { if ( ref_count((A))==null ) mp_toss_edges(mp, (A));
9275 else decr(ref_count((A))); }
9277 @<Declare the recycling subroutines@>=
9278 void mp_flush_dash_list (MP mp,pointer h);
9279 pointer mp_toss_gr_object (MP mp,pointer p) ;
9280 void mp_toss_edges (MP mp,pointer h) ;
9282 @ @c void mp_toss_edges (MP mp,pointer h) {
9283 pointer p,q; /* pointers that scan the list being recycled */
9284 pointer r; /* an edge structure that object |p| refers to */
9285 mp_flush_dash_list(mp, h);
9286 q=link(dummy_loc(h));
9287 while ( (q!=null) ) {
9289 r=mp_toss_gr_object(mp, p);
9290 if ( r!=null ) delete_edge_ref(r);
9292 mp_free_node(mp, h,edge_header_size);
9294 void mp_flush_dash_list (MP mp,pointer h) {
9295 pointer p,q; /* pointers that scan the list being recycled */
9297 while ( q!=null_dash ) {
9299 mp_free_node(mp, p,dash_node_size);
9301 dash_list(h)=null_dash;
9303 pointer mp_toss_gr_object (MP mp,pointer p) {
9304 /* returns an edge structure that needs to be dereferenced */
9305 pointer e; /* the edge structure to return */
9307 @<Prepare to recycle graphical object |p|@>;
9308 mp_free_node(mp, p,mp->gr_object_size[type(p)]);
9312 @ @<Prepare to recycle graphical object |p|@>=
9315 mp_toss_knot_list(mp, path_p(p));
9316 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9317 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9318 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9321 mp_toss_knot_list(mp, path_p(p));
9322 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9323 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9324 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9328 delete_str_ref(text_p(p));
9329 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9330 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9332 case mp_start_clip_code:
9333 case mp_start_bounds_code:
9334 mp_toss_knot_list(mp, path_p(p));
9336 case mp_stop_clip_code:
9337 case mp_stop_bounds_code:
9339 } /* there are no other cases */
9341 @ If we use |add_edge_ref| to ``copy'' edge structures, the real copying needs
9342 to be done before making a significant change to an edge structure. Much of
9343 the work is done in a separate routine |copy_objects| that copies a list of
9344 graphical objects into a new edge header.
9346 @c @<Declare a function called |copy_objects|@>;
9347 pointer mp_private_edges (MP mp,pointer h) {
9348 /* make a private copy of the edge structure headed by |h| */
9349 pointer hh; /* the edge header for the new copy */
9350 pointer p,pp; /* pointers for copying the dash list */
9351 if ( ref_count(h)==null ) {
9355 hh=mp_copy_objects(mp, link(dummy_loc(h)),null);
9356 @<Copy the dash list from |h| to |hh|@>;
9357 @<Copy the bounding box information from |h| to |hh| and make |bblast(hh)|
9358 point into the new object list@>;
9363 @ Here we use the fact that |dash_list(hh)=link(hh)|.
9364 @^data structure assumptions@>
9366 @<Copy the dash list from |h| to |hh|@>=
9367 pp=hh; p=dash_list(h);
9368 while ( (p!=null_dash) ) {
9369 link(pp)=mp_get_node(mp, dash_node_size);
9371 start_x(pp)=start_x(p);
9372 stop_x(pp)=stop_x(p);
9376 dash_y(hh)=dash_y(h)
9378 @ @<Copy the bounding box information from |h| to |hh|...@>=
9379 minx_val(hh)=minx_val(h);
9380 miny_val(hh)=miny_val(h);
9381 maxx_val(hh)=maxx_val(h);
9382 maxy_val(hh)=maxy_val(h);
9383 bbtype(hh)=bbtype(h);
9384 p=dummy_loc(h); pp=dummy_loc(hh);
9385 while ((p!=bblast(h)) ) {
9386 if ( p==null ) mp_confusion(mp, "bblast");
9387 @:this can't happen bblast}{\quad bblast@>
9388 p=link(p); pp=link(pp);
9392 @ Here is the promised routine for copying graphical objects into a new edge
9393 structure. It starts copying at object~|p| and stops just before object~|q|.
9394 If |q| is null, it copies the entire sublist headed at |p|. The resulting edge
9395 structure requires further initialization by |init_bbox|.
9397 @<Declare a function called |copy_objects|@>=
9398 pointer mp_copy_objects (MP mp, pointer p, pointer q) {
9399 pointer hh; /* the new edge header */
9400 pointer pp; /* the last newly copied object */
9401 small_number k; /* temporary register */
9402 hh=mp_get_node(mp, edge_header_size);
9403 dash_list(hh)=null_dash;
9407 @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>;
9414 @ @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>=
9415 { k=mp->gr_object_size[type(p)];
9416 link(pp)=mp_get_node(mp, k);
9418 while ( (k>0) ) { decr(k); mp->mem[pp+k]=mp->mem[p+k]; };
9419 @<Fix anything in graphical object |pp| that should differ from the
9420 corresponding field in |p|@>;
9424 @ @<Fix anything in graphical object |pp| that should differ from the...@>=
9426 case mp_start_clip_code:
9427 case mp_start_bounds_code:
9428 path_p(pp)=mp_copy_path(mp, path_p(p));
9431 path_p(pp)=mp_copy_path(mp, path_p(p));
9432 if ( pen_p(p)!=null ) pen_p(pp)=copy_pen(pen_p(p));
9435 path_p(pp)=mp_copy_path(mp, path_p(p));
9436 pen_p(pp)=copy_pen(pen_p(p));
9437 if ( dash_p(p)!=null ) add_edge_ref(dash_p(pp));
9440 add_str_ref(text_p(pp));
9442 case mp_stop_clip_code:
9443 case mp_stop_bounds_code:
9445 } /* there are no other cases */
9447 @ Here is one way to find an acceptable value for the second argument to
9448 |copy_objects|. Given a non-null graphical object list, |skip_1component|
9449 skips past one picture component, where a ``picture component'' is a single
9450 graphical object, or a start bounds or start clip object and everything up
9451 through the matching stop bounds or stop clip object. The macro version avoids
9452 procedure call overhead and error handling: |skip_component(p)(e)| advances |p|
9453 unless |p| points to a stop bounds or stop clip node, in which case it executes
9456 @d skip_component(A)
9457 if ( ! is_start_or_stop((A)) ) (A)=link((A));
9458 else if ( ! is_stop((A)) ) (A)=mp_skip_1component(mp, (A));
9462 pointer mp_skip_1component (MP mp,pointer p) {
9463 integer lev; /* current nesting level */
9466 if ( is_start_or_stop(p) ) {
9467 if ( is_stop(p) ) decr(lev); else incr(lev);
9474 @ Here is a diagnostic routine for printing an edge structure in symbolic form.
9476 @<Declare subroutines for printing expressions@>=
9477 @<Declare subroutines needed by |print_edges|@>;
9478 void mp_print_edges (MP mp,pointer h, char *s, boolean nuline) {
9479 pointer p; /* a graphical object to be printed */
9480 pointer hh,pp; /* temporary pointers */
9481 scaled scf; /* a scale factor for the dash pattern */
9482 boolean ok_to_dash; /* |false| for polygonal pen strokes */
9483 mp_print_diagnostic(mp, "Edge structure",s,nuline);
9485 while ( link(p)!=null ) {
9489 @<Cases for printing graphical object node |p|@>;
9491 mp_print(mp, "[unknown object type!]");
9495 mp_print_nl(mp, "End edges");
9496 if ( p!=obj_tail(h) ) mp_print(mp, "?");
9498 mp_end_diagnostic(mp, true);
9501 @ @<Cases for printing graphical object node |p|@>=
9503 mp_print(mp, "Filled contour ");
9504 mp_print_obj_color(mp, p);
9505 mp_print_char(mp, ':'); mp_print_ln(mp);
9506 mp_pr_path(mp, path_p(p)); mp_print_ln(mp);
9507 if ( (pen_p(p)!=null) ) {
9508 @<Print join type for graphical object |p|@>;
9509 mp_print(mp, " with pen"); mp_print_ln(mp);
9510 mp_pr_pen(mp, pen_p(p));
9514 @ @<Print join type for graphical object |p|@>=
9515 switch (ljoin_val(p)) {
9517 mp_print(mp, "mitered joins limited ");
9518 mp_print_scaled(mp, miterlim_val(p));
9521 mp_print(mp, "round joins");
9524 mp_print(mp, "beveled joins");
9527 mp_print(mp, "?? joins");
9532 @ For stroked nodes, we need to print |lcap_val(p)| as well.
9534 @<Print join and cap types for stroked node |p|@>=
9535 switch (lcap_val(p)) {
9536 case 0:mp_print(mp, "butt"); break;
9537 case 1:mp_print(mp, "round"); break;
9538 case 2:mp_print(mp, "square"); break;
9539 default: mp_print(mp, "??"); break;
9542 mp_print(mp, " ends, ");
9543 @<Print join type for graphical object |p|@>
9545 @ Here is a routine that prints the color of a graphical object if it isn't
9546 black (the default color).
9548 @<Declare subroutines needed by |print_edges|@>=
9549 @<Declare a procedure called |print_compact_node|@>;
9550 void mp_print_obj_color (MP mp,pointer p) {
9551 if ( color_model(p)==grey_model ) {
9552 if ( grey_val(p)>0 ) {
9553 mp_print(mp, "greyed ");
9554 mp_print_compact_node(mp, obj_grey_loc(p),1);
9556 } else if ( color_model(p)==cmyk_model ) {
9557 if ( (cyan_val(p)>0) || (magenta_val(p)>0) ||
9558 (yellow_val(p)>0) || (black_val(p)>0) ) {
9559 mp_print(mp, "processcolored ");
9560 mp_print_compact_node(mp, obj_cyan_loc(p),4);
9562 } else if ( color_model(p)==rgb_model ) {
9563 if ( (red_val(p)>0) || (green_val(p)>0) || (blue_val(p)>0) ) {
9564 mp_print(mp, "colored ");
9565 mp_print_compact_node(mp, obj_red_loc(p),3);
9570 @ We also need a procedure for printing consecutive scaled values as if they
9571 were a known big node.
9573 @<Declare a procedure called |print_compact_node|@>=
9574 void mp_print_compact_node (MP mp,pointer p, small_number k) {
9575 pointer q; /* last location to print */
9577 mp_print_char(mp, '(');
9579 mp_print_scaled(mp, mp->mem[p].sc);
9580 if ( p<q ) mp_print_char(mp, ',');
9583 mp_print_char(mp, ')');
9586 @ @<Cases for printing graphical object node |p|@>=
9588 mp_print(mp, "Filled pen stroke ");
9589 mp_print_obj_color(mp, p);
9590 mp_print_char(mp, ':'); mp_print_ln(mp);
9591 mp_pr_path(mp, path_p(p));
9592 if ( dash_p(p)!=null ) {
9593 mp_print_nl(mp, "dashed (");
9594 @<Finish printing the dash pattern that |p| refers to@>;
9597 @<Print join and cap types for stroked node |p|@>;
9598 mp_print(mp, " with pen"); mp_print_ln(mp);
9599 if ( pen_p(p)==null ) mp_print(mp, "???"); /* shouldn't happen */
9601 else mp_pr_pen(mp, pen_p(p));
9604 @ Normally, the |dash_list| field in an edge header is set to |null_dash|
9605 when it is not known to define a suitable dash pattern. This is disallowed
9606 here because the |dash_p| field should never point to such an edge header.
9607 Note that memory is allocated for |start_x(null_dash)| and we are free to
9608 give it any convenient value.
9610 @<Finish printing the dash pattern that |p| refers to@>=
9611 ok_to_dash=pen_is_elliptical(pen_p(p));
9612 if ( ! ok_to_dash ) scf=unity; else scf=dash_scale(p);
9615 if ( (pp==null_dash) || (dash_y(hh)<0) ) {
9616 mp_print(mp, " ??");
9617 } else { start_x(null_dash)=start_x(pp)+dash_y(hh);
9618 while ( pp!=null_dash ) {
9619 mp_print(mp, "on ");
9620 mp_print_scaled(mp, mp_take_scaled(mp, stop_x(pp)-start_x(pp),scf));
9621 mp_print(mp, " off ");
9622 mp_print_scaled(mp, mp_take_scaled(mp, start_x(link(pp))-stop_x(pp),scf));
9624 if ( pp!=null_dash ) mp_print_char(mp, ' ');
9626 mp_print(mp, ") shifted ");
9627 mp_print_scaled(mp, -mp_take_scaled(mp, mp_dash_offset(mp, hh),scf));
9628 if ( ! ok_to_dash || (dash_y(hh)==0) ) mp_print(mp, " (this will be ignored)");
9631 @ @<Declare subroutines needed by |print_edges|@>=
9632 scaled mp_dash_offset (MP mp,pointer h) {
9633 scaled x; /* the answer */
9634 if ( (dash_list(h)==null_dash) || (dash_y(h)<0) ) mp_confusion(mp, "dash0");
9635 @:this can't happen dash0}{\quad dash0@>
9636 if ( dash_y(h)==0 ) {
9639 x=-(start_x(dash_list(h)) % dash_y(h));
9640 if ( x<0 ) x=x+dash_y(h);
9645 @ @<Cases for printing graphical object node |p|@>=
9647 mp_print_char(mp, '"'); mp_print_str(mp,text_p(p));
9648 mp_print(mp, "\" infont \""); mp_print(mp, mp->font_name[font_n(p)]);
9649 mp_print_char(mp, '"'); mp_print_ln(mp);
9650 mp_print_obj_color(mp, p);
9651 mp_print(mp, "transformed ");
9652 mp_print_compact_node(mp, text_tx_loc(p),6);
9655 @ @<Cases for printing graphical object node |p|@>=
9656 case mp_start_clip_code:
9657 mp_print(mp, "clipping path:");
9659 mp_pr_path(mp, path_p(p));
9661 case mp_stop_clip_code:
9662 mp_print(mp, "stop clipping");
9665 @ @<Cases for printing graphical object node |p|@>=
9666 case mp_start_bounds_code:
9667 mp_print(mp, "setbounds path:");
9669 mp_pr_path(mp, path_p(p));
9671 case mp_stop_bounds_code:
9672 mp_print(mp, "end of setbounds");
9675 @ To initialize the |dash_list| field in an edge header~|h|, we need a
9676 subroutine that scans an edge structure and tries to interpret it as a dash
9677 pattern. This can only be done when there are no filled regions or clipping
9678 paths and all the pen strokes have the same color. The first step is to let
9679 $y_0$ be the initial $y$~coordinate of the first pen stroke. Then we implicitly
9680 project all the pen stroke paths onto the line $y=y_0$ and require that there
9681 be no retracing. If the resulting paths cover a range of $x$~coordinates of
9682 length $\Delta x$, we set |dash_y(h)| to the length of the dash pattern by
9683 finding the maximum of $\Delta x$ and the absolute value of~$y_0$.
9685 @c @<Declare a procedure called |x_retrace_error|@>;
9686 pointer mp_make_dashes (MP mp,pointer h) { /* returns |h| or |null| */
9687 pointer p; /* this scans the stroked nodes in the object list */
9688 pointer p0; /* if not |null| this points to the first stroked node */
9689 pointer pp,qq,rr; /* pointers into |path_p(p)| */
9690 pointer d,dd; /* pointers used to create the dash list */
9691 @<Other local variables in |make_dashes|@>;
9692 scaled y0=0; /* the initial $y$ coordinate */
9693 if ( dash_list(h)!=null_dash )
9696 p=link(dummy_loc(h));
9698 if ( type(p)!=stroked_code ) {
9699 @<Compain that the edge structure contains a node of the wrong type
9700 and |goto not_found|@>;
9703 if ( p0==null ){ p0=p; y0=y_coord(pp); };
9704 @<Make |d| point to a new dash node created from stroke |p| and path |pp|
9705 or |goto not_found| if there is an error@>;
9706 @<Insert |d| into the dash list and |goto not_found| if there is an error@>;
9709 if ( dash_list(h)==null_dash )
9710 goto NOT_FOUND; /* No error message */
9711 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>;
9712 @<Set |dash_y(h)| and merge the first and last dashes if necessary@>;
9715 @<Flush the dash list, recycle |h| and return |null|@>;
9718 @ @<Compain that the edge structure contains a node of the wrong type...@>=
9720 print_err("Picture is too complicated to use as a dash pattern");
9721 help3("When you say `dashed p', picture p should not contain any")
9722 ("text, filled regions, or clipping paths. This time it did")
9723 ("so I'll just make it a solid line instead.");
9724 mp_put_get_error(mp);
9728 @ A similar error occurs when monotonicity fails.
9730 @<Declare a procedure called |x_retrace_error|@>=
9731 void mp_x_retrace_error (MP mp) {
9732 print_err("Picture is too complicated to use as a dash pattern");
9733 help3("When you say `dashed p', every path in p should be monotone")
9734 ("in x and there must be no overlapping. This failed")
9735 ("so I'll just make it a solid line instead.");
9736 mp_put_get_error(mp);
9739 @ We stash |p| in |info(d)| if |dash_p(p)<>0| so that subsequent processing can
9740 handle the case where the pen stroke |p| is itself dashed.
9742 @<Make |d| point to a new dash node created from stroke |p| and path...@>=
9743 @<Make sure |p| and |p0| are the same color and |goto not_found| if there is
9746 if ( link(pp)!=pp ) {
9749 @<Check for retracing between knots |qq| and |rr| and |goto not_found|
9750 if there is a problem@>;
9751 } while (right_type(rr)!=endpoint);
9753 d=mp_get_node(mp, dash_node_size);
9754 if ( dash_p(p)==0 ) info(d)=0; else info(d)=p;
9755 if ( x_coord(pp)<x_coord(rr) ) {
9756 start_x(d)=x_coord(pp);
9757 stop_x(d)=x_coord(rr);
9759 start_x(d)=x_coord(rr);
9760 stop_x(d)=x_coord(pp);
9763 @ We also need to check for the case where the segment from |qq| to |rr| is
9764 monotone in $x$ but is reversed relative to the path from |pp| to |qq|.
9766 @<Check for retracing between knots |qq| and |rr| and |goto not_found|...@>=
9771 if ( (x0>x1) || (x1>x2) || (x2>x3) ) {
9772 if ( (x0<x1) || (x1<x2) || (x2<x3) ) {
9773 if ( mp_ab_vs_cd(mp, x2-x1,x2-x1,x1-x0,x3-x2)>0 ) {
9774 mp_x_retrace_error(mp); goto NOT_FOUND;
9778 if ( (x_coord(pp)>x0) || (x0>x3) ) {
9779 if ( (x_coord(pp)<x0) || (x0<x3) ) {
9780 mp_x_retrace_error(mp); goto NOT_FOUND;
9784 @ @<Other local variables in |make_dashes|@>=
9785 scaled x0,x1,x2,x3; /* $x$ coordinates of the segment from |qq| to |rr| */
9787 @ @<Make sure |p| and |p0| are the same color and |goto not_found|...@>=
9788 if ( (red_val(p)!=red_val(p0)) || (black_val(p)!=black_val(p0)) ||
9789 (green_val(p)!=green_val(p0)) || (blue_val(p)!=blue_val(p0)) ) {
9790 print_err("Picture is too complicated to use as a dash pattern");
9791 help3("When you say `dashed p', everything in picture p should")
9792 ("be the same color. I can\'t handle your color changes")
9793 ("so I'll just make it a solid line instead.");
9794 mp_put_get_error(mp);
9798 @ @<Insert |d| into the dash list and |goto not_found| if there is an error@>=
9799 start_x(null_dash)=stop_x(d);
9800 dd=h; /* this makes |link(dd)=dash_list(h)| */
9801 while ( start_x(link(dd))<stop_x(d) )
9804 if ( (stop_x(dd)>start_x(d)) )
9805 { mp_x_retrace_error(mp); goto NOT_FOUND; };
9810 @ @<Set |dash_y(h)| and merge the first and last dashes if necessary@>=
9812 while ( (link(d)!=null_dash) )
9815 dash_y(h)=stop_x(d)-start_x(dd);
9816 if ( abs(y0)>dash_y(h) ) {
9818 } else if ( d!=dd ) {
9819 dash_list(h)=link(dd);
9820 stop_x(d)=stop_x(dd)+dash_y(h);
9821 mp_free_node(mp, dd,dash_node_size);
9824 @ We get here when the argument is a null picture or when there is an error.
9825 Recovering from an error involves making |dash_list(h)| empty to indicate
9826 that |h| is not known to be a valid dash pattern. We also dereference |h|
9827 since it is not being used for the return value.
9829 @<Flush the dash list, recycle |h| and return |null|@>=
9830 mp_flush_dash_list(mp, h);
9834 @ Having carefully saved the dashed stroked nodes in the
9835 corresponding dash nodes, we must be prepared to break up these dashes into
9838 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>=
9839 d=h; /* now |link(d)=dash_list(h)| */
9840 while ( link(d)!=null_dash ) {
9847 if ( (hh==null) ) mp_confusion(mp, "dash1");
9848 @:this can't happen dash0}{\quad dash1@>
9849 if ( dash_y(hh)==0 ) {
9852 if ( dash_list(hh)==null ) mp_confusion(mp, "dash1");
9853 @:this can't happen dash0}{\quad dash1@>
9854 @<Replace |link(d)| by a dashed version as determined by edge header
9855 |hh| and scale factor |ds|@>;
9860 @ @<Other local variables in |make_dashes|@>=
9861 pointer dln; /* |link(d)| */
9862 pointer hh; /* an edge header that tells how to break up |dln| */
9863 scaled hsf; /* the dash pattern from |hh| gets scaled by this */
9864 pointer ds; /* the stroked node from which |hh| and |hsf| are derived */
9865 scaled xoff; /* added to $x$ values in |dash_list(hh)| to match |dln| */
9867 @ @<Replace |link(d)| by a dashed version as determined by edge header...@>=
9870 xoff=start_x(dln)-mp_take_scaled(mp, hsf,start_x(dd))-
9871 mp_take_scaled(mp, hsf,mp_dash_offset(mp, hh));
9872 start_x(null_dash)=mp_take_scaled(mp, hsf,start_x(dd))
9873 +mp_take_scaled(mp, hsf,dash_y(hh));
9874 stop_x(null_dash)=start_x(null_dash);
9875 @<Advance |dd| until finding the first dash that overlaps |dln| when
9877 while ( start_x(dln)<=stop_x(dln) ) {
9878 @<If |dd| has `fallen off the end', back up to the beginning and fix |xoff|@>;
9879 @<Insert a dash between |d| and |dln| for the overlap with the offset version
9882 start_x(dln)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
9885 mp_free_node(mp, dln,dash_node_size)
9887 @ The name of this module is a bit of a lie because we actually just find the
9888 first |dd| where |take_scaled (hsf, stop_x(dd))| is large enough to make an
9889 overlap possible. It could be that the unoffset version of dash |dln| falls
9890 in the gap between |dd| and its predecessor.
9892 @<Advance |dd| until finding the first dash that overlaps |dln| when...@>=
9893 while ( xoff+mp_take_scaled(mp, hsf,stop_x(dd))<start_x(dln) ) {
9897 @ @<If |dd| has `fallen off the end', back up to the beginning and fix...@>=
9898 if ( dd==null_dash ) {
9900 xoff=xoff+mp_take_scaled(mp, hsf,dash_y(hh));
9903 @ At this point we already know that
9904 |start_x(dln)<=xoff+take_scaled(hsf,stop_x(dd))|.
9906 @<Insert a dash between |d| and |dln| for the overlap with the offset...@>=
9907 if ( xoff+mp_take_scaled(mp, hsf,start_x(dd))<=stop_x(dln) ) {
9908 link(d)=mp_get_node(mp, dash_node_size);
9911 if ( start_x(dln)>xoff+mp_take_scaled(mp, hsf,start_x(dd)))
9912 start_x(d)=start_x(dln);
9914 start_x(d)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
9915 if ( stop_x(dln)<xoff+mp_take_scaled(mp, hsf,stop_x(dd)) )
9916 stop_x(d)=stop_x(dln);
9918 stop_x(d)=xoff+mp_take_scaled(mp, hsf,stop_x(dd));
9921 @ The next major task is to update the bounding box information in an edge
9922 header~|h|. This is done via a procedure |adjust_bbox| that enlarges an edge
9923 header's bounding box to accommodate the box computed by |path_bbox| or
9924 |pen_bbox|. (This is stored in global variables |minx|, |miny|, |maxx|, and
9927 @c void mp_adjust_bbox (MP mp,pointer h) {
9928 if ( minx<minx_val(h) ) minx_val(h)=minx;
9929 if ( miny<miny_val(h) ) miny_val(h)=miny;
9930 if ( maxx>maxx_val(h) ) maxx_val(h)=maxx;
9931 if ( maxy>maxy_val(h) ) maxy_val(h)=maxy;
9934 @ Here is a special routine for updating the bounding box information in
9935 edge header~|h| to account for the squared-off ends of a non-cyclic path~|p|
9936 that is to be stroked with the pen~|pp|.
9938 @c void mp_box_ends (MP mp, pointer p, pointer pp, pointer h) {
9939 pointer q; /* a knot node adjacent to knot |p| */
9940 fraction dx,dy; /* a unit vector in the direction out of the path at~|p| */
9941 scaled d; /* a factor for adjusting the length of |(dx,dy)| */
9942 scaled z; /* a coordinate being tested against the bounding box */
9943 scaled xx,yy; /* the extreme pen vertex in the |(dx,dy)| direction */
9944 integer i; /* a loop counter */
9945 if ( right_type(p)!=endpoint ) {
9948 @<Make |(dx,dy)| the final direction for the path segment from
9949 |q| to~|p|; set~|d|@>;
9950 d=mp_pyth_add(mp, dx,dy);
9952 @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>;
9953 for (i=1;i<= 2;i++) {
9954 @<Use |(dx,dy)| to generate a vertex of the square end cap and
9955 update the bounding box to accommodate it@>;
9959 if ( right_type(p)==endpoint ) {
9962 @<Advance |p| to the end of the path and make |q| the previous knot@>;
9968 @ @<Make |(dx,dy)| the final direction for the path segment from...@>=
9970 dx=x_coord(p)-right_x(p);
9971 dy=y_coord(p)-right_y(p);
9972 if ( (dx==0)&&(dy==0) ) {
9973 dx=x_coord(p)-left_x(q);
9974 dy=y_coord(p)-left_y(q);
9977 dx=x_coord(p)-left_x(p);
9978 dy=y_coord(p)-left_y(p);
9979 if ( (dx==0)&&(dy==0) ) {
9980 dx=x_coord(p)-right_x(q);
9981 dy=y_coord(p)-right_y(q);
9984 dx=x_coord(p)-x_coord(q);
9985 dy=y_coord(p)-y_coord(q)
9987 @ @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>=
9988 dx=mp_make_fraction(mp, dx,d);
9989 dy=mp_make_fraction(mp, dy,d);
9990 mp_find_offset(mp, -dy,dx,pp);
9991 xx=mp->cur_x; yy=mp->cur_y
9993 @ @<Use |(dx,dy)| to generate a vertex of the square end cap and...@>=
9994 mp_find_offset(mp, dx,dy,pp);
9995 d=mp_take_fraction(mp, xx-mp->cur_x,dx)+mp_take_fraction(mp, yy-mp->cur_y,dy);
9996 if ( ((d<0)&&(i==1)) || ((d>0)&&(i==2)))
9997 mp_confusion(mp, "box_ends");
9998 @:this can't happen box ends}{\quad\\{box\_ends}@>
9999 z=x_coord(p)+mp->cur_x+mp_take_fraction(mp, d,dx);
10000 if ( z<minx_val(h) ) minx_val(h)=z;
10001 if ( z>maxx_val(h) ) maxx_val(h)=z;
10002 z=y_coord(p)+mp->cur_y+mp_take_fraction(mp, d,dy);
10003 if ( z<miny_val(h) ) miny_val(h)=z;
10004 if ( z>maxy_val(h) ) maxy_val(h)=z
10006 @ @<Advance |p| to the end of the path and make |q| the previous knot@>=
10010 } while (right_type(p)!=endpoint)
10012 @ The major difficulty in finding the bounding box of an edge structure is the
10013 effect of clipping paths. We treat them conservatively by only clipping to the
10014 clipping path's bounding box, but this still
10015 requires recursive calls to |set_bbox| in order to find the bounding box of
10017 the objects to be clipped. Such calls are distinguished by the fact that the
10018 boolean parameter |top_level| is false.
10020 @c void mp_set_bbox (MP mp,pointer h, boolean top_level) {
10021 pointer p; /* a graphical object being considered */
10022 scaled sminx,sminy,smaxx,smaxy;
10023 /* for saving the bounding box during recursive calls */
10024 scaled x0,x1,y0,y1; /* temporary registers */
10025 integer lev; /* nesting level for |mp_start_bounds_code| nodes */
10026 @<Wipe out any existing bounding box information if |bbtype(h)| is
10027 incompatible with |internal[true_corners]|@>;
10028 while ( link(bblast(h))!=null ) {
10032 case mp_stop_clip_code:
10033 if ( top_level ) mp_confusion(mp, "bbox"); else return;
10034 @:this can't happen bbox}{\quad bbox@>
10036 @<Other cases for updating the bounding box based on the type of object |p|@>;
10037 } /* all cases are enumerated above */
10039 if ( ! top_level ) mp_confusion(mp, "bbox");
10042 @ @<Wipe out any existing bounding box information if |bbtype(h)| is...@>=
10043 switch (bbtype(h)) {
10047 if ( mp->internal[true_corners]>0 ) mp_init_bbox(mp, h);
10050 if ( mp->internal[true_corners]<=0 ) mp_init_bbox(mp, h);
10052 } /* there are no other cases */
10054 @ @<Other cases for updating the bounding box...@>=
10056 mp_path_bbox(mp, path_p(p));
10057 if ( pen_p(p)!=null ) {
10060 mp_pen_bbox(mp, pen_p(p));
10066 mp_adjust_bbox(mp, h);
10069 @ @<Other cases for updating the bounding box...@>=
10070 case mp_start_bounds_code:
10071 if ( mp->internal[true_corners]>0 ) {
10072 bbtype(h)=bounds_unset;
10074 bbtype(h)=bounds_set;
10075 mp_path_bbox(mp, path_p(p));
10076 mp_adjust_bbox(mp, h);
10077 @<Scan to the matching |mp_stop_bounds_code| node and update |p| and
10081 case mp_stop_bounds_code:
10082 if ( mp->internal[true_corners]<=0 ) mp_confusion(mp, "bbox2");
10083 @:this can't happen bbox2}{\quad bbox2@>
10086 @ @<Scan to the matching |mp_stop_bounds_code| node and update |p| and...@>=
10089 if ( link(p)==null ) mp_confusion(mp, "bbox2");
10090 @:this can't happen bbox2}{\quad bbox2@>
10092 if ( type(p)==mp_start_bounds_code ) incr(lev);
10093 else if ( type(p)==mp_stop_bounds_code ) decr(lev);
10097 @ It saves a lot of grief here to be slightly conservative and not account for
10098 omitted parts of dashed lines. We also don't worry about the material omitted
10099 when using butt end caps. The basic computation is for round end caps and
10100 |box_ends| augments it for square end caps.
10102 @<Other cases for updating the bounding box...@>=
10104 mp_path_bbox(mp, path_p(p));
10107 mp_pen_bbox(mp, pen_p(p));
10112 mp_adjust_bbox(mp, h);
10113 if ( (left_type(path_p(p))==endpoint)&&(lcap_val(p)==2) )
10114 mp_box_ends(mp, path_p(p), pen_p(p), h);
10117 @ The height width and depth information stored in a text node determines a
10118 rectangle that needs to be transformed according to the transformation
10119 parameters stored in the text node.
10121 @<Other cases for updating the bounding box...@>=
10123 x1=mp_take_scaled(mp, txx_val(p),width_val(p));
10124 y0=mp_take_scaled(mp, txy_val(p),-depth_val(p));
10125 y1=mp_take_scaled(mp, txy_val(p),height_val(p));
10128 if ( y0<y1 ) { minx=minx+y0; maxx=maxx+y1; }
10129 else { minx=minx+y1; maxx=maxx+y0; }
10130 if ( x1<0 ) minx=minx+x1; else maxx=maxx+x1;
10131 x1=mp_take_scaled(mp, tyx_val(p),width_val(p));
10132 y0=mp_take_scaled(mp, tyy_val(p),-depth_val(p));
10133 y1=mp_take_scaled(mp, tyy_val(p),height_val(p));
10136 if ( y0<y1 ) { miny=miny+y0; maxy=maxy+y1; }
10137 else { miny=miny+y1; maxy=maxy+y0; }
10138 if ( x1<0 ) miny=miny+x1; else maxy=maxy+x1;
10139 mp_adjust_bbox(mp, h);
10142 @ This case involves a recursive call that advances |bblast(h)| to the node of
10143 type |mp_stop_clip_code| that matches |p|.
10145 @<Other cases for updating the bounding box...@>=
10146 case mp_start_clip_code:
10147 mp_path_bbox(mp, path_p(p));
10150 sminx=minx_val(h); sminy=miny_val(h);
10151 smaxx=maxx_val(h); smaxy=maxy_val(h);
10152 @<Reinitialize the bounding box in header |h| and call |set_bbox| recursively
10153 starting at |link(p)|@>;
10154 @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,
10156 minx=sminx; miny=sminy;
10157 maxx=smaxx; maxy=smaxy;
10158 mp_adjust_bbox(mp, h);
10161 @ @<Reinitialize the bounding box in header |h| and call |set_bbox|...@>=
10162 minx_val(h)=el_gordo;
10163 miny_val(h)=el_gordo;
10164 maxx_val(h)=-el_gordo;
10165 maxy_val(h)=-el_gordo;
10166 mp_set_bbox(mp, h,false)
10168 @ @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,...@>=
10169 if ( minx_val(h)<x0 ) minx_val(h)=x0;
10170 if ( miny_val(h)<y0 ) miny_val(h)=y0;
10171 if ( maxx_val(h)>x1 ) maxx_val(h)=x1;
10172 if ( maxy_val(h)>y1 ) maxy_val(h)=y1
10174 @* \[22] Finding an envelope.
10175 When \MP\ has a path and a polygonal pen, it needs to express the desired
10176 shape in terms of things \ps\ can understand. The present task is to compute
10177 a new path that describes the region to be filled. It is convenient to
10178 define this as a two step process where the first step is determining what
10179 offset to use for each segment of the path.
10181 @ Given a pointer |c| to a cyclic path,
10182 and a pointer~|h| to the first knot of a pen polygon,
10183 the |offset_prep| routine changes the path into cubics that are
10184 associated with particular pen offsets. Thus if the cubic between |p|
10185 and~|q| is associated with the |k|th offset and the cubic between |q| and~|r|
10186 has offset |l| then |info(q)=zero_off+l-k|. (The constant |zero_off| is added
10187 to because |l-k| could be negative.)
10189 After overwriting the type information with offset differences, we no longer
10190 have a true path so we refer to the knot list returned by |offset_prep| as an
10193 Since an envelope spec only determines relative changes in pen offsets,
10194 |offset_prep| sets a global variable |spec_offset| to the relative change from
10195 |h| to the first offset.
10197 @d zero_off 16384 /* added to offset changes to make them positive */
10200 integer spec_offset; /* number of pen edges between |h| and the initial offset */
10202 @ @c @<Declare subroutines needed by |offset_prep|@>;
10203 pointer mp_offset_prep (MP mp,pointer c, pointer h) {
10204 halfword n; /* the number of vertices in the pen polygon */
10205 pointer p,q,r,w, ww; /* for list manipulation */
10206 integer k_needed; /* amount to be added to |info(p)| when it is computed */
10207 pointer w0; /* a pointer to pen offset to use just before |p| */
10208 scaled dxin,dyin; /* the direction into knot |p| */
10209 integer turn_amt; /* change in pen offsets for the current cubic */
10210 @<Other local variables for |offset_prep|@>;
10212 @<Initialize the pen size~|n|@>;
10213 @<Initialize the incoming direction and pen offset at |c|@>;
10217 @<Split the cubic between |p| and |q|, if necessary, into cubics
10218 associated with single offsets, after which |q| should
10219 point to the end of the final such cubic@>;
10220 @<Advance |p| to node |q|, removing any ``dead'' cubics that
10221 might have been introduced by the splitting process@>;
10223 @<Fix the offset change in |info(c)| and set the return value of
10227 @ We shall want to keep track of where certain knots on the cyclic path
10228 wind up in the envelope spec. It doesn't suffice just to keep pointers to
10229 knot nodes because some nodes are deleted while removing dead cubics. Thus
10230 |offset_prep| updates the following pointers
10234 pointer spec_p2; /* pointers to distinguished knots */
10237 mp->spec_p1=null; mp->spec_p2=null;
10239 @ @<Initialize the pen size~|n|@>=
10246 @ Since the true incoming direction isn't known yet, we just pick a direction
10247 consistent with the pen offset~|h|. If this is wrong, it can be corrected
10250 @<Initialize the incoming direction and pen offset at |c|@>=
10251 dxin=x_coord(link(h))-x_coord(knil(h));
10252 dyin=y_coord(link(h))-y_coord(knil(h));
10253 if ( (dxin==0)&&(dyin==0) ) {
10254 dxin=y_coord(knil(h))-y_coord(h);
10255 dyin=x_coord(h)-x_coord(knil(h));
10259 @ We must be careful not to remove the only cubic in a cycle.
10261 But we must also be careful for another reason. If the user-supplied
10262 path starts with a set of degenerate cubics, these should not be removed
10263 because at this point we cannot do so cleanly. The relevant bug is
10264 tracker id 267, bugs 52c, reported by Boguslav.
10266 @<Advance |p| to node |q|, removing any ``dead'' cubics...@>=
10268 if ( x_coord(p)==right_x(p) ) if ( y_coord(p)==right_y(p) )
10269 if ( x_coord(p)==left_x(r) ) if ( y_coord(p)==left_y(r) )
10270 if ( x_coord(p)==x_coord(r) ) if ( y_coord(p)==y_coord(r) )
10271 if ( r!=p ) if ( ((r!=q) || (originator(r)!=metapost_user)) ) {
10272 @<Remove the cubic following |p| and update the data structures
10273 to merge |r| into |p|@>;
10278 @ @<Remove the cubic following |p| and update the data structures...@>=
10279 { k_needed=info(p)-zero_off;
10283 info(p)=k_needed+info(r);
10286 if ( r==c ) { info(p)=info(c); c=p; };
10287 if ( r==mp->spec_p1 ) mp->spec_p1=p;
10288 if ( r==mp->spec_p2 ) mp->spec_p2=p;
10289 r=p; mp_remove_cubic(mp, p);
10292 @ Not setting the |info| field of the newly created knot allows the splitting
10293 routine to work for paths.
10295 @<Declare subroutines needed by |offset_prep|@>=
10296 void mp_split_cubic (MP mp,pointer p, fraction t) { /* splits the cubic after |p| */
10297 scaled v; /* an intermediate value */
10298 pointer q,r; /* for list manipulation */
10299 q=link(p); r=mp_get_node(mp, knot_node_size); link(p)=r; link(r)=q;
10300 originator(r)=program_code;
10301 left_type(r)=explicit; right_type(r)=explicit;
10302 v=t_of_the_way(right_x(p),left_x(q));
10303 right_x(p)=t_of_the_way(x_coord(p),right_x(p));
10304 left_x(q)=t_of_the_way(left_x(q),x_coord(q));
10305 left_x(r)=t_of_the_way(right_x(p),v);
10306 right_x(r)=t_of_the_way(v,left_x(q));
10307 x_coord(r)=t_of_the_way(left_x(r),right_x(r));
10308 v=t_of_the_way(right_y(p),left_y(q));
10309 right_y(p)=t_of_the_way(y_coord(p),right_y(p));
10310 left_y(q)=t_of_the_way(left_y(q),y_coord(q));
10311 left_y(r)=t_of_the_way(right_y(p),v);
10312 right_y(r)=t_of_the_way(v,left_y(q));
10313 y_coord(r)=t_of_the_way(left_y(r),right_y(r));
10316 @ This does not set |info(p)| or |right_type(p)|.
10318 @<Declare subroutines needed by |offset_prep|@>=
10319 void mp_remove_cubic (MP mp,pointer p) { /* removes the dead cubic following~|p| */
10320 pointer q; /* the node that disappears */
10321 q=link(p); link(p)=link(q);
10322 right_x(p)=right_x(q); right_y(p)=right_y(q);
10323 mp_free_node(mp, q,knot_node_size);
10326 @ Let $d\prec d'$ mean that the counter-clockwise angle from $d$ to~$d'$ is
10327 strictly between zero and $180^\circ$. Then we can define $d\preceq d'$ to
10328 mean that the angle could be zero or $180^\circ$. If $w_k=(u_k,v_k)$ is the
10329 $k$th pen offset, the $k$th pen edge direction is defined by the formula
10330 $$d_k=(u\k-u_k,\,v\k-v_k).$$
10331 When listed by increasing $k$, these directions occur in counter-clockwise
10332 order so that $d_k\preceq d\k$ for all~$k$.
10333 The goal of |offset_prep| is to find an offset index~|k| to associate with
10334 each cubic, such that the direction $d(t)$ of the cubic satisfies
10335 $$d_{k-1}\preceq d(t)\preceq d_k\qquad\hbox{for $0\le t\le 1$.}\eqno(*)$$
10336 We may have to split a cubic into many pieces before each
10337 piece corresponds to a unique offset.
10339 @<Split the cubic between |p| and |q|, if necessary, into cubics...@>=
10340 info(p)=zero_off+k_needed;
10342 @<Prepare for derivative computations;
10343 |goto not_found| if the current cubic is dead@>;
10344 @<Find the initial direction |(dx,dy)|@>;
10345 @<Update |info(p)| and find the offset $w_k$ such that
10346 $d_{k-1}\preceq(\\{dx},\\{dy})\prec d_k$; also advance |w0| for
10347 the direction change at |p|@>;
10348 @<Find the final direction |(dxin,dyin)|@>;
10349 @<Decide on the net change in pen offsets and set |turn_amt|@>;
10350 @<Complete the offset splitting process@>;
10351 w0=mp_pen_walk(mp, w0,turn_amt);
10352 NOT_FOUND: do_nothing
10354 @ @<Declare subroutines needed by |offset_prep|@>=
10355 pointer mp_pen_walk (MP mp,pointer w, integer k) {
10356 /* walk |k| steps around a pen from |w| */
10357 while ( k>0 ) { w=link(w); decr(k); };
10358 while ( k<0 ) { w=knil(w); incr(k); };
10362 @ The direction of a cubic $B(z_0,z_1,z_2,z_3;t)=\bigl(x(t),y(t)\bigr)$ can be
10363 calculated from the quadratic polynomials
10364 ${1\over3}x'(t)=B(x_1-x_0,x_2-x_1,x_3-x_2;t)$ and
10365 ${1\over3}y'(t)=B(y_1-y_0,y_2-y_1,y_3-y_2;t)$.
10366 Since we may be calculating directions from several cubics
10367 split from the current one, it is desirable to do these calculations
10368 without losing too much precision. ``Scaled up'' values of the
10369 derivatives, which will be less tainted by accumulated errors than
10370 derivatives found from the cubics themselves, are maintained in
10371 local variables |x0|, |x1|, and |x2|, representing $X_0=2^l(x_1-x_0)$,
10372 $X_1=2^l(x_2-x_1)$, and $X_2=2^l(x_3-x_2)$; similarly |y0|, |y1|, and~|y2|
10373 represent $Y_0=2^l(y_1-y_0)$, $Y_1=2^l(y_2-y_1)$, and $Y_2=2^l(y_3-y_2)$.
10375 @<Other local variables for |offset_prep|@>=
10376 integer x0,x1,x2,y0,y1,y2; /* representatives of derivatives */
10377 integer t0,t1,t2; /* coefficients of polynomial for slope testing */
10378 integer du,dv,dx,dy; /* for directions of the pen and the curve */
10379 integer dx0,dy0; /* initial direction for the first cubic in the curve */
10380 integer mp_max_coef; /* used while scaling */
10381 integer x0a,x1a,x2a,y0a,y1a,y2a; /* intermediate values */
10382 fraction t; /* where the derivative passes through zero */
10383 fraction s; /* a temporary value */
10385 @ @<Prepare for derivative computations...@>=
10386 x0=right_x(p)-x_coord(p);
10387 x2=x_coord(q)-left_x(q);
10388 x1=left_x(q)-right_x(p);
10389 y0=right_y(p)-y_coord(p); y2=y_coord(q)-left_y(q);
10390 y1=left_y(q)-right_y(p);
10391 mp_max_coef=abs(x0);
10392 if ( abs(x1)>mp_max_coef ) mp_max_coef=abs(x1);
10393 if ( abs(x2)>mp_max_coef ) mp_max_coef=abs(x2);
10394 if ( abs(y0)>mp_max_coef ) mp_max_coef=abs(y0);
10395 if ( abs(y1)>mp_max_coef ) mp_max_coef=abs(y1);
10396 if ( abs(y2)>mp_max_coef ) mp_max_coef=abs(y2);
10397 if ( mp_max_coef==0 ) goto NOT_FOUND;
10398 while ( mp_max_coef<fraction_half ) {
10399 mp_max_coef+=mp_max_coef;
10400 x0+=x0; x1+=x1; x2+=x2;
10401 y0+=y0; y1+=y1; y2+=y2;
10404 @ Let us first solve a special case of the problem: Suppose we
10405 know an index~$k$ such that either (i)~$d(t)\succeq d_{k-1}$ for all~$t$
10406 and $d(0)\prec d_k$, or (ii)~$d(t)\preceq d_k$ for all~$t$ and
10407 $d(0)\succ d_{k-1}$.
10408 Then, in a sense, we're halfway done, since one of the two relations
10409 in $(*)$ is satisfied, and the other couldn't be satisfied for
10410 any other value of~|k|.
10412 Actually, the conditions can be relaxed somewhat since a relation such as
10413 $d(t)\succeq d_{k-1}$ restricts $d(t)$ to a half plane when all that really
10414 matters is whether $d(t)$ crosses the ray in the $d_{k-1}$ direction from
10415 the origin. The condition for case~(i) becomes $d_{k-1}\preceq d(0)\prec d_k$
10416 and $d(t)$ never crosses the $d_{k-1}$ ray in the clockwise direction.
10417 Case~(ii) is similar except $d(t)$ cannot cross the $d_k$ ray in the
10418 counterclockwise direction.
10420 The |fin_offset_prep| subroutine solves the stated subproblem.
10421 It has a parameter called |rise| that is |1| in
10422 case~(i), |-1| in case~(ii). Parameters |x0| through |y2| represent
10423 the derivative of the cubic following |p|.
10424 The |w| parameter should point to offset~$w_k$ and |info(p)| should already
10425 be set properly. The |turn_amt| parameter gives the absolute value of the
10426 overall net change in pen offsets.
10428 @<Declare subroutines needed by |offset_prep|@>=
10429 void mp_fin_offset_prep (MP mp,pointer p, pointer w, integer
10430 x0,integer x1, integer x2, integer y0, integer y1, integer y2,
10431 integer rise, integer turn_amt) {
10432 pointer ww; /* for list manipulation */
10433 scaled du,dv; /* for slope calculation */
10434 integer t0,t1,t2; /* test coefficients */
10435 fraction t; /* place where the derivative passes a critical slope */
10436 fraction s; /* slope or reciprocal slope */
10437 integer v; /* intermediate value for updating |x0..y2| */
10438 pointer q; /* original |link(p)| */
10441 if ( rise>0 ) ww=link(w); /* a pointer to $w\k$ */
10442 else ww=knil(w); /* a pointer to $w_{k-1}$ */
10443 @<Compute test coefficients |(t0,t1,t2)|
10444 for $d(t)$ versus $d_k$ or $d_{k-1}$@>;
10445 t=mp_crossing_point(mp, t0,t1,t2);
10446 if ( t>=fraction_one ) {
10447 if ( turn_amt>0 ) t=fraction_one; else return;
10449 @<Split the cubic at $t$,
10450 and split off another cubic if the derivative crosses back@>;
10455 @ We want $B(\\{t0},\\{t1},\\{t2};t)$ to be the dot product of $d(t)$ with a
10456 $-90^\circ$ rotation of the vector from |w| to |ww|. This makes the resulting
10457 function cross from positive to negative when $d_{k-1}\preceq d(t)\preceq d_k$
10460 @<Compute test coefficients |(t0,t1,t2)| for $d(t)$ versus...@>=
10461 du=x_coord(ww)-x_coord(w); dv=y_coord(ww)-y_coord(w);
10462 if ( abs(du)>=abs(dv) ) {
10463 s=mp_make_fraction(mp, dv,du);
10464 t0=mp_take_fraction(mp, x0,s)-y0;
10465 t1=mp_take_fraction(mp, x1,s)-y1;
10466 t2=mp_take_fraction(mp, x2,s)-y2;
10467 if ( du<0 ) { negate(t0); negate(t1); negate(t2); }
10469 s=mp_make_fraction(mp, du,dv);
10470 t0=x0-mp_take_fraction(mp, y0,s);
10471 t1=x1-mp_take_fraction(mp, y1,s);
10472 t2=x2-mp_take_fraction(mp, y2,s);
10473 if ( dv<0 ) { negate(t0); negate(t1); negate(t2); }
10475 if ( t0<0 ) t0=0 /* should be positive without rounding error */
10477 @ The curve has crossed $d_k$ or $d_{k-1}$; its initial segment satisfies
10478 $(*)$, and it might cross again, yielding another solution of $(*)$.
10480 @<Split the cubic at $t$, and split off another...@>=
10482 mp_split_cubic(mp, p,t); p=link(p); info(p)=zero_off+rise;
10484 v=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10485 x0=t_of_the_way(v,x1);
10486 v=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10487 y0=t_of_the_way(v,y1);
10488 if ( turn_amt<0 ) {
10489 t1=t_of_the_way(t1,t2);
10490 if ( t1>0 ) t1=0; /* without rounding error, |t1| would be |<=0| */
10491 t=mp_crossing_point(mp, 0,-t1,-t2);
10492 if ( t>fraction_one ) t=fraction_one;
10494 if ( (t==fraction_one)&&(link(p)!=q) ) {
10495 info(link(p))=info(link(p))-rise;
10497 mp_split_cubic(mp, p,t); info(link(p))=zero_off-rise;
10498 v=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10499 x2=t_of_the_way(x1,v);
10500 v=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10501 y2=t_of_the_way(y1,v);
10506 @ Now we must consider the general problem of |offset_prep|, when
10507 nothing is known about a given cubic. We start by finding its
10508 direction in the vicinity of |t=0|.
10510 If $z'(t)=0$, the given cubic is numerically unstable but |offset_prep|
10511 has not yet introduced any more numerical errors. Thus we can compute
10512 the true initial direction for the given cubic, even if it is almost
10515 @<Find the initial direction |(dx,dy)|@>=
10517 if ( dx==0 ) if ( dy==0 ) {
10519 if ( dx==0 ) if ( dy==0 ) {
10523 if ( p==c ) { dx0=dx; dy0=dy; }
10525 @ @<Find the final direction |(dxin,dyin)|@>=
10527 if ( dxin==0 ) if ( dyin==0 ) {
10529 if ( dxin==0 ) if ( dyin==0 ) {
10534 @ The next step is to bracket the initial direction between consecutive
10535 edges of the pen polygon. We must be careful to turn clockwise only if
10536 this makes the turn less than $180^\circ$. (A $180^\circ$ turn must be
10537 counter-clockwise in order to make \&{doublepath} envelopes come out
10538 @:double_path_}{\&{doublepath} primitive@>
10539 right.) This code depends on |w0| being the offset for |(dxin,dyin)|.
10541 @<Update |info(p)| and find the offset $w_k$ such that...@>=
10542 turn_amt=mp_get_turn_amt(mp, w0, dx, dy, mp_ab_vs_cd(mp, dy,dxin,dx,dyin)>=0);
10543 w=mp_pen_walk(mp, w0, turn_amt);
10545 info(p)=info(p)+turn_amt
10547 @ Decide how many pen offsets to go away from |w| in order to find the offset
10548 for |(dx,dy)|, going counterclockwise if |ccw| is |true|. This assumes that
10549 |w| is the offset for some direction $(x',y')$ from which the angle to |(dx,dy)|
10550 in the sense determined by |ccw| is less than or equal to $180^\circ$.
10552 If the pen polygon has only two edges, they could both be parallel
10553 to |(dx,dy)|. In this case, we must be careful to stop after crossing the first
10554 such edge in order to avoid an infinite loop.
10556 @<Declare subroutines needed by |offset_prep|@>=
10557 integer mp_get_turn_amt (MP mp,pointer w, scaled dx,
10558 scaled dy, boolean ccw) {
10559 pointer ww; /* a neighbor of knot~|w| */
10560 integer s; /* turn amount so far */
10561 integer t; /* |ab_vs_cd| result */
10566 t=mp_ab_vs_cd(mp, dy,x_coord(ww)-x_coord(w),
10567 dx,y_coord(ww)-y_coord(w));
10574 while ( mp_ab_vs_cd(mp, dy,x_coord(w)-x_coord(ww),
10575 dx,y_coord(w)-y_coord(ww))<0 ) {
10583 @ When we're all done, the final offset is |w0| and the final curve direction
10584 is |(dxin,dyin)|. With this knowledge of the incoming direction at |c|, we
10585 can correct |info(c)| which was erroneously based on an incoming offset
10588 @d fix_by(A) info(c)=info(c)+(A)
10590 @<Fix the offset change in |info(c)| and set the return value of...@>=
10591 mp->spec_offset=info(c)-zero_off;
10592 if ( link(c)==c ) {
10593 info(c)=zero_off+n;
10596 while ( w0!=h ) { fix_by(1); w0=link(w0); };
10597 while ( info(c)<=zero_off-n ) fix_by(n);
10598 while ( info(c)>zero_off ) fix_by(-n);
10599 if ( (info(c)!=zero_off)&&(mp_ab_vs_cd(mp, dy0,dxin,dx0,dyin)>=0) ) fix_by(n);
10603 @ Finally we want to reduce the general problem to situations that
10604 |fin_offset_prep| can handle. We split the cubic into at most three parts
10605 with respect to $d_{k-1}$, and apply |fin_offset_prep| to each part.
10607 @<Complete the offset splitting process@>=
10609 @<Compute test coeff...@>;
10610 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set
10611 |t:=fraction_one+1|@>;
10612 if ( t>fraction_one ) {
10613 mp_fin_offset_prep(mp, p,w,x0,x1,x2,y0,y1,y2,1,turn_amt);
10615 mp_split_cubic(mp, p,t); r=link(p);
10616 x1a=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10617 x2a=t_of_the_way(x1a,x1);
10618 y1a=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10619 y2a=t_of_the_way(y1a,y1);
10620 mp_fin_offset_prep(mp, p,w,x0,x1a,x2a,y0,y1a,y2a,1,0); x0=x2a; y0=y2a;
10621 info(r)=zero_off-1;
10622 if ( turn_amt>=0 ) {
10623 t1=t_of_the_way(t1,t2);
10625 t=mp_crossing_point(mp, 0,-t1,-t2);
10626 if ( t>fraction_one ) t=fraction_one;
10627 @<Split off another rising cubic for |fin_offset_prep|@>;
10628 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,0);
10630 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,-1-turn_amt);
10634 @ @<Split off another rising cubic for |fin_offset_prep|@>=
10635 mp_split_cubic(mp, r,t); info(link(r))=zero_off+1;
10636 x1a=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10637 x0a=t_of_the_way(x1,x1a);
10638 y1a=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10639 y0a=t_of_the_way(y1,y1a);
10640 mp_fin_offset_prep(mp, link(r),w,x0a,x1a,x2,y0a,y1a,y2,1,turn_amt);
10643 @ At this point, the direction of the incoming pen edge is |(-du,-dv)|.
10644 When the component of $d(t)$ perpendicular to |(-du,-dv)| crosses zero, we
10645 need to decide whether the directions are parallel or antiparallel. We
10646 can test this by finding the dot product of $d(t)$ and |(-du,-dv)|, but this
10647 should be avoided when the value of |turn_amt| already determines the
10648 answer. If |t2<0|, there is one crossing and it is antiparallel only if
10649 |turn_amt>=0|. If |turn_amt<0|, there should always be at least one
10650 crossing and the first crossing cannot be antiparallel.
10652 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set...@>=
10653 t=mp_crossing_point(mp, t0,t1,t2);
10654 if ( turn_amt>=0 ) {
10658 u0=t_of_the_way(x0,x1);
10659 u1=t_of_the_way(x1,x2);
10660 ss=mp_take_fraction(mp, -du,t_of_the_way(u0,u1));
10661 v0=t_of_the_way(y0,y1);
10662 v1=t_of_the_way(y1,y2);
10663 ss=ss+mp_take_fraction(mp, -dv,t_of_the_way(v0,v1));
10664 if ( ss<0 ) t=fraction_one+1;
10666 } else if ( t>fraction_one ) {
10670 @ @<Other local variables for |offset_prep|@>=
10671 integer u0,u1,v0,v1; /* intermediate values for $d(t)$ calculation */
10672 integer ss = 0; /* the part of the dot product computed so far */
10673 int d_sign; /* sign of overall change in direction for this cubic */
10675 @ If the cubic almost has a cusp, it is a numerically ill-conditioned
10676 problem to decide which way it loops around but that's OK as long we're
10677 consistent. To make \&{doublepath} envelopes work properly, reversing
10678 the path should always change the sign of |turn_amt|.
10680 @<Decide on the net change in pen offsets and set |turn_amt|@>=
10681 d_sign=mp_ab_vs_cd(mp, dx,dyin, dxin,dy);
10684 if ( dy>0 ) d_sign=1; else d_sign=-1;
10685 } else if ( dx>0 ) {
10691 @<Make |ss| negative if and only if the total change in direction is
10692 more than $180^\circ$@>;
10693 turn_amt=mp_get_turn_amt(mp, w, dxin, dyin, d_sign>0);
10694 if ( ss<0 ) turn_amt=turn_amt-d_sign*n
10696 @ In order to be invariant under path reversal, the result of this computation
10697 should not change when |x0|, |y0|, $\ldots$ are all negated and |(x0,y0)| is
10698 then swapped with |(x2,y2)|. We make use of the identities
10699 |take_fraction(-a,-b)=take_fraction(a,b)| and
10700 |t_of_the_way(-a,-b)=-(t_of_the_way(a,b))|.
10702 @<Make |ss| negative if and only if the total change in direction is...@>=
10703 t0=half(mp_take_fraction(mp, x0,y2))-half(mp_take_fraction(mp, x2,y0));
10704 t1=half(mp_take_fraction(mp, x1,y0+y2))-half(mp_take_fraction(mp, y1,x0+x2));
10705 if ( t0==0 ) t0=d_sign; /* path reversal always negates |d_sign| */
10707 t=mp_crossing_point(mp, t0,t1,-t0);
10708 u0=t_of_the_way(x0,x1);
10709 u1=t_of_the_way(x1,x2);
10710 v0=t_of_the_way(y0,y1);
10711 v1=t_of_the_way(y1,y2);
10713 t=mp_crossing_point(mp, -t0,t1,t0);
10714 u0=t_of_the_way(x2,x1);
10715 u1=t_of_the_way(x1,x0);
10716 v0=t_of_the_way(y2,y1);
10717 v1=t_of_the_way(y1,y0);
10719 s=mp_take_fraction(mp, x0+x2,t_of_the_way(u0,u1))+
10720 mp_take_fraction(mp, y0+y2,t_of_the_way(v0,v1))
10722 @ Here's a routine that prints an envelope spec in symbolic form. It assumes
10723 that the |cur_pen| has not been walked around to the first offset.
10726 void mp_print_spec (MP mp,pointer cur_spec, pointer cur_pen, char *s) {
10727 pointer p,q; /* list traversal */
10728 pointer w; /* the current pen offset */
10729 mp_print_diagnostic(mp, "Envelope spec",s,true);
10730 p=cur_spec; w=mp_pen_walk(mp, cur_pen,mp->spec_offset);
10732 mp_print_two(mp, x_coord(cur_spec),y_coord(cur_spec));
10733 mp_print(mp, " % beginning with offset ");
10734 mp_print_two(mp, x_coord(w),y_coord(w));
10738 @<Print the cubic between |p| and |q|@>;
10740 } while (! ((p==cur_spec) || (info(p)!=zero_off)));
10741 if ( info(p)!=zero_off ) {
10742 @<Update |w| as indicated by |info(p)| and print an explanation@>;
10744 } while (p!=cur_spec);
10745 mp_print_nl(mp, " & cycle");
10746 mp_end_diagnostic(mp, true);
10749 @ @<Update |w| as indicated by |info(p)| and print an explanation@>=
10751 w=mp_pen_walk(mp, w,info(p)-zero_off);
10752 mp_print(mp, " % ");
10753 if ( info(p)>zero_off ) mp_print(mp, "counter");
10754 mp_print(mp, "clockwise to offset ");
10755 mp_print_two(mp, x_coord(w),y_coord(w));
10758 @ @<Print the cubic between |p| and |q|@>=
10760 mp_print_nl(mp, " ..controls ");
10761 mp_print_two(mp, right_x(p),right_y(p));
10762 mp_print(mp, " and ");
10763 mp_print_two(mp, left_x(q),left_y(q));
10764 mp_print_nl(mp, " ..");
10765 mp_print_two(mp, x_coord(q),y_coord(q));
10768 @ Once we have an envelope spec, the remaining task to construct the actual
10769 envelope by offsetting each cubic as determined by the |info| fields in
10770 the knots. First we use |offset_prep| to convert the |c| into an envelope
10771 spec. Then we add the offsets so that |c| becomes a cyclic path that represents
10774 The |ljoin| and |miterlim| parameters control the treatment of points where the
10775 pen offset changes, and |lcap| controls the endpoints of a \&{doublepath}.
10776 The endpoints are easily located because |c| is given in undoubled form
10777 and then doubled in this procedure. We use |spec_p1| and |spec_p2| to keep
10778 track of the endpoints and treat them like very sharp corners.
10779 Butt end caps are treated like beveled joins; round end caps are treated like
10780 round joins; and square end caps are achieved by setting |join_type:=3|.
10782 None of these parameters apply to inside joins where the convolution tracing
10783 has retrograde lines. In such cases we use a simple connect-the-endpoints
10784 approach that is achieved by setting |join_type:=2|.
10786 @c @<Declare a function called |insert_knot|@>;
10787 pointer mp_make_envelope (MP mp,pointer c, pointer h, small_number ljoin,
10788 small_number lcap, scaled miterlim) {
10789 pointer p,q,r,q0; /* for manipulating the path */
10790 int join_type=0; /* codes |0..3| for mitered, round, beveled, or square */
10791 pointer w,w0; /* the pen knot for the current offset */
10792 scaled qx,qy; /* unshifted coordinates of |q| */
10793 halfword k,k0; /* controls pen edge insertion */
10794 @<Other local variables for |make_envelope|@>;
10795 dxin=0; dyin=0; dxout=0; dyout=0;
10796 mp->spec_p1=null; mp->spec_p2=null;
10797 @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>;
10798 @<Use |offset_prep| to compute the envelope spec then walk |h| around to
10799 the initial offset@>;
10804 qx=x_coord(q); qy=y_coord(q);
10807 if ( k!=zero_off ) {
10808 @<Set |join_type| to indicate how to handle offset changes at~|q|@>;
10810 @<Add offset |w| to the cubic from |p| to |q|@>;
10811 while ( k!=zero_off ) {
10812 @<Step |w| and move |k| one step closer to |zero_off|@>;
10813 if ( (join_type==1)||(k==zero_off) )
10814 q=mp_insert_knot(mp, q,qx+x_coord(w),qy+y_coord(w));
10816 if ( q!=link(p) ) {
10817 @<Set |p=link(p)| and add knots between |p| and |q| as
10818 required by |join_type|@>;
10825 @ @<Use |offset_prep| to compute the envelope spec then walk |h| around to...@>=
10826 c=mp_offset_prep(mp, c,h);
10827 if ( mp->internal[tracing_specs]>0 )
10828 mp_print_spec(mp, c,h,"");
10829 h=mp_pen_walk(mp, h,mp->spec_offset)
10831 @ Mitered and squared-off joins depend on path directions that are difficult to
10832 compute for degenerate cubics. The envelope spec computed by |offset_prep| can
10833 have degenerate cubics only if the entire cycle collapses to a single
10834 degenerate cubic. Setting |join_type:=2| in this case makes the computed
10835 envelope degenerate as well.
10837 @<Set |join_type| to indicate how to handle offset changes at~|q|@>=
10838 if ( k<zero_off ) {
10841 if ( (q!=mp->spec_p1)&&(q!=mp->spec_p2) ) join_type=ljoin;
10842 else if ( lcap==2 ) join_type=3;
10843 else join_type=2-lcap;
10844 if ( (join_type==0)||(join_type==3) ) {
10845 @<Set the incoming and outgoing directions at |q|; in case of
10846 degeneracy set |join_type:=2|@>;
10847 if ( join_type==0 ) {
10848 @<If |miterlim| is less than the secant of half the angle at |q|
10849 then set |join_type:=2|@>;
10854 @ @<If |miterlim| is less than the secant of half the angle at |q|...@>=
10856 tmp=mp_take_fraction(mp, miterlim,fraction_half+
10857 half(mp_take_fraction(mp, dxin,dxout)+mp_take_fraction(mp, dyin,dyout)));
10859 if ( mp_take_scaled(mp, miterlim,tmp)<unity ) join_type=2;
10862 @ @<Other local variables for |make_envelope|@>=
10863 fraction dxin,dyin,dxout,dyout; /* directions at |q| when square or mitered */
10864 scaled tmp; /* a temporary value */
10866 @ The coordinates of |p| have already been shifted unless |p| is the first
10867 knot in which case they get shifted at the very end.
10869 @<Add offset |w| to the cubic from |p| to |q|@>=
10870 right_x(p)=right_x(p)+x_coord(w);
10871 right_y(p)=right_y(p)+y_coord(w);
10872 left_x(q)=left_x(q)+x_coord(w);
10873 left_y(q)=left_y(q)+y_coord(w);
10874 x_coord(q)=x_coord(q)+x_coord(w);
10875 y_coord(q)=y_coord(q)+y_coord(w);
10876 left_type(q)=explicit;
10877 right_type(q)=explicit
10879 @ @<Step |w| and move |k| one step closer to |zero_off|@>=
10880 if ( k>zero_off ){ w=link(w); decr(k); }
10881 else { w=knil(w); incr(k); }
10883 @ The cubic from |q| to the new knot at |(x,y)| becomes a line segment and
10884 the |right_x| and |right_y| fields of |r| are set from |q|. This is done in
10885 case the cubic containing these control points is ``yet to be examined.''
10887 @<Declare a function called |insert_knot|@>=
10888 pointer mp_insert_knot (MP mp,pointer q, scaled x, scaled y) {
10889 /* returns the inserted knot */
10890 pointer r; /* the new knot */
10891 r=mp_get_node(mp, knot_node_size);
10892 link(r)=link(q); link(q)=r;
10893 right_x(r)=right_x(q);
10894 right_y(r)=right_y(q);
10897 right_x(q)=x_coord(q);
10898 right_y(q)=y_coord(q);
10899 left_x(r)=x_coord(r);
10900 left_y(r)=y_coord(r);
10901 left_type(r)=explicit;
10902 right_type(r)=explicit;
10903 originator(r)=program_code;
10907 @ After setting |p:=link(p)|, either |join_type=1| or |q=link(p)|.
10909 @<Set |p=link(p)| and add knots between |p| and |q| as...@>=
10912 if ( (join_type==0)||(join_type==3) ) {
10913 if ( join_type==0 ) {
10914 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>
10916 @<Make |r| the last of two knots inserted between |p| and |q| to form a
10920 right_x(r)=x_coord(r);
10921 right_y(r)=y_coord(r);
10926 @ For very small angles, adding a knot is unnecessary and would cause numerical
10927 problems, so we just set |r:=null| in that case.
10929 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>=
10931 det=mp_take_fraction(mp, dyout,dxin)-mp_take_fraction(mp, dxout,dyin);
10932 if ( abs(det)<26844 ) {
10933 r=null; /* sine $<10^{-4}$ */
10935 tmp=mp_take_fraction(mp, x_coord(q)-x_coord(p),dyout)-
10936 mp_take_fraction(mp, y_coord(q)-y_coord(p),dxout);
10937 tmp=mp_make_fraction(mp, tmp,det);
10938 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
10939 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
10943 @ @<Other local variables for |make_envelope|@>=
10944 fraction det; /* a determinant used for mitered join calculations */
10946 @ @<Make |r| the last of two knots inserted between |p| and |q| to form a...@>=
10948 ht_x=y_coord(w)-y_coord(w0);
10949 ht_y=x_coord(w0)-x_coord(w);
10950 while ( (abs(ht_x)<fraction_half)&&(abs(ht_y)<fraction_half) ) {
10951 ht_x+=ht_x; ht_y+=ht_y;
10953 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range dot
10954 product with |(ht_x,ht_y)|@>;
10955 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxin,ht_x)+
10956 mp_take_fraction(mp, dyin,ht_y));
10957 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
10958 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
10959 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxout,ht_x)+
10960 mp_take_fraction(mp, dyout,ht_y));
10961 r=mp_insert_knot(mp, r,x_coord(q)+mp_take_fraction(mp, tmp,dxout),
10962 y_coord(q)+mp_take_fraction(mp, tmp,dyout));
10965 @ @<Other local variables for |make_envelope|@>=
10966 fraction ht_x,ht_y; /* perpendicular to the segment from |p| to |q| */
10967 scaled max_ht; /* maximum height of the pen polygon above the |w0|-|w| line */
10968 halfword kk; /* keeps track of the pen vertices being scanned */
10969 pointer ww; /* the pen vertex being tested */
10971 @ The dot product of the vector from |w0| to |ww| with |(ht_x,ht_y)| ranges
10972 from zero to |max_ht|.
10974 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range...@>=
10979 @<Step |ww| and move |kk| one step closer to |k0|@>;
10980 if ( kk==k0 ) break;
10981 tmp=mp_take_fraction(mp, x_coord(ww)-x_coord(w0),ht_x)+
10982 mp_take_fraction(mp, y_coord(ww)-y_coord(w0),ht_y);
10983 if ( tmp>max_ht ) max_ht=tmp;
10987 @ @<Step |ww| and move |kk| one step closer to |k0|@>=
10988 if ( kk>k0 ) { ww=link(ww); decr(kk); }
10989 else { ww=knil(ww); incr(kk); }
10991 @ @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>=
10992 if ( left_type(c)==endpoint ) {
10993 mp->spec_p1=mp_htap_ypoc(mp, c);
10994 mp->spec_p2=mp->path_tail;
10995 originator(mp->spec_p1)=program_code;
10996 link(mp->spec_p2)=link(mp->spec_p1);
10997 link(mp->spec_p1)=c;
10998 mp_remove_cubic(mp, mp->spec_p1);
11000 if ( c!=link(c) ) {
11001 originator(mp->spec_p2)=program_code;
11002 mp_remove_cubic(mp, mp->spec_p2);
11004 @<Make |c| look like a cycle of length one@>;
11008 @ @<Make |c| look like a cycle of length one@>=
11010 left_type(c)=explicit; right_type(c)=explicit;
11011 left_x(c)=x_coord(c); left_y(c)=y_coord(c);
11012 right_x(c)=x_coord(c); right_y(c)=y_coord(c);
11015 @ In degenerate situations we might have to look at the knot preceding~|q|.
11016 That knot is |p| but if |p<>c|, its coordinates have already been offset by |w|.
11018 @<Set the incoming and outgoing directions at |q|; in case of...@>=
11019 dxin=x_coord(q)-left_x(q);
11020 dyin=y_coord(q)-left_y(q);
11021 if ( (dxin==0)&&(dyin==0) ) {
11022 dxin=x_coord(q)-right_x(p);
11023 dyin=y_coord(q)-right_y(p);
11024 if ( (dxin==0)&&(dyin==0) ) {
11025 dxin=x_coord(q)-x_coord(p);
11026 dyin=y_coord(q)-y_coord(p);
11027 if ( p!=c ) { /* the coordinates of |p| have been offset by |w| */
11028 dxin=dxin+x_coord(w);
11029 dyin=dyin+y_coord(w);
11033 tmp=mp_pyth_add(mp, dxin,dyin);
11037 dxin=mp_make_fraction(mp, dxin,tmp);
11038 dyin=mp_make_fraction(mp, dyin,tmp);
11039 @<Set the outgoing direction at |q|@>;
11042 @ If |q=c| then the coordinates of |r| and the control points between |q|
11043 and~|r| have already been offset by |h|.
11045 @<Set the outgoing direction at |q|@>=
11046 dxout=right_x(q)-x_coord(q);
11047 dyout=right_y(q)-y_coord(q);
11048 if ( (dxout==0)&&(dyout==0) ) {
11050 dxout=left_x(r)-x_coord(q);
11051 dyout=left_y(r)-y_coord(q);
11052 if ( (dxout==0)&&(dyout==0) ) {
11053 dxout=x_coord(r)-x_coord(q);
11054 dyout=y_coord(r)-y_coord(q);
11058 dxout=dxout-x_coord(h);
11059 dyout=dyout-y_coord(h);
11061 tmp=mp_pyth_add(mp, dxout,dyout);
11062 if ( tmp==0 ) mp_confusion(mp, "degenerate spec");
11063 @:this can't happen degerate spec}{\quad degenerate spec@>
11064 dxout=mp_make_fraction(mp, dxout,tmp);
11065 dyout=mp_make_fraction(mp, dyout,tmp)
11067 @* \[23] Direction and intersection times.
11068 A path of length $n$ is defined parametrically by functions $x(t)$ and
11069 $y(t)$, for |0<=t<=n|; we can regard $t$ as the ``time'' at which the path
11070 reaches the point $\bigl(x(t),y(t)\bigr)$. In this section of the program
11071 we shall consider operations that determine special times associated with
11072 given paths: the first time that a path travels in a given direction, and
11073 a pair of times at which two paths cross each other.
11075 @ Let's start with the easier task. The function |find_direction_time| is
11076 given a direction |(x,y)| and a path starting at~|h|. If the path never
11077 travels in direction |(x,y)|, the direction time will be~|-1|; otherwise
11078 it will be nonnegative.
11080 Certain anomalous cases can arise: If |(x,y)=(0,0)|, so that the given
11081 direction is undefined, the direction time will be~0. If $\bigl(x'(t),
11082 y'(t)\bigr)=(0,0)$, so that the path direction is undefined, it will be
11083 assumed to match any given direction at time~|t|.
11085 The routine solves this problem in nondegenerate cases by rotating the path
11086 and the given direction so that |(x,y)=(1,0)|; i.e., the main task will be
11087 to find when a given path first travels ``due east.''
11090 scaled mp_find_direction_time (MP mp,scaled x, scaled y, pointer h) {
11091 scaled max; /* $\max\bigl(\vert x\vert,\vert y\vert\bigr)$ */
11092 pointer p,q; /* for list traversal */
11093 scaled n; /* the direction time at knot |p| */
11094 scaled tt; /* the direction time within a cubic */
11095 @<Other local variables for |find_direction_time|@>;
11096 @<Normalize the given direction for better accuracy;
11097 but |return| with zero result if it's zero@>;
11100 if ( right_type(p)==endpoint ) break;
11102 @<Rotate the cubic between |p| and |q|; then
11103 |goto found| if the rotated cubic travels due east at some time |tt|;
11104 but |break| if an entire cyclic path has been traversed@>;
11112 @ @<Normalize the given direction for better accuracy...@>=
11113 if ( abs(x)<abs(y) ) {
11114 x=mp_make_fraction(mp, x,abs(y));
11115 if ( y>0 ) y=fraction_one; else y=-fraction_one;
11116 } else if ( x==0 ) {
11119 y=mp_make_fraction(mp, y,abs(x));
11120 if ( x>0 ) x=fraction_one; else x=-fraction_one;
11123 @ Since we're interested in the tangent directions, we work with the
11124 derivative $${\textstyle1\over3}B'(x_0,x_1,x_2,x_3;t)=
11125 B(x_1-x_0,x_2-x_1,x_3-x_2;t)$$ instead of
11126 $B(x_0,x_1,x_2,x_3;t)$ itself. The derived coefficients are also scaled up
11127 in order to achieve better accuracy.
11129 The given path may turn abruptly at a knot, and it might pass the critical
11130 tangent direction at such a time. Therefore we remember the direction |phi|
11131 in which the previous rotated cubic was traveling. (The value of |phi| will be
11132 undefined on the first cubic, i.e., when |n=0|.)
11134 @<Rotate the cubic between |p| and |q|; then...@>=
11136 @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples of the control
11137 points of the rotated derivatives@>;
11138 if ( y1==0 ) if ( x1>=0 ) goto FOUND;
11140 @<Exit to |found| if an eastward direction occurs at knot |p|@>;
11143 if ( (x3!=0)||(y3!=0) ) phi=mp_n_arg(mp, x3,y3);
11144 @<Exit to |found| if the curve whose derivatives are specified by
11145 |x1,x2,x3,y1,y2,y3| travels eastward at some time~|tt|@>
11147 @ @<Other local variables for |find_direction_time|@>=
11148 scaled x1,x2,x3,y1,y2,y3; /* multiples of rotated derivatives */
11149 angle theta,phi; /* angles of exit and entry at a knot */
11150 fraction t; /* temp storage */
11152 @ @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples...@>=
11153 x1=right_x(p)-x_coord(p); x2=left_x(q)-right_x(p);
11154 x3=x_coord(q)-left_x(q);
11155 y1=right_y(p)-y_coord(p); y2=left_y(q)-right_y(p);
11156 y3=y_coord(q)-left_y(q);
11158 if ( abs(x2)>max ) max=abs(x2);
11159 if ( abs(x3)>max ) max=abs(x3);
11160 if ( abs(y1)>max ) max=abs(y1);
11161 if ( abs(y2)>max ) max=abs(y2);
11162 if ( abs(y3)>max ) max=abs(y3);
11163 if ( max==0 ) goto FOUND;
11164 while ( max<fraction_half ){
11165 max+=max; x1+=x1; x2+=x2; x3+=x3;
11166 y1+=y1; y2+=y2; y3+=y3;
11168 t=x1; x1=mp_take_fraction(mp, x1,x)+mp_take_fraction(mp, y1,y);
11169 y1=mp_take_fraction(mp, y1,x)-mp_take_fraction(mp, t,y);
11170 t=x2; x2=mp_take_fraction(mp, x2,x)+mp_take_fraction(mp, y2,y);
11171 y2=mp_take_fraction(mp, y2,x)-mp_take_fraction(mp, t,y);
11172 t=x3; x3=mp_take_fraction(mp, x3,x)+mp_take_fraction(mp, y3,y);
11173 y3=mp_take_fraction(mp, y3,x)-mp_take_fraction(mp, t,y)
11175 @ @<Exit to |found| if an eastward direction occurs at knot |p|@>=
11176 theta=mp_n_arg(mp, x1,y1);
11177 if ( theta>=0 ) if ( phi<=0 ) if ( phi>=theta-one_eighty_deg ) goto FOUND;
11178 if ( theta<=0 ) if ( phi>=0 ) if ( phi<=theta+one_eighty_deg ) goto FOUND
11180 @ In this step we want to use the |crossing_point| routine to find the
11181 roots of the quadratic equation $B(y_1,y_2,y_3;t)=0$.
11182 Several complications arise: If the quadratic equation has a double root,
11183 the curve never crosses zero, and |crossing_point| will find nothing;
11184 this case occurs iff $y_1y_3=y_2^2$ and $y_1y_2<0$. If the quadratic
11185 equation has simple roots, or only one root, we may have to negate it
11186 so that $B(y_1,y_2,y_3;t)$ crosses from positive to negative at its first root.
11187 And finally, we need to do special things if $B(y_1,y_2,y_3;t)$ is
11190 @ @<Exit to |found| if the curve whose derivatives are specified by...@>=
11191 if ( x1<0 ) if ( x2<0 ) if ( x3<0 ) goto DONE;
11192 if ( mp_ab_vs_cd(mp, y1,y3,y2,y2)==0 ) {
11193 @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11194 either |goto found| or |goto done|@>;
11197 if ( y1<0 ) { y1=-y1; y2=-y2; y3=-y3; }
11198 else if ( y2>0 ){ y2=-y2; y3=-y3; };
11200 @<Check the places where $B(y_1,y_2,y_3;t)=0$ to see if
11201 $B(x_1,x_2,x_3;t)\ge0$@>;
11204 @ The quadratic polynomial $B(y_1,y_2,y_3;t)$ begins |>=0| and has at most
11205 two roots, because we know that it isn't identically zero.
11207 It must be admitted that the |crossing_point| routine is not perfectly accurate;
11208 rounding errors might cause it to find a root when $y_1y_3>y_2^2$, or to
11209 miss the roots when $y_1y_3<y_2^2$. The rotation process is itself
11210 subject to rounding errors. Yet this code optimistically tries to
11211 do the right thing.
11213 @d we_found_it { tt=(t+04000) / 010000; goto FOUND; }
11215 @<Check the places where $B(y_1,y_2,y_3;t)=0$...@>=
11216 t=mp_crossing_point(mp, y1,y2,y3);
11217 if ( t>fraction_one ) goto DONE;
11218 y2=t_of_the_way(y2,y3);
11219 x1=t_of_the_way(x1,x2);
11220 x2=t_of_the_way(x2,x3);
11221 x1=t_of_the_way(x1,x2);
11222 if ( x1>=0 ) we_found_it;
11224 tt=t; t=mp_crossing_point(mp, 0,-y2,-y3);
11225 if ( t>fraction_one ) goto DONE;
11226 x1=t_of_the_way(x1,x2);
11227 x2=t_of_the_way(x2,x3);
11228 if ( t_of_the_way(x1,x2)>=0 ) {
11229 t=t_of_the_way(tt,fraction_one); we_found_it;
11232 @ @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11233 either |goto found| or |goto done|@>=
11235 if ( mp_ab_vs_cd(mp, y1,y2,0,0)<0 ) {
11236 t=mp_make_fraction(mp, y1,y1-y2);
11237 x1=t_of_the_way(x1,x2);
11238 x2=t_of_the_way(x2,x3);
11239 if ( t_of_the_way(x1,x2)>=0 ) we_found_it;
11240 } else if ( y3==0 ) {
11242 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|@>;
11243 } else if ( x3>=0 ) {
11244 tt=unity; goto FOUND;
11250 @ At this point we know that the derivative of |y(t)| is identically zero,
11251 and that |x1<0|; but either |x2>=0| or |x3>=0|, so there's some hope of
11254 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|...@>=
11256 t=mp_crossing_point(mp, -x1,-x2,-x3);
11257 if ( t<=fraction_one ) we_found_it;
11258 if ( mp_ab_vs_cd(mp, x1,x3,x2,x2)<=0 ) {
11259 t=mp_make_fraction(mp, x1,x1-x2); we_found_it;
11263 @ The intersection of two cubics can be found by an interesting variant
11264 of the general bisection scheme described in the introduction to
11266 Given $w(t)=B(w_0,w_1,w_2,w_3;t)$ and $z(t)=B(z_0,z_1,z_2,z_3;t)$,
11267 we wish to find a pair of times $(t_1,t_2)$ such that $w(t_1)=z(t_2)$,
11268 if an intersection exists. First we find the smallest rectangle that
11269 encloses the points $\{w_0,w_1,w_2,w_3\}$ and check that it overlaps
11270 the smallest rectangle that encloses
11271 $\{z_0,z_1,z_2,z_3\}$; if not, the cubics certainly don't intersect.
11272 But if the rectangles do overlap, we bisect the intervals, getting
11273 new cubics $w'$ and~$w''$, $z'$~and~$z''$; the intersection routine first
11274 tries for an intersection between $w'$ and~$z'$, then (if unsuccessful)
11275 between $w'$ and~$z''$, then (if still unsuccessful) between $w''$ and~$z'$,
11276 finally (if thrice unsuccessful) between $w''$ and~$z''$. After $l$~successful
11277 levels of bisection we will have determined the intersection times $t_1$
11278 and~$t_2$ to $l$~bits of accuracy.
11280 \def\submin{_{\rm min}} \def\submax{_{\rm max}}
11281 As before, it is better to work with the numbers $W_k=2^l(w_k-w_{k-1})$
11282 and $Z_k=2^l(z_k-z_{k-1})$ rather than the coefficients $w_k$ and $z_k$
11283 themselves. We also need one other quantity, $\Delta=2^l(w_0-z_0)$,
11284 to determine when the enclosing rectangles overlap. Here's why:
11285 The $x$~coordinates of~$w(t)$ are between $u\submin$ and $u\submax$,
11286 and the $x$~coordinates of~$z(t)$ are between $x\submin$ and $x\submax$,
11287 if we write $w_k=(u_k,v_k)$ and $z_k=(x_k,y_k)$ and $u\submin=
11288 \min(u_0,u_1,u_2,u_3)$, etc. These intervals of $x$~coordinates
11289 overlap if and only if $u\submin\L x\submax$ and
11290 $x\submin\L u\submax$. Letting
11291 $$U\submin=\min(0,U_1,U_1+U_2,U_1+U_2+U_3),\;
11292 U\submax=\max(0,U_1,U_1+U_2,U_1+U_2+U_3),$$
11293 we have $u\submin=2^lu_0+U\submin$, etc.; the condition for overlap
11295 $$X\submin-U\submax\L 2^l(u_0-x_0)\L X\submax-U\submin.$$
11296 Thus we want to maintain the quantity $2^l(u_0-x_0)$; similarly,
11297 the quantity $2^l(v_0-y_0)$ accounts for the $y$~coordinates. The
11298 coordinates of $\Delta=2^l(w_0-z_0)$ must stay bounded as $l$ increases,
11299 because of the overlap condition; i.e., we know that $X\submin$,
11300 $X\submax$, and their relatives are bounded, hence $X\submax-
11301 U\submin$ and $X\submin-U\submax$ are bounded.
11303 @ Incidentally, if the given cubics intersect more than once, the process
11304 just sketched will not necessarily find the lexicographically smallest pair
11305 $(t_1,t_2)$. The solution actually obtained will be smallest in ``shuffled
11306 order''; i.e., if $t_1=(.a_1a_2\ldots a_{16})_2$ and
11307 $t_2=(.b_1b_2\ldots b_{16})_2$, then we will minimize
11308 $a_1b_1a_2b_2\ldots a_{16}b_{16}$, not
11309 $a_1a_2\ldots a_{16}b_1b_2\ldots b_{16}$.
11310 Shuffled order agrees with lexicographic order if all pairs of solutions
11311 $(t_1,t_2)$ and $(t_1',t_2')$ have the property that $t_1<t_1'$ iff
11312 $t_2<t_2'$; but in general, lexicographic order can be quite different,
11313 and the bisection algorithm would be substantially less efficient if it were
11314 constrained by lexicographic order.
11316 For example, suppose that an overlap has been found for $l=3$ and
11317 $(t_1,t_2)= (.101,.011)$ in binary, but that no overlap is produced by
11318 either of the alternatives $(.1010,.0110)$, $(.1010,.0111)$ at level~4.
11319 Then there is probably an intersection in one of the subintervals
11320 $(.1011,.011x)$; but lexicographic order would require us to explore
11321 $(.1010,.1xxx)$ and $(.1011,.00xx)$ and $(.1011,.010x)$ first. We wouldn't
11322 want to store all of the subdivision data for the second path, so the
11323 subdivisions would have to be regenerated many times. Such inefficiencies
11324 would be associated with every `1' in the binary representation of~$t_1$.
