1 % $Id: mp.web,v 1.8 2005/08/24 10:54:02 taco Exp $
2 % MetaPost, by John Hobby. Public domain.
4 % Much of this program was copied with permission from MF.web Version 1.9
5 % It interprets a language very similar to D.E. Knuth's METAFONT, but with
6 % changes designed to make it more suitable for PostScript output.
8 % TeX is a trademark of the American Mathematical Society.
9 % METAFONT is a trademark of Addison-Wesley Publishing Company.
10 % PostScript is a trademark of Adobe Systems Incorporated.
12 % Here is TeX material that gets inserted after \input webmac
13 \def\hang{\hangindent 3em\noindent\ignorespaces}
14 \def\textindent#1{\hangindent2.5em\noindent\hbox to2.5em{\hss#1 }\ignorespaces}
16 \def\psqrt#1{\sqrt{\mathstrut#1}}
18 \def\pct!{{\char`\%}} % percent sign in ordinary text
19 \font\tenlogo=logo10 % font used for the METAFONT logo
21 \def\MF{{\tenlogo META}\-{\tenlogo FONT}}
22 \def\MP{{\tenlogo META}\-{\tenlogo POST}}
23 \def\[#1]{\ignorespaces} % left over from pascal web
24 \def\<#1>{$\langle#1\rangle$}
25 \def\section{\mathhexbox278}
26 \let\swap=\leftrightarrow
27 \def\round{\mathop{\rm round}\nolimits}
28 \mathchardef\vb="026A % synonym for `\|'
30 \def\(#1){} % this is used to make section names sort themselves better
31 \def\9#1{} % this is used for sort keys in the index via @@:sort key}{entry@@>
38 This is \MP, a graphics-language processor based on D. E. Knuth's \MF.
40 The main purpose of the following program is to explain the algorithms of \MP\
41 as clearly as possible. However, the program has been written so that it
42 can be tuned to run efficiently in a wide variety of operating environments
43 by making comparatively few changes. Such flexibility is possible because
44 the documentation that follows is written in the \.{WEB} language, which is
45 at a higher level than C.
47 A large piece of software like \MP\ has inherent complexity that cannot
48 be reduced below a certain level of difficulty, although each individual
49 part is fairly simple by itself. The \.{WEB} language is intended to make
50 the algorithms as readable as possible, by reflecting the way the
51 individual program pieces fit together and by providing the
52 cross-references that connect different parts. Detailed comments about
53 what is going on, and about why things were done in certain ways, have
54 been liberally sprinkled throughout the program. These comments explain
55 features of the implementation, but they rarely attempt to explain the
56 \MP\ language itself, since the reader is supposed to be familiar with
57 {\sl The {\logos METAFONT\/}book} as well as the manual
59 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
60 {\sl A User's Manual for MetaPost}, Computing Science Technical Report 162,
61 AT\AM T Bell Laboratories.
63 @ The present implementation is a preliminary version, but the possibilities
64 for new features are limited by the desire to remain as nearly compatible
65 with \MF\ as possible.
67 On the other hand, the \.{WEB} description can be extended without changing
68 the core of the program, and it has been designed so that such
69 extensions are not extremely difficult to make.
70 The |banner| string defined here should be changed whenever \MP\
71 undergoes any modifications, so that it will be clear which version of
72 \MP\ might be the guilty party when a problem arises.
74 @^system dependencies@>
76 @d banner "This is MetaPost, Version 1.002" /* printed when \MP\ starts */
77 @d metapost_version "1.002"
78 @d mplib_version "0.20"
79 @d version_string " (Cweb version 0.20)"
84 @ The external library header for \MP\ is |mplib.h|. It contains a
85 few typedefs and the header defintions for the externally used
88 The most important of the typedefs is the definition of the structure
89 |MP_options|, that acts as a small, configurable front-end to the fairly
90 large |MP_instance| structure.
93 typedef struct MP_instance * MP;
95 typedef struct MP_options {
98 @<Exported function headers@>
100 @ The internal header file is much longer: it not only lists the complete
101 |MP_instance|, but also a lot of functions that have to be available to
102 the \ps\ backend, that is defined in a separate \.{WEB} file.
104 The variables from |MP_options| are included inside the |MP_instance|
109 typedef struct psout_data_struct * psout_data;
111 typedef signed int integer;
113 @<Types in the outer block@>;
114 @<Constants in the outer block@>
115 # ifndef LIBAVL_ALLOCATOR
116 # define LIBAVL_ALLOCATOR
117 struct libavl_allocator {
118 void *(*libavl_malloc) (struct libavl_allocator *, size_t libavl_size);
119 void (*libavl_free) (struct libavl_allocator *, void *libavl_block);
122 typedef struct MP_instance {
126 @<Internal library declarations@>
134 #include <unistd.h> /* for access() */
135 #include <time.h> /* for struct tm \& co */
137 #include "mpmp.h" /* internal header */
138 #include "mppsout.h" /* internal header */
141 @<Basic printing procedures@>
142 @<Error handling procedures@>
144 @ Here are the functions that set up the \MP\ instance.
147 @<Declare |mp_reallocate| functions@>;
148 struct MP_options *mp_options (void);
149 MP mp_new (struct MP_options *opt);
152 struct MP_options *mp_options (void) {
153 struct MP_options *opt;
154 opt = malloc(sizeof(MP_options));
156 memset (opt,0,sizeof(MP_options));
162 MP mp_new (struct MP_options *opt) {
164 mp = xmalloc(1,sizeof(MP_instance));
165 @<Set |ini_version|@>;
166 @<Setup the non-local jump buffer in |mp_new|@>;
167 @<Allocate or initialize variables@>
168 if (opt->main_memory>mp->mem_max)
169 mp_reallocate_memory(mp,opt->main_memory);
170 mp_reallocate_paths(mp,1000);
171 mp_reallocate_fonts(mp,8);
176 void mp_free (MP mp) {
177 int k; /* loop variable */
178 @<Dealloc variables@>
183 void mp_do_initialize ( MP mp) {
184 @<Local variables for initialization@>
185 @<Set initial values of key variables@>
187 int mp_initialize (MP mp) { /* this procedure gets things started properly */
188 mp->history=mp_fatal_error_stop; /* in case we quit during initialization */
189 @<Install and test the non-local jump buffer@>;
190 t_open_out; /* open the terminal for output */
191 @<Check the ``constant'' values...@>;
194 snprintf(ss,256,"Ouch---my internal constants have been clobbered!\n"
195 "---case %i",(int)mp->bad);
196 do_fprintf(mp->err_out,(char *)ss);
200 mp_do_initialize(mp); /* erase preloaded mem */
201 if (mp->ini_version) {
202 @<Run inimpost commands@>;
204 @<Initialize the output routines@>;
205 @<Get the first line of input and prepare to start@>;
207 mp_init_map_file(mp, mp->troff_mode);
208 mp->history=mp_spotless; /* ready to go! */
209 if (mp->troff_mode) {
210 mp->internal[mp_gtroffmode]=unity;
211 mp->internal[mp_prologues]=unity;
213 if ( mp->start_sym>0 ) { /* insert the `\&{everyjob}' symbol */
214 mp->cur_sym=mp->start_sym; mp_back_input(mp);
220 @<Exported function headers@>=
221 extern struct MP_options *mp_options (void);
222 extern MP mp_new (struct MP_options *opt) ;
223 extern void mp_free (MP mp);
224 extern int mp_initialize (MP mp);
226 @ The overall \MP\ program begins with the heading just shown, after which
227 comes a bunch of procedure declarations and function declarations.
228 Finally we will get to the main program, which begins with the
229 comment `|start_here|'. If you want to skip down to the
230 main program now, you can look up `|start_here|' in the index.
231 But the author suggests that the best way to understand this program
232 is to follow pretty much the order of \MP's components as they appear in the
233 \.{WEB} description you are now reading, since the present ordering is
234 intended to combine the advantages of the ``bottom up'' and ``top down''
235 approaches to the problem of understanding a somewhat complicated system.
237 @ Some of the code below is intended to be used only when diagnosing the
238 strange behavior that sometimes occurs when \MP\ is being installed or
239 when system wizards are fooling around with \MP\ without quite knowing
240 what they are doing. Such code will not normally be compiled; it is
241 delimited by the preprocessor test `|#ifdef DEBUG .. #endif|'.
243 @ This program has two important variations: (1) There is a long and slow
244 version called \.{INIMP}, which does the extra calculations needed to
246 initialize \MP's internal tables; and (2)~there is a shorter and faster
247 production version, which cuts the initialization to a bare minimum.
249 Which is which is decided at runtime.
251 @ The following parameters can be changed at compile time to extend or
252 reduce \MP's capacity. They may have different values in \.{INIMP} and
253 in production versions of \MP.
255 @^system dependencies@>
258 #define file_name_size 255 /* file names shouldn't be longer than this */
259 #define bistack_size 1500 /* size of stack for bisection algorithms;
260 should probably be left at this value */
262 @ Like the preceding parameters, the following quantities can be changed
263 at compile time to extend or reduce \MP's capacity. But if they are changed,
264 it is necessary to rerun the initialization program \.{INIMP}
266 to generate new tables for the production \MP\ program.
267 One can't simply make helter-skelter changes to the following constants,
268 since certain rather complex initialization
269 numbers are computed from them.
272 int max_strings; /* maximum number of strings; must not exceed |max_halfword| */
273 int pool_size; /* maximum number of characters in strings, including all
274 error messages and help texts, and the names of all identifiers */
275 int mem_max; /* greatest index in \MP's internal |mem| array;
276 must be strictly less than |max_halfword|;
277 must be equal to |mem_top| in \.{INIMP}, otherwise |>=mem_top| */
278 int mem_top; /* largest index in the |mem| array dumped by \.{INIMP};
279 must not be greater than |mem_max| */
281 @ @<Option variables@>=
282 int error_line; /* width of context lines on terminal error messages */
283 int half_error_line; /* width of first lines of contexts in terminal
284 error messages; should be between 30 and |error_line-15| */
285 int max_print_line; /* width of longest text lines output; should be at least 60 */
286 int hash_size; /* maximum number of symbolic tokens,
287 must be less than |max_halfword-3*param_size| */
288 int hash_prime; /* a prime number equal to about 85\pct! of |hash_size| */
289 int param_size; /* maximum number of simultaneous macro parameters */
290 int max_in_open; /* maximum number of input files and error insertions that
291 can be going on simultaneously */
292 int main_memory; /* only for options, to set up |mem_max| and |mem_top| */
295 @d set_value(a,b,c) do { a=c; if (b>c) a=b; } while (0)
300 set_value(mp->error_line,opt->error_line,79);
301 set_value(mp->half_error_line,opt->half_error_line,50);
302 set_value(mp->max_print_line,opt->max_print_line,100);
303 mp->main_memory=5000;
306 set_value(mp->hash_size,opt->hash_size,9500);
307 set_value(mp->hash_prime,opt->hash_prime,7919);
308 set_value(mp->param_size,opt->param_size,150);
309 set_value(mp->max_in_open,opt->max_in_open,10);
312 @ In case somebody has inadvertently made bad settings of the ``constants,''
313 \MP\ checks them using a global variable called |bad|.
315 This is the first of many sections of \MP\ where global variables are
319 integer bad; /* is some ``constant'' wrong? */
321 @ Later on we will say `\ignorespaces|if (mem_max>=max_halfword) bad=10;|',
322 or something similar. (We can't do that until |max_halfword| has been defined.)
324 @<Check the ``constant'' values for consistency@>=
326 if ( (mp->half_error_line<30)||(mp->half_error_line>mp->error_line-15) ) mp->bad=1;
327 if ( mp->max_print_line<60 ) mp->bad=2;
328 if ( mp->mem_top<=1100 ) mp->bad=4;
329 if (mp->hash_prime>mp->hash_size ) mp->bad=5;
331 @ Some |goto| labels are used by the following definitions. The label
332 `|restart|' is occasionally used at the very beginning of a procedure; and
333 the label `|reswitch|' is occasionally used just prior to a |case|
334 statement in which some cases change the conditions and we wish to branch
335 to the newly applicable case. Loops that are set up with the |loop|
336 construction defined below are commonly exited by going to `|done|' or to
337 `|found|' or to `|not_found|', and they are sometimes repeated by going to
338 `|continue|'. If two or more parts of a subroutine start differently but
339 end up the same, the shared code may be gathered together at
342 @ Here are some macros for common programming idioms.
344 @d incr(A) (A)=(A)+1 /* increase a variable by unity */
345 @d decr(A) (A)=(A)-1 /* decrease a variable by unity */
346 @d negate(A) (A)=-(A) /* change the sign of a variable */
347 @d double(A) (A)=(A)+(A)
350 @d do_nothing /* empty statement */
351 @d Return goto exit /* terminate a procedure call */
352 @f return nil /* \.{WEB} will henceforth say |return| instead of \\{return} */
354 @* \[2] The character set.
355 In order to make \MP\ readily portable to a wide variety of
356 computers, all of its input text is converted to an internal eight-bit
357 code that includes standard ASCII, the ``American Standard Code for
358 Information Interchange.'' This conversion is done immediately when each
359 character is read in. Conversely, characters are converted from ASCII to
360 the user's external representation just before they are output to a
364 Such an internal code is relevant to users of \MP\ only with respect to
365 the \&{char} and \&{ASCII} operations, and the comparison of strings.
367 @ Characters of text that have been converted to \MP's internal form
368 are said to be of type |ASCII_code|, which is a subrange of the integers.
371 typedef unsigned char ASCII_code; /* eight-bit numbers */
373 @ The present specification of \MP\ has been written under the assumption
374 that the character set contains at least the letters and symbols associated
375 with ASCII codes 040 through 0176; all of these characters are now
376 available on most computer terminals.
378 We shall use the name |text_char| to stand for the data type of the characters
379 that are converted to and from |ASCII_code| when they are input and output.
380 We shall also assume that |text_char| consists of the elements
381 |chr(first_text_char)| through |chr(last_text_char)|, inclusive.
382 The following definitions should be adjusted if necessary.
383 @^system dependencies@>
385 @d first_text_char 0 /* ordinal number of the smallest element of |text_char| */
386 @d last_text_char 255 /* ordinal number of the largest element of |text_char| */
389 typedef unsigned char text_char; /* the data type of characters in text files */
391 @ @<Local variables for init...@>=
394 @ The \MP\ processor converts between ASCII code and
395 the user's external character set by means of arrays |xord| and |xchr|
396 that are analogous to Pascal's |ord| and |chr| functions.
398 @d xchr(A) mp->xchr[(A)]
399 @d xord(A) mp->xord[(A)]
402 ASCII_code xord[256]; /* specifies conversion of input characters */
403 text_char xchr[256]; /* specifies conversion of output characters */
405 @ The core system assumes all 8-bit is acceptable. If it is not,
406 a change file has to alter the below section.
407 @^system dependencies@>
409 Additionally, people with extended character sets can
410 assign codes arbitrarily, giving an |xchr| equivalent to whatever
411 characters the users of \MP\ are allowed to have in their input files.
412 Appropriate changes to \MP's |char_class| table should then be made.
413 (Unlike \TeX, each installation of \MP\ has a fixed assignment of category
414 codes, called the |char_class|.) Such changes make portability of programs
415 more difficult, so they should be introduced cautiously if at all.
416 @^character set dependencies@>
417 @^system dependencies@>
420 for (i=0;i<=0377;i++) { xchr(i)=i; }
422 @ The following system-independent code makes the |xord| array contain a
423 suitable inverse to the information in |xchr|. Note that if |xchr[i]=xchr[j]|
424 where |i<j<0177|, the value of |xord[xchr[i]]| will turn out to be
425 |j| or more; hence, standard ASCII code numbers will be used instead of
426 codes below 040 in case there is a coincidence.
429 for (i=first_text_char;i<=last_text_char;i++) {
432 for (i=0200;i<=0377;i++) { xord(xchr(i))=i;}
433 for (i=0;i<=0176;i++) { xord(xchr(i))=i;}
435 @* \[3] Input and output.
436 The bane of portability is the fact that different operating systems treat
437 input and output quite differently, perhaps because computer scientists
438 have not given sufficient attention to this problem. People have felt somehow
439 that input and output are not part of ``real'' programming. Well, it is true
440 that some kinds of programming are more fun than others. With existing
441 input/output conventions being so diverse and so messy, the only sources of
442 joy in such parts of the code are the rare occasions when one can find a
443 way to make the program a little less bad than it might have been. We have
444 two choices, either to attack I/O now and get it over with, or to postpone
445 I/O until near the end. Neither prospect is very attractive, so let's
448 The basic operations we need to do are (1)~inputting and outputting of
449 text, to or from a file or the user's terminal; (2)~inputting and
450 outputting of eight-bit bytes, to or from a file; (3)~instructing the
451 operating system to initiate (``open'') or to terminate (``close'') input or
452 output from a specified file; (4)~testing whether the end of an input
453 file has been reached; (5)~display of bits on the user's screen.
454 The bit-display operation will be discussed in a later section; we shall
455 deal here only with more traditional kinds of I/O.
457 @ Finding files happens in a slightly roundabout fashion: the \MP\
458 instance object contains a field that holds a function pointer that finds a
459 file, and returns its name, or NULL. For this, it receives three
460 parameters: the non-qualified name |fname|, the intended |fopen|
461 operation type |fmode|, and the type of the file |ftype|.
463 The file types that are passed on in |ftype| can be used to
464 differentiate file searches if a library like kpathsea is used,
465 the fopen mode is passed along for the same reason.
468 typedef unsigned char eight_bits ; /* unsigned one-byte quantity */
470 @ @<Exported types@>=
472 mp_filetype_terminal = 0, /* the terminal */
473 mp_filetype_error, /* the terminal */
474 mp_filetype_program , /* \MP\ language input */
475 mp_filetype_log, /* the log file */
476 mp_filetype_postscript, /* the postscript output */
477 mp_filetype_memfile, /* memory dumps */
478 mp_filetype_metrics, /* TeX font metric files */
479 mp_filetype_fontmap, /* PostScript font mapping files */
480 mp_filetype_font, /* PostScript type1 font programs */
481 mp_filetype_encoding, /* PostScript font encoding files */
482 mp_filetype_text, /* first text file for readfrom and writeto primitives */
484 typedef char *(*mp_file_finder)(char *, char *, int);
485 typedef void *(*mp_file_opener)(char *, char *, int);
486 typedef char *(*mp_file_reader)(void *, size_t *);
487 typedef void (*mp_binfile_reader)(void *, void **, size_t *);
488 typedef void (*mp_file_closer)(void *);
489 typedef int (*mp_file_eoftest)(void *);
490 typedef void (*mp_file_flush)(void *);
491 typedef void (*mp_file_writer)(void *, char *);
492 typedef void (*mp_binfile_writer)(void *, void *, size_t);
495 @ @<Option variables@>=
496 mp_file_finder find_file;
497 mp_file_opener open_file;
498 mp_file_reader read_ascii_file;
499 mp_binfile_reader read_binary_file;
500 mp_file_closer close_file;
501 mp_file_eoftest eof_file;
502 mp_file_flush flush_file;
503 mp_file_writer write_ascii_file;
504 mp_binfile_writer write_binary_file;
506 @ The default function for finding files is |mp_find_file|. It is
507 pretty stupid: it will only find files in the current directory.
509 This function may disappear altogether, it is currently only
510 used for the default font map file.
513 char *mp_find_file (char *fname, char *fmode, int ftype) {
514 if (fmode[0] != 'r' || (! access (fname,R_OK)) || ftype) {
515 return strdup(fname);
520 @ This has to be done very early on, so it is best to put it in with
521 the |mp_new| allocations
523 @d set_callback_option(A) do { mp->A = mp_##A;
524 if (opt->A!=NULL) mp->A = opt->A;
527 @<Allocate or initialize ...@>=
528 set_callback_option(find_file);
529 set_callback_option(open_file);
530 set_callback_option(read_ascii_file);
531 set_callback_option(read_binary_file);
532 set_callback_option(close_file);
533 set_callback_option(eof_file);
534 set_callback_option(flush_file);
535 set_callback_option(write_ascii_file);
536 set_callback_option(write_binary_file);
538 @ Because |mp_find_file| is used so early, it has to be in the helpers
542 char *mp_find_file (char *fname, char *fmode, int ftype) ;
543 void *mp_open_file (char *fname, char *fmode, int ftype) ;
544 char *mp_read_ascii_file (void *f, size_t *size) ;
545 void mp_read_binary_file (void *f, void **d, size_t *size) ;
546 void mp_close_file (void *f) ;
547 int mp_eof_file (void *f) ;
548 void mp_flush_file (void *f) ;
549 void mp_write_ascii_file (void *f, char *s) ;
550 void mp_write_binary_file (void *f, void *s, size_t t) ;
552 @ The function to open files can now be very short.
555 void *mp_open_file(char *fname, char *fmode, int ftype) {
557 if (ftype==mp_filetype_terminal) {
558 return (fmode[0] == 'r' ? stdin : stdout);
559 } else if (ftype==mp_filetype_error) {
561 } else if (fname != NULL && (fmode[0] != 'r' || (! access (fname,R_OK)))) {
562 return (void *)fopen(fname, fmode);
568 @ This is a legacy interface: (almost) all file names pass through |name_of_file|.
571 char name_of_file[file_name_size+1]; /* the name of a system file */
572 int name_length;/* this many characters are actually
573 relevant in |name_of_file| (the rest are blank) */
575 @ @<Option variables@>=
576 int print_found_names; /* configuration parameter */
578 @ If this parameter is true, the terminal and log will report the found
579 file names for input files instead of the requested ones.
580 It is off by default because it creates an extra filename lookup.
582 @<Allocate or initialize ...@>=
583 mp->print_found_names = (opt->print_found_names>0 ? true : false);
585 @ \MP's file-opening procedures return |false| if no file identified by
586 |name_of_file| could be opened.
588 The |OPEN_FILE| macro takes care of the |print_found_names| parameter.
589 It is not used for opening a mem file for read, because that file name
593 if (mp->print_found_names) {
594 char *s = (mp->find_file)(mp->name_of_file,A,ftype);
596 *f = (mp->open_file)(mp->name_of_file,A, ftype);
597 strncpy(mp->name_of_file,s,file_name_size);
603 *f = (mp->open_file)(mp->name_of_file,A, ftype);
606 return (*f ? true : false)
609 boolean mp_a_open_in (MP mp, void **f, int ftype) {
610 /* open a text file for input */
614 boolean mp_w_open_in (MP mp, void **f) {
615 /* open a word file for input */
616 *f = (mp->open_file)(mp->name_of_file,"rb",mp_filetype_memfile);
617 return (*f ? true : false);
620 boolean mp_a_open_out (MP mp, void **f, int ftype) {
621 /* open a text file for output */
625 boolean mp_b_open_out (MP mp, void **f, int ftype) {
626 /* open a binary file for output */
630 boolean mp_w_open_out (MP mp, void **f) {
631 /* open a word file for output */
632 int ftype = mp_filetype_memfile;
637 char *mp_read_ascii_file (void *f, size_t *size) {
639 size_t len = 0, lim = 128;
647 if (s==NULL) return NULL;
648 while (c!=EOF && c!='\n' && c!='\r') {
650 s =realloc(s, (lim+(lim>>2)));
651 if (s==NULL) return NULL;
659 if (c!=EOF && c!='\n')
669 void mp_write_ascii_file (void *f, char *s) {
678 void mp_read_binary_file (void *f, void **data, size_t *size) {
681 len = fread(*data,1,*size,f);
687 void mp_write_binary_file (void *f, void *s, size_t size) {
696 void mp_close_file (void *f) {
703 int mp_eof_file (void *f) {
712 void mp_flush_file (void *f) {
718 @ Input from text files is read one line at a time, using a routine called
719 |input_ln|. This function is defined in terms of global variables called
720 |buffer|, |first|, and |last| that will be described in detail later; for
721 now, it suffices for us to know that |buffer| is an array of |ASCII_code|
722 values, and that |first| and |last| are indices into this array
723 representing the beginning and ending of a line of text.
726 size_t buf_size; /* maximum number of characters simultaneously present in
727 current lines of open files */
728 ASCII_code *buffer; /* lines of characters being read */
729 size_t first; /* the first unused position in |buffer| */
730 size_t last; /* end of the line just input to |buffer| */
731 size_t max_buf_stack; /* largest index used in |buffer| */
733 @ @<Allocate or initialize ...@>=
735 mp->buffer = xmalloc((mp->buf_size+1),sizeof(ASCII_code));
737 @ @<Dealloc variables@>=
741 void mp_reallocate_buffer(MP mp, size_t l) {
743 if (l>max_halfword) {
744 mp_confusion(mp,"buffer size"); /* can't happen (I hope) */
746 buffer = xmalloc((l+1),sizeof(ASCII_code));
747 memcpy(buffer,mp->buffer,(mp->buf_size+1));
749 mp->buffer = buffer ;
753 @ The |input_ln| function brings the next line of input from the specified
754 field into available positions of the buffer array and returns the value
755 |true|, unless the file has already been entirely read, in which case it
756 returns |false| and sets |last:=first|. In general, the |ASCII_code|
757 numbers that represent the next line of the file are input into
758 |buffer[first]|, |buffer[first+1]|, \dots, |buffer[last-1]|; and the
759 global variable |last| is set equal to |first| plus the length of the
760 line. Trailing blanks are removed from the line; thus, either |last=first|
761 (in which case the line was entirely blank) or |buffer[last-1]<>" "|.
764 The variable |max_buf_stack|, which is used to keep track of how large
765 the |buf_size| parameter must be to accommodate the present job, is
766 also kept up to date by |input_ln|.
769 boolean mp_input_ln (MP mp, void *f ) {
770 /* inputs the next line or returns |false| */
773 mp->last=mp->first; /* cf.\ Matthew 19\thinspace:\thinspace30 */
774 s = (mp->read_ascii_file)(f, &size);
778 mp->last = mp->first+size;
779 if ( mp->last>=mp->max_buf_stack ) {
780 mp->max_buf_stack=mp->last+1;
781 while ( mp->max_buf_stack>=mp->buf_size ) {
782 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
785 memcpy((mp->buffer+mp->first),s,size);
786 /* while ( mp->buffer[mp->last]==' ' ) mp->last--; */
792 @ The user's terminal acts essentially like other files of text, except
793 that it is used both for input and for output. When the terminal is
794 considered an input file, the file variable is called |term_in|, and when it
795 is considered an output file the file variable is |term_out|.
796 @^system dependencies@>
799 void * term_in; /* the terminal as an input file */
800 void * term_out; /* the terminal as an output file */
801 void * err_out; /* the terminal as an output file */
803 @ Here is how to open the terminal files. In the default configuration,
804 nothing happens except that the command line (if there is one) is copied
805 to the input buffer. The variable |command_line| will be filled by the
806 |main| procedure. The copying can not be done earlier in the program
807 logic because in the |INI| version, the |buffer| is also used for primitive
810 @^system dependencies@>
812 @d t_open_out do {/* open the terminal for text output */
813 mp->term_out = (mp->open_file)("terminal", "w", mp_filetype_terminal);
814 mp->err_out = (mp->open_file)("error", "w", mp_filetype_error);
816 @d t_open_in do { /* open the terminal for text input */
817 mp->term_in = (mp->open_file)("terminal", "r", mp_filetype_terminal);
818 if (mp->command_line!=NULL) {
819 mp->last = strlen(mp->command_line);
820 strncpy((char *)mp->buffer,mp->command_line,mp->last);
821 xfree(mp->command_line);
825 @d t_close_out do { /* close the terminal */
826 (mp->close_file)(mp->term_out);
827 (mp->close_file)(mp->err_out);
830 @d t_close_in do { /* close the terminal */
831 (mp->close_file)(mp->term_in);
834 @<Option variables@>=
837 @ @<Allocate or initialize ...@>=
838 mp->command_line = xstrdup(opt->command_line);
840 @ Sometimes it is necessary to synchronize the input/output mixture that
841 happens on the user's terminal, and three system-dependent
842 procedures are used for this
843 purpose. The first of these, |update_terminal|, is called when we want
844 to make sure that everything we have output to the terminal so far has
845 actually left the computer's internal buffers and been sent.
846 The second, |clear_terminal|, is called when we wish to cancel any
847 input that the user may have typed ahead (since we are about to
848 issue an unexpected error message). The third, |wake_up_terminal|,
849 is supposed to revive the terminal if the user has disabled it by
850 some instruction to the operating system. The following macros show how
851 these operations can be specified:
852 @^system dependencies@>
854 @d update_terminal (mp->flush_file)(mp->term_out) /* empty the terminal output buffer */
855 @d clear_terminal do_nothing /* clear the terminal input buffer */
856 @d wake_up_terminal (mp->flush_file)(mp->term_out) /* cancel the user's cancellation of output */
858 @ We need a special routine to read the first line of \MP\ input from
859 the user's terminal. This line is different because it is read before we
860 have opened the transcript file; there is sort of a ``chicken and
861 egg'' problem here. If the user types `\.{input cmr10}' on the first
862 line, or if some macro invoked by that line does such an \.{input},
863 the transcript file will be named `\.{cmr10.log}'; but if no \.{input}
864 commands are performed during the first line of terminal input, the transcript
865 file will acquire its default name `\.{mpout.log}'. (The transcript file
866 will not contain error messages generated by the first line before the
867 first \.{input} command.)
869 The first line is even more special. It's nice to let the user start
870 running a \MP\ job by typing a command line like `\.{MP cmr10}'; in
871 such a case, \MP\ will operate as if the first line of input were
872 `\.{cmr10}', i.e., the first line will consist of the remainder of the
873 command line, after the part that invoked \MP.
875 @ Different systems have different ways to get started. But regardless of
876 what conventions are adopted, the routine that initializes the terminal
877 should satisfy the following specifications:
879 \yskip\textindent{1)}It should open file |term_in| for input from the
880 terminal. (The file |term_out| will already be open for output to the
883 \textindent{2)}If the user has given a command line, this line should be
884 considered the first line of terminal input. Otherwise the
885 user should be prompted with `\.{**}', and the first line of input
886 should be whatever is typed in response.
888 \textindent{3)}The first line of input, which might or might not be a
889 command line, should appear in locations |first| to |last-1| of the
892 \textindent{4)}The global variable |loc| should be set so that the
893 character to be read next by \MP\ is in |buffer[loc]|. This
894 character should not be blank, and we should have |loc<last|.
896 \yskip\noindent(It may be necessary to prompt the user several times
897 before a non-blank line comes in. The prompt is `\.{**}' instead of the
898 later `\.*' because the meaning is slightly different: `\.{input}' need
899 not be typed immediately after~`\.{**}'.)
901 @d loc mp->cur_input.loc_field /* location of first unread character in |buffer| */
903 @ The following program does the required initialization
904 without retrieving a possible command line.
905 It should be clear how to modify this routine to deal with command lines,
906 if the system permits them.
907 @^system dependencies@>
910 boolean mp_init_terminal (MP mp) { /* gets the terminal input started */
917 wake_up_terminal; do_fprintf(mp->term_out,"**"); update_terminal;
919 if ( ! mp_input_ln(mp, mp->term_in ) ) { /* this shouldn't happen */
920 do_fprintf(mp->term_out,"\n! End of file on the terminal... why?");
921 @.End of file on the terminal@>
925 while ( (loc<(int)mp->last)&&(mp->buffer[loc]==' ') )
927 if ( loc<(int)mp->last ) {
928 return true; /* return unless the line was all blank */
930 do_fprintf(mp->term_out,"Please type the name of your input file.\n");
935 boolean mp_init_terminal (MP mp) ;
938 @* \[4] String handling.
939 Symbolic token names and diagnostic messages are variable-length strings
940 of eight-bit characters. Many strings \MP\ uses are simply literals
941 in the compiled source, like the error messages and the names of the
942 internal parameters. Other strings are used or defined from the \MP\ input
943 language, and these have to be interned.
945 \MP\ uses strings more extensively than \MF\ does, but the necessary
946 operations can still be handled with a fairly simple data structure.
947 The array |str_pool| contains all of the (eight-bit) ASCII codes in all
948 of the strings, and the array |str_start| contains indices of the starting
949 points of each string. Strings are referred to by integer numbers, so that
950 string number |s| comprises the characters |str_pool[j]| for
951 |str_start[s]<=j<str_start[ss]| where |ss=next_str[s]|. The string pool
952 is allocated sequentially and |str_pool[pool_ptr]| is the next unused
953 location. The first string number not currently in use is |str_ptr|
954 and |next_str[str_ptr]| begins a list of free string numbers. String
955 pool entries |str_start[str_ptr]| up to |pool_ptr| are reserved for a
956 string currently being constructed.
958 String numbers 0 to 255 are reserved for strings that correspond to single
959 ASCII characters. This is in accordance with the conventions of \.{WEB},
961 which converts single-character strings into the ASCII code number of the
962 single character involved, while it converts other strings into integers
963 and builds a string pool file. Thus, when the string constant \.{"."} appears
964 in the program below, \.{WEB} converts it into the integer 46, which is the
965 ASCII code for a period, while \.{WEB} will convert a string like \.{"hello"}
966 into some integer greater than~255. String number 46 will presumably be the
967 single character `\..'\thinspace; but some ASCII codes have no standard visible
968 representation, and \MP\ may need to be able to print an arbitrary
969 ASCII character, so the first 256 strings are used to specify exactly what
970 should be printed for each of the 256 possibilities.
973 typedef int pool_pointer; /* for variables that point into |str_pool| */
974 typedef int str_number; /* for variables that point into |str_start| */
977 ASCII_code *str_pool; /* the characters */
978 pool_pointer *str_start; /* the starting pointers */
979 str_number *next_str; /* for linking strings in order */
980 pool_pointer pool_ptr; /* first unused position in |str_pool| */
981 str_number str_ptr; /* number of the current string being created */
982 pool_pointer init_pool_ptr; /* the starting value of |pool_ptr| */
983 str_number init_str_use; /* the initial number of strings in use */
984 pool_pointer max_pool_ptr; /* the maximum so far of |pool_ptr| */
985 str_number max_str_ptr; /* the maximum so far of |str_ptr| */
987 @ @<Allocate or initialize ...@>=
988 mp->str_pool = xmalloc ((mp->pool_size +1),sizeof(ASCII_code));
989 mp->str_start = xmalloc ((mp->max_strings+1),sizeof(pool_pointer));
990 mp->next_str = xmalloc ((mp->max_strings+1),sizeof(str_number));
992 @ @<Dealloc variables@>=
994 xfree(mp->str_start);
997 @ Most printing is done from |char *|s, but sometimes not. Here are
998 functions that convert an internal string into a |char *| for use
999 by the printing routines, and vice versa.
1001 @d str(A) mp_str(mp,A)
1002 @d rts(A) mp_rts(mp,A)
1005 int mp_xstrcmp (const char *a, const char *b);
1006 char * mp_str (MP mp, str_number s);
1009 str_number mp_rts (MP mp, char *s);
1010 str_number mp_make_string (MP mp);
1012 @ The attempt to catch interrupted strings that is in |mp_rts|, is not
1013 very good: it does not handle nesting over more than one level.
1016 int mp_xstrcmp (const char *a, const char *b) {
1017 if (a==NULL && b==NULL)
1027 char * mp_str (MP mp, str_number ss) {
1030 if (ss==mp->str_ptr) {
1034 s = xmalloc(len+1,sizeof(char));
1035 strncpy(s,(char *)(mp->str_pool+(mp->str_start[ss])),len);
1040 str_number mp_rts (MP mp, char *s) {
1041 int r; /* the new string */
1042 int old; /* a possible string in progress */
1046 } else if (strlen(s)==1) {
1050 str_room((integer)strlen(s));
1051 if (mp->str_start[mp->str_ptr]<mp->pool_ptr)
1052 old = mp_make_string(mp);
1057 r = mp_make_string(mp);
1059 str_room(length(old));
1060 while (i<length(old)) {
1061 append_char((mp->str_start[old]+i));
1063 mp_flush_string(mp,old);
1069 @ Except for |strs_used_up|, the following string statistics are only
1070 maintained when code between |stat| $\ldots$ |tats| delimiters is not
1074 integer strs_used_up; /* strings in use or unused but not reclaimed */
1075 integer pool_in_use; /* total number of cells of |str_pool| actually in use */
1076 integer strs_in_use; /* total number of strings actually in use */
1077 integer max_pl_used; /* maximum |pool_in_use| so far */
1078 integer max_strs_used; /* maximum |strs_in_use| so far */
1080 @ Several of the elementary string operations are performed using \.{WEB}
1081 macros instead of functions, because many of the
1082 operations are done quite frequently and we want to avoid the
1083 overhead of procedure calls. For example, here is
1084 a simple macro that computes the length of a string.
1087 @d str_stop(A) mp->str_start[mp->next_str[(A)]] /* one cell past the end of string
1089 @d length(A) (str_stop((A))-mp->str_start[(A)]) /* the number of characters in string \# */
1091 @ The length of the current string is called |cur_length|. If we decide that
1092 the current string is not needed, |flush_cur_string| resets |pool_ptr| so that
1093 |cur_length| becomes zero.
1095 @d cur_length (mp->pool_ptr - mp->str_start[mp->str_ptr])
1096 @d flush_cur_string mp->pool_ptr=mp->str_start[mp->str_ptr]
1098 @ Strings are created by appending character codes to |str_pool|.
1099 The |append_char| macro, defined here, does not check to see if the
1100 value of |pool_ptr| has gotten too high; this test is supposed to be
1101 made before |append_char| is used.
1103 To test if there is room to append |l| more characters to |str_pool|,
1104 we shall write |str_room(l)|, which tries to make sure there is enough room
1105 by compacting the string pool if necessary. If this does not work,
1106 |do_compaction| aborts \MP\ and gives an apologetic error message.
1108 @d append_char(A) /* put |ASCII_code| \# at the end of |str_pool| */
1109 { mp->str_pool[mp->pool_ptr]=(A); incr(mp->pool_ptr);
1111 @d str_room(A) /* make sure that the pool hasn't overflowed */
1112 { if ( mp->pool_ptr+(A) > mp->max_pool_ptr ) {
1113 if ( mp->pool_ptr+(A) > mp->pool_size ) mp_do_compaction(mp, (A));
1114 else mp->max_pool_ptr=mp->pool_ptr+(A); }
1117 @ The following routine is similar to |str_room(1)| but it uses the
1118 argument |mp->pool_size| to prevent |do_compaction| from aborting when
1119 string space is exhausted.
1121 @<Declare the procedure called |unit_str_room|@>=
1122 void mp_unit_str_room (MP mp);
1125 void mp_unit_str_room (MP mp) {
1126 if ( mp->pool_ptr>=mp->pool_size ) mp_do_compaction(mp, mp->pool_size);
1127 if ( mp->pool_ptr>=mp->max_pool_ptr ) mp->max_pool_ptr=mp->pool_ptr+1;
1130 @ \MP's string expressions are implemented in a brute-force way: Every
1131 new string or substring that is needed is simply copied into the string pool.
1132 Space is eventually reclaimed by a procedure called |do_compaction| with
1133 the aid of a simple system system of reference counts.
1134 @^reference counts@>
1136 The number of references to string number |s| will be |str_ref[s]|. The
1137 special value |str_ref[s]=max_str_ref=127| is used to denote an unknown
1138 positive number of references; such strings will never be recycled. If
1139 a string is ever referred to more than 126 times, simultaneously, we
1140 put it in this category. Hence a single byte suffices to store each |str_ref|.
1142 @d max_str_ref 127 /* ``infinite'' number of references */
1143 @d add_str_ref(A) { if ( mp->str_ref[(A)]<max_str_ref ) incr(mp->str_ref[(A)]);
1149 @ @<Allocate or initialize ...@>=
1150 mp->str_ref = xmalloc ((mp->max_strings+1),sizeof(int));
1152 @ @<Dealloc variables@>=
1155 @ Here's what we do when a string reference disappears:
1157 @d delete_str_ref(A) {
1158 if ( mp->str_ref[(A)]<max_str_ref ) {
1159 if ( mp->str_ref[(A)]>1 ) decr(mp->str_ref[(A)]);
1160 else mp_flush_string(mp, (A));
1164 @<Declare the procedure called |flush_string|@>=
1165 void mp_flush_string (MP mp,str_number s) ;
1168 @ We can't flush the first set of static strings at all, so there
1169 is no point in trying
1172 void mp_flush_string (MP mp,str_number s) {
1174 mp->pool_in_use=mp->pool_in_use-length(s);
1175 decr(mp->strs_in_use);
1176 if ( mp->next_str[s]!=mp->str_ptr ) {
1180 decr(mp->strs_used_up);
1182 mp->pool_ptr=mp->str_start[mp->str_ptr];
1186 @ C literals cannot be simply added, they need to be set so they can't
1189 @d intern(A) mp_intern(mp,(A))
1192 str_number mp_intern (MP mp, char *s) {
1195 mp->str_ref[r] = max_str_ref;
1200 str_number mp_intern (MP mp, char *s);
1203 @ Once a sequence of characters has been appended to |str_pool|, it
1204 officially becomes a string when the function |make_string| is called.
1205 This function returns the identification number of the new string as its
1208 When getting the next unused string number from the linked list, we pretend
1210 $$ \hbox{|max_str_ptr+1|, |max_str_ptr+2|, $\ldots$, |mp->max_strings|} $$
1211 are linked sequentially even though the |next_str| entries have not been
1212 initialized yet. We never allow |str_ptr| to reach |mp->max_strings|;
1213 |do_compaction| is responsible for making sure of this.
1216 @<Declare the procedure called |do_compaction|@>;
1217 @<Declare the procedure called |unit_str_room|@>;
1218 str_number mp_make_string (MP mp);
1221 str_number mp_make_string (MP mp) { /* current string enters the pool */
1222 str_number s; /* the new string */
1225 mp->str_ptr=mp->next_str[s];
1226 if ( mp->str_ptr>mp->max_str_ptr ) {
1227 if ( mp->str_ptr==mp->max_strings ) {
1229 mp_do_compaction(mp, 0);
1233 if ( mp->strs_used_up!=mp->max_str_ptr ) mp_confusion(mp, "s");
1234 @:this can't happen s}{\quad \.s@>
1236 mp->max_str_ptr=mp->str_ptr;
1237 mp->next_str[mp->str_ptr]=mp->max_str_ptr+1;
1241 mp->str_start[mp->str_ptr]=mp->pool_ptr;
1242 incr(mp->strs_used_up);
1243 incr(mp->strs_in_use);
1244 mp->pool_in_use=mp->pool_in_use+length(s);
1245 if ( mp->pool_in_use>mp->max_pl_used )
1246 mp->max_pl_used=mp->pool_in_use;
1247 if ( mp->strs_in_use>mp->max_strs_used )
1248 mp->max_strs_used=mp->strs_in_use;
1252 @ The most interesting string operation is string pool compaction. The idea
1253 is to recover unused space in the |str_pool| array by recopying the strings
1254 to close the gaps created when some strings become unused. All string
1255 numbers~$k$ where |str_ref[k]=0| are to be linked into the list of free string
1256 numbers after |str_ptr|. If this fails to free enough pool space we issue an
1257 |overflow| error unless |needed=mp->pool_size|. Calling |do_compaction|
1258 with |needed=mp->pool_size| supresses all overflow tests.
1260 The compaction process starts with |last_fixed_str| because all lower numbered
1261 strings are permanently allocated with |max_str_ref| in their |str_ref| entries.
1264 str_number last_fixed_str; /* last permanently allocated string */
1265 str_number fixed_str_use; /* number of permanently allocated strings */
1267 @ @<Declare the procedure called |do_compaction|@>=
1268 void mp_do_compaction (MP mp, pool_pointer needed) ;
1271 void mp_do_compaction (MP mp, pool_pointer needed) {
1272 str_number str_use; /* a count of strings in use */
1273 str_number r,s,t; /* strings being manipulated */
1274 pool_pointer p,q; /* destination and source for copying string characters */
1275 @<Advance |last_fixed_str| as far as possible and set |str_use|@>;
1276 r=mp->last_fixed_str;
1279 while ( s!=mp->str_ptr ) {
1280 while ( mp->str_ref[s]==0 ) {
1281 @<Advance |s| and add the old |s| to the list of free string numbers;
1282 then |break| if |s=str_ptr|@>;
1284 r=s; s=mp->next_str[s];
1286 @<Move string |r| back so that |str_start[r]=p|; make |p| the location
1287 after the end of the string@>;
1289 @<Move the current string back so that it starts at |p|@>;
1290 if ( needed<mp->pool_size ) {
1291 @<Make sure that there is room for another string with |needed| characters@>;
1293 @<Account for the compaction and make sure the statistics agree with the
1295 mp->strs_used_up=str_use;
1298 @ @<Advance |last_fixed_str| as far as possible and set |str_use|@>=
1299 t=mp->next_str[mp->last_fixed_str];
1300 while (t!=mp->str_ptr && mp->str_ref[t]==max_str_ref) {
1301 incr(mp->fixed_str_use);
1302 mp->last_fixed_str=t;
1305 str_use=mp->fixed_str_use
1307 @ Because of the way |flush_string| has been written, it should never be
1308 necessary to |break| here. The extra line of code seems worthwhile to
1309 preserve the generality of |do_compaction|.
1311 @<Advance |s| and add the old |s| to the list of free string numbers;...@>=
1316 mp->next_str[t]=mp->next_str[mp->str_ptr];
1317 mp->next_str[mp->str_ptr]=t;
1318 if ( s==mp->str_ptr ) break;
1321 @ The string currently starts at |str_start[r]| and ends just before
1322 |str_start[s]|. We don't change |str_start[s]| because it might be needed
1323 to locate the next string.
1325 @<Move string |r| back so that |str_start[r]=p|; make |p| the location...@>=
1328 while ( q<mp->str_start[s] ) {
1329 mp->str_pool[p]=mp->str_pool[q];
1333 @ Pointers |str_start[str_ptr]| and |pool_ptr| have not been updated. When
1334 we do this, anything between them should be moved.
1336 @ @<Move the current string back so that it starts at |p|@>=
1337 q=mp->str_start[mp->str_ptr];
1338 mp->str_start[mp->str_ptr]=p;
1339 while ( q<mp->pool_ptr ) {
1340 mp->str_pool[p]=mp->str_pool[q];
1345 @ We must remember that |str_ptr| is not allowed to reach |mp->max_strings|.
1347 @<Make sure that there is room for another string with |needed| char...@>=
1348 if ( str_use>=mp->max_strings-1 )
1349 mp_reallocate_strings (mp,str_use);
1350 if ( mp->pool_ptr+needed>mp->max_pool_ptr ) {
1351 mp_reallocate_pool(mp, mp->pool_ptr+needed);
1352 mp->max_pool_ptr=mp->pool_ptr+needed;
1356 void mp_reallocate_strings (MP mp, str_number str_use) ;
1357 void mp_reallocate_pool(MP mp, pool_pointer needed) ;
1360 void mp_reallocate_strings (MP mp, str_number str_use) {
1361 while ( str_use>=mp->max_strings-1 ) {
1362 int l = mp->max_strings + (mp->max_strings>>2);
1363 XREALLOC (mp->str_ref, l, int);
1364 XREALLOC (mp->str_start, l, pool_pointer);
1365 XREALLOC (mp->next_str, l, str_number);
1366 mp->max_strings = l;
1369 void mp_reallocate_pool(MP mp, pool_pointer needed) {
1370 while ( needed>mp->pool_size ) {
1371 int l = mp->pool_size + (mp->pool_size>>2);
1372 XREALLOC (mp->str_pool, l, ASCII_code);
1377 @ @<Account for the compaction and make sure the statistics agree with...@>=
1378 if ( (mp->str_start[mp->str_ptr]!=mp->pool_in_use)||(str_use!=mp->strs_in_use) )
1379 mp_confusion(mp, "string");
1380 @:this can't happen string}{\quad string@>
1381 incr(mp->pact_count);
1382 mp->pact_chars=mp->pact_chars+mp->pool_ptr-str_stop(mp->last_fixed_str);
1383 mp->pact_strs=mp->pact_strs+str_use-mp->fixed_str_use;
1385 s=mp->str_ptr; t=str_use;
1386 while ( s<=mp->max_str_ptr ){
1387 if ( t>mp->max_str_ptr ) mp_confusion(mp, "\"");
1388 incr(t); s=mp->next_str[s];
1390 if ( t<=mp->max_str_ptr ) mp_confusion(mp, "\"");
1393 @ A few more global variables are needed to keep track of statistics when
1394 |stat| $\ldots$ |tats| blocks are not commented out.
1397 integer pact_count; /* number of string pool compactions so far */
1398 integer pact_chars; /* total number of characters moved during compactions */
1399 integer pact_strs; /* total number of strings moved during compactions */
1401 @ @<Initialize compaction statistics@>=
1406 @ The following subroutine compares string |s| with another string of the
1407 same length that appears in |buffer| starting at position |k|;
1408 the result is |true| if and only if the strings are equal.
1411 boolean mp_str_eq_buf (MP mp,str_number s, integer k) {
1412 /* test equality of strings */
1413 pool_pointer j; /* running index */
1415 while ( j<str_stop(s) ) {
1416 if ( mp->str_pool[j++]!=mp->buffer[k++] )
1422 @ Here is a similar routine, but it compares two strings in the string pool,
1423 and it does not assume that they have the same length. If the first string
1424 is lexicographically greater than, less than, or equal to the second,
1425 the result is respectively positive, negative, or zero.
1428 integer mp_str_vs_str (MP mp, str_number s, str_number t) {
1429 /* test equality of strings */
1430 pool_pointer j,k; /* running indices */
1431 integer ls,lt; /* lengths */
1432 integer l; /* length remaining to test */
1433 ls=length(s); lt=length(t);
1434 if ( ls<=lt ) l=ls; else l=lt;
1435 j=mp->str_start[s]; k=mp->str_start[t];
1437 if ( mp->str_pool[j]!=mp->str_pool[k] ) {
1438 return (mp->str_pool[j]-mp->str_pool[k]);
1445 @ The initial values of |str_pool|, |str_start|, |pool_ptr|,
1446 and |str_ptr| are computed by the \.{INIMP} program, based in part
1447 on the information that \.{WEB} has output while processing \MP.
1452 void mp_get_strings_started (MP mp) {
1453 /* initializes the string pool,
1454 but returns |false| if something goes wrong */
1455 int k; /* small indices or counters */
1456 str_number g; /* a new string */
1457 mp->pool_ptr=0; mp->str_ptr=0; mp->max_pool_ptr=0; mp->max_str_ptr=0;
1460 mp->pool_in_use=0; mp->strs_in_use=0;
1461 mp->max_pl_used=0; mp->max_strs_used=0;
1462 @<Initialize compaction statistics@>;
1464 @<Make the first 256 strings@>;
1465 g=mp_make_string(mp); /* string 256 == "" */
1466 mp->str_ref[g]=max_str_ref;
1467 mp->last_fixed_str=mp->str_ptr-1;
1468 mp->fixed_str_use=mp->str_ptr;
1473 void mp_get_strings_started (MP mp);
1475 @ The first 256 strings will consist of a single character only.
1477 @<Make the first 256...@>=
1478 for (k=0;k<=255;k++) {
1480 g=mp_make_string(mp);
1481 mp->str_ref[g]=max_str_ref;
1484 @ The first 128 strings will contain 95 standard ASCII characters, and the
1485 other 33 characters will be printed in three-symbol form like `\.{\^\^A}'
1486 unless a system-dependent change is made here. Installations that have
1487 an extended character set, where for example |xchr[032]=@t\.{'^^Z'}@>|,
1488 would like string 032 to be printed as the single character 032 instead
1489 of the three characters 0136, 0136, 0132 (\.{\^\^Z}). On the other hand,
1490 even people with an extended character set will want to represent string
1491 015 by \.{\^\^M}, since 015 is ASCII's ``carriage return'' code; the idea is
1492 to produce visible strings instead of tabs or line-feeds or carriage-returns
1493 or bell-rings or characters that are treated anomalously in text files.
