1 % $Id: mp.web,v 1.8 2005/08/24 10:54:02 taco Exp $
2 % MetaPost, by John Hobby. Public domain.
4 % Much of this program was copied with permission from MF.web Version 1.9
5 % It interprets a language very similar to D.E. Knuth's METAFONT, but with
6 % changes designed to make it more suitable for PostScript output.
8 % TeX is a trademark of the American Mathematical Society.
9 % METAFONT is a trademark of Addison-Wesley Publishing Company.
10 % PostScript is a trademark of Adobe Systems Incorporated.
12 % Here is TeX material that gets inserted after \input webmac
13 \def\hang{\hangindent 3em\noindent\ignorespaces}
14 \def\textindent#1{\hangindent2.5em\noindent\hbox to2.5em{\hss#1 }\ignorespaces}
17 \def\ph{\hbox{Pascal-H}}
18 \def\psqrt#1{\sqrt{\mathstrut#1}}
20 \def\pct!{{\char`\%}} % percent sign in ordinary text
21 \font\tenlogo=logo10 % font used for the METAFONT logo
23 \def\MF{{\tenlogo META}\-{\tenlogo FONT}}
24 \def\MP{{\tenlogo META}\-{\tenlogo POST}}
25 \def\[#1]{#1.} % from pascal web
26 \def\<#1>{$\langle#1\rangle$}
27 \def\section{\mathhexbox278}
28 \let\swap=\leftrightarrow
29 \def\round{\mathop{\rm round}\nolimits}
30 \mathchardef\vb="026A % synonym for `\|'
32 \def\(#1){} % this is used to make section names sort themselves better
33 \def\9#1{} % this is used for sort keys in the index via @@:sort key}{entry@@>
35 \def\glob{15} % this should be the section number of "<Global...>"
36 \def\gglob{23, 28} % this should be the next two sections of "<Global...>"
41 This is \MP, a graphics-language processor based on D. E. Knuth's \MF.
43 The main purpose of the following program is to explain the algorithms of \MP\
44 as clearly as possible. As a result, the program will not necessarily be very
45 efficient when a particular \PASCAL\ compiler has translated it into a
46 particular machine language. However, the program has been written so that it
47 can be tuned to run efficiently in a wide variety of operating environments
48 by making comparatively few changes. Such flexibility is possible because
49 the documentation that follows is written in the \.{WEB} language, which is
50 at a higher level than \PASCAL; the preprocessing step that converts \.{WEB}
51 to \PASCAL\ is able to introduce most of the necessary refinements.
52 Semi-automatic translation to other languages is also feasible, because the
53 program below does not make extensive use of features that are peculiar to
56 A large piece of software like \MP\ has inherent complexity that cannot
57 be reduced below a certain level of difficulty, although each individual
58 part is fairly simple by itself. The \.{WEB} language is intended to make
59 the algorithms as readable as possible, by reflecting the way the
60 individual program pieces fit together and by providing the
61 cross-references that connect different parts. Detailed comments about
62 what is going on, and about why things were done in certain ways, have
63 been liberally sprinkled throughout the program. These comments explain
64 features of the implementation, but they rarely attempt to explain the
65 \MP\ language itself, since the reader is supposed to be familiar with
66 {\sl The {\logos METAFONT\/}book} as well as the manual
68 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
69 {\sl A User's Manual for MetaPost}, Computing Science Technical Report 162,
70 AT\AM T Bell Laboratories.
72 @ The present implementation is a preliminary version, but the possibilities
73 for new features are limited by the desire to remain as nearly compatible
74 with \MF\ as possible.
76 On the other hand, the \.{WEB} description can be extended without changing
77 the core of the program, and it has been designed so that such
78 extensions are not extremely difficult to make.
79 The |banner| string defined here should be changed whenever \MP\
80 undergoes any modifications, so that it will be clear which version of
81 \MP\ might be the guilty party when a problem arises.
83 @^system dependencies@>
85 @d banner "This is MetaPost, Version 1.002" /* printed when \MP\ starts */
86 @d metapost_version "1.002"
87 @d mplib_version "0.10"
88 @d version_string " (Cweb version 0.10)"
90 @ Different \PASCAL s have slightly different conventions, and the present
92 program is expressed in a version of \PASCAL\ that D. E. Knuth used for \MF.
93 Constructions that apply to
94 this particular compiler, which we shall call \ph, should help the
95 reader see how to make an appropriate interface for other systems
96 if necessary. (\ph\ is Charles Hedrick's modification of a compiler
97 @^Hedrick, Charles Locke@>
98 for the DECsystem-10 that was originally developed at the University of
99 Hamburg; cf.\ {\sl SOFTWARE---Practice \AM\ Experience \bf6} (1976),
100 29--42. The \MP\ program below is intended to be adaptable, without
101 extensive changes, to most other versions of \PASCAL\ and commonly used
102 \PASCAL-to-C translators, so it does not fully
104 use the admirable features of \ph. Indeed, a conscious effort has been
105 made here to avoid using several idiosyncratic features of standard
106 \PASCAL\ itself, so that most of the code can be translated mechanically
107 into other high-level languages. For example, the `\&{with}' and `\\{new}'
108 features are not used, nor are pointer types, set types, or enumerated
109 scalar types; there are no `\&{var}' parameters, except in the case of files;
110 there are no tag fields on variant records; there are no |real| variables;
111 no procedures are declared local to other procedures.)
113 The portions of this program that involve system-dependent code, where
114 changes might be necessary because of differences between \PASCAL\ compilers
115 and/or differences between
116 operating systems, can be identified by looking at the sections whose
117 numbers are listed under `system dependencies' in the index. Furthermore,
118 the index entries for `dirty \PASCAL' list all places where the restrictions
119 of \PASCAL\ have not been followed perfectly, for one reason or another.
120 @^system dependencies@>
123 @ The program begins with a normal \PASCAL\ program heading, whose
124 components will be filled in later, using the conventions of \.{WEB}.
126 For example, the portion of the program called `\X\glob:Global
127 variables\X' below will be replaced by a sequence of variable declarations
128 that starts in $\section\glob$ of this documentation. In this way, we are able
129 to define each individual global variable when we are prepared to
130 understand what it means; we do not have to define all of the globals at
131 once. Cross references in $\section\glob$, where it says ``See also
132 sections \gglob, \dots,'' also make it possible to look at the set of
133 all global variables, if desired. Similar remarks apply to the other
134 portions of the program heading.
136 Actually the heading shown here is not quite normal: The |program| line
137 does not mention any |output| file, because \ph\ would ask the \MP\ user
138 to specify a file name if |output| were specified here.
139 @^system dependencies@>
145 # ifndef LIBAVL_ALLOCATOR
146 # define LIBAVL_ALLOCATOR
147 struct libavl_allocator {
148 void *(*libavl_malloc) (struct libavl_allocator *, size_t libavl_size);
149 void (*libavl_free) (struct libavl_allocator *, void *libavl_block);
152 typedef struct psout_data_struct * psout_data;
153 typedef struct MP_instance * MP;
155 typedef signed int integer;
156 @<Types in the outer block@>
157 typedef struct MP_options {
161 @<Exported function headers@>
164 @<Constants in the outer block@>
165 typedef struct MP_instance {
175 #include <unistd.h> /* for access() */
176 #include <time.h> /* for struct tm \& co */
178 #include "mpmp.h" /* internal header */
179 #include "mppsout.h" /* internal header */
182 @<Basic printing procedures@>
183 @<Error handling procedures@>
185 @ Here are the functions that set up the \MP\ instance.
188 @<Declare |mp_reallocate| functions@>;
189 struct MP_options mp_options (void) {
190 struct MP_options *opt;
191 opt = xmalloc(1,sizeof(MP_options));
192 memset (opt,0,sizeof(MP_options));
195 MP mp_new (struct MP_options opt) {
197 mp = xmalloc(1,sizeof(MP_instance));
198 @<Set |ini_version|@>;
199 @<Allocate or initialize variables@>
200 mp_reallocate_paths(mp,1000);
201 mp_reallocate_fonts(mp,8);
203 mp->term_out = stdout;
206 void mp_free (MP mp) {
207 int k; /* loop variable */
208 @<Dealloc variables@>
213 boolean mp_initialize (MP mp) { /* this procedure gets things started properly */
214 @<Local variables for initialization@>
215 mp->history=fatal_error_stop; /* in case we quit during initialization */
216 t_open_out; /* open the terminal for output */
217 @<Check the ``constant'' values...@>;
219 fprintf(stdout,"Ouch---my internal constants have been clobbered!\n"
220 "---case %i",(int)mp->bad);
224 @<Set initial values of key variables@>
225 if (mp->ini_version) {
226 @<Run inimpost commands@>;
228 @<Initialize the output routines@>;
229 @<Get the first line of input and prepare to start@>;
230 mp_set_job_id(mp,mp->internal[year],mp->internal[month],
231 mp->internal[day],mp->internal[mp_time]);
232 mp_init_map_file(mp, mp->troff_mode);
233 mp->history=spotless; /* ready to go! */
234 if (mp->troff_mode) {
235 mp->internal[gtroffmode]=unity;
236 mp->internal[prologues]=unity;
238 if ( mp->start_sym>0 ) { /* insert the `\&{everyjob}' symbol */
239 mp->cur_sym=mp->start_sym; mp_back_input(mp);
245 @<Exported function headers@>=
246 extern struct MP_options mp_options (void);
247 extern MP mp_new (struct MP_options opt) ;
248 extern void mp_free (MP mp);
249 extern boolean mp_initialize (MP mp);
252 @ The overall \MP\ program begins with the heading just shown, after which
253 comes a bunch of procedure declarations and function declarations.
254 Finally we will get to the main program, which begins with the
255 comment `|start_here|'. If you want to skip down to the
256 main program now, you can look up `|start_here|' in the index.
257 But the author suggests that the best way to understand this program
258 is to follow pretty much the order of \MP's components as they appear in the
259 \.{WEB} description you are now reading, since the present ordering is
260 intended to combine the advantages of the ``bottom up'' and ``top down''
261 approaches to the problem of understanding a somewhat complicated system.
263 @ Some of the code below is intended to be used only when diagnosing the
264 strange behavior that sometimes occurs when \MP\ is being installed or
265 when system wizards are fooling around with \MP\ without quite knowing
266 what they are doing. Such code will not normally be compiled; it is
267 delimited by the preprocessor test `|#ifdef DEBUG .. #endif|'.
269 @ This program has two important variations: (1) There is a long and slow
270 version called \.{INIMP}, which does the extra calculations needed to
272 initialize \MP's internal tables; and (2)~there is a shorter and faster
273 production version, which cuts the initialization to a bare minimum.
275 Which is which is decided at runtime.
277 @ The following parameters can be changed at compile time to extend or
278 reduce \MP's capacity. They may have different values in \.{INIMP} and
279 in production versions of \MP.
281 @^system dependencies@>
284 #define file_name_size 255 /* file names shouldn't be longer than this */
285 #define bistack_size 1500 /* size of stack for bisection algorithms;
286 should probably be left at this value */
288 @ Like the preceding parameters, the following quantities can be changed
289 at compile time to extend or reduce \MP's capacity. But if they are changed,
290 it is necessary to rerun the initialization program \.{INIMP}
292 to generate new tables for the production \MP\ program.
293 One can't simply make helter-skelter changes to the following constants,
294 since certain rather complex initialization
295 numbers are computed from them.
298 int max_strings; /* maximum number of strings; must not exceed |max_halfword| */
299 int pool_size; /* maximum number of characters in strings, including all
300 error messages and help texts, and the names of all identifiers */
301 int error_line; /* width of context lines on terminal error messages */
302 int half_error_line; /* width of first lines of contexts in terminal
303 error messages; should be between 30 and |error_line-15| */
304 int max_print_line; /* width of longest text lines output; should be at least 60 */
305 int mem_max; /* greatest index in \MP's internal |mem| array;
306 must be strictly less than |max_halfword|;
307 must be equal to |mem_top| in \.{INIMP}, otherwise |>=mem_top| */
308 int mem_top; /* largest index in the |mem| array dumped by \.{INIMP};
309 must not be greater than |mem_max| */
310 int hash_size; /* maximum number of symbolic tokens,
311 must be less than |max_halfword-3*param_size| */
312 int hash_prime; /* a prime number equal to about 85\pct! of |hash_size| */
313 int param_size; /* maximum number of simultaneous macro parameters */
314 int max_in_open; /* maximum number of input files and error insertions that
315 can be going on simultaneously */
317 @ @<Option variables@>=
328 @d set_value(a,b,c) do { a=c; if (b>c) a=b; } while (0)
333 set_value(mp->error_line,opt.error_line,79);
334 set_value(mp->half_error_line,opt.half_error_line,50);
335 set_value(mp->max_print_line,opt.max_print_line,79);
338 if (opt.main_memory>mp->mem_max)
339 mp_reallocate_memory(mp,opt.main_memory);
340 set_value(mp->hash_size,opt.hash_size,9500);
341 set_value(mp->hash_prime,opt.hash_prime,7919);
342 set_value(mp->param_size,opt.param_size,150);
343 set_value(mp->max_in_open,opt.max_in_open,10);
346 @ In case somebody has inadvertently made bad settings of the ``constants,''
347 \MP\ checks them using a global variable called |bad|.
349 This is the first of many sections of \MP\ where global variables are
353 integer bad; /* is some ``constant'' wrong? */
355 @ Later on we will say `\ignorespaces|if (mem_max>=max_halfword) bad=10;|',
356 or something similar. (We can't do that until |max_halfword| has been defined.)
358 @<Check the ``constant'' values for consistency@>=
360 if ( (mp->half_error_line<30)||(mp->half_error_line>mp->error_line-15) ) mp->bad=1;
361 if ( mp->max_print_line<60 ) mp->bad=2;
362 if ( mp->mem_top<=1100 ) mp->bad=4;
363 if (mp->hash_prime>mp->hash_size ) mp->bad=5;
365 @ Labels are given symbolic names by the following definitions, so that
366 occasional |goto| statements will be meaningful. We insert the label
367 `|exit|:' just before the `\ignorespaces|end|\unskip' of a procedure in
368 which we have used the `|return|' statement defined below; the label
369 `|restart|' is occasionally used at the very beginning of a procedure; and
370 the label `|reswitch|' is occasionally used just prior to a |case|
371 statement in which some cases change the conditions and we wish to branch
372 to the newly applicable case. Loops that are set up with the |loop|
373 construction defined below are commonly exited by going to `|done|' or to
374 `|found|' or to `|not_found|', and they are sometimes repeated by going to
375 `|continue|'. If two or more parts of a subroutine start differently but
376 end up the same, the shared code may be gathered together at
379 Incidentally, this program never declares a label that isn't actually used,
380 because some fussy \PASCAL\ compilers will complain about redundant labels.
382 @d label_exit 10 /* go here to leave a procedure */
383 @d restart 20 /* go here to start a procedure again */
384 @d reswitch 21 /* go here to start a case statement again */
385 @d continue 22 /* go here to resume a loop */
386 @d done 30 /* go here to exit a loop */
387 @d done1 31 /* like |done|, when there is more than one loop */
388 @d done2 32 /* for exiting the second loop in a long block */
389 @d done3 33 /* for exiting the third loop in a very long block */
390 @d done4 34 /* for exiting the fourth loop in an extremely long block */
391 @d done5 35 /* for exiting the fifth loop in an immense block */
392 @d done6 36 /* for exiting the sixth loop in a block */
393 @d found 40 /* go here when you've found it */
394 @d found1 41 /* like |found|, when there's more than one per routine */
395 @d found2 42 /* like |found|, when there's more than two per routine */
396 @d found3 43 /* like |found|, when there's more than three per routine */
397 @d not_found 45 /* go here when you've found nothing */
398 @d common_ending 50 /* go here when you want to merge with another branch */
400 @ Here are some macros for common programming idioms.
402 @d incr(A) (A)=(A)+1 /* increase a variable by unity */
403 @d decr(A) (A)=(A)-1 /* decrease a variable by unity */
404 @d negate(A) (A)=-(A) /* change the sign of a variable */
407 @d do_nothing /* empty statement */
408 @d Return goto exit /* terminate a procedure call */
409 @f return nil /* \.{WEB} will henceforth say |return| instead of \\{return} */
411 @* \[2] The character set.
412 In order to make \MP\ readily portable to a wide variety of
413 computers, all of its input text is converted to an internal eight-bit
414 code that includes standard ASCII, the ``American Standard Code for
415 Information Interchange.'' This conversion is done immediately when each
416 character is read in. Conversely, characters are converted from ASCII to
417 the user's external representation just before they are output to a
421 Such an internal code is relevant to users of \MP\ only with respect to
422 the \&{char} and \&{ASCII} operations, and the comparison of strings.
424 @ Characters of text that have been converted to \MP's internal form
425 are said to be of type |ASCII_code|, which is a subrange of the integers.
428 typedef unsigned char ASCII_code; /* eight-bit numbers */
430 @ The original \PASCAL\ compiler was designed in the late 60s, when six-bit
431 character sets were common, so it did not make provision for lowercase
432 letters. Nowadays, of course, we need to deal with both capital and small
433 letters in a convenient way, especially in a program for font design;
434 so the present specification of \MP\ has been written under the assumption
435 that the \PASCAL\ compiler and run-time system permit the use of text files
436 with more than 64 distinguishable characters. More precisely, we assume that
437 the character set contains at least the letters and symbols associated
438 with ASCII codes 040 through 0176; all of these characters are now
439 available on most computer terminals.
441 Since we are dealing with more characters than were present in the first
442 \PASCAL\ compilers, we have to decide what to call the associated data
443 type. Some \PASCAL s use the original name |char| for the
444 characters in text files, even though there now are more than 64 such
445 characters, while other \PASCAL s consider |char| to be a 64-element
446 subrange of a larger data type that has some other name.
448 In order to accommodate this difference, we shall use the name |text_char|
449 to stand for the data type of the characters that are converted to and
450 from |ASCII_code| when they are input and output. We shall also assume
451 that |text_char| consists of the elements |chr(first_text_char)| through
452 |chr(last_text_char)|, inclusive. The following definitions should be
453 adjusted if necessary.
454 @^system dependencies@>
456 @d first_text_char 0 /* ordinal number of the smallest element of |text_char| */
457 @d last_text_char 255 /* ordinal number of the largest element of |text_char| */
460 typedef unsigned char text_char; /* the data type of characters in text files */
462 @ @<Local variables for init...@>=
465 @ The \MP\ processor converts between ASCII code and
466 the user's external character set by means of arrays |xord| and |xchr|
467 that are analogous to \PASCAL's |ord| and |chr| functions.
469 @d xchr(A) mp->xchr[(A)]
470 @d xord(A) mp->xord[(A)]
473 ASCII_code xord[256]; /* specifies conversion of input characters */
474 text_char xchr[256]; /* specifies conversion of output characters */
476 @ The core system assumes all 8-bit is acceptable. If it is not,
477 a change file has to alter the below section.
478 @^system dependencies@>
480 Additionally, people with extended character sets can
481 assign codes arbitrarily, giving an |xchr| equivalent to whatever
482 characters the users of \MP\ are allowed to have in their input files.
483 Appropriate changes to \MP's |char_class| table should then be made.
484 (Unlike \TeX, each installation of \MP\ has a fixed assignment of category
485 codes, called the |char_class|.) Such changes make portability of programs
486 more difficult, so they should be introduced cautiously if at all.
487 @^character set dependencies@>
488 @^system dependencies@>
491 for (i=0;i<=0377;i++) { xchr(i)=i; }
493 @ The following system-independent code makes the |xord| array contain a
494 suitable inverse to the information in |xchr|. Note that if |xchr[i]=xchr[j]|
495 where |i<j<0177|, the value of |xord[xchr[i]]| will turn out to be
496 |j| or more; hence, standard ASCII code numbers will be used instead of
497 codes below 040 in case there is a coincidence.
500 for (i=first_text_char;i<=last_text_char;i++) {
503 for (i=0200;i<=0377;i++) { xord(xchr(i))=i;}
504 for (i=0;i<=0176;i++) { xord(xchr(i))=i;}
506 @* \[3] Input and output.
507 The bane of portability is the fact that different operating systems treat
508 input and output quite differently, perhaps because computer scientists
509 have not given sufficient attention to this problem. People have felt somehow
510 that input and output are not part of ``real'' programming. Well, it is true
511 that some kinds of programming are more fun than others. With existing
512 input/output conventions being so diverse and so messy, the only sources of
513 joy in such parts of the code are the rare occasions when one can find a
514 way to make the program a little less bad than it might have been. We have
515 two choices, either to attack I/O now and get it over with, or to postpone
516 I/O until near the end. Neither prospect is very attractive, so let's
519 The basic operations we need to do are (1)~inputting and outputting of
520 text, to or from a file or the user's terminal; (2)~inputting and
521 outputting of eight-bit bytes, to or from a file; (3)~instructing the
522 operating system to initiate (``open'') or to terminate (``close'') input or
523 output from a specified file; (4)~testing whether the end of an input
524 file has been reached; (5)~display of bits on the user's screen.
525 The bit-display operation will be discussed in a later section; we shall
526 deal here only with more traditional kinds of I/O.
528 @ Finding files happens in a slightly roundabout fashion: the \MP\
529 instance object contains a field that holds a function pointer that finds a
530 file, and returns its name, or NULL. For this, it receives three
531 parameters: the non-qualified name |fname|, the intended |fopen|
532 operation type |fmode|, and the type of the file |ftype|.
534 The file types that are passed on in |ftype| can be used to
535 differentiate file searches if a library like kpathsea is used,
536 the fopen mode is passed along for the same reason.
539 typedef unsigned char eight_bits ; /* unsigned one-byte quantity */
541 mp_filetype_program = 1, /* \MP\ language input */
542 mp_filetype_log, /* the log file */
543 mp_filetype_postscript, /* the postscript output */
544 mp_filetype_text, /* text files for readfrom and writeto primitives */
545 mp_filetype_memfile, /* memory dumps */
546 mp_filetype_metrics, /* TeX font metric files */
547 mp_filetype_fontmap, /* PostScript font mapping files */
548 mp_filetype_font, /* PostScript type1 font programs */
549 mp_filetype_encoding, /* PostScript font encoding files */
551 typedef char *(*file_finder)(char *, char *, int);
554 file_finder find_file;
556 @ @<Option variables@>=
557 file_finder find_file;
559 @ The default function for finding files is |mp_find_file|. It is
560 pretty stupid: it will only find files in the current directory.
563 char *mp_find_file (char *fname, char *fmode, int ftype) {
564 if (fmode[0] != 'r' || access (fname,R_OK) || ftype)
565 return xstrdup(fname);
569 @ This has to be done very early on, so it is best to put it in with
570 the |mp_new| allocations
572 @d set_callback_option(A) do { mp->A = mp_##A;
573 if (opt.A!=NULL) mp->A = opt.A;
576 @<Allocate or initialize ...@>=
577 set_callback_option(find_file);
579 @ Because |mp_find_file| is used so early, it has to be in the helpers
583 char *mp_find_file (char *fname, char *fmode, int ftype) ;
585 @ The function to open files can now be very short.
588 FILE *mp_open_file(MP mp, char *fname, char *fmode, int ftype) {
589 char *s = (mp->find_file)(fname,fmode,ftype);
591 FILE *f = fopen(s, fmode);
598 @ This is a legacy interface: (almost) all file names pass through |name_of_file|.
601 char name_of_file[file_name_size+1]; /* the name of a system file */
602 int name_length;/* this many characters are actually
603 relevant in |name_of_file| (the rest are blank) */
604 boolean print_found_names; /* configuration parameter */
606 @ @<Option variables@>=
607 boolean print_found_names; /* configuration parameter */
609 @ If this parameter is true, the terminal and log will report the found
610 file names for input files instead of the requested ones.
611 It is off by default because it creates an extra filename lookup.
613 @<Allocate or initialize ...@>=
614 mp->print_found_names = (opt.print_found_names>0 ? true : false);
616 @ \MP's file-opening procedures return |false| if no file identified by
617 |name_of_file| could be opened.
619 The |OPEN_FILE| macro takes care of the |print_found_names| parameter.
620 It is not used for opening a mem file for read, because that file name
624 if (mp->print_found_names) {
625 char *s = (mp->find_file)(mp->name_of_file,A,ftype);
627 *f = mp_open_file(mp,mp->name_of_file,A, ftype);
628 strncpy(mp->name_of_file,s,file_name_size);
634 *f = mp_open_file(mp,mp->name_of_file,A, ftype);
637 return (*f ? true : false)
640 boolean mp_a_open_in (MP mp, FILE **f, int ftype) {
641 /* open a text file for input */
645 boolean mp_w_open_in (MP mp, FILE **f) {
646 /* open a word file for input */
647 *f = mp_open_file(mp,mp->name_of_file,"rb",mp_filetype_memfile);
648 return (*f ? true : false);
651 boolean mp_a_open_out (MP mp, FILE **f, int ftype) {
652 /* open a text file for output */
656 boolean mp_b_open_out (MP mp, FILE **f, int ftype) {
657 /* open a binary file for output */
661 boolean mp_w_open_out (MP mp, FILE**f) {
662 /* open a word file for output */
663 int ftype = mp_filetype_memfile;
668 FILE *mp_open_file(MP mp, char *fname, char *fmode, int ftype);
670 @ Binary input and output are done with \PASCAL's ordinary |get| and |put|
671 procedures, so we don't have to make any other special arrangements for
672 binary~I/O. Text output is also easy to do with standard \PASCAL\ routines.
673 The treatment of text input is more difficult, however, because
674 of the necessary translation to |ASCII_code| values.
675 \MP's conventions should be efficient, and they should
676 blend nicely with the user's operating environment.
678 @ Input from text files is read one line at a time, using a routine called
679 |input_ln|. This function is defined in terms of global variables called
680 |buffer|, |first|, and |last| that will be described in detail later; for
681 now, it suffices for us to know that |buffer| is an array of |ASCII_code|
682 values, and that |first| and |last| are indices into this array
683 representing the beginning and ending of a line of text.
686 size_t buf_size; /* maximum number of characters simultaneously present in
687 current lines of open files */
688 ASCII_code *buffer; /* lines of characters being read */
689 size_t first; /* the first unused position in |buffer| */
690 size_t last; /* end of the line just input to |buffer| */
691 size_t max_buf_stack; /* largest index used in |buffer| */
693 @ @<Allocate or initialize ...@>=
695 mp->buffer = xmalloc((mp->buf_size+1),sizeof(ASCII_code));
697 @ @<Dealloc variables@>=
701 void mp_reallocate_buffer(MP mp, size_t l) {
703 if (l>max_halfword) {
704 mp_confusion(mp,"buffer size"); /* can't happen (I hope) */
706 buffer = xmalloc((l+1),sizeof(ASCII_code));
707 memcpy(buffer,mp->buffer,(mp->buf_size+1));
709 mp->buffer = buffer ;
713 @ The |input_ln| function brings the next line of input from the specified
714 field into available positions of the buffer array and returns the value
715 |true|, unless the file has already been entirely read, in which case it
716 returns |false| and sets |last:=first|. In general, the |ASCII_code|
717 numbers that represent the next line of the file are input into
718 |buffer[first]|, |buffer[first+1]|, \dots, |buffer[last-1]|; and the
719 global variable |last| is set equal to |first| plus the length of the
720 line. Trailing blanks are removed from the line; thus, either |last=first|
721 (in which case the line was entirely blank) or |buffer[last-1]<>" "|.
724 An overflow error is given, however, if the normal actions of |input_ln|
725 would make |last>=buf_size|; this is done so that other parts of \MP\
726 can safely look at the contents of |buffer[last+1]| without overstepping
727 the bounds of the |buffer| array. Upon entry to |input_ln|, the condition
728 |first<buf_size| will always hold, so that there is always room for an
731 The variable |max_buf_stack|, which is used to keep track of how large
732 the |buf_size| parameter must be to accommodate the present job, is
733 also kept up to date by |input_ln|.
735 If the |bypass_eoln| parameter is |true|, |input_ln| will do a |get|
736 before looking at the first character of the line; this skips over
737 an |eoln| that was in |f^|. The procedure does not do a |get| when it
738 reaches the end of the line; therefore it can be used to acquire input
739 from the user's terminal as well as from ordinary text files.
741 Standard \PASCAL\ says that a file should have |eoln| immediately
742 before |eof|, but \MP\ needs only a weaker restriction: If |eof|
743 occurs in the middle of a line, the system function |eoln| should return
744 a |true| result (even though |f^| will be undefined).
747 boolean mp_input_ln (MP mp,FILE * f, boolean bypass_eoln) {
748 /* inputs the next line or returns |false| */
749 int last_nonblank; /* |last| with trailing blanks removed */
755 if (c!='\n' && c!='\r') {
759 /* input the first character of the line into |f^| */
760 mp->last=mp->first; /* cf.\ Matthew 19\thinspace:\thinspace30 */
764 last_nonblank=mp->first;
765 while (c!=EOF && c!='\n' && c!='\r') {
766 if ( mp->last>=mp->max_buf_stack ) {
767 mp->max_buf_stack=mp->last+1;
768 if ( mp->max_buf_stack==mp->buf_size ) {
769 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
772 mp->buffer[mp->last]=xord(c);
774 if ( mp->buffer[mp->last-1]!=' ' )
775 last_nonblank=mp->last;
781 mp->last=last_nonblank;
785 @ The user's terminal acts essentially like other files of text, except
786 that it is used both for input and for output. When the terminal is
787 considered an input file, the file variable is called |term_in|, and when it
788 is considered an output file the file variable is |term_out|.
789 @^system dependencies@>
792 FILE * term_in; /* the terminal as an input file */
793 FILE * term_out; /* the terminal as an output file */
795 @ Here is how to open the terminal files. In the default configuration,
796 nothing happens except that the command line (if there is one) is copied
797 to the input buffer. The variable |command_line| will be filled by the
798 |main| procedure. The copying can not be done earlier in the program
799 logic because in the |INI| version, the |buffer| is also used for primitive
802 @^system dependencies@>
804 @d t_open_out /* open the terminal for text output */
805 @d t_open_in do { /* open the terminal for text input */
806 if (mp->command_line!=NULL) {
807 mp->last = strlen(mp->command_line);
808 strncpy((char *)mp->buffer,mp->command_line,mp->last);
809 xfree(mp->command_line);
816 @ @<Option variables@>=
819 @ @<Allocate or initialize ...@>=
820 mp->command_line = mp_xstrdup(opt.command_line);
822 @ Sometimes it is necessary to synchronize the input/output mixture that
823 happens on the user's terminal, and three system-dependent
824 procedures are used for this
825 purpose. The first of these, |update_terminal|, is called when we want
826 to make sure that everything we have output to the terminal so far has
827 actually left the computer's internal buffers and been sent.
828 The second, |clear_terminal|, is called when we wish to cancel any
829 input that the user may have typed ahead (since we are about to
830 issue an unexpected error message). The third, |wake_up_terminal|,
831 is supposed to revive the terminal if the user has disabled it by
832 some instruction to the operating system. The following macros show how
833 these operations can be specified in \ph:
834 @^system dependencies@>
836 @d update_terminal fflush(mp->term_out) /* empty the terminal output buffer */
837 @d clear_terminal do_nothing /* clear the terminal input buffer */
838 @d wake_up_terminal fflush(mp->term_out) /* cancel the user's cancellation of output */
840 @ We need a special routine to read the first line of \MP\ input from
841 the user's terminal. This line is different because it is read before we
842 have opened the transcript file; there is sort of a ``chicken and
843 egg'' problem here. If the user types `\.{input cmr10}' on the first
844 line, or if some macro invoked by that line does such an \.{input},
845 the transcript file will be named `\.{cmr10.log}'; but if no \.{input}
846 commands are performed during the first line of terminal input, the transcript
847 file will acquire its default name `\.{mpout.log}'. (The transcript file
848 will not contain error messages generated by the first line before the
849 first \.{input} command.)
851 The first line is even more special if we are lucky enough to have an operating
852 system that treats \MP\ differently from a run-of-the-mill \PASCAL\ object
853 program. It's nice to let the user start running a \MP\ job by typing
854 a command line like `\.{MP cmr10}'; in such a case, \MP\ will operate
855 as if the first line of input were `\.{cmr10}', i.e., the first line will
856 consist of the remainder of the command line, after the part that invoked \MP.
858 @ Different systems have different ways to get started. But regardless of
859 what conventions are adopted, the routine that initializes the terminal
860 should satisfy the following specifications:
862 \yskip\textindent{1)}It should open file |term_in| for input from the
863 terminal. (The file |term_out| will already be open for output to the
866 \textindent{2)}If the user has given a command line, this line should be
867 considered the first line of terminal input. Otherwise the
868 user should be prompted with `\.{**}', and the first line of input
869 should be whatever is typed in response.
871 \textindent{3)}The first line of input, which might or might not be a
872 command line, should appear in locations |first| to |last-1| of the
875 \textindent{4)}The global variable |loc| should be set so that the
876 character to be read next by \MP\ is in |buffer[loc]|. This
877 character should not be blank, and we should have |loc<last|.
879 \yskip\noindent(It may be necessary to prompt the user several times
880 before a non-blank line comes in. The prompt is `\.{**}' instead of the
881 later `\.*' because the meaning is slightly different: `\.{input}' need
882 not be typed immediately after~`\.{**}'.)
884 @d loc mp->cur_input.loc_field /* location of first unread character in |buffer| */
886 @ The following program does the required initialization
887 without retrieving a possible command line.
888 It should be clear how to modify this routine to deal with command lines,
889 if the system permits them.
890 @^system dependencies@>
893 boolean mp_init_terminal (MP mp) { /* gets the terminal input started */
900 wake_up_terminal; fprintf(mp->term_out,"**"); update_terminal;
902 if ( ! mp_input_ln(mp, mp->term_in,true) ) { /* this shouldn't happen */
903 fprintf(mp->term_out,"\n! End of file on the terminal... why?");
904 @.End of file on the terminal@>
908 while ( (loc<(int)mp->last)&&(mp->buffer[loc]==' ') )
910 if ( loc<(int)mp->last ) {
911 return true; /* return unless the line was all blank */
913 fprintf(mp->term_out,"Please type the name of your input file.\n");
918 boolean mp_init_terminal (MP mp) ;
921 @* \[4] String handling.
922 Symbolic token names and diagnostic messages are variable-length strings
923 of eight-bit characters. Since \PASCAL\ does not have a well-developed string
924 mechanism, \MP\ does all of its string processing by homegrown methods.
926 \MP\ uses strings more extensively than \MF\ does, but the necessary
927 operations can still be handled with a fairly simple data structure.
928 The array |str_pool| contains all of the (eight-bit) ASCII codes in all
929 of the strings, and the array |str_start| contains indices of the starting
930 points of each string. Strings are referred to by integer numbers, so that
931 string number |s| comprises the characters |str_pool[j]| for
932 |str_start[s]<=j<str_start[ss]| where |ss=next_str[s]|. The string pool
933 is allocated sequentially and |str_pool[pool_ptr]| is the next unused
934 location. The first string number not currently in use is |str_ptr|
935 and |next_str[str_ptr]| begins a list of free string numbers. String
936 pool entries |str_start[str_ptr]| up to |pool_ptr| are reserved for a
937 string currently being constructed.
939 String numbers 0 to 255 are reserved for strings that correspond to single
940 ASCII characters. This is in accordance with the conventions of \.{WEB},
942 which converts single-character strings into the ASCII code number of the
943 single character involved, while it converts other strings into integers
944 and builds a string pool file. Thus, when the string constant \.{"."} appears
945 in the program below, \.{WEB} converts it into the integer 46, which is the
946 ASCII code for a period, while \.{WEB} will convert a string like \.{"hello"}
947 into some integer greater than~255. String number 46 will presumably be the
948 single character `\..'\thinspace; but some ASCII codes have no standard visible
949 representation, and \MP\ may need to be able to print an arbitrary
950 ASCII character, so the first 256 strings are used to specify exactly what
951 should be printed for each of the 256 possibilities.
954 typedef int pool_pointer; /* for variables that point into |str_pool| */
955 typedef int str_number; /* for variables that point into |str_start| */
958 ASCII_code *str_pool; /* the characters */
959 pool_pointer *str_start; /* the starting pointers */
960 str_number *next_str; /* for linking strings in order */
961 pool_pointer pool_ptr; /* first unused position in |str_pool| */
962 str_number str_ptr; /* number of the current string being created */
963 pool_pointer init_pool_ptr; /* the starting value of |pool_ptr| */
964 str_number init_str_use; /* the initial number of strings in use */
965 pool_pointer max_pool_ptr; /* the maximum so far of |pool_ptr| */
966 str_number max_str_ptr; /* the maximum so far of |str_ptr| */
968 @ @<Allocate or initialize ...@>=
969 mp->str_pool = xmalloc ((mp->pool_size +1),sizeof(ASCII_code));
970 mp->str_start = xmalloc ((mp->max_strings+1),sizeof(pool_pointer));
971 mp->next_str = xmalloc ((mp->max_strings+1),sizeof(str_number));
973 @ @<Dealloc variables@>=
975 xfree(mp->str_start);
978 @ Most printing is done from |char *|s, but sometimes not. Here are
979 functions that convert an internal string into a |char *| for use
980 by the printing routines, and vice versa.
982 @d str(A) mp_str(mp,A)
983 @d rts(A) mp_rts(mp,A)
985 @<Exported function headers@>=
986 int mp_xstrcmp (const char *a, const char *b);
987 char * mp_str (MP mp, str_number s);
990 str_number mp_rts (MP mp, char *s);
991 str_number mp_make_string (MP mp);
993 @ The attempt to catch interrupted strings that is in |mp_rts|, is not
994 very good: it does not handle nesting over more than one level.
997 int mp_xstrcmp (const char *a, const char *b) {
998 if (a==NULL && b==NULL)
1008 char * mp_str (MP mp, str_number ss) {
1010 int len = length(ss);
1011 s = xmalloc(len+1,sizeof(char));
1012 strncpy(s,(char *)(mp->str_pool+(mp->str_start[ss])),len);
1016 str_number mp_rts (MP mp, char *s) {
1017 int r; /* the new string */
1018 int old; /* a possible string in progress */
1022 } else if (strlen(s)==1) {
1026 str_room((integer)strlen(s));
1027 if (mp->str_start[mp->str_ptr]<mp->pool_ptr)
1028 old = mp_make_string(mp);
1033 r = mp_make_string(mp);
1035 str_room(length(old));
1036 while (i<length(old)) {
1037 append_char((mp->str_start[old]+i));
1039 mp_flush_string(mp,old);
1045 @ Except for |strs_used_up|, the following string statistics are only
1046 maintained when code between |stat| $\ldots$ |tats| delimiters is not
1050 integer strs_used_up; /* strings in use or unused but not reclaimed */
1051 integer pool_in_use; /* total number of cells of |str_pool| actually in use */
1052 integer strs_in_use; /* total number of strings actually in use */
1053 integer max_pl_used; /* maximum |pool_in_use| so far */
1054 integer max_strs_used; /* maximum |strs_in_use| so far */
1056 @ Several of the elementary string operations are performed using \.{WEB}
1057 macros instead of \PASCAL\ procedures, because many of the
1058 operations are done quite frequently and we want to avoid the
1059 overhead of procedure calls. For example, here is
1060 a simple macro that computes the length of a string.
1063 @d str_stop(A) mp->str_start[mp->next_str[(A)]] /* one cell past the end of string
1065 @d length(A) (str_stop((A))-mp->str_start[(A)]) /* the number of characters in string \# */
1067 @ The length of the current string is called |cur_length|. If we decide that
1068 the current string is not needed, |flush_cur_string| resets |pool_ptr| so that
1069 |cur_length| becomes zero.
1071 @d cur_length (mp->pool_ptr - mp->str_start[mp->str_ptr])
1072 @d flush_cur_string mp->pool_ptr=mp->str_start[mp->str_ptr]
1074 @ Strings are created by appending character codes to |str_pool|.
1075 The |append_char| macro, defined here, does not check to see if the
1076 value of |pool_ptr| has gotten too high; this test is supposed to be
1077 made before |append_char| is used.
1079 To test if there is room to append |l| more characters to |str_pool|,
1080 we shall write |str_room(l)|, which tries to make sure there is enough room
1081 by compacting the string pool if necessary. If this does not work,
1082 |do_compaction| aborts \MP\ and gives an apologetic error message.
1084 @d append_char(A) /* put |ASCII_code| \# at the end of |str_pool| */
1085 { mp->str_pool[mp->pool_ptr]=(A); incr(mp->pool_ptr);
1087 @d str_room(A) /* make sure that the pool hasn't overflowed */
1088 { if ( mp->pool_ptr+(A) > mp->max_pool_ptr ) {
1089 if ( mp->pool_ptr+(A) > mp->pool_size ) mp_do_compaction(mp, (A));
1090 else mp->max_pool_ptr=mp->pool_ptr+(A); }
1093 @ The following routine is similar to |str_room(1)| but it uses the
1094 argument |mp->pool_size| to prevent |do_compaction| from aborting when
1095 string space is exhausted.
1097 @<Declare the procedure called |unit_str_room|@>=
1098 void mp_unit_str_room (MP mp);
1101 void mp_unit_str_room (MP mp) {
1102 if ( mp->pool_ptr>=mp->pool_size ) mp_do_compaction(mp, mp->pool_size);
1103 if ( mp->pool_ptr>=mp->max_pool_ptr ) mp->max_pool_ptr=mp->pool_ptr+1;
1106 @ \MP's string expressions are implemented in a brute-force way: Every
1107 new string or substring that is needed is simply copied into the string pool.
1108 Space is eventually reclaimed by a procedure called |do_compaction| with
1109 the aid of a simple system system of reference counts.
1110 @^reference counts@>
1112 The number of references to string number |s| will be |str_ref[s]|. The
1113 special value |str_ref[s]=max_str_ref=127| is used to denote an unknown
1114 positive number of references; such strings will never be recycled. If
1115 a string is ever referred to more than 126 times, simultaneously, we
1116 put it in this category. Hence a single byte suffices to store each |str_ref|.
1118 @d max_str_ref 127 /* ``infinite'' number of references */
1119 @d add_str_ref(A) { if ( mp->str_ref[(A)]<max_str_ref ) incr(mp->str_ref[(A)]);
1125 @ @<Allocate or initialize ...@>=
1126 mp->str_ref = xmalloc ((mp->max_strings+1),sizeof(int));
1128 @ @<Dealloc variables@>=
1131 @ Here's what we do when a string reference disappears:
1133 @d delete_str_ref(A) {
1134 if ( mp->str_ref[(A)]<max_str_ref ) {
1135 if ( mp->str_ref[(A)]>1 ) decr(mp->str_ref[(A)]);
1136 else mp_flush_string(mp, (A));
1140 @<Declare the procedure called |flush_string|@>=
1141 void mp_flush_string (MP mp,str_number s) ;
1144 @ We can't flush the first set of static strings at all, so there
1145 is no point in trying
1148 void mp_flush_string (MP mp,str_number s) {
1150 mp->pool_in_use=mp->pool_in_use-length(s);
1151 decr(mp->strs_in_use);
1152 if ( mp->next_str[s]!=mp->str_ptr ) {
1156 decr(mp->strs_used_up);
1158 mp->pool_ptr=mp->str_start[mp->str_ptr];
1162 @ C literals cannot be simply added, they need to be set so they can't
1165 @d intern(A) mp_intern(mp,(A))
1168 str_number mp_intern (MP mp, char *s) {
1171 mp->str_ref[r] = max_str_ref;
1176 str_number mp_intern (MP mp, char *s);
1179 @ Once a sequence of characters has been appended to |str_pool|, it
1180 officially becomes a string when the function |make_string| is called.
1181 This function returns the identification number of the new string as its
1184 When getting the next unused string number from the linked list, we pretend
1186 $$ \hbox{|max_str_ptr+1|, |max_str_ptr+2|, $\ldots$, |mp->max_strings|} $$
1187 are linked sequentially even though the |next_str| entries have not been
1188 initialized yet. We never allow |str_ptr| to reach |mp->max_strings|;
1189 |do_compaction| is responsible for making sure of this.
1192 @<Declare the procedure called |do_compaction|@>;
1193 @<Declare the procedure called |unit_str_room|@>;
1194 str_number mp_make_string (MP mp);
1197 str_number mp_make_string (MP mp) { /* current string enters the pool */
1198 str_number s; /* the new string */
1201 mp->str_ptr=mp->next_str[s];
1202 if ( mp->str_ptr>mp->max_str_ptr ) {
1203 if ( mp->str_ptr==mp->max_strings ) {
1205 mp_do_compaction(mp, 0);
1209 if ( mp->strs_used_up!=mp->max_str_ptr ) mp_confusion(mp, "s");
1210 @:this can't happen s}{\quad \.s@>
1212 mp->max_str_ptr=mp->str_ptr;
1213 mp->next_str[mp->str_ptr]=mp->max_str_ptr+1;
1217 mp->str_start[mp->str_ptr]=mp->pool_ptr;
1218 incr(mp->strs_used_up);
1219 incr(mp->strs_in_use);
1220 mp->pool_in_use=mp->pool_in_use+length(s);
1221 if ( mp->pool_in_use>mp->max_pl_used )
1222 mp->max_pl_used=mp->pool_in_use;
1223 if ( mp->strs_in_use>mp->max_strs_used )
1224 mp->max_strs_used=mp->strs_in_use;
1228 @ The most interesting string operation is string pool compaction. The idea
1229 is to recover unused space in the |str_pool| array by recopying the strings
1230 to close the gaps created when some strings become unused. All string
1231 numbers~$k$ where |str_ref[k]=0| are to be linked into the list of free string
1232 numbers after |str_ptr|. If this fails to free enough pool space we issue an
1233 |overflow| error unless |needed=mp->pool_size|. Calling |do_compaction|
1234 with |needed=mp->pool_size| supresses all overflow tests.
1236 The compaction process starts with |last_fixed_str| because all lower numbered
1237 strings are permanently allocated with |max_str_ref| in their |str_ref| entries.
1240 str_number last_fixed_str; /* last permanently allocated string */
1241 str_number fixed_str_use; /* number of permanently allocated strings */
1243 @ @<Declare the procedure called |do_compaction|@>=
1244 void mp_do_compaction (MP mp, pool_pointer needed) ;
1247 void mp_do_compaction (MP mp, pool_pointer needed) {
1248 str_number str_use; /* a count of strings in use */
1249 str_number r,s,t; /* strings being manipulated */
1250 pool_pointer p,q; /* destination and source for copying string characters */
1251 @<Advance |last_fixed_str| as far as possible and set |str_use|@>;
1252 r=mp->last_fixed_str;
1255 while ( s!=mp->str_ptr ) {
1256 while ( mp->str_ref[s]==0 ) {
1257 @<Advance |s| and add the old |s| to the list of free string numbers;
1258 then |break| if |s=str_ptr|@>;
1260 r=s; s=mp->next_str[s];
1262 @<Move string |r| back so that |str_start[r]=p|; make |p| the location
1263 after the end of the string@>;
1265 @<Move the current string back so that it starts at |p|@>;
1266 if ( needed<mp->pool_size ) {
1267 @<Make sure that there is room for another string with |needed| characters@>;
1269 @<Account for the compaction and make sure the statistics agree with the
1271 mp->strs_used_up=str_use;
1274 @ @<Advance |last_fixed_str| as far as possible and set |str_use|@>=
1275 t=mp->next_str[mp->last_fixed_str];
1276 while ( (mp->str_ref[t]==max_str_ref)&&(t!=mp->str_ptr) ) {
1277 incr(mp->fixed_str_use);
1278 mp->last_fixed_str=t;
1281 str_use=mp->fixed_str_use
1283 @ Because of the way |flush_string| has been written, it should never be
1284 necessary to |break| here. The extra line of code seems worthwhile to
1285 preserve the generality of |do_compaction|.
1287 @<Advance |s| and add the old |s| to the list of free string numbers;...@>=
1292 mp->next_str[t]=mp->next_str[mp->str_ptr];
1293 mp->next_str[mp->str_ptr]=t;
1294 if ( s==mp->str_ptr ) break;
1297 @ The string currently starts at |str_start[r]| and ends just before
1298 |str_start[s]|. We don't change |str_start[s]| because it might be needed
1299 to locate the next string.
1301 @<Move string |r| back so that |str_start[r]=p|; make |p| the location...@>=
1304 while ( q<mp->str_start[s] ) {
1305 mp->str_pool[p]=mp->str_pool[q];
1309 @ Pointers |str_start[str_ptr]| and |pool_ptr| have not been updated. When
1310 we do this, anything between them should be moved.
1312 @ @<Move the current string back so that it starts at |p|@>=
1313 q=mp->str_start[mp->str_ptr];
1314 mp->str_start[mp->str_ptr]=p;
1315 while ( q<mp->pool_ptr ) {
1316 mp->str_pool[p]=mp->str_pool[q];
1321 @ We must remember that |str_ptr| is not allowed to reach |mp->max_strings|.
1323 @<Make sure that there is room for another string with |needed| char...@>=
1324 if ( str_use>=mp->max_strings-1 )
1325 mp_reallocate_strings (mp,str_use);
1326 if ( mp->pool_ptr+needed>mp->max_pool_ptr ) {
1327 mp_reallocate_pool(mp, mp->pool_ptr+needed);
1328 mp->max_pool_ptr=mp->pool_ptr+needed;
1332 void mp_reallocate_strings (MP mp, str_number str_use) ;
1333 void mp_reallocate_pool(MP mp, pool_pointer needed) ;
1336 void mp_reallocate_strings (MP mp, str_number str_use) {
1337 while ( str_use>=mp->max_strings-1 ) {
1338 int l = mp->max_strings + (mp->max_strings>>2);
1339 XREALLOC (mp->str_ref, l, int);
1340 XREALLOC (mp->str_start, l, pool_pointer);
1341 XREALLOC (mp->next_str, l, str_number);
1342 mp->max_strings = l;
1345 void mp_reallocate_pool(MP mp, pool_pointer needed) {
1346 while ( needed>mp->pool_size ) {
1347 int l = mp->pool_size + (mp->pool_size>>2);
1348 XREALLOC (mp->str_pool, l, ASCII_code);
1353 @ @<Account for the compaction and make sure the statistics agree with...@>=
1354 if ( (mp->str_start[mp->str_ptr]!=mp->pool_in_use)||(str_use!=mp->strs_in_use) )
1355 mp_confusion(mp, "string");
1356 @:this can't happen string}{\quad string@>
1357 incr(mp->pact_count);
1358 mp->pact_chars=mp->pact_chars+mp->pool_ptr-str_stop(mp->last_fixed_str);
1359 mp->pact_strs=mp->pact_strs+str_use-mp->fixed_str_use;
1361 s=mp->str_ptr; t=str_use;
1362 while ( s<=mp->max_str_ptr ){
1363 if ( t>mp->max_str_ptr ) mp_confusion(mp, "\"");
1364 incr(t); s=mp->next_str[s];
1366 if ( t<=mp->max_str_ptr ) mp_confusion(mp, "\"");
1369 @ A few more global variables are needed to keep track of statistics when
1370 |stat| $\ldots$ |tats| blocks are not commented out.
1373 integer pact_count; /* number of string pool compactions so far */
1374 integer pact_chars; /* total number of characters moved during compactions */
1375 integer pact_strs; /* total number of strings moved during compactions */
1377 @ @<Initialize compaction statistics@>=
1382 @ The following subroutine compares string |s| with another string of the
1383 same length that appears in |buffer| starting at position |k|;
1384 the result is |true| if and only if the strings are equal.
1387 boolean mp_str_eq_buf (MP mp,str_number s, integer k) {
1388 /* test equality of strings */
1389 pool_pointer j; /* running index */
1391 while ( j<str_stop(s) ) {
1392 if ( mp->str_pool[j++]!=mp->buffer[k++] )
1398 @ Here is a similar routine, but it compares two strings in the string pool,
1399 and it does not assume that they have the same length. If the first string
1400 is lexicographically greater than, less than, or equal to the second,
1401 the result is respectively positive, negative, or zero.
1404 integer mp_str_vs_str (MP mp, str_number s, str_number t) {
1405 /* test equality of strings */
1406 pool_pointer j,k; /* running indices */
1407 integer ls,lt; /* lengths */
1408 integer l; /* length remaining to test */
1409 ls=length(s); lt=length(t);
1410 if ( ls<=lt ) l=ls; else l=lt;
1411 j=mp->str_start[s]; k=mp->str_start[t];
1413 if ( mp->str_pool[j]!=mp->str_pool[k] ) {
1414 return (mp->str_pool[j]-mp->str_pool[k]);
1421 @ The initial values of |str_pool|, |str_start|, |pool_ptr|,
1422 and |str_ptr| are computed by the \.{INIMP} program, based in part
1423 on the information that \.{WEB} has output while processing \MP.
1428 void mp_get_strings_started (MP mp) {
1429 /* initializes the string pool,
1430 but returns |false| if something goes wrong */
1431 int k; /* small indices or counters */
1432 str_number g; /* a new string */
1433 mp->pool_ptr=0; mp->str_ptr=0; mp->max_pool_ptr=0; mp->max_str_ptr=0;
1436 mp->pool_in_use=0; mp->strs_in_use=0;
1437 mp->max_pl_used=0; mp->max_strs_used=0;
1438 @<Initialize compaction statistics@>;
1440 @<Make the first 256 strings@>;
1441 g=mp_make_string(mp); /* string 256 == "" */
1442 mp->last_fixed_str=mp->str_ptr-1;
1443 mp->fixed_str_use=mp->str_ptr;
1448 void mp_get_strings_started (MP mp);
1450 @ The first 256 strings will consist of a single character only.
1452 @<Make the first 256...@>=
1453 for (k=0;k<=255;k++) {
1455 g=mp_make_string(mp);
1456 mp->str_ref[g]=max_str_ref;
1459 @ The first 128 strings will contain 95 standard ASCII characters, and the
1460 other 33 characters will be printed in three-symbol form like `\.{\^\^A}'
1461 unless a system-dependent change is made here. Installations that have
1462 an extended character set, where for example |xchr[032]=@t\.{'^^Z'}@>|,
1463 would like string 032 to be printed as the single character 032 instead
1464 of the three characters 0136, 0136, 0132 (\.{\^\^Z}). On the other hand,
1465 even people with an extended character set will want to represent string
1466 015 by \.{\^\^M}, since 015 is ASCII's ``carriage return'' code; the idea is
1467 to produce visible strings instead of tabs or line-feeds or carriage-returns
1468 or bell-rings or characters that are treated anomalously in text files.
1470 Unprintable characters of codes 128--255 are, similarly, rendered
1471 \.{\^\^80}--\.{\^\^ff}.
1473 The boolean expression defined here should be |true| unless \MP\ internal
1474 code number~|k| corresponds to a non-troublesome visible symbol in the
1475 local character set.
1476 If character |k| cannot be printed, and |k<0200|, then character |k+0100| or
1477 |k-0100| must be printable; moreover, ASCII codes |[060..071, 0141..0146]|
1479 @^character set dependencies@>
1480 @^system dependencies@>
1482 @<Character |k| cannot be printed@>=
1485 @* \[5] On-line and off-line printing.
1486 Messages that are sent to a user's terminal and to the transcript-log file
1487 are produced by several `|print|' procedures. These procedures will
1488 direct their output to a variety of places, based on the setting of
1489 the global variable |selector|, which has the following possible
1493 \hang |term_and_log|, the normal setting, prints on the terminal and on the
1496 \hang |log_only|, prints only on the transcript file.
1498 \hang |term_only|, prints only on the terminal.
1500 \hang |no_print|, doesn't print at all. This is used only in rare cases
1501 before the transcript file is open.
1503 \hang |ps_file_only| prints only on the \ps\ output file.
1505 \hang |pseudo|, puts output into a cyclic buffer that is used
1506 by the |show_context| routine; when we get to that routine we shall discuss
1507 the reasoning behind this curious mode.
1509 \hang |new_string|, appends the output to the current string in the
1512 \hang |>=write_file| prints on one of the files used for the \&{write}
1513 @:write_}{\&{write} primitive@>
1517 \noindent The symbolic names `|term_and_log|', etc., have been assigned
1518 numeric codes that satisfy the convenient relations |no_print+1=term_only|,
1519 |no_print+2=log_only|, |term_only+2=log_only+1=term_and_log|. These
1520 relations are not used when |selector| could be |pseudo|, |new_string|,
1521 or |ps_file_only|. We need not check for unprintable characters when
1524 Four additional global variables, |tally|, |term_offset|, |file_offset|,
1525 and |ps_offset| record the number of characters that have been printed
1526 since they were most recently cleared to zero. We use |tally| to record
1527 the length of (possibly very long) stretches of printing; |term_offset|,
1528 |file_offset|, and |ps_offset|, on the other hand, keep track of how many
1529 characters have appeared so far on the current line that has been output
1530 to the terminal, the transcript file, or the \ps\ output file, respectively.
1532 @d new_string 0 /* printing is deflected to the string pool */
1533 @d ps_file_only 1 /* printing goes to the \ps\ output file */
1534 @d pseudo 2 /* special |selector| setting for |show_context| */
1535 @d no_print 3 /* |selector| setting that makes data disappear */
1536 @d term_only 4 /* printing is destined for the terminal only */
1537 @d log_only 5 /* printing is destined for the transcript file only */
1538 @d term_and_log 6 /* normal |selector| setting */
1539 @d write_file 7 /* first write file selector */
1542 FILE * log_file; /* transcript of \MP\ session */
1543 FILE * ps_file; /* the generic font output goes here */
1544 unsigned int selector; /* where to print a message */
1545 unsigned char dig[23]; /* digits in a number being output */
1546 integer tally; /* the number of characters recently printed */
1547 unsigned int term_offset;
1548 /* the number of characters on the current terminal line */
1549 unsigned int file_offset;
1550 /* the number of characters on the current file line */
1552 /* the number of characters on the current \ps\ file line */
1553 ASCII_code *trick_buf; /* circular buffer for pseudoprinting */
1554 integer trick_count; /* threshold for pseudoprinting, explained later */
1555 integer first_count; /* another variable for pseudoprinting */
1557 @ @<Allocate or initialize ...@>=
1558 memset(mp->dig,0,23);
1559 mp->trick_buf = xmalloc((mp->error_line+1),sizeof(ASCII_code));
1561 @ @<Dealloc variables@>=
1562 xfree(mp->trick_buf);
1564 @ @<Initialize the output routines@>=
1565 mp->selector=term_only; mp->tally=0; mp->term_offset=0; mp->file_offset=0; mp->ps_offset=0;
1567 @ Macro abbreviations for output to the terminal and to the log file are
1568 defined here for convenience. Some systems need special conventions
1569 for terminal output, and it is possible to adhere to those conventions
1570 by changing |wterm|, |wterm_ln|, and |wterm_cr| here.
1571 @^system dependencies@>
1573 @d wterm(A) fprintf(mp->term_out,"%s",(A))
1574 @d wterm_chr(A)fprintf(mp->term_out,"%c",(A))
1575 @d wterm_ln(A) fprintf(mp->term_out,"\n%s",(A))
1576 @d wterm_cr fprintf(mp->term_out,"\n")
1577 @d wlog(A) fprintf(mp->log_file,"%s",(A))
1578 @d wlog_chr(A) fprintf(mp->log_file,"%c",(A))
1579 @d wlog_ln(A) fprintf(mp->log_file,"\n%s",(A))
1580 @d wlog_cr fprintf(mp->log_file, "\n")
1581 @d wps(A) fprintf(mp->ps_file,"%s",(A))
1582 @d wps_chr(A) fprintf(mp->ps_file,"%c",(A))
1583 @d wps_ln(A) fprintf(mp->ps_file,,"\n%s",(A))
1584 @d wps_cr fprintf(mp->ps_file,"\n")
1586 @ To end a line of text output, we call |print_ln|. Cases |0..max_write_files|
1587 use an array |wr_file| that will be declared later.
1589 @d mp_print_text(A) mp_print_str(mp,text((A)))
1592 void mp_print_ln (MP mp);
1593 void mp_print_visible_char (MP mp, ASCII_code s);
1594 void mp_print_char (MP mp, ASCII_code k);
1595 void mp_print (MP mp, char *s);
1596 void mp_print_str (MP mp, str_number s);
1597 void mp_print_nl (MP mp, char *s);
1598 void mp_print_two (MP mp,scaled x, scaled y) ;
1599 void mp_print_scaled (MP mp,scaled s);
1601 @ @<Basic print...@>=
1602 void mp_print_ln (MP mp) { /* prints an end-of-line */
1603 switch (mp->selector) {
1606 mp->term_offset=0; mp->file_offset=0;
1609 wlog_cr; mp->file_offset=0;
1612 wterm_cr; mp->term_offset=0;
1615 wps_cr; mp->ps_offset=0;
1622 fprintf(mp->wr_file[(mp->selector-write_file)],"\n");
1624 } /* note that |tally| is not affected */
1626 @ The |print_visible_char| procedure sends one character to the desired
1627 destination, using the |xchr| array to map it into an external character
1628 compatible with |input_ln|. (It assumes that it is always called with
1629 a visible ASCII character.) All printing comes through |print_ln| or
1630 |print_char|, which ultimately calls |print_visible_char|, hence these
1631 routines are the ones that limit lines to at most |max_print_line| characters.
1632 But we must make an exception for the \ps\ output file since it is not safe
1633 to cut up lines arbitrarily in \ps.
1635 Procedure |unit_str_room| needs to be declared |forward| here because it calls
1636 |do_compaction| and |do_compaction| can call the error routines. Actually,
1637 |unit_str_room| avoids |overflow| errors but it can call |confusion|.
1639 @<Basic printing...@>=
1640 void mp_print_visible_char (MP mp, ASCII_code s) { /* prints a single character */
1641 switch (mp->selector) {
1643 wterm_chr(xchr(s)); wlog_chr(xchr(s));
1644 incr(mp->term_offset); incr(mp->file_offset);
1645 if ( mp->term_offset==(unsigned)mp->max_print_line ) {
1646 wterm_cr; mp->term_offset=0;
1648 if ( mp->file_offset==(unsigned)mp->max_print_line ) {
1649 wlog_cr; mp->file_offset=0;
1653 wlog_chr(xchr(s)); incr(mp->file_offset);
1654 if ( mp->file_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1657 wterm_chr(xchr(s)); incr(mp->term_offset);
1658 if ( mp->term_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1662 wps_cr; mp->ps_offset=0;
1664 wps_chr(xchr(s)); incr(mp->ps_offset);
1670 if ( mp->tally<mp->trick_count )
1671 mp->trick_buf[mp->tally % mp->error_line]=s;
1674 if ( mp->pool_ptr>=mp->max_pool_ptr ) {
1675 mp_unit_str_room(mp);
1676 if ( mp->pool_ptr>=mp->pool_size )
1677 goto DONE; /* drop characters if string space is full */
1682 fprintf(mp->wr_file[(mp->selector-write_file)],"%c",xchr(s));
1688 @ The |print_char| procedure sends one character to the desired destination.
1689 File names and string expressions might contain |ASCII_code| values that
1690 can't be printed using |print_visible_char|. These characters will be
1691 printed in three- or four-symbol form like `\.{\^\^A}' or `\.{\^\^e4}'.
1692 (This procedure assumes that it is safe to bypass all checks for unprintable
1693 characters when |selector| is in the range |0..max_write_files-1| or when
1694 |selector=ps_file_only|. In the former case the user might want to write
1695 unprintable characters, and in the latter case the \ps\ printing routines
1696 check their arguments themselves before calling |print_char| or |print|.)
1698 @d print_lc_hex(A) do { l=(A);
1699 mp_print_visible_char(mp, (l<10 ? l+'0' : l-10+'a'));
1702 @<Basic printing...@>=
1703 void mp_print_char (MP mp, ASCII_code k) { /* prints a single character */
1704 int l; /* small index or counter */
1705 if ( mp->selector<pseudo || mp->selector>=write_file) {
1706 mp_print_visible_char(mp, k);
1707 } else if ( @<Character |k| cannot be printed@> ) {
1710 mp_print_visible_char(mp, k+0100);
1711 } else if ( k<0200 ) {
1712 mp_print_visible_char(mp, k-0100);
1714 print_lc_hex(k / 16);
1715 print_lc_hex(k % 16);
1718 mp_print_visible_char(mp, k);
1722 @ An entire string is output by calling |print|. Note that if we are outputting
1723 the single standard ASCII character \.c, we could call |print("c")|, since
1724 |"c"=99| is the number of a single-character string, as explained above. But
1725 |print_char("c")| is quicker, so \MP\ goes directly to the |print_char|
1726 routine when it knows that this is safe. (The present implementation
1727 assumes that it is always safe to print a visible ASCII character.)
1728 @^system dependencies@>
1731 void mp_do_print (MP mp, char *ss, unsigned int len) { /* prints string |s| */
1734 mp_print_char(mp, ss[j]); incr(j);
1740 void mp_print (MP mp, char *ss) {
1741 mp_do_print(mp, ss, strlen(ss));
1743 void mp_print_str (MP mp, str_number s) {
1744 pool_pointer j; /* current character code position */
1745 if ( (s<0)||(s>mp->max_str_ptr) ) {
1746 mp_do_print(mp,"???",3); /* this can't happen */
1750 mp_do_print(mp, (char *)(mp->str_pool+j), (str_stop(s)-j));
1754 @ Here is the very first thing that \MP\ prints: a headline that identifies
1755 the version number and base name. The |term_offset| variable is temporarily
1756 incorrect, but the discrepancy is not serious since we assume that the banner
1757 and mem identifier together will occupy at most |max_print_line|
1758 character positions.
1760 @<Initialize the output...@>=
1762 wterm (version_string);
1763 if (mp->mem_ident!=NULL)
1764 mp_print(mp,mp->mem_ident);
1768 @ The procedure |print_nl| is like |print|, but it makes sure that the
1769 string appears at the beginning of a new line.
1772 void mp_print_nl (MP mp, char *s) { /* prints string |s| at beginning of line */
1773 switch(mp->selector) {
1775 if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_ln(mp);
1778 if ( mp->file_offset>0 ) mp_print_ln(mp);
1781 if ( mp->term_offset>0 ) mp_print_ln(mp);
1784 if ( mp->ps_offset>0 ) mp_print_ln(mp);
1790 } /* there are no other cases */
1794 @ An array of digits in the range |0..9| is printed by |print_the_digs|.
1797 void mp_print_the_digs (MP mp, eight_bits k) {
1798 /* prints |dig[k-1]|$\,\ldots\,$|dig[0]| */
1800 decr(k); mp_print_char(mp, '0'+mp->dig[k]);
1804 @ The following procedure, which prints out the decimal representation of a
1805 given integer |n|, has been written carefully so that it works properly
1806 if |n=0| or if |(-n)| would cause overflow. It does not apply |mod| or |div|
1807 to negative arguments, since such operations are not implemented consistently
1808 by all \PASCAL\ compilers.
1811 void mp_print_int (MP mp,integer n) { /* prints an integer in decimal form */
1812 integer m; /* used to negate |n| in possibly dangerous cases */
1813 int k = 0; /* index to current digit; we assume that $|n|<10^{23}$ */
1815 mp_print_char(mp, '-');
1816 if ( n>-100000000 ) {
1819 m=-1-n; n=m / 10; m=(m % 10)+1; k=1;
1823 mp->dig[0]=0; incr(n);
1828 mp->dig[k]=n % 10; n=n / 10; incr(k);
1830 mp_print_the_digs(mp, k);
1834 void mp_print_int (MP mp,integer n);
1836 @ \MP\ also makes use of a trivial procedure to print two digits. The
1837 following subroutine is usually called with a parameter in the range |0<=n<=99|.
1840 void mp_print_dd (MP mp,integer n) { /* prints two least significant digits */
1842 mp_print_char(mp, '0'+(n / 10));
1843 mp_print_char(mp, '0'+(n % 10));
1846 @ Here is a procedure that asks the user to type a line of input,
1847 assuming that the |selector| setting is either |term_only| or |term_and_log|.
1848 The input is placed into locations |first| through |last-1| of the
1849 |buffer| array, and echoed on the transcript file if appropriate.
1851 This procedure is never called when |interaction<mp_scroll_mode|.
1853 @d prompt_input(A) do {
1854 wake_up_terminal; mp_print(mp, (A)); mp_term_input(mp);
1855 } while (0) /* prints a string and gets a line of input */
1858 void mp_term_input (MP mp) { /* gets a line from the terminal */
1859 size_t k; /* index into |buffer| */
1860 update_terminal; /* Now the user sees the prompt for sure */
1861 if (!mp_input_ln(mp, mp->term_in,true))
1862 mp_fatal_error(mp, "End of file on the terminal!");
1863 @.End of file on the terminal@>
1864 mp->term_offset=0; /* the user's line ended with \<\rm return> */
1865 decr(mp->selector); /* prepare to echo the input */
1866 if ( mp->last!=mp->first ) {
1867 for (k=mp->first;k<=mp->last-1;k++) {
1868 mp_print_char(mp, mp->buffer[k]);
1872 mp->buffer[mp->last]='%';
1873 incr(mp->selector); /* restore previous status */
1876 @* \[6] Reporting errors.
1877 When something anomalous is detected, \MP\ typically does something like this:
1878 $$\vbox{\halign{#\hfil\cr
1879 |print_err("Something anomalous has been detected");|\cr
1880 |help3("This is the first line of my offer to help.")|\cr
1881 |("This is the second line. I'm trying to")|\cr
1882 |("explain the best way for you to proceed.");|\cr
1884 A two-line help message would be given using |help2|, etc.; these informal
1885 helps should use simple vocabulary that complements the words used in the
1886 official error message that was printed. (Outside the U.S.A., the help
1887 messages should preferably be translated into the local vernacular. Each
1888 line of help is at most 60 characters long, in the present implementation,
1889 so that |max_print_line| will not be exceeded.)
1891 The |print_err| procedure supplies a `\.!' before the official message,
1892 and makes sure that the terminal is awake if a stop is going to occur.
1893 The |error| procedure supplies a `\..' after the official message, then it
1894 shows the location of the error; and if |interaction=error_stop_mode|,
1895 it also enters into a dialog with the user, during which time the help
1896 message may be printed.
1897 @^system dependencies@>
1899 @ The global variable |interaction| has four settings, representing increasing
1900 amounts of user interaction:
1904 mp_unspecified_mode=0, /* extra value for command-line switch */
1905 mp_batch_mode, /* omits all stops and omits terminal output */
1906 mp_nonstop_mode, /* omits all stops */
1907 mp_scroll_mode, /* omits error stops */
1908 mp_error_stop_mode, /* stops at every opportunity to interact */
1912 int interaction; /* current level of interaction */
1914 @ @<Option variables@>=
1915 int interaction; /* current level of interaction */
1917 @ Set it here so it can be overwritten by the commandline
1919 @<Allocate or initialize ...@>=
1920 mp->interaction=opt.interaction;
1921 if (mp->interaction==mp_unspecified_mode || mp->interaction>mp_error_stop_mode)
1922 mp->interaction=mp_error_stop_mode;
1923 if (mp->interaction<mp_unspecified_mode)
1924 mp->interaction=mp_batch_mode;
1928 @d print_err(A) mp_print_err(mp,(A))
1931 void mp_print_err(MP mp, char * A);
1934 void mp_print_err(MP mp, char * A) {
1935 if ( mp->interaction==mp_error_stop_mode )
1937 mp_print_nl(mp, "! ");
1943 @ \MP\ is careful not to call |error| when the print |selector| setting
1944 might be unusual. The only possible values of |selector| at the time of
1947 \yskip\hang|no_print| (when |interaction=mp_batch_mode|
1948 and |log_file| not yet open);
1950 \hang|term_only| (when |interaction>mp_batch_mode| and |log_file| not yet open);
1952 \hang|log_only| (when |interaction=mp_batch_mode| and |log_file| is open);
1954 \hang|term_and_log| (when |interaction>mp_batch_mode| and |log_file| is open).
1956 @<Initialize the print |selector| based on |interaction|@>=
1957 if ( mp->interaction==mp_batch_mode ) mp->selector=no_print; else mp->selector=term_only
1959 @ A global variable |deletions_allowed| is set |false| if the |get_next|
1960 routine is active when |error| is called; this ensures that |get_next|
1961 will never be called recursively.
1964 The global variable |history| records the worst level of error that
1965 has been detected. It has four possible values: |spotless|, |warning_issued|,
1966 |error_message_issued|, and |fatal_error_stop|.
1968 Another global variable, |error_count|, is increased by one when an
1969 |error| occurs without an interactive dialog, and it is reset to zero at
1970 the end of every statement. If |error_count| reaches 100, \MP\ decides
1971 that there is no point in continuing further.
1973 @d spotless 0 /* |history| value when nothing has been amiss yet */
1974 @d warning_issued 1 /* |history| value when |begin_diagnostic| has been called */
1975 @d error_message_issued 2 /* |history| value when |error| has been called */
1976 @d fatal_error_stop 3 /* |history| value when termination was premature */
1979 boolean deletions_allowed; /* is it safe for |error| to call |get_next|? */
1980 int history; /* has the source input been clean so far? */
1981 int error_count; /* the number of scrolled errors since the last statement ended */
1983 @ The value of |history| is initially |fatal_error_stop|, but it will
1984 be changed to |spotless| if \MP\ survives the initialization process.
1986 @<Allocate or ...@>=
1987 mp->deletions_allowed=true; mp->error_count=0; /* |history| is initialized elsewhere */
1989 @ Since errors can be detected almost anywhere in \MP, we want to declare the
1990 error procedures near the beginning of the program. But the error procedures
1991 in turn use some other procedures, which need to be declared |forward|
1992 before we get to |error| itself.
1994 It is possible for |error| to be called recursively if some error arises
1995 when |get_next| is being used to delete a token, and/or if some fatal error
1996 occurs while \MP\ is trying to fix a non-fatal one. But such recursion
1998 is never more than two levels deep.
2001 void mp_get_next (MP mp);
2002 void mp_term_input (MP mp);
2003 void mp_show_context (MP mp);
2004 void mp_begin_file_reading (MP mp);
2005 void mp_open_log_file (MP mp);
2006 void mp_clear_for_error_prompt (MP mp);
2007 void mp_debug_help (MP mp);
2008 @<Declare the procedure called |flush_string|@>
2011 void mp_normalize_selector (MP mp);
2013 @ Individual lines of help are recorded in the array |help_line|, which
2014 contains entries in positions |0..(help_ptr-1)|. They should be printed
2015 in reverse order, i.e., with |help_line[0]| appearing last.
2017 @d hlp1(A) mp->help_line[0]=(A); }
2018 @d hlp2(A) mp->help_line[1]=(A); hlp1
2019 @d hlp3(A) mp->help_line[2]=(A); hlp2
2020 @d hlp4(A) mp->help_line[3]=(A); hlp3
2021 @d hlp5(A) mp->help_line[4]=(A); hlp4
2022 @d hlp6(A) mp->help_line[5]=(A); hlp5
2023 @d help0 mp->help_ptr=0 /* sometimes there might be no help */
2024 @d help1 { mp->help_ptr=1; hlp1 /* use this with one help line */
2025 @d help2 { mp->help_ptr=2; hlp2 /* use this with two help lines */
2026 @d help3 { mp->help_ptr=3; hlp3 /* use this with three help lines */
2027 @d help4 { mp->help_ptr=4; hlp4 /* use this with four help lines */
2028 @d help5 { mp->help_ptr=5; hlp5 /* use this with five help lines */
2029 @d help6 { mp->help_ptr=6; hlp6 /* use this with six help lines */
2032 char * help_line[6]; /* helps for the next |error| */
2033 unsigned int help_ptr; /* the number of help lines present */
2034 boolean use_err_help; /* should the |err_help| string be shown? */
2035 str_number err_help; /* a string set up by \&{errhelp} */
2036 str_number filename_template; /* a string set up by \&{filenametemplate} */
2038 @ @<Allocate or ...@>=
2039 mp->help_ptr=0; mp->use_err_help=false; mp->err_help=0; mp->filename_template=0;
2041 @ The |jump_out| procedure just cuts across all active procedure levels and
2042 goes to |end_of_MP|. This is the only nonlocal |goto| statement in the
2043 whole program. It is used when there is no recovery from a particular error.
2045 Some \PASCAL\ compilers do not implement non-local |goto| statements.
2046 @^system dependencies@>
2047 In such cases the body of |jump_out| should simply be
2048 `|close_files_and_terminate|;\thinspace' followed by a call on some system
2049 procedure that quietly terminates the program.
2052 void mp_jump_out (MP mp) {
2056 @ Here now is the general |error| routine.
2059 void mp_error (MP mp) { /* completes the job of error reporting */
2060 ASCII_code c; /* what the user types */
2061 integer s1,s2,s3; /* used to save global variables when deleting tokens */
2062 pool_pointer j; /* character position being printed */
2063 if ( mp->history<error_message_issued ) mp->history=error_message_issued;
2064 mp_print_char(mp, '.'); mp_show_context(mp);
2065 if ( mp->interaction==mp_error_stop_mode ) {
2066 @<Get user's advice and |return|@>;
2068 incr(mp->error_count);
2069 if ( mp->error_count==100 ) {
2070 mp_print_nl(mp,"(That makes 100 errors; please try again.)");
2071 @.That makes 100 errors...@>
2072 mp->history=fatal_error_stop; mp_jump_out(mp);
2074 @<Put help message on the transcript file@>;
2076 void mp_warn (MP mp, char *msg) {
2077 int saved_selector = mp->selector;
2078 mp_normalize_selector(mp);
2079 mp_print_nl(mp,"Warning: ");
2081 mp->selector = saved_selector;
2085 void mp_error (MP mp);
2086 void mp_warn (MP mp, char *msg);
2089 @ @<Get user's advice...@>=
2092 mp_clear_for_error_prompt(mp); prompt_input("? ");
2094 if ( mp->last==mp->first ) return;
2095 c=mp->buffer[mp->first];
2096 if ( c>='a' ) c=c+'A'-'a'; /* convert to uppercase */
2097 @<Interpret code |c| and |return| if done@>;
2100 @ It is desirable to provide an `\.E' option here that gives the user
2101 an easy way to return from \MP\ to the system editor, with the offending
2102 line ready to be edited. But such an extension requires some system
2103 wizardry, so the present implementation simply types out the name of the
2105 edited and the relevant line number.
2106 @^system dependencies@>
2109 typedef void (*run_editor_command)(MP, char *, int);
2112 run_editor_command run_editor;
2114 @ @<Option variables@>=
2115 run_editor_command run_editor;
2117 @ @<Allocate or initialize ...@>=
2118 set_callback_option(run_editor);
2120 @ @<Exported function headers@>=
2121 void mp_run_editor (MP mp, char *fname, int fline);
2123 @ @c void mp_run_editor (MP mp, char *fname, int fline) {
2124 mp_print_nl(mp, "You want to edit file ");
2125 @.You want to edit file x@>
2126 mp_print(mp, fname);
2127 mp_print(mp, " at line ");
2128 mp_print_int(mp, fline);
2129 mp->interaction=mp_scroll_mode;
2134 There is a secret `\.D' option available when the debugging routines haven't
2138 @<Interpret code |c| and |return| if done@>=
2140 case '0': case '1': case '2': case '3': case '4':
2141 case '5': case '6': case '7': case '8': case '9':
2142 if ( mp->deletions_allowed ) {
2143 @<Delete |c-"0"| tokens and |continue|@>;
2148 mp_debug_help(mp); continue;
2152 if ( mp->file_ptr>0 ){
2153 (mp->run_editor)(mp,
2154 str(mp->input_stack[mp->file_ptr].name_field),
2159 @<Print the help information and |continue|@>;
2162 @<Introduce new material from the terminal and |return|@>;
2164 case 'Q': case 'R': case 'S':
2165 @<Change the interaction level and |return|@>;
2168 mp->interaction=mp_scroll_mode; mp_jump_out(mp);
2173 @<Print the menu of available options@>
2175 @ @<Print the menu...@>=
2177 mp_print(mp, "Type <return> to proceed, S to scroll future error messages,");
2178 @.Type <return> to proceed...@>
2179 mp_print_nl(mp, "R to run without stopping, Q to run quietly,");
2180 mp_print_nl(mp, "I to insert something, ");
2181 if ( mp->file_ptr>0 )
2182 mp_print(mp, "E to edit your file,");
2183 if ( mp->deletions_allowed )
2184 mp_print_nl(mp, "1 or ... or 9 to ignore the next 1 to 9 tokens of input,");
2185 mp_print_nl(mp, "H for help, X to quit.");
2188 @ Here the author of \MP\ apologizes for making use of the numerical
2189 relation between |"Q"|, |"R"|, |"S"|, and the desired interaction settings
2190 |mp_batch_mode|, |mp_nonstop_mode|, |mp_scroll_mode|.
2191 @^Knuth, Donald Ervin@>
2193 @<Change the interaction...@>=
2195 mp->error_count=0; mp->interaction=mp_batch_mode+c-'Q';
2196 mp_print(mp, "OK, entering ");
2198 case 'Q': mp_print(mp, "batchmode"); decr(mp->selector); break;
2199 case 'R': mp_print(mp, "nonstopmode"); break;
2200 case 'S': mp_print(mp, "scrollmode"); break;
2201 } /* there are no other cases */
2202 mp_print(mp, "..."); mp_print_ln(mp); update_terminal; return;
2205 @ When the following code is executed, |buffer[(first+1)..(last-1)]| may
2206 contain the material inserted by the user; otherwise another prompt will
2207 be given. In order to understand this part of the program fully, you need
2208 to be familiar with \MP's input stacks.
2210 @<Introduce new material...@>=
2212 mp_begin_file_reading(mp); /* enter a new syntactic level for terminal input */
2213 if ( mp->last>mp->first+1 ) {
2214 loc=mp->first+1; mp->buffer[mp->first]=' ';
2216 prompt_input("insert>"); loc=mp->first;
2219 mp->first=mp->last+1; mp->cur_input.limit_field=mp->last; return;
2222 @ We allow deletion of up to 99 tokens at a time.
2224 @<Delete |c-"0"| tokens...@>=
2226 s1=mp->cur_cmd; s2=mp->cur_mod; s3=mp->cur_sym; mp->OK_to_interrupt=false;
2227 if ( (mp->last>mp->first+1) && (mp->buffer[mp->first+1]>='0')&&(mp->buffer[mp->first+1]<='9') )
2228 c=c*10+mp->buffer[mp->first+1]-'0'*11;
2232 mp_get_next(mp); /* one-level recursive call of |error| is possible */
2233 @<Decrease the string reference count, if the current token is a string@>;
2236 mp->cur_cmd=s1; mp->cur_mod=s2; mp->cur_sym=s3; mp->OK_to_interrupt=true;
2237 help2("I have just deleted some text, as you asked.")
2238 ("You can now delete more, or insert, or whatever.");
2239 mp_show_context(mp);
2243 @ @<Print the help info...@>=
2245 if ( mp->use_err_help ) {
2246 @<Print the string |err_help|, possibly on several lines@>;
2247 mp->use_err_help=false;
2249 if ( mp->help_ptr==0 ) {
2250 help2("Sorry, I don't know how to help in this situation.")
2251 ("Maybe you should try asking a human?");
2254 decr(mp->help_ptr); mp_print(mp, mp->help_line[mp->help_ptr]); mp_print_ln(mp);
2255 } while (mp->help_ptr!=0);
2257 help4("Sorry, I already gave what help I could...")
2258 ("Maybe you should try asking a human?")
2259 ("An error might have occurred before I noticed any problems.")
2260 ("``If all else fails, read the instructions.''");
2264 @ @<Print the string |err_help|, possibly on several lines@>=
2265 j=mp->str_start[mp->err_help];
2266 while ( j<str_stop(mp->err_help) ) {
2267 if ( mp->str_pool[j]!='%' ) mp_print_str(mp, mp->str_pool[j]);
2268 else if ( j+1==str_stop(mp->err_help) ) mp_print_ln(mp);
2269 else if ( mp->str_pool[j+1]!='%' ) mp_print_ln(mp);
2270 else { incr(j); mp_print_char(mp, '%'); };
2274 @ @<Put help message on the transcript file@>=
2275 if ( mp->interaction>mp_batch_mode ) decr(mp->selector); /* avoid terminal output */
2276 if ( mp->use_err_help ) {
2277 mp_print_nl(mp, "");
2278 @<Print the string |err_help|, possibly on several lines@>;
2280 while ( mp->help_ptr>0 ){
2281 decr(mp->help_ptr); mp_print_nl(mp, mp->help_line[mp->help_ptr]);
2285 if ( mp->interaction>mp_batch_mode ) incr(mp->selector); /* re-enable terminal output */
2288 @ In anomalous cases, the print selector might be in an unknown state;
2289 the following subroutine is called to fix things just enough to keep
2290 running a bit longer.
2293 void mp_normalize_selector (MP mp) {
2294 if ( mp->log_opened ) mp->selector=term_and_log;
2295 else mp->selector=term_only;
2296 if ( mp->job_name==NULL ) mp_open_log_file(mp);
2297 if ( mp->interaction==mp_batch_mode ) decr(mp->selector);
2300 @ The following procedure prints \MP's last words before dying.
2302 @d succumb { if ( mp->interaction==mp_error_stop_mode )
2303 mp->interaction=mp_scroll_mode; /* no more interaction */
2304 if ( mp->log_opened ) mp_error(mp);
2305 /* if ( mp->interaction>mp_batch_mode ) mp_debug_help(mp); */
2306 mp->history=fatal_error_stop; mp_jump_out(mp); /* irrecoverable error */
2310 void mp_fatal_error (MP mp, char *s) { /* prints |s|, and that's it */
2311 mp_normalize_selector(mp);
2312 print_err("Emergency stop"); help1(s); succumb;
2317 void mp_fatal_error (MP mp, char *s);
2320 @ Here is the most dreaded error message.
2323 void mp_overflow (MP mp, char *s, integer n) { /* stop due to finiteness */
2324 mp_normalize_selector(mp);
2325 print_err("MetaPost capacity exceeded, sorry [");
2326 @.MetaPost capacity exceeded ...@>
2327 mp_print(mp, s); mp_print_char(mp, '='); mp_print_int(mp, n); mp_print_char(mp, ']');
2328 help2("If you really absolutely need more capacity,")
2329 ("you can ask a wizard to enlarge me.");
2334 void mp_overflow (MP mp, char *s, integer n);
2336 @ The program might sometime run completely amok, at which point there is
2337 no choice but to stop. If no previous error has been detected, that's bad
2338 news; a message is printed that is really intended for the \MP\
2339 maintenance person instead of the user (unless the user has been
2340 particularly diabolical). The index entries for `this can't happen' may
2341 help to pinpoint the problem.
2345 void mp_confusion (MP mp,char *s);
2347 @ @<Error hand...@>=
2348 void mp_confusion (MP mp,char *s) {
2349 /* consistency check violated; |s| tells where */
2350 mp_normalize_selector(mp);
2351 if ( mp->history<error_message_issued ) {
2352 print_err("This can't happen ("); mp_print(mp, s); mp_print_char(mp, ')');
2353 @.This can't happen@>
2354 help1("I'm broken. Please show this to someone who can fix can fix");
2356 print_err("I can\'t go on meeting you like this");
2357 @.I can't go on...@>
2358 help2("One of your faux pas seems to have wounded me deeply...")
2359 ("in fact, I'm barely conscious. Please fix it and try again.");
2364 @ Users occasionally want to interrupt \MP\ while it's running.
2365 If the \PASCAL\ runtime system allows this, one can implement
2366 a routine that sets the global variable |interrupt| to some nonzero value
2367 when such an interrupt is signaled. Otherwise there is probably at least
2368 a way to make |interrupt| nonzero using the \PASCAL\ debugger.
2369 @^system dependencies@>
2372 @d check_interrupt { if ( mp->interrupt!=0 )
2373 mp_pause_for_instructions(mp); }
2376 integer interrupt; /* should \MP\ pause for instructions? */
2377 boolean OK_to_interrupt; /* should interrupts be observed? */
2379 @ @<Allocate or ...@>=
2380 mp->interrupt=0; mp->OK_to_interrupt=true;
2382 @ When an interrupt has been detected, the program goes into its
2383 highest interaction level and lets the user have the full flexibility of
2384 the |error| routine. \MP\ checks for interrupts only at times when it is
2388 void mp_pause_for_instructions (MP mp) {
2389 if ( mp->OK_to_interrupt ) {
2390 mp->interaction=mp_error_stop_mode;
2391 if ( (mp->selector==log_only)||(mp->selector==no_print) )
2393 print_err("Interruption");
2396 ("Try to insert some instructions for me (e.g.,`I show x'),")
2397 ("unless you just want to quit by typing `X'.");
2398 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
2403 @ Many of \MP's error messages state that a missing token has been
2404 inserted behind the scenes. We can save string space and program space
2405 by putting this common code into a subroutine.
2408 void mp_missing_err (MP mp, char *s) {
2409 print_err("Missing `"); mp_print(mp, s); mp_print(mp, "' has been inserted");
2410 @.Missing...inserted@>
2413 @* \[7] Arithmetic with scaled numbers.
2414 The principal computations performed by \MP\ are done entirely in terms of
2415 integers less than $2^{31}$ in magnitude; thus, the arithmetic specified in this
2416 program can be carried out in exactly the same way on a wide variety of
2417 computers, including some small ones.
2420 But \PASCAL\ does not define the |div|
2421 operation in the case of negative dividends; for example, the result of
2422 |(-2*n-1) div 2| is |-(n+1)| on some computers and |-n| on others.
2423 There are two principal types of arithmetic: ``translation-preserving,''
2424 in which the identity |(a+q*b)div b=(a div b)+q| is valid; and
2425 ``negation-preserving,'' in which |(-a)div b=-(a div b)|. This leads to
2426 two \MP s, which can produce different results, although the differences
2427 should be negligible when the language is being used properly.
2428 The \TeX\ processor has been defined carefully so that both varieties
2429 of arithmetic will produce identical output, but it would be too
2430 inefficient to constrain \MP\ in a similar way.
2432 @d el_gordo 017777777777 /* $2^{31}-1$, the largest value that \MP\ likes */
2434 @ One of \MP's most common operations is the calculation of
2435 $\lfloor{a+b\over2}\rfloor$,
2436 the midpoint of two given integers |a| and~|b|. The only decent way to do
2437 this in \PASCAL\ is to write `|(a+b) div 2|'; but on most machines it is
2438 far more efficient to calculate `|(a+b)| right shifted one bit'.
2440 Therefore the midpoint operation will always be denoted by `|half(a+b)|'
2441 in this program. If \MP\ is being implemented with languages that permit
2442 binary shifting, the |half| macro should be changed to make this operation
2443 as efficient as possible. Since some languages have shift operators that can
2444 only be trusted to work on positive numbers, there is also a macro |halfp|
2445 that is used only when the quantity being halved is known to be positive
2448 @d half(A) ((A)) / 2
2449 @d halfp(A) ((A)) / 2
2451 @ A single computation might use several subroutine calls, and it is
2452 desirable to avoid producing multiple error messages in case of arithmetic
2453 overflow. So the routines below set the global variable |arith_error| to |true|
2454 instead of reporting errors directly to the user.
2457 boolean arith_error; /* has arithmetic overflow occurred recently? */
2459 @ @<Allocate or ...@>=
2460 mp->arith_error=false;
2462 @ At crucial points the program will say |check_arith|, to test if
2463 an arithmetic error has been detected.
2465 @d check_arith { if ( mp->arith_error ) mp_clear_arith(mp); }
2468 void mp_clear_arith (MP mp) {
2469 print_err("Arithmetic overflow");
2470 @.Arithmetic overflow@>
2471 help4("Uh, oh. A little while ago one of the quantities that I was")
2472 ("computing got too large, so I'm afraid your answers will be")
2473 ("somewhat askew. You'll probably have to adopt different")
2474 ("tactics next time. But I shall try to carry on anyway.");
2476 mp->arith_error=false;
2479 @ Addition is not always checked to make sure that it doesn't overflow,
2480 but in places where overflow isn't too unlikely the |slow_add| routine
2483 @c integer mp_slow_add (MP mp,integer x, integer y) {
2485 if ( y<=el_gordo-x ) {
2488 mp->arith_error=true;
2491 } else if ( -y<=el_gordo+x ) {
2494 mp->arith_error=true;
2499 @ Fixed-point arithmetic is done on {\sl scaled integers\/} that are multiples
2500 of $2^{-16}$. In other words, a binary point is assumed to be sixteen bit
2501 positions from the right end of a binary computer word.
2503 @d quarter_unit 040000 /* $2^{14}$, represents 0.250000 */
2504 @d half_unit 0100000 /* $2^{15}$, represents 0.50000 */
2505 @d three_quarter_unit 0140000 /* $3\cdot2^{14}$, represents 0.75000 */
2506 @d unity 0200000 /* $2^{16}$, represents 1.00000 */
2507 @d two 0400000 /* $2^{17}$, represents 2.00000 */
2508 @d three 0600000 /* $2^{17}+2^{16}$, represents 3.00000 */
2511 typedef integer scaled; /* this type is used for scaled integers */
2512 typedef unsigned char small_number; /* this type is self-explanatory */
2514 @ The following function is used to create a scaled integer from a given decimal
2515 fraction $(.d_0d_1\ldots d_{k-1})$, where |0<=k<=17|. The digit $d_i$ is
2516 given in |dig[i]|, and the calculation produces a correctly rounded result.
2519 scaled mp_round_decimals (MP mp,small_number k) {
2520 /* converts a decimal fraction */
2521 integer a = 0; /* the accumulator */
2523 a=(a+mp->dig[k]*two) / 10;
2528 @ Conversely, here is a procedure analogous to |print_int|. If the output
2529 of this procedure is subsequently read by \MP\ and converted by the
2530 |round_decimals| routine above, it turns out that the original value will
2531 be reproduced exactly. A decimal point is printed only if the value is
2532 not an integer. If there is more than one way to print the result with
2533 the optimum number of digits following the decimal point, the closest
2534 possible value is given.
2536 The invariant relation in the \&{repeat} loop is that a sequence of
2537 decimal digits yet to be printed will yield the original number if and only if
2538 they form a fraction~$f$ in the range $s-\delta\L10\cdot2^{16}f<s$.
2539 We can stop if and only if $f=0$ satisfies this condition; the loop will
2540 terminate before $s$ can possibly become zero.
2542 @<Basic printing...@>=
2543 void mp_print_scaled (MP mp,scaled s) { /* prints scaled real, rounded to five digits */
2544 scaled delta; /* amount of allowable inaccuracy */
2546 mp_print_char(mp, '-');
2547 negate(s); /* print the sign, if negative */
2549 mp_print_int(mp, s / unity); /* print the integer part */
2553 mp_print_char(mp, '.');
2556 s=s+0100000-(delta / 2); /* round the final digit */
2557 mp_print_char(mp, '0'+(s / unity));
2564 @ We often want to print two scaled quantities in parentheses,
2565 separated by a comma.
2567 @<Basic printing...@>=
2568 void mp_print_two (MP mp,scaled x, scaled y) { /* prints `|(x,y)|' */
2569 mp_print_char(mp, '(');
2570 mp_print_scaled(mp, x);
2571 mp_print_char(mp, ',');
2572 mp_print_scaled(mp, y);
2573 mp_print_char(mp, ')');
2576 @ The |scaled| quantities in \MP\ programs are generally supposed to be
2577 less than $2^{12}$ in absolute value, so \MP\ does much of its internal
2578 arithmetic with 28~significant bits of precision. A |fraction| denotes
2579 a scaled integer whose binary point is assumed to be 28 bit positions
2582 @d fraction_half 01000000000 /* $2^{27}$, represents 0.50000000 */
2583 @d fraction_one 02000000000 /* $2^{28}$, represents 1.00000000 */
2584 @d fraction_two 04000000000 /* $2^{29}$, represents 2.00000000 */
2585 @d fraction_three 06000000000 /* $3\cdot2^{28}$, represents 3.00000000 */
2586 @d fraction_four 010000000000 /* $2^{30}$, represents 4.00000000 */
2589 typedef integer fraction; /* this type is used for scaled fractions */
2591 @ In fact, the two sorts of scaling discussed above aren't quite
2592 sufficient; \MP\ has yet another, used internally to keep track of angles
2593 in units of $2^{-20}$ degrees.
2595 @d forty_five_deg 0264000000 /* $45\cdot2^{20}$, represents $45^\circ$ */
2596 @d ninety_deg 0550000000 /* $90\cdot2^{20}$, represents $90^\circ$ */
2597 @d one_eighty_deg 01320000000 /* $180\cdot2^{20}$, represents $180^\circ$ */
2598 @d three_sixty_deg 02640000000 /* $360\cdot2^{20}$, represents $360^\circ$ */
2601 typedef integer angle; /* this type is used for scaled angles */
2603 @ The |make_fraction| routine produces the |fraction| equivalent of
2604 |p/q|, given integers |p| and~|q|; it computes the integer
2605 $f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are
2606 positive. If |p| and |q| are both of the same scaled type |t|,
2607 the ``type relation'' |make_fraction(t,t)=fraction| is valid;
2608 and it's also possible to use the subroutine ``backwards,'' using
2609 the relation |make_fraction(t,fraction)=t| between scaled types.
2611 If the result would have magnitude $2^{31}$ or more, |make_fraction|
2612 sets |arith_error:=true|. Most of \MP's internal computations have
2613 been designed to avoid this sort of error.
2615 If this subroutine were programmed in assembly language on a typical
2616 machine, we could simply compute |(@t$2^{28}$@>*p)div q|, since a
2617 double-precision product can often be input to a fixed-point division
2618 instruction. But when we are restricted to \PASCAL\ arithmetic it
2619 is necessary either to resort to multiple-precision maneuvering
2620 or to use a simple but slow iteration. The multiple-precision technique
2621 would be about three times faster than the code adopted here, but it
2622 would be comparatively long and tricky, involving about sixteen
2623 additional multiplications and divisions.
2625 This operation is part of \MP's ``inner loop''; indeed, it will
2626 consume nearly 10\pct! of the running time (exclusive of input and output)
2627 if the code below is left unchanged. A machine-dependent recoding
2628 will therefore make \MP\ run faster. The present implementation
2629 is highly portable, but slow; it avoids multiplication and division
2630 except in the initial stage. System wizards should be careful to
2631 replace it with a routine that is guaranteed to produce identical
2632 results in all cases.
2633 @^system dependencies@>
2635 As noted below, a few more routines should also be replaced by machine-dependent
2636 code, for efficiency. But when a procedure is not part of the ``inner loop,''
2637 such changes aren't advisable; simplicity and robustness are
2638 preferable to trickery, unless the cost is too high.
2642 fraction mp_make_fraction (MP mp,integer p, integer q);
2643 integer mp_take_scaled (MP mp,integer q, scaled f) ;
2645 @ If FIXPT is not defined, we need these preprocessor values
2647 @d ELGORDO 0x7fffffff
2648 @d TWEXP31 2147483648.0
2649 @d TWEXP28 268435456.0
2651 @d TWEXP_16 (1.0/65536.0)
2652 @d TWEXP_28 (1.0/268435456.0)
2656 fraction mp_make_fraction (MP mp,integer p, integer q) {
2658 integer f; /* the fraction bits, with a leading 1 bit */
2659 integer n; /* the integer part of $\vert p/q\vert$ */
2660 integer be_careful; /* disables certain compiler optimizations */
2661 boolean negative = false; /* should the result be negated? */
2663 negate(p); negative=true;
2667 if ( q==0 ) mp_confusion(mp, '/');
2669 @:this can't happen /}{\quad \./@>
2670 negate(q); negative = ! negative;
2674 mp->arith_error=true;
2675 return ( negative ? -el_gordo : el_gordo);
2677 n=(n-1)*fraction_one;
2678 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>;
2679 return (negative ? (-(f+n)) : (f+n));
2685 if (q==0) mp_confusion(mp,'/');
2687 d = TWEXP28 * (double)p /(double)q;
2690 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
2692 if (d==i && ( ((q>0 ? -q : q)&077777)
2693 * (((i&037777)<<1)-1) & 04000)!=0) --i;
2696 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
2698 if (d==i && ( ((q>0 ? q : -q)&077777)
2699 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
2705 @ The |repeat| loop here preserves the following invariant relations
2706 between |f|, |p|, and~|q|:
2707 (i)~|0<=p<q|; (ii)~$fq+p=2^k(q+p_0)$, where $k$ is an integer and
2708 $p_0$ is the original value of~$p$.
2710 Notice that the computation specifies
2711 |(p-q)+p| instead of |(p+p)-q|, because the latter could overflow.
2712 Let us hope that optimizing compilers do not miss this point; a
2713 special variable |be_careful| is used to emphasize the necessary
2714 order of computation. Optimizing compilers should keep |be_careful|
2715 in a register, not store it in memory.
2718 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>=
2722 be_careful=p-q; p=be_careful+p;
2728 } while (f<fraction_one);
2730 if ( be_careful+p>=0 ) incr(f);
2733 @ The dual of |make_fraction| is |take_fraction|, which multiplies a
2734 given integer~|q| by a fraction~|f|. When the operands are positive, it
2735 computes $p=\lfloor qf/2^{28}+{1\over2}\rfloor$, a symmetric function
2738 This routine is even more ``inner loopy'' than |make_fraction|;
2739 the present implementation consumes almost 20\pct! of \MP's computation
2740 time during typical jobs, so a machine-language substitute is advisable.
2741 @^inner loop@> @^system dependencies@>
2744 integer mp_take_fraction (MP mp,integer q, fraction f) ;
2748 integer mp_take_fraction (MP mp,integer q, fraction f) {
2749 integer p; /* the fraction so far */
2750 boolean negative; /* should the result be negated? */
2751 integer n; /* additional multiple of $q$ */
2752 integer be_careful; /* disables certain compiler optimizations */
2753 @<Reduce to the case that |f>=0| and |q>0|@>;
2754 if ( f<fraction_one ) {
2757 n=f / fraction_one; f=f % fraction_one;
2758 if ( q<=el_gordo / n ) {
2761 mp->arith_error=true; n=el_gordo;
2765 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>;
2766 be_careful=n-el_gordo;
2767 if ( be_careful+p>0 ){
2768 mp->arith_error=true; n=el_gordo-p;
2775 integer mp_take_fraction (MP mp,integer p, fraction q) {
2778 d = (double)p * (double)q * TWEXP_28;
2782 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2783 mp->arith_error = true;
2787 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2791 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2792 mp->arith_error = true;
2796 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2802 @ @<Reduce to the case that |f>=0| and |q>0|@>=
2806 negate( f); negative=true;
2809 negate(q); negative=! negative;
2812 @ The invariant relations in this case are (i)~$\lfloor(qf+p)/2^k\rfloor
2813 =\lfloor qf_0/2^{28}+{1\over2}\rfloor$, where $k$ is an integer and
2814 $f_0$ is the original value of~$f$; (ii)~$2^k\L f<2^{k+1}$.
2817 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>=
2818 p=fraction_half; /* that's $2^{27}$; the invariants hold now with $k=28$ */
2819 if ( q<fraction_four ) {
2821 if ( odd(f) ) p=halfp(p+q); else p=halfp(p);
2826 if ( odd(f) ) p=p+halfp(q-p); else p=halfp(p);
2832 @ When we want to multiply something by a |scaled| quantity, we use a scheme
2833 analogous to |take_fraction| but with a different scaling.
2834 Given positive operands, |take_scaled|
2835 computes the quantity $p=\lfloor qf/2^{16}+{1\over2}\rfloor$.
2837 Once again it is a good idea to use a machine-language replacement if
2838 possible; otherwise |take_scaled| will use more than 2\pct! of the running time
2839 when the Computer Modern fonts are being generated.
2844 integer mp_take_scaled (MP mp,integer q, scaled f) {
2845 integer p; /* the fraction so far */
2846 boolean negative; /* should the result be negated? */
2847 integer n; /* additional multiple of $q$ */
2848 integer be_careful; /* disables certain compiler optimizations */
2849 @<Reduce to the case that |f>=0| and |q>0|@>;
2853 n=f / unity; f=f % unity;
2854 if ( q<=el_gordo / n ) {
2857 mp->arith_error=true; n=el_gordo;
2861 @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>;
2862 be_careful=n-el_gordo;
2863 if ( be_careful+p>0 ) {
2864 mp->arith_error=true; n=el_gordo-p;
2866 return ( negative ?(-(n+p)) :(n+p));
2868 integer mp_take_scaled (MP mp,integer p, scaled q) {
2871 d = (double)p * (double)q * TWEXP_16;
2875 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2876 mp->arith_error = true;
2880 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2884 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2885 mp->arith_error = true;
2889 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2895 @ @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>=
2896 p=half_unit; /* that's $2^{15}$; the invariants hold now with $k=16$ */
2898 if ( q<fraction_four ) {
2900 p = (odd(f) ? halfp(p+q) : halfp(p));
2905 p = (odd(f) ? p+halfp(q-p) : halfp(p));
2910 @ For completeness, there's also |make_scaled|, which computes a
2911 quotient as a |scaled| number instead of as a |fraction|.
2912 In other words, the result is $\lfloor2^{16}p/q+{1\over2}\rfloor$, if the
2913 operands are positive. \ (This procedure is not used especially often,
2914 so it is not part of \MP's inner loop.)
2917 scaled mp_make_scaled (MP mp,integer p, integer q) {
2919 integer f; /* the fraction bits, with a leading 1 bit */
2920 integer n; /* the integer part of $\vert p/q\vert$ */
2921 boolean negative; /* should the result be negated? */
2922 integer be_careful; /* disables certain compiler optimizations */
2923 if ( p>=0 ) negative=false;
2924 else { negate(p); negative=true; };
2927 if ( q==0 ) mp_confusion(mp, "/");
2928 @:this can't happen /}{\quad \./@>
2930 negate(q); negative=! negative;
2934 mp->arith_error=true;
2935 return (negative ? (-el_gordo) : el_gordo);
2938 @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>;
2939 return ( negative ? (-(f+n)) :(f+n));
2945 if (q==0) mp_confusion(mp,"/");
2947 d = TWEXP16 * (double)p /(double)q;
2950 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
2952 if (d==i && ( ((q>0 ? -q : q)&077777)
2953 * (((i&037777)<<1)-1) & 04000)!=0) --i;
2956 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
2958 if (d==i && ( ((q>0 ? q : -q)&077777)
2959 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
2965 @ @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>=
2968 be_careful=p-q; p=be_careful+p;
2969 if ( p>=0 ) f=f+f+1;
2970 else { f+=f; p=p+q; };
2973 if ( be_careful+p>=0 ) incr(f)
2975 @ Here is a typical example of how the routines above can be used.
2976 It computes the function
2977 $${1\over3\tau}f(\theta,\phi)=
2978 {\tau^{-1}\bigl(2+\sqrt2\,(\sin\theta-{1\over16}\sin\phi)
2979 (\sin\phi-{1\over16}\sin\theta)(\cos\theta-\cos\phi)\bigr)\over
2980 3\,\bigl(1+{1\over2}(\sqrt5-1)\cos\theta+{1\over2}(3-\sqrt5\,)\cos\phi\bigr)},$$
2981 where $\tau$ is a |scaled| ``tension'' parameter. This is \MP's magic
2982 fudge factor for placing the first control point of a curve that starts
2983 at an angle $\theta$ and ends at an angle $\phi$ from the straight path.
2984 (Actually, if the stated quantity exceeds 4, \MP\ reduces it to~4.)
2986 The trigonometric quantity to be multiplied by $\sqrt2$ is less than $\sqrt2$.
2987 (It's a sum of eight terms whose absolute values can be bounded using
2988 relations such as $\sin\theta\cos\theta\L{1\over2}$.) Thus the numerator
2989 is positive; and since the tension $\tau$ is constrained to be at least
2990 $3\over4$, the numerator is less than $16\over3$. The denominator is
2991 nonnegative and at most~6. Hence the fixed-point calculations below
2992 are guaranteed to stay within the bounds of a 32-bit computer word.
2994 The angles $\theta$ and $\phi$ are given implicitly in terms of |fraction|
2995 arguments |st|, |ct|, |sf|, and |cf|, representing $\sin\theta$, $\cos\theta$,
2996 $\sin\phi$, and $\cos\phi$, respectively.
2999 fraction mp_velocity (MP mp,fraction st, fraction ct, fraction sf,
3000 fraction cf, scaled t) {
3001 integer acc,num,denom; /* registers for intermediate calculations */
3002 acc=mp_take_fraction(mp, st-(sf / 16), sf-(st / 16));
3003 acc=mp_take_fraction(mp, acc,ct-cf);
3004 num=fraction_two+mp_take_fraction(mp, acc,379625062);
3005 /* $2^{28}\sqrt2\approx379625062.497$ */
3006 denom=fraction_three+mp_take_fraction(mp, ct,497706707)+mp_take_fraction(mp, cf,307599661);
3007 /* $3\cdot2^{27}\cdot(\sqrt5-1)\approx497706706.78$ and
3008 $3\cdot2^{27}\cdot(3-\sqrt5\,)\approx307599661.22$ */
3009 if ( t!=unity ) num=mp_make_scaled(mp, num,t);
3010 /* |make_scaled(fraction,scaled)=fraction| */
3011 if ( num / 4>=denom )
3012 return fraction_four;
3014 return mp_make_fraction(mp, num, denom);
3017 @ The following somewhat different subroutine tests rigorously if $ab$ is
3018 greater than, equal to, or less than~$cd$,
3019 given integers $(a,b,c,d)$. In most cases a quick decision is reached.
3020 The result is $+1$, 0, or~$-1$ in the three respective cases.
3022 @d mp_ab_vs_cd(M,A,B,C,D) mp_do_ab_vs_cd(A,B,C,D)
3025 integer mp_do_ab_vs_cd (integer a,integer b, integer c, integer d) {
3026 integer q,r; /* temporary registers */
3027 @<Reduce to the case that |a,c>=0|, |b,d>0|@>;
3029 q = a / d; r = c / b;
3031 return ( q>r ? 1 : -1);
3032 q = a % d; r = c % b;
3035 if ( q==0 ) return -1;
3037 } /* now |a>d>0| and |c>b>0| */
3040 @ @<Reduce to the case that |a...@>=
3041 if ( a<0 ) { negate(a); negate(b); };
3042 if ( c<0 ) { negate(c); negate(d); };
3045 if ( (a==0||b==0)&&(c==0||d==0) ) return 0;
3049 return ( a==0 ? 0 : -1);
3050 q=a; a=c; c=q; q=-b; b=-d; d=q;
3051 } else if ( b<=0 ) {
3052 if ( b<0 ) if ( a>0 ) return -1;
3053 return (c==0 ? 0 : -1);
3056 @ We conclude this set of elementary routines with some simple rounding
3057 and truncation operations that are coded in a machine-independent fashion.
3058 The routines are slightly complicated because we want them to work
3059 without overflow whenever $-2^{31}\L x<2^{31}$.
3062 #define mp_floor_scaled(M,i) ((i)&(-65536))
3063 #define mp_round_unscaled(M,i) (((i>>15)+1)>>1)
3064 #define mp_round_fraction(M,i) (((i>>11)+1)>>1)
3067 @* \[8] Algebraic and transcendental functions.
3068 \MP\ computes all of the necessary special functions from scratch, without
3069 relying on |real| arithmetic or system subroutines for sines, cosines, etc.
3071 @ To get the square root of a |scaled| number |x|, we want to calculate
3072 $s=\lfloor 2^8\!\sqrt x +{1\over2}\rfloor$. If $x>0$, this is the unique
3073 integer such that $2^{16}x-s\L s^2<2^{16}x+s$. The following subroutine
3074 determines $s$ by an iterative method that maintains the invariant
3075 relations $x=2^{46-2k}x_0\bmod 2^{30}$, $0<y=\lfloor 2^{16-2k}x_0\rfloor
3076 -s^2+s\L q=2s$, where $x_0$ is the initial value of $x$. The value of~$y$
3077 might, however, be zero at the start of the first iteration.
3080 scaled mp_square_rt (MP mp,scaled x) ;
3083 scaled mp_square_rt (MP mp,scaled x) {
3084 small_number k; /* iteration control counter */
3085 integer y,q; /* registers for intermediate calculations */
3087 @<Handle square root of zero or negative argument@>;
3090 while ( x<fraction_two ) { /* i.e., |while x<@t$2^{29}$@>|\unskip */
3093 if ( x<fraction_four ) y=0;
3094 else { x=x-fraction_four; y=1; };
3096 @<Decrease |k| by 1, maintaining the invariant
3097 relations between |x|, |y|, and~|q|@>;
3103 @ @<Handle square root of zero...@>=
3106 print_err("Square root of ");
3107 @.Square root...replaced by 0@>
3108 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3109 help2("Since I don't take square roots of negative numbers,")
3110 ("I'm zeroing this one. Proceed, with fingers crossed.");
3116 @ @<Decrease |k| by 1, maintaining...@>=
3118 if ( x>=fraction_four ) { /* note that |fraction_four=@t$2^{30}$@>| */
3119 x=x-fraction_four; incr(y);
3121 x+=x; y=y+y-q; q+=q;
3122 if ( x>=fraction_four ) { x=x-fraction_four; incr(y); };
3123 if ( y>q ){ y=y-q; q=q+2; }
3124 else if ( y<=0 ) { q=q-2; y=y+q; };
3127 @ Pythagorean addition $\psqrt{a^2+b^2}$ is implemented by an elegant
3128 iterative scheme due to Cleve Moler and Donald Morrison [{\sl IBM Journal
3129 @^Moler, Cleve Barry@>
3130 @^Morrison, Donald Ross@>
3131 of Research and Development\/ \bf27} (1983), 577--581]. It modifies |a| and~|b|
3132 in such a way that their Pythagorean sum remains invariant, while the
3133 smaller argument decreases.
3136 integer mp_pyth_add (MP mp,integer a, integer b) {
3137 fraction r; /* register used to transform |a| and |b| */
3138 boolean big; /* is the result dangerously near $2^{31}$? */
3140 if ( a<b ) { r=b; b=a; a=r; }; /* now |0<=b<=a| */
3142 if ( a<fraction_two ) {
3145 a=a / 4; b=b / 4; big=true;
3146 }; /* we reduced the precision to avoid arithmetic overflow */
3147 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>;
3149 if ( a<fraction_two ) {
3152 mp->arith_error=true; a=el_gordo;
3159 @ The key idea here is to reflect the vector $(a,b)$ about the
3160 line through $(a,b/2)$.
3162 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>=
3164 r=mp_make_fraction(mp, b,a);
3165 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3167 r=mp_make_fraction(mp, r,fraction_four+r);
3168 a=a+mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3172 @ Here is a similar algorithm for $\psqrt{a^2-b^2}$.
3173 It converges slowly when $b$ is near $a$, but otherwise it works fine.
3176 integer mp_pyth_sub (MP mp,integer a, integer b) {
3177 fraction r; /* register used to transform |a| and |b| */
3178 boolean big; /* is the input dangerously near $2^{31}$? */
3181 @<Handle erroneous |pyth_sub| and set |a:=0|@>;
3183 if ( a<fraction_four ) {
3186 a=halfp(a); b=halfp(b); big=true;
3188 @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>;
3194 @ @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>=
3196 r=mp_make_fraction(mp, b,a);
3197 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3199 r=mp_make_fraction(mp, r,fraction_four-r);
3200 a=a-mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3203 @ @<Handle erroneous |pyth_sub| and set |a:=0|@>=
3206 print_err("Pythagorean subtraction "); mp_print_scaled(mp, a);
3207 mp_print(mp, "+-+"); mp_print_scaled(mp, b);
3208 mp_print(mp, " has been replaced by 0");
3210 help2("Since I don't take square roots of negative numbers,")
3211 ("I'm zeroing this one. Proceed, with fingers crossed.");
3217 @ The subroutines for logarithm and exponential involve two tables.
3218 The first is simple: |two_to_the[k]| equals $2^k$. The second involves
3219 a bit more calculation, which the author claims to have done correctly:
3220 |spec_log[k]| is $2^{27}$ times $\ln\bigl(1/(1-2^{-k})\bigr)=
3221 2^{-k}+{1\over2}2^{-2k}+{1\over3}2^{-3k}+\cdots\,$, rounded to the
3224 @d two_to_the(A) (1<<(A))
3227 static const integer spec_log[29] = { 0, /* special logarithms */
3228 93032640, 38612034, 17922280, 8662214, 4261238, 2113709,
3229 1052693, 525315, 262400, 131136, 65552, 32772, 16385,
3230 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1 };
3232 @ @<Local variables for initialization@>=
3233 integer k; /* all-purpose loop index */
3236 @ Here is the routine that calculates $2^8$ times the natural logarithm
3237 of a |scaled| quantity; it is an integer approximation to $2^{24}\ln(x/2^{16})$,
3238 when |x| is a given positive integer.
3240 The method is based on exercise 1.2.2--25 in {\sl The Art of Computer
3241 Programming\/}: During the main iteration we have $1\L 2^{-30}x<1/(1-2^{1-k})$,
3242 and the logarithm of $2^{30}x$ remains to be added to an accumulator
3243 register called~$y$. Three auxiliary bits of accuracy are retained in~$y$
3244 during the calculation, and sixteen auxiliary bits to extend |y| are
3245 kept in~|z| during the initial argument reduction. (We add
3246 $100\cdot2^{16}=6553600$ to~|z| and subtract 100 from~|y| so that |z| will
3247 not become negative; also, the actual amount subtracted from~|y| is~96,
3248 not~100, because we want to add~4 for rounding before the final division by~8.)
3251 scaled mp_m_log (MP mp,scaled x) {
3252 integer y,z; /* auxiliary registers */
3253 integer k; /* iteration counter */
3255 @<Handle non-positive logarithm@>;
3257 y=1302456956+4-100; /* $14\times2^{27}\ln2\approx1302456956.421063$ */
3258 z=27595+6553600; /* and $2^{16}\times .421063\approx 27595$ */
3259 while ( x<fraction_four ) {
3260 x+=x; y=y-93032639; z=z-48782;
3261 } /* $2^{27}\ln2\approx 93032639.74436163$ and $2^{16}\times.74436163\approx 48782$ */
3262 y=y+(z / unity); k=2;
3263 while ( x>fraction_four+4 ) {
3264 @<Increase |k| until |x| can be multiplied by a
3265 factor of $2^{-k}$, and adjust $y$ accordingly@>;
3271 @ @<Increase |k| until |x| can...@>=
3273 z=((x-1) / two_to_the(k))+1; /* $z=\lceil x/2^k\rceil$ */
3274 while ( x<fraction_four+z ) { z=halfp(z+1); k=k+1; };
3275 y=y+spec_log[k]; x=x-z;
3278 @ @<Handle non-positive logarithm@>=
3280 print_err("Logarithm of ");
3281 @.Logarithm...replaced by 0@>
3282 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3283 help2("Since I don't take logs of non-positive numbers,")
3284 ("I'm zeroing this one. Proceed, with fingers crossed.");
3289 @ Conversely, the exponential routine calculates $\exp(x/2^8)$,
3290 when |x| is |scaled|. The result is an integer approximation to
3291 $2^{16}\exp(x/2^{24})$, when |x| is regarded as an integer.
3294 scaled mp_m_exp (MP mp,scaled x) {
3295 small_number k; /* loop control index */
3296 integer y,z; /* auxiliary registers */
3297 if ( x>174436200 ) {
3298 /* $2^{24}\ln((2^{31}-1)/2^{16})\approx 174436199.51$ */
3299 mp->arith_error=true;
3301 } else if ( x<-197694359 ) {
3302 /* $2^{24}\ln(2^{-1}/2^{16})\approx-197694359.45$ */
3306 z=-8*x; y=04000000; /* $y=2^{20}$ */
3308 if ( x<=127919879 ) {
3310 /* $2^{27}\ln((2^{31}-1)/2^{20})\approx 1023359037.125$ */
3312 z=8*(174436200-x); /* |z| is always nonnegative */
3316 @<Multiply |y| by $\exp(-z/2^{27})$@>;
3318 return ((y+8) / 16);
3324 @ The idea here is that subtracting |spec_log[k]| from |z| corresponds
3325 to multiplying |y| by $1-2^{-k}$.
3327 A subtle point (which had to be checked) was that if $x=127919879$, the
3328 value of~|y| will decrease so that |y+8| doesn't overflow. In fact,
3329 $z$ will be 5 in this case, and |y| will decrease by~64 when |k=25|
3330 and by~16 when |k=27|.
3332 @<Multiply |y| by...@>=
3335 while ( z>=spec_log[k] ) {
3337 y=y-1-((y-two_to_the(k-1)) / two_to_the(k));
3342 @ The trigonometric subroutines use an auxiliary table such that
3343 |spec_atan[k]| contains an approximation to the |angle| whose tangent
3344 is~$1/2^k$. $\arctan2^{-k}$ times $2^{20}\cdot180/\pi$
3347 static const angle spec_atan[27] = { 0, 27855475, 14718068, 7471121, 3750058,
3348 1876857, 938658, 469357, 234682, 117342, 58671, 29335, 14668, 7334, 3667,
3349 1833, 917, 458, 229, 115, 57, 29, 14, 7, 4, 2, 1 };
3351 @ Given integers |x| and |y|, not both zero, the |n_arg| function
3352 returns the |angle| whose tangent points in the direction $(x,y)$.
3353 This subroutine first determines the correct octant, then solves the
3354 problem for |0<=y<=x|, then converts the result appropriately to
3355 return an answer in the range |-one_eighty_deg<=@t$\theta$@><=one_eighty_deg|.
3356 (The answer is |+one_eighty_deg| if |y=0| and |x<0|, but an answer of
3357 |-one_eighty_deg| is possible if, for example, |y=-1| and $x=-2^{30}$.)
3359 The octants are represented in a ``Gray code,'' since that turns out
3360 to be computationally simplest.
3366 @d second_octant (first_octant+switch_x_and_y)
3367 @d third_octant (first_octant+switch_x_and_y+negate_x)
3368 @d fourth_octant (first_octant+negate_x)
3369 @d fifth_octant (first_octant+negate_x+negate_y)
3370 @d sixth_octant (first_octant+switch_x_and_y+negate_x+negate_y)
3371 @d seventh_octant (first_octant+switch_x_and_y+negate_y)
3372 @d eighth_octant (first_octant+negate_y)
3375 angle mp_n_arg (MP mp,integer x, integer y) {
3376 angle z; /* auxiliary register */
3377 integer t; /* temporary storage */
3378 small_number k; /* loop counter */
3379 int octant; /* octant code */
3381 octant=first_octant;
3383 negate(x); octant=first_octant+negate_x;
3386 negate(y); octant=octant+negate_y;
3389 t=y; y=x; x=t; octant=octant+switch_x_and_y;
3392 @<Handle undefined arg@>;
3394 @<Set variable |z| to the arg of $(x,y)$@>;
3395 @<Return an appropriate answer based on |z| and |octant|@>;
3399 @ @<Handle undefined arg@>=
3401 print_err("angle(0,0) is taken as zero");
3402 @.angle(0,0)...zero@>
3403 help2("The `angle' between two identical points is undefined.")
3404 ("I'm zeroing this one. Proceed, with fingers crossed.");
3409 @ @<Return an appropriate answer...@>=
3411 case first_octant: return z;
3412 case second_octant: return (ninety_deg-z);
3413 case third_octant: return (ninety_deg+z);
3414 case fourth_octant: return (one_eighty_deg-z);
3415 case fifth_octant: return (z-one_eighty_deg);
3416 case sixth_octant: return (-z-ninety_deg);
3417 case seventh_octant: return (z-ninety_deg);
3418 case eighth_octant: return (-z);
3419 }; /* there are no other cases */
3422 @ At this point we have |x>=y>=0|, and |x>0|. The numbers are scaled up
3423 or down until $2^{28}\L x<2^{29}$, so that accurate fixed-point calculations
3426 @<Set variable |z| to the arg...@>=
3427 while ( x>=fraction_two ) {
3428 x=halfp(x); y=halfp(y);
3432 while ( x<fraction_one ) {
3435 @<Increase |z| to the arg of $(x,y)$@>;
3438 @ During the calculations of this section, variables |x| and~|y|
3439 represent actual coordinates $(x,2^{-k}y)$. We will maintain the
3440 condition |x>=y|, so that the tangent will be at most $2^{-k}$.
3441 If $x<2y$, the tangent is greater than $2^{-k-1}$. The transformation
3442 $(a,b)\mapsto(a+b\tan\phi,b-a\tan\phi)$ replaces $(a,b)$ by
3443 coordinates whose angle has decreased by~$\phi$; in the special case
3444 $a=x$, $b=2^{-k}y$, and $\tan\phi=2^{-k-1}$, this operation reduces
3445 to the particularly simple iteration shown here. [Cf.~John E. Meggitt,
3446 @^Meggitt, John E.@>
3447 {\sl IBM Journal of Research and Development\/ \bf6} (1962), 210--226.]
3449 The initial value of |x| will be multiplied by at most
3450 $(1+{1\over2})(1+{1\over8})(1+{1\over32})\cdots\approx 1.7584$; hence
3451 there is no chance of integer overflow.
3453 @<Increase |z|...@>=
3458 z=z+spec_atan[k]; t=x; x=x+(y / two_to_the(k+k)); y=y-t;
3463 if ( y>x ) { z=z+spec_atan[k]; y=y-x; };
3466 @ Conversely, the |n_sin_cos| routine takes an |angle| and produces the sine
3467 and cosine of that angle. The results of this routine are
3468 stored in global integer variables |n_sin| and |n_cos|.
3471 fraction n_sin;fraction n_cos; /* results computed by |n_sin_cos| */
3473 @ Given an integer |z| that is $2^{20}$ times an angle $\theta$ in degrees,
3474 the purpose of |n_sin_cos(z)| is to set
3475 |x=@t$r\cos\theta$@>| and |y=@t$r\sin\theta$@>| (approximately),
3476 for some rather large number~|r|. The maximum of |x| and |y|
3477 will be between $2^{28}$ and $2^{30}$, so that there will be hardly
3478 any loss of accuracy. Then |x| and~|y| are divided by~|r|.
3481 void mp_n_sin_cos (MP mp,angle z) { /* computes a multiple of the sine
3483 small_number k; /* loop control variable */
3484 int q; /* specifies the quadrant */
3485 fraction r; /* magnitude of |(x,y)| */
3486 integer x,y,t; /* temporary registers */
3487 while ( z<0 ) z=z+three_sixty_deg;
3488 z=z % three_sixty_deg; /* now |0<=z<three_sixty_deg| */
3489 q=z / forty_five_deg; z=z % forty_five_deg;
3490 x=fraction_one; y=x;
3491 if ( ! odd(q) ) z=forty_five_deg-z;
3492 @<Subtract angle |z| from |(x,y)|@>;
3493 @<Convert |(x,y)| to the octant determined by~|q|@>;
3494 r=mp_pyth_add(mp, x,y);
3495 mp->n_cos=mp_make_fraction(mp, x,r);
3496 mp->n_sin=mp_make_fraction(mp, y,r);
3499 @ In this case the octants are numbered sequentially.
3501 @<Convert |(x,...@>=
3504 case 1: t=x; x=y; y=t; break;
3505 case 2: t=x; x=-y; y=t; break;
3506 case 3: negate(x); break;
3507 case 4: negate(x); negate(y); break;
3508 case 5: t=x; x=-y; y=-t; break;
3509 case 6: t=x; x=y; y=-t; break;
3510 case 7: negate(y); break;
3511 } /* there are no other cases */
3513 @ The main iteration of |n_sin_cos| is similar to that of |n_arg| but
3514 applied in reverse. The values of |spec_atan[k]| decrease slowly enough
3515 that this loop is guaranteed to terminate before the (nonexistent) value
3516 |spec_atan[27]| would be required.
3518 @<Subtract angle |z|...@>=
3521 if ( z>=spec_atan[k] ) {
3522 z=z-spec_atan[k]; t=x;
3523 x=t+y / two_to_the(k);
3524 y=y-t / two_to_the(k);
3528 if ( y<0 ) y=0 /* this precaution may never be needed */
3530 @ And now let's complete our collection of numeric utility routines
3531 by considering random number generation.
3532 \MP\ generates pseudo-random numbers with the additive scheme recommended
3533 in Section 3.6 of {\sl The Art of Computer Programming}; however, the
3534 results are random fractions between 0 and |fraction_one-1|, inclusive.
3536 There's an auxiliary array |randoms| that contains 55 pseudo-random
3537 fractions. Using the recurrence $x_n=(x_{n-55}-x_{n-31})\bmod 2^{28}$,
3538 we generate batches of 55 new $x_n$'s at a time by calling |new_randoms|.
3539 The global variable |j_random| tells which element has most recently
3541 The global variable |sys_random_seed| was introduced in version 0.9,
3542 for the sole reason of stressing the fact that the initial value of the
3543 random seed is system-dependant. The pascal code below will initialize
3544 this variable to |(internal[time] div unity)+internal[day]|, but this is
3545 not good enough on modern fast machines that are capable of running
3546 multiple MetaPost processes within the same second.
3547 @^system dependencies@>
3550 fraction randoms[55]; /* the last 55 random values generated */
3551 int j_random; /* the number of unused |randoms| */
3552 scaled sys_random_seed; /* the default random seed */
3555 typedef scaled (*get_random_seed_command)(MP mp);
3558 get_random_seed_command get_random_seed;
3560 @ @<Option variables@>=
3561 get_random_seed_command get_random_seed;
3563 @ @<Allocate or initialize ...@>=
3564 set_callback_option(get_random_seed);
3566 @ @<Exported function headers@>=
3567 scaled mp_get_random_seed (MP mp);
3570 scaled mp_get_random_seed (MP mp) {
3571 return (mp->internal[mp_time] / unity)+mp->internal[day];
3574 @ To consume a random fraction, the program below will say `|next_random|'
3575 and then it will fetch |randoms[j_random]|.
3577 @d next_random { if ( mp->j_random==0 ) mp_new_randoms(mp);
3578 else decr(mp->j_random); }
3581 void mp_new_randoms (MP mp) {
3582 int k; /* index into |randoms| */
3583 fraction x; /* accumulator */
3584 for (k=0;k<=23;k++) {
3585 x=mp->randoms[k]-mp->randoms[k+31];
3586 if ( x<0 ) x=x+fraction_one;
3589 for (k=24;k<= 54;k++){
3590 x=mp->randoms[k]-mp->randoms[k-24];
3591 if ( x<0 ) x=x+fraction_one;
3598 void mp_init_randoms (MP mp,scaled seed);
3600 @ To initialize the |randoms| table, we call the following routine.
3603 void mp_init_randoms (MP mp,scaled seed) {
3604 fraction j,jj,k; /* more or less random integers */
3605 int i; /* index into |randoms| */
3607 while ( j>=fraction_one ) j=halfp(j);
3609 for (i=0;i<=54;i++ ){
3611 if ( k<0 ) k=k+fraction_one;
3612 mp->randoms[(i*21)% 55]=j;
3616 mp_new_randoms(mp); /* ``warm up'' the array */
3619 @ To produce a uniform random number in the range |0<=u<x| or |0>=u>x|
3620 or |0=u=x|, given a |scaled| value~|x|, we proceed as shown here.
3622 Note that the call of |take_fraction| will produce the values 0 and~|x|
3623 with about half the probability that it will produce any other particular
3624 values between 0 and~|x|, because it rounds its answers.
3627 scaled mp_unif_rand (MP mp,scaled x) {
3628 scaled y; /* trial value */
3629 next_random; y=mp_take_fraction(mp, abs(x),mp->randoms[mp->j_random]);
3630 if ( y==abs(x) ) return 0;
3631 else if ( x>0 ) return y;
3635 @ Finally, a normal deviate with mean zero and unit standard deviation
3636 can readily be obtained with the ratio method (Algorithm 3.4.1R in
3637 {\sl The Art of Computer Programming\/}).
3640 scaled mp_norm_rand (MP mp) {
3641 integer x,u,l; /* what the book would call $2^{16}X$, $2^{28}U$, and $-2^{24}\ln U$ */
3645 x=mp_take_fraction(mp, 112429,mp->randoms[mp->j_random]-fraction_half);
3646 /* $2^{16}\sqrt{8/e}\approx 112428.82793$ */
3647 next_random; u=mp->randoms[mp->j_random];
3648 } while (abs(x)>=u);
3649 x=mp_make_fraction(mp, x,u);
3650 l=139548960-mp_m_log(mp, u); /* $2^{24}\cdot12\ln2\approx139548959.6165$ */
3651 } while (mp_ab_vs_cd(mp, 1024,l,x,x)<0);
3655 @* \[9] Packed data.
3656 In order to make efficient use of storage space, \MP\ bases its major data
3657 structures on a |memory_word|, which contains either a (signed) integer,
3658 possibly scaled, or a small number of fields that are one half or one
3659 quarter of the size used for storing integers.
3661 If |x| is a variable of type |memory_word|, it contains up to four
3662 fields that can be referred to as follows:
3663 $$\vbox{\halign{\hfil#&#\hfil&#\hfil\cr
3664 |x|&.|int|&(an |integer|)\cr
3665 |x|&.|sc|\qquad&(a |scaled| integer)\cr
3666 |x.hh.lh|, |x.hh|&.|rh|&(two halfword fields)\cr
3667 |x.hh.b0|, |x.hh.b1|, |x.hh|&.|rh|&(two quarterword fields, one halfword
3669 |x.qqqq.b0|, |x.qqqq.b1|, |x.qqqq|&.|b2|, |x.qqqq.b3|\hskip-100pt
3670 &\qquad\qquad\qquad(four quarterword fields)\cr}}$$
3671 This is somewhat cumbersome to write, and not very readable either, but
3672 macros will be used to make the notation shorter and more transparent.
3673 The code below gives a formal definition of |memory_word| and
3674 its subsidiary types, using packed variant records. \MP\ makes no
3675 assumptions about the relative positions of the fields within a word.
3677 @d max_quarterword 0x3FFF /* largest allowable value in a |quarterword| */
3678 @d max_halfword 0xFFFFFFF /* largest allowable value in a |halfword| */
3680 @ Here are the inequalities that the quarterword and halfword values
3681 must satisfy (or rather, the inequalities that they mustn't satisfy):
3683 @<Check the ``constant''...@>=
3684 if (mp->ini_version) {
3685 if ( mp->mem_max!=mp->mem_top ) mp->bad=8;
3687 if ( mp->mem_max<mp->mem_top ) mp->bad=8;
3689 if ( max_quarterword<255 ) mp->bad=9;
3690 if ( max_halfword<65535 ) mp->bad=10;
3691 if ( max_quarterword>max_halfword ) mp->bad=11;
3692 if ( mp->mem_max>=max_halfword ) mp->bad=12;
3693 if ( mp->max_strings>max_halfword ) mp->bad=13;
3695 @ The macros |qi| and |qo| are used for input to and output
3696 from quarterwords. These are legacy macros.
3697 @^system dependencies@>
3699 @d qo(A) (A) /* to read eight bits from a quarterword */
3700 @d qi(A) (A) /* to store eight bits in a quarterword */
3702 @ The reader should study the following definitions closely:
3703 @^system dependencies@>
3705 @d sc cint /* |scaled| data is equivalent to |integer| */
3708 typedef short quarterword; /* 1/4 of a word */
3709 typedef int halfword; /* 1/2 of a word */
3714 struct { /* Make B0,B1 overlap the most significant bytes of LH. */
3721 quarterword B2, B3, B0, B1;
3736 @ When debugging, we may want to print a |memory_word| without knowing
3737 what type it is; so we print it in all modes.