11326 @ The subdivision process introduces rounding errors, hence we need to
11327 make a more liberal test for overlap. It is not hard to show that the
11328 computed values of $U_i$ differ from the truth by at most~$l$, on
11329 level~$l$, hence $U\submin$ and $U\submax$ will be at most $3l$ in error.
11330 If $\beta$ is an upper bound on the absolute error in the computed
11331 components of $\Delta=(|delx|,|dely|)$ on level~$l$, we will replace
11332 the test `$X\submin-U\submax\L|delx|$' by the more liberal test
11333 `$X\submin-U\submax\L|delx|+|tol|$', where $|tol|=6l+\beta$.
11335 More accuracy is obtained if we try the algorithm first with |tol=0|;
11336 the more liberal tolerance is used only if an exact approach fails.
11337 It is convenient to do this double-take by letting `3' in the preceding
11338 paragraph be a parameter, which is first 0, then 3.
11341 unsigned int tol_step; /* either 0 or 3, usually */
11343 @ We shall use an explicit stack to implement the recursive bisection
11344 method described above. The |bisect_stack| array will contain numerous 5-word
11345 packets like $(U_1,U_2,U_3,U\submin,U\submax)$, as well as 20-word packets
11346 comprising the 5-word packets for $U$, $V$, $X$, and~$Y$.
11348 The following macros define the allocation of stack positions to
11349 the quantities needed for bisection-intersection.
11351 @d stack_1(A) mp->bisect_stack[(A)] /* $U_1$, $V_1$, $X_1$, or $Y_1$ */
11352 @d stack_2(A) mp->bisect_stack[(A)+1] /* $U_2$, $V_2$, $X_2$, or $Y_2$ */
11353 @d stack_3(A) mp->bisect_stack[(A)+2] /* $U_3$, $V_3$, $X_3$, or $Y_3$ */
11354 @d stack_min(A) mp->bisect_stack[(A)+3]
11355 /* $U\submin$, $V\submin$, $X\submin$, or $Y\submin$ */
11356 @d stack_max(A) mp->bisect_stack[(A)+4]
11357 /* $U\submax$, $V\submax$, $X\submax$, or $Y\submax$ */
11358 @d int_packets 20 /* number of words to represent $U_k$, $V_k$, $X_k$, and $Y_k$ */
11360 @d u_packet(A) ((A)-5)
11361 @d v_packet(A) ((A)-10)
11362 @d x_packet(A) ((A)-15)
11363 @d y_packet(A) ((A)-20)
11364 @d l_packets (mp->bisect_ptr-int_packets)
11365 @d r_packets mp->bisect_ptr
11366 @d ul_packet u_packet(l_packets) /* base of $U'_k$ variables */
11367 @d vl_packet v_packet(l_packets) /* base of $V'_k$ variables */
11368 @d xl_packet x_packet(l_packets) /* base of $X'_k$ variables */
11369 @d yl_packet y_packet(l_packets) /* base of $Y'_k$ variables */
11370 @d ur_packet u_packet(r_packets) /* base of $U''_k$ variables */
11371 @d vr_packet v_packet(r_packets) /* base of $V''_k$ variables */
11372 @d xr_packet x_packet(r_packets) /* base of $X''_k$ variables */
11373 @d yr_packet y_packet(r_packets) /* base of $Y''_k$ variables */
11375 @d u1l stack_1(ul_packet) /* $U'_1$ */
11376 @d u2l stack_2(ul_packet) /* $U'_2$ */
11377 @d u3l stack_3(ul_packet) /* $U'_3$ */
11378 @d v1l stack_1(vl_packet) /* $V'_1$ */
11379 @d v2l stack_2(vl_packet) /* $V'_2$ */
11380 @d v3l stack_3(vl_packet) /* $V'_3$ */
11381 @d x1l stack_1(xl_packet) /* $X'_1$ */
11382 @d x2l stack_2(xl_packet) /* $X'_2$ */
11383 @d x3l stack_3(xl_packet) /* $X'_3$ */
11384 @d y1l stack_1(yl_packet) /* $Y'_1$ */
11385 @d y2l stack_2(yl_packet) /* $Y'_2$ */
11386 @d y3l stack_3(yl_packet) /* $Y'_3$ */
11387 @d u1r stack_1(ur_packet) /* $U''_1$ */
11388 @d u2r stack_2(ur_packet) /* $U''_2$ */
11389 @d u3r stack_3(ur_packet) /* $U''_3$ */
11390 @d v1r stack_1(vr_packet) /* $V''_1$ */
11391 @d v2r stack_2(vr_packet) /* $V''_2$ */
11392 @d v3r stack_3(vr_packet) /* $V''_3$ */
11393 @d x1r stack_1(xr_packet) /* $X''_1$ */
11394 @d x2r stack_2(xr_packet) /* $X''_2$ */
11395 @d x3r stack_3(xr_packet) /* $X''_3$ */
11396 @d y1r stack_1(yr_packet) /* $Y''_1$ */
11397 @d y2r stack_2(yr_packet) /* $Y''_2$ */
11398 @d y3r stack_3(yr_packet) /* $Y''_3$ */
11400 @d stack_dx mp->bisect_stack[mp->bisect_ptr] /* stacked value of |delx| */
11401 @d stack_dy mp->bisect_stack[mp->bisect_ptr+1] /* stacked value of |dely| */
11402 @d stack_tol mp->bisect_stack[mp->bisect_ptr+2] /* stacked value of |tol| */
11403 @d stack_uv mp->bisect_stack[mp->bisect_ptr+3] /* stacked value of |uv| */
11404 @d stack_xy mp->bisect_stack[mp->bisect_ptr+4] /* stacked value of |xy| */
11405 @d int_increment (int_packets+int_packets+5) /* number of stack words per level */
11408 integer *bisect_stack;
11409 unsigned int bisect_ptr;
11411 @ @<Allocate or initialize ...@>=
11412 mp->bisect_stack = xmalloc((bistack_size+1),sizeof(integer));
11414 @ @<Dealloc variables@>=
11415 xfree(mp->bisect_stack);
11417 @ @<Check the ``constant''...@>=
11418 if ( int_packets+17*int_increment>bistack_size ) mp->bad=19;
11420 @ Computation of the min and max is a tedious but fairly fast sequence of
11421 instructions; exactly four comparisons are made in each branch.
11424 if ( stack_1((A))<0 ) {
11425 if ( stack_3((A))>=0 ) {
11426 if ( stack_2((A))<0 ) stack_min((A))=stack_1((A))+stack_2((A));
11427 else stack_min((A))=stack_1((A));
11428 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11429 if ( stack_max((A))<0 ) stack_max((A))=0;
11431 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11432 if ( stack_min((A))>stack_1((A)) ) stack_min((A))=stack_1((A));
11433 stack_max((A))=stack_1((A))+stack_2((A));
11434 if ( stack_max((A))<0 ) stack_max((A))=0;
11436 } else if ( stack_3((A))<=0 ) {
11437 if ( stack_2((A))>0 ) stack_max((A))=stack_1((A))+stack_2((A));
11438 else stack_max((A))=stack_1((A));
11439 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11440 if ( stack_min((A))>0 ) stack_min((A))=0;
11442 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11443 if ( stack_max((A))<stack_1((A)) ) stack_max((A))=stack_1((A));
11444 stack_min((A))=stack_1((A))+stack_2((A));
11445 if ( stack_min((A))>0 ) stack_min((A))=0;
11448 @ It's convenient to keep the current values of $l$, $t_1$, and $t_2$ in
11449 the integer form $2^l+2^lt_1$ and $2^l+2^lt_2$. The |cubic_intersection|
11450 routine uses global variables |cur_t| and |cur_tt| for this purpose;
11451 after successful completion, |cur_t| and |cur_tt| will contain |unity|
11452 plus the |scaled| values of $t_1$ and~$t_2$.
11454 The values of |cur_t| and |cur_tt| will be set to zero if |cubic_intersection|
11455 finds no intersection. The routine gives up and gives an approximate answer
11456 if it has backtracked
11457 more than 5000 times (otherwise there are cases where several minutes
11458 of fruitless computation would be possible).
11460 @d max_patience 5000
11463 integer cur_t;integer cur_tt; /* controls and results of |cubic_intersection| */
11464 integer time_to_go; /* this many backtracks before giving up */
11465 integer max_t; /* maximum of $2^{l+1}$ so far achieved */
11467 @ The given cubics $B(w_0,w_1,w_2,w_3;t)$ and
11468 $B(z_0,z_1,z_2,z_3;t)$ are specified in adjacent knot nodes |(p,link(p))|
11469 and |(pp,link(pp))|, respectively.
11471 @c void mp_cubic_intersection (MP mp,pointer p, pointer pp) {
11472 pointer q,qq; /* |link(p)|, |link(pp)| */
11473 mp->time_to_go=max_patience; mp->max_t=2;
11474 @<Initialize for intersections at level zero@>;
11477 if ( mp->delx-mp->tol<=stack_max(x_packet(mp->xy))-stack_min(u_packet(mp->uv)))
11478 if ( mp->delx+mp->tol>=stack_min(x_packet(mp->xy))-stack_max(u_packet(mp->uv)))
11479 if ( mp->dely-mp->tol<=stack_max(y_packet(mp->xy))-stack_min(v_packet(mp->uv)))
11480 if ( mp->dely+mp->tol>=stack_min(y_packet(mp->xy))-stack_max(v_packet(mp->uv)))
11482 if ( mp->cur_t>=mp->max_t ){
11483 if ( mp->max_t==two ) { /* we've done 17 bisections */
11484 mp->cur_t=halfp(mp->cur_t+1); mp->cur_tt=halfp(mp->cur_tt+1); return;
11486 mp->max_t+=mp->max_t; mp->appr_t=mp->cur_t; mp->appr_tt=mp->cur_tt;
11488 @<Subdivide for a new level of intersection@>;
11491 if ( mp->time_to_go>0 ) {
11492 decr(mp->time_to_go);
11494 while ( mp->appr_t<unity ) {
11495 mp->appr_t+=mp->appr_t; mp->appr_tt+=mp->appr_tt;
11497 mp->cur_t=mp->appr_t; mp->cur_tt=mp->appr_tt; return;
11499 @<Advance to the next pair |(cur_t,cur_tt)|@>;
11503 @ The following variables are global, although they are used only by
11504 |cubic_intersection|, because it is necessary on some machines to
11505 split |cubic_intersection| up into two procedures.
11508 integer delx;integer dely; /* the components of $\Delta=2^l(w_0-z_0)$ */
11509 integer tol; /* bound on the uncertainly in the overlap test */
11511 unsigned int xy; /* pointers to the current packets of interest */
11512 integer three_l; /* |tol_step| times the bisection level */
11513 integer appr_t;integer appr_tt; /* best approximations known to the answers */
11515 @ We shall assume that the coordinates are sufficiently non-extreme that
11516 integer overflow will not occur.
11518 @<Initialize for intersections at level zero@>=
11519 q=link(p); qq=link(pp); mp->bisect_ptr=int_packets;
11520 u1r=right_x(p)-x_coord(p); u2r=left_x(q)-right_x(p);
11521 u3r=x_coord(q)-left_x(q); set_min_max(ur_packet);
11522 v1r=right_y(p)-y_coord(p); v2r=left_y(q)-right_y(p);
11523 v3r=y_coord(q)-left_y(q); set_min_max(vr_packet);
11524 x1r=right_x(pp)-x_coord(pp); x2r=left_x(qq)-right_x(pp);
11525 x3r=x_coord(qq)-left_x(qq); set_min_max(xr_packet);
11526 y1r=right_y(pp)-y_coord(pp); y2r=left_y(qq)-right_y(pp);
11527 y3r=y_coord(qq)-left_y(qq); set_min_max(yr_packet);
11528 mp->delx=x_coord(p)-x_coord(pp); mp->dely=y_coord(p)-y_coord(pp);
11529 mp->tol=0; mp->uv=r_packets; mp->xy=r_packets;
11530 mp->three_l=0; mp->cur_t=1; mp->cur_tt=1
11532 @ @<Subdivide for a new level of intersection@>=
11533 stack_dx=mp->delx; stack_dy=mp->dely; stack_tol=mp->tol;
11534 stack_uv=mp->uv; stack_xy=mp->xy;
11535 mp->bisect_ptr=mp->bisect_ptr+int_increment;
11536 mp->cur_t+=mp->cur_t; mp->cur_tt+=mp->cur_tt;
11537 u1l=stack_1(u_packet(mp->uv)); u3r=stack_3(u_packet(mp->uv));
11538 u2l=half(u1l+stack_2(u_packet(mp->uv)));
11539 u2r=half(u3r+stack_2(u_packet(mp->uv)));
11540 u3l=half(u2l+u2r); u1r=u3l;
11541 set_min_max(ul_packet); set_min_max(ur_packet);
11542 v1l=stack_1(v_packet(mp->uv)); v3r=stack_3(v_packet(mp->uv));
11543 v2l=half(v1l+stack_2(v_packet(mp->uv)));
11544 v2r=half(v3r+stack_2(v_packet(mp->uv)));
11545 v3l=half(v2l+v2r); v1r=v3l;
11546 set_min_max(vl_packet); set_min_max(vr_packet);
11547 x1l=stack_1(x_packet(mp->xy)); x3r=stack_3(x_packet(mp->xy));
11548 x2l=half(x1l+stack_2(x_packet(mp->xy)));
11549 x2r=half(x3r+stack_2(x_packet(mp->xy)));
11550 x3l=half(x2l+x2r); x1r=x3l;
11551 set_min_max(xl_packet); set_min_max(xr_packet);
11552 y1l=stack_1(y_packet(mp->xy)); y3r=stack_3(y_packet(mp->xy));
11553 y2l=half(y1l+stack_2(y_packet(mp->xy)));
11554 y2r=half(y3r+stack_2(y_packet(mp->xy)));
11555 y3l=half(y2l+y2r); y1r=y3l;
11556 set_min_max(yl_packet); set_min_max(yr_packet);
11557 mp->uv=l_packets; mp->xy=l_packets;
11558 mp->delx+=mp->delx; mp->dely+=mp->dely;
11559 mp->tol=mp->tol-mp->three_l+mp->tol_step;
11560 mp->tol+=mp->tol; mp->three_l=mp->three_l+mp->tol_step
11562 @ @<Advance to the next pair |(cur_t,cur_tt)|@>=
11564 if ( odd(mp->cur_tt) ) {
11565 if ( odd(mp->cur_t) ) {
11566 @<Descend to the previous level and |goto not_found|@>;
11569 mp->delx=mp->delx+stack_1(u_packet(mp->uv))+stack_2(u_packet(mp->uv))
11570 +stack_3(u_packet(mp->uv));
11571 mp->dely=mp->dely+stack_1(v_packet(mp->uv))+stack_2(v_packet(mp->uv))
11572 +stack_3(v_packet(mp->uv));
11573 mp->uv=mp->uv+int_packets; /* switch from |l_packet| to |r_packet| */
11574 decr(mp->cur_tt); mp->xy=mp->xy-int_packets;
11575 /* switch from |r_packet| to |l_packet| */
11576 mp->delx=mp->delx+stack_1(x_packet(mp->xy))+stack_2(x_packet(mp->xy))
11577 +stack_3(x_packet(mp->xy));
11578 mp->dely=mp->dely+stack_1(y_packet(mp->xy))+stack_2(y_packet(mp->xy))
11579 +stack_3(y_packet(mp->xy));
11582 incr(mp->cur_tt); mp->tol=mp->tol+mp->three_l;
11583 mp->delx=mp->delx-stack_1(x_packet(mp->xy))-stack_2(x_packet(mp->xy))
11584 -stack_3(x_packet(mp->xy));
11585 mp->dely=mp->dely-stack_1(y_packet(mp->xy))-stack_2(y_packet(mp->xy))
11586 -stack_3(y_packet(mp->xy));
11587 mp->xy=mp->xy+int_packets; /* switch from |l_packet| to |r_packet| */
11590 @ @<Descend to the previous level...@>=
11592 mp->cur_t=halfp(mp->cur_t); mp->cur_tt=halfp(mp->cur_tt);
11593 if ( mp->cur_t==0 ) return;
11594 mp->bisect_ptr=mp->bisect_ptr-int_increment;
11595 mp->three_l=mp->three_l-mp->tol_step;
11596 mp->delx=stack_dx; mp->dely=stack_dy; mp->tol=stack_tol;
11597 mp->uv=stack_uv; mp->xy=stack_xy;
11601 @ The |path_intersection| procedure is much simpler.
11602 It invokes |cubic_intersection| in lexicographic order until finding a
11603 pair of cubics that intersect. The final intersection times are placed in
11604 |cur_t| and~|cur_tt|.
11606 @c void mp_path_intersection (MP mp,pointer h, pointer hh) {
11607 pointer p,pp; /* link registers that traverse the given paths */
11608 integer n,nn; /* integer parts of intersection times, minus |unity| */
11609 @<Change one-point paths into dead cycles@>;
11614 if ( right_type(p)!=endpoint ) {
11617 if ( right_type(pp)!=endpoint ) {
11618 mp_cubic_intersection(mp, p,pp);
11619 if ( mp->cur_t>0 ) {
11620 mp->cur_t=mp->cur_t+n; mp->cur_tt=mp->cur_tt+nn;
11624 nn=nn+unity; pp=link(pp);
11627 n=n+unity; p=link(p);
11629 mp->tol_step=mp->tol_step+3;
11630 } while (mp->tol_step<=3);
11631 mp->cur_t=-unity; mp->cur_tt=-unity;
11634 @ @<Change one-point paths...@>=
11635 if ( right_type(h)==endpoint ) {
11636 right_x(h)=x_coord(h); left_x(h)=x_coord(h);
11637 right_y(h)=y_coord(h); left_y(h)=y_coord(h); right_type(h)=explicit;
11639 if ( right_type(hh)==endpoint ) {
11640 right_x(hh)=x_coord(hh); left_x(hh)=x_coord(hh);
11641 right_y(hh)=y_coord(hh); left_y(hh)=y_coord(hh); right_type(hh)=explicit;
11644 @* \[24] Dynamic linear equations.
11645 \MP\ users define variables implicitly by stating equations that should be
11646 satisfied; the computer is supposed to be smart enough to solve those equations.
11647 And indeed, the computer tries valiantly to do so, by distinguishing five
11648 different types of numeric values:
11651 |type(p)=mp_known| is the nice case, when |value(p)| is the |scaled| value
11652 of the variable whose address is~|p|.
11655 |type(p)=mp_dependent| means that |value(p)| is not present, but |dep_list(p)|
11656 points to a {\sl dependency list\/} that expresses the value of variable~|p|
11657 as a |scaled| number plus a sum of independent variables with |fraction|
11661 |type(p)=mp_independent| means that |value(p)=64s+m|, where |s>0| is a ``serial
11662 number'' reflecting the time this variable was first used in an equation;
11663 also |0<=m<64|, and each dependent variable
11664 that refers to this one is actually referring to the future value of
11665 this variable times~$2^m$. (Usually |m=0|, but higher degrees of
11666 scaling are sometimes needed to keep the coefficients in dependency lists
11667 from getting too large. The value of~|m| will always be even.)
11670 |type(p)=mp_numeric_type| means that variable |p| hasn't appeared in an
11671 equation before, but it has been explicitly declared to be numeric.
11674 |type(p)=undefined| means that variable |p| hasn't appeared before.
11676 \smallskip\noindent
11677 We have actually discussed these five types in the reverse order of their
11678 history during a computation: Once |known|, a variable never again
11679 becomes |dependent|; once |dependent|, it almost never again becomes
11680 |mp_independent|; once |mp_independent|, it never again becomes |mp_numeric_type|;
11681 and once |mp_numeric_type|, it never again becomes |undefined| (except
11682 of course when the user specifically decides to scrap the old value
11683 and start again). A backward step may, however, take place: Sometimes
11684 a |dependent| variable becomes |mp_independent| again, when one of the
11685 independent variables it depends on is reverting to |undefined|.
11688 The next patch detects overflow of independent-variable serial
11689 numbers. Diagnosed and patched by Thorsten Dahlheimer.
11691 @d s_scale 64 /* the serial numbers are multiplied by this factor */
11692 @d max_indep_vars 0177777777 /* $2^{25}-1$ */
11693 @d max_serial_no 017777777700 /* |max_indep_vars*s_scale| */
11694 @d new_indep(A) /* create a new independent variable */
11695 { if ( mp->serial_no==max_serial_no )
11696 mp_fatal_error(mp, "variable instance identifiers exhausted");
11697 type((A))=mp_independent; mp->serial_no=mp->serial_no+s_scale;
11698 value((A))=mp->serial_no;
11702 integer serial_no; /* the most recent serial number, times |s_scale| */
11704 @ @<Make variable |q+s| newly independent@>=new_indep(q+s)
11706 @ But how are dependency lists represented? It's simple: The linear combination
11707 $\alpha_1v_1+\cdots+\alpha_kv_k+\beta$ appears in |k+1| value nodes. If
11708 |q=dep_list(p)| points to this list, and if |k>0|, then |value(q)=
11709 @t$\alpha_1$@>| (which is a |fraction|); |info(q)| points to the location
11710 of $\alpha_1$; and |link(p)| points to the dependency list
11711 $\alpha_2v_2+\cdots+\alpha_kv_k+\beta$. On the other hand if |k=0|,
11712 then |value(q)=@t$\beta$@>| (which is |scaled|) and |info(q)=null|.
11713 The independent variables $v_1$, \dots,~$v_k$ have been sorted so that
11714 they appear in decreasing order of their |value| fields (i.e., of
11715 their serial numbers). \ (It is convenient to use decreasing order,
11716 since |value(null)=0|. If the independent variables were not sorted by
11717 serial number but by some other criterion, such as their location in |mem|,
11718 the equation-solving mechanism would be too system-dependent, because
11719 the ordering can affect the computed results.)
11721 The |link| field in the node that contains the constant term $\beta$ is
11722 called the {\sl final link\/} of the dependency list. \MP\ maintains
11723 a doubly-linked master list of all dependency lists, in terms of a permanently
11725 in |mem| called |dep_head|. If there are no dependencies, we have
11726 |link(dep_head)=dep_head| and |prev_dep(dep_head)=dep_head|;
11727 otherwise |link(dep_head)| points to the first dependent variable, say~|p|,
11728 and |prev_dep(p)=dep_head|. We have |type(p)=mp_dependent|, and |dep_list(p)|
11729 points to its dependency list. If the final link of that dependency list
11730 occurs in location~|q|, then |link(q)| points to the next dependent
11731 variable (say~|r|); and we have |prev_dep(r)=q|, etc.
11733 @d dep_list(A) link(value_loc((A)))
11734 /* half of the |value| field in a |dependent| variable */
11735 @d prev_dep(A) info(value_loc((A)))
11736 /* the other half; makes a doubly linked list */
11737 @d dep_node_size 2 /* the number of words per dependency node */
11739 @<Initialize table entries...@>= mp->serial_no=0;
11740 link(dep_head)=dep_head; prev_dep(dep_head)=dep_head;
11741 info(dep_head)=null; dep_list(dep_head)=null;
11743 @ Actually the description above contains a little white lie. There's
11744 another kind of variable called |mp_proto_dependent|, which is
11745 just like a |dependent| one except that the $\alpha$ coefficients
11746 in its dependency list are |scaled| instead of being fractions.
11747 Proto-dependency lists are mixed with dependency lists in the
11748 nodes reachable from |dep_head|.
11750 @ Here is a procedure that prints a dependency list in symbolic form.
11751 The second parameter should be either |dependent| or |mp_proto_dependent|,
11752 to indicate the scaling of the coefficients.
11754 @<Declare subroutines for printing expressions@>=
11755 void mp_print_dependency (MP mp,pointer p, small_number t) {
11756 integer v; /* a coefficient */
11757 pointer pp,q; /* for list manipulation */
11760 v=abs(value(p)); q=info(p);
11761 if ( q==null ) { /* the constant term */
11762 if ( (v!=0)||(p==pp) ) {
11763 if ( value(p)>0 ) if ( p!=pp ) mp_print_char(mp, '+');
11764 mp_print_scaled(mp, value(p));
11768 @<Print the coefficient, unless it's $\pm1.0$@>;
11769 if ( type(q)!=mp_independent ) mp_confusion(mp, "dep");
11770 @:this can't happen dep}{\quad dep@>
11771 mp_print_variable_name(mp, q); v=value(q) % s_scale;
11772 while ( v>0 ) { mp_print(mp, "*4"); v=v-2; }
11777 @ @<Print the coefficient, unless it's $\pm1.0$@>=
11778 if ( value(p)<0 ) mp_print_char(mp, '-');
11779 else if ( p!=pp ) mp_print_char(mp, '+');
11780 if ( t==mp_dependent ) v=mp_round_fraction(mp, v);
11781 if ( v!=unity ) mp_print_scaled(mp, v)
11783 @ The maximum absolute value of a coefficient in a given dependency list
11784 is returned by the following simple function.
11786 @c fraction mp_max_coef (MP mp,pointer p) {
11787 fraction x; /* the maximum so far */
11789 while ( info(p)!=null ) {
11790 if ( abs(value(p))>x ) x=abs(value(p));
11796 @ One of the main operations needed on dependency lists is to add a multiple
11797 of one list to the other; we call this |p_plus_fq|, where |p| and~|q| point
11798 to dependency lists and |f| is a fraction.
11800 If the coefficient of any independent variable becomes |coef_bound| or
11801 more, in absolute value, this procedure changes the type of that variable
11802 to `|independent_needing_fix|', and sets the global variable |fix_needed|
11803 to~|true|. The value of $|coef_bound|=\mu$ is chosen so that
11804 $\mu^2+\mu<8$; this means that the numbers we deal with won't
11805 get too large. (Instead of the ``optimum'' $\mu=(\sqrt{33}-1)/2\approx
11806 2.3723$, the safer value 7/3 is taken as the threshold.)
11808 The changes mentioned in the preceding paragraph are actually done only if
11809 the global variable |watch_coefs| is |true|. But it usually is; in fact,
11810 it is |false| only when \MP\ is making a dependency list that will soon
11811 be equated to zero.
11813 Several procedures that act on dependency lists, including |p_plus_fq|,
11814 set the global variable |dep_final| to the final (constant term) node of
11815 the dependency list that they produce.
11817 @d coef_bound 04525252525 /* |fraction| approximation to 7/3 */
11818 @d independent_needing_fix 0
11821 boolean fix_needed; /* does at least one |independent| variable need scaling? */
11822 boolean watch_coefs; /* should we scale coefficients that exceed |coef_bound|? */
11823 pointer dep_final; /* location of the constant term and final link */
11826 mp->fix_needed=false; mp->watch_coefs=true;
11828 @ The |p_plus_fq| procedure has a fourth parameter, |t|, that should be
11829 set to |mp_proto_dependent| if |p| is a proto-dependency list. In this
11830 case |f| will be |scaled|, not a |fraction|. Similarly, the fifth parameter~|tt|
11831 should be |mp_proto_dependent| if |q| is a proto-dependency list.
11833 List |q| is unchanged by the operation; but list |p| is totally destroyed.
11835 The final link of the dependency list or proto-dependency list returned
11836 by |p_plus_fq| is the same as the original final link of~|p|. Indeed, the
11837 constant term of the result will be located in the same |mem| location
11838 as the original constant term of~|p|.
11840 Coefficients of the result are assumed to be zero if they are less than
11841 a certain threshold. This compensates for inevitable rounding errors,
11842 and tends to make more variables `|known|'. The threshold is approximately
11843 $10^{-5}$ in the case of normal dependency lists, $10^{-4}$ for
11844 proto-dependencies.
11846 @d fraction_threshold 2685 /* a |fraction| coefficient less than this is zeroed */
11847 @d half_fraction_threshold 1342 /* half of |fraction_threshold| */
11848 @d scaled_threshold 8 /* a |scaled| coefficient less than this is zeroed */
11849 @d half_scaled_threshold 4 /* half of |scaled_threshold| */
11851 @<Declare basic dependency-list subroutines@>=
11852 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
11853 pointer q, small_number t, small_number tt) ;
11856 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
11857 pointer q, small_number t, small_number tt) {
11858 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
11859 pointer r,s; /* for list manipulation */
11860 integer mp_threshold; /* defines a neighborhood of zero */
11861 integer v; /* temporary register */
11862 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
11863 else mp_threshold=scaled_threshold;
11864 r=temp_head; pp=info(p); qq=info(q);
11870 @<Contribute a term from |p|, plus |f| times the
11871 corresponding term from |q|@>
11873 } else if ( value(pp)<value(qq) ) {
11874 @<Contribute a term from |q|, multiplied by~|f|@>
11876 link(r)=p; r=p; p=link(p); pp=info(p);
11879 if ( t==mp_dependent )
11880 value(p)=mp_slow_add(mp, value(p),mp_take_fraction(mp, value(q),f));
11882 value(p)=mp_slow_add(mp, value(p),mp_take_scaled(mp, value(q),f));
11883 link(r)=p; mp->dep_final=p;
11884 return link(temp_head);
11887 @ @<Contribute a term from |p|, plus |f|...@>=
11889 if ( tt==mp_dependent ) v=value(p)+mp_take_fraction(mp, f,value(q));
11890 else v=value(p)+mp_take_scaled(mp, f,value(q));
11891 value(p)=v; s=p; p=link(p);
11892 if ( abs(v)<mp_threshold ) {
11893 mp_free_node(mp, s,dep_node_size);
11895 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
11896 type(qq)=independent_needing_fix; mp->fix_needed=true;
11900 pp=info(p); q=link(q); qq=info(q);
11903 @ @<Contribute a term from |q|, multiplied by~|f|@>=
11905 if ( tt==mp_dependent ) v=mp_take_fraction(mp, f,value(q));
11906 else v=mp_take_scaled(mp, f,value(q));
11907 if ( abs(v)>halfp(mp_threshold) ) {
11908 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=v;
11909 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
11910 type(qq)=independent_needing_fix; mp->fix_needed=true;
11914 q=link(q); qq=info(q);
11917 @ It is convenient to have another subroutine for the special case
11918 of |p_plus_fq| when |f=1.0|. In this routine lists |p| and |q| are
11919 both of the same type~|t| (either |dependent| or |mp_proto_dependent|).
11921 @c pointer mp_p_plus_q (MP mp,pointer p, pointer q, small_number t) {
11922 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
11923 pointer r,s; /* for list manipulation */
11924 integer mp_threshold; /* defines a neighborhood of zero */
11925 integer v; /* temporary register */
11926 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
11927 else mp_threshold=scaled_threshold;
11928 r=temp_head; pp=info(p); qq=info(q);
11934 @<Contribute a term from |p|, plus the
11935 corresponding term from |q|@>
11937 } else if ( value(pp)<value(qq) ) {
11938 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=value(q);
11939 q=link(q); qq=info(q); link(r)=s; r=s;
11941 link(r)=p; r=p; p=link(p); pp=info(p);
11944 value(p)=mp_slow_add(mp, value(p),value(q));
11945 link(r)=p; mp->dep_final=p;
11946 return link(temp_head);
11949 @ @<Contribute a term from |p|, plus the...@>=
11951 v=value(p)+value(q);
11952 value(p)=v; s=p; p=link(p); pp=info(p);
11953 if ( abs(v)<mp_threshold ) {
11954 mp_free_node(mp, s,dep_node_size);
11956 if ( (abs(v)>=coef_bound ) && mp->watch_coefs ) {
11957 type(qq)=independent_needing_fix; mp->fix_needed=true;
11961 q=link(q); qq=info(q);
11964 @ A somewhat simpler routine will multiply a dependency list
11965 by a given constant~|v|. The constant is either a |fraction| less than
11966 |fraction_one|, or it is |scaled|. In the latter case we might be forced to
11967 convert a dependency list to a proto-dependency list.
11968 Parameters |t0| and |t1| are the list types before and after;
11969 they should agree unless |t0=mp_dependent| and |t1=mp_proto_dependent|
11970 and |v_is_scaled=true|.
11972 @c pointer mp_p_times_v (MP mp,pointer p, integer v, small_number t0,
11973 small_number t1, boolean v_is_scaled) {
11974 pointer r,s; /* for list manipulation */
11975 integer w; /* tentative coefficient */
11976 integer mp_threshold;
11977 boolean scaling_down;
11978 if ( t0!=t1 ) scaling_down=true; else scaling_down=! v_is_scaled;
11979 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
11980 else mp_threshold=half_scaled_threshold;
11982 while ( info(p)!=null ) {
11983 if ( scaling_down ) w=mp_take_fraction(mp, v,value(p));
11984 else w=mp_take_scaled(mp, v,value(p));
11985 if ( abs(w)<=mp_threshold ) {
11986 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
11988 if ( abs(w)>=coef_bound ) {
11989 mp->fix_needed=true; type(info(p))=independent_needing_fix;
11991 link(r)=p; r=p; value(p)=w; p=link(p);
11995 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
11996 else value(p)=mp_take_fraction(mp, value(p),v);
11997 return link(temp_head);
12000 @ Similarly, we sometimes need to divide a dependency list
12001 by a given |scaled| constant.
12003 @<Declare basic dependency-list subroutines@>=
12004 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12005 t0, small_number t1) ;
12008 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12009 t0, small_number t1) {
12010 pointer r,s; /* for list manipulation */
12011 integer w; /* tentative coefficient */
12012 integer mp_threshold;
12013 boolean scaling_down;
12014 if ( t0!=t1 ) scaling_down=true; else scaling_down=false;
12015 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
12016 else mp_threshold=half_scaled_threshold;
12018 while ( info( p)!=null ) {
12019 if ( scaling_down ) {
12020 if ( abs(v)<02000000 ) w=mp_make_scaled(mp, value(p),v*010000);
12021 else w=mp_make_scaled(mp, mp_round_fraction(mp, value(p)),v);
12023 w=mp_make_scaled(mp, value(p),v);
12025 if ( abs(w)<=mp_threshold ) {
12026 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12028 if ( abs(w)>=coef_bound ) {
12029 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12031 link(r)=p; r=p; value(p)=w; p=link(p);
12034 link(r)=p; value(p)=mp_make_scaled(mp, value(p),v);
12035 return link(temp_head);
12038 @ Here's another utility routine for dependency lists. When an independent
12039 variable becomes dependent, we want to remove it from all existing
12040 dependencies. The |p_with_x_becoming_q| function computes the
12041 dependency list of~|p| after variable~|x| has been replaced by~|q|.
12043 This procedure has basically the same calling conventions as |p_plus_fq|:
12044 List~|q| is unchanged; list~|p| is destroyed; the constant node and the
12045 final link are inherited from~|p|; and the fourth parameter tells whether
12046 or not |p| is |mp_proto_dependent|. However, the global variable |dep_final|
12047 is not altered if |x| does not occur in list~|p|.
12049 @c pointer mp_p_with_x_becoming_q (MP mp,pointer p,
12050 pointer x, pointer q, small_number t) {
12051 pointer r,s; /* for list manipulation */
12052 integer v; /* coefficient of |x| */
12053 integer sx; /* serial number of |x| */
12054 s=p; r=temp_head; sx=value(x);
12055 while ( value(info(s))>sx ) { r=s; s=link(s); };
12056 if ( info(s)!=x ) {
12059 link(temp_head)=p; link(r)=link(s); v=value(s);
12060 mp_free_node(mp, s,dep_node_size);
12061 return mp_p_plus_fq(mp, link(temp_head),v,q,t,mp_dependent);
12065 @ Here's a simple procedure that reports an error when a variable
12066 has just received a known value that's out of the required range.
12068 @<Declare basic dependency-list subroutines@>=
12069 void mp_val_too_big (MP mp,scaled x) ;
12071 @ @c void mp_val_too_big (MP mp,scaled x) {
12072 if ( mp->internal[warning_check]>0 ) {
12073 print_err("Value is too large ("); mp_print_scaled(mp, x); mp_print_char(mp, ')');
12074 @.Value is too large@>
12075 help4("The equation I just processed has given some variable")
12076 ("a value of 4096 or more. Continue and I'll try to cope")
12077 ("with that big value; but it might be dangerous.")
12078 ("(Set warningcheck:=0 to suppress this message.)");
12083 @ When a dependent variable becomes known, the following routine
12084 removes its dependency list. Here |p| points to the variable, and
12085 |q| points to the dependency list (which is one node long).
12087 @<Declare basic dependency-list subroutines@>=
12088 void mp_make_known (MP mp,pointer p, pointer q) ;
12090 @ @c void mp_make_known (MP mp,pointer p, pointer q) {
12091 int t; /* the previous type */
12092 prev_dep(link(q))=prev_dep(p);
12093 link(prev_dep(p))=link(q); t=type(p);
12094 type(p)=mp_known; value(p)=value(q); mp_free_node(mp, q,dep_node_size);
12095 if ( abs(value(p))>=fraction_one ) mp_val_too_big(mp, value(p));
12096 if (( mp->internal[tracing_equations]>0) && mp_interesting(mp, p) ) {
12097 mp_begin_diagnostic(mp); mp_print_nl(mp, "#### ");
12098 @:]]]\#\#\#\#_}{\.{\#\#\#\#}@>
12099 mp_print_variable_name(mp, p);
12100 mp_print_char(mp, '='); mp_print_scaled(mp, value(p));
12101 mp_end_diagnostic(mp, false);
12103 if (( mp->cur_exp==p ) && mp->cur_type==t ) {
12104 mp->cur_type=mp_known; mp->cur_exp=value(p);
12105 mp_free_node(mp, p,value_node_size);
12109 @ The |fix_dependencies| routine is called into action when |fix_needed|
12110 has been triggered. The program keeps a list~|s| of independent variables
12111 whose coefficients must be divided by~4.
12113 In unusual cases, this fixup process might reduce one or more coefficients
12114 to zero, so that a variable will become known more or less by default.
12116 @<Declare basic dependency-list subroutines@>=
12117 void mp_fix_dependencies (MP mp);
12119 @ @c void mp_fix_dependencies (MP mp) {
12120 pointer p,q,r,s,t; /* list manipulation registers */
12121 pointer x; /* an independent variable */
12122 r=link(dep_head); s=null;
12123 while ( r!=dep_head ){
12125 @<Run through the dependency list for variable |t|, fixing
12126 all nodes, and ending with final link~|q|@>;
12128 if ( q==dep_list(t) ) mp_make_known(mp, t,q);
12130 while ( s!=null ) {
12131 p=link(s); x=info(s); free_avail(s); s=p;
12132 type(x)=mp_independent; value(x)=value(x)+2;
12134 mp->fix_needed=false;
12137 @ @d independent_being_fixed 1 /* this variable already appears in |s| */
12139 @<Run through the dependency list for variable |t|...@>=
12140 r=value_loc(t); /* |link(r)=dep_list(t)| */
12142 q=link(r); x=info(q);
12143 if ( x==null ) break;
12144 if ( type(x)<=independent_being_fixed ) {
12145 if ( type(x)<independent_being_fixed ) {
12146 p=mp_get_avail(mp); link(p)=s; s=p;
12147 info(s)=x; type(x)=independent_being_fixed;
12149 value(q)=value(q) / 4;
12150 if ( value(q)==0 ) {
12151 link(r)=link(q); mp_free_node(mp, q,dep_node_size); q=r;
12158 @ The |new_dep| routine installs a dependency list~|p| into the value node~|q|,
12159 linking it into the list of all known dependencies. We assume that
12160 |dep_final| points to the final node of list~|p|.
12162 @c void mp_new_dep (MP mp,pointer q, pointer p) {
12163 pointer r; /* what used to be the first dependency */
12164 dep_list(q)=p; prev_dep(q)=dep_head;
12165 r=link(dep_head); link(mp->dep_final)=r; prev_dep(r)=mp->dep_final;
12169 @ Here is one of the ways a dependency list gets started.
12170 The |const_dependency| routine produces a list that has nothing but
12173 @c pointer mp_const_dependency (MP mp, scaled v) {
12174 mp->dep_final=mp_get_node(mp, dep_node_size);
12175 value(mp->dep_final)=v; info(mp->dep_final)=null;
12176 return mp->dep_final;
12179 @ And here's a more interesting way to start a dependency list from scratch:
12180 The parameter to |single_dependency| is the location of an
12181 independent variable~|x|, and the result is the simple dependency list
12184 In the unlikely event that the given independent variable has been doubled so
12185 often that we can't refer to it with a nonzero coefficient,
12186 |single_dependency| returns the simple list `0'. This case can be
12187 recognized by testing that the returned list pointer is equal to
12190 @c pointer mp_single_dependency (MP mp,pointer p) {
12191 pointer q; /* the new dependency list */
12192 integer m; /* the number of doublings */
12193 m=value(p) % s_scale;
12195 return mp_const_dependency(mp, 0);
12197 q=mp_get_node(mp, dep_node_size);
12198 value(q)=two_to_the(28-m); info(q)=p;
12199 link(q)=mp_const_dependency(mp, 0);
12204 @ We sometimes need to make an exact copy of a dependency list.
12206 @c pointer mp_copy_dep_list (MP mp,pointer p) {
12207 pointer q; /* the new dependency list */
12208 q=mp_get_node(mp, dep_node_size); mp->dep_final=q;
12210 info(mp->dep_final)=info(p); value(mp->dep_final)=value(p);
12211 if ( info(mp->dep_final)==null ) break;
12212 link(mp->dep_final)=mp_get_node(mp, dep_node_size);
12213 mp->dep_final=link(mp->dep_final); p=link(p);
12218 @ But how do variables normally become known? Ah, now we get to the heart of the
12219 equation-solving mechanism. The |linear_eq| procedure is given a |dependent|
12220 or |mp_proto_dependent| list,~|p|, in which at least one independent variable
12221 appears. It equates this list to zero, by choosing an independent variable
12222 with the largest coefficient and making it dependent on the others. The
12223 newly dependent variable is eliminated from all current dependencies,
12224 thereby possibly making other dependent variables known.
12226 The given list |p| is, of course, totally destroyed by all this processing.
12228 @c void mp_linear_eq (MP mp, pointer p, small_number t) {
12229 pointer q,r,s; /* for link manipulation */
12230 pointer x; /* the variable that loses its independence */
12231 integer n; /* the number of times |x| had been halved */
12232 integer v; /* the coefficient of |x| in list |p| */
12233 pointer prev_r; /* lags one step behind |r| */
12234 pointer final_node; /* the constant term of the new dependency list */
12235 integer w; /* a tentative coefficient */
12236 @<Find a node |q| in list |p| whose coefficient |v| is largest@>;
12237 x=info(q); n=value(x) % s_scale;
12238 @<Divide list |p| by |-v|, removing node |q|@>;
12239 if ( mp->internal[tracing_equations]>0 ) {
12240 @<Display the new dependency@>;
12242 @<Simplify all existing dependencies by substituting for |x|@>;
12243 @<Change variable |x| from |independent| to |dependent| or |known|@>;
12244 if ( mp->fix_needed ) mp_fix_dependencies(mp);
12247 @ @<Find a node |q| in list |p| whose coefficient |v| is largest@>=
12248 q=p; r=link(p); v=value(q);
12249 while ( info(r)!=null ) {
12250 if ( abs(value(r))>abs(v) ) { q=r; v=value(r); };
12254 @ Here we want to change the coefficients from |scaled| to |fraction|,
12255 except in the constant term. In the common case of a trivial equation
12256 like `\.{x=3.14}', we will have |v=-fraction_one|, |q=p|, and |t=mp_dependent|.
12258 @<Divide list |p| by |-v|, removing node |q|@>=
12259 s=temp_head; link(s)=p; r=p;
12262 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12264 w=mp_make_fraction(mp, value(r),v);
12265 if ( abs(w)<=half_fraction_threshold ) {
12266 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12272 } while (info(r)!=null);
12273 if ( t==mp_proto_dependent ) {
12274 value(r)=-mp_make_scaled(mp, value(r),v);
12275 } else if ( v!=-fraction_one ) {
12276 value(r)=-mp_make_fraction(mp, value(r),v);
12278 final_node=r; p=link(temp_head)
12280 @ @<Display the new dependency@>=
12281 if ( mp_interesting(mp, x) ) {
12282 mp_begin_diagnostic(mp); mp_print_nl(mp, "## ");
12283 mp_print_variable_name(mp, x);
12284 @:]]]\#\#_}{\.{\#\#}@>
12286 while ( w>0 ) { mp_print(mp, "*4"); w=w-2; };
12287 mp_print_char(mp, '='); mp_print_dependency(mp, p,mp_dependent);
12288 mp_end_diagnostic(mp, false);
12291 @ @<Simplify all existing dependencies by substituting for |x|@>=
12292 prev_r=dep_head; r=link(dep_head);
12293 while ( r!=dep_head ) {
12294 s=dep_list(r); q=mp_p_with_x_becoming_q(mp, s,x,p,type(r));
12295 if ( info(q)==null ) {
12296 mp_make_known(mp, r,q);
12299 do { q=link(q); } while (info(q)!=null);
12305 @ @<Change variable |x| from |independent| to |dependent| or |known|@>=
12306 if ( n>0 ) @<Divide list |p| by $2^n$@>;
12307 if ( info(p)==null ) {
12310 if ( abs(value(x))>=fraction_one ) mp_val_too_big(mp, value(x));
12311 mp_free_node(mp, p,dep_node_size);
12312 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) {
12313 mp->cur_exp=value(x); mp->cur_type=mp_known;
12314 mp_free_node(mp, x,value_node_size);
12317 type(x)=mp_dependent; mp->dep_final=final_node; mp_new_dep(mp, x,p);
12318 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) mp->cur_type=mp_dependent;
12321 @ @<Divide list |p| by $2^n$@>=
12323 s=temp_head; link(temp_head)=p; r=p;
12326 else w=value(r) / two_to_the(n);
12327 if ( (abs(w)<=half_fraction_threshold)&&(info(r)!=null) ) {
12329 mp_free_node(mp, r,dep_node_size);
12334 } while (info(s)!=null);
12338 @ The |check_mem| procedure, which is used only when \MP\ is being
12339 debugged, makes sure that the current dependency lists are well formed.
12341 @<Check the list of linear dependencies@>=
12342 q=dep_head; p=link(q);
12343 while ( p!=dep_head ) {
12344 if ( prev_dep(p)!=q ) {
12345 mp_print_nl(mp, "Bad PREVDEP at "); mp_print_int(mp, p);
12350 r=info(p); q=p; p=link(q);
12351 if ( r==null ) break;
12352 if ( value(info(p))>=value(r) ) {
12353 mp_print_nl(mp, "Out of order at "); mp_print_int(mp, p);
12354 @.Out of order...@>
12359 @* \[25] Dynamic nonlinear equations.
12360 Variables of numeric type are maintained by the general scheme of
12361 independent, dependent, and known values that we have just studied;
12362 and the components of pair and transform variables are handled in the
12363 same way. But \MP\ also has five other types of values: \&{boolean},
12364 \&{string}, \&{pen}, \&{path}, and \&{picture}; what about them?
12366 Equations are allowed between nonlinear quantities, but only in a
12367 simple form. Two variables that haven't yet been assigned values are
12368 either equal to each other, or they're not.
12370 Before a boolean variable has received a value, its type is |mp_unknown_boolean|;
12371 similarly, there are variables whose type is |mp_unknown_string|, |mp_unknown_pen|,
12372 |mp_unknown_path|, and |mp_unknown_picture|. In such cases the value is either
12373 |null| (which means that no other variables are equivalent to this one), or
12374 it points to another variable of the same undefined type. The pointers in the
12375 latter case form a cycle of nodes, which we shall call a ``ring.''
12376 Rings of undefined variables may include capsules, which arise as
12377 intermediate results within expressions or as \&{expr} parameters to macros.
12379 When one member of a ring receives a value, the same value is given to
12380 all the other members. In the case of paths and pictures, this implies
12381 making separate copies of a potentially large data structure; users should
12382 restrain their enthusiasm for such generality, unless they have lots and
12383 lots of memory space.
12385 @ The following procedure is called when a capsule node is being
12386 added to a ring (e.g., when an unknown variable is mentioned in an expression).
12388 @c pointer mp_new_ring_entry (MP mp,pointer p) {
12389 pointer q; /* the new capsule node */
12390 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
12392 if ( value(p)==null ) value(q)=p; else value(q)=value(p);
12397 @ Conversely, we might delete a capsule or a variable before it becomes known.
12398 The following procedure simply detaches a quantity from its ring,
12399 without recycling the storage.
12401 @<Declare the recycling subroutines@>=
12402 void mp_ring_delete (MP mp,pointer p) {
12405 if ( q!=null ) if ( q!=p ){
12406 while ( value(q)!=p ) q=value(q);
12411 @ Eventually there might be an equation that assigns values to all of the
12412 variables in a ring. The |nonlinear_eq| subroutine does the necessary
12413 propagation of values.
12415 If the parameter |flush_p| is |true|, node |p| itself needn't receive a
12416 value, it will soon be recycled.
12418 @c void mp_nonlinear_eq (MP mp,integer v, pointer p, boolean flush_p) {
12419 small_number t; /* the type of ring |p| */
12420 pointer q,r; /* link manipulation registers */
12421 t=type(p)-unknown_tag; q=value(p);
12422 if ( flush_p ) type(p)=mp_vacuous; else p=q;
12424 r=value(q); type(q)=t;
12426 case mp_boolean_type: value(q)=v; break;
12427 case mp_string_type: value(q)=v; add_str_ref(v); break;
12428 case mp_pen_type: value(q)=copy_pen(v); break;
12429 case mp_path_type: value(q)=mp_copy_path(mp, v); break;
12430 case mp_picture_type: value(q)=v; add_edge_ref(v); break;
12431 } /* there ain't no more cases */
12436 @ If two members of rings are equated, and if they have the same type,
12437 the |ring_merge| procedure is called on to make them equivalent.
12439 @c void mp_ring_merge (MP mp,pointer p, pointer q) {
12440 pointer r; /* traverses one list */
12444 @<Exclaim about a redundant equation@>;
12449 r=value(p); value(p)=value(q); value(q)=r;
12452 @ @<Exclaim about a redundant equation@>=
12454 print_err("Redundant equation");
12455 @.Redundant equation@>
12456 help2("I already knew that this equation was true.")
12457 ("But perhaps no harm has been done; let's continue.");
12458 mp_put_get_error(mp);
12461 @* \[26] Introduction to the syntactic routines.
12462 Let's pause a moment now and try to look at the Big Picture.
12463 The \MP\ program consists of three main parts: syntactic routines,
12464 semantic routines, and output routines. The chief purpose of the
12465 syntactic routines is to deliver the user's input to the semantic routines,
12466 while parsing expressions and locating operators and operands. The
12467 semantic routines act as an interpreter responding to these operators,
12468 which may be regarded as commands. And the output routines are
12469 periodically called on to produce compact font descriptions that can be
12470 used for typesetting or for making interim proof drawings. We have
12471 discussed the basic data structures and many of the details of semantic
12472 operations, so we are good and ready to plunge into the part of \MP\ that
12473 actually controls the activities.
12475 Our current goal is to come to grips with the |get_next| procedure,
12476 which is the keystone of \MP's input mechanism. Each call of |get_next|
12477 sets the value of three variables |cur_cmd|, |cur_mod|, and |cur_sym|,
12478 representing the next input token.
12479 $$\vbox{\halign{#\hfil\cr
12480 \hbox{|cur_cmd| denotes a command code from the long list of codes
12482 \hbox{|cur_mod| denotes a modifier of the command code;}\cr
12483 \hbox{|cur_sym| is the hash address of the symbolic token that was
12485 \hbox{\qquad or zero in the case of a numeric or string
12486 or capsule token.}\cr}}$$
12487 Underlying this external behavior of |get_next| is all the machinery
12488 necessary to convert from character files to tokens. At a given time we
12489 may be only partially finished with the reading of several files (for
12490 which \&{input} was specified), and partially finished with the expansion
12491 of some user-defined macros and/or some macro parameters, and partially
12492 finished reading some text that the user has inserted online,
12493 and so on. When reading a character file, the characters must be
12494 converted to tokens; comments and blank spaces must
12495 be removed, numeric and string tokens must be evaluated.
12497 To handle these situations, which might all be present simultaneously,
12498 \MP\ uses various stacks that hold information about the incomplete
12499 activities, and there is a finite state control for each level of the
12500 input mechanism. These stacks record the current state of an implicitly
12501 recursive process, but the |get_next| procedure is not recursive.
12504 eight_bits cur_cmd; /* current command set by |get_next| */
12505 integer cur_mod; /* operand of current command */
12506 halfword cur_sym; /* hash address of current symbol */
12508 @ The |print_cmd_mod| routine prints a symbolic interpretation of a
12509 command code and its modifier.
12510 It consists of a rather tedious sequence of print
12511 commands, and most of it is essentially an inverse to the |primitive|
12512 routine that enters a \MP\ primitive into |hash| and |eqtb|. Therefore almost
12513 all of this procedure appears elsewhere in the program, together with the
12514 corresponding |primitive| calls.
12516 @<Declare the procedure called |print_cmd_mod|@>=
12517 void mp_print_cmd_mod (MP mp,integer c, integer m) {
12519 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>
12520 default: mp_print(mp, "[unknown command code!]"); break;
12524 @ Here is a procedure that displays a given command in braces, in the
12525 user's transcript file.
12527 @d show_cur_cmd_mod mp_show_cmd_mod(mp, mp->cur_cmd,mp->cur_mod)
12530 void mp_show_cmd_mod (MP mp,integer c, integer m) {
12531 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
12532 mp_print_cmd_mod(mp, c,m); mp_print_char(mp, '}');
12533 mp_end_diagnostic(mp, false);
12536 @* \[27] Input stacks and states.
12537 The state of \MP's input mechanism appears in the input stack, whose
12538 entries are records with five fields, called |index|, |start|, |loc|,
12539 |limit|, and |name|. The top element of this stack is maintained in a
12540 global variable for which no subscripting needs to be done; the other
12541 elements of the stack appear in an array. Hence the stack is declared thus:
12545 quarterword index_field;
12546 halfword start_field, loc_field, limit_field, name_field;
12550 in_state_record *input_stack;
12551 integer input_ptr; /* first unused location of |input_stack| */
12552 integer max_in_stack; /* largest value of |input_ptr| when pushing */
12553 in_state_record cur_input; /* the ``top'' input state */
12554 int stack_size; /* maximum number of simultaneous input sources */
12556 @ @<Allocate or initialize ...@>=
12557 mp->stack_size = 300;
12558 mp->input_stack = xmalloc((mp->stack_size+1),sizeof(in_state_record));
12560 @ @<Dealloc variables@>=
12561 xfree(mp->input_stack);
12563 @ We've already defined the special variable |loc==cur_input.loc_field|
12564 in our discussion of basic input-output routines. The other components of
12565 |cur_input| are defined in the same way:
12567 @d index mp->cur_input.index_field /* reference for buffer information */
12568 @d start mp->cur_input.start_field /* starting position in |buffer| */
12569 @d limit mp->cur_input.limit_field /* end of current line in |buffer| */
12570 @d name mp->cur_input.name_field /* name of the current file */
12572 @ Let's look more closely now at the five control variables
12573 (|index|,~|start|,~|loc|,~|limit|,~|name|),
12574 assuming that \MP\ is reading a line of characters that have been input
12575 from some file or from the user's terminal. There is an array called
12576 |buffer| that acts as a stack of all lines of characters that are
12577 currently being read from files, including all lines on subsidiary
12578 levels of the input stack that are not yet completed. \MP\ will return to
12579 the other lines when it is finished with the present input file.
12581 (Incidentally, on a machine with byte-oriented addressing, it would be
12582 appropriate to combine |buffer| with the |str_pool| array,
12583 letting the buffer entries grow downward from the top of the string pool
12584 and checking that these two tables don't bump into each other.)
12586 The line we are currently working on begins in position |start| of the
12587 buffer; the next character we are about to read is |buffer[loc]|; and
12588 |limit| is the location of the last character present. We always have
12589 |loc<=limit|. For convenience, |buffer[limit]| has been set to |"%"|, so
12590 that the end of a line is easily sensed.
12592 The |name| variable is a string number that designates the name of
12593 the current file, if we are reading an ordinary text file. Special codes
12594 |is_term..max_spec_src| indicate other sources of input text.
12596 @d is_term 0 /* |name| value when reading from the terminal for normal input */
12597 @d is_read 1 /* |name| value when executing a \&{readstring} or \&{readfrom} */
12598 @d is_scantok 2 /* |name| value when reading text generated by \&{scantokens} */
12599 @d max_spec_src is_scantok
12601 @ Additional information about the current line is available via the
12602 |index| variable, which counts how many lines of characters are present
12603 in the buffer below the current level. We have |index=0| when reading
12604 from the terminal and prompting the user for each line; then if the user types,
12605 e.g., `\.{input figs}', we will have |index=1| while reading
12606 the file \.{figs.mp}. However, it does not follow that |index| is the
12607 same as the input stack pointer, since many of the levels on the input
12608 stack may come from token lists and some |index| values may correspond
12609 to \.{MPX} files that are not currently on the stack.
12611 The global variable |in_open| is equal to the highest |index| value counting
12612 \.{MPX} files but excluding token-list input levels. Thus, the number of
12613 partially read lines in the buffer is |in_open+1| and we have |in_open>=index|
12614 when we are not reading a token list.
12616 If we are not currently reading from the terminal,
12617 we are reading from the file variable |input_file[index]|. We use
12618 the notation |terminal_input| as a convenient abbreviation for |name=is_term|,
12619 and |cur_file| as an abbreviation for |input_file[index]|.
12621 When \MP\ is not reading from the terminal, the global variable |line| contains
12622 the line number in the current file, for use in error messages. More precisely,
12623 |line| is a macro for |line_stack[index]| and the |line_stack| array gives
12624 the line number for each file in the |input_file| array.
12626 When an \.{MPX} file is opened the file name is stored in the |mpx_name|
12627 array so that the name doesn't get lost when the file is temporarily removed
12628 from the input stack.
12629 Thus when |input_file[k]| is an \.{MPX} file, its name is |mpx_name[k]|
12630 and it contains translated \TeX\ pictures for |input_file[k-1]|.
12631 Since this is not an \.{MPX} file, we have
12632 $$ \hbox{|mpx_name[k-1]<=absent|}. $$
12633 This |name| field is set to |finished| when |input_file[k]| is completely
12636 If more information about the input state is needed, it can be
12637 included in small arrays like those shown here. For example,
12638 the current page or segment number in the input file might be put
12639 into a variable |page|, that is really a macro for the current entry
12640 in `\ignorespaces|page_stack:array[0..max_in_open] of integer|\unskip'
12641 by analogy with |line_stack|.
12642 @^system dependencies@>
12644 @d terminal_input (name==is_term) /* are we reading from the terminal? */
12645 @d cur_file mp->input_file[index] /* the current |FILE *| variable */
12646 @d line mp->line_stack[index] /* current line number in the current source file */
12647 @d in_name mp->iname_stack[index] /* a string used to construct \.{MPX} file names */
12648 @d in_area mp->iarea_stack[index] /* another string for naming \.{MPX} files */
12649 @d absent 1 /* |name_field| value for unused |mpx_in_stack| entries */
12650 @d mpx_reading (mp->mpx_name[index]>absent)
12651 /* when reading a file, is it an \.{MPX} file? */
12653 /* |name_field| value when the corresponding \.{MPX} file is finished */
12656 integer in_open; /* the number of lines in the buffer, less one */
12657 unsigned int open_parens; /* the number of open text files */
12658 FILE * *input_file ;
12659 integer *line_stack ; /* the line number for each file */
12660 char * *iname_stack; /* used for naming \.{MPX} files */
12661 char * *iarea_stack; /* used for naming \.{MPX} files */
12662 halfword*mpx_name ;
12664 @ @<Allocate or ...@>=
12665 mp->input_file = xmalloc((mp->max_in_open+1),sizeof(FILE *));
12666 mp->line_stack = xmalloc((mp->max_in_open+1),sizeof(integer));
12667 mp->iname_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12668 mp->iarea_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12669 mp->mpx_name = xmalloc((mp->max_in_open+1),sizeof(halfword));
12672 for (k=0;k<=mp->max_in_open;k++) {
12673 mp->iname_stack[k] =NULL;
12674 mp->iarea_stack[k] =NULL;
12678 @ @<Dealloc variables@>=
12681 for (l=0;l<=mp->max_in_open;l++) {
12682 xfree(mp->iname_stack[l]);
12683 xfree(mp->iarea_stack[l]);
12686 xfree(mp->input_file);
12687 xfree(mp->line_stack);
12688 xfree(mp->iname_stack);
12689 xfree(mp->iarea_stack);
12690 xfree(mp->mpx_name);
12693 @ However, all this discussion about input state really applies only to the
12694 case that we are inputting from a file. There is another important case,
12695 namely when we are currently getting input from a token list. In this case
12696 |index>max_in_open|, and the conventions about the other state variables
12699 \yskip\hang|loc| is a pointer to the current node in the token list, i.e.,
12700 the node that will be read next. If |loc=null|, the token list has been
12703 \yskip\hang|start| points to the first node of the token list; this node
12704 may or may not contain a reference count, depending on the type of token
12707 \yskip\hang|token_type|, which takes the place of |index| in the
12708 discussion above, is a code number that explains what kind of token list
12711 \yskip\hang|name| points to the |eqtb| address of the control sequence
12712 being expanded, if the current token list is a macro not defined by
12713 \&{vardef}. Macros defined by \&{vardef} have |name=null|; their name
12714 can be deduced by looking at their first two parameters.
12716 \yskip\hang|param_start|, which takes the place of |limit|, tells where
12717 the parameters of the current macro or loop text begin in the |param_stack|.
12719 \yskip\noindent The |token_type| can take several values, depending on
12720 where the current token list came from:
12723 \indent|forever_text|, if the token list being scanned is the body of
12724 a \&{forever} loop;
12726 \indent|loop_text|, if the token list being scanned is the body of
12727 a \&{for} or \&{forsuffixes} loop;
12729 \indent|parameter|, if a \&{text} or \&{suffix} parameter is being scanned;
12731 \indent|backed_up|, if the token list being scanned has been inserted as
12732 `to be read again'.
12734 \indent|inserted|, if the token list being scanned has been inserted as
12735 part of error recovery;
12737 \indent|macro|, if the expansion of a user-defined symbolic token is being
12741 The token list begins with a reference count if and only if |token_type=
12743 @^reference counts@>
12745 @d token_type index /* type of current token list */
12746 @d token_state (index>(int)mp->max_in_open) /* are we scanning a token list? */
12747 @d file_state (index<=(int)mp->max_in_open) /* are we scanning a file line? */
12748 @d param_start limit /* base of macro parameters in |param_stack| */
12749 @d forever_text (mp->max_in_open+1) /* |token_type| code for loop texts */
12750 @d loop_text (mp->max_in_open+2) /* |token_type| code for loop texts */
12751 @d parameter (mp->max_in_open+3) /* |token_type| code for parameter texts */
12752 @d backed_up (mp->max_in_open+4) /* |token_type| code for texts to be reread */
12753 @d inserted (mp->max_in_open+5) /* |token_type| code for inserted texts */
12754 @d macro (mp->max_in_open+6) /* |token_type| code for macro replacement texts */
12756 @ The |param_stack| is an auxiliary array used to hold pointers to the token
12757 lists for parameters at the current level and subsidiary levels of input.
12758 This stack grows at a different rate from the others.
12761 pointer *param_stack; /* token list pointers for parameters */
12762 integer param_ptr; /* first unused entry in |param_stack| */
12763 integer max_param_stack; /* largest value of |param_ptr| */
12765 @ @<Allocate or initialize ...@>=
12766 mp->param_stack = xmalloc((mp->param_size+1),sizeof(pointer));
12768 @ @<Dealloc variables@>=
12769 xfree(mp->param_stack);
12771 @ Notice that the |line| isn't valid when |token_state| is true because it
12772 depends on |index|. If we really need to know the line number for the
12773 topmost file in the index stack we use the following function. If a page
12774 number or other information is needed, this routine should be modified to
12775 compute it as well.
12776 @^system dependencies@>
12778 @<Declare a function called |true_line|@>=
12779 integer mp_true_line (MP mp) {
12780 int k; /* an index into the input stack */
12781 if ( file_state && (name>max_spec_src) ) {
12786 ((mp->input_stack[(k-1)].index_field>mp->max_in_open)||
12787 (mp->input_stack[(k-1)].name_field<=max_spec_src))) {
12790 return mp->line_stack[(k-1)];
12795 @ Thus, the ``current input state'' can be very complicated indeed; there
12796 can be many levels and each level can arise in a variety of ways. The
12797 |show_context| procedure, which is used by \MP's error-reporting routine to
12798 print out the current input state on all levels down to the most recent
12799 line of characters from an input file, illustrates most of these conventions.
12800 The global variable |file_ptr| contains the lowest level that was
12801 displayed by this procedure.
12804 integer file_ptr; /* shallowest level shown by |show_context| */
12806 @ The status at each level is indicated by printing two lines, where the first
12807 line indicates what was read so far and the second line shows what remains
12808 to be read. The context is cropped, if necessary, so that the first line
12809 contains at most |half_error_line| characters, and the second contains
12810 at most |error_line|. Non-current input levels whose |token_type| is
12811 `|backed_up|' are shown only if they have not been fully read.
12813 @c void mp_show_context (MP mp) { /* prints where the scanner is */
12814 int old_setting; /* saved |selector| setting */
12815 @<Local variables for formatting calculations@>
12816 mp->file_ptr=mp->input_ptr; mp->input_stack[mp->file_ptr]=mp->cur_input;
12817 /* store current state */
12819 mp->cur_input=mp->input_stack[mp->file_ptr]; /* enter into the context */
12820 @<Display the current context@>;
12822 if ( (name>max_spec_src) || (mp->file_ptr==0) ) break;
12823 decr(mp->file_ptr);
12825 mp->cur_input=mp->input_stack[mp->input_ptr]; /* restore original state */
12828 @ @<Display the current context@>=
12829 if ( (mp->file_ptr==mp->input_ptr) || file_state ||
12830 (token_type!=backed_up) || (loc!=null) ) {
12831 /* we omit backed-up token lists that have already been read */
12832 mp->tally=0; /* get ready to count characters */
12833 old_setting=mp->selector;
12834 if ( file_state ) {
12835 @<Print location of current line@>;
12836 @<Pseudoprint the line@>;
12838 @<Print type of token list@>;
12839 @<Pseudoprint the token list@>;
12841 mp->selector=old_setting; /* stop pseudoprinting */
12842 @<Print two lines using the tricky pseudoprinted information@>;
12845 @ This routine should be changed, if necessary, to give the best possible
12846 indication of where the current line resides in the input file.
12847 For example, on some systems it is best to print both a page and line number.
12848 @^system dependencies@>
12850 @<Print location of current line@>=
12851 if ( name>max_spec_src ) {
12852 mp_print_nl(mp, "l."); mp_print_int(mp, mp_true_line(mp));
12853 } else if ( terminal_input ) {
12854 if ( mp->file_ptr==0 ) mp_print_nl(mp, "<*>");
12855 else mp_print_nl(mp, "<insert>");
12856 } else if ( name==is_scantok ) {
12857 mp_print_nl(mp, "<scantokens>");
12859 mp_print_nl(mp, "<read>");
12861 mp_print_char(mp, ' ')
12863 @ Can't use case statement here because the |token_type| is not
12864 a constant expression.
12866 @<Print type of token list@>=
12868 if(token_type==forever_text) {
12869 mp_print_nl(mp, "<forever> ");
12870 } else if (token_type==loop_text) {
12871 @<Print the current loop value@>;
12872 } else if (token_type==parameter) {
12873 mp_print_nl(mp, "<argument> ");
12874 } else if (token_type==backed_up) {
12875 if ( loc==null ) mp_print_nl(mp, "<recently read> ");
12876 else mp_print_nl(mp, "<to be read again> ");
12877 } else if (token_type==inserted) {
12878 mp_print_nl(mp, "<inserted text> ");
12879 } else if (token_type==macro) {
12881 if ( name!=null ) mp_print_text(name);
12882 else @<Print the name of a \&{vardef}'d macro@>;
12883 mp_print(mp, "->");
12885 mp_print_nl(mp, "?");/* this should never happen */
12890 @ The parameter that corresponds to a loop text is either a token list
12891 (in the case of \&{forsuffixes}) or a ``capsule'' (in the case of \&{for}).
12892 We'll discuss capsules later; for now, all we need to know is that
12893 the |link| field in a capsule parameter is |void| and that
12894 |print_exp(p,0)| displays the value of capsule~|p| in abbreviated form.
12896 @d diov (null+1) /* a null pointer different from |null| */
12898 @<Print the current loop value@>=
12899 { mp_print_nl(mp, "<for("); p=mp->param_stack[param_start];
12901 if ( link(p)==diov ) mp_print_exp(mp, p,0); /* we're in a \&{for} loop */
12902 else mp_show_token_list(mp, p,null,20,mp->tally);
12904 mp_print(mp, ")> ");
12907 @ The first two parameters of a macro defined by \&{vardef} will be token
12908 lists representing the macro's prefix and ``at point.'' By putting these
12909 together, we get the macro's full name.
12911 @<Print the name of a \&{vardef}'d macro@>=
12912 { p=mp->param_stack[param_start];
12914 mp_show_token_list(mp, mp->param_stack[param_start+1],null,20,mp->tally);
12917 while ( link(q)!=null ) q=link(q);
12918 link(q)=mp->param_stack[param_start+1];
12919 mp_show_token_list(mp, p,null,20,mp->tally);
12924 @ Now it is necessary to explain a little trick. We don't want to store a long
12925 string that corresponds to a token list, because that string might take up
12926 lots of memory; and we are printing during a time when an error message is
12927 being given, so we dare not do anything that might overflow one of \MP's
12928 tables. So `pseudoprinting' is the answer: We enter a mode of printing
12929 that stores characters into a buffer of length |error_line|, where character
12930 $k+1$ is placed into \hbox{|trick_buf[k mod error_line]|} if
12931 |k<trick_count|, otherwise character |k| is dropped. Initially we set
12932 |tally:=0| and |trick_count:=1000000|; then when we reach the
12933 point where transition from line 1 to line 2 should occur, we
12934 set |first_count:=tally| and |trick_count:=@tmax@>(error_line,
12935 tally+1+error_line-half_error_line)|. At the end of the
12936 pseudoprinting, the values of |first_count|, |tally|, and
12937 |trick_count| give us all the information we need to print the two lines,
12938 and all of the necessary text is in |trick_buf|.
12940 Namely, let |l| be the length of the descriptive information that appears
12941 on the first line. The length of the context information gathered for that
12942 line is |k=first_count|, and the length of the context information
12943 gathered for line~2 is $m=\min(|tally|, |trick_count|)-k$. If |l+k<=h|,
12944 where |h=half_error_line|, we print |trick_buf[0..k-1]| after the
12945 descriptive information on line~1, and set |n:=l+k|; here |n| is the
12946 length of line~1. If $l+k>h$, some cropping is necessary, so we set |n:=h|
12947 and print `\.{...}' followed by
12948 $$\hbox{|trick_buf[(l+k-h+3)..k-1]|,}$$
12949 where subscripts of |trick_buf| are circular modulo |error_line|. The
12950 second line consists of |n|~spaces followed by |trick_buf[k..(k+m-1)]|,
12951 unless |n+m>error_line|; in the latter case, further cropping is done.
12952 This is easier to program than to explain.
12954 @<Local variables for formatting...@>=
12955 int i; /* index into |buffer| */
12956 integer l; /* length of descriptive information on line 1 */
12957 integer m; /* context information gathered for line 2 */
12958 int n; /* length of line 1 */
12959 integer p; /* starting or ending place in |trick_buf| */
12960 integer q; /* temporary index */
12962 @ The following code tells the print routines to gather
12963 the desired information.
12965 @d begin_pseudoprint {
12966 l=mp->tally; mp->tally=0; mp->selector=pseudo;
12967 mp->trick_count=1000000;
12969 @d set_trick_count {
12970 mp->first_count=mp->tally;
12971 mp->trick_count=mp->tally+1+mp->error_line-mp->half_error_line;
12972 if ( mp->trick_count<mp->error_line ) mp->trick_count=mp->error_line;
12975 @ And the following code uses the information after it has been gathered.
12977 @<Print two lines using the tricky pseudoprinted information@>=
12978 if ( mp->trick_count==1000000 ) set_trick_count;
12979 /* |set_trick_count| must be performed */
12980 if ( mp->tally<mp->trick_count ) m=mp->tally-mp->first_count;
12981 else m=mp->trick_count-mp->first_count; /* context on line 2 */
12982 if ( l+mp->first_count<=mp->half_error_line ) {
12983 p=0; n=l+mp->first_count;
12985 mp_print(mp, "..."); p=l+mp->first_count-mp->half_error_line+3;
12986 n=mp->half_error_line;
12988 for (q=p;q<=mp->first_count-1;q++) {
12989 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
12992 for (q=1;q<=n;q++) {
12993 mp_print_char(mp, ' '); /* print |n| spaces to begin line~2 */
12995 if ( m+n<=mp->error_line ) p=mp->first_count+m;
12996 else p=mp->first_count+(mp->error_line-n-3);
12997 for (q=mp->first_count;q<=p-1;q++) {
12998 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13000 if ( m+n>mp->error_line ) mp_print(mp, "...")
13002 @ But the trick is distracting us from our current goal, which is to
13003 understand the input state. So let's concentrate on the data structures that
13004 are being pseudoprinted as we finish up the |show_context| procedure.
13006 @<Pseudoprint the line@>=
13009 for (i=start;i<=limit-1;i++) {
13010 if ( i==loc ) set_trick_count;
13011 mp_print_str(mp, mp->buffer[i]);
13015 @ @<Pseudoprint the token list@>=
13017 if ( token_type!=macro ) mp_show_token_list(mp, start,loc,100000,0);
13018 else mp_show_macro(mp, start,loc,100000)
13020 @ Here is the missing piece of |show_token_list| that is activated when the
13021 token beginning line~2 is about to be shown:
13023 @<Do magic computation@>=set_trick_count
13025 @* \[28] Maintaining the input stacks.
13026 The following subroutines change the input status in commonly needed ways.
13028 First comes |push_input|, which stores the current state and creates a
13029 new level (having, initially, the same properties as the old).
13031 @d push_input { /* enter a new input level, save the old */
13032 if ( mp->input_ptr>mp->max_in_stack ) {
13033 mp->max_in_stack=mp->input_ptr;
13034 if ( mp->input_ptr==mp->stack_size ) {
13035 int l = (mp->stack_size+(mp->stack_size>>2));
13036 XREALLOC(mp->input_stack, (l+1), in_state_record);
13037 mp->stack_size = l;
13040 mp->input_stack[mp->input_ptr]=mp->cur_input; /* stack the record */
13041 incr(mp->input_ptr);
13044 @ And of course what goes up must come down.
13046 @d pop_input { /* leave an input level, re-enter the old */
13047 decr(mp->input_ptr); mp->cur_input=mp->input_stack[mp->input_ptr];
13050 @ Here is a procedure that starts a new level of token-list input, given
13051 a token list |p| and its type |t|. If |t=macro|, the calling routine should
13052 set |name|, reset~|loc|, and increase the macro's reference count.
13054 @d back_list(A) mp_begin_token_list(mp, (A),backed_up) /* backs up a simple token list */
13056 @c void mp_begin_token_list (MP mp,pointer p, quarterword t) {
13057 push_input; start=p; token_type=t;
13058 param_start=mp->param_ptr; loc=p;
13061 @ When a token list has been fully scanned, the following computations
13062 should be done as we leave that level of input.
13065 @c void mp_end_token_list (MP mp) { /* leave a token-list input level */
13066 pointer p; /* temporary register */
13067 if ( token_type>=backed_up ) { /* token list to be deleted */
13068 if ( token_type<=inserted ) {
13069 mp_flush_token_list(mp, start); goto DONE;
13071 mp_delete_mac_ref(mp, start); /* update reference count */
13074 while ( mp->param_ptr>param_start ) { /* parameters must be flushed */
13075 decr(mp->param_ptr);
13076 p=mp->param_stack[mp->param_ptr];
13078 if ( link(p)==diov ) { /* it's an \&{expr} parameter */
13079 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
13081 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
13086 pop_input; check_interrupt;
13089 @ The contents of |cur_cmd,cur_mod,cur_sym| are placed into an equivalent
13090 token by the |cur_tok| routine.
13093 @c @<Declare the procedure called |make_exp_copy|@>;
13094 pointer mp_cur_tok (MP mp) {
13095 pointer p; /* a new token node */
13096 small_number save_type; /* |cur_type| to be restored */
13097 integer save_exp; /* |cur_exp| to be restored */
13098 if ( mp->cur_sym==0 ) {
13099 if ( mp->cur_cmd==capsule_token ) {
13100 save_type=mp->cur_type; save_exp=mp->cur_exp;
13101 mp_make_exp_copy(mp, mp->cur_mod); p=mp_stash_cur_exp(mp); link(p)=null;
13102 mp->cur_type=save_type; mp->cur_exp=save_exp;
13104 p=mp_get_node(mp, token_node_size);
13105 value(p)=mp->cur_mod; name_type(p)=mp_token;
13106 if ( mp->cur_cmd==numeric_token ) type(p)=mp_known;
13107 else type(p)=mp_string_type;
13110 fast_get_avail(p); info(p)=mp->cur_sym;
13115 @ Sometimes \MP\ has read too far and wants to ``unscan'' what it has
13116 seen. The |back_input| procedure takes care of this by putting the token
13117 just scanned back into the input stream, ready to be read again.
13118 If |cur_sym<>0|, the values of |cur_cmd| and |cur_mod| are irrelevant.
13121 void mp_back_input (MP mp);
13123 @ @c void mp_back_input (MP mp) {/* undoes one token of input */
13124 pointer p; /* a token list of length one */
13126 while ( token_state &&(loc==null) )
13127 mp_end_token_list(mp); /* conserve stack space */
13131 @ The |back_error| routine is used when we want to restore or replace an
13132 offending token just before issuing an error message. We disable interrupts
13133 during the call of |back_input| so that the help message won't be lost.
13136 void mp_error (MP mp);
13137 void mp_back_error (MP mp);
13139 @ @c void mp_back_error (MP mp) { /* back up one token and call |error| */
13140 mp->OK_to_interrupt=false;
13142 mp->OK_to_interrupt=true; mp_error(mp);
13144 void mp_ins_error (MP mp) { /* back up one inserted token and call |error| */
13145 mp->OK_to_interrupt=false;
13146 mp_back_input(mp); token_type=inserted;
13147 mp->OK_to_interrupt=true; mp_error(mp);
13150 @ The |begin_file_reading| procedure starts a new level of input for lines
13151 of characters to be read from a file, or as an insertion from the
13152 terminal. It does not take care of opening the file, nor does it set |loc|
13153 or |limit| or |line|.
13154 @^system dependencies@>
13156 @c void mp_begin_file_reading (MP mp) {
13157 if ( mp->in_open==mp->max_in_open )
13158 mp_overflow(mp, "text input levels",mp->max_in_open);
13159 @:MetaPost capacity exceeded text input levels}{\quad text input levels@>
13160 if ( mp->first==mp->buf_size )
13161 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13162 incr(mp->in_open); push_input; index=mp->in_open;
13163 mp->mpx_name[index]=absent;
13165 name=is_term; /* |terminal_input| is now |true| */
13168 @ Conversely, the variables must be downdated when such a level of input
13169 is finished. Any associated \.{MPX} file must also be closed and popped
13170 off the file stack.
13172 @c void mp_end_file_reading (MP mp) {
13173 if ( mp->in_open>index ) {
13174 if ( (mp->mpx_name[mp->in_open]==absent)||(name<=max_spec_src) ) {
13175 mp_confusion(mp, "endinput");
13176 @:this can't happen endinput}{\quad endinput@>
13178 fclose(mp->input_file[mp->in_open]); /* close an \.{MPX} file */
13179 delete_str_ref(mp->mpx_name[mp->in_open]);
13184 if ( index!=mp->in_open ) mp_confusion(mp, "endinput");
13185 if ( name>max_spec_src ) {
13187 delete_str_ref(name);
13188 xfree(in_name); in_name=NULL;
13189 xfree(in_area); in_area=NULL;
13191 pop_input; decr(mp->in_open);
13194 @ Here is a function that tries to resume input from an \.{MPX} file already
13195 associated with the current input file. It returns |false| if this doesn't
13198 @c boolean mp_begin_mpx_reading (MP mp) {
13199 if ( mp->in_open!=index+1 ) {
13202 if ( mp->mpx_name[mp->in_open]<=absent ) mp_confusion(mp, "mpx");
13203 @:this can't happen mpx}{\quad mpx@>
13204 if ( mp->first==mp->buf_size )
13205 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13206 push_input; index=mp->in_open;
13208 name=mp->mpx_name[mp->in_open]; add_str_ref(name);
13209 @<Put an empty line in the input buffer@>;
13214 @ This procedure temporarily stops reading an \.{MPX} file.
13216 @c void mp_end_mpx_reading (MP mp) {
13217 if ( mp->in_open!=index ) mp_confusion(mp, "mpx");
13218 @:this can't happen mpx}{\quad mpx@>
13220 @<Complain that we are not at the end of a line in the \.{MPX} file@>;
13226 @ Here we enforce a restriction that simplifies the input stacks considerably.
13227 This should not inconvenience the user because \.{MPX} files are generated
13228 by an auxiliary program called \.{DVItoMP}.
13230 @ @<Complain that we are not at the end of a line in the \.{MPX} file@>=
13232 print_err("`mpxbreak' must be at the end of a line");
13233 help4("This file contains picture expressions for btex...etex")
13234 ("blocks. Such files are normally generated automatically")
13235 ("but this one seems to be messed up. I'm going to ignore")
13236 ("the rest of this line.");
13240 @ In order to keep the stack from overflowing during a long sequence of
13241 inserted `\.{show}' commands, the following routine removes completed
13242 error-inserted lines from memory.
13244 @c void mp_clear_for_error_prompt (MP mp) {
13245 while ( file_state && terminal_input &&
13246 (mp->input_ptr>0)&&(loc==limit) ) mp_end_file_reading(mp);
13247 mp_print_ln(mp); clear_terminal;
13250 @ To get \MP's whole input mechanism going, we perform the following
13253 @<Initialize the input routines@>=
13254 { mp->input_ptr=0; mp->max_in_stack=0;
13255 mp->in_open=0; mp->open_parens=0; mp->max_buf_stack=0;
13256 mp->param_ptr=0; mp->max_param_stack=0;
13258 start=1; index=0; line=0; name=is_term;
13259 mp->mpx_name[0]=absent;
13260 mp->force_eof=false;
13261 if ( ! mp_init_terminal(mp) ) exit(EXIT_FAILURE);
13262 limit=mp->last; mp->first=mp->last+1;
13263 /* |init_terminal| has set |loc| and |last| */
13266 @* \[29] Getting the next token.
13267 The heart of \MP's input mechanism is the |get_next| procedure, which
13268 we shall develop in the next few sections of the program. Perhaps we
13269 shouldn't actually call it the ``heart,'' however; it really acts as \MP's
13270 eyes and mouth, reading the source files and gobbling them up. And it also
13271 helps \MP\ to regurgitate stored token lists that are to be processed again.
13273 The main duty of |get_next| is to input one token and to set |cur_cmd|
13274 and |cur_mod| to that token's command code and modifier. Furthermore, if
13275 the input token is a symbolic token, that token's |hash| address
13276 is stored in |cur_sym|; otherwise |cur_sym| is set to zero.
13278 Underlying this simple description is a certain amount of complexity
13279 because of all the cases that need to be handled.
13280 However, the inner loop of |get_next| is reasonably short and fast.
13282 @ Before getting into |get_next|, we need to consider a mechanism by which
13283 \MP\ helps keep errors from propagating too far. Whenever the program goes
13284 into a mode where it keeps calling |get_next| repeatedly until a certain
13285 condition is met, it sets |scanner_status| to some value other than |normal|.
13286 Then if an input file ends, or if an `\&{outer}' symbol appears,
13287 an appropriate error recovery will be possible.
13289 The global variable |warning_info| helps in this error recovery by providing
13290 additional information. For example, |warning_info| might indicate the
13291 name of a macro whose replacement text is being scanned.
13293 @d normal 0 /* |scanner_status| at ``quiet times'' */
13294 @d skipping 1 /* |scanner_status| when false conditional text is being skipped */
13295 @d flushing 2 /* |scanner_status| when junk after a statement is being ignored */
13296 @d absorbing 3 /* |scanner_status| when a \&{text} parameter is being scanned */
13297 @d var_defining 4 /* |scanner_status| when a \&{vardef} is being scanned */
13298 @d op_defining 5 /* |scanner_status| when a macro \&{def} is being scanned */
13299 @d loop_defining 6 /* |scanner_status| when a \&{for} loop is being scanned */
13300 @d tex_flushing 7 /* |scanner_status| when skipping \TeX\ material */
13303 integer scanner_status; /* are we scanning at high speed? */
13304 integer warning_info; /* if so, what else do we need to know,
13305 in case an error occurs? */
13307 @ @<Initialize the input routines@>=
13308 mp->scanner_status=normal;
13310 @ The following subroutine
13311 is called when an `\&{outer}' symbolic token has been scanned or
13312 when the end of a file has been reached. These two cases are distinguished
13313 by |cur_sym|, which is zero at the end of a file.
13315 @c boolean mp_check_outer_validity (MP mp) {
13316 pointer p; /* points to inserted token list */
13317 if ( mp->scanner_status==normal ) {
13319 } else if ( mp->scanner_status==tex_flushing ) {
13320 @<Check if the file has ended while flushing \TeX\ material and set the
13321 result value for |check_outer_validity|@>;
13323 mp->deletions_allowed=false;
13324 @<Back up an outer symbolic token so that it can be reread@>;
13325 if ( mp->scanner_status>skipping ) {
13326 @<Tell the user what has run away and try to recover@>;
13328 print_err("Incomplete if; all text was ignored after line ");
13329 @.Incomplete if...@>
13330 mp_print_int(mp, mp->warning_info);
13331 help3("A forbidden `outer' token occurred in skipped text.")
13332 ("This kind of error happens when you say `if...' and forget")
13333 ("the matching `fi'. I've inserted a `fi'; this might work.");
13334 if ( mp->cur_sym==0 )
13335 mp->help_line[2]="The file ended while I was skipping conditional text.";
13336 mp->cur_sym=frozen_fi; mp_ins_error(mp);
13338 mp->deletions_allowed=true;
13343 @ @<Check if the file has ended while flushing \TeX\ material and set...@>=
13344 if ( mp->cur_sym!=0 ) {
13347 mp->deletions_allowed=false;
13348 print_err("TeX mode didn't end; all text was ignored after line ");
13349 mp_print_int(mp, mp->warning_info);
13350 help2("The file ended while I was looking for the `etex' to")
13351 ("finish this TeX material. I've inserted `etex' now.");
13352 mp->cur_sym = frozen_etex;
13354 mp->deletions_allowed=true;
13358 @ @<Back up an outer symbolic token so that it can be reread@>=
13359 if ( mp->cur_sym!=0 ) {
13360 p=mp_get_avail(mp); info(p)=mp->cur_sym;
13361 back_list(p); /* prepare to read the symbolic token again */
13364 @ @<Tell the user what has run away...@>=
13366 mp_runaway(mp); /* print the definition-so-far */
13367 if ( mp->cur_sym==0 ) {
13368 print_err("File ended");
13369 @.File ended while scanning...@>
13371 print_err("Forbidden token found");
13372 @.Forbidden token found...@>
13374 mp_print(mp, " while scanning ");
13375 help4("I suspect you have forgotten an `enddef',")
13376 ("causing me to read past where you wanted me to stop.")