1495 Unprintable characters of codes 128--255 are, similarly, rendered
1496 \.{\^\^80}--\.{\^\^ff}.
1498 The boolean expression defined here should be |true| unless \MP\ internal
1499 code number~|k| corresponds to a non-troublesome visible symbol in the
1500 local character set.
1501 If character |k| cannot be printed, and |k<0200|, then character |k+0100| or
1502 |k-0100| must be printable; moreover, ASCII codes |[060..071, 0141..0146]|
1504 @^character set dependencies@>
1505 @^system dependencies@>
1507 @<Character |k| cannot be printed@>=
1510 @* \[5] On-line and off-line printing.
1511 Messages that are sent to a user's terminal and to the transcript-log file
1512 are produced by several `|print|' procedures. These procedures will
1513 direct their output to a variety of places, based on the setting of
1514 the global variable |selector|, which has the following possible
1518 \hang |term_and_log|, the normal setting, prints on the terminal and on the
1521 \hang |log_only|, prints only on the transcript file.
1523 \hang |term_only|, prints only on the terminal.
1525 \hang |no_print|, doesn't print at all. This is used only in rare cases
1526 before the transcript file is open.
1528 \hang |pseudo|, puts output into a cyclic buffer that is used
1529 by the |show_context| routine; when we get to that routine we shall discuss
1530 the reasoning behind this curious mode.
1532 \hang |new_string|, appends the output to the current string in the
1535 \hang |>=write_file| prints on one of the files used for the \&{write}
1536 @:write_}{\&{write} primitive@>
1540 \noindent The symbolic names `|term_and_log|', etc., have been assigned
1541 numeric codes that satisfy the convenient relations |no_print+1=term_only|,
1542 |no_print+2=log_only|, |term_only+2=log_only+1=term_and_log|. These
1543 relations are not used when |selector| could be |pseudo|, or |new_string|.
1544 We need not check for unprintable characters when |selector<pseudo|.
1546 Three additional global variables, |tally|, |term_offset| and |file_offset|
1547 record the number of characters that have been printed
1548 since they were most recently cleared to zero. We use |tally| to record
1549 the length of (possibly very long) stretches of printing; |term_offset|,
1550 and |file_offset|, on the other hand, keep track of how many
1551 characters have appeared so far on the current line that has been output
1552 to the terminal, the transcript file, or the \ps\ output file, respectively.
1554 @d new_string 0 /* printing is deflected to the string pool */
1555 @d pseudo 2 /* special |selector| setting for |show_context| */
1556 @d no_print 3 /* |selector| setting that makes data disappear */
1557 @d term_only 4 /* printing is destined for the terminal only */
1558 @d log_only 5 /* printing is destined for the transcript file only */
1559 @d term_and_log 6 /* normal |selector| setting */
1560 @d write_file 7 /* first write file selector */
1563 void * log_file; /* transcript of \MP\ session */
1564 void * ps_file; /* the generic font output goes here */
1565 unsigned int selector; /* where to print a message */
1566 unsigned char dig[23]; /* digits in a number being output */
1567 integer tally; /* the number of characters recently printed */
1568 unsigned int term_offset;
1569 /* the number of characters on the current terminal line */
1570 unsigned int file_offset;
1571 /* the number of characters on the current file line */
1572 ASCII_code *trick_buf; /* circular buffer for pseudoprinting */
1573 integer trick_count; /* threshold for pseudoprinting, explained later */
1574 integer first_count; /* another variable for pseudoprinting */
1576 @ @<Allocate or initialize ...@>=
1577 memset(mp->dig,0,23);
1578 mp->trick_buf = xmalloc((mp->error_line+1),sizeof(ASCII_code));
1580 @ @<Dealloc variables@>=
1581 xfree(mp->trick_buf);
1583 @ @<Initialize the output routines@>=
1584 mp->selector=term_only; mp->tally=0; mp->term_offset=0; mp->file_offset=0;
1586 @ Macro abbreviations for output to the terminal and to the log file are
1587 defined here for convenience. Some systems need special conventions
1588 for terminal output, and it is possible to adhere to those conventions
1589 by changing |wterm|, |wterm_ln|, and |wterm_cr| here.
1590 @^system dependencies@>
1592 @d do_fprintf(f,b) (mp->write_ascii_file)(f,b)
1593 @d wterm(A) do_fprintf(mp->term_out,(A))
1594 @d wterm_chr(A) { unsigned char ss[2]; ss[0]=(A); ss[1]=0; do_fprintf(mp->term_out,(char *)ss); }
1595 @d wterm_cr do_fprintf(mp->term_out,"\n")
1596 @d wterm_ln(A) { wterm_cr; do_fprintf(mp->term_out,(A)); }
1597 @d wlog(A) do_fprintf(mp->log_file,(A))
1598 @d wlog_chr(A) { unsigned char ss[2]; ss[0]=(A); ss[1]=0; do_fprintf(mp->log_file,(char *)ss); }
1599 @d wlog_cr do_fprintf(mp->log_file, "\n")
1600 @d wlog_ln(A) {wlog_cr; do_fprintf(mp->log_file,(A)); }
1603 @ To end a line of text output, we call |print_ln|. Cases |0..max_write_files|
1604 use an array |wr_file| that will be declared later.
1606 @d mp_print_text(A) mp_print_str(mp,text((A)))
1609 void mp_print_ln (MP mp);
1610 void mp_print_visible_char (MP mp, ASCII_code s);
1611 void mp_print_char (MP mp, ASCII_code k);
1612 void mp_print (MP mp, char *s);
1613 void mp_print_str (MP mp, str_number s);
1614 void mp_print_nl (MP mp, char *s);
1615 void mp_print_two (MP mp,scaled x, scaled y) ;
1616 void mp_print_scaled (MP mp,scaled s);
1618 @ @<Basic print...@>=
1619 void mp_print_ln (MP mp) { /* prints an end-of-line */
1620 switch (mp->selector) {
1623 mp->term_offset=0; mp->file_offset=0;
1626 wlog_cr; mp->file_offset=0;
1629 wterm_cr; mp->term_offset=0;
1636 do_fprintf(mp->wr_file[(mp->selector-write_file)],"\n");
1638 } /* note that |tally| is not affected */
1640 @ The |print_visible_char| procedure sends one character to the desired
1641 destination, using the |xchr| array to map it into an external character
1642 compatible with |input_ln|. (It assumes that it is always called with
1643 a visible ASCII character.) All printing comes through |print_ln| or
1644 |print_char|, which ultimately calls |print_visible_char|, hence these
1645 routines are the ones that limit lines to at most |max_print_line| characters.
1646 But we must make an exception for the \ps\ output file since it is not safe
1647 to cut up lines arbitrarily in \ps.
1649 Procedure |unit_str_room| needs to be declared |forward| here because it calls
1650 |do_compaction| and |do_compaction| can call the error routines. Actually,
1651 |unit_str_room| avoids |overflow| errors but it can call |confusion|.
1653 @<Basic printing...@>=
1654 void mp_print_visible_char (MP mp, ASCII_code s) { /* prints a single character */
1655 switch (mp->selector) {
1657 wterm_chr(xchr(s)); wlog_chr(xchr(s));
1658 incr(mp->term_offset); incr(mp->file_offset);
1659 if ( mp->term_offset==(unsigned)mp->max_print_line ) {
1660 wterm_cr; mp->term_offset=0;
1662 if ( mp->file_offset==(unsigned)mp->max_print_line ) {
1663 wlog_cr; mp->file_offset=0;
1667 wlog_chr(xchr(s)); incr(mp->file_offset);
1668 if ( mp->file_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1671 wterm_chr(xchr(s)); incr(mp->term_offset);
1672 if ( mp->term_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1677 if ( mp->tally<mp->trick_count )
1678 mp->trick_buf[mp->tally % mp->error_line]=s;
1681 if ( mp->pool_ptr>=mp->max_pool_ptr ) {
1682 mp_unit_str_room(mp);
1683 if ( mp->pool_ptr>=mp->pool_size )
1684 goto DONE; /* drop characters if string space is full */
1689 { char ss[2]; ss[0] = xchr(s); ss[1]=0;
1690 do_fprintf(mp->wr_file[(mp->selector-write_file)],(char *)ss);
1697 @ The |print_char| procedure sends one character to the desired destination.
1698 File names and string expressions might contain |ASCII_code| values that
1699 can't be printed using |print_visible_char|. These characters will be
1700 printed in three- or four-symbol form like `\.{\^\^A}' or `\.{\^\^e4}'.
1701 (This procedure assumes that it is safe to bypass all checks for unprintable
1702 characters when |selector| is in the range |0..max_write_files-1|.
1703 The user might want to write unprintable characters.
1705 @d print_lc_hex(A) do { l=(A);
1706 mp_print_visible_char(mp, (l<10 ? l+'0' : l-10+'a'));
1709 @<Basic printing...@>=
1710 void mp_print_char (MP mp, ASCII_code k) { /* prints a single character */
1711 int l; /* small index or counter */
1712 if ( mp->selector<pseudo || mp->selector>=write_file) {
1713 mp_print_visible_char(mp, k);
1714 } else if ( @<Character |k| cannot be printed@> ) {
1717 mp_print_visible_char(mp, k+0100);
1718 } else if ( k<0200 ) {
1719 mp_print_visible_char(mp, k-0100);
1721 print_lc_hex(k / 16);
1722 print_lc_hex(k % 16);
1725 mp_print_visible_char(mp, k);
1729 @ An entire string is output by calling |print|. Note that if we are outputting
1730 the single standard ASCII character \.c, we could call |print("c")|, since
1731 |"c"=99| is the number of a single-character string, as explained above. But
1732 |print_char("c")| is quicker, so \MP\ goes directly to the |print_char|
1733 routine when it knows that this is safe. (The present implementation
1734 assumes that it is always safe to print a visible ASCII character.)
1735 @^system dependencies@>
1738 void mp_do_print (MP mp, char *ss, unsigned int len) { /* prints string |s| */
1741 mp_print_char(mp, ss[j]); incr(j);
1747 void mp_print (MP mp, char *ss) {
1748 mp_do_print(mp, ss, strlen(ss));
1750 void mp_print_str (MP mp, str_number s) {
1751 pool_pointer j; /* current character code position */
1752 if ( (s<0)||(s>mp->max_str_ptr) ) {
1753 mp_do_print(mp,"???",3); /* this can't happen */
1757 mp_do_print(mp, (char *)(mp->str_pool+j), (str_stop(s)-j));
1761 @ Here is the very first thing that \MP\ prints: a headline that identifies
1762 the version number and base name. The |term_offset| variable is temporarily
1763 incorrect, but the discrepancy is not serious since we assume that the banner
1764 and mem identifier together will occupy at most |max_print_line|
1765 character positions.
1767 @<Initialize the output...@>=
1769 wterm (version_string);
1770 if (mp->mem_ident!=NULL)
1771 mp_print(mp,mp->mem_ident);
1775 @ The procedure |print_nl| is like |print|, but it makes sure that the
1776 string appears at the beginning of a new line.
1779 void mp_print_nl (MP mp, char *s) { /* prints string |s| at beginning of line */
1780 switch(mp->selector) {
1782 if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_ln(mp);
1785 if ( mp->file_offset>0 ) mp_print_ln(mp);
1788 if ( mp->term_offset>0 ) mp_print_ln(mp);
1794 } /* there are no other cases */
1798 @ An array of digits in the range |0..9| is printed by |print_the_digs|.
1801 void mp_print_the_digs (MP mp, eight_bits k) {
1802 /* prints |dig[k-1]|$\,\ldots\,$|dig[0]| */
1804 decr(k); mp_print_char(mp, '0'+mp->dig[k]);
1808 @ The following procedure, which prints out the decimal representation of a
1809 given integer |n|, has been written carefully so that it works properly
1810 if |n=0| or if |(-n)| would cause overflow. It does not apply |%| or |/|
1811 to negative arguments, since such operations are not implemented consistently
1815 void mp_print_int (MP mp,integer n) { /* prints an integer in decimal form */
1816 integer m; /* used to negate |n| in possibly dangerous cases */
1817 int k = 0; /* index to current digit; we assume that $|n|<10^{23}$ */
1819 mp_print_char(mp, '-');
1820 if ( n>-100000000 ) {
1823 m=-1-n; n=m / 10; m=(m % 10)+1; k=1;
1827 mp->dig[0]=0; incr(n);
1832 mp->dig[k]=n % 10; n=n / 10; incr(k);
1834 mp_print_the_digs(mp, k);
1838 void mp_print_int (MP mp,integer n);
1840 @ \MP\ also makes use of a trivial procedure to print two digits. The
1841 following subroutine is usually called with a parameter in the range |0<=n<=99|.
1844 void mp_print_dd (MP mp,integer n) { /* prints two least significant digits */
1846 mp_print_char(mp, '0'+(n / 10));
1847 mp_print_char(mp, '0'+(n % 10));
1852 void mp_print_dd (MP mp,integer n);
1854 @ Here is a procedure that asks the user to type a line of input,
1855 assuming that the |selector| setting is either |term_only| or |term_and_log|.
1856 The input is placed into locations |first| through |last-1| of the
1857 |buffer| array, and echoed on the transcript file if appropriate.
1859 This procedure is never called when |interaction<mp_scroll_mode|.
1861 @d prompt_input(A) do {
1862 wake_up_terminal; mp_print(mp, (A)); mp_term_input(mp);
1863 } while (0) /* prints a string and gets a line of input */
1866 void mp_term_input (MP mp) { /* gets a line from the terminal */
1867 size_t k; /* index into |buffer| */
1868 update_terminal; /* Now the user sees the prompt for sure */
1869 if (!mp_input_ln(mp, mp->term_in ))
1870 mp_fatal_error(mp, "End of file on the terminal!");
1871 @.End of file on the terminal@>
1872 mp->term_offset=0; /* the user's line ended with \<\rm return> */
1873 decr(mp->selector); /* prepare to echo the input */
1874 if ( mp->last!=mp->first ) {
1875 for (k=mp->first;k<=mp->last-1;k++) {
1876 mp_print_char(mp, mp->buffer[k]);
1880 mp->buffer[mp->last]='%';
1881 incr(mp->selector); /* restore previous status */
1884 @* \[6] Reporting errors.
1885 When something anomalous is detected, \MP\ typically does something like this:
1886 $$\vbox{\halign{#\hfil\cr
1887 |print_err("Something anomalous has been detected");|\cr
1888 |help3("This is the first line of my offer to help.")|\cr
1889 |("This is the second line. I'm trying to")|\cr
1890 |("explain the best way for you to proceed.");|\cr
1892 A two-line help message would be given using |help2|, etc.; these informal
1893 helps should use simple vocabulary that complements the words used in the
1894 official error message that was printed. (Outside the U.S.A., the help
1895 messages should preferably be translated into the local vernacular. Each
1896 line of help is at most 60 characters long, in the present implementation,
1897 so that |max_print_line| will not be exceeded.)
1899 The |print_err| procedure supplies a `\.!' before the official message,
1900 and makes sure that the terminal is awake if a stop is going to occur.
1901 The |error| procedure supplies a `\..' after the official message, then it
1902 shows the location of the error; and if |interaction=error_stop_mode|,
1903 it also enters into a dialog with the user, during which time the help
1904 message may be printed.
1905 @^system dependencies@>
1907 @ The global variable |interaction| has four settings, representing increasing
1908 amounts of user interaction:
1911 enum mp_interaction_mode {
1912 mp_unspecified_mode=0, /* extra value for command-line switch */
1913 mp_batch_mode, /* omits all stops and omits terminal output */
1914 mp_nonstop_mode, /* omits all stops */
1915 mp_scroll_mode, /* omits error stops */
1916 mp_error_stop_mode, /* stops at every opportunity to interact */
1919 @ @<Option variables@>=
1920 int interaction; /* current level of interaction */
1922 @ Set it here so it can be overwritten by the commandline
1924 @<Allocate or initialize ...@>=
1925 mp->interaction=opt->interaction;
1926 if (mp->interaction==mp_unspecified_mode || mp->interaction>mp_error_stop_mode)
1927 mp->interaction=mp_error_stop_mode;
1928 if (mp->interaction<mp_unspecified_mode)
1929 mp->interaction=mp_batch_mode;
1933 @d print_err(A) mp_print_err(mp,(A))
1936 void mp_print_err(MP mp, char * A);
1939 void mp_print_err(MP mp, char * A) {
1940 if ( mp->interaction==mp_error_stop_mode )
1942 mp_print_nl(mp, "! ");
1948 @ \MP\ is careful not to call |error| when the print |selector| setting
1949 might be unusual. The only possible values of |selector| at the time of
1952 \yskip\hang|no_print| (when |interaction=mp_batch_mode|
1953 and |log_file| not yet open);
1955 \hang|term_only| (when |interaction>mp_batch_mode| and |log_file| not yet open);
1957 \hang|log_only| (when |interaction=mp_batch_mode| and |log_file| is open);
1959 \hang|term_and_log| (when |interaction>mp_batch_mode| and |log_file| is open).
1961 @<Initialize the print |selector| based on |interaction|@>=
1962 if ( mp->interaction==mp_batch_mode ) mp->selector=no_print; else mp->selector=term_only
1964 @ A global variable |deletions_allowed| is set |false| if the |get_next|
1965 routine is active when |error| is called; this ensures that |get_next|
1966 will never be called recursively.
1969 The global variable |history| records the worst level of error that
1970 has been detected. It has four possible values: |spotless|, |warning_issued|,
1971 |error_message_issued|, and |fatal_error_stop|.
1973 Another global variable, |error_count|, is increased by one when an
1974 |error| occurs without an interactive dialog, and it is reset to zero at
1975 the end of every statement. If |error_count| reaches 100, \MP\ decides
1976 that there is no point in continuing further.
1979 enum mp_history_states {
1980 mp_spotless=0, /* |history| value when nothing has been amiss yet */
1981 mp_warning_issued, /* |history| value when |begin_diagnostic| has been called */
1982 mp_error_message_issued, /* |history| value when |error| has been called */
1983 mp_fatal_error_stop, /* |history| value when termination was premature */
1987 boolean deletions_allowed; /* is it safe for |error| to call |get_next|? */
1988 int history; /* has the source input been clean so far? */
1989 int error_count; /* the number of scrolled errors since the last statement ended */
1991 @ The value of |history| is initially |fatal_error_stop|, but it will
1992 be changed to |spotless| if \MP\ survives the initialization process.
1994 @<Allocate or ...@>=
1995 mp->deletions_allowed=true; mp->error_count=0; /* |history| is initialized elsewhere */
1997 @ Since errors can be detected almost anywhere in \MP, we want to declare the
1998 error procedures near the beginning of the program. But the error procedures
1999 in turn use some other procedures, which need to be declared |forward|
2000 before we get to |error| itself.
2002 It is possible for |error| to be called recursively if some error arises
2003 when |get_next| is being used to delete a token, and/or if some fatal error
2004 occurs while \MP\ is trying to fix a non-fatal one. But such recursion
2006 is never more than two levels deep.
2009 void mp_get_next (MP mp);
2010 void mp_term_input (MP mp);
2011 void mp_show_context (MP mp);
2012 void mp_begin_file_reading (MP mp);
2013 void mp_open_log_file (MP mp);
2014 void mp_clear_for_error_prompt (MP mp);
2015 void mp_debug_help (MP mp);
2016 @<Declare the procedure called |flush_string|@>
2019 void mp_normalize_selector (MP mp);
2021 @ Individual lines of help are recorded in the array |help_line|, which
2022 contains entries in positions |0..(help_ptr-1)|. They should be printed
2023 in reverse order, i.e., with |help_line[0]| appearing last.
2025 @d hlp1(A) mp->help_line[0]=(A); }
2026 @d hlp2(A) mp->help_line[1]=(A); hlp1
2027 @d hlp3(A) mp->help_line[2]=(A); hlp2
2028 @d hlp4(A) mp->help_line[3]=(A); hlp3
2029 @d hlp5(A) mp->help_line[4]=(A); hlp4
2030 @d hlp6(A) mp->help_line[5]=(A); hlp5
2031 @d help0 mp->help_ptr=0 /* sometimes there might be no help */
2032 @d help1 { mp->help_ptr=1; hlp1 /* use this with one help line */
2033 @d help2 { mp->help_ptr=2; hlp2 /* use this with two help lines */
2034 @d help3 { mp->help_ptr=3; hlp3 /* use this with three help lines */
2035 @d help4 { mp->help_ptr=4; hlp4 /* use this with four help lines */
2036 @d help5 { mp->help_ptr=5; hlp5 /* use this with five help lines */
2037 @d help6 { mp->help_ptr=6; hlp6 /* use this with six help lines */
2040 char * help_line[6]; /* helps for the next |error| */
2041 unsigned int help_ptr; /* the number of help lines present */
2042 boolean use_err_help; /* should the |err_help| string be shown? */
2043 str_number err_help; /* a string set up by \&{errhelp} */
2044 str_number filename_template; /* a string set up by \&{filenametemplate} */
2046 @ @<Allocate or ...@>=
2047 mp->help_ptr=0; mp->use_err_help=false; mp->err_help=0; mp->filename_template=0;
2049 @ The |jump_out| procedure just cuts across all active procedure levels and
2050 goes to |end_of_MP|. This is the only nonlocal |goto| statement in the
2051 whole program. It is used when there is no recovery from a particular error.
2053 The program uses a |jump_buf| to handle this, this is initialized at three
2054 spots: the start of |mp_new|, the start of |mp_initialize|, and the start
2055 of |mp_run|. Those are the only library enty points.
2057 @^system dependencies@>
2062 @ @<Install and test the non-local jump buffer@>=
2063 if (setjmp(mp->jump_buf) != 0) return mp->history;
2065 @ @<Setup the non-local jump buffer in |mp_new|@>=
2066 if (setjmp(mp->jump_buf) != 0) return NULL;
2068 @ If the array of internals is still |NULL| when |jump_out| is called, a
2069 crash occured during initialization, and it is not safe to run the normal
2073 void mp_jump_out (MP mp) {
2074 if(mp->internal!=NULL)
2075 mp_close_files_and_terminate(mp);
2076 longjmp(mp->jump_buf,1);
2079 @ Here now is the general |error| routine.
2082 void mp_error (MP mp) { /* completes the job of error reporting */
2083 ASCII_code c; /* what the user types */
2084 integer s1,s2,s3; /* used to save global variables when deleting tokens */
2085 pool_pointer j; /* character position being printed */
2086 if ( mp->history<mp_error_message_issued ) mp->history=mp_error_message_issued;
2087 mp_print_char(mp, '.'); mp_show_context(mp);
2088 if ( mp->interaction==mp_error_stop_mode ) {
2089 @<Get user's advice and |return|@>;
2091 incr(mp->error_count);
2092 if ( mp->error_count==100 ) {
2093 mp_print_nl(mp,"(That makes 100 errors; please try again.)");
2094 @.That makes 100 errors...@>
2095 mp->history=mp_fatal_error_stop; mp_jump_out(mp);
2097 @<Put help message on the transcript file@>;
2099 void mp_warn (MP mp, char *msg) {
2100 int saved_selector = mp->selector;
2101 mp_normalize_selector(mp);
2102 mp_print_nl(mp,"Warning: ");
2104 mp->selector = saved_selector;
2107 @ @<Exported function ...@>=
2108 void mp_error (MP mp);
2109 void mp_warn (MP mp, char *msg);
2112 @ @<Get user's advice...@>=
2115 mp_clear_for_error_prompt(mp); prompt_input("? ");
2117 if ( mp->last==mp->first ) return;
2118 c=mp->buffer[mp->first];
2119 if ( c>='a' ) c=c+'A'-'a'; /* convert to uppercase */
2120 @<Interpret code |c| and |return| if done@>;
2123 @ It is desirable to provide an `\.E' option here that gives the user
2124 an easy way to return from \MP\ to the system editor, with the offending
2125 line ready to be edited. But such an extension requires some system
2126 wizardry, so the present implementation simply types out the name of the
2128 edited and the relevant line number.
2129 @^system dependencies@>
2132 typedef void (*mp_run_editor_command)(MP, char *, int);
2134 @ @<Option variables@>=
2135 mp_run_editor_command run_editor;
2137 @ @<Allocate or initialize ...@>=
2138 set_callback_option(run_editor);
2141 void mp_run_editor (MP mp, char *fname, int fline);
2143 @ @c void mp_run_editor (MP mp, char *fname, int fline) {
2144 mp_print_nl(mp, "You want to edit file ");
2145 @.You want to edit file x@>
2146 mp_print(mp, fname);
2147 mp_print(mp, " at line ");
2148 mp_print_int(mp, fline);
2149 mp->interaction=mp_scroll_mode;
2154 There is a secret `\.D' option available when the debugging routines haven't
2158 @<Interpret code |c| and |return| if done@>=
2160 case '0': case '1': case '2': case '3': case '4':
2161 case '5': case '6': case '7': case '8': case '9':
2162 if ( mp->deletions_allowed ) {
2163 @<Delete |c-"0"| tokens and |continue|@>;
2168 mp_debug_help(mp); continue;
2172 if ( mp->file_ptr>0 ){
2173 (mp->run_editor)(mp,
2174 str(mp->input_stack[mp->file_ptr].name_field),
2179 @<Print the help information and |continue|@>;
2182 @<Introduce new material from the terminal and |return|@>;
2184 case 'Q': case 'R': case 'S':
2185 @<Change the interaction level and |return|@>;
2188 mp->interaction=mp_scroll_mode; mp_jump_out(mp);
2193 @<Print the menu of available options@>
2195 @ @<Print the menu...@>=
2197 mp_print(mp, "Type <return> to proceed, S to scroll future error messages,");
2198 @.Type <return> to proceed...@>
2199 mp_print_nl(mp, "R to run without stopping, Q to run quietly,");
2200 mp_print_nl(mp, "I to insert something, ");
2201 if ( mp->file_ptr>0 )
2202 mp_print(mp, "E to edit your file,");
2203 if ( mp->deletions_allowed )
2204 mp_print_nl(mp, "1 or ... or 9 to ignore the next 1 to 9 tokens of input,");
2205 mp_print_nl(mp, "H for help, X to quit.");
2208 @ Here the author of \MP\ apologizes for making use of the numerical
2209 relation between |"Q"|, |"R"|, |"S"|, and the desired interaction settings
2210 |mp_batch_mode|, |mp_nonstop_mode|, |mp_scroll_mode|.
2211 @^Knuth, Donald Ervin@>
2213 @<Change the interaction...@>=
2215 mp->error_count=0; mp->interaction=mp_batch_mode+c-'Q';
2216 mp_print(mp, "OK, entering ");
2218 case 'Q': mp_print(mp, "batchmode"); decr(mp->selector); break;
2219 case 'R': mp_print(mp, "nonstopmode"); break;
2220 case 'S': mp_print(mp, "scrollmode"); break;
2221 } /* there are no other cases */
2222 mp_print(mp, "..."); mp_print_ln(mp); update_terminal; return;
2225 @ When the following code is executed, |buffer[(first+1)..(last-1)]| may
2226 contain the material inserted by the user; otherwise another prompt will
2227 be given. In order to understand this part of the program fully, you need
2228 to be familiar with \MP's input stacks.
2230 @<Introduce new material...@>=
2232 mp_begin_file_reading(mp); /* enter a new syntactic level for terminal input */
2233 if ( mp->last>mp->first+1 ) {
2234 loc=mp->first+1; mp->buffer[mp->first]=' ';
2236 prompt_input("insert>"); loc=mp->first;
2239 mp->first=mp->last+1; mp->cur_input.limit_field=mp->last; return;
2242 @ We allow deletion of up to 99 tokens at a time.
2244 @<Delete |c-"0"| tokens...@>=
2246 s1=mp->cur_cmd; s2=mp->cur_mod; s3=mp->cur_sym; mp->OK_to_interrupt=false;
2247 if ( (mp->last>mp->first+1) && (mp->buffer[mp->first+1]>='0')&&(mp->buffer[mp->first+1]<='9') )
2248 c=c*10+mp->buffer[mp->first+1]-'0'*11;
2252 mp_get_next(mp); /* one-level recursive call of |error| is possible */
2253 @<Decrease the string reference count, if the current token is a string@>;
2256 mp->cur_cmd=s1; mp->cur_mod=s2; mp->cur_sym=s3; mp->OK_to_interrupt=true;
2257 help2("I have just deleted some text, as you asked.")
2258 ("You can now delete more, or insert, or whatever.");
2259 mp_show_context(mp);
2263 @ @<Print the help info...@>=
2265 if ( mp->use_err_help ) {
2266 @<Print the string |err_help|, possibly on several lines@>;
2267 mp->use_err_help=false;
2269 if ( mp->help_ptr==0 ) {
2270 help2("Sorry, I don't know how to help in this situation.")
2271 ("Maybe you should try asking a human?");
2274 decr(mp->help_ptr); mp_print(mp, mp->help_line[mp->help_ptr]); mp_print_ln(mp);
2275 } while (mp->help_ptr!=0);
2277 help4("Sorry, I already gave what help I could...")
2278 ("Maybe you should try asking a human?")
2279 ("An error might have occurred before I noticed any problems.")
2280 ("``If all else fails, read the instructions.''");
2284 @ @<Print the string |err_help|, possibly on several lines@>=
2285 j=mp->str_start[mp->err_help];
2286 while ( j<str_stop(mp->err_help) ) {
2287 if ( mp->str_pool[j]!='%' ) mp_print_str(mp, mp->str_pool[j]);
2288 else if ( j+1==str_stop(mp->err_help) ) mp_print_ln(mp);
2289 else if ( mp->str_pool[j+1]!='%' ) mp_print_ln(mp);
2290 else { incr(j); mp_print_char(mp, '%'); };
2294 @ @<Put help message on the transcript file@>=
2295 if ( mp->interaction>mp_batch_mode ) decr(mp->selector); /* avoid terminal output */
2296 if ( mp->use_err_help ) {
2297 mp_print_nl(mp, "");
2298 @<Print the string |err_help|, possibly on several lines@>;
2300 while ( mp->help_ptr>0 ){
2301 decr(mp->help_ptr); mp_print_nl(mp, mp->help_line[mp->help_ptr]);
2305 if ( mp->interaction>mp_batch_mode ) incr(mp->selector); /* re-enable terminal output */
2308 @ In anomalous cases, the print selector might be in an unknown state;
2309 the following subroutine is called to fix things just enough to keep
2310 running a bit longer.
2313 void mp_normalize_selector (MP mp) {
2314 if ( mp->log_opened ) mp->selector=term_and_log;
2315 else mp->selector=term_only;
2316 if ( mp->job_name==NULL ) mp_open_log_file(mp);
2317 if ( mp->interaction==mp_batch_mode ) decr(mp->selector);
2320 @ The following procedure prints \MP's last words before dying.
2322 @d succumb { if ( mp->interaction==mp_error_stop_mode )
2323 mp->interaction=mp_scroll_mode; /* no more interaction */
2324 if ( mp->log_opened ) mp_error(mp);
2325 /*| if ( mp->interaction>mp_batch_mode ) mp_debug_help(mp); |*/
2326 mp->history=mp_fatal_error_stop; mp_jump_out(mp); /* irrecoverable error */
2330 void mp_fatal_error (MP mp, char *s) { /* prints |s|, and that's it */
2331 mp_normalize_selector(mp);
2332 print_err("Emergency stop"); help1(s); succumb;
2336 @ @<Exported function ...@>=
2337 void mp_fatal_error (MP mp, char *s);
2340 @ Here is the most dreaded error message.
2343 void mp_overflow (MP mp, char *s, integer n) { /* stop due to finiteness */
2344 mp_normalize_selector(mp);
2345 print_err("MetaPost capacity exceeded, sorry [");
2346 @.MetaPost capacity exceeded ...@>
2347 mp_print(mp, s); mp_print_char(mp, '='); mp_print_int(mp, n); mp_print_char(mp, ']');
2348 help2("If you really absolutely need more capacity,")
2349 ("you can ask a wizard to enlarge me.");
2353 @ @<Internal library declarations@>=
2354 void mp_overflow (MP mp, char *s, integer n);
2356 @ The program might sometime run completely amok, at which point there is
2357 no choice but to stop. If no previous error has been detected, that's bad
2358 news; a message is printed that is really intended for the \MP\
2359 maintenance person instead of the user (unless the user has been
2360 particularly diabolical). The index entries for `this can't happen' may
2361 help to pinpoint the problem.
2364 @<Internal library ...@>=
2365 void mp_confusion (MP mp,char *s);
2367 @ @<Error hand...@>=
2368 void mp_confusion (MP mp,char *s) {
2369 /* consistency check violated; |s| tells where */
2370 mp_normalize_selector(mp);
2371 if ( mp->history<mp_error_message_issued ) {
2372 print_err("This can't happen ("); mp_print(mp, s); mp_print_char(mp, ')');
2373 @.This can't happen@>
2374 help1("I'm broken. Please show this to someone who can fix can fix");
2376 print_err("I can\'t go on meeting you like this");
2377 @.I can't go on...@>
2378 help2("One of your faux pas seems to have wounded me deeply...")
2379 ("in fact, I'm barely conscious. Please fix it and try again.");
2384 @ Users occasionally want to interrupt \MP\ while it's running.
2385 If the runtime system allows this, one can implement
2386 a routine that sets the global variable |interrupt| to some nonzero value
2387 when such an interrupt is signaled. Otherwise there is probably at least
2388 a way to make |interrupt| nonzero using the C debugger.
2389 @^system dependencies@>
2392 @d check_interrupt { if ( mp->interrupt!=0 )
2393 mp_pause_for_instructions(mp); }
2396 integer interrupt; /* should \MP\ pause for instructions? */
2397 boolean OK_to_interrupt; /* should interrupts be observed? */
2399 @ @<Allocate or ...@>=
2400 mp->interrupt=0; mp->OK_to_interrupt=true;
2402 @ When an interrupt has been detected, the program goes into its
2403 highest interaction level and lets the user have the full flexibility of
2404 the |error| routine. \MP\ checks for interrupts only at times when it is
2408 void mp_pause_for_instructions (MP mp) {
2409 if ( mp->OK_to_interrupt ) {
2410 mp->interaction=mp_error_stop_mode;
2411 if ( (mp->selector==log_only)||(mp->selector==no_print) )
2413 print_err("Interruption");
2416 ("Try to insert some instructions for me (e.g.,`I show x'),")
2417 ("unless you just want to quit by typing `X'.");
2418 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
2423 @ Many of \MP's error messages state that a missing token has been
2424 inserted behind the scenes. We can save string space and program space
2425 by putting this common code into a subroutine.
2428 void mp_missing_err (MP mp, char *s) {
2429 print_err("Missing `"); mp_print(mp, s); mp_print(mp, "' has been inserted");
2430 @.Missing...inserted@>
2433 @* \[7] Arithmetic with scaled numbers.
2434 The principal computations performed by \MP\ are done entirely in terms of
2435 integers less than $2^{31}$ in magnitude; thus, the arithmetic specified in this
2436 program can be carried out in exactly the same way on a wide variety of
2437 computers, including some small ones.
2440 But C does not rigidly define the |/| operation in the case of negative
2441 dividends; for example, the result of |(-2*n-1) / 2| is |-(n+1)| on some
2442 computers and |-n| on others (is this true ?). There are two principal
2443 types of arithmetic: ``translation-preserving,'' in which the identity
2444 |(a+q*b)/b=(a/b)+q| is valid; and ``negation-preserving,'' in which
2445 |(-a)/b=-(a/b)|. This leads to two \MP s, which can produce
2446 different results, although the differences should be negligible when the
2447 language is being used properly. The \TeX\ processor has been defined
2448 carefully so that both varieties of arithmetic will produce identical
2449 output, but it would be too inefficient to constrain \MP\ in a similar way.
2451 @d el_gordo 017777777777 /* $2^{31}-1$, the largest value that \MP\ likes */
2453 @ One of \MP's most common operations is the calculation of
2454 $\lfloor{a+b\over2}\rfloor$,
2455 the midpoint of two given integers |a| and~|b|. The most decent way to do
2456 this is to write `|(a+b)/2|'; but on many machines it is more efficient
2457 to calculate `|(a+b)>>1|'.
2459 Therefore the midpoint operation will always be denoted by `|half(a+b)|'
2460 in this program. If \MP\ is being implemented with languages that permit
2461 binary shifting, the |half| macro should be changed to make this operation
2462 as efficient as possible. Since some systems have shift operators that can
2463 only be trusted to work on positive numbers, there is also a macro |halfp|
2464 that is used only when the quantity being halved is known to be positive
2467 @d half(A) ((A) / 2)
2468 @d halfp(A) ((A) >> 1)
2470 @ A single computation might use several subroutine calls, and it is
2471 desirable to avoid producing multiple error messages in case of arithmetic
2472 overflow. So the routines below set the global variable |arith_error| to |true|
2473 instead of reporting errors directly to the user.
2476 boolean arith_error; /* has arithmetic overflow occurred recently? */
2478 @ @<Allocate or ...@>=
2479 mp->arith_error=false;
2481 @ At crucial points the program will say |check_arith|, to test if
2482 an arithmetic error has been detected.
2484 @d check_arith { if ( mp->arith_error ) mp_clear_arith(mp); }
2487 void mp_clear_arith (MP mp) {
2488 print_err("Arithmetic overflow");
2489 @.Arithmetic overflow@>
2490 help4("Uh, oh. A little while ago one of the quantities that I was")
2491 ("computing got too large, so I'm afraid your answers will be")
2492 ("somewhat askew. You'll probably have to adopt different")
2493 ("tactics next time. But I shall try to carry on anyway.");
2495 mp->arith_error=false;
2498 @ Addition is not always checked to make sure that it doesn't overflow,
2499 but in places where overflow isn't too unlikely the |slow_add| routine
2502 @c integer mp_slow_add (MP mp,integer x, integer y) {
2504 if ( y<=el_gordo-x ) {
2507 mp->arith_error=true;
2510 } else if ( -y<=el_gordo+x ) {
2513 mp->arith_error=true;
2518 @ Fixed-point arithmetic is done on {\sl scaled integers\/} that are multiples
2519 of $2^{-16}$. In other words, a binary point is assumed to be sixteen bit
2520 positions from the right end of a binary computer word.
2522 @d quarter_unit 040000 /* $2^{14}$, represents 0.250000 */
2523 @d half_unit 0100000 /* $2^{15}$, represents 0.50000 */
2524 @d three_quarter_unit 0140000 /* $3\cdot2^{14}$, represents 0.75000 */
2525 @d unity 0200000 /* $2^{16}$, represents 1.00000 */
2526 @d two 0400000 /* $2^{17}$, represents 2.00000 */
2527 @d three 0600000 /* $2^{17}+2^{16}$, represents 3.00000 */
2530 typedef integer scaled; /* this type is used for scaled integers */
2531 typedef unsigned char small_number; /* this type is self-explanatory */
2533 @ The following function is used to create a scaled integer from a given decimal
2534 fraction $(.d_0d_1\ldots d_{k-1})$, where |0<=k<=17|. The digit $d_i$ is
2535 given in |dig[i]|, and the calculation produces a correctly rounded result.
2538 scaled mp_round_decimals (MP mp,small_number k) {
2539 /* converts a decimal fraction */
2540 integer a = 0; /* the accumulator */
2542 a=(a+mp->dig[k]*two) / 10;
2547 @ Conversely, here is a procedure analogous to |print_int|. If the output
2548 of this procedure is subsequently read by \MP\ and converted by the
2549 |round_decimals| routine above, it turns out that the original value will
2550 be reproduced exactly. A decimal point is printed only if the value is
2551 not an integer. If there is more than one way to print the result with
2552 the optimum number of digits following the decimal point, the closest
2553 possible value is given.
2555 The invariant relation in the \&{repeat} loop is that a sequence of
2556 decimal digits yet to be printed will yield the original number if and only if
2557 they form a fraction~$f$ in the range $s-\delta\L10\cdot2^{16}f<s$.
2558 We can stop if and only if $f=0$ satisfies this condition; the loop will
2559 terminate before $s$ can possibly become zero.
2561 @<Basic printing...@>=
2562 void mp_print_scaled (MP mp,scaled s) { /* prints scaled real, rounded to five digits */
2563 scaled delta; /* amount of allowable inaccuracy */
2565 mp_print_char(mp, '-');
2566 negate(s); /* print the sign, if negative */
2568 mp_print_int(mp, s / unity); /* print the integer part */
2572 mp_print_char(mp, '.');
2575 s=s+0100000-(delta / 2); /* round the final digit */
2576 mp_print_char(mp, '0'+(s / unity));
2583 @ We often want to print two scaled quantities in parentheses,
2584 separated by a comma.
2586 @<Basic printing...@>=
2587 void mp_print_two (MP mp,scaled x, scaled y) { /* prints `|(x,y)|' */
2588 mp_print_char(mp, '(');
2589 mp_print_scaled(mp, x);
2590 mp_print_char(mp, ',');
2591 mp_print_scaled(mp, y);
2592 mp_print_char(mp, ')');
2595 @ The |scaled| quantities in \MP\ programs are generally supposed to be
2596 less than $2^{12}$ in absolute value, so \MP\ does much of its internal
2597 arithmetic with 28~significant bits of precision. A |fraction| denotes
2598 a scaled integer whose binary point is assumed to be 28 bit positions
2601 @d fraction_half 01000000000 /* $2^{27}$, represents 0.50000000 */
2602 @d fraction_one 02000000000 /* $2^{28}$, represents 1.00000000 */
2603 @d fraction_two 04000000000 /* $2^{29}$, represents 2.00000000 */
2604 @d fraction_three 06000000000 /* $3\cdot2^{28}$, represents 3.00000000 */
2605 @d fraction_four 010000000000 /* $2^{30}$, represents 4.00000000 */
2608 typedef integer fraction; /* this type is used for scaled fractions */
2610 @ In fact, the two sorts of scaling discussed above aren't quite
2611 sufficient; \MP\ has yet another, used internally to keep track of angles
2612 in units of $2^{-20}$ degrees.
2614 @d forty_five_deg 0264000000 /* $45\cdot2^{20}$, represents $45^\circ$ */
2615 @d ninety_deg 0550000000 /* $90\cdot2^{20}$, represents $90^\circ$ */
2616 @d one_eighty_deg 01320000000 /* $180\cdot2^{20}$, represents $180^\circ$ */
2617 @d three_sixty_deg 02640000000 /* $360\cdot2^{20}$, represents $360^\circ$ */
2620 typedef integer angle; /* this type is used for scaled angles */
2622 @ The |make_fraction| routine produces the |fraction| equivalent of
2623 |p/q|, given integers |p| and~|q|; it computes the integer
2624 $f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are
2625 positive. If |p| and |q| are both of the same scaled type |t|,
2626 the ``type relation'' |make_fraction(t,t)=fraction| is valid;
2627 and it's also possible to use the subroutine ``backwards,'' using
2628 the relation |make_fraction(t,fraction)=t| between scaled types.
2630 If the result would have magnitude $2^{31}$ or more, |make_fraction|
2631 sets |arith_error:=true|. Most of \MP's internal computations have
2632 been designed to avoid this sort of error.
2634 If this subroutine were programmed in assembly language on a typical
2635 machine, we could simply compute |(@t$2^{28}$@>*p)div q|, since a
2636 double-precision product can often be input to a fixed-point division
2637 instruction. But when we are restricted to int-eger arithmetic it
2638 is necessary either to resort to multiple-precision maneuvering
2639 or to use a simple but slow iteration. The multiple-precision technique
2640 would be about three times faster than the code adopted here, but it
2641 would be comparatively long and tricky, involving about sixteen
2642 additional multiplications and divisions.
2644 This operation is part of \MP's ``inner loop''; indeed, it will
2645 consume nearly 10\pct! of the running time (exclusive of input and output)
2646 if the code below is left unchanged. A machine-dependent recoding
2647 will therefore make \MP\ run faster. The present implementation
2648 is highly portable, but slow; it avoids multiplication and division
2649 except in the initial stage. System wizards should be careful to
2650 replace it with a routine that is guaranteed to produce identical
2651 results in all cases.
2652 @^system dependencies@>
2654 As noted below, a few more routines should also be replaced by machine-dependent
2655 code, for efficiency. But when a procedure is not part of the ``inner loop,''
2656 such changes aren't advisable; simplicity and robustness are
2657 preferable to trickery, unless the cost is too high.
2661 fraction mp_make_fraction (MP mp,integer p, integer q);
2662 integer mp_take_scaled (MP mp,integer q, scaled f) ;
2664 @ If FIXPT is not defined, we need these preprocessor values
2666 @d ELGORDO 0x7fffffff
2667 @d TWEXP31 2147483648.0
2668 @d TWEXP28 268435456.0
2670 @d TWEXP_16 (1.0/65536.0)
2671 @d TWEXP_28 (1.0/268435456.0)
2675 fraction mp_make_fraction (MP mp,integer p, integer q) {
2677 integer f; /* the fraction bits, with a leading 1 bit */
2678 integer n; /* the integer part of $\vert p/q\vert$ */
2679 integer be_careful; /* disables certain compiler optimizations */
2680 boolean negative = false; /* should the result be negated? */
2682 negate(p); negative=true;
2686 if ( q==0 ) mp_confusion(mp, '/');
2688 @:this can't happen /}{\quad \./@>
2689 negate(q); negative = ! negative;
2693 mp->arith_error=true;
2694 return ( negative ? -el_gordo : el_gordo);
2696 n=(n-1)*fraction_one;
2697 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>;
2698 return (negative ? (-(f+n)) : (f+n));
2704 if (q==0) mp_confusion(mp,'/');
2706 d = TWEXP28 * (double)p /(double)q;
2709 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
2711 if (d==i && ( ((q>0 ? -q : q)&077777)
2712 * (((i&037777)<<1)-1) & 04000)!=0) --i;
2715 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
2717 if (d==i && ( ((q>0 ? q : -q)&077777)
2718 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
2724 @ The |repeat| loop here preserves the following invariant relations
2725 between |f|, |p|, and~|q|:
2726 (i)~|0<=p<q|; (ii)~$fq+p=2^k(q+p_0)$, where $k$ is an integer and
2727 $p_0$ is the original value of~$p$.
2729 Notice that the computation specifies
2730 |(p-q)+p| instead of |(p+p)-q|, because the latter could overflow.
2731 Let us hope that optimizing compilers do not miss this point; a
2732 special variable |be_careful| is used to emphasize the necessary
2733 order of computation. Optimizing compilers should keep |be_careful|
2734 in a register, not store it in memory.
2737 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>=
2741 be_careful=p-q; p=be_careful+p;
2747 } while (f<fraction_one);
2749 if ( be_careful+p>=0 ) incr(f);
2752 @ The dual of |make_fraction| is |take_fraction|, which multiplies a
2753 given integer~|q| by a fraction~|f|. When the operands are positive, it
2754 computes $p=\lfloor qf/2^{28}+{1\over2}\rfloor$, a symmetric function
2757 This routine is even more ``inner loopy'' than |make_fraction|;
2758 the present implementation consumes almost 20\pct! of \MP's computation
2759 time during typical jobs, so a machine-language substitute is advisable.
2760 @^inner loop@> @^system dependencies@>
2763 integer mp_take_fraction (MP mp,integer q, fraction f) ;
2767 integer mp_take_fraction (MP mp,integer q, fraction f) {
2768 integer p; /* the fraction so far */
2769 boolean negative; /* should the result be negated? */
2770 integer n; /* additional multiple of $q$ */
2771 integer be_careful; /* disables certain compiler optimizations */
2772 @<Reduce to the case that |f>=0| and |q>0|@>;
2773 if ( f<fraction_one ) {
2776 n=f / fraction_one; f=f % fraction_one;
2777 if ( q<=el_gordo / n ) {
2780 mp->arith_error=true; n=el_gordo;
2784 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>;
2785 be_careful=n-el_gordo;
2786 if ( be_careful+p>0 ){
2787 mp->arith_error=true; n=el_gordo-p;
2794 integer mp_take_fraction (MP mp,integer p, fraction q) {
2797 d = (double)p * (double)q * TWEXP_28;
2801 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2802 mp->arith_error = true;
2806 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2810 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2811 mp->arith_error = true;
2815 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2821 @ @<Reduce to the case that |f>=0| and |q>0|@>=
2825 negate( f); negative=true;
2828 negate(q); negative=! negative;
2831 @ The invariant relations in this case are (i)~$\lfloor(qf+p)/2^k\rfloor
2832 =\lfloor qf_0/2^{28}+{1\over2}\rfloor$, where $k$ is an integer and
2833 $f_0$ is the original value of~$f$; (ii)~$2^k\L f<2^{k+1}$.
2836 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>=
2837 p=fraction_half; /* that's $2^{27}$; the invariants hold now with $k=28$ */
2838 if ( q<fraction_four ) {
2840 if ( odd(f) ) p=halfp(p+q); else p=halfp(p);
2845 if ( odd(f) ) p=p+halfp(q-p); else p=halfp(p);
2851 @ When we want to multiply something by a |scaled| quantity, we use a scheme
2852 analogous to |take_fraction| but with a different scaling.
2853 Given positive operands, |take_scaled|
2854 computes the quantity $p=\lfloor qf/2^{16}+{1\over2}\rfloor$.
2856 Once again it is a good idea to use a machine-language replacement if
2857 possible; otherwise |take_scaled| will use more than 2\pct! of the running time
2858 when the Computer Modern fonts are being generated.
2863 integer mp_take_scaled (MP mp,integer q, scaled f) {
2864 integer p; /* the fraction so far */
2865 boolean negative; /* should the result be negated? */
2866 integer n; /* additional multiple of $q$ */
2867 integer be_careful; /* disables certain compiler optimizations */
2868 @<Reduce to the case that |f>=0| and |q>0|@>;
2872 n=f / unity; f=f % unity;
2873 if ( q<=el_gordo / n ) {
2876 mp->arith_error=true; n=el_gordo;
2880 @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>;
2881 be_careful=n-el_gordo;
2882 if ( be_careful+p>0 ) {
2883 mp->arith_error=true; n=el_gordo-p;
2885 return ( negative ?(-(n+p)) :(n+p));
2887 integer mp_take_scaled (MP mp,integer p, scaled q) {
2890 d = (double)p * (double)q * TWEXP_16;
2894 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2895 mp->arith_error = true;
2899 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2903 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2904 mp->arith_error = true;
2908 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2914 @ @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>=
2915 p=half_unit; /* that's $2^{15}$; the invariants hold now with $k=16$ */
2917 if ( q<fraction_four ) {
2919 p = (odd(f) ? halfp(p+q) : halfp(p));
2924 p = (odd(f) ? p+halfp(q-p) : halfp(p));
2929 @ For completeness, there's also |make_scaled|, which computes a
2930 quotient as a |scaled| number instead of as a |fraction|.
2931 In other words, the result is $\lfloor2^{16}p/q+{1\over2}\rfloor$, if the
2932 operands are positive. \ (This procedure is not used especially often,
2933 so it is not part of \MP's inner loop.)
