1 % $Id: mp.web,v 1.8 2005/08/24 10:54:02 taco Exp $
2 % MetaPost, by John Hobby. Public domain.
4 % Much of this program was copied with permission from MF.web Version 1.9
5 % It interprets a language very similar to D.E. Knuth's METAFONT, but with
6 % changes designed to make it more suitable for PostScript output.
8 % TeX is a trademark of the American Mathematical Society.
9 % METAFONT is a trademark of Addison-Wesley Publishing Company.
10 % PostScript is a trademark of Adobe Systems Incorporated.
12 % Here is TeX material that gets inserted after \input webmac
13 \def\hang{\hangindent 3em\noindent\ignorespaces}
14 \def\textindent#1{\hangindent2.5em\noindent\hbox to2.5em{\hss#1 }\ignorespaces}
16 \def\psqrt#1{\sqrt{\mathstrut#1}}
18 \def\pct!{{\char`\%}} % percent sign in ordinary text
19 \font\tenlogo=logo10 % font used for the METAFONT logo
21 \def\MF{{\tenlogo META}\-{\tenlogo FONT}}
22 \def\MP{{\tenlogo META}\-{\tenlogo POST}}
23 \def\[#1]{\ignorespaces} % left over from pascal web
24 \def\<#1>{$\langle#1\rangle$}
25 \def\section{\mathhexbox278}
26 \let\swap=\leftrightarrow
27 \def\round{\mathop{\rm round}\nolimits}
28 \mathchardef\vb="026A % synonym for `\|'
30 \def\(#1){} % this is used to make section names sort themselves better
31 \def\9#1{} % this is used for sort keys in the index via @@:sort key}{entry@@>
38 This is \MP, a graphics-language processor based on D. E. Knuth's \MF.
40 The main purpose of the following program is to explain the algorithms of \MP\
41 as clearly as possible. However, the program has been written so that it
42 can be tuned to run efficiently in a wide variety of operating environments
43 by making comparatively few changes. Such flexibility is possible because
44 the documentation that follows is written in the \.{WEB} language, which is
45 at a higher level than C.
47 A large piece of software like \MP\ has inherent complexity that cannot
48 be reduced below a certain level of difficulty, although each individual
49 part is fairly simple by itself. The \.{WEB} language is intended to make
50 the algorithms as readable as possible, by reflecting the way the
51 individual program pieces fit together and by providing the
52 cross-references that connect different parts. Detailed comments about
53 what is going on, and about why things were done in certain ways, have
54 been liberally sprinkled throughout the program. These comments explain
55 features of the implementation, but they rarely attempt to explain the
56 \MP\ language itself, since the reader is supposed to be familiar with
57 {\sl The {\logos METAFONT\/}book} as well as the manual
59 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
60 {\sl A User's Manual for MetaPost}, Computing Science Technical Report 162,
61 AT\AM T Bell Laboratories.
63 @ The present implementation is a preliminary version, but the possibilities
64 for new features are limited by the desire to remain as nearly compatible
65 with \MF\ as possible.
67 On the other hand, the \.{WEB} description can be extended without changing
68 the core of the program, and it has been designed so that such
69 extensions are not extremely difficult to make.
70 The |banner| string defined here should be changed whenever \MP\
71 undergoes any modifications, so that it will be clear which version of
72 \MP\ might be the guilty party when a problem arises.
74 @^system dependencies@>
76 @d banner "This is MetaPost, Version 1.002" /* printed when \MP\ starts */
77 @d metapost_version "1.002"
78 @d mplib_version "0.20"
79 @d version_string " (Cweb version 0.20)"
84 @ The external library header for \MP\ is |mplib.h|. It contains a
85 few typedefs and the header defintions for the externally used
88 The most important of the typedefs is the definition of the structure
89 |MP_options|, that acts as a small, configurable front-end to the fairly
90 large |MP_instance| structure.
93 typedef struct MP_instance * MP;
95 typedef struct MP_options {
98 @<Exported function headers@>
100 @ The internal header file is much longer: it not only lists the complete
101 |MP_instance|, but also a lot of functions that have to be available to
102 the \ps\ backend, that is defined in a separate \.{WEB} file.
104 The variables from |MP_options| are included inside the |MP_instance|
109 typedef struct psout_data_struct * psout_data;
111 typedef signed int integer;
113 @<Types in the outer block@>;
114 @<Constants in the outer block@>
115 # ifndef LIBAVL_ALLOCATOR
116 # define LIBAVL_ALLOCATOR
117 struct libavl_allocator {
118 void *(*libavl_malloc) (struct libavl_allocator *, size_t libavl_size);
119 void (*libavl_free) (struct libavl_allocator *, void *libavl_block);
122 typedef struct MP_instance {
126 @<Internal library declarations@>
134 #include <unistd.h> /* for access() */
135 #include <time.h> /* for struct tm \& co */
137 #include "mpmp.h" /* internal header */
138 #include "mppsout.h" /* internal header */
141 @<Basic printing procedures@>
142 @<Error handling procedures@>
144 @ Here are the functions that set up the \MP\ instance.
147 @<Declare |mp_reallocate| functions@>;
148 struct MP_options *mp_options (void);
149 MP mp_new (struct MP_options *opt);
152 struct MP_options *mp_options (void) {
153 struct MP_options *opt;
154 opt = malloc(sizeof(MP_options));
156 memset (opt,0,sizeof(MP_options));
161 @ The |__attribute__| pragma is gcc-only.
163 @<Internal library ... @>=
164 #if !defined(__GNUC__) || (__GNUC__ < 2)
165 # define __attribute__(x)
166 #endif /* !defined(__GNUC__) || (__GNUC__ < 2) */
169 MP __attribute__ ((noinline))
170 mp_new (struct MP_options *opt) {
172 mp = xmalloc(1,sizeof(MP_instance));
173 @<Set |ini_version|@>;
174 @<Setup the non-local jump buffer in |mp_new|@>;
175 @<Allocate or initialize variables@>
176 if (opt->main_memory>mp->mem_max)
177 mp_reallocate_memory(mp,opt->main_memory);
178 mp_reallocate_paths(mp,1000);
179 mp_reallocate_fonts(mp,8);
184 void mp_free (MP mp) {
185 int k; /* loop variable */
186 @<Dealloc variables@>
191 void __attribute__((noinline))
192 mp_do_initialize ( MP mp) {
193 @<Local variables for initialization@>
194 @<Set initial values of key variables@>
196 int mp_initialize (MP mp) { /* this procedure gets things started properly */
197 mp->history=mp_fatal_error_stop; /* in case we quit during initialization */
198 @<Install and test the non-local jump buffer@>;
199 t_open_out; /* open the terminal for output */
200 @<Check the ``constant'' values...@>;
203 snprintf(ss,256,"Ouch---my internal constants have been clobbered!\n"
204 "---case %i",(int)mp->bad);
205 do_fprintf(mp->err_out,(char *)ss);
209 mp_do_initialize(mp); /* erase preloaded mem */
210 if (mp->ini_version) {
211 @<Run inimpost commands@>;
213 @<Initialize the output routines@>;
214 @<Get the first line of input and prepare to start@>;
216 mp_init_map_file(mp, mp->troff_mode);
217 mp->history=mp_spotless; /* ready to go! */
218 if (mp->troff_mode) {
219 mp->internal[mp_gtroffmode]=unity;
220 mp->internal[mp_prologues]=unity;
222 if ( mp->start_sym>0 ) { /* insert the `\&{everyjob}' symbol */
223 mp->cur_sym=mp->start_sym; mp_back_input(mp);
229 @<Exported function headers@>=
230 extern struct MP_options *mp_options (void);
231 extern MP mp_new (struct MP_options *opt) ;
232 extern void mp_free (MP mp);
233 extern int mp_initialize (MP mp);
235 @ The overall \MP\ program begins with the heading just shown, after which
236 comes a bunch of procedure declarations and function declarations.
237 Finally we will get to the main program, which begins with the
238 comment `|start_here|'. If you want to skip down to the
239 main program now, you can look up `|start_here|' in the index.
240 But the author suggests that the best way to understand this program
241 is to follow pretty much the order of \MP's components as they appear in the
242 \.{WEB} description you are now reading, since the present ordering is
243 intended to combine the advantages of the ``bottom up'' and ``top down''
244 approaches to the problem of understanding a somewhat complicated system.
246 @ Some of the code below is intended to be used only when diagnosing the
247 strange behavior that sometimes occurs when \MP\ is being installed or
248 when system wizards are fooling around with \MP\ without quite knowing
249 what they are doing. Such code will not normally be compiled; it is
250 delimited by the preprocessor test `|#ifdef DEBUG .. #endif|'.
252 @ This program has two important variations: (1) There is a long and slow
253 version called \.{INIMP}, which does the extra calculations needed to
255 initialize \MP's internal tables; and (2)~there is a shorter and faster
256 production version, which cuts the initialization to a bare minimum.
258 Which is which is decided at runtime.
260 @ The following parameters can be changed at compile time to extend or
261 reduce \MP's capacity. They may have different values in \.{INIMP} and
262 in production versions of \MP.
264 @^system dependencies@>
267 #define file_name_size 255 /* file names shouldn't be longer than this */
268 #define bistack_size 1500 /* size of stack for bisection algorithms;
269 should probably be left at this value */
271 @ Like the preceding parameters, the following quantities can be changed
272 at compile time to extend or reduce \MP's capacity. But if they are changed,
273 it is necessary to rerun the initialization program \.{INIMP}
275 to generate new tables for the production \MP\ program.
276 One can't simply make helter-skelter changes to the following constants,
277 since certain rather complex initialization
278 numbers are computed from them.
281 int max_strings; /* maximum number of strings; must not exceed |max_halfword| */
282 int pool_size; /* maximum number of characters in strings, including all
283 error messages and help texts, and the names of all identifiers */
284 int mem_max; /* greatest index in \MP's internal |mem| array;
285 must be strictly less than |max_halfword|;
286 must be equal to |mem_top| in \.{INIMP}, otherwise |>=mem_top| */
287 int mem_top; /* largest index in the |mem| array dumped by \.{INIMP};
288 must not be greater than |mem_max| */
290 @ @<Option variables@>=
291 int error_line; /* width of context lines on terminal error messages */
292 int half_error_line; /* width of first lines of contexts in terminal
293 error messages; should be between 30 and |error_line-15| */
294 int max_print_line; /* width of longest text lines output; should be at least 60 */
295 int hash_size; /* maximum number of symbolic tokens,
296 must be less than |max_halfword-3*param_size| */
297 int hash_prime; /* a prime number equal to about 85\pct! of |hash_size| */
298 int param_size; /* maximum number of simultaneous macro parameters */
299 int max_in_open; /* maximum number of input files and error insertions that
300 can be going on simultaneously */
301 int main_memory; /* only for options, to set up |mem_max| and |mem_top| */
304 @d set_value(a,b,c) do { a=c; if (b>c) a=b; } while (0)
309 set_value(mp->error_line,opt->error_line,79);
310 set_value(mp->half_error_line,opt->half_error_line,50);
311 set_value(mp->max_print_line,opt->max_print_line,100);
312 mp->main_memory=5000;
315 set_value(mp->hash_size,opt->hash_size,9500);
316 set_value(mp->hash_prime,opt->hash_prime,7919);
317 set_value(mp->param_size,opt->param_size,150);
318 set_value(mp->max_in_open,opt->max_in_open,10);
321 @ In case somebody has inadvertently made bad settings of the ``constants,''
322 \MP\ checks them using a global variable called |bad|.
324 This is the first of many sections of \MP\ where global variables are
328 integer bad; /* is some ``constant'' wrong? */
330 @ Later on we will say `\ignorespaces|if (mem_max>=max_halfword) bad=10;|',
331 or something similar. (We can't do that until |max_halfword| has been defined.)
333 @<Check the ``constant'' values for consistency@>=
335 if ( (mp->half_error_line<30)||(mp->half_error_line>mp->error_line-15) ) mp->bad=1;
336 if ( mp->max_print_line<60 ) mp->bad=2;
337 if ( mp->mem_top<=1100 ) mp->bad=4;
338 if (mp->hash_prime>mp->hash_size ) mp->bad=5;
340 @ Some |goto| labels are used by the following definitions. The label
341 `|restart|' is occasionally used at the very beginning of a procedure; and
342 the label `|reswitch|' is occasionally used just prior to a |case|
343 statement in which some cases change the conditions and we wish to branch
344 to the newly applicable case. Loops that are set up with the |loop|
345 construction defined below are commonly exited by going to `|done|' or to
346 `|found|' or to `|not_found|', and they are sometimes repeated by going to
347 `|continue|'. If two or more parts of a subroutine start differently but
348 end up the same, the shared code may be gathered together at
351 @ Here are some macros for common programming idioms.
353 @d incr(A) (A)=(A)+1 /* increase a variable by unity */
354 @d decr(A) (A)=(A)-1 /* decrease a variable by unity */
355 @d negate(A) (A)=-(A) /* change the sign of a variable */
356 @d double(A) (A)=(A)+(A)
359 @d do_nothing /* empty statement */
360 @d Return goto exit /* terminate a procedure call */
361 @f return nil /* \.{WEB} will henceforth say |return| instead of \\{return} */
363 @* \[2] The character set.
364 In order to make \MP\ readily portable to a wide variety of
365 computers, all of its input text is converted to an internal eight-bit
366 code that includes standard ASCII, the ``American Standard Code for
367 Information Interchange.'' This conversion is done immediately when each
368 character is read in. Conversely, characters are converted from ASCII to
369 the user's external representation just before they are output to a
373 Such an internal code is relevant to users of \MP\ only with respect to
374 the \&{char} and \&{ASCII} operations, and the comparison of strings.
376 @ Characters of text that have been converted to \MP's internal form
377 are said to be of type |ASCII_code|, which is a subrange of the integers.
380 typedef unsigned char ASCII_code; /* eight-bit numbers */
382 @ The present specification of \MP\ has been written under the assumption
383 that the character set contains at least the letters and symbols associated
384 with ASCII codes 040 through 0176; all of these characters are now
385 available on most computer terminals.
387 We shall use the name |text_char| to stand for the data type of the characters
388 that are converted to and from |ASCII_code| when they are input and output.
389 We shall also assume that |text_char| consists of the elements
390 |chr(first_text_char)| through |chr(last_text_char)|, inclusive.
391 The following definitions should be adjusted if necessary.
392 @^system dependencies@>
394 @d first_text_char 0 /* ordinal number of the smallest element of |text_char| */
395 @d last_text_char 255 /* ordinal number of the largest element of |text_char| */
398 typedef unsigned char text_char; /* the data type of characters in text files */
400 @ @<Local variables for init...@>=
403 @ The \MP\ processor converts between ASCII code and
404 the user's external character set by means of arrays |xord| and |xchr|
405 that are analogous to Pascal's |ord| and |chr| functions.
407 @d xchr(A) mp->xchr[(A)]
408 @d xord(A) mp->xord[(A)]
411 ASCII_code xord[256]; /* specifies conversion of input characters */
412 text_char xchr[256]; /* specifies conversion of output characters */
414 @ The core system assumes all 8-bit is acceptable. If it is not,
415 a change file has to alter the below section.
416 @^system dependencies@>
418 Additionally, people with extended character sets can
419 assign codes arbitrarily, giving an |xchr| equivalent to whatever
420 characters the users of \MP\ are allowed to have in their input files.
421 Appropriate changes to \MP's |char_class| table should then be made.
422 (Unlike \TeX, each installation of \MP\ has a fixed assignment of category
423 codes, called the |char_class|.) Such changes make portability of programs
424 more difficult, so they should be introduced cautiously if at all.
425 @^character set dependencies@>
426 @^system dependencies@>
429 for (i=0;i<=0377;i++) { xchr(i)=i; }
431 @ The following system-independent code makes the |xord| array contain a
432 suitable inverse to the information in |xchr|. Note that if |xchr[i]=xchr[j]|
433 where |i<j<0177|, the value of |xord[xchr[i]]| will turn out to be
434 |j| or more; hence, standard ASCII code numbers will be used instead of
435 codes below 040 in case there is a coincidence.
438 for (i=first_text_char;i<=last_text_char;i++) {
441 for (i=0200;i<=0377;i++) { xord(xchr(i))=i;}
442 for (i=0;i<=0176;i++) { xord(xchr(i))=i;}
444 @* \[3] Input and output.
445 The bane of portability is the fact that different operating systems treat
446 input and output quite differently, perhaps because computer scientists
447 have not given sufficient attention to this problem. People have felt somehow
448 that input and output are not part of ``real'' programming. Well, it is true
449 that some kinds of programming are more fun than others. With existing
450 input/output conventions being so diverse and so messy, the only sources of
451 joy in such parts of the code are the rare occasions when one can find a
452 way to make the program a little less bad than it might have been. We have
453 two choices, either to attack I/O now and get it over with, or to postpone
454 I/O until near the end. Neither prospect is very attractive, so let's
457 The basic operations we need to do are (1)~inputting and outputting of
458 text, to or from a file or the user's terminal; (2)~inputting and
459 outputting of eight-bit bytes, to or from a file; (3)~instructing the
460 operating system to initiate (``open'') or to terminate (``close'') input or
461 output from a specified file; (4)~testing whether the end of an input
462 file has been reached; (5)~display of bits on the user's screen.
463 The bit-display operation will be discussed in a later section; we shall
464 deal here only with more traditional kinds of I/O.
466 @ Finding files happens in a slightly roundabout fashion: the \MP\
467 instance object contains a field that holds a function pointer that finds a
468 file, and returns its name, or NULL. For this, it receives three
469 parameters: the non-qualified name |fname|, the intended |fopen|
470 operation type |fmode|, and the type of the file |ftype|.
472 The file types that are passed on in |ftype| can be used to
473 differentiate file searches if a library like kpathsea is used,
474 the fopen mode is passed along for the same reason.
477 typedef unsigned char eight_bits ; /* unsigned one-byte quantity */
479 @ @<Exported types@>=
481 mp_filetype_terminal = 0, /* the terminal */
482 mp_filetype_error, /* the terminal */
483 mp_filetype_program , /* \MP\ language input */
484 mp_filetype_log, /* the log file */
485 mp_filetype_postscript, /* the postscript output */
486 mp_filetype_memfile, /* memory dumps */
487 mp_filetype_metrics, /* TeX font metric files */
488 mp_filetype_fontmap, /* PostScript font mapping files */
489 mp_filetype_font, /* PostScript type1 font programs */
490 mp_filetype_encoding, /* PostScript font encoding files */
491 mp_filetype_text, /* first text file for readfrom and writeto primitives */
493 typedef char *(*mp_file_finder)(char *, char *, int);
494 typedef void *(*mp_file_opener)(char *, char *, int);
495 typedef char *(*mp_file_reader)(void *, size_t *);
496 typedef void (*mp_binfile_reader)(void *, void **, size_t *);
497 typedef void (*mp_file_closer)(void *);
498 typedef int (*mp_file_eoftest)(void *);
499 typedef void (*mp_file_flush)(void *);
500 typedef void (*mp_file_writer)(void *, char *);
501 typedef void (*mp_binfile_writer)(void *, void *, size_t);
504 @ @<Option variables@>=
505 mp_file_finder find_file;
506 mp_file_opener open_file;
507 mp_file_reader read_ascii_file;
508 mp_binfile_reader read_binary_file;
509 mp_file_closer close_file;
510 mp_file_eoftest eof_file;
511 mp_file_flush flush_file;
512 mp_file_writer write_ascii_file;
513 mp_binfile_writer write_binary_file;
515 @ The default function for finding files is |mp_find_file|. It is
516 pretty stupid: it will only find files in the current directory.
518 This function may disappear altogether, it is currently only
519 used for the default font map file.
522 char *mp_find_file (char *fname, char *fmode, int ftype) {
523 if (fmode[0] != 'r' || (! access (fname,R_OK)) || ftype) {
524 return strdup(fname);
529 @ This has to be done very early on, so it is best to put it in with
530 the |mp_new| allocations
532 @d set_callback_option(A) do { mp->A = mp_##A;
533 if (opt->A!=NULL) mp->A = opt->A;
536 @<Allocate or initialize ...@>=
537 set_callback_option(find_file);
538 set_callback_option(open_file);
539 set_callback_option(read_ascii_file);
540 set_callback_option(read_binary_file);
541 set_callback_option(close_file);
542 set_callback_option(eof_file);
543 set_callback_option(flush_file);
544 set_callback_option(write_ascii_file);
545 set_callback_option(write_binary_file);
547 @ Because |mp_find_file| is used so early, it has to be in the helpers
551 char *mp_find_file (char *fname, char *fmode, int ftype) ;
552 void *mp_open_file (char *fname, char *fmode, int ftype) ;
553 char *mp_read_ascii_file (void *f, size_t *size) ;
554 void mp_read_binary_file (void *f, void **d, size_t *size) ;
555 void mp_close_file (void *f) ;
556 int mp_eof_file (void *f) ;
557 void mp_flush_file (void *f) ;
558 void mp_write_ascii_file (void *f, char *s) ;
559 void mp_write_binary_file (void *f, void *s, size_t t) ;
561 @ The function to open files can now be very short.
564 void *mp_open_file(char *fname, char *fmode, int ftype) {
566 if (ftype==mp_filetype_terminal) {
567 return (fmode[0] == 'r' ? stdin : stdout);
568 } else if (ftype==mp_filetype_error) {
570 } else if (fname != NULL && (fmode[0] != 'r' || (! access (fname,R_OK)))) {
571 return (void *)fopen(fname, fmode);
577 @ This is a legacy interface: (almost) all file names pass through |name_of_file|.
580 char name_of_file[file_name_size+1]; /* the name of a system file */
581 int name_length;/* this many characters are actually
582 relevant in |name_of_file| (the rest are blank) */
584 @ @<Option variables@>=
585 int print_found_names; /* configuration parameter */
587 @ If this parameter is true, the terminal and log will report the found
588 file names for input files instead of the requested ones.
589 It is off by default because it creates an extra filename lookup.
591 @<Allocate or initialize ...@>=
592 mp->print_found_names = (opt->print_found_names>0 ? true : false);
594 @ \MP's file-opening procedures return |false| if no file identified by
595 |name_of_file| could be opened.
597 The |OPEN_FILE| macro takes care of the |print_found_names| parameter.
598 It is not used for opening a mem file for read, because that file name
602 if (mp->print_found_names) {
603 char *s = (mp->find_file)(mp->name_of_file,A,ftype);
605 *f = (mp->open_file)(mp->name_of_file,A, ftype);
606 strncpy(mp->name_of_file,s,file_name_size);
612 *f = (mp->open_file)(mp->name_of_file,A, ftype);
615 return (*f ? true : false)
618 boolean mp_a_open_in (MP mp, void **f, int ftype) {
619 /* open a text file for input */
623 boolean mp_w_open_in (MP mp, void **f) {
624 /* open a word file for input */
625 *f = (mp->open_file)(mp->name_of_file,"rb",mp_filetype_memfile);
626 return (*f ? true : false);
629 boolean mp_a_open_out (MP mp, void **f, int ftype) {
630 /* open a text file for output */
634 boolean mp_b_open_out (MP mp, void **f, int ftype) {
635 /* open a binary file for output */
639 boolean mp_w_open_out (MP mp, void **f) {
640 /* open a word file for output */
641 int ftype = mp_filetype_memfile;
646 char *mp_read_ascii_file (void *ff, size_t *size) {
648 size_t len = 0, lim = 128;
650 FILE *f = (FILE *)ff;
657 if (s==NULL) return NULL;
658 while (c!=EOF && c!='\n' && c!='\r') {
660 s =realloc(s, (lim+(lim>>2)));
661 if (s==NULL) return NULL;
669 if (c!=EOF && c!='\n')
679 void mp_write_ascii_file (void *f, char *s) {
688 void mp_read_binary_file (void *f, void **data, size_t *size) {
691 len = fread(*data,1,*size,(FILE *)f);
697 void mp_write_binary_file (void *f, void *s, size_t size) {
700 fwrite(s,size,1,(FILE *)f);
706 void mp_close_file (void *f) {
713 int mp_eof_file (void *f) {
715 return feof((FILE *)f);
722 void mp_flush_file (void *f) {
728 @ Input from text files is read one line at a time, using a routine called
729 |input_ln|. This function is defined in terms of global variables called
730 |buffer|, |first|, and |last| that will be described in detail later; for
731 now, it suffices for us to know that |buffer| is an array of |ASCII_code|
732 values, and that |first| and |last| are indices into this array
733 representing the beginning and ending of a line of text.
736 size_t buf_size; /* maximum number of characters simultaneously present in
737 current lines of open files */
738 ASCII_code *buffer; /* lines of characters being read */
739 size_t first; /* the first unused position in |buffer| */
740 size_t last; /* end of the line just input to |buffer| */
741 size_t max_buf_stack; /* largest index used in |buffer| */
743 @ @<Allocate or initialize ...@>=
745 mp->buffer = xmalloc((mp->buf_size+1),sizeof(ASCII_code));
747 @ @<Dealloc variables@>=
751 void mp_reallocate_buffer(MP mp, size_t l) {
753 if (l>max_halfword) {
754 mp_confusion(mp,"buffer size"); /* can't happen (I hope) */
756 buffer = xmalloc((l+1),sizeof(ASCII_code));
757 memcpy(buffer,mp->buffer,(mp->buf_size+1));
759 mp->buffer = buffer ;
763 @ The |input_ln| function brings the next line of input from the specified
764 field into available positions of the buffer array and returns the value
765 |true|, unless the file has already been entirely read, in which case it
766 returns |false| and sets |last:=first|. In general, the |ASCII_code|
767 numbers that represent the next line of the file are input into
768 |buffer[first]|, |buffer[first+1]|, \dots, |buffer[last-1]|; and the
769 global variable |last| is set equal to |first| plus the length of the
770 line. Trailing blanks are removed from the line; thus, either |last=first|
771 (in which case the line was entirely blank) or |buffer[last-1]<>" "|.
774 The variable |max_buf_stack|, which is used to keep track of how large
775 the |buf_size| parameter must be to accommodate the present job, is
776 also kept up to date by |input_ln|.
779 boolean mp_input_ln (MP mp, void *f ) {
780 /* inputs the next line or returns |false| */
783 mp->last=mp->first; /* cf.\ Matthew 19\thinspace:\thinspace30 */
784 s = (mp->read_ascii_file)(f, &size);
788 mp->last = mp->first+size;
789 if ( mp->last>=mp->max_buf_stack ) {
790 mp->max_buf_stack=mp->last+1;
791 while ( mp->max_buf_stack>=mp->buf_size ) {
792 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
795 memcpy((mp->buffer+mp->first),s,size);
796 /* while ( mp->buffer[mp->last]==' ' ) mp->last--; */
802 @ The user's terminal acts essentially like other files of text, except
803 that it is used both for input and for output. When the terminal is
804 considered an input file, the file variable is called |term_in|, and when it
805 is considered an output file the file variable is |term_out|.
806 @^system dependencies@>
809 void * term_in; /* the terminal as an input file */
810 void * term_out; /* the terminal as an output file */
811 void * err_out; /* the terminal as an output file */
813 @ Here is how to open the terminal files. In the default configuration,
814 nothing happens except that the command line (if there is one) is copied
815 to the input buffer. The variable |command_line| will be filled by the
816 |main| procedure. The copying can not be done earlier in the program
817 logic because in the |INI| version, the |buffer| is also used for primitive
820 @^system dependencies@>
822 @d t_open_out do {/* open the terminal for text output */
823 mp->term_out = (mp->open_file)("terminal", "w", mp_filetype_terminal);
824 mp->err_out = (mp->open_file)("error", "w", mp_filetype_error);
826 @d t_open_in do { /* open the terminal for text input */
827 mp->term_in = (mp->open_file)("terminal", "r", mp_filetype_terminal);
828 if (mp->command_line!=NULL) {
829 mp->last = strlen(mp->command_line);
830 strncpy((char *)mp->buffer,mp->command_line,mp->last);
831 xfree(mp->command_line);
837 @d t_close_out do { /* close the terminal */
838 (mp->close_file)(mp->term_out);
839 (mp->close_file)(mp->err_out);
842 @d t_close_in do { /* close the terminal */
843 (mp->close_file)(mp->term_in);
846 @<Option variables@>=
849 @ @<Allocate or initialize ...@>=
850 mp->command_line = xstrdup(opt->command_line);
852 @ Sometimes it is necessary to synchronize the input/output mixture that
853 happens on the user's terminal, and three system-dependent
854 procedures are used for this
855 purpose. The first of these, |update_terminal|, is called when we want
856 to make sure that everything we have output to the terminal so far has
857 actually left the computer's internal buffers and been sent.
858 The second, |clear_terminal|, is called when we wish to cancel any
859 input that the user may have typed ahead (since we are about to
860 issue an unexpected error message). The third, |wake_up_terminal|,
861 is supposed to revive the terminal if the user has disabled it by
862 some instruction to the operating system. The following macros show how
863 these operations can be specified:
864 @^system dependencies@>
866 @d update_terminal (mp->flush_file)(mp->term_out) /* empty the terminal output buffer */
867 @d clear_terminal do_nothing /* clear the terminal input buffer */
868 @d wake_up_terminal (mp->flush_file)(mp->term_out) /* cancel the user's cancellation of output */
870 @ We need a special routine to read the first line of \MP\ input from
871 the user's terminal. This line is different because it is read before we
872 have opened the transcript file; there is sort of a ``chicken and
873 egg'' problem here. If the user types `\.{input cmr10}' on the first
874 line, or if some macro invoked by that line does such an \.{input},
875 the transcript file will be named `\.{cmr10.log}'; but if no \.{input}
876 commands are performed during the first line of terminal input, the transcript
877 file will acquire its default name `\.{mpout.log}'. (The transcript file
878 will not contain error messages generated by the first line before the
879 first \.{input} command.)
881 The first line is even more special. It's nice to let the user start
882 running a \MP\ job by typing a command line like `\.{MP cmr10}'; in
883 such a case, \MP\ will operate as if the first line of input were
884 `\.{cmr10}', i.e., the first line will consist of the remainder of the
885 command line, after the part that invoked \MP.
887 @ Different systems have different ways to get started. But regardless of
888 what conventions are adopted, the routine that initializes the terminal
889 should satisfy the following specifications:
891 \yskip\textindent{1)}It should open file |term_in| for input from the
892 terminal. (The file |term_out| will already be open for output to the
895 \textindent{2)}If the user has given a command line, this line should be
896 considered the first line of terminal input. Otherwise the
897 user should be prompted with `\.{**}', and the first line of input
898 should be whatever is typed in response.
900 \textindent{3)}The first line of input, which might or might not be a
901 command line, should appear in locations |first| to |last-1| of the
904 \textindent{4)}The global variable |loc| should be set so that the
905 character to be read next by \MP\ is in |buffer[loc]|. This
906 character should not be blank, and we should have |loc<last|.
908 \yskip\noindent(It may be necessary to prompt the user several times
909 before a non-blank line comes in. The prompt is `\.{**}' instead of the
910 later `\.*' because the meaning is slightly different: `\.{input}' need
911 not be typed immediately after~`\.{**}'.)
913 @d loc mp->cur_input.loc_field /* location of first unread character in |buffer| */
915 @ The following program does the required initialization
916 without retrieving a possible command line.
917 It should be clear how to modify this routine to deal with command lines,
918 if the system permits them.
919 @^system dependencies@>
922 boolean mp_init_terminal (MP mp) { /* gets the terminal input started */
929 if (!mp->noninteractive) {
930 wake_up_terminal; do_fprintf(mp->term_out,"**"); update_terminal;
933 if ( ! mp_input_ln(mp, mp->term_in ) ) { /* this shouldn't happen */
934 do_fprintf(mp->term_out,"\n! End of file on the terminal... why?");
935 @.End of file on the terminal@>
939 while ( (loc<(int)mp->last)&&(mp->buffer[loc]==' ') )
941 if ( loc<(int)mp->last ) {
942 return true; /* return unless the line was all blank */
944 if (!mp->noninteractive) {
945 do_fprintf(mp->term_out,"Please type the name of your input file.\n");
951 boolean mp_init_terminal (MP mp) ;
954 @* \[4] String handling.
955 Symbolic token names and diagnostic messages are variable-length strings
956 of eight-bit characters. Many strings \MP\ uses are simply literals
957 in the compiled source, like the error messages and the names of the
958 internal parameters. Other strings are used or defined from the \MP\ input
959 language, and these have to be interned.
961 \MP\ uses strings more extensively than \MF\ does, but the necessary
962 operations can still be handled with a fairly simple data structure.
963 The array |str_pool| contains all of the (eight-bit) ASCII codes in all
964 of the strings, and the array |str_start| contains indices of the starting
965 points of each string. Strings are referred to by integer numbers, so that
966 string number |s| comprises the characters |str_pool[j]| for
967 |str_start[s]<=j<str_start[ss]| where |ss=next_str[s]|. The string pool
968 is allocated sequentially and |str_pool[pool_ptr]| is the next unused
969 location. The first string number not currently in use is |str_ptr|
970 and |next_str[str_ptr]| begins a list of free string numbers. String
971 pool entries |str_start[str_ptr]| up to |pool_ptr| are reserved for a
972 string currently being constructed.
974 String numbers 0 to 255 are reserved for strings that correspond to single
975 ASCII characters. This is in accordance with the conventions of \.{WEB},
977 which converts single-character strings into the ASCII code number of the
978 single character involved, while it converts other strings into integers
979 and builds a string pool file. Thus, when the string constant \.{"."} appears
980 in the program below, \.{WEB} converts it into the integer 46, which is the
981 ASCII code for a period, while \.{WEB} will convert a string like \.{"hello"}
982 into some integer greater than~255. String number 46 will presumably be the
983 single character `\..'\thinspace; but some ASCII codes have no standard visible
984 representation, and \MP\ may need to be able to print an arbitrary
985 ASCII character, so the first 256 strings are used to specify exactly what
986 should be printed for each of the 256 possibilities.
989 typedef int pool_pointer; /* for variables that point into |str_pool| */
990 typedef int str_number; /* for variables that point into |str_start| */
993 ASCII_code *str_pool; /* the characters */
994 pool_pointer *str_start; /* the starting pointers */
995 str_number *next_str; /* for linking strings in order */
996 pool_pointer pool_ptr; /* first unused position in |str_pool| */
997 str_number str_ptr; /* number of the current string being created */
998 pool_pointer init_pool_ptr; /* the starting value of |pool_ptr| */
999 str_number init_str_use; /* the initial number of strings in use */
1000 pool_pointer max_pool_ptr; /* the maximum so far of |pool_ptr| */
1001 str_number max_str_ptr; /* the maximum so far of |str_ptr| */
1003 @ @<Allocate or initialize ...@>=
1004 mp->str_pool = xmalloc ((mp->pool_size +1),sizeof(ASCII_code));
1005 mp->str_start = xmalloc ((mp->max_strings+1),sizeof(pool_pointer));
1006 mp->next_str = xmalloc ((mp->max_strings+1),sizeof(str_number));
1008 @ @<Dealloc variables@>=
1009 xfree(mp->str_pool);
1010 xfree(mp->str_start);
1011 xfree(mp->next_str);
1013 @ Most printing is done from |char *|s, but sometimes not. Here are
1014 functions that convert an internal string into a |char *| for use
1015 by the printing routines, and vice versa.
1017 @d str(A) mp_str(mp,A)
1018 @d rts(A) mp_rts(mp,A)
1021 int mp_xstrcmp (const char *a, const char *b);
1022 char * mp_str (MP mp, str_number s);
1025 str_number mp_rts (MP mp, char *s);
1026 str_number mp_make_string (MP mp);
1028 @ The attempt to catch interrupted strings that is in |mp_rts|, is not
1029 very good: it does not handle nesting over more than one level.
1032 int mp_xstrcmp (const char *a, const char *b) {
1033 if (a==NULL && b==NULL)
1043 char * mp_str (MP mp, str_number ss) {
1046 if (ss==mp->str_ptr) {
1050 s = xmalloc(len+1,sizeof(char));
1051 strncpy(s,(char *)(mp->str_pool+(mp->str_start[ss])),len);
1056 str_number mp_rts (MP mp, char *s) {
1057 int r; /* the new string */
1058 int old; /* a possible string in progress */
1062 } else if (strlen(s)==1) {
1066 str_room((integer)strlen(s));
1067 if (mp->str_start[mp->str_ptr]<mp->pool_ptr)
1068 old = mp_make_string(mp);
1073 r = mp_make_string(mp);
1075 str_room(length(old));
1076 while (i<length(old)) {
1077 append_char((mp->str_start[old]+i));
1079 mp_flush_string(mp,old);
1085 @ Except for |strs_used_up|, the following string statistics are only
1086 maintained when code between |stat| $\ldots$ |tats| delimiters is not
1090 integer strs_used_up; /* strings in use or unused but not reclaimed */
1091 integer pool_in_use; /* total number of cells of |str_pool| actually in use */
1092 integer strs_in_use; /* total number of strings actually in use */
1093 integer max_pl_used; /* maximum |pool_in_use| so far */
1094 integer max_strs_used; /* maximum |strs_in_use| so far */
1096 @ Several of the elementary string operations are performed using \.{WEB}
1097 macros instead of functions, because many of the
1098 operations are done quite frequently and we want to avoid the
1099 overhead of procedure calls. For example, here is
1100 a simple macro that computes the length of a string.
1103 @d str_stop(A) mp->str_start[mp->next_str[(A)]] /* one cell past the end of string
1105 @d length(A) (str_stop((A))-mp->str_start[(A)]) /* the number of characters in string \# */
1107 @ The length of the current string is called |cur_length|. If we decide that
1108 the current string is not needed, |flush_cur_string| resets |pool_ptr| so that
1109 |cur_length| becomes zero.
1111 @d cur_length (mp->pool_ptr - mp->str_start[mp->str_ptr])
1112 @d flush_cur_string mp->pool_ptr=mp->str_start[mp->str_ptr]
1114 @ Strings are created by appending character codes to |str_pool|.
1115 The |append_char| macro, defined here, does not check to see if the
1116 value of |pool_ptr| has gotten too high; this test is supposed to be
1117 made before |append_char| is used.
1119 To test if there is room to append |l| more characters to |str_pool|,
1120 we shall write |str_room(l)|, which tries to make sure there is enough room
1121 by compacting the string pool if necessary. If this does not work,
1122 |do_compaction| aborts \MP\ and gives an apologetic error message.
1124 @d append_char(A) /* put |ASCII_code| \# at the end of |str_pool| */
1125 { mp->str_pool[mp->pool_ptr]=(A); incr(mp->pool_ptr);
1127 @d str_room(A) /* make sure that the pool hasn't overflowed */
1128 { if ( mp->pool_ptr+(A) > mp->max_pool_ptr ) {
1129 if ( mp->pool_ptr+(A) > mp->pool_size ) mp_do_compaction(mp, (A));
1130 else mp->max_pool_ptr=mp->pool_ptr+(A); }
1133 @ The following routine is similar to |str_room(1)| but it uses the
1134 argument |mp->pool_size| to prevent |do_compaction| from aborting when
1135 string space is exhausted.
1137 @<Declare the procedure called |unit_str_room|@>=
1138 void mp_unit_str_room (MP mp);
1141 void mp_unit_str_room (MP mp) {
1142 if ( mp->pool_ptr>=mp->pool_size ) mp_do_compaction(mp, mp->pool_size);
1143 if ( mp->pool_ptr>=mp->max_pool_ptr ) mp->max_pool_ptr=mp->pool_ptr+1;
1146 @ \MP's string expressions are implemented in a brute-force way: Every
1147 new string or substring that is needed is simply copied into the string pool.
1148 Space is eventually reclaimed by a procedure called |do_compaction| with
1149 the aid of a simple system system of reference counts.
1150 @^reference counts@>
1152 The number of references to string number |s| will be |str_ref[s]|. The
1153 special value |str_ref[s]=max_str_ref=127| is used to denote an unknown
1154 positive number of references; such strings will never be recycled. If
1155 a string is ever referred to more than 126 times, simultaneously, we
1156 put it in this category. Hence a single byte suffices to store each |str_ref|.
1158 @d max_str_ref 127 /* ``infinite'' number of references */
1159 @d add_str_ref(A) { if ( mp->str_ref[(A)]<max_str_ref ) incr(mp->str_ref[(A)]);
1165 @ @<Allocate or initialize ...@>=
1166 mp->str_ref = xmalloc ((mp->max_strings+1),sizeof(int));
1168 @ @<Dealloc variables@>=
1171 @ Here's what we do when a string reference disappears:
1173 @d delete_str_ref(A) {
1174 if ( mp->str_ref[(A)]<max_str_ref ) {
1175 if ( mp->str_ref[(A)]>1 ) decr(mp->str_ref[(A)]);
1176 else mp_flush_string(mp, (A));
1180 @<Declare the procedure called |flush_string|@>=
1181 void mp_flush_string (MP mp,str_number s) ;
1184 @ We can't flush the first set of static strings at all, so there
1185 is no point in trying
1188 void mp_flush_string (MP mp,str_number s) {
1190 mp->pool_in_use=mp->pool_in_use-length(s);
1191 decr(mp->strs_in_use);
1192 if ( mp->next_str[s]!=mp->str_ptr ) {
1196 decr(mp->strs_used_up);
1198 mp->pool_ptr=mp->str_start[mp->str_ptr];
1202 @ C literals cannot be simply added, they need to be set so they can't
1205 @d intern(A) mp_intern(mp,(A))
1208 str_number mp_intern (MP mp, char *s) {
1211 mp->str_ref[r] = max_str_ref;
1216 str_number mp_intern (MP mp, char *s);
1219 @ Once a sequence of characters has been appended to |str_pool|, it
1220 officially becomes a string when the function |make_string| is called.
1221 This function returns the identification number of the new string as its
1224 When getting the next unused string number from the linked list, we pretend
1226 $$ \hbox{|max_str_ptr+1|, |max_str_ptr+2|, $\ldots$, |mp->max_strings|} $$
1227 are linked sequentially even though the |next_str| entries have not been
1228 initialized yet. We never allow |str_ptr| to reach |mp->max_strings|;
1229 |do_compaction| is responsible for making sure of this.
1232 @<Declare the procedure called |do_compaction|@>;
1233 @<Declare the procedure called |unit_str_room|@>;
1234 str_number mp_make_string (MP mp);
1237 str_number mp_make_string (MP mp) { /* current string enters the pool */
1238 str_number s; /* the new string */
1241 mp->str_ptr=mp->next_str[s];
1242 if ( mp->str_ptr>mp->max_str_ptr ) {
1243 if ( mp->str_ptr==mp->max_strings ) {
1245 mp_do_compaction(mp, 0);
1249 if ( mp->strs_used_up!=mp->max_str_ptr ) mp_confusion(mp, "s");
1250 @:this can't happen s}{\quad \.s@>
1252 mp->max_str_ptr=mp->str_ptr;
1253 mp->next_str[mp->str_ptr]=mp->max_str_ptr+1;
1257 mp->str_start[mp->str_ptr]=mp->pool_ptr;
1258 incr(mp->strs_used_up);
1259 incr(mp->strs_in_use);
1260 mp->pool_in_use=mp->pool_in_use+length(s);
1261 if ( mp->pool_in_use>mp->max_pl_used )
1262 mp->max_pl_used=mp->pool_in_use;
1263 if ( mp->strs_in_use>mp->max_strs_used )
1264 mp->max_strs_used=mp->strs_in_use;
1268 @ The most interesting string operation is string pool compaction. The idea
1269 is to recover unused space in the |str_pool| array by recopying the strings
1270 to close the gaps created when some strings become unused. All string
1271 numbers~$k$ where |str_ref[k]=0| are to be linked into the list of free string
1272 numbers after |str_ptr|. If this fails to free enough pool space we issue an
1273 |overflow| error unless |needed=mp->pool_size|. Calling |do_compaction|
1274 with |needed=mp->pool_size| supresses all overflow tests.
1276 The compaction process starts with |last_fixed_str| because all lower numbered
1277 strings are permanently allocated with |max_str_ref| in their |str_ref| entries.
1280 str_number last_fixed_str; /* last permanently allocated string */
1281 str_number fixed_str_use; /* number of permanently allocated strings */
1283 @ @<Declare the procedure called |do_compaction|@>=
1284 void mp_do_compaction (MP mp, pool_pointer needed) ;
1287 void mp_do_compaction (MP mp, pool_pointer needed) {
1288 str_number str_use; /* a count of strings in use */
1289 str_number r,s,t; /* strings being manipulated */
1290 pool_pointer p,q; /* destination and source for copying string characters */
1291 @<Advance |last_fixed_str| as far as possible and set |str_use|@>;
1292 r=mp->last_fixed_str;
1295 while ( s!=mp->str_ptr ) {
1296 while ( mp->str_ref[s]==0 ) {
1297 @<Advance |s| and add the old |s| to the list of free string numbers;
1298 then |break| if |s=str_ptr|@>;
1300 r=s; s=mp->next_str[s];
1302 @<Move string |r| back so that |str_start[r]=p|; make |p| the location
1303 after the end of the string@>;
1305 @<Move the current string back so that it starts at |p|@>;
1306 if ( needed<mp->pool_size ) {
1307 @<Make sure that there is room for another string with |needed| characters@>;
1309 @<Account for the compaction and make sure the statistics agree with the
1311 mp->strs_used_up=str_use;
1314 @ @<Advance |last_fixed_str| as far as possible and set |str_use|@>=
1315 t=mp->next_str[mp->last_fixed_str];
1316 while (t!=mp->str_ptr && mp->str_ref[t]==max_str_ref) {
1317 incr(mp->fixed_str_use);
1318 mp->last_fixed_str=t;
1321 str_use=mp->fixed_str_use
1323 @ Because of the way |flush_string| has been written, it should never be
1324 necessary to |break| here. The extra line of code seems worthwhile to
1325 preserve the generality of |do_compaction|.
1327 @<Advance |s| and add the old |s| to the list of free string numbers;...@>=
1332 mp->next_str[t]=mp->next_str[mp->str_ptr];
1333 mp->next_str[mp->str_ptr]=t;
1334 if ( s==mp->str_ptr ) break;
1337 @ The string currently starts at |str_start[r]| and ends just before
1338 |str_start[s]|. We don't change |str_start[s]| because it might be needed
1339 to locate the next string.
1341 @<Move string |r| back so that |str_start[r]=p|; make |p| the location...@>=
1344 while ( q<mp->str_start[s] ) {
1345 mp->str_pool[p]=mp->str_pool[q];
1349 @ Pointers |str_start[str_ptr]| and |pool_ptr| have not been updated. When
1350 we do this, anything between them should be moved.
1352 @ @<Move the current string back so that it starts at |p|@>=
1353 q=mp->str_start[mp->str_ptr];
1354 mp->str_start[mp->str_ptr]=p;
1355 while ( q<mp->pool_ptr ) {
1356 mp->str_pool[p]=mp->str_pool[q];
1361 @ We must remember that |str_ptr| is not allowed to reach |mp->max_strings|.
1363 @<Make sure that there is room for another string with |needed| char...@>=
1364 if ( str_use>=mp->max_strings-1 )
1365 mp_reallocate_strings (mp,str_use);
1366 if ( mp->pool_ptr+needed>mp->max_pool_ptr ) {
1367 mp_reallocate_pool(mp, mp->pool_ptr+needed);
1368 mp->max_pool_ptr=mp->pool_ptr+needed;
1372 void mp_reallocate_strings (MP mp, str_number str_use) ;
1373 void mp_reallocate_pool(MP mp, pool_pointer needed) ;
1376 void mp_reallocate_strings (MP mp, str_number str_use) {
1377 while ( str_use>=mp->max_strings-1 ) {
1378 int l = mp->max_strings + (mp->max_strings>>2);
1379 XREALLOC (mp->str_ref, l, int);
1380 XREALLOC (mp->str_start, l, pool_pointer);
1381 XREALLOC (mp->next_str, l, str_number);
1382 mp->max_strings = l;
1385 void mp_reallocate_pool(MP mp, pool_pointer needed) {
1386 while ( needed>mp->pool_size ) {
1387 int l = mp->pool_size + (mp->pool_size>>2);
1388 XREALLOC (mp->str_pool, l, ASCII_code);
1393 @ @<Account for the compaction and make sure the statistics agree with...@>=
1394 if ( (mp->str_start[mp->str_ptr]!=mp->pool_in_use)||(str_use!=mp->strs_in_use) )
1395 mp_confusion(mp, "string");
1396 @:this can't happen string}{\quad string@>
1397 incr(mp->pact_count);
1398 mp->pact_chars=mp->pact_chars+mp->pool_ptr-str_stop(mp->last_fixed_str);
1399 mp->pact_strs=mp->pact_strs+str_use-mp->fixed_str_use;
1401 s=mp->str_ptr; t=str_use;
1402 while ( s<=mp->max_str_ptr ){
1403 if ( t>mp->max_str_ptr ) mp_confusion(mp, "\"");
1404 incr(t); s=mp->next_str[s];
1406 if ( t<=mp->max_str_ptr ) mp_confusion(mp, "\"");
1409 @ A few more global variables are needed to keep track of statistics when
1410 |stat| $\ldots$ |tats| blocks are not commented out.
1413 integer pact_count; /* number of string pool compactions so far */
1414 integer pact_chars; /* total number of characters moved during compactions */
1415 integer pact_strs; /* total number of strings moved during compactions */
1417 @ @<Initialize compaction statistics@>=
1422 @ The following subroutine compares string |s| with another string of the
1423 same length that appears in |buffer| starting at position |k|;
1424 the result is |true| if and only if the strings are equal.
1427 boolean mp_str_eq_buf (MP mp,str_number s, integer k) {
1428 /* test equality of strings */
1429 pool_pointer j; /* running index */
1431 while ( j<str_stop(s) ) {
1432 if ( mp->str_pool[j++]!=mp->buffer[k++] )
1438 @ Here is a similar routine, but it compares two strings in the string pool,
1439 and it does not assume that they have the same length. If the first string
1440 is lexicographically greater than, less than, or equal to the second,
1441 the result is respectively positive, negative, or zero.
1444 integer mp_str_vs_str (MP mp, str_number s, str_number t) {
1445 /* test equality of strings */
1446 pool_pointer j,k; /* running indices */
1447 integer ls,lt; /* lengths */
1448 integer l; /* length remaining to test */
1449 ls=length(s); lt=length(t);
1450 if ( ls<=lt ) l=ls; else l=lt;
1451 j=mp->str_start[s]; k=mp->str_start[t];
1453 if ( mp->str_pool[j]!=mp->str_pool[k] ) {
1454 return (mp->str_pool[j]-mp->str_pool[k]);
1461 @ The initial values of |str_pool|, |str_start|, |pool_ptr|,
1462 and |str_ptr| are computed by the \.{INIMP} program, based in part
1463 on the information that \.{WEB} has output while processing \MP.
1468 void mp_get_strings_started (MP mp) {
1469 /* initializes the string pool,
1470 but returns |false| if something goes wrong */
1471 int k; /* small indices or counters */
1472 str_number g; /* a new string */
1473 mp->pool_ptr=0; mp->str_ptr=0; mp->max_pool_ptr=0; mp->max_str_ptr=0;
1476 mp->pool_in_use=0; mp->strs_in_use=0;
1477 mp->max_pl_used=0; mp->max_strs_used=0;
1478 @<Initialize compaction statistics@>;
1480 @<Make the first 256 strings@>;
1481 g=mp_make_string(mp); /* string 256 == "" */
1482 mp->str_ref[g]=max_str_ref;
1483 mp->last_fixed_str=mp->str_ptr-1;
1484 mp->fixed_str_use=mp->str_ptr;
1489 void mp_get_strings_started (MP mp);
1491 @ The first 256 strings will consist of a single character only.
1493 @<Make the first 256...@>=
1494 for (k=0;k<=255;k++) {
1496 g=mp_make_string(mp);
1497 mp->str_ref[g]=max_str_ref;
1500 @ The first 128 strings will contain 95 standard ASCII characters, and the
1501 other 33 characters will be printed in three-symbol form like `\.{\^\^A}'
1502 unless a system-dependent change is made here. Installations that have
1503 an extended character set, where for example |xchr[032]=@t\.{'^^Z'}@>|,
1504 would like string 032 to be printed as the single character 032 instead
1505 of the three characters 0136, 0136, 0132 (\.{\^\^Z}). On the other hand,
1506 even people with an extended character set will want to represent string
1507 015 by \.{\^\^M}, since 015 is ASCII's ``carriage return'' code; the idea is
1508 to produce visible strings instead of tabs or line-feeds or carriage-returns
1509 or bell-rings or characters that are treated anomalously in text files.
1511 Unprintable characters of codes 128--255 are, similarly, rendered
1512 \.{\^\^80}--\.{\^\^ff}.
1514 The boolean expression defined here should be |true| unless \MP\ internal
1515 code number~|k| corresponds to a non-troublesome visible symbol in the
1516 local character set.
1517 If character |k| cannot be printed, and |k<0200|, then character |k+0100| or
1518 |k-0100| must be printable; moreover, ASCII codes |[060..071, 0141..0146]|
1520 @^character set dependencies@>
1521 @^system dependencies@>
1523 @<Character |k| cannot be printed@>=
1526 @* \[5] On-line and off-line printing.
1527 Messages that are sent to a user's terminal and to the transcript-log file
1528 are produced by several `|print|' procedures. These procedures will
1529 direct their output to a variety of places, based on the setting of
1530 the global variable |selector|, which has the following possible
1534 \hang |term_and_log|, the normal setting, prints on the terminal and on the
1537 \hang |log_only|, prints only on the transcript file.
1539 \hang |term_only|, prints only on the terminal.
1541 \hang |no_print|, doesn't print at all. This is used only in rare cases
1542 before the transcript file is open.
1544 \hang |pseudo|, puts output into a cyclic buffer that is used
1545 by the |show_context| routine; when we get to that routine we shall discuss
1546 the reasoning behind this curious mode.
1548 \hang |new_string|, appends the output to the current string in the
1551 \hang |>=write_file| prints on one of the files used for the \&{write}
1552 @:write_}{\&{write} primitive@>
1556 \noindent The symbolic names `|term_and_log|', etc., have been assigned
1557 numeric codes that satisfy the convenient relations |no_print+1=term_only|,
1558 |no_print+2=log_only|, |term_only+2=log_only+1=term_and_log|. These
1559 relations are not used when |selector| could be |pseudo|, or |new_string|.
1560 We need not check for unprintable characters when |selector<pseudo|.
1562 Three additional global variables, |tally|, |term_offset| and |file_offset|
1563 record the number of characters that have been printed
1564 since they were most recently cleared to zero. We use |tally| to record
1565 the length of (possibly very long) stretches of printing; |term_offset|,
1566 and |file_offset|, on the other hand, keep track of how many
1567 characters have appeared so far on the current line that has been output
1568 to the terminal, the transcript file, or the \ps\ output file, respectively.
1570 @d new_string 0 /* printing is deflected to the string pool */
1571 @d pseudo 2 /* special |selector| setting for |show_context| */
1572 @d no_print 3 /* |selector| setting that makes data disappear */
1573 @d term_only 4 /* printing is destined for the terminal only */
1574 @d log_only 5 /* printing is destined for the transcript file only */
1575 @d term_and_log 6 /* normal |selector| setting */
1576 @d write_file 7 /* first write file selector */
1579 void * log_file; /* transcript of \MP\ session */
1580 void * ps_file; /* the generic font output goes here */
1581 unsigned int selector; /* where to print a message */
1582 unsigned char dig[23]; /* digits in a number being output */
1583 integer tally; /* the number of characters recently printed */
1584 unsigned int term_offset;
1585 /* the number of characters on the current terminal line */
1586 unsigned int file_offset;
1587 /* the number of characters on the current file line */
1588 ASCII_code *trick_buf; /* circular buffer for pseudoprinting */
1589 integer trick_count; /* threshold for pseudoprinting, explained later */
1590 integer first_count; /* another variable for pseudoprinting */
1592 @ @<Allocate or initialize ...@>=
1593 memset(mp->dig,0,23);
1594 mp->trick_buf = xmalloc((mp->error_line+1),sizeof(ASCII_code));
1596 @ @<Dealloc variables@>=
1597 xfree(mp->trick_buf);
1599 @ @<Initialize the output routines@>=
1600 mp->selector=term_only; mp->tally=0; mp->term_offset=0; mp->file_offset=0;
1602 @ Macro abbreviations for output to the terminal and to the log file are
1603 defined here for convenience. Some systems need special conventions
1604 for terminal output, and it is possible to adhere to those conventions
1605 by changing |wterm|, |wterm_ln|, and |wterm_cr| here.
1606 @^system dependencies@>
1608 @d do_fprintf(f,b) (mp->write_ascii_file)(f,b)
1609 @d wterm(A) do_fprintf(mp->term_out,(A))
1610 @d wterm_chr(A) { unsigned char ss[2]; ss[0]=(A); ss[1]=0; do_fprintf(mp->term_out,(char *)ss); }
1611 @d wterm_cr do_fprintf(mp->term_out,"\n")
1612 @d wterm_ln(A) { wterm_cr; do_fprintf(mp->term_out,(A)); }
1613 @d wlog(A) do_fprintf(mp->log_file,(A))
1614 @d wlog_chr(A) { unsigned char ss[2]; ss[0]=(A); ss[1]=0; do_fprintf(mp->log_file,(char *)ss); }
1615 @d wlog_cr do_fprintf(mp->log_file, "\n")
1616 @d wlog_ln(A) {wlog_cr; do_fprintf(mp->log_file,(A)); }
1619 @ To end a line of text output, we call |print_ln|. Cases |0..max_write_files|
1620 use an array |wr_file| that will be declared later.
1622 @d mp_print_text(A) mp_print_str(mp,text((A)))
1625 void mp_print_ln (MP mp);
1626 void mp_print_visible_char (MP mp, ASCII_code s);
1627 void mp_print_char (MP mp, ASCII_code k);
1628 void mp_print (MP mp, char *s);
1629 void mp_print_str (MP mp, str_number s);
1630 void mp_print_nl (MP mp, char *s);
1631 void mp_print_two (MP mp,scaled x, scaled y) ;
1632 void mp_print_scaled (MP mp,scaled s);
1634 @ @<Basic print...@>=
1635 void mp_print_ln (MP mp) { /* prints an end-of-line */
1636 switch (mp->selector) {
1639 mp->term_offset=0; mp->file_offset=0;
1642 wlog_cr; mp->file_offset=0;
1645 wterm_cr; mp->term_offset=0;
1652 do_fprintf(mp->wr_file[(mp->selector-write_file)],"\n");
1654 } /* note that |tally| is not affected */
1656 @ The |print_visible_char| procedure sends one character to the desired
1657 destination, using the |xchr| array to map it into an external character
1658 compatible with |input_ln|. (It assumes that it is always called with
1659 a visible ASCII character.) All printing comes through |print_ln| or
1660 |print_char|, which ultimately calls |print_visible_char|, hence these
1661 routines are the ones that limit lines to at most |max_print_line| characters.
1662 But we must make an exception for the \ps\ output file since it is not safe
1663 to cut up lines arbitrarily in \ps.
1665 Procedure |unit_str_room| needs to be declared |forward| here because it calls
1666 |do_compaction| and |do_compaction| can call the error routines. Actually,
1667 |unit_str_room| avoids |overflow| errors but it can call |confusion|.
1669 @<Basic printing...@>=
1670 void mp_print_visible_char (MP mp, ASCII_code s) { /* prints a single character */
1671 switch (mp->selector) {
1673 wterm_chr(xchr(s)); wlog_chr(xchr(s));
1674 incr(mp->term_offset); incr(mp->file_offset);
1675 if ( mp->term_offset==(unsigned)mp->max_print_line ) {
1676 wterm_cr; mp->term_offset=0;
1678 if ( mp->file_offset==(unsigned)mp->max_print_line ) {
1679 wlog_cr; mp->file_offset=0;
1683 wlog_chr(xchr(s)); incr(mp->file_offset);
1684 if ( mp->file_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1687 wterm_chr(xchr(s)); incr(mp->term_offset);
1688 if ( mp->term_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1693 if ( mp->tally<mp->trick_count )
1694 mp->trick_buf[mp->tally % mp->error_line]=s;
1697 if ( mp->pool_ptr>=mp->max_pool_ptr ) {
1698 mp_unit_str_room(mp);
1699 if ( mp->pool_ptr>=mp->pool_size )
1700 goto DONE; /* drop characters if string space is full */
1705 { char ss[2]; ss[0] = xchr(s); ss[1]=0;
1706 do_fprintf(mp->wr_file[(mp->selector-write_file)],(char *)ss);
1713 @ The |print_char| procedure sends one character to the desired destination.
1714 File names and string expressions might contain |ASCII_code| values that
1715 can't be printed using |print_visible_char|. These characters will be
1716 printed in three- or four-symbol form like `\.{\^\^A}' or `\.{\^\^e4}'.
1717 (This procedure assumes that it is safe to bypass all checks for unprintable
1718 characters when |selector| is in the range |0..max_write_files-1|.
1719 The user might want to write unprintable characters.
1721 @d print_lc_hex(A) do { l=(A);
1722 mp_print_visible_char(mp, (l<10 ? l+'0' : l-10+'a'));
1725 @<Basic printing...@>=
1726 void mp_print_char (MP mp, ASCII_code k) { /* prints a single character */
1727 int l; /* small index or counter */
1728 if ( mp->selector<pseudo || mp->selector>=write_file) {
1729 mp_print_visible_char(mp, k);
1730 } else if ( @<Character |k| cannot be printed@> ) {
1733 mp_print_visible_char(mp, k+0100);
1734 } else if ( k<0200 ) {
1735 mp_print_visible_char(mp, k-0100);
1737 print_lc_hex(k / 16);
1738 print_lc_hex(k % 16);
1741 mp_print_visible_char(mp, k);
1745 @ An entire string is output by calling |print|. Note that if we are outputting
1746 the single standard ASCII character \.c, we could call |print("c")|, since
1747 |"c"=99| is the number of a single-character string, as explained above. But
1748 |print_char("c")| is quicker, so \MP\ goes directly to the |print_char|
1749 routine when it knows that this is safe. (The present implementation
1750 assumes that it is always safe to print a visible ASCII character.)
1751 @^system dependencies@>
1754 void mp_do_print (MP mp, char *ss, unsigned int len) { /* prints string |s| */
1757 mp_print_char(mp, ss[j]); incr(j);
1763 void mp_print (MP mp, char *ss) {
1764 mp_do_print(mp, ss, strlen(ss));
1766 void mp_print_str (MP mp, str_number s) {
1767 pool_pointer j; /* current character code position */
1768 if ( (s<0)||(s>mp->max_str_ptr) ) {
1769 mp_do_print(mp,"???",3); /* this can't happen */
1773 mp_do_print(mp, (char *)(mp->str_pool+j), (str_stop(s)-j));
1777 @ Here is the very first thing that \MP\ prints: a headline that identifies
1778 the version number and base name. The |term_offset| variable is temporarily
1779 incorrect, but the discrepancy is not serious since we assume that the banner
1780 and mem identifier together will occupy at most |max_print_line|
1781 character positions.
1783 @<Initialize the output...@>=
1785 wterm (version_string);
1786 if (mp->mem_ident!=NULL)
1787 mp_print(mp,mp->mem_ident);
1791 @ The procedure |print_nl| is like |print|, but it makes sure that the
1792 string appears at the beginning of a new line.
1795 void mp_print_nl (MP mp, char *s) { /* prints string |s| at beginning of line */
1796 switch(mp->selector) {
1798 if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_ln(mp);
1801 if ( mp->file_offset>0 ) mp_print_ln(mp);
1804 if ( mp->term_offset>0 ) mp_print_ln(mp);
1810 } /* there are no other cases */
1814 @ An array of digits in the range |0..9| is printed by |print_the_digs|.
1817 void mp_print_the_digs (MP mp, eight_bits k) {
1818 /* prints |dig[k-1]|$\,\ldots\,$|dig[0]| */
1820 decr(k); mp_print_char(mp, '0'+mp->dig[k]);
1824 @ The following procedure, which prints out the decimal representation of a
1825 given integer |n|, has been written carefully so that it works properly
1826 if |n=0| or if |(-n)| would cause overflow. It does not apply |%| or |/|
1827 to negative arguments, since such operations are not implemented consistently
1831 void mp_print_int (MP mp,integer n) { /* prints an integer in decimal form */
1832 integer m; /* used to negate |n| in possibly dangerous cases */
1833 int k = 0; /* index to current digit; we assume that $|n|<10^{23}$ */
1835 mp_print_char(mp, '-');
1836 if ( n>-100000000 ) {
1839 m=-1-n; n=m / 10; m=(m % 10)+1; k=1;
1843 mp->dig[0]=0; incr(n);
1848 mp->dig[k]=n % 10; n=n / 10; incr(k);
1850 mp_print_the_digs(mp, k);
1854 void mp_print_int (MP mp,integer n);
1856 @ \MP\ also makes use of a trivial procedure to print two digits. The
1857 following subroutine is usually called with a parameter in the range |0<=n<=99|.
1860 void mp_print_dd (MP mp,integer n) { /* prints two least significant digits */
1862 mp_print_char(mp, '0'+(n / 10));
1863 mp_print_char(mp, '0'+(n % 10));
1868 void mp_print_dd (MP mp,integer n);
1870 @ Here is a procedure that asks the user to type a line of input,
1871 assuming that the |selector| setting is either |term_only| or |term_and_log|.
1872 The input is placed into locations |first| through |last-1| of the
1873 |buffer| array, and echoed on the transcript file if appropriate.
1875 This procedure is never called when |interaction<mp_scroll_mode|.
1877 @d prompt_input(A) do {
1878 if (!mp->noninteractive) {
1879 wake_up_terminal; mp_print(mp, (A));
1882 } while (0) /* prints a string and gets a line of input */
1885 void mp_term_input (MP mp) { /* gets a line from the terminal */
1886 size_t k; /* index into |buffer| */
1887 update_terminal; /* Now the user sees the prompt for sure */
1888 if (!mp_input_ln(mp, mp->term_in )) {
1889 if (!mp->noninteractive) {
1890 mp_fatal_error(mp, "End of file on the terminal!");
1891 @.End of file on the terminal@>
1892 } else { /* we are done with this input chunk */
1893 longjmp(mp->jump_buf,1);
1896 if (!mp->noninteractive) {
1897 mp->term_offset=0; /* the user's line ended with \<\rm return> */
1898 decr(mp->selector); /* prepare to echo the input */
1899 if ( mp->last!=mp->first ) {
1900 for (k=mp->first;k<=mp->last-1;k++) {
1901 mp_print_char(mp, mp->buffer[k]);
1905 mp->buffer[mp->last]='%';
1906 incr(mp->selector); /* restore previous status */
1910 @* \[6] Reporting errors.
1911 When something anomalous is detected, \MP\ typically does something like this:
1912 $$\vbox{\halign{#\hfil\cr
1913 |print_err("Something anomalous has been detected");|\cr
1914 |help3("This is the first line of my offer to help.")|\cr
1915 |("This is the second line. I'm trying to")|\cr
1916 |("explain the best way for you to proceed.");|\cr
1918 A two-line help message would be given using |help2|, etc.; these informal
1919 helps should use simple vocabulary that complements the words used in the
1920 official error message that was printed. (Outside the U.S.A., the help
1921 messages should preferably be translated into the local vernacular. Each
1922 line of help is at most 60 characters long, in the present implementation,
1923 so that |max_print_line| will not be exceeded.)
1925 The |print_err| procedure supplies a `\.!' before the official message,
1926 and makes sure that the terminal is awake if a stop is going to occur.
1927 The |error| procedure supplies a `\..' after the official message, then it
1928 shows the location of the error; and if |interaction=error_stop_mode|,
1929 it also enters into a dialog with the user, during which time the help
1930 message may be printed.
1931 @^system dependencies@>
1933 @ The global variable |interaction| has four settings, representing increasing
1934 amounts of user interaction:
1937 enum mp_interaction_mode {
1938 mp_unspecified_mode=0, /* extra value for command-line switch */
1939 mp_batch_mode, /* omits all stops and omits terminal output */
1940 mp_nonstop_mode, /* omits all stops */
1941 mp_scroll_mode, /* omits error stops */
1942 mp_error_stop_mode, /* stops at every opportunity to interact */
1945 @ @<Option variables@>=
1946 int interaction; /* current level of interaction */
1947 int noninteractive; /* do we have a terminal? */
1949 @ Set it here so it can be overwritten by the commandline
1951 @<Allocate or initialize ...@>=
1952 mp->interaction=opt->interaction;
1953 if (mp->interaction==mp_unspecified_mode || mp->interaction>mp_error_stop_mode)
1954 mp->interaction=mp_error_stop_mode;
1955 if (mp->interaction<mp_unspecified_mode)
1956 mp->interaction=mp_batch_mode;
1957 mp->noninteractive=opt->noninteractive;
1961 @d print_err(A) mp_print_err(mp,(A))
1964 void mp_print_err(MP mp, char * A);
1967 void mp_print_err(MP mp, char * A) {
1968 if ( mp->interaction==mp_error_stop_mode )
1970 mp_print_nl(mp, "! ");
1976 @ \MP\ is careful not to call |error| when the print |selector| setting
1977 might be unusual. The only possible values of |selector| at the time of
1980 \yskip\hang|no_print| (when |interaction=mp_batch_mode|
1981 and |log_file| not yet open);
1983 \hang|term_only| (when |interaction>mp_batch_mode| and |log_file| not yet open);
1985 \hang|log_only| (when |interaction=mp_batch_mode| and |log_file| is open);
1987 \hang|term_and_log| (when |interaction>mp_batch_mode| and |log_file| is open).
1989 @<Initialize the print |selector| based on |interaction|@>=
1990 if ( mp->interaction==mp_batch_mode ) mp->selector=no_print; else mp->selector=term_only
1992 @ A global variable |deletions_allowed| is set |false| if the |get_next|
1993 routine is active when |error| is called; this ensures that |get_next|
1994 will never be called recursively.
1997 The global variable |history| records the worst level of error that
1998 has been detected. It has four possible values: |spotless|, |warning_issued|,
1999 |error_message_issued|, and |fatal_error_stop|.
2001 Another global variable, |error_count|, is increased by one when an
2002 |error| occurs without an interactive dialog, and it is reset to zero at
2003 the end of every statement. If |error_count| reaches 100, \MP\ decides
2004 that there is no point in continuing further.
2007 enum mp_history_states {
2008 mp_spotless=0, /* |history| value when nothing has been amiss yet */
2009 mp_warning_issued, /* |history| value when |begin_diagnostic| has been called */
2010 mp_error_message_issued, /* |history| value when |error| has been called */
2011 mp_fatal_error_stop, /* |history| value when termination was premature */
2015 boolean deletions_allowed; /* is it safe for |error| to call |get_next|? */
2016 int history; /* has the source input been clean so far? */
2017 int error_count; /* the number of scrolled errors since the last statement ended */
2019 @ The value of |history| is initially |fatal_error_stop|, but it will
2020 be changed to |spotless| if \MP\ survives the initialization process.
2022 @<Allocate or ...@>=
2023 mp->deletions_allowed=true; mp->error_count=0; /* |history| is initialized elsewhere */
2025 @ Since errors can be detected almost anywhere in \MP, we want to declare the
2026 error procedures near the beginning of the program. But the error procedures
2027 in turn use some other procedures, which need to be declared |forward|
2028 before we get to |error| itself.
2030 It is possible for |error| to be called recursively if some error arises
2031 when |get_next| is being used to delete a token, and/or if some fatal error
2032 occurs while \MP\ is trying to fix a non-fatal one. But such recursion
2034 is never more than two levels deep.
2037 void mp_get_next (MP mp);
2038 void mp_term_input (MP mp);
2039 void mp_show_context (MP mp);
2040 void mp_begin_file_reading (MP mp);
2041 void mp_open_log_file (MP mp);
2042 void mp_clear_for_error_prompt (MP mp);
2043 void mp_debug_help (MP mp);
2044 @<Declare the procedure called |flush_string|@>
2047 void mp_normalize_selector (MP mp);
2049 @ Individual lines of help are recorded in the array |help_line|, which
2050 contains entries in positions |0..(help_ptr-1)|. They should be printed
2051 in reverse order, i.e., with |help_line[0]| appearing last.
2053 @d hlp1(A) mp->help_line[0]=(A); }
2054 @d hlp2(A) mp->help_line[1]=(A); hlp1
2055 @d hlp3(A) mp->help_line[2]=(A); hlp2
2056 @d hlp4(A) mp->help_line[3]=(A); hlp3
2057 @d hlp5(A) mp->help_line[4]=(A); hlp4
2058 @d hlp6(A) mp->help_line[5]=(A); hlp5
2059 @d help0 mp->help_ptr=0 /* sometimes there might be no help */
2060 @d help1 { mp->help_ptr=1; hlp1 /* use this with one help line */
2061 @d help2 { mp->help_ptr=2; hlp2 /* use this with two help lines */
2062 @d help3 { mp->help_ptr=3; hlp3 /* use this with three help lines */
2063 @d help4 { mp->help_ptr=4; hlp4 /* use this with four help lines */
2064 @d help5 { mp->help_ptr=5; hlp5 /* use this with five help lines */
2065 @d help6 { mp->help_ptr=6; hlp6 /* use this with six help lines */
2068 char * help_line[6]; /* helps for the next |error| */
2069 unsigned int help_ptr; /* the number of help lines present */
2070 boolean use_err_help; /* should the |err_help| string be shown? */
2071 str_number err_help; /* a string set up by \&{errhelp} */
2072 str_number filename_template; /* a string set up by \&{filenametemplate} */
2074 @ @<Allocate or ...@>=
2075 mp->help_ptr=0; mp->use_err_help=false; mp->err_help=0; mp->filename_template=0;
2077 @ The |jump_out| procedure just cuts across all active procedure levels and
2078 goes to |end_of_MP|. This is the only nonlocal |goto| statement in the
2079 whole program. It is used when there is no recovery from a particular error.
2081 The program uses a |jump_buf| to handle this, this is initialized at three
2082 spots: the start of |mp_new|, the start of |mp_initialize|, and the start
2083 of |mp_run|. Those are the only library enty points.
2085 @^system dependencies@>
2090 @ @<Install and test the non-local jump buffer@>=
2091 if (setjmp(mp->jump_buf) != 0) { return mp->history; }
2094 @ @<Setup the non-local jump buffer in |mp_new|@>=
2095 if (setjmp(mp->jump_buf) != 0) return NULL;
2097 @ If the array of internals is still |NULL| when |jump_out| is called, a
2098 crash occured during initialization, and it is not safe to run the normal
2102 void mp_jump_out (MP mp) {
2103 if(mp->internal!=NULL)
2104 mp_close_files_and_terminate(mp);
2105 longjmp(mp->jump_buf,1);
2108 @ Here now is the general |error| routine.
2111 void mp_error (MP mp) { /* completes the job of error reporting */
2112 ASCII_code c; /* what the user types */
2113 integer s1,s2,s3; /* used to save global variables when deleting tokens */
2114 pool_pointer j; /* character position being printed */
2115 if ( mp->history<mp_error_message_issued )
2116 mp->history=mp_error_message_issued;
2117 mp_print_char(mp, '.'); mp_show_context(mp);
2118 if ((!mp->noninteractive) && (mp->interaction==mp_error_stop_mode )) {
2119 @<Get user's advice and |return|@>;
2121 incr(mp->error_count);
2122 if ( mp->error_count==100 ) {
2123 mp_print_nl(mp,"(That makes 100 errors; please try again.)");
2124 @.That makes 100 errors...@>
2125 mp->history=mp_fatal_error_stop; mp_jump_out(mp);
2127 @<Put help message on the transcript file@>;
2129 void mp_warn (MP mp, char *msg) {
2130 int saved_selector = mp->selector;
2131 mp_normalize_selector(mp);
2132 mp_print_nl(mp,"Warning: ");
2134 mp->selector = saved_selector;
2137 @ @<Exported function ...@>=
2138 void mp_error (MP mp);
2139 void mp_warn (MP mp, char *msg);
2142 @ @<Get user's advice...@>=
2145 mp_clear_for_error_prompt(mp); prompt_input("? ");
2147 if ( mp->last==mp->first ) return;
2148 c=mp->buffer[mp->first];
2149 if ( c>='a' ) c=c+'A'-'a'; /* convert to uppercase */
2150 @<Interpret code |c| and |return| if done@>;
2153 @ It is desirable to provide an `\.E' option here that gives the user
2154 an easy way to return from \MP\ to the system editor, with the offending
2155 line ready to be edited. But such an extension requires some system
2156 wizardry, so the present implementation simply types out the name of the
2158 edited and the relevant line number.
2159 @^system dependencies@>
2162 typedef void (*mp_run_editor_command)(MP, char *, int);
2164 @ @<Option variables@>=
2165 mp_run_editor_command run_editor;
2167 @ @<Allocate or initialize ...@>=
2168 set_callback_option(run_editor);
2171 void mp_run_editor (MP mp, char *fname, int fline);
2173 @ @c void mp_run_editor (MP mp, char *fname, int fline) {
2174 mp_print_nl(mp, "You want to edit file ");
2175 @.You want to edit file x@>
2176 mp_print(mp, fname);
2177 mp_print(mp, " at line ");
2178 mp_print_int(mp, fline);
2179 mp->interaction=mp_scroll_mode;
2184 There is a secret `\.D' option available when the debugging routines haven't
2188 @<Interpret code |c| and |return| if done@>=
2190 case '0': case '1': case '2': case '3': case '4':
2191 case '5': case '6': case '7': case '8': case '9':
2192 if ( mp->deletions_allowed ) {
2193 @<Delete |c-"0"| tokens and |continue|@>;
2198 mp_debug_help(mp); continue;
2202 if ( mp->file_ptr>0 ){
2203 (mp->run_editor)(mp,
2204 str(mp->input_stack[mp->file_ptr].name_field),
2209 @<Print the help information and |continue|@>;
2212 @<Introduce new material from the terminal and |return|@>;
2214 case 'Q': case 'R': case 'S':
2215 @<Change the interaction level and |return|@>;
2218 mp->interaction=mp_scroll_mode; mp_jump_out(mp);
2223 @<Print the menu of available options@>
2225 @ @<Print the menu...@>=
2227 mp_print(mp, "Type <return> to proceed, S to scroll future error messages,");
2228 @.Type <return> to proceed...@>
2229 mp_print_nl(mp, "R to run without stopping, Q to run quietly,");
2230 mp_print_nl(mp, "I to insert something, ");
2231 if ( mp->file_ptr>0 )
2232 mp_print(mp, "E to edit your file,");
2233 if ( mp->deletions_allowed )
2234 mp_print_nl(mp, "1 or ... or 9 to ignore the next 1 to 9 tokens of input,");
2235 mp_print_nl(mp, "H for help, X to quit.");
2238 @ Here the author of \MP\ apologizes for making use of the numerical
2239 relation between |"Q"|, |"R"|, |"S"|, and the desired interaction settings
2240 |mp_batch_mode|, |mp_nonstop_mode|, |mp_scroll_mode|.
2241 @^Knuth, Donald Ervin@>
2243 @<Change the interaction...@>=
2245 mp->error_count=0; mp->interaction=mp_batch_mode+c-'Q';
2246 mp_print(mp, "OK, entering ");
2248 case 'Q': mp_print(mp, "batchmode"); decr(mp->selector); break;
2249 case 'R': mp_print(mp, "nonstopmode"); break;
2250 case 'S': mp_print(mp, "scrollmode"); break;
2251 } /* there are no other cases */
2252 mp_print(mp, "..."); mp_print_ln(mp); update_terminal; return;
2255 @ When the following code is executed, |buffer[(first+1)..(last-1)]| may
2256 contain the material inserted by the user; otherwise another prompt will
2257 be given. In order to understand this part of the program fully, you need
2258 to be familiar with \MP's input stacks.
2260 @<Introduce new material...@>=
2262 mp_begin_file_reading(mp); /* enter a new syntactic level for terminal input */
2263 if ( mp->last>mp->first+1 ) {
2264 loc=mp->first+1; mp->buffer[mp->first]=' ';
2266 prompt_input("insert>"); loc=mp->first;
2269 mp->first=mp->last+1; mp->cur_input.limit_field=mp->last; return;
2272 @ We allow deletion of up to 99 tokens at a time.
2274 @<Delete |c-"0"| tokens...@>=
2276 s1=mp->cur_cmd; s2=mp->cur_mod; s3=mp->cur_sym; mp->OK_to_interrupt=false;
2277 if ( (mp->last>mp->first+1) && (mp->buffer[mp->first+1]>='0')&&(mp->buffer[mp->first+1]<='9') )
2278 c=c*10+mp->buffer[mp->first+1]-'0'*11;
2282 mp_get_next(mp); /* one-level recursive call of |error| is possible */
2283 @<Decrease the string reference count, if the current token is a string@>;
2286 mp->cur_cmd=s1; mp->cur_mod=s2; mp->cur_sym=s3; mp->OK_to_interrupt=true;
2287 help2("I have just deleted some text, as you asked.")
2288 ("You can now delete more, or insert, or whatever.");
2289 mp_show_context(mp);
2293 @ @<Print the help info...@>=
2295 if ( mp->use_err_help ) {
2296 @<Print the string |err_help|, possibly on several lines@>;
2297 mp->use_err_help=false;
2299 if ( mp->help_ptr==0 ) {
2300 help2("Sorry, I don't know how to help in this situation.")
2301 ("Maybe you should try asking a human?");
2304 decr(mp->help_ptr); mp_print(mp, mp->help_line[mp->help_ptr]); mp_print_ln(mp);
2305 } while (mp->help_ptr!=0);
2307 help4("Sorry, I already gave what help I could...")
2308 ("Maybe you should try asking a human?")
2309 ("An error might have occurred before I noticed any problems.")
2310 ("``If all else fails, read the instructions.''");
2314 @ @<Print the string |err_help|, possibly on several lines@>=
2315 j=mp->str_start[mp->err_help];
2316 while ( j<str_stop(mp->err_help) ) {
2317 if ( mp->str_pool[j]!='%' ) mp_print_str(mp, mp->str_pool[j]);
2318 else if ( j+1==str_stop(mp->err_help) ) mp_print_ln(mp);
2319 else if ( mp->str_pool[j+1]!='%' ) mp_print_ln(mp);
2320 else { incr(j); mp_print_char(mp, '%'); };
2324 @ @<Put help message on the transcript file@>=
2325 if ( mp->interaction>mp_batch_mode ) decr(mp->selector); /* avoid terminal output */
2326 if ( mp->use_err_help ) {
2327 mp_print_nl(mp, "");
2328 @<Print the string |err_help|, possibly on several lines@>;
2330 while ( mp->help_ptr>0 ){
2331 decr(mp->help_ptr); mp_print_nl(mp, mp->help_line[mp->help_ptr]);
2335 if ( mp->interaction>mp_batch_mode ) incr(mp->selector); /* re-enable terminal output */
2338 @ In anomalous cases, the print selector might be in an unknown state;
2339 the following subroutine is called to fix things just enough to keep
2340 running a bit longer.
2343 void mp_normalize_selector (MP mp) {
2344 if ( mp->log_opened ) mp->selector=term_and_log;
2345 else mp->selector=term_only;
2346 if ( mp->job_name==NULL ) mp_open_log_file(mp);
2347 if ( mp->interaction==mp_batch_mode ) decr(mp->selector);
2350 @ The following procedure prints \MP's last words before dying.
2352 @d succumb { if ( mp->interaction==mp_error_stop_mode )
2353 mp->interaction=mp_scroll_mode; /* no more interaction */
2354 if ( mp->log_opened ) mp_error(mp);
2355 /*| if ( mp->interaction>mp_batch_mode ) mp_debug_help(mp); |*/
2356 mp->history=mp_fatal_error_stop; mp_jump_out(mp); /* irrecoverable error */
2360 void mp_fatal_error (MP mp, char *s) { /* prints |s|, and that's it */
2361 mp_normalize_selector(mp);
2362 print_err("Emergency stop"); help1(s); succumb;
2366 @ @<Exported function ...@>=
2367 void mp_fatal_error (MP mp, char *s);
2370 @ Here is the most dreaded error message.
2373 void mp_overflow (MP mp, char *s, integer n) { /* stop due to finiteness */
2374 mp_normalize_selector(mp);
2375 print_err("MetaPost capacity exceeded, sorry [");
2376 @.MetaPost capacity exceeded ...@>
2377 mp_print(mp, s); mp_print_char(mp, '='); mp_print_int(mp, n); mp_print_char(mp, ']');
2378 help2("If you really absolutely need more capacity,")
2379 ("you can ask a wizard to enlarge me.");
2383 @ @<Internal library declarations@>=
2384 void mp_overflow (MP mp, char *s, integer n);
2386 @ The program might sometime run completely amok, at which point there is
2387 no choice but to stop. If no previous error has been detected, that's bad
2388 news; a message is printed that is really intended for the \MP\
2389 maintenance person instead of the user (unless the user has been
2390 particularly diabolical). The index entries for `this can't happen' may
2391 help to pinpoint the problem.
2394 @<Internal library ...@>=
2395 void mp_confusion (MP mp,char *s);
2397 @ @<Error hand...@>=
2398 void mp_confusion (MP mp,char *s) {
2399 /* consistency check violated; |s| tells where */
2400 mp_normalize_selector(mp);
2401 if ( mp->history<mp_error_message_issued ) {
2402 print_err("This can't happen ("); mp_print(mp, s); mp_print_char(mp, ')');
2403 @.This can't happen@>
2404 help1("I'm broken. Please show this to someone who can fix can fix");
2406 print_err("I can\'t go on meeting you like this");
2407 @.I can't go on...@>
2408 help2("One of your faux pas seems to have wounded me deeply...")
2409 ("in fact, I'm barely conscious. Please fix it and try again.");
2414 @ Users occasionally want to interrupt \MP\ while it's running.
2415 If the runtime system allows this, one can implement
2416 a routine that sets the global variable |interrupt| to some nonzero value
2417 when such an interrupt is signaled. Otherwise there is probably at least
2418 a way to make |interrupt| nonzero using the C debugger.
2419 @^system dependencies@>
2422 @d check_interrupt { if ( mp->interrupt!=0 )
2423 mp_pause_for_instructions(mp); }
2426 integer interrupt; /* should \MP\ pause for instructions? */
2427 boolean OK_to_interrupt; /* should interrupts be observed? */
2428 integer run_state; /* are we processing input ?*/
2430 @ @<Allocate or ...@>=
2431 mp->interrupt=0; mp->OK_to_interrupt=true; mp->run_state=0;
2433 @ When an interrupt has been detected, the program goes into its
2434 highest interaction level and lets the user have the full flexibility of
2435 the |error| routine. \MP\ checks for interrupts only at times when it is
2439 void mp_pause_for_instructions (MP mp) {
2440 if ( mp->OK_to_interrupt ) {
2441 mp->interaction=mp_error_stop_mode;
2442 if ( (mp->selector==log_only)||(mp->selector==no_print) )
2444 print_err("Interruption");
2447 ("Try to insert some instructions for me (e.g.,`I show x'),")
2448 ("unless you just want to quit by typing `X'.");
2449 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
2454 @ Many of \MP's error messages state that a missing token has been
2455 inserted behind the scenes. We can save string space and program space
2456 by putting this common code into a subroutine.
2459 void mp_missing_err (MP mp, char *s) {
2460 print_err("Missing `"); mp_print(mp, s); mp_print(mp, "' has been inserted");
2461 @.Missing...inserted@>
2464 @* \[7] Arithmetic with scaled numbers.
2465 The principal computations performed by \MP\ are done entirely in terms of
2466 integers less than $2^{31}$ in magnitude; thus, the arithmetic specified in this
2467 program can be carried out in exactly the same way on a wide variety of
2468 computers, including some small ones.
2471 But C does not rigidly define the |/| operation in the case of negative
2472 dividends; for example, the result of |(-2*n-1) / 2| is |-(n+1)| on some
2473 computers and |-n| on others (is this true ?). There are two principal
2474 types of arithmetic: ``translation-preserving,'' in which the identity
2475 |(a+q*b)/b=(a/b)+q| is valid; and ``negation-preserving,'' in which
2476 |(-a)/b=-(a/b)|. This leads to two \MP s, which can produce
2477 different results, although the differences should be negligible when the
2478 language is being used properly. The \TeX\ processor has been defined
2479 carefully so that both varieties of arithmetic will produce identical
2480 output, but it would be too inefficient to constrain \MP\ in a similar way.
2482 @d el_gordo 017777777777 /* $2^{31}-1$, the largest value that \MP\ likes */
2484 @ One of \MP's most common operations is the calculation of
2485 $\lfloor{a+b\over2}\rfloor$,
2486 the midpoint of two given integers |a| and~|b|. The most decent way to do
2487 this is to write `|(a+b)/2|'; but on many machines it is more efficient
2488 to calculate `|(a+b)>>1|'.
2490 Therefore the midpoint operation will always be denoted by `|half(a+b)|'
2491 in this program. If \MP\ is being implemented with languages that permit
2492 binary shifting, the |half| macro should be changed to make this operation
2493 as efficient as possible. Since some systems have shift operators that can
2494 only be trusted to work on positive numbers, there is also a macro |halfp|
2495 that is used only when the quantity being halved is known to be positive
2498 @d half(A) ((A) / 2)
2499 @d halfp(A) ((A) >> 1)
2501 @ A single computation might use several subroutine calls, and it is
2502 desirable to avoid producing multiple error messages in case of arithmetic
2503 overflow. So the routines below set the global variable |arith_error| to |true|
2504 instead of reporting errors directly to the user.
2507 boolean arith_error; /* has arithmetic overflow occurred recently? */
2509 @ @<Allocate or ...@>=
2510 mp->arith_error=false;
2512 @ At crucial points the program will say |check_arith|, to test if
2513 an arithmetic error has been detected.
2515 @d check_arith { if ( mp->arith_error ) mp_clear_arith(mp); }
2518 void mp_clear_arith (MP mp) {
2519 print_err("Arithmetic overflow");
2520 @.Arithmetic overflow@>
2521 help4("Uh, oh. A little while ago one of the quantities that I was")
2522 ("computing got too large, so I'm afraid your answers will be")
2523 ("somewhat askew. You'll probably have to adopt different")
2524 ("tactics next time. But I shall try to carry on anyway.");
2526 mp->arith_error=false;
2529 @ Addition is not always checked to make sure that it doesn't overflow,
2530 but in places where overflow isn't too unlikely the |slow_add| routine
2533 @c integer mp_slow_add (MP mp,integer x, integer y) {
2535 if ( y<=el_gordo-x ) {
2538 mp->arith_error=true;
2541 } else if ( -y<=el_gordo+x ) {
2544 mp->arith_error=true;
2549 @ Fixed-point arithmetic is done on {\sl scaled integers\/} that are multiples
2550 of $2^{-16}$. In other words, a binary point is assumed to be sixteen bit
2551 positions from the right end of a binary computer word.
2553 @d quarter_unit 040000 /* $2^{14}$, represents 0.250000 */
2554 @d half_unit 0100000 /* $2^{15}$, represents 0.50000 */
2555 @d three_quarter_unit 0140000 /* $3\cdot2^{14}$, represents 0.75000 */
2556 @d unity 0200000 /* $2^{16}$, represents 1.00000 */
2557 @d two 0400000 /* $2^{17}$, represents 2.00000 */
2558 @d three 0600000 /* $2^{17}+2^{16}$, represents 3.00000 */
2561 typedef integer scaled; /* this type is used for scaled integers */
2562 typedef unsigned char small_number; /* this type is self-explanatory */
2564 @ The following function is used to create a scaled integer from a given decimal
2565 fraction $(.d_0d_1\ldots d_{k-1})$, where |0<=k<=17|. The digit $d_i$ is
2566 given in |dig[i]|, and the calculation produces a correctly rounded result.
2569 scaled mp_round_decimals (MP mp,small_number k) {
2570 /* converts a decimal fraction */
2571 integer a = 0; /* the accumulator */
2573 a=(a+mp->dig[k]*two) / 10;
2578 @ Conversely, here is a procedure analogous to |print_int|. If the output
2579 of this procedure is subsequently read by \MP\ and converted by the
2580 |round_decimals| routine above, it turns out that the original value will
2581 be reproduced exactly. A decimal point is printed only if the value is
2582 not an integer. If there is more than one way to print the result with
2583 the optimum number of digits following the decimal point, the closest
2584 possible value is given.
2586 The invariant relation in the \&{repeat} loop is that a sequence of
2587 decimal digits yet to be printed will yield the original number if and only if
2588 they form a fraction~$f$ in the range $s-\delta\L10\cdot2^{16}f<s$.
2589 We can stop if and only if $f=0$ satisfies this condition; the loop will
2590 terminate before $s$ can possibly become zero.
2592 @<Basic printing...@>=
2593 void mp_print_scaled (MP mp,scaled s) { /* prints scaled real, rounded to five digits */
2594 scaled delta; /* amount of allowable inaccuracy */
2596 mp_print_char(mp, '-');
2597 negate(s); /* print the sign, if negative */
2599 mp_print_int(mp, s / unity); /* print the integer part */
2603 mp_print_char(mp, '.');
2606 s=s+0100000-(delta / 2); /* round the final digit */
2607 mp_print_char(mp, '0'+(s / unity));
2614 @ We often want to print two scaled quantities in parentheses,
2615 separated by a comma.
2617 @<Basic printing...@>=
2618 void mp_print_two (MP mp,scaled x, scaled y) { /* prints `|(x,y)|' */
2619 mp_print_char(mp, '(');
2620 mp_print_scaled(mp, x);
2621 mp_print_char(mp, ',');
2622 mp_print_scaled(mp, y);
2623 mp_print_char(mp, ')');
2626 @ The |scaled| quantities in \MP\ programs are generally supposed to be
2627 less than $2^{12}$ in absolute value, so \MP\ does much of its internal
2628 arithmetic with 28~significant bits of precision. A |fraction| denotes
2629 a scaled integer whose binary point is assumed to be 28 bit positions
2632 @d fraction_half 01000000000 /* $2^{27}$, represents 0.50000000 */
2633 @d fraction_one 02000000000 /* $2^{28}$, represents 1.00000000 */
2634 @d fraction_two 04000000000 /* $2^{29}$, represents 2.00000000 */
2635 @d fraction_three 06000000000 /* $3\cdot2^{28}$, represents 3.00000000 */
2636 @d fraction_four 010000000000 /* $2^{30}$, represents 4.00000000 */
2639 typedef integer fraction; /* this type is used for scaled fractions */
2641 @ In fact, the two sorts of scaling discussed above aren't quite
2642 sufficient; \MP\ has yet another, used internally to keep track of angles
2643 in units of $2^{-20}$ degrees.
2645 @d forty_five_deg 0264000000 /* $45\cdot2^{20}$, represents $45^\circ$ */
2646 @d ninety_deg 0550000000 /* $90\cdot2^{20}$, represents $90^\circ$ */
2647 @d one_eighty_deg 01320000000 /* $180\cdot2^{20}$, represents $180^\circ$ */
2648 @d three_sixty_deg 02640000000 /* $360\cdot2^{20}$, represents $360^\circ$ */
2651 typedef integer angle; /* this type is used for scaled angles */
2653 @ The |make_fraction| routine produces the |fraction| equivalent of
2654 |p/q|, given integers |p| and~|q|; it computes the integer
2655 $f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are
2656 positive. If |p| and |q| are both of the same scaled type |t|,
2657 the ``type relation'' |make_fraction(t,t)=fraction| is valid;
2658 and it's also possible to use the subroutine ``backwards,'' using
2659 the relation |make_fraction(t,fraction)=t| between scaled types.
2661 If the result would have magnitude $2^{31}$ or more, |make_fraction|
2662 sets |arith_error:=true|. Most of \MP's internal computations have
2663 been designed to avoid this sort of error.
2665 If this subroutine were programmed in assembly language on a typical
2666 machine, we could simply compute |(@t$2^{28}$@>*p)div q|, since a
2667 double-precision product can often be input to a fixed-point division
2668 instruction. But when we are restricted to int-eger arithmetic it
2669 is necessary either to resort to multiple-precision maneuvering
2670 or to use a simple but slow iteration. The multiple-precision technique
2671 would be about three times faster than the code adopted here, but it
2672 would be comparatively long and tricky, involving about sixteen
2673 additional multiplications and divisions.
2675 This operation is part of \MP's ``inner loop''; indeed, it will
2676 consume nearly 10\pct! of the running time (exclusive of input and output)
2677 if the code below is left unchanged. A machine-dependent recoding
2678 will therefore make \MP\ run faster. The present implementation
2679 is highly portable, but slow; it avoids multiplication and division
2680 except in the initial stage. System wizards should be careful to
2681 replace it with a routine that is guaranteed to produce identical
2682 results in all cases.
2683 @^system dependencies@>
2685 As noted below, a few more routines should also be replaced by machine-dependent
2686 code, for efficiency. But when a procedure is not part of the ``inner loop,''
2687 such changes aren't advisable; simplicity and robustness are
2688 preferable to trickery, unless the cost is too high.
2692 fraction mp_make_fraction (MP mp,integer p, integer q);
2693 integer mp_take_scaled (MP mp,integer q, scaled f) ;
2695 @ If FIXPT is not defined, we need these preprocessor values
2697 @d ELGORDO 0x7fffffff
2698 @d TWEXP31 2147483648.0
2699 @d TWEXP28 268435456.0
2701 @d TWEXP_16 (1.0/65536.0)
2702 @d TWEXP_28 (1.0/268435456.0)
2706 fraction mp_make_fraction (MP mp,integer p, integer q) {
2708 integer f; /* the fraction bits, with a leading 1 bit */
2709 integer n; /* the integer part of $\vert p/q\vert$ */
2710 integer be_careful; /* disables certain compiler optimizations */
2711 boolean negative = false; /* should the result be negated? */
2713 negate(p); negative=true;
2717 if ( q==0 ) mp_confusion(mp, '/');
2719 @:this can't happen /}{\quad \./@>
2720 negate(q); negative = ! negative;
2724 mp->arith_error=true;
2725 return ( negative ? -el_gordo : el_gordo);
2727 n=(n-1)*fraction_one;
2728 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>;
2729 return (negative ? (-(f+n)) : (f+n));
2735 if (q==0) mp_confusion(mp,'/');
2737 d = TWEXP28 * (double)p /(double)q;
2740 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
2742 if (d==i && ( ((q>0 ? -q : q)&077777)
2743 * (((i&037777)<<1)-1) & 04000)!=0) --i;
2746 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
2748 if (d==i && ( ((q>0 ? q : -q)&077777)
2749 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
2755 @ The |repeat| loop here preserves the following invariant relations
2756 between |f|, |p|, and~|q|:
2757 (i)~|0<=p<q|; (ii)~$fq+p=2^k(q+p_0)$, where $k$ is an integer and
2758 $p_0$ is the original value of~$p$.
2760 Notice that the computation specifies
2761 |(p-q)+p| instead of |(p+p)-q|, because the latter could overflow.
2762 Let us hope that optimizing compilers do not miss this point; a
2763 special variable |be_careful| is used to emphasize the necessary
2764 order of computation. Optimizing compilers should keep |be_careful|
2765 in a register, not store it in memory.
2768 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>=
2772 be_careful=p-q; p=be_careful+p;
2778 } while (f<fraction_one);
2780 if ( be_careful+p>=0 ) incr(f);
2783 @ The dual of |make_fraction| is |take_fraction|, which multiplies a
2784 given integer~|q| by a fraction~|f|. When the operands are positive, it
2785 computes $p=\lfloor qf/2^{28}+{1\over2}\rfloor$, a symmetric function
2788 This routine is even more ``inner loopy'' than |make_fraction|;
2789 the present implementation consumes almost 20\pct! of \MP's computation
2790 time during typical jobs, so a machine-language substitute is advisable.
2791 @^inner loop@> @^system dependencies@>
2794 integer mp_take_fraction (MP mp,integer q, fraction f) ;
2798 integer mp_take_fraction (MP mp,integer q, fraction f) {
2799 integer p; /* the fraction so far */
2800 boolean negative; /* should the result be negated? */
2801 integer n; /* additional multiple of $q$ */
2802 integer be_careful; /* disables certain compiler optimizations */
2803 @<Reduce to the case that |f>=0| and |q>0|@>;
2804 if ( f<fraction_one ) {
2807 n=f / fraction_one; f=f % fraction_one;
2808 if ( q<=el_gordo / n ) {
2811 mp->arith_error=true; n=el_gordo;
2815 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>;
2816 be_careful=n-el_gordo;
2817 if ( be_careful+p>0 ){
2818 mp->arith_error=true; n=el_gordo-p;
2825 integer mp_take_fraction (MP mp,integer p, fraction q) {
2828 d = (double)p * (double)q * TWEXP_28;
2832 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2833 mp->arith_error = true;
2837 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2841 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2842 mp->arith_error = true;
2846 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2852 @ @<Reduce to the case that |f>=0| and |q>0|@>=
2856 negate( f); negative=true;
2859 negate(q); negative=! negative;
2862 @ The invariant relations in this case are (i)~$\lfloor(qf+p)/2^k\rfloor
2863 =\lfloor qf_0/2^{28}+{1\over2}\rfloor$, where $k$ is an integer and
2864 $f_0$ is the original value of~$f$; (ii)~$2^k\L f<2^{k+1}$.
2867 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>=
2868 p=fraction_half; /* that's $2^{27}$; the invariants hold now with $k=28$ */
2869 if ( q<fraction_four ) {
2871 if ( odd(f) ) p=halfp(p+q); else p=halfp(p);
2876 if ( odd(f) ) p=p+halfp(q-p); else p=halfp(p);
2882 @ When we want to multiply something by a |scaled| quantity, we use a scheme
2883 analogous to |take_fraction| but with a different scaling.
2884 Given positive operands, |take_scaled|
2885 computes the quantity $p=\lfloor qf/2^{16}+{1\over2}\rfloor$.
2887 Once again it is a good idea to use a machine-language replacement if
2888 possible; otherwise |take_scaled| will use more than 2\pct! of the running time
2889 when the Computer Modern fonts are being generated.
2894 integer mp_take_scaled (MP mp,integer q, scaled f) {
2895 integer p; /* the fraction so far */
2896 boolean negative; /* should the result be negated? */
2897 integer n; /* additional multiple of $q$ */
2898 integer be_careful; /* disables certain compiler optimizations */
2899 @<Reduce to the case that |f>=0| and |q>0|@>;
2903 n=f / unity; f=f % unity;
2904 if ( q<=el_gordo / n ) {
2907 mp->arith_error=true; n=el_gordo;
2911 @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>;
2912 be_careful=n-el_gordo;
2913 if ( be_careful+p>0 ) {
2914 mp->arith_error=true; n=el_gordo-p;
2916 return ( negative ?(-(n+p)) :(n+p));
2918 integer mp_take_scaled (MP mp,integer p, scaled q) {
2921 d = (double)p * (double)q * TWEXP_16;
2925 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2926 mp->arith_error = true;
2930 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2934 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2935 mp->arith_error = true;
2939 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2945 @ @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>=
2946 p=half_unit; /* that's $2^{15}$; the invariants hold now with $k=16$ */
2948 if ( q<fraction_four ) {
2950 p = (odd(f) ? halfp(p+q) : halfp(p));
2955 p = (odd(f) ? p+halfp(q-p) : halfp(p));
2960 @ For completeness, there's also |make_scaled|, which computes a
2961 quotient as a |scaled| number instead of as a |fraction|.
2962 In other words, the result is $\lfloor2^{16}p/q+{1\over2}\rfloor$, if the
2963 operands are positive. \ (This procedure is not used especially often,
2964 so it is not part of \MP's inner loop.)
2966 @<Internal library ...@>=
2967 scaled mp_make_scaled (MP mp,integer p, integer q) ;
2970 scaled mp_make_scaled (MP mp,integer p, integer q) {
2972 integer f; /* the fraction bits, with a leading 1 bit */
2973 integer n; /* the integer part of $\vert p/q\vert$ */
2974 boolean negative; /* should the result be negated? */
2975 integer be_careful; /* disables certain compiler optimizations */
2976 if ( p>=0 ) negative=false;
2977 else { negate(p); negative=true; };
2980 if ( q==0 ) mp_confusion(mp, "/");
2981 @:this can't happen /}{\quad \./@>
2983 negate(q); negative=! negative;
2987 mp->arith_error=true;
2988 return (negative ? (-el_gordo) : el_gordo);
2991 @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>;
2992 return ( negative ? (-(f+n)) :(f+n));
2998 if (q==0) mp_confusion(mp,"/");
3000 d = TWEXP16 * (double)p /(double)q;
3003 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
3005 if (d==i && ( ((q>0 ? -q : q)&077777)
3006 * (((i&037777)<<1)-1) & 04000)!=0) --i;
3009 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
3011 if (d==i && ( ((q>0 ? q : -q)&077777)
3012 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
3018 @ @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>=
3021 be_careful=p-q; p=be_careful+p;
3022 if ( p>=0 ) f=f+f+1;
3023 else { f+=f; p=p+q; };
3026 if ( be_careful+p>=0 ) incr(f)
3028 @ Here is a typical example of how the routines above can be used.
3029 It computes the function
3030 $${1\over3\tau}f(\theta,\phi)=
3031 {\tau^{-1}\bigl(2+\sqrt2\,(\sin\theta-{1\over16}\sin\phi)
3032 (\sin\phi-{1\over16}\sin\theta)(\cos\theta-\cos\phi)\bigr)\over
3033 3\,\bigl(1+{1\over2}(\sqrt5-1)\cos\theta+{1\over2}(3-\sqrt5\,)\cos\phi\bigr)},$$
3034 where $\tau$ is a |scaled| ``tension'' parameter. This is \MP's magic
3035 fudge factor for placing the first control point of a curve that starts
3036 at an angle $\theta$ and ends at an angle $\phi$ from the straight path.
3037 (Actually, if the stated quantity exceeds 4, \MP\ reduces it to~4.)
3039 The trigonometric quantity to be multiplied by $\sqrt2$ is less than $\sqrt2$.
3040 (It's a sum of eight terms whose absolute values can be bounded using
3041 relations such as $\sin\theta\cos\theta\L{1\over2}$.) Thus the numerator
3042 is positive; and since the tension $\tau$ is constrained to be at least
3043 $3\over4$, the numerator is less than $16\over3$. The denominator is
3044 nonnegative and at most~6. Hence the fixed-point calculations below
3045 are guaranteed to stay within the bounds of a 32-bit computer word.
3047 The angles $\theta$ and $\phi$ are given implicitly in terms of |fraction|
3048 arguments |st|, |ct|, |sf|, and |cf|, representing $\sin\theta$, $\cos\theta$,
3049 $\sin\phi$, and $\cos\phi$, respectively.
3052 fraction mp_velocity (MP mp,fraction st, fraction ct, fraction sf,
3053 fraction cf, scaled t) {
3054 integer acc,num,denom; /* registers for intermediate calculations */
3055 acc=mp_take_fraction(mp, st-(sf / 16), sf-(st / 16));
3056 acc=mp_take_fraction(mp, acc,ct-cf);
3057 num=fraction_two+mp_take_fraction(mp, acc,379625062);
3058 /* $2^{28}\sqrt2\approx379625062.497$ */
3059 denom=fraction_three+mp_take_fraction(mp, ct,497706707)+mp_take_fraction(mp, cf,307599661);
3060 /* $3\cdot2^{27}\cdot(\sqrt5-1)\approx497706706.78$ and
3061 $3\cdot2^{27}\cdot(3-\sqrt5\,)\approx307599661.22$ */
3062 if ( t!=unity ) num=mp_make_scaled(mp, num,t);
3063 /* |make_scaled(fraction,scaled)=fraction| */
3064 if ( num / 4>=denom )
3065 return fraction_four;
3067 return mp_make_fraction(mp, num, denom);
3070 @ The following somewhat different subroutine tests rigorously if $ab$ is
3071 greater than, equal to, or less than~$cd$,
3072 given integers $(a,b,c,d)$. In most cases a quick decision is reached.
3073 The result is $+1$, 0, or~$-1$ in the three respective cases.
3075 @d mp_ab_vs_cd(M,A,B,C,D) mp_do_ab_vs_cd(A,B,C,D)
3078 integer mp_do_ab_vs_cd (integer a,integer b, integer c, integer d) {
3079 integer q,r; /* temporary registers */
3080 @<Reduce to the case that |a,c>=0|, |b,d>0|@>;
3082 q = a / d; r = c / b;
3084 return ( q>r ? 1 : -1);
3085 q = a % d; r = c % b;
3088 if ( q==0 ) return -1;
3090 } /* now |a>d>0| and |c>b>0| */
3093 @ @<Reduce to the case that |a...@>=
3094 if ( a<0 ) { negate(a); negate(b); };
3095 if ( c<0 ) { negate(c); negate(d); };
3098 if ( (a==0||b==0)&&(c==0||d==0) ) return 0;
3102 return ( a==0 ? 0 : -1);
3103 q=a; a=c; c=q; q=-b; b=-d; d=q;
3104 } else if ( b<=0 ) {
3105 if ( b<0 ) if ( a>0 ) return -1;
3106 return (c==0 ? 0 : -1);
3109 @ We conclude this set of elementary routines with some simple rounding
3110 and truncation operations.
3112 @<Internal library declarations@>=
3113 #define mp_floor_scaled(M,i) ((i)&(-65536))
3114 #define mp_round_unscaled(M,i) (((i>>15)+1)>>1)
3115 #define mp_round_fraction(M,i) (((i>>11)+1)>>1)
3118 @* \[8] Algebraic and transcendental functions.
3119 \MP\ computes all of the necessary special functions from scratch, without
3120 relying on |real| arithmetic or system subroutines for sines, cosines, etc.
3122 @ To get the square root of a |scaled| number |x|, we want to calculate
3123 $s=\lfloor 2^8\!\sqrt x +{1\over2}\rfloor$. If $x>0$, this is the unique
3124 integer such that $2^{16}x-s\L s^2<2^{16}x+s$. The following subroutine
3125 determines $s$ by an iterative method that maintains the invariant
3126 relations $x=2^{46-2k}x_0\bmod 2^{30}$, $0<y=\lfloor 2^{16-2k}x_0\rfloor
3127 -s^2+s\L q=2s$, where $x_0$ is the initial value of $x$. The value of~$y$
3128 might, however, be zero at the start of the first iteration.
3131 scaled mp_square_rt (MP mp,scaled x) ;
3134 scaled mp_square_rt (MP mp,scaled x) {
3135 small_number k; /* iteration control counter */
3136 integer y,q; /* registers for intermediate calculations */
3138 @<Handle square root of zero or negative argument@>;
3141 while ( x<fraction_two ) { /* i.e., |while x<@t$2^{29}$@>|\unskip */
3144 if ( x<fraction_four ) y=0;
3145 else { x=x-fraction_four; y=1; };
3147 @<Decrease |k| by 1, maintaining the invariant
3148 relations between |x|, |y|, and~|q|@>;
3154 @ @<Handle square root of zero...@>=
3157 print_err("Square root of ");
3158 @.Square root...replaced by 0@>
3159 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3160 help2("Since I don't take square roots of negative numbers,")
3161 ("I'm zeroing this one. Proceed, with fingers crossed.");
3167 @ @<Decrease |k| by 1, maintaining...@>=
3169 if ( x>=fraction_four ) { /* note that |fraction_four=@t$2^{30}$@>| */
3170 x=x-fraction_four; incr(y);
3172 x+=x; y=y+y-q; q+=q;
3173 if ( x>=fraction_four ) { x=x-fraction_four; incr(y); };
3174 if ( y>q ){ y=y-q; q=q+2; }
3175 else if ( y<=0 ) { q=q-2; y=y+q; };
3178 @ Pythagorean addition $\psqrt{a^2+b^2}$ is implemented by an elegant
3179 iterative scheme due to Cleve Moler and Donald Morrison [{\sl IBM Journal
3180 @^Moler, Cleve Barry@>
3181 @^Morrison, Donald Ross@>
3182 of Research and Development\/ \bf27} (1983), 577--581]. It modifies |a| and~|b|
3183 in such a way that their Pythagorean sum remains invariant, while the
3184 smaller argument decreases.
3186 @<Internal library ...@>=
3187 integer mp_pyth_add (MP mp,integer a, integer b);
3191 integer mp_pyth_add (MP mp,integer a, integer b) {
3192 fraction r; /* register used to transform |a| and |b| */
3193 boolean big; /* is the result dangerously near $2^{31}$? */
3195 if ( a<b ) { r=b; b=a; a=r; }; /* now |0<=b<=a| */
3197 if ( a<fraction_two ) {
3200 a=a / 4; b=b / 4; big=true;
3201 }; /* we reduced the precision to avoid arithmetic overflow */
3202 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>;
3204 if ( a<fraction_two ) {
3207 mp->arith_error=true; a=el_gordo;
3214 @ The key idea here is to reflect the vector $(a,b)$ about the
3215 line through $(a,b/2)$.
3217 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>=
3219 r=mp_make_fraction(mp, b,a);
3220 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3222 r=mp_make_fraction(mp, r,fraction_four+r);
3223 a=a+mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3227 @ Here is a similar algorithm for $\psqrt{a^2-b^2}$.
3228 It converges slowly when $b$ is near $a$, but otherwise it works fine.
3231 integer mp_pyth_sub (MP mp,integer a, integer b) {
3232 fraction r; /* register used to transform |a| and |b| */
3233 boolean big; /* is the input dangerously near $2^{31}$? */
3236 @<Handle erroneous |pyth_sub| and set |a:=0|@>;
3238 if ( a<fraction_four ) {
3241 a=halfp(a); b=halfp(b); big=true;
3243 @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>;
3244 if ( big ) double(a);
3249 @ @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>=
3251 r=mp_make_fraction(mp, b,a);
3252 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3254 r=mp_make_fraction(mp, r,fraction_four-r);
3255 a=a-mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3258 @ @<Handle erroneous |pyth_sub| and set |a:=0|@>=
3261 print_err("Pythagorean subtraction "); mp_print_scaled(mp, a);
3262 mp_print(mp, "+-+"); mp_print_scaled(mp, b);
3263 mp_print(mp, " has been replaced by 0");
3265 help2("Since I don't take square roots of negative numbers,")
3266 ("I'm zeroing this one. Proceed, with fingers crossed.");
3272 @ The subroutines for logarithm and exponential involve two tables.
3273 The first is simple: |two_to_the[k]| equals $2^k$. The second involves
3274 a bit more calculation, which the author claims to have done correctly:
3275 |spec_log[k]| is $2^{27}$ times $\ln\bigl(1/(1-2^{-k})\bigr)=
3276 2^{-k}+{1\over2}2^{-2k}+{1\over3}2^{-3k}+\cdots\,$, rounded to the
3279 @d two_to_the(A) (1<<(A))
3282 static const integer spec_log[29] = { 0, /* special logarithms */
3283 93032640, 38612034, 17922280, 8662214, 4261238, 2113709,
3284 1052693, 525315, 262400, 131136, 65552, 32772, 16385,
3285 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1 };
3287 @ @<Local variables for initialization@>=
3288 integer k; /* all-purpose loop index */
3291 @ Here is the routine that calculates $2^8$ times the natural logarithm
3292 of a |scaled| quantity; it is an integer approximation to $2^{24}\ln(x/2^{16})$,
3293 when |x| is a given positive integer.
3295 The method is based on exercise 1.2.2--25 in {\sl The Art of Computer
3296 Programming\/}: During the main iteration we have $1\L 2^{-30}x<1/(1-2^{1-k})$,
3297 and the logarithm of $2^{30}x$ remains to be added to an accumulator
3298 register called~$y$. Three auxiliary bits of accuracy are retained in~$y$
3299 during the calculation, and sixteen auxiliary bits to extend |y| are
3300 kept in~|z| during the initial argument reduction. (We add
3301 $100\cdot2^{16}=6553600$ to~|z| and subtract 100 from~|y| so that |z| will
3302 not become negative; also, the actual amount subtracted from~|y| is~96,
3303 not~100, because we want to add~4 for rounding before the final division by~8.)
3306 scaled mp_m_log (MP mp,scaled x) {
3307 integer y,z; /* auxiliary registers */
3308 integer k; /* iteration counter */
3310 @<Handle non-positive logarithm@>;
3312 y=1302456956+4-100; /* $14\times2^{27}\ln2\approx1302456956.421063$ */
3313 z=27595+6553600; /* and $2^{16}\times .421063\approx 27595$ */
3314 while ( x<fraction_four ) {
3315 double(x); y-=93032639; z-=48782;
3316 } /* $2^{27}\ln2\approx 93032639.74436163$ and $2^{16}\times.74436163\approx 48782$ */
3317 y=y+(z / unity); k=2;
3318 while ( x>fraction_four+4 ) {
3319 @<Increase |k| until |x| can be multiplied by a
3320 factor of $2^{-k}$, and adjust $y$ accordingly@>;
3326 @ @<Increase |k| until |x| can...@>=
3328 z=((x-1) / two_to_the(k))+1; /* $z=\lceil x/2^k\rceil$ */
3329 while ( x<fraction_four+z ) { z=halfp(z+1); incr(k); };
3330 y+=spec_log[k]; x-=z;
3333 @ @<Handle non-positive logarithm@>=
3335 print_err("Logarithm of ");
3336 @.Logarithm...replaced by 0@>
3337 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3338 help2("Since I don't take logs of non-positive numbers,")
3339 ("I'm zeroing this one. Proceed, with fingers crossed.");
3344 @ Conversely, the exponential routine calculates $\exp(x/2^8)$,
3345 when |x| is |scaled|. The result is an integer approximation to
3346 $2^{16}\exp(x/2^{24})$, when |x| is regarded as an integer.
3349 scaled mp_m_exp (MP mp,scaled x) {
3350 small_number k; /* loop control index */
3351 integer y,z; /* auxiliary registers */
3352 if ( x>174436200 ) {
3353 /* $2^{24}\ln((2^{31}-1)/2^{16})\approx 174436199.51$ */
3354 mp->arith_error=true;
3356 } else if ( x<-197694359 ) {
3357 /* $2^{24}\ln(2^{-1}/2^{16})\approx-197694359.45$ */
3361 z=-8*x; y=04000000; /* $y=2^{20}$ */
3363 if ( x<=127919879 ) {
3365 /* $2^{27}\ln((2^{31}-1)/2^{20})\approx 1023359037.125$ */
3367 z=8*(174436200-x); /* |z| is always nonnegative */
3371 @<Multiply |y| by $\exp(-z/2^{27})$@>;
3373 return ((y+8) / 16);
3379 @ The idea here is that subtracting |spec_log[k]| from |z| corresponds
3380 to multiplying |y| by $1-2^{-k}$.
3382 A subtle point (which had to be checked) was that if $x=127919879$, the
3383 value of~|y| will decrease so that |y+8| doesn't overflow. In fact,
3384 $z$ will be 5 in this case, and |y| will decrease by~64 when |k=25|
3385 and by~16 when |k=27|.
3387 @<Multiply |y| by...@>=
3390 while ( z>=spec_log[k] ) {
3392 y=y-1-((y-two_to_the(k-1)) / two_to_the(k));
3397 @ The trigonometric subroutines use an auxiliary table such that
3398 |spec_atan[k]| contains an approximation to the |angle| whose tangent
3399 is~$1/2^k$. $\arctan2^{-k}$ times $2^{20}\cdot180/\pi$
3402 static const angle spec_atan[27] = { 0, 27855475, 14718068, 7471121, 3750058,
3403 1876857, 938658, 469357, 234682, 117342, 58671, 29335, 14668, 7334, 3667,
3404 1833, 917, 458, 229, 115, 57, 29, 14, 7, 4, 2, 1 };
3406 @ Given integers |x| and |y|, not both zero, the |n_arg| function
3407 returns the |angle| whose tangent points in the direction $(x,y)$.
3408 This subroutine first determines the correct octant, then solves the
3409 problem for |0<=y<=x|, then converts the result appropriately to
3410 return an answer in the range |-one_eighty_deg<=@t$\theta$@><=one_eighty_deg|.
3411 (The answer is |+one_eighty_deg| if |y=0| and |x<0|, but an answer of
3412 |-one_eighty_deg| is possible if, for example, |y=-1| and $x=-2^{30}$.)
3414 The octants are represented in a ``Gray code,'' since that turns out
3415 to be computationally simplest.
3421 @d second_octant (first_octant+switch_x_and_y)
3422 @d third_octant (first_octant+switch_x_and_y+negate_x)
3423 @d fourth_octant (first_octant+negate_x)
3424 @d fifth_octant (first_octant+negate_x+negate_y)
3425 @d sixth_octant (first_octant+switch_x_and_y+negate_x+negate_y)
3426 @d seventh_octant (first_octant+switch_x_and_y+negate_y)
3427 @d eighth_octant (first_octant+negate_y)
3430 angle mp_n_arg (MP mp,integer x, integer y) {
3431 angle z; /* auxiliary register */
3432 integer t; /* temporary storage */
3433 small_number k; /* loop counter */
3434 int octant; /* octant code */
3436 octant=first_octant;
3438 negate(x); octant=first_octant+negate_x;
3441 negate(y); octant=octant+negate_y;
3444 t=y; y=x; x=t; octant=octant+switch_x_and_y;
3447 @<Handle undefined arg@>;
3449 @<Set variable |z| to the arg of $(x,y)$@>;
3450 @<Return an appropriate answer based on |z| and |octant|@>;
3454 @ @<Handle undefined arg@>=
3456 print_err("angle(0,0) is taken as zero");
3457 @.angle(0,0)...zero@>
3458 help2("The `angle' between two identical points is undefined.")
3459 ("I'm zeroing this one. Proceed, with fingers crossed.");
3464 @ @<Return an appropriate answer...@>=
3466 case first_octant: return z;
3467 case second_octant: return (ninety_deg-z);
3468 case third_octant: return (ninety_deg+z);
3469 case fourth_octant: return (one_eighty_deg-z);
3470 case fifth_octant: return (z-one_eighty_deg);
3471 case sixth_octant: return (-z-ninety_deg);
3472 case seventh_octant: return (z-ninety_deg);
3473 case eighth_octant: return (-z);
3474 }; /* there are no other cases */
3477 @ At this point we have |x>=y>=0|, and |x>0|. The numbers are scaled up
3478 or down until $2^{28}\L x<2^{29}$, so that accurate fixed-point calculations
3481 @<Set variable |z| to the arg...@>=
3482 while ( x>=fraction_two ) {
3483 x=halfp(x); y=halfp(y);
3487 while ( x<fraction_one ) {
3490 @<Increase |z| to the arg of $(x,y)$@>;
3493 @ During the calculations of this section, variables |x| and~|y|
3494 represent actual coordinates $(x,2^{-k}y)$. We will maintain the
3495 condition |x>=y|, so that the tangent will be at most $2^{-k}$.
3496 If $x<2y$, the tangent is greater than $2^{-k-1}$. The transformation
3497 $(a,b)\mapsto(a+b\tan\phi,b-a\tan\phi)$ replaces $(a,b)$ by
3498 coordinates whose angle has decreased by~$\phi$; in the special case
3499 $a=x$, $b=2^{-k}y$, and $\tan\phi=2^{-k-1}$, this operation reduces
3500 to the particularly simple iteration shown here. [Cf.~John E. Meggitt,
3501 @^Meggitt, John E.@>
3502 {\sl IBM Journal of Research and Development\/ \bf6} (1962), 210--226.]
3504 The initial value of |x| will be multiplied by at most
3505 $(1+{1\over2})(1+{1\over8})(1+{1\over32})\cdots\approx 1.7584$; hence
3506 there is no chance of integer overflow.
3508 @<Increase |z|...@>=
3513 z=z+spec_atan[k]; t=x; x=x+(y / two_to_the(k+k)); y=y-t;
3518 if ( y>x ) { z=z+spec_atan[k]; y=y-x; };
3521 @ Conversely, the |n_sin_cos| routine takes an |angle| and produces the sine
3522 and cosine of that angle. The results of this routine are
3523 stored in global integer variables |n_sin| and |n_cos|.
3526 fraction n_sin;fraction n_cos; /* results computed by |n_sin_cos| */
3528 @ Given an integer |z| that is $2^{20}$ times an angle $\theta$ in degrees,
3529 the purpose of |n_sin_cos(z)| is to set
3530 |x=@t$r\cos\theta$@>| and |y=@t$r\sin\theta$@>| (approximately),
3531 for some rather large number~|r|. The maximum of |x| and |y|
3532 will be between $2^{28}$ and $2^{30}$, so that there will be hardly
3533 any loss of accuracy. Then |x| and~|y| are divided by~|r|.
3536 void mp_n_sin_cos (MP mp,angle z) { /* computes a multiple of the sine
3538 small_number k; /* loop control variable */
3539 int q; /* specifies the quadrant */
3540 fraction r; /* magnitude of |(x,y)| */
3541 integer x,y,t; /* temporary registers */
3542 while ( z<0 ) z=z+three_sixty_deg;
3543 z=z % three_sixty_deg; /* now |0<=z<three_sixty_deg| */
3544 q=z / forty_five_deg; z=z % forty_five_deg;
3545 x=fraction_one; y=x;
3546 if ( ! odd(q) ) z=forty_five_deg-z;
3547 @<Subtract angle |z| from |(x,y)|@>;
3548 @<Convert |(x,y)| to the octant determined by~|q|@>;
3549 r=mp_pyth_add(mp, x,y);
3550 mp->n_cos=mp_make_fraction(mp, x,r);
3551 mp->n_sin=mp_make_fraction(mp, y,r);
3554 @ In this case the octants are numbered sequentially.
3556 @<Convert |(x,...@>=
3559 case 1: t=x; x=y; y=t; break;
3560 case 2: t=x; x=-y; y=t; break;
3561 case 3: negate(x); break;
3562 case 4: negate(x); negate(y); break;
3563 case 5: t=x; x=-y; y=-t; break;
3564 case 6: t=x; x=y; y=-t; break;
3565 case 7: negate(y); break;
3566 } /* there are no other cases */
3568 @ The main iteration of |n_sin_cos| is similar to that of |n_arg| but
3569 applied in reverse. The values of |spec_atan[k]| decrease slowly enough
3570 that this loop is guaranteed to terminate before the (nonexistent) value
3571 |spec_atan[27]| would be required.
3573 @<Subtract angle |z|...@>=
3576 if ( z>=spec_atan[k] ) {
3577 z=z-spec_atan[k]; t=x;
3578 x=t+y / two_to_the(k);
3579 y=y-t / two_to_the(k);
3583 if ( y<0 ) y=0 /* this precaution may never be needed */
3585 @ And now let's complete our collection of numeric utility routines
3586 by considering random number generation.
3587 \MP\ generates pseudo-random numbers with the additive scheme recommended
3588 in Section 3.6 of {\sl The Art of Computer Programming}; however, the
3589 results are random fractions between 0 and |fraction_one-1|, inclusive.
3591 There's an auxiliary array |randoms| that contains 55 pseudo-random
3592 fractions. Using the recurrence $x_n=(x_{n-55}-x_{n-31})\bmod 2^{28}$,
3593 we generate batches of 55 new $x_n$'s at a time by calling |new_randoms|.
3594 The global variable |j_random| tells which element has most recently
3596 The global variable |random_seed| was introduced in version 0.9,
3597 for the sole reason of stressing the fact that the initial value of the
3598 random seed is system-dependant. The initialization code below will initialize
3599 this variable to |(internal[mp_time] div unity)+internal[mp_day]|, but this
3600 is not good enough on modern fast machines that are capable of running
3601 multiple MetaPost processes within the same second.
3602 @^system dependencies@>
3605 fraction randoms[55]; /* the last 55 random values generated */
3606 int j_random; /* the number of unused |randoms| */
3608 @ @<Option variables@>=
3609 int random_seed; /* the default random seed */
3611 @ @<Allocate or initialize ...@>=
3612 mp->random_seed = (scaled)opt->random_seed;
3614 @ To consume a random fraction, the program below will say `|next_random|'
3615 and then it will fetch |randoms[j_random]|.
3617 @d next_random { if ( mp->j_random==0 ) mp_new_randoms(mp);
3618 else decr(mp->j_random); }
3621 void mp_new_randoms (MP mp) {
3622 int k; /* index into |randoms| */
3623 fraction x; /* accumulator */
3624 for (k=0;k<=23;k++) {
3625 x=mp->randoms[k]-mp->randoms[k+31];
3626 if ( x<0 ) x=x+fraction_one;
3629 for (k=24;k<= 54;k++){
3630 x=mp->randoms[k]-mp->randoms[k-24];
3631 if ( x<0 ) x=x+fraction_one;
3638 void mp_init_randoms (MP mp,scaled seed);
3640 @ To initialize the |randoms| table, we call the following routine.
3643 void mp_init_randoms (MP mp,scaled seed) {
3644 fraction j,jj,k; /* more or less random integers */
3645 int i; /* index into |randoms| */
3647 while ( j>=fraction_one ) j=halfp(j);
3649 for (i=0;i<=54;i++ ){
3651 if ( k<0 ) k=k+fraction_one;
3652 mp->randoms[(i*21)% 55]=j;
3656 mp_new_randoms(mp); /* ``warm up'' the array */
3659 @ To produce a uniform random number in the range |0<=u<x| or |0>=u>x|
3660 or |0=u=x|, given a |scaled| value~|x|, we proceed as shown here.
3662 Note that the call of |take_fraction| will produce the values 0 and~|x|
3663 with about half the probability that it will produce any other particular
3664 values between 0 and~|x|, because it rounds its answers.
3667 scaled mp_unif_rand (MP mp,scaled x) {
3668 scaled y; /* trial value */
3669 next_random; y=mp_take_fraction(mp, abs(x),mp->randoms[mp->j_random]);
3670 if ( y==abs(x) ) return 0;
3671 else if ( x>0 ) return y;
3675 @ Finally, a normal deviate with mean zero and unit standard deviation
3676 can readily be obtained with the ratio method (Algorithm 3.4.1R in
3677 {\sl The Art of Computer Programming\/}).
3680 scaled mp_norm_rand (MP mp) {
3681 integer x,u,l; /* what the book would call $2^{16}X$, $2^{28}U$, and $-2^{24}\ln U$ */
3685 x=mp_take_fraction(mp, 112429,mp->randoms[mp->j_random]-fraction_half);
3686 /* $2^{16}\sqrt{8/e}\approx 112428.82793$ */
3687 next_random; u=mp->randoms[mp->j_random];
3688 } while (abs(x)>=u);
3689 x=mp_make_fraction(mp, x,u);
3690 l=139548960-mp_m_log(mp, u); /* $2^{24}\cdot12\ln2\approx139548959.6165$ */
3691 } while (mp_ab_vs_cd(mp, 1024,l,x,x)<0);
3695 @* \[9] Packed data.
3696 In order to make efficient use of storage space, \MP\ bases its major data
3697 structures on a |memory_word|, which contains either a (signed) integer,
3698 possibly scaled, or a small number of fields that are one half or one
3699 quarter of the size used for storing integers.