13377 ("I'll try to recover; but if the error is serious,")
13378 ("you'd better type `E' or `X' now and fix your file.");
13379 switch (mp->scanner_status) {
13380 @<Complete the error message,
13381 and set |cur_sym| to a token that might help recover from the error@>
13382 } /* there are no other cases */
13386 @ As we consider various kinds of errors, it is also appropriate to
13387 change the first line of the help message just given; |help_line[3]|
13388 points to the string that might be changed.
13390 @<Complete the error message,...@>=
13392 mp_print(mp, "to the end of the statement");
13393 mp->help_line[3]="A previous error seems to have propagated,";
13394 mp->cur_sym=frozen_semicolon;
13397 mp_print(mp, "a text argument");
13398 mp->help_line[3]="It seems that a right delimiter was left out,";
13399 if ( mp->warning_info==0 ) {
13400 mp->cur_sym=frozen_end_group;
13402 mp->cur_sym=frozen_right_delimiter;
13403 equiv(frozen_right_delimiter)=mp->warning_info;
13408 mp_print(mp, "the definition of ");
13409 if ( mp->scanner_status==op_defining )
13410 mp_print_text(mp->warning_info);
13412 mp_print_variable_name(mp, mp->warning_info);
13413 mp->cur_sym=frozen_end_def;
13415 case loop_defining:
13416 mp_print(mp, "the text of a ");
13417 mp_print_text(mp->warning_info);
13418 mp_print(mp, " loop");
13419 mp->help_line[3]="I suspect you have forgotten an `endfor',";
13420 mp->cur_sym=frozen_end_for;
13423 @ The |runaway| procedure displays the first part of the text that occurred
13424 when \MP\ began its special |scanner_status|, if that text has been saved.
13426 @<Declare the procedure called |runaway|@>=
13427 void mp_runaway (MP mp) {
13428 if ( mp->scanner_status>flushing ) {
13429 mp_print_nl(mp, "Runaway ");
13430 switch (mp->scanner_status) {
13431 case absorbing: mp_print(mp, "text?"); break;
13433 case op_defining: mp_print(mp,"definition?"); break;
13434 case loop_defining: mp_print(mp, "loop?"); break;
13435 } /* there are no other cases */
13437 mp_show_token_list(mp, link(hold_head),null,mp->error_line-10,0);
13441 @ We need to mention a procedure that may be called by |get_next|.
13444 void mp_firm_up_the_line (MP mp);
13446 @ And now we're ready to take the plunge into |get_next| itself.
13447 Note that the behavior depends on the |scanner_status| because percent signs
13448 and double quotes need to be passed over when skipping TeX material.
13451 void mp_get_next (MP mp) {
13452 /* sets |cur_cmd|, |cur_mod|, |cur_sym| to next token */
13454 /*restart*/ /* go here to get the next input token */
13455 /*exit*/ /* go here when the next input token has been got */
13456 /*|common_ending|*/ /* go here to finish getting a symbolic token */
13457 /*found*/ /* go here when the end of a symbolic token has been found */
13458 /*switch*/ /* go here to branch on the class of an input character */
13459 /*|start_numeric_token|,|start_decimal_token|,|fin_numeric_token|,|done|*/
13460 /* go here at crucial stages when scanning a number */
13461 int k; /* an index into |buffer| */
13462 ASCII_code c; /* the current character in the buffer */
13463 ASCII_code class; /* its class number */
13464 integer n,f; /* registers for decimal-to-binary conversion */
13467 if ( file_state ) {
13468 @<Input from external file; |goto restart| if no input found,
13469 or |return| if a non-symbolic token is found@>;
13471 @<Input from token list; |goto restart| if end of list or
13472 if a parameter needs to be expanded,
13473 or |return| if a non-symbolic token is found@>;
13476 @<Finish getting the symbolic token in |cur_sym|;
13477 |goto restart| if it is illegal@>;
13480 @ When a symbolic token is declared to be `\&{outer}', its command code
13481 is increased by |outer_tag|.
13484 @<Finish getting the symbolic token in |cur_sym|...@>=
13485 mp->cur_cmd=eq_type(mp->cur_sym); mp->cur_mod=equiv(mp->cur_sym);
13486 if ( mp->cur_cmd>=outer_tag ) {
13487 if ( mp_check_outer_validity(mp) )
13488 mp->cur_cmd=mp->cur_cmd-outer_tag;
13493 @ A percent sign appears in |buffer[limit]|; this makes it unnecessary
13494 to have a special test for end-of-line.
13497 @<Input from external file;...@>=
13500 c=mp->buffer[loc]; incr(loc); class=mp->char_class[c];
13502 case digit_class: goto START_NUMERIC_TOKEN; break;
13504 class=mp->char_class[mp->buffer[loc]];
13505 if ( class>period_class ) {
13507 } else if ( class<period_class ) { /* |class=digit_class| */
13508 n=0; goto START_DECIMAL_TOKEN;
13512 case space_class: goto SWITCH; break;
13513 case percent_class:
13514 if ( mp->scanner_status==tex_flushing ) {
13515 if ( loc<limit ) goto SWITCH;
13517 @<Move to next line of file, or |goto restart| if there is no next line@>;
13522 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13523 else @<Get a string token and |return|@>;
13525 case isolated_classes:
13526 k=loc-1; goto FOUND; break;
13527 case invalid_class:
13528 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13529 else @<Decry the invalid character and |goto restart|@>;
13531 default: break; /* letters, etc. */
13534 while ( mp->char_class[mp->buffer[loc]]==class ) incr(loc);
13536 START_NUMERIC_TOKEN:
13537 @<Get the integer part |n| of a numeric token;
13538 set |f:=0| and |goto fin_numeric_token| if there is no decimal point@>;
13539 START_DECIMAL_TOKEN:
13540 @<Get the fraction part |f| of a numeric token@>;
13542 @<Pack the numeric and fraction parts of a numeric token
13545 mp->cur_sym=mp_id_lookup(mp, k,loc-k);
13548 @ We go to |restart| instead of to |SWITCH|, because |state| might equal
13549 |token_list| after the error has been dealt with
13550 (cf.\ |clear_for_error_prompt|).
13552 @<Decry the invalid...@>=
13554 print_err("Text line contains an invalid character");
13555 @.Text line contains...@>
13556 help2("A funny symbol that I can\'t read has just been input.")
13557 ("Continue, and I'll forget that it ever happened.");
13558 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13562 @ @<Get a string token and |return|@>=
13564 if ( mp->buffer[loc]=='"' ) {
13565 mp->cur_mod=rts("");
13567 k=loc; mp->buffer[limit+1]='"';
13570 } while (mp->buffer[loc]!='"');
13572 @<Decry the missing string delimiter and |goto restart|@>;
13575 mp->cur_mod=mp->buffer[k];
13579 append_char(mp->buffer[k]); incr(k);
13581 mp->cur_mod=mp_make_string(mp);
13584 incr(loc); mp->cur_cmd=string_token;
13588 @ We go to |restart| after this error message, not to |SWITCH|,
13589 because the |clear_for_error_prompt| routine might have reinstated
13590 |token_state| after |error| has finished.
13592 @<Decry the missing string delimiter and |goto restart|@>=
13594 loc=limit; /* the next character to be read on this line will be |"%"| */
13595 print_err("Incomplete string token has been flushed");
13596 @.Incomplete string token...@>
13597 help3("Strings should finish on the same line as they began.")
13598 ("I've deleted the partial string; you might want to")
13599 ("insert another by typing, e.g., `I\"new string\"'.");
13600 mp->deletions_allowed=false; mp_error(mp);
13601 mp->deletions_allowed=true;
13605 @ @<Get the integer part |n| of a numeric token...@>=
13607 while ( mp->char_class[mp->buffer[loc]]==digit_class ) {
13608 if ( n<32768 ) n=10*n+mp->buffer[loc]-'0';
13611 if ( mp->buffer[loc]=='.' )
13612 if ( mp->char_class[mp->buffer[loc+1]]==digit_class )
13615 goto FIN_NUMERIC_TOKEN;
13618 @ @<Get the fraction part |f| of a numeric token@>=
13621 if ( k<17 ) { /* digits for |k>=17| cannot affect the result */
13622 mp->dig[k]=mp->buffer[loc]-'0'; incr(k);
13625 } while (mp->char_class[mp->buffer[loc]]==digit_class);
13626 f=mp_round_decimals(mp, k);
13631 @ @<Pack the numeric and fraction parts of a numeric token and |return|@>=
13633 @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>;
13634 } else if ( mp->scanner_status!=tex_flushing ) {
13635 print_err("Enormous number has been reduced");
13636 @.Enormous number...@>
13637 help2("I can\'t handle numbers bigger than 32767.99998;")
13638 ("so I've changed your constant to that maximum amount.");
13639 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13640 mp->cur_mod=el_gordo;
13642 mp->cur_cmd=numeric_token; return
13644 @ @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>=
13646 mp->cur_mod=n*unity+f;
13647 if ( mp->cur_mod>=fraction_one ) {
13648 if ( (mp->internal[warning_check]>0) &&
13649 (mp->scanner_status!=tex_flushing) ) {
13650 print_err("Number is too large (");
13651 mp_print_scaled(mp, mp->cur_mod);
13652 mp_print_char(mp, ')');
13653 help3("It is at least 4096. Continue and I'll try to cope")
13654 ("with that big value; but it might be dangerous.")
13655 ("(Set warningcheck:=0 to suppress this message.)");
13661 @ Let's consider now what happens when |get_next| is looking at a token list.
13664 @<Input from token list;...@>=
13665 if ( loc>=mp->hi_mem_min ) { /* one-word token */
13666 mp->cur_sym=info(loc); loc=link(loc); /* move to next */
13667 if ( mp->cur_sym>=expr_base ) {
13668 if ( mp->cur_sym>=suffix_base ) {
13669 @<Insert a suffix or text parameter and |goto restart|@>;
13671 mp->cur_cmd=capsule_token;
13672 mp->cur_mod=mp->param_stack[param_start+mp->cur_sym-(expr_base)];
13673 mp->cur_sym=0; return;
13676 } else if ( loc>null ) {
13677 @<Get a stored numeric or string or capsule token and |return|@>
13678 } else { /* we are done with this token list */
13679 mp_end_token_list(mp); goto RESTART; /* resume previous level */
13682 @ @<Insert a suffix or text parameter...@>=
13684 if ( mp->cur_sym>=text_base ) mp->cur_sym=mp->cur_sym-mp->param_size;
13685 /* |param_size=text_base-suffix_base| */
13686 mp_begin_token_list(mp,
13687 mp->param_stack[param_start+mp->cur_sym-(suffix_base)],
13692 @ @<Get a stored numeric or string or capsule token...@>=
13694 if ( name_type(loc)==mp_token ) {
13695 mp->cur_mod=value(loc);
13696 if ( type(loc)==mp_known ) {
13697 mp->cur_cmd=numeric_token;
13699 mp->cur_cmd=string_token; add_str_ref(mp->cur_mod);
13702 mp->cur_mod=loc; mp->cur_cmd=capsule_token;
13704 loc=link(loc); return;
13707 @ All of the easy branches of |get_next| have now been taken care of.
13708 There is one more branch.
13710 @<Move to next line of file, or |goto restart|...@>=
13711 if ( name>max_spec_src ) {
13712 @<Read next line of file into |buffer|, or
13713 |goto restart| if the file has ended@>;
13715 if ( mp->input_ptr>0 ) {
13716 /* text was inserted during error recovery or by \&{scantokens} */
13717 mp_end_file_reading(mp); goto RESTART; /* resume previous level */
13719 if ( mp->selector<log_only || mp->selector>=write_file) mp_open_log_file(mp);
13720 if ( mp->interaction>mp_nonstop_mode ) {
13721 if ( limit==start ) /* previous line was empty */
13722 mp_print_nl(mp, "(Please type a command or say `end')");
13724 mp_print_ln(mp); mp->first=start;
13725 prompt_input("*"); /* input on-line into |buffer| */
13727 limit=mp->last; mp->buffer[limit]='%';
13728 mp->first=limit+1; loc=start;
13730 mp_fatal_error(mp, "*** (job aborted, no legal end found)");
13732 /* nonstop mode, which is intended for overnight batch processing,
13733 never waits for on-line input */
13737 @ The global variable |force_eof| is normally |false|; it is set |true|
13738 by an \&{endinput} command.
13741 boolean force_eof; /* should the next \&{input} be aborted early? */
13743 @ We must decrement |loc| in order to leave the buffer in a valid state
13744 when an error condition causes us to |goto restart| without calling
13745 |end_file_reading|.
13747 @<Read next line of file into |buffer|, or
13748 |goto restart| if the file has ended@>=
13750 incr(line); mp->first=start;
13751 if ( ! mp->force_eof ) {
13752 if ( mp_input_ln(mp, cur_file,true) ) /* not end of file */
13753 mp_firm_up_the_line(mp); /* this sets |limit| */
13755 mp->force_eof=true;
13757 if ( mp->force_eof ) {
13758 mp->force_eof=false;
13760 if ( mpx_reading ) {
13761 @<Complain that the \.{MPX} file ended unexpectly; then set
13762 |cur_sym:=frozen_mpx_break| and |goto comon_ending|@>;
13764 mp_print_char(mp, ')'); decr(mp->open_parens);
13765 update_terminal; /* show user that file has been read */
13766 mp_end_file_reading(mp); /* resume previous level */
13767 if ( mp_check_outer_validity(mp) ) goto RESTART;
13771 mp->buffer[limit]='%'; mp->first=limit+1; loc=start; /* ready to read */
13774 @ We should never actually come to the end of an \.{MPX} file because such
13775 files should have an \&{mpxbreak} after the translation of the last
13776 \&{btex}$\,\ldots\,$\&{etex} block.
13778 @<Complain that the \.{MPX} file ended unexpectly; then set...@>=
13780 mp->mpx_name[index]=finished;
13781 print_err("mpx file ended unexpectedly");
13782 help4("The file had too few picture expressions for btex...etex")
13783 ("blocks. Such files are normally generated automatically")
13784 ("but this one got messed up. You might want to insert a")
13785 ("picture expression now.");
13786 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13787 mp->cur_sym=frozen_mpx_break; goto COMMON_ENDING;
13790 @ Sometimes we want to make it look as though we have just read a blank line
13791 without really doing so.
13793 @<Put an empty line in the input buffer@>=
13794 mp->last=mp->first; limit=mp->last; /* simulate |input_ln| and |firm_up_the_line| */
13795 mp->buffer[limit]='%'; mp->first=limit+1; loc=start
13797 @ If the user has set the |pausing| parameter to some positive value,
13798 and if nonstop mode has not been selected, each line of input is displayed
13799 on the terminal and the transcript file, followed by `\.{=>}'.
13800 \MP\ waits for a response. If the response is null (i.e., if nothing is
13801 typed except perhaps a few blank spaces), the original
13802 line is accepted as it stands; otherwise the line typed is
13803 used instead of the line in the file.
13805 @c void mp_firm_up_the_line (MP mp) {
13806 size_t k; /* an index into |buffer| */
13808 if ( mp->internal[pausing]>0 ) if ( mp->interaction>mp_nonstop_mode ) {
13809 wake_up_terminal; mp_print_ln(mp);
13810 if ( start<limit ) {
13811 for (k=(size_t)start;k<=(size_t)(limit-1);k++) {
13812 mp_print_str(mp, mp->buffer[k]);
13815 mp->first=limit; prompt_input("=>"); /* wait for user response */
13817 if ( mp->last>mp->first ) {
13818 for (k=mp->first;k<=mp->last-1;k++) { /* move line down in buffer */
13819 mp->buffer[k+start-mp->first]=mp->buffer[k];
13821 limit=start+mp->last-mp->first;
13826 @* \[30] Dealing with \TeX\ material.
13827 The \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}$\,\ldots\,$\&{etex}
13828 features need to be implemented at a low level in the scanning process
13829 so that \MP\ can stay in synch with the a preprocessor that treats
13830 blocks of \TeX\ material as they occur in the input file without trying
13831 to expand \MP\ macros. Thus we need a special version of |get_next|
13832 that does not expand macros and such but does handle \&{btex},
13833 \&{verbatimtex}, etc.
13835 The special version of |get_next| is called |get_t_next|. It works by flushing
13836 \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}\allowbreak
13837 $\,\ldots\,$\&{etex} blocks, switching to the \.{MPX} file when it sees
13838 \&{btex}, and switching back when it sees \&{mpxbreak}.
13844 mp_primitive(mp, "btex",start_tex,btex_code);
13845 @:btex_}{\&{btex} primitive@>
13846 mp_primitive(mp, "verbatimtex",start_tex,verbatim_code);
13847 @:verbatimtex_}{\&{verbatimtex} primitive@>
13848 mp_primitive(mp, "etex",etex_marker,0); mp->eqtb[frozen_etex]=mp->eqtb[mp->cur_sym];
13849 @:etex_}{\&{etex} primitive@>
13850 mp_primitive(mp, "mpxbreak",mpx_break,0); mp->eqtb[frozen_mpx_break]=mp->eqtb[mp->cur_sym];
13851 @:mpx_break_}{\&{mpxbreak} primitive@>
13853 @ @<Cases of |print_cmd...@>=
13854 case start_tex: if ( m==btex_code ) mp_print(mp, "btex");
13855 else mp_print(mp, "verbatimtex"); break;
13856 case etex_marker: mp_print(mp, "etex"); break;
13857 case mpx_break: mp_print(mp, "mpxbreak"); break;
13859 @ Actually, |get_t_next| is a macro that avoids procedure overhead except
13860 in the unusual case where \&{btex}, \&{verbatimtex}, \&{etex}, or \&{mpxbreak}
13863 @d get_t_next {mp_get_next(mp); if ( mp->cur_cmd<=max_pre_command ) mp_t_next(mp); }
13866 void mp_start_mpx_input (MP mp);
13869 void mp_t_next (MP mp) {
13870 int old_status; /* saves the |scanner_status| */
13871 integer old_info; /* saves the |warning_info| */
13872 while ( mp->cur_cmd<=max_pre_command ) {
13873 if ( mp->cur_cmd==mpx_break ) {
13874 if ( ! file_state || (mp->mpx_name[index]==absent) ) {
13875 @<Complain about a misplaced \&{mpxbreak}@>;
13877 mp_end_mpx_reading(mp);
13880 } else if ( mp->cur_cmd==start_tex ) {
13881 if ( token_state || (name<=max_spec_src) ) {
13882 @<Complain that we are not reading a file@>;
13883 } else if ( mpx_reading ) {
13884 @<Complain that \.{MPX} files cannot contain \TeX\ material@>;
13885 } else if ( (mp->cur_mod!=verbatim_code)&&
13886 (mp->mpx_name[index]!=finished) ) {
13887 if ( ! mp_begin_mpx_reading(mp) ) mp_start_mpx_input(mp);
13892 @<Complain about a misplaced \&{etex}@>;
13894 goto COMMON_ENDING;
13896 @<Flush the \TeX\ material@>;
13902 @ We could be in the middle of an operation such as skipping false conditional
13903 text when \TeX\ material is encountered, so we must be careful to save the
13906 @<Flush the \TeX\ material@>=
13907 old_status=mp->scanner_status;
13908 old_info=mp->warning_info;
13909 mp->scanner_status=tex_flushing;
13910 mp->warning_info=line;
13911 do { mp_get_next(mp); } while (mp->cur_cmd!=etex_marker);
13912 mp->scanner_status=old_status;
13913 mp->warning_info=old_info
13915 @ @<Complain that \.{MPX} files cannot contain \TeX\ material@>=
13916 { print_err("An mpx file cannot contain btex or verbatimtex blocks");
13917 help4("This file contains picture expressions for btex...etex")
13918 ("blocks. Such files are normally generated automatically")
13919 ("but this one seems to be messed up. I'll just keep going")
13920 ("and hope for the best.");
13924 @ @<Complain that we are not reading a file@>=
13925 { print_err("You can only use `btex' or `verbatimtex' in a file");
13926 help3("I'll have to ignore this preprocessor command because it")
13927 ("only works when there is a file to preprocess. You might")
13928 ("want to delete everything up to the next `etex`.");
13932 @ @<Complain about a misplaced \&{mpxbreak}@>=
13933 { print_err("Misplaced mpxbreak");
13934 help2("I'll ignore this preprocessor command because it")
13935 ("doesn't belong here");
13939 @ @<Complain about a misplaced \&{etex}@>=
13940 { print_err("Extra etex will be ignored");
13941 help1("There is no btex or verbatimtex for this to match");
13945 @* \[31] Scanning macro definitions.
13946 \MP\ has a variety of ways to tuck tokens away into token lists for later
13947 use: Macros can be defined with \&{def}, \&{vardef}, \&{primarydef}, etc.;
13948 repeatable code can be defined with \&{for}, \&{forever}, \&{forsuffixes}.
13949 All such operations are handled by the routines in this part of the program.
13951 The modifier part of each command code is zero for the ``ending delimiters''
13952 like \&{enddef} and \&{endfor}.
13954 @d start_def 1 /* command modifier for \&{def} */
13955 @d var_def 2 /* command modifier for \&{vardef} */
13956 @d end_def 0 /* command modifier for \&{enddef} */
13957 @d start_forever 1 /* command modifier for \&{forever} */
13958 @d end_for 0 /* command modifier for \&{endfor} */
13961 mp_primitive(mp, "def",macro_def,start_def);
13962 @:def_}{\&{def} primitive@>
13963 mp_primitive(mp, "vardef",macro_def,var_def);
13964 @:var_def_}{\&{vardef} primitive@>
13965 mp_primitive(mp, "primarydef",macro_def,secondary_primary_macro);
13966 @:primary_def_}{\&{primarydef} primitive@>
13967 mp_primitive(mp, "secondarydef",macro_def,tertiary_secondary_macro);
13968 @:secondary_def_}{\&{secondarydef} primitive@>
13969 mp_primitive(mp, "tertiarydef",macro_def,expression_tertiary_macro);
13970 @:tertiary_def_}{\&{tertiarydef} primitive@>
13971 mp_primitive(mp, "enddef",macro_def,end_def); mp->eqtb[frozen_end_def]=mp->eqtb[mp->cur_sym];
13972 @:end_def_}{\&{enddef} primitive@>
13974 mp_primitive(mp, "for",iteration,expr_base);
13975 @:for_}{\&{for} primitive@>
13976 mp_primitive(mp, "forsuffixes",iteration,suffix_base);
13977 @:for_suffixes_}{\&{forsuffixes} primitive@>
13978 mp_primitive(mp, "forever",iteration,start_forever);
13979 @:forever_}{\&{forever} primitive@>
13980 mp_primitive(mp, "endfor",iteration,end_for); mp->eqtb[frozen_end_for]=mp->eqtb[mp->cur_sym];
13981 @:end_for_}{\&{endfor} primitive@>
13983 @ @<Cases of |print_cmd...@>=
13985 if ( m<=var_def ) {
13986 if ( m==start_def ) mp_print(mp, "def");
13987 else if ( m<start_def ) mp_print(mp, "enddef");
13988 else mp_print(mp, "vardef");
13989 } else if ( m==secondary_primary_macro ) {
13990 mp_print(mp, "primarydef");
13991 } else if ( m==tertiary_secondary_macro ) {
13992 mp_print(mp, "secondarydef");
13994 mp_print(mp, "tertiarydef");
13998 if ( m<=start_forever ) {
13999 if ( m==start_forever ) mp_print(mp, "forever");
14000 else mp_print(mp, "endfor");
14001 } else if ( m==expr_base ) {
14002 mp_print(mp, "for");
14004 mp_print(mp, "forsuffixes");
14008 @ Different macro-absorbing operations have different syntaxes, but they
14009 also have a lot in common. There is a list of special symbols that are to
14010 be replaced by parameter tokens; there is a special command code that
14011 ends the definition; the quotation conventions are identical. Therefore
14012 it makes sense to have most of the work done by a single subroutine. That
14013 subroutine is called |scan_toks|.
14015 The first parameter to |scan_toks| is the command code that will
14016 terminate scanning (either |macro_def|, |loop_repeat|, or |iteration|).
14018 The second parameter, |subst_list|, points to a (possibly empty) list
14019 of two-word nodes whose |info| and |value| fields specify symbol tokens
14020 before and after replacement. The list will be returned to free storage
14023 The third parameter is simply appended to the token list that is built.
14024 And the final parameter tells how many of the special operations
14025 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#} are to be replaced by suffix parameters.
14026 When such parameters are present, they are called \.{(SUFFIX0)},
14027 \.{(SUFFIX1)}, and \.{(SUFFIX2)}.
14029 @c pointer mp_scan_toks (MP mp,command_code terminator, pointer
14030 subst_list, pointer tail_end, small_number suffix_count) {
14031 pointer p; /* tail of the token list being built */
14032 pointer q; /* temporary for link management */
14033 integer balance; /* left delimiters minus right delimiters */
14034 p=hold_head; balance=1; link(hold_head)=null;
14037 if ( mp->cur_sym>0 ) {
14038 @<Substitute for |cur_sym|, if it's on the |subst_list|@>;
14039 if ( mp->cur_cmd==terminator ) {
14040 @<Adjust the balance; |break| if it's zero@>;
14041 } else if ( mp->cur_cmd==macro_special ) {
14042 @<Handle quoted symbols, \.{\#\AT!}, \.{\AT!}, or \.{\AT!\#}@>;
14045 link(p)=mp_cur_tok(mp); p=link(p);
14047 link(p)=tail_end; mp_flush_node_list(mp, subst_list);
14048 return link(hold_head);
14051 @ @<Substitute for |cur_sym|...@>=
14054 while ( q!=null ) {
14055 if ( info(q)==mp->cur_sym ) {
14056 mp->cur_sym=value(q); mp->cur_cmd=relax; break;
14062 @ @<Adjust the balance; |break| if it's zero@>=
14063 if ( mp->cur_mod>0 ) {
14071 @ Four commands are intended to be used only within macro texts: \&{quote},
14072 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#}. They are variants of a single command
14073 code called |macro_special|.
14075 @d quote 0 /* |macro_special| modifier for \&{quote} */
14076 @d macro_prefix 1 /* |macro_special| modifier for \.{\#\AT!} */
14077 @d macro_at 2 /* |macro_special| modifier for \.{\AT!} */
14078 @d macro_suffix 3 /* |macro_special| modifier for \.{\AT!\#} */
14081 mp_primitive(mp, "quote",macro_special,quote);
14082 @:quote_}{\&{quote} primitive@>
14083 mp_primitive(mp, "#@@",macro_special,macro_prefix);
14084 @:]]]\#\AT!_}{\.{\#\AT!} primitive@>
14085 mp_primitive(mp, "@@",macro_special,macro_at);
14086 @:]]]\AT!_}{\.{\AT!} primitive@>
14087 mp_primitive(mp, "@@#",macro_special,macro_suffix);
14088 @:]]]\AT!\#_}{\.{\AT!\#} primitive@>
14090 @ @<Cases of |print_cmd...@>=
14091 case macro_special:
14093 case macro_prefix: mp_print(mp, "#@@"); break;
14094 case macro_at: mp_print_char(mp, '@@'); break;
14095 case macro_suffix: mp_print(mp, "@@#"); break;
14096 default: mp_print(mp, "quote"); break;
14100 @ @<Handle quoted...@>=
14102 if ( mp->cur_mod==quote ) { get_t_next; }
14103 else if ( mp->cur_mod<=suffix_count )
14104 mp->cur_sym=suffix_base-1+mp->cur_mod;
14107 @ Here is a routine that's used whenever a token will be redefined. If
14108 the user's token is unredefinable, the `|frozen_inaccessible|' token is
14109 substituted; the latter is redefinable but essentially impossible to use,
14110 hence \MP's tables won't get fouled up.
14112 @c void mp_get_symbol (MP mp) { /* sets |cur_sym| to a safe symbol */
14115 if ( (mp->cur_sym==0)||(mp->cur_sym>frozen_inaccessible) ) {
14116 print_err("Missing symbolic token inserted");
14117 @.Missing symbolic token...@>
14118 help3("Sorry: You can\'t redefine a number, string, or expr.")
14119 ("I've inserted an inaccessible symbol so that your")
14120 ("definition will be completed without mixing me up too badly.");
14121 if ( mp->cur_sym>0 )
14122 mp->help_line[2]="Sorry: You can\'t redefine my error-recovery tokens.";
14123 else if ( mp->cur_cmd==string_token )
14124 delete_str_ref(mp->cur_mod);
14125 mp->cur_sym=frozen_inaccessible; mp_ins_error(mp); goto RESTART;
14129 @ Before we actually redefine a symbolic token, we need to clear away its
14130 former value, if it was a variable. The following stronger version of
14131 |get_symbol| does that.
14133 @c void mp_get_clear_symbol (MP mp) {
14134 mp_get_symbol(mp); mp_clear_symbol(mp, mp->cur_sym,false);
14137 @ Here's another little subroutine; it checks that an equals sign
14138 or assignment sign comes along at the proper place in a macro definition.
14140 @c void mp_check_equals (MP mp) {
14141 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
14142 mp_missing_err(mp, "=");
14144 help5("The next thing in this `def' should have been `=',")
14145 ("because I've already looked at the definition heading.")
14146 ("But don't worry; I'll pretend that an equals sign")
14147 ("was present. Everything from here to `enddef'")
14148 ("will be the replacement text of this macro.");
14153 @ A \&{primarydef}, \&{secondarydef}, or \&{tertiarydef} is rather easily
14154 handled now that we have |scan_toks|. In this case there are
14155 two parameters, which will be \.{EXPR0} and \.{EXPR1} (i.e.,
14156 |expr_base| and |expr_base+1|).
14158 @c void mp_make_op_def (MP mp) {
14159 command_code m; /* the type of definition */
14160 pointer p,q,r; /* for list manipulation */
14162 mp_get_symbol(mp); q=mp_get_node(mp, token_node_size);
14163 info(q)=mp->cur_sym; value(q)=expr_base;
14164 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym;
14165 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14166 info(p)=mp->cur_sym; value(p)=expr_base+1; link(p)=q;
14167 get_t_next; mp_check_equals(mp);
14168 mp->scanner_status=op_defining; q=mp_get_avail(mp); ref_count(q)=null;
14169 r=mp_get_avail(mp); link(q)=r; info(r)=general_macro;
14170 link(r)=mp_scan_toks(mp, macro_def,p,null,0);
14171 mp->scanner_status=normal; eq_type(mp->warning_info)=m;
14172 equiv(mp->warning_info)=q; mp_get_x_next(mp);
14175 @ Parameters to macros are introduced by the keywords \&{expr},
14176 \&{suffix}, \&{text}, \&{primary}, \&{secondary}, and \&{tertiary}.
14179 mp_primitive(mp, "expr",param_type,expr_base);
14180 @:expr_}{\&{expr} primitive@>
14181 mp_primitive(mp, "suffix",param_type,suffix_base);
14182 @:suffix_}{\&{suffix} primitive@>
14183 mp_primitive(mp, "text",param_type,text_base);
14184 @:text_}{\&{text} primitive@>
14185 mp_primitive(mp, "primary",param_type,primary_macro);
14186 @:primary_}{\&{primary} primitive@>
14187 mp_primitive(mp, "secondary",param_type,secondary_macro);
14188 @:secondary_}{\&{secondary} primitive@>
14189 mp_primitive(mp, "tertiary",param_type,tertiary_macro);
14190 @:tertiary_}{\&{tertiary} primitive@>
14192 @ @<Cases of |print_cmd...@>=
14194 if ( m>=expr_base ) {
14195 if ( m==expr_base ) mp_print(mp, "expr");
14196 else if ( m==suffix_base ) mp_print(mp, "suffix");
14197 else mp_print(mp, "text");
14198 } else if ( m<secondary_macro ) {
14199 mp_print(mp, "primary");
14200 } else if ( m==secondary_macro ) {
14201 mp_print(mp, "secondary");
14203 mp_print(mp, "tertiary");
14207 @ Let's turn next to the more complex processing associated with \&{def}
14208 and \&{vardef}. When the following procedure is called, |cur_mod|
14209 should be either |start_def| or |var_def|.
14211 @c @<Declare the procedure called |check_delimiter|@>;
14212 @<Declare the function called |scan_declared_variable|@>;
14213 void mp_scan_def (MP mp) {
14214 int m; /* the type of definition */
14215 int n; /* the number of special suffix parameters */
14216 int k; /* the total number of parameters */
14217 int c; /* the kind of macro we're defining */
14218 pointer r; /* parameter-substitution list */
14219 pointer q; /* tail of the macro token list */
14220 pointer p; /* temporary storage */
14221 halfword base; /* |expr_base|, |suffix_base|, or |text_base| */
14222 pointer l_delim,r_delim; /* matching delimiters */
14223 m=mp->cur_mod; c=general_macro; link(hold_head)=null;
14224 q=mp_get_avail(mp); ref_count(q)=null; r=null;
14225 @<Scan the token or variable to be defined;
14226 set |n|, |scanner_status|, and |warning_info|@>;
14228 if ( mp->cur_cmd==left_delimiter ) {
14229 @<Absorb delimited parameters, putting them into lists |q| and |r|@>;
14231 if ( mp->cur_cmd==param_type ) {
14232 @<Absorb undelimited parameters, putting them into list |r|@>;
14234 mp_check_equals(mp);
14235 p=mp_get_avail(mp); info(p)=c; link(q)=p;
14236 @<Attach the replacement text to the tail of node |p|@>;
14237 mp->scanner_status=normal; mp_get_x_next(mp);
14240 @ We don't put `|frozen_end_group|' into the replacement text of
14241 a \&{vardef}, because the user may want to redefine `\.{endgroup}'.
14243 @<Attach the replacement text to the tail of node |p|@>=
14244 if ( m==start_def ) {
14245 link(p)=mp_scan_toks(mp, macro_def,r,null,n);
14247 q=mp_get_avail(mp); info(q)=mp->bg_loc; link(p)=q;
14248 p=mp_get_avail(mp); info(p)=mp->eg_loc;
14249 link(q)=mp_scan_toks(mp, macro_def,r,p,n);
14251 if ( mp->warning_info==bad_vardef )
14252 mp_flush_token_list(mp, value(bad_vardef))
14256 int eg_loc; /* hash addresses of `\.{begingroup}' and `\.{endgroup}' */
14258 @ @<Scan the token or variable to be defined;...@>=
14259 if ( m==start_def ) {
14260 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym; get_t_next;
14261 mp->scanner_status=op_defining; n=0;
14262 eq_type(mp->warning_info)=defined_macro; equiv(mp->warning_info)=q;
14264 p=mp_scan_declared_variable(mp);
14265 mp_flush_variable(mp, equiv(info(p)),link(p),true);
14266 mp->warning_info=mp_find_variable(mp, p); mp_flush_list(mp, p);
14267 if ( mp->warning_info==null ) @<Change to `\.{a bad variable}'@>;
14268 mp->scanner_status=var_defining; n=2;
14269 if ( mp->cur_cmd==macro_special ) if ( mp->cur_mod==macro_suffix ) {/* \.{\AT!\#} */
14272 type(mp->warning_info)=mp_unsuffixed_macro-2+n; value(mp->warning_info)=q;
14273 } /* |mp_suffixed_macro=mp_unsuffixed_macro+1| */
14275 @ @<Change to `\.{a bad variable}'@>=
14277 print_err("This variable already starts with a macro");
14278 @.This variable already...@>
14279 help2("After `vardef a' you can\'t say `vardef a.b'.")
14280 ("So I'll have to discard this definition.");
14281 mp_error(mp); mp->warning_info=bad_vardef;
14284 @ @<Initialize table entries...@>=
14285 name_type(bad_vardef)=mp_root; link(bad_vardef)=frozen_bad_vardef;
14286 equiv(frozen_bad_vardef)=bad_vardef; eq_type(frozen_bad_vardef)=tag_token;
14288 @ @<Absorb delimited parameters, putting them into lists |q| and |r|@>=
14290 l_delim=mp->cur_sym; r_delim=mp->cur_mod; get_t_next;
14291 if ( (mp->cur_cmd==param_type)&&(mp->cur_mod>=expr_base) ) {
14294 print_err("Missing parameter type; `expr' will be assumed");
14295 @.Missing parameter type@>
14296 help1("You should've had `expr' or `suffix' or `text' here.");
14297 mp_back_error(mp); base=expr_base;
14299 @<Absorb parameter tokens for type |base|@>;
14300 mp_check_delimiter(mp, l_delim,r_delim);
14302 } while (mp->cur_cmd==left_delimiter)
14304 @ @<Absorb parameter tokens for type |base|@>=
14306 link(q)=mp_get_avail(mp); q=link(q); info(q)=base+k;
14307 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14308 value(p)=base+k; info(p)=mp->cur_sym;
14309 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14310 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
14311 incr(k); link(p)=r; r=p; get_t_next;
14312 } while (mp->cur_cmd==comma)
14314 @ @<Absorb undelimited parameters, putting them into list |r|@>=
14316 p=mp_get_node(mp, token_node_size);
14317 if ( mp->cur_mod<expr_base ) {
14318 c=mp->cur_mod; value(p)=expr_base+k;
14320 value(p)=mp->cur_mod+k;
14321 if ( mp->cur_mod==expr_base ) c=expr_macro;
14322 else if ( mp->cur_mod==suffix_base ) c=suffix_macro;
14325 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14326 incr(k); mp_get_symbol(mp); info(p)=mp->cur_sym; link(p)=r; r=p; get_t_next;
14327 if ( c==expr_macro ) if ( mp->cur_cmd==of_token ) {
14328 c=of_macro; p=mp_get_node(mp, token_node_size);
14329 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14330 value(p)=expr_base+k; mp_get_symbol(mp); info(p)=mp->cur_sym;
14331 link(p)=r; r=p; get_t_next;
14335 @* \[32] Expanding the next token.
14336 Only a few command codes |<min_command| can possibly be returned by
14337 |get_t_next|; in increasing order, they are
14338 |if_test|, |fi_or_else|, |input|, |iteration|, |repeat_loop|,
14339 |exit_test|, |relax|, |scan_tokens|, |expand_after|, and |defined_macro|.
14341 \MP\ usually gets the next token of input by saying |get_x_next|. This is
14342 like |get_t_next| except that it keeps getting more tokens until
14343 finding |cur_cmd>=min_command|. In other words, |get_x_next| expands
14344 macros and removes conditionals or iterations or input instructions that
14347 It follows that |get_x_next| might invoke itself recursively. In fact,
14348 there is massive recursion, since macro expansion can involve the
14349 scanning of arbitrarily complex expressions, which in turn involve
14350 macro expansion and conditionals, etc.
14353 Therefore it's necessary to declare a whole bunch of |forward|
14354 procedures at this point, and to insert some other procedures
14355 that will be invoked by |get_x_next|.
14358 void mp_scan_primary (MP mp);
14359 void mp_scan_secondary (MP mp);
14360 void mp_scan_tertiary (MP mp);
14361 void mp_scan_expression (MP mp);
14362 void mp_scan_suffix (MP mp);
14363 @<Declare the procedure called |macro_call|@>;
14364 void mp_get_boolean (MP mp);
14365 void mp_pass_text (MP mp);
14366 void mp_conditional (MP mp);
14367 void mp_start_input (MP mp);
14368 void mp_begin_iteration (MP mp);
14369 void mp_resume_iteration (MP mp);
14370 void mp_stop_iteration (MP mp);
14372 @ An auxiliary subroutine called |expand| is used by |get_x_next|
14373 when it has to do exotic expansion commands.
14375 @c void mp_expand (MP mp) {
14376 pointer p; /* for list manipulation */
14377 size_t k; /* something that we hope is |<=buf_size| */
14378 pool_pointer j; /* index into |str_pool| */
14379 if ( mp->internal[tracing_commands]>unity )
14380 if ( mp->cur_cmd!=defined_macro )
14382 switch (mp->cur_cmd) {
14384 mp_conditional(mp); /* this procedure is discussed in Part 36 below */
14387 @<Terminate the current conditional and skip to \&{fi}@>;
14390 @<Initiate or terminate input from a file@>;
14393 if ( mp->cur_mod==end_for ) {
14394 @<Scold the user for having an extra \&{endfor}@>;
14396 mp_begin_iteration(mp); /* this procedure is discussed in Part 37 below */
14403 @<Exit a loop if the proper time has come@>;
14408 @<Expand the token after the next token@>;
14411 @<Put a string into the input buffer@>;
14413 case defined_macro:
14414 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14416 }; /* there are no other cases */
14419 @ @<Scold the user...@>=
14421 print_err("Extra `endfor'");
14423 help2("I'm not currently working on a for loop,")
14424 ("so I had better not try to end anything.");
14428 @ The processing of \&{input} involves the |start_input| subroutine,
14429 which will be declared later; the processing of \&{endinput} is trivial.
14432 mp_primitive(mp, "input",input,0);
14433 @:input_}{\&{input} primitive@>
14434 mp_primitive(mp, "endinput",input,1);
14435 @:end_input_}{\&{endinput} primitive@>
14437 @ @<Cases of |print_cmd_mod|...@>=
14439 if ( m==0 ) mp_print(mp, "input");
14440 else mp_print(mp, "endinput");
14443 @ @<Initiate or terminate input...@>=
14444 if ( mp->cur_mod>0 ) mp->force_eof=true;
14445 else mp_start_input(mp)
14447 @ We'll discuss the complicated parts of loop operations later. For now
14448 it suffices to know that there's a global variable called |loop_ptr|
14449 that will be |null| if no loop is in progress.
14452 { while ( token_state &&(loc==null) )
14453 mp_end_token_list(mp); /* conserve stack space */
14454 if ( mp->loop_ptr==null ) {
14455 print_err("Lost loop");
14457 help2("I'm confused; after exiting from a loop, I still seem")
14458 ("to want to repeat it. I'll try to forget the problem.");
14461 mp_resume_iteration(mp); /* this procedure is in Part 37 below */
14465 @ @<Exit a loop if the proper time has come@>=
14466 { mp_get_boolean(mp);
14467 if ( mp->internal[tracing_commands]>unity )
14468 mp_show_cmd_mod(mp, nullary,mp->cur_exp);
14469 if ( mp->cur_exp==true_code ) {
14470 if ( mp->loop_ptr==null ) {
14471 print_err("No loop is in progress");
14472 @.No loop is in progress@>
14473 help1("Why say `exitif' when there's nothing to exit from?");
14474 if ( mp->cur_cmd==semicolon ) mp_error(mp); else mp_back_error(mp);
14476 @<Exit prematurely from an iteration@>;
14478 } else if ( mp->cur_cmd!=semicolon ) {
14479 mp_missing_err(mp, ";");
14481 help2("After `exitif <boolean exp>' I expect to see a semicolon.")
14482 ("I shall pretend that one was there."); mp_back_error(mp);
14486 @ Here we use the fact that |forever_text| is the only |token_type| that
14487 is less than |loop_text|.
14489 @<Exit prematurely...@>=
14492 if ( file_state ) {
14493 mp_end_file_reading(mp);
14495 if ( token_type<=loop_text ) p=start;
14496 mp_end_token_list(mp);
14499 if ( p!=info(mp->loop_ptr) ) mp_fatal_error(mp, "*** (loop confusion)");
14501 mp_stop_iteration(mp); /* this procedure is in Part 34 below */
14504 @ @<Expand the token after the next token@>=
14506 p=mp_cur_tok(mp); get_t_next;
14507 if ( mp->cur_cmd<min_command ) mp_expand(mp);
14508 else mp_back_input(mp);
14512 @ @<Put a string into the input buffer@>=
14513 { mp_get_x_next(mp); mp_scan_primary(mp);
14514 if ( mp->cur_type!=mp_string_type ) {
14515 mp_disp_err(mp, null,"Not a string");
14517 help2("I'm going to flush this expression, since")
14518 ("scantokens should be followed by a known string.");
14519 mp_put_get_flush_error(mp, 0);
14522 if ( length(mp->cur_exp)>0 )
14523 @<Pretend we're reading a new one-line file@>;
14527 @ @<Pretend we're reading a new one-line file@>=
14528 { mp_begin_file_reading(mp); name=is_scantok;
14529 k=mp->first+length(mp->cur_exp);
14530 if ( k>=mp->max_buf_stack ) {
14531 while ( k>=mp->buf_size ) {
14532 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
14534 mp->max_buf_stack=k+1;
14536 j=mp->str_start[mp->cur_exp]; limit=k;
14537 while ( mp->first<(size_t)limit ) {
14538 mp->buffer[mp->first]=mp->str_pool[j]; incr(j); incr(mp->first);
14540 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
14541 mp_flush_cur_exp(mp, 0);
14544 @ Here finally is |get_x_next|.
14546 The expression scanning routines to be considered later
14547 communicate via the global quantities |cur_type| and |cur_exp|;
14548 we must be very careful to save and restore these quantities while
14549 macros are being expanded.
14553 void mp_get_x_next (MP mp);
14555 @ @c void mp_get_x_next (MP mp) {
14556 pointer save_exp; /* a capsule to save |cur_type| and |cur_exp| */
14558 if ( mp->cur_cmd<min_command ) {
14559 save_exp=mp_stash_cur_exp(mp);
14561 if ( mp->cur_cmd==defined_macro )
14562 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14566 } while (mp->cur_cmd<min_command);
14567 mp_unstash_cur_exp(mp, save_exp); /* that restores |cur_type| and |cur_exp| */
14571 @ Now let's consider the |macro_call| procedure, which is used to start up
14572 all user-defined macros. Since the arguments to a macro might be expressions,
14573 |macro_call| is recursive.
14576 The first parameter to |macro_call| points to the reference count of the
14577 token list that defines the macro. The second parameter contains any
14578 arguments that have already been parsed (see below). The third parameter
14579 points to the symbolic token that names the macro. If the third parameter
14580 is |null|, the macro was defined by \&{vardef}, so its name can be
14581 reconstructed from the prefix and ``at'' arguments found within the
14584 What is this second parameter? It's simply a linked list of one-word items,
14585 whose |info| fields point to the arguments. In other words, if |arg_list=null|,
14586 no arguments have been scanned yet; otherwise |info(arg_list)| points to
14587 the first scanned argument, and |link(arg_list)| points to the list of
14588 further arguments (if any).
14590 Arguments of type \&{expr} are so-called capsules, which we will
14591 discuss later when we concentrate on expressions; they can be
14592 recognized easily because their |link| field is |void|. Arguments of type
14593 \&{suffix} and \&{text} are token lists without reference counts.
14595 @ After argument scanning is complete, the arguments are moved to the
14596 |param_stack|. (They can't be put on that stack any sooner, because
14597 the stack is growing and shrinking in unpredictable ways as more arguments
14598 are being acquired.) Then the macro body is fed to the scanner; i.e.,
14599 the replacement text of the macro is placed at the top of the \MP's
14600 input stack, so that |get_t_next| will proceed to read it next.
14602 @<Declare the procedure called |macro_call|@>=
14603 @<Declare the procedure called |print_macro_name|@>;
14604 @<Declare the procedure called |print_arg|@>;
14605 @<Declare the procedure called |scan_text_arg|@>;
14606 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14607 pointer macro_name) ;
14610 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14611 pointer macro_name) {
14612 /* invokes a user-defined control sequence */
14613 pointer r; /* current node in the macro's token list */
14614 pointer p,q; /* for list manipulation */
14615 integer n; /* the number of arguments */
14616 pointer tail = 0; /* tail of the argument list */
14617 pointer l_delim=0,r_delim=0; /* a delimiter pair */
14618 r=link(def_ref); add_mac_ref(def_ref);
14619 if ( arg_list==null ) {
14622 @<Determine the number |n| of arguments already supplied,
14623 and set |tail| to the tail of |arg_list|@>;
14625 if ( mp->internal[tracing_macros]>0 ) {
14626 @<Show the text of the macro being expanded, and the existing arguments@>;
14628 @<Scan the remaining arguments, if any; set |r| to the first token
14629 of the replacement text@>;
14630 @<Feed the arguments and replacement text to the scanner@>;
14633 @ @<Show the text of the macro...@>=
14634 mp_begin_diagnostic(mp); mp_print_ln(mp);
14635 mp_print_macro_name(mp, arg_list,macro_name);
14636 if ( n==3 ) mp_print(mp, "@@#"); /* indicate a suffixed macro */
14637 mp_show_macro(mp, def_ref,null,100000);
14638 if ( arg_list!=null ) {
14642 mp_print_arg(mp, q,n,0);
14643 incr(n); p=link(p);
14646 mp_end_diagnostic(mp, false)
14649 @ @<Declare the procedure called |print_macro_name|@>=
14650 void mp_print_macro_name (MP mp,pointer a, pointer n);
14653 void mp_print_macro_name (MP mp,pointer a, pointer n) {
14654 pointer p,q; /* they traverse the first part of |a| */
14660 mp_print_text(info(info(link(a))));
14663 while ( link(q)!=null ) q=link(q);
14664 link(q)=info(link(a));
14665 mp_show_token_list(mp, p,null,1000,0);
14671 @ @<Declare the procedure called |print_arg|@>=
14672 void mp_print_arg (MP mp,pointer q, integer n, pointer b) ;
14675 void mp_print_arg (MP mp,pointer q, integer n, pointer b) {
14676 if ( link(q)==diov ) mp_print_nl(mp, "(EXPR");
14677 else if ( (b<text_base)&&(b!=text_macro) ) mp_print_nl(mp, "(SUFFIX");
14678 else mp_print_nl(mp, "(TEXT");
14679 mp_print_int(mp, n); mp_print(mp, ")<-");
14680 if ( link(q)==diov ) mp_print_exp(mp, q,1);
14681 else mp_show_token_list(mp, q,null,1000,0);
14684 @ @<Determine the number |n| of arguments already supplied...@>=
14686 n=1; tail=arg_list;
14687 while ( link(tail)!=null ) {
14688 incr(n); tail=link(tail);
14692 @ @<Scan the remaining arguments, if any; set |r|...@>=
14693 mp->cur_cmd=comma+1; /* anything |<>comma| will do */
14694 while ( info(r)>=expr_base ) {
14695 @<Scan the delimited argument represented by |info(r)|@>;
14698 if ( mp->cur_cmd==comma ) {
14699 print_err("Too many arguments to ");
14700 @.Too many arguments...@>
14701 mp_print_macro_name(mp, arg_list,macro_name); mp_print_char(mp, ';');
14702 mp_print_nl(mp, " Missing `"); mp_print_text(r_delim);
14704 mp_print(mp, "' has been inserted");
14705 help3("I'm going to assume that the comma I just read was a")
14706 ("right delimiter, and then I'll begin expanding the macro.")
14707 ("You might want to delete some tokens before continuing.");
14710 if ( info(r)!=general_macro ) {
14711 @<Scan undelimited argument(s)@>;
14715 @ At this point, the reader will find it advisable to review the explanation
14716 of token list format that was presented earlier, paying special attention to
14717 the conventions that apply only at the beginning of a macro's token list.
14719 On the other hand, the reader will have to take the expression-parsing
14720 aspects of the following program on faith; we will explain |cur_type|
14721 and |cur_exp| later. (Several things in this program depend on each other,
14722 and it's necessary to jump into the circle somewhere.)
14724 @<Scan the delimited argument represented by |info(r)|@>=
14725 if ( mp->cur_cmd!=comma ) {
14727 if ( mp->cur_cmd!=left_delimiter ) {
14728 print_err("Missing argument to ");
14729 @.Missing argument...@>
14730 mp_print_macro_name(mp, arg_list,macro_name);
14731 help3("That macro has more parameters than you thought.")
14732 ("I'll continue by pretending that each missing argument")
14733 ("is either zero or null.");
14734 if ( info(r)>=suffix_base ) {
14735 mp->cur_exp=null; mp->cur_type=mp_token_list;
14737 mp->cur_exp=0; mp->cur_type=mp_known;
14739 mp_back_error(mp); mp->cur_cmd=right_delimiter;
14742 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
14744 @<Scan the argument represented by |info(r)|@>;
14745 if ( mp->cur_cmd!=comma )
14746 @<Check that the proper right delimiter was present@>;
14748 @<Append the current expression to |arg_list|@>
14750 @ @<Check that the proper right delim...@>=
14751 if ( (mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
14752 if ( info(link(r))>=expr_base ) {
14753 mp_missing_err(mp, ",");
14755 help3("I've finished reading a macro argument and am about to")
14756 ("read another; the arguments weren't delimited correctly.")
14757 ("You might want to delete some tokens before continuing.");
14758 mp_back_error(mp); mp->cur_cmd=comma;
14760 mp_missing_err(mp, str(text(r_delim)));
14762 help2("I've gotten to the end of the macro parameter list.")
14763 ("You might want to delete some tokens before continuing.");
14768 @ A \&{suffix} or \&{text} parameter will be have been scanned as
14769 a token list pointed to by |cur_exp|, in which case we will have
14770 |cur_type=token_list|.
14772 @<Append the current expression to |arg_list|@>=
14774 p=mp_get_avail(mp);
14775 if ( mp->cur_type==mp_token_list ) info(p)=mp->cur_exp;
14776 else info(p)=mp_stash_cur_exp(mp);
14777 if ( mp->internal[tracing_macros]>0 ) {
14778 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,info(r));
14779 mp_end_diagnostic(mp, false);
14781 if ( arg_list==null ) arg_list=p;
14786 @ @<Scan the argument represented by |info(r)|@>=
14787 if ( info(r)>=text_base ) {
14788 mp_scan_text_arg(mp, l_delim,r_delim);
14791 if ( info(r)>=suffix_base ) mp_scan_suffix(mp);
14792 else mp_scan_expression(mp);
14795 @ The parameters to |scan_text_arg| are either a pair of delimiters
14796 or zero; the latter case is for undelimited text arguments, which
14797 end with the first semicolon or \&{endgroup} or \&{end} that is not
14798 contained in a group.
14800 @<Declare the procedure called |scan_text_arg|@>=
14801 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) ;
14804 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) {
14805 integer balance; /* excess of |l_delim| over |r_delim| */
14806 pointer p; /* list tail */
14807 mp->warning_info=l_delim; mp->scanner_status=absorbing;
14808 p=hold_head; balance=1; link(hold_head)=null;
14811 if ( l_delim==0 ) {
14812 @<Adjust the balance for an undelimited argument; |break| if done@>;
14814 @<Adjust the balance for a delimited argument; |break| if done@>;
14816 link(p)=mp_cur_tok(mp); p=link(p);
14818 mp->cur_exp=link(hold_head); mp->cur_type=mp_token_list;
14819 mp->scanner_status=normal;
14822 @ @<Adjust the balance for a delimited argument...@>=
14823 if ( mp->cur_cmd==right_delimiter ) {
14824 if ( mp->cur_mod==l_delim ) {
14826 if ( balance==0 ) break;
14828 } else if ( mp->cur_cmd==left_delimiter ) {
14829 if ( mp->cur_mod==r_delim ) incr(balance);
14832 @ @<Adjust the balance for an undelimited...@>=
14833 if ( end_of_statement ) { /* |cur_cmd=semicolon|, |end_group|, or |stop| */
14834 if ( balance==1 ) { break; }
14835 else { if ( mp->cur_cmd==end_group ) decr(balance); }
14836 } else if ( mp->cur_cmd==begin_group ) {
14840 @ @<Scan undelimited argument(s)@>=
14842 if ( info(r)<text_macro ) {
14844 if ( info(r)!=suffix_macro ) {
14845 if ( (mp->cur_cmd==equals)||(mp->cur_cmd==assignment) ) mp_get_x_next(mp);
14849 case primary_macro:mp_scan_primary(mp); break;
14850 case secondary_macro:mp_scan_secondary(mp); break;
14851 case tertiary_macro:mp_scan_tertiary(mp); break;
14852 case expr_macro:mp_scan_expression(mp); break;
14854 @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>;
14857 @<Scan a suffix with optional delimiters@>;
14859 case text_macro:mp_scan_text_arg(mp, 0,0); break;
14860 } /* there are no other cases */
14862 @<Append the current expression to |arg_list|@>;
14865 @ @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>=
14867 mp_scan_expression(mp); p=mp_get_avail(mp); info(p)=mp_stash_cur_exp(mp);
14868 if ( mp->internal[tracing_macros]>0 ) {
14869 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,0);
14870 mp_end_diagnostic(mp, false);
14872 if ( arg_list==null ) arg_list=p; else link(tail)=p;
14874 if ( mp->cur_cmd!=of_token ) {
14875 mp_missing_err(mp, "of"); mp_print(mp, " for ");
14877 mp_print_macro_name(mp, arg_list,macro_name);
14878 help1("I've got the first argument; will look now for the other.");
14881 mp_get_x_next(mp); mp_scan_primary(mp);
14884 @ @<Scan a suffix with optional delimiters@>=
14886 if ( mp->cur_cmd!=left_delimiter ) {
14889 l_delim=mp->cur_sym; r_delim=mp->cur_mod; mp_get_x_next(mp);
14891 mp_scan_suffix(mp);
14892 if ( l_delim!=null ) {
14893 if ((mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
14894 mp_missing_err(mp, str(text(r_delim)));
14896 help2("I've gotten to the end of the macro parameter list.")
14897 ("You might want to delete some tokens before continuing.");
14904 @ Before we put a new token list on the input stack, it is wise to clean off
14905 all token lists that have recently been depleted. Then a user macro that ends
14906 with a call to itself will not require unbounded stack space.
14908 @<Feed the arguments and replacement text to the scanner@>=
14909 while ( token_state &&(loc==null) ) mp_end_token_list(mp); /* conserve stack space */
14910 if ( mp->param_ptr+n>mp->max_param_stack ) {
14911 mp->max_param_stack=mp->param_ptr+n;
14912 if ( mp->max_param_stack>mp->param_size )
14913 mp_overflow(mp, "parameter stack size",mp->param_size);
14914 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
14916 mp_begin_token_list(mp, def_ref,macro); name=macro_name; loc=r;
14920 mp->param_stack[mp->param_ptr]=info(p); incr(mp->param_ptr); p=link(p);
14922 mp_flush_list(mp, arg_list);
14925 @ It's sometimes necessary to put a single argument onto |param_stack|.
14926 The |stack_argument| subroutine does this.
14928 @c void mp_stack_argument (MP mp,pointer p) {
14929 if ( mp->param_ptr==mp->max_param_stack ) {
14930 incr(mp->max_param_stack);
14931 if ( mp->max_param_stack>mp->param_size )
14932 mp_overflow(mp, "parameter stack size",mp->param_size);
14933 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
14935 mp->param_stack[mp->param_ptr]=p; incr(mp->param_ptr);
14938 @* \[33] Conditional processing.
14939 Let's consider now the way \&{if} commands are handled.
14941 Conditions can be inside conditions, and this nesting has a stack
14942 that is independent of other stacks.
14943 Four global variables represent the top of the condition stack:
14944 |cond_ptr| points to pushed-down entries, if~any; |cur_if| tells whether
14945 we are processing \&{if} or \&{elseif}; |if_limit| specifies
14946 the largest code of a |fi_or_else| command that is syntactically legal;
14947 and |if_line| is the line number at which the current conditional began.
14949 If no conditions are currently in progress, the condition stack has the
14950 special state |cond_ptr=null|, |if_limit=normal|, |cur_if=0|, |if_line=0|.
14951 Otherwise |cond_ptr| points to a two-word node; the |type|, |name_type|, and
14952 |link| fields of the first word contain |if_limit|, |cur_if|, and
14953 |cond_ptr| at the next level, and the second word contains the
14954 corresponding |if_line|.
14956 @d if_node_size 2 /* number of words in stack entry for conditionals */
14957 @d if_line_field(A) mp->mem[(A)+1].cint
14958 @d if_code 1 /* code for \&{if} being evaluated */
14959 @d fi_code 2 /* code for \&{fi} */
14960 @d else_code 3 /* code for \&{else} */
14961 @d else_if_code 4 /* code for \&{elseif} */
14964 pointer cond_ptr; /* top of the condition stack */
14965 integer if_limit; /* upper bound on |fi_or_else| codes */
14966 small_number cur_if; /* type of conditional being worked on */
14967 integer if_line; /* line where that conditional began */
14970 mp->cond_ptr=null; mp->if_limit=normal; mp->cur_if=0; mp->if_line=0;
14973 mp_primitive(mp, "if",if_test,if_code);
14974 @:if_}{\&{if} primitive@>
14975 mp_primitive(mp, "fi",fi_or_else,fi_code); mp->eqtb[frozen_fi]=mp->eqtb[mp->cur_sym];
14976 @:fi_}{\&{fi} primitive@>
14977 mp_primitive(mp, "else",fi_or_else,else_code);
14978 @:else_}{\&{else} primitive@>
14979 mp_primitive(mp, "elseif",fi_or_else,else_if_code);
14980 @:else_if_}{\&{elseif} primitive@>
14982 @ @<Cases of |print_cmd_mod|...@>=
14986 case if_code:mp_print(mp, "if"); break;
14987 case fi_code:mp_print(mp, "fi"); break;
14988 case else_code:mp_print(mp, "else"); break;
14989 default: mp_print(mp, "elseif"); break;
14993 @ Here is a procedure that ignores text until coming to an \&{elseif},
14994 \&{else}, or \&{fi} at level zero of $\&{if}\ldots\&{fi}$
14995 nesting. After it has acted, |cur_mod| will indicate the token that
14998 \MP's smallest two command codes are |if_test| and |fi_or_else|; this
14999 makes the skipping process a bit simpler.
15002 void mp_pass_text (MP mp) {
15004 mp->scanner_status=skipping;
15005 mp->warning_info=mp_true_line(mp);
15008 if ( mp->cur_cmd<=fi_or_else ) {
15009 if ( mp->cur_cmd<fi_or_else ) {
15013 if ( mp->cur_mod==fi_code ) decr(l);
15016 @<Decrease the string reference count,
15017 if the current token is a string@>;
15020 mp->scanner_status=normal;
15023 @ @<Decrease the string reference count...@>=
15024 if ( mp->cur_cmd==string_token ) { delete_str_ref(mp->cur_mod); }
15026 @ When we begin to process a new \&{if}, we set |if_limit:=if_code|; then
15027 if \&{elseif} or \&{else} or \&{fi} occurs before the current \&{if}
15028 condition has been evaluated, a colon will be inserted.
15029 A construction like `\.{if fi}' would otherwise get \MP\ confused.
15031 @<Push the condition stack@>=
15032 { p=mp_get_node(mp, if_node_size); link(p)=mp->cond_ptr; type(p)=mp->if_limit;
15033 name_type(p)=mp->cur_if; if_line_field(p)=mp->if_line;
15034 mp->cond_ptr=p; mp->if_limit=if_code; mp->if_line=mp_true_line(mp);
15035 mp->cur_if=if_code;
15038 @ @<Pop the condition stack@>=
15039 { p=mp->cond_ptr; mp->if_line=if_line_field(p);
15040 mp->cur_if=name_type(p); mp->if_limit=type(p); mp->cond_ptr=link(p);
15041 mp_free_node(mp, p,if_node_size);
15044 @ Here's a procedure that changes the |if_limit| code corresponding to
15045 a given value of |cond_ptr|.
15047 @c void mp_change_if_limit (MP mp,small_number l, pointer p) {
15049 if ( p==mp->cond_ptr ) {
15050 mp->if_limit=l; /* that's the easy case */
15054 if ( q==null ) mp_confusion(mp, "if");
15055 @:this can't happen if}{\quad if@>
15056 if ( link(q)==p ) {
15064 @ The user is supposed to put colons into the proper parts of conditional
15065 statements. Therefore, \MP\ has to check for their presence.
15068 void mp_check_colon (MP mp) {
15069 if ( mp->cur_cmd!=colon ) {
15070 mp_missing_err(mp, ":");
15072 help2("There should've been a colon after the condition.")
15073 ("I shall pretend that one was there.");;
15078 @ A condition is started when the |get_x_next| procedure encounters
15079 an |if_test| command; in that case |get_x_next| calls |conditional|,
15080 which is a recursive procedure.
15083 @c void mp_conditional (MP mp) {
15084 pointer save_cond_ptr; /* |cond_ptr| corresponding to this conditional */
15085 int new_if_limit; /* future value of |if_limit| */
15086 pointer p; /* temporary register */
15087 @<Push the condition stack@>;
15088 save_cond_ptr=mp->cond_ptr;
15090 mp_get_boolean(mp); new_if_limit=else_if_code;
15091 if ( mp->internal[tracing_commands]>unity ) {
15092 @<Display the boolean value of |cur_exp|@>;
15095 mp_check_colon(mp);
15096 if ( mp->cur_exp==true_code ) {
15097 mp_change_if_limit(mp, new_if_limit,save_cond_ptr);
15098 return; /* wait for \&{elseif}, \&{else}, or \&{fi} */
15100 @<Skip to \&{elseif} or \&{else} or \&{fi}, then |goto done|@>;
15102 mp->cur_if=mp->cur_mod; mp->if_line=mp_true_line(mp);
15103 if ( mp->cur_mod==fi_code ) {
15104 @<Pop the condition stack@>
15105 } else if ( mp->cur_mod==else_if_code ) {
15108 mp->cur_exp=true_code; new_if_limit=fi_code; mp_get_x_next(mp);
15113 @ In a construction like `\&{if} \&{if} \&{true}: $0=1$: \\{foo}
15114 \&{else}: \\{bar} \&{fi}', the first \&{else}
15115 that we come to after learning that the \&{if} is false is not the
15116 \&{else} we're looking for. Hence the following curious logic is needed.
15118 @<Skip to \&{elseif}...@>=
15121 if ( mp->cond_ptr==save_cond_ptr ) goto DONE;
15122 else if ( mp->cur_mod==fi_code ) @<Pop the condition stack@>;
15126 @ @<Display the boolean value...@>=
15127 { mp_begin_diagnostic(mp);
15128 if ( mp->cur_exp==true_code ) mp_print(mp, "{true}");
15129 else mp_print(mp, "{false}");
15130 mp_end_diagnostic(mp, false);
15133 @ The processing of conditionals is complete except for the following
15134 code, which is actually part of |get_x_next|. It comes into play when
15135 \&{elseif}, \&{else}, or \&{fi} is scanned.
15137 @<Terminate the current conditional and skip to \&{fi}@>=
15138 if ( mp->cur_mod>mp->if_limit ) {
15139 if ( mp->if_limit==if_code ) { /* condition not yet evaluated */
15140 mp_missing_err(mp, ":");
15142 mp_back_input(mp); mp->cur_sym=frozen_colon; mp_ins_error(mp);
15144 print_err("Extra "); mp_print_cmd_mod(mp, fi_or_else,mp->cur_mod);
15148 help1("I'm ignoring this; it doesn't match any if.");
15152 while ( mp->cur_mod!=fi_code ) mp_pass_text(mp); /* skip to \&{fi} */
15153 @<Pop the condition stack@>;
15156 @* \[34] Iterations.
15157 To bring our treatment of |get_x_next| to a close, we need to consider what
15158 \MP\ does when it sees \&{for}, \&{forsuffixes}, and \&{forever}.
15160 There's a global variable |loop_ptr| that keeps track of the \&{for} loops
15161 that are currently active. If |loop_ptr=null|, no loops are in progress;
15162 otherwise |info(loop_ptr)| points to the iterative text of the current
15163 (innermost) loop, and |link(loop_ptr)| points to the data for any other
15164 loops that enclose the current one.
15166 A loop-control node also has two other fields, called |loop_type| and
15167 |loop_list|, whose contents depend on the type of loop:
15169 \yskip\indent|loop_type(loop_ptr)=null| means that |loop_list(loop_ptr)|
15170 points to a list of one-word nodes whose |info| fields point to the
15171 remaining argument values of a suffix list and expression list.
15173 \yskip\indent|loop_type(loop_ptr)=diov| means that the current loop is
15176 \yskip\indent|loop_type(loop_ptr)=progression_flag| means that
15177 |p=loop_list(loop_ptr)| points to a ``progression node'' and |value(p)|,
15178 |step_size(p)|, and |final_value(p)| contain the data for an arithmetic
15181 \yskip\indent|loop_type(loop_ptr)=p>diov| means that |p| points to an edge
15182 header and |loop_list(loop_ptr)| points into the graphical object list for
15185 \yskip\noindent In the case of a progression node, the first word is not used
15186 because the link field of words in the dynamic memory area cannot be arbitrary.
15188 @d loop_list_loc(A) ((A)+1) /* where the |loop_list| field resides */
15189 @d loop_type(A) info(loop_list_loc((A))) /* the type of \&{for} loop */
15190 @d loop_list(A) link(loop_list_loc((A))) /* the remaining list elements */
15191 @d loop_node_size 2 /* the number of words in a loop control node */
15192 @d progression_node_size 4 /* the number of words in a progression node */
15193 @d step_size(A) mp->mem[(A)+2].sc /* the step size in an arithmetic progression */
15194 @d final_value(A) mp->mem[(A)+3].sc /* the final value in an arithmetic progression */
15195 @d progression_flag (null+2)
15196 /* |loop_type| value when |loop_list| points to a progression node */
15199 pointer loop_ptr; /* top of the loop-control-node stack */
15204 @ If the expressions that define an arithmetic progression in
15205 a \&{for} loop don't have known numeric values, the |bad_for|
15206 subroutine screams at the user.
15208 @c void mp_bad_for (MP mp, char * s) {
15209 mp_disp_err(mp, null,"Improper "); /* show the bad expression above the message */
15210 @.Improper...replaced by 0@>
15211 mp_print(mp, s); mp_print(mp, " has been replaced by 0");
15212 help4("When you say `for x=a step b until c',")
15213 ("the initial value `a' and the step size `b'")
15214 ("and the final value `c' must have known numeric values.")
15215 ("I'm zeroing this one. Proceed, with fingers crossed.");
15216 mp_put_get_flush_error(mp, 0);
15219 @ Here's what \MP\ does when \&{for}, \&{forsuffixes}, or \&{forever}
15220 has just been scanned. (This code requires slight familiarity with
15221 expression-parsing routines that we have not yet discussed; but it seems
15222 to belong in the present part of the program, even though the original author
15223 didn't write it until later. The reader may wish to come back to it.)
15225 @c void mp_begin_iteration (MP mp) {
15226 halfword m; /* |expr_base| (\&{for}) or |suffix_base| (\&{forsuffixes}) */
15227 halfword n; /* hash address of the current symbol */
15228 pointer s; /* the new loop-control node */
15229 pointer p; /* substitution list for |scan_toks| */
15230 pointer q; /* link manipulation register */
15231 pointer pp; /* a new progression node */
15232 m=mp->cur_mod; n=mp->cur_sym; s=mp_get_node(mp, loop_node_size);
15233 if ( m==start_forever ){
15234 loop_type(s)=diov; p=null; mp_get_x_next(mp);
15236 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
15237 info(p)=mp->cur_sym; value(p)=m;
15239 if ( mp->cur_cmd==within_token ) {
15240 @<Set up a picture iteration@>;
15242 @<Check for the |"="| or |":="| in a loop header@>;
15243 @<Scan the values to be used in the loop@>;
15246 @<Check for the presence of a colon@>;
15247 @<Scan the loop text and put it on the loop control stack@>;
15248 mp_resume_iteration(mp);
15251 @ @<Check for the |"="| or |":="| in a loop header@>=
15252 if ( (mp->cur_cmd!=equals)&&(mp->cur_cmd!=assignment) ) {
15253 mp_missing_err(mp, "=");
15255 help3("The next thing in this loop should have been `=' or `:='.")
15256 ("But don't worry; I'll pretend that an equals sign")
15257 ("was present, and I'll look for the values next.");
15261 @ @<Check for the presence of a colon@>=
15262 if ( mp->cur_cmd!=colon ) {
15263 mp_missing_err(mp, ":");
15265 help3("The next thing in this loop should have been a `:'.")
15266 ("So I'll pretend that a colon was present;")
15267 ("everything from here to `endfor' will be iterated.");
15271 @ We append a special |frozen_repeat_loop| token in place of the
15272 `\&{endfor}' at the end of the loop. This will come through \MP's scanner
15273 at the proper time to cause the loop to be repeated.
15275 (If the user tries some shenanigan like `\&{for} $\ldots$ \&{let} \&{endfor}',
15276 he will be foiled by the |get_symbol| routine, which keeps frozen
15277 tokens unchanged. Furthermore the |frozen_repeat_loop| is an \&{outer}
15278 token, so it won't be lost accidentally.)
15280 @ @<Scan the loop text...@>=
15281 q=mp_get_avail(mp); info(q)=frozen_repeat_loop;
15282 mp->scanner_status=loop_defining; mp->warning_info=n;
15283 info(s)=mp_scan_toks(mp, iteration,p,q,0); mp->scanner_status=normal;
15284 link(s)=mp->loop_ptr; mp->loop_ptr=s
15286 @ @<Initialize table...@>=
15287 eq_type(frozen_repeat_loop)=repeat_loop+outer_tag;
15288 text(frozen_repeat_loop)=intern(" ENDFOR");
15290 @ The loop text is inserted into \MP's scanning apparatus by the
15291 |resume_iteration| routine.
15293 @c void mp_resume_iteration (MP mp) {
15294 pointer p,q; /* link registers */
15295 p=loop_type(mp->loop_ptr);
15296 if ( p==progression_flag ) {
15297 p=loop_list(mp->loop_ptr); /* now |p| points to a progression node */
15298 mp->cur_exp=value(p);
15299 if ( @<The arithmetic progression has ended@> ) {
15300 mp_stop_iteration(mp);
15303 mp->cur_type=mp_known; q=mp_stash_cur_exp(mp); /* make |q| an \&{expr} argument */
15304 value(p)=mp->cur_exp+step_size(p); /* set |value(p)| for the next iteration */
15305 } else if ( p==null ) {
15306 p=loop_list(mp->loop_ptr);
15308 mp_stop_iteration(mp);
15311 loop_list(mp->loop_ptr)=link(p); q=info(p); free_avail(p);
15312 } else if ( p==diov ) {
15313 mp_begin_token_list(mp, info(mp->loop_ptr),forever_text); return;
15315 @<Make |q| a capsule containing the next picture component from
15316 |loop_list(loop_ptr)| or |goto not_found|@>;
15318 mp_begin_token_list(mp, info(mp->loop_ptr),loop_text);
15319 mp_stack_argument(mp, q);
15320 if ( mp->internal[tracing_commands]>unity ) {
15321 @<Trace the start of a loop@>;
15325 mp_stop_iteration(mp);
15328 @ @<The arithmetic progression has ended@>=
15329 ((step_size(p)>0)&&(mp->cur_exp>final_value(p)))||
15330 ((step_size(p)<0)&&(mp->cur_exp<final_value(p)))
15332 @ @<Trace the start of a loop@>=
15334 mp_begin_diagnostic(mp); mp_print_nl(mp, "{loop value=");
15336 if ( (q!=null)&&(link(q)==diov) ) mp_print_exp(mp, q,1);
15337 else mp_show_token_list(mp, q,null,50,0);
15338 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
15341 @ @<Make |q| a capsule containing the next picture component from...@>=
15342 { q=loop_list(mp->loop_ptr);
15343 if ( q==null ) goto NOT_FOUND;
15344 skip_component(q) goto NOT_FOUND;
15345 mp->cur_exp=mp_copy_objects(mp, loop_list(mp->loop_ptr),q);
15346 mp_init_bbox(mp, mp->cur_exp);
15347 mp->cur_type=mp_picture_type;
15348 loop_list(mp->loop_ptr)=q;
15349 q=mp_stash_cur_exp(mp);
15352 @ A level of loop control disappears when |resume_iteration| has decided
15353 not to resume, or when an \&{exitif} construction has removed the loop text
15354 from the input stack.
15356 @c void mp_stop_iteration (MP mp) {
15357 pointer p,q; /* the usual */
15358 p=loop_type(mp->loop_ptr);
15359 if ( p==progression_flag ) {
15360 mp_free_node(mp, loop_list(mp->loop_ptr),progression_node_size);
15361 } else if ( p==null ){
15362 q=loop_list(mp->loop_ptr);
15363 while ( q!=null ) {
15366 if ( link(p)==diov ) { /* it's an \&{expr} parameter */
15367 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
15369 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
15372 p=q; q=link(q); free_avail(p);
15374 } else if ( p>progression_flag ) {
15375 delete_edge_ref(p);
15377 p=mp->loop_ptr; mp->loop_ptr=link(p); mp_flush_token_list(mp, info(p));
15378 mp_free_node(mp, p,loop_node_size);
15381 @ Now that we know all about loop control, we can finish up
15382 the missing portion of |begin_iteration| and we'll be done.
15384 The following code is performed after the `\.=' has been scanned in
15385 a \&{for} construction (if |m=expr_base|) or a \&{forsuffixes} construction
15386 (if |m=suffix_base|).
15388 @<Scan the values to be used in the loop@>=
15389 loop_type(s)=null; q=loop_list_loc(s); link(q)=null; /* |link(q)=loop_list(s)| */
15392 if ( m!=expr_base ) {
15393 mp_scan_suffix(mp);
15395 if ( mp->cur_cmd>=colon ) if ( mp->cur_cmd<=comma )
15397 mp_scan_expression(mp);
15398 if ( mp->cur_cmd==step_token ) if ( q==loop_list_loc(s) ) {
15399 @<Prepare for step-until construction and |break|@>;
15401 mp->cur_exp=mp_stash_cur_exp(mp);
15403 link(q)=mp_get_avail(mp); q=link(q);
15404 info(q)=mp->cur_exp; mp->cur_type=mp_vacuous;
15407 } while (mp->cur_cmd==comma)
15409 @ @<Prepare for step-until construction and |break|@>=
15411 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "initial value");
15412 pp=mp_get_node(mp, progression_node_size); value(pp)=mp->cur_exp;
15413 mp_get_x_next(mp); mp_scan_expression(mp);
15414 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "step size");
15415 step_size(pp)=mp->cur_exp;
15416 if ( mp->cur_cmd!=until_token ) {
15417 mp_missing_err(mp, "until");
15418 @.Missing `until'@>
15419 help2("I assume you meant to say `until' after `step'.")
15420 ("So I'll look for the final value and colon next.");
15423 mp_get_x_next(mp); mp_scan_expression(mp);
15424 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "final value");
15425 final_value(pp)=mp->cur_exp; loop_list(s)=pp;
15426 loop_type(s)=progression_flag;
15430 @ The last case is when we have just seen ``\&{within}'', and we need to
15431 parse a picture expression and prepare to iterate over it.
15433 @<Set up a picture iteration@>=
15434 { mp_get_x_next(mp);
15435 mp_scan_expression(mp);
15436 @<Make sure the current expression is a known picture@>;
15437 loop_type(s)=mp->cur_exp; mp->cur_type=mp_vacuous;
15438 q=link(dummy_loc(mp->cur_exp));
15440 if ( is_start_or_stop(q) )
15441 if ( mp_skip_1component(mp, q)==null ) q=link(q);
15445 @ @<Make sure the current expression is a known picture@>=
15446 if ( mp->cur_type!=mp_picture_type ) {
15447 mp_disp_err(mp, null,"Improper iteration spec has been replaced by nullpicture");
15448 help1("When you say `for x in p', p must be a known picture.");
15449 mp_put_get_flush_error(mp, mp_get_node(mp, edge_header_size));
15450 mp_init_edges(mp, mp->cur_exp); mp->cur_type=mp_picture_type;
15453 @* \[35] File names.
15454 It's time now to fret about file names. Besides the fact that different
15455 operating systems treat files in different ways, we must cope with the
15456 fact that completely different naming conventions are used by different
15457 groups of people. The following programs show what is required for one
15458 particular operating system; similar routines for other systems are not
15459 difficult to devise.
15460 @^system dependencies@>
15462 \MP\ assumes that a file name has three parts: the name proper; its
15463 ``extension''; and a ``file area'' where it is found in an external file
15464 system. The extension of an input file is assumed to be
15465 `\.{.mp}' unless otherwise specified; it is `\.{.log}' on the
15466 transcript file that records each run of \MP; it is `\.{.tfm}' on the font
15467 metric files that describe characters in any fonts created by \MP; it is
15468 `\.{.ps}' or `.{\it nnn}' for some number {\it nnn} on the \ps\ output files;
15469 and it is `\.{.mem}' on the mem files written by \.{INIMP} to initialize \MP.
15470 The file area can be arbitrary on input files, but files are usually
15471 output to the user's current area. If an input file cannot be
15472 found on the specified area, \MP\ will look for it on a special system
15473 area; this special area is intended for commonly used input files.
15475 Simple uses of \MP\ refer only to file names that have no explicit
15476 extension or area. For example, a person usually says `\.{input} \.{cmr10}'
15477 instead of `\.{input} \.{cmr10.new}'. Simple file
15478 names are best, because they make the \MP\ source files portable;
15479 whenever a file name consists entirely of letters and digits, it should be
15480 treated in the same way by all implementations of \MP. However, users
15481 need the ability to refer to other files in their environment, especially
15482 when responding to error messages concerning unopenable files; therefore
15483 we want to let them use the syntax that appears in their favorite
15486 @ \MP\ uses the same conventions that have proved to be satisfactory for
15487 \TeX\ and \MF. In order to isolate the system-dependent aspects of file names,
15488 @^system dependencies@>
15489 the system-independent parts of \MP\ are expressed in terms
15490 of three system-dependent
15491 procedures called |begin_name|, |more_name|, and |end_name|. In
15492 essence, if the user-specified characters of the file name are $c_1\ldots c_n$,
15493 the system-independent driver program does the operations
15494 $$|begin_name|;\,|more_name|(c_1);\,\ldots\,;|more_name|(c_n);
15496 These three procedures communicate with each other via global variables.
15497 Afterwards the file name will appear in the string pool as three strings
15498 called |cur_name|\penalty10000\hskip-.05em,
15499 |cur_area|, and |cur_ext|; the latter two are null (i.e.,
15500 |""|), unless they were explicitly specified by the user.
15502 Actually the situation is slightly more complicated, because \MP\ needs
15503 to know when the file name ends. The |more_name| routine is a function
15504 (with side effects) that returns |true| on the calls |more_name|$(c_1)$,
15505 \dots, |more_name|$(c_{n-1})$. The final call |more_name|$(c_n)$
15506 returns |false|; or, it returns |true| and $c_n$ is the last character
15507 on the current input line. In other words,
15508 |more_name| is supposed to return |true| unless it is sure that the
15509 file name has been completely scanned; and |end_name| is supposed to be able
15510 to finish the assembly of |cur_name|, |cur_area|, and |cur_ext| regardless of
15511 whether $|more_name|(c_n)$ returned |true| or |false|.
15514 char * cur_name; /* name of file just scanned */
15515 char * cur_area; /* file area just scanned, or \.{""} */
15516 char * cur_ext; /* file extension just scanned, or \.{""} */
15518 @ It is easier to maintain reference counts if we assign initial values.
15521 mp->cur_name=xstrdup("");
15522 mp->cur_area=xstrdup("");
15523 mp->cur_ext=xstrdup("");
15525 @ @<Dealloc variables@>=
15526 xfree(mp->cur_area);
15527 xfree(mp->cur_name);
15528 xfree(mp->cur_ext);
15530 @ The file names we shall deal with for illustrative purposes have the
15531 following structure: If the name contains `\.>' or `\.:', the file area
15532 consists of all characters up to and including the final such character;
15533 otherwise the file area is null. If the remaining file name contains
15534 `\..', the file extension consists of all such characters from the first
15535 remaining `\..' to the end, otherwise the file extension is null.
15536 @^system dependencies@>
15538 We can scan such file names easily by using two global variables that keep track
15539 of the occurrences of area and extension delimiters. Note that these variables
15540 cannot be of type |pool_pointer| because a string pool compaction could occur
15541 while scanning a file name.
15544 integer area_delimiter;
15545 /* most recent `\.>' or `\.:' relative to |str_start[str_ptr]| */
15546 integer ext_delimiter; /* the relevant `\..', if any */
15548 @ Input files that can't be found in the user's area may appear in standard
15549 system areas called |MP_area| and |MF_area|. (The latter is used when the file
15550 extension is |".mf"|.) The standard system area for font metric files
15551 to be read is |MP_font_area|.
15552 This system area name will, of course, vary from place to place.
15553 @^system dependencies@>
15555 @d MP_area "MPinputs:"
15557 @d MF_area "MFinputs:"
15562 @ Here now is the first of the system-dependent routines for file name scanning.
15563 @^system dependencies@>
15565 @<Declare subroutines for parsing file names@>=
15566 void mp_begin_name (MP mp) {
15567 xfree(mp->cur_name);
15568 xfree(mp->cur_area);
15569 xfree(mp->cur_ext);
15570 mp->area_delimiter=-1;
15571 mp->ext_delimiter=-1;
15574 @ And here's the second.
15575 @^system dependencies@>
15577 @<Declare subroutines for parsing file names@>=
15578 boolean mp_more_name (MP mp, ASCII_code c) {
15582 if ( (c=='>')||(c==':') ) {
15583 mp->area_delimiter=mp->pool_ptr;
15584 mp->ext_delimiter=-1;
15585 } else if ( (c=='.')&&(mp->ext_delimiter<0) ) {
15586 mp->ext_delimiter=mp->pool_ptr;
15588 str_room(1); append_char(c); /* contribute |c| to the current string */
15594 @^system dependencies@>
15596 @d copy_pool_segment(A,B,C) {
15597 A = xmalloc(C+1,sizeof(char));
15598 strncpy(A,(char *)(mp->str_pool+B),C);
15601 @<Declare subroutines for parsing file names@>=
15602 void mp_end_name (MP mp) {
15603 pool_pointer s; /* length of area, name, and extension */
15606 s = mp->str_start[mp->str_ptr];
15607 if ( mp->area_delimiter<0 ) {
15608 mp->cur_area=xstrdup("");
15610 len = mp->area_delimiter-s;
15611 copy_pool_segment(mp->cur_area,s,len);
15614 if ( mp->ext_delimiter<0 ) {
15615 mp->cur_ext=xstrdup("");
15616 len = mp->pool_ptr-s;
15618 copy_pool_segment(mp->cur_ext,mp->ext_delimiter,(mp->pool_ptr-mp->ext_delimiter));
15619 len = mp->ext_delimiter-s;
15621 copy_pool_segment(mp->cur_name,s,len);
15622 mp->pool_ptr=s; /* don't need this partial string */
15625 @ Conversely, here is a routine that takes three strings and prints a file
15626 name that might have produced them. (The routine is system dependent, because
15627 some operating systems put the file area last instead of first.)
15628 @^system dependencies@>
15630 @<Basic printing...@>=
15631 void mp_print_file_name (MP mp, char * n, char * a, char * e) {
15632 mp_print(mp, a); mp_print(mp, n); mp_print(mp, e);
15635 @ Another system-dependent routine is needed to convert three internal
15637 to the |name_of_file| value that is used to open files. The present code
15638 allows both lowercase and uppercase letters in the file name.
15639 @^system dependencies@>
15641 @d append_to_name(A) { c=(A);
15642 if ( k<file_name_size ) {
15643 mp->name_of_file[k]=mp->xchr[c];
15648 @<Declare subroutines for parsing file names@>=
15649 void mp_pack_file_name (MP mp, char *n, char *a, char *e) {
15650 integer k; /* number of positions filled in |name_of_file| */
15651 ASCII_code c; /* character being packed */
15652 char *j; /* a character index */
15656 for (j=a;*j;j++) { append_to_name(*j); }
15658 for (j=n;*j;j++) { append_to_name(*j); }
15660 for (j=e;*j;j++) { append_to_name(*j); }
15662 mp->name_of_file[k]=0;
15667 void mp_pack_file_name (MP mp, char *n, char *a, char *e) ;
15669 @ A messier routine is also needed, since mem file names must be scanned
15670 before \MP's string mechanism has been initialized. We shall use the
15671 global variable |MP_mem_default| to supply the text for default system areas
15672 and extensions related to mem files.