2935 @<Internal library ...@>=
2936 scaled mp_make_scaled (MP mp,integer p, integer q) ;
2939 scaled mp_make_scaled (MP mp,integer p, integer q) {
2941 integer f; /* the fraction bits, with a leading 1 bit */
2942 integer n; /* the integer part of $\vert p/q\vert$ */
2943 boolean negative; /* should the result be negated? */
2944 integer be_careful; /* disables certain compiler optimizations */
2945 if ( p>=0 ) negative=false;
2946 else { negate(p); negative=true; };
2949 if ( q==0 ) mp_confusion(mp, "/");
2950 @:this can't happen /}{\quad \./@>
2952 negate(q); negative=! negative;
2956 mp->arith_error=true;
2957 return (negative ? (-el_gordo) : el_gordo);
2960 @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>;
2961 return ( negative ? (-(f+n)) :(f+n));
2967 if (q==0) mp_confusion(mp,"/");
2969 d = TWEXP16 * (double)p /(double)q;
2972 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
2974 if (d==i && ( ((q>0 ? -q : q)&077777)
2975 * (((i&037777)<<1)-1) & 04000)!=0) --i;
2978 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
2980 if (d==i && ( ((q>0 ? q : -q)&077777)
2981 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
2987 @ @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>=
2990 be_careful=p-q; p=be_careful+p;
2991 if ( p>=0 ) f=f+f+1;
2992 else { f+=f; p=p+q; };
2995 if ( be_careful+p>=0 ) incr(f)
2997 @ Here is a typical example of how the routines above can be used.
2998 It computes the function
2999 $${1\over3\tau}f(\theta,\phi)=
3000 {\tau^{-1}\bigl(2+\sqrt2\,(\sin\theta-{1\over16}\sin\phi)
3001 (\sin\phi-{1\over16}\sin\theta)(\cos\theta-\cos\phi)\bigr)\over
3002 3\,\bigl(1+{1\over2}(\sqrt5-1)\cos\theta+{1\over2}(3-\sqrt5\,)\cos\phi\bigr)},$$
3003 where $\tau$ is a |scaled| ``tension'' parameter. This is \MP's magic
3004 fudge factor for placing the first control point of a curve that starts
3005 at an angle $\theta$ and ends at an angle $\phi$ from the straight path.
3006 (Actually, if the stated quantity exceeds 4, \MP\ reduces it to~4.)
3008 The trigonometric quantity to be multiplied by $\sqrt2$ is less than $\sqrt2$.
3009 (It's a sum of eight terms whose absolute values can be bounded using
3010 relations such as $\sin\theta\cos\theta\L{1\over2}$.) Thus the numerator
3011 is positive; and since the tension $\tau$ is constrained to be at least
3012 $3\over4$, the numerator is less than $16\over3$. The denominator is
3013 nonnegative and at most~6. Hence the fixed-point calculations below
3014 are guaranteed to stay within the bounds of a 32-bit computer word.
3016 The angles $\theta$ and $\phi$ are given implicitly in terms of |fraction|
3017 arguments |st|, |ct|, |sf|, and |cf|, representing $\sin\theta$, $\cos\theta$,
3018 $\sin\phi$, and $\cos\phi$, respectively.
3021 fraction mp_velocity (MP mp,fraction st, fraction ct, fraction sf,
3022 fraction cf, scaled t) {
3023 integer acc,num,denom; /* registers for intermediate calculations */
3024 acc=mp_take_fraction(mp, st-(sf / 16), sf-(st / 16));
3025 acc=mp_take_fraction(mp, acc,ct-cf);
3026 num=fraction_two+mp_take_fraction(mp, acc,379625062);
3027 /* $2^{28}\sqrt2\approx379625062.497$ */
3028 denom=fraction_three+mp_take_fraction(mp, ct,497706707)+mp_take_fraction(mp, cf,307599661);
3029 /* $3\cdot2^{27}\cdot(\sqrt5-1)\approx497706706.78$ and
3030 $3\cdot2^{27}\cdot(3-\sqrt5\,)\approx307599661.22$ */
3031 if ( t!=unity ) num=mp_make_scaled(mp, num,t);
3032 /* |make_scaled(fraction,scaled)=fraction| */
3033 if ( num / 4>=denom )
3034 return fraction_four;
3036 return mp_make_fraction(mp, num, denom);
3039 @ The following somewhat different subroutine tests rigorously if $ab$ is
3040 greater than, equal to, or less than~$cd$,
3041 given integers $(a,b,c,d)$. In most cases a quick decision is reached.
3042 The result is $+1$, 0, or~$-1$ in the three respective cases.
3044 @d mp_ab_vs_cd(M,A,B,C,D) mp_do_ab_vs_cd(A,B,C,D)
3047 integer mp_do_ab_vs_cd (integer a,integer b, integer c, integer d) {
3048 integer q,r; /* temporary registers */
3049 @<Reduce to the case that |a,c>=0|, |b,d>0|@>;
3051 q = a / d; r = c / b;
3053 return ( q>r ? 1 : -1);
3054 q = a % d; r = c % b;
3057 if ( q==0 ) return -1;
3059 } /* now |a>d>0| and |c>b>0| */
3062 @ @<Reduce to the case that |a...@>=
3063 if ( a<0 ) { negate(a); negate(b); };
3064 if ( c<0 ) { negate(c); negate(d); };
3067 if ( (a==0||b==0)&&(c==0||d==0) ) return 0;
3071 return ( a==0 ? 0 : -1);
3072 q=a; a=c; c=q; q=-b; b=-d; d=q;
3073 } else if ( b<=0 ) {
3074 if ( b<0 ) if ( a>0 ) return -1;
3075 return (c==0 ? 0 : -1);
3078 @ We conclude this set of elementary routines with some simple rounding
3079 and truncation operations.
3081 @<Internal library declarations@>=
3082 #define mp_floor_scaled(M,i) ((i)&(-65536))
3083 #define mp_round_unscaled(M,i) (((i>>15)+1)>>1)
3084 #define mp_round_fraction(M,i) (((i>>11)+1)>>1)
3087 @* \[8] Algebraic and transcendental functions.
3088 \MP\ computes all of the necessary special functions from scratch, without
3089 relying on |real| arithmetic or system subroutines for sines, cosines, etc.
3091 @ To get the square root of a |scaled| number |x|, we want to calculate
3092 $s=\lfloor 2^8\!\sqrt x +{1\over2}\rfloor$. If $x>0$, this is the unique
3093 integer such that $2^{16}x-s\L s^2<2^{16}x+s$. The following subroutine
3094 determines $s$ by an iterative method that maintains the invariant
3095 relations $x=2^{46-2k}x_0\bmod 2^{30}$, $0<y=\lfloor 2^{16-2k}x_0\rfloor
3096 -s^2+s\L q=2s$, where $x_0$ is the initial value of $x$. The value of~$y$
3097 might, however, be zero at the start of the first iteration.
3100 scaled mp_square_rt (MP mp,scaled x) ;
3103 scaled mp_square_rt (MP mp,scaled x) {
3104 small_number k; /* iteration control counter */
3105 integer y,q; /* registers for intermediate calculations */
3107 @<Handle square root of zero or negative argument@>;
3110 while ( x<fraction_two ) { /* i.e., |while x<@t$2^{29}$@>|\unskip */
3113 if ( x<fraction_four ) y=0;
3114 else { x=x-fraction_four; y=1; };
3116 @<Decrease |k| by 1, maintaining the invariant
3117 relations between |x|, |y|, and~|q|@>;
3123 @ @<Handle square root of zero...@>=
3126 print_err("Square root of ");
3127 @.Square root...replaced by 0@>
3128 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3129 help2("Since I don't take square roots of negative numbers,")
3130 ("I'm zeroing this one. Proceed, with fingers crossed.");
3136 @ @<Decrease |k| by 1, maintaining...@>=
3138 if ( x>=fraction_four ) { /* note that |fraction_four=@t$2^{30}$@>| */
3139 x=x-fraction_four; incr(y);
3141 x+=x; y=y+y-q; q+=q;
3142 if ( x>=fraction_four ) { x=x-fraction_four; incr(y); };
3143 if ( y>q ){ y=y-q; q=q+2; }
3144 else if ( y<=0 ) { q=q-2; y=y+q; };
3147 @ Pythagorean addition $\psqrt{a^2+b^2}$ is implemented by an elegant
3148 iterative scheme due to Cleve Moler and Donald Morrison [{\sl IBM Journal
3149 @^Moler, Cleve Barry@>
3150 @^Morrison, Donald Ross@>
3151 of Research and Development\/ \bf27} (1983), 577--581]. It modifies |a| and~|b|
3152 in such a way that their Pythagorean sum remains invariant, while the
3153 smaller argument decreases.
3155 @<Internal library ...@>=
3156 integer mp_pyth_add (MP mp,integer a, integer b);
3160 integer mp_pyth_add (MP mp,integer a, integer b) {
3161 fraction r; /* register used to transform |a| and |b| */
3162 boolean big; /* is the result dangerously near $2^{31}$? */
3164 if ( a<b ) { r=b; b=a; a=r; }; /* now |0<=b<=a| */
3166 if ( a<fraction_two ) {
3169 a=a / 4; b=b / 4; big=true;
3170 }; /* we reduced the precision to avoid arithmetic overflow */
3171 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>;
3173 if ( a<fraction_two ) {
3176 mp->arith_error=true; a=el_gordo;
3183 @ The key idea here is to reflect the vector $(a,b)$ about the
3184 line through $(a,b/2)$.
3186 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>=
3188 r=mp_make_fraction(mp, b,a);
3189 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3191 r=mp_make_fraction(mp, r,fraction_four+r);
3192 a=a+mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3196 @ Here is a similar algorithm for $\psqrt{a^2-b^2}$.
3197 It converges slowly when $b$ is near $a$, but otherwise it works fine.
3200 integer mp_pyth_sub (MP mp,integer a, integer b) {
3201 fraction r; /* register used to transform |a| and |b| */
3202 boolean big; /* is the input dangerously near $2^{31}$? */
3205 @<Handle erroneous |pyth_sub| and set |a:=0|@>;
3207 if ( a<fraction_four ) {
3210 a=halfp(a); b=halfp(b); big=true;
3212 @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>;
3213 if ( big ) double(a);
3218 @ @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>=
3220 r=mp_make_fraction(mp, b,a);
3221 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3223 r=mp_make_fraction(mp, r,fraction_four-r);
3224 a=a-mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3227 @ @<Handle erroneous |pyth_sub| and set |a:=0|@>=
3230 print_err("Pythagorean subtraction "); mp_print_scaled(mp, a);
3231 mp_print(mp, "+-+"); mp_print_scaled(mp, b);
3232 mp_print(mp, " has been replaced by 0");
3234 help2("Since I don't take square roots of negative numbers,")
3235 ("I'm zeroing this one. Proceed, with fingers crossed.");
3241 @ The subroutines for logarithm and exponential involve two tables.
3242 The first is simple: |two_to_the[k]| equals $2^k$. The second involves
3243 a bit more calculation, which the author claims to have done correctly:
3244 |spec_log[k]| is $2^{27}$ times $\ln\bigl(1/(1-2^{-k})\bigr)=
3245 2^{-k}+{1\over2}2^{-2k}+{1\over3}2^{-3k}+\cdots\,$, rounded to the
3248 @d two_to_the(A) (1<<(A))
3251 static const integer spec_log[29] = { 0, /* special logarithms */
3252 93032640, 38612034, 17922280, 8662214, 4261238, 2113709,
3253 1052693, 525315, 262400, 131136, 65552, 32772, 16385,
3254 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1 };
3256 @ @<Local variables for initialization@>=
3257 integer k; /* all-purpose loop index */
3260 @ Here is the routine that calculates $2^8$ times the natural logarithm
3261 of a |scaled| quantity; it is an integer approximation to $2^{24}\ln(x/2^{16})$,
3262 when |x| is a given positive integer.
3264 The method is based on exercise 1.2.2--25 in {\sl The Art of Computer
3265 Programming\/}: During the main iteration we have $1\L 2^{-30}x<1/(1-2^{1-k})$,
3266 and the logarithm of $2^{30}x$ remains to be added to an accumulator
3267 register called~$y$. Three auxiliary bits of accuracy are retained in~$y$
3268 during the calculation, and sixteen auxiliary bits to extend |y| are
3269 kept in~|z| during the initial argument reduction. (We add
3270 $100\cdot2^{16}=6553600$ to~|z| and subtract 100 from~|y| so that |z| will
3271 not become negative; also, the actual amount subtracted from~|y| is~96,
3272 not~100, because we want to add~4 for rounding before the final division by~8.)
3275 scaled mp_m_log (MP mp,scaled x) {
3276 integer y,z; /* auxiliary registers */
3277 integer k; /* iteration counter */
3279 @<Handle non-positive logarithm@>;
3281 y=1302456956+4-100; /* $14\times2^{27}\ln2\approx1302456956.421063$ */
3282 z=27595+6553600; /* and $2^{16}\times .421063\approx 27595$ */
3283 while ( x<fraction_four ) {
3284 double(x); y-=93032639; z-=48782;
3285 } /* $2^{27}\ln2\approx 93032639.74436163$ and $2^{16}\times.74436163\approx 48782$ */
3286 y=y+(z / unity); k=2;
3287 while ( x>fraction_four+4 ) {
3288 @<Increase |k| until |x| can be multiplied by a
3289 factor of $2^{-k}$, and adjust $y$ accordingly@>;
3295 @ @<Increase |k| until |x| can...@>=
3297 z=((x-1) / two_to_the(k))+1; /* $z=\lceil x/2^k\rceil$ */
3298 while ( x<fraction_four+z ) { z=halfp(z+1); incr(k); };
3299 y+=spec_log[k]; x-=z;
3302 @ @<Handle non-positive logarithm@>=
3304 print_err("Logarithm of ");
3305 @.Logarithm...replaced by 0@>
3306 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3307 help2("Since I don't take logs of non-positive numbers,")
3308 ("I'm zeroing this one. Proceed, with fingers crossed.");
3313 @ Conversely, the exponential routine calculates $\exp(x/2^8)$,
3314 when |x| is |scaled|. The result is an integer approximation to
3315 $2^{16}\exp(x/2^{24})$, when |x| is regarded as an integer.
3318 scaled mp_m_exp (MP mp,scaled x) {
3319 small_number k; /* loop control index */
3320 integer y,z; /* auxiliary registers */
3321 if ( x>174436200 ) {
3322 /* $2^{24}\ln((2^{31}-1)/2^{16})\approx 174436199.51$ */
3323 mp->arith_error=true;
3325 } else if ( x<-197694359 ) {
3326 /* $2^{24}\ln(2^{-1}/2^{16})\approx-197694359.45$ */
3330 z=-8*x; y=04000000; /* $y=2^{20}$ */
3332 if ( x<=127919879 ) {
3334 /* $2^{27}\ln((2^{31}-1)/2^{20})\approx 1023359037.125$ */
3336 z=8*(174436200-x); /* |z| is always nonnegative */
3340 @<Multiply |y| by $\exp(-z/2^{27})$@>;
3342 return ((y+8) / 16);
3348 @ The idea here is that subtracting |spec_log[k]| from |z| corresponds
3349 to multiplying |y| by $1-2^{-k}$.
3351 A subtle point (which had to be checked) was that if $x=127919879$, the
3352 value of~|y| will decrease so that |y+8| doesn't overflow. In fact,
3353 $z$ will be 5 in this case, and |y| will decrease by~64 when |k=25|
3354 and by~16 when |k=27|.
3356 @<Multiply |y| by...@>=
3359 while ( z>=spec_log[k] ) {
3361 y=y-1-((y-two_to_the(k-1)) / two_to_the(k));
3366 @ The trigonometric subroutines use an auxiliary table such that
3367 |spec_atan[k]| contains an approximation to the |angle| whose tangent
3368 is~$1/2^k$. $\arctan2^{-k}$ times $2^{20}\cdot180/\pi$
3371 static const angle spec_atan[27] = { 0, 27855475, 14718068, 7471121, 3750058,
3372 1876857, 938658, 469357, 234682, 117342, 58671, 29335, 14668, 7334, 3667,
3373 1833, 917, 458, 229, 115, 57, 29, 14, 7, 4, 2, 1 };
3375 @ Given integers |x| and |y|, not both zero, the |n_arg| function
3376 returns the |angle| whose tangent points in the direction $(x,y)$.
3377 This subroutine first determines the correct octant, then solves the
3378 problem for |0<=y<=x|, then converts the result appropriately to
3379 return an answer in the range |-one_eighty_deg<=@t$\theta$@><=one_eighty_deg|.
3380 (The answer is |+one_eighty_deg| if |y=0| and |x<0|, but an answer of
3381 |-one_eighty_deg| is possible if, for example, |y=-1| and $x=-2^{30}$.)
3383 The octants are represented in a ``Gray code,'' since that turns out
3384 to be computationally simplest.
3390 @d second_octant (first_octant+switch_x_and_y)
3391 @d third_octant (first_octant+switch_x_and_y+negate_x)
3392 @d fourth_octant (first_octant+negate_x)
3393 @d fifth_octant (first_octant+negate_x+negate_y)
3394 @d sixth_octant (first_octant+switch_x_and_y+negate_x+negate_y)
3395 @d seventh_octant (first_octant+switch_x_and_y+negate_y)
3396 @d eighth_octant (first_octant+negate_y)
3399 angle mp_n_arg (MP mp,integer x, integer y) {
3400 angle z; /* auxiliary register */
3401 integer t; /* temporary storage */
3402 small_number k; /* loop counter */
3403 int octant; /* octant code */
3405 octant=first_octant;
3407 negate(x); octant=first_octant+negate_x;
3410 negate(y); octant=octant+negate_y;
3413 t=y; y=x; x=t; octant=octant+switch_x_and_y;
3416 @<Handle undefined arg@>;
3418 @<Set variable |z| to the arg of $(x,y)$@>;
3419 @<Return an appropriate answer based on |z| and |octant|@>;
3423 @ @<Handle undefined arg@>=
3425 print_err("angle(0,0) is taken as zero");
3426 @.angle(0,0)...zero@>
3427 help2("The `angle' between two identical points is undefined.")
3428 ("I'm zeroing this one. Proceed, with fingers crossed.");
3433 @ @<Return an appropriate answer...@>=
3435 case first_octant: return z;
3436 case second_octant: return (ninety_deg-z);
3437 case third_octant: return (ninety_deg+z);
3438 case fourth_octant: return (one_eighty_deg-z);
3439 case fifth_octant: return (z-one_eighty_deg);
3440 case sixth_octant: return (-z-ninety_deg);
3441 case seventh_octant: return (z-ninety_deg);
3442 case eighth_octant: return (-z);
3443 }; /* there are no other cases */
3446 @ At this point we have |x>=y>=0|, and |x>0|. The numbers are scaled up
3447 or down until $2^{28}\L x<2^{29}$, so that accurate fixed-point calculations
3450 @<Set variable |z| to the arg...@>=
3451 while ( x>=fraction_two ) {
3452 x=halfp(x); y=halfp(y);
3456 while ( x<fraction_one ) {
3459 @<Increase |z| to the arg of $(x,y)$@>;
3462 @ During the calculations of this section, variables |x| and~|y|
3463 represent actual coordinates $(x,2^{-k}y)$. We will maintain the
3464 condition |x>=y|, so that the tangent will be at most $2^{-k}$.
3465 If $x<2y$, the tangent is greater than $2^{-k-1}$. The transformation
3466 $(a,b)\mapsto(a+b\tan\phi,b-a\tan\phi)$ replaces $(a,b)$ by
3467 coordinates whose angle has decreased by~$\phi$; in the special case
3468 $a=x$, $b=2^{-k}y$, and $\tan\phi=2^{-k-1}$, this operation reduces
3469 to the particularly simple iteration shown here. [Cf.~John E. Meggitt,
3470 @^Meggitt, John E.@>
3471 {\sl IBM Journal of Research and Development\/ \bf6} (1962), 210--226.]
3473 The initial value of |x| will be multiplied by at most
3474 $(1+{1\over2})(1+{1\over8})(1+{1\over32})\cdots\approx 1.7584$; hence
3475 there is no chance of integer overflow.
3477 @<Increase |z|...@>=
3482 z=z+spec_atan[k]; t=x; x=x+(y / two_to_the(k+k)); y=y-t;
3487 if ( y>x ) { z=z+spec_atan[k]; y=y-x; };
3490 @ Conversely, the |n_sin_cos| routine takes an |angle| and produces the sine
3491 and cosine of that angle. The results of this routine are
3492 stored in global integer variables |n_sin| and |n_cos|.
3495 fraction n_sin;fraction n_cos; /* results computed by |n_sin_cos| */
3497 @ Given an integer |z| that is $2^{20}$ times an angle $\theta$ in degrees,
3498 the purpose of |n_sin_cos(z)| is to set
3499 |x=@t$r\cos\theta$@>| and |y=@t$r\sin\theta$@>| (approximately),
3500 for some rather large number~|r|. The maximum of |x| and |y|
3501 will be between $2^{28}$ and $2^{30}$, so that there will be hardly
3502 any loss of accuracy. Then |x| and~|y| are divided by~|r|.
3505 void mp_n_sin_cos (MP mp,angle z) { /* computes a multiple of the sine
3507 small_number k; /* loop control variable */
3508 int q; /* specifies the quadrant */
3509 fraction r; /* magnitude of |(x,y)| */
3510 integer x,y,t; /* temporary registers */
3511 while ( z<0 ) z=z+three_sixty_deg;
3512 z=z % three_sixty_deg; /* now |0<=z<three_sixty_deg| */
3513 q=z / forty_five_deg; z=z % forty_five_deg;
3514 x=fraction_one; y=x;
3515 if ( ! odd(q) ) z=forty_five_deg-z;
3516 @<Subtract angle |z| from |(x,y)|@>;
3517 @<Convert |(x,y)| to the octant determined by~|q|@>;
3518 r=mp_pyth_add(mp, x,y);
3519 mp->n_cos=mp_make_fraction(mp, x,r);
3520 mp->n_sin=mp_make_fraction(mp, y,r);
3523 @ In this case the octants are numbered sequentially.
3525 @<Convert |(x,...@>=
3528 case 1: t=x; x=y; y=t; break;
3529 case 2: t=x; x=-y; y=t; break;
3530 case 3: negate(x); break;
3531 case 4: negate(x); negate(y); break;
3532 case 5: t=x; x=-y; y=-t; break;
3533 case 6: t=x; x=y; y=-t; break;
3534 case 7: negate(y); break;
3535 } /* there are no other cases */
3537 @ The main iteration of |n_sin_cos| is similar to that of |n_arg| but
3538 applied in reverse. The values of |spec_atan[k]| decrease slowly enough
3539 that this loop is guaranteed to terminate before the (nonexistent) value
3540 |spec_atan[27]| would be required.
3542 @<Subtract angle |z|...@>=
3545 if ( z>=spec_atan[k] ) {
3546 z=z-spec_atan[k]; t=x;
3547 x=t+y / two_to_the(k);
3548 y=y-t / two_to_the(k);
3552 if ( y<0 ) y=0 /* this precaution may never be needed */
3554 @ And now let's complete our collection of numeric utility routines
3555 by considering random number generation.
3556 \MP\ generates pseudo-random numbers with the additive scheme recommended
3557 in Section 3.6 of {\sl The Art of Computer Programming}; however, the
3558 results are random fractions between 0 and |fraction_one-1|, inclusive.
3560 There's an auxiliary array |randoms| that contains 55 pseudo-random
3561 fractions. Using the recurrence $x_n=(x_{n-55}-x_{n-31})\bmod 2^{28}$,
3562 we generate batches of 55 new $x_n$'s at a time by calling |new_randoms|.
3563 The global variable |j_random| tells which element has most recently
3565 The global variable |random_seed| was introduced in version 0.9,
3566 for the sole reason of stressing the fact that the initial value of the
3567 random seed is system-dependant. The initialization code below will initialize
3568 this variable to |(internal[mp_time] div unity)+internal[mp_day]|, but this
3569 is not good enough on modern fast machines that are capable of running
3570 multiple MetaPost processes within the same second.
3571 @^system dependencies@>
3574 fraction randoms[55]; /* the last 55 random values generated */
3575 int j_random; /* the number of unused |randoms| */
3577 @ @<Option variables@>=
3578 int random_seed; /* the default random seed */
3580 @ @<Allocate or initialize ...@>=
3581 mp->random_seed = (scaled)opt->random_seed;
3583 @ To consume a random fraction, the program below will say `|next_random|'
3584 and then it will fetch |randoms[j_random]|.
3586 @d next_random { if ( mp->j_random==0 ) mp_new_randoms(mp);
3587 else decr(mp->j_random); }
3590 void mp_new_randoms (MP mp) {
3591 int k; /* index into |randoms| */
3592 fraction x; /* accumulator */
3593 for (k=0;k<=23;k++) {
3594 x=mp->randoms[k]-mp->randoms[k+31];
3595 if ( x<0 ) x=x+fraction_one;
3598 for (k=24;k<= 54;k++){
3599 x=mp->randoms[k]-mp->randoms[k-24];
3600 if ( x<0 ) x=x+fraction_one;
3607 void mp_init_randoms (MP mp,scaled seed);
3609 @ To initialize the |randoms| table, we call the following routine.
3612 void mp_init_randoms (MP mp,scaled seed) {
3613 fraction j,jj,k; /* more or less random integers */
3614 int i; /* index into |randoms| */
3616 while ( j>=fraction_one ) j=halfp(j);
3618 for (i=0;i<=54;i++ ){
3620 if ( k<0 ) k=k+fraction_one;
3621 mp->randoms[(i*21)% 55]=j;
3625 mp_new_randoms(mp); /* ``warm up'' the array */
3628 @ To produce a uniform random number in the range |0<=u<x| or |0>=u>x|
3629 or |0=u=x|, given a |scaled| value~|x|, we proceed as shown here.
3631 Note that the call of |take_fraction| will produce the values 0 and~|x|
3632 with about half the probability that it will produce any other particular
3633 values between 0 and~|x|, because it rounds its answers.
3636 scaled mp_unif_rand (MP mp,scaled x) {
3637 scaled y; /* trial value */
3638 next_random; y=mp_take_fraction(mp, abs(x),mp->randoms[mp->j_random]);
3639 if ( y==abs(x) ) return 0;
3640 else if ( x>0 ) return y;
3644 @ Finally, a normal deviate with mean zero and unit standard deviation
3645 can readily be obtained with the ratio method (Algorithm 3.4.1R in
3646 {\sl The Art of Computer Programming\/}).
3649 scaled mp_norm_rand (MP mp) {
3650 integer x,u,l; /* what the book would call $2^{16}X$, $2^{28}U$, and $-2^{24}\ln U$ */
3654 x=mp_take_fraction(mp, 112429,mp->randoms[mp->j_random]-fraction_half);
3655 /* $2^{16}\sqrt{8/e}\approx 112428.82793$ */
3656 next_random; u=mp->randoms[mp->j_random];
3657 } while (abs(x)>=u);
3658 x=mp_make_fraction(mp, x,u);
3659 l=139548960-mp_m_log(mp, u); /* $2^{24}\cdot12\ln2\approx139548959.6165$ */
3660 } while (mp_ab_vs_cd(mp, 1024,l,x,x)<0);
3664 @* \[9] Packed data.
3665 In order to make efficient use of storage space, \MP\ bases its major data
3666 structures on a |memory_word|, which contains either a (signed) integer,
3667 possibly scaled, or a small number of fields that are one half or one
3668 quarter of the size used for storing integers.
3670 If |x| is a variable of type |memory_word|, it contains up to four
3671 fields that can be referred to as follows:
3672 $$\vbox{\halign{\hfil#&#\hfil&#\hfil\cr
3673 |x|&.|int|&(an |integer|)\cr
3674 |x|&.|sc|\qquad&(a |scaled| integer)\cr
3675 |x.hh.lh|, |x.hh|&.|rh|&(two halfword fields)\cr
3676 |x.hh.b0|, |x.hh.b1|, |x.hh|&.|rh|&(two quarterword fields, one halfword
3678 |x.qqqq.b0|, |x.qqqq.b1|, |x.qqqq|&.|b2|, |x.qqqq.b3|\hskip-100pt
3679 &\qquad\qquad\qquad(four quarterword fields)\cr}}$$
3680 This is somewhat cumbersome to write, and not very readable either, but
3681 macros will be used to make the notation shorter and more transparent.
3682 The code below gives a formal definition of |memory_word| and
3683 its subsidiary types, using packed variant records. \MP\ makes no
3684 assumptions about the relative positions of the fields within a word.
3686 @d max_quarterword 0x3FFF /* largest allowable value in a |quarterword| */
3687 @d max_halfword 0xFFFFFFF /* largest allowable value in a |halfword| */
3689 @ Here are the inequalities that the quarterword and halfword values
3690 must satisfy (or rather, the inequalities that they mustn't satisfy):
3692 @<Check the ``constant''...@>=
3693 if (mp->ini_version) {
3694 if ( mp->mem_max!=mp->mem_top ) mp->bad=8;
3696 if ( mp->mem_max<mp->mem_top ) mp->bad=8;
3698 if ( max_quarterword<255 ) mp->bad=9;
3699 if ( max_halfword<65535 ) mp->bad=10;
3700 if ( max_quarterword>max_halfword ) mp->bad=11;
3701 if ( mp->mem_max>=max_halfword ) mp->bad=12;
3702 if ( mp->max_strings>max_halfword ) mp->bad=13;
3704 @ The macros |qi| and |qo| are used for input to and output
3705 from quarterwords. These are legacy macros.
3706 @^system dependencies@>
3708 @d qo(A) (A) /* to read eight bits from a quarterword */
3709 @d qi(A) (A) /* to store eight bits in a quarterword */
3711 @ The reader should study the following definitions closely:
3712 @^system dependencies@>
3714 @d sc cint /* |scaled| data is equivalent to |integer| */
3717 typedef short quarterword; /* 1/4 of a word */
3718 typedef int halfword; /* 1/2 of a word */
3723 struct { /* Make B0,B1 overlap the most significant bytes of LH. */
3730 quarterword B2, B3, B0, B1;
3745 @ When debugging, we may want to print a |memory_word| without knowing
3746 what type it is; so we print it in all modes.
3750 void mp_print_word (MP mp,memory_word w) {
3751 /* prints |w| in all ways */
3752 mp_print_int(mp, w.cint); mp_print_char(mp, ' ');
3753 mp_print_scaled(mp, w.sc); mp_print_char(mp, ' ');
3754 mp_print_scaled(mp, w.sc / 010000); mp_print_ln(mp);
3755 mp_print_int(mp, w.hh.lh); mp_print_char(mp, '=');
3756 mp_print_int(mp, w.hh.b0); mp_print_char(mp, ':');
3757 mp_print_int(mp, w.hh.b1); mp_print_char(mp, ';');
3758 mp_print_int(mp, w.hh.rh); mp_print_char(mp, ' ');
3759 mp_print_int(mp, w.qqqq.b0); mp_print_char(mp, ':');
3760 mp_print_int(mp, w.qqqq.b1); mp_print_char(mp, ':');
3761 mp_print_int(mp, w.qqqq.b2); mp_print_char(mp, ':');
3762 mp_print_int(mp, w.qqqq.b3);
3766 @* \[10] Dynamic memory allocation.
3768 The \MP\ system does nearly all of its own memory allocation, so that it
3769 can readily be transported into environments that do not have automatic
3770 facilities for strings, garbage collection, etc., and so that it can be in
3771 control of what error messages the user receives. The dynamic storage
3772 requirements of \MP\ are handled by providing a large array |mem| in
3773 which consecutive blocks of words are used as nodes by the \MP\ routines.
3775 Pointer variables are indices into this array, or into another array
3776 called |eqtb| that will be explained later. A pointer variable might
3777 also be a special flag that lies outside the bounds of |mem|, so we
3778 allow pointers to assume any |halfword| value. The minimum memory
3779 index represents a null pointer.
3781 @d null 0 /* the null pointer */
3782 @d mp_void (null+1) /* a null pointer different from |null| */
3786 typedef halfword pointer; /* a flag or a location in |mem| or |eqtb| */
3788 @ The |mem| array is divided into two regions that are allocated separately,
3789 but the dividing line between these two regions is not fixed; they grow
3790 together until finding their ``natural'' size in a particular job.
3791 Locations less than or equal to |lo_mem_max| are used for storing
3792 variable-length records consisting of two or more words each. This region
3793 is maintained using an algorithm similar to the one described in exercise
3794 2.5--19 of {\sl The Art of Computer Programming}. However, no size field
3795 appears in the allocated nodes; the program is responsible for knowing the
3796 relevant size when a node is freed. Locations greater than or equal to
3797 |hi_mem_min| are used for storing one-word records; a conventional
3798 \.{AVAIL} stack is used for allocation in this region.
3800 Locations of |mem| between |0| and |mem_top| may be dumped as part
3801 of preloaded format files, by the \.{INIMP} preprocessor.
3803 Production versions of \MP\ may extend the memory at the top end in order to
3804 provide more space; these locations, between |mem_top| and |mem_max|,
3805 are always used for single-word nodes.
3807 The key pointers that govern |mem| allocation have a prescribed order:
3808 $$\hbox{|null=0<lo_mem_max<hi_mem_min<mem_top<=mem_end<=mem_max|.}$$
3811 memory_word *mem; /* the big dynamic storage area */
3812 pointer lo_mem_max; /* the largest location of variable-size memory in use */
3813 pointer hi_mem_min; /* the smallest location of one-word memory in use */
3817 @d xfree(A) do { mp_xfree(A); A=NULL; } while (0)
3818 @d xrealloc(P,A,B) mp_xrealloc(mp,P,A,B)
3819 @d xmalloc(A,B) mp_xmalloc(mp,A,B)
3820 @d xstrdup(A) mp_xstrdup(mp,A)
3821 @d XREALLOC(a,b,c) a = xrealloc(a,(b+1),sizeof(c));
3823 @<Declare helpers@>=
3824 void mp_xfree (void *x);
3825 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) ;
3826 void *mp_xmalloc (MP mp, size_t nmem, size_t size) ;
3827 char *mp_xstrdup(MP mp, const char *s);
3829 @ The |max_size_test| guards against overflow, on the assumption that
3830 |size_t| is at least 31bits wide.
3832 @d max_size_test 0x7FFFFFFF
3835 void mp_xfree (void *x) {
3836 if (x!=NULL) free(x);
3838 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) {
3840 if ((max_size_test/size)<nmem) {
3841 do_fprintf(mp->err_out,"Memory size overflow!\n");
3842 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3844 w = realloc (p,(nmem*size));
3846 do_fprintf(mp->err_out,"Out of memory!\n");
3847 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3851 void *mp_xmalloc (MP mp, size_t nmem, size_t size) {
3853 if ((max_size_test/size)<nmem) {
3854 do_fprintf(mp->err_out,"Memory size overflow!\n");
3855 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3857 w = malloc (nmem*size);
3859 do_fprintf(mp->err_out,"Out of memory!\n");
3860 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3864 char *mp_xstrdup(MP mp, const char *s) {
3870 do_fprintf(mp->err_out,"Out of memory!\n");
3871 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3878 @<Allocate or initialize ...@>=
3879 mp->mem = xmalloc ((mp->mem_max+1),sizeof (memory_word));
3880 memset(mp->mem,0,(mp->mem_max+1)*sizeof (memory_word));
3882 @ @<Dealloc variables@>=
3885 @ Users who wish to study the memory requirements of particular applications can
3886 can use optional special features that keep track of current and
3887 maximum memory usage. When code between the delimiters |stat| $\ldots$
3888 |tats| is not ``commented out,'' \MP\ will run a bit slower but it will
3889 report these statistics when |mp_tracing_stats| is positive.
3892 integer var_used; integer dyn_used; /* how much memory is in use */
3894 @ Let's consider the one-word memory region first, since it's the
3895 simplest. The pointer variable |mem_end| holds the highest-numbered location
3896 of |mem| that has ever been used. The free locations of |mem| that
3897 occur between |hi_mem_min| and |mem_end|, inclusive, are of type
3898 |two_halves|, and we write |info(p)| and |link(p)| for the |lh|
3899 and |rh| fields of |mem[p]| when it is of this type. The single-word
3900 free locations form a linked list
3901 $$|avail|,\;\hbox{|link(avail)|},\;\hbox{|link(link(avail))|},\;\ldots$$
3902 terminated by |null|.
3904 @d link(A) mp->mem[(A)].hh.rh /* the |link| field of a memory word */
3905 @d info(A) mp->mem[(A)].hh.lh /* the |info| field of a memory word */
3908 pointer avail; /* head of the list of available one-word nodes */
3909 pointer mem_end; /* the last one-word node used in |mem| */
3911 @ If one-word memory is exhausted, it might mean that the user has forgotten
3912 a token like `\&{enddef}' or `\&{endfor}'. We will define some procedures
3913 later that try to help pinpoint the trouble.
3916 @<Declare the procedure called |show_token_list|@>;
3917 @<Declare the procedure called |runaway|@>
3919 @ The function |get_avail| returns a pointer to a new one-word node whose
3920 |link| field is null. However, \MP\ will halt if there is no more room left.
3924 pointer mp_get_avail (MP mp) { /* single-word node allocation */
3925 pointer p; /* the new node being got */
3926 p=mp->avail; /* get top location in the |avail| stack */
3928 mp->avail=link(mp->avail); /* and pop it off */
3929 } else if ( mp->mem_end<mp->mem_max ) { /* or go into virgin territory */
3930 incr(mp->mem_end); p=mp->mem_end;
3932 decr(mp->hi_mem_min); p=mp->hi_mem_min;
3933 if ( mp->hi_mem_min<=mp->lo_mem_max ) {
3934 mp_runaway(mp); /* if memory is exhausted, display possible runaway text */
3935 mp_overflow(mp, "main memory size",mp->mem_max);
3936 /* quit; all one-word nodes are busy */
3937 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
3940 link(p)=null; /* provide an oft-desired initialization of the new node */
3941 incr(mp->dyn_used);/* maintain statistics */
3945 @ Conversely, a one-word node is recycled by calling |free_avail|.
3947 @d free_avail(A) /* single-word node liberation */
3948 { link((A))=mp->avail; mp->avail=(A); decr(mp->dyn_used); }
3950 @ There's also a |fast_get_avail| routine, which saves the procedure-call
3951 overhead at the expense of extra programming. This macro is used in
3952 the places that would otherwise account for the most calls of |get_avail|.
3955 @d fast_get_avail(A) {
3956 (A)=mp->avail; /* avoid |get_avail| if possible, to save time */
3957 if ( (A)==null ) { (A)=mp_get_avail(mp); }
3958 else { mp->avail=link((A)); link((A))=null; incr(mp->dyn_used); }
3961 @ The available-space list that keeps track of the variable-size portion
3962 of |mem| is a nonempty, doubly-linked circular list of empty nodes,
3963 pointed to by the roving pointer |rover|.
3965 Each empty node has size 2 or more; the first word contains the special
3966 value |max_halfword| in its |link| field and the size in its |info| field;
3967 the second word contains the two pointers for double linking.
3969 Each nonempty node also has size 2 or more. Its first word is of type
3970 |two_halves|\kern-1pt, and its |link| field is never equal to |max_halfword|.
3971 Otherwise there is complete flexibility with respect to the contents
3972 of its other fields and its other words.
3974 (We require |mem_max<max_halfword| because terrible things can happen
3975 when |max_halfword| appears in the |link| field of a nonempty node.)
3977 @d empty_flag max_halfword /* the |link| of an empty variable-size node */
3978 @d is_empty(A) (link((A))==empty_flag) /* tests for empty node */
3979 @d node_size info /* the size field in empty variable-size nodes */
3980 @d llink(A) info((A)+1) /* left link in doubly-linked list of empty nodes */
3981 @d rlink(A) link((A)+1) /* right link in doubly-linked list of empty nodes */
3984 pointer rover; /* points to some node in the list of empties */
3986 @ A call to |get_node| with argument |s| returns a pointer to a new node
3987 of size~|s|, which must be 2~or more. The |link| field of the first word
3988 of this new node is set to null. An overflow stop occurs if no suitable
3991 If |get_node| is called with $s=2^{30}$, it simply merges adjacent free
3992 areas and returns the value |max_halfword|.
3994 @<Internal library declarations@>=
3995 pointer mp_get_node (MP mp,integer s) ;
3998 pointer mp_get_node (MP mp,integer s) { /* variable-size node allocation */
3999 pointer p; /* the node currently under inspection */
4000 pointer q; /* the node physically after node |p| */
4001 integer r; /* the newly allocated node, or a candidate for this honor */
4002 integer t,tt; /* temporary registers */
4005 p=mp->rover; /* start at some free node in the ring */
4007 @<Try to allocate within node |p| and its physical successors,
4008 and |goto found| if allocation was possible@>;
4009 if (rlink(p)==null || rlink(p)==p) {
4010 print_err("Free list garbled");
4011 help3("I found an entry in the list of free nodes that links")
4012 ("badly. I will try to ignore the broken link, but something")
4013 ("is seriously amiss. It is wise to warn the maintainers.")
4017 p=rlink(p); /* move to the next node in the ring */
4018 } while (p!=mp->rover); /* repeat until the whole list has been traversed */
4019 if ( s==010000000000 ) {
4020 return max_halfword;
4022 if ( mp->lo_mem_max+2<mp->hi_mem_min ) {
4023 if ( mp->lo_mem_max+2<=max_halfword ) {
4024 @<Grow more variable-size memory and |goto restart|@>;
4027 mp_overflow(mp, "main memory size",mp->mem_max);
4028 /* sorry, nothing satisfactory is left */
4029 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
4031 link(r)=null; /* this node is now nonempty */
4032 mp->var_used+=s; /* maintain usage statistics */
4036 @ The lower part of |mem| grows by 1000 words at a time, unless
4037 we are very close to going under. When it grows, we simply link
4038 a new node into the available-space list. This method of controlled
4039 growth helps to keep the |mem| usage consecutive when \MP\ is
4040 implemented on ``virtual memory'' systems.
4043 @<Grow more variable-size memory and |goto restart|@>=
4045 if ( mp->hi_mem_min-mp->lo_mem_max>=1998 ) {
4046 t=mp->lo_mem_max+1000;
4048 t=mp->lo_mem_max+1+(mp->hi_mem_min-mp->lo_mem_max) / 2;
4049 /* |lo_mem_max+2<=t<hi_mem_min| */
4051 if ( t>max_halfword ) t=max_halfword;
4052 p=llink(mp->rover); q=mp->lo_mem_max; rlink(p)=q; llink(mp->rover)=q;
4053 rlink(q)=mp->rover; llink(q)=p; link(q)=empty_flag;
4054 node_size(q)=t-mp->lo_mem_max;
4055 mp->lo_mem_max=t; link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4060 @ @<Try to allocate...@>=
4061 q=p+node_size(p); /* find the physical successor */
4062 while ( is_empty(q) ) { /* merge node |p| with node |q| */
4063 t=rlink(q); tt=llink(q);
4065 if ( q==mp->rover ) mp->rover=t;
4066 llink(t)=tt; rlink(tt)=t;
4071 @<Allocate from the top of node |p| and |goto found|@>;
4074 if ( rlink(p)!=p ) {
4075 @<Allocate entire node |p| and |goto found|@>;
4078 node_size(p)=q-p /* reset the size in case it grew */
4080 @ @<Allocate from the top...@>=
4082 node_size(p)=r-p; /* store the remaining size */
4083 mp->rover=p; /* start searching here next time */
4087 @ Here we delete node |p| from the ring, and let |rover| rove around.
4089 @<Allocate entire...@>=
4091 mp->rover=rlink(p); t=llink(p);
4092 llink(mp->rover)=t; rlink(t)=mp->rover;
4096 @ Conversely, when some variable-size node |p| of size |s| is no longer needed,
4097 the operation |free_node(p,s)| will make its words available, by inserting
4098 |p| as a new empty node just before where |rover| now points.
4100 @<Internal library declarations@>=
4101 void mp_free_node (MP mp, pointer p, halfword s) ;
4104 void mp_free_node (MP mp, pointer p, halfword s) { /* variable-size node
4106 pointer q; /* |llink(rover)| */
4107 node_size(p)=s; link(p)=empty_flag;
4109 q=llink(mp->rover); llink(p)=q; rlink(p)=mp->rover; /* set both links */
4110 llink(mp->rover)=p; rlink(q)=p; /* insert |p| into the ring */
4111 mp->var_used-=s; /* maintain statistics */
4114 @ Just before \.{INIMP} writes out the memory, it sorts the doubly linked
4115 available space list. The list is probably very short at such times, so a
4116 simple insertion sort is used. The smallest available location will be
4117 pointed to by |rover|, the next-smallest by |rlink(rover)|, etc.
4120 void mp_sort_avail (MP mp) { /* sorts the available variable-size nodes
4122 pointer p,q,r; /* indices into |mem| */
4123 pointer old_rover; /* initial |rover| setting */
4124 p=mp_get_node(mp, 010000000000); /* merge adjacent free areas */
4125 p=rlink(mp->rover); rlink(mp->rover)=max_halfword; old_rover=mp->rover;
4126 while ( p!=old_rover ) {
4127 @<Sort |p| into the list starting at |rover|
4128 and advance |p| to |rlink(p)|@>;
4131 while ( rlink(p)!=max_halfword ) {
4132 llink(rlink(p))=p; p=rlink(p);
4134 rlink(p)=mp->rover; llink(mp->rover)=p;
4137 @ The following |while| loop is guaranteed to
4138 terminate, since the list that starts at
4139 |rover| ends with |max_halfword| during the sorting procedure.
4142 if ( p<mp->rover ) {
4143 q=p; p=rlink(q); rlink(q)=mp->rover; mp->rover=q;
4146 while ( rlink(q)<p ) q=rlink(q);
4147 r=rlink(p); rlink(p)=rlink(q); rlink(q)=p; p=r;
4150 @* \[11] Memory layout.
4151 Some areas of |mem| are dedicated to fixed usage, since static allocation is
4152 more efficient than dynamic allocation when we can get away with it. For
4153 example, locations |0| to |1| are always used to store a
4154 two-word dummy token whose second word is zero.
4155 The following macro definitions accomplish the static allocation by giving
4156 symbolic names to the fixed positions. Static variable-size nodes appear
4157 in locations |0| through |lo_mem_stat_max|, and static single-word nodes
4158 appear in locations |hi_mem_stat_min| through |mem_top|, inclusive.
4160 @d null_dash (2) /* the first two words are reserved for a null value */
4161 @d dep_head (null_dash+3) /* we will define |dash_node_size=3| */
4162 @d zero_val (dep_head+2) /* two words for a permanently zero value */
4163 @d temp_val (zero_val+2) /* two words for a temporary value node */
4164 @d end_attr temp_val /* we use |end_attr+2| only */
4165 @d inf_val (end_attr+2) /* and |inf_val+1| only */
4166 @d test_pen (inf_val+2)
4167 /* nine words for a pen used when testing the turning number */
4168 @d bad_vardef (test_pen+9) /* two words for \&{vardef} error recovery */
4169 @d lo_mem_stat_max (bad_vardef+1) /* largest statically
4170 allocated word in the variable-size |mem| */
4172 @d sentinel mp->mem_top /* end of sorted lists */
4173 @d temp_head (mp->mem_top-1) /* head of a temporary list of some kind */
4174 @d hold_head (mp->mem_top-2) /* head of a temporary list of another kind */
4175 @d spec_head (mp->mem_top-3) /* head of a list of unprocessed \&{special} items */
4176 @d hi_mem_stat_min (mp->mem_top-3) /* smallest statically allocated word in
4177 the one-word |mem| */
4179 @ The following code gets the dynamic part of |mem| off to a good start,
4180 when \MP\ is initializing itself the slow way.
4182 @<Initialize table entries (done by \.{INIMP} only)@>=
4183 @^data structure assumptions@>
4184 mp->rover=lo_mem_stat_max+1; /* initialize the dynamic memory */
4185 link(mp->rover)=empty_flag;
4186 node_size(mp->rover)=1000; /* which is a 1000-word available node */
4187 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
4188 mp->lo_mem_max=mp->rover+1000;
4189 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4190 for (k=hi_mem_stat_min;k<=(int)mp->mem_top;k++) {
4191 mp->mem[k]=mp->mem[mp->lo_mem_max]; /* clear list heads */
4193 mp->avail=null; mp->mem_end=mp->mem_top;
4194 mp->hi_mem_min=hi_mem_stat_min; /* initialize the one-word memory */
4195 mp->var_used=lo_mem_stat_max+1;
4196 mp->dyn_used=mp->mem_top+1-(hi_mem_stat_min); /* initialize statistics */
4197 @<Initialize a pen at |test_pen| so that it fits in nine words@>;
4199 @ The procedure |flush_list(p)| frees an entire linked list of one-word
4200 nodes that starts at a given position, until coming to |sentinel| or a
4201 pointer that is not in the one-word region. Another procedure,
4202 |flush_node_list|, frees an entire linked list of one-word and two-word
4203 nodes, until coming to a |null| pointer.
4207 void mp_flush_list (MP mp,pointer p) { /* makes list of single-word nodes available */
4208 pointer q,r; /* list traversers */
4209 if ( p>=mp->hi_mem_min ) if ( p!=sentinel ) {
4214 if ( r<mp->hi_mem_min ) break;
4215 } while (r!=sentinel);
4216 /* now |q| is the last node on the list */
4217 link(q)=mp->avail; mp->avail=p;
4221 void mp_flush_node_list (MP mp,pointer p) {
4222 pointer q; /* the node being recycled */
4225 if ( q<mp->hi_mem_min )
4226 mp_free_node(mp, q,2);
4232 @ If \MP\ is extended improperly, the |mem| array might get screwed up.
4233 For example, some pointers might be wrong, or some ``dead'' nodes might not
4234 have been freed when the last reference to them disappeared. Procedures
4235 |check_mem| and |search_mem| are available to help diagnose such
4236 problems. These procedures make use of two arrays called |free| and
4237 |was_free| that are present only if \MP's debugging routines have
4238 been included. (You may want to decrease the size of |mem| while you
4242 Because |boolean|s are typedef-d as ints, it is better to use
4243 unsigned chars here.
4246 unsigned char *free; /* free cells */
4247 unsigned char *was_free; /* previously free cells */
4248 pointer was_mem_end; pointer was_lo_max; pointer was_hi_min;
4249 /* previous |mem_end|, |lo_mem_max|,and |hi_mem_min| */
4250 boolean panicking; /* do we want to check memory constantly? */
4252 @ @<Allocate or initialize ...@>=
4253 mp->free = xmalloc ((mp->mem_max+1),sizeof (unsigned char));
4254 mp->was_free = xmalloc ((mp->mem_max+1), sizeof (unsigned char));
4256 @ @<Dealloc variables@>=
4258 xfree(mp->was_free);
4260 @ @<Allocate or ...@>=
4261 mp->was_mem_end=0; /* indicate that everything was previously free */
4262 mp->was_lo_max=0; mp->was_hi_min=mp->mem_max;
4263 mp->panicking=false;
4265 @ @<Declare |mp_reallocate| functions@>=
4266 void mp_reallocate_memory(MP mp, int l) ;
4269 void mp_reallocate_memory(MP mp, int l) {
4270 XREALLOC(mp->free, l, unsigned char);
4271 XREALLOC(mp->was_free, l, unsigned char);
4273 int newarea = l-mp->mem_max;
4274 XREALLOC(mp->mem, l, memory_word);
4275 memset (mp->mem+(mp->mem_max+1),0,sizeof(memory_word)*(newarea));
4277 XREALLOC(mp->mem, l, memory_word);
4278 memset(mp->mem,0,sizeof(memory_word)*(l+1));
4281 if (mp->ini_version)
4287 @ Procedure |check_mem| makes sure that the available space lists of
4288 |mem| are well formed, and it optionally prints out all locations
4289 that are reserved now but were free the last time this procedure was called.