3738 @^dirty \PASCAL@>@^debugging@>
3741 void mp_print_word (MP mp,memory_word w) {
3742 /* prints |w| in all ways */
3743 mp_print_int(mp, w.cint); mp_print_char(mp, ' ');
3744 mp_print_scaled(mp, w.sc); mp_print_char(mp, ' ');
3745 mp_print_scaled(mp, w.sc / 010000); mp_print_ln(mp);
3746 mp_print_int(mp, w.hh.lh); mp_print_char(mp, '=');
3747 mp_print_int(mp, w.hh.b0); mp_print_char(mp, ':');
3748 mp_print_int(mp, w.hh.b1); mp_print_char(mp, ';');
3749 mp_print_int(mp, w.hh.rh); mp_print_char(mp, ' ');
3750 mp_print_int(mp, w.qqqq.b0); mp_print_char(mp, ':');
3751 mp_print_int(mp, w.qqqq.b1); mp_print_char(mp, ':');
3752 mp_print_int(mp, w.qqqq.b2); mp_print_char(mp, ':');
3753 mp_print_int(mp, w.qqqq.b3);
3757 @* \[10] Dynamic memory allocation.
3759 The \MP\ system does nearly all of its own memory allocation, so that it
3760 can readily be transported into environments that do not have automatic
3761 facilities for strings, garbage collection, etc., and so that it can be in
3762 control of what error messages the user receives. The dynamic storage
3763 requirements of \MP\ are handled by providing a large array |mem| in
3764 which consecutive blocks of words are used as nodes by the \MP\ routines.
3766 Pointer variables are indices into this array, or into another array
3767 called |eqtb| that will be explained later. A pointer variable might
3768 also be a special flag that lies outside the bounds of |mem|, so we
3769 allow pointers to assume any |halfword| value. The minimum memory
3770 index represents a null pointer.
3772 @d null 0 /* the null pointer */
3775 typedef halfword pointer; /* a flag or a location in |mem| or |eqtb| */
3777 @ The |mem| array is divided into two regions that are allocated separately,
3778 but the dividing line between these two regions is not fixed; they grow
3779 together until finding their ``natural'' size in a particular job.
3780 Locations less than or equal to |lo_mem_max| are used for storing
3781 variable-length records consisting of two or more words each. This region
3782 is maintained using an algorithm similar to the one described in exercise
3783 2.5--19 of {\sl The Art of Computer Programming}. However, no size field
3784 appears in the allocated nodes; the program is responsible for knowing the
3785 relevant size when a node is freed. Locations greater than or equal to
3786 |hi_mem_min| are used for storing one-word records; a conventional
3787 \.{AVAIL} stack is used for allocation in this region.
3789 Locations of |mem| between |0| and |mem_top| may be dumped as part
3790 of preloaded format files, by the \.{INIMP} preprocessor.
3792 Production versions of \MP\ may extend the memory at the top end in order to
3793 provide more space; these locations, between |mem_top| and |mem_max|,
3794 are always used for single-word nodes.
3796 The key pointers that govern |mem| allocation have a prescribed order:
3797 $$\hbox{|null=0<lo_mem_max<hi_mem_min<mem_top<=mem_end<=mem_max|.}$$
3800 memory_word *mem; /* the big dynamic storage area */
3801 pointer lo_mem_max; /* the largest location of variable-size memory in use */
3802 pointer hi_mem_min; /* the smallest location of one-word memory in use */
3807 @d xrealloc mp_xrealloc
3808 @d xmalloc mp_xmalloc
3809 @d xstrdup mp_xstrdup
3810 @d XREALLOC(a,b,c) a = xrealloc(a,(b+1),sizeof(c));
3812 @<Declare helpers@>=
3813 void mp_xfree (void *x);
3814 void *mp_xrealloc (void *p, size_t nmem, size_t size) ;
3815 void *mp_xmalloc (size_t nmem, size_t size) ;
3816 char *mp_xstrdup(const char *s);
3818 @ The |max_size_test| guards against overflow, on the assumption that
3819 |size_t| is at least 31bits wide.
3821 @d max_size_test 0x7FFFFFFF
3824 void mp_xfree (void *x) {
3825 if (x!=NULL) free(x);
3827 void *mp_xrealloc (void *p, size_t nmem, size_t size) {
3829 if ((max_size_test/size)<nmem) {
3830 fprintf(stderr,"Memory size overflow!\n");
3833 w = realloc (p,(nmem*size));
3835 fprintf(stderr,"Out of memory!\n");
3840 void *mp_xmalloc (size_t nmem, size_t size) {
3842 if ((max_size_test/size)<nmem) {
3843 fprintf(stderr,"Memory size overflow!\n");
3846 w = malloc (nmem*size);
3848 fprintf(stderr,"Out of memory!\n");
3853 char *mp_xstrdup(const char *s) {
3859 fprintf(stderr,"Out of memory!\n");
3867 @<Allocate or initialize ...@>=
3868 mp->mem = xmalloc ((mp->mem_max+1),sizeof (memory_word));
3870 @ @<Dealloc variables@>=
3873 @ Users who wish to study the memory requirements of particular applications can
3874 can use optional special features that keep track of current and
3875 maximum memory usage. When code between the delimiters |stat| $\ldots$
3876 |tats| is not ``commented out,'' \MP\ will run a bit slower but it will
3877 report these statistics when |tracing_stats| is positive.
3880 integer var_used; integer dyn_used; /* how much memory is in use */
3882 @ Let's consider the one-word memory region first, since it's the
3883 simplest. The pointer variable |mem_end| holds the highest-numbered location
3884 of |mem| that has ever been used. The free locations of |mem| that
3885 occur between |hi_mem_min| and |mem_end|, inclusive, are of type
3886 |two_halves|, and we write |info(p)| and |link(p)| for the |lh|
3887 and |rh| fields of |mem[p]| when it is of this type. The single-word
3888 free locations form a linked list
3889 $$|avail|,\;\hbox{|link(avail)|},\;\hbox{|link(link(avail))|},\;\ldots$$
3890 terminated by |null|.
3892 @d link(A) mp->mem[(A)].hh.rh /* the |link| field of a memory word */
3893 @d info(A) mp->mem[(A)].hh.lh /* the |info| field of a memory word */
3896 pointer avail; /* head of the list of available one-word nodes */
3897 pointer mem_end; /* the last one-word node used in |mem| */
3899 @ If one-word memory is exhausted, it might mean that the user has forgotten
3900 a token like `\&{enddef}' or `\&{endfor}'. We will define some procedures
3901 later that try to help pinpoint the trouble.
3904 @<Declare the procedure called |show_token_list|@>;
3905 @<Declare the procedure called |runaway|@>
3907 @ The function |get_avail| returns a pointer to a new one-word node whose
3908 |link| field is null. However, \MP\ will halt if there is no more room left.
3912 pointer mp_get_avail (MP mp) { /* single-word node allocation */
3913 pointer p; /* the new node being got */
3914 p=mp->avail; /* get top location in the |avail| stack */
3916 mp->avail=link(mp->avail); /* and pop it off */
3917 } else if ( mp->mem_end<mp->mem_max ) { /* or go into virgin territory */
3918 incr(mp->mem_end); p=mp->mem_end;
3920 decr(mp->hi_mem_min); p=mp->hi_mem_min;
3921 if ( mp->hi_mem_min<=mp->lo_mem_max ) {
3922 mp_runaway(mp); /* if memory is exhausted, display possible runaway text */
3923 mp_overflow(mp, "main memory size",mp->mem_max);
3924 /* quit; all one-word nodes are busy */
3925 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
3928 link(p)=null; /* provide an oft-desired initialization of the new node */
3929 incr(mp->dyn_used);/* maintain statistics */
3933 @ Conversely, a one-word node is recycled by calling |free_avail|.
3935 @d free_avail(A) /* single-word node liberation */
3936 { link((A))=mp->avail; mp->avail=(A); decr(mp->dyn_used); }
3938 @ There's also a |fast_get_avail| routine, which saves the procedure-call
3939 overhead at the expense of extra programming. This macro is used in
3940 the places that would otherwise account for the most calls of |get_avail|.
3943 @d fast_get_avail(A) {
3944 (A)=mp->avail; /* avoid |get_avail| if possible, to save time */
3945 if ( (A)==null ) { (A)=mp_get_avail(mp); }
3946 else { mp->avail=link((A)); link((A))=null; incr(mp->dyn_used); }
3949 @ The available-space list that keeps track of the variable-size portion
3950 of |mem| is a nonempty, doubly-linked circular list of empty nodes,
3951 pointed to by the roving pointer |rover|.
3953 Each empty node has size 2 or more; the first word contains the special
3954 value |max_halfword| in its |link| field and the size in its |info| field;
3955 the second word contains the two pointers for double linking.
3957 Each nonempty node also has size 2 or more. Its first word is of type
3958 |two_halves|\kern-1pt, and its |link| field is never equal to |max_halfword|.
3959 Otherwise there is complete flexibility with respect to the contents
3960 of its other fields and its other words.
3962 (We require |mem_max<max_halfword| because terrible things can happen
3963 when |max_halfword| appears in the |link| field of a nonempty node.)
3965 @d empty_flag max_halfword /* the |link| of an empty variable-size node */
3966 @d is_empty(A) (link((A))==empty_flag) /* tests for empty node */
3967 @d node_size info /* the size field in empty variable-size nodes */
3968 @d llink(A) info((A)+1) /* left link in doubly-linked list of empty nodes */
3969 @d rlink(A) link((A)+1) /* right link in doubly-linked list of empty nodes */
3972 pointer rover; /* points to some node in the list of empties */
3974 @ A call to |get_node| with argument |s| returns a pointer to a new node
3975 of size~|s|, which must be 2~or more. The |link| field of the first word
3976 of this new node is set to null. An overflow stop occurs if no suitable
3979 If |get_node| is called with $s=2^{30}$, it simply merges adjacent free
3980 areas and returns the value |max_halfword|.
3983 pointer mp_get_node (MP mp,integer s) ;
3986 pointer mp_get_node (MP mp,integer s) { /* variable-size node allocation */
3987 pointer p; /* the node currently under inspection */
3988 pointer q; /* the node physically after node |p| */
3989 integer r; /* the newly allocated node, or a candidate for this honor */
3990 integer t,tt; /* temporary registers */
3993 p=mp->rover; /* start at some free node in the ring */
3995 @<Try to allocate within node |p| and its physical successors,
3996 and |goto found| if allocation was possible@>;
3997 p=rlink(p); /* move to the next node in the ring */
3998 } while (p!=mp->rover); /* repeat until the whole list has been traversed */
3999 if ( s==010000000000 ) {
4000 return max_halfword;
4002 if ( mp->lo_mem_max+2<mp->hi_mem_min ) {
4003 if ( mp->lo_mem_max+2<=max_halfword ) {
4004 @<Grow more variable-size memory and |goto restart|@>;
4007 mp_overflow(mp, "main memory size",mp->mem_max);
4008 /* sorry, nothing satisfactory is left */
4009 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
4011 link(r)=null; /* this node is now nonempty */
4012 mp->var_used=mp->var_used+s; /* maintain usage statistics */
4016 @ The lower part of |mem| grows by 1000 words at a time, unless
4017 we are very close to going under. When it grows, we simply link
4018 a new node into the available-space list. This method of controlled
4019 growth helps to keep the |mem| usage consecutive when \MP\ is
4020 implemented on ``virtual memory'' systems.
4023 @<Grow more variable-size memory and |goto restart|@>=
4025 if ( mp->hi_mem_min-mp->lo_mem_max>=1998 ) {
4026 t=mp->lo_mem_max+1000;
4028 t=mp->lo_mem_max+1+(mp->hi_mem_min-mp->lo_mem_max) / 2;
4029 /* |lo_mem_max+2<=t<hi_mem_min| */
4031 if ( t>max_halfword ) t=max_halfword;
4032 p=llink(mp->rover); q=mp->lo_mem_max; rlink(p)=q; llink(mp->rover)=q;
4033 rlink(q)=mp->rover; llink(q)=p; link(q)=empty_flag; node_size(q)=t-mp->lo_mem_max;
4034 mp->lo_mem_max=t; link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4039 @ @<Try to allocate...@>=
4040 q=p+node_size(p); /* find the physical successor */
4041 while ( is_empty(q) ) { /* merge node |p| with node |q| */
4042 t=rlink(q); tt=llink(q);
4044 if ( q==mp->rover ) mp->rover=t;
4045 llink(t)=tt; rlink(tt)=t;
4050 @<Allocate from the top of node |p| and |goto found|@>;
4053 if ( rlink(p)!=p ) {
4054 @<Allocate entire node |p| and |goto found|@>;
4057 node_size(p)=q-p /* reset the size in case it grew */
4059 @ @<Allocate from the top...@>=
4061 node_size(p)=r-p; /* store the remaining size */
4062 mp->rover=p; /* start searching here next time */
4066 @ Here we delete node |p| from the ring, and let |rover| rove around.
4068 @<Allocate entire...@>=
4070 mp->rover=rlink(p); t=llink(p);
4071 llink(mp->rover)=t; rlink(t)=mp->rover;
4075 @ Conversely, when some variable-size node |p| of size |s| is no longer needed,
4076 the operation |free_node(p,s)| will make its words available, by inserting
4077 |p| as a new empty node just before where |rover| now points.
4080 void mp_free_node (MP mp, pointer p, halfword s) ;
4083 void mp_free_node (MP mp, pointer p, halfword s) { /* variable-size node
4085 pointer q; /* |llink(rover)| */
4086 node_size(p)=s; link(p)=empty_flag;
4088 q=llink(mp->rover); llink(p)=q; rlink(p)=mp->rover; /* set both links */
4089 llink(mp->rover)=p; rlink(q)=p; /* insert |p| into the ring */
4090 mp->var_used=mp->var_used-s; /* maintain statistics */
4093 @ Just before \.{INIMP} writes out the memory, it sorts the doubly linked
4094 available space list. The list is probably very short at such times, so a
4095 simple insertion sort is used. The smallest available location will be
4096 pointed to by |rover|, the next-smallest by |rlink(rover)|, etc.
4099 void mp_sort_avail (MP mp) { /* sorts the available variable-size nodes
4101 pointer p,q,r; /* indices into |mem| */
4102 pointer old_rover; /* initial |rover| setting */
4103 p=mp_get_node(mp, 010000000000); /* merge adjacent free areas */
4104 p=rlink(mp->rover); rlink(mp->rover)=max_halfword; old_rover=mp->rover;
4105 while ( p!=old_rover ) {
4106 @<Sort |p| into the list starting at |rover|
4107 and advance |p| to |rlink(p)|@>;
4110 while ( rlink(p)!=max_halfword ) {
4111 llink(rlink(p))=p; p=rlink(p);
4113 rlink(p)=mp->rover; llink(mp->rover)=p;
4116 @ The following |while| loop is guaranteed to
4117 terminate, since the list that starts at
4118 |rover| ends with |max_halfword| during the sorting procedure.
4121 if ( p<mp->rover ) {
4122 q=p; p=rlink(q); rlink(q)=mp->rover; mp->rover=q;
4125 while ( rlink(q)<p ) q=rlink(q);
4126 r=rlink(p); rlink(p)=rlink(q); rlink(q)=p; p=r;
4129 @* \[11] Memory layout.
4130 Some areas of |mem| are dedicated to fixed usage, since static allocation is
4131 more efficient than dynamic allocation when we can get away with it. For
4132 example, locations |0| to |1| are always used to store a
4133 two-word dummy token whose second word is zero.
4134 The following macro definitions accomplish the static allocation by giving
4135 symbolic names to the fixed positions. Static variable-size nodes appear
4136 in locations |0| through |lo_mem_stat_max|, and static single-word nodes
4137 appear in locations |hi_mem_stat_min| through |mem_top|, inclusive.
4139 @d null_dash (2) /* the first two words are reserved for a null value */
4140 @d dep_head (null_dash+3) /* we will define |dash_node_size=3| */
4141 @d zero_val (dep_head+2) /* two words for a permanently zero value */
4142 @d temp_val (zero_val+2) /* two words for a temporary value node */
4143 @d end_attr temp_val /* we use |end_attr+2| only */
4144 @d inf_val (end_attr+2) /* and |inf_val+1| only */
4145 @d test_pen (inf_val+2)
4146 /* nine words for a pen used when testing the turning number */
4147 @d bad_vardef (test_pen+9) /* two words for \&{vardef} error recovery */
4148 @d lo_mem_stat_max (bad_vardef+1) /* largest statically
4149 allocated word in the variable-size |mem| */
4151 @d sentinel mp->mem_top /* end of sorted lists */
4152 @d temp_head (mp->mem_top-1) /* head of a temporary list of some kind */
4153 @d hold_head (mp->mem_top-2) /* head of a temporary list of another kind */
4154 @d spec_head (mp->mem_top-3) /* head of a list of unprocessed \&{special} items */
4155 @d hi_mem_stat_min (mp->mem_top-3) /* smallest statically allocated word in
4156 the one-word |mem| */
4158 @ The following code gets the dynamic part of |mem| off to a good start,
4159 when \MP\ is initializing itself the slow way.
4161 @<Initialize table entries (done by \.{INIMP} only)@>=
4162 @^data structure assumptions@>
4163 mp->rover=lo_mem_stat_max+1; /* initialize the dynamic memory */
4164 link(mp->rover)=empty_flag;
4165 node_size(mp->rover)=1000; /* which is a 1000-word available node */
4166 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
4167 mp->lo_mem_max=mp->rover+1000; link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4168 for (k=hi_mem_stat_min;k<=(int)mp->mem_top;k++) {
4169 mp->mem[k]=mp->mem[mp->lo_mem_max]; /* clear list heads */
4171 mp->avail=null; mp->mem_end=mp->mem_top;
4172 mp->hi_mem_min=hi_mem_stat_min; /* initialize the one-word memory */
4173 mp->var_used=lo_mem_stat_max+1;
4174 mp->dyn_used=mp->mem_top+1-(hi_mem_stat_min); /* initialize statistics */
4175 @<Initialize a pen at |test_pen| so that it fits in nine words@>;
4177 @ The procedure |flush_list(p)| frees an entire linked list of one-word
4178 nodes that starts at a given position, until coming to |sentinel| or a
4179 pointer that is not in the one-word region. Another procedure,
4180 |flush_node_list|, frees an entire linked list of one-word and two-word
4181 nodes, until coming to a |null| pointer.
4185 void mp_flush_list (MP mp,pointer p) { /* makes list of single-word nodes available */
4186 pointer q,r; /* list traversers */
4187 if ( p>=mp->hi_mem_min ) if ( p!=sentinel ) {
4192 if ( r<mp->hi_mem_min ) break;
4193 } while (r!=sentinel);
4194 /* now |q| is the last node on the list */
4195 link(q)=mp->avail; mp->avail=p;
4199 void mp_flush_node_list (MP mp,pointer p) {
4200 pointer q; /* the node being recycled */
4203 if ( q<mp->hi_mem_min )
4204 mp_free_node(mp, q,2);
4210 @ If \MP\ is extended improperly, the |mem| array might get screwed up.
4211 For example, some pointers might be wrong, or some ``dead'' nodes might not
4212 have been freed when the last reference to them disappeared. Procedures
4213 |check_mem| and |search_mem| are available to help diagnose such
4214 problems. These procedures make use of two arrays called |free| and
4215 |was_free| that are present only if \MP's debugging routines have
4216 been included. (You may want to decrease the size of |mem| while you
4220 Because |boolean|s are typedef-d as ints, it is better to use
4221 unsigned chars here.
4224 unsigned char *free; /* free cells */
4225 unsigned char *was_free; /* previously free cells */
4226 pointer was_mem_end; pointer was_lo_max; pointer was_hi_min;
4227 /* previous |mem_end|, |lo_mem_max|,and |hi_mem_min| */
4228 boolean panicking; /* do we want to check memory constantly? */
4230 @ @<Allocate or initialize ...@>=
4231 mp->free = xmalloc ((mp->mem_max+1),sizeof (unsigned char));
4232 mp->was_free = xmalloc ((mp->mem_max+1), sizeof (unsigned char));
4234 @ @<Dealloc variables@>=
4236 xfree(mp->was_free);
4238 @ @<Allocate or ...@>=
4239 mp->was_mem_end=0; /* indicate that everything was previously free */
4240 mp->was_lo_max=0; mp->was_hi_min=mp->mem_max;
4241 mp->panicking=false;
4243 @ @<Declare |mp_reallocate| functions@>=
4244 void mp_reallocate_memory(MP mp, int l) ;
4247 void mp_reallocate_memory(MP mp, int l) {
4248 XREALLOC(mp->free, l, unsigned char);
4249 XREALLOC(mp->was_free, l, unsigned char);
4250 XREALLOC(mp->mem, l, memory_word);
4252 if (mp->ini_version)
4258 @ Procedure |check_mem| makes sure that the available space lists of
4259 |mem| are well formed, and it optionally prints out all locations
4260 that are reserved now but were free the last time this procedure was called.
4263 void mp_check_mem (MP mp,boolean print_locs ) {
4264 pointer p,q,r; /* current locations of interest in |mem| */
4265 boolean clobbered; /* is something amiss? */
4266 for (p=0;p<=mp->lo_mem_max;p++) {
4267 mp->free[p]=false; /* you can probably do this faster */
4269 for (p=mp->hi_mem_min;p<= mp->mem_end;p++) {
4270 mp->free[p]=false; /* ditto */
4272 @<Check single-word |avail| list@>;
4273 @<Check variable-size |avail| list@>;
4274 @<Check flags of unavailable nodes@>;
4275 @<Check the list of linear dependencies@>;
4277 @<Print newly busy locations@>;
4279 for (p=0;p<=mp->lo_mem_max;p++) {
4280 mp->was_free[p]=mp->free[p];
4282 for (p=mp->hi_mem_min;p<=mp->mem_end;p++) {
4283 mp->was_free[p]=mp->free[p];
4285 /* |was_free:=free| might be faster */
4286 mp->was_mem_end=mp->mem_end;
4287 mp->was_lo_max=mp->lo_mem_max;
4288 mp->was_hi_min=mp->hi_mem_min;
4291 @ @<Check single-word...@>=
4292 p=mp->avail; q=null; clobbered=false;
4294 if ( (p>mp->mem_end)||(p<mp->hi_mem_min) ) clobbered=true;
4295 else if ( mp->free[p] ) clobbered=true;
4297 mp_print_nl(mp, "AVAIL list clobbered at ");
4298 @.AVAIL list clobbered...@>
4299 mp_print_int(mp, q); break;
4301 mp->free[p]=true; q=p; p=link(q);
4304 @ @<Check variable-size...@>=
4305 p=mp->rover; q=null; clobbered=false;
4307 if ( (p>=mp->lo_mem_max)||(p<0) ) clobbered=true;
4308 else if ( (rlink(p)>=mp->lo_mem_max)||(rlink(p)<0) ) clobbered=true;
4309 else if ( !(is_empty(p))||(node_size(p)<2)||
4310 (p+node_size(p)>mp->lo_mem_max)|| (llink(rlink(p))!=p) ) clobbered=true;
4312 mp_print_nl(mp, "Double-AVAIL list clobbered at ");
4313 @.Double-AVAIL list clobbered...@>
4314 mp_print_int(mp, q); break;
4316 for (q=p;q<=p+node_size(p)-1;q++) { /* mark all locations free */
4317 if ( mp->free[q] ) {
4318 mp_print_nl(mp, "Doubly free location at ");
4319 @.Doubly free location...@>
4320 mp_print_int(mp, q); break;
4325 } while (p!=mp->rover)
4328 @ @<Check flags...@>=
4330 while ( p<=mp->lo_mem_max ) { /* node |p| should not be empty */
4331 if ( is_empty(p) ) {
4332 mp_print_nl(mp, "Bad flag at "); mp_print_int(mp, p);
4335 while ( (p<=mp->lo_mem_max) && ! mp->free[p] ) incr(p);
4336 while ( (p<=mp->lo_mem_max) && mp->free[p] ) incr(p);
4339 @ @<Print newly busy...@>=
4341 @<Do intialization required before printing new busy locations@>;
4342 mp_print_nl(mp, "New busy locs:");
4344 for (p=0;p<= mp->lo_mem_max;p++ ) {
4345 if ( ! mp->free[p] && ((p>mp->was_lo_max) || mp->was_free[p]) ) {
4346 @<Indicate that |p| is a new busy location@>;
4349 for (p=mp->hi_mem_min;p<=mp->mem_end;p++ ) {
4350 if ( ! mp->free[p] &&
4351 ((p<mp->was_hi_min) || (p>mp->was_mem_end) || mp->was_free[p]) ) {
4352 @<Indicate that |p| is a new busy location@>;
4355 @<Finish printing new busy locations@>;
4358 @ There might be many new busy locations so we are careful to print contiguous
4359 blocks compactly. During this operation |q| is the last new busy location and
4360 |r| is the start of the block containing |q|.
4362 @<Indicate that |p| is a new busy location@>=
4366 mp_print(mp, ".."); mp_print_int(mp, q);
4368 mp_print_char(mp, ' '); mp_print_int(mp, p);
4374 @ @<Do intialization required before printing new busy locations@>=
4375 q=mp->mem_max; r=mp->mem_max
4377 @ @<Finish printing new busy locations@>=
4379 mp_print(mp, ".."); mp_print_int(mp, q);
4382 @ The |search_mem| procedure attempts to answer the question ``Who points
4383 to node~|p|?'' In doing so, it fetches |link| and |info| fields of |mem|
4384 that might not be of type |two_halves|. Strictly speaking, this is
4386 undefined in \PASCAL, and it can lead to ``false drops'' (words that seem to
4387 point to |p| purely by coincidence). But for debugging purposes, we want
4388 to rule out the places that do {\sl not\/} point to |p|, so a few false
4389 drops are tolerable.
4392 void mp_search_mem (MP mp, pointer p) { /* look for pointers to |p| */
4393 integer q; /* current position being searched */
4394 for (q=0;q<=mp->lo_mem_max;q++) {
4396 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4399 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4402 for (q=mp->hi_mem_min;q<=mp->mem_end;q++) {
4404 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4407 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4410 @<Search |eqtb| for equivalents equal to |p|@>;
4413 @* \[12] The command codes.
4414 Before we can go much further, we need to define symbolic names for the internal
4415 code numbers that represent the various commands obeyed by \MP. These codes
4416 are somewhat arbitrary, but not completely so. For example,
4417 some codes have been made adjacent so that |case| statements in the
4418 program need not consider cases that are widely spaced, or so that |case|
4419 statements can be replaced by |if| statements. A command can begin an
4420 expression if and only if its code lies between |min_primary_command| and
4421 |max_primary_command|, inclusive. The first token of a statement that doesn't
4422 begin with an expression has a command code between |min_command| and
4423 |max_statement_command|, inclusive. Anything less than |min_command| is
4424 eliminated during macro expansions, and anything no more than |max_pre_command|
4425 is eliminated when expanding \TeX\ material. Ranges such as
4426 |min_secondary_command..max_secondary_command| are used when parsing
4427 expressions, but the relative ordering within such a range is generally not
4430 The ordering of the highest-numbered commands
4431 (|comma<semicolon<end_group<stop|) is crucial for the parsing and
4432 error-recovery methods of this program as is the ordering |if_test<fi_or_else|
4433 for the smallest two commands. The ordering is also important in the ranges
4434 |numeric_token..plus_or_minus| and |left_brace..ampersand|.
4436 At any rate, here is the list, for future reference.
4438 @d start_tex 1 /* begin \TeX\ material (\&{btex}, \&{verbatimtex}) */
4439 @d etex_marker 2 /* end \TeX\ material (\&{etex}) */
4440 @d mpx_break 3 /* stop reading an \.{MPX} file (\&{mpxbreak}) */
4441 @d max_pre_command mpx_break
4442 @d if_test 4 /* conditional text (\&{if}) */
4443 @d fi_or_else 5 /* delimiters for conditionals (\&{elseif}, \&{else}, \&{fi} */
4444 @d input 6 /* input a source file (\&{input}, \&{endinput}) */
4445 @d iteration 7 /* iterate (\&{for}, \&{forsuffixes}, \&{forever}, \&{endfor}) */
4446 @d repeat_loop 8 /* special command substituted for \&{endfor} */
4447 @d exit_test 9 /* premature exit from a loop (\&{exitif}) */
4448 @d relax 10 /* do nothing (\.{\char`\\}) */
4449 @d scan_tokens 11 /* put a string into the input buffer */
4450 @d expand_after 12 /* look ahead one token */
4451 @d defined_macro 13 /* a macro defined by the user */
4452 @d min_command (defined_macro+1)
4453 @d save_command 14 /* save a list of tokens (\&{save}) */
4454 @d interim_command 15 /* save an internal quantity (\&{interim}) */
4455 @d let_command 16 /* redefine a symbolic token (\&{let}) */
4456 @d new_internal 17 /* define a new internal quantity (\&{newinternal}) */
4457 @d macro_def 18 /* define a macro (\&{def}, \&{vardef}, etc.) */
4458 @d ship_out_command 19 /* output a character (\&{shipout}) */
4459 @d add_to_command 20 /* add to edges (\&{addto}) */
4460 @d bounds_command 21 /* add bounding path to edges (\&{setbounds}, \&{clip}) */
4461 @d tfm_command 22 /* command for font metric info (\&{ligtable}, etc.) */
4462 @d protection_command 23 /* set protection flag (\&{outer}, \&{inner}) */
4463 @d show_command 24 /* diagnostic output (\&{show}, \&{showvariable}, etc.) */
4464 @d mode_command 25 /* set interaction level (\&{batchmode}, etc.) */
4465 @d random_seed 26 /* initialize random number generator (\&{randomseed}) */
4466 @d message_command 27 /* communicate to user (\&{message}, \&{errmessage}) */
4467 @d every_job_command 28 /* designate a starting token (\&{everyjob}) */
4468 @d delimiters 29 /* define a pair of delimiters (\&{delimiters}) */
4469 @d special_command 30 /* output special info (\&{special})
4470 or font map info (\&{fontmapfile}, \&{fontmapline}) */
4471 @d write_command 31 /* write text to a file (\&{write}) */
4472 @d type_name 32 /* declare a type (\&{numeric}, \&{pair}, etc. */
4473 @d max_statement_command type_name
4474 @d min_primary_command type_name
4475 @d left_delimiter 33 /* the left delimiter of a matching pair */
4476 @d begin_group 34 /* beginning of a group (\&{begingroup}) */
4477 @d nullary 35 /* an operator without arguments (e.g., \&{normaldeviate}) */
4478 @d unary 36 /* an operator with one argument (e.g., \&{sqrt}) */
4479 @d str_op 37 /* convert a suffix to a string (\&{str}) */
4480 @d cycle 38 /* close a cyclic path (\&{cycle}) */
4481 @d primary_binary 39 /* binary operation taking `\&{of}' (e.g., \&{point}) */
4482 @d capsule_token 40 /* a value that has been put into a token list */
4483 @d string_token 41 /* a string constant (e.g., |"hello"|) */
4484 @d internal_quantity 42 /* internal numeric parameter (e.g., \&{pausing}) */
4485 @d min_suffix_token internal_quantity
4486 @d tag_token 43 /* a symbolic token without a primitive meaning */
4487 @d numeric_token 44 /* a numeric constant (e.g., \.{3.14159}) */
4488 @d max_suffix_token numeric_token
4489 @d plus_or_minus 45 /* either `\.+' or `\.-' */
4490 @d max_primary_command plus_or_minus /* should also be |numeric_token+1| */
4491 @d min_tertiary_command plus_or_minus
4492 @d tertiary_secondary_macro 46 /* a macro defined by \&{secondarydef} */
4493 @d tertiary_binary 47 /* an operator at the tertiary level (e.g., `\.{++}') */
4494 @d max_tertiary_command tertiary_binary
4495 @d left_brace 48 /* the operator `\.{\char`\{}' */
4496 @d min_expression_command left_brace
4497 @d path_join 49 /* the operator `\.{..}' */
4498 @d ampersand 50 /* the operator `\.\&' */
4499 @d expression_tertiary_macro 51 /* a macro defined by \&{tertiarydef} */
4500 @d expression_binary 52 /* an operator at the expression level (e.g., `\.<') */
4501 @d equals 53 /* the operator `\.=' */
4502 @d max_expression_command equals
4503 @d and_command 54 /* the operator `\&{and}' */
4504 @d min_secondary_command and_command
4505 @d secondary_primary_macro 55 /* a macro defined by \&{primarydef} */
4506 @d slash 56 /* the operator `\./' */
4507 @d secondary_binary 57 /* an operator at the binary level (e.g., \&{shifted}) */
4508 @d max_secondary_command secondary_binary
4509 @d param_type 58 /* type of parameter (\&{primary}, \&{expr}, \&{suffix}, etc.) */
4510 @d controls 59 /* specify control points explicitly (\&{controls}) */
4511 @d tension 60 /* specify tension between knots (\&{tension}) */
4512 @d at_least 61 /* bounded tension value (\&{atleast}) */
4513 @d curl_command 62 /* specify curl at an end knot (\&{curl}) */
4514 @d macro_special 63 /* special macro operators (\&{quote}, \.{\#\AT!}, etc.) */
4515 @d right_delimiter 64 /* the right delimiter of a matching pair */
4516 @d left_bracket 65 /* the operator `\.[' */
4517 @d right_bracket 66 /* the operator `\.]' */
4518 @d right_brace 67 /* the operator `\.{\char`\}}' */
4519 @d with_option 68 /* option for filling (\&{withpen}, \&{withweight}, etc.) */
4521 /* variant of \&{addto} (\&{contour}, \&{doublepath}, \&{also}) */
4522 @d of_token 70 /* the operator `\&{of}' */
4523 @d to_token 71 /* the operator `\&{to}' */
4524 @d step_token 72 /* the operator `\&{step}' */
4525 @d until_token 73 /* the operator `\&{until}' */
4526 @d within_token 74 /* the operator `\&{within}' */
4527 @d lig_kern_token 75
4528 /* the operators `\&{kern}' and `\.{=:}' and `\.{=:\char'174}, etc. */
4529 @d assignment 76 /* the operator `\.{:=}' */
4530 @d skip_to 77 /* the operation `\&{skipto}' */
4531 @d bchar_label 78 /* the operator `\.{\char'174\char'174:}' */
4532 @d double_colon 79 /* the operator `\.{::}' */
4533 @d colon 80 /* the operator `\.:' */
4535 @d comma 81 /* the operator `\.,', must be |colon+1| */
4536 @d end_of_statement (mp->cur_cmd>comma)
4537 @d semicolon 82 /* the operator `\.;', must be |comma+1| */
4538 @d end_group 83 /* end a group (\&{endgroup}), must be |semicolon+1| */
4539 @d stop 84 /* end a job (\&{end}, \&{dump}), must be |end_group+1| */
4540 @d max_command_code stop
4541 @d outer_tag (max_command_code+1) /* protection code added to command code */
4544 typedef int command_code;
4546 @ Variables and capsules in \MP\ have a variety of ``types,''
4547 distinguished by the code numbers defined here. These numbers are also
4548 not completely arbitrary. Things that get expanded must have types
4549 |>mp_independent|; a type remaining after expansion is numeric if and only if
4550 its code number is at least |numeric_type|; objects containing numeric
4551 parts must have types between |transform_type| and |pair_type|;
4552 all other types must be smaller than |transform_type|; and among the types
4553 that are not unknown or vacuous, the smallest two must be |boolean_type|
4554 and |string_type| in that order.
4556 @d undefined 0 /* no type has been declared */
4557 @d unknown_tag 1 /* this constant is added to certain type codes below */
4558 @d unknown_types mp_unknown_boolean: case mp_unknown_string:
4559 case mp_unknown_pen: case mp_unknown_picture: case mp_unknown_path
4563 mp_vacuous=1, /* no expression was present */
4564 mp_boolean_type, /* \&{boolean} with a known value */
4566 mp_string_type, /* \&{string} with a known value */
4568 mp_pen_type, /* \&{pen} with a known value */
4570 mp_path_type, /* \&{path} with a known value */
4572 mp_picture_type, /* \&{picture} with a known value */
4574 mp_transform_type, /* \&{transform} variable or capsule */
4575 mp_color_type, /* \&{color} variable or capsule */
4576 mp_cmykcolor_type, /* \&{cmykcolor} variable or capsule */
4577 mp_pair_type, /* \&{pair} variable or capsule */
4578 mp_numeric_type, /* variable that has been declared \&{numeric} but not used */
4579 mp_known, /* \&{numeric} with a known value */
4580 mp_dependent, /* a linear combination with |fraction| coefficients */
4581 mp_proto_dependent, /* a linear combination with |scaled| coefficients */
4582 mp_independent, /* \&{numeric} with unknown value */
4583 mp_token_list, /* variable name or suffix argument or text argument */
4584 mp_structured, /* variable with subscripts and attributes */
4585 mp_unsuffixed_macro, /* variable defined with \&{vardef} but no \.{\AT!\#} */
4586 mp_suffixed_macro /* variable defined with \&{vardef} and \.{\AT!\#} */
4590 void mp_print_type (MP mp,small_number t) ;
4592 @ @<Basic printing procedures@>=
4593 void mp_print_type (MP mp,small_number t) {
4595 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
4596 case mp_boolean_type:mp_print(mp, "boolean"); break;
4597 case mp_unknown_boolean:mp_print(mp, "unknown boolean"); break;
4598 case mp_string_type:mp_print(mp, "string"); break;
4599 case mp_unknown_string:mp_print(mp, "unknown string"); break;
4600 case mp_pen_type:mp_print(mp, "pen"); break;
4601 case mp_unknown_pen:mp_print(mp, "unknown pen"); break;
4602 case mp_path_type:mp_print(mp, "path"); break;
4603 case mp_unknown_path:mp_print(mp, "unknown path"); break;
4604 case mp_picture_type:mp_print(mp, "picture"); break;
4605 case mp_unknown_picture:mp_print(mp, "unknown picture"); break;
4606 case mp_transform_type:mp_print(mp, "transform"); break;
4607 case mp_color_type:mp_print(mp, "color"); break;
4608 case mp_cmykcolor_type:mp_print(mp, "cmykcolor"); break;
4609 case mp_pair_type:mp_print(mp, "pair"); break;
4610 case mp_known:mp_print(mp, "known numeric"); break;
4611 case mp_dependent:mp_print(mp, "dependent"); break;
4612 case mp_proto_dependent:mp_print(mp, "proto-dependent"); break;
4613 case mp_numeric_type:mp_print(mp, "numeric"); break;
4614 case mp_independent:mp_print(mp, "independent"); break;
4615 case mp_token_list:mp_print(mp, "token list"); break;
4616 case mp_structured:mp_print(mp, "mp_structured"); break;
4617 case mp_unsuffixed_macro:mp_print(mp, "unsuffixed macro"); break;
4618 case mp_suffixed_macro:mp_print(mp, "suffixed macro"); break;
4619 default: mp_print(mp, "undefined"); break;
4623 @ Values inside \MP\ are stored in two-word nodes that have a |name_type|
4624 as well as a |type|. The possibilities for |name_type| are defined
4625 here; they will be explained in more detail later.
4629 mp_root=0, /* |name_type| at the top level of a variable */
4630 mp_saved_root, /* same, when the variable has been saved */
4631 mp_structured_root, /* |name_type| where a |mp_structured| branch occurs */
4632 mp_subscr, /* |name_type| in a subscript node */
4633 mp_attr, /* |name_type| in an attribute node */
4634 mp_x_part_sector, /* |name_type| in the \&{xpart} of a node */
4635 mp_y_part_sector, /* |name_type| in the \&{ypart} of a node */
4636 mp_xx_part_sector, /* |name_type| in the \&{xxpart} of a node */
4637 mp_xy_part_sector, /* |name_type| in the \&{xypart} of a node */
4638 mp_yx_part_sector, /* |name_type| in the \&{yxpart} of a node */
4639 mp_yy_part_sector, /* |name_type| in the \&{yypart} of a node */
4640 mp_red_part_sector, /* |name_type| in the \&{redpart} of a node */
4641 mp_green_part_sector, /* |name_type| in the \&{greenpart} of a node */
4642 mp_blue_part_sector, /* |name_type| in the \&{bluepart} of a node */
4643 mp_cyan_part_sector, /* |name_type| in the \&{redpart} of a node */
4644 mp_magenta_part_sector, /* |name_type| in the \&{greenpart} of a node */
4645 mp_yellow_part_sector, /* |name_type| in the \&{bluepart} of a node */
4646 mp_black_part_sector, /* |name_type| in the \&{greenpart} of a node */
4647 mp_grey_part_sector, /* |name_type| in the \&{bluepart} of a node */
4648 mp_capsule, /* |name_type| in stashed-away subexpressions */
4649 mp_token /* |name_type| in a numeric token or string token */
4652 @ Primitive operations that produce values have a secondary identification
4653 code in addition to their command code; it's something like genera and species.
4654 For example, `\.*' has the command code |primary_binary|, and its
4655 secondary identification is |times|. The secondary codes start at 30 so that
4656 they don't overlap with the type codes; some type codes (e.g., |mp_string_type|)
4657 are used as operators as well as type identifications. The relative values
4658 are not critical, except for |true_code..false_code|, |or_op..and_op|,
4659 and |filled_op..bounded_op|. The restrictions are that
4660 |and_op-false_code=or_op-true_code|, that the ordering of
4661 |x_part...blue_part| must match that of |x_part_sector..mp_blue_part_sector|,
4662 and the ordering of |filled_op..bounded_op| must match that of the code
4663 values they test for.
4665 @d true_code 30 /* operation code for \.{true} */
4666 @d false_code 31 /* operation code for \.{false} */
4667 @d null_picture_code 32 /* operation code for \.{nullpicture} */
4668 @d null_pen_code 33 /* operation code for \.{nullpen} */
4669 @d job_name_op 34 /* operation code for \.{jobname} */
4670 @d read_string_op 35 /* operation code for \.{readstring} */
4671 @d pen_circle 36 /* operation code for \.{pencircle} */
4672 @d normal_deviate 37 /* operation code for \.{normaldeviate} */
4673 @d read_from_op 38 /* operation code for \.{readfrom} */
4674 @d close_from_op 39 /* operation code for \.{closefrom} */
4675 @d odd_op 40 /* operation code for \.{odd} */
4676 @d known_op 41 /* operation code for \.{known} */
4677 @d unknown_op 42 /* operation code for \.{unknown} */
4678 @d not_op 43 /* operation code for \.{not} */
4679 @d decimal 44 /* operation code for \.{decimal} */
4680 @d reverse 45 /* operation code for \.{reverse} */
4681 @d make_path_op 46 /* operation code for \.{makepath} */
4682 @d make_pen_op 47 /* operation code for \.{makepen} */
4683 @d oct_op 48 /* operation code for \.{oct} */
4684 @d hex_op 49 /* operation code for \.{hex} */
4685 @d ASCII_op 50 /* operation code for \.{ASCII} */
4686 @d char_op 51 /* operation code for \.{char} */
4687 @d length_op 52 /* operation code for \.{length} */
4688 @d turning_op 53 /* operation code for \.{turningnumber} */
4689 @d color_model_part 54 /* operation code for \.{colormodel} */
4690 @d x_part 55 /* operation code for \.{xpart} */
4691 @d y_part 56 /* operation code for \.{ypart} */
4692 @d xx_part 57 /* operation code for \.{xxpart} */
4693 @d xy_part 58 /* operation code for \.{xypart} */
4694 @d yx_part 59 /* operation code for \.{yxpart} */
4695 @d yy_part 60 /* operation code for \.{yypart} */
4696 @d red_part 61 /* operation code for \.{redpart} */
4697 @d green_part 62 /* operation code for \.{greenpart} */
4698 @d blue_part 63 /* operation code for \.{bluepart} */
4699 @d cyan_part 64 /* operation code for \.{cyanpart} */
4700 @d magenta_part 65 /* operation code for \.{magentapart} */
4701 @d yellow_part 66 /* operation code for \.{yellowpart} */
4702 @d black_part 67 /* operation code for \.{blackpart} */
4703 @d grey_part 68 /* operation code for \.{greypart} */
4704 @d font_part 69 /* operation code for \.{fontpart} */
4705 @d text_part 70 /* operation code for \.{textpart} */
4706 @d path_part 71 /* operation code for \.{pathpart} */
4707 @d pen_part 72 /* operation code for \.{penpart} */
4708 @d dash_part 73 /* operation code for \.{dashpart} */
4709 @d sqrt_op 74 /* operation code for \.{sqrt} */
4710 @d m_exp_op 75 /* operation code for \.{mexp} */
4711 @d m_log_op 76 /* operation code for \.{mlog} */
4712 @d sin_d_op 77 /* operation code for \.{sind} */
4713 @d cos_d_op 78 /* operation code for \.{cosd} */
4714 @d floor_op 79 /* operation code for \.{floor} */
4715 @d uniform_deviate 80 /* operation code for \.{uniformdeviate} */
4716 @d char_exists_op 81 /* operation code for \.{charexists} */
4717 @d font_size 82 /* operation code for \.{fontsize} */
4718 @d ll_corner_op 83 /* operation code for \.{llcorner} */
4719 @d lr_corner_op 84 /* operation code for \.{lrcorner} */
4720 @d ul_corner_op 85 /* operation code for \.{ulcorner} */
4721 @d ur_corner_op 86 /* operation code for \.{urcorner} */
4722 @d arc_length 87 /* operation code for \.{arclength} */
4723 @d angle_op 88 /* operation code for \.{angle} */
4724 @d cycle_op 89 /* operation code for \.{cycle} */
4725 @d filled_op 90 /* operation code for \.{filled} */
4726 @d stroked_op 91 /* operation code for \.{stroked} */
4727 @d textual_op 92 /* operation code for \.{textual} */
4728 @d clipped_op 93 /* operation code for \.{clipped} */
4729 @d bounded_op 94 /* operation code for \.{bounded} */
4730 @d plus 95 /* operation code for \.+ */
4731 @d minus 96 /* operation code for \.- */
4732 @d times 97 /* operation code for \.* */
4733 @d over 98 /* operation code for \./ */
4734 @d pythag_add 99 /* operation code for \.{++} */
4735 @d pythag_sub 100 /* operation code for \.{+-+} */
4736 @d or_op 101 /* operation code for \.{or} */
4737 @d and_op 102 /* operation code for \.{and} */
4738 @d less_than 103 /* operation code for \.< */
4739 @d less_or_equal 104 /* operation code for \.{<=} */
4740 @d greater_than 105 /* operation code for \.> */
4741 @d greater_or_equal 106 /* operation code for \.{>=} */
4742 @d equal_to 107 /* operation code for \.= */
4743 @d unequal_to 108 /* operation code for \.{<>} */
4744 @d concatenate 109 /* operation code for \.\& */
4745 @d rotated_by 110 /* operation code for \.{rotated} */
4746 @d slanted_by 111 /* operation code for \.{slanted} */
4747 @d scaled_by 112 /* operation code for \.{scaled} */
4748 @d shifted_by 113 /* operation code for \.{shifted} */
4749 @d transformed_by 114 /* operation code for \.{transformed} */
4750 @d x_scaled 115 /* operation code for \.{xscaled} */
4751 @d y_scaled 116 /* operation code for \.{yscaled} */
4752 @d z_scaled 117 /* operation code for \.{zscaled} */
4753 @d in_font 118 /* operation code for \.{infont} */
4754 @d intersect 119 /* operation code for \.{intersectiontimes} */
4755 @d double_dot 120 /* operation code for improper \.{..} */
4756 @d substring_of 121 /* operation code for \.{substring} */
4757 @d min_of substring_of
4758 @d subpath_of 122 /* operation code for \.{subpath} */
4759 @d direction_time_of 123 /* operation code for \.{directiontime} */
4760 @d point_of 124 /* operation code for \.{point} */
4761 @d precontrol_of 125 /* operation code for \.{precontrol} */
4762 @d postcontrol_of 126 /* operation code for \.{postcontrol} */
4763 @d pen_offset_of 127 /* operation code for \.{penoffset} */
4764 @d arc_time_of 128 /* operation code for \.{arctime} */
4765 @d mp_version 129 /* operation code for \.{mpversion} */
4767 @c void mp_print_op (MP mp,quarterword c) {
4768 if (c<=mp_numeric_type ) {
4769 mp_print_type(mp, c);
4772 case true_code:mp_print(mp, "true"); break;
4773 case false_code:mp_print(mp, "false"); break;
4774 case null_picture_code:mp_print(mp, "nullpicture"); break;
4775 case null_pen_code:mp_print(mp, "nullpen"); break;
4776 case job_name_op:mp_print(mp, "jobname"); break;
4777 case read_string_op:mp_print(mp, "readstring"); break;
4778 case pen_circle:mp_print(mp, "pencircle"); break;
4779 case normal_deviate:mp_print(mp, "normaldeviate"); break;
4780 case read_from_op:mp_print(mp, "readfrom"); break;
4781 case close_from_op:mp_print(mp, "closefrom"); break;
4782 case odd_op:mp_print(mp, "odd"); break;
4783 case known_op:mp_print(mp, "known"); break;
4784 case unknown_op:mp_print(mp, "unknown"); break;
4785 case not_op:mp_print(mp, "not"); break;
4786 case decimal:mp_print(mp, "decimal"); break;
4787 case reverse:mp_print(mp, "reverse"); break;
4788 case make_path_op:mp_print(mp, "makepath"); break;
4789 case make_pen_op:mp_print(mp, "makepen"); break;
4790 case oct_op:mp_print(mp, "oct"); break;
4791 case hex_op:mp_print(mp, "hex"); break;
4792 case ASCII_op:mp_print(mp, "ASCII"); break;
4793 case char_op:mp_print(mp, "char"); break;
4794 case length_op:mp_print(mp, "length"); break;
4795 case turning_op:mp_print(mp, "turningnumber"); break;
4796 case x_part:mp_print(mp, "xpart"); break;
4797 case y_part:mp_print(mp, "ypart"); break;
4798 case xx_part:mp_print(mp, "xxpart"); break;
4799 case xy_part:mp_print(mp, "xypart"); break;
4800 case yx_part:mp_print(mp, "yxpart"); break;
4801 case yy_part:mp_print(mp, "yypart"); break;
4802 case red_part:mp_print(mp, "redpart"); break;
4803 case green_part:mp_print(mp, "greenpart"); break;
4804 case blue_part:mp_print(mp, "bluepart"); break;
4805 case cyan_part:mp_print(mp, "cyanpart"); break;
4806 case magenta_part:mp_print(mp, "magentapart"); break;
4807 case yellow_part:mp_print(mp, "yellowpart"); break;
4808 case black_part:mp_print(mp, "blackpart"); break;
4809 case grey_part:mp_print(mp, "greypart"); break;
4810 case color_model_part:mp_print(mp, "colormodel"); break;
4811 case font_part:mp_print(mp, "fontpart"); break;
4812 case text_part:mp_print(mp, "textpart"); break;
4813 case path_part:mp_print(mp, "pathpart"); break;
4814 case pen_part:mp_print(mp, "penpart"); break;
4815 case dash_part:mp_print(mp, "dashpart"); break;
4816 case sqrt_op:mp_print(mp, "sqrt"); break;
4817 case m_exp_op:mp_print(mp, "mexp"); break;
4818 case m_log_op:mp_print(mp, "mlog"); break;
4819 case sin_d_op:mp_print(mp, "sind"); break;
4820 case cos_d_op:mp_print(mp, "cosd"); break;
4821 case floor_op:mp_print(mp, "floor"); break;
4822 case uniform_deviate:mp_print(mp, "uniformdeviate"); break;
4823 case char_exists_op:mp_print(mp, "charexists"); break;
4824 case font_size:mp_print(mp, "fontsize"); break;
4825 case ll_corner_op:mp_print(mp, "llcorner"); break;
4826 case lr_corner_op:mp_print(mp, "lrcorner"); break;
4827 case ul_corner_op:mp_print(mp, "ulcorner"); break;
4828 case ur_corner_op:mp_print(mp, "urcorner"); break;
4829 case arc_length:mp_print(mp, "arclength"); break;
4830 case angle_op:mp_print(mp, "angle"); break;
4831 case cycle_op:mp_print(mp, "cycle"); break;
4832 case filled_op:mp_print(mp, "filled"); break;
4833 case stroked_op:mp_print(mp, "stroked"); break;
4834 case textual_op:mp_print(mp, "textual"); break;
4835 case clipped_op:mp_print(mp, "clipped"); break;
4836 case bounded_op:mp_print(mp, "bounded"); break;
4837 case plus:mp_print_char(mp, '+'); break;
4838 case minus:mp_print_char(mp, '-'); break;
4839 case times:mp_print_char(mp, '*'); break;
4840 case over:mp_print_char(mp, '/'); break;
4841 case pythag_add:mp_print(mp, "++"); break;
4842 case pythag_sub:mp_print(mp, "+-+"); break;
4843 case or_op:mp_print(mp, "or"); break;
4844 case and_op:mp_print(mp, "and"); break;
4845 case less_than:mp_print_char(mp, '<'); break;
4846 case less_or_equal:mp_print(mp, "<="); break;
4847 case greater_than:mp_print_char(mp, '>'); break;
4848 case greater_or_equal:mp_print(mp, ">="); break;
4849 case equal_to:mp_print_char(mp, '='); break;
4850 case unequal_to:mp_print(mp, "<>"); break;
4851 case concatenate:mp_print(mp, "&"); break;
4852 case rotated_by:mp_print(mp, "rotated"); break;
4853 case slanted_by:mp_print(mp, "slanted"); break;
4854 case scaled_by:mp_print(mp, "scaled"); break;
4855 case shifted_by:mp_print(mp, "shifted"); break;
4856 case transformed_by:mp_print(mp, "transformed"); break;
4857 case x_scaled:mp_print(mp, "xscaled"); break;
4858 case y_scaled:mp_print(mp, "yscaled"); break;
4859 case z_scaled:mp_print(mp, "zscaled"); break;
4860 case in_font:mp_print(mp, "infont"); break;
4861 case intersect:mp_print(mp, "intersectiontimes"); break;
4862 case substring_of:mp_print(mp, "substring"); break;
4863 case subpath_of:mp_print(mp, "subpath"); break;
4864 case direction_time_of:mp_print(mp, "directiontime"); break;
4865 case point_of:mp_print(mp, "point"); break;
4866 case precontrol_of:mp_print(mp, "precontrol"); break;
4867 case postcontrol_of:mp_print(mp, "postcontrol"); break;
4868 case pen_offset_of:mp_print(mp, "penoffset"); break;
4869 case arc_time_of:mp_print(mp, "arctime"); break;
4870 case mp_version:mp_print(mp, "mpversion"); break;
4871 default: mp_print(mp, ".."); break;
4876 @ \MP\ also has a bunch of internal parameters that a user might want to
4877 fuss with. Every such parameter has an identifying code number, defined here.
4879 @d tracing_titles 1 /* show titles online when they appear */
4880 @d tracing_equations 2 /* show each variable when it becomes known */
4881 @d tracing_capsules 3 /* show capsules too */
4882 @d tracing_choices 4 /* show the control points chosen for paths */
4883 @d tracing_specs 5 /* show path subdivision prior to filling with polygonal a pen */
4884 @d tracing_commands 6 /* show commands and operations before they are performed */
4885 @d tracing_restores 7 /* show when a variable or internal is restored */
4886 @d tracing_macros 8 /* show macros before they are expanded */
4887 @d tracing_output 9 /* show digitized edges as they are output */
4888 @d tracing_stats 10 /* show memory usage at end of job */
4889 @d tracing_lost_chars 11 /* show characters that aren't \&{infont} */
4890 @d tracing_online 12 /* show long diagnostics on terminal and in the log file */
4891 @d year 13 /* the current year (e.g., 1984) */
4892 @d month 14 /* the current month (e.g, 3 $\equiv$ March) */
4893 @d day 15 /* the current day of the month */
4894 @d mp_time 16 /* the number of minutes past midnight when this job started */
4895 @d char_code 17 /* the number of the next character to be output */
4896 @d char_ext 18 /* the extension code of the next character to be output */
4897 @d char_wd 19 /* the width of the next character to be output */
4898 @d char_ht 20 /* the height of the next character to be output */
4899 @d char_dp 21 /* the depth of the next character to be output */
4900 @d char_ic 22 /* the italic correction of the next character to be output */
4901 @d design_size 23 /* the unit of measure used for |char_wd..char_ic|, in points */
4902 @d pausing 24 /* positive to display lines on the terminal before they are read */
4903 @d showstopping 25 /* positive to stop after each \&{show} command */
4904 @d fontmaking 26 /* positive if font metric output is to be produced */
4905 @d linejoin 27 /* as in \ps: 0 for mitered, 1 for round, 2 for beveled */
4906 @d linecap 28 /* as in \ps: 0 for butt, 1 for round, 2 for square */
4907 @d miterlimit 29 /* controls miter length as in \ps */
4908 @d warning_check 30 /* controls error message when variable value is large */
4909 @d boundary_char 31 /* the right boundary character for ligatures */
4910 @d prologues 32 /* positive to output conforming PostScript using built-in fonts */
4911 @d true_corners 33 /* positive to make \&{llcorner} etc. ignore \&{setbounds} */
4912 @d default_color_model 34 /* the default color model for unspecified items */
4913 @d restore_clip_color 35
4914 @d mpprocset 36 /* wether or not create PostScript command shortcuts */
4915 @d gtroffmode 37 /* whether the user specified |-troff| on the command line */
4916 @d max_given_internal 37
4919 scaled *internal; /* the values of internal quantities */
4920 char **int_name; /* their names */
4921 int int_ptr; /* the maximum internal quantity defined so far */
4922 int max_internal; /* current maximum number of internal quantities */
4925 @ @<Option variables@>=
4928 @ @<Allocate or initialize ...@>=
4929 mp->max_internal=2*max_given_internal;
4930 mp->internal = xmalloc ((mp->max_internal+1), sizeof(scaled));
4931 mp->int_name = xmalloc ((mp->max_internal+1), sizeof(char *));
4932 mp->troff_mode=(opt.troff_mode>0 ? true : false);
4935 int mp_troff_mode(MP mp);
4938 int mp_troff_mode(MP mp) { return mp->troff_mode; }
4940 @ @<Set initial ...@>=
4941 for (k=0;k<= mp->max_internal; k++ ) {
4943 mp->int_name[k]=NULL;
4945 mp->int_ptr=max_given_internal;
4947 @ The symbolic names for internal quantities are put into \MP's hash table
4948 by using a routine called |primitive|, which will be defined later. Let us
4949 enter them now, so that we don't have to list all those names again
4952 @<Put each of \MP's primitives into the hash table@>=
4953 mp_primitive(mp, "tracingtitles",internal_quantity,tracing_titles);
4954 @:tracingtitles_}{\&{tracingtitles} primitive@>
4955 mp_primitive(mp, "tracingequations",internal_quantity,tracing_equations);
4956 @:tracing_equations_}{\&{tracingequations} primitive@>
4957 mp_primitive(mp, "tracingcapsules",internal_quantity,tracing_capsules);
4958 @:tracing_capsules_}{\&{tracingcapsules} primitive@>
4959 mp_primitive(mp, "tracingchoices",internal_quantity,tracing_choices);
4960 @:tracing_choices_}{\&{tracingchoices} primitive@>
4961 mp_primitive(mp, "tracingspecs",internal_quantity,tracing_specs);
4962 @:tracing_specs_}{\&{tracingspecs} primitive@>
4963 mp_primitive(mp, "tracingcommands",internal_quantity,tracing_commands);
4964 @:tracing_commands_}{\&{tracingcommands} primitive@>
4965 mp_primitive(mp, "tracingrestores",internal_quantity,tracing_restores);
4966 @:tracing_restores_}{\&{tracingrestores} primitive@>
4967 mp_primitive(mp, "tracingmacros",internal_quantity,tracing_macros);
4968 @:tracing_macros_}{\&{tracingmacros} primitive@>
4969 mp_primitive(mp, "tracingoutput",internal_quantity,tracing_output);
4970 @:tracing_output_}{\&{tracingoutput} primitive@>
4971 mp_primitive(mp, "tracingstats",internal_quantity,tracing_stats);
4972 @:tracing_stats_}{\&{tracingstats} primitive@>
4973 mp_primitive(mp, "tracinglostchars",internal_quantity,tracing_lost_chars);
4974 @:tracing_lost_chars_}{\&{tracinglostchars} primitive@>
4975 mp_primitive(mp, "tracingonline",internal_quantity,tracing_online);
4976 @:tracing_online_}{\&{tracingonline} primitive@>
4977 mp_primitive(mp, "year",internal_quantity,year);
4978 @:year_}{\&{year} primitive@>
4979 mp_primitive(mp, "month",internal_quantity,month);
4980 @:month_}{\&{month} primitive@>
4981 mp_primitive(mp, "day",internal_quantity,day);
4982 @:day_}{\&{day} primitive@>
4983 mp_primitive(mp, "time",internal_quantity,mp_time);
4984 @:time_}{\&{time} primitive@>
4985 mp_primitive(mp, "charcode",internal_quantity,char_code);
4986 @:char_code_}{\&{charcode} primitive@>
4987 mp_primitive(mp, "charext",internal_quantity,char_ext);
4988 @:char_ext_}{\&{charext} primitive@>
4989 mp_primitive(mp, "charwd",internal_quantity,char_wd);
4990 @:char_wd_}{\&{charwd} primitive@>
4991 mp_primitive(mp, "charht",internal_quantity,char_ht);
4992 @:char_ht_}{\&{charht} primitive@>
4993 mp_primitive(mp, "chardp",internal_quantity,char_dp);
4994 @:char_dp_}{\&{chardp} primitive@>
4995 mp_primitive(mp, "charic",internal_quantity,char_ic);
4996 @:char_ic_}{\&{charic} primitive@>
4997 mp_primitive(mp, "designsize",internal_quantity,design_size);
4998 @:design_size_}{\&{designsize} primitive@>
4999 mp_primitive(mp, "pausing",internal_quantity,pausing);
5000 @:pausing_}{\&{pausing} primitive@>
5001 mp_primitive(mp, "showstopping",internal_quantity,showstopping);
5002 @:showstopping_}{\&{showstopping} primitive@>
5003 mp_primitive(mp, "fontmaking",internal_quantity,fontmaking);
5004 @:fontmaking_}{\&{fontmaking} primitive@>
5005 mp_primitive(mp, "linejoin",internal_quantity,linejoin);
5006 @:linejoin_}{\&{linejoin} primitive@>
5007 mp_primitive(mp, "linecap",internal_quantity,linecap);
5008 @:linecap_}{\&{linecap} primitive@>
5009 mp_primitive(mp, "miterlimit",internal_quantity,miterlimit);
5010 @:miterlimit_}{\&{miterlimit} primitive@>
5011 mp_primitive(mp, "warningcheck",internal_quantity,warning_check);
5012 @:warning_check_}{\&{warningcheck} primitive@>
5013 mp_primitive(mp, "boundarychar",internal_quantity,boundary_char);
5014 @:boundary_char_}{\&{boundarychar} primitive@>
5015 mp_primitive(mp, "prologues",internal_quantity,prologues);
5016 @:prologues_}{\&{prologues} primitive@>
5017 mp_primitive(mp, "truecorners",internal_quantity,true_corners);
5018 @:true_corners_}{\&{truecorners} primitive@>
5019 mp_primitive(mp, "mpprocset",internal_quantity,mpprocset);
5020 @:mpprocset_}{\&{mpprocset} primitive@>
5021 mp_primitive(mp, "troffmode",internal_quantity,gtroffmode);
5022 @:troffmode_}{\&{troffmode} primitive@>
5023 mp_primitive(mp, "defaultcolormodel",internal_quantity,default_color_model);
5024 @:default_color_model_}{\&{defaultcolormodel} primitive@>
5025 mp_primitive(mp, "restoreclipcolor",internal_quantity,restore_clip_color);
5026 @:restore_clip_color_}{\&{restoreclipcolor} primitive@>
5028 @ Colors can be specified in four color models. In the special
5029 case of |no_model|, MetaPost does not output any color operator to
5030 the postscript output.
5032 Note: these values are passed directly on to |with_option|. This only
5033 works because the other possible values passed to |with_option| are
5034 8 and 10 respectively (from |with_pen| and |with_picture|).
5036 There is a first state, that is only used for |gs_colormodel|. It flags
5037 the fact that there has not been any kind of color specification by
5038 the user so far in the game.
5044 @d uninitialized_model 9
5046 @<Initialize table entries (done by \.{INIMP} only)@>=
5047 mp->internal[default_color_model]=(rgb_model*unity);
5048 mp->internal[restore_clip_color]=unity;
5050 @ Well, we do have to list the names one more time, for use in symbolic
5053 @<Initialize table...@>=
5054 mp->int_name[tracing_titles]=xstrdup("tracingtitles");
5055 mp->int_name[tracing_equations]=xstrdup("tracingequations");
5056 mp->int_name[tracing_capsules]=xstrdup("tracingcapsules");
5057 mp->int_name[tracing_choices]=xstrdup("tracingchoices");
5058 mp->int_name[tracing_specs]=xstrdup("tracingspecs");
5059 mp->int_name[tracing_commands]=xstrdup("tracingcommands");
5060 mp->int_name[tracing_restores]=xstrdup("tracingrestores");
5061 mp->int_name[tracing_macros]=xstrdup("tracingmacros");
5062 mp->int_name[tracing_output]=xstrdup("tracingoutput");
5063 mp->int_name[tracing_stats]=xstrdup("tracingstats");
5064 mp->int_name[tracing_lost_chars]=xstrdup("tracinglostchars");
5065 mp->int_name[tracing_online]=xstrdup("tracingonline");
5066 mp->int_name[year]=xstrdup("year");
5067 mp->int_name[month]=xstrdup("month");
5068 mp->int_name[day]=xstrdup("day");
5069 mp->int_name[mp_time]=xstrdup("time");
5070 mp->int_name[char_code]=xstrdup("charcode");
5071 mp->int_name[char_ext]=xstrdup("charext");
5072 mp->int_name[char_wd]=xstrdup("charwd");
5073 mp->int_name[char_ht]=xstrdup("charht");
5074 mp->int_name[char_dp]=xstrdup("chardp");
5075 mp->int_name[char_ic]=xstrdup("charic");
5076 mp->int_name[design_size]=xstrdup("designsize");
5077 mp->int_name[pausing]=xstrdup("pausing");
5078 mp->int_name[showstopping]=xstrdup("showstopping");
5079 mp->int_name[fontmaking]=xstrdup("fontmaking");
5080 mp->int_name[linejoin]=xstrdup("linejoin");
5081 mp->int_name[linecap]=xstrdup("linecap");
5082 mp->int_name[miterlimit]=xstrdup("miterlimit");
5083 mp->int_name[warning_check]=xstrdup("warningcheck");
5084 mp->int_name[boundary_char]=xstrdup("boundarychar");
5085 mp->int_name[prologues]=xstrdup("prologues");
5086 mp->int_name[true_corners]=xstrdup("truecorners");
5087 mp->int_name[default_color_model]=xstrdup("defaultcolormodel");
5088 mp->int_name[mpprocset]=xstrdup("mpprocset");
5089 mp->int_name[gtroffmode]=xstrdup("troffmode");
5090 mp->int_name[restore_clip_color]=xstrdup("restoreclipcolor");
5092 @ The following procedure, which is called just before \MP\ initializes its
5093 input and output, establishes the initial values of the date and time.
5094 @^system dependencies@>
5096 Note that the values are |scaled| integers. Hence \MP\ can no longer
5097 be used after the year 32767.
5100 void mp_fix_date_and_time (MP mp) {
5101 time_t clock = time ((time_t *) 0);
5102 struct tm *tmptr = localtime (&clock);
5103 mp->internal[mp_time]=
5104 (tmptr->tm_hour*60+tmptr->tm_min)*unity; /* minutes since midnight */
5105 mp->internal[day]=(tmptr->tm_mday)*unity; /* fourth day of the month */
5106 mp->internal[month]=(tmptr->tm_mon+1)*unity; /* seventh month of the year */
5107 mp->internal[year]=(tmptr->tm_year+1900)*unity; /* Anno Domini */
5111 void mp_fix_date_and_time (MP mp) ;
5113 @ \MP\ is occasionally supposed to print diagnostic information that
5114 goes only into the transcript file, unless |tracing_online| is positive.
5115 Now that we have defined |tracing_online| we can define
5116 two routines that adjust the destination of print commands:
5119 void mp_begin_diagnostic (MP mp) ;
5120 void mp_end_diagnostic (MP mp,boolean blank_line);
5121 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) ;
5123 @ @<Basic printing...@>=
5124 @<Declare a function called |true_line|@>;
5125 void mp_begin_diagnostic (MP mp) { /* prepare to do some tracing */
5126 mp->old_setting=mp->selector;
5127 if ( mp->selector==ps_file_only ) mp->selector=mp->non_ps_setting;
5128 if ((mp->internal[tracing_online]<=0)&&(mp->selector==term_and_log)){
5130 if ( mp->history==spotless ) mp->history=warning_issued;
5134 void mp_end_diagnostic (MP mp,boolean blank_line) {
5135 /* restore proper conditions after tracing */
5136 mp_print_nl(mp, "");
5137 if ( blank_line ) mp_print_ln(mp);
5138 mp->selector=mp->old_setting;
5141 @ The global variable |non_ps_setting| is initialized when it is time to print
5145 unsigned int old_setting;
5146 unsigned int non_ps_setting;
5148 @ We will occasionally use |begin_diagnostic| in connection with line-number
5149 printing, as follows. (The parameter |s| is typically |"Path"| or
5150 |"Cycle spec"|, etc.)
5152 @<Basic printing...@>=
5153 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) {
5154 mp_begin_diagnostic(mp);
5155 if ( nuline ) mp_print_nl(mp, s); else mp_print(mp, s);
5156 mp_print(mp, " at line ");
5157 mp_print_int(mp, mp_true_line(mp));
5158 mp_print(mp, t); mp_print_char(mp, ':');
5161 @ The 256 |ASCII_code| characters are grouped into classes by means of
5162 the |char_class| table. Individual class numbers have no semantic
5163 or syntactic significance, except in a few instances defined here.
5164 There's also |max_class|, which can be used as a basis for additional
5165 class numbers in nonstandard extensions of \MP.
5167 @d digit_class 0 /* the class number of \.{0123456789} */
5168 @d period_class 1 /* the class number of `\..' */
5169 @d space_class 2 /* the class number of spaces and nonstandard characters */
5170 @d percent_class 3 /* the class number of `\.\%' */
5171 @d string_class 4 /* the class number of `\."' */
5172 @d right_paren_class 8 /* the class number of `\.)' */
5173 @d isolated_classes 5: case 6: case 7: case 8 /* characters that make length-one tokens only */
5174 @d letter_class 9 /* letters and the underline character */
5175 @d left_bracket_class 17 /* `\.[' */
5176 @d right_bracket_class 18 /* `\.]' */
5177 @d invalid_class 20 /* bad character in the input */
5178 @d max_class 20 /* the largest class number */
5181 int char_class[256]; /* the class numbers */
5183 @ If changes are made to accommodate non-ASCII character sets, they should
5184 follow the guidelines in Appendix~C of {\sl The {\logos METAFONT\/}book}.
5185 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
5186 @^system dependencies@>
5188 @<Set initial ...@>=
5189 for (k='0';k<='9';k++)
5190 mp->char_class[k]=digit_class;
5191 mp->char_class['.']=period_class;
5192 mp->char_class[' ']=space_class;
5193 mp->char_class['%']=percent_class;
5194 mp->char_class['"']=string_class;
5195 mp->char_class[',']=5;
5196 mp->char_class[';']=6;
5197 mp->char_class['(']=7;
5198 mp->char_class[')']=right_paren_class;
5199 for (k='A';k<= 'Z';k++ )
5200 mp->char_class[k]=letter_class;
5201 for (k='a';k<='z';k++)
5202 mp->char_class[k]=letter_class;
5203 mp->char_class['_']=letter_class;
5204 mp->char_class['<']=10;
5205 mp->char_class['=']=10;
5206 mp->char_class['>']=10;
5207 mp->char_class[':']=10;
5208 mp->char_class['|']=10;
5209 mp->char_class['`']=11;
5210 mp->char_class['\'']=11;
5211 mp->char_class['+']=12;
5212 mp->char_class['-']=12;
5213 mp->char_class['/']=13;
5214 mp->char_class['*']=13;
5215 mp->char_class['\\']=13;
5216 mp->char_class['!']=14;
5217 mp->char_class['?']=14;
5218 mp->char_class['#']=15;
5219 mp->char_class['&']=15;
5220 mp->char_class['@@']=15;
5221 mp->char_class['$']=15;
5222 mp->char_class['^']=16;
5223 mp->char_class['~']=16;
5224 mp->char_class['[']=left_bracket_class;
5225 mp->char_class[']']=right_bracket_class;
5226 mp->char_class['{']=19;
5227 mp->char_class['}']=19;
5229 mp->char_class[k]=invalid_class;
5230 mp->char_class['\t']=space_class;
5231 mp->char_class['\f']=space_class;
5232 for (k=127;k<=255;k++)
5233 mp->char_class[k]=invalid_class;
5235 @* \[13] The hash table.
5236 Symbolic tokens are stored and retrieved by means of a fairly standard hash
5237 table algorithm called the method of ``coalescing lists'' (cf.\ Algorithm 6.4C
5238 in {\sl The Art of Computer Programming\/}). Once a symbolic token enters the
5239 table, it is never removed.
5241 The actual sequence of characters forming a symbolic token is
5242 stored in the |str_pool| array together with all the other strings. An
5243 auxiliary array |hash| consists of items with two halfword fields per
5244 word. The first of these, called |next(p)|, points to the next identifier
5245 belonging to the same coalesced list as the identifier corresponding to~|p|;
5246 and the other, called |text(p)|, points to the |str_start| entry for
5247 |p|'s identifier. If position~|p| of the hash table is empty, we have
5248 |text(p)=0|; if position |p| is either empty or the end of a coalesced
5249 hash list, we have |next(p)=0|.
5251 An auxiliary pointer variable called |hash_used| is maintained in such a
5252 way that all locations |p>=hash_used| are nonempty. The global variable
5253 |st_count| tells how many symbolic tokens have been defined, if statistics
5256 The first 256 locations of |hash| are reserved for symbols of length one.
5258 There's a parallel array called |eqtb| that contains the current equivalent
5259 values of each symbolic token. The entries of this array consist of
5260 two halfwords called |eq_type| (a command code) and |equiv| (a secondary
5261 piece of information that qualifies the |eq_type|).
5263 @d next(A) mp->hash[(A)].lh /* link for coalesced lists */
5264 @d text(A) mp->hash[(A)].rh /* string number for symbolic token name */
5265 @d eq_type(A) mp->eqtb[(A)].lh /* the current ``meaning'' of a symbolic token */
5266 @d equiv(A) mp->eqtb[(A)].rh /* parametric part of a token's meaning */
5267 @d hash_base 257 /* hashing actually starts here */
5268 @d hash_is_full (mp->hash_used==hash_base) /* are all positions occupied? */
5271 pointer hash_used; /* allocation pointer for |hash| */
5272 integer st_count; /* total number of known identifiers */
5274 @ Certain entries in the hash table are ``frozen'' and not redefinable,
5275 since they are used in error recovery.
5277 @d hash_top (hash_base+mp->hash_size) /* the first location of the frozen area */
5278 @d frozen_inaccessible hash_top /* |hash| location to protect the frozen area */
5279 @d frozen_repeat_loop (hash_top+1) /* |hash| location of a loop-repeat token */
5280 @d frozen_right_delimiter (hash_top+2) /* |hash| location of a permanent `\.)' */
5281 @d frozen_left_bracket (hash_top+3) /* |hash| location of a permanent `\.[' */
5282 @d frozen_slash (hash_top+4) /* |hash| location of a permanent `\./' */
5283 @d frozen_colon (hash_top+5) /* |hash| location of a permanent `\.:' */
5284 @d frozen_semicolon (hash_top+6) /* |hash| location of a permanent `\.;' */
5285 @d frozen_end_for (hash_top+7) /* |hash| location of a permanent \&{endfor} */
5286 @d frozen_end_def (hash_top+8) /* |hash| location of a permanent \&{enddef} */
5287 @d frozen_fi (hash_top+9) /* |hash| location of a permanent \&{fi} */
5288 @d frozen_end_group (hash_top+10) /* |hash| location of a permanent `\.{endgroup}' */
5289 @d frozen_etex (hash_top+11) /* |hash| location of a permanent \&{etex} */
5290 @d frozen_mpx_break (hash_top+12) /* |hash| location of a permanent \&{mpxbreak} */
5291 @d frozen_bad_vardef (hash_top+13) /* |hash| location of `\.{a bad variable}' */
5292 @d frozen_undefined (hash_top+14) /* |hash| location that never gets defined */
5293 @d hash_end (hash_top+14) /* the actual size of the |hash| and |eqtb| arrays */
5296 two_halves *hash; /* the hash table */
5297 two_halves *eqtb; /* the equivalents */
5299 @ @<Allocate or initialize ...@>=
5300 mp->hash = xmalloc((hash_end+1),sizeof(two_halves));
5301 mp->eqtb = xmalloc((hash_end+1),sizeof(two_halves));
5303 @ @<Dealloc variables@>=
5308 next(1)=0; text(1)=0; eq_type(1)=tag_token; equiv(1)=null;
5309 for (k=2;k<=hash_end;k++) {
5310 mp->hash[k]=mp->hash[1]; mp->eqtb[k]=mp->eqtb[1];
5313 @ @<Initialize table entries...@>=
5314 mp->hash_used=frozen_inaccessible; /* nothing is used */
5316 text(frozen_bad_vardef)=intern("a bad variable");
5317 text(frozen_etex)=intern("etex");
5318 text(frozen_mpx_break)=intern("mpxbreak");
5319 text(frozen_fi)=intern("fi");
5320 text(frozen_end_group)=intern("endgroup");
5321 text(frozen_end_def)=intern("enddef");
5322 text(frozen_end_for)=intern("endfor");
5323 text(frozen_semicolon)=intern(";");
5324 text(frozen_colon)=intern(":");
5325 text(frozen_slash)=intern("/");
5326 text(frozen_left_bracket)=intern("[");
5327 text(frozen_right_delimiter)=intern(")");
5328 text(frozen_inaccessible)=intern(" INACCESSIBLE");
5329 eq_type(frozen_right_delimiter)=right_delimiter;
5331 @ @<Check the ``constant'' values...@>=
5332 if ( hash_end+mp->max_internal>max_halfword ) mp->bad=17;
5334 @ Here is the subroutine that searches the hash table for an identifier
5335 that matches a given string of length~|l| appearing in |buffer[j..
5336 (j+l-1)]|. If the identifier is not found, it is inserted; hence it
5337 will always be found, and the corresponding hash table address
5341 pointer mp_id_lookup (MP mp,integer j, integer l) { /* search the hash table */
5342 integer h; /* hash code */
5343 pointer p; /* index in |hash| array */
5344 pointer k; /* index in |buffer| array */
5346 @<Treat special case of length 1 and |break|@>;
5348 @<Compute the hash code |h|@>;
5349 p=h+hash_base; /* we start searching here; note that |0<=h<hash_prime| */
5351 if (text(p)>0 && length(text(p))==l && mp_str_eq_buf(mp, text(p),j))
5354 @<Insert a new symbolic token after |p|, then
5355 make |p| point to it and |break|@>;
5362 @ @<Treat special case of length 1...@>=
5363 p=mp->buffer[j]+1; text(p)=p-1; return p;
5366 @ @<Insert a new symbolic...@>=
5371 mp_overflow(mp, "hash size",mp->hash_size);
5372 @:MetaPost capacity exceeded hash size}{\quad hash size@>
5373 decr(mp->hash_used);
5374 } while (text(mp->hash_used)!=0); /* search for an empty location in |hash| */
5375 next(p)=mp->hash_used;
5379 for (k=j;k<=j+l-1;k++) {
5380 append_char(mp->buffer[k]);
5382 text(p)=mp_make_string(mp);
5383 mp->str_ref[text(p)]=max_str_ref;
5389 @ The value of |hash_prime| should be roughly 85\pct! of |hash_size|, and it
5390 should be a prime number. The theory of hashing tells us to expect fewer
5391 than two table probes, on the average, when the search is successful.
5392 [See J.~S. Vitter, {\sl Journal of the ACM\/ \bf30} (1983), 231--258.]
5393 @^Vitter, Jeffrey Scott@>
5395 @<Compute the hash code |h|@>=
5397 for (k=j+1;k<=j+l-1;k++){
5398 h=h+h+mp->buffer[k];
5399 while ( h>=mp->hash_prime ) h=h-mp->hash_prime;
5402 @ @<Search |eqtb| for equivalents equal to |p|@>=
5403 for (q=1;q<=hash_end;q++) {
5404 if ( equiv(q)==p ) {
5405 mp_print_nl(mp, "EQUIV(");
5406 mp_print_int(mp, q);
5407 mp_print_char(mp, ')');
5411 @ We need to put \MP's ``primitive'' symbolic tokens into the hash
5412 table, together with their command code (which will be the |eq_type|)
5413 and an operand (which will be the |equiv|). The |primitive| procedure
5414 does this, in a way that no \MP\ user can. The global value |cur_sym|
5415 contains the new |eqtb| pointer after |primitive| has acted.
5418 void mp_primitive (MP mp, char *ss, halfword c, halfword o) {
5419 pool_pointer k; /* index into |str_pool| */
5420 small_number j; /* index into |buffer| */
5421 small_number l; /* length of the string */
5424 k=mp->str_start[s]; l=str_stop(s)-k;
5425 /* we will move |s| into the (empty) |buffer| */
5426 for (j=0;j<=l-1;j++) {
5427 mp->buffer[j]=mp->str_pool[k+j];
5429 mp->cur_sym=mp_id_lookup(mp, 0,l);
5430 if ( s>=256 ) { /* we don't want to have the string twice */
5431 mp_flush_string(mp, text(mp->cur_sym)); text(mp->cur_sym)=s;
5433 eq_type(mp->cur_sym)=c;
5434 equiv(mp->cur_sym)=o;
5438 @ Many of \MP's primitives need no |equiv|, since they are identifiable
5439 by their |eq_type| alone. These primitives are loaded into the hash table
5442 @<Put each of \MP's primitives into the hash table@>=
5443 mp_primitive(mp, "..",path_join,0);
5444 @:.._}{\.{..} primitive@>
5445 mp_primitive(mp, "[",left_bracket,0); mp->eqtb[frozen_left_bracket]=mp->eqtb[mp->cur_sym];
5446 @:[ }{\.{[} primitive@>
5447 mp_primitive(mp, "]",right_bracket,0);
5448 @:] }{\.{]} primitive@>
5449 mp_primitive(mp, "}",right_brace,0);
5450 @:]]}{\.{\char`\}} primitive@>
5451 mp_primitive(mp, "{",left_brace,0);
5452 @:][}{\.{\char`\{} primitive@>
5453 mp_primitive(mp, ":",colon,0); mp->eqtb[frozen_colon]=mp->eqtb[mp->cur_sym];
5454 @:: }{\.{:} primitive@>
5455 mp_primitive(mp, "::",double_colon,0);
5456 @::: }{\.{::} primitive@>
5457 mp_primitive(mp, "||:",bchar_label,0);
5458 @:::: }{\.{\char'174\char'174:} primitive@>
5459 mp_primitive(mp, ":=",assignment,0);
5460 @::=_}{\.{:=} primitive@>
5461 mp_primitive(mp, ",",comma,0);
5462 @:, }{\., primitive@>
5463 mp_primitive(mp, ";",semicolon,0); mp->eqtb[frozen_semicolon]=mp->eqtb[mp->cur_sym];
5464 @:; }{\.; primitive@>
5465 mp_primitive(mp, "\\",relax,0);
5466 @:]]\\}{\.{\char`\\} primitive@>
5468 mp_primitive(mp, "addto",add_to_command,0);
5469 @:add_to_}{\&{addto} primitive@>
5470 mp_primitive(mp, "atleast",at_least,0);
5471 @:at_least_}{\&{atleast} primitive@>
5472 mp_primitive(mp, "begingroup",begin_group,0); mp->bg_loc=mp->cur_sym;
5473 @:begin_group_}{\&{begingroup} primitive@>
5474 mp_primitive(mp, "controls",controls,0);
5475 @:controls_}{\&{controls} primitive@>
5476 mp_primitive(mp, "curl",curl_command,0);
5477 @:curl_}{\&{curl} primitive@>
5478 mp_primitive(mp, "delimiters",delimiters,0);
5479 @:delimiters_}{\&{delimiters} primitive@>
5480 mp_primitive(mp, "endgroup",end_group,0);
5481 mp->eqtb[frozen_end_group]=mp->eqtb[mp->cur_sym]; mp->eg_loc=mp->cur_sym;
5482 @:endgroup_}{\&{endgroup} primitive@>
5483 mp_primitive(mp, "everyjob",every_job_command,0);
5484 @:every_job_}{\&{everyjob} primitive@>
5485 mp_primitive(mp, "exitif",exit_test,0);
5486 @:exit_if_}{\&{exitif} primitive@>
5487 mp_primitive(mp, "expandafter",expand_after,0);
5488 @:expand_after_}{\&{expandafter} primitive@>
5489 mp_primitive(mp, "interim",interim_command,0);
5490 @:interim_}{\&{interim} primitive@>
5491 mp_primitive(mp, "let",let_command,0);
5492 @:let_}{\&{let} primitive@>
5493 mp_primitive(mp, "newinternal",new_internal,0);
5494 @:new_internal_}{\&{newinternal} primitive@>
5495 mp_primitive(mp, "of",of_token,0);
5496 @:of_}{\&{of} primitive@>
5497 mp_primitive(mp, "randomseed",random_seed,0);
5498 @:random_seed_}{\&{randomseed} primitive@>
5499 mp_primitive(mp, "save",save_command,0);
5500 @:save_}{\&{save} primitive@>
5501 mp_primitive(mp, "scantokens",scan_tokens,0);
5502 @:scan_tokens_}{\&{scantokens} primitive@>
5503 mp_primitive(mp, "shipout",ship_out_command,0);
5504 @:ship_out_}{\&{shipout} primitive@>
5505 mp_primitive(mp, "skipto",skip_to,0);
5506 @:skip_to_}{\&{skipto} primitive@>
5507 mp_primitive(mp, "special",special_command,0);
5508 @:special}{\&{special} primitive@>
5509 mp_primitive(mp, "fontmapfile",special_command,1);
5510 @:fontmapfile}{\&{fontmapfile} primitive@>
5511 mp_primitive(mp, "fontmapline",special_command,2);
5512 @:fontmapline}{\&{fontmapline} primitive@>
5513 mp_primitive(mp, "step",step_token,0);
5514 @:step_}{\&{step} primitive@>
5515 mp_primitive(mp, "str",str_op,0);
5516 @:str_}{\&{str} primitive@>
5517 mp_primitive(mp, "tension",tension,0);
5518 @:tension_}{\&{tension} primitive@>
5519 mp_primitive(mp, "to",to_token,0);
5520 @:to_}{\&{to} primitive@>
5521 mp_primitive(mp, "until",until_token,0);
5522 @:until_}{\&{until} primitive@>
5523 mp_primitive(mp, "within",within_token,0);
5524 @:within_}{\&{within} primitive@>
5525 mp_primitive(mp, "write",write_command,0);
5526 @:write_}{\&{write} primitive@>
5528 @ Each primitive has a corresponding inverse, so that it is possible to
5529 display the cryptic numeric contents of |eqtb| in symbolic form.
5530 Every call of |primitive| in this program is therefore accompanied by some
5531 straightforward code that forms part of the |print_cmd_mod| routine
5534 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>=
5535 case add_to_command:mp_print(mp, "addto"); break;
5536 case assignment:mp_print(mp, ":="); break;
5537 case at_least:mp_print(mp, "atleast"); break;
5538 case bchar_label:mp_print(mp, "||:"); break;
5539 case begin_group:mp_print(mp, "begingroup"); break;
5540 case colon:mp_print(mp, ":"); break;
5541 case comma:mp_print(mp, ","); break;
5542 case controls:mp_print(mp, "controls"); break;
5543 case curl_command:mp_print(mp, "curl"); break;
5544 case delimiters:mp_print(mp, "delimiters"); break;
5545 case double_colon:mp_print(mp, "::"); break;
5546 case end_group:mp_print(mp, "endgroup"); break;
5547 case every_job_command:mp_print(mp, "everyjob"); break;
5548 case exit_test:mp_print(mp, "exitif"); break;
5549 case expand_after:mp_print(mp, "expandafter"); break;
5550 case interim_command:mp_print(mp, "interim"); break;
5551 case left_brace:mp_print(mp, "{"); break;
5552 case left_bracket:mp_print(mp, "["); break;
5553 case let_command:mp_print(mp, "let"); break;
5554 case new_internal:mp_print(mp, "newinternal"); break;
5555 case of_token:mp_print(mp, "of"); break;
5556 case path_join:mp_print(mp, ".."); break;
5557 case random_seed:mp_print(mp, "randomseed"); break;
5558 case relax:mp_print_char(mp, '\\'); break;
5559 case right_brace:mp_print(mp, "}"); break;
5560 case right_bracket:mp_print(mp, "]"); break;
5561 case save_command:mp_print(mp, "save"); break;
5562 case scan_tokens:mp_print(mp, "scantokens"); break;
5563 case semicolon:mp_print(mp, ";"); break;
5564 case ship_out_command:mp_print(mp, "shipout"); break;
5565 case skip_to:mp_print(mp, "skipto"); break;
5566 case special_command: if ( m==2 ) mp_print(mp, "fontmapline"); else
5567 if ( m==1 ) mp_print(mp, "fontmapfile"); else
5568 mp_print(mp, "special"); break;
5569 case step_token:mp_print(mp, "step"); break;
5570 case str_op:mp_print(mp, "str"); break;
5571 case tension:mp_print(mp, "tension"); break;
5572 case to_token:mp_print(mp, "to"); break;
5573 case until_token:mp_print(mp, "until"); break;
5574 case within_token:mp_print(mp, "within"); break;
5575 case write_command:mp_print(mp, "write"); break;
5577 @ We will deal with the other primitives later, at some point in the program
5578 where their |eq_type| and |equiv| values are more meaningful. For example,
5579 the primitives for macro definitions will be loaded when we consider the
5580 routines that define macros.
5581 It is easy to find where each particular
5582 primitive was treated by looking in the index at the end; for example, the
5583 section where |"def"| entered |eqtb| is listed under `\&{def} primitive'.
5585 @* \[14] Token lists.
5586 A \MP\ token is either symbolic or numeric or a string, or it denotes
5587 a macro parameter or capsule; so there are five corresponding ways to encode it
5589 internally: (1)~A symbolic token whose hash code is~|p|
5590 is represented by the number |p|, in the |info| field of a single-word
5591 node in~|mem|. (2)~A numeric token whose |scaled| value is~|v| is
5592 represented in a two-word node of~|mem|; the |type| field is |known|,
5593 the |name_type| field is |token|, and the |value| field holds~|v|.
5594 The fact that this token appears in a two-word node rather than a
5595 one-word node is, of course, clear from the node address.
5596 (3)~A string token is also represented in a two-word node; the |type|
5597 field is |mp_string_type|, the |name_type| field is |token|, and the
5598 |value| field holds the corresponding |str_number|. (4)~Capsules have
5599 |name_type=capsule|, and their |type| and |value| fields represent
5600 arbitrary values (in ways to be explained later). (5)~Macro parameters
5601 are like symbolic tokens in that they appear in |info| fields of
5602 one-word nodes. The $k$th parameter is represented by |expr_base+k| if it
5603 is of type \&{expr}, or by |suffix_base+k| if it is of type \&{suffix}, or
5604 by |text_base+k| if it is of type \&{text}. (Here |0<=k<param_size|.)
5605 Actual values of these parameters are kept in a separate stack, as we will
5606 see later. The constants |expr_base|, |suffix_base|, and |text_base| are,
5607 of course, chosen so that there will be no confusion between symbolic
5608 tokens and parameters of various types.
5611 the `\\{type}' field of a node has nothing to do with ``type'' in a
5612 printer's sense. It's curious that the same word is used in such different ways.
5614 @d type(A) mp->mem[(A)].hh.b0 /* identifies what kind of value this is */
5615 @d name_type(A) mp->mem[(A)].hh.b1 /* a clue to the name of this value */
5616 @d token_node_size 2 /* the number of words in a large token node */
5617 @d value_loc(A) ((A)+1) /* the word that contains the |value| field */
5618 @d value(A) mp->mem[value_loc((A))].cint /* the value stored in a large token node */
5619 @d expr_base (hash_end+1) /* code for the zeroth \&{expr} parameter */
5620 @d suffix_base (expr_base+mp->param_size) /* code for the zeroth \&{suffix} parameter */
5621 @d text_base (suffix_base+mp->param_size) /* code for the zeroth \&{text} parameter */
5623 @<Check the ``constant''...@>=
5624 if ( text_base+mp->param_size>max_halfword ) mp->bad=18;
5626 @ We have set aside a two word node beginning at |null| so that we can have
5627 |value(null)=0|. We will make use of this coincidence later.
5629 @<Initialize table entries...@>=
5630 link(null)=null; value(null)=0;
5632 @ A numeric token is created by the following trivial routine.
5635 pointer mp_new_num_tok (MP mp,scaled v) {
5636 pointer p; /* the new node */
5637 p=mp_get_node(mp, token_node_size); value(p)=v;
5638 type(p)=mp_known; name_type(p)=mp_token;
5642 @ A token list is a singly linked list of nodes in |mem|, where
5643 each node contains a token and a link. Here's a subroutine that gets rid
5644 of a token list when it is no longer needed.
5647 void mp_token_recycle (MP mp);
5650 @c void mp_flush_token_list (MP mp,pointer p) {
5651 pointer q; /* the node being recycled */
5654 if ( q>=mp->hi_mem_min ) {
5658 case mp_vacuous: case mp_boolean_type: case mp_known:
5660 case mp_string_type:
5661 delete_str_ref(value(q));
5663 case unknown_types: case mp_pen_type: case mp_path_type:
5664 case mp_picture_type: case mp_pair_type: case mp_color_type:
5665 case mp_cmykcolor_type: case mp_transform_type: case mp_dependent:
5666 case mp_proto_dependent: case mp_independent:
5667 mp->g_pointer=q; mp_token_recycle(mp);
5669 default: mp_confusion(mp, "token");
5670 @:this can't happen token}{\quad token@>
5672 mp_free_node(mp, q,token_node_size);
5677 @ The procedure |show_token_list|, which prints a symbolic form of
5678 the token list that starts at a given node |p|, illustrates these
5679 conventions. The token list being displayed should not begin with a reference
5680 count. However, the procedure is intended to be fairly robust, so that if the
5681 memory links are awry or if |p| is not really a pointer to a token list,
5682 almost nothing catastrophic can happen.
5684 An additional parameter |q| is also given; this parameter is either null
5685 or it points to a node in the token list where a certain magic computation
5686 takes place that will be explained later. (Basically, |q| is non-null when
5687 we are printing the two-line context information at the time of an error
5688 message; |q| marks the place corresponding to where the second line
5691 The generation will stop, and `\.{\char`\ ETC.}' will be printed, if the length
5692 of printing exceeds a given limit~|l|; the length of printing upon entry is
5693 assumed to be a given amount called |null_tally|. (Note that
5694 |show_token_list| sometimes uses itself recursively to print
5695 variable names within a capsule.)
5698 Unusual entries are printed in the form of all-caps tokens
5699 preceded by a space, e.g., `\.{\char`\ BAD}'.
5702 void mp_print_capsule (MP mp);
5704 @ @<Declare the procedure called |show_token_list|@>=
5705 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5706 integer null_tally) ;
5709 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5710 integer null_tally) {
5711 small_number class,c; /* the |char_class| of previous and new tokens */
5712 integer r,v; /* temporary registers */
5713 class=percent_class;
5714 mp->tally=null_tally;
5715 while ( (p!=null) && (mp->tally<l) ) {
5717 @<Do magic computation@>;
5718 @<Display token |p| and set |c| to its class;
5719 but |return| if there are problems@>;
5723 mp_print(mp, " ETC.");
5728 @ @<Display token |p| and set |c| to its class...@>=
5729 c=letter_class; /* the default */
5730 if ( (p<0)||(p>mp->mem_end) ) {
5731 mp_print(mp, " CLOBBERED"); return;
5734 if ( p<mp->hi_mem_min ) {
5735 @<Display two-word token@>;
5738 if ( r>=expr_base ) {
5739 @<Display a parameter token@>;
5743 @<Display a collective subscript@>
5745 mp_print(mp, " IMPOSSIBLE");
5750 if ( (r<0)||(r>mp->max_str_ptr) ) {
5751 mp_print(mp, " NONEXISTENT");
5754 @<Print string |r| as a symbolic token
5755 and set |c| to its class@>;
5761 @ @<Display two-word token@>=
5762 if ( name_type(p)==mp_token ) {
5763 if ( type(p)==mp_known ) {
5764 @<Display a numeric token@>;
5765 } else if ( type(p)!=mp_string_type ) {
5766 mp_print(mp, " BAD");
5769 mp_print_char(mp, '"'); mp_print_str(mp, value(p)); mp_print_char(mp, '"');
5772 } else if ((name_type(p)!=mp_capsule)||(type(p)<mp_vacuous)||(type(p)>mp_independent) ) {
5773 mp_print(mp, " BAD");
5775 mp->g_pointer=p; mp_print_capsule(mp); c=right_paren_class;
5778 @ @<Display a numeric token@>=
5779 if ( class==digit_class )
5780 mp_print_char(mp, ' ');
5783 if ( class==left_bracket_class )
5784 mp_print_char(mp, ' ');
5785 mp_print_char(mp, '['); mp_print_scaled(mp, v); mp_print_char(mp, ']');
5786 c=right_bracket_class;
5788 mp_print_scaled(mp, v); c=digit_class;
5792 @ Strictly speaking, a genuine token will never have |info(p)=0|.
5793 But we will see later (in the |print_variable_name| routine) that
5794 it is convenient to let |info(p)=0| stand for `\.{[]}'.
5796 @<Display a collective subscript@>=
5798 if ( class==left_bracket_class )
5799 mp_print_char(mp, ' ');
5800 mp_print(mp, "[]"); c=right_bracket_class;
5803 @ @<Display a parameter token@>=
5805 if ( r<suffix_base ) {
5806 mp_print(mp, "(EXPR"); r=r-(expr_base);
5808 } else if ( r<text_base ) {
5809 mp_print(mp, "(SUFFIX"); r=r-(suffix_base);
5812 mp_print(mp, "(TEXT"); r=r-(text_base);
5815 mp_print_int(mp, r); mp_print_char(mp, ')'); c=right_paren_class;
5819 @ @<Print string |r| as a symbolic token...@>=
5821 c=mp->char_class[mp->str_pool[mp->str_start[r]]];
5824 case letter_class:mp_print_char(mp, '.'); break;
5825 case isolated_classes: break;
5826 default: mp_print_char(mp, ' '); break;
5829 mp_print_str(mp, r);
5832 @ The following procedures have been declared |forward| with no parameters,
5833 because the author dislikes \PASCAL's convention about |forward| procedures
5834 with parameters. It was necessary to do something, because |show_token_list|
5835 is recursive (although the recursion is limited to one level), and because
5836 |flush_token_list| is syntactically (but not semantically) recursive.
5839 @<Declare miscellaneous procedures that were declared |forward|@>=
5840 void mp_print_capsule (MP mp) {
5841 mp_print_char(mp, '('); mp_print_exp(mp, mp->g_pointer,0); mp_print_char(mp, ')');
5844 void mp_token_recycle (MP mp) {
5845 mp_recycle_value(mp, mp->g_pointer);
5849 pointer g_pointer; /* (global) parameter to the |forward| procedures */
5851 @ Macro definitions are kept in \MP's memory in the form of token lists
5852 that have a few extra one-word nodes at the beginning.
5854 The first node contains a reference count that is used to tell when the
5855 list is no longer needed. To emphasize the fact that a reference count is
5856 present, we shall refer to the |info| field of this special node as the
5858 @^reference counts@>
5860 The next node or nodes after the reference count serve to describe the
5861 formal parameters. They either contain a code word that specifies all
5862 of the parameters, or they contain zero or more parameter tokens followed
5863 by the code `|general_macro|'.
5866 /* reference count preceding a macro definition or picture header */
5867 @d add_mac_ref(A) incr(ref_count((A))) /* make a new reference to a macro list */
5868 @d general_macro 0 /* preface to a macro defined with a parameter list */
5869 @d primary_macro 1 /* preface to a macro with a \&{primary} parameter */
5870 @d secondary_macro 2 /* preface to a macro with a \&{secondary} parameter */
5871 @d tertiary_macro 3 /* preface to a macro with a \&{tertiary} parameter */
5872 @d expr_macro 4 /* preface to a macro with an undelimited \&{expr} parameter */
5873 @d of_macro 5 /* preface to a macro with
5874 undelimited `\&{expr} |x| \&{of}~|y|' parameters */
5875 @d suffix_macro 6 /* preface to a macro with an undelimited \&{suffix} parameter */
5876 @d text_macro 7 /* preface to a macro with an undelimited \&{text} parameter */
5879 void mp_delete_mac_ref (MP mp,pointer p) {
5880 /* |p| points to the reference count of a macro list that is
5881 losing one reference */
5882 if ( ref_count(p)==null ) mp_flush_token_list(mp, p);
5883 else decr(ref_count(p));
5886 @ The following subroutine displays a macro, given a pointer to its
5890 @<Declare the procedure called |print_cmd_mod|@>;
5891 void mp_show_macro (MP mp, pointer p, integer q, integer l) {
5892 pointer r; /* temporary storage */
5893 p=link(p); /* bypass the reference count */
5894 while ( info(p)>text_macro ){
5895 r=link(p); link(p)=null;
5896 mp_show_token_list(mp, p,null,l,0); link(p)=r; p=r;
5897 if ( l>0 ) l=l-mp->tally; else return;
5898 } /* control printing of `\.{ETC.}' */
5902 case general_macro:mp_print(mp, "->"); break;
5904 case primary_macro: case secondary_macro: case tertiary_macro:
5905 mp_print_char(mp, '<');
5906 mp_print_cmd_mod(mp, param_type,info(p));
5907 mp_print(mp, ">->");
5909 case expr_macro:mp_print(mp, "<expr>->"); break;
5910 case of_macro:mp_print(mp, "<expr>of<primary>->"); break;
5911 case suffix_macro:mp_print(mp, "<suffix>->"); break;
5912 case text_macro:mp_print(mp, "<text>->"); break;
5913 } /* there are no other cases */
5914 mp_show_token_list(mp, link(p),q,l-mp->tally,0);
5917 @* \[15] Data structures for variables.
5918 The variables of \MP\ programs can be simple, like `\.x', or they can
5919 combine the structural properties of arrays and records, like `\.{x20a.b}'.
5920 A \MP\ user assigns a type to a variable like \.{x20a.b} by saying, for
5921 example, `\.{boolean} \.{x20a.b}'. It's time for us to study how such
5922 things are represented inside of the computer.
5924 Each variable value occupies two consecutive words, either in a two-word
5925 node called a value node, or as a two-word subfield of a larger node. One
5926 of those two words is called the |value| field; it is an integer,
5927 containing either a |scaled| numeric value or the representation of some
5928 other type of quantity. (It might also be subdivided into halfwords, in
5929 which case it is referred to by other names instead of |value|.) The other
5930 word is broken into subfields called |type|, |name_type|, and |link|. The
5931 |type| field is a quarterword that specifies the variable's type, and
5932 |name_type| is a quarterword from which \MP\ can reconstruct the
5933 variable's name (sometimes by using the |link| field as well). Thus, only
5934 1.25 words are actually devoted to the value itself; the other
5935 three-quarters of a word are overhead, but they aren't wasted because they
5936 allow \MP\ to deal with sparse arrays and to provide meaningful diagnostics.
5938 In this section we shall be concerned only with the structural aspects of
5939 variables, not their values. Later parts of the program will change the
5940 |type| and |value| fields, but we shall treat those fields as black boxes
5941 whose contents should not be touched.
5943 However, if the |type| field is |mp_structured|, there is no |value| field,
5944 and the second word is broken into two pointer fields called |attr_head|
5945 and |subscr_head|. Those fields point to additional nodes that
5946 contain structural information, as we shall see.
5948 @d subscr_head_loc(A) (A)+1 /* where |value|, |subscr_head| and |attr_head| are */
5949 @d attr_head(A) info(subscr_head_loc((A))) /* pointer to attribute info */
5950 @d subscr_head(A) link(subscr_head_loc((A))) /* pointer to subscript info */
5951 @d value_node_size 2 /* the number of words in a value node */
5953 @ An attribute node is three words long. Two of these words contain |type|
5954 and |value| fields as described above, and the third word contains
5955 additional information: There is an |attr_loc| field, which contains the
5956 hash address of the token that names this attribute; and there's also a
5957 |parent| field, which points to the value node of |mp_structured| type at the
5958 next higher level (i.e., at the level to which this attribute is
5959 subsidiary). The |name_type| in an attribute node is `|attr|'. The
5960 |link| field points to the next attribute with the same parent; these are
5961 arranged in increasing order, so that |attr_loc(link(p))>attr_loc(p)|. The
5962 final attribute node links to the constant |end_attr|, whose |attr_loc|
5963 field is greater than any legal hash address. The |attr_head| in the
5964 parent points to a node whose |name_type| is |mp_structured_root|; this
5965 node represents the null attribute, i.e., the variable that is relevant
5966 when no attributes are attached to the parent. The |attr_head| node is either
5967 a value node, a subscript node, or an attribute node, depending on what
5968 the parent would be if it were not structured; but the subscript and
5969 attribute fields are ignored, so it effectively contains only the data of
5970 a value node. The |link| field in this special node points to an attribute
5971 node whose |attr_loc| field is zero; the latter node represents a collective
5972 subscript `\.{[]}' attached to the parent, and its |link| field points to
5973 the first non-special attribute node (or to |end_attr| if there are none).
5975 A subscript node likewise occupies three words, with |type| and |value| fields
5976 plus extra information; its |name_type| is |subscr|. In this case the
5977 third word is called the |subscript| field, which is a |scaled| integer.
5978 The |link| field points to the subscript node with the next larger
5979 subscript, if any; otherwise the |link| points to the attribute node
5980 for collective subscripts at this level. We have seen that the latter node
5981 contains an upward pointer, so that the parent can be deduced.
5983 The |name_type| in a parent-less value node is |root|, and the |link|
5984 is the hash address of the token that names this value.
5986 In other words, variables have a hierarchical structure that includes
5987 enough threads running around so that the program is able to move easily
5988 between siblings, parents, and children. An example should be helpful:
5989 (The reader is advised to draw a picture while reading the following
5990 description, since that will help to firm up the ideas.)
5991 Suppose that `\.x' and `\.{x.a}' and `\.{x[]b}' and `\.{x5}'
5992 and `\.{x20b}' have been mentioned in a user's program, where
5993 \.{x[]b} has been declared to be of \&{boolean} type. Let |h(x)|, |h(a)|,
5994 and |h(b)| be the hash addresses of \.x, \.a, and~\.b. Then
5995 |eq_type(h(x))=name| and |equiv(h(x))=p|, where |p|~is a two-word value
5996 node with |name_type(p)=root| and |link(p)=h(x)|. We have |type(p)=mp_structured|,
5997 |attr_head(p)=q|, and |subscr_head(p)=r|, where |q| points to a value
5998 node and |r| to a subscript node. (Are you still following this? Use
5999 a pencil to draw a diagram.) The lone variable `\.x' is represented by
6000 |type(q)| and |value(q)|; furthermore
6001 |name_type(q)=mp_structured_root| and |link(q)=q1|, where |q1| points
6002 to an attribute node representing `\.{x[]}'. Thus |name_type(q1)=attr|,
6003 |attr_loc(q1)=collective_subscript=0|, |parent(q1)=p|,
6004 |type(q1)=mp_structured|, |attr_head(q1)=qq|, and |subscr_head(q1)=qq1|;
6005 |qq| is a value node with |type(qq)=mp_numeric_type| (assuming that \.{x5} is
6006 numeric, because |qq| represents `\.{x[]}' with no further attributes),
6007 |name_type(qq)=mp_structured_root|, and
6008 |link(qq)=qq1|. (Now pay attention to the next part.) Node |qq1| is
6009 an attribute node representing `\.{x[][]}', which has never yet
6010 occurred; its |type| field is |undefined|, and its |value| field is
6011 undefined. We have |name_type(qq1)=attr|, |attr_loc(qq1)=collective_subscript|,
6012 |parent(qq1)=q1|, and |link(qq1)=qq2|. Since |qq2| represents
6013 `\.{x[]b}', |type(qq2)=mp_unknown_boolean|; also |attr_loc(qq2)=h(b)|,
6014 |parent(qq2)=q1|, |name_type(qq2)=attr|, |link(qq2)=end_attr|.
6015 (Maybe colored lines will help untangle your picture.)
6016 Node |r| is a subscript node with |type| and |value|
6017 representing `\.{x5}'; |name_type(r)=subscr|, |subscript(r)=5.0|,
6018 and |link(r)=r1| is another subscript node. To complete the picture,
6019 see if you can guess what |link(r1)| is; give up? It's~|q1|.
6020 Furthermore |subscript(r1)=20.0|, |name_type(r1)=subscr|,
6021 |type(r1)=mp_structured|, |attr_head(r1)=qqq|, |subscr_head(r1)=qqq1|,
6022 and we finish things off with three more nodes
6023 |qqq|, |qqq1|, and |qqq2| hung onto~|r1|. (Perhaps you should start again
6024 with a larger sheet of paper.) The value of variable \.{x20b}
6025 appears in node~|qqq2|, as you can well imagine.
6027 If the example in the previous paragraph doesn't make things crystal
6028 clear, a glance at some of the simpler subroutines below will reveal how
6029 things work out in practice.
6031 The only really unusual thing about these conventions is the use of
6032 collective subscript attributes. The idea is to avoid repeating a lot of
6033 type information when many elements of an array are identical macros
6034 (for which distinct values need not be stored) or when they don't have
6035 all of the possible attributes. Branches of the structure below collective
6036 subscript attributes do not carry actual values except for macro identifiers;
6037 branches of the structure below subscript nodes do not carry significant
6038 information in their collective subscript attributes.
6040 @d attr_loc_loc(A) ((A)+2) /* where the |attr_loc| and |parent| fields are */
6041 @d attr_loc(A) info(attr_loc_loc((A))) /* hash address of this attribute */
6042 @d parent(A) link(attr_loc_loc((A))) /* pointer to |mp_structured| variable */
6043 @d subscript_loc(A) ((A)+2) /* where the |subscript| field lives */
6044 @d subscript(A) mp->mem[subscript_loc((A))].sc /* subscript of this variable */
6045 @d attr_node_size 3 /* the number of words in an attribute node */
6046 @d subscr_node_size 3 /* the number of words in a subscript node */
6047 @d collective_subscript 0 /* code for the attribute `\.{[]}' */
6049 @<Initialize table...@>=
6050 attr_loc(end_attr)=hash_end+1; parent(end_attr)=null;
6052 @ Variables of type \&{pair} will have values that point to four-word
6053 nodes containing two numeric values. The first of these values has
6054 |name_type=mp_x_part_sector| and the second has |name_type=mp_y_part_sector|;
6055 the |link| in the first points back to the node whose |value| points
6056 to this four-word node.
6058 Variables of type \&{transform} are similar, but in this case their
6059 |value| points to a 12-word node containing six values, identified by
6060 |x_part_sector|, |y_part_sector|, |mp_xx_part_sector|, |mp_xy_part_sector|,
6061 |mp_yx_part_sector|, and |mp_yy_part_sector|.
6062 Finally, variables of type \&{color} have three values in six words
6063 identified by |mp_red_part_sector|, |mp_green_part_sector|, and |mp_blue_part_sector|.
6065 When an entire structured variable is saved, the |root| indication
6066 is temporarily replaced by |saved_root|.
6068 Some variables have no name; they just are used for temporary storage
6069 while expressions are being evaluated. We call them {\sl capsules}.
6071 @d x_part_loc(A) (A) /* where the \&{xpart} is found in a pair or transform node */
6072 @d y_part_loc(A) ((A)+2) /* where the \&{ypart} is found in a pair or transform node */
6073 @d xx_part_loc(A) ((A)+4) /* where the \&{xxpart} is found in a transform node */
6074 @d xy_part_loc(A) ((A)+6) /* where the \&{xypart} is found in a transform node */
6075 @d yx_part_loc(A) ((A)+8) /* where the \&{yxpart} is found in a transform node */
6076 @d yy_part_loc(A) ((A)+10) /* where the \&{yypart} is found in a transform node */
6077 @d red_part_loc(A) (A) /* where the \&{redpart} is found in a color node */
6078 @d green_part_loc(A) ((A)+2) /* where the \&{greenpart} is found in a color node */
6079 @d blue_part_loc(A) ((A)+4) /* where the \&{bluepart} is found in a color node */
6080 @d cyan_part_loc(A) (A) /* where the \&{cyanpart} is found in a color node */
6081 @d magenta_part_loc(A) ((A)+2) /* where the \&{magentapart} is found in a color node */
6082 @d yellow_part_loc(A) ((A)+4) /* where the \&{yellowpart} is found in a color node */
6083 @d black_part_loc(A) ((A)+6) /* where the \&{blackpart} is found in a color node */
6084 @d grey_part_loc(A) (A) /* where the \&{greypart} is found in a color node */
6086 @d pair_node_size 4 /* the number of words in a pair node */
6087 @d transform_node_size 12 /* the number of words in a transform node */
6088 @d color_node_size 6 /* the number of words in a color node */
6089 @d cmykcolor_node_size 8 /* the number of words in a color node */
6092 small_number big_node_size[mp_pair_type+1];
6093 small_number sector0[mp_pair_type+1];
6094 small_number sector_offset[mp_black_part_sector+1];
6096 @ The |sector0| array gives for each big node type, |name_type| values
6097 for its first subfield; the |sector_offset| array gives for each
6098 |name_type| value, the offset from the first subfield in words;
6099 and the |big_node_size| array gives the size in words for each type of
6103 mp->big_node_size[mp_transform_type]=transform_node_size;
6104 mp->big_node_size[mp_pair_type]=pair_node_size;
6105 mp->big_node_size[mp_color_type]=color_node_size;
6106 mp->big_node_size[mp_cmykcolor_type]=cmykcolor_node_size;
6107 mp->sector0[mp_transform_type]=mp_x_part_sector;
6108 mp->sector0[mp_pair_type]=mp_x_part_sector;
6109 mp->sector0[mp_color_type]=mp_red_part_sector;
6110 mp->sector0[mp_cmykcolor_type]=mp_cyan_part_sector;
6111 for (k=mp_x_part_sector;k<= mp_yy_part_sector;k++ ) {
6112 mp->sector_offset[k]=2*(k-mp_x_part_sector);
6114 for (k=mp_red_part_sector;k<= mp_blue_part_sector ; k++) {
6115 mp->sector_offset[k]=2*(k-mp_red_part_sector);
6117 for (k=mp_cyan_part_sector;k<= mp_black_part_sector;k++ ) {
6118 mp->sector_offset[k]=2*(k-mp_cyan_part_sector);
6121 @ If |type(p)=mp_pair_type| or |mp_transform_type| and if |value(p)=null|, the
6122 procedure call |init_big_node(p)| will allocate a pair or transform node
6123 for~|p|. The individual parts of such nodes are initially of type
6127 void mp_init_big_node (MP mp,pointer p) {
6128 pointer q; /* the new node */
6129 small_number s; /* its size */
6130 s=mp->big_node_size[type(p)]; q=mp_get_node(mp, s);
6133 @<Make variable |q+s| newly independent@>;
6134 name_type(q+s)=halfp(s)+mp->sector0[type(p)];
6137 link(q)=p; value(p)=q;
6140 @ The |id_transform| function creates a capsule for the
6141 identity transformation.
6144 pointer mp_id_transform (MP mp) {
6145 pointer p,q,r; /* list manipulation registers */
6146 p=mp_get_node(mp, value_node_size); type(p)=mp_transform_type;
6147 name_type(p)=mp_capsule; value(p)=null; mp_init_big_node(mp, p); q=value(p);
6148 r=q+transform_node_size;
6151 type(r)=mp_known; value(r)=0;
6153 value(xx_part_loc(q))=unity;
6154 value(yy_part_loc(q))=unity;
6158 @ Tokens are of type |tag_token| when they first appear, but they point
6159 to |null| until they are first used as the root of a variable.
6160 The following subroutine establishes the root node on such grand occasions.
6163 void mp_new_root (MP mp,pointer x) {
6164 pointer p; /* the new node */
6165 p=mp_get_node(mp, value_node_size); type(p)=undefined; name_type(p)=mp_root;
6166 link(p)=x; equiv(x)=p;
6169 @ These conventions for variable representation are illustrated by the
6170 |print_variable_name| routine, which displays the full name of a
6171 variable given only a pointer to its two-word value packet.
6174 void mp_print_variable_name (MP mp, pointer p);
6177 void mp_print_variable_name (MP mp, pointer p) {
6178 pointer q; /* a token list that will name the variable's suffix */
6179 pointer r; /* temporary for token list creation */
6180 while ( name_type(p)>=mp_x_part_sector ) {
6181 @<Preface the output with a part specifier; |return| in the
6182 case of a capsule@>;
6185 while ( name_type(p)>mp_saved_root ) {
6186 @<Ascend one level, pushing a token onto list |q|
6187 and replacing |p| by its parent@>;
6189 r=mp_get_avail(mp); info(r)=link(p); link(r)=q;
6190 if ( name_type(p)==mp_saved_root ) mp_print(mp, "(SAVED)");
6192 mp_show_token_list(mp, r,null,el_gordo,mp->tally);
6193 mp_flush_token_list(mp, r);
6196 @ @<Ascend one level, pushing a token onto list |q|...@>=
6198 if ( name_type(p)==mp_subscr ) {
6199 r=mp_new_num_tok(mp, subscript(p));
6202 } while (name_type(p)!=mp_attr);
6203 } else if ( name_type(p)==mp_structured_root ) {
6204 p=link(p); goto FOUND;
6206 if ( name_type(p)!=mp_attr ) mp_confusion(mp, "var");
6207 @:this can't happen var}{\quad var@>
6208 r=mp_get_avail(mp); info(r)=attr_loc(p);
6215 @ @<Preface the output with a part specifier...@>=
6216 { switch (name_type(p)) {
6217 case mp_x_part_sector: mp_print_char(mp, 'x'); break;
6218 case mp_y_part_sector: mp_print_char(mp, 'y'); break;
6219 case mp_xx_part_sector: mp_print(mp, "xx"); break;
6220 case mp_xy_part_sector: mp_print(mp, "xy"); break;
6221 case mp_yx_part_sector: mp_print(mp, "yx"); break;
6222 case mp_yy_part_sector: mp_print(mp, "yy"); break;
6223 case mp_red_part_sector: mp_print(mp, "red"); break;
6224 case mp_green_part_sector: mp_print(mp, "green"); break;
6225 case mp_blue_part_sector: mp_print(mp, "blue"); break;
6226 case mp_cyan_part_sector: mp_print(mp, "cyan"); break;
6227 case mp_magenta_part_sector: mp_print(mp, "magenta"); break;
6228 case mp_yellow_part_sector: mp_print(mp, "yellow"); break;
6229 case mp_black_part_sector: mp_print(mp, "black"); break;
6230 case mp_grey_part_sector: mp_print(mp, "grey"); break;
6232 mp_print(mp, "%CAPSULE"); mp_print_int(mp, p-null); return;
6235 } /* there are no other cases */
6236 mp_print(mp, "part ");
6237 p=link(p-mp->sector_offset[name_type(p)]);
6240 @ The |interesting| function returns |true| if a given variable is not
6241 in a capsule, or if the user wants to trace capsules.
6244 boolean mp_interesting (MP mp,pointer p) {
6245 small_number t; /* a |name_type| */
6246 if ( mp->internal[tracing_capsules]>0 ) {
6250 if ( t>=mp_x_part_sector ) if ( t!=mp_capsule )
6251 t=name_type(link(p-mp->sector_offset[t]));
6252 return (t!=mp_capsule);
6256 @ Now here is a subroutine that converts an unstructured type into an
6257 equivalent structured type, by inserting a |mp_structured| node that is
6258 capable of growing. This operation is done only when |name_type(p)=root|,
6259 |subscr|, or |attr|.
6261 The procedure returns a pointer to the new node that has taken node~|p|'s
6262 place in the structure. Node~|p| itself does not move, nor are its
6263 |value| or |type| fields changed in any way.
6266 pointer mp_new_structure (MP mp,pointer p) {
6267 pointer q,r=0; /* list manipulation registers */
6268 switch (name_type(p)) {
6270 q=link(p); r=mp_get_node(mp, value_node_size); equiv(q)=r;
6273 @<Link a new subscript node |r| in place of node |p|@>;
6276 @<Link a new attribute node |r| in place of node |p|@>;
6279 mp_confusion(mp, "struct");
6280 @:this can't happen struct}{\quad struct@>
6283 link(r)=link(p); type(r)=mp_structured; name_type(r)=name_type(p);
6284 attr_head(r)=p; name_type(p)=mp_structured_root;
6285 q=mp_get_node(mp, attr_node_size); link(p)=q; subscr_head(r)=q;
6286 parent(q)=r; type(q)=undefined; name_type(q)=mp_attr; link(q)=end_attr;
6287 attr_loc(q)=collective_subscript;
6291 @ @<Link a new subscript node |r| in place of node |p|@>=
6296 } while (name_type(q)!=mp_attr);
6297 q=parent(q); r=subscr_head_loc(q); /* |link(r)=subscr_head(q)| */
6301 r=mp_get_node(mp, subscr_node_size);
6302 link(q)=r; subscript(r)=subscript(p);
6305 @ If the attribute is |collective_subscript|, there are two pointers to
6306 node~|p|, so we must change both of them.
6308 @<Link a new attribute node |r| in place of node |p|@>=
6310 q=parent(p); r=attr_head(q);
6314 r=mp_get_node(mp, attr_node_size); link(q)=r;
6315 mp->mem[attr_loc_loc(r)]=mp->mem[attr_loc_loc(p)]; /* copy |attr_loc| and |parent| */
6316 if ( attr_loc(p)==collective_subscript ) {
6317 q=subscr_head_loc(parent(p));
6318 while ( link(q)!=p ) q=link(q);
6323 @ The |find_variable| routine is given a pointer~|t| to a nonempty token
6324 list of suffixes; it returns a pointer to the corresponding two-word
6325 value. For example, if |t| points to token \.x followed by a numeric
6326 token containing the value~7, |find_variable| finds where the value of
6327 \.{x7} is stored in memory. This may seem a simple task, and it
6328 usually is, except when \.{x7} has never been referenced before.
6329 Indeed, \.x may never have even been subscripted before; complexities
6330 arise with respect to updating the collective subscript information.
6332 If a macro type is detected anywhere along path~|t|, or if the first
6333 item on |t| isn't a |tag_token|, the value |null| is returned.
6334 Otherwise |p| will be a non-null pointer to a node such that
6335 |undefined<type(p)<mp_structured|.
6337 @d abort_find { return null; }
6340 pointer mp_find_variable (MP mp,pointer t) {
6341 pointer p,q,r,s; /* nodes in the ``value'' line */
6342 pointer pp,qq,rr,ss; /* nodes in the ``collective'' line */
6343 integer n; /* subscript or attribute */
6344 memory_word save_word; /* temporary storage for a word of |mem| */
6346 p=info(t); t=link(t);
6347 if ( (eq_type(p) % outer_tag) != tag_token ) abort_find;
6348 if ( equiv(p)==null ) mp_new_root(mp, p);
6351 @<Make sure that both nodes |p| and |pp| are of |mp_structured| type@>;
6352 if ( t<mp->hi_mem_min ) {
6353 @<Descend one level for the subscript |value(t)|@>
6355 @<Descend one level for the attribute |info(t)|@>;
6359 if ( type(pp)>=mp_structured ) {
6360 if ( type(pp)==mp_structured ) pp=attr_head(pp); else abort_find;
6362 if ( type(p)==mp_structured ) p=attr_head(p);
6363 if ( type(p)==undefined ) {
6364 if ( type(pp)==undefined ) { type(pp)=mp_numeric_type; value(pp)=null; };
6365 type(p)=type(pp); value(p)=null;
6370 @ Although |pp| and |p| begin together, they diverge when a subscript occurs;
6371 |pp|~stays in the collective line while |p|~goes through actual subscript
6374 @<Make sure that both nodes |p| and |pp|...@>=
6375 if ( type(pp)!=mp_structured ) {
6376 if ( type(pp)>mp_structured ) abort_find;
6377 ss=mp_new_structure(mp, pp);
6380 }; /* now |type(pp)=mp_structured| */
6381 if ( type(p)!=mp_structured ) /* it cannot be |>mp_structured| */
6382 p=mp_new_structure(mp, p) /* now |type(p)=mp_structured| */
6384 @ We want this part of the program to be reasonably fast, in case there are
6386 lots of subscripts at the same level of the data structure. Therefore
6387 we store an ``infinite'' value in the word that appears at the end of the
6388 subscript list, even though that word isn't part of a subscript node.
6390 @<Descend one level for the subscript |value(t)|@>=
6393 pp=link(attr_head(pp)); /* now |attr_loc(pp)=collective_subscript| */
6394 q=link(attr_head(p)); save_word=mp->mem[subscript_loc(q)];
6395 subscript(q)=el_gordo; s=subscr_head_loc(p); /* |link(s)=subscr_head(p)| */
6398 } while (n>subscript(s));
6399 if ( n==subscript(s) ) {
6402 p=mp_get_node(mp, subscr_node_size); link(r)=p; link(p)=s;
6403 subscript(p)=n; name_type(p)=mp_subscr; type(p)=undefined;
6405 mp->mem[subscript_loc(q)]=save_word;
6408 @ @<Descend one level for the attribute |info(t)|@>=
6414 } while (n>attr_loc(ss));
6415 if ( n<attr_loc(ss) ) {
6416 qq=mp_get_node(mp, attr_node_size); link(rr)=qq; link(qq)=ss;
6417 attr_loc(qq)=n; name_type(qq)=mp_attr; type(qq)=undefined;
6418 parent(qq)=pp; ss=qq;
6423 pp=ss; s=attr_head(p);
6426 } while (n>attr_loc(s));
6427 if ( n==attr_loc(s) ) {
6430 q=mp_get_node(mp, attr_node_size); link(r)=q; link(q)=s;
6431 attr_loc(q)=n; name_type(q)=mp_attr; type(q)=undefined;
6437 @ Variables lose their former values when they appear in a type declaration,
6438 or when they are defined to be macros or \&{let} equal to something else.
6439 A subroutine will be defined later that recycles the storage associated
6440 with any particular |type| or |value|; our goal now is to study a higher
6441 level process called |flush_variable|, which selectively frees parts of a
6444 This routine has some complexity because of examples such as
6445 `\hbox{\tt numeric x[]a[]b}'
6446 which recycles all variables of the form \.{x[i]a[j]b} (and no others), while
6447 `\hbox{\tt vardef x[]a[]=...}'
6448 discards all variables of the form \.{x[i]a[j]} followed by an arbitrary
6449 suffix, except for the collective node \.{x[]a[]} itself. The obvious way
6450 to handle such examples is to use recursion; so that's what we~do.
6453 Parameter |p| points to the root information of the variable;
6454 parameter |t| points to a list of one-word nodes that represent
6455 suffixes, with |info=collective_subscript| for subscripts.
6458 @<Declare subroutines for printing expressions@>
6459 @<Declare basic dependency-list subroutines@>
6460 @<Declare the recycling subroutines@>
6461 void mp_flush_cur_exp (MP mp,scaled v) ;
6462 @<Declare the procedure called |flush_below_variable|@>
6465 void mp_flush_variable (MP mp,pointer p, pointer t, boolean discard_suffixes) {
6466 pointer q,r; /* list manipulation */
6467 halfword n; /* attribute to match */
6469 if ( type(p)!=mp_structured ) return;
6470 n=info(t); t=link(t);
6471 if ( n==collective_subscript ) {
6472 r=subscr_head_loc(p); q=link(r); /* |q=subscr_head(p)| */
6473 while ( name_type(q)==mp_subscr ){
6474 mp_flush_variable(mp, q,t,discard_suffixes);
6476 if ( type(q)==mp_structured ) r=q;
6477 else { link(r)=link(q); mp_free_node(mp, q,subscr_node_size); }
6487 } while (attr_loc(p)<n);
6488 if ( attr_loc(p)!=n ) return;
6490 if ( discard_suffixes ) {
6491 mp_flush_below_variable(mp, p);
6493 if ( type(p)==mp_structured ) p=attr_head(p);
6494 mp_recycle_value(mp, p);
6498 @ The next procedure is simpler; it wipes out everything but |p| itself,
6499 which becomes undefined.
6501 @<Declare the procedure called |flush_below_variable|@>=
6502 void mp_flush_below_variable (MP mp, pointer p);
6505 void mp_flush_below_variable (MP mp,pointer p) {
6506 pointer q,r; /* list manipulation registers */
6507 if ( type(p)!=mp_structured ) {
6508 mp_recycle_value(mp, p); /* this sets |type(p)=undefined| */
6511 while ( name_type(q)==mp_subscr ) {
6512 mp_flush_below_variable(mp, q); r=q; q=link(q);
6513 mp_free_node(mp, r,subscr_node_size);
6515 r=attr_head(p); q=link(r); mp_recycle_value(mp, r);
6516 if ( name_type(p)<=mp_saved_root ) mp_free_node(mp, r,value_node_size);
6517 else mp_free_node(mp, r,subscr_node_size);
6518 /* we assume that |subscr_node_size=attr_node_size| */
6520 mp_flush_below_variable(mp, q); r=q; q=link(q); mp_free_node(mp, r,attr_node_size);
6521 } while (q!=end_attr);
6526 @ Just before assigning a new value to a variable, we will recycle the
6527 old value and make the old value undefined. The |und_type| routine
6528 determines what type of undefined value should be given, based on
6529 the current type before recycling.
6532 small_number mp_und_type (MP mp,pointer p) {
6534 case undefined: case mp_vacuous:
6536 case mp_boolean_type: case mp_unknown_boolean:
6537 return mp_unknown_boolean;
6538 case mp_string_type: case mp_unknown_string:
6539 return mp_unknown_string;
6540 case mp_pen_type: case mp_unknown_pen:
6541 return mp_unknown_pen;
6542 case mp_path_type: case mp_unknown_path:
6543 return mp_unknown_path;
6544 case mp_picture_type: case mp_unknown_picture:
6545 return mp_unknown_picture;
6546 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
6547 case mp_pair_type: case mp_numeric_type:
6549 case mp_known: case mp_dependent: case mp_proto_dependent: case mp_independent:
6550 return mp_numeric_type;
6551 } /* there are no other cases */
6555 @ The |clear_symbol| routine is used when we want to redefine the equivalent
6556 of a symbolic token. It must remove any variable structure or macro
6557 definition that is currently attached to that symbol. If the |saving|
6558 parameter is true, a subsidiary structure is saved instead of destroyed.
6561 void mp_clear_symbol (MP mp,pointer p, boolean saving) {
6562 pointer q; /* |equiv(p)| */
6564 switch (eq_type(p) % outer_tag) {
6566 case secondary_primary_macro:
6567 case tertiary_secondary_macro:
6568 case expression_tertiary_macro:
6569 if ( ! saving ) mp_delete_mac_ref(mp, q);
6574 name_type(q)=mp_saved_root;
6576 mp_flush_below_variable(mp, q); mp_free_node(mp,q,value_node_size);
6583 mp->eqtb[p]=mp->eqtb[frozen_undefined];
6586 @* \[16] Saving and restoring equivalents.
6587 The nested structure given by \&{begingroup} and \&{endgroup}
6588 allows |eqtb| entries to be saved and restored, so that temporary changes
6589 can be made without difficulty. When the user requests a current value to
6590 be saved, \MP\ puts that value into its ``save stack.'' An appearance of
6591 \&{endgroup} ultimately causes the old values to be removed from the save
6592 stack and put back in their former places.
6594 The save stack is a linked list containing three kinds of entries,
6595 distinguished by their |info| fields. If |p| points to a saved item,
6599 |info(p)=0| stands for a group boundary; each \&{begingroup} contributes
6600 such an item to the save stack and each \&{endgroup} cuts back the stack
6601 until the most recent such entry has been removed.
6604 |info(p)=q|, where |1<=q<=hash_end|, means that |mem[p+1]| holds the former
6605 contents of |eqtb[q]|. Such save stack entries are generated by \&{save}
6606 commands or suitable \&{interim} commands.
6609 |info(p)=hash_end+q|, where |q>0|, means that |value(p)| is a |scaled|
6610 integer to be restored to internal parameter number~|q|. Such entries
6611 are generated by \&{interim} commands.
6614 The global variable |save_ptr| points to the top item on the save stack.
6616 @d save_node_size 2 /* number of words per non-boundary save-stack node */
6617 @d saved_equiv(A) mp->mem[(A)+1].hh /* where an |eqtb| entry gets saved */
6618 @d save_boundary_item(A) { (A)=mp_get_avail(mp); info((A))=0;
6619 link((A))=mp->save_ptr; mp->save_ptr=(A);
6623 pointer save_ptr; /* the most recently saved item */
6625 @ @<Set init...@>=mp->save_ptr=null;
6627 @ The |save_variable| routine is given a hash address |q|; it salts this
6628 address in the save stack, together with its current equivalent,
6629 then makes token~|q| behave as though it were brand new.
6631 Nothing is stacked when |save_ptr=null|, however; there's no way to remove
6632 things from the stack when the program is not inside a group, so there's
6633 no point in wasting the space.
6635 @c void mp_save_variable (MP mp,pointer q) {
6636 pointer p; /* temporary register */
6637 if ( mp->save_ptr!=null ){
6638 p=mp_get_node(mp, save_node_size); info(p)=q; link(p)=mp->save_ptr;
6639 saved_equiv(p)=mp->eqtb[q]; mp->save_ptr=p;
6641 mp_clear_symbol(mp, q,(mp->save_ptr!=null));
6644 @ Similarly, |save_internal| is given the location |q| of an internal
6645 quantity like |tracing_pens|. It creates a save stack entry of the
6648 @c void mp_save_internal (MP mp,halfword q) {
6649 pointer p; /* new item for the save stack */
6650 if ( mp->save_ptr!=null ){
6651 p=mp_get_node(mp, save_node_size); info(p)=hash_end+q;
6652 link(p)=mp->save_ptr; value(p)=mp->internal[q]; mp->save_ptr=p;
6656 @ At the end of a group, the |unsave| routine restores all of the saved
6657 equivalents in reverse order. This routine will be called only when there
6658 is at least one boundary item on the save stack.
6661 void mp_unsave (MP mp) {
6662 pointer q; /* index to saved item */
6663 pointer p; /* temporary register */
6664 while ( info(mp->save_ptr)!=0 ) {
6665 q=info(mp->save_ptr);
6667 if ( mp->internal[tracing_restores]>0 ) {
6668 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6669 mp_print(mp, mp->int_name[q-(hash_end)]); mp_print_char(mp, '=');
6670 mp_print_scaled(mp, value(mp->save_ptr)); mp_print_char(mp, '}');
6671 mp_end_diagnostic(mp, false);
6673 mp->internal[q-(hash_end)]=value(mp->save_ptr);
6675 if ( mp->internal[tracing_restores]>0 ) {
6676 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6677 mp_print_text(q); mp_print_char(mp, '}');
6678 mp_end_diagnostic(mp, false);
6680 mp_clear_symbol(mp, q,false);
6681 mp->eqtb[q]=saved_equiv(mp->save_ptr);
6682 if ( eq_type(q) % outer_tag==tag_token ) {
6684 if ( p!=null ) name_type(p)=mp_root;
6687 p=link(mp->save_ptr);
6688 mp_free_node(mp, mp->save_ptr,save_node_size); mp->save_ptr=p;
6690 p=link(mp->save_ptr); free_avail(mp->save_ptr); mp->save_ptr=p;
6693 @* \[17] Data structures for paths.