3701 If |x| is a variable of type |memory_word|, it contains up to four
3702 fields that can be referred to as follows:
3703 $$\vbox{\halign{\hfil#&#\hfil&#\hfil\cr
3704 |x|&.|int|&(an |integer|)\cr
3705 |x|&.|sc|\qquad&(a |scaled| integer)\cr
3706 |x.hh.lh|, |x.hh|&.|rh|&(two halfword fields)\cr
3707 |x.hh.b0|, |x.hh.b1|, |x.hh|&.|rh|&(two quarterword fields, one halfword
3709 |x.qqqq.b0|, |x.qqqq.b1|, |x.qqqq|&.|b2|, |x.qqqq.b3|\hskip-100pt
3710 &\qquad\qquad\qquad(four quarterword fields)\cr}}$$
3711 This is somewhat cumbersome to write, and not very readable either, but
3712 macros will be used to make the notation shorter and more transparent.
3713 The code below gives a formal definition of |memory_word| and
3714 its subsidiary types, using packed variant records. \MP\ makes no
3715 assumptions about the relative positions of the fields within a word.
3717 @d max_quarterword 0x3FFF /* largest allowable value in a |quarterword| */
3718 @d max_halfword 0xFFFFFFF /* largest allowable value in a |halfword| */
3720 @ Here are the inequalities that the quarterword and halfword values
3721 must satisfy (or rather, the inequalities that they mustn't satisfy):
3723 @<Check the ``constant''...@>=
3724 if (mp->ini_version) {
3725 if ( mp->mem_max!=mp->mem_top ) mp->bad=8;
3727 if ( mp->mem_max<mp->mem_top ) mp->bad=8;
3729 if ( max_quarterword<255 ) mp->bad=9;
3730 if ( max_halfword<65535 ) mp->bad=10;
3731 if ( max_quarterword>max_halfword ) mp->bad=11;
3732 if ( mp->mem_max>=max_halfword ) mp->bad=12;
3733 if ( mp->max_strings>max_halfword ) mp->bad=13;
3735 @ The macros |qi| and |qo| are used for input to and output
3736 from quarterwords. These are legacy macros.
3737 @^system dependencies@>
3739 @d qo(A) (A) /* to read eight bits from a quarterword */
3740 @d qi(A) (A) /* to store eight bits in a quarterword */
3742 @ The reader should study the following definitions closely:
3743 @^system dependencies@>
3745 @d sc cint /* |scaled| data is equivalent to |integer| */
3748 typedef short quarterword; /* 1/4 of a word */
3749 typedef int halfword; /* 1/2 of a word */
3754 struct { /* Make B0,B1 overlap the most significant bytes of LH. */
3761 quarterword B2, B3, B0, B1;
3776 @ When debugging, we may want to print a |memory_word| without knowing
3777 what type it is; so we print it in all modes.
3781 void mp_print_word (MP mp,memory_word w) {
3782 /* prints |w| in all ways */
3783 mp_print_int(mp, w.cint); mp_print_char(mp, ' ');
3784 mp_print_scaled(mp, w.sc); mp_print_char(mp, ' ');
3785 mp_print_scaled(mp, w.sc / 010000); mp_print_ln(mp);
3786 mp_print_int(mp, w.hh.lh); mp_print_char(mp, '=');
3787 mp_print_int(mp, w.hh.b0); mp_print_char(mp, ':');
3788 mp_print_int(mp, w.hh.b1); mp_print_char(mp, ';');
3789 mp_print_int(mp, w.hh.rh); mp_print_char(mp, ' ');
3790 mp_print_int(mp, w.qqqq.b0); mp_print_char(mp, ':');
3791 mp_print_int(mp, w.qqqq.b1); mp_print_char(mp, ':');
3792 mp_print_int(mp, w.qqqq.b2); mp_print_char(mp, ':');
3793 mp_print_int(mp, w.qqqq.b3);
3797 @* \[10] Dynamic memory allocation.
3799 The \MP\ system does nearly all of its own memory allocation, so that it
3800 can readily be transported into environments that do not have automatic
3801 facilities for strings, garbage collection, etc., and so that it can be in
3802 control of what error messages the user receives. The dynamic storage
3803 requirements of \MP\ are handled by providing a large array |mem| in
3804 which consecutive blocks of words are used as nodes by the \MP\ routines.
3806 Pointer variables are indices into this array, or into another array
3807 called |eqtb| that will be explained later. A pointer variable might
3808 also be a special flag that lies outside the bounds of |mem|, so we
3809 allow pointers to assume any |halfword| value. The minimum memory
3810 index represents a null pointer.
3812 @d null 0 /* the null pointer */
3813 @d mp_void (null+1) /* a null pointer different from |null| */
3817 typedef halfword pointer; /* a flag or a location in |mem| or |eqtb| */
3819 @ The |mem| array is divided into two regions that are allocated separately,
3820 but the dividing line between these two regions is not fixed; they grow
3821 together until finding their ``natural'' size in a particular job.
3822 Locations less than or equal to |lo_mem_max| are used for storing
3823 variable-length records consisting of two or more words each. This region
3824 is maintained using an algorithm similar to the one described in exercise
3825 2.5--19 of {\sl The Art of Computer Programming}. However, no size field
3826 appears in the allocated nodes; the program is responsible for knowing the
3827 relevant size when a node is freed. Locations greater than or equal to
3828 |hi_mem_min| are used for storing one-word records; a conventional
3829 \.{AVAIL} stack is used for allocation in this region.
3831 Locations of |mem| between |0| and |mem_top| may be dumped as part
3832 of preloaded format files, by the \.{INIMP} preprocessor.
3834 Production versions of \MP\ may extend the memory at the top end in order to
3835 provide more space; these locations, between |mem_top| and |mem_max|,
3836 are always used for single-word nodes.
3838 The key pointers that govern |mem| allocation have a prescribed order:
3839 $$\hbox{|null=0<lo_mem_max<hi_mem_min<mem_top<=mem_end<=mem_max|.}$$
3842 memory_word *mem; /* the big dynamic storage area */
3843 pointer lo_mem_max; /* the largest location of variable-size memory in use */
3844 pointer hi_mem_min; /* the smallest location of one-word memory in use */
3848 @d xfree(A) do { mp_xfree(A); A=NULL; } while (0)
3849 @d xrealloc(P,A,B) mp_xrealloc(mp,P,A,B)
3850 @d xmalloc(A,B) mp_xmalloc(mp,A,B)
3851 @d xstrdup(A) mp_xstrdup(mp,A)
3852 @d XREALLOC(a,b,c) a = xrealloc(a,(b+1),sizeof(c));
3854 @<Declare helpers@>=
3855 void mp_xfree (void *x);
3856 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) ;
3857 void *mp_xmalloc (MP mp, size_t nmem, size_t size) ;
3858 char *mp_xstrdup(MP mp, const char *s);
3860 @ The |max_size_test| guards against overflow, on the assumption that
3861 |size_t| is at least 31bits wide.
3863 @d max_size_test 0x7FFFFFFF
3866 void mp_xfree (void *x) {
3867 if (x!=NULL) free(x);
3869 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) {
3871 if ((max_size_test/size)<nmem) {
3872 do_fprintf(mp->err_out,"Memory size overflow!\n");
3873 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3875 w = realloc (p,(nmem*size));
3877 do_fprintf(mp->err_out,"Out of memory!\n");
3878 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3882 void *mp_xmalloc (MP mp, size_t nmem, size_t size) {
3884 if ((max_size_test/size)<nmem) {
3885 do_fprintf(mp->err_out,"Memory size overflow!\n");
3886 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3888 w = malloc (nmem*size);
3890 do_fprintf(mp->err_out,"Out of memory!\n");
3891 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3895 char *mp_xstrdup(MP mp, const char *s) {
3901 do_fprintf(mp->err_out,"Out of memory!\n");
3902 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3909 @<Allocate or initialize ...@>=
3910 mp->mem = xmalloc ((mp->mem_max+1),sizeof (memory_word));
3911 memset(mp->mem,0,(mp->mem_max+1)*sizeof (memory_word));
3913 @ @<Dealloc variables@>=
3916 @ Users who wish to study the memory requirements of particular applications can
3917 can use optional special features that keep track of current and
3918 maximum memory usage. When code between the delimiters |stat| $\ldots$
3919 |tats| is not ``commented out,'' \MP\ will run a bit slower but it will
3920 report these statistics when |mp_tracing_stats| is positive.
3923 integer var_used; integer dyn_used; /* how much memory is in use */
3925 @ Let's consider the one-word memory region first, since it's the
3926 simplest. The pointer variable |mem_end| holds the highest-numbered location
3927 of |mem| that has ever been used. The free locations of |mem| that
3928 occur between |hi_mem_min| and |mem_end|, inclusive, are of type
3929 |two_halves|, and we write |info(p)| and |link(p)| for the |lh|
3930 and |rh| fields of |mem[p]| when it is of this type. The single-word
3931 free locations form a linked list
3932 $$|avail|,\;\hbox{|link(avail)|},\;\hbox{|link(link(avail))|},\;\ldots$$
3933 terminated by |null|.
3935 @d link(A) mp->mem[(A)].hh.rh /* the |link| field of a memory word */
3936 @d info(A) mp->mem[(A)].hh.lh /* the |info| field of a memory word */
3939 pointer avail; /* head of the list of available one-word nodes */
3940 pointer mem_end; /* the last one-word node used in |mem| */
3942 @ If one-word memory is exhausted, it might mean that the user has forgotten
3943 a token like `\&{enddef}' or `\&{endfor}'. We will define some procedures
3944 later that try to help pinpoint the trouble.
3947 @<Declare the procedure called |show_token_list|@>;
3948 @<Declare the procedure called |runaway|@>
3950 @ The function |get_avail| returns a pointer to a new one-word node whose
3951 |link| field is null. However, \MP\ will halt if there is no more room left.
3955 pointer mp_get_avail (MP mp) { /* single-word node allocation */
3956 pointer p; /* the new node being got */
3957 p=mp->avail; /* get top location in the |avail| stack */
3959 mp->avail=link(mp->avail); /* and pop it off */
3960 } else if ( mp->mem_end<mp->mem_max ) { /* or go into virgin territory */
3961 incr(mp->mem_end); p=mp->mem_end;
3963 decr(mp->hi_mem_min); p=mp->hi_mem_min;
3964 if ( mp->hi_mem_min<=mp->lo_mem_max ) {
3965 mp_runaway(mp); /* if memory is exhausted, display possible runaway text */
3966 mp_overflow(mp, "main memory size",mp->mem_max);
3967 /* quit; all one-word nodes are busy */
3968 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
3971 link(p)=null; /* provide an oft-desired initialization of the new node */
3972 incr(mp->dyn_used);/* maintain statistics */
3976 @ Conversely, a one-word node is recycled by calling |free_avail|.
3978 @d free_avail(A) /* single-word node liberation */
3979 { link((A))=mp->avail; mp->avail=(A); decr(mp->dyn_used); }
3981 @ There's also a |fast_get_avail| routine, which saves the procedure-call
3982 overhead at the expense of extra programming. This macro is used in
3983 the places that would otherwise account for the most calls of |get_avail|.
3986 @d fast_get_avail(A) {
3987 (A)=mp->avail; /* avoid |get_avail| if possible, to save time */
3988 if ( (A)==null ) { (A)=mp_get_avail(mp); }
3989 else { mp->avail=link((A)); link((A))=null; incr(mp->dyn_used); }
3992 @ The available-space list that keeps track of the variable-size portion
3993 of |mem| is a nonempty, doubly-linked circular list of empty nodes,
3994 pointed to by the roving pointer |rover|.
3996 Each empty node has size 2 or more; the first word contains the special
3997 value |max_halfword| in its |link| field and the size in its |info| field;
3998 the second word contains the two pointers for double linking.
4000 Each nonempty node also has size 2 or more. Its first word is of type
4001 |two_halves|\kern-1pt, and its |link| field is never equal to |max_halfword|.
4002 Otherwise there is complete flexibility with respect to the contents
4003 of its other fields and its other words.
4005 (We require |mem_max<max_halfword| because terrible things can happen
4006 when |max_halfword| appears in the |link| field of a nonempty node.)
4008 @d empty_flag max_halfword /* the |link| of an empty variable-size node */
4009 @d is_empty(A) (link((A))==empty_flag) /* tests for empty node */
4010 @d node_size info /* the size field in empty variable-size nodes */
4011 @d llink(A) info((A)+1) /* left link in doubly-linked list of empty nodes */
4012 @d rlink(A) link((A)+1) /* right link in doubly-linked list of empty nodes */
4015 pointer rover; /* points to some node in the list of empties */
4017 @ A call to |get_node| with argument |s| returns a pointer to a new node
4018 of size~|s|, which must be 2~or more. The |link| field of the first word
4019 of this new node is set to null. An overflow stop occurs if no suitable
4022 If |get_node| is called with $s=2^{30}$, it simply merges adjacent free
4023 areas and returns the value |max_halfword|.
4025 @<Internal library declarations@>=
4026 pointer mp_get_node (MP mp,integer s) ;
4029 pointer mp_get_node (MP mp,integer s) { /* variable-size node allocation */
4030 pointer p; /* the node currently under inspection */
4031 pointer q; /* the node physically after node |p| */
4032 integer r; /* the newly allocated node, or a candidate for this honor */
4033 integer t,tt; /* temporary registers */
4036 p=mp->rover; /* start at some free node in the ring */
4038 @<Try to allocate within node |p| and its physical successors,
4039 and |goto found| if allocation was possible@>;
4040 if (rlink(p)==null || rlink(p)==p) {
4041 print_err("Free list garbled");
4042 help3("I found an entry in the list of free nodes that links")
4043 ("badly. I will try to ignore the broken link, but something")
4044 ("is seriously amiss. It is wise to warn the maintainers.")
4048 p=rlink(p); /* move to the next node in the ring */
4049 } while (p!=mp->rover); /* repeat until the whole list has been traversed */
4050 if ( s==010000000000 ) {
4051 return max_halfword;
4053 if ( mp->lo_mem_max+2<mp->hi_mem_min ) {
4054 if ( mp->lo_mem_max+2<=max_halfword ) {
4055 @<Grow more variable-size memory and |goto restart|@>;
4058 mp_overflow(mp, "main memory size",mp->mem_max);
4059 /* sorry, nothing satisfactory is left */
4060 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
4062 link(r)=null; /* this node is now nonempty */
4063 mp->var_used+=s; /* maintain usage statistics */
4067 @ The lower part of |mem| grows by 1000 words at a time, unless
4068 we are very close to going under. When it grows, we simply link
4069 a new node into the available-space list. This method of controlled
4070 growth helps to keep the |mem| usage consecutive when \MP\ is
4071 implemented on ``virtual memory'' systems.
4074 @<Grow more variable-size memory and |goto restart|@>=
4076 if ( mp->hi_mem_min-mp->lo_mem_max>=1998 ) {
4077 t=mp->lo_mem_max+1000;
4079 t=mp->lo_mem_max+1+(mp->hi_mem_min-mp->lo_mem_max) / 2;
4080 /* |lo_mem_max+2<=t<hi_mem_min| */
4082 if ( t>max_halfword ) t=max_halfword;
4083 p=llink(mp->rover); q=mp->lo_mem_max; rlink(p)=q; llink(mp->rover)=q;
4084 rlink(q)=mp->rover; llink(q)=p; link(q)=empty_flag;
4085 node_size(q)=t-mp->lo_mem_max;
4086 mp->lo_mem_max=t; link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4091 @ @<Try to allocate...@>=
4092 q=p+node_size(p); /* find the physical successor */
4093 while ( is_empty(q) ) { /* merge node |p| with node |q| */
4094 t=rlink(q); tt=llink(q);
4096 if ( q==mp->rover ) mp->rover=t;
4097 llink(t)=tt; rlink(tt)=t;
4102 @<Allocate from the top of node |p| and |goto found|@>;
4105 if ( rlink(p)!=p ) {
4106 @<Allocate entire node |p| and |goto found|@>;
4109 node_size(p)=q-p /* reset the size in case it grew */
4111 @ @<Allocate from the top...@>=
4113 node_size(p)=r-p; /* store the remaining size */
4114 mp->rover=p; /* start searching here next time */
4118 @ Here we delete node |p| from the ring, and let |rover| rove around.
4120 @<Allocate entire...@>=
4122 mp->rover=rlink(p); t=llink(p);
4123 llink(mp->rover)=t; rlink(t)=mp->rover;
4127 @ Conversely, when some variable-size node |p| of size |s| is no longer needed,
4128 the operation |free_node(p,s)| will make its words available, by inserting
4129 |p| as a new empty node just before where |rover| now points.
4131 @<Internal library declarations@>=
4132 void mp_free_node (MP mp, pointer p, halfword s) ;
4135 void mp_free_node (MP mp, pointer p, halfword s) { /* variable-size node
4137 pointer q; /* |llink(rover)| */
4138 node_size(p)=s; link(p)=empty_flag;
4140 q=llink(mp->rover); llink(p)=q; rlink(p)=mp->rover; /* set both links */
4141 llink(mp->rover)=p; rlink(q)=p; /* insert |p| into the ring */
4142 mp->var_used-=s; /* maintain statistics */
4145 @ Just before \.{INIMP} writes out the memory, it sorts the doubly linked
4146 available space list. The list is probably very short at such times, so a
4147 simple insertion sort is used. The smallest available location will be
4148 pointed to by |rover|, the next-smallest by |rlink(rover)|, etc.
4151 void mp_sort_avail (MP mp) { /* sorts the available variable-size nodes
4153 pointer p,q,r; /* indices into |mem| */
4154 pointer old_rover; /* initial |rover| setting */
4155 p=mp_get_node(mp, 010000000000); /* merge adjacent free areas */
4156 p=rlink(mp->rover); rlink(mp->rover)=max_halfword; old_rover=mp->rover;
4157 while ( p!=old_rover ) {
4158 @<Sort |p| into the list starting at |rover|
4159 and advance |p| to |rlink(p)|@>;
4162 while ( rlink(p)!=max_halfword ) {
4163 llink(rlink(p))=p; p=rlink(p);
4165 rlink(p)=mp->rover; llink(mp->rover)=p;
4168 @ The following |while| loop is guaranteed to
4169 terminate, since the list that starts at
4170 |rover| ends with |max_halfword| during the sorting procedure.
4173 if ( p<mp->rover ) {
4174 q=p; p=rlink(q); rlink(q)=mp->rover; mp->rover=q;
4177 while ( rlink(q)<p ) q=rlink(q);
4178 r=rlink(p); rlink(p)=rlink(q); rlink(q)=p; p=r;
4181 @* \[11] Memory layout.
4182 Some areas of |mem| are dedicated to fixed usage, since static allocation is
4183 more efficient than dynamic allocation when we can get away with it. For
4184 example, locations |0| to |1| are always used to store a
4185 two-word dummy token whose second word is zero.
4186 The following macro definitions accomplish the static allocation by giving
4187 symbolic names to the fixed positions. Static variable-size nodes appear
4188 in locations |0| through |lo_mem_stat_max|, and static single-word nodes
4189 appear in locations |hi_mem_stat_min| through |mem_top|, inclusive.
4191 @d null_dash (2) /* the first two words are reserved for a null value */
4192 @d dep_head (null_dash+3) /* we will define |dash_node_size=3| */
4193 @d zero_val (dep_head+2) /* two words for a permanently zero value */
4194 @d temp_val (zero_val+2) /* two words for a temporary value node */
4195 @d end_attr temp_val /* we use |end_attr+2| only */
4196 @d inf_val (end_attr+2) /* and |inf_val+1| only */
4197 @d test_pen (inf_val+2)
4198 /* nine words for a pen used when testing the turning number */
4199 @d bad_vardef (test_pen+9) /* two words for \&{vardef} error recovery */
4200 @d lo_mem_stat_max (bad_vardef+1) /* largest statically
4201 allocated word in the variable-size |mem| */
4203 @d sentinel mp->mem_top /* end of sorted lists */
4204 @d temp_head (mp->mem_top-1) /* head of a temporary list of some kind */
4205 @d hold_head (mp->mem_top-2) /* head of a temporary list of another kind */
4206 @d spec_head (mp->mem_top-3) /* head of a list of unprocessed \&{special} items */
4207 @d hi_mem_stat_min (mp->mem_top-3) /* smallest statically allocated word in
4208 the one-word |mem| */
4210 @ The following code gets the dynamic part of |mem| off to a good start,
4211 when \MP\ is initializing itself the slow way.
4213 @<Initialize table entries (done by \.{INIMP} only)@>=
4214 @^data structure assumptions@>
4215 mp->rover=lo_mem_stat_max+1; /* initialize the dynamic memory */
4216 link(mp->rover)=empty_flag;
4217 node_size(mp->rover)=1000; /* which is a 1000-word available node */
4218 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
4219 mp->lo_mem_max=mp->rover+1000;
4220 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4221 for (k=hi_mem_stat_min;k<=(int)mp->mem_top;k++) {
4222 mp->mem[k]=mp->mem[mp->lo_mem_max]; /* clear list heads */
4224 mp->avail=null; mp->mem_end=mp->mem_top;
4225 mp->hi_mem_min=hi_mem_stat_min; /* initialize the one-word memory */
4226 mp->var_used=lo_mem_stat_max+1;
4227 mp->dyn_used=mp->mem_top+1-(hi_mem_stat_min); /* initialize statistics */
4228 @<Initialize a pen at |test_pen| so that it fits in nine words@>;
4230 @ The procedure |flush_list(p)| frees an entire linked list of one-word
4231 nodes that starts at a given position, until coming to |sentinel| or a
4232 pointer that is not in the one-word region. Another procedure,
4233 |flush_node_list|, frees an entire linked list of one-word and two-word
4234 nodes, until coming to a |null| pointer.
4238 void mp_flush_list (MP mp,pointer p) { /* makes list of single-word nodes available */
4239 pointer q,r; /* list traversers */
4240 if ( p>=mp->hi_mem_min ) if ( p!=sentinel ) {
4245 if ( r<mp->hi_mem_min ) break;
4246 } while (r!=sentinel);
4247 /* now |q| is the last node on the list */
4248 link(q)=mp->avail; mp->avail=p;
4252 void mp_flush_node_list (MP mp,pointer p) {
4253 pointer q; /* the node being recycled */
4256 if ( q<mp->hi_mem_min )
4257 mp_free_node(mp, q,2);
4263 @ If \MP\ is extended improperly, the |mem| array might get screwed up.
4264 For example, some pointers might be wrong, or some ``dead'' nodes might not
4265 have been freed when the last reference to them disappeared. Procedures
4266 |check_mem| and |search_mem| are available to help diagnose such
4267 problems. These procedures make use of two arrays called |free| and
4268 |was_free| that are present only if \MP's debugging routines have
4269 been included. (You may want to decrease the size of |mem| while you
4273 Because |boolean|s are typedef-d as ints, it is better to use
4274 unsigned chars here.
4277 unsigned char *free; /* free cells */
4278 unsigned char *was_free; /* previously free cells */
4279 pointer was_mem_end; pointer was_lo_max; pointer was_hi_min;
4280 /* previous |mem_end|, |lo_mem_max|,and |hi_mem_min| */
4281 boolean panicking; /* do we want to check memory constantly? */
4283 @ @<Allocate or initialize ...@>=
4284 mp->free = xmalloc ((mp->mem_max+1),sizeof (unsigned char));
4285 mp->was_free = xmalloc ((mp->mem_max+1), sizeof (unsigned char));
4287 @ @<Dealloc variables@>=
4289 xfree(mp->was_free);
4291 @ @<Allocate or ...@>=
4292 mp->was_mem_end=0; /* indicate that everything was previously free */
4293 mp->was_lo_max=0; mp->was_hi_min=mp->mem_max;
4294 mp->panicking=false;
4296 @ @<Declare |mp_reallocate| functions@>=
4297 void mp_reallocate_memory(MP mp, int l) ;
4300 void mp_reallocate_memory(MP mp, int l) {
4301 XREALLOC(mp->free, l, unsigned char);
4302 XREALLOC(mp->was_free, l, unsigned char);
4304 int newarea = l-mp->mem_max;
4305 XREALLOC(mp->mem, l, memory_word);
4306 memset (mp->mem+(mp->mem_max+1),0,sizeof(memory_word)*(newarea));
4308 XREALLOC(mp->mem, l, memory_word);
4309 memset(mp->mem,0,sizeof(memory_word)*(l+1));
4312 if (mp->ini_version)
4318 @ Procedure |check_mem| makes sure that the available space lists of
4319 |mem| are well formed, and it optionally prints out all locations
4320 that are reserved now but were free the last time this procedure was called.
4323 void mp_check_mem (MP mp,boolean print_locs ) {
4324 pointer p,q,r; /* current locations of interest in |mem| */
4325 boolean clobbered; /* is something amiss? */
4326 for (p=0;p<=mp->lo_mem_max;p++) {
4327 mp->free[p]=false; /* you can probably do this faster */
4329 for (p=mp->hi_mem_min;p<= mp->mem_end;p++) {
4330 mp->free[p]=false; /* ditto */
4332 @<Check single-word |avail| list@>;
4333 @<Check variable-size |avail| list@>;
4334 @<Check flags of unavailable nodes@>;
4335 @<Check the list of linear dependencies@>;
4337 @<Print newly busy locations@>;
4339 memcpy(mp->was_free,mp->free, sizeof(char)*(mp->mem_end+1));
4340 mp->was_mem_end=mp->mem_end;
4341 mp->was_lo_max=mp->lo_mem_max;
4342 mp->was_hi_min=mp->hi_mem_min;
4345 @ @<Check single-word...@>=
4346 p=mp->avail; q=null; clobbered=false;
4348 if ( (p>mp->mem_end)||(p<mp->hi_mem_min) ) clobbered=true;
4349 else if ( mp->free[p] ) clobbered=true;
4351 mp_print_nl(mp, "AVAIL list clobbered at ");
4352 @.AVAIL list clobbered...@>
4353 mp_print_int(mp, q); break;
4355 mp->free[p]=true; q=p; p=link(q);
4358 @ @<Check variable-size...@>=
4359 p=mp->rover; q=null; clobbered=false;
4361 if ( (p>=mp->lo_mem_max)||(p<0) ) clobbered=true;
4362 else if ( (rlink(p)>=mp->lo_mem_max)||(rlink(p)<0) ) clobbered=true;
4363 else if ( !(is_empty(p))||(node_size(p)<2)||
4364 (p+node_size(p)>mp->lo_mem_max)|| (llink(rlink(p))!=p) ) clobbered=true;
4366 mp_print_nl(mp, "Double-AVAIL list clobbered at ");
4367 @.Double-AVAIL list clobbered...@>
4368 mp_print_int(mp, q); break;
4370 for (q=p;q<=p+node_size(p)-1;q++) { /* mark all locations free */
4371 if ( mp->free[q] ) {
4372 mp_print_nl(mp, "Doubly free location at ");
4373 @.Doubly free location...@>
4374 mp_print_int(mp, q); break;
4379 } while (p!=mp->rover)
4382 @ @<Check flags...@>=
4384 while ( p<=mp->lo_mem_max ) { /* node |p| should not be empty */
4385 if ( is_empty(p) ) {
4386 mp_print_nl(mp, "Bad flag at "); mp_print_int(mp, p);
4389 while ( (p<=mp->lo_mem_max) && ! mp->free[p] ) incr(p);
4390 while ( (p<=mp->lo_mem_max) && mp->free[p] ) incr(p);
4393 @ @<Print newly busy...@>=
4395 @<Do intialization required before printing new busy locations@>;
4396 mp_print_nl(mp, "New busy locs:");
4398 for (p=0;p<= mp->lo_mem_max;p++ ) {
4399 if ( ! mp->free[p] && ((p>mp->was_lo_max) || mp->was_free[p]) ) {
4400 @<Indicate that |p| is a new busy location@>;
4403 for (p=mp->hi_mem_min;p<=mp->mem_end;p++ ) {
4404 if ( ! mp->free[p] &&
4405 ((p<mp->was_hi_min) || (p>mp->was_mem_end) || mp->was_free[p]) ) {
4406 @<Indicate that |p| is a new busy location@>;
4409 @<Finish printing new busy locations@>;
4412 @ There might be many new busy locations so we are careful to print contiguous
4413 blocks compactly. During this operation |q| is the last new busy location and
4414 |r| is the start of the block containing |q|.
4416 @<Indicate that |p| is a new busy location@>=
4420 mp_print(mp, ".."); mp_print_int(mp, q);
4422 mp_print_char(mp, ' '); mp_print_int(mp, p);
4428 @ @<Do intialization required before printing new busy locations@>=
4429 q=mp->mem_max; r=mp->mem_max
4431 @ @<Finish printing new busy locations@>=
4433 mp_print(mp, ".."); mp_print_int(mp, q);
4436 @ The |search_mem| procedure attempts to answer the question ``Who points
4437 to node~|p|?'' In doing so, it fetches |link| and |info| fields of |mem|
4438 that might not be of type |two_halves|. Strictly speaking, this is
4439 undefined, and it can lead to ``false drops'' (words that seem to
4440 point to |p| purely by coincidence). But for debugging purposes, we want
4441 to rule out the places that do {\sl not\/} point to |p|, so a few false
4442 drops are tolerable.
4445 void mp_search_mem (MP mp, pointer p) { /* look for pointers to |p| */
4446 integer q; /* current position being searched */
4447 for (q=0;q<=mp->lo_mem_max;q++) {
4449 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4452 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4455 for (q=mp->hi_mem_min;q<=mp->mem_end;q++) {
4457 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4460 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4463 @<Search |eqtb| for equivalents equal to |p|@>;
4466 @* \[12] The command codes.
4467 Before we can go much further, we need to define symbolic names for the internal
4468 code numbers that represent the various commands obeyed by \MP. These codes
4469 are somewhat arbitrary, but not completely so. For example,
4470 some codes have been made adjacent so that |case| statements in the
4471 program need not consider cases that are widely spaced, or so that |case|
4472 statements can be replaced by |if| statements. A command can begin an
4473 expression if and only if its code lies between |min_primary_command| and
4474 |max_primary_command|, inclusive. The first token of a statement that doesn't
4475 begin with an expression has a command code between |min_command| and
4476 |max_statement_command|, inclusive. Anything less than |min_command| is
4477 eliminated during macro expansions, and anything no more than |max_pre_command|
4478 is eliminated when expanding \TeX\ material. Ranges such as
4479 |min_secondary_command..max_secondary_command| are used when parsing
4480 expressions, but the relative ordering within such a range is generally not
4483 The ordering of the highest-numbered commands
4484 (|comma<semicolon<end_group<stop|) is crucial for the parsing and
4485 error-recovery methods of this program as is the ordering |if_test<fi_or_else|
4486 for the smallest two commands. The ordering is also important in the ranges
4487 |numeric_token..plus_or_minus| and |left_brace..ampersand|.
4489 At any rate, here is the list, for future reference.
4491 @d start_tex 1 /* begin \TeX\ material (\&{btex}, \&{verbatimtex}) */
4492 @d etex_marker 2 /* end \TeX\ material (\&{etex}) */
4493 @d mpx_break 3 /* stop reading an \.{MPX} file (\&{mpxbreak}) */
4494 @d max_pre_command mpx_break
4495 @d if_test 4 /* conditional text (\&{if}) */
4496 @d fi_or_else 5 /* delimiters for conditionals (\&{elseif}, \&{else}, \&{fi} */
4497 @d input 6 /* input a source file (\&{input}, \&{endinput}) */
4498 @d iteration 7 /* iterate (\&{for}, \&{forsuffixes}, \&{forever}, \&{endfor}) */
4499 @d repeat_loop 8 /* special command substituted for \&{endfor} */
4500 @d exit_test 9 /* premature exit from a loop (\&{exitif}) */
4501 @d relax 10 /* do nothing (\.{\char`\\}) */
4502 @d scan_tokens 11 /* put a string into the input buffer */
4503 @d expand_after 12 /* look ahead one token */
4504 @d defined_macro 13 /* a macro defined by the user */
4505 @d min_command (defined_macro+1)
4506 @d save_command 14 /* save a list of tokens (\&{save}) */
4507 @d interim_command 15 /* save an internal quantity (\&{interim}) */
4508 @d let_command 16 /* redefine a symbolic token (\&{let}) */
4509 @d new_internal 17 /* define a new internal quantity (\&{newinternal}) */
4510 @d macro_def 18 /* define a macro (\&{def}, \&{vardef}, etc.) */
4511 @d ship_out_command 19 /* output a character (\&{shipout}) */
4512 @d add_to_command 20 /* add to edges (\&{addto}) */
4513 @d bounds_command 21 /* add bounding path to edges (\&{setbounds}, \&{clip}) */
4514 @d tfm_command 22 /* command for font metric info (\&{ligtable}, etc.) */
4515 @d protection_command 23 /* set protection flag (\&{outer}, \&{inner}) */
4516 @d show_command 24 /* diagnostic output (\&{show}, \&{showvariable}, etc.) */
4517 @d mode_command 25 /* set interaction level (\&{batchmode}, etc.) */
4518 @d mp_random_seed 26 /* initialize random number generator (\&{randomseed}) */
4519 @d message_command 27 /* communicate to user (\&{message}, \&{errmessage}) */
4520 @d every_job_command 28 /* designate a starting token (\&{everyjob}) */
4521 @d delimiters 29 /* define a pair of delimiters (\&{delimiters}) */
4522 @d special_command 30 /* output special info (\&{special})
4523 or font map info (\&{fontmapfile}, \&{fontmapline}) */
4524 @d write_command 31 /* write text to a file (\&{write}) */
4525 @d type_name 32 /* declare a type (\&{numeric}, \&{pair}, etc. */
4526 @d max_statement_command type_name
4527 @d min_primary_command type_name
4528 @d left_delimiter 33 /* the left delimiter of a matching pair */
4529 @d begin_group 34 /* beginning of a group (\&{begingroup}) */
4530 @d nullary 35 /* an operator without arguments (e.g., \&{normaldeviate}) */
4531 @d unary 36 /* an operator with one argument (e.g., \&{sqrt}) */
4532 @d str_op 37 /* convert a suffix to a string (\&{str}) */
4533 @d cycle 38 /* close a cyclic path (\&{cycle}) */
4534 @d primary_binary 39 /* binary operation taking `\&{of}' (e.g., \&{point}) */
4535 @d capsule_token 40 /* a value that has been put into a token list */
4536 @d string_token 41 /* a string constant (e.g., |"hello"|) */
4537 @d internal_quantity 42 /* internal numeric parameter (e.g., \&{pausing}) */
4538 @d min_suffix_token internal_quantity
4539 @d tag_token 43 /* a symbolic token without a primitive meaning */
4540 @d numeric_token 44 /* a numeric constant (e.g., \.{3.14159}) */
4541 @d max_suffix_token numeric_token
4542 @d plus_or_minus 45 /* either `\.+' or `\.-' */
4543 @d max_primary_command plus_or_minus /* should also be |numeric_token+1| */
4544 @d min_tertiary_command plus_or_minus
4545 @d tertiary_secondary_macro 46 /* a macro defined by \&{secondarydef} */
4546 @d tertiary_binary 47 /* an operator at the tertiary level (e.g., `\.{++}') */
4547 @d max_tertiary_command tertiary_binary
4548 @d left_brace 48 /* the operator `\.{\char`\{}' */
4549 @d min_expression_command left_brace
4550 @d path_join 49 /* the operator `\.{..}' */
4551 @d ampersand 50 /* the operator `\.\&' */
4552 @d expression_tertiary_macro 51 /* a macro defined by \&{tertiarydef} */
4553 @d expression_binary 52 /* an operator at the expression level (e.g., `\.<') */
4554 @d equals 53 /* the operator `\.=' */
4555 @d max_expression_command equals
4556 @d and_command 54 /* the operator `\&{and}' */
4557 @d min_secondary_command and_command
4558 @d secondary_primary_macro 55 /* a macro defined by \&{primarydef} */
4559 @d slash 56 /* the operator `\./' */
4560 @d secondary_binary 57 /* an operator at the binary level (e.g., \&{shifted}) */
4561 @d max_secondary_command secondary_binary
4562 @d param_type 58 /* type of parameter (\&{primary}, \&{expr}, \&{suffix}, etc.) */
4563 @d controls 59 /* specify control points explicitly (\&{controls}) */
4564 @d tension 60 /* specify tension between knots (\&{tension}) */
4565 @d at_least 61 /* bounded tension value (\&{atleast}) */
4566 @d curl_command 62 /* specify curl at an end knot (\&{curl}) */
4567 @d macro_special 63 /* special macro operators (\&{quote}, \.{\#\AT!}, etc.) */
4568 @d right_delimiter 64 /* the right delimiter of a matching pair */
4569 @d left_bracket 65 /* the operator `\.[' */
4570 @d right_bracket 66 /* the operator `\.]' */
4571 @d right_brace 67 /* the operator `\.{\char`\}}' */
4572 @d with_option 68 /* option for filling (\&{withpen}, \&{withweight}, etc.) */
4574 /* variant of \&{addto} (\&{contour}, \&{doublepath}, \&{also}) */
4575 @d of_token 70 /* the operator `\&{of}' */
4576 @d to_token 71 /* the operator `\&{to}' */
4577 @d step_token 72 /* the operator `\&{step}' */
4578 @d until_token 73 /* the operator `\&{until}' */
4579 @d within_token 74 /* the operator `\&{within}' */
4580 @d lig_kern_token 75
4581 /* the operators `\&{kern}' and `\.{=:}' and `\.{=:\char'174}, etc. */
4582 @d assignment 76 /* the operator `\.{:=}' */
4583 @d skip_to 77 /* the operation `\&{skipto}' */
4584 @d bchar_label 78 /* the operator `\.{\char'174\char'174:}' */
4585 @d double_colon 79 /* the operator `\.{::}' */
4586 @d colon 80 /* the operator `\.:' */
4588 @d comma 81 /* the operator `\.,', must be |colon+1| */
4589 @d end_of_statement (mp->cur_cmd>comma)
4590 @d semicolon 82 /* the operator `\.;', must be |comma+1| */
4591 @d end_group 83 /* end a group (\&{endgroup}), must be |semicolon+1| */
4592 @d stop 84 /* end a job (\&{end}, \&{dump}), must be |end_group+1| */
4593 @d max_command_code stop
4594 @d outer_tag (max_command_code+1) /* protection code added to command code */
4597 typedef int command_code;
4599 @ Variables and capsules in \MP\ have a variety of ``types,''
4600 distinguished by the code numbers defined here. These numbers are also
4601 not completely arbitrary. Things that get expanded must have types
4602 |>mp_independent|; a type remaining after expansion is numeric if and only if
4603 its code number is at least |numeric_type|; objects containing numeric
4604 parts must have types between |transform_type| and |pair_type|;
4605 all other types must be smaller than |transform_type|; and among the types
4606 that are not unknown or vacuous, the smallest two must be |boolean_type|
4607 and |string_type| in that order.
4609 @d undefined 0 /* no type has been declared */
4610 @d unknown_tag 1 /* this constant is added to certain type codes below */
4611 @d unknown_types mp_unknown_boolean: case mp_unknown_string:
4612 case mp_unknown_pen: case mp_unknown_picture: case mp_unknown_path
4615 enum mp_variable_type {
4616 mp_vacuous=1, /* no expression was present */
4617 mp_boolean_type, /* \&{boolean} with a known value */
4619 mp_string_type, /* \&{string} with a known value */
4621 mp_pen_type, /* \&{pen} with a known value */
4623 mp_path_type, /* \&{path} with a known value */
4625 mp_picture_type, /* \&{picture} with a known value */
4627 mp_transform_type, /* \&{transform} variable or capsule */
4628 mp_color_type, /* \&{color} variable or capsule */
4629 mp_cmykcolor_type, /* \&{cmykcolor} variable or capsule */
4630 mp_pair_type, /* \&{pair} variable or capsule */
4631 mp_numeric_type, /* variable that has been declared \&{numeric} but not used */
4632 mp_known, /* \&{numeric} with a known value */
4633 mp_dependent, /* a linear combination with |fraction| coefficients */
4634 mp_proto_dependent, /* a linear combination with |scaled| coefficients */
4635 mp_independent, /* \&{numeric} with unknown value */
4636 mp_token_list, /* variable name or suffix argument or text argument */
4637 mp_structured, /* variable with subscripts and attributes */
4638 mp_unsuffixed_macro, /* variable defined with \&{vardef} but no \.{\AT!\#} */
4639 mp_suffixed_macro /* variable defined with \&{vardef} and \.{\AT!\#} */
4643 void mp_print_type (MP mp,small_number t) ;
4645 @ @<Basic printing procedures@>=
4646 void mp_print_type (MP mp,small_number t) {
4648 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
4649 case mp_boolean_type:mp_print(mp, "boolean"); break;
4650 case mp_unknown_boolean:mp_print(mp, "unknown boolean"); break;
4651 case mp_string_type:mp_print(mp, "string"); break;
4652 case mp_unknown_string:mp_print(mp, "unknown string"); break;
4653 case mp_pen_type:mp_print(mp, "pen"); break;
4654 case mp_unknown_pen:mp_print(mp, "unknown pen"); break;
4655 case mp_path_type:mp_print(mp, "path"); break;
4656 case mp_unknown_path:mp_print(mp, "unknown path"); break;
4657 case mp_picture_type:mp_print(mp, "picture"); break;
4658 case mp_unknown_picture:mp_print(mp, "unknown picture"); break;
4659 case mp_transform_type:mp_print(mp, "transform"); break;
4660 case mp_color_type:mp_print(mp, "color"); break;
4661 case mp_cmykcolor_type:mp_print(mp, "cmykcolor"); break;
4662 case mp_pair_type:mp_print(mp, "pair"); break;
4663 case mp_known:mp_print(mp, "known numeric"); break;
4664 case mp_dependent:mp_print(mp, "dependent"); break;
4665 case mp_proto_dependent:mp_print(mp, "proto-dependent"); break;
4666 case mp_numeric_type:mp_print(mp, "numeric"); break;
4667 case mp_independent:mp_print(mp, "independent"); break;
4668 case mp_token_list:mp_print(mp, "token list"); break;
4669 case mp_structured:mp_print(mp, "mp_structured"); break;
4670 case mp_unsuffixed_macro:mp_print(mp, "unsuffixed macro"); break;
4671 case mp_suffixed_macro:mp_print(mp, "suffixed macro"); break;
4672 default: mp_print(mp, "undefined"); break;
4676 @ Values inside \MP\ are stored in two-word nodes that have a |name_type|
4677 as well as a |type|. The possibilities for |name_type| are defined
4678 here; they will be explained in more detail later.
4682 mp_root=0, /* |name_type| at the top level of a variable */
4683 mp_saved_root, /* same, when the variable has been saved */
4684 mp_structured_root, /* |name_type| where a |mp_structured| branch occurs */
4685 mp_subscr, /* |name_type| in a subscript node */
4686 mp_attr, /* |name_type| in an attribute node */
4687 mp_x_part_sector, /* |name_type| in the \&{xpart} of a node */
4688 mp_y_part_sector, /* |name_type| in the \&{ypart} of a node */
4689 mp_xx_part_sector, /* |name_type| in the \&{xxpart} of a node */
4690 mp_xy_part_sector, /* |name_type| in the \&{xypart} of a node */
4691 mp_yx_part_sector, /* |name_type| in the \&{yxpart} of a node */
4692 mp_yy_part_sector, /* |name_type| in the \&{yypart} of a node */
4693 mp_red_part_sector, /* |name_type| in the \&{redpart} of a node */
4694 mp_green_part_sector, /* |name_type| in the \&{greenpart} of a node */
4695 mp_blue_part_sector, /* |name_type| in the \&{bluepart} of a node */
4696 mp_cyan_part_sector, /* |name_type| in the \&{redpart} of a node */
4697 mp_magenta_part_sector, /* |name_type| in the \&{greenpart} of a node */
4698 mp_yellow_part_sector, /* |name_type| in the \&{bluepart} of a node */
4699 mp_black_part_sector, /* |name_type| in the \&{greenpart} of a node */
4700 mp_grey_part_sector, /* |name_type| in the \&{bluepart} of a node */
4701 mp_capsule, /* |name_type| in stashed-away subexpressions */
4702 mp_token /* |name_type| in a numeric token or string token */
4705 @ Primitive operations that produce values have a secondary identification
4706 code in addition to their command code; it's something like genera and species.
4707 For example, `\.*' has the command code |primary_binary|, and its
4708 secondary identification is |times|. The secondary codes start at 30 so that
4709 they don't overlap with the type codes; some type codes (e.g., |mp_string_type|)
4710 are used as operators as well as type identifications. The relative values
4711 are not critical, except for |true_code..false_code|, |or_op..and_op|,
4712 and |filled_op..bounded_op|. The restrictions are that
4713 |and_op-false_code=or_op-true_code|, that the ordering of
4714 |x_part...blue_part| must match that of |x_part_sector..mp_blue_part_sector|,
4715 and the ordering of |filled_op..bounded_op| must match that of the code
4716 values they test for.
4718 @d true_code 30 /* operation code for \.{true} */
4719 @d false_code 31 /* operation code for \.{false} */
4720 @d null_picture_code 32 /* operation code for \.{nullpicture} */
4721 @d null_pen_code 33 /* operation code for \.{nullpen} */
4722 @d job_name_op 34 /* operation code for \.{jobname} */
4723 @d read_string_op 35 /* operation code for \.{readstring} */
4724 @d pen_circle 36 /* operation code for \.{pencircle} */
4725 @d normal_deviate 37 /* operation code for \.{normaldeviate} */
4726 @d read_from_op 38 /* operation code for \.{readfrom} */
4727 @d close_from_op 39 /* operation code for \.{closefrom} */
4728 @d odd_op 40 /* operation code for \.{odd} */
4729 @d known_op 41 /* operation code for \.{known} */
4730 @d unknown_op 42 /* operation code for \.{unknown} */
4731 @d not_op 43 /* operation code for \.{not} */
4732 @d decimal 44 /* operation code for \.{decimal} */
4733 @d reverse 45 /* operation code for \.{reverse} */
4734 @d make_path_op 46 /* operation code for \.{makepath} */
4735 @d make_pen_op 47 /* operation code for \.{makepen} */
4736 @d oct_op 48 /* operation code for \.{oct} */
4737 @d hex_op 49 /* operation code for \.{hex} */
4738 @d ASCII_op 50 /* operation code for \.{ASCII} */
4739 @d char_op 51 /* operation code for \.{char} */
4740 @d length_op 52 /* operation code for \.{length} */
4741 @d turning_op 53 /* operation code for \.{turningnumber} */
4742 @d color_model_part 54 /* operation code for \.{colormodel} */
4743 @d x_part 55 /* operation code for \.{xpart} */
4744 @d y_part 56 /* operation code for \.{ypart} */
4745 @d xx_part 57 /* operation code for \.{xxpart} */
4746 @d xy_part 58 /* operation code for \.{xypart} */
4747 @d yx_part 59 /* operation code for \.{yxpart} */
4748 @d yy_part 60 /* operation code for \.{yypart} */
4749 @d red_part 61 /* operation code for \.{redpart} */
4750 @d green_part 62 /* operation code for \.{greenpart} */
4751 @d blue_part 63 /* operation code for \.{bluepart} */
4752 @d cyan_part 64 /* operation code for \.{cyanpart} */
4753 @d magenta_part 65 /* operation code for \.{magentapart} */
4754 @d yellow_part 66 /* operation code for \.{yellowpart} */
4755 @d black_part 67 /* operation code for \.{blackpart} */
4756 @d grey_part 68 /* operation code for \.{greypart} */
4757 @d font_part 69 /* operation code for \.{fontpart} */
4758 @d text_part 70 /* operation code for \.{textpart} */
4759 @d path_part 71 /* operation code for \.{pathpart} */
4760 @d pen_part 72 /* operation code for \.{penpart} */
4761 @d dash_part 73 /* operation code for \.{dashpart} */
4762 @d sqrt_op 74 /* operation code for \.{sqrt} */
4763 @d m_exp_op 75 /* operation code for \.{mexp} */
4764 @d m_log_op 76 /* operation code for \.{mlog} */
4765 @d sin_d_op 77 /* operation code for \.{sind} */
4766 @d cos_d_op 78 /* operation code for \.{cosd} */
4767 @d floor_op 79 /* operation code for \.{floor} */
4768 @d uniform_deviate 80 /* operation code for \.{uniformdeviate} */
4769 @d char_exists_op 81 /* operation code for \.{charexists} */
4770 @d font_size 82 /* operation code for \.{fontsize} */
4771 @d ll_corner_op 83 /* operation code for \.{llcorner} */
4772 @d lr_corner_op 84 /* operation code for \.{lrcorner} */
4773 @d ul_corner_op 85 /* operation code for \.{ulcorner} */
4774 @d ur_corner_op 86 /* operation code for \.{urcorner} */
4775 @d arc_length 87 /* operation code for \.{arclength} */
4776 @d angle_op 88 /* operation code for \.{angle} */
4777 @d cycle_op 89 /* operation code for \.{cycle} */
4778 @d filled_op 90 /* operation code for \.{filled} */
4779 @d stroked_op 91 /* operation code for \.{stroked} */
4780 @d textual_op 92 /* operation code for \.{textual} */
4781 @d clipped_op 93 /* operation code for \.{clipped} */
4782 @d bounded_op 94 /* operation code for \.{bounded} */
4783 @d plus 95 /* operation code for \.+ */
4784 @d minus 96 /* operation code for \.- */
4785 @d times 97 /* operation code for \.* */
4786 @d over 98 /* operation code for \./ */
4787 @d pythag_add 99 /* operation code for \.{++} */
4788 @d pythag_sub 100 /* operation code for \.{+-+} */
4789 @d or_op 101 /* operation code for \.{or} */
4790 @d and_op 102 /* operation code for \.{and} */
4791 @d less_than 103 /* operation code for \.< */
4792 @d less_or_equal 104 /* operation code for \.{<=} */
4793 @d greater_than 105 /* operation code for \.> */
4794 @d greater_or_equal 106 /* operation code for \.{>=} */
4795 @d equal_to 107 /* operation code for \.= */
4796 @d unequal_to 108 /* operation code for \.{<>} */
4797 @d concatenate 109 /* operation code for \.\& */
4798 @d rotated_by 110 /* operation code for \.{rotated} */
4799 @d slanted_by 111 /* operation code for \.{slanted} */
4800 @d scaled_by 112 /* operation code for \.{scaled} */
4801 @d shifted_by 113 /* operation code for \.{shifted} */
4802 @d transformed_by 114 /* operation code for \.{transformed} */
4803 @d x_scaled 115 /* operation code for \.{xscaled} */
4804 @d y_scaled 116 /* operation code for \.{yscaled} */
4805 @d z_scaled 117 /* operation code for \.{zscaled} */
4806 @d in_font 118 /* operation code for \.{infont} */
4807 @d intersect 119 /* operation code for \.{intersectiontimes} */
4808 @d double_dot 120 /* operation code for improper \.{..} */
4809 @d substring_of 121 /* operation code for \.{substring} */
4810 @d min_of substring_of
4811 @d subpath_of 122 /* operation code for \.{subpath} */
4812 @d direction_time_of 123 /* operation code for \.{directiontime} */
4813 @d point_of 124 /* operation code for \.{point} */
4814 @d precontrol_of 125 /* operation code for \.{precontrol} */
4815 @d postcontrol_of 126 /* operation code for \.{postcontrol} */
4816 @d pen_offset_of 127 /* operation code for \.{penoffset} */
4817 @d arc_time_of 128 /* operation code for \.{arctime} */
4818 @d mp_version 129 /* operation code for \.{mpversion} */
4819 @d envelope_of 130 /* operation code for \.{envelope} */
4821 @c void mp_print_op (MP mp,quarterword c) {
4822 if (c<=mp_numeric_type ) {
4823 mp_print_type(mp, c);
4826 case true_code:mp_print(mp, "true"); break;
4827 case false_code:mp_print(mp, "false"); break;
4828 case null_picture_code:mp_print(mp, "nullpicture"); break;
4829 case null_pen_code:mp_print(mp, "nullpen"); break;
4830 case job_name_op:mp_print(mp, "jobname"); break;
4831 case read_string_op:mp_print(mp, "readstring"); break;
4832 case pen_circle:mp_print(mp, "pencircle"); break;
4833 case normal_deviate:mp_print(mp, "normaldeviate"); break;
4834 case read_from_op:mp_print(mp, "readfrom"); break;
4835 case close_from_op:mp_print(mp, "closefrom"); break;
4836 case odd_op:mp_print(mp, "odd"); break;
4837 case known_op:mp_print(mp, "known"); break;
4838 case unknown_op:mp_print(mp, "unknown"); break;
4839 case not_op:mp_print(mp, "not"); break;
4840 case decimal:mp_print(mp, "decimal"); break;
4841 case reverse:mp_print(mp, "reverse"); break;
4842 case make_path_op:mp_print(mp, "makepath"); break;
4843 case make_pen_op:mp_print(mp, "makepen"); break;
4844 case oct_op:mp_print(mp, "oct"); break;
4845 case hex_op:mp_print(mp, "hex"); break;
4846 case ASCII_op:mp_print(mp, "ASCII"); break;
4847 case char_op:mp_print(mp, "char"); break;
4848 case length_op:mp_print(mp, "length"); break;
4849 case turning_op:mp_print(mp, "turningnumber"); break;
4850 case x_part:mp_print(mp, "xpart"); break;
4851 case y_part:mp_print(mp, "ypart"); break;
4852 case xx_part:mp_print(mp, "xxpart"); break;
4853 case xy_part:mp_print(mp, "xypart"); break;
4854 case yx_part:mp_print(mp, "yxpart"); break;
4855 case yy_part:mp_print(mp, "yypart"); break;
4856 case red_part:mp_print(mp, "redpart"); break;
4857 case green_part:mp_print(mp, "greenpart"); break;
4858 case blue_part:mp_print(mp, "bluepart"); break;
4859 case cyan_part:mp_print(mp, "cyanpart"); break;
4860 case magenta_part:mp_print(mp, "magentapart"); break;
4861 case yellow_part:mp_print(mp, "yellowpart"); break;
4862 case black_part:mp_print(mp, "blackpart"); break;
4863 case grey_part:mp_print(mp, "greypart"); break;
4864 case color_model_part:mp_print(mp, "colormodel"); break;
4865 case font_part:mp_print(mp, "fontpart"); break;
4866 case text_part:mp_print(mp, "textpart"); break;
4867 case path_part:mp_print(mp, "pathpart"); break;
4868 case pen_part:mp_print(mp, "penpart"); break;
4869 case dash_part:mp_print(mp, "dashpart"); break;
4870 case sqrt_op:mp_print(mp, "sqrt"); break;
4871 case m_exp_op:mp_print(mp, "mexp"); break;
4872 case m_log_op:mp_print(mp, "mlog"); break;
4873 case sin_d_op:mp_print(mp, "sind"); break;
4874 case cos_d_op:mp_print(mp, "cosd"); break;
4875 case floor_op:mp_print(mp, "floor"); break;
4876 case uniform_deviate:mp_print(mp, "uniformdeviate"); break;
4877 case char_exists_op:mp_print(mp, "charexists"); break;
4878 case font_size:mp_print(mp, "fontsize"); break;
4879 case ll_corner_op:mp_print(mp, "llcorner"); break;
4880 case lr_corner_op:mp_print(mp, "lrcorner"); break;
4881 case ul_corner_op:mp_print(mp, "ulcorner"); break;
4882 case ur_corner_op:mp_print(mp, "urcorner"); break;
4883 case arc_length:mp_print(mp, "arclength"); break;
4884 case angle_op:mp_print(mp, "angle"); break;
4885 case cycle_op:mp_print(mp, "cycle"); break;
4886 case filled_op:mp_print(mp, "filled"); break;
4887 case stroked_op:mp_print(mp, "stroked"); break;
4888 case textual_op:mp_print(mp, "textual"); break;
4889 case clipped_op:mp_print(mp, "clipped"); break;
4890 case bounded_op:mp_print(mp, "bounded"); break;
4891 case plus:mp_print_char(mp, '+'); break;
4892 case minus:mp_print_char(mp, '-'); break;
4893 case times:mp_print_char(mp, '*'); break;
4894 case over:mp_print_char(mp, '/'); break;
4895 case pythag_add:mp_print(mp, "++"); break;
4896 case pythag_sub:mp_print(mp, "+-+"); break;
4897 case or_op:mp_print(mp, "or"); break;
4898 case and_op:mp_print(mp, "and"); break;
4899 case less_than:mp_print_char(mp, '<'); break;
4900 case less_or_equal:mp_print(mp, "<="); break;
4901 case greater_than:mp_print_char(mp, '>'); break;
4902 case greater_or_equal:mp_print(mp, ">="); break;
4903 case equal_to:mp_print_char(mp, '='); break;
4904 case unequal_to:mp_print(mp, "<>"); break;
4905 case concatenate:mp_print(mp, "&"); break;
4906 case rotated_by:mp_print(mp, "rotated"); break;
4907 case slanted_by:mp_print(mp, "slanted"); break;
4908 case scaled_by:mp_print(mp, "scaled"); break;
4909 case shifted_by:mp_print(mp, "shifted"); break;
4910 case transformed_by:mp_print(mp, "transformed"); break;
4911 case x_scaled:mp_print(mp, "xscaled"); break;
4912 case y_scaled:mp_print(mp, "yscaled"); break;
4913 case z_scaled:mp_print(mp, "zscaled"); break;
4914 case in_font:mp_print(mp, "infont"); break;
4915 case intersect:mp_print(mp, "intersectiontimes"); break;
4916 case substring_of:mp_print(mp, "substring"); break;
4917 case subpath_of:mp_print(mp, "subpath"); break;
4918 case direction_time_of:mp_print(mp, "directiontime"); break;
4919 case point_of:mp_print(mp, "point"); break;
4920 case precontrol_of:mp_print(mp, "precontrol"); break;
4921 case postcontrol_of:mp_print(mp, "postcontrol"); break;
4922 case pen_offset_of:mp_print(mp, "penoffset"); break;
4923 case arc_time_of:mp_print(mp, "arctime"); break;
4924 case mp_version:mp_print(mp, "mpversion"); break;
4925 case envelope_of:mp_print(mp, "envelope"); break;
4926 default: mp_print(mp, ".."); break;
4931 @ \MP\ also has a bunch of internal parameters that a user might want to
4932 fuss with. Every such parameter has an identifying code number, defined here.
4935 enum mp_given_internal {
4936 mp_tracing_titles=1, /* show titles online when they appear */
4937 mp_tracing_equations, /* show each variable when it becomes known */
4938 mp_tracing_capsules, /* show capsules too */
4939 mp_tracing_choices, /* show the control points chosen for paths */
4940 mp_tracing_specs, /* show path subdivision prior to filling with polygonal a pen */
4941 mp_tracing_commands, /* show commands and operations before they are performed */
4942 mp_tracing_restores, /* show when a variable or internal is restored */
4943 mp_tracing_macros, /* show macros before they are expanded */
4944 mp_tracing_output, /* show digitized edges as they are output */
4945 mp_tracing_stats, /* show memory usage at end of job */
4946 mp_tracing_lost_chars, /* show characters that aren't \&{infont} */
4947 mp_tracing_online, /* show long diagnostics on terminal and in the log file */
4948 mp_year, /* the current year (e.g., 1984) */
4949 mp_month, /* the current month (e.g, 3 $\equiv$ March) */
4950 mp_day, /* the current day of the month */
4951 mp_time, /* the number of minutes past midnight when this job started */
4952 mp_char_code, /* the number of the next character to be output */
4953 mp_char_ext, /* the extension code of the next character to be output */
4954 mp_char_wd, /* the width of the next character to be output */
4955 mp_char_ht, /* the height of the next character to be output */
4956 mp_char_dp, /* the depth of the next character to be output */
4957 mp_char_ic, /* the italic correction of the next character to be output */
4958 mp_design_size, /* the unit of measure used for |mp_char_wd..mp_char_ic|, in points */
4959 mp_pausing, /* positive to display lines on the terminal before they are read */
4960 mp_showstopping, /* positive to stop after each \&{show} command */
4961 mp_fontmaking, /* positive if font metric output is to be produced */
4962 mp_linejoin, /* as in \ps: 0 for mitered, 1 for round, 2 for beveled */
4963 mp_linecap, /* as in \ps: 0 for butt, 1 for round, 2 for square */
4964 mp_miterlimit, /* controls miter length as in \ps */
4965 mp_warning_check, /* controls error message when variable value is large */
4966 mp_boundary_char, /* the right boundary character for ligatures */
4967 mp_prologues, /* positive to output conforming PostScript using built-in fonts */
4968 mp_true_corners, /* positive to make \&{llcorner} etc. ignore \&{setbounds} */
4969 mp_default_color_model, /* the default color model for unspecified items */
4970 mp_restore_clip_color,
4971 mp_procset, /* wether or not create PostScript command shortcuts */
4972 mp_gtroffmode, /* whether the user specified |-troff| on the command line */
4977 @d max_given_internal mp_gtroffmode
4980 scaled *internal; /* the values of internal quantities */
4981 char **int_name; /* their names */
4982 int int_ptr; /* the maximum internal quantity defined so far */
4983 int max_internal; /* current maximum number of internal quantities */
4985 @ @<Option variables@>=
4988 @ @<Allocate or initialize ...@>=
4989 mp->max_internal=2*max_given_internal;
4990 mp->internal = xmalloc ((mp->max_internal+1), sizeof(scaled));
4991 mp->int_name = xmalloc ((mp->max_internal+1), sizeof(char *));
4992 mp->troff_mode=(opt->troff_mode>0 ? true : false);
4994 @ @<Exported function ...@>=
4995 int mp_troff_mode(MP mp);
4998 int mp_troff_mode(MP mp) { return mp->troff_mode; }
5000 @ @<Set initial ...@>=
5001 for (k=0;k<= mp->max_internal; k++ ) {
5003 mp->int_name[k]=NULL;
5005 mp->int_ptr=max_given_internal;
5007 @ The symbolic names for internal quantities are put into \MP's hash table
5008 by using a routine called |primitive|, which will be defined later. Let us
5009 enter them now, so that we don't have to list all those names again
5012 @<Put each of \MP's primitives into the hash table@>=
5013 mp_primitive(mp, "tracingtitles",internal_quantity,mp_tracing_titles);
5014 @:tracingtitles_}{\&{tracingtitles} primitive@>
5015 mp_primitive(mp, "tracingequations",internal_quantity,mp_tracing_equations);
5016 @:mp_tracing_equations_}{\&{tracingequations} primitive@>
5017 mp_primitive(mp, "tracingcapsules",internal_quantity,mp_tracing_capsules);
5018 @:mp_tracing_capsules_}{\&{tracingcapsules} primitive@>
5019 mp_primitive(mp, "tracingchoices",internal_quantity,mp_tracing_choices);
5020 @:mp_tracing_choices_}{\&{tracingchoices} primitive@>
5021 mp_primitive(mp, "tracingspecs",internal_quantity,mp_tracing_specs);
5022 @:mp_tracing_specs_}{\&{tracingspecs} primitive@>
5023 mp_primitive(mp, "tracingcommands",internal_quantity,mp_tracing_commands);
5024 @:mp_tracing_commands_}{\&{tracingcommands} primitive@>
5025 mp_primitive(mp, "tracingrestores",internal_quantity,mp_tracing_restores);
5026 @:mp_tracing_restores_}{\&{tracingrestores} primitive@>
5027 mp_primitive(mp, "tracingmacros",internal_quantity,mp_tracing_macros);
5028 @:mp_tracing_macros_}{\&{tracingmacros} primitive@>
5029 mp_primitive(mp, "tracingoutput",internal_quantity,mp_tracing_output);
5030 @:mp_tracing_output_}{\&{tracingoutput} primitive@>
5031 mp_primitive(mp, "tracingstats",internal_quantity,mp_tracing_stats);
5032 @:mp_tracing_stats_}{\&{tracingstats} primitive@>
5033 mp_primitive(mp, "tracinglostchars",internal_quantity,mp_tracing_lost_chars);
5034 @:mp_tracing_lost_chars_}{\&{tracinglostchars} primitive@>
5035 mp_primitive(mp, "tracingonline",internal_quantity,mp_tracing_online);
5036 @:mp_tracing_online_}{\&{tracingonline} primitive@>
5037 mp_primitive(mp, "year",internal_quantity,mp_year);
5038 @:mp_year_}{\&{year} primitive@>
5039 mp_primitive(mp, "month",internal_quantity,mp_month);
5040 @:mp_month_}{\&{month} primitive@>
5041 mp_primitive(mp, "day",internal_quantity,mp_day);
5042 @:mp_day_}{\&{day} primitive@>
5043 mp_primitive(mp, "time",internal_quantity,mp_time);
5044 @:time_}{\&{time} primitive@>
5045 mp_primitive(mp, "charcode",internal_quantity,mp_char_code);
5046 @:mp_char_code_}{\&{charcode} primitive@>
5047 mp_primitive(mp, "charext",internal_quantity,mp_char_ext);
5048 @:mp_char_ext_}{\&{charext} primitive@>
5049 mp_primitive(mp, "charwd",internal_quantity,mp_char_wd);
5050 @:mp_char_wd_}{\&{charwd} primitive@>
5051 mp_primitive(mp, "charht",internal_quantity,mp_char_ht);
5052 @:mp_char_ht_}{\&{charht} primitive@>
5053 mp_primitive(mp, "chardp",internal_quantity,mp_char_dp);
5054 @:mp_char_dp_}{\&{chardp} primitive@>
5055 mp_primitive(mp, "charic",internal_quantity,mp_char_ic);
5056 @:mp_char_ic_}{\&{charic} primitive@>
5057 mp_primitive(mp, "designsize",internal_quantity,mp_design_size);
5058 @:mp_design_size_}{\&{designsize} primitive@>
5059 mp_primitive(mp, "pausing",internal_quantity,mp_pausing);
5060 @:mp_pausing_}{\&{pausing} primitive@>
5061 mp_primitive(mp, "showstopping",internal_quantity,mp_showstopping);
5062 @:mp_showstopping_}{\&{showstopping} primitive@>
5063 mp_primitive(mp, "fontmaking",internal_quantity,mp_fontmaking);
5064 @:mp_fontmaking_}{\&{fontmaking} primitive@>
5065 mp_primitive(mp, "linejoin",internal_quantity,mp_linejoin);
5066 @:mp_linejoin_}{\&{linejoin} primitive@>
5067 mp_primitive(mp, "linecap",internal_quantity,mp_linecap);
5068 @:mp_linecap_}{\&{linecap} primitive@>
5069 mp_primitive(mp, "miterlimit",internal_quantity,mp_miterlimit);
5070 @:mp_miterlimit_}{\&{miterlimit} primitive@>
5071 mp_primitive(mp, "warningcheck",internal_quantity,mp_warning_check);
5072 @:mp_warning_check_}{\&{warningcheck} primitive@>
5073 mp_primitive(mp, "boundarychar",internal_quantity,mp_boundary_char);
5074 @:mp_boundary_char_}{\&{boundarychar} primitive@>
5075 mp_primitive(mp, "prologues",internal_quantity,mp_prologues);
5076 @:mp_prologues_}{\&{prologues} primitive@>
5077 mp_primitive(mp, "truecorners",internal_quantity,mp_true_corners);
5078 @:mp_true_corners_}{\&{truecorners} primitive@>
5079 mp_primitive(mp, "mpprocset",internal_quantity,mp_procset);
5080 @:mp_procset_}{\&{mpprocset} primitive@>
5081 mp_primitive(mp, "troffmode",internal_quantity,mp_gtroffmode);
5082 @:troffmode_}{\&{troffmode} primitive@>
5083 mp_primitive(mp, "defaultcolormodel",internal_quantity,mp_default_color_model);
5084 @:mp_default_color_model_}{\&{defaultcolormodel} primitive@>
5085 mp_primitive(mp, "restoreclipcolor",internal_quantity,mp_restore_clip_color);
5086 @:mp_restore_clip_color_}{\&{restoreclipcolor} primitive@>
5088 @ Colors can be specified in four color models. In the special
5089 case of |no_model|, MetaPost does not output any color operator to
5090 the postscript output.
5092 Note: these values are passed directly on to |with_option|. This only
5093 works because the other possible values passed to |with_option| are
5094 8 and 10 respectively (from |with_pen| and |with_picture|).
5096 There is a first state, that is only used for |gs_colormodel|. It flags
5097 the fact that there has not been any kind of color specification by
5098 the user so far in the game.
5101 enum mp_color_model {
5106 mp_uninitialized_model=9,
5110 @ @<Initialize table entries (done by \.{INIMP} only)@>=
5111 mp->internal[mp_default_color_model]=(mp_rgb_model*unity);
5112 mp->internal[mp_restore_clip_color]=unity;
5114 @ Well, we do have to list the names one more time, for use in symbolic
5117 @<Initialize table...@>=
5118 mp->int_name[mp_tracing_titles]=xstrdup("tracingtitles");
5119 mp->int_name[mp_tracing_equations]=xstrdup("tracingequations");
5120 mp->int_name[mp_tracing_capsules]=xstrdup("tracingcapsules");
5121 mp->int_name[mp_tracing_choices]=xstrdup("tracingchoices");
5122 mp->int_name[mp_tracing_specs]=xstrdup("tracingspecs");
5123 mp->int_name[mp_tracing_commands]=xstrdup("tracingcommands");
5124 mp->int_name[mp_tracing_restores]=xstrdup("tracingrestores");
5125 mp->int_name[mp_tracing_macros]=xstrdup("tracingmacros");
5126 mp->int_name[mp_tracing_output]=xstrdup("tracingoutput");
5127 mp->int_name[mp_tracing_stats]=xstrdup("tracingstats");
5128 mp->int_name[mp_tracing_lost_chars]=xstrdup("tracinglostchars");
5129 mp->int_name[mp_tracing_online]=xstrdup("tracingonline");
5130 mp->int_name[mp_year]=xstrdup("year");
5131 mp->int_name[mp_month]=xstrdup("month");
5132 mp->int_name[mp_day]=xstrdup("day");
5133 mp->int_name[mp_time]=xstrdup("time");
5134 mp->int_name[mp_char_code]=xstrdup("charcode");
5135 mp->int_name[mp_char_ext]=xstrdup("charext");
5136 mp->int_name[mp_char_wd]=xstrdup("charwd");
5137 mp->int_name[mp_char_ht]=xstrdup("charht");
5138 mp->int_name[mp_char_dp]=xstrdup("chardp");
5139 mp->int_name[mp_char_ic]=xstrdup("charic");
5140 mp->int_name[mp_design_size]=xstrdup("designsize");
5141 mp->int_name[mp_pausing]=xstrdup("pausing");
5142 mp->int_name[mp_showstopping]=xstrdup("showstopping");
5143 mp->int_name[mp_fontmaking]=xstrdup("fontmaking");
5144 mp->int_name[mp_linejoin]=xstrdup("linejoin");
5145 mp->int_name[mp_linecap]=xstrdup("linecap");
5146 mp->int_name[mp_miterlimit]=xstrdup("miterlimit");
5147 mp->int_name[mp_warning_check]=xstrdup("warningcheck");
5148 mp->int_name[mp_boundary_char]=xstrdup("boundarychar");
5149 mp->int_name[mp_prologues]=xstrdup("prologues");
5150 mp->int_name[mp_true_corners]=xstrdup("truecorners");
5151 mp->int_name[mp_default_color_model]=xstrdup("defaultcolormodel");
5152 mp->int_name[mp_procset]=xstrdup("mpprocset");
5153 mp->int_name[mp_gtroffmode]=xstrdup("troffmode");
5154 mp->int_name[mp_restore_clip_color]=xstrdup("restoreclipcolor");
5156 @ The following procedure, which is called just before \MP\ initializes its
5157 input and output, establishes the initial values of the date and time.
5158 @^system dependencies@>
5160 Note that the values are |scaled| integers. Hence \MP\ can no longer
5161 be used after the year 32767.
5164 void mp_fix_date_and_time (MP mp) {
5165 time_t clock = time ((time_t *) 0);
5166 struct tm *tmptr = localtime (&clock);
5167 mp->internal[mp_time]=
5168 (tmptr->tm_hour*60+tmptr->tm_min)*unity; /* minutes since midnight */
5169 mp->internal[mp_day]=(tmptr->tm_mday)*unity; /* fourth day of the month */
5170 mp->internal[mp_month]=(tmptr->tm_mon+1)*unity; /* seventh month of the year */
5171 mp->internal[mp_year]=(tmptr->tm_year+1900)*unity; /* Anno Domini */
5175 void mp_fix_date_and_time (MP mp) ;
5177 @ \MP\ is occasionally supposed to print diagnostic information that
5178 goes only into the transcript file, unless |mp_tracing_online| is positive.
5179 Now that we have defined |mp_tracing_online| we can define
5180 two routines that adjust the destination of print commands:
5183 void mp_begin_diagnostic (MP mp) ;
5184 void mp_end_diagnostic (MP mp,boolean blank_line);
5185 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) ;
5187 @ @<Basic printing...@>=
5188 @<Declare a function called |true_line|@>;
5189 void mp_begin_diagnostic (MP mp) { /* prepare to do some tracing */
5190 mp->old_setting=mp->selector;
5191 if ((mp->internal[mp_tracing_online]<=0)&&(mp->selector==term_and_log)){
5193 if ( mp->history==mp_spotless ) mp->history=mp_warning_issued;
5197 void mp_end_diagnostic (MP mp,boolean blank_line) {
5198 /* restore proper conditions after tracing */
5199 mp_print_nl(mp, "");
5200 if ( blank_line ) mp_print_ln(mp);
5201 mp->selector=mp->old_setting;
5207 unsigned int old_setting;
5209 @ We will occasionally use |begin_diagnostic| in connection with line-number
5210 printing, as follows. (The parameter |s| is typically |"Path"| or
5211 |"Cycle spec"|, etc.)
5213 @<Basic printing...@>=
5214 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) {
5215 mp_begin_diagnostic(mp);
5216 if ( nuline ) mp_print_nl(mp, s); else mp_print(mp, s);
5217 mp_print(mp, " at line ");
5218 mp_print_int(mp, mp_true_line(mp));
5219 mp_print(mp, t); mp_print_char(mp, ':');
5222 @ The 256 |ASCII_code| characters are grouped into classes by means of
5223 the |char_class| table. Individual class numbers have no semantic
5224 or syntactic significance, except in a few instances defined here.
5225 There's also |max_class|, which can be used as a basis for additional
5226 class numbers in nonstandard extensions of \MP.
5228 @d digit_class 0 /* the class number of \.{0123456789} */
5229 @d period_class 1 /* the class number of `\..' */
5230 @d space_class 2 /* the class number of spaces and nonstandard characters */
5231 @d percent_class 3 /* the class number of `\.\%' */
5232 @d string_class 4 /* the class number of `\."' */
5233 @d right_paren_class 8 /* the class number of `\.)' */
5234 @d isolated_classes 5: case 6: case 7: case 8 /* characters that make length-one tokens only */
5235 @d letter_class 9 /* letters and the underline character */
5236 @d left_bracket_class 17 /* `\.[' */
5237 @d right_bracket_class 18 /* `\.]' */
5238 @d invalid_class 20 /* bad character in the input */
5239 @d max_class 20 /* the largest class number */
5242 int char_class[256]; /* the class numbers */
5244 @ If changes are made to accommodate non-ASCII character sets, they should
5245 follow the guidelines in Appendix~C of {\sl The {\logos METAFONT\/}book}.
5246 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
5247 @^system dependencies@>
5249 @<Set initial ...@>=
5250 for (k='0';k<='9';k++)
5251 mp->char_class[k]=digit_class;
5252 mp->char_class['.']=period_class;
5253 mp->char_class[' ']=space_class;
5254 mp->char_class['%']=percent_class;
5255 mp->char_class['"']=string_class;
5256 mp->char_class[',']=5;
5257 mp->char_class[';']=6;
5258 mp->char_class['(']=7;
5259 mp->char_class[')']=right_paren_class;
5260 for (k='A';k<= 'Z';k++ )
5261 mp->char_class[k]=letter_class;
5262 for (k='a';k<='z';k++)
5263 mp->char_class[k]=letter_class;
5264 mp->char_class['_']=letter_class;
5265 mp->char_class['<']=10;
5266 mp->char_class['=']=10;
5267 mp->char_class['>']=10;
5268 mp->char_class[':']=10;
5269 mp->char_class['|']=10;
5270 mp->char_class['`']=11;
5271 mp->char_class['\'']=11;
5272 mp->char_class['+']=12;
5273 mp->char_class['-']=12;
5274 mp->char_class['/']=13;
5275 mp->char_class['*']=13;
5276 mp->char_class['\\']=13;
5277 mp->char_class['!']=14;
5278 mp->char_class['?']=14;
5279 mp->char_class['#']=15;
5280 mp->char_class['&']=15;
5281 mp->char_class['@@']=15;
5282 mp->char_class['$']=15;
5283 mp->char_class['^']=16;
5284 mp->char_class['~']=16;
5285 mp->char_class['[']=left_bracket_class;
5286 mp->char_class[']']=right_bracket_class;
5287 mp->char_class['{']=19;
5288 mp->char_class['}']=19;
5290 mp->char_class[k]=invalid_class;
5291 mp->char_class['\t']=space_class;
5292 mp->char_class['\f']=space_class;
5293 for (k=127;k<=255;k++)
5294 mp->char_class[k]=invalid_class;
5296 @* \[13] The hash table.
5297 Symbolic tokens are stored and retrieved by means of a fairly standard hash
5298 table algorithm called the method of ``coalescing lists'' (cf.\ Algorithm 6.4C
5299 in {\sl The Art of Computer Programming\/}). Once a symbolic token enters the
5300 table, it is never removed.
5302 The actual sequence of characters forming a symbolic token is
5303 stored in the |str_pool| array together with all the other strings. An
5304 auxiliary array |hash| consists of items with two halfword fields per
5305 word. The first of these, called |next(p)|, points to the next identifier
5306 belonging to the same coalesced list as the identifier corresponding to~|p|;
5307 and the other, called |text(p)|, points to the |str_start| entry for
5308 |p|'s identifier. If position~|p| of the hash table is empty, we have
5309 |text(p)=0|; if position |p| is either empty or the end of a coalesced
5310 hash list, we have |next(p)=0|.
5312 An auxiliary pointer variable called |hash_used| is maintained in such a
5313 way that all locations |p>=hash_used| are nonempty. The global variable
5314 |st_count| tells how many symbolic tokens have been defined, if statistics
5317 The first 256 locations of |hash| are reserved for symbols of length one.
5319 There's a parallel array called |eqtb| that contains the current equivalent
5320 values of each symbolic token. The entries of this array consist of
5321 two halfwords called |eq_type| (a command code) and |equiv| (a secondary
5322 piece of information that qualifies the |eq_type|).
5324 @d next(A) mp->hash[(A)].lh /* link for coalesced lists */
5325 @d text(A) mp->hash[(A)].rh /* string number for symbolic token name */
5326 @d eq_type(A) mp->eqtb[(A)].lh /* the current ``meaning'' of a symbolic token */
5327 @d equiv(A) mp->eqtb[(A)].rh /* parametric part of a token's meaning */
5328 @d hash_base 257 /* hashing actually starts here */
5329 @d hash_is_full (mp->hash_used==hash_base) /* are all positions occupied? */
5332 pointer hash_used; /* allocation pointer for |hash| */
5333 integer st_count; /* total number of known identifiers */
5335 @ Certain entries in the hash table are ``frozen'' and not redefinable,
5336 since they are used in error recovery.
5338 @d hash_top (hash_base+mp->hash_size) /* the first location of the frozen area */
5339 @d frozen_inaccessible hash_top /* |hash| location to protect the frozen area */
5340 @d frozen_repeat_loop (hash_top+1) /* |hash| location of a loop-repeat token */
5341 @d frozen_right_delimiter (hash_top+2) /* |hash| location of a permanent `\.)' */
5342 @d frozen_left_bracket (hash_top+3) /* |hash| location of a permanent `\.[' */
5343 @d frozen_slash (hash_top+4) /* |hash| location of a permanent `\./' */
5344 @d frozen_colon (hash_top+5) /* |hash| location of a permanent `\.:' */
5345 @d frozen_semicolon (hash_top+6) /* |hash| location of a permanent `\.;' */
5346 @d frozen_end_for (hash_top+7) /* |hash| location of a permanent \&{endfor} */
5347 @d frozen_end_def (hash_top+8) /* |hash| location of a permanent \&{enddef} */
5348 @d frozen_fi (hash_top+9) /* |hash| location of a permanent \&{fi} */
5349 @d frozen_end_group (hash_top+10) /* |hash| location of a permanent `\.{endgroup}' */
5350 @d frozen_etex (hash_top+11) /* |hash| location of a permanent \&{etex} */
5351 @d frozen_mpx_break (hash_top+12) /* |hash| location of a permanent \&{mpxbreak} */
5352 @d frozen_bad_vardef (hash_top+13) /* |hash| location of `\.{a bad variable}' */
5353 @d frozen_undefined (hash_top+14) /* |hash| location that never gets defined */
5354 @d hash_end (hash_top+14) /* the actual size of the |hash| and |eqtb| arrays */
5357 two_halves *hash; /* the hash table */
5358 two_halves *eqtb; /* the equivalents */
5360 @ @<Allocate or initialize ...@>=
5361 mp->hash = xmalloc((hash_end+1),sizeof(two_halves));
5362 mp->eqtb = xmalloc((hash_end+1),sizeof(two_halves));
5364 @ @<Dealloc variables@>=
5369 next(1)=0; text(1)=0; eq_type(1)=tag_token; equiv(1)=null;
5370 for (k=2;k<=hash_end;k++) {
5371 mp->hash[k]=mp->hash[1]; mp->eqtb[k]=mp->eqtb[1];
5374 @ @<Initialize table entries...@>=
5375 mp->hash_used=frozen_inaccessible; /* nothing is used */
5377 text(frozen_bad_vardef)=intern("a bad variable");
5378 text(frozen_etex)=intern("etex");
5379 text(frozen_mpx_break)=intern("mpxbreak");
5380 text(frozen_fi)=intern("fi");
5381 text(frozen_end_group)=intern("endgroup");
5382 text(frozen_end_def)=intern("enddef");
5383 text(frozen_end_for)=intern("endfor");
5384 text(frozen_semicolon)=intern(";");
5385 text(frozen_colon)=intern(":");
5386 text(frozen_slash)=intern("/");
5387 text(frozen_left_bracket)=intern("[");
5388 text(frozen_right_delimiter)=intern(")");
5389 text(frozen_inaccessible)=intern(" INACCESSIBLE");
5390 eq_type(frozen_right_delimiter)=right_delimiter;
5392 @ @<Check the ``constant'' values...@>=
5393 if ( hash_end+mp->max_internal>max_halfword ) mp->bad=17;
5395 @ Here is the subroutine that searches the hash table for an identifier
5396 that matches a given string of length~|l| appearing in |buffer[j..
5397 (j+l-1)]|. If the identifier is not found, it is inserted; hence it
5398 will always be found, and the corresponding hash table address
5402 pointer mp_id_lookup (MP mp,integer j, integer l) { /* search the hash table */
5403 integer h; /* hash code */
5404 pointer p; /* index in |hash| array */
5405 pointer k; /* index in |buffer| array */
5407 @<Treat special case of length 1 and |break|@>;
5409 @<Compute the hash code |h|@>;
5410 p=h+hash_base; /* we start searching here; note that |0<=h<hash_prime| */
5412 if (text(p)>0 && length(text(p))==l && mp_str_eq_buf(mp, text(p),j))
5415 @<Insert a new symbolic token after |p|, then
5416 make |p| point to it and |break|@>;
5423 @ @<Treat special case of length 1...@>=
5424 p=mp->buffer[j]+1; text(p)=p-1; return p;
5427 @ @<Insert a new symbolic...@>=
5432 mp_overflow(mp, "hash size",mp->hash_size);
5433 @:MetaPost capacity exceeded hash size}{\quad hash size@>
5434 decr(mp->hash_used);
5435 } while (text(mp->hash_used)!=0); /* search for an empty location in |hash| */
5436 next(p)=mp->hash_used;
5440 for (k=j;k<=j+l-1;k++) {
5441 append_char(mp->buffer[k]);
5443 text(p)=mp_make_string(mp);
5444 mp->str_ref[text(p)]=max_str_ref;
5450 @ The value of |hash_prime| should be roughly 85\pct! of |hash_size|, and it
5451 should be a prime number. The theory of hashing tells us to expect fewer
5452 than two table probes, on the average, when the search is successful.
5453 [See J.~S. Vitter, {\sl Journal of the ACM\/ \bf30} (1983), 231--258.]
5454 @^Vitter, Jeffrey Scott@>
5456 @<Compute the hash code |h|@>=
5458 for (k=j+1;k<=j+l-1;k++){
5459 h=h+h+mp->buffer[k];
5460 while ( h>=mp->hash_prime ) h=h-mp->hash_prime;
5463 @ @<Search |eqtb| for equivalents equal to |p|@>=
5464 for (q=1;q<=hash_end;q++) {
5465 if ( equiv(q)==p ) {
5466 mp_print_nl(mp, "EQUIV(");
5467 mp_print_int(mp, q);
5468 mp_print_char(mp, ')');
5472 @ We need to put \MP's ``primitive'' symbolic tokens into the hash
5473 table, together with their command code (which will be the |eq_type|)
5474 and an operand (which will be the |equiv|). The |primitive| procedure
5475 does this, in a way that no \MP\ user can. The global value |cur_sym|
5476 contains the new |eqtb| pointer after |primitive| has acted.
5479 void mp_primitive (MP mp, char *ss, halfword c, halfword o) {
5480 pool_pointer k; /* index into |str_pool| */
5481 small_number j; /* index into |buffer| */
5482 small_number l; /* length of the string */
5485 k=mp->str_start[s]; l=str_stop(s)-k;
5486 /* we will move |s| into the (empty) |buffer| */
5487 for (j=0;j<=l-1;j++) {
5488 mp->buffer[j]=mp->str_pool[k+j];
5490 mp->cur_sym=mp_id_lookup(mp, 0,l);
5491 if ( s>=256 ) { /* we don't want to have the string twice */
5492 mp_flush_string(mp, text(mp->cur_sym)); text(mp->cur_sym)=s;
5494 eq_type(mp->cur_sym)=c;
5495 equiv(mp->cur_sym)=o;
5499 @ Many of \MP's primitives need no |equiv|, since they are identifiable
5500 by their |eq_type| alone. These primitives are loaded into the hash table
5503 @<Put each of \MP's primitives into the hash table@>=
5504 mp_primitive(mp, "..",path_join,0);
5505 @:.._}{\.{..} primitive@>
5506 mp_primitive(mp, "[",left_bracket,0); mp->eqtb[frozen_left_bracket]=mp->eqtb[mp->cur_sym];
5507 @:[ }{\.{[} primitive@>
5508 mp_primitive(mp, "]",right_bracket,0);
5509 @:] }{\.{]} primitive@>
5510 mp_primitive(mp, "}",right_brace,0);
5511 @:]]}{\.{\char`\}} primitive@>
5512 mp_primitive(mp, "{",left_brace,0);
5513 @:][}{\.{\char`\{} primitive@>
5514 mp_primitive(mp, ":",colon,0); mp->eqtb[frozen_colon]=mp->eqtb[mp->cur_sym];
5515 @:: }{\.{:} primitive@>
5516 mp_primitive(mp, "::",double_colon,0);
5517 @::: }{\.{::} primitive@>
5518 mp_primitive(mp, "||:",bchar_label,0);
5519 @:::: }{\.{\char'174\char'174:} primitive@>
5520 mp_primitive(mp, ":=",assignment,0);
5521 @::=_}{\.{:=} primitive@>
5522 mp_primitive(mp, ",",comma,0);
5523 @:, }{\., primitive@>
5524 mp_primitive(mp, ";",semicolon,0); mp->eqtb[frozen_semicolon]=mp->eqtb[mp->cur_sym];
5525 @:; }{\.; primitive@>
5526 mp_primitive(mp, "\\",relax,0);
5527 @:]]\\}{\.{\char`\\} primitive@>
5529 mp_primitive(mp, "addto",add_to_command,0);
5530 @:add_to_}{\&{addto} primitive@>
5531 mp_primitive(mp, "atleast",at_least,0);
5532 @:at_least_}{\&{atleast} primitive@>
5533 mp_primitive(mp, "begingroup",begin_group,0); mp->bg_loc=mp->cur_sym;
5534 @:begin_group_}{\&{begingroup} primitive@>
5535 mp_primitive(mp, "controls",controls,0);
5536 @:controls_}{\&{controls} primitive@>
5537 mp_primitive(mp, "curl",curl_command,0);
5538 @:curl_}{\&{curl} primitive@>
5539 mp_primitive(mp, "delimiters",delimiters,0);
5540 @:delimiters_}{\&{delimiters} primitive@>
5541 mp_primitive(mp, "endgroup",end_group,0);
5542 mp->eqtb[frozen_end_group]=mp->eqtb[mp->cur_sym]; mp->eg_loc=mp->cur_sym;
5543 @:endgroup_}{\&{endgroup} primitive@>
5544 mp_primitive(mp, "everyjob",every_job_command,0);
5545 @:every_job_}{\&{everyjob} primitive@>
5546 mp_primitive(mp, "exitif",exit_test,0);
5547 @:exit_if_}{\&{exitif} primitive@>
5548 mp_primitive(mp, "expandafter",expand_after,0);
5549 @:expand_after_}{\&{expandafter} primitive@>
5550 mp_primitive(mp, "interim",interim_command,0);
5551 @:interim_}{\&{interim} primitive@>
5552 mp_primitive(mp, "let",let_command,0);
5553 @:let_}{\&{let} primitive@>
5554 mp_primitive(mp, "newinternal",new_internal,0);
5555 @:new_internal_}{\&{newinternal} primitive@>
5556 mp_primitive(mp, "of",of_token,0);
5557 @:of_}{\&{of} primitive@>
5558 mp_primitive(mp, "randomseed",mp_random_seed,0);
5559 @:mp_random_seed_}{\&{randomseed} primitive@>
5560 mp_primitive(mp, "save",save_command,0);
5561 @:save_}{\&{save} primitive@>
5562 mp_primitive(mp, "scantokens",scan_tokens,0);
5563 @:scan_tokens_}{\&{scantokens} primitive@>
5564 mp_primitive(mp, "shipout",ship_out_command,0);
5565 @:ship_out_}{\&{shipout} primitive@>
5566 mp_primitive(mp, "skipto",skip_to,0);
5567 @:skip_to_}{\&{skipto} primitive@>
5568 mp_primitive(mp, "special",special_command,0);
5569 @:special}{\&{special} primitive@>
5570 mp_primitive(mp, "fontmapfile",special_command,1);
5571 @:fontmapfile}{\&{fontmapfile} primitive@>
5572 mp_primitive(mp, "fontmapline",special_command,2);
5573 @:fontmapline}{\&{fontmapline} primitive@>
5574 mp_primitive(mp, "step",step_token,0);
5575 @:step_}{\&{step} primitive@>
5576 mp_primitive(mp, "str",str_op,0);
5577 @:str_}{\&{str} primitive@>
5578 mp_primitive(mp, "tension",tension,0);
5579 @:tension_}{\&{tension} primitive@>
5580 mp_primitive(mp, "to",to_token,0);
5581 @:to_}{\&{to} primitive@>
5582 mp_primitive(mp, "until",until_token,0);
5583 @:until_}{\&{until} primitive@>
5584 mp_primitive(mp, "within",within_token,0);
5585 @:within_}{\&{within} primitive@>
5586 mp_primitive(mp, "write",write_command,0);
5587 @:write_}{\&{write} primitive@>
5589 @ Each primitive has a corresponding inverse, so that it is possible to
5590 display the cryptic numeric contents of |eqtb| in symbolic form.
5591 Every call of |primitive| in this program is therefore accompanied by some
5592 straightforward code that forms part of the |print_cmd_mod| routine
5595 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>=
5596 case add_to_command:mp_print(mp, "addto"); break;
5597 case assignment:mp_print(mp, ":="); break;
5598 case at_least:mp_print(mp, "atleast"); break;
5599 case bchar_label:mp_print(mp, "||:"); break;
5600 case begin_group:mp_print(mp, "begingroup"); break;
5601 case colon:mp_print(mp, ":"); break;
5602 case comma:mp_print(mp, ","); break;
5603 case controls:mp_print(mp, "controls"); break;
5604 case curl_command:mp_print(mp, "curl"); break;
5605 case delimiters:mp_print(mp, "delimiters"); break;
5606 case double_colon:mp_print(mp, "::"); break;
5607 case end_group:mp_print(mp, "endgroup"); break;
5608 case every_job_command:mp_print(mp, "everyjob"); break;
5609 case exit_test:mp_print(mp, "exitif"); break;
5610 case expand_after:mp_print(mp, "expandafter"); break;
5611 case interim_command:mp_print(mp, "interim"); break;
5612 case left_brace:mp_print(mp, "{"); break;
5613 case left_bracket:mp_print(mp, "["); break;
5614 case let_command:mp_print(mp, "let"); break;
5615 case new_internal:mp_print(mp, "newinternal"); break;
5616 case of_token:mp_print(mp, "of"); break;
5617 case path_join:mp_print(mp, ".."); break;
5618 case mp_random_seed:mp_print(mp, "randomseed"); break;
5619 case relax:mp_print_char(mp, '\\'); break;
5620 case right_brace:mp_print(mp, "}"); break;
5621 case right_bracket:mp_print(mp, "]"); break;
5622 case save_command:mp_print(mp, "save"); break;
5623 case scan_tokens:mp_print(mp, "scantokens"); break;
5624 case semicolon:mp_print(mp, ";"); break;
5625 case ship_out_command:mp_print(mp, "shipout"); break;
5626 case skip_to:mp_print(mp, "skipto"); break;
5627 case special_command: if ( m==2 ) mp_print(mp, "fontmapline"); else
5628 if ( m==1 ) mp_print(mp, "fontmapfile"); else
5629 mp_print(mp, "special"); break;
5630 case step_token:mp_print(mp, "step"); break;
5631 case str_op:mp_print(mp, "str"); break;
5632 case tension:mp_print(mp, "tension"); break;
5633 case to_token:mp_print(mp, "to"); break;
5634 case until_token:mp_print(mp, "until"); break;
5635 case within_token:mp_print(mp, "within"); break;
5636 case write_command:mp_print(mp, "write"); break;
5638 @ We will deal with the other primitives later, at some point in the program
5639 where their |eq_type| and |equiv| values are more meaningful. For example,
5640 the primitives for macro definitions will be loaded when we consider the
5641 routines that define macros.
5642 It is easy to find where each particular
5643 primitive was treated by looking in the index at the end; for example, the
5644 section where |"def"| entered |eqtb| is listed under `\&{def} primitive'.
5646 @* \[14] Token lists.
5647 A \MP\ token is either symbolic or numeric or a string, or it denotes
5648 a macro parameter or capsule; so there are five corresponding ways to encode it
5650 internally: (1)~A symbolic token whose hash code is~|p|
5651 is represented by the number |p|, in the |info| field of a single-word
5652 node in~|mem|. (2)~A numeric token whose |scaled| value is~|v| is
5653 represented in a two-word node of~|mem|; the |type| field is |known|,
5654 the |name_type| field is |token|, and the |value| field holds~|v|.
5655 The fact that this token appears in a two-word node rather than a
5656 one-word node is, of course, clear from the node address.
5657 (3)~A string token is also represented in a two-word node; the |type|
5658 field is |mp_string_type|, the |name_type| field is |token|, and the
5659 |value| field holds the corresponding |str_number|. (4)~Capsules have
5660 |name_type=capsule|, and their |type| and |value| fields represent
5661 arbitrary values (in ways to be explained later). (5)~Macro parameters
5662 are like symbolic tokens in that they appear in |info| fields of
5663 one-word nodes. The $k$th parameter is represented by |expr_base+k| if it
5664 is of type \&{expr}, or by |suffix_base+k| if it is of type \&{suffix}, or
5665 by |text_base+k| if it is of type \&{text}. (Here |0<=k<param_size|.)
5666 Actual values of these parameters are kept in a separate stack, as we will
5667 see later. The constants |expr_base|, |suffix_base|, and |text_base| are,
5668 of course, chosen so that there will be no confusion between symbolic
5669 tokens and parameters of various types.
5672 the `\\{type}' field of a node has nothing to do with ``type'' in a
5673 printer's sense. It's curious that the same word is used in such different ways.
5675 @d type(A) mp->mem[(A)].hh.b0 /* identifies what kind of value this is */
5676 @d name_type(A) mp->mem[(A)].hh.b1 /* a clue to the name of this value */
5677 @d token_node_size 2 /* the number of words in a large token node */
5678 @d value_loc(A) ((A)+1) /* the word that contains the |value| field */
5679 @d value(A) mp->mem[value_loc((A))].cint /* the value stored in a large token node */
5680 @d expr_base (hash_end+1) /* code for the zeroth \&{expr} parameter */
5681 @d suffix_base (expr_base+mp->param_size) /* code for the zeroth \&{suffix} parameter */
5682 @d text_base (suffix_base+mp->param_size) /* code for the zeroth \&{text} parameter */
5684 @<Check the ``constant''...@>=
5685 if ( text_base+mp->param_size>max_halfword ) mp->bad=18;
5687 @ We have set aside a two word node beginning at |null| so that we can have
5688 |value(null)=0|. We will make use of this coincidence later.
5690 @<Initialize table entries...@>=
5691 link(null)=null; value(null)=0;
5693 @ A numeric token is created by the following trivial routine.
5696 pointer mp_new_num_tok (MP mp,scaled v) {
5697 pointer p; /* the new node */
5698 p=mp_get_node(mp, token_node_size); value(p)=v;
5699 type(p)=mp_known; name_type(p)=mp_token;
5703 @ A token list is a singly linked list of nodes in |mem|, where
5704 each node contains a token and a link. Here's a subroutine that gets rid
5705 of a token list when it is no longer needed.
5707 @c void mp_flush_token_list (MP mp,pointer p) {
5708 pointer q; /* the node being recycled */
5711 if ( q>=mp->hi_mem_min ) {
5715 case mp_vacuous: case mp_boolean_type: case mp_known:
5717 case mp_string_type:
5718 delete_str_ref(value(q));
5720 case unknown_types: case mp_pen_type: case mp_path_type:
5721 case mp_picture_type: case mp_pair_type: case mp_color_type:
5722 case mp_cmykcolor_type: case mp_transform_type: case mp_dependent:
5723 case mp_proto_dependent: case mp_independent:
5724 mp_recycle_value(mp,q);
5726 default: mp_confusion(mp, "token");
5727 @:this can't happen token}{\quad token@>
5729 mp_free_node(mp, q,token_node_size);
5734 @ The procedure |show_token_list|, which prints a symbolic form of
5735 the token list that starts at a given node |p|, illustrates these
5736 conventions. The token list being displayed should not begin with a reference
5737 count. However, the procedure is intended to be fairly robust, so that if the
5738 memory links are awry or if |p| is not really a pointer to a token list,
5739 almost nothing catastrophic can happen.
5741 An additional parameter |q| is also given; this parameter is either null
5742 or it points to a node in the token list where a certain magic computation
5743 takes place that will be explained later. (Basically, |q| is non-null when
5744 we are printing the two-line context information at the time of an error
5745 message; |q| marks the place corresponding to where the second line
5748 The generation will stop, and `\.{\char`\ ETC.}' will be printed, if the length
5749 of printing exceeds a given limit~|l|; the length of printing upon entry is
5750 assumed to be a given amount called |null_tally|. (Note that
5751 |show_token_list| sometimes uses itself recursively to print
5752 variable names within a capsule.)
5755 Unusual entries are printed in the form of all-caps tokens
5756 preceded by a space, e.g., `\.{\char`\ BAD}'.
5758 @<Declare the procedure called |show_token_list|@>=
5759 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5760 integer null_tally) ;
5763 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5764 integer null_tally) {
5765 small_number class,c; /* the |char_class| of previous and new tokens */
5766 integer r,v; /* temporary registers */
5767 class=percent_class;
5768 mp->tally=null_tally;
5769 while ( (p!=null) && (mp->tally<l) ) {
5771 @<Do magic computation@>;
5772 @<Display token |p| and set |c| to its class;
5773 but |return| if there are problems@>;
5777 mp_print(mp, " ETC.");
5782 @ @<Display token |p| and set |c| to its class...@>=
5783 c=letter_class; /* the default */
5784 if ( (p<0)||(p>mp->mem_end) ) {
5785 mp_print(mp, " CLOBBERED"); return;
5788 if ( p<mp->hi_mem_min ) {
5789 @<Display two-word token@>;
5792 if ( r>=expr_base ) {
5793 @<Display a parameter token@>;
5797 @<Display a collective subscript@>
5799 mp_print(mp, " IMPOSSIBLE");
5804 if ( (r<0)||(r>mp->max_str_ptr) ) {
5805 mp_print(mp, " NONEXISTENT");
5808 @<Print string |r| as a symbolic token
5809 and set |c| to its class@>;
5815 @ @<Display two-word token@>=
5816 if ( name_type(p)==mp_token ) {
5817 if ( type(p)==mp_known ) {
5818 @<Display a numeric token@>;
5819 } else if ( type(p)!=mp_string_type ) {
5820 mp_print(mp, " BAD");
5823 mp_print_char(mp, '"'); mp_print_str(mp, value(p)); mp_print_char(mp, '"');
5826 } else if ((name_type(p)!=mp_capsule)||(type(p)<mp_vacuous)||(type(p)>mp_independent) ) {
5827 mp_print(mp, " BAD");
5829 mp_print_capsule(mp,p); c=right_paren_class;
5832 @ @<Display a numeric token@>=
5833 if ( class==digit_class )
5834 mp_print_char(mp, ' ');
5837 if ( class==left_bracket_class )
5838 mp_print_char(mp, ' ');
5839 mp_print_char(mp, '['); mp_print_scaled(mp, v); mp_print_char(mp, ']');
5840 c=right_bracket_class;
5842 mp_print_scaled(mp, v); c=digit_class;
5846 @ Strictly speaking, a genuine token will never have |info(p)=0|.
5847 But we will see later (in the |print_variable_name| routine) that
5848 it is convenient to let |info(p)=0| stand for `\.{[]}'.
5850 @<Display a collective subscript@>=
5852 if ( class==left_bracket_class )
5853 mp_print_char(mp, ' ');
5854 mp_print(mp, "[]"); c=right_bracket_class;
5857 @ @<Display a parameter token@>=
5859 if ( r<suffix_base ) {
5860 mp_print(mp, "(EXPR"); r=r-(expr_base);
5862 } else if ( r<text_base ) {
5863 mp_print(mp, "(SUFFIX"); r=r-(suffix_base);
5866 mp_print(mp, "(TEXT"); r=r-(text_base);
5869 mp_print_int(mp, r); mp_print_char(mp, ')'); c=right_paren_class;
5873 @ @<Print string |r| as a symbolic token...@>=
5875 c=mp->char_class[mp->str_pool[mp->str_start[r]]];
5878 case letter_class:mp_print_char(mp, '.'); break;
5879 case isolated_classes: break;
5880 default: mp_print_char(mp, ' '); break;
5883 mp_print_str(mp, r);
5887 void mp_print_capsule (MP mp, pointer p);
5889 @ @<Declare miscellaneous procedures that were declared |forward|@>=
5890 void mp_print_capsule (MP mp, pointer p) {
5891 mp_print_char(mp, '('); mp_print_exp(mp,p,0); mp_print_char(mp, ')');
5894 @ Macro definitions are kept in \MP's memory in the form of token lists
5895 that have a few extra one-word nodes at the beginning.
5897 The first node contains a reference count that is used to tell when the
5898 list is no longer needed. To emphasize the fact that a reference count is
5899 present, we shall refer to the |info| field of this special node as the
5901 @^reference counts@>
5903 The next node or nodes after the reference count serve to describe the
5904 formal parameters. They either contain a code word that specifies all
5905 of the parameters, or they contain zero or more parameter tokens followed
5906 by the code `|general_macro|'.
5909 /* reference count preceding a macro definition or picture header */
5910 @d add_mac_ref(A) incr(ref_count((A))) /* make a new reference to a macro list */
5911 @d general_macro 0 /* preface to a macro defined with a parameter list */
5912 @d primary_macro 1 /* preface to a macro with a \&{primary} parameter */
5913 @d secondary_macro 2 /* preface to a macro with a \&{secondary} parameter */
5914 @d tertiary_macro 3 /* preface to a macro with a \&{tertiary} parameter */
5915 @d expr_macro 4 /* preface to a macro with an undelimited \&{expr} parameter */
5916 @d of_macro 5 /* preface to a macro with
5917 undelimited `\&{expr} |x| \&{of}~|y|' parameters */
5918 @d suffix_macro 6 /* preface to a macro with an undelimited \&{suffix} parameter */
5919 @d text_macro 7 /* preface to a macro with an undelimited \&{text} parameter */
5922 void mp_delete_mac_ref (MP mp,pointer p) {
5923 /* |p| points to the reference count of a macro list that is
5924 losing one reference */
5925 if ( ref_count(p)==null ) mp_flush_token_list(mp, p);
5926 else decr(ref_count(p));
5929 @ The following subroutine displays a macro, given a pointer to its
5933 @<Declare the procedure called |print_cmd_mod|@>;
5934 void mp_show_macro (MP mp, pointer p, integer q, integer l) {
5935 pointer r; /* temporary storage */
5936 p=link(p); /* bypass the reference count */
5937 while ( info(p)>text_macro ){
5938 r=link(p); link(p)=null;
5939 mp_show_token_list(mp, p,null,l,0); link(p)=r; p=r;
5940 if ( l>0 ) l=l-mp->tally; else return;
5941 } /* control printing of `\.{ETC.}' */
5945 case general_macro:mp_print(mp, "->"); break;
5947 case primary_macro: case secondary_macro: case tertiary_macro:
5948 mp_print_char(mp, '<');
5949 mp_print_cmd_mod(mp, param_type,info(p));
5950 mp_print(mp, ">->");
5952 case expr_macro:mp_print(mp, "<expr>->"); break;
5953 case of_macro:mp_print(mp, "<expr>of<primary>->"); break;
5954 case suffix_macro:mp_print(mp, "<suffix>->"); break;
5955 case text_macro:mp_print(mp, "<text>->"); break;
5956 } /* there are no other cases */
5957 mp_show_token_list(mp, link(p),q,l-mp->tally,0);
5960 @* \[15] Data structures for variables.
5961 The variables of \MP\ programs can be simple, like `\.x', or they can
5962 combine the structural properties of arrays and records, like `\.{x20a.b}'.
5963 A \MP\ user assigns a type to a variable like \.{x20a.b} by saying, for
5964 example, `\.{boolean} \.{x20a.b}'. It's time for us to study how such
5965 things are represented inside of the computer.
5967 Each variable value occupies two consecutive words, either in a two-word
5968 node called a value node, or as a two-word subfield of a larger node. One
5969 of those two words is called the |value| field; it is an integer,
5970 containing either a |scaled| numeric value or the representation of some
5971 other type of quantity. (It might also be subdivided into halfwords, in
5972 which case it is referred to by other names instead of |value|.) The other
5973 word is broken into subfields called |type|, |name_type|, and |link|. The
5974 |type| field is a quarterword that specifies the variable's type, and
5975 |name_type| is a quarterword from which \MP\ can reconstruct the
5976 variable's name (sometimes by using the |link| field as well). Thus, only
5977 1.25 words are actually devoted to the value itself; the other
5978 three-quarters of a word are overhead, but they aren't wasted because they
5979 allow \MP\ to deal with sparse arrays and to provide meaningful diagnostics.
5981 In this section we shall be concerned only with the structural aspects of
5982 variables, not their values. Later parts of the program will change the
5983 |type| and |value| fields, but we shall treat those fields as black boxes
5984 whose contents should not be touched.
5986 However, if the |type| field is |mp_structured|, there is no |value| field,
5987 and the second word is broken into two pointer fields called |attr_head|
5988 and |subscr_head|. Those fields point to additional nodes that
5989 contain structural information, as we shall see.
5991 @d subscr_head_loc(A) (A)+1 /* where |value|, |subscr_head| and |attr_head| are */
5992 @d attr_head(A) info(subscr_head_loc((A))) /* pointer to attribute info */
5993 @d subscr_head(A) link(subscr_head_loc((A))) /* pointer to subscript info */
5994 @d value_node_size 2 /* the number of words in a value node */
5996 @ An attribute node is three words long. Two of these words contain |type|
5997 and |value| fields as described above, and the third word contains
5998 additional information: There is an |attr_loc| field, which contains the
5999 hash address of the token that names this attribute; and there's also a
6000 |parent| field, which points to the value node of |mp_structured| type at the
6001 next higher level (i.e., at the level to which this attribute is
6002 subsidiary). The |name_type| in an attribute node is `|attr|'. The
6003 |link| field points to the next attribute with the same parent; these are
6004 arranged in increasing order, so that |attr_loc(link(p))>attr_loc(p)|. The
6005 final attribute node links to the constant |end_attr|, whose |attr_loc|
6006 field is greater than any legal hash address. The |attr_head| in the
6007 parent points to a node whose |name_type| is |mp_structured_root|; this
6008 node represents the null attribute, i.e., the variable that is relevant
6009 when no attributes are attached to the parent. The |attr_head| node is either
6010 a value node, a subscript node, or an attribute node, depending on what
6011 the parent would be if it were not structured; but the subscript and
6012 attribute fields are ignored, so it effectively contains only the data of
6013 a value node. The |link| field in this special node points to an attribute
6014 node whose |attr_loc| field is zero; the latter node represents a collective
6015 subscript `\.{[]}' attached to the parent, and its |link| field points to
6016 the first non-special attribute node (or to |end_attr| if there are none).
6018 A subscript node likewise occupies three words, with |type| and |value| fields
6019 plus extra information; its |name_type| is |subscr|. In this case the
6020 third word is called the |subscript| field, which is a |scaled| integer.
6021 The |link| field points to the subscript node with the next larger
6022 subscript, if any; otherwise the |link| points to the attribute node
6023 for collective subscripts at this level. We have seen that the latter node
6024 contains an upward pointer, so that the parent can be deduced.
6026 The |name_type| in a parent-less value node is |root|, and the |link|
6027 is the hash address of the token that names this value.
6029 In other words, variables have a hierarchical structure that includes
6030 enough threads running around so that the program is able to move easily
6031 between siblings, parents, and children. An example should be helpful:
6032 (The reader is advised to draw a picture while reading the following
6033 description, since that will help to firm up the ideas.)
6034 Suppose that `\.x' and `\.{x.a}' and `\.{x[]b}' and `\.{x5}'
6035 and `\.{x20b}' have been mentioned in a user's program, where
6036 \.{x[]b} has been declared to be of \&{boolean} type. Let |h(x)|, |h(a)|,
6037 and |h(b)| be the hash addresses of \.x, \.a, and~\.b. Then
6038 |eq_type(h(x))=name| and |equiv(h(x))=p|, where |p|~is a two-word value
6039 node with |name_type(p)=root| and |link(p)=h(x)|. We have |type(p)=mp_structured|,
6040 |attr_head(p)=q|, and |subscr_head(p)=r|, where |q| points to a value
6041 node and |r| to a subscript node. (Are you still following this? Use
6042 a pencil to draw a diagram.) The lone variable `\.x' is represented by
6043 |type(q)| and |value(q)|; furthermore
6044 |name_type(q)=mp_structured_root| and |link(q)=q1|, where |q1| points
6045 to an attribute node representing `\.{x[]}'. Thus |name_type(q1)=attr|,
6046 |attr_loc(q1)=collective_subscript=0|, |parent(q1)=p|,
6047 |type(q1)=mp_structured|, |attr_head(q1)=qq|, and |subscr_head(q1)=qq1|;
6048 |qq| is a value node with |type(qq)=mp_numeric_type| (assuming that \.{x5} is
6049 numeric, because |qq| represents `\.{x[]}' with no further attributes),
6050 |name_type(qq)=mp_structured_root|, and
6051 |link(qq)=qq1|. (Now pay attention to the next part.) Node |qq1| is
6052 an attribute node representing `\.{x[][]}', which has never yet
6053 occurred; its |type| field is |undefined|, and its |value| field is
6054 undefined. We have |name_type(qq1)=attr|, |attr_loc(qq1)=collective_subscript|,
6055 |parent(qq1)=q1|, and |link(qq1)=qq2|. Since |qq2| represents
6056 `\.{x[]b}', |type(qq2)=mp_unknown_boolean|; also |attr_loc(qq2)=h(b)|,
6057 |parent(qq2)=q1|, |name_type(qq2)=attr|, |link(qq2)=end_attr|.
6058 (Maybe colored lines will help untangle your picture.)
6059 Node |r| is a subscript node with |type| and |value|
6060 representing `\.{x5}'; |name_type(r)=subscr|, |subscript(r)=5.0|,
6061 and |link(r)=r1| is another subscript node. To complete the picture,
6062 see if you can guess what |link(r1)| is; give up? It's~|q1|.
6063 Furthermore |subscript(r1)=20.0|, |name_type(r1)=subscr|,
6064 |type(r1)=mp_structured|, |attr_head(r1)=qqq|, |subscr_head(r1)=qqq1|,
6065 and we finish things off with three more nodes
6066 |qqq|, |qqq1|, and |qqq2| hung onto~|r1|. (Perhaps you should start again
6067 with a larger sheet of paper.) The value of variable \.{x20b}
6068 appears in node~|qqq2|, as you can well imagine.
6070 If the example in the previous paragraph doesn't make things crystal
6071 clear, a glance at some of the simpler subroutines below will reveal how
6072 things work out in practice.
6074 The only really unusual thing about these conventions is the use of
6075 collective subscript attributes. The idea is to avoid repeating a lot of
6076 type information when many elements of an array are identical macros
6077 (for which distinct values need not be stored) or when they don't have
6078 all of the possible attributes. Branches of the structure below collective
6079 subscript attributes do not carry actual values except for macro identifiers;
6080 branches of the structure below subscript nodes do not carry significant
6081 information in their collective subscript attributes.
6083 @d attr_loc_loc(A) ((A)+2) /* where the |attr_loc| and |parent| fields are */
6084 @d attr_loc(A) info(attr_loc_loc((A))) /* hash address of this attribute */
6085 @d parent(A) link(attr_loc_loc((A))) /* pointer to |mp_structured| variable */
6086 @d subscript_loc(A) ((A)+2) /* where the |subscript| field lives */
6087 @d subscript(A) mp->mem[subscript_loc((A))].sc /* subscript of this variable */
6088 @d attr_node_size 3 /* the number of words in an attribute node */
6089 @d subscr_node_size 3 /* the number of words in a subscript node */
6090 @d collective_subscript 0 /* code for the attribute `\.{[]}' */
6092 @<Initialize table...@>=
6093 attr_loc(end_attr)=hash_end+1; parent(end_attr)=null;
6095 @ Variables of type \&{pair} will have values that point to four-word
6096 nodes containing two numeric values. The first of these values has
6097 |name_type=mp_x_part_sector| and the second has |name_type=mp_y_part_sector|;
6098 the |link| in the first points back to the node whose |value| points
6099 to this four-word node.
6101 Variables of type \&{transform} are similar, but in this case their
6102 |value| points to a 12-word node containing six values, identified by
6103 |x_part_sector|, |y_part_sector|, |mp_xx_part_sector|, |mp_xy_part_sector|,
6104 |mp_yx_part_sector|, and |mp_yy_part_sector|.
6105 Finally, variables of type \&{color} have 3~values in 6~words
6106 identified by |mp_red_part_sector|, |mp_green_part_sector|, and |mp_blue_part_sector|.
6108 When an entire structured variable is saved, the |root| indication
6109 is temporarily replaced by |saved_root|.
6111 Some variables have no name; they just are used for temporary storage
6112 while expressions are being evaluated. We call them {\sl capsules}.
6114 @d x_part_loc(A) (A) /* where the \&{xpart} is found in a pair or transform node */
6115 @d y_part_loc(A) ((A)+2) /* where the \&{ypart} is found in a pair or transform node */
6116 @d xx_part_loc(A) ((A)+4) /* where the \&{xxpart} is found in a transform node */
6117 @d xy_part_loc(A) ((A)+6) /* where the \&{xypart} is found in a transform node */
6118 @d yx_part_loc(A) ((A)+8) /* where the \&{yxpart} is found in a transform node */
6119 @d yy_part_loc(A) ((A)+10) /* where the \&{yypart} is found in a transform node */
6120 @d red_part_loc(A) (A) /* where the \&{redpart} is found in a color node */
6121 @d green_part_loc(A) ((A)+2) /* where the \&{greenpart} is found in a color node */
6122 @d blue_part_loc(A) ((A)+4) /* where the \&{bluepart} is found in a color node */
6123 @d cyan_part_loc(A) (A) /* where the \&{cyanpart} is found in a color node */
6124 @d magenta_part_loc(A) ((A)+2) /* where the \&{magentapart} is found in a color node */
6125 @d yellow_part_loc(A) ((A)+4) /* where the \&{yellowpart} is found in a color node */
6126 @d black_part_loc(A) ((A)+6) /* where the \&{blackpart} is found in a color node */
6127 @d grey_part_loc(A) (A) /* where the \&{greypart} is found in a color node */
6129 @d pair_node_size 4 /* the number of words in a pair node */
6130 @d transform_node_size 12 /* the number of words in a transform node */
6131 @d color_node_size 6 /* the number of words in a color node */
6132 @d cmykcolor_node_size 8 /* the number of words in a color node */
6135 small_number big_node_size[mp_pair_type+1];
6136 small_number sector0[mp_pair_type+1];
6137 small_number sector_offset[mp_black_part_sector+1];
6139 @ The |sector0| array gives for each big node type, |name_type| values
6140 for its first subfield; the |sector_offset| array gives for each
6141 |name_type| value, the offset from the first subfield in words;
6142 and the |big_node_size| array gives the size in words for each type of
6146 mp->big_node_size[mp_transform_type]=transform_node_size;
6147 mp->big_node_size[mp_pair_type]=pair_node_size;
6148 mp->big_node_size[mp_color_type]=color_node_size;
6149 mp->big_node_size[mp_cmykcolor_type]=cmykcolor_node_size;
6150 mp->sector0[mp_transform_type]=mp_x_part_sector;
6151 mp->sector0[mp_pair_type]=mp_x_part_sector;
6152 mp->sector0[mp_color_type]=mp_red_part_sector;
6153 mp->sector0[mp_cmykcolor_type]=mp_cyan_part_sector;
6154 for (k=mp_x_part_sector;k<= mp_yy_part_sector;k++ ) {
6155 mp->sector_offset[k]=2*(k-mp_x_part_sector);
6157 for (k=mp_red_part_sector;k<= mp_blue_part_sector ; k++) {
6158 mp->sector_offset[k]=2*(k-mp_red_part_sector);
6160 for (k=mp_cyan_part_sector;k<= mp_black_part_sector;k++ ) {
6161 mp->sector_offset[k]=2*(k-mp_cyan_part_sector);
6164 @ If |type(p)=mp_pair_type| or |mp_transform_type| and if |value(p)=null|, the
6165 procedure call |init_big_node(p)| will allocate a pair or transform node
6166 for~|p|. The individual parts of such nodes are initially of type
6170 void mp_init_big_node (MP mp,pointer p) {
6171 pointer q; /* the new node */
6172 small_number s; /* its size */
6173 s=mp->big_node_size[type(p)]; q=mp_get_node(mp, s);
6176 @<Make variable |q+s| newly independent@>;
6177 name_type(q+s)=halfp(s)+mp->sector0[type(p)];
6180 link(q)=p; value(p)=q;
6183 @ The |id_transform| function creates a capsule for the
6184 identity transformation.
6187 pointer mp_id_transform (MP mp) {
6188 pointer p,q,r; /* list manipulation registers */
6189 p=mp_get_node(mp, value_node_size); type(p)=mp_transform_type;
6190 name_type(p)=mp_capsule; value(p)=null; mp_init_big_node(mp, p); q=value(p);
6191 r=q+transform_node_size;
6194 type(r)=mp_known; value(r)=0;
6196 value(xx_part_loc(q))=unity;
6197 value(yy_part_loc(q))=unity;
6201 @ Tokens are of type |tag_token| when they first appear, but they point
6202 to |null| until they are first used as the root of a variable.
6203 The following subroutine establishes the root node on such grand occasions.
6206 void mp_new_root (MP mp,pointer x) {
6207 pointer p; /* the new node */
6208 p=mp_get_node(mp, value_node_size); type(p)=undefined; name_type(p)=mp_root;
6209 link(p)=x; equiv(x)=p;
6212 @ These conventions for variable representation are illustrated by the
6213 |print_variable_name| routine, which displays the full name of a
6214 variable given only a pointer to its two-word value packet.
6217 void mp_print_variable_name (MP mp, pointer p);
6220 void mp_print_variable_name (MP mp, pointer p) {
6221 pointer q; /* a token list that will name the variable's suffix */
6222 pointer r; /* temporary for token list creation */
6223 while ( name_type(p)>=mp_x_part_sector ) {
6224 @<Preface the output with a part specifier; |return| in the
6225 case of a capsule@>;
6228 while ( name_type(p)>mp_saved_root ) {
6229 @<Ascend one level, pushing a token onto list |q|
6230 and replacing |p| by its parent@>;
6232 r=mp_get_avail(mp); info(r)=link(p); link(r)=q;
6233 if ( name_type(p)==mp_saved_root ) mp_print(mp, "(SAVED)");
6235 mp_show_token_list(mp, r,null,el_gordo,mp->tally);
6236 mp_flush_token_list(mp, r);
6239 @ @<Ascend one level, pushing a token onto list |q|...@>=
6241 if ( name_type(p)==mp_subscr ) {
6242 r=mp_new_num_tok(mp, subscript(p));
6245 } while (name_type(p)!=mp_attr);
6246 } else if ( name_type(p)==mp_structured_root ) {
6247 p=link(p); goto FOUND;
6249 if ( name_type(p)!=mp_attr ) mp_confusion(mp, "var");
6250 @:this can't happen var}{\quad var@>
6251 r=mp_get_avail(mp); info(r)=attr_loc(p);
6258 @ @<Preface the output with a part specifier...@>=
6259 { switch (name_type(p)) {
6260 case mp_x_part_sector: mp_print_char(mp, 'x'); break;
6261 case mp_y_part_sector: mp_print_char(mp, 'y'); break;
6262 case mp_xx_part_sector: mp_print(mp, "xx"); break;
6263 case mp_xy_part_sector: mp_print(mp, "xy"); break;
6264 case mp_yx_part_sector: mp_print(mp, "yx"); break;
6265 case mp_yy_part_sector: mp_print(mp, "yy"); break;
6266 case mp_red_part_sector: mp_print(mp, "red"); break;
6267 case mp_green_part_sector: mp_print(mp, "green"); break;
6268 case mp_blue_part_sector: mp_print(mp, "blue"); break;
6269 case mp_cyan_part_sector: mp_print(mp, "cyan"); break;
6270 case mp_magenta_part_sector: mp_print(mp, "magenta"); break;
6271 case mp_yellow_part_sector: mp_print(mp, "yellow"); break;
6272 case mp_black_part_sector: mp_print(mp, "black"); break;
6273 case mp_grey_part_sector: mp_print(mp, "grey"); break;
6275 mp_print(mp, "%CAPSULE"); mp_print_int(mp, p-null); return;
6278 } /* there are no other cases */
6279 mp_print(mp, "part ");
6280 p=link(p-mp->sector_offset[name_type(p)]);
6283 @ The |interesting| function returns |true| if a given variable is not
6284 in a capsule, or if the user wants to trace capsules.
6287 boolean mp_interesting (MP mp,pointer p) {
6288 small_number t; /* a |name_type| */
6289 if ( mp->internal[mp_tracing_capsules]>0 ) {
6293 if ( t>=mp_x_part_sector ) if ( t!=mp_capsule )
6294 t=name_type(link(p-mp->sector_offset[t]));
6295 return (t!=mp_capsule);
6299 @ Now here is a subroutine that converts an unstructured type into an
6300 equivalent structured type, by inserting a |mp_structured| node that is
6301 capable of growing. This operation is done only when |name_type(p)=root|,
6302 |subscr|, or |attr|.
6304 The procedure returns a pointer to the new node that has taken node~|p|'s
6305 place in the structure. Node~|p| itself does not move, nor are its
6306 |value| or |type| fields changed in any way.
6309 pointer mp_new_structure (MP mp,pointer p) {
6310 pointer q,r=0; /* list manipulation registers */
6311 switch (name_type(p)) {
6313 q=link(p); r=mp_get_node(mp, value_node_size); equiv(q)=r;
6316 @<Link a new subscript node |r| in place of node |p|@>;
6319 @<Link a new attribute node |r| in place of node |p|@>;
6322 mp_confusion(mp, "struct");
6323 @:this can't happen struct}{\quad struct@>
6326 link(r)=link(p); type(r)=mp_structured; name_type(r)=name_type(p);
6327 attr_head(r)=p; name_type(p)=mp_structured_root;
6328 q=mp_get_node(mp, attr_node_size); link(p)=q; subscr_head(r)=q;
6329 parent(q)=r; type(q)=undefined; name_type(q)=mp_attr; link(q)=end_attr;
6330 attr_loc(q)=collective_subscript;
6334 @ @<Link a new subscript node |r| in place of node |p|@>=
6339 } while (name_type(q)!=mp_attr);
6340 q=parent(q); r=subscr_head_loc(q); /* |link(r)=subscr_head(q)| */
6344 r=mp_get_node(mp, subscr_node_size);
6345 link(q)=r; subscript(r)=subscript(p);
6348 @ If the attribute is |collective_subscript|, there are two pointers to
6349 node~|p|, so we must change both of them.
6351 @<Link a new attribute node |r| in place of node |p|@>=
6353 q=parent(p); r=attr_head(q);
6357 r=mp_get_node(mp, attr_node_size); link(q)=r;
6358 mp->mem[attr_loc_loc(r)]=mp->mem[attr_loc_loc(p)]; /* copy |attr_loc| and |parent| */
6359 if ( attr_loc(p)==collective_subscript ) {
6360 q=subscr_head_loc(parent(p));
6361 while ( link(q)!=p ) q=link(q);
6366 @ The |find_variable| routine is given a pointer~|t| to a nonempty token
6367 list of suffixes; it returns a pointer to the corresponding two-word
6368 value. For example, if |t| points to token \.x followed by a numeric
6369 token containing the value~7, |find_variable| finds where the value of
6370 \.{x7} is stored in memory. This may seem a simple task, and it
6371 usually is, except when \.{x7} has never been referenced before.
6372 Indeed, \.x may never have even been subscripted before; complexities
6373 arise with respect to updating the collective subscript information.
6375 If a macro type is detected anywhere along path~|t|, or if the first
6376 item on |t| isn't a |tag_token|, the value |null| is returned.
6377 Otherwise |p| will be a non-null pointer to a node such that
6378 |undefined<type(p)<mp_structured|.
6380 @d abort_find { return null; }
6383 pointer mp_find_variable (MP mp,pointer t) {
6384 pointer p,q,r,s; /* nodes in the ``value'' line */
6385 pointer pp,qq,rr,ss; /* nodes in the ``collective'' line */
6386 integer n; /* subscript or attribute */
6387 memory_word save_word; /* temporary storage for a word of |mem| */
6389 p=info(t); t=link(t);
6390 if ( (eq_type(p) % outer_tag) != tag_token ) abort_find;
6391 if ( equiv(p)==null ) mp_new_root(mp, p);
6394 @<Make sure that both nodes |p| and |pp| are of |mp_structured| type@>;
6395 if ( t<mp->hi_mem_min ) {
6396 @<Descend one level for the subscript |value(t)|@>
6398 @<Descend one level for the attribute |info(t)|@>;
6402 if ( type(pp)>=mp_structured ) {
6403 if ( type(pp)==mp_structured ) pp=attr_head(pp); else abort_find;
6405 if ( type(p)==mp_structured ) p=attr_head(p);
6406 if ( type(p)==undefined ) {
6407 if ( type(pp)==undefined ) { type(pp)=mp_numeric_type; value(pp)=null; };
6408 type(p)=type(pp); value(p)=null;
6413 @ Although |pp| and |p| begin together, they diverge when a subscript occurs;
6414 |pp|~stays in the collective line while |p|~goes through actual subscript
6417 @<Make sure that both nodes |p| and |pp|...@>=
6418 if ( type(pp)!=mp_structured ) {
6419 if ( type(pp)>mp_structured ) abort_find;
6420 ss=mp_new_structure(mp, pp);
6423 }; /* now |type(pp)=mp_structured| */
6424 if ( type(p)!=mp_structured ) /* it cannot be |>mp_structured| */
6425 p=mp_new_structure(mp, p) /* now |type(p)=mp_structured| */
6427 @ We want this part of the program to be reasonably fast, in case there are
6429 lots of subscripts at the same level of the data structure. Therefore
6430 we store an ``infinite'' value in the word that appears at the end of the
6431 subscript list, even though that word isn't part of a subscript node.
6433 @<Descend one level for the subscript |value(t)|@>=
6436 pp=link(attr_head(pp)); /* now |attr_loc(pp)=collective_subscript| */
6437 q=link(attr_head(p)); save_word=mp->mem[subscript_loc(q)];
6438 subscript(q)=el_gordo; s=subscr_head_loc(p); /* |link(s)=subscr_head(p)| */
6441 } while (n>subscript(s));
6442 if ( n==subscript(s) ) {
6445 p=mp_get_node(mp, subscr_node_size); link(r)=p; link(p)=s;
6446 subscript(p)=n; name_type(p)=mp_subscr; type(p)=undefined;
6448 mp->mem[subscript_loc(q)]=save_word;
6451 @ @<Descend one level for the attribute |info(t)|@>=
6457 } while (n>attr_loc(ss));
6458 if ( n<attr_loc(ss) ) {
6459 qq=mp_get_node(mp, attr_node_size); link(rr)=qq; link(qq)=ss;
6460 attr_loc(qq)=n; name_type(qq)=mp_attr; type(qq)=undefined;
6461 parent(qq)=pp; ss=qq;
6466 pp=ss; s=attr_head(p);
6469 } while (n>attr_loc(s));
6470 if ( n==attr_loc(s) ) {
6473 q=mp_get_node(mp, attr_node_size); link(r)=q; link(q)=s;
6474 attr_loc(q)=n; name_type(q)=mp_attr; type(q)=undefined;
6480 @ Variables lose their former values when they appear in a type declaration,
6481 or when they are defined to be macros or \&{let} equal to something else.
6482 A subroutine will be defined later that recycles the storage associated
6483 with any particular |type| or |value|; our goal now is to study a higher
6484 level process called |flush_variable|, which selectively frees parts of a
6487 This routine has some complexity because of examples such as
6488 `\hbox{\tt numeric x[]a[]b}'
6489 which recycles all variables of the form \.{x[i]a[j]b} (and no others), while
6490 `\hbox{\tt vardef x[]a[]=...}'
6491 discards all variables of the form \.{x[i]a[j]} followed by an arbitrary
6492 suffix, except for the collective node \.{x[]a[]} itself. The obvious way
6493 to handle such examples is to use recursion; so that's what we~do.
6496 Parameter |p| points to the root information of the variable;
6497 parameter |t| points to a list of one-word nodes that represent
6498 suffixes, with |info=collective_subscript| for subscripts.