4292 void mp_check_mem (MP mp,boolean print_locs ) {
4293 pointer p,q,r; /* current locations of interest in |mem| */
4294 boolean clobbered; /* is something amiss? */
4295 for (p=0;p<=mp->lo_mem_max;p++) {
4296 mp->free[p]=false; /* you can probably do this faster */
4298 for (p=mp->hi_mem_min;p<= mp->mem_end;p++) {
4299 mp->free[p]=false; /* ditto */
4301 @<Check single-word |avail| list@>;
4302 @<Check variable-size |avail| list@>;
4303 @<Check flags of unavailable nodes@>;
4304 @<Check the list of linear dependencies@>;
4306 @<Print newly busy locations@>;
4308 memcpy(mp->was_free,mp->free, sizeof(char)*(mp->mem_end+1));
4309 mp->was_mem_end=mp->mem_end;
4310 mp->was_lo_max=mp->lo_mem_max;
4311 mp->was_hi_min=mp->hi_mem_min;
4314 @ @<Check single-word...@>=
4315 p=mp->avail; q=null; clobbered=false;
4317 if ( (p>mp->mem_end)||(p<mp->hi_mem_min) ) clobbered=true;
4318 else if ( mp->free[p] ) clobbered=true;
4320 mp_print_nl(mp, "AVAIL list clobbered at ");
4321 @.AVAIL list clobbered...@>
4322 mp_print_int(mp, q); break;
4324 mp->free[p]=true; q=p; p=link(q);
4327 @ @<Check variable-size...@>=
4328 p=mp->rover; q=null; clobbered=false;
4330 if ( (p>=mp->lo_mem_max)||(p<0) ) clobbered=true;
4331 else if ( (rlink(p)>=mp->lo_mem_max)||(rlink(p)<0) ) clobbered=true;
4332 else if ( !(is_empty(p))||(node_size(p)<2)||
4333 (p+node_size(p)>mp->lo_mem_max)|| (llink(rlink(p))!=p) ) clobbered=true;
4335 mp_print_nl(mp, "Double-AVAIL list clobbered at ");
4336 @.Double-AVAIL list clobbered...@>
4337 mp_print_int(mp, q); break;
4339 for (q=p;q<=p+node_size(p)-1;q++) { /* mark all locations free */
4340 if ( mp->free[q] ) {
4341 mp_print_nl(mp, "Doubly free location at ");
4342 @.Doubly free location...@>
4343 mp_print_int(mp, q); break;
4348 } while (p!=mp->rover)
4351 @ @<Check flags...@>=
4353 while ( p<=mp->lo_mem_max ) { /* node |p| should not be empty */
4354 if ( is_empty(p) ) {
4355 mp_print_nl(mp, "Bad flag at "); mp_print_int(mp, p);
4358 while ( (p<=mp->lo_mem_max) && ! mp->free[p] ) incr(p);
4359 while ( (p<=mp->lo_mem_max) && mp->free[p] ) incr(p);
4362 @ @<Print newly busy...@>=
4364 @<Do intialization required before printing new busy locations@>;
4365 mp_print_nl(mp, "New busy locs:");
4367 for (p=0;p<= mp->lo_mem_max;p++ ) {
4368 if ( ! mp->free[p] && ((p>mp->was_lo_max) || mp->was_free[p]) ) {
4369 @<Indicate that |p| is a new busy location@>;
4372 for (p=mp->hi_mem_min;p<=mp->mem_end;p++ ) {
4373 if ( ! mp->free[p] &&
4374 ((p<mp->was_hi_min) || (p>mp->was_mem_end) || mp->was_free[p]) ) {
4375 @<Indicate that |p| is a new busy location@>;
4378 @<Finish printing new busy locations@>;
4381 @ There might be many new busy locations so we are careful to print contiguous
4382 blocks compactly. During this operation |q| is the last new busy location and
4383 |r| is the start of the block containing |q|.
4385 @<Indicate that |p| is a new busy location@>=
4389 mp_print(mp, ".."); mp_print_int(mp, q);
4391 mp_print_char(mp, ' '); mp_print_int(mp, p);
4397 @ @<Do intialization required before printing new busy locations@>=
4398 q=mp->mem_max; r=mp->mem_max
4400 @ @<Finish printing new busy locations@>=
4402 mp_print(mp, ".."); mp_print_int(mp, q);
4405 @ The |search_mem| procedure attempts to answer the question ``Who points
4406 to node~|p|?'' In doing so, it fetches |link| and |info| fields of |mem|
4407 that might not be of type |two_halves|. Strictly speaking, this is
4408 undefined, and it can lead to ``false drops'' (words that seem to
4409 point to |p| purely by coincidence). But for debugging purposes, we want
4410 to rule out the places that do {\sl not\/} point to |p|, so a few false
4411 drops are tolerable.
4414 void mp_search_mem (MP mp, pointer p) { /* look for pointers to |p| */
4415 integer q; /* current position being searched */
4416 for (q=0;q<=mp->lo_mem_max;q++) {
4418 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4421 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4424 for (q=mp->hi_mem_min;q<=mp->mem_end;q++) {
4426 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4429 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4432 @<Search |eqtb| for equivalents equal to |p|@>;
4435 @* \[12] The command codes.
4436 Before we can go much further, we need to define symbolic names for the internal
4437 code numbers that represent the various commands obeyed by \MP. These codes
4438 are somewhat arbitrary, but not completely so. For example,
4439 some codes have been made adjacent so that |case| statements in the
4440 program need not consider cases that are widely spaced, or so that |case|
4441 statements can be replaced by |if| statements. A command can begin an
4442 expression if and only if its code lies between |min_primary_command| and
4443 |max_primary_command|, inclusive. The first token of a statement that doesn't
4444 begin with an expression has a command code between |min_command| and
4445 |max_statement_command|, inclusive. Anything less than |min_command| is
4446 eliminated during macro expansions, and anything no more than |max_pre_command|
4447 is eliminated when expanding \TeX\ material. Ranges such as
4448 |min_secondary_command..max_secondary_command| are used when parsing
4449 expressions, but the relative ordering within such a range is generally not
4452 The ordering of the highest-numbered commands
4453 (|comma<semicolon<end_group<stop|) is crucial for the parsing and
4454 error-recovery methods of this program as is the ordering |if_test<fi_or_else|
4455 for the smallest two commands. The ordering is also important in the ranges
4456 |numeric_token..plus_or_minus| and |left_brace..ampersand|.
4458 At any rate, here is the list, for future reference.
4460 @d start_tex 1 /* begin \TeX\ material (\&{btex}, \&{verbatimtex}) */
4461 @d etex_marker 2 /* end \TeX\ material (\&{etex}) */
4462 @d mpx_break 3 /* stop reading an \.{MPX} file (\&{mpxbreak}) */
4463 @d max_pre_command mpx_break
4464 @d if_test 4 /* conditional text (\&{if}) */
4465 @d fi_or_else 5 /* delimiters for conditionals (\&{elseif}, \&{else}, \&{fi} */
4466 @d input 6 /* input a source file (\&{input}, \&{endinput}) */
4467 @d iteration 7 /* iterate (\&{for}, \&{forsuffixes}, \&{forever}, \&{endfor}) */
4468 @d repeat_loop 8 /* special command substituted for \&{endfor} */
4469 @d exit_test 9 /* premature exit from a loop (\&{exitif}) */
4470 @d relax 10 /* do nothing (\.{\char`\\}) */
4471 @d scan_tokens 11 /* put a string into the input buffer */
4472 @d expand_after 12 /* look ahead one token */
4473 @d defined_macro 13 /* a macro defined by the user */
4474 @d min_command (defined_macro+1)
4475 @d save_command 14 /* save a list of tokens (\&{save}) */
4476 @d interim_command 15 /* save an internal quantity (\&{interim}) */
4477 @d let_command 16 /* redefine a symbolic token (\&{let}) */
4478 @d new_internal 17 /* define a new internal quantity (\&{newinternal}) */
4479 @d macro_def 18 /* define a macro (\&{def}, \&{vardef}, etc.) */
4480 @d ship_out_command 19 /* output a character (\&{shipout}) */
4481 @d add_to_command 20 /* add to edges (\&{addto}) */
4482 @d bounds_command 21 /* add bounding path to edges (\&{setbounds}, \&{clip}) */
4483 @d tfm_command 22 /* command for font metric info (\&{ligtable}, etc.) */
4484 @d protection_command 23 /* set protection flag (\&{outer}, \&{inner}) */
4485 @d show_command 24 /* diagnostic output (\&{show}, \&{showvariable}, etc.) */
4486 @d mode_command 25 /* set interaction level (\&{batchmode}, etc.) */
4487 @d mp_random_seed 26 /* initialize random number generator (\&{randomseed}) */
4488 @d message_command 27 /* communicate to user (\&{message}, \&{errmessage}) */
4489 @d every_job_command 28 /* designate a starting token (\&{everyjob}) */
4490 @d delimiters 29 /* define a pair of delimiters (\&{delimiters}) */
4491 @d special_command 30 /* output special info (\&{special})
4492 or font map info (\&{fontmapfile}, \&{fontmapline}) */
4493 @d write_command 31 /* write text to a file (\&{write}) */
4494 @d type_name 32 /* declare a type (\&{numeric}, \&{pair}, etc. */
4495 @d max_statement_command type_name
4496 @d min_primary_command type_name
4497 @d left_delimiter 33 /* the left delimiter of a matching pair */
4498 @d begin_group 34 /* beginning of a group (\&{begingroup}) */
4499 @d nullary 35 /* an operator without arguments (e.g., \&{normaldeviate}) */
4500 @d unary 36 /* an operator with one argument (e.g., \&{sqrt}) */
4501 @d str_op 37 /* convert a suffix to a string (\&{str}) */
4502 @d cycle 38 /* close a cyclic path (\&{cycle}) */
4503 @d primary_binary 39 /* binary operation taking `\&{of}' (e.g., \&{point}) */
4504 @d capsule_token 40 /* a value that has been put into a token list */
4505 @d string_token 41 /* a string constant (e.g., |"hello"|) */
4506 @d internal_quantity 42 /* internal numeric parameter (e.g., \&{pausing}) */
4507 @d min_suffix_token internal_quantity
4508 @d tag_token 43 /* a symbolic token without a primitive meaning */
4509 @d numeric_token 44 /* a numeric constant (e.g., \.{3.14159}) */
4510 @d max_suffix_token numeric_token
4511 @d plus_or_minus 45 /* either `\.+' or `\.-' */
4512 @d max_primary_command plus_or_minus /* should also be |numeric_token+1| */
4513 @d min_tertiary_command plus_or_minus
4514 @d tertiary_secondary_macro 46 /* a macro defined by \&{secondarydef} */
4515 @d tertiary_binary 47 /* an operator at the tertiary level (e.g., `\.{++}') */
4516 @d max_tertiary_command tertiary_binary
4517 @d left_brace 48 /* the operator `\.{\char`\{}' */
4518 @d min_expression_command left_brace
4519 @d path_join 49 /* the operator `\.{..}' */
4520 @d ampersand 50 /* the operator `\.\&' */
4521 @d expression_tertiary_macro 51 /* a macro defined by \&{tertiarydef} */
4522 @d expression_binary 52 /* an operator at the expression level (e.g., `\.<') */
4523 @d equals 53 /* the operator `\.=' */
4524 @d max_expression_command equals
4525 @d and_command 54 /* the operator `\&{and}' */
4526 @d min_secondary_command and_command
4527 @d secondary_primary_macro 55 /* a macro defined by \&{primarydef} */
4528 @d slash 56 /* the operator `\./' */
4529 @d secondary_binary 57 /* an operator at the binary level (e.g., \&{shifted}) */
4530 @d max_secondary_command secondary_binary
4531 @d param_type 58 /* type of parameter (\&{primary}, \&{expr}, \&{suffix}, etc.) */
4532 @d controls 59 /* specify control points explicitly (\&{controls}) */
4533 @d tension 60 /* specify tension between knots (\&{tension}) */
4534 @d at_least 61 /* bounded tension value (\&{atleast}) */
4535 @d curl_command 62 /* specify curl at an end knot (\&{curl}) */
4536 @d macro_special 63 /* special macro operators (\&{quote}, \.{\#\AT!}, etc.) */
4537 @d right_delimiter 64 /* the right delimiter of a matching pair */
4538 @d left_bracket 65 /* the operator `\.[' */
4539 @d right_bracket 66 /* the operator `\.]' */
4540 @d right_brace 67 /* the operator `\.{\char`\}}' */
4541 @d with_option 68 /* option for filling (\&{withpen}, \&{withweight}, etc.) */
4543 /* variant of \&{addto} (\&{contour}, \&{doublepath}, \&{also}) */
4544 @d of_token 70 /* the operator `\&{of}' */
4545 @d to_token 71 /* the operator `\&{to}' */
4546 @d step_token 72 /* the operator `\&{step}' */
4547 @d until_token 73 /* the operator `\&{until}' */
4548 @d within_token 74 /* the operator `\&{within}' */
4549 @d lig_kern_token 75
4550 /* the operators `\&{kern}' and `\.{=:}' and `\.{=:\char'174}, etc. */
4551 @d assignment 76 /* the operator `\.{:=}' */
4552 @d skip_to 77 /* the operation `\&{skipto}' */
4553 @d bchar_label 78 /* the operator `\.{\char'174\char'174:}' */
4554 @d double_colon 79 /* the operator `\.{::}' */
4555 @d colon 80 /* the operator `\.:' */
4557 @d comma 81 /* the operator `\.,', must be |colon+1| */
4558 @d end_of_statement (mp->cur_cmd>comma)
4559 @d semicolon 82 /* the operator `\.;', must be |comma+1| */
4560 @d end_group 83 /* end a group (\&{endgroup}), must be |semicolon+1| */
4561 @d stop 84 /* end a job (\&{end}, \&{dump}), must be |end_group+1| */
4562 @d max_command_code stop
4563 @d outer_tag (max_command_code+1) /* protection code added to command code */
4566 typedef int command_code;
4568 @ Variables and capsules in \MP\ have a variety of ``types,''
4569 distinguished by the code numbers defined here. These numbers are also
4570 not completely arbitrary. Things that get expanded must have types
4571 |>mp_independent|; a type remaining after expansion is numeric if and only if
4572 its code number is at least |numeric_type|; objects containing numeric
4573 parts must have types between |transform_type| and |pair_type|;
4574 all other types must be smaller than |transform_type|; and among the types
4575 that are not unknown or vacuous, the smallest two must be |boolean_type|
4576 and |string_type| in that order.
4578 @d undefined 0 /* no type has been declared */
4579 @d unknown_tag 1 /* this constant is added to certain type codes below */
4580 @d unknown_types mp_unknown_boolean: case mp_unknown_string:
4581 case mp_unknown_pen: case mp_unknown_picture: case mp_unknown_path
4584 enum mp_variable_type {
4585 mp_vacuous=1, /* no expression was present */
4586 mp_boolean_type, /* \&{boolean} with a known value */
4588 mp_string_type, /* \&{string} with a known value */
4590 mp_pen_type, /* \&{pen} with a known value */
4592 mp_path_type, /* \&{path} with a known value */
4594 mp_picture_type, /* \&{picture} with a known value */
4596 mp_transform_type, /* \&{transform} variable or capsule */
4597 mp_color_type, /* \&{color} variable or capsule */
4598 mp_cmykcolor_type, /* \&{cmykcolor} variable or capsule */
4599 mp_pair_type, /* \&{pair} variable or capsule */
4600 mp_numeric_type, /* variable that has been declared \&{numeric} but not used */
4601 mp_known, /* \&{numeric} with a known value */
4602 mp_dependent, /* a linear combination with |fraction| coefficients */
4603 mp_proto_dependent, /* a linear combination with |scaled| coefficients */
4604 mp_independent, /* \&{numeric} with unknown value */
4605 mp_token_list, /* variable name or suffix argument or text argument */
4606 mp_structured, /* variable with subscripts and attributes */
4607 mp_unsuffixed_macro, /* variable defined with \&{vardef} but no \.{\AT!\#} */
4608 mp_suffixed_macro /* variable defined with \&{vardef} and \.{\AT!\#} */
4612 void mp_print_type (MP mp,small_number t) ;
4614 @ @<Basic printing procedures@>=
4615 void mp_print_type (MP mp,small_number t) {
4617 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
4618 case mp_boolean_type:mp_print(mp, "boolean"); break;
4619 case mp_unknown_boolean:mp_print(mp, "unknown boolean"); break;
4620 case mp_string_type:mp_print(mp, "string"); break;
4621 case mp_unknown_string:mp_print(mp, "unknown string"); break;
4622 case mp_pen_type:mp_print(mp, "pen"); break;
4623 case mp_unknown_pen:mp_print(mp, "unknown pen"); break;
4624 case mp_path_type:mp_print(mp, "path"); break;
4625 case mp_unknown_path:mp_print(mp, "unknown path"); break;
4626 case mp_picture_type:mp_print(mp, "picture"); break;
4627 case mp_unknown_picture:mp_print(mp, "unknown picture"); break;
4628 case mp_transform_type:mp_print(mp, "transform"); break;
4629 case mp_color_type:mp_print(mp, "color"); break;
4630 case mp_cmykcolor_type:mp_print(mp, "cmykcolor"); break;
4631 case mp_pair_type:mp_print(mp, "pair"); break;
4632 case mp_known:mp_print(mp, "known numeric"); break;
4633 case mp_dependent:mp_print(mp, "dependent"); break;
4634 case mp_proto_dependent:mp_print(mp, "proto-dependent"); break;
4635 case mp_numeric_type:mp_print(mp, "numeric"); break;
4636 case mp_independent:mp_print(mp, "independent"); break;
4637 case mp_token_list:mp_print(mp, "token list"); break;
4638 case mp_structured:mp_print(mp, "mp_structured"); break;
4639 case mp_unsuffixed_macro:mp_print(mp, "unsuffixed macro"); break;
4640 case mp_suffixed_macro:mp_print(mp, "suffixed macro"); break;
4641 default: mp_print(mp, "undefined"); break;
4645 @ Values inside \MP\ are stored in two-word nodes that have a |name_type|
4646 as well as a |type|. The possibilities for |name_type| are defined
4647 here; they will be explained in more detail later.
4651 mp_root=0, /* |name_type| at the top level of a variable */
4652 mp_saved_root, /* same, when the variable has been saved */
4653 mp_structured_root, /* |name_type| where a |mp_structured| branch occurs */
4654 mp_subscr, /* |name_type| in a subscript node */
4655 mp_attr, /* |name_type| in an attribute node */
4656 mp_x_part_sector, /* |name_type| in the \&{xpart} of a node */
4657 mp_y_part_sector, /* |name_type| in the \&{ypart} of a node */
4658 mp_xx_part_sector, /* |name_type| in the \&{xxpart} of a node */
4659 mp_xy_part_sector, /* |name_type| in the \&{xypart} of a node */
4660 mp_yx_part_sector, /* |name_type| in the \&{yxpart} of a node */
4661 mp_yy_part_sector, /* |name_type| in the \&{yypart} of a node */
4662 mp_red_part_sector, /* |name_type| in the \&{redpart} of a node */
4663 mp_green_part_sector, /* |name_type| in the \&{greenpart} of a node */
4664 mp_blue_part_sector, /* |name_type| in the \&{bluepart} of a node */
4665 mp_cyan_part_sector, /* |name_type| in the \&{redpart} of a node */
4666 mp_magenta_part_sector, /* |name_type| in the \&{greenpart} of a node */
4667 mp_yellow_part_sector, /* |name_type| in the \&{bluepart} of a node */
4668 mp_black_part_sector, /* |name_type| in the \&{greenpart} of a node */
4669 mp_grey_part_sector, /* |name_type| in the \&{bluepart} of a node */
4670 mp_capsule, /* |name_type| in stashed-away subexpressions */
4671 mp_token /* |name_type| in a numeric token or string token */
4674 @ Primitive operations that produce values have a secondary identification
4675 code in addition to their command code; it's something like genera and species.
4676 For example, `\.*' has the command code |primary_binary|, and its
4677 secondary identification is |times|. The secondary codes start at 30 so that
4678 they don't overlap with the type codes; some type codes (e.g., |mp_string_type|)
4679 are used as operators as well as type identifications. The relative values
4680 are not critical, except for |true_code..false_code|, |or_op..and_op|,
4681 and |filled_op..bounded_op|. The restrictions are that
4682 |and_op-false_code=or_op-true_code|, that the ordering of
4683 |x_part...blue_part| must match that of |x_part_sector..mp_blue_part_sector|,
4684 and the ordering of |filled_op..bounded_op| must match that of the code
4685 values they test for.
4687 @d true_code 30 /* operation code for \.{true} */
4688 @d false_code 31 /* operation code for \.{false} */
4689 @d null_picture_code 32 /* operation code for \.{nullpicture} */
4690 @d null_pen_code 33 /* operation code for \.{nullpen} */
4691 @d job_name_op 34 /* operation code for \.{jobname} */
4692 @d read_string_op 35 /* operation code for \.{readstring} */
4693 @d pen_circle 36 /* operation code for \.{pencircle} */
4694 @d normal_deviate 37 /* operation code for \.{normaldeviate} */
4695 @d read_from_op 38 /* operation code for \.{readfrom} */
4696 @d close_from_op 39 /* operation code for \.{closefrom} */
4697 @d odd_op 40 /* operation code for \.{odd} */
4698 @d known_op 41 /* operation code for \.{known} */
4699 @d unknown_op 42 /* operation code for \.{unknown} */
4700 @d not_op 43 /* operation code for \.{not} */
4701 @d decimal 44 /* operation code for \.{decimal} */
4702 @d reverse 45 /* operation code for \.{reverse} */
4703 @d make_path_op 46 /* operation code for \.{makepath} */
4704 @d make_pen_op 47 /* operation code for \.{makepen} */
4705 @d oct_op 48 /* operation code for \.{oct} */
4706 @d hex_op 49 /* operation code for \.{hex} */
4707 @d ASCII_op 50 /* operation code for \.{ASCII} */
4708 @d char_op 51 /* operation code for \.{char} */
4709 @d length_op 52 /* operation code for \.{length} */
4710 @d turning_op 53 /* operation code for \.{turningnumber} */
4711 @d color_model_part 54 /* operation code for \.{colormodel} */
4712 @d x_part 55 /* operation code for \.{xpart} */
4713 @d y_part 56 /* operation code for \.{ypart} */
4714 @d xx_part 57 /* operation code for \.{xxpart} */
4715 @d xy_part 58 /* operation code for \.{xypart} */
4716 @d yx_part 59 /* operation code for \.{yxpart} */
4717 @d yy_part 60 /* operation code for \.{yypart} */
4718 @d red_part 61 /* operation code for \.{redpart} */
4719 @d green_part 62 /* operation code for \.{greenpart} */
4720 @d blue_part 63 /* operation code for \.{bluepart} */
4721 @d cyan_part 64 /* operation code for \.{cyanpart} */
4722 @d magenta_part 65 /* operation code for \.{magentapart} */
4723 @d yellow_part 66 /* operation code for \.{yellowpart} */
4724 @d black_part 67 /* operation code for \.{blackpart} */
4725 @d grey_part 68 /* operation code for \.{greypart} */
4726 @d font_part 69 /* operation code for \.{fontpart} */
4727 @d text_part 70 /* operation code for \.{textpart} */
4728 @d path_part 71 /* operation code for \.{pathpart} */
4729 @d pen_part 72 /* operation code for \.{penpart} */
4730 @d dash_part 73 /* operation code for \.{dashpart} */
4731 @d sqrt_op 74 /* operation code for \.{sqrt} */
4732 @d m_exp_op 75 /* operation code for \.{mexp} */
4733 @d m_log_op 76 /* operation code for \.{mlog} */
4734 @d sin_d_op 77 /* operation code for \.{sind} */
4735 @d cos_d_op 78 /* operation code for \.{cosd} */
4736 @d floor_op 79 /* operation code for \.{floor} */
4737 @d uniform_deviate 80 /* operation code for \.{uniformdeviate} */
4738 @d char_exists_op 81 /* operation code for \.{charexists} */
4739 @d font_size 82 /* operation code for \.{fontsize} */
4740 @d ll_corner_op 83 /* operation code for \.{llcorner} */
4741 @d lr_corner_op 84 /* operation code for \.{lrcorner} */
4742 @d ul_corner_op 85 /* operation code for \.{ulcorner} */
4743 @d ur_corner_op 86 /* operation code for \.{urcorner} */
4744 @d arc_length 87 /* operation code for \.{arclength} */
4745 @d angle_op 88 /* operation code for \.{angle} */
4746 @d cycle_op 89 /* operation code for \.{cycle} */
4747 @d filled_op 90 /* operation code for \.{filled} */
4748 @d stroked_op 91 /* operation code for \.{stroked} */
4749 @d textual_op 92 /* operation code for \.{textual} */
4750 @d clipped_op 93 /* operation code for \.{clipped} */
4751 @d bounded_op 94 /* operation code for \.{bounded} */
4752 @d plus 95 /* operation code for \.+ */
4753 @d minus 96 /* operation code for \.- */
4754 @d times 97 /* operation code for \.* */
4755 @d over 98 /* operation code for \./ */
4756 @d pythag_add 99 /* operation code for \.{++} */
4757 @d pythag_sub 100 /* operation code for \.{+-+} */
4758 @d or_op 101 /* operation code for \.{or} */
4759 @d and_op 102 /* operation code for \.{and} */
4760 @d less_than 103 /* operation code for \.< */
4761 @d less_or_equal 104 /* operation code for \.{<=} */
4762 @d greater_than 105 /* operation code for \.> */
4763 @d greater_or_equal 106 /* operation code for \.{>=} */
4764 @d equal_to 107 /* operation code for \.= */
4765 @d unequal_to 108 /* operation code for \.{<>} */
4766 @d concatenate 109 /* operation code for \.\& */
4767 @d rotated_by 110 /* operation code for \.{rotated} */
4768 @d slanted_by 111 /* operation code for \.{slanted} */
4769 @d scaled_by 112 /* operation code for \.{scaled} */
4770 @d shifted_by 113 /* operation code for \.{shifted} */
4771 @d transformed_by 114 /* operation code for \.{transformed} */
4772 @d x_scaled 115 /* operation code for \.{xscaled} */
4773 @d y_scaled 116 /* operation code for \.{yscaled} */
4774 @d z_scaled 117 /* operation code for \.{zscaled} */
4775 @d in_font 118 /* operation code for \.{infont} */
4776 @d intersect 119 /* operation code for \.{intersectiontimes} */
4777 @d double_dot 120 /* operation code for improper \.{..} */
4778 @d substring_of 121 /* operation code for \.{substring} */
4779 @d min_of substring_of
4780 @d subpath_of 122 /* operation code for \.{subpath} */
4781 @d direction_time_of 123 /* operation code for \.{directiontime} */
4782 @d point_of 124 /* operation code for \.{point} */
4783 @d precontrol_of 125 /* operation code for \.{precontrol} */
4784 @d postcontrol_of 126 /* operation code for \.{postcontrol} */
4785 @d pen_offset_of 127 /* operation code for \.{penoffset} */
4786 @d arc_time_of 128 /* operation code for \.{arctime} */
4787 @d mp_version 129 /* operation code for \.{mpversion} */
4788 @d envelope_of 130 /* operation code for \.{envelope} */
4790 @c void mp_print_op (MP mp,quarterword c) {
4791 if (c<=mp_numeric_type ) {
4792 mp_print_type(mp, c);
4795 case true_code:mp_print(mp, "true"); break;
4796 case false_code:mp_print(mp, "false"); break;
4797 case null_picture_code:mp_print(mp, "nullpicture"); break;
4798 case null_pen_code:mp_print(mp, "nullpen"); break;
4799 case job_name_op:mp_print(mp, "jobname"); break;
4800 case read_string_op:mp_print(mp, "readstring"); break;
4801 case pen_circle:mp_print(mp, "pencircle"); break;
4802 case normal_deviate:mp_print(mp, "normaldeviate"); break;
4803 case read_from_op:mp_print(mp, "readfrom"); break;
4804 case close_from_op:mp_print(mp, "closefrom"); break;
4805 case odd_op:mp_print(mp, "odd"); break;
4806 case known_op:mp_print(mp, "known"); break;
4807 case unknown_op:mp_print(mp, "unknown"); break;
4808 case not_op:mp_print(mp, "not"); break;
4809 case decimal:mp_print(mp, "decimal"); break;
4810 case reverse:mp_print(mp, "reverse"); break;
4811 case make_path_op:mp_print(mp, "makepath"); break;
4812 case make_pen_op:mp_print(mp, "makepen"); break;
4813 case oct_op:mp_print(mp, "oct"); break;
4814 case hex_op:mp_print(mp, "hex"); break;
4815 case ASCII_op:mp_print(mp, "ASCII"); break;
4816 case char_op:mp_print(mp, "char"); break;
4817 case length_op:mp_print(mp, "length"); break;
4818 case turning_op:mp_print(mp, "turningnumber"); break;
4819 case x_part:mp_print(mp, "xpart"); break;
4820 case y_part:mp_print(mp, "ypart"); break;
4821 case xx_part:mp_print(mp, "xxpart"); break;
4822 case xy_part:mp_print(mp, "xypart"); break;
4823 case yx_part:mp_print(mp, "yxpart"); break;
4824 case yy_part:mp_print(mp, "yypart"); break;
4825 case red_part:mp_print(mp, "redpart"); break;
4826 case green_part:mp_print(mp, "greenpart"); break;
4827 case blue_part:mp_print(mp, "bluepart"); break;
4828 case cyan_part:mp_print(mp, "cyanpart"); break;
4829 case magenta_part:mp_print(mp, "magentapart"); break;
4830 case yellow_part:mp_print(mp, "yellowpart"); break;
4831 case black_part:mp_print(mp, "blackpart"); break;
4832 case grey_part:mp_print(mp, "greypart"); break;
4833 case color_model_part:mp_print(mp, "colormodel"); break;
4834 case font_part:mp_print(mp, "fontpart"); break;
4835 case text_part:mp_print(mp, "textpart"); break;
4836 case path_part:mp_print(mp, "pathpart"); break;
4837 case pen_part:mp_print(mp, "penpart"); break;
4838 case dash_part:mp_print(mp, "dashpart"); break;
4839 case sqrt_op:mp_print(mp, "sqrt"); break;
4840 case m_exp_op:mp_print(mp, "mexp"); break;
4841 case m_log_op:mp_print(mp, "mlog"); break;
4842 case sin_d_op:mp_print(mp, "sind"); break;
4843 case cos_d_op:mp_print(mp, "cosd"); break;
4844 case floor_op:mp_print(mp, "floor"); break;
4845 case uniform_deviate:mp_print(mp, "uniformdeviate"); break;
4846 case char_exists_op:mp_print(mp, "charexists"); break;
4847 case font_size:mp_print(mp, "fontsize"); break;
4848 case ll_corner_op:mp_print(mp, "llcorner"); break;
4849 case lr_corner_op:mp_print(mp, "lrcorner"); break;
4850 case ul_corner_op:mp_print(mp, "ulcorner"); break;
4851 case ur_corner_op:mp_print(mp, "urcorner"); break;
4852 case arc_length:mp_print(mp, "arclength"); break;
4853 case angle_op:mp_print(mp, "angle"); break;
4854 case cycle_op:mp_print(mp, "cycle"); break;
4855 case filled_op:mp_print(mp, "filled"); break;
4856 case stroked_op:mp_print(mp, "stroked"); break;
4857 case textual_op:mp_print(mp, "textual"); break;
4858 case clipped_op:mp_print(mp, "clipped"); break;
4859 case bounded_op:mp_print(mp, "bounded"); break;
4860 case plus:mp_print_char(mp, '+'); break;
4861 case minus:mp_print_char(mp, '-'); break;
4862 case times:mp_print_char(mp, '*'); break;
4863 case over:mp_print_char(mp, '/'); break;
4864 case pythag_add:mp_print(mp, "++"); break;
4865 case pythag_sub:mp_print(mp, "+-+"); break;
4866 case or_op:mp_print(mp, "or"); break;
4867 case and_op:mp_print(mp, "and"); break;
4868 case less_than:mp_print_char(mp, '<'); break;
4869 case less_or_equal:mp_print(mp, "<="); break;
4870 case greater_than:mp_print_char(mp, '>'); break;
4871 case greater_or_equal:mp_print(mp, ">="); break;
4872 case equal_to:mp_print_char(mp, '='); break;
4873 case unequal_to:mp_print(mp, "<>"); break;
4874 case concatenate:mp_print(mp, "&"); break;
4875 case rotated_by:mp_print(mp, "rotated"); break;
4876 case slanted_by:mp_print(mp, "slanted"); break;
4877 case scaled_by:mp_print(mp, "scaled"); break;
4878 case shifted_by:mp_print(mp, "shifted"); break;
4879 case transformed_by:mp_print(mp, "transformed"); break;
4880 case x_scaled:mp_print(mp, "xscaled"); break;
4881 case y_scaled:mp_print(mp, "yscaled"); break;
4882 case z_scaled:mp_print(mp, "zscaled"); break;
4883 case in_font:mp_print(mp, "infont"); break;
4884 case intersect:mp_print(mp, "intersectiontimes"); break;
4885 case substring_of:mp_print(mp, "substring"); break;
4886 case subpath_of:mp_print(mp, "subpath"); break;
4887 case direction_time_of:mp_print(mp, "directiontime"); break;
4888 case point_of:mp_print(mp, "point"); break;
4889 case precontrol_of:mp_print(mp, "precontrol"); break;
4890 case postcontrol_of:mp_print(mp, "postcontrol"); break;
4891 case pen_offset_of:mp_print(mp, "penoffset"); break;
4892 case arc_time_of:mp_print(mp, "arctime"); break;
4893 case mp_version:mp_print(mp, "mpversion"); break;
4894 case envelope_of:mp_print(mp, "envelope"); break;
4895 default: mp_print(mp, ".."); break;
4900 @ \MP\ also has a bunch of internal parameters that a user might want to
4901 fuss with. Every such parameter has an identifying code number, defined here.
4904 enum mp_given_internal {
4905 mp_tracing_titles=1, /* show titles online when they appear */
4906 mp_tracing_equations, /* show each variable when it becomes known */
4907 mp_tracing_capsules, /* show capsules too */
4908 mp_tracing_choices, /* show the control points chosen for paths */
4909 mp_tracing_specs, /* show path subdivision prior to filling with polygonal a pen */
4910 mp_tracing_commands, /* show commands and operations before they are performed */
4911 mp_tracing_restores, /* show when a variable or internal is restored */
4912 mp_tracing_macros, /* show macros before they are expanded */
4913 mp_tracing_output, /* show digitized edges as they are output */
4914 mp_tracing_stats, /* show memory usage at end of job */
4915 mp_tracing_lost_chars, /* show characters that aren't \&{infont} */
4916 mp_tracing_online, /* show long diagnostics on terminal and in the log file */
4917 mp_year, /* the current year (e.g., 1984) */
4918 mp_month, /* the current month (e.g, 3 $\equiv$ March) */
4919 mp_day, /* the current day of the month */
4920 mp_time, /* the number of minutes past midnight when this job started */
4921 mp_char_code, /* the number of the next character to be output */
4922 mp_char_ext, /* the extension code of the next character to be output */
4923 mp_char_wd, /* the width of the next character to be output */
4924 mp_char_ht, /* the height of the next character to be output */
4925 mp_char_dp, /* the depth of the next character to be output */
4926 mp_char_ic, /* the italic correction of the next character to be output */
4927 mp_design_size, /* the unit of measure used for |mp_char_wd..mp_char_ic|, in points */
4928 mp_pausing, /* positive to display lines on the terminal before they are read */
4929 mp_showstopping, /* positive to stop after each \&{show} command */
4930 mp_fontmaking, /* positive if font metric output is to be produced */
4931 mp_linejoin, /* as in \ps: 0 for mitered, 1 for round, 2 for beveled */
4932 mp_linecap, /* as in \ps: 0 for butt, 1 for round, 2 for square */
4933 mp_miterlimit, /* controls miter length as in \ps */
4934 mp_warning_check, /* controls error message when variable value is large */
4935 mp_boundary_char, /* the right boundary character for ligatures */
4936 mp_prologues, /* positive to output conforming PostScript using built-in fonts */
4937 mp_true_corners, /* positive to make \&{llcorner} etc. ignore \&{setbounds} */
4938 mp_default_color_model, /* the default color model for unspecified items */
4939 mp_restore_clip_color,
4940 mp_procset, /* wether or not create PostScript command shortcuts */
4941 mp_gtroffmode, /* whether the user specified |-troff| on the command line */
4946 @d max_given_internal mp_gtroffmode
4949 scaled *internal; /* the values of internal quantities */
4950 char **int_name; /* their names */
4951 int int_ptr; /* the maximum internal quantity defined so far */
4952 int max_internal; /* current maximum number of internal quantities */
4954 @ @<Option variables@>=
4957 @ @<Allocate or initialize ...@>=
4958 mp->max_internal=2*max_given_internal;
4959 mp->internal = xmalloc ((mp->max_internal+1), sizeof(scaled));
4960 mp->int_name = xmalloc ((mp->max_internal+1), sizeof(char *));
4961 mp->troff_mode=(opt->troff_mode>0 ? true : false);
4963 @ @<Exported function ...@>=
4964 int mp_troff_mode(MP mp);
4967 int mp_troff_mode(MP mp) { return mp->troff_mode; }
4969 @ @<Set initial ...@>=
4970 for (k=0;k<= mp->max_internal; k++ ) {
4972 mp->int_name[k]=NULL;
4974 mp->int_ptr=max_given_internal;
4976 @ The symbolic names for internal quantities are put into \MP's hash table
4977 by using a routine called |primitive|, which will be defined later. Let us
4978 enter them now, so that we don't have to list all those names again
4981 @<Put each of \MP's primitives into the hash table@>=
4982 mp_primitive(mp, "tracingtitles",internal_quantity,mp_tracing_titles);
4983 @:tracingtitles_}{\&{tracingtitles} primitive@>
4984 mp_primitive(mp, "tracingequations",internal_quantity,mp_tracing_equations);
4985 @:mp_tracing_equations_}{\&{tracingequations} primitive@>
4986 mp_primitive(mp, "tracingcapsules",internal_quantity,mp_tracing_capsules);
4987 @:mp_tracing_capsules_}{\&{tracingcapsules} primitive@>
4988 mp_primitive(mp, "tracingchoices",internal_quantity,mp_tracing_choices);
4989 @:mp_tracing_choices_}{\&{tracingchoices} primitive@>
4990 mp_primitive(mp, "tracingspecs",internal_quantity,mp_tracing_specs);
4991 @:mp_tracing_specs_}{\&{tracingspecs} primitive@>
4992 mp_primitive(mp, "tracingcommands",internal_quantity,mp_tracing_commands);
4993 @:mp_tracing_commands_}{\&{tracingcommands} primitive@>
4994 mp_primitive(mp, "tracingrestores",internal_quantity,mp_tracing_restores);
4995 @:mp_tracing_restores_}{\&{tracingrestores} primitive@>
4996 mp_primitive(mp, "tracingmacros",internal_quantity,mp_tracing_macros);
4997 @:mp_tracing_macros_}{\&{tracingmacros} primitive@>
4998 mp_primitive(mp, "tracingoutput",internal_quantity,mp_tracing_output);
4999 @:mp_tracing_output_}{\&{tracingoutput} primitive@>
5000 mp_primitive(mp, "tracingstats",internal_quantity,mp_tracing_stats);
5001 @:mp_tracing_stats_}{\&{tracingstats} primitive@>
5002 mp_primitive(mp, "tracinglostchars",internal_quantity,mp_tracing_lost_chars);
5003 @:mp_tracing_lost_chars_}{\&{tracinglostchars} primitive@>
5004 mp_primitive(mp, "tracingonline",internal_quantity,mp_tracing_online);
5005 @:mp_tracing_online_}{\&{tracingonline} primitive@>
5006 mp_primitive(mp, "year",internal_quantity,mp_year);
5007 @:mp_year_}{\&{year} primitive@>
5008 mp_primitive(mp, "month",internal_quantity,mp_month);
5009 @:mp_month_}{\&{month} primitive@>
5010 mp_primitive(mp, "day",internal_quantity,mp_day);
5011 @:mp_day_}{\&{day} primitive@>
5012 mp_primitive(mp, "time",internal_quantity,mp_time);
5013 @:time_}{\&{time} primitive@>
5014 mp_primitive(mp, "charcode",internal_quantity,mp_char_code);
5015 @:mp_char_code_}{\&{charcode} primitive@>
5016 mp_primitive(mp, "charext",internal_quantity,mp_char_ext);
5017 @:mp_char_ext_}{\&{charext} primitive@>
5018 mp_primitive(mp, "charwd",internal_quantity,mp_char_wd);
5019 @:mp_char_wd_}{\&{charwd} primitive@>
5020 mp_primitive(mp, "charht",internal_quantity,mp_char_ht);
5021 @:mp_char_ht_}{\&{charht} primitive@>
5022 mp_primitive(mp, "chardp",internal_quantity,mp_char_dp);
5023 @:mp_char_dp_}{\&{chardp} primitive@>
5024 mp_primitive(mp, "charic",internal_quantity,mp_char_ic);
5025 @:mp_char_ic_}{\&{charic} primitive@>
5026 mp_primitive(mp, "designsize",internal_quantity,mp_design_size);
5027 @:mp_design_size_}{\&{designsize} primitive@>
5028 mp_primitive(mp, "pausing",internal_quantity,mp_pausing);
5029 @:mp_pausing_}{\&{pausing} primitive@>
5030 mp_primitive(mp, "showstopping",internal_quantity,mp_showstopping);
5031 @:mp_showstopping_}{\&{showstopping} primitive@>
5032 mp_primitive(mp, "fontmaking",internal_quantity,mp_fontmaking);
5033 @:mp_fontmaking_}{\&{fontmaking} primitive@>
5034 mp_primitive(mp, "linejoin",internal_quantity,mp_linejoin);
5035 @:mp_linejoin_}{\&{linejoin} primitive@>
5036 mp_primitive(mp, "linecap",internal_quantity,mp_linecap);
5037 @:mp_linecap_}{\&{linecap} primitive@>
5038 mp_primitive(mp, "miterlimit",internal_quantity,mp_miterlimit);
5039 @:mp_miterlimit_}{\&{miterlimit} primitive@>
5040 mp_primitive(mp, "warningcheck",internal_quantity,mp_warning_check);
5041 @:mp_warning_check_}{\&{warningcheck} primitive@>
5042 mp_primitive(mp, "boundarychar",internal_quantity,mp_boundary_char);
5043 @:mp_boundary_char_}{\&{boundarychar} primitive@>
5044 mp_primitive(mp, "prologues",internal_quantity,mp_prologues);
5045 @:mp_prologues_}{\&{prologues} primitive@>
5046 mp_primitive(mp, "truecorners",internal_quantity,mp_true_corners);
5047 @:mp_true_corners_}{\&{truecorners} primitive@>
5048 mp_primitive(mp, "mpprocset",internal_quantity,mp_procset);
5049 @:mp_procset_}{\&{mpprocset} primitive@>
5050 mp_primitive(mp, "troffmode",internal_quantity,mp_gtroffmode);
5051 @:troffmode_}{\&{troffmode} primitive@>
5052 mp_primitive(mp, "defaultcolormodel",internal_quantity,mp_default_color_model);
5053 @:mp_default_color_model_}{\&{defaultcolormodel} primitive@>
5054 mp_primitive(mp, "restoreclipcolor",internal_quantity,mp_restore_clip_color);
5055 @:mp_restore_clip_color_}{\&{restoreclipcolor} primitive@>
5057 @ Colors can be specified in four color models. In the special
5058 case of |no_model|, MetaPost does not output any color operator to
5059 the postscript output.
5061 Note: these values are passed directly on to |with_option|. This only
5062 works because the other possible values passed to |with_option| are
5063 8 and 10 respectively (from |with_pen| and |with_picture|).
5065 There is a first state, that is only used for |gs_colormodel|. It flags
5066 the fact that there has not been any kind of color specification by
5067 the user so far in the game.
5070 enum mp_color_model {
5075 mp_uninitialized_model=9,
5079 @ @<Initialize table entries (done by \.{INIMP} only)@>=
5080 mp->internal[mp_default_color_model]=(mp_rgb_model*unity);
5081 mp->internal[mp_restore_clip_color]=unity;
5083 @ Well, we do have to list the names one more time, for use in symbolic
5086 @<Initialize table...@>=
5087 mp->int_name[mp_tracing_titles]=xstrdup("tracingtitles");
5088 mp->int_name[mp_tracing_equations]=xstrdup("tracingequations");
5089 mp->int_name[mp_tracing_capsules]=xstrdup("tracingcapsules");
5090 mp->int_name[mp_tracing_choices]=xstrdup("tracingchoices");
5091 mp->int_name[mp_tracing_specs]=xstrdup("tracingspecs");
5092 mp->int_name[mp_tracing_commands]=xstrdup("tracingcommands");
5093 mp->int_name[mp_tracing_restores]=xstrdup("tracingrestores");
5094 mp->int_name[mp_tracing_macros]=xstrdup("tracingmacros");
5095 mp->int_name[mp_tracing_output]=xstrdup("tracingoutput");
5096 mp->int_name[mp_tracing_stats]=xstrdup("tracingstats");
5097 mp->int_name[mp_tracing_lost_chars]=xstrdup("tracinglostchars");
5098 mp->int_name[mp_tracing_online]=xstrdup("tracingonline");
5099 mp->int_name[mp_year]=xstrdup("year");
5100 mp->int_name[mp_month]=xstrdup("month");
5101 mp->int_name[mp_day]=xstrdup("day");
5102 mp->int_name[mp_time]=xstrdup("time");
5103 mp->int_name[mp_char_code]=xstrdup("charcode");
5104 mp->int_name[mp_char_ext]=xstrdup("charext");
5105 mp->int_name[mp_char_wd]=xstrdup("charwd");
5106 mp->int_name[mp_char_ht]=xstrdup("charht");
5107 mp->int_name[mp_char_dp]=xstrdup("chardp");
5108 mp->int_name[mp_char_ic]=xstrdup("charic");
5109 mp->int_name[mp_design_size]=xstrdup("designsize");
5110 mp->int_name[mp_pausing]=xstrdup("pausing");
5111 mp->int_name[mp_showstopping]=xstrdup("showstopping");
5112 mp->int_name[mp_fontmaking]=xstrdup("fontmaking");
5113 mp->int_name[mp_linejoin]=xstrdup("linejoin");
5114 mp->int_name[mp_linecap]=xstrdup("linecap");
5115 mp->int_name[mp_miterlimit]=xstrdup("miterlimit");
5116 mp->int_name[mp_warning_check]=xstrdup("warningcheck");
5117 mp->int_name[mp_boundary_char]=xstrdup("boundarychar");
5118 mp->int_name[mp_prologues]=xstrdup("prologues");
5119 mp->int_name[mp_true_corners]=xstrdup("truecorners");
5120 mp->int_name[mp_default_color_model]=xstrdup("defaultcolormodel");
5121 mp->int_name[mp_procset]=xstrdup("mpprocset");
5122 mp->int_name[mp_gtroffmode]=xstrdup("troffmode");
5123 mp->int_name[mp_restore_clip_color]=xstrdup("restoreclipcolor");
5125 @ The following procedure, which is called just before \MP\ initializes its
5126 input and output, establishes the initial values of the date and time.
5127 @^system dependencies@>
5129 Note that the values are |scaled| integers. Hence \MP\ can no longer
5130 be used after the year 32767.
5133 void mp_fix_date_and_time (MP mp) {
5134 time_t clock = time ((time_t *) 0);
5135 struct tm *tmptr = localtime (&clock);
5136 mp->internal[mp_time]=
5137 (tmptr->tm_hour*60+tmptr->tm_min)*unity; /* minutes since midnight */
5138 mp->internal[mp_day]=(tmptr->tm_mday)*unity; /* fourth day of the month */
5139 mp->internal[mp_month]=(tmptr->tm_mon+1)*unity; /* seventh month of the year */
5140 mp->internal[mp_year]=(tmptr->tm_year+1900)*unity; /* Anno Domini */
5144 void mp_fix_date_and_time (MP mp) ;
5146 @ \MP\ is occasionally supposed to print diagnostic information that
5147 goes only into the transcript file, unless |mp_tracing_online| is positive.
5148 Now that we have defined |mp_tracing_online| we can define
5149 two routines that adjust the destination of print commands:
5152 void mp_begin_diagnostic (MP mp) ;
5153 void mp_end_diagnostic (MP mp,boolean blank_line);
5154 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) ;
5156 @ @<Basic printing...@>=
5157 @<Declare a function called |true_line|@>;
5158 void mp_begin_diagnostic (MP mp) { /* prepare to do some tracing */
5159 mp->old_setting=mp->selector;
5160 if ((mp->internal[mp_tracing_online]<=0)&&(mp->selector==term_and_log)){
5162 if ( mp->history==mp_spotless ) mp->history=mp_warning_issued;
5166 void mp_end_diagnostic (MP mp,boolean blank_line) {
5167 /* restore proper conditions after tracing */
5168 mp_print_nl(mp, "");
5169 if ( blank_line ) mp_print_ln(mp);
5170 mp->selector=mp->old_setting;
5176 unsigned int old_setting;
5178 @ We will occasionally use |begin_diagnostic| in connection with line-number
5179 printing, as follows. (The parameter |s| is typically |"Path"| or
5180 |"Cycle spec"|, etc.)
5182 @<Basic printing...@>=
5183 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) {
5184 mp_begin_diagnostic(mp);
5185 if ( nuline ) mp_print_nl(mp, s); else mp_print(mp, s);
5186 mp_print(mp, " at line ");
5187 mp_print_int(mp, mp_true_line(mp));
5188 mp_print(mp, t); mp_print_char(mp, ':');
5191 @ The 256 |ASCII_code| characters are grouped into classes by means of
5192 the |char_class| table. Individual class numbers have no semantic
5193 or syntactic significance, except in a few instances defined here.
5194 There's also |max_class|, which can be used as a basis for additional
5195 class numbers in nonstandard extensions of \MP.
5197 @d digit_class 0 /* the class number of \.{0123456789} */
5198 @d period_class 1 /* the class number of `\..' */
5199 @d space_class 2 /* the class number of spaces and nonstandard characters */
5200 @d percent_class 3 /* the class number of `\.\%' */
5201 @d string_class 4 /* the class number of `\."' */
5202 @d right_paren_class 8 /* the class number of `\.)' */
5203 @d isolated_classes 5: case 6: case 7: case 8 /* characters that make length-one tokens only */
5204 @d letter_class 9 /* letters and the underline character */
5205 @d left_bracket_class 17 /* `\.[' */
5206 @d right_bracket_class 18 /* `\.]' */
5207 @d invalid_class 20 /* bad character in the input */
5208 @d max_class 20 /* the largest class number */
5211 int char_class[256]; /* the class numbers */
5213 @ If changes are made to accommodate non-ASCII character sets, they should
5214 follow the guidelines in Appendix~C of {\sl The {\logos METAFONT\/}book}.