6694 When a \MP\ user specifies a path, \MP\ will create a list of knots
6695 and control points for the associated cubic spline curves. If the
6696 knots are $z_0$, $z_1$, \dots, $z_n$, there are control points
6697 $z_k^+$ and $z_{k+1}^-$ such that the cubic splines between knots
6698 $z_k$ and $z_{k+1}$ are defined by B\'ezier's formula
6699 @:Bezier}{B\'ezier, Pierre Etienne@>
6700 $$\eqalign{z(t)&=B(z_k,z_k^+,z_{k+1}^-,z_{k+1};t)\cr
6701 &=(1-t)^3z_k+3(1-t)^2tz_k^++3(1-t)t^2z_{k+1}^-+t^3z_{k+1}\cr}$$
6704 There is a 8-word node for each knot $z_k$, containing one word of
6705 control information and six words for the |x| and |y| coordinates of
6706 $z_k^-$ and $z_k$ and~$z_k^+$. The control information appears in the
6707 |left_type| and |right_type| fields, which each occupy a quarter of
6708 the first word in the node; they specify properties of the curve as it
6709 enters and leaves the knot. There's also a halfword |link| field,
6710 which points to the following knot, and a final supplementary word (of
6711 which only a quarter is used).
6713 If the path is a closed contour, knots 0 and |n| are identical;
6714 i.e., the |link| in knot |n-1| points to knot~0. But if the path
6715 is not closed, the |left_type| of knot~0 and the |right_type| of knot~|n|
6716 are equal to |endpoint|. In the latter case the |link| in knot~|n| points
6717 to knot~0, and the control points $z_0^-$ and $z_n^+$ are not used.
6719 @d left_type(A) mp->mem[(A)].hh.b0 /* characterizes the path entering this knot */
6720 @d right_type(A) mp->mem[(A)].hh.b1 /* characterizes the path leaving this knot */
6721 @d endpoint 0 /* |left_type| at path beginning and |right_type| at path end */
6722 @d x_coord(A) mp->mem[(A)+1].sc /* the |x| coordinate of this knot */
6723 @d y_coord(A) mp->mem[(A)+2].sc /* the |y| coordinate of this knot */
6724 @d left_x(A) mp->mem[(A)+3].sc /* the |x| coordinate of previous control point */
6725 @d left_y(A) mp->mem[(A)+4].sc /* the |y| coordinate of previous control point */
6726 @d right_x(A) mp->mem[(A)+5].sc /* the |x| coordinate of next control point */
6727 @d right_y(A) mp->mem[(A)+6].sc /* the |y| coordinate of next control point */
6728 @d x_loc(A) ((A)+1) /* where the |x| coordinate is stored in a knot */
6729 @d y_loc(A) ((A)+2) /* where the |y| coordinate is stored in a knot */
6730 @d knot_coord(A) mp->mem[(A)].sc /* |x| or |y| coordinate given |x_loc| or |y_loc| */
6731 @d left_coord(A) mp->mem[(A)+2].sc
6732 /* coordinate of previous control point given |x_loc| or |y_loc| */
6733 @d right_coord(A) mp->mem[(A)+4].sc
6734 /* coordinate of next control point given |x_loc| or |y_loc| */
6735 @d knot_node_size 8 /* number of words in a knot node */
6737 @ Before the B\'ezier control points have been calculated, the memory
6738 space they will ultimately occupy is taken up by information that can be
6739 used to compute them. There are four cases:
6742 \textindent{$\bullet$} If |right_type=open|, the curve should leave
6743 the knot in the same direction it entered; \MP\ will figure out a
6747 \textindent{$\bullet$} If |right_type=curl|, the curve should leave the
6748 knot in a direction depending on the angle at which it enters the next
6749 knot and on the curl parameter stored in |right_curl|.
6752 \textindent{$\bullet$} If |right_type=given|, the curve should leave the
6753 knot in a nonzero direction stored as an |angle| in |right_given|.
6756 \textindent{$\bullet$} If |right_type=explicit|, the B\'ezier control
6757 point for leaving this knot has already been computed; it is in the
6758 |right_x| and |right_y| fields.
6761 The rules for |left_type| are similar, but they refer to the curve entering
6762 the knot, and to \\{left} fields instead of \\{right} fields.
6764 Non-|explicit| control points will be chosen based on ``tension'' parameters
6765 in the |left_tension| and |right_tension| fields. The
6766 `\&{atleast}' option is represented by negative tension values.
6767 @:at_least_}{\&{atleast} primitive@>
6769 For example, the \MP\ path specification
6770 $$\.{z0..z1..tension atleast 1..\{curl 2\}z2..z3\{-1,-2\}..tension
6772 where \.p is the path `\.{z4..controls z45 and z54..z5}', will be represented
6774 \def\lodash{\hbox to 1.1em{\thinspace\hrulefill\thinspace}}
6775 $$\vbox{\halign{#\hfil&&\qquad#\hfil\cr
6776 |left_type|&\\{left} info&|x_coord,y_coord|&|right_type|&\\{right} info\cr
6778 |endpoint|&\lodash$,\,$\lodash&$x_0,y_0$&|curl|&$1.0,1.0$\cr
6779 |open|&\lodash$,1.0$&$x_1,y_1$&|open|&\lodash$,-1.0$\cr
6780 |curl|&$2.0,-1.0$&$x_2,y_2$&|curl|&$2.0,1.0$\cr
6781 |given|&$d,1.0$&$x_3,y_3$&|given|&$d,3.0$\cr
6782 |open|&\lodash$,4.0$&$x_4,y_4$&|explicit|&$x_{45},y_{45}$\cr
6783 |explicit|&$x_{54},y_{54}$&$x_5,y_5$&|endpoint|&\lodash$,\,$\lodash\cr}}$$
6784 Here |d| is the |angle| obtained by calling |n_arg(-unity,-two)|.
6785 Of course, this example is more complicated than anything a normal user
6788 These types must satisfy certain restrictions because of the form of \MP's
6790 (i)~|open| type never appears in the same node together with |endpoint|,
6792 (ii)~The |right_type| of a node is |explicit| if and only if the
6793 |left_type| of the following node is |explicit|.
6794 (iii)~|endpoint| types occur only at the ends, as mentioned above.
6796 @d left_curl left_x /* curl information when entering this knot */
6797 @d left_given left_x /* given direction when entering this knot */
6798 @d left_tension left_y /* tension information when entering this knot */
6799 @d right_curl right_x /* curl information when leaving this knot */
6800 @d right_given right_x /* given direction when leaving this knot */
6801 @d right_tension right_y /* tension information when leaving this knot */
6802 @d explicit 1 /* |left_type| or |right_type| when control points are known */
6803 @d given 2 /* |left_type| or |right_type| when a direction is given */
6804 @d curl 3 /* |left_type| or |right_type| when a curl is desired */
6805 @d open 4 /* |left_type| or |right_type| when \MP\ should choose the direction */
6807 @ Knots can be user-supplied, or they can be created by program code,
6808 like the |split_cubic| function, or |copy_path|. The distinction is
6809 needed for the cleanup routine that runs after |split_cubic|, because
6810 it should only delete knots it has previously inserted, and never
6811 anything that was user-supplied. In order to be able to differentiate
6812 one knot from another, we will set |originator(p):=metapost_user| when
6813 it appeared in the actual metapost program, and
6814 |originator(p):=program_code| in all other cases.
6816 @d originator(A) mp->mem[(A)+7].hh.b0 /* the creator of this knot */
6817 @d program_code 0 /* not created by a user */
6818 @d metapost_user 1 /* created by a user */
6820 @ Here is a routine that prints a given knot list
6821 in symbolic form. It illustrates the conventions discussed above,
6822 and checks for anomalies that might arise while \MP\ is being debugged.
6824 @<Declare subroutines for printing expressions@>=
6825 void mp_pr_path (MP mp,pointer h);
6828 void mp_pr_path (MP mp,pointer h) {
6829 pointer p,q; /* for list traversal */
6833 if ( (p==null)||(q==null) ) {
6834 mp_print_nl(mp, "???"); return; /* this won't happen */
6837 @<Print information for adjacent knots |p| and |q|@>;
6840 if ( (p!=h)||(left_type(h)!=endpoint) ) {
6841 @<Print two dots, followed by |given| or |curl| if present@>;
6844 if ( left_type(h)!=endpoint )
6845 mp_print(mp, "cycle");
6848 @ @<Print information for adjacent knots...@>=
6849 mp_print_two(mp, x_coord(p),y_coord(p));
6850 switch (right_type(p)) {
6852 if ( left_type(p)==open ) mp_print(mp, "{open?}"); /* can't happen */
6854 if ( (left_type(q)!=endpoint)||(q!=h) ) q=null; /* force an error */
6858 @<Print control points between |p| and |q|, then |goto done1|@>;
6861 @<Print information for a curve that begins |open|@>;
6865 @<Print information for a curve that begins |curl| or |given|@>;
6868 mp_print(mp, "???"); /* can't happen */
6872 if ( left_type(q)<=explicit ) {
6873 mp_print(mp, "..control?"); /* can't happen */
6875 } else if ( (right_tension(p)!=unity)||(left_tension(q)!=unity) ) {
6876 @<Print tension between |p| and |q|@>;
6879 @ Since |n_sin_cos| produces |fraction| results, which we will print as if they
6880 were |scaled|, the magnitude of a |given| direction vector will be~4096.
6882 @<Print two dots...@>=
6884 mp_print_nl(mp, " ..");
6885 if ( left_type(p)==given ) {
6886 mp_n_sin_cos(mp, left_given(p)); mp_print_char(mp, '{');
6887 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
6888 mp_print_scaled(mp, mp->n_sin); mp_print_char(mp, '}');
6889 } else if ( left_type(p)==curl ){
6890 mp_print(mp, "{curl ");
6891 mp_print_scaled(mp, left_curl(p)); mp_print_char(mp, '}');
6895 @ @<Print tension between |p| and |q|@>=
6897 mp_print(mp, "..tension ");
6898 if ( right_tension(p)<0 ) mp_print(mp, "atleast");
6899 mp_print_scaled(mp, abs(right_tension(p)));
6900 if ( right_tension(p)!=left_tension(q) ){
6901 mp_print(mp, " and ");
6902 if ( left_tension(q)<0 ) mp_print(mp, "atleast");
6903 mp_print_scaled(mp, abs(left_tension(q)));
6907 @ @<Print control points between |p| and |q|, then |goto done1|@>=
6909 mp_print(mp, "..controls ");
6910 mp_print_two(mp, right_x(p),right_y(p));
6911 mp_print(mp, " and ");
6912 if ( left_type(q)!=explicit ) {
6913 mp_print(mp, "??"); /* can't happen */
6916 mp_print_two(mp, left_x(q),left_y(q));
6921 @ @<Print information for a curve that begins |open|@>=
6922 if ( (left_type(p)!=explicit)&&(left_type(p)!=open) ) {
6923 mp_print(mp, "{open?}"); /* can't happen */
6927 @ A curl of 1 is shown explicitly, so that the user sees clearly that
6928 \MP's default curl is present.
6930 The code here uses the fact that |left_curl==left_given| and
6931 |right_curl==right_given|.
6933 @<Print information for a curve that begins |curl|...@>=
6935 if ( left_type(p)==open )
6936 mp_print(mp, "??"); /* can't happen */
6938 if ( right_type(p)==curl ) {
6939 mp_print(mp, "{curl "); mp_print_scaled(mp, right_curl(p));
6941 mp_n_sin_cos(mp, right_given(p)); mp_print_char(mp, '{');
6942 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
6943 mp_print_scaled(mp, mp->n_sin);
6945 mp_print_char(mp, '}');
6948 @ It is convenient to have another version of |pr_path| that prints the path
6949 as a diagnostic message.
6951 @<Declare subroutines for printing expressions@>=
6952 void mp_print_path (MP mp,pointer h, char *s, boolean nuline) {
6953 mp_print_diagnostic(mp, "Path", s, nuline); mp_print_ln(mp);
6956 mp_end_diagnostic(mp, true);
6959 @ If we want to duplicate a knot node, we can say |copy_knot|:
6962 pointer mp_copy_knot (MP mp,pointer p) {
6963 pointer q; /* the copy */
6964 int k; /* runs through the words of a knot node */
6965 q=mp_get_node(mp, knot_node_size);
6966 for (k=0;k<=knot_node_size-1;k++) {
6967 mp->mem[q+k]=mp->mem[p+k];
6969 originator(q)=originator(p);
6973 @ The |copy_path| routine makes a clone of a given path.
6976 pointer mp_copy_path (MP mp, pointer p) {
6977 pointer q,pp,qq; /* for list manipulation */
6978 q=mp_copy_knot(mp, p);
6981 link(qq)=mp_copy_knot(mp, pp);
6989 @ Similarly, there's a way to copy the {\sl reverse\/} of a path. This procedure
6990 returns a pointer to the first node of the copy, if the path is a cycle,
6991 but to the final node of a non-cyclic copy. The global
6992 variable |path_tail| will point to the final node of the original path;
6993 this trick makes it easier to implement `\&{doublepath}'.
6995 All node types are assumed to be |endpoint| or |explicit| only.
6998 pointer mp_htap_ypoc (MP mp,pointer p) {
6999 pointer q,pp,qq,rr; /* for list manipulation */
7000 q=mp_get_node(mp, knot_node_size); /* this will correspond to |p| */
7003 right_type(qq)=left_type(pp); left_type(qq)=right_type(pp);
7004 x_coord(qq)=x_coord(pp); y_coord(qq)=y_coord(pp);
7005 right_x(qq)=left_x(pp); right_y(qq)=left_y(pp);
7006 left_x(qq)=right_x(pp); left_y(qq)=right_y(pp);
7007 originator(qq)=originator(pp);
7008 if ( link(pp)==p ) {
7009 link(q)=qq; mp->path_tail=pp; return q;
7011 rr=mp_get_node(mp, knot_node_size); link(rr)=qq; qq=rr; pp=link(pp);
7016 pointer path_tail; /* the node that links to the beginning of a path */
7018 @ When a cyclic list of knot nodes is no longer needed, it can be recycled by
7019 calling the following subroutine.
7021 @<Declare the recycling subroutines@>=
7022 void mp_toss_knot_list (MP mp,pointer p) ;
7025 void mp_toss_knot_list (MP mp,pointer p) {
7026 pointer q; /* the node being freed */
7027 pointer r; /* the next node */
7031 mp_free_node(mp, q,knot_node_size); q=r;
7035 @* \[18] Choosing control points.
7036 Now we must actually delve into one of \MP's more difficult routines,
7037 the |make_choices| procedure that chooses angles and control points for
7038 the splines of a curve when the user has not specified them explicitly.
7039 The parameter to |make_choices| points to a list of knots and
7040 path information, as described above.
7042 A path decomposes into independent segments at ``breakpoint'' knots,
7043 which are knots whose left and right angles are both prespecified in
7044 some way (i.e., their |left_type| and |right_type| aren't both open).
7047 @<Declare the procedure called |solve_choices|@>;
7048 void mp_make_choices (MP mp,pointer knots) {
7049 pointer h; /* the first breakpoint */
7050 pointer p,q; /* consecutive breakpoints being processed */
7051 @<Other local variables for |make_choices|@>;
7052 check_arith; /* make sure that |arith_error=false| */
7053 if ( mp->internal[tracing_choices]>0 )
7054 mp_print_path(mp, knots,", before choices",true);
7055 @<If consecutive knots are equal, join them explicitly@>;
7056 @<Find the first breakpoint, |h|, on the path;
7057 insert an artificial breakpoint if the path is an unbroken cycle@>;
7060 @<Fill in the control points between |p| and the next breakpoint,
7061 then advance |p| to that breakpoint@>;
7063 if ( mp->internal[tracing_choices]>0 )
7064 mp_print_path(mp, knots,", after choices",true);
7065 if ( mp->arith_error ) {
7066 @<Report an unexpected problem during the choice-making@>;
7070 @ @<Report an unexpected problem during the choice...@>=
7072 print_err("Some number got too big");
7073 @.Some number got too big@>
7074 help2("The path that I just computed is out of range.")
7075 ("So it will probably look funny. Proceed, for a laugh.");
7076 mp_put_get_error(mp); mp->arith_error=false;
7079 @ Two knots in a row with the same coordinates will always be joined
7080 by an explicit ``curve'' whose control points are identical with the
7083 @<If consecutive knots are equal, join them explicitly@>=
7087 if ( x_coord(p)==x_coord(q) && y_coord(p)==y_coord(q) && right_type(p)>explicit ) {
7088 right_type(p)=explicit;
7089 if ( left_type(p)==open ) {
7090 left_type(p)=curl; left_curl(p)=unity;
7092 left_type(q)=explicit;
7093 if ( right_type(q)==open ) {
7094 right_type(q)=curl; right_curl(q)=unity;
7096 right_x(p)=x_coord(p); left_x(q)=x_coord(p);
7097 right_y(p)=y_coord(p); left_y(q)=y_coord(p);
7102 @ If there are no breakpoints, it is necessary to compute the direction
7103 angles around an entire cycle. In this case the |left_type| of the first
7104 node is temporarily changed to |end_cycle|.
7106 @d end_cycle (open+1)
7108 @<Find the first breakpoint, |h|, on the path...@>=
7111 if ( left_type(h)!=open ) break;
7112 if ( right_type(h)!=open ) break;
7115 left_type(h)=end_cycle; break;
7119 @ If |right_type(p)<given| and |q=link(p)|, we must have
7120 |right_type(p)=left_type(q)=explicit| or |endpoint|.
7122 @<Fill in the control points between |p| and the next breakpoint...@>=
7124 if ( right_type(p)>=given ) {
7125 while ( (left_type(q)==open)&&(right_type(q)==open) ) q=link(q);
7126 @<Fill in the control information between
7127 consecutive breakpoints |p| and |q|@>;
7128 } else if ( right_type(p)==endpoint ) {
7129 @<Give reasonable values for the unused control points between |p| and~|q|@>;
7133 @ This step makes it possible to transform an explicitly computed path without
7134 checking the |left_type| and |right_type| fields.
7136 @<Give reasonable values for the unused control points between |p| and~|q|@>=
7138 right_x(p)=x_coord(p); right_y(p)=y_coord(p);
7139 left_x(q)=x_coord(q); left_y(q)=y_coord(q);
7142 @ Before we can go further into the way choices are made, we need to
7143 consider the underlying theory. The basic ideas implemented in |make_choices|
7144 are due to John Hobby, who introduced the notion of ``mock curvature''
7145 @^Hobby, John Douglas@>
7146 at a knot. Angles are chosen so that they preserve mock curvature when
7147 a knot is passed, and this has been found to produce excellent results.
7149 It is convenient to introduce some notations that simplify the necessary
7150 formulas. Let $d_{k,k+1}=\vert z\k-z_k\vert$ be the (nonzero) distance
7151 between knots |k| and |k+1|; and let
7152 $${z\k-z_k\over z_k-z_{k-1}}={d_{k,k+1}\over d_{k-1,k}}e^{i\psi_k}$$
7153 so that a polygonal line from $z_{k-1}$ to $z_k$ to $z\k$ turns left
7154 through an angle of~$\psi_k$. We assume that $\vert\psi_k\vert\L180^\circ$.
7155 The control points for the spline from $z_k$ to $z\k$ will be denoted by
7156 $$\eqalign{z_k^+&=z_k+
7157 \textstyle{1\over3}\rho_k e^{i\theta_k}(z\k-z_k),\cr
7159 \textstyle{1\over3}\sigma\k e^{-i\phi\k}(z\k-z_k),\cr}$$
7160 where $\rho_k$ and $\sigma\k$ are nonnegative ``velocity ratios'' at the
7161 beginning and end of the curve, while $\theta_k$ and $\phi\k$ are the
7162 corresponding ``offset angles.'' These angles satisfy the condition
7163 $$\theta_k+\phi_k+\psi_k=0,\eqno(*)$$
7164 whenever the curve leaves an intermediate knot~|k| in the direction that
7167 @ Let $\alpha_k$ and $\beta\k$ be the reciprocals of the ``tension'' of
7168 the curve at its beginning and ending points. This means that
7169 $\rho_k=\alpha_k f(\theta_k,\phi\k)$ and $\sigma\k=\beta\k f(\phi\k,\theta_k)$,
7170 where $f(\theta,\phi)$ is \MP's standard velocity function defined in
7171 the |velocity| subroutine. The cubic spline $B(z_k^{\phantom+},z_k^+,
7172 z\k^-,z\k^{\phantom+};t)$
7175 $${2\sigma\k\sin(\theta_k+\phi\k)-6\sin\theta_k\over\rho_k^2d_{k,k+1}}
7176 \qquad{\rm and}\qquad
7177 {2\rho_k\sin(\theta_k+\phi\k)-6\sin\phi\k\over\sigma\k^2d_{k,k+1}}$$
7178 at |t=0| and |t=1|, respectively. The mock curvature is the linear
7180 approximation to this true curvature that arises in the limit for
7181 small $\theta_k$ and~$\phi\k$, if second-order terms are discarded.
7182 The standard velocity function satisfies
7183 $$f(\theta,\phi)=1+O(\theta^2+\theta\phi+\phi^2);$$
7184 hence the mock curvatures are respectively
7185 $${2\beta\k(\theta_k+\phi\k)-6\theta_k\over\alpha_k^2d_{k,k+1}}
7186 \qquad{\rm and}\qquad
7187 {2\alpha_k(\theta_k+\phi\k)-6\phi\k\over\beta\k^2d_{k,k+1}}.\eqno(**)$$
7189 @ The turning angles $\psi_k$ are given, and equation $(*)$ above
7190 determines $\phi_k$ when $\theta_k$ is known, so the task of
7191 angle selection is essentially to choose appropriate values for each
7192 $\theta_k$. When equation~$(*)$ is used to eliminate $\phi$~variables
7193 from $(**)$, we obtain a system of linear equations of the form
7194 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7196 $$A_k={\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7197 \qquad B_k={3-\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7198 \qquad C_k={3-\beta\k\over\alpha_k^2d_{k,k+1}},
7199 \qquad D_k={\beta\k\over\alpha_k^2d_{k,k+1}}.$$
7200 The tensions are always $3\over4$ or more, hence each $\alpha$ and~$\beta$
7201 will be at most $4\over3$. It follows that $B_k\G{5\over4}A_k$ and
7202 $C_k\G{5\over4}D_k$; hence the equations are diagonally dominant;
7203 hence they have a unique solution. Moreover, in most cases the tensions
7204 are equal to~1, so that $B_k=2A_k$ and $C_k=2D_k$. This makes the
7205 solution numerically stable, and there is an exponential damping
7206 effect: The data at knot $k\pm j$ affects the angle at knot~$k$ by
7207 a factor of~$O(2^{-j})$.
7209 @ However, we still must consider the angles at the starting and ending
7210 knots of a non-cyclic path. These angles might be given explicitly, or
7211 they might be specified implicitly in terms of an amount of ``curl.''
7213 Let's assume that angles need to be determined for a non-cyclic path
7214 starting at $z_0$ and ending at~$z_n$. Then equations of the form
7215 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta_{k+1}=R_k$$
7216 have been given for $0<k<n$, and it will be convenient to introduce
7217 equations of the same form for $k=0$ and $k=n$, where
7218 $$A_0=B_0=C_n=D_n=0.$$
7219 If $\theta_0$ is supposed to have a given value $E_0$, we simply
7220 define $C_0=0$, $D_0=0$, and $R_0=E_0$. Otherwise a curl
7221 parameter, $\gamma_0$, has been specified at~$z_0$; this means
7222 that the mock curvature at $z_0$ should be $\gamma_0$ times the
7223 mock curvature at $z_1$; i.e.,
7224 $${2\beta_1(\theta_0+\phi_1)-6\theta_0\over\alpha_0^2d_{01}}
7225 =\gamma_0{2\alpha_0(\theta_0+\phi_1)-6\phi_1\over\beta_1^2d_{01}}.$$
7226 This equation simplifies to
7227 $$(\alpha_0\chi_0+3-\beta_1)\theta_0+
7228 \bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\theta_1=
7229 -\bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\psi_1,$$
7230 where $\chi_0=\alpha_0^2\gamma_0/\beta_1^2$; so we can set $C_0=
7231 \chi_0\alpha_0+3-\beta_1$, $D_0=(3-\alpha_0)\chi_0+\beta_1$, $R_0=-D_0\psi_1$.
7232 It can be shown that $C_0>0$ and $C_0B_1-A_1D_0>0$ when $\gamma_0\G0$,
7233 hence the linear equations remain nonsingular.
7235 Similar considerations apply at the right end, when the final angle $\phi_n$
7236 may or may not need to be determined. It is convenient to let $\psi_n=0$,
7237 hence $\theta_n=-\phi_n$. We either have an explicit equation $\theta_n=E_n$,
7239 $$\bigl((3-\beta_n)\chi_n+\alpha_{n-1}\bigr)\theta_{n-1}+
7240 (\beta_n\chi_n+3-\alpha_{n-1})\theta_n=0,\qquad
7241 \chi_n={\beta_n^2\gamma_n\over\alpha_{n-1}^2}.$$
7243 When |make_choices| chooses angles, it must compute the coefficients of
7244 these linear equations, then solve the equations. To compute the coefficients,
7245 it is necessary to compute arctangents of the given turning angles~$\psi_k$.
7246 When the equations are solved, the chosen directions $\theta_k$ are put
7247 back into the form of control points by essentially computing sines and
7250 @ OK, we are ready to make the hard choices of |make_choices|.
7251 Most of the work is relegated to an auxiliary procedure
7252 called |solve_choices|, which has been introduced to keep
7253 |make_choices| from being extremely long.
7255 @<Fill in the control information between...@>=
7256 @<Calculate the turning angles $\psi_k$ and the distances $d_{k,k+1}$;
7257 set $n$ to the length of the path@>;
7258 @<Remove |open| types at the breakpoints@>;
7259 mp_solve_choices(mp, p,q,n)
7261 @ It's convenient to precompute quantities that will be needed several
7262 times later. The values of |delta_x[k]| and |delta_y[k]| will be the
7263 coordinates of $z\k-z_k$, and the magnitude of this vector will be
7264 |delta[k]=@t$d_{k,k+1}$@>|. The path angle $\psi_k$ between $z_k-z_{k-1}$
7265 and $z\k-z_k$ will be stored in |psi[k]|.
7268 int path_size; /* maximum number of knots between breakpoints of a path */
7271 scaled *delta; /* knot differences */
7272 angle *psi; /* turning angles */
7274 @ @<Allocate or initialize ...@>=
7280 @ @<Dealloc variables@>=
7286 @ @<Other local variables for |make_choices|@>=
7287 int k,n; /* current and final knot numbers */
7288 pointer s,t; /* registers for list traversal */
7289 scaled delx,dely; /* directions where |open| meets |explicit| */
7290 fraction sine,cosine; /* trig functions of various angles */
7292 @ @<Calculate the turning angles...@>=
7295 k=0; s=p; n=mp->path_size;
7298 mp->delta_x[k]=x_coord(t)-x_coord(s);
7299 mp->delta_y[k]=y_coord(t)-y_coord(s);
7300 mp->delta[k]=mp_pyth_add(mp, mp->delta_x[k],mp->delta_y[k]);
7302 sine=mp_make_fraction(mp, mp->delta_y[k-1],mp->delta[k-1]);
7303 cosine=mp_make_fraction(mp, mp->delta_x[k-1],mp->delta[k-1]);
7304 mp->psi[k]=mp_n_arg(mp, mp_take_fraction(mp, mp->delta_x[k],cosine)+
7305 mp_take_fraction(mp, mp->delta_y[k],sine),
7306 mp_take_fraction(mp, mp->delta_y[k],cosine)-
7307 mp_take_fraction(mp, mp->delta_x[k],sine));
7310 if ( k==mp->path_size ) {
7311 mp_reallocate_paths(mp, mp->path_size+(mp->path_size>>2));
7312 goto RESTART; /* retry, loop size has changed */
7315 } while (! (k>=n)&&(left_type(s)!=end_cycle));
7316 if ( k==n ) mp->psi[n]=0; else mp->psi[k]=mp->psi[1];
7319 @ When we get to this point of the code, |right_type(p)| is either
7320 |given| or |curl| or |open|. If it is |open|, we must have
7321 |left_type(p)=end_cycle| or |left_type(p)=explicit|. In the latter
7322 case, the |open| type is converted to |given|; however, if the
7323 velocity coming into this knot is zero, the |open| type is
7324 converted to a |curl|, since we don't know the incoming direction.
7326 Similarly, |left_type(q)| is either |given| or |curl| or |open| or
7327 |end_cycle|. The |open| possibility is reduced either to |given| or to |curl|.
7329 @<Remove |open| types at the breakpoints@>=
7330 if ( left_type(q)==open ) {
7331 delx=right_x(q)-x_coord(q); dely=right_y(q)-y_coord(q);
7332 if ( (delx==0)&&(dely==0) ) {
7333 left_type(q)=curl; left_curl(q)=unity;
7335 left_type(q)=given; left_given(q)=mp_n_arg(mp, delx,dely);
7338 if ( (right_type(p)==open)&&(left_type(p)==explicit) ) {
7339 delx=x_coord(p)-left_x(p); dely=y_coord(p)-left_y(p);
7340 if ( (delx==0)&&(dely==0) ) {
7341 right_type(p)=curl; right_curl(p)=unity;
7343 right_type(p)=given; right_given(p)=mp_n_arg(mp, delx,dely);
7347 @ Linear equations need to be solved whenever |n>1|; and also when |n=1|
7348 and exactly one of the breakpoints involves a curl. The simplest case occurs
7349 when |n=1| and there is a curl at both breakpoints; then we simply draw
7352 But before coding up the simple cases, we might as well face the general case,
7353 since we must deal with it sooner or later, and since the general case
7354 is likely to give some insight into the way simple cases can be handled best.
7356 When there is no cycle, the linear equations to be solved form a tridiagonal
7357 system, and we can apply the standard technique of Gaussian elimination
7358 to convert that system to a sequence of equations of the form
7359 $$\theta_0+u_0\theta_1=v_0,\quad
7360 \theta_1+u_1\theta_2=v_1,\quad\ldots,\quad
7361 \theta_{n-1}+u_{n-1}\theta_n=v_{n-1},\quad
7363 It is possible to do this diagonalization while generating the equations.
7364 Once $\theta_n$ is known, it is easy to determine $\theta_{n-1}$, \dots,
7365 $\theta_1$, $\theta_0$; thus, the equations will be solved.
7367 The procedure is slightly more complex when there is a cycle, but the
7368 basic idea will be nearly the same. In the cyclic case the right-hand
7369 sides will be $v_k+w_k\theta_0$ instead of simply $v_k$, and we will start
7370 the process off with $u_0=v_0=0$, $w_0=1$. The final equation will be not
7371 $\theta_n=v_n$ but $\theta_n+u_n\theta_1=v_n+w_n\theta_0$; an appropriate
7372 ending routine will take account of the fact that $\theta_n=\theta_0$ and
7373 eliminate the $w$'s from the system, after which the solution can be
7376 When $u_k$, $v_k$, and $w_k$ are being computed, the three pointer
7377 variables |r|, |s|,~|t| will point respectively to knots |k-1|, |k|,
7378 and~|k+1|. The $u$'s and $w$'s are scaled by $2^{28}$, i.e., they are
7379 of type |fraction|; the $\theta$'s and $v$'s are of type |angle|.
7382 angle *theta; /* values of $\theta_k$ */
7383 fraction *uu; /* values of $u_k$ */
7384 angle *vv; /* values of $v_k$ */
7385 fraction *ww; /* values of $w_k$ */
7387 @ @<Allocate or initialize ...@>=
7393 @ @<Dealloc variables@>=
7399 @ @<Declare |mp_reallocate| functions@>=
7400 void mp_reallocate_paths (MP mp, int l);
7403 void mp_reallocate_paths (MP mp, int l) {
7404 XREALLOC (mp->delta_x, l, scaled);
7405 XREALLOC (mp->delta_y, l, scaled);
7406 XREALLOC (mp->delta, l, scaled);
7407 XREALLOC (mp->psi, l, angle);
7408 XREALLOC (mp->theta, l, angle);
7409 XREALLOC (mp->uu, l, fraction);
7410 XREALLOC (mp->vv, l, angle);
7411 XREALLOC (mp->ww, l, fraction);
7415 @ Our immediate problem is to get the ball rolling by setting up the
7416 first equation or by realizing that no equations are needed, and to fit
7417 this initialization into a framework suitable for the overall computation.
7419 @<Declare the procedure called |solve_choices|@>=
7420 @<Declare subroutines needed by |solve_choices|@>;
7421 void mp_solve_choices (MP mp,pointer p, pointer q, halfword n) {
7422 int k; /* current knot number */
7423 pointer r,s,t; /* registers for list traversal */
7424 @<Other local variables for |solve_choices|@>;
7429 @<Get the linear equations started; or |return|
7430 with the control points in place, if linear equations
7433 switch (left_type(s)) {
7434 case end_cycle: case open:
7435 @<Set up equation to match mock curvatures
7436 at $z_k$; then |goto found| with $\theta_n$
7437 adjusted to equal $\theta_0$, if a cycle has ended@>;
7440 @<Set up equation for a curl at $\theta_n$
7444 @<Calculate the given value of $\theta_n$
7447 } /* there are no other cases */
7452 @<Finish choosing angles and assigning control points@>;
7455 @ On the first time through the loop, we have |k=0| and |r| is not yet
7456 defined. The first linear equation, if any, will have $A_0=B_0=0$.
7458 @<Get the linear equations started...@>=
7459 switch (right_type(s)) {
7461 if ( left_type(t)==given ) {
7462 @<Reduce to simple case of two givens and |return|@>
7464 @<Set up the equation for a given value of $\theta_0$@>;
7468 if ( left_type(t)==curl ) {
7469 @<Reduce to simple case of straight line and |return|@>
7471 @<Set up the equation for a curl at $\theta_0$@>;
7475 mp->uu[0]=0; mp->vv[0]=0; mp->ww[0]=fraction_one;
7476 /* this begins a cycle */
7478 } /* there are no other cases */
7480 @ The general equation that specifies equality of mock curvature at $z_k$ is
7481 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7482 as derived above. We want to combine this with the already-derived equation
7483 $\theta_{k-1}+u_{k-1}\theta_k=v_{k-1}+w_{k-1}\theta_0$ in order to obtain
7485 $\theta_k+u_k\theta\k=v_k+w_k\theta_0$. This can be done by dividing the
7487 $$(B_k-u_{k-1}A_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k-A_kv_{k-1}
7488 -A_kw_{k-1}\theta_0$$
7489 by $B_k-u_{k-1}A_k+C_k$. The trick is to do this carefully with
7490 fixed-point arithmetic, avoiding the chance of overflow while retaining
7493 The calculations will be performed in several registers that
7494 provide temporary storage for intermediate quantities.
7496 @<Other local variables for |solve_choices|@>=
7497 fraction aa,bb,cc,ff,acc; /* temporary registers */
7498 scaled dd,ee; /* likewise, but |scaled| */
7499 scaled lt,rt; /* tension values */
7501 @ @<Set up equation to match mock curvatures...@>=
7502 { @<Calculate the values $\\{aa}=A_k/B_k$, $\\{bb}=D_k/C_k$,
7503 $\\{dd}=(3-\alpha_{k-1})d_{k,k+1}$, $\\{ee}=(3-\beta\k)d_{k-1,k}$,
7504 and $\\{cc}=(B_k-u_{k-1}A_k)/B_k$@>;
7505 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>;
7506 mp->uu[k]=mp_take_fraction(mp, ff,bb);
7507 @<Calculate the values of $v_k$ and $w_k$@>;
7508 if ( left_type(s)==end_cycle ) {
7509 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>;
7513 @ Since tension values are never less than 3/4, the values |aa| and
7514 |bb| computed here are never more than 4/5.
7516 @<Calculate the values $\\{aa}=...@>=
7517 if ( abs(right_tension(r))==unity) {
7518 aa=fraction_half; dd=2*mp->delta[k];
7520 aa=mp_make_fraction(mp, unity,3*abs(right_tension(r))-unity);
7521 dd=mp_take_fraction(mp, mp->delta[k],
7522 fraction_three-mp_make_fraction(mp, unity,abs(right_tension(r))));
7524 if ( abs(left_tension(t))==unity ){
7525 bb=fraction_half; ee=2*mp->delta[k-1];
7527 bb=mp_make_fraction(mp, unity,3*abs(left_tension(t))-unity);
7528 ee=mp_take_fraction(mp, mp->delta[k-1],
7529 fraction_three-mp_make_fraction(mp, unity,abs(left_tension(t))));
7531 cc=fraction_one-mp_take_fraction(mp, mp->uu[k-1],aa)
7533 @ The ratio to be calculated in this step can be written in the form
7534 $$\beta_k^2\cdot\\{ee}\over\beta_k^2\cdot\\{ee}+\alpha_k^2\cdot
7535 \\{cc}\cdot\\{dd},$$
7536 because of the quantities just calculated. The values of |dd| and |ee|
7537 will not be needed after this step has been performed.
7539 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>=
7540 dd=mp_take_fraction(mp, dd,cc); lt=abs(left_tension(s)); rt=abs(right_tension(s));
7541 if ( lt!=rt ) { /* $\beta_k^{-1}\ne\alpha_k^{-1}$ */
7543 ff=mp_make_fraction(mp, lt,rt);
7544 ff=mp_take_fraction(mp, ff,ff); /* $\alpha_k^2/\beta_k^2$ */
7545 dd=mp_take_fraction(mp, dd,ff);
7547 ff=mp_make_fraction(mp, rt,lt);
7548 ff=mp_take_fraction(mp, ff,ff); /* $\beta_k^2/\alpha_k^2$ */
7549 ee=mp_take_fraction(mp, ee,ff);
7552 ff=mp_make_fraction(mp, ee,ee+dd)
7554 @ The value of $u_{k-1}$ will be |<=1| except when $k=1$ and the previous
7555 equation was specified by a curl. In that case we must use a special
7556 method of computation to prevent overflow.
7558 Fortunately, the calculations turn out to be even simpler in this ``hard''
7559 case. The curl equation makes $w_0=0$ and $v_0=-u_0\psi_1$, hence
7560 $-B_1\psi_1-A_1v_0=-(B_1-u_0A_1)\psi_1=-\\{cc}\cdot B_1\psi_1$.
7562 @<Calculate the values of $v_k$ and $w_k$@>=
7563 acc=-mp_take_fraction(mp, mp->psi[k+1],mp->uu[k]);
7564 if ( right_type(r)==curl ) {
7566 mp->vv[k]=acc-mp_take_fraction(mp, mp->psi[1],fraction_one-ff);
7568 ff=mp_make_fraction(mp, fraction_one-ff,cc); /* this is
7569 $B_k/(C_k+B_k-u_{k-1}A_k)<5$ */
7570 acc=acc-mp_take_fraction(mp, mp->psi[k],ff);
7571 ff=mp_take_fraction(mp, ff,aa); /* this is $A_k/(C_k+B_k-u_{k-1}A_k)$ */
7572 mp->vv[k]=acc-mp_take_fraction(mp, mp->vv[k-1],ff);
7573 if ( mp->ww[k-1]==0 ) mp->ww[k]=0;
7574 else mp->ww[k]=-mp_take_fraction(mp, mp->ww[k-1],ff);
7577 @ When a complete cycle has been traversed, we have $\theta_k+u_k\theta\k=
7578 v_k+w_k\theta_0$, for |1<=k<=n|. We would like to determine the value of
7579 $\theta_n$ and reduce the system to the form $\theta_k+u_k\theta\k=v_k$
7580 for |0<=k<n|, so that the cyclic case can be finished up just as if there
7583 The idea in the following code is to observe that
7584 $$\eqalign{\theta_n&=v_n+w_n\theta_0-u_n\theta_1=\cdots\cr
7585 &=v_n+w_n\theta_0-u_n\bigl(v_1+w_1\theta_0-u_1(v_2+\cdots
7586 -u_{n-2}(v_{n-1}+w_{n-1}\theta_0-u_{n-1}\theta_0))\bigr),\cr}$$
7587 so we can solve for $\theta_n=\theta_0$.
7589 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>=
7591 aa=0; bb=fraction_one; /* we have |k=n| */
7594 aa=mp->vv[k]-mp_take_fraction(mp, aa,mp->uu[k]);
7595 bb=mp->ww[k]-mp_take_fraction(mp, bb,mp->uu[k]);
7596 } while (k!=n); /* now $\theta_n=\\{aa}+\\{bb}\cdot\theta_n$ */
7597 aa=mp_make_fraction(mp, aa,fraction_one-bb);
7598 mp->theta[n]=aa; mp->vv[0]=aa;
7599 for (k=1;k<=n-1;k++) {
7600 mp->vv[k]=mp->vv[k]+mp_take_fraction(mp, aa,mp->ww[k]);
7605 @ @d reduce_angle(A) if ( abs((A))>one_eighty_deg ) {
7606 if ( (A)>0 ) (A)=(A)-three_sixty_deg; else (A)=(A)+three_sixty_deg; }
7608 @<Calculate the given value of $\theta_n$...@>=
7610 mp->theta[n]=left_given(s)-mp_n_arg(mp, mp->delta_x[n-1],mp->delta_y[n-1]);
7611 reduce_angle(mp->theta[n]);
7615 @ @<Set up the equation for a given value of $\theta_0$@>=
7617 mp->vv[0]=right_given(s)-mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7618 reduce_angle(mp->vv[0]);
7619 mp->uu[0]=0; mp->ww[0]=0;
7622 @ @<Set up the equation for a curl at $\theta_0$@>=
7623 { cc=right_curl(s); lt=abs(left_tension(t)); rt=abs(right_tension(s));
7624 if ( (rt==unity)&&(lt==unity) )
7625 mp->uu[0]=mp_make_fraction(mp, cc+cc+unity,cc+two);
7627 mp->uu[0]=mp_curl_ratio(mp, cc,rt,lt);
7628 mp->vv[0]=-mp_take_fraction(mp, mp->psi[1],mp->uu[0]); mp->ww[0]=0;
7631 @ @<Set up equation for a curl at $\theta_n$...@>=
7632 { cc=left_curl(s); lt=abs(left_tension(s)); rt=abs(right_tension(r));
7633 if ( (rt==unity)&&(lt==unity) )
7634 ff=mp_make_fraction(mp, cc+cc+unity,cc+two);
7636 ff=mp_curl_ratio(mp, cc,lt,rt);
7637 mp->theta[n]=-mp_make_fraction(mp, mp_take_fraction(mp, mp->vv[n-1],ff),
7638 fraction_one-mp_take_fraction(mp, ff,mp->uu[n-1]));
7642 @ The |curl_ratio| subroutine has three arguments, which our previous notation
7643 encourages us to call $\gamma$, $\alpha^{-1}$, and $\beta^{-1}$. It is
7644 a somewhat tedious program to calculate
7645 $${(3-\alpha)\alpha^2\gamma+\beta^3\over
7646 \alpha^3\gamma+(3-\beta)\beta^2},$$
7647 with the result reduced to 4 if it exceeds 4. (This reduction of curl
7648 is necessary only if the curl and tension are both large.)
7649 The values of $\alpha$ and $\beta$ will be at most~4/3.
7651 @<Declare subroutines needed by |solve_choices|@>=
7652 fraction mp_curl_ratio (MP mp,scaled gamma, scaled a_tension,
7654 fraction alpha,beta,num,denom,ff; /* registers */
7655 alpha=mp_make_fraction(mp, unity,a_tension);
7656 beta=mp_make_fraction(mp, unity,b_tension);
7657 if ( alpha<=beta ) {
7658 ff=mp_make_fraction(mp, alpha,beta); ff=mp_take_fraction(mp, ff,ff);
7659 gamma=mp_take_fraction(mp, gamma,ff);
7660 beta=beta / 010000; /* convert |fraction| to |scaled| */
7661 denom=mp_take_fraction(mp, gamma,alpha)+three-beta;
7662 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7664 ff=mp_make_fraction(mp, beta,alpha); ff=mp_take_fraction(mp, ff,ff);
7665 beta=mp_take_fraction(mp, beta,ff) / 010000; /* convert |fraction| to |scaled| */
7666 denom=mp_take_fraction(mp, gamma,alpha)+(ff / 1365)-beta;
7667 /* $1365\approx 2^{12}/3$ */
7668 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7670 if ( num>=denom+denom+denom+denom ) return fraction_four;
7671 else return mp_make_fraction(mp, num,denom);
7674 @ We're in the home stretch now.
7676 @<Finish choosing angles and assigning control points@>=
7677 for (k=n-1;k>=0;k--) {
7678 mp->theta[k]=mp->vv[k]-mp_take_fraction(mp,mp->theta[k+1],mp->uu[k]);
7683 mp_n_sin_cos(mp, mp->theta[k]); mp->st=mp->n_sin; mp->ct=mp->n_cos;
7684 mp_n_sin_cos(mp, -mp->psi[k+1]-mp->theta[k+1]); mp->sf=mp->n_sin; mp->cf=mp->n_cos;
7685 mp_set_controls(mp, s,t,k);
7689 @ The |set_controls| routine actually puts the control points into
7690 a pair of consecutive nodes |p| and~|q|. Global variables are used to
7691 record the values of $\sin\theta$, $\cos\theta$, $\sin\phi$, and
7692 $\cos\phi$ needed in this calculation.
7698 fraction cf; /* sines and cosines */
7700 @ @<Declare subroutines needed by |solve_choices|@>=
7701 void mp_set_controls (MP mp,pointer p, pointer q, integer k) {
7702 fraction rr,ss; /* velocities, divided by thrice the tension */
7703 scaled lt,rt; /* tensions */
7704 fraction sine; /* $\sin(\theta+\phi)$ */
7705 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7706 rr=mp_velocity(mp, mp->st,mp->ct,mp->sf,mp->cf,rt);
7707 ss=mp_velocity(mp, mp->sf,mp->cf,mp->st,mp->ct,lt);
7708 if ( (right_tension(p)<0)||(left_tension(q)<0) ) {
7709 @<Decrease the velocities,
7710 if necessary, to stay inside the bounding triangle@>;
7712 right_x(p)=x_coord(p)+mp_take_fraction(mp,
7713 mp_take_fraction(mp, mp->delta_x[k],mp->ct)-
7714 mp_take_fraction(mp, mp->delta_y[k],mp->st),rr);
7715 right_y(p)=y_coord(p)+mp_take_fraction(mp,
7716 mp_take_fraction(mp, mp->delta_y[k],mp->ct)+
7717 mp_take_fraction(mp, mp->delta_x[k],mp->st),rr);
7718 left_x(q)=x_coord(q)-mp_take_fraction(mp,
7719 mp_take_fraction(mp, mp->delta_x[k],mp->cf)+
7720 mp_take_fraction(mp, mp->delta_y[k],mp->sf),ss);
7721 left_y(q)=y_coord(q)-mp_take_fraction(mp,
7722 mp_take_fraction(mp, mp->delta_y[k],mp->cf)-
7723 mp_take_fraction(mp, mp->delta_x[k],mp->sf),ss);
7724 right_type(p)=explicit; left_type(q)=explicit;
7727 @ The boundedness conditions $\\{rr}\L\sin\phi\,/\sin(\theta+\phi)$ and
7728 $\\{ss}\L\sin\theta\,/\sin(\theta+\phi)$ are to be enforced if $\sin\theta$,
7729 $\sin\phi$, and $\sin(\theta+\phi)$ all have the same sign. Otherwise
7730 there is no ``bounding triangle.''
7731 @:at_least_}{\&{atleast} primitive@>
7733 @<Decrease the velocities, if necessary...@>=
7734 if (((mp->st>=0)&&(mp->sf>=0))||((mp->st<=0)&&(mp->sf<=0)) ) {
7735 sine=mp_take_fraction(mp, abs(mp->st),mp->cf)+
7736 mp_take_fraction(mp, abs(mp->sf),mp->ct);
7738 sine=mp_take_fraction(mp, sine,fraction_one+unity); /* safety factor */
7739 if ( right_tension(p)<0 )
7740 if ( mp_ab_vs_cd(mp, abs(mp->sf),fraction_one,rr,sine)<0 )
7741 rr=mp_make_fraction(mp, abs(mp->sf),sine);
7742 if ( left_tension(q)<0 )
7743 if ( mp_ab_vs_cd(mp, abs(mp->st),fraction_one,ss,sine)<0 )
7744 ss=mp_make_fraction(mp, abs(mp->st),sine);
7748 @ Only the simple cases remain to be handled.
7750 @<Reduce to simple case of two givens and |return|@>=
7752 aa=mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7753 mp_n_sin_cos(mp, right_given(p)-aa); mp->ct=mp->n_cos; mp->st=mp->n_sin;
7754 mp_n_sin_cos(mp, left_given(q)-aa); mp->cf=mp->n_cos; mp->sf=-mp->n_sin;
7755 mp_set_controls(mp, p,q,0); return;
7758 @ @<Reduce to simple case of straight line and |return|@>=
7760 right_type(p)=explicit; left_type(q)=explicit;
7761 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7763 if ( mp->delta_x[0]>=0 ) right_x(p)=x_coord(p)+((mp->delta_x[0]+1) / 3);
7764 else right_x(p)=x_coord(p)+((mp->delta_x[0]-1) / 3);
7765 if ( mp->delta_y[0]>=0 ) right_y(p)=y_coord(p)+((mp->delta_y[0]+1) / 3);
7766 else right_y(p)=y_coord(p)+((mp->delta_y[0]-1) / 3);
7768 ff=mp_make_fraction(mp, unity,3*rt); /* $\alpha/3$ */
7769 right_x(p)=x_coord(p)+mp_take_fraction(mp, mp->delta_x[0],ff);
7770 right_y(p)=y_coord(p)+mp_take_fraction(mp, mp->delta_y[0],ff);
7773 if ( mp->delta_x[0]>=0 ) left_x(q)=x_coord(q)-((mp->delta_x[0]+1) / 3);
7774 else left_x(q)=x_coord(q)-((mp->delta_x[0]-1) / 3);
7775 if ( mp->delta_y[0]>=0 ) left_y(q)=y_coord(q)-((mp->delta_y[0]+1) / 3);
7776 else left_y(q)=y_coord(q)-((mp->delta_y[0]-1) / 3);
7778 ff=mp_make_fraction(mp, unity,3*lt); /* $\beta/3$ */
7779 left_x(q)=x_coord(q)-mp_take_fraction(mp, mp->delta_x[0],ff);
7780 left_y(q)=y_coord(q)-mp_take_fraction(mp, mp->delta_y[0],ff);
7785 @* \[19] Measuring paths.
7786 \MP's \&{llcorner}, \&{lrcorner}, \&{ulcorner}, and \&{urcorner} operators
7787 allow the user to measure the bounding box of anything that can go into a
7788 picture. It's easy to get rough bounds on the $x$ and $y$ extent of a path
7789 by just finding the bounding box of the knots and the control points. We
7790 need a more accurate version of the bounding box, but we can still use the
7791 easy estimate to save time by focusing on the interesting parts of the path.
7793 @ Computing an accurate bounding box involves a theme that will come up again
7794 and again. Given a Bernshte{\u\i}n polynomial
7795 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
7796 $$B(z_0,z_1,\ldots,z_n;t)=\sum_k{n\choose k}t^k(1-t)^{n-k}z_k,$$
7797 we can conveniently bisect its range as follows:
7800 \textindent{1)} Let $z_k^{(0)}=z_k$, for |0<=k<=n|.
7803 \textindent{2)} Let $z_k^{(j+1)}={1\over2}(z_k^{(j)}+z\k^{(j)})$, for
7804 |0<=k<n-j|, for |0<=j<n|.
7808 $$B(z_0,z_1,\ldots,z_n;t)=B(z_0^{(0)},z_0^{(1)},\ldots,z_0^{(n)};2t)
7809 =B(z_0^{(n)},z_1^{(n-1)},\ldots,z_n^{(0)};2t-1).$$
7810 This formula gives us the coefficients of polynomials to use over the ranges
7811 $0\L t\L{1\over2}$ and ${1\over2}\L t\L1$.
7813 @ Now here's a subroutine that's handy for all sorts of path computations:
7814 Given a quadratic polynomial $B(a,b,c;t)$, the |crossing_point| function
7815 returns the unique |fraction| value |t| between 0 and~1 at which
7816 $B(a,b,c;t)$ changes from positive to negative, or returns
7817 |t=fraction_one+1| if no such value exists. If |a<0| (so that $B(a,b,c;t)$
7818 is already negative at |t=0|), |crossing_point| returns the value zero.
7820 @d no_crossing { return (fraction_one+1); }
7821 @d one_crossing { return fraction_one; }
7822 @d zero_crossing { return 0; }
7823 @d mp_crossing_point(M,A,B,C) mp_do_crossing_point(A,B,C)
7825 @c fraction mp_do_crossing_point (integer a, integer b, integer c) {
7826 integer d; /* recursive counter */
7827 integer x,xx,x0,x1,x2; /* temporary registers for bisection */
7828 if ( a<0 ) zero_crossing;
7831 if ( c>0 ) { no_crossing; }
7832 else if ( (a==0)&&(b==0) ) { no_crossing;}
7833 else { one_crossing; }
7835 if ( a==0 ) zero_crossing;
7836 } else if ( a==0 ) {
7837 if ( b<=0 ) zero_crossing;
7839 @<Use bisection to find the crossing point, if one exists@>;
7842 @ The general bisection method is quite simple when $n=2$, hence
7843 |crossing_point| does not take much time. At each stage in the
7844 recursion we have a subinterval defined by |l| and~|j| such that
7845 $B(a,b,c;2^{-l}(j+t))=B(x_0,x_1,x_2;t)$, and we want to ``zero in'' on
7846 the subinterval where $x_0\G0$ and $\min(x_1,x_2)<0$.
7848 It is convenient for purposes of calculation to combine the values
7849 of |l| and~|j| in a single variable $d=2^l+j$, because the operation
7850 of bisection then corresponds simply to doubling $d$ and possibly
7851 adding~1. Furthermore it proves to be convenient to modify
7852 our previous conventions for bisection slightly, maintaining the
7853 variables $X_0=2^lx_0$, $X_1=2^l(x_0-x_1)$, and $X_2=2^l(x_1-x_2)$.
7854 With these variables the conditions $x_0\ge0$ and $\min(x_1,x_2)<0$ are
7855 equivalent to $\max(X_1,X_1+X_2)>X_0\ge0$.
7857 The following code maintains the invariant relations
7858 $0\L|x0|<\max(|x1|,|x1|+|x2|)$,
7859 $\vert|x1|\vert<2^{30}$, $\vert|x2|\vert<2^{30}$;
7860 it has been constructed in such a way that no arithmetic overflow
7861 will occur if the inputs satisfy
7862 $a<2^{30}$, $\vert a-b\vert<2^{30}$, and $\vert b-c\vert<2^{30}$.
7864 @<Use bisection to find the crossing point...@>=
7865 d=1; x0=a; x1=a-b; x2=b-c;
7876 if ( x<=x0 ) { if ( x+x2<=x0 ) no_crossing; }
7880 } while (d<fraction_one);
7881 return (d-fraction_one)
7883 @ Here is a routine that computes the $x$ or $y$ coordinate of the point on
7884 a cubic corresponding to the |fraction| value~|t|.
7886 It is convenient to define a \.{WEB} macro |t_of_the_way| such that
7887 |t_of_the_way(a,b)| expands to |a-(a-b)*t|, i.e., to |t[a,b]|.
7889 @d t_of_the_way(A,B) ((A)-mp_take_fraction(mp,(A)-(B),t))
7891 @c scaled mp_eval_cubic (MP mp,pointer p, pointer q, fraction t) {
7892 scaled x1,x2,x3; /* intermediate values */
7893 x1=t_of_the_way(knot_coord(p),right_coord(p));
7894 x2=t_of_the_way(right_coord(p),left_coord(q));
7895 x3=t_of_the_way(left_coord(q),knot_coord(q));
7896 x1=t_of_the_way(x1,x2);
7897 x2=t_of_the_way(x2,x3);
7898 return t_of_the_way(x1,x2);
7901 @ The actual bounding box information is stored in global variables.
7902 Since it is convenient to address the $x$ and $y$ information
7903 separately, we define arrays indexed by |x_code..y_code| and use
7904 macros to give them more convenient names.
7908 mp_x_code=0, /* index for |minx| and |maxx| */
7909 mp_y_code /* index for |miny| and |maxy| */
7913 @d minx mp->bbmin[mp_x_code]
7914 @d maxx mp->bbmax[mp_x_code]
7915 @d miny mp->bbmin[mp_y_code]
7916 @d maxy mp->bbmax[mp_y_code]
7919 scaled bbmin[mp_y_code+1];
7920 scaled bbmax[mp_y_code+1];
7921 /* the result of procedures that compute bounding box information */
7923 @ Now we're ready for the key part of the bounding box computation.
7924 The |bound_cubic| procedure updates |bbmin[c]| and |bbmax[c]| based on
7925 $$B(\hbox{|knot_coord(p)|}, \hbox{|right_coord(p)|},
7926 \hbox{|left_coord(q)|}, \hbox{|knot_coord(q)|};t)
7928 for $0<t\le1$. In other words, the procedure adjusts the bounds to
7929 accommodate |knot_coord(q)| and any extremes over the range $0<t<1$.
7930 The |c| parameter is |x_code| or |y_code|.
7932 @c void mp_bound_cubic (MP mp,pointer p, pointer q, small_number c) {
7933 boolean wavy; /* whether we need to look for extremes */
7934 scaled del1,del2,del3,del,dmax; /* proportional to the control
7935 points of a quadratic derived from a cubic */
7936 fraction t,tt; /* where a quadratic crosses zero */
7937 scaled x; /* a value that |bbmin[c]| and |bbmax[c]| must accommodate */
7939 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
7940 @<Check the control points against the bounding box and set |wavy:=true|
7941 if any of them lie outside@>;
7943 del1=right_coord(p)-knot_coord(p);
7944 del2=left_coord(q)-right_coord(p);
7945 del3=knot_coord(q)-left_coord(q);
7946 @<Scale up |del1|, |del2|, and |del3| for greater accuracy;
7947 also set |del| to the first nonzero element of |(del1,del2,del3)|@>;
7949 negate(del1); negate(del2); negate(del3);
7951 t=mp_crossing_point(mp, del1,del2,del3);
7952 if ( t<fraction_one ) {
7953 @<Test the extremes of the cubic against the bounding box@>;
7958 @ @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>=
7959 if ( x<mp->bbmin[c] ) mp->bbmin[c]=x;
7960 if ( x>mp->bbmax[c] ) mp->bbmax[c]=x
7962 @ @<Check the control points against the bounding box and set...@>=
7964 if ( mp->bbmin[c]<=right_coord(p) )
7965 if ( right_coord(p)<=mp->bbmax[c] )
7966 if ( mp->bbmin[c]<=left_coord(q) )
7967 if ( left_coord(q)<=mp->bbmax[c] )
7970 @ If |del1=del2=del3=0|, it's impossible to obey the title of this
7971 section. We just set |del=0| in that case.
7973 @<Scale up |del1|, |del2|, and |del3| for greater accuracy...@>=
7974 if ( del1!=0 ) del=del1;
7975 else if ( del2!=0 ) del=del2;
7979 if ( abs(del2)>dmax ) dmax=abs(del2);
7980 if ( abs(del3)>dmax ) dmax=abs(del3);
7981 while ( dmax<fraction_half ) {
7982 dmax+=dmax; del1+=del1; del2+=del2; del3+=del3;
7986 @ Since |crossing_point| has tried to choose |t| so that
7987 $B(|del1|,|del2|,|del3|;\tau)$ crosses zero at $\tau=|t|$ with negative
7988 slope, the value of |del2| computed below should not be positive.
7989 But rounding error could make it slightly positive in which case we
7990 must cut it to zero to avoid confusion.
7992 @<Test the extremes of the cubic against the bounding box@>=
7994 x=mp_eval_cubic(mp, p,q,t);
7995 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
7996 del2=t_of_the_way(del2,del3);
7997 /* now |0,del2,del3| represent the derivative on the remaining interval */
7998 if ( del2>0 ) del2=0;
7999 tt=mp_crossing_point(mp, 0,-del2,-del3);
8000 if ( tt<fraction_one ) {
8001 @<Test the second extreme against the bounding box@>;
8005 @ @<Test the second extreme against the bounding box@>=
8007 x=mp_eval_cubic(mp, p,q,t_of_the_way(tt,fraction_one));
8008 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8011 @ Finding the bounding box of a path is basically a matter of applying
8012 |bound_cubic| twice for each pair of adjacent knots.
8014 @c void mp_path_bbox (MP mp,pointer h) {
8015 pointer p,q; /* a pair of adjacent knots */
8016 minx=x_coord(h); miny=y_coord(h);
8017 maxx=minx; maxy=miny;
8020 if ( right_type(p)==endpoint ) return;
8022 mp_bound_cubic(mp, x_loc(p),x_loc(q),mp_x_code);
8023 mp_bound_cubic(mp, y_loc(p),y_loc(q),mp_y_code);
8028 @ Another important way to measure a path is to find its arc length. This
8029 is best done by using the general bisection algorithm to subdivide the path
8030 until obtaining ``well behaved'' subpaths whose arc lengths can be approximated
8033 Since the arc length is the integral with respect to time of the magnitude of
8034 the velocity, it is natural to use Simpson's rule for the approximation.
8036 If $\dot B(t)$ is the spline velocity, Simpson's rule gives
8037 $$ \vb\dot B(0)\vb + 4\vb\dot B({1\over2})\vb + \vb\dot B(1)\vb \over 6 $$
8038 for the arc length of a path of length~1. For a cubic spline
8039 $B(z_0,z_1,z_2,z_3;t)$, the time derivative $\dot B(t)$ is
8040 $3B(dz_0,dz_1,dz_2;t)$, where $dz_i=z_{i+1}-z_i$. Hence the arc length
8042 $$ {\vb dz_0\vb \over 2} + 2\vb dz_{02}\vb + {\vb dz_2\vb \over 2}, $$
8044 $$ dz_{02}={1\over2}\left({dz_0+dz_1\over 2}+{dz_1+dz_2\over 2}\right)$$
8045 is the result of the bisection algorithm.
8047 @ The remaining problem is how to decide when a subpath is ``well behaved.''
8048 This could be done via the theoretical error bound for Simpson's rule,
8050 but this is impractical because it requires an estimate of the fourth
8051 derivative of the quantity being integrated. It is much easier to just perform
8052 a bisection step and see how much the arc length estimate changes. Since the
8053 error for Simpson's rule is proportional to the fourth power of the sample
8054 spacing, the remaining error is typically about $1\over16$ of the amount of
8055 the change. We say ``typically'' because the error has a pseudo-random behavior
8056 that could cause the two estimates to agree when each contain large errors.
8058 To protect against disasters such as undetected cusps, the bisection process
8059 should always continue until all the $dz_i$ vectors belong to a single
8060 $90^\circ$ sector. This ensures that no point on the spline can have velocity
8061 less than 70\% of the minimum of $\vb dz_0\vb$, $\vb dz_1\vb$ and $\vb dz_2\vb$.
8062 If such a spline happens to produce an erroneous arc length estimate that
8063 is little changed by bisection, the amount of the error is likely to be fairly
8064 small. We will try to arrange things so that freak accidents of this type do
8065 not destroy the inverse relationship between the \&{arclength} and
8066 \&{arctime} operations.
8067 @:arclength_}{\&{arclength} primitive@>
8068 @:arctime_}{\&{arctime} primitive@>
8070 @ The \&{arclength} and \&{arctime} operations are both based on a recursive
8072 function that finds the arc length of a cubic spline given $dz_0$, $dz_1$,
8073 $dz_2$. This |arc_test| routine also takes an arc length goal |a_goal| and
8074 returns the time when the arc length reaches |a_goal| if there is such a time.
8075 Thus the return value is either an arc length less than |a_goal| or, if the
8076 arc length would be at least |a_goal|, it returns a time value decreased by
8077 |two|. This allows the caller to use the sign of the result to distinguish
8078 between arc lengths and time values. On certain types of overflow, it is
8079 possible for |a_goal| and the result of |arc_test| both to be |el_gordo|.
8080 Otherwise, the result is always less than |a_goal|.
8082 Rather than halving the control point coordinates on each recursive call to
8083 |arc_test|, it is better to keep them proportional to velocity on the original
8084 curve and halve the results instead. This means that recursive calls can
8085 potentially use larger error tolerances in their arc length estimates. How
8086 much larger depends on to what extent the errors behave as though they are
8087 independent of each other. To save computing time, we use optimistic assumptions
8088 and increase the tolerance by a factor of about $\sqrt2$ for each recursive
8091 In addition to the tolerance parameter, |arc_test| should also have parameters
8092 for ${1\over3}\vb\dot B(0)\vb$, ${2\over3}\vb\dot B({1\over2})\vb$, and
8093 ${1\over3}\vb\dot B(1)\vb$. These quantities are relatively expensive to compute
8094 and they are needed in different instances of |arc_test|.
8096 @c @t\4@>@<Declare subroutines needed by |arc_test|@>;
8097 scaled mp_arc_test (MP mp, scaled dx0, scaled dy0, scaled dx1, scaled dy1,
8098 scaled dx2, scaled dy2, scaled v0, scaled v02,
8099 scaled v2, scaled a_goal, scaled tol) {
8100 boolean simple; /* are the control points confined to a $90^\circ$ sector? */
8101 scaled dx01, dy01, dx12, dy12, dx02, dy02; /* bisection results */
8103 /* twice the velocity magnitudes at $t={1\over4}$ and $t={3\over4}$ */
8104 scaled arc; /* best arc length estimate before recursion */
8105 @<Other local variables in |arc_test|@>;
8106 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,
8108 @<Initialize |v002|, |v022|, and the arc length estimate |arc|; if it overflows
8109 set |arc_test| and |return|@>;
8110 @<Test if the control points are confined to one quadrant or rotating them
8111 $45^\circ$ would put them in one quadrant. Then set |simple| appropriately@>;
8112 if ( simple && (abs(arc-v02-halfp(v0+v2)) <= tol) ) {
8113 if ( arc < a_goal ) {
8116 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to
8117 that time minus |two|@>;
8120 @<Use one or two recursive calls to compute the |arc_test| function@>;
8124 @ The |tol| value should by multiplied by $\sqrt 2$ before making recursive
8125 calls, but $1.5$ is an adequate approximation. It is best to avoid using
8126 |make_fraction| in this inner loop.
8129 @<Use one or two recursive calls to compute the |arc_test| function@>=
8131 @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is as
8132 large as possible@>;
8133 tol = tol + halfp(tol);
8134 a = mp_arc_test(mp, dx0,dy0, dx01,dy01, dx02,dy02, v0, v002,
8135 halfp(v02), a_new, tol);
8137 return (-halfp(two-a));
8139 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>;
8140 b = mp_arc_test(mp, dx02,dy02, dx12,dy12, dx2,dy2,
8141 halfp(v02), v022, v2, a_new, tol);
8143 return (-halfp(-b) - half_unit);
8145 return (a + half(b-a));
8149 @ @<Other local variables in |arc_test|@>=
8150 scaled a,b; /* results of recursive calls */
8151 scaled a_new,a_aux; /* the sum of these gives the |a_goal| */
8153 @ @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is...@>=
8154 a_aux = el_gordo - a_goal;
8155 if ( a_goal > a_aux ) {
8156 a_aux = a_goal - a_aux;
8159 a_new = a_goal + a_goal;
8163 @ There is no need to maintain |a_aux| at this point so we use it as a temporary
8164 to force the additions and subtractions to be done in an order that avoids
8167 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>=
8170 a_new = a_new + a_aux;
8173 @ This code assumes all {\it dx} and {\it dy} variables have magnitude less than
8174 |fraction_four|. To simplify the rest of the |arc_test| routine, we strengthen
8175 this assumption by requiring the norm of each $({\it dx},{\it dy})$ pair to obey
8176 this bound. Note that recursive calls will maintain this invariant.
8178 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,...@>=
8179 dx01 = half(dx0 + dx1);
8180 dx12 = half(dx1 + dx2);
8181 dx02 = half(dx01 + dx12);
8182 dy01 = half(dy0 + dy1);
8183 dy12 = half(dy1 + dy2);
8184 dy02 = half(dy01 + dy12)
8186 @ We should be careful to keep |arc<el_gordo| so that calling |arc_test| with
8187 |a_goal=el_gordo| is guaranteed to yield the arc length.
8189 @<Initialize |v002|, |v022|, and the arc length estimate |arc|;...@>=
8190 v002 = mp_pyth_add(mp, dx01+half(dx0+dx02), dy01+half(dy0+dy02));
8191 v022 = mp_pyth_add(mp, dx12+half(dx02+dx2), dy12+half(dy02+dy2));
8193 arc1 = v002 + half(halfp(v0+tmp) - v002);
8194 arc = v022 + half(halfp(v2+tmp) - v022);
8195 if ( (arc < el_gordo-arc1) ) {
8198 mp->arith_error = true;
8199 if ( a_goal==el_gordo ) return (el_gordo);
8203 @ @<Other local variables in |arc_test|@>=
8204 scaled tmp, tmp2; /* all purpose temporary registers */
8205 scaled arc1; /* arc length estimate for the first half */
8207 @ @<Test if the control points are confined to one quadrant or rotating...@>=
8208 simple = ((dx0>=0) && (dx1>=0) && (dx2>=0)) ||
8209 ((dx0<=0) && (dx1<=0) && (dx2<=0));
8211 simple = ((dy0>=0) && (dy1>=0) && (dy2>=0)) ||
8212 ((dy0<=0) && (dy1<=0) && (dy2<=0));
8214 simple = ((dx0>=dy0) && (dx1>=dy1) && (dx2>=dy2)) ||
8215 ((dx0<=dy0) && (dx1<=dy1) && (dx2<=dy2));
8217 simple = ((-dx0>=dy0) && (-dx1>=dy1) && (-dx2>=dy2)) ||
8218 ((-dx0<=dy0) && (-dx1<=dy1) && (-dx2<=dy2));
8221 @ Since Simpson's rule is based on approximating the integrand by a parabola,
8223 it is appropriate to use the same approximation to decide when the integral
8224 reaches the intermediate value |a_goal|. At this point
8226 {\vb\dot B(0)\vb\over 3} &= \hbox{|v0|}, \qquad
8227 {\vb\dot B({1\over4})\vb\over 3} = {\hbox{|v002|}\over 2}, \qquad
8228 {\vb\dot B({1\over2})\vb\over 3} = {\hbox{|v02|}\over 2}, \cr
8229 {\vb\dot B({3\over4})\vb\over 3} &= {\hbox{|v022|}\over 2}, \qquad
8230 {\vb\dot B(1)\vb\over 3} = \hbox{|v2|} \cr
8234 $$ {\vb\dot B(t)\vb\over 3} \approx
8235 \cases{B\left(\hbox{|v0|},
8236 \hbox{|v002|}-{1\over 2}\hbox{|v0|}-{1\over 4}\hbox{|v02|},
8237 {1\over 2}\hbox{|v02|}; 2t \right)&
8238 if $t\le{1\over 2}$\cr
8239 B\left({1\over 2}\hbox{|v02|},
8240 \hbox{|v022|}-{1\over 4}\hbox{|v02|}-{1\over 2}\hbox{|v2|},
8241 \hbox{|v2|}; 2t-1 \right)&
8242 if $t\ge{1\over 2}$.\cr}
8245 We can integrate $\vb\dot B(t)\vb$ by using
8246 $$\int 3B(a,b,c;\tau)\,dt =
8247 {B(0,a,a+b,a+b+c;\tau) + {\rm constant} \over {d\tau\over dt}}.
8250 This construction allows us to find the time when the arc length reaches
8251 |a_goal| by solving a cubic equation of the form
8252 $$ B(0,a,a+b,a+b+c;\tau) = x, $$
8253 where $\tau$ is $2t$ or $2t+1$, $x$ is |a_goal| or |a_goal-arc1|, and $a$, $b$,
8254 and $c$ are the Bernshte{\u\i}n coefficients from $(*)$ divided by
8255 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
8256 $d\tau\over dt$. We shall define a function |solve_rising_cubic| that finds
8257 $\tau$ given $a$, $b$, $c$, and $x$.
8259 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to...@>=
8261 tmp = (v02 + 2) / 4;
8262 if ( a_goal<=arc1 ) {
8265 (halfp(mp_solve_rising_cubic(mp, tmp2, arc1-tmp2-tmp, tmp, a_goal))- two);
8268 return ((half_unit - two) +
8269 halfp(mp_solve_rising_cubic(mp, tmp, arc-arc1-tmp-tmp2, tmp2, a_goal-arc1)));
8273 @ Here is the |solve_rising_cubic| routine that finds the time~$t$ when
8274 $$ B(0, a, a+b, a+b+c; t) = x. $$
8275 This routine is based on |crossing_point| but is simplified by the
8276 assumptions that $B(a,b,c;t)\ge0$ for $0\le t\le1$ and that |0<=x<=a+b+c|.
8277 If rounding error causes this condition to be violated slightly, we just ignore
8278 it and proceed with binary search. This finds a time when the function value
8279 reaches |x| and the slope is positive.
8281 @<Declare subroutines needed by |arc_test|@>=
8282 scaled mp_solve_rising_cubic (MP mp,scaled a, scaled b, scaled c, scaled x) {
8283 scaled ab, bc, ac; /* bisection results */
8284 integer t; /* $2^k+q$ where unscaled answer is in $[q2^{-k},(q+1)2^{-k})$ */
8285 integer xx; /* temporary for updating |x| */
8286 if ( (a<0) || (c<0) ) mp_confusion(mp, "rising?");
8287 @:this can't happen rising?}{\quad rising?@>
8290 } else if ( x >= a+b+c ) {
8294 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than
8298 @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>;
8299 xx = x - a - ab - ac;
8300 if ( xx < -x ) { x+=x; b=ab; c=ac; }
8301 else { x = x + xx; a=ac; b=mp->bc; t = t+1; };
8302 } while (t < unity);
8307 @ @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>=
8312 @ @d one_third_el_gordo 05252525252 /* upper bound on |a|, |b|, and |c| */
8314 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than...@>=
8315 while ((a>one_third_el_gordo)||(b>one_third_el_gordo)||(c>one_third_el_gordo)) {
8322 @ It is convenient to have a simpler interface to |arc_test| that requires no
8323 unnecessary arguments and ensures that each $({\it dx},{\it dy})$ pair has
8324 length less than |fraction_four|.
8326 @d arc_tol 16 /* quit when change in arc length estimate reaches this */
8328 @c scaled mp_do_arc_test (MP mp,scaled dx0, scaled dy0, scaled dx1,
8329 scaled dy1, scaled dx2, scaled dy2, scaled a_goal) {
8330 scaled v0,v1,v2; /* length of each $({\it dx},{\it dy})$ pair */
8331 scaled v02; /* twice the norm of the quadratic at $t={1\over2}$ */
8332 v0 = mp_pyth_add(mp, dx0,dy0);
8333 v1 = mp_pyth_add(mp, dx1,dy1);
8334 v2 = mp_pyth_add(mp, dx2,dy2);
8335 if ( (v0>=fraction_four) || (v1>=fraction_four) || (v2>=fraction_four) ) {
8336 mp->arith_error = true;
8337 if ( a_goal==el_gordo ) return el_gordo;
8340 v02 = mp_pyth_add(mp, dx1+half(dx0+dx2), dy1+half(dy0+dy2));
8341 return (mp_arc_test(mp, dx0,dy0, dx1,dy1, dx2,dy2,
8342 v0, v02, v2, a_goal, arc_tol));
8346 @ Now it is easy to find the arc length of an entire path.
8348 @c scaled mp_get_arc_length (MP mp,pointer h) {
8349 pointer p,q; /* for traversing the path */
8350 scaled a,a_tot; /* current and total arc lengths */
8353 while ( right_type(p)!=endpoint ){
8355 a = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8356 left_x(q)-right_x(p), left_y(q)-right_y(p),
8357 x_coord(q)-left_x(q), y_coord(q)-left_y(q), el_gordo);
8358 a_tot = mp_slow_add(mp, a, a_tot);
8359 if ( q==h ) break; else p=q;
8365 @ The inverse operation of finding the time on a path~|h| when the arc length
8366 reaches some value |arc0| can also be accomplished via |do_arc_test|. Some care
8367 is required to handle very large times or negative times on cyclic paths. For
8368 non-cyclic paths, |arc0| values that are negative or too large cause
8369 |get_arc_time| to return 0 or the length of path~|h|.
8371 If |arc0| is greater than the arc length of a cyclic path~|h|, the result is a
8372 time value greater than the length of the path. Since it could be much greater,
8373 we must be prepared to compute the arc length of path~|h| and divide this into
8374 |arc0| to find how many multiples of the length of path~|h| to add.
8376 @c scaled mp_get_arc_time (MP mp,pointer h, scaled arc0) {
8377 pointer p,q; /* for traversing the path */
8378 scaled t_tot; /* accumulator for the result */
8379 scaled t; /* the result of |do_arc_test| */
8380 scaled arc; /* portion of |arc0| not used up so far */
8381 integer n; /* number of extra times to go around the cycle */
8383 @<Deal with a negative |arc0| value and |return|@>;
8385 if ( arc0==el_gordo ) decr(arc0);
8389 while ( (right_type(p)!=endpoint) && (arc>0) ) {
8391 t = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8392 left_x(q)-right_x(p), left_y(q)-right_y(p),
8393 x_coord(q)-left_x(q), y_coord(q)-left_y(q), arc);
8394 @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>;
8396 @<Update |t_tot| and |arc| to avoid going around the cyclic
8397 path too many times but set |arith_error:=true| and |goto done| on
8406 @ @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>=
8407 if ( t<0 ) { t_tot = t_tot + t + two; arc = 0; }
8408 else { t_tot = t_tot + unity; arc = arc - t; }
8410 @ @<Deal with a negative |arc0| value and |return|@>=
8412 if ( left_type(h)==endpoint ) {
8415 p = mp_htap_ypoc(mp, h);
8416 t_tot = -mp_get_arc_time(mp, p, -arc0);
8417 mp_toss_knot_list(mp, p);
8423 @ @<Update |t_tot| and |arc| to avoid going around the cyclic...@>=
8425 n = arc / (arc0 - arc);
8426 arc = arc - n*(arc0 - arc);
8427 if ( t_tot > el_gordo / (n+1) ) {
8428 mp->arith_error = true;
8432 t_tot = (n + 1)*t_tot;
8435 @* \[20] Data structures for pens.
8436 A Pen in \MP\ can be either elliptical or polygonal. Elliptical pens result
8437 in \ps\ \&{stroke} commands, while anything drawn with a polygonal pen is
8438 @:stroke}{\&{stroke} command@>
8439 converted into an area fill as described in the next part of this program.
8440 The mathematics behind this process is based on simple aspects of the theory
8441 of tracings developed by Leo Guibas, Lyle Ramshaw, and Jorge Stolfi
8442 [``A kinematic framework for computational geometry,'' Proc.\ IEEE Symp.\
8443 Foundations of Computer Science {\bf 24} (1983), 100--111].
8445 Polygonal pens are created from paths via \MP's \&{makepen} primitive.
8446 @:makepen_}{\&{makepen} primitive@>
8447 This path representation is almost sufficient for our purposes except that
8448 a pen path should always be a convex polygon with the vertices in
8449 counter-clockwise order.
8450 Since we will need to scan pen polygons both forward and backward, a pen
8451 should be represented as a doubly linked ring of knot nodes. There is
8452 room for the extra back pointer because we do not need the
8453 |left_type| or |right_type| fields. In fact, we don't need the |left_x|,
8454 |left_y|, |right_x|, or |right_y| fields either but we leave these alone
8455 so that certain procedures can operate on both pens and paths. In particular,
8456 pens can be copied using |copy_path| and recycled using |toss_knot_list|.
8459 /* this replaces the |left_type| and |right_type| fields in a pen knot */
8461 @ The |make_pen| procedure turns a path into a pen by initializing
8462 the |knil| pointers and making sure the knots form a convex polygon.
8463 Thus each cubic in the given path becomes a straight line and the control
8464 points are ignored. If the path is not cyclic, the ends are connected by a
8467 @d copy_pen(A) mp_make_pen(mp, mp_copy_path(mp, (A)),false)
8469 @c @<Declare a function called |convex_hull|@>;
8470 pointer mp_make_pen (MP mp,pointer h, boolean need_hull) {
8471 pointer p,q; /* two consecutive knots */
8478 h=mp_convex_hull(mp, h);
8479 @<Make sure |h| isn't confused with an elliptical pen@>;
8484 @ The only information required about an elliptical pen is the overall
8485 transformation that has been applied to the original \&{pencircle}.
8486 @:pencircle_}{\&{pencircle} primitive@>
8487 Since it suffices to keep track of how the three points $(0,0)$, $(1,0)$,
8488 and $(0,1)$ are transformed, an elliptical pen can be stored in a single
8489 knot node and transformed as if it were a path.
8491 @d pen_is_elliptical(A) ((A)==link((A)))
8493 @c pointer mp_get_pen_circle (MP mp,scaled diam) {
8494 pointer h; /* the knot node to return */
8495 h=mp_get_node(mp, knot_node_size);
8496 link(h)=h; knil(h)=h;
8497 originator(h)=program_code;
8498 x_coord(h)=0; y_coord(h)=0;
8499 left_x(h)=diam; left_y(h)=0;
8500 right_x(h)=0; right_y(h)=diam;
8504 @ If the polygon being returned by |make_pen| has only one vertex, it will
8505 be interpreted as an elliptical pen. This is no problem since a degenerate
8506 polygon can equally well be thought of as a degenerate ellipse. We need only
8507 initialize the |left_x|, |left_y|, |right_x|, and |right_y| fields.
8509 @<Make sure |h| isn't confused with an elliptical pen@>=
8510 if ( pen_is_elliptical( h) ){
8511 left_x(h)=x_coord(h); left_y(h)=y_coord(h);
8512 right_x(h)=x_coord(h); right_y(h)=y_coord(h);
8515 @ We have to cheat a little here but most operations on pens only use
8516 the first three words in each knot node.
8517 @^data structure assumptions@>
8519 @<Initialize a pen at |test_pen| so that it fits in nine words@>=
8520 x_coord(test_pen)=-half_unit;
8521 y_coord(test_pen)=0;
8522 x_coord(test_pen+3)=half_unit;
8523 y_coord(test_pen+3)=0;
8524 x_coord(test_pen+6)=0;
8525 y_coord(test_pen+6)=unity;
8526 link(test_pen)=test_pen+3;
8527 link(test_pen+3)=test_pen+6;
8528 link(test_pen+6)=test_pen;
8529 knil(test_pen)=test_pen+6;
8530 knil(test_pen+3)=test_pen;
8531 knil(test_pen+6)=test_pen+3
8533 @ Printing a polygonal pen is very much like printing a path
8535 @<Declare subroutines for printing expressions@>=
8536 void mp_pr_pen (MP mp,pointer h) {
8537 pointer p,q; /* for list traversal */
8538 if ( pen_is_elliptical(h) ) {
8539 @<Print the elliptical pen |h|@>;
8543 mp_print_two(mp, x_coord(p),y_coord(p));
8544 mp_print_nl(mp, " .. ");
8545 @<Advance |p| making sure the links are OK and |return| if there is
8548 mp_print(mp, "cycle");
8552 @ @<Advance |p| making sure the links are OK and |return| if there is...@>=
8554 if ( (q==null) || (knil(q)!=p) ) {
8555 mp_print_nl(mp, "???"); return; /* this won't happen */
8560 @ @<Print the elliptical pen |h|@>=
8562 mp_print(mp, "pencircle transformed (");
8563 mp_print_scaled(mp, x_coord(h));
8564 mp_print_char(mp, ',');
8565 mp_print_scaled(mp, y_coord(h));
8566 mp_print_char(mp, ',');
8567 mp_print_scaled(mp, left_x(h)-x_coord(h));
8568 mp_print_char(mp, ',');
8569 mp_print_scaled(mp, right_x(h)-x_coord(h));
8570 mp_print_char(mp, ',');
8571 mp_print_scaled(mp, left_y(h)-y_coord(h));
8572 mp_print_char(mp, ',');
8573 mp_print_scaled(mp, right_y(h)-y_coord(h));
8574 mp_print_char(mp, ')');
8577 @ Here us another version of |pr_pen| that prints the pen as a diagnostic
8580 @<Declare subroutines for printing expressions@>=
8581 void mp_print_pen (MP mp,pointer h, char *s, boolean nuline) {
8582 mp_print_diagnostic(mp, "Pen",s,nuline); mp_print_ln(mp);
8585 mp_end_diagnostic(mp, true);
8588 @ Making a polygonal pen into a path involves restoring the |left_type| and
8589 |right_type| fields and setting the control points so as to make a polygonal
8593 void mp_make_path (MP mp,pointer h) {
8594 pointer p; /* for traversing the knot list */
8595 small_number k; /* a loop counter */
8596 @<Other local variables in |make_path|@>;
8597 if ( pen_is_elliptical(h) ) {
8598 @<Make the elliptical pen |h| into a path@>;
8602 left_type(p)=explicit;
8603 right_type(p)=explicit;
8604 @<copy the coordinates of knot |p| into its control points@>;
8610 @ @<copy the coordinates of knot |p| into its control points@>=
8611 left_x(p)=x_coord(p);
8612 left_y(p)=y_coord(p);
8613 right_x(p)=x_coord(p);
8614 right_y(p)=y_coord(p)
8616 @ We need an eight knot path to get a good approximation to an ellipse.
8618 @<Make the elliptical pen |h| into a path@>=
8620 @<Extract the transformation parameters from the elliptical pen~|h|@>;
8622 for (k=0;k<=7;k++ ) {
8623 @<Initialize |p| as the |k|th knot of a circle of unit diameter,
8624 transforming it appropriately@>;
8625 if ( k==7 ) link(p)=h; else link(p)=mp_get_node(mp, knot_node_size);
8630 @ @<Extract the transformation parameters from the elliptical pen~|h|@>=
8631 center_x=x_coord(h);
8632 center_y=y_coord(h);
8633 width_x=left_x(h)-center_x;
8634 width_y=left_y(h)-center_y;
8635 height_x=right_x(h)-center_x;
8636 height_y=right_y(h)-center_y
8638 @ @<Other local variables in |make_path|@>=
8639 scaled center_x,center_y; /* translation parameters for an elliptical pen */
8640 scaled width_x,width_y; /* the effect of a unit change in $x$ */
8641 scaled height_x,height_y; /* the effect of a unit change in $y$ */
8642 scaled dx,dy; /* the vector from knot |p| to its right control point */
8644 /* |k| advanced $270^\circ$ around the ring (cf. $\sin\theta=\cos(\theta+270)$) */
8646 @ The only tricky thing here are the tables |half_cos| and |d_cos| used to
8647 find the point $k/8$ of the way around the circle and the direction vector
8650 @<Initialize |p| as the |k|th knot of a circle of unit diameter,...@>=
8652 x_coord(p)=center_x+mp_take_fraction(mp, mp->half_cos[k],width_x)
8653 +mp_take_fraction(mp, mp->half_cos[kk],height_x);
8654 y_coord(p)=center_y+mp_take_fraction(mp, mp->half_cos[k],width_y)
8655 +mp_take_fraction(mp, mp->half_cos[kk],height_y);
8656 dx=-mp_take_fraction(mp, mp->d_cos[kk],width_x)
8657 +mp_take_fraction(mp, mp->d_cos[k],height_x);
8658 dy=-mp_take_fraction(mp, mp->d_cos[kk],width_y)
8659 +mp_take_fraction(mp, mp->d_cos[k],height_y);
8660 right_x(p)=x_coord(p)+dx;
8661 right_y(p)=y_coord(p)+dy;
8662 left_x(p)=x_coord(p)-dx;
8663 left_y(p)=y_coord(p)-dy;
8664 left_type(p)=explicit;
8665 right_type(p)=explicit;
8666 originator(p)=program_code
8669 fraction half_cos[8]; /* ${1\over2}\cos(45k)$ */
8670 fraction d_cos[8]; /* a magic constant times $\cos(45k)$ */
8672 @ The magic constant for |d_cos| is the distance between $({1\over2},0)$ and
8673 $({1\over4}\sqrt2,{1\over4}\sqrt2)$ times the result of the |velocity|
8674 function for $\theta=\phi=22.5^\circ$. This comes out to be
8675 $$ d = {\sqrt{2-\sqrt2}\over 3+3\cos22.5^\circ}
8676 \approx 0.132608244919772.
8680 mp->half_cos[0]=fraction_half;
8681 mp->half_cos[1]=94906266; /* $2^{26}\sqrt2\approx94906265.62$ */
8683 mp->d_cos[0]=35596755; /* $2^{28}d\approx35596754.69$ */
8684 mp->d_cos[1]=25170707; /* $2^{27}\sqrt2\,d\approx25170706.63$ */
8686 for (k=3;k<= 4;k++ ) {
8687 mp->half_cos[k]=-mp->half_cos[4-k];
8688 mp->d_cos[k]=-mp->d_cos[4-k];
8690 for (k=5;k<= 7;k++ ) {
8691 mp->half_cos[k]=mp->half_cos[8-k];
8692 mp->d_cos[k]=mp->d_cos[8-k];
8695 @ The |convex_hull| function forces a pen polygon to be convex when it is
8696 returned by |make_pen| and after any subsequent transformation where rounding
8697 error might allow the convexity to be lost.
8698 The convex hull algorithm used here is described by F.~P. Preparata and
8699 M.~I. Shamos [{\sl Computational Geometry}, Springer-Verlag, 1985].
8701 @<Declare a function called |convex_hull|@>=
8702 @<Declare a procedure called |move_knot|@>;
8703 pointer mp_convex_hull (MP mp,pointer h) { /* Make a polygonal pen convex */
8704 pointer l,r; /* the leftmost and rightmost knots */
8705 pointer p,q; /* knots being scanned */
8706 pointer s; /* the starting point for an upcoming scan */
8707 scaled dx,dy; /* a temporary pointer */
8708 if ( pen_is_elliptical(h) ) {
8711 @<Set |l| to the leftmost knot in polygon~|h|@>;
8712 @<Set |r| to the rightmost knot in polygon~|h|@>;
8715 @<Find any knots on the path from |l| to |r| above the |l|-|r| line and
8716 move them past~|r|@>;
8717 @<Find any knots on the path from |s| to |l| below the |l|-|r| line and
8718 move them past~|l|@>;
8719 @<Sort the path from |l| to |r| by increasing $x$@>;
8720 @<Sort the path from |r| to |l| by decreasing $x$@>;
8723 @<Do a Gramm scan and remove vertices where there is no left turn@>;
8729 @ All comparisons are done primarily on $x$ and secondarily on $y$.
8731 @<Set |l| to the leftmost knot in polygon~|h|@>=
8735 if ( x_coord(p)<=x_coord(l) )
8736 if ( (x_coord(p)<x_coord(l)) || (y_coord(p)<y_coord(l)) )
8741 @ @<Set |r| to the rightmost knot in polygon~|h|@>=
8745 if ( x_coord(p)>=x_coord(r) )
8746 if ( (x_coord(p)>x_coord(r)) || (y_coord(p)>y_coord(r)) )
8751 @ @<Find any knots on the path from |l| to |r| above the |l|-|r| line...@>=
8752 dx=x_coord(r)-x_coord(l);
8753 dy=y_coord(r)-y_coord(l);
8757 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))>0 )
8758 mp_move_knot(mp, p, r);
8762 @ The |move_knot| procedure removes |p| from a doubly linked list and inserts
8765 @ @<Declare a procedure called |move_knot|@>=
8766 void mp_move_knot (MP mp,pointer p, pointer q) {
8767 link(knil(p))=link(p);
8768 knil(link(p))=knil(p);
8775 @ @<Find any knots on the path from |s| to |l| below the |l|-|r| line...@>=
8779 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))<0 )
8780 mp_move_knot(mp, p,l);
8784 @ The list is likely to be in order already so we just do linear insertions.
8785 Secondary comparisons on $y$ ensure that the sort is consistent with the
8786 choice of |l| and |r|.
8788 @<Sort the path from |l| to |r| by increasing $x$@>=
8792 while ( x_coord(q)>x_coord(p) ) q=knil(q);
8793 while ( x_coord(q)==x_coord(p) ) {
8794 if ( y_coord(q)>y_coord(p) ) q=knil(q); else break;
8796 if ( q==knil(p) ) p=link(p);
8797 else { p=link(p); mp_move_knot(mp, knil(p),q); };
8800 @ @<Sort the path from |r| to |l| by decreasing $x$@>=
8804 while ( x_coord(q)<x_coord(p) ) q=knil(q);
8805 while ( x_coord(q)==x_coord(p) ) {
8806 if ( y_coord(q)<y_coord(p) ) q=knil(q); else break;
8808 if ( q==knil(p) ) p=link(p);
8809 else { p=link(p); mp_move_knot(mp, knil(p),q); };
8812 @ The condition involving |ab_vs_cd| tests if there is not a left turn
8813 at knot |q|. There usually will be a left turn so we streamline the case
8814 where the |then| clause is not executed.
8816 @<Do a Gramm scan and remove vertices where there...@>=
8820 dx=x_coord(q)-x_coord(p);
8821 dy=y_coord(q)-y_coord(p);
8825 if ( mp_ab_vs_cd(mp, dx,y_coord(q)-y_coord(p),dy,x_coord(q)-x_coord(p))<=0 ) {
8826 @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>;
8831 @ @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>=
8834 mp_free_node(mp, p,knot_node_size);
8835 link(s)=q; knil(q)=s;
8837 else { p=knil(s); q=s; };
8840 @ The |find_offset| procedure sets global variables |(cur_x,cur_y)| to the
8841 offset associated with the given direction |(x,y)|. If two different offsets
8842 apply, it chooses one of them.
8845 void mp_find_offset (MP mp,scaled x, scaled y, pointer h) {
8846 pointer p,q; /* consecutive knots */
8848 /* the transformation matrix for an elliptical pen */
8849 fraction xx,yy; /* untransformed offset for an elliptical pen */
8850 fraction d; /* a temporary register */
8851 if ( pen_is_elliptical(h) ) {
8852 @<Find the offset for |(x,y)| on the elliptical pen~|h|@>
8857 } while (! mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)>=0);
8860 } while (! mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)<=0);
8861 mp->cur_x=x_coord(p);
8862 mp->cur_y=y_coord(p);
8868 scaled cur_y; /* all-purpose return value registers */
8870 @ @<Find the offset for |(x,y)| on the elliptical pen~|h|@>=
8871 if ( (x==0) && (y==0) ) {
8872 mp->cur_x=x_coord(h); mp->cur_y=y_coord(h);
8874 @<Find the non-constant part of the transformation for |h|@>;
8875 while ( (abs(x)<fraction_half) && (abs(y)<fraction_half) ){
8878 @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the
8879 untransformed version of |(x,y)|@>;
8880 mp->cur_x=x_coord(h)+mp_take_fraction(mp, xx,wx)+mp_take_fraction(mp, yy,hx);
8881 mp->cur_y=y_coord(h)+mp_take_fraction(mp, xx,wy)+mp_take_fraction(mp, yy,hy);
8884 @ @<Find the non-constant part of the transformation for |h|@>=
8885 wx=left_x(h)-x_coord(h);
8886 wy=left_y(h)-y_coord(h);
8887 hx=right_x(h)-x_coord(h);
8888 hy=right_y(h)-y_coord(h)
8890 @ @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the...@>=
8891 yy=-(mp_take_fraction(mp, x,hy)+mp_take_fraction(mp, y,-hx));
8892 xx=mp_take_fraction(mp, x,-wy)+mp_take_fraction(mp, y,wx);
8893 d=mp_pyth_add(mp, xx,yy);
8895 xx=half(mp_make_fraction(mp, xx,d));
8896 yy=half(mp_make_fraction(mp, yy,d));
8899 @ Finding the bounding box of a pen is easy except if the pen is elliptical.
8900 But we can handle that case by just calling |find_offset| twice. The answer
8901 is stored in the global variables |minx|, |maxx|, |miny|, and |maxy|.
8904 void mp_pen_bbox (MP mp,pointer h) {
8905 pointer p; /* for scanning the knot list */
8906 if ( pen_is_elliptical(h) ) {
8907 @<Find the bounding box of an elliptical pen@>;
8909 minx=x_coord(h); maxx=minx;
8910 miny=y_coord(h); maxy=miny;
8913 if ( x_coord(p)<minx ) minx=x_coord(p);
8914 if ( y_coord(p)<miny ) miny=y_coord(p);
8915 if ( x_coord(p)>maxx ) maxx=x_coord(p);
8916 if ( y_coord(p)>maxy ) maxy=y_coord(p);
8922 @ @<Find the bounding box of an elliptical pen@>=
8924 mp_find_offset(mp, 0,fraction_one,h);
8926 minx=2*x_coord(h)-mp->cur_x;
8927 mp_find_offset(mp, -fraction_one,0,h);
8929 miny=2*y_coord(h)-mp->cur_y;
8932 @* \[21] Edge structures.
8933 Now we come to \MP's internal scheme for representing pictures.
8934 The representation is very different from \MF's edge structures
8935 because \MP\ pictures contain \ps\ graphics objects instead of pixel
8936 images. However, the basic idea is somewhat similar in that shapes
8937 are represented via their boundaries.
8939 The main purpose of edge structures is to keep track of graphical objects
8940 until it is time to translate them into \ps. Since \MP\ does not need to
8941 know anything about an edge structure other than how to translate it into
8942 \ps\ and how to find its bounding box, edge structures can be just linked
8943 lists of graphical objects. \MP\ has no easy way to determine whether
8944 two such objects overlap, but it suffices to draw the first one first and
8945 let the second one overwrite it if necessary.
8947 @ Let's consider the types of graphical objects one at a time.
8948 First of all, a filled contour is represented by a eight-word node. The first
8949 word contains |type| and |link| fields, and the next six words contain a
8950 pointer to a cyclic path and the value to use for \ps' \&{currentrgbcolor}
8951 parameter. If a pen is used for filling |pen_p|, |ljoin_val| and |miterlim_val|
8952 give the relevant information.
8954 @d path_p(A) link((A)+1)
8955 /* a pointer to the path that needs filling */
8956 @d pen_p(A) info((A)+1)
8957 /* a pointer to the pen to fill or stroke with */
8958 @d color_model(A) type((A)+2) /* the color model */
8959 @d obj_red_loc(A) ((A)+3) /* the first of three locations for the color */
8960 @d obj_cyan_loc obj_red_loc /* the first of four locations for the color */
8961 @d obj_grey_loc obj_red_loc /* the location for the color */
8962 @d red_val(A) mp->mem[(A)+3].sc
8963 /* the red component of the color in the range $0\ldots1$ */
8966 @d green_val(A) mp->mem[(A)+4].sc
8967 /* the green component of the color in the range $0\ldots1$ */
8968 @d magenta_val green_val
8969 @d blue_val(A) mp->mem[(A)+5].sc
8970 /* the blue component of the color in the range $0\ldots1$ */
8971 @d yellow_val blue_val
8972 @d black_val(A) mp->mem[(A)+6].sc
8973 /* the blue component of the color in the range $0\ldots1$ */
8974 @d ljoin_val(A) name_type((A)) /* the value of \&{linejoin} */
8975 @:linejoin_}{\&{linejoin} primitive@>
8976 @d miterlim_val(A) mp->mem[(A)+7].sc /* the value of \&{miterlimit} */
8977 @:miterlimit_}{\&{miterlimit} primitive@>
8978 @d obj_color_part(A) mp->mem[(A)+3-red_part].sc
8979 /* interpret an object pointer that has been offset by |red_part..blue_part| */
8980 @d pre_script(A) mp->mem[(A)+8].hh.lh
8981 @d post_script(A) mp->mem[(A)+8].hh.rh
8986 pointer mp_new_fill_node (MP mp,pointer p) {
8987 /* make a fill node for cyclic path |p| and color black */
8988 pointer t; /* the new node */
8989 t=mp_get_node(mp, fill_node_size);
8992 pen_p(t)=null; /* |null| means don't use a pen */
8997 color_model(t)=uninitialized_model;
8999 post_script(t)=null;
9000 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9004 @ @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>=
9005 if ( mp->internal[linejoin]>unity ) ljoin_val(t)=2;
9006 else if ( mp->internal[linejoin]>0 ) ljoin_val(t)=1;
9007 else ljoin_val(t)=0;
9008 if ( mp->internal[miterlimit]<unity )
9009 miterlim_val(t)=unity;
9011 miterlim_val(t)=mp->internal[miterlimit]
9013 @ A stroked path is represented by an eight-word node that is like a filled
9014 contour node except that it contains the current \&{linecap} value, a scale
9015 factor for the dash pattern, and a pointer that is non-null if the stroke
9016 is to be dashed. The purpose of the scale factor is to allow a picture to
9017 be transformed without touching the picture that |dash_p| points to.
9019 @d dash_p(A) link((A)+9)
9020 /* a pointer to the edge structure that gives the dash pattern */
9021 @d lcap_val(A) type((A)+9)
9022 /* the value of \&{linecap} */
9023 @:linecap_}{\&{linecap} primitive@>
9024 @d dash_scale(A) mp->mem[(A)+10].sc /* dash lengths are scaled by this factor */
9025 @d stroked_node_size 11
9029 pointer mp_new_stroked_node (MP mp,pointer p) {
9030 /* make a stroked node for path |p| with |pen_p(p)| temporarily |null| */
9031 pointer t; /* the new node */
9032 t=mp_get_node(mp, stroked_node_size);
9033 type(t)=stroked_code;
9034 path_p(t)=p; pen_p(t)=null;
9036 dash_scale(t)=unity;
9041 color_model(t)=uninitialized_model;
9043 post_script(t)=null;
9044 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9045 if ( mp->internal[linecap]>unity ) lcap_val(t)=2;
9046 else if ( mp->internal[linecap]>0 ) lcap_val(t)=1;
9051 @ When a dashed line is computed in a transformed coordinate system, the dash
9052 lengths get scaled like the pen shape and we need to compensate for this. Since
9053 there is no unique scale factor for an arbitrary transformation, we use the
9054 the square root of the determinant. The properties of the determinant make it
9055 easier to maintain the |dash_scale|. The computation is fairly straight-forward
9056 except for the initialization of the scale factor |s|. The factor of 64 is
9057 needed because |square_rt| scales its result by $2^8$ while we need $2^{14}$
9058 to counteract the effect of |take_fraction|.
9060 @<Declare subroutines needed by |print_edges|@>=
9061 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) {
9062 scaled maxabs; /* $max(|a|,|b|,|c|,|d|)$ */
9063 integer s; /* amount by which the result of |square_rt| needs to be scaled */
9064 @<Initialize |maxabs|@>;
9066 while ( (maxabs<fraction_one) && (s>1) ){
9067 a+=a; b+=b; c+=c; d+=d;
9068 maxabs+=maxabs; s=halfp(s);
9070 return s*mp_square_rt(mp, abs(mp_take_fraction(mp, a,d)-mp_take_fraction(mp, b,c)));
9073 scaled mp_get_pen_scale (MP mp,pointer p) {
9074 return mp_sqrt_det(mp,
9075 left_x(p)-x_coord(p), right_x(p)-x_coord(p),
9076 left_y(p)-y_coord(p), right_y(p)-y_coord(p));
9079 @ @<Initialize |maxabs|@>=
9081 if ( abs(b)>maxabs ) maxabs=abs(b);
9082 if ( abs(c)>maxabs ) maxabs=abs(c);
9083 if ( abs(d)>maxabs ) maxabs=abs(d)
9085 @ When a picture contains text, this is represented by a fourteen-word node
9086 where the color information and |type| and |link| fields are augmented by
9087 additional fields that describe the text and how it is transformed.
9088 The |path_p| and |pen_p| pointers are replaced by a number that identifies
9089 the font and a string number that gives the text to be displayed.
9090 The |width|, |height|, and |depth| fields
9091 give the dimensions of the text at its design size, and the remaining six
9092 words give a transformation to be applied to the text. The |new_text_node|
9093 function initializes everything to default values so that the text comes out
9094 black with its reference point at the origin.
9096 @d text_p(A) link((A)+1) /* a string pointer for the text to display */
9097 @d font_n(A) info((A)+1) /* the font number */
9098 @d width_val(A) mp->mem[(A)+7].sc /* unscaled width of the text */
9099 @d height_val(A) mp->mem[(A)+9].sc /* unscaled height of the text */
9100 @d depth_val(A) mp->mem[(A)+10].sc /* unscaled depth of the text */
9101 @d text_tx_loc(A) ((A)+11)
9102 /* the first of six locations for transformation parameters */
9103 @d tx_val(A) mp->mem[(A)+11].sc /* $x$ shift amount */
9104 @d ty_val(A) mp->mem[(A)+12].sc /* $y$ shift amount */
9105 @d txx_val(A) mp->mem[(A)+13].sc /* |txx| transformation parameter */
9106 @d txy_val(A) mp->mem[(A)+14].sc /* |txy| transformation parameter */
9107 @d tyx_val(A) mp->mem[(A)+15].sc /* |tyx| transformation parameter */
9108 @d tyy_val(A) mp->mem[(A)+16].sc /* |tyy| transformation parameter */
9109 @d text_trans_part(A) mp->mem[(A)+11-x_part].sc
9110 /* interpret a text node ponter that has been offset by |x_part..yy_part| */
9111 @d text_node_size 17
9114 @c @<Declare text measuring subroutines@>;
9115 pointer mp_new_text_node (MP mp,char *f,str_number s) {
9116 /* make a text node for font |f| and text string |s| */
9117 pointer t; /* the new node */
9118 t=mp_get_node(mp, text_node_size);
9121 font_n(t)=mp_find_font(mp, f); /* this identifies the font */
9126 color_model(t)=uninitialized_model;
9128 post_script(t)=null;
9129 tx_val(t)=0; ty_val(t)=0;
9130 txx_val(t)=unity; txy_val(t)=0;
9131 tyx_val(t)=0; tyy_val(t)=unity;
9132 mp_set_text_box(mp, t); /* this finds the bounding box */
9136 @ The last two types of graphical objects that can occur in an edge structure
9137 are clipping paths and \&{setbounds} paths. These are slightly more difficult
9138 @:set_bounds_}{\&{setbounds} primitive@>
9139 to implement because we must keep track of exactly what is being clipped or
9140 bounded when pictures get merged together. For this reason, each clipping or
9141 \&{setbounds} operation is represented by a pair of nodes: first comes a
9142 two-word node whose |path_p| gives the relevant path, then there is the list
9143 of objects to clip or bound followed by a two-word node whose second word is
9146 Using at least two words for each graphical object node allows them all to be
9147 allocated and deallocated similarly with a global array |gr_object_size| to
9148 give the size in words for each object type.
9150 @d start_clip_size 2
9151 @d start_bounds_size 2
9152 @d stop_clip_size 2 /* the second word is not used here */
9153 @d stop_bounds_size 2 /* the second word is not used here */
9155 @d stop_type(A) ((A)+2)
9156 /* matching |type| for |start_clip_code| or |start_bounds_code| */
9157 @d has_color(A) (type((A))<mp_start_clip_code)
9158 /* does a graphical object have color fields? */
9159 @d has_pen(A) (type((A))<text_code)
9160 /* does a graphical object have a |pen_p| field? */
9161 @d is_start_or_stop(A) (type((A))>=mp_start_clip_code)
9162 @d is_stop(A) (type((A))>=mp_stop_clip_code)
9166 mp_start_clip_code=4, /* |type| of a node that starts clipping */
9167 mp_start_bounds_code, /* |type| of a node that gives a \&{setbounds} path */
9168 mp_stop_clip_code, /* |type| of a node that stops clipping */
9169 mp_stop_bounds_code /* |type| of a node that stops \&{setbounds} */
9173 pointer mp_new_bounds_node (MP mp,pointer p, small_number c) {
9174 /* make a node of type |c| where |p| is the clipping or \&{setbounds} path */
9175 pointer t; /* the new node */
9176 t=mp_get_node(mp, mp->gr_object_size[c]);
9182 @ We need an array to keep track of the sizes of graphical objects.
9185 small_number gr_object_size[mp_stop_bounds_code+1];
9188 mp->gr_object_size[fill_code]=fill_node_size;
9189 mp->gr_object_size[stroked_code]=stroked_node_size;
9190 mp->gr_object_size[text_code]=text_node_size;
9191 mp->gr_object_size[mp_start_clip_code]=start_clip_size;
9192 mp->gr_object_size[mp_stop_clip_code]=stop_clip_size;
9193 mp->gr_object_size[mp_start_bounds_code]=start_bounds_size;
9194 mp->gr_object_size[mp_stop_bounds_code]=stop_bounds_size;
9196 @ All the essential information in an edge structure is encoded as a linked list
9197 of graphical objects as we have just seen, but it is helpful to add some
9198 redundant information. A single edge structure might be used as a dash pattern
9199 many times, and it would be nice to avoid scanning the same structure
9200 repeatedly. Thus, an edge structure known to be a suitable dash pattern
9201 has a header that gives a list of dashes in a sorted order designed for rapid
9202 translation into \ps.
9204 Each dash is represented by a three-word node containing the initial and final
9205 $x$~coordinates as well as the usual |link| field. The |link| fields points to
9206 the dash node with the next higher $x$-coordinates and the final link points
9207 to a special location called |null_dash|. (There should be no overlap between
9208 dashes). Since the $y$~coordinate of the dash pattern is needed to determine
9209 the period of repetition, this needs to be stored in the edge header along
9210 with a pointer to the list of dash nodes.
9212 @d start_x(A) mp->mem[(A)+1].sc /* the starting $x$~coordinate in a dash node */
9213 @d stop_x(A) mp->mem[(A)+2].sc /* the ending $x$~coordinate in a dash node */
9216 /* in an edge header this points to the first dash node */
9217 @d dash_y(A) mp->mem[(A)+1].sc /* $y$ value for the dash list in an edge header */
9219 @ It is also convenient for an edge header to contain the bounding
9220 box information needed by the \&{llcorner} and \&{urcorner} operators
9221 so that this does not have to be recomputed unnecessarily. This is done by
9222 adding fields for the $x$~and $y$ extremes as well as a pointer that indicates
9223 how far the bounding box computation has gotten. Thus if the user asks for
9224 the bounding box and then adds some more text to the picture before asking
9225 for more bounding box information, the second computation need only look at
9226 the additional text.
9228 When the bounding box has not been computed, the |bblast| pointer points
9229 to a dummy link at the head of the graphical object list while the |minx_val|
9230 and |miny_val| fields contain |el_gordo| and the |maxx_val| and |maxy_val|
9231 fields contain |-el_gordo|.
9233 Since the bounding box of pictures containing objects of type
9234 |mp_start_bounds_code| depends on the value of \&{truecorners}, the bounding box
9235 @:true_corners_}{\&{truecorners} primitive@>
9236 data might not be valid for all values of this parameter. Hence, the |bbtype|
9237 field is needed to keep track of this.
9239 @d minx_val(A) mp->mem[(A)+2].sc
9240 @d miny_val(A) mp->mem[(A)+3].sc
9241 @d maxx_val(A) mp->mem[(A)+4].sc
9242 @d maxy_val(A) mp->mem[(A)+5].sc
9243 @d bblast(A) link((A)+6) /* last item considered in bounding box computation */
9244 @d bbtype(A) info((A)+6) /* tells how bounding box data depends on \&{truecorners} */
9245 @d dummy_loc(A) ((A)+7) /* where the object list begins in an edge header */
9247 /* |bbtype| value when bounding box data is valid for all \&{truecorners} values */
9249 /* |bbtype| value when bounding box data is for \&{truecorners}${}\le 0$ */
9251 /* |bbtype| value when bounding box data is for \&{truecorners}${}>0$ */
9254 void mp_init_bbox (MP mp,pointer h) {
9255 /* Initialize the bounding box information in edge structure |h| */
9256 bblast(h)=dummy_loc(h);
9257 bbtype(h)=no_bounds;
9258 minx_val(h)=el_gordo;
9259 miny_val(h)=el_gordo;
9260 maxx_val(h)=-el_gordo;
9261 maxy_val(h)=-el_gordo;
9264 @ The only other entries in an edge header are a reference count in the first
9265 word and a pointer to the tail of the object list in the last word.
9267 @d obj_tail(A) info((A)+7) /* points to the last entry in the object list */
9268 @d edge_header_size 8
9271 void mp_init_edges (MP mp,pointer h) {
9272 /* initialize an edge header to null values */
9273 dash_list(h)=null_dash;
9274 obj_tail(h)=dummy_loc(h);
9275 link(dummy_loc(h))=null;
9277 mp_init_bbox(mp, h);
9280 @ Here is how edge structures are deleted. The process can be recursive because
9281 of the need to dereference edge structures that are used as dash patterns.
9284 @d add_edge_ref(A) incr(ref_count((A)))
9285 @d delete_edge_ref(A) { if ( ref_count((A))==null ) mp_toss_edges(mp, (A));
9286 else decr(ref_count((A))); }
9288 @<Declare the recycling subroutines@>=
9289 void mp_flush_dash_list (MP mp,pointer h);
9290 pointer mp_toss_gr_object (MP mp,pointer p) ;
9291 void mp_toss_edges (MP mp,pointer h) ;
9293 @ @c void mp_toss_edges (MP mp,pointer h) {
9294 pointer p,q; /* pointers that scan the list being recycled */
9295 pointer r; /* an edge structure that object |p| refers to */
9296 mp_flush_dash_list(mp, h);
9297 q=link(dummy_loc(h));
9298 while ( (q!=null) ) {
9300 r=mp_toss_gr_object(mp, p);
9301 if ( r!=null ) delete_edge_ref(r);
9303 mp_free_node(mp, h,edge_header_size);
9305 void mp_flush_dash_list (MP mp,pointer h) {
9306 pointer p,q; /* pointers that scan the list being recycled */
9308 while ( q!=null_dash ) {
9310 mp_free_node(mp, p,dash_node_size);
9312 dash_list(h)=null_dash;
9314 pointer mp_toss_gr_object (MP mp,pointer p) {
9315 /* returns an edge structure that needs to be dereferenced */
9316 pointer e; /* the edge structure to return */
9318 @<Prepare to recycle graphical object |p|@>;
9319 mp_free_node(mp, p,mp->gr_object_size[type(p)]);
9323 @ @<Prepare to recycle graphical object |p|@>=
9326 mp_toss_knot_list(mp, path_p(p));
9327 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9328 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9329 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9332 mp_toss_knot_list(mp, path_p(p));
9333 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9334 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9335 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9339 delete_str_ref(text_p(p));
9340 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9341 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9343 case mp_start_clip_code:
9344 case mp_start_bounds_code:
9345 mp_toss_knot_list(mp, path_p(p));
9347 case mp_stop_clip_code:
9348 case mp_stop_bounds_code:
9350 } /* there are no other cases */
9352 @ If we use |add_edge_ref| to ``copy'' edge structures, the real copying needs
9353 to be done before making a significant change to an edge structure. Much of
9354 the work is done in a separate routine |copy_objects| that copies a list of
9355 graphical objects into a new edge header.
9357 @c @<Declare a function called |copy_objects|@>;
9358 pointer mp_private_edges (MP mp,pointer h) {
9359 /* make a private copy of the edge structure headed by |h| */
9360 pointer hh; /* the edge header for the new copy */
9361 pointer p,pp; /* pointers for copying the dash list */
9362 if ( ref_count(h)==null ) {
9366 hh=mp_copy_objects(mp, link(dummy_loc(h)),null);
9367 @<Copy the dash list from |h| to |hh|@>;
9368 @<Copy the bounding box information from |h| to |hh| and make |bblast(hh)|
9369 point into the new object list@>;
9374 @ Here we use the fact that |dash_list(hh)=link(hh)|.
9375 @^data structure assumptions@>
9377 @<Copy the dash list from |h| to |hh|@>=
9378 pp=hh; p=dash_list(h);
9379 while ( (p!=null_dash) ) {
9380 link(pp)=mp_get_node(mp, dash_node_size);
9382 start_x(pp)=start_x(p);
9383 stop_x(pp)=stop_x(p);
9387 dash_y(hh)=dash_y(h)
9389 @ @<Copy the bounding box information from |h| to |hh|...@>=
9390 minx_val(hh)=minx_val(h);
9391 miny_val(hh)=miny_val(h);
9392 maxx_val(hh)=maxx_val(h);
9393 maxy_val(hh)=maxy_val(h);
9394 bbtype(hh)=bbtype(h);
9395 p=dummy_loc(h); pp=dummy_loc(hh);
9396 while ((p!=bblast(h)) ) {
9397 if ( p==null ) mp_confusion(mp, "bblast");
9398 @:this can't happen bblast}{\quad bblast@>
9399 p=link(p); pp=link(pp);
9403 @ Here is the promised routine for copying graphical objects into a new edge
9404 structure. It starts copying at object~|p| and stops just before object~|q|.
9405 If |q| is null, it copies the entire sublist headed at |p|. The resulting edge
9406 structure requires further initialization by |init_bbox|.
9408 @<Declare a function called |copy_objects|@>=
9409 pointer mp_copy_objects (MP mp, pointer p, pointer q) {
9410 pointer hh; /* the new edge header */
9411 pointer pp; /* the last newly copied object */
9412 small_number k; /* temporary register */
9413 hh=mp_get_node(mp, edge_header_size);
9414 dash_list(hh)=null_dash;
9418 @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>;
9425 @ @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>=
9426 { k=mp->gr_object_size[type(p)];
9427 link(pp)=mp_get_node(mp, k);
9429 while ( (k>0) ) { decr(k); mp->mem[pp+k]=mp->mem[p+k]; };
9430 @<Fix anything in graphical object |pp| that should differ from the
9431 corresponding field in |p|@>;
9435 @ @<Fix anything in graphical object |pp| that should differ from the...@>=
9437 case mp_start_clip_code:
9438 case mp_start_bounds_code:
9439 path_p(pp)=mp_copy_path(mp, path_p(p));
9442 path_p(pp)=mp_copy_path(mp, path_p(p));
9443 if ( pen_p(p)!=null ) pen_p(pp)=copy_pen(pen_p(p));
9446 path_p(pp)=mp_copy_path(mp, path_p(p));
9447 pen_p(pp)=copy_pen(pen_p(p));
9448 if ( dash_p(p)!=null ) add_edge_ref(dash_p(pp));
9451 add_str_ref(text_p(pp));
9453 case mp_stop_clip_code:
9454 case mp_stop_bounds_code:
9456 } /* there are no other cases */
9458 @ Here is one way to find an acceptable value for the second argument to
9459 |copy_objects|. Given a non-null graphical object list, |skip_1component|
9460 skips past one picture component, where a ``picture component'' is a single
9461 graphical object, or a start bounds or start clip object and everything up
9462 through the matching stop bounds or stop clip object. The macro version avoids
9463 procedure call overhead and error handling: |skip_component(p)(e)| advances |p|
9464 unless |p| points to a stop bounds or stop clip node, in which case it executes
9467 @d skip_component(A)
9468 if ( ! is_start_or_stop((A)) ) (A)=link((A));
9469 else if ( ! is_stop((A)) ) (A)=mp_skip_1component(mp, (A));
9473 pointer mp_skip_1component (MP mp,pointer p) {
9474 integer lev; /* current nesting level */
9477 if ( is_start_or_stop(p) ) {
9478 if ( is_stop(p) ) decr(lev); else incr(lev);
9485 @ Here is a diagnostic routine for printing an edge structure in symbolic form.
9487 @<Declare subroutines for printing expressions@>=
9488 @<Declare subroutines needed by |print_edges|@>;
9489 void mp_print_edges (MP mp,pointer h, char *s, boolean nuline) {
9490 pointer p; /* a graphical object to be printed */
9491 pointer hh,pp; /* temporary pointers */
9492 scaled scf; /* a scale factor for the dash pattern */
9493 boolean ok_to_dash; /* |false| for polygonal pen strokes */
9494 mp_print_diagnostic(mp, "Edge structure",s,nuline);
9496 while ( link(p)!=null ) {
9500 @<Cases for printing graphical object node |p|@>;
9502 mp_print(mp, "[unknown object type!]");
9506 mp_print_nl(mp, "End edges");
9507 if ( p!=obj_tail(h) ) mp_print(mp, "?");
9509 mp_end_diagnostic(mp, true);
9512 @ @<Cases for printing graphical object node |p|@>=
9514 mp_print(mp, "Filled contour ");
9515 mp_print_obj_color(mp, p);
9516 mp_print_char(mp, ':'); mp_print_ln(mp);
9517 mp_pr_path(mp, path_p(p)); mp_print_ln(mp);
9518 if ( (pen_p(p)!=null) ) {
9519 @<Print join type for graphical object |p|@>;
9520 mp_print(mp, " with pen"); mp_print_ln(mp);
9521 mp_pr_pen(mp, pen_p(p));
9525 @ @<Print join type for graphical object |p|@>=
9526 switch (ljoin_val(p)) {
9528 mp_print(mp, "mitered joins limited ");
9529 mp_print_scaled(mp, miterlim_val(p));
9532 mp_print(mp, "round joins");
9535 mp_print(mp, "beveled joins");
9538 mp_print(mp, "?? joins");
9543 @ For stroked nodes, we need to print |lcap_val(p)| as well.
9545 @<Print join and cap types for stroked node |p|@>=
9546 switch (lcap_val(p)) {
9547 case 0:mp_print(mp, "butt"); break;
9548 case 1:mp_print(mp, "round"); break;
9549 case 2:mp_print(mp, "square"); break;
9550 default: mp_print(mp, "??"); break;
9553 mp_print(mp, " ends, ");
9554 @<Print join type for graphical object |p|@>
9556 @ Here is a routine that prints the color of a graphical object if it isn't
9557 black (the default color).
9559 @<Declare subroutines needed by |print_edges|@>=
9560 @<Declare a procedure called |print_compact_node|@>;
9561 void mp_print_obj_color (MP mp,pointer p) {
9562 if ( color_model(p)==grey_model ) {
9563 if ( grey_val(p)>0 ) {
9564 mp_print(mp, "greyed ");
9565 mp_print_compact_node(mp, obj_grey_loc(p),1);
9567 } else if ( color_model(p)==cmyk_model ) {
9568 if ( (cyan_val(p)>0) || (magenta_val(p)>0) ||
9569 (yellow_val(p)>0) || (black_val(p)>0) ) {
9570 mp_print(mp, "processcolored ");
9571 mp_print_compact_node(mp, obj_cyan_loc(p),4);
9573 } else if ( color_model(p)==rgb_model ) {
9574 if ( (red_val(p)>0) || (green_val(p)>0) || (blue_val(p)>0) ) {
9575 mp_print(mp, "colored ");
9576 mp_print_compact_node(mp, obj_red_loc(p),3);
9581 @ We also need a procedure for printing consecutive scaled values as if they
9582 were a known big node.
9584 @<Declare a procedure called |print_compact_node|@>=
9585 void mp_print_compact_node (MP mp,pointer p, small_number k) {
9586 pointer q; /* last location to print */
9588 mp_print_char(mp, '(');
9590 mp_print_scaled(mp, mp->mem[p].sc);
9591 if ( p<q ) mp_print_char(mp, ',');
9594 mp_print_char(mp, ')');
9597 @ @<Cases for printing graphical object node |p|@>=
9599 mp_print(mp, "Filled pen stroke ");
9600 mp_print_obj_color(mp, p);
9601 mp_print_char(mp, ':'); mp_print_ln(mp);
9602 mp_pr_path(mp, path_p(p));
9603 if ( dash_p(p)!=null ) {
9604 mp_print_nl(mp, "dashed (");
9605 @<Finish printing the dash pattern that |p| refers to@>;
9608 @<Print join and cap types for stroked node |p|@>;
9609 mp_print(mp, " with pen"); mp_print_ln(mp);
9610 if ( pen_p(p)==null ) mp_print(mp, "???"); /* shouldn't happen */
9612 else mp_pr_pen(mp, pen_p(p));
9615 @ Normally, the |dash_list| field in an edge header is set to |null_dash|
9616 when it is not known to define a suitable dash pattern. This is disallowed
9617 here because the |dash_p| field should never point to such an edge header.
9618 Note that memory is allocated for |start_x(null_dash)| and we are free to
9619 give it any convenient value.
9621 @<Finish printing the dash pattern that |p| refers to@>=
9622 ok_to_dash=pen_is_elliptical(pen_p(p));
9623 if ( ! ok_to_dash ) scf=unity; else scf=dash_scale(p);
9626 if ( (pp==null_dash) || (dash_y(hh)<0) ) {
9627 mp_print(mp, " ??");
9628 } else { start_x(null_dash)=start_x(pp)+dash_y(hh);
9629 while ( pp!=null_dash ) {
9630 mp_print(mp, "on ");
9631 mp_print_scaled(mp, mp_take_scaled(mp, stop_x(pp)-start_x(pp),scf));
9632 mp_print(mp, " off ");
9633 mp_print_scaled(mp, mp_take_scaled(mp, start_x(link(pp))-stop_x(pp),scf));
9635 if ( pp!=null_dash ) mp_print_char(mp, ' ');
9637 mp_print(mp, ") shifted ");
9638 mp_print_scaled(mp, -mp_take_scaled(mp, mp_dash_offset(mp, hh),scf));
9639 if ( ! ok_to_dash || (dash_y(hh)==0) ) mp_print(mp, " (this will be ignored)");
9642 @ @<Declare subroutines needed by |print_edges|@>=
9643 scaled mp_dash_offset (MP mp,pointer h) {
9644 scaled x; /* the answer */
9645 if ( (dash_list(h)==null_dash) || (dash_y(h)<0) ) mp_confusion(mp, "dash0");
9646 @:this can't happen dash0}{\quad dash0@>
9647 if ( dash_y(h)==0 ) {
9650 x=-(start_x(dash_list(h)) % dash_y(h));
9651 if ( x<0 ) x=x+dash_y(h);
9656 @ @<Cases for printing graphical object node |p|@>=
9658 mp_print_char(mp, '"'); mp_print_str(mp,text_p(p));
9659 mp_print(mp, "\" infont \""); mp_print(mp, mp->font_name[font_n(p)]);
9660 mp_print_char(mp, '"'); mp_print_ln(mp);
9661 mp_print_obj_color(mp, p);
9662 mp_print(mp, "transformed ");
9663 mp_print_compact_node(mp, text_tx_loc(p),6);
9666 @ @<Cases for printing graphical object node |p|@>=
9667 case mp_start_clip_code:
9668 mp_print(mp, "clipping path:");
9670 mp_pr_path(mp, path_p(p));
9672 case mp_stop_clip_code:
9673 mp_print(mp, "stop clipping");
9676 @ @<Cases for printing graphical object node |p|@>=
9677 case mp_start_bounds_code:
9678 mp_print(mp, "setbounds path:");
9680 mp_pr_path(mp, path_p(p));
9682 case mp_stop_bounds_code:
9683 mp_print(mp, "end of setbounds");
9686 @ To initialize the |dash_list| field in an edge header~|h|, we need a
9687 subroutine that scans an edge structure and tries to interpret it as a dash
9688 pattern. This can only be done when there are no filled regions or clipping
9689 paths and all the pen strokes have the same color. The first step is to let
9690 $y_0$ be the initial $y$~coordinate of the first pen stroke. Then we implicitly
9691 project all the pen stroke paths onto the line $y=y_0$ and require that there
9692 be no retracing. If the resulting paths cover a range of $x$~coordinates of
9693 length $\Delta x$, we set |dash_y(h)| to the length of the dash pattern by
9694 finding the maximum of $\Delta x$ and the absolute value of~$y_0$.
9696 @c @<Declare a procedure called |x_retrace_error|@>;
9697 pointer mp_make_dashes (MP mp,pointer h) { /* returns |h| or |null| */
9698 pointer p; /* this scans the stroked nodes in the object list */
9699 pointer p0; /* if not |null| this points to the first stroked node */
9700 pointer pp,qq,rr; /* pointers into |path_p(p)| */
9701 pointer d,dd; /* pointers used to create the dash list */
9702 @<Other local variables in |make_dashes|@>;
9703 scaled y0=0; /* the initial $y$ coordinate */
9704 if ( dash_list(h)!=null_dash )
9707 p=link(dummy_loc(h));
9709 if ( type(p)!=stroked_code ) {
9710 @<Compain that the edge structure contains a node of the wrong type
9711 and |goto not_found|@>;
9714 if ( p0==null ){ p0=p; y0=y_coord(pp); };
9715 @<Make |d| point to a new dash node created from stroke |p| and path |pp|
9716 or |goto not_found| if there is an error@>;
9717 @<Insert |d| into the dash list and |goto not_found| if there is an error@>;
9720 if ( dash_list(h)==null_dash )
9721 goto NOT_FOUND; /* No error message */
9722 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>;
9723 @<Set |dash_y(h)| and merge the first and last dashes if necessary@>;
9726 @<Flush the dash list, recycle |h| and return |null|@>;
9729 @ @<Compain that the edge structure contains a node of the wrong type...@>=
9731 print_err("Picture is too complicated to use as a dash pattern");
9732 help3("When you say `dashed p', picture p should not contain any")
9733 ("text, filled regions, or clipping paths. This time it did")
9734 ("so I'll just make it a solid line instead.");
9735 mp_put_get_error(mp);
9739 @ A similar error occurs when monotonicity fails.
9741 @<Declare a procedure called |x_retrace_error|@>=
9742 void mp_x_retrace_error (MP mp) {
9743 print_err("Picture is too complicated to use as a dash pattern");
9744 help3("When you say `dashed p', every path in p should be monotone")
9745 ("in x and there must be no overlapping. This failed")
9746 ("so I'll just make it a solid line instead.");
9747 mp_put_get_error(mp);
9750 @ We stash |p| in |info(d)| if |dash_p(p)<>0| so that subsequent processing can
9751 handle the case where the pen stroke |p| is itself dashed.
9753 @<Make |d| point to a new dash node created from stroke |p| and path...@>=
9754 @<Make sure |p| and |p0| are the same color and |goto not_found| if there is
9757 if ( link(pp)!=pp ) {
9760 @<Check for retracing between knots |qq| and |rr| and |goto not_found|
9761 if there is a problem@>;
9762 } while (right_type(rr)!=endpoint);
9764 d=mp_get_node(mp, dash_node_size);
9765 if ( dash_p(p)==0 ) info(d)=0; else info(d)=p;
9766 if ( x_coord(pp)<x_coord(rr) ) {
9767 start_x(d)=x_coord(pp);
9768 stop_x(d)=x_coord(rr);
9770 start_x(d)=x_coord(rr);
9771 stop_x(d)=x_coord(pp);
9774 @ We also need to check for the case where the segment from |qq| to |rr| is
9775 monotone in $x$ but is reversed relative to the path from |pp| to |qq|.
9777 @<Check for retracing between knots |qq| and |rr| and |goto not_found|...@>=
9782 if ( (x0>x1) || (x1>x2) || (x2>x3) ) {
9783 if ( (x0<x1) || (x1<x2) || (x2<x3) ) {
9784 if ( mp_ab_vs_cd(mp, x2-x1,x2-x1,x1-x0,x3-x2)>0 ) {
9785 mp_x_retrace_error(mp); goto NOT_FOUND;
9789 if ( (x_coord(pp)>x0) || (x0>x3) ) {
9790 if ( (x_coord(pp)<x0) || (x0<x3) ) {
9791 mp_x_retrace_error(mp); goto NOT_FOUND;
9795 @ @<Other local variables in |make_dashes|@>=
9796 scaled x0,x1,x2,x3; /* $x$ coordinates of the segment from |qq| to |rr| */
9798 @ @<Make sure |p| and |p0| are the same color and |goto not_found|...@>=
9799 if ( (red_val(p)!=red_val(p0)) || (black_val(p)!=black_val(p0)) ||
9800 (green_val(p)!=green_val(p0)) || (blue_val(p)!=blue_val(p0)) ) {
9801 print_err("Picture is too complicated to use as a dash pattern");
9802 help3("When you say `dashed p', everything in picture p should")
9803 ("be the same color. I can\'t handle your color changes")
9804 ("so I'll just make it a solid line instead.");
9805 mp_put_get_error(mp);
9809 @ @<Insert |d| into the dash list and |goto not_found| if there is an error@>=
9810 start_x(null_dash)=stop_x(d);
9811 dd=h; /* this makes |link(dd)=dash_list(h)| */
9812 while ( start_x(link(dd))<stop_x(d) )
9815 if ( (stop_x(dd)>start_x(d)) )
9816 { mp_x_retrace_error(mp); goto NOT_FOUND; };
9821 @ @<Set |dash_y(h)| and merge the first and last dashes if necessary@>=
9823 while ( (link(d)!=null_dash) )
9826 dash_y(h)=stop_x(d)-start_x(dd);
9827 if ( abs(y0)>dash_y(h) ) {
9829 } else if ( d!=dd ) {
9830 dash_list(h)=link(dd);
9831 stop_x(d)=stop_x(dd)+dash_y(h);
9832 mp_free_node(mp, dd,dash_node_size);
9835 @ We get here when the argument is a null picture or when there is an error.
9836 Recovering from an error involves making |dash_list(h)| empty to indicate
9837 that |h| is not known to be a valid dash pattern. We also dereference |h|
9838 since it is not being used for the return value.
9840 @<Flush the dash list, recycle |h| and return |null|@>=
9841 mp_flush_dash_list(mp, h);
9845 @ Having carefully saved the dashed stroked nodes in the
9846 corresponding dash nodes, we must be prepared to break up these dashes into
9849 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>=
9850 d=h; /* now |link(d)=dash_list(h)| */
9851 while ( link(d)!=null_dash ) {
9858 if ( (hh==null) ) mp_confusion(mp, "dash1");
9859 @:this can't happen dash0}{\quad dash1@>
9860 if ( dash_y(hh)==0 ) {
9863 if ( dash_list(hh)==null ) mp_confusion(mp, "dash1");
9864 @:this can't happen dash0}{\quad dash1@>
9865 @<Replace |link(d)| by a dashed version as determined by edge header
9866 |hh| and scale factor |ds|@>;
9871 @ @<Other local variables in |make_dashes|@>=
9872 pointer dln; /* |link(d)| */
9873 pointer hh; /* an edge header that tells how to break up |dln| */
9874 scaled hsf; /* the dash pattern from |hh| gets scaled by this */
9875 pointer ds; /* the stroked node from which |hh| and |hsf| are derived */
9876 scaled xoff; /* added to $x$ values in |dash_list(hh)| to match |dln| */
9878 @ @<Replace |link(d)| by a dashed version as determined by edge header...@>=
9881 xoff=start_x(dln)-mp_take_scaled(mp, hsf,start_x(dd))-
9882 mp_take_scaled(mp, hsf,mp_dash_offset(mp, hh));
9883 start_x(null_dash)=mp_take_scaled(mp, hsf,start_x(dd))
9884 +mp_take_scaled(mp, hsf,dash_y(hh));
9885 stop_x(null_dash)=start_x(null_dash);
9886 @<Advance |dd| until finding the first dash that overlaps |dln| when
9888 while ( start_x(dln)<=stop_x(dln) ) {
9889 @<If |dd| has `fallen off the end', back up to the beginning and fix |xoff|@>;
9890 @<Insert a dash between |d| and |dln| for the overlap with the offset version
9893 start_x(dln)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
9896 mp_free_node(mp, dln,dash_node_size)
9898 @ The name of this module is a bit of a lie because we actually just find the
9899 first |dd| where |take_scaled (hsf, stop_x(dd))| is large enough to make an
9900 overlap possible. It could be that the unoffset version of dash |dln| falls
9901 in the gap between |dd| and its predecessor.