6501 @<Declare subroutines for printing expressions@>
6502 @<Declare basic dependency-list subroutines@>
6503 @<Declare the recycling subroutines@>
6504 void mp_flush_cur_exp (MP mp,scaled v) ;
6505 @<Declare the procedure called |flush_below_variable|@>
6508 void mp_flush_variable (MP mp,pointer p, pointer t, boolean discard_suffixes) {
6509 pointer q,r; /* list manipulation */
6510 halfword n; /* attribute to match */
6512 if ( type(p)!=mp_structured ) return;
6513 n=info(t); t=link(t);
6514 if ( n==collective_subscript ) {
6515 r=subscr_head_loc(p); q=link(r); /* |q=subscr_head(p)| */
6516 while ( name_type(q)==mp_subscr ){
6517 mp_flush_variable(mp, q,t,discard_suffixes);
6519 if ( type(q)==mp_structured ) r=q;
6520 else { link(r)=link(q); mp_free_node(mp, q,subscr_node_size); }
6530 } while (attr_loc(p)<n);
6531 if ( attr_loc(p)!=n ) return;
6533 if ( discard_suffixes ) {
6534 mp_flush_below_variable(mp, p);
6536 if ( type(p)==mp_structured ) p=attr_head(p);
6537 mp_recycle_value(mp, p);
6541 @ The next procedure is simpler; it wipes out everything but |p| itself,
6542 which becomes undefined.
6544 @<Declare the procedure called |flush_below_variable|@>=
6545 void mp_flush_below_variable (MP mp, pointer p);
6548 void mp_flush_below_variable (MP mp,pointer p) {
6549 pointer q,r; /* list manipulation registers */
6550 if ( type(p)!=mp_structured ) {
6551 mp_recycle_value(mp, p); /* this sets |type(p)=undefined| */
6554 while ( name_type(q)==mp_subscr ) {
6555 mp_flush_below_variable(mp, q); r=q; q=link(q);
6556 mp_free_node(mp, r,subscr_node_size);
6558 r=attr_head(p); q=link(r); mp_recycle_value(mp, r);
6559 if ( name_type(p)<=mp_saved_root ) mp_free_node(mp, r,value_node_size);
6560 else mp_free_node(mp, r,subscr_node_size);
6561 /* we assume that |subscr_node_size=attr_node_size| */
6563 mp_flush_below_variable(mp, q); r=q; q=link(q); mp_free_node(mp, r,attr_node_size);
6564 } while (q!=end_attr);
6569 @ Just before assigning a new value to a variable, we will recycle the
6570 old value and make the old value undefined. The |und_type| routine
6571 determines what type of undefined value should be given, based on
6572 the current type before recycling.
6575 small_number mp_und_type (MP mp,pointer p) {
6577 case undefined: case mp_vacuous:
6579 case mp_boolean_type: case mp_unknown_boolean:
6580 return mp_unknown_boolean;
6581 case mp_string_type: case mp_unknown_string:
6582 return mp_unknown_string;
6583 case mp_pen_type: case mp_unknown_pen:
6584 return mp_unknown_pen;
6585 case mp_path_type: case mp_unknown_path:
6586 return mp_unknown_path;
6587 case mp_picture_type: case mp_unknown_picture:
6588 return mp_unknown_picture;
6589 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
6590 case mp_pair_type: case mp_numeric_type:
6592 case mp_known: case mp_dependent: case mp_proto_dependent: case mp_independent:
6593 return mp_numeric_type;
6594 } /* there are no other cases */
6598 @ The |clear_symbol| routine is used when we want to redefine the equivalent
6599 of a symbolic token. It must remove any variable structure or macro
6600 definition that is currently attached to that symbol. If the |saving|
6601 parameter is true, a subsidiary structure is saved instead of destroyed.
6604 void mp_clear_symbol (MP mp,pointer p, boolean saving) {
6605 pointer q; /* |equiv(p)| */
6607 switch (eq_type(p) % outer_tag) {
6609 case secondary_primary_macro:
6610 case tertiary_secondary_macro:
6611 case expression_tertiary_macro:
6612 if ( ! saving ) mp_delete_mac_ref(mp, q);
6617 name_type(q)=mp_saved_root;
6619 mp_flush_below_variable(mp, q); mp_free_node(mp,q,value_node_size);
6626 mp->eqtb[p]=mp->eqtb[frozen_undefined];
6629 @* \[16] Saving and restoring equivalents.
6630 The nested structure given by \&{begingroup} and \&{endgroup}
6631 allows |eqtb| entries to be saved and restored, so that temporary changes
6632 can be made without difficulty. When the user requests a current value to
6633 be saved, \MP\ puts that value into its ``save stack.'' An appearance of
6634 \&{endgroup} ultimately causes the old values to be removed from the save
6635 stack and put back in their former places.
6637 The save stack is a linked list containing three kinds of entries,
6638 distinguished by their |info| fields. If |p| points to a saved item,
6642 |info(p)=0| stands for a group boundary; each \&{begingroup} contributes
6643 such an item to the save stack and each \&{endgroup} cuts back the stack
6644 until the most recent such entry has been removed.
6647 |info(p)=q|, where |1<=q<=hash_end|, means that |mem[p+1]| holds the former
6648 contents of |eqtb[q]|. Such save stack entries are generated by \&{save}
6649 commands or suitable \&{interim} commands.
6652 |info(p)=hash_end+q|, where |q>0|, means that |value(p)| is a |scaled|
6653 integer to be restored to internal parameter number~|q|. Such entries
6654 are generated by \&{interim} commands.
6657 The global variable |save_ptr| points to the top item on the save stack.
6659 @d save_node_size 2 /* number of words per non-boundary save-stack node */
6660 @d saved_equiv(A) mp->mem[(A)+1].hh /* where an |eqtb| entry gets saved */
6661 @d save_boundary_item(A) { (A)=mp_get_avail(mp); info((A))=0;
6662 link((A))=mp->save_ptr; mp->save_ptr=(A);
6666 pointer save_ptr; /* the most recently saved item */
6668 @ @<Set init...@>=mp->save_ptr=null;
6670 @ The |save_variable| routine is given a hash address |q|; it salts this
6671 address in the save stack, together with its current equivalent,
6672 then makes token~|q| behave as though it were brand new.
6674 Nothing is stacked when |save_ptr=null|, however; there's no way to remove
6675 things from the stack when the program is not inside a group, so there's
6676 no point in wasting the space.
6678 @c void mp_save_variable (MP mp,pointer q) {
6679 pointer p; /* temporary register */
6680 if ( mp->save_ptr!=null ){
6681 p=mp_get_node(mp, save_node_size); info(p)=q; link(p)=mp->save_ptr;
6682 saved_equiv(p)=mp->eqtb[q]; mp->save_ptr=p;
6684 mp_clear_symbol(mp, q,(mp->save_ptr!=null));
6687 @ Similarly, |save_internal| is given the location |q| of an internal
6688 quantity like |mp_tracing_pens|. It creates a save stack entry of the
6691 @c void mp_save_internal (MP mp,halfword q) {
6692 pointer p; /* new item for the save stack */
6693 if ( mp->save_ptr!=null ){
6694 p=mp_get_node(mp, save_node_size); info(p)=hash_end+q;
6695 link(p)=mp->save_ptr; value(p)=mp->internal[q]; mp->save_ptr=p;
6699 @ At the end of a group, the |unsave| routine restores all of the saved
6700 equivalents in reverse order. This routine will be called only when there
6701 is at least one boundary item on the save stack.
6704 void mp_unsave (MP mp) {
6705 pointer q; /* index to saved item */
6706 pointer p; /* temporary register */
6707 while ( info(mp->save_ptr)!=0 ) {
6708 q=info(mp->save_ptr);
6710 if ( mp->internal[mp_tracing_restores]>0 ) {
6711 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6712 mp_print(mp, mp->int_name[q-(hash_end)]); mp_print_char(mp, '=');
6713 mp_print_scaled(mp, value(mp->save_ptr)); mp_print_char(mp, '}');
6714 mp_end_diagnostic(mp, false);
6716 mp->internal[q-(hash_end)]=value(mp->save_ptr);
6718 if ( mp->internal[mp_tracing_restores]>0 ) {
6719 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6720 mp_print_text(q); mp_print_char(mp, '}');
6721 mp_end_diagnostic(mp, false);
6723 mp_clear_symbol(mp, q,false);
6724 mp->eqtb[q]=saved_equiv(mp->save_ptr);
6725 if ( eq_type(q) % outer_tag==tag_token ) {
6727 if ( p!=null ) name_type(p)=mp_root;
6730 p=link(mp->save_ptr);
6731 mp_free_node(mp, mp->save_ptr,save_node_size); mp->save_ptr=p;
6733 p=link(mp->save_ptr); free_avail(mp->save_ptr); mp->save_ptr=p;
6736 @* \[17] Data structures for paths.
6737 When a \MP\ user specifies a path, \MP\ will create a list of knots
6738 and control points for the associated cubic spline curves. If the
6739 knots are $z_0$, $z_1$, \dots, $z_n$, there are control points
6740 $z_k^+$ and $z_{k+1}^-$ such that the cubic splines between knots
6741 $z_k$ and $z_{k+1}$ are defined by B\'ezier's formula
6742 @:Bezier}{B\'ezier, Pierre Etienne@>
6743 $$\eqalign{z(t)&=B(z_k,z_k^+,z_{k+1}^-,z_{k+1};t)\cr
6744 &=(1-t)^3z_k+3(1-t)^2tz_k^++3(1-t)t^2z_{k+1}^-+t^3z_{k+1}\cr}$$
6747 There is a 8-word node for each knot $z_k$, containing one word of
6748 control information and six words for the |x| and |y| coordinates of
6749 $z_k^-$ and $z_k$ and~$z_k^+$. The control information appears in the
6750 |left_type| and |right_type| fields, which each occupy a quarter of
6751 the first word in the node; they specify properties of the curve as it
6752 enters and leaves the knot. There's also a halfword |link| field,
6753 which points to the following knot, and a final supplementary word (of
6754 which only a quarter is used).
6756 If the path is a closed contour, knots 0 and |n| are identical;
6757 i.e., the |link| in knot |n-1| points to knot~0. But if the path
6758 is not closed, the |left_type| of knot~0 and the |right_type| of knot~|n|
6759 are equal to |endpoint|. In the latter case the |link| in knot~|n| points
6760 to knot~0, and the control points $z_0^-$ and $z_n^+$ are not used.
6762 @d left_type(A) mp->mem[(A)].hh.b0 /* characterizes the path entering this knot */
6763 @d right_type(A) mp->mem[(A)].hh.b1 /* characterizes the path leaving this knot */
6764 @d x_coord(A) mp->mem[(A)+1].sc /* the |x| coordinate of this knot */
6765 @d y_coord(A) mp->mem[(A)+2].sc /* the |y| coordinate of this knot */
6766 @d left_x(A) mp->mem[(A)+3].sc /* the |x| coordinate of previous control point */
6767 @d left_y(A) mp->mem[(A)+4].sc /* the |y| coordinate of previous control point */
6768 @d right_x(A) mp->mem[(A)+5].sc /* the |x| coordinate of next control point */
6769 @d right_y(A) mp->mem[(A)+6].sc /* the |y| coordinate of next control point */
6770 @d x_loc(A) ((A)+1) /* where the |x| coordinate is stored in a knot */
6771 @d y_loc(A) ((A)+2) /* where the |y| coordinate is stored in a knot */
6772 @d knot_coord(A) mp->mem[(A)].sc /* |x| or |y| coordinate given |x_loc| or |y_loc| */
6773 @d left_coord(A) mp->mem[(A)+2].sc
6774 /* coordinate of previous control point given |x_loc| or |y_loc| */
6775 @d right_coord(A) mp->mem[(A)+4].sc
6776 /* coordinate of next control point given |x_loc| or |y_loc| */
6777 @d knot_node_size 8 /* number of words in a knot node */
6781 mp_endpoint=0, /* |left_type| at path beginning and |right_type| at path end */
6782 mp_explicit, /* |left_type| or |right_type| when control points are known */
6783 mp_given, /* |left_type| or |right_type| when a direction is given */
6784 mp_curl, /* |left_type| or |right_type| when a curl is desired */
6785 mp_open, /* |left_type| or |right_type| when \MP\ should choose the direction */
6789 @ Before the B\'ezier control points have been calculated, the memory
6790 space they will ultimately occupy is taken up by information that can be
6791 used to compute them. There are four cases:
6794 \textindent{$\bullet$} If |right_type=mp_open|, the curve should leave
6795 the knot in the same direction it entered; \MP\ will figure out a
6799 \textindent{$\bullet$} If |right_type=mp_curl|, the curve should leave the
6800 knot in a direction depending on the angle at which it enters the next
6801 knot and on the curl parameter stored in |right_curl|.
6804 \textindent{$\bullet$} If |right_type=mp_given|, the curve should leave the
6805 knot in a nonzero direction stored as an |angle| in |right_given|.
6808 \textindent{$\bullet$} If |right_type=mp_explicit|, the B\'ezier control
6809 point for leaving this knot has already been computed; it is in the
6810 |right_x| and |right_y| fields.
6813 The rules for |left_type| are similar, but they refer to the curve entering
6814 the knot, and to \\{left} fields instead of \\{right} fields.
6816 Non-|explicit| control points will be chosen based on ``tension'' parameters
6817 in the |left_tension| and |right_tension| fields. The
6818 `\&{atleast}' option is represented by negative tension values.
6819 @:at_least_}{\&{atleast} primitive@>
6821 For example, the \MP\ path specification
6822 $$\.{z0..z1..tension atleast 1..\{curl 2\}z2..z3\{-1,-2\}..tension
6824 where \.p is the path `\.{z4..controls z45 and z54..z5}', will be represented
6826 \def\lodash{\hbox to 1.1em{\thinspace\hrulefill\thinspace}}
6827 $$\vbox{\halign{#\hfil&&\qquad#\hfil\cr
6828 |left_type|&\\{left} info&|x_coord,y_coord|&|right_type|&\\{right} info\cr
6830 |endpoint|&\lodash$,\,$\lodash&$x_0,y_0$&|curl|&$1.0,1.0$\cr
6831 |open|&\lodash$,1.0$&$x_1,y_1$&|open|&\lodash$,-1.0$\cr
6832 |curl|&$2.0,-1.0$&$x_2,y_2$&|curl|&$2.0,1.0$\cr
6833 |given|&$d,1.0$&$x_3,y_3$&|given|&$d,3.0$\cr
6834 |open|&\lodash$,4.0$&$x_4,y_4$&|explicit|&$x_{45},y_{45}$\cr
6835 |explicit|&$x_{54},y_{54}$&$x_5,y_5$&|endpoint|&\lodash$,\,$\lodash\cr}}$$
6836 Here |d| is the |angle| obtained by calling |n_arg(-unity,-two)|.
6837 Of course, this example is more complicated than anything a normal user
6840 These types must satisfy certain restrictions because of the form of \MP's
6842 (i)~|open| type never appears in the same node together with |endpoint|,
6844 (ii)~The |right_type| of a node is |explicit| if and only if the
6845 |left_type| of the following node is |explicit|.
6846 (iii)~|endpoint| types occur only at the ends, as mentioned above.
6848 @d left_curl left_x /* curl information when entering this knot */
6849 @d left_given left_x /* given direction when entering this knot */
6850 @d left_tension left_y /* tension information when entering this knot */
6851 @d right_curl right_x /* curl information when leaving this knot */
6852 @d right_given right_x /* given direction when leaving this knot */
6853 @d right_tension right_y /* tension information when leaving this knot */
6855 @ Knots can be user-supplied, or they can be created by program code,
6856 like the |split_cubic| function, or |copy_path|. The distinction is
6857 needed for the cleanup routine that runs after |split_cubic|, because
6858 it should only delete knots it has previously inserted, and never
6859 anything that was user-supplied. In order to be able to differentiate
6860 one knot from another, we will set |originator(p):=mp_metapost_user| when
6861 it appeared in the actual metapost program, and
6862 |originator(p):=mp_program_code| in all other cases.
6864 @d originator(A) mp->mem[(A)+7].hh.b0 /* the creator of this knot */
6868 mp_program_code=0, /* not created by a user */
6869 mp_metapost_user, /* created by a user */
6872 @ Here is a routine that prints a given knot list
6873 in symbolic form. It illustrates the conventions discussed above,
6874 and checks for anomalies that might arise while \MP\ is being debugged.
6876 @<Declare subroutines for printing expressions@>=
6877 void mp_pr_path (MP mp,pointer h);
6880 void mp_pr_path (MP mp,pointer h) {
6881 pointer p,q; /* for list traversal */
6885 if ( (p==null)||(q==null) ) {
6886 mp_print_nl(mp, "???"); return; /* this won't happen */
6889 @<Print information for adjacent knots |p| and |q|@>;
6892 if ( (p!=h)||(left_type(h)!=mp_endpoint) ) {
6893 @<Print two dots, followed by |given| or |curl| if present@>;
6896 if ( left_type(h)!=mp_endpoint )
6897 mp_print(mp, "cycle");
6900 @ @<Print information for adjacent knots...@>=
6901 mp_print_two(mp, x_coord(p),y_coord(p));
6902 switch (right_type(p)) {
6904 if ( left_type(p)==mp_open ) mp_print(mp, "{open?}"); /* can't happen */
6906 if ( (left_type(q)!=mp_endpoint)||(q!=h) ) q=null; /* force an error */
6910 @<Print control points between |p| and |q|, then |goto done1|@>;
6913 @<Print information for a curve that begins |open|@>;
6917 @<Print information for a curve that begins |curl| or |given|@>;
6920 mp_print(mp, "???"); /* can't happen */
6924 if ( left_type(q)<=mp_explicit ) {
6925 mp_print(mp, "..control?"); /* can't happen */
6927 } else if ( (right_tension(p)!=unity)||(left_tension(q)!=unity) ) {
6928 @<Print tension between |p| and |q|@>;
6931 @ Since |n_sin_cos| produces |fraction| results, which we will print as if they
6932 were |scaled|, the magnitude of a |given| direction vector will be~4096.
6934 @<Print two dots...@>=
6936 mp_print_nl(mp, " ..");
6937 if ( left_type(p)==mp_given ) {
6938 mp_n_sin_cos(mp, left_given(p)); mp_print_char(mp, '{');
6939 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
6940 mp_print_scaled(mp, mp->n_sin); mp_print_char(mp, '}');
6941 } else if ( left_type(p)==mp_curl ){
6942 mp_print(mp, "{curl ");
6943 mp_print_scaled(mp, left_curl(p)); mp_print_char(mp, '}');
6947 @ @<Print tension between |p| and |q|@>=
6949 mp_print(mp, "..tension ");
6950 if ( right_tension(p)<0 ) mp_print(mp, "atleast");
6951 mp_print_scaled(mp, abs(right_tension(p)));
6952 if ( right_tension(p)!=left_tension(q) ){
6953 mp_print(mp, " and ");
6954 if ( left_tension(q)<0 ) mp_print(mp, "atleast");
6955 mp_print_scaled(mp, abs(left_tension(q)));
6959 @ @<Print control points between |p| and |q|, then |goto done1|@>=
6961 mp_print(mp, "..controls ");
6962 mp_print_two(mp, right_x(p),right_y(p));
6963 mp_print(mp, " and ");
6964 if ( left_type(q)!=mp_explicit ) {
6965 mp_print(mp, "??"); /* can't happen */
6968 mp_print_two(mp, left_x(q),left_y(q));
6973 @ @<Print information for a curve that begins |open|@>=
6974 if ( (left_type(p)!=mp_explicit)&&(left_type(p)!=mp_open) ) {
6975 mp_print(mp, "{open?}"); /* can't happen */
6979 @ A curl of 1 is shown explicitly, so that the user sees clearly that
6980 \MP's default curl is present.
6982 The code here uses the fact that |left_curl==left_given| and
6983 |right_curl==right_given|.
6985 @<Print information for a curve that begins |curl|...@>=
6987 if ( left_type(p)==mp_open )
6988 mp_print(mp, "??"); /* can't happen */
6990 if ( right_type(p)==mp_curl ) {
6991 mp_print(mp, "{curl "); mp_print_scaled(mp, right_curl(p));
6993 mp_n_sin_cos(mp, right_given(p)); mp_print_char(mp, '{');
6994 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
6995 mp_print_scaled(mp, mp->n_sin);
6997 mp_print_char(mp, '}');
7000 @ It is convenient to have another version of |pr_path| that prints the path
7001 as a diagnostic message.
7003 @<Declare subroutines for printing expressions@>=
7004 void mp_print_path (MP mp,pointer h, char *s, boolean nuline) {
7005 mp_print_diagnostic(mp, "Path", s, nuline); mp_print_ln(mp);
7008 mp_end_diagnostic(mp, true);
7011 @ If we want to duplicate a knot node, we can say |copy_knot|:
7014 pointer mp_copy_knot (MP mp,pointer p) {
7015 pointer q; /* the copy */
7016 int k; /* runs through the words of a knot node */
7017 q=mp_get_node(mp, knot_node_size);
7018 for (k=0;k<knot_node_size;k++) {
7019 mp->mem[q+k]=mp->mem[p+k];
7021 originator(q)=originator(p);
7025 @ The |copy_path| routine makes a clone of a given path.
7028 pointer mp_copy_path (MP mp, pointer p) {
7029 pointer q,pp,qq; /* for list manipulation */
7030 q=mp_copy_knot(mp, p);
7033 link(qq)=mp_copy_knot(mp, pp);
7042 @ Just before |ship_out|, knot lists are exported for printing.
7044 The |gr_XXXX| macros are defined in |mppsout.h|.
7047 struct mp_knot *mp_export_knot (MP mp,pointer p) {
7048 struct mp_knot *q; /* the copy */
7051 q = mp_xmalloc(mp, 1, sizeof (struct mp_knot));
7052 memset(q,0,sizeof (struct mp_knot));
7053 gr_left_type(q) = left_type(p);
7054 gr_right_type(q) = right_type(p);
7055 gr_x_coord(q) = x_coord(p);
7056 gr_y_coord(q) = y_coord(p);
7057 gr_left_x(q) = left_x(p);
7058 gr_left_y(q) = left_y(p);
7059 gr_right_x(q) = right_x(p);
7060 gr_right_y(q) = right_y(p);
7061 gr_originator(q) = originator(p);
7065 @ The |export_knot_list| routine therefore also makes a clone
7069 struct mp_knot *mp_export_knot_list (MP mp, pointer p) {
7070 struct mp_knot *q, *qq; /* for list manipulation */
7071 pointer pp; /* for list manipulation */
7074 q=mp_export_knot(mp, p);
7077 gr_next_knot(qq)=mp_export_knot(mp, pp);
7078 qq=gr_next_knot(qq);
7086 @ Similarly, there's a way to copy the {\sl reverse\/} of a path. This procedure
7087 returns a pointer to the first node of the copy, if the path is a cycle,
7088 but to the final node of a non-cyclic copy. The global
7089 variable |path_tail| will point to the final node of the original path;
7090 this trick makes it easier to implement `\&{doublepath}'.
7092 All node types are assumed to be |endpoint| or |explicit| only.
7095 pointer mp_htap_ypoc (MP mp,pointer p) {
7096 pointer q,pp,qq,rr; /* for list manipulation */
7097 q=mp_get_node(mp, knot_node_size); /* this will correspond to |p| */
7100 right_type(qq)=left_type(pp); left_type(qq)=right_type(pp);
7101 x_coord(qq)=x_coord(pp); y_coord(qq)=y_coord(pp);
7102 right_x(qq)=left_x(pp); right_y(qq)=left_y(pp);
7103 left_x(qq)=right_x(pp); left_y(qq)=right_y(pp);
7104 originator(qq)=originator(pp);
7105 if ( link(pp)==p ) {
7106 link(q)=qq; mp->path_tail=pp; return q;
7108 rr=mp_get_node(mp, knot_node_size); link(rr)=qq; qq=rr; pp=link(pp);
7113 pointer path_tail; /* the node that links to the beginning of a path */
7115 @ When a cyclic list of knot nodes is no longer needed, it can be recycled by
7116 calling the following subroutine.
7118 @<Declare the recycling subroutines@>=
7119 void mp_toss_knot_list (MP mp,pointer p) ;
7122 void mp_toss_knot_list (MP mp,pointer p) {
7123 pointer q; /* the node being freed */
7124 pointer r; /* the next node */
7128 mp_free_node(mp, q,knot_node_size); q=r;
7132 @* \[18] Choosing control points.
7133 Now we must actually delve into one of \MP's more difficult routines,
7134 the |make_choices| procedure that chooses angles and control points for
7135 the splines of a curve when the user has not specified them explicitly.
7136 The parameter to |make_choices| points to a list of knots and
7137 path information, as described above.
7139 A path decomposes into independent segments at ``breakpoint'' knots,
7140 which are knots whose left and right angles are both prespecified in
7141 some way (i.e., their |left_type| and |right_type| aren't both open).
7144 @<Declare the procedure called |solve_choices|@>;
7145 void mp_make_choices (MP mp,pointer knots) {
7146 pointer h; /* the first breakpoint */
7147 pointer p,q; /* consecutive breakpoints being processed */
7148 @<Other local variables for |make_choices|@>;
7149 check_arith; /* make sure that |arith_error=false| */
7150 if ( mp->internal[mp_tracing_choices]>0 )
7151 mp_print_path(mp, knots,", before choices",true);
7152 @<If consecutive knots are equal, join them explicitly@>;
7153 @<Find the first breakpoint, |h|, on the path;
7154 insert an artificial breakpoint if the path is an unbroken cycle@>;
7157 @<Fill in the control points between |p| and the next breakpoint,
7158 then advance |p| to that breakpoint@>;
7160 if ( mp->internal[mp_tracing_choices]>0 )
7161 mp_print_path(mp, knots,", after choices",true);
7162 if ( mp->arith_error ) {
7163 @<Report an unexpected problem during the choice-making@>;
7167 @ @<Report an unexpected problem during the choice...@>=
7169 print_err("Some number got too big");
7170 @.Some number got too big@>
7171 help2("The path that I just computed is out of range.")
7172 ("So it will probably look funny. Proceed, for a laugh.");
7173 mp_put_get_error(mp); mp->arith_error=false;
7176 @ Two knots in a row with the same coordinates will always be joined
7177 by an explicit ``curve'' whose control points are identical with the
7180 @<If consecutive knots are equal, join them explicitly@>=
7184 if ( x_coord(p)==x_coord(q) && y_coord(p)==y_coord(q) && right_type(p)>mp_explicit ) {
7185 right_type(p)=mp_explicit;
7186 if ( left_type(p)==mp_open ) {
7187 left_type(p)=mp_curl; left_curl(p)=unity;
7189 left_type(q)=mp_explicit;
7190 if ( right_type(q)==mp_open ) {
7191 right_type(q)=mp_curl; right_curl(q)=unity;
7193 right_x(p)=x_coord(p); left_x(q)=x_coord(p);
7194 right_y(p)=y_coord(p); left_y(q)=y_coord(p);
7199 @ If there are no breakpoints, it is necessary to compute the direction
7200 angles around an entire cycle. In this case the |left_type| of the first
7201 node is temporarily changed to |end_cycle|.
7203 @<Find the first breakpoint, |h|, on the path...@>=
7206 if ( left_type(h)!=mp_open ) break;
7207 if ( right_type(h)!=mp_open ) break;
7210 left_type(h)=mp_end_cycle; break;
7214 @ If |right_type(p)<given| and |q=link(p)|, we must have
7215 |right_type(p)=left_type(q)=mp_explicit| or |endpoint|.
7217 @<Fill in the control points between |p| and the next breakpoint...@>=
7219 if ( right_type(p)>=mp_given ) {
7220 while ( (left_type(q)==mp_open)&&(right_type(q)==mp_open) ) q=link(q);
7221 @<Fill in the control information between
7222 consecutive breakpoints |p| and |q|@>;
7223 } else if ( right_type(p)==mp_endpoint ) {
7224 @<Give reasonable values for the unused control points between |p| and~|q|@>;
7228 @ This step makes it possible to transform an explicitly computed path without
7229 checking the |left_type| and |right_type| fields.
7231 @<Give reasonable values for the unused control points between |p| and~|q|@>=
7233 right_x(p)=x_coord(p); right_y(p)=y_coord(p);
7234 left_x(q)=x_coord(q); left_y(q)=y_coord(q);
7237 @ Before we can go further into the way choices are made, we need to
7238 consider the underlying theory. The basic ideas implemented in |make_choices|
7239 are due to John Hobby, who introduced the notion of ``mock curvature''
7240 @^Hobby, John Douglas@>
7241 at a knot. Angles are chosen so that they preserve mock curvature when
7242 a knot is passed, and this has been found to produce excellent results.
7244 It is convenient to introduce some notations that simplify the necessary
7245 formulas. Let $d_{k,k+1}=\vert z\k-z_k\vert$ be the (nonzero) distance
7246 between knots |k| and |k+1|; and let
7247 $${z\k-z_k\over z_k-z_{k-1}}={d_{k,k+1}\over d_{k-1,k}}e^{i\psi_k}$$
7248 so that a polygonal line from $z_{k-1}$ to $z_k$ to $z\k$ turns left
7249 through an angle of~$\psi_k$. We assume that $\vert\psi_k\vert\L180^\circ$.
7250 The control points for the spline from $z_k$ to $z\k$ will be denoted by
7251 $$\eqalign{z_k^+&=z_k+
7252 \textstyle{1\over3}\rho_k e^{i\theta_k}(z\k-z_k),\cr
7254 \textstyle{1\over3}\sigma\k e^{-i\phi\k}(z\k-z_k),\cr}$$
7255 where $\rho_k$ and $\sigma\k$ are nonnegative ``velocity ratios'' at the
7256 beginning and end of the curve, while $\theta_k$ and $\phi\k$ are the
7257 corresponding ``offset angles.'' These angles satisfy the condition
7258 $$\theta_k+\phi_k+\psi_k=0,\eqno(*)$$
7259 whenever the curve leaves an intermediate knot~|k| in the direction that
7262 @ Let $\alpha_k$ and $\beta\k$ be the reciprocals of the ``tension'' of
7263 the curve at its beginning and ending points. This means that
7264 $\rho_k=\alpha_k f(\theta_k,\phi\k)$ and $\sigma\k=\beta\k f(\phi\k,\theta_k)$,
7265 where $f(\theta,\phi)$ is \MP's standard velocity function defined in
7266 the |velocity| subroutine. The cubic spline $B(z_k^{\phantom+},z_k^+,
7267 z\k^-,z\k^{\phantom+};t)$
7270 $${2\sigma\k\sin(\theta_k+\phi\k)-6\sin\theta_k\over\rho_k^2d_{k,k+1}}
7271 \qquad{\rm and}\qquad
7272 {2\rho_k\sin(\theta_k+\phi\k)-6\sin\phi\k\over\sigma\k^2d_{k,k+1}}$$
7273 at |t=0| and |t=1|, respectively. The mock curvature is the linear
7275 approximation to this true curvature that arises in the limit for
7276 small $\theta_k$ and~$\phi\k$, if second-order terms are discarded.
7277 The standard velocity function satisfies
7278 $$f(\theta,\phi)=1+O(\theta^2+\theta\phi+\phi^2);$$
7279 hence the mock curvatures are respectively
7280 $${2\beta\k(\theta_k+\phi\k)-6\theta_k\over\alpha_k^2d_{k,k+1}}
7281 \qquad{\rm and}\qquad
7282 {2\alpha_k(\theta_k+\phi\k)-6\phi\k\over\beta\k^2d_{k,k+1}}.\eqno(**)$$
7284 @ The turning angles $\psi_k$ are given, and equation $(*)$ above
7285 determines $\phi_k$ when $\theta_k$ is known, so the task of
7286 angle selection is essentially to choose appropriate values for each
7287 $\theta_k$. When equation~$(*)$ is used to eliminate $\phi$~variables
7288 from $(**)$, we obtain a system of linear equations of the form
7289 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7291 $$A_k={\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7292 \qquad B_k={3-\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7293 \qquad C_k={3-\beta\k\over\alpha_k^2d_{k,k+1}},
7294 \qquad D_k={\beta\k\over\alpha_k^2d_{k,k+1}}.$$
7295 The tensions are always $3\over4$ or more, hence each $\alpha$ and~$\beta$
7296 will be at most $4\over3$. It follows that $B_k\G{5\over4}A_k$ and
7297 $C_k\G{5\over4}D_k$; hence the equations are diagonally dominant;
7298 hence they have a unique solution. Moreover, in most cases the tensions
7299 are equal to~1, so that $B_k=2A_k$ and $C_k=2D_k$. This makes the
7300 solution numerically stable, and there is an exponential damping
7301 effect: The data at knot $k\pm j$ affects the angle at knot~$k$ by
7302 a factor of~$O(2^{-j})$.
7304 @ However, we still must consider the angles at the starting and ending
7305 knots of a non-cyclic path. These angles might be given explicitly, or
7306 they might be specified implicitly in terms of an amount of ``curl.''
7308 Let's assume that angles need to be determined for a non-cyclic path
7309 starting at $z_0$ and ending at~$z_n$. Then equations of the form
7310 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta_{k+1}=R_k$$
7311 have been given for $0<k<n$, and it will be convenient to introduce
7312 equations of the same form for $k=0$ and $k=n$, where
7313 $$A_0=B_0=C_n=D_n=0.$$
7314 If $\theta_0$ is supposed to have a given value $E_0$, we simply
7315 define $C_0=0$, $D_0=0$, and $R_0=E_0$. Otherwise a curl
7316 parameter, $\gamma_0$, has been specified at~$z_0$; this means
7317 that the mock curvature at $z_0$ should be $\gamma_0$ times the
7318 mock curvature at $z_1$; i.e.,
7319 $${2\beta_1(\theta_0+\phi_1)-6\theta_0\over\alpha_0^2d_{01}}
7320 =\gamma_0{2\alpha_0(\theta_0+\phi_1)-6\phi_1\over\beta_1^2d_{01}}.$$
7321 This equation simplifies to
7322 $$(\alpha_0\chi_0+3-\beta_1)\theta_0+
7323 \bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\theta_1=
7324 -\bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\psi_1,$$
7325 where $\chi_0=\alpha_0^2\gamma_0/\beta_1^2$; so we can set $C_0=
7326 \chi_0\alpha_0+3-\beta_1$, $D_0=(3-\alpha_0)\chi_0+\beta_1$, $R_0=-D_0\psi_1$.
7327 It can be shown that $C_0>0$ and $C_0B_1-A_1D_0>0$ when $\gamma_0\G0$,
7328 hence the linear equations remain nonsingular.
7330 Similar considerations apply at the right end, when the final angle $\phi_n$
7331 may or may not need to be determined. It is convenient to let $\psi_n=0$,
7332 hence $\theta_n=-\phi_n$. We either have an explicit equation $\theta_n=E_n$,
7334 $$\bigl((3-\beta_n)\chi_n+\alpha_{n-1}\bigr)\theta_{n-1}+
7335 (\beta_n\chi_n+3-\alpha_{n-1})\theta_n=0,\qquad
7336 \chi_n={\beta_n^2\gamma_n\over\alpha_{n-1}^2}.$$
7338 When |make_choices| chooses angles, it must compute the coefficients of
7339 these linear equations, then solve the equations. To compute the coefficients,
7340 it is necessary to compute arctangents of the given turning angles~$\psi_k$.
7341 When the equations are solved, the chosen directions $\theta_k$ are put
7342 back into the form of control points by essentially computing sines and
7345 @ OK, we are ready to make the hard choices of |make_choices|.
7346 Most of the work is relegated to an auxiliary procedure
7347 called |solve_choices|, which has been introduced to keep
7348 |make_choices| from being extremely long.
7350 @<Fill in the control information between...@>=
7351 @<Calculate the turning angles $\psi_k$ and the distances $d_{k,k+1}$;
7352 set $n$ to the length of the path@>;
7353 @<Remove |open| types at the breakpoints@>;
7354 mp_solve_choices(mp, p,q,n)
7356 @ It's convenient to precompute quantities that will be needed several
7357 times later. The values of |delta_x[k]| and |delta_y[k]| will be the
7358 coordinates of $z\k-z_k$, and the magnitude of this vector will be
7359 |delta[k]=@t$d_{k,k+1}$@>|. The path angle $\psi_k$ between $z_k-z_{k-1}$
7360 and $z\k-z_k$ will be stored in |psi[k]|.
7363 int path_size; /* maximum number of knots between breakpoints of a path */
7366 scaled *delta; /* knot differences */
7367 angle *psi; /* turning angles */
7369 @ @<Allocate or initialize ...@>=
7375 @ @<Dealloc variables@>=
7381 @ @<Other local variables for |make_choices|@>=
7382 int k,n; /* current and final knot numbers */
7383 pointer s,t; /* registers for list traversal */
7384 scaled delx,dely; /* directions where |open| meets |explicit| */
7385 fraction sine,cosine; /* trig functions of various angles */
7387 @ @<Calculate the turning angles...@>=
7390 k=0; s=p; n=mp->path_size;
7393 mp->delta_x[k]=x_coord(t)-x_coord(s);
7394 mp->delta_y[k]=y_coord(t)-y_coord(s);
7395 mp->delta[k]=mp_pyth_add(mp, mp->delta_x[k],mp->delta_y[k]);
7397 sine=mp_make_fraction(mp, mp->delta_y[k-1],mp->delta[k-1]);
7398 cosine=mp_make_fraction(mp, mp->delta_x[k-1],mp->delta[k-1]);
7399 mp->psi[k]=mp_n_arg(mp, mp_take_fraction(mp, mp->delta_x[k],cosine)+
7400 mp_take_fraction(mp, mp->delta_y[k],sine),
7401 mp_take_fraction(mp, mp->delta_y[k],cosine)-
7402 mp_take_fraction(mp, mp->delta_x[k],sine));
7405 if ( k==mp->path_size ) {
7406 mp_reallocate_paths(mp, mp->path_size+(mp->path_size>>2));
7407 goto RESTART; /* retry, loop size has changed */
7410 } while (!((k>=n)&&(left_type(s)!=mp_end_cycle)));
7411 if ( k==n ) mp->psi[n]=0; else mp->psi[k]=mp->psi[1];
7414 @ When we get to this point of the code, |right_type(p)| is either
7415 |given| or |curl| or |open|. If it is |open|, we must have
7416 |left_type(p)=mp_end_cycle| or |left_type(p)=mp_explicit|. In the latter
7417 case, the |open| type is converted to |given|; however, if the
7418 velocity coming into this knot is zero, the |open| type is
7419 converted to a |curl|, since we don't know the incoming direction.
7421 Similarly, |left_type(q)| is either |given| or |curl| or |open| or
7422 |mp_end_cycle|. The |open| possibility is reduced either to |given| or to |curl|.
7424 @<Remove |open| types at the breakpoints@>=
7425 if ( left_type(q)==mp_open ) {
7426 delx=right_x(q)-x_coord(q); dely=right_y(q)-y_coord(q);
7427 if ( (delx==0)&&(dely==0) ) {
7428 left_type(q)=mp_curl; left_curl(q)=unity;
7430 left_type(q)=mp_given; left_given(q)=mp_n_arg(mp, delx,dely);
7433 if ( (right_type(p)==mp_open)&&(left_type(p)==mp_explicit) ) {
7434 delx=x_coord(p)-left_x(p); dely=y_coord(p)-left_y(p);
7435 if ( (delx==0)&&(dely==0) ) {
7436 right_type(p)=mp_curl; right_curl(p)=unity;
7438 right_type(p)=mp_given; right_given(p)=mp_n_arg(mp, delx,dely);
7442 @ Linear equations need to be solved whenever |n>1|; and also when |n=1|
7443 and exactly one of the breakpoints involves a curl. The simplest case occurs
7444 when |n=1| and there is a curl at both breakpoints; then we simply draw
7447 But before coding up the simple cases, we might as well face the general case,
7448 since we must deal with it sooner or later, and since the general case
7449 is likely to give some insight into the way simple cases can be handled best.
7451 When there is no cycle, the linear equations to be solved form a tridiagonal
7452 system, and we can apply the standard technique of Gaussian elimination
7453 to convert that system to a sequence of equations of the form
7454 $$\theta_0+u_0\theta_1=v_0,\quad
7455 \theta_1+u_1\theta_2=v_1,\quad\ldots,\quad
7456 \theta_{n-1}+u_{n-1}\theta_n=v_{n-1},\quad
7458 It is possible to do this diagonalization while generating the equations.
7459 Once $\theta_n$ is known, it is easy to determine $\theta_{n-1}$, \dots,
7460 $\theta_1$, $\theta_0$; thus, the equations will be solved.
7462 The procedure is slightly more complex when there is a cycle, but the
7463 basic idea will be nearly the same. In the cyclic case the right-hand
7464 sides will be $v_k+w_k\theta_0$ instead of simply $v_k$, and we will start
7465 the process off with $u_0=v_0=0$, $w_0=1$. The final equation will be not
7466 $\theta_n=v_n$ but $\theta_n+u_n\theta_1=v_n+w_n\theta_0$; an appropriate
7467 ending routine will take account of the fact that $\theta_n=\theta_0$ and
7468 eliminate the $w$'s from the system, after which the solution can be
7471 When $u_k$, $v_k$, and $w_k$ are being computed, the three pointer
7472 variables |r|, |s|,~|t| will point respectively to knots |k-1|, |k|,
7473 and~|k+1|. The $u$'s and $w$'s are scaled by $2^{28}$, i.e., they are
7474 of type |fraction|; the $\theta$'s and $v$'s are of type |angle|.
7477 angle *theta; /* values of $\theta_k$ */
7478 fraction *uu; /* values of $u_k$ */
7479 angle *vv; /* values of $v_k$ */
7480 fraction *ww; /* values of $w_k$ */
7482 @ @<Allocate or initialize ...@>=
7488 @ @<Dealloc variables@>=
7494 @ @<Declare |mp_reallocate| functions@>=
7495 void mp_reallocate_paths (MP mp, int l);
7498 void mp_reallocate_paths (MP mp, int l) {
7499 XREALLOC (mp->delta_x, l, scaled);
7500 XREALLOC (mp->delta_y, l, scaled);
7501 XREALLOC (mp->delta, l, scaled);
7502 XREALLOC (mp->psi, l, angle);
7503 XREALLOC (mp->theta, l, angle);
7504 XREALLOC (mp->uu, l, fraction);
7505 XREALLOC (mp->vv, l, angle);
7506 XREALLOC (mp->ww, l, fraction);
7510 @ Our immediate problem is to get the ball rolling by setting up the
7511 first equation or by realizing that no equations are needed, and to fit
7512 this initialization into a framework suitable for the overall computation.
7514 @<Declare the procedure called |solve_choices|@>=
7515 @<Declare subroutines needed by |solve_choices|@>;
7516 void mp_solve_choices (MP mp,pointer p, pointer q, halfword n) {
7517 int k; /* current knot number */
7518 pointer r,s,t; /* registers for list traversal */
7519 @<Other local variables for |solve_choices|@>;
7524 @<Get the linear equations started; or |return|
7525 with the control points in place, if linear equations
7528 switch (left_type(s)) {
7529 case mp_end_cycle: case mp_open:
7530 @<Set up equation to match mock curvatures
7531 at $z_k$; then |goto found| with $\theta_n$
7532 adjusted to equal $\theta_0$, if a cycle has ended@>;
7535 @<Set up equation for a curl at $\theta_n$
7539 @<Calculate the given value of $\theta_n$
7542 } /* there are no other cases */
7547 @<Finish choosing angles and assigning control points@>;
7550 @ On the first time through the loop, we have |k=0| and |r| is not yet
7551 defined. The first linear equation, if any, will have $A_0=B_0=0$.
7553 @<Get the linear equations started...@>=
7554 switch (right_type(s)) {
7556 if ( left_type(t)==mp_given ) {
7557 @<Reduce to simple case of two givens and |return|@>
7559 @<Set up the equation for a given value of $\theta_0$@>;
7563 if ( left_type(t)==mp_curl ) {
7564 @<Reduce to simple case of straight line and |return|@>
7566 @<Set up the equation for a curl at $\theta_0$@>;
7570 mp->uu[0]=0; mp->vv[0]=0; mp->ww[0]=fraction_one;
7571 /* this begins a cycle */
7573 } /* there are no other cases */
7575 @ The general equation that specifies equality of mock curvature at $z_k$ is
7576 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7577 as derived above. We want to combine this with the already-derived equation
7578 $\theta_{k-1}+u_{k-1}\theta_k=v_{k-1}+w_{k-1}\theta_0$ in order to obtain
7580 $\theta_k+u_k\theta\k=v_k+w_k\theta_0$. This can be done by dividing the
7582 $$(B_k-u_{k-1}A_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k-A_kv_{k-1}
7583 -A_kw_{k-1}\theta_0$$
7584 by $B_k-u_{k-1}A_k+C_k$. The trick is to do this carefully with
7585 fixed-point arithmetic, avoiding the chance of overflow while retaining
7588 The calculations will be performed in several registers that
7589 provide temporary storage for intermediate quantities.
7591 @<Other local variables for |solve_choices|@>=
7592 fraction aa,bb,cc,ff,acc; /* temporary registers */
7593 scaled dd,ee; /* likewise, but |scaled| */
7594 scaled lt,rt; /* tension values */
7596 @ @<Set up equation to match mock curvatures...@>=
7597 { @<Calculate the values $\\{aa}=A_k/B_k$, $\\{bb}=D_k/C_k$,
7598 $\\{dd}=(3-\alpha_{k-1})d_{k,k+1}$, $\\{ee}=(3-\beta\k)d_{k-1,k}$,
7599 and $\\{cc}=(B_k-u_{k-1}A_k)/B_k$@>;
7600 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>;
7601 mp->uu[k]=mp_take_fraction(mp, ff,bb);
7602 @<Calculate the values of $v_k$ and $w_k$@>;
7603 if ( left_type(s)==mp_end_cycle ) {
7604 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>;
7608 @ Since tension values are never less than 3/4, the values |aa| and
7609 |bb| computed here are never more than 4/5.
7611 @<Calculate the values $\\{aa}=...@>=
7612 if ( abs(right_tension(r))==unity) {
7613 aa=fraction_half; dd=2*mp->delta[k];
7615 aa=mp_make_fraction(mp, unity,3*abs(right_tension(r))-unity);
7616 dd=mp_take_fraction(mp, mp->delta[k],
7617 fraction_three-mp_make_fraction(mp, unity,abs(right_tension(r))));
7619 if ( abs(left_tension(t))==unity ){
7620 bb=fraction_half; ee=2*mp->delta[k-1];
7622 bb=mp_make_fraction(mp, unity,3*abs(left_tension(t))-unity);
7623 ee=mp_take_fraction(mp, mp->delta[k-1],
7624 fraction_three-mp_make_fraction(mp, unity,abs(left_tension(t))));
7626 cc=fraction_one-mp_take_fraction(mp, mp->uu[k-1],aa)
7628 @ The ratio to be calculated in this step can be written in the form
7629 $$\beta_k^2\cdot\\{ee}\over\beta_k^2\cdot\\{ee}+\alpha_k^2\cdot
7630 \\{cc}\cdot\\{dd},$$
7631 because of the quantities just calculated. The values of |dd| and |ee|
7632 will not be needed after this step has been performed.
7634 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>=
7635 dd=mp_take_fraction(mp, dd,cc); lt=abs(left_tension(s)); rt=abs(right_tension(s));
7636 if ( lt!=rt ) { /* $\beta_k^{-1}\ne\alpha_k^{-1}$ */
7638 ff=mp_make_fraction(mp, lt,rt);
7639 ff=mp_take_fraction(mp, ff,ff); /* $\alpha_k^2/\beta_k^2$ */
7640 dd=mp_take_fraction(mp, dd,ff);
7642 ff=mp_make_fraction(mp, rt,lt);
7643 ff=mp_take_fraction(mp, ff,ff); /* $\beta_k^2/\alpha_k^2$ */
7644 ee=mp_take_fraction(mp, ee,ff);
7647 ff=mp_make_fraction(mp, ee,ee+dd)
7649 @ The value of $u_{k-1}$ will be |<=1| except when $k=1$ and the previous
7650 equation was specified by a curl. In that case we must use a special
7651 method of computation to prevent overflow.
7653 Fortunately, the calculations turn out to be even simpler in this ``hard''
7654 case. The curl equation makes $w_0=0$ and $v_0=-u_0\psi_1$, hence
7655 $-B_1\psi_1-A_1v_0=-(B_1-u_0A_1)\psi_1=-\\{cc}\cdot B_1\psi_1$.
7657 @<Calculate the values of $v_k$ and $w_k$@>=
7658 acc=-mp_take_fraction(mp, mp->psi[k+1],mp->uu[k]);
7659 if ( right_type(r)==mp_curl ) {
7661 mp->vv[k]=acc-mp_take_fraction(mp, mp->psi[1],fraction_one-ff);
7663 ff=mp_make_fraction(mp, fraction_one-ff,cc); /* this is
7664 $B_k/(C_k+B_k-u_{k-1}A_k)<5$ */
7665 acc=acc-mp_take_fraction(mp, mp->psi[k],ff);
7666 ff=mp_take_fraction(mp, ff,aa); /* this is $A_k/(C_k+B_k-u_{k-1}A_k)$ */
7667 mp->vv[k]=acc-mp_take_fraction(mp, mp->vv[k-1],ff);
7668 if ( mp->ww[k-1]==0 ) mp->ww[k]=0;
7669 else mp->ww[k]=-mp_take_fraction(mp, mp->ww[k-1],ff);
7672 @ When a complete cycle has been traversed, we have $\theta_k+u_k\theta\k=
7673 v_k+w_k\theta_0$, for |1<=k<=n|. We would like to determine the value of
7674 $\theta_n$ and reduce the system to the form $\theta_k+u_k\theta\k=v_k$
7675 for |0<=k<n|, so that the cyclic case can be finished up just as if there
7678 The idea in the following code is to observe that
7679 $$\eqalign{\theta_n&=v_n+w_n\theta_0-u_n\theta_1=\cdots\cr
7680 &=v_n+w_n\theta_0-u_n\bigl(v_1+w_1\theta_0-u_1(v_2+\cdots
7681 -u_{n-2}(v_{n-1}+w_{n-1}\theta_0-u_{n-1}\theta_0))\bigr),\cr}$$
7682 so we can solve for $\theta_n=\theta_0$.
7684 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>=
7686 aa=0; bb=fraction_one; /* we have |k=n| */
7689 aa=mp->vv[k]-mp_take_fraction(mp, aa,mp->uu[k]);
7690 bb=mp->ww[k]-mp_take_fraction(mp, bb,mp->uu[k]);
7691 } while (k!=n); /* now $\theta_n=\\{aa}+\\{bb}\cdot\theta_n$ */
7692 aa=mp_make_fraction(mp, aa,fraction_one-bb);
7693 mp->theta[n]=aa; mp->vv[0]=aa;
7694 for (k=1;k<=n-1;k++) {
7695 mp->vv[k]=mp->vv[k]+mp_take_fraction(mp, aa,mp->ww[k]);
7700 @ @d reduce_angle(A) if ( abs((A))>one_eighty_deg ) {
7701 if ( (A)>0 ) (A)=(A)-three_sixty_deg; else (A)=(A)+three_sixty_deg; }
7703 @<Calculate the given value of $\theta_n$...@>=
7705 mp->theta[n]=left_given(s)-mp_n_arg(mp, mp->delta_x[n-1],mp->delta_y[n-1]);
7706 reduce_angle(mp->theta[n]);
7710 @ @<Set up the equation for a given value of $\theta_0$@>=
7712 mp->vv[0]=right_given(s)-mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7713 reduce_angle(mp->vv[0]);
7714 mp->uu[0]=0; mp->ww[0]=0;
7717 @ @<Set up the equation for a curl at $\theta_0$@>=
7718 { cc=right_curl(s); lt=abs(left_tension(t)); rt=abs(right_tension(s));
7719 if ( (rt==unity)&&(lt==unity) )
7720 mp->uu[0]=mp_make_fraction(mp, cc+cc+unity,cc+two);
7722 mp->uu[0]=mp_curl_ratio(mp, cc,rt,lt);
7723 mp->vv[0]=-mp_take_fraction(mp, mp->psi[1],mp->uu[0]); mp->ww[0]=0;
7726 @ @<Set up equation for a curl at $\theta_n$...@>=
7727 { cc=left_curl(s); lt=abs(left_tension(s)); rt=abs(right_tension(r));
7728 if ( (rt==unity)&&(lt==unity) )
7729 ff=mp_make_fraction(mp, cc+cc+unity,cc+two);
7731 ff=mp_curl_ratio(mp, cc,lt,rt);
7732 mp->theta[n]=-mp_make_fraction(mp, mp_take_fraction(mp, mp->vv[n-1],ff),
7733 fraction_one-mp_take_fraction(mp, ff,mp->uu[n-1]));
7737 @ The |curl_ratio| subroutine has three arguments, which our previous notation
7738 encourages us to call $\gamma$, $\alpha^{-1}$, and $\beta^{-1}$. It is
7739 a somewhat tedious program to calculate
7740 $${(3-\alpha)\alpha^2\gamma+\beta^3\over
7741 \alpha^3\gamma+(3-\beta)\beta^2},$$
7742 with the result reduced to 4 if it exceeds 4. (This reduction of curl
7743 is necessary only if the curl and tension are both large.)
7744 The values of $\alpha$ and $\beta$ will be at most~4/3.
7746 @<Declare subroutines needed by |solve_choices|@>=
7747 fraction mp_curl_ratio (MP mp,scaled gamma, scaled a_tension,
7749 fraction alpha,beta,num,denom,ff; /* registers */
7750 alpha=mp_make_fraction(mp, unity,a_tension);
7751 beta=mp_make_fraction(mp, unity,b_tension);
7752 if ( alpha<=beta ) {
7753 ff=mp_make_fraction(mp, alpha,beta); ff=mp_take_fraction(mp, ff,ff);
7754 gamma=mp_take_fraction(mp, gamma,ff);
7755 beta=beta / 010000; /* convert |fraction| to |scaled| */
7756 denom=mp_take_fraction(mp, gamma,alpha)+three-beta;
7757 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7759 ff=mp_make_fraction(mp, beta,alpha); ff=mp_take_fraction(mp, ff,ff);
7760 beta=mp_take_fraction(mp, beta,ff) / 010000; /* convert |fraction| to |scaled| */
7761 denom=mp_take_fraction(mp, gamma,alpha)+(ff / 1365)-beta;
7762 /* $1365\approx 2^{12}/3$ */
7763 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7765 if ( num>=denom+denom+denom+denom ) return fraction_four;
7766 else return mp_make_fraction(mp, num,denom);
7769 @ We're in the home stretch now.
7771 @<Finish choosing angles and assigning control points@>=
7772 for (k=n-1;k>=0;k--) {
7773 mp->theta[k]=mp->vv[k]-mp_take_fraction(mp,mp->theta[k+1],mp->uu[k]);
7778 mp_n_sin_cos(mp, mp->theta[k]); mp->st=mp->n_sin; mp->ct=mp->n_cos;
7779 mp_n_sin_cos(mp, -mp->psi[k+1]-mp->theta[k+1]); mp->sf=mp->n_sin; mp->cf=mp->n_cos;
7780 mp_set_controls(mp, s,t,k);
7784 @ The |set_controls| routine actually puts the control points into
7785 a pair of consecutive nodes |p| and~|q|. Global variables are used to
7786 record the values of $\sin\theta$, $\cos\theta$, $\sin\phi$, and
7787 $\cos\phi$ needed in this calculation.
7793 fraction cf; /* sines and cosines */
7795 @ @<Declare subroutines needed by |solve_choices|@>=
7796 void mp_set_controls (MP mp,pointer p, pointer q, integer k) {
7797 fraction rr,ss; /* velocities, divided by thrice the tension */
7798 scaled lt,rt; /* tensions */
7799 fraction sine; /* $\sin(\theta+\phi)$ */
7800 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7801 rr=mp_velocity(mp, mp->st,mp->ct,mp->sf,mp->cf,rt);
7802 ss=mp_velocity(mp, mp->sf,mp->cf,mp->st,mp->ct,lt);
7803 if ( (right_tension(p)<0)||(left_tension(q)<0) ) {
7804 @<Decrease the velocities,
7805 if necessary, to stay inside the bounding triangle@>;
7807 right_x(p)=x_coord(p)+mp_take_fraction(mp,
7808 mp_take_fraction(mp, mp->delta_x[k],mp->ct)-
7809 mp_take_fraction(mp, mp->delta_y[k],mp->st),rr);
7810 right_y(p)=y_coord(p)+mp_take_fraction(mp,
7811 mp_take_fraction(mp, mp->delta_y[k],mp->ct)+
7812 mp_take_fraction(mp, mp->delta_x[k],mp->st),rr);
7813 left_x(q)=x_coord(q)-mp_take_fraction(mp,
7814 mp_take_fraction(mp, mp->delta_x[k],mp->cf)+
7815 mp_take_fraction(mp, mp->delta_y[k],mp->sf),ss);
7816 left_y(q)=y_coord(q)-mp_take_fraction(mp,
7817 mp_take_fraction(mp, mp->delta_y[k],mp->cf)-
7818 mp_take_fraction(mp, mp->delta_x[k],mp->sf),ss);
7819 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7822 @ The boundedness conditions $\\{rr}\L\sin\phi\,/\sin(\theta+\phi)$ and
7823 $\\{ss}\L\sin\theta\,/\sin(\theta+\phi)$ are to be enforced if $\sin\theta$,
7824 $\sin\phi$, and $\sin(\theta+\phi)$ all have the same sign. Otherwise
7825 there is no ``bounding triangle.''
7826 @:at_least_}{\&{atleast} primitive@>
7828 @<Decrease the velocities, if necessary...@>=
7829 if (((mp->st>=0)&&(mp->sf>=0))||((mp->st<=0)&&(mp->sf<=0)) ) {
7830 sine=mp_take_fraction(mp, abs(mp->st),mp->cf)+
7831 mp_take_fraction(mp, abs(mp->sf),mp->ct);
7833 sine=mp_take_fraction(mp, sine,fraction_one+unity); /* safety factor */
7834 if ( right_tension(p)<0 )
7835 if ( mp_ab_vs_cd(mp, abs(mp->sf),fraction_one,rr,sine)<0 )
7836 rr=mp_make_fraction(mp, abs(mp->sf),sine);
7837 if ( left_tension(q)<0 )
7838 if ( mp_ab_vs_cd(mp, abs(mp->st),fraction_one,ss,sine)<0 )
7839 ss=mp_make_fraction(mp, abs(mp->st),sine);
7843 @ Only the simple cases remain to be handled.
7845 @<Reduce to simple case of two givens and |return|@>=
7847 aa=mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7848 mp_n_sin_cos(mp, right_given(p)-aa); mp->ct=mp->n_cos; mp->st=mp->n_sin;
7849 mp_n_sin_cos(mp, left_given(q)-aa); mp->cf=mp->n_cos; mp->sf=-mp->n_sin;
7850 mp_set_controls(mp, p,q,0); return;
7853 @ @<Reduce to simple case of straight line and |return|@>=
7855 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7856 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7858 if ( mp->delta_x[0]>=0 ) right_x(p)=x_coord(p)+((mp->delta_x[0]+1) / 3);
7859 else right_x(p)=x_coord(p)+((mp->delta_x[0]-1) / 3);
7860 if ( mp->delta_y[0]>=0 ) right_y(p)=y_coord(p)+((mp->delta_y[0]+1) / 3);
7861 else right_y(p)=y_coord(p)+((mp->delta_y[0]-1) / 3);
7863 ff=mp_make_fraction(mp, unity,3*rt); /* $\alpha/3$ */
7864 right_x(p)=x_coord(p)+mp_take_fraction(mp, mp->delta_x[0],ff);
7865 right_y(p)=y_coord(p)+mp_take_fraction(mp, mp->delta_y[0],ff);
7868 if ( mp->delta_x[0]>=0 ) left_x(q)=x_coord(q)-((mp->delta_x[0]+1) / 3);
7869 else left_x(q)=x_coord(q)-((mp->delta_x[0]-1) / 3);
7870 if ( mp->delta_y[0]>=0 ) left_y(q)=y_coord(q)-((mp->delta_y[0]+1) / 3);
7871 else left_y(q)=y_coord(q)-((mp->delta_y[0]-1) / 3);
7873 ff=mp_make_fraction(mp, unity,3*lt); /* $\beta/3$ */
7874 left_x(q)=x_coord(q)-mp_take_fraction(mp, mp->delta_x[0],ff);
7875 left_y(q)=y_coord(q)-mp_take_fraction(mp, mp->delta_y[0],ff);
7880 @* \[19] Measuring paths.
7881 \MP's \&{llcorner}, \&{lrcorner}, \&{ulcorner}, and \&{urcorner} operators
7882 allow the user to measure the bounding box of anything that can go into a
7883 picture. It's easy to get rough bounds on the $x$ and $y$ extent of a path
7884 by just finding the bounding box of the knots and the control points. We
7885 need a more accurate version of the bounding box, but we can still use the
7886 easy estimate to save time by focusing on the interesting parts of the path.
7888 @ Computing an accurate bounding box involves a theme that will come up again
7889 and again. Given a Bernshte{\u\i}n polynomial
7890 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
7891 $$B(z_0,z_1,\ldots,z_n;t)=\sum_k{n\choose k}t^k(1-t)^{n-k}z_k,$$
7892 we can conveniently bisect its range as follows:
7895 \textindent{1)} Let $z_k^{(0)}=z_k$, for |0<=k<=n|.
7898 \textindent{2)} Let $z_k^{(j+1)}={1\over2}(z_k^{(j)}+z\k^{(j)})$, for
7899 |0<=k<n-j|, for |0<=j<n|.
7903 $$B(z_0,z_1,\ldots,z_n;t)=B(z_0^{(0)},z_0^{(1)},\ldots,z_0^{(n)};2t)
7904 =B(z_0^{(n)},z_1^{(n-1)},\ldots,z_n^{(0)};2t-1).$$
7905 This formula gives us the coefficients of polynomials to use over the ranges
7906 $0\L t\L{1\over2}$ and ${1\over2}\L t\L1$.
7908 @ Now here's a subroutine that's handy for all sorts of path computations:
7909 Given a quadratic polynomial $B(a,b,c;t)$, the |crossing_point| function
7910 returns the unique |fraction| value |t| between 0 and~1 at which
7911 $B(a,b,c;t)$ changes from positive to negative, or returns
7912 |t=fraction_one+1| if no such value exists. If |a<0| (so that $B(a,b,c;t)$
7913 is already negative at |t=0|), |crossing_point| returns the value zero.
7915 @d no_crossing { return (fraction_one+1); }
7916 @d one_crossing { return fraction_one; }
7917 @d zero_crossing { return 0; }
7918 @d mp_crossing_point(M,A,B,C) mp_do_crossing_point(A,B,C)
7920 @c fraction mp_do_crossing_point (integer a, integer b, integer c) {
7921 integer d; /* recursive counter */
7922 integer x,xx,x0,x1,x2; /* temporary registers for bisection */
7923 if ( a<0 ) zero_crossing;
7926 if ( c>0 ) { no_crossing; }
7927 else if ( (a==0)&&(b==0) ) { no_crossing;}
7928 else { one_crossing; }
7930 if ( a==0 ) zero_crossing;
7931 } else if ( a==0 ) {
7932 if ( b<=0 ) zero_crossing;
7934 @<Use bisection to find the crossing point, if one exists@>;
7937 @ The general bisection method is quite simple when $n=2$, hence
7938 |crossing_point| does not take much time. At each stage in the
7939 recursion we have a subinterval defined by |l| and~|j| such that
7940 $B(a,b,c;2^{-l}(j+t))=B(x_0,x_1,x_2;t)$, and we want to ``zero in'' on
7941 the subinterval where $x_0\G0$ and $\min(x_1,x_2)<0$.
7943 It is convenient for purposes of calculation to combine the values
7944 of |l| and~|j| in a single variable $d=2^l+j$, because the operation
7945 of bisection then corresponds simply to doubling $d$ and possibly
7946 adding~1. Furthermore it proves to be convenient to modify
7947 our previous conventions for bisection slightly, maintaining the
7948 variables $X_0=2^lx_0$, $X_1=2^l(x_0-x_1)$, and $X_2=2^l(x_1-x_2)$.
7949 With these variables the conditions $x_0\ge0$ and $\min(x_1,x_2)<0$ are
7950 equivalent to $\max(X_1,X_1+X_2)>X_0\ge0$.
7952 The following code maintains the invariant relations
7953 $0\L|x0|<\max(|x1|,|x1|+|x2|)$,
7954 $\vert|x1|\vert<2^{30}$, $\vert|x2|\vert<2^{30}$;
7955 it has been constructed in such a way that no arithmetic overflow
7956 will occur if the inputs satisfy
7957 $a<2^{30}$, $\vert a-b\vert<2^{30}$, and $\vert b-c\vert<2^{30}$.
7959 @<Use bisection to find the crossing point...@>=
7960 d=1; x0=a; x1=a-b; x2=b-c;
7971 if ( x<=x0 ) { if ( x+x2<=x0 ) no_crossing; }
7975 } while (d<fraction_one);
7976 return (d-fraction_one)
7978 @ Here is a routine that computes the $x$ or $y$ coordinate of the point on
7979 a cubic corresponding to the |fraction| value~|t|.
7981 It is convenient to define a \.{WEB} macro |t_of_the_way| such that
7982 |t_of_the_way(a,b)| expands to |a-(a-b)*t|, i.e., to |t[a,b]|.
7984 @d t_of_the_way(A,B) ((A)-mp_take_fraction(mp,((A)-(B)),t))
7986 @c scaled mp_eval_cubic (MP mp,pointer p, pointer q, fraction t) {
7987 scaled x1,x2,x3; /* intermediate values */
7988 x1=t_of_the_way(knot_coord(p),right_coord(p));
7989 x2=t_of_the_way(right_coord(p),left_coord(q));
7990 x3=t_of_the_way(left_coord(q),knot_coord(q));
7991 x1=t_of_the_way(x1,x2);
7992 x2=t_of_the_way(x2,x3);
7993 return t_of_the_way(x1,x2);
7996 @ The actual bounding box information is stored in global variables.
7997 Since it is convenient to address the $x$ and $y$ information
7998 separately, we define arrays indexed by |x_code..y_code| and use
7999 macros to give them more convenient names.
8003 mp_x_code=0, /* index for |minx| and |maxx| */
8004 mp_y_code /* index for |miny| and |maxy| */
8008 @d minx mp->bbmin[mp_x_code]
8009 @d maxx mp->bbmax[mp_x_code]
8010 @d miny mp->bbmin[mp_y_code]
8011 @d maxy mp->bbmax[mp_y_code]
8014 scaled bbmin[mp_y_code+1];
8015 scaled bbmax[mp_y_code+1];
8016 /* the result of procedures that compute bounding box information */
8018 @ Now we're ready for the key part of the bounding box computation.
8019 The |bound_cubic| procedure updates |bbmin[c]| and |bbmax[c]| based on
8020 $$B(\hbox{|knot_coord(p)|}, \hbox{|right_coord(p)|},
8021 \hbox{|left_coord(q)|}, \hbox{|knot_coord(q)|};t)
8023 for $0<t\le1$. In other words, the procedure adjusts the bounds to
8024 accommodate |knot_coord(q)| and any extremes over the range $0<t<1$.
8025 The |c| parameter is |x_code| or |y_code|.
8027 @c void mp_bound_cubic (MP mp,pointer p, pointer q, small_number c) {
8028 boolean wavy; /* whether we need to look for extremes */
8029 scaled del1,del2,del3,del,dmax; /* proportional to the control
8030 points of a quadratic derived from a cubic */
8031 fraction t,tt; /* where a quadratic crosses zero */
8032 scaled x; /* a value that |bbmin[c]| and |bbmax[c]| must accommodate */
8034 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8035 @<Check the control points against the bounding box and set |wavy:=true|
8036 if any of them lie outside@>;
8038 del1=right_coord(p)-knot_coord(p);
8039 del2=left_coord(q)-right_coord(p);
8040 del3=knot_coord(q)-left_coord(q);
8041 @<Scale up |del1|, |del2|, and |del3| for greater accuracy;
8042 also set |del| to the first nonzero element of |(del1,del2,del3)|@>;
8044 negate(del1); negate(del2); negate(del3);
8046 t=mp_crossing_point(mp, del1,del2,del3);
8047 if ( t<fraction_one ) {
8048 @<Test the extremes of the cubic against the bounding box@>;
8053 @ @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>=
8054 if ( x<mp->bbmin[c] ) mp->bbmin[c]=x;
8055 if ( x>mp->bbmax[c] ) mp->bbmax[c]=x
8057 @ @<Check the control points against the bounding box and set...@>=
8059 if ( mp->bbmin[c]<=right_coord(p) )
8060 if ( right_coord(p)<=mp->bbmax[c] )
8061 if ( mp->bbmin[c]<=left_coord(q) )
8062 if ( left_coord(q)<=mp->bbmax[c] )
8065 @ If |del1=del2=del3=0|, it's impossible to obey the title of this
8066 section. We just set |del=0| in that case.
8068 @<Scale up |del1|, |del2|, and |del3| for greater accuracy...@>=
8069 if ( del1!=0 ) del=del1;
8070 else if ( del2!=0 ) del=del2;
8074 if ( abs(del2)>dmax ) dmax=abs(del2);
8075 if ( abs(del3)>dmax ) dmax=abs(del3);
8076 while ( dmax<fraction_half ) {
8077 dmax+=dmax; del1+=del1; del2+=del2; del3+=del3;
8081 @ Since |crossing_point| has tried to choose |t| so that
8082 $B(|del1|,|del2|,|del3|;\tau)$ crosses zero at $\tau=|t|$ with negative
8083 slope, the value of |del2| computed below should not be positive.
8084 But rounding error could make it slightly positive in which case we
8085 must cut it to zero to avoid confusion.
8087 @<Test the extremes of the cubic against the bounding box@>=
8089 x=mp_eval_cubic(mp, p,q,t);
8090 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8091 del2=t_of_the_way(del2,del3);
8092 /* now |0,del2,del3| represent the derivative on the remaining interval */
8093 if ( del2>0 ) del2=0;
8094 tt=mp_crossing_point(mp, 0,-del2,-del3);
8095 if ( tt<fraction_one ) {
8096 @<Test the second extreme against the bounding box@>;
8100 @ @<Test the second extreme against the bounding box@>=
8102 x=mp_eval_cubic(mp, p,q,t_of_the_way(tt,fraction_one));
8103 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8106 @ Finding the bounding box of a path is basically a matter of applying
8107 |bound_cubic| twice for each pair of adjacent knots.
8109 @c void mp_path_bbox (MP mp,pointer h) {
8110 pointer p,q; /* a pair of adjacent knots */
8111 minx=x_coord(h); miny=y_coord(h);
8112 maxx=minx; maxy=miny;
8115 if ( right_type(p)==mp_endpoint ) return;
8117 mp_bound_cubic(mp, x_loc(p),x_loc(q),mp_x_code);
8118 mp_bound_cubic(mp, y_loc(p),y_loc(q),mp_y_code);
8123 @ Another important way to measure a path is to find its arc length. This
8124 is best done by using the general bisection algorithm to subdivide the path
8125 until obtaining ``well behaved'' subpaths whose arc lengths can be approximated
8128 Since the arc length is the integral with respect to time of the magnitude of
8129 the velocity, it is natural to use Simpson's rule for the approximation.
8131 If $\dot B(t)$ is the spline velocity, Simpson's rule gives
8132 $$ \vb\dot B(0)\vb + 4\vb\dot B({1\over2})\vb + \vb\dot B(1)\vb \over 6 $$
8133 for the arc length of a path of length~1. For a cubic spline
8134 $B(z_0,z_1,z_2,z_3;t)$, the time derivative $\dot B(t)$ is
8135 $3B(dz_0,dz_1,dz_2;t)$, where $dz_i=z_{i+1}-z_i$. Hence the arc length
8137 $$ {\vb dz_0\vb \over 2} + 2\vb dz_{02}\vb + {\vb dz_2\vb \over 2}, $$
8139 $$ dz_{02}={1\over2}\left({dz_0+dz_1\over 2}+{dz_1+dz_2\over 2}\right)$$
8140 is the result of the bisection algorithm.
8142 @ The remaining problem is how to decide when a subpath is ``well behaved.''
8143 This could be done via the theoretical error bound for Simpson's rule,
8145 but this is impractical because it requires an estimate of the fourth
8146 derivative of the quantity being integrated. It is much easier to just perform
8147 a bisection step and see how much the arc length estimate changes. Since the
8148 error for Simpson's rule is proportional to the fourth power of the sample
8149 spacing, the remaining error is typically about $1\over16$ of the amount of
8150 the change. We say ``typically'' because the error has a pseudo-random behavior
8151 that could cause the two estimates to agree when each contain large errors.
8153 To protect against disasters such as undetected cusps, the bisection process
8154 should always continue until all the $dz_i$ vectors belong to a single
8155 $90^\circ$ sector. This ensures that no point on the spline can have velocity
8156 less than 70\% of the minimum of $\vb dz_0\vb$, $\vb dz_1\vb$ and $\vb dz_2\vb$.
8157 If such a spline happens to produce an erroneous arc length estimate that
8158 is little changed by bisection, the amount of the error is likely to be fairly
8159 small. We will try to arrange things so that freak accidents of this type do
8160 not destroy the inverse relationship between the \&{arclength} and
8161 \&{arctime} operations.
8162 @:arclength_}{\&{arclength} primitive@>
8163 @:arctime_}{\&{arctime} primitive@>
8165 @ The \&{arclength} and \&{arctime} operations are both based on a recursive
8167 function that finds the arc length of a cubic spline given $dz_0$, $dz_1$,
8168 $dz_2$. This |arc_test| routine also takes an arc length goal |a_goal| and
8169 returns the time when the arc length reaches |a_goal| if there is such a time.
8170 Thus the return value is either an arc length less than |a_goal| or, if the
8171 arc length would be at least |a_goal|, it returns a time value decreased by
8172 |two|. This allows the caller to use the sign of the result to distinguish
8173 between arc lengths and time values. On certain types of overflow, it is
8174 possible for |a_goal| and the result of |arc_test| both to be |el_gordo|.
8175 Otherwise, the result is always less than |a_goal|.
8177 Rather than halving the control point coordinates on each recursive call to
8178 |arc_test|, it is better to keep them proportional to velocity on the original
8179 curve and halve the results instead. This means that recursive calls can
8180 potentially use larger error tolerances in their arc length estimates. How
8181 much larger depends on to what extent the errors behave as though they are
8182 independent of each other. To save computing time, we use optimistic assumptions
8183 and increase the tolerance by a factor of about $\sqrt2$ for each recursive
8186 In addition to the tolerance parameter, |arc_test| should also have parameters
8187 for ${1\over3}\vb\dot B(0)\vb$, ${2\over3}\vb\dot B({1\over2})\vb$, and
8188 ${1\over3}\vb\dot B(1)\vb$. These quantities are relatively expensive to compute
8189 and they are needed in different instances of |arc_test|.
8191 @c @t\4@>@<Declare subroutines needed by |arc_test|@>;
8192 scaled mp_arc_test (MP mp, scaled dx0, scaled dy0, scaled dx1, scaled dy1,
8193 scaled dx2, scaled dy2, scaled v0, scaled v02,
8194 scaled v2, scaled a_goal, scaled tol) {
8195 boolean simple; /* are the control points confined to a $90^\circ$ sector? */
8196 scaled dx01, dy01, dx12, dy12, dx02, dy02; /* bisection results */
8198 /* twice the velocity magnitudes at $t={1\over4}$ and $t={3\over4}$ */
8199 scaled arc; /* best arc length estimate before recursion */
8200 @<Other local variables in |arc_test|@>;
8201 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,
8203 @<Initialize |v002|, |v022|, and the arc length estimate |arc|; if it overflows
8204 set |arc_test| and |return|@>;
8205 @<Test if the control points are confined to one quadrant or rotating them
8206 $45^\circ$ would put them in one quadrant. Then set |simple| appropriately@>;
8207 if ( simple && (abs(arc-v02-halfp(v0+v2)) <= tol) ) {
8208 if ( arc < a_goal ) {
8211 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to
8212 that time minus |two|@>;
8215 @<Use one or two recursive calls to compute the |arc_test| function@>;
8219 @ The |tol| value should by multiplied by $\sqrt 2$ before making recursive
8220 calls, but $1.5$ is an adequate approximation. It is best to avoid using
8221 |make_fraction| in this inner loop.
8224 @<Use one or two recursive calls to compute the |arc_test| function@>=
8226 @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is as
8227 large as possible@>;
8228 tol = tol + halfp(tol);
8229 a = mp_arc_test(mp, dx0,dy0, dx01,dy01, dx02,dy02, v0, v002,
8230 halfp(v02), a_new, tol);
8232 return (-halfp(two-a));
8234 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>;
8235 b = mp_arc_test(mp, dx02,dy02, dx12,dy12, dx2,dy2,
8236 halfp(v02), v022, v2, a_new, tol);
8238 return (-halfp(-b) - half_unit);
8240 return (a + half(b-a));
8244 @ @<Other local variables in |arc_test|@>=
8245 scaled a,b; /* results of recursive calls */
8246 scaled a_new,a_aux; /* the sum of these gives the |a_goal| */
8248 @ @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is...@>=
8249 a_aux = el_gordo - a_goal;
8250 if ( a_goal > a_aux ) {
8251 a_aux = a_goal - a_aux;
8254 a_new = a_goal + a_goal;
8258 @ There is no need to maintain |a_aux| at this point so we use it as a temporary
8259 to force the additions and subtractions to be done in an order that avoids
8262 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>=
8265 a_new = a_new + a_aux;
8268 @ This code assumes all {\it dx} and {\it dy} variables have magnitude less than
8269 |fraction_four|. To simplify the rest of the |arc_test| routine, we strengthen
8270 this assumption by requiring the norm of each $({\it dx},{\it dy})$ pair to obey
8271 this bound. Note that recursive calls will maintain this invariant.
8273 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,...@>=
8274 dx01 = half(dx0 + dx1);
8275 dx12 = half(dx1 + dx2);
8276 dx02 = half(dx01 + dx12);
8277 dy01 = half(dy0 + dy1);
8278 dy12 = half(dy1 + dy2);
8279 dy02 = half(dy01 + dy12)
8281 @ We should be careful to keep |arc<el_gordo| so that calling |arc_test| with
8282 |a_goal=el_gordo| is guaranteed to yield the arc length.
8284 @<Initialize |v002|, |v022|, and the arc length estimate |arc|;...@>=
8285 v002 = mp_pyth_add(mp, dx01+half(dx0+dx02), dy01+half(dy0+dy02));
8286 v022 = mp_pyth_add(mp, dx12+half(dx02+dx2), dy12+half(dy02+dy2));
8288 arc1 = v002 + half(halfp(v0+tmp) - v002);
8289 arc = v022 + half(halfp(v2+tmp) - v022);
8290 if ( (arc < el_gordo-arc1) ) {
8293 mp->arith_error = true;
8294 if ( a_goal==el_gordo ) return (el_gordo);
8298 @ @<Other local variables in |arc_test|@>=
8299 scaled tmp, tmp2; /* all purpose temporary registers */
8300 scaled arc1; /* arc length estimate for the first half */
8302 @ @<Test if the control points are confined to one quadrant or rotating...@>=
8303 simple = ((dx0>=0) && (dx1>=0) && (dx2>=0)) ||
8304 ((dx0<=0) && (dx1<=0) && (dx2<=0));
8306 simple = ((dy0>=0) && (dy1>=0) && (dy2>=0)) ||
8307 ((dy0<=0) && (dy1<=0) && (dy2<=0));
8309 simple = ((dx0>=dy0) && (dx1>=dy1) && (dx2>=dy2)) ||
8310 ((dx0<=dy0) && (dx1<=dy1) && (dx2<=dy2));
8312 simple = ((-dx0>=dy0) && (-dx1>=dy1) && (-dx2>=dy2)) ||
8313 ((-dx0<=dy0) && (-dx1<=dy1) && (-dx2<=dy2));
8316 @ Since Simpson's rule is based on approximating the integrand by a parabola,
8318 it is appropriate to use the same approximation to decide when the integral
8319 reaches the intermediate value |a_goal|. At this point
8321 {\vb\dot B(0)\vb\over 3} &= \hbox{|v0|}, \qquad
8322 {\vb\dot B({1\over4})\vb\over 3} = {\hbox{|v002|}\over 2}, \qquad
8323 {\vb\dot B({1\over2})\vb\over 3} = {\hbox{|v02|}\over 2}, \cr
8324 {\vb\dot B({3\over4})\vb\over 3} &= {\hbox{|v022|}\over 2}, \qquad
8325 {\vb\dot B(1)\vb\over 3} = \hbox{|v2|} \cr
8329 $$ {\vb\dot B(t)\vb\over 3} \approx
8330 \cases{B\left(\hbox{|v0|},
8331 \hbox{|v002|}-{1\over 2}\hbox{|v0|}-{1\over 4}\hbox{|v02|},
8332 {1\over 2}\hbox{|v02|}; 2t \right)&
8333 if $t\le{1\over 2}$\cr
8334 B\left({1\over 2}\hbox{|v02|},
8335 \hbox{|v022|}-{1\over 4}\hbox{|v02|}-{1\over 2}\hbox{|v2|},
8336 \hbox{|v2|}; 2t-1 \right)&
8337 if $t\ge{1\over 2}$.\cr}
8340 We can integrate $\vb\dot B(t)\vb$ by using
8341 $$\int 3B(a,b,c;\tau)\,dt =
8342 {B(0,a,a+b,a+b+c;\tau) + {\rm constant} \over {d\tau\over dt}}.
8345 This construction allows us to find the time when the arc length reaches
8346 |a_goal| by solving a cubic equation of the form
8347 $$ B(0,a,a+b,a+b+c;\tau) = x, $$
8348 where $\tau$ is $2t$ or $2t+1$, $x$ is |a_goal| or |a_goal-arc1|, and $a$, $b$,
8349 and $c$ are the Bernshte{\u\i}n coefficients from $(*)$ divided by
8350 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
8351 $d\tau\over dt$. We shall define a function |solve_rising_cubic| that finds
8352 $\tau$ given $a$, $b$, $c$, and $x$.
8354 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to...@>=
8356 tmp = (v02 + 2) / 4;
8357 if ( a_goal<=arc1 ) {
8360 (halfp(mp_solve_rising_cubic(mp, tmp2, arc1-tmp2-tmp, tmp, a_goal))- two);
8363 return ((half_unit - two) +
8364 halfp(mp_solve_rising_cubic(mp, tmp, arc-arc1-tmp-tmp2, tmp2, a_goal-arc1)));
8368 @ Here is the |solve_rising_cubic| routine that finds the time~$t$ when
8369 $$ B(0, a, a+b, a+b+c; t) = x. $$
8370 This routine is based on |crossing_point| but is simplified by the
8371 assumptions that $B(a,b,c;t)\ge0$ for $0\le t\le1$ and that |0<=x<=a+b+c|.
8372 If rounding error causes this condition to be violated slightly, we just ignore
8373 it and proceed with binary search. This finds a time when the function value
8374 reaches |x| and the slope is positive.
8376 @<Declare subroutines needed by |arc_test|@>=
8377 scaled mp_solve_rising_cubic (MP mp,scaled a, scaled b, scaled c, scaled x) {
8378 scaled ab, bc, ac; /* bisection results */
8379 integer t; /* $2^k+q$ where unscaled answer is in $[q2^{-k},(q+1)2^{-k})$ */
8380 integer xx; /* temporary for updating |x| */
8381 if ( (a<0) || (c<0) ) mp_confusion(mp, "rising?");
8382 @:this can't happen rising?}{\quad rising?@>
8385 } else if ( x >= a+b+c ) {
8389 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than
8393 @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>;
8394 xx = x - a - ab - ac;
8395 if ( xx < -x ) { x+=x; b=ab; c=ac; }
8396 else { x = x + xx; a=ac; b=mp->bc; t = t+1; };
8397 } while (t < unity);
8402 @ @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>=
8407 @ @d one_third_el_gordo 05252525252 /* upper bound on |a|, |b|, and |c| */
8409 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than...@>=
8410 while ((a>one_third_el_gordo)||(b>one_third_el_gordo)||(c>one_third_el_gordo)) {
8417 @ It is convenient to have a simpler interface to |arc_test| that requires no
8418 unnecessary arguments and ensures that each $({\it dx},{\it dy})$ pair has
8419 length less than |fraction_four|.
8421 @d arc_tol 16 /* quit when change in arc length estimate reaches this */
8423 @c scaled mp_do_arc_test (MP mp,scaled dx0, scaled dy0, scaled dx1,
8424 scaled dy1, scaled dx2, scaled dy2, scaled a_goal) {
8425 scaled v0,v1,v2; /* length of each $({\it dx},{\it dy})$ pair */
8426 scaled v02; /* twice the norm of the quadratic at $t={1\over2}$ */
8427 v0 = mp_pyth_add(mp, dx0,dy0);
8428 v1 = mp_pyth_add(mp, dx1,dy1);
8429 v2 = mp_pyth_add(mp, dx2,dy2);
8430 if ( (v0>=fraction_four) || (v1>=fraction_four) || (v2>=fraction_four) ) {
8431 mp->arith_error = true;
8432 if ( a_goal==el_gordo ) return el_gordo;
8435 v02 = mp_pyth_add(mp, dx1+half(dx0+dx2), dy1+half(dy0+dy2));
8436 return (mp_arc_test(mp, dx0,dy0, dx1,dy1, dx2,dy2,
8437 v0, v02, v2, a_goal, arc_tol));
8441 @ Now it is easy to find the arc length of an entire path.
8443 @c scaled mp_get_arc_length (MP mp,pointer h) {
8444 pointer p,q; /* for traversing the path */
8445 scaled a,a_tot; /* current and total arc lengths */
8448 while ( right_type(p)!=mp_endpoint ){
8450 a = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8451 left_x(q)-right_x(p), left_y(q)-right_y(p),
8452 x_coord(q)-left_x(q), y_coord(q)-left_y(q), el_gordo);
8453 a_tot = mp_slow_add(mp, a, a_tot);
8454 if ( q==h ) break; else p=q;
8460 @ The inverse operation of finding the time on a path~|h| when the arc length
8461 reaches some value |arc0| can also be accomplished via |do_arc_test|. Some care
8462 is required to handle very large times or negative times on cyclic paths. For
8463 non-cyclic paths, |arc0| values that are negative or too large cause
8464 |get_arc_time| to return 0 or the length of path~|h|.
8466 If |arc0| is greater than the arc length of a cyclic path~|h|, the result is a
8467 time value greater than the length of the path. Since it could be much greater,
8468 we must be prepared to compute the arc length of path~|h| and divide this into
8469 |arc0| to find how many multiples of the length of path~|h| to add.
8471 @c scaled mp_get_arc_time (MP mp,pointer h, scaled arc0) {
8472 pointer p,q; /* for traversing the path */
8473 scaled t_tot; /* accumulator for the result */
8474 scaled t; /* the result of |do_arc_test| */
8475 scaled arc; /* portion of |arc0| not used up so far */
8476 integer n; /* number of extra times to go around the cycle */
8478 @<Deal with a negative |arc0| value and |return|@>;
8480 if ( arc0==el_gordo ) decr(arc0);
8484 while ( (right_type(p)!=mp_endpoint) && (arc>0) ) {
8486 t = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8487 left_x(q)-right_x(p), left_y(q)-right_y(p),
8488 x_coord(q)-left_x(q), y_coord(q)-left_y(q), arc);
8489 @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>;
8491 @<Update |t_tot| and |arc| to avoid going around the cyclic
8492 path too many times but set |arith_error:=true| and |goto done| on
8501 @ @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>=
8502 if ( t<0 ) { t_tot = t_tot + t + two; arc = 0; }
8503 else { t_tot = t_tot + unity; arc = arc - t; }
8505 @ @<Deal with a negative |arc0| value and |return|@>=
8507 if ( left_type(h)==mp_endpoint ) {
8510 p = mp_htap_ypoc(mp, h);
8511 t_tot = -mp_get_arc_time(mp, p, -arc0);
8512 mp_toss_knot_list(mp, p);
8518 @ @<Update |t_tot| and |arc| to avoid going around the cyclic...@>=
8520 n = arc / (arc0 - arc);
8521 arc = arc - n*(arc0 - arc);
8522 if ( t_tot > el_gordo / (n+1) ) {
8523 mp->arith_error = true;
8527 t_tot = (n + 1)*t_tot;
8530 @* \[20] Data structures for pens.
8531 A Pen in \MP\ can be either elliptical or polygonal. Elliptical pens result
8532 in \ps\ \&{stroke} commands, while anything drawn with a polygonal pen is
8533 @:stroke}{\&{stroke} command@>
8534 converted into an area fill as described in the next part of this program.
8535 The mathematics behind this process is based on simple aspects of the theory
8536 of tracings developed by Leo Guibas, Lyle Ramshaw, and Jorge Stolfi
8537 [``A kinematic framework for computational geometry,'' Proc.\ IEEE Symp.\
8538 Foundations of Computer Science {\bf 24} (1983), 100--111].
8540 Polygonal pens are created from paths via \MP's \&{makepen} primitive.
8541 @:makepen_}{\&{makepen} primitive@>
8542 This path representation is almost sufficient for our purposes except that
8543 a pen path should always be a convex polygon with the vertices in
8544 counter-clockwise order.
8545 Since we will need to scan pen polygons both forward and backward, a pen
8546 should be represented as a doubly linked ring of knot nodes. There is
8547 room for the extra back pointer because we do not need the
8548 |left_type| or |right_type| fields. In fact, we don't need the |left_x|,
8549 |left_y|, |right_x|, or |right_y| fields either but we leave these alone
8550 so that certain procedures can operate on both pens and paths. In particular,
8551 pens can be copied using |copy_path| and recycled using |toss_knot_list|.
8554 /* this replaces the |left_type| and |right_type| fields in a pen knot */
8556 @ The |make_pen| procedure turns a path into a pen by initializing
8557 the |knil| pointers and making sure the knots form a convex polygon.
8558 Thus each cubic in the given path becomes a straight line and the control
8559 points are ignored. If the path is not cyclic, the ends are connected by a
8562 @d copy_pen(A) mp_make_pen(mp, mp_copy_path(mp, (A)),false)
8564 @c @<Declare a function called |convex_hull|@>;
8565 pointer mp_make_pen (MP mp,pointer h, boolean need_hull) {
8566 pointer p,q; /* two consecutive knots */
8573 h=mp_convex_hull(mp, h);
8574 @<Make sure |h| isn't confused with an elliptical pen@>;
8579 @ The only information required about an elliptical pen is the overall
8580 transformation that has been applied to the original \&{pencircle}.
8581 @:pencircle_}{\&{pencircle} primitive@>
8582 Since it suffices to keep track of how the three points $(0,0)$, $(1,0)$,
8583 and $(0,1)$ are transformed, an elliptical pen can be stored in a single
8584 knot node and transformed as if it were a path.
8586 @d pen_is_elliptical(A) ((A)==link((A)))
8588 @c pointer mp_get_pen_circle (MP mp,scaled diam) {
8589 pointer h; /* the knot node to return */
8590 h=mp_get_node(mp, knot_node_size);
8591 link(h)=h; knil(h)=h;
8592 originator(h)=mp_program_code;
8593 x_coord(h)=0; y_coord(h)=0;
8594 left_x(h)=diam; left_y(h)=0;
8595 right_x(h)=0; right_y(h)=diam;
8599 @ If the polygon being returned by |make_pen| has only one vertex, it will
8600 be interpreted as an elliptical pen. This is no problem since a degenerate
8601 polygon can equally well be thought of as a degenerate ellipse. We need only
8602 initialize the |left_x|, |left_y|, |right_x|, and |right_y| fields.
8604 @<Make sure |h| isn't confused with an elliptical pen@>=
8605 if ( pen_is_elliptical( h) ){
8606 left_x(h)=x_coord(h); left_y(h)=y_coord(h);
8607 right_x(h)=x_coord(h); right_y(h)=y_coord(h);
8610 @ We have to cheat a little here but most operations on pens only use
8611 the first three words in each knot node.
8612 @^data structure assumptions@>
8614 @<Initialize a pen at |test_pen| so that it fits in nine words@>=
8615 x_coord(test_pen)=-half_unit;
8616 y_coord(test_pen)=0;
8617 x_coord(test_pen+3)=half_unit;
8618 y_coord(test_pen+3)=0;
8619 x_coord(test_pen+6)=0;
8620 y_coord(test_pen+6)=unity;
8621 link(test_pen)=test_pen+3;
8622 link(test_pen+3)=test_pen+6;
8623 link(test_pen+6)=test_pen;
8624 knil(test_pen)=test_pen+6;
8625 knil(test_pen+3)=test_pen;
8626 knil(test_pen+6)=test_pen+3
8628 @ Printing a polygonal pen is very much like printing a path
8630 @<Declare subroutines for printing expressions@>=
8631 void mp_pr_pen (MP mp,pointer h) {
8632 pointer p,q; /* for list traversal */
8633 if ( pen_is_elliptical(h) ) {
8634 @<Print the elliptical pen |h|@>;
8638 mp_print_two(mp, x_coord(p),y_coord(p));
8639 mp_print_nl(mp, " .. ");
8640 @<Advance |p| making sure the links are OK and |return| if there is
8643 mp_print(mp, "cycle");
8647 @ @<Advance |p| making sure the links are OK and |return| if there is...@>=
8649 if ( (q==null) || (knil(q)!=p) ) {
8650 mp_print_nl(mp, "???"); return; /* this won't happen */
8655 @ @<Print the elliptical pen |h|@>=
8657 mp_print(mp, "pencircle transformed (");
8658 mp_print_scaled(mp, x_coord(h));
8659 mp_print_char(mp, ',');
8660 mp_print_scaled(mp, y_coord(h));
8661 mp_print_char(mp, ',');
8662 mp_print_scaled(mp, left_x(h)-x_coord(h));
8663 mp_print_char(mp, ',');
8664 mp_print_scaled(mp, right_x(h)-x_coord(h));
8665 mp_print_char(mp, ',');
8666 mp_print_scaled(mp, left_y(h)-y_coord(h));
8667 mp_print_char(mp, ',');
8668 mp_print_scaled(mp, right_y(h)-y_coord(h));
8669 mp_print_char(mp, ')');
8672 @ Here us another version of |pr_pen| that prints the pen as a diagnostic
8675 @<Declare subroutines for printing expressions@>=
8676 void mp_print_pen (MP mp,pointer h, char *s, boolean nuline) {
8677 mp_print_diagnostic(mp, "Pen",s,nuline); mp_print_ln(mp);
8680 mp_end_diagnostic(mp, true);
8683 @ Making a polygonal pen into a path involves restoring the |left_type| and
8684 |right_type| fields and setting the control points so as to make a polygonal
8688 void mp_make_path (MP mp,pointer h) {
8689 pointer p; /* for traversing the knot list */
8690 small_number k; /* a loop counter */
8691 @<Other local variables in |make_path|@>;
8692 if ( pen_is_elliptical(h) ) {
8693 @<Make the elliptical pen |h| into a path@>;
8697 left_type(p)=mp_explicit;
8698 right_type(p)=mp_explicit;
8699 @<copy the coordinates of knot |p| into its control points@>;
8705 @ @<copy the coordinates of knot |p| into its control points@>=
8706 left_x(p)=x_coord(p);
8707 left_y(p)=y_coord(p);
8708 right_x(p)=x_coord(p);
8709 right_y(p)=y_coord(p)
8711 @ We need an eight knot path to get a good approximation to an ellipse.
8713 @<Make the elliptical pen |h| into a path@>=
8715 @<Extract the transformation parameters from the elliptical pen~|h|@>;
8717 for (k=0;k<=7;k++ ) {
8718 @<Initialize |p| as the |k|th knot of a circle of unit diameter,
8719 transforming it appropriately@>;
8720 if ( k==7 ) link(p)=h; else link(p)=mp_get_node(mp, knot_node_size);
8725 @ @<Extract the transformation parameters from the elliptical pen~|h|@>=
8726 center_x=x_coord(h);
8727 center_y=y_coord(h);
8728 width_x=left_x(h)-center_x;
8729 width_y=left_y(h)-center_y;
8730 height_x=right_x(h)-center_x;
8731 height_y=right_y(h)-center_y
8733 @ @<Other local variables in |make_path|@>=
8734 scaled center_x,center_y; /* translation parameters for an elliptical pen */
8735 scaled width_x,width_y; /* the effect of a unit change in $x$ */
8736 scaled height_x,height_y; /* the effect of a unit change in $y$ */
8737 scaled dx,dy; /* the vector from knot |p| to its right control point */
8739 /* |k| advanced $270^\circ$ around the ring (cf. $\sin\theta=\cos(\theta+270)$) */
8741 @ The only tricky thing here are the tables |half_cos| and |d_cos| used to
8742 find the point $k/8$ of the way around the circle and the direction vector
8745 @<Initialize |p| as the |k|th knot of a circle of unit diameter,...@>=
8747 x_coord(p)=center_x+mp_take_fraction(mp, mp->half_cos[k],width_x)
8748 +mp_take_fraction(mp, mp->half_cos[kk],height_x);
8749 y_coord(p)=center_y+mp_take_fraction(mp, mp->half_cos[k],width_y)
8750 +mp_take_fraction(mp, mp->half_cos[kk],height_y);
8751 dx=-mp_take_fraction(mp, mp->d_cos[kk],width_x)
8752 +mp_take_fraction(mp, mp->d_cos[k],height_x);
8753 dy=-mp_take_fraction(mp, mp->d_cos[kk],width_y)
8754 +mp_take_fraction(mp, mp->d_cos[k],height_y);
8755 right_x(p)=x_coord(p)+dx;
8756 right_y(p)=y_coord(p)+dy;
8757 left_x(p)=x_coord(p)-dx;
8758 left_y(p)=y_coord(p)-dy;
8759 left_type(p)=mp_explicit;
8760 right_type(p)=mp_explicit;
8761 originator(p)=mp_program_code
8764 fraction half_cos[8]; /* ${1\over2}\cos(45k)$ */
8765 fraction d_cos[8]; /* a magic constant times $\cos(45k)$ */
8767 @ The magic constant for |d_cos| is the distance between $({1\over2},0)$ and
8768 $({1\over4}\sqrt2,{1\over4}\sqrt2)$ times the result of the |velocity|
8769 function for $\theta=\phi=22.5^\circ$. This comes out to be
8770 $$ d = {\sqrt{2-\sqrt2}\over 3+3\cos22.5^\circ}
8771 \approx 0.132608244919772.
8775 mp->half_cos[0]=fraction_half;
8776 mp->half_cos[1]=94906266; /* $2^{26}\sqrt2\approx94906265.62$ */
8778 mp->d_cos[0]=35596755; /* $2^{28}d\approx35596754.69$ */
8779 mp->d_cos[1]=25170707; /* $2^{27}\sqrt2\,d\approx25170706.63$ */
8781 for (k=3;k<= 4;k++ ) {
8782 mp->half_cos[k]=-mp->half_cos[4-k];
8783 mp->d_cos[k]=-mp->d_cos[4-k];
8785 for (k=5;k<= 7;k++ ) {
8786 mp->half_cos[k]=mp->half_cos[8-k];
8787 mp->d_cos[k]=mp->d_cos[8-k];
8790 @ The |convex_hull| function forces a pen polygon to be convex when it is
8791 returned by |make_pen| and after any subsequent transformation where rounding
8792 error might allow the convexity to be lost.
8793 The convex hull algorithm used here is described by F.~P. Preparata and
8794 M.~I. Shamos [{\sl Computational Geometry}, Springer-Verlag, 1985].
8796 @<Declare a function called |convex_hull|@>=
8797 @<Declare a procedure called |move_knot|@>;
8798 pointer mp_convex_hull (MP mp,pointer h) { /* Make a polygonal pen convex */
8799 pointer l,r; /* the leftmost and rightmost knots */
8800 pointer p,q; /* knots being scanned */
8801 pointer s; /* the starting point for an upcoming scan */
8802 scaled dx,dy; /* a temporary pointer */
8803 if ( pen_is_elliptical(h) ) {
8806 @<Set |l| to the leftmost knot in polygon~|h|@>;
8807 @<Set |r| to the rightmost knot in polygon~|h|@>;
8810 @<Find any knots on the path from |l| to |r| above the |l|-|r| line and
8811 move them past~|r|@>;
8812 @<Find any knots on the path from |s| to |l| below the |l|-|r| line and
8813 move them past~|l|@>;
8814 @<Sort the path from |l| to |r| by increasing $x$@>;
8815 @<Sort the path from |r| to |l| by decreasing $x$@>;
8818 @<Do a Gramm scan and remove vertices where there is no left turn@>;
8824 @ All comparisons are done primarily on $x$ and secondarily on $y$.
8826 @<Set |l| to the leftmost knot in polygon~|h|@>=
8830 if ( x_coord(p)<=x_coord(l) )
8831 if ( (x_coord(p)<x_coord(l)) || (y_coord(p)<y_coord(l)) )
8836 @ @<Set |r| to the rightmost knot in polygon~|h|@>=
8840 if ( x_coord(p)>=x_coord(r) )
8841 if ( (x_coord(p)>x_coord(r)) || (y_coord(p)>y_coord(r)) )
8846 @ @<Find any knots on the path from |l| to |r| above the |l|-|r| line...@>=
8847 dx=x_coord(r)-x_coord(l);
8848 dy=y_coord(r)-y_coord(l);
8852 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))>0 )
8853 mp_move_knot(mp, p, r);
8857 @ The |move_knot| procedure removes |p| from a doubly linked list and inserts
8860 @ @<Declare a procedure called |move_knot|@>=
8861 void mp_move_knot (MP mp,pointer p, pointer q) {
8862 link(knil(p))=link(p);
8863 knil(link(p))=knil(p);
8870 @ @<Find any knots on the path from |s| to |l| below the |l|-|r| line...@>=
8874 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))<0 )
8875 mp_move_knot(mp, p,l);
8879 @ The list is likely to be in order already so we just do linear insertions.
8880 Secondary comparisons on $y$ ensure that the sort is consistent with the
8881 choice of |l| and |r|.
8883 @<Sort the path from |l| to |r| by increasing $x$@>=
8887 while ( x_coord(q)>x_coord(p) ) q=knil(q);
8888 while ( x_coord(q)==x_coord(p) ) {
8889 if ( y_coord(q)>y_coord(p) ) q=knil(q); else break;
8891 if ( q==knil(p) ) p=link(p);
8892 else { p=link(p); mp_move_knot(mp, knil(p),q); };
8895 @ @<Sort the path from |r| to |l| by decreasing $x$@>=
8899 while ( x_coord(q)<x_coord(p) ) q=knil(q);
8900 while ( x_coord(q)==x_coord(p) ) {
8901 if ( y_coord(q)<y_coord(p) ) q=knil(q); else break;
8903 if ( q==knil(p) ) p=link(p);
8904 else { p=link(p); mp_move_knot(mp, knil(p),q); };
8907 @ The condition involving |ab_vs_cd| tests if there is not a left turn
8908 at knot |q|. There usually will be a left turn so we streamline the case
8909 where the |then| clause is not executed.
8911 @<Do a Gramm scan and remove vertices where there...@>=
8915 dx=x_coord(q)-x_coord(p);
8916 dy=y_coord(q)-y_coord(p);
8920 if ( mp_ab_vs_cd(mp, dx,y_coord(q)-y_coord(p),dy,x_coord(q)-x_coord(p))<=0 ) {
8921 @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>;
8926 @ @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>=
8929 mp_free_node(mp, p,knot_node_size);
8930 link(s)=q; knil(q)=s;
8932 else { p=knil(s); q=s; };
8935 @ The |find_offset| procedure sets global variables |(cur_x,cur_y)| to the
8936 offset associated with the given direction |(x,y)|. If two different offsets
8937 apply, it chooses one of them.
8940 void mp_find_offset (MP mp,scaled x, scaled y, pointer h) {
8941 pointer p,q; /* consecutive knots */
8943 /* the transformation matrix for an elliptical pen */
8944 fraction xx,yy; /* untransformed offset for an elliptical pen */
8945 fraction d; /* a temporary register */
8946 if ( pen_is_elliptical(h) ) {
8947 @<Find the offset for |(x,y)| on the elliptical pen~|h|@>
8952 } while (!(mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)>=0));
8955 } while (!(mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)<=0));
8956 mp->cur_x=x_coord(p);
8957 mp->cur_y=y_coord(p);
8963 scaled cur_y; /* all-purpose return value registers */
8965 @ @<Find the offset for |(x,y)| on the elliptical pen~|h|@>=
8966 if ( (x==0) && (y==0) ) {
8967 mp->cur_x=x_coord(h); mp->cur_y=y_coord(h);
8969 @<Find the non-constant part of the transformation for |h|@>;
8970 while ( (abs(x)<fraction_half) && (abs(y)<fraction_half) ){
8973 @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the
8974 untransformed version of |(x,y)|@>;
8975 mp->cur_x=x_coord(h)+mp_take_fraction(mp, xx,wx)+mp_take_fraction(mp, yy,hx);
8976 mp->cur_y=y_coord(h)+mp_take_fraction(mp, xx,wy)+mp_take_fraction(mp, yy,hy);
8979 @ @<Find the non-constant part of the transformation for |h|@>=
8980 wx=left_x(h)-x_coord(h);
8981 wy=left_y(h)-y_coord(h);
8982 hx=right_x(h)-x_coord(h);
8983 hy=right_y(h)-y_coord(h)
8985 @ @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the...@>=
8986 yy=-(mp_take_fraction(mp, x,hy)+mp_take_fraction(mp, y,-hx));
8987 xx=mp_take_fraction(mp, x,-wy)+mp_take_fraction(mp, y,wx);
8988 d=mp_pyth_add(mp, xx,yy);
8990 xx=half(mp_make_fraction(mp, xx,d));
8991 yy=half(mp_make_fraction(mp, yy,d));
8994 @ Finding the bounding box of a pen is easy except if the pen is elliptical.
8995 But we can handle that case by just calling |find_offset| twice. The answer
8996 is stored in the global variables |minx|, |maxx|, |miny|, and |maxy|.
8999 void mp_pen_bbox (MP mp,pointer h) {
9000 pointer p; /* for scanning the knot list */
9001 if ( pen_is_elliptical(h) ) {
9002 @<Find the bounding box of an elliptical pen@>;
9004 minx=x_coord(h); maxx=minx;
9005 miny=y_coord(h); maxy=miny;
9008 if ( x_coord(p)<minx ) minx=x_coord(p);
9009 if ( y_coord(p)<miny ) miny=y_coord(p);
9010 if ( x_coord(p)>maxx ) maxx=x_coord(p);
9011 if ( y_coord(p)>maxy ) maxy=y_coord(p);
9017 @ @<Find the bounding box of an elliptical pen@>=
9019 mp_find_offset(mp, 0,fraction_one,h);
9021 minx=2*x_coord(h)-mp->cur_x;
9022 mp_find_offset(mp, -fraction_one,0,h);
9024 miny=2*y_coord(h)-mp->cur_y;
9027 @* \[21] Edge structures.
9028 Now we come to \MP's internal scheme for representing pictures.
9029 The representation is very different from \MF's edge structures
9030 because \MP\ pictures contain \ps\ graphics objects instead of pixel
9031 images. However, the basic idea is somewhat similar in that shapes
9032 are represented via their boundaries.
9034 The main purpose of edge structures is to keep track of graphical objects
9035 until it is time to translate them into \ps. Since \MP\ does not need to
9036 know anything about an edge structure other than how to translate it into
9037 \ps\ and how to find its bounding box, edge structures can be just linked
9038 lists of graphical objects. \MP\ has no easy way to determine whether
9039 two such objects overlap, but it suffices to draw the first one first and
9040 let the second one overwrite it if necessary.
9043 enum mp_graphical_object_code {
9044 @<Graphical object codes@>
9047 @ Let's consider the types of graphical objects one at a time.
9048 First of all, a filled contour is represented by a eight-word node. The first
9049 word contains |type| and |link| fields, and the next six words contain a
9050 pointer to a cyclic path and the value to use for \ps' \&{currentrgbcolor}
9051 parameter. If a pen is used for filling |pen_p|, |ljoin_val| and |miterlim_val|
9052 give the relevant information.
9054 @d path_p(A) link((A)+1)
9055 /* a pointer to the path that needs filling */
9056 @d pen_p(A) info((A)+1)
9057 /* a pointer to the pen to fill or stroke with */
9058 @d color_model(A) type((A)+2) /* the color model */
9059 @d obj_red_loc(A) ((A)+3) /* the first of three locations for the color */
9060 @d obj_cyan_loc obj_red_loc /* the first of four locations for the color */
9061 @d obj_grey_loc obj_red_loc /* the location for the color */
9062 @d red_val(A) mp->mem[(A)+3].sc
9063 /* the red component of the color in the range $0\ldots1$ */
9066 @d green_val(A) mp->mem[(A)+4].sc
9067 /* the green component of the color in the range $0\ldots1$ */
9068 @d magenta_val green_val
9069 @d blue_val(A) mp->mem[(A)+5].sc
9070 /* the blue component of the color in the range $0\ldots1$ */
9071 @d yellow_val blue_val
9072 @d black_val(A) mp->mem[(A)+6].sc
9073 /* the blue component of the color in the range $0\ldots1$ */
9074 @d ljoin_val(A) name_type((A)) /* the value of \&{linejoin} */
9075 @:mp_linejoin_}{\&{linejoin} primitive@>
9076 @d miterlim_val(A) mp->mem[(A)+7].sc /* the value of \&{miterlimit} */
9077 @:mp_miterlimit_}{\&{miterlimit} primitive@>
9078 @d obj_color_part(A) mp->mem[(A)+3-red_part].sc
9079 /* interpret an object pointer that has been offset by |red_part..blue_part| */
9080 @d pre_script(A) mp->mem[(A)+8].hh.lh
9081 @d post_script(A) mp->mem[(A)+8].hh.rh
9084 @ @<Graphical object codes@>=
9088 pointer mp_new_fill_node (MP mp,pointer p) {
9089 /* make a fill node for cyclic path |p| and color black */
9090 pointer t; /* the new node */
9091 t=mp_get_node(mp, fill_node_size);
9092 type(t)=mp_fill_code;
9094 pen_p(t)=null; /* |null| means don't use a pen */
9099 color_model(t)=mp_uninitialized_model;
9101 post_script(t)=null;
9102 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9106 @ @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>=
9107 if ( mp->internal[mp_linejoin]>unity ) ljoin_val(t)=2;
9108 else if ( mp->internal[mp_linejoin]>0 ) ljoin_val(t)=1;
9109 else ljoin_val(t)=0;
9110 if ( mp->internal[mp_miterlimit]<unity )
9111 miterlim_val(t)=unity;
9113 miterlim_val(t)=mp->internal[mp_miterlimit]
9115 @ A stroked path is represented by an eight-word node that is like a filled
9116 contour node except that it contains the current \&{linecap} value, a scale
9117 factor for the dash pattern, and a pointer that is non-null if the stroke
9118 is to be dashed. The purpose of the scale factor is to allow a picture to
9119 be transformed without touching the picture that |dash_p| points to.
9121 @d dash_p(A) link((A)+9)
9122 /* a pointer to the edge structure that gives the dash pattern */
9123 @d lcap_val(A) type((A)+9)
9124 /* the value of \&{linecap} */
9125 @:mp_linecap_}{\&{linecap} primitive@>
9126 @d dash_scale(A) mp->mem[(A)+10].sc /* dash lengths are scaled by this factor */
9127 @d stroked_node_size 11
9129 @ @<Graphical object codes@>=
9133 pointer mp_new_stroked_node (MP mp,pointer p) {
9134 /* make a stroked node for path |p| with |pen_p(p)| temporarily |null| */
9135 pointer t; /* the new node */
9136 t=mp_get_node(mp, stroked_node_size);
9137 type(t)=mp_stroked_code;
9138 path_p(t)=p; pen_p(t)=null;
9140 dash_scale(t)=unity;
9145 color_model(t)=mp_uninitialized_model;
9147 post_script(t)=null;
9148 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9149 if ( mp->internal[mp_linecap]>unity ) lcap_val(t)=2;
9150 else if ( mp->internal[mp_linecap]>0 ) lcap_val(t)=1;
9155 @ When a dashed line is computed in a transformed coordinate system, the dash
9156 lengths get scaled like the pen shape and we need to compensate for this. Since
9157 there is no unique scale factor for an arbitrary transformation, we use the
9158 the square root of the determinant. The properties of the determinant make it
9159 easier to maintain the |dash_scale|. The computation is fairly straight-forward
9160 except for the initialization of the scale factor |s|. The factor of 64 is
9161 needed because |square_rt| scales its result by $2^8$ while we need $2^{14}$
9162 to counteract the effect of |take_fraction|.
9164 @<Declare subroutines needed by |print_edges|@>=
9165 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) {
9166 scaled maxabs; /* $max(|a|,|b|,|c|,|d|)$ */
9167 integer s; /* amount by which the result of |square_rt| needs to be scaled */
9168 @<Initialize |maxabs|@>;
9170 while ( (maxabs<fraction_one) && (s>1) ){
9171 a+=a; b+=b; c+=c; d+=d;
9172 maxabs+=maxabs; s=halfp(s);
9174 return s*mp_square_rt(mp, abs(mp_take_fraction(mp, a,d)-mp_take_fraction(mp, b,c)));
9177 scaled mp_get_pen_scale (MP mp,pointer p) {
9178 return mp_sqrt_det(mp,
9179 left_x(p)-x_coord(p), right_x(p)-x_coord(p),
9180 left_y(p)-y_coord(p), right_y(p)-y_coord(p));
9183 @ @<Internal library ...@>=
9184 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) ;
9187 @ @<Initialize |maxabs|@>=
9189 if ( abs(b)>maxabs ) maxabs=abs(b);
9190 if ( abs(c)>maxabs ) maxabs=abs(c);
9191 if ( abs(d)>maxabs ) maxabs=abs(d)
9193 @ When a picture contains text, this is represented by a fourteen-word node
9194 where the color information and |type| and |link| fields are augmented by
9195 additional fields that describe the text and how it is transformed.
9196 The |path_p| and |pen_p| pointers are replaced by a number that identifies
9197 the font and a string number that gives the text to be displayed.
9198 The |width|, |height|, and |depth| fields
9199 give the dimensions of the text at its design size, and the remaining six
9200 words give a transformation to be applied to the text. The |new_text_node|
9201 function initializes everything to default values so that the text comes out
9202 black with its reference point at the origin.
9204 @d text_p(A) link((A)+1) /* a string pointer for the text to display */
9205 @d font_n(A) info((A)+1) /* the font number */
9206 @d width_val(A) mp->mem[(A)+7].sc /* unscaled width of the text */
9207 @d height_val(A) mp->mem[(A)+9].sc /* unscaled height of the text */
9208 @d depth_val(A) mp->mem[(A)+10].sc /* unscaled depth of the text */
9209 @d text_tx_loc(A) ((A)+11)
9210 /* the first of six locations for transformation parameters */
9211 @d tx_val(A) mp->mem[(A)+11].sc /* $x$ shift amount */
9212 @d ty_val(A) mp->mem[(A)+12].sc /* $y$ shift amount */
9213 @d txx_val(A) mp->mem[(A)+13].sc /* |txx| transformation parameter */
9214 @d txy_val(A) mp->mem[(A)+14].sc /* |txy| transformation parameter */
9215 @d tyx_val(A) mp->mem[(A)+15].sc /* |tyx| transformation parameter */
9216 @d tyy_val(A) mp->mem[(A)+16].sc /* |tyy| transformation parameter */
9217 @d text_trans_part(A) mp->mem[(A)+11-x_part].sc
9218 /* interpret a text node pointer that has been offset by |x_part..yy_part| */
9219 @d text_node_size 17
9221 @ @<Graphical object codes@>=
9224 @ @c @<Declare text measuring subroutines@>;
9225 pointer mp_new_text_node (MP mp,char *f,str_number s) {
9226 /* make a text node for font |f| and text string |s| */
9227 pointer t; /* the new node */
9228 t=mp_get_node(mp, text_node_size);
9229 type(t)=mp_text_code;
9231 font_n(t)=mp_find_font(mp, f); /* this identifies the font */
9236 color_model(t)=mp_uninitialized_model;
9238 post_script(t)=null;
9239 tx_val(t)=0; ty_val(t)=0;
9240 txx_val(t)=unity; txy_val(t)=0;
9241 tyx_val(t)=0; tyy_val(t)=unity;
9242 mp_set_text_box(mp, t); /* this finds the bounding box */
9246 @ The last two types of graphical objects that can occur in an edge structure
9247 are clipping paths and \&{setbounds} paths. These are slightly more difficult
9248 @:set_bounds_}{\&{setbounds} primitive@>
9249 to implement because we must keep track of exactly what is being clipped or
9250 bounded when pictures get merged together. For this reason, each clipping or
9251 \&{setbounds} operation is represented by a pair of nodes: first comes a
9252 two-word node whose |path_p| gives the relevant path, then there is the list
9253 of objects to clip or bound followed by a two-word node whose second word is
9256 Using at least two words for each graphical object node allows them all to be
9257 allocated and deallocated similarly with a global array |gr_object_size| to
9258 give the size in words for each object type.
9260 @d start_clip_size 2
9261 @d start_bounds_size 2
9262 @d stop_clip_size 2 /* the second word is not used here */
9263 @d stop_bounds_size 2 /* the second word is not used here */
9265 @d stop_type(A) ((A)+2)
9266 /* matching |type| for |start_clip_code| or |start_bounds_code| */
9267 @d has_color(A) (type((A))<mp_start_clip_code)
9268 /* does a graphical object have color fields? */
9269 @d has_pen(A) (type((A))<mp_text_code)
9270 /* does a graphical object have a |pen_p| field? */
9271 @d is_start_or_stop(A) (type((A))>=mp_start_clip_code)
9272 @d is_stop(A) (type((A))>=mp_stop_clip_code)
9274 @ @<Graphical object codes@>=
9275 mp_start_clip_code=4, /* |type| of a node that starts clipping */
9276 mp_start_bounds_code=5, /* |type| of a node that gives a \&{setbounds} path */
9277 mp_stop_clip_code=6, /* |type| of a node that stops clipping */
9278 mp_stop_bounds_code=7, /* |type| of a node that stops \&{setbounds} */
9281 pointer mp_new_bounds_node (MP mp,pointer p, small_number c) {
9282 /* make a node of type |c| where |p| is the clipping or \&{setbounds} path */
9283 pointer t; /* the new node */
9284 t=mp_get_node(mp, mp->gr_object_size[c]);
9290 @ We need an array to keep track of the sizes of graphical objects.
9293 small_number gr_object_size[mp_stop_bounds_code+1];
9296 mp->gr_object_size[mp_fill_code]=fill_node_size;
9297 mp->gr_object_size[mp_stroked_code]=stroked_node_size;
9298 mp->gr_object_size[mp_text_code]=text_node_size;
9299 mp->gr_object_size[mp_start_clip_code]=start_clip_size;
9300 mp->gr_object_size[mp_stop_clip_code]=stop_clip_size;
9301 mp->gr_object_size[mp_start_bounds_code]=start_bounds_size;
9302 mp->gr_object_size[mp_stop_bounds_code]=stop_bounds_size;
9304 @ All the essential information in an edge structure is encoded as a linked list
9305 of graphical objects as we have just seen, but it is helpful to add some
9306 redundant information. A single edge structure might be used as a dash pattern
9307 many times, and it would be nice to avoid scanning the same structure
9308 repeatedly. Thus, an edge structure known to be a suitable dash pattern
9309 has a header that gives a list of dashes in a sorted order designed for rapid
9310 translation into \ps.
9312 Each dash is represented by a three-word node containing the initial and final
9313 $x$~coordinates as well as the usual |link| field. The |link| fields points to
9314 the dash node with the next higher $x$-coordinates and the final link points
9315 to a special location called |null_dash|. (There should be no overlap between
9316 dashes). Since the $y$~coordinate of the dash pattern is needed to determine
9317 the period of repetition, this needs to be stored in the edge header along
9318 with a pointer to the list of dash nodes.
9320 @d start_x(A) mp->mem[(A)+1].sc /* the starting $x$~coordinate in a dash node */
9321 @d stop_x(A) mp->mem[(A)+2].sc /* the ending $x$~coordinate in a dash node */
9324 /* in an edge header this points to the first dash node */
9325 @d dash_y(A) mp->mem[(A)+1].sc /* $y$ value for the dash list in an edge header */
9327 @ It is also convenient for an edge header to contain the bounding
9328 box information needed by the \&{llcorner} and \&{urcorner} operators
9329 so that this does not have to be recomputed unnecessarily. This is done by
9330 adding fields for the $x$~and $y$ extremes as well as a pointer that indicates
9331 how far the bounding box computation has gotten. Thus if the user asks for
9332 the bounding box and then adds some more text to the picture before asking
9333 for more bounding box information, the second computation need only look at
9334 the additional text.
9336 When the bounding box has not been computed, the |bblast| pointer points
9337 to a dummy link at the head of the graphical object list while the |minx_val|
9338 and |miny_val| fields contain |el_gordo| and the |maxx_val| and |maxy_val|
9339 fields contain |-el_gordo|.
9341 Since the bounding box of pictures containing objects of type
9342 |mp_start_bounds_code| depends on the value of \&{truecorners}, the bounding box
9343 @:mp_true_corners_}{\&{truecorners} primitive@>
9344 data might not be valid for all values of this parameter. Hence, the |bbtype|
9345 field is needed to keep track of this.
9347 @d minx_val(A) mp->mem[(A)+2].sc
9348 @d miny_val(A) mp->mem[(A)+3].sc
9349 @d maxx_val(A) mp->mem[(A)+4].sc
9350 @d maxy_val(A) mp->mem[(A)+5].sc
9351 @d bblast(A) link((A)+6) /* last item considered in bounding box computation */
9352 @d bbtype(A) info((A)+6) /* tells how bounding box data depends on \&{truecorners} */
9353 @d dummy_loc(A) ((A)+7) /* where the object list begins in an edge header */
9355 /* |bbtype| value when bounding box data is valid for all \&{truecorners} values */
9357 /* |bbtype| value when bounding box data is for \&{truecorners}${}\le 0$ */
9359 /* |bbtype| value when bounding box data is for \&{truecorners}${}>0$ */
9362 void mp_init_bbox (MP mp,pointer h) {
9363 /* Initialize the bounding box information in edge structure |h| */
9364 bblast(h)=dummy_loc(h);
9365 bbtype(h)=no_bounds;
9366 minx_val(h)=el_gordo;
9367 miny_val(h)=el_gordo;
9368 maxx_val(h)=-el_gordo;
9369 maxy_val(h)=-el_gordo;
9372 @ The only other entries in an edge header are a reference count in the first
9373 word and a pointer to the tail of the object list in the last word.
9375 @d obj_tail(A) info((A)+7) /* points to the last entry in the object list */
9376 @d edge_header_size 8
9379 void mp_init_edges (MP mp,pointer h) {
9380 /* initialize an edge header to null values */
9381 dash_list(h)=null_dash;
9382 obj_tail(h)=dummy_loc(h);
9383 link(dummy_loc(h))=null;
9385 mp_init_bbox(mp, h);
9388 @ Here is how edge structures are deleted. The process can be recursive because
9389 of the need to dereference edge structures that are used as dash patterns.
9392 @d add_edge_ref(A) incr(ref_count(A))
9393 @d delete_edge_ref(A) {
9394 if ( ref_count((A))==null )
9395 mp_toss_edges(mp, A);
9400 @<Declare the recycling subroutines@>=
9401 void mp_flush_dash_list (MP mp,pointer h);
9402 pointer mp_toss_gr_object (MP mp,pointer p) ;
9403 void mp_toss_edges (MP mp,pointer h) ;
9405 @ @c void mp_toss_edges (MP mp,pointer h) {
9406 pointer p,q; /* pointers that scan the list being recycled */
9407 pointer r; /* an edge structure that object |p| refers to */
9408 mp_flush_dash_list(mp, h);
9409 q=link(dummy_loc(h));
9410 while ( (q!=null) ) {
9412 r=mp_toss_gr_object(mp, p);
9413 if ( r!=null ) delete_edge_ref(r);
9415 mp_free_node(mp, h,edge_header_size);
9417 void mp_flush_dash_list (MP mp,pointer h) {
9418 pointer p,q; /* pointers that scan the list being recycled */
9420 while ( q!=null_dash ) {
9422 mp_free_node(mp, p,dash_node_size);
9424 dash_list(h)=null_dash;
9426 pointer mp_toss_gr_object (MP mp,pointer p) {
9427 /* returns an edge structure that needs to be dereferenced */
9428 pointer e; /* the edge structure to return */
9430 @<Prepare to recycle graphical object |p|@>;
9431 mp_free_node(mp, p,mp->gr_object_size[type(p)]);
9435 @ @<Prepare to recycle graphical object |p|@>=
9438 mp_toss_knot_list(mp, path_p(p));
9439 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9440 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9441 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9443 case mp_stroked_code:
9444 mp_toss_knot_list(mp, path_p(p));
9445 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9446 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9447 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9451 delete_str_ref(text_p(p));
9452 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9453 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9455 case mp_start_clip_code:
9456 case mp_start_bounds_code:
9457 mp_toss_knot_list(mp, path_p(p));
9459 case mp_stop_clip_code:
9460 case mp_stop_bounds_code:
9462 } /* there are no other cases */
9464 @ If we use |add_edge_ref| to ``copy'' edge structures, the real copying needs
9465 to be done before making a significant change to an edge structure. Much of
9466 the work is done in a separate routine |copy_objects| that copies a list of
9467 graphical objects into a new edge header.
9469 @c @<Declare a function called |copy_objects|@>;
9470 pointer mp_private_edges (MP mp,pointer h) {
9471 /* make a private copy of the edge structure headed by |h| */
9472 pointer hh; /* the edge header for the new copy */
9473 pointer p,pp; /* pointers for copying the dash list */
9474 if ( ref_count(h)==null ) {
9478 hh=mp_copy_objects(mp, link(dummy_loc(h)),null);
9479 @<Copy the dash list from |h| to |hh|@>;
9480 @<Copy the bounding box information from |h| to |hh| and make |bblast(hh)|
9481 point into the new object list@>;
9486 @ Here we use the fact that |dash_list(hh)=link(hh)|.
9487 @^data structure assumptions@>
9489 @<Copy the dash list from |h| to |hh|@>=
9490 pp=hh; p=dash_list(h);
9491 while ( (p!=null_dash) ) {
9492 link(pp)=mp_get_node(mp, dash_node_size);
9494 start_x(pp)=start_x(p);
9495 stop_x(pp)=stop_x(p);
9499 dash_y(hh)=dash_y(h)
9502 @ |h| is an edge structure
9504 @d gr_start_x(A) (A)->start_x_field
9505 @d gr_stop_x(A) (A)->stop_x_field
9506 @d gr_dash_link(A) (A)->next_field
9508 @d gr_dash_list(A) (A)->list_field
9509 @d gr_dash_y(A) (A)->y_field
9512 struct mp_dash_list *mp_export_dashes (MP mp, pointer h) {
9513 struct mp_dash_list *dl;
9514 struct mp_dash_item *dh, *di;
9516 if (h==null || dash_list(h)==null_dash)
9519 dl = mp_xmalloc(mp,1,sizeof(struct mp_dash_list));
9520 gr_dash_list(dl) = NULL;
9521 gr_dash_y(dl) = dash_y(h);
9523 while (p != null_dash) {
9524 di=mp_xmalloc(mp,1,sizeof(struct mp_dash_item));
9525 gr_dash_link(di) = NULL;
9526 gr_start_x(di) = start_x(p);
9527 gr_stop_x(di) = stop_x(p);
9529 gr_dash_list(dl) = di;
9531 gr_dash_link(dh) = di;
9540 @ @<Copy the bounding box information from |h| to |hh|...@>=
9541 minx_val(hh)=minx_val(h);
9542 miny_val(hh)=miny_val(h);
9543 maxx_val(hh)=maxx_val(h);
9544 maxy_val(hh)=maxy_val(h);
9545 bbtype(hh)=bbtype(h);
9546 p=dummy_loc(h); pp=dummy_loc(hh);
9547 while ((p!=bblast(h)) ) {
9548 if ( p==null ) mp_confusion(mp, "bblast");
9549 @:this can't happen bblast}{\quad bblast@>
9550 p=link(p); pp=link(pp);
9554 @ Here is the promised routine for copying graphical objects into a new edge
9555 structure. It starts copying at object~|p| and stops just before object~|q|.
9556 If |q| is null, it copies the entire sublist headed at |p|. The resulting edge
9557 structure requires further initialization by |init_bbox|.
9559 @<Declare a function called |copy_objects|@>=
9560 pointer mp_copy_objects (MP mp, pointer p, pointer q) {
9561 pointer hh; /* the new edge header */
9562 pointer pp; /* the last newly copied object */
9563 small_number k; /* temporary register */
9564 hh=mp_get_node(mp, edge_header_size);
9565 dash_list(hh)=null_dash;
9569 @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>;
9576 @ @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>=
9577 { k=mp->gr_object_size[type(p)];
9578 link(pp)=mp_get_node(mp, k);
9580 while ( (k>0) ) { decr(k); mp->mem[pp+k]=mp->mem[p+k]; };
9581 @<Fix anything in graphical object |pp| that should differ from the
9582 corresponding field in |p|@>;
9586 @ @<Fix anything in graphical object |pp| that should differ from the...@>=
9588 case mp_start_clip_code:
9589 case mp_start_bounds_code:
9590 path_p(pp)=mp_copy_path(mp, path_p(p));
9593 path_p(pp)=mp_copy_path(mp, path_p(p));
9594 if ( pen_p(p)!=null ) pen_p(pp)=copy_pen(pen_p(p));
9596 case mp_stroked_code:
9597 path_p(pp)=mp_copy_path(mp, path_p(p));
9598 pen_p(pp)=copy_pen(pen_p(p));
9599 if ( dash_p(p)!=null ) add_edge_ref(dash_p(pp));
9602 add_str_ref(text_p(pp));
9604 case mp_stop_clip_code:
9605 case mp_stop_bounds_code:
9607 } /* there are no other cases */
9609 @ Here is one way to find an acceptable value for the second argument to
9610 |copy_objects|. Given a non-null graphical object list, |skip_1component|
9611 skips past one picture component, where a ``picture component'' is a single
9612 graphical object, or a start bounds or start clip object and everything up
9613 through the matching stop bounds or stop clip object. The macro version avoids
9614 procedure call overhead and error handling: |skip_component(p)(e)| advances |p|
9615 unless |p| points to a stop bounds or stop clip node, in which case it executes
9618 @d skip_component(A)
9619 if ( ! is_start_or_stop((A)) ) (A)=link((A));
9620 else if ( ! is_stop((A)) ) (A)=mp_skip_1component(mp, (A));
9624 pointer mp_skip_1component (MP mp,pointer p) {
9625 integer lev; /* current nesting level */
9628 if ( is_start_or_stop(p) ) {
9629 if ( is_stop(p) ) decr(lev); else incr(lev);
9636 @ Here is a diagnostic routine for printing an edge structure in symbolic form.