5215 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
5216 @^system dependencies@>
5218 @<Set initial ...@>=
5219 for (k='0';k<='9';k++)
5220 mp->char_class[k]=digit_class;
5221 mp->char_class['.']=period_class;
5222 mp->char_class[' ']=space_class;
5223 mp->char_class['%']=percent_class;
5224 mp->char_class['"']=string_class;
5225 mp->char_class[',']=5;
5226 mp->char_class[';']=6;
5227 mp->char_class['(']=7;
5228 mp->char_class[')']=right_paren_class;
5229 for (k='A';k<= 'Z';k++ )
5230 mp->char_class[k]=letter_class;
5231 for (k='a';k<='z';k++)
5232 mp->char_class[k]=letter_class;
5233 mp->char_class['_']=letter_class;
5234 mp->char_class['<']=10;
5235 mp->char_class['=']=10;
5236 mp->char_class['>']=10;
5237 mp->char_class[':']=10;
5238 mp->char_class['|']=10;
5239 mp->char_class['`']=11;
5240 mp->char_class['\'']=11;
5241 mp->char_class['+']=12;
5242 mp->char_class['-']=12;
5243 mp->char_class['/']=13;
5244 mp->char_class['*']=13;
5245 mp->char_class['\\']=13;
5246 mp->char_class['!']=14;
5247 mp->char_class['?']=14;
5248 mp->char_class['#']=15;
5249 mp->char_class['&']=15;
5250 mp->char_class['@@']=15;
5251 mp->char_class['$']=15;
5252 mp->char_class['^']=16;
5253 mp->char_class['~']=16;
5254 mp->char_class['[']=left_bracket_class;
5255 mp->char_class[']']=right_bracket_class;
5256 mp->char_class['{']=19;
5257 mp->char_class['}']=19;
5259 mp->char_class[k]=invalid_class;
5260 mp->char_class['\t']=space_class;
5261 mp->char_class['\f']=space_class;
5262 for (k=127;k<=255;k++)
5263 mp->char_class[k]=invalid_class;
5265 @* \[13] The hash table.
5266 Symbolic tokens are stored and retrieved by means of a fairly standard hash
5267 table algorithm called the method of ``coalescing lists'' (cf.\ Algorithm 6.4C
5268 in {\sl The Art of Computer Programming\/}). Once a symbolic token enters the
5269 table, it is never removed.
5271 The actual sequence of characters forming a symbolic token is
5272 stored in the |str_pool| array together with all the other strings. An
5273 auxiliary array |hash| consists of items with two halfword fields per
5274 word. The first of these, called |next(p)|, points to the next identifier
5275 belonging to the same coalesced list as the identifier corresponding to~|p|;
5276 and the other, called |text(p)|, points to the |str_start| entry for
5277 |p|'s identifier. If position~|p| of the hash table is empty, we have
5278 |text(p)=0|; if position |p| is either empty or the end of a coalesced
5279 hash list, we have |next(p)=0|.
5281 An auxiliary pointer variable called |hash_used| is maintained in such a
5282 way that all locations |p>=hash_used| are nonempty. The global variable
5283 |st_count| tells how many symbolic tokens have been defined, if statistics
5286 The first 256 locations of |hash| are reserved for symbols of length one.
5288 There's a parallel array called |eqtb| that contains the current equivalent
5289 values of each symbolic token. The entries of this array consist of
5290 two halfwords called |eq_type| (a command code) and |equiv| (a secondary
5291 piece of information that qualifies the |eq_type|).
5293 @d next(A) mp->hash[(A)].lh /* link for coalesced lists */
5294 @d text(A) mp->hash[(A)].rh /* string number for symbolic token name */
5295 @d eq_type(A) mp->eqtb[(A)].lh /* the current ``meaning'' of a symbolic token */
5296 @d equiv(A) mp->eqtb[(A)].rh /* parametric part of a token's meaning */
5297 @d hash_base 257 /* hashing actually starts here */
5298 @d hash_is_full (mp->hash_used==hash_base) /* are all positions occupied? */
5301 pointer hash_used; /* allocation pointer for |hash| */
5302 integer st_count; /* total number of known identifiers */
5304 @ Certain entries in the hash table are ``frozen'' and not redefinable,
5305 since they are used in error recovery.
5307 @d hash_top (hash_base+mp->hash_size) /* the first location of the frozen area */
5308 @d frozen_inaccessible hash_top /* |hash| location to protect the frozen area */
5309 @d frozen_repeat_loop (hash_top+1) /* |hash| location of a loop-repeat token */
5310 @d frozen_right_delimiter (hash_top+2) /* |hash| location of a permanent `\.)' */
5311 @d frozen_left_bracket (hash_top+3) /* |hash| location of a permanent `\.[' */
5312 @d frozen_slash (hash_top+4) /* |hash| location of a permanent `\./' */
5313 @d frozen_colon (hash_top+5) /* |hash| location of a permanent `\.:' */
5314 @d frozen_semicolon (hash_top+6) /* |hash| location of a permanent `\.;' */
5315 @d frozen_end_for (hash_top+7) /* |hash| location of a permanent \&{endfor} */
5316 @d frozen_end_def (hash_top+8) /* |hash| location of a permanent \&{enddef} */
5317 @d frozen_fi (hash_top+9) /* |hash| location of a permanent \&{fi} */
5318 @d frozen_end_group (hash_top+10) /* |hash| location of a permanent `\.{endgroup}' */
5319 @d frozen_etex (hash_top+11) /* |hash| location of a permanent \&{etex} */
5320 @d frozen_mpx_break (hash_top+12) /* |hash| location of a permanent \&{mpxbreak} */
5321 @d frozen_bad_vardef (hash_top+13) /* |hash| location of `\.{a bad variable}' */
5322 @d frozen_undefined (hash_top+14) /* |hash| location that never gets defined */
5323 @d hash_end (hash_top+14) /* the actual size of the |hash| and |eqtb| arrays */
5326 two_halves *hash; /* the hash table */
5327 two_halves *eqtb; /* the equivalents */
5329 @ @<Allocate or initialize ...@>=
5330 mp->hash = xmalloc((hash_end+1),sizeof(two_halves));
5331 mp->eqtb = xmalloc((hash_end+1),sizeof(two_halves));
5333 @ @<Dealloc variables@>=
5338 next(1)=0; text(1)=0; eq_type(1)=tag_token; equiv(1)=null;
5339 for (k=2;k<=hash_end;k++) {
5340 mp->hash[k]=mp->hash[1]; mp->eqtb[k]=mp->eqtb[1];
5343 @ @<Initialize table entries...@>=
5344 mp->hash_used=frozen_inaccessible; /* nothing is used */
5346 text(frozen_bad_vardef)=intern("a bad variable");
5347 text(frozen_etex)=intern("etex");
5348 text(frozen_mpx_break)=intern("mpxbreak");
5349 text(frozen_fi)=intern("fi");
5350 text(frozen_end_group)=intern("endgroup");
5351 text(frozen_end_def)=intern("enddef");
5352 text(frozen_end_for)=intern("endfor");
5353 text(frozen_semicolon)=intern(";");
5354 text(frozen_colon)=intern(":");
5355 text(frozen_slash)=intern("/");
5356 text(frozen_left_bracket)=intern("[");
5357 text(frozen_right_delimiter)=intern(")");
5358 text(frozen_inaccessible)=intern(" INACCESSIBLE");
5359 eq_type(frozen_right_delimiter)=right_delimiter;
5361 @ @<Check the ``constant'' values...@>=
5362 if ( hash_end+mp->max_internal>max_halfword ) mp->bad=17;
5364 @ Here is the subroutine that searches the hash table for an identifier
5365 that matches a given string of length~|l| appearing in |buffer[j..
5366 (j+l-1)]|. If the identifier is not found, it is inserted; hence it
5367 will always be found, and the corresponding hash table address
5371 pointer mp_id_lookup (MP mp,integer j, integer l) { /* search the hash table */
5372 integer h; /* hash code */
5373 pointer p; /* index in |hash| array */
5374 pointer k; /* index in |buffer| array */
5376 @<Treat special case of length 1 and |break|@>;
5378 @<Compute the hash code |h|@>;
5379 p=h+hash_base; /* we start searching here; note that |0<=h<hash_prime| */
5381 if (text(p)>0 && length(text(p))==l && mp_str_eq_buf(mp, text(p),j))
5384 @<Insert a new symbolic token after |p|, then
5385 make |p| point to it and |break|@>;
5392 @ @<Treat special case of length 1...@>=
5393 p=mp->buffer[j]+1; text(p)=p-1; return p;
5396 @ @<Insert a new symbolic...@>=
5401 mp_overflow(mp, "hash size",mp->hash_size);
5402 @:MetaPost capacity exceeded hash size}{\quad hash size@>
5403 decr(mp->hash_used);
5404 } while (text(mp->hash_used)!=0); /* search for an empty location in |hash| */
5405 next(p)=mp->hash_used;
5409 for (k=j;k<=j+l-1;k++) {
5410 append_char(mp->buffer[k]);
5412 text(p)=mp_make_string(mp);
5413 mp->str_ref[text(p)]=max_str_ref;
5419 @ The value of |hash_prime| should be roughly 85\pct! of |hash_size|, and it
5420 should be a prime number. The theory of hashing tells us to expect fewer
5421 than two table probes, on the average, when the search is successful.
5422 [See J.~S. Vitter, {\sl Journal of the ACM\/ \bf30} (1983), 231--258.]
5423 @^Vitter, Jeffrey Scott@>
5425 @<Compute the hash code |h|@>=
5427 for (k=j+1;k<=j+l-1;k++){
5428 h=h+h+mp->buffer[k];
5429 while ( h>=mp->hash_prime ) h=h-mp->hash_prime;
5432 @ @<Search |eqtb| for equivalents equal to |p|@>=
5433 for (q=1;q<=hash_end;q++) {
5434 if ( equiv(q)==p ) {
5435 mp_print_nl(mp, "EQUIV(");
5436 mp_print_int(mp, q);
5437 mp_print_char(mp, ')');
5441 @ We need to put \MP's ``primitive'' symbolic tokens into the hash
5442 table, together with their command code (which will be the |eq_type|)
5443 and an operand (which will be the |equiv|). The |primitive| procedure
5444 does this, in a way that no \MP\ user can. The global value |cur_sym|
5445 contains the new |eqtb| pointer after |primitive| has acted.
5448 void mp_primitive (MP mp, char *ss, halfword c, halfword o) {
5449 pool_pointer k; /* index into |str_pool| */
5450 small_number j; /* index into |buffer| */
5451 small_number l; /* length of the string */
5454 k=mp->str_start[s]; l=str_stop(s)-k;
5455 /* we will move |s| into the (empty) |buffer| */
5456 for (j=0;j<=l-1;j++) {
5457 mp->buffer[j]=mp->str_pool[k+j];
5459 mp->cur_sym=mp_id_lookup(mp, 0,l);
5460 if ( s>=256 ) { /* we don't want to have the string twice */
5461 mp_flush_string(mp, text(mp->cur_sym)); text(mp->cur_sym)=s;
5463 eq_type(mp->cur_sym)=c;
5464 equiv(mp->cur_sym)=o;
5468 @ Many of \MP's primitives need no |equiv|, since they are identifiable
5469 by their |eq_type| alone. These primitives are loaded into the hash table
5472 @<Put each of \MP's primitives into the hash table@>=
5473 mp_primitive(mp, "..",path_join,0);
5474 @:.._}{\.{..} primitive@>
5475 mp_primitive(mp, "[",left_bracket,0); mp->eqtb[frozen_left_bracket]=mp->eqtb[mp->cur_sym];
5476 @:[ }{\.{[} primitive@>
5477 mp_primitive(mp, "]",right_bracket,0);
5478 @:] }{\.{]} primitive@>
5479 mp_primitive(mp, "}",right_brace,0);
5480 @:]]}{\.{\char`\}} primitive@>
5481 mp_primitive(mp, "{",left_brace,0);
5482 @:][}{\.{\char`\{} primitive@>
5483 mp_primitive(mp, ":",colon,0); mp->eqtb[frozen_colon]=mp->eqtb[mp->cur_sym];
5484 @:: }{\.{:} primitive@>
5485 mp_primitive(mp, "::",double_colon,0);
5486 @::: }{\.{::} primitive@>
5487 mp_primitive(mp, "||:",bchar_label,0);
5488 @:::: }{\.{\char'174\char'174:} primitive@>
5489 mp_primitive(mp, ":=",assignment,0);
5490 @::=_}{\.{:=} primitive@>
5491 mp_primitive(mp, ",",comma,0);
5492 @:, }{\., primitive@>
5493 mp_primitive(mp, ";",semicolon,0); mp->eqtb[frozen_semicolon]=mp->eqtb[mp->cur_sym];
5494 @:; }{\.; primitive@>
5495 mp_primitive(mp, "\\",relax,0);
5496 @:]]\\}{\.{\char`\\} primitive@>
5498 mp_primitive(mp, "addto",add_to_command,0);
5499 @:add_to_}{\&{addto} primitive@>
5500 mp_primitive(mp, "atleast",at_least,0);
5501 @:at_least_}{\&{atleast} primitive@>
5502 mp_primitive(mp, "begingroup",begin_group,0); mp->bg_loc=mp->cur_sym;
5503 @:begin_group_}{\&{begingroup} primitive@>
5504 mp_primitive(mp, "controls",controls,0);
5505 @:controls_}{\&{controls} primitive@>
5506 mp_primitive(mp, "curl",curl_command,0);
5507 @:curl_}{\&{curl} primitive@>
5508 mp_primitive(mp, "delimiters",delimiters,0);
5509 @:delimiters_}{\&{delimiters} primitive@>
5510 mp_primitive(mp, "endgroup",end_group,0);
5511 mp->eqtb[frozen_end_group]=mp->eqtb[mp->cur_sym]; mp->eg_loc=mp->cur_sym;
5512 @:endgroup_}{\&{endgroup} primitive@>
5513 mp_primitive(mp, "everyjob",every_job_command,0);
5514 @:every_job_}{\&{everyjob} primitive@>
5515 mp_primitive(mp, "exitif",exit_test,0);
5516 @:exit_if_}{\&{exitif} primitive@>
5517 mp_primitive(mp, "expandafter",expand_after,0);
5518 @:expand_after_}{\&{expandafter} primitive@>
5519 mp_primitive(mp, "interim",interim_command,0);
5520 @:interim_}{\&{interim} primitive@>
5521 mp_primitive(mp, "let",let_command,0);
5522 @:let_}{\&{let} primitive@>
5523 mp_primitive(mp, "newinternal",new_internal,0);
5524 @:new_internal_}{\&{newinternal} primitive@>
5525 mp_primitive(mp, "of",of_token,0);
5526 @:of_}{\&{of} primitive@>
5527 mp_primitive(mp, "randomseed",mp_random_seed,0);
5528 @:mp_random_seed_}{\&{randomseed} primitive@>
5529 mp_primitive(mp, "save",save_command,0);
5530 @:save_}{\&{save} primitive@>
5531 mp_primitive(mp, "scantokens",scan_tokens,0);
5532 @:scan_tokens_}{\&{scantokens} primitive@>
5533 mp_primitive(mp, "shipout",ship_out_command,0);
5534 @:ship_out_}{\&{shipout} primitive@>
5535 mp_primitive(mp, "skipto",skip_to,0);
5536 @:skip_to_}{\&{skipto} primitive@>
5537 mp_primitive(mp, "special",special_command,0);
5538 @:special}{\&{special} primitive@>
5539 mp_primitive(mp, "fontmapfile",special_command,1);
5540 @:fontmapfile}{\&{fontmapfile} primitive@>
5541 mp_primitive(mp, "fontmapline",special_command,2);
5542 @:fontmapline}{\&{fontmapline} primitive@>
5543 mp_primitive(mp, "step",step_token,0);
5544 @:step_}{\&{step} primitive@>
5545 mp_primitive(mp, "str",str_op,0);
5546 @:str_}{\&{str} primitive@>
5547 mp_primitive(mp, "tension",tension,0);
5548 @:tension_}{\&{tension} primitive@>
5549 mp_primitive(mp, "to",to_token,0);
5550 @:to_}{\&{to} primitive@>
5551 mp_primitive(mp, "until",until_token,0);
5552 @:until_}{\&{until} primitive@>
5553 mp_primitive(mp, "within",within_token,0);
5554 @:within_}{\&{within} primitive@>
5555 mp_primitive(mp, "write",write_command,0);
5556 @:write_}{\&{write} primitive@>
5558 @ Each primitive has a corresponding inverse, so that it is possible to
5559 display the cryptic numeric contents of |eqtb| in symbolic form.
5560 Every call of |primitive| in this program is therefore accompanied by some
5561 straightforward code that forms part of the |print_cmd_mod| routine
5564 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>=
5565 case add_to_command:mp_print(mp, "addto"); break;
5566 case assignment:mp_print(mp, ":="); break;
5567 case at_least:mp_print(mp, "atleast"); break;
5568 case bchar_label:mp_print(mp, "||:"); break;
5569 case begin_group:mp_print(mp, "begingroup"); break;
5570 case colon:mp_print(mp, ":"); break;
5571 case comma:mp_print(mp, ","); break;
5572 case controls:mp_print(mp, "controls"); break;
5573 case curl_command:mp_print(mp, "curl"); break;
5574 case delimiters:mp_print(mp, "delimiters"); break;
5575 case double_colon:mp_print(mp, "::"); break;
5576 case end_group:mp_print(mp, "endgroup"); break;
5577 case every_job_command:mp_print(mp, "everyjob"); break;
5578 case exit_test:mp_print(mp, "exitif"); break;
5579 case expand_after:mp_print(mp, "expandafter"); break;
5580 case interim_command:mp_print(mp, "interim"); break;
5581 case left_brace:mp_print(mp, "{"); break;
5582 case left_bracket:mp_print(mp, "["); break;
5583 case let_command:mp_print(mp, "let"); break;
5584 case new_internal:mp_print(mp, "newinternal"); break;
5585 case of_token:mp_print(mp, "of"); break;
5586 case path_join:mp_print(mp, ".."); break;
5587 case mp_random_seed:mp_print(mp, "randomseed"); break;
5588 case relax:mp_print_char(mp, '\\'); break;
5589 case right_brace:mp_print(mp, "}"); break;
5590 case right_bracket:mp_print(mp, "]"); break;
5591 case save_command:mp_print(mp, "save"); break;
5592 case scan_tokens:mp_print(mp, "scantokens"); break;
5593 case semicolon:mp_print(mp, ";"); break;
5594 case ship_out_command:mp_print(mp, "shipout"); break;
5595 case skip_to:mp_print(mp, "skipto"); break;
5596 case special_command: if ( m==2 ) mp_print(mp, "fontmapline"); else
5597 if ( m==1 ) mp_print(mp, "fontmapfile"); else
5598 mp_print(mp, "special"); break;
5599 case step_token:mp_print(mp, "step"); break;
5600 case str_op:mp_print(mp, "str"); break;
5601 case tension:mp_print(mp, "tension"); break;
5602 case to_token:mp_print(mp, "to"); break;
5603 case until_token:mp_print(mp, "until"); break;
5604 case within_token:mp_print(mp, "within"); break;
5605 case write_command:mp_print(mp, "write"); break;
5607 @ We will deal with the other primitives later, at some point in the program
5608 where their |eq_type| and |equiv| values are more meaningful. For example,
5609 the primitives for macro definitions will be loaded when we consider the
5610 routines that define macros.
5611 It is easy to find where each particular
5612 primitive was treated by looking in the index at the end; for example, the
5613 section where |"def"| entered |eqtb| is listed under `\&{def} primitive'.
5615 @* \[14] Token lists.
5616 A \MP\ token is either symbolic or numeric or a string, or it denotes
5617 a macro parameter or capsule; so there are five corresponding ways to encode it
5619 internally: (1)~A symbolic token whose hash code is~|p|
5620 is represented by the number |p|, in the |info| field of a single-word
5621 node in~|mem|. (2)~A numeric token whose |scaled| value is~|v| is
5622 represented in a two-word node of~|mem|; the |type| field is |known|,
5623 the |name_type| field is |token|, and the |value| field holds~|v|.
5624 The fact that this token appears in a two-word node rather than a
5625 one-word node is, of course, clear from the node address.
5626 (3)~A string token is also represented in a two-word node; the |type|
5627 field is |mp_string_type|, the |name_type| field is |token|, and the
5628 |value| field holds the corresponding |str_number|. (4)~Capsules have
5629 |name_type=capsule|, and their |type| and |value| fields represent
5630 arbitrary values (in ways to be explained later). (5)~Macro parameters
5631 are like symbolic tokens in that they appear in |info| fields of
5632 one-word nodes. The $k$th parameter is represented by |expr_base+k| if it
5633 is of type \&{expr}, or by |suffix_base+k| if it is of type \&{suffix}, or
5634 by |text_base+k| if it is of type \&{text}. (Here |0<=k<param_size|.)
5635 Actual values of these parameters are kept in a separate stack, as we will
5636 see later. The constants |expr_base|, |suffix_base|, and |text_base| are,
5637 of course, chosen so that there will be no confusion between symbolic
5638 tokens and parameters of various types.
5641 the `\\{type}' field of a node has nothing to do with ``type'' in a
5642 printer's sense. It's curious that the same word is used in such different ways.
5644 @d type(A) mp->mem[(A)].hh.b0 /* identifies what kind of value this is */
5645 @d name_type(A) mp->mem[(A)].hh.b1 /* a clue to the name of this value */
5646 @d token_node_size 2 /* the number of words in a large token node */
5647 @d value_loc(A) ((A)+1) /* the word that contains the |value| field */
5648 @d value(A) mp->mem[value_loc((A))].cint /* the value stored in a large token node */
5649 @d expr_base (hash_end+1) /* code for the zeroth \&{expr} parameter */
5650 @d suffix_base (expr_base+mp->param_size) /* code for the zeroth \&{suffix} parameter */
5651 @d text_base (suffix_base+mp->param_size) /* code for the zeroth \&{text} parameter */
5653 @<Check the ``constant''...@>=
5654 if ( text_base+mp->param_size>max_halfword ) mp->bad=18;
5656 @ We have set aside a two word node beginning at |null| so that we can have
5657 |value(null)=0|. We will make use of this coincidence later.
5659 @<Initialize table entries...@>=
5660 link(null)=null; value(null)=0;
5662 @ A numeric token is created by the following trivial routine.
5665 pointer mp_new_num_tok (MP mp,scaled v) {
5666 pointer p; /* the new node */
5667 p=mp_get_node(mp, token_node_size); value(p)=v;
5668 type(p)=mp_known; name_type(p)=mp_token;
5672 @ A token list is a singly linked list of nodes in |mem|, where
5673 each node contains a token and a link. Here's a subroutine that gets rid
5674 of a token list when it is no longer needed.
5676 @c void mp_flush_token_list (MP mp,pointer p) {
5677 pointer q; /* the node being recycled */
5680 if ( q>=mp->hi_mem_min ) {
5684 case mp_vacuous: case mp_boolean_type: case mp_known:
5686 case mp_string_type:
5687 delete_str_ref(value(q));
5689 case unknown_types: case mp_pen_type: case mp_path_type:
5690 case mp_picture_type: case mp_pair_type: case mp_color_type:
5691 case mp_cmykcolor_type: case mp_transform_type: case mp_dependent:
5692 case mp_proto_dependent: case mp_independent:
5693 mp_recycle_value(mp,q);
5695 default: mp_confusion(mp, "token");
5696 @:this can't happen token}{\quad token@>
5698 mp_free_node(mp, q,token_node_size);
5703 @ The procedure |show_token_list|, which prints a symbolic form of
5704 the token list that starts at a given node |p|, illustrates these
5705 conventions. The token list being displayed should not begin with a reference
5706 count. However, the procedure is intended to be fairly robust, so that if the
5707 memory links are awry or if |p| is not really a pointer to a token list,
5708 almost nothing catastrophic can happen.
5710 An additional parameter |q| is also given; this parameter is either null
5711 or it points to a node in the token list where a certain magic computation
5712 takes place that will be explained later. (Basically, |q| is non-null when
5713 we are printing the two-line context information at the time of an error
5714 message; |q| marks the place corresponding to where the second line
5717 The generation will stop, and `\.{\char`\ ETC.}' will be printed, if the length
5718 of printing exceeds a given limit~|l|; the length of printing upon entry is
5719 assumed to be a given amount called |null_tally|. (Note that
5720 |show_token_list| sometimes uses itself recursively to print
5721 variable names within a capsule.)
5724 Unusual entries are printed in the form of all-caps tokens
5725 preceded by a space, e.g., `\.{\char`\ BAD}'.
5727 @<Declare the procedure called |show_token_list|@>=
5728 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5729 integer null_tally) ;
5732 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5733 integer null_tally) {
5734 small_number class,c; /* the |char_class| of previous and new tokens */
5735 integer r,v; /* temporary registers */
5736 class=percent_class;
5737 mp->tally=null_tally;
5738 while ( (p!=null) && (mp->tally<l) ) {
5740 @<Do magic computation@>;
5741 @<Display token |p| and set |c| to its class;
5742 but |return| if there are problems@>;
5746 mp_print(mp, " ETC.");
5751 @ @<Display token |p| and set |c| to its class...@>=
5752 c=letter_class; /* the default */
5753 if ( (p<0)||(p>mp->mem_end) ) {
5754 mp_print(mp, " CLOBBERED"); return;
5757 if ( p<mp->hi_mem_min ) {
5758 @<Display two-word token@>;
5761 if ( r>=expr_base ) {
5762 @<Display a parameter token@>;
5766 @<Display a collective subscript@>
5768 mp_print(mp, " IMPOSSIBLE");
5773 if ( (r<0)||(r>mp->max_str_ptr) ) {
5774 mp_print(mp, " NONEXISTENT");
5777 @<Print string |r| as a symbolic token
5778 and set |c| to its class@>;
5784 @ @<Display two-word token@>=
5785 if ( name_type(p)==mp_token ) {
5786 if ( type(p)==mp_known ) {
5787 @<Display a numeric token@>;
5788 } else if ( type(p)!=mp_string_type ) {
5789 mp_print(mp, " BAD");
5792 mp_print_char(mp, '"'); mp_print_str(mp, value(p)); mp_print_char(mp, '"');
5795 } else if ((name_type(p)!=mp_capsule)||(type(p)<mp_vacuous)||(type(p)>mp_independent) ) {
5796 mp_print(mp, " BAD");
5798 mp_print_capsule(mp,p); c=right_paren_class;
5801 @ @<Display a numeric token@>=
5802 if ( class==digit_class )
5803 mp_print_char(mp, ' ');
5806 if ( class==left_bracket_class )
5807 mp_print_char(mp, ' ');
5808 mp_print_char(mp, '['); mp_print_scaled(mp, v); mp_print_char(mp, ']');
5809 c=right_bracket_class;
5811 mp_print_scaled(mp, v); c=digit_class;
5815 @ Strictly speaking, a genuine token will never have |info(p)=0|.
5816 But we will see later (in the |print_variable_name| routine) that
5817 it is convenient to let |info(p)=0| stand for `\.{[]}'.
5819 @<Display a collective subscript@>=
5821 if ( class==left_bracket_class )
5822 mp_print_char(mp, ' ');
5823 mp_print(mp, "[]"); c=right_bracket_class;
5826 @ @<Display a parameter token@>=
5828 if ( r<suffix_base ) {
5829 mp_print(mp, "(EXPR"); r=r-(expr_base);
5831 } else if ( r<text_base ) {
5832 mp_print(mp, "(SUFFIX"); r=r-(suffix_base);
5835 mp_print(mp, "(TEXT"); r=r-(text_base);
5838 mp_print_int(mp, r); mp_print_char(mp, ')'); c=right_paren_class;
5842 @ @<Print string |r| as a symbolic token...@>=
5844 c=mp->char_class[mp->str_pool[mp->str_start[r]]];
5847 case letter_class:mp_print_char(mp, '.'); break;
5848 case isolated_classes: break;
5849 default: mp_print_char(mp, ' '); break;
5852 mp_print_str(mp, r);
5856 void mp_print_capsule (MP mp, pointer p);
5858 @ @<Declare miscellaneous procedures that were declared |forward|@>=
5859 void mp_print_capsule (MP mp, pointer p) {
5860 mp_print_char(mp, '('); mp_print_exp(mp,p,0); mp_print_char(mp, ')');
5863 @ Macro definitions are kept in \MP's memory in the form of token lists
5864 that have a few extra one-word nodes at the beginning.
5866 The first node contains a reference count that is used to tell when the
5867 list is no longer needed. To emphasize the fact that a reference count is
5868 present, we shall refer to the |info| field of this special node as the
5870 @^reference counts@>
5872 The next node or nodes after the reference count serve to describe the
5873 formal parameters. They either contain a code word that specifies all
5874 of the parameters, or they contain zero or more parameter tokens followed
5875 by the code `|general_macro|'.
5878 /* reference count preceding a macro definition or picture header */
5879 @d add_mac_ref(A) incr(ref_count((A))) /* make a new reference to a macro list */
5880 @d general_macro 0 /* preface to a macro defined with a parameter list */
5881 @d primary_macro 1 /* preface to a macro with a \&{primary} parameter */
5882 @d secondary_macro 2 /* preface to a macro with a \&{secondary} parameter */
5883 @d tertiary_macro 3 /* preface to a macro with a \&{tertiary} parameter */
5884 @d expr_macro 4 /* preface to a macro with an undelimited \&{expr} parameter */
5885 @d of_macro 5 /* preface to a macro with
5886 undelimited `\&{expr} |x| \&{of}~|y|' parameters */
5887 @d suffix_macro 6 /* preface to a macro with an undelimited \&{suffix} parameter */
5888 @d text_macro 7 /* preface to a macro with an undelimited \&{text} parameter */
5891 void mp_delete_mac_ref (MP mp,pointer p) {
5892 /* |p| points to the reference count of a macro list that is
5893 losing one reference */
5894 if ( ref_count(p)==null ) mp_flush_token_list(mp, p);
5895 else decr(ref_count(p));
5898 @ The following subroutine displays a macro, given a pointer to its
5902 @<Declare the procedure called |print_cmd_mod|@>;
5903 void mp_show_macro (MP mp, pointer p, integer q, integer l) {
5904 pointer r; /* temporary storage */
5905 p=link(p); /* bypass the reference count */
5906 while ( info(p)>text_macro ){
5907 r=link(p); link(p)=null;
5908 mp_show_token_list(mp, p,null,l,0); link(p)=r; p=r;
5909 if ( l>0 ) l=l-mp->tally; else return;
5910 } /* control printing of `\.{ETC.}' */
5914 case general_macro:mp_print(mp, "->"); break;
5916 case primary_macro: case secondary_macro: case tertiary_macro:
5917 mp_print_char(mp, '<');
5918 mp_print_cmd_mod(mp, param_type,info(p));
5919 mp_print(mp, ">->");
5921 case expr_macro:mp_print(mp, "<expr>->"); break;
5922 case of_macro:mp_print(mp, "<expr>of<primary>->"); break;
5923 case suffix_macro:mp_print(mp, "<suffix>->"); break;
5924 case text_macro:mp_print(mp, "<text>->"); break;
5925 } /* there are no other cases */
5926 mp_show_token_list(mp, link(p),q,l-mp->tally,0);
5929 @* \[15] Data structures for variables.
5930 The variables of \MP\ programs can be simple, like `\.x', or they can
5931 combine the structural properties of arrays and records, like `\.{x20a.b}'.
5932 A \MP\ user assigns a type to a variable like \.{x20a.b} by saying, for
5933 example, `\.{boolean} \.{x20a.b}'. It's time for us to study how such
5934 things are represented inside of the computer.
5936 Each variable value occupies two consecutive words, either in a two-word
5937 node called a value node, or as a two-word subfield of a larger node. One
5938 of those two words is called the |value| field; it is an integer,
5939 containing either a |scaled| numeric value or the representation of some
5940 other type of quantity. (It might also be subdivided into halfwords, in
5941 which case it is referred to by other names instead of |value|.) The other
5942 word is broken into subfields called |type|, |name_type|, and |link|. The
5943 |type| field is a quarterword that specifies the variable's type, and
5944 |name_type| is a quarterword from which \MP\ can reconstruct the
5945 variable's name (sometimes by using the |link| field as well). Thus, only
5946 1.25 words are actually devoted to the value itself; the other
5947 three-quarters of a word are overhead, but they aren't wasted because they
5948 allow \MP\ to deal with sparse arrays and to provide meaningful diagnostics.
5950 In this section we shall be concerned only with the structural aspects of
5951 variables, not their values. Later parts of the program will change the
5952 |type| and |value| fields, but we shall treat those fields as black boxes
5953 whose contents should not be touched.
5955 However, if the |type| field is |mp_structured|, there is no |value| field,
5956 and the second word is broken into two pointer fields called |attr_head|
5957 and |subscr_head|. Those fields point to additional nodes that
5958 contain structural information, as we shall see.
5960 @d subscr_head_loc(A) (A)+1 /* where |value|, |subscr_head| and |attr_head| are */
5961 @d attr_head(A) info(subscr_head_loc((A))) /* pointer to attribute info */
5962 @d subscr_head(A) link(subscr_head_loc((A))) /* pointer to subscript info */
5963 @d value_node_size 2 /* the number of words in a value node */
5965 @ An attribute node is three words long. Two of these words contain |type|
5966 and |value| fields as described above, and the third word contains
5967 additional information: There is an |attr_loc| field, which contains the
5968 hash address of the token that names this attribute; and there's also a
5969 |parent| field, which points to the value node of |mp_structured| type at the
5970 next higher level (i.e., at the level to which this attribute is
5971 subsidiary). The |name_type| in an attribute node is `|attr|'. The
5972 |link| field points to the next attribute with the same parent; these are
5973 arranged in increasing order, so that |attr_loc(link(p))>attr_loc(p)|. The
5974 final attribute node links to the constant |end_attr|, whose |attr_loc|
5975 field is greater than any legal hash address. The |attr_head| in the
5976 parent points to a node whose |name_type| is |mp_structured_root|; this
5977 node represents the null attribute, i.e., the variable that is relevant
5978 when no attributes are attached to the parent. The |attr_head| node is either
5979 a value node, a subscript node, or an attribute node, depending on what
5980 the parent would be if it were not structured; but the subscript and
5981 attribute fields are ignored, so it effectively contains only the data of
5982 a value node. The |link| field in this special node points to an attribute
5983 node whose |attr_loc| field is zero; the latter node represents a collective
5984 subscript `\.{[]}' attached to the parent, and its |link| field points to
5985 the first non-special attribute node (or to |end_attr| if there are none).
5987 A subscript node likewise occupies three words, with |type| and |value| fields
5988 plus extra information; its |name_type| is |subscr|. In this case the
5989 third word is called the |subscript| field, which is a |scaled| integer.
5990 The |link| field points to the subscript node with the next larger
5991 subscript, if any; otherwise the |link| points to the attribute node
5992 for collective subscripts at this level. We have seen that the latter node
5993 contains an upward pointer, so that the parent can be deduced.
5995 The |name_type| in a parent-less value node is |root|, and the |link|
5996 is the hash address of the token that names this value.
5998 In other words, variables have a hierarchical structure that includes
5999 enough threads running around so that the program is able to move easily
6000 between siblings, parents, and children. An example should be helpful:
6001 (The reader is advised to draw a picture while reading the following
6002 description, since that will help to firm up the ideas.)
6003 Suppose that `\.x' and `\.{x.a}' and `\.{x[]b}' and `\.{x5}'
6004 and `\.{x20b}' have been mentioned in a user's program, where
6005 \.{x[]b} has been declared to be of \&{boolean} type. Let |h(x)|, |h(a)|,
6006 and |h(b)| be the hash addresses of \.x, \.a, and~\.b. Then
6007 |eq_type(h(x))=name| and |equiv(h(x))=p|, where |p|~is a two-word value
6008 node with |name_type(p)=root| and |link(p)=h(x)|. We have |type(p)=mp_structured|,
6009 |attr_head(p)=q|, and |subscr_head(p)=r|, where |q| points to a value
6010 node and |r| to a subscript node. (Are you still following this? Use
6011 a pencil to draw a diagram.) The lone variable `\.x' is represented by
6012 |type(q)| and |value(q)|; furthermore
6013 |name_type(q)=mp_structured_root| and |link(q)=q1|, where |q1| points
6014 to an attribute node representing `\.{x[]}'. Thus |name_type(q1)=attr|,
6015 |attr_loc(q1)=collective_subscript=0|, |parent(q1)=p|,
6016 |type(q1)=mp_structured|, |attr_head(q1)=qq|, and |subscr_head(q1)=qq1|;
6017 |qq| is a value node with |type(qq)=mp_numeric_type| (assuming that \.{x5} is
6018 numeric, because |qq| represents `\.{x[]}' with no further attributes),
6019 |name_type(qq)=mp_structured_root|, and
6020 |link(qq)=qq1|. (Now pay attention to the next part.) Node |qq1| is
6021 an attribute node representing `\.{x[][]}', which has never yet
6022 occurred; its |type| field is |undefined|, and its |value| field is
6023 undefined. We have |name_type(qq1)=attr|, |attr_loc(qq1)=collective_subscript|,
6024 |parent(qq1)=q1|, and |link(qq1)=qq2|. Since |qq2| represents
6025 `\.{x[]b}', |type(qq2)=mp_unknown_boolean|; also |attr_loc(qq2)=h(b)|,
6026 |parent(qq2)=q1|, |name_type(qq2)=attr|, |link(qq2)=end_attr|.
6027 (Maybe colored lines will help untangle your picture.)
6028 Node |r| is a subscript node with |type| and |value|
6029 representing `\.{x5}'; |name_type(r)=subscr|, |subscript(r)=5.0|,
6030 and |link(r)=r1| is another subscript node. To complete the picture,
6031 see if you can guess what |link(r1)| is; give up? It's~|q1|.
6032 Furthermore |subscript(r1)=20.0|, |name_type(r1)=subscr|,
6033 |type(r1)=mp_structured|, |attr_head(r1)=qqq|, |subscr_head(r1)=qqq1|,
6034 and we finish things off with three more nodes
6035 |qqq|, |qqq1|, and |qqq2| hung onto~|r1|. (Perhaps you should start again
6036 with a larger sheet of paper.) The value of variable \.{x20b}
6037 appears in node~|qqq2|, as you can well imagine.
6039 If the example in the previous paragraph doesn't make things crystal
6040 clear, a glance at some of the simpler subroutines below will reveal how
6041 things work out in practice.
6043 The only really unusual thing about these conventions is the use of
6044 collective subscript attributes. The idea is to avoid repeating a lot of
6045 type information when many elements of an array are identical macros
6046 (for which distinct values need not be stored) or when they don't have
6047 all of the possible attributes. Branches of the structure below collective
6048 subscript attributes do not carry actual values except for macro identifiers;
6049 branches of the structure below subscript nodes do not carry significant
6050 information in their collective subscript attributes.
6052 @d attr_loc_loc(A) ((A)+2) /* where the |attr_loc| and |parent| fields are */
6053 @d attr_loc(A) info(attr_loc_loc((A))) /* hash address of this attribute */
6054 @d parent(A) link(attr_loc_loc((A))) /* pointer to |mp_structured| variable */
6055 @d subscript_loc(A) ((A)+2) /* where the |subscript| field lives */
6056 @d subscript(A) mp->mem[subscript_loc((A))].sc /* subscript of this variable */
6057 @d attr_node_size 3 /* the number of words in an attribute node */
6058 @d subscr_node_size 3 /* the number of words in a subscript node */
6059 @d collective_subscript 0 /* code for the attribute `\.{[]}' */
6061 @<Initialize table...@>=
6062 attr_loc(end_attr)=hash_end+1; parent(end_attr)=null;
6064 @ Variables of type \&{pair} will have values that point to four-word
6065 nodes containing two numeric values. The first of these values has
6066 |name_type=mp_x_part_sector| and the second has |name_type=mp_y_part_sector|;
6067 the |link| in the first points back to the node whose |value| points
6068 to this four-word node.
6070 Variables of type \&{transform} are similar, but in this case their
6071 |value| points to a 12-word node containing six values, identified by
6072 |x_part_sector|, |y_part_sector|, |mp_xx_part_sector|, |mp_xy_part_sector|,
6073 |mp_yx_part_sector|, and |mp_yy_part_sector|.
6074 Finally, variables of type \&{color} have 3~values in 6~words
6075 identified by |mp_red_part_sector|, |mp_green_part_sector|, and |mp_blue_part_sector|.
6077 When an entire structured variable is saved, the |root| indication
6078 is temporarily replaced by |saved_root|.
6080 Some variables have no name; they just are used for temporary storage
6081 while expressions are being evaluated. We call them {\sl capsules}.
6083 @d x_part_loc(A) (A) /* where the \&{xpart} is found in a pair or transform node */
6084 @d y_part_loc(A) ((A)+2) /* where the \&{ypart} is found in a pair or transform node */
6085 @d xx_part_loc(A) ((A)+4) /* where the \&{xxpart} is found in a transform node */
6086 @d xy_part_loc(A) ((A)+6) /* where the \&{xypart} is found in a transform node */
6087 @d yx_part_loc(A) ((A)+8) /* where the \&{yxpart} is found in a transform node */
6088 @d yy_part_loc(A) ((A)+10) /* where the \&{yypart} is found in a transform node */
6089 @d red_part_loc(A) (A) /* where the \&{redpart} is found in a color node */
6090 @d green_part_loc(A) ((A)+2) /* where the \&{greenpart} is found in a color node */
6091 @d blue_part_loc(A) ((A)+4) /* where the \&{bluepart} is found in a color node */
6092 @d cyan_part_loc(A) (A) /* where the \&{cyanpart} is found in a color node */
6093 @d magenta_part_loc(A) ((A)+2) /* where the \&{magentapart} is found in a color node */
6094 @d yellow_part_loc(A) ((A)+4) /* where the \&{yellowpart} is found in a color node */
6095 @d black_part_loc(A) ((A)+6) /* where the \&{blackpart} is found in a color node */
6096 @d grey_part_loc(A) (A) /* where the \&{greypart} is found in a color node */
6098 @d pair_node_size 4 /* the number of words in a pair node */
6099 @d transform_node_size 12 /* the number of words in a transform node */
6100 @d color_node_size 6 /* the number of words in a color node */
6101 @d cmykcolor_node_size 8 /* the number of words in a color node */
6104 small_number big_node_size[mp_pair_type+1];
6105 small_number sector0[mp_pair_type+1];
6106 small_number sector_offset[mp_black_part_sector+1];
6108 @ The |sector0| array gives for each big node type, |name_type| values
6109 for its first subfield; the |sector_offset| array gives for each
6110 |name_type| value, the offset from the first subfield in words;
6111 and the |big_node_size| array gives the size in words for each type of
6115 mp->big_node_size[mp_transform_type]=transform_node_size;
6116 mp->big_node_size[mp_pair_type]=pair_node_size;
6117 mp->big_node_size[mp_color_type]=color_node_size;
6118 mp->big_node_size[mp_cmykcolor_type]=cmykcolor_node_size;
6119 mp->sector0[mp_transform_type]=mp_x_part_sector;
6120 mp->sector0[mp_pair_type]=mp_x_part_sector;
6121 mp->sector0[mp_color_type]=mp_red_part_sector;
6122 mp->sector0[mp_cmykcolor_type]=mp_cyan_part_sector;
6123 for (k=mp_x_part_sector;k<= mp_yy_part_sector;k++ ) {
6124 mp->sector_offset[k]=2*(k-mp_x_part_sector);
6126 for (k=mp_red_part_sector;k<= mp_blue_part_sector ; k++) {
6127 mp->sector_offset[k]=2*(k-mp_red_part_sector);
6129 for (k=mp_cyan_part_sector;k<= mp_black_part_sector;k++ ) {
6130 mp->sector_offset[k]=2*(k-mp_cyan_part_sector);
6133 @ If |type(p)=mp_pair_type| or |mp_transform_type| and if |value(p)=null|, the
6134 procedure call |init_big_node(p)| will allocate a pair or transform node
6135 for~|p|. The individual parts of such nodes are initially of type
6139 void mp_init_big_node (MP mp,pointer p) {
6140 pointer q; /* the new node */
6141 small_number s; /* its size */
6142 s=mp->big_node_size[type(p)]; q=mp_get_node(mp, s);
6145 @<Make variable |q+s| newly independent@>;
6146 name_type(q+s)=halfp(s)+mp->sector0[type(p)];
6149 link(q)=p; value(p)=q;
6152 @ The |id_transform| function creates a capsule for the
6153 identity transformation.
6156 pointer mp_id_transform (MP mp) {
6157 pointer p,q,r; /* list manipulation registers */
6158 p=mp_get_node(mp, value_node_size); type(p)=mp_transform_type;
6159 name_type(p)=mp_capsule; value(p)=null; mp_init_big_node(mp, p); q=value(p);
6160 r=q+transform_node_size;
6163 type(r)=mp_known; value(r)=0;
6165 value(xx_part_loc(q))=unity;
6166 value(yy_part_loc(q))=unity;
6170 @ Tokens are of type |tag_token| when they first appear, but they point
6171 to |null| until they are first used as the root of a variable.
6172 The following subroutine establishes the root node on such grand occasions.
6175 void mp_new_root (MP mp,pointer x) {
6176 pointer p; /* the new node */
6177 p=mp_get_node(mp, value_node_size); type(p)=undefined; name_type(p)=mp_root;
6178 link(p)=x; equiv(x)=p;
6181 @ These conventions for variable representation are illustrated by the
6182 |print_variable_name| routine, which displays the full name of a
6183 variable given only a pointer to its two-word value packet.
6186 void mp_print_variable_name (MP mp, pointer p);
6189 void mp_print_variable_name (MP mp, pointer p) {
6190 pointer q; /* a token list that will name the variable's suffix */
6191 pointer r; /* temporary for token list creation */
6192 while ( name_type(p)>=mp_x_part_sector ) {
6193 @<Preface the output with a part specifier; |return| in the
6194 case of a capsule@>;
6197 while ( name_type(p)>mp_saved_root ) {
6198 @<Ascend one level, pushing a token onto list |q|
6199 and replacing |p| by its parent@>;
6201 r=mp_get_avail(mp); info(r)=link(p); link(r)=q;
6202 if ( name_type(p)==mp_saved_root ) mp_print(mp, "(SAVED)");
6204 mp_show_token_list(mp, r,null,el_gordo,mp->tally);
6205 mp_flush_token_list(mp, r);
6208 @ @<Ascend one level, pushing a token onto list |q|...@>=
6210 if ( name_type(p)==mp_subscr ) {
6211 r=mp_new_num_tok(mp, subscript(p));
6214 } while (name_type(p)!=mp_attr);
6215 } else if ( name_type(p)==mp_structured_root ) {
6216 p=link(p); goto FOUND;
6218 if ( name_type(p)!=mp_attr ) mp_confusion(mp, "var");
6219 @:this can't happen var}{\quad var@>
6220 r=mp_get_avail(mp); info(r)=attr_loc(p);
6227 @ @<Preface the output with a part specifier...@>=
6228 { switch (name_type(p)) {
6229 case mp_x_part_sector: mp_print_char(mp, 'x'); break;
6230 case mp_y_part_sector: mp_print_char(mp, 'y'); break;
6231 case mp_xx_part_sector: mp_print(mp, "xx"); break;
6232 case mp_xy_part_sector: mp_print(mp, "xy"); break;
6233 case mp_yx_part_sector: mp_print(mp, "yx"); break;
6234 case mp_yy_part_sector: mp_print(mp, "yy"); break;
6235 case mp_red_part_sector: mp_print(mp, "red"); break;
6236 case mp_green_part_sector: mp_print(mp, "green"); break;
6237 case mp_blue_part_sector: mp_print(mp, "blue"); break;
6238 case mp_cyan_part_sector: mp_print(mp, "cyan"); break;
6239 case mp_magenta_part_sector: mp_print(mp, "magenta"); break;
6240 case mp_yellow_part_sector: mp_print(mp, "yellow"); break;
6241 case mp_black_part_sector: mp_print(mp, "black"); break;
6242 case mp_grey_part_sector: mp_print(mp, "grey"); break;
6244 mp_print(mp, "%CAPSULE"); mp_print_int(mp, p-null); return;
6247 } /* there are no other cases */
6248 mp_print(mp, "part ");
6249 p=link(p-mp->sector_offset[name_type(p)]);
6252 @ The |interesting| function returns |true| if a given variable is not
6253 in a capsule, or if the user wants to trace capsules.
6256 boolean mp_interesting (MP mp,pointer p) {
6257 small_number t; /* a |name_type| */
6258 if ( mp->internal[mp_tracing_capsules]>0 ) {
6262 if ( t>=mp_x_part_sector ) if ( t!=mp_capsule )
6263 t=name_type(link(p-mp->sector_offset[t]));
6264 return (t!=mp_capsule);
6268 @ Now here is a subroutine that converts an unstructured type into an
6269 equivalent structured type, by inserting a |mp_structured| node that is
6270 capable of growing. This operation is done only when |name_type(p)=root|,
6271 |subscr|, or |attr|.
6273 The procedure returns a pointer to the new node that has taken node~|p|'s
6274 place in the structure. Node~|p| itself does not move, nor are its
6275 |value| or |type| fields changed in any way.
6278 pointer mp_new_structure (MP mp,pointer p) {
6279 pointer q,r=0; /* list manipulation registers */
6280 switch (name_type(p)) {
6282 q=link(p); r=mp_get_node(mp, value_node_size); equiv(q)=r;
6285 @<Link a new subscript node |r| in place of node |p|@>;
6288 @<Link a new attribute node |r| in place of node |p|@>;
6291 mp_confusion(mp, "struct");
6292 @:this can't happen struct}{\quad struct@>
6295 link(r)=link(p); type(r)=mp_structured; name_type(r)=name_type(p);
6296 attr_head(r)=p; name_type(p)=mp_structured_root;
6297 q=mp_get_node(mp, attr_node_size); link(p)=q; subscr_head(r)=q;
6298 parent(q)=r; type(q)=undefined; name_type(q)=mp_attr; link(q)=end_attr;
6299 attr_loc(q)=collective_subscript;
6303 @ @<Link a new subscript node |r| in place of node |p|@>=
6308 } while (name_type(q)!=mp_attr);
6309 q=parent(q); r=subscr_head_loc(q); /* |link(r)=subscr_head(q)| */
6313 r=mp_get_node(mp, subscr_node_size);
6314 link(q)=r; subscript(r)=subscript(p);
6317 @ If the attribute is |collective_subscript|, there are two pointers to
6318 node~|p|, so we must change both of them.
6320 @<Link a new attribute node |r| in place of node |p|@>=
6322 q=parent(p); r=attr_head(q);
6326 r=mp_get_node(mp, attr_node_size); link(q)=r;
6327 mp->mem[attr_loc_loc(r)]=mp->mem[attr_loc_loc(p)]; /* copy |attr_loc| and |parent| */
6328 if ( attr_loc(p)==collective_subscript ) {
6329 q=subscr_head_loc(parent(p));
6330 while ( link(q)!=p ) q=link(q);
6335 @ The |find_variable| routine is given a pointer~|t| to a nonempty token
6336 list of suffixes; it returns a pointer to the corresponding two-word
6337 value. For example, if |t| points to token \.x followed by a numeric
6338 token containing the value~7, |find_variable| finds where the value of
6339 \.{x7} is stored in memory. This may seem a simple task, and it
6340 usually is, except when \.{x7} has never been referenced before.
6341 Indeed, \.x may never have even been subscripted before; complexities
6342 arise with respect to updating the collective subscript information.
6344 If a macro type is detected anywhere along path~|t|, or if the first
6345 item on |t| isn't a |tag_token|, the value |null| is returned.
6346 Otherwise |p| will be a non-null pointer to a node such that
6347 |undefined<type(p)<mp_structured|.