15673 @^system dependencies@>
15675 @d mem_default_length 9 /* length of the |MP_mem_default| string */
15676 @d mem_ext_length 4 /* length of its `\.{.mem}' part */
15677 @d mem_extension ".mem" /* the extension, as a \.{WEB} constant */
15680 char *MP_mem_default;
15681 char *mem_name; /* for commandline */
15683 @ @<Option variables@>=
15684 char *mem_name; /* for commandline */
15686 @ @<Allocate or initialize ...@>=
15687 mp->MP_mem_default = xstrdup("plain.mem");
15688 mp->mem_name = mp_xstrdup(opt.mem_name);
15690 @^system dependencies@>
15692 @ @<Dealloc variables@>=
15693 xfree(mp->MP_mem_default);
15694 xfree(mp->mem_name);
15696 @ @<Check the ``constant'' values for consistency@>=
15697 if ( mem_default_length>file_name_size ) mp->bad=20;
15699 @ Here is the messy routine that was just mentioned. It sets |name_of_file|
15700 from the first |n| characters of |MP_mem_default|, followed by
15701 |buffer[a..b]|, followed by the last |mem_ext_length| characters of
15704 We dare not give error messages here, since \MP\ calls this routine before
15705 the |error| routine is ready to roll. Instead, we simply drop excess characters,
15706 since the error will be detected in another way when a strange file name
15708 @^system dependencies@>
15710 @c void mp_pack_buffered_name (MP mp,small_number n, integer a,
15712 integer k; /* number of positions filled in |name_of_file| */
15713 ASCII_code c; /* character being packed */
15714 integer j; /* index into |buffer| or |MP_mem_default| */
15715 if ( n+b-a+1+mem_ext_length>file_name_size )
15716 b=a+file_name_size-n-1-mem_ext_length;
15718 for (j=0;j<n;j++) {
15719 append_to_name(mp->xord[(int)mp->MP_mem_default[j]]);
15721 for (j=a;j<=b;j++) {
15722 append_to_name(mp->buffer[j]);
15724 for (j=mem_default_length-mem_ext_length;
15725 j<mem_default_length;j++) {
15726 append_to_name(mp->xord[(int)mp->MP_mem_default[j]]);
15728 mp->name_of_file[k]=0;
15732 @ Here is the only place we use |pack_buffered_name|. This part of the program
15733 becomes active when a ``virgin'' \MP\ is trying to get going, just after
15734 the preliminary initialization, or when the user is substituting another
15735 mem file by typing `\.\&' after the initial `\.{**}' prompt. The buffer
15736 contains the first line of input in |buffer[loc..(last-1)]|, where
15737 |loc<last| and |buffer[loc]<>" "|.
15740 boolean mp_open_mem_file (MP mp) ;
15743 boolean mp_open_mem_file (MP mp) {
15744 int j; /* the first space after the file name */
15745 if (mp->mem_name!=NULL) {
15746 mp->mem_file = mp_open_file(mp, mp->mem_name, "rb", mp_filetype_memfile);
15747 if ( mp->mem_file ) return true;
15750 if ( mp->buffer[loc]=='&' ) {
15751 incr(loc); j=loc; mp->buffer[mp->last]=' ';
15752 while ( mp->buffer[j]!=' ' ) incr(j);
15753 mp_pack_buffered_name(mp, 0,loc,j-1); /* try first without the system file area */
15754 if ( mp_w_open_in(mp, &mp->mem_file) ) goto FOUND;
15756 wterm_ln("Sorry, I can\'t find that mem file; will try PLAIN.");
15757 @.Sorry, I can't find...@>
15760 /* now pull out all the stops: try for the system \.{plain} file */
15761 mp_pack_buffered_name(mp, mem_default_length-mem_ext_length,0,0);
15762 if ( ! mp_w_open_in(mp, &mp->mem_file) ) {
15764 wterm_ln("I can\'t find the PLAIN mem file!\n");
15765 @.I can't find PLAIN...@>
15770 loc=j; return true;
15773 @ Operating systems often make it possible to determine the exact name (and
15774 possible version number) of a file that has been opened. The following routine,
15775 which simply makes a \MP\ string from the value of |name_of_file|, should
15776 ideally be changed to deduce the full name of file~|f|, which is the file
15777 most recently opened, if it is possible to do this in a \PASCAL\ program.
15778 @^system dependencies@>
15781 #define mp_a_make_name_string(A,B) mp_make_name_string(A)
15782 #define mp_b_make_name_string(A,B) mp_make_name_string(A)
15783 #define mp_w_make_name_string(A,B) mp_make_name_string(A)
15786 str_number mp_make_name_string (MP mp) {
15787 int k; /* index into |name_of_file| */
15788 str_room(mp->name_length);
15789 for (k=0;k<mp->name_length;k++) {
15790 append_char(mp->xord[(int)mp->name_of_file[k]]);
15792 return mp_make_string(mp);
15795 @ Now let's consider the ``driver''
15796 routines by which \MP\ deals with file names
15797 in a system-independent manner. First comes a procedure that looks for a
15798 file name in the input by taking the information from the input buffer.
15799 (We can't use |get_next|, because the conversion to tokens would
15800 destroy necessary information.)
15802 This procedure doesn't allow semicolons or percent signs to be part of
15803 file names, because of other conventions of \MP.
15804 {\sl The {\logos METAFONT\/}book} doesn't
15805 use semicolons or percents immediately after file names, but some users
15806 no doubt will find it natural to do so; therefore system-dependent
15807 changes to allow such characters in file names should probably
15808 be made with reluctance, and only when an entire file name that
15809 includes special characters is ``quoted'' somehow.
15810 @^system dependencies@>
15812 @c void mp_scan_file_name (MP mp) {
15814 while ( mp->buffer[loc]==' ' ) incr(loc);
15816 if ( (mp->buffer[loc]==';')||(mp->buffer[loc]=='%') ) break;
15817 if ( ! mp_more_name(mp, mp->buffer[loc]) ) break;
15823 @ Here is another version that takes its input from a string.
15825 @<Declare subroutines for parsing file names@>=
15826 void mp_str_scan_file (MP mp, str_number s) {
15827 pool_pointer p,q; /* current position and stopping point */
15829 p=mp->str_start[s]; q=str_stop(s);
15831 if ( ! mp_more_name(mp, mp->str_pool[p]) ) break;
15837 @ And one that reads from a |char*|.
15839 @<Declare subroutines for parsing file names@>=
15840 void mp_ptr_scan_file (MP mp, char *s) {
15841 char *p, *q; /* current position and stopping point */
15843 p=s; q=p+strlen(s);
15845 if ( ! mp_more_name(mp, *p)) break;
15852 @ The global variable |job_name| contains the file name that was first
15853 \&{input} by the user. This name is extended by `\.{.log}' and `\.{ps}' and
15854 `\.{.mem}' and `\.{.tfm}' in order to make the names of \MP's output files.
15857 char *job_name; /* principal file name */
15858 boolean log_opened; /* has the transcript file been opened? */
15859 char *log_name; /* full name of the log file */
15861 @ @<Option variables@>=
15862 char *job_name; /* principal file name */
15864 @ Initially |job_name=NULL|; it becomes nonzero as soon as the true name is known.
15865 We have |job_name=NULL| if and only if the `\.{log}' file has not been opened,
15866 except of course for a short time just after |job_name| has become nonzero.
15868 @<Allocate or ...@>=
15869 mp->job_name=mp_xstrdup(opt.job_name);
15870 mp->log_opened=false;
15872 @ @<Dealloc variables@>=
15873 xfree(mp->job_name);
15875 @ Here is a routine that manufactures the output file names, assuming that
15876 |job_name<>0|. It ignores and changes the current settings of |cur_area|
15879 @d pack_cur_name mp_pack_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext)
15882 void mp_pack_job_name (MP mp, char *s) ;
15884 @ @c void mp_pack_job_name (MP mp, char *s) { /* |s = ".log"|, |".mem"|, |".ps"|, or .\\{nnn} */
15885 xfree(mp->cur_name); mp->cur_name=xstrdup(mp->job_name);
15886 xfree(mp->cur_area); mp->cur_area=xstrdup("");
15887 xfree(mp->cur_ext); mp->cur_ext=xstrdup(s);
15891 @ If some trouble arises when \MP\ tries to open a file, the following
15892 routine calls upon the user to supply another file name. Parameter~|s|
15893 is used in the error message to identify the type of file; parameter~|e|
15894 is the default extension if none is given. Upon exit from the routine,
15895 variables |cur_name|, |cur_area|, |cur_ext|, and |name_of_file| are
15896 ready for another attempt at file opening.
15899 void mp_prompt_file_name (MP mp,char * s, char * e) ;
15901 @ @c void mp_prompt_file_name (MP mp,char * s, char * e) {
15902 size_t k; /* index into |buffer| */
15903 char * saved_cur_name;
15904 if ( mp->interaction==mp_scroll_mode )
15906 if (strcmp(s,"input file name")==0) {
15907 print_err("I can\'t find file `");
15908 @.I can't find file x@>
15910 print_err("I can\'t write on file `");
15912 @.I can't write on file x@>
15913 mp_print_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext);
15914 mp_print(mp, "'.");
15915 if (strcmp(e,"")==0)
15916 mp_show_context(mp);
15917 mp_print_nl(mp, "Please type another "); mp_print(mp, s);
15919 if ( mp->interaction<mp_scroll_mode )
15920 mp_fatal_error(mp, "*** (job aborted, file error in nonstop mode)");
15921 @.job aborted, file error...@>
15922 saved_cur_name = xstrdup(mp->cur_name);
15923 clear_terminal; prompt_input(": "); @<Scan file name in the buffer@>;
15924 if (strcmp(mp->cur_ext,"")==0)
15926 if (strlen(mp->cur_name)==0) {
15927 mp->cur_name=saved_cur_name;
15929 xfree(saved_cur_name);
15934 @ @<Scan file name in the buffer@>=
15936 mp_begin_name(mp); k=mp->first;
15937 while ( (mp->buffer[k]==' ')&&(k<mp->last) ) incr(k);
15939 if ( k==mp->last ) break;
15940 if ( ! mp_more_name(mp, mp->buffer[k]) ) break;
15946 @ The |open_log_file| routine is used to open the transcript file and to help
15947 it catch up to what has previously been printed on the terminal.
15949 @c void mp_open_log_file (MP mp) {
15950 int old_setting; /* previous |selector| setting */
15951 int k; /* index into |months| and |buffer| */
15952 int l; /* end of first input line */
15953 integer m; /* the current month */
15954 char *months="JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC";
15955 /* abbreviations of month names */
15956 old_setting=mp->selector;
15957 if ( mp->job_name==NULL ) {
15958 mp->job_name=xstrdup("mpout");
15960 mp_pack_job_name(mp,".log");
15961 while ( ! mp_a_open_out(mp, &mp->log_file, mp_filetype_log) ) {
15962 @<Try to get a different log file name@>;
15964 mp->log_name=xstrdup(mp->name_of_file);
15965 mp->selector=log_only; mp->log_opened=true;
15966 @<Print the banner line, including the date and time@>;
15967 mp->input_stack[mp->input_ptr]=mp->cur_input;
15968 /* make sure bottom level is in memory */
15969 mp_print_nl(mp, "**");
15971 l=mp->input_stack[0].limit_field-1; /* last position of first line */
15972 for (k=0;k<=l;k++) mp_print_str(mp, mp->buffer[k]);
15973 mp_print_ln(mp); /* now the transcript file contains the first line of input */
15974 mp->selector=old_setting+2; /* |log_only| or |term_and_log| */
15977 @ @<Dealloc variables@>=
15978 xfree(mp->log_name);
15980 @ Sometimes |open_log_file| is called at awkward moments when \MP\ is
15981 unable to print error messages or even to |show_context|.
15982 The |prompt_file_name| routine can result in a |fatal_error|, but the |error|
15983 routine will not be invoked because |log_opened| will be false.
15985 The normal idea of |mp_batch_mode| is that nothing at all should be written
15986 on the terminal. However, in the unusual case that
15987 no log file could be opened, we make an exception and allow
15988 an explanatory message to be seen.
15990 Incidentally, the program always refers to the log file as a `\.{transcript
15991 file}', because some systems cannot use the extension `\.{.log}' for
15994 @<Try to get a different log file name@>=
15996 mp->selector=term_only;
15997 mp_prompt_file_name(mp, "transcript file name",".log");
16000 @ @<Print the banner...@>=
16003 mp_print(mp, mp->mem_ident); mp_print(mp, " ");
16004 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[day]));
16005 mp_print_char(mp, ' ');
16006 m=mp_round_unscaled(mp, mp->internal[month]);
16007 for (k=3*m-3;k<3*m;k++) { wlog_chr(months[k]); }
16008 mp_print_char(mp, ' ');
16009 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[year]));
16010 mp_print_char(mp, ' ');
16011 m=mp_round_unscaled(mp, mp->internal[mp_time]);
16012 mp_print_dd(mp, m / 60); mp_print_char(mp, ':'); mp_print_dd(mp, m % 60);
16015 @ The |try_extension| function tries to open an input file determined by
16016 |cur_name|, |cur_area|, and the argument |ext|. It returns |false| if it
16017 can't find the file in |cur_area| or the appropriate system area.
16019 @c boolean mp_try_extension (MP mp,char *ext) {
16020 mp_pack_file_name(mp, mp->cur_name,mp->cur_area, ext);
16021 in_name=xstrdup(mp->cur_name);
16022 in_area=xstrdup(mp->cur_area);
16023 if ( mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16026 if (strcmp(ext,".mf")==0 ) in_area=xstrdup(MF_area);
16027 else in_area=xstrdup(MP_area);
16028 mp_pack_file_name(mp, mp->cur_name,in_area,ext);
16029 return mp_a_open_in(mp, &cur_file, mp_filetype_program);
16034 @ Let's turn now to the procedure that is used to initiate file reading
16035 when an `\.{input}' command is being processed.
16037 @c void mp_start_input (MP mp) { /* \MP\ will \.{input} something */
16038 char *fname = NULL;
16039 @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>;
16041 mp_begin_file_reading(mp); /* set up |cur_file| and new level of input */
16042 if ( strlen(mp->cur_ext)==0 ) {
16043 if ( mp_try_extension(mp, ".mp") ) break;
16044 else if ( mp_try_extension(mp, "") ) break;
16045 else if ( mp_try_extension(mp, ".mf") ) break;
16046 /* |else do_nothing; | */
16047 } else if ( mp_try_extension(mp, mp->cur_ext) ) {
16050 mp_end_file_reading(mp); /* remove the level that didn't work */
16051 mp_prompt_file_name(mp, "input file name","");
16053 name=mp_a_make_name_string(mp, cur_file);
16054 fname = xstrdup(mp->name_of_file);
16055 if ( mp->job_name==NULL ) {
16056 mp->job_name=xstrdup(mp->cur_name);
16057 mp_open_log_file(mp);
16058 } /* |open_log_file| doesn't |show_context|, so |limit|
16059 and |loc| needn't be set to meaningful values yet */
16060 if ( ((int)mp->term_offset+(int)strlen(fname)) > (mp->max_print_line-2)) mp_print_ln(mp);
16061 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
16062 mp_print_char(mp, '('); incr(mp->open_parens); mp_print(mp, fname);
16065 @<Flush |name| and replace it with |cur_name| if it won't be needed@>;
16066 @<Read the first line of the new file@>;
16069 @ This code should be omitted if |a_make_name_string| returns something other
16070 than just a copy of its argument and the full file name is needed for opening
16071 \.{MPX} files or implementing the switch-to-editor option.
16072 @^system dependencies@>
16074 @<Flush |name| and replace it with |cur_name| if it won't be needed@>=
16075 mp_flush_string(mp, name); name=rts(mp->cur_name); mp->cur_name=NULL
16077 @ Here we have to remember to tell the |input_ln| routine not to
16078 start with a |get|. If the file is empty, it is considered to
16079 contain a single blank line.
16080 @^system dependencies@>
16082 @<Read the first line...@>=
16085 (void)mp_input_ln(mp, cur_file,false);
16086 mp_firm_up_the_line(mp);
16087 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
16090 @ @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>=
16091 while ( token_state &&(loc==null) ) mp_end_token_list(mp);
16092 if ( token_state ) {
16093 print_err("File names can't appear within macros");
16094 @.File names can't...@>
16095 help3("Sorry...I've converted what follows to tokens,")
16096 ("possibly garbaging the name you gave.")
16097 ("Please delete the tokens and insert the name again.");
16100 if ( file_state ) {
16101 mp_scan_file_name(mp);
16103 xfree(mp->cur_name); mp->cur_name=xstrdup("");
16104 xfree(mp->cur_ext); mp->cur_ext =xstrdup("");
16105 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16108 @ Sometimes we need to deal with two file names at once. This procedure
16109 copies the given string into a special array for an old file name.
16111 @c void mp_copy_old_name (MP mp,str_number s) {
16112 integer k; /* number of positions filled in |old_file_name| */
16113 pool_pointer j; /* index into |str_pool| */
16115 for (j=mp->str_start[s];j<=str_stop(s)-1;j++) {
16117 if ( k<=file_name_size )
16118 mp->old_file_name[k]=mp->xchr[mp->str_pool[j]];
16120 mp->old_file_name[++k] = 0;
16124 char old_file_name[file_name_size+1]; /* analogous to |name_of_file| */
16126 @ The following simple routine starts reading the \.{MPX} file associated
16127 with the current input file.
16129 @c void mp_start_mpx_input (MP mp) {
16130 mp_pack_file_name(mp, in_name, in_area, ".mpx");
16131 @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16132 |goto not_found| if there is a problem@>;
16133 mp_begin_file_reading(mp);
16134 if ( ! mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16135 mp_end_file_reading(mp);
16138 name=mp_a_make_name_string(mp, cur_file);
16139 mp->mpx_name[index]=name; add_str_ref(name);
16140 @<Read the first line of the new file@>;
16143 @<Explain that the \.{MPX} file can't be read and |succumb|@>;
16146 @ This should ideally be changed to do whatever is necessary to create the
16147 \.{MPX} file given by |name_of_file| if it does not exist or if it is out
16148 of date. This requires invoking \.{MPtoTeX} on the |old_file_name| and passing
16149 the results through \TeX\ and \.{DVItoMP}. (It is possible to use a
16150 completely different typesetting program if suitable postprocessor is
16151 available to perform the function of \.{DVItoMP}.)
16152 @^system dependencies@>
16155 typedef boolean (*run_make_mpx_command)(MP mp, char *origname, char *mtxname);
16158 run_make_mpx_command run_make_mpx;
16160 @ @<Option variables@>=
16161 run_make_mpx_command run_make_mpx;
16163 @ @<Allocate or initialize ...@>=
16164 set_callback_option(run_make_mpx);
16166 @ @<Exported function headers@>=
16167 boolean mp_run_make_mpx (MP mp, char *origname, char *mtxname);
16169 @ The default does nothing.
16171 boolean mp_run_make_mpx (MP mp, char *origname, char *mtxname) {
16172 if (mp && origname && mtxname) /* for -W */
16179 @ @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16180 |goto not_found| if there is a problem@>=
16181 mp_copy_old_name(mp, name);
16182 if (!(mp->run_make_mpx)(mp, mp->old_file_name, mp->name_of_file))
16185 @ @<Explain that the \.{MPX} file can't be read and |succumb|@>=
16186 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16187 mp_print_nl(mp, ">> ");
16188 mp_print(mp, mp->old_file_name);
16189 mp_print_nl(mp, ">> ");
16190 mp_print(mp, mp->name_of_file);
16191 mp_print_nl(mp, "! Unable to make mpx file");
16192 help4("The two files given above are one of your source files")
16193 ("and an auxiliary file I need to read to find out what your")
16194 ("btex..etex blocks mean. If you don't know why I had trouble,")
16195 ("try running it manually through MPtoTeX, TeX, and DVItoMP");
16198 @ The last file-opening commands are for files accessed via the \&{readfrom}
16199 @:read_from_}{\&{readfrom} primitive@>
16200 operator and the \&{write} command. Such files are stored in separate arrays.
16201 @:write_}{\&{write} primitive@>
16203 @<Types in the outer block@>=
16204 typedef unsigned int readf_index; /* |0..max_read_files| */
16205 typedef unsigned int write_index; /* |0..max_write_files| */
16208 readf_index max_read_files; /* maximum number of simultaneously open \&{readfrom} files */
16209 FILE ** rd_file; /* \&{readfrom} files */
16210 char ** rd_fname; /* corresponding file name or 0 if file not open */
16211 readf_index read_files; /* number of valid entries in the above arrays */
16212 write_index max_write_files; /* maximum number of simultaneously open \&{write} */
16213 FILE ** wr_file; /* \&{write} files */
16214 char ** wr_fname; /* corresponding file name or 0 if file not open */
16215 write_index write_files; /* number of valid entries in the above arrays */
16217 @ @<Allocate or initialize ...@>=
16218 mp->max_read_files=8;
16219 mp->rd_file = xmalloc((mp->max_read_files+1),sizeof(FILE *));
16220 mp->rd_fname = xmalloc((mp->max_read_files+1),sizeof(char *));
16221 memset(mp->rd_fname, 0, sizeof(char *)*(mp->max_read_files+1));
16223 mp->max_write_files=8;
16224 mp->wr_file = xmalloc((mp->max_write_files+1),sizeof(FILE *));
16225 mp->wr_fname = xmalloc((mp->max_write_files+1),sizeof(char *));
16226 memset(mp->wr_fname, 0, sizeof(char *)*(mp->max_write_files+1));
16230 @ This routine starts reading the file named by string~|s| without setting
16231 |loc|, |limit|, or |name|. It returns |false| if the file is empty or cannot
16232 be opened. Otherwise it updates |rd_file[n]| and |rd_fname[n]|.
16234 @c boolean mp_start_read_input (MP mp,char *s, readf_index n) {
16235 mp_ptr_scan_file(mp, s);
16237 mp_begin_file_reading(mp);
16238 if ( ! mp_a_open_in(mp, &mp->rd_file[n], mp_filetype_text) )
16240 if ( ! mp_input_ln(mp, mp->rd_file[n], false) ) {
16241 fclose(mp->rd_file[n]);
16244 mp->rd_fname[n]=xstrdup(mp->name_of_file);
16247 mp_end_file_reading(mp);
16251 @ Open |wr_file[n]| using file name~|s| and update |wr_fname[n]|.
16254 void mp_open_write_file (MP mp, char *s, readf_index n) ;
16256 @ @c void mp_open_write_file (MP mp,char *s, readf_index n) {
16257 mp_ptr_scan_file(mp, s);
16259 while ( ! mp_a_open_out(mp, &mp->wr_file[n], mp_filetype_text) )
16260 mp_prompt_file_name(mp, "file name for write output","");
16261 mp->wr_fname[n]=xstrdup(mp->name_of_file);
16265 @* \[36] Introduction to the parsing routines.
16266 We come now to the central nervous system that sparks many of \MP's activities.
16267 By evaluating expressions, from their primary constituents to ever larger
16268 subexpressions, \MP\ builds the structures that ultimately define complete
16269 pictures or fonts of type.
16271 Four mutually recursive subroutines are involved in this process: We call them
16272 $$\hbox{|scan_primary|, |scan_secondary|, |scan_tertiary|,
16273 and |scan_expression|.}$$
16275 Each of them is parameterless and begins with the first token to be scanned
16276 already represented in |cur_cmd|, |cur_mod|, and |cur_sym|. After execution,
16277 the value of the primary or secondary or tertiary or expression that was
16278 found will appear in the global variables |cur_type| and |cur_exp|. The
16279 token following the expression will be represented in |cur_cmd|, |cur_mod|,
16282 Technically speaking, the parsing algorithms are ``LL(1),'' more or less;
16283 backup mechanisms have been added in order to provide reasonable error
16287 small_number cur_type; /* the type of the expression just found */
16288 integer cur_exp; /* the value of the expression just found */
16293 @ Many different kinds of expressions are possible, so it is wise to have
16294 precise descriptions of what |cur_type| and |cur_exp| mean in all cases:
16297 |cur_type=mp_vacuous| means that this expression didn't turn out to have a
16298 value at all, because it arose from a \&{begingroup}$\,\ldots\,$\&{endgroup}
16299 construction in which there was no expression before the \&{endgroup}.
16300 In this case |cur_exp| has some irrelevant value.
16303 |cur_type=mp_boolean_type| means that |cur_exp| is either |true_code|
16307 |cur_type=mp_unknown_boolean| means that |cur_exp| points to a capsule
16308 node that is in the ring of variables equivalent
16309 to at least one undefined boolean variable.
16312 |cur_type=mp_string_type| means that |cur_exp| is a string number (i.e., an
16313 integer in the range |0<=cur_exp<str_ptr|). That string's reference count
16314 includes this particular reference.
16317 |cur_type=mp_unknown_string| means that |cur_exp| points to a capsule
16318 node that is in the ring of variables equivalent
16319 to at least one undefined string variable.
16322 |cur_type=mp_pen_type| means that |cur_exp| points to a node in a pen. Nobody
16323 else points to any of the nodes in this pen. The pen may be polygonal or
16327 |cur_type=mp_unknown_pen| means that |cur_exp| points to a capsule
16328 node that is in the ring of variables equivalent
16329 to at least one undefined pen variable.
16332 |cur_type=mp_path_type| means that |cur_exp| points to a the first node of
16333 a path; nobody else points to this particular path. The control points of
16334 the path will have been chosen.
16337 |cur_type=mp_unknown_path| means that |cur_exp| points to a capsule
16338 node that is in the ring of variables equivalent
16339 to at least one undefined path variable.
16342 |cur_type=mp_picture_type| means that |cur_exp| points to an edge header node.
16343 There may be other pointers to this particular set of edges. The header node
16344 contains a reference count that includes this particular reference.
16347 |cur_type=mp_unknown_picture| means that |cur_exp| points to a capsule
16348 node that is in the ring of variables equivalent
16349 to at least one undefined picture variable.
16352 |cur_type=mp_transform_type| means that |cur_exp| points to a |mp_transform_type|
16353 capsule node. The |value| part of this capsule
16354 points to a transform node that contains six numeric values,
16355 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16358 |cur_type=mp_color_type| means that |cur_exp| points to a |color_type|
16359 capsule node. The |value| part of this capsule
16360 points to a color node that contains three numeric values,
16361 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16364 |cur_type=mp_cmykcolor_type| means that |cur_exp| points to a |mp_cmykcolor_type|
16365 capsule node. The |value| part of this capsule
16366 points to a color node that contains four numeric values,
16367 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16370 |cur_type=mp_pair_type| means that |cur_exp| points to a capsule
16371 node whose type is |mp_pair_type|. The |value| part of this capsule
16372 points to a pair node that contains two numeric values,
16373 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16376 |cur_type=mp_known| means that |cur_exp| is a |scaled| value.
16379 |cur_type=mp_dependent| means that |cur_exp| points to a capsule node whose type
16380 is |dependent|. The |dep_list| field in this capsule points to the associated
16384 |cur_type=mp_proto_dependent| means that |cur_exp| points to a |mp_proto_dependent|
16385 capsule node. The |dep_list| field in this capsule
16386 points to the associated dependency list.
16389 |cur_type=independent| means that |cur_exp| points to a capsule node
16390 whose type is |independent|. This somewhat unusual case can arise, for
16391 example, in the expression
16392 `$x+\&{begingroup}\penalty0\,\&{string}\,x; 0\,\&{endgroup}$'.
16395 |cur_type=mp_token_list| means that |cur_exp| points to a linked list of
16396 tokens. This case arises only on the left-hand side of an assignment
16397 (`\.{:=}') operation, under very special circumstances.
16399 \smallskip\noindent
16400 The possible settings of |cur_type| have been listed here in increasing
16401 numerical order. Notice that |cur_type| will never be |mp_numeric_type| or
16402 |suffixed_macro| or |mp_unsuffixed_macro|, although variables of those types
16403 are allowed. Conversely, \MP\ has no variables of type |mp_vacuous| or
16406 @ Capsules are two-word nodes that have a similar meaning
16407 to |cur_type| and |cur_exp|. Such nodes have |name_type=capsule|
16408 and |link<=diov|; and their |type| field is one of the possibilities for
16409 |cur_type| listed above.
16411 The |value| field of a capsule is, in most cases, the value that
16412 corresponds to its |type|, as |cur_exp| corresponds to |cur_type|.
16413 However, when |cur_exp| would point to a capsule,
16414 no extra layer of indirection is present; the |value|
16415 field is what would have been called |value(cur_exp)| if it had not been
16416 encapsulated. Furthermore, if the type is |dependent| or
16417 |mp_proto_dependent|, the |value| field of a capsule is replaced by
16418 |dep_list| and |prev_dep| fields, since dependency lists in capsules are
16419 always part of the general |dep_list| structure.
16421 The |get_x_next| routine is careful not to change the values of |cur_type|
16422 and |cur_exp| when it gets an expanded token. However, |get_x_next| might
16423 call a macro, which might parse an expression, which might execute lots of
16424 commands in a group; hence it's possible that |cur_type| might change
16425 from, say, |mp_unknown_boolean| to |mp_boolean_type|, or from |dependent| to
16426 |known| or |independent|, during the time |get_x_next| is called. The
16427 programs below are careful to stash sensitive intermediate results in
16428 capsules, so that \MP's generality doesn't cause trouble.
16430 Here's a procedure that illustrates these conventions. It takes
16431 the contents of $(|cur_type|\kern-.3pt,|cur_exp|\kern-.3pt)$
16432 and stashes them away in a
16433 capsule. It is not used when |cur_type=mp_token_list|.
16434 After the operation, |cur_type=mp_vacuous|; hence there is no need to
16435 copy path lists or to update reference counts, etc.
16437 The special link |diov| is put on the capsule returned by
16438 |stash_cur_exp|, because this procedure is used to store macro parameters
16439 that must be easily distinguishable from token lists.
16441 @<Declare the stashing/unstashing routines@>=
16442 pointer mp_stash_cur_exp (MP mp) {
16443 pointer p; /* the capsule that will be returned */
16444 switch (mp->cur_type) {
16445 case unknown_types:
16446 case mp_transform_type:
16447 case mp_color_type:
16450 case mp_proto_dependent:
16451 case mp_independent:
16452 case mp_cmykcolor_type:
16456 p=mp_get_node(mp, value_node_size); name_type(p)=mp_capsule;
16457 type(p)=mp->cur_type; value(p)=mp->cur_exp;
16460 mp->cur_type=mp_vacuous; link(p)=diov;
16464 @ The inverse of |stash_cur_exp| is the following procedure, which
16465 deletes an unnecessary capsule and puts its contents into |cur_type|
16468 The program steps of \MP\ can be divided into two categories: those in
16469 which |cur_type| and |cur_exp| are ``alive'' and those in which they are
16470 ``dead,'' in the sense that |cur_type| and |cur_exp| contain relevant
16471 information or not. It's important not to ignore them when they're alive,
16472 and it's important not to pay attention to them when they're dead.
16474 There's also an intermediate category: If |cur_type=mp_vacuous|, then
16475 |cur_exp| is irrelevant, hence we can proceed without caring if |cur_type|
16476 and |cur_exp| are alive or dead. In such cases we say that |cur_type|
16477 and |cur_exp| are {\sl dormant}. It is permissible to call |get_x_next|
16478 only when they are alive or dormant.
16480 The \\{stash} procedure above assumes that |cur_type| and |cur_exp|
16481 are alive or dormant. The \\{unstash} procedure assumes that they are
16482 dead or dormant; it resuscitates them.
16484 @<Declare the stashing/unstashing...@>=
16485 void mp_unstash_cur_exp (MP mp,pointer p) ;
16488 void mp_unstash_cur_exp (MP mp,pointer p) {
16489 mp->cur_type=type(p);
16490 switch (mp->cur_type) {
16491 case unknown_types:
16492 case mp_transform_type:
16493 case mp_color_type:
16496 case mp_proto_dependent:
16497 case mp_independent:
16498 case mp_cmykcolor_type:
16502 mp->cur_exp=value(p);
16503 mp_free_node(mp, p,value_node_size);
16508 @ The following procedure prints the values of expressions in an
16509 abbreviated format. If its first parameter |p| is null, the value of
16510 |(cur_type,cur_exp)| is displayed; otherwise |p| should be a capsule
16511 containing the desired value. The second parameter controls the amount of
16512 output. If it is~0, dependency lists will be abbreviated to
16513 `\.{linearform}' unless they consist of a single term. If it is greater
16514 than~1, complicated structures (pens, pictures, and paths) will be displayed
16517 @<Declare subroutines for printing expressions@>=
16518 @<Declare the procedure called |print_dp|@>;
16519 @<Declare the stashing/unstashing routines@>;
16520 void mp_print_exp (MP mp,pointer p, small_number verbosity) {
16521 boolean restore_cur_exp; /* should |cur_exp| be restored? */
16522 small_number t; /* the type of the expression */
16523 pointer q; /* a big node being displayed */
16524 integer v=0; /* the value of the expression */
16526 restore_cur_exp=false;
16528 p=mp_stash_cur_exp(mp); restore_cur_exp=true;
16531 if ( t<mp_dependent ) v=value(p); else if ( t<mp_independent ) v=dep_list(p);
16532 @<Print an abbreviated value of |v| with format depending on |t|@>;
16533 if ( restore_cur_exp ) mp_unstash_cur_exp(mp, p);
16536 @ @<Print an abbreviated value of |v| with format depending on |t|@>=
16538 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
16539 case mp_boolean_type:
16540 if ( v==true_code ) mp_print(mp, "true"); else mp_print(mp, "false");
16542 case unknown_types: case mp_numeric_type:
16543 @<Display a variable that's been declared but not defined@>;
16545 case mp_string_type:
16546 mp_print_char(mp, '"'); mp_print_str(mp, v); mp_print_char(mp, '"');
16548 case mp_pen_type: case mp_path_type: case mp_picture_type:
16549 @<Display a complex type@>;
16551 case mp_transform_type: case mp_color_type: case mp_pair_type: case mp_cmykcolor_type:
16552 if ( v==null ) mp_print_type(mp, t);
16553 else @<Display a big node@>;
16555 case mp_known:mp_print_scaled(mp, v); break;
16556 case mp_dependent: case mp_proto_dependent:
16557 mp_print_dp(mp, t,v,verbosity);
16559 case mp_independent:mp_print_variable_name(mp, p); break;
16560 default: mp_confusion(mp, "exp"); break;
16561 @:this can't happen exp}{\quad exp@>
16564 @ @<Display a big node@>=
16566 mp_print_char(mp, '('); q=v+mp->big_node_size[t];
16568 if ( type(v)==mp_known ) mp_print_scaled(mp, value(v));
16569 else if ( type(v)==mp_independent ) mp_print_variable_name(mp, v);
16570 else mp_print_dp(mp, type(v),dep_list(v),verbosity);
16572 if ( v!=q ) mp_print_char(mp, ',');
16574 mp_print_char(mp, ')');
16577 @ Values of type \&{picture}, \&{path}, and \&{pen} are displayed verbosely
16578 in the log file only, unless the user has given a positive value to
16581 @<Display a complex type@>=
16582 if ( verbosity<=1 ) {
16583 mp_print_type(mp, t);
16585 if ( mp->selector==term_and_log )
16586 if ( mp->internal[tracing_online]<=0 ) {
16587 mp->selector=term_only;
16588 mp_print_type(mp, t); mp_print(mp, " (see the transcript file)");
16589 mp->selector=term_and_log;
16592 case mp_pen_type:mp_print_pen(mp, v,"",false); break;
16593 case mp_path_type:mp_print_path(mp, v,"",false); break;
16594 case mp_picture_type:mp_print_edges(mp, v,"",false); break;
16595 } /* there are no other cases */
16598 @ @<Declare the procedure called |print_dp|@>=
16599 void mp_print_dp (MP mp,small_number t, pointer p,
16600 small_number verbosity) {
16601 pointer q; /* the node following |p| */
16603 if ( (info(q)==null) || (verbosity>0) ) mp_print_dependency(mp, p,t);
16604 else mp_print(mp, "linearform");
16607 @ The displayed name of a variable in a ring will not be a capsule unless
16608 the ring consists entirely of capsules.
16610 @<Display a variable that's been declared but not defined@>=
16611 { mp_print_type(mp, t);
16613 { mp_print_char(mp, ' ');
16614 while ( (name_type(v)==mp_capsule) && (v!=p) ) v=value(v);
16615 mp_print_variable_name(mp, v);
16619 @ When errors are detected during parsing, it is often helpful to
16620 display an expression just above the error message, using |exp_err|
16621 or |disp_err| instead of |print_err|.
16623 @d exp_err(A) mp_disp_err(mp, null,(A)) /* displays the current expression */
16625 @<Declare subroutines for printing expressions@>=
16626 void mp_disp_err (MP mp,pointer p, char *s) {
16627 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16628 mp_print_nl(mp, ">> ");
16630 mp_print_exp(mp, p,1); /* ``medium verbose'' printing of the expression */
16632 mp_print_nl(mp, "! "); mp_print(mp, s);
16637 @ If |cur_type| and |cur_exp| contain relevant information that should
16638 be recycled, we will use the following procedure, which changes |cur_type|
16639 to |known| and stores a given value in |cur_exp|. We can think of |cur_type|
16640 and |cur_exp| as either alive or dormant after this has been done,
16641 because |cur_exp| will not contain a pointer value.
16643 @ @c void mp_flush_cur_exp (MP mp,scaled v) {
16644 switch (mp->cur_type) {
16645 case unknown_types: case mp_transform_type: case mp_color_type: case mp_pair_type:
16646 case mp_dependent: case mp_proto_dependent: case mp_independent: case mp_cmykcolor_type:
16647 mp_recycle_value(mp, mp->cur_exp);
16648 mp_free_node(mp, mp->cur_exp,value_node_size);
16650 case mp_string_type:
16651 delete_str_ref(mp->cur_exp); break;
16652 case mp_pen_type: case mp_path_type:
16653 mp_toss_knot_list(mp, mp->cur_exp); break;
16654 case mp_picture_type:
16655 delete_edge_ref(mp->cur_exp); break;
16659 mp->cur_type=mp_known; mp->cur_exp=v;
16662 @ There's a much more general procedure that is capable of releasing
16663 the storage associated with any two-word value packet.
16665 @<Declare the recycling subroutines@>=
16666 void mp_recycle_value (MP mp,pointer p) ;
16668 @ @c void mp_recycle_value (MP mp,pointer p) {
16669 small_number t; /* a type code */
16670 integer vv; /* another value */
16671 pointer q,r,s,pp; /* link manipulation registers */
16672 integer v=0; /* a value */
16674 if ( t<mp_dependent ) v=value(p);
16676 case undefined: case mp_vacuous: case mp_boolean_type: case mp_known:
16677 case mp_numeric_type:
16679 case unknown_types:
16680 mp_ring_delete(mp, p); break;
16681 case mp_string_type:
16682 delete_str_ref(v); break;
16683 case mp_path_type: case mp_pen_type:
16684 mp_toss_knot_list(mp, v); break;
16685 case mp_picture_type:
16686 delete_edge_ref(v); break;
16687 case mp_cmykcolor_type: case mp_pair_type: case mp_color_type:
16688 case mp_transform_type:
16689 @<Recycle a big node@>; break;
16690 case mp_dependent: case mp_proto_dependent:
16691 @<Recycle a dependency list@>; break;
16692 case mp_independent:
16693 @<Recycle an independent variable@>; break;
16694 case mp_token_list: case mp_structured:
16695 mp_confusion(mp, "recycle"); break;
16696 @:this can't happen recycle}{\quad recycle@>
16697 case mp_unsuffixed_macro: case mp_suffixed_macro:
16698 mp_delete_mac_ref(mp, value(p)); break;
16699 } /* there are no other cases */
16703 @ @<Recycle a big node@>=
16705 q=v+mp->big_node_size[t];
16707 q=q-2; mp_recycle_value(mp, q);
16709 mp_free_node(mp, v,mp->big_node_size[t]);
16712 @ @<Recycle a dependency list@>=
16715 while ( info(q)!=null ) q=link(q);
16716 link(prev_dep(p))=link(q);
16717 prev_dep(link(q))=prev_dep(p);
16718 link(q)=null; mp_flush_node_list(mp, dep_list(p));
16721 @ When an independent variable disappears, it simply fades away, unless
16722 something depends on it. In the latter case, a dependent variable whose
16723 coefficient of dependence is maximal will take its place.
16724 The relevant algorithm is due to Ignacio~A. Zabala, who implemented it
16725 as part of his Ph.D. thesis (Stanford University, December 1982).
16726 @^Zabala Salelles, Ignacio Andres@>
16728 For example, suppose that variable $x$ is being recycled, and that the
16729 only variables depending on~$x$ are $y=2x+a$ and $z=x+b$. In this case
16730 we want to make $y$ independent and $z=.5y-.5a+b$; no other variables
16731 will depend on~$y$. If $\\{tracingequations}>0$ in this situation,
16732 we will print `\.{\#\#\# -2x=-y+a}'.
16734 There's a slight complication, however: An independent variable $x$
16735 can occur both in dependency lists and in proto-dependency lists.
16736 This makes it necessary to be careful when deciding which coefficient
16739 Furthermore, this complication is not so slight when
16740 a proto-dependent variable is chosen to become independent. For example,
16741 suppose that $y=2x+100a$ is proto-dependent while $z=x+b$ is dependent;
16742 then we must change $z=.5y-50a+b$ to a proto-dependency, because of the
16743 large coefficient `50'.
16745 In order to deal with these complications without wasting too much time,
16746 we shall link together the occurrences of~$x$ among all the linear
16747 dependencies, maintaining separate lists for the dependent and
16748 proto-dependent cases.
16750 @<Recycle an independent variable@>=
16752 mp->max_c[mp_dependent]=0; mp->max_c[mp_proto_dependent]=0;
16753 mp->max_link[mp_dependent]=null; mp->max_link[mp_proto_dependent]=null;
16755 while ( q!=dep_head ) {
16756 s=value_loc(q); /* now |link(s)=dep_list(q)| */
16759 if ( info(r)==null ) break;;
16760 if ( info(r)!=p ) {
16763 t=type(q); link(s)=link(r); info(r)=q;
16764 if ( abs(value(r))>mp->max_c[t] ) {
16765 @<Record a new maximum coefficient of type |t|@>;
16767 link(r)=mp->max_link[t]; mp->max_link[t]=r;
16773 if ( (mp->max_c[mp_dependent]>0)||(mp->max_c[mp_proto_dependent]>0) ) {
16774 @<Choose a dependent variable to take the place of the disappearing
16775 independent variable, and change all remaining dependencies
16780 @ The code for independency removal makes use of three two-word arrays.
16783 integer max_c[mp_proto_dependent+1]; /* max coefficient magnitude */
16784 pointer max_ptr[mp_proto_dependent+1]; /* where |p| occurs with |max_c| */
16785 pointer max_link[mp_proto_dependent+1]; /* other occurrences of |p| */
16787 @ @<Record a new maximum coefficient...@>=
16789 if ( mp->max_c[t]>0 ) {
16790 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
16792 mp->max_c[t]=abs(value(r)); mp->max_ptr[t]=r;
16795 @ @<Choose a dependent...@>=
16797 if ( (mp->max_c[mp_dependent] / 010000 >= mp->max_c[mp_proto_dependent]) )
16800 t=mp_proto_dependent;
16801 @<Determine the dependency list |s| to substitute for the independent
16803 t=mp_dependent+mp_proto_dependent-t; /* complement |t| */
16804 if ( mp->max_c[t]>0 ) { /* we need to pick up an unchosen dependency */
16805 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
16807 if ( t!=mp_dependent ) { @<Substitute new dependencies in place of |p|@>; }
16808 else { @<Substitute new proto-dependencies in place of |p|@>;}
16809 mp_flush_node_list(mp, s);
16810 if ( mp->fix_needed ) mp_fix_dependencies(mp);
16814 @ Let |s=max_ptr[t]|. At this point we have $|value|(s)=\pm|max_c|[t]$,
16815 and |info(s)| points to the dependent variable~|pp| of type~|t| from
16816 whose dependency list we have removed node~|s|. We must reinsert
16817 node~|s| into the dependency list, with coefficient $-1.0$, and with
16818 |pp| as the new independent variable. Since |pp| will have a larger serial
16819 number than any other variable, we can put node |s| at the head of the
16822 @<Determine the dep...@>=
16823 s=mp->max_ptr[t]; pp=info(s); v=value(s);
16824 if ( t==mp_dependent ) value(s)=-fraction_one; else value(s)=-unity;
16825 r=dep_list(pp); link(s)=r;
16826 while ( info(r)!=null ) r=link(r);
16827 q=link(r); link(r)=null;
16828 prev_dep(q)=prev_dep(pp); link(prev_dep(pp))=q;
16830 if ( mp->cur_exp==pp ) if ( mp->cur_type==t ) mp->cur_type=mp_independent;
16831 if ( mp->internal[tracing_equations]>0 ) {
16832 @<Show the transformed dependency@>;
16835 @ Now $(-v)$ times the formerly independent variable~|p| is being replaced
16836 by the dependency list~|s|.
16838 @<Show the transformed...@>=
16839 if ( mp_interesting(mp, p) ) {
16840 mp_begin_diagnostic(mp); mp_print_nl(mp, "### ");
16841 @:]]]\#\#\#_}{\.{\#\#\#}@>
16842 if ( v>0 ) mp_print_char(mp, '-');
16843 if ( t==mp_dependent ) vv=mp_round_fraction(mp, mp->max_c[mp_dependent]);
16844 else vv=mp->max_c[mp_proto_dependent];
16845 if ( vv!=unity ) mp_print_scaled(mp, vv);
16846 mp_print_variable_name(mp, p);
16847 while ( value(p) % s_scale>0 ) {
16848 mp_print(mp, "*4"); value(p)=value(p)-2;
16850 if ( t==mp_dependent ) mp_print_char(mp, '='); else mp_print(mp, " = ");
16851 mp_print_dependency(mp, s,t);
16852 mp_end_diagnostic(mp, false);
16855 @ Finally, there are dependent and proto-dependent variables whose
16856 dependency lists must be brought up to date.
16858 @<Substitute new dependencies...@>=
16859 for (t=mp_dependent;t<=mp_proto_dependent;t++){
16861 while ( r!=null ) {
16863 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
16864 mp_make_fraction(mp, value(r),-v),s,t,mp_dependent);
16865 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
16866 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
16870 @ @<Substitute new proto...@>=
16871 for (t=mp_dependent;t<=mp_proto_dependent;t++) {
16873 while ( r!=null ) {
16875 if ( t==mp_dependent ) { /* for safety's sake, we change |q| to |mp_proto_dependent| */
16876 if ( mp->cur_exp==q ) if ( mp->cur_type==mp_dependent )
16877 mp->cur_type=mp_proto_dependent;
16878 dep_list(q)=mp_p_over_v(mp, dep_list(q),unity,mp_dependent,mp_proto_dependent);
16879 type(q)=mp_proto_dependent; value(r)=mp_round_fraction(mp, value(r));
16881 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
16882 mp_make_scaled(mp, value(r),-v),s,mp_proto_dependent,mp_proto_dependent);
16883 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
16884 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
16888 @ Here are some routines that provide handy combinations of actions
16889 that are often needed during error recovery. For example,
16890 `|flush_error|' flushes the current expression, replaces it by
16891 a given value, and calls |error|.
16893 Errors often are detected after an extra token has already been scanned.
16894 The `\\{put\_get}' routines put that token back before calling |error|;
16895 then they get it back again. (Or perhaps they get another token, if
16896 the user has changed things.)
16899 void mp_flush_error (MP mp,scaled v);
16900 void mp_put_get_error (MP mp);
16901 void mp_put_get_flush_error (MP mp,scaled v) ;
16904 void mp_flush_error (MP mp,scaled v) {
16905 mp_error(mp); mp_flush_cur_exp(mp, v);
16907 void mp_put_get_error (MP mp) {
16908 mp_back_error(mp); mp_get_x_next(mp);
16910 void mp_put_get_flush_error (MP mp,scaled v) {
16911 mp_put_get_error(mp);
16912 mp_flush_cur_exp(mp, v);
16915 @ A global variable |var_flag| is set to a special command code
16916 just before \MP\ calls |scan_expression|, if the expression should be
16917 treated as a variable when this command code immediately follows. For
16918 example, |var_flag| is set to |assignment| at the beginning of a
16919 statement, because we want to know the {\sl location\/} of a variable at
16920 the left of `\.{:=}', not the {\sl value\/} of that variable.
16922 The |scan_expression| subroutine calls |scan_tertiary|,
16923 which calls |scan_secondary|, which calls |scan_primary|, which sets
16924 |var_flag:=0|. In this way each of the scanning routines ``knows''
16925 when it has been called with a special |var_flag|, but |var_flag| is
16928 A variable preceding a command that equals |var_flag| is converted to a
16929 token list rather than a value. Furthermore, an `\.{=}' sign following an
16930 expression with |var_flag=assignment| is not considered to be a relation
16931 that produces boolean expressions.
16935 int var_flag; /* command that wants a variable */
16940 @* \[37] Parsing primary expressions.
16941 The first parsing routine, |scan_primary|, is also the most complicated one,
16942 since it involves so many different cases. But each case---with one
16943 exception---is fairly simple by itself.
16945 When |scan_primary| begins, the first token of the primary to be scanned
16946 should already appear in |cur_cmd|, |cur_mod|, and |cur_sym|. The values
16947 of |cur_type| and |cur_exp| should be either dead or dormant, as explained
16948 earlier. If |cur_cmd| is not between |min_primary_command| and
16949 |max_primary_command|, inclusive, a syntax error will be signaled.
16951 @<Declare the basic parsing subroutines@>=
16952 void mp_scan_primary (MP mp) {
16953 pointer p,q,r; /* for list manipulation */
16954 quarterword c; /* a primitive operation code */
16955 int my_var_flag; /* initial value of |my_var_flag| */
16956 pointer l_delim,r_delim; /* hash addresses of a delimiter pair */
16957 @<Other local variables for |scan_primary|@>;
16958 my_var_flag=mp->var_flag; mp->var_flag=0;
16961 @<Supply diagnostic information, if requested@>;
16962 switch (mp->cur_cmd) {
16963 case left_delimiter:
16964 @<Scan a delimited primary@>; break;
16966 @<Scan a grouped primary@>; break;
16968 @<Scan a string constant@>; break;
16969 case numeric_token:
16970 @<Scan a primary that starts with a numeric token@>; break;
16972 @<Scan a nullary operation@>; break;
16973 case unary: case type_name: case cycle: case plus_or_minus:
16974 @<Scan a unary operation@>; break;
16975 case primary_binary:
16976 @<Scan a binary operation with `\&{of}' between its operands@>; break;
16978 @<Convert a suffix to a string@>; break;
16979 case internal_quantity:
16980 @<Scan an internal numeric quantity@>; break;
16981 case capsule_token:
16982 mp_make_exp_copy(mp, mp->cur_mod); break;
16984 @<Scan a variable primary; |goto restart| if it turns out to be a macro@>; break;
16986 mp_bad_exp(mp, "A primary"); goto RESTART; break;
16987 @.A primary expression...@>
16989 mp_get_x_next(mp); /* the routines |goto done| if they don't want this */
16991 if ( mp->cur_cmd==left_bracket ) {
16992 if ( mp->cur_type>=mp_known ) {
16993 @<Scan a mediation construction@>;
17000 @ Errors at the beginning of expressions are flagged by |bad_exp|.
17002 @c void mp_bad_exp (MP mp,char * s) {
17004 print_err(s); mp_print(mp, " expression can't begin with `");
17005 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
17006 mp_print_char(mp, '\'');
17007 help4("I'm afraid I need some sort of value in order to continue,")
17008 ("so I've tentatively inserted `0'. You may want to")
17009 ("delete this zero and insert something else;")
17010 ("see Chapter 27 of The METAFONTbook for an example.");
17011 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17012 mp_back_input(mp); mp->cur_sym=0; mp->cur_cmd=numeric_token;
17013 mp->cur_mod=0; mp_ins_error(mp);
17014 save_flag=mp->var_flag; mp->var_flag=0; mp_get_x_next(mp);
17015 mp->var_flag=save_flag;
17018 @ @<Supply diagnostic information, if requested@>=
17020 if ( mp->panicking ) mp_check_mem(mp, false);
17022 if ( mp->interrupt!=0 ) if ( mp->OK_to_interrupt ) {
17023 mp_back_input(mp); check_interrupt; mp_get_x_next(mp);
17026 @ @<Scan a delimited primary@>=
17028 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
17029 mp_get_x_next(mp); mp_scan_expression(mp);
17030 if ( (mp->cur_cmd==comma) && (mp->cur_type>=mp_known) ) {
17031 @<Scan the rest of a delimited set of numerics@>;
17033 mp_check_delimiter(mp, l_delim,r_delim);
17037 @ The |stash_in| subroutine puts the current (numeric) expression into a field
17038 within a ``big node.''
17040 @c void mp_stash_in (MP mp,pointer p) {
17041 pointer q; /* temporary register */
17042 type(p)=mp->cur_type;
17043 if ( mp->cur_type==mp_known ) {
17044 value(p)=mp->cur_exp;
17046 if ( mp->cur_type==mp_independent ) {
17047 @<Stash an independent |cur_exp| into a big node@>;
17049 mp->mem[value_loc(p)]=mp->mem[value_loc(mp->cur_exp)];
17050 /* |dep_list(p):=dep_list(cur_exp)| and |prev_dep(p):=prev_dep(cur_exp)| */
17051 link(prev_dep(p))=p;
17053 mp_free_node(mp, mp->cur_exp,value_node_size);
17055 mp->cur_type=mp_vacuous;
17058 @ In rare cases the current expression can become |independent|. There
17059 may be many dependency lists pointing to such an independent capsule,
17060 so we can't simply move it into place within a big node. Instead,
17061 we copy it, then recycle it.
17063 @ @<Stash an independent |cur_exp|...@>=
17065 q=mp_single_dependency(mp, mp->cur_exp);
17066 if ( q==mp->dep_final ){
17067 type(p)=mp_known; value(p)=0; mp_free_node(mp, q,dep_node_size);
17069 type(p)=mp_dependent; mp_new_dep(mp, p,q);
17071 mp_recycle_value(mp, mp->cur_exp);
17074 @ This code uses the fact that |red_part_loc| and |green_part_loc|
17075 are synonymous with |x_part_loc| and |y_part_loc|.
17077 @<Scan the rest of a delimited set of numerics@>=
17079 p=mp_stash_cur_exp(mp);
17080 mp_get_x_next(mp); mp_scan_expression(mp);
17081 @<Make sure the second part of a pair or color has a numeric type@>;
17082 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
17083 if ( mp->cur_cmd==comma ) type(q)=mp_color_type;
17084 else type(q)=mp_pair_type;
17085 mp_init_big_node(mp, q); r=value(q);
17086 mp_stash_in(mp, y_part_loc(r));
17087 mp_unstash_cur_exp(mp, p);
17088 mp_stash_in(mp, x_part_loc(r));
17089 if ( mp->cur_cmd==comma ) {
17090 @<Scan the last of a triplet of numerics@>;
17092 if ( mp->cur_cmd==comma ) {
17093 type(q)=mp_cmykcolor_type;
17094 mp_init_big_node(mp, q); t=value(q);
17095 mp->mem[cyan_part_loc(t)]=mp->mem[red_part_loc(r)];
17096 value(cyan_part_loc(t))=value(red_part_loc(r));
17097 mp->mem[magenta_part_loc(t)]=mp->mem[green_part_loc(r)];
17098 value(magenta_part_loc(t))=value(green_part_loc(r));
17099 mp->mem[yellow_part_loc(t)]=mp->mem[blue_part_loc(r)];
17100 value(yellow_part_loc(t))=value(blue_part_loc(r));
17101 mp_recycle_value(mp, r);
17103 @<Scan the last of a quartet of numerics@>;
17105 mp_check_delimiter(mp, l_delim,r_delim);
17106 mp->cur_type=type(q);
17110 @ @<Make sure the second part of a pair or color has a numeric type@>=
17111 if ( mp->cur_type<mp_known ) {
17112 exp_err("Nonnumeric ypart has been replaced by 0");
17113 @.Nonnumeric...replaced by 0@>
17114 help4("I've started to scan a pair `(a,b)' or a color `(a,b,c)';")
17115 ("but after finding a nice `a' I found a `b' that isn't")
17116 ("of numeric type. So I've changed that part to zero.")
17117 ("(The b that I didn't like appears above the error message.)");
17118 mp_put_get_flush_error(mp, 0);
17121 @ @<Scan the last of a triplet of numerics@>=
17123 mp_get_x_next(mp); mp_scan_expression(mp);
17124 if ( mp->cur_type<mp_known ) {
17125 exp_err("Nonnumeric third part has been replaced by 0");
17126 @.Nonnumeric...replaced by 0@>
17127 help3("I've just scanned a color `(a,b,c)' or cmykcolor(a,b,c,d); but the `c'")
17128 ("isn't of numeric type. So I've changed that part to zero.")
17129 ("(The c that I didn't like appears above the error message.)");
17130 mp_put_get_flush_error(mp, 0);
17132 mp_stash_in(mp, blue_part_loc(r));
17135 @ @<Scan the last of a quartet of numerics@>=
17137 mp_get_x_next(mp); mp_scan_expression(mp);
17138 if ( mp->cur_type<mp_known ) {
17139 exp_err("Nonnumeric blackpart has been replaced by 0");
17140 @.Nonnumeric...replaced by 0@>
17141 help3("I've just scanned a cmykcolor `(c,m,y,k)'; but the `k' isn't")
17142 ("of numeric type. So I've changed that part to zero.")
17143 ("(The k that I didn't like appears above the error message.)");
17144 mp_put_get_flush_error(mp, 0);
17146 mp_stash_in(mp, black_part_loc(r));
17149 @ The local variable |group_line| keeps track of the line
17150 where a \&{begingroup} command occurred; this will be useful
17151 in an error message if the group doesn't actually end.
17153 @<Other local variables for |scan_primary|@>=
17154 integer group_line; /* where a group began */
17156 @ @<Scan a grouped primary@>=
17158 group_line=mp_true_line(mp);
17159 if ( mp->internal[tracing_commands]>0 ) show_cur_cmd_mod;
17160 save_boundary_item(p);
17162 mp_do_statement(mp); /* ends with |cur_cmd>=semicolon| */
17163 } while (! (mp->cur_cmd!=semicolon));
17164 if ( mp->cur_cmd!=end_group ) {
17165 print_err("A group begun on line ");
17166 @.A group...never ended@>
17167 mp_print_int(mp, group_line);
17168 mp_print(mp, " never ended");
17169 help2("I saw a `begingroup' back there that hasn't been matched")
17170 ("by `endgroup'. So I've inserted `endgroup' now.");
17171 mp_back_error(mp); mp->cur_cmd=end_group;
17174 /* this might change |cur_type|, if independent variables are recycled */
17175 if ( mp->internal[tracing_commands]>0 ) show_cur_cmd_mod;
17178 @ @<Scan a string constant@>=
17180 mp->cur_type=mp_string_type; mp->cur_exp=mp->cur_mod;
17183 @ Later we'll come to procedures that perform actual operations like
17184 addition, square root, and so on; our purpose now is to do the parsing.
17185 But we might as well mention those future procedures now, so that the
17186 suspense won't be too bad:
17189 |do_nullary(c)| does primitive operations that have no operands (e.g.,
17190 `\&{true}' or `\&{pencircle}');
17193 |do_unary(c)| applies a primitive operation to the current expression;
17196 |do_binary(p,c)| applies a primitive operation to the capsule~|p|
17197 and the current expression.
17199 @<Scan a nullary operation@>=mp_do_nullary(mp, mp->cur_mod)
17201 @ @<Scan a unary operation@>=
17203 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_primary(mp);
17204 mp_do_unary(mp, c); goto DONE;
17207 @ A numeric token might be a primary by itself, or it might be the
17208 numerator of a fraction composed solely of numeric tokens, or it might
17209 multiply the primary that follows (provided that the primary doesn't begin
17210 with a plus sign or a minus sign). The code here uses the facts that
17211 |max_primary_command=plus_or_minus| and
17212 |max_primary_command-1=numeric_token|. If a fraction is found that is less
17213 than unity, we try to retain higher precision when we use it in scalar
17216 @<Other local variables for |scan_primary|@>=
17217 scaled num,denom; /* for primaries that are fractions, like `1/2' */
17219 @ @<Scan a primary that starts with a numeric token@>=
17221 mp->cur_exp=mp->cur_mod; mp->cur_type=mp_known; mp_get_x_next(mp);
17222 if ( mp->cur_cmd!=slash ) {
17226 if ( mp->cur_cmd!=numeric_token ) {
17228 mp->cur_cmd=slash; mp->cur_mod=over; mp->cur_sym=frozen_slash;
17231 num=mp->cur_exp; denom=mp->cur_mod;
17232 if ( denom==0 ) { @<Protest division by zero@>; }
17233 else { mp->cur_exp=mp_make_scaled(mp, num,denom); }
17234 check_arith; mp_get_x_next(mp);
17236 if ( mp->cur_cmd>=min_primary_command ) {
17237 if ( mp->cur_cmd<numeric_token ) { /* in particular, |cur_cmd<>plus_or_minus| */
17238 p=mp_stash_cur_exp(mp); mp_scan_primary(mp);
17239 if ( (abs(num)>=abs(denom))||(mp->cur_type<mp_color_type) ) {
17240 mp_do_binary(mp, p,times);
17242 mp_frac_mult(mp, num,denom);
17243 mp_free_node(mp, p,value_node_size);
17250 @ @<Protest division...@>=
17252 print_err("Division by zero");
17253 @.Division by zero@>
17254 help1("I'll pretend that you meant to divide by 1."); mp_error(mp);
17257 @ @<Scan a binary operation with `\&{of}' between its operands@>=
17259 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
17260 if ( mp->cur_cmd!=of_token ) {
17261 mp_missing_err(mp, "of"); mp_print(mp, " for ");
17262 mp_print_cmd_mod(mp, primary_binary,c);
17264 help1("I've got the first argument; will look now for the other.");
17267 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_primary(mp);
17268 mp_do_binary(mp, p,c); goto DONE;
17271 @ @<Convert a suffix to a string@>=
17273 mp_get_x_next(mp); mp_scan_suffix(mp);
17274 mp->old_setting=mp->selector; mp->selector=new_string;
17275 mp_show_token_list(mp, mp->cur_exp,null,100000,0);
17276 mp_flush_token_list(mp, mp->cur_exp);
17277 mp->cur_exp=mp_make_string(mp); mp->selector=mp->old_setting;
17278 mp->cur_type=mp_string_type;
17282 @ If an internal quantity appears all by itself on the left of an
17283 assignment, we return a token list of length one, containing the address
17284 of the internal quantity plus |hash_end|. (This accords with the conventions
17285 of the save stack, as described earlier.)
17287 @<Scan an internal...@>=
17290 if ( my_var_flag==assignment ) {
17292 if ( mp->cur_cmd==assignment ) {
17293 mp->cur_exp=mp_get_avail(mp);
17294 info(mp->cur_exp)=q+hash_end; mp->cur_type=mp_token_list;
17299 mp->cur_type=mp_known; mp->cur_exp=mp->internal[q];
17302 @ The most difficult part of |scan_primary| has been saved for last, since
17303 it was necessary to build up some confidence first. We can now face the task
17304 of scanning a variable.
17306 As we scan a variable, we build a token list containing the relevant
17307 names and subscript values, simultaneously following along in the
17308 ``collective'' structure to see if we are actually dealing with a macro
17309 instead of a value.
17311 The local variables |pre_head| and |post_head| will point to the beginning
17312 of the prefix and suffix lists; |tail| will point to the end of the list
17313 that is currently growing.
17315 Another local variable, |tt|, contains partial information about the
17316 declared type of the variable-so-far. If |tt>=mp_unsuffixed_macro|, the
17317 relation |tt=type(q)| will always hold. If |tt=undefined|, the routine
17318 doesn't bother to update its information about type. And if
17319 |undefined<tt<mp_unsuffixed_macro|, the precise value of |tt| isn't critical.
17321 @ @<Other local variables for |scan_primary|@>=
17322 pointer pre_head,post_head,tail;
17323 /* prefix and suffix list variables */
17324 small_number tt; /* approximation to the type of the variable-so-far */
17325 pointer t; /* a token */
17326 pointer macro_ref = 0; /* reference count for a suffixed macro */
17328 @ @<Scan a variable primary...@>=
17330 fast_get_avail(pre_head); tail=pre_head; post_head=null; tt=mp_vacuous;
17332 t=mp_cur_tok(mp); link(tail)=t;
17333 if ( tt!=undefined ) {
17334 @<Find the approximate type |tt| and corresponding~|q|@>;
17335 if ( tt>=mp_unsuffixed_macro ) {
17336 @<Either begin an unsuffixed macro call or
17337 prepare for a suffixed one@>;
17340 mp_get_x_next(mp); tail=t;
17341 if ( mp->cur_cmd==left_bracket ) {
17342 @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>;
17344 if ( mp->cur_cmd>max_suffix_token ) break;
17345 if ( mp->cur_cmd<min_suffix_token ) break;
17346 } /* now |cur_cmd| is |internal_quantity|, |tag_token|, or |numeric_token| */
17347 @<Handle unusual cases that masquerade as variables, and |goto restart|
17348 or |goto done| if appropriate;
17349 otherwise make a copy of the variable and |goto done|@>;
17352 @ @<Either begin an unsuffixed macro call or...@>=
17355 if ( tt>mp_unsuffixed_macro ) { /* |tt=mp_suffixed_macro| */
17356 post_head=mp_get_avail(mp); tail=post_head; link(tail)=t;
17357 tt=undefined; macro_ref=value(q); add_mac_ref(macro_ref);
17359 @<Set up unsuffixed macro call and |goto restart|@>;
17363 @ @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>=
17365 mp_get_x_next(mp); mp_scan_expression(mp);
17366 if ( mp->cur_cmd!=right_bracket ) {
17367 @<Put the left bracket and the expression back to be rescanned@>;
17369 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17370 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp; mp->cur_sym=0;
17374 @ The left bracket that we thought was introducing a subscript might have
17375 actually been the left bracket in a mediation construction like `\.{x[a,b]}'.
17376 So we don't issue an error message at this point; but we do want to back up
17377 so as to avoid any embarrassment about our incorrect assumption.
17379 @<Put the left bracket and the expression back to be rescanned@>=
17381 mp_back_input(mp); /* that was the token following the current expression */
17382 mp_back_expr(mp); mp->cur_cmd=left_bracket;
17383 mp->cur_mod=0; mp->cur_sym=frozen_left_bracket;
17386 @ Here's a routine that puts the current expression back to be read again.
17388 @c void mp_back_expr (MP mp) {
17389 pointer p; /* capsule token */
17390 p=mp_stash_cur_exp(mp); link(p)=null; back_list(p);
17393 @ Unknown subscripts lead to the following error message.
17395 @c void mp_bad_subscript (MP mp) {
17396 exp_err("Improper subscript has been replaced by zero");
17397 @.Improper subscript...@>
17398 help3("A bracketed subscript must have a known numeric value;")
17399 ("unfortunately, what I found was the value that appears just")
17400 ("above this error message. So I'll try a zero subscript.");
17401 mp_flush_error(mp, 0);
17404 @ Every time we call |get_x_next|, there's a chance that the variable we've
17405 been looking at will disappear. Thus, we cannot safely keep |q| pointing
17406 into the variable structure; we need to start searching from the root each time.
17408 @<Find the approximate type |tt| and corresponding~|q|@>=
17411 p=link(pre_head); q=info(p); tt=undefined;
17412 if ( eq_type(q) % outer_tag==tag_token ) {
17414 if ( q==null ) goto DONE2;
17418 tt=type(q); goto DONE2;
17420 if ( type(q)!=mp_structured ) goto DONE2;
17421 q=link(attr_head(q)); /* the |collective_subscript| attribute */
17422 if ( p>=mp->hi_mem_min ) { /* it's not a subscript */
17423 do { q=link(q); } while (! (attr_loc(q)>=info(p)));
17424 if ( attr_loc(q)>info(p) ) goto DONE2;
17432 @ How do things stand now? Well, we have scanned an entire variable name,
17433 including possible subscripts and/or attributes; |cur_cmd|, |cur_mod|, and
17434 |cur_sym| represent the token that follows. If |post_head=null|, a
17435 token list for this variable name starts at |link(pre_head)|, with all
17436 subscripts evaluated. But if |post_head<>null|, the variable turned out
17437 to be a suffixed macro; |pre_head| is the head of the prefix list, while
17438 |post_head| is the head of a token list containing both `\.{\AT!}' and
17441 Our immediate problem is to see if this variable still exists. (Variable
17442 structures can change drastically whenever we call |get_x_next|; users
17443 aren't supposed to do this, but the fact that it is possible means that
17444 we must be cautious.)
17446 The following procedure prints an error message when a variable
17447 unexpectedly disappears. Its help message isn't quite right for
17448 our present purposes, but we'll be able to fix that up.
17451 void mp_obliterated (MP mp,pointer q) {
17452 print_err("Variable "); mp_show_token_list(mp, q,null,1000,0);
17453 mp_print(mp, " has been obliterated");
17454 @.Variable...obliterated@>
17455 help5("It seems you did a nasty thing---probably by accident,")
17456 ("but nevertheless you nearly hornswoggled me...")
17457 ("While I was evaluating the right-hand side of this")
17458 ("command, something happened, and the left-hand side")
17459 ("is no longer a variable! So I won't change anything.");
17462 @ If the variable does exist, we also need to check
17463 for a few other special cases before deciding that a plain old ordinary
17464 variable has, indeed, been scanned.
17466 @<Handle unusual cases that masquerade as variables...@>=
17467 if ( post_head!=null ) {
17468 @<Set up suffixed macro call and |goto restart|@>;
17470 q=link(pre_head); free_avail(pre_head);
17471 if ( mp->cur_cmd==my_var_flag ) {
17472 mp->cur_type=mp_token_list; mp->cur_exp=q; goto DONE;
17474 p=mp_find_variable(mp, q);
17476 mp_make_exp_copy(mp, p);
17478 mp_obliterated(mp, q);
17479 mp->help_line[2]="While I was evaluating the suffix of this variable,";
17480 mp->help_line[1]="something was redefined, and it's no longer a variable!";
17481 mp->help_line[0]="In order to get back on my feet, I've inserted `0' instead.";
17482 mp_put_get_flush_error(mp, 0);
17484 mp_flush_node_list(mp, q);
17487 @ The only complication associated with macro calling is that the prefix
17488 and ``at'' parameters must be packaged in an appropriate list of lists.
17490 @<Set up unsuffixed macro call and |goto restart|@>=
17492 p=mp_get_avail(mp); info(pre_head)=link(pre_head); link(pre_head)=p;
17493 info(p)=t; mp_macro_call(mp, value(q),pre_head,null);
17498 @ If the ``variable'' that turned out to be a suffixed macro no longer exists,
17499 we don't care, because we have reserved a pointer (|macro_ref|) to its
17502 @<Set up suffixed macro call and |goto restart|@>=
17504 mp_back_input(mp); p=mp_get_avail(mp); q=link(post_head);
17505 info(pre_head)=link(pre_head); link(pre_head)=post_head;
17506 info(post_head)=q; link(post_head)=p; info(p)=link(q); link(q)=null;
17507 mp_macro_call(mp, macro_ref,pre_head,null); decr(ref_count(macro_ref));
17508 mp_get_x_next(mp); goto RESTART;
17511 @ Our remaining job is simply to make a copy of the value that has been
17512 found. Some cases are harder than others, but complexity arises solely
17513 because of the multiplicity of possible cases.
17515 @<Declare the procedure called |make_exp_copy|@>=
17516 @<Declare subroutines needed by |make_exp_copy|@>;
17517 void mp_make_exp_copy (MP mp,pointer p) {
17518 pointer q,r,t; /* registers for list manipulation */
17520 mp->cur_type=type(p);
17521 switch (mp->cur_type) {
17522 case mp_vacuous: case mp_boolean_type: case mp_known:
17523 mp->cur_exp=value(p); break;
17524 case unknown_types:
17525 mp->cur_exp=mp_new_ring_entry(mp, p);
17527 case mp_string_type:
17528 mp->cur_exp=value(p); add_str_ref(mp->cur_exp);
17530 case mp_picture_type:
17531 mp->cur_exp=value(p);add_edge_ref(mp->cur_exp);
17534 mp->cur_exp=copy_pen(value(p));
17537 mp->cur_exp=mp_copy_path(mp, value(p));
17539 case mp_transform_type: case mp_color_type:
17540 case mp_cmykcolor_type: case mp_pair_type:
17541 @<Copy the big node |p|@>;
17543 case mp_dependent: case mp_proto_dependent:
17544 mp_encapsulate(mp, mp_copy_dep_list(mp, dep_list(p)));
17546 case mp_numeric_type:
17547 new_indep(p); goto RESTART;
17549 case mp_independent:
17550 q=mp_single_dependency(mp, p);
17551 if ( q==mp->dep_final ){
17552 mp->cur_type=mp_known; mp->cur_exp=0; mp_free_node(mp, q,value_node_size);
17554 mp->cur_type=mp_dependent; mp_encapsulate(mp, q);
17558 mp_confusion(mp, "copy");
17559 @:this can't happen copy}{\quad copy@>
17564 @ The |encapsulate| subroutine assumes that |dep_final| is the
17565 tail of dependency list~|p|.
17567 @<Declare subroutines needed by |make_exp_copy|@>=
17568 void mp_encapsulate (MP mp,pointer p) {
17569 mp->cur_exp=mp_get_node(mp, value_node_size); type(mp->cur_exp)=mp->cur_type;
17570 name_type(mp->cur_exp)=mp_capsule; mp_new_dep(mp, mp->cur_exp,p);
17573 @ The most tedious case arises when the user refers to a
17574 \&{pair}, \&{color}, or \&{transform} variable; we must copy several fields,
17575 each of which can be |independent|, |dependent|, |mp_proto_dependent|,
17578 @<Copy the big node |p|@>=
17580 if ( value(p)==null )
17581 mp_init_big_node(mp, p);
17582 t=mp_get_node(mp, value_node_size); name_type(t)=mp_capsule; type(t)=mp->cur_type;
17583 mp_init_big_node(mp, t);
17584 q=value(p)+mp->big_node_size[mp->cur_type];
17585 r=value(t)+mp->big_node_size[mp->cur_type];
17587 q=q-2; r=r-2; mp_install(mp, r,q);
17588 } while (q!=value(p));
17592 @ The |install| procedure copies a numeric field~|q| into field~|r| of
17593 a big node that will be part of a capsule.
17595 @<Declare subroutines needed by |make_exp_copy|@>=
17596 void mp_install (MP mp,pointer r, pointer q) {
17597 pointer p; /* temporary register */
17598 if ( type(q)==mp_known ){
17599 value(r)=value(q); type(r)=mp_known;
17600 } else if ( type(q)==mp_independent ) {
17601 p=mp_single_dependency(mp, q);
17602 if ( p==mp->dep_final ) {
17603 type(r)=mp_known; value(r)=0; mp_free_node(mp, p,value_node_size);
17605 type(r)=mp_dependent; mp_new_dep(mp, r,p);
17608 type(r)=type(q); mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(q)));
17612 @ Expressions of the form `\.{a[b,c]}' are converted into
17613 `\.{b+a*(c-b)}', without checking the types of \.b~or~\.c,
17614 provided that \.a is numeric.
17616 @<Scan a mediation...@>=
17618 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17619 if ( mp->cur_cmd!=comma ) {
17620 @<Put the left bracket and the expression back...@>;
17621 mp_unstash_cur_exp(mp, p);
17623 q=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17624 if ( mp->cur_cmd!=right_bracket ) {
17625 mp_missing_err(mp, "]");
17627 help3("I've scanned an expression of the form `a[b,c',")
17628 ("so a right bracket should have come next.")
17629 ("I shall pretend that one was there.");
17632 r=mp_stash_cur_exp(mp); mp_make_exp_copy(mp, q);
17633 mp_do_binary(mp, r,minus); mp_do_binary(mp, p,times);
17634 mp_do_binary(mp, q,plus); mp_get_x_next(mp);
17638 @ Here is a comparatively simple routine that is used to scan the
17639 \&{suffix} parameters of a macro.
17641 @<Declare the basic parsing subroutines@>=
17642 void mp_scan_suffix (MP mp) {
17643 pointer h,t; /* head and tail of the list being built */
17644 pointer p; /* temporary register */
17645 h=mp_get_avail(mp); t=h;
17647 if ( mp->cur_cmd==left_bracket ) {
17648 @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>;
17650 if ( mp->cur_cmd==numeric_token ) {
17651 p=mp_new_num_tok(mp, mp->cur_mod);
17652 } else if ((mp->cur_cmd==tag_token)||(mp->cur_cmd==internal_quantity) ) {
17653 p=mp_get_avail(mp); info(p)=mp->cur_sym;
17657 link(t)=p; t=p; mp_get_x_next(mp);
17659 mp->cur_exp=link(h); free_avail(h); mp->cur_type=mp_token_list;
17662 @ @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>=
17664 mp_get_x_next(mp); mp_scan_expression(mp);
17665 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17666 if ( mp->cur_cmd!=right_bracket ) {
17667 mp_missing_err(mp, "]");
17669 help3("I've seen a `[' and a subscript value, in a suffix,")
17670 ("so a right bracket should have come next.")
17671 ("I shall pretend that one was there.");
17674 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp;
17677 @* \[38] Parsing secondary and higher expressions.
17678 After the intricacies of |scan_primary|\kern-1pt,
17679 the |scan_secondary| routine is
17680 refreshingly simple. It's not trivial, but the operations are relatively
17681 straightforward; the main difficulty is, again, that expressions and data
17682 structures might change drastically every time we call |get_x_next|, so a
17683 cautious approach is mandatory. For example, a macro defined by
17684 \&{primarydef} might have disappeared by the time its second argument has
17685 been scanned; we solve this by increasing the reference count of its token
17686 list, so that the macro can be called even after it has been clobbered.
17688 @<Declare the basic parsing subroutines@>=
17689 void mp_scan_secondary (MP mp) {
17690 pointer p; /* for list manipulation */
17691 halfword c,d; /* operation codes or modifiers */
17692 pointer mac_name; /* token defined with \&{primarydef} */
17694 if ((mp->cur_cmd<min_primary_command)||
17695 (mp->cur_cmd>max_primary_command) )
17696 mp_bad_exp(mp, "A secondary");
17697 @.A secondary expression...@>
17698 mp_scan_primary(mp);
17700 if ( mp->cur_cmd<=max_secondary_command )
17701 if ( mp->cur_cmd>=min_secondary_command ) {
17702 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17703 if ( d==secondary_primary_macro ) {
17704 mac_name=mp->cur_sym; add_mac_ref(c);
17706 mp_get_x_next(mp); mp_scan_primary(mp);
17707 if ( d!=secondary_primary_macro ) {
17708 mp_do_binary(mp, p,c);
17710 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17711 decr(ref_count(c)); mp_get_x_next(mp);
17718 @ The following procedure calls a macro that has two parameters,
17721 @c void mp_binary_mac (MP mp,pointer p, pointer c, pointer n) {
17722 pointer q,r; /* nodes in the parameter list */
17723 q=mp_get_avail(mp); r=mp_get_avail(mp); link(q)=r;
17724 info(q)=p; info(r)=mp_stash_cur_exp(mp);
17725 mp_macro_call(mp, c,q,n);
17728 @ The next procedure, |scan_tertiary|, is pretty much the same deal.
17730 @<Declare the basic parsing subroutines@>=
17731 void mp_scan_tertiary (MP mp) {
17732 pointer p; /* for list manipulation */
17733 halfword c,d; /* operation codes or modifiers */
17734 pointer mac_name; /* token defined with \&{secondarydef} */
17736 if ((mp->cur_cmd<min_primary_command)||
17737 (mp->cur_cmd>max_primary_command) )
17738 mp_bad_exp(mp, "A tertiary");
17739 @.A tertiary expression...@>
17740 mp_scan_secondary(mp);
17742 if ( mp->cur_cmd<=max_tertiary_command ) {
17743 if ( mp->cur_cmd>=min_tertiary_command ) {
17744 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17745 if ( d==tertiary_secondary_macro ) {
17746 mac_name=mp->cur_sym; add_mac_ref(c);
17748 mp_get_x_next(mp); mp_scan_secondary(mp);
17749 if ( d!=tertiary_secondary_macro ) {
17750 mp_do_binary(mp, p,c);
17752 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17753 decr(ref_count(c)); mp_get_x_next(mp);
17761 @ Finally we reach the deepest level in our quartet of parsing routines.
17762 This one is much like the others; but it has an extra complication from
17763 paths, which materialize here.
17765 @d continue_path 25 /* a label inside of |scan_expression| */
17766 @d finish_path 26 /* another */
17768 @<Declare the basic parsing subroutines@>=
17769 void mp_scan_expression (MP mp) {
17770 pointer p,q,r,pp,qq; /* for list manipulation */
17771 halfword c,d; /* operation codes or modifiers */
17772 int my_var_flag; /* initial value of |var_flag| */
17773 pointer mac_name; /* token defined with \&{tertiarydef} */
17774 boolean cycle_hit; /* did a path expression just end with `\&{cycle}'? */
17775 scaled x,y; /* explicit coordinates or tension at a path join */
17776 int t; /* knot type following a path join */
17778 my_var_flag=mp->var_flag; mac_name=null;
17780 if ((mp->cur_cmd<min_primary_command)||
17781 (mp->cur_cmd>max_primary_command) )
17782 mp_bad_exp(mp, "An");
17783 @.An expression...@>
17784 mp_scan_tertiary(mp);
17786 if ( mp->cur_cmd<=max_expression_command )
17787 if ( mp->cur_cmd>=min_expression_command ) {
17788 if ( (mp->cur_cmd!=equals)||(my_var_flag!=assignment) ) {
17789 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17790 if ( d==expression_tertiary_macro ) {
17791 mac_name=mp->cur_sym; add_mac_ref(c);
17793 if ( (d<ampersand)||((d==ampersand)&&
17794 ((type(p)==mp_pair_type)||(type(p)==mp_path_type))) ) {
17795 @<Scan a path construction operation;
17796 but |return| if |p| has the wrong type@>;
17798 mp_get_x_next(mp); mp_scan_tertiary(mp);
17799 if ( d!=expression_tertiary_macro ) {
17800 mp_do_binary(mp, p,c);
17802 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17803 decr(ref_count(c)); mp_get_x_next(mp);
17812 @ The reader should review the data structure conventions for paths before
17813 hoping to understand the next part of this code.
17815 @<Scan a path construction operation...@>=
17818 @<Convert the left operand, |p|, into a partial path ending at~|q|;
17819 but |return| if |p| doesn't have a suitable type@>;
17821 @<Determine the path join parameters;
17822 but |goto finish_path| if there's only a direction specifier@>;
17823 if ( mp->cur_cmd==cycle ) {
17824 @<Get ready to close a cycle@>;
17826 mp_scan_tertiary(mp);
17827 @<Convert the right operand, |cur_exp|,
17828 into a partial path from |pp| to~|qq|@>;
17830 @<Join the partial paths and reset |p| and |q| to the head and tail
17832 if ( mp->cur_cmd>=min_expression_command )
17833 if ( mp->cur_cmd<=ampersand ) if ( ! cycle_hit ) goto CONTINUE_PATH;
17835 @<Choose control points for the path and put the result into |cur_exp|@>;
17838 @ @<Convert the left operand, |p|, into a partial path ending at~|q|...@>=
17840 mp_unstash_cur_exp(mp, p);
17841 if ( mp->cur_type==mp_pair_type ) p=mp_new_knot(mp);
17842 else if ( mp->cur_type==mp_path_type ) p=mp->cur_exp;
17845 while ( link(q)!=p ) q=link(q);
17846 if ( left_type(p)!=endpoint ) { /* open up a cycle */
17847 r=mp_copy_knot(mp, p); link(q)=r; q=r;
17849 left_type(p)=open; right_type(q)=open;
17852 @ A pair of numeric values is changed into a knot node for a one-point path
17853 when \MP\ discovers that the pair is part of a path.
17855 @c@<Declare the procedure called |known_pair|@>;
17856 pointer mp_new_knot (MP mp) { /* convert a pair to a knot with two endpoints */
17857 pointer q; /* the new node */
17858 q=mp_get_node(mp, knot_node_size); left_type(q)=endpoint;
17859 right_type(q)=endpoint; originator(q)=metapost_user; link(q)=q;
17860 mp_known_pair(mp); x_coord(q)=mp->cur_x; y_coord(q)=mp->cur_y;
17864 @ The |known_pair| subroutine sets |cur_x| and |cur_y| to the components
17865 of the current expression, assuming that the current expression is a
17866 pair of known numerics. Unknown components are zeroed, and the
17867 current expression is flushed.
17869 @<Declare the procedure called |known_pair|@>=
17870 void mp_known_pair (MP mp) {
17871 pointer p; /* the pair node */
17872 if ( mp->cur_type!=mp_pair_type ) {
17873 exp_err("Undefined coordinates have been replaced by (0,0)");
17874 @.Undefined coordinates...@>
17875 help5("I need x and y numbers for this part of the path.")
17876 ("The value I found (see above) was no good;")
17877 ("so I'll try to keep going by using zero instead.")
17878 ("(Chapter 27 of The METAFONTbook explains that")
17879 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17880 ("you might want to type `I ??" "?' now.)");
17881 mp_put_get_flush_error(mp, 0); mp->cur_x=0; mp->cur_y=0;
17883 p=value(mp->cur_exp);
17884 @<Make sure that both |x| and |y| parts of |p| are known;
17885 copy them into |cur_x| and |cur_y|@>;
17886 mp_flush_cur_exp(mp, 0);
17890 @ @<Make sure that both |x| and |y| parts of |p| are known...@>=
17891 if ( type(x_part_loc(p))==mp_known ) {
17892 mp->cur_x=value(x_part_loc(p));
17894 mp_disp_err(mp, x_part_loc(p),
17895 "Undefined x coordinate has been replaced by 0");
17896 @.Undefined coordinates...@>
17897 help5("I need a `known' x value for this part of the path.")
17898 ("The value I found (see above) was no good;")
17899 ("so I'll try to keep going by using zero instead.")
17900 ("(Chapter 27 of The METAFONTbook explains that")
17901 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17902 ("you might want to type `I ??" "?' now.)");
17903 mp_put_get_error(mp); mp_recycle_value(mp, x_part_loc(p)); mp->cur_x=0;
17905 if ( type(y_part_loc(p))==mp_known ) {
17906 mp->cur_y=value(y_part_loc(p));
17908 mp_disp_err(mp, y_part_loc(p),
17909 "Undefined y coordinate has been replaced by 0");
17910 help5("I need a `known' y value for this part of the path.")
17911 ("The value I found (see above) was no good;")
17912 ("so I'll try to keep going by using zero instead.")
17913 ("(Chapter 27 of The METAFONTbook explains that")
17914 ("you might want to type `I ??" "?' now.)");
17915 mp_put_get_error(mp); mp_recycle_value(mp, y_part_loc(p)); mp->cur_y=0;
17918 @ At this point |cur_cmd| is either |ampersand|, |left_brace|, or |path_join|.
17920 @<Determine the path join parameters...@>=
17921 if ( mp->cur_cmd==left_brace ) {
17922 @<Put the pre-join direction information into node |q|@>;
17925 if ( d==path_join ) {
17926 @<Determine the tension and/or control points@>;
17927 } else if ( d!=ampersand ) {
17931 if ( mp->cur_cmd==left_brace ) {
17932 @<Put the post-join direction information into |x| and |t|@>;
17933 } else if ( right_type(q)!=explicit ) {
17937 @ The |scan_direction| subroutine looks at the directional information
17938 that is enclosed in braces, and also scans ahead to the following character.
17939 A type code is returned, either |open| (if the direction was $(0,0)$),
17940 or |curl| (if the direction was a curl of known value |cur_exp|), or
17941 |given| (if the direction is given by the |angle| value that now
17942 appears in |cur_exp|).