9638 @<Declare subroutines for printing expressions@>=
9639 @<Declare subroutines needed by |print_edges|@>;
9640 void mp_print_edges (MP mp,pointer h, char *s, boolean nuline) {
9641 pointer p; /* a graphical object to be printed */
9642 pointer hh,pp; /* temporary pointers */
9643 scaled scf; /* a scale factor for the dash pattern */
9644 boolean ok_to_dash; /* |false| for polygonal pen strokes */
9645 mp_print_diagnostic(mp, "Edge structure",s,nuline);
9647 while ( link(p)!=null ) {
9651 @<Cases for printing graphical object node |p|@>;
9653 mp_print(mp, "[unknown object type!]");
9657 mp_print_nl(mp, "End edges");
9658 if ( p!=obj_tail(h) ) mp_print(mp, "?");
9660 mp_end_diagnostic(mp, true);
9663 @ @<Cases for printing graphical object node |p|@>=
9665 mp_print(mp, "Filled contour ");
9666 mp_print_obj_color(mp, p);
9667 mp_print_char(mp, ':'); mp_print_ln(mp);
9668 mp_pr_path(mp, path_p(p)); mp_print_ln(mp);
9669 if ( (pen_p(p)!=null) ) {
9670 @<Print join type for graphical object |p|@>;
9671 mp_print(mp, " with pen"); mp_print_ln(mp);
9672 mp_pr_pen(mp, pen_p(p));
9676 @ @<Print join type for graphical object |p|@>=
9677 switch (ljoin_val(p)) {
9679 mp_print(mp, "mitered joins limited ");
9680 mp_print_scaled(mp, miterlim_val(p));
9683 mp_print(mp, "round joins");
9686 mp_print(mp, "beveled joins");
9689 mp_print(mp, "?? joins");
9694 @ For stroked nodes, we need to print |lcap_val(p)| as well.
9696 @<Print join and cap types for stroked node |p|@>=
9697 switch (lcap_val(p)) {
9698 case 0:mp_print(mp, "butt"); break;
9699 case 1:mp_print(mp, "round"); break;
9700 case 2:mp_print(mp, "square"); break;
9701 default: mp_print(mp, "??"); break;
9704 mp_print(mp, " ends, ");
9705 @<Print join type for graphical object |p|@>
9707 @ Here is a routine that prints the color of a graphical object if it isn't
9708 black (the default color).
9710 @<Declare subroutines needed by |print_edges|@>=
9711 @<Declare a procedure called |print_compact_node|@>;
9712 void mp_print_obj_color (MP mp,pointer p) {
9713 if ( color_model(p)==mp_grey_model ) {
9714 if ( grey_val(p)>0 ) {
9715 mp_print(mp, "greyed ");
9716 mp_print_compact_node(mp, obj_grey_loc(p),1);
9718 } else if ( color_model(p)==mp_cmyk_model ) {
9719 if ( (cyan_val(p)>0) || (magenta_val(p)>0) ||
9720 (yellow_val(p)>0) || (black_val(p)>0) ) {
9721 mp_print(mp, "processcolored ");
9722 mp_print_compact_node(mp, obj_cyan_loc(p),4);
9724 } else if ( color_model(p)==mp_rgb_model ) {
9725 if ( (red_val(p)>0) || (green_val(p)>0) || (blue_val(p)>0) ) {
9726 mp_print(mp, "colored ");
9727 mp_print_compact_node(mp, obj_red_loc(p),3);
9732 @ We also need a procedure for printing consecutive scaled values as if they
9733 were a known big node.
9735 @<Declare a procedure called |print_compact_node|@>=
9736 void mp_print_compact_node (MP mp,pointer p, small_number k) {
9737 pointer q; /* last location to print */
9739 mp_print_char(mp, '(');
9741 mp_print_scaled(mp, mp->mem[p].sc);
9742 if ( p<q ) mp_print_char(mp, ',');
9745 mp_print_char(mp, ')');
9748 @ @<Cases for printing graphical object node |p|@>=
9749 case mp_stroked_code:
9750 mp_print(mp, "Filled pen stroke ");
9751 mp_print_obj_color(mp, p);
9752 mp_print_char(mp, ':'); mp_print_ln(mp);
9753 mp_pr_path(mp, path_p(p));
9754 if ( dash_p(p)!=null ) {
9755 mp_print_nl(mp, "dashed (");
9756 @<Finish printing the dash pattern that |p| refers to@>;
9759 @<Print join and cap types for stroked node |p|@>;
9760 mp_print(mp, " with pen"); mp_print_ln(mp);
9761 if ( pen_p(p)==null ) mp_print(mp, "???"); /* shouldn't happen */
9763 else mp_pr_pen(mp, pen_p(p));
9766 @ Normally, the |dash_list| field in an edge header is set to |null_dash|
9767 when it is not known to define a suitable dash pattern. This is disallowed
9768 here because the |dash_p| field should never point to such an edge header.
9769 Note that memory is allocated for |start_x(null_dash)| and we are free to
9770 give it any convenient value.
9772 @<Finish printing the dash pattern that |p| refers to@>=
9773 ok_to_dash=pen_is_elliptical(pen_p(p));
9774 if ( ! ok_to_dash ) scf=unity; else scf=dash_scale(p);
9777 if ( (pp==null_dash) || (dash_y(hh)<0) ) {
9778 mp_print(mp, " ??");
9779 } else { start_x(null_dash)=start_x(pp)+dash_y(hh);
9780 while ( pp!=null_dash ) {
9781 mp_print(mp, "on ");
9782 mp_print_scaled(mp, mp_take_scaled(mp, stop_x(pp)-start_x(pp),scf));
9783 mp_print(mp, " off ");
9784 mp_print_scaled(mp, mp_take_scaled(mp, start_x(link(pp))-stop_x(pp),scf));
9786 if ( pp!=null_dash ) mp_print_char(mp, ' ');
9788 mp_print(mp, ") shifted ");
9789 mp_print_scaled(mp, -mp_take_scaled(mp, mp_dash_offset(mp, hh),scf));
9790 if ( ! ok_to_dash || (dash_y(hh)==0) ) mp_print(mp, " (this will be ignored)");
9793 @ @<Declare subroutines needed by |print_edges|@>=
9794 scaled mp_dash_offset (MP mp,pointer h) {
9795 scaled x; /* the answer */
9796 if (dash_list(h)==null_dash || dash_y(h)<0) mp_confusion(mp, "dash0");
9797 @:this can't happen dash0}{\quad dash0@>
9798 if ( dash_y(h)==0 ) {
9801 x=-(start_x(dash_list(h)) % dash_y(h));
9802 if ( x<0 ) x=x+dash_y(h);
9807 @ @<Cases for printing graphical object node |p|@>=
9809 mp_print_char(mp, '"'); mp_print_str(mp,text_p(p));
9810 mp_print(mp, "\" infont \""); mp_print(mp, mp->font_name[font_n(p)]);
9811 mp_print_char(mp, '"'); mp_print_ln(mp);
9812 mp_print_obj_color(mp, p);
9813 mp_print(mp, "transformed ");
9814 mp_print_compact_node(mp, text_tx_loc(p),6);
9817 @ @<Cases for printing graphical object node |p|@>=
9818 case mp_start_clip_code:
9819 mp_print(mp, "clipping path:");
9821 mp_pr_path(mp, path_p(p));
9823 case mp_stop_clip_code:
9824 mp_print(mp, "stop clipping");
9827 @ @<Cases for printing graphical object node |p|@>=
9828 case mp_start_bounds_code:
9829 mp_print(mp, "setbounds path:");
9831 mp_pr_path(mp, path_p(p));
9833 case mp_stop_bounds_code:
9834 mp_print(mp, "end of setbounds");
9837 @ To initialize the |dash_list| field in an edge header~|h|, we need a
9838 subroutine that scans an edge structure and tries to interpret it as a dash
9839 pattern. This can only be done when there are no filled regions or clipping
9840 paths and all the pen strokes have the same color. The first step is to let
9841 $y_0$ be the initial $y$~coordinate of the first pen stroke. Then we implicitly
9842 project all the pen stroke paths onto the line $y=y_0$ and require that there
9843 be no retracing. If the resulting paths cover a range of $x$~coordinates of
9844 length $\Delta x$, we set |dash_y(h)| to the length of the dash pattern by
9845 finding the maximum of $\Delta x$ and the absolute value of~$y_0$.
9847 @c @<Declare a procedure called |x_retrace_error|@>;
9848 pointer mp_make_dashes (MP mp,pointer h) { /* returns |h| or |null| */
9849 pointer p; /* this scans the stroked nodes in the object list */
9850 pointer p0; /* if not |null| this points to the first stroked node */
9851 pointer pp,qq,rr; /* pointers into |path_p(p)| */
9852 pointer d,dd; /* pointers used to create the dash list */
9853 @<Other local variables in |make_dashes|@>;
9854 scaled y0=0; /* the initial $y$ coordinate */
9855 if ( dash_list(h)!=null_dash )
9858 p=link(dummy_loc(h));
9860 if ( type(p)!=mp_stroked_code ) {
9861 @<Compain that the edge structure contains a node of the wrong type
9862 and |goto not_found|@>;
9865 if ( p0==null ){ p0=p; y0=y_coord(pp); };
9866 @<Make |d| point to a new dash node created from stroke |p| and path |pp|
9867 or |goto not_found| if there is an error@>;
9868 @<Insert |d| into the dash list and |goto not_found| if there is an error@>;
9871 if ( dash_list(h)==null_dash )
9872 goto NOT_FOUND; /* No error message */
9873 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>;
9874 @<Set |dash_y(h)| and merge the first and last dashes if necessary@>;
9877 @<Flush the dash list, recycle |h| and return |null|@>;
9880 @ @<Compain that the edge structure contains a node of the wrong type...@>=
9882 print_err("Picture is too complicated to use as a dash pattern");
9883 help3("When you say `dashed p', picture p should not contain any")
9884 ("text, filled regions, or clipping paths. This time it did")
9885 ("so I'll just make it a solid line instead.");
9886 mp_put_get_error(mp);
9890 @ A similar error occurs when monotonicity fails.
9892 @<Declare a procedure called |x_retrace_error|@>=
9893 void mp_x_retrace_error (MP mp) {
9894 print_err("Picture is too complicated to use as a dash pattern");
9895 help3("When you say `dashed p', every path in p should be monotone")
9896 ("in x and there must be no overlapping. This failed")
9897 ("so I'll just make it a solid line instead.");
9898 mp_put_get_error(mp);
9901 @ We stash |p| in |info(d)| if |dash_p(p)<>0| so that subsequent processing can
9902 handle the case where the pen stroke |p| is itself dashed.
9904 @<Make |d| point to a new dash node created from stroke |p| and path...@>=
9905 @<Make sure |p| and |p0| are the same color and |goto not_found| if there is
9908 if ( link(pp)!=pp ) {
9911 @<Check for retracing between knots |qq| and |rr| and |goto not_found|
9912 if there is a problem@>;
9913 } while (right_type(rr)!=mp_endpoint);
9915 d=mp_get_node(mp, dash_node_size);
9916 if ( dash_p(p)==0 ) info(d)=0; else info(d)=p;
9917 if ( x_coord(pp)<x_coord(rr) ) {
9918 start_x(d)=x_coord(pp);
9919 stop_x(d)=x_coord(rr);
9921 start_x(d)=x_coord(rr);
9922 stop_x(d)=x_coord(pp);
9925 @ We also need to check for the case where the segment from |qq| to |rr| is
9926 monotone in $x$ but is reversed relative to the path from |pp| to |qq|.
9928 @<Check for retracing between knots |qq| and |rr| and |goto not_found|...@>=
9933 if ( (x0>x1) || (x1>x2) || (x2>x3) ) {
9934 if ( (x0<x1) || (x1<x2) || (x2<x3) ) {
9935 if ( mp_ab_vs_cd(mp, x2-x1,x2-x1,x1-x0,x3-x2)>0 ) {
9936 mp_x_retrace_error(mp); goto NOT_FOUND;
9940 if ( (x_coord(pp)>x0) || (x0>x3) ) {
9941 if ( (x_coord(pp)<x0) || (x0<x3) ) {
9942 mp_x_retrace_error(mp); goto NOT_FOUND;
9946 @ @<Other local variables in |make_dashes|@>=
9947 scaled x0,x1,x2,x3; /* $x$ coordinates of the segment from |qq| to |rr| */
9949 @ @<Make sure |p| and |p0| are the same color and |goto not_found|...@>=
9950 if ( (red_val(p)!=red_val(p0)) || (black_val(p)!=black_val(p0)) ||
9951 (green_val(p)!=green_val(p0)) || (blue_val(p)!=blue_val(p0)) ) {
9952 print_err("Picture is too complicated to use as a dash pattern");
9953 help3("When you say `dashed p', everything in picture p should")
9954 ("be the same color. I can\'t handle your color changes")
9955 ("so I'll just make it a solid line instead.");
9956 mp_put_get_error(mp);
9960 @ @<Insert |d| into the dash list and |goto not_found| if there is an error@>=
9961 start_x(null_dash)=stop_x(d);
9962 dd=h; /* this makes |link(dd)=dash_list(h)| */
9963 while ( start_x(link(dd))<stop_x(d) )
9966 if ( (stop_x(dd)>start_x(d)) )
9967 { mp_x_retrace_error(mp); goto NOT_FOUND; };
9972 @ @<Set |dash_y(h)| and merge the first and last dashes if necessary@>=
9974 while ( (link(d)!=null_dash) )
9977 dash_y(h)=stop_x(d)-start_x(dd);
9978 if ( abs(y0)>dash_y(h) ) {
9980 } else if ( d!=dd ) {
9981 dash_list(h)=link(dd);
9982 stop_x(d)=stop_x(dd)+dash_y(h);
9983 mp_free_node(mp, dd,dash_node_size);
9986 @ We get here when the argument is a null picture or when there is an error.
9987 Recovering from an error involves making |dash_list(h)| empty to indicate
9988 that |h| is not known to be a valid dash pattern. We also dereference |h|
9989 since it is not being used for the return value.
9991 @<Flush the dash list, recycle |h| and return |null|@>=
9992 mp_flush_dash_list(mp, h);
9996 @ Having carefully saved the dashed stroked nodes in the
9997 corresponding dash nodes, we must be prepared to break up these dashes into
10000 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>=
10001 d=h; /* now |link(d)=dash_list(h)| */
10002 while ( link(d)!=null_dash ) {
10008 hsf=dash_scale(ds);
10009 if ( (hh==null) ) mp_confusion(mp, "dash1");
10010 @:this can't happen dash0}{\quad dash1@>
10011 if ( dash_y(hh)==0 ) {
10014 if ( dash_list(hh)==null ) mp_confusion(mp, "dash1");
10015 @:this can't happen dash0}{\quad dash1@>
10016 @<Replace |link(d)| by a dashed version as determined by edge header
10017 |hh| and scale factor |ds|@>;
10022 @ @<Other local variables in |make_dashes|@>=
10023 pointer dln; /* |link(d)| */
10024 pointer hh; /* an edge header that tells how to break up |dln| */
10025 scaled hsf; /* the dash pattern from |hh| gets scaled by this */
10026 pointer ds; /* the stroked node from which |hh| and |hsf| are derived */
10027 scaled xoff; /* added to $x$ values in |dash_list(hh)| to match |dln| */
10029 @ @<Replace |link(d)| by a dashed version as determined by edge header...@>=
10032 xoff=start_x(dln)-mp_take_scaled(mp, hsf,start_x(dd))-
10033 mp_take_scaled(mp, hsf,mp_dash_offset(mp, hh));
10034 start_x(null_dash)=mp_take_scaled(mp, hsf,start_x(dd))
10035 +mp_take_scaled(mp, hsf,dash_y(hh));
10036 stop_x(null_dash)=start_x(null_dash);
10037 @<Advance |dd| until finding the first dash that overlaps |dln| when
10038 offset by |xoff|@>;
10039 while ( start_x(dln)<=stop_x(dln) ) {
10040 @<If |dd| has `fallen off the end', back up to the beginning and fix |xoff|@>;
10041 @<Insert a dash between |d| and |dln| for the overlap with the offset version
10044 start_x(dln)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10047 mp_free_node(mp, dln,dash_node_size)
10049 @ The name of this module is a bit of a lie because we just find the
10050 first |dd| where |take_scaled (hsf, stop_x(dd))| is large enough to make an
10051 overlap possible. It could be that the unoffset version of dash |dln| falls
10052 in the gap between |dd| and its predecessor.
10054 @<Advance |dd| until finding the first dash that overlaps |dln| when...@>=
10055 while ( xoff+mp_take_scaled(mp, hsf,stop_x(dd))<start_x(dln) ) {
10059 @ @<If |dd| has `fallen off the end', back up to the beginning and fix...@>=
10060 if ( dd==null_dash ) {
10062 xoff=xoff+mp_take_scaled(mp, hsf,dash_y(hh));
10065 @ At this point we already know that
10066 |start_x(dln)<=xoff+take_scaled(hsf,stop_x(dd))|.
10068 @<Insert a dash between |d| and |dln| for the overlap with the offset...@>=
10069 if ( (xoff+mp_take_scaled(mp, hsf,start_x(dd)))<=stop_x(dln) ) {
10070 link(d)=mp_get_node(mp, dash_node_size);
10073 if ( start_x(dln)>(xoff+mp_take_scaled(mp, hsf,start_x(dd))))
10074 start_x(d)=start_x(dln);
10076 start_x(d)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10077 if ( stop_x(dln)<(xoff+mp_take_scaled(mp, hsf,stop_x(dd))))
10078 stop_x(d)=stop_x(dln);
10080 stop_x(d)=xoff+mp_take_scaled(mp, hsf,stop_x(dd));
10083 @ The next major task is to update the bounding box information in an edge
10084 header~|h|. This is done via a procedure |adjust_bbox| that enlarges an edge
10085 header's bounding box to accommodate the box computed by |path_bbox| or
10086 |pen_bbox|. (This is stored in global variables |minx|, |miny|, |maxx|, and
10089 @c void mp_adjust_bbox (MP mp,pointer h) {
10090 if ( minx<minx_val(h) ) minx_val(h)=minx;
10091 if ( miny<miny_val(h) ) miny_val(h)=miny;
10092 if ( maxx>maxx_val(h) ) maxx_val(h)=maxx;
10093 if ( maxy>maxy_val(h) ) maxy_val(h)=maxy;
10096 @ Here is a special routine for updating the bounding box information in
10097 edge header~|h| to account for the squared-off ends of a non-cyclic path~|p|
10098 that is to be stroked with the pen~|pp|.
10100 @c void mp_box_ends (MP mp, pointer p, pointer pp, pointer h) {
10101 pointer q; /* a knot node adjacent to knot |p| */
10102 fraction dx,dy; /* a unit vector in the direction out of the path at~|p| */
10103 scaled d; /* a factor for adjusting the length of |(dx,dy)| */
10104 scaled z; /* a coordinate being tested against the bounding box */
10105 scaled xx,yy; /* the extreme pen vertex in the |(dx,dy)| direction */
10106 integer i; /* a loop counter */
10107 if ( right_type(p)!=mp_endpoint ) {
10110 @<Make |(dx,dy)| the final direction for the path segment from
10111 |q| to~|p|; set~|d|@>;
10112 d=mp_pyth_add(mp, dx,dy);
10114 @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>;
10115 for (i=1;i<= 2;i++) {
10116 @<Use |(dx,dy)| to generate a vertex of the square end cap and
10117 update the bounding box to accommodate it@>;
10121 if ( right_type(p)==mp_endpoint ) {
10124 @<Advance |p| to the end of the path and make |q| the previous knot@>;
10130 @ @<Make |(dx,dy)| the final direction for the path segment from...@>=
10131 if ( q==link(p) ) {
10132 dx=x_coord(p)-right_x(p);
10133 dy=y_coord(p)-right_y(p);
10134 if ( (dx==0)&&(dy==0) ) {
10135 dx=x_coord(p)-left_x(q);
10136 dy=y_coord(p)-left_y(q);
10139 dx=x_coord(p)-left_x(p);
10140 dy=y_coord(p)-left_y(p);
10141 if ( (dx==0)&&(dy==0) ) {
10142 dx=x_coord(p)-right_x(q);
10143 dy=y_coord(p)-right_y(q);
10146 dx=x_coord(p)-x_coord(q);
10147 dy=y_coord(p)-y_coord(q)
10149 @ @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>=
10150 dx=mp_make_fraction(mp, dx,d);
10151 dy=mp_make_fraction(mp, dy,d);
10152 mp_find_offset(mp, -dy,dx,pp);
10153 xx=mp->cur_x; yy=mp->cur_y
10155 @ @<Use |(dx,dy)| to generate a vertex of the square end cap and...@>=
10156 mp_find_offset(mp, dx,dy,pp);
10157 d=mp_take_fraction(mp, xx-mp->cur_x,dx)+mp_take_fraction(mp, yy-mp->cur_y,dy);
10158 if ( ((d<0)&&(i==1)) || ((d>0)&&(i==2)))
10159 mp_confusion(mp, "box_ends");
10160 @:this can't happen box ends}{\quad\\{box\_ends}@>
10161 z=x_coord(p)+mp->cur_x+mp_take_fraction(mp, d,dx);
10162 if ( z<minx_val(h) ) minx_val(h)=z;
10163 if ( z>maxx_val(h) ) maxx_val(h)=z;
10164 z=y_coord(p)+mp->cur_y+mp_take_fraction(mp, d,dy);
10165 if ( z<miny_val(h) ) miny_val(h)=z;
10166 if ( z>maxy_val(h) ) maxy_val(h)=z
10168 @ @<Advance |p| to the end of the path and make |q| the previous knot@>=
10172 } while (right_type(p)!=mp_endpoint)
10174 @ The major difficulty in finding the bounding box of an edge structure is the
10175 effect of clipping paths. We treat them conservatively by only clipping to the
10176 clipping path's bounding box, but this still
10177 requires recursive calls to |set_bbox| in order to find the bounding box of
10179 the objects to be clipped. Such calls are distinguished by the fact that the
10180 boolean parameter |top_level| is false.
10182 @c void mp_set_bbox (MP mp,pointer h, boolean top_level) {
10183 pointer p; /* a graphical object being considered */
10184 scaled sminx,sminy,smaxx,smaxy;
10185 /* for saving the bounding box during recursive calls */
10186 scaled x0,x1,y0,y1; /* temporary registers */
10187 integer lev; /* nesting level for |mp_start_bounds_code| nodes */
10188 @<Wipe out any existing bounding box information if |bbtype(h)| is
10189 incompatible with |internal[mp_true_corners]|@>;
10190 while ( link(bblast(h))!=null ) {
10194 case mp_stop_clip_code:
10195 if ( top_level ) mp_confusion(mp, "bbox"); else return;
10196 @:this can't happen bbox}{\quad bbox@>
10198 @<Other cases for updating the bounding box based on the type of object |p|@>;
10199 } /* all cases are enumerated above */
10201 if ( ! top_level ) mp_confusion(mp, "bbox");
10204 @ @<Internal library declarations@>=
10205 void mp_set_bbox (MP mp,pointer h, boolean top_level);
10207 @ @<Wipe out any existing bounding box information if |bbtype(h)| is...@>=
10208 switch (bbtype(h)) {
10212 if ( mp->internal[mp_true_corners]>0 ) mp_init_bbox(mp, h);
10215 if ( mp->internal[mp_true_corners]<=0 ) mp_init_bbox(mp, h);
10217 } /* there are no other cases */
10219 @ @<Other cases for updating the bounding box...@>=
10221 mp_path_bbox(mp, path_p(p));
10222 if ( pen_p(p)!=null ) {
10225 mp_pen_bbox(mp, pen_p(p));
10231 mp_adjust_bbox(mp, h);
10234 @ @<Other cases for updating the bounding box...@>=
10235 case mp_start_bounds_code:
10236 if ( mp->internal[mp_true_corners]>0 ) {
10237 bbtype(h)=bounds_unset;
10239 bbtype(h)=bounds_set;
10240 mp_path_bbox(mp, path_p(p));
10241 mp_adjust_bbox(mp, h);
10242 @<Scan to the matching |mp_stop_bounds_code| node and update |p| and
10246 case mp_stop_bounds_code:
10247 if ( mp->internal[mp_true_corners]<=0 ) mp_confusion(mp, "bbox2");
10248 @:this can't happen bbox2}{\quad bbox2@>
10251 @ @<Scan to the matching |mp_stop_bounds_code| node and update |p| and...@>=
10254 if ( link(p)==null ) mp_confusion(mp, "bbox2");
10255 @:this can't happen bbox2}{\quad bbox2@>
10257 if ( type(p)==mp_start_bounds_code ) incr(lev);
10258 else if ( type(p)==mp_stop_bounds_code ) decr(lev);
10262 @ It saves a lot of grief here to be slightly conservative and not account for
10263 omitted parts of dashed lines. We also don't worry about the material omitted
10264 when using butt end caps. The basic computation is for round end caps and
10265 |box_ends| augments it for square end caps.
10267 @<Other cases for updating the bounding box...@>=
10268 case mp_stroked_code:
10269 mp_path_bbox(mp, path_p(p));
10272 mp_pen_bbox(mp, pen_p(p));
10277 mp_adjust_bbox(mp, h);
10278 if ( (left_type(path_p(p))==mp_endpoint)&&(lcap_val(p)==2) )
10279 mp_box_ends(mp, path_p(p), pen_p(p), h);
10282 @ The height width and depth information stored in a text node determines a
10283 rectangle that needs to be transformed according to the transformation
10284 parameters stored in the text node.
10286 @<Other cases for updating the bounding box...@>=
10288 x1=mp_take_scaled(mp, txx_val(p),width_val(p));
10289 y0=mp_take_scaled(mp, txy_val(p),-depth_val(p));
10290 y1=mp_take_scaled(mp, txy_val(p),height_val(p));
10293 if ( y0<y1 ) { minx=minx+y0; maxx=maxx+y1; }
10294 else { minx=minx+y1; maxx=maxx+y0; }
10295 if ( x1<0 ) minx=minx+x1; else maxx=maxx+x1;
10296 x1=mp_take_scaled(mp, tyx_val(p),width_val(p));
10297 y0=mp_take_scaled(mp, tyy_val(p),-depth_val(p));
10298 y1=mp_take_scaled(mp, tyy_val(p),height_val(p));
10301 if ( y0<y1 ) { miny=miny+y0; maxy=maxy+y1; }
10302 else { miny=miny+y1; maxy=maxy+y0; }
10303 if ( x1<0 ) miny=miny+x1; else maxy=maxy+x1;
10304 mp_adjust_bbox(mp, h);
10307 @ This case involves a recursive call that advances |bblast(h)| to the node of
10308 type |mp_stop_clip_code| that matches |p|.
10310 @<Other cases for updating the bounding box...@>=
10311 case mp_start_clip_code:
10312 mp_path_bbox(mp, path_p(p));
10315 sminx=minx_val(h); sminy=miny_val(h);
10316 smaxx=maxx_val(h); smaxy=maxy_val(h);
10317 @<Reinitialize the bounding box in header |h| and call |set_bbox| recursively
10318 starting at |link(p)|@>;
10319 @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,
10321 minx=sminx; miny=sminy;
10322 maxx=smaxx; maxy=smaxy;
10323 mp_adjust_bbox(mp, h);
10326 @ @<Reinitialize the bounding box in header |h| and call |set_bbox|...@>=
10327 minx_val(h)=el_gordo;
10328 miny_val(h)=el_gordo;
10329 maxx_val(h)=-el_gordo;
10330 maxy_val(h)=-el_gordo;
10331 mp_set_bbox(mp, h,false)
10333 @ @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,...@>=
10334 if ( minx_val(h)<x0 ) minx_val(h)=x0;
10335 if ( miny_val(h)<y0 ) miny_val(h)=y0;
10336 if ( maxx_val(h)>x1 ) maxx_val(h)=x1;
10337 if ( maxy_val(h)>y1 ) maxy_val(h)=y1
10339 @* \[22] Finding an envelope.
10340 When \MP\ has a path and a polygonal pen, it needs to express the desired
10341 shape in terms of things \ps\ can understand. The present task is to compute
10342 a new path that describes the region to be filled. It is convenient to
10343 define this as a two step process where the first step is determining what
10344 offset to use for each segment of the path.
10346 @ Given a pointer |c| to a cyclic path,
10347 and a pointer~|h| to the first knot of a pen polygon,
10348 the |offset_prep| routine changes the path into cubics that are
10349 associated with particular pen offsets. Thus if the cubic between |p|
10350 and~|q| is associated with the |k|th offset and the cubic between |q| and~|r|
10351 has offset |l| then |info(q)=zero_off+l-k|. (The constant |zero_off| is added
10352 to because |l-k| could be negative.)
10354 After overwriting the type information with offset differences, we no longer
10355 have a true path so we refer to the knot list returned by |offset_prep| as an
10358 Since an envelope spec only determines relative changes in pen offsets,
10359 |offset_prep| sets a global variable |spec_offset| to the relative change from
10360 |h| to the first offset.
10362 @d zero_off 16384 /* added to offset changes to make them positive */
10365 integer spec_offset; /* number of pen edges between |h| and the initial offset */
10367 @ @c @<Declare subroutines needed by |offset_prep|@>;
10368 pointer mp_offset_prep (MP mp,pointer c, pointer h) {
10369 halfword n; /* the number of vertices in the pen polygon */
10370 pointer p,q,q0,r,w, ww; /* for list manipulation */
10371 integer k_needed; /* amount to be added to |info(p)| when it is computed */
10372 pointer w0; /* a pointer to pen offset to use just before |p| */
10373 scaled dxin,dyin; /* the direction into knot |p| */
10374 integer turn_amt; /* change in pen offsets for the current cubic */
10375 @<Other local variables for |offset_prep|@>;
10377 @<Initialize the pen size~|n|@>;
10378 @<Initialize the incoming direction and pen offset at |c|@>;
10382 @<Split the cubic between |p| and |q|, if necessary, into cubics
10383 associated with single offsets, after which |q| should
10384 point to the end of the final such cubic@>;
10386 @<Advance |p| to node |q|, removing any ``dead'' cubics that
10387 might have been introduced by the splitting process@>;
10389 @<Fix the offset change in |info(c)| and set |c| to the return value of
10394 @ We shall want to keep track of where certain knots on the cyclic path
10395 wind up in the envelope spec. It doesn't suffice just to keep pointers to
10396 knot nodes because some nodes are deleted while removing dead cubics. Thus
10397 |offset_prep| updates the following pointers
10401 pointer spec_p2; /* pointers to distinguished knots */
10404 mp->spec_p1=null; mp->spec_p2=null;
10406 @ @<Initialize the pen size~|n|@>=
10413 @ Since the true incoming direction isn't known yet, we just pick a direction
10414 consistent with the pen offset~|h|. If this is wrong, it can be corrected
10417 @<Initialize the incoming direction and pen offset at |c|@>=
10418 dxin=x_coord(link(h))-x_coord(knil(h));
10419 dyin=y_coord(link(h))-y_coord(knil(h));
10420 if ( (dxin==0)&&(dyin==0) ) {
10421 dxin=y_coord(knil(h))-y_coord(h);
10422 dyin=x_coord(h)-x_coord(knil(h));
10426 @ We must be careful not to remove the only cubic in a cycle.
10428 But we must also be careful for another reason. If the user-supplied
10429 path starts with a set of degenerate cubics, the target node |q| can
10430 be collapsed to the initial node |p| which might be the same as the
10431 initial node |c| of the curve. This would cause the |offset_prep| routine
10432 to bail out too early, causing distress later on. (See for example
10433 the testcase reported by Bogus\l{}aw Jackowski in tracker id 267, case 52c
10436 @<Advance |p| to node |q|, removing any ``dead'' cubics...@>=
10440 if ( x_coord(p)==right_x(p) && y_coord(p)==right_y(p) &&
10441 x_coord(p)==left_x(r) && y_coord(p)==left_y(r) &&
10442 x_coord(p)==x_coord(r) && y_coord(p)==y_coord(r) &&
10444 @<Remove the cubic following |p| and update the data structures
10445 to merge |r| into |p|@>;
10449 /* Check if we removed too much */
10453 @ @<Remove the cubic following |p| and update the data structures...@>=
10454 { k_needed=info(p)-zero_off;
10458 info(p)=k_needed+info(r);
10461 if ( r==c ) { info(p)=info(c); c=p; };
10462 if ( r==mp->spec_p1 ) mp->spec_p1=p;
10463 if ( r==mp->spec_p2 ) mp->spec_p2=p;
10464 r=p; mp_remove_cubic(mp, p);
10467 @ Not setting the |info| field of the newly created knot allows the splitting
10468 routine to work for paths.
10470 @<Declare subroutines needed by |offset_prep|@>=
10471 void mp_split_cubic (MP mp,pointer p, fraction t) { /* splits the cubic after |p| */
10472 scaled v; /* an intermediate value */
10473 pointer q,r; /* for list manipulation */
10474 q=link(p); r=mp_get_node(mp, knot_node_size); link(p)=r; link(r)=q;
10475 originator(r)=mp_program_code;
10476 left_type(r)=mp_explicit; right_type(r)=mp_explicit;
10477 v=t_of_the_way(right_x(p),left_x(q));
10478 right_x(p)=t_of_the_way(x_coord(p),right_x(p));
10479 left_x(q)=t_of_the_way(left_x(q),x_coord(q));
10480 left_x(r)=t_of_the_way(right_x(p),v);
10481 right_x(r)=t_of_the_way(v,left_x(q));
10482 x_coord(r)=t_of_the_way(left_x(r),right_x(r));
10483 v=t_of_the_way(right_y(p),left_y(q));
10484 right_y(p)=t_of_the_way(y_coord(p),right_y(p));
10485 left_y(q)=t_of_the_way(left_y(q),y_coord(q));
10486 left_y(r)=t_of_the_way(right_y(p),v);
10487 right_y(r)=t_of_the_way(v,left_y(q));
10488 y_coord(r)=t_of_the_way(left_y(r),right_y(r));
10491 @ This does not set |info(p)| or |right_type(p)|.
10493 @<Declare subroutines needed by |offset_prep|@>=
10494 void mp_remove_cubic (MP mp,pointer p) { /* removes the dead cubic following~|p| */
10495 pointer q; /* the node that disappears */
10496 q=link(p); link(p)=link(q);
10497 right_x(p)=right_x(q); right_y(p)=right_y(q);
10498 mp_free_node(mp, q,knot_node_size);
10501 @ Let $d\prec d'$ mean that the counter-clockwise angle from $d$ to~$d'$ is
10502 strictly between zero and $180^\circ$. Then we can define $d\preceq d'$ to
10503 mean that the angle could be zero or $180^\circ$. If $w_k=(u_k,v_k)$ is the
10504 $k$th pen offset, the $k$th pen edge direction is defined by the formula
10505 $$d_k=(u\k-u_k,\,v\k-v_k).$$
10506 When listed by increasing $k$, these directions occur in counter-clockwise
10507 order so that $d_k\preceq d\k$ for all~$k$.
10508 The goal of |offset_prep| is to find an offset index~|k| to associate with
10509 each cubic, such that the direction $d(t)$ of the cubic satisfies
10510 $$d_{k-1}\preceq d(t)\preceq d_k\qquad\hbox{for $0\le t\le 1$.}\eqno(*)$$
10511 We may have to split a cubic into many pieces before each
10512 piece corresponds to a unique offset.
10514 @<Split the cubic between |p| and |q|, if necessary, into cubics...@>=
10515 info(p)=zero_off+k_needed;
10517 @<Prepare for derivative computations;
10518 |goto not_found| if the current cubic is dead@>;
10519 @<Find the initial direction |(dx,dy)|@>;
10520 @<Update |info(p)| and find the offset $w_k$ such that
10521 $d_{k-1}\preceq(\\{dx},\\{dy})\prec d_k$; also advance |w0| for
10522 the direction change at |p|@>;
10523 @<Find the final direction |(dxin,dyin)|@>;
10524 @<Decide on the net change in pen offsets and set |turn_amt|@>;
10525 @<Complete the offset splitting process@>;
10526 w0=mp_pen_walk(mp, w0,turn_amt)
10528 @ @<Declare subroutines needed by |offset_prep|@>=
10529 pointer mp_pen_walk (MP mp,pointer w, integer k) {
10530 /* walk |k| steps around a pen from |w| */
10531 while ( k>0 ) { w=link(w); decr(k); };
10532 while ( k<0 ) { w=knil(w); incr(k); };
10536 @ The direction of a cubic $B(z_0,z_1,z_2,z_3;t)=\bigl(x(t),y(t)\bigr)$ can be
10537 calculated from the quadratic polynomials
10538 ${1\over3}x'(t)=B(x_1-x_0,x_2-x_1,x_3-x_2;t)$ and
10539 ${1\over3}y'(t)=B(y_1-y_0,y_2-y_1,y_3-y_2;t)$.
10540 Since we may be calculating directions from several cubics
10541 split from the current one, it is desirable to do these calculations
10542 without losing too much precision. ``Scaled up'' values of the
10543 derivatives, which will be less tainted by accumulated errors than
10544 derivatives found from the cubics themselves, are maintained in
10545 local variables |x0|, |x1|, and |x2|, representing $X_0=2^l(x_1-x_0)$,
10546 $X_1=2^l(x_2-x_1)$, and $X_2=2^l(x_3-x_2)$; similarly |y0|, |y1|, and~|y2|
10547 represent $Y_0=2^l(y_1-y_0)$, $Y_1=2^l(y_2-y_1)$, and $Y_2=2^l(y_3-y_2)$.
10549 @<Other local variables for |offset_prep|@>=
10550 integer x0,x1,x2,y0,y1,y2; /* representatives of derivatives */
10551 integer t0,t1,t2; /* coefficients of polynomial for slope testing */
10552 integer du,dv,dx,dy; /* for directions of the pen and the curve */
10553 integer dx0,dy0; /* initial direction for the first cubic in the curve */
10554 integer max_coef; /* used while scaling */
10555 integer x0a,x1a,x2a,y0a,y1a,y2a; /* intermediate values */
10556 fraction t; /* where the derivative passes through zero */
10557 fraction s; /* a temporary value */
10559 @ @<Prepare for derivative computations...@>=
10560 x0=right_x(p)-x_coord(p);
10561 x2=x_coord(q)-left_x(q);
10562 x1=left_x(q)-right_x(p);
10563 y0=right_y(p)-y_coord(p); y2=y_coord(q)-left_y(q);
10564 y1=left_y(q)-right_y(p);
10566 if ( abs(x1)>max_coef ) max_coef=abs(x1);
10567 if ( abs(x2)>max_coef ) max_coef=abs(x2);
10568 if ( abs(y0)>max_coef ) max_coef=abs(y0);
10569 if ( abs(y1)>max_coef ) max_coef=abs(y1);
10570 if ( abs(y2)>max_coef ) max_coef=abs(y2);
10571 if ( max_coef==0 ) goto NOT_FOUND;
10572 while ( max_coef<fraction_half ) {
10574 double(x0); double(x1); double(x2);
10575 double(y0); double(y1); double(y2);
10578 @ Let us first solve a special case of the problem: Suppose we
10579 know an index~$k$ such that either (i)~$d(t)\succeq d_{k-1}$ for all~$t$
10580 and $d(0)\prec d_k$, or (ii)~$d(t)\preceq d_k$ for all~$t$ and
10581 $d(0)\succ d_{k-1}$.
10582 Then, in a sense, we're halfway done, since one of the two relations
10583 in $(*)$ is satisfied, and the other couldn't be satisfied for
10584 any other value of~|k|.
10586 Actually, the conditions can be relaxed somewhat since a relation such as
10587 $d(t)\succeq d_{k-1}$ restricts $d(t)$ to a half plane when all that really
10588 matters is whether $d(t)$ crosses the ray in the $d_{k-1}$ direction from
10589 the origin. The condition for case~(i) becomes $d_{k-1}\preceq d(0)\prec d_k$
10590 and $d(t)$ never crosses the $d_{k-1}$ ray in the clockwise direction.
10591 Case~(ii) is similar except $d(t)$ cannot cross the $d_k$ ray in the
10592 counterclockwise direction.
10594 The |fin_offset_prep| subroutine solves the stated subproblem.
10595 It has a parameter called |rise| that is |1| in
10596 case~(i), |-1| in case~(ii). Parameters |x0| through |y2| represent
10597 the derivative of the cubic following |p|.
10598 The |w| parameter should point to offset~$w_k$ and |info(p)| should already
10599 be set properly. The |turn_amt| parameter gives the absolute value of the
10600 overall net change in pen offsets.
10602 @<Declare subroutines needed by |offset_prep|@>=
10603 void mp_fin_offset_prep (MP mp,pointer p, pointer w, integer
10604 x0,integer x1, integer x2, integer y0, integer y1, integer y2,
10605 integer rise, integer turn_amt) {
10606 pointer ww; /* for list manipulation */
10607 scaled du,dv; /* for slope calculation */
10608 integer t0,t1,t2; /* test coefficients */
10609 fraction t; /* place where the derivative passes a critical slope */
10610 fraction s; /* slope or reciprocal slope */
10611 integer v; /* intermediate value for updating |x0..y2| */
10612 pointer q; /* original |link(p)| */
10615 if ( rise>0 ) ww=link(w); /* a pointer to $w\k$ */
10616 else ww=knil(w); /* a pointer to $w_{k-1}$ */
10617 @<Compute test coefficients |(t0,t1,t2)|
10618 for $d(t)$ versus $d_k$ or $d_{k-1}$@>;
10619 t=mp_crossing_point(mp, t0,t1,t2);
10620 if ( t>=fraction_one ) {
10621 if ( turn_amt>0 ) t=fraction_one; else return;
10623 @<Split the cubic at $t$,
10624 and split off another cubic if the derivative crosses back@>;
10629 @ We want $B(\\{t0},\\{t1},\\{t2};t)$ to be the dot product of $d(t)$ with a
10630 $-90^\circ$ rotation of the vector from |w| to |ww|. This makes the resulting
10631 function cross from positive to negative when $d_{k-1}\preceq d(t)\preceq d_k$
10634 @<Compute test coefficients |(t0,t1,t2)| for $d(t)$ versus...@>=
10635 du=x_coord(ww)-x_coord(w); dv=y_coord(ww)-y_coord(w);
10636 if ( abs(du)>=abs(dv) ) {
10637 s=mp_make_fraction(mp, dv,du);
10638 t0=mp_take_fraction(mp, x0,s)-y0;
10639 t1=mp_take_fraction(mp, x1,s)-y1;
10640 t2=mp_take_fraction(mp, x2,s)-y2;
10641 if ( du<0 ) { negate(t0); negate(t1); negate(t2); }
10643 s=mp_make_fraction(mp, du,dv);
10644 t0=x0-mp_take_fraction(mp, y0,s);
10645 t1=x1-mp_take_fraction(mp, y1,s);
10646 t2=x2-mp_take_fraction(mp, y2,s);
10647 if ( dv<0 ) { negate(t0); negate(t1); negate(t2); }
10649 if ( t0<0 ) t0=0 /* should be positive without rounding error */
10651 @ The curve has crossed $d_k$ or $d_{k-1}$; its initial segment satisfies
10652 $(*)$, and it might cross again, yielding another solution of $(*)$.
10654 @<Split the cubic at $t$, and split off another...@>=
10656 mp_split_cubic(mp, p,t); p=link(p); info(p)=zero_off+rise;
10658 v=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10659 x0=t_of_the_way(v,x1);
10660 v=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10661 y0=t_of_the_way(v,y1);
10662 if ( turn_amt<0 ) {
10663 t1=t_of_the_way(t1,t2);
10664 if ( t1>0 ) t1=0; /* without rounding error, |t1| would be |<=0| */
10665 t=mp_crossing_point(mp, 0,-t1,-t2);
10666 if ( t>fraction_one ) t=fraction_one;
10668 if ( (t==fraction_one)&&(link(p)!=q) ) {
10669 info(link(p))=info(link(p))-rise;
10671 mp_split_cubic(mp, p,t); info(link(p))=zero_off-rise;
10672 v=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10673 x2=t_of_the_way(x1,v);
10674 v=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10675 y2=t_of_the_way(y1,v);
10680 @ Now we must consider the general problem of |offset_prep|, when
10681 nothing is known about a given cubic. We start by finding its
10682 direction in the vicinity of |t=0|.
10684 If $z'(t)=0$, the given cubic is numerically unstable but |offset_prep|
10685 has not yet introduced any more numerical errors. Thus we can compute
10686 the true initial direction for the given cubic, even if it is almost
10689 @<Find the initial direction |(dx,dy)|@>=
10691 if ( dx==0 && dy==0 ) {
10693 if ( dx==0 && dy==0 ) {
10697 if ( p==c ) { dx0=dx; dy0=dy; }
10699 @ @<Find the final direction |(dxin,dyin)|@>=
10701 if ( dxin==0 && dyin==0 ) {
10703 if ( dxin==0 && dyin==0 ) {
10708 @ The next step is to bracket the initial direction between consecutive
10709 edges of the pen polygon. We must be careful to turn clockwise only if
10710 this makes the turn less than $180^\circ$. (A $180^\circ$ turn must be
10711 counter-clockwise in order to make \&{doublepath} envelopes come out
10712 @:double_path_}{\&{doublepath} primitive@>
10713 right.) This code depends on |w0| being the offset for |(dxin,dyin)|.
10715 @<Update |info(p)| and find the offset $w_k$ such that...@>=
10716 turn_amt=mp_get_turn_amt(mp,w0,dx,dy,(mp_ab_vs_cd(mp, dy,dxin,dx,dyin)>=0));
10717 w=mp_pen_walk(mp, w0, turn_amt);
10719 info(p)=info(p)+turn_amt
10721 @ Decide how many pen offsets to go away from |w| in order to find the offset
10722 for |(dx,dy)|, going counterclockwise if |ccw| is |true|. This assumes that
10723 |w| is the offset for some direction $(x',y')$ from which the angle to |(dx,dy)|
10724 in the sense determined by |ccw| is less than or equal to $180^\circ$.
10726 If the pen polygon has only two edges, they could both be parallel
10727 to |(dx,dy)|. In this case, we must be careful to stop after crossing the first
10728 such edge in order to avoid an infinite loop.
10730 @<Declare subroutines needed by |offset_prep|@>=
10731 integer mp_get_turn_amt (MP mp,pointer w, scaled dx,
10732 scaled dy, boolean ccw) {
10733 pointer ww; /* a neighbor of knot~|w| */
10734 integer s; /* turn amount so far */
10735 integer t; /* |ab_vs_cd| result */
10740 t=mp_ab_vs_cd(mp, dy,(x_coord(ww)-x_coord(w)),
10741 dx,(y_coord(ww)-y_coord(w)));
10748 while ( mp_ab_vs_cd(mp, dy,(x_coord(w)-x_coord(ww)),
10749 dx,(y_coord(w)-y_coord(ww))) < 0) {
10757 @ When we're all done, the final offset is |w0| and the final curve direction
10758 is |(dxin,dyin)|. With this knowledge of the incoming direction at |c|, we
10759 can correct |info(c)| which was erroneously based on an incoming offset
10762 @d fix_by(A) info(c)=info(c)+(A)
10764 @<Fix the offset change in |info(c)| and set |c| to the return value of...@>=
10765 mp->spec_offset=info(c)-zero_off;
10766 if ( link(c)==c ) {
10767 info(c)=zero_off+n;
10770 while ( w0!=h ) { fix_by(1); w0=link(w0); };
10771 while ( info(c)<=zero_off-n ) fix_by(n);
10772 while ( info(c)>zero_off ) fix_by(-n);
10773 if ( (info(c)!=zero_off)&&(mp_ab_vs_cd(mp, dy0,dxin,dx0,dyin)>=0) ) fix_by(n);
10777 @ Finally we want to reduce the general problem to situations that
10778 |fin_offset_prep| can handle. We split the cubic into at most three parts
10779 with respect to $d_{k-1}$, and apply |fin_offset_prep| to each part.
10781 @<Complete the offset splitting process@>=
10783 @<Compute test coeff...@>;
10784 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set
10785 |t:=fraction_one+1|@>;
10786 if ( t>fraction_one ) {
10787 mp_fin_offset_prep(mp, p,w,x0,x1,x2,y0,y1,y2,1,turn_amt);
10789 mp_split_cubic(mp, p,t); r=link(p);
10790 x1a=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10791 x2a=t_of_the_way(x1a,x1);
10792 y1a=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10793 y2a=t_of_the_way(y1a,y1);
10794 mp_fin_offset_prep(mp, p,w,x0,x1a,x2a,y0,y1a,y2a,1,0); x0=x2a; y0=y2a;
10795 info(r)=zero_off-1;
10796 if ( turn_amt>=0 ) {
10797 t1=t_of_the_way(t1,t2);
10799 t=mp_crossing_point(mp, 0,-t1,-t2);
10800 if ( t>fraction_one ) t=fraction_one;
10801 @<Split off another rising cubic for |fin_offset_prep|@>;
10802 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,0);
10804 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,(-1-turn_amt));
10808 @ @<Split off another rising cubic for |fin_offset_prep|@>=
10809 mp_split_cubic(mp, r,t); info(link(r))=zero_off+1;
10810 x1a=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10811 x0a=t_of_the_way(x1,x1a);
10812 y1a=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10813 y0a=t_of_the_way(y1,y1a);
10814 mp_fin_offset_prep(mp, link(r),w,x0a,x1a,x2,y0a,y1a,y2,1,turn_amt);
10817 @ At this point, the direction of the incoming pen edge is |(-du,-dv)|.
10818 When the component of $d(t)$ perpendicular to |(-du,-dv)| crosses zero, we
10819 need to decide whether the directions are parallel or antiparallel. We
10820 can test this by finding the dot product of $d(t)$ and |(-du,-dv)|, but this
10821 should be avoided when the value of |turn_amt| already determines the
10822 answer. If |t2<0|, there is one crossing and it is antiparallel only if
10823 |turn_amt>=0|. If |turn_amt<0|, there should always be at least one
10824 crossing and the first crossing cannot be antiparallel.
10826 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set...@>=
10827 t=mp_crossing_point(mp, t0,t1,t2);
10828 if ( turn_amt>=0 ) {
10832 u0=t_of_the_way(x0,x1);
10833 u1=t_of_the_way(x1,x2);
10834 ss=mp_take_fraction(mp, -du,t_of_the_way(u0,u1));
10835 v0=t_of_the_way(y0,y1);
10836 v1=t_of_the_way(y1,y2);
10837 ss=ss+mp_take_fraction(mp, -dv,t_of_the_way(v0,v1));
10838 if ( ss<0 ) t=fraction_one+1;
10840 } else if ( t>fraction_one ) {
10844 @ @<Other local variables for |offset_prep|@>=
10845 integer u0,u1,v0,v1; /* intermediate values for $d(t)$ calculation */
10846 integer ss = 0; /* the part of the dot product computed so far */
10847 int d_sign; /* sign of overall change in direction for this cubic */
10849 @ If the cubic almost has a cusp, it is a numerically ill-conditioned
10850 problem to decide which way it loops around but that's OK as long we're
10851 consistent. To make \&{doublepath} envelopes work properly, reversing
10852 the path should always change the sign of |turn_amt|.
10854 @<Decide on the net change in pen offsets and set |turn_amt|@>=
10855 d_sign=mp_ab_vs_cd(mp, dx,dyin, dxin,dy);
10857 @<Check rotation direction based on node position@>
10861 if ( dy>0 ) d_sign=1; else d_sign=-1;
10863 if ( dx>0 ) d_sign=1; else d_sign=-1;
10866 @<Make |ss| negative if and only if the total change in direction is
10867 more than $180^\circ$@>;
10868 turn_amt=mp_get_turn_amt(mp, w, dxin, dyin, (d_sign>0));
10869 if ( ss<0 ) turn_amt=turn_amt-d_sign*n
10871 @ We check rotation direction by looking at the vector connecting the current
10872 node with the next. If its angle with incoming and outgoing tangents has the
10873 same sign, we pick this as |d_sign|, since it means we have a flex, not a cusp.
10874 Otherwise we proceed to the cusp code.
10876 @<Check rotation direction based on node position@>=
10877 u0=x_coord(q)-x_coord(p);
10878 u1=y_coord(q)-y_coord(p);
10879 d_sign = half(mp_ab_vs_cd(mp, dx, u1, u0, dy)+
10880 mp_ab_vs_cd(mp, u0, dyin, dxin, u1));
10882 @ In order to be invariant under path reversal, the result of this computation
10883 should not change when |x0|, |y0|, $\ldots$ are all negated and |(x0,y0)| is
10884 then swapped with |(x2,y2)|. We make use of the identities
10885 |take_fraction(-a,-b)=take_fraction(a,b)| and
10886 |t_of_the_way(-a,-b)=-(t_of_the_way(a,b))|.
10888 @<Make |ss| negative if and only if the total change in direction is...@>=
10889 t0=half(mp_take_fraction(mp, x0,y2))-half(mp_take_fraction(mp, x2,y0));
10890 t1=half(mp_take_fraction(mp, x1,(y0+y2)))-half(mp_take_fraction(mp, y1,(x0+x2)));
10891 if ( t0==0 ) t0=d_sign; /* path reversal always negates |d_sign| */
10893 t=mp_crossing_point(mp, t0,t1,-t0);
10894 u0=t_of_the_way(x0,x1);
10895 u1=t_of_the_way(x1,x2);
10896 v0=t_of_the_way(y0,y1);
10897 v1=t_of_the_way(y1,y2);
10899 t=mp_crossing_point(mp, -t0,t1,t0);
10900 u0=t_of_the_way(x2,x1);
10901 u1=t_of_the_way(x1,x0);
10902 v0=t_of_the_way(y2,y1);
10903 v1=t_of_the_way(y1,y0);
10905 ss=mp_take_fraction(mp, (x0+x2),t_of_the_way(u0,u1))+
10906 mp_take_fraction(mp, (y0+y2),t_of_the_way(v0,v1))
10908 @ Here's a routine that prints an envelope spec in symbolic form. It assumes
10909 that the |cur_pen| has not been walked around to the first offset.
10912 void mp_print_spec (MP mp,pointer cur_spec, pointer cur_pen, char *s) {
10913 pointer p,q; /* list traversal */
10914 pointer w; /* the current pen offset */
10915 mp_print_diagnostic(mp, "Envelope spec",s,true);
10916 p=cur_spec; w=mp_pen_walk(mp, cur_pen,mp->spec_offset);
10918 mp_print_two(mp, x_coord(cur_spec),y_coord(cur_spec));
10919 mp_print(mp, " % beginning with offset ");
10920 mp_print_two(mp, x_coord(w),y_coord(w));
10924 @<Print the cubic between |p| and |q|@>;
10926 if ((p==cur_spec) || (info(p)!=zero_off))
10929 if ( info(p)!=zero_off ) {
10930 @<Update |w| as indicated by |info(p)| and print an explanation@>;
10932 } while (p!=cur_spec);
10933 mp_print_nl(mp, " & cycle");
10934 mp_end_diagnostic(mp, true);
10937 @ @<Update |w| as indicated by |info(p)| and print an explanation@>=
10939 w=mp_pen_walk(mp, w, (info(p)-zero_off));
10940 mp_print(mp, " % ");
10941 if ( info(p)>zero_off ) mp_print(mp, "counter");
10942 mp_print(mp, "clockwise to offset ");
10943 mp_print_two(mp, x_coord(w),y_coord(w));
10946 @ @<Print the cubic between |p| and |q|@>=
10948 mp_print_nl(mp, " ..controls ");
10949 mp_print_two(mp, right_x(p),right_y(p));
10950 mp_print(mp, " and ");
10951 mp_print_two(mp, left_x(q),left_y(q));
10952 mp_print_nl(mp, " ..");
10953 mp_print_two(mp, x_coord(q),y_coord(q));
10956 @ Once we have an envelope spec, the remaining task to construct the actual
10957 envelope by offsetting each cubic as determined by the |info| fields in
10958 the knots. First we use |offset_prep| to convert the |c| into an envelope
10959 spec. Then we add the offsets so that |c| becomes a cyclic path that represents
10962 The |ljoin| and |miterlim| parameters control the treatment of points where the
10963 pen offset changes, and |lcap| controls the endpoints of a \&{doublepath}.
10964 The endpoints are easily located because |c| is given in undoubled form
10965 and then doubled in this procedure. We use |spec_p1| and |spec_p2| to keep
10966 track of the endpoints and treat them like very sharp corners.
10967 Butt end caps are treated like beveled joins; round end caps are treated like
10968 round joins; and square end caps are achieved by setting |join_type:=3|.
10970 None of these parameters apply to inside joins where the convolution tracing
10971 has retrograde lines. In such cases we use a simple connect-the-endpoints
10972 approach that is achieved by setting |join_type:=2|.
10974 @c @<Declare a function called |insert_knot|@>;
10975 pointer mp_make_envelope (MP mp,pointer c, pointer h, small_number ljoin,
10976 small_number lcap, scaled miterlim) {
10977 pointer p,q,r,q0; /* for manipulating the path */
10978 int join_type=0; /* codes |0..3| for mitered, round, beveled, or square */
10979 pointer w,w0; /* the pen knot for the current offset */
10980 scaled qx,qy; /* unshifted coordinates of |q| */
10981 halfword k,k0; /* controls pen edge insertion */
10982 @<Other local variables for |make_envelope|@>;
10983 dxin=0; dyin=0; dxout=0; dyout=0;
10984 mp->spec_p1=null; mp->spec_p2=null;
10985 @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>;
10986 @<Use |offset_prep| to compute the envelope spec then walk |h| around to
10987 the initial offset@>;
10992 qx=x_coord(q); qy=y_coord(q);
10995 if ( k!=zero_off ) {
10996 @<Set |join_type| to indicate how to handle offset changes at~|q|@>;
10998 @<Add offset |w| to the cubic from |p| to |q|@>;
10999 while ( k!=zero_off ) {
11000 @<Step |w| and move |k| one step closer to |zero_off|@>;
11001 if ( (join_type==1)||(k==zero_off) )
11002 q=mp_insert_knot(mp, q,qx+x_coord(w),qy+y_coord(w));
11004 if ( q!=link(p) ) {
11005 @<Set |p=link(p)| and add knots between |p| and |q| as
11006 required by |join_type|@>;
11013 @ @<Use |offset_prep| to compute the envelope spec then walk |h| around to...@>=
11014 c=mp_offset_prep(mp, c,h);
11015 if ( mp->internal[mp_tracing_specs]>0 )
11016 mp_print_spec(mp, c,h,"");
11017 h=mp_pen_walk(mp, h,mp->spec_offset)
11019 @ Mitered and squared-off joins depend on path directions that are difficult to
11020 compute for degenerate cubics. The envelope spec computed by |offset_prep| can
11021 have degenerate cubics only if the entire cycle collapses to a single
11022 degenerate cubic. Setting |join_type:=2| in this case makes the computed
11023 envelope degenerate as well.
11025 @<Set |join_type| to indicate how to handle offset changes at~|q|@>=
11026 if ( k<zero_off ) {
11029 if ( (q!=mp->spec_p1)&&(q!=mp->spec_p2) ) join_type=ljoin;
11030 else if ( lcap==2 ) join_type=3;
11031 else join_type=2-lcap;
11032 if ( (join_type==0)||(join_type==3) ) {
11033 @<Set the incoming and outgoing directions at |q|; in case of
11034 degeneracy set |join_type:=2|@>;
11035 if ( join_type==0 ) {
11036 @<If |miterlim| is less than the secant of half the angle at |q|
11037 then set |join_type:=2|@>;
11042 @ @<If |miterlim| is less than the secant of half the angle at |q|...@>=
11044 tmp=mp_take_fraction(mp, miterlim,fraction_half+
11045 half(mp_take_fraction(mp, dxin,dxout)+mp_take_fraction(mp, dyin,dyout)));
11047 if ( mp_take_scaled(mp, miterlim,tmp)<unity ) join_type=2;
11050 @ @<Other local variables for |make_envelope|@>=
11051 fraction dxin,dyin,dxout,dyout; /* directions at |q| when square or mitered */
11052 scaled tmp; /* a temporary value */
11054 @ The coordinates of |p| have already been shifted unless |p| is the first
11055 knot in which case they get shifted at the very end.
11057 @<Add offset |w| to the cubic from |p| to |q|@>=
11058 right_x(p)=right_x(p)+x_coord(w);
11059 right_y(p)=right_y(p)+y_coord(w);
11060 left_x(q)=left_x(q)+x_coord(w);
11061 left_y(q)=left_y(q)+y_coord(w);
11062 x_coord(q)=x_coord(q)+x_coord(w);
11063 y_coord(q)=y_coord(q)+y_coord(w);
11064 left_type(q)=mp_explicit;
11065 right_type(q)=mp_explicit
11067 @ @<Step |w| and move |k| one step closer to |zero_off|@>=
11068 if ( k>zero_off ){ w=link(w); decr(k); }
11069 else { w=knil(w); incr(k); }
11071 @ The cubic from |q| to the new knot at |(x,y)| becomes a line segment and
11072 the |right_x| and |right_y| fields of |r| are set from |q|. This is done in
11073 case the cubic containing these control points is ``yet to be examined.''
11075 @<Declare a function called |insert_knot|@>=
11076 pointer mp_insert_knot (MP mp,pointer q, scaled x, scaled y) {
11077 /* returns the inserted knot */
11078 pointer r; /* the new knot */
11079 r=mp_get_node(mp, knot_node_size);
11080 link(r)=link(q); link(q)=r;
11081 right_x(r)=right_x(q);
11082 right_y(r)=right_y(q);
11085 right_x(q)=x_coord(q);
11086 right_y(q)=y_coord(q);
11087 left_x(r)=x_coord(r);
11088 left_y(r)=y_coord(r);
11089 left_type(r)=mp_explicit;
11090 right_type(r)=mp_explicit;
11091 originator(r)=mp_program_code;
11095 @ After setting |p:=link(p)|, either |join_type=1| or |q=link(p)|.
11097 @<Set |p=link(p)| and add knots between |p| and |q| as...@>=
11100 if ( (join_type==0)||(join_type==3) ) {
11101 if ( join_type==0 ) {
11102 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>
11104 @<Make |r| the last of two knots inserted between |p| and |q| to form a
11108 right_x(r)=x_coord(r);
11109 right_y(r)=y_coord(r);
11114 @ For very small angles, adding a knot is unnecessary and would cause numerical
11115 problems, so we just set |r:=null| in that case.
11117 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>=
11119 det=mp_take_fraction(mp, dyout,dxin)-mp_take_fraction(mp, dxout,dyin);
11120 if ( abs(det)<26844 ) {
11121 r=null; /* sine $<10^{-4}$ */
11123 tmp=mp_take_fraction(mp, x_coord(q)-x_coord(p),dyout)-
11124 mp_take_fraction(mp, y_coord(q)-y_coord(p),dxout);
11125 tmp=mp_make_fraction(mp, tmp,det);
11126 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11127 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11131 @ @<Other local variables for |make_envelope|@>=
11132 fraction det; /* a determinant used for mitered join calculations */
11134 @ @<Make |r| the last of two knots inserted between |p| and |q| to form a...@>=
11136 ht_x=y_coord(w)-y_coord(w0);
11137 ht_y=x_coord(w0)-x_coord(w);
11138 while ( (abs(ht_x)<fraction_half)&&(abs(ht_y)<fraction_half) ) {
11139 ht_x+=ht_x; ht_y+=ht_y;
11141 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range dot
11142 product with |(ht_x,ht_y)|@>;
11143 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxin,ht_x)+
11144 mp_take_fraction(mp, dyin,ht_y));
11145 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11146 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11147 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxout,ht_x)+
11148 mp_take_fraction(mp, dyout,ht_y));
11149 r=mp_insert_knot(mp, r,x_coord(q)+mp_take_fraction(mp, tmp,dxout),
11150 y_coord(q)+mp_take_fraction(mp, tmp,dyout));
11153 @ @<Other local variables for |make_envelope|@>=
11154 fraction ht_x,ht_y; /* perpendicular to the segment from |p| to |q| */
11155 scaled max_ht; /* maximum height of the pen polygon above the |w0|-|w| line */
11156 halfword kk; /* keeps track of the pen vertices being scanned */
11157 pointer ww; /* the pen vertex being tested */
11159 @ The dot product of the vector from |w0| to |ww| with |(ht_x,ht_y)| ranges
11160 from zero to |max_ht|.
11162 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range...@>=
11167 @<Step |ww| and move |kk| one step closer to |k0|@>;
11168 if ( kk==k0 ) break;
11169 tmp=mp_take_fraction(mp, (x_coord(ww)-x_coord(w0)),ht_x)+
11170 mp_take_fraction(mp, (y_coord(ww)-y_coord(w0)),ht_y);
11171 if ( tmp>max_ht ) max_ht=tmp;
11175 @ @<Step |ww| and move |kk| one step closer to |k0|@>=
11176 if ( kk>k0 ) { ww=link(ww); decr(kk); }
11177 else { ww=knil(ww); incr(kk); }
11179 @ @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>=
11180 if ( left_type(c)==mp_endpoint ) {
11181 mp->spec_p1=mp_htap_ypoc(mp, c);
11182 mp->spec_p2=mp->path_tail;
11183 originator(mp->spec_p1)=mp_program_code;
11184 link(mp->spec_p2)=link(mp->spec_p1);
11185 link(mp->spec_p1)=c;
11186 mp_remove_cubic(mp, mp->spec_p1);
11188 if ( c!=link(c) ) {
11189 originator(mp->spec_p2)=mp_program_code;
11190 mp_remove_cubic(mp, mp->spec_p2);
11192 @<Make |c| look like a cycle of length one@>;
11196 @ @<Make |c| look like a cycle of length one@>=
11198 left_type(c)=mp_explicit; right_type(c)=mp_explicit;
11199 left_x(c)=x_coord(c); left_y(c)=y_coord(c);
11200 right_x(c)=x_coord(c); right_y(c)=y_coord(c);
11203 @ In degenerate situations we might have to look at the knot preceding~|q|.
11204 That knot is |p| but if |p<>c|, its coordinates have already been offset by |w|.
11206 @<Set the incoming and outgoing directions at |q|; in case of...@>=
11207 dxin=x_coord(q)-left_x(q);
11208 dyin=y_coord(q)-left_y(q);
11209 if ( (dxin==0)&&(dyin==0) ) {
11210 dxin=x_coord(q)-right_x(p);
11211 dyin=y_coord(q)-right_y(p);
11212 if ( (dxin==0)&&(dyin==0) ) {
11213 dxin=x_coord(q)-x_coord(p);
11214 dyin=y_coord(q)-y_coord(p);
11215 if ( p!=c ) { /* the coordinates of |p| have been offset by |w| */
11216 dxin=dxin+x_coord(w);
11217 dyin=dyin+y_coord(w);
11221 tmp=mp_pyth_add(mp, dxin,dyin);
11225 dxin=mp_make_fraction(mp, dxin,tmp);
11226 dyin=mp_make_fraction(mp, dyin,tmp);
11227 @<Set the outgoing direction at |q|@>;
11230 @ If |q=c| then the coordinates of |r| and the control points between |q|
11231 and~|r| have already been offset by |h|.
11233 @<Set the outgoing direction at |q|@>=
11234 dxout=right_x(q)-x_coord(q);
11235 dyout=right_y(q)-y_coord(q);
11236 if ( (dxout==0)&&(dyout==0) ) {
11238 dxout=left_x(r)-x_coord(q);
11239 dyout=left_y(r)-y_coord(q);
11240 if ( (dxout==0)&&(dyout==0) ) {
11241 dxout=x_coord(r)-x_coord(q);
11242 dyout=y_coord(r)-y_coord(q);
11246 dxout=dxout-x_coord(h);
11247 dyout=dyout-y_coord(h);
11249 tmp=mp_pyth_add(mp, dxout,dyout);
11250 if ( tmp==0 ) mp_confusion(mp, "degenerate spec");
11251 @:this can't happen degerate spec}{\quad degenerate spec@>
11252 dxout=mp_make_fraction(mp, dxout,tmp);
11253 dyout=mp_make_fraction(mp, dyout,tmp)
11255 @* \[23] Direction and intersection times.
11256 A path of length $n$ is defined parametrically by functions $x(t)$ and
11257 $y(t)$, for |0<=t<=n|; we can regard $t$ as the ``time'' at which the path
11258 reaches the point $\bigl(x(t),y(t)\bigr)$. In this section of the program
11259 we shall consider operations that determine special times associated with
11260 given paths: the first time that a path travels in a given direction, and
11261 a pair of times at which two paths cross each other.
11263 @ Let's start with the easier task. The function |find_direction_time| is
11264 given a direction |(x,y)| and a path starting at~|h|. If the path never
11265 travels in direction |(x,y)|, the direction time will be~|-1|; otherwise
11266 it will be nonnegative.
11268 Certain anomalous cases can arise: If |(x,y)=(0,0)|, so that the given
11269 direction is undefined, the direction time will be~0. If $\bigl(x'(t),
11270 y'(t)\bigr)=(0,0)$, so that the path direction is undefined, it will be
11271 assumed to match any given direction at time~|t|.
11273 The routine solves this problem in nondegenerate cases by rotating the path
11274 and the given direction so that |(x,y)=(1,0)|; i.e., the main task will be
11275 to find when a given path first travels ``due east.''
11278 scaled mp_find_direction_time (MP mp,scaled x, scaled y, pointer h) {
11279 scaled max; /* $\max\bigl(\vert x\vert,\vert y\vert\bigr)$ */
11280 pointer p,q; /* for list traversal */
11281 scaled n; /* the direction time at knot |p| */
11282 scaled tt; /* the direction time within a cubic */
11283 @<Other local variables for |find_direction_time|@>;
11284 @<Normalize the given direction for better accuracy;
11285 but |return| with zero result if it's zero@>;
11288 if ( right_type(p)==mp_endpoint ) break;
11290 @<Rotate the cubic between |p| and |q|; then
11291 |goto found| if the rotated cubic travels due east at some time |tt|;
11292 but |break| if an entire cyclic path has been traversed@>;
11300 @ @<Normalize the given direction for better accuracy...@>=
11301 if ( abs(x)<abs(y) ) {
11302 x=mp_make_fraction(mp, x,abs(y));
11303 if ( y>0 ) y=fraction_one; else y=-fraction_one;
11304 } else if ( x==0 ) {
11307 y=mp_make_fraction(mp, y,abs(x));
11308 if ( x>0 ) x=fraction_one; else x=-fraction_one;
11311 @ Since we're interested in the tangent directions, we work with the
11312 derivative $${\textstyle1\over3}B'(x_0,x_1,x_2,x_3;t)=
11313 B(x_1-x_0,x_2-x_1,x_3-x_2;t)$$ instead of
11314 $B(x_0,x_1,x_2,x_3;t)$ itself. The derived coefficients are also scaled up
11315 in order to achieve better accuracy.
11317 The given path may turn abruptly at a knot, and it might pass the critical
11318 tangent direction at such a time. Therefore we remember the direction |phi|
11319 in which the previous rotated cubic was traveling. (The value of |phi| will be
11320 undefined on the first cubic, i.e., when |n=0|.)
11322 @<Rotate the cubic between |p| and |q|; then...@>=
11324 @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples of the control
11325 points of the rotated derivatives@>;
11326 if ( y1==0 ) if ( x1>=0 ) goto FOUND;
11328 @<Exit to |found| if an eastward direction occurs at knot |p|@>;
11331 if ( (x3!=0)||(y3!=0) ) phi=mp_n_arg(mp, x3,y3);
11332 @<Exit to |found| if the curve whose derivatives are specified by
11333 |x1,x2,x3,y1,y2,y3| travels eastward at some time~|tt|@>
11335 @ @<Other local variables for |find_direction_time|@>=
11336 scaled x1,x2,x3,y1,y2,y3; /* multiples of rotated derivatives */
11337 angle theta,phi; /* angles of exit and entry at a knot */
11338 fraction t; /* temp storage */
11340 @ @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples...@>=
11341 x1=right_x(p)-x_coord(p); x2=left_x(q)-right_x(p);
11342 x3=x_coord(q)-left_x(q);
11343 y1=right_y(p)-y_coord(p); y2=left_y(q)-right_y(p);
11344 y3=y_coord(q)-left_y(q);
11346 if ( abs(x2)>max ) max=abs(x2);
11347 if ( abs(x3)>max ) max=abs(x3);
11348 if ( abs(y1)>max ) max=abs(y1);
11349 if ( abs(y2)>max ) max=abs(y2);
11350 if ( abs(y3)>max ) max=abs(y3);
11351 if ( max==0 ) goto FOUND;
11352 while ( max<fraction_half ){
11353 max+=max; x1+=x1; x2+=x2; x3+=x3;
11354 y1+=y1; y2+=y2; y3+=y3;
11356 t=x1; x1=mp_take_fraction(mp, x1,x)+mp_take_fraction(mp, y1,y);
11357 y1=mp_take_fraction(mp, y1,x)-mp_take_fraction(mp, t,y);
11358 t=x2; x2=mp_take_fraction(mp, x2,x)+mp_take_fraction(mp, y2,y);
11359 y2=mp_take_fraction(mp, y2,x)-mp_take_fraction(mp, t,y);
11360 t=x3; x3=mp_take_fraction(mp, x3,x)+mp_take_fraction(mp, y3,y);
11361 y3=mp_take_fraction(mp, y3,x)-mp_take_fraction(mp, t,y)
11363 @ @<Exit to |found| if an eastward direction occurs at knot |p|@>=
11364 theta=mp_n_arg(mp, x1,y1);
11365 if ( theta>=0 ) if ( phi<=0 ) if ( phi>=theta-one_eighty_deg ) goto FOUND;
11366 if ( theta<=0 ) if ( phi>=0 ) if ( phi<=theta+one_eighty_deg ) goto FOUND
11368 @ In this step we want to use the |crossing_point| routine to find the
11369 roots of the quadratic equation $B(y_1,y_2,y_3;t)=0$.
11370 Several complications arise: If the quadratic equation has a double root,
11371 the curve never crosses zero, and |crossing_point| will find nothing;
11372 this case occurs iff $y_1y_3=y_2^2$ and $y_1y_2<0$. If the quadratic
11373 equation has simple roots, or only one root, we may have to negate it
11374 so that $B(y_1,y_2,y_3;t)$ crosses from positive to negative at its first root.
11375 And finally, we need to do special things if $B(y_1,y_2,y_3;t)$ is
11378 @ @<Exit to |found| if the curve whose derivatives are specified by...@>=
11379 if ( x1<0 ) if ( x2<0 ) if ( x3<0 ) goto DONE;
11380 if ( mp_ab_vs_cd(mp, y1,y3,y2,y2)==0 ) {
11381 @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11382 either |goto found| or |goto done|@>;
11385 if ( y1<0 ) { y1=-y1; y2=-y2; y3=-y3; }
11386 else if ( y2>0 ){ y2=-y2; y3=-y3; };
11388 @<Check the places where $B(y_1,y_2,y_3;t)=0$ to see if
11389 $B(x_1,x_2,x_3;t)\ge0$@>;
11392 @ The quadratic polynomial $B(y_1,y_2,y_3;t)$ begins |>=0| and has at most
11393 two roots, because we know that it isn't identically zero.
11395 It must be admitted that the |crossing_point| routine is not perfectly accurate;
11396 rounding errors might cause it to find a root when $y_1y_3>y_2^2$, or to
11397 miss the roots when $y_1y_3<y_2^2$. The rotation process is itself
11398 subject to rounding errors. Yet this code optimistically tries to
11399 do the right thing.
11401 @d we_found_it { tt=(t+04000) / 010000; goto FOUND; }
11403 @<Check the places where $B(y_1,y_2,y_3;t)=0$...@>=
11404 t=mp_crossing_point(mp, y1,y2,y3);
11405 if ( t>fraction_one ) goto DONE;
11406 y2=t_of_the_way(y2,y3);
11407 x1=t_of_the_way(x1,x2);
11408 x2=t_of_the_way(x2,x3);
11409 x1=t_of_the_way(x1,x2);
11410 if ( x1>=0 ) we_found_it;
11412 tt=t; t=mp_crossing_point(mp, 0,-y2,-y3);
11413 if ( t>fraction_one ) goto DONE;
11414 x1=t_of_the_way(x1,x2);
11415 x2=t_of_the_way(x2,x3);
11416 if ( t_of_the_way(x1,x2)>=0 ) {
11417 t=t_of_the_way(tt,fraction_one); we_found_it;
11420 @ @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11421 either |goto found| or |goto done|@>=
11423 if ( mp_ab_vs_cd(mp, y1,y2,0,0)<0 ) {
11424 t=mp_make_fraction(mp, y1,y1-y2);
11425 x1=t_of_the_way(x1,x2);
11426 x2=t_of_the_way(x2,x3);
11427 if ( t_of_the_way(x1,x2)>=0 ) we_found_it;
11428 } else if ( y3==0 ) {
11430 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|@>;
11431 } else if ( x3>=0 ) {
11432 tt=unity; goto FOUND;
11438 @ At this point we know that the derivative of |y(t)| is identically zero,
11439 and that |x1<0|; but either |x2>=0| or |x3>=0|, so there's some hope of
11442 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|...@>=
11444 t=mp_crossing_point(mp, -x1,-x2,-x3);
11445 if ( t<=fraction_one ) we_found_it;
11446 if ( mp_ab_vs_cd(mp, x1,x3,x2,x2)<=0 ) {
11447 t=mp_make_fraction(mp, x1,x1-x2); we_found_it;
11451 @ The intersection of two cubics can be found by an interesting variant
11452 of the general bisection scheme described in the introduction to
11454 Given $w(t)=B(w_0,w_1,w_2,w_3;t)$ and $z(t)=B(z_0,z_1,z_2,z_3;t)$,
11455 we wish to find a pair of times $(t_1,t_2)$ such that $w(t_1)=z(t_2)$,
11456 if an intersection exists. First we find the smallest rectangle that
11457 encloses the points $\{w_0,w_1,w_2,w_3\}$ and check that it overlaps
11458 the smallest rectangle that encloses
11459 $\{z_0,z_1,z_2,z_3\}$; if not, the cubics certainly don't intersect.
11460 But if the rectangles do overlap, we bisect the intervals, getting
11461 new cubics $w'$ and~$w''$, $z'$~and~$z''$; the intersection routine first
11462 tries for an intersection between $w'$ and~$z'$, then (if unsuccessful)
11463 between $w'$ and~$z''$, then (if still unsuccessful) between $w''$ and~$z'$,
11464 finally (if thrice unsuccessful) between $w''$ and~$z''$. After $l$~successful
11465 levels of bisection we will have determined the intersection times $t_1$
11466 and~$t_2$ to $l$~bits of accuracy.
11468 \def\submin{_{\rm min}} \def\submax{_{\rm max}}
11469 As before, it is better to work with the numbers $W_k=2^l(w_k-w_{k-1})$
11470 and $Z_k=2^l(z_k-z_{k-1})$ rather than the coefficients $w_k$ and $z_k$
11471 themselves. We also need one other quantity, $\Delta=2^l(w_0-z_0)$,
11472 to determine when the enclosing rectangles overlap. Here's why:
11473 The $x$~coordinates of~$w(t)$ are between $u\submin$ and $u\submax$,
11474 and the $x$~coordinates of~$z(t)$ are between $x\submin$ and $x\submax$,
11475 if we write $w_k=(u_k,v_k)$ and $z_k=(x_k,y_k)$ and $u\submin=
11476 \min(u_0,u_1,u_2,u_3)$, etc. These intervals of $x$~coordinates
11477 overlap if and only if $u\submin\L x\submax$ and
11478 $x\submin\L u\submax$. Letting
11479 $$U\submin=\min(0,U_1,U_1+U_2,U_1+U_2+U_3),\;
11480 U\submax=\max(0,U_1,U_1+U_2,U_1+U_2+U_3),$$
11481 we have $u\submin=2^lu_0+U\submin$, etc.; the condition for overlap
11483 $$X\submin-U\submax\L 2^l(u_0-x_0)\L X\submax-U\submin.$$
11484 Thus we want to maintain the quantity $2^l(u_0-x_0)$; similarly,
11485 the quantity $2^l(v_0-y_0)$ accounts for the $y$~coordinates. The
11486 coordinates of $\Delta=2^l(w_0-z_0)$ must stay bounded as $l$ increases,
11487 because of the overlap condition; i.e., we know that $X\submin$,
11488 $X\submax$, and their relatives are bounded, hence $X\submax-
11489 U\submin$ and $X\submin-U\submax$ are bounded.
11491 @ Incidentally, if the given cubics intersect more than once, the process
11492 just sketched will not necessarily find the lexicographically smallest pair
11493 $(t_1,t_2)$. The solution actually obtained will be smallest in ``shuffled
11494 order''; i.e., if $t_1=(.a_1a_2\ldots a_{16})_2$ and
11495 $t_2=(.b_1b_2\ldots b_{16})_2$, then we will minimize
11496 $a_1b_1a_2b_2\ldots a_{16}b_{16}$, not
11497 $a_1a_2\ldots a_{16}b_1b_2\ldots b_{16}$.
11498 Shuffled order agrees with lexicographic order if all pairs of solutions
11499 $(t_1,t_2)$ and $(t_1',t_2')$ have the property that $t_1<t_1'$ iff
11500 $t_2<t_2'$; but in general, lexicographic order can be quite different,
11501 and the bisection algorithm would be substantially less efficient if it were
11502 constrained by lexicographic order.
11504 For example, suppose that an overlap has been found for $l=3$ and
11505 $(t_1,t_2)= (.101,.011)$ in binary, but that no overlap is produced by
11506 either of the alternatives $(.1010,.0110)$, $(.1010,.0111)$ at level~4.
11507 Then there is probably an intersection in one of the subintervals
11508 $(.1011,.011x)$; but lexicographic order would require us to explore
11509 $(.1010,.1xxx)$ and $(.1011,.00xx)$ and $(.1011,.010x)$ first. We wouldn't
11510 want to store all of the subdivision data for the second path, so the
11511 subdivisions would have to be regenerated many times. Such inefficiencies
11512 would be associated with every `1' in the binary representation of~$t_1$.
11514 @ The subdivision process introduces rounding errors, hence we need to
11515 make a more liberal test for overlap. It is not hard to show that the
11516 computed values of $U_i$ differ from the truth by at most~$l$, on
11517 level~$l$, hence $U\submin$ and $U\submax$ will be at most $3l$ in error.
11518 If $\beta$ is an upper bound on the absolute error in the computed
11519 components of $\Delta=(|delx|,|dely|)$ on level~$l$, we will replace
11520 the test `$X\submin-U\submax\L|delx|$' by the more liberal test
11521 `$X\submin-U\submax\L|delx|+|tol|$', where $|tol|=6l+\beta$.
11523 More accuracy is obtained if we try the algorithm first with |tol=0|;
11524 the more liberal tolerance is used only if an exact approach fails.
11525 It is convenient to do this double-take by letting `3' in the preceding
11526 paragraph be a parameter, which is first 0, then 3.
11529 unsigned int tol_step; /* either 0 or 3, usually */
11531 @ We shall use an explicit stack to implement the recursive bisection
11532 method described above. The |bisect_stack| array will contain numerous 5-word
11533 packets like $(U_1,U_2,U_3,U\submin,U\submax)$, as well as 20-word packets
11534 comprising the 5-word packets for $U$, $V$, $X$, and~$Y$.
11536 The following macros define the allocation of stack positions to
11537 the quantities needed for bisection-intersection.
11539 @d stack_1(A) mp->bisect_stack[(A)] /* $U_1$, $V_1$, $X_1$, or $Y_1$ */
11540 @d stack_2(A) mp->bisect_stack[(A)+1] /* $U_2$, $V_2$, $X_2$, or $Y_2$ */
11541 @d stack_3(A) mp->bisect_stack[(A)+2] /* $U_3$, $V_3$, $X_3$, or $Y_3$ */
11542 @d stack_min(A) mp->bisect_stack[(A)+3]
11543 /* $U\submin$, $V\submin$, $X\submin$, or $Y\submin$ */
11544 @d stack_max(A) mp->bisect_stack[(A)+4]
11545 /* $U\submax$, $V\submax$, $X\submax$, or $Y\submax$ */
11546 @d int_packets 20 /* number of words to represent $U_k$, $V_k$, $X_k$, and $Y_k$ */
11548 @d u_packet(A) ((A)-5)
11549 @d v_packet(A) ((A)-10)
11550 @d x_packet(A) ((A)-15)
11551 @d y_packet(A) ((A)-20)
11552 @d l_packets (mp->bisect_ptr-int_packets)
11553 @d r_packets mp->bisect_ptr
11554 @d ul_packet u_packet(l_packets) /* base of $U'_k$ variables */
11555 @d vl_packet v_packet(l_packets) /* base of $V'_k$ variables */
11556 @d xl_packet x_packet(l_packets) /* base of $X'_k$ variables */
11557 @d yl_packet y_packet(l_packets) /* base of $Y'_k$ variables */
11558 @d ur_packet u_packet(r_packets) /* base of $U''_k$ variables */
11559 @d vr_packet v_packet(r_packets) /* base of $V''_k$ variables */
11560 @d xr_packet x_packet(r_packets) /* base of $X''_k$ variables */
11561 @d yr_packet y_packet(r_packets) /* base of $Y''_k$ variables */
11563 @d u1l stack_1(ul_packet) /* $U'_1$ */
11564 @d u2l stack_2(ul_packet) /* $U'_2$ */
11565 @d u3l stack_3(ul_packet) /* $U'_3$ */
11566 @d v1l stack_1(vl_packet) /* $V'_1$ */
11567 @d v2l stack_2(vl_packet) /* $V'_2$ */
11568 @d v3l stack_3(vl_packet) /* $V'_3$ */
11569 @d x1l stack_1(xl_packet) /* $X'_1$ */
11570 @d x2l stack_2(xl_packet) /* $X'_2$ */
11571 @d x3l stack_3(xl_packet) /* $X'_3$ */
11572 @d y1l stack_1(yl_packet) /* $Y'_1$ */
11573 @d y2l stack_2(yl_packet) /* $Y'_2$ */
11574 @d y3l stack_3(yl_packet) /* $Y'_3$ */
11575 @d u1r stack_1(ur_packet) /* $U''_1$ */
11576 @d u2r stack_2(ur_packet) /* $U''_2$ */
11577 @d u3r stack_3(ur_packet) /* $U''_3$ */
11578 @d v1r stack_1(vr_packet) /* $V''_1$ */
11579 @d v2r stack_2(vr_packet) /* $V''_2$ */
11580 @d v3r stack_3(vr_packet) /* $V''_3$ */
11581 @d x1r stack_1(xr_packet) /* $X''_1$ */
11582 @d x2r stack_2(xr_packet) /* $X''_2$ */
11583 @d x3r stack_3(xr_packet) /* $X''_3$ */
11584 @d y1r stack_1(yr_packet) /* $Y''_1$ */
11585 @d y2r stack_2(yr_packet) /* $Y''_2$ */
11586 @d y3r stack_3(yr_packet) /* $Y''_3$ */
11588 @d stack_dx mp->bisect_stack[mp->bisect_ptr] /* stacked value of |delx| */
11589 @d stack_dy mp->bisect_stack[mp->bisect_ptr+1] /* stacked value of |dely| */
11590 @d stack_tol mp->bisect_stack[mp->bisect_ptr+2] /* stacked value of |tol| */
11591 @d stack_uv mp->bisect_stack[mp->bisect_ptr+3] /* stacked value of |uv| */
11592 @d stack_xy mp->bisect_stack[mp->bisect_ptr+4] /* stacked value of |xy| */
11593 @d int_increment (int_packets+int_packets+5) /* number of stack words per level */
11596 integer *bisect_stack;
11597 unsigned int bisect_ptr;
11599 @ @<Allocate or initialize ...@>=
11600 mp->bisect_stack = xmalloc((bistack_size+1),sizeof(integer));
11602 @ @<Dealloc variables@>=
11603 xfree(mp->bisect_stack);
11605 @ @<Check the ``constant''...@>=
11606 if ( int_packets+17*int_increment>bistack_size ) mp->bad=19;
11608 @ Computation of the min and max is a tedious but fairly fast sequence of
11609 instructions; exactly four comparisons are made in each branch.
11612 if ( stack_1((A))<0 ) {
11613 if ( stack_3((A))>=0 ) {
11614 if ( stack_2((A))<0 ) stack_min((A))=stack_1((A))+stack_2((A));
11615 else stack_min((A))=stack_1((A));
11616 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11617 if ( stack_max((A))<0 ) stack_max((A))=0;
11619 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11620 if ( stack_min((A))>stack_1((A)) ) stack_min((A))=stack_1((A));
11621 stack_max((A))=stack_1((A))+stack_2((A));
11622 if ( stack_max((A))<0 ) stack_max((A))=0;
11624 } else if ( stack_3((A))<=0 ) {
11625 if ( stack_2((A))>0 ) stack_max((A))=stack_1((A))+stack_2((A));
11626 else stack_max((A))=stack_1((A));
11627 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11628 if ( stack_min((A))>0 ) stack_min((A))=0;
11630 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11631 if ( stack_max((A))<stack_1((A)) ) stack_max((A))=stack_1((A));
11632 stack_min((A))=stack_1((A))+stack_2((A));
11633 if ( stack_min((A))>0 ) stack_min((A))=0;
11636 @ It's convenient to keep the current values of $l$, $t_1$, and $t_2$ in
11637 the integer form $2^l+2^lt_1$ and $2^l+2^lt_2$. The |cubic_intersection|
11638 routine uses global variables |cur_t| and |cur_tt| for this purpose;
11639 after successful completion, |cur_t| and |cur_tt| will contain |unity|
11640 plus the |scaled| values of $t_1$ and~$t_2$.
11642 The values of |cur_t| and |cur_tt| will be set to zero if |cubic_intersection|
11643 finds no intersection. The routine gives up and gives an approximate answer
11644 if it has backtracked
11645 more than 5000 times (otherwise there are cases where several minutes
11646 of fruitless computation would be possible).
11648 @d max_patience 5000
11651 integer cur_t;integer cur_tt; /* controls and results of |cubic_intersection| */
11652 integer time_to_go; /* this many backtracks before giving up */
11653 integer max_t; /* maximum of $2^{l+1}$ so far achieved */
11655 @ The given cubics $B(w_0,w_1,w_2,w_3;t)$ and
11656 $B(z_0,z_1,z_2,z_3;t)$ are specified in adjacent knot nodes |(p,link(p))|
11657 and |(pp,link(pp))|, respectively.
11659 @c void mp_cubic_intersection (MP mp,pointer p, pointer pp) {
11660 pointer q,qq; /* |link(p)|, |link(pp)| */
11661 mp->time_to_go=max_patience; mp->max_t=2;
11662 @<Initialize for intersections at level zero@>;
11665 if ( mp->delx-mp->tol<=stack_max(x_packet(mp->xy))-stack_min(u_packet(mp->uv)))
11666 if ( mp->delx+mp->tol>=stack_min(x_packet(mp->xy))-stack_max(u_packet(mp->uv)))
11667 if ( mp->dely-mp->tol<=stack_max(y_packet(mp->xy))-stack_min(v_packet(mp->uv)))
11668 if ( mp->dely+mp->tol>=stack_min(y_packet(mp->xy))-stack_max(v_packet(mp->uv)))
11670 if ( mp->cur_t>=mp->max_t ){
11671 if ( mp->max_t==two ) { /* we've done 17 bisections */
11672 mp->cur_t=halfp(mp->cur_t+1); mp->cur_tt=halfp(mp->cur_tt+1); return;
11674 mp->max_t+=mp->max_t; mp->appr_t=mp->cur_t; mp->appr_tt=mp->cur_tt;
11676 @<Subdivide for a new level of intersection@>;
11679 if ( mp->time_to_go>0 ) {
11680 decr(mp->time_to_go);
11682 while ( mp->appr_t<unity ) {
11683 mp->appr_t+=mp->appr_t; mp->appr_tt+=mp->appr_tt;
11685 mp->cur_t=mp->appr_t; mp->cur_tt=mp->appr_tt; return;
11687 @<Advance to the next pair |(cur_t,cur_tt)|@>;
11691 @ The following variables are global, although they are used only by
11692 |cubic_intersection|, because it is necessary on some machines to
11693 split |cubic_intersection| up into two procedures.
11696 integer delx;integer dely; /* the components of $\Delta=2^l(w_0-z_0)$ */
11697 integer tol; /* bound on the uncertainly in the overlap test */
11699 unsigned int xy; /* pointers to the current packets of interest */
11700 integer three_l; /* |tol_step| times the bisection level */
11701 integer appr_t;integer appr_tt; /* best approximations known to the answers */
11703 @ We shall assume that the coordinates are sufficiently non-extreme that
11704 integer overflow will not occur.
11706 @<Initialize for intersections at level zero@>=
11707 q=link(p); qq=link(pp); mp->bisect_ptr=int_packets;
11708 u1r=right_x(p)-x_coord(p); u2r=left_x(q)-right_x(p);
11709 u3r=x_coord(q)-left_x(q); set_min_max(ur_packet);
11710 v1r=right_y(p)-y_coord(p); v2r=left_y(q)-right_y(p);
11711 v3r=y_coord(q)-left_y(q); set_min_max(vr_packet);
11712 x1r=right_x(pp)-x_coord(pp); x2r=left_x(qq)-right_x(pp);
11713 x3r=x_coord(qq)-left_x(qq); set_min_max(xr_packet);
11714 y1r=right_y(pp)-y_coord(pp); y2r=left_y(qq)-right_y(pp);
11715 y3r=y_coord(qq)-left_y(qq); set_min_max(yr_packet);
11716 mp->delx=x_coord(p)-x_coord(pp); mp->dely=y_coord(p)-y_coord(pp);
11717 mp->tol=0; mp->uv=r_packets; mp->xy=r_packets;
11718 mp->three_l=0; mp->cur_t=1; mp->cur_tt=1
11720 @ @<Subdivide for a new level of intersection@>=
11721 stack_dx=mp->delx; stack_dy=mp->dely; stack_tol=mp->tol;
11722 stack_uv=mp->uv; stack_xy=mp->xy;
11723 mp->bisect_ptr=mp->bisect_ptr+int_increment;
11724 mp->cur_t+=mp->cur_t; mp->cur_tt+=mp->cur_tt;
11725 u1l=stack_1(u_packet(mp->uv)); u3r=stack_3(u_packet(mp->uv));
11726 u2l=half(u1l+stack_2(u_packet(mp->uv)));
11727 u2r=half(u3r+stack_2(u_packet(mp->uv)));
11728 u3l=half(u2l+u2r); u1r=u3l;
11729 set_min_max(ul_packet); set_min_max(ur_packet);
11730 v1l=stack_1(v_packet(mp->uv)); v3r=stack_3(v_packet(mp->uv));
11731 v2l=half(v1l+stack_2(v_packet(mp->uv)));
11732 v2r=half(v3r+stack_2(v_packet(mp->uv)));
11733 v3l=half(v2l+v2r); v1r=v3l;
11734 set_min_max(vl_packet); set_min_max(vr_packet);
11735 x1l=stack_1(x_packet(mp->xy)); x3r=stack_3(x_packet(mp->xy));
11736 x2l=half(x1l+stack_2(x_packet(mp->xy)));
11737 x2r=half(x3r+stack_2(x_packet(mp->xy)));
11738 x3l=half(x2l+x2r); x1r=x3l;
11739 set_min_max(xl_packet); set_min_max(xr_packet);
11740 y1l=stack_1(y_packet(mp->xy)); y3r=stack_3(y_packet(mp->xy));
11741 y2l=half(y1l+stack_2(y_packet(mp->xy)));
11742 y2r=half(y3r+stack_2(y_packet(mp->xy)));
11743 y3l=half(y2l+y2r); y1r=y3l;
11744 set_min_max(yl_packet); set_min_max(yr_packet);
11745 mp->uv=l_packets; mp->xy=l_packets;
11746 mp->delx+=mp->delx; mp->dely+=mp->dely;
11747 mp->tol=mp->tol-mp->three_l+mp->tol_step;
11748 mp->tol+=mp->tol; mp->three_l=mp->three_l+mp->tol_step
11750 @ @<Advance to the next pair |(cur_t,cur_tt)|@>=
11752 if ( odd(mp->cur_tt) ) {
11753 if ( odd(mp->cur_t) ) {
11754 @<Descend to the previous level and |goto not_found|@>;
11757 mp->delx=mp->delx+stack_1(u_packet(mp->uv))+stack_2(u_packet(mp->uv))
11758 +stack_3(u_packet(mp->uv));
11759 mp->dely=mp->dely+stack_1(v_packet(mp->uv))+stack_2(v_packet(mp->uv))
11760 +stack_3(v_packet(mp->uv));
11761 mp->uv=mp->uv+int_packets; /* switch from |l_packet| to |r_packet| */
11762 decr(mp->cur_tt); mp->xy=mp->xy-int_packets;
11763 /* switch from |r_packet| to |l_packet| */
11764 mp->delx=mp->delx+stack_1(x_packet(mp->xy))+stack_2(x_packet(mp->xy))
11765 +stack_3(x_packet(mp->xy));
11766 mp->dely=mp->dely+stack_1(y_packet(mp->xy))+stack_2(y_packet(mp->xy))
11767 +stack_3(y_packet(mp->xy));
11770 incr(mp->cur_tt); mp->tol=mp->tol+mp->three_l;
11771 mp->delx=mp->delx-stack_1(x_packet(mp->xy))-stack_2(x_packet(mp->xy))
11772 -stack_3(x_packet(mp->xy));
11773 mp->dely=mp->dely-stack_1(y_packet(mp->xy))-stack_2(y_packet(mp->xy))
11774 -stack_3(y_packet(mp->xy));
11775 mp->xy=mp->xy+int_packets; /* switch from |l_packet| to |r_packet| */
11778 @ @<Descend to the previous level...@>=
11780 mp->cur_t=halfp(mp->cur_t); mp->cur_tt=halfp(mp->cur_tt);
11781 if ( mp->cur_t==0 ) return;
11782 mp->bisect_ptr=mp->bisect_ptr-int_increment;
11783 mp->three_l=mp->three_l-mp->tol_step;
11784 mp->delx=stack_dx; mp->dely=stack_dy; mp->tol=stack_tol;
11785 mp->uv=stack_uv; mp->xy=stack_xy;
11789 @ The |path_intersection| procedure is much simpler.
11790 It invokes |cubic_intersection| in lexicographic order until finding a
11791 pair of cubics that intersect. The final intersection times are placed in
11792 |cur_t| and~|cur_tt|.
11794 @c void mp_path_intersection (MP mp,pointer h, pointer hh) {
11795 pointer p,pp; /* link registers that traverse the given paths */
11796 integer n,nn; /* integer parts of intersection times, minus |unity| */
11797 @<Change one-point paths into dead cycles@>;
11802 if ( right_type(p)!=mp_endpoint ) {
11805 if ( right_type(pp)!=mp_endpoint ) {
11806 mp_cubic_intersection(mp, p,pp);
11807 if ( mp->cur_t>0 ) {
11808 mp->cur_t=mp->cur_t+n; mp->cur_tt=mp->cur_tt+nn;
11812 nn=nn+unity; pp=link(pp);
11815 n=n+unity; p=link(p);
11817 mp->tol_step=mp->tol_step+3;
11818 } while (mp->tol_step<=3);
11819 mp->cur_t=-unity; mp->cur_tt=-unity;
11822 @ @<Change one-point paths...@>=
11823 if ( right_type(h)==mp_endpoint ) {
11824 right_x(h)=x_coord(h); left_x(h)=x_coord(h);
11825 right_y(h)=y_coord(h); left_y(h)=y_coord(h); right_type(h)=mp_explicit;
11827 if ( right_type(hh)==mp_endpoint ) {
11828 right_x(hh)=x_coord(hh); left_x(hh)=x_coord(hh);
11829 right_y(hh)=y_coord(hh); left_y(hh)=y_coord(hh); right_type(hh)=mp_explicit;
11832 @* \[24] Dynamic linear equations.
11833 \MP\ users define variables implicitly by stating equations that should be
11834 satisfied; the computer is supposed to be smart enough to solve those equations.
11835 And indeed, the computer tries valiantly to do so, by distinguishing five
11836 different types of numeric values:
11839 |type(p)=mp_known| is the nice case, when |value(p)| is the |scaled| value
11840 of the variable whose address is~|p|.
11843 |type(p)=mp_dependent| means that |value(p)| is not present, but |dep_list(p)|
11844 points to a {\sl dependency list\/} that expresses the value of variable~|p|
11845 as a |scaled| number plus a sum of independent variables with |fraction|
11849 |type(p)=mp_independent| means that |value(p)=64s+m|, where |s>0| is a ``serial
11850 number'' reflecting the time this variable was first used in an equation;
11851 also |0<=m<64|, and each dependent variable
11852 that refers to this one is actually referring to the future value of
11853 this variable times~$2^m$. (Usually |m=0|, but higher degrees of
11854 scaling are sometimes needed to keep the coefficients in dependency lists
11855 from getting too large. The value of~|m| will always be even.)
11858 |type(p)=mp_numeric_type| means that variable |p| hasn't appeared in an
11859 equation before, but it has been explicitly declared to be numeric.
11862 |type(p)=undefined| means that variable |p| hasn't appeared before.
11864 \smallskip\noindent
11865 We have actually discussed these five types in the reverse order of their
11866 history during a computation: Once |known|, a variable never again
11867 becomes |dependent|; once |dependent|, it almost never again becomes
11868 |mp_independent|; once |mp_independent|, it never again becomes |mp_numeric_type|;
11869 and once |mp_numeric_type|, it never again becomes |undefined| (except
11870 of course when the user specifically decides to scrap the old value
11871 and start again). A backward step may, however, take place: Sometimes
11872 a |dependent| variable becomes |mp_independent| again, when one of the
11873 independent variables it depends on is reverting to |undefined|.
11876 The next patch detects overflow of independent-variable serial
11877 numbers. Diagnosed and patched by Thorsten Dahlheimer.
11879 @d s_scale 64 /* the serial numbers are multiplied by this factor */
11880 @d max_indep_vars 0177777777 /* $2^{25}-1$ */
11881 @d max_serial_no 017777777700 /* |max_indep_vars*s_scale| */
11882 @d new_indep(A) /* create a new independent variable */
11883 { if ( mp->serial_no==max_serial_no )
11884 mp_fatal_error(mp, "variable instance identifiers exhausted");
11885 type((A))=mp_independent; mp->serial_no=mp->serial_no+s_scale;
11886 value((A))=mp->serial_no;
11890 integer serial_no; /* the most recent serial number, times |s_scale| */
11892 @ @<Make variable |q+s| newly independent@>=new_indep(q+s)
11894 @ But how are dependency lists represented? It's simple: The linear combination
11895 $\alpha_1v_1+\cdots+\alpha_kv_k+\beta$ appears in |k+1| value nodes. If
11896 |q=dep_list(p)| points to this list, and if |k>0|, then |value(q)=
11897 @t$\alpha_1$@>| (which is a |fraction|); |info(q)| points to the location
11898 of $\alpha_1$; and |link(p)| points to the dependency list
11899 $\alpha_2v_2+\cdots+\alpha_kv_k+\beta$. On the other hand if |k=0|,
11900 then |value(q)=@t$\beta$@>| (which is |scaled|) and |info(q)=null|.
11901 The independent variables $v_1$, \dots,~$v_k$ have been sorted so that
11902 they appear in decreasing order of their |value| fields (i.e., of
11903 their serial numbers). \ (It is convenient to use decreasing order,
11904 since |value(null)=0|. If the independent variables were not sorted by
11905 serial number but by some other criterion, such as their location in |mem|,
11906 the equation-solving mechanism would be too system-dependent, because
11907 the ordering can affect the computed results.)
11909 The |link| field in the node that contains the constant term $\beta$ is
11910 called the {\sl final link\/} of the dependency list. \MP\ maintains
11911 a doubly-linked master list of all dependency lists, in terms of a permanently
11913 in |mem| called |dep_head|. If there are no dependencies, we have
11914 |link(dep_head)=dep_head| and |prev_dep(dep_head)=dep_head|;
11915 otherwise |link(dep_head)| points to the first dependent variable, say~|p|,
11916 and |prev_dep(p)=dep_head|. We have |type(p)=mp_dependent|, and |dep_list(p)|
11917 points to its dependency list. If the final link of that dependency list
11918 occurs in location~|q|, then |link(q)| points to the next dependent
11919 variable (say~|r|); and we have |prev_dep(r)=q|, etc.
11921 @d dep_list(A) link(value_loc((A)))
11922 /* half of the |value| field in a |dependent| variable */
11923 @d prev_dep(A) info(value_loc((A)))
11924 /* the other half; makes a doubly linked list */
11925 @d dep_node_size 2 /* the number of words per dependency node */
11927 @<Initialize table entries...@>= mp->serial_no=0;
11928 link(dep_head)=dep_head; prev_dep(dep_head)=dep_head;
11929 info(dep_head)=null; dep_list(dep_head)=null;
11931 @ Actually the description above contains a little white lie. There's
11932 another kind of variable called |mp_proto_dependent|, which is
11933 just like a |dependent| one except that the $\alpha$ coefficients
11934 in its dependency list are |scaled| instead of being fractions.
11935 Proto-dependency lists are mixed with dependency lists in the
11936 nodes reachable from |dep_head|.
11938 @ Here is a procedure that prints a dependency list in symbolic form.
11939 The second parameter should be either |dependent| or |mp_proto_dependent|,
11940 to indicate the scaling of the coefficients.
11942 @<Declare subroutines for printing expressions@>=
11943 void mp_print_dependency (MP mp,pointer p, small_number t) {
11944 integer v; /* a coefficient */
11945 pointer pp,q; /* for list manipulation */
11948 v=abs(value(p)); q=info(p);
11949 if ( q==null ) { /* the constant term */
11950 if ( (v!=0)||(p==pp) ) {
11951 if ( value(p)>0 ) if ( p!=pp ) mp_print_char(mp, '+');
11952 mp_print_scaled(mp, value(p));
11956 @<Print the coefficient, unless it's $\pm1.0$@>;
11957 if ( type(q)!=mp_independent ) mp_confusion(mp, "dep");
11958 @:this can't happen dep}{\quad dep@>
11959 mp_print_variable_name(mp, q); v=value(q) % s_scale;
11960 while ( v>0 ) { mp_print(mp, "*4"); v=v-2; }
11965 @ @<Print the coefficient, unless it's $\pm1.0$@>=
11966 if ( value(p)<0 ) mp_print_char(mp, '-');
11967 else if ( p!=pp ) mp_print_char(mp, '+');
11968 if ( t==mp_dependent ) v=mp_round_fraction(mp, v);
11969 if ( v!=unity ) mp_print_scaled(mp, v)
11971 @ The maximum absolute value of a coefficient in a given dependency list
11972 is returned by the following simple function.
11974 @c fraction mp_max_coef (MP mp,pointer p) {
11975 fraction x; /* the maximum so far */
11977 while ( info(p)!=null ) {
11978 if ( abs(value(p))>x ) x=abs(value(p));
11984 @ One of the main operations needed on dependency lists is to add a multiple
11985 of one list to the other; we call this |p_plus_fq|, where |p| and~|q| point
11986 to dependency lists and |f| is a fraction.
11988 If the coefficient of any independent variable becomes |coef_bound| or
11989 more, in absolute value, this procedure changes the type of that variable
11990 to `|independent_needing_fix|', and sets the global variable |fix_needed|
11991 to~|true|. The value of $|coef_bound|=\mu$ is chosen so that
11992 $\mu^2+\mu<8$; this means that the numbers we deal with won't
11993 get too large. (Instead of the ``optimum'' $\mu=(\sqrt{33}-1)/2\approx
11994 2.3723$, the safer value 7/3 is taken as the threshold.)
11996 The changes mentioned in the preceding paragraph are actually done only if
11997 the global variable |watch_coefs| is |true|. But it usually is; in fact,
11998 it is |false| only when \MP\ is making a dependency list that will soon
11999 be equated to zero.
12001 Several procedures that act on dependency lists, including |p_plus_fq|,
12002 set the global variable |dep_final| to the final (constant term) node of
12003 the dependency list that they produce.
12005 @d coef_bound 04525252525 /* |fraction| approximation to 7/3 */
12006 @d independent_needing_fix 0
12009 boolean fix_needed; /* does at least one |independent| variable need scaling? */
12010 boolean watch_coefs; /* should we scale coefficients that exceed |coef_bound|? */
12011 pointer dep_final; /* location of the constant term and final link */
12014 mp->fix_needed=false; mp->watch_coefs=true;
12016 @ The |p_plus_fq| procedure has a fourth parameter, |t|, that should be
12017 set to |mp_proto_dependent| if |p| is a proto-dependency list. In this
12018 case |f| will be |scaled|, not a |fraction|. Similarly, the fifth parameter~|tt|
12019 should be |mp_proto_dependent| if |q| is a proto-dependency list.
12021 List |q| is unchanged by the operation; but list |p| is totally destroyed.
12023 The final link of the dependency list or proto-dependency list returned
12024 by |p_plus_fq| is the same as the original final link of~|p|. Indeed, the
12025 constant term of the result will be located in the same |mem| location
12026 as the original constant term of~|p|.
12028 Coefficients of the result are assumed to be zero if they are less than
12029 a certain threshold. This compensates for inevitable rounding errors,
12030 and tends to make more variables `|known|'. The threshold is approximately
12031 $10^{-5}$ in the case of normal dependency lists, $10^{-4}$ for
12032 proto-dependencies.
12034 @d fraction_threshold 2685 /* a |fraction| coefficient less than this is zeroed */
12035 @d half_fraction_threshold 1342 /* half of |fraction_threshold| */
12036 @d scaled_threshold 8 /* a |scaled| coefficient less than this is zeroed */
12037 @d half_scaled_threshold 4 /* half of |scaled_threshold| */
12039 @<Declare basic dependency-list subroutines@>=
12040 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12041 pointer q, small_number t, small_number tt) ;
12044 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12045 pointer q, small_number t, small_number tt) {
12046 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12047 pointer r,s; /* for list manipulation */
12048 integer mp_threshold; /* defines a neighborhood of zero */
12049 integer v; /* temporary register */
12050 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
12051 else mp_threshold=scaled_threshold;
12052 r=temp_head; pp=info(p); qq=info(q);
12058 @<Contribute a term from |p|, plus |f| times the
12059 corresponding term from |q|@>
12061 } else if ( value(pp)<value(qq) ) {
12062 @<Contribute a term from |q|, multiplied by~|f|@>
12064 link(r)=p; r=p; p=link(p); pp=info(p);
12067 if ( t==mp_dependent )
12068 value(p)=mp_slow_add(mp, value(p),mp_take_fraction(mp, value(q),f));
12070 value(p)=mp_slow_add(mp, value(p),mp_take_scaled(mp, value(q),f));
12071 link(r)=p; mp->dep_final=p;
12072 return link(temp_head);
12075 @ @<Contribute a term from |p|, plus |f|...@>=
12077 if ( tt==mp_dependent ) v=value(p)+mp_take_fraction(mp, f,value(q));
12078 else v=value(p)+mp_take_scaled(mp, f,value(q));
12079 value(p)=v; s=p; p=link(p);
12080 if ( abs(v)<mp_threshold ) {
12081 mp_free_node(mp, s,dep_node_size);
12083 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12084 type(qq)=independent_needing_fix; mp->fix_needed=true;
12088 pp=info(p); q=link(q); qq=info(q);
12091 @ @<Contribute a term from |q|, multiplied by~|f|@>=
12093 if ( tt==mp_dependent ) v=mp_take_fraction(mp, f,value(q));
12094 else v=mp_take_scaled(mp, f,value(q));
12095 if ( abs(v)>halfp(mp_threshold) ) {
12096 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=v;
12097 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12098 type(qq)=independent_needing_fix; mp->fix_needed=true;
12102 q=link(q); qq=info(q);
12105 @ It is convenient to have another subroutine for the special case
12106 of |p_plus_fq| when |f=1.0|. In this routine lists |p| and |q| are
12107 both of the same type~|t| (either |dependent| or |mp_proto_dependent|).
12109 @c pointer mp_p_plus_q (MP mp,pointer p, pointer q, small_number t) {
12110 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12111 pointer r,s; /* for list manipulation */
12112 integer mp_threshold; /* defines a neighborhood of zero */
12113 integer v; /* temporary register */
12114 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
12115 else mp_threshold=scaled_threshold;
12116 r=temp_head; pp=info(p); qq=info(q);
12122 @<Contribute a term from |p|, plus the
12123 corresponding term from |q|@>
12125 } else if ( value(pp)<value(qq) ) {
12126 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=value(q);
12127 q=link(q); qq=info(q); link(r)=s; r=s;
12129 link(r)=p; r=p; p=link(p); pp=info(p);
12132 value(p)=mp_slow_add(mp, value(p),value(q));
12133 link(r)=p; mp->dep_final=p;
12134 return link(temp_head);
12137 @ @<Contribute a term from |p|, plus the...@>=
12139 v=value(p)+value(q);
12140 value(p)=v; s=p; p=link(p); pp=info(p);
12141 if ( abs(v)<mp_threshold ) {
12142 mp_free_node(mp, s,dep_node_size);
12144 if ( (abs(v)>=coef_bound ) && mp->watch_coefs ) {
12145 type(qq)=independent_needing_fix; mp->fix_needed=true;
12149 q=link(q); qq=info(q);
12152 @ A somewhat simpler routine will multiply a dependency list
12153 by a given constant~|v|. The constant is either a |fraction| less than
12154 |fraction_one|, or it is |scaled|. In the latter case we might be forced to
12155 convert a dependency list to a proto-dependency list.
12156 Parameters |t0| and |t1| are the list types before and after;
12157 they should agree unless |t0=mp_dependent| and |t1=mp_proto_dependent|
12158 and |v_is_scaled=true|.
12160 @c pointer mp_p_times_v (MP mp,pointer p, integer v, small_number t0,
12161 small_number t1, boolean v_is_scaled) {
12162 pointer r,s; /* for list manipulation */
12163 integer w; /* tentative coefficient */
12164 integer mp_threshold;
12165 boolean scaling_down;
12166 if ( t0!=t1 ) scaling_down=true; else scaling_down=! v_is_scaled;
12167 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
12168 else mp_threshold=half_scaled_threshold;
12170 while ( info(p)!=null ) {
12171 if ( scaling_down ) w=mp_take_fraction(mp, v,value(p));
12172 else w=mp_take_scaled(mp, v,value(p));
12173 if ( abs(w)<=mp_threshold ) {
12174 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12176 if ( abs(w)>=coef_bound ) {
12177 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12179 link(r)=p; r=p; value(p)=w; p=link(p);
12183 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
12184 else value(p)=mp_take_fraction(mp, value(p),v);
12185 return link(temp_head);
12188 @ Similarly, we sometimes need to divide a dependency list
12189 by a given |scaled| constant.
12191 @<Declare basic dependency-list subroutines@>=
12192 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12193 t0, small_number t1) ;
12196 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12197 t0, small_number t1) {
12198 pointer r,s; /* for list manipulation */
12199 integer w; /* tentative coefficient */
12200 integer mp_threshold;
12201 boolean scaling_down;
12202 if ( t0!=t1 ) scaling_down=true; else scaling_down=false;
12203 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
12204 else mp_threshold=half_scaled_threshold;
12206 while ( info( p)!=null ) {
12207 if ( scaling_down ) {
12208 if ( abs(v)<02000000 ) w=mp_make_scaled(mp, value(p),v*010000);
12209 else w=mp_make_scaled(mp, mp_round_fraction(mp, value(p)),v);
12211 w=mp_make_scaled(mp, value(p),v);
12213 if ( abs(w)<=mp_threshold ) {
12214 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12216 if ( abs(w)>=coef_bound ) {
12217 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12219 link(r)=p; r=p; value(p)=w; p=link(p);
12222 link(r)=p; value(p)=mp_make_scaled(mp, value(p),v);
12223 return link(temp_head);
12226 @ Here's another utility routine for dependency lists. When an independent
12227 variable becomes dependent, we want to remove it from all existing
12228 dependencies. The |p_with_x_becoming_q| function computes the
12229 dependency list of~|p| after variable~|x| has been replaced by~|q|.
12231 This procedure has basically the same calling conventions as |p_plus_fq|:
12232 List~|q| is unchanged; list~|p| is destroyed; the constant node and the
12233 final link are inherited from~|p|; and the fourth parameter tells whether
12234 or not |p| is |mp_proto_dependent|. However, the global variable |dep_final|
12235 is not altered if |x| does not occur in list~|p|.
12237 @c pointer mp_p_with_x_becoming_q (MP mp,pointer p,
12238 pointer x, pointer q, small_number t) {
12239 pointer r,s; /* for list manipulation */
12240 integer v; /* coefficient of |x| */
12241 integer sx; /* serial number of |x| */
12242 s=p; r=temp_head; sx=value(x);
12243 while ( value(info(s))>sx ) { r=s; s=link(s); };
12244 if ( info(s)!=x ) {
12247 link(temp_head)=p; link(r)=link(s); v=value(s);
12248 mp_free_node(mp, s,dep_node_size);
12249 return mp_p_plus_fq(mp, link(temp_head),v,q,t,mp_dependent);
12253 @ Here's a simple procedure that reports an error when a variable
12254 has just received a known value that's out of the required range.
12256 @<Declare basic dependency-list subroutines@>=
12257 void mp_val_too_big (MP mp,scaled x) ;
12259 @ @c void mp_val_too_big (MP mp,scaled x) {
12260 if ( mp->internal[mp_warning_check]>0 ) {
12261 print_err("Value is too large ("); mp_print_scaled(mp, x); mp_print_char(mp, ')');
12262 @.Value is too large@>
12263 help4("The equation I just processed has given some variable")
12264 ("a value of 4096 or more. Continue and I'll try to cope")
12265 ("with that big value; but it might be dangerous.")
12266 ("(Set warningcheck:=0 to suppress this message.)");
12271 @ When a dependent variable becomes known, the following routine
12272 removes its dependency list. Here |p| points to the variable, and
12273 |q| points to the dependency list (which is one node long).
12275 @<Declare basic dependency-list subroutines@>=
12276 void mp_make_known (MP mp,pointer p, pointer q) ;
12278 @ @c void mp_make_known (MP mp,pointer p, pointer q) {
12279 int t; /* the previous type */
12280 prev_dep(link(q))=prev_dep(p);
12281 link(prev_dep(p))=link(q); t=type(p);
12282 type(p)=mp_known; value(p)=value(q); mp_free_node(mp, q,dep_node_size);
12283 if ( abs(value(p))>=fraction_one ) mp_val_too_big(mp, value(p));
12284 if (( mp->internal[mp_tracing_equations]>0) && mp_interesting(mp, p) ) {
12285 mp_begin_diagnostic(mp); mp_print_nl(mp, "#### ");
12286 @:]]]\#\#\#\#_}{\.{\#\#\#\#}@>
12287 mp_print_variable_name(mp, p);
12288 mp_print_char(mp, '='); mp_print_scaled(mp, value(p));
12289 mp_end_diagnostic(mp, false);
12291 if (( mp->cur_exp==p ) && mp->cur_type==t ) {
12292 mp->cur_type=mp_known; mp->cur_exp=value(p);
12293 mp_free_node(mp, p,value_node_size);
12297 @ The |fix_dependencies| routine is called into action when |fix_needed|
12298 has been triggered. The program keeps a list~|s| of independent variables
12299 whose coefficients must be divided by~4.
12301 In unusual cases, this fixup process might reduce one or more coefficients
12302 to zero, so that a variable will become known more or less by default.
12304 @<Declare basic dependency-list subroutines@>=
12305 void mp_fix_dependencies (MP mp);
12307 @ @c void mp_fix_dependencies (MP mp) {
12308 pointer p,q,r,s,t; /* list manipulation registers */
12309 pointer x; /* an independent variable */
12310 r=link(dep_head); s=null;
12311 while ( r!=dep_head ){
12313 @<Run through the dependency list for variable |t|, fixing
12314 all nodes, and ending with final link~|q|@>;
12316 if ( q==dep_list(t) ) mp_make_known(mp, t,q);
12318 while ( s!=null ) {
12319 p=link(s); x=info(s); free_avail(s); s=p;
12320 type(x)=mp_independent; value(x)=value(x)+2;
12322 mp->fix_needed=false;
12325 @ @d independent_being_fixed 1 /* this variable already appears in |s| */
12327 @<Run through the dependency list for variable |t|...@>=
12328 r=value_loc(t); /* |link(r)=dep_list(t)| */
12330 q=link(r); x=info(q);
12331 if ( x==null ) break;
12332 if ( type(x)<=independent_being_fixed ) {
12333 if ( type(x)<independent_being_fixed ) {
12334 p=mp_get_avail(mp); link(p)=s; s=p;
12335 info(s)=x; type(x)=independent_being_fixed;
12337 value(q)=value(q) / 4;
12338 if ( value(q)==0 ) {
12339 link(r)=link(q); mp_free_node(mp, q,dep_node_size); q=r;
12346 @ The |new_dep| routine installs a dependency list~|p| into the value node~|q|,
12347 linking it into the list of all known dependencies. We assume that
12348 |dep_final| points to the final node of list~|p|.
12350 @c void mp_new_dep (MP mp,pointer q, pointer p) {
12351 pointer r; /* what used to be the first dependency */
12352 dep_list(q)=p; prev_dep(q)=dep_head;
12353 r=link(dep_head); link(mp->dep_final)=r; prev_dep(r)=mp->dep_final;
12357 @ Here is one of the ways a dependency list gets started.
12358 The |const_dependency| routine produces a list that has nothing but
12361 @c pointer mp_const_dependency (MP mp, scaled v) {
12362 mp->dep_final=mp_get_node(mp, dep_node_size);
12363 value(mp->dep_final)=v; info(mp->dep_final)=null;
12364 return mp->dep_final;
12367 @ And here's a more interesting way to start a dependency list from scratch:
12368 The parameter to |single_dependency| is the location of an
12369 independent variable~|x|, and the result is the simple dependency list
12372 In the unlikely event that the given independent variable has been doubled so
12373 often that we can't refer to it with a nonzero coefficient,
12374 |single_dependency| returns the simple list `0'. This case can be
12375 recognized by testing that the returned list pointer is equal to
12378 @c pointer mp_single_dependency (MP mp,pointer p) {
12379 pointer q; /* the new dependency list */
12380 integer m; /* the number of doublings */
12381 m=value(p) % s_scale;
12383 return mp_const_dependency(mp, 0);
12385 q=mp_get_node(mp, dep_node_size);
12386 value(q)=two_to_the(28-m); info(q)=p;
12387 link(q)=mp_const_dependency(mp, 0);
12392 @ We sometimes need to make an exact copy of a dependency list.
12394 @c pointer mp_copy_dep_list (MP mp,pointer p) {
12395 pointer q; /* the new dependency list */
12396 q=mp_get_node(mp, dep_node_size); mp->dep_final=q;
12398 info(mp->dep_final)=info(p); value(mp->dep_final)=value(p);
12399 if ( info(mp->dep_final)==null ) break;
12400 link(mp->dep_final)=mp_get_node(mp, dep_node_size);
12401 mp->dep_final=link(mp->dep_final); p=link(p);
12406 @ But how do variables normally become known? Ah, now we get to the heart of the
12407 equation-solving mechanism. The |linear_eq| procedure is given a |dependent|
12408 or |mp_proto_dependent| list,~|p|, in which at least one independent variable
12409 appears. It equates this list to zero, by choosing an independent variable
12410 with the largest coefficient and making it dependent on the others. The
12411 newly dependent variable is eliminated from all current dependencies,
12412 thereby possibly making other dependent variables known.
12414 The given list |p| is, of course, totally destroyed by all this processing.
12416 @c void mp_linear_eq (MP mp, pointer p, small_number t) {
12417 pointer q,r,s; /* for link manipulation */
12418 pointer x; /* the variable that loses its independence */
12419 integer n; /* the number of times |x| had been halved */
12420 integer v; /* the coefficient of |x| in list |p| */
12421 pointer prev_r; /* lags one step behind |r| */
12422 pointer final_node; /* the constant term of the new dependency list */
12423 integer w; /* a tentative coefficient */
12424 @<Find a node |q| in list |p| whose coefficient |v| is largest@>;
12425 x=info(q); n=value(x) % s_scale;
12426 @<Divide list |p| by |-v|, removing node |q|@>;
12427 if ( mp->internal[mp_tracing_equations]>0 ) {
12428 @<Display the new dependency@>;
12430 @<Simplify all existing dependencies by substituting for |x|@>;
12431 @<Change variable |x| from |independent| to |dependent| or |known|@>;
12432 if ( mp->fix_needed ) mp_fix_dependencies(mp);
12435 @ @<Find a node |q| in list |p| whose coefficient |v| is largest@>=
12436 q=p; r=link(p); v=value(q);
12437 while ( info(r)!=null ) {
12438 if ( abs(value(r))>abs(v) ) { q=r; v=value(r); };
12442 @ Here we want to change the coefficients from |scaled| to |fraction|,
12443 except in the constant term. In the common case of a trivial equation
12444 like `\.{x=3.14}', we will have |v=-fraction_one|, |q=p|, and |t=mp_dependent|.
12446 @<Divide list |p| by |-v|, removing node |q|@>=
12447 s=temp_head; link(s)=p; r=p;
12450 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12452 w=mp_make_fraction(mp, value(r),v);
12453 if ( abs(w)<=half_fraction_threshold ) {
12454 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12460 } while (info(r)!=null);
12461 if ( t==mp_proto_dependent ) {
12462 value(r)=-mp_make_scaled(mp, value(r),v);
12463 } else if ( v!=-fraction_one ) {
12464 value(r)=-mp_make_fraction(mp, value(r),v);
12466 final_node=r; p=link(temp_head)
12468 @ @<Display the new dependency@>=
12469 if ( mp_interesting(mp, x) ) {
12470 mp_begin_diagnostic(mp); mp_print_nl(mp, "## ");
12471 mp_print_variable_name(mp, x);
12472 @:]]]\#\#_}{\.{\#\#}@>
12474 while ( w>0 ) { mp_print(mp, "*4"); w=w-2; };
12475 mp_print_char(mp, '='); mp_print_dependency(mp, p,mp_dependent);
12476 mp_end_diagnostic(mp, false);
12479 @ @<Simplify all existing dependencies by substituting for |x|@>=
12480 prev_r=dep_head; r=link(dep_head);
12481 while ( r!=dep_head ) {
12482 s=dep_list(r); q=mp_p_with_x_becoming_q(mp, s,x,p,type(r));
12483 if ( info(q)==null ) {
12484 mp_make_known(mp, r,q);
12487 do { q=link(q); } while (info(q)!=null);
12493 @ @<Change variable |x| from |independent| to |dependent| or |known|@>=
12494 if ( n>0 ) @<Divide list |p| by $2^n$@>;
12495 if ( info(p)==null ) {
12498 if ( abs(value(x))>=fraction_one ) mp_val_too_big(mp, value(x));
12499 mp_free_node(mp, p,dep_node_size);
12500 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) {
12501 mp->cur_exp=value(x); mp->cur_type=mp_known;
12502 mp_free_node(mp, x,value_node_size);
12505 type(x)=mp_dependent; mp->dep_final=final_node; mp_new_dep(mp, x,p);
12506 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) mp->cur_type=mp_dependent;
12509 @ @<Divide list |p| by $2^n$@>=
12511 s=temp_head; link(temp_head)=p; r=p;
12514 else w=value(r) / two_to_the(n);
12515 if ( (abs(w)<=half_fraction_threshold)&&(info(r)!=null) ) {
12517 mp_free_node(mp, r,dep_node_size);
12522 } while (info(s)!=null);
12526 @ The |check_mem| procedure, which is used only when \MP\ is being
12527 debugged, makes sure that the current dependency lists are well formed.
12529 @<Check the list of linear dependencies@>=
12530 q=dep_head; p=link(q);
12531 while ( p!=dep_head ) {
12532 if ( prev_dep(p)!=q ) {
12533 mp_print_nl(mp, "Bad PREVDEP at "); mp_print_int(mp, p);
12538 r=info(p); q=p; p=link(q);
12539 if ( r==null ) break;
12540 if ( value(info(p))>=value(r) ) {
12541 mp_print_nl(mp, "Out of order at "); mp_print_int(mp, p);
12542 @.Out of order...@>
12547 @* \[25] Dynamic nonlinear equations.
12548 Variables of numeric type are maintained by the general scheme of
12549 independent, dependent, and known values that we have just studied;
12550 and the components of pair and transform variables are handled in the
12551 same way. But \MP\ also has five other types of values: \&{boolean},
12552 \&{string}, \&{pen}, \&{path}, and \&{picture}; what about them?
12554 Equations are allowed between nonlinear quantities, but only in a
12555 simple form. Two variables that haven't yet been assigned values are
12556 either equal to each other, or they're not.
12558 Before a boolean variable has received a value, its type is |mp_unknown_boolean|;
12559 similarly, there are variables whose type is |mp_unknown_string|, |mp_unknown_pen|,
12560 |mp_unknown_path|, and |mp_unknown_picture|. In such cases the value is either
12561 |null| (which means that no other variables are equivalent to this one), or
12562 it points to another variable of the same undefined type. The pointers in the
12563 latter case form a cycle of nodes, which we shall call a ``ring.''
12564 Rings of undefined variables may include capsules, which arise as
12565 intermediate results within expressions or as \&{expr} parameters to macros.
12567 When one member of a ring receives a value, the same value is given to
12568 all the other members. In the case of paths and pictures, this implies
12569 making separate copies of a potentially large data structure; users should
12570 restrain their enthusiasm for such generality, unless they have lots and
12571 lots of memory space.
12573 @ The following procedure is called when a capsule node is being
12574 added to a ring (e.g., when an unknown variable is mentioned in an expression).
12576 @c pointer mp_new_ring_entry (MP mp,pointer p) {
12577 pointer q; /* the new capsule node */
12578 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
12580 if ( value(p)==null ) value(q)=p; else value(q)=value(p);
12585 @ Conversely, we might delete a capsule or a variable before it becomes known.
12586 The following procedure simply detaches a quantity from its ring,
12587 without recycling the storage.
12589 @<Declare the recycling subroutines@>=
12590 void mp_ring_delete (MP mp,pointer p) {
12593 if ( q!=null ) if ( q!=p ){
12594 while ( value(q)!=p ) q=value(q);
12599 @ Eventually there might be an equation that assigns values to all of the
12600 variables in a ring. The |nonlinear_eq| subroutine does the necessary
12601 propagation of values.
12603 If the parameter |flush_p| is |true|, node |p| itself needn't receive a
12604 value, it will soon be recycled.
12606 @c void mp_nonlinear_eq (MP mp,integer v, pointer p, boolean flush_p) {
12607 small_number t; /* the type of ring |p| */
12608 pointer q,r; /* link manipulation registers */
12609 t=type(p)-unknown_tag; q=value(p);
12610 if ( flush_p ) type(p)=mp_vacuous; else p=q;
12612 r=value(q); type(q)=t;
12614 case mp_boolean_type: value(q)=v; break;
12615 case mp_string_type: value(q)=v; add_str_ref(v); break;
12616 case mp_pen_type: value(q)=copy_pen(v); break;
12617 case mp_path_type: value(q)=mp_copy_path(mp, v); break;
12618 case mp_picture_type: value(q)=v; add_edge_ref(v); break;
12619 } /* there ain't no more cases */
12624 @ If two members of rings are equated, and if they have the same type,
12625 the |ring_merge| procedure is called on to make them equivalent.