6349 @d abort_find { return null; }
6352 pointer mp_find_variable (MP mp,pointer t) {
6353 pointer p,q,r,s; /* nodes in the ``value'' line */
6354 pointer pp,qq,rr,ss; /* nodes in the ``collective'' line */
6355 integer n; /* subscript or attribute */
6356 memory_word save_word; /* temporary storage for a word of |mem| */
6358 p=info(t); t=link(t);
6359 if ( (eq_type(p) % outer_tag) != tag_token ) abort_find;
6360 if ( equiv(p)==null ) mp_new_root(mp, p);
6363 @<Make sure that both nodes |p| and |pp| are of |mp_structured| type@>;
6364 if ( t<mp->hi_mem_min ) {
6365 @<Descend one level for the subscript |value(t)|@>
6367 @<Descend one level for the attribute |info(t)|@>;
6371 if ( type(pp)>=mp_structured ) {
6372 if ( type(pp)==mp_structured ) pp=attr_head(pp); else abort_find;
6374 if ( type(p)==mp_structured ) p=attr_head(p);
6375 if ( type(p)==undefined ) {
6376 if ( type(pp)==undefined ) { type(pp)=mp_numeric_type; value(pp)=null; };
6377 type(p)=type(pp); value(p)=null;
6382 @ Although |pp| and |p| begin together, they diverge when a subscript occurs;
6383 |pp|~stays in the collective line while |p|~goes through actual subscript
6386 @<Make sure that both nodes |p| and |pp|...@>=
6387 if ( type(pp)!=mp_structured ) {
6388 if ( type(pp)>mp_structured ) abort_find;
6389 ss=mp_new_structure(mp, pp);
6392 }; /* now |type(pp)=mp_structured| */
6393 if ( type(p)!=mp_structured ) /* it cannot be |>mp_structured| */
6394 p=mp_new_structure(mp, p) /* now |type(p)=mp_structured| */
6396 @ We want this part of the program to be reasonably fast, in case there are
6398 lots of subscripts at the same level of the data structure. Therefore
6399 we store an ``infinite'' value in the word that appears at the end of the
6400 subscript list, even though that word isn't part of a subscript node.
6402 @<Descend one level for the subscript |value(t)|@>=
6405 pp=link(attr_head(pp)); /* now |attr_loc(pp)=collective_subscript| */
6406 q=link(attr_head(p)); save_word=mp->mem[subscript_loc(q)];
6407 subscript(q)=el_gordo; s=subscr_head_loc(p); /* |link(s)=subscr_head(p)| */
6410 } while (n>subscript(s));
6411 if ( n==subscript(s) ) {
6414 p=mp_get_node(mp, subscr_node_size); link(r)=p; link(p)=s;
6415 subscript(p)=n; name_type(p)=mp_subscr; type(p)=undefined;
6417 mp->mem[subscript_loc(q)]=save_word;
6420 @ @<Descend one level for the attribute |info(t)|@>=
6426 } while (n>attr_loc(ss));
6427 if ( n<attr_loc(ss) ) {
6428 qq=mp_get_node(mp, attr_node_size); link(rr)=qq; link(qq)=ss;
6429 attr_loc(qq)=n; name_type(qq)=mp_attr; type(qq)=undefined;
6430 parent(qq)=pp; ss=qq;
6435 pp=ss; s=attr_head(p);
6438 } while (n>attr_loc(s));
6439 if ( n==attr_loc(s) ) {
6442 q=mp_get_node(mp, attr_node_size); link(r)=q; link(q)=s;
6443 attr_loc(q)=n; name_type(q)=mp_attr; type(q)=undefined;
6449 @ Variables lose their former values when they appear in a type declaration,
6450 or when they are defined to be macros or \&{let} equal to something else.
6451 A subroutine will be defined later that recycles the storage associated
6452 with any particular |type| or |value|; our goal now is to study a higher
6453 level process called |flush_variable|, which selectively frees parts of a
6456 This routine has some complexity because of examples such as
6457 `\hbox{\tt numeric x[]a[]b}'
6458 which recycles all variables of the form \.{x[i]a[j]b} (and no others), while
6459 `\hbox{\tt vardef x[]a[]=...}'
6460 discards all variables of the form \.{x[i]a[j]} followed by an arbitrary
6461 suffix, except for the collective node \.{x[]a[]} itself. The obvious way
6462 to handle such examples is to use recursion; so that's what we~do.
6465 Parameter |p| points to the root information of the variable;
6466 parameter |t| points to a list of one-word nodes that represent
6467 suffixes, with |info=collective_subscript| for subscripts.
6470 @<Declare subroutines for printing expressions@>
6471 @<Declare basic dependency-list subroutines@>
6472 @<Declare the recycling subroutines@>
6473 void mp_flush_cur_exp (MP mp,scaled v) ;
6474 @<Declare the procedure called |flush_below_variable|@>
6477 void mp_flush_variable (MP mp,pointer p, pointer t, boolean discard_suffixes) {
6478 pointer q,r; /* list manipulation */
6479 halfword n; /* attribute to match */
6481 if ( type(p)!=mp_structured ) return;
6482 n=info(t); t=link(t);
6483 if ( n==collective_subscript ) {
6484 r=subscr_head_loc(p); q=link(r); /* |q=subscr_head(p)| */
6485 while ( name_type(q)==mp_subscr ){
6486 mp_flush_variable(mp, q,t,discard_suffixes);
6488 if ( type(q)==mp_structured ) r=q;
6489 else { link(r)=link(q); mp_free_node(mp, q,subscr_node_size); }
6499 } while (attr_loc(p)<n);
6500 if ( attr_loc(p)!=n ) return;
6502 if ( discard_suffixes ) {
6503 mp_flush_below_variable(mp, p);
6505 if ( type(p)==mp_structured ) p=attr_head(p);
6506 mp_recycle_value(mp, p);
6510 @ The next procedure is simpler; it wipes out everything but |p| itself,
6511 which becomes undefined.
6513 @<Declare the procedure called |flush_below_variable|@>=
6514 void mp_flush_below_variable (MP mp, pointer p);
6517 void mp_flush_below_variable (MP mp,pointer p) {
6518 pointer q,r; /* list manipulation registers */
6519 if ( type(p)!=mp_structured ) {
6520 mp_recycle_value(mp, p); /* this sets |type(p)=undefined| */
6523 while ( name_type(q)==mp_subscr ) {
6524 mp_flush_below_variable(mp, q); r=q; q=link(q);
6525 mp_free_node(mp, r,subscr_node_size);
6527 r=attr_head(p); q=link(r); mp_recycle_value(mp, r);
6528 if ( name_type(p)<=mp_saved_root ) mp_free_node(mp, r,value_node_size);
6529 else mp_free_node(mp, r,subscr_node_size);
6530 /* we assume that |subscr_node_size=attr_node_size| */
6532 mp_flush_below_variable(mp, q); r=q; q=link(q); mp_free_node(mp, r,attr_node_size);
6533 } while (q!=end_attr);
6538 @ Just before assigning a new value to a variable, we will recycle the
6539 old value and make the old value undefined. The |und_type| routine
6540 determines what type of undefined value should be given, based on
6541 the current type before recycling.
6544 small_number mp_und_type (MP mp,pointer p) {
6546 case undefined: case mp_vacuous:
6548 case mp_boolean_type: case mp_unknown_boolean:
6549 return mp_unknown_boolean;
6550 case mp_string_type: case mp_unknown_string:
6551 return mp_unknown_string;
6552 case mp_pen_type: case mp_unknown_pen:
6553 return mp_unknown_pen;
6554 case mp_path_type: case mp_unknown_path:
6555 return mp_unknown_path;
6556 case mp_picture_type: case mp_unknown_picture:
6557 return mp_unknown_picture;
6558 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
6559 case mp_pair_type: case mp_numeric_type:
6561 case mp_known: case mp_dependent: case mp_proto_dependent: case mp_independent:
6562 return mp_numeric_type;
6563 } /* there are no other cases */
6567 @ The |clear_symbol| routine is used when we want to redefine the equivalent
6568 of a symbolic token. It must remove any variable structure or macro
6569 definition that is currently attached to that symbol. If the |saving|
6570 parameter is true, a subsidiary structure is saved instead of destroyed.
6573 void mp_clear_symbol (MP mp,pointer p, boolean saving) {
6574 pointer q; /* |equiv(p)| */
6576 switch (eq_type(p) % outer_tag) {
6578 case secondary_primary_macro:
6579 case tertiary_secondary_macro:
6580 case expression_tertiary_macro:
6581 if ( ! saving ) mp_delete_mac_ref(mp, q);
6586 name_type(q)=mp_saved_root;
6588 mp_flush_below_variable(mp, q); mp_free_node(mp,q,value_node_size);
6595 mp->eqtb[p]=mp->eqtb[frozen_undefined];
6598 @* \[16] Saving and restoring equivalents.
6599 The nested structure given by \&{begingroup} and \&{endgroup}
6600 allows |eqtb| entries to be saved and restored, so that temporary changes
6601 can be made without difficulty. When the user requests a current value to
6602 be saved, \MP\ puts that value into its ``save stack.'' An appearance of
6603 \&{endgroup} ultimately causes the old values to be removed from the save
6604 stack and put back in their former places.
6606 The save stack is a linked list containing three kinds of entries,
6607 distinguished by their |info| fields. If |p| points to a saved item,
6611 |info(p)=0| stands for a group boundary; each \&{begingroup} contributes
6612 such an item to the save stack and each \&{endgroup} cuts back the stack
6613 until the most recent such entry has been removed.
6616 |info(p)=q|, where |1<=q<=hash_end|, means that |mem[p+1]| holds the former
6617 contents of |eqtb[q]|. Such save stack entries are generated by \&{save}
6618 commands or suitable \&{interim} commands.
6621 |info(p)=hash_end+q|, where |q>0|, means that |value(p)| is a |scaled|
6622 integer to be restored to internal parameter number~|q|. Such entries
6623 are generated by \&{interim} commands.
6626 The global variable |save_ptr| points to the top item on the save stack.
6628 @d save_node_size 2 /* number of words per non-boundary save-stack node */
6629 @d saved_equiv(A) mp->mem[(A)+1].hh /* where an |eqtb| entry gets saved */
6630 @d save_boundary_item(A) { (A)=mp_get_avail(mp); info((A))=0;
6631 link((A))=mp->save_ptr; mp->save_ptr=(A);
6635 pointer save_ptr; /* the most recently saved item */
6637 @ @<Set init...@>=mp->save_ptr=null;
6639 @ The |save_variable| routine is given a hash address |q|; it salts this
6640 address in the save stack, together with its current equivalent,
6641 then makes token~|q| behave as though it were brand new.
6643 Nothing is stacked when |save_ptr=null|, however; there's no way to remove
6644 things from the stack when the program is not inside a group, so there's
6645 no point in wasting the space.
6647 @c void mp_save_variable (MP mp,pointer q) {
6648 pointer p; /* temporary register */
6649 if ( mp->save_ptr!=null ){
6650 p=mp_get_node(mp, save_node_size); info(p)=q; link(p)=mp->save_ptr;
6651 saved_equiv(p)=mp->eqtb[q]; mp->save_ptr=p;
6653 mp_clear_symbol(mp, q,(mp->save_ptr!=null));
6656 @ Similarly, |save_internal| is given the location |q| of an internal
6657 quantity like |mp_tracing_pens|. It creates a save stack entry of the
6660 @c void mp_save_internal (MP mp,halfword q) {
6661 pointer p; /* new item for the save stack */
6662 if ( mp->save_ptr!=null ){
6663 p=mp_get_node(mp, save_node_size); info(p)=hash_end+q;
6664 link(p)=mp->save_ptr; value(p)=mp->internal[q]; mp->save_ptr=p;
6668 @ At the end of a group, the |unsave| routine restores all of the saved
6669 equivalents in reverse order. This routine will be called only when there
6670 is at least one boundary item on the save stack.
6673 void mp_unsave (MP mp) {
6674 pointer q; /* index to saved item */
6675 pointer p; /* temporary register */
6676 while ( info(mp->save_ptr)!=0 ) {
6677 q=info(mp->save_ptr);
6679 if ( mp->internal[mp_tracing_restores]>0 ) {
6680 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6681 mp_print(mp, mp->int_name[q-(hash_end)]); mp_print_char(mp, '=');
6682 mp_print_scaled(mp, value(mp->save_ptr)); mp_print_char(mp, '}');
6683 mp_end_diagnostic(mp, false);
6685 mp->internal[q-(hash_end)]=value(mp->save_ptr);
6687 if ( mp->internal[mp_tracing_restores]>0 ) {
6688 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6689 mp_print_text(q); mp_print_char(mp, '}');
6690 mp_end_diagnostic(mp, false);
6692 mp_clear_symbol(mp, q,false);
6693 mp->eqtb[q]=saved_equiv(mp->save_ptr);
6694 if ( eq_type(q) % outer_tag==tag_token ) {
6696 if ( p!=null ) name_type(p)=mp_root;
6699 p=link(mp->save_ptr);
6700 mp_free_node(mp, mp->save_ptr,save_node_size); mp->save_ptr=p;
6702 p=link(mp->save_ptr); free_avail(mp->save_ptr); mp->save_ptr=p;
6705 @* \[17] Data structures for paths.
6706 When a \MP\ user specifies a path, \MP\ will create a list of knots
6707 and control points for the associated cubic spline curves. If the
6708 knots are $z_0$, $z_1$, \dots, $z_n$, there are control points
6709 $z_k^+$ and $z_{k+1}^-$ such that the cubic splines between knots
6710 $z_k$ and $z_{k+1}$ are defined by B\'ezier's formula
6711 @:Bezier}{B\'ezier, Pierre Etienne@>
6712 $$\eqalign{z(t)&=B(z_k,z_k^+,z_{k+1}^-,z_{k+1};t)\cr
6713 &=(1-t)^3z_k+3(1-t)^2tz_k^++3(1-t)t^2z_{k+1}^-+t^3z_{k+1}\cr}$$
6716 There is a 8-word node for each knot $z_k$, containing one word of
6717 control information and six words for the |x| and |y| coordinates of
6718 $z_k^-$ and $z_k$ and~$z_k^+$. The control information appears in the
6719 |left_type| and |right_type| fields, which each occupy a quarter of
6720 the first word in the node; they specify properties of the curve as it
6721 enters and leaves the knot. There's also a halfword |link| field,
6722 which points to the following knot, and a final supplementary word (of
6723 which only a quarter is used).
6725 If the path is a closed contour, knots 0 and |n| are identical;
6726 i.e., the |link| in knot |n-1| points to knot~0. But if the path
6727 is not closed, the |left_type| of knot~0 and the |right_type| of knot~|n|
6728 are equal to |endpoint|. In the latter case the |link| in knot~|n| points
6729 to knot~0, and the control points $z_0^-$ and $z_n^+$ are not used.
6731 @d left_type(A) mp->mem[(A)].hh.b0 /* characterizes the path entering this knot */
6732 @d right_type(A) mp->mem[(A)].hh.b1 /* characterizes the path leaving this knot */
6733 @d x_coord(A) mp->mem[(A)+1].sc /* the |x| coordinate of this knot */
6734 @d y_coord(A) mp->mem[(A)+2].sc /* the |y| coordinate of this knot */
6735 @d left_x(A) mp->mem[(A)+3].sc /* the |x| coordinate of previous control point */
6736 @d left_y(A) mp->mem[(A)+4].sc /* the |y| coordinate of previous control point */
6737 @d right_x(A) mp->mem[(A)+5].sc /* the |x| coordinate of next control point */
6738 @d right_y(A) mp->mem[(A)+6].sc /* the |y| coordinate of next control point */
6739 @d x_loc(A) ((A)+1) /* where the |x| coordinate is stored in a knot */
6740 @d y_loc(A) ((A)+2) /* where the |y| coordinate is stored in a knot */
6741 @d knot_coord(A) mp->mem[(A)].sc /* |x| or |y| coordinate given |x_loc| or |y_loc| */
6742 @d left_coord(A) mp->mem[(A)+2].sc
6743 /* coordinate of previous control point given |x_loc| or |y_loc| */
6744 @d right_coord(A) mp->mem[(A)+4].sc
6745 /* coordinate of next control point given |x_loc| or |y_loc| */
6746 @d knot_node_size 8 /* number of words in a knot node */
6750 mp_endpoint=0, /* |left_type| at path beginning and |right_type| at path end */
6751 mp_explicit, /* |left_type| or |right_type| when control points are known */
6752 mp_given, /* |left_type| or |right_type| when a direction is given */
6753 mp_curl, /* |left_type| or |right_type| when a curl is desired */
6754 mp_open, /* |left_type| or |right_type| when \MP\ should choose the direction */
6758 @ Before the B\'ezier control points have been calculated, the memory
6759 space they will ultimately occupy is taken up by information that can be
6760 used to compute them. There are four cases:
6763 \textindent{$\bullet$} If |right_type=mp_open|, the curve should leave
6764 the knot in the same direction it entered; \MP\ will figure out a
6768 \textindent{$\bullet$} If |right_type=mp_curl|, the curve should leave the
6769 knot in a direction depending on the angle at which it enters the next
6770 knot and on the curl parameter stored in |right_curl|.
6773 \textindent{$\bullet$} If |right_type=mp_given|, the curve should leave the
6774 knot in a nonzero direction stored as an |angle| in |right_given|.
6777 \textindent{$\bullet$} If |right_type=mp_explicit|, the B\'ezier control
6778 point for leaving this knot has already been computed; it is in the
6779 |right_x| and |right_y| fields.
6782 The rules for |left_type| are similar, but they refer to the curve entering
6783 the knot, and to \\{left} fields instead of \\{right} fields.
6785 Non-|explicit| control points will be chosen based on ``tension'' parameters
6786 in the |left_tension| and |right_tension| fields. The
6787 `\&{atleast}' option is represented by negative tension values.
6788 @:at_least_}{\&{atleast} primitive@>
6790 For example, the \MP\ path specification
6791 $$\.{z0..z1..tension atleast 1..\{curl 2\}z2..z3\{-1,-2\}..tension
6793 where \.p is the path `\.{z4..controls z45 and z54..z5}', will be represented
6795 \def\lodash{\hbox to 1.1em{\thinspace\hrulefill\thinspace}}
6796 $$\vbox{\halign{#\hfil&&\qquad#\hfil\cr
6797 |left_type|&\\{left} info&|x_coord,y_coord|&|right_type|&\\{right} info\cr
6799 |endpoint|&\lodash$,\,$\lodash&$x_0,y_0$&|curl|&$1.0,1.0$\cr
6800 |open|&\lodash$,1.0$&$x_1,y_1$&|open|&\lodash$,-1.0$\cr
6801 |curl|&$2.0,-1.0$&$x_2,y_2$&|curl|&$2.0,1.0$\cr
6802 |given|&$d,1.0$&$x_3,y_3$&|given|&$d,3.0$\cr
6803 |open|&\lodash$,4.0$&$x_4,y_4$&|explicit|&$x_{45},y_{45}$\cr
6804 |explicit|&$x_{54},y_{54}$&$x_5,y_5$&|endpoint|&\lodash$,\,$\lodash\cr}}$$
6805 Here |d| is the |angle| obtained by calling |n_arg(-unity,-two)|.
6806 Of course, this example is more complicated than anything a normal user
6809 These types must satisfy certain restrictions because of the form of \MP's
6811 (i)~|open| type never appears in the same node together with |endpoint|,
6813 (ii)~The |right_type| of a node is |explicit| if and only if the
6814 |left_type| of the following node is |explicit|.
6815 (iii)~|endpoint| types occur only at the ends, as mentioned above.
6817 @d left_curl left_x /* curl information when entering this knot */
6818 @d left_given left_x /* given direction when entering this knot */
6819 @d left_tension left_y /* tension information when entering this knot */
6820 @d right_curl right_x /* curl information when leaving this knot */
6821 @d right_given right_x /* given direction when leaving this knot */
6822 @d right_tension right_y /* tension information when leaving this knot */
6824 @ Knots can be user-supplied, or they can be created by program code,
6825 like the |split_cubic| function, or |copy_path|. The distinction is
6826 needed for the cleanup routine that runs after |split_cubic|, because
6827 it should only delete knots it has previously inserted, and never
6828 anything that was user-supplied. In order to be able to differentiate
6829 one knot from another, we will set |originator(p):=mp_metapost_user| when
6830 it appeared in the actual metapost program, and
6831 |originator(p):=mp_program_code| in all other cases.
6833 @d originator(A) mp->mem[(A)+7].hh.b0 /* the creator of this knot */
6837 mp_program_code=0, /* not created by a user */
6838 mp_metapost_user, /* created by a user */
6841 @ Here is a routine that prints a given knot list
6842 in symbolic form. It illustrates the conventions discussed above,
6843 and checks for anomalies that might arise while \MP\ is being debugged.
6845 @<Declare subroutines for printing expressions@>=
6846 void mp_pr_path (MP mp,pointer h);
6849 void mp_pr_path (MP mp,pointer h) {
6850 pointer p,q; /* for list traversal */
6854 if ( (p==null)||(q==null) ) {
6855 mp_print_nl(mp, "???"); return; /* this won't happen */
6858 @<Print information for adjacent knots |p| and |q|@>;
6861 if ( (p!=h)||(left_type(h)!=mp_endpoint) ) {
6862 @<Print two dots, followed by |given| or |curl| if present@>;
6865 if ( left_type(h)!=mp_endpoint )
6866 mp_print(mp, "cycle");
6869 @ @<Print information for adjacent knots...@>=
6870 mp_print_two(mp, x_coord(p),y_coord(p));
6871 switch (right_type(p)) {
6873 if ( left_type(p)==mp_open ) mp_print(mp, "{open?}"); /* can't happen */
6875 if ( (left_type(q)!=mp_endpoint)||(q!=h) ) q=null; /* force an error */
6879 @<Print control points between |p| and |q|, then |goto done1|@>;
6882 @<Print information for a curve that begins |open|@>;
6886 @<Print information for a curve that begins |curl| or |given|@>;
6889 mp_print(mp, "???"); /* can't happen */
6893 if ( left_type(q)<=mp_explicit ) {
6894 mp_print(mp, "..control?"); /* can't happen */
6896 } else if ( (right_tension(p)!=unity)||(left_tension(q)!=unity) ) {
6897 @<Print tension between |p| and |q|@>;
6900 @ Since |n_sin_cos| produces |fraction| results, which we will print as if they
6901 were |scaled|, the magnitude of a |given| direction vector will be~4096.
6903 @<Print two dots...@>=
6905 mp_print_nl(mp, " ..");
6906 if ( left_type(p)==mp_given ) {
6907 mp_n_sin_cos(mp, left_given(p)); mp_print_char(mp, '{');
6908 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
6909 mp_print_scaled(mp, mp->n_sin); mp_print_char(mp, '}');
6910 } else if ( left_type(p)==mp_curl ){
6911 mp_print(mp, "{curl ");
6912 mp_print_scaled(mp, left_curl(p)); mp_print_char(mp, '}');
6916 @ @<Print tension between |p| and |q|@>=
6918 mp_print(mp, "..tension ");
6919 if ( right_tension(p)<0 ) mp_print(mp, "atleast");
6920 mp_print_scaled(mp, abs(right_tension(p)));
6921 if ( right_tension(p)!=left_tension(q) ){
6922 mp_print(mp, " and ");
6923 if ( left_tension(q)<0 ) mp_print(mp, "atleast");
6924 mp_print_scaled(mp, abs(left_tension(q)));
6928 @ @<Print control points between |p| and |q|, then |goto done1|@>=
6930 mp_print(mp, "..controls ");
6931 mp_print_two(mp, right_x(p),right_y(p));
6932 mp_print(mp, " and ");
6933 if ( left_type(q)!=mp_explicit ) {
6934 mp_print(mp, "??"); /* can't happen */
6937 mp_print_two(mp, left_x(q),left_y(q));
6942 @ @<Print information for a curve that begins |open|@>=
6943 if ( (left_type(p)!=mp_explicit)&&(left_type(p)!=mp_open) ) {
6944 mp_print(mp, "{open?}"); /* can't happen */
6948 @ A curl of 1 is shown explicitly, so that the user sees clearly that
6949 \MP's default curl is present.
6951 The code here uses the fact that |left_curl==left_given| and
6952 |right_curl==right_given|.
6954 @<Print information for a curve that begins |curl|...@>=
6956 if ( left_type(p)==mp_open )
6957 mp_print(mp, "??"); /* can't happen */
6959 if ( right_type(p)==mp_curl ) {
6960 mp_print(mp, "{curl "); mp_print_scaled(mp, right_curl(p));
6962 mp_n_sin_cos(mp, right_given(p)); mp_print_char(mp, '{');
6963 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
6964 mp_print_scaled(mp, mp->n_sin);
6966 mp_print_char(mp, '}');
6969 @ It is convenient to have another version of |pr_path| that prints the path
6970 as a diagnostic message.
6972 @<Declare subroutines for printing expressions@>=
6973 void mp_print_path (MP mp,pointer h, char *s, boolean nuline) {
6974 mp_print_diagnostic(mp, "Path", s, nuline); mp_print_ln(mp);
6977 mp_end_diagnostic(mp, true);
6980 @ If we want to duplicate a knot node, we can say |copy_knot|:
6983 pointer mp_copy_knot (MP mp,pointer p) {
6984 pointer q; /* the copy */
6985 int k; /* runs through the words of a knot node */
6986 q=mp_get_node(mp, knot_node_size);
6987 for (k=0;k<knot_node_size;k++) {
6988 mp->mem[q+k]=mp->mem[p+k];
6990 originator(q)=originator(p);
6994 @ The |copy_path| routine makes a clone of a given path.
6997 pointer mp_copy_path (MP mp, pointer p) {
6998 pointer q,pp,qq; /* for list manipulation */
6999 q=mp_copy_knot(mp, p);
7002 link(qq)=mp_copy_knot(mp, pp);
7011 @ Just before |ship_out|, knot lists are exported for printing.
7013 The |gr_XXXX| macros are defined in |mppsout.h|.
7016 struct mp_knot *mp_export_knot (MP mp,pointer p) {
7017 struct mp_knot *q; /* the copy */
7020 q = mp_xmalloc(mp, 1, sizeof (struct mp_knot));
7021 memset(q,0,sizeof (struct mp_knot));
7022 gr_left_type(q) = left_type(p);
7023 gr_right_type(q) = right_type(p);
7024 gr_x_coord(q) = x_coord(p);
7025 gr_y_coord(q) = y_coord(p);
7026 gr_left_x(q) = left_x(p);
7027 gr_left_y(q) = left_y(p);
7028 gr_right_x(q) = right_x(p);
7029 gr_right_y(q) = right_y(p);
7030 gr_originator(q) = originator(p);
7034 @ The |export_knot_list| routine therefore also makes a clone
7038 struct mp_knot *mp_export_knot_list (MP mp, pointer p) {
7039 struct mp_knot *q, *qq; /* for list manipulation */
7040 pointer pp; /* for list manipulation */
7043 q=mp_export_knot(mp, p);
7046 gr_next_knot(qq)=mp_export_knot(mp, pp);
7047 qq=gr_next_knot(qq);
7055 @ Similarly, there's a way to copy the {\sl reverse\/} of a path. This procedure
7056 returns a pointer to the first node of the copy, if the path is a cycle,
7057 but to the final node of a non-cyclic copy. The global
7058 variable |path_tail| will point to the final node of the original path;
7059 this trick makes it easier to implement `\&{doublepath}'.
7061 All node types are assumed to be |endpoint| or |explicit| only.
7064 pointer mp_htap_ypoc (MP mp,pointer p) {
7065 pointer q,pp,qq,rr; /* for list manipulation */
7066 q=mp_get_node(mp, knot_node_size); /* this will correspond to |p| */
7069 right_type(qq)=left_type(pp); left_type(qq)=right_type(pp);
7070 x_coord(qq)=x_coord(pp); y_coord(qq)=y_coord(pp);
7071 right_x(qq)=left_x(pp); right_y(qq)=left_y(pp);
7072 left_x(qq)=right_x(pp); left_y(qq)=right_y(pp);
7073 originator(qq)=originator(pp);
7074 if ( link(pp)==p ) {
7075 link(q)=qq; mp->path_tail=pp; return q;
7077 rr=mp_get_node(mp, knot_node_size); link(rr)=qq; qq=rr; pp=link(pp);
7082 pointer path_tail; /* the node that links to the beginning of a path */
7084 @ When a cyclic list of knot nodes is no longer needed, it can be recycled by
7085 calling the following subroutine.
7087 @<Declare the recycling subroutines@>=
7088 void mp_toss_knot_list (MP mp,pointer p) ;
7091 void mp_toss_knot_list (MP mp,pointer p) {
7092 pointer q; /* the node being freed */
7093 pointer r; /* the next node */
7097 mp_free_node(mp, q,knot_node_size); q=r;
7101 @* \[18] Choosing control points.
7102 Now we must actually delve into one of \MP's more difficult routines,
7103 the |make_choices| procedure that chooses angles and control points for
7104 the splines of a curve when the user has not specified them explicitly.
7105 The parameter to |make_choices| points to a list of knots and
7106 path information, as described above.
7108 A path decomposes into independent segments at ``breakpoint'' knots,
7109 which are knots whose left and right angles are both prespecified in
7110 some way (i.e., their |left_type| and |right_type| aren't both open).
7113 @<Declare the procedure called |solve_choices|@>;
7114 void mp_make_choices (MP mp,pointer knots) {
7115 pointer h; /* the first breakpoint */
7116 pointer p,q; /* consecutive breakpoints being processed */
7117 @<Other local variables for |make_choices|@>;
7118 check_arith; /* make sure that |arith_error=false| */
7119 if ( mp->internal[mp_tracing_choices]>0 )
7120 mp_print_path(mp, knots,", before choices",true);
7121 @<If consecutive knots are equal, join them explicitly@>;
7122 @<Find the first breakpoint, |h|, on the path;
7123 insert an artificial breakpoint if the path is an unbroken cycle@>;
7126 @<Fill in the control points between |p| and the next breakpoint,
7127 then advance |p| to that breakpoint@>;
7129 if ( mp->internal[mp_tracing_choices]>0 )
7130 mp_print_path(mp, knots,", after choices",true);
7131 if ( mp->arith_error ) {
7132 @<Report an unexpected problem during the choice-making@>;
7136 @ @<Report an unexpected problem during the choice...@>=
7138 print_err("Some number got too big");
7139 @.Some number got too big@>
7140 help2("The path that I just computed is out of range.")
7141 ("So it will probably look funny. Proceed, for a laugh.");
7142 mp_put_get_error(mp); mp->arith_error=false;
7145 @ Two knots in a row with the same coordinates will always be joined
7146 by an explicit ``curve'' whose control points are identical with the
7149 @<If consecutive knots are equal, join them explicitly@>=
7153 if ( x_coord(p)==x_coord(q) && y_coord(p)==y_coord(q) && right_type(p)>mp_explicit ) {
7154 right_type(p)=mp_explicit;
7155 if ( left_type(p)==mp_open ) {
7156 left_type(p)=mp_curl; left_curl(p)=unity;
7158 left_type(q)=mp_explicit;
7159 if ( right_type(q)==mp_open ) {
7160 right_type(q)=mp_curl; right_curl(q)=unity;
7162 right_x(p)=x_coord(p); left_x(q)=x_coord(p);
7163 right_y(p)=y_coord(p); left_y(q)=y_coord(p);
7168 @ If there are no breakpoints, it is necessary to compute the direction
7169 angles around an entire cycle. In this case the |left_type| of the first
7170 node is temporarily changed to |end_cycle|.
7172 @<Find the first breakpoint, |h|, on the path...@>=
7175 if ( left_type(h)!=mp_open ) break;
7176 if ( right_type(h)!=mp_open ) break;
7179 left_type(h)=mp_end_cycle; break;
7183 @ If |right_type(p)<given| and |q=link(p)|, we must have
7184 |right_type(p)=left_type(q)=mp_explicit| or |endpoint|.
7186 @<Fill in the control points between |p| and the next breakpoint...@>=
7188 if ( right_type(p)>=mp_given ) {
7189 while ( (left_type(q)==mp_open)&&(right_type(q)==mp_open) ) q=link(q);
7190 @<Fill in the control information between
7191 consecutive breakpoints |p| and |q|@>;
7192 } else if ( right_type(p)==mp_endpoint ) {
7193 @<Give reasonable values for the unused control points between |p| and~|q|@>;
7197 @ This step makes it possible to transform an explicitly computed path without
7198 checking the |left_type| and |right_type| fields.
7200 @<Give reasonable values for the unused control points between |p| and~|q|@>=
7202 right_x(p)=x_coord(p); right_y(p)=y_coord(p);
7203 left_x(q)=x_coord(q); left_y(q)=y_coord(q);
7206 @ Before we can go further into the way choices are made, we need to
7207 consider the underlying theory. The basic ideas implemented in |make_choices|
7208 are due to John Hobby, who introduced the notion of ``mock curvature''
7209 @^Hobby, John Douglas@>
7210 at a knot. Angles are chosen so that they preserve mock curvature when
7211 a knot is passed, and this has been found to produce excellent results.
7213 It is convenient to introduce some notations that simplify the necessary
7214 formulas. Let $d_{k,k+1}=\vert z\k-z_k\vert$ be the (nonzero) distance
7215 between knots |k| and |k+1|; and let
7216 $${z\k-z_k\over z_k-z_{k-1}}={d_{k,k+1}\over d_{k-1,k}}e^{i\psi_k}$$
7217 so that a polygonal line from $z_{k-1}$ to $z_k$ to $z\k$ turns left
7218 through an angle of~$\psi_k$. We assume that $\vert\psi_k\vert\L180^\circ$.
7219 The control points for the spline from $z_k$ to $z\k$ will be denoted by
7220 $$\eqalign{z_k^+&=z_k+
7221 \textstyle{1\over3}\rho_k e^{i\theta_k}(z\k-z_k),\cr
7223 \textstyle{1\over3}\sigma\k e^{-i\phi\k}(z\k-z_k),\cr}$$
7224 where $\rho_k$ and $\sigma\k$ are nonnegative ``velocity ratios'' at the
7225 beginning and end of the curve, while $\theta_k$ and $\phi\k$ are the
7226 corresponding ``offset angles.'' These angles satisfy the condition
7227 $$\theta_k+\phi_k+\psi_k=0,\eqno(*)$$
7228 whenever the curve leaves an intermediate knot~|k| in the direction that
7231 @ Let $\alpha_k$ and $\beta\k$ be the reciprocals of the ``tension'' of
7232 the curve at its beginning and ending points. This means that
7233 $\rho_k=\alpha_k f(\theta_k,\phi\k)$ and $\sigma\k=\beta\k f(\phi\k,\theta_k)$,
7234 where $f(\theta,\phi)$ is \MP's standard velocity function defined in
7235 the |velocity| subroutine. The cubic spline $B(z_k^{\phantom+},z_k^+,
7236 z\k^-,z\k^{\phantom+};t)$
7239 $${2\sigma\k\sin(\theta_k+\phi\k)-6\sin\theta_k\over\rho_k^2d_{k,k+1}}
7240 \qquad{\rm and}\qquad
7241 {2\rho_k\sin(\theta_k+\phi\k)-6\sin\phi\k\over\sigma\k^2d_{k,k+1}}$$
7242 at |t=0| and |t=1|, respectively. The mock curvature is the linear
7244 approximation to this true curvature that arises in the limit for
7245 small $\theta_k$ and~$\phi\k$, if second-order terms are discarded.
7246 The standard velocity function satisfies
7247 $$f(\theta,\phi)=1+O(\theta^2+\theta\phi+\phi^2);$$
7248 hence the mock curvatures are respectively
7249 $${2\beta\k(\theta_k+\phi\k)-6\theta_k\over\alpha_k^2d_{k,k+1}}
7250 \qquad{\rm and}\qquad
7251 {2\alpha_k(\theta_k+\phi\k)-6\phi\k\over\beta\k^2d_{k,k+1}}.\eqno(**)$$
7253 @ The turning angles $\psi_k$ are given, and equation $(*)$ above
7254 determines $\phi_k$ when $\theta_k$ is known, so the task of
7255 angle selection is essentially to choose appropriate values for each
7256 $\theta_k$. When equation~$(*)$ is used to eliminate $\phi$~variables
7257 from $(**)$, we obtain a system of linear equations of the form
7258 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7260 $$A_k={\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7261 \qquad B_k={3-\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7262 \qquad C_k={3-\beta\k\over\alpha_k^2d_{k,k+1}},
7263 \qquad D_k={\beta\k\over\alpha_k^2d_{k,k+1}}.$$
7264 The tensions are always $3\over4$ or more, hence each $\alpha$ and~$\beta$
7265 will be at most $4\over3$. It follows that $B_k\G{5\over4}A_k$ and
7266 $C_k\G{5\over4}D_k$; hence the equations are diagonally dominant;
7267 hence they have a unique solution. Moreover, in most cases the tensions
7268 are equal to~1, so that $B_k=2A_k$ and $C_k=2D_k$. This makes the
7269 solution numerically stable, and there is an exponential damping
7270 effect: The data at knot $k\pm j$ affects the angle at knot~$k$ by
7271 a factor of~$O(2^{-j})$.
7273 @ However, we still must consider the angles at the starting and ending
7274 knots of a non-cyclic path. These angles might be given explicitly, or
7275 they might be specified implicitly in terms of an amount of ``curl.''
7277 Let's assume that angles need to be determined for a non-cyclic path
7278 starting at $z_0$ and ending at~$z_n$. Then equations of the form
7279 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta_{k+1}=R_k$$
7280 have been given for $0<k<n$, and it will be convenient to introduce
7281 equations of the same form for $k=0$ and $k=n$, where
7282 $$A_0=B_0=C_n=D_n=0.$$
7283 If $\theta_0$ is supposed to have a given value $E_0$, we simply
7284 define $C_0=0$, $D_0=0$, and $R_0=E_0$. Otherwise a curl
7285 parameter, $\gamma_0$, has been specified at~$z_0$; this means
7286 that the mock curvature at $z_0$ should be $\gamma_0$ times the
7287 mock curvature at $z_1$; i.e.,
7288 $${2\beta_1(\theta_0+\phi_1)-6\theta_0\over\alpha_0^2d_{01}}
7289 =\gamma_0{2\alpha_0(\theta_0+\phi_1)-6\phi_1\over\beta_1^2d_{01}}.$$
7290 This equation simplifies to
7291 $$(\alpha_0\chi_0+3-\beta_1)\theta_0+
7292 \bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\theta_1=
7293 -\bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\psi_1,$$
7294 where $\chi_0=\alpha_0^2\gamma_0/\beta_1^2$; so we can set $C_0=
7295 \chi_0\alpha_0+3-\beta_1$, $D_0=(3-\alpha_0)\chi_0+\beta_1$, $R_0=-D_0\psi_1$.
7296 It can be shown that $C_0>0$ and $C_0B_1-A_1D_0>0$ when $\gamma_0\G0$,
7297 hence the linear equations remain nonsingular.
7299 Similar considerations apply at the right end, when the final angle $\phi_n$
7300 may or may not need to be determined. It is convenient to let $\psi_n=0$,
7301 hence $\theta_n=-\phi_n$. We either have an explicit equation $\theta_n=E_n$,
7303 $$\bigl((3-\beta_n)\chi_n+\alpha_{n-1}\bigr)\theta_{n-1}+
7304 (\beta_n\chi_n+3-\alpha_{n-1})\theta_n=0,\qquad
7305 \chi_n={\beta_n^2\gamma_n\over\alpha_{n-1}^2}.$$
7307 When |make_choices| chooses angles, it must compute the coefficients of
7308 these linear equations, then solve the equations. To compute the coefficients,
7309 it is necessary to compute arctangents of the given turning angles~$\psi_k$.
7310 When the equations are solved, the chosen directions $\theta_k$ are put
7311 back into the form of control points by essentially computing sines and
7314 @ OK, we are ready to make the hard choices of |make_choices|.
7315 Most of the work is relegated to an auxiliary procedure
7316 called |solve_choices|, which has been introduced to keep
7317 |make_choices| from being extremely long.
7319 @<Fill in the control information between...@>=
7320 @<Calculate the turning angles $\psi_k$ and the distances $d_{k,k+1}$;
7321 set $n$ to the length of the path@>;
7322 @<Remove |open| types at the breakpoints@>;
7323 mp_solve_choices(mp, p,q,n)
7325 @ It's convenient to precompute quantities that will be needed several
7326 times later. The values of |delta_x[k]| and |delta_y[k]| will be the
7327 coordinates of $z\k-z_k$, and the magnitude of this vector will be
7328 |delta[k]=@t$d_{k,k+1}$@>|. The path angle $\psi_k$ between $z_k-z_{k-1}$
7329 and $z\k-z_k$ will be stored in |psi[k]|.
7332 int path_size; /* maximum number of knots between breakpoints of a path */
7335 scaled *delta; /* knot differences */
7336 angle *psi; /* turning angles */
7338 @ @<Allocate or initialize ...@>=
7344 @ @<Dealloc variables@>=
7350 @ @<Other local variables for |make_choices|@>=
7351 int k,n; /* current and final knot numbers */
7352 pointer s,t; /* registers for list traversal */
7353 scaled delx,dely; /* directions where |open| meets |explicit| */
7354 fraction sine,cosine; /* trig functions of various angles */
7356 @ @<Calculate the turning angles...@>=
7359 k=0; s=p; n=mp->path_size;
7362 mp->delta_x[k]=x_coord(t)-x_coord(s);
7363 mp->delta_y[k]=y_coord(t)-y_coord(s);
7364 mp->delta[k]=mp_pyth_add(mp, mp->delta_x[k],mp->delta_y[k]);
7366 sine=mp_make_fraction(mp, mp->delta_y[k-1],mp->delta[k-1]);
7367 cosine=mp_make_fraction(mp, mp->delta_x[k-1],mp->delta[k-1]);
7368 mp->psi[k]=mp_n_arg(mp, mp_take_fraction(mp, mp->delta_x[k],cosine)+
7369 mp_take_fraction(mp, mp->delta_y[k],sine),
7370 mp_take_fraction(mp, mp->delta_y[k],cosine)-
7371 mp_take_fraction(mp, mp->delta_x[k],sine));
7374 if ( k==mp->path_size ) {
7375 mp_reallocate_paths(mp, mp->path_size+(mp->path_size>>2));
7376 goto RESTART; /* retry, loop size has changed */
7379 } while (!((k>=n)&&(left_type(s)!=mp_end_cycle)));
7380 if ( k==n ) mp->psi[n]=0; else mp->psi[k]=mp->psi[1];
7383 @ When we get to this point of the code, |right_type(p)| is either
7384 |given| or |curl| or |open|. If it is |open|, we must have
7385 |left_type(p)=mp_end_cycle| or |left_type(p)=mp_explicit|. In the latter
7386 case, the |open| type is converted to |given|; however, if the
7387 velocity coming into this knot is zero, the |open| type is
7388 converted to a |curl|, since we don't know the incoming direction.
7390 Similarly, |left_type(q)| is either |given| or |curl| or |open| or
7391 |mp_end_cycle|. The |open| possibility is reduced either to |given| or to |curl|.
7393 @<Remove |open| types at the breakpoints@>=
7394 if ( left_type(q)==mp_open ) {
7395 delx=right_x(q)-x_coord(q); dely=right_y(q)-y_coord(q);
7396 if ( (delx==0)&&(dely==0) ) {
7397 left_type(q)=mp_curl; left_curl(q)=unity;
7399 left_type(q)=mp_given; left_given(q)=mp_n_arg(mp, delx,dely);
7402 if ( (right_type(p)==mp_open)&&(left_type(p)==mp_explicit) ) {
7403 delx=x_coord(p)-left_x(p); dely=y_coord(p)-left_y(p);
7404 if ( (delx==0)&&(dely==0) ) {
7405 right_type(p)=mp_curl; right_curl(p)=unity;
7407 right_type(p)=mp_given; right_given(p)=mp_n_arg(mp, delx,dely);
7411 @ Linear equations need to be solved whenever |n>1|; and also when |n=1|
7412 and exactly one of the breakpoints involves a curl. The simplest case occurs
7413 when |n=1| and there is a curl at both breakpoints; then we simply draw
7416 But before coding up the simple cases, we might as well face the general case,
7417 since we must deal with it sooner or later, and since the general case
7418 is likely to give some insight into the way simple cases can be handled best.
7420 When there is no cycle, the linear equations to be solved form a tridiagonal
7421 system, and we can apply the standard technique of Gaussian elimination
7422 to convert that system to a sequence of equations of the form
7423 $$\theta_0+u_0\theta_1=v_0,\quad
7424 \theta_1+u_1\theta_2=v_1,\quad\ldots,\quad
7425 \theta_{n-1}+u_{n-1}\theta_n=v_{n-1},\quad
7427 It is possible to do this diagonalization while generating the equations.
7428 Once $\theta_n$ is known, it is easy to determine $\theta_{n-1}$, \dots,
7429 $\theta_1$, $\theta_0$; thus, the equations will be solved.
7431 The procedure is slightly more complex when there is a cycle, but the
7432 basic idea will be nearly the same. In the cyclic case the right-hand
7433 sides will be $v_k+w_k\theta_0$ instead of simply $v_k$, and we will start
7434 the process off with $u_0=v_0=0$, $w_0=1$. The final equation will be not
7435 $\theta_n=v_n$ but $\theta_n+u_n\theta_1=v_n+w_n\theta_0$; an appropriate
7436 ending routine will take account of the fact that $\theta_n=\theta_0$ and
7437 eliminate the $w$'s from the system, after which the solution can be
7440 When $u_k$, $v_k$, and $w_k$ are being computed, the three pointer
7441 variables |r|, |s|,~|t| will point respectively to knots |k-1|, |k|,
7442 and~|k+1|. The $u$'s and $w$'s are scaled by $2^{28}$, i.e., they are
7443 of type |fraction|; the $\theta$'s and $v$'s are of type |angle|.
7446 angle *theta; /* values of $\theta_k$ */
7447 fraction *uu; /* values of $u_k$ */
7448 angle *vv; /* values of $v_k$ */
7449 fraction *ww; /* values of $w_k$ */
7451 @ @<Allocate or initialize ...@>=
7457 @ @<Dealloc variables@>=
7463 @ @<Declare |mp_reallocate| functions@>=
7464 void mp_reallocate_paths (MP mp, int l);
7467 void mp_reallocate_paths (MP mp, int l) {
7468 XREALLOC (mp->delta_x, l, scaled);
7469 XREALLOC (mp->delta_y, l, scaled);
7470 XREALLOC (mp->delta, l, scaled);
7471 XREALLOC (mp->psi, l, angle);
7472 XREALLOC (mp->theta, l, angle);
7473 XREALLOC (mp->uu, l, fraction);
7474 XREALLOC (mp->vv, l, angle);
7475 XREALLOC (mp->ww, l, fraction);
7479 @ Our immediate problem is to get the ball rolling by setting up the
7480 first equation or by realizing that no equations are needed, and to fit
7481 this initialization into a framework suitable for the overall computation.
7483 @<Declare the procedure called |solve_choices|@>=
7484 @<Declare subroutines needed by |solve_choices|@>;
7485 void mp_solve_choices (MP mp,pointer p, pointer q, halfword n) {
7486 int k; /* current knot number */
7487 pointer r,s,t; /* registers for list traversal */
7488 @<Other local variables for |solve_choices|@>;
7493 @<Get the linear equations started; or |return|
7494 with the control points in place, if linear equations
7497 switch (left_type(s)) {
7498 case mp_end_cycle: case mp_open:
7499 @<Set up equation to match mock curvatures
7500 at $z_k$; then |goto found| with $\theta_n$
7501 adjusted to equal $\theta_0$, if a cycle has ended@>;
7504 @<Set up equation for a curl at $\theta_n$
7508 @<Calculate the given value of $\theta_n$
7511 } /* there are no other cases */
7516 @<Finish choosing angles and assigning control points@>;
7519 @ On the first time through the loop, we have |k=0| and |r| is not yet
7520 defined. The first linear equation, if any, will have $A_0=B_0=0$.
7522 @<Get the linear equations started...@>=
7523 switch (right_type(s)) {
7525 if ( left_type(t)==mp_given ) {
7526 @<Reduce to simple case of two givens and |return|@>
7528 @<Set up the equation for a given value of $\theta_0$@>;
7532 if ( left_type(t)==mp_curl ) {
7533 @<Reduce to simple case of straight line and |return|@>
7535 @<Set up the equation for a curl at $\theta_0$@>;
7539 mp->uu[0]=0; mp->vv[0]=0; mp->ww[0]=fraction_one;
7540 /* this begins a cycle */
7542 } /* there are no other cases */
7544 @ The general equation that specifies equality of mock curvature at $z_k$ is
7545 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7546 as derived above. We want to combine this with the already-derived equation
7547 $\theta_{k-1}+u_{k-1}\theta_k=v_{k-1}+w_{k-1}\theta_0$ in order to obtain
7549 $\theta_k+u_k\theta\k=v_k+w_k\theta_0$. This can be done by dividing the
7551 $$(B_k-u_{k-1}A_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k-A_kv_{k-1}
7552 -A_kw_{k-1}\theta_0$$
7553 by $B_k-u_{k-1}A_k+C_k$. The trick is to do this carefully with
7554 fixed-point arithmetic, avoiding the chance of overflow while retaining
7557 The calculations will be performed in several registers that
7558 provide temporary storage for intermediate quantities.
7560 @<Other local variables for |solve_choices|@>=
7561 fraction aa,bb,cc,ff,acc; /* temporary registers */
7562 scaled dd,ee; /* likewise, but |scaled| */
7563 scaled lt,rt; /* tension values */
7565 @ @<Set up equation to match mock curvatures...@>=
7566 { @<Calculate the values $\\{aa}=A_k/B_k$, $\\{bb}=D_k/C_k$,
7567 $\\{dd}=(3-\alpha_{k-1})d_{k,k+1}$, $\\{ee}=(3-\beta\k)d_{k-1,k}$,
7568 and $\\{cc}=(B_k-u_{k-1}A_k)/B_k$@>;
7569 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>;
7570 mp->uu[k]=mp_take_fraction(mp, ff,bb);
7571 @<Calculate the values of $v_k$ and $w_k$@>;
7572 if ( left_type(s)==mp_end_cycle ) {
7573 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>;
7577 @ Since tension values are never less than 3/4, the values |aa| and
7578 |bb| computed here are never more than 4/5.
7580 @<Calculate the values $\\{aa}=...@>=
7581 if ( abs(right_tension(r))==unity) {
7582 aa=fraction_half; dd=2*mp->delta[k];
7584 aa=mp_make_fraction(mp, unity,3*abs(right_tension(r))-unity);
7585 dd=mp_take_fraction(mp, mp->delta[k],
7586 fraction_three-mp_make_fraction(mp, unity,abs(right_tension(r))));
7588 if ( abs(left_tension(t))==unity ){
7589 bb=fraction_half; ee=2*mp->delta[k-1];
7591 bb=mp_make_fraction(mp, unity,3*abs(left_tension(t))-unity);
7592 ee=mp_take_fraction(mp, mp->delta[k-1],
7593 fraction_three-mp_make_fraction(mp, unity,abs(left_tension(t))));
7595 cc=fraction_one-mp_take_fraction(mp, mp->uu[k-1],aa)
7597 @ The ratio to be calculated in this step can be written in the form
7598 $$\beta_k^2\cdot\\{ee}\over\beta_k^2\cdot\\{ee}+\alpha_k^2\cdot
7599 \\{cc}\cdot\\{dd},$$
7600 because of the quantities just calculated. The values of |dd| and |ee|
7601 will not be needed after this step has been performed.
7603 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>=
7604 dd=mp_take_fraction(mp, dd,cc); lt=abs(left_tension(s)); rt=abs(right_tension(s));
7605 if ( lt!=rt ) { /* $\beta_k^{-1}\ne\alpha_k^{-1}$ */
7607 ff=mp_make_fraction(mp, lt,rt);
7608 ff=mp_take_fraction(mp, ff,ff); /* $\alpha_k^2/\beta_k^2$ */
7609 dd=mp_take_fraction(mp, dd,ff);
7611 ff=mp_make_fraction(mp, rt,lt);
7612 ff=mp_take_fraction(mp, ff,ff); /* $\beta_k^2/\alpha_k^2$ */
7613 ee=mp_take_fraction(mp, ee,ff);
7616 ff=mp_make_fraction(mp, ee,ee+dd)
7618 @ The value of $u_{k-1}$ will be |<=1| except when $k=1$ and the previous
7619 equation was specified by a curl. In that case we must use a special
7620 method of computation to prevent overflow.