9903 @<Advance |dd| until finding the first dash that overlaps |dln| when...@>=
9904 while ( xoff+mp_take_scaled(mp, hsf,stop_x(dd))<start_x(dln) ) {
9908 @ @<If |dd| has `fallen off the end', back up to the beginning and fix...@>=
9909 if ( dd==null_dash ) {
9911 xoff=xoff+mp_take_scaled(mp, hsf,dash_y(hh));
9914 @ At this point we already know that
9915 |start_x(dln)<=xoff+take_scaled(hsf,stop_x(dd))|.
9917 @<Insert a dash between |d| and |dln| for the overlap with the offset...@>=
9918 if ( xoff+mp_take_scaled(mp, hsf,start_x(dd))<=stop_x(dln) ) {
9919 link(d)=mp_get_node(mp, dash_node_size);
9922 if ( start_x(dln)>xoff+mp_take_scaled(mp, hsf,start_x(dd)))
9923 start_x(d)=start_x(dln);
9925 start_x(d)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
9926 if ( stop_x(dln)<xoff+mp_take_scaled(mp, hsf,stop_x(dd)) )
9927 stop_x(d)=stop_x(dln);
9929 stop_x(d)=xoff+mp_take_scaled(mp, hsf,stop_x(dd));
9932 @ The next major task is to update the bounding box information in an edge
9933 header~|h|. This is done via a procedure |adjust_bbox| that enlarges an edge
9934 header's bounding box to accommodate the box computed by |path_bbox| or
9935 |pen_bbox|. (This is stored in global variables |minx|, |miny|, |maxx|, and
9938 @c void mp_adjust_bbox (MP mp,pointer h) {
9939 if ( minx<minx_val(h) ) minx_val(h)=minx;
9940 if ( miny<miny_val(h) ) miny_val(h)=miny;
9941 if ( maxx>maxx_val(h) ) maxx_val(h)=maxx;
9942 if ( maxy>maxy_val(h) ) maxy_val(h)=maxy;
9945 @ Here is a special routine for updating the bounding box information in
9946 edge header~|h| to account for the squared-off ends of a non-cyclic path~|p|
9947 that is to be stroked with the pen~|pp|.
9949 @c void mp_box_ends (MP mp, pointer p, pointer pp, pointer h) {
9950 pointer q; /* a knot node adjacent to knot |p| */
9951 fraction dx,dy; /* a unit vector in the direction out of the path at~|p| */
9952 scaled d; /* a factor for adjusting the length of |(dx,dy)| */
9953 scaled z; /* a coordinate being tested against the bounding box */
9954 scaled xx,yy; /* the extreme pen vertex in the |(dx,dy)| direction */
9955 integer i; /* a loop counter */
9956 if ( right_type(p)!=endpoint ) {
9959 @<Make |(dx,dy)| the final direction for the path segment from
9960 |q| to~|p|; set~|d|@>;
9961 d=mp_pyth_add(mp, dx,dy);
9963 @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>;
9964 for (i=1;i<= 2;i++) {
9965 @<Use |(dx,dy)| to generate a vertex of the square end cap and
9966 update the bounding box to accommodate it@>;
9970 if ( right_type(p)==endpoint ) {
9973 @<Advance |p| to the end of the path and make |q| the previous knot@>;
9979 @ @<Make |(dx,dy)| the final direction for the path segment from...@>=
9981 dx=x_coord(p)-right_x(p);
9982 dy=y_coord(p)-right_y(p);
9983 if ( (dx==0)&&(dy==0) ) {
9984 dx=x_coord(p)-left_x(q);
9985 dy=y_coord(p)-left_y(q);
9988 dx=x_coord(p)-left_x(p);
9989 dy=y_coord(p)-left_y(p);
9990 if ( (dx==0)&&(dy==0) ) {
9991 dx=x_coord(p)-right_x(q);
9992 dy=y_coord(p)-right_y(q);
9995 dx=x_coord(p)-x_coord(q);
9996 dy=y_coord(p)-y_coord(q)
9998 @ @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>=
9999 dx=mp_make_fraction(mp, dx,d);
10000 dy=mp_make_fraction(mp, dy,d);
10001 mp_find_offset(mp, -dy,dx,pp);
10002 xx=mp->cur_x; yy=mp->cur_y
10004 @ @<Use |(dx,dy)| to generate a vertex of the square end cap and...@>=
10005 mp_find_offset(mp, dx,dy,pp);
10006 d=mp_take_fraction(mp, xx-mp->cur_x,dx)+mp_take_fraction(mp, yy-mp->cur_y,dy);
10007 if ( ((d<0)&&(i==1)) || ((d>0)&&(i==2)))
10008 mp_confusion(mp, "box_ends");
10009 @:this can't happen box ends}{\quad\\{box\_ends}@>
10010 z=x_coord(p)+mp->cur_x+mp_take_fraction(mp, d,dx);
10011 if ( z<minx_val(h) ) minx_val(h)=z;
10012 if ( z>maxx_val(h) ) maxx_val(h)=z;
10013 z=y_coord(p)+mp->cur_y+mp_take_fraction(mp, d,dy);
10014 if ( z<miny_val(h) ) miny_val(h)=z;
10015 if ( z>maxy_val(h) ) maxy_val(h)=z
10017 @ @<Advance |p| to the end of the path and make |q| the previous knot@>=
10021 } while (right_type(p)!=endpoint)
10023 @ The major difficulty in finding the bounding box of an edge structure is the
10024 effect of clipping paths. We treat them conservatively by only clipping to the
10025 clipping path's bounding box, but this still
10026 requires recursive calls to |set_bbox| in order to find the bounding box of
10028 the objects to be clipped. Such calls are distinguished by the fact that the
10029 boolean parameter |top_level| is false.
10031 @c void mp_set_bbox (MP mp,pointer h, boolean top_level) {
10032 pointer p; /* a graphical object being considered */
10033 scaled sminx,sminy,smaxx,smaxy;
10034 /* for saving the bounding box during recursive calls */
10035 scaled x0,x1,y0,y1; /* temporary registers */
10036 integer lev; /* nesting level for |mp_start_bounds_code| nodes */
10037 @<Wipe out any existing bounding box information if |bbtype(h)| is
10038 incompatible with |internal[true_corners]|@>;
10039 while ( link(bblast(h))!=null ) {
10043 case mp_stop_clip_code:
10044 if ( top_level ) mp_confusion(mp, "bbox"); else return;
10045 @:this can't happen bbox}{\quad bbox@>
10047 @<Other cases for updating the bounding box based on the type of object |p|@>;
10048 } /* all cases are enumerated above */
10050 if ( ! top_level ) mp_confusion(mp, "bbox");
10053 @ @<Wipe out any existing bounding box information if |bbtype(h)| is...@>=
10054 switch (bbtype(h)) {
10058 if ( mp->internal[true_corners]>0 ) mp_init_bbox(mp, h);
10061 if ( mp->internal[true_corners]<=0 ) mp_init_bbox(mp, h);
10063 } /* there are no other cases */
10065 @ @<Other cases for updating the bounding box...@>=
10067 mp_path_bbox(mp, path_p(p));
10068 if ( pen_p(p)!=null ) {
10071 mp_pen_bbox(mp, pen_p(p));
10077 mp_adjust_bbox(mp, h);
10080 @ @<Other cases for updating the bounding box...@>=
10081 case mp_start_bounds_code:
10082 if ( mp->internal[true_corners]>0 ) {
10083 bbtype(h)=bounds_unset;
10085 bbtype(h)=bounds_set;
10086 mp_path_bbox(mp, path_p(p));
10087 mp_adjust_bbox(mp, h);
10088 @<Scan to the matching |mp_stop_bounds_code| node and update |p| and
10092 case mp_stop_bounds_code:
10093 if ( mp->internal[true_corners]<=0 ) mp_confusion(mp, "bbox2");
10094 @:this can't happen bbox2}{\quad bbox2@>
10097 @ @<Scan to the matching |mp_stop_bounds_code| node and update |p| and...@>=
10100 if ( link(p)==null ) mp_confusion(mp, "bbox2");
10101 @:this can't happen bbox2}{\quad bbox2@>
10103 if ( type(p)==mp_start_bounds_code ) incr(lev);
10104 else if ( type(p)==mp_stop_bounds_code ) decr(lev);
10108 @ It saves a lot of grief here to be slightly conservative and not account for
10109 omitted parts of dashed lines. We also don't worry about the material omitted
10110 when using butt end caps. The basic computation is for round end caps and
10111 |box_ends| augments it for square end caps.
10113 @<Other cases for updating the bounding box...@>=
10115 mp_path_bbox(mp, path_p(p));
10118 mp_pen_bbox(mp, pen_p(p));
10123 mp_adjust_bbox(mp, h);
10124 if ( (left_type(path_p(p))==endpoint)&&(lcap_val(p)==2) )
10125 mp_box_ends(mp, path_p(p), pen_p(p), h);
10128 @ The height width and depth information stored in a text node determines a
10129 rectangle that needs to be transformed according to the transformation
10130 parameters stored in the text node.
10132 @<Other cases for updating the bounding box...@>=
10134 x1=mp_take_scaled(mp, txx_val(p),width_val(p));
10135 y0=mp_take_scaled(mp, txy_val(p),-depth_val(p));
10136 y1=mp_take_scaled(mp, txy_val(p),height_val(p));
10139 if ( y0<y1 ) { minx=minx+y0; maxx=maxx+y1; }
10140 else { minx=minx+y1; maxx=maxx+y0; }
10141 if ( x1<0 ) minx=minx+x1; else maxx=maxx+x1;
10142 x1=mp_take_scaled(mp, tyx_val(p),width_val(p));
10143 y0=mp_take_scaled(mp, tyy_val(p),-depth_val(p));
10144 y1=mp_take_scaled(mp, tyy_val(p),height_val(p));
10147 if ( y0<y1 ) { miny=miny+y0; maxy=maxy+y1; }
10148 else { miny=miny+y1; maxy=maxy+y0; }
10149 if ( x1<0 ) miny=miny+x1; else maxy=maxy+x1;
10150 mp_adjust_bbox(mp, h);
10153 @ This case involves a recursive call that advances |bblast(h)| to the node of
10154 type |mp_stop_clip_code| that matches |p|.
10156 @<Other cases for updating the bounding box...@>=
10157 case mp_start_clip_code:
10158 mp_path_bbox(mp, path_p(p));
10161 sminx=minx_val(h); sminy=miny_val(h);
10162 smaxx=maxx_val(h); smaxy=maxy_val(h);
10163 @<Reinitialize the bounding box in header |h| and call |set_bbox| recursively
10164 starting at |link(p)|@>;
10165 @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,
10167 minx=sminx; miny=sminy;
10168 maxx=smaxx; maxy=smaxy;
10169 mp_adjust_bbox(mp, h);
10172 @ @<Reinitialize the bounding box in header |h| and call |set_bbox|...@>=
10173 minx_val(h)=el_gordo;
10174 miny_val(h)=el_gordo;
10175 maxx_val(h)=-el_gordo;
10176 maxy_val(h)=-el_gordo;
10177 mp_set_bbox(mp, h,false)
10179 @ @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,...@>=
10180 if ( minx_val(h)<x0 ) minx_val(h)=x0;
10181 if ( miny_val(h)<y0 ) miny_val(h)=y0;
10182 if ( maxx_val(h)>x1 ) maxx_val(h)=x1;
10183 if ( maxy_val(h)>y1 ) maxy_val(h)=y1
10185 @* \[22] Finding an envelope.
10186 When \MP\ has a path and a polygonal pen, it needs to express the desired
10187 shape in terms of things \ps\ can understand. The present task is to compute
10188 a new path that describes the region to be filled. It is convenient to
10189 define this as a two step process where the first step is determining what
10190 offset to use for each segment of the path.
10192 @ Given a pointer |c| to a cyclic path,
10193 and a pointer~|h| to the first knot of a pen polygon,
10194 the |offset_prep| routine changes the path into cubics that are
10195 associated with particular pen offsets. Thus if the cubic between |p|
10196 and~|q| is associated with the |k|th offset and the cubic between |q| and~|r|
10197 has offset |l| then |info(q)=zero_off+l-k|. (The constant |zero_off| is added
10198 to because |l-k| could be negative.)
10200 After overwriting the type information with offset differences, we no longer
10201 have a true path so we refer to the knot list returned by |offset_prep| as an
10204 Since an envelope spec only determines relative changes in pen offsets,
10205 |offset_prep| sets a global variable |spec_offset| to the relative change from
10206 |h| to the first offset.
10208 @d zero_off 16384 /* added to offset changes to make them positive */
10211 integer spec_offset; /* number of pen edges between |h| and the initial offset */
10213 @ @c @<Declare subroutines needed by |offset_prep|@>;
10214 pointer mp_offset_prep (MP mp,pointer c, pointer h) {
10215 halfword n; /* the number of vertices in the pen polygon */
10216 pointer p,q,r,w, ww; /* for list manipulation */
10217 integer k_needed; /* amount to be added to |info(p)| when it is computed */
10218 pointer w0; /* a pointer to pen offset to use just before |p| */
10219 scaled dxin,dyin; /* the direction into knot |p| */
10220 integer turn_amt; /* change in pen offsets for the current cubic */
10221 @<Other local variables for |offset_prep|@>;
10223 @<Initialize the pen size~|n|@>;
10224 @<Initialize the incoming direction and pen offset at |c|@>;
10228 @<Split the cubic between |p| and |q|, if necessary, into cubics
10229 associated with single offsets, after which |q| should
10230 point to the end of the final such cubic@>;
10231 @<Advance |p| to node |q|, removing any ``dead'' cubics that
10232 might have been introduced by the splitting process@>;
10234 @<Fix the offset change in |info(c)| and set the return value of
10238 @ We shall want to keep track of where certain knots on the cyclic path
10239 wind up in the envelope spec. It doesn't suffice just to keep pointers to
10240 knot nodes because some nodes are deleted while removing dead cubics. Thus
10241 |offset_prep| updates the following pointers
10245 pointer spec_p2; /* pointers to distinguished knots */
10248 mp->spec_p1=null; mp->spec_p2=null;
10250 @ @<Initialize the pen size~|n|@>=
10257 @ Since the true incoming direction isn't known yet, we just pick a direction
10258 consistent with the pen offset~|h|. If this is wrong, it can be corrected
10261 @<Initialize the incoming direction and pen offset at |c|@>=
10262 dxin=x_coord(link(h))-x_coord(knil(h));
10263 dyin=y_coord(link(h))-y_coord(knil(h));
10264 if ( (dxin==0)&&(dyin==0) ) {
10265 dxin=y_coord(knil(h))-y_coord(h);
10266 dyin=x_coord(h)-x_coord(knil(h));
10270 @ We must be careful not to remove the only cubic in a cycle.
10272 But we must also be careful for another reason. If the user-supplied
10273 path starts with a set of degenerate cubics, these should not be removed
10274 because at this point we cannot do so cleanly. The relevant bug is
10275 tracker id 267, bugs 52c, reported by Boguslav.
10277 @<Advance |p| to node |q|, removing any ``dead'' cubics...@>=
10279 if ( x_coord(p)==right_x(p) ) if ( y_coord(p)==right_y(p) )
10280 if ( x_coord(p)==left_x(r) ) if ( y_coord(p)==left_y(r) )
10281 if ( x_coord(p)==x_coord(r) ) if ( y_coord(p)==y_coord(r) )
10282 if ( r!=p ) if ( ((r!=q) || (originator(r)!=metapost_user)) ) {
10283 @<Remove the cubic following |p| and update the data structures
10284 to merge |r| into |p|@>;
10289 @ @<Remove the cubic following |p| and update the data structures...@>=
10290 { k_needed=info(p)-zero_off;
10294 info(p)=k_needed+info(r);
10297 if ( r==c ) { info(p)=info(c); c=p; };
10298 if ( r==mp->spec_p1 ) mp->spec_p1=p;
10299 if ( r==mp->spec_p2 ) mp->spec_p2=p;
10300 r=p; mp_remove_cubic(mp, p);
10303 @ Not setting the |info| field of the newly created knot allows the splitting
10304 routine to work for paths.
10306 @<Declare subroutines needed by |offset_prep|@>=
10307 void mp_split_cubic (MP mp,pointer p, fraction t) { /* splits the cubic after |p| */
10308 scaled v; /* an intermediate value */
10309 pointer q,r; /* for list manipulation */
10310 q=link(p); r=mp_get_node(mp, knot_node_size); link(p)=r; link(r)=q;
10311 originator(r)=program_code;
10312 left_type(r)=explicit; right_type(r)=explicit;
10313 v=t_of_the_way(right_x(p),left_x(q));
10314 right_x(p)=t_of_the_way(x_coord(p),right_x(p));
10315 left_x(q)=t_of_the_way(left_x(q),x_coord(q));
10316 left_x(r)=t_of_the_way(right_x(p),v);
10317 right_x(r)=t_of_the_way(v,left_x(q));
10318 x_coord(r)=t_of_the_way(left_x(r),right_x(r));
10319 v=t_of_the_way(right_y(p),left_y(q));
10320 right_y(p)=t_of_the_way(y_coord(p),right_y(p));
10321 left_y(q)=t_of_the_way(left_y(q),y_coord(q));
10322 left_y(r)=t_of_the_way(right_y(p),v);
10323 right_y(r)=t_of_the_way(v,left_y(q));
10324 y_coord(r)=t_of_the_way(left_y(r),right_y(r));
10327 @ This does not set |info(p)| or |right_type(p)|.
10329 @<Declare subroutines needed by |offset_prep|@>=
10330 void mp_remove_cubic (MP mp,pointer p) { /* removes the dead cubic following~|p| */
10331 pointer q; /* the node that disappears */
10332 q=link(p); link(p)=link(q);
10333 right_x(p)=right_x(q); right_y(p)=right_y(q);
10334 mp_free_node(mp, q,knot_node_size);
10337 @ Let $d\prec d'$ mean that the counter-clockwise angle from $d$ to~$d'$ is
10338 strictly between zero and $180^\circ$. Then we can define $d\preceq d'$ to
10339 mean that the angle could be zero or $180^\circ$. If $w_k=(u_k,v_k)$ is the
10340 $k$th pen offset, the $k$th pen edge direction is defined by the formula
10341 $$d_k=(u\k-u_k,\,v\k-v_k).$$
10342 When listed by increasing $k$, these directions occur in counter-clockwise
10343 order so that $d_k\preceq d\k$ for all~$k$.
10344 The goal of |offset_prep| is to find an offset index~|k| to associate with
10345 each cubic, such that the direction $d(t)$ of the cubic satisfies
10346 $$d_{k-1}\preceq d(t)\preceq d_k\qquad\hbox{for $0\le t\le 1$.}\eqno(*)$$
10347 We may have to split a cubic into many pieces before each
10348 piece corresponds to a unique offset.
10350 @<Split the cubic between |p| and |q|, if necessary, into cubics...@>=
10351 info(p)=zero_off+k_needed;
10353 @<Prepare for derivative computations;
10354 |goto not_found| if the current cubic is dead@>;
10355 @<Find the initial direction |(dx,dy)|@>;
10356 @<Update |info(p)| and find the offset $w_k$ such that
10357 $d_{k-1}\preceq(\\{dx},\\{dy})\prec d_k$; also advance |w0| for
10358 the direction change at |p|@>;
10359 @<Find the final direction |(dxin,dyin)|@>;
10360 @<Decide on the net change in pen offsets and set |turn_amt|@>;
10361 @<Complete the offset splitting process@>;
10362 w0=mp_pen_walk(mp, w0,turn_amt);
10363 NOT_FOUND: do_nothing
10365 @ @<Declare subroutines needed by |offset_prep|@>=
10366 pointer mp_pen_walk (MP mp,pointer w, integer k) {
10367 /* walk |k| steps around a pen from |w| */
10368 while ( k>0 ) { w=link(w); decr(k); };
10369 while ( k<0 ) { w=knil(w); incr(k); };
10373 @ The direction of a cubic $B(z_0,z_1,z_2,z_3;t)=\bigl(x(t),y(t)\bigr)$ can be
10374 calculated from the quadratic polynomials
10375 ${1\over3}x'(t)=B(x_1-x_0,x_2-x_1,x_3-x_2;t)$ and
10376 ${1\over3}y'(t)=B(y_1-y_0,y_2-y_1,y_3-y_2;t)$.
10377 Since we may be calculating directions from several cubics
10378 split from the current one, it is desirable to do these calculations
10379 without losing too much precision. ``Scaled up'' values of the
10380 derivatives, which will be less tainted by accumulated errors than
10381 derivatives found from the cubics themselves, are maintained in
10382 local variables |x0|, |x1|, and |x2|, representing $X_0=2^l(x_1-x_0)$,
10383 $X_1=2^l(x_2-x_1)$, and $X_2=2^l(x_3-x_2)$; similarly |y0|, |y1|, and~|y2|
10384 represent $Y_0=2^l(y_1-y_0)$, $Y_1=2^l(y_2-y_1)$, and $Y_2=2^l(y_3-y_2)$.
10386 @<Other local variables for |offset_prep|@>=
10387 integer x0,x1,x2,y0,y1,y2; /* representatives of derivatives */
10388 integer t0,t1,t2; /* coefficients of polynomial for slope testing */
10389 integer du,dv,dx,dy; /* for directions of the pen and the curve */
10390 integer dx0,dy0; /* initial direction for the first cubic in the curve */
10391 integer mp_max_coef; /* used while scaling */
10392 integer x0a,x1a,x2a,y0a,y1a,y2a; /* intermediate values */
10393 fraction t; /* where the derivative passes through zero */
10394 fraction s; /* a temporary value */
10396 @ @<Prepare for derivative computations...@>=
10397 x0=right_x(p)-x_coord(p);
10398 x2=x_coord(q)-left_x(q);
10399 x1=left_x(q)-right_x(p);
10400 y0=right_y(p)-y_coord(p); y2=y_coord(q)-left_y(q);
10401 y1=left_y(q)-right_y(p);
10402 mp_max_coef=abs(x0);
10403 if ( abs(x1)>mp_max_coef ) mp_max_coef=abs(x1);
10404 if ( abs(x2)>mp_max_coef ) mp_max_coef=abs(x2);
10405 if ( abs(y0)>mp_max_coef ) mp_max_coef=abs(y0);
10406 if ( abs(y1)>mp_max_coef ) mp_max_coef=abs(y1);
10407 if ( abs(y2)>mp_max_coef ) mp_max_coef=abs(y2);
10408 if ( mp_max_coef==0 ) goto NOT_FOUND;
10409 while ( mp_max_coef<fraction_half ) {
10410 mp_max_coef+=mp_max_coef;
10411 x0+=x0; x1+=x1; x2+=x2;
10412 y0+=y0; y1+=y1; y2+=y2;
10415 @ Let us first solve a special case of the problem: Suppose we
10416 know an index~$k$ such that either (i)~$d(t)\succeq d_{k-1}$ for all~$t$
10417 and $d(0)\prec d_k$, or (ii)~$d(t)\preceq d_k$ for all~$t$ and
10418 $d(0)\succ d_{k-1}$.
10419 Then, in a sense, we're halfway done, since one of the two relations
10420 in $(*)$ is satisfied, and the other couldn't be satisfied for
10421 any other value of~|k|.
10423 Actually, the conditions can be relaxed somewhat since a relation such as
10424 $d(t)\succeq d_{k-1}$ restricts $d(t)$ to a half plane when all that really
10425 matters is whether $d(t)$ crosses the ray in the $d_{k-1}$ direction from
10426 the origin. The condition for case~(i) becomes $d_{k-1}\preceq d(0)\prec d_k$
10427 and $d(t)$ never crosses the $d_{k-1}$ ray in the clockwise direction.
10428 Case~(ii) is similar except $d(t)$ cannot cross the $d_k$ ray in the
10429 counterclockwise direction.
10431 The |fin_offset_prep| subroutine solves the stated subproblem.
10432 It has a parameter called |rise| that is |1| in
10433 case~(i), |-1| in case~(ii). Parameters |x0| through |y2| represent
10434 the derivative of the cubic following |p|.
10435 The |w| parameter should point to offset~$w_k$ and |info(p)| should already
10436 be set properly. The |turn_amt| parameter gives the absolute value of the
10437 overall net change in pen offsets.
10439 @<Declare subroutines needed by |offset_prep|@>=
10440 void mp_fin_offset_prep (MP mp,pointer p, pointer w, integer
10441 x0,integer x1, integer x2, integer y0, integer y1, integer y2,
10442 integer rise, integer turn_amt) {
10443 pointer ww; /* for list manipulation */
10444 scaled du,dv; /* for slope calculation */
10445 integer t0,t1,t2; /* test coefficients */
10446 fraction t; /* place where the derivative passes a critical slope */
10447 fraction s; /* slope or reciprocal slope */
10448 integer v; /* intermediate value for updating |x0..y2| */
10449 pointer q; /* original |link(p)| */
10452 if ( rise>0 ) ww=link(w); /* a pointer to $w\k$ */
10453 else ww=knil(w); /* a pointer to $w_{k-1}$ */
10454 @<Compute test coefficients |(t0,t1,t2)|
10455 for $d(t)$ versus $d_k$ or $d_{k-1}$@>;
10456 t=mp_crossing_point(mp, t0,t1,t2);
10457 if ( t>=fraction_one ) {
10458 if ( turn_amt>0 ) t=fraction_one; else return;
10460 @<Split the cubic at $t$,
10461 and split off another cubic if the derivative crosses back@>;
10466 @ We want $B(\\{t0},\\{t1},\\{t2};t)$ to be the dot product of $d(t)$ with a
10467 $-90^\circ$ rotation of the vector from |w| to |ww|. This makes the resulting
10468 function cross from positive to negative when $d_{k-1}\preceq d(t)\preceq d_k$
10471 @<Compute test coefficients |(t0,t1,t2)| for $d(t)$ versus...@>=
10472 du=x_coord(ww)-x_coord(w); dv=y_coord(ww)-y_coord(w);
10473 if ( abs(du)>=abs(dv) ) {
10474 s=mp_make_fraction(mp, dv,du);
10475 t0=mp_take_fraction(mp, x0,s)-y0;
10476 t1=mp_take_fraction(mp, x1,s)-y1;
10477 t2=mp_take_fraction(mp, x2,s)-y2;
10478 if ( du<0 ) { negate(t0); negate(t1); negate(t2); }
10480 s=mp_make_fraction(mp, du,dv);
10481 t0=x0-mp_take_fraction(mp, y0,s);
10482 t1=x1-mp_take_fraction(mp, y1,s);
10483 t2=x2-mp_take_fraction(mp, y2,s);
10484 if ( dv<0 ) { negate(t0); negate(t1); negate(t2); }
10486 if ( t0<0 ) t0=0 /* should be positive without rounding error */
10488 @ The curve has crossed $d_k$ or $d_{k-1}$; its initial segment satisfies
10489 $(*)$, and it might cross again, yielding another solution of $(*)$.
10491 @<Split the cubic at $t$, and split off another...@>=
10493 mp_split_cubic(mp, p,t); p=link(p); info(p)=zero_off+rise;
10495 v=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10496 x0=t_of_the_way(v,x1);
10497 v=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10498 y0=t_of_the_way(v,y1);
10499 if ( turn_amt<0 ) {
10500 t1=t_of_the_way(t1,t2);
10501 if ( t1>0 ) t1=0; /* without rounding error, |t1| would be |<=0| */
10502 t=mp_crossing_point(mp, 0,-t1,-t2);
10503 if ( t>fraction_one ) t=fraction_one;
10505 if ( (t==fraction_one)&&(link(p)!=q) ) {
10506 info(link(p))=info(link(p))-rise;
10508 mp_split_cubic(mp, p,t); info(link(p))=zero_off-rise;
10509 v=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10510 x2=t_of_the_way(x1,v);
10511 v=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10512 y2=t_of_the_way(y1,v);
10517 @ Now we must consider the general problem of |offset_prep|, when
10518 nothing is known about a given cubic. We start by finding its
10519 direction in the vicinity of |t=0|.
10521 If $z'(t)=0$, the given cubic is numerically unstable but |offset_prep|
10522 has not yet introduced any more numerical errors. Thus we can compute
10523 the true initial direction for the given cubic, even if it is almost
10526 @<Find the initial direction |(dx,dy)|@>=
10528 if ( dx==0 ) if ( dy==0 ) {
10530 if ( dx==0 ) if ( dy==0 ) {
10534 if ( p==c ) { dx0=dx; dy0=dy; }
10536 @ @<Find the final direction |(dxin,dyin)|@>=
10538 if ( dxin==0 ) if ( dyin==0 ) {
10540 if ( dxin==0 ) if ( dyin==0 ) {
10545 @ The next step is to bracket the initial direction between consecutive
10546 edges of the pen polygon. We must be careful to turn clockwise only if
10547 this makes the turn less than $180^\circ$. (A $180^\circ$ turn must be
10548 counter-clockwise in order to make \&{doublepath} envelopes come out
10549 @:double_path_}{\&{doublepath} primitive@>
10550 right.) This code depends on |w0| being the offset for |(dxin,dyin)|.
10552 @<Update |info(p)| and find the offset $w_k$ such that...@>=
10553 turn_amt=mp_get_turn_amt(mp, w0, dx, dy, mp_ab_vs_cd(mp, dy,dxin,dx,dyin)>=0);
10554 w=mp_pen_walk(mp, w0, turn_amt);
10556 info(p)=info(p)+turn_amt
10558 @ Decide how many pen offsets to go away from |w| in order to find the offset
10559 for |(dx,dy)|, going counterclockwise if |ccw| is |true|. This assumes that
10560 |w| is the offset for some direction $(x',y')$ from which the angle to |(dx,dy)|
10561 in the sense determined by |ccw| is less than or equal to $180^\circ$.
10563 If the pen polygon has only two edges, they could both be parallel
10564 to |(dx,dy)|. In this case, we must be careful to stop after crossing the first
10565 such edge in order to avoid an infinite loop.
10567 @<Declare subroutines needed by |offset_prep|@>=
10568 integer mp_get_turn_amt (MP mp,pointer w, scaled dx,
10569 scaled dy, boolean ccw) {
10570 pointer ww; /* a neighbor of knot~|w| */
10571 integer s; /* turn amount so far */
10572 integer t; /* |ab_vs_cd| result */
10577 t=mp_ab_vs_cd(mp, dy,x_coord(ww)-x_coord(w),
10578 dx,y_coord(ww)-y_coord(w));
10585 while ( mp_ab_vs_cd(mp, dy,x_coord(w)-x_coord(ww),
10586 dx,y_coord(w)-y_coord(ww))<0 ) {
10594 @ When we're all done, the final offset is |w0| and the final curve direction
10595 is |(dxin,dyin)|. With this knowledge of the incoming direction at |c|, we
10596 can correct |info(c)| which was erroneously based on an incoming offset
10599 @d fix_by(A) info(c)=info(c)+(A)
10601 @<Fix the offset change in |info(c)| and set the return value of...@>=
10602 mp->spec_offset=info(c)-zero_off;
10603 if ( link(c)==c ) {
10604 info(c)=zero_off+n;
10607 while ( w0!=h ) { fix_by(1); w0=link(w0); };
10608 while ( info(c)<=zero_off-n ) fix_by(n);
10609 while ( info(c)>zero_off ) fix_by(-n);
10610 if ( (info(c)!=zero_off)&&(mp_ab_vs_cd(mp, dy0,dxin,dx0,dyin)>=0) ) fix_by(n);
10614 @ Finally we want to reduce the general problem to situations that
10615 |fin_offset_prep| can handle. We split the cubic into at most three parts
10616 with respect to $d_{k-1}$, and apply |fin_offset_prep| to each part.
10618 @<Complete the offset splitting process@>=
10620 @<Compute test coeff...@>;
10621 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set
10622 |t:=fraction_one+1|@>;
10623 if ( t>fraction_one ) {
10624 mp_fin_offset_prep(mp, p,w,x0,x1,x2,y0,y1,y2,1,turn_amt);
10626 mp_split_cubic(mp, p,t); r=link(p);
10627 x1a=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10628 x2a=t_of_the_way(x1a,x1);
10629 y1a=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10630 y2a=t_of_the_way(y1a,y1);
10631 mp_fin_offset_prep(mp, p,w,x0,x1a,x2a,y0,y1a,y2a,1,0); x0=x2a; y0=y2a;
10632 info(r)=zero_off-1;
10633 if ( turn_amt>=0 ) {
10634 t1=t_of_the_way(t1,t2);
10636 t=mp_crossing_point(mp, 0,-t1,-t2);
10637 if ( t>fraction_one ) t=fraction_one;
10638 @<Split off another rising cubic for |fin_offset_prep|@>;
10639 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,0);
10641 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,-1-turn_amt);
10645 @ @<Split off another rising cubic for |fin_offset_prep|@>=
10646 mp_split_cubic(mp, r,t); info(link(r))=zero_off+1;
10647 x1a=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10648 x0a=t_of_the_way(x1,x1a);
10649 y1a=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10650 y0a=t_of_the_way(y1,y1a);
10651 mp_fin_offset_prep(mp, link(r),w,x0a,x1a,x2,y0a,y1a,y2,1,turn_amt);
10654 @ At this point, the direction of the incoming pen edge is |(-du,-dv)|.
10655 When the component of $d(t)$ perpendicular to |(-du,-dv)| crosses zero, we
10656 need to decide whether the directions are parallel or antiparallel. We
10657 can test this by finding the dot product of $d(t)$ and |(-du,-dv)|, but this
10658 should be avoided when the value of |turn_amt| already determines the
10659 answer. If |t2<0|, there is one crossing and it is antiparallel only if
10660 |turn_amt>=0|. If |turn_amt<0|, there should always be at least one
10661 crossing and the first crossing cannot be antiparallel.
10663 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set...@>=
10664 t=mp_crossing_point(mp, t0,t1,t2);
10665 if ( turn_amt>=0 ) {
10669 u0=t_of_the_way(x0,x1);
10670 u1=t_of_the_way(x1,x2);
10671 ss=mp_take_fraction(mp, -du,t_of_the_way(u0,u1));
10672 v0=t_of_the_way(y0,y1);
10673 v1=t_of_the_way(y1,y2);
10674 ss=ss+mp_take_fraction(mp, -dv,t_of_the_way(v0,v1));
10675 if ( ss<0 ) t=fraction_one+1;
10677 } else if ( t>fraction_one ) {
10681 @ @<Other local variables for |offset_prep|@>=
10682 integer u0,u1,v0,v1; /* intermediate values for $d(t)$ calculation */
10683 integer ss = 0; /* the part of the dot product computed so far */
10684 int d_sign; /* sign of overall change in direction for this cubic */
10686 @ If the cubic almost has a cusp, it is a numerically ill-conditioned
10687 problem to decide which way it loops around but that's OK as long we're
10688 consistent. To make \&{doublepath} envelopes work properly, reversing
10689 the path should always change the sign of |turn_amt|.
10691 @<Decide on the net change in pen offsets and set |turn_amt|@>=
10692 d_sign=mp_ab_vs_cd(mp, dx,dyin, dxin,dy);
10695 if ( dy>0 ) d_sign=1; else d_sign=-1;
10696 } else if ( dx>0 ) {
10702 @<Make |ss| negative if and only if the total change in direction is
10703 more than $180^\circ$@>;
10704 turn_amt=mp_get_turn_amt(mp, w, dxin, dyin, d_sign>0);
10705 if ( ss<0 ) turn_amt=turn_amt-d_sign*n
10707 @ In order to be invariant under path reversal, the result of this computation
10708 should not change when |x0|, |y0|, $\ldots$ are all negated and |(x0,y0)| is
10709 then swapped with |(x2,y2)|. We make use of the identities
10710 |take_fraction(-a,-b)=take_fraction(a,b)| and
10711 |t_of_the_way(-a,-b)=-(t_of_the_way(a,b))|.
10713 @<Make |ss| negative if and only if the total change in direction is...@>=
10714 t0=half(mp_take_fraction(mp, x0,y2))-half(mp_take_fraction(mp, x2,y0));
10715 t1=half(mp_take_fraction(mp, x1,y0+y2))-half(mp_take_fraction(mp, y1,x0+x2));
10716 if ( t0==0 ) t0=d_sign; /* path reversal always negates |d_sign| */
10718 t=mp_crossing_point(mp, t0,t1,-t0);
10719 u0=t_of_the_way(x0,x1);
10720 u1=t_of_the_way(x1,x2);
10721 v0=t_of_the_way(y0,y1);
10722 v1=t_of_the_way(y1,y2);
10724 t=mp_crossing_point(mp, -t0,t1,t0);
10725 u0=t_of_the_way(x2,x1);
10726 u1=t_of_the_way(x1,x0);
10727 v0=t_of_the_way(y2,y1);
10728 v1=t_of_the_way(y1,y0);
10730 s=mp_take_fraction(mp, x0+x2,t_of_the_way(u0,u1))+
10731 mp_take_fraction(mp, y0+y2,t_of_the_way(v0,v1))
10733 @ Here's a routine that prints an envelope spec in symbolic form. It assumes
10734 that the |cur_pen| has not been walked around to the first offset.
10737 void mp_print_spec (MP mp,pointer cur_spec, pointer cur_pen, char *s) {
10738 pointer p,q; /* list traversal */
10739 pointer w; /* the current pen offset */
10740 mp_print_diagnostic(mp, "Envelope spec",s,true);
10741 p=cur_spec; w=mp_pen_walk(mp, cur_pen,mp->spec_offset);
10743 mp_print_two(mp, x_coord(cur_spec),y_coord(cur_spec));
10744 mp_print(mp, " % beginning with offset ");
10745 mp_print_two(mp, x_coord(w),y_coord(w));
10749 @<Print the cubic between |p| and |q|@>;
10751 } while (! ((p==cur_spec) || (info(p)!=zero_off)));
10752 if ( info(p)!=zero_off ) {
10753 @<Update |w| as indicated by |info(p)| and print an explanation@>;
10755 } while (p!=cur_spec);
10756 mp_print_nl(mp, " & cycle");
10757 mp_end_diagnostic(mp, true);
10760 @ @<Update |w| as indicated by |info(p)| and print an explanation@>=
10762 w=mp_pen_walk(mp, w,info(p)-zero_off);
10763 mp_print(mp, " % ");
10764 if ( info(p)>zero_off ) mp_print(mp, "counter");
10765 mp_print(mp, "clockwise to offset ");
10766 mp_print_two(mp, x_coord(w),y_coord(w));
10769 @ @<Print the cubic between |p| and |q|@>=
10771 mp_print_nl(mp, " ..controls ");
10772 mp_print_two(mp, right_x(p),right_y(p));
10773 mp_print(mp, " and ");
10774 mp_print_two(mp, left_x(q),left_y(q));
10775 mp_print_nl(mp, " ..");
10776 mp_print_two(mp, x_coord(q),y_coord(q));
10779 @ Once we have an envelope spec, the remaining task to construct the actual
10780 envelope by offsetting each cubic as determined by the |info| fields in
10781 the knots. First we use |offset_prep| to convert the |c| into an envelope
10782 spec. Then we add the offsets so that |c| becomes a cyclic path that represents
10785 The |ljoin| and |miterlim| parameters control the treatment of points where the
10786 pen offset changes, and |lcap| controls the endpoints of a \&{doublepath}.
10787 The endpoints are easily located because |c| is given in undoubled form
10788 and then doubled in this procedure. We use |spec_p1| and |spec_p2| to keep
10789 track of the endpoints and treat them like very sharp corners.
10790 Butt end caps are treated like beveled joins; round end caps are treated like
10791 round joins; and square end caps are achieved by setting |join_type:=3|.
10793 None of these parameters apply to inside joins where the convolution tracing
10794 has retrograde lines. In such cases we use a simple connect-the-endpoints
10795 approach that is achieved by setting |join_type:=2|.
10797 @c @<Declare a function called |insert_knot|@>;
10798 pointer mp_make_envelope (MP mp,pointer c, pointer h, small_number ljoin,
10799 small_number lcap, scaled miterlim) {
10800 pointer p,q,r,q0; /* for manipulating the path */
10801 int join_type=0; /* codes |0..3| for mitered, round, beveled, or square */
10802 pointer w,w0; /* the pen knot for the current offset */
10803 scaled qx,qy; /* unshifted coordinates of |q| */
10804 halfword k,k0; /* controls pen edge insertion */
10805 @<Other local variables for |make_envelope|@>;
10806 dxin=0; dyin=0; dxout=0; dyout=0;
10807 mp->spec_p1=null; mp->spec_p2=null;
10808 @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>;
10809 @<Use |offset_prep| to compute the envelope spec then walk |h| around to
10810 the initial offset@>;
10815 qx=x_coord(q); qy=y_coord(q);
10818 if ( k!=zero_off ) {
10819 @<Set |join_type| to indicate how to handle offset changes at~|q|@>;
10821 @<Add offset |w| to the cubic from |p| to |q|@>;
10822 while ( k!=zero_off ) {
10823 @<Step |w| and move |k| one step closer to |zero_off|@>;
10824 if ( (join_type==1)||(k==zero_off) )
10825 q=mp_insert_knot(mp, q,qx+x_coord(w),qy+y_coord(w));
10827 if ( q!=link(p) ) {
10828 @<Set |p=link(p)| and add knots between |p| and |q| as
10829 required by |join_type|@>;
10836 @ @<Use |offset_prep| to compute the envelope spec then walk |h| around to...@>=
10837 c=mp_offset_prep(mp, c,h);
10838 if ( mp->internal[tracing_specs]>0 )
10839 mp_print_spec(mp, c,h,"");
10840 h=mp_pen_walk(mp, h,mp->spec_offset)
10842 @ Mitered and squared-off joins depend on path directions that are difficult to
10843 compute for degenerate cubics. The envelope spec computed by |offset_prep| can
10844 have degenerate cubics only if the entire cycle collapses to a single
10845 degenerate cubic. Setting |join_type:=2| in this case makes the computed
10846 envelope degenerate as well.
10848 @<Set |join_type| to indicate how to handle offset changes at~|q|@>=
10849 if ( k<zero_off ) {
10852 if ( (q!=mp->spec_p1)&&(q!=mp->spec_p2) ) join_type=ljoin;
10853 else if ( lcap==2 ) join_type=3;
10854 else join_type=2-lcap;
10855 if ( (join_type==0)||(join_type==3) ) {
10856 @<Set the incoming and outgoing directions at |q|; in case of
10857 degeneracy set |join_type:=2|@>;
10858 if ( join_type==0 ) {
10859 @<If |miterlim| is less than the secant of half the angle at |q|
10860 then set |join_type:=2|@>;
10865 @ @<If |miterlim| is less than the secant of half the angle at |q|...@>=
10867 tmp=mp_take_fraction(mp, miterlim,fraction_half+
10868 half(mp_take_fraction(mp, dxin,dxout)+mp_take_fraction(mp, dyin,dyout)));
10870 if ( mp_take_scaled(mp, miterlim,tmp)<unity ) join_type=2;
10873 @ @<Other local variables for |make_envelope|@>=
10874 fraction dxin,dyin,dxout,dyout; /* directions at |q| when square or mitered */
10875 scaled tmp; /* a temporary value */
10877 @ The coordinates of |p| have already been shifted unless |p| is the first
10878 knot in which case they get shifted at the very end.
10880 @<Add offset |w| to the cubic from |p| to |q|@>=
10881 right_x(p)=right_x(p)+x_coord(w);
10882 right_y(p)=right_y(p)+y_coord(w);
10883 left_x(q)=left_x(q)+x_coord(w);
10884 left_y(q)=left_y(q)+y_coord(w);
10885 x_coord(q)=x_coord(q)+x_coord(w);
10886 y_coord(q)=y_coord(q)+y_coord(w);
10887 left_type(q)=explicit;
10888 right_type(q)=explicit
10890 @ @<Step |w| and move |k| one step closer to |zero_off|@>=
10891 if ( k>zero_off ){ w=link(w); decr(k); }
10892 else { w=knil(w); incr(k); }
10894 @ The cubic from |q| to the new knot at |(x,y)| becomes a line segment and
10895 the |right_x| and |right_y| fields of |r| are set from |q|. This is done in
10896 case the cubic containing these control points is ``yet to be examined.''
10898 @<Declare a function called |insert_knot|@>=
10899 pointer mp_insert_knot (MP mp,pointer q, scaled x, scaled y) {
10900 /* returns the inserted knot */
10901 pointer r; /* the new knot */
10902 r=mp_get_node(mp, knot_node_size);
10903 link(r)=link(q); link(q)=r;
10904 right_x(r)=right_x(q);
10905 right_y(r)=right_y(q);
10908 right_x(q)=x_coord(q);
10909 right_y(q)=y_coord(q);
10910 left_x(r)=x_coord(r);
10911 left_y(r)=y_coord(r);
10912 left_type(r)=explicit;
10913 right_type(r)=explicit;
10914 originator(r)=program_code;
10918 @ After setting |p:=link(p)|, either |join_type=1| or |q=link(p)|.
10920 @<Set |p=link(p)| and add knots between |p| and |q| as...@>=
10923 if ( (join_type==0)||(join_type==3) ) {
10924 if ( join_type==0 ) {
10925 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>
10927 @<Make |r| the last of two knots inserted between |p| and |q| to form a
10931 right_x(r)=x_coord(r);
10932 right_y(r)=y_coord(r);
10937 @ For very small angles, adding a knot is unnecessary and would cause numerical
10938 problems, so we just set |r:=null| in that case.
10940 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>=
10942 det=mp_take_fraction(mp, dyout,dxin)-mp_take_fraction(mp, dxout,dyin);
10943 if ( abs(det)<26844 ) {
10944 r=null; /* sine $<10^{-4}$ */
10946 tmp=mp_take_fraction(mp, x_coord(q)-x_coord(p),dyout)-
10947 mp_take_fraction(mp, y_coord(q)-y_coord(p),dxout);
10948 tmp=mp_make_fraction(mp, tmp,det);
10949 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
10950 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
10954 @ @<Other local variables for |make_envelope|@>=
10955 fraction det; /* a determinant used for mitered join calculations */
10957 @ @<Make |r| the last of two knots inserted between |p| and |q| to form a...@>=
10959 ht_x=y_coord(w)-y_coord(w0);
10960 ht_y=x_coord(w0)-x_coord(w);
10961 while ( (abs(ht_x)<fraction_half)&&(abs(ht_y)<fraction_half) ) {
10962 ht_x+=ht_x; ht_y+=ht_y;
10964 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range dot
10965 product with |(ht_x,ht_y)|@>;
10966 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxin,ht_x)+
10967 mp_take_fraction(mp, dyin,ht_y));
10968 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
10969 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
10970 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxout,ht_x)+
10971 mp_take_fraction(mp, dyout,ht_y));
10972 r=mp_insert_knot(mp, r,x_coord(q)+mp_take_fraction(mp, tmp,dxout),
10973 y_coord(q)+mp_take_fraction(mp, tmp,dyout));
10976 @ @<Other local variables for |make_envelope|@>=
10977 fraction ht_x,ht_y; /* perpendicular to the segment from |p| to |q| */
10978 scaled max_ht; /* maximum height of the pen polygon above the |w0|-|w| line */
10979 halfword kk; /* keeps track of the pen vertices being scanned */
10980 pointer ww; /* the pen vertex being tested */
10982 @ The dot product of the vector from |w0| to |ww| with |(ht_x,ht_y)| ranges
10983 from zero to |max_ht|.
10985 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range...@>=
10990 @<Step |ww| and move |kk| one step closer to |k0|@>;
10991 if ( kk==k0 ) break;
10992 tmp=mp_take_fraction(mp, x_coord(ww)-x_coord(w0),ht_x)+
10993 mp_take_fraction(mp, y_coord(ww)-y_coord(w0),ht_y);
10994 if ( tmp>max_ht ) max_ht=tmp;
10998 @ @<Step |ww| and move |kk| one step closer to |k0|@>=
10999 if ( kk>k0 ) { ww=link(ww); decr(kk); }
11000 else { ww=knil(ww); incr(kk); }
11002 @ @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>=
11003 if ( left_type(c)==endpoint ) {
11004 mp->spec_p1=mp_htap_ypoc(mp, c);
11005 mp->spec_p2=mp->path_tail;
11006 originator(mp->spec_p1)=program_code;
11007 link(mp->spec_p2)=link(mp->spec_p1);
11008 link(mp->spec_p1)=c;
11009 mp_remove_cubic(mp, mp->spec_p1);
11011 if ( c!=link(c) ) {
11012 originator(mp->spec_p2)=program_code;
11013 mp_remove_cubic(mp, mp->spec_p2);
11015 @<Make |c| look like a cycle of length one@>;
11019 @ @<Make |c| look like a cycle of length one@>=
11021 left_type(c)=explicit; right_type(c)=explicit;
11022 left_x(c)=x_coord(c); left_y(c)=y_coord(c);
11023 right_x(c)=x_coord(c); right_y(c)=y_coord(c);
11026 @ In degenerate situations we might have to look at the knot preceding~|q|.
11027 That knot is |p| but if |p<>c|, its coordinates have already been offset by |w|.
11029 @<Set the incoming and outgoing directions at |q|; in case of...@>=
11030 dxin=x_coord(q)-left_x(q);
11031 dyin=y_coord(q)-left_y(q);
11032 if ( (dxin==0)&&(dyin==0) ) {
11033 dxin=x_coord(q)-right_x(p);
11034 dyin=y_coord(q)-right_y(p);
11035 if ( (dxin==0)&&(dyin==0) ) {
11036 dxin=x_coord(q)-x_coord(p);
11037 dyin=y_coord(q)-y_coord(p);
11038 if ( p!=c ) { /* the coordinates of |p| have been offset by |w| */
11039 dxin=dxin+x_coord(w);
11040 dyin=dyin+y_coord(w);
11044 tmp=mp_pyth_add(mp, dxin,dyin);
11048 dxin=mp_make_fraction(mp, dxin,tmp);
11049 dyin=mp_make_fraction(mp, dyin,tmp);
11050 @<Set the outgoing direction at |q|@>;
11053 @ If |q=c| then the coordinates of |r| and the control points between |q|
11054 and~|r| have already been offset by |h|.
11056 @<Set the outgoing direction at |q|@>=
11057 dxout=right_x(q)-x_coord(q);
11058 dyout=right_y(q)-y_coord(q);
11059 if ( (dxout==0)&&(dyout==0) ) {
11061 dxout=left_x(r)-x_coord(q);
11062 dyout=left_y(r)-y_coord(q);
11063 if ( (dxout==0)&&(dyout==0) ) {
11064 dxout=x_coord(r)-x_coord(q);
11065 dyout=y_coord(r)-y_coord(q);
11069 dxout=dxout-x_coord(h);
11070 dyout=dyout-y_coord(h);
11072 tmp=mp_pyth_add(mp, dxout,dyout);
11073 if ( tmp==0 ) mp_confusion(mp, "degenerate spec");
11074 @:this can't happen degerate spec}{\quad degenerate spec@>
11075 dxout=mp_make_fraction(mp, dxout,tmp);
11076 dyout=mp_make_fraction(mp, dyout,tmp)
11078 @* \[23] Direction and intersection times.
11079 A path of length $n$ is defined parametrically by functions $x(t)$ and
11080 $y(t)$, for |0<=t<=n|; we can regard $t$ as the ``time'' at which the path
11081 reaches the point $\bigl(x(t),y(t)\bigr)$. In this section of the program
11082 we shall consider operations that determine special times associated with
11083 given paths: the first time that a path travels in a given direction, and
11084 a pair of times at which two paths cross each other.
11086 @ Let's start with the easier task. The function |find_direction_time| is
11087 given a direction |(x,y)| and a path starting at~|h|. If the path never
11088 travels in direction |(x,y)|, the direction time will be~|-1|; otherwise
11089 it will be nonnegative.
11091 Certain anomalous cases can arise: If |(x,y)=(0,0)|, so that the given
11092 direction is undefined, the direction time will be~0. If $\bigl(x'(t),
11093 y'(t)\bigr)=(0,0)$, so that the path direction is undefined, it will be
11094 assumed to match any given direction at time~|t|.
11096 The routine solves this problem in nondegenerate cases by rotating the path
11097 and the given direction so that |(x,y)=(1,0)|; i.e., the main task will be
11098 to find when a given path first travels ``due east.''
11101 scaled mp_find_direction_time (MP mp,scaled x, scaled y, pointer h) {
11102 scaled max; /* $\max\bigl(\vert x\vert,\vert y\vert\bigr)$ */
11103 pointer p,q; /* for list traversal */
11104 scaled n; /* the direction time at knot |p| */
11105 scaled tt; /* the direction time within a cubic */
11106 @<Other local variables for |find_direction_time|@>;
11107 @<Normalize the given direction for better accuracy;
11108 but |return| with zero result if it's zero@>;
11111 if ( right_type(p)==endpoint ) break;
11113 @<Rotate the cubic between |p| and |q|; then
11114 |goto found| if the rotated cubic travels due east at some time |tt|;
11115 but |break| if an entire cyclic path has been traversed@>;
11123 @ @<Normalize the given direction for better accuracy...@>=
11124 if ( abs(x)<abs(y) ) {
11125 x=mp_make_fraction(mp, x,abs(y));
11126 if ( y>0 ) y=fraction_one; else y=-fraction_one;
11127 } else if ( x==0 ) {
11130 y=mp_make_fraction(mp, y,abs(x));
11131 if ( x>0 ) x=fraction_one; else x=-fraction_one;
11134 @ Since we're interested in the tangent directions, we work with the
11135 derivative $${\textstyle1\over3}B'(x_0,x_1,x_2,x_3;t)=
11136 B(x_1-x_0,x_2-x_1,x_3-x_2;t)$$ instead of
11137 $B(x_0,x_1,x_2,x_3;t)$ itself. The derived coefficients are also scaled up
11138 in order to achieve better accuracy.
11140 The given path may turn abruptly at a knot, and it might pass the critical
11141 tangent direction at such a time. Therefore we remember the direction |phi|
11142 in which the previous rotated cubic was traveling. (The value of |phi| will be
11143 undefined on the first cubic, i.e., when |n=0|.)
11145 @<Rotate the cubic between |p| and |q|; then...@>=
11147 @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples of the control
11148 points of the rotated derivatives@>;
11149 if ( y1==0 ) if ( x1>=0 ) goto FOUND;
11151 @<Exit to |found| if an eastward direction occurs at knot |p|@>;
11154 if ( (x3!=0)||(y3!=0) ) phi=mp_n_arg(mp, x3,y3);
11155 @<Exit to |found| if the curve whose derivatives are specified by
11156 |x1,x2,x3,y1,y2,y3| travels eastward at some time~|tt|@>
11158 @ @<Other local variables for |find_direction_time|@>=
11159 scaled x1,x2,x3,y1,y2,y3; /* multiples of rotated derivatives */
11160 angle theta,phi; /* angles of exit and entry at a knot */
11161 fraction t; /* temp storage */
11163 @ @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples...@>=
11164 x1=right_x(p)-x_coord(p); x2=left_x(q)-right_x(p);
11165 x3=x_coord(q)-left_x(q);
11166 y1=right_y(p)-y_coord(p); y2=left_y(q)-right_y(p);
11167 y3=y_coord(q)-left_y(q);
11169 if ( abs(x2)>max ) max=abs(x2);
11170 if ( abs(x3)>max ) max=abs(x3);
11171 if ( abs(y1)>max ) max=abs(y1);
11172 if ( abs(y2)>max ) max=abs(y2);
11173 if ( abs(y3)>max ) max=abs(y3);
11174 if ( max==0 ) goto FOUND;
11175 while ( max<fraction_half ){
11176 max+=max; x1+=x1; x2+=x2; x3+=x3;
11177 y1+=y1; y2+=y2; y3+=y3;
11179 t=x1; x1=mp_take_fraction(mp, x1,x)+mp_take_fraction(mp, y1,y);
11180 y1=mp_take_fraction(mp, y1,x)-mp_take_fraction(mp, t,y);
11181 t=x2; x2=mp_take_fraction(mp, x2,x)+mp_take_fraction(mp, y2,y);
11182 y2=mp_take_fraction(mp, y2,x)-mp_take_fraction(mp, t,y);
11183 t=x3; x3=mp_take_fraction(mp, x3,x)+mp_take_fraction(mp, y3,y);
11184 y3=mp_take_fraction(mp, y3,x)-mp_take_fraction(mp, t,y)
11186 @ @<Exit to |found| if an eastward direction occurs at knot |p|@>=
11187 theta=mp_n_arg(mp, x1,y1);
11188 if ( theta>=0 ) if ( phi<=0 ) if ( phi>=theta-one_eighty_deg ) goto FOUND;
11189 if ( theta<=0 ) if ( phi>=0 ) if ( phi<=theta+one_eighty_deg ) goto FOUND
11191 @ In this step we want to use the |crossing_point| routine to find the
11192 roots of the quadratic equation $B(y_1,y_2,y_3;t)=0$.
11193 Several complications arise: If the quadratic equation has a double root,
11194 the curve never crosses zero, and |crossing_point| will find nothing;
11195 this case occurs iff $y_1y_3=y_2^2$ and $y_1y_2<0$. If the quadratic
11196 equation has simple roots, or only one root, we may have to negate it
11197 so that $B(y_1,y_2,y_3;t)$ crosses from positive to negative at its first root.
11198 And finally, we need to do special things if $B(y_1,y_2,y_3;t)$ is
11201 @ @<Exit to |found| if the curve whose derivatives are specified by...@>=
11202 if ( x1<0 ) if ( x2<0 ) if ( x3<0 ) goto DONE;
11203 if ( mp_ab_vs_cd(mp, y1,y3,y2,y2)==0 ) {
11204 @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11205 either |goto found| or |goto done|@>;
11208 if ( y1<0 ) { y1=-y1; y2=-y2; y3=-y3; }
11209 else if ( y2>0 ){ y2=-y2; y3=-y3; };
11211 @<Check the places where $B(y_1,y_2,y_3;t)=0$ to see if
11212 $B(x_1,x_2,x_3;t)\ge0$@>;
11215 @ The quadratic polynomial $B(y_1,y_2,y_3;t)$ begins |>=0| and has at most
11216 two roots, because we know that it isn't identically zero.
11218 It must be admitted that the |crossing_point| routine is not perfectly accurate;
11219 rounding errors might cause it to find a root when $y_1y_3>y_2^2$, or to
11220 miss the roots when $y_1y_3<y_2^2$. The rotation process is itself
11221 subject to rounding errors. Yet this code optimistically tries to
11222 do the right thing.
11224 @d we_found_it { tt=(t+04000) / 010000; goto FOUND; }
11226 @<Check the places where $B(y_1,y_2,y_3;t)=0$...@>=
11227 t=mp_crossing_point(mp, y1,y2,y3);
11228 if ( t>fraction_one ) goto DONE;
11229 y2=t_of_the_way(y2,y3);
11230 x1=t_of_the_way(x1,x2);
11231 x2=t_of_the_way(x2,x3);
11232 x1=t_of_the_way(x1,x2);
11233 if ( x1>=0 ) we_found_it;
11235 tt=t; t=mp_crossing_point(mp, 0,-y2,-y3);
11236 if ( t>fraction_one ) goto DONE;
11237 x1=t_of_the_way(x1,x2);
11238 x2=t_of_the_way(x2,x3);
11239 if ( t_of_the_way(x1,x2)>=0 ) {
11240 t=t_of_the_way(tt,fraction_one); we_found_it;
11243 @ @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11244 either |goto found| or |goto done|@>=
11246 if ( mp_ab_vs_cd(mp, y1,y2,0,0)<0 ) {
11247 t=mp_make_fraction(mp, y1,y1-y2);
11248 x1=t_of_the_way(x1,x2);
11249 x2=t_of_the_way(x2,x3);
11250 if ( t_of_the_way(x1,x2)>=0 ) we_found_it;
11251 } else if ( y3==0 ) {
11253 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|@>;
11254 } else if ( x3>=0 ) {
11255 tt=unity; goto FOUND;
11261 @ At this point we know that the derivative of |y(t)| is identically zero,
11262 and that |x1<0|; but either |x2>=0| or |x3>=0|, so there's some hope of
11265 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|...@>=
11267 t=mp_crossing_point(mp, -x1,-x2,-x3);
11268 if ( t<=fraction_one ) we_found_it;
11269 if ( mp_ab_vs_cd(mp, x1,x3,x2,x2)<=0 ) {
11270 t=mp_make_fraction(mp, x1,x1-x2); we_found_it;
11274 @ The intersection of two cubics can be found by an interesting variant
11275 of the general bisection scheme described in the introduction to
11277 Given $w(t)=B(w_0,w_1,w_2,w_3;t)$ and $z(t)=B(z_0,z_1,z_2,z_3;t)$,
11278 we wish to find a pair of times $(t_1,t_2)$ such that $w(t_1)=z(t_2)$,
11279 if an intersection exists. First we find the smallest rectangle that
11280 encloses the points $\{w_0,w_1,w_2,w_3\}$ and check that it overlaps
11281 the smallest rectangle that encloses
11282 $\{z_0,z_1,z_2,z_3\}$; if not, the cubics certainly don't intersect.
11283 But if the rectangles do overlap, we bisect the intervals, getting
11284 new cubics $w'$ and~$w''$, $z'$~and~$z''$; the intersection routine first
11285 tries for an intersection between $w'$ and~$z'$, then (if unsuccessful)
11286 between $w'$ and~$z''$, then (if still unsuccessful) between $w''$ and~$z'$,
11287 finally (if thrice unsuccessful) between $w''$ and~$z''$. After $l$~successful
11288 levels of bisection we will have determined the intersection times $t_1$
11289 and~$t_2$ to $l$~bits of accuracy.
11291 \def\submin{_{\rm min}} \def\submax{_{\rm max}}
11292 As before, it is better to work with the numbers $W_k=2^l(w_k-w_{k-1})$
11293 and $Z_k=2^l(z_k-z_{k-1})$ rather than the coefficients $w_k$ and $z_k$
11294 themselves. We also need one other quantity, $\Delta=2^l(w_0-z_0)$,
11295 to determine when the enclosing rectangles overlap. Here's why:
11296 The $x$~coordinates of~$w(t)$ are between $u\submin$ and $u\submax$,
11297 and the $x$~coordinates of~$z(t)$ are between $x\submin$ and $x\submax$,
11298 if we write $w_k=(u_k,v_k)$ and $z_k=(x_k,y_k)$ and $u\submin=
11299 \min(u_0,u_1,u_2,u_3)$, etc. These intervals of $x$~coordinates
11300 overlap if and only if $u\submin\L x\submax$ and
11301 $x\submin\L u\submax$. Letting
11302 $$U\submin=\min(0,U_1,U_1+U_2,U_1+U_2+U_3),\;
11303 U\submax=\max(0,U_1,U_1+U_2,U_1+U_2+U_3),$$
11304 we have $u\submin=2^lu_0+U\submin$, etc.; the condition for overlap
11306 $$X\submin-U\submax\L 2^l(u_0-x_0)\L X\submax-U\submin.$$
11307 Thus we want to maintain the quantity $2^l(u_0-x_0)$; similarly,
11308 the quantity $2^l(v_0-y_0)$ accounts for the $y$~coordinates. The
11309 coordinates of $\Delta=2^l(w_0-z_0)$ must stay bounded as $l$ increases,
11310 because of the overlap condition; i.e., we know that $X\submin$,
11311 $X\submax$, and their relatives are bounded, hence $X\submax-
11312 U\submin$ and $X\submin-U\submax$ are bounded.
11314 @ Incidentally, if the given cubics intersect more than once, the process
11315 just sketched will not necessarily find the lexicographically smallest pair
11316 $(t_1,t_2)$. The solution actually obtained will be smallest in ``shuffled
11317 order''; i.e., if $t_1=(.a_1a_2\ldots a_{16})_2$ and
11318 $t_2=(.b_1b_2\ldots b_{16})_2$, then we will minimize
11319 $a_1b_1a_2b_2\ldots a_{16}b_{16}$, not
11320 $a_1a_2\ldots a_{16}b_1b_2\ldots b_{16}$.
11321 Shuffled order agrees with lexicographic order if all pairs of solutions
11322 $(t_1,t_2)$ and $(t_1',t_2')$ have the property that $t_1<t_1'$ iff
11323 $t_2<t_2'$; but in general, lexicographic order can be quite different,
11324 and the bisection algorithm would be substantially less efficient if it were
11325 constrained by lexicographic order.
11327 For example, suppose that an overlap has been found for $l=3$ and
11328 $(t_1,t_2)= (.101,.011)$ in binary, but that no overlap is produced by
11329 either of the alternatives $(.1010,.0110)$, $(.1010,.0111)$ at level~4.
11330 Then there is probably an intersection in one of the subintervals
11331 $(.1011,.011x)$; but lexicographic order would require us to explore
11332 $(.1010,.1xxx)$ and $(.1011,.00xx)$ and $(.1011,.010x)$ first. We wouldn't
11333 want to store all of the subdivision data for the second path, so the
11334 subdivisions would have to be regenerated many times. Such inefficiencies
11335 would be associated with every `1' in the binary representation of~$t_1$.
11337 @ The subdivision process introduces rounding errors, hence we need to
11338 make a more liberal test for overlap. It is not hard to show that the
11339 computed values of $U_i$ differ from the truth by at most~$l$, on
11340 level~$l$, hence $U\submin$ and $U\submax$ will be at most $3l$ in error.
11341 If $\beta$ is an upper bound on the absolute error in the computed
11342 components of $\Delta=(|delx|,|dely|)$ on level~$l$, we will replace
11343 the test `$X\submin-U\submax\L|delx|$' by the more liberal test
11344 `$X\submin-U\submax\L|delx|+|tol|$', where $|tol|=6l+\beta$.
11346 More accuracy is obtained if we try the algorithm first with |tol=0|;
11347 the more liberal tolerance is used only if an exact approach fails.
11348 It is convenient to do this double-take by letting `3' in the preceding
11349 paragraph be a parameter, which is first 0, then 3.
11352 unsigned int tol_step; /* either 0 or 3, usually */
11354 @ We shall use an explicit stack to implement the recursive bisection
11355 method described above. The |bisect_stack| array will contain numerous 5-word
11356 packets like $(U_1,U_2,U_3,U\submin,U\submax)$, as well as 20-word packets
11357 comprising the 5-word packets for $U$, $V$, $X$, and~$Y$.
11359 The following macros define the allocation of stack positions to
11360 the quantities needed for bisection-intersection.
11362 @d stack_1(A) mp->bisect_stack[(A)] /* $U_1$, $V_1$, $X_1$, or $Y_1$ */
11363 @d stack_2(A) mp->bisect_stack[(A)+1] /* $U_2$, $V_2$, $X_2$, or $Y_2$ */
11364 @d stack_3(A) mp->bisect_stack[(A)+2] /* $U_3$, $V_3$, $X_3$, or $Y_3$ */
11365 @d stack_min(A) mp->bisect_stack[(A)+3]
11366 /* $U\submin$, $V\submin$, $X\submin$, or $Y\submin$ */
11367 @d stack_max(A) mp->bisect_stack[(A)+4]
11368 /* $U\submax$, $V\submax$, $X\submax$, or $Y\submax$ */
11369 @d int_packets 20 /* number of words to represent $U_k$, $V_k$, $X_k$, and $Y_k$ */
11371 @d u_packet(A) ((A)-5)
11372 @d v_packet(A) ((A)-10)
11373 @d x_packet(A) ((A)-15)
11374 @d y_packet(A) ((A)-20)
11375 @d l_packets (mp->bisect_ptr-int_packets)
11376 @d r_packets mp->bisect_ptr
11377 @d ul_packet u_packet(l_packets) /* base of $U'_k$ variables */
11378 @d vl_packet v_packet(l_packets) /* base of $V'_k$ variables */
11379 @d xl_packet x_packet(l_packets) /* base of $X'_k$ variables */
11380 @d yl_packet y_packet(l_packets) /* base of $Y'_k$ variables */
11381 @d ur_packet u_packet(r_packets) /* base of $U''_k$ variables */
11382 @d vr_packet v_packet(r_packets) /* base of $V''_k$ variables */
11383 @d xr_packet x_packet(r_packets) /* base of $X''_k$ variables */
11384 @d yr_packet y_packet(r_packets) /* base of $Y''_k$ variables */
11386 @d u1l stack_1(ul_packet) /* $U'_1$ */
11387 @d u2l stack_2(ul_packet) /* $U'_2$ */
11388 @d u3l stack_3(ul_packet) /* $U'_3$ */
11389 @d v1l stack_1(vl_packet) /* $V'_1$ */
11390 @d v2l stack_2(vl_packet) /* $V'_2$ */
11391 @d v3l stack_3(vl_packet) /* $V'_3$ */
11392 @d x1l stack_1(xl_packet) /* $X'_1$ */
11393 @d x2l stack_2(xl_packet) /* $X'_2$ */
11394 @d x3l stack_3(xl_packet) /* $X'_3$ */
11395 @d y1l stack_1(yl_packet) /* $Y'_1$ */
11396 @d y2l stack_2(yl_packet) /* $Y'_2$ */
11397 @d y3l stack_3(yl_packet) /* $Y'_3$ */
11398 @d u1r stack_1(ur_packet) /* $U''_1$ */
11399 @d u2r stack_2(ur_packet) /* $U''_2$ */
11400 @d u3r stack_3(ur_packet) /* $U''_3$ */
11401 @d v1r stack_1(vr_packet) /* $V''_1$ */
11402 @d v2r stack_2(vr_packet) /* $V''_2$ */
11403 @d v3r stack_3(vr_packet) /* $V''_3$ */
11404 @d x1r stack_1(xr_packet) /* $X''_1$ */
11405 @d x2r stack_2(xr_packet) /* $X''_2$ */
11406 @d x3r stack_3(xr_packet) /* $X''_3$ */
11407 @d y1r stack_1(yr_packet) /* $Y''_1$ */
11408 @d y2r stack_2(yr_packet) /* $Y''_2$ */
11409 @d y3r stack_3(yr_packet) /* $Y''_3$ */
11411 @d stack_dx mp->bisect_stack[mp->bisect_ptr] /* stacked value of |delx| */
11412 @d stack_dy mp->bisect_stack[mp->bisect_ptr+1] /* stacked value of |dely| */
11413 @d stack_tol mp->bisect_stack[mp->bisect_ptr+2] /* stacked value of |tol| */
11414 @d stack_uv mp->bisect_stack[mp->bisect_ptr+3] /* stacked value of |uv| */
11415 @d stack_xy mp->bisect_stack[mp->bisect_ptr+4] /* stacked value of |xy| */
11416 @d int_increment (int_packets+int_packets+5) /* number of stack words per level */
11419 integer *bisect_stack;
11420 unsigned int bisect_ptr;
11422 @ @<Allocate or initialize ...@>=
11423 mp->bisect_stack = xmalloc((bistack_size+1),sizeof(integer));
11425 @ @<Dealloc variables@>=
11426 xfree(mp->bisect_stack);
11428 @ @<Check the ``constant''...@>=
11429 if ( int_packets+17*int_increment>bistack_size ) mp->bad=19;
11431 @ Computation of the min and max is a tedious but fairly fast sequence of
11432 instructions; exactly four comparisons are made in each branch.
11435 if ( stack_1((A))<0 ) {
11436 if ( stack_3((A))>=0 ) {
11437 if ( stack_2((A))<0 ) stack_min((A))=stack_1((A))+stack_2((A));
11438 else stack_min((A))=stack_1((A));
11439 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11440 if ( stack_max((A))<0 ) stack_max((A))=0;
11442 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11443 if ( stack_min((A))>stack_1((A)) ) stack_min((A))=stack_1((A));
11444 stack_max((A))=stack_1((A))+stack_2((A));
11445 if ( stack_max((A))<0 ) stack_max((A))=0;
11447 } else if ( stack_3((A))<=0 ) {
11448 if ( stack_2((A))>0 ) stack_max((A))=stack_1((A))+stack_2((A));
11449 else stack_max((A))=stack_1((A));
11450 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11451 if ( stack_min((A))>0 ) stack_min((A))=0;
11453 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11454 if ( stack_max((A))<stack_1((A)) ) stack_max((A))=stack_1((A));
11455 stack_min((A))=stack_1((A))+stack_2((A));
11456 if ( stack_min((A))>0 ) stack_min((A))=0;
11459 @ It's convenient to keep the current values of $l$, $t_1$, and $t_2$ in
11460 the integer form $2^l+2^lt_1$ and $2^l+2^lt_2$. The |cubic_intersection|
11461 routine uses global variables |cur_t| and |cur_tt| for this purpose;
11462 after successful completion, |cur_t| and |cur_tt| will contain |unity|
11463 plus the |scaled| values of $t_1$ and~$t_2$.
11465 The values of |cur_t| and |cur_tt| will be set to zero if |cubic_intersection|
11466 finds no intersection. The routine gives up and gives an approximate answer
11467 if it has backtracked
11468 more than 5000 times (otherwise there are cases where several minutes
11469 of fruitless computation would be possible).
11471 @d max_patience 5000
11474 integer cur_t;integer cur_tt; /* controls and results of |cubic_intersection| */
11475 integer time_to_go; /* this many backtracks before giving up */
11476 integer max_t; /* maximum of $2^{l+1}$ so far achieved */
11478 @ The given cubics $B(w_0,w_1,w_2,w_3;t)$ and
11479 $B(z_0,z_1,z_2,z_3;t)$ are specified in adjacent knot nodes |(p,link(p))|
11480 and |(pp,link(pp))|, respectively.
11482 @c void mp_cubic_intersection (MP mp,pointer p, pointer pp) {
11483 pointer q,qq; /* |link(p)|, |link(pp)| */
11484 mp->time_to_go=max_patience; mp->max_t=2;
11485 @<Initialize for intersections at level zero@>;
11488 if ( mp->delx-mp->tol<=stack_max(x_packet(mp->xy))-stack_min(u_packet(mp->uv)))
11489 if ( mp->delx+mp->tol>=stack_min(x_packet(mp->xy))-stack_max(u_packet(mp->uv)))
11490 if ( mp->dely-mp->tol<=stack_max(y_packet(mp->xy))-stack_min(v_packet(mp->uv)))
11491 if ( mp->dely+mp->tol>=stack_min(y_packet(mp->xy))-stack_max(v_packet(mp->uv)))
11493 if ( mp->cur_t>=mp->max_t ){
11494 if ( mp->max_t==two ) { /* we've done 17 bisections */
11495 mp->cur_t=halfp(mp->cur_t+1); mp->cur_tt=halfp(mp->cur_tt+1); return;
11497 mp->max_t+=mp->max_t; mp->appr_t=mp->cur_t; mp->appr_tt=mp->cur_tt;
11499 @<Subdivide for a new level of intersection@>;
11502 if ( mp->time_to_go>0 ) {
11503 decr(mp->time_to_go);
11505 while ( mp->appr_t<unity ) {
11506 mp->appr_t+=mp->appr_t; mp->appr_tt+=mp->appr_tt;
11508 mp->cur_t=mp->appr_t; mp->cur_tt=mp->appr_tt; return;
11510 @<Advance to the next pair |(cur_t,cur_tt)|@>;
11514 @ The following variables are global, although they are used only by
11515 |cubic_intersection|, because it is necessary on some machines to
11516 split |cubic_intersection| up into two procedures.
11519 integer delx;integer dely; /* the components of $\Delta=2^l(w_0-z_0)$ */
11520 integer tol; /* bound on the uncertainly in the overlap test */
11522 unsigned int xy; /* pointers to the current packets of interest */
11523 integer three_l; /* |tol_step| times the bisection level */
11524 integer appr_t;integer appr_tt; /* best approximations known to the answers */
11526 @ We shall assume that the coordinates are sufficiently non-extreme that
11527 integer overflow will not occur.
11529 @<Initialize for intersections at level zero@>=
11530 q=link(p); qq=link(pp); mp->bisect_ptr=int_packets;
11531 u1r=right_x(p)-x_coord(p); u2r=left_x(q)-right_x(p);
11532 u3r=x_coord(q)-left_x(q); set_min_max(ur_packet);
11533 v1r=right_y(p)-y_coord(p); v2r=left_y(q)-right_y(p);
11534 v3r=y_coord(q)-left_y(q); set_min_max(vr_packet);
11535 x1r=right_x(pp)-x_coord(pp); x2r=left_x(qq)-right_x(pp);
11536 x3r=x_coord(qq)-left_x(qq); set_min_max(xr_packet);
11537 y1r=right_y(pp)-y_coord(pp); y2r=left_y(qq)-right_y(pp);
11538 y3r=y_coord(qq)-left_y(qq); set_min_max(yr_packet);
11539 mp->delx=x_coord(p)-x_coord(pp); mp->dely=y_coord(p)-y_coord(pp);
11540 mp->tol=0; mp->uv=r_packets; mp->xy=r_packets;
11541 mp->three_l=0; mp->cur_t=1; mp->cur_tt=1
11543 @ @<Subdivide for a new level of intersection@>=
11544 stack_dx=mp->delx; stack_dy=mp->dely; stack_tol=mp->tol;
11545 stack_uv=mp->uv; stack_xy=mp->xy;
11546 mp->bisect_ptr=mp->bisect_ptr+int_increment;
11547 mp->cur_t+=mp->cur_t; mp->cur_tt+=mp->cur_tt;
11548 u1l=stack_1(u_packet(mp->uv)); u3r=stack_3(u_packet(mp->uv));
11549 u2l=half(u1l+stack_2(u_packet(mp->uv)));
11550 u2r=half(u3r+stack_2(u_packet(mp->uv)));
11551 u3l=half(u2l+u2r); u1r=u3l;
11552 set_min_max(ul_packet); set_min_max(ur_packet);
11553 v1l=stack_1(v_packet(mp->uv)); v3r=stack_3(v_packet(mp->uv));
11554 v2l=half(v1l+stack_2(v_packet(mp->uv)));
11555 v2r=half(v3r+stack_2(v_packet(mp->uv)));
11556 v3l=half(v2l+v2r); v1r=v3l;
11557 set_min_max(vl_packet); set_min_max(vr_packet);
11558 x1l=stack_1(x_packet(mp->xy)); x3r=stack_3(x_packet(mp->xy));
11559 x2l=half(x1l+stack_2(x_packet(mp->xy)));
11560 x2r=half(x3r+stack_2(x_packet(mp->xy)));
11561 x3l=half(x2l+x2r); x1r=x3l;
11562 set_min_max(xl_packet); set_min_max(xr_packet);
11563 y1l=stack_1(y_packet(mp->xy)); y3r=stack_3(y_packet(mp->xy));
11564 y2l=half(y1l+stack_2(y_packet(mp->xy)));
11565 y2r=half(y3r+stack_2(y_packet(mp->xy)));
11566 y3l=half(y2l+y2r); y1r=y3l;
11567 set_min_max(yl_packet); set_min_max(yr_packet);
11568 mp->uv=l_packets; mp->xy=l_packets;
11569 mp->delx+=mp->delx; mp->dely+=mp->dely;
11570 mp->tol=mp->tol-mp->three_l+mp->tol_step;
11571 mp->tol+=mp->tol; mp->three_l=mp->three_l+mp->tol_step
11573 @ @<Advance to the next pair |(cur_t,cur_tt)|@>=
11575 if ( odd(mp->cur_tt) ) {
11576 if ( odd(mp->cur_t) ) {
11577 @<Descend to the previous level and |goto not_found|@>;
11580 mp->delx=mp->delx+stack_1(u_packet(mp->uv))+stack_2(u_packet(mp->uv))
11581 +stack_3(u_packet(mp->uv));
11582 mp->dely=mp->dely+stack_1(v_packet(mp->uv))+stack_2(v_packet(mp->uv))
11583 +stack_3(v_packet(mp->uv));
11584 mp->uv=mp->uv+int_packets; /* switch from |l_packet| to |r_packet| */
11585 decr(mp->cur_tt); mp->xy=mp->xy-int_packets;
11586 /* switch from |r_packet| to |l_packet| */
11587 mp->delx=mp->delx+stack_1(x_packet(mp->xy))+stack_2(x_packet(mp->xy))
11588 +stack_3(x_packet(mp->xy));
11589 mp->dely=mp->dely+stack_1(y_packet(mp->xy))+stack_2(y_packet(mp->xy))
11590 +stack_3(y_packet(mp->xy));
11593 incr(mp->cur_tt); mp->tol=mp->tol+mp->three_l;
11594 mp->delx=mp->delx-stack_1(x_packet(mp->xy))-stack_2(x_packet(mp->xy))
11595 -stack_3(x_packet(mp->xy));
11596 mp->dely=mp->dely-stack_1(y_packet(mp->xy))-stack_2(y_packet(mp->xy))
11597 -stack_3(y_packet(mp->xy));
11598 mp->xy=mp->xy+int_packets; /* switch from |l_packet| to |r_packet| */
11601 @ @<Descend to the previous level...@>=
11603 mp->cur_t=halfp(mp->cur_t); mp->cur_tt=halfp(mp->cur_tt);
11604 if ( mp->cur_t==0 ) return;
11605 mp->bisect_ptr=mp->bisect_ptr-int_increment;
11606 mp->three_l=mp->three_l-mp->tol_step;
11607 mp->delx=stack_dx; mp->dely=stack_dy; mp->tol=stack_tol;
11608 mp->uv=stack_uv; mp->xy=stack_xy;
11612 @ The |path_intersection| procedure is much simpler.
11613 It invokes |cubic_intersection| in lexicographic order until finding a
11614 pair of cubics that intersect. The final intersection times are placed in
11615 |cur_t| and~|cur_tt|.
11617 @c void mp_path_intersection (MP mp,pointer h, pointer hh) {
11618 pointer p,pp; /* link registers that traverse the given paths */
11619 integer n,nn; /* integer parts of intersection times, minus |unity| */
11620 @<Change one-point paths into dead cycles@>;
11625 if ( right_type(p)!=endpoint ) {
11628 if ( right_type(pp)!=endpoint ) {
11629 mp_cubic_intersection(mp, p,pp);
11630 if ( mp->cur_t>0 ) {
11631 mp->cur_t=mp->cur_t+n; mp->cur_tt=mp->cur_tt+nn;
11635 nn=nn+unity; pp=link(pp);
11638 n=n+unity; p=link(p);
11640 mp->tol_step=mp->tol_step+3;
11641 } while (mp->tol_step<=3);
11642 mp->cur_t=-unity; mp->cur_tt=-unity;
11645 @ @<Change one-point paths...@>=
11646 if ( right_type(h)==endpoint ) {
11647 right_x(h)=x_coord(h); left_x(h)=x_coord(h);
11648 right_y(h)=y_coord(h); left_y(h)=y_coord(h); right_type(h)=explicit;
11650 if ( right_type(hh)==endpoint ) {
11651 right_x(hh)=x_coord(hh); left_x(hh)=x_coord(hh);
11652 right_y(hh)=y_coord(hh); left_y(hh)=y_coord(hh); right_type(hh)=explicit;
11655 @* \[24] Dynamic linear equations.
11656 \MP\ users define variables implicitly by stating equations that should be
11657 satisfied; the computer is supposed to be smart enough to solve those equations.
11658 And indeed, the computer tries valiantly to do so, by distinguishing five
11659 different types of numeric values:
11662 |type(p)=mp_known| is the nice case, when |value(p)| is the |scaled| value
11663 of the variable whose address is~|p|.
11666 |type(p)=mp_dependent| means that |value(p)| is not present, but |dep_list(p)|
11667 points to a {\sl dependency list\/} that expresses the value of variable~|p|
11668 as a |scaled| number plus a sum of independent variables with |fraction|
11672 |type(p)=mp_independent| means that |value(p)=64s+m|, where |s>0| is a ``serial
11673 number'' reflecting the time this variable was first used in an equation;
11674 also |0<=m<64|, and each dependent variable
11675 that refers to this one is actually referring to the future value of
11676 this variable times~$2^m$. (Usually |m=0|, but higher degrees of
11677 scaling are sometimes needed to keep the coefficients in dependency lists
11678 from getting too large. The value of~|m| will always be even.)
11681 |type(p)=mp_numeric_type| means that variable |p| hasn't appeared in an
11682 equation before, but it has been explicitly declared to be numeric.
11685 |type(p)=undefined| means that variable |p| hasn't appeared before.
11687 \smallskip\noindent
11688 We have actually discussed these five types in the reverse order of their
11689 history during a computation: Once |known|, a variable never again
11690 becomes |dependent|; once |dependent|, it almost never again becomes
11691 |mp_independent|; once |mp_independent|, it never again becomes |mp_numeric_type|;
11692 and once |mp_numeric_type|, it never again becomes |undefined| (except
11693 of course when the user specifically decides to scrap the old value
11694 and start again). A backward step may, however, take place: Sometimes
11695 a |dependent| variable becomes |mp_independent| again, when one of the
11696 independent variables it depends on is reverting to |undefined|.
11699 The next patch detects overflow of independent-variable serial
11700 numbers. Diagnosed and patched by Thorsten Dahlheimer.
11702 @d s_scale 64 /* the serial numbers are multiplied by this factor */
11703 @d max_indep_vars 0177777777 /* $2^{25}-1$ */
11704 @d max_serial_no 017777777700 /* |max_indep_vars*s_scale| */
11705 @d new_indep(A) /* create a new independent variable */
11706 { if ( mp->serial_no==max_serial_no )
11707 mp_fatal_error(mp, "variable instance identifiers exhausted");
11708 type((A))=mp_independent; mp->serial_no=mp->serial_no+s_scale;
11709 value((A))=mp->serial_no;
11713 integer serial_no; /* the most recent serial number, times |s_scale| */
11715 @ @<Make variable |q+s| newly independent@>=new_indep(q+s)
11717 @ But how are dependency lists represented? It's simple: The linear combination
11718 $\alpha_1v_1+\cdots+\alpha_kv_k+\beta$ appears in |k+1| value nodes. If
11719 |q=dep_list(p)| points to this list, and if |k>0|, then |value(q)=
11720 @t$\alpha_1$@>| (which is a |fraction|); |info(q)| points to the location
11721 of $\alpha_1$; and |link(p)| points to the dependency list
11722 $\alpha_2v_2+\cdots+\alpha_kv_k+\beta$. On the other hand if |k=0|,
11723 then |value(q)=@t$\beta$@>| (which is |scaled|) and |info(q)=null|.
11724 The independent variables $v_1$, \dots,~$v_k$ have been sorted so that
11725 they appear in decreasing order of their |value| fields (i.e., of
11726 their serial numbers). \ (It is convenient to use decreasing order,
11727 since |value(null)=0|. If the independent variables were not sorted by
11728 serial number but by some other criterion, such as their location in |mem|,
11729 the equation-solving mechanism would be too system-dependent, because
11730 the ordering can affect the computed results.)
11732 The |link| field in the node that contains the constant term $\beta$ is
11733 called the {\sl final link\/} of the dependency list. \MP\ maintains
11734 a doubly-linked master list of all dependency lists, in terms of a permanently
11736 in |mem| called |dep_head|. If there are no dependencies, we have
11737 |link(dep_head)=dep_head| and |prev_dep(dep_head)=dep_head|;
11738 otherwise |link(dep_head)| points to the first dependent variable, say~|p|,
11739 and |prev_dep(p)=dep_head|. We have |type(p)=mp_dependent|, and |dep_list(p)|
11740 points to its dependency list. If the final link of that dependency list
11741 occurs in location~|q|, then |link(q)| points to the next dependent
11742 variable (say~|r|); and we have |prev_dep(r)=q|, etc.
11744 @d dep_list(A) link(value_loc((A)))
11745 /* half of the |value| field in a |dependent| variable */
11746 @d prev_dep(A) info(value_loc((A)))
11747 /* the other half; makes a doubly linked list */
11748 @d dep_node_size 2 /* the number of words per dependency node */
11750 @<Initialize table entries...@>= mp->serial_no=0;
11751 link(dep_head)=dep_head; prev_dep(dep_head)=dep_head;
11752 info(dep_head)=null; dep_list(dep_head)=null;
11754 @ Actually the description above contains a little white lie. There's
11755 another kind of variable called |mp_proto_dependent|, which is
11756 just like a |dependent| one except that the $\alpha$ coefficients
11757 in its dependency list are |scaled| instead of being fractions.
11758 Proto-dependency lists are mixed with dependency lists in the
11759 nodes reachable from |dep_head|.
11761 @ Here is a procedure that prints a dependency list in symbolic form.
11762 The second parameter should be either |dependent| or |mp_proto_dependent|,
11763 to indicate the scaling of the coefficients.
11765 @<Declare subroutines for printing expressions@>=
11766 void mp_print_dependency (MP mp,pointer p, small_number t) {
11767 integer v; /* a coefficient */
11768 pointer pp,q; /* for list manipulation */
11771 v=abs(value(p)); q=info(p);
11772 if ( q==null ) { /* the constant term */
11773 if ( (v!=0)||(p==pp) ) {
11774 if ( value(p)>0 ) if ( p!=pp ) mp_print_char(mp, '+');
11775 mp_print_scaled(mp, value(p));
11779 @<Print the coefficient, unless it's $\pm1.0$@>;
11780 if ( type(q)!=mp_independent ) mp_confusion(mp, "dep");
11781 @:this can't happen dep}{\quad dep@>
11782 mp_print_variable_name(mp, q); v=value(q) % s_scale;
11783 while ( v>0 ) { mp_print(mp, "*4"); v=v-2; }
11788 @ @<Print the coefficient, unless it's $\pm1.0$@>=
11789 if ( value(p)<0 ) mp_print_char(mp, '-');
11790 else if ( p!=pp ) mp_print_char(mp, '+');
11791 if ( t==mp_dependent ) v=mp_round_fraction(mp, v);
11792 if ( v!=unity ) mp_print_scaled(mp, v)
11794 @ The maximum absolute value of a coefficient in a given dependency list
11795 is returned by the following simple function.
11797 @c fraction mp_max_coef (MP mp,pointer p) {
11798 fraction x; /* the maximum so far */
11800 while ( info(p)!=null ) {
11801 if ( abs(value(p))>x ) x=abs(value(p));
11807 @ One of the main operations needed on dependency lists is to add a multiple
11808 of one list to the other; we call this |p_plus_fq|, where |p| and~|q| point
11809 to dependency lists and |f| is a fraction.
11811 If the coefficient of any independent variable becomes |coef_bound| or
11812 more, in absolute value, this procedure changes the type of that variable
11813 to `|independent_needing_fix|', and sets the global variable |fix_needed|
11814 to~|true|. The value of $|coef_bound|=\mu$ is chosen so that
11815 $\mu^2+\mu<8$; this means that the numbers we deal with won't
11816 get too large. (Instead of the ``optimum'' $\mu=(\sqrt{33}-1)/2\approx
11817 2.3723$, the safer value 7/3 is taken as the threshold.)
11819 The changes mentioned in the preceding paragraph are actually done only if
11820 the global variable |watch_coefs| is |true|. But it usually is; in fact,
11821 it is |false| only when \MP\ is making a dependency list that will soon
11822 be equated to zero.
11824 Several procedures that act on dependency lists, including |p_plus_fq|,
11825 set the global variable |dep_final| to the final (constant term) node of
11826 the dependency list that they produce.
11828 @d coef_bound 04525252525 /* |fraction| approximation to 7/3 */
11829 @d independent_needing_fix 0
11832 boolean fix_needed; /* does at least one |independent| variable need scaling? */
11833 boolean watch_coefs; /* should we scale coefficients that exceed |coef_bound|? */
11834 pointer dep_final; /* location of the constant term and final link */
11837 mp->fix_needed=false; mp->watch_coefs=true;
11839 @ The |p_plus_fq| procedure has a fourth parameter, |t|, that should be
11840 set to |mp_proto_dependent| if |p| is a proto-dependency list. In this
11841 case |f| will be |scaled|, not a |fraction|. Similarly, the fifth parameter~|tt|
11842 should be |mp_proto_dependent| if |q| is a proto-dependency list.
11844 List |q| is unchanged by the operation; but list |p| is totally destroyed.
11846 The final link of the dependency list or proto-dependency list returned
11847 by |p_plus_fq| is the same as the original final link of~|p|. Indeed, the
11848 constant term of the result will be located in the same |mem| location
11849 as the original constant term of~|p|.
11851 Coefficients of the result are assumed to be zero if they are less than
11852 a certain threshold. This compensates for inevitable rounding errors,
11853 and tends to make more variables `|known|'. The threshold is approximately
11854 $10^{-5}$ in the case of normal dependency lists, $10^{-4}$ for
11855 proto-dependencies.
11857 @d fraction_threshold 2685 /* a |fraction| coefficient less than this is zeroed */
11858 @d half_fraction_threshold 1342 /* half of |fraction_threshold| */
11859 @d scaled_threshold 8 /* a |scaled| coefficient less than this is zeroed */
11860 @d half_scaled_threshold 4 /* half of |scaled_threshold| */
11862 @<Declare basic dependency-list subroutines@>=
11863 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
11864 pointer q, small_number t, small_number tt) ;
11867 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
11868 pointer q, small_number t, small_number tt) {
11869 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
11870 pointer r,s; /* for list manipulation */
11871 integer mp_threshold; /* defines a neighborhood of zero */
11872 integer v; /* temporary register */
11873 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
11874 else mp_threshold=scaled_threshold;
11875 r=temp_head; pp=info(p); qq=info(q);
11881 @<Contribute a term from |p|, plus |f| times the
11882 corresponding term from |q|@>
11884 } else if ( value(pp)<value(qq) ) {
11885 @<Contribute a term from |q|, multiplied by~|f|@>
11887 link(r)=p; r=p; p=link(p); pp=info(p);
11890 if ( t==mp_dependent )
11891 value(p)=mp_slow_add(mp, value(p),mp_take_fraction(mp, value(q),f));
11893 value(p)=mp_slow_add(mp, value(p),mp_take_scaled(mp, value(q),f));
11894 link(r)=p; mp->dep_final=p;
11895 return link(temp_head);
11898 @ @<Contribute a term from |p|, plus |f|...@>=
11900 if ( tt==mp_dependent ) v=value(p)+mp_take_fraction(mp, f,value(q));
11901 else v=value(p)+mp_take_scaled(mp, f,value(q));
11902 value(p)=v; s=p; p=link(p);
11903 if ( abs(v)<mp_threshold ) {
11904 mp_free_node(mp, s,dep_node_size);
11906 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
11907 type(qq)=independent_needing_fix; mp->fix_needed=true;
11911 pp=info(p); q=link(q); qq=info(q);
11914 @ @<Contribute a term from |q|, multiplied by~|f|@>=
11916 if ( tt==mp_dependent ) v=mp_take_fraction(mp, f,value(q));
11917 else v=mp_take_scaled(mp, f,value(q));
11918 if ( abs(v)>halfp(mp_threshold) ) {
11919 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=v;
11920 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
11921 type(qq)=independent_needing_fix; mp->fix_needed=true;
11925 q=link(q); qq=info(q);
11928 @ It is convenient to have another subroutine for the special case
11929 of |p_plus_fq| when |f=1.0|. In this routine lists |p| and |q| are
11930 both of the same type~|t| (either |dependent| or |mp_proto_dependent|).
11932 @c pointer mp_p_plus_q (MP mp,pointer p, pointer q, small_number t) {
11933 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
11934 pointer r,s; /* for list manipulation */
11935 integer mp_threshold; /* defines a neighborhood of zero */
11936 integer v; /* temporary register */
11937 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
11938 else mp_threshold=scaled_threshold;
11939 r=temp_head; pp=info(p); qq=info(q);
11945 @<Contribute a term from |p|, plus the
11946 corresponding term from |q|@>
11948 } else if ( value(pp)<value(qq) ) {
11949 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=value(q);
11950 q=link(q); qq=info(q); link(r)=s; r=s;
11952 link(r)=p; r=p; p=link(p); pp=info(p);
11955 value(p)=mp_slow_add(mp, value(p),value(q));
11956 link(r)=p; mp->dep_final=p;
11957 return link(temp_head);
11960 @ @<Contribute a term from |p|, plus the...@>=
11962 v=value(p)+value(q);
11963 value(p)=v; s=p; p=link(p); pp=info(p);
11964 if ( abs(v)<mp_threshold ) {
11965 mp_free_node(mp, s,dep_node_size);
11967 if ( (abs(v)>=coef_bound ) && mp->watch_coefs ) {
11968 type(qq)=independent_needing_fix; mp->fix_needed=true;
11972 q=link(q); qq=info(q);
11975 @ A somewhat simpler routine will multiply a dependency list
11976 by a given constant~|v|. The constant is either a |fraction| less than
11977 |fraction_one|, or it is |scaled|. In the latter case we might be forced to
11978 convert a dependency list to a proto-dependency list.
11979 Parameters |t0| and |t1| are the list types before and after;
11980 they should agree unless |t0=mp_dependent| and |t1=mp_proto_dependent|
11981 and |v_is_scaled=true|.
11983 @c pointer mp_p_times_v (MP mp,pointer p, integer v, small_number t0,
11984 small_number t1, boolean v_is_scaled) {
11985 pointer r,s; /* for list manipulation */
11986 integer w; /* tentative coefficient */
11987 integer mp_threshold;
11988 boolean scaling_down;
11989 if ( t0!=t1 ) scaling_down=true; else scaling_down=! v_is_scaled;
11990 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
11991 else mp_threshold=half_scaled_threshold;
11993 while ( info(p)!=null ) {
11994 if ( scaling_down ) w=mp_take_fraction(mp, v,value(p));
11995 else w=mp_take_scaled(mp, v,value(p));
11996 if ( abs(w)<=mp_threshold ) {
11997 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
11999 if ( abs(w)>=coef_bound ) {
12000 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12002 link(r)=p; r=p; value(p)=w; p=link(p);
12006 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
12007 else value(p)=mp_take_fraction(mp, value(p),v);
12008 return link(temp_head);
12011 @ Similarly, we sometimes need to divide a dependency list
12012 by a given |scaled| constant.
12014 @<Declare basic dependency-list subroutines@>=
12015 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12016 t0, small_number t1) ;
12019 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12020 t0, small_number t1) {
12021 pointer r,s; /* for list manipulation */
12022 integer w; /* tentative coefficient */
12023 integer mp_threshold;
12024 boolean scaling_down;
12025 if ( t0!=t1 ) scaling_down=true; else scaling_down=false;
12026 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
12027 else mp_threshold=half_scaled_threshold;
12029 while ( info( p)!=null ) {
12030 if ( scaling_down ) {
12031 if ( abs(v)<02000000 ) w=mp_make_scaled(mp, value(p),v*010000);
12032 else w=mp_make_scaled(mp, mp_round_fraction(mp, value(p)),v);
12034 w=mp_make_scaled(mp, value(p),v);
12036 if ( abs(w)<=mp_threshold ) {
12037 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12039 if ( abs(w)>=coef_bound ) {
12040 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12042 link(r)=p; r=p; value(p)=w; p=link(p);
12045 link(r)=p; value(p)=mp_make_scaled(mp, value(p),v);
12046 return link(temp_head);
12049 @ Here's another utility routine for dependency lists. When an independent
12050 variable becomes dependent, we want to remove it from all existing
12051 dependencies. The |p_with_x_becoming_q| function computes the
12052 dependency list of~|p| after variable~|x| has been replaced by~|q|.
12054 This procedure has basically the same calling conventions as |p_plus_fq|:
12055 List~|q| is unchanged; list~|p| is destroyed; the constant node and the
12056 final link are inherited from~|p|; and the fourth parameter tells whether
12057 or not |p| is |mp_proto_dependent|. However, the global variable |dep_final|
12058 is not altered if |x| does not occur in list~|p|.
12060 @c pointer mp_p_with_x_becoming_q (MP mp,pointer p,
12061 pointer x, pointer q, small_number t) {
12062 pointer r,s; /* for list manipulation */
12063 integer v; /* coefficient of |x| */
12064 integer sx; /* serial number of |x| */
12065 s=p; r=temp_head; sx=value(x);
12066 while ( value(info(s))>sx ) { r=s; s=link(s); };
12067 if ( info(s)!=x ) {
12070 link(temp_head)=p; link(r)=link(s); v=value(s);
12071 mp_free_node(mp, s,dep_node_size);
12072 return mp_p_plus_fq(mp, link(temp_head),v,q,t,mp_dependent);
12076 @ Here's a simple procedure that reports an error when a variable
12077 has just received a known value that's out of the required range.
12079 @<Declare basic dependency-list subroutines@>=
12080 void mp_val_too_big (MP mp,scaled x) ;
12082 @ @c void mp_val_too_big (MP mp,scaled x) {
12083 if ( mp->internal[warning_check]>0 ) {
12084 print_err("Value is too large ("); mp_print_scaled(mp, x); mp_print_char(mp, ')');
12085 @.Value is too large@>
12086 help4("The equation I just processed has given some variable")
12087 ("a value of 4096 or more. Continue and I'll try to cope")
12088 ("with that big value; but it might be dangerous.")
12089 ("(Set warningcheck:=0 to suppress this message.)");
12094 @ When a dependent variable becomes known, the following routine
12095 removes its dependency list. Here |p| points to the variable, and
12096 |q| points to the dependency list (which is one node long).
12098 @<Declare basic dependency-list subroutines@>=
12099 void mp_make_known (MP mp,pointer p, pointer q) ;
12101 @ @c void mp_make_known (MP mp,pointer p, pointer q) {
12102 int t; /* the previous type */
12103 prev_dep(link(q))=prev_dep(p);
12104 link(prev_dep(p))=link(q); t=type(p);
12105 type(p)=mp_known; value(p)=value(q); mp_free_node(mp, q,dep_node_size);
12106 if ( abs(value(p))>=fraction_one ) mp_val_too_big(mp, value(p));
12107 if (( mp->internal[tracing_equations]>0) && mp_interesting(mp, p) ) {
12108 mp_begin_diagnostic(mp); mp_print_nl(mp, "#### ");
12109 @:]]]\#\#\#\#_}{\.{\#\#\#\#}@>
12110 mp_print_variable_name(mp, p);
12111 mp_print_char(mp, '='); mp_print_scaled(mp, value(p));
12112 mp_end_diagnostic(mp, false);
12114 if (( mp->cur_exp==p ) && mp->cur_type==t ) {
12115 mp->cur_type=mp_known; mp->cur_exp=value(p);
12116 mp_free_node(mp, p,value_node_size);
12120 @ The |fix_dependencies| routine is called into action when |fix_needed|
12121 has been triggered. The program keeps a list~|s| of independent variables
12122 whose coefficients must be divided by~4.
12124 In unusual cases, this fixup process might reduce one or more coefficients
12125 to zero, so that a variable will become known more or less by default.
12127 @<Declare basic dependency-list subroutines@>=
12128 void mp_fix_dependencies (MP mp);
12130 @ @c void mp_fix_dependencies (MP mp) {
12131 pointer p,q,r,s,t; /* list manipulation registers */
12132 pointer x; /* an independent variable */
12133 r=link(dep_head); s=null;
12134 while ( r!=dep_head ){
12136 @<Run through the dependency list for variable |t|, fixing
12137 all nodes, and ending with final link~|q|@>;
12139 if ( q==dep_list(t) ) mp_make_known(mp, t,q);
12141 while ( s!=null ) {
12142 p=link(s); x=info(s); free_avail(s); s=p;
12143 type(x)=mp_independent; value(x)=value(x)+2;
12145 mp->fix_needed=false;
12148 @ @d independent_being_fixed 1 /* this variable already appears in |s| */
12150 @<Run through the dependency list for variable |t|...@>=
12151 r=value_loc(t); /* |link(r)=dep_list(t)| */
12153 q=link(r); x=info(q);
12154 if ( x==null ) break;
12155 if ( type(x)<=independent_being_fixed ) {
12156 if ( type(x)<independent_being_fixed ) {
12157 p=mp_get_avail(mp); link(p)=s; s=p;
12158 info(s)=x; type(x)=independent_being_fixed;
12160 value(q)=value(q) / 4;
12161 if ( value(q)==0 ) {
12162 link(r)=link(q); mp_free_node(mp, q,dep_node_size); q=r;
12169 @ The |new_dep| routine installs a dependency list~|p| into the value node~|q|,
12170 linking it into the list of all known dependencies. We assume that
12171 |dep_final| points to the final node of list~|p|.
12173 @c void mp_new_dep (MP mp,pointer q, pointer p) {
12174 pointer r; /* what used to be the first dependency */
12175 dep_list(q)=p; prev_dep(q)=dep_head;
12176 r=link(dep_head); link(mp->dep_final)=r; prev_dep(r)=mp->dep_final;
12180 @ Here is one of the ways a dependency list gets started.
12181 The |const_dependency| routine produces a list that has nothing but
12184 @c pointer mp_const_dependency (MP mp, scaled v) {
12185 mp->dep_final=mp_get_node(mp, dep_node_size);
12186 value(mp->dep_final)=v; info(mp->dep_final)=null;
12187 return mp->dep_final;
12190 @ And here's a more interesting way to start a dependency list from scratch:
12191 The parameter to |single_dependency| is the location of an
12192 independent variable~|x|, and the result is the simple dependency list
12195 In the unlikely event that the given independent variable has been doubled so
12196 often that we can't refer to it with a nonzero coefficient,
12197 |single_dependency| returns the simple list `0'. This case can be
12198 recognized by testing that the returned list pointer is equal to
12201 @c pointer mp_single_dependency (MP mp,pointer p) {
12202 pointer q; /* the new dependency list */
12203 integer m; /* the number of doublings */
12204 m=value(p) % s_scale;
12206 return mp_const_dependency(mp, 0);
12208 q=mp_get_node(mp, dep_node_size);
12209 value(q)=two_to_the(28-m); info(q)=p;
12210 link(q)=mp_const_dependency(mp, 0);
12215 @ We sometimes need to make an exact copy of a dependency list.
12217 @c pointer mp_copy_dep_list (MP mp,pointer p) {
12218 pointer q; /* the new dependency list */
12219 q=mp_get_node(mp, dep_node_size); mp->dep_final=q;
12221 info(mp->dep_final)=info(p); value(mp->dep_final)=value(p);
12222 if ( info(mp->dep_final)==null ) break;
12223 link(mp->dep_final)=mp_get_node(mp, dep_node_size);
12224 mp->dep_final=link(mp->dep_final); p=link(p);
12229 @ But how do variables normally become known? Ah, now we get to the heart of the
12230 equation-solving mechanism. The |linear_eq| procedure is given a |dependent|
12231 or |mp_proto_dependent| list,~|p|, in which at least one independent variable
12232 appears. It equates this list to zero, by choosing an independent variable
12233 with the largest coefficient and making it dependent on the others. The
12234 newly dependent variable is eliminated from all current dependencies,
12235 thereby possibly making other dependent variables known.
12237 The given list |p| is, of course, totally destroyed by all this processing.
12239 @c void mp_linear_eq (MP mp, pointer p, small_number t) {
12240 pointer q,r,s; /* for link manipulation */
12241 pointer x; /* the variable that loses its independence */
12242 integer n; /* the number of times |x| had been halved */
12243 integer v; /* the coefficient of |x| in list |p| */
12244 pointer prev_r; /* lags one step behind |r| */
12245 pointer final_node; /* the constant term of the new dependency list */
12246 integer w; /* a tentative coefficient */
12247 @<Find a node |q| in list |p| whose coefficient |v| is largest@>;
12248 x=info(q); n=value(x) % s_scale;
12249 @<Divide list |p| by |-v|, removing node |q|@>;
12250 if ( mp->internal[tracing_equations]>0 ) {
12251 @<Display the new dependency@>;
12253 @<Simplify all existing dependencies by substituting for |x|@>;
12254 @<Change variable |x| from |independent| to |dependent| or |known|@>;
12255 if ( mp->fix_needed ) mp_fix_dependencies(mp);
12258 @ @<Find a node |q| in list |p| whose coefficient |v| is largest@>=
12259 q=p; r=link(p); v=value(q);
12260 while ( info(r)!=null ) {
12261 if ( abs(value(r))>abs(v) ) { q=r; v=value(r); };
12265 @ Here we want to change the coefficients from |scaled| to |fraction|,
12266 except in the constant term. In the common case of a trivial equation
12267 like `\.{x=3.14}', we will have |v=-fraction_one|, |q=p|, and |t=mp_dependent|.
12269 @<Divide list |p| by |-v|, removing node |q|@>=
12270 s=temp_head; link(s)=p; r=p;
12273 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12275 w=mp_make_fraction(mp, value(r),v);
12276 if ( abs(w)<=half_fraction_threshold ) {
12277 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12283 } while (info(r)!=null);
12284 if ( t==mp_proto_dependent ) {
12285 value(r)=-mp_make_scaled(mp, value(r),v);
12286 } else if ( v!=-fraction_one ) {
12287 value(r)=-mp_make_fraction(mp, value(r),v);
12289 final_node=r; p=link(temp_head)
12291 @ @<Display the new dependency@>=
12292 if ( mp_interesting(mp, x) ) {
12293 mp_begin_diagnostic(mp); mp_print_nl(mp, "## ");
12294 mp_print_variable_name(mp, x);
12295 @:]]]\#\#_}{\.{\#\#}@>
12297 while ( w>0 ) { mp_print(mp, "*4"); w=w-2; };
12298 mp_print_char(mp, '='); mp_print_dependency(mp, p,mp_dependent);
12299 mp_end_diagnostic(mp, false);
12302 @ @<Simplify all existing dependencies by substituting for |x|@>=
12303 prev_r=dep_head; r=link(dep_head);
12304 while ( r!=dep_head ) {
12305 s=dep_list(r); q=mp_p_with_x_becoming_q(mp, s,x,p,type(r));
12306 if ( info(q)==null ) {
12307 mp_make_known(mp, r,q);
12310 do { q=link(q); } while (info(q)!=null);
12316 @ @<Change variable |x| from |independent| to |dependent| or |known|@>=
12317 if ( n>0 ) @<Divide list |p| by $2^n$@>;
12318 if ( info(p)==null ) {
12321 if ( abs(value(x))>=fraction_one ) mp_val_too_big(mp, value(x));
12322 mp_free_node(mp, p,dep_node_size);
12323 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) {
12324 mp->cur_exp=value(x); mp->cur_type=mp_known;
12325 mp_free_node(mp, x,value_node_size);
12328 type(x)=mp_dependent; mp->dep_final=final_node; mp_new_dep(mp, x,p);
12329 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) mp->cur_type=mp_dependent;
12332 @ @<Divide list |p| by $2^n$@>=
12334 s=temp_head; link(temp_head)=p; r=p;
12337 else w=value(r) / two_to_the(n);
12338 if ( (abs(w)<=half_fraction_threshold)&&(info(r)!=null) ) {
12340 mp_free_node(mp, r,dep_node_size);
12345 } while (info(s)!=null);
12349 @ The |check_mem| procedure, which is used only when \MP\ is being
12350 debugged, makes sure that the current dependency lists are well formed.
12352 @<Check the list of linear dependencies@>=
12353 q=dep_head; p=link(q);
12354 while ( p!=dep_head ) {
12355 if ( prev_dep(p)!=q ) {
12356 mp_print_nl(mp, "Bad PREVDEP at "); mp_print_int(mp, p);
12361 r=info(p); q=p; p=link(q);
12362 if ( r==null ) break;
12363 if ( value(info(p))>=value(r) ) {
12364 mp_print_nl(mp, "Out of order at "); mp_print_int(mp, p);
12365 @.Out of order...@>
12370 @* \[25] Dynamic nonlinear equations.
12371 Variables of numeric type are maintained by the general scheme of
12372 independent, dependent, and known values that we have just studied;
12373 and the components of pair and transform variables are handled in the
12374 same way. But \MP\ also has five other types of values: \&{boolean},
12375 \&{string}, \&{pen}, \&{path}, and \&{picture}; what about them?
12377 Equations are allowed between nonlinear quantities, but only in a
12378 simple form. Two variables that haven't yet been assigned values are
12379 either equal to each other, or they're not.
12381 Before a boolean variable has received a value, its type is |mp_unknown_boolean|;
12382 similarly, there are variables whose type is |mp_unknown_string|, |mp_unknown_pen|,
12383 |mp_unknown_path|, and |mp_unknown_picture|. In such cases the value is either
12384 |null| (which means that no other variables are equivalent to this one), or
12385 it points to another variable of the same undefined type. The pointers in the
12386 latter case form a cycle of nodes, which we shall call a ``ring.''
12387 Rings of undefined variables may include capsules, which arise as
12388 intermediate results within expressions or as \&{expr} parameters to macros.
12390 When one member of a ring receives a value, the same value is given to
12391 all the other members. In the case of paths and pictures, this implies
12392 making separate copies of a potentially large data structure; users should
12393 restrain their enthusiasm for such generality, unless they have lots and
12394 lots of memory space.
12396 @ The following procedure is called when a capsule node is being
12397 added to a ring (e.g., when an unknown variable is mentioned in an expression).
12399 @c pointer mp_new_ring_entry (MP mp,pointer p) {
12400 pointer q; /* the new capsule node */
12401 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
12403 if ( value(p)==null ) value(q)=p; else value(q)=value(p);
12408 @ Conversely, we might delete a capsule or a variable before it becomes known.
12409 The following procedure simply detaches a quantity from its ring,
12410 without recycling the storage.
12412 @<Declare the recycling subroutines@>=
12413 void mp_ring_delete (MP mp,pointer p) {
12416 if ( q!=null ) if ( q!=p ){
12417 while ( value(q)!=p ) q=value(q);
12422 @ Eventually there might be an equation that assigns values to all of the
12423 variables in a ring. The |nonlinear_eq| subroutine does the necessary
12424 propagation of values.
12426 If the parameter |flush_p| is |true|, node |p| itself needn't receive a
12427 value, it will soon be recycled.
12429 @c void mp_nonlinear_eq (MP mp,integer v, pointer p, boolean flush_p) {
12430 small_number t; /* the type of ring |p| */
12431 pointer q,r; /* link manipulation registers */
12432 t=type(p)-unknown_tag; q=value(p);
12433 if ( flush_p ) type(p)=mp_vacuous; else p=q;
12435 r=value(q); type(q)=t;
12437 case mp_boolean_type: value(q)=v; break;
12438 case mp_string_type: value(q)=v; add_str_ref(v); break;
12439 case mp_pen_type: value(q)=copy_pen(v); break;
12440 case mp_path_type: value(q)=mp_copy_path(mp, v); break;
12441 case mp_picture_type: value(q)=v; add_edge_ref(v); break;
12442 } /* there ain't no more cases */
12447 @ If two members of rings are equated, and if they have the same type,
12448 the |ring_merge| procedure is called on to make them equivalent.
12450 @c void mp_ring_merge (MP mp,pointer p, pointer q) {
12451 pointer r; /* traverses one list */
12455 @<Exclaim about a redundant equation@>;
12460 r=value(p); value(p)=value(q); value(q)=r;
12463 @ @<Exclaim about a redundant equation@>=
12465 print_err("Redundant equation");
12466 @.Redundant equation@>
12467 help2("I already knew that this equation was true.")
12468 ("But perhaps no harm has been done; let's continue.");
12469 mp_put_get_error(mp);
12472 @* \[26] Introduction to the syntactic routines.
12473 Let's pause a moment now and try to look at the Big Picture.
12474 The \MP\ program consists of three main parts: syntactic routines,
12475 semantic routines, and output routines. The chief purpose of the
12476 syntactic routines is to deliver the user's input to the semantic routines,
12477 while parsing expressions and locating operators and operands. The
12478 semantic routines act as an interpreter responding to these operators,
12479 which may be regarded as commands. And the output routines are
12480 periodically called on to produce compact font descriptions that can be
12481 used for typesetting or for making interim proof drawings. We have
12482 discussed the basic data structures and many of the details of semantic
12483 operations, so we are good and ready to plunge into the part of \MP\ that
12484 actually controls the activities.
12486 Our current goal is to come to grips with the |get_next| procedure,
12487 which is the keystone of \MP's input mechanism. Each call of |get_next|
12488 sets the value of three variables |cur_cmd|, |cur_mod|, and |cur_sym|,
12489 representing the next input token.
12490 $$\vbox{\halign{#\hfil\cr
12491 \hbox{|cur_cmd| denotes a command code from the long list of codes
12493 \hbox{|cur_mod| denotes a modifier of the command code;}\cr
12494 \hbox{|cur_sym| is the hash address of the symbolic token that was
12496 \hbox{\qquad or zero in the case of a numeric or string
12497 or capsule token.}\cr}}$$
12498 Underlying this external behavior of |get_next| is all the machinery
12499 necessary to convert from character files to tokens. At a given time we
12500 may be only partially finished with the reading of several files (for
12501 which \&{input} was specified), and partially finished with the expansion
12502 of some user-defined macros and/or some macro parameters, and partially
12503 finished reading some text that the user has inserted online,
12504 and so on. When reading a character file, the characters must be
12505 converted to tokens; comments and blank spaces must
12506 be removed, numeric and string tokens must be evaluated.
12508 To handle these situations, which might all be present simultaneously,
12509 \MP\ uses various stacks that hold information about the incomplete
12510 activities, and there is a finite state control for each level of the
12511 input mechanism. These stacks record the current state of an implicitly
12512 recursive process, but the |get_next| procedure is not recursive.
12515 eight_bits cur_cmd; /* current command set by |get_next| */
12516 integer cur_mod; /* operand of current command */
12517 halfword cur_sym; /* hash address of current symbol */
12519 @ The |print_cmd_mod| routine prints a symbolic interpretation of a
12520 command code and its modifier.
12521 It consists of a rather tedious sequence of print
12522 commands, and most of it is essentially an inverse to the |primitive|
12523 routine that enters a \MP\ primitive into |hash| and |eqtb|. Therefore almost
12524 all of this procedure appears elsewhere in the program, together with the
12525 corresponding |primitive| calls.
12527 @<Declare the procedure called |print_cmd_mod|@>=
12528 void mp_print_cmd_mod (MP mp,integer c, integer m) {
12530 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>
12531 default: mp_print(mp, "[unknown command code!]"); break;
12535 @ Here is a procedure that displays a given command in braces, in the
12536 user's transcript file.
12538 @d show_cur_cmd_mod mp_show_cmd_mod(mp, mp->cur_cmd,mp->cur_mod)
12541 void mp_show_cmd_mod (MP mp,integer c, integer m) {
12542 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
12543 mp_print_cmd_mod(mp, c,m); mp_print_char(mp, '}');
12544 mp_end_diagnostic(mp, false);
12547 @* \[27] Input stacks and states.
12548 The state of \MP's input mechanism appears in the input stack, whose
12549 entries are records with five fields, called |index|, |start|, |loc|,
12550 |limit|, and |name|. The top element of this stack is maintained in a
12551 global variable for which no subscripting needs to be done; the other
12552 elements of the stack appear in an array. Hence the stack is declared thus:
12556 quarterword index_field;
12557 halfword start_field, loc_field, limit_field, name_field;
12561 in_state_record *input_stack;
12562 integer input_ptr; /* first unused location of |input_stack| */
12563 integer max_in_stack; /* largest value of |input_ptr| when pushing */
12564 in_state_record cur_input; /* the ``top'' input state */
12565 int stack_size; /* maximum number of simultaneous input sources */
12567 @ @<Allocate or initialize ...@>=
12568 mp->stack_size = 300;
12569 mp->input_stack = xmalloc((mp->stack_size+1),sizeof(in_state_record));
12571 @ @<Dealloc variables@>=
12572 xfree(mp->input_stack);
12574 @ We've already defined the special variable |loc==cur_input.loc_field|
12575 in our discussion of basic input-output routines. The other components of
12576 |cur_input| are defined in the same way:
12578 @d index mp->cur_input.index_field /* reference for buffer information */
12579 @d start mp->cur_input.start_field /* starting position in |buffer| */
12580 @d limit mp->cur_input.limit_field /* end of current line in |buffer| */
12581 @d name mp->cur_input.name_field /* name of the current file */
12583 @ Let's look more closely now at the five control variables
12584 (|index|,~|start|,~|loc|,~|limit|,~|name|),
12585 assuming that \MP\ is reading a line of characters that have been input
12586 from some file or from the user's terminal. There is an array called
12587 |buffer| that acts as a stack of all lines of characters that are
12588 currently being read from files, including all lines on subsidiary
12589 levels of the input stack that are not yet completed. \MP\ will return to
12590 the other lines when it is finished with the present input file.
12592 (Incidentally, on a machine with byte-oriented addressing, it would be
12593 appropriate to combine |buffer| with the |str_pool| array,
12594 letting the buffer entries grow downward from the top of the string pool
12595 and checking that these two tables don't bump into each other.)
12597 The line we are currently working on begins in position |start| of the
12598 buffer; the next character we are about to read is |buffer[loc]|; and
12599 |limit| is the location of the last character present. We always have
12600 |loc<=limit|. For convenience, |buffer[limit]| has been set to |"%"|, so
12601 that the end of a line is easily sensed.
12603 The |name| variable is a string number that designates the name of
12604 the current file, if we are reading an ordinary text file. Special codes
12605 |is_term..max_spec_src| indicate other sources of input text.
12607 @d is_term 0 /* |name| value when reading from the terminal for normal input */
12608 @d is_read 1 /* |name| value when executing a \&{readstring} or \&{readfrom} */
12609 @d is_scantok 2 /* |name| value when reading text generated by \&{scantokens} */
12610 @d max_spec_src is_scantok
12612 @ Additional information about the current line is available via the
12613 |index| variable, which counts how many lines of characters are present
12614 in the buffer below the current level. We have |index=0| when reading
12615 from the terminal and prompting the user for each line; then if the user types,
12616 e.g., `\.{input figs}', we will have |index=1| while reading
12617 the file \.{figs.mp}. However, it does not follow that |index| is the
12618 same as the input stack pointer, since many of the levels on the input
12619 stack may come from token lists and some |index| values may correspond
12620 to \.{MPX} files that are not currently on the stack.
12622 The global variable |in_open| is equal to the highest |index| value counting
12623 \.{MPX} files but excluding token-list input levels. Thus, the number of
12624 partially read lines in the buffer is |in_open+1| and we have |in_open>=index|
12625 when we are not reading a token list.
12627 If we are not currently reading from the terminal,
12628 we are reading from the file variable |input_file[index]|. We use
12629 the notation |terminal_input| as a convenient abbreviation for |name=is_term|,
12630 and |cur_file| as an abbreviation for |input_file[index]|.
12632 When \MP\ is not reading from the terminal, the global variable |line| contains
12633 the line number in the current file, for use in error messages. More precisely,
12634 |line| is a macro for |line_stack[index]| and the |line_stack| array gives
12635 the line number for each file in the |input_file| array.
12637 When an \.{MPX} file is opened the file name is stored in the |mpx_name|
12638 array so that the name doesn't get lost when the file is temporarily removed
12639 from the input stack.
12640 Thus when |input_file[k]| is an \.{MPX} file, its name is |mpx_name[k]|
12641 and it contains translated \TeX\ pictures for |input_file[k-1]|.
12642 Since this is not an \.{MPX} file, we have
12643 $$ \hbox{|mpx_name[k-1]<=absent|}. $$
12644 This |name| field is set to |finished| when |input_file[k]| is completely
12647 If more information about the input state is needed, it can be
12648 included in small arrays like those shown here. For example,
12649 the current page or segment number in the input file might be put
12650 into a variable |page|, that is really a macro for the current entry
12651 in `\ignorespaces|page_stack:array[0..max_in_open] of integer|\unskip'
12652 by analogy with |line_stack|.
12653 @^system dependencies@>
12655 @d terminal_input (name==is_term) /* are we reading from the terminal? */
12656 @d cur_file mp->input_file[index] /* the current |FILE *| variable */
12657 @d line mp->line_stack[index] /* current line number in the current source file */
12658 @d in_name mp->iname_stack[index] /* a string used to construct \.{MPX} file names */
12659 @d in_area mp->iarea_stack[index] /* another string for naming \.{MPX} files */
12660 @d absent 1 /* |name_field| value for unused |mpx_in_stack| entries */
12661 @d mpx_reading (mp->mpx_name[index]>absent)
12662 /* when reading a file, is it an \.{MPX} file? */
12664 /* |name_field| value when the corresponding \.{MPX} file is finished */
12667 integer in_open; /* the number of lines in the buffer, less one */
12668 unsigned int open_parens; /* the number of open text files */
12669 FILE * *input_file ;
12670 integer *line_stack ; /* the line number for each file */
12671 char * *iname_stack; /* used for naming \.{MPX} files */
12672 char * *iarea_stack; /* used for naming \.{MPX} files */
12673 halfword*mpx_name ;
12675 @ @<Allocate or ...@>=
12676 mp->input_file = xmalloc((mp->max_in_open+1),sizeof(FILE *));
12677 mp->line_stack = xmalloc((mp->max_in_open+1),sizeof(integer));
12678 mp->iname_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12679 mp->iarea_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12680 mp->mpx_name = xmalloc((mp->max_in_open+1),sizeof(halfword));
12683 for (k=0;k<=mp->max_in_open;k++) {
12684 mp->iname_stack[k] =NULL;
12685 mp->iarea_stack[k] =NULL;
12689 @ @<Dealloc variables@>=
12692 for (l=0;l<=mp->max_in_open;l++) {
12693 xfree(mp->iname_stack[l]);
12694 xfree(mp->iarea_stack[l]);
12697 xfree(mp->input_file);
12698 xfree(mp->line_stack);
12699 xfree(mp->iname_stack);
12700 xfree(mp->iarea_stack);
12701 xfree(mp->mpx_name);
12704 @ However, all this discussion about input state really applies only to the
12705 case that we are inputting from a file. There is another important case,
12706 namely when we are currently getting input from a token list. In this case
12707 |index>max_in_open|, and the conventions about the other state variables
12710 \yskip\hang|loc| is a pointer to the current node in the token list, i.e.,
12711 the node that will be read next. If |loc=null|, the token list has been
12714 \yskip\hang|start| points to the first node of the token list; this node
12715 may or may not contain a reference count, depending on the type of token
12718 \yskip\hang|token_type|, which takes the place of |index| in the
12719 discussion above, is a code number that explains what kind of token list
12722 \yskip\hang|name| points to the |eqtb| address of the control sequence
12723 being expanded, if the current token list is a macro not defined by
12724 \&{vardef}. Macros defined by \&{vardef} have |name=null|; their name
12725 can be deduced by looking at their first two parameters.
12727 \yskip\hang|param_start|, which takes the place of |limit|, tells where
12728 the parameters of the current macro or loop text begin in the |param_stack|.
12730 \yskip\noindent The |token_type| can take several values, depending on
12731 where the current token list came from:
12734 \indent|forever_text|, if the token list being scanned is the body of
12735 a \&{forever} loop;
12737 \indent|loop_text|, if the token list being scanned is the body of
12738 a \&{for} or \&{forsuffixes} loop;
12740 \indent|parameter|, if a \&{text} or \&{suffix} parameter is being scanned;
12742 \indent|backed_up|, if the token list being scanned has been inserted as
12743 `to be read again'.
12745 \indent|inserted|, if the token list being scanned has been inserted as
12746 part of error recovery;
12748 \indent|macro|, if the expansion of a user-defined symbolic token is being
12752 The token list begins with a reference count if and only if |token_type=
12754 @^reference counts@>
12756 @d token_type index /* type of current token list */
12757 @d token_state (index>(int)mp->max_in_open) /* are we scanning a token list? */
12758 @d file_state (index<=(int)mp->max_in_open) /* are we scanning a file line? */
12759 @d param_start limit /* base of macro parameters in |param_stack| */
12760 @d forever_text (mp->max_in_open+1) /* |token_type| code for loop texts */
12761 @d loop_text (mp->max_in_open+2) /* |token_type| code for loop texts */
12762 @d parameter (mp->max_in_open+3) /* |token_type| code for parameter texts */
12763 @d backed_up (mp->max_in_open+4) /* |token_type| code for texts to be reread */
12764 @d inserted (mp->max_in_open+5) /* |token_type| code for inserted texts */
12765 @d macro (mp->max_in_open+6) /* |token_type| code for macro replacement texts */
12767 @ The |param_stack| is an auxiliary array used to hold pointers to the token
12768 lists for parameters at the current level and subsidiary levels of input.
12769 This stack grows at a different rate from the others.
12772 pointer *param_stack; /* token list pointers for parameters */
12773 integer param_ptr; /* first unused entry in |param_stack| */
12774 integer max_param_stack; /* largest value of |param_ptr| */
12776 @ @<Allocate or initialize ...@>=
12777 mp->param_stack = xmalloc((mp->param_size+1),sizeof(pointer));
12779 @ @<Dealloc variables@>=
12780 xfree(mp->param_stack);
12782 @ Notice that the |line| isn't valid when |token_state| is true because it
12783 depends on |index|. If we really need to know the line number for the
12784 topmost file in the index stack we use the following function. If a page
12785 number or other information is needed, this routine should be modified to
12786 compute it as well.
12787 @^system dependencies@>
12789 @<Declare a function called |true_line|@>=
12790 integer mp_true_line (MP mp) {
12791 int k; /* an index into the input stack */
12792 if ( file_state && (name>max_spec_src) ) {
12797 ((mp->input_stack[(k-1)].index_field>mp->max_in_open)||
12798 (mp->input_stack[(k-1)].name_field<=max_spec_src))) {
12801 return mp->line_stack[(k-1)];
12806 @ Thus, the ``current input state'' can be very complicated indeed; there
12807 can be many levels and each level can arise in a variety of ways. The
12808 |show_context| procedure, which is used by \MP's error-reporting routine to
12809 print out the current input state on all levels down to the most recent
12810 line of characters from an input file, illustrates most of these conventions.
12811 The global variable |file_ptr| contains the lowest level that was
12812 displayed by this procedure.
12815 integer file_ptr; /* shallowest level shown by |show_context| */
12817 @ The status at each level is indicated by printing two lines, where the first
12818 line indicates what was read so far and the second line shows what remains
12819 to be read. The context is cropped, if necessary, so that the first line
12820 contains at most |half_error_line| characters, and the second contains
12821 at most |error_line|. Non-current input levels whose |token_type| is
12822 `|backed_up|' are shown only if they have not been fully read.
12824 @c void mp_show_context (MP mp) { /* prints where the scanner is */
12825 int old_setting; /* saved |selector| setting */
12826 @<Local variables for formatting calculations@>
12827 mp->file_ptr=mp->input_ptr; mp->input_stack[mp->file_ptr]=mp->cur_input;
12828 /* store current state */
12830 mp->cur_input=mp->input_stack[mp->file_ptr]; /* enter into the context */
12831 @<Display the current context@>;
12833 if ( (name>max_spec_src) || (mp->file_ptr==0) ) break;
12834 decr(mp->file_ptr);
12836 mp->cur_input=mp->input_stack[mp->input_ptr]; /* restore original state */
12839 @ @<Display the current context@>=
12840 if ( (mp->file_ptr==mp->input_ptr) || file_state ||
12841 (token_type!=backed_up) || (loc!=null) ) {
12842 /* we omit backed-up token lists that have already been read */
12843 mp->tally=0; /* get ready to count characters */
12844 old_setting=mp->selector;
12845 if ( file_state ) {
12846 @<Print location of current line@>;
12847 @<Pseudoprint the line@>;
12849 @<Print type of token list@>;
12850 @<Pseudoprint the token list@>;
12852 mp->selector=old_setting; /* stop pseudoprinting */
12853 @<Print two lines using the tricky pseudoprinted information@>;
12856 @ This routine should be changed, if necessary, to give the best possible
12857 indication of where the current line resides in the input file.
12858 For example, on some systems it is best to print both a page and line number.
12859 @^system dependencies@>
12861 @<Print location of current line@>=
12862 if ( name>max_spec_src ) {
12863 mp_print_nl(mp, "l."); mp_print_int(mp, mp_true_line(mp));
12864 } else if ( terminal_input ) {
12865 if ( mp->file_ptr==0 ) mp_print_nl(mp, "<*>");
12866 else mp_print_nl(mp, "<insert>");
12867 } else if ( name==is_scantok ) {
12868 mp_print_nl(mp, "<scantokens>");
12870 mp_print_nl(mp, "<read>");
12872 mp_print_char(mp, ' ')
12874 @ Can't use case statement here because the |token_type| is not
12875 a constant expression.
12877 @<Print type of token list@>=
12879 if(token_type==forever_text) {
12880 mp_print_nl(mp, "<forever> ");
12881 } else if (token_type==loop_text) {
12882 @<Print the current loop value@>;
12883 } else if (token_type==parameter) {
12884 mp_print_nl(mp, "<argument> ");
12885 } else if (token_type==backed_up) {
12886 if ( loc==null ) mp_print_nl(mp, "<recently read> ");
12887 else mp_print_nl(mp, "<to be read again> ");
12888 } else if (token_type==inserted) {
12889 mp_print_nl(mp, "<inserted text> ");
12890 } else if (token_type==macro) {
12892 if ( name!=null ) mp_print_text(name);
12893 else @<Print the name of a \&{vardef}'d macro@>;
12894 mp_print(mp, "->");
12896 mp_print_nl(mp, "?");/* this should never happen */
12901 @ The parameter that corresponds to a loop text is either a token list
12902 (in the case of \&{forsuffixes}) or a ``capsule'' (in the case of \&{for}).
12903 We'll discuss capsules later; for now, all we need to know is that
12904 the |link| field in a capsule parameter is |void| and that
12905 |print_exp(p,0)| displays the value of capsule~|p| in abbreviated form.
12907 @d diov (null+1) /* a null pointer different from |null| */
12909 @<Print the current loop value@>=
12910 { mp_print_nl(mp, "<for("); p=mp->param_stack[param_start];
12912 if ( link(p)==diov ) mp_print_exp(mp, p,0); /* we're in a \&{for} loop */
12913 else mp_show_token_list(mp, p,null,20,mp->tally);
12915 mp_print(mp, ")> ");
12918 @ The first two parameters of a macro defined by \&{vardef} will be token
12919 lists representing the macro's prefix and ``at point.'' By putting these
12920 together, we get the macro's full name.
12922 @<Print the name of a \&{vardef}'d macro@>=
12923 { p=mp->param_stack[param_start];
12925 mp_show_token_list(mp, mp->param_stack[param_start+1],null,20,mp->tally);
12928 while ( link(q)!=null ) q=link(q);
12929 link(q)=mp->param_stack[param_start+1];
12930 mp_show_token_list(mp, p,null,20,mp->tally);
12935 @ Now it is necessary to explain a little trick. We don't want to store a long
12936 string that corresponds to a token list, because that string might take up
12937 lots of memory; and we are printing during a time when an error message is
12938 being given, so we dare not do anything that might overflow one of \MP's
12939 tables. So `pseudoprinting' is the answer: We enter a mode of printing
12940 that stores characters into a buffer of length |error_line|, where character
12941 $k+1$ is placed into \hbox{|trick_buf[k mod error_line]|} if
12942 |k<trick_count|, otherwise character |k| is dropped. Initially we set
12943 |tally:=0| and |trick_count:=1000000|; then when we reach the
12944 point where transition from line 1 to line 2 should occur, we
12945 set |first_count:=tally| and |trick_count:=@tmax@>(error_line,
12946 tally+1+error_line-half_error_line)|. At the end of the
12947 pseudoprinting, the values of |first_count|, |tally|, and
12948 |trick_count| give us all the information we need to print the two lines,
12949 and all of the necessary text is in |trick_buf|.
12951 Namely, let |l| be the length of the descriptive information that appears
12952 on the first line. The length of the context information gathered for that
12953 line is |k=first_count|, and the length of the context information
12954 gathered for line~2 is $m=\min(|tally|, |trick_count|)-k$. If |l+k<=h|,
12955 where |h=half_error_line|, we print |trick_buf[0..k-1]| after the
12956 descriptive information on line~1, and set |n:=l+k|; here |n| is the
12957 length of line~1. If $l+k>h$, some cropping is necessary, so we set |n:=h|
12958 and print `\.{...}' followed by
12959 $$\hbox{|trick_buf[(l+k-h+3)..k-1]|,}$$
12960 where subscripts of |trick_buf| are circular modulo |error_line|. The
12961 second line consists of |n|~spaces followed by |trick_buf[k..(k+m-1)]|,
12962 unless |n+m>error_line|; in the latter case, further cropping is done.