17944 There's nothing difficult about this subroutine, but the program is rather
17945 lengthy because a variety of potential errors need to be nipped in the bud.
17947 @c small_number mp_scan_direction (MP mp) {
17948 int t; /* the type of information found */
17949 scaled x; /* an |x| coordinate */
17951 if ( mp->cur_cmd==curl_command ) {
17952 @<Scan a curl specification@>;
17954 @<Scan a given direction@>;
17956 if ( mp->cur_cmd!=right_brace ) {
17957 mp_missing_err(mp, "}");
17958 @.Missing `\char`\}'@>
17959 help3("I've scanned a direction spec for part of a path,")
17960 ("so a right brace should have come next.")
17961 ("I shall pretend that one was there.");
17968 @ @<Scan a curl specification@>=
17969 { mp_get_x_next(mp); mp_scan_expression(mp);
17970 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<0) ){
17971 exp_err("Improper curl has been replaced by 1");
17973 help1("A curl must be a known, nonnegative number.");
17974 mp_put_get_flush_error(mp, unity);
17979 @ @<Scan a given direction@>=
17980 { mp_scan_expression(mp);
17981 if ( mp->cur_type>mp_pair_type ) {
17982 @<Get given directions separated by commas@>;
17986 if ( (mp->cur_x==0)&&(mp->cur_y==0) ) t=open;
17987 else { t=given; mp->cur_exp=mp_n_arg(mp, mp->cur_x,mp->cur_y);}
17990 @ @<Get given directions separated by commas@>=
17992 if ( mp->cur_type!=mp_known ) {
17993 exp_err("Undefined x coordinate has been replaced by 0");
17994 @.Undefined coordinates...@>
17995 help5("I need a `known' x value for this part of the path.")
17996 ("The value I found (see above) was no good;")
17997 ("so I'll try to keep going by using zero instead.")
17998 ("(Chapter 27 of The METAFONTbook explains that")
17999 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18000 ("you might want to type `I ??" "?' now.)");
18001 mp_put_get_flush_error(mp, 0);
18004 if ( mp->cur_cmd!=comma ) {
18005 mp_missing_err(mp, ",");
18007 help2("I've got the x coordinate of a path direction;")
18008 ("will look for the y coordinate next.");
18011 mp_get_x_next(mp); mp_scan_expression(mp);
18012 if ( mp->cur_type!=mp_known ) {
18013 exp_err("Undefined y coordinate has been replaced by 0");
18014 help5("I need a `known' y value for this part of the path.")
18015 ("The value I found (see above) was no good;")
18016 ("so I'll try to keep going by using zero instead.")
18017 ("(Chapter 27 of The METAFONTbook explains that")
18018 ("you might want to type `I ??" "?' now.)");
18019 mp_put_get_flush_error(mp, 0);
18021 mp->cur_y=mp->cur_exp; mp->cur_x=x;
18024 @ At this point |right_type(q)| is usually |open|, but it may have been
18025 set to some other value by a previous splicing operation. We must maintain
18026 the value of |right_type(q)| in unusual cases such as
18027 `\.{..z1\{z2\}\&\{z3\}z1\{0,0\}..}'.
18029 @<Put the pre-join...@>=
18031 t=mp_scan_direction(mp);
18033 right_type(q)=t; right_given(q)=mp->cur_exp;
18034 if ( left_type(q)==open ) {
18035 left_type(q)=t; left_given(q)=mp->cur_exp;
18036 } /* note that |left_given(q)=left_curl(q)| */
18040 @ Since |left_tension| and |left_y| share the same position in knot nodes,
18041 and since |left_given| is similarly equivalent to |left_x|, we use
18042 |x| and |y| to hold the given direction and tension information when
18043 there are no explicit control points.
18045 @<Put the post-join...@>=
18047 t=mp_scan_direction(mp);
18048 if ( right_type(q)!=explicit ) x=mp->cur_exp;
18049 else t=explicit; /* the direction information is superfluous */
18052 @ @<Determine the tension and/or...@>=
18055 if ( mp->cur_cmd==tension ) {
18056 @<Set explicit tensions@>;
18057 } else if ( mp->cur_cmd==controls ) {
18058 @<Set explicit control points@>;
18060 right_tension(q)=unity; y=unity; mp_back_input(mp); /* default tension */
18063 if ( mp->cur_cmd!=path_join ) {
18064 mp_missing_err(mp, "..");
18066 help1("A path join command should end with two dots.");
18073 @ @<Set explicit tensions@>=
18075 mp_get_x_next(mp); y=mp->cur_cmd;
18076 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18077 mp_scan_primary(mp);
18078 @<Make sure that the current expression is a valid tension setting@>;
18079 if ( y==at_least ) negate(mp->cur_exp);
18080 right_tension(q)=mp->cur_exp;
18081 if ( mp->cur_cmd==and_command ) {
18082 mp_get_x_next(mp); y=mp->cur_cmd;
18083 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18084 mp_scan_primary(mp);
18085 @<Make sure that the current expression is a valid tension setting@>;
18086 if ( y==at_least ) negate(mp->cur_exp);
18091 @ @d min_tension three_quarter_unit
18093 @<Make sure that the current expression is a valid tension setting@>=
18094 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<min_tension) ) {
18095 exp_err("Improper tension has been set to 1");
18096 @.Improper tension@>
18097 help1("The expression above should have been a number >=3/4.");
18098 mp_put_get_flush_error(mp, unity);
18101 @ @<Set explicit control points@>=
18103 right_type(q)=explicit; t=explicit; mp_get_x_next(mp); mp_scan_primary(mp);
18104 mp_known_pair(mp); right_x(q)=mp->cur_x; right_y(q)=mp->cur_y;
18105 if ( mp->cur_cmd!=and_command ) {
18106 x=right_x(q); y=right_y(q);
18108 mp_get_x_next(mp); mp_scan_primary(mp);
18109 mp_known_pair(mp); x=mp->cur_x; y=mp->cur_y;
18113 @ @<Convert the right operand, |cur_exp|, into a partial path...@>=
18115 if ( mp->cur_type!=mp_path_type ) pp=mp_new_knot(mp);
18116 else pp=mp->cur_exp;
18118 while ( link(qq)!=pp ) qq=link(qq);
18119 if ( left_type(pp)!=endpoint ) { /* open up a cycle */
18120 r=mp_copy_knot(mp, pp); link(qq)=r; qq=r;
18122 left_type(pp)=open; right_type(qq)=open;
18125 @ If a person tries to define an entire path by saying `\.{(x,y)\&cycle}',
18126 we silently change the specification to `\.{(x,y)..cycle}', since a cycle
18127 shouldn't have length zero.
18129 @<Get ready to close a cycle@>=
18131 cycle_hit=true; mp_get_x_next(mp); pp=p; qq=p;
18132 if ( d==ampersand ) if ( p==q ) {
18133 d=path_join; right_tension(q)=unity; y=unity;
18137 @ @<Join the partial paths and reset |p| and |q|...@>=
18139 if ( d==ampersand ) {
18140 if ( (x_coord(q)!=x_coord(pp))||(y_coord(q)!=y_coord(pp)) ) {
18141 print_err("Paths don't touch; `&' will be changed to `..'");
18142 @.Paths don't touch@>
18143 help3("When you join paths `p&q', the ending point of p")
18144 ("must be exactly equal to the starting point of q.")
18145 ("So I'm going to pretend that you said `p..q' instead.");
18146 mp_put_get_error(mp); d=path_join; right_tension(q)=unity; y=unity;
18149 @<Plug an opening in |right_type(pp)|, if possible@>;
18150 if ( d==ampersand ) {
18151 @<Splice independent paths together@>;
18153 @<Plug an opening in |right_type(q)|, if possible@>;
18154 link(q)=pp; left_y(pp)=y;
18155 if ( t!=open ) { left_x(pp)=x; left_type(pp)=t; };
18160 @ @<Plug an opening in |right_type(q)|...@>=
18161 if ( right_type(q)==open ) {
18162 if ( (left_type(q)==curl)||(left_type(q)==given) ) {
18163 right_type(q)=left_type(q); right_given(q)=left_given(q);
18167 @ @<Plug an opening in |right_type(pp)|...@>=
18168 if ( right_type(pp)==open ) {
18169 if ( (t==curl)||(t==given) ) {
18170 right_type(pp)=t; right_given(pp)=x;
18174 @ @<Splice independent paths together@>=
18176 if ( left_type(q)==open ) if ( right_type(q)==open ) {
18177 left_type(q)=curl; left_curl(q)=unity;
18179 if ( right_type(pp)==open ) if ( t==open ) {
18180 right_type(pp)=curl; right_curl(pp)=unity;
18182 right_type(q)=right_type(pp); link(q)=link(pp);
18183 right_x(q)=right_x(pp); right_y(q)=right_y(pp);
18184 mp_free_node(mp, pp,knot_node_size);
18185 if ( qq==pp ) qq=q;
18188 @ @<Choose control points for the path...@>=
18190 if ( d==ampersand ) p=q;
18192 left_type(p)=endpoint;
18193 if ( right_type(p)==open ) {
18194 right_type(p)=curl; right_curl(p)=unity;
18196 right_type(q)=endpoint;
18197 if ( left_type(q)==open ) {
18198 left_type(q)=curl; left_curl(q)=unity;
18202 mp_make_choices(mp, p);
18203 mp->cur_type=mp_path_type; mp->cur_exp=p
18205 @ Finally, we sometimes need to scan an expression whose value is
18206 supposed to be either |true_code| or |false_code|.
18208 @<Declare the basic parsing subroutines@>=
18209 void mp_get_boolean (MP mp) {
18210 mp_get_x_next(mp); mp_scan_expression(mp);
18211 if ( mp->cur_type!=mp_boolean_type ) {
18212 exp_err("Undefined condition will be treated as `false'");
18213 @.Undefined condition...@>
18214 help2("The expression shown above should have had a definite")
18215 ("true-or-false value. I'm changing it to `false'.");
18216 mp_put_get_flush_error(mp, false_code); mp->cur_type=mp_boolean_type;
18220 @* \[39] Doing the operations.
18221 The purpose of parsing is primarily to permit people to avoid piles of
18222 parentheses. But the real work is done after the structure of an expression
18223 has been recognized; that's when new expressions are generated. We
18224 turn now to the guts of \MP, which handles individual operators that
18225 have come through the parsing mechanism.
18227 We'll start with the easy ones that take no operands, then work our way
18228 up to operators with one and ultimately two arguments. In other words,
18229 we will write the three procedures |do_nullary|, |do_unary|, and |do_binary|
18230 that are invoked periodically by the expression scanners.
18232 First let's make sure that all of the primitive operators are in the
18233 hash table. Although |scan_primary| and its relatives made use of the
18234 \\{cmd} code for these operators, the \\{do} routines base everything
18235 on the \\{mod} code. For example, |do_binary| doesn't care whether the
18236 operation it performs is a |primary_binary| or |secondary_binary|, etc.
18239 mp_primitive(mp, "true",nullary,true_code);
18240 @:true_}{\&{true} primitive@>
18241 mp_primitive(mp, "false",nullary,false_code);
18242 @:false_}{\&{false} primitive@>
18243 mp_primitive(mp, "nullpicture",nullary,null_picture_code);
18244 @:null_picture_}{\&{nullpicture} primitive@>
18245 mp_primitive(mp, "nullpen",nullary,null_pen_code);
18246 @:null_pen_}{\&{nullpen} primitive@>
18247 mp_primitive(mp, "jobname",nullary,job_name_op);
18248 @:job_name_}{\&{jobname} primitive@>
18249 mp_primitive(mp, "readstring",nullary,read_string_op);
18250 @:read_string_}{\&{readstring} primitive@>
18251 mp_primitive(mp, "pencircle",nullary,pen_circle);
18252 @:pen_circle_}{\&{pencircle} primitive@>
18253 mp_primitive(mp, "normaldeviate",nullary,normal_deviate);
18254 @:normal_deviate_}{\&{normaldeviate} primitive@>
18255 mp_primitive(mp, "readfrom",unary,read_from_op);
18256 @:read_from_}{\&{readfrom} primitive@>
18257 mp_primitive(mp, "closefrom",unary,close_from_op);
18258 @:close_from_}{\&{closefrom} primitive@>
18259 mp_primitive(mp, "odd",unary,odd_op);
18260 @:odd_}{\&{odd} primitive@>
18261 mp_primitive(mp, "known",unary,known_op);
18262 @:known_}{\&{known} primitive@>
18263 mp_primitive(mp, "unknown",unary,unknown_op);
18264 @:unknown_}{\&{unknown} primitive@>
18265 mp_primitive(mp, "not",unary,not_op);
18266 @:not_}{\&{not} primitive@>
18267 mp_primitive(mp, "decimal",unary,decimal);
18268 @:decimal_}{\&{decimal} primitive@>
18269 mp_primitive(mp, "reverse",unary,reverse);
18270 @:reverse_}{\&{reverse} primitive@>
18271 mp_primitive(mp, "makepath",unary,make_path_op);
18272 @:make_path_}{\&{makepath} primitive@>
18273 mp_primitive(mp, "makepen",unary,make_pen_op);
18274 @:make_pen_}{\&{makepen} primitive@>
18275 mp_primitive(mp, "oct",unary,oct_op);
18276 @:oct_}{\&{oct} primitive@>
18277 mp_primitive(mp, "hex",unary,hex_op);
18278 @:hex_}{\&{hex} primitive@>
18279 mp_primitive(mp, "ASCII",unary,ASCII_op);
18280 @:ASCII_}{\&{ASCII} primitive@>
18281 mp_primitive(mp, "char",unary,char_op);
18282 @:char_}{\&{char} primitive@>
18283 mp_primitive(mp, "length",unary,length_op);
18284 @:length_}{\&{length} primitive@>
18285 mp_primitive(mp, "turningnumber",unary,turning_op);
18286 @:turning_number_}{\&{turningnumber} primitive@>
18287 mp_primitive(mp, "xpart",unary,x_part);
18288 @:x_part_}{\&{xpart} primitive@>
18289 mp_primitive(mp, "ypart",unary,y_part);
18290 @:y_part_}{\&{ypart} primitive@>
18291 mp_primitive(mp, "xxpart",unary,xx_part);
18292 @:xx_part_}{\&{xxpart} primitive@>
18293 mp_primitive(mp, "xypart",unary,xy_part);
18294 @:xy_part_}{\&{xypart} primitive@>
18295 mp_primitive(mp, "yxpart",unary,yx_part);
18296 @:yx_part_}{\&{yxpart} primitive@>
18297 mp_primitive(mp, "yypart",unary,yy_part);
18298 @:yy_part_}{\&{yypart} primitive@>
18299 mp_primitive(mp, "redpart",unary,red_part);
18300 @:red_part_}{\&{redpart} primitive@>
18301 mp_primitive(mp, "greenpart",unary,green_part);
18302 @:green_part_}{\&{greenpart} primitive@>
18303 mp_primitive(mp, "bluepart",unary,blue_part);
18304 @:blue_part_}{\&{bluepart} primitive@>
18305 mp_primitive(mp, "cyanpart",unary,cyan_part);
18306 @:cyan_part_}{\&{cyanpart} primitive@>
18307 mp_primitive(mp, "magentapart",unary,magenta_part);
18308 @:magenta_part_}{\&{magentapart} primitive@>
18309 mp_primitive(mp, "yellowpart",unary,yellow_part);
18310 @:yellow_part_}{\&{yellowpart} primitive@>
18311 mp_primitive(mp, "blackpart",unary,black_part);
18312 @:black_part_}{\&{blackpart} primitive@>
18313 mp_primitive(mp, "greypart",unary,grey_part);
18314 @:grey_part_}{\&{greypart} primitive@>
18315 mp_primitive(mp, "colormodel",unary,color_model_part);
18316 @:color_model_part_}{\&{colormodel} primitive@>
18317 mp_primitive(mp, "fontpart",unary,font_part);
18318 @:font_part_}{\&{fontpart} primitive@>
18319 mp_primitive(mp, "textpart",unary,text_part);
18320 @:text_part_}{\&{textpart} primitive@>
18321 mp_primitive(mp, "pathpart",unary,path_part);
18322 @:path_part_}{\&{pathpart} primitive@>
18323 mp_primitive(mp, "penpart",unary,pen_part);
18324 @:pen_part_}{\&{penpart} primitive@>
18325 mp_primitive(mp, "dashpart",unary,dash_part);
18326 @:dash_part_}{\&{dashpart} primitive@>
18327 mp_primitive(mp, "sqrt",unary,sqrt_op);
18328 @:sqrt_}{\&{sqrt} primitive@>
18329 mp_primitive(mp, "mexp",unary,m_exp_op);
18330 @:m_exp_}{\&{mexp} primitive@>
18331 mp_primitive(mp, "mlog",unary,m_log_op);
18332 @:m_log_}{\&{mlog} primitive@>
18333 mp_primitive(mp, "sind",unary,sin_d_op);
18334 @:sin_d_}{\&{sind} primitive@>
18335 mp_primitive(mp, "cosd",unary,cos_d_op);
18336 @:cos_d_}{\&{cosd} primitive@>
18337 mp_primitive(mp, "floor",unary,floor_op);
18338 @:floor_}{\&{floor} primitive@>
18339 mp_primitive(mp, "uniformdeviate",unary,uniform_deviate);
18340 @:uniform_deviate_}{\&{uniformdeviate} primitive@>
18341 mp_primitive(mp, "charexists",unary,char_exists_op);
18342 @:char_exists_}{\&{charexists} primitive@>
18343 mp_primitive(mp, "fontsize",unary,font_size);
18344 @:font_size_}{\&{fontsize} primitive@>
18345 mp_primitive(mp, "llcorner",unary,ll_corner_op);
18346 @:ll_corner_}{\&{llcorner} primitive@>
18347 mp_primitive(mp, "lrcorner",unary,lr_corner_op);
18348 @:lr_corner_}{\&{lrcorner} primitive@>
18349 mp_primitive(mp, "ulcorner",unary,ul_corner_op);
18350 @:ul_corner_}{\&{ulcorner} primitive@>
18351 mp_primitive(mp, "urcorner",unary,ur_corner_op);
18352 @:ur_corner_}{\&{urcorner} primitive@>
18353 mp_primitive(mp, "arclength",unary,arc_length);
18354 @:arc_length_}{\&{arclength} primitive@>
18355 mp_primitive(mp, "angle",unary,angle_op);
18356 @:angle_}{\&{angle} primitive@>
18357 mp_primitive(mp, "cycle",cycle,cycle_op);
18358 @:cycle_}{\&{cycle} primitive@>
18359 mp_primitive(mp, "stroked",unary,stroked_op);
18360 @:stroked_}{\&{stroked} primitive@>
18361 mp_primitive(mp, "filled",unary,filled_op);
18362 @:filled_}{\&{filled} primitive@>
18363 mp_primitive(mp, "textual",unary,textual_op);
18364 @:textual_}{\&{textual} primitive@>
18365 mp_primitive(mp, "clipped",unary,clipped_op);
18366 @:clipped_}{\&{clipped} primitive@>
18367 mp_primitive(mp, "bounded",unary,bounded_op);
18368 @:bounded_}{\&{bounded} primitive@>
18369 mp_primitive(mp, "+",plus_or_minus,plus);
18370 @:+ }{\.{+} primitive@>
18371 mp_primitive(mp, "-",plus_or_minus,minus);
18372 @:- }{\.{-} primitive@>
18373 mp_primitive(mp, "*",secondary_binary,times);
18374 @:* }{\.{*} primitive@>
18375 mp_primitive(mp, "/",slash,over); mp->eqtb[frozen_slash]=mp->eqtb[mp->cur_sym];
18376 @:/ }{\.{/} primitive@>
18377 mp_primitive(mp, "++",tertiary_binary,pythag_add);
18378 @:++_}{\.{++} primitive@>
18379 mp_primitive(mp, "+-+",tertiary_binary,pythag_sub);
18380 @:+-+_}{\.{+-+} primitive@>
18381 mp_primitive(mp, "or",tertiary_binary,or_op);
18382 @:or_}{\&{or} primitive@>
18383 mp_primitive(mp, "and",and_command,and_op);
18384 @:and_}{\&{and} primitive@>
18385 mp_primitive(mp, "<",expression_binary,less_than);
18386 @:< }{\.{<} primitive@>
18387 mp_primitive(mp, "<=",expression_binary,less_or_equal);
18388 @:<=_}{\.{<=} primitive@>
18389 mp_primitive(mp, ">",expression_binary,greater_than);
18390 @:> }{\.{>} primitive@>
18391 mp_primitive(mp, ">=",expression_binary,greater_or_equal);
18392 @:>=_}{\.{>=} primitive@>
18393 mp_primitive(mp, "=",equals,equal_to);
18394 @:= }{\.{=} primitive@>
18395 mp_primitive(mp, "<>",expression_binary,unequal_to);
18396 @:<>_}{\.{<>} primitive@>
18397 mp_primitive(mp, "substring",primary_binary,substring_of);
18398 @:substring_}{\&{substring} primitive@>
18399 mp_primitive(mp, "subpath",primary_binary,subpath_of);
18400 @:subpath_}{\&{subpath} primitive@>
18401 mp_primitive(mp, "directiontime",primary_binary,direction_time_of);
18402 @:direction_time_}{\&{directiontime} primitive@>
18403 mp_primitive(mp, "point",primary_binary,point_of);
18404 @:point_}{\&{point} primitive@>
18405 mp_primitive(mp, "precontrol",primary_binary,precontrol_of);
18406 @:precontrol_}{\&{precontrol} primitive@>
18407 mp_primitive(mp, "postcontrol",primary_binary,postcontrol_of);
18408 @:postcontrol_}{\&{postcontrol} primitive@>
18409 mp_primitive(mp, "penoffset",primary_binary,pen_offset_of);
18410 @:pen_offset_}{\&{penoffset} primitive@>
18411 mp_primitive(mp, "arctime",primary_binary,arc_time_of);
18412 @:arc_time_of_}{\&{arctime} primitive@>
18413 mp_primitive(mp, "mpversion",nullary,mp_version);
18414 @:mp_verison_}{\&{mpversion} primitive@>
18415 mp_primitive(mp, "&",ampersand,concatenate);
18416 @:!!!}{\.{\&} primitive@>
18417 mp_primitive(mp, "rotated",secondary_binary,rotated_by);
18418 @:rotated_}{\&{rotated} primitive@>
18419 mp_primitive(mp, "slanted",secondary_binary,slanted_by);
18420 @:slanted_}{\&{slanted} primitive@>
18421 mp_primitive(mp, "scaled",secondary_binary,scaled_by);
18422 @:scaled_}{\&{scaled} primitive@>
18423 mp_primitive(mp, "shifted",secondary_binary,shifted_by);
18424 @:shifted_}{\&{shifted} primitive@>
18425 mp_primitive(mp, "transformed",secondary_binary,transformed_by);
18426 @:transformed_}{\&{transformed} primitive@>
18427 mp_primitive(mp, "xscaled",secondary_binary,x_scaled);
18428 @:x_scaled_}{\&{xscaled} primitive@>
18429 mp_primitive(mp, "yscaled",secondary_binary,y_scaled);
18430 @:y_scaled_}{\&{yscaled} primitive@>
18431 mp_primitive(mp, "zscaled",secondary_binary,z_scaled);
18432 @:z_scaled_}{\&{zscaled} primitive@>
18433 mp_primitive(mp, "infont",secondary_binary,in_font);
18434 @:in_font_}{\&{infont} primitive@>
18435 mp_primitive(mp, "intersectiontimes",tertiary_binary,intersect);
18436 @:intersection_times_}{\&{intersectiontimes} primitive@>
18438 @ @<Cases of |print_cmd...@>=
18441 case primary_binary:
18442 case secondary_binary:
18443 case tertiary_binary:
18444 case expression_binary:
18446 case plus_or_minus:
18451 mp_print_op(mp, m);
18454 @ OK, let's look at the simplest \\{do} procedure first.
18456 @c @<Declare nullary action procedure@>;
18457 void mp_do_nullary (MP mp,quarterword c) {
18459 if ( mp->internal[tracing_commands]>two )
18460 mp_show_cmd_mod(mp, nullary,c);
18462 case true_code: case false_code:
18463 mp->cur_type=mp_boolean_type; mp->cur_exp=c;
18465 case null_picture_code:
18466 mp->cur_type=mp_picture_type;
18467 mp->cur_exp=mp_get_node(mp, edge_header_size);
18468 mp_init_edges(mp, mp->cur_exp);
18470 case null_pen_code:
18471 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, 0);
18473 case normal_deviate:
18474 mp->cur_type=mp_known; mp->cur_exp=mp_norm_rand(mp);
18477 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, unity);
18480 if ( mp->job_name==NULL ) mp_open_log_file(mp);
18481 mp->cur_type=mp_string_type; mp->cur_exp=rts(mp->job_name);
18484 mp->cur_type=mp_string_type;
18485 mp->cur_exp=intern(metapost_version) ;
18487 case read_string_op:
18488 @<Read a string from the terminal@>;
18490 } /* there are no other cases */
18494 @ @<Read a string...@>=
18496 if ( mp->interaction<=mp_nonstop_mode )
18497 mp_fatal_error(mp, "*** (cannot readstring in nonstop modes)");
18498 mp_begin_file_reading(mp); name=is_read;
18499 limit=start; prompt_input("");
18500 mp_finish_read(mp);
18503 @ @<Declare nullary action procedure@>=
18504 void mp_finish_read (MP mp) { /* copy |buffer| line to |cur_exp| */
18506 str_room((int)mp->last-start);
18507 for (k=start;k<=mp->last-1;k++) {
18508 append_char(mp->buffer[k]);
18510 mp_end_file_reading(mp); mp->cur_type=mp_string_type;
18511 mp->cur_exp=mp_make_string(mp);
18514 @ Things get a bit more interesting when there's an operand. The
18515 operand to |do_unary| appears in |cur_type| and |cur_exp|.
18517 @c @<Declare unary action procedures@>;
18518 void mp_do_unary (MP mp,quarterword c) {
18519 pointer p,q,r; /* for list manipulation */
18520 integer x; /* a temporary register */
18522 if ( mp->internal[tracing_commands]>two )
18523 @<Trace the current unary operation@>;
18526 if ( mp->cur_type<mp_color_type ) mp_bad_unary(mp, plus);
18529 @<Negate the current expression@>;
18531 @<Additional cases of unary operators@>;
18532 } /* there are no other cases */
18536 @ The |nice_pair| function returns |true| if both components of a pair
18539 @<Declare unary action procedures@>=
18540 boolean mp_nice_pair (MP mp,integer p, quarterword t) {
18541 if ( t==mp_pair_type ) {
18543 if ( type(x_part_loc(p))==mp_known )
18544 if ( type(y_part_loc(p))==mp_known )
18550 @ The |nice_color_or_pair| function is analogous except that it also accepts
18551 fully known colors.
18553 @<Declare unary action procedures@>=
18554 boolean mp_nice_color_or_pair (MP mp,integer p, quarterword t) {
18555 pointer q,r; /* for scanning the big node */
18556 if ( (t!=mp_pair_type)&&(t!=mp_color_type)&&(t!=mp_cmykcolor_type) ) {
18560 r=q+mp->big_node_size[type(p)];
18563 if ( type(r)!=mp_known )
18570 @ @<Declare unary action...@>=
18571 void mp_print_known_or_unknown_type (MP mp,small_number t, integer v) {
18572 mp_print_char(mp, '(');
18573 if ( t>mp_known ) mp_print(mp, "unknown numeric");
18574 else { if ( (t==mp_pair_type)||(t==mp_color_type)||(t==mp_cmykcolor_type) )
18575 if ( ! mp_nice_color_or_pair(mp, v,t) ) mp_print(mp, "unknown ");
18576 mp_print_type(mp, t);
18578 mp_print_char(mp, ')');
18581 @ @<Declare unary action...@>=
18582 void mp_bad_unary (MP mp,quarterword c) {
18583 exp_err("Not implemented: "); mp_print_op(mp, c);
18584 @.Not implemented...@>
18585 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
18586 help3("I'm afraid I don't know how to apply that operation to that")
18587 ("particular type. Continue, and I'll simply return the")
18588 ("argument (shown above) as the result of the operation.");
18589 mp_put_get_error(mp);
18592 @ @<Trace the current unary operation@>=
18594 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
18595 mp_print_op(mp, c); mp_print_char(mp, '(');
18596 mp_print_exp(mp, null,0); /* show the operand, but not verbosely */
18597 mp_print(mp, ")}"); mp_end_diagnostic(mp, false);
18600 @ Negation is easy except when the current expression
18601 is of type |independent|, or when it is a pair with one or more
18602 |independent| components.
18604 It is tempting to argue that the negative of an independent variable
18605 is an independent variable, hence we don't have to do anything when
18606 negating it. The fallacy is that other dependent variables pointing
18607 to the current expression must change the sign of their
18608 coefficients if we make no change to the current expression.
18610 Instead, we work around the problem by copying the current expression
18611 and recycling it afterwards (cf.~the |stash_in| routine).
18613 @<Negate the current expression@>=
18614 switch (mp->cur_type) {
18615 case mp_color_type:
18616 case mp_cmykcolor_type:
18618 case mp_independent:
18619 q=mp->cur_exp; mp_make_exp_copy(mp, q);
18620 if ( mp->cur_type==mp_dependent ) {
18621 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18622 } else if ( mp->cur_type<=mp_pair_type ) { /* |mp_color_type| or |mp_pair_type| */
18623 p=value(mp->cur_exp);
18624 r=p+mp->big_node_size[mp->cur_type];
18627 if ( type(r)==mp_known ) negate(value(r));
18628 else mp_negate_dep_list(mp, dep_list(r));
18630 } /* if |cur_type=mp_known| then |cur_exp=0| */
18631 mp_recycle_value(mp, q); mp_free_node(mp, q,value_node_size);
18634 case mp_proto_dependent:
18635 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18638 negate(mp->cur_exp);
18641 mp_bad_unary(mp, minus);
18645 @ @<Declare unary action...@>=
18646 void mp_negate_dep_list (MP mp,pointer p) {
18649 if ( info(p)==null ) return;
18654 @ @<Additional cases of unary operators@>=
18656 if ( mp->cur_type!=mp_boolean_type ) mp_bad_unary(mp, not_op);
18657 else mp->cur_exp=true_code+false_code-mp->cur_exp;
18660 @ @d three_sixty_units 23592960 /* that's |360*unity| */
18661 @d boolean_reset(A) if ( (A) ) mp->cur_exp=true_code; else mp->cur_exp=false_code
18663 @<Additional cases of unary operators@>=
18670 case uniform_deviate:
18672 case char_exists_op:
18673 if ( mp->cur_type!=mp_known ) {
18674 mp_bad_unary(mp, c);
18677 case sqrt_op:mp->cur_exp=mp_square_rt(mp, mp->cur_exp);break;
18678 case m_exp_op:mp->cur_exp=mp_m_exp(mp, mp->cur_exp);break;
18679 case m_log_op:mp->cur_exp=mp_m_log(mp, mp->cur_exp);break;
18682 mp_n_sin_cos(mp, (mp->cur_exp % three_sixty_units)*16);
18683 if ( c==sin_d_op ) mp->cur_exp=mp_round_fraction(mp, mp->n_sin);
18684 else mp->cur_exp=mp_round_fraction(mp, mp->n_cos);
18686 case floor_op:mp->cur_exp=mp_floor_scaled(mp, mp->cur_exp);break;
18687 case uniform_deviate:mp->cur_exp=mp_unif_rand(mp, mp->cur_exp);break;
18689 boolean_reset(odd(mp_round_unscaled(mp, mp->cur_exp)));
18690 mp->cur_type=mp_boolean_type;
18692 case char_exists_op:
18693 @<Determine if a character has been shipped out@>;
18695 } /* there are no other cases */
18699 @ @<Additional cases of unary operators@>=
18701 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) ) {
18702 p=value(mp->cur_exp);
18703 x=mp_n_arg(mp, value(x_part_loc(p)),value(y_part_loc(p)));
18704 if ( x>=0 ) mp_flush_cur_exp(mp, (x+8)/ 16);
18705 else mp_flush_cur_exp(mp, -((-x+8)/ 16));
18707 mp_bad_unary(mp, angle_op);
18711 @ If the current expression is a pair, but the context wants it to
18712 be a path, we call |pair_to_path|.
18714 @<Declare unary action...@>=
18715 void mp_pair_to_path (MP mp) {
18716 mp->cur_exp=mp_new_knot(mp);
18717 mp->cur_type=mp_path_type;
18720 @ @<Additional cases of unary operators@>=
18723 if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_transform_type) )
18724 mp_take_part(mp, c);
18725 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18726 else mp_bad_unary(mp, c);
18732 if ( mp->cur_type==mp_transform_type ) mp_take_part(mp, c);
18733 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18734 else mp_bad_unary(mp, c);
18739 if ( mp->cur_type==mp_color_type ) mp_take_part(mp, c);
18740 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18741 else mp_bad_unary(mp, c);
18747 if ( mp->cur_type==mp_cmykcolor_type) mp_take_part(mp, c);
18748 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18749 else mp_bad_unary(mp, c);
18752 if ( mp->cur_type==mp_known ) mp->cur_exp=value(c);
18753 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18754 else mp_bad_unary(mp, c);
18756 case color_model_part:
18757 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18758 else mp_bad_unary(mp, c);
18761 @ In the following procedure, |cur_exp| points to a capsule, which points to
18762 a big node. We want to delete all but one part of the big node.
18764 @<Declare unary action...@>=
18765 void mp_take_part (MP mp,quarterword c) {
18766 pointer p; /* the big node */
18767 p=value(mp->cur_exp); value(temp_val)=p; type(temp_val)=mp->cur_type;
18768 link(p)=temp_val; mp_free_node(mp, mp->cur_exp,value_node_size);
18769 mp_make_exp_copy(mp, p+mp->sector_offset[c+mp_x_part_sector-x_part]);
18770 mp_recycle_value(mp, temp_val);
18773 @ @<Initialize table entries...@>=
18774 name_type(temp_val)=mp_capsule;
18776 @ @<Additional cases of unary operators@>=
18782 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18783 else mp_bad_unary(mp, c);
18786 @ @<Declarations@>=
18787 void mp_scale_edges (MP mp);
18789 @ @<Declare unary action...@>=
18790 void mp_take_pict_part (MP mp,quarterword c) {
18791 pointer p; /* first graphical object in |cur_exp| */
18792 p=link(dummy_loc(mp->cur_exp));
18795 case x_part: case y_part: case xx_part:
18796 case xy_part: case yx_part: case yy_part:
18797 if ( type(p)==text_code ) mp_flush_cur_exp(mp, text_trans_part(p+c));
18798 else goto NOT_FOUND;
18800 case red_part: case green_part: case blue_part:
18801 if ( has_color(p) ) mp_flush_cur_exp(mp, obj_color_part(p+c));
18802 else goto NOT_FOUND;
18804 case cyan_part: case magenta_part: case yellow_part:
18806 if ( has_color(p) ) {
18807 if ( color_model(p)==uninitialized_model )
18808 mp_flush_cur_exp(mp, unity);
18810 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-cyan_part)));
18811 } else goto NOT_FOUND;
18814 if ( has_color(p) )
18815 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-grey_part)));
18816 else goto NOT_FOUND;
18818 case color_model_part:
18819 if ( has_color(p) ) {
18820 if ( color_model(p)==uninitialized_model )
18821 mp_flush_cur_exp(mp, mp->internal[default_color_model]);
18823 mp_flush_cur_exp(mp, color_model(p)*unity);
18824 } else goto NOT_FOUND;
18826 @<Handle other cases in |take_pict_part| or |goto not_found|@>;
18827 } /* all cases have been enumerated */
18831 @<Convert the current expression to a null value appropriate
18835 @ @<Handle other cases in |take_pict_part| or |goto not_found|@>=
18837 if ( type(p)!=text_code ) goto NOT_FOUND;
18839 mp_flush_cur_exp(mp, text_p(p));
18840 add_str_ref(mp->cur_exp);
18841 mp->cur_type=mp_string_type;
18845 if ( type(p)!=text_code ) goto NOT_FOUND;
18847 mp_flush_cur_exp(mp, rts(mp->font_name[font_n(p)]));
18848 add_str_ref(mp->cur_exp);
18849 mp->cur_type=mp_string_type;
18853 if ( type(p)==text_code ) goto NOT_FOUND;
18854 else if ( is_stop(p) ) mp_confusion(mp, "pict");
18855 @:this can't happen pict}{\quad pict@>
18857 mp_flush_cur_exp(mp, mp_copy_path(mp, path_p(p)));
18858 mp->cur_type=mp_path_type;
18862 if ( ! has_pen(p) ) goto NOT_FOUND;
18864 if ( pen_p(p)==null ) goto NOT_FOUND;
18865 else { mp_flush_cur_exp(mp, copy_pen(pen_p(p)));
18866 mp->cur_type=mp_pen_type;
18871 if ( type(p)!=stroked_code ) goto NOT_FOUND;
18872 else { if ( dash_p(p)==null ) goto NOT_FOUND;
18873 else { add_edge_ref(dash_p(p));
18874 mp->se_sf=dash_scale(p);
18875 mp->se_pic=dash_p(p);
18876 mp_scale_edges(mp);
18877 mp_flush_cur_exp(mp, mp->se_pic);
18878 mp->cur_type=mp_picture_type;
18883 @ Since |scale_edges| had to be declared |forward|, it had to be declared as a
18884 parameterless procedure even though it really takes two arguments and updates
18885 one of them. Hence the following globals are needed.
18888 pointer se_pic; /* edge header used and updated by |scale_edges| */
18889 scaled se_sf; /* the scale factor argument to |scale_edges| */
18891 @ @<Convert the current expression to a null value appropriate...@>=
18893 case text_part: case font_part:
18894 mp_flush_cur_exp(mp, rts(""));
18895 mp->cur_type=mp_string_type;
18898 mp_flush_cur_exp(mp, mp_get_node(mp, knot_node_size));
18899 left_type(mp->cur_exp)=endpoint;
18900 right_type(mp->cur_exp)=endpoint;
18901 link(mp->cur_exp)=mp->cur_exp;
18902 x_coord(mp->cur_exp)=0;
18903 y_coord(mp->cur_exp)=0;
18904 originator(mp->cur_exp)=metapost_user;
18905 mp->cur_type=mp_path_type;
18908 mp_flush_cur_exp(mp, mp_get_pen_circle(mp, 0));
18909 mp->cur_type=mp_pen_type;
18912 mp_flush_cur_exp(mp, mp_get_node(mp, edge_header_size));
18913 mp_init_edges(mp, mp->cur_exp);
18914 mp->cur_type=mp_picture_type;
18917 mp_flush_cur_exp(mp, 0);
18921 @ @<Additional cases of unary...@>=
18923 if ( mp->cur_type!=mp_known ) {
18924 mp_bad_unary(mp, char_op);
18926 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
18927 mp->cur_type=mp_string_type;
18928 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
18932 if ( mp->cur_type!=mp_known ) {
18933 mp_bad_unary(mp, decimal);
18935 mp->old_setting=mp->selector; mp->selector=new_string;
18936 mp_print_scaled(mp, mp->cur_exp); mp->cur_exp=mp_make_string(mp);
18937 mp->selector=mp->old_setting; mp->cur_type=mp_string_type;
18943 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
18944 else mp_str_to_num(mp, c);
18947 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, font_size);
18948 else @<Find the design size of the font whose name is |cur_exp|@>;
18951 @ @<Declare unary action...@>=
18952 void mp_str_to_num (MP mp,quarterword c) { /* converts a string to a number */
18953 integer n; /* accumulator */
18954 ASCII_code m; /* current character */
18955 pool_pointer k; /* index into |str_pool| */
18956 int b; /* radix of conversion */
18957 boolean bad_char; /* did the string contain an invalid digit? */
18958 if ( c==ASCII_op ) {
18959 if ( length(mp->cur_exp)==0 ) n=-1;
18960 else n=mp->str_pool[mp->str_start[mp->cur_exp]];
18962 if ( c==oct_op ) b=8; else b=16;
18963 n=0; bad_char=false;
18964 for (k=mp->str_start[mp->cur_exp];k<=str_stop(mp->cur_exp)-1;k++) {
18966 if ( (m>='0')&&(m<='9') ) m=m-'0';
18967 else if ( (m>='A')&&(m<='F') ) m=m-'A'+10;
18968 else if ( (m>='a')&&(m<='f') ) m=m-'a'+10;
18969 else { bad_char=true; m=0; };
18970 if ( m>=b ) { bad_char=true; m=0; };
18971 if ( n<32768 / b ) n=n*b+m; else n=32767;
18973 @<Give error messages if |bad_char| or |n>=4096|@>;
18975 mp_flush_cur_exp(mp, n*unity);
18978 @ @<Give error messages if |bad_char|...@>=
18980 exp_err("String contains illegal digits");
18981 @.String contains illegal digits@>
18983 help1("I zeroed out characters that weren't in the range 0..7.");
18985 help1("I zeroed out characters that weren't hex digits.");
18987 mp_put_get_error(mp);
18990 if ( mp->internal[warning_check]>0 ) {
18991 print_err("Number too large (");
18992 mp_print_int(mp, n); mp_print_char(mp, ')');
18993 @.Number too large@>
18994 help2("I have trouble with numbers greater than 4095; watch out.")
18995 ("(Set warningcheck:=0 to suppress this message.)");
18996 mp_put_get_error(mp);
19000 @ The length operation is somewhat unusual in that it applies to a variety
19001 of different types of operands.
19003 @<Additional cases of unary...@>=
19005 switch (mp->cur_type) {
19006 case mp_string_type: mp_flush_cur_exp(mp, length(mp->cur_exp)*unity); break;
19007 case mp_path_type: mp_flush_cur_exp(mp, mp_path_length(mp)); break;
19008 case mp_known: mp->cur_exp=abs(mp->cur_exp); break;
19009 case mp_picture_type: mp_flush_cur_exp(mp, mp_pict_length(mp)); break;
19011 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) )
19012 mp_flush_cur_exp(mp, mp_pyth_add(mp,
19013 value(x_part_loc(value(mp->cur_exp))),
19014 value(y_part_loc(value(mp->cur_exp)))));
19015 else mp_bad_unary(mp, c);
19020 @ @<Declare unary action...@>=
19021 scaled mp_path_length (MP mp) { /* computes the length of the current path */
19022 scaled n; /* the path length so far */
19023 pointer p; /* traverser */
19025 if ( left_type(p)==endpoint ) n=-unity; else n=0;
19026 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
19030 @ @<Declare unary action...@>=
19031 scaled mp_pict_length (MP mp) {
19032 /* counts interior components in picture |cur_exp| */
19033 scaled n; /* the count so far */
19034 pointer p; /* traverser */
19036 p=link(dummy_loc(mp->cur_exp));
19038 if ( is_start_or_stop(p) )
19039 if ( mp_skip_1component(mp, p)==null ) p=link(p);
19040 while ( p!=null ) {
19041 skip_component(p) return n;
19048 @ Implement |turningnumber|
19050 @<Additional cases of unary...@>=
19052 if ( mp->cur_type==mp_pair_type ) mp_flush_cur_exp(mp, 0);
19053 else if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, turning_op);
19054 else if ( left_type(mp->cur_exp)==endpoint )
19055 mp_flush_cur_exp(mp, 0); /* not a cyclic path */
19057 mp_flush_cur_exp(mp, mp_turn_cycles_wrapper(mp, mp->cur_exp));
19060 @ The function |an_angle| returns the value of the |angle| primitive, or $0$ if the
19061 argument is |origin|.
19063 @<Declare unary action...@>=
19064 angle mp_an_angle (MP mp,scaled xpar, scaled ypar) {
19065 if ( (! ((xpar==0) && (ypar==0))) )
19066 return mp_n_arg(mp, xpar,ypar);
19071 @ The actual turning number is (for the moment) computed in a C function
19072 that receives eight integers corresponding to the four controlling points,
19073 and returns a single angle. Besides those, we have to account for discrete
19074 moves at the actual points.
19076 @d floor(a) (a>=0 ? a : -(int)(-a))
19077 @d bezier_error (720<<20)+1
19078 @d sign(v) ((v)>0 ? 1 : ((v)<0 ? -1 : 0 ))
19079 @d print_roots(a) { if (debuglevel>(65536*2))
19080 fprintf(stdout,"bezier_slope(): %s, i=%f, o=%f, angle=%f\n", (a),in,out,res); }
19081 @d out ((double)(xo>>20))
19082 @d mid ((double)(xm>>20))
19083 @d in ((double)(xi>>20))
19084 @d divisor (256*256)
19085 @d double2angle(a) (int)floor(a*256.0*256.0*16.0)
19087 @<Declare unary action...@>=
19088 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19089 integer CX,integer CY,integer DX,integer DY, int debuglevel);
19092 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19093 integer CX,integer CY,integer DX,integer DY, int debuglevel) {
19095 integer deltax,deltay;
19096 double ax,ay,bx,by,cx,cy,dx,dy;
19097 angle xi = 0, xo = 0, xm = 0;
19099 ax=AX/divisor; ay=AY/divisor;
19100 bx=BX/divisor; by=BY/divisor;
19101 cx=CX/divisor; cy=CY/divisor;
19102 dx=DX/divisor; dy=DY/divisor;
19104 deltax = (BX-AX); deltay = (BY-AY);
19105 if (deltax==0 && deltay == 0) { deltax=(CX-AX); deltay=(CY-AY); }
19106 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19107 xi = mp_an_angle(mp,deltax,deltay);
19109 deltax = (CX-BX); deltay = (CY-BY);
19110 xm = mp_an_angle(mp,deltax,deltay);
19112 deltax = (DX-CX); deltay = (DY-CY);
19113 if (deltax==0 && deltay == 0) { deltax=(DX-BX); deltay=(DY-BY); }
19114 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19115 xo = mp_an_angle(mp,deltax,deltay);
19117 a = (bx-ax)*(cy-by) - (cx-bx)*(by-ay); /* a = (bp-ap)x(cp-bp); */
19118 b = (bx-ax)*(dy-cy) - (by-ay)*(dx-cx);; /* b = (bp-ap)x(dp-cp);*/
19119 c = (cx-bx)*(dy-cy) - (dx-cx)*(cy-by); /* c = (cp-bp)x(dp-cp);*/
19121 if (debuglevel>(65536*2)) {
19123 "bezier_slope(): (%.2f,%.2f),(%.2f,%.2f),(%.2f,%.2f),(%.2f,%.2f)\n",
19124 ax,ay,bx,by,cx,cy,dx,dy);
19126 "bezier_slope(): a,b,c,b^2,4ac: (%.2f,%.2f,%.2f,%.2f,%.2f)\n",a,b,c,b*b,4*a*c);
19129 if ((a==0)&&(c==0)) {
19130 res = (b==0 ? 0 : (out-in));
19131 print_roots("no roots (a)");
19132 } else if ((a==0)||(c==0)) {
19133 if ((sign(b) == sign(a)) || (sign(b) == sign(c))) {
19134 res = out-in; /* ? */
19137 else if (res>180.0)
19139 print_roots("no roots (b)");
19141 res = out-in; /* ? */
19142 print_roots("one root (a)");
19144 } else if ((sign(a)*sign(c))<0) {
19145 res = out-in; /* ? */
19148 else if (res>180.0)
19150 print_roots("one root (b)");
19152 if (sign(a) == sign(b)) {
19153 res = out-in; /* ? */
19156 else if (res>180.0)
19158 print_roots("no roots (d)");
19160 if ((b*b) == (4*a*c)) {
19161 res = bezier_error;
19162 print_roots("double root"); /* cusp */
19163 } else if ((b*b) < (4*a*c)) {
19164 res = out-in; /* ? */
19165 if (res<=0.0 &&res>-180.0)
19167 else if (res>=0.0 && res<180.0)
19169 print_roots("no roots (e)");
19174 else if (res>180.0)
19176 print_roots("two roots"); /* two inflections */
19180 return double2angle(res);
19184 @d p_nextnext link(link(p))
19186 @d seven_twenty_deg 05500000000 /* $720\cdot2^{20}$, represents $720^\circ$ */
19188 @<Declare unary action...@>=
19189 scaled mp_new_turn_cycles (MP mp,pointer c) {
19190 angle res,ang; /* the angles of intermediate results */
19191 scaled turns; /* the turn counter */
19192 pointer p; /* for running around the path */
19193 integer xp,yp; /* coordinates of next point */
19194 integer x,y; /* helper coordinates */
19195 angle in_angle,out_angle; /* helper angles */
19196 int old_setting; /* saved |selector| setting */
19200 old_setting = mp->selector; mp->selector=term_only;
19201 if ( mp->internal[tracing_commands]>unity ) {
19202 mp_begin_diagnostic(mp);
19203 mp_print_nl(mp, "");
19204 mp_end_diagnostic(mp, false);
19207 xp = x_coord(p_next); yp = y_coord(p_next);
19208 ang = mp_bezier_slope(mp,x_coord(p), y_coord(p), right_x(p), right_y(p),
19209 left_x(p_next), left_y(p_next), xp, yp,
19210 mp->internal[tracing_commands]);
19211 if ( ang>seven_twenty_deg ) {
19212 print_err("Strange path");
19214 mp->selector=old_setting;
19218 if ( res > one_eighty_deg ) {
19219 res = res - three_sixty_deg;
19220 turns = turns + unity;
19222 if ( res <= -one_eighty_deg ) {
19223 res = res + three_sixty_deg;
19224 turns = turns - unity;
19226 /* incoming angle at next point */
19227 x = left_x(p_next); y = left_y(p_next);
19228 if ( (xp==x)&&(yp==y) ) { x = right_x(p); y = right_y(p); };
19229 if ( (xp==x)&&(yp==y) ) { x = x_coord(p); y = y_coord(p); };
19230 in_angle = mp_an_angle(mp, xp - x, yp - y);
19231 /* outgoing angle at next point */
19232 x = right_x(p_next); y = right_y(p_next);
19233 if ( (xp==x)&&(yp==y) ) { x = left_x(p_nextnext); y = left_y(p_nextnext); };
19234 if ( (xp==x)&&(yp==y) ) { x = x_coord(p_nextnext); y = y_coord(p_nextnext); };
19235 out_angle = mp_an_angle(mp, x - xp, y- yp);
19236 ang = (out_angle - in_angle);
19240 if ( res >= one_eighty_deg ) {
19241 res = res - three_sixty_deg;
19242 turns = turns + unity;
19244 if ( res <= -one_eighty_deg ) {
19245 res = res + three_sixty_deg;
19246 turns = turns - unity;
19251 mp->selector=old_setting;
19256 @ This code is based on Bogus\l{}av Jackowski's
19257 |emergency_turningnumber| macro, with some minor changes by Taco
19258 Hoekwater. The macro code looked more like this:
19260 vardef turning\_number primary p =
19261 ~~save res, ang, turns;
19263 ~~if length p <= 2:
19264 ~~~~if Angle ((point 0 of p) - (postcontrol 0 of p)) >= 0: 1 else: -1 fi
19266 ~~~~for t = 0 upto length p-1 :
19267 ~~~~~~angc := Angle ((point t+1 of p) - (point t of p))
19268 ~~~~~~~~- Angle ((point t of p) - (point t-1 of p));
19269 ~~~~~~if angc > 180: angc := angc - 360; fi;
19270 ~~~~~~if angc < -180: angc := angc + 360; fi;
19271 ~~~~~~res := res + angc;
19276 The general idea is to calculate only the sum of the angles of
19277 straight lines between the points, of a path, not worrying about cusps
19278 or self-intersections in the segments at all. If the segment is not
19279 well-behaved, the result is not necesarily correct. But the old code
19280 was not always correct either, and worse, it sometimes failed for
19281 well-behaved paths as well. All known bugs that were triggered by the
19282 original code no longer occur with this code, and it runs roughly 3
19283 times as fast because the algorithm is much simpler.
19285 @ It is possible to overflow the return value of the |turn_cycles|
19286 function when the path is sufficiently long and winding, but I am not
19287 going to bother testing for that. In any case, it would only return
19288 the looped result value, which is not a big problem.
19290 The macro code for the repeat loop was a bit nicer to look
19291 at than the pascal code, because it could use |point -1 of p|. In
19292 pascal, the fastest way to loop around the path is not to look
19293 backward once, but forward twice. These defines help hide the trick.
19295 @d p_to link(link(p))
19299 @<Declare unary action...@>=
19300 scaled mp_turn_cycles (MP mp,pointer c) {
19301 angle res,ang; /* the angles of intermediate results */
19302 scaled turns; /* the turn counter */
19303 pointer p; /* for running around the path */
19304 res=0; turns= 0; p=c;
19306 ang = mp_an_angle (mp, x_coord(p_to) - x_coord(p_here),
19307 y_coord(p_to) - y_coord(p_here))
19308 - mp_an_angle (mp, x_coord(p_here) - x_coord(p_from),
19309 y_coord(p_here) - y_coord(p_from));
19312 if ( res >= three_sixty_deg ) {
19313 res = res - three_sixty_deg;
19314 turns = turns + unity;
19316 if ( res <= -three_sixty_deg ) {
19317 res = res + three_sixty_deg;
19318 turns = turns - unity;
19325 @ @<Declare unary action...@>=
19326 scaled mp_turn_cycles_wrapper (MP mp,pointer c) {
19328 scaled saved_t_o; /* tracing\_online saved */
19329 if ( (link(c)==c)||(link(link(c))==c) ) {
19330 if ( mp_an_angle (mp, x_coord(c) - right_x(c), y_coord(c) - right_y(c)) > 0 )
19335 nval = mp_new_turn_cycles(mp, c);
19336 oval = mp_turn_cycles(mp, c);
19337 if ( nval!=oval ) {
19338 saved_t_o=mp->internal[tracing_online];
19339 mp->internal[tracing_online]=unity;
19340 mp_begin_diagnostic(mp);
19341 mp_print_nl (mp, "Warning: the turningnumber algorithms do not agree."
19342 " The current computed value is ");
19343 mp_print_scaled(mp, nval);
19344 mp_print(mp, ", but the 'connect-the-dots' algorithm returned ");
19345 mp_print_scaled(mp, oval);
19346 mp_end_diagnostic(mp, false);
19347 mp->internal[tracing_online]=saved_t_o;
19353 @ @<Declare unary action...@>=
19354 scaled mp_count_turns (MP mp,pointer c) {
19355 pointer p; /* a knot in envelope spec |c| */
19356 integer t; /* total pen offset changes counted */
19359 t=t+info(p)-zero_off;
19362 return ((t / 3)*unity);
19365 @ @d type_range(A,B) {
19366 if ( (mp->cur_type>=(A)) && (mp->cur_type<=(B)) )
19367 mp_flush_cur_exp(mp, true_code);
19368 else mp_flush_cur_exp(mp, false_code);
19369 mp->cur_type=mp_boolean_type;
19372 if ( mp->cur_type==(A) ) mp_flush_cur_exp(mp, true_code);
19373 else mp_flush_cur_exp(mp, false_code);
19374 mp->cur_type=mp_boolean_type;
19377 @<Additional cases of unary operators@>=
19378 case mp_boolean_type:
19379 type_range(mp_boolean_type,mp_unknown_boolean); break;
19380 case mp_string_type:
19381 type_range(mp_string_type,mp_unknown_string); break;
19383 type_range(mp_pen_type,mp_unknown_pen); break;
19385 type_range(mp_path_type,mp_unknown_path); break;
19386 case mp_picture_type:
19387 type_range(mp_picture_type,mp_unknown_picture); break;
19388 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
19390 type_test(c); break;
19391 case mp_numeric_type:
19392 type_range(mp_known,mp_independent); break;
19393 case known_op: case unknown_op:
19394 mp_test_known(mp, c); break;
19396 @ @<Declare unary action procedures@>=
19397 void mp_test_known (MP mp,quarterword c) {
19398 int b; /* is the current expression known? */
19399 pointer p,q; /* locations in a big node */
19401 switch (mp->cur_type) {
19402 case mp_vacuous: case mp_boolean_type: case mp_string_type:
19403 case mp_pen_type: case mp_path_type: case mp_picture_type:
19407 case mp_transform_type:
19408 case mp_color_type: case mp_cmykcolor_type: case mp_pair_type:
19409 p=value(mp->cur_exp);
19410 q=p+mp->big_node_size[mp->cur_type];
19413 if ( type(q)!=mp_known )
19422 if ( c==known_op ) mp_flush_cur_exp(mp, b);
19423 else mp_flush_cur_exp(mp, true_code+false_code-b);
19424 mp->cur_type=mp_boolean_type;
19427 @ @<Additional cases of unary operators@>=
19429 if ( mp->cur_type!=mp_path_type ) mp_flush_cur_exp(mp, false_code);
19430 else if ( left_type(mp->cur_exp)!=endpoint ) mp_flush_cur_exp(mp, true_code);
19431 else mp_flush_cur_exp(mp, false_code);
19432 mp->cur_type=mp_boolean_type;
19435 @ @<Additional cases of unary operators@>=
19437 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19438 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, arc_length);
19439 else mp_flush_cur_exp(mp, mp_get_arc_length(mp, mp->cur_exp));
19442 @ Here we use the fact that |c-filled_op+fill_code| is the desired graphical
19444 @^data structure assumptions@>
19446 @<Additional cases of unary operators@>=
19452 if ( mp->cur_type!=mp_picture_type ) mp_flush_cur_exp(mp, false_code);
19453 else if ( link(dummy_loc(mp->cur_exp))==null ) mp_flush_cur_exp(mp, false_code);
19454 else if ( type(link(dummy_loc(mp->cur_exp)))==c+fill_code-filled_op )
19455 mp_flush_cur_exp(mp, true_code);
19456 else mp_flush_cur_exp(mp, false_code);
19457 mp->cur_type=mp_boolean_type;
19460 @ @<Additional cases of unary operators@>=
19462 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19463 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, make_pen_op);
19465 mp->cur_type=mp_pen_type;
19466 mp->cur_exp=mp_make_pen(mp, mp->cur_exp,true);
19470 if ( mp->cur_type!=mp_pen_type ) mp_bad_unary(mp, make_path_op);
19472 mp->cur_type=mp_path_type;
19473 mp_make_path(mp, mp->cur_exp);
19477 if ( mp->cur_type==mp_path_type ) {
19478 p=mp_htap_ypoc(mp, mp->cur_exp);
19479 if ( right_type(p)==endpoint ) p=link(p);
19480 mp_toss_knot_list(mp, mp->cur_exp); mp->cur_exp=p;
19481 } else if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19482 else mp_bad_unary(mp, reverse);
19485 @ The |pair_value| routine changes the current expression to a
19486 given ordered pair of values.
19488 @<Declare unary action procedures@>=
19489 void mp_pair_value (MP mp,scaled x, scaled y) {
19490 pointer p; /* a pair node */
19491 p=mp_get_node(mp, value_node_size);
19492 mp_flush_cur_exp(mp, p); mp->cur_type=mp_pair_type;
19493 type(p)=mp_pair_type; name_type(p)=mp_capsule; mp_init_big_node(mp, p);
19495 type(x_part_loc(p))=mp_known; value(x_part_loc(p))=x;
19496 type(y_part_loc(p))=mp_known; value(y_part_loc(p))=y;
19499 @ @<Additional cases of unary operators@>=
19501 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ll_corner_op);
19502 else mp_pair_value(mp, minx,miny);
19505 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, lr_corner_op);
19506 else mp_pair_value(mp, maxx,miny);
19509 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ul_corner_op);
19510 else mp_pair_value(mp, minx,maxy);
19513 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ur_corner_op);
19514 else mp_pair_value(mp, maxx,maxy);
19517 @ Here is a function that sets |minx|, |maxx|, |miny|, |maxy| to the bounding
19518 box of the current expression. The boolean result is |false| if the expression
19519 has the wrong type.
19521 @<Declare unary action procedures@>=
19522 boolean mp_get_cur_bbox (MP mp) {
19523 switch (mp->cur_type) {
19524 case mp_picture_type:
19525 mp_set_bbox(mp, mp->cur_exp,true);
19526 if ( minx_val(mp->cur_exp)>maxx_val(mp->cur_exp) ) {
19527 minx=0; maxx=0; miny=0; maxy=0;
19529 minx=minx_val(mp->cur_exp);
19530 maxx=maxx_val(mp->cur_exp);
19531 miny=miny_val(mp->cur_exp);
19532 maxy=maxy_val(mp->cur_exp);
19536 mp_path_bbox(mp, mp->cur_exp);
19539 mp_pen_bbox(mp, mp->cur_exp);
19547 @ @<Additional cases of unary operators@>=
19549 case close_from_op:
19550 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19551 else mp_do_read_or_close(mp,c);
19554 @ Here is a routine that interprets |cur_exp| as a file name and tries to read
19555 a line from the file or to close the file.
19557 @d close_file 46 /* go here when closing the file */
19559 @<Declare unary action procedures@>=
19560 void mp_do_read_or_close (MP mp,quarterword c) {
19561 readf_index n,n0; /* indices for searching |rd_fname| */
19562 @<Find the |n| where |rd_fname[n]=cur_exp|; if |cur_exp| must be inserted,
19563 call |start_read_input| and |goto found| or |not_found|@>;
19564 mp_begin_file_reading(mp);
19566 if ( mp_input_ln(mp, mp->rd_file[n],true) )
19568 mp_end_file_reading(mp);
19570 @<Record the end of file and set |cur_exp| to a dummy value@>;
19573 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
19576 mp_flush_cur_exp(mp, 0);
19577 mp_finish_read(mp);
19580 @ Free slots in the |rd_file| and |rd_fname| arrays are marked with NULL's in
19583 @<Find the |n| where |rd_fname[n]=cur_exp|...@>=
19588 fn = str(mp->cur_exp);
19589 while (mp_xstrcmp(fn,mp->rd_fname[n])!=0) {
19592 } else if ( c==close_from_op ) {
19595 if ( n0==mp->read_files ) {
19596 if ( mp->read_files<mp->max_read_files ) {
19597 incr(mp->read_files);
19602 l = mp->max_read_files + (mp->max_read_files>>2);
19603 rd_file = xmalloc((l+1), sizeof(FILE *));
19604 rd_fname = xmalloc((l+1), sizeof(char *));
19605 for (k=0;k<=l;k++) {
19606 if (k<=mp->max_read_files) {
19607 rd_file[k]=mp->rd_file[k];
19608 rd_fname[k]=mp->rd_fname[k];
19614 xfree(mp->rd_file); xfree(mp->rd_fname);
19615 mp->max_read_files = l;
19616 mp->rd_file = rd_file;
19617 mp->rd_fname = rd_fname;
19621 if ( mp_start_read_input(mp,fn,n) )
19626 if ( mp->rd_fname[n]==NULL ) { n0=n; }
19628 if ( c==close_from_op ) {
19629 fclose(mp->rd_file[n]);
19634 @ @<Record the end of file and set |cur_exp| to a dummy value@>=
19635 xfree(mp->rd_fname[n]);
19636 mp->rd_fname[n]=NULL;
19637 if ( n==mp->read_files-1 ) mp->read_files=n;
19638 if ( c==close_from_op )
19640 mp_flush_cur_exp(mp, mp->eof_line);
19641 mp->cur_type=mp_string_type
19643 @ The string denoting end-of-file is a one-byte string at position zero, by definition
19646 str_number eof_line;
19651 @ Finally, we have the operations that combine a capsule~|p|
19652 with the current expression.
19654 @c @<Declare binary action procedures@>;
19655 void mp_do_binary (MP mp,pointer p, quarterword c) {
19656 pointer q,r,rr; /* for list manipulation */
19657 pointer old_p,old_exp; /* capsules to recycle */
19658 integer v; /* for numeric manipulation */
19660 if ( mp->internal[tracing_commands]>two ) {
19661 @<Trace the current binary operation@>;
19663 @<Sidestep |independent| cases in capsule |p|@>;
19664 @<Sidestep |independent| cases in the current expression@>;
19666 case plus: case minus:
19667 @<Add or subtract the current expression from |p|@>;
19669 @<Additional cases of binary operators@>;
19670 }; /* there are no other cases */
19671 mp_recycle_value(mp, p);
19672 mp_free_node(mp, p,value_node_size); /* |return| to avoid this */
19674 @<Recycle any sidestepped |independent| capsules@>;
19677 @ @<Declare binary action...@>=
19678 void mp_bad_binary (MP mp,pointer p, quarterword c) {
19679 mp_disp_err(mp, p,"");
19680 exp_err("Not implemented: ");
19681 @.Not implemented...@>
19682 if ( c>=min_of ) mp_print_op(mp, c);
19683 mp_print_known_or_unknown_type(mp, type(p),p);
19684 if ( c>=min_of ) mp_print(mp, "of"); else mp_print_op(mp, c);
19685 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
19686 help3("I'm afraid I don't know how to apply that operation to that")
19687 ("combination of types. Continue, and I'll return the second")
19688 ("argument (see above) as the result of the operation.");
19689 mp_put_get_error(mp);
19692 @ @<Trace the current binary operation@>=
19694 mp_begin_diagnostic(mp); mp_print_nl(mp, "{(");
19695 mp_print_exp(mp,p,0); /* show the operand, but not verbosely */
19696 mp_print_char(mp,')'); mp_print_op(mp,c); mp_print_char(mp,'(');
19697 mp_print_exp(mp,null,0); mp_print(mp,")}");
19698 mp_end_diagnostic(mp, false);
19701 @ Several of the binary operations are potentially complicated by the
19702 fact that |independent| values can sneak into capsules. For example,
19703 we've seen an instance of this difficulty in the unary operation
19704 of negation. In order to reduce the number of cases that need to be
19705 handled, we first change the two operands (if necessary)
19706 to rid them of |independent| components. The original operands are
19707 put into capsules called |old_p| and |old_exp|, which will be
19708 recycled after the binary operation has been safely carried out.
19710 @<Recycle any sidestepped |independent| capsules@>=
19711 if ( old_p!=null ) {
19712 mp_recycle_value(mp, old_p); mp_free_node(mp, old_p,value_node_size);
19714 if ( old_exp!=null ) {
19715 mp_recycle_value(mp, old_exp); mp_free_node(mp, old_exp,value_node_size);
19718 @ A big node is considered to be ``tarnished'' if it contains at least one
19719 independent component. We will define a simple function called `|tarnished|'
19720 that returns |null| if and only if its argument is not tarnished.
19722 @<Sidestep |independent| cases in capsule |p|@>=
19724 case mp_transform_type:
19725 case mp_color_type:
19726 case mp_cmykcolor_type:
19728 old_p=mp_tarnished(mp, p);
19730 case mp_independent: old_p=diov; break;
19731 default: old_p=null; break;
19733 if ( old_p!=null ) {
19734 q=mp_stash_cur_exp(mp); old_p=p; mp_make_exp_copy(mp, old_p);
19735 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
19738 @ @<Sidestep |independent| cases in the current expression@>=
19739 switch (mp->cur_type) {
19740 case mp_transform_type:
19741 case mp_color_type:
19742 case mp_cmykcolor_type:
19744 old_exp=mp_tarnished(mp, mp->cur_exp);
19746 case mp_independent:old_exp=diov; break;
19747 default: old_exp=null; break;
19749 if ( old_exp!=null ) {
19750 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
19753 @ @<Declare binary action...@>=
19754 pointer mp_tarnished (MP mp,pointer p) {
19755 pointer q; /* beginning of the big node */
19756 pointer r; /* current position in the big node */
19757 q=value(p); r=q+mp->big_node_size[type(p)];
19760 if ( type(r)==mp_independent ) return diov;
19765 @ @<Add or subtract the current expression from |p|@>=
19766 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
19767 mp_bad_binary(mp, p,c);
19769 if ((mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
19770 mp_add_or_subtract(mp, p,null,c);
19772 if ( mp->cur_type!=type(p) ) {
19773 mp_bad_binary(mp, p,c);
19775 q=value(p); r=value(mp->cur_exp);
19776 rr=r+mp->big_node_size[mp->cur_type];
19778 mp_add_or_subtract(mp, q,r,c);
19785 @ The first argument to |add_or_subtract| is the location of a value node
19786 in a capsule or pair node that will soon be recycled. The second argument
19787 is either a location within a pair or transform node of |cur_exp|,
19788 or it is null (which means that |cur_exp| itself should be the second
19789 argument). The third argument is either |plus| or |minus|.
19791 The sum or difference of the numeric quantities will replace the second
19792 operand. Arithmetic overflow may go undetected; users aren't supposed to
19793 be monkeying around with really big values.
19795 @<Declare binary action...@>=
19796 @<Declare the procedure called |dep_finish|@>;
19797 void mp_add_or_subtract (MP mp,pointer p, pointer q, quarterword c) {
19798 small_number s,t; /* operand types */
19799 pointer r; /* list traverser */
19800 integer v; /* second operand value */
19803 if ( t<mp_dependent ) v=mp->cur_exp; else v=dep_list(mp->cur_exp);
19806 if ( t<mp_dependent ) v=value(q); else v=dep_list(q);
19808 if ( t==mp_known ) {
19809 if ( c==minus ) negate(v);
19810 if ( type(p)==mp_known ) {
19811 v=mp_slow_add(mp, value(p),v);
19812 if ( q==null ) mp->cur_exp=v; else value(q)=v;
19815 @<Add a known value to the constant term of |dep_list(p)|@>;
19817 if ( c==minus ) mp_negate_dep_list(mp, v);
19818 @<Add operand |p| to the dependency list |v|@>;
19822 @ @<Add a known value to the constant term of |dep_list(p)|@>=
19824 while ( info(r)!=null ) r=link(r);
19825 value(r)=mp_slow_add(mp, value(r),v);
19827 q=mp_get_node(mp, value_node_size); mp->cur_exp=q; mp->cur_type=type(p);
19828 name_type(q)=mp_capsule;
19830 dep_list(q)=dep_list(p); type(q)=type(p);
19831 prev_dep(q)=prev_dep(p); link(prev_dep(p))=q;
19832 type(p)=mp_known; /* this will keep the recycler from collecting non-garbage */
19834 @ We prefer |dependent| lists to |mp_proto_dependent| ones, because it is
19835 nice to retain the extra accuracy of |fraction| coefficients.
19836 But we have to handle both kinds, and mixtures too.
19838 @<Add operand |p| to the dependency list |v|@>=
19839 if ( type(p)==mp_known ) {
19840 @<Add the known |value(p)| to the constant term of |v|@>;
19842 s=type(p); r=dep_list(p);
19843 if ( t==mp_dependent ) {
19844 if ( s==mp_dependent ) {
19845 if ( mp_max_coef(mp, r)+mp_max_coef(mp, v)<coef_bound )
19846 v=mp_p_plus_q(mp, v,r,mp_dependent); goto DONE;
19847 } /* |fix_needed| will necessarily be false */
19848 t=mp_proto_dependent;
19849 v=mp_p_over_v(mp, v,unity,mp_dependent,mp_proto_dependent);
19851 if ( s==mp_proto_dependent ) v=mp_p_plus_q(mp, v,r,mp_proto_dependent);
19852 else v=mp_p_plus_fq(mp, v,unity,r,mp_proto_dependent,mp_dependent);
19854 @<Output the answer, |v| (which might have become |known|)@>;
19857 @ @<Add the known |value(p)| to the constant term of |v|@>=
19859 while ( info(v)!=null ) v=link(v);
19860 value(v)=mp_slow_add(mp, value(p),value(v));
19863 @ @<Output the answer, |v| (which might have become |known|)@>=
19864 if ( q!=null ) mp_dep_finish(mp, v,q,t);
19865 else { mp->cur_type=t; mp_dep_finish(mp, v,null,t); }
19867 @ Here's the current situation: The dependency list |v| of type |t|
19868 should either be put into the current expression (if |q=null|) or
19869 into location |q| within a pair node (otherwise). The destination (|cur_exp|
19870 or |q|) formerly held a dependency list with the same
19871 final pointer as the list |v|.
19873 @<Declare the procedure called |dep_finish|@>=
19874 void mp_dep_finish (MP mp, pointer v, pointer q, small_number t) {
19875 pointer p; /* the destination */
19876 scaled vv; /* the value, if it is |known| */
19877 if ( q==null ) p=mp->cur_exp; else p=q;
19878 dep_list(p)=v; type(p)=t;
19879 if ( info(v)==null ) {
19882 mp_flush_cur_exp(mp, vv);
19884 mp_recycle_value(mp, p); type(q)=mp_known; value(q)=vv;
19886 } else if ( q==null ) {
19889 if ( mp->fix_needed ) mp_fix_dependencies(mp);
19892 @ Let's turn now to the six basic relations of comparison.
19894 @<Additional cases of binary operators@>=
19895 case less_than: case less_or_equal: case greater_than:
19896 case greater_or_equal: case equal_to: case unequal_to:
19897 check_arith; /* at this point |arith_error| should be |false|? */
19898 if ( (mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
19899 mp_add_or_subtract(mp, p,null,minus); /* |cur_exp:=(p)-cur_exp| */
19900 } else if ( mp->cur_type!=type(p) ) {
19901 mp_bad_binary(mp, p,c); goto DONE;
19902 } else if ( mp->cur_type==mp_string_type ) {
19903 mp_flush_cur_exp(mp, mp_str_vs_str(mp, value(p),mp->cur_exp));
19904 } else if ((mp->cur_type==mp_unknown_string)||
19905 (mp->cur_type==mp_unknown_boolean) ) {
19906 @<Check if unknowns have been equated@>;
19907 } else if ( (mp->cur_type<=mp_pair_type)&&(mp->cur_type>=mp_transform_type)) {
19908 @<Reduce comparison of big nodes to comparison of scalars@>;
19909 } else if ( mp->cur_type==mp_boolean_type ) {
19910 mp_flush_cur_exp(mp, mp->cur_exp-value(p));
19912 mp_bad_binary(mp, p,c); goto DONE;
19914 @<Compare the current expression with zero@>;
19916 mp->arith_error=false; /* ignore overflow in comparisons */
19919 @ @<Compare the current expression with zero@>=
19920 if ( mp->cur_type!=mp_known ) {
19921 if ( mp->cur_type<mp_known ) {
19922 mp_disp_err(mp, p,"");
19923 help1("The quantities shown above have not been equated.")
19925 help2("Oh dear. I can\'t decide if the expression above is positive,")
19926 ("negative, or zero. So this comparison test won't be `true'.");
19928 exp_err("Unknown relation will be considered false");
19929 @.Unknown relation...@>
19930 mp_put_get_flush_error(mp, false_code);
19933 case less_than: boolean_reset(mp->cur_exp<0); break;
19934 case less_or_equal: boolean_reset(mp->cur_exp<=0); break;
19935 case greater_than: boolean_reset(mp->cur_exp>0); break;
19936 case greater_or_equal: boolean_reset(mp->cur_exp>=0); break;
19937 case equal_to: boolean_reset(mp->cur_exp==0); break;
19938 case unequal_to: boolean_reset(mp->cur_exp!=0); break;
19939 }; /* there are no other cases */
19941 mp->cur_type=mp_boolean_type
19943 @ When two unknown strings are in the same ring, we know that they are
19944 equal. Otherwise, we don't know whether they are equal or not, so we
19947 @<Check if unknowns have been equated@>=
19949 q=value(mp->cur_exp);
19950 while ( (q!=mp->cur_exp)&&(q!=p) ) q=value(q);
19951 if ( q==p ) mp_flush_cur_exp(mp, 0);
19954 @ @<Reduce comparison of big nodes to comparison of scalars@>=
19956 q=value(p); r=value(mp->cur_exp);
19957 rr=r+mp->big_node_size[mp->cur_type]-2;
19958 while (1) { mp_add_or_subtract(mp, q,r,minus);
19959 if ( type(r)!=mp_known ) break;
19960 if ( value(r)!=0 ) break;
19961 if ( r==rr ) break;
19964 mp_take_part(mp, name_type(r)+x_part-mp_x_part_sector);
19967 @ Here we use the sneaky fact that |and_op-false_code=or_op-true_code|.
19969 @<Additional cases of binary operators@>=
19972 if ( (type(p)!=mp_boolean_type)||(mp->cur_type!=mp_boolean_type) )
19973 mp_bad_binary(mp, p,c);
19974 else if ( value(p)==c+false_code-and_op ) mp->cur_exp=value(p);
19977 @ @<Additional cases of binary operators@>=
19979 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
19980 mp_bad_binary(mp, p,times);
19981 } else if ( (mp->cur_type==mp_known)||(type(p)==mp_known) ) {
19982 @<Multiply when at least one operand is known@>;
19983 } else if ( (mp_nice_color_or_pair(mp, p,type(p))&&(mp->cur_type>mp_pair_type))
19984 ||(mp_nice_color_or_pair(mp, mp->cur_exp,mp->cur_type)&&
19985 (type(p)>mp_pair_type)) ) {
19986 mp_hard_times(mp, p); return;
19988 mp_bad_binary(mp, p,times);
19992 @ @<Multiply when at least one operand is known@>=
19994 if ( type(p)==mp_known ) {
19995 v=value(p); mp_free_node(mp, p,value_node_size);
19997 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
19999 if ( mp->cur_type==mp_known ) {
20000 mp->cur_exp=mp_take_scaled(mp, mp->cur_exp,v);
20001 } else if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_color_type)||
20002 (mp->cur_type==mp_cmykcolor_type) ) {
20003 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20005 p=p-2; mp_dep_mult(mp, p,v,true);
20006 } while (p!=value(mp->cur_exp));
20008 mp_dep_mult(mp, null,v,true);
20013 @ @<Declare binary action...@>=
20014 void mp_dep_mult (MP mp,pointer p, integer v, boolean v_is_scaled) {
20015 pointer q; /* the dependency list being multiplied by |v| */
20016 small_number s,t; /* its type, before and after */
20019 } else if ( type(p)!=mp_known ) {
20022 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
20023 else value(p)=mp_take_fraction(mp, value(p),v);
20026 t=type(q); q=dep_list(q); s=t;
20027 if ( t==mp_dependent ) if ( v_is_scaled )
20028 if (mp_ab_vs_cd(mp, mp_max_coef(mp,q),abs(v),coef_bound-1,unity)>=0 )
20029 t=mp_proto_dependent;
20030 q=mp_p_times_v(mp, q,v,s,t,v_is_scaled);
20031 mp_dep_finish(mp, q,p,t);
20034 @ Here is a routine that is similar to |times|; but it is invoked only
20035 internally, when |v| is a |fraction| whose magnitude is at most~1,
20036 and when |cur_type>=mp_color_type|.
20038 @c void mp_frac_mult (MP mp,scaled n, scaled d) {
20039 /* multiplies |cur_exp| by |n/d| */
20040 pointer p; /* a pair node */
20041 pointer old_exp; /* a capsule to recycle */
20042 fraction v; /* |n/d| */
20043 if ( mp->internal[tracing_commands]>two ) {
20044 @<Trace the fraction multiplication@>;
20046 switch (mp->cur_type) {
20047 case mp_transform_type:
20048 case mp_color_type:
20049 case mp_cmykcolor_type:
20051 old_exp=mp_tarnished(mp, mp->cur_exp);
20053 case mp_independent: old_exp=diov; break;
20054 default: old_exp=null; break;
20056 if ( old_exp!=null ) {
20057 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
20059 v=mp_make_fraction(mp, n,d);
20060 if ( mp->cur_type==mp_known ) {
20061 mp->cur_exp=mp_take_fraction(mp, mp->cur_exp,v);
20062 } else if ( mp->cur_type<=mp_pair_type ) {
20063 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20066 mp_dep_mult(mp, p,v,false);
20067 } while (p!=value(mp->cur_exp));
20069 mp_dep_mult(mp, null,v,false);
20071 if ( old_exp!=null ) {
20072 mp_recycle_value(mp, old_exp);
20073 mp_free_node(mp, old_exp,value_node_size);
20077 @ @<Trace the fraction multiplication@>=
20079 mp_begin_diagnostic(mp);
20080 mp_print_nl(mp, "{("); mp_print_scaled(mp,n); mp_print_char(mp,'/');
20081 mp_print_scaled(mp,d); mp_print(mp,")*("); mp_print_exp(mp,null,0);
20083 mp_end_diagnostic(mp, false);
20086 @ The |hard_times| routine multiplies a nice color or pair by a dependency list.
20088 @<Declare binary action procedures@>=
20089 void mp_hard_times (MP mp,pointer p) {
20090 pointer q; /* a copy of the dependent variable |p| */
20091 pointer r; /* a component of the big node for the nice color or pair */
20092 scaled v; /* the known value for |r| */
20093 if ( type(p)<=mp_pair_type ) {
20094 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p); p=q;
20095 }; /* now |cur_type=mp_pair_type| or |cur_type=mp_color_type| */
20096 r=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20101 if ( r==value(mp->cur_exp) )
20103 mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(p)));
20104 mp_dep_mult(mp, r,v,true);
20106 mp->mem[value_loc(r)]=mp->mem[value_loc(p)];
20107 link(prev_dep(p))=r;
20108 mp_free_node(mp, p,value_node_size);
20109 mp_dep_mult(mp, r,v,true);
20112 @ @<Additional cases of binary operators@>=
20114 if ( (mp->cur_type!=mp_known)||(type(p)<mp_color_type) ) {
20115 mp_bad_binary(mp, p,over);
20117 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20119 @<Squeal about division by zero@>;
20121 if ( mp->cur_type==mp_known ) {
20122 mp->cur_exp=mp_make_scaled(mp, mp->cur_exp,v);
20123 } else if ( mp->cur_type<=mp_pair_type ) {
20124 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20126 p=p-2; mp_dep_div(mp, p,v);
20127 } while (p!=value(mp->cur_exp));
20129 mp_dep_div(mp, null,v);
20136 @ @<Declare binary action...@>=
20137 void mp_dep_div (MP mp,pointer p, scaled v) {
20138 pointer q; /* the dependency list being divided by |v| */
20139 small_number s,t; /* its type, before and after */
20140 if ( p==null ) q=mp->cur_exp;
20141 else if ( type(p)!=mp_known ) q=p;
20142 else { value(p)=mp_make_scaled(mp, value(p),v); return; };
20143 t=type(q); q=dep_list(q); s=t;
20144 if ( t==mp_dependent )
20145 if ( mp_ab_vs_cd(mp, mp_max_coef(mp,q),unity,coef_bound-1,abs(v))>=0 )
20146 t=mp_proto_dependent;
20147 q=mp_p_over_v(mp, q,v,s,t);
20148 mp_dep_finish(mp, q,p,t);
20151 @ @<Squeal about division by zero@>=
20153 exp_err("Division by zero");
20154 @.Division by zero@>
20155 help2("You're trying to divide the quantity shown above the error")
20156 ("message by zero. I'm going to divide it by one instead.");
20157 mp_put_get_error(mp);
20160 @ @<Additional cases of binary operators@>=
20163 if ( (mp->cur_type==mp_known)&&(type(p)==mp_known) ) {
20164 if ( c==pythag_add ) mp->cur_exp=mp_pyth_add(mp, value(p),mp->cur_exp);
20165 else mp->cur_exp=mp_pyth_sub(mp, value(p),mp->cur_exp);
20166 } else mp_bad_binary(mp, p,c);
20169 @ The next few sections of the program deal with affine transformations
20170 of coordinate data.
20172 @<Additional cases of binary operators@>=
20173 case rotated_by: case slanted_by:
20174 case scaled_by: case shifted_by: case transformed_by:
20175 case x_scaled: case y_scaled: case z_scaled:
20176 if ( type(p)==mp_path_type ) {
20177 path_trans(c,p); return;
20178 } else if ( type(p)==mp_pen_type ) {
20180 mp->cur_exp=mp_convex_hull(mp, mp->cur_exp);
20181 /* rounding error could destroy convexity */
20183 } else if ( (type(p)==mp_pair_type)||(type(p)==mp_transform_type) ) {
20184 mp_big_trans(mp, p,c);
20185 } else if ( type(p)==mp_picture_type ) {
20186 mp_do_edges_trans(mp, p,c); return;
20188 mp_bad_binary(mp, p,c);
20192 @ Let |c| be one of the eight transform operators. The procedure call
20193 |set_up_trans(c)| first changes |cur_exp| to a transform that corresponds to
20194 |c| and the original value of |cur_exp|. (In particular, |cur_exp| doesn't
20195 change at all if |c=transformed_by|.)
20197 Then, if all components of the resulting transform are |known|, they are
20198 moved to the global variables |txx|, |txy|, |tyx|, |tyy|, |tx|, |ty|;
20199 and |cur_exp| is changed to the known value zero.
20201 @<Declare binary action...@>=
20202 void mp_set_up_trans (MP mp,quarterword c) {
20203 pointer p,q,r; /* list manipulation registers */
20204 if ( (c!=transformed_by)||(mp->cur_type!=mp_transform_type) ) {
20205 @<Put the current transform into |cur_exp|@>;
20207 @<If the current transform is entirely known, stash it in global variables;
20208 otherwise |return|@>;
20217 scaled ty; /* current transform coefficients */
20219 @ @<Put the current transform...@>=
20221 p=mp_stash_cur_exp(mp);
20222 mp->cur_exp=mp_id_transform(mp);
20223 mp->cur_type=mp_transform_type;
20224 q=value(mp->cur_exp);
20226 @<For each of the eight cases, change the relevant fields of |cur_exp|
20228 but do nothing if capsule |p| doesn't have the appropriate type@>;
20229 }; /* there are no other cases */
20230 mp_disp_err(mp, p,"Improper transformation argument");
20231 @.Improper transformation argument@>
20232 help3("The expression shown above has the wrong type,")
20233 ("so I can\'t transform anything using it.")
20234 ("Proceed, and I'll omit the transformation.");
20235 mp_put_get_error(mp);
20237 mp_recycle_value(mp, p);
20238 mp_free_node(mp, p,value_node_size);
20241 @ @<If the current transform is entirely known, ...@>=
20242 q=value(mp->cur_exp); r=q+transform_node_size;
20245 if ( type(r)!=mp_known ) return;
20247 mp->txx=value(xx_part_loc(q));
20248 mp->txy=value(xy_part_loc(q));
20249 mp->tyx=value(yx_part_loc(q));
20250 mp->tyy=value(yy_part_loc(q));
20251 mp->tx=value(x_part_loc(q));
20252 mp->ty=value(y_part_loc(q));
20253 mp_flush_cur_exp(mp, 0)
20255 @ @<For each of the eight cases...@>=
20257 if ( type(p)==mp_known )
20258 @<Install sines and cosines, then |goto done|@>;
20261 if ( type(p)>mp_pair_type ) {
20262 mp_install(mp, xy_part_loc(q),p); goto DONE;
20266 if ( type(p)>mp_pair_type ) {
20267 mp_install(mp, xx_part_loc(q),p); mp_install(mp, yy_part_loc(q),p);
20272 if ( type(p)==mp_pair_type ) {
20273 r=value(p); mp_install(mp, x_part_loc(q),x_part_loc(r));
20274 mp_install(mp, y_part_loc(q),y_part_loc(r)); goto DONE;
20278 if ( type(p)>mp_pair_type ) {
20279 mp_install(mp, xx_part_loc(q),p); goto DONE;
20283 if ( type(p)>mp_pair_type ) {
20284 mp_install(mp, yy_part_loc(q),p); goto DONE;
20288 if ( type(p)==mp_pair_type )
20289 @<Install a complex multiplier, then |goto done|@>;
20291 case transformed_by:
20295 @ @<Install sines and cosines, then |goto done|@>=
20296 { mp_n_sin_cos(mp, (value(p) % three_sixty_units)*16);
20297 value(xx_part_loc(q))=mp_round_fraction(mp, mp->n_cos);
20298 value(yx_part_loc(q))=mp_round_fraction(mp, mp->n_sin);
20299 value(xy_part_loc(q))=-value(yx_part_loc(q));
20300 value(yy_part_loc(q))=value(xx_part_loc(q));
20304 @ @<Install a complex multiplier, then |goto done|@>=
20307 mp_install(mp, xx_part_loc(q),x_part_loc(r));
20308 mp_install(mp, yy_part_loc(q),x_part_loc(r));
20309 mp_install(mp, yx_part_loc(q),y_part_loc(r));
20310 if ( type(y_part_loc(r))==mp_known ) negate(value(y_part_loc(r)));
20311 else mp_negate_dep_list(mp, dep_list(y_part_loc(r)));
20312 mp_install(mp, xy_part_loc(q),y_part_loc(r));
20316 @ Procedure |set_up_known_trans| is like |set_up_trans|, but it
20317 insists that the transformation be entirely known.