12627 @c void mp_ring_merge (MP mp,pointer p, pointer q) {
12628 pointer r; /* traverses one list */
12632 @<Exclaim about a redundant equation@>;
12637 r=value(p); value(p)=value(q); value(q)=r;
12640 @ @<Exclaim about a redundant equation@>=
12642 print_err("Redundant equation");
12643 @.Redundant equation@>
12644 help2("I already knew that this equation was true.")
12645 ("But perhaps no harm has been done; let's continue.");
12646 mp_put_get_error(mp);
12649 @* \[26] Introduction to the syntactic routines.
12650 Let's pause a moment now and try to look at the Big Picture.
12651 The \MP\ program consists of three main parts: syntactic routines,
12652 semantic routines, and output routines. The chief purpose of the
12653 syntactic routines is to deliver the user's input to the semantic routines,
12654 while parsing expressions and locating operators and operands. The
12655 semantic routines act as an interpreter responding to these operators,
12656 which may be regarded as commands. And the output routines are
12657 periodically called on to produce compact font descriptions that can be
12658 used for typesetting or for making interim proof drawings. We have
12659 discussed the basic data structures and many of the details of semantic
12660 operations, so we are good and ready to plunge into the part of \MP\ that
12661 actually controls the activities.
12663 Our current goal is to come to grips with the |get_next| procedure,
12664 which is the keystone of \MP's input mechanism. Each call of |get_next|
12665 sets the value of three variables |cur_cmd|, |cur_mod|, and |cur_sym|,
12666 representing the next input token.
12667 $$\vbox{\halign{#\hfil\cr
12668 \hbox{|cur_cmd| denotes a command code from the long list of codes
12670 \hbox{|cur_mod| denotes a modifier of the command code;}\cr
12671 \hbox{|cur_sym| is the hash address of the symbolic token that was
12673 \hbox{\qquad or zero in the case of a numeric or string
12674 or capsule token.}\cr}}$$
12675 Underlying this external behavior of |get_next| is all the machinery
12676 necessary to convert from character files to tokens. At a given time we
12677 may be only partially finished with the reading of several files (for
12678 which \&{input} was specified), and partially finished with the expansion
12679 of some user-defined macros and/or some macro parameters, and partially
12680 finished reading some text that the user has inserted online,
12681 and so on. When reading a character file, the characters must be
12682 converted to tokens; comments and blank spaces must
12683 be removed, numeric and string tokens must be evaluated.
12685 To handle these situations, which might all be present simultaneously,
12686 \MP\ uses various stacks that hold information about the incomplete
12687 activities, and there is a finite state control for each level of the
12688 input mechanism. These stacks record the current state of an implicitly
12689 recursive process, but the |get_next| procedure is not recursive.
12692 eight_bits cur_cmd; /* current command set by |get_next| */
12693 integer cur_mod; /* operand of current command */
12694 halfword cur_sym; /* hash address of current symbol */
12696 @ The |print_cmd_mod| routine prints a symbolic interpretation of a
12697 command code and its modifier.
12698 It consists of a rather tedious sequence of print
12699 commands, and most of it is essentially an inverse to the |primitive|
12700 routine that enters a \MP\ primitive into |hash| and |eqtb|. Therefore almost
12701 all of this procedure appears elsewhere in the program, together with the
12702 corresponding |primitive| calls.
12704 @<Declare the procedure called |print_cmd_mod|@>=
12705 void mp_print_cmd_mod (MP mp,integer c, integer m) {
12707 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>
12708 default: mp_print(mp, "[unknown command code!]"); break;
12712 @ Here is a procedure that displays a given command in braces, in the
12713 user's transcript file.
12715 @d show_cur_cmd_mod mp_show_cmd_mod(mp, mp->cur_cmd,mp->cur_mod)
12718 void mp_show_cmd_mod (MP mp,integer c, integer m) {
12719 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
12720 mp_print_cmd_mod(mp, c,m); mp_print_char(mp, '}');
12721 mp_end_diagnostic(mp, false);
12724 @* \[27] Input stacks and states.
12725 The state of \MP's input mechanism appears in the input stack, whose
12726 entries are records with five fields, called |index|, |start|, |loc|,
12727 |limit|, and |name|. The top element of this stack is maintained in a
12728 global variable for which no subscripting needs to be done; the other
12729 elements of the stack appear in an array. Hence the stack is declared thus:
12733 quarterword index_field;
12734 halfword start_field, loc_field, limit_field, name_field;
12738 in_state_record *input_stack;
12739 integer input_ptr; /* first unused location of |input_stack| */
12740 integer max_in_stack; /* largest value of |input_ptr| when pushing */
12741 in_state_record cur_input; /* the ``top'' input state */
12742 int stack_size; /* maximum number of simultaneous input sources */
12744 @ @<Allocate or initialize ...@>=
12745 mp->stack_size = 300;
12746 mp->input_stack = xmalloc((mp->stack_size+1),sizeof(in_state_record));
12748 @ @<Dealloc variables@>=
12749 xfree(mp->input_stack);
12751 @ We've already defined the special variable |loc==cur_input.loc_field|
12752 in our discussion of basic input-output routines. The other components of
12753 |cur_input| are defined in the same way:
12755 @d index mp->cur_input.index_field /* reference for buffer information */
12756 @d start mp->cur_input.start_field /* starting position in |buffer| */
12757 @d limit mp->cur_input.limit_field /* end of current line in |buffer| */
12758 @d name mp->cur_input.name_field /* name of the current file */
12760 @ Let's look more closely now at the five control variables
12761 (|index|,~|start|,~|loc|,~|limit|,~|name|),
12762 assuming that \MP\ is reading a line of characters that have been input
12763 from some file or from the user's terminal. There is an array called
12764 |buffer| that acts as a stack of all lines of characters that are
12765 currently being read from files, including all lines on subsidiary
12766 levels of the input stack that are not yet completed. \MP\ will return to
12767 the other lines when it is finished with the present input file.
12769 (Incidentally, on a machine with byte-oriented addressing, it would be
12770 appropriate to combine |buffer| with the |str_pool| array,
12771 letting the buffer entries grow downward from the top of the string pool
12772 and checking that these two tables don't bump into each other.)
12774 The line we are currently working on begins in position |start| of the
12775 buffer; the next character we are about to read is |buffer[loc]|; and
12776 |limit| is the location of the last character present. We always have
12777 |loc<=limit|. For convenience, |buffer[limit]| has been set to |"%"|, so
12778 that the end of a line is easily sensed.
12780 The |name| variable is a string number that designates the name of
12781 the current file, if we are reading an ordinary text file. Special codes
12782 |is_term..max_spec_src| indicate other sources of input text.
12784 @d is_term 0 /* |name| value when reading from the terminal for normal input */
12785 @d is_read 1 /* |name| value when executing a \&{readstring} or \&{readfrom} */
12786 @d is_scantok 2 /* |name| value when reading text generated by \&{scantokens} */
12787 @d max_spec_src is_scantok
12789 @ Additional information about the current line is available via the
12790 |index| variable, which counts how many lines of characters are present
12791 in the buffer below the current level. We have |index=0| when reading
12792 from the terminal and prompting the user for each line; then if the user types,
12793 e.g., `\.{input figs}', we will have |index=1| while reading
12794 the file \.{figs.mp}. However, it does not follow that |index| is the
12795 same as the input stack pointer, since many of the levels on the input
12796 stack may come from token lists and some |index| values may correspond
12797 to \.{MPX} files that are not currently on the stack.
12799 The global variable |in_open| is equal to the highest |index| value counting
12800 \.{MPX} files but excluding token-list input levels. Thus, the number of
12801 partially read lines in the buffer is |in_open+1| and we have |in_open>=index|
12802 when we are not reading a token list.
12804 If we are not currently reading from the terminal,
12805 we are reading from the file variable |input_file[index]|. We use
12806 the notation |terminal_input| as a convenient abbreviation for |name=is_term|,
12807 and |cur_file| as an abbreviation for |input_file[index]|.
12809 When \MP\ is not reading from the terminal, the global variable |line| contains
12810 the line number in the current file, for use in error messages. More precisely,
12811 |line| is a macro for |line_stack[index]| and the |line_stack| array gives
12812 the line number for each file in the |input_file| array.
12814 When an \.{MPX} file is opened the file name is stored in the |mpx_name|
12815 array so that the name doesn't get lost when the file is temporarily removed
12816 from the input stack.
12817 Thus when |input_file[k]| is an \.{MPX} file, its name is |mpx_name[k]|
12818 and it contains translated \TeX\ pictures for |input_file[k-1]|.
12819 Since this is not an \.{MPX} file, we have
12820 $$ \hbox{|mpx_name[k-1]<=absent|}. $$
12821 This |name| field is set to |finished| when |input_file[k]| is completely
12824 If more information about the input state is needed, it can be
12825 included in small arrays like those shown here. For example,
12826 the current page or segment number in the input file might be put
12827 into a variable |page|, that is really a macro for the current entry
12828 in `\ignorespaces|page_stack:array[0..max_in_open] of integer|\unskip'
12829 by analogy with |line_stack|.
12830 @^system dependencies@>
12832 @d terminal_input (name==is_term) /* are we reading from the terminal? */
12833 @d cur_file mp->input_file[index] /* the current |void *| variable */
12834 @d line mp->line_stack[index] /* current line number in the current source file */
12835 @d in_name mp->iname_stack[index] /* a string used to construct \.{MPX} file names */
12836 @d in_area mp->iarea_stack[index] /* another string for naming \.{MPX} files */
12837 @d absent 1 /* |name_field| value for unused |mpx_in_stack| entries */
12838 @d mpx_reading (mp->mpx_name[index]>absent)
12839 /* when reading a file, is it an \.{MPX} file? */
12841 /* |name_field| value when the corresponding \.{MPX} file is finished */
12844 integer in_open; /* the number of lines in the buffer, less one */
12845 unsigned int open_parens; /* the number of open text files */
12846 void * *input_file ;
12847 integer *line_stack ; /* the line number for each file */
12848 char * *iname_stack; /* used for naming \.{MPX} files */
12849 char * *iarea_stack; /* used for naming \.{MPX} files */
12850 halfword*mpx_name ;
12852 @ @<Allocate or ...@>=
12853 mp->input_file = xmalloc((mp->max_in_open+1),sizeof(void *));
12854 mp->line_stack = xmalloc((mp->max_in_open+1),sizeof(integer));
12855 mp->iname_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12856 mp->iarea_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12857 mp->mpx_name = xmalloc((mp->max_in_open+1),sizeof(halfword));
12860 for (k=0;k<=mp->max_in_open;k++) {
12861 mp->iname_stack[k] =NULL;
12862 mp->iarea_stack[k] =NULL;
12866 @ @<Dealloc variables@>=
12869 for (l=0;l<=mp->max_in_open;l++) {
12870 xfree(mp->iname_stack[l]);
12871 xfree(mp->iarea_stack[l]);
12874 xfree(mp->input_file);
12875 xfree(mp->line_stack);
12876 xfree(mp->iname_stack);
12877 xfree(mp->iarea_stack);
12878 xfree(mp->mpx_name);
12881 @ However, all this discussion about input state really applies only to the
12882 case that we are inputting from a file. There is another important case,
12883 namely when we are currently getting input from a token list. In this case
12884 |index>max_in_open|, and the conventions about the other state variables
12887 \yskip\hang|loc| is a pointer to the current node in the token list, i.e.,
12888 the node that will be read next. If |loc=null|, the token list has been
12891 \yskip\hang|start| points to the first node of the token list; this node
12892 may or may not contain a reference count, depending on the type of token
12895 \yskip\hang|token_type|, which takes the place of |index| in the
12896 discussion above, is a code number that explains what kind of token list
12899 \yskip\hang|name| points to the |eqtb| address of the control sequence
12900 being expanded, if the current token list is a macro not defined by
12901 \&{vardef}. Macros defined by \&{vardef} have |name=null|; their name
12902 can be deduced by looking at their first two parameters.
12904 \yskip\hang|param_start|, which takes the place of |limit|, tells where
12905 the parameters of the current macro or loop text begin in the |param_stack|.
12907 \yskip\noindent The |token_type| can take several values, depending on
12908 where the current token list came from:
12911 \indent|forever_text|, if the token list being scanned is the body of
12912 a \&{forever} loop;
12914 \indent|loop_text|, if the token list being scanned is the body of
12915 a \&{for} or \&{forsuffixes} loop;
12917 \indent|parameter|, if a \&{text} or \&{suffix} parameter is being scanned;
12919 \indent|backed_up|, if the token list being scanned has been inserted as
12920 `to be read again'.
12922 \indent|inserted|, if the token list being scanned has been inserted as
12923 part of error recovery;
12925 \indent|macro|, if the expansion of a user-defined symbolic token is being
12929 The token list begins with a reference count if and only if |token_type=
12931 @^reference counts@>
12933 @d token_type index /* type of current token list */
12934 @d token_state (index>(int)mp->max_in_open) /* are we scanning a token list? */
12935 @d file_state (index<=(int)mp->max_in_open) /* are we scanning a file line? */
12936 @d param_start limit /* base of macro parameters in |param_stack| */
12937 @d forever_text (mp->max_in_open+1) /* |token_type| code for loop texts */
12938 @d loop_text (mp->max_in_open+2) /* |token_type| code for loop texts */
12939 @d parameter (mp->max_in_open+3) /* |token_type| code for parameter texts */
12940 @d backed_up (mp->max_in_open+4) /* |token_type| code for texts to be reread */
12941 @d inserted (mp->max_in_open+5) /* |token_type| code for inserted texts */
12942 @d macro (mp->max_in_open+6) /* |token_type| code for macro replacement texts */
12944 @ The |param_stack| is an auxiliary array used to hold pointers to the token
12945 lists for parameters at the current level and subsidiary levels of input.
12946 This stack grows at a different rate from the others.
12949 pointer *param_stack; /* token list pointers for parameters */
12950 integer param_ptr; /* first unused entry in |param_stack| */
12951 integer max_param_stack; /* largest value of |param_ptr| */
12953 @ @<Allocate or initialize ...@>=
12954 mp->param_stack = xmalloc((mp->param_size+1),sizeof(pointer));
12956 @ @<Dealloc variables@>=
12957 xfree(mp->param_stack);
12959 @ Notice that the |line| isn't valid when |token_state| is true because it
12960 depends on |index|. If we really need to know the line number for the
12961 topmost file in the index stack we use the following function. If a page
12962 number or other information is needed, this routine should be modified to
12963 compute it as well.
12964 @^system dependencies@>
12966 @<Declare a function called |true_line|@>=
12967 integer mp_true_line (MP mp) {
12968 int k; /* an index into the input stack */
12969 if ( file_state && (name>max_spec_src) ) {
12974 ((mp->input_stack[(k-1)].index_field>mp->max_in_open)||
12975 (mp->input_stack[(k-1)].name_field<=max_spec_src))) {
12978 return (k>0 ? mp->line_stack[(k-1)] : 0 );
12983 @ Thus, the ``current input state'' can be very complicated indeed; there
12984 can be many levels and each level can arise in a variety of ways. The
12985 |show_context| procedure, which is used by \MP's error-reporting routine to
12986 print out the current input state on all levels down to the most recent
12987 line of characters from an input file, illustrates most of these conventions.
12988 The global variable |file_ptr| contains the lowest level that was
12989 displayed by this procedure.
12992 integer file_ptr; /* shallowest level shown by |show_context| */
12994 @ The status at each level is indicated by printing two lines, where the first
12995 line indicates what was read so far and the second line shows what remains
12996 to be read. The context is cropped, if necessary, so that the first line
12997 contains at most |half_error_line| characters, and the second contains
12998 at most |error_line|. Non-current input levels whose |token_type| is
12999 `|backed_up|' are shown only if they have not been fully read.
13001 @c void mp_show_context (MP mp) { /* prints where the scanner is */
13002 int old_setting; /* saved |selector| setting */
13003 @<Local variables for formatting calculations@>
13004 mp->file_ptr=mp->input_ptr; mp->input_stack[mp->file_ptr]=mp->cur_input;
13005 /* store current state */
13007 mp->cur_input=mp->input_stack[mp->file_ptr]; /* enter into the context */
13008 @<Display the current context@>;
13010 if ( (name>max_spec_src) || (mp->file_ptr==0) ) break;
13011 decr(mp->file_ptr);
13013 mp->cur_input=mp->input_stack[mp->input_ptr]; /* restore original state */
13016 @ @<Display the current context@>=
13017 if ( (mp->file_ptr==mp->input_ptr) || file_state ||
13018 (token_type!=backed_up) || (loc!=null) ) {
13019 /* we omit backed-up token lists that have already been read */
13020 mp->tally=0; /* get ready to count characters */
13021 old_setting=mp->selector;
13022 if ( file_state ) {
13023 @<Print location of current line@>;
13024 @<Pseudoprint the line@>;
13026 @<Print type of token list@>;
13027 @<Pseudoprint the token list@>;
13029 mp->selector=old_setting; /* stop pseudoprinting */
13030 @<Print two lines using the tricky pseudoprinted information@>;
13033 @ This routine should be changed, if necessary, to give the best possible
13034 indication of where the current line resides in the input file.
13035 For example, on some systems it is best to print both a page and line number.
13036 @^system dependencies@>
13038 @<Print location of current line@>=
13039 if ( name>max_spec_src ) {
13040 mp_print_nl(mp, "l."); mp_print_int(mp, mp_true_line(mp));
13041 } else if ( terminal_input ) {
13042 if ( mp->file_ptr==0 ) mp_print_nl(mp, "<*>");
13043 else mp_print_nl(mp, "<insert>");
13044 } else if ( name==is_scantok ) {
13045 mp_print_nl(mp, "<scantokens>");
13047 mp_print_nl(mp, "<read>");
13049 mp_print_char(mp, ' ')
13051 @ Can't use case statement here because the |token_type| is not
13052 a constant expression.
13054 @<Print type of token list@>=
13056 if(token_type==forever_text) {
13057 mp_print_nl(mp, "<forever> ");
13058 } else if (token_type==loop_text) {
13059 @<Print the current loop value@>;
13060 } else if (token_type==parameter) {
13061 mp_print_nl(mp, "<argument> ");
13062 } else if (token_type==backed_up) {
13063 if ( loc==null ) mp_print_nl(mp, "<recently read> ");
13064 else mp_print_nl(mp, "<to be read again> ");
13065 } else if (token_type==inserted) {
13066 mp_print_nl(mp, "<inserted text> ");
13067 } else if (token_type==macro) {
13069 if ( name!=null ) mp_print_text(name);
13070 else @<Print the name of a \&{vardef}'d macro@>;
13071 mp_print(mp, "->");
13073 mp_print_nl(mp, "?");/* this should never happen */
13078 @ The parameter that corresponds to a loop text is either a token list
13079 (in the case of \&{forsuffixes}) or a ``capsule'' (in the case of \&{for}).
13080 We'll discuss capsules later; for now, all we need to know is that
13081 the |link| field in a capsule parameter is |void| and that
13082 |print_exp(p,0)| displays the value of capsule~|p| in abbreviated form.
13084 @<Print the current loop value@>=
13085 { mp_print_nl(mp, "<for("); p=mp->param_stack[param_start];
13087 if ( link(p)==mp_void ) mp_print_exp(mp, p,0); /* we're in a \&{for} loop */
13088 else mp_show_token_list(mp, p,null,20,mp->tally);
13090 mp_print(mp, ")> ");
13093 @ The first two parameters of a macro defined by \&{vardef} will be token
13094 lists representing the macro's prefix and ``at point.'' By putting these
13095 together, we get the macro's full name.
13097 @<Print the name of a \&{vardef}'d macro@>=
13098 { p=mp->param_stack[param_start];
13100 mp_show_token_list(mp, mp->param_stack[param_start+1],null,20,mp->tally);
13103 while ( link(q)!=null ) q=link(q);
13104 link(q)=mp->param_stack[param_start+1];
13105 mp_show_token_list(mp, p,null,20,mp->tally);
13110 @ Now it is necessary to explain a little trick. We don't want to store a long
13111 string that corresponds to a token list, because that string might take up
13112 lots of memory; and we are printing during a time when an error message is
13113 being given, so we dare not do anything that might overflow one of \MP's
13114 tables. So `pseudoprinting' is the answer: We enter a mode of printing
13115 that stores characters into a buffer of length |error_line|, where character
13116 $k+1$ is placed into \hbox{|trick_buf[k mod error_line]|} if
13117 |k<trick_count|, otherwise character |k| is dropped. Initially we set
13118 |tally:=0| and |trick_count:=1000000|; then when we reach the
13119 point where transition from line 1 to line 2 should occur, we
13120 set |first_count:=tally| and |trick_count:=@tmax@>(error_line,
13121 tally+1+error_line-half_error_line)|. At the end of the
13122 pseudoprinting, the values of |first_count|, |tally|, and
13123 |trick_count| give us all the information we need to print the two lines,
13124 and all of the necessary text is in |trick_buf|.
13126 Namely, let |l| be the length of the descriptive information that appears
13127 on the first line. The length of the context information gathered for that
13128 line is |k=first_count|, and the length of the context information
13129 gathered for line~2 is $m=\min(|tally|, |trick_count|)-k$. If |l+k<=h|,
13130 where |h=half_error_line|, we print |trick_buf[0..k-1]| after the
13131 descriptive information on line~1, and set |n:=l+k|; here |n| is the
13132 length of line~1. If $l+k>h$, some cropping is necessary, so we set |n:=h|
13133 and print `\.{...}' followed by
13134 $$\hbox{|trick_buf[(l+k-h+3)..k-1]|,}$$
13135 where subscripts of |trick_buf| are circular modulo |error_line|. The
13136 second line consists of |n|~spaces followed by |trick_buf[k..(k+m-1)]|,
13137 unless |n+m>error_line|; in the latter case, further cropping is done.
13138 This is easier to program than to explain.
13140 @<Local variables for formatting...@>=
13141 int i; /* index into |buffer| */
13142 integer l; /* length of descriptive information on line 1 */
13143 integer m; /* context information gathered for line 2 */
13144 int n; /* length of line 1 */
13145 integer p; /* starting or ending place in |trick_buf| */
13146 integer q; /* temporary index */
13148 @ The following code tells the print routines to gather
13149 the desired information.
13151 @d begin_pseudoprint {
13152 l=mp->tally; mp->tally=0; mp->selector=pseudo;
13153 mp->trick_count=1000000;
13155 @d set_trick_count {
13156 mp->first_count=mp->tally;
13157 mp->trick_count=mp->tally+1+mp->error_line-mp->half_error_line;
13158 if ( mp->trick_count<mp->error_line ) mp->trick_count=mp->error_line;
13161 @ And the following code uses the information after it has been gathered.
13163 @<Print two lines using the tricky pseudoprinted information@>=
13164 if ( mp->trick_count==1000000 ) set_trick_count;
13165 /* |set_trick_count| must be performed */
13166 if ( mp->tally<mp->trick_count ) m=mp->tally-mp->first_count;
13167 else m=mp->trick_count-mp->first_count; /* context on line 2 */
13168 if ( l+mp->first_count<=mp->half_error_line ) {
13169 p=0; n=l+mp->first_count;
13171 mp_print(mp, "..."); p=l+mp->first_count-mp->half_error_line+3;
13172 n=mp->half_error_line;
13174 for (q=p;q<=mp->first_count-1;q++) {
13175 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13178 for (q=1;q<=n;q++) {
13179 mp_print_char(mp, ' '); /* print |n| spaces to begin line~2 */
13181 if ( m+n<=mp->error_line ) p=mp->first_count+m;
13182 else p=mp->first_count+(mp->error_line-n-3);
13183 for (q=mp->first_count;q<=p-1;q++) {
13184 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13186 if ( m+n>mp->error_line ) mp_print(mp, "...")
13188 @ But the trick is distracting us from our current goal, which is to
13189 understand the input state. So let's concentrate on the data structures that
13190 are being pseudoprinted as we finish up the |show_context| procedure.
13192 @<Pseudoprint the line@>=
13195 for (i=start;i<=limit-1;i++) {
13196 if ( i==loc ) set_trick_count;
13197 mp_print_str(mp, mp->buffer[i]);
13201 @ @<Pseudoprint the token list@>=
13203 if ( token_type!=macro ) mp_show_token_list(mp, start,loc,100000,0);
13204 else mp_show_macro(mp, start,loc,100000)
13206 @ Here is the missing piece of |show_token_list| that is activated when the
13207 token beginning line~2 is about to be shown:
13209 @<Do magic computation@>=set_trick_count
13211 @* \[28] Maintaining the input stacks.
13212 The following subroutines change the input status in commonly needed ways.
13214 First comes |push_input|, which stores the current state and creates a
13215 new level (having, initially, the same properties as the old).
13217 @d push_input { /* enter a new input level, save the old */
13218 if ( mp->input_ptr>mp->max_in_stack ) {
13219 mp->max_in_stack=mp->input_ptr;
13220 if ( mp->input_ptr==mp->stack_size ) {
13221 int l = (mp->stack_size+(mp->stack_size>>2));
13222 XREALLOC(mp->input_stack, l, in_state_record);
13223 mp->stack_size = l;
13226 mp->input_stack[mp->input_ptr]=mp->cur_input; /* stack the record */
13227 incr(mp->input_ptr);
13230 @ And of course what goes up must come down.
13232 @d pop_input { /* leave an input level, re-enter the old */
13233 decr(mp->input_ptr); mp->cur_input=mp->input_stack[mp->input_ptr];
13236 @ Here is a procedure that starts a new level of token-list input, given
13237 a token list |p| and its type |t|. If |t=macro|, the calling routine should
13238 set |name|, reset~|loc|, and increase the macro's reference count.
13240 @d back_list(A) mp_begin_token_list(mp, (A),backed_up) /* backs up a simple token list */
13242 @c void mp_begin_token_list (MP mp,pointer p, quarterword t) {
13243 push_input; start=p; token_type=t;
13244 param_start=mp->param_ptr; loc=p;
13247 @ When a token list has been fully scanned, the following computations
13248 should be done as we leave that level of input.
13251 @c void mp_end_token_list (MP mp) { /* leave a token-list input level */
13252 pointer p; /* temporary register */
13253 if ( token_type>=backed_up ) { /* token list to be deleted */
13254 if ( token_type<=inserted ) {
13255 mp_flush_token_list(mp, start); goto DONE;
13257 mp_delete_mac_ref(mp, start); /* update reference count */
13260 while ( mp->param_ptr>param_start ) { /* parameters must be flushed */
13261 decr(mp->param_ptr);
13262 p=mp->param_stack[mp->param_ptr];
13264 if ( link(p)==mp_void ) { /* it's an \&{expr} parameter */
13265 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
13267 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
13272 pop_input; check_interrupt;
13275 @ The contents of |cur_cmd,cur_mod,cur_sym| are placed into an equivalent
13276 token by the |cur_tok| routine.
13279 @c @<Declare the procedure called |make_exp_copy|@>;
13280 pointer mp_cur_tok (MP mp) {
13281 pointer p; /* a new token node */
13282 small_number save_type; /* |cur_type| to be restored */
13283 integer save_exp; /* |cur_exp| to be restored */
13284 if ( mp->cur_sym==0 ) {
13285 if ( mp->cur_cmd==capsule_token ) {
13286 save_type=mp->cur_type; save_exp=mp->cur_exp;
13287 mp_make_exp_copy(mp, mp->cur_mod); p=mp_stash_cur_exp(mp); link(p)=null;
13288 mp->cur_type=save_type; mp->cur_exp=save_exp;
13290 p=mp_get_node(mp, token_node_size);
13291 value(p)=mp->cur_mod; name_type(p)=mp_token;
13292 if ( mp->cur_cmd==numeric_token ) type(p)=mp_known;
13293 else type(p)=mp_string_type;
13296 fast_get_avail(p); info(p)=mp->cur_sym;
13301 @ Sometimes \MP\ has read too far and wants to ``unscan'' what it has
13302 seen. The |back_input| procedure takes care of this by putting the token
13303 just scanned back into the input stream, ready to be read again.
13304 If |cur_sym<>0|, the values of |cur_cmd| and |cur_mod| are irrelevant.
13307 void mp_back_input (MP mp);
13309 @ @c void mp_back_input (MP mp) {/* undoes one token of input */
13310 pointer p; /* a token list of length one */
13312 while ( token_state &&(loc==null) )
13313 mp_end_token_list(mp); /* conserve stack space */
13317 @ The |back_error| routine is used when we want to restore or replace an
13318 offending token just before issuing an error message. We disable interrupts
13319 during the call of |back_input| so that the help message won't be lost.
13322 void mp_error (MP mp);
13323 void mp_back_error (MP mp);
13325 @ @c void mp_back_error (MP mp) { /* back up one token and call |error| */
13326 mp->OK_to_interrupt=false;
13328 mp->OK_to_interrupt=true; mp_error(mp);
13330 void mp_ins_error (MP mp) { /* back up one inserted token and call |error| */
13331 mp->OK_to_interrupt=false;
13332 mp_back_input(mp); token_type=inserted;
13333 mp->OK_to_interrupt=true; mp_error(mp);
13336 @ The |begin_file_reading| procedure starts a new level of input for lines
13337 of characters to be read from a file, or as an insertion from the
13338 terminal. It does not take care of opening the file, nor does it set |loc|
13339 or |limit| or |line|.
13340 @^system dependencies@>
13342 @c void mp_begin_file_reading (MP mp) {
13343 if ( mp->in_open==mp->max_in_open )
13344 mp_overflow(mp, "text input levels",mp->max_in_open);
13345 @:MetaPost capacity exceeded text input levels}{\quad text input levels@>
13346 if ( mp->first==mp->buf_size )
13347 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13348 incr(mp->in_open); push_input; index=mp->in_open;
13349 mp->mpx_name[index]=absent;
13351 name=is_term; /* |terminal_input| is now |true| */
13354 @ Conversely, the variables must be downdated when such a level of input
13355 is finished. Any associated \.{MPX} file must also be closed and popped
13356 off the file stack.
13358 @c void mp_end_file_reading (MP mp) {
13359 if ( mp->in_open>index ) {
13360 if ( (mp->mpx_name[mp->in_open]==absent)||(name<=max_spec_src) ) {
13361 mp_confusion(mp, "endinput");
13362 @:this can't happen endinput}{\quad endinput@>
13364 (mp->close_file)(mp->input_file[mp->in_open]); /* close an \.{MPX} file */
13365 delete_str_ref(mp->mpx_name[mp->in_open]);
13370 if ( index!=mp->in_open ) mp_confusion(mp, "endinput");
13371 if ( name>max_spec_src ) {
13372 (mp->close_file)(cur_file);
13373 delete_str_ref(name);
13377 pop_input; decr(mp->in_open);
13380 @ Here is a function that tries to resume input from an \.{MPX} file already
13381 associated with the current input file. It returns |false| if this doesn't
13384 @c boolean mp_begin_mpx_reading (MP mp) {
13385 if ( mp->in_open!=index+1 ) {
13388 if ( mp->mpx_name[mp->in_open]<=absent ) mp_confusion(mp, "mpx");
13389 @:this can't happen mpx}{\quad mpx@>
13390 if ( mp->first==mp->buf_size )
13391 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13392 push_input; index=mp->in_open;
13394 name=mp->mpx_name[mp->in_open]; add_str_ref(name);
13395 @<Put an empty line in the input buffer@>;
13400 @ This procedure temporarily stops reading an \.{MPX} file.
13402 @c void mp_end_mpx_reading (MP mp) {
13403 if ( mp->in_open!=index ) mp_confusion(mp, "mpx");
13404 @:this can't happen mpx}{\quad mpx@>
13406 @<Complain that we are not at the end of a line in the \.{MPX} file@>;
13412 @ Here we enforce a restriction that simplifies the input stacks considerably.
13413 This should not inconvenience the user because \.{MPX} files are generated
13414 by an auxiliary program called \.{DVItoMP}.
13416 @ @<Complain that we are not at the end of a line in the \.{MPX} file@>=
13418 print_err("`mpxbreak' must be at the end of a line");
13419 help4("This file contains picture expressions for btex...etex")
13420 ("blocks. Such files are normally generated automatically")
13421 ("but this one seems to be messed up. I'm going to ignore")
13422 ("the rest of this line.");
13426 @ In order to keep the stack from overflowing during a long sequence of
13427 inserted `\.{show}' commands, the following routine removes completed
13428 error-inserted lines from memory.
13430 @c void mp_clear_for_error_prompt (MP mp) {
13431 while ( file_state && terminal_input &&
13432 (mp->input_ptr>0)&&(loc==limit) ) mp_end_file_reading(mp);
13433 mp_print_ln(mp); clear_terminal;
13436 @ To get \MP's whole input mechanism going, we perform the following
13439 @<Initialize the input routines@>=
13440 { mp->input_ptr=0; mp->max_in_stack=0;
13441 mp->in_open=0; mp->open_parens=0; mp->max_buf_stack=0;
13442 mp->param_ptr=0; mp->max_param_stack=0;
13444 start=1; index=0; line=0; name=is_term;
13445 mp->mpx_name[0]=absent;
13446 mp->force_eof=false;
13447 if ( ! mp_init_terminal(mp) ) mp_jump_out(mp);
13448 limit=mp->last; mp->first=mp->last+1;
13449 /* |init_terminal| has set |loc| and |last| */
13452 @* \[29] Getting the next token.
13453 The heart of \MP's input mechanism is the |get_next| procedure, which
13454 we shall develop in the next few sections of the program. Perhaps we
13455 shouldn't actually call it the ``heart,'' however; it really acts as \MP's
13456 eyes and mouth, reading the source files and gobbling them up. And it also
13457 helps \MP\ to regurgitate stored token lists that are to be processed again.
13459 The main duty of |get_next| is to input one token and to set |cur_cmd|
13460 and |cur_mod| to that token's command code and modifier. Furthermore, if
13461 the input token is a symbolic token, that token's |hash| address
13462 is stored in |cur_sym|; otherwise |cur_sym| is set to zero.
13464 Underlying this simple description is a certain amount of complexity
13465 because of all the cases that need to be handled.
13466 However, the inner loop of |get_next| is reasonably short and fast.
13468 @ Before getting into |get_next|, we need to consider a mechanism by which
13469 \MP\ helps keep errors from propagating too far. Whenever the program goes
13470 into a mode where it keeps calling |get_next| repeatedly until a certain
13471 condition is met, it sets |scanner_status| to some value other than |normal|.
13472 Then if an input file ends, or if an `\&{outer}' symbol appears,
13473 an appropriate error recovery will be possible.
13475 The global variable |warning_info| helps in this error recovery by providing
13476 additional information. For example, |warning_info| might indicate the
13477 name of a macro whose replacement text is being scanned.
13479 @d normal 0 /* |scanner_status| at ``quiet times'' */
13480 @d skipping 1 /* |scanner_status| when false conditional text is being skipped */
13481 @d flushing 2 /* |scanner_status| when junk after a statement is being ignored */
13482 @d absorbing 3 /* |scanner_status| when a \&{text} parameter is being scanned */
13483 @d var_defining 4 /* |scanner_status| when a \&{vardef} is being scanned */
13484 @d op_defining 5 /* |scanner_status| when a macro \&{def} is being scanned */
13485 @d loop_defining 6 /* |scanner_status| when a \&{for} loop is being scanned */
13486 @d tex_flushing 7 /* |scanner_status| when skipping \TeX\ material */
13489 integer scanner_status; /* are we scanning at high speed? */
13490 integer warning_info; /* if so, what else do we need to know,
13491 in case an error occurs? */
13493 @ @<Initialize the input routines@>=
13494 mp->scanner_status=normal;
13496 @ The following subroutine
13497 is called when an `\&{outer}' symbolic token has been scanned or
13498 when the end of a file has been reached. These two cases are distinguished
13499 by |cur_sym|, which is zero at the end of a file.
13501 @c boolean mp_check_outer_validity (MP mp) {
13502 pointer p; /* points to inserted token list */
13503 if ( mp->scanner_status==normal ) {
13505 } else if ( mp->scanner_status==tex_flushing ) {
13506 @<Check if the file has ended while flushing \TeX\ material and set the
13507 result value for |check_outer_validity|@>;
13509 mp->deletions_allowed=false;
13510 @<Back up an outer symbolic token so that it can be reread@>;
13511 if ( mp->scanner_status>skipping ) {
13512 @<Tell the user what has run away and try to recover@>;
13514 print_err("Incomplete if; all text was ignored after line ");
13515 @.Incomplete if...@>
13516 mp_print_int(mp, mp->warning_info);
13517 help3("A forbidden `outer' token occurred in skipped text.")
13518 ("This kind of error happens when you say `if...' and forget")
13519 ("the matching `fi'. I've inserted a `fi'; this might work.");
13520 if ( mp->cur_sym==0 )
13521 mp->help_line[2]="The file ended while I was skipping conditional text.";
13522 mp->cur_sym=frozen_fi; mp_ins_error(mp);
13524 mp->deletions_allowed=true;
13529 @ @<Check if the file has ended while flushing \TeX\ material and set...@>=
13530 if ( mp->cur_sym!=0 ) {
13533 mp->deletions_allowed=false;
13534 print_err("TeX mode didn't end; all text was ignored after line ");
13535 mp_print_int(mp, mp->warning_info);
13536 help2("The file ended while I was looking for the `etex' to")
13537 ("finish this TeX material. I've inserted `etex' now.");
13538 mp->cur_sym = frozen_etex;
13540 mp->deletions_allowed=true;
13544 @ @<Back up an outer symbolic token so that it can be reread@>=
13545 if ( mp->cur_sym!=0 ) {
13546 p=mp_get_avail(mp); info(p)=mp->cur_sym;
13547 back_list(p); /* prepare to read the symbolic token again */
13550 @ @<Tell the user what has run away...@>=
13552 mp_runaway(mp); /* print the definition-so-far */
13553 if ( mp->cur_sym==0 ) {
13554 print_err("File ended");
13555 @.File ended while scanning...@>
13557 print_err("Forbidden token found");
13558 @.Forbidden token found...@>
13560 mp_print(mp, " while scanning ");
13561 help4("I suspect you have forgotten an `enddef',")
13562 ("causing me to read past where you wanted me to stop.")
13563 ("I'll try to recover; but if the error is serious,")
13564 ("you'd better type `E' or `X' now and fix your file.");
13565 switch (mp->scanner_status) {
13566 @<Complete the error message,
13567 and set |cur_sym| to a token that might help recover from the error@>
13568 } /* there are no other cases */
13572 @ As we consider various kinds of errors, it is also appropriate to
13573 change the first line of the help message just given; |help_line[3]|
13574 points to the string that might be changed.
13576 @<Complete the error message,...@>=
13578 mp_print(mp, "to the end of the statement");
13579 mp->help_line[3]="A previous error seems to have propagated,";
13580 mp->cur_sym=frozen_semicolon;
13583 mp_print(mp, "a text argument");
13584 mp->help_line[3]="It seems that a right delimiter was left out,";
13585 if ( mp->warning_info==0 ) {
13586 mp->cur_sym=frozen_end_group;
13588 mp->cur_sym=frozen_right_delimiter;
13589 equiv(frozen_right_delimiter)=mp->warning_info;
13594 mp_print(mp, "the definition of ");
13595 if ( mp->scanner_status==op_defining )
13596 mp_print_text(mp->warning_info);
13598 mp_print_variable_name(mp, mp->warning_info);
13599 mp->cur_sym=frozen_end_def;
13601 case loop_defining:
13602 mp_print(mp, "the text of a ");
13603 mp_print_text(mp->warning_info);
13604 mp_print(mp, " loop");
13605 mp->help_line[3]="I suspect you have forgotten an `endfor',";
13606 mp->cur_sym=frozen_end_for;
13609 @ The |runaway| procedure displays the first part of the text that occurred
13610 when \MP\ began its special |scanner_status|, if that text has been saved.
13612 @<Declare the procedure called |runaway|@>=
13613 void mp_runaway (MP mp) {
13614 if ( mp->scanner_status>flushing ) {
13615 mp_print_nl(mp, "Runaway ");
13616 switch (mp->scanner_status) {
13617 case absorbing: mp_print(mp, "text?"); break;
13619 case op_defining: mp_print(mp,"definition?"); break;
13620 case loop_defining: mp_print(mp, "loop?"); break;
13621 } /* there are no other cases */
13623 mp_show_token_list(mp, link(hold_head),null,mp->error_line-10,0);
13627 @ We need to mention a procedure that may be called by |get_next|.
13630 void mp_firm_up_the_line (MP mp);
13632 @ And now we're ready to take the plunge into |get_next| itself.
13633 Note that the behavior depends on the |scanner_status| because percent signs
13634 and double quotes need to be passed over when skipping TeX material.
13637 void mp_get_next (MP mp) {
13638 /* sets |cur_cmd|, |cur_mod|, |cur_sym| to next token */
13640 /*restart*/ /* go here to get the next input token */
13641 /*exit*/ /* go here when the next input token has been got */
13642 /*|common_ending|*/ /* go here to finish getting a symbolic token */
13643 /*found*/ /* go here when the end of a symbolic token has been found */
13644 /*switch*/ /* go here to branch on the class of an input character */
13645 /*|start_numeric_token|,|start_decimal_token|,|fin_numeric_token|,|done|*/
13646 /* go here at crucial stages when scanning a number */
13647 int k; /* an index into |buffer| */
13648 ASCII_code c; /* the current character in the buffer */
13649 ASCII_code class; /* its class number */
13650 integer n,f; /* registers for decimal-to-binary conversion */
13653 if ( file_state ) {
13654 @<Input from external file; |goto restart| if no input found,
13655 or |return| if a non-symbolic token is found@>;
13657 @<Input from token list; |goto restart| if end of list or
13658 if a parameter needs to be expanded,
13659 or |return| if a non-symbolic token is found@>;
13662 @<Finish getting the symbolic token in |cur_sym|;
13663 |goto restart| if it is illegal@>;
13666 @ When a symbolic token is declared to be `\&{outer}', its command code
13667 is increased by |outer_tag|.
13670 @<Finish getting the symbolic token in |cur_sym|...@>=
13671 mp->cur_cmd=eq_type(mp->cur_sym); mp->cur_mod=equiv(mp->cur_sym);
13672 if ( mp->cur_cmd>=outer_tag ) {
13673 if ( mp_check_outer_validity(mp) )
13674 mp->cur_cmd=mp->cur_cmd-outer_tag;
13679 @ A percent sign appears in |buffer[limit]|; this makes it unnecessary
13680 to have a special test for end-of-line.
13683 @<Input from external file;...@>=
13686 c=mp->buffer[loc]; incr(loc); class=mp->char_class[c];
13688 case digit_class: goto START_NUMERIC_TOKEN; break;
13690 class=mp->char_class[mp->buffer[loc]];
13691 if ( class>period_class ) {
13693 } else if ( class<period_class ) { /* |class=digit_class| */
13694 n=0; goto START_DECIMAL_TOKEN;
13698 case space_class: goto SWITCH; break;
13699 case percent_class:
13700 if ( mp->scanner_status==tex_flushing ) {
13701 if ( loc<limit ) goto SWITCH;
13703 @<Move to next line of file, or |goto restart| if there is no next line@>;
13708 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13709 else @<Get a string token and |return|@>;
13711 case isolated_classes:
13712 k=loc-1; goto FOUND; break;
13713 case invalid_class:
13714 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13715 else @<Decry the invalid character and |goto restart|@>;
13717 default: break; /* letters, etc. */
13720 while ( mp->char_class[mp->buffer[loc]]==class ) incr(loc);
13722 START_NUMERIC_TOKEN:
13723 @<Get the integer part |n| of a numeric token;
13724 set |f:=0| and |goto fin_numeric_token| if there is no decimal point@>;
13725 START_DECIMAL_TOKEN:
13726 @<Get the fraction part |f| of a numeric token@>;
13728 @<Pack the numeric and fraction parts of a numeric token
13731 mp->cur_sym=mp_id_lookup(mp, k,loc-k);
13734 @ We go to |restart| instead of to |SWITCH|, because |state| might equal
13735 |token_list| after the error has been dealt with
13736 (cf.\ |clear_for_error_prompt|).
13738 @<Decry the invalid...@>=
13740 print_err("Text line contains an invalid character");
13741 @.Text line contains...@>
13742 help2("A funny symbol that I can\'t read has just been input.")
13743 ("Continue, and I'll forget that it ever happened.");
13744 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13748 @ @<Get a string token and |return|@>=
13750 if ( mp->buffer[loc]=='"' ) {
13751 mp->cur_mod=rts("");
13753 k=loc; mp->buffer[limit+1]='"';
13756 } while (mp->buffer[loc]!='"');
13758 @<Decry the missing string delimiter and |goto restart|@>;
13761 mp->cur_mod=mp->buffer[k];
13765 append_char(mp->buffer[k]); incr(k);
13767 mp->cur_mod=mp_make_string(mp);
13770 incr(loc); mp->cur_cmd=string_token;
13774 @ We go to |restart| after this error message, not to |SWITCH|,
13775 because the |clear_for_error_prompt| routine might have reinstated
13776 |token_state| after |error| has finished.
13778 @<Decry the missing string delimiter and |goto restart|@>=
13780 loc=limit; /* the next character to be read on this line will be |"%"| */
13781 print_err("Incomplete string token has been flushed");
13782 @.Incomplete string token...@>
13783 help3("Strings should finish on the same line as they began.")
13784 ("I've deleted the partial string; you might want to")
13785 ("insert another by typing, e.g., `I\"new string\"'.");
13786 mp->deletions_allowed=false; mp_error(mp);
13787 mp->deletions_allowed=true;
13791 @ @<Get the integer part |n| of a numeric token...@>=
13793 while ( mp->char_class[mp->buffer[loc]]==digit_class ) {
13794 if ( n<32768 ) n=10*n+mp->buffer[loc]-'0';
13797 if ( mp->buffer[loc]=='.' )
13798 if ( mp->char_class[mp->buffer[loc+1]]==digit_class )
13801 goto FIN_NUMERIC_TOKEN;
13804 @ @<Get the fraction part |f| of a numeric token@>=
13807 if ( k<17 ) { /* digits for |k>=17| cannot affect the result */
13808 mp->dig[k]=mp->buffer[loc]-'0'; incr(k);
13811 } while (mp->char_class[mp->buffer[loc]]==digit_class);
13812 f=mp_round_decimals(mp, k);
13817 @ @<Pack the numeric and fraction parts of a numeric token and |return|@>=
13819 @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>;
13820 } else if ( mp->scanner_status!=tex_flushing ) {
13821 print_err("Enormous number has been reduced");
13822 @.Enormous number...@>
13823 help2("I can\'t handle numbers bigger than 32767.99998;")
13824 ("so I've changed your constant to that maximum amount.");
13825 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13826 mp->cur_mod=el_gordo;
13828 mp->cur_cmd=numeric_token; return
13830 @ @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>=
13832 mp->cur_mod=n*unity+f;
13833 if ( mp->cur_mod>=fraction_one ) {
13834 if ( (mp->internal[mp_warning_check]>0) &&
13835 (mp->scanner_status!=tex_flushing) ) {
13836 print_err("Number is too large (");
13837 mp_print_scaled(mp, mp->cur_mod);
13838 mp_print_char(mp, ')');
13839 help3("It is at least 4096. Continue and I'll try to cope")
13840 ("with that big value; but it might be dangerous.")
13841 ("(Set warningcheck:=0 to suppress this message.)");
13847 @ Let's consider now what happens when |get_next| is looking at a token list.
13850 @<Input from token list;...@>=
13851 if ( loc>=mp->hi_mem_min ) { /* one-word token */
13852 mp->cur_sym=info(loc); loc=link(loc); /* move to next */
13853 if ( mp->cur_sym>=expr_base ) {
13854 if ( mp->cur_sym>=suffix_base ) {
13855 @<Insert a suffix or text parameter and |goto restart|@>;
13857 mp->cur_cmd=capsule_token;
13858 mp->cur_mod=mp->param_stack[param_start+mp->cur_sym-(expr_base)];
13859 mp->cur_sym=0; return;
13862 } else if ( loc>null ) {
13863 @<Get a stored numeric or string or capsule token and |return|@>
13864 } else { /* we are done with this token list */
13865 mp_end_token_list(mp); goto RESTART; /* resume previous level */
13868 @ @<Insert a suffix or text parameter...@>=
13870 if ( mp->cur_sym>=text_base ) mp->cur_sym=mp->cur_sym-mp->param_size;
13871 /* |param_size=text_base-suffix_base| */
13872 mp_begin_token_list(mp,
13873 mp->param_stack[param_start+mp->cur_sym-(suffix_base)],
13878 @ @<Get a stored numeric or string or capsule token...@>=
13880 if ( name_type(loc)==mp_token ) {
13881 mp->cur_mod=value(loc);
13882 if ( type(loc)==mp_known ) {
13883 mp->cur_cmd=numeric_token;
13885 mp->cur_cmd=string_token; add_str_ref(mp->cur_mod);
13888 mp->cur_mod=loc; mp->cur_cmd=capsule_token;
13890 loc=link(loc); return;
13893 @ All of the easy branches of |get_next| have now been taken care of.
13894 There is one more branch.
13896 @<Move to next line of file, or |goto restart|...@>=
13897 if ( name>max_spec_src ) {
13898 @<Read next line of file into |buffer|, or
13899 |goto restart| if the file has ended@>;
13901 if ( mp->input_ptr>0 ) {
13902 /* text was inserted during error recovery or by \&{scantokens} */
13903 mp_end_file_reading(mp); goto RESTART; /* resume previous level */
13905 if ( mp->selector<log_only || mp->selector>=write_file) mp_open_log_file(mp);
13906 if ( mp->interaction>mp_nonstop_mode ) {
13907 if ( limit==start ) /* previous line was empty */
13908 mp_print_nl(mp, "(Please type a command or say `end')");
13910 mp_print_ln(mp); mp->first=start;
13911 prompt_input("*"); /* input on-line into |buffer| */
13913 limit=mp->last; mp->buffer[limit]='%';
13914 mp->first=limit+1; loc=start;
13916 mp_fatal_error(mp, "*** (job aborted, no legal end found)");
13918 /* nonstop mode, which is intended for overnight batch processing,
13919 never waits for on-line input */
13923 @ The global variable |force_eof| is normally |false|; it is set |true|
13924 by an \&{endinput} command.
13927 boolean force_eof; /* should the next \&{input} be aborted early? */
13929 @ We must decrement |loc| in order to leave the buffer in a valid state
13930 when an error condition causes us to |goto restart| without calling
13931 |end_file_reading|.
13933 @<Read next line of file into |buffer|, or
13934 |goto restart| if the file has ended@>=
13936 incr(line); mp->first=start;
13937 if ( ! mp->force_eof ) {
13938 if ( mp_input_ln(mp, cur_file ) ) /* not end of file */
13939 mp_firm_up_the_line(mp); /* this sets |limit| */
13941 mp->force_eof=true;
13943 if ( mp->force_eof ) {
13944 mp->force_eof=false;
13946 if ( mpx_reading ) {
13947 @<Complain that the \.{MPX} file ended unexpectly; then set
13948 |cur_sym:=frozen_mpx_break| and |goto comon_ending|@>;
13950 mp_print_char(mp, ')'); decr(mp->open_parens);
13951 update_terminal; /* show user that file has been read */
13952 mp_end_file_reading(mp); /* resume previous level */
13953 if ( mp_check_outer_validity(mp) ) goto RESTART;
13957 mp->buffer[limit]='%'; mp->first=limit+1; loc=start; /* ready to read */
13960 @ We should never actually come to the end of an \.{MPX} file because such
13961 files should have an \&{mpxbreak} after the translation of the last
13962 \&{btex}$\,\ldots\,$\&{etex} block.
13964 @<Complain that the \.{MPX} file ended unexpectly; then set...@>=
13966 mp->mpx_name[index]=finished;
13967 print_err("mpx file ended unexpectedly");
13968 help4("The file had too few picture expressions for btex...etex")
13969 ("blocks. Such files are normally generated automatically")
13970 ("but this one got messed up. You might want to insert a")
13971 ("picture expression now.");
13972 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13973 mp->cur_sym=frozen_mpx_break; goto COMMON_ENDING;
13976 @ Sometimes we want to make it look as though we have just read a blank line
13977 without really doing so.
13979 @<Put an empty line in the input buffer@>=
13980 mp->last=mp->first; limit=mp->last; /* simulate |input_ln| and |firm_up_the_line| */
13981 mp->buffer[limit]='%'; mp->first=limit+1; loc=start
13983 @ If the user has set the |mp_pausing| parameter to some positive value,
13984 and if nonstop mode has not been selected, each line of input is displayed
13985 on the terminal and the transcript file, followed by `\.{=>}'.
13986 \MP\ waits for a response. If the response is null (i.e., if nothing is
13987 typed except perhaps a few blank spaces), the original
13988 line is accepted as it stands; otherwise the line typed is
13989 used instead of the line in the file.
13991 @c void mp_firm_up_the_line (MP mp) {
13992 size_t k; /* an index into |buffer| */
13994 if ( mp->internal[mp_pausing]>0) if ( mp->interaction>mp_nonstop_mode ) {
13995 wake_up_terminal; mp_print_ln(mp);
13996 if ( start<limit ) {
13997 for (k=(size_t)start;k<=(size_t)(limit-1);k++) {
13998 mp_print_str(mp, mp->buffer[k]);
14001 mp->first=limit; prompt_input("=>"); /* wait for user response */
14003 if ( mp->last>mp->first ) {
14004 for (k=mp->first;k<=mp->last-1;k++) { /* move line down in buffer */
14005 mp->buffer[k+start-mp->first]=mp->buffer[k];
14007 limit=start+mp->last-mp->first;
14012 @* \[30] Dealing with \TeX\ material.
14013 The \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}$\,\ldots\,$\&{etex}
14014 features need to be implemented at a low level in the scanning process
14015 so that \MP\ can stay in synch with the a preprocessor that treats
14016 blocks of \TeX\ material as they occur in the input file without trying
14017 to expand \MP\ macros. Thus we need a special version of |get_next|
14018 that does not expand macros and such but does handle \&{btex},
14019 \&{verbatimtex}, etc.
14021 The special version of |get_next| is called |get_t_next|. It works by flushing
14022 \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}\allowbreak
14023 $\,\ldots\,$\&{etex} blocks, switching to the \.{MPX} file when it sees
14024 \&{btex}, and switching back when it sees \&{mpxbreak}.
14030 mp_primitive(mp, "btex",start_tex,btex_code);
14031 @:btex_}{\&{btex} primitive@>
14032 mp_primitive(mp, "verbatimtex",start_tex,verbatim_code);
14033 @:verbatimtex_}{\&{verbatimtex} primitive@>
14034 mp_primitive(mp, "etex",etex_marker,0); mp->eqtb[frozen_etex]=mp->eqtb[mp->cur_sym];
14035 @:etex_}{\&{etex} primitive@>
14036 mp_primitive(mp, "mpxbreak",mpx_break,0); mp->eqtb[frozen_mpx_break]=mp->eqtb[mp->cur_sym];
14037 @:mpx_break_}{\&{mpxbreak} primitive@>
14039 @ @<Cases of |print_cmd...@>=
14040 case start_tex: if ( m==btex_code ) mp_print(mp, "btex");
14041 else mp_print(mp, "verbatimtex"); break;
14042 case etex_marker: mp_print(mp, "etex"); break;
14043 case mpx_break: mp_print(mp, "mpxbreak"); break;
14045 @ Actually, |get_t_next| is a macro that avoids procedure overhead except
14046 in the unusual case where \&{btex}, \&{verbatimtex}, \&{etex}, or \&{mpxbreak}
14049 @d get_t_next {mp_get_next(mp); if ( mp->cur_cmd<=max_pre_command ) mp_t_next(mp); }
14052 void mp_start_mpx_input (MP mp);
14055 void mp_t_next (MP mp) {
14056 int old_status; /* saves the |scanner_status| */
14057 integer old_info; /* saves the |warning_info| */
14058 while ( mp->cur_cmd<=max_pre_command ) {
14059 if ( mp->cur_cmd==mpx_break ) {
14060 if ( ! file_state || (mp->mpx_name[index]==absent) ) {
14061 @<Complain about a misplaced \&{mpxbreak}@>;
14063 mp_end_mpx_reading(mp);
14066 } else if ( mp->cur_cmd==start_tex ) {
14067 if ( token_state || (name<=max_spec_src) ) {
14068 @<Complain that we are not reading a file@>;
14069 } else if ( mpx_reading ) {
14070 @<Complain that \.{MPX} files cannot contain \TeX\ material@>;
14071 } else if ( (mp->cur_mod!=verbatim_code)&&
14072 (mp->mpx_name[index]!=finished) ) {
14073 if ( ! mp_begin_mpx_reading(mp) ) mp_start_mpx_input(mp);
14078 @<Complain about a misplaced \&{etex}@>;
14080 goto COMMON_ENDING;
14082 @<Flush the \TeX\ material@>;
14088 @ We could be in the middle of an operation such as skipping false conditional
14089 text when \TeX\ material is encountered, so we must be careful to save the
14092 @<Flush the \TeX\ material@>=
14093 old_status=mp->scanner_status;
14094 old_info=mp->warning_info;
14095 mp->scanner_status=tex_flushing;
14096 mp->warning_info=line;
14097 do { mp_get_next(mp); } while (mp->cur_cmd!=etex_marker);
14098 mp->scanner_status=old_status;
14099 mp->warning_info=old_info
14101 @ @<Complain that \.{MPX} files cannot contain \TeX\ material@>=
14102 { print_err("An mpx file cannot contain btex or verbatimtex blocks");
14103 help4("This file contains picture expressions for btex...etex")
14104 ("blocks. Such files are normally generated automatically")
14105 ("but this one seems to be messed up. I'll just keep going")
14106 ("and hope for the best.");
14110 @ @<Complain that we are not reading a file@>=
14111 { print_err("You can only use `btex' or `verbatimtex' in a file");
14112 help3("I'll have to ignore this preprocessor command because it")
14113 ("only works when there is a file to preprocess. You might")
14114 ("want to delete everything up to the next `etex`.");
14118 @ @<Complain about a misplaced \&{mpxbreak}@>=
14119 { print_err("Misplaced mpxbreak");
14120 help2("I'll ignore this preprocessor command because it")
14121 ("doesn't belong here");
14125 @ @<Complain about a misplaced \&{etex}@>=
14126 { print_err("Extra etex will be ignored");
14127 help1("There is no btex or verbatimtex for this to match");
14131 @* \[31] Scanning macro definitions.
14132 \MP\ has a variety of ways to tuck tokens away into token lists for later
14133 use: Macros can be defined with \&{def}, \&{vardef}, \&{primarydef}, etc.;
14134 repeatable code can be defined with \&{for}, \&{forever}, \&{forsuffixes}.
14135 All such operations are handled by the routines in this part of the program.
14137 The modifier part of each command code is zero for the ``ending delimiters''
14138 like \&{enddef} and \&{endfor}.
14140 @d start_def 1 /* command modifier for \&{def} */
14141 @d var_def 2 /* command modifier for \&{vardef} */
14142 @d end_def 0 /* command modifier for \&{enddef} */
14143 @d start_forever 1 /* command modifier for \&{forever} */
14144 @d end_for 0 /* command modifier for \&{endfor} */
14147 mp_primitive(mp, "def",macro_def,start_def);
14148 @:def_}{\&{def} primitive@>
14149 mp_primitive(mp, "vardef",macro_def,var_def);
14150 @:var_def_}{\&{vardef} primitive@>
14151 mp_primitive(mp, "primarydef",macro_def,secondary_primary_macro);
14152 @:primary_def_}{\&{primarydef} primitive@>
14153 mp_primitive(mp, "secondarydef",macro_def,tertiary_secondary_macro);
14154 @:secondary_def_}{\&{secondarydef} primitive@>
14155 mp_primitive(mp, "tertiarydef",macro_def,expression_tertiary_macro);
14156 @:tertiary_def_}{\&{tertiarydef} primitive@>
14157 mp_primitive(mp, "enddef",macro_def,end_def); mp->eqtb[frozen_end_def]=mp->eqtb[mp->cur_sym];
14158 @:end_def_}{\&{enddef} primitive@>
14160 mp_primitive(mp, "for",iteration,expr_base);
14161 @:for_}{\&{for} primitive@>
14162 mp_primitive(mp, "forsuffixes",iteration,suffix_base);
14163 @:for_suffixes_}{\&{forsuffixes} primitive@>
14164 mp_primitive(mp, "forever",iteration,start_forever);
14165 @:forever_}{\&{forever} primitive@>
14166 mp_primitive(mp, "endfor",iteration,end_for); mp->eqtb[frozen_end_for]=mp->eqtb[mp->cur_sym];
14167 @:end_for_}{\&{endfor} primitive@>
14169 @ @<Cases of |print_cmd...@>=
14171 if ( m<=var_def ) {
14172 if ( m==start_def ) mp_print(mp, "def");
14173 else if ( m<start_def ) mp_print(mp, "enddef");
14174 else mp_print(mp, "vardef");
14175 } else if ( m==secondary_primary_macro ) {
14176 mp_print(mp, "primarydef");
14177 } else if ( m==tertiary_secondary_macro ) {
14178 mp_print(mp, "secondarydef");
14180 mp_print(mp, "tertiarydef");
14184 if ( m<=start_forever ) {
14185 if ( m==start_forever ) mp_print(mp, "forever");
14186 else mp_print(mp, "endfor");
14187 } else if ( m==expr_base ) {
14188 mp_print(mp, "for");
14190 mp_print(mp, "forsuffixes");
14194 @ Different macro-absorbing operations have different syntaxes, but they
14195 also have a lot in common. There is a list of special symbols that are to
14196 be replaced by parameter tokens; there is a special command code that
14197 ends the definition; the quotation conventions are identical. Therefore
14198 it makes sense to have most of the work done by a single subroutine. That
14199 subroutine is called |scan_toks|.
14201 The first parameter to |scan_toks| is the command code that will
14202 terminate scanning (either |macro_def|, |loop_repeat|, or |iteration|).
14204 The second parameter, |subst_list|, points to a (possibly empty) list
14205 of two-word nodes whose |info| and |value| fields specify symbol tokens
14206 before and after replacement. The list will be returned to free storage
14209 The third parameter is simply appended to the token list that is built.
14210 And the final parameter tells how many of the special operations
14211 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#} are to be replaced by suffix parameters.
14212 When such parameters are present, they are called \.{(SUFFIX0)},
14213 \.{(SUFFIX1)}, and \.{(SUFFIX2)}.
14215 @c pointer mp_scan_toks (MP mp,command_code terminator, pointer
14216 subst_list, pointer tail_end, small_number suffix_count) {
14217 pointer p; /* tail of the token list being built */
14218 pointer q; /* temporary for link management */
14219 integer balance; /* left delimiters minus right delimiters */
14220 p=hold_head; balance=1; link(hold_head)=null;
14223 if ( mp->cur_sym>0 ) {
14224 @<Substitute for |cur_sym|, if it's on the |subst_list|@>;
14225 if ( mp->cur_cmd==terminator ) {
14226 @<Adjust the balance; |break| if it's zero@>;
14227 } else if ( mp->cur_cmd==macro_special ) {
14228 @<Handle quoted symbols, \.{\#\AT!}, \.{\AT!}, or \.{\AT!\#}@>;
14231 link(p)=mp_cur_tok(mp); p=link(p);
14233 link(p)=tail_end; mp_flush_node_list(mp, subst_list);
14234 return link(hold_head);
14237 @ @<Substitute for |cur_sym|...@>=
14240 while ( q!=null ) {
14241 if ( info(q)==mp->cur_sym ) {
14242 mp->cur_sym=value(q); mp->cur_cmd=relax; break;
14248 @ @<Adjust the balance; |break| if it's zero@>=
14249 if ( mp->cur_mod>0 ) {
14257 @ Four commands are intended to be used only within macro texts: \&{quote},
14258 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#}. They are variants of a single command
14259 code called |macro_special|.
14261 @d quote 0 /* |macro_special| modifier for \&{quote} */
14262 @d macro_prefix 1 /* |macro_special| modifier for \.{\#\AT!} */
14263 @d macro_at 2 /* |macro_special| modifier for \.{\AT!} */
14264 @d macro_suffix 3 /* |macro_special| modifier for \.{\AT!\#} */
14267 mp_primitive(mp, "quote",macro_special,quote);
14268 @:quote_}{\&{quote} primitive@>
14269 mp_primitive(mp, "#@@",macro_special,macro_prefix);
14270 @:]]]\#\AT!_}{\.{\#\AT!} primitive@>
14271 mp_primitive(mp, "@@",macro_special,macro_at);
14272 @:]]]\AT!_}{\.{\AT!} primitive@>
14273 mp_primitive(mp, "@@#",macro_special,macro_suffix);
14274 @:]]]\AT!\#_}{\.{\AT!\#} primitive@>
14276 @ @<Cases of |print_cmd...@>=
14277 case macro_special:
14279 case macro_prefix: mp_print(mp, "#@@"); break;
14280 case macro_at: mp_print_char(mp, '@@'); break;
14281 case macro_suffix: mp_print(mp, "@@#"); break;
14282 default: mp_print(mp, "quote"); break;
14286 @ @<Handle quoted...@>=
14288 if ( mp->cur_mod==quote ) { get_t_next; }
14289 else if ( mp->cur_mod<=suffix_count )
14290 mp->cur_sym=suffix_base-1+mp->cur_mod;
14293 @ Here is a routine that's used whenever a token will be redefined. If
14294 the user's token is unredefinable, the `|frozen_inaccessible|' token is
14295 substituted; the latter is redefinable but essentially impossible to use,
14296 hence \MP's tables won't get fouled up.
14298 @c void mp_get_symbol (MP mp) { /* sets |cur_sym| to a safe symbol */
14301 if ( (mp->cur_sym==0)||(mp->cur_sym>frozen_inaccessible) ) {
14302 print_err("Missing symbolic token inserted");
14303 @.Missing symbolic token...@>
14304 help3("Sorry: You can\'t redefine a number, string, or expr.")
14305 ("I've inserted an inaccessible symbol so that your")
14306 ("definition will be completed without mixing me up too badly.");
14307 if ( mp->cur_sym>0 )
14308 mp->help_line[2]="Sorry: You can\'t redefine my error-recovery tokens.";
14309 else if ( mp->cur_cmd==string_token )
14310 delete_str_ref(mp->cur_mod);
14311 mp->cur_sym=frozen_inaccessible; mp_ins_error(mp); goto RESTART;
14315 @ Before we actually redefine a symbolic token, we need to clear away its
14316 former value, if it was a variable. The following stronger version of
14317 |get_symbol| does that.
14319 @c void mp_get_clear_symbol (MP mp) {
14320 mp_get_symbol(mp); mp_clear_symbol(mp, mp->cur_sym,false);
14323 @ Here's another little subroutine; it checks that an equals sign
14324 or assignment sign comes along at the proper place in a macro definition.
14326 @c void mp_check_equals (MP mp) {
14327 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
14328 mp_missing_err(mp, "=");
14330 help5("The next thing in this `def' should have been `=',")
14331 ("because I've already looked at the definition heading.")
14332 ("But don't worry; I'll pretend that an equals sign")
14333 ("was present. Everything from here to `enddef'")
14334 ("will be the replacement text of this macro.");
14339 @ A \&{primarydef}, \&{secondarydef}, or \&{tertiarydef} is rather easily
14340 handled now that we have |scan_toks|. In this case there are
14341 two parameters, which will be \.{EXPR0} and \.{EXPR1} (i.e.,
14342 |expr_base| and |expr_base+1|).
14344 @c void mp_make_op_def (MP mp) {
14345 command_code m; /* the type of definition */
14346 pointer p,q,r; /* for list manipulation */
14348 mp_get_symbol(mp); q=mp_get_node(mp, token_node_size);
14349 info(q)=mp->cur_sym; value(q)=expr_base;
14350 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym;
14351 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14352 info(p)=mp->cur_sym; value(p)=expr_base+1; link(p)=q;
14353 get_t_next; mp_check_equals(mp);
14354 mp->scanner_status=op_defining; q=mp_get_avail(mp); ref_count(q)=null;
14355 r=mp_get_avail(mp); link(q)=r; info(r)=general_macro;
14356 link(r)=mp_scan_toks(mp, macro_def,p,null,0);
14357 mp->scanner_status=normal; eq_type(mp->warning_info)=m;
14358 equiv(mp->warning_info)=q; mp_get_x_next(mp);
14361 @ Parameters to macros are introduced by the keywords \&{expr},
14362 \&{suffix}, \&{text}, \&{primary}, \&{secondary}, and \&{tertiary}.
14365 mp_primitive(mp, "expr",param_type,expr_base);
14366 @:expr_}{\&{expr} primitive@>
14367 mp_primitive(mp, "suffix",param_type,suffix_base);
14368 @:suffix_}{\&{suffix} primitive@>
14369 mp_primitive(mp, "text",param_type,text_base);
14370 @:text_}{\&{text} primitive@>
14371 mp_primitive(mp, "primary",param_type,primary_macro);
14372 @:primary_}{\&{primary} primitive@>
14373 mp_primitive(mp, "secondary",param_type,secondary_macro);
14374 @:secondary_}{\&{secondary} primitive@>
14375 mp_primitive(mp, "tertiary",param_type,tertiary_macro);
14376 @:tertiary_}{\&{tertiary} primitive@>
14378 @ @<Cases of |print_cmd...@>=
14380 if ( m>=expr_base ) {
14381 if ( m==expr_base ) mp_print(mp, "expr");
14382 else if ( m==suffix_base ) mp_print(mp, "suffix");
14383 else mp_print(mp, "text");
14384 } else if ( m<secondary_macro ) {
14385 mp_print(mp, "primary");
14386 } else if ( m==secondary_macro ) {
14387 mp_print(mp, "secondary");
14389 mp_print(mp, "tertiary");
14393 @ Let's turn next to the more complex processing associated with \&{def}
14394 and \&{vardef}. When the following procedure is called, |cur_mod|
14395 should be either |start_def| or |var_def|.
14397 @c @<Declare the procedure called |check_delimiter|@>;
14398 @<Declare the function called |scan_declared_variable|@>;
14399 void mp_scan_def (MP mp) {
14400 int m; /* the type of definition */
14401 int n; /* the number of special suffix parameters */
14402 int k; /* the total number of parameters */
14403 int c; /* the kind of macro we're defining */
14404 pointer r; /* parameter-substitution list */
14405 pointer q; /* tail of the macro token list */
14406 pointer p; /* temporary storage */
14407 halfword base; /* |expr_base|, |suffix_base|, or |text_base| */
14408 pointer l_delim,r_delim; /* matching delimiters */
14409 m=mp->cur_mod; c=general_macro; link(hold_head)=null;
14410 q=mp_get_avail(mp); ref_count(q)=null; r=null;
14411 @<Scan the token or variable to be defined;
14412 set |n|, |scanner_status|, and |warning_info|@>;
14414 if ( mp->cur_cmd==left_delimiter ) {
14415 @<Absorb delimited parameters, putting them into lists |q| and |r|@>;
14417 if ( mp->cur_cmd==param_type ) {
14418 @<Absorb undelimited parameters, putting them into list |r|@>;
14420 mp_check_equals(mp);
14421 p=mp_get_avail(mp); info(p)=c; link(q)=p;
14422 @<Attach the replacement text to the tail of node |p|@>;
14423 mp->scanner_status=normal; mp_get_x_next(mp);
14426 @ We don't put `|frozen_end_group|' into the replacement text of
14427 a \&{vardef}, because the user may want to redefine `\.{endgroup}'.
14429 @<Attach the replacement text to the tail of node |p|@>=
14430 if ( m==start_def ) {
14431 link(p)=mp_scan_toks(mp, macro_def,r,null,n);
14433 q=mp_get_avail(mp); info(q)=mp->bg_loc; link(p)=q;
14434 p=mp_get_avail(mp); info(p)=mp->eg_loc;
14435 link(q)=mp_scan_toks(mp, macro_def,r,p,n);
14437 if ( mp->warning_info==bad_vardef )
14438 mp_flush_token_list(mp, value(bad_vardef))
14442 int eg_loc; /* hash addresses of `\.{begingroup}' and `\.{endgroup}' */
14444 @ @<Scan the token or variable to be defined;...@>=
14445 if ( m==start_def ) {
14446 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym; get_t_next;
14447 mp->scanner_status=op_defining; n=0;
14448 eq_type(mp->warning_info)=defined_macro; equiv(mp->warning_info)=q;
14450 p=mp_scan_declared_variable(mp);
14451 mp_flush_variable(mp, equiv(info(p)),link(p),true);
14452 mp->warning_info=mp_find_variable(mp, p); mp_flush_list(mp, p);
14453 if ( mp->warning_info==null ) @<Change to `\.{a bad variable}'@>;
14454 mp->scanner_status=var_defining; n=2;
14455 if ( mp->cur_cmd==macro_special ) if ( mp->cur_mod==macro_suffix ) {/* \.{\AT!\#} */
14458 type(mp->warning_info)=mp_unsuffixed_macro-2+n; value(mp->warning_info)=q;
14459 } /* |mp_suffixed_macro=mp_unsuffixed_macro+1| */
14461 @ @<Change to `\.{a bad variable}'@>=
14463 print_err("This variable already starts with a macro");
14464 @.This variable already...@>
14465 help2("After `vardef a' you can\'t say `vardef a.b'.")
14466 ("So I'll have to discard this definition.");
14467 mp_error(mp); mp->warning_info=bad_vardef;
14470 @ @<Initialize table entries...@>=
14471 name_type(bad_vardef)=mp_root; link(bad_vardef)=frozen_bad_vardef;
14472 equiv(frozen_bad_vardef)=bad_vardef; eq_type(frozen_bad_vardef)=tag_token;
14474 @ @<Absorb delimited parameters, putting them into lists |q| and |r|@>=
14476 l_delim=mp->cur_sym; r_delim=mp->cur_mod; get_t_next;
14477 if ( (mp->cur_cmd==param_type)&&(mp->cur_mod>=expr_base) ) {
14480 print_err("Missing parameter type; `expr' will be assumed");
14481 @.Missing parameter type@>
14482 help1("You should've had `expr' or `suffix' or `text' here.");
14483 mp_back_error(mp); base=expr_base;
14485 @<Absorb parameter tokens for type |base|@>;
14486 mp_check_delimiter(mp, l_delim,r_delim);
14488 } while (mp->cur_cmd==left_delimiter)
14490 @ @<Absorb parameter tokens for type |base|@>=
14492 link(q)=mp_get_avail(mp); q=link(q); info(q)=base+k;
14493 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14494 value(p)=base+k; info(p)=mp->cur_sym;
14495 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14496 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
14497 incr(k); link(p)=r; r=p; get_t_next;
14498 } while (mp->cur_cmd==comma)
14500 @ @<Absorb undelimited parameters, putting them into list |r|@>=
14502 p=mp_get_node(mp, token_node_size);
14503 if ( mp->cur_mod<expr_base ) {
14504 c=mp->cur_mod; value(p)=expr_base+k;
14506 value(p)=mp->cur_mod+k;
14507 if ( mp->cur_mod==expr_base ) c=expr_macro;
14508 else if ( mp->cur_mod==suffix_base ) c=suffix_macro;
14511 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14512 incr(k); mp_get_symbol(mp); info(p)=mp->cur_sym; link(p)=r; r=p; get_t_next;
14513 if ( c==expr_macro ) if ( mp->cur_cmd==of_token ) {
14514 c=of_macro; p=mp_get_node(mp, token_node_size);
14515 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14516 value(p)=expr_base+k; mp_get_symbol(mp); info(p)=mp->cur_sym;
14517 link(p)=r; r=p; get_t_next;
14521 @* \[32] Expanding the next token.
14522 Only a few command codes |<min_command| can possibly be returned by
14523 |get_t_next|; in increasing order, they are
14524 |if_test|, |fi_or_else|, |input|, |iteration|, |repeat_loop|,
14525 |exit_test|, |relax|, |scan_tokens|, |expand_after|, and |defined_macro|.
14527 \MP\ usually gets the next token of input by saying |get_x_next|. This is
14528 like |get_t_next| except that it keeps getting more tokens until
14529 finding |cur_cmd>=min_command|. In other words, |get_x_next| expands
14530 macros and removes conditionals or iterations or input instructions that
14533 It follows that |get_x_next| might invoke itself recursively. In fact,
14534 there is massive recursion, since macro expansion can involve the
14535 scanning of arbitrarily complex expressions, which in turn involve
14536 macro expansion and conditionals, etc.
14539 Therefore it's necessary to declare a whole bunch of |forward|
14540 procedures at this point, and to insert some other procedures
14541 that will be invoked by |get_x_next|.
14544 void mp_scan_primary (MP mp);
14545 void mp_scan_secondary (MP mp);
14546 void mp_scan_tertiary (MP mp);
14547 void mp_scan_expression (MP mp);
14548 void mp_scan_suffix (MP mp);
14549 @<Declare the procedure called |macro_call|@>;
14550 void mp_get_boolean (MP mp);
14551 void mp_pass_text (MP mp);
14552 void mp_conditional (MP mp);
14553 void mp_start_input (MP mp);
14554 void mp_begin_iteration (MP mp);
14555 void mp_resume_iteration (MP mp);
14556 void mp_stop_iteration (MP mp);
14558 @ An auxiliary subroutine called |expand| is used by |get_x_next|
14559 when it has to do exotic expansion commands.
14561 @c void mp_expand (MP mp) {
14562 pointer p; /* for list manipulation */
14563 size_t k; /* something that we hope is |<=buf_size| */
14564 pool_pointer j; /* index into |str_pool| */
14565 if ( mp->internal[mp_tracing_commands]>unity )
14566 if ( mp->cur_cmd!=defined_macro )
14568 switch (mp->cur_cmd) {
14570 mp_conditional(mp); /* this procedure is discussed in Part 36 below */
14573 @<Terminate the current conditional and skip to \&{fi}@>;
14576 @<Initiate or terminate input from a file@>;
14579 if ( mp->cur_mod==end_for ) {
14580 @<Scold the user for having an extra \&{endfor}@>;
14582 mp_begin_iteration(mp); /* this procedure is discussed in Part 37 below */
14589 @<Exit a loop if the proper time has come@>;
14594 @<Expand the token after the next token@>;
14597 @<Put a string into the input buffer@>;
14599 case defined_macro:
14600 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14602 }; /* there are no other cases */
14605 @ @<Scold the user...@>=
14607 print_err("Extra `endfor'");
14609 help2("I'm not currently working on a for loop,")
14610 ("so I had better not try to end anything.");
14614 @ The processing of \&{input} involves the |start_input| subroutine,
14615 which will be declared later; the processing of \&{endinput} is trivial.
14618 mp_primitive(mp, "input",input,0);
14619 @:input_}{\&{input} primitive@>
14620 mp_primitive(mp, "endinput",input,1);
14621 @:end_input_}{\&{endinput} primitive@>
14623 @ @<Cases of |print_cmd_mod|...@>=
14625 if ( m==0 ) mp_print(mp, "input");
14626 else mp_print(mp, "endinput");
14629 @ @<Initiate or terminate input...@>=
14630 if ( mp->cur_mod>0 ) mp->force_eof=true;
14631 else mp_start_input(mp)
14633 @ We'll discuss the complicated parts of loop operations later. For now
14634 it suffices to know that there's a global variable called |loop_ptr|
14635 that will be |null| if no loop is in progress.
14638 { while ( token_state &&(loc==null) )
14639 mp_end_token_list(mp); /* conserve stack space */
14640 if ( mp->loop_ptr==null ) {
14641 print_err("Lost loop");
14643 help2("I'm confused; after exiting from a loop, I still seem")
14644 ("to want to repeat it. I'll try to forget the problem.");
14647 mp_resume_iteration(mp); /* this procedure is in Part 37 below */
14651 @ @<Exit a loop if the proper time has come@>=
14652 { mp_get_boolean(mp);
14653 if ( mp->internal[mp_tracing_commands]>unity )
14654 mp_show_cmd_mod(mp, nullary,mp->cur_exp);
14655 if ( mp->cur_exp==true_code ) {
14656 if ( mp->loop_ptr==null ) {
14657 print_err("No loop is in progress");
14658 @.No loop is in progress@>
14659 help1("Why say `exitif' when there's nothing to exit from?");
14660 if ( mp->cur_cmd==semicolon ) mp_error(mp); else mp_back_error(mp);
14662 @<Exit prematurely from an iteration@>;
14664 } else if ( mp->cur_cmd!=semicolon ) {
14665 mp_missing_err(mp, ";");
14667 help2("After `exitif <boolean exp>' I expect to see a semicolon.")
14668 ("I shall pretend that one was there."); mp_back_error(mp);
14672 @ Here we use the fact that |forever_text| is the only |token_type| that
14673 is less than |loop_text|.
14675 @<Exit prematurely...@>=
14678 if ( file_state ) {
14679 mp_end_file_reading(mp);
14681 if ( token_type<=loop_text ) p=start;
14682 mp_end_token_list(mp);
14685 if ( p!=info(mp->loop_ptr) ) mp_fatal_error(mp, "*** (loop confusion)");
14687 mp_stop_iteration(mp); /* this procedure is in Part 34 below */
14690 @ @<Expand the token after the next token@>=
14692 p=mp_cur_tok(mp); get_t_next;
14693 if ( mp->cur_cmd<min_command ) mp_expand(mp);
14694 else mp_back_input(mp);
14698 @ @<Put a string into the input buffer@>=
14699 { mp_get_x_next(mp); mp_scan_primary(mp);
14700 if ( mp->cur_type!=mp_string_type ) {
14701 mp_disp_err(mp, null,"Not a string");
14703 help2("I'm going to flush this expression, since")
14704 ("scantokens should be followed by a known string.");
14705 mp_put_get_flush_error(mp, 0);
14708 if ( length(mp->cur_exp)>0 )
14709 @<Pretend we're reading a new one-line file@>;
14713 @ @<Pretend we're reading a new one-line file@>=
14714 { mp_begin_file_reading(mp); name=is_scantok;
14715 k=mp->first+length(mp->cur_exp);
14716 if ( k>=mp->max_buf_stack ) {
14717 while ( k>=mp->buf_size ) {
14718 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
14720 mp->max_buf_stack=k+1;
14722 j=mp->str_start[mp->cur_exp]; limit=k;
14723 while ( mp->first<(size_t)limit ) {
14724 mp->buffer[mp->first]=mp->str_pool[j]; incr(j); incr(mp->first);
14726 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
14727 mp_flush_cur_exp(mp, 0);
14730 @ Here finally is |get_x_next|.
14732 The expression scanning routines to be considered later
14733 communicate via the global quantities |cur_type| and |cur_exp|;
14734 we must be very careful to save and restore these quantities while
14735 macros are being expanded.
14739 void mp_get_x_next (MP mp);
14741 @ @c void mp_get_x_next (MP mp) {
14742 pointer save_exp; /* a capsule to save |cur_type| and |cur_exp| */
14744 if ( mp->cur_cmd<min_command ) {
14745 save_exp=mp_stash_cur_exp(mp);
14747 if ( mp->cur_cmd==defined_macro )
14748 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14752 } while (mp->cur_cmd<min_command);
14753 mp_unstash_cur_exp(mp, save_exp); /* that restores |cur_type| and |cur_exp| */
14757 @ Now let's consider the |macro_call| procedure, which is used to start up
14758 all user-defined macros. Since the arguments to a macro might be expressions,
14759 |macro_call| is recursive.
14762 The first parameter to |macro_call| points to the reference count of the
14763 token list that defines the macro. The second parameter contains any
14764 arguments that have already been parsed (see below). The third parameter
14765 points to the symbolic token that names the macro. If the third parameter
14766 is |null|, the macro was defined by \&{vardef}, so its name can be
14767 reconstructed from the prefix and ``at'' arguments found within the
14770 What is this second parameter? It's simply a linked list of one-word items,
14771 whose |info| fields point to the arguments. In other words, if |arg_list=null|,
14772 no arguments have been scanned yet; otherwise |info(arg_list)| points to
14773 the first scanned argument, and |link(arg_list)| points to the list of
14774 further arguments (if any).
14776 Arguments of type \&{expr} are so-called capsules, which we will
14777 discuss later when we concentrate on expressions; they can be
14778 recognized easily because their |link| field is |void|. Arguments of type
14779 \&{suffix} and \&{text} are token lists without reference counts.
14781 @ After argument scanning is complete, the arguments are moved to the
14782 |param_stack|. (They can't be put on that stack any sooner, because
14783 the stack is growing and shrinking in unpredictable ways as more arguments
14784 are being acquired.) Then the macro body is fed to the scanner; i.e.,
14785 the replacement text of the macro is placed at the top of the \MP's
14786 input stack, so that |get_t_next| will proceed to read it next.
14788 @<Declare the procedure called |macro_call|@>=
14789 @<Declare the procedure called |print_macro_name|@>;
14790 @<Declare the procedure called |print_arg|@>;
14791 @<Declare the procedure called |scan_text_arg|@>;
14792 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14793 pointer macro_name) ;
14796 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14797 pointer macro_name) {
14798 /* invokes a user-defined control sequence */
14799 pointer r; /* current node in the macro's token list */
14800 pointer p,q; /* for list manipulation */
14801 integer n; /* the number of arguments */
14802 pointer tail = 0; /* tail of the argument list */
14803 pointer l_delim=0,r_delim=0; /* a delimiter pair */
14804 r=link(def_ref); add_mac_ref(def_ref);
14805 if ( arg_list==null ) {
14808 @<Determine the number |n| of arguments already supplied,
14809 and set |tail| to the tail of |arg_list|@>;
14811 if ( mp->internal[mp_tracing_macros]>0 ) {
14812 @<Show the text of the macro being expanded, and the existing arguments@>;
14814 @<Scan the remaining arguments, if any; set |r| to the first token
14815 of the replacement text@>;
14816 @<Feed the arguments and replacement text to the scanner@>;
14819 @ @<Show the text of the macro...@>=
14820 mp_begin_diagnostic(mp); mp_print_ln(mp);
14821 mp_print_macro_name(mp, arg_list,macro_name);
14822 if ( n==3 ) mp_print(mp, "@@#"); /* indicate a suffixed macro */
14823 mp_show_macro(mp, def_ref,null,100000);
14824 if ( arg_list!=null ) {
14828 mp_print_arg(mp, q,n,0);
14829 incr(n); p=link(p);
14832 mp_end_diagnostic(mp, false)
14835 @ @<Declare the procedure called |print_macro_name|@>=
14836 void mp_print_macro_name (MP mp,pointer a, pointer n);
14839 void mp_print_macro_name (MP mp,pointer a, pointer n) {
14840 pointer p,q; /* they traverse the first part of |a| */
14846 mp_print_text(info(info(link(a))));
14849 while ( link(q)!=null ) q=link(q);
14850 link(q)=info(link(a));
14851 mp_show_token_list(mp, p,null,1000,0);
14857 @ @<Declare the procedure called |print_arg|@>=
14858 void mp_print_arg (MP mp,pointer q, integer n, pointer b) ;
14861 void mp_print_arg (MP mp,pointer q, integer n, pointer b) {
14862 if ( link(q)==mp_void ) mp_print_nl(mp, "(EXPR");
14863 else if ( (b<text_base)&&(b!=text_macro) ) mp_print_nl(mp, "(SUFFIX");
14864 else mp_print_nl(mp, "(TEXT");
14865 mp_print_int(mp, n); mp_print(mp, ")<-");
14866 if ( link(q)==mp_void ) mp_print_exp(mp, q,1);
14867 else mp_show_token_list(mp, q,null,1000,0);
14870 @ @<Determine the number |n| of arguments already supplied...@>=
14872 n=1; tail=arg_list;
14873 while ( link(tail)!=null ) {
14874 incr(n); tail=link(tail);
14878 @ @<Scan the remaining arguments, if any; set |r|...@>=
14879 mp->cur_cmd=comma+1; /* anything |<>comma| will do */
14880 while ( info(r)>=expr_base ) {
14881 @<Scan the delimited argument represented by |info(r)|@>;
14884 if ( mp->cur_cmd==comma ) {
14885 print_err("Too many arguments to ");
14886 @.Too many arguments...@>
14887 mp_print_macro_name(mp, arg_list,macro_name); mp_print_char(mp, ';');
14888 mp_print_nl(mp, " Missing `"); mp_print_text(r_delim);
14890 mp_print(mp, "' has been inserted");
14891 help3("I'm going to assume that the comma I just read was a")
14892 ("right delimiter, and then I'll begin expanding the macro.")
14893 ("You might want to delete some tokens before continuing.");
14896 if ( info(r)!=general_macro ) {
14897 @<Scan undelimited argument(s)@>;
14901 @ At this point, the reader will find it advisable to review the explanation
14902 of token list format that was presented earlier, paying special attention to
14903 the conventions that apply only at the beginning of a macro's token list.
14905 On the other hand, the reader will have to take the expression-parsing
14906 aspects of the following program on faith; we will explain |cur_type|
14907 and |cur_exp| later. (Several things in this program depend on each other,
14908 and it's necessary to jump into the circle somewhere.)
14910 @<Scan the delimited argument represented by |info(r)|@>=
14911 if ( mp->cur_cmd!=comma ) {
14913 if ( mp->cur_cmd!=left_delimiter ) {
14914 print_err("Missing argument to ");
14915 @.Missing argument...@>
14916 mp_print_macro_name(mp, arg_list,macro_name);
14917 help3("That macro has more parameters than you thought.")
14918 ("I'll continue by pretending that each missing argument")
14919 ("is either zero or null.");
14920 if ( info(r)>=suffix_base ) {
14921 mp->cur_exp=null; mp->cur_type=mp_token_list;
14923 mp->cur_exp=0; mp->cur_type=mp_known;
14925 mp_back_error(mp); mp->cur_cmd=right_delimiter;
14928 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
14930 @<Scan the argument represented by |info(r)|@>;
14931 if ( mp->cur_cmd!=comma )
14932 @<Check that the proper right delimiter was present@>;
14934 @<Append the current expression to |arg_list|@>
14936 @ @<Check that the proper right delim...@>=
14937 if ( (mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
14938 if ( info(link(r))>=expr_base ) {
14939 mp_missing_err(mp, ",");
14941 help3("I've finished reading a macro argument and am about to")
14942 ("read another; the arguments weren't delimited correctly.")
14943 ("You might want to delete some tokens before continuing.");
14944 mp_back_error(mp); mp->cur_cmd=comma;
14946 mp_missing_err(mp, str(text(r_delim)));
14948 help2("I've gotten to the end of the macro parameter list.")
14949 ("You might want to delete some tokens before continuing.");
14954 @ A \&{suffix} or \&{text} parameter will be have been scanned as
14955 a token list pointed to by |cur_exp|, in which case we will have
14956 |cur_type=token_list|.
14958 @<Append the current expression to |arg_list|@>=
14960 p=mp_get_avail(mp);
14961 if ( mp->cur_type==mp_token_list ) info(p)=mp->cur_exp;
14962 else info(p)=mp_stash_cur_exp(mp);
14963 if ( mp->internal[mp_tracing_macros]>0 ) {
14964 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,info(r));
14965 mp_end_diagnostic(mp, false);
14967 if ( arg_list==null ) arg_list=p;
14972 @ @<Scan the argument represented by |info(r)|@>=
14973 if ( info(r)>=text_base ) {
14974 mp_scan_text_arg(mp, l_delim,r_delim);
14977 if ( info(r)>=suffix_base ) mp_scan_suffix(mp);
14978 else mp_scan_expression(mp);
14981 @ The parameters to |scan_text_arg| are either a pair of delimiters
14982 or zero; the latter case is for undelimited text arguments, which
14983 end with the first semicolon or \&{endgroup} or \&{end} that is not
14984 contained in a group.
14986 @<Declare the procedure called |scan_text_arg|@>=
14987 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) ;
14990 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) {
14991 integer balance; /* excess of |l_delim| over |r_delim| */
14992 pointer p; /* list tail */
14993 mp->warning_info=l_delim; mp->scanner_status=absorbing;
14994 p=hold_head; balance=1; link(hold_head)=null;
14997 if ( l_delim==0 ) {
14998 @<Adjust the balance for an undelimited argument; |break| if done@>;
15000 @<Adjust the balance for a delimited argument; |break| if done@>;
15002 link(p)=mp_cur_tok(mp); p=link(p);
15004 mp->cur_exp=link(hold_head); mp->cur_type=mp_token_list;
15005 mp->scanner_status=normal;
15008 @ @<Adjust the balance for a delimited argument...@>=
15009 if ( mp->cur_cmd==right_delimiter ) {
15010 if ( mp->cur_mod==l_delim ) {
15012 if ( balance==0 ) break;
15014 } else if ( mp->cur_cmd==left_delimiter ) {
15015 if ( mp->cur_mod==r_delim ) incr(balance);
15018 @ @<Adjust the balance for an undelimited...@>=
15019 if ( end_of_statement ) { /* |cur_cmd=semicolon|, |end_group|, or |stop| */
15020 if ( balance==1 ) { break; }
15021 else { if ( mp->cur_cmd==end_group ) decr(balance); }
15022 } else if ( mp->cur_cmd==begin_group ) {
15026 @ @<Scan undelimited argument(s)@>=
15028 if ( info(r)<text_macro ) {
15030 if ( info(r)!=suffix_macro ) {
15031 if ( (mp->cur_cmd==equals)||(mp->cur_cmd==assignment) ) mp_get_x_next(mp);
15035 case primary_macro:mp_scan_primary(mp); break;
15036 case secondary_macro:mp_scan_secondary(mp); break;
15037 case tertiary_macro:mp_scan_tertiary(mp); break;
15038 case expr_macro:mp_scan_expression(mp); break;
15040 @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>;
15043 @<Scan a suffix with optional delimiters@>;
15045 case text_macro:mp_scan_text_arg(mp, 0,0); break;
15046 } /* there are no other cases */
15048 @<Append the current expression to |arg_list|@>;
15051 @ @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>=
15053 mp_scan_expression(mp); p=mp_get_avail(mp); info(p)=mp_stash_cur_exp(mp);
15054 if ( mp->internal[mp_tracing_macros]>0 ) {
15055 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,0);
15056 mp_end_diagnostic(mp, false);
15058 if ( arg_list==null ) arg_list=p; else link(tail)=p;
15060 if ( mp->cur_cmd!=of_token ) {
15061 mp_missing_err(mp, "of"); mp_print(mp, " for ");
15063 mp_print_macro_name(mp, arg_list,macro_name);
15064 help1("I've got the first argument; will look now for the other.");
15067 mp_get_x_next(mp); mp_scan_primary(mp);
15070 @ @<Scan a suffix with optional delimiters@>=
15072 if ( mp->cur_cmd!=left_delimiter ) {
15075 l_delim=mp->cur_sym; r_delim=mp->cur_mod; mp_get_x_next(mp);
15077 mp_scan_suffix(mp);
15078 if ( l_delim!=null ) {
15079 if ((mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
15080 mp_missing_err(mp, str(text(r_delim)));
15082 help2("I've gotten to the end of the macro parameter list.")
15083 ("You might want to delete some tokens before continuing.");
15090 @ Before we put a new token list on the input stack, it is wise to clean off
15091 all token lists that have recently been depleted. Then a user macro that ends
15092 with a call to itself will not require unbounded stack space.
15094 @<Feed the arguments and replacement text to the scanner@>=
15095 while ( token_state &&(loc==null) ) mp_end_token_list(mp); /* conserve stack space */
15096 if ( mp->param_ptr+n>mp->max_param_stack ) {
15097 mp->max_param_stack=mp->param_ptr+n;
15098 if ( mp->max_param_stack>mp->param_size )
15099 mp_overflow(mp, "parameter stack size",mp->param_size);
15100 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15102 mp_begin_token_list(mp, def_ref,macro); name=macro_name; loc=r;
15106 mp->param_stack[mp->param_ptr]=info(p); incr(mp->param_ptr); p=link(p);
15108 mp_flush_list(mp, arg_list);
15111 @ It's sometimes necessary to put a single argument onto |param_stack|.
15112 The |stack_argument| subroutine does this.
15114 @c void mp_stack_argument (MP mp,pointer p) {
15115 if ( mp->param_ptr==mp->max_param_stack ) {
15116 incr(mp->max_param_stack);
15117 if ( mp->max_param_stack>mp->param_size )
15118 mp_overflow(mp, "parameter stack size",mp->param_size);
15119 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15121 mp->param_stack[mp->param_ptr]=p; incr(mp->param_ptr);
15124 @* \[33] Conditional processing.
15125 Let's consider now the way \&{if} commands are handled.
15127 Conditions can be inside conditions, and this nesting has a stack
15128 that is independent of other stacks.
15129 Four global variables represent the top of the condition stack:
15130 |cond_ptr| points to pushed-down entries, if~any; |cur_if| tells whether
15131 we are processing \&{if} or \&{elseif}; |if_limit| specifies
15132 the largest code of a |fi_or_else| command that is syntactically legal;
15133 and |if_line| is the line number at which the current conditional began.
15135 If no conditions are currently in progress, the condition stack has the
15136 special state |cond_ptr=null|, |if_limit=normal|, |cur_if=0|, |if_line=0|.
15137 Otherwise |cond_ptr| points to a two-word node; the |type|, |name_type|, and
15138 |link| fields of the first word contain |if_limit|, |cur_if|, and
15139 |cond_ptr| at the next level, and the second word contains the
15140 corresponding |if_line|.
15142 @d if_node_size 2 /* number of words in stack entry for conditionals */
15143 @d if_line_field(A) mp->mem[(A)+1].cint
15144 @d if_code 1 /* code for \&{if} being evaluated */
15145 @d fi_code 2 /* code for \&{fi} */
15146 @d else_code 3 /* code for \&{else} */
15147 @d else_if_code 4 /* code for \&{elseif} */
15150 pointer cond_ptr; /* top of the condition stack */
15151 integer if_limit; /* upper bound on |fi_or_else| codes */
15152 small_number cur_if; /* type of conditional being worked on */
15153 integer if_line; /* line where that conditional began */
15156 mp->cond_ptr=null; mp->if_limit=normal; mp->cur_if=0; mp->if_line=0;
15159 mp_primitive(mp, "if",if_test,if_code);
15160 @:if_}{\&{if} primitive@>
15161 mp_primitive(mp, "fi",fi_or_else,fi_code); mp->eqtb[frozen_fi]=mp->eqtb[mp->cur_sym];
15162 @:fi_}{\&{fi} primitive@>
15163 mp_primitive(mp, "else",fi_or_else,else_code);
15164 @:else_}{\&{else} primitive@>
15165 mp_primitive(mp, "elseif",fi_or_else,else_if_code);
15166 @:else_if_}{\&{elseif} primitive@>
15168 @ @<Cases of |print_cmd_mod|...@>=
15172 case if_code:mp_print(mp, "if"); break;
15173 case fi_code:mp_print(mp, "fi"); break;
15174 case else_code:mp_print(mp, "else"); break;
15175 default: mp_print(mp, "elseif"); break;
15179 @ Here is a procedure that ignores text until coming to an \&{elseif},
15180 \&{else}, or \&{fi} at level zero of $\&{if}\ldots\&{fi}$
15181 nesting. After it has acted, |cur_mod| will indicate the token that
15184 \MP's smallest two command codes are |if_test| and |fi_or_else|; this
15185 makes the skipping process a bit simpler.
15188 void mp_pass_text (MP mp) {
15190 mp->scanner_status=skipping;
15191 mp->warning_info=mp_true_line(mp);
15194 if ( mp->cur_cmd<=fi_or_else ) {
15195 if ( mp->cur_cmd<fi_or_else ) {
15199 if ( mp->cur_mod==fi_code ) decr(l);
15202 @<Decrease the string reference count,
15203 if the current token is a string@>;
15206 mp->scanner_status=normal;
15209 @ @<Decrease the string reference count...@>=
15210 if ( mp->cur_cmd==string_token ) { delete_str_ref(mp->cur_mod); }
15212 @ When we begin to process a new \&{if}, we set |if_limit:=if_code|; then
15213 if \&{elseif} or \&{else} or \&{fi} occurs before the current \&{if}
15214 condition has been evaluated, a colon will be inserted.
15215 A construction like `\.{if fi}' would otherwise get \MP\ confused.
15217 @<Push the condition stack@>=
15218 { p=mp_get_node(mp, if_node_size); link(p)=mp->cond_ptr; type(p)=mp->if_limit;
15219 name_type(p)=mp->cur_if; if_line_field(p)=mp->if_line;
15220 mp->cond_ptr=p; mp->if_limit=if_code; mp->if_line=mp_true_line(mp);
15221 mp->cur_if=if_code;
15224 @ @<Pop the condition stack@>=
15225 { p=mp->cond_ptr; mp->if_line=if_line_field(p);
15226 mp->cur_if=name_type(p); mp->if_limit=type(p); mp->cond_ptr=link(p);
15227 mp_free_node(mp, p,if_node_size);
15230 @ Here's a procedure that changes the |if_limit| code corresponding to
15231 a given value of |cond_ptr|.
15233 @c void mp_change_if_limit (MP mp,small_number l, pointer p) {
15235 if ( p==mp->cond_ptr ) {
15236 mp->if_limit=l; /* that's the easy case */
15240 if ( q==null ) mp_confusion(mp, "if");
15241 @:this can't happen if}{\quad if@>
15242 if ( link(q)==p ) {
15250 @ The user is supposed to put colons into the proper parts of conditional
15251 statements. Therefore, \MP\ has to check for their presence.
15254 void mp_check_colon (MP mp) {
15255 if ( mp->cur_cmd!=colon ) {
15256 mp_missing_err(mp, ":");
15258 help2("There should've been a colon after the condition.")
15259 ("I shall pretend that one was there.");;
15264 @ A condition is started when the |get_x_next| procedure encounters
15265 an |if_test| command; in that case |get_x_next| calls |conditional|,
15266 which is a recursive procedure.
15269 @c void mp_conditional (MP mp) {
15270 pointer save_cond_ptr; /* |cond_ptr| corresponding to this conditional */
15271 int new_if_limit; /* future value of |if_limit| */
15272 pointer p; /* temporary register */
15273 @<Push the condition stack@>;
15274 save_cond_ptr=mp->cond_ptr;
15276 mp_get_boolean(mp); new_if_limit=else_if_code;
15277 if ( mp->internal[mp_tracing_commands]>unity ) {
15278 @<Display the boolean value of |cur_exp|@>;
15281 mp_check_colon(mp);
15282 if ( mp->cur_exp==true_code ) {
15283 mp_change_if_limit(mp, new_if_limit,save_cond_ptr);
15284 return; /* wait for \&{elseif}, \&{else}, or \&{fi} */
15286 @<Skip to \&{elseif} or \&{else} or \&{fi}, then |goto done|@>;
15288 mp->cur_if=mp->cur_mod; mp->if_line=mp_true_line(mp);
15289 if ( mp->cur_mod==fi_code ) {
15290 @<Pop the condition stack@>
15291 } else if ( mp->cur_mod==else_if_code ) {
15294 mp->cur_exp=true_code; new_if_limit=fi_code; mp_get_x_next(mp);
15299 @ In a construction like `\&{if} \&{if} \&{true}: $0=1$: \\{foo}
15300 \&{else}: \\{bar} \&{fi}', the first \&{else}
15301 that we come to after learning that the \&{if} is false is not the
15302 \&{else} we're looking for. Hence the following curious logic is needed.
15304 @<Skip to \&{elseif}...@>=
15307 if ( mp->cond_ptr==save_cond_ptr ) goto DONE;
15308 else if ( mp->cur_mod==fi_code ) @<Pop the condition stack@>;
15312 @ @<Display the boolean value...@>=
15313 { mp_begin_diagnostic(mp);
15314 if ( mp->cur_exp==true_code ) mp_print(mp, "{true}");
15315 else mp_print(mp, "{false}");
15316 mp_end_diagnostic(mp, false);
15319 @ The processing of conditionals is complete except for the following
15320 code, which is actually part of |get_x_next|. It comes into play when
15321 \&{elseif}, \&{else}, or \&{fi} is scanned.
15323 @<Terminate the current conditional and skip to \&{fi}@>=
15324 if ( mp->cur_mod>mp->if_limit ) {
15325 if ( mp->if_limit==if_code ) { /* condition not yet evaluated */
15326 mp_missing_err(mp, ":");
15328 mp_back_input(mp); mp->cur_sym=frozen_colon; mp_ins_error(mp);
15330 print_err("Extra "); mp_print_cmd_mod(mp, fi_or_else,mp->cur_mod);
15334 help1("I'm ignoring this; it doesn't match any if.");
15338 while ( mp->cur_mod!=fi_code ) mp_pass_text(mp); /* skip to \&{fi} */
15339 @<Pop the condition stack@>;
15342 @* \[34] Iterations.
15343 To bring our treatment of |get_x_next| to a close, we need to consider what
15344 \MP\ does when it sees \&{for}, \&{forsuffixes}, and \&{forever}.
15346 There's a global variable |loop_ptr| that keeps track of the \&{for} loops
15347 that are currently active. If |loop_ptr=null|, no loops are in progress;
15348 otherwise |info(loop_ptr)| points to the iterative text of the current
15349 (innermost) loop, and |link(loop_ptr)| points to the data for any other
15350 loops that enclose the current one.
15352 A loop-control node also has two other fields, called |loop_type| and
15353 |loop_list|, whose contents depend on the type of loop:
15355 \yskip\indent|loop_type(loop_ptr)=null| means that |loop_list(loop_ptr)|
15356 points to a list of one-word nodes whose |info| fields point to the
15357 remaining argument values of a suffix list and expression list.
15359 \yskip\indent|loop_type(loop_ptr)=mp_void| means that the current loop is
15362 \yskip\indent|loop_type(loop_ptr)=progression_flag| means that
15363 |p=loop_list(loop_ptr)| points to a ``progression node'' and |value(p)|,
15364 |step_size(p)|, and |final_value(p)| contain the data for an arithmetic
15367 \yskip\indent|loop_type(loop_ptr)=p>mp_void| means that |p| points to an edge
15368 header and |loop_list(loop_ptr)| points into the graphical object list for
15371 \yskip\noindent In the case of a progression node, the first word is not used
15372 because the link field of words in the dynamic memory area cannot be arbitrary.
15374 @d loop_list_loc(A) ((A)+1) /* where the |loop_list| field resides */
15375 @d loop_type(A) info(loop_list_loc((A))) /* the type of \&{for} loop */
15376 @d loop_list(A) link(loop_list_loc((A))) /* the remaining list elements */
15377 @d loop_node_size 2 /* the number of words in a loop control node */
15378 @d progression_node_size 4 /* the number of words in a progression node */
15379 @d step_size(A) mp->mem[(A)+2].sc /* the step size in an arithmetic progression */
15380 @d final_value(A) mp->mem[(A)+3].sc /* the final value in an arithmetic progression */
15381 @d progression_flag (null+2)
15382 /* |loop_type| value when |loop_list| points to a progression node */
15385 pointer loop_ptr; /* top of the loop-control-node stack */
15390 @ If the expressions that define an arithmetic progression in
15391 a \&{for} loop don't have known numeric values, the |bad_for|
15392 subroutine screams at the user.
15394 @c void mp_bad_for (MP mp, char * s) {
15395 mp_disp_err(mp, null,"Improper "); /* show the bad expression above the message */
15396 @.Improper...replaced by 0@>
15397 mp_print(mp, s); mp_print(mp, " has been replaced by 0");
15398 help4("When you say `for x=a step b until c',")
15399 ("the initial value `a' and the step size `b'")
15400 ("and the final value `c' must have known numeric values.")
15401 ("I'm zeroing this one. Proceed, with fingers crossed.");
15402 mp_put_get_flush_error(mp, 0);
15405 @ Here's what \MP\ does when \&{for}, \&{forsuffixes}, or \&{forever}
15406 has just been scanned. (This code requires slight familiarity with
15407 expression-parsing routines that we have not yet discussed; but it seems
15408 to belong in the present part of the program, even though the original author
15409 didn't write it until later. The reader may wish to come back to it.)
15411 @c void mp_begin_iteration (MP mp) {
15412 halfword m; /* |expr_base| (\&{for}) or |suffix_base| (\&{forsuffixes}) */
15413 halfword n; /* hash address of the current symbol */
15414 pointer s; /* the new loop-control node */
15415 pointer p; /* substitution list for |scan_toks| */
15416 pointer q; /* link manipulation register */
15417 pointer pp; /* a new progression node */
15418 m=mp->cur_mod; n=mp->cur_sym; s=mp_get_node(mp, loop_node_size);
15419 if ( m==start_forever ){
15420 loop_type(s)=mp_void; p=null; mp_get_x_next(mp);
15422 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
15423 info(p)=mp->cur_sym; value(p)=m;
15425 if ( mp->cur_cmd==within_token ) {
15426 @<Set up a picture iteration@>;
15428 @<Check for the |"="| or |":="| in a loop header@>;
15429 @<Scan the values to be used in the loop@>;
15432 @<Check for the presence of a colon@>;
15433 @<Scan the loop text and put it on the loop control stack@>;
15434 mp_resume_iteration(mp);
15437 @ @<Check for the |"="| or |":="| in a loop header@>=
15438 if ( (mp->cur_cmd!=equals)&&(mp->cur_cmd!=assignment) ) {
15439 mp_missing_err(mp, "=");
15441 help3("The next thing in this loop should have been `=' or `:='.")
15442 ("But don't worry; I'll pretend that an equals sign")
15443 ("was present, and I'll look for the values next.");
15447 @ @<Check for the presence of a colon@>=
15448 if ( mp->cur_cmd!=colon ) {
15449 mp_missing_err(mp, ":");
15451 help3("The next thing in this loop should have been a `:'.")
15452 ("So I'll pretend that a colon was present;")
15453 ("everything from here to `endfor' will be iterated.");
15457 @ We append a special |frozen_repeat_loop| token in place of the
15458 `\&{endfor}' at the end of the loop. This will come through \MP's scanner
15459 at the proper time to cause the loop to be repeated.
15461 (If the user tries some shenanigan like `\&{for} $\ldots$ \&{let} \&{endfor}',
15462 he will be foiled by the |get_symbol| routine, which keeps frozen
15463 tokens unchanged. Furthermore the |frozen_repeat_loop| is an \&{outer}
15464 token, so it won't be lost accidentally.)
15466 @ @<Scan the loop text...@>=
15467 q=mp_get_avail(mp); info(q)=frozen_repeat_loop;
15468 mp->scanner_status=loop_defining; mp->warning_info=n;
15469 info(s)=mp_scan_toks(mp, iteration,p,q,0); mp->scanner_status=normal;
15470 link(s)=mp->loop_ptr; mp->loop_ptr=s
15472 @ @<Initialize table...@>=
15473 eq_type(frozen_repeat_loop)=repeat_loop+outer_tag;
15474 text(frozen_repeat_loop)=intern(" ENDFOR");
15476 @ The loop text is inserted into \MP's scanning apparatus by the
15477 |resume_iteration| routine.
15479 @c void mp_resume_iteration (MP mp) {
15480 pointer p,q; /* link registers */
15481 p=loop_type(mp->loop_ptr);
15482 if ( p==progression_flag ) {
15483 p=loop_list(mp->loop_ptr); /* now |p| points to a progression node */
15484 mp->cur_exp=value(p);
15485 if ( @<The arithmetic progression has ended@> ) {
15486 mp_stop_iteration(mp);
15489 mp->cur_type=mp_known; q=mp_stash_cur_exp(mp); /* make |q| an \&{expr} argument */
15490 value(p)=mp->cur_exp+step_size(p); /* set |value(p)| for the next iteration */
15491 } else if ( p==null ) {
15492 p=loop_list(mp->loop_ptr);
15494 mp_stop_iteration(mp);
15497 loop_list(mp->loop_ptr)=link(p); q=info(p); free_avail(p);
15498 } else if ( p==mp_void ) {
15499 mp_begin_token_list(mp, info(mp->loop_ptr),forever_text); return;
15501 @<Make |q| a capsule containing the next picture component from
15502 |loop_list(loop_ptr)| or |goto not_found|@>;
15504 mp_begin_token_list(mp, info(mp->loop_ptr),loop_text);
15505 mp_stack_argument(mp, q);
15506 if ( mp->internal[mp_tracing_commands]>unity ) {
15507 @<Trace the start of a loop@>;
15511 mp_stop_iteration(mp);
15514 @ @<The arithmetic progression has ended@>=
15515 ((step_size(p)>0)&&(mp->cur_exp>final_value(p)))||
15516 ((step_size(p)<0)&&(mp->cur_exp<final_value(p)))
15518 @ @<Trace the start of a loop@>=
15520 mp_begin_diagnostic(mp); mp_print_nl(mp, "{loop value=");
15522 if ( (q!=null)&&(link(q)==mp_void) ) mp_print_exp(mp, q,1);
15523 else mp_show_token_list(mp, q,null,50,0);
15524 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
15527 @ @<Make |q| a capsule containing the next picture component from...@>=
15528 { q=loop_list(mp->loop_ptr);
15529 if ( q==null ) goto NOT_FOUND;
15530 skip_component(q) goto NOT_FOUND;
15531 mp->cur_exp=mp_copy_objects(mp, loop_list(mp->loop_ptr),q);
15532 mp_init_bbox(mp, mp->cur_exp);
15533 mp->cur_type=mp_picture_type;
15534 loop_list(mp->loop_ptr)=q;
15535 q=mp_stash_cur_exp(mp);
15538 @ A level of loop control disappears when |resume_iteration| has decided
15539 not to resume, or when an \&{exitif} construction has removed the loop text
15540 from the input stack.
15542 @c void mp_stop_iteration (MP mp) {
15543 pointer p,q; /* the usual */
15544 p=loop_type(mp->loop_ptr);
15545 if ( p==progression_flag ) {
15546 mp_free_node(mp, loop_list(mp->loop_ptr),progression_node_size);
15547 } else if ( p==null ){
15548 q=loop_list(mp->loop_ptr);
15549 while ( q!=null ) {
15552 if ( link(p)==mp_void ) { /* it's an \&{expr} parameter */
15553 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
15555 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
15558 p=q; q=link(q); free_avail(p);
15560 } else if ( p>progression_flag ) {
15561 delete_edge_ref(p);
15563 p=mp->loop_ptr; mp->loop_ptr=link(p); mp_flush_token_list(mp, info(p));
15564 mp_free_node(mp, p,loop_node_size);
15567 @ Now that we know all about loop control, we can finish up
15568 the missing portion of |begin_iteration| and we'll be done.
15570 The following code is performed after the `\.=' has been scanned in
15571 a \&{for} construction (if |m=expr_base|) or a \&{forsuffixes} construction
15572 (if |m=suffix_base|).
15574 @<Scan the values to be used in the loop@>=
15575 loop_type(s)=null; q=loop_list_loc(s); link(q)=null; /* |link(q)=loop_list(s)| */
15578 if ( m!=expr_base ) {
15579 mp_scan_suffix(mp);
15581 if ( mp->cur_cmd>=colon ) if ( mp->cur_cmd<=comma )
15583 mp_scan_expression(mp);
15584 if ( mp->cur_cmd==step_token ) if ( q==loop_list_loc(s) ) {
15585 @<Prepare for step-until construction and |break|@>;
15587 mp->cur_exp=mp_stash_cur_exp(mp);
15589 link(q)=mp_get_avail(mp); q=link(q);
15590 info(q)=mp->cur_exp; mp->cur_type=mp_vacuous;
15593 } while (mp->cur_cmd==comma)
15595 @ @<Prepare for step-until construction and |break|@>=
15597 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "initial value");
15598 pp=mp_get_node(mp, progression_node_size); value(pp)=mp->cur_exp;
15599 mp_get_x_next(mp); mp_scan_expression(mp);
15600 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "step size");
15601 step_size(pp)=mp->cur_exp;
15602 if ( mp->cur_cmd!=until_token ) {
15603 mp_missing_err(mp, "until");
15604 @.Missing `until'@>
15605 help2("I assume you meant to say `until' after `step'.")
15606 ("So I'll look for the final value and colon next.");
15609 mp_get_x_next(mp); mp_scan_expression(mp);
15610 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "final value");
15611 final_value(pp)=mp->cur_exp; loop_list(s)=pp;
15612 loop_type(s)=progression_flag;
15616 @ The last case is when we have just seen ``\&{within}'', and we need to
15617 parse a picture expression and prepare to iterate over it.
15619 @<Set up a picture iteration@>=
15620 { mp_get_x_next(mp);
15621 mp_scan_expression(mp);
15622 @<Make sure the current expression is a known picture@>;
15623 loop_type(s)=mp->cur_exp; mp->cur_type=mp_vacuous;
15624 q=link(dummy_loc(mp->cur_exp));
15626 if ( is_start_or_stop(q) )
15627 if ( mp_skip_1component(mp, q)==null ) q=link(q);
15631 @ @<Make sure the current expression is a known picture@>=
15632 if ( mp->cur_type!=mp_picture_type ) {
15633 mp_disp_err(mp, null,"Improper iteration spec has been replaced by nullpicture");
15634 help1("When you say `for x in p', p must be a known picture.");
15635 mp_put_get_flush_error(mp, mp_get_node(mp, edge_header_size));
15636 mp_init_edges(mp, mp->cur_exp); mp->cur_type=mp_picture_type;
15639 @* \[35] File names.
15640 It's time now to fret about file names. Besides the fact that different
15641 operating systems treat files in different ways, we must cope with the
15642 fact that completely different naming conventions are used by different
15643 groups of people. The following programs show what is required for one
15644 particular operating system; similar routines for other systems are not
15645 difficult to devise.
15646 @^system dependencies@>
15648 \MP\ assumes that a file name has three parts: the name proper; its
15649 ``extension''; and a ``file area'' where it is found in an external file
15650 system. The extension of an input file is assumed to be
15651 `\.{.mp}' unless otherwise specified; it is `\.{.log}' on the
15652 transcript file that records each run of \MP; it is `\.{.tfm}' on the font
15653 metric files that describe characters in any fonts created by \MP; it is
15654 `\.{.ps}' or `.{\it nnn}' for some number {\it nnn} on the \ps\ output files;
15655 and it is `\.{.mem}' on the mem files written by \.{INIMP} to initialize \MP.
15656 The file area can be arbitrary on input files, but files are usually
15657 output to the user's current area. If an input file cannot be
15658 found on the specified area, \MP\ will look for it on a special system
15659 area; this special area is intended for commonly used input files.
15661 Simple uses of \MP\ refer only to file names that have no explicit
15662 extension or area. For example, a person usually says `\.{input} \.{cmr10}'
15663 instead of `\.{input} \.{cmr10.new}'. Simple file
15664 names are best, because they make the \MP\ source files portable;
15665 whenever a file name consists entirely of letters and digits, it should be
15666 treated in the same way by all implementations of \MP. However, users
15667 need the ability to refer to other files in their environment, especially
15668 when responding to error messages concerning unopenable files; therefore
15669 we want to let them use the syntax that appears in their favorite
15672 @ \MP\ uses the same conventions that have proved to be satisfactory for
15673 \TeX\ and \MF. In order to isolate the system-dependent aspects of file names,
15674 @^system dependencies@>
15675 the system-independent parts of \MP\ are expressed in terms
15676 of three system-dependent
15677 procedures called |begin_name|, |more_name|, and |end_name|. In
15678 essence, if the user-specified characters of the file name are $c_1\ldots c_n$,
15679 the system-independent driver program does the operations
15680 $$|begin_name|;\,|more_name|(c_1);\,\ldots\,;|more_name|(c_n);
15682 These three procedures communicate with each other via global variables.
15683 Afterwards the file name will appear in the string pool as three strings
15684 called |cur_name|\penalty10000\hskip-.05em,
15685 |cur_area|, and |cur_ext|; the latter two are null (i.e.,
15686 |""|), unless they were explicitly specified by the user.
15688 Actually the situation is slightly more complicated, because \MP\ needs
15689 to know when the file name ends. The |more_name| routine is a function
15690 (with side effects) that returns |true| on the calls |more_name|$(c_1)$,
15691 \dots, |more_name|$(c_{n-1})$. The final call |more_name|$(c_n)$
15692 returns |false|; or, it returns |true| and $c_n$ is the last character
15693 on the current input line. In other words,
15694 |more_name| is supposed to return |true| unless it is sure that the
15695 file name has been completely scanned; and |end_name| is supposed to be able
15696 to finish the assembly of |cur_name|, |cur_area|, and |cur_ext| regardless of
15697 whether $|more_name|(c_n)$ returned |true| or |false|.
15700 char * cur_name; /* name of file just scanned */
15701 char * cur_area; /* file area just scanned, or \.{""} */
15702 char * cur_ext; /* file extension just scanned, or \.{""} */
15704 @ It is easier to maintain reference counts if we assign initial values.
15707 mp->cur_name=xstrdup("");
15708 mp->cur_area=xstrdup("");
15709 mp->cur_ext=xstrdup("");
15711 @ @<Dealloc variables@>=
15712 xfree(mp->cur_area);
15713 xfree(mp->cur_name);
15714 xfree(mp->cur_ext);
15716 @ The file names we shall deal with for illustrative purposes have the
15717 following structure: If the name contains `\.>' or `\.:', the file area
15718 consists of all characters up to and including the final such character;
15719 otherwise the file area is null. If the remaining file name contains
15720 `\..', the file extension consists of all such characters from the first
15721 remaining `\..' to the end, otherwise the file extension is null.
15722 @^system dependencies@>
15724 We can scan such file names easily by using two global variables that keep track
15725 of the occurrences of area and extension delimiters. Note that these variables
15726 cannot be of type |pool_pointer| because a string pool compaction could occur
15727 while scanning a file name.
15730 integer area_delimiter;
15731 /* most recent `\.>' or `\.:' relative to |str_start[str_ptr]| */
15732 integer ext_delimiter; /* the relevant `\..', if any */
15734 @ Here now is the first of the system-dependent routines for file name scanning.
15735 @^system dependencies@>
15737 @<Declare subroutines for parsing file names@>=
15738 void mp_begin_name (MP mp) {
15739 xfree(mp->cur_name);
15740 xfree(mp->cur_area);
15741 xfree(mp->cur_ext);
15742 mp->area_delimiter=-1;
15743 mp->ext_delimiter=-1;
15746 @ And here's the second.
15747 @^system dependencies@>
15749 @<Declare subroutines for parsing file names@>=
15750 boolean mp_more_name (MP mp, ASCII_code c) {
15754 if ( (c=='>')||(c==':') ) {
15755 mp->area_delimiter=mp->pool_ptr;
15756 mp->ext_delimiter=-1;
15757 } else if ( (c=='.')&&(mp->ext_delimiter<0) ) {
15758 mp->ext_delimiter=mp->pool_ptr;
15760 str_room(1); append_char(c); /* contribute |c| to the current string */
15766 @^system dependencies@>
15768 @d copy_pool_segment(A,B,C) {
15769 A = xmalloc(C+1,sizeof(char));
15770 strncpy(A,(char *)(mp->str_pool+B),C);
15773 @<Declare subroutines for parsing file names@>=
15774 void mp_end_name (MP mp) {
15775 pool_pointer s; /* length of area, name, and extension */
15778 s = mp->str_start[mp->str_ptr];
15779 if ( mp->area_delimiter<0 ) {
15780 mp->cur_area=xstrdup("");
15782 len = mp->area_delimiter-s;
15783 copy_pool_segment(mp->cur_area,s,len);
15786 if ( mp->ext_delimiter<0 ) {
15787 mp->cur_ext=xstrdup("");
15788 len = mp->pool_ptr-s;
15790 copy_pool_segment(mp->cur_ext,mp->ext_delimiter,(mp->pool_ptr-mp->ext_delimiter));
15791 len = mp->ext_delimiter-s;
15793 copy_pool_segment(mp->cur_name,s,len);
15794 mp->pool_ptr=s; /* don't need this partial string */
15797 @ Conversely, here is a routine that takes three strings and prints a file
15798 name that might have produced them. (The routine is system dependent, because
15799 some operating systems put the file area last instead of first.)
15800 @^system dependencies@>
15802 @<Basic printing...@>=
15803 void mp_print_file_name (MP mp, char * n, char * a, char * e) {
15804 mp_print(mp, a); mp_print(mp, n); mp_print(mp, e);
15807 @ Another system-dependent routine is needed to convert three internal
15809 to the |name_of_file| value that is used to open files. The present code
15810 allows both lowercase and uppercase letters in the file name.
15811 @^system dependencies@>
15813 @d append_to_name(A) { c=(A);
15814 if ( k<file_name_size ) {
15815 mp->name_of_file[k]=xchr(c);
15820 @<Declare subroutines for parsing file names@>=
15821 void mp_pack_file_name (MP mp, char *n, char *a, char *e) {
15822 integer k; /* number of positions filled in |name_of_file| */
15823 ASCII_code c; /* character being packed */
15824 char *j; /* a character index */
15828 for (j=a;*j;j++) { append_to_name(*j); }
15830 for (j=n;*j;j++) { append_to_name(*j); }
15832 for (j=e;*j;j++) { append_to_name(*j); }
15834 mp->name_of_file[k]=0;
15838 @ @<Internal library declarations@>=
15839 void mp_pack_file_name (MP mp, char *n, char *a, char *e) ;
15841 @ A messier routine is also needed, since mem file names must be scanned
15842 before \MP's string mechanism has been initialized. We shall use the
15843 global variable |MP_mem_default| to supply the text for default system areas
15844 and extensions related to mem files.
15845 @^system dependencies@>
15847 @d mem_default_length 9 /* length of the |MP_mem_default| string */
15848 @d mem_ext_length 4 /* length of its `\.{.mem}' part */
15849 @d mem_extension ".mem" /* the extension, as a \.{WEB} constant */
15852 char *MP_mem_default;
15854 @ @<Option variables@>=
15855 char *mem_name; /* for commandline */
15857 @ @<Allocate or initialize ...@>=
15858 mp->MP_mem_default = xstrdup("plain.mem");
15859 mp->mem_name = xstrdup(opt->mem_name);
15861 @^system dependencies@>
15863 @ @<Dealloc variables@>=
15864 xfree(mp->MP_mem_default);
15865 xfree(mp->mem_name);
15867 @ @<Check the ``constant'' values for consistency@>=
15868 if ( mem_default_length>file_name_size ) mp->bad=20;
15870 @ Here is the messy routine that was just mentioned. It sets |name_of_file|
15871 from the first |n| characters of |MP_mem_default|, followed by
15872 |buffer[a..b-1]|, followed by the last |mem_ext_length| characters of
15875 We dare not give error messages here, since \MP\ calls this routine before
15876 the |error| routine is ready to roll. Instead, we simply drop excess characters,
15877 since the error will be detected in another way when a strange file name
15879 @^system dependencies@>
15881 @c void mp_pack_buffered_name (MP mp,small_number n, integer a,
15883 integer k; /* number of positions filled in |name_of_file| */
15884 ASCII_code c; /* character being packed */
15885 integer j; /* index into |buffer| or |MP_mem_default| */
15886 if ( n+b-a+1+mem_ext_length>file_name_size )
15887 b=a+file_name_size-n-1-mem_ext_length;
15889 for (j=0;j<n;j++) {
15890 append_to_name(xord((int)mp->MP_mem_default[j]));
15892 for (j=a;j<b;j++) {
15893 append_to_name(mp->buffer[j]);
15895 for (j=mem_default_length-mem_ext_length;
15896 j<mem_default_length;j++) {
15897 append_to_name(xord((int)mp->MP_mem_default[j]));
15899 mp->name_of_file[k]=0;
15903 @ Here is the only place we use |pack_buffered_name|. This part of the program
15904 becomes active when a ``virgin'' \MP\ is trying to get going, just after
15905 the preliminary initialization, or when the user is substituting another
15906 mem file by typing `\.\&' after the initial `\.{**}' prompt. The buffer
15907 contains the first line of input in |buffer[loc..(last-1)]|, where
15908 |loc<last| and |buffer[loc]<>" "|.
15911 boolean mp_open_mem_file (MP mp) ;
15914 boolean mp_open_mem_file (MP mp) {
15915 int j; /* the first space after the file name */
15916 if (mp->mem_name!=NULL) {
15917 mp->mem_file = (mp->open_file)(mp->mem_name, "rb", mp_filetype_memfile);
15918 if ( mp->mem_file ) return true;
15921 if ( mp->buffer[loc]=='&' ) {
15922 incr(loc); j=loc; mp->buffer[mp->last]=' ';
15923 while ( mp->buffer[j]!=' ' ) incr(j);
15924 mp_pack_buffered_name(mp, 0,loc,j); /* try first without the system file area */
15925 if ( mp_w_open_in(mp, &mp->mem_file) ) goto FOUND;
15927 wterm_ln("Sorry, I can\'t find that mem file; will try PLAIN.");
15928 @.Sorry, I can't find...@>
15931 /* now pull out all the stops: try for the system \.{plain} file */
15932 mp_pack_buffered_name(mp, mem_default_length-mem_ext_length,0,0);
15933 if ( ! mp_w_open_in(mp, &mp->mem_file) ) {
15935 wterm_ln("I can\'t find the PLAIN mem file!\n");
15936 @.I can't find PLAIN...@>
15941 loc=j; return true;
15944 @ Operating systems often make it possible to determine the exact name (and
15945 possible version number) of a file that has been opened. The following routine,
15946 which simply makes a \MP\ string from the value of |name_of_file|, should
15947 ideally be changed to deduce the full name of file~|f|, which is the file
15948 most recently opened, if it is possible to do this.
15949 @^system dependencies@>
15952 #define mp_a_make_name_string(A,B) mp_make_name_string(A)
15953 #define mp_b_make_name_string(A,B) mp_make_name_string(A)
15954 #define mp_w_make_name_string(A,B) mp_make_name_string(A)
15957 str_number mp_make_name_string (MP mp) {
15958 int k; /* index into |name_of_file| */
15959 str_room(mp->name_length);
15960 for (k=0;k<mp->name_length;k++) {
15961 append_char(xord((int)mp->name_of_file[k]));
15963 return mp_make_string(mp);
15966 @ Now let's consider the ``driver''
15967 routines by which \MP\ deals with file names
15968 in a system-independent manner. First comes a procedure that looks for a
15969 file name in the input by taking the information from the input buffer.
15970 (We can't use |get_next|, because the conversion to tokens would
15971 destroy necessary information.)
15973 This procedure doesn't allow semicolons or percent signs to be part of
15974 file names, because of other conventions of \MP.
15975 {\sl The {\logos METAFONT\/}book} doesn't
15976 use semicolons or percents immediately after file names, but some users
15977 no doubt will find it natural to do so; therefore system-dependent
15978 changes to allow such characters in file names should probably
15979 be made with reluctance, and only when an entire file name that
15980 includes special characters is ``quoted'' somehow.
15981 @^system dependencies@>
15983 @c void mp_scan_file_name (MP mp) {
15985 while ( mp->buffer[loc]==' ' ) incr(loc);
15987 if ( (mp->buffer[loc]==';')||(mp->buffer[loc]=='%') ) break;
15988 if ( ! mp_more_name(mp, mp->buffer[loc]) ) break;
15994 @ Here is another version that takes its input from a string.
15996 @<Declare subroutines for parsing file names@>=
15997 void mp_str_scan_file (MP mp, str_number s) {
15998 pool_pointer p,q; /* current position and stopping point */
16000 p=mp->str_start[s]; q=str_stop(s);
16002 if ( ! mp_more_name(mp, mp->str_pool[p]) ) break;
16008 @ And one that reads from a |char*|.