12963 This is easier to program than to explain.
12965 @<Local variables for formatting...@>=
12966 int i; /* index into |buffer| */
12967 integer l; /* length of descriptive information on line 1 */
12968 integer m; /* context information gathered for line 2 */
12969 int n; /* length of line 1 */
12970 integer p; /* starting or ending place in |trick_buf| */
12971 integer q; /* temporary index */
12973 @ The following code tells the print routines to gather
12974 the desired information.
12976 @d begin_pseudoprint {
12977 l=mp->tally; mp->tally=0; mp->selector=pseudo;
12978 mp->trick_count=1000000;
12980 @d set_trick_count {
12981 mp->first_count=mp->tally;
12982 mp->trick_count=mp->tally+1+mp->error_line-mp->half_error_line;
12983 if ( mp->trick_count<mp->error_line ) mp->trick_count=mp->error_line;
12986 @ And the following code uses the information after it has been gathered.
12988 @<Print two lines using the tricky pseudoprinted information@>=
12989 if ( mp->trick_count==1000000 ) set_trick_count;
12990 /* |set_trick_count| must be performed */
12991 if ( mp->tally<mp->trick_count ) m=mp->tally-mp->first_count;
12992 else m=mp->trick_count-mp->first_count; /* context on line 2 */
12993 if ( l+mp->first_count<=mp->half_error_line ) {
12994 p=0; n=l+mp->first_count;
12996 mp_print(mp, "..."); p=l+mp->first_count-mp->half_error_line+3;
12997 n=mp->half_error_line;
12999 for (q=p;q<=mp->first_count-1;q++) {
13000 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13003 for (q=1;q<=n;q++) {
13004 mp_print_char(mp, ' '); /* print |n| spaces to begin line~2 */
13006 if ( m+n<=mp->error_line ) p=mp->first_count+m;
13007 else p=mp->first_count+(mp->error_line-n-3);
13008 for (q=mp->first_count;q<=p-1;q++) {
13009 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13011 if ( m+n>mp->error_line ) mp_print(mp, "...")
13013 @ But the trick is distracting us from our current goal, which is to
13014 understand the input state. So let's concentrate on the data structures that
13015 are being pseudoprinted as we finish up the |show_context| procedure.
13017 @<Pseudoprint the line@>=
13020 for (i=start;i<=limit-1;i++) {
13021 if ( i==loc ) set_trick_count;
13022 mp_print_str(mp, mp->buffer[i]);
13026 @ @<Pseudoprint the token list@>=
13028 if ( token_type!=macro ) mp_show_token_list(mp, start,loc,100000,0);
13029 else mp_show_macro(mp, start,loc,100000)
13031 @ Here is the missing piece of |show_token_list| that is activated when the
13032 token beginning line~2 is about to be shown:
13034 @<Do magic computation@>=set_trick_count
13036 @* \[28] Maintaining the input stacks.
13037 The following subroutines change the input status in commonly needed ways.
13039 First comes |push_input|, which stores the current state and creates a
13040 new level (having, initially, the same properties as the old).
13042 @d push_input { /* enter a new input level, save the old */
13043 if ( mp->input_ptr>mp->max_in_stack ) {
13044 mp->max_in_stack=mp->input_ptr;
13045 if ( mp->input_ptr==mp->stack_size ) {
13046 int l = (mp->stack_size+(mp->stack_size>>2));
13047 XREALLOC(mp->input_stack, l, in_state_record);
13048 mp->stack_size = l;
13051 mp->input_stack[mp->input_ptr]=mp->cur_input; /* stack the record */
13052 incr(mp->input_ptr);
13055 @ And of course what goes up must come down.
13057 @d pop_input { /* leave an input level, re-enter the old */
13058 decr(mp->input_ptr); mp->cur_input=mp->input_stack[mp->input_ptr];
13061 @ Here is a procedure that starts a new level of token-list input, given
13062 a token list |p| and its type |t|. If |t=macro|, the calling routine should
13063 set |name|, reset~|loc|, and increase the macro's reference count.
13065 @d back_list(A) mp_begin_token_list(mp, (A),backed_up) /* backs up a simple token list */
13067 @c void mp_begin_token_list (MP mp,pointer p, quarterword t) {
13068 push_input; start=p; token_type=t;
13069 param_start=mp->param_ptr; loc=p;
13072 @ When a token list has been fully scanned, the following computations
13073 should be done as we leave that level of input.
13076 @c void mp_end_token_list (MP mp) { /* leave a token-list input level */
13077 pointer p; /* temporary register */
13078 if ( token_type>=backed_up ) { /* token list to be deleted */
13079 if ( token_type<=inserted ) {
13080 mp_flush_token_list(mp, start); goto DONE;
13082 mp_delete_mac_ref(mp, start); /* update reference count */
13085 while ( mp->param_ptr>param_start ) { /* parameters must be flushed */
13086 decr(mp->param_ptr);
13087 p=mp->param_stack[mp->param_ptr];
13089 if ( link(p)==diov ) { /* it's an \&{expr} parameter */
13090 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
13092 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
13097 pop_input; check_interrupt;
13100 @ The contents of |cur_cmd,cur_mod,cur_sym| are placed into an equivalent
13101 token by the |cur_tok| routine.
13104 @c @<Declare the procedure called |make_exp_copy|@>;
13105 pointer mp_cur_tok (MP mp) {
13106 pointer p; /* a new token node */
13107 small_number save_type; /* |cur_type| to be restored */
13108 integer save_exp; /* |cur_exp| to be restored */
13109 if ( mp->cur_sym==0 ) {
13110 if ( mp->cur_cmd==capsule_token ) {
13111 save_type=mp->cur_type; save_exp=mp->cur_exp;
13112 mp_make_exp_copy(mp, mp->cur_mod); p=mp_stash_cur_exp(mp); link(p)=null;
13113 mp->cur_type=save_type; mp->cur_exp=save_exp;
13115 p=mp_get_node(mp, token_node_size);
13116 value(p)=mp->cur_mod; name_type(p)=mp_token;
13117 if ( mp->cur_cmd==numeric_token ) type(p)=mp_known;
13118 else type(p)=mp_string_type;
13121 fast_get_avail(p); info(p)=mp->cur_sym;
13126 @ Sometimes \MP\ has read too far and wants to ``unscan'' what it has
13127 seen. The |back_input| procedure takes care of this by putting the token
13128 just scanned back into the input stream, ready to be read again.
13129 If |cur_sym<>0|, the values of |cur_cmd| and |cur_mod| are irrelevant.
13132 void mp_back_input (MP mp);
13134 @ @c void mp_back_input (MP mp) {/* undoes one token of input */
13135 pointer p; /* a token list of length one */
13137 while ( token_state &&(loc==null) )
13138 mp_end_token_list(mp); /* conserve stack space */
13142 @ The |back_error| routine is used when we want to restore or replace an
13143 offending token just before issuing an error message. We disable interrupts
13144 during the call of |back_input| so that the help message won't be lost.
13147 void mp_error (MP mp);
13148 void mp_back_error (MP mp);
13150 @ @c void mp_back_error (MP mp) { /* back up one token and call |error| */
13151 mp->OK_to_interrupt=false;
13153 mp->OK_to_interrupt=true; mp_error(mp);
13155 void mp_ins_error (MP mp) { /* back up one inserted token and call |error| */
13156 mp->OK_to_interrupt=false;
13157 mp_back_input(mp); token_type=inserted;
13158 mp->OK_to_interrupt=true; mp_error(mp);
13161 @ The |begin_file_reading| procedure starts a new level of input for lines
13162 of characters to be read from a file, or as an insertion from the
13163 terminal. It does not take care of opening the file, nor does it set |loc|
13164 or |limit| or |line|.
13165 @^system dependencies@>
13167 @c void mp_begin_file_reading (MP mp) {
13168 if ( mp->in_open==mp->max_in_open )
13169 mp_overflow(mp, "text input levels",mp->max_in_open);
13170 @:MetaPost capacity exceeded text input levels}{\quad text input levels@>
13171 if ( mp->first==mp->buf_size )
13172 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13173 incr(mp->in_open); push_input; index=mp->in_open;
13174 mp->mpx_name[index]=absent;
13176 name=is_term; /* |terminal_input| is now |true| */
13179 @ Conversely, the variables must be downdated when such a level of input
13180 is finished. Any associated \.{MPX} file must also be closed and popped
13181 off the file stack.
13183 @c void mp_end_file_reading (MP mp) {
13184 if ( mp->in_open>index ) {
13185 if ( (mp->mpx_name[mp->in_open]==absent)||(name<=max_spec_src) ) {
13186 mp_confusion(mp, "endinput");
13187 @:this can't happen endinput}{\quad endinput@>
13189 fclose(mp->input_file[mp->in_open]); /* close an \.{MPX} file */
13190 delete_str_ref(mp->mpx_name[mp->in_open]);
13195 if ( index!=mp->in_open ) mp_confusion(mp, "endinput");
13196 if ( name>max_spec_src ) {
13198 delete_str_ref(name);
13199 xfree(in_name); in_name=NULL;
13200 xfree(in_area); in_area=NULL;
13202 pop_input; decr(mp->in_open);
13205 @ Here is a function that tries to resume input from an \.{MPX} file already
13206 associated with the current input file. It returns |false| if this doesn't
13209 @c boolean mp_begin_mpx_reading (MP mp) {
13210 if ( mp->in_open!=index+1 ) {
13213 if ( mp->mpx_name[mp->in_open]<=absent ) mp_confusion(mp, "mpx");
13214 @:this can't happen mpx}{\quad mpx@>
13215 if ( mp->first==mp->buf_size )
13216 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13217 push_input; index=mp->in_open;
13219 name=mp->mpx_name[mp->in_open]; add_str_ref(name);
13220 @<Put an empty line in the input buffer@>;
13225 @ This procedure temporarily stops reading an \.{MPX} file.
13227 @c void mp_end_mpx_reading (MP mp) {
13228 if ( mp->in_open!=index ) mp_confusion(mp, "mpx");
13229 @:this can't happen mpx}{\quad mpx@>
13231 @<Complain that we are not at the end of a line in the \.{MPX} file@>;
13237 @ Here we enforce a restriction that simplifies the input stacks considerably.
13238 This should not inconvenience the user because \.{MPX} files are generated
13239 by an auxiliary program called \.{DVItoMP}.
13241 @ @<Complain that we are not at the end of a line in the \.{MPX} file@>=
13243 print_err("`mpxbreak' must be at the end of a line");
13244 help4("This file contains picture expressions for btex...etex")
13245 ("blocks. Such files are normally generated automatically")
13246 ("but this one seems to be messed up. I'm going to ignore")
13247 ("the rest of this line.");
13251 @ In order to keep the stack from overflowing during a long sequence of
13252 inserted `\.{show}' commands, the following routine removes completed
13253 error-inserted lines from memory.
13255 @c void mp_clear_for_error_prompt (MP mp) {
13256 while ( file_state && terminal_input &&
13257 (mp->input_ptr>0)&&(loc==limit) ) mp_end_file_reading(mp);
13258 mp_print_ln(mp); clear_terminal;
13261 @ To get \MP's whole input mechanism going, we perform the following
13264 @<Initialize the input routines@>=
13265 { mp->input_ptr=0; mp->max_in_stack=0;
13266 mp->in_open=0; mp->open_parens=0; mp->max_buf_stack=0;
13267 mp->param_ptr=0; mp->max_param_stack=0;
13269 start=1; index=0; line=0; name=is_term;
13270 mp->mpx_name[0]=absent;
13271 mp->force_eof=false;
13272 if ( ! mp_init_terminal(mp) ) exit(EXIT_FAILURE);
13273 limit=mp->last; mp->first=mp->last+1;
13274 /* |init_terminal| has set |loc| and |last| */
13277 @* \[29] Getting the next token.
13278 The heart of \MP's input mechanism is the |get_next| procedure, which
13279 we shall develop in the next few sections of the program. Perhaps we
13280 shouldn't actually call it the ``heart,'' however; it really acts as \MP's
13281 eyes and mouth, reading the source files and gobbling them up. And it also
13282 helps \MP\ to regurgitate stored token lists that are to be processed again.
13284 The main duty of |get_next| is to input one token and to set |cur_cmd|
13285 and |cur_mod| to that token's command code and modifier. Furthermore, if
13286 the input token is a symbolic token, that token's |hash| address
13287 is stored in |cur_sym|; otherwise |cur_sym| is set to zero.
13289 Underlying this simple description is a certain amount of complexity
13290 because of all the cases that need to be handled.
13291 However, the inner loop of |get_next| is reasonably short and fast.
13293 @ Before getting into |get_next|, we need to consider a mechanism by which
13294 \MP\ helps keep errors from propagating too far. Whenever the program goes
13295 into a mode where it keeps calling |get_next| repeatedly until a certain
13296 condition is met, it sets |scanner_status| to some value other than |normal|.
13297 Then if an input file ends, or if an `\&{outer}' symbol appears,
13298 an appropriate error recovery will be possible.
13300 The global variable |warning_info| helps in this error recovery by providing
13301 additional information. For example, |warning_info| might indicate the
13302 name of a macro whose replacement text is being scanned.
13304 @d normal 0 /* |scanner_status| at ``quiet times'' */
13305 @d skipping 1 /* |scanner_status| when false conditional text is being skipped */
13306 @d flushing 2 /* |scanner_status| when junk after a statement is being ignored */
13307 @d absorbing 3 /* |scanner_status| when a \&{text} parameter is being scanned */
13308 @d var_defining 4 /* |scanner_status| when a \&{vardef} is being scanned */
13309 @d op_defining 5 /* |scanner_status| when a macro \&{def} is being scanned */
13310 @d loop_defining 6 /* |scanner_status| when a \&{for} loop is being scanned */
13311 @d tex_flushing 7 /* |scanner_status| when skipping \TeX\ material */
13314 integer scanner_status; /* are we scanning at high speed? */
13315 integer warning_info; /* if so, what else do we need to know,
13316 in case an error occurs? */
13318 @ @<Initialize the input routines@>=
13319 mp->scanner_status=normal;
13321 @ The following subroutine
13322 is called when an `\&{outer}' symbolic token has been scanned or
13323 when the end of a file has been reached. These two cases are distinguished
13324 by |cur_sym|, which is zero at the end of a file.
13326 @c boolean mp_check_outer_validity (MP mp) {
13327 pointer p; /* points to inserted token list */
13328 if ( mp->scanner_status==normal ) {
13330 } else if ( mp->scanner_status==tex_flushing ) {
13331 @<Check if the file has ended while flushing \TeX\ material and set the
13332 result value for |check_outer_validity|@>;
13334 mp->deletions_allowed=false;
13335 @<Back up an outer symbolic token so that it can be reread@>;
13336 if ( mp->scanner_status>skipping ) {
13337 @<Tell the user what has run away and try to recover@>;
13339 print_err("Incomplete if; all text was ignored after line ");
13340 @.Incomplete if...@>
13341 mp_print_int(mp, mp->warning_info);
13342 help3("A forbidden `outer' token occurred in skipped text.")
13343 ("This kind of error happens when you say `if...' and forget")
13344 ("the matching `fi'. I've inserted a `fi'; this might work.");
13345 if ( mp->cur_sym==0 )
13346 mp->help_line[2]="The file ended while I was skipping conditional text.";
13347 mp->cur_sym=frozen_fi; mp_ins_error(mp);
13349 mp->deletions_allowed=true;
13354 @ @<Check if the file has ended while flushing \TeX\ material and set...@>=
13355 if ( mp->cur_sym!=0 ) {
13358 mp->deletions_allowed=false;
13359 print_err("TeX mode didn't end; all text was ignored after line ");
13360 mp_print_int(mp, mp->warning_info);
13361 help2("The file ended while I was looking for the `etex' to")
13362 ("finish this TeX material. I've inserted `etex' now.");
13363 mp->cur_sym = frozen_etex;
13365 mp->deletions_allowed=true;
13369 @ @<Back up an outer symbolic token so that it can be reread@>=
13370 if ( mp->cur_sym!=0 ) {
13371 p=mp_get_avail(mp); info(p)=mp->cur_sym;
13372 back_list(p); /* prepare to read the symbolic token again */
13375 @ @<Tell the user what has run away...@>=
13377 mp_runaway(mp); /* print the definition-so-far */
13378 if ( mp->cur_sym==0 ) {
13379 print_err("File ended");
13380 @.File ended while scanning...@>
13382 print_err("Forbidden token found");
13383 @.Forbidden token found...@>
13385 mp_print(mp, " while scanning ");
13386 help4("I suspect you have forgotten an `enddef',")
13387 ("causing me to read past where you wanted me to stop.")
13388 ("I'll try to recover; but if the error is serious,")
13389 ("you'd better type `E' or `X' now and fix your file.");
13390 switch (mp->scanner_status) {
13391 @<Complete the error message,
13392 and set |cur_sym| to a token that might help recover from the error@>
13393 } /* there are no other cases */
13397 @ As we consider various kinds of errors, it is also appropriate to
13398 change the first line of the help message just given; |help_line[3]|
13399 points to the string that might be changed.
13401 @<Complete the error message,...@>=
13403 mp_print(mp, "to the end of the statement");
13404 mp->help_line[3]="A previous error seems to have propagated,";
13405 mp->cur_sym=frozen_semicolon;
13408 mp_print(mp, "a text argument");
13409 mp->help_line[3]="It seems that a right delimiter was left out,";
13410 if ( mp->warning_info==0 ) {
13411 mp->cur_sym=frozen_end_group;
13413 mp->cur_sym=frozen_right_delimiter;
13414 equiv(frozen_right_delimiter)=mp->warning_info;
13419 mp_print(mp, "the definition of ");
13420 if ( mp->scanner_status==op_defining )
13421 mp_print_text(mp->warning_info);
13423 mp_print_variable_name(mp, mp->warning_info);
13424 mp->cur_sym=frozen_end_def;
13426 case loop_defining:
13427 mp_print(mp, "the text of a ");
13428 mp_print_text(mp->warning_info);
13429 mp_print(mp, " loop");
13430 mp->help_line[3]="I suspect you have forgotten an `endfor',";
13431 mp->cur_sym=frozen_end_for;
13434 @ The |runaway| procedure displays the first part of the text that occurred
13435 when \MP\ began its special |scanner_status|, if that text has been saved.
13437 @<Declare the procedure called |runaway|@>=
13438 void mp_runaway (MP mp) {
13439 if ( mp->scanner_status>flushing ) {
13440 mp_print_nl(mp, "Runaway ");
13441 switch (mp->scanner_status) {
13442 case absorbing: mp_print(mp, "text?"); break;
13444 case op_defining: mp_print(mp,"definition?"); break;
13445 case loop_defining: mp_print(mp, "loop?"); break;
13446 } /* there are no other cases */
13448 mp_show_token_list(mp, link(hold_head),null,mp->error_line-10,0);
13452 @ We need to mention a procedure that may be called by |get_next|.
13455 void mp_firm_up_the_line (MP mp);
13457 @ And now we're ready to take the plunge into |get_next| itself.
13458 Note that the behavior depends on the |scanner_status| because percent signs
13459 and double quotes need to be passed over when skipping TeX material.
13462 void mp_get_next (MP mp) {
13463 /* sets |cur_cmd|, |cur_mod|, |cur_sym| to next token */
13465 /*restart*/ /* go here to get the next input token */
13466 /*exit*/ /* go here when the next input token has been got */
13467 /*|common_ending|*/ /* go here to finish getting a symbolic token */
13468 /*found*/ /* go here when the end of a symbolic token has been found */
13469 /*switch*/ /* go here to branch on the class of an input character */
13470 /*|start_numeric_token|,|start_decimal_token|,|fin_numeric_token|,|done|*/
13471 /* go here at crucial stages when scanning a number */
13472 int k; /* an index into |buffer| */
13473 ASCII_code c; /* the current character in the buffer */
13474 ASCII_code class; /* its class number */
13475 integer n,f; /* registers for decimal-to-binary conversion */
13478 if ( file_state ) {
13479 @<Input from external file; |goto restart| if no input found,
13480 or |return| if a non-symbolic token is found@>;
13482 @<Input from token list; |goto restart| if end of list or
13483 if a parameter needs to be expanded,
13484 or |return| if a non-symbolic token is found@>;
13487 @<Finish getting the symbolic token in |cur_sym|;
13488 |goto restart| if it is illegal@>;
13491 @ When a symbolic token is declared to be `\&{outer}', its command code
13492 is increased by |outer_tag|.
13495 @<Finish getting the symbolic token in |cur_sym|...@>=
13496 mp->cur_cmd=eq_type(mp->cur_sym); mp->cur_mod=equiv(mp->cur_sym);
13497 if ( mp->cur_cmd>=outer_tag ) {
13498 if ( mp_check_outer_validity(mp) )
13499 mp->cur_cmd=mp->cur_cmd-outer_tag;
13504 @ A percent sign appears in |buffer[limit]|; this makes it unnecessary
13505 to have a special test for end-of-line.
13508 @<Input from external file;...@>=
13511 c=mp->buffer[loc]; incr(loc); class=mp->char_class[c];
13513 case digit_class: goto START_NUMERIC_TOKEN; break;
13515 class=mp->char_class[mp->buffer[loc]];
13516 if ( class>period_class ) {
13518 } else if ( class<period_class ) { /* |class=digit_class| */
13519 n=0; goto START_DECIMAL_TOKEN;
13523 case space_class: goto SWITCH; break;
13524 case percent_class:
13525 if ( mp->scanner_status==tex_flushing ) {
13526 if ( loc<limit ) goto SWITCH;
13528 @<Move to next line of file, or |goto restart| if there is no next line@>;
13533 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13534 else @<Get a string token and |return|@>;
13536 case isolated_classes:
13537 k=loc-1; goto FOUND; break;
13538 case invalid_class:
13539 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13540 else @<Decry the invalid character and |goto restart|@>;
13542 default: break; /* letters, etc. */
13545 while ( mp->char_class[mp->buffer[loc]]==class ) incr(loc);
13547 START_NUMERIC_TOKEN:
13548 @<Get the integer part |n| of a numeric token;
13549 set |f:=0| and |goto fin_numeric_token| if there is no decimal point@>;
13550 START_DECIMAL_TOKEN:
13551 @<Get the fraction part |f| of a numeric token@>;
13553 @<Pack the numeric and fraction parts of a numeric token
13556 mp->cur_sym=mp_id_lookup(mp, k,loc-k);
13559 @ We go to |restart| instead of to |SWITCH|, because |state| might equal
13560 |token_list| after the error has been dealt with
13561 (cf.\ |clear_for_error_prompt|).
13563 @<Decry the invalid...@>=
13565 print_err("Text line contains an invalid character");
13566 @.Text line contains...@>
13567 help2("A funny symbol that I can\'t read has just been input.")
13568 ("Continue, and I'll forget that it ever happened.");
13569 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13573 @ @<Get a string token and |return|@>=
13575 if ( mp->buffer[loc]=='"' ) {
13576 mp->cur_mod=rts("");
13578 k=loc; mp->buffer[limit+1]='"';
13581 } while (mp->buffer[loc]!='"');
13583 @<Decry the missing string delimiter and |goto restart|@>;
13586 mp->cur_mod=mp->buffer[k];
13590 append_char(mp->buffer[k]); incr(k);
13592 mp->cur_mod=mp_make_string(mp);
13595 incr(loc); mp->cur_cmd=string_token;
13599 @ We go to |restart| after this error message, not to |SWITCH|,
13600 because the |clear_for_error_prompt| routine might have reinstated
13601 |token_state| after |error| has finished.
13603 @<Decry the missing string delimiter and |goto restart|@>=
13605 loc=limit; /* the next character to be read on this line will be |"%"| */
13606 print_err("Incomplete string token has been flushed");
13607 @.Incomplete string token...@>
13608 help3("Strings should finish on the same line as they began.")
13609 ("I've deleted the partial string; you might want to")
13610 ("insert another by typing, e.g., `I\"new string\"'.");
13611 mp->deletions_allowed=false; mp_error(mp);
13612 mp->deletions_allowed=true;
13616 @ @<Get the integer part |n| of a numeric token...@>=
13618 while ( mp->char_class[mp->buffer[loc]]==digit_class ) {
13619 if ( n<32768 ) n=10*n+mp->buffer[loc]-'0';
13622 if ( mp->buffer[loc]=='.' )
13623 if ( mp->char_class[mp->buffer[loc+1]]==digit_class )
13626 goto FIN_NUMERIC_TOKEN;
13629 @ @<Get the fraction part |f| of a numeric token@>=
13632 if ( k<17 ) { /* digits for |k>=17| cannot affect the result */
13633 mp->dig[k]=mp->buffer[loc]-'0'; incr(k);
13636 } while (mp->char_class[mp->buffer[loc]]==digit_class);
13637 f=mp_round_decimals(mp, k);
13642 @ @<Pack the numeric and fraction parts of a numeric token and |return|@>=
13644 @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>;
13645 } else if ( mp->scanner_status!=tex_flushing ) {
13646 print_err("Enormous number has been reduced");
13647 @.Enormous number...@>
13648 help2("I can\'t handle numbers bigger than 32767.99998;")
13649 ("so I've changed your constant to that maximum amount.");
13650 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13651 mp->cur_mod=el_gordo;
13653 mp->cur_cmd=numeric_token; return
13655 @ @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>=
13657 mp->cur_mod=n*unity+f;
13658 if ( mp->cur_mod>=fraction_one ) {
13659 if ( (mp->internal[warning_check]>0) &&
13660 (mp->scanner_status!=tex_flushing) ) {
13661 print_err("Number is too large (");
13662 mp_print_scaled(mp, mp->cur_mod);
13663 mp_print_char(mp, ')');
13664 help3("It is at least 4096. Continue and I'll try to cope")
13665 ("with that big value; but it might be dangerous.")
13666 ("(Set warningcheck:=0 to suppress this message.)");
13672 @ Let's consider now what happens when |get_next| is looking at a token list.
13675 @<Input from token list;...@>=
13676 if ( loc>=mp->hi_mem_min ) { /* one-word token */
13677 mp->cur_sym=info(loc); loc=link(loc); /* move to next */
13678 if ( mp->cur_sym>=expr_base ) {
13679 if ( mp->cur_sym>=suffix_base ) {
13680 @<Insert a suffix or text parameter and |goto restart|@>;
13682 mp->cur_cmd=capsule_token;
13683 mp->cur_mod=mp->param_stack[param_start+mp->cur_sym-(expr_base)];
13684 mp->cur_sym=0; return;
13687 } else if ( loc>null ) {
13688 @<Get a stored numeric or string or capsule token and |return|@>
13689 } else { /* we are done with this token list */
13690 mp_end_token_list(mp); goto RESTART; /* resume previous level */
13693 @ @<Insert a suffix or text parameter...@>=
13695 if ( mp->cur_sym>=text_base ) mp->cur_sym=mp->cur_sym-mp->param_size;
13696 /* |param_size=text_base-suffix_base| */
13697 mp_begin_token_list(mp,
13698 mp->param_stack[param_start+mp->cur_sym-(suffix_base)],
13703 @ @<Get a stored numeric or string or capsule token...@>=
13705 if ( name_type(loc)==mp_token ) {
13706 mp->cur_mod=value(loc);
13707 if ( type(loc)==mp_known ) {
13708 mp->cur_cmd=numeric_token;
13710 mp->cur_cmd=string_token; add_str_ref(mp->cur_mod);
13713 mp->cur_mod=loc; mp->cur_cmd=capsule_token;
13715 loc=link(loc); return;
13718 @ All of the easy branches of |get_next| have now been taken care of.
13719 There is one more branch.
13721 @<Move to next line of file, or |goto restart|...@>=
13722 if ( name>max_spec_src ) {
13723 @<Read next line of file into |buffer|, or
13724 |goto restart| if the file has ended@>;
13726 if ( mp->input_ptr>0 ) {
13727 /* text was inserted during error recovery or by \&{scantokens} */
13728 mp_end_file_reading(mp); goto RESTART; /* resume previous level */
13730 if ( mp->selector<log_only || mp->selector>=write_file) mp_open_log_file(mp);
13731 if ( mp->interaction>mp_nonstop_mode ) {
13732 if ( limit==start ) /* previous line was empty */
13733 mp_print_nl(mp, "(Please type a command or say `end')");
13735 mp_print_ln(mp); mp->first=start;
13736 prompt_input("*"); /* input on-line into |buffer| */
13738 limit=mp->last; mp->buffer[limit]='%';
13739 mp->first=limit+1; loc=start;
13741 mp_fatal_error(mp, "*** (job aborted, no legal end found)");
13743 /* nonstop mode, which is intended for overnight batch processing,
13744 never waits for on-line input */
13748 @ The global variable |force_eof| is normally |false|; it is set |true|
13749 by an \&{endinput} command.
13752 boolean force_eof; /* should the next \&{input} be aborted early? */
13754 @ We must decrement |loc| in order to leave the buffer in a valid state
13755 when an error condition causes us to |goto restart| without calling
13756 |end_file_reading|.
13758 @<Read next line of file into |buffer|, or
13759 |goto restart| if the file has ended@>=
13761 incr(line); mp->first=start;
13762 if ( ! mp->force_eof ) {
13763 if ( mp_input_ln(mp, cur_file,true) ) /* not end of file */
13764 mp_firm_up_the_line(mp); /* this sets |limit| */
13766 mp->force_eof=true;
13768 if ( mp->force_eof ) {
13769 mp->force_eof=false;
13771 if ( mpx_reading ) {
13772 @<Complain that the \.{MPX} file ended unexpectly; then set
13773 |cur_sym:=frozen_mpx_break| and |goto comon_ending|@>;
13775 mp_print_char(mp, ')'); decr(mp->open_parens);
13776 update_terminal; /* show user that file has been read */
13777 mp_end_file_reading(mp); /* resume previous level */
13778 if ( mp_check_outer_validity(mp) ) goto RESTART;
13782 mp->buffer[limit]='%'; mp->first=limit+1; loc=start; /* ready to read */
13785 @ We should never actually come to the end of an \.{MPX} file because such
13786 files should have an \&{mpxbreak} after the translation of the last
13787 \&{btex}$\,\ldots\,$\&{etex} block.
13789 @<Complain that the \.{MPX} file ended unexpectly; then set...@>=
13791 mp->mpx_name[index]=finished;
13792 print_err("mpx file ended unexpectedly");
13793 help4("The file had too few picture expressions for btex...etex")
13794 ("blocks. Such files are normally generated automatically")
13795 ("but this one got messed up. You might want to insert a")
13796 ("picture expression now.");
13797 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13798 mp->cur_sym=frozen_mpx_break; goto COMMON_ENDING;
13801 @ Sometimes we want to make it look as though we have just read a blank line
13802 without really doing so.
13804 @<Put an empty line in the input buffer@>=
13805 mp->last=mp->first; limit=mp->last; /* simulate |input_ln| and |firm_up_the_line| */
13806 mp->buffer[limit]='%'; mp->first=limit+1; loc=start
13808 @ If the user has set the |pausing| parameter to some positive value,
13809 and if nonstop mode has not been selected, each line of input is displayed
13810 on the terminal and the transcript file, followed by `\.{=>}'.
13811 \MP\ waits for a response. If the response is null (i.e., if nothing is
13812 typed except perhaps a few blank spaces), the original
13813 line is accepted as it stands; otherwise the line typed is
13814 used instead of the line in the file.
13816 @c void mp_firm_up_the_line (MP mp) {
13817 size_t k; /* an index into |buffer| */
13819 if ( mp->internal[pausing]>0 ) if ( mp->interaction>mp_nonstop_mode ) {
13820 wake_up_terminal; mp_print_ln(mp);
13821 if ( start<limit ) {
13822 for (k=(size_t)start;k<=(size_t)(limit-1);k++) {
13823 mp_print_str(mp, mp->buffer[k]);
13826 mp->first=limit; prompt_input("=>"); /* wait for user response */
13828 if ( mp->last>mp->first ) {
13829 for (k=mp->first;k<=mp->last-1;k++) { /* move line down in buffer */
13830 mp->buffer[k+start-mp->first]=mp->buffer[k];
13832 limit=start+mp->last-mp->first;
13837 @* \[30] Dealing with \TeX\ material.
13838 The \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}$\,\ldots\,$\&{etex}
13839 features need to be implemented at a low level in the scanning process
13840 so that \MP\ can stay in synch with the a preprocessor that treats
13841 blocks of \TeX\ material as they occur in the input file without trying
13842 to expand \MP\ macros. Thus we need a special version of |get_next|
13843 that does not expand macros and such but does handle \&{btex},
13844 \&{verbatimtex}, etc.
13846 The special version of |get_next| is called |get_t_next|. It works by flushing
13847 \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}\allowbreak
13848 $\,\ldots\,$\&{etex} blocks, switching to the \.{MPX} file when it sees
13849 \&{btex}, and switching back when it sees \&{mpxbreak}.
13855 mp_primitive(mp, "btex",start_tex,btex_code);
13856 @:btex_}{\&{btex} primitive@>
13857 mp_primitive(mp, "verbatimtex",start_tex,verbatim_code);
13858 @:verbatimtex_}{\&{verbatimtex} primitive@>
13859 mp_primitive(mp, "etex",etex_marker,0); mp->eqtb[frozen_etex]=mp->eqtb[mp->cur_sym];
13860 @:etex_}{\&{etex} primitive@>
13861 mp_primitive(mp, "mpxbreak",mpx_break,0); mp->eqtb[frozen_mpx_break]=mp->eqtb[mp->cur_sym];
13862 @:mpx_break_}{\&{mpxbreak} primitive@>
13864 @ @<Cases of |print_cmd...@>=
13865 case start_tex: if ( m==btex_code ) mp_print(mp, "btex");
13866 else mp_print(mp, "verbatimtex"); break;
13867 case etex_marker: mp_print(mp, "etex"); break;
13868 case mpx_break: mp_print(mp, "mpxbreak"); break;
13870 @ Actually, |get_t_next| is a macro that avoids procedure overhead except
13871 in the unusual case where \&{btex}, \&{verbatimtex}, \&{etex}, or \&{mpxbreak}
13874 @d get_t_next {mp_get_next(mp); if ( mp->cur_cmd<=max_pre_command ) mp_t_next(mp); }
13877 void mp_start_mpx_input (MP mp);
13880 void mp_t_next (MP mp) {
13881 int old_status; /* saves the |scanner_status| */
13882 integer old_info; /* saves the |warning_info| */
13883 while ( mp->cur_cmd<=max_pre_command ) {
13884 if ( mp->cur_cmd==mpx_break ) {
13885 if ( ! file_state || (mp->mpx_name[index]==absent) ) {
13886 @<Complain about a misplaced \&{mpxbreak}@>;
13888 mp_end_mpx_reading(mp);
13891 } else if ( mp->cur_cmd==start_tex ) {
13892 if ( token_state || (name<=max_spec_src) ) {
13893 @<Complain that we are not reading a file@>;
13894 } else if ( mpx_reading ) {
13895 @<Complain that \.{MPX} files cannot contain \TeX\ material@>;
13896 } else if ( (mp->cur_mod!=verbatim_code)&&
13897 (mp->mpx_name[index]!=finished) ) {
13898 if ( ! mp_begin_mpx_reading(mp) ) mp_start_mpx_input(mp);
13903 @<Complain about a misplaced \&{etex}@>;
13905 goto COMMON_ENDING;
13907 @<Flush the \TeX\ material@>;
13913 @ We could be in the middle of an operation such as skipping false conditional
13914 text when \TeX\ material is encountered, so we must be careful to save the
13917 @<Flush the \TeX\ material@>=
13918 old_status=mp->scanner_status;
13919 old_info=mp->warning_info;
13920 mp->scanner_status=tex_flushing;
13921 mp->warning_info=line;
13922 do { mp_get_next(mp); } while (mp->cur_cmd!=etex_marker);
13923 mp->scanner_status=old_status;
13924 mp->warning_info=old_info
13926 @ @<Complain that \.{MPX} files cannot contain \TeX\ material@>=
13927 { print_err("An mpx file cannot contain btex or verbatimtex blocks");
13928 help4("This file contains picture expressions for btex...etex")
13929 ("blocks. Such files are normally generated automatically")
13930 ("but this one seems to be messed up. I'll just keep going")
13931 ("and hope for the best.");
13935 @ @<Complain that we are not reading a file@>=
13936 { print_err("You can only use `btex' or `verbatimtex' in a file");
13937 help3("I'll have to ignore this preprocessor command because it")
13938 ("only works when there is a file to preprocess. You might")
13939 ("want to delete everything up to the next `etex`.");
13943 @ @<Complain about a misplaced \&{mpxbreak}@>=
13944 { print_err("Misplaced mpxbreak");
13945 help2("I'll ignore this preprocessor command because it")
13946 ("doesn't belong here");
13950 @ @<Complain about a misplaced \&{etex}@>=
13951 { print_err("Extra etex will be ignored");
13952 help1("There is no btex or verbatimtex for this to match");
13956 @* \[31] Scanning macro definitions.
13957 \MP\ has a variety of ways to tuck tokens away into token lists for later
13958 use: Macros can be defined with \&{def}, \&{vardef}, \&{primarydef}, etc.;
13959 repeatable code can be defined with \&{for}, \&{forever}, \&{forsuffixes}.
13960 All such operations are handled by the routines in this part of the program.
13962 The modifier part of each command code is zero for the ``ending delimiters''
13963 like \&{enddef} and \&{endfor}.
13965 @d start_def 1 /* command modifier for \&{def} */
13966 @d var_def 2 /* command modifier for \&{vardef} */
13967 @d end_def 0 /* command modifier for \&{enddef} */
13968 @d start_forever 1 /* command modifier for \&{forever} */
13969 @d end_for 0 /* command modifier for \&{endfor} */
13972 mp_primitive(mp, "def",macro_def,start_def);
13973 @:def_}{\&{def} primitive@>
13974 mp_primitive(mp, "vardef",macro_def,var_def);
13975 @:var_def_}{\&{vardef} primitive@>
13976 mp_primitive(mp, "primarydef",macro_def,secondary_primary_macro);
13977 @:primary_def_}{\&{primarydef} primitive@>
13978 mp_primitive(mp, "secondarydef",macro_def,tertiary_secondary_macro);
13979 @:secondary_def_}{\&{secondarydef} primitive@>
13980 mp_primitive(mp, "tertiarydef",macro_def,expression_tertiary_macro);
13981 @:tertiary_def_}{\&{tertiarydef} primitive@>
13982 mp_primitive(mp, "enddef",macro_def,end_def); mp->eqtb[frozen_end_def]=mp->eqtb[mp->cur_sym];
13983 @:end_def_}{\&{enddef} primitive@>
13985 mp_primitive(mp, "for",iteration,expr_base);
13986 @:for_}{\&{for} primitive@>
13987 mp_primitive(mp, "forsuffixes",iteration,suffix_base);
13988 @:for_suffixes_}{\&{forsuffixes} primitive@>
13989 mp_primitive(mp, "forever",iteration,start_forever);
13990 @:forever_}{\&{forever} primitive@>
13991 mp_primitive(mp, "endfor",iteration,end_for); mp->eqtb[frozen_end_for]=mp->eqtb[mp->cur_sym];
13992 @:end_for_}{\&{endfor} primitive@>
13994 @ @<Cases of |print_cmd...@>=
13996 if ( m<=var_def ) {
13997 if ( m==start_def ) mp_print(mp, "def");
13998 else if ( m<start_def ) mp_print(mp, "enddef");
13999 else mp_print(mp, "vardef");
14000 } else if ( m==secondary_primary_macro ) {
14001 mp_print(mp, "primarydef");
14002 } else if ( m==tertiary_secondary_macro ) {
14003 mp_print(mp, "secondarydef");
14005 mp_print(mp, "tertiarydef");
14009 if ( m<=start_forever ) {
14010 if ( m==start_forever ) mp_print(mp, "forever");
14011 else mp_print(mp, "endfor");
14012 } else if ( m==expr_base ) {
14013 mp_print(mp, "for");
14015 mp_print(mp, "forsuffixes");
14019 @ Different macro-absorbing operations have different syntaxes, but they
14020 also have a lot in common. There is a list of special symbols that are to
14021 be replaced by parameter tokens; there is a special command code that
14022 ends the definition; the quotation conventions are identical. Therefore
14023 it makes sense to have most of the work done by a single subroutine. That
14024 subroutine is called |scan_toks|.
14026 The first parameter to |scan_toks| is the command code that will
14027 terminate scanning (either |macro_def|, |loop_repeat|, or |iteration|).
14029 The second parameter, |subst_list|, points to a (possibly empty) list
14030 of two-word nodes whose |info| and |value| fields specify symbol tokens
14031 before and after replacement. The list will be returned to free storage
14034 The third parameter is simply appended to the token list that is built.
14035 And the final parameter tells how many of the special operations
14036 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#} are to be replaced by suffix parameters.
14037 When such parameters are present, they are called \.{(SUFFIX0)},
14038 \.{(SUFFIX1)}, and \.{(SUFFIX2)}.
14040 @c pointer mp_scan_toks (MP mp,command_code terminator, pointer
14041 subst_list, pointer tail_end, small_number suffix_count) {
14042 pointer p; /* tail of the token list being built */
14043 pointer q; /* temporary for link management */
14044 integer balance; /* left delimiters minus right delimiters */
14045 p=hold_head; balance=1; link(hold_head)=null;
14048 if ( mp->cur_sym>0 ) {
14049 @<Substitute for |cur_sym|, if it's on the |subst_list|@>;
14050 if ( mp->cur_cmd==terminator ) {
14051 @<Adjust the balance; |break| if it's zero@>;
14052 } else if ( mp->cur_cmd==macro_special ) {
14053 @<Handle quoted symbols, \.{\#\AT!}, \.{\AT!}, or \.{\AT!\#}@>;
14056 link(p)=mp_cur_tok(mp); p=link(p);
14058 link(p)=tail_end; mp_flush_node_list(mp, subst_list);
14059 return link(hold_head);
14062 @ @<Substitute for |cur_sym|...@>=
14065 while ( q!=null ) {
14066 if ( info(q)==mp->cur_sym ) {
14067 mp->cur_sym=value(q); mp->cur_cmd=relax; break;
14073 @ @<Adjust the balance; |break| if it's zero@>=
14074 if ( mp->cur_mod>0 ) {
14082 @ Four commands are intended to be used only within macro texts: \&{quote},
14083 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#}. They are variants of a single command
14084 code called |macro_special|.
14086 @d quote 0 /* |macro_special| modifier for \&{quote} */
14087 @d macro_prefix 1 /* |macro_special| modifier for \.{\#\AT!} */
14088 @d macro_at 2 /* |macro_special| modifier for \.{\AT!} */
14089 @d macro_suffix 3 /* |macro_special| modifier for \.{\AT!\#} */
14092 mp_primitive(mp, "quote",macro_special,quote);
14093 @:quote_}{\&{quote} primitive@>
14094 mp_primitive(mp, "#@@",macro_special,macro_prefix);
14095 @:]]]\#\AT!_}{\.{\#\AT!} primitive@>
14096 mp_primitive(mp, "@@",macro_special,macro_at);
14097 @:]]]\AT!_}{\.{\AT!} primitive@>
14098 mp_primitive(mp, "@@#",macro_special,macro_suffix);
14099 @:]]]\AT!\#_}{\.{\AT!\#} primitive@>
14101 @ @<Cases of |print_cmd...@>=
14102 case macro_special:
14104 case macro_prefix: mp_print(mp, "#@@"); break;
14105 case macro_at: mp_print_char(mp, '@@'); break;
14106 case macro_suffix: mp_print(mp, "@@#"); break;
14107 default: mp_print(mp, "quote"); break;
14111 @ @<Handle quoted...@>=
14113 if ( mp->cur_mod==quote ) { get_t_next; }
14114 else if ( mp->cur_mod<=suffix_count )
14115 mp->cur_sym=suffix_base-1+mp->cur_mod;
14118 @ Here is a routine that's used whenever a token will be redefined. If
14119 the user's token is unredefinable, the `|frozen_inaccessible|' token is
14120 substituted; the latter is redefinable but essentially impossible to use,
14121 hence \MP's tables won't get fouled up.
14123 @c void mp_get_symbol (MP mp) { /* sets |cur_sym| to a safe symbol */
14126 if ( (mp->cur_sym==0)||(mp->cur_sym>frozen_inaccessible) ) {
14127 print_err("Missing symbolic token inserted");
14128 @.Missing symbolic token...@>
14129 help3("Sorry: You can\'t redefine a number, string, or expr.")
14130 ("I've inserted an inaccessible symbol so that your")
14131 ("definition will be completed without mixing me up too badly.");
14132 if ( mp->cur_sym>0 )
14133 mp->help_line[2]="Sorry: You can\'t redefine my error-recovery tokens.";
14134 else if ( mp->cur_cmd==string_token )
14135 delete_str_ref(mp->cur_mod);
14136 mp->cur_sym=frozen_inaccessible; mp_ins_error(mp); goto RESTART;
14140 @ Before we actually redefine a symbolic token, we need to clear away its
14141 former value, if it was a variable. The following stronger version of
14142 |get_symbol| does that.
14144 @c void mp_get_clear_symbol (MP mp) {
14145 mp_get_symbol(mp); mp_clear_symbol(mp, mp->cur_sym,false);
14148 @ Here's another little subroutine; it checks that an equals sign
14149 or assignment sign comes along at the proper place in a macro definition.
14151 @c void mp_check_equals (MP mp) {
14152 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
14153 mp_missing_err(mp, "=");
14155 help5("The next thing in this `def' should have been `=',")
14156 ("because I've already looked at the definition heading.")
14157 ("But don't worry; I'll pretend that an equals sign")
14158 ("was present. Everything from here to `enddef'")
14159 ("will be the replacement text of this macro.");
14164 @ A \&{primarydef}, \&{secondarydef}, or \&{tertiarydef} is rather easily
14165 handled now that we have |scan_toks|. In this case there are
14166 two parameters, which will be \.{EXPR0} and \.{EXPR1} (i.e.,
14167 |expr_base| and |expr_base+1|).
14169 @c void mp_make_op_def (MP mp) {
14170 command_code m; /* the type of definition */
14171 pointer p,q,r; /* for list manipulation */
14173 mp_get_symbol(mp); q=mp_get_node(mp, token_node_size);
14174 info(q)=mp->cur_sym; value(q)=expr_base;
14175 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym;
14176 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14177 info(p)=mp->cur_sym; value(p)=expr_base+1; link(p)=q;
14178 get_t_next; mp_check_equals(mp);
14179 mp->scanner_status=op_defining; q=mp_get_avail(mp); ref_count(q)=null;
14180 r=mp_get_avail(mp); link(q)=r; info(r)=general_macro;
14181 link(r)=mp_scan_toks(mp, macro_def,p,null,0);
14182 mp->scanner_status=normal; eq_type(mp->warning_info)=m;
14183 equiv(mp->warning_info)=q; mp_get_x_next(mp);
14186 @ Parameters to macros are introduced by the keywords \&{expr},
14187 \&{suffix}, \&{text}, \&{primary}, \&{secondary}, and \&{tertiary}.
14190 mp_primitive(mp, "expr",param_type,expr_base);
14191 @:expr_}{\&{expr} primitive@>
14192 mp_primitive(mp, "suffix",param_type,suffix_base);
14193 @:suffix_}{\&{suffix} primitive@>
14194 mp_primitive(mp, "text",param_type,text_base);
14195 @:text_}{\&{text} primitive@>
14196 mp_primitive(mp, "primary",param_type,primary_macro);
14197 @:primary_}{\&{primary} primitive@>
14198 mp_primitive(mp, "secondary",param_type,secondary_macro);
14199 @:secondary_}{\&{secondary} primitive@>
14200 mp_primitive(mp, "tertiary",param_type,tertiary_macro);
14201 @:tertiary_}{\&{tertiary} primitive@>
14203 @ @<Cases of |print_cmd...@>=
14205 if ( m>=expr_base ) {
14206 if ( m==expr_base ) mp_print(mp, "expr");
14207 else if ( m==suffix_base ) mp_print(mp, "suffix");
14208 else mp_print(mp, "text");
14209 } else if ( m<secondary_macro ) {
14210 mp_print(mp, "primary");
14211 } else if ( m==secondary_macro ) {
14212 mp_print(mp, "secondary");
14214 mp_print(mp, "tertiary");
14218 @ Let's turn next to the more complex processing associated with \&{def}
14219 and \&{vardef}. When the following procedure is called, |cur_mod|
14220 should be either |start_def| or |var_def|.
14222 @c @<Declare the procedure called |check_delimiter|@>;
14223 @<Declare the function called |scan_declared_variable|@>;
14224 void mp_scan_def (MP mp) {
14225 int m; /* the type of definition */
14226 int n; /* the number of special suffix parameters */
14227 int k; /* the total number of parameters */
14228 int c; /* the kind of macro we're defining */
14229 pointer r; /* parameter-substitution list */
14230 pointer q; /* tail of the macro token list */
14231 pointer p; /* temporary storage */
14232 halfword base; /* |expr_base|, |suffix_base|, or |text_base| */
14233 pointer l_delim,r_delim; /* matching delimiters */
14234 m=mp->cur_mod; c=general_macro; link(hold_head)=null;
14235 q=mp_get_avail(mp); ref_count(q)=null; r=null;
14236 @<Scan the token or variable to be defined;
14237 set |n|, |scanner_status|, and |warning_info|@>;
14239 if ( mp->cur_cmd==left_delimiter ) {
14240 @<Absorb delimited parameters, putting them into lists |q| and |r|@>;
14242 if ( mp->cur_cmd==param_type ) {
14243 @<Absorb undelimited parameters, putting them into list |r|@>;
14245 mp_check_equals(mp);
14246 p=mp_get_avail(mp); info(p)=c; link(q)=p;
14247 @<Attach the replacement text to the tail of node |p|@>;
14248 mp->scanner_status=normal; mp_get_x_next(mp);
14251 @ We don't put `|frozen_end_group|' into the replacement text of
14252 a \&{vardef}, because the user may want to redefine `\.{endgroup}'.
14254 @<Attach the replacement text to the tail of node |p|@>=
14255 if ( m==start_def ) {
14256 link(p)=mp_scan_toks(mp, macro_def,r,null,n);
14258 q=mp_get_avail(mp); info(q)=mp->bg_loc; link(p)=q;
14259 p=mp_get_avail(mp); info(p)=mp->eg_loc;
14260 link(q)=mp_scan_toks(mp, macro_def,r,p,n);
14262 if ( mp->warning_info==bad_vardef )
14263 mp_flush_token_list(mp, value(bad_vardef))
14267 int eg_loc; /* hash addresses of `\.{begingroup}' and `\.{endgroup}' */
14269 @ @<Scan the token or variable to be defined;...@>=
14270 if ( m==start_def ) {
14271 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym; get_t_next;
14272 mp->scanner_status=op_defining; n=0;
14273 eq_type(mp->warning_info)=defined_macro; equiv(mp->warning_info)=q;
14275 p=mp_scan_declared_variable(mp);
14276 mp_flush_variable(mp, equiv(info(p)),link(p),true);
14277 mp->warning_info=mp_find_variable(mp, p); mp_flush_list(mp, p);
14278 if ( mp->warning_info==null ) @<Change to `\.{a bad variable}'@>;
14279 mp->scanner_status=var_defining; n=2;
14280 if ( mp->cur_cmd==macro_special ) if ( mp->cur_mod==macro_suffix ) {/* \.{\AT!\#} */
14283 type(mp->warning_info)=mp_unsuffixed_macro-2+n; value(mp->warning_info)=q;
14284 } /* |mp_suffixed_macro=mp_unsuffixed_macro+1| */
14286 @ @<Change to `\.{a bad variable}'@>=
14288 print_err("This variable already starts with a macro");
14289 @.This variable already...@>
14290 help2("After `vardef a' you can\'t say `vardef a.b'.")
14291 ("So I'll have to discard this definition.");
14292 mp_error(mp); mp->warning_info=bad_vardef;
14295 @ @<Initialize table entries...@>=
14296 name_type(bad_vardef)=mp_root; link(bad_vardef)=frozen_bad_vardef;
14297 equiv(frozen_bad_vardef)=bad_vardef; eq_type(frozen_bad_vardef)=tag_token;
14299 @ @<Absorb delimited parameters, putting them into lists |q| and |r|@>=
14301 l_delim=mp->cur_sym; r_delim=mp->cur_mod; get_t_next;
14302 if ( (mp->cur_cmd==param_type)&&(mp->cur_mod>=expr_base) ) {
14305 print_err("Missing parameter type; `expr' will be assumed");
14306 @.Missing parameter type@>
14307 help1("You should've had `expr' or `suffix' or `text' here.");
14308 mp_back_error(mp); base=expr_base;
14310 @<Absorb parameter tokens for type |base|@>;
14311 mp_check_delimiter(mp, l_delim,r_delim);
14313 } while (mp->cur_cmd==left_delimiter)
14315 @ @<Absorb parameter tokens for type |base|@>=
14317 link(q)=mp_get_avail(mp); q=link(q); info(q)=base+k;
14318 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14319 value(p)=base+k; info(p)=mp->cur_sym;
14320 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14321 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
14322 incr(k); link(p)=r; r=p; get_t_next;
14323 } while (mp->cur_cmd==comma)
14325 @ @<Absorb undelimited parameters, putting them into list |r|@>=
14327 p=mp_get_node(mp, token_node_size);
14328 if ( mp->cur_mod<expr_base ) {
14329 c=mp->cur_mod; value(p)=expr_base+k;
14331 value(p)=mp->cur_mod+k;
14332 if ( mp->cur_mod==expr_base ) c=expr_macro;
14333 else if ( mp->cur_mod==suffix_base ) c=suffix_macro;
14336 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14337 incr(k); mp_get_symbol(mp); info(p)=mp->cur_sym; link(p)=r; r=p; get_t_next;
14338 if ( c==expr_macro ) if ( mp->cur_cmd==of_token ) {
14339 c=of_macro; p=mp_get_node(mp, token_node_size);
14340 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14341 value(p)=expr_base+k; mp_get_symbol(mp); info(p)=mp->cur_sym;
14342 link(p)=r; r=p; get_t_next;
14346 @* \[32] Expanding the next token.
14347 Only a few command codes |<min_command| can possibly be returned by
14348 |get_t_next|; in increasing order, they are
14349 |if_test|, |fi_or_else|, |input|, |iteration|, |repeat_loop|,
14350 |exit_test|, |relax|, |scan_tokens|, |expand_after|, and |defined_macro|.
14352 \MP\ usually gets the next token of input by saying |get_x_next|. This is
14353 like |get_t_next| except that it keeps getting more tokens until
14354 finding |cur_cmd>=min_command|. In other words, |get_x_next| expands
14355 macros and removes conditionals or iterations or input instructions that
14358 It follows that |get_x_next| might invoke itself recursively. In fact,
14359 there is massive recursion, since macro expansion can involve the
14360 scanning of arbitrarily complex expressions, which in turn involve
14361 macro expansion and conditionals, etc.
14364 Therefore it's necessary to declare a whole bunch of |forward|
14365 procedures at this point, and to insert some other procedures
14366 that will be invoked by |get_x_next|.
14369 void mp_scan_primary (MP mp);
14370 void mp_scan_secondary (MP mp);
14371 void mp_scan_tertiary (MP mp);
14372 void mp_scan_expression (MP mp);
14373 void mp_scan_suffix (MP mp);
14374 @<Declare the procedure called |macro_call|@>;
14375 void mp_get_boolean (MP mp);
14376 void mp_pass_text (MP mp);
14377 void mp_conditional (MP mp);
14378 void mp_start_input (MP mp);
14379 void mp_begin_iteration (MP mp);
14380 void mp_resume_iteration (MP mp);
14381 void mp_stop_iteration (MP mp);
14383 @ An auxiliary subroutine called |expand| is used by |get_x_next|
14384 when it has to do exotic expansion commands.
14386 @c void mp_expand (MP mp) {
14387 pointer p; /* for list manipulation */
14388 size_t k; /* something that we hope is |<=buf_size| */
14389 pool_pointer j; /* index into |str_pool| */
14390 if ( mp->internal[tracing_commands]>unity )
14391 if ( mp->cur_cmd!=defined_macro )
14393 switch (mp->cur_cmd) {
14395 mp_conditional(mp); /* this procedure is discussed in Part 36 below */
14398 @<Terminate the current conditional and skip to \&{fi}@>;
14401 @<Initiate or terminate input from a file@>;
14404 if ( mp->cur_mod==end_for ) {
14405 @<Scold the user for having an extra \&{endfor}@>;
14407 mp_begin_iteration(mp); /* this procedure is discussed in Part 37 below */
14414 @<Exit a loop if the proper time has come@>;
14419 @<Expand the token after the next token@>;
14422 @<Put a string into the input buffer@>;
14424 case defined_macro:
14425 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14427 }; /* there are no other cases */
14430 @ @<Scold the user...@>=
14432 print_err("Extra `endfor'");
14434 help2("I'm not currently working on a for loop,")
14435 ("so I had better not try to end anything.");
14439 @ The processing of \&{input} involves the |start_input| subroutine,
14440 which will be declared later; the processing of \&{endinput} is trivial.
14443 mp_primitive(mp, "input",input,0);
14444 @:input_}{\&{input} primitive@>
14445 mp_primitive(mp, "endinput",input,1);
14446 @:end_input_}{\&{endinput} primitive@>
14448 @ @<Cases of |print_cmd_mod|...@>=
14450 if ( m==0 ) mp_print(mp, "input");
14451 else mp_print(mp, "endinput");
14454 @ @<Initiate or terminate input...@>=
14455 if ( mp->cur_mod>0 ) mp->force_eof=true;
14456 else mp_start_input(mp)
14458 @ We'll discuss the complicated parts of loop operations later. For now
14459 it suffices to know that there's a global variable called |loop_ptr|
14460 that will be |null| if no loop is in progress.
14463 { while ( token_state &&(loc==null) )
14464 mp_end_token_list(mp); /* conserve stack space */
14465 if ( mp->loop_ptr==null ) {
14466 print_err("Lost loop");
14468 help2("I'm confused; after exiting from a loop, I still seem")
14469 ("to want to repeat it. I'll try to forget the problem.");
14472 mp_resume_iteration(mp); /* this procedure is in Part 37 below */
14476 @ @<Exit a loop if the proper time has come@>=
14477 { mp_get_boolean(mp);
14478 if ( mp->internal[tracing_commands]>unity )
14479 mp_show_cmd_mod(mp, nullary,mp->cur_exp);
14480 if ( mp->cur_exp==true_code ) {
14481 if ( mp->loop_ptr==null ) {
14482 print_err("No loop is in progress");
14483 @.No loop is in progress@>
14484 help1("Why say `exitif' when there's nothing to exit from?");
14485 if ( mp->cur_cmd==semicolon ) mp_error(mp); else mp_back_error(mp);
14487 @<Exit prematurely from an iteration@>;
14489 } else if ( mp->cur_cmd!=semicolon ) {
14490 mp_missing_err(mp, ";");
14492 help2("After `exitif <boolean exp>' I expect to see a semicolon.")
14493 ("I shall pretend that one was there."); mp_back_error(mp);
14497 @ Here we use the fact that |forever_text| is the only |token_type| that
14498 is less than |loop_text|.
14500 @<Exit prematurely...@>=
14503 if ( file_state ) {
14504 mp_end_file_reading(mp);
14506 if ( token_type<=loop_text ) p=start;
14507 mp_end_token_list(mp);
14510 if ( p!=info(mp->loop_ptr) ) mp_fatal_error(mp, "*** (loop confusion)");
14512 mp_stop_iteration(mp); /* this procedure is in Part 34 below */
14515 @ @<Expand the token after the next token@>=
14517 p=mp_cur_tok(mp); get_t_next;
14518 if ( mp->cur_cmd<min_command ) mp_expand(mp);
14519 else mp_back_input(mp);
14523 @ @<Put a string into the input buffer@>=
14524 { mp_get_x_next(mp); mp_scan_primary(mp);
14525 if ( mp->cur_type!=mp_string_type ) {
14526 mp_disp_err(mp, null,"Not a string");
14528 help2("I'm going to flush this expression, since")
14529 ("scantokens should be followed by a known string.");
14530 mp_put_get_flush_error(mp, 0);
14533 if ( length(mp->cur_exp)>0 )
14534 @<Pretend we're reading a new one-line file@>;
14538 @ @<Pretend we're reading a new one-line file@>=
14539 { mp_begin_file_reading(mp); name=is_scantok;
14540 k=mp->first+length(mp->cur_exp);
14541 if ( k>=mp->max_buf_stack ) {
14542 while ( k>=mp->buf_size ) {
14543 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
14545 mp->max_buf_stack=k+1;
14547 j=mp->str_start[mp->cur_exp]; limit=k;
14548 while ( mp->first<(size_t)limit ) {
14549 mp->buffer[mp->first]=mp->str_pool[j]; incr(j); incr(mp->first);
14551 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
14552 mp_flush_cur_exp(mp, 0);
14555 @ Here finally is |get_x_next|.
14557 The expression scanning routines to be considered later
14558 communicate via the global quantities |cur_type| and |cur_exp|;
14559 we must be very careful to save and restore these quantities while
14560 macros are being expanded.
14564 void mp_get_x_next (MP mp);
14566 @ @c void mp_get_x_next (MP mp) {
14567 pointer save_exp; /* a capsule to save |cur_type| and |cur_exp| */
14569 if ( mp->cur_cmd<min_command ) {
14570 save_exp=mp_stash_cur_exp(mp);
14572 if ( mp->cur_cmd==defined_macro )
14573 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14577 } while (mp->cur_cmd<min_command);
14578 mp_unstash_cur_exp(mp, save_exp); /* that restores |cur_type| and |cur_exp| */
14582 @ Now let's consider the |macro_call| procedure, which is used to start up
14583 all user-defined macros. Since the arguments to a macro might be expressions,
14584 |macro_call| is recursive.
14587 The first parameter to |macro_call| points to the reference count of the
14588 token list that defines the macro. The second parameter contains any
14589 arguments that have already been parsed (see below). The third parameter
14590 points to the symbolic token that names the macro. If the third parameter
14591 is |null|, the macro was defined by \&{vardef}, so its name can be
14592 reconstructed from the prefix and ``at'' arguments found within the
14595 What is this second parameter? It's simply a linked list of one-word items,
14596 whose |info| fields point to the arguments. In other words, if |arg_list=null|,
14597 no arguments have been scanned yet; otherwise |info(arg_list)| points to
14598 the first scanned argument, and |link(arg_list)| points to the list of
14599 further arguments (if any).
14601 Arguments of type \&{expr} are so-called capsules, which we will
14602 discuss later when we concentrate on expressions; they can be
14603 recognized easily because their |link| field is |void|. Arguments of type
14604 \&{suffix} and \&{text} are token lists without reference counts.
14606 @ After argument scanning is complete, the arguments are moved to the
14607 |param_stack|. (They can't be put on that stack any sooner, because
14608 the stack is growing and shrinking in unpredictable ways as more arguments
14609 are being acquired.) Then the macro body is fed to the scanner; i.e.,
14610 the replacement text of the macro is placed at the top of the \MP's
14611 input stack, so that |get_t_next| will proceed to read it next.
14613 @<Declare the procedure called |macro_call|@>=
14614 @<Declare the procedure called |print_macro_name|@>;
14615 @<Declare the procedure called |print_arg|@>;
14616 @<Declare the procedure called |scan_text_arg|@>;
14617 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14618 pointer macro_name) ;
14621 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14622 pointer macro_name) {
14623 /* invokes a user-defined control sequence */
14624 pointer r; /* current node in the macro's token list */
14625 pointer p,q; /* for list manipulation */
14626 integer n; /* the number of arguments */
14627 pointer tail = 0; /* tail of the argument list */
14628 pointer l_delim=0,r_delim=0; /* a delimiter pair */
14629 r=link(def_ref); add_mac_ref(def_ref);
14630 if ( arg_list==null ) {
14633 @<Determine the number |n| of arguments already supplied,
14634 and set |tail| to the tail of |arg_list|@>;
14636 if ( mp->internal[tracing_macros]>0 ) {
14637 @<Show the text of the macro being expanded, and the existing arguments@>;
14639 @<Scan the remaining arguments, if any; set |r| to the first token
14640 of the replacement text@>;
14641 @<Feed the arguments and replacement text to the scanner@>;
14644 @ @<Show the text of the macro...@>=
14645 mp_begin_diagnostic(mp); mp_print_ln(mp);
14646 mp_print_macro_name(mp, arg_list,macro_name);
14647 if ( n==3 ) mp_print(mp, "@@#"); /* indicate a suffixed macro */
14648 mp_show_macro(mp, def_ref,null,100000);
14649 if ( arg_list!=null ) {
14653 mp_print_arg(mp, q,n,0);
14654 incr(n); p=link(p);
14657 mp_end_diagnostic(mp, false)
14660 @ @<Declare the procedure called |print_macro_name|@>=
14661 void mp_print_macro_name (MP mp,pointer a, pointer n);
14664 void mp_print_macro_name (MP mp,pointer a, pointer n) {
14665 pointer p,q; /* they traverse the first part of |a| */
14671 mp_print_text(info(info(link(a))));
14674 while ( link(q)!=null ) q=link(q);
14675 link(q)=info(link(a));
14676 mp_show_token_list(mp, p,null,1000,0);
14682 @ @<Declare the procedure called |print_arg|@>=
14683 void mp_print_arg (MP mp,pointer q, integer n, pointer b) ;
14686 void mp_print_arg (MP mp,pointer q, integer n, pointer b) {
14687 if ( link(q)==diov ) mp_print_nl(mp, "(EXPR");
14688 else if ( (b<text_base)&&(b!=text_macro) ) mp_print_nl(mp, "(SUFFIX");
14689 else mp_print_nl(mp, "(TEXT");
14690 mp_print_int(mp, n); mp_print(mp, ")<-");
14691 if ( link(q)==diov ) mp_print_exp(mp, q,1);
14692 else mp_show_token_list(mp, q,null,1000,0);
14695 @ @<Determine the number |n| of arguments already supplied...@>=
14697 n=1; tail=arg_list;
14698 while ( link(tail)!=null ) {
14699 incr(n); tail=link(tail);
14703 @ @<Scan the remaining arguments, if any; set |r|...@>=
14704 mp->cur_cmd=comma+1; /* anything |<>comma| will do */
14705 while ( info(r)>=expr_base ) {
14706 @<Scan the delimited argument represented by |info(r)|@>;
14709 if ( mp->cur_cmd==comma ) {
14710 print_err("Too many arguments to ");
14711 @.Too many arguments...@>
14712 mp_print_macro_name(mp, arg_list,macro_name); mp_print_char(mp, ';');
14713 mp_print_nl(mp, " Missing `"); mp_print_text(r_delim);
14715 mp_print(mp, "' has been inserted");
14716 help3("I'm going to assume that the comma I just read was a")
14717 ("right delimiter, and then I'll begin expanding the macro.")
14718 ("You might want to delete some tokens before continuing.");
14721 if ( info(r)!=general_macro ) {
14722 @<Scan undelimited argument(s)@>;
14726 @ At this point, the reader will find it advisable to review the explanation
14727 of token list format that was presented earlier, paying special attention to
14728 the conventions that apply only at the beginning of a macro's token list.
14730 On the other hand, the reader will have to take the expression-parsing
14731 aspects of the following program on faith; we will explain |cur_type|
14732 and |cur_exp| later. (Several things in this program depend on each other,
14733 and it's necessary to jump into the circle somewhere.)
14735 @<Scan the delimited argument represented by |info(r)|@>=
14736 if ( mp->cur_cmd!=comma ) {
14738 if ( mp->cur_cmd!=left_delimiter ) {
14739 print_err("Missing argument to ");
14740 @.Missing argument...@>
14741 mp_print_macro_name(mp, arg_list,macro_name);
14742 help3("That macro has more parameters than you thought.")
14743 ("I'll continue by pretending that each missing argument")
14744 ("is either zero or null.");
14745 if ( info(r)>=suffix_base ) {
14746 mp->cur_exp=null; mp->cur_type=mp_token_list;
14748 mp->cur_exp=0; mp->cur_type=mp_known;
14750 mp_back_error(mp); mp->cur_cmd=right_delimiter;
14753 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
14755 @<Scan the argument represented by |info(r)|@>;
14756 if ( mp->cur_cmd!=comma )
14757 @<Check that the proper right delimiter was present@>;
14759 @<Append the current expression to |arg_list|@>
14761 @ @<Check that the proper right delim...@>=
14762 if ( (mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
14763 if ( info(link(r))>=expr_base ) {
14764 mp_missing_err(mp, ",");
14766 help3("I've finished reading a macro argument and am about to")
14767 ("read another; the arguments weren't delimited correctly.")
14768 ("You might want to delete some tokens before continuing.");
14769 mp_back_error(mp); mp->cur_cmd=comma;
14771 mp_missing_err(mp, str(text(r_delim)));
14773 help2("I've gotten to the end of the macro parameter list.")
14774 ("You might want to delete some tokens before continuing.");
14779 @ A \&{suffix} or \&{text} parameter will be have been scanned as
14780 a token list pointed to by |cur_exp|, in which case we will have
14781 |cur_type=token_list|.
14783 @<Append the current expression to |arg_list|@>=
14785 p=mp_get_avail(mp);
14786 if ( mp->cur_type==mp_token_list ) info(p)=mp->cur_exp;
14787 else info(p)=mp_stash_cur_exp(mp);
14788 if ( mp->internal[tracing_macros]>0 ) {
14789 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,info(r));
14790 mp_end_diagnostic(mp, false);
14792 if ( arg_list==null ) arg_list=p;
14797 @ @<Scan the argument represented by |info(r)|@>=
14798 if ( info(r)>=text_base ) {
14799 mp_scan_text_arg(mp, l_delim,r_delim);
14802 if ( info(r)>=suffix_base ) mp_scan_suffix(mp);
14803 else mp_scan_expression(mp);
14806 @ The parameters to |scan_text_arg| are either a pair of delimiters
14807 or zero; the latter case is for undelimited text arguments, which
14808 end with the first semicolon or \&{endgroup} or \&{end} that is not
14809 contained in a group.
14811 @<Declare the procedure called |scan_text_arg|@>=
14812 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) ;
14815 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) {
14816 integer balance; /* excess of |l_delim| over |r_delim| */
14817 pointer p; /* list tail */
14818 mp->warning_info=l_delim; mp->scanner_status=absorbing;
14819 p=hold_head; balance=1; link(hold_head)=null;
14822 if ( l_delim==0 ) {
14823 @<Adjust the balance for an undelimited argument; |break| if done@>;
14825 @<Adjust the balance for a delimited argument; |break| if done@>;
14827 link(p)=mp_cur_tok(mp); p=link(p);
14829 mp->cur_exp=link(hold_head); mp->cur_type=mp_token_list;
14830 mp->scanner_status=normal;
14833 @ @<Adjust the balance for a delimited argument...@>=
14834 if ( mp->cur_cmd==right_delimiter ) {
14835 if ( mp->cur_mod==l_delim ) {
14837 if ( balance==0 ) break;
14839 } else if ( mp->cur_cmd==left_delimiter ) {
14840 if ( mp->cur_mod==r_delim ) incr(balance);
14843 @ @<Adjust the balance for an undelimited...@>=
14844 if ( end_of_statement ) { /* |cur_cmd=semicolon|, |end_group|, or |stop| */
14845 if ( balance==1 ) { break; }
14846 else { if ( mp->cur_cmd==end_group ) decr(balance); }
14847 } else if ( mp->cur_cmd==begin_group ) {
14851 @ @<Scan undelimited argument(s)@>=
14853 if ( info(r)<text_macro ) {
14855 if ( info(r)!=suffix_macro ) {
14856 if ( (mp->cur_cmd==equals)||(mp->cur_cmd==assignment) ) mp_get_x_next(mp);
14860 case primary_macro:mp_scan_primary(mp); break;
14861 case secondary_macro:mp_scan_secondary(mp); break;
14862 case tertiary_macro:mp_scan_tertiary(mp); break;
14863 case expr_macro:mp_scan_expression(mp); break;
14865 @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>;
14868 @<Scan a suffix with optional delimiters@>;
14870 case text_macro:mp_scan_text_arg(mp, 0,0); break;
14871 } /* there are no other cases */
14873 @<Append the current expression to |arg_list|@>;
14876 @ @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>=
14878 mp_scan_expression(mp); p=mp_get_avail(mp); info(p)=mp_stash_cur_exp(mp);
14879 if ( mp->internal[tracing_macros]>0 ) {
14880 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,0);
14881 mp_end_diagnostic(mp, false);
14883 if ( arg_list==null ) arg_list=p; else link(tail)=p;
14885 if ( mp->cur_cmd!=of_token ) {
14886 mp_missing_err(mp, "of"); mp_print(mp, " for ");
14888 mp_print_macro_name(mp, arg_list,macro_name);
14889 help1("I've got the first argument; will look now for the other.");
14892 mp_get_x_next(mp); mp_scan_primary(mp);
14895 @ @<Scan a suffix with optional delimiters@>=
14897 if ( mp->cur_cmd!=left_delimiter ) {
14900 l_delim=mp->cur_sym; r_delim=mp->cur_mod; mp_get_x_next(mp);
14902 mp_scan_suffix(mp);
14903 if ( l_delim!=null ) {
14904 if ((mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
14905 mp_missing_err(mp, str(text(r_delim)));
14907 help2("I've gotten to the end of the macro parameter list.")
14908 ("You might want to delete some tokens before continuing.");
14915 @ Before we put a new token list on the input stack, it is wise to clean off
14916 all token lists that have recently been depleted. Then a user macro that ends
14917 with a call to itself will not require unbounded stack space.
14919 @<Feed the arguments and replacement text to the scanner@>=
14920 while ( token_state &&(loc==null) ) mp_end_token_list(mp); /* conserve stack space */
14921 if ( mp->param_ptr+n>mp->max_param_stack ) {
14922 mp->max_param_stack=mp->param_ptr+n;
14923 if ( mp->max_param_stack>mp->param_size )
14924 mp_overflow(mp, "parameter stack size",mp->param_size);
14925 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
14927 mp_begin_token_list(mp, def_ref,macro); name=macro_name; loc=r;
14931 mp->param_stack[mp->param_ptr]=info(p); incr(mp->param_ptr); p=link(p);
14933 mp_flush_list(mp, arg_list);
14936 @ It's sometimes necessary to put a single argument onto |param_stack|.
14937 The |stack_argument| subroutine does this.
14939 @c void mp_stack_argument (MP mp,pointer p) {
14940 if ( mp->param_ptr==mp->max_param_stack ) {
14941 incr(mp->max_param_stack);
14942 if ( mp->max_param_stack>mp->param_size )
14943 mp_overflow(mp, "parameter stack size",mp->param_size);
14944 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
14946 mp->param_stack[mp->param_ptr]=p; incr(mp->param_ptr);
14949 @* \[33] Conditional processing.
14950 Let's consider now the way \&{if} commands are handled.
14952 Conditions can be inside conditions, and this nesting has a stack
14953 that is independent of other stacks.
14954 Four global variables represent the top of the condition stack:
14955 |cond_ptr| points to pushed-down entries, if~any; |cur_if| tells whether
14956 we are processing \&{if} or \&{elseif}; |if_limit| specifies
14957 the largest code of a |fi_or_else| command that is syntactically legal;
14958 and |if_line| is the line number at which the current conditional began.
14960 If no conditions are currently in progress, the condition stack has the
14961 special state |cond_ptr=null|, |if_limit=normal|, |cur_if=0|, |if_line=0|.
14962 Otherwise |cond_ptr| points to a two-word node; the |type|, |name_type|, and
14963 |link| fields of the first word contain |if_limit|, |cur_if|, and
14964 |cond_ptr| at the next level, and the second word contains the
14965 corresponding |if_line|.
14967 @d if_node_size 2 /* number of words in stack entry for conditionals */
14968 @d if_line_field(A) mp->mem[(A)+1].cint
14969 @d if_code 1 /* code for \&{if} being evaluated */
14970 @d fi_code 2 /* code for \&{fi} */
14971 @d else_code 3 /* code for \&{else} */
14972 @d else_if_code 4 /* code for \&{elseif} */
14975 pointer cond_ptr; /* top of the condition stack */
14976 integer if_limit; /* upper bound on |fi_or_else| codes */
14977 small_number cur_if; /* type of conditional being worked on */
14978 integer if_line; /* line where that conditional began */
14981 mp->cond_ptr=null; mp->if_limit=normal; mp->cur_if=0; mp->if_line=0;
14984 mp_primitive(mp, "if",if_test,if_code);
14985 @:if_}{\&{if} primitive@>
14986 mp_primitive(mp, "fi",fi_or_else,fi_code); mp->eqtb[frozen_fi]=mp->eqtb[mp->cur_sym];
14987 @:fi_}{\&{fi} primitive@>
14988 mp_primitive(mp, "else",fi_or_else,else_code);
14989 @:else_}{\&{else} primitive@>
14990 mp_primitive(mp, "elseif",fi_or_else,else_if_code);
14991 @:else_if_}{\&{elseif} primitive@>
14993 @ @<Cases of |print_cmd_mod|...@>=
14997 case if_code:mp_print(mp, "if"); break;
14998 case fi_code:mp_print(mp, "fi"); break;
14999 case else_code:mp_print(mp, "else"); break;
15000 default: mp_print(mp, "elseif"); break;
15004 @ Here is a procedure that ignores text until coming to an \&{elseif},
15005 \&{else}, or \&{fi} at level zero of $\&{if}\ldots\&{fi}$
15006 nesting. After it has acted, |cur_mod| will indicate the token that
15009 \MP's smallest two command codes are |if_test| and |fi_or_else|; this
15010 makes the skipping process a bit simpler.
15013 void mp_pass_text (MP mp) {
15015 mp->scanner_status=skipping;
15016 mp->warning_info=mp_true_line(mp);
15019 if ( mp->cur_cmd<=fi_or_else ) {
15020 if ( mp->cur_cmd<fi_or_else ) {
15024 if ( mp->cur_mod==fi_code ) decr(l);
15027 @<Decrease the string reference count,
15028 if the current token is a string@>;
15031 mp->scanner_status=normal;
15034 @ @<Decrease the string reference count...@>=
15035 if ( mp->cur_cmd==string_token ) { delete_str_ref(mp->cur_mod); }
15037 @ When we begin to process a new \&{if}, we set |if_limit:=if_code|; then
15038 if \&{elseif} or \&{else} or \&{fi} occurs before the current \&{if}
15039 condition has been evaluated, a colon will be inserted.
15040 A construction like `\.{if fi}' would otherwise get \MP\ confused.
15042 @<Push the condition stack@>=
15043 { p=mp_get_node(mp, if_node_size); link(p)=mp->cond_ptr; type(p)=mp->if_limit;
15044 name_type(p)=mp->cur_if; if_line_field(p)=mp->if_line;
15045 mp->cond_ptr=p; mp->if_limit=if_code; mp->if_line=mp_true_line(mp);
15046 mp->cur_if=if_code;
15049 @ @<Pop the condition stack@>=
15050 { p=mp->cond_ptr; mp->if_line=if_line_field(p);
15051 mp->cur_if=name_type(p); mp->if_limit=type(p); mp->cond_ptr=link(p);
15052 mp_free_node(mp, p,if_node_size);
15055 @ Here's a procedure that changes the |if_limit| code corresponding to
15056 a given value of |cond_ptr|.
15058 @c void mp_change_if_limit (MP mp,small_number l, pointer p) {
15060 if ( p==mp->cond_ptr ) {
15061 mp->if_limit=l; /* that's the easy case */
15065 if ( q==null ) mp_confusion(mp, "if");
15066 @:this can't happen if}{\quad if@>
15067 if ( link(q)==p ) {
15075 @ The user is supposed to put colons into the proper parts of conditional
15076 statements. Therefore, \MP\ has to check for their presence.
15079 void mp_check_colon (MP mp) {
15080 if ( mp->cur_cmd!=colon ) {
15081 mp_missing_err(mp, ":");
15083 help2("There should've been a colon after the condition.")
15084 ("I shall pretend that one was there.");;
15089 @ A condition is started when the |get_x_next| procedure encounters
15090 an |if_test| command; in that case |get_x_next| calls |conditional|,
15091 which is a recursive procedure.
15094 @c void mp_conditional (MP mp) {
15095 pointer save_cond_ptr; /* |cond_ptr| corresponding to this conditional */
15096 int new_if_limit; /* future value of |if_limit| */
15097 pointer p; /* temporary register */
15098 @<Push the condition stack@>;
15099 save_cond_ptr=mp->cond_ptr;
15101 mp_get_boolean(mp); new_if_limit=else_if_code;
15102 if ( mp->internal[tracing_commands]>unity ) {
15103 @<Display the boolean value of |cur_exp|@>;
15106 mp_check_colon(mp);
15107 if ( mp->cur_exp==true_code ) {
15108 mp_change_if_limit(mp, new_if_limit,save_cond_ptr);
15109 return; /* wait for \&{elseif}, \&{else}, or \&{fi} */
15111 @<Skip to \&{elseif} or \&{else} or \&{fi}, then |goto done|@>;
15113 mp->cur_if=mp->cur_mod; mp->if_line=mp_true_line(mp);
15114 if ( mp->cur_mod==fi_code ) {
15115 @<Pop the condition stack@>
15116 } else if ( mp->cur_mod==else_if_code ) {
15119 mp->cur_exp=true_code; new_if_limit=fi_code; mp_get_x_next(mp);
15124 @ In a construction like `\&{if} \&{if} \&{true}: $0=1$: \\{foo}
15125 \&{else}: \\{bar} \&{fi}', the first \&{else}
15126 that we come to after learning that the \&{if} is false is not the
15127 \&{else} we're looking for. Hence the following curious logic is needed.
15129 @<Skip to \&{elseif}...@>=
15132 if ( mp->cond_ptr==save_cond_ptr ) goto DONE;
15133 else if ( mp->cur_mod==fi_code ) @<Pop the condition stack@>;
15137 @ @<Display the boolean value...@>=
15138 { mp_begin_diagnostic(mp);
15139 if ( mp->cur_exp==true_code ) mp_print(mp, "{true}");
15140 else mp_print(mp, "{false}");
15141 mp_end_diagnostic(mp, false);
15144 @ The processing of conditionals is complete except for the following
15145 code, which is actually part of |get_x_next|. It comes into play when
15146 \&{elseif}, \&{else}, or \&{fi} is scanned.
15148 @<Terminate the current conditional and skip to \&{fi}@>=
15149 if ( mp->cur_mod>mp->if_limit ) {
15150 if ( mp->if_limit==if_code ) { /* condition not yet evaluated */
15151 mp_missing_err(mp, ":");
15153 mp_back_input(mp); mp->cur_sym=frozen_colon; mp_ins_error(mp);
15155 print_err("Extra "); mp_print_cmd_mod(mp, fi_or_else,mp->cur_mod);
15159 help1("I'm ignoring this; it doesn't match any if.");
15163 while ( mp->cur_mod!=fi_code ) mp_pass_text(mp); /* skip to \&{fi} */
15164 @<Pop the condition stack@>;
15167 @* \[34] Iterations.
15168 To bring our treatment of |get_x_next| to a close, we need to consider what
15169 \MP\ does when it sees \&{for}, \&{forsuffixes}, and \&{forever}.
15171 There's a global variable |loop_ptr| that keeps track of the \&{for} loops
15172 that are currently active. If |loop_ptr=null|, no loops are in progress;
15173 otherwise |info(loop_ptr)| points to the iterative text of the current
15174 (innermost) loop, and |link(loop_ptr)| points to the data for any other
15175 loops that enclose the current one.
15177 A loop-control node also has two other fields, called |loop_type| and
15178 |loop_list|, whose contents depend on the type of loop:
15180 \yskip\indent|loop_type(loop_ptr)=null| means that |loop_list(loop_ptr)|
15181 points to a list of one-word nodes whose |info| fields point to the
15182 remaining argument values of a suffix list and expression list.
15184 \yskip\indent|loop_type(loop_ptr)=diov| means that the current loop is
15187 \yskip\indent|loop_type(loop_ptr)=progression_flag| means that
15188 |p=loop_list(loop_ptr)| points to a ``progression node'' and |value(p)|,
15189 |step_size(p)|, and |final_value(p)| contain the data for an arithmetic
15192 \yskip\indent|loop_type(loop_ptr)=p>diov| means that |p| points to an edge
15193 header and |loop_list(loop_ptr)| points into the graphical object list for
15196 \yskip\noindent In the case of a progression node, the first word is not used
15197 because the link field of words in the dynamic memory area cannot be arbitrary.
15199 @d loop_list_loc(A) ((A)+1) /* where the |loop_list| field resides */
15200 @d loop_type(A) info(loop_list_loc((A))) /* the type of \&{for} loop */
15201 @d loop_list(A) link(loop_list_loc((A))) /* the remaining list elements */
15202 @d loop_node_size 2 /* the number of words in a loop control node */
15203 @d progression_node_size 4 /* the number of words in a progression node */
15204 @d step_size(A) mp->mem[(A)+2].sc /* the step size in an arithmetic progression */
15205 @d final_value(A) mp->mem[(A)+3].sc /* the final value in an arithmetic progression */
15206 @d progression_flag (null+2)
15207 /* |loop_type| value when |loop_list| points to a progression node */
15210 pointer loop_ptr; /* top of the loop-control-node stack */
15215 @ If the expressions that define an arithmetic progression in
15216 a \&{for} loop don't have known numeric values, the |bad_for|
15217 subroutine screams at the user.
15219 @c void mp_bad_for (MP mp, char * s) {
15220 mp_disp_err(mp, null,"Improper "); /* show the bad expression above the message */
15221 @.Improper...replaced by 0@>
15222 mp_print(mp, s); mp_print(mp, " has been replaced by 0");
15223 help4("When you say `for x=a step b until c',")
15224 ("the initial value `a' and the step size `b'")
15225 ("and the final value `c' must have known numeric values.")
15226 ("I'm zeroing this one. Proceed, with fingers crossed.");
15227 mp_put_get_flush_error(mp, 0);
15230 @ Here's what \MP\ does when \&{for}, \&{forsuffixes}, or \&{forever}
15231 has just been scanned. (This code requires slight familiarity with
15232 expression-parsing routines that we have not yet discussed; but it seems
15233 to belong in the present part of the program, even though the original author
15234 didn't write it until later. The reader may wish to come back to it.)
15236 @c void mp_begin_iteration (MP mp) {
15237 halfword m; /* |expr_base| (\&{for}) or |suffix_base| (\&{forsuffixes}) */
15238 halfword n; /* hash address of the current symbol */
15239 pointer s; /* the new loop-control node */
15240 pointer p; /* substitution list for |scan_toks| */
15241 pointer q; /* link manipulation register */
15242 pointer pp; /* a new progression node */
15243 m=mp->cur_mod; n=mp->cur_sym; s=mp_get_node(mp, loop_node_size);
15244 if ( m==start_forever ){
15245 loop_type(s)=diov; p=null; mp_get_x_next(mp);
15247 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
15248 info(p)=mp->cur_sym; value(p)=m;
15250 if ( mp->cur_cmd==within_token ) {
15251 @<Set up a picture iteration@>;
15253 @<Check for the |"="| or |":="| in a loop header@>;
15254 @<Scan the values to be used in the loop@>;
15257 @<Check for the presence of a colon@>;
15258 @<Scan the loop text and put it on the loop control stack@>;
15259 mp_resume_iteration(mp);
15262 @ @<Check for the |"="| or |":="| in a loop header@>=
15263 if ( (mp->cur_cmd!=equals)&&(mp->cur_cmd!=assignment) ) {
15264 mp_missing_err(mp, "=");
15266 help3("The next thing in this loop should have been `=' or `:='.")
15267 ("But don't worry; I'll pretend that an equals sign")
15268 ("was present, and I'll look for the values next.");
15272 @ @<Check for the presence of a colon@>=
15273 if ( mp->cur_cmd!=colon ) {
15274 mp_missing_err(mp, ":");
15276 help3("The next thing in this loop should have been a `:'.")
15277 ("So I'll pretend that a colon was present;")
15278 ("everything from here to `endfor' will be iterated.");
15282 @ We append a special |frozen_repeat_loop| token in place of the
15283 `\&{endfor}' at the end of the loop. This will come through \MP's scanner
15284 at the proper time to cause the loop to be repeated.
15286 (If the user tries some shenanigan like `\&{for} $\ldots$ \&{let} \&{endfor}',
15287 he will be foiled by the |get_symbol| routine, which keeps frozen
15288 tokens unchanged. Furthermore the |frozen_repeat_loop| is an \&{outer}
15289 token, so it won't be lost accidentally.)
15291 @ @<Scan the loop text...@>=
15292 q=mp_get_avail(mp); info(q)=frozen_repeat_loop;
15293 mp->scanner_status=loop_defining; mp->warning_info=n;
15294 info(s)=mp_scan_toks(mp, iteration,p,q,0); mp->scanner_status=normal;
15295 link(s)=mp->loop_ptr; mp->loop_ptr=s
15297 @ @<Initialize table...@>=
15298 eq_type(frozen_repeat_loop)=repeat_loop+outer_tag;
15299 text(frozen_repeat_loop)=intern(" ENDFOR");
15301 @ The loop text is inserted into \MP's scanning apparatus by the
15302 |resume_iteration| routine.
15304 @c void mp_resume_iteration (MP mp) {
15305 pointer p,q; /* link registers */
15306 p=loop_type(mp->loop_ptr);
15307 if ( p==progression_flag ) {
15308 p=loop_list(mp->loop_ptr); /* now |p| points to a progression node */
15309 mp->cur_exp=value(p);
15310 if ( @<The arithmetic progression has ended@> ) {
15311 mp_stop_iteration(mp);
15314 mp->cur_type=mp_known; q=mp_stash_cur_exp(mp); /* make |q| an \&{expr} argument */
15315 value(p)=mp->cur_exp+step_size(p); /* set |value(p)| for the next iteration */
15316 } else if ( p==null ) {
15317 p=loop_list(mp->loop_ptr);
15319 mp_stop_iteration(mp);
15322 loop_list(mp->loop_ptr)=link(p); q=info(p); free_avail(p);
15323 } else if ( p==diov ) {
15324 mp_begin_token_list(mp, info(mp->loop_ptr),forever_text); return;
15326 @<Make |q| a capsule containing the next picture component from
15327 |loop_list(loop_ptr)| or |goto not_found|@>;
15329 mp_begin_token_list(mp, info(mp->loop_ptr),loop_text);
15330 mp_stack_argument(mp, q);
15331 if ( mp->internal[tracing_commands]>unity ) {
15332 @<Trace the start of a loop@>;
15336 mp_stop_iteration(mp);
15339 @ @<The arithmetic progression has ended@>=
15340 ((step_size(p)>0)&&(mp->cur_exp>final_value(p)))||
15341 ((step_size(p)<0)&&(mp->cur_exp<final_value(p)))
15343 @ @<Trace the start of a loop@>=
15345 mp_begin_diagnostic(mp); mp_print_nl(mp, "{loop value=");
15347 if ( (q!=null)&&(link(q)==diov) ) mp_print_exp(mp, q,1);
15348 else mp_show_token_list(mp, q,null,50,0);
15349 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
15352 @ @<Make |q| a capsule containing the next picture component from...@>=
15353 { q=loop_list(mp->loop_ptr);
15354 if ( q==null ) goto NOT_FOUND;
15355 skip_component(q) goto NOT_FOUND;
15356 mp->cur_exp=mp_copy_objects(mp, loop_list(mp->loop_ptr),q);
15357 mp_init_bbox(mp, mp->cur_exp);
15358 mp->cur_type=mp_picture_type;
15359 loop_list(mp->loop_ptr)=q;
15360 q=mp_stash_cur_exp(mp);
15363 @ A level of loop control disappears when |resume_iteration| has decided
15364 not to resume, or when an \&{exitif} construction has removed the loop text
15365 from the input stack.
15367 @c void mp_stop_iteration (MP mp) {
15368 pointer p,q; /* the usual */
15369 p=loop_type(mp->loop_ptr);
15370 if ( p==progression_flag ) {
15371 mp_free_node(mp, loop_list(mp->loop_ptr),progression_node_size);
15372 } else if ( p==null ){
15373 q=loop_list(mp->loop_ptr);
15374 while ( q!=null ) {
15377 if ( link(p)==diov ) { /* it's an \&{expr} parameter */
15378 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
15380 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
15383 p=q; q=link(q); free_avail(p);
15385 } else if ( p>progression_flag ) {
15386 delete_edge_ref(p);
15388 p=mp->loop_ptr; mp->loop_ptr=link(p); mp_flush_token_list(mp, info(p));
15389 mp_free_node(mp, p,loop_node_size);
15392 @ Now that we know all about loop control, we can finish up
15393 the missing portion of |begin_iteration| and we'll be done.
15395 The following code is performed after the `\.=' has been scanned in
15396 a \&{for} construction (if |m=expr_base|) or a \&{forsuffixes} construction
15397 (if |m=suffix_base|).
15399 @<Scan the values to be used in the loop@>=
15400 loop_type(s)=null; q=loop_list_loc(s); link(q)=null; /* |link(q)=loop_list(s)| */
15403 if ( m!=expr_base ) {
15404 mp_scan_suffix(mp);
15406 if ( mp->cur_cmd>=colon ) if ( mp->cur_cmd<=comma )
15408 mp_scan_expression(mp);
15409 if ( mp->cur_cmd==step_token ) if ( q==loop_list_loc(s) ) {
15410 @<Prepare for step-until construction and |break|@>;
15412 mp->cur_exp=mp_stash_cur_exp(mp);
15414 link(q)=mp_get_avail(mp); q=link(q);
15415 info(q)=mp->cur_exp; mp->cur_type=mp_vacuous;
15418 } while (mp->cur_cmd==comma)
15420 @ @<Prepare for step-until construction and |break|@>=
15422 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "initial value");
15423 pp=mp_get_node(mp, progression_node_size); value(pp)=mp->cur_exp;
15424 mp_get_x_next(mp); mp_scan_expression(mp);
15425 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "step size");
15426 step_size(pp)=mp->cur_exp;
15427 if ( mp->cur_cmd!=until_token ) {
15428 mp_missing_err(mp, "until");
15429 @.Missing `until'@>
15430 help2("I assume you meant to say `until' after `step'.")
15431 ("So I'll look for the final value and colon next.");
15434 mp_get_x_next(mp); mp_scan_expression(mp);
15435 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "final value");
15436 final_value(pp)=mp->cur_exp; loop_list(s)=pp;
15437 loop_type(s)=progression_flag;
15441 @ The last case is when we have just seen ``\&{within}'', and we need to
15442 parse a picture expression and prepare to iterate over it.
15444 @<Set up a picture iteration@>=
15445 { mp_get_x_next(mp);
15446 mp_scan_expression(mp);
15447 @<Make sure the current expression is a known picture@>;
15448 loop_type(s)=mp->cur_exp; mp->cur_type=mp_vacuous;
15449 q=link(dummy_loc(mp->cur_exp));
15451 if ( is_start_or_stop(q) )
15452 if ( mp_skip_1component(mp, q)==null ) q=link(q);
15456 @ @<Make sure the current expression is a known picture@>=
15457 if ( mp->cur_type!=mp_picture_type ) {
15458 mp_disp_err(mp, null,"Improper iteration spec has been replaced by nullpicture");
15459 help1("When you say `for x in p', p must be a known picture.");
15460 mp_put_get_flush_error(mp, mp_get_node(mp, edge_header_size));
15461 mp_init_edges(mp, mp->cur_exp); mp->cur_type=mp_picture_type;
15464 @* \[35] File names.
15465 It's time now to fret about file names. Besides the fact that different
15466 operating systems treat files in different ways, we must cope with the
15467 fact that completely different naming conventions are used by different
15468 groups of people. The following programs show what is required for one
15469 particular operating system; similar routines for other systems are not
15470 difficult to devise.
15471 @^system dependencies@>
15473 \MP\ assumes that a file name has three parts: the name proper; its
15474 ``extension''; and a ``file area'' where it is found in an external file
15475 system. The extension of an input file is assumed to be
15476 `\.{.mp}' unless otherwise specified; it is `\.{.log}' on the
15477 transcript file that records each run of \MP; it is `\.{.tfm}' on the font
15478 metric files that describe characters in any fonts created by \MP; it is
15479 `\.{.ps}' or `.{\it nnn}' for some number {\it nnn} on the \ps\ output files;
15480 and it is `\.{.mem}' on the mem files written by \.{INIMP} to initialize \MP.
15481 The file area can be arbitrary on input files, but files are usually
15482 output to the user's current area. If an input file cannot be
15483 found on the specified area, \MP\ will look for it on a special system
15484 area; this special area is intended for commonly used input files.
15486 Simple uses of \MP\ refer only to file names that have no explicit
15487 extension or area. For example, a person usually says `\.{input} \.{cmr10}'
15488 instead of `\.{input} \.{cmr10.new}'. Simple file
15489 names are best, because they make the \MP\ source files portable;
15490 whenever a file name consists entirely of letters and digits, it should be
15491 treated in the same way by all implementations of \MP. However, users
15492 need the ability to refer to other files in their environment, especially
15493 when responding to error messages concerning unopenable files; therefore
15494 we want to let them use the syntax that appears in their favorite
15497 @ \MP\ uses the same conventions that have proved to be satisfactory for
15498 \TeX\ and \MF. In order to isolate the system-dependent aspects of file names,
15499 @^system dependencies@>
15500 the system-independent parts of \MP\ are expressed in terms
15501 of three system-dependent
15502 procedures called |begin_name|, |more_name|, and |end_name|. In
15503 essence, if the user-specified characters of the file name are $c_1\ldots c_n$,
15504 the system-independent driver program does the operations
15505 $$|begin_name|;\,|more_name|(c_1);\,\ldots\,;|more_name|(c_n);
15507 These three procedures communicate with each other via global variables.
15508 Afterwards the file name will appear in the string pool as three strings
15509 called |cur_name|\penalty10000\hskip-.05em,
15510 |cur_area|, and |cur_ext|; the latter two are null (i.e.,
15511 |""|), unless they were explicitly specified by the user.
15513 Actually the situation is slightly more complicated, because \MP\ needs
15514 to know when the file name ends. The |more_name| routine is a function
15515 (with side effects) that returns |true| on the calls |more_name|$(c_1)$,
15516 \dots, |more_name|$(c_{n-1})$. The final call |more_name|$(c_n)$
15517 returns |false|; or, it returns |true| and $c_n$ is the last character
15518 on the current input line. In other words,
15519 |more_name| is supposed to return |true| unless it is sure that the
15520 file name has been completely scanned; and |end_name| is supposed to be able
15521 to finish the assembly of |cur_name|, |cur_area|, and |cur_ext| regardless of
15522 whether $|more_name|(c_n)$ returned |true| or |false|.
15525 char * cur_name; /* name of file just scanned */
15526 char * cur_area; /* file area just scanned, or \.{""} */
15527 char * cur_ext; /* file extension just scanned, or \.{""} */
15529 @ It is easier to maintain reference counts if we assign initial values.
15532 mp->cur_name=xstrdup("");
15533 mp->cur_area=xstrdup("");
15534 mp->cur_ext=xstrdup("");
15536 @ @<Dealloc variables@>=
15537 xfree(mp->cur_area);
15538 xfree(mp->cur_name);
15539 xfree(mp->cur_ext);
15541 @ The file names we shall deal with for illustrative purposes have the
15542 following structure: If the name contains `\.>' or `\.:', the file area
15543 consists of all characters up to and including the final such character;
15544 otherwise the file area is null. If the remaining file name contains
15545 `\..', the file extension consists of all such characters from the first
15546 remaining `\..' to the end, otherwise the file extension is null.
15547 @^system dependencies@>
15549 We can scan such file names easily by using two global variables that keep track
15550 of the occurrences of area and extension delimiters. Note that these variables
15551 cannot be of type |pool_pointer| because a string pool compaction could occur
15552 while scanning a file name.
15555 integer area_delimiter;
15556 /* most recent `\.>' or `\.:' relative to |str_start[str_ptr]| */
15557 integer ext_delimiter; /* the relevant `\..', if any */
15559 @ Input files that can't be found in the user's area may appear in standard
15560 system areas called |MP_area| and |MF_area|. (The latter is used when the file
15561 extension is |".mf"|.) The standard system area for font metric files
15562 to be read is |MP_font_area|.
15563 This system area name will, of course, vary from place to place.
15564 @^system dependencies@>
15566 @d MP_area "MPinputs:"
15568 @d MF_area "MFinputs:"
15573 @ Here now is the first of the system-dependent routines for file name scanning.
15574 @^system dependencies@>
15576 @<Declare subroutines for parsing file names@>=
15577 void mp_begin_name (MP mp) {
15578 xfree(mp->cur_name);
15579 xfree(mp->cur_area);
15580 xfree(mp->cur_ext);
15581 mp->area_delimiter=-1;
15582 mp->ext_delimiter=-1;
15585 @ And here's the second.
15586 @^system dependencies@>
15588 @<Declare subroutines for parsing file names@>=
15589 boolean mp_more_name (MP mp, ASCII_code c) {
15593 if ( (c=='>')||(c==':') ) {
15594 mp->area_delimiter=mp->pool_ptr;
15595 mp->ext_delimiter=-1;
15596 } else if ( (c=='.')&&(mp->ext_delimiter<0) ) {
15597 mp->ext_delimiter=mp->pool_ptr;
15599 str_room(1); append_char(c); /* contribute |c| to the current string */
15605 @^system dependencies@>
15607 @d copy_pool_segment(A,B,C) {
15608 A = xmalloc(C+1,sizeof(char));
15609 strncpy(A,(char *)(mp->str_pool+B),C);
15612 @<Declare subroutines for parsing file names@>=
15613 void mp_end_name (MP mp) {
15614 pool_pointer s; /* length of area, name, and extension */
15617 s = mp->str_start[mp->str_ptr];
15618 if ( mp->area_delimiter<0 ) {
15619 mp->cur_area=xstrdup("");
15621 len = mp->area_delimiter-s;
15622 copy_pool_segment(mp->cur_area,s,len);
15625 if ( mp->ext_delimiter<0 ) {
15626 mp->cur_ext=xstrdup("");
15627 len = mp->pool_ptr-s;
15629 copy_pool_segment(mp->cur_ext,mp->ext_delimiter,(mp->pool_ptr-mp->ext_delimiter));
15630 len = mp->ext_delimiter-s;
15632 copy_pool_segment(mp->cur_name,s,len);
15633 mp->pool_ptr=s; /* don't need this partial string */
15636 @ Conversely, here is a routine that takes three strings and prints a file
15637 name that might have produced them. (The routine is system dependent, because
15638 some operating systems put the file area last instead of first.)
15639 @^system dependencies@>
15641 @<Basic printing...@>=
15642 void mp_print_file_name (MP mp, char * n, char * a, char * e) {
15643 mp_print(mp, a); mp_print(mp, n); mp_print(mp, e);
15646 @ Another system-dependent routine is needed to convert three internal
15648 to the |name_of_file| value that is used to open files. The present code
15649 allows both lowercase and uppercase letters in the file name.
15650 @^system dependencies@>
15652 @d append_to_name(A) { c=(A);
15653 if ( k<file_name_size ) {
15654 mp->name_of_file[k]=xchr(c);
15659 @<Declare subroutines for parsing file names@>=
15660 void mp_pack_file_name (MP mp, char *n, char *a, char *e) {
15661 integer k; /* number of positions filled in |name_of_file| */
15662 ASCII_code c; /* character being packed */
15663 char *j; /* a character index */
15667 for (j=a;*j;j++) { append_to_name(*j); }
15669 for (j=n;*j;j++) { append_to_name(*j); }
15671 for (j=e;*j;j++) { append_to_name(*j); }
15673 mp->name_of_file[k]=0;
15678 void mp_pack_file_name (MP mp, char *n, char *a, char *e) ;
15680 @ A messier routine is also needed, since mem file names must be scanned
15681 before \MP's string mechanism has been initialized. We shall use the
15682 global variable |MP_mem_default| to supply the text for default system areas
15683 and extensions related to mem files.
15684 @^system dependencies@>
15686 @d mem_default_length 9 /* length of the |MP_mem_default| string */
15687 @d mem_ext_length 4 /* length of its `\.{.mem}' part */
15688 @d mem_extension ".mem" /* the extension, as a \.{WEB} constant */
15691 char *MP_mem_default;
15692 char *mem_name; /* for commandline */
15694 @ @<Option variables@>=
15695 char *mem_name; /* for commandline */
15697 @ @<Allocate or initialize ...@>=
15698 mp->MP_mem_default = xstrdup("plain.mem");
15699 mp->mem_name = mp_xstrdup(opt.mem_name);
15701 @^system dependencies@>
15703 @ @<Dealloc variables@>=
15704 xfree(mp->MP_mem_default);
15705 xfree(mp->mem_name);
15707 @ @<Check the ``constant'' values for consistency@>=
15708 if ( mem_default_length>file_name_size ) mp->bad=20;
15710 @ Here is the messy routine that was just mentioned. It sets |name_of_file|
15711 from the first |n| characters of |MP_mem_default|, followed by
15712 |buffer[a..b]|, followed by the last |mem_ext_length| characters of
15715 We dare not give error messages here, since \MP\ calls this routine before
15716 the |error| routine is ready to roll. Instead, we simply drop excess characters,
15717 since the error will be detected in another way when a strange file name
15719 @^system dependencies@>
15721 @c void mp_pack_buffered_name (MP mp,small_number n, integer a,
15723 integer k; /* number of positions filled in |name_of_file| */
15724 ASCII_code c; /* character being packed */
15725 integer j; /* index into |buffer| or |MP_mem_default| */
15726 if ( n+b-a+1+mem_ext_length>file_name_size )
15727 b=a+file_name_size-n-1-mem_ext_length;
15729 for (j=0;j<n;j++) {
15730 append_to_name(xord((int)mp->MP_mem_default[j]));
15732 for (j=a;j<=b;j++) {
15733 append_to_name(mp->buffer[j]);
15735 for (j=mem_default_length-mem_ext_length;
15736 j<mem_default_length;j++) {
15737 append_to_name(xord((int)mp->MP_mem_default[j]));
15739 mp->name_of_file[k]=0;
15743 @ Here is the only place we use |pack_buffered_name|. This part of the program
15744 becomes active when a ``virgin'' \MP\ is trying to get going, just after
15745 the preliminary initialization, or when the user is substituting another
15746 mem file by typing `\.\&' after the initial `\.{**}' prompt. The buffer
15747 contains the first line of input in |buffer[loc..(last-1)]|, where
15748 |loc<last| and |buffer[loc]<>" "|.
15751 boolean mp_open_mem_file (MP mp) ;
15754 boolean mp_open_mem_file (MP mp) {
15755 int j; /* the first space after the file name */
15756 if (mp->mem_name!=NULL) {
15757 mp->mem_file = mp_open_file(mp, mp->mem_name, "rb", mp_filetype_memfile);
15758 if ( mp->mem_file ) return true;
15761 if ( mp->buffer[loc]=='&' ) {
15762 incr(loc); j=loc; mp->buffer[mp->last]=' ';
15763 while ( mp->buffer[j]!=' ' ) incr(j);
15764 mp_pack_buffered_name(mp, 0,loc,j-1); /* try first without the system file area */
15765 if ( mp_w_open_in(mp, &mp->mem_file) ) goto FOUND;
15767 wterm_ln("Sorry, I can\'t find that mem file; will try PLAIN.");
15768 @.Sorry, I can't find...@>
15771 /* now pull out all the stops: try for the system \.{plain} file */
15772 mp_pack_buffered_name(mp, mem_default_length-mem_ext_length,0,0);
15773 if ( ! mp_w_open_in(mp, &mp->mem_file) ) {
15775 wterm_ln("I can\'t find the PLAIN mem file!\n");
15776 @.I can't find PLAIN...@>
15781 loc=j; return true;
15784 @ Operating systems often make it possible to determine the exact name (and
15785 possible version number) of a file that has been opened. The following routine,
15786 which simply makes a \MP\ string from the value of |name_of_file|, should
15787 ideally be changed to deduce the full name of file~|f|, which is the file
15788 most recently opened, if it is possible to do this in a \PASCAL\ program.
15789 @^system dependencies@>
15792 #define mp_a_make_name_string(A,B) mp_make_name_string(A)
15793 #define mp_b_make_name_string(A,B) mp_make_name_string(A)
15794 #define mp_w_make_name_string(A,B) mp_make_name_string(A)
15797 str_number mp_make_name_string (MP mp) {
15798 int k; /* index into |name_of_file| */
15799 str_room(mp->name_length);
15800 for (k=0;k<mp->name_length;k++) {
15801 append_char(xord((int)mp->name_of_file[k]));
15803 return mp_make_string(mp);
15806 @ Now let's consider the ``driver''
15807 routines by which \MP\ deals with file names
15808 in a system-independent manner. First comes a procedure that looks for a
15809 file name in the input by taking the information from the input buffer.
15810 (We can't use |get_next|, because the conversion to tokens would
15811 destroy necessary information.)
15813 This procedure doesn't allow semicolons or percent signs to be part of
15814 file names, because of other conventions of \MP.
15815 {\sl The {\logos METAFONT\/}book} doesn't
15816 use semicolons or percents immediately after file names, but some users
15817 no doubt will find it natural to do so; therefore system-dependent
15818 changes to allow such characters in file names should probably
15819 be made with reluctance, and only when an entire file name that
15820 includes special characters is ``quoted'' somehow.
15821 @^system dependencies@>
15823 @c void mp_scan_file_name (MP mp) {
15825 while ( mp->buffer[loc]==' ' ) incr(loc);
15827 if ( (mp->buffer[loc]==';')||(mp->buffer[loc]=='%') ) break;
15828 if ( ! mp_more_name(mp, mp->buffer[loc]) ) break;
15834 @ Here is another version that takes its input from a string.
15836 @<Declare subroutines for parsing file names@>=
15837 void mp_str_scan_file (MP mp, str_number s) {
15838 pool_pointer p,q; /* current position and stopping point */
15840 p=mp->str_start[s]; q=str_stop(s);
15842 if ( ! mp_more_name(mp, mp->str_pool[p]) ) break;
15848 @ And one that reads from a |char*|.
15850 @<Declare subroutines for parsing file names@>=
15851 void mp_ptr_scan_file (MP mp, char *s) {
15852 char *p, *q; /* current position and stopping point */
15854 p=s; q=p+strlen(s);
15856 if ( ! mp_more_name(mp, *p)) break;
15863 @ The global variable |job_name| contains the file name that was first
15864 \&{input} by the user. This name is extended by `\.{.log}' and `\.{ps}' and
15865 `\.{.mem}' and `\.{.tfm}' in order to make the names of \MP's output files.
15868 char *job_name; /* principal file name */
15869 boolean log_opened; /* has the transcript file been opened? */
15870 char *log_name; /* full name of the log file */
15872 @ @<Option variables@>=
15873 char *job_name; /* principal file name */
15875 @ Initially |job_name=NULL|; it becomes nonzero as soon as the true name is known.
15876 We have |job_name=NULL| if and only if the `\.{log}' file has not been opened,
15877 except of course for a short time just after |job_name| has become nonzero.
15879 @<Allocate or ...@>=
15880 mp->job_name=mp_xstrdup(opt.job_name);
15881 mp->log_opened=false;
15883 @ @<Dealloc variables@>=
15884 xfree(mp->job_name);
15886 @ Here is a routine that manufactures the output file names, assuming that
15887 |job_name<>0|. It ignores and changes the current settings of |cur_area|
15890 @d pack_cur_name mp_pack_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext)
15893 void mp_pack_job_name (MP mp, char *s) ;
15895 @ @c void mp_pack_job_name (MP mp, char *s) { /* |s = ".log"|, |".mem"|, |".ps"|, or .\\{nnn} */
15896 xfree(mp->cur_name); mp->cur_name=xstrdup(mp->job_name);
15897 xfree(mp->cur_area); mp->cur_area=xstrdup("");
15898 xfree(mp->cur_ext); mp->cur_ext=xstrdup(s);
15902 @ If some trouble arises when \MP\ tries to open a file, the following
15903 routine calls upon the user to supply another file name. Parameter~|s|
15904 is used in the error message to identify the type of file; parameter~|e|
15905 is the default extension if none is given. Upon exit from the routine,
15906 variables |cur_name|, |cur_area|, |cur_ext|, and |name_of_file| are
15907 ready for another attempt at file opening.
15910 void mp_prompt_file_name (MP mp,char * s, char * e) ;
15912 @ @c void mp_prompt_file_name (MP mp,char * s, char * e) {
15913 size_t k; /* index into |buffer| */
15914 char * saved_cur_name;
15915 if ( mp->interaction==mp_scroll_mode )
15917 if (strcmp(s,"input file name")==0) {
15918 print_err("I can\'t find file `");
15919 @.I can't find file x@>
15921 print_err("I can\'t write on file `");
15923 @.I can't write on file x@>
15924 mp_print_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext);
15925 mp_print(mp, "'.");
15926 if (strcmp(e,"")==0)
15927 mp_show_context(mp);
15928 mp_print_nl(mp, "Please type another "); mp_print(mp, s);
15930 if ( mp->interaction<mp_scroll_mode )
15931 mp_fatal_error(mp, "*** (job aborted, file error in nonstop mode)");
15932 @.job aborted, file error...@>
15933 saved_cur_name = xstrdup(mp->cur_name);
15934 clear_terminal; prompt_input(": "); @<Scan file name in the buffer@>;
15935 if (strcmp(mp->cur_ext,"")==0)
15937 if (strlen(mp->cur_name)==0) {
15938 mp->cur_name=saved_cur_name;
15940 xfree(saved_cur_name);
15945 @ @<Scan file name in the buffer@>=
15947 mp_begin_name(mp); k=mp->first;
15948 while ( (mp->buffer[k]==' ')&&(k<mp->last) ) incr(k);
15950 if ( k==mp->last ) break;
15951 if ( ! mp_more_name(mp, mp->buffer[k]) ) break;
15957 @ The |open_log_file| routine is used to open the transcript file and to help
15958 it catch up to what has previously been printed on the terminal.
15960 @c void mp_open_log_file (MP mp) {
15961 int old_setting; /* previous |selector| setting */
15962 int k; /* index into |months| and |buffer| */
15963 int l; /* end of first input line */
15964 integer m; /* the current month */
15965 char *months="JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC";
15966 /* abbreviations of month names */
15967 old_setting=mp->selector;
15968 if ( mp->job_name==NULL ) {
15969 mp->job_name=xstrdup("mpout");
15971 mp_pack_job_name(mp,".log");
15972 while ( ! mp_a_open_out(mp, &mp->log_file, mp_filetype_log) ) {
15973 @<Try to get a different log file name@>;
15975 mp->log_name=xstrdup(mp->name_of_file);
15976 mp->selector=log_only; mp->log_opened=true;
15977 @<Print the banner line, including the date and time@>;
15978 mp->input_stack[mp->input_ptr]=mp->cur_input;
15979 /* make sure bottom level is in memory */
15980 mp_print_nl(mp, "**");
15982 l=mp->input_stack[0].limit_field-1; /* last position of first line */
15983 for (k=0;k<=l;k++) mp_print_str(mp, mp->buffer[k]);
15984 mp_print_ln(mp); /* now the transcript file contains the first line of input */
15985 mp->selector=old_setting+2; /* |log_only| or |term_and_log| */
15988 @ @<Dealloc variables@>=
15989 xfree(mp->log_name);
15991 @ Sometimes |open_log_file| is called at awkward moments when \MP\ is
15992 unable to print error messages or even to |show_context|.
15993 The |prompt_file_name| routine can result in a |fatal_error|, but the |error|
15994 routine will not be invoked because |log_opened| will be false.
15996 The normal idea of |mp_batch_mode| is that nothing at all should be written
15997 on the terminal. However, in the unusual case that
15998 no log file could be opened, we make an exception and allow
15999 an explanatory message to be seen.
16001 Incidentally, the program always refers to the log file as a `\.{transcript
16002 file}', because some systems cannot use the extension `\.{.log}' for
16005 @<Try to get a different log file name@>=
16007 mp->selector=term_only;
16008 mp_prompt_file_name(mp, "transcript file name",".log");
16011 @ @<Print the banner...@>=
16014 mp_print(mp, mp->mem_ident); mp_print(mp, " ");
16015 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[day]));
16016 mp_print_char(mp, ' ');
16017 m=mp_round_unscaled(mp, mp->internal[month]);
16018 for (k=3*m-3;k<3*m;k++) { wlog_chr(months[k]); }
16019 mp_print_char(mp, ' ');
16020 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[year]));
16021 mp_print_char(mp, ' ');
16022 m=mp_round_unscaled(mp, mp->internal[mp_time]);
16023 mp_print_dd(mp, m / 60); mp_print_char(mp, ':'); mp_print_dd(mp, m % 60);
16026 @ The |try_extension| function tries to open an input file determined by
16027 |cur_name|, |cur_area|, and the argument |ext|. It returns |false| if it
16028 can't find the file in |cur_area| or the appropriate system area.
16030 @c boolean mp_try_extension (MP mp,char *ext) {
16031 mp_pack_file_name(mp, mp->cur_name,mp->cur_area, ext);
16032 in_name=xstrdup(mp->cur_name);
16033 in_area=xstrdup(mp->cur_area);
16034 if ( mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16037 if (strcmp(ext,".mf")==0 ) in_area=xstrdup(MF_area);
16038 else in_area=xstrdup(MP_area);
16039 mp_pack_file_name(mp, mp->cur_name,in_area,ext);
16040 return mp_a_open_in(mp, &cur_file, mp_filetype_program);
16045 @ Let's turn now to the procedure that is used to initiate file reading
16046 when an `\.{input}' command is being processed.
16048 @c void mp_start_input (MP mp) { /* \MP\ will \.{input} something */
16049 char *fname = NULL;
16050 @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>;
16052 mp_begin_file_reading(mp); /* set up |cur_file| and new level of input */
16053 if ( strlen(mp->cur_ext)==0 ) {
16054 if ( mp_try_extension(mp, ".mp") ) break;
16055 else if ( mp_try_extension(mp, "") ) break;
16056 else if ( mp_try_extension(mp, ".mf") ) break;
16057 /* |else do_nothing; | */
16058 } else if ( mp_try_extension(mp, mp->cur_ext) ) {
16061 mp_end_file_reading(mp); /* remove the level that didn't work */
16062 mp_prompt_file_name(mp, "input file name","");
16064 name=mp_a_make_name_string(mp, cur_file);
16065 fname = xstrdup(mp->name_of_file);
16066 if ( mp->job_name==NULL ) {
16067 mp->job_name=xstrdup(mp->cur_name);
16068 mp_open_log_file(mp);
16069 } /* |open_log_file| doesn't |show_context|, so |limit|
16070 and |loc| needn't be set to meaningful values yet */
16071 if ( ((int)mp->term_offset+(int)strlen(fname)) > (mp->max_print_line-2)) mp_print_ln(mp);
16072 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
16073 mp_print_char(mp, '('); incr(mp->open_parens); mp_print(mp, fname);
16076 @<Flush |name| and replace it with |cur_name| if it won't be needed@>;
16077 @<Read the first line of the new file@>;
16080 @ This code should be omitted if |a_make_name_string| returns something other
16081 than just a copy of its argument and the full file name is needed for opening
16082 \.{MPX} files or implementing the switch-to-editor option.
16083 @^system dependencies@>
16085 @<Flush |name| and replace it with |cur_name| if it won't be needed@>=
16086 mp_flush_string(mp, name); name=rts(mp->cur_name); mp->cur_name=NULL
16088 @ Here we have to remember to tell the |input_ln| routine not to
16089 start with a |get|. If the file is empty, it is considered to
16090 contain a single blank line.
16091 @^system dependencies@>
16093 @<Read the first line...@>=
16096 (void)mp_input_ln(mp, cur_file,false);
16097 mp_firm_up_the_line(mp);
16098 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
16101 @ @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>=
16102 while ( token_state &&(loc==null) ) mp_end_token_list(mp);
16103 if ( token_state ) {
16104 print_err("File names can't appear within macros");
16105 @.File names can't...@>
16106 help3("Sorry...I've converted what follows to tokens,")
16107 ("possibly garbaging the name you gave.")
16108 ("Please delete the tokens and insert the name again.");
16111 if ( file_state ) {
16112 mp_scan_file_name(mp);
16114 xfree(mp->cur_name); mp->cur_name=xstrdup("");
16115 xfree(mp->cur_ext); mp->cur_ext =xstrdup("");
16116 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16119 @ Sometimes we need to deal with two file names at once. This procedure
16120 copies the given string into a special array for an old file name.
16122 @c void mp_copy_old_name (MP mp,str_number s) {
16123 integer k; /* number of positions filled in |old_file_name| */
16124 pool_pointer j; /* index into |str_pool| */
16126 for (j=mp->str_start[s];j<=str_stop(s)-1;j++) {
16128 if ( k<=file_name_size )
16129 mp->old_file_name[k]=xchr(mp->str_pool[j]);
16131 mp->old_file_name[++k] = 0;
16135 char old_file_name[file_name_size+1]; /* analogous to |name_of_file| */
16137 @ The following simple routine starts reading the \.{MPX} file associated
16138 with the current input file.
16140 @c void mp_start_mpx_input (MP mp) {
16141 mp_pack_file_name(mp, in_name, in_area, ".mpx");
16142 @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16143 |goto not_found| if there is a problem@>;
16144 mp_begin_file_reading(mp);
16145 if ( ! mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16146 mp_end_file_reading(mp);
16149 name=mp_a_make_name_string(mp, cur_file);
16150 mp->mpx_name[index]=name; add_str_ref(name);
16151 @<Read the first line of the new file@>;
16154 @<Explain that the \.{MPX} file can't be read and |succumb|@>;
16157 @ This should ideally be changed to do whatever is necessary to create the
16158 \.{MPX} file given by |name_of_file| if it does not exist or if it is out
16159 of date. This requires invoking \.{MPtoTeX} on the |old_file_name| and passing
16160 the results through \TeX\ and \.{DVItoMP}. (It is possible to use a
16161 completely different typesetting program if suitable postprocessor is
16162 available to perform the function of \.{DVItoMP}.)
16163 @^system dependencies@>
16166 typedef boolean (*run_make_mpx_command)(MP mp, char *origname, char *mtxname);
16169 run_make_mpx_command run_make_mpx;
16171 @ @<Option variables@>=
16172 run_make_mpx_command run_make_mpx;
16174 @ @<Allocate or initialize ...@>=
16175 set_callback_option(run_make_mpx);
16177 @ @<Exported function headers@>=
16178 boolean mp_run_make_mpx (MP mp, char *origname, char *mtxname);
16180 @ The default does nothing.
16182 boolean mp_run_make_mpx (MP mp, char *origname, char *mtxname) {
16183 if (mp && origname && mtxname) /* for -W */
16190 @ @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16191 |goto not_found| if there is a problem@>=
16192 mp_copy_old_name(mp, name);
16193 if (!(mp->run_make_mpx)(mp, mp->old_file_name, mp->name_of_file))
16196 @ @<Explain that the \.{MPX} file can't be read and |succumb|@>=
16197 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16198 mp_print_nl(mp, ">> ");
16199 mp_print(mp, mp->old_file_name);
16200 mp_print_nl(mp, ">> ");
16201 mp_print(mp, mp->name_of_file);
16202 mp_print_nl(mp, "! Unable to make mpx file");
16203 help4("The two files given above are one of your source files")
16204 ("and an auxiliary file I need to read to find out what your")
16205 ("btex..etex blocks mean. If you don't know why I had trouble,")
16206 ("try running it manually through MPtoTeX, TeX, and DVItoMP");
16209 @ The last file-opening commands are for files accessed via the \&{readfrom}
16210 @:read_from_}{\&{readfrom} primitive@>
16211 operator and the \&{write} command. Such files are stored in separate arrays.
16212 @:write_}{\&{write} primitive@>
16214 @<Types in the outer block@>=
16215 typedef unsigned int readf_index; /* |0..max_read_files| */
16216 typedef unsigned int write_index; /* |0..max_write_files| */
16219 readf_index max_read_files; /* maximum number of simultaneously open \&{readfrom} files */
16220 FILE ** rd_file; /* \&{readfrom} files */
16221 char ** rd_fname; /* corresponding file name or 0 if file not open */
16222 readf_index read_files; /* number of valid entries in the above arrays */
16223 write_index max_write_files; /* maximum number of simultaneously open \&{write} */
16224 FILE ** wr_file; /* \&{write} files */
16225 char ** wr_fname; /* corresponding file name or 0 if file not open */
16226 write_index write_files; /* number of valid entries in the above arrays */
16228 @ @<Allocate or initialize ...@>=
16229 mp->max_read_files=8;
16230 mp->rd_file = xmalloc((mp->max_read_files+1),sizeof(FILE *));
16231 mp->rd_fname = xmalloc((mp->max_read_files+1),sizeof(char *));
16232 memset(mp->rd_fname, 0, sizeof(char *)*(mp->max_read_files+1));
16234 mp->max_write_files=8;
16235 mp->wr_file = xmalloc((mp->max_write_files+1),sizeof(FILE *));
16236 mp->wr_fname = xmalloc((mp->max_write_files+1),sizeof(char *));
16237 memset(mp->wr_fname, 0, sizeof(char *)*(mp->max_write_files+1));
16241 @ This routine starts reading the file named by string~|s| without setting
16242 |loc|, |limit|, or |name|. It returns |false| if the file is empty or cannot
16243 be opened. Otherwise it updates |rd_file[n]| and |rd_fname[n]|.
16245 @c boolean mp_start_read_input (MP mp,char *s, readf_index n) {
16246 mp_ptr_scan_file(mp, s);
16248 mp_begin_file_reading(mp);
16249 if ( ! mp_a_open_in(mp, &mp->rd_file[n], mp_filetype_text) )
16251 if ( ! mp_input_ln(mp, mp->rd_file[n], false) ) {
16252 fclose(mp->rd_file[n]);
16255 mp->rd_fname[n]=xstrdup(mp->name_of_file);
16258 mp_end_file_reading(mp);
16262 @ Open |wr_file[n]| using file name~|s| and update |wr_fname[n]|.
16265 void mp_open_write_file (MP mp, char *s, readf_index n) ;
16267 @ @c void mp_open_write_file (MP mp,char *s, readf_index n) {
16268 mp_ptr_scan_file(mp, s);
16270 while ( ! mp_a_open_out(mp, &mp->wr_file[n], mp_filetype_text) )
16271 mp_prompt_file_name(mp, "file name for write output","");
16272 mp->wr_fname[n]=xstrdup(mp->name_of_file);
16276 @* \[36] Introduction to the parsing routines.
16277 We come now to the central nervous system that sparks many of \MP's activities.
16278 By evaluating expressions, from their primary constituents to ever larger
16279 subexpressions, \MP\ builds the structures that ultimately define complete
16280 pictures or fonts of type.
16282 Four mutually recursive subroutines are involved in this process: We call them
16283 $$\hbox{|scan_primary|, |scan_secondary|, |scan_tertiary|,
16284 and |scan_expression|.}$$
16286 Each of them is parameterless and begins with the first token to be scanned
16287 already represented in |cur_cmd|, |cur_mod|, and |cur_sym|. After execution,
16288 the value of the primary or secondary or tertiary or expression that was
16289 found will appear in the global variables |cur_type| and |cur_exp|. The
16290 token following the expression will be represented in |cur_cmd|, |cur_mod|,
16293 Technically speaking, the parsing algorithms are ``LL(1),'' more or less;
16294 backup mechanisms have been added in order to provide reasonable error
16298 small_number cur_type; /* the type of the expression just found */
16299 integer cur_exp; /* the value of the expression just found */
16304 @ Many different kinds of expressions are possible, so it is wise to have
16305 precise descriptions of what |cur_type| and |cur_exp| mean in all cases:
16308 |cur_type=mp_vacuous| means that this expression didn't turn out to have a
16309 value at all, because it arose from a \&{begingroup}$\,\ldots\,$\&{endgroup}
16310 construction in which there was no expression before the \&{endgroup}.
16311 In this case |cur_exp| has some irrelevant value.
16314 |cur_type=mp_boolean_type| means that |cur_exp| is either |true_code|
16318 |cur_type=mp_unknown_boolean| means that |cur_exp| points to a capsule
16319 node that is in the ring of variables equivalent
16320 to at least one undefined boolean variable.
16323 |cur_type=mp_string_type| means that |cur_exp| is a string number (i.e., an
16324 integer in the range |0<=cur_exp<str_ptr|). That string's reference count
16325 includes this particular reference.
16328 |cur_type=mp_unknown_string| means that |cur_exp| points to a capsule
16329 node that is in the ring of variables equivalent
16330 to at least one undefined string variable.
16333 |cur_type=mp_pen_type| means that |cur_exp| points to a node in a pen. Nobody
16334 else points to any of the nodes in this pen. The pen may be polygonal or
16338 |cur_type=mp_unknown_pen| means that |cur_exp| points to a capsule
16339 node that is in the ring of variables equivalent
16340 to at least one undefined pen variable.
16343 |cur_type=mp_path_type| means that |cur_exp| points to a the first node of
16344 a path; nobody else points to this particular path. The control points of
16345 the path will have been chosen.
16348 |cur_type=mp_unknown_path| means that |cur_exp| points to a capsule
16349 node that is in the ring of variables equivalent
16350 to at least one undefined path variable.
16353 |cur_type=mp_picture_type| means that |cur_exp| points to an edge header node.
16354 There may be other pointers to this particular set of edges. The header node
16355 contains a reference count that includes this particular reference.
16358 |cur_type=mp_unknown_picture| means that |cur_exp| points to a capsule
16359 node that is in the ring of variables equivalent
16360 to at least one undefined picture variable.
16363 |cur_type=mp_transform_type| means that |cur_exp| points to a |mp_transform_type|
16364 capsule node. The |value| part of this capsule
16365 points to a transform node that contains six numeric values,
16366 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16369 |cur_type=mp_color_type| means that |cur_exp| points to a |color_type|
16370 capsule node. The |value| part of this capsule
16371 points to a color node that contains three numeric values,
16372 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16375 |cur_type=mp_cmykcolor_type| means that |cur_exp| points to a |mp_cmykcolor_type|
16376 capsule node. The |value| part of this capsule
16377 points to a color node that contains four numeric values,
16378 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16381 |cur_type=mp_pair_type| means that |cur_exp| points to a capsule
16382 node whose type is |mp_pair_type|. The |value| part of this capsule
16383 points to a pair node that contains two numeric values,
16384 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16387 |cur_type=mp_known| means that |cur_exp| is a |scaled| value.
16390 |cur_type=mp_dependent| means that |cur_exp| points to a capsule node whose type
16391 is |dependent|. The |dep_list| field in this capsule points to the associated
16395 |cur_type=mp_proto_dependent| means that |cur_exp| points to a |mp_proto_dependent|
16396 capsule node. The |dep_list| field in this capsule
16397 points to the associated dependency list.
16400 |cur_type=independent| means that |cur_exp| points to a capsule node
16401 whose type is |independent|. This somewhat unusual case can arise, for
16402 example, in the expression
16403 `$x+\&{begingroup}\penalty0\,\&{string}\,x; 0\,\&{endgroup}$'.
16406 |cur_type=mp_token_list| means that |cur_exp| points to a linked list of
16407 tokens. This case arises only on the left-hand side of an assignment
16408 (`\.{:=}') operation, under very special circumstances.
16410 \smallskip\noindent
16411 The possible settings of |cur_type| have been listed here in increasing
16412 numerical order. Notice that |cur_type| will never be |mp_numeric_type| or
16413 |suffixed_macro| or |mp_unsuffixed_macro|, although variables of those types
16414 are allowed. Conversely, \MP\ has no variables of type |mp_vacuous| or
16417 @ Capsules are two-word nodes that have a similar meaning
16418 to |cur_type| and |cur_exp|. Such nodes have |name_type=capsule|
16419 and |link<=diov|; and their |type| field is one of the possibilities for
16420 |cur_type| listed above.
16422 The |value| field of a capsule is, in most cases, the value that
16423 corresponds to its |type|, as |cur_exp| corresponds to |cur_type|.
16424 However, when |cur_exp| would point to a capsule,
16425 no extra layer of indirection is present; the |value|
16426 field is what would have been called |value(cur_exp)| if it had not been
16427 encapsulated. Furthermore, if the type is |dependent| or
16428 |mp_proto_dependent|, the |value| field of a capsule is replaced by
16429 |dep_list| and |prev_dep| fields, since dependency lists in capsules are
16430 always part of the general |dep_list| structure.
16432 The |get_x_next| routine is careful not to change the values of |cur_type|
16433 and |cur_exp| when it gets an expanded token. However, |get_x_next| might
16434 call a macro, which might parse an expression, which might execute lots of
16435 commands in a group; hence it's possible that |cur_type| might change
16436 from, say, |mp_unknown_boolean| to |mp_boolean_type|, or from |dependent| to
16437 |known| or |independent|, during the time |get_x_next| is called. The
16438 programs below are careful to stash sensitive intermediate results in
16439 capsules, so that \MP's generality doesn't cause trouble.
16441 Here's a procedure that illustrates these conventions. It takes
16442 the contents of $(|cur_type|\kern-.3pt,|cur_exp|\kern-.3pt)$
16443 and stashes them away in a
16444 capsule. It is not used when |cur_type=mp_token_list|.
16445 After the operation, |cur_type=mp_vacuous|; hence there is no need to
16446 copy path lists or to update reference counts, etc.
16448 The special link |diov| is put on the capsule returned by
16449 |stash_cur_exp|, because this procedure is used to store macro parameters
16450 that must be easily distinguishable from token lists.
16452 @<Declare the stashing/unstashing routines@>=
16453 pointer mp_stash_cur_exp (MP mp) {
16454 pointer p; /* the capsule that will be returned */
16455 switch (mp->cur_type) {
16456 case unknown_types:
16457 case mp_transform_type:
16458 case mp_color_type:
16461 case mp_proto_dependent:
16462 case mp_independent:
16463 case mp_cmykcolor_type:
16467 p=mp_get_node(mp, value_node_size); name_type(p)=mp_capsule;
16468 type(p)=mp->cur_type; value(p)=mp->cur_exp;
16471 mp->cur_type=mp_vacuous; link(p)=diov;
16475 @ The inverse of |stash_cur_exp| is the following procedure, which
16476 deletes an unnecessary capsule and puts its contents into |cur_type|
16479 The program steps of \MP\ can be divided into two categories: those in
16480 which |cur_type| and |cur_exp| are ``alive'' and those in which they are
16481 ``dead,'' in the sense that |cur_type| and |cur_exp| contain relevant
16482 information or not. It's important not to ignore them when they're alive,
16483 and it's important not to pay attention to them when they're dead.
16485 There's also an intermediate category: If |cur_type=mp_vacuous|, then
16486 |cur_exp| is irrelevant, hence we can proceed without caring if |cur_type|
16487 and |cur_exp| are alive or dead. In such cases we say that |cur_type|
16488 and |cur_exp| are {\sl dormant}. It is permissible to call |get_x_next|
16489 only when they are alive or dormant.
16491 The \\{stash} procedure above assumes that |cur_type| and |cur_exp|
16492 are alive or dormant. The \\{unstash} procedure assumes that they are
16493 dead or dormant; it resuscitates them.