20319 @<Declare binary action...@>=
20320 void mp_set_up_known_trans (MP mp,quarterword c) {
20321 mp_set_up_trans(mp, c);
20322 if ( mp->cur_type!=mp_known ) {
20323 exp_err("Transform components aren't all known");
20324 @.Transform components...@>
20325 help3("I'm unable to apply a partially specified transformation")
20326 ("except to a fully known pair or transform.")
20327 ("Proceed, and I'll omit the transformation.");
20328 mp_put_get_flush_error(mp, 0);
20329 mp->txx=unity; mp->txy=0; mp->tyx=0; mp->tyy=unity;
20330 mp->tx=0; mp->ty=0;
20334 @ Here's a procedure that applies the transform |txx..ty| to a pair of
20335 coordinates in locations |p| and~|q|.
20337 @<Declare binary action...@>=
20338 void mp_trans (MP mp,pointer p, pointer q) {
20339 scaled v; /* the new |x| value */
20340 v=mp_take_scaled(mp, mp->mem[p].sc,mp->txx)+
20341 mp_take_scaled(mp, mp->mem[q].sc,mp->txy)+mp->tx;
20342 mp->mem[q].sc=mp_take_scaled(mp, mp->mem[p].sc,mp->tyx)+
20343 mp_take_scaled(mp, mp->mem[q].sc,mp->tyy)+mp->ty;
20347 @ The simplest transformation procedure applies a transform to all
20348 coordinates of a path. The |path_trans(c)(p)| macro applies
20349 a transformation defined by |cur_exp| and the transform operator |c|
20352 @d path_trans(A,B) { mp_set_up_known_trans(mp, (A));
20353 mp_unstash_cur_exp(mp, (B));
20354 mp_do_path_trans(mp, mp->cur_exp); }
20356 @<Declare binary action...@>=
20357 void mp_do_path_trans (MP mp,pointer p) {
20358 pointer q; /* list traverser */
20361 if ( left_type(q)!=endpoint )
20362 mp_trans(mp, q+3,q+4); /* that's |left_x| and |left_y| */
20363 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20364 if ( right_type(q)!=endpoint )
20365 mp_trans(mp, q+5,q+6); /* that's |right_x| and |right_y| */
20366 @^data structure assumptions@>
20371 @ Transforming a pen is very similar, except that there are no |left_type|
20372 and |right_type| fields.
20374 @d pen_trans(A,B) { mp_set_up_known_trans(mp, (A));
20375 mp_unstash_cur_exp(mp, (B));
20376 mp_do_pen_trans(mp, mp->cur_exp); }
20378 @<Declare binary action...@>=
20379 void mp_do_pen_trans (MP mp,pointer p) {
20380 pointer q; /* list traverser */
20381 if ( pen_is_elliptical(p) ) {
20382 mp_trans(mp, p+3,p+4); /* that's |left_x| and |left_y| */
20383 mp_trans(mp, p+5,p+6); /* that's |right_x| and |right_y| */
20387 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20388 @^data structure assumptions@>
20393 @ The next transformation procedure applies to edge structures. It will do
20394 any transformation, but the results may be substandard if the picture contains
20395 text that uses downloaded bitmap fonts. The binary action procedure is
20396 |do_edges_trans|, but we also need a function that just scales a picture.
20397 That routine is |scale_edges|. Both it and the underlying routine |edges_trans|
20398 should be thought of as procedures that update an edge structure |h|, except
20399 that they have to return a (possibly new) structure because of the need to call
20402 @<Declare binary action...@>=
20403 pointer mp_edges_trans (MP mp, pointer h) {
20404 pointer q; /* the object being transformed */
20405 pointer r,s; /* for list manipulation */
20406 scaled sx,sy; /* saved transformation parameters */
20407 scaled sqdet; /* square root of determinant for |dash_scale| */
20408 integer sgndet; /* sign of the determinant */
20409 scaled v; /* a temporary value */
20410 h=mp_private_edges(mp, h);
20411 sqdet=mp_sqrt_det(mp, mp->txx,mp->txy,mp->tyx,mp->tyy);
20412 sgndet=mp_ab_vs_cd(mp, mp->txx,mp->tyy,mp->txy,mp->tyx);
20413 if ( dash_list(h)!=null_dash ) {
20414 @<Try to transform the dash list of |h|@>;
20416 @<Make the bounding box of |h| unknown if it can't be updated properly
20417 without scanning the whole structure@>;
20418 q=link(dummy_loc(h));
20419 while ( q!=null ) {
20420 @<Transform graphical object |q|@>;
20425 void mp_do_edges_trans (MP mp,pointer p, quarterword c) {
20426 mp_set_up_known_trans(mp, c);
20427 value(p)=mp_edges_trans(mp, value(p));
20428 mp_unstash_cur_exp(mp, p);
20430 void mp_scale_edges (MP mp) {
20431 mp->txx=mp->se_sf; mp->tyy=mp->se_sf;
20432 mp->txy=0; mp->tyx=0; mp->tx=0; mp->ty=0;
20433 mp->se_pic=mp_edges_trans(mp, mp->se_pic);
20436 @ @<Try to transform the dash list of |h|@>=
20437 if ( (mp->txy!=0)||(mp->tyx!=0)||
20438 (mp->ty!=0)||(abs(mp->txx)!=abs(mp->tyy))) {
20439 mp_flush_dash_list(mp, h);
20441 if ( mp->txx<0 ) { @<Reverse the dash list of |h|@>; }
20442 @<Scale the dash list by |txx| and shift it by |tx|@>;
20443 dash_y(h)=mp_take_scaled(mp, dash_y(h),abs(mp->tyy));
20446 @ @<Reverse the dash list of |h|@>=
20449 dash_list(h)=null_dash;
20450 while ( r!=null_dash ) {
20452 v=start_x(s); start_x(s)=stop_x(s); stop_x(s)=v;
20453 link(s)=dash_list(h);
20458 @ @<Scale the dash list by |txx| and shift it by |tx|@>=
20460 while ( r!=null_dash ) {
20461 start_x(r)=mp_take_scaled(mp, start_x(r),mp->txx)+mp->tx;
20462 stop_x(r)=mp_take_scaled(mp, stop_x(r),mp->txx)+mp->tx;
20466 @ @<Make the bounding box of |h| unknown if it can't be updated properly...@>=
20467 if ( (mp->txx==0)&&(mp->tyy==0) ) {
20468 @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>;
20469 } else if ( (mp->txy!=0)||(mp->tyx!=0) ) {
20470 mp_init_bbox(mp, h);
20473 if ( minx_val(h)<=maxx_val(h) ) {
20474 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift by
20481 @ @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>=
20483 v=minx_val(h); minx_val(h)=miny_val(h); miny_val(h)=v;
20484 v=maxx_val(h); maxx_val(h)=maxy_val(h); maxy_val(h)=v;
20487 @ The sum ``|txx+txy|'' is whichever of |txx| or |txy| is nonzero. The other
20490 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift...@>=
20492 minx_val(h)=mp_take_scaled(mp, minx_val(h),mp->txx+mp->txy)+mp->tx;
20493 maxx_val(h)=mp_take_scaled(mp, maxx_val(h),mp->txx+mp->txy)+mp->tx;
20494 miny_val(h)=mp_take_scaled(mp, miny_val(h),mp->tyx+mp->tyy)+mp->ty;
20495 maxy_val(h)=mp_take_scaled(mp, maxy_val(h),mp->tyx+mp->tyy)+mp->ty;
20496 if ( mp->txx+mp->txy<0 ) {
20497 v=minx_val(h); minx_val(h)=maxx_val(h); maxx_val(h)=v;
20499 if ( mp->tyx+mp->tyy<0 ) {
20500 v=miny_val(h); miny_val(h)=maxy_val(h); maxy_val(h)=v;
20504 @ Now we ready for the main task of transforming the graphical objects in edge
20507 @<Transform graphical object |q|@>=
20509 case fill_code: case stroked_code:
20510 mp_do_path_trans(mp, path_p(q));
20511 @<Transform |pen_p(q)|, making sure polygonal pens stay counter-clockwise@>;
20513 case mp_start_clip_code: case mp_start_bounds_code:
20514 mp_do_path_trans(mp, path_p(q));
20518 @<Transform the compact transformation starting at |r|@>;
20520 case mp_stop_clip_code: case mp_stop_bounds_code:
20522 } /* there are no other cases */
20524 @ Note that the shift parameters |(tx,ty)| apply only to the path being stroked.
20525 The |dash_scale| has to be adjusted to scale the dash lengths in |dash_p(q)|
20526 since the \ps\ output procedures will try to compensate for the transformation
20527 we are applying to |pen_p(q)|. Since this compensation is based on the square
20528 root of the determinant, |sqdet| is the appropriate factor.
20530 @<Transform |pen_p(q)|, making sure...@>=
20531 if ( pen_p(q)!=null ) {
20532 sx=mp->tx; sy=mp->ty;
20533 mp->tx=0; mp->ty=0;
20534 mp_do_pen_trans(mp, pen_p(q));
20535 if ( ((type(q)==stroked_code)&&(dash_p(q)!=null)) )
20536 dash_scale(q)=mp_take_scaled(mp, dash_scale(q),sqdet);
20537 if ( ! pen_is_elliptical(pen_p(q)) )
20539 pen_p(q)=mp_make_pen(mp, mp_copy_path(mp, pen_p(q)),true);
20540 /* this unreverses the pen */
20541 mp->tx=sx; mp->ty=sy;
20544 @ This uses the fact that transformations are stored in the order
20545 |(tx,ty,txx,txy,tyx,tyy)|.
20546 @^data structure assumptions@>
20548 @<Transform the compact transformation starting at |r|@>=
20549 mp_trans(mp, r,r+1);
20550 sx=mp->tx; sy=mp->ty;
20551 mp->tx=0; mp->ty=0;
20552 mp_trans(mp, r+2,r+4);
20553 mp_trans(mp, r+3,r+5);
20554 mp->tx=sx; mp->ty=sy
20556 @ The hard cases of transformation occur when big nodes are involved,
20557 and when some of their components are unknown.
20559 @<Declare binary action...@>=
20560 @<Declare subroutines needed by |big_trans|@>;
20561 void mp_big_trans (MP mp,pointer p, quarterword c) {
20562 pointer q,r,pp,qq; /* list manipulation registers */
20563 small_number s; /* size of a big node */
20564 s=mp->big_node_size[type(p)]; q=value(p); r=q+s;
20567 if ( type(r)!=mp_known ) {
20568 @<Transform an unknown big node and |return|@>;
20571 @<Transform a known big node@>;
20572 }; /* node |p| will now be recycled by |do_binary| */
20574 @ @<Transform an unknown big node and |return|@>=
20576 mp_set_up_known_trans(mp, c); mp_make_exp_copy(mp, p);
20577 r=value(mp->cur_exp);
20578 if ( mp->cur_type==mp_transform_type ) {
20579 mp_bilin1(mp, yy_part_loc(r),mp->tyy,xy_part_loc(q),mp->tyx,0);
20580 mp_bilin1(mp, yx_part_loc(r),mp->tyy,xx_part_loc(q),mp->tyx,0);
20581 mp_bilin1(mp, xy_part_loc(r),mp->txx,yy_part_loc(q),mp->txy,0);
20582 mp_bilin1(mp, xx_part_loc(r),mp->txx,yx_part_loc(q),mp->txy,0);
20584 mp_bilin1(mp, y_part_loc(r),mp->tyy,x_part_loc(q),mp->tyx,mp->ty);
20585 mp_bilin1(mp, x_part_loc(r),mp->txx,y_part_loc(q),mp->txy,mp->tx);
20589 @ Let |p| point to a two-word value field inside a big node of |cur_exp|,
20590 and let |q| point to a another value field. The |bilin1| procedure
20591 replaces |p| by $p\cdot t+q\cdot u+\delta$.
20593 @<Declare subroutines needed by |big_trans|@>=
20594 void mp_bilin1 (MP mp, pointer p, scaled t, pointer q,
20595 scaled u, scaled delta) {
20596 pointer r; /* list traverser */
20597 if ( t!=unity ) mp_dep_mult(mp, p,t,true);
20599 if ( type(q)==mp_known ) {
20600 delta+=mp_take_scaled(mp, value(q),u);
20602 @<Ensure that |type(p)=mp_proto_dependent|@>;
20603 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),u,dep_list(q),
20604 mp_proto_dependent,type(q));
20607 if ( type(p)==mp_known ) {
20611 while ( info(r)!=null ) r=link(r);
20613 if ( r!=dep_list(p) ) value(r)=delta;
20614 else { mp_recycle_value(mp, p); type(p)=mp_known; value(p)=delta; };
20616 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20619 @ @<Ensure that |type(p)=mp_proto_dependent|@>=
20620 if ( type(p)!=mp_proto_dependent ) {
20621 if ( type(p)==mp_known )
20622 mp_new_dep(mp, p,mp_const_dependency(mp, value(p)));
20624 dep_list(p)=mp_p_times_v(mp, dep_list(p),unity,mp_dependent,
20625 mp_proto_dependent,true);
20626 type(p)=mp_proto_dependent;
20629 @ @<Transform a known big node@>=
20630 mp_set_up_trans(mp, c);
20631 if ( mp->cur_type==mp_known ) {
20632 @<Transform known by known@>;
20634 pp=mp_stash_cur_exp(mp); qq=value(pp);
20635 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20636 if ( mp->cur_type==mp_transform_type ) {
20637 mp_bilin2(mp, yy_part_loc(r),yy_part_loc(qq),
20638 value(xy_part_loc(q)),yx_part_loc(qq),null);
20639 mp_bilin2(mp, yx_part_loc(r),yy_part_loc(qq),
20640 value(xx_part_loc(q)),yx_part_loc(qq),null);
20641 mp_bilin2(mp, xy_part_loc(r),xx_part_loc(qq),
20642 value(yy_part_loc(q)),xy_part_loc(qq),null);
20643 mp_bilin2(mp, xx_part_loc(r),xx_part_loc(qq),
20644 value(yx_part_loc(q)),xy_part_loc(qq),null);
20646 mp_bilin2(mp, y_part_loc(r),yy_part_loc(qq),
20647 value(x_part_loc(q)),yx_part_loc(qq),y_part_loc(qq));
20648 mp_bilin2(mp, x_part_loc(r),xx_part_loc(qq),
20649 value(y_part_loc(q)),xy_part_loc(qq),x_part_loc(qq));
20650 mp_recycle_value(mp, pp); mp_free_node(mp, pp,value_node_size);
20653 @ Let |p| be a |mp_proto_dependent| value whose dependency list ends
20654 at |dep_final|. The following procedure adds |v| times another
20655 numeric quantity to~|p|.
20657 @<Declare subroutines needed by |big_trans|@>=
20658 void mp_add_mult_dep (MP mp,pointer p, scaled v, pointer r) {
20659 if ( type(r)==mp_known ) {
20660 value(mp->dep_final)+=mp_take_scaled(mp, value(r),v);
20662 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),v,dep_list(r),
20663 mp_proto_dependent,type(r));
20664 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20668 @ The |bilin2| procedure is something like |bilin1|, but with known
20669 and unknown quantities reversed. Parameter |p| points to a value field
20670 within the big node for |cur_exp|; and |type(p)=mp_known|. Parameters
20671 |t| and~|u| point to value fields elsewhere; so does parameter~|q|,
20672 unless it is |null| (which stands for zero). Location~|p| will be
20673 replaced by $p\cdot t+v\cdot u+q$.
20675 @<Declare subroutines needed by |big_trans|@>=
20676 void mp_bilin2 (MP mp,pointer p, pointer t, scaled v,
20677 pointer u, pointer q) {
20678 scaled vv; /* temporary storage for |value(p)| */
20679 vv=value(p); type(p)=mp_proto_dependent;
20680 mp_new_dep(mp, p,mp_const_dependency(mp, 0)); /* this sets |dep_final| */
20682 mp_add_mult_dep(mp, p,vv,t); /* |dep_final| doesn't change */
20683 if ( v!=0 ) mp_add_mult_dep(mp, p,v,u);
20684 if ( q!=null ) mp_add_mult_dep(mp, p,unity,q);
20685 if ( dep_list(p)==mp->dep_final ) {
20686 vv=value(mp->dep_final); mp_recycle_value(mp, p);
20687 type(p)=mp_known; value(p)=vv;
20691 @ @<Transform known by known@>=
20693 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20694 if ( mp->cur_type==mp_transform_type ) {
20695 mp_bilin3(mp, yy_part_loc(r),mp->tyy,value(xy_part_loc(q)),mp->tyx,0);
20696 mp_bilin3(mp, yx_part_loc(r),mp->tyy,value(xx_part_loc(q)),mp->tyx,0);
20697 mp_bilin3(mp, xy_part_loc(r),mp->txx,value(yy_part_loc(q)),mp->txy,0);
20698 mp_bilin3(mp, xx_part_loc(r),mp->txx,value(yx_part_loc(q)),mp->txy,0);
20700 mp_bilin3(mp, y_part_loc(r),mp->tyy,value(x_part_loc(q)),mp->tyx,mp->ty);
20701 mp_bilin3(mp, x_part_loc(r),mp->txx,value(y_part_loc(q)),mp->txy,mp->tx);
20704 @ Finally, in |bilin3| everything is |known|.
20706 @<Declare subroutines needed by |big_trans|@>=
20707 void mp_bilin3 (MP mp,pointer p, scaled t,
20708 scaled v, scaled u, scaled delta) {
20710 delta+=mp_take_scaled(mp, value(p),t);
20713 if ( u!=0 ) value(p)=delta+mp_take_scaled(mp, v,u);
20714 else value(p)=delta;
20717 @ @<Additional cases of binary operators@>=
20719 if ( (mp->cur_type==mp_string_type)&&(type(p)==mp_string_type) ) mp_cat(mp, p);
20720 else mp_bad_binary(mp, p,concatenate);
20723 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_string_type) )
20724 mp_chop_string(mp, value(p));
20725 else mp_bad_binary(mp, p,substring_of);
20728 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
20729 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_path_type) )
20730 mp_chop_path(mp, value(p));
20731 else mp_bad_binary(mp, p,subpath_of);
20734 @ @<Declare binary action...@>=
20735 void mp_cat (MP mp,pointer p) {
20736 str_number a,b; /* the strings being concatenated */
20737 pool_pointer k; /* index into |str_pool| */
20738 a=value(p); b=mp->cur_exp; str_room(length(a)+length(b));
20739 for (k=mp->str_start[a];k<=str_stop(a)-1;k++) {
20740 append_char(mp->str_pool[k]);
20742 for (k=mp->str_start[b];k<=str_stop(b)-1;k++) {
20743 append_char(mp->str_pool[k]);
20745 mp->cur_exp=mp_make_string(mp); delete_str_ref(b);
20748 @ @<Declare binary action...@>=
20749 void mp_chop_string (MP mp,pointer p) {
20750 integer a, b; /* start and stop points */
20751 integer l; /* length of the original string */
20752 integer k; /* runs from |a| to |b| */
20753 str_number s; /* the original string */
20754 boolean reversed; /* was |a>b|? */
20755 a=mp_round_unscaled(mp, value(x_part_loc(p)));
20756 b=mp_round_unscaled(mp, value(y_part_loc(p)));
20757 if ( a<=b ) reversed=false;
20758 else { reversed=true; k=a; a=b; b=k; };
20759 s=mp->cur_exp; l=length(s);
20770 for (k=mp->str_start[s]+b-1;k>=mp->str_start[s]+a;k--) {
20771 append_char(mp->str_pool[k]);
20774 for (k=mp->str_start[s]+a;k<=mp->str_start[s]+b-1;k++) {
20775 append_char(mp->str_pool[k]);
20778 mp->cur_exp=mp_make_string(mp); delete_str_ref(s);
20781 @ @<Declare binary action...@>=
20782 void mp_chop_path (MP mp,pointer p) {
20783 pointer q; /* a knot in the original path */
20784 pointer pp,qq,rr,ss; /* link variables for copies of path nodes */
20785 scaled a,b,k,l; /* indices for chopping */
20786 boolean reversed; /* was |a>b|? */
20787 l=mp_path_length(mp); a=value(x_part_loc(p)); b=value(y_part_loc(p));
20788 if ( a<=b ) reversed=false;
20789 else { reversed=true; k=a; a=b; b=k; };
20790 @<Dispense with the cases |a<0| and/or |b>l|@>;
20792 while ( a>=unity ) {
20793 q=link(q); a=a-unity; b=b-unity;
20796 @<Construct a path from |pp| to |qq| of length zero@>;
20798 @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>;
20800 left_type(pp)=endpoint; right_type(qq)=endpoint; link(qq)=pp;
20801 mp_toss_knot_list(mp, mp->cur_exp);
20803 mp->cur_exp=link(mp_htap_ypoc(mp, pp)); mp_toss_knot_list(mp, pp);
20809 @ @<Dispense with the cases |a<0| and/or |b>l|@>=
20811 if ( left_type(mp->cur_exp)==endpoint ) {
20812 a=0; if ( b<0 ) b=0;
20814 do { a=a+l; b=b+l; } while (a<0); /* a cycle always has length |l>0| */
20818 if ( left_type(mp->cur_exp)==endpoint ) {
20819 b=l; if ( a>l ) a=l;
20827 @ @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>=
20829 pp=mp_copy_knot(mp, q); qq=pp;
20831 q=link(q); rr=qq; qq=mp_copy_knot(mp, q); link(rr)=qq; b=b-unity;
20834 ss=pp; pp=link(pp);
20835 mp_split_cubic(mp, ss,a*010000); pp=link(ss);
20836 mp_free_node(mp, ss,knot_node_size);
20838 b=mp_make_scaled(mp, b,unity-a); rr=pp;
20842 mp_split_cubic(mp, rr,(b+unity)*010000);
20843 mp_free_node(mp, qq,knot_node_size);
20848 @ @<Construct a path from |pp| to |qq| of length zero@>=
20850 if ( a>0 ) { mp_split_cubic(mp, q,a*010000); q=link(q); };
20851 pp=mp_copy_knot(mp, q); qq=pp;
20854 @ @<Additional cases of binary operators@>=
20855 case point_of: case precontrol_of: case postcontrol_of:
20856 if ( mp->cur_type==mp_pair_type )
20857 mp_pair_to_path(mp);
20858 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
20859 mp_find_point(mp, value(p),c);
20861 mp_bad_binary(mp, p,c);
20863 case pen_offset_of:
20864 if ( (mp->cur_type==mp_pen_type)&& mp_nice_pair(mp, p,type(p)) )
20865 mp_set_up_offset(mp, value(p));
20867 mp_bad_binary(mp, p,pen_offset_of);
20869 case direction_time_of:
20870 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
20871 if ( (mp->cur_type==mp_path_type)&& mp_nice_pair(mp, p,type(p)) )
20872 mp_set_up_direction_time(mp, value(p));
20874 mp_bad_binary(mp, p,direction_time_of);
20877 @ @<Declare binary action...@>=
20878 void mp_set_up_offset (MP mp,pointer p) {
20879 mp_find_offset(mp, value(x_part_loc(p)),value(y_part_loc(p)),mp->cur_exp);
20880 mp_pair_value(mp, mp->cur_x,mp->cur_y);
20882 void mp_set_up_direction_time (MP mp,pointer p) {
20883 mp_flush_cur_exp(mp, mp_find_direction_time(mp, value(x_part_loc(p)),
20884 value(y_part_loc(p)),mp->cur_exp));
20887 @ @<Declare binary action...@>=
20888 void mp_find_point (MP mp,scaled v, quarterword c) {
20889 pointer p; /* the path */
20890 scaled n; /* its length */
20892 if ( left_type(p)==endpoint ) n=-unity; else n=0;
20893 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
20896 } else if ( v<0 ) {
20897 if ( left_type(p)==endpoint ) v=0;
20898 else v=n-1-((-v-1) % n);
20899 } else if ( v>n ) {
20900 if ( left_type(p)==endpoint ) v=n;
20904 while ( v>=unity ) { p=link(p); v=v-unity; };
20906 @<Insert a fractional node by splitting the cubic@>;
20908 @<Set the current expression to the desired path coordinates@>;
20911 @ @<Insert a fractional node...@>=
20912 { mp_split_cubic(mp, p,v*010000); p=link(p); }
20914 @ @<Set the current expression to the desired path coordinates...@>=
20917 mp_pair_value(mp, x_coord(p),y_coord(p));
20919 case precontrol_of:
20920 if ( left_type(p)==endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
20921 else mp_pair_value(mp, left_x(p),left_y(p));
20923 case postcontrol_of:
20924 if ( right_type(p)==endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
20925 else mp_pair_value(mp, right_x(p),right_y(p));
20927 } /* there are no other cases */
20929 @ @<Additional cases of binary operators@>=
20931 if ( mp->cur_type==mp_pair_type )
20932 mp_pair_to_path(mp);
20933 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
20934 mp_flush_cur_exp(mp, mp_get_arc_time(mp, mp->cur_exp,value(p)));
20936 mp_bad_binary(mp, p,c);
20939 @ @<Additional cases of bin...@>=
20941 if ( type(p)==mp_pair_type ) {
20942 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p);
20943 mp_pair_to_path(mp); p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
20945 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
20946 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_path_type) ) {
20947 mp_path_intersection(mp, value(p),mp->cur_exp);
20948 mp_pair_value(mp, mp->cur_t,mp->cur_tt);
20950 mp_bad_binary(mp, p,intersect);
20954 @ @<Additional cases of bin...@>=
20956 if ( (mp->cur_type!=mp_string_type)||(type(p)!=mp_string_type))
20957 mp_bad_binary(mp, p,in_font);
20958 else { mp_do_infont(mp, p); return; }
20961 @ Function |new_text_node| owns the reference count for its second argument
20962 (the text string) but not its first (the font name).
20964 @<Declare binary action...@>=
20965 void mp_do_infont (MP mp,pointer p) {
20967 q=mp_get_node(mp, edge_header_size);
20968 mp_init_edges(mp, q);
20969 link(obj_tail(q))=mp_new_text_node(mp, str(mp->cur_exp),value(p));
20970 obj_tail(q)=link(obj_tail(q));
20971 mp_free_node(mp, p,value_node_size);
20972 mp_flush_cur_exp(mp, q);
20973 mp->cur_type=mp_picture_type;
20976 @* \[40] Statements and commands.
20977 The chief executive of \MP\ is the |do_statement| routine, which
20978 contains the master switch that causes all the various pieces of \MP\
20979 to do their things, in the right order.
20981 In a sense, this is the grand climax of the program: It applies all the
20982 tools that we have worked so hard to construct. In another sense, this is
20983 the messiest part of the program: It necessarily refers to other pieces
20984 of code all over the place, so that a person can't fully understand what is
20985 going on without paging back and forth to be reminded of conventions that
20986 are defined elsewhere. We are now at the hub of the web.
20988 The structure of |do_statement| itself is quite simple. The first token
20989 of the statement is fetched using |get_x_next|. If it can be the first
20990 token of an expression, we look for an equation, an assignment, or a
20991 title. Otherwise we use a \&{case} construction to branch at high speed to
20992 the appropriate routine for various and sundry other types of commands,
20993 each of which has an ``action procedure'' that does the necessary work.
20995 The program uses the fact that
20996 $$\hbox{|min_primary_command=max_statement_command=type_name|}$$
20997 to interpret a statement that starts with, e.g., `\&{string}',
20998 as a type declaration rather than a boolean expression.
21000 @c void mp_do_statement (MP mp) { /* governs \MP's activities */
21001 mp->cur_type=mp_vacuous; mp_get_x_next(mp);
21002 if ( mp->cur_cmd>max_primary_command ) {
21003 @<Worry about bad statement@>;
21004 } else if ( mp->cur_cmd>max_statement_command ) {
21005 @<Do an equation, assignment, title, or
21006 `$\langle\,$expression$\,\rangle\,$\&{endgroup}'@>;
21008 @<Do a statement that doesn't begin with an expression@>;
21010 if ( mp->cur_cmd<semicolon )
21011 @<Flush unparsable junk that was found after the statement@>;
21015 @ @<Declarations@>=
21016 @<Declare action procedures for use by |do_statement|@>;
21018 @ The only command codes |>max_primary_command| that can be present
21019 at the beginning of a statement are |semicolon| and higher; these
21020 occur when the statement is null.
21022 @<Worry about bad statement@>=
21024 if ( mp->cur_cmd<semicolon ) {
21025 print_err("A statement can't begin with `");
21026 @.A statement can't begin with x@>
21027 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod); mp_print_char(mp, '\'');
21028 help5("I was looking for the beginning of a new statement.")
21029 ("If you just proceed without changing anything, I'll ignore")
21030 ("everything up to the next `;'. Please insert a semicolon")
21031 ("now in front of anything that you don't want me to delete.")
21032 ("(See Chapter 27 of The METAFONTbook for an example.)");
21033 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21034 mp_back_error(mp); mp_get_x_next(mp);
21038 @ The help message printed here says that everything is flushed up to
21039 a semicolon, but actually the commands |end_group| and |stop| will
21040 also terminate a statement.
21042 @<Flush unparsable junk that was found after the statement@>=
21044 print_err("Extra tokens will be flushed");
21045 @.Extra tokens will be flushed@>
21046 help6("I've just read as much of that statement as I could fathom,")
21047 ("so a semicolon should have been next. It's very puzzling...")
21048 ("but I'll try to get myself back together, by ignoring")
21049 ("everything up to the next `;'. Please insert a semicolon")
21050 ("now in front of anything that you don't want me to delete.")
21051 ("(See Chapter 27 of The METAFONTbook for an example.)");
21052 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21053 mp_back_error(mp); mp->scanner_status=flushing;
21056 @<Decrease the string reference count...@>;
21057 } while (! end_of_statement); /* |cur_cmd=semicolon|, |end_group|, or |stop| */
21058 mp->scanner_status=normal;
21061 @ If |do_statement| ends with |cur_cmd=end_group|, we should have
21062 |cur_type=mp_vacuous| unless the statement was simply an expression;
21063 in the latter case, |cur_type| and |cur_exp| should represent that
21066 @<Do a statement that doesn't...@>=
21068 if ( mp->internal[tracing_commands]>0 )
21070 switch (mp->cur_cmd ) {
21071 case type_name:mp_do_type_declaration(mp); break;
21073 if ( mp->cur_mod>var_def ) mp_make_op_def(mp);
21074 else if ( mp->cur_mod>end_def ) mp_scan_def(mp);
21076 @<Cases of |do_statement| that invoke particular commands@>;
21077 } /* there are no other cases */
21078 mp->cur_type=mp_vacuous;
21081 @ The most important statements begin with expressions.
21083 @<Do an equation, assignment, title, or...@>=
21085 mp->var_flag=assignment; mp_scan_expression(mp);
21086 if ( mp->cur_cmd<end_group ) {
21087 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21088 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21089 else if ( mp->cur_type==mp_string_type ) {@<Do a title@> ; }
21090 else if ( mp->cur_type!=mp_vacuous ){
21091 exp_err("Isolated expression");
21092 @.Isolated expression@>
21093 help3("I couldn't find an `=' or `:=' after the")
21094 ("expression that is shown above this error message,")
21095 ("so I guess I'll just ignore it and carry on.");
21096 mp_put_get_error(mp);
21098 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
21104 if ( mp->internal[tracing_titles]>0 ) {
21105 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp); update_terminal;
21109 @ Equations and assignments are performed by the pair of mutually recursive
21111 routines |do_equation| and |do_assignment|. These routines are called when
21112 |cur_cmd=equals| and when |cur_cmd=assignment|, respectively; the left-hand
21113 side is in |cur_type| and |cur_exp|, while the right-hand side is yet
21114 to be scanned. After the routines are finished, |cur_type| and |cur_exp|
21115 will be equal to the right-hand side (which will normally be equal
21116 to the left-hand side).
21118 @<Declare action procedures for use by |do_statement|@>=
21119 @<Declare the procedure called |try_eq|@>;
21120 @<Declare the procedure called |make_eq|@>;
21121 void mp_do_equation (MP mp) ;
21124 void mp_do_equation (MP mp) {
21125 pointer lhs; /* capsule for the left-hand side */
21126 pointer p; /* temporary register */
21127 lhs=mp_stash_cur_exp(mp); mp_get_x_next(mp);
21128 mp->var_flag=assignment; mp_scan_expression(mp);
21129 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21130 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21131 if ( mp->internal[tracing_commands]>two )
21132 @<Trace the current equation@>;
21133 if ( mp->cur_type==mp_unknown_path ) if ( type(lhs)==mp_pair_type ) {
21134 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, lhs); lhs=p;
21135 }; /* in this case |make_eq| will change the pair to a path */
21136 mp_make_eq(mp, lhs); /* equate |lhs| to |(cur_type,cur_exp)| */
21139 @ And |do_assignment| is similar to |do_expression|:
21142 void mp_do_assignment (MP mp);
21144 @ @<Declare action procedures for use by |do_statement|@>=
21145 void mp_do_assignment (MP mp) ;
21148 void mp_do_assignment (MP mp) {
21149 pointer lhs; /* token list for the left-hand side */
21150 pointer p; /* where the left-hand value is stored */
21151 pointer q; /* temporary capsule for the right-hand value */
21152 if ( mp->cur_type!=mp_token_list ) {
21153 exp_err("Improper `:=' will be changed to `='");
21155 help2("I didn't find a variable name at the left of the `:=',")
21156 ("so I'm going to pretend that you said `=' instead.");
21157 mp_error(mp); mp_do_equation(mp);
21159 lhs=mp->cur_exp; mp->cur_type=mp_vacuous;
21160 mp_get_x_next(mp); mp->var_flag=assignment; mp_scan_expression(mp);
21161 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21162 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21163 if ( mp->internal[tracing_commands]>two )
21164 @<Trace the current assignment@>;
21165 if ( info(lhs)>hash_end ) {
21166 @<Assign the current expression to an internal variable@>;
21168 @<Assign the current expression to the variable |lhs|@>;
21170 mp_flush_node_list(mp, lhs);
21174 @ @<Trace the current equation@>=
21176 mp_begin_diagnostic(mp); mp_print_nl(mp, "{("); mp_print_exp(mp,lhs,0);
21177 mp_print(mp,")=("); mp_print_exp(mp,null,0);
21178 mp_print(mp,")}"); mp_end_diagnostic(mp, false);
21181 @ @<Trace the current assignment@>=
21183 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
21184 if ( info(lhs)>hash_end )
21185 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21187 mp_show_token_list(mp, lhs,null,1000,0);
21188 mp_print(mp, ":="); mp_print_exp(mp, null,0);
21189 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
21192 @ @<Assign the current expression to an internal variable@>=
21193 if ( mp->cur_type==mp_known ) {
21194 mp->internal[info(lhs)-(hash_end)]=mp->cur_exp;
21196 exp_err("Internal quantity `");
21197 @.Internal quantity...@>
21198 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21199 mp_print(mp, "' must receive a known value");
21200 help2("I can\'t set an internal quantity to anything but a known")
21201 ("numeric value, so I'll have to ignore this assignment.");
21202 mp_put_get_error(mp);
21205 @ @<Assign the current expression to the variable |lhs|@>=
21207 p=mp_find_variable(mp, lhs);
21209 q=mp_stash_cur_exp(mp); mp->cur_type=mp_und_type(mp, p);
21210 mp_recycle_value(mp, p);
21211 type(p)=mp->cur_type; value(p)=null; mp_make_exp_copy(mp, p);
21212 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q); mp_make_eq(mp, p);
21214 mp_obliterated(mp, lhs); mp_put_get_error(mp);
21219 @ And now we get to the nitty-gritty. The |make_eq| procedure is given
21220 a pointer to a capsule that is to be equated to the current expression.
21222 @<Declare the procedure called |make_eq|@>=
21223 void mp_make_eq (MP mp,pointer lhs) ;
21227 @c void mp_make_eq (MP mp,pointer lhs) {
21228 small_number t; /* type of the left-hand side */
21229 pointer p,q; /* pointers inside of big nodes */
21230 integer v=0; /* value of the left-hand side */
21233 if ( t<=mp_pair_type ) v=value(lhs);
21235 @<For each type |t|, make an equation and |goto done| unless |cur_type|
21236 is incompatible with~|t|@>;
21237 } /* all cases have been listed */
21238 @<Announce that the equation cannot be performed@>;
21240 check_arith; mp_recycle_value(mp, lhs);
21241 mp_free_node(mp, lhs,value_node_size);
21244 @ @<Announce that the equation cannot be performed@>=
21245 mp_disp_err(mp, lhs,"");
21246 exp_err("Equation cannot be performed (");
21247 @.Equation cannot be performed@>
21248 if ( type(lhs)<=mp_pair_type ) mp_print_type(mp, type(lhs));
21249 else mp_print(mp, "numeric");
21250 mp_print_char(mp, '=');
21251 if ( mp->cur_type<=mp_pair_type ) mp_print_type(mp, mp->cur_type);
21252 else mp_print(mp, "numeric");
21253 mp_print_char(mp, ')');
21254 help2("I'm sorry, but I don't know how to make such things equal.")
21255 ("(See the two expressions just above the error message.)");
21256 mp_put_get_error(mp)
21258 @ @<For each type |t|, make an equation and |goto done| unless...@>=
21259 case mp_boolean_type: case mp_string_type: case mp_pen_type:
21260 case mp_path_type: case mp_picture_type:
21261 if ( mp->cur_type==t+unknown_tag ) {
21262 mp_nonlinear_eq(mp, v,mp->cur_exp,false); goto DONE;
21263 } else if ( mp->cur_type==t ) {
21264 @<Report redundant or inconsistent equation and |goto done|@>;
21267 case unknown_types:
21268 if ( mp->cur_type==t-unknown_tag ) {
21269 mp_nonlinear_eq(mp, mp->cur_exp,lhs,true); goto DONE;
21270 } else if ( mp->cur_type==t ) {
21271 mp_ring_merge(mp, lhs,mp->cur_exp); goto DONE;
21272 } else if ( mp->cur_type==mp_pair_type ) {
21273 if ( t==mp_unknown_path ) {
21274 mp_pair_to_path(mp); goto RESTART;
21278 case mp_transform_type: case mp_color_type:
21279 case mp_cmykcolor_type: case mp_pair_type:
21280 if ( mp->cur_type==t ) {
21281 @<Do multiple equations and |goto done|@>;
21284 case mp_known: case mp_dependent:
21285 case mp_proto_dependent: case mp_independent:
21286 if ( mp->cur_type>=mp_known ) {
21287 mp_try_eq(mp, lhs,null); goto DONE;
21293 @ @<Report redundant or inconsistent equation and |goto done|@>=
21295 if ( mp->cur_type<=mp_string_type ) {
21296 if ( mp->cur_type==mp_string_type ) {
21297 if ( mp_str_vs_str(mp, v,mp->cur_exp)!=0 ) {
21300 } else if ( v!=mp->cur_exp ) {
21303 @<Exclaim about a redundant equation@>; goto DONE;
21305 print_err("Redundant or inconsistent equation");
21306 @.Redundant or inconsistent equation@>
21307 help2("An equation between already-known quantities can't help.")
21308 ("But don't worry; continue and I'll just ignore it.");
21309 mp_put_get_error(mp); goto DONE;
21311 print_err("Inconsistent equation");
21312 @.Inconsistent equation@>
21313 help2("The equation I just read contradicts what was said before.")
21314 ("But don't worry; continue and I'll just ignore it.");
21315 mp_put_get_error(mp); goto DONE;
21318 @ @<Do multiple equations and |goto done|@>=
21320 p=v+mp->big_node_size[t];
21321 q=value(mp->cur_exp)+mp->big_node_size[t];
21323 p=p-2; q=q-2; mp_try_eq(mp, p,q);
21328 @ The first argument to |try_eq| is the location of a value node
21329 in a capsule that will soon be recycled. The second argument is
21330 either a location within a pair or transform node pointed to by
21331 |cur_exp|, or it is |null| (which means that |cur_exp| itself
21332 serves as the second argument). The idea is to leave |cur_exp| unchanged,
21333 but to equate the two operands.
21335 @<Declare the procedure called |try_eq|@>=
21336 void mp_try_eq (MP mp,pointer l, pointer r) ;
21339 @c void mp_try_eq (MP mp,pointer l, pointer r) {
21340 pointer p; /* dependency list for right operand minus left operand */
21341 int t; /* the type of list |p| */
21342 pointer q; /* the constant term of |p| is here */
21343 pointer pp; /* dependency list for right operand */
21344 int tt; /* the type of list |pp| */
21345 boolean copied; /* have we copied a list that ought to be recycled? */
21346 @<Remove the left operand from its container, negate it, and
21347 put it into dependency list~|p| with constant term~|q|@>;
21348 @<Add the right operand to list |p|@>;
21349 if ( info(p)==null ) {
21350 @<Deal with redundant or inconsistent equation@>;
21352 mp_linear_eq(mp, p,t);
21353 if ( r==null ) if ( mp->cur_type!=mp_known ) {
21354 if ( type(mp->cur_exp)==mp_known ) {
21355 pp=mp->cur_exp; mp->cur_exp=value(mp->cur_exp); mp->cur_type=mp_known;
21356 mp_free_node(mp, pp,value_node_size);
21362 @ @<Remove the left operand from its container, negate it, and...@>=
21364 if ( t==mp_known ) {
21365 t=mp_dependent; p=mp_const_dependency(mp, -value(l)); q=p;
21366 } else if ( t==mp_independent ) {
21367 t=mp_dependent; p=mp_single_dependency(mp, l); negate(value(p));
21370 p=dep_list(l); q=p;
21373 if ( info(q)==null ) break;
21376 link(prev_dep(l))=link(q); prev_dep(link(q))=prev_dep(l);
21380 @ @<Deal with redundant or inconsistent equation@>=
21382 if ( abs(value(p))>64 ) { /* off by .001 or more */
21383 print_err("Inconsistent equation");
21384 @.Inconsistent equation@>
21385 mp_print(mp, " (off by "); mp_print_scaled(mp, value(p));
21386 mp_print_char(mp, ')');
21387 help2("The equation I just read contradicts what was said before.")
21388 ("But don't worry; continue and I'll just ignore it.");
21389 mp_put_get_error(mp);
21390 } else if ( r==null ) {
21391 @<Exclaim about a redundant equation@>;
21393 mp_free_node(mp, p,dep_node_size);
21396 @ @<Add the right operand to list |p|@>=
21398 if ( mp->cur_type==mp_known ) {
21399 value(q)=value(q)+mp->cur_exp; goto DONE1;
21402 if ( tt==mp_independent ) pp=mp_single_dependency(mp, mp->cur_exp);
21403 else pp=dep_list(mp->cur_exp);
21406 if ( type(r)==mp_known ) {
21407 value(q)=value(q)+value(r); goto DONE1;
21410 if ( tt==mp_independent ) pp=mp_single_dependency(mp, r);
21411 else pp=dep_list(r);
21414 if ( tt!=mp_independent ) copied=false;
21415 else { copied=true; tt=mp_dependent; };
21416 @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>;
21417 if ( copied ) mp_flush_node_list(mp, pp);
21420 @ @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>=
21421 mp->watch_coefs=false;
21423 p=mp_p_plus_q(mp, p,pp,t);
21424 } else if ( t==mp_proto_dependent ) {
21425 p=mp_p_plus_fq(mp, p,unity,pp,mp_proto_dependent,mp_dependent);
21428 while ( info(q)!=null ) {
21429 value(q)=mp_round_fraction(mp, value(q)); q=link(q);
21431 t=mp_proto_dependent; p=mp_p_plus_q(mp, p,pp,t);
21433 mp->watch_coefs=true;
21435 @ Our next goal is to process type declarations. For this purpose it's
21436 convenient to have a procedure that scans a $\langle\,$declared
21437 variable$\,\rangle$ and returns the corresponding token list. After the
21438 following procedure has acted, the token after the declared variable
21439 will have been scanned, so it will appear in |cur_cmd|, |cur_mod|,
21442 @<Declare the function called |scan_declared_variable|@>=
21443 pointer mp_scan_declared_variable (MP mp) {
21444 pointer x; /* hash address of the variable's root */
21445 pointer h,t; /* head and tail of the token list to be returned */
21446 pointer l; /* hash address of left bracket */
21447 mp_get_symbol(mp); x=mp->cur_sym;
21448 if ( mp->cur_cmd!=tag_token ) mp_clear_symbol(mp, x,false);
21449 h=mp_get_avail(mp); info(h)=x; t=h;
21452 if ( mp->cur_sym==0 ) break;
21453 if ( mp->cur_cmd!=tag_token ) if ( mp->cur_cmd!=internal_quantity) {
21454 if ( mp->cur_cmd==left_bracket ) {
21455 @<Descend past a collective subscript@>;
21460 link(t)=mp_get_avail(mp); t=link(t); info(t)=mp->cur_sym;
21462 if ( eq_type(x)!=tag_token ) mp_clear_symbol(mp, x,false);
21463 if ( equiv(x)==null ) mp_new_root(mp, x);
21467 @ If the subscript isn't collective, we don't accept it as part of the
21470 @<Descend past a collective subscript@>=
21472 l=mp->cur_sym; mp_get_x_next(mp);
21473 if ( mp->cur_cmd!=right_bracket ) {
21474 mp_back_input(mp); mp->cur_sym=l; mp->cur_cmd=left_bracket; break;
21476 mp->cur_sym=collective_subscript;
21480 @ Type declarations are introduced by the following primitive operations.
21483 mp_primitive(mp, "numeric",type_name,mp_numeric_type);
21484 @:numeric_}{\&{numeric} primitive@>
21485 mp_primitive(mp, "string",type_name,mp_string_type);
21486 @:string_}{\&{string} primitive@>
21487 mp_primitive(mp, "boolean",type_name,mp_boolean_type);
21488 @:boolean_}{\&{boolean} primitive@>
21489 mp_primitive(mp, "path",type_name,mp_path_type);
21490 @:path_}{\&{path} primitive@>
21491 mp_primitive(mp, "pen",type_name,mp_pen_type);
21492 @:pen_}{\&{pen} primitive@>
21493 mp_primitive(mp, "picture",type_name,mp_picture_type);
21494 @:picture_}{\&{picture} primitive@>
21495 mp_primitive(mp, "transform",type_name,mp_transform_type);
21496 @:transform_}{\&{transform} primitive@>
21497 mp_primitive(mp, "color",type_name,mp_color_type);
21498 @:color_}{\&{color} primitive@>
21499 mp_primitive(mp, "rgbcolor",type_name,mp_color_type);
21500 @:color_}{\&{rgbcolor} primitive@>
21501 mp_primitive(mp, "cmykcolor",type_name,mp_cmykcolor_type);
21502 @:color_}{\&{cmykcolor} primitive@>
21503 mp_primitive(mp, "pair",type_name,mp_pair_type);
21504 @:pair_}{\&{pair} primitive@>
21506 @ @<Cases of |print_cmd...@>=
21507 case type_name: mp_print_type(mp, m); break;
21509 @ Now we are ready to handle type declarations, assuming that a
21510 |type_name| has just been scanned.
21512 @<Declare action procedures for use by |do_statement|@>=
21513 void mp_do_type_declaration (MP mp) ;
21516 void mp_do_type_declaration (MP mp) {
21517 small_number t; /* the type being declared */
21518 pointer p; /* token list for a declared variable */
21519 pointer q; /* value node for the variable */
21520 if ( mp->cur_mod>=mp_transform_type )
21523 t=mp->cur_mod+unknown_tag;
21525 p=mp_scan_declared_variable(mp);
21526 mp_flush_variable(mp, equiv(info(p)),link(p),false);
21527 q=mp_find_variable(mp, p);
21529 type(q)=t; value(q)=null;
21531 print_err("Declared variable conflicts with previous vardef");
21532 @.Declared variable conflicts...@>
21533 help2("You can't use, e.g., `numeric foo[]' after `vardef foo'.")
21534 ("Proceed, and I'll ignore the illegal redeclaration.");
21535 mp_put_get_error(mp);
21537 mp_flush_list(mp, p);
21538 if ( mp->cur_cmd<comma ) {
21539 @<Flush spurious symbols after the declared variable@>;
21541 } while (! end_of_statement);
21544 @ @<Flush spurious symbols after the declared variable@>=
21546 print_err("Illegal suffix of declared variable will be flushed");
21547 @.Illegal suffix...flushed@>
21548 help5("Variables in declarations must consist entirely of")
21549 ("names and collective subscripts, e.g., `x[]a'.")
21550 ("Are you trying to use a reserved word in a variable name?")
21551 ("I'm going to discard the junk I found here,")
21552 ("up to the next comma or the end of the declaration.");
21553 if ( mp->cur_cmd==numeric_token )
21554 mp->help_line[2]="Explicit subscripts like `x15a' aren't permitted.";
21555 mp_put_get_error(mp); mp->scanner_status=flushing;
21558 @<Decrease the string reference count...@>;
21559 } while (mp->cur_cmd<comma); /* either |end_of_statement| or |cur_cmd=comma| */
21560 mp->scanner_status=normal;
21563 @ \MP's |main_control| procedure just calls |do_statement| repeatedly
21564 until coming to the end of the user's program.
21565 Each execution of |do_statement| concludes with
21566 |cur_cmd=semicolon|, |end_group|, or |stop|.
21568 @c void mp_main_control (MP mp) {
21570 mp_do_statement(mp);
21571 if ( mp->cur_cmd==end_group ) {
21572 print_err("Extra `endgroup'");
21573 @.Extra `endgroup'@>
21574 help2("I'm not currently working on a `begingroup',")
21575 ("so I had better not try to end anything.");
21576 mp_flush_error(mp, 0);
21578 } while (mp->cur_cmd!=stop);
21580 void mp_run (MP mp) {
21581 mp_main_control(mp); /* come to life */
21582 mp_final_cleanup(mp); /* prepare for death */
21583 mp_close_files_and_terminate(mp);
21585 char * mp_mplib_version (MP mp) {
21587 return mplib_version;
21589 char * mp_metapost_version (MP mp) {
21591 return metapost_version;
21594 @ @<Exported function headers@>=
21595 void mp_run (MP mp);
21596 char * mp_mplib_version (MP mp);
21597 char * mp_metapost_version (MP mp);
21600 mp_primitive(mp, "end",stop,0);
21601 @:end_}{\&{end} primitive@>
21602 mp_primitive(mp, "dump",stop,1);
21603 @:dump_}{\&{dump} primitive@>
21605 @ @<Cases of |print_cmd...@>=
21607 if ( m==0 ) mp_print(mp, "end");
21608 else mp_print(mp, "dump");
21612 Let's turn now to statements that are classified as ``commands'' because
21613 of their imperative nature. We'll begin with simple ones, so that it
21614 will be clear how to hook command processing into the |do_statement| routine;
21615 then we'll tackle the tougher commands.
21617 Here's one of the simplest:
21619 @<Cases of |do_statement|...@>=
21620 case random_seed: mp_do_random_seed(mp); break;
21622 @ @<Declare action procedures for use by |do_statement|@>=
21623 void mp_do_random_seed (MP mp) ;
21625 @ @c void mp_do_random_seed (MP mp) {
21627 if ( mp->cur_cmd!=assignment ) {
21628 mp_missing_err(mp, ":=");
21630 help1("Always say `randomseed:=<numeric expression>'.");
21633 mp_get_x_next(mp); mp_scan_expression(mp);
21634 if ( mp->cur_type!=mp_known ) {
21635 exp_err("Unknown value will be ignored");
21636 @.Unknown value...ignored@>
21637 help2("Your expression was too random for me to handle,")
21638 ("so I won't change the random seed just now.");
21639 mp_put_get_flush_error(mp, 0);
21641 @<Initialize the random seed to |cur_exp|@>;
21645 @ @<Initialize the random seed to |cur_exp|@>=
21647 mp_init_randoms(mp, mp->cur_exp);
21648 if ( mp->selector>=log_only && mp->selector<write_file) {
21649 mp->old_setting=mp->selector; mp->selector=log_only;
21650 mp_print_nl(mp, "{randomseed:=");
21651 mp_print_scaled(mp, mp->cur_exp);
21652 mp_print_char(mp, '}');
21653 mp_print_nl(mp, ""); mp->selector=mp->old_setting;
21657 @ And here's another simple one (somewhat different in flavor):
21659 @<Cases of |do_statement|...@>=
21661 mp_print_ln(mp); mp->interaction=mp->cur_mod;
21662 @<Initialize the print |selector| based on |interaction|@>;
21663 if ( mp->log_opened ) mp->selector=mp->selector+2;
21668 mp_primitive(mp, "batchmode",mode_command,mp_batch_mode);
21669 @:mp_batch_mode_}{\&{batchmode} primitive@>
21670 mp_primitive(mp, "nonstopmode",mode_command,mp_nonstop_mode);
21671 @:mp_nonstop_mode_}{\&{nonstopmode} primitive@>
21672 mp_primitive(mp, "scrollmode",mode_command,mp_scroll_mode);
21673 @:mp_scroll_mode_}{\&{scrollmode} primitive@>
21674 mp_primitive(mp, "errorstopmode",mode_command,mp_error_stop_mode);
21675 @:mp_error_stop_mode_}{\&{errorstopmode} primitive@>
21677 @ @<Cases of |print_cmd_mod|...@>=
21680 case mp_batch_mode: mp_print(mp, "batchmode"); break;
21681 case mp_nonstop_mode: mp_print(mp, "nonstopmode"); break;
21682 case mp_scroll_mode: mp_print(mp, "scrollmode"); break;
21683 default: mp_print(mp, "errorstopmode"); break;
21687 @ The `\&{inner}' and `\&{outer}' commands are only slightly harder.
21689 @<Cases of |do_statement|...@>=
21690 case protection_command: mp_do_protection(mp); break;
21693 mp_primitive(mp, "inner",protection_command,0);
21694 @:inner_}{\&{inner} primitive@>
21695 mp_primitive(mp, "outer",protection_command,1);
21696 @:outer_}{\&{outer} primitive@>
21698 @ @<Cases of |print_cmd...@>=
21699 case protection_command:
21700 if ( m==0 ) mp_print(mp, "inner");
21701 else mp_print(mp, "outer");
21704 @ @<Declare action procedures for use by |do_statement|@>=
21705 void mp_do_protection (MP mp) ;
21707 @ @c void mp_do_protection (MP mp) {
21708 int m; /* 0 to unprotect, 1 to protect */
21709 halfword t; /* the |eq_type| before we change it */
21712 mp_get_symbol(mp); t=eq_type(mp->cur_sym);
21714 if ( t>=outer_tag )
21715 eq_type(mp->cur_sym)=t-outer_tag;
21716 } else if ( t<outer_tag ) {
21717 eq_type(mp->cur_sym)=t+outer_tag;
21720 } while (mp->cur_cmd==comma);
21723 @ \MP\ never defines the tokens `\.(' and `\.)' to be primitives, but
21724 plain \MP\ begins with the declaration `\&{delimiters} \.{()}'. Such a
21725 declaration assigns the command code |left_delimiter| to `\.{(}' and
21726 |right_delimiter| to `\.{)}'; the |equiv| of each delimiter is the
21727 hash address of its mate.
21729 @<Cases of |do_statement|...@>=
21730 case delimiters: mp_def_delims(mp); break;
21732 @ @<Declare action procedures for use by |do_statement|@>=
21733 void mp_def_delims (MP mp) ;
21735 @ @c void mp_def_delims (MP mp) {
21736 pointer l_delim,r_delim; /* the new delimiter pair */
21737 mp_get_clear_symbol(mp); l_delim=mp->cur_sym;
21738 mp_get_clear_symbol(mp); r_delim=mp->cur_sym;
21739 eq_type(l_delim)=left_delimiter; equiv(l_delim)=r_delim;
21740 eq_type(r_delim)=right_delimiter; equiv(r_delim)=l_delim;
21744 @ Here is a procedure that is called when \MP\ has reached a point
21745 where some right delimiter is mandatory.
21747 @<Declare the procedure called |check_delimiter|@>=
21748 void mp_check_delimiter (MP mp,pointer l_delim, pointer r_delim) {
21749 if ( mp->cur_cmd==right_delimiter )
21750 if ( mp->cur_mod==l_delim )
21752 if ( mp->cur_sym!=r_delim ) {
21753 mp_missing_err(mp, str(text(r_delim)));
21755 help2("I found no right delimiter to match a left one. So I've")
21756 ("put one in, behind the scenes; this may fix the problem.");
21759 print_err("The token `"); mp_print_text(r_delim);
21760 @.The token...delimiter@>
21761 mp_print(mp, "' is no longer a right delimiter");
21762 help3("Strange: This token has lost its former meaning!")
21763 ("I'll read it as a right delimiter this time;")
21764 ("but watch out, I'll probably miss it later.");
21769 @ The next four commands save or change the values associated with tokens.
21771 @<Cases of |do_statement|...@>=
21774 mp_get_symbol(mp); mp_save_variable(mp, mp->cur_sym); mp_get_x_next(mp);
21775 } while (mp->cur_cmd==comma);
21777 case interim_command: mp_do_interim(mp); break;
21778 case let_command: mp_do_let(mp); break;
21779 case new_internal: mp_do_new_internal(mp); break;
21781 @ @<Declare action procedures for use by |do_statement|@>=
21782 void mp_do_statement (MP mp);
21783 void mp_do_interim (MP mp);
21785 @ @c void mp_do_interim (MP mp) {
21787 if ( mp->cur_cmd!=internal_quantity ) {
21788 print_err("The token `");
21789 @.The token...quantity@>
21790 if ( mp->cur_sym==0 ) mp_print(mp, "(%CAPSULE)");
21791 else mp_print_text(mp->cur_sym);
21792 mp_print(mp, "' isn't an internal quantity");
21793 help1("Something like `tracingonline' should follow `interim'.");
21796 mp_save_internal(mp, mp->cur_mod); mp_back_input(mp);
21798 mp_do_statement(mp);
21801 @ The following procedure is careful not to undefine the left-hand symbol
21802 too soon, lest commands like `{\tt let x=x}' have a surprising effect.
21804 @<Declare action procedures for use by |do_statement|@>=
21805 void mp_do_let (MP mp) ;
21807 @ @c void mp_do_let (MP mp) {
21808 pointer l; /* hash location of the left-hand symbol */
21809 mp_get_symbol(mp); l=mp->cur_sym; mp_get_x_next(mp);
21810 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
21811 mp_missing_err(mp, "=");
21813 help3("You should have said `let symbol = something'.")
21814 ("But don't worry; I'll pretend that an equals sign")
21815 ("was present. The next token I read will be `something'.");
21819 switch (mp->cur_cmd) {
21820 case defined_macro: case secondary_primary_macro:
21821 case tertiary_secondary_macro: case expression_tertiary_macro:
21822 add_mac_ref(mp->cur_mod);
21827 mp_clear_symbol(mp, l,false); eq_type(l)=mp->cur_cmd;
21828 if ( mp->cur_cmd==tag_token ) equiv(l)=null;
21829 else equiv(l)=mp->cur_mod;
21833 @ @<Declarations@>=
21834 void mp_grow_internals (MP mp, int l);
21835 void mp_do_new_internal (MP mp) ;
21838 void mp_grow_internals (MP mp, int l) {
21842 if ( hash_end+l>max_halfword ) {
21843 mp_confusion(mp, "out of memory space"); /* can't be reached */
21845 int_name = xmalloc ((l+1),sizeof(char *));
21846 internal = xmalloc ((l+1),sizeof(scaled));
21847 for (k=0;k<=l; k++ ) {
21848 if (k<=mp->max_internal) {
21849 internal[k]=mp->internal[k];
21850 int_name[k]=mp->int_name[k];
21856 xfree(mp->internal); xfree(mp->int_name);
21857 mp->int_name = int_name;
21858 mp->internal = internal;
21859 mp->max_internal = l;
21863 void mp_do_new_internal (MP mp) {
21865 if ( mp->int_ptr==mp->max_internal ) {
21866 mp_grow_internals(mp, (mp->max_internal + (mp->max_internal>>2)));
21868 mp_get_clear_symbol(mp); incr(mp->int_ptr);
21869 eq_type(mp->cur_sym)=internal_quantity;
21870 equiv(mp->cur_sym)=mp->int_ptr;
21871 if(mp->int_name[mp->int_ptr]!=NULL)
21872 xfree(mp->int_name[mp->int_ptr]);
21873 mp->int_name[mp->int_ptr]=str(text(mp->cur_sym));
21874 mp->internal[mp->int_ptr]=0;
21876 } while (mp->cur_cmd==comma);
21879 @ @<Dealloc variables@>=
21880 for (k=0;k<=mp->max_internal;k++) {
21881 xfree(mp->int_name[k]);
21883 xfree(mp->internal);
21884 xfree(mp->int_name);
21887 @ The various `\&{show}' commands are distinguished by modifier fields
21890 @d show_token_code 0 /* show the meaning of a single token */
21891 @d show_stats_code 1 /* show current memory and string usage */
21892 @d show_code 2 /* show a list of expressions */
21893 @d show_var_code 3 /* show a variable and its descendents */
21894 @d show_dependencies_code 4 /* show dependent variables in terms of independents */
21897 mp_primitive(mp, "showtoken",show_command,show_token_code);
21898 @:show_token_}{\&{showtoken} primitive@>
21899 mp_primitive(mp, "showstats",show_command,show_stats_code);
21900 @:show_stats_}{\&{showstats} primitive@>
21901 mp_primitive(mp, "show",show_command,show_code);
21902 @:show_}{\&{show} primitive@>
21903 mp_primitive(mp, "showvariable",show_command,show_var_code);
21904 @:show_var_}{\&{showvariable} primitive@>
21905 mp_primitive(mp, "showdependencies",show_command,show_dependencies_code);
21906 @:show_dependencies_}{\&{showdependencies} primitive@>
21908 @ @<Cases of |print_cmd...@>=
21911 case show_token_code:mp_print(mp, "showtoken"); break;
21912 case show_stats_code:mp_print(mp, "showstats"); break;
21913 case show_code:mp_print(mp, "show"); break;
21914 case show_var_code:mp_print(mp, "showvariable"); break;
21915 default: mp_print(mp, "showdependencies"); break;
21919 @ @<Cases of |do_statement|...@>=
21920 case show_command:mp_do_show_whatever(mp); break;
21922 @ The value of |cur_mod| controls the |verbosity| in the |print_exp| routine:
21923 if it's |show_code|, complicated structures are abbreviated, otherwise
21926 @<Declare action procedures for use by |do_statement|@>=
21927 void mp_do_show (MP mp) ;
21929 @ @c void mp_do_show (MP mp) {
21931 mp_get_x_next(mp); mp_scan_expression(mp);
21932 mp_print_nl(mp, ">> ");
21934 mp_print_exp(mp, null,2); mp_flush_cur_exp(mp, 0);
21935 } while (mp->cur_cmd==comma);
21938 @ @<Declare action procedures for use by |do_statement|@>=
21939 void mp_disp_token (MP mp) ;
21941 @ @c void mp_disp_token (MP mp) {
21942 mp_print_nl(mp, "> ");
21944 if ( mp->cur_sym==0 ) {
21945 @<Show a numeric or string or capsule token@>;
21947 mp_print_text(mp->cur_sym); mp_print_char(mp, '=');
21948 if ( eq_type(mp->cur_sym)>=outer_tag ) mp_print(mp, "(outer) ");
21949 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
21950 if ( mp->cur_cmd==defined_macro ) {
21951 mp_print_ln(mp); mp_show_macro(mp, mp->cur_mod,null,100000);
21952 } /* this avoids recursion between |show_macro| and |print_cmd_mod| */
21957 @ @<Show a numeric or string or capsule token@>=
21959 if ( mp->cur_cmd==numeric_token ) {
21960 mp_print_scaled(mp, mp->cur_mod);
21961 } else if ( mp->cur_cmd==capsule_token ) {
21962 mp->g_pointer=mp->cur_mod; mp_print_capsule(mp);
21964 mp_print_char(mp, '"');
21965 mp_print_str(mp, mp->cur_mod); mp_print_char(mp, '"');
21966 delete_str_ref(mp->cur_mod);
21970 @ The following cases of |print_cmd_mod| might arise in connection
21971 with |disp_token|, although they don't correspond to any
21974 @<Cases of |print_cmd_...@>=
21975 case left_delimiter:
21976 case right_delimiter:
21977 if ( c==left_delimiter ) mp_print(mp, "left");
21978 else mp_print(mp, "right");
21979 mp_print(mp, " delimiter that matches ");
21983 if ( m==null ) mp_print(mp, "tag");
21984 else mp_print(mp, "variable");
21986 case defined_macro:
21987 mp_print(mp, "macro:");
21989 case secondary_primary_macro:
21990 case tertiary_secondary_macro:
21991 case expression_tertiary_macro:
21992 mp_print_cmd_mod(mp, macro_def,c);
21993 mp_print(mp, "'d macro:");
21994 mp_print_ln(mp); mp_show_token_list(mp, link(link(m)),null,1000,0);
21997 mp_print(mp, "[repeat the loop]");
21999 case internal_quantity:
22000 mp_print(mp, mp->int_name[m]);
22003 @ @<Declare action procedures for use by |do_statement|@>=
22004 void mp_do_show_token (MP mp) ;
22006 @ @c void mp_do_show_token (MP mp) {
22008 get_t_next; mp_disp_token(mp);
22010 } while (mp->cur_cmd==comma);
22013 @ @<Declare action procedures for use by |do_statement|@>=
22014 void mp_do_show_stats (MP mp) ;
22016 @ @c void mp_do_show_stats (MP mp) {
22017 mp_print_nl(mp, "Memory usage ");
22018 @.Memory usage...@>
22019 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used);
22021 mp_print(mp, "unknown");
22022 mp_print(mp, " ("); mp_print_int(mp, mp->hi_mem_min-mp->lo_mem_max-1);
22023 mp_print(mp, " still untouched)"); mp_print_ln(mp);
22024 mp_print_nl(mp, "String usage ");
22025 mp_print_int(mp, mp->strs_in_use-mp->init_str_use);
22026 mp_print_char(mp, '&'); mp_print_int(mp, mp->pool_in_use-mp->init_pool_ptr);
22028 mp_print(mp, "unknown");
22029 mp_print(mp, " (");
22030 mp_print_int(mp, mp->max_strings-1-mp->strs_used_up); mp_print_char(mp, '&');
22031 mp_print_int(mp, mp->pool_size-mp->pool_ptr);
22032 mp_print(mp, " now untouched)"); mp_print_ln(mp);
22036 @ Here's a recursive procedure that gives an abbreviated account
22037 of a variable, for use by |do_show_var|.
22039 @<Declare action procedures for use by |do_statement|@>=
22040 void mp_disp_var (MP mp,pointer p) ;
22042 @ @c void mp_disp_var (MP mp,pointer p) {
22043 pointer q; /* traverses attributes and subscripts */
22044 int n; /* amount of macro text to show */
22045 if ( type(p)==mp_structured ) {
22046 @<Descend the structure@>;
22047 } else if ( type(p)>=mp_unsuffixed_macro ) {
22048 @<Display a variable macro@>;
22049 } else if ( type(p)!=undefined ){
22050 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22051 mp_print_char(mp, '=');
22052 mp_print_exp(mp, p,0);
22056 @ @<Descend the structure@>=
22059 do { mp_disp_var(mp, q); q=link(q); } while (q!=end_attr);
22061 while ( name_type(q)==mp_subscr ) {
22062 mp_disp_var(mp, q); q=link(q);
22066 @ @<Display a variable macro@>=
22068 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22069 if ( type(p)>mp_unsuffixed_macro )
22070 mp_print(mp, "@@#"); /* |suffixed_macro| */
22071 mp_print(mp, "=macro:");
22072 if ( (int)mp->file_offset>=mp->max_print_line-20 ) n=5;
22073 else n=mp->max_print_line-mp->file_offset-15;
22074 mp_show_macro(mp, value(p),null,n);
22077 @ @<Declare action procedures for use by |do_statement|@>=
22078 void mp_do_show_var (MP mp) ;
22080 @ @c void mp_do_show_var (MP mp) {
22083 if ( mp->cur_sym>0 ) if ( mp->cur_sym<=hash_end )
22084 if ( mp->cur_cmd==tag_token ) if ( mp->cur_mod!=null ) {
22085 mp_disp_var(mp, mp->cur_mod); goto DONE;
22090 } while (mp->cur_cmd==comma);
22093 @ @<Declare action procedures for use by |do_statement|@>=
22094 void mp_do_show_dependencies (MP mp) ;
22096 @ @c void mp_do_show_dependencies (MP mp) {
22097 pointer p; /* link that runs through all dependencies */
22099 while ( p!=dep_head ) {
22100 if ( mp_interesting(mp, p) ) {
22101 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22102 if ( type(p)==mp_dependent ) mp_print_char(mp, '=');
22103 else mp_print(mp, " = "); /* extra spaces imply proto-dependency */
22104 mp_print_dependency(mp, dep_list(p),type(p));
22107 while ( info(p)!=null ) p=link(p);
22113 @ Finally we are ready for the procedure that governs all of the
22116 @<Declare action procedures for use by |do_statement|@>=
22117 void mp_do_show_whatever (MP mp) ;
22119 @ @c void mp_do_show_whatever (MP mp) {
22120 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
22121 switch (mp->cur_mod) {
22122 case show_token_code:mp_do_show_token(mp); break;
22123 case show_stats_code:mp_do_show_stats(mp); break;
22124 case show_code:mp_do_show(mp); break;
22125 case show_var_code:mp_do_show_var(mp); break;
22126 case show_dependencies_code:mp_do_show_dependencies(mp); break;
22127 } /* there are no other cases */
22128 if ( mp->internal[showstopping]>0 ){
22131 if ( mp->interaction<mp_error_stop_mode ) {
22132 help0; decr(mp->error_count);
22134 help1("This isn't an error message; I'm just showing something.");
22136 if ( mp->cur_cmd==semicolon ) mp_error(mp);
22137 else mp_put_get_error(mp);
22141 @ The `\&{addto}' command needs the following additional primitives:
22143 @d double_path_code 0 /* command modifier for `\&{doublepath}' */
22144 @d contour_code 1 /* command modifier for `\&{contour}' */
22145 @d also_code 2 /* command modifier for `\&{also}' */
22147 @ Pre and postscripts need two new identifiers:
22149 @d with_pre_script 11
22150 @d with_post_script 13
22153 mp_primitive(mp, "doublepath",thing_to_add,double_path_code);
22154 @:double_path_}{\&{doublepath} primitive@>
22155 mp_primitive(mp, "contour",thing_to_add,contour_code);
22156 @:contour_}{\&{contour} primitive@>
22157 mp_primitive(mp, "also",thing_to_add,also_code);
22158 @:also_}{\&{also} primitive@>
22159 mp_primitive(mp, "withpen",with_option,mp_pen_type);
22160 @:with_pen_}{\&{withpen} primitive@>
22161 mp_primitive(mp, "dashed",with_option,mp_picture_type);
22162 @:dashed_}{\&{dashed} primitive@>
22163 mp_primitive(mp, "withprescript",with_option,with_pre_script);
22164 @:with_pre_script_}{\&{withprescript} primitive@>
22165 mp_primitive(mp, "withpostscript",with_option,with_post_script);
22166 @:with_post_script_}{\&{withpostscript} primitive@>
22167 mp_primitive(mp, "withoutcolor",with_option,no_model);
22168 @:with_color_}{\&{withoutcolor} primitive@>
22169 mp_primitive(mp, "withgreyscale",with_option,grey_model);
22170 @:with_color_}{\&{withgreyscale} primitive@>
22171 mp_primitive(mp, "withcolor",with_option,uninitialized_model);
22172 @:with_color_}{\&{withcolor} primitive@>
22173 /* \&{withrgbcolor} is an alias for \&{withcolor} */
22174 mp_primitive(mp, "withrgbcolor",with_option,rgb_model);
22175 @:with_color_}{\&{withrgbcolor} primitive@>
22176 mp_primitive(mp, "withcmykcolor",with_option,cmyk_model);
22177 @:with_color_}{\&{withcmykcolor} primitive@>
22179 @ @<Cases of |print_cmd...@>=
22181 if ( m==contour_code ) mp_print(mp, "contour");
22182 else if ( m==double_path_code ) mp_print(mp, "doublepath");
22183 else mp_print(mp, "also");
22186 if ( m==mp_pen_type ) mp_print(mp, "withpen");
22187 else if ( m==with_pre_script ) mp_print(mp, "withprescript");
22188 else if ( m==with_post_script ) mp_print(mp, "withpostscript");
22189 else if ( m==no_model ) mp_print(mp, "withoutcolor");
22190 else if ( m==rgb_model ) mp_print(mp, "withrgbcolor");
22191 else if ( m==uninitialized_model ) mp_print(mp, "withcolor");
22192 else if ( m==cmyk_model ) mp_print(mp, "withcmykcolor");
22193 else if ( m==grey_model ) mp_print(mp, "withgreyscale");
22194 else mp_print(mp, "dashed");
22197 @ The |scan_with_list| procedure parses a $\langle$with list$\rangle$ and
22198 updates the list of graphical objects starting at |p|. Each $\langle$with
22199 clause$\rangle$ updates all graphical objects whose |type| is compatible.
22200 Other objects are ignored.
22202 @<Declare action procedures for use by |do_statement|@>=
22203 void mp_scan_with_list (MP mp,pointer p) ;
22205 @ @c void mp_scan_with_list (MP mp,pointer p) {
22206 small_number t; /* |cur_mod| of the |with_option| (should match |cur_type|) */
22207 pointer q; /* for list manipulation */
22208 int old_setting; /* saved |selector| setting */
22209 pointer k; /* for finding the near-last item in a list */
22210 str_number s; /* for string cleanup after combining */
22211 pointer cp,pp,dp,ap,bp;
22212 /* objects being updated; |void| initially; |null| to suppress update */
22213 cp=diov; pp=diov; dp=diov; ap=diov; bp=diov;
22215 while ( mp->cur_cmd==with_option ){
22218 if ( t!=no_model ) mp_scan_expression(mp);
22219 if (((t==with_pre_script)&&(mp->cur_type!=mp_string_type))||
22220 ((t==with_post_script)&&(mp->cur_type!=mp_string_type))||
22221 ((t==uninitialized_model)&&
22222 ((mp->cur_type!=mp_cmykcolor_type)&&(mp->cur_type!=mp_color_type)
22223 &&(mp->cur_type!=mp_known)&&(mp->cur_type!=mp_boolean_type)))||
22224 ((t==cmyk_model)&&(mp->cur_type!=mp_cmykcolor_type))||
22225 ((t==rgb_model)&&(mp->cur_type!=mp_color_type))||
22226 ((t==grey_model)&&(mp->cur_type!=mp_known))||
22227 ((t==mp_pen_type)&&(mp->cur_type!=t))||
22228 ((t==mp_picture_type)&&(mp->cur_type!=t)) ) {
22229 @<Complain about improper type@>;
22230 } else if ( t==uninitialized_model ) {
22231 if ( cp==diov ) @<Make |cp| a colored object in object list~|p|@>;
22233 @<Transfer a color from the current expression to object~|cp|@>;
22234 mp_flush_cur_exp(mp, 0);
22235 } else if ( t==rgb_model ) {
22236 if ( cp==diov ) @<Make |cp| a colored object in object list~|p|@>;
22238 @<Transfer a rgbcolor from the current expression to object~|cp|@>;
22239 mp_flush_cur_exp(mp, 0);
22240 } else if ( t==cmyk_model ) {
22241 if ( cp==diov ) @<Make |cp| a colored object in object list~|p|@>;
22243 @<Transfer a cmykcolor from the current expression to object~|cp|@>;
22244 mp_flush_cur_exp(mp, 0);
22245 } else if ( t==grey_model ) {
22246 if ( cp==diov ) @<Make |cp| a colored object in object list~|p|@>;
22248 @<Transfer a greyscale from the current expression to object~|cp|@>;
22249 mp_flush_cur_exp(mp, 0);
22250 } else if ( t==no_model ) {
22251 if ( cp==diov ) @<Make |cp| a colored object in object list~|p|@>;
22253 @<Transfer a noncolor from the current expression to object~|cp|@>;
22254 } else if ( t==mp_pen_type ) {
22255 if ( pp==diov ) @<Make |pp| an object in list~|p| that needs a pen@>;
22257 if ( pen_p(pp)!=null ) mp_toss_knot_list(mp, pen_p(pp));
22258 pen_p(pp)=mp->cur_exp; mp->cur_type=mp_vacuous;
22260 } else if ( t==with_pre_script ) {
22263 while ( (ap!=null)&&(! has_color(ap)) )
22266 if ( pre_script(ap)!=null ) { /* build a new,combined string */
22268 old_setting=mp->selector;
22269 mp->selector=new_string;
22270 str_room(length(pre_script(ap))+length(mp->cur_exp)+2);
22271 mp_print_str(mp, mp->cur_exp);
22272 append_char(13); /* a forced \ps\ newline */
22273 mp_print_str(mp, pre_script(ap));
22274 pre_script(ap)=mp_make_string(mp);
22276 mp->selector=old_setting;
22278 pre_script(ap)=mp->cur_exp;
22280 mp->cur_type=mp_vacuous;
22282 } else if ( t==with_post_script ) {
22286 while ( link(k)!=null ) {
22288 if ( has_color(k) ) bp=k;
22291 if ( post_script(bp)!=null ) {
22293 old_setting=mp->selector;
22294 mp->selector=new_string;
22295 str_room(length(post_script(bp))+length(mp->cur_exp)+2);
22296 mp_print_str(mp, post_script(bp));
22297 append_char(13); /* a forced \ps\ newline */
22298 mp_print_str(mp, mp->cur_exp);
22299 post_script(bp)=mp_make_string(mp);
22301 mp->selector=old_setting;
22303 post_script(bp)=mp->cur_exp;
22305 mp->cur_type=mp_vacuous;
22309 @<Make |dp| a stroked node in list~|p|@>;
22311 if ( dash_p(dp)!=null ) delete_edge_ref(dash_p(dp));
22312 dash_p(dp)=mp_make_dashes(mp, mp->cur_exp);
22313 dash_scale(dp)=unity;
22314 mp->cur_type=mp_vacuous;
22318 @<Copy the information from objects |cp|, |pp|, and |dp| into the rest
22322 @ @<Complain about improper type@>=
22323 { exp_err("Improper type");
22325 help2("Next time say `withpen <known pen expression>';")
22326 ("I'll ignore the bad `with' clause and look for another.");
22327 if ( t==with_pre_script )
22328 mp->help_line[1]="Next time say `withprescript <known string expression>';";
22329 else if ( t==with_post_script )
22330 mp->help_line[1]="Next time say `withpostscript <known string expression>';";
22331 else if ( t==mp_picture_type )
22332 mp->help_line[1]="Next time say `dashed <known picture expression>';";
22333 else if ( t==uninitialized_model )
22334 mp->help_line[1]="Next time say `withcolor <known color expression>';";
22335 else if ( t==rgb_model )
22336 mp->help_line[1]="Next time say `withrgbcolor <known color expression>';";
22337 else if ( t==cmyk_model )
22338 mp->help_line[1]="Next time say `withcmykcolor <known cmykcolor expression>';";
22339 else if ( t==grey_model )
22340 mp->help_line[1]="Next time say `withgreyscale <known numeric expression>';";;
22341 mp_put_get_flush_error(mp, 0);
22344 @ Forcing the color to be between |0| and |unity| here guarantees that no
22345 picture will ever contain a color outside the legal range for \ps\ graphics.
22347 @<Transfer a color from the current expression to object~|cp|@>=
22348 { if ( mp->cur_type==mp_color_type )
22349 @<Transfer a rgbcolor from the current expression to object~|cp|@>
22350 else if ( mp->cur_type==mp_cmykcolor_type )
22351 @<Transfer a cmykcolor from the current expression to object~|cp|@>
22352 else if ( mp->cur_type==mp_known )
22353 @<Transfer a greyscale from the current expression to object~|cp|@>
22354 else if ( mp->cur_exp==false_code )
22355 @<Transfer a noncolor from the current expression to object~|cp|@>;
22358 @ @<Transfer a rgbcolor from the current expression to object~|cp|@>=
22359 { q=value(mp->cur_exp);
22364 red_val(cp)=value(red_part_loc(q));
22365 green_val(cp)=value(green_part_loc(q));
22366 blue_val(cp)=value(blue_part_loc(q));
22367 color_model(cp)=rgb_model;
22368 if ( red_val(cp)<0 ) red_val(cp)=0;
22369 if ( green_val(cp)<0 ) green_val(cp)=0;
22370 if ( blue_val(cp)<0 ) blue_val(cp)=0;
22371 if ( red_val(cp)>unity ) red_val(cp)=unity;
22372 if ( green_val(cp)>unity ) green_val(cp)=unity;
22373 if ( blue_val(cp)>unity ) blue_val(cp)=unity;
22376 @ @<Transfer a cmykcolor from the current expression to object~|cp|@>=
22377 { q=value(mp->cur_exp);
22378 cyan_val(cp)=value(cyan_part_loc(q));
22379 magenta_val(cp)=value(magenta_part_loc(q));
22380 yellow_val(cp)=value(yellow_part_loc(q));
22381 black_val(cp)=value(black_part_loc(q));
22382 color_model(cp)=cmyk_model;
22383 if ( cyan_val(cp)<0 ) cyan_val(cp)=0;
22384 if ( magenta_val(cp)<0 ) magenta_val(cp)=0;
22385 if ( yellow_val(cp)<0 ) yellow_val(cp)=0;
22386 if ( black_val(cp)<0 ) black_val(cp)=0;
22387 if ( cyan_val(cp)>unity ) cyan_val(cp)=unity;
22388 if ( magenta_val(cp)>unity ) magenta_val(cp)=unity;
22389 if ( yellow_val(cp)>unity ) yellow_val(cp)=unity;
22390 if ( black_val(cp)>unity ) black_val(cp)=unity;
22393 @ @<Transfer a greyscale from the current expression to object~|cp|@>=
22400 color_model(cp)=grey_model;
22401 if ( grey_val(cp)<0 ) grey_val(cp)=0;
22402 if ( grey_val(cp)>unity ) grey_val(cp)=unity;
22405 @ @<Transfer a noncolor from the current expression to object~|cp|@>=
22412 color_model(cp)=no_model;
22415 @ @<Make |cp| a colored object in object list~|p|@>=
22417 while ( cp!=null ){
22418 if ( has_color(cp) ) break;
22423 @ @<Make |pp| an object in list~|p| that needs a pen@>=
22425 while ( pp!=null ) {
22426 if ( has_pen(pp) ) break;
22431 @ @<Make |dp| a stroked node in list~|p|@>=
22433 while ( dp!=null ) {
22434 if ( type(dp)==stroked_code ) break;
22439 @ @<Copy the information from objects |cp|, |pp|, and |dp| into...@>=
22440 @<Copy |cp|'s color into the colored objects linked to~|cp|@>;
22442 @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>;
22443 if ( dp>diov ) @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>
22445 @ @<Copy |cp|'s color into the colored objects linked to~|cp|@>=
22447 while ( q!=null ) {
22448 if ( has_color(q) ) {
22449 red_val(q)=red_val(cp);
22450 green_val(q)=green_val(cp);
22451 blue_val(q)=blue_val(cp);
22452 black_val(q)=black_val(cp);
22453 color_model(q)=color_model(cp);
22459 @ @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>=
22461 while ( q!=null ) {
22462 if ( has_pen(q) ) {
22463 if ( pen_p(q)!=null ) mp_toss_knot_list(mp, pen_p(q));
22464 pen_p(q)=copy_pen(pen_p(pp));
22470 @ @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>=
22472 while ( q!=null ) {
22473 if ( type(q)==stroked_code ) {
22474 if ( dash_p(q)!=null ) delete_edge_ref(dash_p(q));
22475 dash_p(q)=dash_p(dp);
22476 dash_scale(q)=unity;
22477 if ( dash_p(q)!=null ) add_edge_ref(dash_p(q));
22483 @ One of the things we need to do when we've parsed an \&{addto} or
22484 similar command is find the header of a supposed \&{picture} variable, given
22485 a token list for that variable. Since the edge structure is about to be
22486 updated, we use |private_edges| to make sure that this is possible.
22488 @<Declare action procedures for use by |do_statement|@>=
22489 pointer mp_find_edges_var (MP mp, pointer t) ;
22491 @ @c pointer mp_find_edges_var (MP mp, pointer t) {
22493 pointer cur_edges; /* the return value */
22494 p=mp_find_variable(mp, t); cur_edges=null;
22496 mp_obliterated(mp, t); mp_put_get_error(mp);
22497 } else if ( type(p)!=mp_picture_type ) {
22498 print_err("Variable "); mp_show_token_list(mp, t,null,1000,0);
22499 @.Variable x is the wrong type@>
22500 mp_print(mp, " is the wrong type (");
22501 mp_print_type(mp, type(p)); mp_print_char(mp, ')');
22502 help2("I was looking for a \"known\" picture variable.")
22503 ("So I'll not change anything just now.");
22504 mp_put_get_error(mp);
22506 value(p)=mp_private_edges(mp, value(p));
22507 cur_edges=value(p);
22509 mp_flush_node_list(mp, t);
22513 @ @<Cases of |do_statement|...@>=
22514 case add_to_command: mp_do_add_to(mp); break;
22515 case bounds_command:mp_do_bounds(mp); break;
22518 mp_primitive(mp, "clip",bounds_command,mp_start_clip_code);
22519 @:clip_}{\&{clip} primitive@>
22520 mp_primitive(mp, "setbounds",bounds_command,mp_start_bounds_code);
22521 @:set_bounds_}{\&{setbounds} primitive@>
22523 @ @<Cases of |print_cmd...@>=
22524 case bounds_command:
22525 if ( m==mp_start_clip_code ) mp_print(mp, "clip");
22526 else mp_print(mp, "setbounds");
22529 @ The following function parses the beginning of an \&{addto} or \&{clip}
22530 command: it expects a variable name followed by a token with |cur_cmd=sep|
22531 and then an expression. The function returns the token list for the variable
22532 and stores the command modifier for the separator token in the global variable
22533 |last_add_type|. We must be careful because this variable might get overwritten
22534 any time we call |get_x_next|.
22537 quarterword last_add_type;
22538 /* command modifier that identifies the last \&{addto} command */
22540 @ @<Declare action procedures for use by |do_statement|@>=
22541 pointer mp_start_draw_cmd (MP mp,quarterword sep) ;
22543 @ @c pointer mp_start_draw_cmd (MP mp,quarterword sep) {
22544 pointer lhv; /* variable to add to left */
22545 quarterword add_type=0; /* value to be returned in |last_add_type| */
22547 mp_get_x_next(mp); mp->var_flag=sep; mp_scan_primary(mp);
22548 if ( mp->cur_type!=mp_token_list ) {
22549 @<Abandon edges command because there's no variable@>;
22551 lhv=mp->cur_exp; add_type=mp->cur_mod;
22552 mp->cur_type=mp_vacuous; mp_get_x_next(mp); mp_scan_expression(mp);
22554 mp->last_add_type=add_type;
22558 @ @<Abandon edges command because there's no variable@>=
22559 { exp_err("Not a suitable variable");
22560 @.Not a suitable variable@>
22561 help4("At this point I needed to see the name of a picture variable.")