16010 @<Declare subroutines for parsing file names@>=
16011 void mp_ptr_scan_file (MP mp, char *s) {
16012 char *p, *q; /* current position and stopping point */
16014 p=s; q=p+strlen(s);
16016 if ( ! mp_more_name(mp, *p)) break;
16023 @ The global variable |job_name| contains the file name that was first
16024 \&{input} by the user. This name is extended by `\.{.log}' and `\.{ps}' and
16025 `\.{.mem}' and `\.{.tfm}' in order to make the names of \MP's output files.
16028 boolean log_opened; /* has the transcript file been opened? */
16029 char *log_name; /* full name of the log file */
16031 @ @<Option variables@>=
16032 char *job_name; /* principal file name */
16034 @ Initially |job_name=NULL|; it becomes nonzero as soon as the true name is known.
16035 We have |job_name=NULL| if and only if the `\.{log}' file has not been opened,
16036 except of course for a short time just after |job_name| has become nonzero.
16038 @<Allocate or ...@>=
16039 mp->job_name=opt->job_name;
16040 mp->log_opened=false;
16042 @ @<Dealloc variables@>=
16043 xfree(mp->job_name);
16045 @ Here is a routine that manufactures the output file names, assuming that
16046 |job_name<>0|. It ignores and changes the current settings of |cur_area|
16049 @d pack_cur_name mp_pack_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext)
16052 void mp_pack_job_name (MP mp, char *s) ;
16054 @ @c void mp_pack_job_name (MP mp, char *s) { /* |s = ".log"|, |".mem"|, |".ps"|, or .\\{nnn} */
16055 xfree(mp->cur_name); mp->cur_name=xstrdup(mp->job_name);
16056 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16057 xfree(mp->cur_ext); mp->cur_ext=xstrdup(s);
16061 @ If some trouble arises when \MP\ tries to open a file, the following
16062 routine calls upon the user to supply another file name. Parameter~|s|
16063 is used in the error message to identify the type of file; parameter~|e|
16064 is the default extension if none is given. Upon exit from the routine,
16065 variables |cur_name|, |cur_area|, |cur_ext|, and |name_of_file| are
16066 ready for another attempt at file opening.
16069 void mp_prompt_file_name (MP mp,char * s, char * e) ;
16071 @ @c void mp_prompt_file_name (MP mp,char * s, char * e) {
16072 size_t k; /* index into |buffer| */
16073 char * saved_cur_name;
16074 if ( mp->interaction==mp_scroll_mode )
16076 if (strcmp(s,"input file name")==0) {
16077 print_err("I can\'t find file `");
16078 @.I can't find file x@>
16080 print_err("I can\'t write on file `");
16082 @.I can't write on file x@>
16083 mp_print_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext);
16084 mp_print(mp, "'.");
16085 if (strcmp(e,"")==0)
16086 mp_show_context(mp);
16087 mp_print_nl(mp, "Please type another "); mp_print(mp, s);
16089 if ( mp->interaction<mp_scroll_mode )
16090 mp_fatal_error(mp, "*** (job aborted, file error in nonstop mode)");
16091 @.job aborted, file error...@>
16092 saved_cur_name = xstrdup(mp->cur_name);
16093 clear_terminal; prompt_input(": "); @<Scan file name in the buffer@>;
16094 if (strcmp(mp->cur_ext,"")==0)
16096 if (strlen(mp->cur_name)==0) {
16097 mp->cur_name=saved_cur_name;
16099 xfree(saved_cur_name);
16104 @ @<Scan file name in the buffer@>=
16106 mp_begin_name(mp); k=mp->first;
16107 while ( (mp->buffer[k]==' ')&&(k<mp->last) ) incr(k);
16109 if ( k==mp->last ) break;
16110 if ( ! mp_more_name(mp, mp->buffer[k]) ) break;
16116 @ The |open_log_file| routine is used to open the transcript file and to help
16117 it catch up to what has previously been printed on the terminal.
16119 @c void mp_open_log_file (MP mp) {
16120 int old_setting; /* previous |selector| setting */
16121 int k; /* index into |months| and |buffer| */
16122 int l; /* end of first input line */
16123 integer m; /* the current month */
16124 char *months="JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC";
16125 /* abbreviations of month names */
16126 old_setting=mp->selector;
16127 if ( mp->job_name==NULL ) {
16128 mp->job_name=xstrdup("mpout");
16130 mp_pack_job_name(mp,".log");
16131 while ( ! mp_a_open_out(mp, &mp->log_file, mp_filetype_log) ) {
16132 @<Try to get a different log file name@>;
16134 mp->log_name=xstrdup(mp->name_of_file);
16135 mp->selector=log_only; mp->log_opened=true;
16136 @<Print the banner line, including the date and time@>;
16137 mp->input_stack[mp->input_ptr]=mp->cur_input;
16138 /* make sure bottom level is in memory */
16140 if (!mp->noninteractive) {
16141 mp_print_nl(mp, "**");
16142 l=mp->input_stack[0].limit_field-1; /* last position of first line */
16143 for (k=0;k<=l;k++) mp_print_str(mp, mp->buffer[k]);
16144 mp_print_ln(mp); /* now the transcript file contains the first line of input */
16146 mp->selector=old_setting+2; /* |log_only| or |term_and_log| */
16149 @ @<Dealloc variables@>=
16150 xfree(mp->log_name);
16152 @ Sometimes |open_log_file| is called at awkward moments when \MP\ is
16153 unable to print error messages or even to |show_context|.
16154 The |prompt_file_name| routine can result in a |fatal_error|, but the |error|
16155 routine will not be invoked because |log_opened| will be false.
16157 The normal idea of |mp_batch_mode| is that nothing at all should be written
16158 on the terminal. However, in the unusual case that
16159 no log file could be opened, we make an exception and allow
16160 an explanatory message to be seen.
16162 Incidentally, the program always refers to the log file as a `\.{transcript
16163 file}', because some systems cannot use the extension `\.{.log}' for
16166 @<Try to get a different log file name@>=
16168 mp->selector=term_only;
16169 mp_prompt_file_name(mp, "transcript file name",".log");
16172 @ @<Print the banner...@>=
16175 mp_print(mp, mp->mem_ident); mp_print(mp, " ");
16176 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_day]));
16177 mp_print_char(mp, ' ');
16178 m=mp_round_unscaled(mp, mp->internal[mp_month]);
16179 for (k=3*m-3;k<3*m;k++) { wlog_chr(months[k]); }
16180 mp_print_char(mp, ' ');
16181 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_year]));
16182 mp_print_char(mp, ' ');
16183 m=mp_round_unscaled(mp, mp->internal[mp_time]);
16184 mp_print_dd(mp, m / 60); mp_print_char(mp, ':'); mp_print_dd(mp, m % 60);
16187 @ The |try_extension| function tries to open an input file determined by
16188 |cur_name|, |cur_area|, and the argument |ext|. It returns |false| if it
16189 can't find the file in |cur_area| or the appropriate system area.
16191 @c boolean mp_try_extension (MP mp,char *ext) {
16192 mp_pack_file_name(mp, mp->cur_name,mp->cur_area, ext);
16193 in_name=xstrdup(mp->cur_name);
16194 in_area=xstrdup(mp->cur_area);
16195 if ( mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16198 mp_pack_file_name(mp, mp->cur_name,NULL,ext);
16199 return mp_a_open_in(mp, &cur_file, mp_filetype_program);
16204 @ Let's turn now to the procedure that is used to initiate file reading
16205 when an `\.{input}' command is being processed.
16207 @c void mp_start_input (MP mp) { /* \MP\ will \.{input} something */
16208 char *fname = NULL;
16209 @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>;
16211 mp_begin_file_reading(mp); /* set up |cur_file| and new level of input */
16212 if ( strlen(mp->cur_ext)==0 ) {
16213 if ( mp_try_extension(mp, ".mp") ) break;
16214 else if ( mp_try_extension(mp, "") ) break;
16215 else if ( mp_try_extension(mp, ".mf") ) break;
16216 /* |else do_nothing; | */
16217 } else if ( mp_try_extension(mp, mp->cur_ext) ) {
16220 mp_end_file_reading(mp); /* remove the level that didn't work */
16221 mp_prompt_file_name(mp, "input file name","");
16223 name=mp_a_make_name_string(mp, cur_file);
16224 fname = xstrdup(mp->name_of_file);
16225 if ( mp->job_name==NULL ) {
16226 mp->job_name=xstrdup(mp->cur_name);
16227 mp_open_log_file(mp);
16228 } /* |open_log_file| doesn't |show_context|, so |limit|
16229 and |loc| needn't be set to meaningful values yet */
16230 if ( ((int)mp->term_offset+(int)strlen(fname)) > (mp->max_print_line-2)) mp_print_ln(mp);
16231 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
16232 mp_print_char(mp, '('); incr(mp->open_parens); mp_print(mp, fname);
16235 @<Flush |name| and replace it with |cur_name| if it won't be needed@>;
16236 @<Read the first line of the new file@>;
16239 @ This code should be omitted if |a_make_name_string| returns something other
16240 than just a copy of its argument and the full file name is needed for opening
16241 \.{MPX} files or implementing the switch-to-editor option.
16242 @^system dependencies@>
16244 @<Flush |name| and replace it with |cur_name| if it won't be needed@>=
16245 mp_flush_string(mp, name); name=rts(mp->cur_name); xfree(mp->cur_name)
16247 @ If the file is empty, it is considered to contain a single blank line,
16248 so there is no need to test the return value.
16250 @<Read the first line...@>=
16253 (void)mp_input_ln(mp, cur_file );
16254 mp_firm_up_the_line(mp);
16255 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
16258 @ @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>=
16259 while ( token_state &&(loc==null) ) mp_end_token_list(mp);
16260 if ( token_state ) {
16261 print_err("File names can't appear within macros");
16262 @.File names can't...@>
16263 help3("Sorry...I've converted what follows to tokens,")
16264 ("possibly garbaging the name you gave.")
16265 ("Please delete the tokens and insert the name again.");
16268 if ( file_state ) {
16269 mp_scan_file_name(mp);
16271 xfree(mp->cur_name); mp->cur_name=xstrdup("");
16272 xfree(mp->cur_ext); mp->cur_ext =xstrdup("");
16273 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16276 @ The following simple routine starts reading the \.{MPX} file associated
16277 with the current input file.
16279 @c void mp_start_mpx_input (MP mp) {
16280 char *origname = NULL; /* a copy of nameoffile */
16281 mp_pack_file_name(mp, in_name, in_area, ".mpx");
16282 @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16283 |goto not_found| if there is a problem@>;
16284 mp_begin_file_reading(mp);
16285 if ( ! mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16286 mp_end_file_reading(mp);
16289 name=mp_a_make_name_string(mp, cur_file);
16290 mp->mpx_name[index]=name; add_str_ref(name);
16291 @<Read the first line of the new file@>;
16294 @<Explain that the \.{MPX} file can't be read and |succumb|@>;
16298 @ This should ideally be changed to do whatever is necessary to create the
16299 \.{MPX} file given by |name_of_file| if it does not exist or if it is out
16300 of date. This requires invoking \.{MPtoTeX} on the |origname| and passing
16301 the results through \TeX\ and \.{DVItoMP}. (It is possible to use a
16302 completely different typesetting program if suitable postprocessor is
16303 available to perform the function of \.{DVItoMP}.)
16304 @^system dependencies@>
16306 @ @<Exported types@>=
16307 typedef int (*mp_run_make_mpx_command)(MP mp, char *origname, char *mtxname);
16309 @ @<Option variables@>=
16310 mp_run_make_mpx_command run_make_mpx;
16312 @ @<Allocate or initialize ...@>=
16313 set_callback_option(run_make_mpx);
16315 @ @<Internal library declarations@>=
16316 int mp_run_make_mpx (MP mp, char *origname, char *mtxname);
16318 @ The default does nothing.
16320 int mp_run_make_mpx (MP mp, char *origname, char *mtxname) {
16321 if (mp && origname && mtxname) /* for -W */
16326 @ @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16327 |goto not_found| if there is a problem@>=
16328 origname = mp_xstrdup(mp,mp->name_of_file);
16329 *(origname+strlen(origname)-1)=0; /* drop the x */
16330 if (!(mp->run_make_mpx)(mp, origname, mp->name_of_file))
16333 @ @<Explain that the \.{MPX} file can't be read and |succumb|@>=
16334 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16335 mp_print_nl(mp, ">> ");
16336 mp_print(mp, origname);
16337 mp_print_nl(mp, ">> ");
16338 mp_print(mp, mp->name_of_file);
16339 mp_print_nl(mp, "! Unable to make mpx file");
16340 help4("The two files given above are one of your source files")
16341 ("and an auxiliary file I need to read to find out what your")
16342 ("btex..etex blocks mean. If you don't know why I had trouble,")
16343 ("try running it manually through MPtoTeX, TeX, and DVItoMP");
16346 @ The last file-opening commands are for files accessed via the \&{readfrom}
16347 @:read_from_}{\&{readfrom} primitive@>
16348 operator and the \&{write} command. Such files are stored in separate arrays.
16349 @:write_}{\&{write} primitive@>
16351 @<Types in the outer block@>=
16352 typedef unsigned int readf_index; /* |0..max_read_files| */
16353 typedef unsigned int write_index; /* |0..max_write_files| */
16356 readf_index max_read_files; /* maximum number of simultaneously open \&{readfrom} files */
16357 void ** rd_file; /* \&{readfrom} files */
16358 char ** rd_fname; /* corresponding file name or 0 if file not open */
16359 readf_index read_files; /* number of valid entries in the above arrays */
16360 write_index max_write_files; /* maximum number of simultaneously open \&{write} */
16361 void ** wr_file; /* \&{write} files */
16362 char ** wr_fname; /* corresponding file name or 0 if file not open */
16363 write_index write_files; /* number of valid entries in the above arrays */
16365 @ @<Allocate or initialize ...@>=
16366 mp->max_read_files=8;
16367 mp->rd_file = xmalloc((mp->max_read_files+1),sizeof(void *));
16368 mp->rd_fname = xmalloc((mp->max_read_files+1),sizeof(char *));
16369 memset(mp->rd_fname, 0, sizeof(char *)*(mp->max_read_files+1));
16371 mp->max_write_files=8;
16372 mp->wr_file = xmalloc((mp->max_write_files+1),sizeof(void *));
16373 mp->wr_fname = xmalloc((mp->max_write_files+1),sizeof(char *));
16374 memset(mp->wr_fname, 0, sizeof(char *)*(mp->max_write_files+1));
16378 @ This routine starts reading the file named by string~|s| without setting
16379 |loc|, |limit|, or |name|. It returns |false| if the file is empty or cannot
16380 be opened. Otherwise it updates |rd_file[n]| and |rd_fname[n]|.
16382 @c boolean mp_start_read_input (MP mp,char *s, readf_index n) {
16383 mp_ptr_scan_file(mp, s);
16385 mp_begin_file_reading(mp);
16386 if ( ! mp_a_open_in(mp, &mp->rd_file[n], (mp_filetype_text+n)) )
16388 if ( ! mp_input_ln(mp, mp->rd_file[n] ) ) {
16389 (mp->close_file)(mp->rd_file[n]);
16392 mp->rd_fname[n]=xstrdup(mp->name_of_file);
16395 mp_end_file_reading(mp);
16399 @ Open |wr_file[n]| using file name~|s| and update |wr_fname[n]|.
16402 void mp_open_write_file (MP mp, char *s, readf_index n) ;
16404 @ @c void mp_open_write_file (MP mp,char *s, readf_index n) {
16405 mp_ptr_scan_file(mp, s);
16407 while ( ! mp_a_open_out(mp, &mp->wr_file[n], (mp_filetype_text+n)) )
16408 mp_prompt_file_name(mp, "file name for write output","");
16409 mp->wr_fname[n]=xstrdup(mp->name_of_file);
16413 @* \[36] Introduction to the parsing routines.
16414 We come now to the central nervous system that sparks many of \MP's activities.
16415 By evaluating expressions, from their primary constituents to ever larger
16416 subexpressions, \MP\ builds the structures that ultimately define complete
16417 pictures or fonts of type.
16419 Four mutually recursive subroutines are involved in this process: We call them
16420 $$\hbox{|scan_primary|, |scan_secondary|, |scan_tertiary|,
16421 and |scan_expression|.}$$
16423 Each of them is parameterless and begins with the first token to be scanned
16424 already represented in |cur_cmd|, |cur_mod|, and |cur_sym|. After execution,
16425 the value of the primary or secondary or tertiary or expression that was
16426 found will appear in the global variables |cur_type| and |cur_exp|. The
16427 token following the expression will be represented in |cur_cmd|, |cur_mod|,
16430 Technically speaking, the parsing algorithms are ``LL(1),'' more or less;
16431 backup mechanisms have been added in order to provide reasonable error
16435 small_number cur_type; /* the type of the expression just found */
16436 integer cur_exp; /* the value of the expression just found */
16441 @ Many different kinds of expressions are possible, so it is wise to have
16442 precise descriptions of what |cur_type| and |cur_exp| mean in all cases:
16445 |cur_type=mp_vacuous| means that this expression didn't turn out to have a
16446 value at all, because it arose from a \&{begingroup}$\,\ldots\,$\&{endgroup}
16447 construction in which there was no expression before the \&{endgroup}.
16448 In this case |cur_exp| has some irrelevant value.
16451 |cur_type=mp_boolean_type| means that |cur_exp| is either |true_code|
16455 |cur_type=mp_unknown_boolean| means that |cur_exp| points to a capsule
16456 node that is in the ring of variables equivalent
16457 to at least one undefined boolean variable.
16460 |cur_type=mp_string_type| means that |cur_exp| is a string number (i.e., an
16461 integer in the range |0<=cur_exp<str_ptr|). That string's reference count
16462 includes this particular reference.
16465 |cur_type=mp_unknown_string| means that |cur_exp| points to a capsule
16466 node that is in the ring of variables equivalent
16467 to at least one undefined string variable.
16470 |cur_type=mp_pen_type| means that |cur_exp| points to a node in a pen. Nobody
16471 else points to any of the nodes in this pen. The pen may be polygonal or
16475 |cur_type=mp_unknown_pen| means that |cur_exp| points to a capsule
16476 node that is in the ring of variables equivalent
16477 to at least one undefined pen variable.
16480 |cur_type=mp_path_type| means that |cur_exp| points to a the first node of
16481 a path; nobody else points to this particular path. The control points of
16482 the path will have been chosen.
16485 |cur_type=mp_unknown_path| means that |cur_exp| points to a capsule
16486 node that is in the ring of variables equivalent
16487 to at least one undefined path variable.
16490 |cur_type=mp_picture_type| means that |cur_exp| points to an edge header node.
16491 There may be other pointers to this particular set of edges. The header node
16492 contains a reference count that includes this particular reference.
16495 |cur_type=mp_unknown_picture| means that |cur_exp| points to a capsule
16496 node that is in the ring of variables equivalent
16497 to at least one undefined picture variable.
16500 |cur_type=mp_transform_type| means that |cur_exp| points to a |mp_transform_type|
16501 capsule node. The |value| part of this capsule
16502 points to a transform node that contains six numeric values,
16503 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16506 |cur_type=mp_color_type| means that |cur_exp| points to a |color_type|
16507 capsule node. The |value| part of this capsule
16508 points to a color node that contains three numeric values,
16509 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16512 |cur_type=mp_cmykcolor_type| means that |cur_exp| points to a |mp_cmykcolor_type|
16513 capsule node. The |value| part of this capsule
16514 points to a color node that contains four numeric values,
16515 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16518 |cur_type=mp_pair_type| means that |cur_exp| points to a capsule
16519 node whose type is |mp_pair_type|. The |value| part of this capsule
16520 points to a pair node that contains two numeric values,
16521 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16524 |cur_type=mp_known| means that |cur_exp| is a |scaled| value.
16527 |cur_type=mp_dependent| means that |cur_exp| points to a capsule node whose type
16528 is |dependent|. The |dep_list| field in this capsule points to the associated
16532 |cur_type=mp_proto_dependent| means that |cur_exp| points to a |mp_proto_dependent|
16533 capsule node. The |dep_list| field in this capsule
16534 points to the associated dependency list.
16537 |cur_type=independent| means that |cur_exp| points to a capsule node
16538 whose type is |independent|. This somewhat unusual case can arise, for
16539 example, in the expression
16540 `$x+\&{begingroup}\penalty0\,\&{string}\,x; 0\,\&{endgroup}$'.
16543 |cur_type=mp_token_list| means that |cur_exp| points to a linked list of
16544 tokens. This case arises only on the left-hand side of an assignment
16545 (`\.{:=}') operation, under very special circumstances.
16547 \smallskip\noindent
16548 The possible settings of |cur_type| have been listed here in increasing
16549 numerical order. Notice that |cur_type| will never be |mp_numeric_type| or
16550 |suffixed_macro| or |mp_unsuffixed_macro|, although variables of those types
16551 are allowed. Conversely, \MP\ has no variables of type |mp_vacuous| or
16554 @ Capsules are two-word nodes that have a similar meaning
16555 to |cur_type| and |cur_exp|. Such nodes have |name_type=capsule|
16556 and |link<=mp_void|; and their |type| field is one of the possibilities for
16557 |cur_type| listed above.
16559 The |value| field of a capsule is, in most cases, the value that
16560 corresponds to its |type|, as |cur_exp| corresponds to |cur_type|.
16561 However, when |cur_exp| would point to a capsule,
16562 no extra layer of indirection is present; the |value|
16563 field is what would have been called |value(cur_exp)| if it had not been
16564 encapsulated. Furthermore, if the type is |dependent| or
16565 |mp_proto_dependent|, the |value| field of a capsule is replaced by
16566 |dep_list| and |prev_dep| fields, since dependency lists in capsules are
16567 always part of the general |dep_list| structure.
16569 The |get_x_next| routine is careful not to change the values of |cur_type|
16570 and |cur_exp| when it gets an expanded token. However, |get_x_next| might
16571 call a macro, which might parse an expression, which might execute lots of
16572 commands in a group; hence it's possible that |cur_type| might change
16573 from, say, |mp_unknown_boolean| to |mp_boolean_type|, or from |dependent| to
16574 |known| or |independent|, during the time |get_x_next| is called. The
16575 programs below are careful to stash sensitive intermediate results in
16576 capsules, so that \MP's generality doesn't cause trouble.
16578 Here's a procedure that illustrates these conventions. It takes
16579 the contents of $(|cur_type|\kern-.3pt,|cur_exp|\kern-.3pt)$
16580 and stashes them away in a
16581 capsule. It is not used when |cur_type=mp_token_list|.
16582 After the operation, |cur_type=mp_vacuous|; hence there is no need to
16583 copy path lists or to update reference counts, etc.
16585 The special link |mp_void| is put on the capsule returned by
16586 |stash_cur_exp|, because this procedure is used to store macro parameters
16587 that must be easily distinguishable from token lists.
16589 @<Declare the stashing/unstashing routines@>=
16590 pointer mp_stash_cur_exp (MP mp) {
16591 pointer p; /* the capsule that will be returned */
16592 switch (mp->cur_type) {
16593 case unknown_types:
16594 case mp_transform_type:
16595 case mp_color_type:
16598 case mp_proto_dependent:
16599 case mp_independent:
16600 case mp_cmykcolor_type:
16604 p=mp_get_node(mp, value_node_size); name_type(p)=mp_capsule;
16605 type(p)=mp->cur_type; value(p)=mp->cur_exp;
16608 mp->cur_type=mp_vacuous; link(p)=mp_void;
16612 @ The inverse of |stash_cur_exp| is the following procedure, which
16613 deletes an unnecessary capsule and puts its contents into |cur_type|
16616 The program steps of \MP\ can be divided into two categories: those in
16617 which |cur_type| and |cur_exp| are ``alive'' and those in which they are
16618 ``dead,'' in the sense that |cur_type| and |cur_exp| contain relevant
16619 information or not. It's important not to ignore them when they're alive,
16620 and it's important not to pay attention to them when they're dead.
16622 There's also an intermediate category: If |cur_type=mp_vacuous|, then
16623 |cur_exp| is irrelevant, hence we can proceed without caring if |cur_type|
16624 and |cur_exp| are alive or dead. In such cases we say that |cur_type|
16625 and |cur_exp| are {\sl dormant}. It is permissible to call |get_x_next|
16626 only when they are alive or dormant.
16628 The \\{stash} procedure above assumes that |cur_type| and |cur_exp|
16629 are alive or dormant. The \\{unstash} procedure assumes that they are
16630 dead or dormant; it resuscitates them.
16632 @<Declare the stashing/unstashing...@>=
16633 void mp_unstash_cur_exp (MP mp,pointer p) ;
16636 void mp_unstash_cur_exp (MP mp,pointer p) {
16637 mp->cur_type=type(p);
16638 switch (mp->cur_type) {
16639 case unknown_types:
16640 case mp_transform_type:
16641 case mp_color_type:
16644 case mp_proto_dependent:
16645 case mp_independent:
16646 case mp_cmykcolor_type:
16650 mp->cur_exp=value(p);
16651 mp_free_node(mp, p,value_node_size);
16656 @ The following procedure prints the values of expressions in an
16657 abbreviated format. If its first parameter |p| is null, the value of
16658 |(cur_type,cur_exp)| is displayed; otherwise |p| should be a capsule
16659 containing the desired value. The second parameter controls the amount of
16660 output. If it is~0, dependency lists will be abbreviated to
16661 `\.{linearform}' unless they consist of a single term. If it is greater
16662 than~1, complicated structures (pens, pictures, and paths) will be displayed
16665 @<Declare subroutines for printing expressions@>=
16666 @<Declare the procedure called |print_dp|@>;
16667 @<Declare the stashing/unstashing routines@>;
16668 void mp_print_exp (MP mp,pointer p, small_number verbosity) {
16669 boolean restore_cur_exp; /* should |cur_exp| be restored? */
16670 small_number t; /* the type of the expression */
16671 pointer q; /* a big node being displayed */
16672 integer v=0; /* the value of the expression */
16674 restore_cur_exp=false;
16676 p=mp_stash_cur_exp(mp); restore_cur_exp=true;
16679 if ( t<mp_dependent ) v=value(p); else if ( t<mp_independent ) v=dep_list(p);
16680 @<Print an abbreviated value of |v| with format depending on |t|@>;
16681 if ( restore_cur_exp ) mp_unstash_cur_exp(mp, p);
16684 @ @<Print an abbreviated value of |v| with format depending on |t|@>=
16686 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
16687 case mp_boolean_type:
16688 if ( v==true_code ) mp_print(mp, "true"); else mp_print(mp, "false");
16690 case unknown_types: case mp_numeric_type:
16691 @<Display a variable that's been declared but not defined@>;
16693 case mp_string_type:
16694 mp_print_char(mp, '"'); mp_print_str(mp, v); mp_print_char(mp, '"');
16696 case mp_pen_type: case mp_path_type: case mp_picture_type:
16697 @<Display a complex type@>;
16699 case mp_transform_type: case mp_color_type: case mp_pair_type: case mp_cmykcolor_type:
16700 if ( v==null ) mp_print_type(mp, t);
16701 else @<Display a big node@>;
16703 case mp_known:mp_print_scaled(mp, v); break;
16704 case mp_dependent: case mp_proto_dependent:
16705 mp_print_dp(mp, t,v,verbosity);
16707 case mp_independent:mp_print_variable_name(mp, p); break;
16708 default: mp_confusion(mp, "exp"); break;
16709 @:this can't happen exp}{\quad exp@>
16712 @ @<Display a big node@>=
16714 mp_print_char(mp, '('); q=v+mp->big_node_size[t];
16716 if ( type(v)==mp_known ) mp_print_scaled(mp, value(v));
16717 else if ( type(v)==mp_independent ) mp_print_variable_name(mp, v);
16718 else mp_print_dp(mp, type(v),dep_list(v),verbosity);
16720 if ( v!=q ) mp_print_char(mp, ',');
16722 mp_print_char(mp, ')');
16725 @ Values of type \&{picture}, \&{path}, and \&{pen} are displayed verbosely
16726 in the log file only, unless the user has given a positive value to
16729 @<Display a complex type@>=
16730 if ( verbosity<=1 ) {
16731 mp_print_type(mp, t);
16733 if ( mp->selector==term_and_log )
16734 if ( mp->internal[mp_tracing_online]<=0 ) {
16735 mp->selector=term_only;
16736 mp_print_type(mp, t); mp_print(mp, " (see the transcript file)");
16737 mp->selector=term_and_log;
16740 case mp_pen_type:mp_print_pen(mp, v,"",false); break;
16741 case mp_path_type:mp_print_path(mp, v,"",false); break;
16742 case mp_picture_type:mp_print_edges(mp, v,"",false); break;
16743 } /* there are no other cases */
16746 @ @<Declare the procedure called |print_dp|@>=
16747 void mp_print_dp (MP mp,small_number t, pointer p,
16748 small_number verbosity) {
16749 pointer q; /* the node following |p| */
16751 if ( (info(q)==null) || (verbosity>0) ) mp_print_dependency(mp, p,t);
16752 else mp_print(mp, "linearform");
16755 @ The displayed name of a variable in a ring will not be a capsule unless
16756 the ring consists entirely of capsules.
16758 @<Display a variable that's been declared but not defined@>=
16759 { mp_print_type(mp, t);
16761 { mp_print_char(mp, ' ');
16762 while ( (name_type(v)==mp_capsule) && (v!=p) ) v=value(v);
16763 mp_print_variable_name(mp, v);
16767 @ When errors are detected during parsing, it is often helpful to
16768 display an expression just above the error message, using |exp_err|
16769 or |disp_err| instead of |print_err|.
16771 @d exp_err(A) mp_disp_err(mp, null,(A)) /* displays the current expression */
16773 @<Declare subroutines for printing expressions@>=
16774 void mp_disp_err (MP mp,pointer p, char *s) {
16775 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16776 mp_print_nl(mp, ">> ");
16778 mp_print_exp(mp, p,1); /* ``medium verbose'' printing of the expression */
16780 mp_print_nl(mp, "! "); mp_print(mp, s);
16785 @ If |cur_type| and |cur_exp| contain relevant information that should
16786 be recycled, we will use the following procedure, which changes |cur_type|
16787 to |known| and stores a given value in |cur_exp|. We can think of |cur_type|
16788 and |cur_exp| as either alive or dormant after this has been done,
16789 because |cur_exp| will not contain a pointer value.
16791 @ @c void mp_flush_cur_exp (MP mp,scaled v) {
16792 switch (mp->cur_type) {
16793 case unknown_types: case mp_transform_type: case mp_color_type: case mp_pair_type:
16794 case mp_dependent: case mp_proto_dependent: case mp_independent: case mp_cmykcolor_type:
16795 mp_recycle_value(mp, mp->cur_exp);
16796 mp_free_node(mp, mp->cur_exp,value_node_size);
16798 case mp_string_type:
16799 delete_str_ref(mp->cur_exp); break;
16800 case mp_pen_type: case mp_path_type:
16801 mp_toss_knot_list(mp, mp->cur_exp); break;
16802 case mp_picture_type:
16803 delete_edge_ref(mp->cur_exp); break;
16807 mp->cur_type=mp_known; mp->cur_exp=v;
16810 @ There's a much more general procedure that is capable of releasing
16811 the storage associated with any two-word value packet.
16813 @<Declare the recycling subroutines@>=
16814 void mp_recycle_value (MP mp,pointer p) ;
16816 @ @c void mp_recycle_value (MP mp,pointer p) {
16817 small_number t; /* a type code */
16818 integer vv; /* another value */
16819 pointer q,r,s,pp; /* link manipulation registers */
16820 integer v=0; /* a value */
16822 if ( t<mp_dependent ) v=value(p);
16824 case undefined: case mp_vacuous: case mp_boolean_type: case mp_known:
16825 case mp_numeric_type:
16827 case unknown_types:
16828 mp_ring_delete(mp, p); break;
16829 case mp_string_type:
16830 delete_str_ref(v); break;
16831 case mp_path_type: case mp_pen_type:
16832 mp_toss_knot_list(mp, v); break;
16833 case mp_picture_type:
16834 delete_edge_ref(v); break;
16835 case mp_cmykcolor_type: case mp_pair_type: case mp_color_type:
16836 case mp_transform_type:
16837 @<Recycle a big node@>; break;
16838 case mp_dependent: case mp_proto_dependent:
16839 @<Recycle a dependency list@>; break;
16840 case mp_independent:
16841 @<Recycle an independent variable@>; break;
16842 case mp_token_list: case mp_structured:
16843 mp_confusion(mp, "recycle"); break;
16844 @:this can't happen recycle}{\quad recycle@>
16845 case mp_unsuffixed_macro: case mp_suffixed_macro:
16846 mp_delete_mac_ref(mp, value(p)); break;
16847 } /* there are no other cases */
16851 @ @<Recycle a big node@>=
16853 q=v+mp->big_node_size[t];
16855 q=q-2; mp_recycle_value(mp, q);
16857 mp_free_node(mp, v,mp->big_node_size[t]);
16860 @ @<Recycle a dependency list@>=
16863 while ( info(q)!=null ) q=link(q);
16864 link(prev_dep(p))=link(q);
16865 prev_dep(link(q))=prev_dep(p);
16866 link(q)=null; mp_flush_node_list(mp, dep_list(p));
16869 @ When an independent variable disappears, it simply fades away, unless
16870 something depends on it. In the latter case, a dependent variable whose
16871 coefficient of dependence is maximal will take its place.
16872 The relevant algorithm is due to Ignacio~A. Zabala, who implemented it
16873 as part of his Ph.D. thesis (Stanford University, December 1982).
16874 @^Zabala Salelles, Ignacio Andres@>
16876 For example, suppose that variable $x$ is being recycled, and that the
16877 only variables depending on~$x$ are $y=2x+a$ and $z=x+b$. In this case
16878 we want to make $y$ independent and $z=.5y-.5a+b$; no other variables
16879 will depend on~$y$. If $\\{tracingequations}>0$ in this situation,
16880 we will print `\.{\#\#\# -2x=-y+a}'.
16882 There's a slight complication, however: An independent variable $x$
16883 can occur both in dependency lists and in proto-dependency lists.
16884 This makes it necessary to be careful when deciding which coefficient
16887 Furthermore, this complication is not so slight when
16888 a proto-dependent variable is chosen to become independent. For example,
16889 suppose that $y=2x+100a$ is proto-dependent while $z=x+b$ is dependent;
16890 then we must change $z=.5y-50a+b$ to a proto-dependency, because of the
16891 large coefficient `50'.
16893 In order to deal with these complications without wasting too much time,
16894 we shall link together the occurrences of~$x$ among all the linear
16895 dependencies, maintaining separate lists for the dependent and
16896 proto-dependent cases.
16898 @<Recycle an independent variable@>=
16900 mp->max_c[mp_dependent]=0; mp->max_c[mp_proto_dependent]=0;
16901 mp->max_link[mp_dependent]=null; mp->max_link[mp_proto_dependent]=null;
16903 while ( q!=dep_head ) {
16904 s=value_loc(q); /* now |link(s)=dep_list(q)| */
16907 if ( info(r)==null ) break;;
16908 if ( info(r)!=p ) {
16911 t=type(q); link(s)=link(r); info(r)=q;
16912 if ( abs(value(r))>mp->max_c[t] ) {
16913 @<Record a new maximum coefficient of type |t|@>;
16915 link(r)=mp->max_link[t]; mp->max_link[t]=r;
16921 if ( (mp->max_c[mp_dependent]>0)||(mp->max_c[mp_proto_dependent]>0) ) {
16922 @<Choose a dependent variable to take the place of the disappearing
16923 independent variable, and change all remaining dependencies
16928 @ The code for independency removal makes use of three two-word arrays.
16931 integer max_c[mp_proto_dependent+1]; /* max coefficient magnitude */
16932 pointer max_ptr[mp_proto_dependent+1]; /* where |p| occurs with |max_c| */
16933 pointer max_link[mp_proto_dependent+1]; /* other occurrences of |p| */
16935 @ @<Record a new maximum coefficient...@>=
16937 if ( mp->max_c[t]>0 ) {
16938 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
16940 mp->max_c[t]=abs(value(r)); mp->max_ptr[t]=r;
16943 @ @<Choose a dependent...@>=
16945 if ( (mp->max_c[mp_dependent] / 010000 >= mp->max_c[mp_proto_dependent]) )
16948 t=mp_proto_dependent;
16949 @<Determine the dependency list |s| to substitute for the independent
16951 t=mp_dependent+mp_proto_dependent-t; /* complement |t| */
16952 if ( mp->max_c[t]>0 ) { /* we need to pick up an unchosen dependency */
16953 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
16955 if ( t!=mp_dependent ) { @<Substitute new dependencies in place of |p|@>; }
16956 else { @<Substitute new proto-dependencies in place of |p|@>;}
16957 mp_flush_node_list(mp, s);
16958 if ( mp->fix_needed ) mp_fix_dependencies(mp);
16962 @ Let |s=max_ptr[t]|. At this point we have $|value|(s)=\pm|max_c|[t]$,
16963 and |info(s)| points to the dependent variable~|pp| of type~|t| from
16964 whose dependency list we have removed node~|s|. We must reinsert
16965 node~|s| into the dependency list, with coefficient $-1.0$, and with
16966 |pp| as the new independent variable. Since |pp| will have a larger serial
16967 number than any other variable, we can put node |s| at the head of the
16970 @<Determine the dep...@>=
16971 s=mp->max_ptr[t]; pp=info(s); v=value(s);
16972 if ( t==mp_dependent ) value(s)=-fraction_one; else value(s)=-unity;
16973 r=dep_list(pp); link(s)=r;
16974 while ( info(r)!=null ) r=link(r);
16975 q=link(r); link(r)=null;
16976 prev_dep(q)=prev_dep(pp); link(prev_dep(pp))=q;
16978 if ( mp->cur_exp==pp ) if ( mp->cur_type==t ) mp->cur_type=mp_independent;
16979 if ( mp->internal[mp_tracing_equations]>0 ) {
16980 @<Show the transformed dependency@>;
16983 @ Now $(-v)$ times the formerly independent variable~|p| is being replaced
16984 by the dependency list~|s|.
16986 @<Show the transformed...@>=
16987 if ( mp_interesting(mp, p) ) {
16988 mp_begin_diagnostic(mp); mp_print_nl(mp, "### ");
16989 @:]]]\#\#\#_}{\.{\#\#\#}@>
16990 if ( v>0 ) mp_print_char(mp, '-');
16991 if ( t==mp_dependent ) vv=mp_round_fraction(mp, mp->max_c[mp_dependent]);
16992 else vv=mp->max_c[mp_proto_dependent];
16993 if ( vv!=unity ) mp_print_scaled(mp, vv);
16994 mp_print_variable_name(mp, p);
16995 while ( value(p) % s_scale>0 ) {
16996 mp_print(mp, "*4"); value(p)=value(p)-2;
16998 if ( t==mp_dependent ) mp_print_char(mp, '='); else mp_print(mp, " = ");
16999 mp_print_dependency(mp, s,t);
17000 mp_end_diagnostic(mp, false);
17003 @ Finally, there are dependent and proto-dependent variables whose
17004 dependency lists must be brought up to date.
17006 @<Substitute new dependencies...@>=
17007 for (t=mp_dependent;t<=mp_proto_dependent;t++){
17009 while ( r!=null ) {
17011 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17012 mp_make_fraction(mp, value(r),-v),s,t,mp_dependent);
17013 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
17014 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
17018 @ @<Substitute new proto...@>=
17019 for (t=mp_dependent;t<=mp_proto_dependent;t++) {
17021 while ( r!=null ) {
17023 if ( t==mp_dependent ) { /* for safety's sake, we change |q| to |mp_proto_dependent| */
17024 if ( mp->cur_exp==q ) if ( mp->cur_type==mp_dependent )
17025 mp->cur_type=mp_proto_dependent;
17026 dep_list(q)=mp_p_over_v(mp, dep_list(q),unity,mp_dependent,mp_proto_dependent);
17027 type(q)=mp_proto_dependent; value(r)=mp_round_fraction(mp, value(r));
17029 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17030 mp_make_scaled(mp, value(r),-v),s,mp_proto_dependent,mp_proto_dependent);
17031 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
17032 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
17036 @ Here are some routines that provide handy combinations of actions
17037 that are often needed during error recovery. For example,
17038 `|flush_error|' flushes the current expression, replaces it by
17039 a given value, and calls |error|.
17041 Errors often are detected after an extra token has already been scanned.
17042 The `\\{put\_get}' routines put that token back before calling |error|;
17043 then they get it back again. (Or perhaps they get another token, if
17044 the user has changed things.)
17047 void mp_flush_error (MP mp,scaled v);
17048 void mp_put_get_error (MP mp);
17049 void mp_put_get_flush_error (MP mp,scaled v) ;
17052 void mp_flush_error (MP mp,scaled v) {
17053 mp_error(mp); mp_flush_cur_exp(mp, v);
17055 void mp_put_get_error (MP mp) {
17056 mp_back_error(mp); mp_get_x_next(mp);
17058 void mp_put_get_flush_error (MP mp,scaled v) {
17059 mp_put_get_error(mp);
17060 mp_flush_cur_exp(mp, v);
17063 @ A global variable |var_flag| is set to a special command code
17064 just before \MP\ calls |scan_expression|, if the expression should be
17065 treated as a variable when this command code immediately follows. For
17066 example, |var_flag| is set to |assignment| at the beginning of a
17067 statement, because we want to know the {\sl location\/} of a variable at
17068 the left of `\.{:=}', not the {\sl value\/} of that variable.
17070 The |scan_expression| subroutine calls |scan_tertiary|,
17071 which calls |scan_secondary|, which calls |scan_primary|, which sets
17072 |var_flag:=0|. In this way each of the scanning routines ``knows''
17073 when it has been called with a special |var_flag|, but |var_flag| is
17076 A variable preceding a command that equals |var_flag| is converted to a
17077 token list rather than a value. Furthermore, an `\.{=}' sign following an
17078 expression with |var_flag=assignment| is not considered to be a relation
17079 that produces boolean expressions.
17083 int var_flag; /* command that wants a variable */
17088 @* \[37] Parsing primary expressions.
17089 The first parsing routine, |scan_primary|, is also the most complicated one,
17090 since it involves so many different cases. But each case---with one
17091 exception---is fairly simple by itself.
17093 When |scan_primary| begins, the first token of the primary to be scanned
17094 should already appear in |cur_cmd|, |cur_mod|, and |cur_sym|. The values
17095 of |cur_type| and |cur_exp| should be either dead or dormant, as explained
17096 earlier. If |cur_cmd| is not between |min_primary_command| and
17097 |max_primary_command|, inclusive, a syntax error will be signaled.
17099 @<Declare the basic parsing subroutines@>=
17100 void mp_scan_primary (MP mp) {
17101 pointer p,q,r; /* for list manipulation */
17102 quarterword c; /* a primitive operation code */
17103 int my_var_flag; /* initial value of |my_var_flag| */
17104 pointer l_delim,r_delim; /* hash addresses of a delimiter pair */
17105 @<Other local variables for |scan_primary|@>;
17106 my_var_flag=mp->var_flag; mp->var_flag=0;
17109 @<Supply diagnostic information, if requested@>;
17110 switch (mp->cur_cmd) {
17111 case left_delimiter:
17112 @<Scan a delimited primary@>; break;
17114 @<Scan a grouped primary@>; break;
17116 @<Scan a string constant@>; break;
17117 case numeric_token:
17118 @<Scan a primary that starts with a numeric token@>; break;
17120 @<Scan a nullary operation@>; break;
17121 case unary: case type_name: case cycle: case plus_or_minus:
17122 @<Scan a unary operation@>; break;
17123 case primary_binary:
17124 @<Scan a binary operation with `\&{of}' between its operands@>; break;
17126 @<Convert a suffix to a string@>; break;
17127 case internal_quantity:
17128 @<Scan an internal numeric quantity@>; break;
17129 case capsule_token:
17130 mp_make_exp_copy(mp, mp->cur_mod); break;
17132 @<Scan a variable primary; |goto restart| if it turns out to be a macro@>; break;
17134 mp_bad_exp(mp, "A primary"); goto RESTART; break;
17135 @.A primary expression...@>
17137 mp_get_x_next(mp); /* the routines |goto done| if they don't want this */
17139 if ( mp->cur_cmd==left_bracket ) {
17140 if ( mp->cur_type>=mp_known ) {
17141 @<Scan a mediation construction@>;
17148 @ Errors at the beginning of expressions are flagged by |bad_exp|.
17150 @c void mp_bad_exp (MP mp,char * s) {
17152 print_err(s); mp_print(mp, " expression can't begin with `");
17153 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
17154 mp_print_char(mp, '\'');
17155 help4("I'm afraid I need some sort of value in order to continue,")
17156 ("so I've tentatively inserted `0'. You may want to")
17157 ("delete this zero and insert something else;")
17158 ("see Chapter 27 of The METAFONTbook for an example.");
17159 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17160 mp_back_input(mp); mp->cur_sym=0; mp->cur_cmd=numeric_token;
17161 mp->cur_mod=0; mp_ins_error(mp);
17162 save_flag=mp->var_flag; mp->var_flag=0; mp_get_x_next(mp);
17163 mp->var_flag=save_flag;
17166 @ @<Supply diagnostic information, if requested@>=
17168 if ( mp->panicking ) mp_check_mem(mp, false);
17170 if ( mp->interrupt!=0 ) if ( mp->OK_to_interrupt ) {
17171 mp_back_input(mp); check_interrupt; mp_get_x_next(mp);
17174 @ @<Scan a delimited primary@>=
17176 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
17177 mp_get_x_next(mp); mp_scan_expression(mp);
17178 if ( (mp->cur_cmd==comma) && (mp->cur_type>=mp_known) ) {
17179 @<Scan the rest of a delimited set of numerics@>;
17181 mp_check_delimiter(mp, l_delim,r_delim);
17185 @ The |stash_in| subroutine puts the current (numeric) expression into a field
17186 within a ``big node.''
17188 @c void mp_stash_in (MP mp,pointer p) {
17189 pointer q; /* temporary register */
17190 type(p)=mp->cur_type;
17191 if ( mp->cur_type==mp_known ) {
17192 value(p)=mp->cur_exp;
17194 if ( mp->cur_type==mp_independent ) {
17195 @<Stash an independent |cur_exp| into a big node@>;
17197 mp->mem[value_loc(p)]=mp->mem[value_loc(mp->cur_exp)];
17198 /* |dep_list(p):=dep_list(cur_exp)| and |prev_dep(p):=prev_dep(cur_exp)| */
17199 link(prev_dep(p))=p;
17201 mp_free_node(mp, mp->cur_exp,value_node_size);
17203 mp->cur_type=mp_vacuous;
17206 @ In rare cases the current expression can become |independent|. There
17207 may be many dependency lists pointing to such an independent capsule,
17208 so we can't simply move it into place within a big node. Instead,
17209 we copy it, then recycle it.
17211 @ @<Stash an independent |cur_exp|...@>=
17213 q=mp_single_dependency(mp, mp->cur_exp);
17214 if ( q==mp->dep_final ){
17215 type(p)=mp_known; value(p)=0; mp_free_node(mp, q,dep_node_size);
17217 type(p)=mp_dependent; mp_new_dep(mp, p,q);
17219 mp_recycle_value(mp, mp->cur_exp);
17222 @ This code uses the fact that |red_part_loc| and |green_part_loc|
17223 are synonymous with |x_part_loc| and |y_part_loc|.
17225 @<Scan the rest of a delimited set of numerics@>=
17227 p=mp_stash_cur_exp(mp);
17228 mp_get_x_next(mp); mp_scan_expression(mp);
17229 @<Make sure the second part of a pair or color has a numeric type@>;
17230 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
17231 if ( mp->cur_cmd==comma ) type(q)=mp_color_type;
17232 else type(q)=mp_pair_type;
17233 mp_init_big_node(mp, q); r=value(q);
17234 mp_stash_in(mp, y_part_loc(r));
17235 mp_unstash_cur_exp(mp, p);
17236 mp_stash_in(mp, x_part_loc(r));
17237 if ( mp->cur_cmd==comma ) {
17238 @<Scan the last of a triplet of numerics@>;
17240 if ( mp->cur_cmd==comma ) {
17241 type(q)=mp_cmykcolor_type;
17242 mp_init_big_node(mp, q); t=value(q);
17243 mp->mem[cyan_part_loc(t)]=mp->mem[red_part_loc(r)];
17244 value(cyan_part_loc(t))=value(red_part_loc(r));
17245 mp->mem[magenta_part_loc(t)]=mp->mem[green_part_loc(r)];
17246 value(magenta_part_loc(t))=value(green_part_loc(r));
17247 mp->mem[yellow_part_loc(t)]=mp->mem[blue_part_loc(r)];
17248 value(yellow_part_loc(t))=value(blue_part_loc(r));
17249 mp_recycle_value(mp, r);
17251 @<Scan the last of a quartet of numerics@>;
17253 mp_check_delimiter(mp, l_delim,r_delim);
17254 mp->cur_type=type(q);
17258 @ @<Make sure the second part of a pair or color has a numeric type@>=
17259 if ( mp->cur_type<mp_known ) {
17260 exp_err("Nonnumeric ypart has been replaced by 0");
17261 @.Nonnumeric...replaced by 0@>
17262 help4("I've started to scan a pair `(a,b)' or a color `(a,b,c)';")
17263 ("but after finding a nice `a' I found a `b' that isn't")
17264 ("of numeric type. So I've changed that part to zero.")
17265 ("(The b that I didn't like appears above the error message.)");
17266 mp_put_get_flush_error(mp, 0);
17269 @ @<Scan the last of a triplet of numerics@>=
17271 mp_get_x_next(mp); mp_scan_expression(mp);
17272 if ( mp->cur_type<mp_known ) {
17273 exp_err("Nonnumeric third part has been replaced by 0");
17274 @.Nonnumeric...replaced by 0@>
17275 help3("I've just scanned a color `(a,b,c)' or cmykcolor(a,b,c,d); but the `c'")
17276 ("isn't of numeric type. So I've changed that part to zero.")
17277 ("(The c that I didn't like appears above the error message.)");
17278 mp_put_get_flush_error(mp, 0);
17280 mp_stash_in(mp, blue_part_loc(r));
17283 @ @<Scan the last of a quartet of numerics@>=
17285 mp_get_x_next(mp); mp_scan_expression(mp);
17286 if ( mp->cur_type<mp_known ) {
17287 exp_err("Nonnumeric blackpart has been replaced by 0");
17288 @.Nonnumeric...replaced by 0@>
17289 help3("I've just scanned a cmykcolor `(c,m,y,k)'; but the `k' isn't")
17290 ("of numeric type. So I've changed that part to zero.")
17291 ("(The k that I didn't like appears above the error message.)");
17292 mp_put_get_flush_error(mp, 0);
17294 mp_stash_in(mp, black_part_loc(r));
17297 @ The local variable |group_line| keeps track of the line
17298 where a \&{begingroup} command occurred; this will be useful
17299 in an error message if the group doesn't actually end.
17301 @<Other local variables for |scan_primary|@>=
17302 integer group_line; /* where a group began */
17304 @ @<Scan a grouped primary@>=
17306 group_line=mp_true_line(mp);
17307 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17308 save_boundary_item(p);
17310 mp_do_statement(mp); /* ends with |cur_cmd>=semicolon| */
17311 } while (! (mp->cur_cmd!=semicolon));
17312 if ( mp->cur_cmd!=end_group ) {
17313 print_err("A group begun on line ");
17314 @.A group...never ended@>
17315 mp_print_int(mp, group_line);
17316 mp_print(mp, " never ended");
17317 help2("I saw a `begingroup' back there that hasn't been matched")
17318 ("by `endgroup'. So I've inserted `endgroup' now.");
17319 mp_back_error(mp); mp->cur_cmd=end_group;
17322 /* this might change |cur_type|, if independent variables are recycled */
17323 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17326 @ @<Scan a string constant@>=
17328 mp->cur_type=mp_string_type; mp->cur_exp=mp->cur_mod;
17331 @ Later we'll come to procedures that perform actual operations like
17332 addition, square root, and so on; our purpose now is to do the parsing.
17333 But we might as well mention those future procedures now, so that the
17334 suspense won't be too bad:
17337 |do_nullary(c)| does primitive operations that have no operands (e.g.,
17338 `\&{true}' or `\&{pencircle}');
17341 |do_unary(c)| applies a primitive operation to the current expression;
17344 |do_binary(p,c)| applies a primitive operation to the capsule~|p|
17345 and the current expression.
17347 @<Scan a nullary operation@>=mp_do_nullary(mp, mp->cur_mod)
17349 @ @<Scan a unary operation@>=
17351 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_primary(mp);
17352 mp_do_unary(mp, c); goto DONE;
17355 @ A numeric token might be a primary by itself, or it might be the
17356 numerator of a fraction composed solely of numeric tokens, or it might
17357 multiply the primary that follows (provided that the primary doesn't begin
17358 with a plus sign or a minus sign). The code here uses the facts that
17359 |max_primary_command=plus_or_minus| and
17360 |max_primary_command-1=numeric_token|. If a fraction is found that is less
17361 than unity, we try to retain higher precision when we use it in scalar
17364 @<Other local variables for |scan_primary|@>=
17365 scaled num,denom; /* for primaries that are fractions, like `1/2' */
17367 @ @<Scan a primary that starts with a numeric token@>=
17369 mp->cur_exp=mp->cur_mod; mp->cur_type=mp_known; mp_get_x_next(mp);
17370 if ( mp->cur_cmd!=slash ) {
17374 if ( mp->cur_cmd!=numeric_token ) {
17376 mp->cur_cmd=slash; mp->cur_mod=over; mp->cur_sym=frozen_slash;
17379 num=mp->cur_exp; denom=mp->cur_mod;
17380 if ( denom==0 ) { @<Protest division by zero@>; }
17381 else { mp->cur_exp=mp_make_scaled(mp, num,denom); }
17382 check_arith; mp_get_x_next(mp);
17384 if ( mp->cur_cmd>=min_primary_command ) {
17385 if ( mp->cur_cmd<numeric_token ) { /* in particular, |cur_cmd<>plus_or_minus| */
17386 p=mp_stash_cur_exp(mp); mp_scan_primary(mp);
17387 if ( (abs(num)>=abs(denom))||(mp->cur_type<mp_color_type) ) {
17388 mp_do_binary(mp, p,times);
17390 mp_frac_mult(mp, num,denom);
17391 mp_free_node(mp, p,value_node_size);
17398 @ @<Protest division...@>=
17400 print_err("Division by zero");
17401 @.Division by zero@>
17402 help1("I'll pretend that you meant to divide by 1."); mp_error(mp);
17405 @ @<Scan a binary operation with `\&{of}' between its operands@>=
17407 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
17408 if ( mp->cur_cmd!=of_token ) {
17409 mp_missing_err(mp, "of"); mp_print(mp, " for ");
17410 mp_print_cmd_mod(mp, primary_binary,c);
17412 help1("I've got the first argument; will look now for the other.");
17415 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_primary(mp);
17416 mp_do_binary(mp, p,c); goto DONE;
17419 @ @<Convert a suffix to a string@>=
17421 mp_get_x_next(mp); mp_scan_suffix(mp);
17422 mp->old_setting=mp->selector; mp->selector=new_string;
17423 mp_show_token_list(mp, mp->cur_exp,null,100000,0);
17424 mp_flush_token_list(mp, mp->cur_exp);
17425 mp->cur_exp=mp_make_string(mp); mp->selector=mp->old_setting;
17426 mp->cur_type=mp_string_type;
17430 @ If an internal quantity appears all by itself on the left of an
17431 assignment, we return a token list of length one, containing the address
17432 of the internal quantity plus |hash_end|. (This accords with the conventions
17433 of the save stack, as described earlier.)
17435 @<Scan an internal...@>=
17438 if ( my_var_flag==assignment ) {
17440 if ( mp->cur_cmd==assignment ) {
17441 mp->cur_exp=mp_get_avail(mp);
17442 info(mp->cur_exp)=q+hash_end; mp->cur_type=mp_token_list;
17447 mp->cur_type=mp_known; mp->cur_exp=mp->internal[q];
17450 @ The most difficult part of |scan_primary| has been saved for last, since
17451 it was necessary to build up some confidence first. We can now face the task
17452 of scanning a variable.
17454 As we scan a variable, we build a token list containing the relevant
17455 names and subscript values, simultaneously following along in the
17456 ``collective'' structure to see if we are actually dealing with a macro
17457 instead of a value.
17459 The local variables |pre_head| and |post_head| will point to the beginning
17460 of the prefix and suffix lists; |tail| will point to the end of the list
17461 that is currently growing.
17463 Another local variable, |tt|, contains partial information about the
17464 declared type of the variable-so-far. If |tt>=mp_unsuffixed_macro|, the
17465 relation |tt=type(q)| will always hold. If |tt=undefined|, the routine
17466 doesn't bother to update its information about type. And if
17467 |undefined<tt<mp_unsuffixed_macro|, the precise value of |tt| isn't critical.
17469 @ @<Other local variables for |scan_primary|@>=
17470 pointer pre_head,post_head,tail;
17471 /* prefix and suffix list variables */
17472 small_number tt; /* approximation to the type of the variable-so-far */
17473 pointer t; /* a token */
17474 pointer macro_ref = 0; /* reference count for a suffixed macro */
17476 @ @<Scan a variable primary...@>=
17478 fast_get_avail(pre_head); tail=pre_head; post_head=null; tt=mp_vacuous;
17480 t=mp_cur_tok(mp); link(tail)=t;
17481 if ( tt!=undefined ) {
17482 @<Find the approximate type |tt| and corresponding~|q|@>;
17483 if ( tt>=mp_unsuffixed_macro ) {
17484 @<Either begin an unsuffixed macro call or
17485 prepare for a suffixed one@>;
17488 mp_get_x_next(mp); tail=t;
17489 if ( mp->cur_cmd==left_bracket ) {
17490 @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>;
17492 if ( mp->cur_cmd>max_suffix_token ) break;
17493 if ( mp->cur_cmd<min_suffix_token ) break;
17494 } /* now |cur_cmd| is |internal_quantity|, |tag_token|, or |numeric_token| */
17495 @<Handle unusual cases that masquerade as variables, and |goto restart|
17496 or |goto done| if appropriate;
17497 otherwise make a copy of the variable and |goto done|@>;
17500 @ @<Either begin an unsuffixed macro call or...@>=
17503 if ( tt>mp_unsuffixed_macro ) { /* |tt=mp_suffixed_macro| */
17504 post_head=mp_get_avail(mp); tail=post_head; link(tail)=t;
17505 tt=undefined; macro_ref=value(q); add_mac_ref(macro_ref);
17507 @<Set up unsuffixed macro call and |goto restart|@>;
17511 @ @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>=
17513 mp_get_x_next(mp); mp_scan_expression(mp);
17514 if ( mp->cur_cmd!=right_bracket ) {
17515 @<Put the left bracket and the expression back to be rescanned@>;
17517 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17518 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp; mp->cur_sym=0;
17522 @ The left bracket that we thought was introducing a subscript might have
17523 actually been the left bracket in a mediation construction like `\.{x[a,b]}'.
17524 So we don't issue an error message at this point; but we do want to back up
17525 so as to avoid any embarrassment about our incorrect assumption.
17527 @<Put the left bracket and the expression back to be rescanned@>=
17529 mp_back_input(mp); /* that was the token following the current expression */
17530 mp_back_expr(mp); mp->cur_cmd=left_bracket;
17531 mp->cur_mod=0; mp->cur_sym=frozen_left_bracket;
17534 @ Here's a routine that puts the current expression back to be read again.
17536 @c void mp_back_expr (MP mp) {
17537 pointer p; /* capsule token */
17538 p=mp_stash_cur_exp(mp); link(p)=null; back_list(p);
17541 @ Unknown subscripts lead to the following error message.
17543 @c void mp_bad_subscript (MP mp) {
17544 exp_err("Improper subscript has been replaced by zero");
17545 @.Improper subscript...@>
17546 help3("A bracketed subscript must have a known numeric value;")
17547 ("unfortunately, what I found was the value that appears just")
17548 ("above this error message. So I'll try a zero subscript.");
17549 mp_flush_error(mp, 0);
17552 @ Every time we call |get_x_next|, there's a chance that the variable we've
17553 been looking at will disappear. Thus, we cannot safely keep |q| pointing
17554 into the variable structure; we need to start searching from the root each time.
17556 @<Find the approximate type |tt| and corresponding~|q|@>=
17559 p=link(pre_head); q=info(p); tt=undefined;
17560 if ( eq_type(q) % outer_tag==tag_token ) {
17562 if ( q==null ) goto DONE2;
17566 tt=type(q); goto DONE2;
17568 if ( type(q)!=mp_structured ) goto DONE2;
17569 q=link(attr_head(q)); /* the |collective_subscript| attribute */
17570 if ( p>=mp->hi_mem_min ) { /* it's not a subscript */
17571 do { q=link(q); } while (! (attr_loc(q)>=info(p)));
17572 if ( attr_loc(q)>info(p) ) goto DONE2;
17580 @ How do things stand now? Well, we have scanned an entire variable name,
17581 including possible subscripts and/or attributes; |cur_cmd|, |cur_mod|, and
17582 |cur_sym| represent the token that follows. If |post_head=null|, a
17583 token list for this variable name starts at |link(pre_head)|, with all
17584 subscripts evaluated. But if |post_head<>null|, the variable turned out
17585 to be a suffixed macro; |pre_head| is the head of the prefix list, while
17586 |post_head| is the head of a token list containing both `\.{\AT!}' and
17589 Our immediate problem is to see if this variable still exists. (Variable
17590 structures can change drastically whenever we call |get_x_next|; users
17591 aren't supposed to do this, but the fact that it is possible means that
17592 we must be cautious.)
17594 The following procedure prints an error message when a variable
17595 unexpectedly disappears. Its help message isn't quite right for
17596 our present purposes, but we'll be able to fix that up.
17599 void mp_obliterated (MP mp,pointer q) {
17600 print_err("Variable "); mp_show_token_list(mp, q,null,1000,0);
17601 mp_print(mp, " has been obliterated");
17602 @.Variable...obliterated@>
17603 help5("It seems you did a nasty thing---probably by accident,")
17604 ("but nevertheless you nearly hornswoggled me...")
17605 ("While I was evaluating the right-hand side of this")
17606 ("command, something happened, and the left-hand side")
17607 ("is no longer a variable! So I won't change anything.");
17610 @ If the variable does exist, we also need to check
17611 for a few other special cases before deciding that a plain old ordinary
17612 variable has, indeed, been scanned.
17614 @<Handle unusual cases that masquerade as variables...@>=
17615 if ( post_head!=null ) {
17616 @<Set up suffixed macro call and |goto restart|@>;
17618 q=link(pre_head); free_avail(pre_head);
17619 if ( mp->cur_cmd==my_var_flag ) {
17620 mp->cur_type=mp_token_list; mp->cur_exp=q; goto DONE;
17622 p=mp_find_variable(mp, q);
17624 mp_make_exp_copy(mp, p);
17626 mp_obliterated(mp, q);
17627 mp->help_line[2]="While I was evaluating the suffix of this variable,";
17628 mp->help_line[1]="something was redefined, and it's no longer a variable!";
17629 mp->help_line[0]="In order to get back on my feet, I've inserted `0' instead.";
17630 mp_put_get_flush_error(mp, 0);
17632 mp_flush_node_list(mp, q);
17635 @ The only complication associated with macro calling is that the prefix
17636 and ``at'' parameters must be packaged in an appropriate list of lists.
17638 @<Set up unsuffixed macro call and |goto restart|@>=
17640 p=mp_get_avail(mp); info(pre_head)=link(pre_head); link(pre_head)=p;
17641 info(p)=t; mp_macro_call(mp, value(q),pre_head,null);
17646 @ If the ``variable'' that turned out to be a suffixed macro no longer exists,
17647 we don't care, because we have reserved a pointer (|macro_ref|) to its
17650 @<Set up suffixed macro call and |goto restart|@>=
17652 mp_back_input(mp); p=mp_get_avail(mp); q=link(post_head);
17653 info(pre_head)=link(pre_head); link(pre_head)=post_head;
17654 info(post_head)=q; link(post_head)=p; info(p)=link(q); link(q)=null;
17655 mp_macro_call(mp, macro_ref,pre_head,null); decr(ref_count(macro_ref));
17656 mp_get_x_next(mp); goto RESTART;
17659 @ Our remaining job is simply to make a copy of the value that has been
17660 found. Some cases are harder than others, but complexity arises solely
17661 because of the multiplicity of possible cases.
17663 @<Declare the procedure called |make_exp_copy|@>=
17664 @<Declare subroutines needed by |make_exp_copy|@>;
17665 void mp_make_exp_copy (MP mp,pointer p) {
17666 pointer q,r,t; /* registers for list manipulation */
17668 mp->cur_type=type(p);
17669 switch (mp->cur_type) {
17670 case mp_vacuous: case mp_boolean_type: case mp_known:
17671 mp->cur_exp=value(p); break;
17672 case unknown_types:
17673 mp->cur_exp=mp_new_ring_entry(mp, p);
17675 case mp_string_type:
17676 mp->cur_exp=value(p); add_str_ref(mp->cur_exp);
17678 case mp_picture_type:
17679 mp->cur_exp=value(p);add_edge_ref(mp->cur_exp);
17682 mp->cur_exp=copy_pen(value(p));
17685 mp->cur_exp=mp_copy_path(mp, value(p));
17687 case mp_transform_type: case mp_color_type:
17688 case mp_cmykcolor_type: case mp_pair_type:
17689 @<Copy the big node |p|@>;
17691 case mp_dependent: case mp_proto_dependent:
17692 mp_encapsulate(mp, mp_copy_dep_list(mp, dep_list(p)));
17694 case mp_numeric_type:
17695 new_indep(p); goto RESTART;
17697 case mp_independent:
17698 q=mp_single_dependency(mp, p);
17699 if ( q==mp->dep_final ){
17700 mp->cur_type=mp_known; mp->cur_exp=0; mp_free_node(mp, q,value_node_size);
17702 mp->cur_type=mp_dependent; mp_encapsulate(mp, q);
17706 mp_confusion(mp, "copy");
17707 @:this can't happen copy}{\quad copy@>
17712 @ The |encapsulate| subroutine assumes that |dep_final| is the
17713 tail of dependency list~|p|.
17715 @<Declare subroutines needed by |make_exp_copy|@>=
17716 void mp_encapsulate (MP mp,pointer p) {
17717 mp->cur_exp=mp_get_node(mp, value_node_size); type(mp->cur_exp)=mp->cur_type;
17718 name_type(mp->cur_exp)=mp_capsule; mp_new_dep(mp, mp->cur_exp,p);
17721 @ The most tedious case arises when the user refers to a
17722 \&{pair}, \&{color}, or \&{transform} variable; we must copy several fields,
17723 each of which can be |independent|, |dependent|, |mp_proto_dependent|,
17726 @<Copy the big node |p|@>=
17728 if ( value(p)==null )
17729 mp_init_big_node(mp, p);
17730 t=mp_get_node(mp, value_node_size); name_type(t)=mp_capsule; type(t)=mp->cur_type;
17731 mp_init_big_node(mp, t);
17732 q=value(p)+mp->big_node_size[mp->cur_type];
17733 r=value(t)+mp->big_node_size[mp->cur_type];
17735 q=q-2; r=r-2; mp_install(mp, r,q);
17736 } while (q!=value(p));
17740 @ The |install| procedure copies a numeric field~|q| into field~|r| of
17741 a big node that will be part of a capsule.
17743 @<Declare subroutines needed by |make_exp_copy|@>=
17744 void mp_install (MP mp,pointer r, pointer q) {
17745 pointer p; /* temporary register */
17746 if ( type(q)==mp_known ){
17747 value(r)=value(q); type(r)=mp_known;
17748 } else if ( type(q)==mp_independent ) {
17749 p=mp_single_dependency(mp, q);
17750 if ( p==mp->dep_final ) {
17751 type(r)=mp_known; value(r)=0; mp_free_node(mp, p,value_node_size);
17753 type(r)=mp_dependent; mp_new_dep(mp, r,p);
17756 type(r)=type(q); mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(q)));
17760 @ Expressions of the form `\.{a[b,c]}' are converted into
17761 `\.{b+a*(c-b)}', without checking the types of \.b~or~\.c,
17762 provided that \.a is numeric.
17764 @<Scan a mediation...@>=
17766 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17767 if ( mp->cur_cmd!=comma ) {
17768 @<Put the left bracket and the expression back...@>;
17769 mp_unstash_cur_exp(mp, p);
17771 q=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17772 if ( mp->cur_cmd!=right_bracket ) {
17773 mp_missing_err(mp, "]");
17775 help3("I've scanned an expression of the form `a[b,c',")
17776 ("so a right bracket should have come next.")
17777 ("I shall pretend that one was there.");
17780 r=mp_stash_cur_exp(mp); mp_make_exp_copy(mp, q);
17781 mp_do_binary(mp, r,minus); mp_do_binary(mp, p,times);
17782 mp_do_binary(mp, q,plus); mp_get_x_next(mp);
17786 @ Here is a comparatively simple routine that is used to scan the
17787 \&{suffix} parameters of a macro.
17789 @<Declare the basic parsing subroutines@>=
17790 void mp_scan_suffix (MP mp) {
17791 pointer h,t; /* head and tail of the list being built */
17792 pointer p; /* temporary register */
17793 h=mp_get_avail(mp); t=h;
17795 if ( mp->cur_cmd==left_bracket ) {
17796 @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>;
17798 if ( mp->cur_cmd==numeric_token ) {
17799 p=mp_new_num_tok(mp, mp->cur_mod);
17800 } else if ((mp->cur_cmd==tag_token)||(mp->cur_cmd==internal_quantity) ) {
17801 p=mp_get_avail(mp); info(p)=mp->cur_sym;
17805 link(t)=p; t=p; mp_get_x_next(mp);
17807 mp->cur_exp=link(h); free_avail(h); mp->cur_type=mp_token_list;
17810 @ @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>=
17812 mp_get_x_next(mp); mp_scan_expression(mp);
17813 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17814 if ( mp->cur_cmd!=right_bracket ) {
17815 mp_missing_err(mp, "]");
17817 help3("I've seen a `[' and a subscript value, in a suffix,")
17818 ("so a right bracket should have come next.")
17819 ("I shall pretend that one was there.");
17822 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp;
17825 @* \[38] Parsing secondary and higher expressions.
17827 After the intricacies of |scan_primary|\kern-1pt,
17828 the |scan_secondary| routine is
17829 refreshingly simple. It's not trivial, but the operations are relatively
17830 straightforward; the main difficulty is, again, that expressions and data
17831 structures might change drastically every time we call |get_x_next|, so a
17832 cautious approach is mandatory. For example, a macro defined by
17833 \&{primarydef} might have disappeared by the time its second argument has
17834 been scanned; we solve this by increasing the reference count of its token
17835 list, so that the macro can be called even after it has been clobbered.
17837 @<Declare the basic parsing subroutines@>=
17838 void mp_scan_secondary (MP mp) {
17839 pointer p; /* for list manipulation */
17840 halfword c,d; /* operation codes or modifiers */
17841 pointer mac_name; /* token defined with \&{primarydef} */
17843 if ((mp->cur_cmd<min_primary_command)||
17844 (mp->cur_cmd>max_primary_command) )
17845 mp_bad_exp(mp, "A secondary");
17846 @.A secondary expression...@>
17847 mp_scan_primary(mp);
17849 if ( mp->cur_cmd<=max_secondary_command )
17850 if ( mp->cur_cmd>=min_secondary_command ) {
17851 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17852 if ( d==secondary_primary_macro ) {
17853 mac_name=mp->cur_sym; add_mac_ref(c);
17855 mp_get_x_next(mp); mp_scan_primary(mp);
17856 if ( d!=secondary_primary_macro ) {
17857 mp_do_binary(mp, p,c);
17859 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17860 decr(ref_count(c)); mp_get_x_next(mp);
17867 @ The following procedure calls a macro that has two parameters,
17870 @c void mp_binary_mac (MP mp,pointer p, pointer c, pointer n) {
17871 pointer q,r; /* nodes in the parameter list */
17872 q=mp_get_avail(mp); r=mp_get_avail(mp); link(q)=r;
17873 info(q)=p; info(r)=mp_stash_cur_exp(mp);
17874 mp_macro_call(mp, c,q,n);
17877 @ The next procedure, |scan_tertiary|, is pretty much the same deal.
17879 @<Declare the basic parsing subroutines@>=
17880 void mp_scan_tertiary (MP mp) {
17881 pointer p; /* for list manipulation */
17882 halfword c,d; /* operation codes or modifiers */
17883 pointer mac_name; /* token defined with \&{secondarydef} */
17885 if ((mp->cur_cmd<min_primary_command)||
17886 (mp->cur_cmd>max_primary_command) )
17887 mp_bad_exp(mp, "A tertiary");
17888 @.A tertiary expression...@>
17889 mp_scan_secondary(mp);
17891 if ( mp->cur_cmd<=max_tertiary_command ) {
17892 if ( mp->cur_cmd>=min_tertiary_command ) {
17893 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17894 if ( d==tertiary_secondary_macro ) {
17895 mac_name=mp->cur_sym; add_mac_ref(c);
17897 mp_get_x_next(mp); mp_scan_secondary(mp);
17898 if ( d!=tertiary_secondary_macro ) {
17899 mp_do_binary(mp, p,c);
17901 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17902 decr(ref_count(c)); mp_get_x_next(mp);
17910 @ Finally we reach the deepest level in our quartet of parsing routines.
17911 This one is much like the others; but it has an extra complication from
17912 paths, which materialize here.
17914 @d continue_path 25 /* a label inside of |scan_expression| */
17915 @d finish_path 26 /* another */
17917 @<Declare the basic parsing subroutines@>=
17918 void mp_scan_expression (MP mp) {
17919 pointer p,q,r,pp,qq; /* for list manipulation */
17920 halfword c,d; /* operation codes or modifiers */
17921 int my_var_flag; /* initial value of |var_flag| */
17922 pointer mac_name; /* token defined with \&{tertiarydef} */
17923 boolean cycle_hit; /* did a path expression just end with `\&{cycle}'? */
17924 scaled x,y; /* explicit coordinates or tension at a path join */
17925 int t; /* knot type following a path join */
17927 my_var_flag=mp->var_flag; mac_name=null;
17929 if ((mp->cur_cmd<min_primary_command)||
17930 (mp->cur_cmd>max_primary_command) )
17931 mp_bad_exp(mp, "An");
17932 @.An expression...@>
17933 mp_scan_tertiary(mp);
17935 if ( mp->cur_cmd<=max_expression_command )
17936 if ( mp->cur_cmd>=min_expression_command ) {
17937 if ( (mp->cur_cmd!=equals)||(my_var_flag!=assignment) ) {
17938 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17939 if ( d==expression_tertiary_macro ) {
17940 mac_name=mp->cur_sym; add_mac_ref(c);
17942 if ( (d<ampersand)||((d==ampersand)&&
17943 ((type(p)==mp_pair_type)||(type(p)==mp_path_type))) ) {
17944 @<Scan a path construction operation;
17945 but |return| if |p| has the wrong type@>;
17947 mp_get_x_next(mp); mp_scan_tertiary(mp);
17948 if ( d!=expression_tertiary_macro ) {
17949 mp_do_binary(mp, p,c);
17951 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17952 decr(ref_count(c)); mp_get_x_next(mp);
17961 @ The reader should review the data structure conventions for paths before
17962 hoping to understand the next part of this code.
17964 @<Scan a path construction operation...@>=
17967 @<Convert the left operand, |p|, into a partial path ending at~|q|;
17968 but |return| if |p| doesn't have a suitable type@>;
17970 @<Determine the path join parameters;
17971 but |goto finish_path| if there's only a direction specifier@>;
17972 if ( mp->cur_cmd==cycle ) {
17973 @<Get ready to close a cycle@>;
17975 mp_scan_tertiary(mp);
17976 @<Convert the right operand, |cur_exp|,
17977 into a partial path from |pp| to~|qq|@>;
17979 @<Join the partial paths and reset |p| and |q| to the head and tail
17981 if ( mp->cur_cmd>=min_expression_command )
17982 if ( mp->cur_cmd<=ampersand ) if ( ! cycle_hit ) goto CONTINUE_PATH;
17984 @<Choose control points for the path and put the result into |cur_exp|@>;
17987 @ @<Convert the left operand, |p|, into a partial path ending at~|q|...@>=
17989 mp_unstash_cur_exp(mp, p);
17990 if ( mp->cur_type==mp_pair_type ) p=mp_new_knot(mp);
17991 else if ( mp->cur_type==mp_path_type ) p=mp->cur_exp;
17994 while ( link(q)!=p ) q=link(q);
17995 if ( left_type(p)!=mp_endpoint ) { /* open up a cycle */
17996 r=mp_copy_knot(mp, p); link(q)=r; q=r;
17998 left_type(p)=mp_open; right_type(q)=mp_open;
18001 @ A pair of numeric values is changed into a knot node for a one-point path
18002 when \MP\ discovers that the pair is part of a path.
18004 @c@<Declare the procedure called |known_pair|@>;
18005 pointer mp_new_knot (MP mp) { /* convert a pair to a knot with two endpoints */
18006 pointer q; /* the new node */
18007 q=mp_get_node(mp, knot_node_size); left_type(q)=mp_endpoint;
18008 right_type(q)=mp_endpoint; originator(q)=mp_metapost_user; link(q)=q;
18009 mp_known_pair(mp); x_coord(q)=mp->cur_x; y_coord(q)=mp->cur_y;
18013 @ The |known_pair| subroutine sets |cur_x| and |cur_y| to the components
18014 of the current expression, assuming that the current expression is a
18015 pair of known numerics. Unknown components are zeroed, and the
18016 current expression is flushed.
18018 @<Declare the procedure called |known_pair|@>=
18019 void mp_known_pair (MP mp) {
18020 pointer p; /* the pair node */
18021 if ( mp->cur_type!=mp_pair_type ) {
18022 exp_err("Undefined coordinates have been replaced by (0,0)");
18023 @.Undefined coordinates...@>
18024 help5("I need x and y numbers for this part of the path.")
18025 ("The value I found (see above) was no good;")
18026 ("so I'll try to keep going by using zero instead.")
18027 ("(Chapter 27 of The METAFONTbook explains that")
18028 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18029 ("you might want to type `I ??" "?' now.)");
18030 mp_put_get_flush_error(mp, 0); mp->cur_x=0; mp->cur_y=0;
18032 p=value(mp->cur_exp);
18033 @<Make sure that both |x| and |y| parts of |p| are known;
18034 copy them into |cur_x| and |cur_y|@>;
18035 mp_flush_cur_exp(mp, 0);
18039 @ @<Make sure that both |x| and |y| parts of |p| are known...@>=
18040 if ( type(x_part_loc(p))==mp_known ) {
18041 mp->cur_x=value(x_part_loc(p));
18043 mp_disp_err(mp, x_part_loc(p),
18044 "Undefined x coordinate has been replaced by 0");
18045 @.Undefined coordinates...@>
18046 help5("I need a `known' x value for this part of the path.")
18047 ("The value I found (see above) was no good;")
18048 ("so I'll try to keep going by using zero instead.")
18049 ("(Chapter 27 of The METAFONTbook explains that")
18050 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18051 ("you might want to type `I ??" "?' now.)");
18052 mp_put_get_error(mp); mp_recycle_value(mp, x_part_loc(p)); mp->cur_x=0;
18054 if ( type(y_part_loc(p))==mp_known ) {
18055 mp->cur_y=value(y_part_loc(p));
18057 mp_disp_err(mp, y_part_loc(p),
18058 "Undefined y coordinate has been replaced by 0");
18059 help5("I need a `known' y value for this part of the path.")
18060 ("The value I found (see above) was no good;")
18061 ("so I'll try to keep going by using zero instead.")
18062 ("(Chapter 27 of The METAFONTbook explains that")
18063 ("you might want to type `I ??" "?' now.)");
18064 mp_put_get_error(mp); mp_recycle_value(mp, y_part_loc(p)); mp->cur_y=0;
18067 @ At this point |cur_cmd| is either |ampersand|, |left_brace|, or |path_join|.
18069 @<Determine the path join parameters...@>=
18070 if ( mp->cur_cmd==left_brace ) {
18071 @<Put the pre-join direction information into node |q|@>;
18074 if ( d==path_join ) {
18075 @<Determine the tension and/or control points@>;
18076 } else if ( d!=ampersand ) {
18080 if ( mp->cur_cmd==left_brace ) {
18081 @<Put the post-join direction information into |x| and |t|@>;
18082 } else if ( right_type(q)!=mp_explicit ) {
18086 @ The |scan_direction| subroutine looks at the directional information
18087 that is enclosed in braces, and also scans ahead to the following character.
18088 A type code is returned, either |open| (if the direction was $(0,0)$),
18089 or |curl| (if the direction was a curl of known value |cur_exp|), or
18090 |given| (if the direction is given by the |angle| value that now
18091 appears in |cur_exp|).
18093 There's nothing difficult about this subroutine, but the program is rather
18094 lengthy because a variety of potential errors need to be nipped in the bud.
18096 @c small_number mp_scan_direction (MP mp) {
18097 int t; /* the type of information found */
18098 scaled x; /* an |x| coordinate */
18100 if ( mp->cur_cmd==curl_command ) {
18101 @<Scan a curl specification@>;
18103 @<Scan a given direction@>;
18105 if ( mp->cur_cmd!=right_brace ) {
18106 mp_missing_err(mp, "}");
18107 @.Missing `\char`\}'@>
18108 help3("I've scanned a direction spec for part of a path,")
18109 ("so a right brace should have come next.")
18110 ("I shall pretend that one was there.");
18117 @ @<Scan a curl specification@>=
18118 { mp_get_x_next(mp); mp_scan_expression(mp);
18119 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<0) ){
18120 exp_err("Improper curl has been replaced by 1");
18122 help1("A curl must be a known, nonnegative number.");
18123 mp_put_get_flush_error(mp, unity);
18128 @ @<Scan a given direction@>=
18129 { mp_scan_expression(mp);
18130 if ( mp->cur_type>mp_pair_type ) {
18131 @<Get given directions separated by commas@>;
18135 if ( (mp->cur_x==0)&&(mp->cur_y==0) ) t=mp_open;
18136 else { t=mp_given; mp->cur_exp=mp_n_arg(mp, mp->cur_x,mp->cur_y);}
18139 @ @<Get given directions separated by commas@>=
18141 if ( mp->cur_type!=mp_known ) {
18142 exp_err("Undefined x coordinate has been replaced by 0");
18143 @.Undefined coordinates...@>
18144 help5("I need a `known' x value for this part of the path.")
18145 ("The value I found (see above) was no good;")
18146 ("so I'll try to keep going by using zero instead.")
18147 ("(Chapter 27 of The METAFONTbook explains that")
18148 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18149 ("you might want to type `I ??" "?' now.)");
18150 mp_put_get_flush_error(mp, 0);
18153 if ( mp->cur_cmd!=comma ) {
18154 mp_missing_err(mp, ",");
18156 help2("I've got the x coordinate of a path direction;")
18157 ("will look for the y coordinate next.");
18160 mp_get_x_next(mp); mp_scan_expression(mp);
18161 if ( mp->cur_type!=mp_known ) {
18162 exp_err("Undefined y coordinate has been replaced by 0");
18163 help5("I need a `known' y value for this part of the path.")
18164 ("The value I found (see above) was no good;")
18165 ("so I'll try to keep going by using zero instead.")
18166 ("(Chapter 27 of The METAFONTbook explains that")
18167 ("you might want to type `I ??" "?' now.)");
18168 mp_put_get_flush_error(mp, 0);
18170 mp->cur_y=mp->cur_exp; mp->cur_x=x;
18173 @ At this point |right_type(q)| is usually |open|, but it may have been
18174 set to some other value by a previous splicing operation. We must maintain
18175 the value of |right_type(q)| in unusual cases such as
18176 `\.{..z1\{z2\}\&\{z3\}z1\{0,0\}..}'.
18178 @<Put the pre-join...@>=
18180 t=mp_scan_direction(mp);
18181 if ( t!=mp_open ) {
18182 right_type(q)=t; right_given(q)=mp->cur_exp;
18183 if ( left_type(q)==mp_open ) {
18184 left_type(q)=t; left_given(q)=mp->cur_exp;
18185 } /* note that |left_given(q)=left_curl(q)| */
18189 @ Since |left_tension| and |left_y| share the same position in knot nodes,
18190 and since |left_given| is similarly equivalent to |left_x|, we use
18191 |x| and |y| to hold the given direction and tension information when
18192 there are no explicit control points.
18194 @<Put the post-join...@>=
18196 t=mp_scan_direction(mp);
18197 if ( right_type(q)!=mp_explicit ) x=mp->cur_exp;
18198 else t=mp_explicit; /* the direction information is superfluous */
18201 @ @<Determine the tension and/or...@>=
18204 if ( mp->cur_cmd==tension ) {
18205 @<Set explicit tensions@>;
18206 } else if ( mp->cur_cmd==controls ) {
18207 @<Set explicit control points@>;
18209 right_tension(q)=unity; y=unity; mp_back_input(mp); /* default tension */
18212 if ( mp->cur_cmd!=path_join ) {
18213 mp_missing_err(mp, "..");
18215 help1("A path join command should end with two dots.");
18222 @ @<Set explicit tensions@>=
18224 mp_get_x_next(mp); y=mp->cur_cmd;
18225 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18226 mp_scan_primary(mp);
18227 @<Make sure that the current expression is a valid tension setting@>;
18228 if ( y==at_least ) negate(mp->cur_exp);
18229 right_tension(q)=mp->cur_exp;
18230 if ( mp->cur_cmd==and_command ) {
18231 mp_get_x_next(mp); y=mp->cur_cmd;
18232 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18233 mp_scan_primary(mp);
18234 @<Make sure that the current expression is a valid tension setting@>;
18235 if ( y==at_least ) negate(mp->cur_exp);
18240 @ @d min_tension three_quarter_unit
18242 @<Make sure that the current expression is a valid tension setting@>=
18243 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<min_tension) ) {
18244 exp_err("Improper tension has been set to 1");
18245 @.Improper tension@>
18246 help1("The expression above should have been a number >=3/4.");
18247 mp_put_get_flush_error(mp, unity);
18250 @ @<Set explicit control points@>=
18252 right_type(q)=mp_explicit; t=mp_explicit; mp_get_x_next(mp); mp_scan_primary(mp);
18253 mp_known_pair(mp); right_x(q)=mp->cur_x; right_y(q)=mp->cur_y;
18254 if ( mp->cur_cmd!=and_command ) {
18255 x=right_x(q); y=right_y(q);
18257 mp_get_x_next(mp); mp_scan_primary(mp);
18258 mp_known_pair(mp); x=mp->cur_x; y=mp->cur_y;
18262 @ @<Convert the right operand, |cur_exp|, into a partial path...@>=
18264 if ( mp->cur_type!=mp_path_type ) pp=mp_new_knot(mp);
18265 else pp=mp->cur_exp;
18267 while ( link(qq)!=pp ) qq=link(qq);
18268 if ( left_type(pp)!=mp_endpoint ) { /* open up a cycle */
18269 r=mp_copy_knot(mp, pp); link(qq)=r; qq=r;
18271 left_type(pp)=mp_open; right_type(qq)=mp_open;
18274 @ If a person tries to define an entire path by saying `\.{(x,y)\&cycle}',
18275 we silently change the specification to `\.{(x,y)..cycle}', since a cycle
18276 shouldn't have length zero.
18278 @<Get ready to close a cycle@>=
18280 cycle_hit=true; mp_get_x_next(mp); pp=p; qq=p;
18281 if ( d==ampersand ) if ( p==q ) {
18282 d=path_join; right_tension(q)=unity; y=unity;
18286 @ @<Join the partial paths and reset |p| and |q|...@>=
18288 if ( d==ampersand ) {
18289 if ( (x_coord(q)!=x_coord(pp))||(y_coord(q)!=y_coord(pp)) ) {
18290 print_err("Paths don't touch; `&' will be changed to `..'");
18291 @.Paths don't touch@>
18292 help3("When you join paths `p&q', the ending point of p")
18293 ("must be exactly equal to the starting point of q.")
18294 ("So I'm going to pretend that you said `p..q' instead.");
18295 mp_put_get_error(mp); d=path_join; right_tension(q)=unity; y=unity;
18298 @<Plug an opening in |right_type(pp)|, if possible@>;
18299 if ( d==ampersand ) {
18300 @<Splice independent paths together@>;
18302 @<Plug an opening in |right_type(q)|, if possible@>;
18303 link(q)=pp; left_y(pp)=y;
18304 if ( t!=mp_open ) { left_x(pp)=x; left_type(pp)=t; };
18309 @ @<Plug an opening in |right_type(q)|...@>=
18310 if ( right_type(q)==mp_open ) {
18311 if ( (left_type(q)==mp_curl)||(left_type(q)==mp_given) ) {
18312 right_type(q)=left_type(q); right_given(q)=left_given(q);
18316 @ @<Plug an opening in |right_type(pp)|...@>=
18317 if ( right_type(pp)==mp_open ) {
18318 if ( (t==mp_curl)||(t==mp_given) ) {
18319 right_type(pp)=t; right_given(pp)=x;
18323 @ @<Splice independent paths together@>=
18325 if ( left_type(q)==mp_open ) if ( right_type(q)==mp_open ) {
18326 left_type(q)=mp_curl; left_curl(q)=unity;
18328 if ( right_type(pp)==mp_open ) if ( t==mp_open ) {
18329 right_type(pp)=mp_curl; right_curl(pp)=unity;
18331 right_type(q)=right_type(pp); link(q)=link(pp);
18332 right_x(q)=right_x(pp); right_y(q)=right_y(pp);
18333 mp_free_node(mp, pp,knot_node_size);
18334 if ( qq==pp ) qq=q;
18337 @ @<Choose control points for the path...@>=
18339 if ( d==ampersand ) p=q;
18341 left_type(p)=mp_endpoint;
18342 if ( right_type(p)==mp_open ) {
18343 right_type(p)=mp_curl; right_curl(p)=unity;
18345 right_type(q)=mp_endpoint;
18346 if ( left_type(q)==mp_open ) {
18347 left_type(q)=mp_curl; left_curl(q)=unity;
18351 mp_make_choices(mp, p);
18352 mp->cur_type=mp_path_type; mp->cur_exp=p
18354 @ Finally, we sometimes need to scan an expression whose value is
18355 supposed to be either |true_code| or |false_code|.
18357 @<Declare the basic parsing subroutines@>=
18358 void mp_get_boolean (MP mp) {
18359 mp_get_x_next(mp); mp_scan_expression(mp);
18360 if ( mp->cur_type!=mp_boolean_type ) {
18361 exp_err("Undefined condition will be treated as `false'");
18362 @.Undefined condition...@>
18363 help2("The expression shown above should have had a definite")
18364 ("true-or-false value. I'm changing it to `false'.");
18365 mp_put_get_flush_error(mp, false_code); mp->cur_type=mp_boolean_type;
18369 @* \[39] Doing the operations.
18370 The purpose of parsing is primarily to permit people to avoid piles of
18371 parentheses. But the real work is done after the structure of an expression
18372 has been recognized; that's when new expressions are generated. We
18373 turn now to the guts of \MP, which handles individual operators that
18374 have come through the parsing mechanism.
18376 We'll start with the easy ones that take no operands, then work our way
18377 up to operators with one and ultimately two arguments. In other words,
18378 we will write the three procedures |do_nullary|, |do_unary|, and |do_binary|
18379 that are invoked periodically by the expression scanners.
18381 First let's make sure that all of the primitive operators are in the
18382 hash table. Although |scan_primary| and its relatives made use of the
18383 \\{cmd} code for these operators, the \\{do} routines base everything
18384 on the \\{mod} code. For example, |do_binary| doesn't care whether the
18385 operation it performs is a |primary_binary| or |secondary_binary|, etc.
18388 mp_primitive(mp, "true",nullary,true_code);
18389 @:true_}{\&{true} primitive@>
18390 mp_primitive(mp, "false",nullary,false_code);
18391 @:false_}{\&{false} primitive@>
18392 mp_primitive(mp, "nullpicture",nullary,null_picture_code);
18393 @:null_picture_}{\&{nullpicture} primitive@>
18394 mp_primitive(mp, "nullpen",nullary,null_pen_code);
18395 @:null_pen_}{\&{nullpen} primitive@>
18396 mp_primitive(mp, "jobname",nullary,job_name_op);
18397 @:job_name_}{\&{jobname} primitive@>
18398 mp_primitive(mp, "readstring",nullary,read_string_op);
18399 @:read_string_}{\&{readstring} primitive@>
18400 mp_primitive(mp, "pencircle",nullary,pen_circle);
18401 @:pen_circle_}{\&{pencircle} primitive@>
18402 mp_primitive(mp, "normaldeviate",nullary,normal_deviate);
18403 @:normal_deviate_}{\&{normaldeviate} primitive@>
18404 mp_primitive(mp, "readfrom",unary,read_from_op);
18405 @:read_from_}{\&{readfrom} primitive@>
18406 mp_primitive(mp, "closefrom",unary,close_from_op);
18407 @:close_from_}{\&{closefrom} primitive@>
18408 mp_primitive(mp, "odd",unary,odd_op);
18409 @:odd_}{\&{odd} primitive@>
18410 mp_primitive(mp, "known",unary,known_op);
18411 @:known_}{\&{known} primitive@>
18412 mp_primitive(mp, "unknown",unary,unknown_op);
18413 @:unknown_}{\&{unknown} primitive@>
18414 mp_primitive(mp, "not",unary,not_op);
18415 @:not_}{\&{not} primitive@>
18416 mp_primitive(mp, "decimal",unary,decimal);
18417 @:decimal_}{\&{decimal} primitive@>
18418 mp_primitive(mp, "reverse",unary,reverse);
18419 @:reverse_}{\&{reverse} primitive@>
18420 mp_primitive(mp, "makepath",unary,make_path_op);
18421 @:make_path_}{\&{makepath} primitive@>
18422 mp_primitive(mp, "makepen",unary,make_pen_op);
18423 @:make_pen_}{\&{makepen} primitive@>
18424 mp_primitive(mp, "oct",unary,oct_op);
18425 @:oct_}{\&{oct} primitive@>
18426 mp_primitive(mp, "hex",unary,hex_op);
18427 @:hex_}{\&{hex} primitive@>
18428 mp_primitive(mp, "ASCII",unary,ASCII_op);
18429 @:ASCII_}{\&{ASCII} primitive@>
18430 mp_primitive(mp, "char",unary,char_op);
18431 @:char_}{\&{char} primitive@>
18432 mp_primitive(mp, "length",unary,length_op);
18433 @:length_}{\&{length} primitive@>
18434 mp_primitive(mp, "turningnumber",unary,turning_op);
18435 @:turning_number_}{\&{turningnumber} primitive@>
18436 mp_primitive(mp, "xpart",unary,x_part);
18437 @:x_part_}{\&{xpart} primitive@>
18438 mp_primitive(mp, "ypart",unary,y_part);
18439 @:y_part_}{\&{ypart} primitive@>
18440 mp_primitive(mp, "xxpart",unary,xx_part);
18441 @:xx_part_}{\&{xxpart} primitive@>
18442 mp_primitive(mp, "xypart",unary,xy_part);
18443 @:xy_part_}{\&{xypart} primitive@>
18444 mp_primitive(mp, "yxpart",unary,yx_part);
18445 @:yx_part_}{\&{yxpart} primitive@>
18446 mp_primitive(mp, "yypart",unary,yy_part);
18447 @:yy_part_}{\&{yypart} primitive@>
18448 mp_primitive(mp, "redpart",unary,red_part);
18449 @:red_part_}{\&{redpart} primitive@>
18450 mp_primitive(mp, "greenpart",unary,green_part);
18451 @:green_part_}{\&{greenpart} primitive@>
18452 mp_primitive(mp, "bluepart",unary,blue_part);
18453 @:blue_part_}{\&{bluepart} primitive@>
18454 mp_primitive(mp, "cyanpart",unary,cyan_part);
18455 @:cyan_part_}{\&{cyanpart} primitive@>
18456 mp_primitive(mp, "magentapart",unary,magenta_part);
18457 @:magenta_part_}{\&{magentapart} primitive@>
18458 mp_primitive(mp, "yellowpart",unary,yellow_part);
18459 @:yellow_part_}{\&{yellowpart} primitive@>
18460 mp_primitive(mp, "blackpart",unary,black_part);
18461 @:black_part_}{\&{blackpart} primitive@>
18462 mp_primitive(mp, "greypart",unary,grey_part);
18463 @:grey_part_}{\&{greypart} primitive@>
18464 mp_primitive(mp, "colormodel",unary,color_model_part);
18465 @:color_model_part_}{\&{colormodel} primitive@>
18466 mp_primitive(mp, "fontpart",unary,font_part);
18467 @:font_part_}{\&{fontpart} primitive@>
18468 mp_primitive(mp, "textpart",unary,text_part);
18469 @:text_part_}{\&{textpart} primitive@>
18470 mp_primitive(mp, "pathpart",unary,path_part);
18471 @:path_part_}{\&{pathpart} primitive@>
18472 mp_primitive(mp, "penpart",unary,pen_part);
18473 @:pen_part_}{\&{penpart} primitive@>
18474 mp_primitive(mp, "dashpart",unary,dash_part);
18475 @:dash_part_}{\&{dashpart} primitive@>
18476 mp_primitive(mp, "sqrt",unary,sqrt_op);
18477 @:sqrt_}{\&{sqrt} primitive@>
18478 mp_primitive(mp, "mexp",unary,m_exp_op);
18479 @:m_exp_}{\&{mexp} primitive@>
18480 mp_primitive(mp, "mlog",unary,m_log_op);
18481 @:m_log_}{\&{mlog} primitive@>
18482 mp_primitive(mp, "sind",unary,sin_d_op);
18483 @:sin_d_}{\&{sind} primitive@>
18484 mp_primitive(mp, "cosd",unary,cos_d_op);
18485 @:cos_d_}{\&{cosd} primitive@>
18486 mp_primitive(mp, "floor",unary,floor_op);
18487 @:floor_}{\&{floor} primitive@>
18488 mp_primitive(mp, "uniformdeviate",unary,uniform_deviate);
18489 @:uniform_deviate_}{\&{uniformdeviate} primitive@>
18490 mp_primitive(mp, "charexists",unary,char_exists_op);
18491 @:char_exists_}{\&{charexists} primitive@>
18492 mp_primitive(mp, "fontsize",unary,font_size);
18493 @:font_size_}{\&{fontsize} primitive@>
18494 mp_primitive(mp, "llcorner",unary,ll_corner_op);
18495 @:ll_corner_}{\&{llcorner} primitive@>
18496 mp_primitive(mp, "lrcorner",unary,lr_corner_op);
18497 @:lr_corner_}{\&{lrcorner} primitive@>
18498 mp_primitive(mp, "ulcorner",unary,ul_corner_op);
18499 @:ul_corner_}{\&{ulcorner} primitive@>
18500 mp_primitive(mp, "urcorner",unary,ur_corner_op);
18501 @:ur_corner_}{\&{urcorner} primitive@>
18502 mp_primitive(mp, "arclength",unary,arc_length);
18503 @:arc_length_}{\&{arclength} primitive@>
18504 mp_primitive(mp, "angle",unary,angle_op);
18505 @:angle_}{\&{angle} primitive@>
18506 mp_primitive(mp, "cycle",cycle,cycle_op);
18507 @:cycle_}{\&{cycle} primitive@>
18508 mp_primitive(mp, "stroked",unary,stroked_op);
18509 @:stroked_}{\&{stroked} primitive@>
18510 mp_primitive(mp, "filled",unary,filled_op);
18511 @:filled_}{\&{filled} primitive@>
18512 mp_primitive(mp, "textual",unary,textual_op);
18513 @:textual_}{\&{textual} primitive@>
18514 mp_primitive(mp, "clipped",unary,clipped_op);
18515 @:clipped_}{\&{clipped} primitive@>
18516 mp_primitive(mp, "bounded",unary,bounded_op);
18517 @:bounded_}{\&{bounded} primitive@>
18518 mp_primitive(mp, "+",plus_or_minus,plus);
18519 @:+ }{\.{+} primitive@>
18520 mp_primitive(mp, "-",plus_or_minus,minus);
18521 @:- }{\.{-} primitive@>
18522 mp_primitive(mp, "*",secondary_binary,times);
18523 @:* }{\.{*} primitive@>
18524 mp_primitive(mp, "/",slash,over); mp->eqtb[frozen_slash]=mp->eqtb[mp->cur_sym];
18525 @:/ }{\.{/} primitive@>
18526 mp_primitive(mp, "++",tertiary_binary,pythag_add);
18527 @:++_}{\.{++} primitive@>
18528 mp_primitive(mp, "+-+",tertiary_binary,pythag_sub);
18529 @:+-+_}{\.{+-+} primitive@>
18530 mp_primitive(mp, "or",tertiary_binary,or_op);
18531 @:or_}{\&{or} primitive@>
18532 mp_primitive(mp, "and",and_command,and_op);
18533 @:and_}{\&{and} primitive@>
18534 mp_primitive(mp, "<",expression_binary,less_than);
18535 @:< }{\.{<} primitive@>
18536 mp_primitive(mp, "<=",expression_binary,less_or_equal);
18537 @:<=_}{\.{<=} primitive@>
18538 mp_primitive(mp, ">",expression_binary,greater_than);
18539 @:> }{\.{>} primitive@>
18540 mp_primitive(mp, ">=",expression_binary,greater_or_equal);
18541 @:>=_}{\.{>=} primitive@>
18542 mp_primitive(mp, "=",equals,equal_to);
18543 @:= }{\.{=} primitive@>
18544 mp_primitive(mp, "<>",expression_binary,unequal_to);
18545 @:<>_}{\.{<>} primitive@>
18546 mp_primitive(mp, "substring",primary_binary,substring_of);
18547 @:substring_}{\&{substring} primitive@>
18548 mp_primitive(mp, "subpath",primary_binary,subpath_of);
18549 @:subpath_}{\&{subpath} primitive@>
18550 mp_primitive(mp, "directiontime",primary_binary,direction_time_of);
18551 @:direction_time_}{\&{directiontime} primitive@>
18552 mp_primitive(mp, "point",primary_binary,point_of);
18553 @:point_}{\&{point} primitive@>
18554 mp_primitive(mp, "precontrol",primary_binary,precontrol_of);
18555 @:precontrol_}{\&{precontrol} primitive@>
18556 mp_primitive(mp, "postcontrol",primary_binary,postcontrol_of);
18557 @:postcontrol_}{\&{postcontrol} primitive@>
18558 mp_primitive(mp, "penoffset",primary_binary,pen_offset_of);
18559 @:pen_offset_}{\&{penoffset} primitive@>
18560 mp_primitive(mp, "arctime",primary_binary,arc_time_of);
18561 @:arc_time_of_}{\&{arctime} primitive@>
18562 mp_primitive(mp, "mpversion",nullary,mp_version);
18563 @:mp_verison_}{\&{mpversion} primitive@>
18564 mp_primitive(mp, "&",ampersand,concatenate);
18565 @:!!!}{\.{\&} primitive@>
18566 mp_primitive(mp, "rotated",secondary_binary,rotated_by);
18567 @:rotated_}{\&{rotated} primitive@>
18568 mp_primitive(mp, "slanted",secondary_binary,slanted_by);
18569 @:slanted_}{\&{slanted} primitive@>
18570 mp_primitive(mp, "scaled",secondary_binary,scaled_by);
18571 @:scaled_}{\&{scaled} primitive@>
18572 mp_primitive(mp, "shifted",secondary_binary,shifted_by);
18573 @:shifted_}{\&{shifted} primitive@>
18574 mp_primitive(mp, "transformed",secondary_binary,transformed_by);
18575 @:transformed_}{\&{transformed} primitive@>
18576 mp_primitive(mp, "xscaled",secondary_binary,x_scaled);
18577 @:x_scaled_}{\&{xscaled} primitive@>
18578 mp_primitive(mp, "yscaled",secondary_binary,y_scaled);
18579 @:y_scaled_}{\&{yscaled} primitive@>
18580 mp_primitive(mp, "zscaled",secondary_binary,z_scaled);
18581 @:z_scaled_}{\&{zscaled} primitive@>
18582 mp_primitive(mp, "infont",secondary_binary,in_font);
18583 @:in_font_}{\&{infont} primitive@>
18584 mp_primitive(mp, "intersectiontimes",tertiary_binary,intersect);
18585 @:intersection_times_}{\&{intersectiontimes} primitive@>
18586 mp_primitive(mp, "envelope",primary_binary,envelope_of);
18587 @:envelope_}{\&{envelope} primitive@>
18589 @ @<Cases of |print_cmd...@>=
18592 case primary_binary:
18593 case secondary_binary:
18594 case tertiary_binary:
18595 case expression_binary:
18597 case plus_or_minus:
18602 mp_print_op(mp, m);
18605 @ OK, let's look at the simplest \\{do} procedure first.
18607 @c @<Declare nullary action procedure@>;
18608 void mp_do_nullary (MP mp,quarterword c) {
18610 if ( mp->internal[mp_tracing_commands]>two )
18611 mp_show_cmd_mod(mp, nullary,c);
18613 case true_code: case false_code:
18614 mp->cur_type=mp_boolean_type; mp->cur_exp=c;
18616 case null_picture_code:
18617 mp->cur_type=mp_picture_type;
18618 mp->cur_exp=mp_get_node(mp, edge_header_size);
18619 mp_init_edges(mp, mp->cur_exp);
18621 case null_pen_code:
18622 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, 0);
18624 case normal_deviate:
18625 mp->cur_type=mp_known; mp->cur_exp=mp_norm_rand(mp);
18628 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, unity);
18631 if ( mp->job_name==NULL ) mp_open_log_file(mp);
18632 mp->cur_type=mp_string_type; mp->cur_exp=rts(mp->job_name);
18635 mp->cur_type=mp_string_type;
18636 mp->cur_exp=intern(metapost_version) ;
18638 case read_string_op:
18639 @<Read a string from the terminal@>;
18641 } /* there are no other cases */
18645 @ @<Read a string...@>=
18647 if ( mp->interaction<=mp_nonstop_mode )
18648 mp_fatal_error(mp, "*** (cannot readstring in nonstop modes)");
18649 mp_begin_file_reading(mp); name=is_read;
18650 limit=start; prompt_input("");
18651 mp_finish_read(mp);
18654 @ @<Declare nullary action procedure@>=
18655 void mp_finish_read (MP mp) { /* copy |buffer| line to |cur_exp| */
18657 str_room((int)mp->last-start);
18658 for (k=start;k<=mp->last-1;k++) {
18659 append_char(mp->buffer[k]);
18661 mp_end_file_reading(mp); mp->cur_type=mp_string_type;
18662 mp->cur_exp=mp_make_string(mp);
18665 @ Things get a bit more interesting when there's an operand. The
18666 operand to |do_unary| appears in |cur_type| and |cur_exp|.
18668 @c @<Declare unary action procedures@>;
18669 void mp_do_unary (MP mp,quarterword c) {
18670 pointer p,q,r; /* for list manipulation */
18671 integer x; /* a temporary register */
18673 if ( mp->internal[mp_tracing_commands]>two )
18674 @<Trace the current unary operation@>;
18677 if ( mp->cur_type<mp_color_type ) mp_bad_unary(mp, plus);
18680 @<Negate the current expression@>;
18682 @<Additional cases of unary operators@>;
18683 } /* there are no other cases */
18687 @ The |nice_pair| function returns |true| if both components of a pair
18690 @<Declare unary action procedures@>=
18691 boolean mp_nice_pair (MP mp,integer p, quarterword t) {
18692 if ( t==mp_pair_type ) {
18694 if ( type(x_part_loc(p))==mp_known )
18695 if ( type(y_part_loc(p))==mp_known )
18701 @ The |nice_color_or_pair| function is analogous except that it also accepts
18702 fully known colors.
18704 @<Declare unary action procedures@>=
18705 boolean mp_nice_color_or_pair (MP mp,integer p, quarterword t) {
18706 pointer q,r; /* for scanning the big node */
18707 if ( (t!=mp_pair_type)&&(t!=mp_color_type)&&(t!=mp_cmykcolor_type) ) {
18711 r=q+mp->big_node_size[type(p)];
18714 if ( type(r)!=mp_known )
18721 @ @<Declare unary action...@>=
18722 void mp_print_known_or_unknown_type (MP mp,small_number t, integer v) {
18723 mp_print_char(mp, '(');
18724 if ( t>mp_known ) mp_print(mp, "unknown numeric");
18725 else { if ( (t==mp_pair_type)||(t==mp_color_type)||(t==mp_cmykcolor_type) )
18726 if ( ! mp_nice_color_or_pair(mp, v,t) ) mp_print(mp, "unknown ");
18727 mp_print_type(mp, t);
18729 mp_print_char(mp, ')');
18732 @ @<Declare unary action...@>=
18733 void mp_bad_unary (MP mp,quarterword c) {
18734 exp_err("Not implemented: "); mp_print_op(mp, c);
18735 @.Not implemented...@>
18736 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
18737 help3("I'm afraid I don't know how to apply that operation to that")
18738 ("particular type. Continue, and I'll simply return the")
18739 ("argument (shown above) as the result of the operation.");
18740 mp_put_get_error(mp);
18743 @ @<Trace the current unary operation@>=
18745 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
18746 mp_print_op(mp, c); mp_print_char(mp, '(');
18747 mp_print_exp(mp, null,0); /* show the operand, but not verbosely */
18748 mp_print(mp, ")}"); mp_end_diagnostic(mp, false);
18751 @ Negation is easy except when the current expression
18752 is of type |independent|, or when it is a pair with one or more
18753 |independent| components.
18755 It is tempting to argue that the negative of an independent variable
18756 is an independent variable, hence we don't have to do anything when
18757 negating it. The fallacy is that other dependent variables pointing
18758 to the current expression must change the sign of their
18759 coefficients if we make no change to the current expression.
18761 Instead, we work around the problem by copying the current expression
18762 and recycling it afterwards (cf.~the |stash_in| routine).
18764 @<Negate the current expression@>=
18765 switch (mp->cur_type) {
18766 case mp_color_type:
18767 case mp_cmykcolor_type:
18769 case mp_independent:
18770 q=mp->cur_exp; mp_make_exp_copy(mp, q);
18771 if ( mp->cur_type==mp_dependent ) {
18772 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18773 } else if ( mp->cur_type<=mp_pair_type ) { /* |mp_color_type| or |mp_pair_type| */
18774 p=value(mp->cur_exp);
18775 r=p+mp->big_node_size[mp->cur_type];
18778 if ( type(r)==mp_known ) negate(value(r));
18779 else mp_negate_dep_list(mp, dep_list(r));
18781 } /* if |cur_type=mp_known| then |cur_exp=0| */
18782 mp_recycle_value(mp, q); mp_free_node(mp, q,value_node_size);
18785 case mp_proto_dependent:
18786 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18789 negate(mp->cur_exp);
18792 mp_bad_unary(mp, minus);
18796 @ @<Declare unary action...@>=
18797 void mp_negate_dep_list (MP mp,pointer p) {
18800 if ( info(p)==null ) return;
18805 @ @<Additional cases of unary operators@>=
18807 if ( mp->cur_type!=mp_boolean_type ) mp_bad_unary(mp, not_op);
18808 else mp->cur_exp=true_code+false_code-mp->cur_exp;
18811 @ @d three_sixty_units 23592960 /* that's |360*unity| */
18812 @d boolean_reset(A) if ( (A) ) mp->cur_exp=true_code; else mp->cur_exp=false_code
18814 @<Additional cases of unary operators@>=
18821 case uniform_deviate:
18823 case char_exists_op:
18824 if ( mp->cur_type!=mp_known ) {
18825 mp_bad_unary(mp, c);
18828 case sqrt_op:mp->cur_exp=mp_square_rt(mp, mp->cur_exp);break;
18829 case m_exp_op:mp->cur_exp=mp_m_exp(mp, mp->cur_exp);break;
18830 case m_log_op:mp->cur_exp=mp_m_log(mp, mp->cur_exp);break;
18833 mp_n_sin_cos(mp, (mp->cur_exp % three_sixty_units)*16);
18834 if ( c==sin_d_op ) mp->cur_exp=mp_round_fraction(mp, mp->n_sin);
18835 else mp->cur_exp=mp_round_fraction(mp, mp->n_cos);
18837 case floor_op:mp->cur_exp=mp_floor_scaled(mp, mp->cur_exp);break;
18838 case uniform_deviate:mp->cur_exp=mp_unif_rand(mp, mp->cur_exp);break;
18840 boolean_reset(odd(mp_round_unscaled(mp, mp->cur_exp)));
18841 mp->cur_type=mp_boolean_type;
18843 case char_exists_op:
18844 @<Determine if a character has been shipped out@>;
18846 } /* there are no other cases */
18850 @ @<Additional cases of unary operators@>=
18852 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) ) {
18853 p=value(mp->cur_exp);
18854 x=mp_n_arg(mp, value(x_part_loc(p)),value(y_part_loc(p)));
18855 if ( x>=0 ) mp_flush_cur_exp(mp, (x+8)/ 16);
18856 else mp_flush_cur_exp(mp, -((-x+8)/ 16));
18858 mp_bad_unary(mp, angle_op);
18862 @ If the current expression is a pair, but the context wants it to
18863 be a path, we call |pair_to_path|.
18865 @<Declare unary action...@>=
18866 void mp_pair_to_path (MP mp) {
18867 mp->cur_exp=mp_new_knot(mp);
18868 mp->cur_type=mp_path_type;
18871 @ @<Additional cases of unary operators@>=
18874 if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_transform_type) )
18875 mp_take_part(mp, c);
18876 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18877 else mp_bad_unary(mp, c);
18883 if ( mp->cur_type==mp_transform_type ) mp_take_part(mp, c);
18884 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18885 else mp_bad_unary(mp, c);
18890 if ( mp->cur_type==mp_color_type ) mp_take_part(mp, c);
18891 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18892 else mp_bad_unary(mp, c);
18898 if ( mp->cur_type==mp_cmykcolor_type) mp_take_part(mp, c);
18899 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18900 else mp_bad_unary(mp, c);
18903 if ( mp->cur_type==mp_known ) mp->cur_exp=value(c);
18904 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18905 else mp_bad_unary(mp, c);
18907 case color_model_part:
18908 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18909 else mp_bad_unary(mp, c);
18912 @ In the following procedure, |cur_exp| points to a capsule, which points to
18913 a big node. We want to delete all but one part of the big node.
18915 @<Declare unary action...@>=
18916 void mp_take_part (MP mp,quarterword c) {
18917 pointer p; /* the big node */
18918 p=value(mp->cur_exp); value(temp_val)=p; type(temp_val)=mp->cur_type;
18919 link(p)=temp_val; mp_free_node(mp, mp->cur_exp,value_node_size);
18920 mp_make_exp_copy(mp, p+mp->sector_offset[c+mp_x_part_sector-x_part]);
18921 mp_recycle_value(mp, temp_val);
18924 @ @<Initialize table entries...@>=
18925 name_type(temp_val)=mp_capsule;
18927 @ @<Additional cases of unary operators@>=
18933 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18934 else mp_bad_unary(mp, c);
18937 @ @<Declarations@>=
18938 void mp_scale_edges (MP mp);
18940 @ @<Declare unary action...@>=
18941 void mp_take_pict_part (MP mp,quarterword c) {
18942 pointer p; /* first graphical object in |cur_exp| */
18943 p=link(dummy_loc(mp->cur_exp));
18946 case x_part: case y_part: case xx_part:
18947 case xy_part: case yx_part: case yy_part:
18948 if ( type(p)==mp_text_code ) mp_flush_cur_exp(mp, text_trans_part(p+c));
18949 else goto NOT_FOUND;
18951 case red_part: case green_part: case blue_part:
18952 if ( has_color(p) ) mp_flush_cur_exp(mp, obj_color_part(p+c));
18953 else goto NOT_FOUND;
18955 case cyan_part: case magenta_part: case yellow_part:
18957 if ( has_color(p) ) {
18958 if ( color_model(p)==mp_uninitialized_model )
18959 mp_flush_cur_exp(mp, unity);
18961 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-cyan_part)));
18962 } else goto NOT_FOUND;
18965 if ( has_color(p) )
18966 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-grey_part)));
18967 else goto NOT_FOUND;
18969 case color_model_part:
18970 if ( has_color(p) ) {
18971 if ( color_model(p)==mp_uninitialized_model )
18972 mp_flush_cur_exp(mp, mp->internal[mp_default_color_model]);
18974 mp_flush_cur_exp(mp, color_model(p)*unity);
18975 } else goto NOT_FOUND;
18977 @<Handle other cases in |take_pict_part| or |goto not_found|@>;
18978 } /* all cases have been enumerated */
18982 @<Convert the current expression to a null value appropriate
18986 @ @<Handle other cases in |take_pict_part| or |goto not_found|@>=
18988 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
18990 mp_flush_cur_exp(mp, text_p(p));
18991 add_str_ref(mp->cur_exp);
18992 mp->cur_type=mp_string_type;
18996 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
18998 mp_flush_cur_exp(mp, rts(mp->font_name[font_n(p)]));
18999 add_str_ref(mp->cur_exp);
19000 mp->cur_type=mp_string_type;
19004 if ( type(p)==mp_text_code ) goto NOT_FOUND;
19005 else if ( is_stop(p) ) mp_confusion(mp, "pict");
19006 @:this can't happen pict}{\quad pict@>
19008 mp_flush_cur_exp(mp, mp_copy_path(mp, path_p(p)));
19009 mp->cur_type=mp_path_type;
19013 if ( ! has_pen(p) ) goto NOT_FOUND;
19015 if ( pen_p(p)==null ) goto NOT_FOUND;
19016 else { mp_flush_cur_exp(mp, copy_pen(pen_p(p)));
19017 mp->cur_type=mp_pen_type;
19022 if ( type(p)!=mp_stroked_code ) goto NOT_FOUND;
19023 else { if ( dash_p(p)==null ) goto NOT_FOUND;
19024 else { add_edge_ref(dash_p(p));
19025 mp->se_sf=dash_scale(p);
19026 mp->se_pic=dash_p(p);
19027 mp_scale_edges(mp);
19028 mp_flush_cur_exp(mp, mp->se_pic);
19029 mp->cur_type=mp_picture_type;
19034 @ Since |scale_edges| had to be declared |forward|, it had to be declared as a
19035 parameterless procedure even though it really takes two arguments and updates
19036 one of them. Hence the following globals are needed.
19039 pointer se_pic; /* edge header used and updated by |scale_edges| */
19040 scaled se_sf; /* the scale factor argument to |scale_edges| */
19042 @ @<Convert the current expression to a null value appropriate...@>=
19044 case text_part: case font_part:
19045 mp_flush_cur_exp(mp, rts(""));
19046 mp->cur_type=mp_string_type;
19049 mp_flush_cur_exp(mp, mp_get_node(mp, knot_node_size));
19050 left_type(mp->cur_exp)=mp_endpoint;
19051 right_type(mp->cur_exp)=mp_endpoint;
19052 link(mp->cur_exp)=mp->cur_exp;
19053 x_coord(mp->cur_exp)=0;
19054 y_coord(mp->cur_exp)=0;
19055 originator(mp->cur_exp)=mp_metapost_user;
19056 mp->cur_type=mp_path_type;
19059 mp_flush_cur_exp(mp, mp_get_pen_circle(mp, 0));
19060 mp->cur_type=mp_pen_type;
19063 mp_flush_cur_exp(mp, mp_get_node(mp, edge_header_size));
19064 mp_init_edges(mp, mp->cur_exp);
19065 mp->cur_type=mp_picture_type;
19068 mp_flush_cur_exp(mp, 0);
19072 @ @<Additional cases of unary...@>=
19074 if ( mp->cur_type!=mp_known ) {
19075 mp_bad_unary(mp, char_op);
19077 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
19078 mp->cur_type=mp_string_type;
19079 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
19083 if ( mp->cur_type!=mp_known ) {
19084 mp_bad_unary(mp, decimal);
19086 mp->old_setting=mp->selector; mp->selector=new_string;
19087 mp_print_scaled(mp, mp->cur_exp); mp->cur_exp=mp_make_string(mp);
19088 mp->selector=mp->old_setting; mp->cur_type=mp_string_type;
19094 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19095 else mp_str_to_num(mp, c);
19098 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, font_size);
19099 else @<Find the design size of the font whose name is |cur_exp|@>;
19102 @ @<Declare unary action...@>=
19103 void mp_str_to_num (MP mp,quarterword c) { /* converts a string to a number */
19104 integer n; /* accumulator */
19105 ASCII_code m; /* current character */
19106 pool_pointer k; /* index into |str_pool| */
19107 int b; /* radix of conversion */
19108 boolean bad_char; /* did the string contain an invalid digit? */
19109 if ( c==ASCII_op ) {
19110 if ( length(mp->cur_exp)==0 ) n=-1;
19111 else n=mp->str_pool[mp->str_start[mp->cur_exp]];
19113 if ( c==oct_op ) b=8; else b=16;
19114 n=0; bad_char=false;
19115 for (k=mp->str_start[mp->cur_exp];k<=str_stop(mp->cur_exp)-1;k++) {
19117 if ( (m>='0')&&(m<='9') ) m=m-'0';
19118 else if ( (m>='A')&&(m<='F') ) m=m-'A'+10;
19119 else if ( (m>='a')&&(m<='f') ) m=m-'a'+10;
19120 else { bad_char=true; m=0; };
19121 if ( m>=b ) { bad_char=true; m=0; };
19122 if ( n<32768 / b ) n=n*b+m; else n=32767;
19124 @<Give error messages if |bad_char| or |n>=4096|@>;
19126 mp_flush_cur_exp(mp, n*unity);
19129 @ @<Give error messages if |bad_char|...@>=
19131 exp_err("String contains illegal digits");
19132 @.String contains illegal digits@>
19134 help1("I zeroed out characters that weren't in the range 0..7.");
19136 help1("I zeroed out characters that weren't hex digits.");
19138 mp_put_get_error(mp);
19141 if ( mp->internal[mp_warning_check]>0 ) {
19142 print_err("Number too large (");
19143 mp_print_int(mp, n); mp_print_char(mp, ')');
19144 @.Number too large@>
19145 help2("I have trouble with numbers greater than 4095; watch out.")
19146 ("(Set warningcheck:=0 to suppress this message.)");
19147 mp_put_get_error(mp);
19151 @ The length operation is somewhat unusual in that it applies to a variety
19152 of different types of operands.
19154 @<Additional cases of unary...@>=
19156 switch (mp->cur_type) {
19157 case mp_string_type: mp_flush_cur_exp(mp, length(mp->cur_exp)*unity); break;
19158 case mp_path_type: mp_flush_cur_exp(mp, mp_path_length(mp)); break;
19159 case mp_known: mp->cur_exp=abs(mp->cur_exp); break;
19160 case mp_picture_type: mp_flush_cur_exp(mp, mp_pict_length(mp)); break;
19162 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) )
19163 mp_flush_cur_exp(mp, mp_pyth_add(mp,
19164 value(x_part_loc(value(mp->cur_exp))),
19165 value(y_part_loc(value(mp->cur_exp)))));
19166 else mp_bad_unary(mp, c);
19171 @ @<Declare unary action...@>=
19172 scaled mp_path_length (MP mp) { /* computes the length of the current path */
19173 scaled n; /* the path length so far */
19174 pointer p; /* traverser */
19176 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
19177 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
19181 @ @<Declare unary action...@>=
19182 scaled mp_pict_length (MP mp) {
19183 /* counts interior components in picture |cur_exp| */
19184 scaled n; /* the count so far */
19185 pointer p; /* traverser */
19187 p=link(dummy_loc(mp->cur_exp));
19189 if ( is_start_or_stop(p) )
19190 if ( mp_skip_1component(mp, p)==null ) p=link(p);
19191 while ( p!=null ) {
19192 skip_component(p) return n;
19199 @ Implement |turningnumber|
19201 @<Additional cases of unary...@>=
19203 if ( mp->cur_type==mp_pair_type ) mp_flush_cur_exp(mp, 0);
19204 else if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, turning_op);
19205 else if ( left_type(mp->cur_exp)==mp_endpoint )
19206 mp_flush_cur_exp(mp, 0); /* not a cyclic path */
19208 mp_flush_cur_exp(mp, mp_turn_cycles_wrapper(mp, mp->cur_exp));
19211 @ The function |an_angle| returns the value of the |angle| primitive, or $0$ if the
19212 argument is |origin|.
19214 @<Declare unary action...@>=
19215 angle mp_an_angle (MP mp,scaled xpar, scaled ypar) {
19216 if ( (! ((xpar==0) && (ypar==0))) )
19217 return mp_n_arg(mp, xpar,ypar);
19222 @ The actual turning number is (for the moment) computed in a C function
19223 that receives eight integers corresponding to the four controlling points,
19224 and returns a single angle. Besides those, we have to account for discrete
19225 moves at the actual points.
19227 @d floor(a) (a>=0 ? a : -(int)(-a))
19228 @d bezier_error (720<<20)+1
19229 @d sign(v) ((v)>0 ? 1 : ((v)<0 ? -1 : 0 ))
19231 @d out ((double)(xo>>20))
19232 @d mid ((double)(xm>>20))
19233 @d in ((double)(xi>>20))
19234 @d divisor (256*256)
19235 @d double2angle(a) (int)floor(a*256.0*256.0*16.0)
19237 @<Declare unary action...@>=
19238 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19239 integer CX,integer CY,integer DX,integer DY);
19242 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19243 integer CX,integer CY,integer DX,integer DY) {
19245 integer deltax,deltay;
19246 double ax,ay,bx,by,cx,cy,dx,dy;
19247 angle xi = 0, xo = 0, xm = 0;
19249 ax=AX/divisor; ay=AY/divisor;
19250 bx=BX/divisor; by=BY/divisor;
19251 cx=CX/divisor; cy=CY/divisor;
19252 dx=DX/divisor; dy=DY/divisor;
19254 deltax = (BX-AX); deltay = (BY-AY);
19255 if (deltax==0 && deltay == 0) { deltax=(CX-AX); deltay=(CY-AY); }
19256 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19257 xi = mp_an_angle(mp,deltax,deltay);
19259 deltax = (CX-BX); deltay = (CY-BY);
19260 xm = mp_an_angle(mp,deltax,deltay);
19262 deltax = (DX-CX); deltay = (DY-CY);
19263 if (deltax==0 && deltay == 0) { deltax=(DX-BX); deltay=(DY-BY); }
19264 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19265 xo = mp_an_angle(mp,deltax,deltay);
19267 a = (bx-ax)*(cy-by) - (cx-bx)*(by-ay); /* a = (bp-ap)x(cp-bp); */
19268 b = (bx-ax)*(dy-cy) - (by-ay)*(dx-cx);; /* b = (bp-ap)x(dp-cp);*/
19269 c = (cx-bx)*(dy-cy) - (dx-cx)*(cy-by); /* c = (cp-bp)x(dp-cp);*/
19271 if ((a==0)&&(c==0)) {
19272 res = (b==0 ? 0 : (out-in));
19273 print_roots("no roots (a)");
19274 } else if ((a==0)||(c==0)) {
19275 if ((sign(b) == sign(a)) || (sign(b) == sign(c))) {
19276 res = out-in; /* ? */
19279 else if (res>180.0)
19281 print_roots("no roots (b)");
19283 res = out-in; /* ? */
19284 print_roots("one root (a)");
19286 } else if ((sign(a)*sign(c))<0) {
19287 res = out-in; /* ? */
19290 else if (res>180.0)
19292 print_roots("one root (b)");
19294 if (sign(a) == sign(b)) {
19295 res = out-in; /* ? */
19298 else if (res>180.0)
19300 print_roots("no roots (d)");
19302 if ((b*b) == (4*a*c)) {
19303 res = bezier_error;
19304 print_roots("double root"); /* cusp */
19305 } else if ((b*b) < (4*a*c)) {
19306 res = out-in; /* ? */
19307 if (res<=0.0 &&res>-180.0)
19309 else if (res>=0.0 && res<180.0)
19311 print_roots("no roots (e)");
19316 else if (res>180.0)
19318 print_roots("two roots"); /* two inflections */
19322 return double2angle(res);
19326 @d p_nextnext link(link(p))
19328 @d seven_twenty_deg 05500000000 /* $720\cdot2^{20}$, represents $720^\circ$ */
19330 @<Declare unary action...@>=
19331 scaled mp_new_turn_cycles (MP mp,pointer c) {
19332 angle res,ang; /* the angles of intermediate results */
19333 scaled turns; /* the turn counter */
19334 pointer p; /* for running around the path */
19335 integer xp,yp; /* coordinates of next point */
19336 integer x,y; /* helper coordinates */
19337 angle in_angle,out_angle; /* helper angles */
19338 int old_setting; /* saved |selector| setting */
19342 old_setting = mp->selector; mp->selector=term_only;
19343 if ( mp->internal[mp_tracing_commands]>unity ) {
19344 mp_begin_diagnostic(mp);
19345 mp_print_nl(mp, "");
19346 mp_end_diagnostic(mp, false);
19349 xp = x_coord(p_next); yp = y_coord(p_next);
19350 ang = mp_bezier_slope(mp,x_coord(p), y_coord(p), right_x(p), right_y(p),
19351 left_x(p_next), left_y(p_next), xp, yp);
19352 if ( ang>seven_twenty_deg ) {
19353 print_err("Strange path");
19355 mp->selector=old_setting;
19359 if ( res > one_eighty_deg ) {
19360 res = res - three_sixty_deg;
19361 turns = turns + unity;
19363 if ( res <= -one_eighty_deg ) {
19364 res = res + three_sixty_deg;
19365 turns = turns - unity;
19367 /* incoming angle at next point */
19368 x = left_x(p_next); y = left_y(p_next);
19369 if ( (xp==x)&&(yp==y) ) { x = right_x(p); y = right_y(p); };
19370 if ( (xp==x)&&(yp==y) ) { x = x_coord(p); y = y_coord(p); };
19371 in_angle = mp_an_angle(mp, xp - x, yp - y);
19372 /* outgoing angle at next point */
19373 x = right_x(p_next); y = right_y(p_next);
19374 if ( (xp==x)&&(yp==y) ) { x = left_x(p_nextnext); y = left_y(p_nextnext); };
19375 if ( (xp==x)&&(yp==y) ) { x = x_coord(p_nextnext); y = y_coord(p_nextnext); };
19376 out_angle = mp_an_angle(mp, x - xp, y- yp);
19377 ang = (out_angle - in_angle);
19381 if ( res >= one_eighty_deg ) {
19382 res = res - three_sixty_deg;
19383 turns = turns + unity;
19385 if ( res <= -one_eighty_deg ) {
19386 res = res + three_sixty_deg;
19387 turns = turns - unity;
19392 mp->selector=old_setting;
19397 @ This code is based on Bogus\l{}av Jackowski's
19398 |emergency_turningnumber| macro, with some minor changes by Taco
19399 Hoekwater. The macro code looked more like this:
19401 vardef turning\_number primary p =
19402 ~~save res, ang, turns;
19404 ~~if length p <= 2:
19405 ~~~~if Angle ((point 0 of p) - (postcontrol 0 of p)) >= 0: 1 else: -1 fi
19407 ~~~~for t = 0 upto length p-1 :
19408 ~~~~~~angc := Angle ((point t+1 of p) - (point t of p))
19409 ~~~~~~~~- Angle ((point t of p) - (point t-1 of p));
19410 ~~~~~~if angc > 180: angc := angc - 360; fi;
19411 ~~~~~~if angc < -180: angc := angc + 360; fi;
19412 ~~~~~~res := res + angc;
19417 The general idea is to calculate only the sum of the angles of
19418 straight lines between the points, of a path, not worrying about cusps
19419 or self-intersections in the segments at all. If the segment is not
19420 well-behaved, the result is not necesarily correct. But the old code
19421 was not always correct either, and worse, it sometimes failed for
19422 well-behaved paths as well. All known bugs that were triggered by the
19423 original code no longer occur with this code, and it runs roughly 3
19424 times as fast because the algorithm is much simpler.