16495 @<Declare the stashing/unstashing...@>=
16496 void mp_unstash_cur_exp (MP mp,pointer p) ;
16499 void mp_unstash_cur_exp (MP mp,pointer p) {
16500 mp->cur_type=type(p);
16501 switch (mp->cur_type) {
16502 case unknown_types:
16503 case mp_transform_type:
16504 case mp_color_type:
16507 case mp_proto_dependent:
16508 case mp_independent:
16509 case mp_cmykcolor_type:
16513 mp->cur_exp=value(p);
16514 mp_free_node(mp, p,value_node_size);
16519 @ The following procedure prints the values of expressions in an
16520 abbreviated format. If its first parameter |p| is null, the value of
16521 |(cur_type,cur_exp)| is displayed; otherwise |p| should be a capsule
16522 containing the desired value. The second parameter controls the amount of
16523 output. If it is~0, dependency lists will be abbreviated to
16524 `\.{linearform}' unless they consist of a single term. If it is greater
16525 than~1, complicated structures (pens, pictures, and paths) will be displayed
16528 @<Declare subroutines for printing expressions@>=
16529 @<Declare the procedure called |print_dp|@>;
16530 @<Declare the stashing/unstashing routines@>;
16531 void mp_print_exp (MP mp,pointer p, small_number verbosity) {
16532 boolean restore_cur_exp; /* should |cur_exp| be restored? */
16533 small_number t; /* the type of the expression */
16534 pointer q; /* a big node being displayed */
16535 integer v=0; /* the value of the expression */
16537 restore_cur_exp=false;
16539 p=mp_stash_cur_exp(mp); restore_cur_exp=true;
16542 if ( t<mp_dependent ) v=value(p); else if ( t<mp_independent ) v=dep_list(p);
16543 @<Print an abbreviated value of |v| with format depending on |t|@>;
16544 if ( restore_cur_exp ) mp_unstash_cur_exp(mp, p);
16547 @ @<Print an abbreviated value of |v| with format depending on |t|@>=
16549 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
16550 case mp_boolean_type:
16551 if ( v==true_code ) mp_print(mp, "true"); else mp_print(mp, "false");
16553 case unknown_types: case mp_numeric_type:
16554 @<Display a variable that's been declared but not defined@>;
16556 case mp_string_type:
16557 mp_print_char(mp, '"'); mp_print_str(mp, v); mp_print_char(mp, '"');
16559 case mp_pen_type: case mp_path_type: case mp_picture_type:
16560 @<Display a complex type@>;
16562 case mp_transform_type: case mp_color_type: case mp_pair_type: case mp_cmykcolor_type:
16563 if ( v==null ) mp_print_type(mp, t);
16564 else @<Display a big node@>;
16566 case mp_known:mp_print_scaled(mp, v); break;
16567 case mp_dependent: case mp_proto_dependent:
16568 mp_print_dp(mp, t,v,verbosity);
16570 case mp_independent:mp_print_variable_name(mp, p); break;
16571 default: mp_confusion(mp, "exp"); break;
16572 @:this can't happen exp}{\quad exp@>
16575 @ @<Display a big node@>=
16577 mp_print_char(mp, '('); q=v+mp->big_node_size[t];
16579 if ( type(v)==mp_known ) mp_print_scaled(mp, value(v));
16580 else if ( type(v)==mp_independent ) mp_print_variable_name(mp, v);
16581 else mp_print_dp(mp, type(v),dep_list(v),verbosity);
16583 if ( v!=q ) mp_print_char(mp, ',');
16585 mp_print_char(mp, ')');
16588 @ Values of type \&{picture}, \&{path}, and \&{pen} are displayed verbosely
16589 in the log file only, unless the user has given a positive value to
16592 @<Display a complex type@>=
16593 if ( verbosity<=1 ) {
16594 mp_print_type(mp, t);
16596 if ( mp->selector==term_and_log )
16597 if ( mp->internal[tracing_online]<=0 ) {
16598 mp->selector=term_only;
16599 mp_print_type(mp, t); mp_print(mp, " (see the transcript file)");
16600 mp->selector=term_and_log;
16603 case mp_pen_type:mp_print_pen(mp, v,"",false); break;
16604 case mp_path_type:mp_print_path(mp, v,"",false); break;
16605 case mp_picture_type:mp_print_edges(mp, v,"",false); break;
16606 } /* there are no other cases */
16609 @ @<Declare the procedure called |print_dp|@>=
16610 void mp_print_dp (MP mp,small_number t, pointer p,
16611 small_number verbosity) {
16612 pointer q; /* the node following |p| */
16614 if ( (info(q)==null) || (verbosity>0) ) mp_print_dependency(mp, p,t);
16615 else mp_print(mp, "linearform");
16618 @ The displayed name of a variable in a ring will not be a capsule unless
16619 the ring consists entirely of capsules.
16621 @<Display a variable that's been declared but not defined@>=
16622 { mp_print_type(mp, t);
16624 { mp_print_char(mp, ' ');
16625 while ( (name_type(v)==mp_capsule) && (v!=p) ) v=value(v);
16626 mp_print_variable_name(mp, v);
16630 @ When errors are detected during parsing, it is often helpful to
16631 display an expression just above the error message, using |exp_err|
16632 or |disp_err| instead of |print_err|.
16634 @d exp_err(A) mp_disp_err(mp, null,(A)) /* displays the current expression */
16636 @<Declare subroutines for printing expressions@>=
16637 void mp_disp_err (MP mp,pointer p, char *s) {
16638 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16639 mp_print_nl(mp, ">> ");
16641 mp_print_exp(mp, p,1); /* ``medium verbose'' printing of the expression */
16643 mp_print_nl(mp, "! "); mp_print(mp, s);
16648 @ If |cur_type| and |cur_exp| contain relevant information that should
16649 be recycled, we will use the following procedure, which changes |cur_type|
16650 to |known| and stores a given value in |cur_exp|. We can think of |cur_type|
16651 and |cur_exp| as either alive or dormant after this has been done,
16652 because |cur_exp| will not contain a pointer value.
16654 @ @c void mp_flush_cur_exp (MP mp,scaled v) {
16655 switch (mp->cur_type) {
16656 case unknown_types: case mp_transform_type: case mp_color_type: case mp_pair_type:
16657 case mp_dependent: case mp_proto_dependent: case mp_independent: case mp_cmykcolor_type:
16658 mp_recycle_value(mp, mp->cur_exp);
16659 mp_free_node(mp, mp->cur_exp,value_node_size);
16661 case mp_string_type:
16662 delete_str_ref(mp->cur_exp); break;
16663 case mp_pen_type: case mp_path_type:
16664 mp_toss_knot_list(mp, mp->cur_exp); break;
16665 case mp_picture_type:
16666 delete_edge_ref(mp->cur_exp); break;
16670 mp->cur_type=mp_known; mp->cur_exp=v;
16673 @ There's a much more general procedure that is capable of releasing
16674 the storage associated with any two-word value packet.
16676 @<Declare the recycling subroutines@>=
16677 void mp_recycle_value (MP mp,pointer p) ;
16679 @ @c void mp_recycle_value (MP mp,pointer p) {
16680 small_number t; /* a type code */
16681 integer vv; /* another value */
16682 pointer q,r,s,pp; /* link manipulation registers */
16683 integer v=0; /* a value */
16685 if ( t<mp_dependent ) v=value(p);
16687 case undefined: case mp_vacuous: case mp_boolean_type: case mp_known:
16688 case mp_numeric_type:
16690 case unknown_types:
16691 mp_ring_delete(mp, p); break;
16692 case mp_string_type:
16693 delete_str_ref(v); break;
16694 case mp_path_type: case mp_pen_type:
16695 mp_toss_knot_list(mp, v); break;
16696 case mp_picture_type:
16697 delete_edge_ref(v); break;
16698 case mp_cmykcolor_type: case mp_pair_type: case mp_color_type:
16699 case mp_transform_type:
16700 @<Recycle a big node@>; break;
16701 case mp_dependent: case mp_proto_dependent:
16702 @<Recycle a dependency list@>; break;
16703 case mp_independent:
16704 @<Recycle an independent variable@>; break;
16705 case mp_token_list: case mp_structured:
16706 mp_confusion(mp, "recycle"); break;
16707 @:this can't happen recycle}{\quad recycle@>
16708 case mp_unsuffixed_macro: case mp_suffixed_macro:
16709 mp_delete_mac_ref(mp, value(p)); break;
16710 } /* there are no other cases */
16714 @ @<Recycle a big node@>=
16716 q=v+mp->big_node_size[t];
16718 q=q-2; mp_recycle_value(mp, q);
16720 mp_free_node(mp, v,mp->big_node_size[t]);
16723 @ @<Recycle a dependency list@>=
16726 while ( info(q)!=null ) q=link(q);
16727 link(prev_dep(p))=link(q);
16728 prev_dep(link(q))=prev_dep(p);
16729 link(q)=null; mp_flush_node_list(mp, dep_list(p));
16732 @ When an independent variable disappears, it simply fades away, unless
16733 something depends on it. In the latter case, a dependent variable whose
16734 coefficient of dependence is maximal will take its place.
16735 The relevant algorithm is due to Ignacio~A. Zabala, who implemented it
16736 as part of his Ph.D. thesis (Stanford University, December 1982).
16737 @^Zabala Salelles, Ignacio Andres@>
16739 For example, suppose that variable $x$ is being recycled, and that the
16740 only variables depending on~$x$ are $y=2x+a$ and $z=x+b$. In this case
16741 we want to make $y$ independent and $z=.5y-.5a+b$; no other variables
16742 will depend on~$y$. If $\\{tracingequations}>0$ in this situation,
16743 we will print `\.{\#\#\# -2x=-y+a}'.
16745 There's a slight complication, however: An independent variable $x$
16746 can occur both in dependency lists and in proto-dependency lists.
16747 This makes it necessary to be careful when deciding which coefficient
16750 Furthermore, this complication is not so slight when
16751 a proto-dependent variable is chosen to become independent. For example,
16752 suppose that $y=2x+100a$ is proto-dependent while $z=x+b$ is dependent;
16753 then we must change $z=.5y-50a+b$ to a proto-dependency, because of the
16754 large coefficient `50'.
16756 In order to deal with these complications without wasting too much time,
16757 we shall link together the occurrences of~$x$ among all the linear
16758 dependencies, maintaining separate lists for the dependent and
16759 proto-dependent cases.
16761 @<Recycle an independent variable@>=
16763 mp->max_c[mp_dependent]=0; mp->max_c[mp_proto_dependent]=0;
16764 mp->max_link[mp_dependent]=null; mp->max_link[mp_proto_dependent]=null;
16766 while ( q!=dep_head ) {
16767 s=value_loc(q); /* now |link(s)=dep_list(q)| */
16770 if ( info(r)==null ) break;;
16771 if ( info(r)!=p ) {
16774 t=type(q); link(s)=link(r); info(r)=q;
16775 if ( abs(value(r))>mp->max_c[t] ) {
16776 @<Record a new maximum coefficient of type |t|@>;
16778 link(r)=mp->max_link[t]; mp->max_link[t]=r;
16784 if ( (mp->max_c[mp_dependent]>0)||(mp->max_c[mp_proto_dependent]>0) ) {
16785 @<Choose a dependent variable to take the place of the disappearing
16786 independent variable, and change all remaining dependencies
16791 @ The code for independency removal makes use of three two-word arrays.
16794 integer max_c[mp_proto_dependent+1]; /* max coefficient magnitude */
16795 pointer max_ptr[mp_proto_dependent+1]; /* where |p| occurs with |max_c| */
16796 pointer max_link[mp_proto_dependent+1]; /* other occurrences of |p| */
16798 @ @<Record a new maximum coefficient...@>=
16800 if ( mp->max_c[t]>0 ) {
16801 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
16803 mp->max_c[t]=abs(value(r)); mp->max_ptr[t]=r;
16806 @ @<Choose a dependent...@>=
16808 if ( (mp->max_c[mp_dependent] / 010000 >= mp->max_c[mp_proto_dependent]) )
16811 t=mp_proto_dependent;
16812 @<Determine the dependency list |s| to substitute for the independent
16814 t=mp_dependent+mp_proto_dependent-t; /* complement |t| */
16815 if ( mp->max_c[t]>0 ) { /* we need to pick up an unchosen dependency */
16816 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
16818 if ( t!=mp_dependent ) { @<Substitute new dependencies in place of |p|@>; }
16819 else { @<Substitute new proto-dependencies in place of |p|@>;}
16820 mp_flush_node_list(mp, s);
16821 if ( mp->fix_needed ) mp_fix_dependencies(mp);
16825 @ Let |s=max_ptr[t]|. At this point we have $|value|(s)=\pm|max_c|[t]$,
16826 and |info(s)| points to the dependent variable~|pp| of type~|t| from
16827 whose dependency list we have removed node~|s|. We must reinsert
16828 node~|s| into the dependency list, with coefficient $-1.0$, and with
16829 |pp| as the new independent variable. Since |pp| will have a larger serial
16830 number than any other variable, we can put node |s| at the head of the
16833 @<Determine the dep...@>=
16834 s=mp->max_ptr[t]; pp=info(s); v=value(s);
16835 if ( t==mp_dependent ) value(s)=-fraction_one; else value(s)=-unity;
16836 r=dep_list(pp); link(s)=r;
16837 while ( info(r)!=null ) r=link(r);
16838 q=link(r); link(r)=null;
16839 prev_dep(q)=prev_dep(pp); link(prev_dep(pp))=q;
16841 if ( mp->cur_exp==pp ) if ( mp->cur_type==t ) mp->cur_type=mp_independent;
16842 if ( mp->internal[tracing_equations]>0 ) {
16843 @<Show the transformed dependency@>;
16846 @ Now $(-v)$ times the formerly independent variable~|p| is being replaced
16847 by the dependency list~|s|.
16849 @<Show the transformed...@>=
16850 if ( mp_interesting(mp, p) ) {
16851 mp_begin_diagnostic(mp); mp_print_nl(mp, "### ");
16852 @:]]]\#\#\#_}{\.{\#\#\#}@>
16853 if ( v>0 ) mp_print_char(mp, '-');
16854 if ( t==mp_dependent ) vv=mp_round_fraction(mp, mp->max_c[mp_dependent]);
16855 else vv=mp->max_c[mp_proto_dependent];
16856 if ( vv!=unity ) mp_print_scaled(mp, vv);
16857 mp_print_variable_name(mp, p);
16858 while ( value(p) % s_scale>0 ) {
16859 mp_print(mp, "*4"); value(p)=value(p)-2;
16861 if ( t==mp_dependent ) mp_print_char(mp, '='); else mp_print(mp, " = ");
16862 mp_print_dependency(mp, s,t);
16863 mp_end_diagnostic(mp, false);
16866 @ Finally, there are dependent and proto-dependent variables whose
16867 dependency lists must be brought up to date.
16869 @<Substitute new dependencies...@>=
16870 for (t=mp_dependent;t<=mp_proto_dependent;t++){
16872 while ( r!=null ) {
16874 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
16875 mp_make_fraction(mp, value(r),-v),s,t,mp_dependent);
16876 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
16877 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
16881 @ @<Substitute new proto...@>=
16882 for (t=mp_dependent;t<=mp_proto_dependent;t++) {
16884 while ( r!=null ) {
16886 if ( t==mp_dependent ) { /* for safety's sake, we change |q| to |mp_proto_dependent| */
16887 if ( mp->cur_exp==q ) if ( mp->cur_type==mp_dependent )
16888 mp->cur_type=mp_proto_dependent;
16889 dep_list(q)=mp_p_over_v(mp, dep_list(q),unity,mp_dependent,mp_proto_dependent);
16890 type(q)=mp_proto_dependent; value(r)=mp_round_fraction(mp, value(r));
16892 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
16893 mp_make_scaled(mp, value(r),-v),s,mp_proto_dependent,mp_proto_dependent);
16894 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
16895 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
16899 @ Here are some routines that provide handy combinations of actions
16900 that are often needed during error recovery. For example,
16901 `|flush_error|' flushes the current expression, replaces it by
16902 a given value, and calls |error|.
16904 Errors often are detected after an extra token has already been scanned.
16905 The `\\{put\_get}' routines put that token back before calling |error|;
16906 then they get it back again. (Or perhaps they get another token, if
16907 the user has changed things.)
16910 void mp_flush_error (MP mp,scaled v);
16911 void mp_put_get_error (MP mp);
16912 void mp_put_get_flush_error (MP mp,scaled v) ;
16915 void mp_flush_error (MP mp,scaled v) {
16916 mp_error(mp); mp_flush_cur_exp(mp, v);
16918 void mp_put_get_error (MP mp) {
16919 mp_back_error(mp); mp_get_x_next(mp);
16921 void mp_put_get_flush_error (MP mp,scaled v) {
16922 mp_put_get_error(mp);
16923 mp_flush_cur_exp(mp, v);
16926 @ A global variable |var_flag| is set to a special command code
16927 just before \MP\ calls |scan_expression|, if the expression should be
16928 treated as a variable when this command code immediately follows. For
16929 example, |var_flag| is set to |assignment| at the beginning of a
16930 statement, because we want to know the {\sl location\/} of a variable at
16931 the left of `\.{:=}', not the {\sl value\/} of that variable.
16933 The |scan_expression| subroutine calls |scan_tertiary|,
16934 which calls |scan_secondary|, which calls |scan_primary|, which sets
16935 |var_flag:=0|. In this way each of the scanning routines ``knows''
16936 when it has been called with a special |var_flag|, but |var_flag| is
16939 A variable preceding a command that equals |var_flag| is converted to a
16940 token list rather than a value. Furthermore, an `\.{=}' sign following an
16941 expression with |var_flag=assignment| is not considered to be a relation
16942 that produces boolean expressions.
16946 int var_flag; /* command that wants a variable */
16951 @* \[37] Parsing primary expressions.
16952 The first parsing routine, |scan_primary|, is also the most complicated one,
16953 since it involves so many different cases. But each case---with one
16954 exception---is fairly simple by itself.
16956 When |scan_primary| begins, the first token of the primary to be scanned
16957 should already appear in |cur_cmd|, |cur_mod|, and |cur_sym|. The values
16958 of |cur_type| and |cur_exp| should be either dead or dormant, as explained
16959 earlier. If |cur_cmd| is not between |min_primary_command| and
16960 |max_primary_command|, inclusive, a syntax error will be signaled.
16962 @<Declare the basic parsing subroutines@>=
16963 void mp_scan_primary (MP mp) {
16964 pointer p,q,r; /* for list manipulation */
16965 quarterword c; /* a primitive operation code */
16966 int my_var_flag; /* initial value of |my_var_flag| */
16967 pointer l_delim,r_delim; /* hash addresses of a delimiter pair */
16968 @<Other local variables for |scan_primary|@>;
16969 my_var_flag=mp->var_flag; mp->var_flag=0;
16972 @<Supply diagnostic information, if requested@>;
16973 switch (mp->cur_cmd) {
16974 case left_delimiter:
16975 @<Scan a delimited primary@>; break;
16977 @<Scan a grouped primary@>; break;
16979 @<Scan a string constant@>; break;
16980 case numeric_token:
16981 @<Scan a primary that starts with a numeric token@>; break;
16983 @<Scan a nullary operation@>; break;
16984 case unary: case type_name: case cycle: case plus_or_minus:
16985 @<Scan a unary operation@>; break;
16986 case primary_binary:
16987 @<Scan a binary operation with `\&{of}' between its operands@>; break;
16989 @<Convert a suffix to a string@>; break;
16990 case internal_quantity:
16991 @<Scan an internal numeric quantity@>; break;
16992 case capsule_token:
16993 mp_make_exp_copy(mp, mp->cur_mod); break;
16995 @<Scan a variable primary; |goto restart| if it turns out to be a macro@>; break;
16997 mp_bad_exp(mp, "A primary"); goto RESTART; break;
16998 @.A primary expression...@>
17000 mp_get_x_next(mp); /* the routines |goto done| if they don't want this */
17002 if ( mp->cur_cmd==left_bracket ) {
17003 if ( mp->cur_type>=mp_known ) {
17004 @<Scan a mediation construction@>;
17011 @ Errors at the beginning of expressions are flagged by |bad_exp|.
17013 @c void mp_bad_exp (MP mp,char * s) {
17015 print_err(s); mp_print(mp, " expression can't begin with `");
17016 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
17017 mp_print_char(mp, '\'');
17018 help4("I'm afraid I need some sort of value in order to continue,")
17019 ("so I've tentatively inserted `0'. You may want to")
17020 ("delete this zero and insert something else;")
17021 ("see Chapter 27 of The METAFONTbook for an example.");
17022 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17023 mp_back_input(mp); mp->cur_sym=0; mp->cur_cmd=numeric_token;
17024 mp->cur_mod=0; mp_ins_error(mp);
17025 save_flag=mp->var_flag; mp->var_flag=0; mp_get_x_next(mp);
17026 mp->var_flag=save_flag;
17029 @ @<Supply diagnostic information, if requested@>=
17031 if ( mp->panicking ) mp_check_mem(mp, false);
17033 if ( mp->interrupt!=0 ) if ( mp->OK_to_interrupt ) {
17034 mp_back_input(mp); check_interrupt; mp_get_x_next(mp);
17037 @ @<Scan a delimited primary@>=
17039 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
17040 mp_get_x_next(mp); mp_scan_expression(mp);
17041 if ( (mp->cur_cmd==comma) && (mp->cur_type>=mp_known) ) {
17042 @<Scan the rest of a delimited set of numerics@>;
17044 mp_check_delimiter(mp, l_delim,r_delim);
17048 @ The |stash_in| subroutine puts the current (numeric) expression into a field
17049 within a ``big node.''
17051 @c void mp_stash_in (MP mp,pointer p) {
17052 pointer q; /* temporary register */
17053 type(p)=mp->cur_type;
17054 if ( mp->cur_type==mp_known ) {
17055 value(p)=mp->cur_exp;
17057 if ( mp->cur_type==mp_independent ) {
17058 @<Stash an independent |cur_exp| into a big node@>;
17060 mp->mem[value_loc(p)]=mp->mem[value_loc(mp->cur_exp)];
17061 /* |dep_list(p):=dep_list(cur_exp)| and |prev_dep(p):=prev_dep(cur_exp)| */
17062 link(prev_dep(p))=p;
17064 mp_free_node(mp, mp->cur_exp,value_node_size);
17066 mp->cur_type=mp_vacuous;
17069 @ In rare cases the current expression can become |independent|. There
17070 may be many dependency lists pointing to such an independent capsule,
17071 so we can't simply move it into place within a big node. Instead,
17072 we copy it, then recycle it.
17074 @ @<Stash an independent |cur_exp|...@>=
17076 q=mp_single_dependency(mp, mp->cur_exp);
17077 if ( q==mp->dep_final ){
17078 type(p)=mp_known; value(p)=0; mp_free_node(mp, q,dep_node_size);
17080 type(p)=mp_dependent; mp_new_dep(mp, p,q);
17082 mp_recycle_value(mp, mp->cur_exp);
17085 @ This code uses the fact that |red_part_loc| and |green_part_loc|
17086 are synonymous with |x_part_loc| and |y_part_loc|.
17088 @<Scan the rest of a delimited set of numerics@>=
17090 p=mp_stash_cur_exp(mp);
17091 mp_get_x_next(mp); mp_scan_expression(mp);
17092 @<Make sure the second part of a pair or color has a numeric type@>;
17093 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
17094 if ( mp->cur_cmd==comma ) type(q)=mp_color_type;
17095 else type(q)=mp_pair_type;
17096 mp_init_big_node(mp, q); r=value(q);
17097 mp_stash_in(mp, y_part_loc(r));
17098 mp_unstash_cur_exp(mp, p);
17099 mp_stash_in(mp, x_part_loc(r));
17100 if ( mp->cur_cmd==comma ) {
17101 @<Scan the last of a triplet of numerics@>;
17103 if ( mp->cur_cmd==comma ) {
17104 type(q)=mp_cmykcolor_type;
17105 mp_init_big_node(mp, q); t=value(q);
17106 mp->mem[cyan_part_loc(t)]=mp->mem[red_part_loc(r)];
17107 value(cyan_part_loc(t))=value(red_part_loc(r));
17108 mp->mem[magenta_part_loc(t)]=mp->mem[green_part_loc(r)];
17109 value(magenta_part_loc(t))=value(green_part_loc(r));
17110 mp->mem[yellow_part_loc(t)]=mp->mem[blue_part_loc(r)];
17111 value(yellow_part_loc(t))=value(blue_part_loc(r));
17112 mp_recycle_value(mp, r);
17114 @<Scan the last of a quartet of numerics@>;
17116 mp_check_delimiter(mp, l_delim,r_delim);
17117 mp->cur_type=type(q);
17121 @ @<Make sure the second part of a pair or color has a numeric type@>=
17122 if ( mp->cur_type<mp_known ) {
17123 exp_err("Nonnumeric ypart has been replaced by 0");
17124 @.Nonnumeric...replaced by 0@>
17125 help4("I've started to scan a pair `(a,b)' or a color `(a,b,c)';")
17126 ("but after finding a nice `a' I found a `b' that isn't")
17127 ("of numeric type. So I've changed that part to zero.")
17128 ("(The b that I didn't like appears above the error message.)");
17129 mp_put_get_flush_error(mp, 0);
17132 @ @<Scan the last of a triplet of numerics@>=
17134 mp_get_x_next(mp); mp_scan_expression(mp);
17135 if ( mp->cur_type<mp_known ) {
17136 exp_err("Nonnumeric third part has been replaced by 0");
17137 @.Nonnumeric...replaced by 0@>
17138 help3("I've just scanned a color `(a,b,c)' or cmykcolor(a,b,c,d); but the `c'")
17139 ("isn't of numeric type. So I've changed that part to zero.")
17140 ("(The c that I didn't like appears above the error message.)");
17141 mp_put_get_flush_error(mp, 0);
17143 mp_stash_in(mp, blue_part_loc(r));
17146 @ @<Scan the last of a quartet of numerics@>=
17148 mp_get_x_next(mp); mp_scan_expression(mp);
17149 if ( mp->cur_type<mp_known ) {
17150 exp_err("Nonnumeric blackpart has been replaced by 0");
17151 @.Nonnumeric...replaced by 0@>
17152 help3("I've just scanned a cmykcolor `(c,m,y,k)'; but the `k' isn't")
17153 ("of numeric type. So I've changed that part to zero.")
17154 ("(The k that I didn't like appears above the error message.)");
17155 mp_put_get_flush_error(mp, 0);
17157 mp_stash_in(mp, black_part_loc(r));
17160 @ The local variable |group_line| keeps track of the line
17161 where a \&{begingroup} command occurred; this will be useful
17162 in an error message if the group doesn't actually end.
17164 @<Other local variables for |scan_primary|@>=
17165 integer group_line; /* where a group began */
17167 @ @<Scan a grouped primary@>=
17169 group_line=mp_true_line(mp);
17170 if ( mp->internal[tracing_commands]>0 ) show_cur_cmd_mod;
17171 save_boundary_item(p);
17173 mp_do_statement(mp); /* ends with |cur_cmd>=semicolon| */
17174 } while (! (mp->cur_cmd!=semicolon));
17175 if ( mp->cur_cmd!=end_group ) {
17176 print_err("A group begun on line ");
17177 @.A group...never ended@>
17178 mp_print_int(mp, group_line);
17179 mp_print(mp, " never ended");
17180 help2("I saw a `begingroup' back there that hasn't been matched")
17181 ("by `endgroup'. So I've inserted `endgroup' now.");
17182 mp_back_error(mp); mp->cur_cmd=end_group;
17185 /* this might change |cur_type|, if independent variables are recycled */
17186 if ( mp->internal[tracing_commands]>0 ) show_cur_cmd_mod;
17189 @ @<Scan a string constant@>=
17191 mp->cur_type=mp_string_type; mp->cur_exp=mp->cur_mod;
17194 @ Later we'll come to procedures that perform actual operations like
17195 addition, square root, and so on; our purpose now is to do the parsing.
17196 But we might as well mention those future procedures now, so that the
17197 suspense won't be too bad:
17200 |do_nullary(c)| does primitive operations that have no operands (e.g.,
17201 `\&{true}' or `\&{pencircle}');
17204 |do_unary(c)| applies a primitive operation to the current expression;
17207 |do_binary(p,c)| applies a primitive operation to the capsule~|p|
17208 and the current expression.
17210 @<Scan a nullary operation@>=mp_do_nullary(mp, mp->cur_mod)
17212 @ @<Scan a unary operation@>=
17214 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_primary(mp);
17215 mp_do_unary(mp, c); goto DONE;
17218 @ A numeric token might be a primary by itself, or it might be the
17219 numerator of a fraction composed solely of numeric tokens, or it might
17220 multiply the primary that follows (provided that the primary doesn't begin
17221 with a plus sign or a minus sign). The code here uses the facts that
17222 |max_primary_command=plus_or_minus| and
17223 |max_primary_command-1=numeric_token|. If a fraction is found that is less
17224 than unity, we try to retain higher precision when we use it in scalar
17227 @<Other local variables for |scan_primary|@>=
17228 scaled num,denom; /* for primaries that are fractions, like `1/2' */
17230 @ @<Scan a primary that starts with a numeric token@>=
17232 mp->cur_exp=mp->cur_mod; mp->cur_type=mp_known; mp_get_x_next(mp);
17233 if ( mp->cur_cmd!=slash ) {
17237 if ( mp->cur_cmd!=numeric_token ) {
17239 mp->cur_cmd=slash; mp->cur_mod=over; mp->cur_sym=frozen_slash;
17242 num=mp->cur_exp; denom=mp->cur_mod;
17243 if ( denom==0 ) { @<Protest division by zero@>; }
17244 else { mp->cur_exp=mp_make_scaled(mp, num,denom); }
17245 check_arith; mp_get_x_next(mp);
17247 if ( mp->cur_cmd>=min_primary_command ) {
17248 if ( mp->cur_cmd<numeric_token ) { /* in particular, |cur_cmd<>plus_or_minus| */
17249 p=mp_stash_cur_exp(mp); mp_scan_primary(mp);
17250 if ( (abs(num)>=abs(denom))||(mp->cur_type<mp_color_type) ) {
17251 mp_do_binary(mp, p,times);
17253 mp_frac_mult(mp, num,denom);
17254 mp_free_node(mp, p,value_node_size);
17261 @ @<Protest division...@>=
17263 print_err("Division by zero");
17264 @.Division by zero@>
17265 help1("I'll pretend that you meant to divide by 1."); mp_error(mp);
17268 @ @<Scan a binary operation with `\&{of}' between its operands@>=
17270 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
17271 if ( mp->cur_cmd!=of_token ) {
17272 mp_missing_err(mp, "of"); mp_print(mp, " for ");
17273 mp_print_cmd_mod(mp, primary_binary,c);
17275 help1("I've got the first argument; will look now for the other.");
17278 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_primary(mp);
17279 mp_do_binary(mp, p,c); goto DONE;
17282 @ @<Convert a suffix to a string@>=
17284 mp_get_x_next(mp); mp_scan_suffix(mp);
17285 mp->old_setting=mp->selector; mp->selector=new_string;
17286 mp_show_token_list(mp, mp->cur_exp,null,100000,0);
17287 mp_flush_token_list(mp, mp->cur_exp);
17288 mp->cur_exp=mp_make_string(mp); mp->selector=mp->old_setting;
17289 mp->cur_type=mp_string_type;
17293 @ If an internal quantity appears all by itself on the left of an
17294 assignment, we return a token list of length one, containing the address
17295 of the internal quantity plus |hash_end|. (This accords with the conventions
17296 of the save stack, as described earlier.)
17298 @<Scan an internal...@>=
17301 if ( my_var_flag==assignment ) {
17303 if ( mp->cur_cmd==assignment ) {
17304 mp->cur_exp=mp_get_avail(mp);
17305 info(mp->cur_exp)=q+hash_end; mp->cur_type=mp_token_list;
17310 mp->cur_type=mp_known; mp->cur_exp=mp->internal[q];
17313 @ The most difficult part of |scan_primary| has been saved for last, since
17314 it was necessary to build up some confidence first. We can now face the task
17315 of scanning a variable.
17317 As we scan a variable, we build a token list containing the relevant
17318 names and subscript values, simultaneously following along in the
17319 ``collective'' structure to see if we are actually dealing with a macro
17320 instead of a value.
17322 The local variables |pre_head| and |post_head| will point to the beginning
17323 of the prefix and suffix lists; |tail| will point to the end of the list
17324 that is currently growing.
17326 Another local variable, |tt|, contains partial information about the
17327 declared type of the variable-so-far. If |tt>=mp_unsuffixed_macro|, the
17328 relation |tt=type(q)| will always hold. If |tt=undefined|, the routine
17329 doesn't bother to update its information about type. And if
17330 |undefined<tt<mp_unsuffixed_macro|, the precise value of |tt| isn't critical.
17332 @ @<Other local variables for |scan_primary|@>=
17333 pointer pre_head,post_head,tail;
17334 /* prefix and suffix list variables */
17335 small_number tt; /* approximation to the type of the variable-so-far */
17336 pointer t; /* a token */
17337 pointer macro_ref = 0; /* reference count for a suffixed macro */
17339 @ @<Scan a variable primary...@>=
17341 fast_get_avail(pre_head); tail=pre_head; post_head=null; tt=mp_vacuous;
17343 t=mp_cur_tok(mp); link(tail)=t;
17344 if ( tt!=undefined ) {
17345 @<Find the approximate type |tt| and corresponding~|q|@>;
17346 if ( tt>=mp_unsuffixed_macro ) {
17347 @<Either begin an unsuffixed macro call or
17348 prepare for a suffixed one@>;
17351 mp_get_x_next(mp); tail=t;
17352 if ( mp->cur_cmd==left_bracket ) {
17353 @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>;
17355 if ( mp->cur_cmd>max_suffix_token ) break;
17356 if ( mp->cur_cmd<min_suffix_token ) break;
17357 } /* now |cur_cmd| is |internal_quantity|, |tag_token|, or |numeric_token| */
17358 @<Handle unusual cases that masquerade as variables, and |goto restart|
17359 or |goto done| if appropriate;
17360 otherwise make a copy of the variable and |goto done|@>;
17363 @ @<Either begin an unsuffixed macro call or...@>=
17366 if ( tt>mp_unsuffixed_macro ) { /* |tt=mp_suffixed_macro| */
17367 post_head=mp_get_avail(mp); tail=post_head; link(tail)=t;
17368 tt=undefined; macro_ref=value(q); add_mac_ref(macro_ref);
17370 @<Set up unsuffixed macro call and |goto restart|@>;
17374 @ @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>=
17376 mp_get_x_next(mp); mp_scan_expression(mp);
17377 if ( mp->cur_cmd!=right_bracket ) {
17378 @<Put the left bracket and the expression back to be rescanned@>;
17380 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17381 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp; mp->cur_sym=0;
17385 @ The left bracket that we thought was introducing a subscript might have
17386 actually been the left bracket in a mediation construction like `\.{x[a,b]}'.
17387 So we don't issue an error message at this point; but we do want to back up
17388 so as to avoid any embarrassment about our incorrect assumption.
17390 @<Put the left bracket and the expression back to be rescanned@>=
17392 mp_back_input(mp); /* that was the token following the current expression */
17393 mp_back_expr(mp); mp->cur_cmd=left_bracket;
17394 mp->cur_mod=0; mp->cur_sym=frozen_left_bracket;
17397 @ Here's a routine that puts the current expression back to be read again.
17399 @c void mp_back_expr (MP mp) {
17400 pointer p; /* capsule token */
17401 p=mp_stash_cur_exp(mp); link(p)=null; back_list(p);
17404 @ Unknown subscripts lead to the following error message.
17406 @c void mp_bad_subscript (MP mp) {
17407 exp_err("Improper subscript has been replaced by zero");
17408 @.Improper subscript...@>
17409 help3("A bracketed subscript must have a known numeric value;")
17410 ("unfortunately, what I found was the value that appears just")
17411 ("above this error message. So I'll try a zero subscript.");
17412 mp_flush_error(mp, 0);
17415 @ Every time we call |get_x_next|, there's a chance that the variable we've
17416 been looking at will disappear. Thus, we cannot safely keep |q| pointing
17417 into the variable structure; we need to start searching from the root each time.
17419 @<Find the approximate type |tt| and corresponding~|q|@>=
17422 p=link(pre_head); q=info(p); tt=undefined;
17423 if ( eq_type(q) % outer_tag==tag_token ) {
17425 if ( q==null ) goto DONE2;
17429 tt=type(q); goto DONE2;
17431 if ( type(q)!=mp_structured ) goto DONE2;
17432 q=link(attr_head(q)); /* the |collective_subscript| attribute */
17433 if ( p>=mp->hi_mem_min ) { /* it's not a subscript */
17434 do { q=link(q); } while (! (attr_loc(q)>=info(p)));
17435 if ( attr_loc(q)>info(p) ) goto DONE2;
17443 @ How do things stand now? Well, we have scanned an entire variable name,
17444 including possible subscripts and/or attributes; |cur_cmd|, |cur_mod|, and
17445 |cur_sym| represent the token that follows. If |post_head=null|, a
17446 token list for this variable name starts at |link(pre_head)|, with all
17447 subscripts evaluated. But if |post_head<>null|, the variable turned out
17448 to be a suffixed macro; |pre_head| is the head of the prefix list, while
17449 |post_head| is the head of a token list containing both `\.{\AT!}' and
17452 Our immediate problem is to see if this variable still exists. (Variable
17453 structures can change drastically whenever we call |get_x_next|; users
17454 aren't supposed to do this, but the fact that it is possible means that
17455 we must be cautious.)
17457 The following procedure prints an error message when a variable
17458 unexpectedly disappears. Its help message isn't quite right for
17459 our present purposes, but we'll be able to fix that up.
17462 void mp_obliterated (MP mp,pointer q) {
17463 print_err("Variable "); mp_show_token_list(mp, q,null,1000,0);
17464 mp_print(mp, " has been obliterated");
17465 @.Variable...obliterated@>
17466 help5("It seems you did a nasty thing---probably by accident,")
17467 ("but nevertheless you nearly hornswoggled me...")
17468 ("While I was evaluating the right-hand side of this")
17469 ("command, something happened, and the left-hand side")
17470 ("is no longer a variable! So I won't change anything.");
17473 @ If the variable does exist, we also need to check
17474 for a few other special cases before deciding that a plain old ordinary
17475 variable has, indeed, been scanned.
17477 @<Handle unusual cases that masquerade as variables...@>=
17478 if ( post_head!=null ) {
17479 @<Set up suffixed macro call and |goto restart|@>;
17481 q=link(pre_head); free_avail(pre_head);
17482 if ( mp->cur_cmd==my_var_flag ) {
17483 mp->cur_type=mp_token_list; mp->cur_exp=q; goto DONE;
17485 p=mp_find_variable(mp, q);
17487 mp_make_exp_copy(mp, p);
17489 mp_obliterated(mp, q);
17490 mp->help_line[2]="While I was evaluating the suffix of this variable,";
17491 mp->help_line[1]="something was redefined, and it's no longer a variable!";
17492 mp->help_line[0]="In order to get back on my feet, I've inserted `0' instead.";
17493 mp_put_get_flush_error(mp, 0);
17495 mp_flush_node_list(mp, q);
17498 @ The only complication associated with macro calling is that the prefix
17499 and ``at'' parameters must be packaged in an appropriate list of lists.
17501 @<Set up unsuffixed macro call and |goto restart|@>=
17503 p=mp_get_avail(mp); info(pre_head)=link(pre_head); link(pre_head)=p;
17504 info(p)=t; mp_macro_call(mp, value(q),pre_head,null);
17509 @ If the ``variable'' that turned out to be a suffixed macro no longer exists,
17510 we don't care, because we have reserved a pointer (|macro_ref|) to its
17513 @<Set up suffixed macro call and |goto restart|@>=
17515 mp_back_input(mp); p=mp_get_avail(mp); q=link(post_head);
17516 info(pre_head)=link(pre_head); link(pre_head)=post_head;
17517 info(post_head)=q; link(post_head)=p; info(p)=link(q); link(q)=null;
17518 mp_macro_call(mp, macro_ref,pre_head,null); decr(ref_count(macro_ref));
17519 mp_get_x_next(mp); goto RESTART;
17522 @ Our remaining job is simply to make a copy of the value that has been
17523 found. Some cases are harder than others, but complexity arises solely
17524 because of the multiplicity of possible cases.
17526 @<Declare the procedure called |make_exp_copy|@>=
17527 @<Declare subroutines needed by |make_exp_copy|@>;
17528 void mp_make_exp_copy (MP mp,pointer p) {
17529 pointer q,r,t; /* registers for list manipulation */
17531 mp->cur_type=type(p);
17532 switch (mp->cur_type) {
17533 case mp_vacuous: case mp_boolean_type: case mp_known:
17534 mp->cur_exp=value(p); break;
17535 case unknown_types:
17536 mp->cur_exp=mp_new_ring_entry(mp, p);
17538 case mp_string_type:
17539 mp->cur_exp=value(p); add_str_ref(mp->cur_exp);
17541 case mp_picture_type:
17542 mp->cur_exp=value(p);add_edge_ref(mp->cur_exp);
17545 mp->cur_exp=copy_pen(value(p));
17548 mp->cur_exp=mp_copy_path(mp, value(p));
17550 case mp_transform_type: case mp_color_type:
17551 case mp_cmykcolor_type: case mp_pair_type:
17552 @<Copy the big node |p|@>;
17554 case mp_dependent: case mp_proto_dependent:
17555 mp_encapsulate(mp, mp_copy_dep_list(mp, dep_list(p)));
17557 case mp_numeric_type:
17558 new_indep(p); goto RESTART;
17560 case mp_independent:
17561 q=mp_single_dependency(mp, p);
17562 if ( q==mp->dep_final ){
17563 mp->cur_type=mp_known; mp->cur_exp=0; mp_free_node(mp, q,value_node_size);
17565 mp->cur_type=mp_dependent; mp_encapsulate(mp, q);
17569 mp_confusion(mp, "copy");
17570 @:this can't happen copy}{\quad copy@>
17575 @ The |encapsulate| subroutine assumes that |dep_final| is the
17576 tail of dependency list~|p|.
17578 @<Declare subroutines needed by |make_exp_copy|@>=
17579 void mp_encapsulate (MP mp,pointer p) {
17580 mp->cur_exp=mp_get_node(mp, value_node_size); type(mp->cur_exp)=mp->cur_type;
17581 name_type(mp->cur_exp)=mp_capsule; mp_new_dep(mp, mp->cur_exp,p);
17584 @ The most tedious case arises when the user refers to a
17585 \&{pair}, \&{color}, or \&{transform} variable; we must copy several fields,
17586 each of which can be |independent|, |dependent|, |mp_proto_dependent|,
17589 @<Copy the big node |p|@>=
17591 if ( value(p)==null )
17592 mp_init_big_node(mp, p);
17593 t=mp_get_node(mp, value_node_size); name_type(t)=mp_capsule; type(t)=mp->cur_type;
17594 mp_init_big_node(mp, t);
17595 q=value(p)+mp->big_node_size[mp->cur_type];
17596 r=value(t)+mp->big_node_size[mp->cur_type];
17598 q=q-2; r=r-2; mp_install(mp, r,q);
17599 } while (q!=value(p));
17603 @ The |install| procedure copies a numeric field~|q| into field~|r| of
17604 a big node that will be part of a capsule.
17606 @<Declare subroutines needed by |make_exp_copy|@>=
17607 void mp_install (MP mp,pointer r, pointer q) {
17608 pointer p; /* temporary register */
17609 if ( type(q)==mp_known ){
17610 value(r)=value(q); type(r)=mp_known;
17611 } else if ( type(q)==mp_independent ) {
17612 p=mp_single_dependency(mp, q);
17613 if ( p==mp->dep_final ) {
17614 type(r)=mp_known; value(r)=0; mp_free_node(mp, p,value_node_size);
17616 type(r)=mp_dependent; mp_new_dep(mp, r,p);
17619 type(r)=type(q); mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(q)));
17623 @ Expressions of the form `\.{a[b,c]}' are converted into
17624 `\.{b+a*(c-b)}', without checking the types of \.b~or~\.c,
17625 provided that \.a is numeric.
17627 @<Scan a mediation...@>=
17629 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17630 if ( mp->cur_cmd!=comma ) {
17631 @<Put the left bracket and the expression back...@>;
17632 mp_unstash_cur_exp(mp, p);
17634 q=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17635 if ( mp->cur_cmd!=right_bracket ) {
17636 mp_missing_err(mp, "]");
17638 help3("I've scanned an expression of the form `a[b,c',")
17639 ("so a right bracket should have come next.")
17640 ("I shall pretend that one was there.");
17643 r=mp_stash_cur_exp(mp); mp_make_exp_copy(mp, q);
17644 mp_do_binary(mp, r,minus); mp_do_binary(mp, p,times);
17645 mp_do_binary(mp, q,plus); mp_get_x_next(mp);
17649 @ Here is a comparatively simple routine that is used to scan the
17650 \&{suffix} parameters of a macro.
17652 @<Declare the basic parsing subroutines@>=
17653 void mp_scan_suffix (MP mp) {
17654 pointer h,t; /* head and tail of the list being built */
17655 pointer p; /* temporary register */
17656 h=mp_get_avail(mp); t=h;
17658 if ( mp->cur_cmd==left_bracket ) {
17659 @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>;
17661 if ( mp->cur_cmd==numeric_token ) {
17662 p=mp_new_num_tok(mp, mp->cur_mod);
17663 } else if ((mp->cur_cmd==tag_token)||(mp->cur_cmd==internal_quantity) ) {
17664 p=mp_get_avail(mp); info(p)=mp->cur_sym;
17668 link(t)=p; t=p; mp_get_x_next(mp);
17670 mp->cur_exp=link(h); free_avail(h); mp->cur_type=mp_token_list;
17673 @ @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>=
17675 mp_get_x_next(mp); mp_scan_expression(mp);
17676 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17677 if ( mp->cur_cmd!=right_bracket ) {
17678 mp_missing_err(mp, "]");
17680 help3("I've seen a `[' and a subscript value, in a suffix,")
17681 ("so a right bracket should have come next.")
17682 ("I shall pretend that one was there.");
17685 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp;
17688 @* \[38] Parsing secondary and higher expressions.
17689 After the intricacies of |scan_primary|\kern-1pt,
17690 the |scan_secondary| routine is
17691 refreshingly simple. It's not trivial, but the operations are relatively
17692 straightforward; the main difficulty is, again, that expressions and data
17693 structures might change drastically every time we call |get_x_next|, so a
17694 cautious approach is mandatory. For example, a macro defined by
17695 \&{primarydef} might have disappeared by the time its second argument has
17696 been scanned; we solve this by increasing the reference count of its token
17697 list, so that the macro can be called even after it has been clobbered.
17699 @<Declare the basic parsing subroutines@>=
17700 void mp_scan_secondary (MP mp) {
17701 pointer p; /* for list manipulation */
17702 halfword c,d; /* operation codes or modifiers */
17703 pointer mac_name; /* token defined with \&{primarydef} */
17705 if ((mp->cur_cmd<min_primary_command)||
17706 (mp->cur_cmd>max_primary_command) )
17707 mp_bad_exp(mp, "A secondary");
17708 @.A secondary expression...@>
17709 mp_scan_primary(mp);
17711 if ( mp->cur_cmd<=max_secondary_command )
17712 if ( mp->cur_cmd>=min_secondary_command ) {
17713 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17714 if ( d==secondary_primary_macro ) {
17715 mac_name=mp->cur_sym; add_mac_ref(c);
17717 mp_get_x_next(mp); mp_scan_primary(mp);
17718 if ( d!=secondary_primary_macro ) {
17719 mp_do_binary(mp, p,c);
17721 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17722 decr(ref_count(c)); mp_get_x_next(mp);
17729 @ The following procedure calls a macro that has two parameters,
17732 @c void mp_binary_mac (MP mp,pointer p, pointer c, pointer n) {
17733 pointer q,r; /* nodes in the parameter list */
17734 q=mp_get_avail(mp); r=mp_get_avail(mp); link(q)=r;
17735 info(q)=p; info(r)=mp_stash_cur_exp(mp);
17736 mp_macro_call(mp, c,q,n);
17739 @ The next procedure, |scan_tertiary|, is pretty much the same deal.
17741 @<Declare the basic parsing subroutines@>=
17742 void mp_scan_tertiary (MP mp) {
17743 pointer p; /* for list manipulation */
17744 halfword c,d; /* operation codes or modifiers */
17745 pointer mac_name; /* token defined with \&{secondarydef} */
17747 if ((mp->cur_cmd<min_primary_command)||
17748 (mp->cur_cmd>max_primary_command) )
17749 mp_bad_exp(mp, "A tertiary");
17750 @.A tertiary expression...@>
17751 mp_scan_secondary(mp);
17753 if ( mp->cur_cmd<=max_tertiary_command ) {
17754 if ( mp->cur_cmd>=min_tertiary_command ) {
17755 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17756 if ( d==tertiary_secondary_macro ) {
17757 mac_name=mp->cur_sym; add_mac_ref(c);
17759 mp_get_x_next(mp); mp_scan_secondary(mp);
17760 if ( d!=tertiary_secondary_macro ) {
17761 mp_do_binary(mp, p,c);
17763 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17764 decr(ref_count(c)); mp_get_x_next(mp);
17772 @ Finally we reach the deepest level in our quartet of parsing routines.
17773 This one is much like the others; but it has an extra complication from
17774 paths, which materialize here.
17776 @d continue_path 25 /* a label inside of |scan_expression| */
17777 @d finish_path 26 /* another */
17779 @<Declare the basic parsing subroutines@>=
17780 void mp_scan_expression (MP mp) {
17781 pointer p,q,r,pp,qq; /* for list manipulation */
17782 halfword c,d; /* operation codes or modifiers */
17783 int my_var_flag; /* initial value of |var_flag| */
17784 pointer mac_name; /* token defined with \&{tertiarydef} */
17785 boolean cycle_hit; /* did a path expression just end with `\&{cycle}'? */
17786 scaled x,y; /* explicit coordinates or tension at a path join */
17787 int t; /* knot type following a path join */
17789 my_var_flag=mp->var_flag; mac_name=null;
17791 if ((mp->cur_cmd<min_primary_command)||
17792 (mp->cur_cmd>max_primary_command) )
17793 mp_bad_exp(mp, "An");
17794 @.An expression...@>
17795 mp_scan_tertiary(mp);
17797 if ( mp->cur_cmd<=max_expression_command )
17798 if ( mp->cur_cmd>=min_expression_command ) {
17799 if ( (mp->cur_cmd!=equals)||(my_var_flag!=assignment) ) {
17800 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17801 if ( d==expression_tertiary_macro ) {
17802 mac_name=mp->cur_sym; add_mac_ref(c);
17804 if ( (d<ampersand)||((d==ampersand)&&
17805 ((type(p)==mp_pair_type)||(type(p)==mp_path_type))) ) {
17806 @<Scan a path construction operation;
17807 but |return| if |p| has the wrong type@>;
17809 mp_get_x_next(mp); mp_scan_tertiary(mp);
17810 if ( d!=expression_tertiary_macro ) {
17811 mp_do_binary(mp, p,c);
17813 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17814 decr(ref_count(c)); mp_get_x_next(mp);
17823 @ The reader should review the data structure conventions for paths before
17824 hoping to understand the next part of this code.
17826 @<Scan a path construction operation...@>=
17829 @<Convert the left operand, |p|, into a partial path ending at~|q|;
17830 but |return| if |p| doesn't have a suitable type@>;
17832 @<Determine the path join parameters;
17833 but |goto finish_path| if there's only a direction specifier@>;
17834 if ( mp->cur_cmd==cycle ) {
17835 @<Get ready to close a cycle@>;
17837 mp_scan_tertiary(mp);
17838 @<Convert the right operand, |cur_exp|,
17839 into a partial path from |pp| to~|qq|@>;
17841 @<Join the partial paths and reset |p| and |q| to the head and tail
17843 if ( mp->cur_cmd>=min_expression_command )
17844 if ( mp->cur_cmd<=ampersand ) if ( ! cycle_hit ) goto CONTINUE_PATH;
17846 @<Choose control points for the path and put the result into |cur_exp|@>;
17849 @ @<Convert the left operand, |p|, into a partial path ending at~|q|...@>=
17851 mp_unstash_cur_exp(mp, p);
17852 if ( mp->cur_type==mp_pair_type ) p=mp_new_knot(mp);
17853 else if ( mp->cur_type==mp_path_type ) p=mp->cur_exp;
17856 while ( link(q)!=p ) q=link(q);
17857 if ( left_type(p)!=endpoint ) { /* open up a cycle */
17858 r=mp_copy_knot(mp, p); link(q)=r; q=r;
17860 left_type(p)=open; right_type(q)=open;
17863 @ A pair of numeric values is changed into a knot node for a one-point path
17864 when \MP\ discovers that the pair is part of a path.
17866 @c@<Declare the procedure called |known_pair|@>;
17867 pointer mp_new_knot (MP mp) { /* convert a pair to a knot with two endpoints */
17868 pointer q; /* the new node */
17869 q=mp_get_node(mp, knot_node_size); left_type(q)=endpoint;
17870 right_type(q)=endpoint; originator(q)=metapost_user; link(q)=q;
17871 mp_known_pair(mp); x_coord(q)=mp->cur_x; y_coord(q)=mp->cur_y;
17875 @ The |known_pair| subroutine sets |cur_x| and |cur_y| to the components
17876 of the current expression, assuming that the current expression is a
17877 pair of known numerics. Unknown components are zeroed, and the
17878 current expression is flushed.
17880 @<Declare the procedure called |known_pair|@>=
17881 void mp_known_pair (MP mp) {
17882 pointer p; /* the pair node */
17883 if ( mp->cur_type!=mp_pair_type ) {
17884 exp_err("Undefined coordinates have been replaced by (0,0)");
17885 @.Undefined coordinates...@>
17886 help5("I need x and y numbers for this part of the path.")
17887 ("The value I found (see above) was no good;")
17888 ("so I'll try to keep going by using zero instead.")
17889 ("(Chapter 27 of The METAFONTbook explains that")
17890 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17891 ("you might want to type `I ??" "?' now.)");
17892 mp_put_get_flush_error(mp, 0); mp->cur_x=0; mp->cur_y=0;
17894 p=value(mp->cur_exp);
17895 @<Make sure that both |x| and |y| parts of |p| are known;
17896 copy them into |cur_x| and |cur_y|@>;
17897 mp_flush_cur_exp(mp, 0);
17901 @ @<Make sure that both |x| and |y| parts of |p| are known...@>=
17902 if ( type(x_part_loc(p))==mp_known ) {
17903 mp->cur_x=value(x_part_loc(p));
17905 mp_disp_err(mp, x_part_loc(p),
17906 "Undefined x coordinate has been replaced by 0");
17907 @.Undefined coordinates...@>
17908 help5("I need a `known' x value for this part of the path.")
17909 ("The value I found (see above) was no good;")
17910 ("so I'll try to keep going by using zero instead.")
17911 ("(Chapter 27 of The METAFONTbook explains that")
17912 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17913 ("you might want to type `I ??" "?' now.)");
17914 mp_put_get_error(mp); mp_recycle_value(mp, x_part_loc(p)); mp->cur_x=0;
17916 if ( type(y_part_loc(p))==mp_known ) {
17917 mp->cur_y=value(y_part_loc(p));
17919 mp_disp_err(mp, y_part_loc(p),
17920 "Undefined y coordinate has been replaced by 0");
17921 help5("I need a `known' y value for this part of the path.")
17922 ("The value I found (see above) was no good;")
17923 ("so I'll try to keep going by using zero instead.")
17924 ("(Chapter 27 of The METAFONTbook explains that")
17925 ("you might want to type `I ??" "?' now.)");
17926 mp_put_get_error(mp); mp_recycle_value(mp, y_part_loc(p)); mp->cur_y=0;
17929 @ At this point |cur_cmd| is either |ampersand|, |left_brace|, or |path_join|.
17931 @<Determine the path join parameters...@>=
17932 if ( mp->cur_cmd==left_brace ) {
17933 @<Put the pre-join direction information into node |q|@>;
17936 if ( d==path_join ) {
17937 @<Determine the tension and/or control points@>;
17938 } else if ( d!=ampersand ) {
17942 if ( mp->cur_cmd==left_brace ) {
17943 @<Put the post-join direction information into |x| and |t|@>;
17944 } else if ( right_type(q)!=explicit ) {
17948 @ The |scan_direction| subroutine looks at the directional information
17949 that is enclosed in braces, and also scans ahead to the following character.
17950 A type code is returned, either |open| (if the direction was $(0,0)$),
17951 or |curl| (if the direction was a curl of known value |cur_exp|), or
17952 |given| (if the direction is given by the |angle| value that now
17953 appears in |cur_exp|).
17955 There's nothing difficult about this subroutine, but the program is rather
17956 lengthy because a variety of potential errors need to be nipped in the bud.
17958 @c small_number mp_scan_direction (MP mp) {
17959 int t; /* the type of information found */
17960 scaled x; /* an |x| coordinate */
17962 if ( mp->cur_cmd==curl_command ) {
17963 @<Scan a curl specification@>;
17965 @<Scan a given direction@>;
17967 if ( mp->cur_cmd!=right_brace ) {
17968 mp_missing_err(mp, "}");
17969 @.Missing `\char`\}'@>
17970 help3("I've scanned a direction spec for part of a path,")
17971 ("so a right brace should have come next.")
17972 ("I shall pretend that one was there.");
17979 @ @<Scan a curl specification@>=
17980 { mp_get_x_next(mp); mp_scan_expression(mp);
17981 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<0) ){
17982 exp_err("Improper curl has been replaced by 1");
17984 help1("A curl must be a known, nonnegative number.");
17985 mp_put_get_flush_error(mp, unity);
17990 @ @<Scan a given direction@>=
17991 { mp_scan_expression(mp);
17992 if ( mp->cur_type>mp_pair_type ) {
17993 @<Get given directions separated by commas@>;
17997 if ( (mp->cur_x==0)&&(mp->cur_y==0) ) t=open;
17998 else { t=given; mp->cur_exp=mp_n_arg(mp, mp->cur_x,mp->cur_y);}
18001 @ @<Get given directions separated by commas@>=
18003 if ( mp->cur_type!=mp_known ) {
18004 exp_err("Undefined x coordinate has been replaced by 0");
18005 @.Undefined coordinates...@>
18006 help5("I need a `known' x value for this part of the path.")
18007 ("The value I found (see above) was no good;")
18008 ("so I'll try to keep going by using zero instead.")
18009 ("(Chapter 27 of The METAFONTbook explains that")
18010 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18011 ("you might want to type `I ??" "?' now.)");
18012 mp_put_get_flush_error(mp, 0);
18015 if ( mp->cur_cmd!=comma ) {
18016 mp_missing_err(mp, ",");
18018 help2("I've got the x coordinate of a path direction;")
18019 ("will look for the y coordinate next.");
18022 mp_get_x_next(mp); mp_scan_expression(mp);
18023 if ( mp->cur_type!=mp_known ) {
18024 exp_err("Undefined y coordinate has been replaced by 0");
18025 help5("I need a `known' y value for this part of the path.")
18026 ("The value I found (see above) was no good;")
18027 ("so I'll try to keep going by using zero instead.")
18028 ("(Chapter 27 of The METAFONTbook explains that")
18029 ("you might want to type `I ??" "?' now.)");
18030 mp_put_get_flush_error(mp, 0);
18032 mp->cur_y=mp->cur_exp; mp->cur_x=x;
18035 @ At this point |right_type(q)| is usually |open|, but it may have been
18036 set to some other value by a previous splicing operation. We must maintain
18037 the value of |right_type(q)| in unusual cases such as
18038 `\.{..z1\{z2\}\&\{z3\}z1\{0,0\}..}'.
18040 @<Put the pre-join...@>=
18042 t=mp_scan_direction(mp);
18044 right_type(q)=t; right_given(q)=mp->cur_exp;
18045 if ( left_type(q)==open ) {
18046 left_type(q)=t; left_given(q)=mp->cur_exp;
18047 } /* note that |left_given(q)=left_curl(q)| */
18051 @ Since |left_tension| and |left_y| share the same position in knot nodes,
18052 and since |left_given| is similarly equivalent to |left_x|, we use
18053 |x| and |y| to hold the given direction and tension information when
18054 there are no explicit control points.
18056 @<Put the post-join...@>=
18058 t=mp_scan_direction(mp);
18059 if ( right_type(q)!=explicit ) x=mp->cur_exp;
18060 else t=explicit; /* the direction information is superfluous */
18063 @ @<Determine the tension and/or...@>=
18066 if ( mp->cur_cmd==tension ) {
18067 @<Set explicit tensions@>;
18068 } else if ( mp->cur_cmd==controls ) {
18069 @<Set explicit control points@>;
18071 right_tension(q)=unity; y=unity; mp_back_input(mp); /* default tension */
18074 if ( mp->cur_cmd!=path_join ) {
18075 mp_missing_err(mp, "..");
18077 help1("A path join command should end with two dots.");
18084 @ @<Set explicit tensions@>=
18086 mp_get_x_next(mp); y=mp->cur_cmd;
18087 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18088 mp_scan_primary(mp);
18089 @<Make sure that the current expression is a valid tension setting@>;
18090 if ( y==at_least ) negate(mp->cur_exp);
18091 right_tension(q)=mp->cur_exp;
18092 if ( mp->cur_cmd==and_command ) {
18093 mp_get_x_next(mp); y=mp->cur_cmd;
18094 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18095 mp_scan_primary(mp);
18096 @<Make sure that the current expression is a valid tension setting@>;
18097 if ( y==at_least ) negate(mp->cur_exp);
18102 @ @d min_tension three_quarter_unit
18104 @<Make sure that the current expression is a valid tension setting@>=
18105 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<min_tension) ) {
18106 exp_err("Improper tension has been set to 1");
18107 @.Improper tension@>
18108 help1("The expression above should have been a number >=3/4.");
18109 mp_put_get_flush_error(mp, unity);
18112 @ @<Set explicit control points@>=
18114 right_type(q)=explicit; t=explicit; mp_get_x_next(mp); mp_scan_primary(mp);
18115 mp_known_pair(mp); right_x(q)=mp->cur_x; right_y(q)=mp->cur_y;
18116 if ( mp->cur_cmd!=and_command ) {
18117 x=right_x(q); y=right_y(q);
18119 mp_get_x_next(mp); mp_scan_primary(mp);
18120 mp_known_pair(mp); x=mp->cur_x; y=mp->cur_y;
18124 @ @<Convert the right operand, |cur_exp|, into a partial path...@>=
18126 if ( mp->cur_type!=mp_path_type ) pp=mp_new_knot(mp);
18127 else pp=mp->cur_exp;
18129 while ( link(qq)!=pp ) qq=link(qq);
18130 if ( left_type(pp)!=endpoint ) { /* open up a cycle */
18131 r=mp_copy_knot(mp, pp); link(qq)=r; qq=r;
18133 left_type(pp)=open; right_type(qq)=open;
18136 @ If a person tries to define an entire path by saying `\.{(x,y)\&cycle}',
18137 we silently change the specification to `\.{(x,y)..cycle}', since a cycle
18138 shouldn't have length zero.
18140 @<Get ready to close a cycle@>=
18142 cycle_hit=true; mp_get_x_next(mp); pp=p; qq=p;
18143 if ( d==ampersand ) if ( p==q ) {
18144 d=path_join; right_tension(q)=unity; y=unity;
18148 @ @<Join the partial paths and reset |p| and |q|...@>=
18150 if ( d==ampersand ) {
18151 if ( (x_coord(q)!=x_coord(pp))||(y_coord(q)!=y_coord(pp)) ) {
18152 print_err("Paths don't touch; `&' will be changed to `..'");
18153 @.Paths don't touch@>
18154 help3("When you join paths `p&q', the ending point of p")
18155 ("must be exactly equal to the starting point of q.")
18156 ("So I'm going to pretend that you said `p..q' instead.");
18157 mp_put_get_error(mp); d=path_join; right_tension(q)=unity; y=unity;
18160 @<Plug an opening in |right_type(pp)|, if possible@>;
18161 if ( d==ampersand ) {
18162 @<Splice independent paths together@>;
18164 @<Plug an opening in |right_type(q)|, if possible@>;
18165 link(q)=pp; left_y(pp)=y;
18166 if ( t!=open ) { left_x(pp)=x; left_type(pp)=t; };
18171 @ @<Plug an opening in |right_type(q)|...@>=
18172 if ( right_type(q)==open ) {
18173 if ( (left_type(q)==curl)||(left_type(q)==given) ) {
18174 right_type(q)=left_type(q); right_given(q)=left_given(q);
18178 @ @<Plug an opening in |right_type(pp)|...@>=
18179 if ( right_type(pp)==open ) {
18180 if ( (t==curl)||(t==given) ) {
18181 right_type(pp)=t; right_given(pp)=x;
18185 @ @<Splice independent paths together@>=
18187 if ( left_type(q)==open ) if ( right_type(q)==open ) {
18188 left_type(q)=curl; left_curl(q)=unity;
18190 if ( right_type(pp)==open ) if ( t==open ) {
18191 right_type(pp)=curl; right_curl(pp)=unity;
18193 right_type(q)=right_type(pp); link(q)=link(pp);
18194 right_x(q)=right_x(pp); right_y(q)=right_y(pp);
18195 mp_free_node(mp, pp,knot_node_size);
18196 if ( qq==pp ) qq=q;
18199 @ @<Choose control points for the path...@>=
18201 if ( d==ampersand ) p=q;
18203 left_type(p)=endpoint;
18204 if ( right_type(p)==open ) {
18205 right_type(p)=curl; right_curl(p)=unity;
18207 right_type(q)=endpoint;
18208 if ( left_type(q)==open ) {
18209 left_type(q)=curl; left_curl(q)=unity;
18213 mp_make_choices(mp, p);
18214 mp->cur_type=mp_path_type; mp->cur_exp=p
18216 @ Finally, we sometimes need to scan an expression whose value is
18217 supposed to be either |true_code| or |false_code|.
18219 @<Declare the basic parsing subroutines@>=
18220 void mp_get_boolean (MP mp) {
18221 mp_get_x_next(mp); mp_scan_expression(mp);
18222 if ( mp->cur_type!=mp_boolean_type ) {
18223 exp_err("Undefined condition will be treated as `false'");
18224 @.Undefined condition...@>
18225 help2("The expression shown above should have had a definite")
18226 ("true-or-false value. I'm changing it to `false'.");
18227 mp_put_get_flush_error(mp, false_code); mp->cur_type=mp_boolean_type;
18231 @* \[39] Doing the operations.
18232 The purpose of parsing is primarily to permit people to avoid piles of
18233 parentheses. But the real work is done after the structure of an expression
18234 has been recognized; that's when new expressions are generated. We
18235 turn now to the guts of \MP, which handles individual operators that
18236 have come through the parsing mechanism.
18238 We'll start with the easy ones that take no operands, then work our way
18239 up to operators with one and ultimately two arguments. In other words,
18240 we will write the three procedures |do_nullary|, |do_unary|, and |do_binary|
18241 that are invoked periodically by the expression scanners.
18243 First let's make sure that all of the primitive operators are in the
18244 hash table. Although |scan_primary| and its relatives made use of the
18245 \\{cmd} code for these operators, the \\{do} routines base everything
18246 on the \\{mod} code. For example, |do_binary| doesn't care whether the
18247 operation it performs is a |primary_binary| or |secondary_binary|, etc.
18250 mp_primitive(mp, "true",nullary,true_code);
18251 @:true_}{\&{true} primitive@>
18252 mp_primitive(mp, "false",nullary,false_code);
18253 @:false_}{\&{false} primitive@>
18254 mp_primitive(mp, "nullpicture",nullary,null_picture_code);
18255 @:null_picture_}{\&{nullpicture} primitive@>
18256 mp_primitive(mp, "nullpen",nullary,null_pen_code);
18257 @:null_pen_}{\&{nullpen} primitive@>
18258 mp_primitive(mp, "jobname",nullary,job_name_op);
18259 @:job_name_}{\&{jobname} primitive@>
18260 mp_primitive(mp, "readstring",nullary,read_string_op);
18261 @:read_string_}{\&{readstring} primitive@>
18262 mp_primitive(mp, "pencircle",nullary,pen_circle);
18263 @:pen_circle_}{\&{pencircle} primitive@>
18264 mp_primitive(mp, "normaldeviate",nullary,normal_deviate);
18265 @:normal_deviate_}{\&{normaldeviate} primitive@>
18266 mp_primitive(mp, "readfrom",unary,read_from_op);
18267 @:read_from_}{\&{readfrom} primitive@>
18268 mp_primitive(mp, "closefrom",unary,close_from_op);
18269 @:close_from_}{\&{closefrom} primitive@>
18270 mp_primitive(mp, "odd",unary,odd_op);
18271 @:odd_}{\&{odd} primitive@>
18272 mp_primitive(mp, "known",unary,known_op);
18273 @:known_}{\&{known} primitive@>
18274 mp_primitive(mp, "unknown",unary,unknown_op);
18275 @:unknown_}{\&{unknown} primitive@>
18276 mp_primitive(mp, "not",unary,not_op);
18277 @:not_}{\&{not} primitive@>
18278 mp_primitive(mp, "decimal",unary,decimal);
18279 @:decimal_}{\&{decimal} primitive@>
18280 mp_primitive(mp, "reverse",unary,reverse);
18281 @:reverse_}{\&{reverse} primitive@>
18282 mp_primitive(mp, "makepath",unary,make_path_op);
18283 @:make_path_}{\&{makepath} primitive@>
18284 mp_primitive(mp, "makepen",unary,make_pen_op);
18285 @:make_pen_}{\&{makepen} primitive@>
18286 mp_primitive(mp, "oct",unary,oct_op);
18287 @:oct_}{\&{oct} primitive@>
18288 mp_primitive(mp, "hex",unary,hex_op);
18289 @:hex_}{\&{hex} primitive@>
18290 mp_primitive(mp, "ASCII",unary,ASCII_op);
18291 @:ASCII_}{\&{ASCII} primitive@>
18292 mp_primitive(mp, "char",unary,char_op);
18293 @:char_}{\&{char} primitive@>
18294 mp_primitive(mp, "length",unary,length_op);
18295 @:length_}{\&{length} primitive@>
18296 mp_primitive(mp, "turningnumber",unary,turning_op);
18297 @:turning_number_}{\&{turningnumber} primitive@>
18298 mp_primitive(mp, "xpart",unary,x_part);
18299 @:x_part_}{\&{xpart} primitive@>
18300 mp_primitive(mp, "ypart",unary,y_part);
18301 @:y_part_}{\&{ypart} primitive@>
18302 mp_primitive(mp, "xxpart",unary,xx_part);
18303 @:xx_part_}{\&{xxpart} primitive@>
18304 mp_primitive(mp, "xypart",unary,xy_part);
18305 @:xy_part_}{\&{xypart} primitive@>
18306 mp_primitive(mp, "yxpart",unary,yx_part);
18307 @:yx_part_}{\&{yxpart} primitive@>
18308 mp_primitive(mp, "yypart",unary,yy_part);
18309 @:yy_part_}{\&{yypart} primitive@>
18310 mp_primitive(mp, "redpart",unary,red_part);
18311 @:red_part_}{\&{redpart} primitive@>
18312 mp_primitive(mp, "greenpart",unary,green_part);
18313 @:green_part_}{\&{greenpart} primitive@>
18314 mp_primitive(mp, "bluepart",unary,blue_part);
18315 @:blue_part_}{\&{bluepart} primitive@>
18316 mp_primitive(mp, "cyanpart",unary,cyan_part);
18317 @:cyan_part_}{\&{cyanpart} primitive@>
18318 mp_primitive(mp, "magentapart",unary,magenta_part);
18319 @:magenta_part_}{\&{magentapart} primitive@>
18320 mp_primitive(mp, "yellowpart",unary,yellow_part);
18321 @:yellow_part_}{\&{yellowpart} primitive@>
18322 mp_primitive(mp, "blackpart",unary,black_part);
18323 @:black_part_}{\&{blackpart} primitive@>
18324 mp_primitive(mp, "greypart",unary,grey_part);
18325 @:grey_part_}{\&{greypart} primitive@>
18326 mp_primitive(mp, "colormodel",unary,color_model_part);
18327 @:color_model_part_}{\&{colormodel} primitive@>
18328 mp_primitive(mp, "fontpart",unary,font_part);
18329 @:font_part_}{\&{fontpart} primitive@>
18330 mp_primitive(mp, "textpart",unary,text_part);
18331 @:text_part_}{\&{textpart} primitive@>
18332 mp_primitive(mp, "pathpart",unary,path_part);
18333 @:path_part_}{\&{pathpart} primitive@>
18334 mp_primitive(mp, "penpart",unary,pen_part);
18335 @:pen_part_}{\&{penpart} primitive@>
18336 mp_primitive(mp, "dashpart",unary,dash_part);
18337 @:dash_part_}{\&{dashpart} primitive@>
18338 mp_primitive(mp, "sqrt",unary,sqrt_op);
18339 @:sqrt_}{\&{sqrt} primitive@>
18340 mp_primitive(mp, "mexp",unary,m_exp_op);
18341 @:m_exp_}{\&{mexp} primitive@>
18342 mp_primitive(mp, "mlog",unary,m_log_op);
18343 @:m_log_}{\&{mlog} primitive@>
18344 mp_primitive(mp, "sind",unary,sin_d_op);
18345 @:sin_d_}{\&{sind} primitive@>
18346 mp_primitive(mp, "cosd",unary,cos_d_op);
18347 @:cos_d_}{\&{cosd} primitive@>
18348 mp_primitive(mp, "floor",unary,floor_op);
18349 @:floor_}{\&{floor} primitive@>
18350 mp_primitive(mp, "uniformdeviate",unary,uniform_deviate);
18351 @:uniform_deviate_}{\&{uniformdeviate} primitive@>
18352 mp_primitive(mp, "charexists",unary,char_exists_op);
18353 @:char_exists_}{\&{charexists} primitive@>
18354 mp_primitive(mp, "fontsize",unary,font_size);
18355 @:font_size_}{\&{fontsize} primitive@>
18356 mp_primitive(mp, "llcorner",unary,ll_corner_op);
18357 @:ll_corner_}{\&{llcorner} primitive@>
18358 mp_primitive(mp, "lrcorner",unary,lr_corner_op);
18359 @:lr_corner_}{\&{lrcorner} primitive@>
18360 mp_primitive(mp, "ulcorner",unary,ul_corner_op);
18361 @:ul_corner_}{\&{ulcorner} primitive@>
18362 mp_primitive(mp, "urcorner",unary,ur_corner_op);
18363 @:ur_corner_}{\&{urcorner} primitive@>
18364 mp_primitive(mp, "arclength",unary,arc_length);
18365 @:arc_length_}{\&{arclength} primitive@>
18366 mp_primitive(mp, "angle",unary,angle_op);
18367 @:angle_}{\&{angle} primitive@>
18368 mp_primitive(mp, "cycle",cycle,cycle_op);
18369 @:cycle_}{\&{cycle} primitive@>
18370 mp_primitive(mp, "stroked",unary,stroked_op);
18371 @:stroked_}{\&{stroked} primitive@>
18372 mp_primitive(mp, "filled",unary,filled_op);
18373 @:filled_}{\&{filled} primitive@>
18374 mp_primitive(mp, "textual",unary,textual_op);
18375 @:textual_}{\&{textual} primitive@>
18376 mp_primitive(mp, "clipped",unary,clipped_op);
18377 @:clipped_}{\&{clipped} primitive@>
18378 mp_primitive(mp, "bounded",unary,bounded_op);
18379 @:bounded_}{\&{bounded} primitive@>
18380 mp_primitive(mp, "+",plus_or_minus,plus);
18381 @:+ }{\.{+} primitive@>
18382 mp_primitive(mp, "-",plus_or_minus,minus);
18383 @:- }{\.{-} primitive@>
18384 mp_primitive(mp, "*",secondary_binary,times);
18385 @:* }{\.{*} primitive@>
18386 mp_primitive(mp, "/",slash,over); mp->eqtb[frozen_slash]=mp->eqtb[mp->cur_sym];
18387 @:/ }{\.{/} primitive@>
18388 mp_primitive(mp, "++",tertiary_binary,pythag_add);
18389 @:++_}{\.{++} primitive@>
18390 mp_primitive(mp, "+-+",tertiary_binary,pythag_sub);
18391 @:+-+_}{\.{+-+} primitive@>
18392 mp_primitive(mp, "or",tertiary_binary,or_op);
18393 @:or_}{\&{or} primitive@>
18394 mp_primitive(mp, "and",and_command,and_op);
18395 @:and_}{\&{and} primitive@>
18396 mp_primitive(mp, "<",expression_binary,less_than);
18397 @:< }{\.{<} primitive@>
18398 mp_primitive(mp, "<=",expression_binary,less_or_equal);
18399 @:<=_}{\.{<=} primitive@>
18400 mp_primitive(mp, ">",expression_binary,greater_than);
18401 @:> }{\.{>} primitive@>
18402 mp_primitive(mp, ">=",expression_binary,greater_or_equal);
18403 @:>=_}{\.{>=} primitive@>
18404 mp_primitive(mp, "=",equals,equal_to);
18405 @:= }{\.{=} primitive@>
18406 mp_primitive(mp, "<>",expression_binary,unequal_to);
18407 @:<>_}{\.{<>} primitive@>
18408 mp_primitive(mp, "substring",primary_binary,substring_of);
18409 @:substring_}{\&{substring} primitive@>
18410 mp_primitive(mp, "subpath",primary_binary,subpath_of);
18411 @:subpath_}{\&{subpath} primitive@>
18412 mp_primitive(mp, "directiontime",primary_binary,direction_time_of);
18413 @:direction_time_}{\&{directiontime} primitive@>
18414 mp_primitive(mp, "point",primary_binary,point_of);
18415 @:point_}{\&{point} primitive@>
18416 mp_primitive(mp, "precontrol",primary_binary,precontrol_of);
18417 @:precontrol_}{\&{precontrol} primitive@>
18418 mp_primitive(mp, "postcontrol",primary_binary,postcontrol_of);
18419 @:postcontrol_}{\&{postcontrol} primitive@>
18420 mp_primitive(mp, "penoffset",primary_binary,pen_offset_of);
18421 @:pen_offset_}{\&{penoffset} primitive@>
18422 mp_primitive(mp, "arctime",primary_binary,arc_time_of);
18423 @:arc_time_of_}{\&{arctime} primitive@>
18424 mp_primitive(mp, "mpversion",nullary,mp_version);
18425 @:mp_verison_}{\&{mpversion} primitive@>
18426 mp_primitive(mp, "&",ampersand,concatenate);
18427 @:!!!}{\.{\&} primitive@>
18428 mp_primitive(mp, "rotated",secondary_binary,rotated_by);
18429 @:rotated_}{\&{rotated} primitive@>
18430 mp_primitive(mp, "slanted",secondary_binary,slanted_by);
18431 @:slanted_}{\&{slanted} primitive@>
18432 mp_primitive(mp, "scaled",secondary_binary,scaled_by);
18433 @:scaled_}{\&{scaled} primitive@>
18434 mp_primitive(mp, "shifted",secondary_binary,shifted_by);
18435 @:shifted_}{\&{shifted} primitive@>
18436 mp_primitive(mp, "transformed",secondary_binary,transformed_by);
18437 @:transformed_}{\&{transformed} primitive@>
18438 mp_primitive(mp, "xscaled",secondary_binary,x_scaled);
18439 @:x_scaled_}{\&{xscaled} primitive@>
18440 mp_primitive(mp, "yscaled",secondary_binary,y_scaled);
18441 @:y_scaled_}{\&{yscaled} primitive@>
18442 mp_primitive(mp, "zscaled",secondary_binary,z_scaled);
18443 @:z_scaled_}{\&{zscaled} primitive@>
18444 mp_primitive(mp, "infont",secondary_binary,in_font);
18445 @:in_font_}{\&{infont} primitive@>
18446 mp_primitive(mp, "intersectiontimes",tertiary_binary,intersect);
18447 @:intersection_times_}{\&{intersectiontimes} primitive@>
18449 @ @<Cases of |print_cmd...@>=
18452 case primary_binary:
18453 case secondary_binary:
18454 case tertiary_binary:
18455 case expression_binary:
18457 case plus_or_minus:
18462 mp_print_op(mp, m);
18465 @ OK, let's look at the simplest \\{do} procedure first.
18467 @c @<Declare nullary action procedure@>;
18468 void mp_do_nullary (MP mp,quarterword c) {
18470 if ( mp->internal[tracing_commands]>two )
18471 mp_show_cmd_mod(mp, nullary,c);
18473 case true_code: case false_code:
18474 mp->cur_type=mp_boolean_type; mp->cur_exp=c;
18476 case null_picture_code:
18477 mp->cur_type=mp_picture_type;
18478 mp->cur_exp=mp_get_node(mp, edge_header_size);
18479 mp_init_edges(mp, mp->cur_exp);
18481 case null_pen_code:
18482 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, 0);
18484 case normal_deviate:
18485 mp->cur_type=mp_known; mp->cur_exp=mp_norm_rand(mp);
18488 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, unity);
18491 if ( mp->job_name==NULL ) mp_open_log_file(mp);
18492 mp->cur_type=mp_string_type; mp->cur_exp=rts(mp->job_name);
18495 mp->cur_type=mp_string_type;
18496 mp->cur_exp=intern(metapost_version) ;
18498 case read_string_op:
18499 @<Read a string from the terminal@>;
18501 } /* there are no other cases */
18505 @ @<Read a string...@>=
18507 if ( mp->interaction<=mp_nonstop_mode )
18508 mp_fatal_error(mp, "*** (cannot readstring in nonstop modes)");
18509 mp_begin_file_reading(mp); name=is_read;
18510 limit=start; prompt_input("");
18511 mp_finish_read(mp);
18514 @ @<Declare nullary action procedure@>=
18515 void mp_finish_read (MP mp) { /* copy |buffer| line to |cur_exp| */
18517 str_room((int)mp->last-start);
18518 for (k=start;k<=mp->last-1;k++) {
18519 append_char(mp->buffer[k]);
18521 mp_end_file_reading(mp); mp->cur_type=mp_string_type;
18522 mp->cur_exp=mp_make_string(mp);
18525 @ Things get a bit more interesting when there's an operand. The
18526 operand to |do_unary| appears in |cur_type| and |cur_exp|.
18528 @c @<Declare unary action procedures@>;
18529 void mp_do_unary (MP mp,quarterword c) {
18530 pointer p,q,r; /* for list manipulation */
18531 integer x; /* a temporary register */
18533 if ( mp->internal[tracing_commands]>two )
18534 @<Trace the current unary operation@>;
18537 if ( mp->cur_type<mp_color_type ) mp_bad_unary(mp, plus);
18540 @<Negate the current expression@>;
18542 @<Additional cases of unary operators@>;
18543 } /* there are no other cases */
18547 @ The |nice_pair| function returns |true| if both components of a pair
18550 @<Declare unary action procedures@>=
18551 boolean mp_nice_pair (MP mp,integer p, quarterword t) {
18552 if ( t==mp_pair_type ) {
18554 if ( type(x_part_loc(p))==mp_known )
18555 if ( type(y_part_loc(p))==mp_known )
18561 @ The |nice_color_or_pair| function is analogous except that it also accepts
18562 fully known colors.
18564 @<Declare unary action procedures@>=
18565 boolean mp_nice_color_or_pair (MP mp,integer p, quarterword t) {
18566 pointer q,r; /* for scanning the big node */
18567 if ( (t!=mp_pair_type)&&(t!=mp_color_type)&&(t!=mp_cmykcolor_type) ) {
18571 r=q+mp->big_node_size[type(p)];
18574 if ( type(r)!=mp_known )
18581 @ @<Declare unary action...@>=
18582 void mp_print_known_or_unknown_type (MP mp,small_number t, integer v) {
18583 mp_print_char(mp, '(');
18584 if ( t>mp_known ) mp_print(mp, "unknown numeric");
18585 else { if ( (t==mp_pair_type)||(t==mp_color_type)||(t==mp_cmykcolor_type) )
18586 if ( ! mp_nice_color_or_pair(mp, v,t) ) mp_print(mp, "unknown ");
18587 mp_print_type(mp, t);
18589 mp_print_char(mp, ')');
18592 @ @<Declare unary action...@>=
18593 void mp_bad_unary (MP mp,quarterword c) {
18594 exp_err("Not implemented: "); mp_print_op(mp, c);
18595 @.Not implemented...@>
18596 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
18597 help3("I'm afraid I don't know how to apply that operation to that")
18598 ("particular type. Continue, and I'll simply return the")
18599 ("argument (shown above) as the result of the operation.");
18600 mp_put_get_error(mp);
18603 @ @<Trace the current unary operation@>=
18605 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
18606 mp_print_op(mp, c); mp_print_char(mp, '(');
18607 mp_print_exp(mp, null,0); /* show the operand, but not verbosely */
18608 mp_print(mp, ")}"); mp_end_diagnostic(mp, false);
18611 @ Negation is easy except when the current expression
18612 is of type |independent|, or when it is a pair with one or more
18613 |independent| components.
18615 It is tempting to argue that the negative of an independent variable
18616 is an independent variable, hence we don't have to do anything when
18617 negating it. The fallacy is that other dependent variables pointing
18618 to the current expression must change the sign of their
18619 coefficients if we make no change to the current expression.
18621 Instead, we work around the problem by copying the current expression
18622 and recycling it afterwards (cf.~the |stash_in| routine).
18624 @<Negate the current expression@>=
18625 switch (mp->cur_type) {
18626 case mp_color_type:
18627 case mp_cmykcolor_type:
18629 case mp_independent:
18630 q=mp->cur_exp; mp_make_exp_copy(mp, q);
18631 if ( mp->cur_type==mp_dependent ) {
18632 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18633 } else if ( mp->cur_type<=mp_pair_type ) { /* |mp_color_type| or |mp_pair_type| */
18634 p=value(mp->cur_exp);
18635 r=p+mp->big_node_size[mp->cur_type];
18638 if ( type(r)==mp_known ) negate(value(r));
18639 else mp_negate_dep_list(mp, dep_list(r));
18641 } /* if |cur_type=mp_known| then |cur_exp=0| */
18642 mp_recycle_value(mp, q); mp_free_node(mp, q,value_node_size);
18645 case mp_proto_dependent:
18646 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18649 negate(mp->cur_exp);
18652 mp_bad_unary(mp, minus);
18656 @ @<Declare unary action...@>=
18657 void mp_negate_dep_list (MP mp,pointer p) {
18660 if ( info(p)==null ) return;
18665 @ @<Additional cases of unary operators@>=
18667 if ( mp->cur_type!=mp_boolean_type ) mp_bad_unary(mp, not_op);
18668 else mp->cur_exp=true_code+false_code-mp->cur_exp;
18671 @ @d three_sixty_units 23592960 /* that's |360*unity| */
18672 @d boolean_reset(A) if ( (A) ) mp->cur_exp=true_code; else mp->cur_exp=false_code
18674 @<Additional cases of unary operators@>=
18681 case uniform_deviate:
18683 case char_exists_op:
18684 if ( mp->cur_type!=mp_known ) {
18685 mp_bad_unary(mp, c);
18688 case sqrt_op:mp->cur_exp=mp_square_rt(mp, mp->cur_exp);break;
18689 case m_exp_op:mp->cur_exp=mp_m_exp(mp, mp->cur_exp);break;
18690 case m_log_op:mp->cur_exp=mp_m_log(mp, mp->cur_exp);break;
18693 mp_n_sin_cos(mp, (mp->cur_exp % three_sixty_units)*16);
18694 if ( c==sin_d_op ) mp->cur_exp=mp_round_fraction(mp, mp->n_sin);
18695 else mp->cur_exp=mp_round_fraction(mp, mp->n_cos);
18697 case floor_op:mp->cur_exp=mp_floor_scaled(mp, mp->cur_exp);break;
18698 case uniform_deviate:mp->cur_exp=mp_unif_rand(mp, mp->cur_exp);break;
18700 boolean_reset(odd(mp_round_unscaled(mp, mp->cur_exp)));
18701 mp->cur_type=mp_boolean_type;
18703 case char_exists_op:
18704 @<Determine if a character has been shipped out@>;
18706 } /* there are no other cases */
18710 @ @<Additional cases of unary operators@>=
18712 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) ) {
18713 p=value(mp->cur_exp);
18714 x=mp_n_arg(mp, value(x_part_loc(p)),value(y_part_loc(p)));
18715 if ( x>=0 ) mp_flush_cur_exp(mp, (x+8)/ 16);
18716 else mp_flush_cur_exp(mp, -((-x+8)/ 16));
18718 mp_bad_unary(mp, angle_op);
18722 @ If the current expression is a pair, but the context wants it to
18723 be a path, we call |pair_to_path|.
18725 @<Declare unary action...@>=
18726 void mp_pair_to_path (MP mp) {
18727 mp->cur_exp=mp_new_knot(mp);
18728 mp->cur_type=mp_path_type;
18731 @ @<Additional cases of unary operators@>=
18734 if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_transform_type) )
18735 mp_take_part(mp, c);
18736 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18737 else mp_bad_unary(mp, c);
18743 if ( mp->cur_type==mp_transform_type ) mp_take_part(mp, c);
18744 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18745 else mp_bad_unary(mp, c);
18750 if ( mp->cur_type==mp_color_type ) mp_take_part(mp, c);
18751 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18752 else mp_bad_unary(mp, c);
18758 if ( mp->cur_type==mp_cmykcolor_type) mp_take_part(mp, c);
18759 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18760 else mp_bad_unary(mp, c);
18763 if ( mp->cur_type==mp_known ) mp->cur_exp=value(c);
18764 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18765 else mp_bad_unary(mp, c);
18767 case color_model_part:
18768 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18769 else mp_bad_unary(mp, c);
18772 @ In the following procedure, |cur_exp| points to a capsule, which points to
18773 a big node. We want to delete all but one part of the big node.
18775 @<Declare unary action...@>=
18776 void mp_take_part (MP mp,quarterword c) {
18777 pointer p; /* the big node */
18778 p=value(mp->cur_exp); value(temp_val)=p; type(temp_val)=mp->cur_type;
18779 link(p)=temp_val; mp_free_node(mp, mp->cur_exp,value_node_size);
18780 mp_make_exp_copy(mp, p+mp->sector_offset[c+mp_x_part_sector-x_part]);
18781 mp_recycle_value(mp, temp_val);
18784 @ @<Initialize table entries...@>=
18785 name_type(temp_val)=mp_capsule;
18787 @ @<Additional cases of unary operators@>=
18793 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18794 else mp_bad_unary(mp, c);
18797 @ @<Declarations@>=
18798 void mp_scale_edges (MP mp);
18800 @ @<Declare unary action...@>=
18801 void mp_take_pict_part (MP mp,quarterword c) {
18802 pointer p; /* first graphical object in |cur_exp| */
18803 p=link(dummy_loc(mp->cur_exp));
18806 case x_part: case y_part: case xx_part:
18807 case xy_part: case yx_part: case yy_part:
18808 if ( type(p)==text_code ) mp_flush_cur_exp(mp, text_trans_part(p+c));
18809 else goto NOT_FOUND;
18811 case red_part: case green_part: case blue_part:
18812 if ( has_color(p) ) mp_flush_cur_exp(mp, obj_color_part(p+c));
18813 else goto NOT_FOUND;
18815 case cyan_part: case magenta_part: case yellow_part:
18817 if ( has_color(p) ) {
18818 if ( color_model(p)==uninitialized_model )
18819 mp_flush_cur_exp(mp, unity);
18821 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-cyan_part)));
18822 } else goto NOT_FOUND;
18825 if ( has_color(p) )
18826 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-grey_part)));
18827 else goto NOT_FOUND;
18829 case color_model_part:
18830 if ( has_color(p) ) {
18831 if ( color_model(p)==uninitialized_model )
18832 mp_flush_cur_exp(mp, mp->internal[default_color_model]);
18834 mp_flush_cur_exp(mp, color_model(p)*unity);
18835 } else goto NOT_FOUND;
18837 @<Handle other cases in |take_pict_part| or |goto not_found|@>;
18838 } /* all cases have been enumerated */
18842 @<Convert the current expression to a null value appropriate
18846 @ @<Handle other cases in |take_pict_part| or |goto not_found|@>=
18848 if ( type(p)!=text_code ) goto NOT_FOUND;
18850 mp_flush_cur_exp(mp, text_p(p));
18851 add_str_ref(mp->cur_exp);
18852 mp->cur_type=mp_string_type;
18856 if ( type(p)!=text_code ) goto NOT_FOUND;
18858 mp_flush_cur_exp(mp, rts(mp->font_name[font_n(p)]));
18859 add_str_ref(mp->cur_exp);
18860 mp->cur_type=mp_string_type;
18864 if ( type(p)==text_code ) goto NOT_FOUND;
18865 else if ( is_stop(p) ) mp_confusion(mp, "pict");
18866 @:this can't happen pict}{\quad pict@>
18868 mp_flush_cur_exp(mp, mp_copy_path(mp, path_p(p)));
18869 mp->cur_type=mp_path_type;
18873 if ( ! has_pen(p) ) goto NOT_FOUND;
18875 if ( pen_p(p)==null ) goto NOT_FOUND;
18876 else { mp_flush_cur_exp(mp, copy_pen(pen_p(p)));
18877 mp->cur_type=mp_pen_type;
18882 if ( type(p)!=stroked_code ) goto NOT_FOUND;
18883 else { if ( dash_p(p)==null ) goto NOT_FOUND;
18884 else { add_edge_ref(dash_p(p));
18885 mp->se_sf=dash_scale(p);
18886 mp->se_pic=dash_p(p);
18887 mp_scale_edges(mp);
18888 mp_flush_cur_exp(mp, mp->se_pic);
18889 mp->cur_type=mp_picture_type;
18894 @ Since |scale_edges| had to be declared |forward|, it had to be declared as a
18895 parameterless procedure even though it really takes two arguments and updates
18896 one of them. Hence the following globals are needed.
18899 pointer se_pic; /* edge header used and updated by |scale_edges| */
18900 scaled se_sf; /* the scale factor argument to |scale_edges| */
18902 @ @<Convert the current expression to a null value appropriate...@>=
18904 case text_part: case font_part:
18905 mp_flush_cur_exp(mp, rts(""));
18906 mp->cur_type=mp_string_type;
18909 mp_flush_cur_exp(mp, mp_get_node(mp, knot_node_size));
18910 left_type(mp->cur_exp)=endpoint;
18911 right_type(mp->cur_exp)=endpoint;
18912 link(mp->cur_exp)=mp->cur_exp;
18913 x_coord(mp->cur_exp)=0;
18914 y_coord(mp->cur_exp)=0;
18915 originator(mp->cur_exp)=metapost_user;
18916 mp->cur_type=mp_path_type;
18919 mp_flush_cur_exp(mp, mp_get_pen_circle(mp, 0));
18920 mp->cur_type=mp_pen_type;
18923 mp_flush_cur_exp(mp, mp_get_node(mp, edge_header_size));
18924 mp_init_edges(mp, mp->cur_exp);
18925 mp->cur_type=mp_picture_type;
18928 mp_flush_cur_exp(mp, 0);
18932 @ @<Additional cases of unary...@>=
18934 if ( mp->cur_type!=mp_known ) {
18935 mp_bad_unary(mp, char_op);
18937 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
18938 mp->cur_type=mp_string_type;
18939 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
18943 if ( mp->cur_type!=mp_known ) {
18944 mp_bad_unary(mp, decimal);
18946 mp->old_setting=mp->selector; mp->selector=new_string;
18947 mp_print_scaled(mp, mp->cur_exp); mp->cur_exp=mp_make_string(mp);
18948 mp->selector=mp->old_setting; mp->cur_type=mp_string_type;
18954 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
18955 else mp_str_to_num(mp, c);
18958 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, font_size);
18959 else @<Find the design size of the font whose name is |cur_exp|@>;
18962 @ @<Declare unary action...@>=
18963 void mp_str_to_num (MP mp,quarterword c) { /* converts a string to a number */
18964 integer n; /* accumulator */
18965 ASCII_code m; /* current character */
18966 pool_pointer k; /* index into |str_pool| */
18967 int b; /* radix of conversion */
18968 boolean bad_char; /* did the string contain an invalid digit? */
18969 if ( c==ASCII_op ) {
18970 if ( length(mp->cur_exp)==0 ) n=-1;
18971 else n=mp->str_pool[mp->str_start[mp->cur_exp]];
18973 if ( c==oct_op ) b=8; else b=16;
18974 n=0; bad_char=false;
18975 for (k=mp->str_start[mp->cur_exp];k<=str_stop(mp->cur_exp)-1;k++) {
18977 if ( (m>='0')&&(m<='9') ) m=m-'0';
18978 else if ( (m>='A')&&(m<='F') ) m=m-'A'+10;
18979 else if ( (m>='a')&&(m<='f') ) m=m-'a'+10;
18980 else { bad_char=true; m=0; };
18981 if ( m>=b ) { bad_char=true; m=0; };
18982 if ( n<32768 / b ) n=n*b+m; else n=32767;
18984 @<Give error messages if |bad_char| or |n>=4096|@>;
18986 mp_flush_cur_exp(mp, n*unity);
18989 @ @<Give error messages if |bad_char|...@>=
18991 exp_err("String contains illegal digits");
18992 @.String contains illegal digits@>
18994 help1("I zeroed out characters that weren't in the range 0..7.");
18996 help1("I zeroed out characters that weren't hex digits.");
18998 mp_put_get_error(mp);
19001 if ( mp->internal[warning_check]>0 ) {
19002 print_err("Number too large (");
19003 mp_print_int(mp, n); mp_print_char(mp, ')');
19004 @.Number too large@>
19005 help2("I have trouble with numbers greater than 4095; watch out.")
19006 ("(Set warningcheck:=0 to suppress this message.)");
19007 mp_put_get_error(mp);
19011 @ The length operation is somewhat unusual in that it applies to a variety
19012 of different types of operands.
19014 @<Additional cases of unary...@>=
19016 switch (mp->cur_type) {
19017 case mp_string_type: mp_flush_cur_exp(mp, length(mp->cur_exp)*unity); break;
19018 case mp_path_type: mp_flush_cur_exp(mp, mp_path_length(mp)); break;
19019 case mp_known: mp->cur_exp=abs(mp->cur_exp); break;
19020 case mp_picture_type: mp_flush_cur_exp(mp, mp_pict_length(mp)); break;
19022 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) )
19023 mp_flush_cur_exp(mp, mp_pyth_add(mp,
19024 value(x_part_loc(value(mp->cur_exp))),
19025 value(y_part_loc(value(mp->cur_exp)))));
19026 else mp_bad_unary(mp, c);
19031 @ @<Declare unary action...@>=
19032 scaled mp_path_length (MP mp) { /* computes the length of the current path */
19033 scaled n; /* the path length so far */
19034 pointer p; /* traverser */
19036 if ( left_type(p)==endpoint ) n=-unity; else n=0;
19037 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
19041 @ @<Declare unary action...@>=
19042 scaled mp_pict_length (MP mp) {
19043 /* counts interior components in picture |cur_exp| */
19044 scaled n; /* the count so far */
19045 pointer p; /* traverser */
19047 p=link(dummy_loc(mp->cur_exp));
19049 if ( is_start_or_stop(p) )
19050 if ( mp_skip_1component(mp, p)==null ) p=link(p);
19051 while ( p!=null ) {
19052 skip_component(p) return n;
19059 @ Implement |turningnumber|
19061 @<Additional cases of unary...@>=
19063 if ( mp->cur_type==mp_pair_type ) mp_flush_cur_exp(mp, 0);
19064 else if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, turning_op);
19065 else if ( left_type(mp->cur_exp)==endpoint )
19066 mp_flush_cur_exp(mp, 0); /* not a cyclic path */
19068 mp_flush_cur_exp(mp, mp_turn_cycles_wrapper(mp, mp->cur_exp));
19071 @ The function |an_angle| returns the value of the |angle| primitive, or $0$ if the
19072 argument is |origin|.
19074 @<Declare unary action...@>=
19075 angle mp_an_angle (MP mp,scaled xpar, scaled ypar) {
19076 if ( (! ((xpar==0) && (ypar==0))) )
19077 return mp_n_arg(mp, xpar,ypar);
19082 @ The actual turning number is (for the moment) computed in a C function
19083 that receives eight integers corresponding to the four controlling points,
19084 and returns a single angle. Besides those, we have to account for discrete
19085 moves at the actual points.
19087 @d floor(a) (a>=0 ? a : -(int)(-a))
19088 @d bezier_error (720<<20)+1
19089 @d sign(v) ((v)>0 ? 1 : ((v)<0 ? -1 : 0 ))
19090 @d print_roots(a) { if (debuglevel>(65536*2))
19091 fprintf(stdout,"bezier_slope(): %s, i=%f, o=%f, angle=%f\n", (a),in,out,res); }
19092 @d out ((double)(xo>>20))
19093 @d mid ((double)(xm>>20))
19094 @d in ((double)(xi>>20))
19095 @d divisor (256*256)
19096 @d double2angle(a) (int)floor(a*256.0*256.0*16.0)
19098 @<Declare unary action...@>=
19099 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19100 integer CX,integer CY,integer DX,integer DY, int debuglevel);
19103 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19104 integer CX,integer CY,integer DX,integer DY, int debuglevel) {
19106 integer deltax,deltay;
19107 double ax,ay,bx,by,cx,cy,dx,dy;
19108 angle xi = 0, xo = 0, xm = 0;
19110 ax=AX/divisor; ay=AY/divisor;
19111 bx=BX/divisor; by=BY/divisor;
19112 cx=CX/divisor; cy=CY/divisor;
19113 dx=DX/divisor; dy=DY/divisor;
19115 deltax = (BX-AX); deltay = (BY-AY);
19116 if (deltax==0 && deltay == 0) { deltax=(CX-AX); deltay=(CY-AY); }
19117 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19118 xi = mp_an_angle(mp,deltax,deltay);
19120 deltax = (CX-BX); deltay = (CY-BY);
19121 xm = mp_an_angle(mp,deltax,deltay);
19123 deltax = (DX-CX); deltay = (DY-CY);
19124 if (deltax==0 && deltay == 0) { deltax=(DX-BX); deltay=(DY-BY); }
19125 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19126 xo = mp_an_angle(mp,deltax,deltay);
19128 a = (bx-ax)*(cy-by) - (cx-bx)*(by-ay); /* a = (bp-ap)x(cp-bp); */
19129 b = (bx-ax)*(dy-cy) - (by-ay)*(dx-cx);; /* b = (bp-ap)x(dp-cp);*/
19130 c = (cx-bx)*(dy-cy) - (dx-cx)*(cy-by); /* c = (cp-bp)x(dp-cp);*/
19132 if (debuglevel>(65536*2)) {
19134 "bezier_slope(): (%.2f,%.2f),(%.2f,%.2f),(%.2f,%.2f),(%.2f,%.2f)\n",
19135 ax,ay,bx,by,cx,cy,dx,dy);
19137 "bezier_slope(): a,b,c,b^2,4ac: (%.2f,%.2f,%.2f,%.2f,%.2f)\n",a,b,c,b*b,4*a*c);
19140 if ((a==0)&&(c==0)) {
19141 res = (b==0 ? 0 : (out-in));
19142 print_roots("no roots (a)");
19143 } else if ((a==0)||(c==0)) {
19144 if ((sign(b) == sign(a)) || (sign(b) == sign(c))) {
19145 res = out-in; /* ? */
19148 else if (res>180.0)
19150 print_roots("no roots (b)");
19152 res = out-in; /* ? */
19153 print_roots("one root (a)");
19155 } else if ((sign(a)*sign(c))<0) {
19156 res = out-in; /* ? */
19159 else if (res>180.0)
19161 print_roots("one root (b)");
19163 if (sign(a) == sign(b)) {
19164 res = out-in; /* ? */
19167 else if (res>180.0)
19169 print_roots("no roots (d)");
19171 if ((b*b) == (4*a*c)) {
19172 res = bezier_error;
19173 print_roots("double root"); /* cusp */
19174 } else if ((b*b) < (4*a*c)) {
19175 res = out-in; /* ? */
19176 if (res<=0.0 &&res>-180.0)
19178 else if (res>=0.0 && res<180.0)
19180 print_roots("no roots (e)");
19185 else if (res>180.0)
19187 print_roots("two roots"); /* two inflections */
19191 return double2angle(res);
19195 @d p_nextnext link(link(p))
19197 @d seven_twenty_deg 05500000000 /* $720\cdot2^{20}$, represents $720^\circ$ */
19199 @<Declare unary action...@>=
19200 scaled mp_new_turn_cycles (MP mp,pointer c) {
19201 angle res,ang; /* the angles of intermediate results */
19202 scaled turns; /* the turn counter */
19203 pointer p; /* for running around the path */
19204 integer xp,yp; /* coordinates of next point */
19205 integer x,y; /* helper coordinates */
19206 angle in_angle,out_angle; /* helper angles */
19207 int old_setting; /* saved |selector| setting */
19211 old_setting = mp->selector; mp->selector=term_only;
19212 if ( mp->internal[tracing_commands]>unity ) {
19213 mp_begin_diagnostic(mp);
19214 mp_print_nl(mp, "");
19215 mp_end_diagnostic(mp, false);
19218 xp = x_coord(p_next); yp = y_coord(p_next);
19219 ang = mp_bezier_slope(mp,x_coord(p), y_coord(p), right_x(p), right_y(p),
19220 left_x(p_next), left_y(p_next), xp, yp,
19221 mp->internal[tracing_commands]);
19222 if ( ang>seven_twenty_deg ) {
19223 print_err("Strange path");
19225 mp->selector=old_setting;
19229 if ( res > one_eighty_deg ) {
19230 res = res - three_sixty_deg;
19231 turns = turns + unity;
19233 if ( res <= -one_eighty_deg ) {
19234 res = res + three_sixty_deg;
19235 turns = turns - unity;
19237 /* incoming angle at next point */
19238 x = left_x(p_next); y = left_y(p_next);
19239 if ( (xp==x)&&(yp==y) ) { x = right_x(p); y = right_y(p); };
19240 if ( (xp==x)&&(yp==y) ) { x = x_coord(p); y = y_coord(p); };
19241 in_angle = mp_an_angle(mp, xp - x, yp - y);
19242 /* outgoing angle at next point */
19243 x = right_x(p_next); y = right_y(p_next);
19244 if ( (xp==x)&&(yp==y) ) { x = left_x(p_nextnext); y = left_y(p_nextnext); };
19245 if ( (xp==x)&&(yp==y) ) { x = x_coord(p_nextnext); y = y_coord(p_nextnext); };
19246 out_angle = mp_an_angle(mp, x - xp, y- yp);
19247 ang = (out_angle - in_angle);
19251 if ( res >= one_eighty_deg ) {
19252 res = res - three_sixty_deg;
19253 turns = turns + unity;
19255 if ( res <= -one_eighty_deg ) {
19256 res = res + three_sixty_deg;
19257 turns = turns - unity;
19262 mp->selector=old_setting;
19267 @ This code is based on Bogus\l{}av Jackowski's
19268 |emergency_turningnumber| macro, with some minor changes by Taco
19269 Hoekwater. The macro code looked more like this:
19271 vardef turning\_number primary p =
19272 ~~save res, ang, turns;
19274 ~~if length p <= 2:
19275 ~~~~if Angle ((point 0 of p) - (postcontrol 0 of p)) >= 0: 1 else: -1 fi
19277 ~~~~for t = 0 upto length p-1 :
19278 ~~~~~~angc := Angle ((point t+1 of p) - (point t of p))
19279 ~~~~~~~~- Angle ((point t of p) - (point t-1 of p));
19280 ~~~~~~if angc > 180: angc := angc - 360; fi;
19281 ~~~~~~if angc < -180: angc := angc + 360; fi;
19282 ~~~~~~res := res + angc;
19287 The general idea is to calculate only the sum of the angles of
19288 straight lines between the points, of a path, not worrying about cusps
19289 or self-intersections in the segments at all. If the segment is not
19290 well-behaved, the result is not necesarily correct. But the old code
19291 was not always correct either, and worse, it sometimes failed for
19292 well-behaved paths as well. All known bugs that were triggered by the
19293 original code no longer occur with this code, and it runs roughly 3
19294 times as fast because the algorithm is much simpler.
19296 @ It is possible to overflow the return value of the |turn_cycles|
19297 function when the path is sufficiently long and winding, but I am not
19298 going to bother testing for that. In any case, it would only return
19299 the looped result value, which is not a big problem.
19301 The macro code for the repeat loop was a bit nicer to look
19302 at than the pascal code, because it could use |point -1 of p|. In
19303 pascal, the fastest way to loop around the path is not to look
19304 backward once, but forward twice. These defines help hide the trick.
19306 @d p_to link(link(p))
19310 @<Declare unary action...@>=
19311 scaled mp_turn_cycles (MP mp,pointer c) {
19312 angle res,ang; /* the angles of intermediate results */
19313 scaled turns; /* the turn counter */
19314 pointer p; /* for running around the path */
19315 res=0; turns= 0; p=c;
19317 ang = mp_an_angle (mp, x_coord(p_to) - x_coord(p_here),
19318 y_coord(p_to) - y_coord(p_here))
19319 - mp_an_angle (mp, x_coord(p_here) - x_coord(p_from),
19320 y_coord(p_here) - y_coord(p_from));
19323 if ( res >= three_sixty_deg ) {
19324 res = res - three_sixty_deg;
19325 turns = turns + unity;
19327 if ( res <= -three_sixty_deg ) {
19328 res = res + three_sixty_deg;
19329 turns = turns - unity;
19336 @ @<Declare unary action...@>=
19337 scaled mp_turn_cycles_wrapper (MP mp,pointer c) {
19339 scaled saved_t_o; /* tracing\_online saved */
19340 if ( (link(c)==c)||(link(link(c))==c) ) {
19341 if ( mp_an_angle (mp, x_coord(c) - right_x(c), y_coord(c) - right_y(c)) > 0 )
19346 nval = mp_new_turn_cycles(mp, c);
19347 oval = mp_turn_cycles(mp, c);
19348 if ( nval!=oval ) {
19349 saved_t_o=mp->internal[tracing_online];
19350 mp->internal[tracing_online]=unity;
19351 mp_begin_diagnostic(mp);
19352 mp_print_nl (mp, "Warning: the turningnumber algorithms do not agree."
19353 " The current computed value is ");
19354 mp_print_scaled(mp, nval);
19355 mp_print(mp, ", but the 'connect-the-dots' algorithm returned ");
19356 mp_print_scaled(mp, oval);
19357 mp_end_diagnostic(mp, false);
19358 mp->internal[tracing_online]=saved_t_o;
19364 @ @<Declare unary action...@>=
19365 scaled mp_count_turns (MP mp,pointer c) {
19366 pointer p; /* a knot in envelope spec |c| */
19367 integer t; /* total pen offset changes counted */
19370 t=t+info(p)-zero_off;
19373 return ((t / 3)*unity);
19376 @ @d type_range(A,B) {
19377 if ( (mp->cur_type>=(A)) && (mp->cur_type<=(B)) )
19378 mp_flush_cur_exp(mp, true_code);
19379 else mp_flush_cur_exp(mp, false_code);
19380 mp->cur_type=mp_boolean_type;
19383 if ( mp->cur_type==(A) ) mp_flush_cur_exp(mp, true_code);
19384 else mp_flush_cur_exp(mp, false_code);
19385 mp->cur_type=mp_boolean_type;
19388 @<Additional cases of unary operators@>=
19389 case mp_boolean_type:
19390 type_range(mp_boolean_type,mp_unknown_boolean); break;
19391 case mp_string_type:
19392 type_range(mp_string_type,mp_unknown_string); break;
19394 type_range(mp_pen_type,mp_unknown_pen); break;
19396 type_range(mp_path_type,mp_unknown_path); break;
19397 case mp_picture_type:
19398 type_range(mp_picture_type,mp_unknown_picture); break;
19399 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
19401 type_test(c); break;
19402 case mp_numeric_type:
19403 type_range(mp_known,mp_independent); break;
19404 case known_op: case unknown_op:
19405 mp_test_known(mp, c); break;
19407 @ @<Declare unary action procedures@>=
19408 void mp_test_known (MP mp,quarterword c) {
19409 int b; /* is the current expression known? */
19410 pointer p,q; /* locations in a big node */
19412 switch (mp->cur_type) {
19413 case mp_vacuous: case mp_boolean_type: case mp_string_type:
19414 case mp_pen_type: case mp_path_type: case mp_picture_type:
19418 case mp_transform_type:
19419 case mp_color_type: case mp_cmykcolor_type: case mp_pair_type:
19420 p=value(mp->cur_exp);
19421 q=p+mp->big_node_size[mp->cur_type];
19424 if ( type(q)!=mp_known )
19433 if ( c==known_op ) mp_flush_cur_exp(mp, b);
19434 else mp_flush_cur_exp(mp, true_code+false_code-b);
19435 mp->cur_type=mp_boolean_type;
19438 @ @<Additional cases of unary operators@>=
19440 if ( mp->cur_type!=mp_path_type ) mp_flush_cur_exp(mp, false_code);
19441 else if ( left_type(mp->cur_exp)!=endpoint ) mp_flush_cur_exp(mp, true_code);
19442 else mp_flush_cur_exp(mp, false_code);
19443 mp->cur_type=mp_boolean_type;
19446 @ @<Additional cases of unary operators@>=
19448 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19449 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, arc_length);
19450 else mp_flush_cur_exp(mp, mp_get_arc_length(mp, mp->cur_exp));
19453 @ Here we use the fact that |c-filled_op+fill_code| is the desired graphical
19455 @^data structure assumptions@>
19457 @<Additional cases of unary operators@>=
19463 if ( mp->cur_type!=mp_picture_type ) mp_flush_cur_exp(mp, false_code);
19464 else if ( link(dummy_loc(mp->cur_exp))==null ) mp_flush_cur_exp(mp, false_code);
19465 else if ( type(link(dummy_loc(mp->cur_exp)))==c+fill_code-filled_op )
19466 mp_flush_cur_exp(mp, true_code);
19467 else mp_flush_cur_exp(mp, false_code);
19468 mp->cur_type=mp_boolean_type;
19471 @ @<Additional cases of unary operators@>=
19473 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19474 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, make_pen_op);
19476 mp->cur_type=mp_pen_type;
19477 mp->cur_exp=mp_make_pen(mp, mp->cur_exp,true);
19481 if ( mp->cur_type!=mp_pen_type ) mp_bad_unary(mp, make_path_op);
19483 mp->cur_type=mp_path_type;
19484 mp_make_path(mp, mp->cur_exp);
19488 if ( mp->cur_type==mp_path_type ) {
19489 p=mp_htap_ypoc(mp, mp->cur_exp);
19490 if ( right_type(p)==endpoint ) p=link(p);
19491 mp_toss_knot_list(mp, mp->cur_exp); mp->cur_exp=p;
19492 } else if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19493 else mp_bad_unary(mp, reverse);
19496 @ The |pair_value| routine changes the current expression to a
19497 given ordered pair of values.
19499 @<Declare unary action procedures@>=
19500 void mp_pair_value (MP mp,scaled x, scaled y) {
19501 pointer p; /* a pair node */
19502 p=mp_get_node(mp, value_node_size);
19503 mp_flush_cur_exp(mp, p); mp->cur_type=mp_pair_type;
19504 type(p)=mp_pair_type; name_type(p)=mp_capsule; mp_init_big_node(mp, p);
19506 type(x_part_loc(p))=mp_known; value(x_part_loc(p))=x;
19507 type(y_part_loc(p))=mp_known; value(y_part_loc(p))=y;
19510 @ @<Additional cases of unary operators@>=
19512 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ll_corner_op);
19513 else mp_pair_value(mp, minx,miny);
19516 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, lr_corner_op);
19517 else mp_pair_value(mp, maxx,miny);
19520 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ul_corner_op);
19521 else mp_pair_value(mp, minx,maxy);
19524 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ur_corner_op);
19525 else mp_pair_value(mp, maxx,maxy);
19528 @ Here is a function that sets |minx|, |maxx|, |miny|, |maxy| to the bounding
19529 box of the current expression. The boolean result is |false| if the expression
19530 has the wrong type.
19532 @<Declare unary action procedures@>=
19533 boolean mp_get_cur_bbox (MP mp) {
19534 switch (mp->cur_type) {
19535 case mp_picture_type:
19536 mp_set_bbox(mp, mp->cur_exp,true);
19537 if ( minx_val(mp->cur_exp)>maxx_val(mp->cur_exp) ) {
19538 minx=0; maxx=0; miny=0; maxy=0;
19540 minx=minx_val(mp->cur_exp);
19541 maxx=maxx_val(mp->cur_exp);
19542 miny=miny_val(mp->cur_exp);
19543 maxy=maxy_val(mp->cur_exp);
19547 mp_path_bbox(mp, mp->cur_exp);
19550 mp_pen_bbox(mp, mp->cur_exp);
19558 @ @<Additional cases of unary operators@>=
19560 case close_from_op:
19561 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19562 else mp_do_read_or_close(mp,c);
19565 @ Here is a routine that interprets |cur_exp| as a file name and tries to read
19566 a line from the file or to close the file.
19568 @d close_file 46 /* go here when closing the file */
19570 @<Declare unary action procedures@>=
19571 void mp_do_read_or_close (MP mp,quarterword c) {
19572 readf_index n,n0; /* indices for searching |rd_fname| */
19573 @<Find the |n| where |rd_fname[n]=cur_exp|; if |cur_exp| must be inserted,
19574 call |start_read_input| and |goto found| or |not_found|@>;
19575 mp_begin_file_reading(mp);
19577 if ( mp_input_ln(mp, mp->rd_file[n],true) )
19579 mp_end_file_reading(mp);
19581 @<Record the end of file and set |cur_exp| to a dummy value@>;
19584 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
19587 mp_flush_cur_exp(mp, 0);
19588 mp_finish_read(mp);
19591 @ Free slots in the |rd_file| and |rd_fname| arrays are marked with NULL's in
19594 @<Find the |n| where |rd_fname[n]=cur_exp|...@>=
19599 fn = str(mp->cur_exp);
19600 while (mp_xstrcmp(fn,mp->rd_fname[n])!=0) {
19603 } else if ( c==close_from_op ) {
19606 if ( n0==mp->read_files ) {
19607 if ( mp->read_files<mp->max_read_files ) {
19608 incr(mp->read_files);
19613 l = mp->max_read_files + (mp->max_read_files>>2);
19614 rd_file = xmalloc((l+1), sizeof(FILE *));
19615 rd_fname = xmalloc((l+1), sizeof(char *));
19616 for (k=0;k<=l;k++) {
19617 if (k<=mp->max_read_files) {
19618 rd_file[k]=mp->rd_file[k];
19619 rd_fname[k]=mp->rd_fname[k];
19625 xfree(mp->rd_file); xfree(mp->rd_fname);
19626 mp->max_read_files = l;
19627 mp->rd_file = rd_file;
19628 mp->rd_fname = rd_fname;
19632 if ( mp_start_read_input(mp,fn,n) )
19637 if ( mp->rd_fname[n]==NULL ) { n0=n; }
19639 if ( c==close_from_op ) {
19640 fclose(mp->rd_file[n]);
19645 @ @<Record the end of file and set |cur_exp| to a dummy value@>=
19646 xfree(mp->rd_fname[n]);
19647 mp->rd_fname[n]=NULL;
19648 if ( n==mp->read_files-1 ) mp->read_files=n;
19649 if ( c==close_from_op )
19651 mp_flush_cur_exp(mp, mp->eof_line);
19652 mp->cur_type=mp_string_type
19654 @ The string denoting end-of-file is a one-byte string at position zero, by definition
19657 str_number eof_line;
19662 @ Finally, we have the operations that combine a capsule~|p|
19663 with the current expression.
19665 @c @<Declare binary action procedures@>;
19666 void mp_do_binary (MP mp,pointer p, quarterword c) {
19667 pointer q,r,rr; /* for list manipulation */
19668 pointer old_p,old_exp; /* capsules to recycle */
19669 integer v; /* for numeric manipulation */
19671 if ( mp->internal[tracing_commands]>two ) {
19672 @<Trace the current binary operation@>;
19674 @<Sidestep |independent| cases in capsule |p|@>;
19675 @<Sidestep |independent| cases in the current expression@>;
19677 case plus: case minus:
19678 @<Add or subtract the current expression from |p|@>;
19680 @<Additional cases of binary operators@>;
19681 }; /* there are no other cases */
19682 mp_recycle_value(mp, p);
19683 mp_free_node(mp, p,value_node_size); /* |return| to avoid this */
19685 @<Recycle any sidestepped |independent| capsules@>;
19688 @ @<Declare binary action...@>=
19689 void mp_bad_binary (MP mp,pointer p, quarterword c) {
19690 mp_disp_err(mp, p,"");
19691 exp_err("Not implemented: ");
19692 @.Not implemented...@>
19693 if ( c>=min_of ) mp_print_op(mp, c);
19694 mp_print_known_or_unknown_type(mp, type(p),p);
19695 if ( c>=min_of ) mp_print(mp, "of"); else mp_print_op(mp, c);
19696 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
19697 help3("I'm afraid I don't know how to apply that operation to that")
19698 ("combination of types. Continue, and I'll return the second")
19699 ("argument (see above) as the result of the operation.");
19700 mp_put_get_error(mp);
19703 @ @<Trace the current binary operation@>=
19705 mp_begin_diagnostic(mp); mp_print_nl(mp, "{(");
19706 mp_print_exp(mp,p,0); /* show the operand, but not verbosely */
19707 mp_print_char(mp,')'); mp_print_op(mp,c); mp_print_char(mp,'(');
19708 mp_print_exp(mp,null,0); mp_print(mp,")}");
19709 mp_end_diagnostic(mp, false);
19712 @ Several of the binary operations are potentially complicated by the
19713 fact that |independent| values can sneak into capsules. For example,
19714 we've seen an instance of this difficulty in the unary operation
19715 of negation. In order to reduce the number of cases that need to be
19716 handled, we first change the two operands (if necessary)
19717 to rid them of |independent| components. The original operands are
19718 put into capsules called |old_p| and |old_exp|, which will be
19719 recycled after the binary operation has been safely carried out.
19721 @<Recycle any sidestepped |independent| capsules@>=
19722 if ( old_p!=null ) {
19723 mp_recycle_value(mp, old_p); mp_free_node(mp, old_p,value_node_size);
19725 if ( old_exp!=null ) {
19726 mp_recycle_value(mp, old_exp); mp_free_node(mp, old_exp,value_node_size);
19729 @ A big node is considered to be ``tarnished'' if it contains at least one
19730 independent component. We will define a simple function called `|tarnished|'
19731 that returns |null| if and only if its argument is not tarnished.
19733 @<Sidestep |independent| cases in capsule |p|@>=
19735 case mp_transform_type:
19736 case mp_color_type:
19737 case mp_cmykcolor_type:
19739 old_p=mp_tarnished(mp, p);
19741 case mp_independent: old_p=diov; break;
19742 default: old_p=null; break;
19744 if ( old_p!=null ) {
19745 q=mp_stash_cur_exp(mp); old_p=p; mp_make_exp_copy(mp, old_p);
19746 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
19749 @ @<Sidestep |independent| cases in the current expression@>=
19750 switch (mp->cur_type) {
19751 case mp_transform_type:
19752 case mp_color_type:
19753 case mp_cmykcolor_type:
19755 old_exp=mp_tarnished(mp, mp->cur_exp);
19757 case mp_independent:old_exp=diov; break;
19758 default: old_exp=null; break;
19760 if ( old_exp!=null ) {
19761 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
19764 @ @<Declare binary action...@>=
19765 pointer mp_tarnished (MP mp,pointer p) {
19766 pointer q; /* beginning of the big node */
19767 pointer r; /* current position in the big node */
19768 q=value(p); r=q+mp->big_node_size[type(p)];
19771 if ( type(r)==mp_independent ) return diov;
19776 @ @<Add or subtract the current expression from |p|@>=
19777 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
19778 mp_bad_binary(mp, p,c);
19780 if ((mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
19781 mp_add_or_subtract(mp, p,null,c);
19783 if ( mp->cur_type!=type(p) ) {
19784 mp_bad_binary(mp, p,c);
19786 q=value(p); r=value(mp->cur_exp);
19787 rr=r+mp->big_node_size[mp->cur_type];
19789 mp_add_or_subtract(mp, q,r,c);
19796 @ The first argument to |add_or_subtract| is the location of a value node
19797 in a capsule or pair node that will soon be recycled. The second argument
19798 is either a location within a pair or transform node of |cur_exp|,
19799 or it is null (which means that |cur_exp| itself should be the second
19800 argument). The third argument is either |plus| or |minus|.
19802 The sum or difference of the numeric quantities will replace the second
19803 operand. Arithmetic overflow may go undetected; users aren't supposed to
19804 be monkeying around with really big values.
19806 @<Declare binary action...@>=
19807 @<Declare the procedure called |dep_finish|@>;
19808 void mp_add_or_subtract (MP mp,pointer p, pointer q, quarterword c) {
19809 small_number s,t; /* operand types */
19810 pointer r; /* list traverser */
19811 integer v; /* second operand value */
19814 if ( t<mp_dependent ) v=mp->cur_exp; else v=dep_list(mp->cur_exp);
19817 if ( t<mp_dependent ) v=value(q); else v=dep_list(q);
19819 if ( t==mp_known ) {
19820 if ( c==minus ) negate(v);
19821 if ( type(p)==mp_known ) {
19822 v=mp_slow_add(mp, value(p),v);
19823 if ( q==null ) mp->cur_exp=v; else value(q)=v;
19826 @<Add a known value to the constant term of |dep_list(p)|@>;
19828 if ( c==minus ) mp_negate_dep_list(mp, v);
19829 @<Add operand |p| to the dependency list |v|@>;
19833 @ @<Add a known value to the constant term of |dep_list(p)|@>=
19835 while ( info(r)!=null ) r=link(r);
19836 value(r)=mp_slow_add(mp, value(r),v);
19838 q=mp_get_node(mp, value_node_size); mp->cur_exp=q; mp->cur_type=type(p);
19839 name_type(q)=mp_capsule;
19841 dep_list(q)=dep_list(p); type(q)=type(p);
19842 prev_dep(q)=prev_dep(p); link(prev_dep(p))=q;
19843 type(p)=mp_known; /* this will keep the recycler from collecting non-garbage */
19845 @ We prefer |dependent| lists to |mp_proto_dependent| ones, because it is
19846 nice to retain the extra accuracy of |fraction| coefficients.
19847 But we have to handle both kinds, and mixtures too.
19849 @<Add operand |p| to the dependency list |v|@>=
19850 if ( type(p)==mp_known ) {
19851 @<Add the known |value(p)| to the constant term of |v|@>;
19853 s=type(p); r=dep_list(p);
19854 if ( t==mp_dependent ) {
19855 if ( s==mp_dependent ) {
19856 if ( mp_max_coef(mp, r)+mp_max_coef(mp, v)<coef_bound )
19857 v=mp_p_plus_q(mp, v,r,mp_dependent); goto DONE;
19858 } /* |fix_needed| will necessarily be false */
19859 t=mp_proto_dependent;
19860 v=mp_p_over_v(mp, v,unity,mp_dependent,mp_proto_dependent);
19862 if ( s==mp_proto_dependent ) v=mp_p_plus_q(mp, v,r,mp_proto_dependent);
19863 else v=mp_p_plus_fq(mp, v,unity,r,mp_proto_dependent,mp_dependent);
19865 @<Output the answer, |v| (which might have become |known|)@>;
19868 @ @<Add the known |value(p)| to the constant term of |v|@>=
19870 while ( info(v)!=null ) v=link(v);
19871 value(v)=mp_slow_add(mp, value(p),value(v));
19874 @ @<Output the answer, |v| (which might have become |known|)@>=
19875 if ( q!=null ) mp_dep_finish(mp, v,q,t);
19876 else { mp->cur_type=t; mp_dep_finish(mp, v,null,t); }
19878 @ Here's the current situation: The dependency list |v| of type |t|
19879 should either be put into the current expression (if |q=null|) or
19880 into location |q| within a pair node (otherwise). The destination (|cur_exp|
19881 or |q|) formerly held a dependency list with the same
19882 final pointer as the list |v|.
19884 @<Declare the procedure called |dep_finish|@>=
19885 void mp_dep_finish (MP mp, pointer v, pointer q, small_number t) {
19886 pointer p; /* the destination */
19887 scaled vv; /* the value, if it is |known| */
19888 if ( q==null ) p=mp->cur_exp; else p=q;
19889 dep_list(p)=v; type(p)=t;
19890 if ( info(v)==null ) {
19893 mp_flush_cur_exp(mp, vv);
19895 mp_recycle_value(mp, p); type(q)=mp_known; value(q)=vv;
19897 } else if ( q==null ) {
19900 if ( mp->fix_needed ) mp_fix_dependencies(mp);
19903 @ Let's turn now to the six basic relations of comparison.
19905 @<Additional cases of binary operators@>=
19906 case less_than: case less_or_equal: case greater_than:
19907 case greater_or_equal: case equal_to: case unequal_to:
19908 check_arith; /* at this point |arith_error| should be |false|? */
19909 if ( (mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
19910 mp_add_or_subtract(mp, p,null,minus); /* |cur_exp:=(p)-cur_exp| */
19911 } else if ( mp->cur_type!=type(p) ) {
19912 mp_bad_binary(mp, p,c); goto DONE;
19913 } else if ( mp->cur_type==mp_string_type ) {
19914 mp_flush_cur_exp(mp, mp_str_vs_str(mp, value(p),mp->cur_exp));
19915 } else if ((mp->cur_type==mp_unknown_string)||
19916 (mp->cur_type==mp_unknown_boolean) ) {
19917 @<Check if unknowns have been equated@>;
19918 } else if ( (mp->cur_type<=mp_pair_type)&&(mp->cur_type>=mp_transform_type)) {
19919 @<Reduce comparison of big nodes to comparison of scalars@>;
19920 } else if ( mp->cur_type==mp_boolean_type ) {
19921 mp_flush_cur_exp(mp, mp->cur_exp-value(p));
19923 mp_bad_binary(mp, p,c); goto DONE;
19925 @<Compare the current expression with zero@>;
19927 mp->arith_error=false; /* ignore overflow in comparisons */
19930 @ @<Compare the current expression with zero@>=
19931 if ( mp->cur_type!=mp_known ) {
19932 if ( mp->cur_type<mp_known ) {
19933 mp_disp_err(mp, p,"");
19934 help1("The quantities shown above have not been equated.")
19936 help2("Oh dear. I can\'t decide if the expression above is positive,")
19937 ("negative, or zero. So this comparison test won't be `true'.");
19939 exp_err("Unknown relation will be considered false");
19940 @.Unknown relation...@>
19941 mp_put_get_flush_error(mp, false_code);
19944 case less_than: boolean_reset(mp->cur_exp<0); break;
19945 case less_or_equal: boolean_reset(mp->cur_exp<=0); break;
19946 case greater_than: boolean_reset(mp->cur_exp>0); break;
19947 case greater_or_equal: boolean_reset(mp->cur_exp>=0); break;
19948 case equal_to: boolean_reset(mp->cur_exp==0); break;
19949 case unequal_to: boolean_reset(mp->cur_exp!=0); break;
19950 }; /* there are no other cases */
19952 mp->cur_type=mp_boolean_type
19954 @ When two unknown strings are in the same ring, we know that they are
19955 equal. Otherwise, we don't know whether they are equal or not, so we
19958 @<Check if unknowns have been equated@>=
19960 q=value(mp->cur_exp);
19961 while ( (q!=mp->cur_exp)&&(q!=p) ) q=value(q);
19962 if ( q==p ) mp_flush_cur_exp(mp, 0);
19965 @ @<Reduce comparison of big nodes to comparison of scalars@>=
19967 q=value(p); r=value(mp->cur_exp);
19968 rr=r+mp->big_node_size[mp->cur_type]-2;
19969 while (1) { mp_add_or_subtract(mp, q,r,minus);
19970 if ( type(r)!=mp_known ) break;
19971 if ( value(r)!=0 ) break;
19972 if ( r==rr ) break;
19975 mp_take_part(mp, name_type(r)+x_part-mp_x_part_sector);
19978 @ Here we use the sneaky fact that |and_op-false_code=or_op-true_code|.
19980 @<Additional cases of binary operators@>=
19983 if ( (type(p)!=mp_boolean_type)||(mp->cur_type!=mp_boolean_type) )
19984 mp_bad_binary(mp, p,c);
19985 else if ( value(p)==c+false_code-and_op ) mp->cur_exp=value(p);
19988 @ @<Additional cases of binary operators@>=
19990 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
19991 mp_bad_binary(mp, p,times);
19992 } else if ( (mp->cur_type==mp_known)||(type(p)==mp_known) ) {
19993 @<Multiply when at least one operand is known@>;
19994 } else if ( (mp_nice_color_or_pair(mp, p,type(p))&&(mp->cur_type>mp_pair_type))
19995 ||(mp_nice_color_or_pair(mp, mp->cur_exp,mp->cur_type)&&
19996 (type(p)>mp_pair_type)) ) {
19997 mp_hard_times(mp, p); return;
19999 mp_bad_binary(mp, p,times);
20003 @ @<Multiply when at least one operand is known@>=
20005 if ( type(p)==mp_known ) {
20006 v=value(p); mp_free_node(mp, p,value_node_size);
20008 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20010 if ( mp->cur_type==mp_known ) {
20011 mp->cur_exp=mp_take_scaled(mp, mp->cur_exp,v);
20012 } else if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_color_type)||
20013 (mp->cur_type==mp_cmykcolor_type) ) {
20014 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20016 p=p-2; mp_dep_mult(mp, p,v,true);
20017 } while (p!=value(mp->cur_exp));
20019 mp_dep_mult(mp, null,v,true);
20024 @ @<Declare binary action...@>=
20025 void mp_dep_mult (MP mp,pointer p, integer v, boolean v_is_scaled) {
20026 pointer q; /* the dependency list being multiplied by |v| */
20027 small_number s,t; /* its type, before and after */
20030 } else if ( type(p)!=mp_known ) {
20033 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
20034 else value(p)=mp_take_fraction(mp, value(p),v);
20037 t=type(q); q=dep_list(q); s=t;
20038 if ( t==mp_dependent ) if ( v_is_scaled )
20039 if (mp_ab_vs_cd(mp, mp_max_coef(mp,q),abs(v),coef_bound-1,unity)>=0 )
20040 t=mp_proto_dependent;
20041 q=mp_p_times_v(mp, q,v,s,t,v_is_scaled);
20042 mp_dep_finish(mp, q,p,t);
20045 @ Here is a routine that is similar to |times|; but it is invoked only
20046 internally, when |v| is a |fraction| whose magnitude is at most~1,
20047 and when |cur_type>=mp_color_type|.