22562 ("(Or perhaps you have indeed presented me with one; I might")
22563 ("have missed it, if it wasn't followed by the proper token.)")
22564 ("So I'll not change anything just now.");
22565 mp_put_get_flush_error(mp, 0);
22568 @ Here is an example of how to use |start_draw_cmd|.
22570 @<Declare action procedures for use by |do_statement|@>=
22571 void mp_do_bounds (MP mp) ;
22573 @ @c void mp_do_bounds (MP mp) {
22574 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22575 pointer p; /* for list manipulation */
22576 integer m; /* initial value of |cur_mod| */
22578 lhv=mp_start_draw_cmd(mp, to_token);
22580 lhe=mp_find_edges_var(mp, lhv);
22582 mp_flush_cur_exp(mp, 0);
22583 } else if ( mp->cur_type!=mp_path_type ) {
22584 exp_err("Improper `clip'");
22585 @.Improper `addto'@>
22586 help2("This expression should have specified a known path.")
22587 ("So I'll not change anything just now.");
22588 mp_put_get_flush_error(mp, 0);
22589 } else if ( left_type(mp->cur_exp)==endpoint ) {
22590 @<Complain about a non-cycle@>;
22592 @<Make |cur_exp| into a \&{setbounds} or clipping path and add it to |lhe|@>;
22597 @ @<Complain about a non-cycle@>=
22598 { print_err("Not a cycle");
22600 help2("That contour should have ended with `..cycle' or `&cycle'.")
22601 ("So I'll not change anything just now."); mp_put_get_error(mp);
22604 @ @<Make |cur_exp| into a \&{setbounds} or clipping path and add...@>=
22605 { p=mp_new_bounds_node(mp, mp->cur_exp,m);
22606 link(p)=link(dummy_loc(lhe));
22607 link(dummy_loc(lhe))=p;
22608 if ( obj_tail(lhe)==dummy_loc(lhe) ) obj_tail(lhe)=p;
22609 p=mp_get_node(mp, mp->gr_object_size[stop_type(m)]);
22610 type(p)=stop_type(m);
22611 link(obj_tail(lhe))=p;
22613 mp_init_bbox(mp, lhe);
22616 @ The |do_add_to| procedure is a little like |do_clip| but there are a lot more
22617 cases to deal with.
22619 @<Declare action procedures for use by |do_statement|@>=
22620 void mp_do_add_to (MP mp) ;
22622 @ @c void mp_do_add_to (MP mp) {
22623 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22624 pointer p; /* the graphical object or list for |scan_with_list| to update */
22625 pointer e; /* an edge structure to be merged */
22626 quarterword add_type; /* |also_code|, |contour_code|, or |double_path_code| */
22627 lhv=mp_start_draw_cmd(mp, thing_to_add); add_type=mp->last_add_type;
22629 if ( add_type==also_code ) {
22630 @<Make sure the current expression is a suitable picture and set |e| and |p|
22633 @<Create a graphical object |p| based on |add_type| and the current
22636 mp_scan_with_list(mp, p);
22637 @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>;
22641 @ Setting |p:=null| causes the $\langle$with list$\rangle$ to be ignored;
22642 setting |e:=null| prevents anything from being added to |lhe|.
22644 @ @<Make sure the current expression is a suitable picture and set |e|...@>=
22647 if ( mp->cur_type!=mp_picture_type ) {
22648 exp_err("Improper `addto'");
22649 @.Improper `addto'@>
22650 help2("This expression should have specified a known picture.")
22651 ("So I'll not change anything just now."); mp_put_get_flush_error(mp, 0);
22653 e=mp_private_edges(mp, mp->cur_exp); mp->cur_type=mp_vacuous;
22654 p=link(dummy_loc(e));
22658 @ In this case |add_type<>also_code| so setting |p:=null| suppresses future
22659 attempts to add to the edge structure.
22661 @<Create a graphical object |p| based on |add_type| and the current...@>=
22663 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
22664 if ( mp->cur_type!=mp_path_type ) {
22665 exp_err("Improper `addto'");
22666 @.Improper `addto'@>
22667 help2("This expression should have specified a known path.")
22668 ("So I'll not change anything just now.");
22669 mp_put_get_flush_error(mp, 0);
22670 } else if ( add_type==contour_code ) {
22671 if ( left_type(mp->cur_exp)==endpoint ) {
22672 @<Complain about a non-cycle@>;
22674 p=mp_new_fill_node(mp, mp->cur_exp);
22675 mp->cur_type=mp_vacuous;
22678 p=mp_new_stroked_node(mp, mp->cur_exp);
22679 mp->cur_type=mp_vacuous;
22683 @ @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>=
22684 lhe=mp_find_edges_var(mp, lhv);
22686 if ( (e==null)&&(p!=null) ) e=mp_toss_gr_object(mp, p);
22687 if ( e!=null ) delete_edge_ref(e);
22688 } else if ( add_type==also_code ) {
22690 @<Merge |e| into |lhe| and delete |e|@>;
22694 } else if ( p!=null ) {
22695 link(obj_tail(lhe))=p;
22697 if ( add_type==double_path_code )
22698 if ( pen_p(p)==null )
22699 pen_p(p)=mp_get_pen_circle(mp, 0);
22702 @ @<Merge |e| into |lhe| and delete |e|@>=
22703 { if ( link(dummy_loc(e))!=null ) {
22704 link(obj_tail(lhe))=link(dummy_loc(e));
22705 obj_tail(lhe)=obj_tail(e);
22706 obj_tail(e)=dummy_loc(e);
22707 link(dummy_loc(e))=null;
22708 mp_flush_dash_list(mp, lhe);
22710 mp_toss_edges(mp, e);
22713 @ @<Cases of |do_statement|...@>=
22714 case ship_out_command: mp_do_ship_out(mp); break;
22716 @ @<Declare action procedures for use by |do_statement|@>=
22717 @<Declare the function called |tfm_check|@>;
22718 @<Declare the \ps\ output procedures@>;
22719 void mp_do_ship_out (MP mp) ;
22721 @ @c void mp_do_ship_out (MP mp) {
22722 integer c; /* the character code */
22723 mp_get_x_next(mp); mp_scan_expression(mp);
22724 if ( mp->cur_type!=mp_picture_type ) {
22725 @<Complain that it's not a known picture@>;
22727 c=mp_round_unscaled(mp, mp->internal[char_code]) % 256;
22728 if ( c<0 ) c=c+256;
22729 @<Store the width information for character code~|c|@>;
22730 mp_ship_out(mp, mp->cur_exp);
22731 mp_flush_cur_exp(mp, 0);
22735 @ @<Complain that it's not a known picture@>=
22737 exp_err("Not a known picture");
22738 help1("I can only output known pictures.");
22739 mp_put_get_flush_error(mp, 0);
22742 @ The \&{everyjob} command simply assigns a nonzero value to the global variable
22745 @<Cases of |do_statement|...@>=
22746 case every_job_command:
22747 mp_get_symbol(mp); mp->start_sym=mp->cur_sym; mp_get_x_next(mp);
22751 halfword start_sym; /* a symbolic token to insert at beginning of job */
22756 @ Finally, we have only the ``message'' commands remaining.
22759 @d err_message_code 1
22761 @d filename_template_code 3
22762 @d print_with_leading_zeroes(A) g = mp->pool_ptr;
22763 mp_print_int(mp, (A)); g = mp->pool_ptr-g;
22765 mp->pool_ptr = mp->pool_ptr - g;
22767 mp_print_char(mp, '0');
22770 mp_print_int(mp, (A));
22775 mp_primitive(mp, "message",message_command,message_code);
22776 @:message_}{\&{message} primitive@>
22777 mp_primitive(mp, "errmessage",message_command,err_message_code);
22778 @:err_message_}{\&{errmessage} primitive@>
22779 mp_primitive(mp, "errhelp",message_command,err_help_code);
22780 @:err_help_}{\&{errhelp} primitive@>
22781 mp_primitive(mp, "filenametemplate",message_command,filename_template_code);
22782 @:filename_template_}{\&{filenametemplate} primitive@>
22784 @ @<Cases of |print_cmd...@>=
22785 case message_command:
22786 if ( m<err_message_code ) mp_print(mp, "message");
22787 else if ( m==err_message_code ) mp_print(mp, "errmessage");
22788 else if ( m==filename_template_code ) mp_print(mp, "filenametemplate");
22789 else mp_print(mp, "errhelp");
22792 @ @<Cases of |do_statement|...@>=
22793 case message_command: mp_do_message(mp); break;
22795 @ @<Declare action procedures for use by |do_statement|@>=
22796 @<Declare a procedure called |no_string_err|@>;
22797 void mp_do_message (MP mp) ;
22800 @c void mp_do_message (MP mp) {
22801 int m; /* the type of message */
22802 m=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
22803 if ( mp->cur_type!=mp_string_type )
22804 mp_no_string_err(mp, "A message should be a known string expression.");
22808 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp);
22810 case err_message_code:
22811 @<Print string |cur_exp| as an error message@>;
22813 case err_help_code:
22814 @<Save string |cur_exp| as the |err_help|@>;
22816 case filename_template_code:
22817 @<Save the filename template@>;
22819 } /* there are no other cases */
22821 mp_flush_cur_exp(mp, 0);
22824 @ @<Declare a procedure called |no_string_err|@>=
22825 void mp_no_string_err (MP mp,char *s) {
22826 exp_err("Not a string");
22829 mp_put_get_error(mp);
22832 @ The global variable |err_help| is zero when the user has most recently
22833 given an empty help string, or if none has ever been given.
22835 @<Save string |cur_exp| as the |err_help|@>=
22837 if ( mp->err_help!=0 ) delete_str_ref(mp->err_help);
22838 if ( length(mp->cur_exp)==0 ) mp->err_help=0;
22839 else { mp->err_help=mp->cur_exp; add_str_ref(mp->err_help); }
22842 @ If \&{errmessage} occurs often in |mp_scroll_mode|, without user-defined
22843 \&{errhelp}, we don't want to give a long help message each time. So we
22844 give a verbose explanation only once.
22847 boolean long_help_seen; /* has the long \.{\\errmessage} help been used? */
22849 @ @<Set init...@>=mp->long_help_seen=false;
22851 @ @<Print string |cur_exp| as an error message@>=
22853 print_err(""); mp_print_str(mp, mp->cur_exp);
22854 if ( mp->err_help!=0 ) {
22855 mp->use_err_help=true;
22856 } else if ( mp->long_help_seen ) {
22857 help1("(That was another `errmessage'.)") ;
22859 if ( mp->interaction<mp_error_stop_mode ) mp->long_help_seen=true;
22860 help4("This error message was generated by an `errmessage'")
22861 ("command, so I can\'t give any explicit help.")
22862 ("Pretend that you're Miss Marple: Examine all clues,")
22864 ("and deduce the truth by inspired guesses.");
22866 mp_put_get_error(mp); mp->use_err_help=false;
22869 @ @<Cases of |do_statement|...@>=
22870 case write_command: mp_do_write(mp); break;
22872 @ @<Declare action procedures for use by |do_statement|@>=
22873 void mp_do_write (MP mp) ;
22875 @ @c void mp_do_write (MP mp) {
22876 str_number t; /* the line of text to be written */
22877 write_index n,n0; /* for searching |wr_fname| and |wr_file| arrays */
22878 int old_setting; /* for saving |selector| during output */
22880 mp_scan_expression(mp);
22881 if ( mp->cur_type!=mp_string_type ) {
22882 mp_no_string_err(mp, "The text to be written should be a known string expression");
22883 } else if ( mp->cur_cmd!=to_token ) {
22884 print_err("Missing `to' clause");
22885 help1("A write command should end with `to <filename>'");
22886 mp_put_get_error(mp);
22888 t=mp->cur_exp; mp->cur_type=mp_vacuous;
22890 mp_scan_expression(mp);
22891 if ( mp->cur_type!=mp_string_type )
22892 mp_no_string_err(mp, "I can\'t write to that file name. It isn't a known string");
22894 @<Write |t| to the file named by |cur_exp|@>;
22898 mp_flush_cur_exp(mp, 0);
22901 @ @<Write |t| to the file named by |cur_exp|@>=
22903 @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if
22904 |cur_exp| must be inserted@>;
22905 if ( mp_str_vs_str(mp, t,mp->eof_line)==0 ) {
22906 @<Record the end of file on |wr_file[n]|@>;
22908 old_setting=mp->selector;
22909 mp->selector=n+write_file;
22910 mp_print_str(mp, t); mp_print_ln(mp);
22911 mp->selector = old_setting;
22915 @ @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if...@>=
22917 char *fn = str(mp->cur_exp);
22919 n0=mp->write_files;
22920 while (mp_xstrcmp(fn,mp->wr_fname[n])!=0) {
22921 if ( n==0 ) { /* bottom reached */
22922 if ( n0==mp->write_files ) {
22923 if ( mp->write_files<mp->max_write_files ) {
22924 incr(mp->write_files);
22929 l = mp->max_write_files + (mp->max_write_files>>2);
22930 wr_file = xmalloc((l+1),sizeof(FILE *));
22931 wr_fname = xmalloc((l+1),sizeof(char *));
22932 for (k=0;k<=l;k++) {
22933 if (k<=mp->max_write_files) {
22934 wr_file[k]=mp->wr_file[k];
22935 wr_fname[k]=mp->wr_fname[k];
22941 xfree(mp->wr_file); xfree(mp->wr_fname);
22942 mp->max_write_files = l;
22943 mp->wr_file = wr_file;
22944 mp->wr_fname = wr_fname;
22948 mp_open_write_file(mp, fn ,n);
22951 if ( mp->wr_fname[n]==NULL ) n0=n;
22956 @ @<Record the end of file on |wr_file[n]|@>=
22957 { fclose(mp->wr_file[n]);
22958 xfree(mp->wr_fname[n]);
22959 mp->wr_fname[n]=NULL;
22960 if ( n==mp->write_files-1 ) mp->write_files=n;
22964 @* \[42] Writing font metric data.
22965 \TeX\ gets its knowledge about fonts from font metric files, also called
22966 \.{TFM} files; the `\.T' in `\.{TFM}' stands for \TeX,
22967 but other programs know about them too. One of \MP's duties is to
22968 write \.{TFM} files so that the user's fonts can readily be
22969 applied to typesetting.
22970 @:TFM files}{\.{TFM} files@>
22971 @^font metric files@>
22973 The information in a \.{TFM} file appears in a sequence of 8-bit bytes.
22974 Since the number of bytes is always a multiple of~4, we could
22975 also regard the file as a sequence of 32-bit words, but \MP\ uses the
22976 byte interpretation. The format of \.{TFM} files was designed by
22977 Lyle Ramshaw in 1980. The intent is to convey a lot of different kinds
22978 @^Ramshaw, Lyle Harold@>
22979 of information in a compact but useful form.
22982 FILE * tfm_file; /* the font metric output goes here */
22983 char * metric_file_name; /* full name of the font metric file */
22985 @ The first 24 bytes (6 words) of a \.{TFM} file contain twelve 16-bit
22986 integers that give the lengths of the various subsequent portions
22987 of the file. These twelve integers are, in order:
22988 $$\vbox{\halign{\hfil#&$\null=\null$#\hfil\cr
22989 |lf|&length of the entire file, in words;\cr
22990 |lh|&length of the header data, in words;\cr
22991 |bc|&smallest character code in the font;\cr
22992 |ec|&largest character code in the font;\cr
22993 |nw|&number of words in the width table;\cr
22994 |nh|&number of words in the height table;\cr
22995 |nd|&number of words in the depth table;\cr
22996 |ni|&number of words in the italic correction table;\cr
22997 |nl|&number of words in the lig/kern table;\cr
22998 |nk|&number of words in the kern table;\cr
22999 |ne|&number of words in the extensible character table;\cr
23000 |np|&number of font parameter words.\cr}}$$
23001 They are all nonnegative and less than $2^{15}$. We must have |bc-1<=ec<=255|,
23003 $$\hbox{|lf=6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np|.}$$
23004 Note that a font may contain as many as 256 characters (if |bc=0| and |ec=255|),
23005 and as few as 0 characters (if |bc=ec+1|).
23007 Incidentally, when two or more 8-bit bytes are combined to form an integer of
23008 16 or more bits, the most significant bytes appear first in the file.
23009 This is called BigEndian order.
23010 @^BigEndian order@>
23012 @ The rest of the \.{TFM} file may be regarded as a sequence of ten data
23015 The most important data type used here is a |fix_word|, which is
23016 a 32-bit representation of a binary fraction. A |fix_word| is a signed
23017 quantity, with the two's complement of the entire word used to represent
23018 negation. Of the 32 bits in a |fix_word|, exactly 12 are to the left of the
23019 binary point; thus, the largest |fix_word| value is $2048-2^{-20}$, and
23020 the smallest is $-2048$. We will see below, however, that all but two of
23021 the |fix_word| values must lie between $-16$ and $+16$.
23023 @ The first data array is a block of header information, which contains
23024 general facts about the font. The header must contain at least two words,
23025 |header[0]| and |header[1]|, whose meaning is explained below. Additional
23026 header information of use to other software routines might also be
23027 included, and \MP\ will generate it if the \.{headerbyte} command occurs.
23028 For example, 16 more words of header information are in use at the Xerox
23029 Palo Alto Research Center; the first ten specify the character coding
23030 scheme used (e.g., `\.{XEROX TEXT}' or `\.{TEX MATHSY}'), the next five
23031 give the font family name (e.g., `\.{HELVETICA}' or `\.{CMSY}'), and the
23032 last gives the ``face byte.''
23034 \yskip\hang|header[0]| is a 32-bit check sum that \MP\ will copy into
23035 the \.{GF} output file. This helps ensure consistency between files,
23036 since \TeX\ records the check sums from the \.{TFM}'s it reads, and these
23037 should match the check sums on actual fonts that are used. The actual
23038 relation between this check sum and the rest of the \.{TFM} file is not
23039 important; the check sum is simply an identification number with the
23040 property that incompatible fonts almost always have distinct check sums.
23043 \yskip\hang|header[1]| is a |fix_word| containing the design size of the
23044 font, in units of \TeX\ points. This number must be at least 1.0; it is
23045 fairly arbitrary, but usually the design size is 10.0 for a ``10 point''
23046 font, i.e., a font that was designed to look best at a 10-point size,
23047 whatever that really means. When a \TeX\ user asks for a font `\.{at}
23048 $\delta$ \.{pt}', the effect is to override the design size and replace it
23049 by $\delta$, and to multiply the $x$ and~$y$ coordinates of the points in
23050 the font image by a factor of $\delta$ divided by the design size. {\sl
23051 All other dimensions in the\/ \.{TFM} file are |fix_word|\kern-1pt\
23052 numbers in design-size units.} Thus, for example, the value of |param[6]|,
23053 which defines the \.{em} unit, is often the |fix_word| value $2^{20}=1.0$,
23054 since many fonts have a design size equal to one em. The other dimensions
23055 must be less than 16 design-size units in absolute value; thus,
23056 |header[1]| and |param[1]| are the only |fix_word| entries in the whole
23057 \.{TFM} file whose first byte might be something besides 0 or 255.
23059 @ Next comes the |char_info| array, which contains one |char_info_word|
23060 per character. Each word in this part of the file contains six fields
23061 packed into four bytes as follows.
23063 \yskip\hang first byte: |width_index| (8 bits)\par
23064 \hang second byte: |height_index| (4 bits) times 16, plus |depth_index|
23066 \hang third byte: |italic_index| (6 bits) times 4, plus |tag|
23068 \hang fourth byte: |remainder| (8 bits)\par
23070 The actual width of a character is \\{width}|[width_index]|, in design-size
23071 units; this is a device for compressing information, since many characters
23072 have the same width. Since it is quite common for many characters
23073 to have the same height, depth, or italic correction, the \.{TFM} format
23074 imposes a limit of 16 different heights, 16 different depths, and
23075 64 different italic corrections.
23077 Incidentally, the relation $\\{width}[0]=\\{height}[0]=\\{depth}[0]=
23078 \\{italic}[0]=0$ should always hold, so that an index of zero implies a
23079 value of zero. The |width_index| should never be zero unless the
23080 character does not exist in the font, since a character is valid if and
23081 only if it lies between |bc| and |ec| and has a nonzero |width_index|.
23083 @ The |tag| field in a |char_info_word| has four values that explain how to
23084 interpret the |remainder| field.
23086 \yskip\hang|tag=0| (|no_tag|) means that |remainder| is unused.\par
23087 \hang|tag=1| (|lig_tag|) means that this character has a ligature/kerning
23088 program starting at location |remainder| in the |lig_kern| array.\par
23089 \hang|tag=2| (|list_tag|) means that this character is part of a chain of
23090 characters of ascending sizes, and not the largest in the chain. The
23091 |remainder| field gives the character code of the next larger character.\par
23092 \hang|tag=3| (|ext_tag|) means that this character code represents an
23093 extensible character, i.e., a character that is built up of smaller pieces
23094 so that it can be made arbitrarily large. The pieces are specified in
23095 |exten[remainder]|.\par
23097 Characters with |tag=2| and |tag=3| are treated as characters with |tag=0|
23098 unless they are used in special circumstances in math formulas. For example,
23099 \TeX's \.{\\sum} operation looks for a |list_tag|, and the \.{\\left}
23100 operation looks for both |list_tag| and |ext_tag|.
23102 @d no_tag 0 /* vanilla character */
23103 @d lig_tag 1 /* character has a ligature/kerning program */
23104 @d list_tag 2 /* character has a successor in a charlist */
23105 @d ext_tag 3 /* character is extensible */
23107 @ The |lig_kern| array contains instructions in a simple programming language
23108 that explains what to do for special letter pairs. Each word in this array is a
23109 |lig_kern_command| of four bytes.
23111 \yskip\hang first byte: |skip_byte|, indicates that this is the final program
23112 step if the byte is 128 or more, otherwise the next step is obtained by
23113 skipping this number of intervening steps.\par
23114 \hang second byte: |next_char|, ``if |next_char| follows the current character,
23115 then perform the operation and stop, otherwise continue.''\par
23116 \hang third byte: |op_byte|, indicates a ligature step if less than~128,
23117 a kern step otherwise.\par
23118 \hang fourth byte: |remainder|.\par
23121 additional space equal to |kern[256*(op_byte-128)+remainder]| is inserted
23122 between the current character and |next_char|. This amount is
23123 often negative, so that the characters are brought closer together
23124 by kerning; but it might be positive.
23126 There are eight kinds of ligature steps, having |op_byte| codes $4a+2b+c$ where
23127 $0\le a\le b+c$ and $0\le b,c\le1$. The character whose code is
23128 |remainder| is inserted between the current character and |next_char|;
23129 then the current character is deleted if $b=0$, and |next_char| is
23130 deleted if $c=0$; then we pass over $a$~characters to reach the next
23131 current character (which may have a ligature/kerning program of its own).
23133 If the very first instruction of the |lig_kern| array has |skip_byte=255|,
23134 the |next_char| byte is the so-called right boundary character of this font;
23135 the value of |next_char| need not lie between |bc| and~|ec|.
23136 If the very last instruction of the |lig_kern| array has |skip_byte=255|,
23137 there is a special ligature/kerning program for a left boundary character,
23138 beginning at location |256*op_byte+remainder|.
23139 The interpretation is that \TeX\ puts implicit boundary characters
23140 before and after each consecutive string of characters from the same font.
23141 These implicit characters do not appear in the output, but they can affect
23142 ligatures and kerning.
23144 If the very first instruction of a character's |lig_kern| program has
23145 |skip_byte>128|, the program actually begins in location
23146 |256*op_byte+remainder|. This feature allows access to large |lig_kern|
23147 arrays, because the first instruction must otherwise
23148 appear in a location |<=255|.
23150 Any instruction with |skip_byte>128| in the |lig_kern| array must satisfy
23152 $$\hbox{|256*op_byte+remainder<nl|.}$$
23153 If such an instruction is encountered during
23154 normal program execution, it denotes an unconditional halt; no ligature
23155 command is performed.
23158 /* value indicating `\.{STOP}' in a lig/kern program */
23159 @d kern_flag (128) /* op code for a kern step */
23160 @d skip_byte(A) mp->lig_kern[(A)].b0
23161 @d next_char(A) mp->lig_kern[(A)].b1
23162 @d op_byte(A) mp->lig_kern[(A)].b2
23163 @d rem_byte(A) mp->lig_kern[(A)].b3
23165 @ Extensible characters are specified by an |extensible_recipe|, which
23166 consists of four bytes called |top|, |mid|, |bot|, and |rep| (in this
23167 order). These bytes are the character codes of individual pieces used to
23168 build up a large symbol. If |top|, |mid|, or |bot| are zero, they are not
23169 present in the built-up result. For example, an extensible vertical line is
23170 like an extensible bracket, except that the top and bottom pieces are missing.
23172 Let $T$, $M$, $B$, and $R$ denote the respective pieces, or an empty box
23173 if the piece isn't present. Then the extensible characters have the form
23174 $TR^kMR^kB$ from top to bottom, for some |k>=0|, unless $M$ is absent;
23175 in the latter case we can have $TR^kB$ for both even and odd values of~|k|.
23176 The width of the extensible character is the width of $R$; and the
23177 height-plus-depth is the sum of the individual height-plus-depths of the
23178 components used, since the pieces are butted together in a vertical list.
23180 @d ext_top(A) mp->exten[(A)].b0 /* |top| piece in a recipe */
23181 @d ext_mid(A) mp->exten[(A)].b1 /* |mid| piece in a recipe */
23182 @d ext_bot(A) mp->exten[(A)].b2 /* |bot| piece in a recipe */
23183 @d ext_rep(A) mp->exten[(A)].b3 /* |rep| piece in a recipe */
23185 @ The final portion of a \.{TFM} file is the |param| array, which is another
23186 sequence of |fix_word| values.
23188 \yskip\hang|param[1]=slant| is the amount of italic slant, which is used
23189 to help position accents. For example, |slant=.25| means that when you go
23190 up one unit, you also go .25 units to the right. The |slant| is a pure
23191 number; it is the only |fix_word| other than the design size itself that is
23192 not scaled by the design size.
23194 \hang|param[2]=space| is the normal spacing between words in text.
23195 Note that character 040 in the font need not have anything to do with
23198 \hang|param[3]=space_stretch| is the amount of glue stretching between words.
23200 \hang|param[4]=space_shrink| is the amount of glue shrinking between words.
23202 \hang|param[5]=x_height| is the size of one ex in the font; it is also
23203 the height of letters for which accents don't have to be raised or lowered.
23205 \hang|param[6]=quad| is the size of one em in the font.
23207 \hang|param[7]=extra_space| is the amount added to |param[2]| at the
23211 If fewer than seven parameters are present, \TeX\ sets the missing parameters
23216 @d space_stretch_code 3
23217 @d space_shrink_code 4
23220 @d extra_space_code 7
23222 @ So that is what \.{TFM} files hold. One of \MP's duties is to output such
23223 information, and it does this all at once at the end of a job.
23224 In order to prepare for such frenetic activity, it squirrels away the
23225 necessary facts in various arrays as information becomes available.
23227 Character dimensions (\&{charwd}, \&{charht}, \&{chardp}, and \&{charic})
23228 are stored respectively in |tfm_width|, |tfm_height|, |tfm_depth|, and
23229 |tfm_ital_corr|. Other information about a character (e.g., about
23230 its ligatures or successors) is accessible via the |char_tag| and
23231 |char_remainder| arrays. Other information about the font as a whole
23232 is kept in additional arrays called |header_byte|, |lig_kern|,
23233 |kern|, |exten|, and |param|.
23235 @d max_tfm_int 32510
23236 @d undefined_label max_tfm_int /* an undefined local label */
23239 #define TFM_ITEMS 257
23241 eight_bits ec; /* smallest and largest character codes shipped out */
23242 scaled tfm_width[TFM_ITEMS]; /* \&{charwd} values */
23243 scaled tfm_height[TFM_ITEMS]; /* \&{charht} values */
23244 scaled tfm_depth[TFM_ITEMS]; /* \&{chardp} values */
23245 scaled tfm_ital_corr[TFM_ITEMS]; /* \&{charic} values */
23246 boolean char_exists[TFM_ITEMS]; /* has this code been shipped out? */
23247 int char_tag[TFM_ITEMS]; /* |remainder| category */
23248 int char_remainder[TFM_ITEMS]; /* the |remainder| byte */
23249 char *header_byte; /* bytes of the \.{TFM} header */
23250 int header_last; /* last initialized \.{TFM} header byte */
23251 int header_size; /* size of the \.{TFM} header */
23252 four_quarters *lig_kern; /* the ligature/kern table */
23253 short nl; /* the number of ligature/kern steps so far */
23254 scaled *kern; /* distinct kerning amounts */
23255 short nk; /* the number of distinct kerns so far */
23256 four_quarters exten[TFM_ITEMS]; /* extensible character recipes */
23257 short ne; /* the number of extensible characters so far */
23258 scaled *param; /* \&{fontinfo} parameters */
23259 short np; /* the largest \&{fontinfo} parameter specified so far */
23260 short nw;short nh;short nd;short ni; /* sizes of \.{TFM} subtables */
23261 short skip_table[TFM_ITEMS]; /* local label status */
23262 boolean lk_started; /* has there been a lig/kern step in this command yet? */
23263 integer bchar; /* right boundary character */
23264 short bch_label; /* left boundary starting location */
23265 short ll;short lll; /* registers used for lig/kern processing */
23266 short label_loc[257]; /* lig/kern starting addresses */
23267 eight_bits label_char[257]; /* characters for |label_loc| */
23268 short label_ptr; /* highest position occupied in |label_loc| */
23270 @ @<Allocate or initialize ...@>=
23271 mp->header_last = 0; mp->header_size = 128; /* just for init */
23272 mp->header_byte = xmalloc(mp->header_size, sizeof(char));
23273 mp->lig_kern = NULL; /* allocated when needed */
23274 mp->kern = NULL; /* allocated when needed */
23275 mp->param = NULL; /* allocated when needed */
23277 @ @<Dealloc variables@>=
23278 xfree(mp->header_byte);
23279 xfree(mp->lig_kern);
23284 for (k=0;k<= 255;k++ ) {
23285 mp->tfm_width[k]=0; mp->tfm_height[k]=0; mp->tfm_depth[k]=0; mp->tfm_ital_corr[k]=0;
23286 mp->char_exists[k]=false; mp->char_tag[k]=no_tag; mp->char_remainder[k]=0;
23287 mp->skip_table[k]=undefined_label;
23289 memset(mp->header_byte,0,mp->header_size);
23290 mp->bc=255; mp->ec=0; mp->nl=0; mp->nk=0; mp->ne=0; mp->np=0;
23291 mp->internal[boundary_char]=-unity;
23292 mp->bch_label=undefined_label;
23293 mp->label_loc[0]=-1; mp->label_ptr=0;
23295 @ @<Declarations@>=
23296 scaled mp_tfm_check (MP mp,small_number m) ;
23298 @ @<Declare the function called |tfm_check|@>=
23299 scaled mp_tfm_check (MP mp,small_number m) {
23300 if ( abs(mp->internal[m])>=fraction_half ) {
23301 print_err("Enormous "); mp_print(mp, mp->int_name[m]);
23302 @.Enormous charwd...@>
23303 @.Enormous chardp...@>
23304 @.Enormous charht...@>
23305 @.Enormous charic...@>
23306 @.Enormous designsize...@>
23307 mp_print(mp, " has been reduced");
23308 help1("Font metric dimensions must be less than 2048pt.");
23309 mp_put_get_error(mp);
23310 if ( mp->internal[m]>0 ) return (fraction_half-1);
23311 else return (1-fraction_half);
23313 return mp->internal[m];
23317 @ @<Store the width information for character code~|c|@>=
23318 if ( c<mp->bc ) mp->bc=c;
23319 if ( c>mp->ec ) mp->ec=c;
23320 mp->char_exists[c]=true;
23321 mp->tfm_width[c]=mp_tfm_check(mp, char_wd);
23322 mp->tfm_height[c]=mp_tfm_check(mp, char_ht);
23323 mp->tfm_depth[c]=mp_tfm_check(mp, char_dp);
23324 mp->tfm_ital_corr[c]=mp_tfm_check(mp, char_ic)
23326 @ Now let's consider \MP's special \.{TFM}-oriented commands.
23328 @<Cases of |do_statement|...@>=
23329 case tfm_command: mp_do_tfm_command(mp); break;
23331 @ @d char_list_code 0
23332 @d lig_table_code 1
23333 @d extensible_code 2
23334 @d header_byte_code 3
23335 @d font_dimen_code 4
23338 mp_primitive(mp, "charlist",tfm_command,char_list_code);
23339 @:char_list_}{\&{charlist} primitive@>
23340 mp_primitive(mp, "ligtable",tfm_command,lig_table_code);
23341 @:lig_table_}{\&{ligtable} primitive@>
23342 mp_primitive(mp, "extensible",tfm_command,extensible_code);
23343 @:extensible_}{\&{extensible} primitive@>
23344 mp_primitive(mp, "headerbyte",tfm_command,header_byte_code);
23345 @:header_byte_}{\&{headerbyte} primitive@>
23346 mp_primitive(mp, "fontdimen",tfm_command,font_dimen_code);
23347 @:font_dimen_}{\&{fontdimen} primitive@>
23349 @ @<Cases of |print_cmd...@>=
23352 case char_list_code:mp_print(mp, "charlist"); break;
23353 case lig_table_code:mp_print(mp, "ligtable"); break;
23354 case extensible_code:mp_print(mp, "extensible"); break;
23355 case header_byte_code:mp_print(mp, "headerbyte"); break;
23356 default: mp_print(mp, "fontdimen"); break;
23360 @ @<Declare action procedures for use by |do_statement|@>=
23361 eight_bits mp_get_code (MP mp) ;
23363 @ @c eight_bits mp_get_code (MP mp) { /* scans a character code value */
23364 integer c; /* the code value found */
23365 mp_get_x_next(mp); mp_scan_expression(mp);
23366 if ( mp->cur_type==mp_known ) {
23367 c=mp_round_unscaled(mp, mp->cur_exp);
23368 if ( c>=0 ) if ( c<256 ) return c;
23369 } else if ( mp->cur_type==mp_string_type ) {
23370 if ( length(mp->cur_exp)==1 ) {
23371 c=mp->str_pool[mp->str_start[mp->cur_exp]];
23375 exp_err("Invalid code has been replaced by 0");
23376 @.Invalid code...@>
23377 help2("I was looking for a number between 0 and 255, or for a")
23378 ("string of length 1. Didn't find it; will use 0 instead.");
23379 mp_put_get_flush_error(mp, 0); c=0;
23383 @ @<Declare action procedures for use by |do_statement|@>=
23384 void mp_set_tag (MP mp,halfword c, small_number t, halfword r) ;
23386 @ @c void mp_set_tag (MP mp,halfword c, small_number t, halfword r) {
23387 if ( mp->char_tag[c]==no_tag ) {
23388 mp->char_tag[c]=t; mp->char_remainder[c]=r;
23390 incr(mp->label_ptr); mp->label_loc[mp->label_ptr]=r;
23391 mp->label_char[mp->label_ptr]=c;
23394 @<Complain about a character tag conflict@>;
23398 @ @<Complain about a character tag conflict@>=
23400 print_err("Character ");
23401 if ( (c>' ')&&(c<127) ) mp_print_char(mp,c);
23402 else if ( c==256 ) mp_print(mp, "||");
23403 else { mp_print(mp, "code "); mp_print_int(mp, c); };
23404 mp_print(mp, " is already ");
23405 @.Character c is already...@>
23406 switch (mp->char_tag[c]) {
23407 case lig_tag: mp_print(mp, "in a ligtable"); break;
23408 case list_tag: mp_print(mp, "in a charlist"); break;
23409 case ext_tag: mp_print(mp, "extensible"); break;
23410 } /* there are no other cases */
23411 help2("It's not legal to label a character more than once.")
23412 ("So I'll not change anything just now.");
23413 mp_put_get_error(mp);
23416 @ @<Declare action procedures for use by |do_statement|@>=
23417 void mp_do_tfm_command (MP mp) ;
23419 @ @c void mp_do_tfm_command (MP mp) {
23420 int c,cc; /* character codes */
23421 int k; /* index into the |kern| array */
23422 int j; /* index into |header_byte| or |param| */
23423 switch (mp->cur_mod) {
23424 case char_list_code:
23426 /* we will store a list of character successors */
23427 while ( mp->cur_cmd==colon ) {
23428 cc=mp_get_code(mp); mp_set_tag(mp, c,list_tag,cc); c=cc;
23431 case lig_table_code:
23432 if (mp->lig_kern==NULL)
23433 mp->lig_kern = xmalloc((max_tfm_int+1),sizeof(four_quarters));
23434 if (mp->kern==NULL)
23435 mp->kern = xmalloc((max_tfm_int+1),sizeof(scaled));
23436 @<Store a list of ligature/kern steps@>;
23438 case extensible_code:
23439 @<Define an extensible recipe@>;
23441 case header_byte_code:
23442 case font_dimen_code:
23443 c=mp->cur_mod; mp_get_x_next(mp);
23444 mp_scan_expression(mp);
23445 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<half_unit) ) {
23446 exp_err("Improper location");
23447 @.Improper location@>
23448 help2("I was looking for a known, positive number.")
23449 ("For safety's sake I'll ignore the present command.");
23450 mp_put_get_error(mp);
23452 j=mp_round_unscaled(mp, mp->cur_exp);
23453 if ( mp->cur_cmd!=colon ) {
23454 mp_missing_err(mp, ":");
23456 help1("A colon should follow a headerbyte or fontinfo location.");
23459 if ( c==header_byte_code ) {
23460 @<Store a list of header bytes@>;
23462 if (mp->param==NULL)
23463 mp->param = xmalloc((max_tfm_int+1),sizeof(scaled));
23464 @<Store a list of font dimensions@>;
23468 } /* there are no other cases */
23471 @ @<Store a list of ligature/kern steps@>=
23473 mp->lk_started=false;
23476 if ((mp->cur_cmd==skip_to)&& mp->lk_started )
23477 @<Process a |skip_to| command and |goto done|@>;
23478 if ( mp->cur_cmd==bchar_label ) { c=256; mp->cur_cmd=colon; }
23479 else { mp_back_input(mp); c=mp_get_code(mp); };
23480 if ((mp->cur_cmd==colon)||(mp->cur_cmd==double_colon)) {
23481 @<Record a label in a lig/kern subprogram and |goto continue|@>;
23483 if ( mp->cur_cmd==lig_kern_token ) {
23484 @<Compile a ligature/kern command@>;
23486 print_err("Illegal ligtable step");
23487 @.Illegal ligtable step@>
23488 help1("I was looking for `=:' or `kern' here.");
23489 mp_back_error(mp); next_char(mp->nl)=qi(0);
23490 op_byte(mp->nl)=qi(0); rem_byte(mp->nl)=qi(0);
23491 skip_byte(mp->nl)=stop_flag+1; /* this specifies an unconditional stop */
23493 if ( mp->nl==max_tfm_int) mp_fatal_error(mp, "ligtable too large");
23495 if ( mp->cur_cmd==comma ) goto CONTINUE;
23496 if ( skip_byte(mp->nl-1)<stop_flag ) skip_byte(mp->nl-1)=stop_flag;
23501 mp_primitive(mp, "=:",lig_kern_token,0);
23502 @:=:_}{\.{=:} primitive@>
23503 mp_primitive(mp, "=:|",lig_kern_token,1);
23504 @:=:/_}{\.{=:\char'174} primitive@>
23505 mp_primitive(mp, "=:|>",lig_kern_token,5);
23506 @:=:/>_}{\.{=:\char'174>} primitive@>
23507 mp_primitive(mp, "|=:",lig_kern_token,2);
23508 @:=:/_}{\.{\char'174=:} primitive@>
23509 mp_primitive(mp, "|=:>",lig_kern_token,6);
23510 @:=:/>_}{\.{\char'174=:>} primitive@>
23511 mp_primitive(mp, "|=:|",lig_kern_token,3);
23512 @:=:/_}{\.{\char'174=:\char'174} primitive@>
23513 mp_primitive(mp, "|=:|>",lig_kern_token,7);
23514 @:=:/>_}{\.{\char'174=:\char'174>} primitive@>
23515 mp_primitive(mp, "|=:|>>",lig_kern_token,11);
23516 @:=:/>_}{\.{\char'174=:\char'174>>} primitive@>
23517 mp_primitive(mp, "kern",lig_kern_token,128);
23518 @:kern_}{\&{kern} primitive@>
23520 @ @<Cases of |print_cmd...@>=
23521 case lig_kern_token:
23523 case 0:mp_print(mp, "=:"); break;
23524 case 1:mp_print(mp, "=:|"); break;
23525 case 2:mp_print(mp, "|=:"); break;
23526 case 3:mp_print(mp, "|=:|"); break;
23527 case 5:mp_print(mp, "=:|>"); break;
23528 case 6:mp_print(mp, "|=:>"); break;
23529 case 7:mp_print(mp, "|=:|>"); break;
23530 case 11:mp_print(mp, "|=:|>>"); break;
23531 default: mp_print(mp, "kern"); break;
23535 @ Local labels are implemented by maintaining the |skip_table| array,
23536 where |skip_table[c]| is either |undefined_label| or the address of the
23537 most recent lig/kern instruction that skips to local label~|c|. In the
23538 latter case, the |skip_byte| in that instruction will (temporarily)
23539 be zero if there were no prior skips to this label, or it will be the
23540 distance to the prior skip.
23542 We may need to cancel skips that span more than 127 lig/kern steps.
23544 @d cancel_skips(A) mp->ll=(A);
23546 mp->lll=qo(skip_byte(mp->ll));
23547 skip_byte(mp->ll)=stop_flag; mp->ll=mp->ll-mp->lll;
23548 } while (mp->lll!=0)
23549 @d skip_error(A) { print_err("Too far to skip");
23550 @.Too far to skip@>
23551 help1("At most 127 lig/kern steps can separate skipto1 from 1::.");
23552 mp_error(mp); cancel_skips((A));
23555 @<Process a |skip_to| command and |goto done|@>=
23558 if ( mp->nl-mp->skip_table[c]>128 ) { /* |skip_table[c]<<nl<=undefined_label| */
23559 skip_error(mp->skip_table[c]); mp->skip_table[c]=undefined_label;
23561 if ( mp->skip_table[c]==undefined_label ) skip_byte(mp->nl-1)=qi(0);
23562 else skip_byte(mp->nl-1)=qi(mp->nl-mp->skip_table[c]-1);
23563 mp->skip_table[c]=mp->nl-1; goto DONE;
23566 @ @<Record a label in a lig/kern subprogram and |goto continue|@>=
23568 if ( mp->cur_cmd==colon ) {
23569 if ( c==256 ) mp->bch_label=mp->nl;
23570 else mp_set_tag(mp, c,lig_tag,mp->nl);
23571 } else if ( mp->skip_table[c]<undefined_label ) {
23572 mp->ll=mp->skip_table[c]; mp->skip_table[c]=undefined_label;
23574 mp->lll=qo(skip_byte(mp->ll));
23575 if ( mp->nl-mp->ll>128 ) {
23576 skip_error(mp->ll); goto CONTINUE;
23578 skip_byte(mp->ll)=qi(mp->nl-mp->ll-1); mp->ll=mp->ll-mp->lll;
23579 } while (mp->lll!=0);
23584 @ @<Compile a ligature/kern...@>=
23586 next_char(mp->nl)=qi(c); skip_byte(mp->nl)=qi(0);
23587 if ( mp->cur_mod<128 ) { /* ligature op */
23588 op_byte(mp->nl)=qi(mp->cur_mod); rem_byte(mp->nl)=qi(mp_get_code(mp));
23590 mp_get_x_next(mp); mp_scan_expression(mp);
23591 if ( mp->cur_type!=mp_known ) {
23592 exp_err("Improper kern");
23594 help2("The amount of kern should be a known numeric value.")
23595 ("I'm zeroing this one. Proceed, with fingers crossed.");
23596 mp_put_get_flush_error(mp, 0);
23598 mp->kern[mp->nk]=mp->cur_exp;
23600 while ( mp->kern[k]!=mp->cur_exp ) incr(k);
23602 if ( mp->nk==max_tfm_int ) mp_fatal_error(mp, "too many TFM kerns");
23605 op_byte(mp->nl)=kern_flag+(k / 256);
23606 rem_byte(mp->nl)=qi((k % 256));
23608 mp->lk_started=true;
23611 @ @d missing_extensible_punctuation(A)
23612 { mp_missing_err(mp, (A));
23613 @.Missing `\char`\#'@>
23614 help1("I'm processing `extensible c: t,m,b,r'."); mp_back_error(mp);
23617 @<Define an extensible recipe@>=
23619 if ( mp->ne==256 ) mp_fatal_error(mp, "too many extensible recipies");
23620 c=mp_get_code(mp); mp_set_tag(mp, c,ext_tag,mp->ne);
23621 if ( mp->cur_cmd!=colon ) missing_extensible_punctuation(":");
23622 ext_top(mp->ne)=qi(mp_get_code(mp));
23623 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23624 ext_mid(mp->ne)=qi(mp_get_code(mp));
23625 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23626 ext_bot(mp->ne)=qi(mp_get_code(mp));
23627 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23628 ext_rep(mp->ne)=qi(mp_get_code(mp));
23632 @ The header could contain ASCII zeroes, so can't use |strdup|.
23634 @<Store a list of header bytes@>=
23636 if ( j>=mp->header_size ) {
23637 int l = mp->header_size + (mp->header_size >> 2);
23638 char *t = xmalloc(l,sizeof(char));
23640 memcpy(t,mp->header_byte,mp->header_size);
23641 xfree (mp->header_byte);
23642 mp->header_byte = t;
23643 mp->header_size = l;
23645 mp->header_byte[j]=mp_get_code(mp);
23646 incr(j); incr(mp->header_last);
23647 } while (mp->cur_cmd==comma)
23649 @ @<Store a list of font dimensions@>=
23651 if ( j>max_tfm_int ) mp_fatal_error(mp, "too many fontdimens");
23652 while ( j>mp->np ) { incr(mp->np); mp->param[mp->np]=0; };
23653 mp_get_x_next(mp); mp_scan_expression(mp);
23654 if ( mp->cur_type!=mp_known ){
23655 exp_err("Improper font parameter");
23656 @.Improper font parameter@>
23657 help1("I'm zeroing this one. Proceed, with fingers crossed.");
23658 mp_put_get_flush_error(mp, 0);
23660 mp->param[j]=mp->cur_exp; incr(j);
23661 } while (mp->cur_cmd==comma)
23663 @ OK: We've stored all the data that is needed for the \.{TFM} file.
23664 All that remains is to output it in the correct format.
23666 An interesting problem needs to be solved in this connection, because
23667 the \.{TFM} format allows at most 256~widths, 16~heights, 16~depths,
23668 and 64~italic corrections. If the data has more distinct values than
23669 this, we want to meet the necessary restrictions by perturbing the
23670 given values as little as possible.
23672 \MP\ solves this problem in two steps. First the values of a given
23673 kind (widths, heights, depths, or italic corrections) are sorted;
23674 then the list of sorted values is perturbed, if necessary.
23676 The sorting operation is facilitated by having a special node of
23677 essentially infinite |value| at the end of the current list.
23679 @<Initialize table entries...@>=
23680 value(inf_val)=fraction_four;
23682 @ Straight linear insertion is good enough for sorting, since the lists
23683 are usually not terribly long. As we work on the data, the current list
23684 will start at |link(temp_head)| and end at |inf_val|; the nodes in this
23685 list will be in increasing order of their |value| fields.
23687 Given such a list, the |sort_in| function takes a value and returns a pointer
23688 to where that value can be found in the list. The value is inserted in
23689 the proper place, if necessary.
23691 At the time we need to do these operations, most of \MP's work has been
23692 completed, so we will have plenty of memory to play with. The value nodes
23693 that are allocated for sorting will never be returned to free storage.
23695 @d clear_the_list link(temp_head)=inf_val
23697 @c pointer mp_sort_in (MP mp,scaled v) {
23698 pointer p,q,r; /* list manipulation registers */
23702 if ( v<=value(q) ) break;
23705 if ( v<value(q) ) {
23706 r=mp_get_node(mp, value_node_size); value(r)=v; link(r)=q; link(p)=r;
23711 @ Now we come to the interesting part, where we reduce the list if necessary
23712 until it has the required size. The |min_cover| routine is basic to this
23713 process; it computes the minimum number~|m| such that the values of the
23714 current sorted list can be covered by |m|~intervals of width~|d|. It
23715 also sets the global value |perturbation| to the smallest value $d'>d$
23716 such that the covering found by this algorithm would be different.
23718 In particular, |min_cover(0)| returns the number of distinct values in the
23719 current list and sets |perturbation| to the minimum distance between
23722 @c integer mp_min_cover (MP mp,scaled d) {
23723 pointer p; /* runs through the current list */
23724 scaled l; /* the least element covered by the current interval */
23725 integer m; /* lower bound on the size of the minimum cover */
23726 m=0; p=link(temp_head); mp->perturbation=el_gordo;
23727 while ( p!=inf_val ){
23728 incr(m); l=value(p);
23729 do { p=link(p); } while (value(p)<=l+d);
23730 if ( value(p)-l<mp->perturbation )
23731 mp->perturbation=value(p)-l;
23737 scaled perturbation; /* quantity related to \.{TFM} rounding */
23738 integer excess; /* the list is this much too long */
23740 @ The smallest |d| such that a given list can be covered with |m| intervals
23741 is determined by the |threshold| routine, which is sort of an inverse
23742 to |min_cover|. The idea is to increase the interval size rapidly until
23743 finding the range, then to go sequentially until the exact borderline has
23746 @c scaled mp_threshold (MP mp,integer m) {
23747 scaled d; /* lower bound on the smallest interval size */
23748 mp->excess=mp_min_cover(mp, 0)-m;
23749 if ( mp->excess<=0 ) {
23753 d=mp->perturbation;
23754 } while (mp_min_cover(mp, d+d)>m);
23755 while ( mp_min_cover(mp, d)>m )
23756 d=mp->perturbation;
23761 @ The |skimp| procedure reduces the current list to at most |m| entries,
23762 by changing values if necessary. It also sets |info(p):=k| if |value(p)|
23763 is the |k|th distinct value on the resulting list, and it sets
23764 |perturbation| to the maximum amount by which a |value| field has
23765 been changed. The size of the resulting list is returned as the
23768 @c integer mp_skimp (MP mp,integer m) {
23769 scaled d; /* the size of intervals being coalesced */
23770 pointer p,q,r; /* list manipulation registers */
23771 scaled l; /* the least value in the current interval */
23772 scaled v; /* a compromise value */
23773 d=mp_threshold(mp, m); mp->perturbation=0;
23774 q=temp_head; m=0; p=link(temp_head);
23775 while ( p!=inf_val ) {
23776 incr(m); l=value(p); info(p)=m;
23777 if ( value(link(p))<=l+d ) {
23778 @<Replace an interval of values by its midpoint@>;
23785 @ @<Replace an interval...@>=
23788 p=link(p); info(p)=m;
23789 decr(mp->excess); if ( mp->excess==0 ) d=0;
23790 } while (value(link(p))<=l+d);
23791 v=l+halfp(value(p)-l);
23792 if ( value(p)-v>mp->perturbation )
23793 mp->perturbation=value(p)-v;
23796 r=link(r); value(r)=v;
23798 link(q)=p; /* remove duplicate values from the current list */
23801 @ A warning message is issued whenever something is perturbed by
23802 more than 1/16\thinspace pt.
23804 @c void mp_tfm_warning (MP mp,small_number m) {
23805 mp_print_nl(mp, "(some ");
23806 mp_print(mp, mp->int_name[m]);
23807 @.some charwds...@>
23808 @.some chardps...@>
23809 @.some charhts...@>
23810 @.some charics...@>
23811 mp_print(mp, " values had to be adjusted by as much as ");
23812 mp_print_scaled(mp, mp->perturbation); mp_print(mp, "pt)");
23815 @ Here's an example of how we use these routines.
23816 The width data needs to be perturbed only if there are 256 distinct
23817 widths, but \MP\ must check for this case even though it is
23820 An integer variable |k| will be defined when we use this code.
23821 The |dimen_head| array will contain pointers to the sorted
23822 lists of dimensions.
23824 @<Massage the \.{TFM} widths@>=
23826 for (k=mp->bc;k<=mp->ec;k++) {
23827 if ( mp->char_exists[k] )
23828 mp->tfm_width[k]=mp_sort_in(mp, mp->tfm_width[k]);
23830 mp->nw=mp_skimp(mp, 255)+1; mp->dimen_head[1]=link(temp_head);
23831 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, char_wd)
23834 pointer dimen_head[5]; /* lists of \.{TFM} dimensions */
23836 @ Heights, depths, and italic corrections are different from widths
23837 not only because their list length is more severely restricted, but
23838 also because zero values do not need to be put into the lists.
23840 @<Massage the \.{TFM} heights, depths, and italic corrections@>=
23842 for (k=mp->bc;k<=mp->ec;k++) {
23843 if ( mp->char_exists[k] ) {
23844 if ( mp->tfm_height[k]==0 ) mp->tfm_height[k]=zero_val;
23845 else mp->tfm_height[k]=mp_sort_in(mp, mp->tfm_height[k]);
23848 mp->nh=mp_skimp(mp, 15)+1; mp->dimen_head[2]=link(temp_head);
23849 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, char_ht);
23851 for (k=mp->bc;k<=mp->ec;k++) {
23852 if ( mp->char_exists[k] ) {
23853 if ( mp->tfm_depth[k]==0 ) mp->tfm_depth[k]=zero_val;
23854 else mp->tfm_depth[k]=mp_sort_in(mp, mp->tfm_depth[k]);
23857 mp->nd=mp_skimp(mp, 15)+1; mp->dimen_head[3]=link(temp_head);
23858 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, char_dp);
23860 for (k=mp->bc;k<=mp->ec;k++) {
23861 if ( mp->char_exists[k] ) {
23862 if ( mp->tfm_ital_corr[k]==0 ) mp->tfm_ital_corr[k]=zero_val;
23863 else mp->tfm_ital_corr[k]=mp_sort_in(mp, mp->tfm_ital_corr[k]);
23866 mp->ni=mp_skimp(mp, 63)+1; mp->dimen_head[4]=link(temp_head);
23867 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, char_ic)
23869 @ @<Initialize table entries...@>=
23870 value(zero_val)=0; info(zero_val)=0;
23872 @ Bytes 5--8 of the header are set to the design size, unless the user has
23873 some crazy reason for specifying them differently.
23875 Error messages are not allowed at the time this procedure is called,
23876 so a warning is printed instead.
23878 The value of |max_tfm_dimen| is calculated so that
23879 $$\hbox{|make_scaled(16*max_tfm_dimen,internal[design_size])|}
23880 < \\{three\_bytes}.$$
23882 @d three_bytes 0100000000 /* $2^{24}$ */
23885 void mp_fix_design_size (MP mp) {
23886 scaled d; /* the design size */
23887 d=mp->internal[design_size];
23888 if ( (d<unity)||(d>=fraction_half) ) {
23890 mp_print_nl(mp, "(illegal design size has been changed to 128pt)");
23891 @.illegal design size...@>
23892 d=040000000; mp->internal[design_size]=d;
23894 if ( mp->header_byte[4]<0 ) if ( mp->header_byte[5]<0 )
23895 if ( mp->header_byte[6]<0 ) if ( mp->header_byte[7]<0 ) {
23896 mp->header_byte[4]=d / 04000000;
23897 mp->header_byte[5]=(d / 4096) % 256;
23898 mp->header_byte[6]=(d / 16) % 256;
23899 mp->header_byte[7]=(d % 16)*16;
23901 mp->max_tfm_dimen=16*mp->internal[design_size]-mp->internal[design_size] / 010000000;
23902 if ( mp->max_tfm_dimen>=fraction_half ) mp->max_tfm_dimen=fraction_half-1;
23905 @ The |dimen_out| procedure computes a |fix_word| relative to the
23906 design size. If the data was out of range, it is corrected and the
23907 global variable |tfm_changed| is increased by~one.
23909 @c integer mp_dimen_out (MP mp,scaled x) {
23910 if ( abs(x)>mp->max_tfm_dimen ) {
23911 incr(mp->tfm_changed);
23912 if ( x>0 ) x=three_bytes-1; else x=1-three_bytes;
23914 x=mp_make_scaled(mp, x*16,mp->internal[design_size]);
23920 scaled max_tfm_dimen; /* bound on widths, heights, kerns, etc. */
23921 integer tfm_changed; /* the number of data entries that were out of bounds */
23923 @ If the user has not specified any of the first four header bytes,
23924 the |fix_check_sum| procedure replaces them by a ``check sum'' computed
23925 from the |tfm_width| data relative to the design size.
23928 @c void mp_fix_check_sum (MP mp) {
23929 eight_bits k; /* runs through character codes */
23930 eight_bits B1,B2,B3,B4; /* bytes of the check sum */
23931 integer x; /* hash value used in check sum computation */
23932 if ( mp->header_byte[0]==0 && mp->header_byte[1]==0 &&
23933 mp->header_byte[2]==0 && mp->header_byte[3]==0 ) {
23934 @<Compute a check sum in |(b1,b2,b3,b4)|@>;
23935 mp->header_byte[0]=B1; mp->header_byte[1]=B2;
23936 mp->header_byte[2]=B3; mp->header_byte[3]=B4;
23941 @ @<Compute a check sum in |(b1,b2,b3,b4)|@>=
23942 B1=mp->bc; B2=mp->ec; B3=mp->bc; B4=mp->ec; mp->tfm_changed=0;
23943 for (k=mp->bc;k<=mp->ec;k++) {
23944 if ( mp->char_exists[k] ) {
23945 x=mp_dimen_out(mp, value(mp->tfm_width[k]))+(k+4)*020000000; /* this is positive */
23946 B1=(B1+B1+x) % 255;
23947 B2=(B2+B2+x) % 253;
23948 B3=(B3+B3+x) % 251;
23949 B4=(B4+B4+x) % 247;
23953 @ Finally we're ready to actually write the \.{TFM} information.
23954 Here are some utility routines for this purpose.
23956 @d tfm_out(A) fputc((A),mp->tfm_file) /* output one byte to |tfm_file| */
23958 @c void mp_tfm_two (MP mp,integer x) { /* output two bytes to |tfm_file| */
23959 tfm_out(x / 256); tfm_out(x % 256);
23961 void mp_tfm_four (MP mp,integer x) { /* output four bytes to |tfm_file| */
23962 if ( x>=0 ) tfm_out(x / three_bytes);
23964 x=x+010000000000; /* use two's complement for negative values */
23966 tfm_out((x / three_bytes) + 128);
23968 x=x % three_bytes; tfm_out(x / unity);
23969 x=x % unity; tfm_out(x / 0400);
23972 void mp_tfm_qqqq (MP mp,four_quarters x) { /* output four quarterwords to |tfm_file| */
23973 tfm_out(qo(x.b0)); tfm_out(qo(x.b1));
23974 tfm_out(qo(x.b2)); tfm_out(qo(x.b3));
23977 @ @<Finish the \.{TFM} file@>=
23978 if ( mp->job_name==NULL ) mp_open_log_file(mp);
23979 mp_pack_job_name(mp, ".tfm");
23980 while ( ! mp_b_open_out(mp, &mp->tfm_file, mp_filetype_metrics) )
23981 mp_prompt_file_name(mp, "file name for font metrics",".tfm");
23982 mp->metric_file_name=xstrdup(mp->name_of_file);
23983 @<Output the subfile sizes and header bytes@>;
23984 @<Output the character information bytes, then
23985 output the dimensions themselves@>;
23986 @<Output the ligature/kern program@>;
23987 @<Output the extensible character recipes and the font metric parameters@>;
23988 if ( mp->internal[tracing_stats]>0 )
23989 @<Log the subfile sizes of the \.{TFM} file@>;
23990 mp_print_nl(mp, "Font metrics written on ");
23991 mp_print(mp, mp->metric_file_name); mp_print_char(mp, '.');
23992 @.Font metrics written...@>
23993 fclose(mp->tfm_file)
23995 @ Integer variables |lh|, |k|, and |lk_offset| will be defined when we use
23998 @<Output the subfile sizes and header bytes@>=
24000 LH=(k+3) / 4; /* this is the number of header words */
24001 if ( mp->bc>mp->ec ) mp->bc=1; /* if there are no characters, |ec=0| and |bc=1| */
24002 @<Compute the ligature/kern program offset and implant the
24003 left boundary label@>;
24004 mp_tfm_two(mp,6+LH+(mp->ec-mp->bc+1)+mp->nw+mp->nh+mp->nd+mp->ni+mp->nl
24005 +lk_offset+mp->nk+mp->ne+mp->np);
24006 /* this is the total number of file words that will be output */
24007 mp_tfm_two(mp, LH); mp_tfm_two(mp, mp->bc); mp_tfm_two(mp, mp->ec);
24008 mp_tfm_two(mp, mp->nw); mp_tfm_two(mp, mp->nh);
24009 mp_tfm_two(mp, mp->nd); mp_tfm_two(mp, mp->ni); mp_tfm_two(mp, mp->nl+lk_offset);
24010 mp_tfm_two(mp, mp->nk); mp_tfm_two(mp, mp->ne);
24011 mp_tfm_two(mp, mp->np);
24012 for (k=0;k< 4*LH;k++) {
24013 tfm_out(mp->header_byte[k]);
24016 @ @<Output the character information bytes...@>=
24017 for (k=mp->bc;k<=mp->ec;k++) {
24018 if ( ! mp->char_exists[k] ) {
24019 mp_tfm_four(mp, 0);
24021 tfm_out(info(mp->tfm_width[k])); /* the width index */
24022 tfm_out((info(mp->tfm_height[k]))*16+info(mp->tfm_depth[k]));
24023 tfm_out((info(mp->tfm_ital_corr[k]))*4+mp->char_tag[k]);
24024 tfm_out(mp->char_remainder[k]);
24028 for (k=1;k<=4;k++) {
24029 mp_tfm_four(mp, 0); p=mp->dimen_head[k];
24030 while ( p!=inf_val ) {
24031 mp_tfm_four(mp, mp_dimen_out(mp, value(p))); p=link(p);
24036 @ We need to output special instructions at the beginning of the
24037 |lig_kern| array in order to specify the right boundary character
24038 and/or to handle starting addresses that exceed 255. The |label_loc|
24039 and |label_char| arrays have been set up to record all the
24040 starting addresses; we have $-1=|label_loc|[0]<|label_loc|[1]\le\cdots
24041 \le|label_loc|[|label_ptr]|$.
24043 @<Compute the ligature/kern program offset...@>=
24044 mp->bchar=mp_round_unscaled(mp, mp->internal[boundary_char]);
24045 if ((mp->bchar<0)||(mp->bchar>255))
24046 { mp->bchar=-1; mp->lk_started=false; lk_offset=0; }
24047 else { mp->lk_started=true; lk_offset=1; };
24048 @<Find the minimum |lk_offset| and adjust all remainders@>;
24049 if ( mp->bch_label<undefined_label )
24050 { skip_byte(mp->nl)=qi(255); next_char(mp->nl)=qi(0);
24051 op_byte(mp->nl)=qi(((mp->bch_label+lk_offset)/ 256));
24052 rem_byte(mp->nl)=qi(((mp->bch_label+lk_offset)% 256));
24053 incr(mp->nl); /* possibly |nl=lig_table_size+1| */
24056 @ @<Find the minimum |lk_offset|...@>=
24057 k=mp->label_ptr; /* pointer to the largest unallocated label */
24058 if ( mp->label_loc[k]+lk_offset>255 ) {
24059 lk_offset=0; mp->lk_started=false; /* location 0 can do double duty */
24061 mp->char_remainder[mp->label_char[k]]=lk_offset;
24062 while ( mp->label_loc[k-1]==mp->label_loc[k] ) {
24063 decr(k); mp->char_remainder[mp->label_char[k]]=lk_offset;
24065 incr(lk_offset); decr(k);
24066 } while (! (lk_offset+mp->label_loc[k]<256));
24067 /* N.B.: |lk_offset=256| satisfies this when |k=0| */
24069 if ( lk_offset>0 ) {
24071 mp->char_remainder[mp->label_char[k]]
24072 =mp->char_remainder[mp->label_char[k]]+lk_offset;
24077 @ @<Output the ligature/kern program@>=
24078 for (k=0;k<= 255;k++ ) {
24079 if ( mp->skip_table[k]<undefined_label ) {
24080 mp_print_nl(mp, "(local label "); mp_print_int(mp, k); mp_print(mp, ":: was missing)");
24081 @.local label l:: was missing@>
24082 cancel_skips(mp->skip_table[k]);
24085 if ( mp->lk_started ) { /* |lk_offset=1| for the special |bchar| */
24086 tfm_out(255); tfm_out(mp->bchar); mp_tfm_two(mp, 0);
24088 for (k=1;k<=lk_offset;k++) {/* output the redirection specs */
24089 mp->ll=mp->label_loc[mp->label_ptr];
24090 if ( mp->bchar<0 ) { tfm_out(254); tfm_out(0); }
24091 else { tfm_out(255); tfm_out(mp->bchar); };
24092 mp_tfm_two(mp, mp->ll+lk_offset);
24094 decr(mp->label_ptr);
24095 } while (! (mp->label_loc[mp->label_ptr]<mp->ll));
24098 for (k=0;k<=mp->nl-1;k++) mp_tfm_qqqq(mp, mp->lig_kern[k]);
24099 for (k=0;k<=mp->nk-1;k++) mp_tfm_four(mp, mp_dimen_out(mp, mp->kern[k]))
24101 @ @<Output the extensible character recipes...@>=
24102 for (k=0;k<=mp->ne-1;k++)
24103 mp_tfm_qqqq(mp, mp->exten[k]);
24104 for (k=1;k<=mp->np;k++) {
24106 if ( abs(mp->param[1])<fraction_half ) {
24107 mp_tfm_four(mp, mp->param[1]*16);
24109 incr(mp->tfm_changed);
24110 if ( mp->param[1]>0 ) mp_tfm_four(mp, el_gordo);
24111 else mp_tfm_four(mp, -el_gordo);
24114 mp_tfm_four(mp, mp_dimen_out(mp, mp->param[k]));
24117 if ( mp->tfm_changed>0 ) {
24118 if ( mp->tfm_changed==1 ) mp_print_nl(mp, "(a font metric dimension");
24119 @.a font metric dimension...@>
24121 mp_print_nl(mp, "("); mp_print_int(mp, mp->tfm_changed);
24122 @.font metric dimensions...@>
24123 mp_print(mp, " font metric dimensions");
24125 mp_print(mp, " had to be decreased)");
24128 @ @<Log the subfile sizes of the \.{TFM} file@>=
24132 if ( mp->bch_label<undefined_label ) decr(mp->nl);
24133 snprintf(s,128,"(You used %iw,%ih,%id,%ii,%il,%ik,%ie,%ip metric file positions)",
24134 mp->nw, mp->nh, mp->nd, mp->ni, mp->nl, mp->nk, mp->ne,mp->np);
24138 @* \[43] Reading font metric data.
24140 \MP\ isn't a typesetting program but it does need to find the bounding box
24141 of a sequence of typeset characters. Thus it needs to read \.{TFM} files as
24142 well as write them.
24147 @ All the width, height, and depth information is stored in an array called
24148 |font_info|. This array is allocated sequentially and each font is stored
24149 as a series of |char_info| words followed by the width, height, and depth
24150 tables. Since |font_name| entries are permanent, their |str_ref| values are
24151 set to |max_str_ref|.
24154 typedef unsigned int font_number; /* |0..font_max| */
24156 @ The |font_info| array is indexed via a group directory arrays.
24157 For example, the |char_info| data for character~|c| in font~|f| will be
24158 in |font_info[char_base[f]+c].qqqq|.
24161 font_number font_max; /* maximum font number for included text fonts */
24162 size_t font_mem_size; /* number of words for \.{TFM} information for text fonts */
24163 memory_word *font_info; /* height, width, and depth data */
24164 char **font_enc_name; /* encoding names, if any */
24165 boolean *font_ps_name_fixed; /* are the postscript names fixed already? */
24166 int next_fmem; /* next unused entry in |font_info| */
24167 font_number last_fnum; /* last font number used so far */
24168 scaled *font_dsize; /* 16 times the ``design'' size in \ps\ points */
24169 char **font_name; /* name as specified in the \&{infont} command */
24170 char **font_ps_name; /* PostScript name for use when |internal[prologues]>0| */
24171 font_number last_ps_fnum; /* last valid |font_ps_name| index */
24172 eight_bits *font_bc;
24173 eight_bits *font_ec; /* first and last character code */
24174 int *char_base; /* base address for |char_info| */
24175 int *width_base; /* index for zeroth character width */
24176 int *height_base; /* index for zeroth character height */
24177 int *depth_base; /* index for zeroth character depth */
24178 pointer *font_sizes;
24180 @ @<Allocate or initialize ...@>=
24181 mp->font_mem_size = 10000;
24182 mp->font_info = xmalloc ((mp->font_mem_size+1),sizeof(memory_word));
24183 memset (mp->font_info,0,sizeof(memory_word)*(mp->font_mem_size+1));
24184 mp->font_enc_name = NULL;
24185 mp->font_ps_name_fixed = NULL;
24186 mp->font_dsize = NULL;
24187 mp->font_name = NULL;
24188 mp->font_ps_name = NULL;
24189 mp->font_bc = NULL;
24190 mp->font_ec = NULL;
24191 mp->last_fnum = null_font;
24192 mp->char_base = NULL;
24193 mp->width_base = NULL;
24194 mp->height_base = NULL;
24195 mp->depth_base = NULL;
24196 mp->font_sizes = null;
24198 @ @<Dealloc variables@>=
24199 xfree(mp->font_info);
24200 xfree(mp->font_enc_name);
24201 xfree(mp->font_ps_name_fixed);
24202 xfree(mp->font_dsize);
24203 xfree(mp->font_name);
24204 xfree(mp->font_ps_name);
24205 xfree(mp->font_bc);
24206 xfree(mp->font_ec);
24207 xfree(mp->char_base);
24208 xfree(mp->width_base);
24209 xfree(mp->height_base);
24210 xfree(mp->depth_base);
24211 xfree(mp->font_sizes);
24215 void mp_reallocate_fonts (MP mp, font_number l) {
24217 XREALLOC(mp->font_enc_name, (l+1), char *);
24218 XREALLOC(mp->font_ps_name_fixed, (l+1), boolean);
24219 XREALLOC(mp->font_dsize, (l+1), scaled);
24220 XREALLOC(mp->font_name, (l+1), char *);
24221 XREALLOC(mp->font_ps_name, (l+1), char *);
24222 XREALLOC(mp->font_bc, (l+1), eight_bits);
24223 XREALLOC(mp->font_ec, (l+1), eight_bits);
24224 XREALLOC(mp->char_base, (l+1), int);
24225 XREALLOC(mp->width_base, (l+1), int);
24226 XREALLOC(mp->height_base, (l+1), int);
24227 XREALLOC(mp->depth_base, (l+1), int);
24228 XREALLOC(mp->font_sizes, (l+1), pointer);
24229 for (f=(mp->last_fnum+1);f<=l;f++) {
24230 mp->font_enc_name[f]=NULL;
24231 mp->font_ps_name_fixed[f] = false;
24232 mp->font_name[f]=NULL;
24233 mp->font_ps_name[f]=NULL;
24234 mp->font_sizes[f]=null;
24239 @ @<Declare |mp_reallocate| functions@>=
24240 void mp_reallocate_fonts (MP mp, font_number l);
24243 @ A |null_font| containing no characters is useful for error recovery. Its
24244 |font_name| entry starts out empty but is reset each time an erroneous font is
24245 found. This helps to cut down on the number of duplicate error messages without
24246 wasting a lot of space.
24248 @d null_font 0 /* the |font_number| for an empty font */
24250 @<Set initial...@>=
24251 mp->font_dsize[null_font]=0;
24252 mp->font_bc[null_font]=1;
24253 mp->font_ec[null_font]=0;
24254 mp->char_base[null_font]=0;
24255 mp->width_base[null_font]=0;
24256 mp->height_base[null_font]=0;
24257 mp->depth_base[null_font]=0;
24259 mp->last_fnum=null_font;
24260 mp->last_ps_fnum=null_font;
24261 mp->font_name[null_font]="nullfont";
24262 mp->font_ps_name[null_font]="";
24264 @ Each |char_info| word is of type |four_quarters|. The |b0| field contains
24265 the |width index|; the |b1| field contains the height
24266 index; the |b2| fields contains the depth index, and the |b3| field used only
24267 for temporary storage. (It is used to keep track of which characters occur in
24268 an edge structure that is being shipped out.)
24269 The corresponding words in the width, height, and depth tables are stored as
24270 |scaled| values in units of \ps\ points.
24272 With the macros below, the |char_info| word for character~|c| in font~|f| is
24273 |char_info(f)(c)| and the width is
24274 $$\hbox{|char_width(f)(char_info(f)(c)).sc|.}$$
24276 @d char_info_end(A) (A)].qqqq
24277 @d char_info(A) mp->font_info[mp->char_base[(A)]+char_info_end
24278 @d char_width_end(A) (A).b0].sc
24279 @d char_width(A) mp->font_info[mp->width_base[(A)]+char_width_end
24280 @d char_height_end(A) (A).b1].sc
24281 @d char_height(A) mp->font_info[mp->height_base[(A)]+char_height_end
24282 @d char_depth_end(A) (A).b2].sc
24283 @d char_depth(A) mp->font_info[mp->depth_base[(A)]+char_depth_end
24284 @d ichar_exists(A) ((A).b0>0)
24286 @ The |font_ps_name| for a built-in font should be what PostScript expects.
24287 A preliminary name is obtained here from the \.{TFM} name as given in the
24288 |fname| argument. This gets updated later from an external table if necessary.
24290 @<Declare text measuring subroutines@>=
24291 @<Declare subroutines for parsing file names@>;
24292 font_number mp_read_font_info (MP mp, char*fname) {
24293 boolean file_opened; /* has |tfm_infile| been opened? */
24294 font_number n; /* the number to return */
24295 halfword lf,tfm_lh,bc,ec,nw,nh,nd; /* subfile size parameters */
24296 size_t whd_size; /* words needed for heights, widths, and depths */
24297 int i,ii; /* |font_info| indices */
24298 int jj; /* counts bytes to be ignored */
24299 scaled z; /* used to compute the design size */
24301 /* height, width, or depth as a fraction of design size times $2^{-8}$ */
24302 eight_bits h_and_d; /* height and depth indices being unpacked */
24303 int tfbyte; /* a byte read from the file */
24305 @<Open |tfm_infile| for input@>;
24306 @<Read data from |tfm_infile|; if there is no room, say so and |goto done|;
24307 otherwise |goto bad_tfm| or |goto done| as appropriate@>;
24309 @<Complain that the \.{TFM} file is bad@>;
24311 if ( file_opened ) fclose(mp->tfm_infile);
24312 if ( n!=null_font ) {
24313 mp->font_ps_name[n]=fname;
24314 mp->font_name[n]=fname;
24319 @ \MP\ doesn't bother to check the entire \.{TFM} file for errors or explain
24320 precisely what is wrong if it does find a problem. Programs called \.{TFtoPL}
24321 @.TFtoPL@> @.PLtoTF@>
24322 and \.{PLtoTF} can be used to debug \.{TFM} files.
24324 @<Complain that the \.{TFM} file is bad@>=
24325 print_err("Font ");
24326 mp_print(mp, fname);
24327 if ( file_opened ) mp_print(mp, " not usable: TFM file is bad");
24328 else mp_print(mp, " not usable: TFM file not found");
24329 help3("I wasn't able to read the size data for this font so this")
24330 ("`infont' operation won't produce anything. If the font name")
24331 ("is right, you might ask an expert to make a TFM file");
24333 mp->help_line[0]="is right, try asking an expert to fix the TFM file";
24336 @ @<Read data from |tfm_infile|; if there is no room, say so...@>=
24337 @<Read the \.{TFM} size fields@>;
24338 @<Use the size fields to allocate space in |font_info|@>;
24339 @<Read the \.{TFM} header@>;
24340 @<Read the character data and the width, height, and depth tables and
24343 @ A bad \.{TFM} file can be shorter than it claims to be. The code given here
24344 might try to read past the end of the file if this happens. Changes will be
24345 needed if it causes a system error to refer to |tfm_infile^| or call
24346 |get_tfm_infile| when |eof(tfm_infile)| is true. For example, the definition
24347 @^system dependencies@>
24348 of |tfget| could be changed to
24349 ``|begin get(tfm_infile); if eof(tfm_infile) then goto bad_tfm; end|.''
24351 @d tfget {tfbyte = fgetc(mp->tfm_infile); }
24352 @d read_two(A) { (A)=tfbyte;
24353 if ( (A)>127 ) goto BAD_TFM;
24354 tfget; (A)=(A)*0400+tfbyte;
24356 @d tf_ignore(A) { for (jj=(A);jj>=1;jj--) tfget; }
24358 @<Read the \.{TFM} size fields@>=
24359 tfget; read_two(lf);
24360 tfget; read_two(tfm_lh);
24361 tfget; read_two(bc);
24362 tfget; read_two(ec);
24363 if ( (bc>1+ec)||(ec>255) ) goto BAD_TFM;
24364 tfget; read_two(nw);
24365 tfget; read_two(nh);
24366 tfget; read_two(nd);
24367 whd_size=(ec+1-bc)+nw+nh+nd;
24368 if ( lf<(int)(6+tfm_lh+whd_size) ) goto BAD_TFM;
24371 @ Offsets are added to |char_base[n]| and |width_base[n]| so that is not
24372 necessary to apply the |so| and |qo| macros when looking up the width of a
24373 character in the string pool. In order to ensure nonnegative |char_base|
24374 values when |bc>0|, it may be necessary to reserve a few unused |font_info|
24377 @<Use the size fields to allocate space in |font_info|@>=
24378 if ( mp->next_fmem<bc) mp->next_fmem=bc; /* ensure nonnegative |char_base| */
24379 if (mp->last_fnum==mp->font_max)
24380 mp_reallocate_fonts(mp,(mp->font_max+(mp->font_max>>2)));
24381 while (mp->next_fmem+whd_size>=mp->font_mem_size) {
24382 size_t l = mp->font_mem_size+(mp->font_mem_size>>2);
24383 memory_word *font_info;
24384 font_info = xmalloc ((l+1),sizeof(memory_word));
24385 memset (font_info,0,sizeof(memory_word)*(l+1));
24386 memcpy (font_info,mp->font_info,sizeof(memory_word)*(mp->font_mem_size+1));
24387 xfree(mp->font_info);
24388 mp->font_info = font_info;
24389 mp->font_mem_size = l;
24391 incr(mp->last_fnum);
24395 mp->char_base[n]=mp->next_fmem-bc;
24396 mp->width_base[n]=mp->next_fmem+ec-bc+1;
24397 mp->height_base[n]=mp->width_base[n]+nw;
24398 mp->depth_base[n]=mp->height_base[n]+nh;
24399 mp->next_fmem=mp->next_fmem+whd_size;
24402 @ @<Read the \.{TFM} header@>=
24403 if ( tfm_lh<2 ) goto BAD_TFM;
24405 tfget; read_two(z);
24406 tfget; z=z*0400+tfbyte;
24407 tfget; z=z*0400+tfbyte; /* now |z| is 16 times the design size */
24408 mp->font_dsize[n]=mp_take_fraction(mp, z,267432584);
24409 /* times ${72\over72.27}2^{28}$ to convert from \TeX\ points */
24410 tf_ignore(4*(tfm_lh-2))
24412 @ @<Read the character data and the width, height, and depth tables...@>=
24413 ii=mp->width_base[n];
24414 i=mp->char_base[n]+bc;
24416 tfget; mp->font_info[i].qqqq.b0=qi(tfbyte);
24417 tfget; h_and_d=tfbyte;
24418 mp->font_info[i].qqqq.b1=h_and_d / 16;
24419 mp->font_info[i].qqqq.b2=h_and_d % 16;
24423 while ( i<mp->next_fmem ) {
24424 @<Read a four byte dimension, scale it by the design size, store it in
24425 |font_info[i]|, and increment |i|@>;
24427 if (feof(mp->tfm_infile) ) goto BAD_TFM;
24430 @ The raw dimension read into |d| should have magnitude at most $2^{24}$ when
24431 interpreted as an integer, and this includes a scale factor of $2^{20}$. Thus
24432 we can multiply it by sixteen and think of it as a |fraction| that has been
24433 divided by sixteen. This cancels the extra scale factor contained in
24436 @<Read a four byte dimension, scale it by the design size, store it in...@>=
24439 if ( d>=0200 ) d=d-0400;
24440 tfget; d=d*0400+tfbyte;
24441 tfget; d=d*0400+tfbyte;
24442 tfget; d=d*0400+tfbyte;
24443 mp->font_info[i].sc=mp_take_fraction(mp, d*16,mp->font_dsize[n]);
24447 @ This function does no longer use the file name parser, because |fname| is
24448 a C string already.
24449 @<Open |tfm_infile| for input@>=
24451 mp_ptr_scan_file(mp, fname);
24452 if ( strlen(mp->cur_area)==0 ) mp->cur_area=xstrdup(MP_font_area);
24453 if ( strlen(mp->cur_ext)==0 ) mp->cur_ext=xstrdup(".tfm");
24454 mp->tfm_infile = mp_open_file(mp, fname, "rb",mp_filetype_metrics);
24455 if ( !mp->tfm_infile ) goto BAD_TFM;
24458 @ When we have a font name and we don't know whether it has been loaded yet,
24459 we scan the |font_name| array before calling |read_font_info|.
24461 @<Declare text measuring subroutines@>=
24462 font_number mp_find_font (MP mp, char *f) {
24464 for (n=0;n<=mp->last_fnum;n++) {
24465 if (mp_xstrcmp(f,mp->font_name[n])==0 )
24468 return mp_read_font_info(mp, f);
24471 @ One simple application of |find_font| is the implementation of the |font_size|
24472 operator that gets the design size for a given font name.
24474 @<Find the design size of the font whose name is |cur_exp|@>=
24475 mp_flush_cur_exp(mp, (mp->font_dsize[mp_find_font(mp, str(mp->cur_exp))]+8) / 16)
24477 @ If we discover that the font doesn't have a requested character, we omit it
24478 from the bounding box computation and expect the \ps\ interpreter to drop it.
24479 This routine issues a warning message if the user has asked for it.
24481 @<Declare text measuring subroutines@>=
24482 void mp_lost_warning (MP mp,font_number f, pool_pointer k) {
24483 if ( mp->internal[tracing_lost_chars]>0 ) {
24484 mp_begin_diagnostic(mp);
24485 if ( mp->selector==log_only ) incr(mp->selector);
24486 mp_print_nl(mp, "Missing character: There is no ");
24487 @.Missing character@>
24488 mp_print_str(mp, mp->str_pool[k]);
24489 mp_print(mp, " in font ");
24490 mp_print(mp, mp->font_name[f]); mp_print_char(mp, '!');
24491 mp_end_diagnostic(mp, false);
24495 @ The whole purpose of saving the height, width, and depth information is to be
24496 able to find the bounding box of an item of text in an edge structure. The
24497 |set_text_box| procedure takes a text node and adds this information.
24499 @<Declare text measuring subroutines@>=
24500 void mp_set_text_box (MP mp,pointer p) {
24501 font_number f; /* |font_n(p)| */
24502 ASCII_code bc,ec; /* range of valid characters for font |f| */
24503 pool_pointer k,kk; /* current character and character to stop at */
24504 four_quarters cc; /* the |char_info| for the current character */
24505 scaled h,d; /* dimensions of the current character */
24507 height_val(p)=-el_gordo;
24508 depth_val(p)=-el_gordo;
24512 kk=str_stop(text_p(p));
24513 k=mp->str_start[text_p(p)];
24515 @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>;
24517 @<Set the height and depth to zero if the bounding box is empty@>;
24520 @ @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>=
24522 if ( (mp->str_pool[k]<bc)||(mp->str_pool[k]>ec) ) {
24523 mp_lost_warning(mp, f,k);
24525 cc=char_info(f)(mp->str_pool[k]);
24526 if ( ! ichar_exists(cc) ) {
24527 mp_lost_warning(mp, f,k);
24529 width_val(p)=width_val(p)+char_width(f)(cc);
24530 h=char_height(f)(cc);
24531 d=char_depth(f)(cc);
24532 if ( h>height_val(p) ) height_val(p)=h;
24533 if ( d>depth_val(p) ) depth_val(p)=d;
24539 @ Let's hope modern compilers do comparisons correctly when the difference would
24542 @<Set the height and depth to zero if the bounding box is empty@>=
24543 if ( height_val(p)<-depth_val(p) ) {
24548 @ The new primitives fontmapfile and fontmapline.
24550 @<Declare action procedures for use by |do_statement|@>=
24551 void mp_do_mapfile (MP mp) ;
24552 void mp_do_mapline (MP mp) ;
24554 @ @c void mp_do_mapfile (MP mp) {
24555 mp_get_x_next(mp); mp_scan_expression(mp);
24556 if ( mp->cur_type!=mp_string_type ) {
24557 @<Complain about improper map operation@>;
24559 mp_map_file(mp,mp->cur_exp);
24562 void mp_do_mapline (MP mp) {
24563 mp_get_x_next(mp); mp_scan_expression(mp);
24564 if ( mp->cur_type!=mp_string_type ) {
24565 @<Complain about improper map operation@>;
24567 mp_map_line(mp,mp->cur_exp);
24571 @ @<Complain about improper map operation@>=
24573 exp_err("Unsuitable expression");
24574 help1("Only known strings can be map files or map lines.");
24575 mp_put_get_error(mp);
24579 @<Declare the \ps\ output procedures@>=
24580 void mp_ps_print_cmd (MP mp, char *l, char *s) {
24581 if ( mp->internal[mpprocset]>0 ) { ps_room(strlen(s)); mp_print(mp,s); }
24582 else { ps_room(strlen(l)); mp_print(mp, l); };
24584 void mp_print_cmd (MP mp,char *l, char *s) {
24585 if ( mp->internal[mpprocset]>0 ) mp_print(mp, s);
24586 else mp_print(mp, l);
24589 @ To print |scaled| value to PDF output we need some subroutines to ensure
24592 @d max_integer 0x7FFFFFFF /* $2^{31}-1$ */
24595 scaled one_bp; /* scaled value corresponds to 1bp */
24596 scaled one_hundred_bp; /* scaled value corresponds to 100bp */
24597 scaled one_hundred_inch; /* scaled value corresponds to 100in */
24598 integer ten_pow[10]; /* $10^0..10^9$ */
24599 integer scaled_out; /* amount of |scaled| that was taken out in |divide_scaled| */
24602 mp->one_bp = 65782; /* 65781.76 */
24603 mp->one_hundred_bp = 6578176;
24604 mp->one_hundred_inch = 473628672;
24605 mp->ten_pow[0] = 1;
24606 for (i = 1;i<= 9; i++ ) {
24607 mp->ten_pow[i] = 10*mp->ten_pow[i - 1];
24610 @ The following function divides |s| by |m|. |dd| is number of decimal digits.
24612 @c scaled mp_divide_scaled (MP mp,scaled s, scaled m, integer dd) {
24616 if ( s < 0 ) { sign = -sign; s = -s; }
24617 if ( m < 0 ) { sign = -sign; m = -m; }
24619 mp_confusion(mp, "arithmetic: divided by zero");
24620 else if ( m >= (max_integer / 10) )
24621 mp_confusion(mp, "arithmetic: number too big");
24624 for (i = 1;i<=dd;i++) {
24625 q = 10*q + (10*r) / m;
24628 if ( 2*r >= m ) { incr(q); r = r - m; }
24629 mp->scaled_out = sign*(s - (r / mp->ten_pow[dd]));
24633 @* \[44] Shipping pictures out.