19426 @ It is possible to overflow the return value of the |turn_cycles|
19427 function when the path is sufficiently long and winding, but I am not
19428 going to bother testing for that. In any case, it would only return
19429 the looped result value, which is not a big problem.
19431 The macro code for the repeat loop was a bit nicer to look
19432 at than the pascal code, because it could use |point -1 of p|. In
19433 pascal, the fastest way to loop around the path is not to look
19434 backward once, but forward twice. These defines help hide the trick.
19436 @d p_to link(link(p))
19440 @<Declare unary action...@>=
19441 scaled mp_turn_cycles (MP mp,pointer c) {
19442 angle res,ang; /* the angles of intermediate results */
19443 scaled turns; /* the turn counter */
19444 pointer p; /* for running around the path */
19445 res=0; turns= 0; p=c;
19447 ang = mp_an_angle (mp, x_coord(p_to) - x_coord(p_here),
19448 y_coord(p_to) - y_coord(p_here))
19449 - mp_an_angle (mp, x_coord(p_here) - x_coord(p_from),
19450 y_coord(p_here) - y_coord(p_from));
19453 if ( res >= three_sixty_deg ) {
19454 res = res - three_sixty_deg;
19455 turns = turns + unity;
19457 if ( res <= -three_sixty_deg ) {
19458 res = res + three_sixty_deg;
19459 turns = turns - unity;
19466 @ @<Declare unary action...@>=
19467 scaled mp_turn_cycles_wrapper (MP mp,pointer c) {
19469 scaled saved_t_o; /* tracing\_online saved */
19470 if ( (link(c)==c)||(link(link(c))==c) ) {
19471 if ( mp_an_angle (mp, x_coord(c) - right_x(c), y_coord(c) - right_y(c)) > 0 )
19476 nval = mp_new_turn_cycles(mp, c);
19477 oval = mp_turn_cycles(mp, c);
19478 if ( nval!=oval ) {
19479 saved_t_o=mp->internal[mp_tracing_online];
19480 mp->internal[mp_tracing_online]=unity;
19481 mp_begin_diagnostic(mp);
19482 mp_print_nl (mp, "Warning: the turningnumber algorithms do not agree."
19483 " The current computed value is ");
19484 mp_print_scaled(mp, nval);
19485 mp_print(mp, ", but the 'connect-the-dots' algorithm returned ");
19486 mp_print_scaled(mp, oval);
19487 mp_end_diagnostic(mp, false);
19488 mp->internal[mp_tracing_online]=saved_t_o;
19494 @ @<Declare unary action...@>=
19495 scaled mp_count_turns (MP mp,pointer c) {
19496 pointer p; /* a knot in envelope spec |c| */
19497 integer t; /* total pen offset changes counted */
19500 t=t+info(p)-zero_off;
19503 return ((t / 3)*unity);
19506 @ @d type_range(A,B) {
19507 if ( (mp->cur_type>=(A)) && (mp->cur_type<=(B)) )
19508 mp_flush_cur_exp(mp, true_code);
19509 else mp_flush_cur_exp(mp, false_code);
19510 mp->cur_type=mp_boolean_type;
19513 if ( mp->cur_type==(A) ) mp_flush_cur_exp(mp, true_code);
19514 else mp_flush_cur_exp(mp, false_code);
19515 mp->cur_type=mp_boolean_type;
19518 @<Additional cases of unary operators@>=
19519 case mp_boolean_type:
19520 type_range(mp_boolean_type,mp_unknown_boolean); break;
19521 case mp_string_type:
19522 type_range(mp_string_type,mp_unknown_string); break;
19524 type_range(mp_pen_type,mp_unknown_pen); break;
19526 type_range(mp_path_type,mp_unknown_path); break;
19527 case mp_picture_type:
19528 type_range(mp_picture_type,mp_unknown_picture); break;
19529 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
19531 type_test(c); break;
19532 case mp_numeric_type:
19533 type_range(mp_known,mp_independent); break;
19534 case known_op: case unknown_op:
19535 mp_test_known(mp, c); break;
19537 @ @<Declare unary action procedures@>=
19538 void mp_test_known (MP mp,quarterword c) {
19539 int b; /* is the current expression known? */
19540 pointer p,q; /* locations in a big node */
19542 switch (mp->cur_type) {
19543 case mp_vacuous: case mp_boolean_type: case mp_string_type:
19544 case mp_pen_type: case mp_path_type: case mp_picture_type:
19548 case mp_transform_type:
19549 case mp_color_type: case mp_cmykcolor_type: case mp_pair_type:
19550 p=value(mp->cur_exp);
19551 q=p+mp->big_node_size[mp->cur_type];
19554 if ( type(q)!=mp_known )
19563 if ( c==known_op ) mp_flush_cur_exp(mp, b);
19564 else mp_flush_cur_exp(mp, true_code+false_code-b);
19565 mp->cur_type=mp_boolean_type;
19568 @ @<Additional cases of unary operators@>=
19570 if ( mp->cur_type!=mp_path_type ) mp_flush_cur_exp(mp, false_code);
19571 else if ( left_type(mp->cur_exp)!=mp_endpoint ) mp_flush_cur_exp(mp, true_code);
19572 else mp_flush_cur_exp(mp, false_code);
19573 mp->cur_type=mp_boolean_type;
19576 @ @<Additional cases of unary operators@>=
19578 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19579 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, arc_length);
19580 else mp_flush_cur_exp(mp, mp_get_arc_length(mp, mp->cur_exp));
19583 @ Here we use the fact that |c-filled_op+fill_code| is the desired graphical
19585 @^data structure assumptions@>
19587 @<Additional cases of unary operators@>=
19593 if ( mp->cur_type!=mp_picture_type ) mp_flush_cur_exp(mp, false_code);
19594 else if ( link(dummy_loc(mp->cur_exp))==null ) mp_flush_cur_exp(mp, false_code);
19595 else if ( type(link(dummy_loc(mp->cur_exp)))==c+mp_fill_code-filled_op )
19596 mp_flush_cur_exp(mp, true_code);
19597 else mp_flush_cur_exp(mp, false_code);
19598 mp->cur_type=mp_boolean_type;
19601 @ @<Additional cases of unary operators@>=
19603 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19604 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, make_pen_op);
19606 mp->cur_type=mp_pen_type;
19607 mp->cur_exp=mp_make_pen(mp, mp->cur_exp,true);
19611 if ( mp->cur_type!=mp_pen_type ) mp_bad_unary(mp, make_path_op);
19613 mp->cur_type=mp_path_type;
19614 mp_make_path(mp, mp->cur_exp);
19618 if ( mp->cur_type==mp_path_type ) {
19619 p=mp_htap_ypoc(mp, mp->cur_exp);
19620 if ( right_type(p)==mp_endpoint ) p=link(p);
19621 mp_toss_knot_list(mp, mp->cur_exp); mp->cur_exp=p;
19622 } else if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19623 else mp_bad_unary(mp, reverse);
19626 @ The |pair_value| routine changes the current expression to a
19627 given ordered pair of values.
19629 @<Declare unary action procedures@>=
19630 void mp_pair_value (MP mp,scaled x, scaled y) {
19631 pointer p; /* a pair node */
19632 p=mp_get_node(mp, value_node_size);
19633 mp_flush_cur_exp(mp, p); mp->cur_type=mp_pair_type;
19634 type(p)=mp_pair_type; name_type(p)=mp_capsule; mp_init_big_node(mp, p);
19636 type(x_part_loc(p))=mp_known; value(x_part_loc(p))=x;
19637 type(y_part_loc(p))=mp_known; value(y_part_loc(p))=y;
19640 @ @<Additional cases of unary operators@>=
19642 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ll_corner_op);
19643 else mp_pair_value(mp, minx,miny);
19646 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, lr_corner_op);
19647 else mp_pair_value(mp, maxx,miny);
19650 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ul_corner_op);
19651 else mp_pair_value(mp, minx,maxy);
19654 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ur_corner_op);
19655 else mp_pair_value(mp, maxx,maxy);
19658 @ Here is a function that sets |minx|, |maxx|, |miny|, |maxy| to the bounding
19659 box of the current expression. The boolean result is |false| if the expression
19660 has the wrong type.
19662 @<Declare unary action procedures@>=
19663 boolean mp_get_cur_bbox (MP mp) {
19664 switch (mp->cur_type) {
19665 case mp_picture_type:
19666 mp_set_bbox(mp, mp->cur_exp,true);
19667 if ( minx_val(mp->cur_exp)>maxx_val(mp->cur_exp) ) {
19668 minx=0; maxx=0; miny=0; maxy=0;
19670 minx=minx_val(mp->cur_exp);
19671 maxx=maxx_val(mp->cur_exp);
19672 miny=miny_val(mp->cur_exp);
19673 maxy=maxy_val(mp->cur_exp);
19677 mp_path_bbox(mp, mp->cur_exp);
19680 mp_pen_bbox(mp, mp->cur_exp);
19688 @ @<Additional cases of unary operators@>=
19690 case close_from_op:
19691 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19692 else mp_do_read_or_close(mp,c);
19695 @ Here is a routine that interprets |cur_exp| as a file name and tries to read
19696 a line from the file or to close the file.
19698 @<Declare unary action procedures@>=
19699 void mp_do_read_or_close (MP mp,quarterword c) {
19700 readf_index n,n0; /* indices for searching |rd_fname| */
19701 @<Find the |n| where |rd_fname[n]=cur_exp|; if |cur_exp| must be inserted,
19702 call |start_read_input| and |goto found| or |not_found|@>;
19703 mp_begin_file_reading(mp);
19705 if ( mp_input_ln(mp, mp->rd_file[n] ) )
19707 mp_end_file_reading(mp);
19709 @<Record the end of file and set |cur_exp| to a dummy value@>;
19712 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
19715 mp_flush_cur_exp(mp, 0);
19716 mp_finish_read(mp);
19719 @ Free slots in the |rd_file| and |rd_fname| arrays are marked with NULL's in
19722 @<Find the |n| where |rd_fname[n]=cur_exp|...@>=
19727 fn = str(mp->cur_exp);
19728 while (mp_xstrcmp(fn,mp->rd_fname[n])!=0) {
19731 } else if ( c==close_from_op ) {
19734 if ( n0==mp->read_files ) {
19735 if ( mp->read_files<mp->max_read_files ) {
19736 incr(mp->read_files);
19741 l = mp->max_read_files + (mp->max_read_files>>2);
19742 rd_file = xmalloc((l+1), sizeof(void *));
19743 rd_fname = xmalloc((l+1), sizeof(char *));
19744 for (k=0;k<=l;k++) {
19745 if (k<=mp->max_read_files) {
19746 rd_file[k]=mp->rd_file[k];
19747 rd_fname[k]=mp->rd_fname[k];
19753 xfree(mp->rd_file); xfree(mp->rd_fname);
19754 mp->max_read_files = l;
19755 mp->rd_file = rd_file;
19756 mp->rd_fname = rd_fname;
19760 if ( mp_start_read_input(mp,fn,n) )
19765 if ( mp->rd_fname[n]==NULL ) { n0=n; }
19767 if ( c==close_from_op ) {
19768 (mp->close_file)(mp->rd_file[n]);
19773 @ @<Record the end of file and set |cur_exp| to a dummy value@>=
19774 xfree(mp->rd_fname[n]);
19775 mp->rd_fname[n]=NULL;
19776 if ( n==mp->read_files-1 ) mp->read_files=n;
19777 if ( c==close_from_op )
19779 mp_flush_cur_exp(mp, mp->eof_line);
19780 mp->cur_type=mp_string_type
19782 @ The string denoting end-of-file is a one-byte string at position zero, by definition
19785 str_number eof_line;
19790 @ Finally, we have the operations that combine a capsule~|p|
19791 with the current expression.
19793 @c @<Declare binary action procedures@>;
19794 void mp_do_binary (MP mp,pointer p, quarterword c) {
19795 pointer q,r,rr; /* for list manipulation */
19796 pointer old_p,old_exp; /* capsules to recycle */
19797 integer v; /* for numeric manipulation */
19799 if ( mp->internal[mp_tracing_commands]>two ) {
19800 @<Trace the current binary operation@>;
19802 @<Sidestep |independent| cases in capsule |p|@>;
19803 @<Sidestep |independent| cases in the current expression@>;
19805 case plus: case minus:
19806 @<Add or subtract the current expression from |p|@>;
19808 @<Additional cases of binary operators@>;
19809 }; /* there are no other cases */
19810 mp_recycle_value(mp, p);
19811 mp_free_node(mp, p,value_node_size); /* |return| to avoid this */
19813 @<Recycle any sidestepped |independent| capsules@>;
19816 @ @<Declare binary action...@>=
19817 void mp_bad_binary (MP mp,pointer p, quarterword c) {
19818 mp_disp_err(mp, p,"");
19819 exp_err("Not implemented: ");
19820 @.Not implemented...@>
19821 if ( c>=min_of ) mp_print_op(mp, c);
19822 mp_print_known_or_unknown_type(mp, type(p),p);
19823 if ( c>=min_of ) mp_print(mp, "of"); else mp_print_op(mp, c);
19824 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
19825 help3("I'm afraid I don't know how to apply that operation to that")
19826 ("combination of types. Continue, and I'll return the second")
19827 ("argument (see above) as the result of the operation.");
19828 mp_put_get_error(mp);
19830 void mp_bad_envelope_pen (MP mp) {
19831 mp_disp_err(mp, null,"");
19832 exp_err("Not implemented: envelope(elliptical pen)of(path)");
19833 @.Not implemented...@>
19834 help3("I'm afraid I don't know how to apply that operation to that")
19835 ("combination of types. Continue, and I'll return the second")
19836 ("argument (see above) as the result of the operation.");
19837 mp_put_get_error(mp);
19840 @ @<Trace the current binary operation@>=
19842 mp_begin_diagnostic(mp); mp_print_nl(mp, "{(");
19843 mp_print_exp(mp,p,0); /* show the operand, but not verbosely */
19844 mp_print_char(mp,')'); mp_print_op(mp,c); mp_print_char(mp,'(');
19845 mp_print_exp(mp,null,0); mp_print(mp,")}");
19846 mp_end_diagnostic(mp, false);
19849 @ Several of the binary operations are potentially complicated by the
19850 fact that |independent| values can sneak into capsules. For example,
19851 we've seen an instance of this difficulty in the unary operation
19852 of negation. In order to reduce the number of cases that need to be
19853 handled, we first change the two operands (if necessary)
19854 to rid them of |independent| components. The original operands are
19855 put into capsules called |old_p| and |old_exp|, which will be
19856 recycled after the binary operation has been safely carried out.
19858 @<Recycle any sidestepped |independent| capsules@>=
19859 if ( old_p!=null ) {
19860 mp_recycle_value(mp, old_p); mp_free_node(mp, old_p,value_node_size);
19862 if ( old_exp!=null ) {
19863 mp_recycle_value(mp, old_exp); mp_free_node(mp, old_exp,value_node_size);
19866 @ A big node is considered to be ``tarnished'' if it contains at least one
19867 independent component. We will define a simple function called `|tarnished|'
19868 that returns |null| if and only if its argument is not tarnished.
19870 @<Sidestep |independent| cases in capsule |p|@>=
19872 case mp_transform_type:
19873 case mp_color_type:
19874 case mp_cmykcolor_type:
19876 old_p=mp_tarnished(mp, p);
19878 case mp_independent: old_p=mp_void; break;
19879 default: old_p=null; break;
19881 if ( old_p!=null ) {
19882 q=mp_stash_cur_exp(mp); old_p=p; mp_make_exp_copy(mp, old_p);
19883 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
19886 @ @<Sidestep |independent| cases in the current expression@>=
19887 switch (mp->cur_type) {
19888 case mp_transform_type:
19889 case mp_color_type:
19890 case mp_cmykcolor_type:
19892 old_exp=mp_tarnished(mp, mp->cur_exp);
19894 case mp_independent:old_exp=mp_void; break;
19895 default: old_exp=null; break;
19897 if ( old_exp!=null ) {
19898 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
19901 @ @<Declare binary action...@>=
19902 pointer mp_tarnished (MP mp,pointer p) {
19903 pointer q; /* beginning of the big node */
19904 pointer r; /* current position in the big node */
19905 q=value(p); r=q+mp->big_node_size[type(p)];
19908 if ( type(r)==mp_independent ) return mp_void;
19913 @ @<Add or subtract the current expression from |p|@>=
19914 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
19915 mp_bad_binary(mp, p,c);
19917 if ((mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
19918 mp_add_or_subtract(mp, p,null,c);
19920 if ( mp->cur_type!=type(p) ) {
19921 mp_bad_binary(mp, p,c);
19923 q=value(p); r=value(mp->cur_exp);
19924 rr=r+mp->big_node_size[mp->cur_type];
19926 mp_add_or_subtract(mp, q,r,c);
19933 @ The first argument to |add_or_subtract| is the location of a value node
19934 in a capsule or pair node that will soon be recycled. The second argument
19935 is either a location within a pair or transform node of |cur_exp|,
19936 or it is null (which means that |cur_exp| itself should be the second
19937 argument). The third argument is either |plus| or |minus|.
19939 The sum or difference of the numeric quantities will replace the second
19940 operand. Arithmetic overflow may go undetected; users aren't supposed to
19941 be monkeying around with really big values.
19943 @<Declare binary action...@>=
19944 @<Declare the procedure called |dep_finish|@>;
19945 void mp_add_or_subtract (MP mp,pointer p, pointer q, quarterword c) {
19946 small_number s,t; /* operand types */
19947 pointer r; /* list traverser */
19948 integer v; /* second operand value */
19951 if ( t<mp_dependent ) v=mp->cur_exp; else v=dep_list(mp->cur_exp);
19954 if ( t<mp_dependent ) v=value(q); else v=dep_list(q);
19956 if ( t==mp_known ) {
19957 if ( c==minus ) negate(v);
19958 if ( type(p)==mp_known ) {
19959 v=mp_slow_add(mp, value(p),v);
19960 if ( q==null ) mp->cur_exp=v; else value(q)=v;
19963 @<Add a known value to the constant term of |dep_list(p)|@>;
19965 if ( c==minus ) mp_negate_dep_list(mp, v);
19966 @<Add operand |p| to the dependency list |v|@>;
19970 @ @<Add a known value to the constant term of |dep_list(p)|@>=
19972 while ( info(r)!=null ) r=link(r);
19973 value(r)=mp_slow_add(mp, value(r),v);
19975 q=mp_get_node(mp, value_node_size); mp->cur_exp=q; mp->cur_type=type(p);
19976 name_type(q)=mp_capsule;
19978 dep_list(q)=dep_list(p); type(q)=type(p);
19979 prev_dep(q)=prev_dep(p); link(prev_dep(p))=q;
19980 type(p)=mp_known; /* this will keep the recycler from collecting non-garbage */
19982 @ We prefer |dependent| lists to |mp_proto_dependent| ones, because it is
19983 nice to retain the extra accuracy of |fraction| coefficients.
19984 But we have to handle both kinds, and mixtures too.
19986 @<Add operand |p| to the dependency list |v|@>=
19987 if ( type(p)==mp_known ) {
19988 @<Add the known |value(p)| to the constant term of |v|@>;
19990 s=type(p); r=dep_list(p);
19991 if ( t==mp_dependent ) {
19992 if ( s==mp_dependent ) {
19993 if ( mp_max_coef(mp, r)+mp_max_coef(mp, v)<coef_bound )
19994 v=mp_p_plus_q(mp, v,r,mp_dependent); goto DONE;
19995 } /* |fix_needed| will necessarily be false */
19996 t=mp_proto_dependent;
19997 v=mp_p_over_v(mp, v,unity,mp_dependent,mp_proto_dependent);
19999 if ( s==mp_proto_dependent ) v=mp_p_plus_q(mp, v,r,mp_proto_dependent);
20000 else v=mp_p_plus_fq(mp, v,unity,r,mp_proto_dependent,mp_dependent);
20002 @<Output the answer, |v| (which might have become |known|)@>;
20005 @ @<Add the known |value(p)| to the constant term of |v|@>=
20007 while ( info(v)!=null ) v=link(v);
20008 value(v)=mp_slow_add(mp, value(p),value(v));
20011 @ @<Output the answer, |v| (which might have become |known|)@>=
20012 if ( q!=null ) mp_dep_finish(mp, v,q,t);
20013 else { mp->cur_type=t; mp_dep_finish(mp, v,null,t); }
20015 @ Here's the current situation: The dependency list |v| of type |t|
20016 should either be put into the current expression (if |q=null|) or
20017 into location |q| within a pair node (otherwise). The destination (|cur_exp|
20018 or |q|) formerly held a dependency list with the same
20019 final pointer as the list |v|.
20021 @<Declare the procedure called |dep_finish|@>=
20022 void mp_dep_finish (MP mp, pointer v, pointer q, small_number t) {
20023 pointer p; /* the destination */
20024 scaled vv; /* the value, if it is |known| */
20025 if ( q==null ) p=mp->cur_exp; else p=q;
20026 dep_list(p)=v; type(p)=t;
20027 if ( info(v)==null ) {
20030 mp_flush_cur_exp(mp, vv);
20032 mp_recycle_value(mp, p); type(q)=mp_known; value(q)=vv;
20034 } else if ( q==null ) {
20037 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20040 @ Let's turn now to the six basic relations of comparison.
20042 @<Additional cases of binary operators@>=
20043 case less_than: case less_or_equal: case greater_than:
20044 case greater_or_equal: case equal_to: case unequal_to:
20045 check_arith; /* at this point |arith_error| should be |false|? */
20046 if ( (mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
20047 mp_add_or_subtract(mp, p,null,minus); /* |cur_exp:=(p)-cur_exp| */
20048 } else if ( mp->cur_type!=type(p) ) {
20049 mp_bad_binary(mp, p,c); goto DONE;
20050 } else if ( mp->cur_type==mp_string_type ) {
20051 mp_flush_cur_exp(mp, mp_str_vs_str(mp, value(p),mp->cur_exp));
20052 } else if ((mp->cur_type==mp_unknown_string)||
20053 (mp->cur_type==mp_unknown_boolean) ) {
20054 @<Check if unknowns have been equated@>;
20055 } else if ( (mp->cur_type<=mp_pair_type)&&(mp->cur_type>=mp_transform_type)) {
20056 @<Reduce comparison of big nodes to comparison of scalars@>;
20057 } else if ( mp->cur_type==mp_boolean_type ) {
20058 mp_flush_cur_exp(mp, mp->cur_exp-value(p));
20060 mp_bad_binary(mp, p,c); goto DONE;
20062 @<Compare the current expression with zero@>;
20064 mp->arith_error=false; /* ignore overflow in comparisons */
20067 @ @<Compare the current expression with zero@>=
20068 if ( mp->cur_type!=mp_known ) {
20069 if ( mp->cur_type<mp_known ) {
20070 mp_disp_err(mp, p,"");
20071 help1("The quantities shown above have not been equated.")
20073 help2("Oh dear. I can\'t decide if the expression above is positive,")
20074 ("negative, or zero. So this comparison test won't be `true'.");
20076 exp_err("Unknown relation will be considered false");
20077 @.Unknown relation...@>
20078 mp_put_get_flush_error(mp, false_code);
20081 case less_than: boolean_reset(mp->cur_exp<0); break;
20082 case less_or_equal: boolean_reset(mp->cur_exp<=0); break;
20083 case greater_than: boolean_reset(mp->cur_exp>0); break;
20084 case greater_or_equal: boolean_reset(mp->cur_exp>=0); break;
20085 case equal_to: boolean_reset(mp->cur_exp==0); break;
20086 case unequal_to: boolean_reset(mp->cur_exp!=0); break;
20087 }; /* there are no other cases */
20089 mp->cur_type=mp_boolean_type
20091 @ When two unknown strings are in the same ring, we know that they are
20092 equal. Otherwise, we don't know whether they are equal or not, so we
20095 @<Check if unknowns have been equated@>=
20097 q=value(mp->cur_exp);
20098 while ( (q!=mp->cur_exp)&&(q!=p) ) q=value(q);
20099 if ( q==p ) mp_flush_cur_exp(mp, 0);
20102 @ @<Reduce comparison of big nodes to comparison of scalars@>=
20104 q=value(p); r=value(mp->cur_exp);
20105 rr=r+mp->big_node_size[mp->cur_type]-2;
20106 while (1) { mp_add_or_subtract(mp, q,r,minus);
20107 if ( type(r)!=mp_known ) break;
20108 if ( value(r)!=0 ) break;
20109 if ( r==rr ) break;
20112 mp_take_part(mp, name_type(r)+x_part-mp_x_part_sector);
20115 @ Here we use the sneaky fact that |and_op-false_code=or_op-true_code|.
20117 @<Additional cases of binary operators@>=
20120 if ( (type(p)!=mp_boolean_type)||(mp->cur_type!=mp_boolean_type) )
20121 mp_bad_binary(mp, p,c);
20122 else if ( value(p)==c+false_code-and_op ) mp->cur_exp=value(p);
20125 @ @<Additional cases of binary operators@>=
20127 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
20128 mp_bad_binary(mp, p,times);
20129 } else if ( (mp->cur_type==mp_known)||(type(p)==mp_known) ) {
20130 @<Multiply when at least one operand is known@>;
20131 } else if ( (mp_nice_color_or_pair(mp, p,type(p))&&(mp->cur_type>mp_pair_type))
20132 ||(mp_nice_color_or_pair(mp, mp->cur_exp,mp->cur_type)&&
20133 (type(p)>mp_pair_type)) ) {
20134 mp_hard_times(mp, p); return;
20136 mp_bad_binary(mp, p,times);
20140 @ @<Multiply when at least one operand is known@>=
20142 if ( type(p)==mp_known ) {
20143 v=value(p); mp_free_node(mp, p,value_node_size);
20145 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20147 if ( mp->cur_type==mp_known ) {
20148 mp->cur_exp=mp_take_scaled(mp, mp->cur_exp,v);
20149 } else if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_color_type)||
20150 (mp->cur_type==mp_cmykcolor_type) ) {
20151 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20153 p=p-2; mp_dep_mult(mp, p,v,true);
20154 } while (p!=value(mp->cur_exp));
20156 mp_dep_mult(mp, null,v,true);
20161 @ @<Declare binary action...@>=
20162 void mp_dep_mult (MP mp,pointer p, integer v, boolean v_is_scaled) {
20163 pointer q; /* the dependency list being multiplied by |v| */
20164 small_number s,t; /* its type, before and after */
20167 } else if ( type(p)!=mp_known ) {
20170 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
20171 else value(p)=mp_take_fraction(mp, value(p),v);
20174 t=type(q); q=dep_list(q); s=t;
20175 if ( t==mp_dependent ) if ( v_is_scaled )
20176 if (mp_ab_vs_cd(mp, mp_max_coef(mp,q),abs(v),coef_bound-1,unity)>=0 )
20177 t=mp_proto_dependent;
20178 q=mp_p_times_v(mp, q,v,s,t,v_is_scaled);
20179 mp_dep_finish(mp, q,p,t);
20182 @ Here is a routine that is similar to |times|; but it is invoked only
20183 internally, when |v| is a |fraction| whose magnitude is at most~1,
20184 and when |cur_type>=mp_color_type|.
20186 @c void mp_frac_mult (MP mp,scaled n, scaled d) {
20187 /* multiplies |cur_exp| by |n/d| */
20188 pointer p; /* a pair node */
20189 pointer old_exp; /* a capsule to recycle */
20190 fraction v; /* |n/d| */
20191 if ( mp->internal[mp_tracing_commands]>two ) {
20192 @<Trace the fraction multiplication@>;
20194 switch (mp->cur_type) {
20195 case mp_transform_type:
20196 case mp_color_type:
20197 case mp_cmykcolor_type:
20199 old_exp=mp_tarnished(mp, mp->cur_exp);
20201 case mp_independent: old_exp=mp_void; break;
20202 default: old_exp=null; break;
20204 if ( old_exp!=null ) {
20205 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
20207 v=mp_make_fraction(mp, n,d);
20208 if ( mp->cur_type==mp_known ) {
20209 mp->cur_exp=mp_take_fraction(mp, mp->cur_exp,v);
20210 } else if ( mp->cur_type<=mp_pair_type ) {
20211 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20214 mp_dep_mult(mp, p,v,false);
20215 } while (p!=value(mp->cur_exp));
20217 mp_dep_mult(mp, null,v,false);
20219 if ( old_exp!=null ) {
20220 mp_recycle_value(mp, old_exp);
20221 mp_free_node(mp, old_exp,value_node_size);
20225 @ @<Trace the fraction multiplication@>=
20227 mp_begin_diagnostic(mp);
20228 mp_print_nl(mp, "{("); mp_print_scaled(mp,n); mp_print_char(mp,'/');
20229 mp_print_scaled(mp,d); mp_print(mp,")*("); mp_print_exp(mp,null,0);
20231 mp_end_diagnostic(mp, false);
20234 @ The |hard_times| routine multiplies a nice color or pair by a dependency list.
20236 @<Declare binary action procedures@>=
20237 void mp_hard_times (MP mp,pointer p) {
20238 pointer q; /* a copy of the dependent variable |p| */
20239 pointer r; /* a component of the big node for the nice color or pair */
20240 scaled v; /* the known value for |r| */
20241 if ( type(p)<=mp_pair_type ) {
20242 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p); p=q;
20243 }; /* now |cur_type=mp_pair_type| or |cur_type=mp_color_type| */
20244 r=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20249 if ( r==value(mp->cur_exp) )
20251 mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(p)));
20252 mp_dep_mult(mp, r,v,true);
20254 mp->mem[value_loc(r)]=mp->mem[value_loc(p)];
20255 link(prev_dep(p))=r;
20256 mp_free_node(mp, p,value_node_size);
20257 mp_dep_mult(mp, r,v,true);
20260 @ @<Additional cases of binary operators@>=
20262 if ( (mp->cur_type!=mp_known)||(type(p)<mp_color_type) ) {
20263 mp_bad_binary(mp, p,over);
20265 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20267 @<Squeal about division by zero@>;
20269 if ( mp->cur_type==mp_known ) {
20270 mp->cur_exp=mp_make_scaled(mp, mp->cur_exp,v);
20271 } else if ( mp->cur_type<=mp_pair_type ) {
20272 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20274 p=p-2; mp_dep_div(mp, p,v);
20275 } while (p!=value(mp->cur_exp));
20277 mp_dep_div(mp, null,v);
20284 @ @<Declare binary action...@>=
20285 void mp_dep_div (MP mp,pointer p, scaled v) {
20286 pointer q; /* the dependency list being divided by |v| */
20287 small_number s,t; /* its type, before and after */
20288 if ( p==null ) q=mp->cur_exp;
20289 else if ( type(p)!=mp_known ) q=p;
20290 else { value(p)=mp_make_scaled(mp, value(p),v); return; };
20291 t=type(q); q=dep_list(q); s=t;
20292 if ( t==mp_dependent )
20293 if ( mp_ab_vs_cd(mp, mp_max_coef(mp,q),unity,coef_bound-1,abs(v))>=0 )
20294 t=mp_proto_dependent;
20295 q=mp_p_over_v(mp, q,v,s,t);
20296 mp_dep_finish(mp, q,p,t);
20299 @ @<Squeal about division by zero@>=
20301 exp_err("Division by zero");
20302 @.Division by zero@>
20303 help2("You're trying to divide the quantity shown above the error")
20304 ("message by zero. I'm going to divide it by one instead.");
20305 mp_put_get_error(mp);
20308 @ @<Additional cases of binary operators@>=
20311 if ( (mp->cur_type==mp_known)&&(type(p)==mp_known) ) {
20312 if ( c==pythag_add ) mp->cur_exp=mp_pyth_add(mp, value(p),mp->cur_exp);
20313 else mp->cur_exp=mp_pyth_sub(mp, value(p),mp->cur_exp);
20314 } else mp_bad_binary(mp, p,c);
20317 @ The next few sections of the program deal with affine transformations
20318 of coordinate data.
20320 @<Additional cases of binary operators@>=
20321 case rotated_by: case slanted_by:
20322 case scaled_by: case shifted_by: case transformed_by:
20323 case x_scaled: case y_scaled: case z_scaled:
20324 if ( type(p)==mp_path_type ) {
20325 path_trans(c,p); return;
20326 } else if ( type(p)==mp_pen_type ) {
20328 mp->cur_exp=mp_convex_hull(mp, mp->cur_exp);
20329 /* rounding error could destroy convexity */
20331 } else if ( (type(p)==mp_pair_type)||(type(p)==mp_transform_type) ) {
20332 mp_big_trans(mp, p,c);
20333 } else if ( type(p)==mp_picture_type ) {
20334 mp_do_edges_trans(mp, p,c); return;
20336 mp_bad_binary(mp, p,c);
20340 @ Let |c| be one of the eight transform operators. The procedure call
20341 |set_up_trans(c)| first changes |cur_exp| to a transform that corresponds to
20342 |c| and the original value of |cur_exp|. (In particular, |cur_exp| doesn't
20343 change at all if |c=transformed_by|.)
20345 Then, if all components of the resulting transform are |known|, they are
20346 moved to the global variables |txx|, |txy|, |tyx|, |tyy|, |tx|, |ty|;
20347 and |cur_exp| is changed to the known value zero.
20349 @<Declare binary action...@>=
20350 void mp_set_up_trans (MP mp,quarterword c) {
20351 pointer p,q,r; /* list manipulation registers */
20352 if ( (c!=transformed_by)||(mp->cur_type!=mp_transform_type) ) {
20353 @<Put the current transform into |cur_exp|@>;
20355 @<If the current transform is entirely known, stash it in global variables;
20356 otherwise |return|@>;
20365 scaled ty; /* current transform coefficients */
20367 @ @<Put the current transform...@>=
20369 p=mp_stash_cur_exp(mp);
20370 mp->cur_exp=mp_id_transform(mp);
20371 mp->cur_type=mp_transform_type;
20372 q=value(mp->cur_exp);
20374 @<For each of the eight cases, change the relevant fields of |cur_exp|
20376 but do nothing if capsule |p| doesn't have the appropriate type@>;
20377 }; /* there are no other cases */
20378 mp_disp_err(mp, p,"Improper transformation argument");
20379 @.Improper transformation argument@>
20380 help3("The expression shown above has the wrong type,")
20381 ("so I can\'t transform anything using it.")
20382 ("Proceed, and I'll omit the transformation.");
20383 mp_put_get_error(mp);
20385 mp_recycle_value(mp, p);
20386 mp_free_node(mp, p,value_node_size);
20389 @ @<If the current transform is entirely known, ...@>=
20390 q=value(mp->cur_exp); r=q+transform_node_size;
20393 if ( type(r)!=mp_known ) return;
20395 mp->txx=value(xx_part_loc(q));
20396 mp->txy=value(xy_part_loc(q));
20397 mp->tyx=value(yx_part_loc(q));
20398 mp->tyy=value(yy_part_loc(q));
20399 mp->tx=value(x_part_loc(q));
20400 mp->ty=value(y_part_loc(q));
20401 mp_flush_cur_exp(mp, 0)
20403 @ @<For each of the eight cases...@>=
20405 if ( type(p)==mp_known )
20406 @<Install sines and cosines, then |goto done|@>;
20409 if ( type(p)>mp_pair_type ) {
20410 mp_install(mp, xy_part_loc(q),p); goto DONE;
20414 if ( type(p)>mp_pair_type ) {
20415 mp_install(mp, xx_part_loc(q),p); mp_install(mp, yy_part_loc(q),p);
20420 if ( type(p)==mp_pair_type ) {
20421 r=value(p); mp_install(mp, x_part_loc(q),x_part_loc(r));
20422 mp_install(mp, y_part_loc(q),y_part_loc(r)); goto DONE;
20426 if ( type(p)>mp_pair_type ) {
20427 mp_install(mp, xx_part_loc(q),p); goto DONE;
20431 if ( type(p)>mp_pair_type ) {
20432 mp_install(mp, yy_part_loc(q),p); goto DONE;
20436 if ( type(p)==mp_pair_type )
20437 @<Install a complex multiplier, then |goto done|@>;
20439 case transformed_by:
20443 @ @<Install sines and cosines, then |goto done|@>=
20444 { mp_n_sin_cos(mp, (value(p) % three_sixty_units)*16);
20445 value(xx_part_loc(q))=mp_round_fraction(mp, mp->n_cos);
20446 value(yx_part_loc(q))=mp_round_fraction(mp, mp->n_sin);
20447 value(xy_part_loc(q))=-value(yx_part_loc(q));
20448 value(yy_part_loc(q))=value(xx_part_loc(q));
20452 @ @<Install a complex multiplier, then |goto done|@>=
20455 mp_install(mp, xx_part_loc(q),x_part_loc(r));
20456 mp_install(mp, yy_part_loc(q),x_part_loc(r));
20457 mp_install(mp, yx_part_loc(q),y_part_loc(r));
20458 if ( type(y_part_loc(r))==mp_known ) negate(value(y_part_loc(r)));
20459 else mp_negate_dep_list(mp, dep_list(y_part_loc(r)));
20460 mp_install(mp, xy_part_loc(q),y_part_loc(r));
20464 @ Procedure |set_up_known_trans| is like |set_up_trans|, but it
20465 insists that the transformation be entirely known.
20467 @<Declare binary action...@>=
20468 void mp_set_up_known_trans (MP mp,quarterword c) {
20469 mp_set_up_trans(mp, c);
20470 if ( mp->cur_type!=mp_known ) {
20471 exp_err("Transform components aren't all known");
20472 @.Transform components...@>
20473 help3("I'm unable to apply a partially specified transformation")
20474 ("except to a fully known pair or transform.")
20475 ("Proceed, and I'll omit the transformation.");
20476 mp_put_get_flush_error(mp, 0);
20477 mp->txx=unity; mp->txy=0; mp->tyx=0; mp->tyy=unity;
20478 mp->tx=0; mp->ty=0;
20482 @ Here's a procedure that applies the transform |txx..ty| to a pair of
20483 coordinates in locations |p| and~|q|.
20485 @<Declare binary action...@>=
20486 void mp_trans (MP mp,pointer p, pointer q) {
20487 scaled v; /* the new |x| value */
20488 v=mp_take_scaled(mp, mp->mem[p].sc,mp->txx)+
20489 mp_take_scaled(mp, mp->mem[q].sc,mp->txy)+mp->tx;
20490 mp->mem[q].sc=mp_take_scaled(mp, mp->mem[p].sc,mp->tyx)+
20491 mp_take_scaled(mp, mp->mem[q].sc,mp->tyy)+mp->ty;
20495 @ The simplest transformation procedure applies a transform to all
20496 coordinates of a path. The |path_trans(c)(p)| macro applies
20497 a transformation defined by |cur_exp| and the transform operator |c|
20500 @d path_trans(A,B) { mp_set_up_known_trans(mp, (A));
20501 mp_unstash_cur_exp(mp, (B));
20502 mp_do_path_trans(mp, mp->cur_exp); }
20504 @<Declare binary action...@>=
20505 void mp_do_path_trans (MP mp,pointer p) {
20506 pointer q; /* list traverser */
20509 if ( left_type(q)!=mp_endpoint )
20510 mp_trans(mp, q+3,q+4); /* that's |left_x| and |left_y| */
20511 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20512 if ( right_type(q)!=mp_endpoint )
20513 mp_trans(mp, q+5,q+6); /* that's |right_x| and |right_y| */
20514 @^data structure assumptions@>
20519 @ Transforming a pen is very similar, except that there are no |left_type|
20520 and |right_type| fields.
20522 @d pen_trans(A,B) { mp_set_up_known_trans(mp, (A));
20523 mp_unstash_cur_exp(mp, (B));
20524 mp_do_pen_trans(mp, mp->cur_exp); }
20526 @<Declare binary action...@>=
20527 void mp_do_pen_trans (MP mp,pointer p) {
20528 pointer q; /* list traverser */
20529 if ( pen_is_elliptical(p) ) {
20530 mp_trans(mp, p+3,p+4); /* that's |left_x| and |left_y| */
20531 mp_trans(mp, p+5,p+6); /* that's |right_x| and |right_y| */
20535 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20536 @^data structure assumptions@>
20541 @ The next transformation procedure applies to edge structures. It will do
20542 any transformation, but the results may be substandard if the picture contains
20543 text that uses downloaded bitmap fonts. The binary action procedure is
20544 |do_edges_trans|, but we also need a function that just scales a picture.
20545 That routine is |scale_edges|. Both it and the underlying routine |edges_trans|
20546 should be thought of as procedures that update an edge structure |h|, except
20547 that they have to return a (possibly new) structure because of the need to call
20550 @<Declare binary action...@>=
20551 pointer mp_edges_trans (MP mp, pointer h) {
20552 pointer q; /* the object being transformed */
20553 pointer r,s; /* for list manipulation */
20554 scaled sx,sy; /* saved transformation parameters */
20555 scaled sqdet; /* square root of determinant for |dash_scale| */
20556 integer sgndet; /* sign of the determinant */
20557 scaled v; /* a temporary value */
20558 h=mp_private_edges(mp, h);
20559 sqdet=mp_sqrt_det(mp, mp->txx,mp->txy,mp->tyx,mp->tyy);
20560 sgndet=mp_ab_vs_cd(mp, mp->txx,mp->tyy,mp->txy,mp->tyx);
20561 if ( dash_list(h)!=null_dash ) {
20562 @<Try to transform the dash list of |h|@>;
20564 @<Make the bounding box of |h| unknown if it can't be updated properly
20565 without scanning the whole structure@>;
20566 q=link(dummy_loc(h));
20567 while ( q!=null ) {
20568 @<Transform graphical object |q|@>;
20573 void mp_do_edges_trans (MP mp,pointer p, quarterword c) {
20574 mp_set_up_known_trans(mp, c);
20575 value(p)=mp_edges_trans(mp, value(p));
20576 mp_unstash_cur_exp(mp, p);
20578 void mp_scale_edges (MP mp) {
20579 mp->txx=mp->se_sf; mp->tyy=mp->se_sf;
20580 mp->txy=0; mp->tyx=0; mp->tx=0; mp->ty=0;
20581 mp->se_pic=mp_edges_trans(mp, mp->se_pic);
20584 @ @<Try to transform the dash list of |h|@>=
20585 if ( (mp->txy!=0)||(mp->tyx!=0)||
20586 (mp->ty!=0)||(abs(mp->txx)!=abs(mp->tyy))) {
20587 mp_flush_dash_list(mp, h);
20589 if ( mp->txx<0 ) { @<Reverse the dash list of |h|@>; }
20590 @<Scale the dash list by |txx| and shift it by |tx|@>;
20591 dash_y(h)=mp_take_scaled(mp, dash_y(h),abs(mp->tyy));
20594 @ @<Reverse the dash list of |h|@>=
20597 dash_list(h)=null_dash;
20598 while ( r!=null_dash ) {
20600 v=start_x(s); start_x(s)=stop_x(s); stop_x(s)=v;
20601 link(s)=dash_list(h);
20606 @ @<Scale the dash list by |txx| and shift it by |tx|@>=
20608 while ( r!=null_dash ) {
20609 start_x(r)=mp_take_scaled(mp, start_x(r),mp->txx)+mp->tx;
20610 stop_x(r)=mp_take_scaled(mp, stop_x(r),mp->txx)+mp->tx;
20614 @ @<Make the bounding box of |h| unknown if it can't be updated properly...@>=
20615 if ( (mp->txx==0)&&(mp->tyy==0) ) {
20616 @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>;
20617 } else if ( (mp->txy!=0)||(mp->tyx!=0) ) {
20618 mp_init_bbox(mp, h);
20621 if ( minx_val(h)<=maxx_val(h) ) {
20622 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift by
20629 @ @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>=
20631 v=minx_val(h); minx_val(h)=miny_val(h); miny_val(h)=v;
20632 v=maxx_val(h); maxx_val(h)=maxy_val(h); maxy_val(h)=v;
20635 @ The sum ``|txx+txy|'' is whichever of |txx| or |txy| is nonzero. The other
20638 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift...@>=
20640 minx_val(h)=mp_take_scaled(mp, minx_val(h),mp->txx+mp->txy)+mp->tx;
20641 maxx_val(h)=mp_take_scaled(mp, maxx_val(h),mp->txx+mp->txy)+mp->tx;
20642 miny_val(h)=mp_take_scaled(mp, miny_val(h),mp->tyx+mp->tyy)+mp->ty;
20643 maxy_val(h)=mp_take_scaled(mp, maxy_val(h),mp->tyx+mp->tyy)+mp->ty;
20644 if ( mp->txx+mp->txy<0 ) {
20645 v=minx_val(h); minx_val(h)=maxx_val(h); maxx_val(h)=v;
20647 if ( mp->tyx+mp->tyy<0 ) {
20648 v=miny_val(h); miny_val(h)=maxy_val(h); maxy_val(h)=v;
20652 @ Now we ready for the main task of transforming the graphical objects in edge
20655 @<Transform graphical object |q|@>=
20657 case mp_fill_code: case mp_stroked_code:
20658 mp_do_path_trans(mp, path_p(q));
20659 @<Transform |pen_p(q)|, making sure polygonal pens stay counter-clockwise@>;
20661 case mp_start_clip_code: case mp_start_bounds_code:
20662 mp_do_path_trans(mp, path_p(q));
20666 @<Transform the compact transformation starting at |r|@>;
20668 case mp_stop_clip_code: case mp_stop_bounds_code:
20670 } /* there are no other cases */
20672 @ Note that the shift parameters |(tx,ty)| apply only to the path being stroked.
20673 The |dash_scale| has to be adjusted to scale the dash lengths in |dash_p(q)|
20674 since the \ps\ output procedures will try to compensate for the transformation
20675 we are applying to |pen_p(q)|. Since this compensation is based on the square
20676 root of the determinant, |sqdet| is the appropriate factor.
20678 @<Transform |pen_p(q)|, making sure...@>=
20679 if ( pen_p(q)!=null ) {
20680 sx=mp->tx; sy=mp->ty;
20681 mp->tx=0; mp->ty=0;
20682 mp_do_pen_trans(mp, pen_p(q));
20683 if ( ((type(q)==mp_stroked_code)&&(dash_p(q)!=null)) )
20684 dash_scale(q)=mp_take_scaled(mp, dash_scale(q),sqdet);
20685 if ( ! pen_is_elliptical(pen_p(q)) )
20687 pen_p(q)=mp_make_pen(mp, mp_copy_path(mp, pen_p(q)),true);
20688 /* this unreverses the pen */
20689 mp->tx=sx; mp->ty=sy;
20692 @ This uses the fact that transformations are stored in the order
20693 |(tx,ty,txx,txy,tyx,tyy)|.
20694 @^data structure assumptions@>
20696 @<Transform the compact transformation starting at |r|@>=
20697 mp_trans(mp, r,r+1);
20698 sx=mp->tx; sy=mp->ty;
20699 mp->tx=0; mp->ty=0;
20700 mp_trans(mp, r+2,r+4);
20701 mp_trans(mp, r+3,r+5);
20702 mp->tx=sx; mp->ty=sy
20704 @ The hard cases of transformation occur when big nodes are involved,
20705 and when some of their components are unknown.
20707 @<Declare binary action...@>=
20708 @<Declare subroutines needed by |big_trans|@>;
20709 void mp_big_trans (MP mp,pointer p, quarterword c) {
20710 pointer q,r,pp,qq; /* list manipulation registers */
20711 small_number s; /* size of a big node */
20712 s=mp->big_node_size[type(p)]; q=value(p); r=q+s;
20715 if ( type(r)!=mp_known ) {
20716 @<Transform an unknown big node and |return|@>;
20719 @<Transform a known big node@>;
20720 }; /* node |p| will now be recycled by |do_binary| */
20722 @ @<Transform an unknown big node and |return|@>=
20724 mp_set_up_known_trans(mp, c); mp_make_exp_copy(mp, p);
20725 r=value(mp->cur_exp);
20726 if ( mp->cur_type==mp_transform_type ) {
20727 mp_bilin1(mp, yy_part_loc(r),mp->tyy,xy_part_loc(q),mp->tyx,0);
20728 mp_bilin1(mp, yx_part_loc(r),mp->tyy,xx_part_loc(q),mp->tyx,0);
20729 mp_bilin1(mp, xy_part_loc(r),mp->txx,yy_part_loc(q),mp->txy,0);
20730 mp_bilin1(mp, xx_part_loc(r),mp->txx,yx_part_loc(q),mp->txy,0);
20732 mp_bilin1(mp, y_part_loc(r),mp->tyy,x_part_loc(q),mp->tyx,mp->ty);
20733 mp_bilin1(mp, x_part_loc(r),mp->txx,y_part_loc(q),mp->txy,mp->tx);
20737 @ Let |p| point to a two-word value field inside a big node of |cur_exp|,
20738 and let |q| point to a another value field. The |bilin1| procedure
20739 replaces |p| by $p\cdot t+q\cdot u+\delta$.
20741 @<Declare subroutines needed by |big_trans|@>=
20742 void mp_bilin1 (MP mp, pointer p, scaled t, pointer q,
20743 scaled u, scaled delta) {
20744 pointer r; /* list traverser */
20745 if ( t!=unity ) mp_dep_mult(mp, p,t,true);
20747 if ( type(q)==mp_known ) {
20748 delta+=mp_take_scaled(mp, value(q),u);
20750 @<Ensure that |type(p)=mp_proto_dependent|@>;
20751 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),u,dep_list(q),
20752 mp_proto_dependent,type(q));
20755 if ( type(p)==mp_known ) {
20759 while ( info(r)!=null ) r=link(r);
20761 if ( r!=dep_list(p) ) value(r)=delta;
20762 else { mp_recycle_value(mp, p); type(p)=mp_known; value(p)=delta; };
20764 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20767 @ @<Ensure that |type(p)=mp_proto_dependent|@>=
20768 if ( type(p)!=mp_proto_dependent ) {
20769 if ( type(p)==mp_known )
20770 mp_new_dep(mp, p,mp_const_dependency(mp, value(p)));
20772 dep_list(p)=mp_p_times_v(mp, dep_list(p),unity,mp_dependent,
20773 mp_proto_dependent,true);
20774 type(p)=mp_proto_dependent;
20777 @ @<Transform a known big node@>=
20778 mp_set_up_trans(mp, c);
20779 if ( mp->cur_type==mp_known ) {
20780 @<Transform known by known@>;
20782 pp=mp_stash_cur_exp(mp); qq=value(pp);
20783 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20784 if ( mp->cur_type==mp_transform_type ) {
20785 mp_bilin2(mp, yy_part_loc(r),yy_part_loc(qq),
20786 value(xy_part_loc(q)),yx_part_loc(qq),null);
20787 mp_bilin2(mp, yx_part_loc(r),yy_part_loc(qq),
20788 value(xx_part_loc(q)),yx_part_loc(qq),null);
20789 mp_bilin2(mp, xy_part_loc(r),xx_part_loc(qq),
20790 value(yy_part_loc(q)),xy_part_loc(qq),null);
20791 mp_bilin2(mp, xx_part_loc(r),xx_part_loc(qq),
20792 value(yx_part_loc(q)),xy_part_loc(qq),null);
20794 mp_bilin2(mp, y_part_loc(r),yy_part_loc(qq),
20795 value(x_part_loc(q)),yx_part_loc(qq),y_part_loc(qq));
20796 mp_bilin2(mp, x_part_loc(r),xx_part_loc(qq),
20797 value(y_part_loc(q)),xy_part_loc(qq),x_part_loc(qq));
20798 mp_recycle_value(mp, pp); mp_free_node(mp, pp,value_node_size);
20801 @ Let |p| be a |mp_proto_dependent| value whose dependency list ends
20802 at |dep_final|. The following procedure adds |v| times another
20803 numeric quantity to~|p|.
20805 @<Declare subroutines needed by |big_trans|@>=
20806 void mp_add_mult_dep (MP mp,pointer p, scaled v, pointer r) {
20807 if ( type(r)==mp_known ) {
20808 value(mp->dep_final)+=mp_take_scaled(mp, value(r),v);
20810 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),v,dep_list(r),
20811 mp_proto_dependent,type(r));
20812 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20816 @ The |bilin2| procedure is something like |bilin1|, but with known
20817 and unknown quantities reversed. Parameter |p| points to a value field
20818 within the big node for |cur_exp|; and |type(p)=mp_known|. Parameters
20819 |t| and~|u| point to value fields elsewhere; so does parameter~|q|,
20820 unless it is |null| (which stands for zero). Location~|p| will be
20821 replaced by $p\cdot t+v\cdot u+q$.
20823 @<Declare subroutines needed by |big_trans|@>=
20824 void mp_bilin2 (MP mp,pointer p, pointer t, scaled v,
20825 pointer u, pointer q) {
20826 scaled vv; /* temporary storage for |value(p)| */
20827 vv=value(p); type(p)=mp_proto_dependent;
20828 mp_new_dep(mp, p,mp_const_dependency(mp, 0)); /* this sets |dep_final| */
20830 mp_add_mult_dep(mp, p,vv,t); /* |dep_final| doesn't change */
20831 if ( v!=0 ) mp_add_mult_dep(mp, p,v,u);
20832 if ( q!=null ) mp_add_mult_dep(mp, p,unity,q);
20833 if ( dep_list(p)==mp->dep_final ) {
20834 vv=value(mp->dep_final); mp_recycle_value(mp, p);
20835 type(p)=mp_known; value(p)=vv;
20839 @ @<Transform known by known@>=
20841 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20842 if ( mp->cur_type==mp_transform_type ) {
20843 mp_bilin3(mp, yy_part_loc(r),mp->tyy,value(xy_part_loc(q)),mp->tyx,0);
20844 mp_bilin3(mp, yx_part_loc(r),mp->tyy,value(xx_part_loc(q)),mp->tyx,0);
20845 mp_bilin3(mp, xy_part_loc(r),mp->txx,value(yy_part_loc(q)),mp->txy,0);
20846 mp_bilin3(mp, xx_part_loc(r),mp->txx,value(yx_part_loc(q)),mp->txy,0);
20848 mp_bilin3(mp, y_part_loc(r),mp->tyy,value(x_part_loc(q)),mp->tyx,mp->ty);
20849 mp_bilin3(mp, x_part_loc(r),mp->txx,value(y_part_loc(q)),mp->txy,mp->tx);
20852 @ Finally, in |bilin3| everything is |known|.
20854 @<Declare subroutines needed by |big_trans|@>=
20855 void mp_bilin3 (MP mp,pointer p, scaled t,
20856 scaled v, scaled u, scaled delta) {
20858 delta+=mp_take_scaled(mp, value(p),t);
20861 if ( u!=0 ) value(p)=delta+mp_take_scaled(mp, v,u);
20862 else value(p)=delta;
20865 @ @<Additional cases of binary operators@>=
20867 if ( (mp->cur_type==mp_string_type)&&(type(p)==mp_string_type) ) mp_cat(mp, p);
20868 else mp_bad_binary(mp, p,concatenate);
20871 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_string_type) )
20872 mp_chop_string(mp, value(p));
20873 else mp_bad_binary(mp, p,substring_of);
20876 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
20877 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_path_type) )
20878 mp_chop_path(mp, value(p));
20879 else mp_bad_binary(mp, p,subpath_of);
20882 @ @<Declare binary action...@>=
20883 void mp_cat (MP mp,pointer p) {
20884 str_number a,b; /* the strings being concatenated */
20885 pool_pointer k; /* index into |str_pool| */
20886 a=value(p); b=mp->cur_exp; str_room(length(a)+length(b));
20887 for (k=mp->str_start[a];k<=str_stop(a)-1;k++) {
20888 append_char(mp->str_pool[k]);
20890 for (k=mp->str_start[b];k<=str_stop(b)-1;k++) {
20891 append_char(mp->str_pool[k]);
20893 mp->cur_exp=mp_make_string(mp); delete_str_ref(b);
20896 @ @<Declare binary action...@>=
20897 void mp_chop_string (MP mp,pointer p) {
20898 integer a, b; /* start and stop points */
20899 integer l; /* length of the original string */
20900 integer k; /* runs from |a| to |b| */
20901 str_number s; /* the original string */
20902 boolean reversed; /* was |a>b|? */
20903 a=mp_round_unscaled(mp, value(x_part_loc(p)));
20904 b=mp_round_unscaled(mp, value(y_part_loc(p)));
20905 if ( a<=b ) reversed=false;
20906 else { reversed=true; k=a; a=b; b=k; };
20907 s=mp->cur_exp; l=length(s);
20918 for (k=mp->str_start[s]+b-1;k>=mp->str_start[s]+a;k--) {
20919 append_char(mp->str_pool[k]);
20922 for (k=mp->str_start[s]+a;k<=mp->str_start[s]+b-1;k++) {
20923 append_char(mp->str_pool[k]);
20926 mp->cur_exp=mp_make_string(mp); delete_str_ref(s);
20929 @ @<Declare binary action...@>=
20930 void mp_chop_path (MP mp,pointer p) {
20931 pointer q; /* a knot in the original path */
20932 pointer pp,qq,rr,ss; /* link variables for copies of path nodes */
20933 scaled a,b,k,l; /* indices for chopping */
20934 boolean reversed; /* was |a>b|? */
20935 l=mp_path_length(mp); a=value(x_part_loc(p)); b=value(y_part_loc(p));
20936 if ( a<=b ) reversed=false;
20937 else { reversed=true; k=a; a=b; b=k; };
20938 @<Dispense with the cases |a<0| and/or |b>l|@>;
20940 while ( a>=unity ) {
20941 q=link(q); a=a-unity; b=b-unity;
20944 @<Construct a path from |pp| to |qq| of length zero@>;
20946 @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>;
20948 left_type(pp)=mp_endpoint; right_type(qq)=mp_endpoint; link(qq)=pp;
20949 mp_toss_knot_list(mp, mp->cur_exp);
20951 mp->cur_exp=link(mp_htap_ypoc(mp, pp)); mp_toss_knot_list(mp, pp);
20957 @ @<Dispense with the cases |a<0| and/or |b>l|@>=
20959 if ( left_type(mp->cur_exp)==mp_endpoint ) {
20960 a=0; if ( b<0 ) b=0;
20962 do { a=a+l; b=b+l; } while (a<0); /* a cycle always has length |l>0| */
20966 if ( left_type(mp->cur_exp)==mp_endpoint ) {
20967 b=l; if ( a>l ) a=l;
20975 @ @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>=
20977 pp=mp_copy_knot(mp, q); qq=pp;
20979 q=link(q); rr=qq; qq=mp_copy_knot(mp, q); link(rr)=qq; b=b-unity;
20982 ss=pp; pp=link(pp);
20983 mp_split_cubic(mp, ss,a*010000); pp=link(ss);
20984 mp_free_node(mp, ss,knot_node_size);
20986 b=mp_make_scaled(mp, b,unity-a); rr=pp;
20990 mp_split_cubic(mp, rr,(b+unity)*010000);
20991 mp_free_node(mp, qq,knot_node_size);
20996 @ @<Construct a path from |pp| to |qq| of length zero@>=
20998 if ( a>0 ) { mp_split_cubic(mp, q,a*010000); q=link(q); };
20999 pp=mp_copy_knot(mp, q); qq=pp;
21002 @ @<Additional cases of binary operators@>=
21003 case point_of: case precontrol_of: case postcontrol_of:
21004 if ( mp->cur_type==mp_pair_type )
21005 mp_pair_to_path(mp);
21006 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
21007 mp_find_point(mp, value(p),c);
21009 mp_bad_binary(mp, p,c);
21011 case pen_offset_of:
21012 if ( (mp->cur_type==mp_pen_type)&& mp_nice_pair(mp, p,type(p)) )
21013 mp_set_up_offset(mp, value(p));
21015 mp_bad_binary(mp, p,pen_offset_of);
21017 case direction_time_of:
21018 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21019 if ( (mp->cur_type==mp_path_type)&& mp_nice_pair(mp, p,type(p)) )
21020 mp_set_up_direction_time(mp, value(p));
21022 mp_bad_binary(mp, p,direction_time_of);
21025 if ( (type(p) != mp_pen_type) || (mp->cur_type != mp_path_type) )
21026 mp_bad_binary(mp, p,envelope_of);
21028 mp_set_up_envelope(mp, p);
21031 @ @<Declare binary action...@>=
21032 void mp_set_up_offset (MP mp,pointer p) {
21033 mp_find_offset(mp, value(x_part_loc(p)),value(y_part_loc(p)),mp->cur_exp);
21034 mp_pair_value(mp, mp->cur_x,mp->cur_y);
21036 void mp_set_up_direction_time (MP mp,pointer p) {
21037 mp_flush_cur_exp(mp, mp_find_direction_time(mp, value(x_part_loc(p)),
21038 value(y_part_loc(p)),mp->cur_exp));
21040 void mp_set_up_envelope (MP mp,pointer p) {
21041 pointer q = mp_copy_path(mp, mp->cur_exp); /* the original path */
21042 /* TODO: accept elliptical pens for straight paths */
21043 if (pen_is_elliptical(value(p))) {
21044 mp_bad_envelope_pen(mp);
21046 mp->cur_type = mp_path_type;
21049 small_number ljoin, lcap;
21051 if ( mp->internal[mp_linejoin]>unity ) ljoin=2;
21052 else if ( mp->internal[mp_linejoin]>0 ) ljoin=1;
21054 if ( mp->internal[mp_linecap]>unity ) lcap=2;
21055 else if ( mp->internal[mp_linecap]>0 ) lcap=1;
21057 if ( mp->internal[mp_miterlimit]<unity )
21060 miterlim=mp->internal[mp_miterlimit];
21061 mp->cur_exp = mp_make_envelope(mp, q, value(p), ljoin,lcap,miterlim);
21062 mp->cur_type = mp_path_type;
21065 @ @<Declare binary action...@>=
21066 void mp_find_point (MP mp,scaled v, quarterword c) {
21067 pointer p; /* the path */
21068 scaled n; /* its length */
21070 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
21071 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
21074 } else if ( v<0 ) {
21075 if ( left_type(p)==mp_endpoint ) v=0;
21076 else v=n-1-((-v-1) % n);
21077 } else if ( v>n ) {
21078 if ( left_type(p)==mp_endpoint ) v=n;
21082 while ( v>=unity ) { p=link(p); v=v-unity; };
21084 @<Insert a fractional node by splitting the cubic@>;
21086 @<Set the current expression to the desired path coordinates@>;
21089 @ @<Insert a fractional node...@>=
21090 { mp_split_cubic(mp, p,v*010000); p=link(p); }
21092 @ @<Set the current expression to the desired path coordinates...@>=
21095 mp_pair_value(mp, x_coord(p),y_coord(p));
21097 case precontrol_of:
21098 if ( left_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21099 else mp_pair_value(mp, left_x(p),left_y(p));
21101 case postcontrol_of:
21102 if ( right_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21103 else mp_pair_value(mp, right_x(p),right_y(p));
21105 } /* there are no other cases */
21107 @ @<Additional cases of binary operators@>=
21109 if ( mp->cur_type==mp_pair_type )
21110 mp_pair_to_path(mp);
21111 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
21112 mp_flush_cur_exp(mp, mp_get_arc_time(mp, mp->cur_exp,value(p)));
21114 mp_bad_binary(mp, p,c);
21117 @ @<Additional cases of bin...@>=
21119 if ( type(p)==mp_pair_type ) {
21120 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p);
21121 mp_pair_to_path(mp); p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
21123 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21124 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_path_type) ) {
21125 mp_path_intersection(mp, value(p),mp->cur_exp);
21126 mp_pair_value(mp, mp->cur_t,mp->cur_tt);
21128 mp_bad_binary(mp, p,intersect);
21132 @ @<Additional cases of bin...@>=
21134 if ( (mp->cur_type!=mp_string_type)||(type(p)!=mp_string_type))
21135 mp_bad_binary(mp, p,in_font);
21136 else { mp_do_infont(mp, p); return; }
21139 @ Function |new_text_node| owns the reference count for its second argument
21140 (the text string) but not its first (the font name).
21142 @<Declare binary action...@>=
21143 void mp_do_infont (MP mp,pointer p) {
21145 q=mp_get_node(mp, edge_header_size);
21146 mp_init_edges(mp, q);
21147 link(obj_tail(q))=mp_new_text_node(mp,str(mp->cur_exp),value(p));
21148 obj_tail(q)=link(obj_tail(q));
21149 mp_free_node(mp, p,value_node_size);
21150 mp_flush_cur_exp(mp, q);
21151 mp->cur_type=mp_picture_type;
21154 @* \[40] Statements and commands.
21155 The chief executive of \MP\ is the |do_statement| routine, which
21156 contains the master switch that causes all the various pieces of \MP\
21157 to do their things, in the right order.
21159 In a sense, this is the grand climax of the program: It applies all the
21160 tools that we have worked so hard to construct. In another sense, this is
21161 the messiest part of the program: It necessarily refers to other pieces
21162 of code all over the place, so that a person can't fully understand what is
21163 going on without paging back and forth to be reminded of conventions that
21164 are defined elsewhere. We are now at the hub of the web.
21166 The structure of |do_statement| itself is quite simple. The first token
21167 of the statement is fetched using |get_x_next|. If it can be the first
21168 token of an expression, we look for an equation, an assignment, or a
21169 title. Otherwise we use a \&{case} construction to branch at high speed to
21170 the appropriate routine for various and sundry other types of commands,
21171 each of which has an ``action procedure'' that does the necessary work.
21173 The program uses the fact that
21174 $$\hbox{|min_primary_command=max_statement_command=type_name|}$$
21175 to interpret a statement that starts with, e.g., `\&{string}',
21176 as a type declaration rather than a boolean expression.
21178 @c void mp_do_statement (MP mp) { /* governs \MP's activities */
21179 mp->cur_type=mp_vacuous; mp_get_x_next(mp);
21180 if ( mp->cur_cmd>max_primary_command ) {
21181 @<Worry about bad statement@>;
21182 } else if ( mp->cur_cmd>max_statement_command ) {
21183 @<Do an equation, assignment, title, or
21184 `$\langle\,$expression$\,\rangle\,$\&{endgroup}'@>;
21186 @<Do a statement that doesn't begin with an expression@>;
21188 if ( mp->cur_cmd<semicolon )
21189 @<Flush unparsable junk that was found after the statement@>;
21193 @ @<Declarations@>=
21194 @<Declare action procedures for use by |do_statement|@>;
21196 @ The only command codes |>max_primary_command| that can be present
21197 at the beginning of a statement are |semicolon| and higher; these
21198 occur when the statement is null.
21200 @<Worry about bad statement@>=
21202 if ( mp->cur_cmd<semicolon ) {
21203 print_err("A statement can't begin with `");
21204 @.A statement can't begin with x@>
21205 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod); mp_print_char(mp, '\'');
21206 help5("I was looking for the beginning of a new statement.")
21207 ("If you just proceed without changing anything, I'll ignore")
21208 ("everything up to the next `;'. Please insert a semicolon")
21209 ("now in front of anything that you don't want me to delete.")
21210 ("(See Chapter 27 of The METAFONTbook for an example.)");
21211 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21212 mp_back_error(mp); mp_get_x_next(mp);
21216 @ The help message printed here says that everything is flushed up to
21217 a semicolon, but actually the commands |end_group| and |stop| will
21218 also terminate a statement.
21220 @<Flush unparsable junk that was found after the statement@>=
21222 print_err("Extra tokens will be flushed");
21223 @.Extra tokens will be flushed@>
21224 help6("I've just read as much of that statement as I could fathom,")
21225 ("so a semicolon should have been next. It's very puzzling...")
21226 ("but I'll try to get myself back together, by ignoring")
21227 ("everything up to the next `;'. Please insert a semicolon")
21228 ("now in front of anything that you don't want me to delete.")
21229 ("(See Chapter 27 of The METAFONTbook for an example.)");
21230 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21231 mp_back_error(mp); mp->scanner_status=flushing;
21234 @<Decrease the string reference count...@>;
21235 } while (! end_of_statement); /* |cur_cmd=semicolon|, |end_group|, or |stop| */
21236 mp->scanner_status=normal;
21239 @ If |do_statement| ends with |cur_cmd=end_group|, we should have
21240 |cur_type=mp_vacuous| unless the statement was simply an expression;
21241 in the latter case, |cur_type| and |cur_exp| should represent that
21244 @<Do a statement that doesn't...@>=
21246 if ( mp->internal[mp_tracing_commands]>0 )
21248 switch (mp->cur_cmd ) {
21249 case type_name:mp_do_type_declaration(mp); break;
21251 if ( mp->cur_mod>var_def ) mp_make_op_def(mp);
21252 else if ( mp->cur_mod>end_def ) mp_scan_def(mp);
21254 @<Cases of |do_statement| that invoke particular commands@>;
21255 } /* there are no other cases */
21256 mp->cur_type=mp_vacuous;
21259 @ The most important statements begin with expressions.
21261 @<Do an equation, assignment, title, or...@>=
21263 mp->var_flag=assignment; mp_scan_expression(mp);
21264 if ( mp->cur_cmd<end_group ) {
21265 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21266 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21267 else if ( mp->cur_type==mp_string_type ) {@<Do a title@> ; }
21268 else if ( mp->cur_type!=mp_vacuous ){
21269 exp_err("Isolated expression");
21270 @.Isolated expression@>
21271 help3("I couldn't find an `=' or `:=' after the")
21272 ("expression that is shown above this error message,")
21273 ("so I guess I'll just ignore it and carry on.");
21274 mp_put_get_error(mp);
21276 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
21282 if ( mp->internal[mp_tracing_titles]>0 ) {
21283 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp); update_terminal;
21287 @ Equations and assignments are performed by the pair of mutually recursive
21289 routines |do_equation| and |do_assignment|. These routines are called when
21290 |cur_cmd=equals| and when |cur_cmd=assignment|, respectively; the left-hand
21291 side is in |cur_type| and |cur_exp|, while the right-hand side is yet
21292 to be scanned. After the routines are finished, |cur_type| and |cur_exp|
21293 will be equal to the right-hand side (which will normally be equal
21294 to the left-hand side).
21296 @<Declare action procedures for use by |do_statement|@>=
21297 @<Declare the procedure called |try_eq|@>;
21298 @<Declare the procedure called |make_eq|@>;
21299 void mp_do_equation (MP mp) ;
21302 void mp_do_equation (MP mp) {
21303 pointer lhs; /* capsule for the left-hand side */
21304 pointer p; /* temporary register */
21305 lhs=mp_stash_cur_exp(mp); mp_get_x_next(mp);
21306 mp->var_flag=assignment; mp_scan_expression(mp);
21307 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21308 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21309 if ( mp->internal[mp_tracing_commands]>two )
21310 @<Trace the current equation@>;
21311 if ( mp->cur_type==mp_unknown_path ) if ( type(lhs)==mp_pair_type ) {
21312 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, lhs); lhs=p;
21313 }; /* in this case |make_eq| will change the pair to a path */
21314 mp_make_eq(mp, lhs); /* equate |lhs| to |(cur_type,cur_exp)| */
21317 @ And |do_assignment| is similar to |do_expression|:
21320 void mp_do_assignment (MP mp);
21322 @ @<Declare action procedures for use by |do_statement|@>=
21323 void mp_do_assignment (MP mp) ;
21326 void mp_do_assignment (MP mp) {
21327 pointer lhs; /* token list for the left-hand side */
21328 pointer p; /* where the left-hand value is stored */
21329 pointer q; /* temporary capsule for the right-hand value */
21330 if ( mp->cur_type!=mp_token_list ) {
21331 exp_err("Improper `:=' will be changed to `='");
21333 help2("I didn't find a variable name at the left of the `:=',")
21334 ("so I'm going to pretend that you said `=' instead.");
21335 mp_error(mp); mp_do_equation(mp);
21337 lhs=mp->cur_exp; mp->cur_type=mp_vacuous;
21338 mp_get_x_next(mp); mp->var_flag=assignment; mp_scan_expression(mp);
21339 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21340 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21341 if ( mp->internal[mp_tracing_commands]>two )
21342 @<Trace the current assignment@>;
21343 if ( info(lhs)>hash_end ) {
21344 @<Assign the current expression to an internal variable@>;
21346 @<Assign the current expression to the variable |lhs|@>;
21348 mp_flush_node_list(mp, lhs);
21352 @ @<Trace the current equation@>=
21354 mp_begin_diagnostic(mp); mp_print_nl(mp, "{("); mp_print_exp(mp,lhs,0);
21355 mp_print(mp,")=("); mp_print_exp(mp,null,0);
21356 mp_print(mp,")}"); mp_end_diagnostic(mp, false);
21359 @ @<Trace the current assignment@>=
21361 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
21362 if ( info(lhs)>hash_end )
21363 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21365 mp_show_token_list(mp, lhs,null,1000,0);
21366 mp_print(mp, ":="); mp_print_exp(mp, null,0);
21367 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
21370 @ @<Assign the current expression to an internal variable@>=
21371 if ( mp->cur_type==mp_known ) {
21372 mp->internal[info(lhs)-(hash_end)]=mp->cur_exp;
21374 exp_err("Internal quantity `");
21375 @.Internal quantity...@>
21376 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21377 mp_print(mp, "' must receive a known value");
21378 help2("I can\'t set an internal quantity to anything but a known")
21379 ("numeric value, so I'll have to ignore this assignment.");
21380 mp_put_get_error(mp);
21383 @ @<Assign the current expression to the variable |lhs|@>=
21385 p=mp_find_variable(mp, lhs);
21387 q=mp_stash_cur_exp(mp); mp->cur_type=mp_und_type(mp, p);
21388 mp_recycle_value(mp, p);
21389 type(p)=mp->cur_type; value(p)=null; mp_make_exp_copy(mp, p);
21390 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q); mp_make_eq(mp, p);
21392 mp_obliterated(mp, lhs); mp_put_get_error(mp);
21397 @ And now we get to the nitty-gritty. The |make_eq| procedure is given
21398 a pointer to a capsule that is to be equated to the current expression.
21400 @<Declare the procedure called |make_eq|@>=
21401 void mp_make_eq (MP mp,pointer lhs) ;
21405 @c void mp_make_eq (MP mp,pointer lhs) {
21406 small_number t; /* type of the left-hand side */
21407 pointer p,q; /* pointers inside of big nodes */
21408 integer v=0; /* value of the left-hand side */
21411 if ( t<=mp_pair_type ) v=value(lhs);
21413 @<For each type |t|, make an equation and |goto done| unless |cur_type|
21414 is incompatible with~|t|@>;
21415 } /* all cases have been listed */
21416 @<Announce that the equation cannot be performed@>;
21418 check_arith; mp_recycle_value(mp, lhs);
21419 mp_free_node(mp, lhs,value_node_size);
21422 @ @<Announce that the equation cannot be performed@>=
21423 mp_disp_err(mp, lhs,"");
21424 exp_err("Equation cannot be performed (");
21425 @.Equation cannot be performed@>
21426 if ( type(lhs)<=mp_pair_type ) mp_print_type(mp, type(lhs));
21427 else mp_print(mp, "numeric");
21428 mp_print_char(mp, '=');
21429 if ( mp->cur_type<=mp_pair_type ) mp_print_type(mp, mp->cur_type);
21430 else mp_print(mp, "numeric");
21431 mp_print_char(mp, ')');
21432 help2("I'm sorry, but I don't know how to make such things equal.")
21433 ("(See the two expressions just above the error message.)");
21434 mp_put_get_error(mp)
21436 @ @<For each type |t|, make an equation and |goto done| unless...@>=
21437 case mp_boolean_type: case mp_string_type: case mp_pen_type:
21438 case mp_path_type: case mp_picture_type:
21439 if ( mp->cur_type==t+unknown_tag ) {
21440 mp_nonlinear_eq(mp, v,mp->cur_exp,false); goto DONE;
21441 } else if ( mp->cur_type==t ) {
21442 @<Report redundant or inconsistent equation and |goto done|@>;
21445 case unknown_types:
21446 if ( mp->cur_type==t-unknown_tag ) {
21447 mp_nonlinear_eq(mp, mp->cur_exp,lhs,true); goto DONE;
21448 } else if ( mp->cur_type==t ) {
21449 mp_ring_merge(mp, lhs,mp->cur_exp); goto DONE;
21450 } else if ( mp->cur_type==mp_pair_type ) {
21451 if ( t==mp_unknown_path ) {
21452 mp_pair_to_path(mp); goto RESTART;
21456 case mp_transform_type: case mp_color_type:
21457 case mp_cmykcolor_type: case mp_pair_type:
21458 if ( mp->cur_type==t ) {
21459 @<Do multiple equations and |goto done|@>;
21462 case mp_known: case mp_dependent:
21463 case mp_proto_dependent: case mp_independent:
21464 if ( mp->cur_type>=mp_known ) {
21465 mp_try_eq(mp, lhs,null); goto DONE;
21471 @ @<Report redundant or inconsistent equation and |goto done|@>=
21473 if ( mp->cur_type<=mp_string_type ) {
21474 if ( mp->cur_type==mp_string_type ) {
21475 if ( mp_str_vs_str(mp, v,mp->cur_exp)!=0 ) {
21478 } else if ( v!=mp->cur_exp ) {
21481 @<Exclaim about a redundant equation@>; goto DONE;
21483 print_err("Redundant or inconsistent equation");
21484 @.Redundant or inconsistent equation@>
21485 help2("An equation between already-known quantities can't help.")
21486 ("But don't worry; continue and I'll just ignore it.");
21487 mp_put_get_error(mp); goto DONE;
21489 print_err("Inconsistent equation");
21490 @.Inconsistent equation@>
21491 help2("The equation I just read contradicts what was said before.")
21492 ("But don't worry; continue and I'll just ignore it.");
21493 mp_put_get_error(mp); goto DONE;
21496 @ @<Do multiple equations and |goto done|@>=
21498 p=v+mp->big_node_size[t];
21499 q=value(mp->cur_exp)+mp->big_node_size[t];
21501 p=p-2; q=q-2; mp_try_eq(mp, p,q);
21506 @ The first argument to |try_eq| is the location of a value node
21507 in a capsule that will soon be recycled. The second argument is
21508 either a location within a pair or transform node pointed to by
21509 |cur_exp|, or it is |null| (which means that |cur_exp| itself
21510 serves as the second argument). The idea is to leave |cur_exp| unchanged,
21511 but to equate the two operands.
21513 @<Declare the procedure called |try_eq|@>=
21514 void mp_try_eq (MP mp,pointer l, pointer r) ;
21517 @c void mp_try_eq (MP mp,pointer l, pointer r) {
21518 pointer p; /* dependency list for right operand minus left operand */
21519 int t; /* the type of list |p| */
21520 pointer q; /* the constant term of |p| is here */
21521 pointer pp; /* dependency list for right operand */
21522 int tt; /* the type of list |pp| */
21523 boolean copied; /* have we copied a list that ought to be recycled? */
21524 @<Remove the left operand from its container, negate it, and
21525 put it into dependency list~|p| with constant term~|q|@>;
21526 @<Add the right operand to list |p|@>;
21527 if ( info(p)==null ) {
21528 @<Deal with redundant or inconsistent equation@>;
21530 mp_linear_eq(mp, p,t);
21531 if ( r==null ) if ( mp->cur_type!=mp_known ) {
21532 if ( type(mp->cur_exp)==mp_known ) {
21533 pp=mp->cur_exp; mp->cur_exp=value(mp->cur_exp); mp->cur_type=mp_known;
21534 mp_free_node(mp, pp,value_node_size);
21540 @ @<Remove the left operand from its container, negate it, and...@>=
21542 if ( t==mp_known ) {
21543 t=mp_dependent; p=mp_const_dependency(mp, -value(l)); q=p;
21544 } else if ( t==mp_independent ) {
21545 t=mp_dependent; p=mp_single_dependency(mp, l); negate(value(p));
21548 p=dep_list(l); q=p;
21551 if ( info(q)==null ) break;
21554 link(prev_dep(l))=link(q); prev_dep(link(q))=prev_dep(l);
21558 @ @<Deal with redundant or inconsistent equation@>=
21560 if ( abs(value(p))>64 ) { /* off by .001 or more */
21561 print_err("Inconsistent equation");
21562 @.Inconsistent equation@>
21563 mp_print(mp, " (off by "); mp_print_scaled(mp, value(p));
21564 mp_print_char(mp, ')');
21565 help2("The equation I just read contradicts what was said before.")
21566 ("But don't worry; continue and I'll just ignore it.");
21567 mp_put_get_error(mp);
21568 } else if ( r==null ) {
21569 @<Exclaim about a redundant equation@>;
21571 mp_free_node(mp, p,dep_node_size);
21574 @ @<Add the right operand to list |p|@>=
21576 if ( mp->cur_type==mp_known ) {
21577 value(q)=value(q)+mp->cur_exp; goto DONE1;
21580 if ( tt==mp_independent ) pp=mp_single_dependency(mp, mp->cur_exp);
21581 else pp=dep_list(mp->cur_exp);
21584 if ( type(r)==mp_known ) {
21585 value(q)=value(q)+value(r); goto DONE1;
21588 if ( tt==mp_independent ) pp=mp_single_dependency(mp, r);
21589 else pp=dep_list(r);
21592 if ( tt!=mp_independent ) copied=false;
21593 else { copied=true; tt=mp_dependent; };
21594 @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>;
21595 if ( copied ) mp_flush_node_list(mp, pp);
21598 @ @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>=
21599 mp->watch_coefs=false;
21601 p=mp_p_plus_q(mp, p,pp,t);
21602 } else if ( t==mp_proto_dependent ) {
21603 p=mp_p_plus_fq(mp, p,unity,pp,mp_proto_dependent,mp_dependent);
21606 while ( info(q)!=null ) {
21607 value(q)=mp_round_fraction(mp, value(q)); q=link(q);
21609 t=mp_proto_dependent; p=mp_p_plus_q(mp, p,pp,t);
21611 mp->watch_coefs=true;
21613 @ Our next goal is to process type declarations. For this purpose it's
21614 convenient to have a procedure that scans a $\langle\,$declared
21615 variable$\,\rangle$ and returns the corresponding token list. After the
21616 following procedure has acted, the token after the declared variable
21617 will have been scanned, so it will appear in |cur_cmd|, |cur_mod|,
21620 @<Declare the function called |scan_declared_variable|@>=
21621 pointer mp_scan_declared_variable (MP mp) {
21622 pointer x; /* hash address of the variable's root */
21623 pointer h,t; /* head and tail of the token list to be returned */
21624 pointer l; /* hash address of left bracket */
21625 mp_get_symbol(mp); x=mp->cur_sym;
21626 if ( mp->cur_cmd!=tag_token ) mp_clear_symbol(mp, x,false);
21627 h=mp_get_avail(mp); info(h)=x; t=h;
21630 if ( mp->cur_sym==0 ) break;
21631 if ( mp->cur_cmd!=tag_token ) if ( mp->cur_cmd!=internal_quantity) {
21632 if ( mp->cur_cmd==left_bracket ) {
21633 @<Descend past a collective subscript@>;
21638 link(t)=mp_get_avail(mp); t=link(t); info(t)=mp->cur_sym;
21640 if ( eq_type(x)!=tag_token ) mp_clear_symbol(mp, x,false);
21641 if ( equiv(x)==null ) mp_new_root(mp, x);
21645 @ If the subscript isn't collective, we don't accept it as part of the
21648 @<Descend past a collective subscript@>=
21650 l=mp->cur_sym; mp_get_x_next(mp);
21651 if ( mp->cur_cmd!=right_bracket ) {
21652 mp_back_input(mp); mp->cur_sym=l; mp->cur_cmd=left_bracket; break;
21654 mp->cur_sym=collective_subscript;
21658 @ Type declarations are introduced by the following primitive operations.
21661 mp_primitive(mp, "numeric",type_name,mp_numeric_type);
21662 @:numeric_}{\&{numeric} primitive@>
21663 mp_primitive(mp, "string",type_name,mp_string_type);
21664 @:string_}{\&{string} primitive@>
21665 mp_primitive(mp, "boolean",type_name,mp_boolean_type);
21666 @:boolean_}{\&{boolean} primitive@>
21667 mp_primitive(mp, "path",type_name,mp_path_type);
21668 @:path_}{\&{path} primitive@>
21669 mp_primitive(mp, "pen",type_name,mp_pen_type);
21670 @:pen_}{\&{pen} primitive@>
21671 mp_primitive(mp, "picture",type_name,mp_picture_type);
21672 @:picture_}{\&{picture} primitive@>
21673 mp_primitive(mp, "transform",type_name,mp_transform_type);
21674 @:transform_}{\&{transform} primitive@>
21675 mp_primitive(mp, "color",type_name,mp_color_type);
21676 @:color_}{\&{color} primitive@>
21677 mp_primitive(mp, "rgbcolor",type_name,mp_color_type);
21678 @:color_}{\&{rgbcolor} primitive@>
21679 mp_primitive(mp, "cmykcolor",type_name,mp_cmykcolor_type);
21680 @:color_}{\&{cmykcolor} primitive@>
21681 mp_primitive(mp, "pair",type_name,mp_pair_type);
21682 @:pair_}{\&{pair} primitive@>
21684 @ @<Cases of |print_cmd...@>=
21685 case type_name: mp_print_type(mp, m); break;
21687 @ Now we are ready to handle type declarations, assuming that a
21688 |type_name| has just been scanned.
21690 @<Declare action procedures for use by |do_statement|@>=
21691 void mp_do_type_declaration (MP mp) ;
21694 void mp_do_type_declaration (MP mp) {
21695 small_number t; /* the type being declared */
21696 pointer p; /* token list for a declared variable */
21697 pointer q; /* value node for the variable */
21698 if ( mp->cur_mod>=mp_transform_type )
21701 t=mp->cur_mod+unknown_tag;
21703 p=mp_scan_declared_variable(mp);
21704 mp_flush_variable(mp, equiv(info(p)),link(p),false);
21705 q=mp_find_variable(mp, p);
21707 type(q)=t; value(q)=null;
21709 print_err("Declared variable conflicts with previous vardef");
21710 @.Declared variable conflicts...@>
21711 help2("You can't use, e.g., `numeric foo[]' after `vardef foo'.")
21712 ("Proceed, and I'll ignore the illegal redeclaration.");
21713 mp_put_get_error(mp);
21715 mp_flush_list(mp, p);
21716 if ( mp->cur_cmd<comma ) {
21717 @<Flush spurious symbols after the declared variable@>;
21719 } while (! end_of_statement);
21722 @ @<Flush spurious symbols after the declared variable@>=
21724 print_err("Illegal suffix of declared variable will be flushed");
21725 @.Illegal suffix...flushed@>
21726 help5("Variables in declarations must consist entirely of")
21727 ("names and collective subscripts, e.g., `x[]a'.")
21728 ("Are you trying to use a reserved word in a variable name?")
21729 ("I'm going to discard the junk I found here,")
21730 ("up to the next comma or the end of the declaration.");
21731 if ( mp->cur_cmd==numeric_token )
21732 mp->help_line[2]="Explicit subscripts like `x15a' aren't permitted.";
21733 mp_put_get_error(mp); mp->scanner_status=flushing;
21736 @<Decrease the string reference count...@>;
21737 } while (mp->cur_cmd<comma); /* either |end_of_statement| or |cur_cmd=comma| */
21738 mp->scanner_status=normal;
21741 @ \MP's |main_control| procedure just calls |do_statement| repeatedly
21742 until coming to the end of the user's program.
21743 Each execution of |do_statement| concludes with
21744 |cur_cmd=semicolon|, |end_group|, or |stop|.
21746 @c void mp_main_control (MP mp) {
21748 mp_do_statement(mp);
21749 if ( mp->cur_cmd==end_group ) {
21750 print_err("Extra `endgroup'");
21751 @.Extra `endgroup'@>
21752 help2("I'm not currently working on a `begingroup',")
21753 ("so I had better not try to end anything.");
21754 mp_flush_error(mp, 0);
21756 } while (mp->cur_cmd!=stop);
21758 int __attribute__((noinline))
21760 if (mp->history < mp_fatal_error_stop ) {
21761 @<Install and test the non-local jump buffer@>;
21762 mp_main_control(mp); /* come to life */
21763 mp_final_cleanup(mp); /* prepare for death */
21764 mp_close_files_and_terminate(mp);
21766 return mp->history;
21768 int __attribute__((noinline))
21769 mp_execute (MP mp) {
21770 if (mp->history < mp_fatal_error_stop ) {
21771 mp->history = mp_spotless;
21772 mp->file_offset = 0;
21773 mp->term_offset = 0;
21775 @<Install and test the non-local jump buffer@>;
21776 if (mp->run_state==0) {
21779 mp_input_ln(mp,mp->term_in);
21780 mp_firm_up_the_line(mp);
21781 mp->buffer[limit]='%';
21785 mp_main_control(mp); /* come to life */
21787 return mp->history;
21789 int __attribute__((noinline))
21790 mp_finish (MP mp) {
21791 if (mp->history < mp_fatal_error_stop ) {
21792 @<Install and test the non-local jump buffer@>;
21793 mp_final_cleanup(mp); /* prepare for death */
21794 mp_close_files_and_terminate(mp);
21796 return mp->history;
21798 char * mp_mplib_version (MP mp) {
21800 return mplib_version;
21802 char * mp_metapost_version (MP mp) {
21804 return metapost_version;
21807 @ @<Exported function headers@>=
21808 int mp_run (MP mp);
21809 int mp_execute (MP mp);
21810 int mp_finish (MP mp);
21811 char * mp_mplib_version (MP mp);
21812 char * mp_metapost_version (MP mp);
21815 mp_primitive(mp, "end",stop,0);
21816 @:end_}{\&{end} primitive@>
21817 mp_primitive(mp, "dump",stop,1);
21818 @:dump_}{\&{dump} primitive@>
21820 @ @<Cases of |print_cmd...@>=
21822 if ( m==0 ) mp_print(mp, "end");
21823 else mp_print(mp, "dump");
21827 Let's turn now to statements that are classified as ``commands'' because
21828 of their imperative nature. We'll begin with simple ones, so that it
21829 will be clear how to hook command processing into the |do_statement| routine;
21830 then we'll tackle the tougher commands.
21832 Here's one of the simplest:
21834 @<Cases of |do_statement|...@>=
21835 case mp_random_seed: mp_do_random_seed(mp); break;
21837 @ @<Declare action procedures for use by |do_statement|@>=
21838 void mp_do_random_seed (MP mp) ;
21840 @ @c void mp_do_random_seed (MP mp) {
21842 if ( mp->cur_cmd!=assignment ) {
21843 mp_missing_err(mp, ":=");
21845 help1("Always say `randomseed:=<numeric expression>'.");
21848 mp_get_x_next(mp); mp_scan_expression(mp);
21849 if ( mp->cur_type!=mp_known ) {
21850 exp_err("Unknown value will be ignored");
21851 @.Unknown value...ignored@>
21852 help2("Your expression was too random for me to handle,")
21853 ("so I won't change the random seed just now.");
21854 mp_put_get_flush_error(mp, 0);
21856 @<Initialize the random seed to |cur_exp|@>;
21860 @ @<Initialize the random seed to |cur_exp|@>=
21862 mp_init_randoms(mp, mp->cur_exp);
21863 if ( mp->selector>=log_only && mp->selector<write_file) {
21864 mp->old_setting=mp->selector; mp->selector=log_only;
21865 mp_print_nl(mp, "{randomseed:=");
21866 mp_print_scaled(mp, mp->cur_exp);
21867 mp_print_char(mp, '}');
21868 mp_print_nl(mp, ""); mp->selector=mp->old_setting;
21872 @ And here's another simple one (somewhat different in flavor):
21874 @<Cases of |do_statement|...@>=
21876 mp_print_ln(mp); mp->interaction=mp->cur_mod;
21877 @<Initialize the print |selector| based on |interaction|@>;
21878 if ( mp->log_opened ) mp->selector=mp->selector+2;
21883 mp_primitive(mp, "batchmode",mode_command,mp_batch_mode);
21884 @:mp_batch_mode_}{\&{batchmode} primitive@>
21885 mp_primitive(mp, "nonstopmode",mode_command,mp_nonstop_mode);
21886 @:mp_nonstop_mode_}{\&{nonstopmode} primitive@>
21887 mp_primitive(mp, "scrollmode",mode_command,mp_scroll_mode);
21888 @:mp_scroll_mode_}{\&{scrollmode} primitive@>
21889 mp_primitive(mp, "errorstopmode",mode_command,mp_error_stop_mode);
21890 @:mp_error_stop_mode_}{\&{errorstopmode} primitive@>
21892 @ @<Cases of |print_cmd_mod|...@>=
21895 case mp_batch_mode: mp_print(mp, "batchmode"); break;
21896 case mp_nonstop_mode: mp_print(mp, "nonstopmode"); break;
21897 case mp_scroll_mode: mp_print(mp, "scrollmode"); break;
21898 default: mp_print(mp, "errorstopmode"); break;
21902 @ The `\&{inner}' and `\&{outer}' commands are only slightly harder.
21904 @<Cases of |do_statement|...@>=
21905 case protection_command: mp_do_protection(mp); break;
21908 mp_primitive(mp, "inner",protection_command,0);
21909 @:inner_}{\&{inner} primitive@>
21910 mp_primitive(mp, "outer",protection_command,1);
21911 @:outer_}{\&{outer} primitive@>
21913 @ @<Cases of |print_cmd...@>=
21914 case protection_command:
21915 if ( m==0 ) mp_print(mp, "inner");
21916 else mp_print(mp, "outer");
21919 @ @<Declare action procedures for use by |do_statement|@>=
21920 void mp_do_protection (MP mp) ;
21922 @ @c void mp_do_protection (MP mp) {
21923 int m; /* 0 to unprotect, 1 to protect */
21924 halfword t; /* the |eq_type| before we change it */
21927 mp_get_symbol(mp); t=eq_type(mp->cur_sym);
21929 if ( t>=outer_tag )
21930 eq_type(mp->cur_sym)=t-outer_tag;
21931 } else if ( t<outer_tag ) {
21932 eq_type(mp->cur_sym)=t+outer_tag;
21935 } while (mp->cur_cmd==comma);
21938 @ \MP\ never defines the tokens `\.(' and `\.)' to be primitives, but
21939 plain \MP\ begins with the declaration `\&{delimiters} \.{()}'. Such a
21940 declaration assigns the command code |left_delimiter| to `\.{(}' and
21941 |right_delimiter| to `\.{)}'; the |equiv| of each delimiter is the
21942 hash address of its mate.
21944 @<Cases of |do_statement|...@>=
21945 case delimiters: mp_def_delims(mp); break;
21947 @ @<Declare action procedures for use by |do_statement|@>=
21948 void mp_def_delims (MP mp) ;
21950 @ @c void mp_def_delims (MP mp) {
21951 pointer l_delim,r_delim; /* the new delimiter pair */
21952 mp_get_clear_symbol(mp); l_delim=mp->cur_sym;
21953 mp_get_clear_symbol(mp); r_delim=mp->cur_sym;
21954 eq_type(l_delim)=left_delimiter; equiv(l_delim)=r_delim;
21955 eq_type(r_delim)=right_delimiter; equiv(r_delim)=l_delim;
21959 @ Here is a procedure that is called when \MP\ has reached a point
21960 where some right delimiter is mandatory.
21962 @<Declare the procedure called |check_delimiter|@>=
21963 void mp_check_delimiter (MP mp,pointer l_delim, pointer r_delim) {
21964 if ( mp->cur_cmd==right_delimiter )
21965 if ( mp->cur_mod==l_delim )
21967 if ( mp->cur_sym!=r_delim ) {
21968 mp_missing_err(mp, str(text(r_delim)));
21970 help2("I found no right delimiter to match a left one. So I've")
21971 ("put one in, behind the scenes; this may fix the problem.");
21974 print_err("The token `"); mp_print_text(r_delim);
21975 @.The token...delimiter@>
21976 mp_print(mp, "' is no longer a right delimiter");
21977 help3("Strange: This token has lost its former meaning!")
21978 ("I'll read it as a right delimiter this time;")
21979 ("but watch out, I'll probably miss it later.");
21984 @ The next four commands save or change the values associated with tokens.
21986 @<Cases of |do_statement|...@>=
21989 mp_get_symbol(mp); mp_save_variable(mp, mp->cur_sym); mp_get_x_next(mp);
21990 } while (mp->cur_cmd==comma);
21992 case interim_command: mp_do_interim(mp); break;
21993 case let_command: mp_do_let(mp); break;
21994 case new_internal: mp_do_new_internal(mp); break;
21996 @ @<Declare action procedures for use by |do_statement|@>=
21997 void mp_do_statement (MP mp);
21998 void mp_do_interim (MP mp);
22000 @ @c void mp_do_interim (MP mp) {
22002 if ( mp->cur_cmd!=internal_quantity ) {
22003 print_err("The token `");
22004 @.The token...quantity@>
22005 if ( mp->cur_sym==0 ) mp_print(mp, "(%CAPSULE)");
22006 else mp_print_text(mp->cur_sym);
22007 mp_print(mp, "' isn't an internal quantity");
22008 help1("Something like `tracingonline' should follow `interim'.");
22011 mp_save_internal(mp, mp->cur_mod); mp_back_input(mp);
22013 mp_do_statement(mp);
22016 @ The following procedure is careful not to undefine the left-hand symbol
22017 too soon, lest commands like `{\tt let x=x}' have a surprising effect.
22019 @<Declare action procedures for use by |do_statement|@>=
22020 void mp_do_let (MP mp) ;
22022 @ @c void mp_do_let (MP mp) {
22023 pointer l; /* hash location of the left-hand symbol */
22024 mp_get_symbol(mp); l=mp->cur_sym; mp_get_x_next(mp);
22025 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
22026 mp_missing_err(mp, "=");
22028 help3("You should have said `let symbol = something'.")
22029 ("But don't worry; I'll pretend that an equals sign")
22030 ("was present. The next token I read will be `something'.");
22034 switch (mp->cur_cmd) {
22035 case defined_macro: case secondary_primary_macro:
22036 case tertiary_secondary_macro: case expression_tertiary_macro:
22037 add_mac_ref(mp->cur_mod);
22042 mp_clear_symbol(mp, l,false); eq_type(l)=mp->cur_cmd;
22043 if ( mp->cur_cmd==tag_token ) equiv(l)=null;
22044 else equiv(l)=mp->cur_mod;
22048 @ @<Declarations@>=
22049 void mp_grow_internals (MP mp, int l);
22050 void mp_do_new_internal (MP mp) ;
22053 void mp_grow_internals (MP mp, int l) {
22057 if ( hash_end+l>max_halfword ) {
22058 mp_confusion(mp, "out of memory space"); /* can't be reached */
22060 int_name = xmalloc ((l+1),sizeof(char *));
22061 internal = xmalloc ((l+1),sizeof(scaled));
22062 for (k=0;k<=l; k++ ) {
22063 if (k<=mp->max_internal) {
22064 internal[k]=mp->internal[k];
22065 int_name[k]=mp->int_name[k];
22071 xfree(mp->internal); xfree(mp->int_name);
22072 mp->int_name = int_name;
22073 mp->internal = internal;
22074 mp->max_internal = l;
22078 void mp_do_new_internal (MP mp) {
22080 if ( mp->int_ptr==mp->max_internal ) {
22081 mp_grow_internals(mp, (mp->max_internal + (mp->max_internal>>2)));
22083 mp_get_clear_symbol(mp); incr(mp->int_ptr);
22084 eq_type(mp->cur_sym)=internal_quantity;
22085 equiv(mp->cur_sym)=mp->int_ptr;
22086 if(mp->int_name[mp->int_ptr]!=NULL)
22087 xfree(mp->int_name[mp->int_ptr]);
22088 mp->int_name[mp->int_ptr]=str(text(mp->cur_sym));
22089 mp->internal[mp->int_ptr]=0;
22091 } while (mp->cur_cmd==comma);
22094 @ @<Dealloc variables@>=
22095 for (k=0;k<=mp->max_internal;k++) {
22096 xfree(mp->int_name[k]);
22098 xfree(mp->internal);
22099 xfree(mp->int_name);
22102 @ The various `\&{show}' commands are distinguished by modifier fields
22105 @d show_token_code 0 /* show the meaning of a single token */
22106 @d show_stats_code 1 /* show current memory and string usage */
22107 @d show_code 2 /* show a list of expressions */
22108 @d show_var_code 3 /* show a variable and its descendents */
22109 @d show_dependencies_code 4 /* show dependent variables in terms of independents */
22112 mp_primitive(mp, "showtoken",show_command,show_token_code);
22113 @:show_token_}{\&{showtoken} primitive@>
22114 mp_primitive(mp, "showstats",show_command,show_stats_code);
22115 @:show_stats_}{\&{showstats} primitive@>
22116 mp_primitive(mp, "show",show_command,show_code);
22117 @:show_}{\&{show} primitive@>
22118 mp_primitive(mp, "showvariable",show_command,show_var_code);
22119 @:show_var_}{\&{showvariable} primitive@>
22120 mp_primitive(mp, "showdependencies",show_command,show_dependencies_code);
22121 @:show_dependencies_}{\&{showdependencies} primitive@>
22123 @ @<Cases of |print_cmd...@>=
22126 case show_token_code:mp_print(mp, "showtoken"); break;
22127 case show_stats_code:mp_print(mp, "showstats"); break;
22128 case show_code:mp_print(mp, "show"); break;
22129 case show_var_code:mp_print(mp, "showvariable"); break;
22130 default: mp_print(mp, "showdependencies"); break;
22134 @ @<Cases of |do_statement|...@>=
22135 case show_command:mp_do_show_whatever(mp); break;
22137 @ The value of |cur_mod| controls the |verbosity| in the |print_exp| routine:
22138 if it's |show_code|, complicated structures are abbreviated, otherwise
22141 @<Declare action procedures for use by |do_statement|@>=
22142 void mp_do_show (MP mp) ;
22144 @ @c void mp_do_show (MP mp) {
22146 mp_get_x_next(mp); mp_scan_expression(mp);
22147 mp_print_nl(mp, ">> ");
22149 mp_print_exp(mp, null,2); mp_flush_cur_exp(mp, 0);
22150 } while (mp->cur_cmd==comma);
22153 @ @<Declare action procedures for use by |do_statement|@>=
22154 void mp_disp_token (MP mp) ;
22156 @ @c void mp_disp_token (MP mp) {
22157 mp_print_nl(mp, "> ");
22159 if ( mp->cur_sym==0 ) {
22160 @<Show a numeric or string or capsule token@>;
22162 mp_print_text(mp->cur_sym); mp_print_char(mp, '=');
22163 if ( eq_type(mp->cur_sym)>=outer_tag ) mp_print(mp, "(outer) ");
22164 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
22165 if ( mp->cur_cmd==defined_macro ) {
22166 mp_print_ln(mp); mp_show_macro(mp, mp->cur_mod,null,100000);
22167 } /* this avoids recursion between |show_macro| and |print_cmd_mod| */
22172 @ @<Show a numeric or string or capsule token@>=
22174 if ( mp->cur_cmd==numeric_token ) {
22175 mp_print_scaled(mp, mp->cur_mod);
22176 } else if ( mp->cur_cmd==capsule_token ) {
22177 mp_print_capsule(mp,mp->cur_mod);
22179 mp_print_char(mp, '"');
22180 mp_print_str(mp, mp->cur_mod); mp_print_char(mp, '"');
22181 delete_str_ref(mp->cur_mod);
22185 @ The following cases of |print_cmd_mod| might arise in connection
22186 with |disp_token|, although they don't correspond to any
22189 @<Cases of |print_cmd_...@>=
22190 case left_delimiter:
22191 case right_delimiter:
22192 if ( c==left_delimiter ) mp_print(mp, "left");
22193 else mp_print(mp, "right");
22194 mp_print(mp, " delimiter that matches ");
22198 if ( m==null ) mp_print(mp, "tag");
22199 else mp_print(mp, "variable");
22201 case defined_macro:
22202 mp_print(mp, "macro:");
22204 case secondary_primary_macro:
22205 case tertiary_secondary_macro:
22206 case expression_tertiary_macro:
22207 mp_print_cmd_mod(mp, macro_def,c);
22208 mp_print(mp, "'d macro:");
22209 mp_print_ln(mp); mp_show_token_list(mp, link(link(m)),null,1000,0);
22212 mp_print(mp, "[repeat the loop]");
22214 case internal_quantity:
22215 mp_print(mp, mp->int_name[m]);
22218 @ @<Declare action procedures for use by |do_statement|@>=
22219 void mp_do_show_token (MP mp) ;
22221 @ @c void mp_do_show_token (MP mp) {
22223 get_t_next; mp_disp_token(mp);
22225 } while (mp->cur_cmd==comma);
22228 @ @<Declare action procedures for use by |do_statement|@>=
22229 void mp_do_show_stats (MP mp) ;
22231 @ @c void mp_do_show_stats (MP mp) {
22232 mp_print_nl(mp, "Memory usage ");
22233 @.Memory usage...@>
22234 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used);
22236 mp_print(mp, "unknown");
22237 mp_print(mp, " ("); mp_print_int(mp, mp->hi_mem_min-mp->lo_mem_max-1);
22238 mp_print(mp, " still untouched)"); mp_print_ln(mp);
22239 mp_print_nl(mp, "String usage ");
22240 mp_print_int(mp, mp->strs_in_use-mp->init_str_use);
22241 mp_print_char(mp, '&'); mp_print_int(mp, mp->pool_in_use-mp->init_pool_ptr);
22243 mp_print(mp, "unknown");
22244 mp_print(mp, " (");
22245 mp_print_int(mp, mp->max_strings-1-mp->strs_used_up); mp_print_char(mp, '&');
22246 mp_print_int(mp, mp->pool_size-mp->pool_ptr);
22247 mp_print(mp, " now untouched)"); mp_print_ln(mp);
22251 @ Here's a recursive procedure that gives an abbreviated account
22252 of a variable, for use by |do_show_var|.
22254 @<Declare action procedures for use by |do_statement|@>=
22255 void mp_disp_var (MP mp,pointer p) ;
22257 @ @c void mp_disp_var (MP mp,pointer p) {
22258 pointer q; /* traverses attributes and subscripts */
22259 int n; /* amount of macro text to show */
22260 if ( type(p)==mp_structured ) {
22261 @<Descend the structure@>;
22262 } else if ( type(p)>=mp_unsuffixed_macro ) {
22263 @<Display a variable macro@>;
22264 } else if ( type(p)!=undefined ){
22265 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22266 mp_print_char(mp, '=');
22267 mp_print_exp(mp, p,0);
22271 @ @<Descend the structure@>=
22274 do { mp_disp_var(mp, q); q=link(q); } while (q!=end_attr);
22276 while ( name_type(q)==mp_subscr ) {
22277 mp_disp_var(mp, q); q=link(q);
22281 @ @<Display a variable macro@>=
22283 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22284 if ( type(p)>mp_unsuffixed_macro )
22285 mp_print(mp, "@@#"); /* |suffixed_macro| */
22286 mp_print(mp, "=macro:");
22287 if ( (int)mp->file_offset>=mp->max_print_line-20 ) n=5;
22288 else n=mp->max_print_line-mp->file_offset-15;
22289 mp_show_macro(mp, value(p),null,n);
22292 @ @<Declare action procedures for use by |do_statement|@>=
22293 void mp_do_show_var (MP mp) ;
22295 @ @c void mp_do_show_var (MP mp) {
22298 if ( mp->cur_sym>0 ) if ( mp->cur_sym<=hash_end )
22299 if ( mp->cur_cmd==tag_token ) if ( mp->cur_mod!=null ) {
22300 mp_disp_var(mp, mp->cur_mod); goto DONE;
22305 } while (mp->cur_cmd==comma);
22308 @ @<Declare action procedures for use by |do_statement|@>=
22309 void mp_do_show_dependencies (MP mp) ;
22311 @ @c void mp_do_show_dependencies (MP mp) {
22312 pointer p; /* link that runs through all dependencies */
22314 while ( p!=dep_head ) {
22315 if ( mp_interesting(mp, p) ) {
22316 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22317 if ( type(p)==mp_dependent ) mp_print_char(mp, '=');
22318 else mp_print(mp, " = "); /* extra spaces imply proto-dependency */
22319 mp_print_dependency(mp, dep_list(p),type(p));
22322 while ( info(p)!=null ) p=link(p);
22328 @ Finally we are ready for the procedure that governs all of the
22331 @<Declare action procedures for use by |do_statement|@>=
22332 void mp_do_show_whatever (MP mp) ;
22334 @ @c void mp_do_show_whatever (MP mp) {
22335 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
22336 switch (mp->cur_mod) {
22337 case show_token_code:mp_do_show_token(mp); break;
22338 case show_stats_code:mp_do_show_stats(mp); break;
22339 case show_code:mp_do_show(mp); break;
22340 case show_var_code:mp_do_show_var(mp); break;
22341 case show_dependencies_code:mp_do_show_dependencies(mp); break;
22342 } /* there are no other cases */
22343 if ( mp->internal[mp_showstopping]>0 ){
22346 if ( mp->interaction<mp_error_stop_mode ) {
22347 help0; decr(mp->error_count);
22349 help1("This isn't an error message; I'm just showing something.");
22351 if ( mp->cur_cmd==semicolon ) mp_error(mp);
22352 else mp_put_get_error(mp);
22356 @ The `\&{addto}' command needs the following additional primitives:
22358 @d double_path_code 0 /* command modifier for `\&{doublepath}' */
22359 @d contour_code 1 /* command modifier for `\&{contour}' */
22360 @d also_code 2 /* command modifier for `\&{also}' */
22362 @ Pre and postscripts need two new identifiers:
22364 @d with_pre_script 11
22365 @d with_post_script 13
22368 mp_primitive(mp, "doublepath",thing_to_add,double_path_code);
22369 @:double_path_}{\&{doublepath} primitive@>
22370 mp_primitive(mp, "contour",thing_to_add,contour_code);
22371 @:contour_}{\&{contour} primitive@>
22372 mp_primitive(mp, "also",thing_to_add,also_code);
22373 @:also_}{\&{also} primitive@>
22374 mp_primitive(mp, "withpen",with_option,mp_pen_type);
22375 @:with_pen_}{\&{withpen} primitive@>
22376 mp_primitive(mp, "dashed",with_option,mp_picture_type);
22377 @:dashed_}{\&{dashed} primitive@>
22378 mp_primitive(mp, "withprescript",with_option,with_pre_script);
22379 @:with_pre_script_}{\&{withprescript} primitive@>
22380 mp_primitive(mp, "withpostscript",with_option,with_post_script);
22381 @:with_post_script_}{\&{withpostscript} primitive@>
22382 mp_primitive(mp, "withoutcolor",with_option,mp_no_model);
22383 @:with_color_}{\&{withoutcolor} primitive@>
22384 mp_primitive(mp, "withgreyscale",with_option,mp_grey_model);
22385 @:with_color_}{\&{withgreyscale} primitive@>
22386 mp_primitive(mp, "withcolor",with_option,mp_uninitialized_model);
22387 @:with_color_}{\&{withcolor} primitive@>
22388 /* \&{withrgbcolor} is an alias for \&{withcolor} */
22389 mp_primitive(mp, "withrgbcolor",with_option,mp_rgb_model);
22390 @:with_color_}{\&{withrgbcolor} primitive@>
22391 mp_primitive(mp, "withcmykcolor",with_option,mp_cmyk_model);
22392 @:with_color_}{\&{withcmykcolor} primitive@>
22394 @ @<Cases of |print_cmd...@>=
22396 if ( m==contour_code ) mp_print(mp, "contour");
22397 else if ( m==double_path_code ) mp_print(mp, "doublepath");
22398 else mp_print(mp, "also");
22401 if ( m==mp_pen_type ) mp_print(mp, "withpen");
22402 else if ( m==with_pre_script ) mp_print(mp, "withprescript");
22403 else if ( m==with_post_script ) mp_print(mp, "withpostscript");
22404 else if ( m==mp_no_model ) mp_print(mp, "withoutcolor");
22405 else if ( m==mp_rgb_model ) mp_print(mp, "withrgbcolor");
22406 else if ( m==mp_uninitialized_model ) mp_print(mp, "withcolor");
22407 else if ( m==mp_cmyk_model ) mp_print(mp, "withcmykcolor");
22408 else if ( m==mp_grey_model ) mp_print(mp, "withgreyscale");
22409 else mp_print(mp, "dashed");
22412 @ The |scan_with_list| procedure parses a $\langle$with list$\rangle$ and
22413 updates the list of graphical objects starting at |p|. Each $\langle$with
22414 clause$\rangle$ updates all graphical objects whose |type| is compatible.
22415 Other objects are ignored.
22417 @<Declare action procedures for use by |do_statement|@>=
22418 void mp_scan_with_list (MP mp,pointer p) ;
22420 @ @c void mp_scan_with_list (MP mp,pointer p) {
22421 small_number t; /* |cur_mod| of the |with_option| (should match |cur_type|) */
22422 pointer q; /* for list manipulation */
22423 int old_setting; /* saved |selector| setting */
22424 pointer k; /* for finding the near-last item in a list */
22425 str_number s; /* for string cleanup after combining */
22426 pointer cp,pp,dp,ap,bp;
22427 /* objects being updated; |void| initially; |null| to suppress update */
22428 cp=mp_void; pp=mp_void; dp=mp_void; ap=mp_void; bp=mp_void;
22430 while ( mp->cur_cmd==with_option ){
22433 if ( t!=mp_no_model ) mp_scan_expression(mp);
22434 if (((t==with_pre_script)&&(mp->cur_type!=mp_string_type))||
22435 ((t==with_post_script)&&(mp->cur_type!=mp_string_type))||
22436 ((t==mp_uninitialized_model)&&
22437 ((mp->cur_type!=mp_cmykcolor_type)&&(mp->cur_type!=mp_color_type)
22438 &&(mp->cur_type!=mp_known)&&(mp->cur_type!=mp_boolean_type)))||
22439 ((t==mp_cmyk_model)&&(mp->cur_type!=mp_cmykcolor_type))||
22440 ((t==mp_rgb_model)&&(mp->cur_type!=mp_color_type))||
22441 ((t==mp_grey_model)&&(mp->cur_type!=mp_known))||
22442 ((t==mp_pen_type)&&(mp->cur_type!=t))||
22443 ((t==mp_picture_type)&&(mp->cur_type!=t)) ) {
22444 @<Complain about improper type@>;
22445 } else if ( t==mp_uninitialized_model ) {
22446 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22448 @<Transfer a color from the current expression to object~|cp|@>;
22449 mp_flush_cur_exp(mp, 0);
22450 } else if ( t==mp_rgb_model ) {
22451 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22453 @<Transfer a rgbcolor from the current expression to object~|cp|@>;
22454 mp_flush_cur_exp(mp, 0);
22455 } else if ( t==mp_cmyk_model ) {
22456 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22458 @<Transfer a cmykcolor from the current expression to object~|cp|@>;
22459 mp_flush_cur_exp(mp, 0);
22460 } else if ( t==mp_grey_model ) {
22461 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22463 @<Transfer a greyscale from the current expression to object~|cp|@>;
22464 mp_flush_cur_exp(mp, 0);
22465 } else if ( t==mp_no_model ) {
22466 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22468 @<Transfer a noncolor from the current expression to object~|cp|@>;
22469 } else if ( t==mp_pen_type ) {
22470 if ( pp==mp_void ) @<Make |pp| an object in list~|p| that needs a pen@>;
22472 if ( pen_p(pp)!=null ) mp_toss_knot_list(mp, pen_p(pp));
22473 pen_p(pp)=mp->cur_exp; mp->cur_type=mp_vacuous;
22475 } else if ( t==with_pre_script ) {
22478 while ( (ap!=null)&&(! has_color(ap)) )
22481 if ( pre_script(ap)!=null ) { /* build a new,combined string */
22483 old_setting=mp->selector;
22484 mp->selector=new_string;
22485 str_room(length(pre_script(ap))+length(mp->cur_exp)+2);
22486 mp_print_str(mp, mp->cur_exp);
22487 append_char(13); /* a forced \ps\ newline */
22488 mp_print_str(mp, pre_script(ap));
22489 pre_script(ap)=mp_make_string(mp);
22491 mp->selector=old_setting;
22493 pre_script(ap)=mp->cur_exp;
22495 mp->cur_type=mp_vacuous;
22497 } else if ( t==with_post_script ) {
22501 while ( link(k)!=null ) {
22503 if ( has_color(k) ) bp=k;
22506 if ( post_script(bp)!=null ) {
22508 old_setting=mp->selector;
22509 mp->selector=new_string;
22510 str_room(length(post_script(bp))+length(mp->cur_exp)+2);
22511 mp_print_str(mp, post_script(bp));
22512 append_char(13); /* a forced \ps\ newline */
22513 mp_print_str(mp, mp->cur_exp);
22514 post_script(bp)=mp_make_string(mp);
22516 mp->selector=old_setting;
22518 post_script(bp)=mp->cur_exp;
22520 mp->cur_type=mp_vacuous;
22523 if ( dp==mp_void ) {
22524 @<Make |dp| a stroked node in list~|p|@>;
22527 if ( dash_p(dp)!=null ) delete_edge_ref(dash_p(dp));
22528 dash_p(dp)=mp_make_dashes(mp, mp->cur_exp);
22529 dash_scale(dp)=unity;
22530 mp->cur_type=mp_vacuous;
22534 @<Copy the information from objects |cp|, |pp|, and |dp| into the rest
22538 @ @<Complain about improper type@>=
22539 { exp_err("Improper type");
22541 help2("Next time say `withpen <known pen expression>';")
22542 ("I'll ignore the bad `with' clause and look for another.");
22543 if ( t==with_pre_script )
22544 mp->help_line[1]="Next time say `withprescript <known string expression>';";
22545 else if ( t==with_post_script )
22546 mp->help_line[1]="Next time say `withpostscript <known string expression>';";
22547 else if ( t==mp_picture_type )
22548 mp->help_line[1]="Next time say `dashed <known picture expression>';";
22549 else if ( t==mp_uninitialized_model )
22550 mp->help_line[1]="Next time say `withcolor <known color expression>';";
22551 else if ( t==mp_rgb_model )
22552 mp->help_line[1]="Next time say `withrgbcolor <known color expression>';";
22553 else if ( t==mp_cmyk_model )
22554 mp->help_line[1]="Next time say `withcmykcolor <known cmykcolor expression>';";
22555 else if ( t==mp_grey_model )
22556 mp->help_line[1]="Next time say `withgreyscale <known numeric expression>';";;
22557 mp_put_get_flush_error(mp, 0);
22560 @ Forcing the color to be between |0| and |unity| here guarantees that no
22561 picture will ever contain a color outside the legal range for \ps\ graphics.
22563 @<Transfer a color from the current expression to object~|cp|@>=
22564 { if ( mp->cur_type==mp_color_type )
22565 @<Transfer a rgbcolor from the current expression to object~|cp|@>
22566 else if ( mp->cur_type==mp_cmykcolor_type )
22567 @<Transfer a cmykcolor from the current expression to object~|cp|@>
22568 else if ( mp->cur_type==mp_known )
22569 @<Transfer a greyscale from the current expression to object~|cp|@>
22570 else if ( mp->cur_exp==false_code )
22571 @<Transfer a noncolor from the current expression to object~|cp|@>;
22574 @ @<Transfer a rgbcolor from the current expression to object~|cp|@>=
22575 { q=value(mp->cur_exp);
22580 red_val(cp)=value(red_part_loc(q));
22581 green_val(cp)=value(green_part_loc(q));
22582 blue_val(cp)=value(blue_part_loc(q));
22583 color_model(cp)=mp_rgb_model;
22584 if ( red_val(cp)<0 ) red_val(cp)=0;
22585 if ( green_val(cp)<0 ) green_val(cp)=0;
22586 if ( blue_val(cp)<0 ) blue_val(cp)=0;
22587 if ( red_val(cp)>unity ) red_val(cp)=unity;
22588 if ( green_val(cp)>unity ) green_val(cp)=unity;
22589 if ( blue_val(cp)>unity ) blue_val(cp)=unity;
22592 @ @<Transfer a cmykcolor from the current expression to object~|cp|@>=
22593 { q=value(mp->cur_exp);
22594 cyan_val(cp)=value(cyan_part_loc(q));
22595 magenta_val(cp)=value(magenta_part_loc(q));
22596 yellow_val(cp)=value(yellow_part_loc(q));
22597 black_val(cp)=value(black_part_loc(q));
22598 color_model(cp)=mp_cmyk_model;
22599 if ( cyan_val(cp)<0 ) cyan_val(cp)=0;
22600 if ( magenta_val(cp)<0 ) magenta_val(cp)=0;
22601 if ( yellow_val(cp)<0 ) yellow_val(cp)=0;
22602 if ( black_val(cp)<0 ) black_val(cp)=0;
22603 if ( cyan_val(cp)>unity ) cyan_val(cp)=unity;
22604 if ( magenta_val(cp)>unity ) magenta_val(cp)=unity;
22605 if ( yellow_val(cp)>unity ) yellow_val(cp)=unity;
22606 if ( black_val(cp)>unity ) black_val(cp)=unity;
22609 @ @<Transfer a greyscale from the current expression to object~|cp|@>=
22616 color_model(cp)=mp_grey_model;
22617 if ( grey_val(cp)<0 ) grey_val(cp)=0;
22618 if ( grey_val(cp)>unity ) grey_val(cp)=unity;
22621 @ @<Transfer a noncolor from the current expression to object~|cp|@>=
22628 color_model(cp)=mp_no_model;
22631 @ @<Make |cp| a colored object in object list~|p|@>=
22633 while ( cp!=null ){
22634 if ( has_color(cp) ) break;
22639 @ @<Make |pp| an object in list~|p| that needs a pen@>=
22641 while ( pp!=null ) {
22642 if ( has_pen(pp) ) break;
22647 @ @<Make |dp| a stroked node in list~|p|@>=
22649 while ( dp!=null ) {
22650 if ( type(dp)==mp_stroked_code ) break;
22655 @ @<Copy the information from objects |cp|, |pp|, and |dp| into...@>=
22656 @<Copy |cp|'s color into the colored objects linked to~|cp|@>;
22657 if ( pp>mp_void ) {
22658 @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>;
22660 if ( dp>mp_void ) {
22661 @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>;
22665 @ @<Copy |cp|'s color into the colored objects linked to~|cp|@>=
22667 while ( q!=null ) {
22668 if ( has_color(q) ) {
22669 red_val(q)=red_val(cp);
22670 green_val(q)=green_val(cp);
22671 blue_val(q)=blue_val(cp);
22672 black_val(q)=black_val(cp);
22673 color_model(q)=color_model(cp);
22679 @ @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>=
22681 while ( q!=null ) {
22682 if ( has_pen(q) ) {
22683 if ( pen_p(q)!=null ) mp_toss_knot_list(mp, pen_p(q));
22684 pen_p(q)=copy_pen(pen_p(pp));
22690 @ @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>=
22692 while ( q!=null ) {
22693 if ( type(q)==mp_stroked_code ) {
22694 if ( dash_p(q)!=null ) delete_edge_ref(dash_p(q));
22695 dash_p(q)=dash_p(dp);
22696 dash_scale(q)=unity;
22697 if ( dash_p(q)!=null ) add_edge_ref(dash_p(q));
22703 @ One of the things we need to do when we've parsed an \&{addto} or
22704 similar command is find the header of a supposed \&{picture} variable, given
22705 a token list for that variable. Since the edge structure is about to be
22706 updated, we use |private_edges| to make sure that this is possible.
22708 @<Declare action procedures for use by |do_statement|@>=
22709 pointer mp_find_edges_var (MP mp, pointer t) ;
22711 @ @c pointer mp_find_edges_var (MP mp, pointer t) {
22713 pointer cur_edges; /* the return value */
22714 p=mp_find_variable(mp, t); cur_edges=null;
22716 mp_obliterated(mp, t); mp_put_get_error(mp);
22717 } else if ( type(p)!=mp_picture_type ) {
22718 print_err("Variable "); mp_show_token_list(mp, t,null,1000,0);
22719 @.Variable x is the wrong type@>
22720 mp_print(mp, " is the wrong type (");
22721 mp_print_type(mp, type(p)); mp_print_char(mp, ')');
22722 help2("I was looking for a \"known\" picture variable.")
22723 ("So I'll not change anything just now.");
22724 mp_put_get_error(mp);
22726 value(p)=mp_private_edges(mp, value(p));
22727 cur_edges=value(p);
22729 mp_flush_node_list(mp, t);
22733 @ @<Cases of |do_statement|...@>=
22734 case add_to_command: mp_do_add_to(mp); break;
22735 case bounds_command:mp_do_bounds(mp); break;
22738 mp_primitive(mp, "clip",bounds_command,mp_start_clip_code);
22739 @:clip_}{\&{clip} primitive@>
22740 mp_primitive(mp, "setbounds",bounds_command,mp_start_bounds_code);
22741 @:set_bounds_}{\&{setbounds} primitive@>
22743 @ @<Cases of |print_cmd...@>=
22744 case bounds_command:
22745 if ( m==mp_start_clip_code ) mp_print(mp, "clip");
22746 else mp_print(mp, "setbounds");
22749 @ The following function parses the beginning of an \&{addto} or \&{clip}
22750 command: it expects a variable name followed by a token with |cur_cmd=sep|
22751 and then an expression. The function returns the token list for the variable
22752 and stores the command modifier for the separator token in the global variable
22753 |last_add_type|. We must be careful because this variable might get overwritten
22754 any time we call |get_x_next|.
22757 quarterword last_add_type;
22758 /* command modifier that identifies the last \&{addto} command */
22760 @ @<Declare action procedures for use by |do_statement|@>=
22761 pointer mp_start_draw_cmd (MP mp,quarterword sep) ;
22763 @ @c pointer mp_start_draw_cmd (MP mp,quarterword sep) {
22764 pointer lhv; /* variable to add to left */
22765 quarterword add_type=0; /* value to be returned in |last_add_type| */
22767 mp_get_x_next(mp); mp->var_flag=sep; mp_scan_primary(mp);
22768 if ( mp->cur_type!=mp_token_list ) {
22769 @<Abandon edges command because there's no variable@>;
22771 lhv=mp->cur_exp; add_type=mp->cur_mod;
22772 mp->cur_type=mp_vacuous; mp_get_x_next(mp); mp_scan_expression(mp);
22774 mp->last_add_type=add_type;
22778 @ @<Abandon edges command because there's no variable@>=
22779 { exp_err("Not a suitable variable");
22780 @.Not a suitable variable@>
22781 help4("At this point I needed to see the name of a picture variable.")
22782 ("(Or perhaps you have indeed presented me with one; I might")
22783 ("have missed it, if it wasn't followed by the proper token.)")
22784 ("So I'll not change anything just now.");
22785 mp_put_get_flush_error(mp, 0);
22788 @ Here is an example of how to use |start_draw_cmd|.
22790 @<Declare action procedures for use by |do_statement|@>=
22791 void mp_do_bounds (MP mp) ;
22793 @ @c void mp_do_bounds (MP mp) {
22794 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22795 pointer p; /* for list manipulation */
22796 integer m; /* initial value of |cur_mod| */
22798 lhv=mp_start_draw_cmd(mp, to_token);
22800 lhe=mp_find_edges_var(mp, lhv);
22802 mp_flush_cur_exp(mp, 0);
22803 } else if ( mp->cur_type!=mp_path_type ) {
22804 exp_err("Improper `clip'");
22805 @.Improper `addto'@>
22806 help2("This expression should have specified a known path.")
22807 ("So I'll not change anything just now.");
22808 mp_put_get_flush_error(mp, 0);
22809 } else if ( left_type(mp->cur_exp)==mp_endpoint ) {
22810 @<Complain about a non-cycle@>;
22812 @<Make |cur_exp| into a \&{setbounds} or clipping path and add it to |lhe|@>;
22817 @ @<Complain about a non-cycle@>=
22818 { print_err("Not a cycle");
22820 help2("That contour should have ended with `..cycle' or `&cycle'.")
22821 ("So I'll not change anything just now."); mp_put_get_error(mp);
22824 @ @<Make |cur_exp| into a \&{setbounds} or clipping path and add...@>=
22825 { p=mp_new_bounds_node(mp, mp->cur_exp,m);
22826 link(p)=link(dummy_loc(lhe));
22827 link(dummy_loc(lhe))=p;
22828 if ( obj_tail(lhe)==dummy_loc(lhe) ) obj_tail(lhe)=p;
22829 p=mp_get_node(mp, mp->gr_object_size[stop_type(m)]);
22830 type(p)=stop_type(m);
22831 link(obj_tail(lhe))=p;
22833 mp_init_bbox(mp, lhe);
22836 @ The |do_add_to| procedure is a little like |do_clip| but there are a lot more
22837 cases to deal with.
22839 @<Declare action procedures for use by |do_statement|@>=
22840 void mp_do_add_to (MP mp) ;
22842 @ @c void mp_do_add_to (MP mp) {
22843 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22844 pointer p; /* the graphical object or list for |scan_with_list| to update */
22845 pointer e; /* an edge structure to be merged */
22846 quarterword add_type; /* |also_code|, |contour_code|, or |double_path_code| */
22847 lhv=mp_start_draw_cmd(mp, thing_to_add); add_type=mp->last_add_type;
22849 if ( add_type==also_code ) {
22850 @<Make sure the current expression is a suitable picture and set |e| and |p|
22853 @<Create a graphical object |p| based on |add_type| and the current
22856 mp_scan_with_list(mp, p);
22857 @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>;
22861 @ Setting |p:=null| causes the $\langle$with list$\rangle$ to be ignored;
22862 setting |e:=null| prevents anything from being added to |lhe|.
22864 @ @<Make sure the current expression is a suitable picture and set |e|...@>=
22867 if ( mp->cur_type!=mp_picture_type ) {
22868 exp_err("Improper `addto'");
22869 @.Improper `addto'@>
22870 help2("This expression should have specified a known picture.")
22871 ("So I'll not change anything just now."); mp_put_get_flush_error(mp, 0);
22873 e=mp_private_edges(mp, mp->cur_exp); mp->cur_type=mp_vacuous;
22874 p=link(dummy_loc(e));
22878 @ In this case |add_type<>also_code| so setting |p:=null| suppresses future
22879 attempts to add to the edge structure.
22881 @<Create a graphical object |p| based on |add_type| and the current...@>=
22883 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
22884 if ( mp->cur_type!=mp_path_type ) {
22885 exp_err("Improper `addto'");
22886 @.Improper `addto'@>
22887 help2("This expression should have specified a known path.")