20049 @c void mp_frac_mult (MP mp,scaled n, scaled d) {
20050 /* multiplies |cur_exp| by |n/d| */
20051 pointer p; /* a pair node */
20052 pointer old_exp; /* a capsule to recycle */
20053 fraction v; /* |n/d| */
20054 if ( mp->internal[tracing_commands]>two ) {
20055 @<Trace the fraction multiplication@>;
20057 switch (mp->cur_type) {
20058 case mp_transform_type:
20059 case mp_color_type:
20060 case mp_cmykcolor_type:
20062 old_exp=mp_tarnished(mp, mp->cur_exp);
20064 case mp_independent: old_exp=diov; break;
20065 default: old_exp=null; break;
20067 if ( old_exp!=null ) {
20068 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
20070 v=mp_make_fraction(mp, n,d);
20071 if ( mp->cur_type==mp_known ) {
20072 mp->cur_exp=mp_take_fraction(mp, mp->cur_exp,v);
20073 } else if ( mp->cur_type<=mp_pair_type ) {
20074 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20077 mp_dep_mult(mp, p,v,false);
20078 } while (p!=value(mp->cur_exp));
20080 mp_dep_mult(mp, null,v,false);
20082 if ( old_exp!=null ) {
20083 mp_recycle_value(mp, old_exp);
20084 mp_free_node(mp, old_exp,value_node_size);
20088 @ @<Trace the fraction multiplication@>=
20090 mp_begin_diagnostic(mp);
20091 mp_print_nl(mp, "{("); mp_print_scaled(mp,n); mp_print_char(mp,'/');
20092 mp_print_scaled(mp,d); mp_print(mp,")*("); mp_print_exp(mp,null,0);
20094 mp_end_diagnostic(mp, false);
20097 @ The |hard_times| routine multiplies a nice color or pair by a dependency list.
20099 @<Declare binary action procedures@>=
20100 void mp_hard_times (MP mp,pointer p) {
20101 pointer q; /* a copy of the dependent variable |p| */
20102 pointer r; /* a component of the big node for the nice color or pair */
20103 scaled v; /* the known value for |r| */
20104 if ( type(p)<=mp_pair_type ) {
20105 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p); p=q;
20106 }; /* now |cur_type=mp_pair_type| or |cur_type=mp_color_type| */
20107 r=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20112 if ( r==value(mp->cur_exp) )
20114 mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(p)));
20115 mp_dep_mult(mp, r,v,true);
20117 mp->mem[value_loc(r)]=mp->mem[value_loc(p)];
20118 link(prev_dep(p))=r;
20119 mp_free_node(mp, p,value_node_size);
20120 mp_dep_mult(mp, r,v,true);
20123 @ @<Additional cases of binary operators@>=
20125 if ( (mp->cur_type!=mp_known)||(type(p)<mp_color_type) ) {
20126 mp_bad_binary(mp, p,over);
20128 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20130 @<Squeal about division by zero@>;
20132 if ( mp->cur_type==mp_known ) {
20133 mp->cur_exp=mp_make_scaled(mp, mp->cur_exp,v);
20134 } else if ( mp->cur_type<=mp_pair_type ) {
20135 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20137 p=p-2; mp_dep_div(mp, p,v);
20138 } while (p!=value(mp->cur_exp));
20140 mp_dep_div(mp, null,v);
20147 @ @<Declare binary action...@>=
20148 void mp_dep_div (MP mp,pointer p, scaled v) {
20149 pointer q; /* the dependency list being divided by |v| */
20150 small_number s,t; /* its type, before and after */
20151 if ( p==null ) q=mp->cur_exp;
20152 else if ( type(p)!=mp_known ) q=p;
20153 else { value(p)=mp_make_scaled(mp, value(p),v); return; };
20154 t=type(q); q=dep_list(q); s=t;
20155 if ( t==mp_dependent )
20156 if ( mp_ab_vs_cd(mp, mp_max_coef(mp,q),unity,coef_bound-1,abs(v))>=0 )
20157 t=mp_proto_dependent;
20158 q=mp_p_over_v(mp, q,v,s,t);
20159 mp_dep_finish(mp, q,p,t);
20162 @ @<Squeal about division by zero@>=
20164 exp_err("Division by zero");
20165 @.Division by zero@>
20166 help2("You're trying to divide the quantity shown above the error")
20167 ("message by zero. I'm going to divide it by one instead.");
20168 mp_put_get_error(mp);
20171 @ @<Additional cases of binary operators@>=
20174 if ( (mp->cur_type==mp_known)&&(type(p)==mp_known) ) {
20175 if ( c==pythag_add ) mp->cur_exp=mp_pyth_add(mp, value(p),mp->cur_exp);
20176 else mp->cur_exp=mp_pyth_sub(mp, value(p),mp->cur_exp);
20177 } else mp_bad_binary(mp, p,c);
20180 @ The next few sections of the program deal with affine transformations
20181 of coordinate data.
20183 @<Additional cases of binary operators@>=
20184 case rotated_by: case slanted_by:
20185 case scaled_by: case shifted_by: case transformed_by:
20186 case x_scaled: case y_scaled: case z_scaled:
20187 if ( type(p)==mp_path_type ) {
20188 path_trans(c,p); return;
20189 } else if ( type(p)==mp_pen_type ) {
20191 mp->cur_exp=mp_convex_hull(mp, mp->cur_exp);
20192 /* rounding error could destroy convexity */
20194 } else if ( (type(p)==mp_pair_type)||(type(p)==mp_transform_type) ) {
20195 mp_big_trans(mp, p,c);
20196 } else if ( type(p)==mp_picture_type ) {
20197 mp_do_edges_trans(mp, p,c); return;
20199 mp_bad_binary(mp, p,c);
20203 @ Let |c| be one of the eight transform operators. The procedure call
20204 |set_up_trans(c)| first changes |cur_exp| to a transform that corresponds to
20205 |c| and the original value of |cur_exp|. (In particular, |cur_exp| doesn't
20206 change at all if |c=transformed_by|.)
20208 Then, if all components of the resulting transform are |known|, they are
20209 moved to the global variables |txx|, |txy|, |tyx|, |tyy|, |tx|, |ty|;
20210 and |cur_exp| is changed to the known value zero.
20212 @<Declare binary action...@>=
20213 void mp_set_up_trans (MP mp,quarterword c) {
20214 pointer p,q,r; /* list manipulation registers */
20215 if ( (c!=transformed_by)||(mp->cur_type!=mp_transform_type) ) {
20216 @<Put the current transform into |cur_exp|@>;
20218 @<If the current transform is entirely known, stash it in global variables;
20219 otherwise |return|@>;
20228 scaled ty; /* current transform coefficients */
20230 @ @<Put the current transform...@>=
20232 p=mp_stash_cur_exp(mp);
20233 mp->cur_exp=mp_id_transform(mp);
20234 mp->cur_type=mp_transform_type;
20235 q=value(mp->cur_exp);
20237 @<For each of the eight cases, change the relevant fields of |cur_exp|
20239 but do nothing if capsule |p| doesn't have the appropriate type@>;
20240 }; /* there are no other cases */
20241 mp_disp_err(mp, p,"Improper transformation argument");
20242 @.Improper transformation argument@>
20243 help3("The expression shown above has the wrong type,")
20244 ("so I can\'t transform anything using it.")
20245 ("Proceed, and I'll omit the transformation.");
20246 mp_put_get_error(mp);
20248 mp_recycle_value(mp, p);
20249 mp_free_node(mp, p,value_node_size);
20252 @ @<If the current transform is entirely known, ...@>=
20253 q=value(mp->cur_exp); r=q+transform_node_size;
20256 if ( type(r)!=mp_known ) return;
20258 mp->txx=value(xx_part_loc(q));
20259 mp->txy=value(xy_part_loc(q));
20260 mp->tyx=value(yx_part_loc(q));
20261 mp->tyy=value(yy_part_loc(q));
20262 mp->tx=value(x_part_loc(q));
20263 mp->ty=value(y_part_loc(q));
20264 mp_flush_cur_exp(mp, 0)
20266 @ @<For each of the eight cases...@>=
20268 if ( type(p)==mp_known )
20269 @<Install sines and cosines, then |goto done|@>;
20272 if ( type(p)>mp_pair_type ) {
20273 mp_install(mp, xy_part_loc(q),p); goto DONE;
20277 if ( type(p)>mp_pair_type ) {
20278 mp_install(mp, xx_part_loc(q),p); mp_install(mp, yy_part_loc(q),p);
20283 if ( type(p)==mp_pair_type ) {
20284 r=value(p); mp_install(mp, x_part_loc(q),x_part_loc(r));
20285 mp_install(mp, y_part_loc(q),y_part_loc(r)); goto DONE;
20289 if ( type(p)>mp_pair_type ) {
20290 mp_install(mp, xx_part_loc(q),p); goto DONE;
20294 if ( type(p)>mp_pair_type ) {
20295 mp_install(mp, yy_part_loc(q),p); goto DONE;
20299 if ( type(p)==mp_pair_type )
20300 @<Install a complex multiplier, then |goto done|@>;
20302 case transformed_by:
20306 @ @<Install sines and cosines, then |goto done|@>=
20307 { mp_n_sin_cos(mp, (value(p) % three_sixty_units)*16);
20308 value(xx_part_loc(q))=mp_round_fraction(mp, mp->n_cos);
20309 value(yx_part_loc(q))=mp_round_fraction(mp, mp->n_sin);
20310 value(xy_part_loc(q))=-value(yx_part_loc(q));
20311 value(yy_part_loc(q))=value(xx_part_loc(q));
20315 @ @<Install a complex multiplier, then |goto done|@>=
20318 mp_install(mp, xx_part_loc(q),x_part_loc(r));
20319 mp_install(mp, yy_part_loc(q),x_part_loc(r));
20320 mp_install(mp, yx_part_loc(q),y_part_loc(r));
20321 if ( type(y_part_loc(r))==mp_known ) negate(value(y_part_loc(r)));
20322 else mp_negate_dep_list(mp, dep_list(y_part_loc(r)));
20323 mp_install(mp, xy_part_loc(q),y_part_loc(r));
20327 @ Procedure |set_up_known_trans| is like |set_up_trans|, but it
20328 insists that the transformation be entirely known.
20330 @<Declare binary action...@>=
20331 void mp_set_up_known_trans (MP mp,quarterword c) {
20332 mp_set_up_trans(mp, c);
20333 if ( mp->cur_type!=mp_known ) {
20334 exp_err("Transform components aren't all known");
20335 @.Transform components...@>
20336 help3("I'm unable to apply a partially specified transformation")
20337 ("except to a fully known pair or transform.")
20338 ("Proceed, and I'll omit the transformation.");
20339 mp_put_get_flush_error(mp, 0);
20340 mp->txx=unity; mp->txy=0; mp->tyx=0; mp->tyy=unity;
20341 mp->tx=0; mp->ty=0;
20345 @ Here's a procedure that applies the transform |txx..ty| to a pair of
20346 coordinates in locations |p| and~|q|.
20348 @<Declare binary action...@>=
20349 void mp_trans (MP mp,pointer p, pointer q) {
20350 scaled v; /* the new |x| value */
20351 v=mp_take_scaled(mp, mp->mem[p].sc,mp->txx)+
20352 mp_take_scaled(mp, mp->mem[q].sc,mp->txy)+mp->tx;
20353 mp->mem[q].sc=mp_take_scaled(mp, mp->mem[p].sc,mp->tyx)+
20354 mp_take_scaled(mp, mp->mem[q].sc,mp->tyy)+mp->ty;
20358 @ The simplest transformation procedure applies a transform to all
20359 coordinates of a path. The |path_trans(c)(p)| macro applies
20360 a transformation defined by |cur_exp| and the transform operator |c|
20363 @d path_trans(A,B) { mp_set_up_known_trans(mp, (A));
20364 mp_unstash_cur_exp(mp, (B));
20365 mp_do_path_trans(mp, mp->cur_exp); }
20367 @<Declare binary action...@>=
20368 void mp_do_path_trans (MP mp,pointer p) {
20369 pointer q; /* list traverser */
20372 if ( left_type(q)!=endpoint )
20373 mp_trans(mp, q+3,q+4); /* that's |left_x| and |left_y| */
20374 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20375 if ( right_type(q)!=endpoint )
20376 mp_trans(mp, q+5,q+6); /* that's |right_x| and |right_y| */
20377 @^data structure assumptions@>
20382 @ Transforming a pen is very similar, except that there are no |left_type|
20383 and |right_type| fields.
20385 @d pen_trans(A,B) { mp_set_up_known_trans(mp, (A));
20386 mp_unstash_cur_exp(mp, (B));
20387 mp_do_pen_trans(mp, mp->cur_exp); }
20389 @<Declare binary action...@>=
20390 void mp_do_pen_trans (MP mp,pointer p) {
20391 pointer q; /* list traverser */
20392 if ( pen_is_elliptical(p) ) {
20393 mp_trans(mp, p+3,p+4); /* that's |left_x| and |left_y| */
20394 mp_trans(mp, p+5,p+6); /* that's |right_x| and |right_y| */
20398 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20399 @^data structure assumptions@>
20404 @ The next transformation procedure applies to edge structures. It will do
20405 any transformation, but the results may be substandard if the picture contains
20406 text that uses downloaded bitmap fonts. The binary action procedure is
20407 |do_edges_trans|, but we also need a function that just scales a picture.
20408 That routine is |scale_edges|. Both it and the underlying routine |edges_trans|
20409 should be thought of as procedures that update an edge structure |h|, except
20410 that they have to return a (possibly new) structure because of the need to call
20413 @<Declare binary action...@>=
20414 pointer mp_edges_trans (MP mp, pointer h) {
20415 pointer q; /* the object being transformed */
20416 pointer r,s; /* for list manipulation */
20417 scaled sx,sy; /* saved transformation parameters */
20418 scaled sqdet; /* square root of determinant for |dash_scale| */
20419 integer sgndet; /* sign of the determinant */
20420 scaled v; /* a temporary value */
20421 h=mp_private_edges(mp, h);
20422 sqdet=mp_sqrt_det(mp, mp->txx,mp->txy,mp->tyx,mp->tyy);
20423 sgndet=mp_ab_vs_cd(mp, mp->txx,mp->tyy,mp->txy,mp->tyx);
20424 if ( dash_list(h)!=null_dash ) {
20425 @<Try to transform the dash list of |h|@>;
20427 @<Make the bounding box of |h| unknown if it can't be updated properly
20428 without scanning the whole structure@>;
20429 q=link(dummy_loc(h));
20430 while ( q!=null ) {
20431 @<Transform graphical object |q|@>;
20436 void mp_do_edges_trans (MP mp,pointer p, quarterword c) {
20437 mp_set_up_known_trans(mp, c);
20438 value(p)=mp_edges_trans(mp, value(p));
20439 mp_unstash_cur_exp(mp, p);
20441 void mp_scale_edges (MP mp) {
20442 mp->txx=mp->se_sf; mp->tyy=mp->se_sf;
20443 mp->txy=0; mp->tyx=0; mp->tx=0; mp->ty=0;
20444 mp->se_pic=mp_edges_trans(mp, mp->se_pic);
20447 @ @<Try to transform the dash list of |h|@>=
20448 if ( (mp->txy!=0)||(mp->tyx!=0)||
20449 (mp->ty!=0)||(abs(mp->txx)!=abs(mp->tyy))) {
20450 mp_flush_dash_list(mp, h);
20452 if ( mp->txx<0 ) { @<Reverse the dash list of |h|@>; }
20453 @<Scale the dash list by |txx| and shift it by |tx|@>;
20454 dash_y(h)=mp_take_scaled(mp, dash_y(h),abs(mp->tyy));
20457 @ @<Reverse the dash list of |h|@>=
20460 dash_list(h)=null_dash;
20461 while ( r!=null_dash ) {
20463 v=start_x(s); start_x(s)=stop_x(s); stop_x(s)=v;
20464 link(s)=dash_list(h);
20469 @ @<Scale the dash list by |txx| and shift it by |tx|@>=
20471 while ( r!=null_dash ) {
20472 start_x(r)=mp_take_scaled(mp, start_x(r),mp->txx)+mp->tx;
20473 stop_x(r)=mp_take_scaled(mp, stop_x(r),mp->txx)+mp->tx;
20477 @ @<Make the bounding box of |h| unknown if it can't be updated properly...@>=
20478 if ( (mp->txx==0)&&(mp->tyy==0) ) {
20479 @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>;
20480 } else if ( (mp->txy!=0)||(mp->tyx!=0) ) {
20481 mp_init_bbox(mp, h);
20484 if ( minx_val(h)<=maxx_val(h) ) {
20485 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift by
20492 @ @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>=
20494 v=minx_val(h); minx_val(h)=miny_val(h); miny_val(h)=v;
20495 v=maxx_val(h); maxx_val(h)=maxy_val(h); maxy_val(h)=v;
20498 @ The sum ``|txx+txy|'' is whichever of |txx| or |txy| is nonzero. The other
20501 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift...@>=
20503 minx_val(h)=mp_take_scaled(mp, minx_val(h),mp->txx+mp->txy)+mp->tx;
20504 maxx_val(h)=mp_take_scaled(mp, maxx_val(h),mp->txx+mp->txy)+mp->tx;
20505 miny_val(h)=mp_take_scaled(mp, miny_val(h),mp->tyx+mp->tyy)+mp->ty;
20506 maxy_val(h)=mp_take_scaled(mp, maxy_val(h),mp->tyx+mp->tyy)+mp->ty;
20507 if ( mp->txx+mp->txy<0 ) {
20508 v=minx_val(h); minx_val(h)=maxx_val(h); maxx_val(h)=v;
20510 if ( mp->tyx+mp->tyy<0 ) {
20511 v=miny_val(h); miny_val(h)=maxy_val(h); maxy_val(h)=v;
20515 @ Now we ready for the main task of transforming the graphical objects in edge
20518 @<Transform graphical object |q|@>=
20520 case fill_code: case stroked_code:
20521 mp_do_path_trans(mp, path_p(q));
20522 @<Transform |pen_p(q)|, making sure polygonal pens stay counter-clockwise@>;
20524 case mp_start_clip_code: case mp_start_bounds_code:
20525 mp_do_path_trans(mp, path_p(q));
20529 @<Transform the compact transformation starting at |r|@>;
20531 case mp_stop_clip_code: case mp_stop_bounds_code:
20533 } /* there are no other cases */
20535 @ Note that the shift parameters |(tx,ty)| apply only to the path being stroked.
20536 The |dash_scale| has to be adjusted to scale the dash lengths in |dash_p(q)|
20537 since the \ps\ output procedures will try to compensate for the transformation
20538 we are applying to |pen_p(q)|. Since this compensation is based on the square
20539 root of the determinant, |sqdet| is the appropriate factor.
20541 @<Transform |pen_p(q)|, making sure...@>=
20542 if ( pen_p(q)!=null ) {
20543 sx=mp->tx; sy=mp->ty;
20544 mp->tx=0; mp->ty=0;
20545 mp_do_pen_trans(mp, pen_p(q));
20546 if ( ((type(q)==stroked_code)&&(dash_p(q)!=null)) )
20547 dash_scale(q)=mp_take_scaled(mp, dash_scale(q),sqdet);
20548 if ( ! pen_is_elliptical(pen_p(q)) )
20550 pen_p(q)=mp_make_pen(mp, mp_copy_path(mp, pen_p(q)),true);
20551 /* this unreverses the pen */
20552 mp->tx=sx; mp->ty=sy;
20555 @ This uses the fact that transformations are stored in the order
20556 |(tx,ty,txx,txy,tyx,tyy)|.
20557 @^data structure assumptions@>
20559 @<Transform the compact transformation starting at |r|@>=
20560 mp_trans(mp, r,r+1);
20561 sx=mp->tx; sy=mp->ty;
20562 mp->tx=0; mp->ty=0;
20563 mp_trans(mp, r+2,r+4);
20564 mp_trans(mp, r+3,r+5);
20565 mp->tx=sx; mp->ty=sy
20567 @ The hard cases of transformation occur when big nodes are involved,
20568 and when some of their components are unknown.
20570 @<Declare binary action...@>=
20571 @<Declare subroutines needed by |big_trans|@>;
20572 void mp_big_trans (MP mp,pointer p, quarterword c) {
20573 pointer q,r,pp,qq; /* list manipulation registers */
20574 small_number s; /* size of a big node */
20575 s=mp->big_node_size[type(p)]; q=value(p); r=q+s;
20578 if ( type(r)!=mp_known ) {
20579 @<Transform an unknown big node and |return|@>;
20582 @<Transform a known big node@>;
20583 }; /* node |p| will now be recycled by |do_binary| */
20585 @ @<Transform an unknown big node and |return|@>=
20587 mp_set_up_known_trans(mp, c); mp_make_exp_copy(mp, p);
20588 r=value(mp->cur_exp);
20589 if ( mp->cur_type==mp_transform_type ) {
20590 mp_bilin1(mp, yy_part_loc(r),mp->tyy,xy_part_loc(q),mp->tyx,0);
20591 mp_bilin1(mp, yx_part_loc(r),mp->tyy,xx_part_loc(q),mp->tyx,0);
20592 mp_bilin1(mp, xy_part_loc(r),mp->txx,yy_part_loc(q),mp->txy,0);
20593 mp_bilin1(mp, xx_part_loc(r),mp->txx,yx_part_loc(q),mp->txy,0);
20595 mp_bilin1(mp, y_part_loc(r),mp->tyy,x_part_loc(q),mp->tyx,mp->ty);
20596 mp_bilin1(mp, x_part_loc(r),mp->txx,y_part_loc(q),mp->txy,mp->tx);
20600 @ Let |p| point to a two-word value field inside a big node of |cur_exp|,
20601 and let |q| point to a another value field. The |bilin1| procedure
20602 replaces |p| by $p\cdot t+q\cdot u+\delta$.
20604 @<Declare subroutines needed by |big_trans|@>=
20605 void mp_bilin1 (MP mp, pointer p, scaled t, pointer q,
20606 scaled u, scaled delta) {
20607 pointer r; /* list traverser */
20608 if ( t!=unity ) mp_dep_mult(mp, p,t,true);
20610 if ( type(q)==mp_known ) {
20611 delta+=mp_take_scaled(mp, value(q),u);
20613 @<Ensure that |type(p)=mp_proto_dependent|@>;
20614 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),u,dep_list(q),
20615 mp_proto_dependent,type(q));
20618 if ( type(p)==mp_known ) {
20622 while ( info(r)!=null ) r=link(r);
20624 if ( r!=dep_list(p) ) value(r)=delta;
20625 else { mp_recycle_value(mp, p); type(p)=mp_known; value(p)=delta; };
20627 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20630 @ @<Ensure that |type(p)=mp_proto_dependent|@>=
20631 if ( type(p)!=mp_proto_dependent ) {
20632 if ( type(p)==mp_known )
20633 mp_new_dep(mp, p,mp_const_dependency(mp, value(p)));
20635 dep_list(p)=mp_p_times_v(mp, dep_list(p),unity,mp_dependent,
20636 mp_proto_dependent,true);
20637 type(p)=mp_proto_dependent;
20640 @ @<Transform a known big node@>=
20641 mp_set_up_trans(mp, c);
20642 if ( mp->cur_type==mp_known ) {
20643 @<Transform known by known@>;
20645 pp=mp_stash_cur_exp(mp); qq=value(pp);
20646 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20647 if ( mp->cur_type==mp_transform_type ) {
20648 mp_bilin2(mp, yy_part_loc(r),yy_part_loc(qq),
20649 value(xy_part_loc(q)),yx_part_loc(qq),null);
20650 mp_bilin2(mp, yx_part_loc(r),yy_part_loc(qq),
20651 value(xx_part_loc(q)),yx_part_loc(qq),null);
20652 mp_bilin2(mp, xy_part_loc(r),xx_part_loc(qq),
20653 value(yy_part_loc(q)),xy_part_loc(qq),null);
20654 mp_bilin2(mp, xx_part_loc(r),xx_part_loc(qq),
20655 value(yx_part_loc(q)),xy_part_loc(qq),null);
20657 mp_bilin2(mp, y_part_loc(r),yy_part_loc(qq),
20658 value(x_part_loc(q)),yx_part_loc(qq),y_part_loc(qq));
20659 mp_bilin2(mp, x_part_loc(r),xx_part_loc(qq),
20660 value(y_part_loc(q)),xy_part_loc(qq),x_part_loc(qq));
20661 mp_recycle_value(mp, pp); mp_free_node(mp, pp,value_node_size);
20664 @ Let |p| be a |mp_proto_dependent| value whose dependency list ends
20665 at |dep_final|. The following procedure adds |v| times another
20666 numeric quantity to~|p|.
20668 @<Declare subroutines needed by |big_trans|@>=
20669 void mp_add_mult_dep (MP mp,pointer p, scaled v, pointer r) {
20670 if ( type(r)==mp_known ) {
20671 value(mp->dep_final)+=mp_take_scaled(mp, value(r),v);
20673 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),v,dep_list(r),
20674 mp_proto_dependent,type(r));
20675 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20679 @ The |bilin2| procedure is something like |bilin1|, but with known
20680 and unknown quantities reversed. Parameter |p| points to a value field
20681 within the big node for |cur_exp|; and |type(p)=mp_known|. Parameters
20682 |t| and~|u| point to value fields elsewhere; so does parameter~|q|,
20683 unless it is |null| (which stands for zero). Location~|p| will be
20684 replaced by $p\cdot t+v\cdot u+q$.
20686 @<Declare subroutines needed by |big_trans|@>=
20687 void mp_bilin2 (MP mp,pointer p, pointer t, scaled v,
20688 pointer u, pointer q) {
20689 scaled vv; /* temporary storage for |value(p)| */
20690 vv=value(p); type(p)=mp_proto_dependent;
20691 mp_new_dep(mp, p,mp_const_dependency(mp, 0)); /* this sets |dep_final| */
20693 mp_add_mult_dep(mp, p,vv,t); /* |dep_final| doesn't change */
20694 if ( v!=0 ) mp_add_mult_dep(mp, p,v,u);
20695 if ( q!=null ) mp_add_mult_dep(mp, p,unity,q);
20696 if ( dep_list(p)==mp->dep_final ) {
20697 vv=value(mp->dep_final); mp_recycle_value(mp, p);
20698 type(p)=mp_known; value(p)=vv;
20702 @ @<Transform known by known@>=
20704 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20705 if ( mp->cur_type==mp_transform_type ) {
20706 mp_bilin3(mp, yy_part_loc(r),mp->tyy,value(xy_part_loc(q)),mp->tyx,0);
20707 mp_bilin3(mp, yx_part_loc(r),mp->tyy,value(xx_part_loc(q)),mp->tyx,0);
20708 mp_bilin3(mp, xy_part_loc(r),mp->txx,value(yy_part_loc(q)),mp->txy,0);
20709 mp_bilin3(mp, xx_part_loc(r),mp->txx,value(yx_part_loc(q)),mp->txy,0);
20711 mp_bilin3(mp, y_part_loc(r),mp->tyy,value(x_part_loc(q)),mp->tyx,mp->ty);
20712 mp_bilin3(mp, x_part_loc(r),mp->txx,value(y_part_loc(q)),mp->txy,mp->tx);
20715 @ Finally, in |bilin3| everything is |known|.
20717 @<Declare subroutines needed by |big_trans|@>=
20718 void mp_bilin3 (MP mp,pointer p, scaled t,
20719 scaled v, scaled u, scaled delta) {
20721 delta+=mp_take_scaled(mp, value(p),t);
20724 if ( u!=0 ) value(p)=delta+mp_take_scaled(mp, v,u);
20725 else value(p)=delta;
20728 @ @<Additional cases of binary operators@>=
20730 if ( (mp->cur_type==mp_string_type)&&(type(p)==mp_string_type) ) mp_cat(mp, p);
20731 else mp_bad_binary(mp, p,concatenate);
20734 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_string_type) )
20735 mp_chop_string(mp, value(p));
20736 else mp_bad_binary(mp, p,substring_of);
20739 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
20740 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_path_type) )
20741 mp_chop_path(mp, value(p));
20742 else mp_bad_binary(mp, p,subpath_of);
20745 @ @<Declare binary action...@>=
20746 void mp_cat (MP mp,pointer p) {
20747 str_number a,b; /* the strings being concatenated */
20748 pool_pointer k; /* index into |str_pool| */
20749 a=value(p); b=mp->cur_exp; str_room(length(a)+length(b));
20750 for (k=mp->str_start[a];k<=str_stop(a)-1;k++) {
20751 append_char(mp->str_pool[k]);
20753 for (k=mp->str_start[b];k<=str_stop(b)-1;k++) {
20754 append_char(mp->str_pool[k]);
20756 mp->cur_exp=mp_make_string(mp); delete_str_ref(b);
20759 @ @<Declare binary action...@>=
20760 void mp_chop_string (MP mp,pointer p) {
20761 integer a, b; /* start and stop points */
20762 integer l; /* length of the original string */
20763 integer k; /* runs from |a| to |b| */
20764 str_number s; /* the original string */
20765 boolean reversed; /* was |a>b|? */
20766 a=mp_round_unscaled(mp, value(x_part_loc(p)));
20767 b=mp_round_unscaled(mp, value(y_part_loc(p)));
20768 if ( a<=b ) reversed=false;
20769 else { reversed=true; k=a; a=b; b=k; };
20770 s=mp->cur_exp; l=length(s);
20781 for (k=mp->str_start[s]+b-1;k>=mp->str_start[s]+a;k--) {
20782 append_char(mp->str_pool[k]);
20785 for (k=mp->str_start[s]+a;k<=mp->str_start[s]+b-1;k++) {
20786 append_char(mp->str_pool[k]);
20789 mp->cur_exp=mp_make_string(mp); delete_str_ref(s);
20792 @ @<Declare binary action...@>=
20793 void mp_chop_path (MP mp,pointer p) {
20794 pointer q; /* a knot in the original path */
20795 pointer pp,qq,rr,ss; /* link variables for copies of path nodes */
20796 scaled a,b,k,l; /* indices for chopping */
20797 boolean reversed; /* was |a>b|? */
20798 l=mp_path_length(mp); a=value(x_part_loc(p)); b=value(y_part_loc(p));
20799 if ( a<=b ) reversed=false;
20800 else { reversed=true; k=a; a=b; b=k; };
20801 @<Dispense with the cases |a<0| and/or |b>l|@>;
20803 while ( a>=unity ) {
20804 q=link(q); a=a-unity; b=b-unity;
20807 @<Construct a path from |pp| to |qq| of length zero@>;
20809 @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>;
20811 left_type(pp)=endpoint; right_type(qq)=endpoint; link(qq)=pp;
20812 mp_toss_knot_list(mp, mp->cur_exp);
20814 mp->cur_exp=link(mp_htap_ypoc(mp, pp)); mp_toss_knot_list(mp, pp);
20820 @ @<Dispense with the cases |a<0| and/or |b>l|@>=
20822 if ( left_type(mp->cur_exp)==endpoint ) {
20823 a=0; if ( b<0 ) b=0;
20825 do { a=a+l; b=b+l; } while (a<0); /* a cycle always has length |l>0| */
20829 if ( left_type(mp->cur_exp)==endpoint ) {
20830 b=l; if ( a>l ) a=l;
20838 @ @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>=
20840 pp=mp_copy_knot(mp, q); qq=pp;
20842 q=link(q); rr=qq; qq=mp_copy_knot(mp, q); link(rr)=qq; b=b-unity;
20845 ss=pp; pp=link(pp);
20846 mp_split_cubic(mp, ss,a*010000); pp=link(ss);
20847 mp_free_node(mp, ss,knot_node_size);
20849 b=mp_make_scaled(mp, b,unity-a); rr=pp;
20853 mp_split_cubic(mp, rr,(b+unity)*010000);
20854 mp_free_node(mp, qq,knot_node_size);
20859 @ @<Construct a path from |pp| to |qq| of length zero@>=
20861 if ( a>0 ) { mp_split_cubic(mp, q,a*010000); q=link(q); };
20862 pp=mp_copy_knot(mp, q); qq=pp;
20865 @ @<Additional cases of binary operators@>=
20866 case point_of: case precontrol_of: case postcontrol_of:
20867 if ( mp->cur_type==mp_pair_type )
20868 mp_pair_to_path(mp);
20869 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
20870 mp_find_point(mp, value(p),c);
20872 mp_bad_binary(mp, p,c);
20874 case pen_offset_of:
20875 if ( (mp->cur_type==mp_pen_type)&& mp_nice_pair(mp, p,type(p)) )
20876 mp_set_up_offset(mp, value(p));
20878 mp_bad_binary(mp, p,pen_offset_of);
20880 case direction_time_of:
20881 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
20882 if ( (mp->cur_type==mp_path_type)&& mp_nice_pair(mp, p,type(p)) )
20883 mp_set_up_direction_time(mp, value(p));
20885 mp_bad_binary(mp, p,direction_time_of);
20888 @ @<Declare binary action...@>=
20889 void mp_set_up_offset (MP mp,pointer p) {
20890 mp_find_offset(mp, value(x_part_loc(p)),value(y_part_loc(p)),mp->cur_exp);
20891 mp_pair_value(mp, mp->cur_x,mp->cur_y);
20893 void mp_set_up_direction_time (MP mp,pointer p) {
20894 mp_flush_cur_exp(mp, mp_find_direction_time(mp, value(x_part_loc(p)),
20895 value(y_part_loc(p)),mp->cur_exp));
20898 @ @<Declare binary action...@>=
20899 void mp_find_point (MP mp,scaled v, quarterword c) {
20900 pointer p; /* the path */
20901 scaled n; /* its length */
20903 if ( left_type(p)==endpoint ) n=-unity; else n=0;
20904 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
20907 } else if ( v<0 ) {
20908 if ( left_type(p)==endpoint ) v=0;
20909 else v=n-1-((-v-1) % n);
20910 } else if ( v>n ) {
20911 if ( left_type(p)==endpoint ) v=n;
20915 while ( v>=unity ) { p=link(p); v=v-unity; };
20917 @<Insert a fractional node by splitting the cubic@>;
20919 @<Set the current expression to the desired path coordinates@>;
20922 @ @<Insert a fractional node...@>=
20923 { mp_split_cubic(mp, p,v*010000); p=link(p); }
20925 @ @<Set the current expression to the desired path coordinates...@>=
20928 mp_pair_value(mp, x_coord(p),y_coord(p));
20930 case precontrol_of:
20931 if ( left_type(p)==endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
20932 else mp_pair_value(mp, left_x(p),left_y(p));
20934 case postcontrol_of:
20935 if ( right_type(p)==endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
20936 else mp_pair_value(mp, right_x(p),right_y(p));
20938 } /* there are no other cases */
20940 @ @<Additional cases of binary operators@>=
20942 if ( mp->cur_type==mp_pair_type )
20943 mp_pair_to_path(mp);
20944 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
20945 mp_flush_cur_exp(mp, mp_get_arc_time(mp, mp->cur_exp,value(p)));
20947 mp_bad_binary(mp, p,c);
20950 @ @<Additional cases of bin...@>=
20952 if ( type(p)==mp_pair_type ) {
20953 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p);
20954 mp_pair_to_path(mp); p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
20956 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
20957 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_path_type) ) {
20958 mp_path_intersection(mp, value(p),mp->cur_exp);
20959 mp_pair_value(mp, mp->cur_t,mp->cur_tt);
20961 mp_bad_binary(mp, p,intersect);
20965 @ @<Additional cases of bin...@>=
20967 if ( (mp->cur_type!=mp_string_type)||(type(p)!=mp_string_type))
20968 mp_bad_binary(mp, p,in_font);
20969 else { mp_do_infont(mp, p); return; }
20972 @ Function |new_text_node| owns the reference count for its second argument
20973 (the text string) but not its first (the font name).
20975 @<Declare binary action...@>=
20976 void mp_do_infont (MP mp,pointer p) {
20978 q=mp_get_node(mp, edge_header_size);
20979 mp_init_edges(mp, q);
20980 link(obj_tail(q))=mp_new_text_node(mp, str(mp->cur_exp),value(p));
20981 obj_tail(q)=link(obj_tail(q));
20982 mp_free_node(mp, p,value_node_size);
20983 mp_flush_cur_exp(mp, q);
20984 mp->cur_type=mp_picture_type;
20987 @* \[40] Statements and commands.
20988 The chief executive of \MP\ is the |do_statement| routine, which
20989 contains the master switch that causes all the various pieces of \MP\
20990 to do their things, in the right order.
20992 In a sense, this is the grand climax of the program: It applies all the
20993 tools that we have worked so hard to construct. In another sense, this is
20994 the messiest part of the program: It necessarily refers to other pieces
20995 of code all over the place, so that a person can't fully understand what is
20996 going on without paging back and forth to be reminded of conventions that
20997 are defined elsewhere. We are now at the hub of the web.
20999 The structure of |do_statement| itself is quite simple. The first token
21000 of the statement is fetched using |get_x_next|. If it can be the first
21001 token of an expression, we look for an equation, an assignment, or a
21002 title. Otherwise we use a \&{case} construction to branch at high speed to
21003 the appropriate routine for various and sundry other types of commands,
21004 each of which has an ``action procedure'' that does the necessary work.
21006 The program uses the fact that
21007 $$\hbox{|min_primary_command=max_statement_command=type_name|}$$
21008 to interpret a statement that starts with, e.g., `\&{string}',
21009 as a type declaration rather than a boolean expression.
21011 @c void mp_do_statement (MP mp) { /* governs \MP's activities */
21012 mp->cur_type=mp_vacuous; mp_get_x_next(mp);
21013 if ( mp->cur_cmd>max_primary_command ) {
21014 @<Worry about bad statement@>;
21015 } else if ( mp->cur_cmd>max_statement_command ) {
21016 @<Do an equation, assignment, title, or
21017 `$\langle\,$expression$\,\rangle\,$\&{endgroup}'@>;
21019 @<Do a statement that doesn't begin with an expression@>;
21021 if ( mp->cur_cmd<semicolon )
21022 @<Flush unparsable junk that was found after the statement@>;
21026 @ @<Declarations@>=
21027 @<Declare action procedures for use by |do_statement|@>;
21029 @ The only command codes |>max_primary_command| that can be present
21030 at the beginning of a statement are |semicolon| and higher; these
21031 occur when the statement is null.
21033 @<Worry about bad statement@>=
21035 if ( mp->cur_cmd<semicolon ) {
21036 print_err("A statement can't begin with `");
21037 @.A statement can't begin with x@>
21038 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod); mp_print_char(mp, '\'');
21039 help5("I was looking for the beginning of a new statement.")
21040 ("If you just proceed without changing anything, I'll ignore")
21041 ("everything up to the next `;'. Please insert a semicolon")
21042 ("now in front of anything that you don't want me to delete.")
21043 ("(See Chapter 27 of The METAFONTbook for an example.)");
21044 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21045 mp_back_error(mp); mp_get_x_next(mp);
21049 @ The help message printed here says that everything is flushed up to
21050 a semicolon, but actually the commands |end_group| and |stop| will
21051 also terminate a statement.
21053 @<Flush unparsable junk that was found after the statement@>=
21055 print_err("Extra tokens will be flushed");
21056 @.Extra tokens will be flushed@>
21057 help6("I've just read as much of that statement as I could fathom,")
21058 ("so a semicolon should have been next. It's very puzzling...")
21059 ("but I'll try to get myself back together, by ignoring")
21060 ("everything up to the next `;'. Please insert a semicolon")
21061 ("now in front of anything that you don't want me to delete.")
21062 ("(See Chapter 27 of The METAFONTbook for an example.)");
21063 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21064 mp_back_error(mp); mp->scanner_status=flushing;
21067 @<Decrease the string reference count...@>;
21068 } while (! end_of_statement); /* |cur_cmd=semicolon|, |end_group|, or |stop| */
21069 mp->scanner_status=normal;
21072 @ If |do_statement| ends with |cur_cmd=end_group|, we should have
21073 |cur_type=mp_vacuous| unless the statement was simply an expression;
21074 in the latter case, |cur_type| and |cur_exp| should represent that
21077 @<Do a statement that doesn't...@>=
21079 if ( mp->internal[tracing_commands]>0 )
21081 switch (mp->cur_cmd ) {
21082 case type_name:mp_do_type_declaration(mp); break;
21084 if ( mp->cur_mod>var_def ) mp_make_op_def(mp);
21085 else if ( mp->cur_mod>end_def ) mp_scan_def(mp);
21087 @<Cases of |do_statement| that invoke particular commands@>;
21088 } /* there are no other cases */
21089 mp->cur_type=mp_vacuous;
21092 @ The most important statements begin with expressions.
21094 @<Do an equation, assignment, title, or...@>=
21096 mp->var_flag=assignment; mp_scan_expression(mp);
21097 if ( mp->cur_cmd<end_group ) {
21098 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21099 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21100 else if ( mp->cur_type==mp_string_type ) {@<Do a title@> ; }
21101 else if ( mp->cur_type!=mp_vacuous ){
21102 exp_err("Isolated expression");
21103 @.Isolated expression@>
21104 help3("I couldn't find an `=' or `:=' after the")
21105 ("expression that is shown above this error message,")
21106 ("so I guess I'll just ignore it and carry on.");
21107 mp_put_get_error(mp);
21109 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
21115 if ( mp->internal[tracing_titles]>0 ) {
21116 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp); update_terminal;
21120 @ Equations and assignments are performed by the pair of mutually recursive
21122 routines |do_equation| and |do_assignment|. These routines are called when
21123 |cur_cmd=equals| and when |cur_cmd=assignment|, respectively; the left-hand
21124 side is in |cur_type| and |cur_exp|, while the right-hand side is yet
21125 to be scanned. After the routines are finished, |cur_type| and |cur_exp|
21126 will be equal to the right-hand side (which will normally be equal
21127 to the left-hand side).
21129 @<Declare action procedures for use by |do_statement|@>=
21130 @<Declare the procedure called |try_eq|@>;
21131 @<Declare the procedure called |make_eq|@>;
21132 void mp_do_equation (MP mp) ;
21135 void mp_do_equation (MP mp) {
21136 pointer lhs; /* capsule for the left-hand side */
21137 pointer p; /* temporary register */
21138 lhs=mp_stash_cur_exp(mp); mp_get_x_next(mp);
21139 mp->var_flag=assignment; mp_scan_expression(mp);
21140 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21141 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21142 if ( mp->internal[tracing_commands]>two )
21143 @<Trace the current equation@>;
21144 if ( mp->cur_type==mp_unknown_path ) if ( type(lhs)==mp_pair_type ) {
21145 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, lhs); lhs=p;
21146 }; /* in this case |make_eq| will change the pair to a path */
21147 mp_make_eq(mp, lhs); /* equate |lhs| to |(cur_type,cur_exp)| */
21150 @ And |do_assignment| is similar to |do_expression|:
21153 void mp_do_assignment (MP mp);
21155 @ @<Declare action procedures for use by |do_statement|@>=
21156 void mp_do_assignment (MP mp) ;
21159 void mp_do_assignment (MP mp) {
21160 pointer lhs; /* token list for the left-hand side */
21161 pointer p; /* where the left-hand value is stored */
21162 pointer q; /* temporary capsule for the right-hand value */
21163 if ( mp->cur_type!=mp_token_list ) {
21164 exp_err("Improper `:=' will be changed to `='");
21166 help2("I didn't find a variable name at the left of the `:=',")
21167 ("so I'm going to pretend that you said `=' instead.");
21168 mp_error(mp); mp_do_equation(mp);
21170 lhs=mp->cur_exp; mp->cur_type=mp_vacuous;
21171 mp_get_x_next(mp); mp->var_flag=assignment; mp_scan_expression(mp);
21172 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21173 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21174 if ( mp->internal[tracing_commands]>two )
21175 @<Trace the current assignment@>;
21176 if ( info(lhs)>hash_end ) {
21177 @<Assign the current expression to an internal variable@>;
21179 @<Assign the current expression to the variable |lhs|@>;
21181 mp_flush_node_list(mp, lhs);
21185 @ @<Trace the current equation@>=
21187 mp_begin_diagnostic(mp); mp_print_nl(mp, "{("); mp_print_exp(mp,lhs,0);
21188 mp_print(mp,")=("); mp_print_exp(mp,null,0);
21189 mp_print(mp,")}"); mp_end_diagnostic(mp, false);
21192 @ @<Trace the current assignment@>=
21194 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
21195 if ( info(lhs)>hash_end )
21196 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21198 mp_show_token_list(mp, lhs,null,1000,0);
21199 mp_print(mp, ":="); mp_print_exp(mp, null,0);
21200 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
21203 @ @<Assign the current expression to an internal variable@>=
21204 if ( mp->cur_type==mp_known ) {
21205 mp->internal[info(lhs)-(hash_end)]=mp->cur_exp;
21207 exp_err("Internal quantity `");
21208 @.Internal quantity...@>
21209 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21210 mp_print(mp, "' must receive a known value");
21211 help2("I can\'t set an internal quantity to anything but a known")
21212 ("numeric value, so I'll have to ignore this assignment.");
21213 mp_put_get_error(mp);
21216 @ @<Assign the current expression to the variable |lhs|@>=
21218 p=mp_find_variable(mp, lhs);
21220 q=mp_stash_cur_exp(mp); mp->cur_type=mp_und_type(mp, p);
21221 mp_recycle_value(mp, p);
21222 type(p)=mp->cur_type; value(p)=null; mp_make_exp_copy(mp, p);
21223 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q); mp_make_eq(mp, p);
21225 mp_obliterated(mp, lhs); mp_put_get_error(mp);
21230 @ And now we get to the nitty-gritty. The |make_eq| procedure is given
21231 a pointer to a capsule that is to be equated to the current expression.
21233 @<Declare the procedure called |make_eq|@>=
21234 void mp_make_eq (MP mp,pointer lhs) ;
21238 @c void mp_make_eq (MP mp,pointer lhs) {
21239 small_number t; /* type of the left-hand side */
21240 pointer p,q; /* pointers inside of big nodes */
21241 integer v=0; /* value of the left-hand side */
21244 if ( t<=mp_pair_type ) v=value(lhs);
21246 @<For each type |t|, make an equation and |goto done| unless |cur_type|
21247 is incompatible with~|t|@>;
21248 } /* all cases have been listed */
21249 @<Announce that the equation cannot be performed@>;
21251 check_arith; mp_recycle_value(mp, lhs);
21252 mp_free_node(mp, lhs,value_node_size);
21255 @ @<Announce that the equation cannot be performed@>=
21256 mp_disp_err(mp, lhs,"");
21257 exp_err("Equation cannot be performed (");
21258 @.Equation cannot be performed@>
21259 if ( type(lhs)<=mp_pair_type ) mp_print_type(mp, type(lhs));
21260 else mp_print(mp, "numeric");
21261 mp_print_char(mp, '=');
21262 if ( mp->cur_type<=mp_pair_type ) mp_print_type(mp, mp->cur_type);
21263 else mp_print(mp, "numeric");
21264 mp_print_char(mp, ')');
21265 help2("I'm sorry, but I don't know how to make such things equal.")
21266 ("(See the two expressions just above the error message.)");
21267 mp_put_get_error(mp)
21269 @ @<For each type |t|, make an equation and |goto done| unless...@>=
21270 case mp_boolean_type: case mp_string_type: case mp_pen_type:
21271 case mp_path_type: case mp_picture_type:
21272 if ( mp->cur_type==t+unknown_tag ) {
21273 mp_nonlinear_eq(mp, v,mp->cur_exp,false); goto DONE;
21274 } else if ( mp->cur_type==t ) {
21275 @<Report redundant or inconsistent equation and |goto done|@>;
21278 case unknown_types:
21279 if ( mp->cur_type==t-unknown_tag ) {
21280 mp_nonlinear_eq(mp, mp->cur_exp,lhs,true); goto DONE;
21281 } else if ( mp->cur_type==t ) {
21282 mp_ring_merge(mp, lhs,mp->cur_exp); goto DONE;
21283 } else if ( mp->cur_type==mp_pair_type ) {
21284 if ( t==mp_unknown_path ) {
21285 mp_pair_to_path(mp); goto RESTART;
21289 case mp_transform_type: case mp_color_type:
21290 case mp_cmykcolor_type: case mp_pair_type:
21291 if ( mp->cur_type==t ) {
21292 @<Do multiple equations and |goto done|@>;
21295 case mp_known: case mp_dependent:
21296 case mp_proto_dependent: case mp_independent:
21297 if ( mp->cur_type>=mp_known ) {
21298 mp_try_eq(mp, lhs,null); goto DONE;
21304 @ @<Report redundant or inconsistent equation and |goto done|@>=
21306 if ( mp->cur_type<=mp_string_type ) {
21307 if ( mp->cur_type==mp_string_type ) {
21308 if ( mp_str_vs_str(mp, v,mp->cur_exp)!=0 ) {
21311 } else if ( v!=mp->cur_exp ) {
21314 @<Exclaim about a redundant equation@>; goto DONE;
21316 print_err("Redundant or inconsistent equation");
21317 @.Redundant or inconsistent equation@>
21318 help2("An equation between already-known quantities can't help.")
21319 ("But don't worry; continue and I'll just ignore it.");
21320 mp_put_get_error(mp); goto DONE;
21322 print_err("Inconsistent equation");
21323 @.Inconsistent equation@>
21324 help2("The equation I just read contradicts what was said before.")
21325 ("But don't worry; continue and I'll just ignore it.");
21326 mp_put_get_error(mp); goto DONE;
21329 @ @<Do multiple equations and |goto done|@>=
21331 p=v+mp->big_node_size[t];
21332 q=value(mp->cur_exp)+mp->big_node_size[t];
21334 p=p-2; q=q-2; mp_try_eq(mp, p,q);
21339 @ The first argument to |try_eq| is the location of a value node
21340 in a capsule that will soon be recycled. The second argument is
21341 either a location within a pair or transform node pointed to by
21342 |cur_exp|, or it is |null| (which means that |cur_exp| itself
21343 serves as the second argument). The idea is to leave |cur_exp| unchanged,
21344 but to equate the two operands.
21346 @<Declare the procedure called |try_eq|@>=
21347 void mp_try_eq (MP mp,pointer l, pointer r) ;
21350 @c void mp_try_eq (MP mp,pointer l, pointer r) {
21351 pointer p; /* dependency list for right operand minus left operand */
21352 int t; /* the type of list |p| */
21353 pointer q; /* the constant term of |p| is here */
21354 pointer pp; /* dependency list for right operand */
21355 int tt; /* the type of list |pp| */
21356 boolean copied; /* have we copied a list that ought to be recycled? */
21357 @<Remove the left operand from its container, negate it, and
21358 put it into dependency list~|p| with constant term~|q|@>;
21359 @<Add the right operand to list |p|@>;
21360 if ( info(p)==null ) {
21361 @<Deal with redundant or inconsistent equation@>;
21363 mp_linear_eq(mp, p,t);
21364 if ( r==null ) if ( mp->cur_type!=mp_known ) {
21365 if ( type(mp->cur_exp)==mp_known ) {
21366 pp=mp->cur_exp; mp->cur_exp=value(mp->cur_exp); mp->cur_type=mp_known;
21367 mp_free_node(mp, pp,value_node_size);
21373 @ @<Remove the left operand from its container, negate it, and...@>=
21375 if ( t==mp_known ) {
21376 t=mp_dependent; p=mp_const_dependency(mp, -value(l)); q=p;
21377 } else if ( t==mp_independent ) {
21378 t=mp_dependent; p=mp_single_dependency(mp, l); negate(value(p));
21381 p=dep_list(l); q=p;
21384 if ( info(q)==null ) break;
21387 link(prev_dep(l))=link(q); prev_dep(link(q))=prev_dep(l);
21391 @ @<Deal with redundant or inconsistent equation@>=
21393 if ( abs(value(p))>64 ) { /* off by .001 or more */
21394 print_err("Inconsistent equation");
21395 @.Inconsistent equation@>
21396 mp_print(mp, " (off by "); mp_print_scaled(mp, value(p));
21397 mp_print_char(mp, ')');
21398 help2("The equation I just read contradicts what was said before.")
21399 ("But don't worry; continue and I'll just ignore it.");
21400 mp_put_get_error(mp);
21401 } else if ( r==null ) {
21402 @<Exclaim about a redundant equation@>;
21404 mp_free_node(mp, p,dep_node_size);
21407 @ @<Add the right operand to list |p|@>=
21409 if ( mp->cur_type==mp_known ) {
21410 value(q)=value(q)+mp->cur_exp; goto DONE1;
21413 if ( tt==mp_independent ) pp=mp_single_dependency(mp, mp->cur_exp);
21414 else pp=dep_list(mp->cur_exp);
21417 if ( type(r)==mp_known ) {
21418 value(q)=value(q)+value(r); goto DONE1;
21421 if ( tt==mp_independent ) pp=mp_single_dependency(mp, r);
21422 else pp=dep_list(r);
21425 if ( tt!=mp_independent ) copied=false;
21426 else { copied=true; tt=mp_dependent; };
21427 @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>;
21428 if ( copied ) mp_flush_node_list(mp, pp);
21431 @ @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>=
21432 mp->watch_coefs=false;
21434 p=mp_p_plus_q(mp, p,pp,t);
21435 } else if ( t==mp_proto_dependent ) {
21436 p=mp_p_plus_fq(mp, p,unity,pp,mp_proto_dependent,mp_dependent);
21439 while ( info(q)!=null ) {
21440 value(q)=mp_round_fraction(mp, value(q)); q=link(q);
21442 t=mp_proto_dependent; p=mp_p_plus_q(mp, p,pp,t);
21444 mp->watch_coefs=true;
21446 @ Our next goal is to process type declarations. For this purpose it's
21447 convenient to have a procedure that scans a $\langle\,$declared
21448 variable$\,\rangle$ and returns the corresponding token list. After the
21449 following procedure has acted, the token after the declared variable
21450 will have been scanned, so it will appear in |cur_cmd|, |cur_mod|,
21453 @<Declare the function called |scan_declared_variable|@>=
21454 pointer mp_scan_declared_variable (MP mp) {
21455 pointer x; /* hash address of the variable's root */
21456 pointer h,t; /* head and tail of the token list to be returned */
21457 pointer l; /* hash address of left bracket */
21458 mp_get_symbol(mp); x=mp->cur_sym;
21459 if ( mp->cur_cmd!=tag_token ) mp_clear_symbol(mp, x,false);
21460 h=mp_get_avail(mp); info(h)=x; t=h;
21463 if ( mp->cur_sym==0 ) break;
21464 if ( mp->cur_cmd!=tag_token ) if ( mp->cur_cmd!=internal_quantity) {
21465 if ( mp->cur_cmd==left_bracket ) {
21466 @<Descend past a collective subscript@>;
21471 link(t)=mp_get_avail(mp); t=link(t); info(t)=mp->cur_sym;
21473 if ( eq_type(x)!=tag_token ) mp_clear_symbol(mp, x,false);
21474 if ( equiv(x)==null ) mp_new_root(mp, x);
21478 @ If the subscript isn't collective, we don't accept it as part of the
21481 @<Descend past a collective subscript@>=
21483 l=mp->cur_sym; mp_get_x_next(mp);
21484 if ( mp->cur_cmd!=right_bracket ) {
21485 mp_back_input(mp); mp->cur_sym=l; mp->cur_cmd=left_bracket; break;
21487 mp->cur_sym=collective_subscript;
21491 @ Type declarations are introduced by the following primitive operations.
21494 mp_primitive(mp, "numeric",type_name,mp_numeric_type);
21495 @:numeric_}{\&{numeric} primitive@>
21496 mp_primitive(mp, "string",type_name,mp_string_type);
21497 @:string_}{\&{string} primitive@>
21498 mp_primitive(mp, "boolean",type_name,mp_boolean_type);
21499 @:boolean_}{\&{boolean} primitive@>
21500 mp_primitive(mp, "path",type_name,mp_path_type);
21501 @:path_}{\&{path} primitive@>
21502 mp_primitive(mp, "pen",type_name,mp_pen_type);
21503 @:pen_}{\&{pen} primitive@>
21504 mp_primitive(mp, "picture",type_name,mp_picture_type);
21505 @:picture_}{\&{picture} primitive@>
21506 mp_primitive(mp, "transform",type_name,mp_transform_type);
21507 @:transform_}{\&{transform} primitive@>
21508 mp_primitive(mp, "color",type_name,mp_color_type);
21509 @:color_}{\&{color} primitive@>
21510 mp_primitive(mp, "rgbcolor",type_name,mp_color_type);
21511 @:color_}{\&{rgbcolor} primitive@>
21512 mp_primitive(mp, "cmykcolor",type_name,mp_cmykcolor_type);
21513 @:color_}{\&{cmykcolor} primitive@>
21514 mp_primitive(mp, "pair",type_name,mp_pair_type);
21515 @:pair_}{\&{pair} primitive@>
21517 @ @<Cases of |print_cmd...@>=
21518 case type_name: mp_print_type(mp, m); break;
21520 @ Now we are ready to handle type declarations, assuming that a
21521 |type_name| has just been scanned.
21523 @<Declare action procedures for use by |do_statement|@>=
21524 void mp_do_type_declaration (MP mp) ;
21527 void mp_do_type_declaration (MP mp) {
21528 small_number t; /* the type being declared */
21529 pointer p; /* token list for a declared variable */
21530 pointer q; /* value node for the variable */
21531 if ( mp->cur_mod>=mp_transform_type )
21534 t=mp->cur_mod+unknown_tag;
21536 p=mp_scan_declared_variable(mp);
21537 mp_flush_variable(mp, equiv(info(p)),link(p),false);
21538 q=mp_find_variable(mp, p);
21540 type(q)=t; value(q)=null;
21542 print_err("Declared variable conflicts with previous vardef");
21543 @.Declared variable conflicts...@>
21544 help2("You can't use, e.g., `numeric foo[]' after `vardef foo'.")
21545 ("Proceed, and I'll ignore the illegal redeclaration.");
21546 mp_put_get_error(mp);
21548 mp_flush_list(mp, p);
21549 if ( mp->cur_cmd<comma ) {
21550 @<Flush spurious symbols after the declared variable@>;
21552 } while (! end_of_statement);
21555 @ @<Flush spurious symbols after the declared variable@>=
21557 print_err("Illegal suffix of declared variable will be flushed");
21558 @.Illegal suffix...flushed@>
21559 help5("Variables in declarations must consist entirely of")
21560 ("names and collective subscripts, e.g., `x[]a'.")
21561 ("Are you trying to use a reserved word in a variable name?")
21562 ("I'm going to discard the junk I found here,")
21563 ("up to the next comma or the end of the declaration.");
21564 if ( mp->cur_cmd==numeric_token )
21565 mp->help_line[2]="Explicit subscripts like `x15a' aren't permitted.";
21566 mp_put_get_error(mp); mp->scanner_status=flushing;
21569 @<Decrease the string reference count...@>;
21570 } while (mp->cur_cmd<comma); /* either |end_of_statement| or |cur_cmd=comma| */
21571 mp->scanner_status=normal;
21574 @ \MP's |main_control| procedure just calls |do_statement| repeatedly
21575 until coming to the end of the user's program.
21576 Each execution of |do_statement| concludes with
21577 |cur_cmd=semicolon|, |end_group|, or |stop|.
21579 @c void mp_main_control (MP mp) {
21581 mp_do_statement(mp);
21582 if ( mp->cur_cmd==end_group ) {
21583 print_err("Extra `endgroup'");
21584 @.Extra `endgroup'@>
21585 help2("I'm not currently working on a `begingroup',")
21586 ("so I had better not try to end anything.");
21587 mp_flush_error(mp, 0);
21589 } while (mp->cur_cmd!=stop);
21591 int mp_run (MP mp) {
21592 mp_main_control(mp); /* come to life */
21593 mp_final_cleanup(mp); /* prepare for death */
21594 mp_close_files_and_terminate(mp);
21595 return mp->history;
21597 char * mp_mplib_version (MP mp) {
21599 return mplib_version;
21601 char * mp_metapost_version (MP mp) {
21603 return metapost_version;
21606 @ @<Exported function headers@>=
21607 int mp_run (MP mp);
21608 char * mp_mplib_version (MP mp);
21609 char * mp_metapost_version (MP mp);
21612 mp_primitive(mp, "end",stop,0);
21613 @:end_}{\&{end} primitive@>
21614 mp_primitive(mp, "dump",stop,1);
21615 @:dump_}{\&{dump} primitive@>
21617 @ @<Cases of |print_cmd...@>=
21619 if ( m==0 ) mp_print(mp, "end");
21620 else mp_print(mp, "dump");
21624 Let's turn now to statements that are classified as ``commands'' because
21625 of their imperative nature. We'll begin with simple ones, so that it
21626 will be clear how to hook command processing into the |do_statement| routine;
21627 then we'll tackle the tougher commands.
21629 Here's one of the simplest:
21631 @<Cases of |do_statement|...@>=
21632 case random_seed: mp_do_random_seed(mp); break;
21634 @ @<Declare action procedures for use by |do_statement|@>=
21635 void mp_do_random_seed (MP mp) ;
21637 @ @c void mp_do_random_seed (MP mp) {
21639 if ( mp->cur_cmd!=assignment ) {
21640 mp_missing_err(mp, ":=");
21642 help1("Always say `randomseed:=<numeric expression>'.");
21645 mp_get_x_next(mp); mp_scan_expression(mp);
21646 if ( mp->cur_type!=mp_known ) {
21647 exp_err("Unknown value will be ignored");
21648 @.Unknown value...ignored@>
21649 help2("Your expression was too random for me to handle,")
21650 ("so I won't change the random seed just now.");
21651 mp_put_get_flush_error(mp, 0);
21653 @<Initialize the random seed to |cur_exp|@>;
21657 @ @<Initialize the random seed to |cur_exp|@>=
21659 mp_init_randoms(mp, mp->cur_exp);
21660 if ( mp->selector>=log_only && mp->selector<write_file) {
21661 mp->old_setting=mp->selector; mp->selector=log_only;
21662 mp_print_nl(mp, "{randomseed:=");
21663 mp_print_scaled(mp, mp->cur_exp);
21664 mp_print_char(mp, '}');
21665 mp_print_nl(mp, ""); mp->selector=mp->old_setting;
21669 @ And here's another simple one (somewhat different in flavor):
21671 @<Cases of |do_statement|...@>=
21673 mp_print_ln(mp); mp->interaction=mp->cur_mod;
21674 @<Initialize the print |selector| based on |interaction|@>;
21675 if ( mp->log_opened ) mp->selector=mp->selector+2;
21680 mp_primitive(mp, "batchmode",mode_command,mp_batch_mode);
21681 @:mp_batch_mode_}{\&{batchmode} primitive@>
21682 mp_primitive(mp, "nonstopmode",mode_command,mp_nonstop_mode);
21683 @:mp_nonstop_mode_}{\&{nonstopmode} primitive@>
21684 mp_primitive(mp, "scrollmode",mode_command,mp_scroll_mode);
21685 @:mp_scroll_mode_}{\&{scrollmode} primitive@>
21686 mp_primitive(mp, "errorstopmode",mode_command,mp_error_stop_mode);
21687 @:mp_error_stop_mode_}{\&{errorstopmode} primitive@>
21689 @ @<Cases of |print_cmd_mod|...@>=
21692 case mp_batch_mode: mp_print(mp, "batchmode"); break;
21693 case mp_nonstop_mode: mp_print(mp, "nonstopmode"); break;
21694 case mp_scroll_mode: mp_print(mp, "scrollmode"); break;
21695 default: mp_print(mp, "errorstopmode"); break;
21699 @ The `\&{inner}' and `\&{outer}' commands are only slightly harder.
21701 @<Cases of |do_statement|...@>=
21702 case protection_command: mp_do_protection(mp); break;
21705 mp_primitive(mp, "inner",protection_command,0);
21706 @:inner_}{\&{inner} primitive@>
21707 mp_primitive(mp, "outer",protection_command,1);
21708 @:outer_}{\&{outer} primitive@>
21710 @ @<Cases of |print_cmd...@>=
21711 case protection_command:
21712 if ( m==0 ) mp_print(mp, "inner");
21713 else mp_print(mp, "outer");
21716 @ @<Declare action procedures for use by |do_statement|@>=
21717 void mp_do_protection (MP mp) ;
21719 @ @c void mp_do_protection (MP mp) {
21720 int m; /* 0 to unprotect, 1 to protect */
21721 halfword t; /* the |eq_type| before we change it */
21724 mp_get_symbol(mp); t=eq_type(mp->cur_sym);
21726 if ( t>=outer_tag )
21727 eq_type(mp->cur_sym)=t-outer_tag;
21728 } else if ( t<outer_tag ) {
21729 eq_type(mp->cur_sym)=t+outer_tag;
21732 } while (mp->cur_cmd==comma);
21735 @ \MP\ never defines the tokens `\.(' and `\.)' to be primitives, but
21736 plain \MP\ begins with the declaration `\&{delimiters} \.{()}'. Such a
21737 declaration assigns the command code |left_delimiter| to `\.{(}' and
21738 |right_delimiter| to `\.{)}'; the |equiv| of each delimiter is the
21739 hash address of its mate.
21741 @<Cases of |do_statement|...@>=
21742 case delimiters: mp_def_delims(mp); break;
21744 @ @<Declare action procedures for use by |do_statement|@>=
21745 void mp_def_delims (MP mp) ;
21747 @ @c void mp_def_delims (MP mp) {
21748 pointer l_delim,r_delim; /* the new delimiter pair */
21749 mp_get_clear_symbol(mp); l_delim=mp->cur_sym;
21750 mp_get_clear_symbol(mp); r_delim=mp->cur_sym;
21751 eq_type(l_delim)=left_delimiter; equiv(l_delim)=r_delim;
21752 eq_type(r_delim)=right_delimiter; equiv(r_delim)=l_delim;
21756 @ Here is a procedure that is called when \MP\ has reached a point
21757 where some right delimiter is mandatory.
21759 @<Declare the procedure called |check_delimiter|@>=
21760 void mp_check_delimiter (MP mp,pointer l_delim, pointer r_delim) {
21761 if ( mp->cur_cmd==right_delimiter )
21762 if ( mp->cur_mod==l_delim )
21764 if ( mp->cur_sym!=r_delim ) {
21765 mp_missing_err(mp, str(text(r_delim)));
21767 help2("I found no right delimiter to match a left one. So I've")
21768 ("put one in, behind the scenes; this may fix the problem.");
21771 print_err("The token `"); mp_print_text(r_delim);
21772 @.The token...delimiter@>
21773 mp_print(mp, "' is no longer a right delimiter");
21774 help3("Strange: This token has lost its former meaning!")
21775 ("I'll read it as a right delimiter this time;")
21776 ("but watch out, I'll probably miss it later.");
21781 @ The next four commands save or change the values associated with tokens.
21783 @<Cases of |do_statement|...@>=
21786 mp_get_symbol(mp); mp_save_variable(mp, mp->cur_sym); mp_get_x_next(mp);
21787 } while (mp->cur_cmd==comma);
21789 case interim_command: mp_do_interim(mp); break;
21790 case let_command: mp_do_let(mp); break;
21791 case new_internal: mp_do_new_internal(mp); break;
21793 @ @<Declare action procedures for use by |do_statement|@>=
21794 void mp_do_statement (MP mp);
21795 void mp_do_interim (MP mp);
21797 @ @c void mp_do_interim (MP mp) {
21799 if ( mp->cur_cmd!=internal_quantity ) {
21800 print_err("The token `");
21801 @.The token...quantity@>
21802 if ( mp->cur_sym==0 ) mp_print(mp, "(%CAPSULE)");
21803 else mp_print_text(mp->cur_sym);
21804 mp_print(mp, "' isn't an internal quantity");
21805 help1("Something like `tracingonline' should follow `interim'.");
21808 mp_save_internal(mp, mp->cur_mod); mp_back_input(mp);
21810 mp_do_statement(mp);
21813 @ The following procedure is careful not to undefine the left-hand symbol
21814 too soon, lest commands like `{\tt let x=x}' have a surprising effect.
21816 @<Declare action procedures for use by |do_statement|@>=
21817 void mp_do_let (MP mp) ;
21819 @ @c void mp_do_let (MP mp) {
21820 pointer l; /* hash location of the left-hand symbol */
21821 mp_get_symbol(mp); l=mp->cur_sym; mp_get_x_next(mp);
21822 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
21823 mp_missing_err(mp, "=");
21825 help3("You should have said `let symbol = something'.")
21826 ("But don't worry; I'll pretend that an equals sign")
21827 ("was present. The next token I read will be `something'.");
21831 switch (mp->cur_cmd) {
21832 case defined_macro: case secondary_primary_macro:
21833 case tertiary_secondary_macro: case expression_tertiary_macro:
21834 add_mac_ref(mp->cur_mod);
21839 mp_clear_symbol(mp, l,false); eq_type(l)=mp->cur_cmd;
21840 if ( mp->cur_cmd==tag_token ) equiv(l)=null;
21841 else equiv(l)=mp->cur_mod;
21845 @ @<Declarations@>=
21846 void mp_grow_internals (MP mp, int l);
21847 void mp_do_new_internal (MP mp) ;
21850 void mp_grow_internals (MP mp, int l) {
21854 if ( hash_end+l>max_halfword ) {
21855 mp_confusion(mp, "out of memory space"); /* can't be reached */
21857 int_name = xmalloc ((l+1),sizeof(char *));
21858 internal = xmalloc ((l+1),sizeof(scaled));
21859 for (k=0;k<=l; k++ ) {
21860 if (k<=mp->max_internal) {
21861 internal[k]=mp->internal[k];
21862 int_name[k]=mp->int_name[k];
21868 xfree(mp->internal); xfree(mp->int_name);
21869 mp->int_name = int_name;
21870 mp->internal = internal;
21871 mp->max_internal = l;
21875 void mp_do_new_internal (MP mp) {
21877 if ( mp->int_ptr==mp->max_internal ) {
21878 mp_grow_internals(mp, (mp->max_internal + (mp->max_internal>>2)));
21880 mp_get_clear_symbol(mp); incr(mp->int_ptr);
21881 eq_type(mp->cur_sym)=internal_quantity;
21882 equiv(mp->cur_sym)=mp->int_ptr;
21883 if(mp->int_name[mp->int_ptr]!=NULL)
21884 xfree(mp->int_name[mp->int_ptr]);
21885 mp->int_name[mp->int_ptr]=str(text(mp->cur_sym));
21886 mp->internal[mp->int_ptr]=0;
21888 } while (mp->cur_cmd==comma);
21891 @ @<Dealloc variables@>=
21892 for (k=0;k<=mp->max_internal;k++) {
21893 xfree(mp->int_name[k]);
21895 xfree(mp->internal);
21896 xfree(mp->int_name);
21899 @ The various `\&{show}' commands are distinguished by modifier fields
21902 @d show_token_code 0 /* show the meaning of a single token */
21903 @d show_stats_code 1 /* show current memory and string usage */
21904 @d show_code 2 /* show a list of expressions */
21905 @d show_var_code 3 /* show a variable and its descendents */
21906 @d show_dependencies_code 4 /* show dependent variables in terms of independents */
21909 mp_primitive(mp, "showtoken",show_command,show_token_code);
21910 @:show_token_}{\&{showtoken} primitive@>
21911 mp_primitive(mp, "showstats",show_command,show_stats_code);
21912 @:show_stats_}{\&{showstats} primitive@>
21913 mp_primitive(mp, "show",show_command,show_code);
21914 @:show_}{\&{show} primitive@>
21915 mp_primitive(mp, "showvariable",show_command,show_var_code);
21916 @:show_var_}{\&{showvariable} primitive@>
21917 mp_primitive(mp, "showdependencies",show_command,show_dependencies_code);
21918 @:show_dependencies_}{\&{showdependencies} primitive@>
21920 @ @<Cases of |print_cmd...@>=
21923 case show_token_code:mp_print(mp, "showtoken"); break;
21924 case show_stats_code:mp_print(mp, "showstats"); break;
21925 case show_code:mp_print(mp, "show"); break;
21926 case show_var_code:mp_print(mp, "showvariable"); break;
21927 default: mp_print(mp, "showdependencies"); break;
21931 @ @<Cases of |do_statement|...@>=
21932 case show_command:mp_do_show_whatever(mp); break;
21934 @ The value of |cur_mod| controls the |verbosity| in the |print_exp| routine:
21935 if it's |show_code|, complicated structures are abbreviated, otherwise
21938 @<Declare action procedures for use by |do_statement|@>=
21939 void mp_do_show (MP mp) ;
21941 @ @c void mp_do_show (MP mp) {
21943 mp_get_x_next(mp); mp_scan_expression(mp);
21944 mp_print_nl(mp, ">> ");
21946 mp_print_exp(mp, null,2); mp_flush_cur_exp(mp, 0);
21947 } while (mp->cur_cmd==comma);
21950 @ @<Declare action procedures for use by |do_statement|@>=
21951 void mp_disp_token (MP mp) ;
21953 @ @c void mp_disp_token (MP mp) {
21954 mp_print_nl(mp, "> ");
21956 if ( mp->cur_sym==0 ) {
21957 @<Show a numeric or string or capsule token@>;
21959 mp_print_text(mp->cur_sym); mp_print_char(mp, '=');
21960 if ( eq_type(mp->cur_sym)>=outer_tag ) mp_print(mp, "(outer) ");
21961 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
21962 if ( mp->cur_cmd==defined_macro ) {
21963 mp_print_ln(mp); mp_show_macro(mp, mp->cur_mod,null,100000);
21964 } /* this avoids recursion between |show_macro| and |print_cmd_mod| */
21969 @ @<Show a numeric or string or capsule token@>=
21971 if ( mp->cur_cmd==numeric_token ) {
21972 mp_print_scaled(mp, mp->cur_mod);
21973 } else if ( mp->cur_cmd==capsule_token ) {
21974 mp->g_pointer=mp->cur_mod; mp_print_capsule(mp);
21976 mp_print_char(mp, '"');
21977 mp_print_str(mp, mp->cur_mod); mp_print_char(mp, '"');
21978 delete_str_ref(mp->cur_mod);
21982 @ The following cases of |print_cmd_mod| might arise in connection
21983 with |disp_token|, although they don't correspond to any
21986 @<Cases of |print_cmd_...@>=
21987 case left_delimiter:
21988 case right_delimiter:
21989 if ( c==left_delimiter ) mp_print(mp, "left");
21990 else mp_print(mp, "right");
21991 mp_print(mp, " delimiter that matches ");
21995 if ( m==null ) mp_print(mp, "tag");
21996 else mp_print(mp, "variable");
21998 case defined_macro:
21999 mp_print(mp, "macro:");
22001 case secondary_primary_macro:
22002 case tertiary_secondary_macro:
22003 case expression_tertiary_macro:
22004 mp_print_cmd_mod(mp, macro_def,c);
22005 mp_print(mp, "'d macro:");
22006 mp_print_ln(mp); mp_show_token_list(mp, link(link(m)),null,1000,0);
22009 mp_print(mp, "[repeat the loop]");
22011 case internal_quantity:
22012 mp_print(mp, mp->int_name[m]);
22015 @ @<Declare action procedures for use by |do_statement|@>=
22016 void mp_do_show_token (MP mp) ;
22018 @ @c void mp_do_show_token (MP mp) {
22020 get_t_next; mp_disp_token(mp);
22022 } while (mp->cur_cmd==comma);
22025 @ @<Declare action procedures for use by |do_statement|@>=
22026 void mp_do_show_stats (MP mp) ;
22028 @ @c void mp_do_show_stats (MP mp) {
22029 mp_print_nl(mp, "Memory usage ");
22030 @.Memory usage...@>
22031 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used);
22033 mp_print(mp, "unknown");
22034 mp_print(mp, " ("); mp_print_int(mp, mp->hi_mem_min-mp->lo_mem_max-1);
22035 mp_print(mp, " still untouched)"); mp_print_ln(mp);
22036 mp_print_nl(mp, "String usage ");
22037 mp_print_int(mp, mp->strs_in_use-mp->init_str_use);
22038 mp_print_char(mp, '&'); mp_print_int(mp, mp->pool_in_use-mp->init_pool_ptr);
22040 mp_print(mp, "unknown");
22041 mp_print(mp, " (");
22042 mp_print_int(mp, mp->max_strings-1-mp->strs_used_up); mp_print_char(mp, '&');
22043 mp_print_int(mp, mp->pool_size-mp->pool_ptr);
22044 mp_print(mp, " now untouched)"); mp_print_ln(mp);
22048 @ Here's a recursive procedure that gives an abbreviated account
22049 of a variable, for use by |do_show_var|.
22051 @<Declare action procedures for use by |do_statement|@>=
22052 void mp_disp_var (MP mp,pointer p) ;
22054 @ @c void mp_disp_var (MP mp,pointer p) {
22055 pointer q; /* traverses attributes and subscripts */
22056 int n; /* amount of macro text to show */
22057 if ( type(p)==mp_structured ) {
22058 @<Descend the structure@>;
22059 } else if ( type(p)>=mp_unsuffixed_macro ) {
22060 @<Display a variable macro@>;
22061 } else if ( type(p)!=undefined ){
22062 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22063 mp_print_char(mp, '=');
22064 mp_print_exp(mp, p,0);
22068 @ @<Descend the structure@>=
22071 do { mp_disp_var(mp, q); q=link(q); } while (q!=end_attr);
22073 while ( name_type(q)==mp_subscr ) {
22074 mp_disp_var(mp, q); q=link(q);
22078 @ @<Display a variable macro@>=
22080 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22081 if ( type(p)>mp_unsuffixed_macro )
22082 mp_print(mp, "@@#"); /* |suffixed_macro| */
22083 mp_print(mp, "=macro:");
22084 if ( (int)mp->file_offset>=mp->max_print_line-20 ) n=5;
22085 else n=mp->max_print_line-mp->file_offset-15;
22086 mp_show_macro(mp, value(p),null,n);
22089 @ @<Declare action procedures for use by |do_statement|@>=
22090 void mp_do_show_var (MP mp) ;
22092 @ @c void mp_do_show_var (MP mp) {
22095 if ( mp->cur_sym>0 ) if ( mp->cur_sym<=hash_end )
22096 if ( mp->cur_cmd==tag_token ) if ( mp->cur_mod!=null ) {
22097 mp_disp_var(mp, mp->cur_mod); goto DONE;
22102 } while (mp->cur_cmd==comma);
22105 @ @<Declare action procedures for use by |do_statement|@>=
22106 void mp_do_show_dependencies (MP mp) ;
22108 @ @c void mp_do_show_dependencies (MP mp) {
22109 pointer p; /* link that runs through all dependencies */
22111 while ( p!=dep_head ) {
22112 if ( mp_interesting(mp, p) ) {
22113 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22114 if ( type(p)==mp_dependent ) mp_print_char(mp, '=');
22115 else mp_print(mp, " = "); /* extra spaces imply proto-dependency */
22116 mp_print_dependency(mp, dep_list(p),type(p));
22119 while ( info(p)!=null ) p=link(p);
22125 @ Finally we are ready for the procedure that governs all of the
22128 @<Declare action procedures for use by |do_statement|@>=
22129 void mp_do_show_whatever (MP mp) ;
22131 @ @c void mp_do_show_whatever (MP mp) {
22132 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
22133 switch (mp->cur_mod) {
22134 case show_token_code:mp_do_show_token(mp); break;
22135 case show_stats_code:mp_do_show_stats(mp); break;
22136 case show_code:mp_do_show(mp); break;
22137 case show_var_code:mp_do_show_var(mp); break;
22138 case show_dependencies_code:mp_do_show_dependencies(mp); break;
22139 } /* there are no other cases */
22140 if ( mp->internal[showstopping]>0 ){
22143 if ( mp->interaction<mp_error_stop_mode ) {
22144 help0; decr(mp->error_count);
22146 help1("This isn't an error message; I'm just showing something.");
22148 if ( mp->cur_cmd==semicolon ) mp_error(mp);
22149 else mp_put_get_error(mp);
22153 @ The `\&{addto}' command needs the following additional primitives:
22155 @d double_path_code 0 /* command modifier for `\&{doublepath}' */
22156 @d contour_code 1 /* command modifier for `\&{contour}' */
22157 @d also_code 2 /* command modifier for `\&{also}' */
22159 @ Pre and postscripts need two new identifiers:
22161 @d with_pre_script 11
22162 @d with_post_script 13
22165 mp_primitive(mp, "doublepath",thing_to_add,double_path_code);
22166 @:double_path_}{\&{doublepath} primitive@>
22167 mp_primitive(mp, "contour",thing_to_add,contour_code);
22168 @:contour_}{\&{contour} primitive@>
22169 mp_primitive(mp, "also",thing_to_add,also_code);
22170 @:also_}{\&{also} primitive@>
22171 mp_primitive(mp, "withpen",with_option,mp_pen_type);
22172 @:with_pen_}{\&{withpen} primitive@>
22173 mp_primitive(mp, "dashed",with_option,mp_picture_type);
22174 @:dashed_}{\&{dashed} primitive@>
22175 mp_primitive(mp, "withprescript",with_option,with_pre_script);
22176 @:with_pre_script_}{\&{withprescript} primitive@>
22177 mp_primitive(mp, "withpostscript",with_option,with_post_script);
22178 @:with_post_script_}{\&{withpostscript} primitive@>
22179 mp_primitive(mp, "withoutcolor",with_option,no_model);
22180 @:with_color_}{\&{withoutcolor} primitive@>
22181 mp_primitive(mp, "withgreyscale",with_option,grey_model);
22182 @:with_color_}{\&{withgreyscale} primitive@>
22183 mp_primitive(mp, "withcolor",with_option,uninitialized_model);
22184 @:with_color_}{\&{withcolor} primitive@>
22185 /* \&{withrgbcolor} is an alias for \&{withcolor} */
22186 mp_primitive(mp, "withrgbcolor",with_option,rgb_model);
22187 @:with_color_}{\&{withrgbcolor} primitive@>
22188 mp_primitive(mp, "withcmykcolor",with_option,cmyk_model);
22189 @:with_color_}{\&{withcmykcolor} primitive@>
22191 @ @<Cases of |print_cmd...@>=
22193 if ( m==contour_code ) mp_print(mp, "contour");
22194 else if ( m==double_path_code ) mp_print(mp, "doublepath");
22195 else mp_print(mp, "also");
22198 if ( m==mp_pen_type ) mp_print(mp, "withpen");
22199 else if ( m==with_pre_script ) mp_print(mp, "withprescript");
22200 else if ( m==with_post_script ) mp_print(mp, "withpostscript");
22201 else if ( m==no_model ) mp_print(mp, "withoutcolor");
22202 else if ( m==rgb_model ) mp_print(mp, "withrgbcolor");
22203 else if ( m==uninitialized_model ) mp_print(mp, "withcolor");
22204 else if ( m==cmyk_model ) mp_print(mp, "withcmykcolor");
22205 else if ( m==grey_model ) mp_print(mp, "withgreyscale");
22206 else mp_print(mp, "dashed");
22209 @ The |scan_with_list| procedure parses a $\langle$with list$\rangle$ and
22210 updates the list of graphical objects starting at |p|. Each $\langle$with
22211 clause$\rangle$ updates all graphical objects whose |type| is compatible.
22212 Other objects are ignored.
22214 @<Declare action procedures for use by |do_statement|@>=
22215 void mp_scan_with_list (MP mp,pointer p) ;
22217 @ @c void mp_scan_with_list (MP mp,pointer p) {
22218 small_number t; /* |cur_mod| of the |with_option| (should match |cur_type|) */
22219 pointer q; /* for list manipulation */
22220 int old_setting; /* saved |selector| setting */
22221 pointer k; /* for finding the near-last item in a list */
22222 str_number s; /* for string cleanup after combining */
22223 pointer cp,pp,dp,ap,bp;
22224 /* objects being updated; |void| initially; |null| to suppress update */
22225 cp=diov; pp=diov; dp=diov; ap=diov; bp=diov;
22227 while ( mp->cur_cmd==with_option ){
22230 if ( t!=no_model ) mp_scan_expression(mp);
22231 if (((t==with_pre_script)&&(mp->cur_type!=mp_string_type))||
22232 ((t==with_post_script)&&(mp->cur_type!=mp_string_type))||
22233 ((t==uninitialized_model)&&
22234 ((mp->cur_type!=mp_cmykcolor_type)&&(mp->cur_type!=mp_color_type)
22235 &&(mp->cur_type!=mp_known)&&(mp->cur_type!=mp_boolean_type)))||
22236 ((t==cmyk_model)&&(mp->cur_type!=mp_cmykcolor_type))||
22237 ((t==rgb_model)&&(mp->cur_type!=mp_color_type))||
22238 ((t==grey_model)&&(mp->cur_type!=mp_known))||
22239 ((t==mp_pen_type)&&(mp->cur_type!=t))||
22240 ((t==mp_picture_type)&&(mp->cur_type!=t)) ) {
22241 @<Complain about improper type@>;
22242 } else if ( t==uninitialized_model ) {
22243 if ( cp==diov ) @<Make |cp| a colored object in object list~|p|@>;
22245 @<Transfer a color from the current expression to object~|cp|@>;
22246 mp_flush_cur_exp(mp, 0);
22247 } else if ( t==rgb_model ) {
22248 if ( cp==diov ) @<Make |cp| a colored object in object list~|p|@>;
22250 @<Transfer a rgbcolor from the current expression to object~|cp|@>;
22251 mp_flush_cur_exp(mp, 0);
22252 } else if ( t==cmyk_model ) {
22253 if ( cp==diov ) @<Make |cp| a colored object in object list~|p|@>;
22255 @<Transfer a cmykcolor from the current expression to object~|cp|@>;
22256 mp_flush_cur_exp(mp, 0);
22257 } else if ( t==grey_model ) {
22258 if ( cp==diov ) @<Make |cp| a colored object in object list~|p|@>;
22260 @<Transfer a greyscale from the current expression to object~|cp|@>;
22261 mp_flush_cur_exp(mp, 0);
22262 } else if ( t==no_model ) {
22263 if ( cp==diov ) @<Make |cp| a colored object in object list~|p|@>;
22265 @<Transfer a noncolor from the current expression to object~|cp|@>;
22266 } else if ( t==mp_pen_type ) {
22267 if ( pp==diov ) @<Make |pp| an object in list~|p| that needs a pen@>;
22269 if ( pen_p(pp)!=null ) mp_toss_knot_list(mp, pen_p(pp));
22270 pen_p(pp)=mp->cur_exp; mp->cur_type=mp_vacuous;
22272 } else if ( t==with_pre_script ) {
22275 while ( (ap!=null)&&(! has_color(ap)) )
22278 if ( pre_script(ap)!=null ) { /* build a new,combined string */
22280 old_setting=mp->selector;
22281 mp->selector=new_string;
22282 str_room(length(pre_script(ap))+length(mp->cur_exp)+2);
22283 mp_print_str(mp, mp->cur_exp);
22284 append_char(13); /* a forced \ps\ newline */
22285 mp_print_str(mp, pre_script(ap));
22286 pre_script(ap)=mp_make_string(mp);
22288 mp->selector=old_setting;
22290 pre_script(ap)=mp->cur_exp;
22292 mp->cur_type=mp_vacuous;
22294 } else if ( t==with_post_script ) {
22298 while ( link(k)!=null ) {
22300 if ( has_color(k) ) bp=k;
22303 if ( post_script(bp)!=null ) {
22305 old_setting=mp->selector;
22306 mp->selector=new_string;
22307 str_room(length(post_script(bp))+length(mp->cur_exp)+2);
22308 mp_print_str(mp, post_script(bp));
22309 append_char(13); /* a forced \ps\ newline */
22310 mp_print_str(mp, mp->cur_exp);
22311 post_script(bp)=mp_make_string(mp);
22313 mp->selector=old_setting;
22315 post_script(bp)=mp->cur_exp;
22317 mp->cur_type=mp_vacuous;
22321 @<Make |dp| a stroked node in list~|p|@>;
22323 if ( dash_p(dp)!=null ) delete_edge_ref(dash_p(dp));
22324 dash_p(dp)=mp_make_dashes(mp, mp->cur_exp);
22325 dash_scale(dp)=unity;
22326 mp->cur_type=mp_vacuous;
22330 @<Copy the information from objects |cp|, |pp|, and |dp| into the rest
22334 @ @<Complain about improper type@>=
22335 { exp_err("Improper type");
22337 help2("Next time say `withpen <known pen expression>';")
22338 ("I'll ignore the bad `with' clause and look for another.");
22339 if ( t==with_pre_script )
22340 mp->help_line[1]="Next time say `withprescript <known string expression>';";
22341 else if ( t==with_post_script )
22342 mp->help_line[1]="Next time say `withpostscript <known string expression>';";
22343 else if ( t==mp_picture_type )
22344 mp->help_line[1]="Next time say `dashed <known picture expression>';";
22345 else if ( t==uninitialized_model )
22346 mp->help_line[1]="Next time say `withcolor <known color expression>';";
22347 else if ( t==rgb_model )
22348 mp->help_line[1]="Next time say `withrgbcolor <known color expression>';";
22349 else if ( t==cmyk_model )
22350 mp->help_line[1]="Next time say `withcmykcolor <known cmykcolor expression>';";
22351 else if ( t==grey_model )
22352 mp->help_line[1]="Next time say `withgreyscale <known numeric expression>';";;
22353 mp_put_get_flush_error(mp, 0);
22356 @ Forcing the color to be between |0| and |unity| here guarantees that no
22357 picture will ever contain a color outside the legal range for \ps\ graphics.
22359 @<Transfer a color from the current expression to object~|cp|@>=
22360 { if ( mp->cur_type==mp_color_type )
22361 @<Transfer a rgbcolor from the current expression to object~|cp|@>
22362 else if ( mp->cur_type==mp_cmykcolor_type )
22363 @<Transfer a cmykcolor from the current expression to object~|cp|@>
22364 else if ( mp->cur_type==mp_known )
22365 @<Transfer a greyscale from the current expression to object~|cp|@>
22366 else if ( mp->cur_exp==false_code )
22367 @<Transfer a noncolor from the current expression to object~|cp|@>;
22370 @ @<Transfer a rgbcolor from the current expression to object~|cp|@>=
22371 { q=value(mp->cur_exp);
22376 red_val(cp)=value(red_part_loc(q));
22377 green_val(cp)=value(green_part_loc(q));
22378 blue_val(cp)=value(blue_part_loc(q));
22379 color_model(cp)=rgb_model;
22380 if ( red_val(cp)<0 ) red_val(cp)=0;
22381 if ( green_val(cp)<0 ) green_val(cp)=0;
22382 if ( blue_val(cp)<0 ) blue_val(cp)=0;
22383 if ( red_val(cp)>unity ) red_val(cp)=unity;
22384 if ( green_val(cp)>unity ) green_val(cp)=unity;
22385 if ( blue_val(cp)>unity ) blue_val(cp)=unity;
22388 @ @<Transfer a cmykcolor from the current expression to object~|cp|@>=
22389 { q=value(mp->cur_exp);
22390 cyan_val(cp)=value(cyan_part_loc(q));
22391 magenta_val(cp)=value(magenta_part_loc(q));
22392 yellow_val(cp)=value(yellow_part_loc(q));
22393 black_val(cp)=value(black_part_loc(q));
22394 color_model(cp)=cmyk_model;
22395 if ( cyan_val(cp)<0 ) cyan_val(cp)=0;
22396 if ( magenta_val(cp)<0 ) magenta_val(cp)=0;
22397 if ( yellow_val(cp)<0 ) yellow_val(cp)=0;
22398 if ( black_val(cp)<0 ) black_val(cp)=0;
22399 if ( cyan_val(cp)>unity ) cyan_val(cp)=unity;
22400 if ( magenta_val(cp)>unity ) magenta_val(cp)=unity;
22401 if ( yellow_val(cp)>unity ) yellow_val(cp)=unity;
22402 if ( black_val(cp)>unity ) black_val(cp)=unity;
22405 @ @<Transfer a greyscale from the current expression to object~|cp|@>=
22412 color_model(cp)=grey_model;
22413 if ( grey_val(cp)<0 ) grey_val(cp)=0;
22414 if ( grey_val(cp)>unity ) grey_val(cp)=unity;
22417 @ @<Transfer a noncolor from the current expression to object~|cp|@>=
22424 color_model(cp)=no_model;
22427 @ @<Make |cp| a colored object in object list~|p|@>=
22429 while ( cp!=null ){
22430 if ( has_color(cp) ) break;
22435 @ @<Make |pp| an object in list~|p| that needs a pen@>=
22437 while ( pp!=null ) {
22438 if ( has_pen(pp) ) break;
22443 @ @<Make |dp| a stroked node in list~|p|@>=
22445 while ( dp!=null ) {
22446 if ( type(dp)==stroked_code ) break;
22451 @ @<Copy the information from objects |cp|, |pp|, and |dp| into...@>=
22452 @<Copy |cp|'s color into the colored objects linked to~|cp|@>;
22454 @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>;
22455 if ( dp>diov ) @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>
22457 @ @<Copy |cp|'s color into the colored objects linked to~|cp|@>=
22459 while ( q!=null ) {
22460 if ( has_color(q) ) {
22461 red_val(q)=red_val(cp);
22462 green_val(q)=green_val(cp);
22463 blue_val(q)=blue_val(cp);
22464 black_val(q)=black_val(cp);
22465 color_model(q)=color_model(cp);
22471 @ @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>=
22473 while ( q!=null ) {
22474 if ( has_pen(q) ) {
22475 if ( pen_p(q)!=null ) mp_toss_knot_list(mp, pen_p(q));
22476 pen_p(q)=copy_pen(pen_p(pp));
22482 @ @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>=
22484 while ( q!=null ) {
22485 if ( type(q)==stroked_code ) {
22486 if ( dash_p(q)!=null ) delete_edge_ref(dash_p(q));
22487 dash_p(q)=dash_p(dp);
22488 dash_scale(q)=unity;
22489 if ( dash_p(q)!=null ) add_edge_ref(dash_p(q));
22495 @ One of the things we need to do when we've parsed an \&{addto} or
22496 similar command is find the header of a supposed \&{picture} variable, given
22497 a token list for that variable. Since the edge structure is about to be
22498 updated, we use |private_edges| to make sure that this is possible.
22500 @<Declare action procedures for use by |do_statement|@>=
22501 pointer mp_find_edges_var (MP mp, pointer t) ;
22503 @ @c pointer mp_find_edges_var (MP mp, pointer t) {
22505 pointer cur_edges; /* the return value */
22506 p=mp_find_variable(mp, t); cur_edges=null;
22508 mp_obliterated(mp, t); mp_put_get_error(mp);
22509 } else if ( type(p)!=mp_picture_type ) {
22510 print_err("Variable "); mp_show_token_list(mp, t,null,1000,0);
22511 @.Variable x is the wrong type@>
22512 mp_print(mp, " is the wrong type (");
22513 mp_print_type(mp, type(p)); mp_print_char(mp, ')');
22514 help2("I was looking for a \"known\" picture variable.")
22515 ("So I'll not change anything just now.");
22516 mp_put_get_error(mp);
22518 value(p)=mp_private_edges(mp, value(p));
22519 cur_edges=value(p);
22521 mp_flush_node_list(mp, t);
22525 @ @<Cases of |do_statement|...@>=
22526 case add_to_command: mp_do_add_to(mp); break;
22527 case bounds_command:mp_do_bounds(mp); break;
22530 mp_primitive(mp, "clip",bounds_command,mp_start_clip_code);
22531 @:clip_}{\&{clip} primitive@>
22532 mp_primitive(mp, "setbounds",bounds_command,mp_start_bounds_code);
22533 @:set_bounds_}{\&{setbounds} primitive@>
22535 @ @<Cases of |print_cmd...@>=
22536 case bounds_command:
22537 if ( m==mp_start_clip_code ) mp_print(mp, "clip");
22538 else mp_print(mp, "setbounds");
22541 @ The following function parses the beginning of an \&{addto} or \&{clip}
22542 command: it expects a variable name followed by a token with |cur_cmd=sep|
22543 and then an expression. The function returns the token list for the variable
22544 and stores the command modifier for the separator token in the global variable
22545 |last_add_type|. We must be careful because this variable might get overwritten
22546 any time we call |get_x_next|.
22549 quarterword last_add_type;
22550 /* command modifier that identifies the last \&{addto} command */
22552 @ @<Declare action procedures for use by |do_statement|@>=
22553 pointer mp_start_draw_cmd (MP mp,quarterword sep) ;
22555 @ @c pointer mp_start_draw_cmd (MP mp,quarterword sep) {
22556 pointer lhv; /* variable to add to left */
22557 quarterword add_type=0; /* value to be returned in |last_add_type| */
22559 mp_get_x_next(mp); mp->var_flag=sep; mp_scan_primary(mp);
22560 if ( mp->cur_type!=mp_token_list ) {
22561 @<Abandon edges command because there's no variable@>;
22563 lhv=mp->cur_exp; add_type=mp->cur_mod;
22564 mp->cur_type=mp_vacuous; mp_get_x_next(mp); mp_scan_expression(mp);
22566 mp->last_add_type=add_type;
22570 @ @<Abandon edges command because there's no variable@>=
22571 { exp_err("Not a suitable variable");
22572 @.Not a suitable variable@>
22573 help4("At this point I needed to see the name of a picture variable.")
22574 ("(Or perhaps you have indeed presented me with one; I might")
22575 ("have missed it, if it wasn't followed by the proper token.)")
22576 ("So I'll not change anything just now.");
22577 mp_put_get_flush_error(mp, 0);
22580 @ Here is an example of how to use |start_draw_cmd|.
22582 @<Declare action procedures for use by |do_statement|@>=
22583 void mp_do_bounds (MP mp) ;
22585 @ @c void mp_do_bounds (MP mp) {
22586 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22587 pointer p; /* for list manipulation */
22588 integer m; /* initial value of |cur_mod| */
22590 lhv=mp_start_draw_cmd(mp, to_token);
22592 lhe=mp_find_edges_var(mp, lhv);
22594 mp_flush_cur_exp(mp, 0);
22595 } else if ( mp->cur_type!=mp_path_type ) {
22596 exp_err("Improper `clip'");
22597 @.Improper `addto'@>
22598 help2("This expression should have specified a known path.")
22599 ("So I'll not change anything just now.");
22600 mp_put_get_flush_error(mp, 0);
22601 } else if ( left_type(mp->cur_exp)==endpoint ) {
22602 @<Complain about a non-cycle@>;
22604 @<Make |cur_exp| into a \&{setbounds} or clipping path and add it to |lhe|@>;
22609 @ @<Complain about a non-cycle@>=
22610 { print_err("Not a cycle");
22612 help2("That contour should have ended with `..cycle' or `&cycle'.")
22613 ("So I'll not change anything just now."); mp_put_get_error(mp);
22616 @ @<Make |cur_exp| into a \&{setbounds} or clipping path and add...@>=
22617 { p=mp_new_bounds_node(mp, mp->cur_exp,m);
22618 link(p)=link(dummy_loc(lhe));
22619 link(dummy_loc(lhe))=p;
22620 if ( obj_tail(lhe)==dummy_loc(lhe) ) obj_tail(lhe)=p;
22621 p=mp_get_node(mp, mp->gr_object_size[stop_type(m)]);
22622 type(p)=stop_type(m);
22623 link(obj_tail(lhe))=p;
22625 mp_init_bbox(mp, lhe);
22628 @ The |do_add_to| procedure is a little like |do_clip| but there are a lot more
22629 cases to deal with.
22631 @<Declare action procedures for use by |do_statement|@>=
22632 void mp_do_add_to (MP mp) ;
22634 @ @c void mp_do_add_to (MP mp) {
22635 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22636 pointer p; /* the graphical object or list for |scan_with_list| to update */
22637 pointer e; /* an edge structure to be merged */
22638 quarterword add_type; /* |also_code|, |contour_code|, or |double_path_code| */
22639 lhv=mp_start_draw_cmd(mp, thing_to_add); add_type=mp->last_add_type;
22641 if ( add_type==also_code ) {
22642 @<Make sure the current expression is a suitable picture and set |e| and |p|
22645 @<Create a graphical object |p| based on |add_type| and the current
22648 mp_scan_with_list(mp, p);
22649 @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>;
22653 @ Setting |p:=null| causes the $\langle$with list$\rangle$ to be ignored;
22654 setting |e:=null| prevents anything from being added to |lhe|.
22656 @ @<Make sure the current expression is a suitable picture and set |e|...@>=
22659 if ( mp->cur_type!=mp_picture_type ) {
22660 exp_err("Improper `addto'");
22661 @.Improper `addto'@>
22662 help2("This expression should have specified a known picture.")
22663 ("So I'll not change anything just now."); mp_put_get_flush_error(mp, 0);
22665 e=mp_private_edges(mp, mp->cur_exp); mp->cur_type=mp_vacuous;
22666 p=link(dummy_loc(e));
22670 @ In this case |add_type<>also_code| so setting |p:=null| suppresses future
22671 attempts to add to the edge structure.
22673 @<Create a graphical object |p| based on |add_type| and the current...@>=
22675 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
22676 if ( mp->cur_type!=mp_path_type ) {
22677 exp_err("Improper `addto'");
22678 @.Improper `addto'@>
22679 help2("This expression should have specified a known path.")
22680 ("So I'll not change anything just now.");
22681 mp_put_get_flush_error(mp, 0);
22682 } else if ( add_type==contour_code ) {
22683 if ( left_type(mp->cur_exp)==endpoint ) {
22684 @<Complain about a non-cycle@>;
22686 p=mp_new_fill_node(mp, mp->cur_exp);
22687 mp->cur_type=mp_vacuous;
22690 p=mp_new_stroked_node(mp, mp->cur_exp);
22691 mp->cur_type=mp_vacuous;
22695 @ @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>=
22696 lhe=mp_find_edges_var(mp, lhv);
22698 if ( (e==null)&&(p!=null) ) e=mp_toss_gr_object(mp, p);
22699 if ( e!=null ) delete_edge_ref(e);
22700 } else if ( add_type==also_code ) {
22702 @<Merge |e| into |lhe| and delete |e|@>;
22706 } else if ( p!=null ) {
22707 link(obj_tail(lhe))=p;
22709 if ( add_type==double_path_code )
22710 if ( pen_p(p)==null )
22711 pen_p(p)=mp_get_pen_circle(mp, 0);
22714 @ @<Merge |e| into |lhe| and delete |e|@>=
22715 { if ( link(dummy_loc(e))!=null ) {
22716 link(obj_tail(lhe))=link(dummy_loc(e));
22717 obj_tail(lhe)=obj_tail(e);
22718 obj_tail(e)=dummy_loc(e);
22719 link(dummy_loc(e))=null;
22720 mp_flush_dash_list(mp, lhe);
22722 mp_toss_edges(mp, e);
22725 @ @<Cases of |do_statement|...@>=
22726 case ship_out_command: mp_do_ship_out(mp); break;
22728 @ @<Declare action procedures for use by |do_statement|@>=
22729 @<Declare the function called |tfm_check|@>;
22730 @<Declare the \ps\ output procedures@>;
22731 void mp_do_ship_out (MP mp) ;
22733 @ @c void mp_do_ship_out (MP mp) {
22734 integer c; /* the character code */
22735 mp_get_x_next(mp); mp_scan_expression(mp);
22736 if ( mp->cur_type!=mp_picture_type ) {
22737 @<Complain that it's not a known picture@>;
22739 c=mp_round_unscaled(mp, mp->internal[char_code]) % 256;
22740 if ( c<0 ) c=c+256;
22741 @<Store the width information for character code~|c|@>;
22742 mp_ship_out(mp, mp->cur_exp);
22743 mp_flush_cur_exp(mp, 0);
22747 @ @<Complain that it's not a known picture@>=
22749 exp_err("Not a known picture");
22750 help1("I can only output known pictures.");
22751 mp_put_get_flush_error(mp, 0);
22754 @ The \&{everyjob} command simply assigns a nonzero value to the global variable
22757 @<Cases of |do_statement|...@>=
22758 case every_job_command:
22759 mp_get_symbol(mp); mp->start_sym=mp->cur_sym; mp_get_x_next(mp);
22763 halfword start_sym; /* a symbolic token to insert at beginning of job */
22768 @ Finally, we have only the ``message'' commands remaining.
22771 @d err_message_code 1
22773 @d filename_template_code 3
22774 @d print_with_leading_zeroes(A) g = mp->pool_ptr;
22775 mp_print_int(mp, (A)); g = mp->pool_ptr-g;
22777 mp->pool_ptr = mp->pool_ptr - g;
22779 mp_print_char(mp, '0');
22782 mp_print_int(mp, (A));
22787 mp_primitive(mp, "message",message_command,message_code);
22788 @:message_}{\&{message} primitive@>
22789 mp_primitive(mp, "errmessage",message_command,err_message_code);
22790 @:err_message_}{\&{errmessage} primitive@>
22791 mp_primitive(mp, "errhelp",message_command,err_help_code);
22792 @:err_help_}{\&{errhelp} primitive@>
22793 mp_primitive(mp, "filenametemplate",message_command,filename_template_code);
22794 @:filename_template_}{\&{filenametemplate} primitive@>
22796 @ @<Cases of |print_cmd...@>=
22797 case message_command:
22798 if ( m<err_message_code ) mp_print(mp, "message");
22799 else if ( m==err_message_code ) mp_print(mp, "errmessage");
22800 else if ( m==filename_template_code ) mp_print(mp, "filenametemplate");
22801 else mp_print(mp, "errhelp");
22804 @ @<Cases of |do_statement|...@>=
22805 case message_command: mp_do_message(mp); break;
22807 @ @<Declare action procedures for use by |do_statement|@>=
22808 @<Declare a procedure called |no_string_err|@>;
22809 void mp_do_message (MP mp) ;
22812 @c void mp_do_message (MP mp) {
22813 int m; /* the type of message */
22814 m=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
22815 if ( mp->cur_type!=mp_string_type )
22816 mp_no_string_err(mp, "A message should be a known string expression.");
22820 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp);
22822 case err_message_code:
22823 @<Print string |cur_exp| as an error message@>;
22825 case err_help_code:
22826 @<Save string |cur_exp| as the |err_help|@>;
22828 case filename_template_code:
22829 @<Save the filename template@>;
22831 } /* there are no other cases */
22833 mp_flush_cur_exp(mp, 0);
22836 @ @<Declare a procedure called |no_string_err|@>=
22837 void mp_no_string_err (MP mp,char *s) {
22838 exp_err("Not a string");
22841 mp_put_get_error(mp);
22844 @ The global variable |err_help| is zero when the user has most recently
22845 given an empty help string, or if none has ever been given.
22847 @<Save string |cur_exp| as the |err_help|@>=
22849 if ( mp->err_help!=0 ) delete_str_ref(mp->err_help);
22850 if ( length(mp->cur_exp)==0 ) mp->err_help=0;
22851 else { mp->err_help=mp->cur_exp; add_str_ref(mp->err_help); }
22854 @ If \&{errmessage} occurs often in |mp_scroll_mode|, without user-defined
22855 \&{errhelp}, we don't want to give a long help message each time. So we
22856 give a verbose explanation only once.
22859 boolean long_help_seen; /* has the long \.{\\errmessage} help been used? */
22861 @ @<Set init...@>=mp->long_help_seen=false;
22863 @ @<Print string |cur_exp| as an error message@>=
22865 print_err(""); mp_print_str(mp, mp->cur_exp);
22866 if ( mp->err_help!=0 ) {
22867 mp->use_err_help=true;
22868 } else if ( mp->long_help_seen ) {
22869 help1("(That was another `errmessage'.)") ;
22871 if ( mp->interaction<mp_error_stop_mode ) mp->long_help_seen=true;
22872 help4("This error message was generated by an `errmessage'")
22873 ("command, so I can\'t give any explicit help.")
22874 ("Pretend that you're Miss Marple: Examine all clues,")
22876 ("and deduce the truth by inspired guesses.");
22878 mp_put_get_error(mp); mp->use_err_help=false;
22881 @ @<Cases of |do_statement|...@>=
22882 case write_command: mp_do_write(mp); break;
22884 @ @<Declare action procedures for use by |do_statement|@>=
22885 void mp_do_write (MP mp) ;
22887 @ @c void mp_do_write (MP mp) {
22888 str_number t; /* the line of text to be written */
22889 write_index n,n0; /* for searching |wr_fname| and |wr_file| arrays */
22890 int old_setting; /* for saving |selector| during output */
22892 mp_scan_expression(mp);
22893 if ( mp->cur_type!=mp_string_type ) {
22894 mp_no_string_err(mp, "The text to be written should be a known string expression");
22895 } else if ( mp->cur_cmd!=to_token ) {
22896 print_err("Missing `to' clause");
22897 help1("A write command should end with `to <filename>'");
22898 mp_put_get_error(mp);
22900 t=mp->cur_exp; mp->cur_type=mp_vacuous;
22902 mp_scan_expression(mp);
22903 if ( mp->cur_type!=mp_string_type )
22904 mp_no_string_err(mp, "I can\'t write to that file name. It isn't a known string");
22906 @<Write |t| to the file named by |cur_exp|@>;
22910 mp_flush_cur_exp(mp, 0);
22913 @ @<Write |t| to the file named by |cur_exp|@>=
22915 @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if
22916 |cur_exp| must be inserted@>;
22917 if ( mp_str_vs_str(mp, t,mp->eof_line)==0 ) {
22918 @<Record the end of file on |wr_file[n]|@>;
22920 old_setting=mp->selector;
22921 mp->selector=n+write_file;
22922 mp_print_str(mp, t); mp_print_ln(mp);
22923 mp->selector = old_setting;
22927 @ @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if...@>=
22929 char *fn = str(mp->cur_exp);
22931 n0=mp->write_files;
22932 while (mp_xstrcmp(fn,mp->wr_fname[n])!=0) {
22933 if ( n==0 ) { /* bottom reached */
22934 if ( n0==mp->write_files ) {
22935 if ( mp->write_files<mp->max_write_files ) {
22936 incr(mp->write_files);
22941 l = mp->max_write_files + (mp->max_write_files>>2);
22942 wr_file = xmalloc((l+1),sizeof(FILE *));
22943 wr_fname = xmalloc((l+1),sizeof(char *));
22944 for (k=0;k<=l;k++) {
22945 if (k<=mp->max_write_files) {
22946 wr_file[k]=mp->wr_file[k];
22947 wr_fname[k]=mp->wr_fname[k];
22953 xfree(mp->wr_file); xfree(mp->wr_fname);
22954 mp->max_write_files = l;
22955 mp->wr_file = wr_file;
22956 mp->wr_fname = wr_fname;
22960 mp_open_write_file(mp, fn ,n);
22963 if ( mp->wr_fname[n]==NULL ) n0=n;
22968 @ @<Record the end of file on |wr_file[n]|@>=
22969 { fclose(mp->wr_file[n]);
22970 xfree(mp->wr_fname[n]);
22971 mp->wr_fname[n]=NULL;
22972 if ( n==mp->write_files-1 ) mp->write_files=n;
22976 @* \[42] Writing font metric data.
22977 \TeX\ gets its knowledge about fonts from font metric files, also called
22978 \.{TFM} files; the `\.T' in `\.{TFM}' stands for \TeX,
22979 but other programs know about them too. One of \MP's duties is to
22980 write \.{TFM} files so that the user's fonts can readily be
22981 applied to typesetting.
22982 @:TFM files}{\.{TFM} files@>
22983 @^font metric files@>
22985 The information in a \.{TFM} file appears in a sequence of 8-bit bytes.
22986 Since the number of bytes is always a multiple of~4, we could
22987 also regard the file as a sequence of 32-bit words, but \MP\ uses the
22988 byte interpretation. The format of \.{TFM} files was designed by
22989 Lyle Ramshaw in 1980. The intent is to convey a lot of different kinds
22990 @^Ramshaw, Lyle Harold@>
22991 of information in a compact but useful form.
22994 FILE * tfm_file; /* the font metric output goes here */
22995 char * metric_file_name; /* full name of the font metric file */
22997 @ The first 24 bytes (6 words) of a \.{TFM} file contain twelve 16-bit
22998 integers that give the lengths of the various subsequent portions
22999 of the file. These twelve integers are, in order:
23000 $$\vbox{\halign{\hfil#&$\null=\null$#\hfil\cr
23001 |lf|&length of the entire file, in words;\cr
23002 |lh|&length of the header data, in words;\cr
23003 |bc|&smallest character code in the font;\cr
23004 |ec|&largest character code in the font;\cr
23005 |nw|&number of words in the width table;\cr
23006 |nh|&number of words in the height table;\cr
23007 |nd|&number of words in the depth table;\cr
23008 |ni|&number of words in the italic correction table;\cr
23009 |nl|&number of words in the lig/kern table;\cr
23010 |nk|&number of words in the kern table;\cr
23011 |ne|&number of words in the extensible character table;\cr
23012 |np|&number of font parameter words.\cr}}$$
23013 They are all nonnegative and less than $2^{15}$. We must have |bc-1<=ec<=255|,
23015 $$\hbox{|lf=6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np|.}$$
23016 Note that a font may contain as many as 256 characters (if |bc=0| and |ec=255|),
23017 and as few as 0 characters (if |bc=ec+1|).
23019 Incidentally, when two or more 8-bit bytes are combined to form an integer of
23020 16 or more bits, the most significant bytes appear first in the file.
23021 This is called BigEndian order.
23022 @^BigEndian order@>
23024 @ The rest of the \.{TFM} file may be regarded as a sequence of ten data
23027 The most important data type used here is a |fix_word|, which is
23028 a 32-bit representation of a binary fraction. A |fix_word| is a signed
23029 quantity, with the two's complement of the entire word used to represent
23030 negation. Of the 32 bits in a |fix_word|, exactly 12 are to the left of the
23031 binary point; thus, the largest |fix_word| value is $2048-2^{-20}$, and
23032 the smallest is $-2048$. We will see below, however, that all but two of
23033 the |fix_word| values must lie between $-16$ and $+16$.
23035 @ The first data array is a block of header information, which contains
23036 general facts about the font. The header must contain at least two words,
23037 |header[0]| and |header[1]|, whose meaning is explained below. Additional
23038 header information of use to other software routines might also be
23039 included, and \MP\ will generate it if the \.{headerbyte} command occurs.
23040 For example, 16 more words of header information are in use at the Xerox
23041 Palo Alto Research Center; the first ten specify the character coding
23042 scheme used (e.g., `\.{XEROX TEXT}' or `\.{TEX MATHSY}'), the next five
23043 give the font family name (e.g., `\.{HELVETICA}' or `\.{CMSY}'), and the
23044 last gives the ``face byte.''
23046 \yskip\hang|header[0]| is a 32-bit check sum that \MP\ will copy into
23047 the \.{GF} output file. This helps ensure consistency between files,
23048 since \TeX\ records the check sums from the \.{TFM}'s it reads, and these
23049 should match the check sums on actual fonts that are used. The actual
23050 relation between this check sum and the rest of the \.{TFM} file is not
23051 important; the check sum is simply an identification number with the
23052 property that incompatible fonts almost always have distinct check sums.
23055 \yskip\hang|header[1]| is a |fix_word| containing the design size of the
23056 font, in units of \TeX\ points. This number must be at least 1.0; it is
23057 fairly arbitrary, but usually the design size is 10.0 for a ``10 point''
23058 font, i.e., a font that was designed to look best at a 10-point size,
23059 whatever that really means. When a \TeX\ user asks for a font `\.{at}
23060 $\delta$ \.{pt}', the effect is to override the design size and replace it
23061 by $\delta$, and to multiply the $x$ and~$y$ coordinates of the points in
23062 the font image by a factor of $\delta$ divided by the design size. {\sl
23063 All other dimensions in the\/ \.{TFM} file are |fix_word|\kern-1pt\
23064 numbers in design-size units.} Thus, for example, the value of |param[6]|,
23065 which defines the \.{em} unit, is often the |fix_word| value $2^{20}=1.0$,
23066 since many fonts have a design size equal to one em. The other dimensions
23067 must be less than 16 design-size units in absolute value; thus,
23068 |header[1]| and |param[1]| are the only |fix_word| entries in the whole
23069 \.{TFM} file whose first byte might be something besides 0 or 255.
23071 @ Next comes the |char_info| array, which contains one |char_info_word|
23072 per character. Each word in this part of the file contains six fields
23073 packed into four bytes as follows.
23075 \yskip\hang first byte: |width_index| (8 bits)\par
23076 \hang second byte: |height_index| (4 bits) times 16, plus |depth_index|
23078 \hang third byte: |italic_index| (6 bits) times 4, plus |tag|
23080 \hang fourth byte: |remainder| (8 bits)\par
23082 The actual width of a character is \\{width}|[width_index]|, in design-size
23083 units; this is a device for compressing information, since many characters
23084 have the same width. Since it is quite common for many characters
23085 to have the same height, depth, or italic correction, the \.{TFM} format
23086 imposes a limit of 16 different heights, 16 different depths, and
23087 64 different italic corrections.
23089 Incidentally, the relation $\\{width}[0]=\\{height}[0]=\\{depth}[0]=
23090 \\{italic}[0]=0$ should always hold, so that an index of zero implies a
23091 value of zero. The |width_index| should never be zero unless the
23092 character does not exist in the font, since a character is valid if and
23093 only if it lies between |bc| and |ec| and has a nonzero |width_index|.
23095 @ The |tag| field in a |char_info_word| has four values that explain how to
23096 interpret the |remainder| field.
23098 \yskip\hang|tag=0| (|no_tag|) means that |remainder| is unused.\par
23099 \hang|tag=1| (|lig_tag|) means that this character has a ligature/kerning
23100 program starting at location |remainder| in the |lig_kern| array.\par
23101 \hang|tag=2| (|list_tag|) means that this character is part of a chain of
23102 characters of ascending sizes, and not the largest in the chain. The
23103 |remainder| field gives the character code of the next larger character.\par
23104 \hang|tag=3| (|ext_tag|) means that this character code represents an
23105 extensible character, i.e., a character that is built up of smaller pieces
23106 so that it can be made arbitrarily large. The pieces are specified in
23107 |exten[remainder]|.\par
23109 Characters with |tag=2| and |tag=3| are treated as characters with |tag=0|
23110 unless they are used in special circumstances in math formulas. For example,
23111 \TeX's \.{\\sum} operation looks for a |list_tag|, and the \.{\\left}
23112 operation looks for both |list_tag| and |ext_tag|.
23114 @d no_tag 0 /* vanilla character */
23115 @d lig_tag 1 /* character has a ligature/kerning program */
23116 @d list_tag 2 /* character has a successor in a charlist */
23117 @d ext_tag 3 /* character is extensible */
23119 @ The |lig_kern| array contains instructions in a simple programming language
23120 that explains what to do for special letter pairs. Each word in this array is a
23121 |lig_kern_command| of four bytes.
23123 \yskip\hang first byte: |skip_byte|, indicates that this is the final program
23124 step if the byte is 128 or more, otherwise the next step is obtained by
23125 skipping this number of intervening steps.\par
23126 \hang second byte: |next_char|, ``if |next_char| follows the current character,
23127 then perform the operation and stop, otherwise continue.''\par
23128 \hang third byte: |op_byte|, indicates a ligature step if less than~128,
23129 a kern step otherwise.\par
23130 \hang fourth byte: |remainder|.\par
23133 additional space equal to |kern[256*(op_byte-128)+remainder]| is inserted
23134 between the current character and |next_char|. This amount is
23135 often negative, so that the characters are brought closer together
23136 by kerning; but it might be positive.
23138 There are eight kinds of ligature steps, having |op_byte| codes $4a+2b+c$ where
23139 $0\le a\le b+c$ and $0\le b,c\le1$. The character whose code is
23140 |remainder| is inserted between the current character and |next_char|;
23141 then the current character is deleted if $b=0$, and |next_char| is
23142 deleted if $c=0$; then we pass over $a$~characters to reach the next
23143 current character (which may have a ligature/kerning program of its own).
23145 If the very first instruction of the |lig_kern| array has |skip_byte=255|,
23146 the |next_char| byte is the so-called right boundary character of this font;
23147 the value of |next_char| need not lie between |bc| and~|ec|.
23148 If the very last instruction of the |lig_kern| array has |skip_byte=255|,
23149 there is a special ligature/kerning program for a left boundary character,
23150 beginning at location |256*op_byte+remainder|.
23151 The interpretation is that \TeX\ puts implicit boundary characters
23152 before and after each consecutive string of characters from the same font.
23153 These implicit characters do not appear in the output, but they can affect
23154 ligatures and kerning.
23156 If the very first instruction of a character's |lig_kern| program has
23157 |skip_byte>128|, the program actually begins in location
23158 |256*op_byte+remainder|. This feature allows access to large |lig_kern|
23159 arrays, because the first instruction must otherwise
23160 appear in a location |<=255|.
23162 Any instruction with |skip_byte>128| in the |lig_kern| array must satisfy
23164 $$\hbox{|256*op_byte+remainder<nl|.}$$
23165 If such an instruction is encountered during
23166 normal program execution, it denotes an unconditional halt; no ligature
23167 command is performed.
23170 /* value indicating `\.{STOP}' in a lig/kern program */
23171 @d kern_flag (128) /* op code for a kern step */
23172 @d skip_byte(A) mp->lig_kern[(A)].b0
23173 @d next_char(A) mp->lig_kern[(A)].b1
23174 @d op_byte(A) mp->lig_kern[(A)].b2
23175 @d rem_byte(A) mp->lig_kern[(A)].b3
23177 @ Extensible characters are specified by an |extensible_recipe|, which
23178 consists of four bytes called |top|, |mid|, |bot|, and |rep| (in this
23179 order). These bytes are the character codes of individual pieces used to
23180 build up a large symbol. If |top|, |mid|, or |bot| are zero, they are not
23181 present in the built-up result. For example, an extensible vertical line is
23182 like an extensible bracket, except that the top and bottom pieces are missing.
23184 Let $T$, $M$, $B$, and $R$ denote the respective pieces, or an empty box
23185 if the piece isn't present. Then the extensible characters have the form
23186 $TR^kMR^kB$ from top to bottom, for some |k>=0|, unless $M$ is absent;
23187 in the latter case we can have $TR^kB$ for both even and odd values of~|k|.
23188 The width of the extensible character is the width of $R$; and the
23189 height-plus-depth is the sum of the individual height-plus-depths of the
23190 components used, since the pieces are butted together in a vertical list.
23192 @d ext_top(A) mp->exten[(A)].b0 /* |top| piece in a recipe */
23193 @d ext_mid(A) mp->exten[(A)].b1 /* |mid| piece in a recipe */
23194 @d ext_bot(A) mp->exten[(A)].b2 /* |bot| piece in a recipe */
23195 @d ext_rep(A) mp->exten[(A)].b3 /* |rep| piece in a recipe */
23197 @ The final portion of a \.{TFM} file is the |param| array, which is another
23198 sequence of |fix_word| values.
23200 \yskip\hang|param[1]=slant| is the amount of italic slant, which is used
23201 to help position accents. For example, |slant=.25| means that when you go
23202 up one unit, you also go .25 units to the right. The |slant| is a pure
23203 number; it is the only |fix_word| other than the design size itself that is
23204 not scaled by the design size.
23206 \hang|param[2]=space| is the normal spacing between words in text.
23207 Note that character 040 in the font need not have anything to do with
23210 \hang|param[3]=space_stretch| is the amount of glue stretching between words.
23212 \hang|param[4]=space_shrink| is the amount of glue shrinking between words.
23214 \hang|param[5]=x_height| is the size of one ex in the font; it is also
23215 the height of letters for which accents don't have to be raised or lowered.
23217 \hang|param[6]=quad| is the size of one em in the font.
23219 \hang|param[7]=extra_space| is the amount added to |param[2]| at the
23223 If fewer than seven parameters are present, \TeX\ sets the missing parameters
23228 @d space_stretch_code 3
23229 @d space_shrink_code 4
23232 @d extra_space_code 7
23234 @ So that is what \.{TFM} files hold. One of \MP's duties is to output such
23235 information, and it does this all at once at the end of a job.
23236 In order to prepare for such frenetic activity, it squirrels away the
23237 necessary facts in various arrays as information becomes available.
23239 Character dimensions (\&{charwd}, \&{charht}, \&{chardp}, and \&{charic})
23240 are stored respectively in |tfm_width|, |tfm_height|, |tfm_depth|, and
23241 |tfm_ital_corr|. Other information about a character (e.g., about
23242 its ligatures or successors) is accessible via the |char_tag| and
23243 |char_remainder| arrays. Other information about the font as a whole
23244 is kept in additional arrays called |header_byte|, |lig_kern|,
23245 |kern|, |exten|, and |param|.
23247 @d max_tfm_int 32510
23248 @d undefined_label max_tfm_int /* an undefined local label */
23251 #define TFM_ITEMS 257
23253 eight_bits ec; /* smallest and largest character codes shipped out */
23254 scaled tfm_width[TFM_ITEMS]; /* \&{charwd} values */
23255 scaled tfm_height[TFM_ITEMS]; /* \&{charht} values */
23256 scaled tfm_depth[TFM_ITEMS]; /* \&{chardp} values */
23257 scaled tfm_ital_corr[TFM_ITEMS]; /* \&{charic} values */
23258 boolean char_exists[TFM_ITEMS]; /* has this code been shipped out? */
23259 int char_tag[TFM_ITEMS]; /* |remainder| category */
23260 int char_remainder[TFM_ITEMS]; /* the |remainder| byte */
23261 char *header_byte; /* bytes of the \.{TFM} header */
23262 int header_last; /* last initialized \.{TFM} header byte */
23263 int header_size; /* size of the \.{TFM} header */
23264 four_quarters *lig_kern; /* the ligature/kern table */
23265 short nl; /* the number of ligature/kern steps so far */
23266 scaled *kern; /* distinct kerning amounts */
23267 short nk; /* the number of distinct kerns so far */
23268 four_quarters exten[TFM_ITEMS]; /* extensible character recipes */
23269 short ne; /* the number of extensible characters so far */
23270 scaled *param; /* \&{fontinfo} parameters */
23271 short np; /* the largest \&{fontinfo} parameter specified so far */
23272 short nw;short nh;short nd;short ni; /* sizes of \.{TFM} subtables */
23273 short skip_table[TFM_ITEMS]; /* local label status */
23274 boolean lk_started; /* has there been a lig/kern step in this command yet? */
23275 integer bchar; /* right boundary character */
23276 short bch_label; /* left boundary starting location */
23277 short ll;short lll; /* registers used for lig/kern processing */
23278 short label_loc[257]; /* lig/kern starting addresses */
23279 eight_bits label_char[257]; /* characters for |label_loc| */
23280 short label_ptr; /* highest position occupied in |label_loc| */
23282 @ @<Allocate or initialize ...@>=
23283 mp->header_last = 0; mp->header_size = 128; /* just for init */
23284 mp->header_byte = xmalloc(mp->header_size, sizeof(char));
23285 mp->lig_kern = NULL; /* allocated when needed */
23286 mp->kern = NULL; /* allocated when needed */
23287 mp->param = NULL; /* allocated when needed */
23289 @ @<Dealloc variables@>=
23290 xfree(mp->header_byte);
23291 xfree(mp->lig_kern);
23296 for (k=0;k<= 255;k++ ) {
23297 mp->tfm_width[k]=0; mp->tfm_height[k]=0; mp->tfm_depth[k]=0; mp->tfm_ital_corr[k]=0;
23298 mp->char_exists[k]=false; mp->char_tag[k]=no_tag; mp->char_remainder[k]=0;
23299 mp->skip_table[k]=undefined_label;
23301 memset(mp->header_byte,0,mp->header_size);
23302 mp->bc=255; mp->ec=0; mp->nl=0; mp->nk=0; mp->ne=0; mp->np=0;
23303 mp->internal[boundary_char]=-unity;
23304 mp->bch_label=undefined_label;
23305 mp->label_loc[0]=-1; mp->label_ptr=0;
23307 @ @<Declarations@>=
23308 scaled mp_tfm_check (MP mp,small_number m) ;
23310 @ @<Declare the function called |tfm_check|@>=
23311 scaled mp_tfm_check (MP mp,small_number m) {
23312 if ( abs(mp->internal[m])>=fraction_half ) {
23313 print_err("Enormous "); mp_print(mp, mp->int_name[m]);
23314 @.Enormous charwd...@>
23315 @.Enormous chardp...@>
23316 @.Enormous charht...@>
23317 @.Enormous charic...@>
23318 @.Enormous designsize...@>
23319 mp_print(mp, " has been reduced");
23320 help1("Font metric dimensions must be less than 2048pt.");
23321 mp_put_get_error(mp);
23322 if ( mp->internal[m]>0 ) return (fraction_half-1);
23323 else return (1-fraction_half);
23325 return mp->internal[m];
23329 @ @<Store the width information for character code~|c|@>=
23330 if ( c<mp->bc ) mp->bc=c;
23331 if ( c>mp->ec ) mp->ec=c;
23332 mp->char_exists[c]=true;
23333 mp->tfm_width[c]=mp_tfm_check(mp, char_wd);
23334 mp->tfm_height[c]=mp_tfm_check(mp, char_ht);
23335 mp->tfm_depth[c]=mp_tfm_check(mp, char_dp);
23336 mp->tfm_ital_corr[c]=mp_tfm_check(mp, char_ic)
23338 @ Now let's consider \MP's special \.{TFM}-oriented commands.
23340 @<Cases of |do_statement|...@>=
23341 case tfm_command: mp_do_tfm_command(mp); break;
23343 @ @d char_list_code 0
23344 @d lig_table_code 1
23345 @d extensible_code 2
23346 @d header_byte_code 3
23347 @d font_dimen_code 4
23350 mp_primitive(mp, "charlist",tfm_command,char_list_code);
23351 @:char_list_}{\&{charlist} primitive@>
23352 mp_primitive(mp, "ligtable",tfm_command,lig_table_code);
23353 @:lig_table_}{\&{ligtable} primitive@>
23354 mp_primitive(mp, "extensible",tfm_command,extensible_code);
23355 @:extensible_}{\&{extensible} primitive@>
23356 mp_primitive(mp, "headerbyte",tfm_command,header_byte_code);
23357 @:header_byte_}{\&{headerbyte} primitive@>
23358 mp_primitive(mp, "fontdimen",tfm_command,font_dimen_code);
23359 @:font_dimen_}{\&{fontdimen} primitive@>
23361 @ @<Cases of |print_cmd...@>=
23364 case char_list_code:mp_print(mp, "charlist"); break;
23365 case lig_table_code:mp_print(mp, "ligtable"); break;
23366 case extensible_code:mp_print(mp, "extensible"); break;
23367 case header_byte_code:mp_print(mp, "headerbyte"); break;
23368 default: mp_print(mp, "fontdimen"); break;
23372 @ @<Declare action procedures for use by |do_statement|@>=
23373 eight_bits mp_get_code (MP mp) ;
23375 @ @c eight_bits mp_get_code (MP mp) { /* scans a character code value */
23376 integer c; /* the code value found */
23377 mp_get_x_next(mp); mp_scan_expression(mp);
23378 if ( mp->cur_type==mp_known ) {
23379 c=mp_round_unscaled(mp, mp->cur_exp);
23380 if ( c>=0 ) if ( c<256 ) return c;
23381 } else if ( mp->cur_type==mp_string_type ) {
23382 if ( length(mp->cur_exp)==1 ) {
23383 c=mp->str_pool[mp->str_start[mp->cur_exp]];
23387 exp_err("Invalid code has been replaced by 0");
23388 @.Invalid code...@>
23389 help2("I was looking for a number between 0 and 255, or for a")
23390 ("string of length 1. Didn't find it; will use 0 instead.");
23391 mp_put_get_flush_error(mp, 0); c=0;
23395 @ @<Declare action procedures for use by |do_statement|@>=
23396 void mp_set_tag (MP mp,halfword c, small_number t, halfword r) ;
23398 @ @c void mp_set_tag (MP mp,halfword c, small_number t, halfword r) {
23399 if ( mp->char_tag[c]==no_tag ) {
23400 mp->char_tag[c]=t; mp->char_remainder[c]=r;
23402 incr(mp->label_ptr); mp->label_loc[mp->label_ptr]=r;
23403 mp->label_char[mp->label_ptr]=c;
23406 @<Complain about a character tag conflict@>;
23410 @ @<Complain about a character tag conflict@>=
23412 print_err("Character ");
23413 if ( (c>' ')&&(c<127) ) mp_print_char(mp,c);
23414 else if ( c==256 ) mp_print(mp, "||");
23415 else { mp_print(mp, "code "); mp_print_int(mp, c); };
23416 mp_print(mp, " is already ");
23417 @.Character c is already...@>
23418 switch (mp->char_tag[c]) {
23419 case lig_tag: mp_print(mp, "in a ligtable"); break;
23420 case list_tag: mp_print(mp, "in a charlist"); break;
23421 case ext_tag: mp_print(mp, "extensible"); break;
23422 } /* there are no other cases */
23423 help2("It's not legal to label a character more than once.")
23424 ("So I'll not change anything just now.");
23425 mp_put_get_error(mp);
23428 @ @<Declare action procedures for use by |do_statement|@>=
23429 void mp_do_tfm_command (MP mp) ;
23431 @ @c void mp_do_tfm_command (MP mp) {
23432 int c,cc; /* character codes */
23433 int k; /* index into the |kern| array */
23434 int j; /* index into |header_byte| or |param| */
23435 switch (mp->cur_mod) {
23436 case char_list_code:
23438 /* we will store a list of character successors */
23439 while ( mp->cur_cmd==colon ) {
23440 cc=mp_get_code(mp); mp_set_tag(mp, c,list_tag,cc); c=cc;
23443 case lig_table_code:
23444 if (mp->lig_kern==NULL)
23445 mp->lig_kern = xmalloc((max_tfm_int+1),sizeof(four_quarters));
23446 if (mp->kern==NULL)
23447 mp->kern = xmalloc((max_tfm_int+1),sizeof(scaled));
23448 @<Store a list of ligature/kern steps@>;
23450 case extensible_code:
23451 @<Define an extensible recipe@>;
23453 case header_byte_code:
23454 case font_dimen_code:
23455 c=mp->cur_mod; mp_get_x_next(mp);
23456 mp_scan_expression(mp);
23457 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<half_unit) ) {
23458 exp_err("Improper location");
23459 @.Improper location@>
23460 help2("I was looking for a known, positive number.")
23461 ("For safety's sake I'll ignore the present command.");
23462 mp_put_get_error(mp);
23464 j=mp_round_unscaled(mp, mp->cur_exp);
23465 if ( mp->cur_cmd!=colon ) {
23466 mp_missing_err(mp, ":");
23468 help1("A colon should follow a headerbyte or fontinfo location.");
23471 if ( c==header_byte_code ) {
23472 @<Store a list of header bytes@>;
23474 if (mp->param==NULL)
23475 mp->param = xmalloc((max_tfm_int+1),sizeof(scaled));
23476 @<Store a list of font dimensions@>;
23480 } /* there are no other cases */
23483 @ @<Store a list of ligature/kern steps@>=
23485 mp->lk_started=false;
23488 if ((mp->cur_cmd==skip_to)&& mp->lk_started )
23489 @<Process a |skip_to| command and |goto done|@>;
23490 if ( mp->cur_cmd==bchar_label ) { c=256; mp->cur_cmd=colon; }
23491 else { mp_back_input(mp); c=mp_get_code(mp); };
23492 if ((mp->cur_cmd==colon)||(mp->cur_cmd==double_colon)) {
23493 @<Record a label in a lig/kern subprogram and |goto continue|@>;
23495 if ( mp->cur_cmd==lig_kern_token ) {
23496 @<Compile a ligature/kern command@>;
23498 print_err("Illegal ligtable step");
23499 @.Illegal ligtable step@>
23500 help1("I was looking for `=:' or `kern' here.");
23501 mp_back_error(mp); next_char(mp->nl)=qi(0);
23502 op_byte(mp->nl)=qi(0); rem_byte(mp->nl)=qi(0);
23503 skip_byte(mp->nl)=stop_flag+1; /* this specifies an unconditional stop */
23505 if ( mp->nl==max_tfm_int) mp_fatal_error(mp, "ligtable too large");
23507 if ( mp->cur_cmd==comma ) goto CONTINUE;
23508 if ( skip_byte(mp->nl-1)<stop_flag ) skip_byte(mp->nl-1)=stop_flag;
23513 mp_primitive(mp, "=:",lig_kern_token,0);
23514 @:=:_}{\.{=:} primitive@>
23515 mp_primitive(mp, "=:|",lig_kern_token,1);
23516 @:=:/_}{\.{=:\char'174} primitive@>
23517 mp_primitive(mp, "=:|>",lig_kern_token,5);
23518 @:=:/>_}{\.{=:\char'174>} primitive@>
23519 mp_primitive(mp, "|=:",lig_kern_token,2);
23520 @:=:/_}{\.{\char'174=:} primitive@>
23521 mp_primitive(mp, "|=:>",lig_kern_token,6);
23522 @:=:/>_}{\.{\char'174=:>} primitive@>
23523 mp_primitive(mp, "|=:|",lig_kern_token,3);
23524 @:=:/_}{\.{\char'174=:\char'174} primitive@>
23525 mp_primitive(mp, "|=:|>",lig_kern_token,7);
23526 @:=:/>_}{\.{\char'174=:\char'174>} primitive@>
23527 mp_primitive(mp, "|=:|>>",lig_kern_token,11);
23528 @:=:/>_}{\.{\char'174=:\char'174>>} primitive@>
23529 mp_primitive(mp, "kern",lig_kern_token,128);
23530 @:kern_}{\&{kern} primitive@>
23532 @ @<Cases of |print_cmd...@>=
23533 case lig_kern_token:
23535 case 0:mp_print(mp, "=:"); break;
23536 case 1:mp_print(mp, "=:|"); break;
23537 case 2:mp_print(mp, "|=:"); break;
23538 case 3:mp_print(mp, "|=:|"); break;
23539 case 5:mp_print(mp, "=:|>"); break;
23540 case 6:mp_print(mp, "|=:>"); break;
23541 case 7:mp_print(mp, "|=:|>"); break;
23542 case 11:mp_print(mp, "|=:|>>"); break;
23543 default: mp_print(mp, "kern"); break;
23547 @ Local labels are implemented by maintaining the |skip_table| array,
23548 where |skip_table[c]| is either |undefined_label| or the address of the
23549 most recent lig/kern instruction that skips to local label~|c|. In the
23550 latter case, the |skip_byte| in that instruction will (temporarily)
23551 be zero if there were no prior skips to this label, or it will be the
23552 distance to the prior skip.