7622 Fortunately, the calculations turn out to be even simpler in this ``hard''
7623 case. The curl equation makes $w_0=0$ and $v_0=-u_0\psi_1$, hence
7624 $-B_1\psi_1-A_1v_0=-(B_1-u_0A_1)\psi_1=-\\{cc}\cdot B_1\psi_1$.
7626 @<Calculate the values of $v_k$ and $w_k$@>=
7627 acc=-mp_take_fraction(mp, mp->psi[k+1],mp->uu[k]);
7628 if ( right_type(r)==mp_curl ) {
7630 mp->vv[k]=acc-mp_take_fraction(mp, mp->psi[1],fraction_one-ff);
7632 ff=mp_make_fraction(mp, fraction_one-ff,cc); /* this is
7633 $B_k/(C_k+B_k-u_{k-1}A_k)<5$ */
7634 acc=acc-mp_take_fraction(mp, mp->psi[k],ff);
7635 ff=mp_take_fraction(mp, ff,aa); /* this is $A_k/(C_k+B_k-u_{k-1}A_k)$ */
7636 mp->vv[k]=acc-mp_take_fraction(mp, mp->vv[k-1],ff);
7637 if ( mp->ww[k-1]==0 ) mp->ww[k]=0;
7638 else mp->ww[k]=-mp_take_fraction(mp, mp->ww[k-1],ff);
7641 @ When a complete cycle has been traversed, we have $\theta_k+u_k\theta\k=
7642 v_k+w_k\theta_0$, for |1<=k<=n|. We would like to determine the value of
7643 $\theta_n$ and reduce the system to the form $\theta_k+u_k\theta\k=v_k$
7644 for |0<=k<n|, so that the cyclic case can be finished up just as if there
7647 The idea in the following code is to observe that
7648 $$\eqalign{\theta_n&=v_n+w_n\theta_0-u_n\theta_1=\cdots\cr
7649 &=v_n+w_n\theta_0-u_n\bigl(v_1+w_1\theta_0-u_1(v_2+\cdots
7650 -u_{n-2}(v_{n-1}+w_{n-1}\theta_0-u_{n-1}\theta_0))\bigr),\cr}$$
7651 so we can solve for $\theta_n=\theta_0$.
7653 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>=
7655 aa=0; bb=fraction_one; /* we have |k=n| */
7658 aa=mp->vv[k]-mp_take_fraction(mp, aa,mp->uu[k]);
7659 bb=mp->ww[k]-mp_take_fraction(mp, bb,mp->uu[k]);
7660 } while (k!=n); /* now $\theta_n=\\{aa}+\\{bb}\cdot\theta_n$ */
7661 aa=mp_make_fraction(mp, aa,fraction_one-bb);
7662 mp->theta[n]=aa; mp->vv[0]=aa;
7663 for (k=1;k<=n-1;k++) {
7664 mp->vv[k]=mp->vv[k]+mp_take_fraction(mp, aa,mp->ww[k]);
7669 @ @d reduce_angle(A) if ( abs((A))>one_eighty_deg ) {
7670 if ( (A)>0 ) (A)=(A)-three_sixty_deg; else (A)=(A)+three_sixty_deg; }
7672 @<Calculate the given value of $\theta_n$...@>=
7674 mp->theta[n]=left_given(s)-mp_n_arg(mp, mp->delta_x[n-1],mp->delta_y[n-1]);
7675 reduce_angle(mp->theta[n]);
7679 @ @<Set up the equation for a given value of $\theta_0$@>=
7681 mp->vv[0]=right_given(s)-mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7682 reduce_angle(mp->vv[0]);
7683 mp->uu[0]=0; mp->ww[0]=0;
7686 @ @<Set up the equation for a curl at $\theta_0$@>=
7687 { cc=right_curl(s); lt=abs(left_tension(t)); rt=abs(right_tension(s));
7688 if ( (rt==unity)&&(lt==unity) )
7689 mp->uu[0]=mp_make_fraction(mp, cc+cc+unity,cc+two);
7691 mp->uu[0]=mp_curl_ratio(mp, cc,rt,lt);
7692 mp->vv[0]=-mp_take_fraction(mp, mp->psi[1],mp->uu[0]); mp->ww[0]=0;
7695 @ @<Set up equation for a curl at $\theta_n$...@>=
7696 { cc=left_curl(s); lt=abs(left_tension(s)); rt=abs(right_tension(r));
7697 if ( (rt==unity)&&(lt==unity) )
7698 ff=mp_make_fraction(mp, cc+cc+unity,cc+two);
7700 ff=mp_curl_ratio(mp, cc,lt,rt);
7701 mp->theta[n]=-mp_make_fraction(mp, mp_take_fraction(mp, mp->vv[n-1],ff),
7702 fraction_one-mp_take_fraction(mp, ff,mp->uu[n-1]));
7706 @ The |curl_ratio| subroutine has three arguments, which our previous notation
7707 encourages us to call $\gamma$, $\alpha^{-1}$, and $\beta^{-1}$. It is
7708 a somewhat tedious program to calculate
7709 $${(3-\alpha)\alpha^2\gamma+\beta^3\over
7710 \alpha^3\gamma+(3-\beta)\beta^2},$$
7711 with the result reduced to 4 if it exceeds 4. (This reduction of curl
7712 is necessary only if the curl and tension are both large.)
7713 The values of $\alpha$ and $\beta$ will be at most~4/3.
7715 @<Declare subroutines needed by |solve_choices|@>=
7716 fraction mp_curl_ratio (MP mp,scaled gamma, scaled a_tension,
7718 fraction alpha,beta,num,denom,ff; /* registers */
7719 alpha=mp_make_fraction(mp, unity,a_tension);
7720 beta=mp_make_fraction(mp, unity,b_tension);
7721 if ( alpha<=beta ) {
7722 ff=mp_make_fraction(mp, alpha,beta); ff=mp_take_fraction(mp, ff,ff);
7723 gamma=mp_take_fraction(mp, gamma,ff);
7724 beta=beta / 010000; /* convert |fraction| to |scaled| */
7725 denom=mp_take_fraction(mp, gamma,alpha)+three-beta;
7726 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7728 ff=mp_make_fraction(mp, beta,alpha); ff=mp_take_fraction(mp, ff,ff);
7729 beta=mp_take_fraction(mp, beta,ff) / 010000; /* convert |fraction| to |scaled| */
7730 denom=mp_take_fraction(mp, gamma,alpha)+(ff / 1365)-beta;
7731 /* $1365\approx 2^{12}/3$ */
7732 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7734 if ( num>=denom+denom+denom+denom ) return fraction_four;
7735 else return mp_make_fraction(mp, num,denom);
7738 @ We're in the home stretch now.
7740 @<Finish choosing angles and assigning control points@>=
7741 for (k=n-1;k>=0;k--) {
7742 mp->theta[k]=mp->vv[k]-mp_take_fraction(mp,mp->theta[k+1],mp->uu[k]);
7747 mp_n_sin_cos(mp, mp->theta[k]); mp->st=mp->n_sin; mp->ct=mp->n_cos;
7748 mp_n_sin_cos(mp, -mp->psi[k+1]-mp->theta[k+1]); mp->sf=mp->n_sin; mp->cf=mp->n_cos;
7749 mp_set_controls(mp, s,t,k);
7753 @ The |set_controls| routine actually puts the control points into
7754 a pair of consecutive nodes |p| and~|q|. Global variables are used to
7755 record the values of $\sin\theta$, $\cos\theta$, $\sin\phi$, and
7756 $\cos\phi$ needed in this calculation.
7762 fraction cf; /* sines and cosines */
7764 @ @<Declare subroutines needed by |solve_choices|@>=
7765 void mp_set_controls (MP mp,pointer p, pointer q, integer k) {
7766 fraction rr,ss; /* velocities, divided by thrice the tension */
7767 scaled lt,rt; /* tensions */
7768 fraction sine; /* $\sin(\theta+\phi)$ */
7769 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7770 rr=mp_velocity(mp, mp->st,mp->ct,mp->sf,mp->cf,rt);
7771 ss=mp_velocity(mp, mp->sf,mp->cf,mp->st,mp->ct,lt);
7772 if ( (right_tension(p)<0)||(left_tension(q)<0) ) {
7773 @<Decrease the velocities,
7774 if necessary, to stay inside the bounding triangle@>;
7776 right_x(p)=x_coord(p)+mp_take_fraction(mp,
7777 mp_take_fraction(mp, mp->delta_x[k],mp->ct)-
7778 mp_take_fraction(mp, mp->delta_y[k],mp->st),rr);
7779 right_y(p)=y_coord(p)+mp_take_fraction(mp,
7780 mp_take_fraction(mp, mp->delta_y[k],mp->ct)+
7781 mp_take_fraction(mp, mp->delta_x[k],mp->st),rr);
7782 left_x(q)=x_coord(q)-mp_take_fraction(mp,
7783 mp_take_fraction(mp, mp->delta_x[k],mp->cf)+
7784 mp_take_fraction(mp, mp->delta_y[k],mp->sf),ss);
7785 left_y(q)=y_coord(q)-mp_take_fraction(mp,
7786 mp_take_fraction(mp, mp->delta_y[k],mp->cf)-
7787 mp_take_fraction(mp, mp->delta_x[k],mp->sf),ss);
7788 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7791 @ The boundedness conditions $\\{rr}\L\sin\phi\,/\sin(\theta+\phi)$ and
7792 $\\{ss}\L\sin\theta\,/\sin(\theta+\phi)$ are to be enforced if $\sin\theta$,
7793 $\sin\phi$, and $\sin(\theta+\phi)$ all have the same sign. Otherwise
7794 there is no ``bounding triangle.''
7795 @:at_least_}{\&{atleast} primitive@>
7797 @<Decrease the velocities, if necessary...@>=
7798 if (((mp->st>=0)&&(mp->sf>=0))||((mp->st<=0)&&(mp->sf<=0)) ) {
7799 sine=mp_take_fraction(mp, abs(mp->st),mp->cf)+
7800 mp_take_fraction(mp, abs(mp->sf),mp->ct);
7802 sine=mp_take_fraction(mp, sine,fraction_one+unity); /* safety factor */
7803 if ( right_tension(p)<0 )
7804 if ( mp_ab_vs_cd(mp, abs(mp->sf),fraction_one,rr,sine)<0 )
7805 rr=mp_make_fraction(mp, abs(mp->sf),sine);
7806 if ( left_tension(q)<0 )
7807 if ( mp_ab_vs_cd(mp, abs(mp->st),fraction_one,ss,sine)<0 )
7808 ss=mp_make_fraction(mp, abs(mp->st),sine);
7812 @ Only the simple cases remain to be handled.
7814 @<Reduce to simple case of two givens and |return|@>=
7816 aa=mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7817 mp_n_sin_cos(mp, right_given(p)-aa); mp->ct=mp->n_cos; mp->st=mp->n_sin;
7818 mp_n_sin_cos(mp, left_given(q)-aa); mp->cf=mp->n_cos; mp->sf=-mp->n_sin;
7819 mp_set_controls(mp, p,q,0); return;
7822 @ @<Reduce to simple case of straight line and |return|@>=
7824 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7825 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7827 if ( mp->delta_x[0]>=0 ) right_x(p)=x_coord(p)+((mp->delta_x[0]+1) / 3);
7828 else right_x(p)=x_coord(p)+((mp->delta_x[0]-1) / 3);
7829 if ( mp->delta_y[0]>=0 ) right_y(p)=y_coord(p)+((mp->delta_y[0]+1) / 3);
7830 else right_y(p)=y_coord(p)+((mp->delta_y[0]-1) / 3);
7832 ff=mp_make_fraction(mp, unity,3*rt); /* $\alpha/3$ */
7833 right_x(p)=x_coord(p)+mp_take_fraction(mp, mp->delta_x[0],ff);
7834 right_y(p)=y_coord(p)+mp_take_fraction(mp, mp->delta_y[0],ff);
7837 if ( mp->delta_x[0]>=0 ) left_x(q)=x_coord(q)-((mp->delta_x[0]+1) / 3);
7838 else left_x(q)=x_coord(q)-((mp->delta_x[0]-1) / 3);
7839 if ( mp->delta_y[0]>=0 ) left_y(q)=y_coord(q)-((mp->delta_y[0]+1) / 3);
7840 else left_y(q)=y_coord(q)-((mp->delta_y[0]-1) / 3);
7842 ff=mp_make_fraction(mp, unity,3*lt); /* $\beta/3$ */
7843 left_x(q)=x_coord(q)-mp_take_fraction(mp, mp->delta_x[0],ff);
7844 left_y(q)=y_coord(q)-mp_take_fraction(mp, mp->delta_y[0],ff);
7849 @* \[19] Measuring paths.
7850 \MP's \&{llcorner}, \&{lrcorner}, \&{ulcorner}, and \&{urcorner} operators
7851 allow the user to measure the bounding box of anything that can go into a
7852 picture. It's easy to get rough bounds on the $x$ and $y$ extent of a path
7853 by just finding the bounding box of the knots and the control points. We
7854 need a more accurate version of the bounding box, but we can still use the
7855 easy estimate to save time by focusing on the interesting parts of the path.
7857 @ Computing an accurate bounding box involves a theme that will come up again
7858 and again. Given a Bernshte{\u\i}n polynomial
7859 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
7860 $$B(z_0,z_1,\ldots,z_n;t)=\sum_k{n\choose k}t^k(1-t)^{n-k}z_k,$$
7861 we can conveniently bisect its range as follows:
7864 \textindent{1)} Let $z_k^{(0)}=z_k$, for |0<=k<=n|.
7867 \textindent{2)} Let $z_k^{(j+1)}={1\over2}(z_k^{(j)}+z\k^{(j)})$, for
7868 |0<=k<n-j|, for |0<=j<n|.
7872 $$B(z_0,z_1,\ldots,z_n;t)=B(z_0^{(0)},z_0^{(1)},\ldots,z_0^{(n)};2t)
7873 =B(z_0^{(n)},z_1^{(n-1)},\ldots,z_n^{(0)};2t-1).$$
7874 This formula gives us the coefficients of polynomials to use over the ranges
7875 $0\L t\L{1\over2}$ and ${1\over2}\L t\L1$.
7877 @ Now here's a subroutine that's handy for all sorts of path computations:
7878 Given a quadratic polynomial $B(a,b,c;t)$, the |crossing_point| function
7879 returns the unique |fraction| value |t| between 0 and~1 at which
7880 $B(a,b,c;t)$ changes from positive to negative, or returns
7881 |t=fraction_one+1| if no such value exists. If |a<0| (so that $B(a,b,c;t)$
7882 is already negative at |t=0|), |crossing_point| returns the value zero.
7884 @d no_crossing { return (fraction_one+1); }
7885 @d one_crossing { return fraction_one; }
7886 @d zero_crossing { return 0; }
7887 @d mp_crossing_point(M,A,B,C) mp_do_crossing_point(A,B,C)
7889 @c fraction mp_do_crossing_point (integer a, integer b, integer c) {
7890 integer d; /* recursive counter */
7891 integer x,xx,x0,x1,x2; /* temporary registers for bisection */
7892 if ( a<0 ) zero_crossing;
7895 if ( c>0 ) { no_crossing; }
7896 else if ( (a==0)&&(b==0) ) { no_crossing;}
7897 else { one_crossing; }
7899 if ( a==0 ) zero_crossing;
7900 } else if ( a==0 ) {
7901 if ( b<=0 ) zero_crossing;
7903 @<Use bisection to find the crossing point, if one exists@>;
7906 @ The general bisection method is quite simple when $n=2$, hence
7907 |crossing_point| does not take much time. At each stage in the
7908 recursion we have a subinterval defined by |l| and~|j| such that
7909 $B(a,b,c;2^{-l}(j+t))=B(x_0,x_1,x_2;t)$, and we want to ``zero in'' on
7910 the subinterval where $x_0\G0$ and $\min(x_1,x_2)<0$.
7912 It is convenient for purposes of calculation to combine the values
7913 of |l| and~|j| in a single variable $d=2^l+j$, because the operation
7914 of bisection then corresponds simply to doubling $d$ and possibly
7915 adding~1. Furthermore it proves to be convenient to modify
7916 our previous conventions for bisection slightly, maintaining the
7917 variables $X_0=2^lx_0$, $X_1=2^l(x_0-x_1)$, and $X_2=2^l(x_1-x_2)$.
7918 With these variables the conditions $x_0\ge0$ and $\min(x_1,x_2)<0$ are
7919 equivalent to $\max(X_1,X_1+X_2)>X_0\ge0$.
7921 The following code maintains the invariant relations
7922 $0\L|x0|<\max(|x1|,|x1|+|x2|)$,
7923 $\vert|x1|\vert<2^{30}$, $\vert|x2|\vert<2^{30}$;
7924 it has been constructed in such a way that no arithmetic overflow
7925 will occur if the inputs satisfy
7926 $a<2^{30}$, $\vert a-b\vert<2^{30}$, and $\vert b-c\vert<2^{30}$.
7928 @<Use bisection to find the crossing point...@>=
7929 d=1; x0=a; x1=a-b; x2=b-c;
7940 if ( x<=x0 ) { if ( x+x2<=x0 ) no_crossing; }
7944 } while (d<fraction_one);
7945 return (d-fraction_one)
7947 @ Here is a routine that computes the $x$ or $y$ coordinate of the point on
7948 a cubic corresponding to the |fraction| value~|t|.
7950 It is convenient to define a \.{WEB} macro |t_of_the_way| such that
7951 |t_of_the_way(a,b)| expands to |a-(a-b)*t|, i.e., to |t[a,b]|.
7953 @d t_of_the_way(A,B) ((A)-mp_take_fraction(mp,((A)-(B)),t))
7955 @c scaled mp_eval_cubic (MP mp,pointer p, pointer q, fraction t) {
7956 scaled x1,x2,x3; /* intermediate values */
7957 x1=t_of_the_way(knot_coord(p),right_coord(p));
7958 x2=t_of_the_way(right_coord(p),left_coord(q));
7959 x3=t_of_the_way(left_coord(q),knot_coord(q));
7960 x1=t_of_the_way(x1,x2);
7961 x2=t_of_the_way(x2,x3);
7962 return t_of_the_way(x1,x2);
7965 @ The actual bounding box information is stored in global variables.
7966 Since it is convenient to address the $x$ and $y$ information
7967 separately, we define arrays indexed by |x_code..y_code| and use
7968 macros to give them more convenient names.
7972 mp_x_code=0, /* index for |minx| and |maxx| */
7973 mp_y_code /* index for |miny| and |maxy| */
7977 @d minx mp->bbmin[mp_x_code]
7978 @d maxx mp->bbmax[mp_x_code]
7979 @d miny mp->bbmin[mp_y_code]
7980 @d maxy mp->bbmax[mp_y_code]
7983 scaled bbmin[mp_y_code+1];
7984 scaled bbmax[mp_y_code+1];
7985 /* the result of procedures that compute bounding box information */
7987 @ Now we're ready for the key part of the bounding box computation.
7988 The |bound_cubic| procedure updates |bbmin[c]| and |bbmax[c]| based on
7989 $$B(\hbox{|knot_coord(p)|}, \hbox{|right_coord(p)|},
7990 \hbox{|left_coord(q)|}, \hbox{|knot_coord(q)|};t)
7992 for $0<t\le1$. In other words, the procedure adjusts the bounds to
7993 accommodate |knot_coord(q)| and any extremes over the range $0<t<1$.
7994 The |c| parameter is |x_code| or |y_code|.
7996 @c void mp_bound_cubic (MP mp,pointer p, pointer q, small_number c) {
7997 boolean wavy; /* whether we need to look for extremes */
7998 scaled del1,del2,del3,del,dmax; /* proportional to the control
7999 points of a quadratic derived from a cubic */
8000 fraction t,tt; /* where a quadratic crosses zero */
8001 scaled x; /* a value that |bbmin[c]| and |bbmax[c]| must accommodate */
8003 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8004 @<Check the control points against the bounding box and set |wavy:=true|
8005 if any of them lie outside@>;
8007 del1=right_coord(p)-knot_coord(p);
8008 del2=left_coord(q)-right_coord(p);
8009 del3=knot_coord(q)-left_coord(q);
8010 @<Scale up |del1|, |del2|, and |del3| for greater accuracy;
8011 also set |del| to the first nonzero element of |(del1,del2,del3)|@>;
8013 negate(del1); negate(del2); negate(del3);
8015 t=mp_crossing_point(mp, del1,del2,del3);
8016 if ( t<fraction_one ) {
8017 @<Test the extremes of the cubic against the bounding box@>;
8022 @ @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>=
8023 if ( x<mp->bbmin[c] ) mp->bbmin[c]=x;
8024 if ( x>mp->bbmax[c] ) mp->bbmax[c]=x
8026 @ @<Check the control points against the bounding box and set...@>=
8028 if ( mp->bbmin[c]<=right_coord(p) )
8029 if ( right_coord(p)<=mp->bbmax[c] )
8030 if ( mp->bbmin[c]<=left_coord(q) )
8031 if ( left_coord(q)<=mp->bbmax[c] )
8034 @ If |del1=del2=del3=0|, it's impossible to obey the title of this
8035 section. We just set |del=0| in that case.
8037 @<Scale up |del1|, |del2|, and |del3| for greater accuracy...@>=
8038 if ( del1!=0 ) del=del1;
8039 else if ( del2!=0 ) del=del2;
8043 if ( abs(del2)>dmax ) dmax=abs(del2);
8044 if ( abs(del3)>dmax ) dmax=abs(del3);
8045 while ( dmax<fraction_half ) {
8046 dmax+=dmax; del1+=del1; del2+=del2; del3+=del3;
8050 @ Since |crossing_point| has tried to choose |t| so that
8051 $B(|del1|,|del2|,|del3|;\tau)$ crosses zero at $\tau=|t|$ with negative
8052 slope, the value of |del2| computed below should not be positive.
8053 But rounding error could make it slightly positive in which case we
8054 must cut it to zero to avoid confusion.
8056 @<Test the extremes of the cubic against the bounding box@>=
8058 x=mp_eval_cubic(mp, p,q,t);
8059 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8060 del2=t_of_the_way(del2,del3);
8061 /* now |0,del2,del3| represent the derivative on the remaining interval */
8062 if ( del2>0 ) del2=0;
8063 tt=mp_crossing_point(mp, 0,-del2,-del3);
8064 if ( tt<fraction_one ) {
8065 @<Test the second extreme against the bounding box@>;
8069 @ @<Test the second extreme against the bounding box@>=
8071 x=mp_eval_cubic(mp, p,q,t_of_the_way(tt,fraction_one));
8072 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8075 @ Finding the bounding box of a path is basically a matter of applying
8076 |bound_cubic| twice for each pair of adjacent knots.
8078 @c void mp_path_bbox (MP mp,pointer h) {
8079 pointer p,q; /* a pair of adjacent knots */
8080 minx=x_coord(h); miny=y_coord(h);
8081 maxx=minx; maxy=miny;
8084 if ( right_type(p)==mp_endpoint ) return;
8086 mp_bound_cubic(mp, x_loc(p),x_loc(q),mp_x_code);
8087 mp_bound_cubic(mp, y_loc(p),y_loc(q),mp_y_code);
8092 @ Another important way to measure a path is to find its arc length. This
8093 is best done by using the general bisection algorithm to subdivide the path
8094 until obtaining ``well behaved'' subpaths whose arc lengths can be approximated
8097 Since the arc length is the integral with respect to time of the magnitude of
8098 the velocity, it is natural to use Simpson's rule for the approximation.
8100 If $\dot B(t)$ is the spline velocity, Simpson's rule gives
8101 $$ \vb\dot B(0)\vb + 4\vb\dot B({1\over2})\vb + \vb\dot B(1)\vb \over 6 $$
8102 for the arc length of a path of length~1. For a cubic spline
8103 $B(z_0,z_1,z_2,z_3;t)$, the time derivative $\dot B(t)$ is
8104 $3B(dz_0,dz_1,dz_2;t)$, where $dz_i=z_{i+1}-z_i$. Hence the arc length
8106 $$ {\vb dz_0\vb \over 2} + 2\vb dz_{02}\vb + {\vb dz_2\vb \over 2}, $$
8108 $$ dz_{02}={1\over2}\left({dz_0+dz_1\over 2}+{dz_1+dz_2\over 2}\right)$$
8109 is the result of the bisection algorithm.
8111 @ The remaining problem is how to decide when a subpath is ``well behaved.''
8112 This could be done via the theoretical error bound for Simpson's rule,
8114 but this is impractical because it requires an estimate of the fourth
8115 derivative of the quantity being integrated. It is much easier to just perform
8116 a bisection step and see how much the arc length estimate changes. Since the
8117 error for Simpson's rule is proportional to the fourth power of the sample
8118 spacing, the remaining error is typically about $1\over16$ of the amount of
8119 the change. We say ``typically'' because the error has a pseudo-random behavior
8120 that could cause the two estimates to agree when each contain large errors.
8122 To protect against disasters such as undetected cusps, the bisection process
8123 should always continue until all the $dz_i$ vectors belong to a single
8124 $90^\circ$ sector. This ensures that no point on the spline can have velocity
8125 less than 70\% of the minimum of $\vb dz_0\vb$, $\vb dz_1\vb$ and $\vb dz_2\vb$.
8126 If such a spline happens to produce an erroneous arc length estimate that
8127 is little changed by bisection, the amount of the error is likely to be fairly
8128 small. We will try to arrange things so that freak accidents of this type do
8129 not destroy the inverse relationship between the \&{arclength} and
8130 \&{arctime} operations.
8131 @:arclength_}{\&{arclength} primitive@>
8132 @:arctime_}{\&{arctime} primitive@>
8134 @ The \&{arclength} and \&{arctime} operations are both based on a recursive
8136 function that finds the arc length of a cubic spline given $dz_0$, $dz_1$,
8137 $dz_2$. This |arc_test| routine also takes an arc length goal |a_goal| and
8138 returns the time when the arc length reaches |a_goal| if there is such a time.
8139 Thus the return value is either an arc length less than |a_goal| or, if the
8140 arc length would be at least |a_goal|, it returns a time value decreased by
8141 |two|. This allows the caller to use the sign of the result to distinguish
8142 between arc lengths and time values. On certain types of overflow, it is
8143 possible for |a_goal| and the result of |arc_test| both to be |el_gordo|.
8144 Otherwise, the result is always less than |a_goal|.
8146 Rather than halving the control point coordinates on each recursive call to
8147 |arc_test|, it is better to keep them proportional to velocity on the original
8148 curve and halve the results instead. This means that recursive calls can
8149 potentially use larger error tolerances in their arc length estimates. How
8150 much larger depends on to what extent the errors behave as though they are
8151 independent of each other. To save computing time, we use optimistic assumptions
8152 and increase the tolerance by a factor of about $\sqrt2$ for each recursive
8155 In addition to the tolerance parameter, |arc_test| should also have parameters
8156 for ${1\over3}\vb\dot B(0)\vb$, ${2\over3}\vb\dot B({1\over2})\vb$, and
8157 ${1\over3}\vb\dot B(1)\vb$. These quantities are relatively expensive to compute
8158 and they are needed in different instances of |arc_test|.
8160 @c @t\4@>@<Declare subroutines needed by |arc_test|@>;
8161 scaled mp_arc_test (MP mp, scaled dx0, scaled dy0, scaled dx1, scaled dy1,
8162 scaled dx2, scaled dy2, scaled v0, scaled v02,
8163 scaled v2, scaled a_goal, scaled tol) {
8164 boolean simple; /* are the control points confined to a $90^\circ$ sector? */
8165 scaled dx01, dy01, dx12, dy12, dx02, dy02; /* bisection results */
8167 /* twice the velocity magnitudes at $t={1\over4}$ and $t={3\over4}$ */
8168 scaled arc; /* best arc length estimate before recursion */
8169 @<Other local variables in |arc_test|@>;
8170 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,
8172 @<Initialize |v002|, |v022|, and the arc length estimate |arc|; if it overflows
8173 set |arc_test| and |return|@>;
8174 @<Test if the control points are confined to one quadrant or rotating them
8175 $45^\circ$ would put them in one quadrant. Then set |simple| appropriately@>;
8176 if ( simple && (abs(arc-v02-halfp(v0+v2)) <= tol) ) {
8177 if ( arc < a_goal ) {
8180 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to
8181 that time minus |two|@>;
8184 @<Use one or two recursive calls to compute the |arc_test| function@>;
8188 @ The |tol| value should by multiplied by $\sqrt 2$ before making recursive
8189 calls, but $1.5$ is an adequate approximation. It is best to avoid using
8190 |make_fraction| in this inner loop.
8193 @<Use one or two recursive calls to compute the |arc_test| function@>=
8195 @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is as
8196 large as possible@>;
8197 tol = tol + halfp(tol);
8198 a = mp_arc_test(mp, dx0,dy0, dx01,dy01, dx02,dy02, v0, v002,
8199 halfp(v02), a_new, tol);
8201 return (-halfp(two-a));
8203 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>;
8204 b = mp_arc_test(mp, dx02,dy02, dx12,dy12, dx2,dy2,
8205 halfp(v02), v022, v2, a_new, tol);
8207 return (-halfp(-b) - half_unit);
8209 return (a + half(b-a));
8213 @ @<Other local variables in |arc_test|@>=
8214 scaled a,b; /* results of recursive calls */
8215 scaled a_new,a_aux; /* the sum of these gives the |a_goal| */
8217 @ @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is...@>=
8218 a_aux = el_gordo - a_goal;
8219 if ( a_goal > a_aux ) {
8220 a_aux = a_goal - a_aux;
8223 a_new = a_goal + a_goal;
8227 @ There is no need to maintain |a_aux| at this point so we use it as a temporary
8228 to force the additions and subtractions to be done in an order that avoids
8231 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>=
8234 a_new = a_new + a_aux;
8237 @ This code assumes all {\it dx} and {\it dy} variables have magnitude less than
8238 |fraction_four|. To simplify the rest of the |arc_test| routine, we strengthen
8239 this assumption by requiring the norm of each $({\it dx},{\it dy})$ pair to obey
8240 this bound. Note that recursive calls will maintain this invariant.
8242 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,...@>=
8243 dx01 = half(dx0 + dx1);
8244 dx12 = half(dx1 + dx2);
8245 dx02 = half(dx01 + dx12);
8246 dy01 = half(dy0 + dy1);
8247 dy12 = half(dy1 + dy2);
8248 dy02 = half(dy01 + dy12)
8250 @ We should be careful to keep |arc<el_gordo| so that calling |arc_test| with
8251 |a_goal=el_gordo| is guaranteed to yield the arc length.
8253 @<Initialize |v002|, |v022|, and the arc length estimate |arc|;...@>=
8254 v002 = mp_pyth_add(mp, dx01+half(dx0+dx02), dy01+half(dy0+dy02));
8255 v022 = mp_pyth_add(mp, dx12+half(dx02+dx2), dy12+half(dy02+dy2));
8257 arc1 = v002 + half(halfp(v0+tmp) - v002);
8258 arc = v022 + half(halfp(v2+tmp) - v022);
8259 if ( (arc < el_gordo-arc1) ) {
8262 mp->arith_error = true;
8263 if ( a_goal==el_gordo ) return (el_gordo);
8267 @ @<Other local variables in |arc_test|@>=
8268 scaled tmp, tmp2; /* all purpose temporary registers */
8269 scaled arc1; /* arc length estimate for the first half */
8271 @ @<Test if the control points are confined to one quadrant or rotating...@>=
8272 simple = ((dx0>=0) && (dx1>=0) && (dx2>=0)) ||
8273 ((dx0<=0) && (dx1<=0) && (dx2<=0));
8275 simple = ((dy0>=0) && (dy1>=0) && (dy2>=0)) ||
8276 ((dy0<=0) && (dy1<=0) && (dy2<=0));
8278 simple = ((dx0>=dy0) && (dx1>=dy1) && (dx2>=dy2)) ||
8279 ((dx0<=dy0) && (dx1<=dy1) && (dx2<=dy2));
8281 simple = ((-dx0>=dy0) && (-dx1>=dy1) && (-dx2>=dy2)) ||
8282 ((-dx0<=dy0) && (-dx1<=dy1) && (-dx2<=dy2));
8285 @ Since Simpson's rule is based on approximating the integrand by a parabola,
8287 it is appropriate to use the same approximation to decide when the integral
8288 reaches the intermediate value |a_goal|. At this point
8290 {\vb\dot B(0)\vb\over 3} &= \hbox{|v0|}, \qquad
8291 {\vb\dot B({1\over4})\vb\over 3} = {\hbox{|v002|}\over 2}, \qquad
8292 {\vb\dot B({1\over2})\vb\over 3} = {\hbox{|v02|}\over 2}, \cr
8293 {\vb\dot B({3\over4})\vb\over 3} &= {\hbox{|v022|}\over 2}, \qquad
8294 {\vb\dot B(1)\vb\over 3} = \hbox{|v2|} \cr
8298 $$ {\vb\dot B(t)\vb\over 3} \approx
8299 \cases{B\left(\hbox{|v0|},
8300 \hbox{|v002|}-{1\over 2}\hbox{|v0|}-{1\over 4}\hbox{|v02|},
8301 {1\over 2}\hbox{|v02|}; 2t \right)&
8302 if $t\le{1\over 2}$\cr
8303 B\left({1\over 2}\hbox{|v02|},
8304 \hbox{|v022|}-{1\over 4}\hbox{|v02|}-{1\over 2}\hbox{|v2|},
8305 \hbox{|v2|}; 2t-1 \right)&
8306 if $t\ge{1\over 2}$.\cr}
8309 We can integrate $\vb\dot B(t)\vb$ by using
8310 $$\int 3B(a,b,c;\tau)\,dt =
8311 {B(0,a,a+b,a+b+c;\tau) + {\rm constant} \over {d\tau\over dt}}.
8314 This construction allows us to find the time when the arc length reaches
8315 |a_goal| by solving a cubic equation of the form
8316 $$ B(0,a,a+b,a+b+c;\tau) = x, $$
8317 where $\tau$ is $2t$ or $2t+1$, $x$ is |a_goal| or |a_goal-arc1|, and $a$, $b$,
8318 and $c$ are the Bernshte{\u\i}n coefficients from $(*)$ divided by
8319 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
8320 $d\tau\over dt$. We shall define a function |solve_rising_cubic| that finds
8321 $\tau$ given $a$, $b$, $c$, and $x$.
8323 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to...@>=
8325 tmp = (v02 + 2) / 4;
8326 if ( a_goal<=arc1 ) {
8329 (halfp(mp_solve_rising_cubic(mp, tmp2, arc1-tmp2-tmp, tmp, a_goal))- two);
8332 return ((half_unit - two) +
8333 halfp(mp_solve_rising_cubic(mp, tmp, arc-arc1-tmp-tmp2, tmp2, a_goal-arc1)));
8337 @ Here is the |solve_rising_cubic| routine that finds the time~$t$ when
8338 $$ B(0, a, a+b, a+b+c; t) = x. $$
8339 This routine is based on |crossing_point| but is simplified by the
8340 assumptions that $B(a,b,c;t)\ge0$ for $0\le t\le1$ and that |0<=x<=a+b+c|.
8341 If rounding error causes this condition to be violated slightly, we just ignore
8342 it and proceed with binary search. This finds a time when the function value
8343 reaches |x| and the slope is positive.
8345 @<Declare subroutines needed by |arc_test|@>=
8346 scaled mp_solve_rising_cubic (MP mp,scaled a, scaled b, scaled c, scaled x) {
8347 scaled ab, bc, ac; /* bisection results */
8348 integer t; /* $2^k+q$ where unscaled answer is in $[q2^{-k},(q+1)2^{-k})$ */
8349 integer xx; /* temporary for updating |x| */
8350 if ( (a<0) || (c<0) ) mp_confusion(mp, "rising?");
8351 @:this can't happen rising?}{\quad rising?@>
8354 } else if ( x >= a+b+c ) {
8358 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than
8362 @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>;
8363 xx = x - a - ab - ac;
8364 if ( xx < -x ) { x+=x; b=ab; c=ac; }
8365 else { x = x + xx; a=ac; b=mp->bc; t = t+1; };
8366 } while (t < unity);
8371 @ @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>=
8376 @ @d one_third_el_gordo 05252525252 /* upper bound on |a|, |b|, and |c| */
8378 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than...@>=
8379 while ((a>one_third_el_gordo)||(b>one_third_el_gordo)||(c>one_third_el_gordo)) {
8386 @ It is convenient to have a simpler interface to |arc_test| that requires no
8387 unnecessary arguments and ensures that each $({\it dx},{\it dy})$ pair has
8388 length less than |fraction_four|.
8390 @d arc_tol 16 /* quit when change in arc length estimate reaches this */
8392 @c scaled mp_do_arc_test (MP mp,scaled dx0, scaled dy0, scaled dx1,
8393 scaled dy1, scaled dx2, scaled dy2, scaled a_goal) {
8394 scaled v0,v1,v2; /* length of each $({\it dx},{\it dy})$ pair */
8395 scaled v02; /* twice the norm of the quadratic at $t={1\over2}$ */
8396 v0 = mp_pyth_add(mp, dx0,dy0);
8397 v1 = mp_pyth_add(mp, dx1,dy1);
8398 v2 = mp_pyth_add(mp, dx2,dy2);
8399 if ( (v0>=fraction_four) || (v1>=fraction_four) || (v2>=fraction_four) ) {
8400 mp->arith_error = true;
8401 if ( a_goal==el_gordo ) return el_gordo;
8404 v02 = mp_pyth_add(mp, dx1+half(dx0+dx2), dy1+half(dy0+dy2));
8405 return (mp_arc_test(mp, dx0,dy0, dx1,dy1, dx2,dy2,
8406 v0, v02, v2, a_goal, arc_tol));
8410 @ Now it is easy to find the arc length of an entire path.
8412 @c scaled mp_get_arc_length (MP mp,pointer h) {
8413 pointer p,q; /* for traversing the path */
8414 scaled a,a_tot; /* current and total arc lengths */
8417 while ( right_type(p)!=mp_endpoint ){
8419 a = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8420 left_x(q)-right_x(p), left_y(q)-right_y(p),
8421 x_coord(q)-left_x(q), y_coord(q)-left_y(q), el_gordo);
8422 a_tot = mp_slow_add(mp, a, a_tot);
8423 if ( q==h ) break; else p=q;
8429 @ The inverse operation of finding the time on a path~|h| when the arc length
8430 reaches some value |arc0| can also be accomplished via |do_arc_test|. Some care
8431 is required to handle very large times or negative times on cyclic paths. For
8432 non-cyclic paths, |arc0| values that are negative or too large cause
8433 |get_arc_time| to return 0 or the length of path~|h|.
8435 If |arc0| is greater than the arc length of a cyclic path~|h|, the result is a
8436 time value greater than the length of the path. Since it could be much greater,
8437 we must be prepared to compute the arc length of path~|h| and divide this into
8438 |arc0| to find how many multiples of the length of path~|h| to add.
8440 @c scaled mp_get_arc_time (MP mp,pointer h, scaled arc0) {
8441 pointer p,q; /* for traversing the path */
8442 scaled t_tot; /* accumulator for the result */
8443 scaled t; /* the result of |do_arc_test| */
8444 scaled arc; /* portion of |arc0| not used up so far */
8445 integer n; /* number of extra times to go around the cycle */
8447 @<Deal with a negative |arc0| value and |return|@>;
8449 if ( arc0==el_gordo ) decr(arc0);
8453 while ( (right_type(p)!=mp_endpoint) && (arc>0) ) {
8455 t = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8456 left_x(q)-right_x(p), left_y(q)-right_y(p),
8457 x_coord(q)-left_x(q), y_coord(q)-left_y(q), arc);
8458 @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>;
8460 @<Update |t_tot| and |arc| to avoid going around the cyclic
8461 path too many times but set |arith_error:=true| and |goto done| on
8470 @ @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>=
8471 if ( t<0 ) { t_tot = t_tot + t + two; arc = 0; }
8472 else { t_tot = t_tot + unity; arc = arc - t; }
8474 @ @<Deal with a negative |arc0| value and |return|@>=
8476 if ( left_type(h)==mp_endpoint ) {
8479 p = mp_htap_ypoc(mp, h);
8480 t_tot = -mp_get_arc_time(mp, p, -arc0);
8481 mp_toss_knot_list(mp, p);
8487 @ @<Update |t_tot| and |arc| to avoid going around the cyclic...@>=
8489 n = arc / (arc0 - arc);
8490 arc = arc - n*(arc0 - arc);
8491 if ( t_tot > el_gordo / (n+1) ) {
8492 mp->arith_error = true;
8496 t_tot = (n + 1)*t_tot;
8499 @* \[20] Data structures for pens.
8500 A Pen in \MP\ can be either elliptical or polygonal. Elliptical pens result
8501 in \ps\ \&{stroke} commands, while anything drawn with a polygonal pen is
8502 @:stroke}{\&{stroke} command@>
8503 converted into an area fill as described in the next part of this program.
8504 The mathematics behind this process is based on simple aspects of the theory
8505 of tracings developed by Leo Guibas, Lyle Ramshaw, and Jorge Stolfi
8506 [``A kinematic framework for computational geometry,'' Proc.\ IEEE Symp.\
8507 Foundations of Computer Science {\bf 24} (1983), 100--111].
8509 Polygonal pens are created from paths via \MP's \&{makepen} primitive.
8510 @:makepen_}{\&{makepen} primitive@>
8511 This path representation is almost sufficient for our purposes except that
8512 a pen path should always be a convex polygon with the vertices in
8513 counter-clockwise order.
8514 Since we will need to scan pen polygons both forward and backward, a pen
8515 should be represented as a doubly linked ring of knot nodes. There is
8516 room for the extra back pointer because we do not need the
8517 |left_type| or |right_type| fields. In fact, we don't need the |left_x|,
8518 |left_y|, |right_x|, or |right_y| fields either but we leave these alone
8519 so that certain procedures can operate on both pens and paths. In particular,
8520 pens can be copied using |copy_path| and recycled using |toss_knot_list|.
8523 /* this replaces the |left_type| and |right_type| fields in a pen knot */
8525 @ The |make_pen| procedure turns a path into a pen by initializing
8526 the |knil| pointers and making sure the knots form a convex polygon.
8527 Thus each cubic in the given path becomes a straight line and the control
8528 points are ignored. If the path is not cyclic, the ends are connected by a
8531 @d copy_pen(A) mp_make_pen(mp, mp_copy_path(mp, (A)),false)
8533 @c @<Declare a function called |convex_hull|@>;
8534 pointer mp_make_pen (MP mp,pointer h, boolean need_hull) {
8535 pointer p,q; /* two consecutive knots */
8542 h=mp_convex_hull(mp, h);
8543 @<Make sure |h| isn't confused with an elliptical pen@>;
8548 @ The only information required about an elliptical pen is the overall
8549 transformation that has been applied to the original \&{pencircle}.
8550 @:pencircle_}{\&{pencircle} primitive@>
8551 Since it suffices to keep track of how the three points $(0,0)$, $(1,0)$,
8552 and $(0,1)$ are transformed, an elliptical pen can be stored in a single
8553 knot node and transformed as if it were a path.
8555 @d pen_is_elliptical(A) ((A)==link((A)))
8557 @c pointer mp_get_pen_circle (MP mp,scaled diam) {
8558 pointer h; /* the knot node to return */
8559 h=mp_get_node(mp, knot_node_size);
8560 link(h)=h; knil(h)=h;
8561 originator(h)=mp_program_code;
8562 x_coord(h)=0; y_coord(h)=0;
8563 left_x(h)=diam; left_y(h)=0;
8564 right_x(h)=0; right_y(h)=diam;
8568 @ If the polygon being returned by |make_pen| has only one vertex, it will
8569 be interpreted as an elliptical pen. This is no problem since a degenerate
8570 polygon can equally well be thought of as a degenerate ellipse. We need only
8571 initialize the |left_x|, |left_y|, |right_x|, and |right_y| fields.
8573 @<Make sure |h| isn't confused with an elliptical pen@>=
8574 if ( pen_is_elliptical( h) ){
8575 left_x(h)=x_coord(h); left_y(h)=y_coord(h);
8576 right_x(h)=x_coord(h); right_y(h)=y_coord(h);
8579 @ We have to cheat a little here but most operations on pens only use
8580 the first three words in each knot node.
8581 @^data structure assumptions@>
8583 @<Initialize a pen at |test_pen| so that it fits in nine words@>=
8584 x_coord(test_pen)=-half_unit;
8585 y_coord(test_pen)=0;
8586 x_coord(test_pen+3)=half_unit;
8587 y_coord(test_pen+3)=0;
8588 x_coord(test_pen+6)=0;
8589 y_coord(test_pen+6)=unity;
8590 link(test_pen)=test_pen+3;
8591 link(test_pen+3)=test_pen+6;
8592 link(test_pen+6)=test_pen;
8593 knil(test_pen)=test_pen+6;
8594 knil(test_pen+3)=test_pen;
8595 knil(test_pen+6)=test_pen+3
8597 @ Printing a polygonal pen is very much like printing a path
8599 @<Declare subroutines for printing expressions@>=
8600 void mp_pr_pen (MP mp,pointer h) {
8601 pointer p,q; /* for list traversal */
8602 if ( pen_is_elliptical(h) ) {
8603 @<Print the elliptical pen |h|@>;
8607 mp_print_two(mp, x_coord(p),y_coord(p));
8608 mp_print_nl(mp, " .. ");
8609 @<Advance |p| making sure the links are OK and |return| if there is
8612 mp_print(mp, "cycle");
8616 @ @<Advance |p| making sure the links are OK and |return| if there is...@>=
8618 if ( (q==null) || (knil(q)!=p) ) {
8619 mp_print_nl(mp, "???"); return; /* this won't happen */
8624 @ @<Print the elliptical pen |h|@>=
8626 mp_print(mp, "pencircle transformed (");
8627 mp_print_scaled(mp, x_coord(h));
8628 mp_print_char(mp, ',');
8629 mp_print_scaled(mp, y_coord(h));
8630 mp_print_char(mp, ',');
8631 mp_print_scaled(mp, left_x(h)-x_coord(h));
8632 mp_print_char(mp, ',');
8633 mp_print_scaled(mp, right_x(h)-x_coord(h));
8634 mp_print_char(mp, ',');
8635 mp_print_scaled(mp, left_y(h)-y_coord(h));
8636 mp_print_char(mp, ',');
8637 mp_print_scaled(mp, right_y(h)-y_coord(h));
8638 mp_print_char(mp, ')');
8641 @ Here us another version of |pr_pen| that prints the pen as a diagnostic
8644 @<Declare subroutines for printing expressions@>=
8645 void mp_print_pen (MP mp,pointer h, char *s, boolean nuline) {
8646 mp_print_diagnostic(mp, "Pen",s,nuline); mp_print_ln(mp);
8649 mp_end_diagnostic(mp, true);
8652 @ Making a polygonal pen into a path involves restoring the |left_type| and
8653 |right_type| fields and setting the control points so as to make a polygonal
8657 void mp_make_path (MP mp,pointer h) {
8658 pointer p; /* for traversing the knot list */
8659 small_number k; /* a loop counter */
8660 @<Other local variables in |make_path|@>;
8661 if ( pen_is_elliptical(h) ) {
8662 @<Make the elliptical pen |h| into a path@>;
8666 left_type(p)=mp_explicit;
8667 right_type(p)=mp_explicit;
8668 @<copy the coordinates of knot |p| into its control points@>;
8674 @ @<copy the coordinates of knot |p| into its control points@>=
8675 left_x(p)=x_coord(p);
8676 left_y(p)=y_coord(p);
8677 right_x(p)=x_coord(p);
8678 right_y(p)=y_coord(p)
8680 @ We need an eight knot path to get a good approximation to an ellipse.
8682 @<Make the elliptical pen |h| into a path@>=
8684 @<Extract the transformation parameters from the elliptical pen~|h|@>;
8686 for (k=0;k<=7;k++ ) {
8687 @<Initialize |p| as the |k|th knot of a circle of unit diameter,
8688 transforming it appropriately@>;
8689 if ( k==7 ) link(p)=h; else link(p)=mp_get_node(mp, knot_node_size);
8694 @ @<Extract the transformation parameters from the elliptical pen~|h|@>=
8695 center_x=x_coord(h);
8696 center_y=y_coord(h);
8697 width_x=left_x(h)-center_x;
8698 width_y=left_y(h)-center_y;
8699 height_x=right_x(h)-center_x;
8700 height_y=right_y(h)-center_y
8702 @ @<Other local variables in |make_path|@>=
8703 scaled center_x,center_y; /* translation parameters for an elliptical pen */
8704 scaled width_x,width_y; /* the effect of a unit change in $x$ */
8705 scaled height_x,height_y; /* the effect of a unit change in $y$ */
8706 scaled dx,dy; /* the vector from knot |p| to its right control point */
8708 /* |k| advanced $270^\circ$ around the ring (cf. $\sin\theta=\cos(\theta+270)$) */
8710 @ The only tricky thing here are the tables |half_cos| and |d_cos| used to
8711 find the point $k/8$ of the way around the circle and the direction vector
8714 @<Initialize |p| as the |k|th knot of a circle of unit diameter,...@>=
8716 x_coord(p)=center_x+mp_take_fraction(mp, mp->half_cos[k],width_x)
8717 +mp_take_fraction(mp, mp->half_cos[kk],height_x);
8718 y_coord(p)=center_y+mp_take_fraction(mp, mp->half_cos[k],width_y)
8719 +mp_take_fraction(mp, mp->half_cos[kk],height_y);
8720 dx=-mp_take_fraction(mp, mp->d_cos[kk],width_x)
8721 +mp_take_fraction(mp, mp->d_cos[k],height_x);
8722 dy=-mp_take_fraction(mp, mp->d_cos[kk],width_y)
8723 +mp_take_fraction(mp, mp->d_cos[k],height_y);
8724 right_x(p)=x_coord(p)+dx;
8725 right_y(p)=y_coord(p)+dy;
8726 left_x(p)=x_coord(p)-dx;
8727 left_y(p)=y_coord(p)-dy;
8728 left_type(p)=mp_explicit;
8729 right_type(p)=mp_explicit;
8730 originator(p)=mp_program_code
8733 fraction half_cos[8]; /* ${1\over2}\cos(45k)$ */
8734 fraction d_cos[8]; /* a magic constant times $\cos(45k)$ */
8736 @ The magic constant for |d_cos| is the distance between $({1\over2},0)$ and
8737 $({1\over4}\sqrt2,{1\over4}\sqrt2)$ times the result of the |velocity|
8738 function for $\theta=\phi=22.5^\circ$. This comes out to be
8739 $$ d = {\sqrt{2-\sqrt2}\over 3+3\cos22.5^\circ}
8740 \approx 0.132608244919772.
8744 mp->half_cos[0]=fraction_half;
8745 mp->half_cos[1]=94906266; /* $2^{26}\sqrt2\approx94906265.62$ */
8747 mp->d_cos[0]=35596755; /* $2^{28}d\approx35596754.69$ */
8748 mp->d_cos[1]=25170707; /* $2^{27}\sqrt2\,d\approx25170706.63$ */
8750 for (k=3;k<= 4;k++ ) {
8751 mp->half_cos[k]=-mp->half_cos[4-k];
8752 mp->d_cos[k]=-mp->d_cos[4-k];
8754 for (k=5;k<= 7;k++ ) {
8755 mp->half_cos[k]=mp->half_cos[8-k];
8756 mp->d_cos[k]=mp->d_cos[8-k];
8759 @ The |convex_hull| function forces a pen polygon to be convex when it is
8760 returned by |make_pen| and after any subsequent transformation where rounding
8761 error might allow the convexity to be lost.