24634 The |ship_out| procedure, to be described below, is given a pointer to
24635 an edge structure. Its mission is to output a file containing the \ps\
24636 description of an edge structure.
24638 @ Each time an edge structure is shipped out we write a new \ps\ output
24639 file named according to the current \&{charcode}.
24640 @:char_code_}{\&{charcode} primitive@>
24642 @<Declare the \ps\ output procedures@>=
24643 void mp_open_output_file (MP mp) ;
24645 @ @c void mp_open_output_file (MP mp) {
24646 integer c; /* \&{charcode} rounded to the nearest integer */
24647 int old_setting; /* previous |selector| setting */
24648 pool_pointer i; /* indexes into |filename_template| */
24649 integer cc; /* a temporary integer for template building */
24650 integer f,g=0; /* field widths */
24651 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24652 c=mp_round_unscaled(mp, mp->internal[char_code]);
24653 if ( mp->filename_template==0 ) {
24654 char *s; /* a file extension derived from |c| */
24658 @<Use |c| to compute the file extension |s|@>;
24659 mp_pack_job_name(mp, s);
24661 while ( ! mp_a_open_out(mp, &mp->ps_file, mp_filetype_postscript) )
24662 mp_prompt_file_name(mp, "file name for output",s);
24663 } else { /* initializations */
24664 str_number s, n; /* a file extension derived from |c| */
24665 old_setting=mp->selector;
24666 mp->selector=new_string;
24668 i = mp->str_start[mp->filename_template];
24669 n = rts(""); /* initialize */
24670 while ( i<str_stop(mp->filename_template) ) {
24671 if ( mp->str_pool[i]=='%' ) {
24674 if ( i<str_stop(mp->filename_template) ) {
24675 if ( mp->str_pool[i]=='j' ) {
24676 mp_print(mp, mp->job_name);
24677 } else if ( mp->str_pool[i]=='d' ) {
24678 cc= mp_round_unscaled(mp, mp->internal[day]);
24679 print_with_leading_zeroes(cc);
24680 } else if ( mp->str_pool[i]=='m' ) {
24681 cc= mp_round_unscaled(mp, mp->internal[month]);
24682 print_with_leading_zeroes(cc);
24683 } else if ( mp->str_pool[i]=='y' ) {
24684 cc= mp_round_unscaled(mp, mp->internal[year]);
24685 print_with_leading_zeroes(cc);
24686 } else if ( mp->str_pool[i]=='H' ) {
24687 cc= mp_round_unscaled(mp, mp->internal[mp_time]) / 60;
24688 print_with_leading_zeroes(cc);
24689 } else if ( mp->str_pool[i]=='M' ) {
24690 cc= mp_round_unscaled(mp, mp->internal[mp_time]) % 60;
24691 print_with_leading_zeroes(cc);
24692 } else if ( mp->str_pool[i]=='c' ) {
24693 if ( c<0 ) mp_print(mp, "ps");
24694 else print_with_leading_zeroes(c);
24695 } else if ( (mp->str_pool[i]>='0') &&
24696 (mp->str_pool[i]<='9') ) {
24698 f = (f*10) + mp->str_pool[i]-'0';
24701 mp_print_str(mp, mp->str_pool[i]);
24705 if ( mp->str_pool[i]=='.' )
24707 n = mp_make_string(mp);
24708 mp_print_str(mp, mp->str_pool[i]);
24712 s = mp_make_string(mp);
24713 mp->selector= old_setting;
24714 if (length(n)==0) {
24718 mp_pack_file_name(mp, str(n),"",str(s));
24719 while ( ! mp_a_open_out(mp, &mp->ps_file, mp_filetype_postscript) )
24720 mp_prompt_file_name(mp, "file name for output",str(s));
24724 @<Store the true output file name if appropriate@>;
24725 @<Begin the progress report for the output of picture~|c|@>;
24728 @ The file extension created here could be up to five characters long in
24729 extreme cases so it may have to be shortened on some systems.
24730 @^system dependencies@>
24732 @<Use |c| to compute the file extension |s|@>=
24735 snprintf(s,7,".%i",(int)c);
24738 @ The user won't want to see all the output file names so we only save the
24739 first and last ones and a count of how many there were. For this purpose
24740 files are ordered primarily by \&{charcode} and secondarily by order of
24742 @:char_code_}{\&{charcode} primitive@>
24744 @<Store the true output file name if appropriate@>=
24745 if ((c<mp->first_output_code)&&(mp->first_output_code>=0)) {
24746 mp->first_output_code=c;
24747 xfree(mp->first_file_name);
24748 mp->first_file_name=xstrdup(mp->name_of_file);
24750 if ( c>=mp->last_output_code ) {
24751 mp->last_output_code=c;
24752 xfree(mp->last_file_name);
24753 mp->last_file_name=xstrdup(mp->name_of_file);
24757 char * first_file_name;
24758 char * last_file_name; /* full file names */
24759 integer first_output_code;integer last_output_code; /* rounded \&{charcode} values */
24760 @:char_code_}{\&{charcode} primitive@>
24761 integer total_shipped; /* total number of |ship_out| operations completed */
24764 mp->first_file_name=xstrdup("");
24765 mp->last_file_name=xstrdup("");
24766 mp->first_output_code=32768;
24767 mp->last_output_code=-32768;
24768 mp->total_shipped=0;
24770 @ @<Dealloc variables@>=
24771 xfree(mp->first_file_name);
24772 xfree(mp->last_file_name);
24774 @ @<Begin the progress report for the output of picture~|c|@>=
24775 if ( (int)mp->term_offset>mp->max_print_line-6 ) mp_print_ln(mp);
24776 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
24777 mp_print_char(mp, '[');
24778 if ( c>=0 ) mp_print_int(mp, c)
24780 @ @<End progress report@>=
24781 mp_print_char(mp, ']');
24783 incr(mp->total_shipped)
24785 @ @<Explain what output files were written@>=
24786 if ( mp->total_shipped>0 ) {
24787 mp_print_nl(mp, "");
24788 mp_print_int(mp, mp->total_shipped);
24789 mp_print(mp, " output file");
24790 if ( mp->total_shipped>1 ) mp_print_char(mp, 's');
24791 mp_print(mp, " written: ");
24792 mp_print(mp, mp->first_file_name);
24793 if ( mp->total_shipped>1 ) {
24794 if ( 31+strlen(mp->first_file_name)+
24795 strlen(mp->last_file_name)> (unsigned)mp->max_print_line)
24797 mp_print(mp, " .. ");
24798 mp_print(mp, mp->last_file_name);
24802 @ We often need to print a pair of coordinates.
24804 @d ps_room(A) if ( (mp->ps_offset+(int)(A))>mp->max_print_line )
24805 mp_print_ln(mp) /* optional line break */
24807 @<Declare the \ps\ output procedures@>=
24808 void mp_ps_pair_out (MP mp,scaled x, scaled y) {
24810 mp_print_scaled(mp, x); mp_print_char(mp, ' ');
24811 mp_print_scaled(mp, y); mp_print_char(mp, ' ');
24814 @ @<Declare the \ps\ output procedures@>=
24815 void mp_ps_print (MP mp,char *s) {
24816 ps_room(strlen(s));
24821 void mp_ps_print (MP mp,char *s) ;
24824 @ The most important output procedure is the one that gives the \ps\ version of
24827 @<Declare the \ps\ output procedures@>=
24828 void mp_ps_path_out (MP mp,pointer h) {
24829 pointer p,q; /* for scanning the path */
24830 scaled d; /* a temporary value */
24831 boolean curved; /* |true| unless the cubic is almost straight */
24833 if ( mp->need_newpath )
24834 mp_print_cmd(mp, "newpath ","n ");
24835 mp->need_newpath=true;
24836 mp_ps_pair_out(mp, x_coord(h),y_coord(h));
24837 mp_print_cmd(mp, "moveto","m");
24840 if ( right_type(p)==endpoint ) {
24841 if ( p==h ) mp_ps_print_cmd(mp, " 0 0 rlineto"," 0 0 r");
24845 @<Start a new line and print the \ps\ commands for the curve from
24849 mp_ps_print_cmd(mp, " closepath"," p");
24853 boolean need_newpath;
24854 /* will |ps_path_out| need to issue a \&{newpath} command next time */
24855 @:newpath_}{\&{newpath} command@>
24857 @ @<Start a new line and print the \ps\ commands for the curve from...@>=
24859 @<Set |curved:=false| if the cubic from |p| to |q| is almost straight@>;
24862 mp_ps_pair_out(mp, right_x(p),right_y(p));
24863 mp_ps_pair_out(mp, left_x(q),left_y(q));
24864 mp_ps_pair_out(mp, x_coord(q),y_coord(q));
24865 mp_ps_print_cmd(mp, "curveto","c");
24866 } else if ( q!=h ){
24867 mp_ps_pair_out(mp, x_coord(q),y_coord(q));
24868 mp_ps_print_cmd(mp, "lineto","l");
24871 @ Two types of straight lines come up often in \MP\ paths:
24872 cubics with zero initial and final velocity as created by |make_path| or
24873 |make_envelope|, and cubics with control points uniformly spaced on a line
24874 as created by |make_choices|.
24876 @d bend_tolerance 131 /* allow rounding error of $2\cdot10^{-3}$ */
24878 @<Set |curved:=false| if the cubic from |p| to |q| is almost straight@>=
24879 if ( right_x(p)==x_coord(p) )
24880 if ( right_y(p)==y_coord(p) )
24881 if ( left_x(q)==x_coord(q) )
24882 if ( left_y(q)==y_coord(q) ) curved=false;
24883 d=left_x(q)-right_x(p);
24884 if ( abs(right_x(p)-x_coord(p)-d)<=bend_tolerance )
24885 if ( abs(x_coord(q)-left_x(q)-d)<=bend_tolerance )
24886 { d=left_y(q)-right_y(p);
24887 if ( abs(right_y(p)-y_coord(p)-d)<=bend_tolerance )
24888 if ( abs(y_coord(q)-left_y(q)-d)<=bend_tolerance ) curved=false;
24891 @ We need to keep track of several parameters from the \ps\ graphics state.
24893 This allows us to be sure that \ps\ has the correct values when they are
24894 needed without wasting time and space setting them unnecessarily.
24897 @d gs_red mp->mem[mp->gs_state+1].sc
24898 @d gs_green mp->mem[mp->gs_state+2].sc
24899 @d gs_blue mp->mem[mp->gs_state+3].sc
24900 @d gs_black mp->mem[mp->gs_state+4].sc
24901 /* color from the last \&{setcmykcolor} or \&{setrgbcolor} or \&{setgray} command */
24902 @d gs_colormodel mp->mem[mp->gs_state+5].qqqq.b0
24903 /* the current colormodel */
24904 @d gs_ljoin mp->mem[mp->gs_state+5].qqqq.b1
24905 @d gs_lcap mp->mem[mp->gs_state+5].qqqq.b2
24906 /* values from the last \&{setlinejoin} and \&{setlinecap} commands */
24907 @d gs_adj_wx mp->mem[mp->gs_state+5].qqqq.b3
24908 /* what resolution-dependent adjustment applies to the width */
24909 @d gs_miterlim mp->mem[mp->gs_state+6].sc
24910 /* the value from the last \&{setmiterlimit} command */
24911 @d gs_dash_p mp->mem[mp->gs_state+7].hh.lh
24912 /* edge structure for last \&{setdash} command */
24913 @d gs_previous mp->mem[mp->gs_state+7].hh.rh
24914 /* backlink to the previous |gs_state| structure */
24915 @d gs_dash_sc mp->mem[mp->gs_state+8].sc
24916 /* scale factor used with |gs_dash_p| */
24917 @d gs_width mp->mem[mp->gs_state+9].sc
24918 /* width setting or $-1$ if no \&{setlinewidth} command so far */
24926 @ To avoid making undue assumptions about the initial graphics state, these
24927 parameters are given special values that are guaranteed not to match anything
24928 in the edge structure being shipped out. On the other hand, the initial color
24929 should be black so that the translation of an all-black picture will have no
24930 \&{setcolor} commands. (These would be undesirable in a font application.)
24931 Hence we use |c=0| when initializing the graphics state and we use |c<0|
24932 to recover from a situation where we have lost track of the graphics state.
24934 @<Declare the \ps\ output procedures@>=
24935 void mp_unknown_graphics_state (MP mp,scaled c) ;
24937 @ @c void mp_unknown_graphics_state (MP mp,scaled c) {
24938 pointer p; /* to shift graphic states around */
24939 quarterword k; /* a loop index for copying the |gs_state| */
24940 if ( (c==0)||(c==-1) ) {
24941 if ( mp->gs_state==null ) {
24942 mp->gs_state = mp_get_node(mp, gs_node_size);
24945 while ( gs_previous!=null ) {
24947 mp_free_node(mp, mp->gs_state,gs_node_size);
24951 gs_red=c; gs_green=c; gs_blue=c; gs_black=c;
24952 gs_colormodel=uninitialized_model;
24959 } else if ( c==1 ) {
24961 mp->gs_state = mp_get_node(mp, gs_node_size);
24962 for (k=1;k<=gs_node_size-1;k++)
24963 mp->mem[mp->gs_state+k]=mp->mem[p+k];
24965 } else if ( c==2 ) {
24967 mp_free_node(mp, mp->gs_state,gs_node_size);
24972 @ When it is time to output a graphical object, |fix_graphics_state| ensures
24973 that \ps's idea of the graphics state agrees with what is stored in the object.
24975 @<Declare the \ps\ output procedures@>=
24976 @<Declare subroutines needed by |fix_graphics_state|@>;
24977 void mp_fix_graphics_state (MP mp, pointer p) ;
24980 void mp_fix_graphics_state (MP mp, pointer p) {
24981 /* get ready to output graphical object |p| */
24982 pointer hh,pp; /* for list manipulation */
24983 scaled wx,wy,ww; /* dimensions of pen bounding box */
24984 boolean adj_wx; /* whether pixel rounding should be based on |wx| or |wy| */
24985 integer tx,ty; /* temporaries for computing |adj_wx| */
24986 scaled scf; /* a scale factor for the dash pattern */
24987 if ( has_color(p) )
24988 @<Make sure \ps\ will use the right color for object~|p|@>;
24989 if ( (type(p)==fill_code)||(type(p)==stroked_code) )
24990 if ( pen_p(p)!=null )
24991 if ( pen_is_elliptical(pen_p(p)) ) {
24992 @<Generate \ps\ code that sets the stroke width to the
24993 appropriate rounded value@>;
24994 @<Make sure \ps\ will use the right dash pattern for |dash_p(p)|@>;
24995 @<Decide whether the line cap parameter matters and set it if necessary@>;
24996 @<Set the other numeric parameters as needed for object~|p|@>;
24998 if ( mp->ps_offset>0 ) mp_print_ln(mp);
25001 @ @<Decide whether the line cap parameter matters and set it if necessary@>=
25002 if ( type(p)==stroked_code )
25003 if ( (left_type(path_p(p))==endpoint)||(dash_p(p)!=null) )
25004 if ( gs_lcap!=lcap_val(p) ) {
25006 mp_print_char(mp, ' ');
25007 mp_print_char(mp, '0'+lcap_val(p));
25008 mp_print_cmd(mp, " setlinecap"," lc");
25009 gs_lcap=lcap_val(p);
25012 @ @<Set the other numeric parameters as needed for object~|p|@>=
25013 if ( gs_ljoin!=ljoin_val(p) ) {
25015 mp_print_char(mp, ' ');
25016 mp_print_char(mp, '0'+ljoin_val(p)); mp_print_cmd(mp, " setlinejoin"," lj");
25017 gs_ljoin=ljoin_val(p);
25019 if ( gs_miterlim!=miterlim_val(p) ) {
25021 mp_print_char(mp, ' ');
25022 mp_print_scaled(mp, miterlim_val(p)); mp_print_cmd(mp, " setmiterlimit"," ml");
25023 gs_miterlim=miterlim_val(p);
25026 @ @<Make sure \ps\ will use the right color for object~|p|@>=
25028 if ( (color_model(p)==rgb_model)||
25029 ((color_model(p)==uninitialized_model)&&
25030 ((mp->internal[default_color_model] / unity)==rgb_model)) ) {
25031 if ( (gs_colormodel!=rgb_model)||(gs_red!=red_val(p))||
25032 (gs_green!=green_val(p))||(gs_blue!=blue_val(p)) ) {
25034 gs_green=green_val(p);
25035 gs_blue=blue_val(p);
25037 gs_colormodel=rgb_model;
25039 mp_print_char(mp, ' ');
25040 mp_print_scaled(mp, gs_red); mp_print_char(mp, ' ');
25041 mp_print_scaled(mp, gs_green); mp_print_char(mp, ' ');
25042 mp_print_scaled(mp, gs_blue);
25043 mp_print_cmd(mp, " setrgbcolor", " R");
25046 } else if ( (color_model(p)==cmyk_model)||
25047 ((color_model(p)==uninitialized_model)&&
25048 ((mp->internal[default_color_model] / unity)==cmyk_model)) ) {
25049 if ( (gs_red!=cyan_val(p))||(gs_green!=magenta_val(p))||
25050 (gs_blue!=yellow_val(p))||(gs_black!=black_val(p))||
25051 (gs_colormodel!=cmyk_model) ) {
25052 if ( color_model(p)==uninitialized_model ) {
25058 gs_red=cyan_val(p);
25059 gs_green=magenta_val(p);
25060 gs_blue=yellow_val(p);
25061 gs_black=black_val(p);
25063 gs_colormodel=cmyk_model;
25065 mp_print_char(mp, ' ');
25066 mp_print_scaled(mp, gs_red); mp_print_char(mp, ' ');
25067 mp_print_scaled(mp, gs_green); mp_print_char(mp, ' ');
25068 mp_print_scaled(mp, gs_blue); mp_print_char(mp, ' ');
25069 mp_print_scaled(mp, gs_black);
25070 mp_print_cmd(mp, " setcmykcolor"," C");
25073 } else if ( (color_model(p)==grey_model)||
25074 ((color_model(p)==uninitialized_model)&&
25075 ((mp->internal[default_color_model] / unity)==grey_model)) ) {
25076 if ( (gs_red!=grey_val(p))||(gs_colormodel!=grey_model) ) {
25077 gs_red = grey_val(p);
25081 gs_colormodel=grey_model;
25083 mp_print_char(mp, ' ');
25084 mp_print_scaled(mp, gs_red);
25085 mp_print_cmd(mp, " setgray"," G");
25089 if ( color_model(p)==no_model )
25090 gs_colormodel=no_model;
25093 @ In order to get consistent widths for horizontal and vertical pen strokes, we
25094 want \ps\ to use an integer number of pixels for the \&{setwidth} parameter.
25095 @:setwidth}{\&{setwidth}command@>
25096 We set |gs_width| to the ideal horizontal or vertical stroke width and then
25097 generate \ps\ code that computes the rounded value. For non-circular pens, the
25098 pen shape will be rescaled so that horizontal or vertical parts of the stroke
25099 have the computed width.
25101 Rounding the width to whole pixels is not likely to improve the appearance of
25102 diagonal or curved strokes, but we do it anyway for consistency. The
25103 \&{truncate} command generated here tends to make all the strokes a little
25104 @:truncate}{\&{truncate} command@>
25105 thinner, but this is appropriate for \ps's scan-conversion rules. Even with
25106 truncation, an ideal with of $w$~pixels gets mapped into $\lfloor w\rfloor+1$.
25107 It would be better to have $\lceil w\rceil$ but that is ridiculously expensive
25110 @<Generate \ps\ code that sets the stroke width...@>=
25111 @<Set |wx| and |wy| to the width and height of the bounding box for
25113 @<Use |pen_p(p)| and |path_p(p)| to decide whether |wx| or |wy| is more
25114 important and set |adj_wx| and |ww| accordingly@>;
25115 if ( (ww!=gs_width) || (adj_wx!=gs_adj_wx) ) {
25118 mp_print_char(mp, ' '); mp_print_scaled(mp, ww);
25119 mp_ps_print_cmd(mp,
25120 " 0 dtransform exch truncate exch idtransform pop setlinewidth"," hlw");
25122 if ( mp->internal[mpprocset]>0 ) {
25124 mp_print_char(mp, ' ');
25125 mp_print_scaled(mp, ww);
25126 mp_ps_print(mp, " vlw");
25129 mp_print(mp, " 0 "); mp_print_scaled(mp, ww);
25130 mp_ps_print(mp, " dtransform truncate idtransform setlinewidth pop");
25134 gs_adj_wx = adj_wx;
25137 @ @<Set |wx| and |wy| to the width and height of the bounding box for...@>=
25139 if ( (right_x(pp)==x_coord(pp)) && (left_y(pp)==y_coord(pp)) ) {
25140 wx = abs(left_x(pp) - x_coord(pp));
25141 wy = abs(right_y(pp) - y_coord(pp));
25143 wx = mp_pyth_add(mp, left_x(pp)-x_coord(pp), right_x(pp)-x_coord(pp));
25144 wy = mp_pyth_add(mp, left_y(pp)-y_coord(pp), right_y(pp)-y_coord(pp));
25147 @ The path is considered ``essentially horizontal'' if its range of
25148 $y$~coordinates is less than the $y$~range |wy| for the pen. ``Essentially
25149 vertical'' paths are detected similarly. This code ensures that no component
25150 of the pen transformation is more that |aspect_bound*(ww+1)|.
25152 @d aspect_bound 10 /* ``less important'' of |wx|, |wy| cannot exceed the other by
25153 more than this factor */
25155 @<Use |pen_p(p)| and |path_p(p)| to decide whether |wx| or |wy| is more...@>=
25157 if ( mp_coord_rangeOK(mp, path_p(p), y_loc(0), wy) ) tx=aspect_bound;
25158 else if ( mp_coord_rangeOK(mp, path_p(p), x_loc(0), wx) ) ty=aspect_bound;
25159 if ( wy / ty>=wx / tx ) { ww=wy; adj_wx=false; }
25160 else { ww=wx; adj_wx=true; }
25162 @ This routine quickly tests if path |h| is ``essentially horizontal'' or
25163 ``essentially vertical,'' where |zoff| is |x_loc(0)| or |y_loc(0)| and |dz| is
25164 allowable range for $x$ or~$y$. We do not need and cannot afford a full
25165 bounding-box computation.
25167 @<Declare subroutines needed by |fix_graphics_state|@>=
25168 boolean mp_coord_rangeOK (MP mp,pointer h,
25169 small_number zoff, scaled dz) {
25170 pointer p; /* for scanning the path form |h| */
25171 scaled zlo,zhi; /* coordinate range so far */
25172 scaled z; /* coordinate currently being tested */
25173 zlo=knot_coord(h+zoff);
25176 while ( right_type(p)!=endpoint ) {
25177 z=right_coord(p+zoff);
25178 @<Make |zlo..zhi| include |z| and |return false| if |zhi-zlo>dz|@>;
25180 z=left_coord(p+zoff);
25181 @<Make |zlo..zhi| include |z| and |return false| if |zhi-zlo>dz|@>;
25182 z=knot_coord(p+zoff);
25183 @<Make |zlo..zhi| include |z| and |return false| if |zhi-zlo>dz|@>;
25189 @ @<Make |zlo..zhi| include |z| and |return false| if |zhi-zlo>dz|@>=
25190 if ( z<zlo ) zlo=z;
25191 else if ( z>zhi ) zhi=z;
25192 if ( zhi-zlo>dz ) return false
25194 @ Filling with an elliptical pen is implemented via a combination of \&{stroke}
25195 and \&{fill} commands and a nontrivial dash pattern would interfere with this.
25196 @:stroke}{\&{stroke} command@>
25197 @:fill}{\&{fill} command@>
25198 Note that we don't use |delete_edge_ref| because |gs_dash_p| is not counted as
25201 @<Make sure \ps\ will use the right dash pattern for |dash_p(p)|@>=
25202 if ( type(p)==fill_code ) {
25206 scf=mp_get_pen_scale(mp, pen_p(p));
25208 if ( gs_width==0 ) scf=dash_scale(p); else hh=null;
25210 scf=mp_make_scaled(mp, gs_width,scf);
25211 scf=mp_take_scaled(mp, scf,dash_scale(p));
25215 if ( gs_dash_p!=null ) {
25216 mp_ps_print_cmd(mp, " [] 0 setdash"," rd");
25219 } else if ( (gs_dash_sc!=scf) || ! mp_same_dashes(mp, gs_dash_p,hh) ) {
25220 @<Set the dash pattern from |dash_list(hh)| scaled by |scf|@>;
25223 @ Translating a dash list into \ps\ is very similar to printing it symbolically
25224 in |print_edges|. A dash pattern with |dash_y(hh)=0| has length zero and is
25225 ignored. The same fate applies in the bizarre case of a dash pattern that
25226 cannot be printed without overflow.
25228 @<Set the dash pattern from |dash_list(hh)| scaled by |scf|@>=
25231 if ( (dash_y(hh)==0) || (abs(dash_y(hh)) / unity >= el_gordo / scf)){
25232 mp_ps_print_cmd(mp, " [] 0 setdash"," rd");
25235 start_x(null_dash)=start_x(pp)+dash_y(hh);
25237 mp_print(mp, " [");
25238 while ( pp!=null_dash ) {
25239 mp_ps_pair_out(mp, mp_take_scaled(mp, stop_x(pp)-start_x(pp),scf),
25240 mp_take_scaled(mp, start_x(link(pp))-stop_x(pp),scf));
25244 mp_print(mp, "] ");
25245 mp_print_scaled(mp, mp_take_scaled(mp, mp_dash_offset(mp, hh),scf));
25246 mp_print_cmd(mp, " setdash"," sd");
25250 @ @<Declare subroutines needed by |fix_graphics_state|@>=
25251 boolean mp_same_dashes (MP mp,pointer h, pointer hh) ;
25254 boolean mp_same_dashes (MP mp,pointer h, pointer hh) {
25255 /* do |h| and |hh| represent the same dash pattern? */
25256 pointer p,pp; /* dash nodes being compared */
25257 if ( h==hh ) return true;
25258 else if ( (h<=diov)||(hh<=diov) ) return false;
25259 else if ( dash_y(h)!=dash_y(hh) ) return false;
25260 else { @<Compare |dash_list(h)| and |dash_list(hh)|@>; }
25261 return false; /* can't happen */
25264 @ @<Compare |dash_list(h)| and |dash_list(hh)|@>=
25267 while ( (p!=null_dash)&&(pp!=null_dash) ) {
25268 if ( (start_x(p)!=start_x(pp))||(stop_x(p)!=stop_x(pp)) ) {
25278 @ When stroking a path with an elliptical pen, it is necessary to transform
25279 the coordinate system so that a unit circular pen will have the desired shape.
25280 To keep this transformation local, we enclose it in a
25281 $$\&{gsave}\ldots\&{grestore}$$
25282 block. Any translation component must be applied to the path being stroked
25283 while the rest of the transformation must apply only to the pen.
25284 If |fill_also=true|, the path is to be filled as well as stroked so we must
25285 insert commands to do this after giving the path.
25287 @<Declare the \ps\ output procedures@>=
25288 void mp_stroke_ellipse (MP mp,pointer h, boolean fill_also) ;
25291 @c void mp_stroke_ellipse (MP mp,pointer h, boolean fill_also) {
25292 /* generate an elliptical pen stroke from object |h| */
25293 scaled txx,txy,tyx,tyy; /* transformation parameters */
25294 pointer p; /* the pen to stroke with */
25295 scaled d1,det; /* for tweaking transformation parameters */
25296 integer s; /* also for tweaking transformation paramters */
25297 boolean transformed; /* keeps track of whether gsave/grestore are needed */
25299 @<Use |pen_p(h)| to set the transformation parameters and give the initial
25301 @<Tweak the transformation parameters so the transformation is nonsingular@>;
25302 mp_ps_path_out(mp, path_p(h));
25303 if ( mp->internal[mpprocset]==0 ) {
25304 if ( fill_also ) mp_print_nl(mp, "gsave fill grestore");
25305 @<Issue \ps\ commands to transform the coordinate system@>;
25306 mp_ps_print(mp, " stroke");
25307 if ( transformed ) mp_ps_print(mp, " grestore");
25309 if ( fill_also ) mp_print_nl(mp, "B"); else mp_print_ln(mp);
25310 if ( (txy!=0)||(tyx!=0) ) {
25311 mp_print(mp, " [");
25312 mp_ps_pair_out(mp, txx,tyx);
25313 mp_ps_pair_out(mp, txy,tyy);
25314 mp_ps_print(mp, "0 0] t");
25315 } else if ((txx!=unity)||(tyy!=unity) ) {
25316 mp_ps_pair_out(mp,txx,tyy);
25317 mp_print(mp, " s");
25319 mp_ps_print(mp, " S");
25320 if ( transformed ) mp_ps_print(mp, " Q");
25325 @ @<Use |pen_p(h)| to set the transformation parameters and give the...@>=
25331 if ( (x_coord(p)!=0)||(y_coord(p)!=0) ) {
25332 mp_print_nl(mp, ""); mp_print_cmd(mp, "gsave ","q ");
25333 mp_ps_pair_out(mp, x_coord(p),y_coord(p));
25334 mp_ps_print(mp, "translate ");
25341 mp_print_nl(mp, "");
25343 @<Adjust the transformation to account for |gs_width| and output the
25344 initial \&{gsave} if |transformed| should be |true|@>
25346 @ @<Adjust the transformation to account for |gs_width| and output the...@>=
25347 if ( gs_width!=unity ) {
25348 if ( gs_width==0 ) {
25349 txx=unity; tyy=unity;
25351 txx=mp_make_scaled(mp, txx,gs_width);
25352 txy=mp_make_scaled(mp, txy,gs_width);
25353 tyx=mp_make_scaled(mp, tyx,gs_width);
25354 tyy=mp_make_scaled(mp, tyy,gs_width);
25357 if ( (txy!=0)||(tyx!=0)||(txx!=unity)||(tyy!=unity) ) {
25358 if ( (! transformed) ){
25359 mp_ps_print_cmd(mp, "gsave ","q ");
25364 @ @<Issue \ps\ commands to transform the coordinate system@>=
25365 if ( (txy!=0)||(tyx!=0) ){
25367 mp_print_char(mp, '[');
25368 mp_ps_pair_out(mp, txx,tyx);
25369 mp_ps_pair_out(mp, txy,tyy);
25370 mp_ps_print(mp, "0 0] concat");
25371 } else if ( (txx!=unity)||(tyy!=unity) ){
25373 mp_ps_pair_out(mp, txx,tyy);
25374 mp_print(mp, "scale");
25377 @ The \ps\ interpreter will probably abort if it encounters a singular
25378 transformation matrix. The determinant must be large enough to ensure that
25379 the printed representation will be nonsingular. Since the printed
25380 representation is always within $2^{-17}$ of the internal |scaled| value, the
25381 total error is at most $4T_{\rm max}2^{-17}$, where $T_{\rm max}$ is a bound on
25382 the magnitudes of |txx/65536|, |txy/65536|, etc.
25384 The |aspect_bound*(gs_width+1)| bound on the components of the pen
25385 transformation allows $T_{\rm max}$ to be at most |2*aspect_bound|.
25387 @<Tweak the transformation parameters so the transformation is nonsingular@>=
25388 det=mp_take_scaled(mp, txx,tyy) - mp_take_scaled(mp, txy,tyx);
25389 d1=4*aspect_bound+1;
25390 if ( abs(det)<d1 ) {
25391 if ( det>=0 ) { d1=d1-det; s=1; }
25392 else { d1=-d1-det; s=-1; };
25394 if ( abs(txx)+abs(tyy)>=abs(txy)+abs(tyy) ) {
25395 if ( abs(txx)>abs(tyy) ) tyy=tyy+(d1+s*abs(txx)) / txx;
25396 else txx=txx+(d1+s*abs(tyy)) / tyy;
25398 if ( abs(txy)>abs(tyx) ) tyx=tyx+(d1+s*abs(txy)) / txy;
25399 else txy=txy+(d1+s*abs(tyx)) / tyx;
25403 @ Here is a simple routine that just fills a cycle.
25405 @<Declare the \ps\ output procedures@>=
25406 void mp_ps_fill_out (MP mp,pointer p) ;
25409 void mp_ps_fill_out (MP mp,pointer p) { /* fill cyclic path~|p| */
25410 mp_ps_path_out(mp, p);
25411 mp_ps_print_cmd(mp, " fill"," F");
25415 @ Given a cyclic path~|p| and a graphical object~|h|, the |do_outer_envelope|
25416 procedure fills the cycle generated by |make_envelope|. It need not do
25417 anything unless some region has positive winding number with respect to~|p|,
25418 but it does not seem worthwhile to for test this.
25420 @<Declare the \ps\ output procedures@>=
25421 void mp_do_outer_envelope (MP mp,pointer p, pointer h) ;
25424 void mp_do_outer_envelope (MP mp,pointer p, pointer h) {
25425 p=mp_make_envelope(mp, p, pen_p(h), ljoin_val(h), 0, miterlim_val(h));
25426 mp_ps_fill_out(mp, p);
25427 mp_toss_knot_list(mp, p);
25430 @ A text node may specify an arbitrary transformation but the usual case
25431 involves only shifting, scaling, and occasionally rotation. The purpose
25432 of |choose_scale| is to select a scale factor so that the remaining
25433 transformation is as ``nice'' as possible. The definition of ``nice''
25434 is somewhat arbitrary but shifting and $90^\circ$ rotation are especially
25435 nice because they work out well for bitmap fonts. The code here selects
25436 a scale factor equal to $1/\sqrt2$ times the Frobenius norm of the
25437 non-shifting part of the transformation matrix. It is careful to avoid
25438 additions that might cause undetected overflow.
25440 @<Declare the \ps\ output procedures@>=
25441 scaled mp_choose_scale (MP mp,pointer p) ;
25443 @ @c scaled mp_choose_scale (MP mp,pointer p) {
25444 /* |p| should point to a text node */
25445 scaled a,b,c,d,ad,bc; /* temporary values */
25450 if ( (a<0) ) negate(a);
25451 if ( (b<0) ) negate(b);
25452 if ( (c<0) ) negate(c);
25453 if ( (d<0) ) negate(d);
25456 return mp_pyth_add(mp, mp_pyth_add(mp, d+ad,ad), mp_pyth_add(mp, c+bc,bc));
25459 @ @<Declare the \ps\ output procedures@>=
25460 void mp_ps_string_out (MP mp, char *s) {
25461 char *i; /* current character code position */
25462 ASCII_code k; /* bits to be converted to octal */
25466 if ( mp->ps_offset+5>mp->max_print_line ) {
25467 mp_print_char(mp, '\\');
25471 if ( (@<Character |k| is not allowed in PostScript output@>) ) {
25472 mp_print_char(mp, '\\');
25473 mp_print_char(mp, '0'+(k / 64));
25474 mp_print_char(mp, '0'+((k / 8) % 8));
25475 mp_print_char(mp, '0'+(k % 8));
25477 if ( (k=='(')||(k==')')||(k=='\\') ) mp_print_char(mp, '\\');
25478 mp_print_char(mp, k);
25482 mp_print_char(mp, ')');
25486 @d mp_is_ps_name(M,A) mp_do_is_ps_name(A)
25488 @<Declare the \ps\ output procedures@>=
25489 boolean mp_do_is_ps_name (char *s) {
25490 char *i; /* current character code position */
25491 ASCII_code k; /* the character being checked */
25495 if ( (k<=' ')||(k>'~') ) return false;
25496 if ( (k=='(')||(k==')')||(k=='<')||(k=='>')||
25497 (k=='{')||(k=='}')||(k=='/')||(k=='%') ) return false;
25504 void mp_ps_name_out (MP mp, char *s, boolean lit) ;
25507 void mp_ps_name_out (MP mp, char *s, boolean lit) {
25508 ps_room(strlen(s)+2);
25509 mp_print_char(mp, ' ');
25510 if ( mp_is_ps_name(mp, s) ) {
25511 if ( lit ) mp_print_char(mp, '/');
25514 mp_ps_string_out(mp, s);
25515 if ( ! lit ) mp_ps_print(mp, "cvx ");
25516 mp_ps_print(mp, "cvn");
25520 @ @<Declare the \ps\ output procedures@>=
25521 void mp_mark_string_chars (MP mp,font_number f, str_number s) ;
25524 void mp_mark_string_chars (MP mp,font_number f, str_number s) {
25525 integer b; /* |char_base[f]| */
25526 ASCII_code bc,ec; /* only characters between these bounds are marked */
25527 pool_pointer k; /* an index into string |s| */
25528 b=mp->char_base[f];
25532 while ( k>mp->str_start[s] ){
25534 if ( (mp->str_pool[k]>=bc)&&(mp->str_pool[k]<=ec) )
25535 mp->font_info[b+mp->str_pool[k]].qqqq.b3=used;
25539 @ There may be many sizes of one font and we need to keep track of the
25540 characters used for each size. This is done by keeping a linked list of
25541 sizes for each font with a counter in each text node giving the appropriate
25542 position in the size list for its font.
25544 @d sc_factor(A) mp->mem[(A)+1].sc /* the scale factor stored in a font size node */
25545 @d font_size_size 2 /* size of a font size node */
25548 boolean mp_has_font_size(MP mp, font_number f );
25551 boolean mp_has_font_size(MP mp, font_number f ) {
25552 return (mp->font_sizes[f]!=null);
25556 @ The overflow here is caused by the fact the returned value
25557 has to fit in a |name_type|, which is a quarterword.
25559 @d fscale_tolerance 65 /* that's $.001\times2^{16}$ */
25561 @<Declare the \ps\ output procedures@>=
25562 quarterword mp_size_index (MP mp, font_number f, scaled s) {
25563 pointer p,q; /* the previous and current font size nodes */
25564 quarterword i; /* the size index for |q| */
25565 q=mp->font_sizes[f];
25567 while ( q!=null ) {
25568 if ( abs(s-sc_factor(q))<=fscale_tolerance )
25571 { p=q; q=link(q); incr(i); };
25572 if ( i==max_quarterword )
25573 mp_overflow(mp, "sizes per font",max_quarterword);
25574 @:MetaPost capacity exceeded sizes per font}{\quad sizes per font@>
25576 q=mp_get_node(mp, font_size_size);
25578 if ( i==0 ) mp->font_sizes[f]=q; else link(p)=q;
25582 @ @<Declare the \ps\ output procedures@>=
25583 scaled mp_indexed_size (MP mp,font_number f, quarterword j) {
25584 pointer p; /* a font size node */
25585 quarterword i; /* the size index for |p| */
25586 p=mp->font_sizes[f];
25588 if ( p==null ) mp_confusion(mp, "size");
25590 incr(i); p=link(p);
25591 if ( p==null ) mp_confusion(mp, "size");
25593 return sc_factor(p);
25596 @ @<Declare the \ps\ output procedures@>=
25597 void mp_clear_sizes (MP mp) ;
25599 @ @c void mp_clear_sizes (MP mp) {
25600 font_number f; /* the font whose size list is being cleared */
25601 pointer p; /* current font size nodes */
25602 for (f=null_font+1;f<=mp->last_fnum;f++) {
25603 while ( mp->font_sizes[f]!=null ) {
25604 p=mp->font_sizes[f];
25605 mp->font_sizes[f]=link(p);
25606 mp_free_node(mp, p,font_size_size);
25611 @ The \&{special} command saves up lines of text to be printed during the next
25612 |ship_out| operation. The saved items are stored as a list of capsule tokens.
25615 pointer last_pending; /* the last token in a list of pending specials */
25618 mp->last_pending=spec_head;
25620 @ @<Cases of |do_statement|...@>=
25621 case special_command:
25622 if ( mp->cur_mod==0 ) mp_do_special(mp); else
25623 if ( mp->cur_mod==1 ) mp_do_mapfile(mp); else
25627 @ @<Declare action procedures for use by |do_statement|@>=
25628 void mp_do_special (MP mp) ;
25630 @ @c void mp_do_special (MP mp) {
25631 mp_get_x_next(mp); mp_scan_expression(mp);
25632 if ( mp->cur_type!=mp_string_type ) {
25633 @<Complain about improper special operation@>;
25635 link(mp->last_pending)=mp_stash_cur_exp(mp);
25636 mp->last_pending=link(mp->last_pending);
25637 link(mp->last_pending)=null;
25641 @ @<Complain about improper special operation@>=
25643 exp_err("Unsuitable expression");
25644 help1("Only known strings are allowed for output as specials.");
25645 mp_put_get_error(mp);
25648 @ @<Print any pending specials@>=
25650 while ( t!=null ) {
25651 mp_print_str(mp, value(t));
25655 mp_flush_token_list(mp, link(spec_head));
25656 link(spec_head)=null;
25657 mp->last_pending=spec_head
25659 @ We are now ready for the main output procedure. Note that the |selector|
25660 setting is saved in a global variable so that |begin_diagnostic| can access it.
25662 @<Declare the \ps\ output procedures@>=
25663 void mp_ship_out (MP mp, pointer h) ;
25666 void mp_ship_out (MP mp, pointer h) { /* output edge structure |h| */
25667 pointer p; /* the current graphical object */
25668 pointer q; /* something that |p| points to */
25669 integer t; /* a temporary value */
25670 font_number f; /* fonts used in a text node or as loop counters */
25672 scaled ds,scf; /* design size and scale factor for a text node */
25673 boolean transformed; /* is the coordinate system being transformed? */
25674 mp_open_output_file(mp);
25675 mp->non_ps_setting=mp->selector; mp->selector=ps_file_only;
25676 if ( (mp->internal[prologues]==two)||(mp->internal[prologues]==three) ) {
25677 @<Print improved initial comment and bounding box for edge structure~|h|@>;
25678 @<Scan all the text nodes and mark the used characters@>;
25679 mp_load_encodings(mp,mp->last_fnum);
25680 @<Update encoding names@>;
25681 @<Print the improved prologue and setup@>;
25682 @<Print any pending specials@>;
25683 mp_unknown_graphics_state(mp, 0);
25684 mp->need_newpath=true;
25685 p=link(dummy_loc(h));
25686 while ( p!=null ) {
25687 if ( has_color(p) ) {
25688 if ( (pre_script(p))!=null ) {
25689 mp_print_nl (mp, str(pre_script(p))); mp_print_ln(mp);
25692 mp_fix_graphics_state(mp, p);
25694 @<Cases for translating graphical object~|p| into \ps@>;
25695 case mp_start_bounds_code:
25696 case mp_stop_bounds_code:
25698 } /* all cases are enumerated */
25701 mp_print_cmd(mp, "showpage","P"); mp_print_ln(mp);
25702 mp_print(mp, "%%EOF"); mp_print_ln(mp);
25703 fclose(mp->ps_file);
25704 mp->selector=mp->non_ps_setting;
25705 if ( mp->internal[prologues]<=0 ) mp_clear_sizes(mp);
25706 @<End progress report@>;
25708 @<Print the initial comment and give the bounding box for edge structure~|h|@>;
25709 if ( (mp->internal[prologues]>0) && (mp->last_ps_fnum<mp->last_fnum) )
25710 mp_read_psname_table(mp);
25711 mp_print_prologue(mp, (mp->internal[prologues]>>16), (mp->internal[mpprocset]>>16), ldf);
25712 mp_print_nl(mp, "%%Page: 1 1"); mp_print_ln(mp);
25713 @<Print any pending specials@>;
25714 mp_unknown_graphics_state(mp, 0);
25715 mp->need_newpath=true;
25716 p=link(dummy_loc(h));
25717 while ( p!=null ) {
25718 if ( has_color(p) ) {
25719 if ( (pre_script(p))!=null ) {
25720 mp_print_nl (mp, str(pre_script(p))); mp_print_ln(mp);
25723 mp_fix_graphics_state(mp, p);
25725 @<Cases for translating graphical object~|p| into \ps@>;
25726 case mp_start_bounds_code:
25727 case mp_stop_bounds_code:
25729 } /* all cases are enumerated */
25732 mp_print_cmd(mp, "showpage","P"); mp_print_ln(mp);
25733 mp_print(mp, "%%EOF"); mp_print_ln(mp);
25734 fclose(mp->ps_file);
25735 mp->selector=mp->non_ps_setting;
25736 if ( mp->internal[prologues]<=0 ) mp_clear_sizes(mp);
25737 @<End progress report@>;
25739 if ( mp->internal[tracing_output]>0 )
25740 mp_print_edges(mp, h," (just shipped out)",true);
25744 void mp_apply_mark_string_chars(MP mp, pointer h, int next_size);
25747 void mp_apply_mark_string_chars(MP mp, pointer h, int next_size) {
25749 p=link(dummy_loc(h));
25750 while ( p!=null ) {
25751 if ( type(p)==text_code )
25752 if ( font_n(p)!=null_font )
25753 if ( name_type(p)==next_size )
25754 mp_mark_string_chars(mp, font_n(p),text_p(p));
25760 @<Print the improved prologue and setup@>=
25762 mp_print_improved_prologue(mp, (mp->internal[prologues]>>16),(mp->internal[mpprocset]>>16),
25763 (mp->internal[gtroffmode]>>16), null, h);
25767 @<Print improved initial comment and bounding box for edge...@>=
25768 mp_print(mp, "%!PS-Adobe-3.0 EPSF-3.0");
25769 mp_print_nl(mp, "%%BoundingBox: ");
25770 mp_set_bbox(mp, h,true);
25771 if ( minx_val(h)>maxx_val(h) ) {
25772 mp_print(mp, "0 0 0 0");
25774 mp_ps_pair_out(mp, mp_floor_scaled(mp, minx_val(h)),mp_floor_scaled(mp, miny_val(h)));
25775 mp_ps_pair_out(mp, -mp_floor_scaled(mp, -maxx_val(h)),-mp_floor_scaled(mp, -maxy_val(h)));
25777 mp_print_nl(mp, "%%HiResBoundingBox: ");
25778 if ( minx_val(h)>maxx_val(h) ) {
25779 mp_print(mp, "0 0 0 0");
25781 mp_ps_pair_out(mp, minx_val(h),miny_val(h));
25782 mp_ps_pair_out(mp, maxx_val(h),maxy_val(h));
25784 mp_print_nl(mp, "%%Creator: MetaPost ");
25785 mp_print(mp, metapost_version);
25786 mp_print_nl(mp, "%%CreationDate: ");
25787 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[year])); mp_print_char(mp, '.');
25788 mp_print_dd(mp, mp_round_unscaled(mp, mp->internal[month])); mp_print_char(mp, '.');
25789 mp_print_dd(mp, mp_round_unscaled(mp, mp->internal[day])); mp_print_char(mp, ':');
25790 t=mp_round_unscaled(mp, mp->internal[mp_time]);
25791 mp_print_dd(mp, t / 60); mp_print_dd(mp, t % 60);
25792 mp_print_nl(mp, "%%Pages: 1");
25796 @ @<Scan all the text nodes and mark the used ...@>=
25797 for (f=null_font+1;f<=mp->last_fnum;f++) {
25798 if ( mp->font_sizes[f]!=null ) {
25799 mp_unmark_font(mp, f);
25800 mp->font_sizes[f]=null;
25802 if ( mp->font_enc_name[f]!=NULL )
25803 xfree(mp->font_enc_name[f]);
25804 mp->font_enc_name[f] = NULL;
25806 for (f=null_font+1;f<=mp->last_fnum;f++) {
25807 p=link(dummy_loc(h));
25808 while ( p!=null ) {
25809 if ( type(p)==text_code ) {
25810 if ( font_n(p)!=null_font ) {
25811 mp->font_sizes[font_n(p)] = diov;
25812 mp_mark_string_chars(mp, font_n(p),text_p(p));
25813 if ( mp_has_fm_entry(mp,font_n(p),NULL) )
25814 mp->font_ps_name[font_n(p)] = mp_fm_font_name(mp,font_n(p));
25821 @ @<Update encoding names@>=
25822 for (f=null_font+1;f<=mp->last_fnum;f++) {
25823 p=link(dummy_loc(h));
25824 while ( p!=null ) {
25825 if ( type(p)==text_code )
25826 if ( font_n(p)!=null_font )
25827 if ( mp_has_fm_entry(mp,font_n(p),NULL) )
25828 if ( mp->font_enc_name[font_n(p)]==NULL )
25829 mp->font_enc_name[font_n(p)] = mp_fm_encoding_name(mp,font_n(p));
25834 @ These special comments described in the {\sl PostScript Language Reference
25835 Manual}, 2nd.~edition are understood by some \ps-reading programs.
25836 We can't normally output ``conforming'' \ps\ because
25837 the structuring conventions don't allow us to say ``Please make sure the
25838 following characters are downloaded and define the \.{fshow} macro to access
25841 The exact bounding box is written out if |prologues<0|, although this
25842 is not standard \ps, since it allows \TeX\ to calculate the box dimensions
25843 accurately. (Overfull boxes are avoided if an illustration is made to
25844 match a given \.{\char`\\hsize}.)
25846 @<Print the initial comment and give the bounding box for edge...@>=
25847 mp_print(mp, "%!PS");
25848 if ( mp->internal[prologues]>0 ) mp_print(mp, "-Adobe-3.0 EPSF-3.0");
25849 mp_print_nl(mp, "%%BoundingBox: ");
25850 mp_set_bbox(mp, h,true);
25851 if ( minx_val(h)>maxx_val(h) ) mp_print(mp, "0 0 0 0");
25852 else if ( mp->internal[prologues]<0 ) {
25853 mp_ps_pair_out(mp, minx_val(h),miny_val(h));
25854 mp_ps_pair_out(mp, maxx_val(h),maxy_val(h));
25856 mp_ps_pair_out(mp, mp_floor_scaled(mp, minx_val(h)),mp_floor_scaled(mp, miny_val(h)));
25857 mp_ps_pair_out(mp, -mp_floor_scaled(mp, -maxx_val(h)),-mp_floor_scaled(mp, -maxy_val(h)));
25859 mp_print_nl(mp, "%%HiResBoundingBox: ");
25860 if ( minx_val(h)>maxx_val(h) ) mp_print(mp, "0 0 0 0");
25862 mp_ps_pair_out(mp, minx_val(h),miny_val(h));
25863 mp_ps_pair_out(mp, maxx_val(h),maxy_val(h));
25865 mp_print_nl(mp, "%%Creator: MetaPost ");
25866 mp_print(mp, metapost_version);
25867 mp_print_nl(mp, "%%CreationDate: ");
25868 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[year])); mp_print_char(mp, '.');
25869 mp_print_dd(mp, mp_round_unscaled(mp, mp->internal[month])); mp_print_char(mp, '.');
25870 mp_print_dd(mp, mp_round_unscaled(mp, mp->internal[day])); mp_print_char(mp, ':');
25871 t=mp_round_unscaled(mp, mp->internal[mp_time]);
25872 mp_print_dd(mp, t / 60); mp_print_dd(mp, t % 60);
25873 mp_print_nl(mp, "%%Pages: 1");
25874 @<List all the fonts and magnifications for edge structure~|h|@>;
25877 @ @<List all the fonts and magnifications for edge structure~|h|@>=
25878 @<Scan all the text nodes and set the |font_sizes| lists;
25879 if |internal[prologues]<=0| list the sizes selected by |choose_scale|,
25880 apply |unmark_font| to each font encountered, and call |mark_string|
25881 whenever the size index is zero@>;
25882 ldf = mp_print_font_comments (mp, (mp->internal[prologues]>>16), null, h)
25884 @ @<Scan all the text nodes and set the |font_sizes| lists;...@>=
25885 for (f=null_font+1;f<=mp->last_fnum;f++)
25886 mp->font_sizes[f]=null;
25887 p=link(dummy_loc(h));
25888 while ( p!=null ) {
25889 if ( type(p)==text_code ) {
25890 if ( font_n(p)!=null_font ) {
25892 if ( mp->internal[prologues]>0 ) {
25893 mp->font_sizes[f]=diov;
25895 if ( mp->font_sizes[f]==null ) mp_unmark_font(mp, f);
25896 name_type(p)=mp_size_index(mp, f,mp_choose_scale(mp, p));
25897 if ( name_type(p)==0 )
25898 mp_mark_string_chars(mp, f,text_p(p));
25905 @ @<Cases for translating graphical object~|p| into \ps@>=
25906 case mp_start_clip_code:
25907 mp_print_nl(mp, ""); mp_print_cmd(mp, "gsave ","q ");
25908 mp_ps_path_out(mp, path_p(p));
25909 mp_ps_print_cmd(mp, " clip"," W");
25911 if ( mp->internal[restore_clip_color]>0 )
25912 mp_unknown_graphics_state(mp, 1);
25914 case mp_stop_clip_code:
25915 mp_print_nl(mp, ""); mp_print_cmd(mp, "grestore","Q");
25917 if ( mp->internal[restore_clip_color]>0 )
25918 mp_unknown_graphics_state(mp, 2);
25920 mp_unknown_graphics_state(mp, -1);
25923 @ @<Cases for translating graphical object~|p| into \ps@>=
25925 if ( pen_p(p)==null ) mp_ps_fill_out(mp, path_p(p));
25926 else if ( pen_is_elliptical(pen_p(p)) ) mp_stroke_ellipse(mp, p,true);
25928 mp_do_outer_envelope(mp, mp_copy_path(mp, path_p(p)), p);
25929 mp_do_outer_envelope(mp, mp_htap_ypoc(mp, path_p(p)), p);
25931 if ( (post_script(p))!=null ) {
25932 mp_print_nl (mp, str(post_script(p))); mp_print_ln(mp);
25936 if ( pen_is_elliptical(pen_p(p)) ) mp_stroke_ellipse(mp, p,false);
25938 q=mp_copy_path(mp, path_p(p));
25940 @<Break the cycle and set |t:=1| if path |q| is cyclic@>;
25941 q=mp_make_envelope(mp, q,pen_p(p),ljoin_val(p),t,miterlim_val(p));
25942 mp_ps_fill_out(mp, q);
25943 mp_toss_knot_list(mp, q);
25945 if ( (post_script(p))!=null ) {
25946 mp_print_nl (mp, str(post_script(p))); mp_print_ln(mp);
25950 @ The envelope of a cyclic path~|q| could be computed by calling
25951 |make_envelope| once for |q| and once for its reversal. We don't do this
25952 because it would fail color regions that are covered by the pen regardless
25953 of where it is placed on~|q|.
25955 @<Break the cycle and set |t:=1| if path |q| is cyclic@>=
25956 if ( left_type(q)!=endpoint ) {
25957 left_type(mp_insert_knot(mp, q,x_coord(q),y_coord(q)))=endpoint;
25958 right_type(q)=endpoint;
25963 @ @<Cases for translating graphical object~|p| into \ps@>=
25965 if ( (font_n(p)!=null_font) && (length(text_p(p))>0) ) {
25966 if ( mp->internal[prologues]>0 )
25967 scf=mp_choose_scale(mp, p);
25969 scf=mp_indexed_size(mp, font_n(p), name_type(p));
25970 @<Shift or transform as necessary before outputting text node~|p| at scale
25971 factor~|scf|; set |transformed:=true| if the original transformation must
25973 mp_ps_string_out(mp, str(text_p(p)));
25974 mp_ps_name_out(mp, mp->font_name[font_n(p)],false);
25975 @<Print the size information and \ps\ commands for text node~|p|@>;
25978 if ( (post_script(p))!=null ) {
25979 mp_print_nl (mp, str(post_script(p))); mp_print_ln(mp);
25983 @ @<Print the size information and \ps\ commands for text node~|p|@>=
25985 mp_print_char(mp, ' ');
25986 ds=(mp->font_dsize[font_n(p)]+8) / 16;
25987 mp_print_scaled(mp, mp_take_scaled(mp, ds,scf));
25988 mp_print(mp, " fshow");
25990 mp_ps_print_cmd(mp, " grestore"," Q")
25992 @ @<Shift or transform as necessary before outputting text node~|p| at...@>=
25993 transformed=(txx_val(p)!=scf)||(tyy_val(p)!=scf)||
25994 (txy_val(p)!=0)||(tyx_val(p)!=0);
25995 if ( transformed ) {
25996 mp_print_cmd(mp, "gsave [", "q [");
25997 mp_ps_pair_out(mp, mp_make_scaled(mp, txx_val(p),scf),
25998 mp_make_scaled(mp, tyx_val(p),scf));
25999 mp_ps_pair_out(mp, mp_make_scaled(mp, txy_val(p),scf),
26000 mp_make_scaled(mp, tyy_val(p),scf));
26001 mp_ps_pair_out(mp, tx_val(p),ty_val(p));
26002 mp_ps_print_cmd(mp, "] concat 0 0 moveto","] t 0 0 m");
26004 mp_ps_pair_out(mp, tx_val(p),ty_val(p));
26005 mp_ps_print_cmd(mp, "moveto","m");
26009 @ Now that we've finished |ship_out|, let's look at the other commands
26010 by which a user can send things to the \.{GF} file.
26012 @ @<Determine if a character has been shipped out@>=
26014 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
26015 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
26016 boolean_reset(mp->char_exists[mp->cur_exp]);
26017 mp->cur_type=mp_boolean_type;
26023 @ @<Allocate or initialize ...@>=
26024 mp_backend_initialize(mp);
26027 mp_backend_free(mp);
26030 @* \[45] Dumping and undumping the tables.
26031 After \.{INIMP} has seen a collection of macros, it
26032 can write all the necessary information on an auxiliary file so
26033 that production versions of \MP\ are able to initialize their
26034 memory at high speed. The present section of the program takes
26035 care of such output and input. We shall consider simultaneously
26036 the processes of storing and restoring,
26037 so that the inverse relation between them is clear.
26040 The global variable |mem_ident| is a string that is printed right
26041 after the |banner| line when \MP\ is ready to start. For \.{INIMP} this
26042 string says simply `\.{(INIMP)}'; for other versions of \MP\ it says,
26043 for example, `\.{(mem=plain 90.4.14)}', showing the year,
26044 month, and day that the mem file was created. We have |mem_ident=0|
26045 before \MP's tables are loaded.
26051 mp->mem_ident=NULL;
26053 @ @<Initialize table entries...@>=
26054 if (mp->ini_version)
26055 mp->mem_ident=xstrdup(" (INIMP)");
26057 @ @<Declare act...@>=
26058 void mp_store_mem_file (MP mp) ;
26060 @ @c void mp_store_mem_file (MP mp) {
26061 integer k; /* all-purpose index */
26062 pointer p,q; /* all-purpose pointers */
26063 integer x; /* something to dump */
26064 four_quarters w; /* four ASCII codes */
26066 @<Create the |mem_ident|, open the mem file,
26067 and inform the user that dumping has begun@>;
26068 @<Dump constants for consistency check@>;
26069 @<Dump the string pool@>;
26070 @<Dump the dynamic memory@>;
26071 @<Dump the table of equivalents and the hash table@>;
26072 @<Dump a few more things and the closing check word@>;
26073 @<Close the mem file@>;
26076 @ Corresponding to the procedure that dumps a mem file, we also have a function
26077 that reads~one~in. The function returns |false| if the dumped mem is
26078 incompatible with the present \MP\ table sizes, etc.
26080 @d off_base 6666 /* go here if the mem file is unacceptable */
26081 @d too_small(A) { wake_up_terminal;
26082 wterm_ln("---! Must increase the "); wterm((A));
26083 @.Must increase the x@>
26088 boolean mp_load_mem_file (MP mp) {
26089 integer k; /* all-purpose index */
26090 pointer p,q; /* all-purpose pointers */
26091 integer x; /* something undumped */
26092 str_number s; /* some temporary string */
26093 four_quarters w; /* four ASCII codes */
26095 @<Undump constants for consistency check@>;
26096 @<Undump the string pool@>;
26097 @<Undump the dynamic memory@>;
26098 @<Undump the table of equivalents and the hash table@>;
26099 @<Undump a few more things and the closing check word@>;
26100 return true; /* it worked! */
26103 wterm_ln("(Fatal mem file error; I'm stymied)\n");
26104 @.Fatal mem file error@>
26108 @ @<Declarations@>=
26109 boolean mp_load_mem_file (MP mp) ;
26111 @ Mem files consist of |memory_word| items, and we use the following
26112 macros to dump words of different types:
26114 @d dump_wd(A) { WW=(A); fwrite(&WW,sizeof(WW),1,mp->mem_file); }
26115 @d dump_int(A) { WW.cint=(A); fwrite(&WW,sizeof(WW),1,mp->mem_file); }
26116 @d dump_hh(A) { WW.hh=(A); fwrite(&WW,sizeof(WW),1,mp->mem_file); }
26117 @d dump_qqqq(A) { WW.qqqq=(A); fwrite(&WW,sizeof(WW),1,mp->mem_file); }
26118 @d dump_string(A) { dump_int(strlen(A)+1);
26119 fwrite(A,strlen(A)+1,1,mp->mem_file); }
26122 FILE * mem_file; /* for input or output of mem information */
26124 @ The inverse macros are slightly more complicated, since we need to check
26125 the range of the values we are reading in. We say `|undump(a)(b)(x)|' to
26126 read an integer value |x| that is supposed to be in the range |a<=x<=b|.
26128 @d undump_wd(A) { fread(&WW,sizeof(WW),1,mp->mem_file); (A)=WW; }
26129 @d undump_int(A) { fread(&WW,sizeof(WW),1,mp->mem_file); (A)=WW.cint; }
26130 @d undump_hh(A) { fread(&WW,sizeof(WW),1,mp->mem_file); (A)=WW.hh; }
26131 @d undump_qqqq(A) { fread(&WW,sizeof(WW),1,mp->mem_file); (A)=WW.qqqq; }
26132 @d undump_strings(A,B,C) {
26133 undump_int(x); if ( (x<(A)) || (x>(B)) ) goto OFF_BASE; else (C)=str(x); }
26134 @d undump(A,B,C) { undump_int(x); if ( (x<(A)) || (x>(int)(B)) ) goto OFF_BASE; else (C)=x; }
26135 @d undump_size(A,B,C,D) { undump_int(x);
26136 if (x<(A)) goto OFF_BASE;
26137 if (x>(B)) { too_small((C)); } else {(D)=x;} }
26138 @d undump_string(A) { integer XX=0; undump_int(XX);
26139 A = xmalloc(XX,sizeof(char));
26140 fread(A,XX,1,mp->mem_file); }
26142 @ The next few sections of the program should make it clear how we use the
26143 dump/undump macros.
26145 @<Dump constants for consistency check@>=
26146 dump_int(mp->mem_top);
26147 dump_int(mp->hash_size);
26148 dump_int(mp->hash_prime)
26149 dump_int(mp->param_size);
26150 dump_int(mp->max_in_open);
26152 @ Sections of a \.{WEB} program that are ``commented out'' still contribute
26153 strings to the string pool; therefore \.{INIMP} and \MP\ will have
26154 the same strings. (And it is, of course, a good thing that they do.)
26158 @<Undump constants for consistency check@>=
26159 undump_int(x); mp->mem_top = x;
26160 undump_int(x); if (mp->hash_size != x) goto OFF_BASE;
26161 undump_int(x); if (mp->hash_prime != x) goto OFF_BASE;
26162 undump_int(x); if (mp->param_size != x) goto OFF_BASE;
26163 undump_int(x); if (mp->max_in_open != x) goto OFF_BASE
26165 @ We do string pool compaction to avoid dumping unused strings.
26168 w.b0=qi(mp->str_pool[k]); w.b1=qi(mp->str_pool[k+1]);
26169 w.b2=qi(mp->str_pool[k+2]); w.b3=qi(mp->str_pool[k+3]);
26172 @<Dump the string pool@>=
26173 mp_do_compaction(mp, mp->pool_size);
26174 dump_int(mp->pool_ptr);
26175 dump_int(mp->max_str_ptr);
26176 dump_int(mp->str_ptr);
26178 while ( (mp->next_str[k]==k+1) && (k<=mp->max_str_ptr) )
26181 while ( k<=mp->max_str_ptr ) {
26182 dump_int(mp->next_str[k]); incr(k);
26186 dump_int((mp->str_start[k]));
26187 if ( k==mp->str_ptr ) {
26194 while (k+4<mp->pool_ptr ) {
26195 dump_four_ASCII; k=k+4;
26197 k=mp->pool_ptr-4; dump_four_ASCII;
26198 mp_print_ln(mp); mp_print(mp, "at most "); mp_print_int(mp, mp->max_str_ptr);
26199 mp_print(mp, " strings of total length ");
26200 mp_print_int(mp, mp->pool_ptr)
26202 @ @d undump_four_ASCII
26204 mp->str_pool[k]=qo(w.b0); mp->str_pool[k+1]=qo(w.b1);
26205 mp->str_pool[k+2]=qo(w.b2); mp->str_pool[k+3]=qo(w.b3)
26207 @<Undump the string pool@>=
26208 undump_int(mp->pool_ptr);
26209 mp_reallocate_pool(mp, mp->pool_ptr) ;
26210 undump_int(mp->max_str_ptr);
26211 mp_reallocate_strings (mp,mp->max_str_ptr) ;
26212 undump(0,mp->max_str_ptr,mp->str_ptr);
26213 undump(0,mp->max_str_ptr+1,s);
26214 for (k=0;k<=s-1;k++)
26215 mp->next_str[k]=k+1;
26216 for (k=s;k<=mp->max_str_ptr;k++)
26217 undump(s+1,mp->max_str_ptr+1,mp->next_str[k]);
26218 mp->fixed_str_use=0;
26221 undump(0,mp->pool_ptr,mp->str_start[k]);
26222 if ( k==mp->str_ptr ) break;
26223 mp->str_ref[k]=max_str_ref;
26224 incr(mp->fixed_str_use);
26225 mp->last_fixed_str=k; k=mp->next_str[k];
26228 while ( k+4<mp->pool_ptr ) {
26229 undump_four_ASCII; k=k+4;
26231 k=mp->pool_ptr-4; undump_four_ASCII;
26232 mp->init_str_use=mp->fixed_str_use; mp->init_pool_ptr=mp->pool_ptr;
26233 mp->max_pool_ptr=mp->pool_ptr;
26234 mp->strs_used_up=mp->fixed_str_use;
26235 mp->pool_in_use=mp->str_start[mp->str_ptr]; mp->strs_in_use=mp->fixed_str_use;
26236 mp->max_pl_used=mp->pool_in_use; mp->max_strs_used=mp->strs_in_use;
26237 mp->pact_count=0; mp->pact_chars=0; mp->pact_strs=0;
26239 @ By sorting the list of available spaces in the variable-size portion of
26240 |mem|, we are usually able to get by without having to dump very much
26241 of the dynamic memory.
26243 We recompute |var_used| and |dyn_used|, so that \.{INIMP} dumps valid
26244 information even when it has not been gathering statistics.
26246 @<Dump the dynamic memory@>=
26247 mp_sort_avail(mp); mp->var_used=0;
26248 dump_int(mp->lo_mem_max); dump_int(mp->rover);
26249 p=0; q=mp->rover; x=0;
26251 for (k=p;k<= q+1;k++)
26252 dump_wd(mp->mem[k]);
26253 x=x+q+2-p; mp->var_used=mp->var_used+q-p;
26254 p=q+node_size(q); q=rlink(q);
26255 } while (q!=mp->rover);
26256 mp->var_used=mp->var_used+mp->lo_mem_max-p;
26257 mp->dyn_used=mp->mem_end+1-mp->hi_mem_min;
26258 for (k=p;k<= mp->lo_mem_max;k++ )
26259 dump_wd(mp->mem[k]);
26260 x=x+mp->lo_mem_max+1-p;
26261 dump_int(mp->hi_mem_min); dump_int(mp->avail);
26262 for (k=mp->hi_mem_min;k<=mp->mem_end;k++ )
26263 dump_wd(mp->mem[k]);
26264 x=x+mp->mem_end+1-mp->hi_mem_min;
26266 while ( p!=null ) {
26267 decr(mp->dyn_used); p=link(p);
26269 dump_int(mp->var_used); dump_int(mp->dyn_used);
26270 mp_print_ln(mp); mp_print_int(mp, x);
26271 mp_print(mp, " memory locations dumped; current usage is ");
26272 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used)
26274 @ @<Undump the dynamic memory@>=
26275 undump(lo_mem_stat_max+1000,hi_mem_stat_min-1,mp->lo_mem_max);
26276 undump(lo_mem_stat_max+1,mp->lo_mem_max,mp->rover);
26279 for (k=p;k<= q+1; k++)
26280 undump_wd(mp->mem[k]);
26282 if ( (p>mp->lo_mem_max)||((q>=rlink(q))&&(rlink(q)!=mp->rover)) )
26285 } while (q!=mp->rover);
26286 for (k=p;k<=mp->lo_mem_max;k++ )
26287 undump_wd(mp->mem[k]);
26288 undump(mp->lo_mem_max+1,hi_mem_stat_min,mp->hi_mem_min);
26289 undump(null,mp->mem_top,mp->avail); mp->mem_end=mp->mem_top;
26290 for (k=mp->hi_mem_min;k<= mp->mem_end;k++)
26291 undump_wd(mp->mem[k]);
26292 undump_int(mp->var_used); undump_int(mp->dyn_used)
26294 @ A different scheme is used to compress the hash table, since its lower region
26295 is usually sparse. When |text(p)<>0| for |p<=hash_used|, we output three
26296 words: |p|, |hash[p]|, and |eqtb[p]|. The hash table is, of course, densely
26297 packed for |p>=hash_used|, so the remaining entries are output in~a~block.
26299 @<Dump the table of equivalents and the hash table@>=
26300 dump_int(mp->hash_used);
26301 mp->st_count=frozen_inaccessible-1-mp->hash_used;
26302 for (p=1;p<=mp->hash_used;p++) {
26303 if ( text(p)!=0 ) {
26304 dump_int(p); dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]); incr(mp->st_count);
26307 for (p=mp->hash_used+1;p<=(int)hash_end;p++) {
26308 dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]);
26310 dump_int(mp->st_count);
26311 mp_print_ln(mp); mp_print_int(mp, mp->st_count); mp_print(mp, " symbolic tokens")
26313 @ @<Undump the table of equivalents and the hash table@>=
26314 undump(1,frozen_inaccessible,mp->hash_used);
26317 undump(p+1,mp->hash_used,p);
26318 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
26319 } while (p!=mp->hash_used);
26320 for (p=mp->hash_used+1;p<=(int)hash_end;p++ ) {
26321 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
26323 undump_int(mp->st_count)
26325 @ We have already printed a lot of statistics, so we set |tracing_stats:=0|
26326 to prevent them appearing again.
26328 @<Dump a few more things and the closing check word@>=
26329 dump_int(mp->max_internal);
26330 dump_int(mp->int_ptr);
26331 for (k=1;k<= mp->int_ptr;k++ ) {
26332 dump_int(mp->internal[k]);
26333 dump_string(mp->int_name[k]);
26335 dump_int(mp->start_sym);
26336 dump_int(mp->interaction);
26337 dump_string(mp->mem_ident);
26338 dump_int(mp->bg_loc); dump_int(mp->eg_loc); dump_int(mp->serial_no); dump_int(69073);
26339 mp->internal[tracing_stats]=0
26341 @ @<Undump a few more things and the closing check word@>=
26343 if (x>mp->max_internal) mp_grow_internals(mp,x);
26344 undump_int(mp->int_ptr);
26345 for (k=1;k<= mp->int_ptr;k++) {
26346 undump_int(mp->internal[k]);
26347 undump_string(mp->int_name[k]);
26349 undump(0,frozen_inaccessible,mp->start_sym);
26350 if (mp->interaction==mp_unspecified_mode) {
26351 undump(mp_unspecified_mode,mp_error_stop_mode,mp->interaction);
26353 undump(mp_unspecified_mode,mp_error_stop_mode,x);
26355 undump_string(mp->mem_ident);
26356 undump(1,hash_end,mp->bg_loc);
26357 undump(1,hash_end,mp->eg_loc);
26358 undump_int(mp->serial_no);
26360 if ( (x!=69073)|| feof(mp->mem_file) ) goto OFF_BASE
26362 @ @<Create the |mem_ident|...@>=
26364 xfree(mp->mem_ident);
26365 mp->mem_ident = xmalloc(256,1);
26366 snprintf(mp->mem_ident,256," (mem=%s %i.%i.%i)",
26368 (int)(mp_round_unscaled(mp, mp->internal[year]) % 100),
26369 (int)mp_round_unscaled(mp, mp->internal[month]),
26370 (int)mp_round_unscaled(mp, mp->internal[day]));
26371 mp_pack_job_name(mp, mem_extension);
26372 while (! mp_w_open_out(mp, &mp->mem_file) )
26373 mp_prompt_file_name(mp, "mem file name", mem_extension);
26374 mp_print_nl(mp, "Beginning to dump on file ");
26375 @.Beginning to dump...@>
26376 mp_print(mp, mp->name_of_file);
26377 mp_print_nl(mp, mp->mem_ident);
26380 @ @<Dealloc variables@>=
26381 xfree(mp->mem_ident);
26383 @ @<Close the mem file@>=
26384 fclose(mp->mem_file)
26386 @* \[46] The main program.
26387 This is it: the part of \MP\ that executes all those procedures we have
26390 Well---almost. We haven't put the parsing subroutines into the
26391 program yet; and we'd better leave space for a few more routines that may
26392 have been forgotten.
26394 @c @<Declare the basic parsing subroutines@>;
26395 @<Declare miscellaneous procedures that were declared |forward|@>;
26396 @<Last-minute procedures@>
26398 @ We've noted that there are two versions of \MP. One, called \.{INIMP},
26400 has to be run first; it initializes everything from scratch, without
26401 reading a mem file, and it has the capability of dumping a mem file.
26402 The other one is called `\.{VIRMP}'; it is a ``virgin'' program that needs
26404 to input a mem file in order to get started. \.{VIRMP} typically has
26405 a bit more memory capacity than \.{INIMP}, because it does not need the
26406 space consumed by the dumping/undumping routines and the numerous calls on
26409 The \.{VIRMP} program cannot read a mem file instantaneously, of course;
26410 the best implementations therefore allow for production versions of \MP\ that
26411 not only avoid the loading routine for \PASCAL\ object code, they also have
26412 a mem file pre-loaded.
26415 boolean ini_version; /* are we iniMP? */
26417 @ @<Option variables@>=
26418 boolean ini_version; /* are we iniMP? */
26420 @ @<Set |ini_version|@>=
26421 mp->ini_version = (opt.ini_version ? true : false);
26423 @ Here we do whatever is needed to complete \MP's job gracefully on the
26424 local operating system. The code here might come into play after a fatal
26425 error; it must therefore consist entirely of ``safe'' operations that
26426 cannot produce error messages. For example, it would be a mistake to call
26427 |str_room| or |make_string| at this time, because a call on |overflow|
26428 might lead to an infinite loop.
26429 @^system dependencies@>
26431 This program doesn't bother to close the input files that may still be open.
26433 @<Last-minute...@>=
26434 void mp_close_files_and_terminate (MP mp) {
26435 integer k; /* all-purpose index */
26436 integer LH; /* the length of the \.{TFM} header, in words */
26437 int lk_offset; /* extra words inserted at beginning of |lig_kern| array */
26438 pointer p; /* runs through a list of \.{TFM} dimensions */
26439 @<Close all open files in the |rd_file| and |wr_file| arrays@>;
26440 if ( mp->internal[tracing_stats]>0 )
26441 @<Output statistics about this job@>;
26443 @<Do all the finishing work on the \.{TFM} file@>;
26444 @<Explain what output files were written@>;
26445 if ( mp->log_opened ){
26447 fclose(mp->log_file); mp->selector=mp->selector-2;
26448 if ( mp->selector==term_only ) {
26449 mp_print_nl(mp, "Transcript written on ");
26450 @.Transcript written...@>
26451 mp_print(mp, mp->log_name); mp_print_char(mp, '.');
26457 @ @<Declarations@>=
26458 void mp_close_files_and_terminate (MP mp) ;
26460 @ @<Close all open files in the |rd_file| and |wr_file| arrays@>=
26461 for (k=0;k<=(int)mp->read_files-1;k++ ) {
26462 if ( mp->rd_fname[k]!=NULL ) fclose(mp->rd_file[k]);
26464 for (k=0;k<=(int)mp->write_files-1;k++) {
26465 if ( mp->wr_fname[k]!=NULL ) fclose(mp->wr_file[k]);
26468 @ We want to produce a \.{TFM} file if and only if |fontmaking| is positive.
26470 We reclaim all of the variable-size memory at this point, so that
26471 there is no chance of another memory overflow after the memory capacity
26472 has already been exceeded.
26474 @<Do all the finishing work on the \.{TFM} file@>=
26475 if ( mp->internal[fontmaking]>0 ) {
26476 @<Make the dynamic memory into one big available node@>;
26477 @<Massage the \.{TFM} widths@>;
26478 mp_fix_design_size(mp); mp_fix_check_sum(mp);
26479 @<Massage the \.{TFM} heights, depths, and italic corrections@>;
26480 mp->internal[fontmaking]=0; /* avoid loop in case of fatal error */
26481 @<Finish the \.{TFM} file@>;
26484 @ @<Make the dynamic memory into one big available node@>=
26485 mp->rover=lo_mem_stat_max+1; link(mp->rover)=empty_flag; mp->lo_mem_max=mp->hi_mem_min-1;
26486 if ( mp->lo_mem_max-mp->rover>max_halfword ) mp->lo_mem_max=max_halfword+mp->rover;
26487 node_size(mp->rover)=mp->lo_mem_max-mp->rover;
26488 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
26489 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null
26491 @ The present section goes directly to the log file instead of using
26492 |print| commands, because there's no need for these strings to take
26493 up |str_pool| memory when a non-{\bf stat} version of \MP\ is being used.
26495 @<Output statistics...@>=
26496 if ( mp->log_opened ) {
26499 wlog_ln("Here is how much of MetaPost's memory you used:");
26500 @.Here is how much...@>
26501 snprintf(s,128," %i string%s out of %i",(int)mp->max_strs_used-mp->init_str_use,
26502 (mp->max_strs_used!=mp->init_str_use+1 ? "s" : ""),
26503 (int)(mp->max_strings-1-mp->init_str_use));
26505 snprintf(s,128," %i string characters out of %i",
26506 (int)mp->max_pl_used-mp->init_pool_ptr,
26507 (int)mp->pool_size-mp->init_pool_ptr);
26509 snprintf(s,128," %i words of memory out of %i",
26510 (int)mp->lo_mem_max+mp->mem_end-mp->hi_mem_min+2,
26511 (int)mp->mem_end+1);
26513 snprintf(s,128," %i symbolic tokens out of %i", (int)mp->st_count, (int)mp->hash_size);
26515 snprintf(s,128," %ii, %in, %ip, %ib stack positions out of %ii, %in, %ip, %ib",
26516 (int)mp->max_in_stack,(int)mp->int_ptr,
26517 (int)mp->max_param_stack,(int)mp->max_buf_stack+1,
26518 (int)mp->stack_size,(int)mp->max_internal,(int)mp->param_size,(int)mp->buf_size);
26520 snprintf(s,128," %i string compactions (moved %i characters, %i strings)",
26521 (int)mp->pact_count,(int)mp->pact_chars,(int)mp->pact_strs);
26525 @ We get to the |final_cleanup| routine when \&{end} or \&{dump} has
26528 @<Last-minute...@>=
26529 void mp_final_cleanup (MP mp) {
26530 small_number c; /* 0 for \&{end}, 1 for \&{dump} */
26532 if ( mp->job_name==NULL ) mp_open_log_file(mp);
26533 while ( mp->input_ptr>0 ) {
26534 if ( token_state ) mp_end_token_list(mp);
26535 else mp_end_file_reading(mp);
26537 while ( mp->loop_ptr!=null ) mp_stop_iteration(mp);
26538 while ( mp->open_parens>0 ) {
26539 mp_print(mp, " )"); decr(mp->open_parens);
26541 while ( mp->cond_ptr!=null ) {
26542 mp_print_nl(mp, "(end occurred when ");
26543 @.end occurred...@>
26544 mp_print_cmd_mod(mp, fi_or_else,mp->cur_if);
26545 /* `\.{if}' or `\.{elseif}' or `\.{else}' */
26546 if ( mp->if_line!=0 ) {
26547 mp_print(mp, " on line "); mp_print_int(mp, mp->if_line);
26549 mp_print(mp, " was incomplete)");
26550 mp->if_line=if_line_field(mp->cond_ptr);
26551 mp->cur_if=name_type(mp->cond_ptr); mp->cond_ptr=link(mp->cond_ptr);
26553 if ( mp->history!=spotless )
26554 if ( ((mp->history==warning_issued)||(mp->interaction<mp_error_stop_mode)) )
26555 if ( mp->selector==term_and_log ) {
26556 mp->selector=term_only;
26557 mp_print_nl(mp, "(see the transcript file for additional information)");
26558 @.see the transcript file...@>
26559 mp->selector=term_and_log;
26562 if (mp->ini_version) {
26563 mp_store_mem_file(mp); return;
26565 mp_print_nl(mp, "(dump is performed only by INIMP)"); return;
26566 @.dump...only by INIMP@>
26570 @ @<Declarations@>=
26571 void mp_final_cleanup (MP mp) ;
26572 void mp_init_prim (MP mp) ;
26573 void mp_init_tab (MP mp) ;
26575 @ @<Last-minute...@>=
26576 void mp_init_prim (MP mp) { /* initialize all the primitives */
26580 void mp_init_tab (MP mp) { /* initialize other tables */
26581 integer k; /* all-purpose index */
26582 @<Initialize table entries (done by \.{INIMP} only)@>;
26586 @ When we begin the following code, \MP's tables may still contain garbage;
26587 the strings might not even be present. Thus we must proceed cautiously to get
26590 But when we finish this part of the program, \MP\ is ready to call on the
26591 |main_control| routine to do its work.
26593 @<Get the first line...@>=
26595 @<Initialize the input routines@>;
26596 if ( (mp->mem_ident==NULL)||(mp->buffer[loc]=='&') ) {
26597 if ( mp->mem_ident!=NULL ) mp_initialize(mp); /* erase preloaded mem */
26598 if ( ! mp_open_mem_file(mp) ) return false;
26599 if ( ! mp_load_mem_file(mp) ) {
26600 fclose( mp->mem_file); return false;
26602 fclose( mp->mem_file);
26603 while ( (loc<limit)&&(mp->buffer[loc]==' ') ) incr(loc);
26605 mp->buffer[limit]='%';
26606 mp_fix_date_and_time(mp);
26607 mp->sys_random_seed = (mp->get_random_seed)(mp);
26608 mp_init_randoms(mp, mp->sys_random_seed);
26609 @<Initialize the print |selector|...@>;
26610 if ( loc<limit ) if ( mp->buffer[loc]!='\\' )
26611 mp_start_input(mp); /* \&{input} assumed */
26614 @ @<Run inimpost commands@>=
26616 mp_get_strings_started(mp);
26617 mp_init_tab(mp); /* initialize the tables */
26618 mp_init_prim(mp); /* call |primitive| for each primitive */
26619 mp->init_str_use=mp->str_ptr; mp->init_pool_ptr=mp->pool_ptr;
26620 mp->max_str_ptr=mp->str_ptr; mp->max_pool_ptr=mp->pool_ptr;
26621 mp_fix_date_and_time(mp);
26625 @* \[47] Debugging.
26626 Once \MP\ is working, you should be able to diagnose most errors with
26627 the \.{show} commands and other diagnostic features. But for the initial
26628 stages of debugging, and for the revelation of really deep mysteries, you
26629 can compile \MP\ with a few more aids, including the \PASCAL\ runtime
26630 checks and its debugger. An additional routine called |debug_help|
26631 will also come into play when you type `\.D' after an error message;
26632 |debug_help| also occurs just before a fatal error causes \MP\ to succumb.
26634 @^system dependencies@>
26636 The interface to |debug_help| is primitive, but it is good enough when used
26637 with a \PASCAL\ debugger that allows you to set breakpoints and to read
26638 variables and change their values. After getting the prompt `\.{debug \#}', you
26639 type either a negative number (this exits |debug_help|), or zero (this
26640 goes to a location where you can set a breakpoint, thereby entering into
26641 dialog with the \PASCAL\ debugger), or a positive number |m| followed by
26642 an argument |n|. The meaning of |m| and |n| will be clear from the
26643 program below. (If |m=13|, there is an additional argument, |l|.)
26646 @<Last-minute...@>=
26647 void mp_debug_help (MP mp) { /* routine to display various things */
26652 mp_print_nl(mp, "debug # (-1 to exit):"); update_terminal;
26655 fscanf(mp->term_in,"%i",&m);
26659 fscanf(mp->term_in,"%i",&n);
26661 @<Numbered cases for |debug_help|@>;
26662 default: mp_print(mp, "?"); break;
26667 @ @<Numbered cases...@>=
26668 case 1: mp_print_word(mp, mp->mem[n]); /* display |mem[n]| in all forms */
26670 case 2: mp_print_int(mp, info(n));
26672 case 3: mp_print_int(mp, link(n));
26674 case 4: mp_print_int(mp, eq_type(n)); mp_print_char(mp, ':'); mp_print_int(mp, equiv(n));
26676 case 5: mp_print_variable_name(mp, n);
26678 case 6: mp_print_int(mp, mp->internal[n]);
26680 case 7: mp_do_show_dependencies(mp);
26682 case 9: mp_show_token_list(mp, n,null,100000,0);
26684 case 10: mp_print_str(mp, n);
26686 case 11: mp_check_mem(mp, n>0); /* check wellformedness; print new busy locations if |n>0| */
26688 case 12: mp_search_mem(mp, n); /* look for pointers to |n| */
26690 case 13: l = 0; fscanf(mp->term_in,"%i",&l); mp_print_cmd_mod(mp, n,l);
26692 case 14: for (k=0;k<=n;k++) mp_print_str(mp, mp->buffer[k]);
26694 case 15: mp->panicking=! mp->panicking;
26698 @ \MP\ used to have one single routine to print to both `write' files
26699 and the PostScript output. Web2c redefines ``Character |k| cannot be
26700 printed'', and that resulted in some bugs where 8-bit characters were
26701 written to the PostScript file (reported by Wlodek Bzyl).
26703 Also, Hans Hagen requested spaces to be output as "\\040" instead of
26704 a plain space, since that makes it easier to parse the result file
26705 for postprocessing.
26707 @<Character |k| is not allowed in PostScript output@>=
26710 @ Saving the filename template
26712 @<Save the filename template@>=
26714 if ( mp->filename_template!=0 ) delete_str_ref(mp->filename_template);
26715 if ( length(mp->cur_exp)==0 ) mp->filename_template=0;
26717 mp->filename_template=mp->cur_exp; add_str_ref(mp->filename_template);
26721 @* \[48] System-dependent changes.
26722 This section should be replaced, if necessary, by any special
26723 modification of the program
26724 that are necessary to make \MP\ work at a particular installation.
26725 It is usually best to design your change file so that all changes to
26726 previous sections preserve the section numbering; then everybody's version
26727 will be consistent with the published program. More extensive changes,
26728 which introduce new sections, can be inserted here; then only the index
26729 itself will get a new section number.
26730 @^system dependencies@>
26733 Here is where you can find all uses of each identifier in the program,
26734 with underlined entries pointing to where the identifier was defined.
26735 If the identifier is only one letter long, however, you get to see only
26736 the underlined entries. {\sl All references are to section numbers instead of
26739 This index also lists error messages and other aspects of the program
26740 that you might want to look up some day. For example, the entry
26741 for ``system dependencies'' lists all sections that should receive
26742 special attention from people who are installing \MP\ in a new
26743 operating environment. A list of various things that can't happen appears
26744 under ``this can't happen''.
26745 Approximately 25 sections are listed under ``inner loop''; these account
26746 for more than 60\pct! of \MP's running time, exclusive of input and output.