23554 We may need to cancel skips that span more than 127 lig/kern steps.
23556 @d cancel_skips(A) mp->ll=(A);
23558 mp->lll=qo(skip_byte(mp->ll));
23559 skip_byte(mp->ll)=stop_flag; mp->ll=mp->ll-mp->lll;
23560 } while (mp->lll!=0)
23561 @d skip_error(A) { print_err("Too far to skip");
23562 @.Too far to skip@>
23563 help1("At most 127 lig/kern steps can separate skipto1 from 1::.");
23564 mp_error(mp); cancel_skips((A));
23567 @<Process a |skip_to| command and |goto done|@>=
23570 if ( mp->nl-mp->skip_table[c]>128 ) { /* |skip_table[c]<<nl<=undefined_label| */
23571 skip_error(mp->skip_table[c]); mp->skip_table[c]=undefined_label;
23573 if ( mp->skip_table[c]==undefined_label ) skip_byte(mp->nl-1)=qi(0);
23574 else skip_byte(mp->nl-1)=qi(mp->nl-mp->skip_table[c]-1);
23575 mp->skip_table[c]=mp->nl-1; goto DONE;
23578 @ @<Record a label in a lig/kern subprogram and |goto continue|@>=
23580 if ( mp->cur_cmd==colon ) {
23581 if ( c==256 ) mp->bch_label=mp->nl;
23582 else mp_set_tag(mp, c,lig_tag,mp->nl);
23583 } else if ( mp->skip_table[c]<undefined_label ) {
23584 mp->ll=mp->skip_table[c]; mp->skip_table[c]=undefined_label;
23586 mp->lll=qo(skip_byte(mp->ll));
23587 if ( mp->nl-mp->ll>128 ) {
23588 skip_error(mp->ll); goto CONTINUE;
23590 skip_byte(mp->ll)=qi(mp->nl-mp->ll-1); mp->ll=mp->ll-mp->lll;
23591 } while (mp->lll!=0);
23596 @ @<Compile a ligature/kern...@>=
23598 next_char(mp->nl)=qi(c); skip_byte(mp->nl)=qi(0);
23599 if ( mp->cur_mod<128 ) { /* ligature op */
23600 op_byte(mp->nl)=qi(mp->cur_mod); rem_byte(mp->nl)=qi(mp_get_code(mp));
23602 mp_get_x_next(mp); mp_scan_expression(mp);
23603 if ( mp->cur_type!=mp_known ) {
23604 exp_err("Improper kern");
23606 help2("The amount of kern should be a known numeric value.")
23607 ("I'm zeroing this one. Proceed, with fingers crossed.");
23608 mp_put_get_flush_error(mp, 0);
23610 mp->kern[mp->nk]=mp->cur_exp;
23612 while ( mp->kern[k]!=mp->cur_exp ) incr(k);
23614 if ( mp->nk==max_tfm_int ) mp_fatal_error(mp, "too many TFM kerns");
23617 op_byte(mp->nl)=kern_flag+(k / 256);
23618 rem_byte(mp->nl)=qi((k % 256));
23620 mp->lk_started=true;
23623 @ @d missing_extensible_punctuation(A)
23624 { mp_missing_err(mp, (A));
23625 @.Missing `\char`\#'@>
23626 help1("I'm processing `extensible c: t,m,b,r'."); mp_back_error(mp);
23629 @<Define an extensible recipe@>=
23631 if ( mp->ne==256 ) mp_fatal_error(mp, "too many extensible recipies");
23632 c=mp_get_code(mp); mp_set_tag(mp, c,ext_tag,mp->ne);
23633 if ( mp->cur_cmd!=colon ) missing_extensible_punctuation(":");
23634 ext_top(mp->ne)=qi(mp_get_code(mp));
23635 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23636 ext_mid(mp->ne)=qi(mp_get_code(mp));
23637 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23638 ext_bot(mp->ne)=qi(mp_get_code(mp));
23639 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23640 ext_rep(mp->ne)=qi(mp_get_code(mp));
23644 @ The header could contain ASCII zeroes, so can't use |strdup|.
23646 @<Store a list of header bytes@>=
23648 if ( j>=mp->header_size ) {
23649 int l = mp->header_size + (mp->header_size >> 2);
23650 char *t = xmalloc(l,sizeof(char));
23652 memcpy(t,mp->header_byte,mp->header_size);
23653 xfree (mp->header_byte);
23654 mp->header_byte = t;
23655 mp->header_size = l;
23657 mp->header_byte[j]=mp_get_code(mp);
23658 incr(j); incr(mp->header_last);
23659 } while (mp->cur_cmd==comma)
23661 @ @<Store a list of font dimensions@>=
23663 if ( j>max_tfm_int ) mp_fatal_error(mp, "too many fontdimens");
23664 while ( j>mp->np ) { incr(mp->np); mp->param[mp->np]=0; };
23665 mp_get_x_next(mp); mp_scan_expression(mp);
23666 if ( mp->cur_type!=mp_known ){
23667 exp_err("Improper font parameter");
23668 @.Improper font parameter@>
23669 help1("I'm zeroing this one. Proceed, with fingers crossed.");
23670 mp_put_get_flush_error(mp, 0);
23672 mp->param[j]=mp->cur_exp; incr(j);
23673 } while (mp->cur_cmd==comma)
23675 @ OK: We've stored all the data that is needed for the \.{TFM} file.
23676 All that remains is to output it in the correct format.
23678 An interesting problem needs to be solved in this connection, because
23679 the \.{TFM} format allows at most 256~widths, 16~heights, 16~depths,
23680 and 64~italic corrections. If the data has more distinct values than
23681 this, we want to meet the necessary restrictions by perturbing the
23682 given values as little as possible.
23684 \MP\ solves this problem in two steps. First the values of a given
23685 kind (widths, heights, depths, or italic corrections) are sorted;
23686 then the list of sorted values is perturbed, if necessary.
23688 The sorting operation is facilitated by having a special node of
23689 essentially infinite |value| at the end of the current list.
23691 @<Initialize table entries...@>=
23692 value(inf_val)=fraction_four;
23694 @ Straight linear insertion is good enough for sorting, since the lists
23695 are usually not terribly long. As we work on the data, the current list
23696 will start at |link(temp_head)| and end at |inf_val|; the nodes in this
23697 list will be in increasing order of their |value| fields.
23699 Given such a list, the |sort_in| function takes a value and returns a pointer
23700 to where that value can be found in the list. The value is inserted in
23701 the proper place, if necessary.
23703 At the time we need to do these operations, most of \MP's work has been
23704 completed, so we will have plenty of memory to play with. The value nodes
23705 that are allocated for sorting will never be returned to free storage.
23707 @d clear_the_list link(temp_head)=inf_val
23709 @c pointer mp_sort_in (MP mp,scaled v) {
23710 pointer p,q,r; /* list manipulation registers */
23714 if ( v<=value(q) ) break;
23717 if ( v<value(q) ) {
23718 r=mp_get_node(mp, value_node_size); value(r)=v; link(r)=q; link(p)=r;
23723 @ Now we come to the interesting part, where we reduce the list if necessary
23724 until it has the required size. The |min_cover| routine is basic to this
23725 process; it computes the minimum number~|m| such that the values of the
23726 current sorted list can be covered by |m|~intervals of width~|d|. It
23727 also sets the global value |perturbation| to the smallest value $d'>d$
23728 such that the covering found by this algorithm would be different.
23730 In particular, |min_cover(0)| returns the number of distinct values in the
23731 current list and sets |perturbation| to the minimum distance between
23734 @c integer mp_min_cover (MP mp,scaled d) {
23735 pointer p; /* runs through the current list */
23736 scaled l; /* the least element covered by the current interval */
23737 integer m; /* lower bound on the size of the minimum cover */
23738 m=0; p=link(temp_head); mp->perturbation=el_gordo;
23739 while ( p!=inf_val ){
23740 incr(m); l=value(p);
23741 do { p=link(p); } while (value(p)<=l+d);
23742 if ( value(p)-l<mp->perturbation )
23743 mp->perturbation=value(p)-l;
23749 scaled perturbation; /* quantity related to \.{TFM} rounding */
23750 integer excess; /* the list is this much too long */
23752 @ The smallest |d| such that a given list can be covered with |m| intervals
23753 is determined by the |threshold| routine, which is sort of an inverse
23754 to |min_cover|. The idea is to increase the interval size rapidly until
23755 finding the range, then to go sequentially until the exact borderline has
23758 @c scaled mp_threshold (MP mp,integer m) {
23759 scaled d; /* lower bound on the smallest interval size */
23760 mp->excess=mp_min_cover(mp, 0)-m;
23761 if ( mp->excess<=0 ) {
23765 d=mp->perturbation;
23766 } while (mp_min_cover(mp, d+d)>m);
23767 while ( mp_min_cover(mp, d)>m )
23768 d=mp->perturbation;
23773 @ The |skimp| procedure reduces the current list to at most |m| entries,
23774 by changing values if necessary. It also sets |info(p):=k| if |value(p)|
23775 is the |k|th distinct value on the resulting list, and it sets
23776 |perturbation| to the maximum amount by which a |value| field has
23777 been changed. The size of the resulting list is returned as the
23780 @c integer mp_skimp (MP mp,integer m) {
23781 scaled d; /* the size of intervals being coalesced */
23782 pointer p,q,r; /* list manipulation registers */
23783 scaled l; /* the least value in the current interval */
23784 scaled v; /* a compromise value */
23785 d=mp_threshold(mp, m); mp->perturbation=0;
23786 q=temp_head; m=0; p=link(temp_head);
23787 while ( p!=inf_val ) {
23788 incr(m); l=value(p); info(p)=m;
23789 if ( value(link(p))<=l+d ) {
23790 @<Replace an interval of values by its midpoint@>;
23797 @ @<Replace an interval...@>=
23800 p=link(p); info(p)=m;
23801 decr(mp->excess); if ( mp->excess==0 ) d=0;
23802 } while (value(link(p))<=l+d);
23803 v=l+halfp(value(p)-l);
23804 if ( value(p)-v>mp->perturbation )
23805 mp->perturbation=value(p)-v;
23808 r=link(r); value(r)=v;
23810 link(q)=p; /* remove duplicate values from the current list */
23813 @ A warning message is issued whenever something is perturbed by
23814 more than 1/16\thinspace pt.
23816 @c void mp_tfm_warning (MP mp,small_number m) {
23817 mp_print_nl(mp, "(some ");
23818 mp_print(mp, mp->int_name[m]);
23819 @.some charwds...@>
23820 @.some chardps...@>
23821 @.some charhts...@>
23822 @.some charics...@>
23823 mp_print(mp, " values had to be adjusted by as much as ");
23824 mp_print_scaled(mp, mp->perturbation); mp_print(mp, "pt)");
23827 @ Here's an example of how we use these routines.
23828 The width data needs to be perturbed only if there are 256 distinct
23829 widths, but \MP\ must check for this case even though it is
23832 An integer variable |k| will be defined when we use this code.
23833 The |dimen_head| array will contain pointers to the sorted
23834 lists of dimensions.
23836 @<Massage the \.{TFM} widths@>=
23838 for (k=mp->bc;k<=mp->ec;k++) {
23839 if ( mp->char_exists[k] )
23840 mp->tfm_width[k]=mp_sort_in(mp, mp->tfm_width[k]);
23842 mp->nw=mp_skimp(mp, 255)+1; mp->dimen_head[1]=link(temp_head);
23843 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, char_wd)
23846 pointer dimen_head[5]; /* lists of \.{TFM} dimensions */
23848 @ Heights, depths, and italic corrections are different from widths
23849 not only because their list length is more severely restricted, but
23850 also because zero values do not need to be put into the lists.
23852 @<Massage the \.{TFM} heights, depths, and italic corrections@>=
23854 for (k=mp->bc;k<=mp->ec;k++) {
23855 if ( mp->char_exists[k] ) {
23856 if ( mp->tfm_height[k]==0 ) mp->tfm_height[k]=zero_val;
23857 else mp->tfm_height[k]=mp_sort_in(mp, mp->tfm_height[k]);
23860 mp->nh=mp_skimp(mp, 15)+1; mp->dimen_head[2]=link(temp_head);
23861 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, char_ht);
23863 for (k=mp->bc;k<=mp->ec;k++) {
23864 if ( mp->char_exists[k] ) {
23865 if ( mp->tfm_depth[k]==0 ) mp->tfm_depth[k]=zero_val;
23866 else mp->tfm_depth[k]=mp_sort_in(mp, mp->tfm_depth[k]);
23869 mp->nd=mp_skimp(mp, 15)+1; mp->dimen_head[3]=link(temp_head);
23870 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, char_dp);
23872 for (k=mp->bc;k<=mp->ec;k++) {
23873 if ( mp->char_exists[k] ) {
23874 if ( mp->tfm_ital_corr[k]==0 ) mp->tfm_ital_corr[k]=zero_val;
23875 else mp->tfm_ital_corr[k]=mp_sort_in(mp, mp->tfm_ital_corr[k]);
23878 mp->ni=mp_skimp(mp, 63)+1; mp->dimen_head[4]=link(temp_head);
23879 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, char_ic)
23881 @ @<Initialize table entries...@>=
23882 value(zero_val)=0; info(zero_val)=0;
23884 @ Bytes 5--8 of the header are set to the design size, unless the user has
23885 some crazy reason for specifying them differently.
23887 Error messages are not allowed at the time this procedure is called,
23888 so a warning is printed instead.
23890 The value of |max_tfm_dimen| is calculated so that
23891 $$\hbox{|make_scaled(16*max_tfm_dimen,internal[design_size])|}
23892 < \\{three\_bytes}.$$
23894 @d three_bytes 0100000000 /* $2^{24}$ */
23897 void mp_fix_design_size (MP mp) {
23898 scaled d; /* the design size */
23899 d=mp->internal[design_size];
23900 if ( (d<unity)||(d>=fraction_half) ) {
23902 mp_print_nl(mp, "(illegal design size has been changed to 128pt)");
23903 @.illegal design size...@>
23904 d=040000000; mp->internal[design_size]=d;
23906 if ( mp->header_byte[4]<0 ) if ( mp->header_byte[5]<0 )
23907 if ( mp->header_byte[6]<0 ) if ( mp->header_byte[7]<0 ) {
23908 mp->header_byte[4]=d / 04000000;
23909 mp->header_byte[5]=(d / 4096) % 256;
23910 mp->header_byte[6]=(d / 16) % 256;
23911 mp->header_byte[7]=(d % 16)*16;
23913 mp->max_tfm_dimen=16*mp->internal[design_size]-mp->internal[design_size] / 010000000;
23914 if ( mp->max_tfm_dimen>=fraction_half ) mp->max_tfm_dimen=fraction_half-1;
23917 @ The |dimen_out| procedure computes a |fix_word| relative to the
23918 design size. If the data was out of range, it is corrected and the
23919 global variable |tfm_changed| is increased by~one.
23921 @c integer mp_dimen_out (MP mp,scaled x) {
23922 if ( abs(x)>mp->max_tfm_dimen ) {
23923 incr(mp->tfm_changed);
23924 if ( x>0 ) x=three_bytes-1; else x=1-three_bytes;
23926 x=mp_make_scaled(mp, x*16,mp->internal[design_size]);
23932 scaled max_tfm_dimen; /* bound on widths, heights, kerns, etc. */
23933 integer tfm_changed; /* the number of data entries that were out of bounds */
23935 @ If the user has not specified any of the first four header bytes,
23936 the |fix_check_sum| procedure replaces them by a ``check sum'' computed
23937 from the |tfm_width| data relative to the design size.
23940 @c void mp_fix_check_sum (MP mp) {
23941 eight_bits k; /* runs through character codes */
23942 eight_bits B1,B2,B3,B4; /* bytes of the check sum */
23943 integer x; /* hash value used in check sum computation */
23944 if ( mp->header_byte[0]==0 && mp->header_byte[1]==0 &&
23945 mp->header_byte[2]==0 && mp->header_byte[3]==0 ) {
23946 @<Compute a check sum in |(b1,b2,b3,b4)|@>;
23947 mp->header_byte[0]=B1; mp->header_byte[1]=B2;
23948 mp->header_byte[2]=B3; mp->header_byte[3]=B4;
23953 @ @<Compute a check sum in |(b1,b2,b3,b4)|@>=
23954 B1=mp->bc; B2=mp->ec; B3=mp->bc; B4=mp->ec; mp->tfm_changed=0;
23955 for (k=mp->bc;k<=mp->ec;k++) {
23956 if ( mp->char_exists[k] ) {
23957 x=mp_dimen_out(mp, value(mp->tfm_width[k]))+(k+4)*020000000; /* this is positive */
23958 B1=(B1+B1+x) % 255;
23959 B2=(B2+B2+x) % 253;
23960 B3=(B3+B3+x) % 251;
23961 B4=(B4+B4+x) % 247;
23965 @ Finally we're ready to actually write the \.{TFM} information.
23966 Here are some utility routines for this purpose.
23968 @d tfm_out(A) fputc((A),mp->tfm_file) /* output one byte to |tfm_file| */
23970 @c void mp_tfm_two (MP mp,integer x) { /* output two bytes to |tfm_file| */
23971 tfm_out(x / 256); tfm_out(x % 256);
23973 void mp_tfm_four (MP mp,integer x) { /* output four bytes to |tfm_file| */
23974 if ( x>=0 ) tfm_out(x / three_bytes);
23976 x=x+010000000000; /* use two's complement for negative values */
23978 tfm_out((x / three_bytes) + 128);
23980 x=x % three_bytes; tfm_out(x / unity);
23981 x=x % unity; tfm_out(x / 0400);
23984 void mp_tfm_qqqq (MP mp,four_quarters x) { /* output four quarterwords to |tfm_file| */
23985 tfm_out(qo(x.b0)); tfm_out(qo(x.b1));
23986 tfm_out(qo(x.b2)); tfm_out(qo(x.b3));
23989 @ @<Finish the \.{TFM} file@>=
23990 if ( mp->job_name==NULL ) mp_open_log_file(mp);
23991 mp_pack_job_name(mp, ".tfm");
23992 while ( ! mp_b_open_out(mp, &mp->tfm_file, mp_filetype_metrics) )
23993 mp_prompt_file_name(mp, "file name for font metrics",".tfm");
23994 mp->metric_file_name=xstrdup(mp->name_of_file);
23995 @<Output the subfile sizes and header bytes@>;
23996 @<Output the character information bytes, then
23997 output the dimensions themselves@>;
23998 @<Output the ligature/kern program@>;
23999 @<Output the extensible character recipes and the font metric parameters@>;
24000 if ( mp->internal[tracing_stats]>0 )
24001 @<Log the subfile sizes of the \.{TFM} file@>;
24002 mp_print_nl(mp, "Font metrics written on ");
24003 mp_print(mp, mp->metric_file_name); mp_print_char(mp, '.');
24004 @.Font metrics written...@>
24005 fclose(mp->tfm_file)
24007 @ Integer variables |lh|, |k|, and |lk_offset| will be defined when we use
24010 @<Output the subfile sizes and header bytes@>=
24012 LH=(k+3) / 4; /* this is the number of header words */
24013 if ( mp->bc>mp->ec ) mp->bc=1; /* if there are no characters, |ec=0| and |bc=1| */
24014 @<Compute the ligature/kern program offset and implant the
24015 left boundary label@>;
24016 mp_tfm_two(mp,6+LH+(mp->ec-mp->bc+1)+mp->nw+mp->nh+mp->nd+mp->ni+mp->nl
24017 +lk_offset+mp->nk+mp->ne+mp->np);
24018 /* this is the total number of file words that will be output */
24019 mp_tfm_two(mp, LH); mp_tfm_two(mp, mp->bc); mp_tfm_two(mp, mp->ec);
24020 mp_tfm_two(mp, mp->nw); mp_tfm_two(mp, mp->nh);
24021 mp_tfm_two(mp, mp->nd); mp_tfm_two(mp, mp->ni); mp_tfm_two(mp, mp->nl+lk_offset);
24022 mp_tfm_two(mp, mp->nk); mp_tfm_two(mp, mp->ne);
24023 mp_tfm_two(mp, mp->np);
24024 for (k=0;k< 4*LH;k++) {
24025 tfm_out(mp->header_byte[k]);
24028 @ @<Output the character information bytes...@>=
24029 for (k=mp->bc;k<=mp->ec;k++) {
24030 if ( ! mp->char_exists[k] ) {
24031 mp_tfm_four(mp, 0);
24033 tfm_out(info(mp->tfm_width[k])); /* the width index */
24034 tfm_out((info(mp->tfm_height[k]))*16+info(mp->tfm_depth[k]));
24035 tfm_out((info(mp->tfm_ital_corr[k]))*4+mp->char_tag[k]);
24036 tfm_out(mp->char_remainder[k]);
24040 for (k=1;k<=4;k++) {
24041 mp_tfm_four(mp, 0); p=mp->dimen_head[k];
24042 while ( p!=inf_val ) {
24043 mp_tfm_four(mp, mp_dimen_out(mp, value(p))); p=link(p);
24048 @ We need to output special instructions at the beginning of the
24049 |lig_kern| array in order to specify the right boundary character
24050 and/or to handle starting addresses that exceed 255. The |label_loc|
24051 and |label_char| arrays have been set up to record all the
24052 starting addresses; we have $-1=|label_loc|[0]<|label_loc|[1]\le\cdots
24053 \le|label_loc|[|label_ptr]|$.
24055 @<Compute the ligature/kern program offset...@>=
24056 mp->bchar=mp_round_unscaled(mp, mp->internal[boundary_char]);
24057 if ((mp->bchar<0)||(mp->bchar>255))
24058 { mp->bchar=-1; mp->lk_started=false; lk_offset=0; }
24059 else { mp->lk_started=true; lk_offset=1; };
24060 @<Find the minimum |lk_offset| and adjust all remainders@>;
24061 if ( mp->bch_label<undefined_label )
24062 { skip_byte(mp->nl)=qi(255); next_char(mp->nl)=qi(0);
24063 op_byte(mp->nl)=qi(((mp->bch_label+lk_offset)/ 256));
24064 rem_byte(mp->nl)=qi(((mp->bch_label+lk_offset)% 256));
24065 incr(mp->nl); /* possibly |nl=lig_table_size+1| */
24068 @ @<Find the minimum |lk_offset|...@>=
24069 k=mp->label_ptr; /* pointer to the largest unallocated label */
24070 if ( mp->label_loc[k]+lk_offset>255 ) {
24071 lk_offset=0; mp->lk_started=false; /* location 0 can do double duty */
24073 mp->char_remainder[mp->label_char[k]]=lk_offset;
24074 while ( mp->label_loc[k-1]==mp->label_loc[k] ) {
24075 decr(k); mp->char_remainder[mp->label_char[k]]=lk_offset;
24077 incr(lk_offset); decr(k);
24078 } while (! (lk_offset+mp->label_loc[k]<256));
24079 /* N.B.: |lk_offset=256| satisfies this when |k=0| */
24081 if ( lk_offset>0 ) {
24083 mp->char_remainder[mp->label_char[k]]
24084 =mp->char_remainder[mp->label_char[k]]+lk_offset;
24089 @ @<Output the ligature/kern program@>=
24090 for (k=0;k<= 255;k++ ) {
24091 if ( mp->skip_table[k]<undefined_label ) {
24092 mp_print_nl(mp, "(local label "); mp_print_int(mp, k); mp_print(mp, ":: was missing)");
24093 @.local label l:: was missing@>
24094 cancel_skips(mp->skip_table[k]);
24097 if ( mp->lk_started ) { /* |lk_offset=1| for the special |bchar| */
24098 tfm_out(255); tfm_out(mp->bchar); mp_tfm_two(mp, 0);
24100 for (k=1;k<=lk_offset;k++) {/* output the redirection specs */
24101 mp->ll=mp->label_loc[mp->label_ptr];
24102 if ( mp->bchar<0 ) { tfm_out(254); tfm_out(0); }
24103 else { tfm_out(255); tfm_out(mp->bchar); };
24104 mp_tfm_two(mp, mp->ll+lk_offset);
24106 decr(mp->label_ptr);
24107 } while (! (mp->label_loc[mp->label_ptr]<mp->ll));
24110 for (k=0;k<=mp->nl-1;k++) mp_tfm_qqqq(mp, mp->lig_kern[k]);
24111 for (k=0;k<=mp->nk-1;k++) mp_tfm_four(mp, mp_dimen_out(mp, mp->kern[k]))
24113 @ @<Output the extensible character recipes...@>=
24114 for (k=0;k<=mp->ne-1;k++)
24115 mp_tfm_qqqq(mp, mp->exten[k]);
24116 for (k=1;k<=mp->np;k++) {
24118 if ( abs(mp->param[1])<fraction_half ) {
24119 mp_tfm_four(mp, mp->param[1]*16);
24121 incr(mp->tfm_changed);
24122 if ( mp->param[1]>0 ) mp_tfm_four(mp, el_gordo);
24123 else mp_tfm_four(mp, -el_gordo);
24126 mp_tfm_four(mp, mp_dimen_out(mp, mp->param[k]));
24129 if ( mp->tfm_changed>0 ) {
24130 if ( mp->tfm_changed==1 ) mp_print_nl(mp, "(a font metric dimension");
24131 @.a font metric dimension...@>
24133 mp_print_nl(mp, "("); mp_print_int(mp, mp->tfm_changed);
24134 @.font metric dimensions...@>
24135 mp_print(mp, " font metric dimensions");
24137 mp_print(mp, " had to be decreased)");
24140 @ @<Log the subfile sizes of the \.{TFM} file@>=
24144 if ( mp->bch_label<undefined_label ) decr(mp->nl);
24145 snprintf(s,128,"(You used %iw,%ih,%id,%ii,%il,%ik,%ie,%ip metric file positions)",
24146 mp->nw, mp->nh, mp->nd, mp->ni, mp->nl, mp->nk, mp->ne,mp->np);
24150 @* \[43] Reading font metric data.
24152 \MP\ isn't a typesetting program but it does need to find the bounding box
24153 of a sequence of typeset characters. Thus it needs to read \.{TFM} files as
24154 well as write them.
24159 @ All the width, height, and depth information is stored in an array called
24160 |font_info|. This array is allocated sequentially and each font is stored
24161 as a series of |char_info| words followed by the width, height, and depth
24162 tables. Since |font_name| entries are permanent, their |str_ref| values are
24163 set to |max_str_ref|.
24166 typedef unsigned int font_number; /* |0..font_max| */
24168 @ The |font_info| array is indexed via a group directory arrays.
24169 For example, the |char_info| data for character~|c| in font~|f| will be
24170 in |font_info[char_base[f]+c].qqqq|.
24173 font_number font_max; /* maximum font number for included text fonts */
24174 size_t font_mem_size; /* number of words for \.{TFM} information for text fonts */
24175 memory_word *font_info; /* height, width, and depth data */
24176 char **font_enc_name; /* encoding names, if any */
24177 boolean *font_ps_name_fixed; /* are the postscript names fixed already? */
24178 int next_fmem; /* next unused entry in |font_info| */
24179 font_number last_fnum; /* last font number used so far */
24180 scaled *font_dsize; /* 16 times the ``design'' size in \ps\ points */
24181 char **font_name; /* name as specified in the \&{infont} command */
24182 char **font_ps_name; /* PostScript name for use when |internal[prologues]>0| */
24183 font_number last_ps_fnum; /* last valid |font_ps_name| index */
24184 eight_bits *font_bc;
24185 eight_bits *font_ec; /* first and last character code */
24186 int *char_base; /* base address for |char_info| */
24187 int *width_base; /* index for zeroth character width */
24188 int *height_base; /* index for zeroth character height */
24189 int *depth_base; /* index for zeroth character depth */
24190 pointer *font_sizes;
24192 @ @<Allocate or initialize ...@>=
24193 mp->font_mem_size = 10000;
24194 mp->font_info = xmalloc ((mp->font_mem_size+1),sizeof(memory_word));
24195 memset (mp->font_info,0,sizeof(memory_word)*(mp->font_mem_size+1));
24196 mp->font_enc_name = NULL;
24197 mp->font_ps_name_fixed = NULL;
24198 mp->font_dsize = NULL;
24199 mp->font_name = NULL;
24200 mp->font_ps_name = NULL;
24201 mp->font_bc = NULL;
24202 mp->font_ec = NULL;
24203 mp->last_fnum = null_font;
24204 mp->char_base = NULL;
24205 mp->width_base = NULL;
24206 mp->height_base = NULL;
24207 mp->depth_base = NULL;
24208 mp->font_sizes = null;
24210 @ @<Dealloc variables@>=
24211 xfree(mp->font_info);
24212 xfree(mp->font_enc_name);
24213 xfree(mp->font_ps_name_fixed);
24214 xfree(mp->font_dsize);
24215 xfree(mp->font_name);
24216 xfree(mp->font_ps_name);
24217 xfree(mp->font_bc);
24218 xfree(mp->font_ec);
24219 xfree(mp->char_base);
24220 xfree(mp->width_base);
24221 xfree(mp->height_base);
24222 xfree(mp->depth_base);
24223 xfree(mp->font_sizes);
24227 void mp_reallocate_fonts (MP mp, font_number l) {
24229 XREALLOC(mp->font_enc_name, l, char *);
24230 XREALLOC(mp->font_ps_name_fixed, l, boolean);
24231 XREALLOC(mp->font_dsize, l, scaled);
24232 XREALLOC(mp->font_name, l, char *);
24233 XREALLOC(mp->font_ps_name, l, char *);
24234 XREALLOC(mp->font_bc, l, eight_bits);
24235 XREALLOC(mp->font_ec, l, eight_bits);
24236 XREALLOC(mp->char_base, l, int);
24237 XREALLOC(mp->width_base, l, int);
24238 XREALLOC(mp->height_base, l, int);
24239 XREALLOC(mp->depth_base, l, int);
24240 XREALLOC(mp->font_sizes, l, pointer);
24241 for (f=(mp->last_fnum+1);f<=l;f++) {
24242 mp->font_enc_name[f]=NULL;
24243 mp->font_ps_name_fixed[f] = false;
24244 mp->font_name[f]=NULL;
24245 mp->font_ps_name[f]=NULL;
24246 mp->font_sizes[f]=null;
24251 @ @<Declare |mp_reallocate| functions@>=
24252 void mp_reallocate_fonts (MP mp, font_number l);
24255 @ A |null_font| containing no characters is useful for error recovery. Its
24256 |font_name| entry starts out empty but is reset each time an erroneous font is
24257 found. This helps to cut down on the number of duplicate error messages without
24258 wasting a lot of space.
24260 @d null_font 0 /* the |font_number| for an empty font */
24262 @<Set initial...@>=
24263 mp->font_dsize[null_font]=0;
24264 mp->font_bc[null_font]=1;
24265 mp->font_ec[null_font]=0;
24266 mp->char_base[null_font]=0;
24267 mp->width_base[null_font]=0;
24268 mp->height_base[null_font]=0;
24269 mp->depth_base[null_font]=0;
24271 mp->last_fnum=null_font;
24272 mp->last_ps_fnum=null_font;
24273 mp->font_name[null_font]="nullfont";
24274 mp->font_ps_name[null_font]="";
24276 @ Each |char_info| word is of type |four_quarters|. The |b0| field contains
24277 the |width index|; the |b1| field contains the height
24278 index; the |b2| fields contains the depth index, and the |b3| field used only
24279 for temporary storage. (It is used to keep track of which characters occur in
24280 an edge structure that is being shipped out.)
24281 The corresponding words in the width, height, and depth tables are stored as
24282 |scaled| values in units of \ps\ points.
24284 With the macros below, the |char_info| word for character~|c| in font~|f| is
24285 |char_info(f)(c)| and the width is
24286 $$\hbox{|char_width(f)(char_info(f)(c)).sc|.}$$
24288 @d char_info_end(A) (A)].qqqq
24289 @d char_info(A) mp->font_info[mp->char_base[(A)]+char_info_end
24290 @d char_width_end(A) (A).b0].sc
24291 @d char_width(A) mp->font_info[mp->width_base[(A)]+char_width_end
24292 @d char_height_end(A) (A).b1].sc
24293 @d char_height(A) mp->font_info[mp->height_base[(A)]+char_height_end
24294 @d char_depth_end(A) (A).b2].sc
24295 @d char_depth(A) mp->font_info[mp->depth_base[(A)]+char_depth_end
24296 @d ichar_exists(A) ((A).b0>0)
24298 @ The |font_ps_name| for a built-in font should be what PostScript expects.
24299 A preliminary name is obtained here from the \.{TFM} name as given in the
24300 |fname| argument. This gets updated later from an external table if necessary.
24302 @<Declare text measuring subroutines@>=
24303 @<Declare subroutines for parsing file names@>;
24304 font_number mp_read_font_info (MP mp, char*fname) {
24305 boolean file_opened; /* has |tfm_infile| been opened? */
24306 font_number n; /* the number to return */
24307 halfword lf,tfm_lh,bc,ec,nw,nh,nd; /* subfile size parameters */
24308 size_t whd_size; /* words needed for heights, widths, and depths */
24309 int i,ii; /* |font_info| indices */
24310 int jj; /* counts bytes to be ignored */
24311 scaled z; /* used to compute the design size */
24313 /* height, width, or depth as a fraction of design size times $2^{-8}$ */
24314 eight_bits h_and_d; /* height and depth indices being unpacked */
24315 int tfbyte; /* a byte read from the file */
24317 @<Open |tfm_infile| for input@>;
24318 @<Read data from |tfm_infile|; if there is no room, say so and |goto done|;
24319 otherwise |goto bad_tfm| or |goto done| as appropriate@>;
24321 @<Complain that the \.{TFM} file is bad@>;
24323 if ( file_opened ) fclose(mp->tfm_infile);
24324 if ( n!=null_font ) {
24325 mp->font_ps_name[n]=fname;
24326 mp->font_name[n]=fname;
24331 @ \MP\ doesn't bother to check the entire \.{TFM} file for errors or explain
24332 precisely what is wrong if it does find a problem. Programs called \.{TFtoPL}
24333 @.TFtoPL@> @.PLtoTF@>
24334 and \.{PLtoTF} can be used to debug \.{TFM} files.
24336 @<Complain that the \.{TFM} file is bad@>=
24337 print_err("Font ");
24338 mp_print(mp, fname);
24339 if ( file_opened ) mp_print(mp, " not usable: TFM file is bad");
24340 else mp_print(mp, " not usable: TFM file not found");
24341 help3("I wasn't able to read the size data for this font so this")
24342 ("`infont' operation won't produce anything. If the font name")
24343 ("is right, you might ask an expert to make a TFM file");
24345 mp->help_line[0]="is right, try asking an expert to fix the TFM file";
24348 @ @<Read data from |tfm_infile|; if there is no room, say so...@>=
24349 @<Read the \.{TFM} size fields@>;
24350 @<Use the size fields to allocate space in |font_info|@>;
24351 @<Read the \.{TFM} header@>;
24352 @<Read the character data and the width, height, and depth tables and
24355 @ A bad \.{TFM} file can be shorter than it claims to be. The code given here
24356 might try to read past the end of the file if this happens. Changes will be
24357 needed if it causes a system error to refer to |tfm_infile^| or call
24358 |get_tfm_infile| when |eof(tfm_infile)| is true. For example, the definition
24359 @^system dependencies@>
24360 of |tfget| could be changed to
24361 ``|begin get(tfm_infile); if eof(tfm_infile) then goto bad_tfm; end|.''
24363 @d tfget {tfbyte = fgetc(mp->tfm_infile); }
24364 @d read_two(A) { (A)=tfbyte;
24365 if ( (A)>127 ) goto BAD_TFM;
24366 tfget; (A)=(A)*0400+tfbyte;
24368 @d tf_ignore(A) { for (jj=(A);jj>=1;jj--) tfget; }
24370 @<Read the \.{TFM} size fields@>=
24371 tfget; read_two(lf);
24372 tfget; read_two(tfm_lh);
24373 tfget; read_two(bc);
24374 tfget; read_two(ec);
24375 if ( (bc>1+ec)||(ec>255) ) goto BAD_TFM;
24376 tfget; read_two(nw);
24377 tfget; read_two(nh);
24378 tfget; read_two(nd);
24379 whd_size=(ec+1-bc)+nw+nh+nd;
24380 if ( lf<(int)(6+tfm_lh+whd_size) ) goto BAD_TFM;
24383 @ Offsets are added to |char_base[n]| and |width_base[n]| so that is not
24384 necessary to apply the |so| and |qo| macros when looking up the width of a
24385 character in the string pool. In order to ensure nonnegative |char_base|
24386 values when |bc>0|, it may be necessary to reserve a few unused |font_info|
24389 @<Use the size fields to allocate space in |font_info|@>=
24390 if ( mp->next_fmem<bc) mp->next_fmem=bc; /* ensure nonnegative |char_base| */
24391 if (mp->last_fnum==mp->font_max)
24392 mp_reallocate_fonts(mp,(mp->font_max+(mp->font_max>>2)));
24393 while (mp->next_fmem+whd_size>=mp->font_mem_size) {
24394 size_t l = mp->font_mem_size+(mp->font_mem_size>>2);
24395 memory_word *font_info;
24396 font_info = xmalloc ((l+1),sizeof(memory_word));
24397 memset (font_info,0,sizeof(memory_word)*(l+1));
24398 memcpy (font_info,mp->font_info,sizeof(memory_word)*(mp->font_mem_size+1));
24399 xfree(mp->font_info);
24400 mp->font_info = font_info;
24401 mp->font_mem_size = l;
24403 incr(mp->last_fnum);
24407 mp->char_base[n]=mp->next_fmem-bc;
24408 mp->width_base[n]=mp->next_fmem+ec-bc+1;
24409 mp->height_base[n]=mp->width_base[n]+nw;
24410 mp->depth_base[n]=mp->height_base[n]+nh;
24411 mp->next_fmem=mp->next_fmem+whd_size;
24414 @ @<Read the \.{TFM} header@>=
24415 if ( tfm_lh<2 ) goto BAD_TFM;
24417 tfget; read_two(z);
24418 tfget; z=z*0400+tfbyte;
24419 tfget; z=z*0400+tfbyte; /* now |z| is 16 times the design size */
24420 mp->font_dsize[n]=mp_take_fraction(mp, z,267432584);
24421 /* times ${72\over72.27}2^{28}$ to convert from \TeX\ points */
24422 tf_ignore(4*(tfm_lh-2))
24424 @ @<Read the character data and the width, height, and depth tables...@>=
24425 ii=mp->width_base[n];
24426 i=mp->char_base[n]+bc;
24428 tfget; mp->font_info[i].qqqq.b0=qi(tfbyte);
24429 tfget; h_and_d=tfbyte;
24430 mp->font_info[i].qqqq.b1=h_and_d / 16;
24431 mp->font_info[i].qqqq.b2=h_and_d % 16;
24435 while ( i<mp->next_fmem ) {
24436 @<Read a four byte dimension, scale it by the design size, store it in
24437 |font_info[i]|, and increment |i|@>;
24439 if (feof(mp->tfm_infile) ) goto BAD_TFM;
24442 @ The raw dimension read into |d| should have magnitude at most $2^{24}$ when
24443 interpreted as an integer, and this includes a scale factor of $2^{20}$. Thus
24444 we can multiply it by sixteen and think of it as a |fraction| that has been
24445 divided by sixteen. This cancels the extra scale factor contained in
24448 @<Read a four byte dimension, scale it by the design size, store it in...@>=
24451 if ( d>=0200 ) d=d-0400;
24452 tfget; d=d*0400+tfbyte;
24453 tfget; d=d*0400+tfbyte;
24454 tfget; d=d*0400+tfbyte;
24455 mp->font_info[i].sc=mp_take_fraction(mp, d*16,mp->font_dsize[n]);
24459 @ This function does no longer use the file name parser, because |fname| is
24460 a C string already.
24461 @<Open |tfm_infile| for input@>=
24463 mp_ptr_scan_file(mp, fname);
24464 if ( strlen(mp->cur_area)==0 ) mp->cur_area=xstrdup(MP_font_area);
24465 if ( strlen(mp->cur_ext)==0 ) mp->cur_ext=xstrdup(".tfm");
24466 mp->tfm_infile = mp_open_file(mp, fname, "rb",mp_filetype_metrics);
24467 if ( !mp->tfm_infile ) goto BAD_TFM;
24470 @ When we have a font name and we don't know whether it has been loaded yet,
24471 we scan the |font_name| array before calling |read_font_info|.
24473 @<Declare text measuring subroutines@>=
24474 font_number mp_find_font (MP mp, char *f) {
24476 for (n=0;n<=mp->last_fnum;n++) {
24477 if (mp_xstrcmp(f,mp->font_name[n])==0 )
24480 return mp_read_font_info(mp, f);
24483 @ One simple application of |find_font| is the implementation of the |font_size|
24484 operator that gets the design size for a given font name.
24486 @<Find the design size of the font whose name is |cur_exp|@>=
24487 mp_flush_cur_exp(mp, (mp->font_dsize[mp_find_font(mp, str(mp->cur_exp))]+8) / 16)
24489 @ If we discover that the font doesn't have a requested character, we omit it
24490 from the bounding box computation and expect the \ps\ interpreter to drop it.
24491 This routine issues a warning message if the user has asked for it.
24493 @<Declare text measuring subroutines@>=
24494 void mp_lost_warning (MP mp,font_number f, pool_pointer k) {
24495 if ( mp->internal[tracing_lost_chars]>0 ) {
24496 mp_begin_diagnostic(mp);
24497 if ( mp->selector==log_only ) incr(mp->selector);
24498 mp_print_nl(mp, "Missing character: There is no ");
24499 @.Missing character@>
24500 mp_print_str(mp, mp->str_pool[k]);
24501 mp_print(mp, " in font ");
24502 mp_print(mp, mp->font_name[f]); mp_print_char(mp, '!');
24503 mp_end_diagnostic(mp, false);
24507 @ The whole purpose of saving the height, width, and depth information is to be
24508 able to find the bounding box of an item of text in an edge structure. The
24509 |set_text_box| procedure takes a text node and adds this information.
24511 @<Declare text measuring subroutines@>=
24512 void mp_set_text_box (MP mp,pointer p) {
24513 font_number f; /* |font_n(p)| */
24514 ASCII_code bc,ec; /* range of valid characters for font |f| */
24515 pool_pointer k,kk; /* current character and character to stop at */
24516 four_quarters cc; /* the |char_info| for the current character */
24517 scaled h,d; /* dimensions of the current character */
24519 height_val(p)=-el_gordo;
24520 depth_val(p)=-el_gordo;
24524 kk=str_stop(text_p(p));
24525 k=mp->str_start[text_p(p)];
24527 @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>;
24529 @<Set the height and depth to zero if the bounding box is empty@>;
24532 @ @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>=
24534 if ( (mp->str_pool[k]<bc)||(mp->str_pool[k]>ec) ) {
24535 mp_lost_warning(mp, f,k);
24537 cc=char_info(f)(mp->str_pool[k]);
24538 if ( ! ichar_exists(cc) ) {
24539 mp_lost_warning(mp, f,k);
24541 width_val(p)=width_val(p)+char_width(f)(cc);
24542 h=char_height(f)(cc);
24543 d=char_depth(f)(cc);
24544 if ( h>height_val(p) ) height_val(p)=h;
24545 if ( d>depth_val(p) ) depth_val(p)=d;
24551 @ Let's hope modern compilers do comparisons correctly when the difference would
24554 @<Set the height and depth to zero if the bounding box is empty@>=
24555 if ( height_val(p)<-depth_val(p) ) {
24560 @ The new primitives fontmapfile and fontmapline.
24562 @<Declare action procedures for use by |do_statement|@>=
24563 void mp_do_mapfile (MP mp) ;
24564 void mp_do_mapline (MP mp) ;
24566 @ @c void mp_do_mapfile (MP mp) {
24567 mp_get_x_next(mp); mp_scan_expression(mp);
24568 if ( mp->cur_type!=mp_string_type ) {
24569 @<Complain about improper map operation@>;
24571 mp_map_file(mp,mp->cur_exp);
24574 void mp_do_mapline (MP mp) {
24575 mp_get_x_next(mp); mp_scan_expression(mp);
24576 if ( mp->cur_type!=mp_string_type ) {
24577 @<Complain about improper map operation@>;
24579 mp_map_line(mp,mp->cur_exp);
24583 @ @<Complain about improper map operation@>=
24585 exp_err("Unsuitable expression");
24586 help1("Only known strings can be map files or map lines.");
24587 mp_put_get_error(mp);
24591 @<Declare the \ps\ output procedures@>=
24592 void mp_ps_print_cmd (MP mp, char *l, char *s) {
24593 if ( mp->internal[mpprocset]>0 ) { ps_room(strlen(s)); mp_print(mp,s); }
24594 else { ps_room(strlen(l)); mp_print(mp, l); };
24596 void mp_print_cmd (MP mp,char *l, char *s) {
24597 if ( mp->internal[mpprocset]>0 ) mp_print(mp, s);
24598 else mp_print(mp, l);
24601 @ To print |scaled| value to PDF output we need some subroutines to ensure
24604 @d max_integer 0x7FFFFFFF /* $2^{31}-1$ */
24607 scaled one_bp; /* scaled value corresponds to 1bp */
24608 scaled one_hundred_bp; /* scaled value corresponds to 100bp */
24609 scaled one_hundred_inch; /* scaled value corresponds to 100in */
24610 integer ten_pow[10]; /* $10^0..10^9$ */
24611 integer scaled_out; /* amount of |scaled| that was taken out in |divide_scaled| */
24614 mp->one_bp = 65782; /* 65781.76 */
24615 mp->one_hundred_bp = 6578176;
24616 mp->one_hundred_inch = 473628672;
24617 mp->ten_pow[0] = 1;
24618 for (i = 1;i<= 9; i++ ) {
24619 mp->ten_pow[i] = 10*mp->ten_pow[i - 1];
24622 @ The following function divides |s| by |m|. |dd| is number of decimal digits.
24624 @c scaled mp_divide_scaled (MP mp,scaled s, scaled m, integer dd) {
24628 if ( s < 0 ) { sign = -sign; s = -s; }
24629 if ( m < 0 ) { sign = -sign; m = -m; }
24631 mp_confusion(mp, "arithmetic: divided by zero");
24632 else if ( m >= (max_integer / 10) )
24633 mp_confusion(mp, "arithmetic: number too big");
24636 for (i = 1;i<=dd;i++) {
24637 q = 10*q + (10*r) / m;
24640 if ( 2*r >= m ) { incr(q); r = r - m; }
24641 mp->scaled_out = sign*(s - (r / mp->ten_pow[dd]));
24645 @* \[44] Shipping pictures out.
24646 The |ship_out| procedure, to be described below, is given a pointer to
24647 an edge structure. Its mission is to output a file containing the \ps\
24648 description of an edge structure.
24650 @ Each time an edge structure is shipped out we write a new \ps\ output
24651 file named according to the current \&{charcode}.
24652 @:char_code_}{\&{charcode} primitive@>
24654 @<Declare the \ps\ output procedures@>=
24655 void mp_open_output_file (MP mp) ;
24657 @ @c void mp_open_output_file (MP mp) {
24658 integer c; /* \&{charcode} rounded to the nearest integer */
24659 int old_setting; /* previous |selector| setting */
24660 pool_pointer i; /* indexes into |filename_template| */
24661 integer cc; /* a temporary integer for template building */
24662 integer f,g=0; /* field widths */
24663 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24664 c=mp_round_unscaled(mp, mp->internal[char_code]);
24665 if ( mp->filename_template==0 ) {
24666 char *s; /* a file extension derived from |c| */
24670 @<Use |c| to compute the file extension |s|@>;
24671 mp_pack_job_name(mp, s);
24673 while ( ! mp_a_open_out(mp, &mp->ps_file, mp_filetype_postscript) )
24674 mp_prompt_file_name(mp, "file name for output",s);
24675 } else { /* initializations */
24676 str_number s, n; /* a file extension derived from |c| */
24677 old_setting=mp->selector;
24678 mp->selector=new_string;
24680 i = mp->str_start[mp->filename_template];
24681 n = rts(""); /* initialize */
24682 while ( i<str_stop(mp->filename_template) ) {
24683 if ( mp->str_pool[i]=='%' ) {
24686 if ( i<str_stop(mp->filename_template) ) {
24687 if ( mp->str_pool[i]=='j' ) {
24688 mp_print(mp, mp->job_name);
24689 } else if ( mp->str_pool[i]=='d' ) {
24690 cc= mp_round_unscaled(mp, mp->internal[day]);
24691 print_with_leading_zeroes(cc);
24692 } else if ( mp->str_pool[i]=='m' ) {
24693 cc= mp_round_unscaled(mp, mp->internal[month]);
24694 print_with_leading_zeroes(cc);
24695 } else if ( mp->str_pool[i]=='y' ) {
24696 cc= mp_round_unscaled(mp, mp->internal[year]);
24697 print_with_leading_zeroes(cc);
24698 } else if ( mp->str_pool[i]=='H' ) {
24699 cc= mp_round_unscaled(mp, mp->internal[mp_time]) / 60;
24700 print_with_leading_zeroes(cc);
24701 } else if ( mp->str_pool[i]=='M' ) {
24702 cc= mp_round_unscaled(mp, mp->internal[mp_time]) % 60;
24703 print_with_leading_zeroes(cc);
24704 } else if ( mp->str_pool[i]=='c' ) {
24705 if ( c<0 ) mp_print(mp, "ps");
24706 else print_with_leading_zeroes(c);
24707 } else if ( (mp->str_pool[i]>='0') &&
24708 (mp->str_pool[i]<='9') ) {
24710 f = (f*10) + mp->str_pool[i]-'0';
24713 mp_print_str(mp, mp->str_pool[i]);
24717 if ( mp->str_pool[i]=='.' )
24719 n = mp_make_string(mp);
24720 mp_print_str(mp, mp->str_pool[i]);
24724 s = mp_make_string(mp);
24725 mp->selector= old_setting;
24726 if (length(n)==0) {
24730 mp_pack_file_name(mp, str(n),"",str(s));
24731 while ( ! mp_a_open_out(mp, &mp->ps_file, mp_filetype_postscript) )
24732 mp_prompt_file_name(mp, "file name for output",str(s));
24736 @<Store the true output file name if appropriate@>;
24737 @<Begin the progress report for the output of picture~|c|@>;
24740 @ The file extension created here could be up to five characters long in
24741 extreme cases so it may have to be shortened on some systems.
24742 @^system dependencies@>
24744 @<Use |c| to compute the file extension |s|@>=
24747 snprintf(s,7,".%i",(int)c);
24750 @ The user won't want to see all the output file names so we only save the
24751 first and last ones and a count of how many there were. For this purpose
24752 files are ordered primarily by \&{charcode} and secondarily by order of
24754 @:char_code_}{\&{charcode} primitive@>
24756 @<Store the true output file name if appropriate@>=
24757 if ((c<mp->first_output_code)&&(mp->first_output_code>=0)) {
24758 mp->first_output_code=c;
24759 xfree(mp->first_file_name);
24760 mp->first_file_name=xstrdup(mp->name_of_file);
24762 if ( c>=mp->last_output_code ) {
24763 mp->last_output_code=c;
24764 xfree(mp->last_file_name);
24765 mp->last_file_name=xstrdup(mp->name_of_file);
24769 char * first_file_name;
24770 char * last_file_name; /* full file names */
24771 integer first_output_code;integer last_output_code; /* rounded \&{charcode} values */
24772 @:char_code_}{\&{charcode} primitive@>
24773 integer total_shipped; /* total number of |ship_out| operations completed */
24776 mp->first_file_name=xstrdup("");
24777 mp->last_file_name=xstrdup("");
24778 mp->first_output_code=32768;
24779 mp->last_output_code=-32768;
24780 mp->total_shipped=0;
24782 @ @<Dealloc variables@>=
24783 xfree(mp->first_file_name);
24784 xfree(mp->last_file_name);
24786 @ @<Begin the progress report for the output of picture~|c|@>=
24787 if ( (int)mp->term_offset>mp->max_print_line-6 ) mp_print_ln(mp);
24788 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
24789 mp_print_char(mp, '[');
24790 if ( c>=0 ) mp_print_int(mp, c)
24792 @ @<End progress report@>=
24793 mp_print_char(mp, ']');
24795 incr(mp->total_shipped)
24797 @ @<Explain what output files were written@>=
24798 if ( mp->total_shipped>0 ) {
24799 mp_print_nl(mp, "");
24800 mp_print_int(mp, mp->total_shipped);
24801 mp_print(mp, " output file");
24802 if ( mp->total_shipped>1 ) mp_print_char(mp, 's');
24803 mp_print(mp, " written: ");
24804 mp_print(mp, mp->first_file_name);
24805 if ( mp->total_shipped>1 ) {
24806 if ( 31+strlen(mp->first_file_name)+
24807 strlen(mp->last_file_name)> (unsigned)mp->max_print_line)
24809 mp_print(mp, " .. ");
24810 mp_print(mp, mp->last_file_name);
24814 @ We often need to print a pair of coordinates.
24816 @d ps_room(A) if ( (mp->ps_offset+(int)(A))>mp->max_print_line )
24817 mp_print_ln(mp) /* optional line break */
24819 @<Declare the \ps\ output procedures@>=
24820 void mp_ps_pair_out (MP mp,scaled x, scaled y) {
24822 mp_print_scaled(mp, x); mp_print_char(mp, ' ');
24823 mp_print_scaled(mp, y); mp_print_char(mp, ' ');
24826 @ @<Declare the \ps\ output procedures@>=
24827 void mp_ps_print (MP mp,char *s) {
24828 ps_room(strlen(s));
24833 void mp_ps_print (MP mp,char *s) ;
24836 @ The most important output procedure is the one that gives the \ps\ version of
24839 @<Declare the \ps\ output procedures@>=
24840 void mp_ps_path_out (MP mp,pointer h) {
24841 pointer p,q; /* for scanning the path */
24842 scaled d; /* a temporary value */
24843 boolean curved; /* |true| unless the cubic is almost straight */
24845 if ( mp->need_newpath )
24846 mp_print_cmd(mp, "newpath ","n ");
24847 mp->need_newpath=true;
24848 mp_ps_pair_out(mp, x_coord(h),y_coord(h));
24849 mp_print_cmd(mp, "moveto","m");
24852 if ( right_type(p)==endpoint ) {
24853 if ( p==h ) mp_ps_print_cmd(mp, " 0 0 rlineto"," 0 0 r");
24857 @<Start a new line and print the \ps\ commands for the curve from
24861 mp_ps_print_cmd(mp, " closepath"," p");
24865 boolean need_newpath;
24866 /* will |ps_path_out| need to issue a \&{newpath} command next time */
24867 @:newpath_}{\&{newpath} command@>
24869 @ @<Start a new line and print the \ps\ commands for the curve from...@>=
24871 @<Set |curved:=false| if the cubic from |p| to |q| is almost straight@>;
24874 mp_ps_pair_out(mp, right_x(p),right_y(p));
24875 mp_ps_pair_out(mp, left_x(q),left_y(q));
24876 mp_ps_pair_out(mp, x_coord(q),y_coord(q));
24877 mp_ps_print_cmd(mp, "curveto","c");
24878 } else if ( q!=h ){
24879 mp_ps_pair_out(mp, x_coord(q),y_coord(q));
24880 mp_ps_print_cmd(mp, "lineto","l");
24883 @ Two types of straight lines come up often in \MP\ paths:
24884 cubics with zero initial and final velocity as created by |make_path| or
24885 |make_envelope|, and cubics with control points uniformly spaced on a line
24886 as created by |make_choices|.
24888 @d bend_tolerance 131 /* allow rounding error of $2\cdot10^{-3}$ */
24890 @<Set |curved:=false| if the cubic from |p| to |q| is almost straight@>=
24891 if ( right_x(p)==x_coord(p) )
24892 if ( right_y(p)==y_coord(p) )
24893 if ( left_x(q)==x_coord(q) )
24894 if ( left_y(q)==y_coord(q) ) curved=false;
24895 d=left_x(q)-right_x(p);
24896 if ( abs(right_x(p)-x_coord(p)-d)<=bend_tolerance )
24897 if ( abs(x_coord(q)-left_x(q)-d)<=bend_tolerance )
24898 { d=left_y(q)-right_y(p);
24899 if ( abs(right_y(p)-y_coord(p)-d)<=bend_tolerance )
24900 if ( abs(y_coord(q)-left_y(q)-d)<=bend_tolerance ) curved=false;
24903 @ We need to keep track of several parameters from the \ps\ graphics state.
24905 This allows us to be sure that \ps\ has the correct values when they are
24906 needed without wasting time and space setting them unnecessarily.
24909 @d gs_red mp->mem[mp->gs_state+1].sc
24910 @d gs_green mp->mem[mp->gs_state+2].sc
24911 @d gs_blue mp->mem[mp->gs_state+3].sc
24912 @d gs_black mp->mem[mp->gs_state+4].sc
24913 /* color from the last \&{setcmykcolor} or \&{setrgbcolor} or \&{setgray} command */
24914 @d gs_colormodel mp->mem[mp->gs_state+5].qqqq.b0
24915 /* the current colormodel */
24916 @d gs_ljoin mp->mem[mp->gs_state+5].qqqq.b1
24917 @d gs_lcap mp->mem[mp->gs_state+5].qqqq.b2
24918 /* values from the last \&{setlinejoin} and \&{setlinecap} commands */
24919 @d gs_adj_wx mp->mem[mp->gs_state+5].qqqq.b3
24920 /* what resolution-dependent adjustment applies to the width */
24921 @d gs_miterlim mp->mem[mp->gs_state+6].sc
24922 /* the value from the last \&{setmiterlimit} command */
24923 @d gs_dash_p mp->mem[mp->gs_state+7].hh.lh
24924 /* edge structure for last \&{setdash} command */
24925 @d gs_previous mp->mem[mp->gs_state+7].hh.rh
24926 /* backlink to the previous |gs_state| structure */
24927 @d gs_dash_sc mp->mem[mp->gs_state+8].sc
24928 /* scale factor used with |gs_dash_p| */
24929 @d gs_width mp->mem[mp->gs_state+9].sc
24930 /* width setting or $-1$ if no \&{setlinewidth} command so far */
24938 @ To avoid making undue assumptions about the initial graphics state, these
24939 parameters are given special values that are guaranteed not to match anything
24940 in the edge structure being shipped out. On the other hand, the initial color
24941 should be black so that the translation of an all-black picture will have no
24942 \&{setcolor} commands. (These would be undesirable in a font application.)
24943 Hence we use |c=0| when initializing the graphics state and we use |c<0|
24944 to recover from a situation where we have lost track of the graphics state.
24946 @<Declare the \ps\ output procedures@>=
24947 void mp_unknown_graphics_state (MP mp,scaled c) ;
24949 @ @c void mp_unknown_graphics_state (MP mp,scaled c) {
24950 pointer p; /* to shift graphic states around */
24951 quarterword k; /* a loop index for copying the |gs_state| */
24952 if ( (c==0)||(c==-1) ) {
24953 if ( mp->gs_state==null ) {
24954 mp->gs_state = mp_get_node(mp, gs_node_size);
24957 while ( gs_previous!=null ) {
24959 mp_free_node(mp, mp->gs_state,gs_node_size);
24963 gs_red=c; gs_green=c; gs_blue=c; gs_black=c;
24964 gs_colormodel=uninitialized_model;
24971 } else if ( c==1 ) {
24973 mp->gs_state = mp_get_node(mp, gs_node_size);
24974 for (k=1;k<=gs_node_size-1;k++)
24975 mp->mem[mp->gs_state+k]=mp->mem[p+k];
24977 } else if ( c==2 ) {
24979 mp_free_node(mp, mp->gs_state,gs_node_size);
24984 @ When it is time to output a graphical object, |fix_graphics_state| ensures
24985 that \ps's idea of the graphics state agrees with what is stored in the object.
24987 @<Declare the \ps\ output procedures@>=
24988 @<Declare subroutines needed by |fix_graphics_state|@>;
24989 void mp_fix_graphics_state (MP mp, pointer p) ;
24992 void mp_fix_graphics_state (MP mp, pointer p) {
24993 /* get ready to output graphical object |p| */
24994 pointer hh,pp; /* for list manipulation */
24995 scaled wx,wy,ww; /* dimensions of pen bounding box */
24996 boolean adj_wx; /* whether pixel rounding should be based on |wx| or |wy| */
24997 integer tx,ty; /* temporaries for computing |adj_wx| */
24998 scaled scf; /* a scale factor for the dash pattern */
24999 if ( has_color(p) )
25000 @<Make sure \ps\ will use the right color for object~|p|@>;
25001 if ( (type(p)==fill_code)||(type(p)==stroked_code) )
25002 if ( pen_p(p)!=null )
25003 if ( pen_is_elliptical(pen_p(p)) ) {
25004 @<Generate \ps\ code that sets the stroke width to the
25005 appropriate rounded value@>;
25006 @<Make sure \ps\ will use the right dash pattern for |dash_p(p)|@>;
25007 @<Decide whether the line cap parameter matters and set it if necessary@>;
25008 @<Set the other numeric parameters as needed for object~|p|@>;
25010 if ( mp->ps_offset>0 ) mp_print_ln(mp);
25013 @ @<Decide whether the line cap parameter matters and set it if necessary@>=
25014 if ( type(p)==stroked_code )
25015 if ( (left_type(path_p(p))==endpoint)||(dash_p(p)!=null) )
25016 if ( gs_lcap!=lcap_val(p) ) {
25018 mp_print_char(mp, ' ');
25019 mp_print_char(mp, '0'+lcap_val(p));
25020 mp_print_cmd(mp, " setlinecap"," lc");
25021 gs_lcap=lcap_val(p);
25024 @ @<Set the other numeric parameters as needed for object~|p|@>=
25025 if ( gs_ljoin!=ljoin_val(p) ) {
25027 mp_print_char(mp, ' ');
25028 mp_print_char(mp, '0'+ljoin_val(p)); mp_print_cmd(mp, " setlinejoin"," lj");
25029 gs_ljoin=ljoin_val(p);
25031 if ( gs_miterlim!=miterlim_val(p) ) {
25033 mp_print_char(mp, ' ');
25034 mp_print_scaled(mp, miterlim_val(p)); mp_print_cmd(mp, " setmiterlimit"," ml");
25035 gs_miterlim=miterlim_val(p);
25038 @ @<Make sure \ps\ will use the right color for object~|p|@>=
25040 if ( (color_model(p)==rgb_model)||
25041 ((color_model(p)==uninitialized_model)&&
25042 ((mp->internal[default_color_model] / unity)==rgb_model)) ) {
25043 if ( (gs_colormodel!=rgb_model)||(gs_red!=red_val(p))||
25044 (gs_green!=green_val(p))||(gs_blue!=blue_val(p)) ) {
25046 gs_green=green_val(p);
25047 gs_blue=blue_val(p);
25049 gs_colormodel=rgb_model;
25051 mp_print_char(mp, ' ');
25052 mp_print_scaled(mp, gs_red); mp_print_char(mp, ' ');
25053 mp_print_scaled(mp, gs_green); mp_print_char(mp, ' ');
25054 mp_print_scaled(mp, gs_blue);
25055 mp_print_cmd(mp, " setrgbcolor", " R");
25058 } else if ( (color_model(p)==cmyk_model)||
25059 ((color_model(p)==uninitialized_model)&&
25060 ((mp->internal[default_color_model] / unity)==cmyk_model)) ) {
25061 if ( (gs_red!=cyan_val(p))||(gs_green!=magenta_val(p))||
25062 (gs_blue!=yellow_val(p))||(gs_black!=black_val(p))||
25063 (gs_colormodel!=cmyk_model) ) {
25064 if ( color_model(p)==uninitialized_model ) {
25070 gs_red=cyan_val(p);
25071 gs_green=magenta_val(p);
25072 gs_blue=yellow_val(p);
25073 gs_black=black_val(p);
25075 gs_colormodel=cmyk_model;
25077 mp_print_char(mp, ' ');
25078 mp_print_scaled(mp, gs_red); mp_print_char(mp, ' ');
25079 mp_print_scaled(mp, gs_green); mp_print_char(mp, ' ');
25080 mp_print_scaled(mp, gs_blue); mp_print_char(mp, ' ');
25081 mp_print_scaled(mp, gs_black);
25082 mp_print_cmd(mp, " setcmykcolor"," C");
25085 } else if ( (color_model(p)==grey_model)||
25086 ((color_model(p)==uninitialized_model)&&
25087 ((mp->internal[default_color_model] / unity)==grey_model)) ) {
25088 if ( (gs_red!=grey_val(p))||(gs_colormodel!=grey_model) ) {
25089 gs_red = grey_val(p);
25093 gs_colormodel=grey_model;
25095 mp_print_char(mp, ' ');
25096 mp_print_scaled(mp, gs_red);
25097 mp_print_cmd(mp, " setgray"," G");
25101 if ( color_model(p)==no_model )
25102 gs_colormodel=no_model;
25105 @ In order to get consistent widths for horizontal and vertical pen strokes, we
25106 want \ps\ to use an integer number of pixels for the \&{setwidth} parameter.
25107 @:setwidth}{\&{setwidth}command@>
25108 We set |gs_width| to the ideal horizontal or vertical stroke width and then
25109 generate \ps\ code that computes the rounded value. For non-circular pens, the
25110 pen shape will be rescaled so that horizontal or vertical parts of the stroke
25111 have the computed width.
25113 Rounding the width to whole pixels is not likely to improve the appearance of
25114 diagonal or curved strokes, but we do it anyway for consistency. The
25115 \&{truncate} command generated here tends to make all the strokes a little
25116 @:truncate}{\&{truncate} command@>
25117 thinner, but this is appropriate for \ps's scan-conversion rules. Even with
25118 truncation, an ideal with of $w$~pixels gets mapped into $\lfloor w\rfloor+1$.
25119 It would be better to have $\lceil w\rceil$ but that is ridiculously expensive
25122 @<Generate \ps\ code that sets the stroke width...@>=
25123 @<Set |wx| and |wy| to the width and height of the bounding box for
25125 @<Use |pen_p(p)| and |path_p(p)| to decide whether |wx| or |wy| is more
25126 important and set |adj_wx| and |ww| accordingly@>;
25127 if ( (ww!=gs_width) || (adj_wx!=gs_adj_wx) ) {
25130 mp_print_char(mp, ' '); mp_print_scaled(mp, ww);
25131 mp_ps_print_cmd(mp,
25132 " 0 dtransform exch truncate exch idtransform pop setlinewidth"," hlw");
25134 if ( mp->internal[mpprocset]>0 ) {
25136 mp_print_char(mp, ' ');
25137 mp_print_scaled(mp, ww);
25138 mp_ps_print(mp, " vlw");
25141 mp_print(mp, " 0 "); mp_print_scaled(mp, ww);
25142 mp_ps_print(mp, " dtransform truncate idtransform setlinewidth pop");
25146 gs_adj_wx = adj_wx;
25149 @ @<Set |wx| and |wy| to the width and height of the bounding box for...@>=
25151 if ( (right_x(pp)==x_coord(pp)) && (left_y(pp)==y_coord(pp)) ) {
25152 wx = abs(left_x(pp) - x_coord(pp));
25153 wy = abs(right_y(pp) - y_coord(pp));
25155 wx = mp_pyth_add(mp, left_x(pp)-x_coord(pp), right_x(pp)-x_coord(pp));
25156 wy = mp_pyth_add(mp, left_y(pp)-y_coord(pp), right_y(pp)-y_coord(pp));
25159 @ The path is considered ``essentially horizontal'' if its range of
25160 $y$~coordinates is less than the $y$~range |wy| for the pen. ``Essentially
25161 vertical'' paths are detected similarly. This code ensures that no component
25162 of the pen transformation is more that |aspect_bound*(ww+1)|.
25164 @d aspect_bound 10 /* ``less important'' of |wx|, |wy| cannot exceed the other by
25165 more than this factor */
25167 @<Use |pen_p(p)| and |path_p(p)| to decide whether |wx| or |wy| is more...@>=
25169 if ( mp_coord_rangeOK(mp, path_p(p), y_loc(0), wy) ) tx=aspect_bound;
25170 else if ( mp_coord_rangeOK(mp, path_p(p), x_loc(0), wx) ) ty=aspect_bound;
25171 if ( wy / ty>=wx / tx ) { ww=wy; adj_wx=false; }
25172 else { ww=wx; adj_wx=true; }
25174 @ This routine quickly tests if path |h| is ``essentially horizontal'' or
25175 ``essentially vertical,'' where |zoff| is |x_loc(0)| or |y_loc(0)| and |dz| is
25176 allowable range for $x$ or~$y$. We do not need and cannot afford a full
25177 bounding-box computation.
25179 @<Declare subroutines needed by |fix_graphics_state|@>=
25180 boolean mp_coord_rangeOK (MP mp,pointer h,
25181 small_number zoff, scaled dz) {
25182 pointer p; /* for scanning the path form |h| */
25183 scaled zlo,zhi; /* coordinate range so far */
25184 scaled z; /* coordinate currently being tested */
25185 zlo=knot_coord(h+zoff);
25188 while ( right_type(p)!=endpoint ) {
25189 z=right_coord(p+zoff);
25190 @<Make |zlo..zhi| include |z| and |return false| if |zhi-zlo>dz|@>;
25192 z=left_coord(p+zoff);
25193 @<Make |zlo..zhi| include |z| and |return false| if |zhi-zlo>dz|@>;
25194 z=knot_coord(p+zoff);
25195 @<Make |zlo..zhi| include |z| and |return false| if |zhi-zlo>dz|@>;
25201 @ @<Make |zlo..zhi| include |z| and |return false| if |zhi-zlo>dz|@>=
25202 if ( z<zlo ) zlo=z;
25203 else if ( z>zhi ) zhi=z;
25204 if ( zhi-zlo>dz ) return false
25206 @ Filling with an elliptical pen is implemented via a combination of \&{stroke}
25207 and \&{fill} commands and a nontrivial dash pattern would interfere with this.
25208 @:stroke}{\&{stroke} command@>
25209 @:fill}{\&{fill} command@>
25210 Note that we don't use |delete_edge_ref| because |gs_dash_p| is not counted as
25213 @<Make sure \ps\ will use the right dash pattern for |dash_p(p)|@>=
25214 if ( type(p)==fill_code ) {
25218 scf=mp_get_pen_scale(mp, pen_p(p));
25220 if ( gs_width==0 ) scf=dash_scale(p); else hh=null;
25222 scf=mp_make_scaled(mp, gs_width,scf);
25223 scf=mp_take_scaled(mp, scf,dash_scale(p));
25227 if ( gs_dash_p!=null ) {
25228 mp_ps_print_cmd(mp, " [] 0 setdash"," rd");
25231 } else if ( (gs_dash_sc!=scf) || ! mp_same_dashes(mp, gs_dash_p,hh) ) {
25232 @<Set the dash pattern from |dash_list(hh)| scaled by |scf|@>;
25235 @ Translating a dash list into \ps\ is very similar to printing it symbolically
25236 in |print_edges|. A dash pattern with |dash_y(hh)=0| has length zero and is
25237 ignored. The same fate applies in the bizarre case of a dash pattern that
25238 cannot be printed without overflow.
25240 @<Set the dash pattern from |dash_list(hh)| scaled by |scf|@>=
25243 if ( (dash_y(hh)==0) || (abs(dash_y(hh)) / unity >= el_gordo / scf)){
25244 mp_ps_print_cmd(mp, " [] 0 setdash"," rd");
25247 start_x(null_dash)=start_x(pp)+dash_y(hh);
25249 mp_print(mp, " [");
25250 while ( pp!=null_dash ) {
25251 mp_ps_pair_out(mp, mp_take_scaled(mp, stop_x(pp)-start_x(pp),scf),
25252 mp_take_scaled(mp, start_x(link(pp))-stop_x(pp),scf));
25256 mp_print(mp, "] ");
25257 mp_print_scaled(mp, mp_take_scaled(mp, mp_dash_offset(mp, hh),scf));
25258 mp_print_cmd(mp, " setdash"," sd");
25262 @ @<Declare subroutines needed by |fix_graphics_state|@>=
25263 boolean mp_same_dashes (MP mp,pointer h, pointer hh) ;
25266 boolean mp_same_dashes (MP mp,pointer h, pointer hh) {
25267 /* do |h| and |hh| represent the same dash pattern? */
25268 pointer p,pp; /* dash nodes being compared */
25269 if ( h==hh ) return true;
25270 else if ( (h<=diov)||(hh<=diov) ) return false;
25271 else if ( dash_y(h)!=dash_y(hh) ) return false;
25272 else { @<Compare |dash_list(h)| and |dash_list(hh)|@>; }
25273 return false; /* can't happen */
25276 @ @<Compare |dash_list(h)| and |dash_list(hh)|@>=
25279 while ( (p!=null_dash)&&(pp!=null_dash) ) {
25280 if ( (start_x(p)!=start_x(pp))||(stop_x(p)!=stop_x(pp)) ) {
25290 @ When stroking a path with an elliptical pen, it is necessary to transform
25291 the coordinate system so that a unit circular pen will have the desired shape.
25292 To keep this transformation local, we enclose it in a
25293 $$\&{gsave}\ldots\&{grestore}$$
25294 block. Any translation component must be applied to the path being stroked
25295 while the rest of the transformation must apply only to the pen.
25296 If |fill_also=true|, the path is to be filled as well as stroked so we must
25297 insert commands to do this after giving the path.
25299 @<Declare the \ps\ output procedures@>=
25300 void mp_stroke_ellipse (MP mp,pointer h, boolean fill_also) ;
25303 @c void mp_stroke_ellipse (MP mp,pointer h, boolean fill_also) {
25304 /* generate an elliptical pen stroke from object |h| */
25305 scaled txx,txy,tyx,tyy; /* transformation parameters */
25306 pointer p; /* the pen to stroke with */
25307 scaled d1,det; /* for tweaking transformation parameters */
25308 integer s; /* also for tweaking transformation paramters */
25309 boolean transformed; /* keeps track of whether gsave/grestore are needed */
25311 @<Use |pen_p(h)| to set the transformation parameters and give the initial
25313 @<Tweak the transformation parameters so the transformation is nonsingular@>;
25314 mp_ps_path_out(mp, path_p(h));
25315 if ( mp->internal[mpprocset]==0 ) {
25316 if ( fill_also ) mp_print_nl(mp, "gsave fill grestore");
25317 @<Issue \ps\ commands to transform the coordinate system@>;
25318 mp_ps_print(mp, " stroke");
25319 if ( transformed ) mp_ps_print(mp, " grestore");
25321 if ( fill_also ) mp_print_nl(mp, "B"); else mp_print_ln(mp);
25322 if ( (txy!=0)||(tyx!=0) ) {
25323 mp_print(mp, " [");
25324 mp_ps_pair_out(mp, txx,tyx);
25325 mp_ps_pair_out(mp, txy,tyy);
25326 mp_ps_print(mp, "0 0] t");
25327 } else if ((txx!=unity)||(tyy!=unity) ) {
25328 mp_ps_pair_out(mp,txx,tyy);
25329 mp_print(mp, " s");
25331 mp_ps_print(mp, " S");
25332 if ( transformed ) mp_ps_print(mp, " Q");
25337 @ @<Use |pen_p(h)| to set the transformation parameters and give the...@>=
25343 if ( (x_coord(p)!=0)||(y_coord(p)!=0) ) {
25344 mp_print_nl(mp, ""); mp_print_cmd(mp, "gsave ","q ");
25345 mp_ps_pair_out(mp, x_coord(p),y_coord(p));
25346 mp_ps_print(mp, "translate ");
25353 mp_print_nl(mp, "");
25355 @<Adjust the transformation to account for |gs_width| and output the
25356 initial \&{gsave} if |transformed| should be |true|@>
25358 @ @<Adjust the transformation to account for |gs_width| and output the...@>=
25359 if ( gs_width!=unity ) {
25360 if ( gs_width==0 ) {
25361 txx=unity; tyy=unity;
25363 txx=mp_make_scaled(mp, txx,gs_width);
25364 txy=mp_make_scaled(mp, txy,gs_width);
25365 tyx=mp_make_scaled(mp, tyx,gs_width);
25366 tyy=mp_make_scaled(mp, tyy,gs_width);
25369 if ( (txy!=0)||(tyx!=0)||(txx!=unity)||(tyy!=unity) ) {
25370 if ( (! transformed) ){
25371 mp_ps_print_cmd(mp, "gsave ","q ");
25376 @ @<Issue \ps\ commands to transform the coordinate system@>=
25377 if ( (txy!=0)||(tyx!=0) ){
25379 mp_print_char(mp, '[');
25380 mp_ps_pair_out(mp, txx,tyx);
25381 mp_ps_pair_out(mp, txy,tyy);
25382 mp_ps_print(mp, "0 0] concat");
25383 } else if ( (txx!=unity)||(tyy!=unity) ){
25385 mp_ps_pair_out(mp, txx,tyy);
25386 mp_print(mp, "scale");
25389 @ The \ps\ interpreter will probably abort if it encounters a singular
25390 transformation matrix. The determinant must be large enough to ensure that
25391 the printed representation will be nonsingular. Since the printed
25392 representation is always within $2^{-17}$ of the internal |scaled| value, the
25393 total error is at most $4T_{\rm max}2^{-17}$, where $T_{\rm max}$ is a bound on
25394 the magnitudes of |txx/65536|, |txy/65536|, etc.
25396 The |aspect_bound*(gs_width+1)| bound on the components of the pen
25397 transformation allows $T_{\rm max}$ to be at most |2*aspect_bound|.
25399 @<Tweak the transformation parameters so the transformation is nonsingular@>=
25400 det=mp_take_scaled(mp, txx,tyy) - mp_take_scaled(mp, txy,tyx);
25401 d1=4*aspect_bound+1;
25402 if ( abs(det)<d1 ) {
25403 if ( det>=0 ) { d1=d1-det; s=1; }
25404 else { d1=-d1-det; s=-1; };
25406 if ( abs(txx)+abs(tyy)>=abs(txy)+abs(tyy) ) {
25407 if ( abs(txx)>abs(tyy) ) tyy=tyy+(d1+s*abs(txx)) / txx;
25408 else txx=txx+(d1+s*abs(tyy)) / tyy;
25410 if ( abs(txy)>abs(tyx) ) tyx=tyx+(d1+s*abs(txy)) / txy;
25411 else txy=txy+(d1+s*abs(tyx)) / tyx;
25415 @ Here is a simple routine that just fills a cycle.
25417 @<Declare the \ps\ output procedures@>=
25418 void mp_ps_fill_out (MP mp,pointer p) ;
25421 void mp_ps_fill_out (MP mp,pointer p) { /* fill cyclic path~|p| */
25422 mp_ps_path_out(mp, p);
25423 mp_ps_print_cmd(mp, " fill"," F");
25427 @ Given a cyclic path~|p| and a graphical object~|h|, the |do_outer_envelope|
25428 procedure fills the cycle generated by |make_envelope|. It need not do
25429 anything unless some region has positive winding number with respect to~|p|,
25430 but it does not seem worthwhile to for test this.
25432 @<Declare the \ps\ output procedures@>=
25433 void mp_do_outer_envelope (MP mp,pointer p, pointer h) ;
25436 void mp_do_outer_envelope (MP mp,pointer p, pointer h) {
25437 p=mp_make_envelope(mp, p, pen_p(h), ljoin_val(h), 0, miterlim_val(h));
25438 mp_ps_fill_out(mp, p);
25439 mp_toss_knot_list(mp, p);
25442 @ A text node may specify an arbitrary transformation but the usual case
25443 involves only shifting, scaling, and occasionally rotation. The purpose
25444 of |choose_scale| is to select a scale factor so that the remaining
25445 transformation is as ``nice'' as possible. The definition of ``nice''
25446 is somewhat arbitrary but shifting and $90^\circ$ rotation are especially
25447 nice because they work out well for bitmap fonts. The code here selects
25448 a scale factor equal to $1/\sqrt2$ times the Frobenius norm of the
25449 non-shifting part of the transformation matrix. It is careful to avoid
25450 additions that might cause undetected overflow.
25452 @<Declare the \ps\ output procedures@>=
25453 scaled mp_choose_scale (MP mp,pointer p) ;
25455 @ @c scaled mp_choose_scale (MP mp,pointer p) {
25456 /* |p| should point to a text node */
25457 scaled a,b,c,d,ad,bc; /* temporary values */
25462 if ( (a<0) ) negate(a);
25463 if ( (b<0) ) negate(b);
25464 if ( (c<0) ) negate(c);
25465 if ( (d<0) ) negate(d);
25468 return mp_pyth_add(mp, mp_pyth_add(mp, d+ad,ad), mp_pyth_add(mp, c+bc,bc));
25471 @ @<Declare the \ps\ output procedures@>=
25472 void mp_ps_string_out (MP mp, char *s) {
25473 char *i; /* current character code position */
25474 ASCII_code k; /* bits to be converted to octal */
25478 if ( mp->ps_offset+5>mp->max_print_line ) {
25479 mp_print_char(mp, '\\');
25483 if ( (@<Character |k| is not allowed in PostScript output@>) ) {
25484 mp_print_char(mp, '\\');
25485 mp_print_char(mp, '0'+(k / 64));
25486 mp_print_char(mp, '0'+((k / 8) % 8));
25487 mp_print_char(mp, '0'+(k % 8));
25489 if ( (k=='(')||(k==')')||(k=='\\') ) mp_print_char(mp, '\\');
25490 mp_print_char(mp, k);
25494 mp_print_char(mp, ')');
25498 @d mp_is_ps_name(M,A) mp_do_is_ps_name(A)
25500 @<Declare the \ps\ output procedures@>=
25501 boolean mp_do_is_ps_name (char *s) {
25502 char *i; /* current character code position */
25503 ASCII_code k; /* the character being checked */
25507 if ( (k<=' ')||(k>'~') ) return false;
25508 if ( (k=='(')||(k==')')||(k=='<')||(k=='>')||
25509 (k=='{')||(k=='}')||(k=='/')||(k=='%') ) return false;
25516 void mp_ps_name_out (MP mp, char *s, boolean lit) ;
25519 void mp_ps_name_out (MP mp, char *s, boolean lit) {
25520 ps_room(strlen(s)+2);
25521 mp_print_char(mp, ' ');
25522 if ( mp_is_ps_name(mp, s) ) {
25523 if ( lit ) mp_print_char(mp, '/');
25526 mp_ps_string_out(mp, s);
25527 if ( ! lit ) mp_ps_print(mp, "cvx ");
25528 mp_ps_print(mp, "cvn");
25532 @ @<Declare the \ps\ output procedures@>=
25533 void mp_mark_string_chars (MP mp,font_number f, str_number s) ;
25536 void mp_mark_string_chars (MP mp,font_number f, str_number s) {
25537 integer b; /* |char_base[f]| */
25538 ASCII_code bc,ec; /* only characters between these bounds are marked */
25539 pool_pointer k; /* an index into string |s| */
25540 b=mp->char_base[f];
25544 while ( k>mp->str_start[s] ){
25546 if ( (mp->str_pool[k]>=bc)&&(mp->str_pool[k]<=ec) )
25547 mp->font_info[b+mp->str_pool[k]].qqqq.b3=used;
25551 @ There may be many sizes of one font and we need to keep track of the
25552 characters used for each size. This is done by keeping a linked list of
25553 sizes for each font with a counter in each text node giving the appropriate
25554 position in the size list for its font.
25556 @d sc_factor(A) mp->mem[(A)+1].sc /* the scale factor stored in a font size node */
25557 @d font_size_size 2 /* size of a font size node */
25560 boolean mp_has_font_size(MP mp, font_number f );
25563 boolean mp_has_font_size(MP mp, font_number f ) {
25564 return (mp->font_sizes[f]!=null);
25568 @ The overflow here is caused by the fact the returned value
25569 has to fit in a |name_type|, which is a quarterword.
25571 @d fscale_tolerance 65 /* that's $.001\times2^{16}$ */
25573 @<Declare the \ps\ output procedures@>=
25574 quarterword mp_size_index (MP mp, font_number f, scaled s) {
25575 pointer p,q; /* the previous and current font size nodes */
25576 quarterword i; /* the size index for |q| */
25577 q=mp->font_sizes[f];
25579 while ( q!=null ) {
25580 if ( abs(s-sc_factor(q))<=fscale_tolerance )
25583 { p=q; q=link(q); incr(i); };
25584 if ( i==max_quarterword )
25585 mp_overflow(mp, "sizes per font",max_quarterword);
25586 @:MetaPost capacity exceeded sizes per font}{\quad sizes per font@>
25588 q=mp_get_node(mp, font_size_size);
25590 if ( i==0 ) mp->font_sizes[f]=q; else link(p)=q;
25594 @ @<Declare the \ps\ output procedures@>=
25595 scaled mp_indexed_size (MP mp,font_number f, quarterword j) {
25596 pointer p; /* a font size node */
25597 quarterword i; /* the size index for |p| */
25598 p=mp->font_sizes[f];
25600 if ( p==null ) mp_confusion(mp, "size");
25602 incr(i); p=link(p);
25603 if ( p==null ) mp_confusion(mp, "size");
25605 return sc_factor(p);
25608 @ @<Declare the \ps\ output procedures@>=
25609 void mp_clear_sizes (MP mp) ;
25611 @ @c void mp_clear_sizes (MP mp) {
25612 font_number f; /* the font whose size list is being cleared */
25613 pointer p; /* current font size nodes */
25614 for (f=null_font+1;f<=mp->last_fnum;f++) {
25615 while ( mp->font_sizes[f]!=null ) {
25616 p=mp->font_sizes[f];
25617 mp->font_sizes[f]=link(p);
25618 mp_free_node(mp, p,font_size_size);
25623 @ The \&{special} command saves up lines of text to be printed during the next
25624 |ship_out| operation. The saved items are stored as a list of capsule tokens.
25627 pointer last_pending; /* the last token in a list of pending specials */
25630 mp->last_pending=spec_head;
25632 @ @<Cases of |do_statement|...@>=
25633 case special_command:
25634 if ( mp->cur_mod==0 ) mp_do_special(mp); else
25635 if ( mp->cur_mod==1 ) mp_do_mapfile(mp); else
25639 @ @<Declare action procedures for use by |do_statement|@>=
25640 void mp_do_special (MP mp) ;
25642 @ @c void mp_do_special (MP mp) {
25643 mp_get_x_next(mp); mp_scan_expression(mp);
25644 if ( mp->cur_type!=mp_string_type ) {
25645 @<Complain about improper special operation@>;
25647 link(mp->last_pending)=mp_stash_cur_exp(mp);
25648 mp->last_pending=link(mp->last_pending);
25649 link(mp->last_pending)=null;
25653 @ @<Complain about improper special operation@>=
25655 exp_err("Unsuitable expression");
25656 help1("Only known strings are allowed for output as specials.");
25657 mp_put_get_error(mp);
25660 @ @<Print any pending specials@>=
25662 while ( t!=null ) {
25663 mp_print_str(mp, value(t));
25667 mp_flush_token_list(mp, link(spec_head));
25668 link(spec_head)=null;
25669 mp->last_pending=spec_head
25671 @ We are now ready for the main output procedure. Note that the |selector|
25672 setting is saved in a global variable so that |begin_diagnostic| can access it.
25674 @<Declare the \ps\ output procedures@>=
25675 void mp_ship_out (MP mp, pointer h) ;
25678 void mp_ship_out (MP mp, pointer h) { /* output edge structure |h| */
25679 pointer p; /* the current graphical object */
25680 pointer q; /* something that |p| points to */
25681 integer t; /* a temporary value */
25682 font_number f; /* fonts used in a text node or as loop counters */
25684 scaled ds,scf; /* design size and scale factor for a text node */
25685 boolean transformed; /* is the coordinate system being transformed? */
25686 mp_open_output_file(mp);
25687 mp->non_ps_setting=mp->selector; mp->selector=ps_file_only;
25688 if ( (mp->internal[prologues]==two)||(mp->internal[prologues]==three) ) {
25689 @<Print improved initial comment and bounding box for edge structure~|h|@>;
25690 @<Scan all the text nodes and mark the used characters@>;
25691 mp_load_encodings(mp,mp->last_fnum);
25692 @<Update encoding names@>;
25693 @<Print the improved prologue and setup@>;
25694 @<Print any pending specials@>;
25695 mp_unknown_graphics_state(mp, 0);
25696 mp->need_newpath=true;
25697 p=link(dummy_loc(h));
25698 while ( p!=null ) {
25699 if ( has_color(p) ) {
25700 if ( (pre_script(p))!=null ) {
25701 mp_print_nl (mp, str(pre_script(p))); mp_print_ln(mp);
25704 mp_fix_graphics_state(mp, p);
25706 @<Cases for translating graphical object~|p| into \ps@>;
25707 case mp_start_bounds_code:
25708 case mp_stop_bounds_code:
25710 } /* all cases are enumerated */
25713 mp_print_cmd(mp, "showpage","P"); mp_print_ln(mp);
25714 mp_print(mp, "%%EOF"); mp_print_ln(mp);
25715 fclose(mp->ps_file);
25716 mp->selector=mp->non_ps_setting;
25717 if ( mp->internal[prologues]<=0 ) mp_clear_sizes(mp);
25718 @<End progress report@>;
25720 @<Print the initial comment and give the bounding box for edge structure~|h|@>;
25721 if ( (mp->internal[prologues]>0) && (mp->last_ps_fnum<mp->last_fnum) )
25722 mp_read_psname_table(mp);
25723 mp_print_prologue(mp, (mp->internal[prologues]>>16), (mp->internal[mpprocset]>>16), ldf);
25724 mp_print_nl(mp, "%%Page: 1 1"); mp_print_ln(mp);
25725 @<Print any pending specials@>;
25726 mp_unknown_graphics_state(mp, 0);
25727 mp->need_newpath=true;
25728 p=link(dummy_loc(h));
25729 while ( p!=null ) {
25730 if ( has_color(p) ) {
25731 if ( (pre_script(p))!=null ) {
25732 mp_print_nl (mp, str(pre_script(p))); mp_print_ln(mp);
25735 mp_fix_graphics_state(mp, p);
25737 @<Cases for translating graphical object~|p| into \ps@>;
25738 case mp_start_bounds_code:
25739 case mp_stop_bounds_code:
25741 } /* all cases are enumerated */
25744 mp_print_cmd(mp, "showpage","P"); mp_print_ln(mp);
25745 mp_print(mp, "%%EOF"); mp_print_ln(mp);
25746 fclose(mp->ps_file);
25747 mp->selector=mp->non_ps_setting;
25748 if ( mp->internal[prologues]<=0 ) mp_clear_sizes(mp);
25749 @<End progress report@>;
25751 if ( mp->internal[tracing_output]>0 )
25752 mp_print_edges(mp, h," (just shipped out)",true);
25756 void mp_apply_mark_string_chars(MP mp, pointer h, int next_size);
25759 void mp_apply_mark_string_chars(MP mp, pointer h, int next_size) {
25761 p=link(dummy_loc(h));
25762 while ( p!=null ) {
25763 if ( type(p)==text_code )
25764 if ( font_n(p)!=null_font )
25765 if ( name_type(p)==next_size )
25766 mp_mark_string_chars(mp, font_n(p),text_p(p));
25772 @<Print the improved prologue and setup@>=
25774 mp_print_improved_prologue(mp, (mp->internal[prologues]>>16),(mp->internal[mpprocset]>>16),
25775 (mp->internal[gtroffmode]>>16), null, h);
25779 @<Print improved initial comment and bounding box for edge...@>=
25780 mp_print(mp, "%!PS-Adobe-3.0 EPSF-3.0");
25781 mp_print_nl(mp, "%%BoundingBox: ");
25782 mp_set_bbox(mp, h,true);
25783 if ( minx_val(h)>maxx_val(h) ) {
25784 mp_print(mp, "0 0 0 0");
25786 mp_ps_pair_out(mp, mp_floor_scaled(mp, minx_val(h)),mp_floor_scaled(mp, miny_val(h)));
25787 mp_ps_pair_out(mp, -mp_floor_scaled(mp, -maxx_val(h)),-mp_floor_scaled(mp, -maxy_val(h)));
25789 mp_print_nl(mp, "%%HiResBoundingBox: ");
25790 if ( minx_val(h)>maxx_val(h) ) {
25791 mp_print(mp, "0 0 0 0");
25793 mp_ps_pair_out(mp, minx_val(h),miny_val(h));
25794 mp_ps_pair_out(mp, maxx_val(h),maxy_val(h));
25796 mp_print_nl(mp, "%%Creator: MetaPost ");
25797 mp_print(mp, metapost_version);
25798 mp_print_nl(mp, "%%CreationDate: ");
25799 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[year])); mp_print_char(mp, '.');
25800 mp_print_dd(mp, mp_round_unscaled(mp, mp->internal[month])); mp_print_char(mp, '.');
25801 mp_print_dd(mp, mp_round_unscaled(mp, mp->internal[day])); mp_print_char(mp, ':');
25802 t=mp_round_unscaled(mp, mp->internal[mp_time]);
25803 mp_print_dd(mp, t / 60); mp_print_dd(mp, t % 60);
25804 mp_print_nl(mp, "%%Pages: 1");
25808 @ @<Scan all the text nodes and mark the used ...@>=
25809 for (f=null_font+1;f<=mp->last_fnum;f++) {
25810 if ( mp->font_sizes[f]!=null ) {
25811 mp_unmark_font(mp, f);
25812 mp->font_sizes[f]=null;
25814 if ( mp->font_enc_name[f]!=NULL )
25815 xfree(mp->font_enc_name[f]);
25816 mp->font_enc_name[f] = NULL;
25818 for (f=null_font+1;f<=mp->last_fnum;f++) {
25819 p=link(dummy_loc(h));
25820 while ( p!=null ) {
25821 if ( type(p)==text_code ) {
25822 if ( font_n(p)!=null_font ) {
25823 mp->font_sizes[font_n(p)] = diov;
25824 mp_mark_string_chars(mp, font_n(p),text_p(p));
25825 if ( mp_has_fm_entry(mp,font_n(p),NULL) )
25826 mp->font_ps_name[font_n(p)] = mp_fm_font_name(mp,font_n(p));
25833 @ @<Update encoding names@>=
25834 for (f=null_font+1;f<=mp->last_fnum;f++) {
25835 p=link(dummy_loc(h));
25836 while ( p!=null ) {
25837 if ( type(p)==text_code )
25838 if ( font_n(p)!=null_font )
25839 if ( mp_has_fm_entry(mp,font_n(p),NULL) )
25840 if ( mp->font_enc_name[font_n(p)]==NULL )
25841 mp->font_enc_name[font_n(p)] = mp_fm_encoding_name(mp,font_n(p));
25846 @ These special comments described in the {\sl PostScript Language Reference
25847 Manual}, 2nd.~edition are understood by some \ps-reading programs.
25848 We can't normally output ``conforming'' \ps\ because
25849 the structuring conventions don't allow us to say ``Please make sure the
25850 following characters are downloaded and define the \.{fshow} macro to access
25853 The exact bounding box is written out if |prologues<0|, although this
25854 is not standard \ps, since it allows \TeX\ to calculate the box dimensions
25855 accurately. (Overfull boxes are avoided if an illustration is made to
25856 match a given \.{\char`\\hsize}.)
25858 @<Print the initial comment and give the bounding box for edge...@>=
25859 mp_print(mp, "%!PS");
25860 if ( mp->internal[prologues]>0 ) mp_print(mp, "-Adobe-3.0 EPSF-3.0");
25861 mp_print_nl(mp, "%%BoundingBox: ");
25862 mp_set_bbox(mp, h,true);
25863 if ( minx_val(h)>maxx_val(h) ) mp_print(mp, "0 0 0 0");
25864 else if ( mp->internal[prologues]<0 ) {
25865 mp_ps_pair_out(mp, minx_val(h),miny_val(h));
25866 mp_ps_pair_out(mp, maxx_val(h),maxy_val(h));
25868 mp_ps_pair_out(mp, mp_floor_scaled(mp, minx_val(h)),mp_floor_scaled(mp, miny_val(h)));
25869 mp_ps_pair_out(mp, -mp_floor_scaled(mp, -maxx_val(h)),-mp_floor_scaled(mp, -maxy_val(h)));
25871 mp_print_nl(mp, "%%HiResBoundingBox: ");
25872 if ( minx_val(h)>maxx_val(h) ) mp_print(mp, "0 0 0 0");
25874 mp_ps_pair_out(mp, minx_val(h),miny_val(h));
25875 mp_ps_pair_out(mp, maxx_val(h),maxy_val(h));
25877 mp_print_nl(mp, "%%Creator: MetaPost ");
25878 mp_print(mp, metapost_version);
25879 mp_print_nl(mp, "%%CreationDate: ");
25880 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[year])); mp_print_char(mp, '.');
25881 mp_print_dd(mp, mp_round_unscaled(mp, mp->internal[month])); mp_print_char(mp, '.');
25882 mp_print_dd(mp, mp_round_unscaled(mp, mp->internal[day])); mp_print_char(mp, ':');
25883 t=mp_round_unscaled(mp, mp->internal[mp_time]);
25884 mp_print_dd(mp, t / 60); mp_print_dd(mp, t % 60);
25885 mp_print_nl(mp, "%%Pages: 1");
25886 @<List all the fonts and magnifications for edge structure~|h|@>;
25889 @ @<List all the fonts and magnifications for edge structure~|h|@>=
25890 @<Scan all the text nodes and set the |font_sizes| lists;
25891 if |internal[prologues]<=0| list the sizes selected by |choose_scale|,
25892 apply |unmark_font| to each font encountered, and call |mark_string|
25893 whenever the size index is zero@>;
25894 ldf = mp_print_font_comments (mp, (mp->internal[prologues]>>16), null, h)
25896 @ @<Scan all the text nodes and set the |font_sizes| lists;...@>=
25897 for (f=null_font+1;f<=mp->last_fnum;f++)
25898 mp->font_sizes[f]=null;
25899 p=link(dummy_loc(h));
25900 while ( p!=null ) {
25901 if ( type(p)==text_code ) {
25902 if ( font_n(p)!=null_font ) {
25904 if ( mp->internal[prologues]>0 ) {
25905 mp->font_sizes[f]=diov;
25907 if ( mp->font_sizes[f]==null ) mp_unmark_font(mp, f);
25908 name_type(p)=mp_size_index(mp, f,mp_choose_scale(mp, p));
25909 if ( name_type(p)==0 )
25910 mp_mark_string_chars(mp, f,text_p(p));
25917 @ @<Cases for translating graphical object~|p| into \ps@>=
25918 case mp_start_clip_code:
25919 mp_print_nl(mp, ""); mp_print_cmd(mp, "gsave ","q ");
25920 mp_ps_path_out(mp, path_p(p));
25921 mp_ps_print_cmd(mp, " clip"," W");
25923 if ( mp->internal[restore_clip_color]>0 )
25924 mp_unknown_graphics_state(mp, 1);
25926 case mp_stop_clip_code:
25927 mp_print_nl(mp, ""); mp_print_cmd(mp, "grestore","Q");
25929 if ( mp->internal[restore_clip_color]>0 )
25930 mp_unknown_graphics_state(mp, 2);
25932 mp_unknown_graphics_state(mp, -1);
25935 @ @<Cases for translating graphical object~|p| into \ps@>=
25937 if ( pen_p(p)==null ) mp_ps_fill_out(mp, path_p(p));
25938 else if ( pen_is_elliptical(pen_p(p)) ) mp_stroke_ellipse(mp, p,true);
25940 mp_do_outer_envelope(mp, mp_copy_path(mp, path_p(p)), p);
25941 mp_do_outer_envelope(mp, mp_htap_ypoc(mp, path_p(p)), p);
25943 if ( (post_script(p))!=null ) {
25944 mp_print_nl (mp, str(post_script(p))); mp_print_ln(mp);
25948 if ( pen_is_elliptical(pen_p(p)) ) mp_stroke_ellipse(mp, p,false);
25950 q=mp_copy_path(mp, path_p(p));
25952 @<Break the cycle and set |t:=1| if path |q| is cyclic@>;
25953 q=mp_make_envelope(mp, q,pen_p(p),ljoin_val(p),t,miterlim_val(p));
25954 mp_ps_fill_out(mp, q);
25955 mp_toss_knot_list(mp, q);
25957 if ( (post_script(p))!=null ) {
25958 mp_print_nl (mp, str(post_script(p))); mp_print_ln(mp);
25962 @ The envelope of a cyclic path~|q| could be computed by calling
25963 |make_envelope| once for |q| and once for its reversal. We don't do this
25964 because it would fail color regions that are covered by the pen regardless
25965 of where it is placed on~|q|.
25967 @<Break the cycle and set |t:=1| if path |q| is cyclic@>=
25968 if ( left_type(q)!=endpoint ) {
25969 left_type(mp_insert_knot(mp, q,x_coord(q),y_coord(q)))=endpoint;
25970 right_type(q)=endpoint;
25975 @ @<Cases for translating graphical object~|p| into \ps@>=
25977 if ( (font_n(p)!=null_font) && (length(text_p(p))>0) ) {
25978 if ( mp->internal[prologues]>0 )
25979 scf=mp_choose_scale(mp, p);
25981 scf=mp_indexed_size(mp, font_n(p), name_type(p));
25982 @<Shift or transform as necessary before outputting text node~|p| at scale
25983 factor~|scf|; set |transformed:=true| if the original transformation must
25985 mp_ps_string_out(mp, str(text_p(p)));
25986 mp_ps_name_out(mp, mp->font_name[font_n(p)],false);
25987 @<Print the size information and \ps\ commands for text node~|p|@>;
25990 if ( (post_script(p))!=null ) {
25991 mp_print_nl (mp, str(post_script(p))); mp_print_ln(mp);
25995 @ @<Print the size information and \ps\ commands for text node~|p|@>=
25997 mp_print_char(mp, ' ');
25998 ds=(mp->font_dsize[font_n(p)]+8) / 16;
25999 mp_print_scaled(mp, mp_take_scaled(mp, ds,scf));
26000 mp_print(mp, " fshow");
26002 mp_ps_print_cmd(mp, " grestore"," Q")
26004 @ @<Shift or transform as necessary before outputting text node~|p| at...@>=
26005 transformed=(txx_val(p)!=scf)||(tyy_val(p)!=scf)||
26006 (txy_val(p)!=0)||(tyx_val(p)!=0);
26007 if ( transformed ) {
26008 mp_print_cmd(mp, "gsave [", "q [");
26009 mp_ps_pair_out(mp, mp_make_scaled(mp, txx_val(p),scf),
26010 mp_make_scaled(mp, tyx_val(p),scf));
26011 mp_ps_pair_out(mp, mp_make_scaled(mp, txy_val(p),scf),
26012 mp_make_scaled(mp, tyy_val(p),scf));
26013 mp_ps_pair_out(mp, tx_val(p),ty_val(p));
26014 mp_ps_print_cmd(mp, "] concat 0 0 moveto","] t 0 0 m");
26016 mp_ps_pair_out(mp, tx_val(p),ty_val(p));
26017 mp_ps_print_cmd(mp, "moveto","m");
26021 @ Now that we've finished |ship_out|, let's look at the other commands
26022 by which a user can send things to the \.{GF} file.
26024 @ @<Determine if a character has been shipped out@>=
26026 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
26027 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
26028 boolean_reset(mp->char_exists[mp->cur_exp]);
26029 mp->cur_type=mp_boolean_type;
26035 @ @<Allocate or initialize ...@>=
26036 mp_backend_initialize(mp);
26039 mp_backend_free(mp);
26042 @* \[45] Dumping and undumping the tables.
26043 After \.{INIMP} has seen a collection of macros, it
26044 can write all the necessary information on an auxiliary file so
26045 that production versions of \MP\ are able to initialize their
26046 memory at high speed. The present section of the program takes
26047 care of such output and input. We shall consider simultaneously
26048 the processes of storing and restoring,
26049 so that the inverse relation between them is clear.
26052 The global variable |mem_ident| is a string that is printed right
26053 after the |banner| line when \MP\ is ready to start. For \.{INIMP} this
26054 string says simply `\.{(INIMP)}'; for other versions of \MP\ it says,
26055 for example, `\.{(mem=plain 90.4.14)}', showing the year,
26056 month, and day that the mem file was created. We have |mem_ident=0|
26057 before \MP's tables are loaded.
26063 mp->mem_ident=NULL;
26065 @ @<Initialize table entries...@>=
26066 if (mp->ini_version)
26067 mp->mem_ident=xstrdup(" (INIMP)");
26069 @ @<Declare act...@>=
26070 void mp_store_mem_file (MP mp) ;
26072 @ @c void mp_store_mem_file (MP mp) {
26073 integer k; /* all-purpose index */
26074 pointer p,q; /* all-purpose pointers */
26075 integer x; /* something to dump */
26076 four_quarters w; /* four ASCII codes */
26078 @<Create the |mem_ident|, open the mem file,
26079 and inform the user that dumping has begun@>;
26080 @<Dump constants for consistency check@>;
26081 @<Dump the string pool@>;
26082 @<Dump the dynamic memory@>;
26083 @<Dump the table of equivalents and the hash table@>;
26084 @<Dump a few more things and the closing check word@>;
26085 @<Close the mem file@>;
26088 @ Corresponding to the procedure that dumps a mem file, we also have a function
26089 that reads~one~in. The function returns |false| if the dumped mem is
26090 incompatible with the present \MP\ table sizes, etc.
26092 @d off_base 6666 /* go here if the mem file is unacceptable */
26093 @d too_small(A) { wake_up_terminal;
26094 wterm_ln("---! Must increase the "); wterm((A));
26095 @.Must increase the x@>
26100 boolean mp_load_mem_file (MP mp) {
26101 integer k; /* all-purpose index */
26102 pointer p,q; /* all-purpose pointers */
26103 integer x; /* something undumped */
26104 str_number s; /* some temporary string */
26105 four_quarters w; /* four ASCII codes */
26107 @<Undump constants for consistency check@>;
26108 @<Undump the string pool@>;
26109 @<Undump the dynamic memory@>;
26110 @<Undump the table of equivalents and the hash table@>;
26111 @<Undump a few more things and the closing check word@>;
26112 return true; /* it worked! */
26115 wterm_ln("(Fatal mem file error; I'm stymied)\n");
26116 @.Fatal mem file error@>
26120 @ @<Declarations@>=
26121 boolean mp_load_mem_file (MP mp) ;
26123 @ Mem files consist of |memory_word| items, and we use the following
26124 macros to dump words of different types:
26126 @d dump_wd(A) { WW=(A); fwrite(&WW,sizeof(WW),1,mp->mem_file); }
26127 @d dump_int(A) { WW.cint=(A); fwrite(&WW,sizeof(WW),1,mp->mem_file); }
26128 @d dump_hh(A) { WW.hh=(A); fwrite(&WW,sizeof(WW),1,mp->mem_file); }
26129 @d dump_qqqq(A) { WW.qqqq=(A); fwrite(&WW,sizeof(WW),1,mp->mem_file); }
26130 @d dump_string(A) { dump_int(strlen(A)+1);
26131 fwrite(A,strlen(A)+1,1,mp->mem_file); }
26134 FILE * mem_file; /* for input or output of mem information */
26136 @ The inverse macros are slightly more complicated, since we need to check
26137 the range of the values we are reading in. We say `|undump(a)(b)(x)|' to
26138 read an integer value |x| that is supposed to be in the range |a<=x<=b|.
26140 @d undump_wd(A) { fread(&WW,sizeof(WW),1,mp->mem_file); (A)=WW; }
26141 @d undump_int(A) { fread(&WW,sizeof(WW),1,mp->mem_file); (A)=WW.cint; }
26142 @d undump_hh(A) { fread(&WW,sizeof(WW),1,mp->mem_file); (A)=WW.hh; }
26143 @d undump_qqqq(A) { fread(&WW,sizeof(WW),1,mp->mem_file); (A)=WW.qqqq; }
26144 @d undump_strings(A,B,C) {
26145 undump_int(x); if ( (x<(A)) || (x>(B)) ) goto OFF_BASE; else (C)=str(x); }
26146 @d undump(A,B,C) { undump_int(x); if ( (x<(A)) || (x>(int)(B)) ) goto OFF_BASE; else (C)=x; }
26147 @d undump_size(A,B,C,D) { undump_int(x);
26148 if (x<(A)) goto OFF_BASE;
26149 if (x>(B)) { too_small((C)); } else {(D)=x;} }
26150 @d undump_string(A) { integer XX=0; undump_int(XX);
26151 A = xmalloc(XX,sizeof(char));
26152 fread(A,XX,1,mp->mem_file); }
26154 @ The next few sections of the program should make it clear how we use the
26155 dump/undump macros.
26157 @<Dump constants for consistency check@>=
26158 dump_int(mp->mem_top);
26159 dump_int(mp->hash_size);
26160 dump_int(mp->hash_prime)
26161 dump_int(mp->param_size);
26162 dump_int(mp->max_in_open);
26164 @ Sections of a \.{WEB} program that are ``commented out'' still contribute
26165 strings to the string pool; therefore \.{INIMP} and \MP\ will have
26166 the same strings. (And it is, of course, a good thing that they do.)
26170 @<Undump constants for consistency check@>=
26171 undump_int(x); mp->mem_top = x;
26172 undump_int(x); if (mp->hash_size != x) goto OFF_BASE;
26173 undump_int(x); if (mp->hash_prime != x) goto OFF_BASE;
26174 undump_int(x); if (mp->param_size != x) goto OFF_BASE;
26175 undump_int(x); if (mp->max_in_open != x) goto OFF_BASE
26177 @ We do string pool compaction to avoid dumping unused strings.
26180 w.b0=qi(mp->str_pool[k]); w.b1=qi(mp->str_pool[k+1]);
26181 w.b2=qi(mp->str_pool[k+2]); w.b3=qi(mp->str_pool[k+3]);
26184 @<Dump the string pool@>=
26185 mp_do_compaction(mp, mp->pool_size);
26186 dump_int(mp->pool_ptr);
26187 dump_int(mp->max_str_ptr);
26188 dump_int(mp->str_ptr);
26190 while ( (mp->next_str[k]==k+1) && (k<=mp->max_str_ptr) )
26193 while ( k<=mp->max_str_ptr ) {
26194 dump_int(mp->next_str[k]); incr(k);
26198 dump_int((mp->str_start[k]));
26199 if ( k==mp->str_ptr ) {
26206 while (k+4<mp->pool_ptr ) {
26207 dump_four_ASCII; k=k+4;
26209 k=mp->pool_ptr-4; dump_four_ASCII;
26210 mp_print_ln(mp); mp_print(mp, "at most "); mp_print_int(mp, mp->max_str_ptr);
26211 mp_print(mp, " strings of total length ");
26212 mp_print_int(mp, mp->pool_ptr)
26214 @ @d undump_four_ASCII
26216 mp->str_pool[k]=qo(w.b0); mp->str_pool[k+1]=qo(w.b1);
26217 mp->str_pool[k+2]=qo(w.b2); mp->str_pool[k+3]=qo(w.b3)
26219 @<Undump the string pool@>=
26220 undump_int(mp->pool_ptr);
26221 mp_reallocate_pool(mp, mp->pool_ptr) ;
26222 undump_int(mp->max_str_ptr);
26223 mp_reallocate_strings (mp,mp->max_str_ptr) ;
26224 undump(0,mp->max_str_ptr,mp->str_ptr);
26225 undump(0,mp->max_str_ptr+1,s);
26226 for (k=0;k<=s-1;k++)
26227 mp->next_str[k]=k+1;
26228 for (k=s;k<=mp->max_str_ptr;k++)
26229 undump(s+1,mp->max_str_ptr+1,mp->next_str[k]);
26230 mp->fixed_str_use=0;
26233 undump(0,mp->pool_ptr,mp->str_start[k]);
26234 if ( k==mp->str_ptr ) break;
26235 mp->str_ref[k]=max_str_ref;
26236 incr(mp->fixed_str_use);
26237 mp->last_fixed_str=k; k=mp->next_str[k];
26240 while ( k+4<mp->pool_ptr ) {
26241 undump_four_ASCII; k=k+4;
26243 k=mp->pool_ptr-4; undump_four_ASCII;
26244 mp->init_str_use=mp->fixed_str_use; mp->init_pool_ptr=mp->pool_ptr;
26245 mp->max_pool_ptr=mp->pool_ptr;
26246 mp->strs_used_up=mp->fixed_str_use;
26247 mp->pool_in_use=mp->str_start[mp->str_ptr]; mp->strs_in_use=mp->fixed_str_use;
26248 mp->max_pl_used=mp->pool_in_use; mp->max_strs_used=mp->strs_in_use;
26249 mp->pact_count=0; mp->pact_chars=0; mp->pact_strs=0;
26251 @ By sorting the list of available spaces in the variable-size portion of
26252 |mem|, we are usually able to get by without having to dump very much
26253 of the dynamic memory.
26255 We recompute |var_used| and |dyn_used|, so that \.{INIMP} dumps valid
26256 information even when it has not been gathering statistics.
26258 @<Dump the dynamic memory@>=
26259 mp_sort_avail(mp); mp->var_used=0;
26260 dump_int(mp->lo_mem_max); dump_int(mp->rover);
26261 p=0; q=mp->rover; x=0;
26263 for (k=p;k<= q+1;k++)
26264 dump_wd(mp->mem[k]);
26265 x=x+q+2-p; mp->var_used=mp->var_used+q-p;
26266 p=q+node_size(q); q=rlink(q);
26267 } while (q!=mp->rover);
26268 mp->var_used=mp->var_used+mp->lo_mem_max-p;
26269 mp->dyn_used=mp->mem_end+1-mp->hi_mem_min;
26270 for (k=p;k<= mp->lo_mem_max;k++ )
26271 dump_wd(mp->mem[k]);
26272 x=x+mp->lo_mem_max+1-p;
26273 dump_int(mp->hi_mem_min); dump_int(mp->avail);
26274 for (k=mp->hi_mem_min;k<=mp->mem_end;k++ )
26275 dump_wd(mp->mem[k]);
26276 x=x+mp->mem_end+1-mp->hi_mem_min;
26278 while ( p!=null ) {
26279 decr(mp->dyn_used); p=link(p);
26281 dump_int(mp->var_used); dump_int(mp->dyn_used);
26282 mp_print_ln(mp); mp_print_int(mp, x);
26283 mp_print(mp, " memory locations dumped; current usage is ");
26284 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used)
26286 @ @<Undump the dynamic memory@>=
26287 undump(lo_mem_stat_max+1000,hi_mem_stat_min-1,mp->lo_mem_max);
26288 undump(lo_mem_stat_max+1,mp->lo_mem_max,mp->rover);
26291 for (k=p;k<= q+1; k++)
26292 undump_wd(mp->mem[k]);
26294 if ( (p>mp->lo_mem_max)||((q>=rlink(q))&&(rlink(q)!=mp->rover)) )
26297 } while (q!=mp->rover);
26298 for (k=p;k<=mp->lo_mem_max;k++ )
26299 undump_wd(mp->mem[k]);
26300 undump(mp->lo_mem_max+1,hi_mem_stat_min,mp->hi_mem_min);
26301 undump(null,mp->mem_top,mp->avail); mp->mem_end=mp->mem_top;
26302 for (k=mp->hi_mem_min;k<= mp->mem_end;k++)
26303 undump_wd(mp->mem[k]);
26304 undump_int(mp->var_used); undump_int(mp->dyn_used)
26306 @ A different scheme is used to compress the hash table, since its lower region
26307 is usually sparse. When |text(p)<>0| for |p<=hash_used|, we output three
26308 words: |p|, |hash[p]|, and |eqtb[p]|. The hash table is, of course, densely
26309 packed for |p>=hash_used|, so the remaining entries are output in~a~block.
26311 @<Dump the table of equivalents and the hash table@>=
26312 dump_int(mp->hash_used);
26313 mp->st_count=frozen_inaccessible-1-mp->hash_used;
26314 for (p=1;p<=mp->hash_used;p++) {
26315 if ( text(p)!=0 ) {
26316 dump_int(p); dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]); incr(mp->st_count);
26319 for (p=mp->hash_used+1;p<=(int)hash_end;p++) {
26320 dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]);
26322 dump_int(mp->st_count);
26323 mp_print_ln(mp); mp_print_int(mp, mp->st_count); mp_print(mp, " symbolic tokens")
26325 @ @<Undump the table of equivalents and the hash table@>=
26326 undump(1,frozen_inaccessible,mp->hash_used);
26329 undump(p+1,mp->hash_used,p);
26330 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
26331 } while (p!=mp->hash_used);
26332 for (p=mp->hash_used+1;p<=(int)hash_end;p++ ) {
26333 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
26335 undump_int(mp->st_count)
26337 @ We have already printed a lot of statistics, so we set |tracing_stats:=0|
26338 to prevent them appearing again.
26340 @<Dump a few more things and the closing check word@>=
26341 dump_int(mp->max_internal);
26342 dump_int(mp->int_ptr);
26343 for (k=1;k<= mp->int_ptr;k++ ) {
26344 dump_int(mp->internal[k]);
26345 dump_string(mp->int_name[k]);
26347 dump_int(mp->start_sym);
26348 dump_int(mp->interaction);
26349 dump_string(mp->mem_ident);
26350 dump_int(mp->bg_loc); dump_int(mp->eg_loc); dump_int(mp->serial_no); dump_int(69073);
26351 mp->internal[tracing_stats]=0
26353 @ @<Undump a few more things and the closing check word@>=
26355 if (x>mp->max_internal) mp_grow_internals(mp,x);
26356 undump_int(mp->int_ptr);
26357 for (k=1;k<= mp->int_ptr;k++) {
26358 undump_int(mp->internal[k]);
26359 undump_string(mp->int_name[k]);
26361 undump(0,frozen_inaccessible,mp->start_sym);
26362 if (mp->interaction==mp_unspecified_mode) {
26363 undump(mp_unspecified_mode,mp_error_stop_mode,mp->interaction);
26365 undump(mp_unspecified_mode,mp_error_stop_mode,x);
26367 undump_string(mp->mem_ident);
26368 undump(1,hash_end,mp->bg_loc);
26369 undump(1,hash_end,mp->eg_loc);
26370 undump_int(mp->serial_no);
26372 if ( (x!=69073)|| feof(mp->mem_file) ) goto OFF_BASE
26374 @ @<Create the |mem_ident|...@>=
26376 xfree(mp->mem_ident);
26377 mp->mem_ident = xmalloc(256,1);
26378 snprintf(mp->mem_ident,256," (mem=%s %i.%i.%i)",
26380 (int)(mp_round_unscaled(mp, mp->internal[year]) % 100),
26381 (int)mp_round_unscaled(mp, mp->internal[month]),
26382 (int)mp_round_unscaled(mp, mp->internal[day]));
26383 mp_pack_job_name(mp, mem_extension);
26384 while (! mp_w_open_out(mp, &mp->mem_file) )
26385 mp_prompt_file_name(mp, "mem file name", mem_extension);
26386 mp_print_nl(mp, "Beginning to dump on file ");
26387 @.Beginning to dump...@>
26388 mp_print(mp, mp->name_of_file);
26389 mp_print_nl(mp, mp->mem_ident);
26392 @ @<Dealloc variables@>=
26393 xfree(mp->mem_ident);
26395 @ @<Close the mem file@>=
26396 fclose(mp->mem_file)
26398 @* \[46] The main program.
26399 This is it: the part of \MP\ that executes all those procedures we have
26402 Well---almost. We haven't put the parsing subroutines into the
26403 program yet; and we'd better leave space for a few more routines that may
26404 have been forgotten.
26406 @c @<Declare the basic parsing subroutines@>;
26407 @<Declare miscellaneous procedures that were declared |forward|@>;
26408 @<Last-minute procedures@>
26410 @ We've noted that there are two versions of \MP. One, called \.{INIMP},
26412 has to be run first; it initializes everything from scratch, without
26413 reading a mem file, and it has the capability of dumping a mem file.
26414 The other one is called `\.{VIRMP}'; it is a ``virgin'' program that needs
26416 to input a mem file in order to get started. \.{VIRMP} typically has
26417 a bit more memory capacity than \.{INIMP}, because it does not need the
26418 space consumed by the dumping/undumping routines and the numerous calls on
26421 The \.{VIRMP} program cannot read a mem file instantaneously, of course;
26422 the best implementations therefore allow for production versions of \MP\ that
26423 not only avoid the loading routine for \PASCAL\ object code, they also have
26424 a mem file pre-loaded.
26427 boolean ini_version; /* are we iniMP? */
26429 @ @<Option variables@>=
26430 boolean ini_version; /* are we iniMP? */
26432 @ @<Set |ini_version|@>=
26433 mp->ini_version = (opt.ini_version ? true : false);
26435 @ Here we do whatever is needed to complete \MP's job gracefully on the
26436 local operating system. The code here might come into play after a fatal
26437 error; it must therefore consist entirely of ``safe'' operations that
26438 cannot produce error messages. For example, it would be a mistake to call
26439 |str_room| or |make_string| at this time, because a call on |overflow|
26440 might lead to an infinite loop.
26441 @^system dependencies@>
26443 This program doesn't bother to close the input files that may still be open.
26445 @<Last-minute...@>=
26446 void mp_close_files_and_terminate (MP mp) {
26447 integer k; /* all-purpose index */
26448 integer LH; /* the length of the \.{TFM} header, in words */
26449 int lk_offset; /* extra words inserted at beginning of |lig_kern| array */
26450 pointer p; /* runs through a list of \.{TFM} dimensions */
26451 @<Close all open files in the |rd_file| and |wr_file| arrays@>;
26452 if ( mp->internal[tracing_stats]>0 )
26453 @<Output statistics about this job@>;
26455 @<Do all the finishing work on the \.{TFM} file@>;
26456 @<Explain what output files were written@>;
26457 if ( mp->log_opened ){
26459 fclose(mp->log_file); mp->selector=mp->selector-2;
26460 if ( mp->selector==term_only ) {
26461 mp_print_nl(mp, "Transcript written on ");
26462 @.Transcript written...@>
26463 mp_print(mp, mp->log_name); mp_print_char(mp, '.');
26469 @ @<Declarations@>=
26470 void mp_close_files_and_terminate (MP mp) ;
26472 @ @<Close all open files in the |rd_file| and |wr_file| arrays@>=
26473 for (k=0;k<=(int)mp->read_files-1;k++ ) {
26474 if ( mp->rd_fname[k]!=NULL ) fclose(mp->rd_file[k]);
26476 for (k=0;k<=(int)mp->write_files-1;k++) {
26477 if ( mp->wr_fname[k]!=NULL ) fclose(mp->wr_file[k]);
26480 @ We want to produce a \.{TFM} file if and only if |fontmaking| is positive.
26482 We reclaim all of the variable-size memory at this point, so that
26483 there is no chance of another memory overflow after the memory capacity
26484 has already been exceeded.
26486 @<Do all the finishing work on the \.{TFM} file@>=
26487 if ( mp->internal[fontmaking]>0 ) {
26488 @<Make the dynamic memory into one big available node@>;
26489 @<Massage the \.{TFM} widths@>;
26490 mp_fix_design_size(mp); mp_fix_check_sum(mp);
26491 @<Massage the \.{TFM} heights, depths, and italic corrections@>;
26492 mp->internal[fontmaking]=0; /* avoid loop in case of fatal error */
26493 @<Finish the \.{TFM} file@>;
26496 @ @<Make the dynamic memory into one big available node@>=
26497 mp->rover=lo_mem_stat_max+1; link(mp->rover)=empty_flag; mp->lo_mem_max=mp->hi_mem_min-1;
26498 if ( mp->lo_mem_max-mp->rover>max_halfword ) mp->lo_mem_max=max_halfword+mp->rover;
26499 node_size(mp->rover)=mp->lo_mem_max-mp->rover;
26500 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
26501 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null
26503 @ The present section goes directly to the log file instead of using
26504 |print| commands, because there's no need for these strings to take
26505 up |str_pool| memory when a non-{\bf stat} version of \MP\ is being used.
26507 @<Output statistics...@>=
26508 if ( mp->log_opened ) {
26511 wlog_ln("Here is how much of MetaPost's memory you used:");
26512 @.Here is how much...@>
26513 snprintf(s,128," %i string%s out of %i",(int)mp->max_strs_used-mp->init_str_use,
26514 (mp->max_strs_used!=mp->init_str_use+1 ? "s" : ""),
26515 (int)(mp->max_strings-1-mp->init_str_use));
26517 snprintf(s,128," %i string characters out of %i",
26518 (int)mp->max_pl_used-mp->init_pool_ptr,
26519 (int)mp->pool_size-mp->init_pool_ptr);
26521 snprintf(s,128," %i words of memory out of %i",
26522 (int)mp->lo_mem_max+mp->mem_end-mp->hi_mem_min+2,
26523 (int)mp->mem_end+1);
26525 snprintf(s,128," %i symbolic tokens out of %i", (int)mp->st_count, (int)mp->hash_size);
26527 snprintf(s,128," %ii, %in, %ip, %ib stack positions out of %ii, %in, %ip, %ib",
26528 (int)mp->max_in_stack,(int)mp->int_ptr,
26529 (int)mp->max_param_stack,(int)mp->max_buf_stack+1,
26530 (int)mp->stack_size,(int)mp->max_internal,(int)mp->param_size,(int)mp->buf_size);
26532 snprintf(s,128," %i string compactions (moved %i characters, %i strings)",
26533 (int)mp->pact_count,(int)mp->pact_chars,(int)mp->pact_strs);
26537 @ We get to the |final_cleanup| routine when \&{end} or \&{dump} has
26540 @<Last-minute...@>=
26541 void mp_final_cleanup (MP mp) {
26542 small_number c; /* 0 for \&{end}, 1 for \&{dump} */
26544 if ( mp->job_name==NULL ) mp_open_log_file(mp);
26545 while ( mp->input_ptr>0 ) {
26546 if ( token_state ) mp_end_token_list(mp);
26547 else mp_end_file_reading(mp);
26549 while ( mp->loop_ptr!=null ) mp_stop_iteration(mp);
26550 while ( mp->open_parens>0 ) {
26551 mp_print(mp, " )"); decr(mp->open_parens);
26553 while ( mp->cond_ptr!=null ) {
26554 mp_print_nl(mp, "(end occurred when ");
26555 @.end occurred...@>
26556 mp_print_cmd_mod(mp, fi_or_else,mp->cur_if);
26557 /* `\.{if}' or `\.{elseif}' or `\.{else}' */
26558 if ( mp->if_line!=0 ) {
26559 mp_print(mp, " on line "); mp_print_int(mp, mp->if_line);
26561 mp_print(mp, " was incomplete)");
26562 mp->if_line=if_line_field(mp->cond_ptr);
26563 mp->cur_if=name_type(mp->cond_ptr); mp->cond_ptr=link(mp->cond_ptr);
26565 if ( mp->history!=spotless )
26566 if ( ((mp->history==warning_issued)||(mp->interaction<mp_error_stop_mode)) )
26567 if ( mp->selector==term_and_log ) {
26568 mp->selector=term_only;
26569 mp_print_nl(mp, "(see the transcript file for additional information)");
26570 @.see the transcript file...@>
26571 mp->selector=term_and_log;
26574 if (mp->ini_version) {
26575 mp_store_mem_file(mp); return;
26577 mp_print_nl(mp, "(dump is performed only by INIMP)"); return;
26578 @.dump...only by INIMP@>
26582 @ @<Declarations@>=
26583 void mp_final_cleanup (MP mp) ;
26584 void mp_init_prim (MP mp) ;
26585 void mp_init_tab (MP mp) ;
26587 @ @<Last-minute...@>=
26588 void mp_init_prim (MP mp) { /* initialize all the primitives */
26592 void mp_init_tab (MP mp) { /* initialize other tables */
26593 integer k; /* all-purpose index */
26594 @<Initialize table entries (done by \.{INIMP} only)@>;
26598 @ When we begin the following code, \MP's tables may still contain garbage;
26599 the strings might not even be present. Thus we must proceed cautiously to get
26602 But when we finish this part of the program, \MP\ is ready to call on the
26603 |main_control| routine to do its work.
26605 @<Get the first line...@>=
26607 @<Initialize the input routines@>;
26608 if ( (mp->mem_ident==NULL)||(mp->buffer[loc]=='&') ) {
26609 if ( mp->mem_ident!=NULL ) mp_initialize(mp); /* erase preloaded mem */
26610 if ( ! mp_open_mem_file(mp) ) return false;
26611 if ( ! mp_load_mem_file(mp) ) {
26612 fclose( mp->mem_file); return false;
26614 fclose( mp->mem_file);
26615 while ( (loc<limit)&&(mp->buffer[loc]==' ') ) incr(loc);
26617 mp->buffer[limit]='%';
26618 mp_fix_date_and_time(mp);
26619 mp->sys_random_seed = (mp->get_random_seed)(mp);
26620 mp_init_randoms(mp, mp->sys_random_seed);
26621 @<Initialize the print |selector|...@>;
26622 if ( loc<limit ) if ( mp->buffer[loc]!='\\' )
26623 mp_start_input(mp); /* \&{input} assumed */
26626 @ @<Run inimpost commands@>=
26628 mp_get_strings_started(mp);
26629 mp_init_tab(mp); /* initialize the tables */
26630 mp_init_prim(mp); /* call |primitive| for each primitive */
26631 mp->init_str_use=mp->str_ptr; mp->init_pool_ptr=mp->pool_ptr;
26632 mp->max_str_ptr=mp->str_ptr; mp->max_pool_ptr=mp->pool_ptr;
26633 mp_fix_date_and_time(mp);
26637 @* \[47] Debugging.
26638 Once \MP\ is working, you should be able to diagnose most errors with
26639 the \.{show} commands and other diagnostic features. But for the initial
26640 stages of debugging, and for the revelation of really deep mysteries, you
26641 can compile \MP\ with a few more aids, including the \PASCAL\ runtime
26642 checks and its debugger. An additional routine called |debug_help|
26643 will also come into play when you type `\.D' after an error message;
26644 |debug_help| also occurs just before a fatal error causes \MP\ to succumb.
26646 @^system dependencies@>
26648 The interface to |debug_help| is primitive, but it is good enough when used
26649 with a \PASCAL\ debugger that allows you to set breakpoints and to read
26650 variables and change their values. After getting the prompt `\.{debug \#}', you
26651 type either a negative number (this exits |debug_help|), or zero (this
26652 goes to a location where you can set a breakpoint, thereby entering into
26653 dialog with the \PASCAL\ debugger), or a positive number |m| followed by
26654 an argument |n|. The meaning of |m| and |n| will be clear from the
26655 program below. (If |m=13|, there is an additional argument, |l|.)
26658 @<Last-minute...@>=
26659 void mp_debug_help (MP mp) { /* routine to display various things */
26664 mp_print_nl(mp, "debug # (-1 to exit):"); update_terminal;
26667 fscanf(mp->term_in,"%i",&m);
26671 fscanf(mp->term_in,"%i",&n);
26673 @<Numbered cases for |debug_help|@>;
26674 default: mp_print(mp, "?"); break;
26679 @ @<Numbered cases...@>=
26680 case 1: mp_print_word(mp, mp->mem[n]); /* display |mem[n]| in all forms */
26682 case 2: mp_print_int(mp, info(n));
26684 case 3: mp_print_int(mp, link(n));
26686 case 4: mp_print_int(mp, eq_type(n)); mp_print_char(mp, ':'); mp_print_int(mp, equiv(n));
26688 case 5: mp_print_variable_name(mp, n);
26690 case 6: mp_print_int(mp, mp->internal[n]);
26692 case 7: mp_do_show_dependencies(mp);
26694 case 9: mp_show_token_list(mp, n,null,100000,0);
26696 case 10: mp_print_str(mp, n);
26698 case 11: mp_check_mem(mp, n>0); /* check wellformedness; print new busy locations if |n>0| */
26700 case 12: mp_search_mem(mp, n); /* look for pointers to |n| */
26702 case 13: l = 0; fscanf(mp->term_in,"%i",&l); mp_print_cmd_mod(mp, n,l);
26704 case 14: for (k=0;k<=n;k++) mp_print_str(mp, mp->buffer[k]);
26706 case 15: mp->panicking=! mp->panicking;
26710 @ \MP\ used to have one single routine to print to both `write' files
26711 and the PostScript output. Web2c redefines ``Character |k| cannot be
26712 printed'', and that resulted in some bugs where 8-bit characters were
26713 written to the PostScript file (reported by Wlodek Bzyl).
26715 Also, Hans Hagen requested spaces to be output as "\\040" instead of
26716 a plain space, since that makes it easier to parse the result file
26717 for postprocessing.
26719 @<Character |k| is not allowed in PostScript output@>=
26722 @ Saving the filename template
26724 @<Save the filename template@>=
26726 if ( mp->filename_template!=0 ) delete_str_ref(mp->filename_template);
26727 if ( length(mp->cur_exp)==0 ) mp->filename_template=0;
26729 mp->filename_template=mp->cur_exp; add_str_ref(mp->filename_template);
26733 @* \[48] System-dependent changes.
26734 This section should be replaced, if necessary, by any special
26735 modification of the program
26736 that are necessary to make \MP\ work at a particular installation.
26737 It is usually best to design your change file so that all changes to
26738 previous sections preserve the section numbering; then everybody's version
26739 will be consistent with the published program. More extensive changes,
26740 which introduce new sections, can be inserted here; then only the index
26741 itself will get a new section number.
26742 @^system dependencies@>
26745 Here is where you can find all uses of each identifier in the program,
26746 with underlined entries pointing to where the identifier was defined.
26747 If the identifier is only one letter long, however, you get to see only
26748 the underlined entries. {\sl All references are to section numbers instead of
26751 This index also lists error messages and other aspects of the program
26752 that you might want to look up some day. For example, the entry
26753 for ``system dependencies'' lists all sections that should receive
26754 special attention from people who are installing \MP\ in a new
26755 operating environment. A list of various things that can't happen appears
26756 under ``this can't happen''.
26757 Approximately 25 sections are listed under ``inner loop''; these account
26758 for more than 60\pct! of \MP's running time, exclusive of input and output.