22888 ("So I'll not change anything just now.");
22889 mp_put_get_flush_error(mp, 0);
22890 } else if ( add_type==contour_code ) {
22891 if ( left_type(mp->cur_exp)==mp_endpoint ) {
22892 @<Complain about a non-cycle@>;
22894 p=mp_new_fill_node(mp, mp->cur_exp);
22895 mp->cur_type=mp_vacuous;
22898 p=mp_new_stroked_node(mp, mp->cur_exp);
22899 mp->cur_type=mp_vacuous;
22903 @ @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>=
22904 lhe=mp_find_edges_var(mp, lhv);
22906 if ( (e==null)&&(p!=null) ) e=mp_toss_gr_object(mp, p);
22907 if ( e!=null ) delete_edge_ref(e);
22908 } else if ( add_type==also_code ) {
22910 @<Merge |e| into |lhe| and delete |e|@>;
22914 } else if ( p!=null ) {
22915 link(obj_tail(lhe))=p;
22917 if ( add_type==double_path_code )
22918 if ( pen_p(p)==null )
22919 pen_p(p)=mp_get_pen_circle(mp, 0);
22922 @ @<Merge |e| into |lhe| and delete |e|@>=
22923 { if ( link(dummy_loc(e))!=null ) {
22924 link(obj_tail(lhe))=link(dummy_loc(e));
22925 obj_tail(lhe)=obj_tail(e);
22926 obj_tail(e)=dummy_loc(e);
22927 link(dummy_loc(e))=null;
22928 mp_flush_dash_list(mp, lhe);
22930 mp_toss_edges(mp, e);
22933 @ @<Cases of |do_statement|...@>=
22934 case ship_out_command: mp_do_ship_out(mp); break;
22936 @ @<Declare action procedures for use by |do_statement|@>=
22937 @<Declare the function called |tfm_check|@>;
22938 @<Declare the \ps\ output procedures@>;
22939 void mp_do_ship_out (MP mp) ;
22941 @ @c void mp_do_ship_out (MP mp) {
22942 integer c; /* the character code */
22943 mp_get_x_next(mp); mp_scan_expression(mp);
22944 if ( mp->cur_type!=mp_picture_type ) {
22945 @<Complain that it's not a known picture@>;
22947 c=mp_round_unscaled(mp, mp->internal[mp_char_code]) % 256;
22948 if ( c<0 ) c=c+256;
22949 @<Store the width information for character code~|c|@>;
22950 mp_ship_out(mp, mp->cur_exp);
22951 mp_flush_cur_exp(mp, 0);
22955 @ @<Complain that it's not a known picture@>=
22957 exp_err("Not a known picture");
22958 help1("I can only output known pictures.");
22959 mp_put_get_flush_error(mp, 0);
22962 @ The \&{everyjob} command simply assigns a nonzero value to the global variable
22965 @<Cases of |do_statement|...@>=
22966 case every_job_command:
22967 mp_get_symbol(mp); mp->start_sym=mp->cur_sym; mp_get_x_next(mp);
22971 halfword start_sym; /* a symbolic token to insert at beginning of job */
22976 @ Finally, we have only the ``message'' commands remaining.
22979 @d err_message_code 1
22981 @d filename_template_code 3
22982 @d print_with_leading_zeroes(A) g = mp->pool_ptr;
22983 mp_print_int(mp, (A)); g = mp->pool_ptr-g;
22985 mp->pool_ptr = mp->pool_ptr - g;
22987 mp_print_char(mp, '0');
22990 mp_print_int(mp, (A));
22995 mp_primitive(mp, "message",message_command,message_code);
22996 @:message_}{\&{message} primitive@>
22997 mp_primitive(mp, "errmessage",message_command,err_message_code);
22998 @:err_message_}{\&{errmessage} primitive@>
22999 mp_primitive(mp, "errhelp",message_command,err_help_code);
23000 @:err_help_}{\&{errhelp} primitive@>
23001 mp_primitive(mp, "filenametemplate",message_command,filename_template_code);
23002 @:filename_template_}{\&{filenametemplate} primitive@>
23004 @ @<Cases of |print_cmd...@>=
23005 case message_command:
23006 if ( m<err_message_code ) mp_print(mp, "message");
23007 else if ( m==err_message_code ) mp_print(mp, "errmessage");
23008 else if ( m==filename_template_code ) mp_print(mp, "filenametemplate");
23009 else mp_print(mp, "errhelp");
23012 @ @<Cases of |do_statement|...@>=
23013 case message_command: mp_do_message(mp); break;
23015 @ @<Declare action procedures for use by |do_statement|@>=
23016 @<Declare a procedure called |no_string_err|@>;
23017 void mp_do_message (MP mp) ;
23020 @c void mp_do_message (MP mp) {
23021 int m; /* the type of message */
23022 m=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
23023 if ( mp->cur_type!=mp_string_type )
23024 mp_no_string_err(mp, "A message should be a known string expression.");
23028 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp);
23030 case err_message_code:
23031 @<Print string |cur_exp| as an error message@>;
23033 case err_help_code:
23034 @<Save string |cur_exp| as the |err_help|@>;
23036 case filename_template_code:
23037 @<Save the filename template@>;
23039 } /* there are no other cases */
23041 mp_flush_cur_exp(mp, 0);
23044 @ @<Declare a procedure called |no_string_err|@>=
23045 void mp_no_string_err (MP mp,char *s) {
23046 exp_err("Not a string");
23049 mp_put_get_error(mp);
23052 @ The global variable |err_help| is zero when the user has most recently
23053 given an empty help string, or if none has ever been given.
23055 @<Save string |cur_exp| as the |err_help|@>=
23057 if ( mp->err_help!=0 ) delete_str_ref(mp->err_help);
23058 if ( length(mp->cur_exp)==0 ) mp->err_help=0;
23059 else { mp->err_help=mp->cur_exp; add_str_ref(mp->err_help); }
23062 @ If \&{errmessage} occurs often in |mp_scroll_mode|, without user-defined
23063 \&{errhelp}, we don't want to give a long help message each time. So we
23064 give a verbose explanation only once.
23067 boolean long_help_seen; /* has the long \.{\\errmessage} help been used? */
23069 @ @<Set init...@>=mp->long_help_seen=false;
23071 @ @<Print string |cur_exp| as an error message@>=
23073 print_err(""); mp_print_str(mp, mp->cur_exp);
23074 if ( mp->err_help!=0 ) {
23075 mp->use_err_help=true;
23076 } else if ( mp->long_help_seen ) {
23077 help1("(That was another `errmessage'.)") ;
23079 if ( mp->interaction<mp_error_stop_mode ) mp->long_help_seen=true;
23080 help4("This error message was generated by an `errmessage'")
23081 ("command, so I can\'t give any explicit help.")
23082 ("Pretend that you're Miss Marple: Examine all clues,")
23084 ("and deduce the truth by inspired guesses.");
23086 mp_put_get_error(mp); mp->use_err_help=false;
23089 @ @<Cases of |do_statement|...@>=
23090 case write_command: mp_do_write(mp); break;
23092 @ @<Declare action procedures for use by |do_statement|@>=
23093 void mp_do_write (MP mp) ;
23095 @ @c void mp_do_write (MP mp) {
23096 str_number t; /* the line of text to be written */
23097 write_index n,n0; /* for searching |wr_fname| and |wr_file| arrays */
23098 int old_setting; /* for saving |selector| during output */
23100 mp_scan_expression(mp);
23101 if ( mp->cur_type!=mp_string_type ) {
23102 mp_no_string_err(mp, "The text to be written should be a known string expression");
23103 } else if ( mp->cur_cmd!=to_token ) {
23104 print_err("Missing `to' clause");
23105 help1("A write command should end with `to <filename>'");
23106 mp_put_get_error(mp);
23108 t=mp->cur_exp; mp->cur_type=mp_vacuous;
23110 mp_scan_expression(mp);
23111 if ( mp->cur_type!=mp_string_type )
23112 mp_no_string_err(mp, "I can\'t write to that file name. It isn't a known string");
23114 @<Write |t| to the file named by |cur_exp|@>;
23118 mp_flush_cur_exp(mp, 0);
23121 @ @<Write |t| to the file named by |cur_exp|@>=
23123 @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if
23124 |cur_exp| must be inserted@>;
23125 if ( mp_str_vs_str(mp, t,mp->eof_line)==0 ) {
23126 @<Record the end of file on |wr_file[n]|@>;
23128 old_setting=mp->selector;
23129 mp->selector=n+write_file;
23130 mp_print_str(mp, t); mp_print_ln(mp);
23131 mp->selector = old_setting;
23135 @ @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if...@>=
23137 char *fn = str(mp->cur_exp);
23139 n0=mp->write_files;
23140 while (mp_xstrcmp(fn,mp->wr_fname[n])!=0) {
23141 if ( n==0 ) { /* bottom reached */
23142 if ( n0==mp->write_files ) {
23143 if ( mp->write_files<mp->max_write_files ) {
23144 incr(mp->write_files);
23149 l = mp->max_write_files + (mp->max_write_files>>2);
23150 wr_file = xmalloc((l+1),sizeof(void *));
23151 wr_fname = xmalloc((l+1),sizeof(char *));
23152 for (k=0;k<=l;k++) {
23153 if (k<=mp->max_write_files) {
23154 wr_file[k]=mp->wr_file[k];
23155 wr_fname[k]=mp->wr_fname[k];
23161 xfree(mp->wr_file); xfree(mp->wr_fname);
23162 mp->max_write_files = l;
23163 mp->wr_file = wr_file;
23164 mp->wr_fname = wr_fname;
23168 mp_open_write_file(mp, fn ,n);
23171 if ( mp->wr_fname[n]==NULL ) n0=n;
23176 @ @<Record the end of file on |wr_file[n]|@>=
23177 { (mp->close_file)(mp->wr_file[n]);
23178 xfree(mp->wr_fname[n]);
23179 mp->wr_fname[n]=NULL;
23180 if ( n==mp->write_files-1 ) mp->write_files=n;
23184 @* \[42] Writing font metric data.
23185 \TeX\ gets its knowledge about fonts from font metric files, also called
23186 \.{TFM} files; the `\.T' in `\.{TFM}' stands for \TeX,
23187 but other programs know about them too. One of \MP's duties is to
23188 write \.{TFM} files so that the user's fonts can readily be
23189 applied to typesetting.
23190 @:TFM files}{\.{TFM} files@>
23191 @^font metric files@>
23193 The information in a \.{TFM} file appears in a sequence of 8-bit bytes.
23194 Since the number of bytes is always a multiple of~4, we could
23195 also regard the file as a sequence of 32-bit words, but \MP\ uses the
23196 byte interpretation. The format of \.{TFM} files was designed by
23197 Lyle Ramshaw in 1980. The intent is to convey a lot of different kinds
23198 @^Ramshaw, Lyle Harold@>
23199 of information in a compact but useful form.
23202 void * tfm_file; /* the font metric output goes here */
23203 char * metric_file_name; /* full name of the font metric file */
23205 @ The first 24 bytes (6 words) of a \.{TFM} file contain twelve 16-bit
23206 integers that give the lengths of the various subsequent portions
23207 of the file. These twelve integers are, in order:
23208 $$\vbox{\halign{\hfil#&$\null=\null$#\hfil\cr
23209 |lf|&length of the entire file, in words;\cr
23210 |lh|&length of the header data, in words;\cr
23211 |bc|&smallest character code in the font;\cr
23212 |ec|&largest character code in the font;\cr
23213 |nw|&number of words in the width table;\cr
23214 |nh|&number of words in the height table;\cr
23215 |nd|&number of words in the depth table;\cr
23216 |ni|&number of words in the italic correction table;\cr
23217 |nl|&number of words in the lig/kern table;\cr
23218 |nk|&number of words in the kern table;\cr
23219 |ne|&number of words in the extensible character table;\cr
23220 |np|&number of font parameter words.\cr}}$$
23221 They are all nonnegative and less than $2^{15}$. We must have |bc-1<=ec<=255|,
23223 $$\hbox{|lf=6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np|.}$$
23224 Note that a font may contain as many as 256 characters (if |bc=0| and |ec=255|),
23225 and as few as 0 characters (if |bc=ec+1|).
23227 Incidentally, when two or more 8-bit bytes are combined to form an integer of
23228 16 or more bits, the most significant bytes appear first in the file.
23229 This is called BigEndian order.
23230 @^BigEndian order@>
23232 @ The rest of the \.{TFM} file may be regarded as a sequence of ten data
23235 The most important data type used here is a |fix_word|, which is
23236 a 32-bit representation of a binary fraction. A |fix_word| is a signed
23237 quantity, with the two's complement of the entire word used to represent
23238 negation. Of the 32 bits in a |fix_word|, exactly 12 are to the left of the
23239 binary point; thus, the largest |fix_word| value is $2048-2^{-20}$, and
23240 the smallest is $-2048$. We will see below, however, that all but two of
23241 the |fix_word| values must lie between $-16$ and $+16$.
23243 @ The first data array is a block of header information, which contains
23244 general facts about the font. The header must contain at least two words,
23245 |header[0]| and |header[1]|, whose meaning is explained below. Additional
23246 header information of use to other software routines might also be
23247 included, and \MP\ will generate it if the \.{headerbyte} command occurs.
23248 For example, 16 more words of header information are in use at the Xerox
23249 Palo Alto Research Center; the first ten specify the character coding
23250 scheme used (e.g., `\.{XEROX TEXT}' or `\.{TEX MATHSY}'), the next five
23251 give the font family name (e.g., `\.{HELVETICA}' or `\.{CMSY}'), and the
23252 last gives the ``face byte.''
23254 \yskip\hang|header[0]| is a 32-bit check sum that \MP\ will copy into
23255 the \.{GF} output file. This helps ensure consistency between files,
23256 since \TeX\ records the check sums from the \.{TFM}'s it reads, and these
23257 should match the check sums on actual fonts that are used. The actual
23258 relation between this check sum and the rest of the \.{TFM} file is not
23259 important; the check sum is simply an identification number with the
23260 property that incompatible fonts almost always have distinct check sums.
23263 \yskip\hang|header[1]| is a |fix_word| containing the design size of the
23264 font, in units of \TeX\ points. This number must be at least 1.0; it is
23265 fairly arbitrary, but usually the design size is 10.0 for a ``10 point''
23266 font, i.e., a font that was designed to look best at a 10-point size,
23267 whatever that really means. When a \TeX\ user asks for a font `\.{at}
23268 $\delta$ \.{pt}', the effect is to override the design size and replace it
23269 by $\delta$, and to multiply the $x$ and~$y$ coordinates of the points in
23270 the font image by a factor of $\delta$ divided by the design size. {\sl
23271 All other dimensions in the\/ \.{TFM} file are |fix_word|\kern-1pt\
23272 numbers in design-size units.} Thus, for example, the value of |param[6]|,
23273 which defines the \.{em} unit, is often the |fix_word| value $2^{20}=1.0$,
23274 since many fonts have a design size equal to one em. The other dimensions
23275 must be less than 16 design-size units in absolute value; thus,
23276 |header[1]| and |param[1]| are the only |fix_word| entries in the whole
23277 \.{TFM} file whose first byte might be something besides 0 or 255.
23279 @ Next comes the |char_info| array, which contains one |char_info_word|
23280 per character. Each word in this part of the file contains six fields
23281 packed into four bytes as follows.
23283 \yskip\hang first byte: |width_index| (8 bits)\par
23284 \hang second byte: |height_index| (4 bits) times 16, plus |depth_index|
23286 \hang third byte: |italic_index| (6 bits) times 4, plus |tag|
23288 \hang fourth byte: |remainder| (8 bits)\par
23290 The actual width of a character is \\{width}|[width_index]|, in design-size
23291 units; this is a device for compressing information, since many characters
23292 have the same width. Since it is quite common for many characters
23293 to have the same height, depth, or italic correction, the \.{TFM} format
23294 imposes a limit of 16 different heights, 16 different depths, and
23295 64 different italic corrections.
23297 Incidentally, the relation $\\{width}[0]=\\{height}[0]=\\{depth}[0]=
23298 \\{italic}[0]=0$ should always hold, so that an index of zero implies a
23299 value of zero. The |width_index| should never be zero unless the
23300 character does not exist in the font, since a character is valid if and
23301 only if it lies between |bc| and |ec| and has a nonzero |width_index|.
23303 @ The |tag| field in a |char_info_word| has four values that explain how to
23304 interpret the |remainder| field.
23306 \yskip\hang|tag=0| (|no_tag|) means that |remainder| is unused.\par
23307 \hang|tag=1| (|lig_tag|) means that this character has a ligature/kerning
23308 program starting at location |remainder| in the |lig_kern| array.\par
23309 \hang|tag=2| (|list_tag|) means that this character is part of a chain of
23310 characters of ascending sizes, and not the largest in the chain. The
23311 |remainder| field gives the character code of the next larger character.\par
23312 \hang|tag=3| (|ext_tag|) means that this character code represents an
23313 extensible character, i.e., a character that is built up of smaller pieces
23314 so that it can be made arbitrarily large. The pieces are specified in
23315 |exten[remainder]|.\par
23317 Characters with |tag=2| and |tag=3| are treated as characters with |tag=0|
23318 unless they are used in special circumstances in math formulas. For example,
23319 \TeX's \.{\\sum} operation looks for a |list_tag|, and the \.{\\left}
23320 operation looks for both |list_tag| and |ext_tag|.
23322 @d no_tag 0 /* vanilla character */
23323 @d lig_tag 1 /* character has a ligature/kerning program */
23324 @d list_tag 2 /* character has a successor in a charlist */
23325 @d ext_tag 3 /* character is extensible */
23327 @ The |lig_kern| array contains instructions in a simple programming language
23328 that explains what to do for special letter pairs. Each word in this array is a
23329 |lig_kern_command| of four bytes.
23331 \yskip\hang first byte: |skip_byte|, indicates that this is the final program
23332 step if the byte is 128 or more, otherwise the next step is obtained by
23333 skipping this number of intervening steps.\par
23334 \hang second byte: |next_char|, ``if |next_char| follows the current character,
23335 then perform the operation and stop, otherwise continue.''\par
23336 \hang third byte: |op_byte|, indicates a ligature step if less than~128,
23337 a kern step otherwise.\par
23338 \hang fourth byte: |remainder|.\par
23341 additional space equal to |kern[256*(op_byte-128)+remainder]| is inserted
23342 between the current character and |next_char|. This amount is
23343 often negative, so that the characters are brought closer together
23344 by kerning; but it might be positive.
23346 There are eight kinds of ligature steps, having |op_byte| codes $4a+2b+c$ where
23347 $0\le a\le b+c$ and $0\le b,c\le1$. The character whose code is
23348 |remainder| is inserted between the current character and |next_char|;
23349 then the current character is deleted if $b=0$, and |next_char| is
23350 deleted if $c=0$; then we pass over $a$~characters to reach the next
23351 current character (which may have a ligature/kerning program of its own).
23353 If the very first instruction of the |lig_kern| array has |skip_byte=255|,
23354 the |next_char| byte is the so-called right boundary character of this font;
23355 the value of |next_char| need not lie between |bc| and~|ec|.
23356 If the very last instruction of the |lig_kern| array has |skip_byte=255|,
23357 there is a special ligature/kerning program for a left boundary character,
23358 beginning at location |256*op_byte+remainder|.
23359 The interpretation is that \TeX\ puts implicit boundary characters
23360 before and after each consecutive string of characters from the same font.
23361 These implicit characters do not appear in the output, but they can affect
23362 ligatures and kerning.
23364 If the very first instruction of a character's |lig_kern| program has
23365 |skip_byte>128|, the program actually begins in location
23366 |256*op_byte+remainder|. This feature allows access to large |lig_kern|
23367 arrays, because the first instruction must otherwise
23368 appear in a location |<=255|.
23370 Any instruction with |skip_byte>128| in the |lig_kern| array must satisfy
23372 $$\hbox{|256*op_byte+remainder<nl|.}$$
23373 If such an instruction is encountered during
23374 normal program execution, it denotes an unconditional halt; no ligature
23375 command is performed.
23378 /* value indicating `\.{STOP}' in a lig/kern program */
23379 @d kern_flag (128) /* op code for a kern step */
23380 @d skip_byte(A) mp->lig_kern[(A)].b0
23381 @d next_char(A) mp->lig_kern[(A)].b1
23382 @d op_byte(A) mp->lig_kern[(A)].b2
23383 @d rem_byte(A) mp->lig_kern[(A)].b3
23385 @ Extensible characters are specified by an |extensible_recipe|, which
23386 consists of four bytes called |top|, |mid|, |bot|, and |rep| (in this
23387 order). These bytes are the character codes of individual pieces used to
23388 build up a large symbol. If |top|, |mid|, or |bot| are zero, they are not
23389 present in the built-up result. For example, an extensible vertical line is
23390 like an extensible bracket, except that the top and bottom pieces are missing.
23392 Let $T$, $M$, $B$, and $R$ denote the respective pieces, or an empty box
23393 if the piece isn't present. Then the extensible characters have the form
23394 $TR^kMR^kB$ from top to bottom, for some |k>=0|, unless $M$ is absent;
23395 in the latter case we can have $TR^kB$ for both even and odd values of~|k|.
23396 The width of the extensible character is the width of $R$; and the
23397 height-plus-depth is the sum of the individual height-plus-depths of the
23398 components used, since the pieces are butted together in a vertical list.
23400 @d ext_top(A) mp->exten[(A)].b0 /* |top| piece in a recipe */
23401 @d ext_mid(A) mp->exten[(A)].b1 /* |mid| piece in a recipe */
23402 @d ext_bot(A) mp->exten[(A)].b2 /* |bot| piece in a recipe */
23403 @d ext_rep(A) mp->exten[(A)].b3 /* |rep| piece in a recipe */
23405 @ The final portion of a \.{TFM} file is the |param| array, which is another
23406 sequence of |fix_word| values.
23408 \yskip\hang|param[1]=slant| is the amount of italic slant, which is used
23409 to help position accents. For example, |slant=.25| means that when you go
23410 up one unit, you also go .25 units to the right. The |slant| is a pure
23411 number; it is the only |fix_word| other than the design size itself that is
23412 not scaled by the design size.
23414 \hang|param[2]=space| is the normal spacing between words in text.
23415 Note that character 040 in the font need not have anything to do with
23418 \hang|param[3]=space_stretch| is the amount of glue stretching between words.
23420 \hang|param[4]=space_shrink| is the amount of glue shrinking between words.
23422 \hang|param[5]=x_height| is the size of one ex in the font; it is also
23423 the height of letters for which accents don't have to be raised or lowered.
23425 \hang|param[6]=quad| is the size of one em in the font.
23427 \hang|param[7]=extra_space| is the amount added to |param[2]| at the
23431 If fewer than seven parameters are present, \TeX\ sets the missing parameters
23436 @d space_stretch_code 3
23437 @d space_shrink_code 4
23440 @d extra_space_code 7
23442 @ So that is what \.{TFM} files hold. One of \MP's duties is to output such
23443 information, and it does this all at once at the end of a job.
23444 In order to prepare for such frenetic activity, it squirrels away the
23445 necessary facts in various arrays as information becomes available.
23447 Character dimensions (\&{charwd}, \&{charht}, \&{chardp}, and \&{charic})
23448 are stored respectively in |tfm_width|, |tfm_height|, |tfm_depth|, and
23449 |tfm_ital_corr|. Other information about a character (e.g., about
23450 its ligatures or successors) is accessible via the |char_tag| and
23451 |char_remainder| arrays. Other information about the font as a whole
23452 is kept in additional arrays called |header_byte|, |lig_kern|,
23453 |kern|, |exten|, and |param|.
23455 @d max_tfm_int 32510
23456 @d undefined_label max_tfm_int /* an undefined local label */
23459 #define TFM_ITEMS 257
23461 eight_bits ec; /* smallest and largest character codes shipped out */
23462 scaled tfm_width[TFM_ITEMS]; /* \&{charwd} values */
23463 scaled tfm_height[TFM_ITEMS]; /* \&{charht} values */
23464 scaled tfm_depth[TFM_ITEMS]; /* \&{chardp} values */
23465 scaled tfm_ital_corr[TFM_ITEMS]; /* \&{charic} values */
23466 boolean char_exists[TFM_ITEMS]; /* has this code been shipped out? */
23467 int char_tag[TFM_ITEMS]; /* |remainder| category */
23468 int char_remainder[TFM_ITEMS]; /* the |remainder| byte */
23469 char *header_byte; /* bytes of the \.{TFM} header */
23470 int header_last; /* last initialized \.{TFM} header byte */
23471 int header_size; /* size of the \.{TFM} header */
23472 four_quarters *lig_kern; /* the ligature/kern table */
23473 short nl; /* the number of ligature/kern steps so far */
23474 scaled *kern; /* distinct kerning amounts */
23475 short nk; /* the number of distinct kerns so far */
23476 four_quarters exten[TFM_ITEMS]; /* extensible character recipes */
23477 short ne; /* the number of extensible characters so far */
23478 scaled *param; /* \&{fontinfo} parameters */
23479 short np; /* the largest \&{fontinfo} parameter specified so far */
23480 short nw;short nh;short nd;short ni; /* sizes of \.{TFM} subtables */
23481 short skip_table[TFM_ITEMS]; /* local label status */
23482 boolean lk_started; /* has there been a lig/kern step in this command yet? */
23483 integer bchar; /* right boundary character */
23484 short bch_label; /* left boundary starting location */
23485 short ll;short lll; /* registers used for lig/kern processing */
23486 short label_loc[257]; /* lig/kern starting addresses */
23487 eight_bits label_char[257]; /* characters for |label_loc| */
23488 short label_ptr; /* highest position occupied in |label_loc| */
23490 @ @<Allocate or initialize ...@>=
23491 mp->header_last = 0; mp->header_size = 128; /* just for init */
23492 mp->header_byte = xmalloc(mp->header_size, sizeof(char));
23493 mp->lig_kern = NULL; /* allocated when needed */
23494 mp->kern = NULL; /* allocated when needed */
23495 mp->param = NULL; /* allocated when needed */
23497 @ @<Dealloc variables@>=
23498 xfree(mp->header_byte);
23499 xfree(mp->lig_kern);
23504 for (k=0;k<= 255;k++ ) {
23505 mp->tfm_width[k]=0; mp->tfm_height[k]=0; mp->tfm_depth[k]=0; mp->tfm_ital_corr[k]=0;
23506 mp->char_exists[k]=false; mp->char_tag[k]=no_tag; mp->char_remainder[k]=0;
23507 mp->skip_table[k]=undefined_label;
23509 memset(mp->header_byte,0,mp->header_size);
23510 mp->bc=255; mp->ec=0; mp->nl=0; mp->nk=0; mp->ne=0; mp->np=0;
23511 mp->internal[mp_boundary_char]=-unity;
23512 mp->bch_label=undefined_label;
23513 mp->label_loc[0]=-1; mp->label_ptr=0;
23515 @ @<Declarations@>=
23516 scaled mp_tfm_check (MP mp,small_number m) ;
23518 @ @<Declare the function called |tfm_check|@>=
23519 scaled mp_tfm_check (MP mp,small_number m) {
23520 if ( abs(mp->internal[m])>=fraction_half ) {
23521 print_err("Enormous "); mp_print(mp, mp->int_name[m]);
23522 @.Enormous charwd...@>
23523 @.Enormous chardp...@>
23524 @.Enormous charht...@>
23525 @.Enormous charic...@>
23526 @.Enormous designsize...@>
23527 mp_print(mp, " has been reduced");
23528 help1("Font metric dimensions must be less than 2048pt.");
23529 mp_put_get_error(mp);
23530 if ( mp->internal[m]>0 ) return (fraction_half-1);
23531 else return (1-fraction_half);
23533 return mp->internal[m];
23537 @ @<Store the width information for character code~|c|@>=
23538 if ( c<mp->bc ) mp->bc=c;
23539 if ( c>mp->ec ) mp->ec=c;
23540 mp->char_exists[c]=true;
23541 mp->tfm_width[c]=mp_tfm_check(mp, mp_char_wd);
23542 mp->tfm_height[c]=mp_tfm_check(mp, mp_char_ht);
23543 mp->tfm_depth[c]=mp_tfm_check(mp, mp_char_dp);
23544 mp->tfm_ital_corr[c]=mp_tfm_check(mp, mp_char_ic)
23546 @ Now let's consider \MP's special \.{TFM}-oriented commands.
23548 @<Cases of |do_statement|...@>=
23549 case tfm_command: mp_do_tfm_command(mp); break;
23551 @ @d char_list_code 0
23552 @d lig_table_code 1
23553 @d extensible_code 2
23554 @d header_byte_code 3
23555 @d font_dimen_code 4
23558 mp_primitive(mp, "charlist",tfm_command,char_list_code);
23559 @:char_list_}{\&{charlist} primitive@>
23560 mp_primitive(mp, "ligtable",tfm_command,lig_table_code);
23561 @:lig_table_}{\&{ligtable} primitive@>
23562 mp_primitive(mp, "extensible",tfm_command,extensible_code);
23563 @:extensible_}{\&{extensible} primitive@>
23564 mp_primitive(mp, "headerbyte",tfm_command,header_byte_code);
23565 @:header_byte_}{\&{headerbyte} primitive@>
23566 mp_primitive(mp, "fontdimen",tfm_command,font_dimen_code);
23567 @:font_dimen_}{\&{fontdimen} primitive@>
23569 @ @<Cases of |print_cmd...@>=
23572 case char_list_code:mp_print(mp, "charlist"); break;
23573 case lig_table_code:mp_print(mp, "ligtable"); break;
23574 case extensible_code:mp_print(mp, "extensible"); break;
23575 case header_byte_code:mp_print(mp, "headerbyte"); break;
23576 default: mp_print(mp, "fontdimen"); break;
23580 @ @<Declare action procedures for use by |do_statement|@>=
23581 eight_bits mp_get_code (MP mp) ;
23583 @ @c eight_bits mp_get_code (MP mp) { /* scans a character code value */
23584 integer c; /* the code value found */
23585 mp_get_x_next(mp); mp_scan_expression(mp);
23586 if ( mp->cur_type==mp_known ) {
23587 c=mp_round_unscaled(mp, mp->cur_exp);
23588 if ( c>=0 ) if ( c<256 ) return c;
23589 } else if ( mp->cur_type==mp_string_type ) {
23590 if ( length(mp->cur_exp)==1 ) {
23591 c=mp->str_pool[mp->str_start[mp->cur_exp]];
23595 exp_err("Invalid code has been replaced by 0");
23596 @.Invalid code...@>
23597 help2("I was looking for a number between 0 and 255, or for a")
23598 ("string of length 1. Didn't find it; will use 0 instead.");
23599 mp_put_get_flush_error(mp, 0); c=0;
23603 @ @<Declare action procedures for use by |do_statement|@>=
23604 void mp_set_tag (MP mp,halfword c, small_number t, halfword r) ;
23606 @ @c void mp_set_tag (MP mp,halfword c, small_number t, halfword r) {
23607 if ( mp->char_tag[c]==no_tag ) {
23608 mp->char_tag[c]=t; mp->char_remainder[c]=r;
23610 incr(mp->label_ptr); mp->label_loc[mp->label_ptr]=r;
23611 mp->label_char[mp->label_ptr]=c;
23614 @<Complain about a character tag conflict@>;
23618 @ @<Complain about a character tag conflict@>=
23620 print_err("Character ");
23621 if ( (c>' ')&&(c<127) ) mp_print_char(mp,c);
23622 else if ( c==256 ) mp_print(mp, "||");
23623 else { mp_print(mp, "code "); mp_print_int(mp, c); };
23624 mp_print(mp, " is already ");
23625 @.Character c is already...@>
23626 switch (mp->char_tag[c]) {
23627 case lig_tag: mp_print(mp, "in a ligtable"); break;
23628 case list_tag: mp_print(mp, "in a charlist"); break;
23629 case ext_tag: mp_print(mp, "extensible"); break;
23630 } /* there are no other cases */
23631 help2("It's not legal to label a character more than once.")
23632 ("So I'll not change anything just now.");
23633 mp_put_get_error(mp);
23636 @ @<Declare action procedures for use by |do_statement|@>=
23637 void mp_do_tfm_command (MP mp) ;
23639 @ @c void mp_do_tfm_command (MP mp) {
23640 int c,cc; /* character codes */
23641 int k; /* index into the |kern| array */
23642 int j; /* index into |header_byte| or |param| */
23643 switch (mp->cur_mod) {
23644 case char_list_code:
23646 /* we will store a list of character successors */
23647 while ( mp->cur_cmd==colon ) {
23648 cc=mp_get_code(mp); mp_set_tag(mp, c,list_tag,cc); c=cc;
23651 case lig_table_code:
23652 if (mp->lig_kern==NULL)
23653 mp->lig_kern = xmalloc((max_tfm_int+1),sizeof(four_quarters));
23654 if (mp->kern==NULL)
23655 mp->kern = xmalloc((max_tfm_int+1),sizeof(scaled));
23656 @<Store a list of ligature/kern steps@>;
23658 case extensible_code:
23659 @<Define an extensible recipe@>;
23661 case header_byte_code:
23662 case font_dimen_code:
23663 c=mp->cur_mod; mp_get_x_next(mp);
23664 mp_scan_expression(mp);
23665 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<half_unit) ) {
23666 exp_err("Improper location");
23667 @.Improper location@>
23668 help2("I was looking for a known, positive number.")
23669 ("For safety's sake I'll ignore the present command.");
23670 mp_put_get_error(mp);
23672 j=mp_round_unscaled(mp, mp->cur_exp);
23673 if ( mp->cur_cmd!=colon ) {
23674 mp_missing_err(mp, ":");
23676 help1("A colon should follow a headerbyte or fontinfo location.");
23679 if ( c==header_byte_code ) {
23680 @<Store a list of header bytes@>;
23682 if (mp->param==NULL)
23683 mp->param = xmalloc((max_tfm_int+1),sizeof(scaled));
23684 @<Store a list of font dimensions@>;
23688 } /* there are no other cases */
23691 @ @<Store a list of ligature/kern steps@>=
23693 mp->lk_started=false;
23696 if ((mp->cur_cmd==skip_to)&& mp->lk_started )
23697 @<Process a |skip_to| command and |goto done|@>;
23698 if ( mp->cur_cmd==bchar_label ) { c=256; mp->cur_cmd=colon; }
23699 else { mp_back_input(mp); c=mp_get_code(mp); };
23700 if ((mp->cur_cmd==colon)||(mp->cur_cmd==double_colon)) {
23701 @<Record a label in a lig/kern subprogram and |goto continue|@>;
23703 if ( mp->cur_cmd==lig_kern_token ) {
23704 @<Compile a ligature/kern command@>;
23706 print_err("Illegal ligtable step");
23707 @.Illegal ligtable step@>
23708 help1("I was looking for `=:' or `kern' here.");
23709 mp_back_error(mp); next_char(mp->nl)=qi(0);
23710 op_byte(mp->nl)=qi(0); rem_byte(mp->nl)=qi(0);
23711 skip_byte(mp->nl)=stop_flag+1; /* this specifies an unconditional stop */
23713 if ( mp->nl==max_tfm_int) mp_fatal_error(mp, "ligtable too large");
23715 if ( mp->cur_cmd==comma ) goto CONTINUE;
23716 if ( skip_byte(mp->nl-1)<stop_flag ) skip_byte(mp->nl-1)=stop_flag;
23721 mp_primitive(mp, "=:",lig_kern_token,0);
23722 @:=:_}{\.{=:} primitive@>
23723 mp_primitive(mp, "=:|",lig_kern_token,1);
23724 @:=:/_}{\.{=:\char'174} primitive@>
23725 mp_primitive(mp, "=:|>",lig_kern_token,5);
23726 @:=:/>_}{\.{=:\char'174>} primitive@>
23727 mp_primitive(mp, "|=:",lig_kern_token,2);
23728 @:=:/_}{\.{\char'174=:} primitive@>
23729 mp_primitive(mp, "|=:>",lig_kern_token,6);
23730 @:=:/>_}{\.{\char'174=:>} primitive@>
23731 mp_primitive(mp, "|=:|",lig_kern_token,3);
23732 @:=:/_}{\.{\char'174=:\char'174} primitive@>
23733 mp_primitive(mp, "|=:|>",lig_kern_token,7);
23734 @:=:/>_}{\.{\char'174=:\char'174>} primitive@>
23735 mp_primitive(mp, "|=:|>>",lig_kern_token,11);
23736 @:=:/>_}{\.{\char'174=:\char'174>>} primitive@>
23737 mp_primitive(mp, "kern",lig_kern_token,128);
23738 @:kern_}{\&{kern} primitive@>
23740 @ @<Cases of |print_cmd...@>=
23741 case lig_kern_token:
23743 case 0:mp_print(mp, "=:"); break;
23744 case 1:mp_print(mp, "=:|"); break;
23745 case 2:mp_print(mp, "|=:"); break;
23746 case 3:mp_print(mp, "|=:|"); break;
23747 case 5:mp_print(mp, "=:|>"); break;
23748 case 6:mp_print(mp, "|=:>"); break;
23749 case 7:mp_print(mp, "|=:|>"); break;
23750 case 11:mp_print(mp, "|=:|>>"); break;
23751 default: mp_print(mp, "kern"); break;
23755 @ Local labels are implemented by maintaining the |skip_table| array,
23756 where |skip_table[c]| is either |undefined_label| or the address of the
23757 most recent lig/kern instruction that skips to local label~|c|. In the
23758 latter case, the |skip_byte| in that instruction will (temporarily)
23759 be zero if there were no prior skips to this label, or it will be the
23760 distance to the prior skip.
23762 We may need to cancel skips that span more than 127 lig/kern steps.
23764 @d cancel_skips(A) mp->ll=(A);
23766 mp->lll=qo(skip_byte(mp->ll));
23767 skip_byte(mp->ll)=stop_flag; mp->ll=mp->ll-mp->lll;
23768 } while (mp->lll!=0)
23769 @d skip_error(A) { print_err("Too far to skip");
23770 @.Too far to skip@>
23771 help1("At most 127 lig/kern steps can separate skipto1 from 1::.");
23772 mp_error(mp); cancel_skips((A));
23775 @<Process a |skip_to| command and |goto done|@>=
23778 if ( mp->nl-mp->skip_table[c]>128 ) { /* |skip_table[c]<<nl<=undefined_label| */
23779 skip_error(mp->skip_table[c]); mp->skip_table[c]=undefined_label;
23781 if ( mp->skip_table[c]==undefined_label ) skip_byte(mp->nl-1)=qi(0);
23782 else skip_byte(mp->nl-1)=qi(mp->nl-mp->skip_table[c]-1);
23783 mp->skip_table[c]=mp->nl-1; goto DONE;
23786 @ @<Record a label in a lig/kern subprogram and |goto continue|@>=
23788 if ( mp->cur_cmd==colon ) {
23789 if ( c==256 ) mp->bch_label=mp->nl;
23790 else mp_set_tag(mp, c,lig_tag,mp->nl);
23791 } else if ( mp->skip_table[c]<undefined_label ) {
23792 mp->ll=mp->skip_table[c]; mp->skip_table[c]=undefined_label;
23794 mp->lll=qo(skip_byte(mp->ll));
23795 if ( mp->nl-mp->ll>128 ) {
23796 skip_error(mp->ll); goto CONTINUE;
23798 skip_byte(mp->ll)=qi(mp->nl-mp->ll-1); mp->ll=mp->ll-mp->lll;
23799 } while (mp->lll!=0);
23804 @ @<Compile a ligature/kern...@>=
23806 next_char(mp->nl)=qi(c); skip_byte(mp->nl)=qi(0);
23807 if ( mp->cur_mod<128 ) { /* ligature op */
23808 op_byte(mp->nl)=qi(mp->cur_mod); rem_byte(mp->nl)=qi(mp_get_code(mp));
23810 mp_get_x_next(mp); mp_scan_expression(mp);
23811 if ( mp->cur_type!=mp_known ) {
23812 exp_err("Improper kern");
23814 help2("The amount of kern should be a known numeric value.")
23815 ("I'm zeroing this one. Proceed, with fingers crossed.");
23816 mp_put_get_flush_error(mp, 0);
23818 mp->kern[mp->nk]=mp->cur_exp;
23820 while ( mp->kern[k]!=mp->cur_exp ) incr(k);
23822 if ( mp->nk==max_tfm_int ) mp_fatal_error(mp, "too many TFM kerns");
23825 op_byte(mp->nl)=kern_flag+(k / 256);
23826 rem_byte(mp->nl)=qi((k % 256));
23828 mp->lk_started=true;
23831 @ @d missing_extensible_punctuation(A)
23832 { mp_missing_err(mp, (A));
23833 @.Missing `\char`\#'@>
23834 help1("I'm processing `extensible c: t,m,b,r'."); mp_back_error(mp);
23837 @<Define an extensible recipe@>=
23839 if ( mp->ne==256 ) mp_fatal_error(mp, "too many extensible recipies");
23840 c=mp_get_code(mp); mp_set_tag(mp, c,ext_tag,mp->ne);
23841 if ( mp->cur_cmd!=colon ) missing_extensible_punctuation(":");
23842 ext_top(mp->ne)=qi(mp_get_code(mp));
23843 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23844 ext_mid(mp->ne)=qi(mp_get_code(mp));
23845 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23846 ext_bot(mp->ne)=qi(mp_get_code(mp));
23847 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23848 ext_rep(mp->ne)=qi(mp_get_code(mp));
23852 @ The header could contain ASCII zeroes, so can't use |strdup|.
23854 @<Store a list of header bytes@>=
23856 if ( j>=mp->header_size ) {
23857 int l = mp->header_size + (mp->header_size >> 2);
23858 char *t = xmalloc(l,sizeof(char));
23860 memcpy(t,mp->header_byte,mp->header_size);
23861 xfree (mp->header_byte);
23862 mp->header_byte = t;
23863 mp->header_size = l;
23865 mp->header_byte[j]=mp_get_code(mp);
23866 incr(j); incr(mp->header_last);
23867 } while (mp->cur_cmd==comma)
23869 @ @<Store a list of font dimensions@>=
23871 if ( j>max_tfm_int ) mp_fatal_error(mp, "too many fontdimens");
23872 while ( j>mp->np ) { incr(mp->np); mp->param[mp->np]=0; };
23873 mp_get_x_next(mp); mp_scan_expression(mp);
23874 if ( mp->cur_type!=mp_known ){
23875 exp_err("Improper font parameter");
23876 @.Improper font parameter@>
23877 help1("I'm zeroing this one. Proceed, with fingers crossed.");
23878 mp_put_get_flush_error(mp, 0);
23880 mp->param[j]=mp->cur_exp; incr(j);
23881 } while (mp->cur_cmd==comma)
23883 @ OK: We've stored all the data that is needed for the \.{TFM} file.
23884 All that remains is to output it in the correct format.
23886 An interesting problem needs to be solved in this connection, because
23887 the \.{TFM} format allows at most 256~widths, 16~heights, 16~depths,
23888 and 64~italic corrections. If the data has more distinct values than
23889 this, we want to meet the necessary restrictions by perturbing the
23890 given values as little as possible.
23892 \MP\ solves this problem in two steps. First the values of a given
23893 kind (widths, heights, depths, or italic corrections) are sorted;
23894 then the list of sorted values is perturbed, if necessary.
23896 The sorting operation is facilitated by having a special node of
23897 essentially infinite |value| at the end of the current list.
23899 @<Initialize table entries...@>=
23900 value(inf_val)=fraction_four;
23902 @ Straight linear insertion is good enough for sorting, since the lists
23903 are usually not terribly long. As we work on the data, the current list
23904 will start at |link(temp_head)| and end at |inf_val|; the nodes in this
23905 list will be in increasing order of their |value| fields.
23907 Given such a list, the |sort_in| function takes a value and returns a pointer
23908 to where that value can be found in the list. The value is inserted in
23909 the proper place, if necessary.
23911 At the time we need to do these operations, most of \MP's work has been
23912 completed, so we will have plenty of memory to play with. The value nodes
23913 that are allocated for sorting will never be returned to free storage.
23915 @d clear_the_list link(temp_head)=inf_val
23917 @c pointer mp_sort_in (MP mp,scaled v) {
23918 pointer p,q,r; /* list manipulation registers */
23922 if ( v<=value(q) ) break;
23925 if ( v<value(q) ) {
23926 r=mp_get_node(mp, value_node_size); value(r)=v; link(r)=q; link(p)=r;
23931 @ Now we come to the interesting part, where we reduce the list if necessary
23932 until it has the required size. The |min_cover| routine is basic to this
23933 process; it computes the minimum number~|m| such that the values of the
23934 current sorted list can be covered by |m|~intervals of width~|d|. It
23935 also sets the global value |perturbation| to the smallest value $d'>d$
23936 such that the covering found by this algorithm would be different.
23938 In particular, |min_cover(0)| returns the number of distinct values in the
23939 current list and sets |perturbation| to the minimum distance between
23942 @c integer mp_min_cover (MP mp,scaled d) {
23943 pointer p; /* runs through the current list */
23944 scaled l; /* the least element covered by the current interval */
23945 integer m; /* lower bound on the size of the minimum cover */
23946 m=0; p=link(temp_head); mp->perturbation=el_gordo;
23947 while ( p!=inf_val ){
23948 incr(m); l=value(p);
23949 do { p=link(p); } while (value(p)<=l+d);
23950 if ( value(p)-l<mp->perturbation )
23951 mp->perturbation=value(p)-l;
23957 scaled perturbation; /* quantity related to \.{TFM} rounding */
23958 integer excess; /* the list is this much too long */
23960 @ The smallest |d| such that a given list can be covered with |m| intervals
23961 is determined by the |threshold| routine, which is sort of an inverse
23962 to |min_cover|. The idea is to increase the interval size rapidly until
23963 finding the range, then to go sequentially until the exact borderline has
23966 @c scaled mp_threshold (MP mp,integer m) {
23967 scaled d; /* lower bound on the smallest interval size */
23968 mp->excess=mp_min_cover(mp, 0)-m;
23969 if ( mp->excess<=0 ) {
23973 d=mp->perturbation;
23974 } while (mp_min_cover(mp, d+d)>m);
23975 while ( mp_min_cover(mp, d)>m )
23976 d=mp->perturbation;
23981 @ The |skimp| procedure reduces the current list to at most |m| entries,
23982 by changing values if necessary. It also sets |info(p):=k| if |value(p)|
23983 is the |k|th distinct value on the resulting list, and it sets
23984 |perturbation| to the maximum amount by which a |value| field has
23985 been changed. The size of the resulting list is returned as the
23988 @c integer mp_skimp (MP mp,integer m) {
23989 scaled d; /* the size of intervals being coalesced */
23990 pointer p,q,r; /* list manipulation registers */
23991 scaled l; /* the least value in the current interval */
23992 scaled v; /* a compromise value */
23993 d=mp_threshold(mp, m); mp->perturbation=0;
23994 q=temp_head; m=0; p=link(temp_head);
23995 while ( p!=inf_val ) {
23996 incr(m); l=value(p); info(p)=m;
23997 if ( value(link(p))<=l+d ) {
23998 @<Replace an interval of values by its midpoint@>;
24005 @ @<Replace an interval...@>=
24008 p=link(p); info(p)=m;
24009 decr(mp->excess); if ( mp->excess==0 ) d=0;
24010 } while (value(link(p))<=l+d);
24011 v=l+halfp(value(p)-l);
24012 if ( value(p)-v>mp->perturbation )
24013 mp->perturbation=value(p)-v;
24016 r=link(r); value(r)=v;
24018 link(q)=p; /* remove duplicate values from the current list */
24021 @ A warning message is issued whenever something is perturbed by
24022 more than 1/16\thinspace pt.
24024 @c void mp_tfm_warning (MP mp,small_number m) {
24025 mp_print_nl(mp, "(some ");
24026 mp_print(mp, mp->int_name[m]);
24027 @.some charwds...@>
24028 @.some chardps...@>
24029 @.some charhts...@>
24030 @.some charics...@>
24031 mp_print(mp, " values had to be adjusted by as much as ");
24032 mp_print_scaled(mp, mp->perturbation); mp_print(mp, "pt)");
24035 @ Here's an example of how we use these routines.
24036 The width data needs to be perturbed only if there are 256 distinct
24037 widths, but \MP\ must check for this case even though it is
24040 An integer variable |k| will be defined when we use this code.
24041 The |dimen_head| array will contain pointers to the sorted
24042 lists of dimensions.
24044 @<Massage the \.{TFM} widths@>=
24046 for (k=mp->bc;k<=mp->ec;k++) {
24047 if ( mp->char_exists[k] )
24048 mp->tfm_width[k]=mp_sort_in(mp, mp->tfm_width[k]);
24050 mp->nw=mp_skimp(mp, 255)+1; mp->dimen_head[1]=link(temp_head);
24051 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_wd)
24054 pointer dimen_head[5]; /* lists of \.{TFM} dimensions */
24056 @ Heights, depths, and italic corrections are different from widths
24057 not only because their list length is more severely restricted, but
24058 also because zero values do not need to be put into the lists.
24060 @<Massage the \.{TFM} heights, depths, and italic corrections@>=
24062 for (k=mp->bc;k<=mp->ec;k++) {
24063 if ( mp->char_exists[k] ) {
24064 if ( mp->tfm_height[k]==0 ) mp->tfm_height[k]=zero_val;
24065 else mp->tfm_height[k]=mp_sort_in(mp, mp->tfm_height[k]);
24068 mp->nh=mp_skimp(mp, 15)+1; mp->dimen_head[2]=link(temp_head);
24069 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ht);
24071 for (k=mp->bc;k<=mp->ec;k++) {
24072 if ( mp->char_exists[k] ) {
24073 if ( mp->tfm_depth[k]==0 ) mp->tfm_depth[k]=zero_val;
24074 else mp->tfm_depth[k]=mp_sort_in(mp, mp->tfm_depth[k]);
24077 mp->nd=mp_skimp(mp, 15)+1; mp->dimen_head[3]=link(temp_head);
24078 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_dp);
24080 for (k=mp->bc;k<=mp->ec;k++) {
24081 if ( mp->char_exists[k] ) {
24082 if ( mp->tfm_ital_corr[k]==0 ) mp->tfm_ital_corr[k]=zero_val;
24083 else mp->tfm_ital_corr[k]=mp_sort_in(mp, mp->tfm_ital_corr[k]);
24086 mp->ni=mp_skimp(mp, 63)+1; mp->dimen_head[4]=link(temp_head);
24087 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ic)
24089 @ @<Initialize table entries...@>=
24090 value(zero_val)=0; info(zero_val)=0;
24092 @ Bytes 5--8 of the header are set to the design size, unless the user has
24093 some crazy reason for specifying them differently.
24095 Error messages are not allowed at the time this procedure is called,
24096 so a warning is printed instead.
24098 The value of |max_tfm_dimen| is calculated so that
24099 $$\hbox{|make_scaled(16*max_tfm_dimen,internal[mp_design_size])|}
24100 < \\{three\_bytes}.$$
24102 @d three_bytes 0100000000 /* $2^{24}$ */
24105 void mp_fix_design_size (MP mp) {
24106 scaled d; /* the design size */
24107 d=mp->internal[mp_design_size];
24108 if ( (d<unity)||(d>=fraction_half) ) {
24110 mp_print_nl(mp, "(illegal design size has been changed to 128pt)");
24111 @.illegal design size...@>
24112 d=040000000; mp->internal[mp_design_size]=d;
24114 if ( mp->header_byte[4]<0 ) if ( mp->header_byte[5]<0 )
24115 if ( mp->header_byte[6]<0 ) if ( mp->header_byte[7]<0 ) {
24116 mp->header_byte[4]=d / 04000000;
24117 mp->header_byte[5]=(d / 4096) % 256;
24118 mp->header_byte[6]=(d / 16) % 256;
24119 mp->header_byte[7]=(d % 16)*16;
24121 mp->max_tfm_dimen=16*mp->internal[mp_design_size]-mp->internal[mp_design_size] / 010000000;
24122 if ( mp->max_tfm_dimen>=fraction_half ) mp->max_tfm_dimen=fraction_half-1;
24125 @ The |dimen_out| procedure computes a |fix_word| relative to the
24126 design size. If the data was out of range, it is corrected and the
24127 global variable |tfm_changed| is increased by~one.
24129 @c integer mp_dimen_out (MP mp,scaled x) {
24130 if ( abs(x)>mp->max_tfm_dimen ) {
24131 incr(mp->tfm_changed);
24132 if ( x>0 ) x=three_bytes-1; else x=1-three_bytes;
24134 x=mp_make_scaled(mp, x*16,mp->internal[mp_design_size]);
24140 scaled max_tfm_dimen; /* bound on widths, heights, kerns, etc. */
24141 integer tfm_changed; /* the number of data entries that were out of bounds */
24143 @ If the user has not specified any of the first four header bytes,
24144 the |fix_check_sum| procedure replaces them by a ``check sum'' computed
24145 from the |tfm_width| data relative to the design size.
24148 @c void mp_fix_check_sum (MP mp) {
24149 eight_bits k; /* runs through character codes */
24150 eight_bits B1,B2,B3,B4; /* bytes of the check sum */
24151 integer x; /* hash value used in check sum computation */
24152 if ( mp->header_byte[0]==0 && mp->header_byte[1]==0 &&
24153 mp->header_byte[2]==0 && mp->header_byte[3]==0 ) {
24154 @<Compute a check sum in |(b1,b2,b3,b4)|@>;
24155 mp->header_byte[0]=B1; mp->header_byte[1]=B2;
24156 mp->header_byte[2]=B3; mp->header_byte[3]=B4;
24161 @ @<Compute a check sum in |(b1,b2,b3,b4)|@>=
24162 B1=mp->bc; B2=mp->ec; B3=mp->bc; B4=mp->ec; mp->tfm_changed=0;
24163 for (k=mp->bc;k<=mp->ec;k++) {
24164 if ( mp->char_exists[k] ) {
24165 x=mp_dimen_out(mp, value(mp->tfm_width[k]))+(k+4)*020000000; /* this is positive */
24166 B1=(B1+B1+x) % 255;
24167 B2=(B2+B2+x) % 253;
24168 B3=(B3+B3+x) % 251;
24169 B4=(B4+B4+x) % 247;
24173 @ Finally we're ready to actually write the \.{TFM} information.
24174 Here are some utility routines for this purpose.
24176 @d tfm_out(A) do { /* output one byte to |tfm_file| */
24177 unsigned char s=(A);
24178 (mp->write_binary_file)(mp->tfm_file,(void *)&s,1);
24181 @c void mp_tfm_two (MP mp,integer x) { /* output two bytes to |tfm_file| */
24182 tfm_out(x / 256); tfm_out(x % 256);
24184 void mp_tfm_four (MP mp,integer x) { /* output four bytes to |tfm_file| */
24185 if ( x>=0 ) tfm_out(x / three_bytes);
24187 x=x+010000000000; /* use two's complement for negative values */
24189 tfm_out((x / three_bytes) + 128);
24191 x=x % three_bytes; tfm_out(x / unity);
24192 x=x % unity; tfm_out(x / 0400);
24195 void mp_tfm_qqqq (MP mp,four_quarters x) { /* output four quarterwords to |tfm_file| */
24196 tfm_out(qo(x.b0)); tfm_out(qo(x.b1));
24197 tfm_out(qo(x.b2)); tfm_out(qo(x.b3));
24200 @ @<Finish the \.{TFM} file@>=
24201 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24202 mp_pack_job_name(mp, ".tfm");
24203 while ( ! mp_b_open_out(mp, &mp->tfm_file, mp_filetype_metrics) )
24204 mp_prompt_file_name(mp, "file name for font metrics",".tfm");
24205 mp->metric_file_name=xstrdup(mp->name_of_file);
24206 @<Output the subfile sizes and header bytes@>;
24207 @<Output the character information bytes, then
24208 output the dimensions themselves@>;
24209 @<Output the ligature/kern program@>;
24210 @<Output the extensible character recipes and the font metric parameters@>;
24211 if ( mp->internal[mp_tracing_stats]>0 )
24212 @<Log the subfile sizes of the \.{TFM} file@>;
24213 mp_print_nl(mp, "Font metrics written on ");
24214 mp_print(mp, mp->metric_file_name); mp_print_char(mp, '.');
24215 @.Font metrics written...@>
24216 (mp->close_file)(mp->tfm_file)
24218 @ Integer variables |lh|, |k|, and |lk_offset| will be defined when we use
24221 @<Output the subfile sizes and header bytes@>=
24223 LH=(k+3) / 4; /* this is the number of header words */
24224 if ( mp->bc>mp->ec ) mp->bc=1; /* if there are no characters, |ec=0| and |bc=1| */
24225 @<Compute the ligature/kern program offset and implant the
24226 left boundary label@>;
24227 mp_tfm_two(mp,6+LH+(mp->ec-mp->bc+1)+mp->nw+mp->nh+mp->nd+mp->ni+mp->nl
24228 +lk_offset+mp->nk+mp->ne+mp->np);
24229 /* this is the total number of file words that will be output */
24230 mp_tfm_two(mp, LH); mp_tfm_two(mp, mp->bc); mp_tfm_two(mp, mp->ec);
24231 mp_tfm_two(mp, mp->nw); mp_tfm_two(mp, mp->nh);
24232 mp_tfm_two(mp, mp->nd); mp_tfm_two(mp, mp->ni); mp_tfm_two(mp, mp->nl+lk_offset);
24233 mp_tfm_two(mp, mp->nk); mp_tfm_two(mp, mp->ne);
24234 mp_tfm_two(mp, mp->np);
24235 for (k=0;k< 4*LH;k++) {
24236 tfm_out(mp->header_byte[k]);
24239 @ @<Output the character information bytes...@>=
24240 for (k=mp->bc;k<=mp->ec;k++) {
24241 if ( ! mp->char_exists[k] ) {
24242 mp_tfm_four(mp, 0);
24244 tfm_out(info(mp->tfm_width[k])); /* the width index */
24245 tfm_out((info(mp->tfm_height[k]))*16+info(mp->tfm_depth[k]));
24246 tfm_out((info(mp->tfm_ital_corr[k]))*4+mp->char_tag[k]);
24247 tfm_out(mp->char_remainder[k]);
24251 for (k=1;k<=4;k++) {
24252 mp_tfm_four(mp, 0); p=mp->dimen_head[k];
24253 while ( p!=inf_val ) {
24254 mp_tfm_four(mp, mp_dimen_out(mp, value(p))); p=link(p);
24259 @ We need to output special instructions at the beginning of the
24260 |lig_kern| array in order to specify the right boundary character
24261 and/or to handle starting addresses that exceed 255. The |label_loc|
24262 and |label_char| arrays have been set up to record all the
24263 starting addresses; we have $-1=|label_loc|[0]<|label_loc|[1]\le\cdots
24264 \le|label_loc|[|label_ptr]|$.
24266 @<Compute the ligature/kern program offset...@>=
24267 mp->bchar=mp_round_unscaled(mp, mp->internal[mp_boundary_char]);
24268 if ((mp->bchar<0)||(mp->bchar>255))
24269 { mp->bchar=-1; mp->lk_started=false; lk_offset=0; }
24270 else { mp->lk_started=true; lk_offset=1; };
24271 @<Find the minimum |lk_offset| and adjust all remainders@>;
24272 if ( mp->bch_label<undefined_label )
24273 { skip_byte(mp->nl)=qi(255); next_char(mp->nl)=qi(0);
24274 op_byte(mp->nl)=qi(((mp->bch_label+lk_offset)/ 256));
24275 rem_byte(mp->nl)=qi(((mp->bch_label+lk_offset)% 256));
24276 incr(mp->nl); /* possibly |nl=lig_table_size+1| */
24279 @ @<Find the minimum |lk_offset|...@>=
24280 k=mp->label_ptr; /* pointer to the largest unallocated label */
24281 if ( mp->label_loc[k]+lk_offset>255 ) {
24282 lk_offset=0; mp->lk_started=false; /* location 0 can do double duty */
24284 mp->char_remainder[mp->label_char[k]]=lk_offset;
24285 while ( mp->label_loc[k-1]==mp->label_loc[k] ) {
24286 decr(k); mp->char_remainder[mp->label_char[k]]=lk_offset;
24288 incr(lk_offset); decr(k);
24289 } while (! (lk_offset+mp->label_loc[k]<256));
24290 /* N.B.: |lk_offset=256| satisfies this when |k=0| */
24292 if ( lk_offset>0 ) {
24294 mp->char_remainder[mp->label_char[k]]
24295 =mp->char_remainder[mp->label_char[k]]+lk_offset;
24300 @ @<Output the ligature/kern program@>=
24301 for (k=0;k<= 255;k++ ) {
24302 if ( mp->skip_table[k]<undefined_label ) {
24303 mp_print_nl(mp, "(local label "); mp_print_int(mp, k); mp_print(mp, ":: was missing)");
24304 @.local label l:: was missing@>
24305 cancel_skips(mp->skip_table[k]);
24308 if ( mp->lk_started ) { /* |lk_offset=1| for the special |bchar| */
24309 tfm_out(255); tfm_out(mp->bchar); mp_tfm_two(mp, 0);
24311 for (k=1;k<=lk_offset;k++) {/* output the redirection specs */
24312 mp->ll=mp->label_loc[mp->label_ptr];
24313 if ( mp->bchar<0 ) { tfm_out(254); tfm_out(0); }
24314 else { tfm_out(255); tfm_out(mp->bchar); };
24315 mp_tfm_two(mp, mp->ll+lk_offset);
24317 decr(mp->label_ptr);
24318 } while (! (mp->label_loc[mp->label_ptr]<mp->ll));
24321 for (k=0;k<=mp->nl-1;k++) mp_tfm_qqqq(mp, mp->lig_kern[k]);
24322 for (k=0;k<=mp->nk-1;k++) mp_tfm_four(mp, mp_dimen_out(mp, mp->kern[k]))
24324 @ @<Output the extensible character recipes...@>=
24325 for (k=0;k<=mp->ne-1;k++)
24326 mp_tfm_qqqq(mp, mp->exten[k]);
24327 for (k=1;k<=mp->np;k++) {
24329 if ( abs(mp->param[1])<fraction_half ) {
24330 mp_tfm_four(mp, mp->param[1]*16);
24332 incr(mp->tfm_changed);
24333 if ( mp->param[1]>0 ) mp_tfm_four(mp, el_gordo);
24334 else mp_tfm_four(mp, -el_gordo);
24337 mp_tfm_four(mp, mp_dimen_out(mp, mp->param[k]));
24340 if ( mp->tfm_changed>0 ) {
24341 if ( mp->tfm_changed==1 ) mp_print_nl(mp, "(a font metric dimension");
24342 @.a font metric dimension...@>
24344 mp_print_nl(mp, "("); mp_print_int(mp, mp->tfm_changed);
24345 @.font metric dimensions...@>
24346 mp_print(mp, " font metric dimensions");
24348 mp_print(mp, " had to be decreased)");
24351 @ @<Log the subfile sizes of the \.{TFM} file@>=
24355 if ( mp->bch_label<undefined_label ) decr(mp->nl);
24356 snprintf(s,128,"(You used %iw,%ih,%id,%ii,%il,%ik,%ie,%ip metric file positions)",
24357 mp->nw, mp->nh, mp->nd, mp->ni, mp->nl, mp->nk, mp->ne,mp->np);
24361 @* \[43] Reading font metric data.
24363 \MP\ isn't a typesetting program but it does need to find the bounding box
24364 of a sequence of typeset characters. Thus it needs to read \.{TFM} files as
24365 well as write them.
24370 @ All the width, height, and depth information is stored in an array called
24371 |font_info|. This array is allocated sequentially and each font is stored
24372 as a series of |char_info| words followed by the width, height, and depth
24373 tables. Since |font_name| entries are permanent, their |str_ref| values are
24374 set to |max_str_ref|.
24377 typedef unsigned int font_number; /* |0..font_max| */
24379 @ The |font_info| array is indexed via a group directory arrays.
24380 For example, the |char_info| data for character~|c| in font~|f| will be
24381 in |font_info[char_base[f]+c].qqqq|.
24384 font_number font_max; /* maximum font number for included text fonts */
24385 size_t font_mem_size; /* number of words for \.{TFM} information for text fonts */
24386 memory_word *font_info; /* height, width, and depth data */
24387 char **font_enc_name; /* encoding names, if any */
24388 boolean *font_ps_name_fixed; /* are the postscript names fixed already? */
24389 int next_fmem; /* next unused entry in |font_info| */
24390 font_number last_fnum; /* last font number used so far */
24391 scaled *font_dsize; /* 16 times the ``design'' size in \ps\ points */
24392 char **font_name; /* name as specified in the \&{infont} command */
24393 char **font_ps_name; /* PostScript name for use when |internal[mp_prologues]>0| */
24394 font_number last_ps_fnum; /* last valid |font_ps_name| index */
24395 eight_bits *font_bc;
24396 eight_bits *font_ec; /* first and last character code */
24397 int *char_base; /* base address for |char_info| */
24398 int *width_base; /* index for zeroth character width */
24399 int *height_base; /* index for zeroth character height */
24400 int *depth_base; /* index for zeroth character depth */
24401 pointer *font_sizes;
24403 @ @<Allocate or initialize ...@>=
24404 mp->font_mem_size = 10000;
24405 mp->font_info = xmalloc ((mp->font_mem_size+1),sizeof(memory_word));
24406 memset (mp->font_info,0,sizeof(memory_word)*(mp->font_mem_size+1));
24407 mp->font_enc_name = NULL;
24408 mp->font_ps_name_fixed = NULL;
24409 mp->font_dsize = NULL;
24410 mp->font_name = NULL;
24411 mp->font_ps_name = NULL;
24412 mp->font_bc = NULL;
24413 mp->font_ec = NULL;
24414 mp->last_fnum = null_font;
24415 mp->char_base = NULL;
24416 mp->width_base = NULL;
24417 mp->height_base = NULL;
24418 mp->depth_base = NULL;
24419 mp->font_sizes = null;
24421 @ @<Dealloc variables@>=
24422 for (k=1;k<=(int)mp->last_fnum;k++) {
24423 xfree(mp->font_enc_name[k]);
24424 xfree(mp->font_name[k]);
24425 xfree(mp->font_ps_name[k]);
24427 xfree(mp->font_info);
24428 xfree(mp->font_enc_name);
24429 xfree(mp->font_ps_name_fixed);
24430 xfree(mp->font_dsize);
24431 xfree(mp->font_name);
24432 xfree(mp->font_ps_name);
24433 xfree(mp->font_bc);
24434 xfree(mp->font_ec);
24435 xfree(mp->char_base);
24436 xfree(mp->width_base);
24437 xfree(mp->height_base);
24438 xfree(mp->depth_base);
24439 xfree(mp->font_sizes);
24443 void mp_reallocate_fonts (MP mp, font_number l) {
24445 XREALLOC(mp->font_enc_name, l, char *);
24446 XREALLOC(mp->font_ps_name_fixed, l, boolean);
24447 XREALLOC(mp->font_dsize, l, scaled);
24448 XREALLOC(mp->font_name, l, char *);
24449 XREALLOC(mp->font_ps_name, l, char *);
24450 XREALLOC(mp->font_bc, l, eight_bits);
24451 XREALLOC(mp->font_ec, l, eight_bits);
24452 XREALLOC(mp->char_base, l, int);
24453 XREALLOC(mp->width_base, l, int);
24454 XREALLOC(mp->height_base, l, int);
24455 XREALLOC(mp->depth_base, l, int);
24456 XREALLOC(mp->font_sizes, l, pointer);
24457 for (f=(mp->last_fnum+1);f<=l;f++) {
24458 mp->font_enc_name[f]=NULL;
24459 mp->font_ps_name_fixed[f] = false;
24460 mp->font_name[f]=NULL;
24461 mp->font_ps_name[f]=NULL;
24462 mp->font_sizes[f]=null;
24467 @ @<Declare |mp_reallocate| functions@>=
24468 void mp_reallocate_fonts (MP mp, font_number l);
24471 @ A |null_font| containing no characters is useful for error recovery. Its
24472 |font_name| entry starts out empty but is reset each time an erroneous font is
24473 found. This helps to cut down on the number of duplicate error messages without
24474 wasting a lot of space.
24476 @d null_font 0 /* the |font_number| for an empty font */
24478 @<Set initial...@>=
24479 mp->font_dsize[null_font]=0;
24480 mp->font_bc[null_font]=1;
24481 mp->font_ec[null_font]=0;
24482 mp->char_base[null_font]=0;
24483 mp->width_base[null_font]=0;
24484 mp->height_base[null_font]=0;
24485 mp->depth_base[null_font]=0;
24487 mp->last_fnum=null_font;
24488 mp->last_ps_fnum=null_font;
24489 mp->font_name[null_font]="nullfont";
24490 mp->font_ps_name[null_font]="";
24491 mp->font_ps_name_fixed[null_font] = false;
24492 mp->font_enc_name[null_font]=NULL;
24493 mp->font_sizes[null_font]=null;
24495 @ Each |char_info| word is of type |four_quarters|. The |b0| field contains
24496 the |width index|; the |b1| field contains the height
24497 index; the |b2| fields contains the depth index, and the |b3| field used only
24498 for temporary storage. (It is used to keep track of which characters occur in
24499 an edge structure that is being shipped out.)
24500 The corresponding words in the width, height, and depth tables are stored as
24501 |scaled| values in units of \ps\ points.
24503 With the macros below, the |char_info| word for character~|c| in font~|f| is
24504 |char_info(f)(c)| and the width is
24505 $$\hbox{|char_width(f)(char_info(f)(c)).sc|.}$$
24507 @d char_info_end(A) (A)].qqqq
24508 @d char_info(A) mp->font_info[mp->char_base[(A)]+char_info_end
24509 @d char_width_end(A) (A).b0].sc
24510 @d char_width(A) mp->font_info[mp->width_base[(A)]+char_width_end
24511 @d char_height_end(A) (A).b1].sc
24512 @d char_height(A) mp->font_info[mp->height_base[(A)]+char_height_end
24513 @d char_depth_end(A) (A).b2].sc
24514 @d char_depth(A) mp->font_info[mp->depth_base[(A)]+char_depth_end
24515 @d ichar_exists(A) ((A).b0>0)
24517 @ The |font_ps_name| for a built-in font should be what PostScript expects.
24518 A preliminary name is obtained here from the \.{TFM} name as given in the
24519 |fname| argument. This gets updated later from an external table if necessary.
24521 @<Declare text measuring subroutines@>=
24522 @<Declare subroutines for parsing file names@>;
24523 font_number mp_read_font_info (MP mp, char *fname) {
24524 boolean file_opened; /* has |tfm_infile| been opened? */
24525 font_number n; /* the number to return */
24526 halfword lf,tfm_lh,bc,ec,nw,nh,nd; /* subfile size parameters */
24527 size_t whd_size; /* words needed for heights, widths, and depths */
24528 int i,ii; /* |font_info| indices */
24529 int jj; /* counts bytes to be ignored */
24530 scaled z; /* used to compute the design size */
24532 /* height, width, or depth as a fraction of design size times $2^{-8}$ */
24533 eight_bits h_and_d; /* height and depth indices being unpacked */
24534 unsigned char tfbyte; /* a byte read from the file */
24536 @<Open |tfm_infile| for input@>;
24537 @<Read data from |tfm_infile|; if there is no room, say so and |goto done|;
24538 otherwise |goto bad_tfm| or |goto done| as appropriate@>;
24540 @<Complain that the \.{TFM} file is bad@>;
24542 if ( file_opened ) (mp->close_file)(mp->tfm_infile);
24543 if ( n!=null_font ) {
24544 mp->font_ps_name[n]=mp_xstrdup(mp,fname);
24545 mp->font_name[n]=mp_xstrdup(mp,fname);
24550 @ \MP\ doesn't bother to check the entire \.{TFM} file for errors or explain
24551 precisely what is wrong if it does find a problem. Programs called \.{TFtoPL}
24552 @.TFtoPL@> @.PLtoTF@>
24553 and \.{PLtoTF} can be used to debug \.{TFM} files.
24555 @<Complain that the \.{TFM} file is bad@>=
24556 print_err("Font ");
24557 mp_print(mp, fname);
24558 if ( file_opened ) mp_print(mp, " not usable: TFM file is bad");
24559 else mp_print(mp, " not usable: TFM file not found");
24560 help3("I wasn't able to read the size data for this font so this")
24561 ("`infont' operation won't produce anything. If the font name")
24562 ("is right, you might ask an expert to make a TFM file");
24564 mp->help_line[0]="is right, try asking an expert to fix the TFM file";
24567 @ @<Read data from |tfm_infile|; if there is no room, say so...@>=
24568 @<Read the \.{TFM} size fields@>;
24569 @<Use the size fields to allocate space in |font_info|@>;
24570 @<Read the \.{TFM} header@>;
24571 @<Read the character data and the width, height, and depth tables and
24574 @ A bad \.{TFM} file can be shorter than it claims to be. The code given here
24575 might try to read past the end of the file if this happens. Changes will be
24576 needed if it causes a system error to refer to |tfm_infile^| or call
24577 |get_tfm_infile| when |eof(tfm_infile)| is true. For example, the definition
24578 @^system dependencies@>
24579 of |tfget| could be changed to
24580 ``|begin get(tfm_infile); if eof(tfm_infile) then goto bad_tfm; end|.''
24584 void *tfbyte_ptr = &tfbyte;
24585 (mp->read_binary_file)(mp->tfm_infile,&tfbyte_ptr,&wanted);
24586 if (wanted==0) goto BAD_TFM;
24588 @d read_two(A) { (A)=tfbyte;
24589 if ( (A)>127 ) goto BAD_TFM;
24590 tfget; (A)=(A)*0400+tfbyte;
24592 @d tf_ignore(A) { for (jj=(A);jj>=1;jj--) tfget; }
24594 @<Read the \.{TFM} size fields@>=
24595 tfget; read_two(lf);
24596 tfget; read_two(tfm_lh);
24597 tfget; read_two(bc);
24598 tfget; read_two(ec);
24599 if ( (bc>1+ec)||(ec>255) ) goto BAD_TFM;
24600 tfget; read_two(nw);
24601 tfget; read_two(nh);
24602 tfget; read_two(nd);
24603 whd_size=(ec+1-bc)+nw+nh+nd;
24604 if ( lf<(int)(6+tfm_lh+whd_size) ) goto BAD_TFM;
24607 @ Offsets are added to |char_base[n]| and |width_base[n]| so that is not
24608 necessary to apply the |so| and |qo| macros when looking up the width of a
24609 character in the string pool. In order to ensure nonnegative |char_base|
24610 values when |bc>0|, it may be necessary to reserve a few unused |font_info|
24613 @<Use the size fields to allocate space in |font_info|@>=
24614 if ( mp->next_fmem<bc) mp->next_fmem=bc; /* ensure nonnegative |char_base| */
24615 if (mp->last_fnum==mp->font_max)
24616 mp_reallocate_fonts(mp,(mp->font_max+(mp->font_max>>2)));
24617 while (mp->next_fmem+whd_size>=mp->font_mem_size) {
24618 size_t l = mp->font_mem_size+(mp->font_mem_size>>2);
24619 memory_word *font_info;
24620 font_info = xmalloc ((l+1),sizeof(memory_word));
24621 memset (font_info,0,sizeof(memory_word)*(l+1));
24622 memcpy (font_info,mp->font_info,sizeof(memory_word)*(mp->font_mem_size+1));
24623 xfree(mp->font_info);
24624 mp->font_info = font_info;
24625 mp->font_mem_size = l;
24627 incr(mp->last_fnum);
24631 mp->char_base[n]=mp->next_fmem-bc;
24632 mp->width_base[n]=mp->next_fmem+ec-bc+1;
24633 mp->height_base[n]=mp->width_base[n]+nw;
24634 mp->depth_base[n]=mp->height_base[n]+nh;
24635 mp->next_fmem=mp->next_fmem+whd_size;
24638 @ @<Read the \.{TFM} header@>=
24639 if ( tfm_lh<2 ) goto BAD_TFM;
24641 tfget; read_two(z);
24642 tfget; z=z*0400+tfbyte;
24643 tfget; z=z*0400+tfbyte; /* now |z| is 16 times the design size */
24644 mp->font_dsize[n]=mp_take_fraction(mp, z,267432584);
24645 /* times ${72\over72.27}2^{28}$ to convert from \TeX\ points */
24646 tf_ignore(4*(tfm_lh-2))
24648 @ @<Read the character data and the width, height, and depth tables...@>=
24649 ii=mp->width_base[n];
24650 i=mp->char_base[n]+bc;
24652 tfget; mp->font_info[i].qqqq.b0=qi(tfbyte);
24653 tfget; h_and_d=tfbyte;
24654 mp->font_info[i].qqqq.b1=h_and_d / 16;
24655 mp->font_info[i].qqqq.b2=h_and_d % 16;
24659 while ( i<mp->next_fmem ) {
24660 @<Read a four byte dimension, scale it by the design size, store it in
24661 |font_info[i]|, and increment |i|@>;
24665 @ The raw dimension read into |d| should have magnitude at most $2^{24}$ when
24666 interpreted as an integer, and this includes a scale factor of $2^{20}$. Thus
24667 we can multiply it by sixteen and think of it as a |fraction| that has been
24668 divided by sixteen. This cancels the extra scale factor contained in
24671 @<Read a four byte dimension, scale it by the design size, store it in...@>=
24674 if ( d>=0200 ) d=d-0400;
24675 tfget; d=d*0400+tfbyte;
24676 tfget; d=d*0400+tfbyte;
24677 tfget; d=d*0400+tfbyte;
24678 mp->font_info[i].sc=mp_take_fraction(mp, d*16,mp->font_dsize[n]);
24682 @ This function does no longer use the file name parser, because |fname| is
24683 a C string already.
24684 @<Open |tfm_infile| for input@>=
24686 mp_ptr_scan_file(mp, fname);
24687 if ( strlen(mp->cur_area)==0 ) { xfree(mp->cur_area); }
24688 if ( strlen(mp->cur_ext)==0 ) { xfree(mp->cur_ext); mp->cur_ext=xstrdup(".tfm"); }
24690 mp->tfm_infile = (mp->open_file)( mp->name_of_file, "rb",mp_filetype_metrics);
24691 if ( !mp->tfm_infile ) goto BAD_TFM;
24694 @ When we have a font name and we don't know whether it has been loaded yet,
24695 we scan the |font_name| array before calling |read_font_info|.
24697 @<Declare text measuring subroutines@>=
24698 font_number mp_find_font (MP mp, char *f) {
24700 for (n=0;n<=mp->last_fnum;n++) {
24701 if (mp_xstrcmp(f,mp->font_name[n])==0 ) {
24706 n = mp_read_font_info(mp, f);
24711 @ One simple application of |find_font| is the implementation of the |font_size|
24712 operator that gets the design size for a given font name.
24714 @<Find the design size of the font whose name is |cur_exp|@>=
24715 mp_flush_cur_exp(mp, (mp->font_dsize[mp_find_font(mp, str(mp->cur_exp))]+8) / 16)
24717 @ If we discover that the font doesn't have a requested character, we omit it
24718 from the bounding box computation and expect the \ps\ interpreter to drop it.
24719 This routine issues a warning message if the user has asked for it.
24721 @<Declare text measuring subroutines@>=
24722 void mp_lost_warning (MP mp,font_number f, pool_pointer k) {
24723 if ( mp->internal[mp_tracing_lost_chars]>0 ) {
24724 mp_begin_diagnostic(mp);
24725 if ( mp->selector==log_only ) incr(mp->selector);
24726 mp_print_nl(mp, "Missing character: There is no ");
24727 @.Missing character@>
24728 mp_print_str(mp, mp->str_pool[k]);
24729 mp_print(mp, " in font ");
24730 mp_print(mp, mp->font_name[f]); mp_print_char(mp, '!');
24731 mp_end_diagnostic(mp, false);
24735 @ The whole purpose of saving the height, width, and depth information is to be
24736 able to find the bounding box of an item of text in an edge structure. The
24737 |set_text_box| procedure takes a text node and adds this information.
24739 @<Declare text measuring subroutines@>=
24740 void mp_set_text_box (MP mp,pointer p) {
24741 font_number f; /* |font_n(p)| */
24742 ASCII_code bc,ec; /* range of valid characters for font |f| */
24743 pool_pointer k,kk; /* current character and character to stop at */
24744 four_quarters cc; /* the |char_info| for the current character */
24745 scaled h,d; /* dimensions of the current character */
24747 height_val(p)=-el_gordo;
24748 depth_val(p)=-el_gordo;
24752 kk=str_stop(text_p(p));
24753 k=mp->str_start[text_p(p)];
24755 @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>;
24757 @<Set the height and depth to zero if the bounding box is empty@>;
24760 @ @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>=
24762 if ( (mp->str_pool[k]<bc)||(mp->str_pool[k]>ec) ) {
24763 mp_lost_warning(mp, f,k);
24765 cc=char_info(f)(mp->str_pool[k]);
24766 if ( ! ichar_exists(cc) ) {
24767 mp_lost_warning(mp, f,k);
24769 width_val(p)=width_val(p)+char_width(f)(cc);
24770 h=char_height(f)(cc);
24771 d=char_depth(f)(cc);
24772 if ( h>height_val(p) ) height_val(p)=h;
24773 if ( d>depth_val(p) ) depth_val(p)=d;
24779 @ Let's hope modern compilers do comparisons correctly when the difference would
24782 @<Set the height and depth to zero if the bounding box is empty@>=
24783 if ( height_val(p)<-depth_val(p) ) {
24788 @ The new primitives fontmapfile and fontmapline.
24790 @<Declare action procedures for use by |do_statement|@>=
24791 void mp_do_mapfile (MP mp) ;
24792 void mp_do_mapline (MP mp) ;
24794 @ @c void mp_do_mapfile (MP mp) {
24795 mp_get_x_next(mp); mp_scan_expression(mp);
24796 if ( mp->cur_type!=mp_string_type ) {
24797 @<Complain about improper map operation@>;
24799 mp_map_file(mp,mp->cur_exp);
24802 void mp_do_mapline (MP mp) {
24803 mp_get_x_next(mp); mp_scan_expression(mp);
24804 if ( mp->cur_type!=mp_string_type ) {
24805 @<Complain about improper map operation@>;
24807 mp_map_line(mp,mp->cur_exp);
24811 @ @<Complain about improper map operation@>=
24813 exp_err("Unsuitable expression");
24814 help1("Only known strings can be map files or map lines.");
24815 mp_put_get_error(mp);
24818 @ To print |scaled| value to PDF output we need some subroutines to ensure
24821 @d max_integer 0x7FFFFFFF /* $2^{31}-1$ */
24824 scaled one_bp; /* scaled value corresponds to 1bp */
24825 scaled one_hundred_bp; /* scaled value corresponds to 100bp */
24826 scaled one_hundred_inch; /* scaled value corresponds to 100in */
24827 integer ten_pow[10]; /* $10^0..10^9$ */
24828 integer scaled_out; /* amount of |scaled| that was taken out in |divide_scaled| */
24831 mp->one_bp = 65782; /* 65781.76 */
24832 mp->one_hundred_bp = 6578176;
24833 mp->one_hundred_inch = 473628672;
24834 mp->ten_pow[0] = 1;
24835 for (i = 1;i<= 9; i++ ) {
24836 mp->ten_pow[i] = 10*mp->ten_pow[i - 1];
24839 @ The following function divides |s| by |m|. |dd| is number of decimal digits.
24841 @c scaled mp_divide_scaled (MP mp,scaled s, scaled m, integer dd) {
24845 if ( s < 0 ) { sign = -sign; s = -s; }
24846 if ( m < 0 ) { sign = -sign; m = -m; }
24848 mp_confusion(mp, "arithmetic: divided by zero");
24849 else if ( m >= (max_integer / 10) )
24850 mp_confusion(mp, "arithmetic: number too big");
24853 for (i = 1;i<=dd;i++) {
24854 q = 10*q + (10*r) / m;
24857 if ( 2*r >= m ) { incr(q); r = r - m; }
24858 mp->scaled_out = sign*(s - (r / mp->ten_pow[dd]));
24862 @* \[44] Shipping pictures out.
24863 The |ship_out| procedure, to be described below, is given a pointer to
24864 an edge structure. Its mission is to output a file containing the \ps\
24865 description of an edge structure.
24867 @ Each time an edge structure is shipped out we write a new \ps\ output
24868 file named according to the current \&{charcode}.
24869 @:char_code_}{\&{charcode} primitive@>
24871 This is the only backend function that remains in the main |mpost.w| file.
24872 There are just too many variable accesses needed for status reporting
24873 etcetera to make it worthwile to move the code to |psout.w|.
24875 @<Internal library declarations@>=
24876 void mp_open_output_file (MP mp) ;
24879 char *mp_set_output_file_name (MP mp, integer c) {
24880 char *ss = NULL; /* filename extension proposal */
24881 int old_setting; /* previous |selector| setting */
24882 pool_pointer i; /* indexes into |filename_template| */
24883 integer cc; /* a temporary integer for template building */
24884 integer f,g=0; /* field widths */
24885 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24886 if ( mp->filename_template==0 ) {
24887 char *s; /* a file extension derived from |c| */
24891 @<Use |c| to compute the file extension |s|@>;
24892 mp_pack_job_name(mp, s);
24894 } else { /* initializations */
24895 str_number s, n; /* a file extension derived from |c| */
24896 old_setting=mp->selector;
24897 mp->selector=new_string;
24899 i = mp->str_start[mp->filename_template];
24900 n = rts(""); /* initialize */
24901 while ( i<str_stop(mp->filename_template) ) {
24902 if ( mp->str_pool[i]=='%' ) {
24905 if ( i<str_stop(mp->filename_template) ) {
24906 if ( mp->str_pool[i]=='j' ) {
24907 mp_print(mp, mp->job_name);
24908 } else if ( mp->str_pool[i]=='d' ) {
24909 cc= mp_round_unscaled(mp, mp->internal[mp_day]);
24910 print_with_leading_zeroes(cc);
24911 } else if ( mp->str_pool[i]=='m' ) {
24912 cc= mp_round_unscaled(mp, mp->internal[mp_month]);
24913 print_with_leading_zeroes(cc);
24914 } else if ( mp->str_pool[i]=='y' ) {
24915 cc= mp_round_unscaled(mp, mp->internal[mp_year]);
24916 print_with_leading_zeroes(cc);
24917 } else if ( mp->str_pool[i]=='H' ) {
24918 cc= mp_round_unscaled(mp, mp->internal[mp_time]) / 60;
24919 print_with_leading_zeroes(cc);
24920 } else if ( mp->str_pool[i]=='M' ) {
24921 cc= mp_round_unscaled(mp, mp->internal[mp_time]) % 60;
24922 print_with_leading_zeroes(cc);
24923 } else if ( mp->str_pool[i]=='c' ) {
24924 if ( c<0 ) mp_print(mp, "ps");
24925 else print_with_leading_zeroes(c);
24926 } else if ( (mp->str_pool[i]>='0') &&
24927 (mp->str_pool[i]<='9') ) {
24929 f = (f*10) + mp->str_pool[i]-'0';
24932 mp_print_str(mp, mp->str_pool[i]);
24936 if ( mp->str_pool[i]=='.' )
24938 n = mp_make_string(mp);
24939 mp_print_str(mp, mp->str_pool[i]);
24943 s = mp_make_string(mp);
24944 mp->selector= old_setting;
24945 if (length(n)==0) {
24949 mp_pack_file_name(mp, str(n),"",str(s));
24957 char * mp_get_output_file_name (MP mp) {
24958 char *fname; /* return value */
24959 char *saved_name; /* saved |name_of_file| */
24960 saved_name = mp_xstrdup(mp, mp->name_of_file);
24961 (void)mp_set_output_file_name(mp, mp_round_unscaled(mp, mp->internal[mp_char_code]));
24962 fname = mp_xstrdup(mp, mp->name_of_file);
24963 mp_pack_file_name(mp, saved_name,NULL,NULL);
24967 void mp_open_output_file (MP mp) {
24968 char *ss; /* filename extension proposal */
24969 integer c; /* \&{charcode} rounded to the nearest integer */
24970 c=mp_round_unscaled(mp, mp->internal[mp_char_code]);
24971 ss = mp_set_output_file_name(mp, c);
24972 while ( ! mp_a_open_out(mp, (void *)&mp->ps_file, mp_filetype_postscript) )
24973 mp_prompt_file_name(mp, "file name for output",ss);
24975 @<Store the true output file name if appropriate@>;
24978 @ The file extension created here could be up to five characters long in
24979 extreme cases so it may have to be shortened on some systems.
24980 @^system dependencies@>
24982 @<Use |c| to compute the file extension |s|@>=
24985 snprintf(s,7,".%i",(int)c);
24988 @ The user won't want to see all the output file names so we only save the
24989 first and last ones and a count of how many there were. For this purpose
24990 files are ordered primarily by \&{charcode} and secondarily by order of
24992 @:char_code_}{\&{charcode} primitive@>
24994 @<Store the true output file name if appropriate@>=
24995 if ((c<mp->first_output_code)&&(mp->first_output_code>=0)) {
24996 mp->first_output_code=c;
24997 xfree(mp->first_file_name);
24998 mp->first_file_name=xstrdup(mp->name_of_file);
25000 if ( c>=mp->last_output_code ) {
25001 mp->last_output_code=c;
25002 xfree(mp->last_file_name);
25003 mp->last_file_name=xstrdup(mp->name_of_file);
25007 char * first_file_name;
25008 char * last_file_name; /* full file names */
25009 integer first_output_code;integer last_output_code; /* rounded \&{charcode} values */
25010 @:char_code_}{\&{charcode} primitive@>
25011 integer total_shipped; /* total number of |ship_out| operations completed */
25014 mp->first_file_name=xstrdup("");
25015 mp->last_file_name=xstrdup("");
25016 mp->first_output_code=32768;
25017 mp->last_output_code=-32768;
25018 mp->total_shipped=0;
25020 @ @<Dealloc variables@>=
25021 xfree(mp->first_file_name);
25022 xfree(mp->last_file_name);
25024 @ @<Begin the progress report for the output of picture~|c|@>=
25025 if ( (int)mp->term_offset>mp->max_print_line-6 ) mp_print_ln(mp);
25026 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
25027 mp_print_char(mp, '[');
25028 if ( c>=0 ) mp_print_int(mp, c)
25030 @ @<End progress report@>=
25031 mp_print_char(mp, ']');
25033 incr(mp->total_shipped)
25035 @ @<Explain what output files were written@>=
25036 if ( mp->total_shipped>0 ) {
25037 mp_print_nl(mp, "");
25038 mp_print_int(mp, mp->total_shipped);
25039 mp_print(mp, " output file");
25040 if ( mp->total_shipped>1 ) mp_print_char(mp, 's');
25041 mp_print(mp, " written: ");
25042 mp_print(mp, mp->first_file_name);
25043 if ( mp->total_shipped>1 ) {
25044 if ( 31+strlen(mp->first_file_name)+
25045 strlen(mp->last_file_name)> (unsigned)mp->max_print_line)
25047 mp_print(mp, " .. ");
25048 mp_print(mp, mp->last_file_name);
25052 @ @<Internal library declarations@>=
25053 boolean mp_has_font_size(MP mp, font_number f );
25056 boolean mp_has_font_size(MP mp, font_number f ) {
25057 return (mp->font_sizes[f]!=null);
25060 @ The \&{special} command saves up lines of text to be printed during the next
25061 |ship_out| operation. The saved items are stored as a list of capsule tokens.
25064 pointer last_pending; /* the last token in a list of pending specials */
25067 mp->last_pending=spec_head;
25069 @ @<Cases of |do_statement|...@>=
25070 case special_command:
25071 if ( mp->cur_mod==0 ) mp_do_special(mp); else
25072 if ( mp->cur_mod==1 ) mp_do_mapfile(mp); else
25076 @ @<Declare action procedures for use by |do_statement|@>=
25077 void mp_do_special (MP mp) ;
25079 @ @c void mp_do_special (MP mp) {
25080 mp_get_x_next(mp); mp_scan_expression(mp);
25081 if ( mp->cur_type!=mp_string_type ) {
25082 @<Complain about improper special operation@>;
25084 link(mp->last_pending)=mp_stash_cur_exp(mp);
25085 mp->last_pending=link(mp->last_pending);
25086 link(mp->last_pending)=null;
25090 @ @<Complain about improper special operation@>=
25092 exp_err("Unsuitable expression");
25093 help1("Only known strings are allowed for output as specials.");
25094 mp_put_get_error(mp);
25097 @ On the export side, we need an extra object type for special strings.
25099 @<Graphical object codes@>=
25102 @ @<Export pending specials@>=
25104 while ( p!=null ) {
25105 hq = mp_new_graphic_object(mp,mp_special_code);
25106 gr_pre_script(hq) = str(value(p));
25107 if (hh->body==NULL) hh->body=hq; else gr_link(hp) = hq;
25111 mp_flush_token_list(mp, link(spec_head));
25112 link(spec_head)=null;
25113 mp->last_pending=spec_head
25115 @ We are now ready for the main output procedure. Note that the |selector|
25116 setting is saved in a global variable so that |begin_diagnostic| can access it.
25118 @<Declare the \ps\ output procedures@>=
25119 void mp_ship_out (MP mp, pointer h) ;
25121 @ Once again, the |gr_XXXX| macros are defined in |mppsout.h|
25124 struct mp_edge_object *mp_gr_export(MP mp, pointer h) {
25125 pointer p; /* the current graphical object */
25126 integer t; /* a temporary value */
25127 struct mp_edge_object *hh; /* the first graphical object */
25128 struct mp_graphic_object *hp; /* the current graphical object */
25129 struct mp_graphic_object *hq; /* something |hp| points to */
25130 mp_set_bbox(mp, h, true);
25131 hh = mp_xmalloc(mp,1,sizeof(struct mp_edge_object));
25135 hh->_minx = minx_val(h);
25136 hh->_miny = miny_val(h);
25137 hh->_maxx = maxx_val(h);
25138 hh->_maxy = maxy_val(h);
25139 hh->_filename = mp_get_output_file_name(mp);
25140 @<Export pending specials@>;
25141 p=link(dummy_loc(h));
25142 while ( p!=null ) {
25143 hq = mp_new_graphic_object(mp,type(p));
25146 gr_pen_p(hq) = mp_export_knot_list(mp,pen_p(p));
25147 if ((pen_p(p)==null) || pen_is_elliptical(pen_p(p))) {
25148 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25151 pc = mp_copy_path(mp, path_p(p));
25152 pp = mp_make_envelope(mp, pc, pen_p(p),ljoin_val(p),0,miterlim_val(p));
25153 gr_path_p(hq) = mp_export_knot_list(mp,pp);
25154 mp_toss_knot_list(mp, pp);
25155 pc = mp_htap_ypoc(mp, path_p(p));
25156 pp = mp_make_envelope(mp, pc, pen_p(p),ljoin_val(p),0,miterlim_val(p));
25157 gr_htap_p(hq) = mp_export_knot_list(mp,pp);
25158 mp_toss_knot_list(mp, pp);
25160 @<Export object color@>;
25161 @<Export object scripts@>;
25162 gr_ljoin_val(hq) = ljoin_val(p);
25163 gr_miterlim_val(hq) = miterlim_val(p);
25165 case mp_stroked_code:
25166 gr_pen_p(hq) = mp_export_knot_list(mp,pen_p(p));
25167 if (pen_is_elliptical(pen_p(p))) {
25168 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25171 pc=mp_copy_path(mp, path_p(p));
25173 if ( left_type(pc)!=mp_endpoint ) {
25174 left_type(mp_insert_knot(mp, pc,x_coord(pc),y_coord(pc)))=mp_endpoint;
25175 right_type(pc)=mp_endpoint;
25179 pc=mp_make_envelope(mp,pc,pen_p(p),ljoin_val(p),t,miterlim_val(p));
25180 gr_path_p(hq) = mp_export_knot_list(mp,pc);
25181 mp_toss_knot_list(mp, pc);
25183 @<Export object color@>;
25184 @<Export object scripts@>;
25185 gr_ljoin_val(hq) = ljoin_val(p);
25186 gr_miterlim_val(hq) = miterlim_val(p);
25187 gr_lcap_val(hq) = lcap_val(p);
25188 gr_dash_scale(hq) = dash_scale(p);
25189 gr_dash_p(hq) = mp_export_dashes(mp,dash_p(p));
25192 gr_text_p(hq) = str(text_p(p));
25193 gr_font_n(hq) = font_n(p);
25194 gr_font_name(hq) = mp_xstrdup(mp,mp->font_name[font_n(p)]);
25195 gr_font_dsize(hq) = mp->font_dsize[font_n(p)];
25196 @<Export object color@>;
25197 @<Export object scripts@>;
25198 gr_width_val(hq) = width_val(p);
25199 gr_height_val(hq) = height_val(p);
25200 gr_depth_val(hq) = depth_val(p);
25201 gr_tx_val(hq) = tx_val(p);
25202 gr_ty_val(hq) = ty_val(p);
25203 gr_txx_val(hq) = txx_val(p);
25204 gr_txy_val(hq) = txy_val(p);
25205 gr_tyx_val(hq) = tyx_val(p);
25206 gr_tyy_val(hq) = tyy_val(p);
25208 case mp_start_clip_code:
25209 case mp_start_bounds_code:
25210 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25212 case mp_stop_clip_code:
25213 case mp_stop_bounds_code:
25214 /* nothing to do here */
25217 if (hh->body==NULL) hh->body=hq; else gr_link(hp) = hq;
25224 @ @<Exported function ...@>=
25225 struct mp_edge_object *mp_gr_export(MP mp, int h);
25227 @ This function is now nearly trivial.
25230 void mp_ship_out (MP mp, pointer h) { /* output edge structure |h| */
25231 integer c; /* \&{charcode} rounded to the nearest integer */
25232 c=mp_round_unscaled(mp, mp->internal[mp_char_code]);
25233 @<Begin the progress report for the output of picture~|c|@>;
25234 (mp->shipout_backend) (mp, h);
25235 @<End progress report@>;
25236 if ( mp->internal[mp_tracing_output]>0 )
25237 mp_print_edges(mp, h," (just shipped out)",true);
25240 @ @<Declarations@>=
25241 void mp_shipout_backend (MP mp, pointer h);
25244 void mp_shipout_backend (MP mp, pointer h) {
25245 struct mp_edge_object *hh; /* the first graphical object */
25246 hh = mp_gr_export(mp,h);
25247 mp_gr_ship_out (hh,
25248 (mp->internal[mp_prologues]>>16),
25249 (mp->internal[mp_procset]>>16));
25250 mp_gr_toss_objects(hh);
25253 @ @<Exported types@>=
25254 typedef void (*mp_backend_writer)(MP, int);
25256 @ @<Option variables@>=
25257 mp_backend_writer shipout_backend;
25259 @ @<Allocate or initialize ...@>=
25260 set_callback_option(shipout_backend);
25264 @ Once again, the |gr_XXXX| macros are defined in |mppsout.h|
25266 @<Export object color@>=
25267 gr_color_model(hq) = color_model(p);
25268 gr_cyan_val(hq) = cyan_val(p);
25269 gr_magenta_val(hq) = magenta_val(p);
25270 gr_yellow_val(hq) = yellow_val(p);
25271 gr_black_val(hq) = black_val(p);
25272 gr_red_val(hq) = red_val(p);
25273 gr_green_val(hq) = green_val(p);
25274 gr_blue_val(hq) = blue_val(p);
25275 gr_grey_val(hq) = grey_val(p)
25278 @ @<Export object scripts@>=
25279 if (pre_script(p)!=null)
25280 gr_pre_script(hq) = str(pre_script(p));
25281 if (post_script(p)!=null)
25282 gr_post_script(hq) = str(post_script(p));
25284 @ Now that we've finished |ship_out|, let's look at the other commands
25285 by which a user can send things to the \.{GF} file.
25287 @ @<Determine if a character has been shipped out@>=
25289 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
25290 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
25291 boolean_reset(mp->char_exists[mp->cur_exp]);
25292 mp->cur_type=mp_boolean_type;
25298 @ @<Allocate or initialize ...@>=
25299 mp_backend_initialize(mp);
25302 mp_backend_free(mp);
25305 @* \[45] Dumping and undumping the tables.
25306 After \.{INIMP} has seen a collection of macros, it
25307 can write all the necessary information on an auxiliary file so
25308 that production versions of \MP\ are able to initialize their
25309 memory at high speed. The present section of the program takes
25310 care of such output and input. We shall consider simultaneously
25311 the processes of storing and restoring,
25312 so that the inverse relation between them is clear.
25315 The global variable |mem_ident| is a string that is printed right
25316 after the |banner| line when \MP\ is ready to start. For \.{INIMP} this
25317 string says simply `\.{(INIMP)}'; for other versions of \MP\ it says,
25318 for example, `\.{(mem=plain 90.4.14)}', showing the year,
25319 month, and day that the mem file was created. We have |mem_ident=0|
25320 before \MP's tables are loaded.
25326 mp->mem_ident=NULL;
25328 @ @<Initialize table entries...@>=
25329 mp->mem_ident=xstrdup(" (INIMP)");
25331 @ @<Declare act...@>=
25332 void mp_store_mem_file (MP mp) ;
25334 @ @c void mp_store_mem_file (MP mp) {
25335 integer k; /* all-purpose index */
25336 pointer p,q; /* all-purpose pointers */
25337 integer x; /* something to dump */
25338 four_quarters w; /* four ASCII codes */
25340 @<Create the |mem_ident|, open the mem file,
25341 and inform the user that dumping has begun@>;
25342 @<Dump constants for consistency check@>;
25343 @<Dump the string pool@>;
25344 @<Dump the dynamic memory@>;
25345 @<Dump the table of equivalents and the hash table@>;
25346 @<Dump a few more things and the closing check word@>;
25347 @<Close the mem file@>;
25350 @ Corresponding to the procedure that dumps a mem file, we also have a function
25351 that reads~one~in. The function returns |false| if the dumped mem is
25352 incompatible with the present \MP\ table sizes, etc.
25354 @d off_base 6666 /* go here if the mem file is unacceptable */
25355 @d too_small(A) { wake_up_terminal;
25356 wterm_ln("---! Must increase the "); wterm((A));
25357 @.Must increase the x@>
25362 boolean mp_load_mem_file (MP mp) {
25363 integer k; /* all-purpose index */
25364 pointer p,q; /* all-purpose pointers */
25365 integer x; /* something undumped */
25366 str_number s; /* some temporary string */
25367 four_quarters w; /* four ASCII codes */
25369 @<Undump constants for consistency check@>;
25370 @<Undump the string pool@>;
25371 @<Undump the dynamic memory@>;
25372 @<Undump the table of equivalents and the hash table@>;
25373 @<Undump a few more things and the closing check word@>;
25374 return true; /* it worked! */
25377 wterm_ln("(Fatal mem file error; I'm stymied)\n");
25378 @.Fatal mem file error@>
25382 @ @<Declarations@>=
25383 boolean mp_load_mem_file (MP mp) ;
25385 @ Mem files consist of |memory_word| items, and we use the following
25386 macros to dump words of different types:
25388 @d dump_wd(A) { WW=(A); (mp->write_binary_file)(mp->mem_file,&WW,sizeof(WW)); }
25389 @d dump_int(A) { int cint=(A); (mp->write_binary_file)(mp->mem_file,&cint,sizeof(cint)); }
25390 @d dump_hh(A) { WW.hh=(A); (mp->write_binary_file)(mp->mem_file,&WW,sizeof(WW)); }
25391 @d dump_qqqq(A) { WW.qqqq=(A); (mp->write_binary_file)(mp->mem_file,&WW,sizeof(WW)); }
25392 @d dump_string(A) { dump_int(strlen(A)+1);
25393 (mp->write_binary_file)(mp->mem_file,A,strlen(A)+1); }
25396 void * mem_file; /* for input or output of mem information */
25398 @ The inverse macros are slightly more complicated, since we need to check
25399 the range of the values we are reading in. We say `|undump(a)(b)(x)|' to
25400 read an integer value |x| that is supposed to be in the range |a<=x<=b|.
25403 size_t wanted = sizeof(A);
25405 (mp->read_binary_file)(mp->mem_file,&A_ptr,&wanted);
25406 if (wanted!=sizeof(A)) goto OFF_BASE;
25410 size_t wanted = sizeof(A);
25412 (mp->read_binary_file)(mp->mem_file,&A_ptr,&wanted);
25413 if (wanted!=sizeof(A)) goto OFF_BASE;
25416 @d undump_wd(A) { mgetw(WW); A=WW; }
25417 @d undump_int(A) { int cint; mgeti(cint); A=cint; }
25418 @d undump_hh(A) { mgetw(WW); A=WW.hh; }
25419 @d undump_qqqq(A) { mgetw(WW); A=WW.qqqq; }
25420 @d undump_strings(A,B,C) {
25421 undump_int(x); if ( (x<(A)) || (x>(B)) ) goto OFF_BASE; else C=str(x); }
25422 @d undump(A,B,C) { undump_int(x); if ( (x<(A)) || (x>(int)(B)) ) goto OFF_BASE; else C=x; }
25423 @d undump_size(A,B,C,D) { undump_int(x);
25424 if (x<(A)) goto OFF_BASE;
25425 if (x>(B)) { too_small((C)); } else { D=x;} }
25426 @d undump_string(A) do {
25431 A = xmalloc(XX,sizeof(char));
25432 (mp->read_binary_file)(mp->mem_file,(void **)&A,&wanted);
25433 if (wanted!=(size_t)XX) goto OFF_BASE;
25436 @ The next few sections of the program should make it clear how we use the
25437 dump/undump macros.
25439 @<Dump constants for consistency check@>=
25440 dump_int(mp->mem_top);
25441 dump_int(mp->hash_size);
25442 dump_int(mp->hash_prime)
25443 dump_int(mp->param_size);
25444 dump_int(mp->max_in_open);
25446 @ Sections of a \.{WEB} program that are ``commented out'' still contribute
25447 strings to the string pool; therefore \.{INIMP} and \MP\ will have
25448 the same strings. (And it is, of course, a good thing that they do.)
25452 @<Undump constants for consistency check@>=
25453 undump_int(x); mp->mem_top = x;
25454 undump_int(x); if (mp->hash_size != x) goto OFF_BASE;
25455 undump_int(x); if (mp->hash_prime != x) goto OFF_BASE;
25456 undump_int(x); if (mp->param_size != x) goto OFF_BASE;
25457 undump_int(x); if (mp->max_in_open != x) goto OFF_BASE
25459 @ We do string pool compaction to avoid dumping unused strings.
25462 w.b0=qi(mp->str_pool[k]); w.b1=qi(mp->str_pool[k+1]);
25463 w.b2=qi(mp->str_pool[k+2]); w.b3=qi(mp->str_pool[k+3]);
25466 @<Dump the string pool@>=
25467 mp_do_compaction(mp, mp->pool_size);
25468 dump_int(mp->pool_ptr);
25469 dump_int(mp->max_str_ptr);
25470 dump_int(mp->str_ptr);
25472 while ( (mp->next_str[k]==k+1) && (k<=mp->max_str_ptr) )
25475 while ( k<=mp->max_str_ptr ) {
25476 dump_int(mp->next_str[k]); incr(k);
25480 dump_int(mp->str_start[k]); /* TODO: valgrind warning here */
25481 if ( k==mp->str_ptr ) {
25488 while (k+4<mp->pool_ptr ) {
25489 dump_four_ASCII; k=k+4;
25491 k=mp->pool_ptr-4; dump_four_ASCII;
25492 mp_print_ln(mp); mp_print(mp, "at most "); mp_print_int(mp, mp->max_str_ptr);
25493 mp_print(mp, " strings of total length ");
25494 mp_print_int(mp, mp->pool_ptr)
25496 @ @d undump_four_ASCII
25498 mp->str_pool[k]=qo(w.b0); mp->str_pool[k+1]=qo(w.b1);
25499 mp->str_pool[k+2]=qo(w.b2); mp->str_pool[k+3]=qo(w.b3)
25501 @<Undump the string pool@>=
25502 undump_int(mp->pool_ptr);
25503 mp_reallocate_pool(mp, mp->pool_ptr) ;
25504 undump_int(mp->max_str_ptr);
25505 mp_reallocate_strings (mp,mp->max_str_ptr) ;
25506 undump(0,mp->max_str_ptr,mp->str_ptr);
25507 undump(0,mp->max_str_ptr+1,s);
25508 for (k=0;k<=s-1;k++)
25509 mp->next_str[k]=k+1;
25510 for (k=s;k<=mp->max_str_ptr;k++)
25511 undump(s+1,mp->max_str_ptr+1,mp->next_str[k]);
25512 mp->fixed_str_use=0;
25515 undump(0,mp->pool_ptr,mp->str_start[k]);
25516 if ( k==mp->str_ptr ) break;
25517 mp->str_ref[k]=max_str_ref;
25518 incr(mp->fixed_str_use);
25519 mp->last_fixed_str=k; k=mp->next_str[k];
25522 while ( k+4<mp->pool_ptr ) {
25523 undump_four_ASCII; k=k+4;
25525 k=mp->pool_ptr-4; undump_four_ASCII;
25526 mp->init_str_use=mp->fixed_str_use; mp->init_pool_ptr=mp->pool_ptr;
25527 mp->max_pool_ptr=mp->pool_ptr;
25528 mp->strs_used_up=mp->fixed_str_use;
25529 mp->pool_in_use=mp->str_start[mp->str_ptr]; mp->strs_in_use=mp->fixed_str_use;
25530 mp->max_pl_used=mp->pool_in_use; mp->max_strs_used=mp->strs_in_use;
25531 mp->pact_count=0; mp->pact_chars=0; mp->pact_strs=0;
25533 @ By sorting the list of available spaces in the variable-size portion of
25534 |mem|, we are usually able to get by without having to dump very much
25535 of the dynamic memory.
25537 We recompute |var_used| and |dyn_used|, so that \.{INIMP} dumps valid
25538 information even when it has not been gathering statistics.
25540 @<Dump the dynamic memory@>=
25541 mp_sort_avail(mp); mp->var_used=0;
25542 dump_int(mp->lo_mem_max); dump_int(mp->rover);
25543 p=0; q=mp->rover; x=0;
25545 for (k=p;k<= q+1;k++)
25546 dump_wd(mp->mem[k]);
25547 x=x+q+2-p; mp->var_used=mp->var_used+q-p;
25548 p=q+node_size(q); q=rlink(q);
25549 } while (q!=mp->rover);
25550 mp->var_used=mp->var_used+mp->lo_mem_max-p;
25551 mp->dyn_used=mp->mem_end+1-mp->hi_mem_min;
25552 for (k=p;k<= mp->lo_mem_max;k++ )
25553 dump_wd(mp->mem[k]);
25554 x=x+mp->lo_mem_max+1-p;
25555 dump_int(mp->hi_mem_min); dump_int(mp->avail);
25556 for (k=mp->hi_mem_min;k<=mp->mem_end;k++ )
25557 dump_wd(mp->mem[k]);
25558 x=x+mp->mem_end+1-mp->hi_mem_min;
25560 while ( p!=null ) {
25561 decr(mp->dyn_used); p=link(p);
25563 dump_int(mp->var_used); dump_int(mp->dyn_used);
25564 mp_print_ln(mp); mp_print_int(mp, x);
25565 mp_print(mp, " memory locations dumped; current usage is ");
25566 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used)
25568 @ @<Undump the dynamic memory@>=
25569 undump(lo_mem_stat_max+1000,hi_mem_stat_min-1,mp->lo_mem_max);
25570 undump(lo_mem_stat_max+1,mp->lo_mem_max,mp->rover);
25573 for (k=p;k<= q+1; k++)
25574 undump_wd(mp->mem[k]);
25576 if ( (p>mp->lo_mem_max)||((q>=rlink(q))&&(rlink(q)!=mp->rover)) )
25579 } while (q!=mp->rover);
25580 for (k=p;k<=mp->lo_mem_max;k++ )
25581 undump_wd(mp->mem[k]);
25582 undump(mp->lo_mem_max+1,hi_mem_stat_min,mp->hi_mem_min);
25583 undump(null,mp->mem_top,mp->avail); mp->mem_end=mp->mem_top;
25584 for (k=mp->hi_mem_min;k<= mp->mem_end;k++)
25585 undump_wd(mp->mem[k]);
25586 undump_int(mp->var_used); undump_int(mp->dyn_used)
25588 @ A different scheme is used to compress the hash table, since its lower region
25589 is usually sparse. When |text(p)<>0| for |p<=hash_used|, we output three
25590 words: |p|, |hash[p]|, and |eqtb[p]|. The hash table is, of course, densely
25591 packed for |p>=hash_used|, so the remaining entries are output in~a~block.
25593 @<Dump the table of equivalents and the hash table@>=
25594 dump_int(mp->hash_used);
25595 mp->st_count=frozen_inaccessible-1-mp->hash_used;
25596 for (p=1;p<=mp->hash_used;p++) {
25597 if ( text(p)!=0 ) {
25598 dump_int(p); dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]); incr(mp->st_count);
25601 for (p=mp->hash_used+1;p<=(int)hash_end;p++) {
25602 dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]);
25604 dump_int(mp->st_count);
25605 mp_print_ln(mp); mp_print_int(mp, mp->st_count); mp_print(mp, " symbolic tokens")
25607 @ @<Undump the table of equivalents and the hash table@>=
25608 undump(1,frozen_inaccessible,mp->hash_used);
25611 undump(p+1,mp->hash_used,p);
25612 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
25613 } while (p!=mp->hash_used);
25614 for (p=mp->hash_used+1;p<=(int)hash_end;p++ ) {
25615 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
25617 undump_int(mp->st_count)
25619 @ We have already printed a lot of statistics, so we set |mp_tracing_stats:=0|
25620 to prevent them appearing again.
25622 @<Dump a few more things and the closing check word@>=
25623 dump_int(mp->max_internal);
25624 dump_int(mp->int_ptr);
25625 for (k=1;k<= mp->int_ptr;k++ ) {
25626 dump_int(mp->internal[k]);
25627 dump_string(mp->int_name[k]);
25629 dump_int(mp->start_sym);
25630 dump_int(mp->interaction);
25631 dump_string(mp->mem_ident);
25632 dump_int(mp->bg_loc); dump_int(mp->eg_loc); dump_int(mp->serial_no); dump_int(69073);
25633 mp->internal[mp_tracing_stats]=0
25635 @ @<Undump a few more things and the closing check word@>=
25637 if (x>mp->max_internal) mp_grow_internals(mp,x);
25638 undump_int(mp->int_ptr);
25639 for (k=1;k<= mp->int_ptr;k++) {
25640 undump_int(mp->internal[k]);
25641 undump_string(mp->int_name[k]);
25643 undump(0,frozen_inaccessible,mp->start_sym);
25644 if (mp->interaction==mp_unspecified_mode) {
25645 undump(mp_unspecified_mode,mp_error_stop_mode,mp->interaction);
25647 undump(mp_unspecified_mode,mp_error_stop_mode,x);
25649 undump_string(mp->mem_ident);
25650 undump(1,hash_end,mp->bg_loc);
25651 undump(1,hash_end,mp->eg_loc);
25652 undump_int(mp->serial_no);
25654 if (x!=69073) goto OFF_BASE
25656 @ @<Create the |mem_ident|...@>=
25658 xfree(mp->mem_ident);
25659 mp->mem_ident = xmalloc(256,1);
25660 snprintf(mp->mem_ident,256," (mem=%s %i.%i.%i)",
25662 (int)(mp_round_unscaled(mp, mp->internal[mp_year]) % 100),
25663 (int)mp_round_unscaled(mp, mp->internal[mp_month]),
25664 (int)mp_round_unscaled(mp, mp->internal[mp_day]));
25665 mp_pack_job_name(mp, mem_extension);
25666 while (! mp_w_open_out(mp, &mp->mem_file) )
25667 mp_prompt_file_name(mp, "mem file name", mem_extension);
25668 mp_print_nl(mp, "Beginning to dump on file ");
25669 @.Beginning to dump...@>
25670 mp_print(mp, mp->name_of_file);
25671 mp_print_nl(mp, mp->mem_ident);
25674 @ @<Dealloc variables@>=
25675 xfree(mp->mem_ident);
25677 @ @<Close the mem file@>=
25678 (mp->close_file)(mp->mem_file)
25680 @* \[46] The main program.
25681 This is it: the part of \MP\ that executes all those procedures we have
25684 Well---almost. We haven't put the parsing subroutines into the
25685 program yet; and we'd better leave space for a few more routines that may
25686 have been forgotten.
25688 @c @<Declare the basic parsing subroutines@>;
25689 @<Declare miscellaneous procedures that were declared |forward|@>;
25690 @<Last-minute procedures@>
25692 @ We've noted that there are two versions of \MP. One, called \.{INIMP},
25694 has to be run first; it initializes everything from scratch, without
25695 reading a mem file, and it has the capability of dumping a mem file.
25696 The other one is called `\.{VIRMP}'; it is a ``virgin'' program that needs
25698 to input a mem file in order to get started. \.{VIRMP} typically has
25699 a bit more memory capacity than \.{INIMP}, because it does not need the
25700 space consumed by the dumping/undumping routines and the numerous calls on
25703 The \.{VIRMP} program cannot read a mem file instantaneously, of course;
25704 the best implementations therefore allow for production versions of \MP\ that
25705 not only avoid the loading routine for object code, they also have
25706 a mem file pre-loaded.
25708 @ @<Option variables@>=
25709 int ini_version; /* are we iniMP? */
25711 @ @<Set |ini_version|@>=
25712 mp->ini_version = (opt->ini_version ? true : false);
25714 @ Here we do whatever is needed to complete \MP's job gracefully on the
25715 local operating system. The code here might come into play after a fatal
25716 error; it must therefore consist entirely of ``safe'' operations that
25717 cannot produce error messages. For example, it would be a mistake to call
25718 |str_room| or |make_string| at this time, because a call on |overflow|
25719 might lead to an infinite loop.
25720 @^system dependencies@>
25722 This program doesn't bother to close the input files that may still be open.
25724 @<Last-minute...@>=
25725 void mp_close_files_and_terminate (MP mp) {
25726 integer k; /* all-purpose index */
25727 integer LH; /* the length of the \.{TFM} header, in words */
25728 int lk_offset; /* extra words inserted at beginning of |lig_kern| array */
25729 pointer p; /* runs through a list of \.{TFM} dimensions */
25730 @<Close all open files in the |rd_file| and |wr_file| arrays@>;
25731 if ( mp->internal[mp_tracing_stats]>0 )
25732 @<Output statistics about this job@>;
25734 @<Do all the finishing work on the \.{TFM} file@>;
25735 @<Explain what output files were written@>;
25736 if ( mp->log_opened ){
25738 (mp->close_file)(mp->log_file);
25739 mp->selector=mp->selector-2;
25740 if ( mp->selector==term_only ) {
25741 mp_print_nl(mp, "Transcript written on ");
25742 @.Transcript written...@>
25743 mp_print(mp, mp->log_name); mp_print_char(mp, '.');
25751 @ @<Declarations@>=
25752 void mp_close_files_and_terminate (MP mp) ;
25754 @ @<Close all open files in the |rd_file| and |wr_file| arrays@>=
25755 if (mp->rd_fname!=NULL) {
25756 for (k=0;k<=(int)mp->read_files-1;k++ ) {
25757 if ( mp->rd_fname[k]!=NULL ) {
25758 (mp->close_file)(mp->rd_file[k]);
25762 if (mp->wr_fname!=NULL) {
25763 for (k=0;k<=(int)mp->write_files-1;k++) {
25764 if ( mp->wr_fname[k]!=NULL ) {
25765 (mp->close_file)(mp->wr_file[k]);
25771 for (k=0;k<(int)mp->max_read_files;k++ ) {
25772 if ( mp->rd_fname[k]!=NULL ) {
25773 (mp->close_file)(mp->rd_file[k]);
25774 mp_xfree(mp->rd_fname[k]);
25777 mp_xfree(mp->rd_file);
25778 mp_xfree(mp->rd_fname);
25779 for (k=0;k<(int)mp->max_write_files;k++) {
25780 if ( mp->wr_fname[k]!=NULL ) {
25781 (mp->close_file)(mp->wr_file[k]);
25782 mp_xfree(mp->wr_fname[k]);
25785 mp_xfree(mp->wr_file);
25786 mp_xfree(mp->wr_fname);
25789 @ We want to produce a \.{TFM} file if and only if |mp_fontmaking| is positive.
25791 We reclaim all of the variable-size memory at this point, so that
25792 there is no chance of another memory overflow after the memory capacity
25793 has already been exceeded.
25795 @<Do all the finishing work on the \.{TFM} file@>=
25796 if ( mp->internal[mp_fontmaking]>0 ) {
25797 @<Make the dynamic memory into one big available node@>;
25798 @<Massage the \.{TFM} widths@>;
25799 mp_fix_design_size(mp); mp_fix_check_sum(mp);
25800 @<Massage the \.{TFM} heights, depths, and italic corrections@>;
25801 mp->internal[mp_fontmaking]=0; /* avoid loop in case of fatal error */
25802 @<Finish the \.{TFM} file@>;
25805 @ @<Make the dynamic memory into one big available node@>=
25806 mp->rover=lo_mem_stat_max+1; link(mp->rover)=empty_flag; mp->lo_mem_max=mp->hi_mem_min-1;
25807 if ( mp->lo_mem_max-mp->rover>max_halfword ) mp->lo_mem_max=max_halfword+mp->rover;
25808 node_size(mp->rover)=mp->lo_mem_max-mp->rover;
25809 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
25810 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null
25812 @ The present section goes directly to the log file instead of using
25813 |print| commands, because there's no need for these strings to take
25814 up |str_pool| memory when a non-{\bf stat} version of \MP\ is being used.
25816 @<Output statistics...@>=
25817 if ( mp->log_opened ) {
25820 wlog_ln("Here is how much of MetaPost's memory you used:");
25821 @.Here is how much...@>
25822 snprintf(s,128," %i string%s out of %i",(int)mp->max_strs_used-mp->init_str_use,
25823 (mp->max_strs_used!=mp->init_str_use+1 ? "s" : ""),
25824 (int)(mp->max_strings-1-mp->init_str_use));
25826 snprintf(s,128," %i string characters out of %i",
25827 (int)mp->max_pl_used-mp->init_pool_ptr,
25828 (int)mp->pool_size-mp->init_pool_ptr);
25830 snprintf(s,128," %i words of memory out of %i",
25831 (int)mp->lo_mem_max+mp->mem_end-mp->hi_mem_min+2,
25832 (int)mp->mem_end+1);
25834 snprintf(s,128," %i symbolic tokens out of %i", (int)mp->st_count, (int)mp->hash_size);
25836 snprintf(s,128," %ii, %in, %ip, %ib stack positions out of %ii, %in, %ip, %ib",
25837 (int)mp->max_in_stack,(int)mp->int_ptr,
25838 (int)mp->max_param_stack,(int)mp->max_buf_stack+1,
25839 (int)mp->stack_size,(int)mp->max_internal,(int)mp->param_size,(int)mp->buf_size);
25841 snprintf(s,128," %i string compactions (moved %i characters, %i strings)",
25842 (int)mp->pact_count,(int)mp->pact_chars,(int)mp->pact_strs);
25846 @ We get to the |final_cleanup| routine when \&{end} or \&{dump} has
25849 @<Last-minute...@>=
25850 void mp_final_cleanup (MP mp) {
25851 small_number c; /* 0 for \&{end}, 1 for \&{dump} */
25853 if ( mp->job_name==NULL ) mp_open_log_file(mp);
25854 while ( mp->input_ptr>0 ) {
25855 if ( token_state ) mp_end_token_list(mp);
25856 else mp_end_file_reading(mp);
25858 while ( mp->loop_ptr!=null ) mp_stop_iteration(mp);
25859 while ( mp->open_parens>0 ) {
25860 mp_print(mp, " )"); decr(mp->open_parens);
25862 while ( mp->cond_ptr!=null ) {
25863 mp_print_nl(mp, "(end occurred when ");
25864 @.end occurred...@>
25865 mp_print_cmd_mod(mp, fi_or_else,mp->cur_if);
25866 /* `\.{if}' or `\.{elseif}' or `\.{else}' */
25867 if ( mp->if_line!=0 ) {
25868 mp_print(mp, " on line "); mp_print_int(mp, mp->if_line);
25870 mp_print(mp, " was incomplete)");
25871 mp->if_line=if_line_field(mp->cond_ptr);
25872 mp->cur_if=name_type(mp->cond_ptr); mp->cond_ptr=link(mp->cond_ptr);
25874 if ( mp->history!=mp_spotless )
25875 if ( ((mp->history==mp_warning_issued)||(mp->interaction<mp_error_stop_mode)) )
25876 if ( mp->selector==term_and_log ) {
25877 mp->selector=term_only;
25878 mp_print_nl(mp, "(see the transcript file for additional information)");
25879 @.see the transcript file...@>
25880 mp->selector=term_and_log;
25883 if (mp->ini_version) {
25884 mp_store_mem_file(mp); return;
25886 mp_print_nl(mp, "(dump is performed only by INIMP)"); return;
25887 @.dump...only by INIMP@>
25891 @ @<Declarations@>=
25892 void mp_final_cleanup (MP mp) ;
25893 void mp_init_prim (MP mp) ;
25894 void mp_init_tab (MP mp) ;
25896 @ @<Last-minute...@>=
25897 void mp_init_prim (MP mp) { /* initialize all the primitives */
25901 void mp_init_tab (MP mp) { /* initialize other tables */
25902 integer k; /* all-purpose index */
25903 @<Initialize table entries (done by \.{INIMP} only)@>;
25907 @ When we begin the following code, \MP's tables may still contain garbage;
25908 the strings might not even be present. Thus we must proceed cautiously to get
25911 But when we finish this part of the program, \MP\ is ready to call on the
25912 |main_control| routine to do its work.
25914 @<Get the first line...@>=
25916 @<Initialize the input routines@>;
25917 if ( (mp->mem_ident==NULL)||(mp->buffer[loc]=='&') ) {
25918 if ( mp->mem_ident!=NULL ) {
25919 mp_do_initialize(mp); /* erase preloaded mem */
25921 if ( ! mp_open_mem_file(mp) ) return mp_fatal_error_stop;
25922 if ( ! mp_load_mem_file(mp) ) {
25923 (mp->close_file)(mp->mem_file);
25924 return mp_fatal_error_stop;
25926 (mp->close_file)( mp->mem_file);
25927 while ( (loc<limit)&&(mp->buffer[loc]==' ') ) incr(loc);
25929 mp->buffer[limit]='%';
25930 mp_fix_date_and_time(mp);
25931 if (mp->random_seed==0)
25932 mp->random_seed = (mp->internal[mp_time] / unity)+mp->internal[mp_day];
25933 mp_init_randoms(mp, mp->random_seed);
25934 @<Initialize the print |selector|...@>;
25935 if ( loc<limit ) if ( mp->buffer[loc]!='\\' )
25936 mp_start_input(mp); /* \&{input} assumed */
25939 @ @<Run inimpost commands@>=
25941 mp_get_strings_started(mp);
25942 mp_init_tab(mp); /* initialize the tables */
25943 mp_init_prim(mp); /* call |primitive| for each primitive */
25944 mp->init_str_use=mp->str_ptr; mp->init_pool_ptr=mp->pool_ptr;
25945 mp->max_str_ptr=mp->str_ptr; mp->max_pool_ptr=mp->pool_ptr;
25946 mp_fix_date_and_time(mp);
25950 @* \[47] Debugging.
25951 Once \MP\ is working, you should be able to diagnose most errors with
25952 the \.{show} commands and other diagnostic features. But for the initial
25953 stages of debugging, and for the revelation of really deep mysteries, you
25954 can compile \MP\ with a few more aids. An additional routine called |debug_help|
25955 will also come into play when you type `\.D' after an error message;
25956 |debug_help| also occurs just before a fatal error causes \MP\ to succumb.
25958 @^system dependencies@>
25960 The interface to |debug_help| is primitive, but it is good enough when used
25961 with a debugger that allows you to set breakpoints and to read
25962 variables and change their values. After getting the prompt `\.{debug \#}', you
25963 type either a negative number (this exits |debug_help|), or zero (this
25964 goes to a location where you can set a breakpoint, thereby entering into
25965 dialog with the debugger), or a positive number |m| followed by
25966 an argument |n|. The meaning of |m| and |n| will be clear from the
25967 program below. (If |m=13|, there is an additional argument, |l|.)
25970 @<Last-minute...@>=
25971 void mp_debug_help (MP mp) { /* routine to display various things */
25978 mp_print_nl(mp, "debug # (-1 to exit):"); update_terminal;
25981 aline = (mp->read_ascii_file)(mp->term_in, &len);
25982 if (len) { sscanf(aline,"%i",&m); xfree(aline); }
25986 aline = (mp->read_ascii_file)(mp->term_in, &len);
25987 if (len) { sscanf(aline,"%i",&n); xfree(aline); }
25989 @<Numbered cases for |debug_help|@>;
25990 default: mp_print(mp, "?"); break;
25995 @ @<Numbered cases...@>=
25996 case 1: mp_print_word(mp, mp->mem[n]); /* display |mem[n]| in all forms */
25998 case 2: mp_print_int(mp, info(n));
26000 case 3: mp_print_int(mp, link(n));
26002 case 4: mp_print_int(mp, eq_type(n)); mp_print_char(mp, ':'); mp_print_int(mp, equiv(n));
26004 case 5: mp_print_variable_name(mp, n);
26006 case 6: mp_print_int(mp, mp->internal[n]);
26008 case 7: mp_do_show_dependencies(mp);
26010 case 9: mp_show_token_list(mp, n,null,100000,0);
26012 case 10: mp_print_str(mp, n);
26014 case 11: mp_check_mem(mp, n>0); /* check wellformedness; print new busy locations if |n>0| */
26016 case 12: mp_search_mem(mp, n); /* look for pointers to |n| */
26020 aline = (mp->read_ascii_file)(mp->term_in, &len);
26021 if (len) { sscanf(aline,"%i",&l); xfree(aline); }
26022 mp_print_cmd_mod(mp, n,l);
26024 case 14: for (k=0;k<=n;k++) mp_print_str(mp, mp->buffer[k]);
26026 case 15: mp->panicking=! mp->panicking;
26030 @ Saving the filename template
26032 @<Save the filename template@>=
26034 if ( mp->filename_template!=0 ) delete_str_ref(mp->filename_template);
26035 if ( length(mp->cur_exp)==0 ) mp->filename_template=0;
26037 mp->filename_template=mp->cur_exp; add_str_ref(mp->filename_template);
26041 @* \[48] System-dependent changes.
26042 This section should be replaced, if necessary, by any special
26043 modification of the program
26044 that are necessary to make \MP\ work at a particular installation.
26045 It is usually best to design your change file so that all changes to
26046 previous sections preserve the section numbering; then everybody's version
26047 will be consistent with the published program. More extensive changes,
26048 which introduce new sections, can be inserted here; then only the index
26049 itself will get a new section number.
26050 @^system dependencies@>
26053 Here is where you can find all uses of each identifier in the program,
26054 with underlined entries pointing to where the identifier was defined.
26055 If the identifier is only one letter long, however, you get to see only
26056 the underlined entries. {\sl All references are to section numbers instead of
26059 This index also lists error messages and other aspects of the program
26060 that you might want to look up some day. For example, the entry
26061 for ``system dependencies'' lists all sections that should receive
26062 special attention from people who are installing \MP\ in a new
26063 operating environment. A list of various things that can't happen appears
26064 under ``this can't happen''.
26065 Approximately 25 sections are listed under ``inner loop''; these account
26066 for more than 60\pct! of \MP's running time, exclusive of input and output.