8762 The convex hull algorithm used here is described by F.~P. Preparata and
8763 M.~I. Shamos [{\sl Computational Geometry}, Springer-Verlag, 1985].
8765 @<Declare a function called |convex_hull|@>=
8766 @<Declare a procedure called |move_knot|@>;
8767 pointer mp_convex_hull (MP mp,pointer h) { /* Make a polygonal pen convex */
8768 pointer l,r; /* the leftmost and rightmost knots */
8769 pointer p,q; /* knots being scanned */
8770 pointer s; /* the starting point for an upcoming scan */
8771 scaled dx,dy; /* a temporary pointer */
8772 if ( pen_is_elliptical(h) ) {
8775 @<Set |l| to the leftmost knot in polygon~|h|@>;
8776 @<Set |r| to the rightmost knot in polygon~|h|@>;
8779 @<Find any knots on the path from |l| to |r| above the |l|-|r| line and
8780 move them past~|r|@>;
8781 @<Find any knots on the path from |s| to |l| below the |l|-|r| line and
8782 move them past~|l|@>;
8783 @<Sort the path from |l| to |r| by increasing $x$@>;
8784 @<Sort the path from |r| to |l| by decreasing $x$@>;
8787 @<Do a Gramm scan and remove vertices where there is no left turn@>;
8793 @ All comparisons are done primarily on $x$ and secondarily on $y$.
8795 @<Set |l| to the leftmost knot in polygon~|h|@>=
8799 if ( x_coord(p)<=x_coord(l) )
8800 if ( (x_coord(p)<x_coord(l)) || (y_coord(p)<y_coord(l)) )
8805 @ @<Set |r| to the rightmost knot in polygon~|h|@>=
8809 if ( x_coord(p)>=x_coord(r) )
8810 if ( (x_coord(p)>x_coord(r)) || (y_coord(p)>y_coord(r)) )
8815 @ @<Find any knots on the path from |l| to |r| above the |l|-|r| line...@>=
8816 dx=x_coord(r)-x_coord(l);
8817 dy=y_coord(r)-y_coord(l);
8821 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))>0 )
8822 mp_move_knot(mp, p, r);
8826 @ The |move_knot| procedure removes |p| from a doubly linked list and inserts
8829 @ @<Declare a procedure called |move_knot|@>=
8830 void mp_move_knot (MP mp,pointer p, pointer q) {
8831 link(knil(p))=link(p);
8832 knil(link(p))=knil(p);
8839 @ @<Find any knots on the path from |s| to |l| below the |l|-|r| line...@>=
8843 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))<0 )
8844 mp_move_knot(mp, p,l);
8848 @ The list is likely to be in order already so we just do linear insertions.
8849 Secondary comparisons on $y$ ensure that the sort is consistent with the
8850 choice of |l| and |r|.
8852 @<Sort the path from |l| to |r| by increasing $x$@>=
8856 while ( x_coord(q)>x_coord(p) ) q=knil(q);
8857 while ( x_coord(q)==x_coord(p) ) {
8858 if ( y_coord(q)>y_coord(p) ) q=knil(q); else break;
8860 if ( q==knil(p) ) p=link(p);
8861 else { p=link(p); mp_move_knot(mp, knil(p),q); };
8864 @ @<Sort the path from |r| to |l| by decreasing $x$@>=
8868 while ( x_coord(q)<x_coord(p) ) q=knil(q);
8869 while ( x_coord(q)==x_coord(p) ) {
8870 if ( y_coord(q)<y_coord(p) ) q=knil(q); else break;
8872 if ( q==knil(p) ) p=link(p);
8873 else { p=link(p); mp_move_knot(mp, knil(p),q); };
8876 @ The condition involving |ab_vs_cd| tests if there is not a left turn
8877 at knot |q|. There usually will be a left turn so we streamline the case
8878 where the |then| clause is not executed.
8880 @<Do a Gramm scan and remove vertices where there...@>=
8884 dx=x_coord(q)-x_coord(p);
8885 dy=y_coord(q)-y_coord(p);
8889 if ( mp_ab_vs_cd(mp, dx,y_coord(q)-y_coord(p),dy,x_coord(q)-x_coord(p))<=0 ) {
8890 @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>;
8895 @ @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>=
8898 mp_free_node(mp, p,knot_node_size);
8899 link(s)=q; knil(q)=s;
8901 else { p=knil(s); q=s; };
8904 @ The |find_offset| procedure sets global variables |(cur_x,cur_y)| to the
8905 offset associated with the given direction |(x,y)|. If two different offsets
8906 apply, it chooses one of them.
8909 void mp_find_offset (MP mp,scaled x, scaled y, pointer h) {
8910 pointer p,q; /* consecutive knots */
8912 /* the transformation matrix for an elliptical pen */
8913 fraction xx,yy; /* untransformed offset for an elliptical pen */
8914 fraction d; /* a temporary register */
8915 if ( pen_is_elliptical(h) ) {
8916 @<Find the offset for |(x,y)| on the elliptical pen~|h|@>
8921 } while (!(mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)>=0));
8924 } while (!(mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)<=0));
8925 mp->cur_x=x_coord(p);
8926 mp->cur_y=y_coord(p);
8932 scaled cur_y; /* all-purpose return value registers */
8934 @ @<Find the offset for |(x,y)| on the elliptical pen~|h|@>=
8935 if ( (x==0) && (y==0) ) {
8936 mp->cur_x=x_coord(h); mp->cur_y=y_coord(h);
8938 @<Find the non-constant part of the transformation for |h|@>;
8939 while ( (abs(x)<fraction_half) && (abs(y)<fraction_half) ){
8942 @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the
8943 untransformed version of |(x,y)|@>;
8944 mp->cur_x=x_coord(h)+mp_take_fraction(mp, xx,wx)+mp_take_fraction(mp, yy,hx);
8945 mp->cur_y=y_coord(h)+mp_take_fraction(mp, xx,wy)+mp_take_fraction(mp, yy,hy);
8948 @ @<Find the non-constant part of the transformation for |h|@>=
8949 wx=left_x(h)-x_coord(h);
8950 wy=left_y(h)-y_coord(h);
8951 hx=right_x(h)-x_coord(h);
8952 hy=right_y(h)-y_coord(h)
8954 @ @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the...@>=
8955 yy=-(mp_take_fraction(mp, x,hy)+mp_take_fraction(mp, y,-hx));
8956 xx=mp_take_fraction(mp, x,-wy)+mp_take_fraction(mp, y,wx);
8957 d=mp_pyth_add(mp, xx,yy);
8959 xx=half(mp_make_fraction(mp, xx,d));
8960 yy=half(mp_make_fraction(mp, yy,d));
8963 @ Finding the bounding box of a pen is easy except if the pen is elliptical.
8964 But we can handle that case by just calling |find_offset| twice. The answer
8965 is stored in the global variables |minx|, |maxx|, |miny|, and |maxy|.
8968 void mp_pen_bbox (MP mp,pointer h) {
8969 pointer p; /* for scanning the knot list */
8970 if ( pen_is_elliptical(h) ) {
8971 @<Find the bounding box of an elliptical pen@>;
8973 minx=x_coord(h); maxx=minx;
8974 miny=y_coord(h); maxy=miny;
8977 if ( x_coord(p)<minx ) minx=x_coord(p);
8978 if ( y_coord(p)<miny ) miny=y_coord(p);
8979 if ( x_coord(p)>maxx ) maxx=x_coord(p);
8980 if ( y_coord(p)>maxy ) maxy=y_coord(p);
8986 @ @<Find the bounding box of an elliptical pen@>=
8988 mp_find_offset(mp, 0,fraction_one,h);
8990 minx=2*x_coord(h)-mp->cur_x;
8991 mp_find_offset(mp, -fraction_one,0,h);
8993 miny=2*y_coord(h)-mp->cur_y;
8996 @* \[21] Edge structures.
8997 Now we come to \MP's internal scheme for representing pictures.
8998 The representation is very different from \MF's edge structures
8999 because \MP\ pictures contain \ps\ graphics objects instead of pixel
9000 images. However, the basic idea is somewhat similar in that shapes
9001 are represented via their boundaries.
9003 The main purpose of edge structures is to keep track of graphical objects
9004 until it is time to translate them into \ps. Since \MP\ does not need to
9005 know anything about an edge structure other than how to translate it into
9006 \ps\ and how to find its bounding box, edge structures can be just linked
9007 lists of graphical objects. \MP\ has no easy way to determine whether
9008 two such objects overlap, but it suffices to draw the first one first and
9009 let the second one overwrite it if necessary.
9012 enum mp_graphical_object_code {
9013 @<Graphical object codes@>
9016 @ Let's consider the types of graphical objects one at a time.
9017 First of all, a filled contour is represented by a eight-word node. The first
9018 word contains |type| and |link| fields, and the next six words contain a
9019 pointer to a cyclic path and the value to use for \ps' \&{currentrgbcolor}
9020 parameter. If a pen is used for filling |pen_p|, |ljoin_val| and |miterlim_val|
9021 give the relevant information.
9023 @d path_p(A) link((A)+1)
9024 /* a pointer to the path that needs filling */
9025 @d pen_p(A) info((A)+1)
9026 /* a pointer to the pen to fill or stroke with */
9027 @d color_model(A) type((A)+2) /* the color model */
9028 @d obj_red_loc(A) ((A)+3) /* the first of three locations for the color */
9029 @d obj_cyan_loc obj_red_loc /* the first of four locations for the color */
9030 @d obj_grey_loc obj_red_loc /* the location for the color */
9031 @d red_val(A) mp->mem[(A)+3].sc
9032 /* the red component of the color in the range $0\ldots1$ */
9035 @d green_val(A) mp->mem[(A)+4].sc
9036 /* the green component of the color in the range $0\ldots1$ */
9037 @d magenta_val green_val
9038 @d blue_val(A) mp->mem[(A)+5].sc
9039 /* the blue component of the color in the range $0\ldots1$ */
9040 @d yellow_val blue_val
9041 @d black_val(A) mp->mem[(A)+6].sc
9042 /* the blue component of the color in the range $0\ldots1$ */
9043 @d ljoin_val(A) name_type((A)) /* the value of \&{linejoin} */
9044 @:mp_linejoin_}{\&{linejoin} primitive@>
9045 @d miterlim_val(A) mp->mem[(A)+7].sc /* the value of \&{miterlimit} */
9046 @:mp_miterlimit_}{\&{miterlimit} primitive@>
9047 @d obj_color_part(A) mp->mem[(A)+3-red_part].sc
9048 /* interpret an object pointer that has been offset by |red_part..blue_part| */
9049 @d pre_script(A) mp->mem[(A)+8].hh.lh
9050 @d post_script(A) mp->mem[(A)+8].hh.rh
9053 @ @<Graphical object codes@>=
9057 pointer mp_new_fill_node (MP mp,pointer p) {
9058 /* make a fill node for cyclic path |p| and color black */
9059 pointer t; /* the new node */
9060 t=mp_get_node(mp, fill_node_size);
9061 type(t)=mp_fill_code;
9063 pen_p(t)=null; /* |null| means don't use a pen */
9068 color_model(t)=mp_uninitialized_model;
9070 post_script(t)=null;
9071 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9075 @ @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>=
9076 if ( mp->internal[mp_linejoin]>unity ) ljoin_val(t)=2;
9077 else if ( mp->internal[mp_linejoin]>0 ) ljoin_val(t)=1;
9078 else ljoin_val(t)=0;
9079 if ( mp->internal[mp_miterlimit]<unity )
9080 miterlim_val(t)=unity;
9082 miterlim_val(t)=mp->internal[mp_miterlimit]
9084 @ A stroked path is represented by an eight-word node that is like a filled
9085 contour node except that it contains the current \&{linecap} value, a scale
9086 factor for the dash pattern, and a pointer that is non-null if the stroke
9087 is to be dashed. The purpose of the scale factor is to allow a picture to
9088 be transformed without touching the picture that |dash_p| points to.
9090 @d dash_p(A) link((A)+9)
9091 /* a pointer to the edge structure that gives the dash pattern */
9092 @d lcap_val(A) type((A)+9)
9093 /* the value of \&{linecap} */
9094 @:mp_linecap_}{\&{linecap} primitive@>
9095 @d dash_scale(A) mp->mem[(A)+10].sc /* dash lengths are scaled by this factor */
9096 @d stroked_node_size 11
9098 @ @<Graphical object codes@>=
9102 pointer mp_new_stroked_node (MP mp,pointer p) {
9103 /* make a stroked node for path |p| with |pen_p(p)| temporarily |null| */
9104 pointer t; /* the new node */
9105 t=mp_get_node(mp, stroked_node_size);
9106 type(t)=mp_stroked_code;
9107 path_p(t)=p; pen_p(t)=null;
9109 dash_scale(t)=unity;
9114 color_model(t)=mp_uninitialized_model;
9116 post_script(t)=null;
9117 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9118 if ( mp->internal[mp_linecap]>unity ) lcap_val(t)=2;
9119 else if ( mp->internal[mp_linecap]>0 ) lcap_val(t)=1;
9124 @ When a dashed line is computed in a transformed coordinate system, the dash
9125 lengths get scaled like the pen shape and we need to compensate for this. Since
9126 there is no unique scale factor for an arbitrary transformation, we use the
9127 the square root of the determinant. The properties of the determinant make it
9128 easier to maintain the |dash_scale|. The computation is fairly straight-forward
9129 except for the initialization of the scale factor |s|. The factor of 64 is
9130 needed because |square_rt| scales its result by $2^8$ while we need $2^{14}$
9131 to counteract the effect of |take_fraction|.
9133 @<Declare subroutines needed by |print_edges|@>=
9134 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) {
9135 scaled maxabs; /* $max(|a|,|b|,|c|,|d|)$ */
9136 integer s; /* amount by which the result of |square_rt| needs to be scaled */
9137 @<Initialize |maxabs|@>;
9139 while ( (maxabs<fraction_one) && (s>1) ){
9140 a+=a; b+=b; c+=c; d+=d;
9141 maxabs+=maxabs; s=halfp(s);
9143 return s*mp_square_rt(mp, abs(mp_take_fraction(mp, a,d)-mp_take_fraction(mp, b,c)));
9146 scaled mp_get_pen_scale (MP mp,pointer p) {
9147 return mp_sqrt_det(mp,
9148 left_x(p)-x_coord(p), right_x(p)-x_coord(p),
9149 left_y(p)-y_coord(p), right_y(p)-y_coord(p));
9152 @ @<Internal library ...@>=
9153 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) ;
9156 @ @<Initialize |maxabs|@>=
9158 if ( abs(b)>maxabs ) maxabs=abs(b);
9159 if ( abs(c)>maxabs ) maxabs=abs(c);
9160 if ( abs(d)>maxabs ) maxabs=abs(d)
9162 @ When a picture contains text, this is represented by a fourteen-word node
9163 where the color information and |type| and |link| fields are augmented by
9164 additional fields that describe the text and how it is transformed.
9165 The |path_p| and |pen_p| pointers are replaced by a number that identifies
9166 the font and a string number that gives the text to be displayed.
9167 The |width|, |height|, and |depth| fields
9168 give the dimensions of the text at its design size, and the remaining six
9169 words give a transformation to be applied to the text. The |new_text_node|
9170 function initializes everything to default values so that the text comes out
9171 black with its reference point at the origin.
9173 @d text_p(A) link((A)+1) /* a string pointer for the text to display */
9174 @d font_n(A) info((A)+1) /* the font number */
9175 @d width_val(A) mp->mem[(A)+7].sc /* unscaled width of the text */
9176 @d height_val(A) mp->mem[(A)+9].sc /* unscaled height of the text */
9177 @d depth_val(A) mp->mem[(A)+10].sc /* unscaled depth of the text */
9178 @d text_tx_loc(A) ((A)+11)
9179 /* the first of six locations for transformation parameters */
9180 @d tx_val(A) mp->mem[(A)+11].sc /* $x$ shift amount */
9181 @d ty_val(A) mp->mem[(A)+12].sc /* $y$ shift amount */
9182 @d txx_val(A) mp->mem[(A)+13].sc /* |txx| transformation parameter */
9183 @d txy_val(A) mp->mem[(A)+14].sc /* |txy| transformation parameter */
9184 @d tyx_val(A) mp->mem[(A)+15].sc /* |tyx| transformation parameter */
9185 @d tyy_val(A) mp->mem[(A)+16].sc /* |tyy| transformation parameter */
9186 @d text_trans_part(A) mp->mem[(A)+11-x_part].sc
9187 /* interpret a text node pointer that has been offset by |x_part..yy_part| */
9188 @d text_node_size 17
9190 @ @<Graphical object codes@>=
9193 @ @c @<Declare text measuring subroutines@>;
9194 pointer mp_new_text_node (MP mp,char *f,str_number s) {
9195 /* make a text node for font |f| and text string |s| */
9196 pointer t; /* the new node */
9197 t=mp_get_node(mp, text_node_size);
9198 type(t)=mp_text_code;
9200 font_n(t)=mp_find_font(mp, f); /* this identifies the font */
9205 color_model(t)=mp_uninitialized_model;
9207 post_script(t)=null;
9208 tx_val(t)=0; ty_val(t)=0;
9209 txx_val(t)=unity; txy_val(t)=0;
9210 tyx_val(t)=0; tyy_val(t)=unity;
9211 mp_set_text_box(mp, t); /* this finds the bounding box */
9215 @ The last two types of graphical objects that can occur in an edge structure
9216 are clipping paths and \&{setbounds} paths. These are slightly more difficult
9217 @:set_bounds_}{\&{setbounds} primitive@>
9218 to implement because we must keep track of exactly what is being clipped or
9219 bounded when pictures get merged together. For this reason, each clipping or
9220 \&{setbounds} operation is represented by a pair of nodes: first comes a
9221 two-word node whose |path_p| gives the relevant path, then there is the list
9222 of objects to clip or bound followed by a two-word node whose second word is
9225 Using at least two words for each graphical object node allows them all to be
9226 allocated and deallocated similarly with a global array |gr_object_size| to
9227 give the size in words for each object type.
9229 @d start_clip_size 2
9230 @d start_bounds_size 2
9231 @d stop_clip_size 2 /* the second word is not used here */
9232 @d stop_bounds_size 2 /* the second word is not used here */
9234 @d stop_type(A) ((A)+2)
9235 /* matching |type| for |start_clip_code| or |start_bounds_code| */
9236 @d has_color(A) (type((A))<mp_start_clip_code)
9237 /* does a graphical object have color fields? */
9238 @d has_pen(A) (type((A))<mp_text_code)
9239 /* does a graphical object have a |pen_p| field? */
9240 @d is_start_or_stop(A) (type((A))>=mp_start_clip_code)
9241 @d is_stop(A) (type((A))>=mp_stop_clip_code)
9243 @ @<Graphical object codes@>=
9244 mp_start_clip_code=4, /* |type| of a node that starts clipping */
9245 mp_start_bounds_code=5, /* |type| of a node that gives a \&{setbounds} path */
9246 mp_stop_clip_code=6, /* |type| of a node that stops clipping */
9247 mp_stop_bounds_code=7, /* |type| of a node that stops \&{setbounds} */
9250 pointer mp_new_bounds_node (MP mp,pointer p, small_number c) {
9251 /* make a node of type |c| where |p| is the clipping or \&{setbounds} path */
9252 pointer t; /* the new node */
9253 t=mp_get_node(mp, mp->gr_object_size[c]);
9259 @ We need an array to keep track of the sizes of graphical objects.
9262 small_number gr_object_size[mp_stop_bounds_code+1];
9265 mp->gr_object_size[mp_fill_code]=fill_node_size;
9266 mp->gr_object_size[mp_stroked_code]=stroked_node_size;
9267 mp->gr_object_size[mp_text_code]=text_node_size;
9268 mp->gr_object_size[mp_start_clip_code]=start_clip_size;
9269 mp->gr_object_size[mp_stop_clip_code]=stop_clip_size;
9270 mp->gr_object_size[mp_start_bounds_code]=start_bounds_size;
9271 mp->gr_object_size[mp_stop_bounds_code]=stop_bounds_size;
9273 @ All the essential information in an edge structure is encoded as a linked list
9274 of graphical objects as we have just seen, but it is helpful to add some
9275 redundant information. A single edge structure might be used as a dash pattern
9276 many times, and it would be nice to avoid scanning the same structure
9277 repeatedly. Thus, an edge structure known to be a suitable dash pattern
9278 has a header that gives a list of dashes in a sorted order designed for rapid
9279 translation into \ps.
9281 Each dash is represented by a three-word node containing the initial and final
9282 $x$~coordinates as well as the usual |link| field. The |link| fields points to
9283 the dash node with the next higher $x$-coordinates and the final link points
9284 to a special location called |null_dash|. (There should be no overlap between
9285 dashes). Since the $y$~coordinate of the dash pattern is needed to determine
9286 the period of repetition, this needs to be stored in the edge header along
9287 with a pointer to the list of dash nodes.
9289 @d start_x(A) mp->mem[(A)+1].sc /* the starting $x$~coordinate in a dash node */
9290 @d stop_x(A) mp->mem[(A)+2].sc /* the ending $x$~coordinate in a dash node */
9293 /* in an edge header this points to the first dash node */
9294 @d dash_y(A) mp->mem[(A)+1].sc /* $y$ value for the dash list in an edge header */
9296 @ It is also convenient for an edge header to contain the bounding
9297 box information needed by the \&{llcorner} and \&{urcorner} operators
9298 so that this does not have to be recomputed unnecessarily. This is done by
9299 adding fields for the $x$~and $y$ extremes as well as a pointer that indicates
9300 how far the bounding box computation has gotten. Thus if the user asks for
9301 the bounding box and then adds some more text to the picture before asking
9302 for more bounding box information, the second computation need only look at
9303 the additional text.
9305 When the bounding box has not been computed, the |bblast| pointer points
9306 to a dummy link at the head of the graphical object list while the |minx_val|
9307 and |miny_val| fields contain |el_gordo| and the |maxx_val| and |maxy_val|
9308 fields contain |-el_gordo|.
9310 Since the bounding box of pictures containing objects of type
9311 |mp_start_bounds_code| depends on the value of \&{truecorners}, the bounding box
9312 @:mp_true_corners_}{\&{truecorners} primitive@>
9313 data might not be valid for all values of this parameter. Hence, the |bbtype|
9314 field is needed to keep track of this.
9316 @d minx_val(A) mp->mem[(A)+2].sc
9317 @d miny_val(A) mp->mem[(A)+3].sc
9318 @d maxx_val(A) mp->mem[(A)+4].sc
9319 @d maxy_val(A) mp->mem[(A)+5].sc
9320 @d bblast(A) link((A)+6) /* last item considered in bounding box computation */
9321 @d bbtype(A) info((A)+6) /* tells how bounding box data depends on \&{truecorners} */
9322 @d dummy_loc(A) ((A)+7) /* where the object list begins in an edge header */
9324 /* |bbtype| value when bounding box data is valid for all \&{truecorners} values */
9326 /* |bbtype| value when bounding box data is for \&{truecorners}${}\le 0$ */
9328 /* |bbtype| value when bounding box data is for \&{truecorners}${}>0$ */
9331 void mp_init_bbox (MP mp,pointer h) {
9332 /* Initialize the bounding box information in edge structure |h| */
9333 bblast(h)=dummy_loc(h);
9334 bbtype(h)=no_bounds;
9335 minx_val(h)=el_gordo;
9336 miny_val(h)=el_gordo;
9337 maxx_val(h)=-el_gordo;
9338 maxy_val(h)=-el_gordo;
9341 @ The only other entries in an edge header are a reference count in the first
9342 word and a pointer to the tail of the object list in the last word.
9344 @d obj_tail(A) info((A)+7) /* points to the last entry in the object list */
9345 @d edge_header_size 8
9348 void mp_init_edges (MP mp,pointer h) {
9349 /* initialize an edge header to null values */
9350 dash_list(h)=null_dash;
9351 obj_tail(h)=dummy_loc(h);
9352 link(dummy_loc(h))=null;
9354 mp_init_bbox(mp, h);
9357 @ Here is how edge structures are deleted. The process can be recursive because
9358 of the need to dereference edge structures that are used as dash patterns.
9361 @d add_edge_ref(A) incr(ref_count(A))
9362 @d delete_edge_ref(A) {
9363 if ( ref_count((A))==null )
9364 mp_toss_edges(mp, A);
9369 @<Declare the recycling subroutines@>=
9370 void mp_flush_dash_list (MP mp,pointer h);
9371 pointer mp_toss_gr_object (MP mp,pointer p) ;
9372 void mp_toss_edges (MP mp,pointer h) ;
9374 @ @c void mp_toss_edges (MP mp,pointer h) {
9375 pointer p,q; /* pointers that scan the list being recycled */
9376 pointer r; /* an edge structure that object |p| refers to */
9377 mp_flush_dash_list(mp, h);
9378 q=link(dummy_loc(h));
9379 while ( (q!=null) ) {
9381 r=mp_toss_gr_object(mp, p);
9382 if ( r!=null ) delete_edge_ref(r);
9384 mp_free_node(mp, h,edge_header_size);
9386 void mp_flush_dash_list (MP mp,pointer h) {
9387 pointer p,q; /* pointers that scan the list being recycled */
9389 while ( q!=null_dash ) {
9391 mp_free_node(mp, p,dash_node_size);
9393 dash_list(h)=null_dash;
9395 pointer mp_toss_gr_object (MP mp,pointer p) {
9396 /* returns an edge structure that needs to be dereferenced */
9397 pointer e; /* the edge structure to return */
9399 @<Prepare to recycle graphical object |p|@>;
9400 mp_free_node(mp, p,mp->gr_object_size[type(p)]);
9404 @ @<Prepare to recycle graphical object |p|@>=
9407 mp_toss_knot_list(mp, path_p(p));
9408 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9409 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9410 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9412 case mp_stroked_code:
9413 mp_toss_knot_list(mp, path_p(p));
9414 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9415 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9416 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9420 delete_str_ref(text_p(p));
9421 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9422 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9424 case mp_start_clip_code:
9425 case mp_start_bounds_code:
9426 mp_toss_knot_list(mp, path_p(p));
9428 case mp_stop_clip_code:
9429 case mp_stop_bounds_code:
9431 } /* there are no other cases */
9433 @ If we use |add_edge_ref| to ``copy'' edge structures, the real copying needs
9434 to be done before making a significant change to an edge structure. Much of
9435 the work is done in a separate routine |copy_objects| that copies a list of
9436 graphical objects into a new edge header.
9438 @c @<Declare a function called |copy_objects|@>;
9439 pointer mp_private_edges (MP mp,pointer h) {
9440 /* make a private copy of the edge structure headed by |h| */
9441 pointer hh; /* the edge header for the new copy */
9442 pointer p,pp; /* pointers for copying the dash list */
9443 if ( ref_count(h)==null ) {
9447 hh=mp_copy_objects(mp, link(dummy_loc(h)),null);
9448 @<Copy the dash list from |h| to |hh|@>;
9449 @<Copy the bounding box information from |h| to |hh| and make |bblast(hh)|
9450 point into the new object list@>;
9455 @ Here we use the fact that |dash_list(hh)=link(hh)|.
9456 @^data structure assumptions@>
9458 @<Copy the dash list from |h| to |hh|@>=
9459 pp=hh; p=dash_list(h);
9460 while ( (p!=null_dash) ) {
9461 link(pp)=mp_get_node(mp, dash_node_size);
9463 start_x(pp)=start_x(p);
9464 stop_x(pp)=stop_x(p);
9468 dash_y(hh)=dash_y(h)
9471 @ |h| is an edge structure
9473 @d gr_start_x(A) (A)->start_x_field
9474 @d gr_stop_x(A) (A)->stop_x_field
9475 @d gr_dash_link(A) (A)->next_field
9477 @d gr_dash_list(A) (A)->list_field
9478 @d gr_dash_y(A) (A)->y_field
9481 struct mp_dash_list *mp_export_dashes (MP mp, pointer h) {
9482 struct mp_dash_list *dl;
9483 struct mp_dash_item *dh, *di;
9485 if (h==null || dash_list(h)==null_dash)
9488 dl = mp_xmalloc(mp,1,sizeof(struct mp_dash_list));
9489 gr_dash_list(dl) = NULL;
9490 gr_dash_y(dl) = dash_y(h);
9492 while (p != null_dash) {
9493 di=mp_xmalloc(mp,1,sizeof(struct mp_dash_item));
9494 gr_dash_link(di) = NULL;
9495 gr_start_x(di) = start_x(p);
9496 gr_stop_x(di) = stop_x(p);
9498 gr_dash_list(dl) = di;
9500 gr_dash_link(dh) = di;
9509 @ @<Copy the bounding box information from |h| to |hh|...@>=
9510 minx_val(hh)=minx_val(h);
9511 miny_val(hh)=miny_val(h);
9512 maxx_val(hh)=maxx_val(h);
9513 maxy_val(hh)=maxy_val(h);
9514 bbtype(hh)=bbtype(h);
9515 p=dummy_loc(h); pp=dummy_loc(hh);
9516 while ((p!=bblast(h)) ) {
9517 if ( p==null ) mp_confusion(mp, "bblast");
9518 @:this can't happen bblast}{\quad bblast@>
9519 p=link(p); pp=link(pp);
9523 @ Here is the promised routine for copying graphical objects into a new edge
9524 structure. It starts copying at object~|p| and stops just before object~|q|.
9525 If |q| is null, it copies the entire sublist headed at |p|. The resulting edge
9526 structure requires further initialization by |init_bbox|.
9528 @<Declare a function called |copy_objects|@>=
9529 pointer mp_copy_objects (MP mp, pointer p, pointer q) {
9530 pointer hh; /* the new edge header */
9531 pointer pp; /* the last newly copied object */
9532 small_number k; /* temporary register */
9533 hh=mp_get_node(mp, edge_header_size);
9534 dash_list(hh)=null_dash;
9538 @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>;
9545 @ @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>=
9546 { k=mp->gr_object_size[type(p)];
9547 link(pp)=mp_get_node(mp, k);
9549 while ( (k>0) ) { decr(k); mp->mem[pp+k]=mp->mem[p+k]; };
9550 @<Fix anything in graphical object |pp| that should differ from the
9551 corresponding field in |p|@>;
9555 @ @<Fix anything in graphical object |pp| that should differ from the...@>=
9557 case mp_start_clip_code:
9558 case mp_start_bounds_code:
9559 path_p(pp)=mp_copy_path(mp, path_p(p));
9562 path_p(pp)=mp_copy_path(mp, path_p(p));
9563 if ( pen_p(p)!=null ) pen_p(pp)=copy_pen(pen_p(p));
9565 case mp_stroked_code:
9566 path_p(pp)=mp_copy_path(mp, path_p(p));
9567 pen_p(pp)=copy_pen(pen_p(p));
9568 if ( dash_p(p)!=null ) add_edge_ref(dash_p(pp));
9571 add_str_ref(text_p(pp));
9573 case mp_stop_clip_code:
9574 case mp_stop_bounds_code:
9576 } /* there are no other cases */
9578 @ Here is one way to find an acceptable value for the second argument to
9579 |copy_objects|. Given a non-null graphical object list, |skip_1component|
9580 skips past one picture component, where a ``picture component'' is a single
9581 graphical object, or a start bounds or start clip object and everything up
9582 through the matching stop bounds or stop clip object. The macro version avoids
9583 procedure call overhead and error handling: |skip_component(p)(e)| advances |p|
9584 unless |p| points to a stop bounds or stop clip node, in which case it executes
9587 @d skip_component(A)
9588 if ( ! is_start_or_stop((A)) ) (A)=link((A));
9589 else if ( ! is_stop((A)) ) (A)=mp_skip_1component(mp, (A));
9593 pointer mp_skip_1component (MP mp,pointer p) {
9594 integer lev; /* current nesting level */
9597 if ( is_start_or_stop(p) ) {
9598 if ( is_stop(p) ) decr(lev); else incr(lev);
9605 @ Here is a diagnostic routine for printing an edge structure in symbolic form.
9607 @<Declare subroutines for printing expressions@>=
9608 @<Declare subroutines needed by |print_edges|@>;
9609 void mp_print_edges (MP mp,pointer h, char *s, boolean nuline) {
9610 pointer p; /* a graphical object to be printed */
9611 pointer hh,pp; /* temporary pointers */
9612 scaled scf; /* a scale factor for the dash pattern */
9613 boolean ok_to_dash; /* |false| for polygonal pen strokes */
9614 mp_print_diagnostic(mp, "Edge structure",s,nuline);
9616 while ( link(p)!=null ) {
9620 @<Cases for printing graphical object node |p|@>;
9622 mp_print(mp, "[unknown object type!]");
9626 mp_print_nl(mp, "End edges");
9627 if ( p!=obj_tail(h) ) mp_print(mp, "?");
9629 mp_end_diagnostic(mp, true);
9632 @ @<Cases for printing graphical object node |p|@>=
9634 mp_print(mp, "Filled contour ");
9635 mp_print_obj_color(mp, p);
9636 mp_print_char(mp, ':'); mp_print_ln(mp);
9637 mp_pr_path(mp, path_p(p)); mp_print_ln(mp);
9638 if ( (pen_p(p)!=null) ) {
9639 @<Print join type for graphical object |p|@>;
9640 mp_print(mp, " with pen"); mp_print_ln(mp);
9641 mp_pr_pen(mp, pen_p(p));
9645 @ @<Print join type for graphical object |p|@>=
9646 switch (ljoin_val(p)) {
9648 mp_print(mp, "mitered joins limited ");
9649 mp_print_scaled(mp, miterlim_val(p));
9652 mp_print(mp, "round joins");
9655 mp_print(mp, "beveled joins");
9658 mp_print(mp, "?? joins");
9663 @ For stroked nodes, we need to print |lcap_val(p)| as well.
9665 @<Print join and cap types for stroked node |p|@>=
9666 switch (lcap_val(p)) {
9667 case 0:mp_print(mp, "butt"); break;
9668 case 1:mp_print(mp, "round"); break;
9669 case 2:mp_print(mp, "square"); break;
9670 default: mp_print(mp, "??"); break;
9673 mp_print(mp, " ends, ");
9674 @<Print join type for graphical object |p|@>
9676 @ Here is a routine that prints the color of a graphical object if it isn't
9677 black (the default color).
9679 @<Declare subroutines needed by |print_edges|@>=
9680 @<Declare a procedure called |print_compact_node|@>;
9681 void mp_print_obj_color (MP mp,pointer p) {
9682 if ( color_model(p)==mp_grey_model ) {
9683 if ( grey_val(p)>0 ) {
9684 mp_print(mp, "greyed ");
9685 mp_print_compact_node(mp, obj_grey_loc(p),1);
9687 } else if ( color_model(p)==mp_cmyk_model ) {
9688 if ( (cyan_val(p)>0) || (magenta_val(p)>0) ||
9689 (yellow_val(p)>0) || (black_val(p)>0) ) {
9690 mp_print(mp, "processcolored ");
9691 mp_print_compact_node(mp, obj_cyan_loc(p),4);
9693 } else if ( color_model(p)==mp_rgb_model ) {
9694 if ( (red_val(p)>0) || (green_val(p)>0) || (blue_val(p)>0) ) {
9695 mp_print(mp, "colored ");
9696 mp_print_compact_node(mp, obj_red_loc(p),3);
9701 @ We also need a procedure for printing consecutive scaled values as if they
9702 were a known big node.
9704 @<Declare a procedure called |print_compact_node|@>=
9705 void mp_print_compact_node (MP mp,pointer p, small_number k) {
9706 pointer q; /* last location to print */
9708 mp_print_char(mp, '(');
9710 mp_print_scaled(mp, mp->mem[p].sc);
9711 if ( p<q ) mp_print_char(mp, ',');
9714 mp_print_char(mp, ')');
9717 @ @<Cases for printing graphical object node |p|@>=
9718 case mp_stroked_code:
9719 mp_print(mp, "Filled pen stroke ");
9720 mp_print_obj_color(mp, p);
9721 mp_print_char(mp, ':'); mp_print_ln(mp);
9722 mp_pr_path(mp, path_p(p));
9723 if ( dash_p(p)!=null ) {
9724 mp_print_nl(mp, "dashed (");
9725 @<Finish printing the dash pattern that |p| refers to@>;
9728 @<Print join and cap types for stroked node |p|@>;
9729 mp_print(mp, " with pen"); mp_print_ln(mp);
9730 if ( pen_p(p)==null ) mp_print(mp, "???"); /* shouldn't happen */
9732 else mp_pr_pen(mp, pen_p(p));
9735 @ Normally, the |dash_list| field in an edge header is set to |null_dash|
9736 when it is not known to define a suitable dash pattern. This is disallowed
9737 here because the |dash_p| field should never point to such an edge header.
9738 Note that memory is allocated for |start_x(null_dash)| and we are free to
9739 give it any convenient value.
9741 @<Finish printing the dash pattern that |p| refers to@>=
9742 ok_to_dash=pen_is_elliptical(pen_p(p));
9743 if ( ! ok_to_dash ) scf=unity; else scf=dash_scale(p);
9746 if ( (pp==null_dash) || (dash_y(hh)<0) ) {
9747 mp_print(mp, " ??");
9748 } else { start_x(null_dash)=start_x(pp)+dash_y(hh);
9749 while ( pp!=null_dash ) {
9750 mp_print(mp, "on ");
9751 mp_print_scaled(mp, mp_take_scaled(mp, stop_x(pp)-start_x(pp),scf));
9752 mp_print(mp, " off ");
9753 mp_print_scaled(mp, mp_take_scaled(mp, start_x(link(pp))-stop_x(pp),scf));
9755 if ( pp!=null_dash ) mp_print_char(mp, ' ');
9757 mp_print(mp, ") shifted ");
9758 mp_print_scaled(mp, -mp_take_scaled(mp, mp_dash_offset(mp, hh),scf));
9759 if ( ! ok_to_dash || (dash_y(hh)==0) ) mp_print(mp, " (this will be ignored)");
9762 @ @<Declare subroutines needed by |print_edges|@>=
9763 scaled mp_dash_offset (MP mp,pointer h) {
9764 scaled x; /* the answer */
9765 if (dash_list(h)==null_dash || dash_y(h)<0) mp_confusion(mp, "dash0");
9766 @:this can't happen dash0}{\quad dash0@>
9767 if ( dash_y(h)==0 ) {
9770 x=-(start_x(dash_list(h)) % dash_y(h));
9771 if ( x<0 ) x=x+dash_y(h);
9776 @ @<Cases for printing graphical object node |p|@>=
9778 mp_print_char(mp, '"'); mp_print_str(mp,text_p(p));
9779 mp_print(mp, "\" infont \""); mp_print(mp, mp->font_name[font_n(p)]);
9780 mp_print_char(mp, '"'); mp_print_ln(mp);
9781 mp_print_obj_color(mp, p);
9782 mp_print(mp, "transformed ");
9783 mp_print_compact_node(mp, text_tx_loc(p),6);
9786 @ @<Cases for printing graphical object node |p|@>=
9787 case mp_start_clip_code:
9788 mp_print(mp, "clipping path:");
9790 mp_pr_path(mp, path_p(p));
9792 case mp_stop_clip_code:
9793 mp_print(mp, "stop clipping");
9796 @ @<Cases for printing graphical object node |p|@>=
9797 case mp_start_bounds_code:
9798 mp_print(mp, "setbounds path:");
9800 mp_pr_path(mp, path_p(p));
9802 case mp_stop_bounds_code:
9803 mp_print(mp, "end of setbounds");
9806 @ To initialize the |dash_list| field in an edge header~|h|, we need a
9807 subroutine that scans an edge structure and tries to interpret it as a dash
9808 pattern. This can only be done when there are no filled regions or clipping
9809 paths and all the pen strokes have the same color. The first step is to let
9810 $y_0$ be the initial $y$~coordinate of the first pen stroke. Then we implicitly
9811 project all the pen stroke paths onto the line $y=y_0$ and require that there
9812 be no retracing. If the resulting paths cover a range of $x$~coordinates of
9813 length $\Delta x$, we set |dash_y(h)| to the length of the dash pattern by
9814 finding the maximum of $\Delta x$ and the absolute value of~$y_0$.
9816 @c @<Declare a procedure called |x_retrace_error|@>;
9817 pointer mp_make_dashes (MP mp,pointer h) { /* returns |h| or |null| */
9818 pointer p; /* this scans the stroked nodes in the object list */
9819 pointer p0; /* if not |null| this points to the first stroked node */
9820 pointer pp,qq,rr; /* pointers into |path_p(p)| */
9821 pointer d,dd; /* pointers used to create the dash list */
9822 @<Other local variables in |make_dashes|@>;
9823 scaled y0=0; /* the initial $y$ coordinate */
9824 if ( dash_list(h)!=null_dash )
9827 p=link(dummy_loc(h));
9829 if ( type(p)!=mp_stroked_code ) {
9830 @<Compain that the edge structure contains a node of the wrong type
9831 and |goto not_found|@>;
9834 if ( p0==null ){ p0=p; y0=y_coord(pp); };
9835 @<Make |d| point to a new dash node created from stroke |p| and path |pp|
9836 or |goto not_found| if there is an error@>;
9837 @<Insert |d| into the dash list and |goto not_found| if there is an error@>;
9840 if ( dash_list(h)==null_dash )
9841 goto NOT_FOUND; /* No error message */
9842 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>;
9843 @<Set |dash_y(h)| and merge the first and last dashes if necessary@>;
9846 @<Flush the dash list, recycle |h| and return |null|@>;
9849 @ @<Compain that the edge structure contains a node of the wrong type...@>=
9851 print_err("Picture is too complicated to use as a dash pattern");
9852 help3("When you say `dashed p', picture p should not contain any")
9853 ("text, filled regions, or clipping paths. This time it did")
9854 ("so I'll just make it a solid line instead.");
9855 mp_put_get_error(mp);
9859 @ A similar error occurs when monotonicity fails.
9861 @<Declare a procedure called |x_retrace_error|@>=
9862 void mp_x_retrace_error (MP mp) {
9863 print_err("Picture is too complicated to use as a dash pattern");
9864 help3("When you say `dashed p', every path in p should be monotone")
9865 ("in x and there must be no overlapping. This failed")
9866 ("so I'll just make it a solid line instead.");
9867 mp_put_get_error(mp);
9870 @ We stash |p| in |info(d)| if |dash_p(p)<>0| so that subsequent processing can
9871 handle the case where the pen stroke |p| is itself dashed.
9873 @<Make |d| point to a new dash node created from stroke |p| and path...@>=
9874 @<Make sure |p| and |p0| are the same color and |goto not_found| if there is
9877 if ( link(pp)!=pp ) {
9880 @<Check for retracing between knots |qq| and |rr| and |goto not_found|
9881 if there is a problem@>;
9882 } while (right_type(rr)!=mp_endpoint);
9884 d=mp_get_node(mp, dash_node_size);
9885 if ( dash_p(p)==0 ) info(d)=0; else info(d)=p;
9886 if ( x_coord(pp)<x_coord(rr) ) {
9887 start_x(d)=x_coord(pp);
9888 stop_x(d)=x_coord(rr);
9890 start_x(d)=x_coord(rr);
9891 stop_x(d)=x_coord(pp);
9894 @ We also need to check for the case where the segment from |qq| to |rr| is
9895 monotone in $x$ but is reversed relative to the path from |pp| to |qq|.
9897 @<Check for retracing between knots |qq| and |rr| and |goto not_found|...@>=
9902 if ( (x0>x1) || (x1>x2) || (x2>x3) ) {
9903 if ( (x0<x1) || (x1<x2) || (x2<x3) ) {
9904 if ( mp_ab_vs_cd(mp, x2-x1,x2-x1,x1-x0,x3-x2)>0 ) {
9905 mp_x_retrace_error(mp); goto NOT_FOUND;
9909 if ( (x_coord(pp)>x0) || (x0>x3) ) {
9910 if ( (x_coord(pp)<x0) || (x0<x3) ) {
9911 mp_x_retrace_error(mp); goto NOT_FOUND;
9915 @ @<Other local variables in |make_dashes|@>=
9916 scaled x0,x1,x2,x3; /* $x$ coordinates of the segment from |qq| to |rr| */
9918 @ @<Make sure |p| and |p0| are the same color and |goto not_found|...@>=
9919 if ( (red_val(p)!=red_val(p0)) || (black_val(p)!=black_val(p0)) ||
9920 (green_val(p)!=green_val(p0)) || (blue_val(p)!=blue_val(p0)) ) {
9921 print_err("Picture is too complicated to use as a dash pattern");
9922 help3("When you say `dashed p', everything in picture p should")
9923 ("be the same color. I can\'t handle your color changes")
9924 ("so I'll just make it a solid line instead.");
9925 mp_put_get_error(mp);
9929 @ @<Insert |d| into the dash list and |goto not_found| if there is an error@>=
9930 start_x(null_dash)=stop_x(d);
9931 dd=h; /* this makes |link(dd)=dash_list(h)| */
9932 while ( start_x(link(dd))<stop_x(d) )
9935 if ( (stop_x(dd)>start_x(d)) )
9936 { mp_x_retrace_error(mp); goto NOT_FOUND; };
9941 @ @<Set |dash_y(h)| and merge the first and last dashes if necessary@>=
9943 while ( (link(d)!=null_dash) )
9946 dash_y(h)=stop_x(d)-start_x(dd);
9947 if ( abs(y0)>dash_y(h) ) {
9949 } else if ( d!=dd ) {
9950 dash_list(h)=link(dd);
9951 stop_x(d)=stop_x(dd)+dash_y(h);
9952 mp_free_node(mp, dd,dash_node_size);
9955 @ We get here when the argument is a null picture or when there is an error.
9956 Recovering from an error involves making |dash_list(h)| empty to indicate
9957 that |h| is not known to be a valid dash pattern. We also dereference |h|
9958 since it is not being used for the return value.
9960 @<Flush the dash list, recycle |h| and return |null|@>=
9961 mp_flush_dash_list(mp, h);
9965 @ Having carefully saved the dashed stroked nodes in the
9966 corresponding dash nodes, we must be prepared to break up these dashes into
9969 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>=
9970 d=h; /* now |link(d)=dash_list(h)| */
9971 while ( link(d)!=null_dash ) {
9978 if ( (hh==null) ) mp_confusion(mp, "dash1");
9979 @:this can't happen dash0}{\quad dash1@>
9980 if ( dash_y(hh)==0 ) {
9983 if ( dash_list(hh)==null ) mp_confusion(mp, "dash1");
9984 @:this can't happen dash0}{\quad dash1@>
9985 @<Replace |link(d)| by a dashed version as determined by edge header
9986 |hh| and scale factor |ds|@>;
9991 @ @<Other local variables in |make_dashes|@>=
9992 pointer dln; /* |link(d)| */
9993 pointer hh; /* an edge header that tells how to break up |dln| */
9994 scaled hsf; /* the dash pattern from |hh| gets scaled by this */
9995 pointer ds; /* the stroked node from which |hh| and |hsf| are derived */
9996 scaled xoff; /* added to $x$ values in |dash_list(hh)| to match |dln| */
9998 @ @<Replace |link(d)| by a dashed version as determined by edge header...@>=
10001 xoff=start_x(dln)-mp_take_scaled(mp, hsf,start_x(dd))-
10002 mp_take_scaled(mp, hsf,mp_dash_offset(mp, hh));
10003 start_x(null_dash)=mp_take_scaled(mp, hsf,start_x(dd))
10004 +mp_take_scaled(mp, hsf,dash_y(hh));
10005 stop_x(null_dash)=start_x(null_dash);
10006 @<Advance |dd| until finding the first dash that overlaps |dln| when
10007 offset by |xoff|@>;
10008 while ( start_x(dln)<=stop_x(dln) ) {
10009 @<If |dd| has `fallen off the end', back up to the beginning and fix |xoff|@>;
10010 @<Insert a dash between |d| and |dln| for the overlap with the offset version
10013 start_x(dln)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10016 mp_free_node(mp, dln,dash_node_size)
10018 @ The name of this module is a bit of a lie because we just find the
10019 first |dd| where |take_scaled (hsf, stop_x(dd))| is large enough to make an
10020 overlap possible. It could be that the unoffset version of dash |dln| falls
10021 in the gap between |dd| and its predecessor.
10023 @<Advance |dd| until finding the first dash that overlaps |dln| when...@>=
10024 while ( xoff+mp_take_scaled(mp, hsf,stop_x(dd))<start_x(dln) ) {
10028 @ @<If |dd| has `fallen off the end', back up to the beginning and fix...@>=
10029 if ( dd==null_dash ) {
10031 xoff=xoff+mp_take_scaled(mp, hsf,dash_y(hh));
10034 @ At this point we already know that
10035 |start_x(dln)<=xoff+take_scaled(hsf,stop_x(dd))|.
10037 @<Insert a dash between |d| and |dln| for the overlap with the offset...@>=
10038 if ( (xoff+mp_take_scaled(mp, hsf,start_x(dd)))<=stop_x(dln) ) {
10039 link(d)=mp_get_node(mp, dash_node_size);
10042 if ( start_x(dln)>(xoff+mp_take_scaled(mp, hsf,start_x(dd))))
10043 start_x(d)=start_x(dln);
10045 start_x(d)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10046 if ( stop_x(dln)<(xoff+mp_take_scaled(mp, hsf,stop_x(dd))))
10047 stop_x(d)=stop_x(dln);
10049 stop_x(d)=xoff+mp_take_scaled(mp, hsf,stop_x(dd));
10052 @ The next major task is to update the bounding box information in an edge
10053 header~|h|. This is done via a procedure |adjust_bbox| that enlarges an edge
10054 header's bounding box to accommodate the box computed by |path_bbox| or
10055 |pen_bbox|. (This is stored in global variables |minx|, |miny|, |maxx|, and
10058 @c void mp_adjust_bbox (MP mp,pointer h) {
10059 if ( minx<minx_val(h) ) minx_val(h)=minx;
10060 if ( miny<miny_val(h) ) miny_val(h)=miny;
10061 if ( maxx>maxx_val(h) ) maxx_val(h)=maxx;
10062 if ( maxy>maxy_val(h) ) maxy_val(h)=maxy;
10065 @ Here is a special routine for updating the bounding box information in
10066 edge header~|h| to account for the squared-off ends of a non-cyclic path~|p|
10067 that is to be stroked with the pen~|pp|.
10069 @c void mp_box_ends (MP mp, pointer p, pointer pp, pointer h) {
10070 pointer q; /* a knot node adjacent to knot |p| */
10071 fraction dx,dy; /* a unit vector in the direction out of the path at~|p| */
10072 scaled d; /* a factor for adjusting the length of |(dx,dy)| */
10073 scaled z; /* a coordinate being tested against the bounding box */
10074 scaled xx,yy; /* the extreme pen vertex in the |(dx,dy)| direction */
10075 integer i; /* a loop counter */
10076 if ( right_type(p)!=mp_endpoint ) {
10079 @<Make |(dx,dy)| the final direction for the path segment from
10080 |q| to~|p|; set~|d|@>;
10081 d=mp_pyth_add(mp, dx,dy);
10083 @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>;
10084 for (i=1;i<= 2;i++) {
10085 @<Use |(dx,dy)| to generate a vertex of the square end cap and
10086 update the bounding box to accommodate it@>;
10090 if ( right_type(p)==mp_endpoint ) {
10093 @<Advance |p| to the end of the path and make |q| the previous knot@>;
10099 @ @<Make |(dx,dy)| the final direction for the path segment from...@>=
10100 if ( q==link(p) ) {
10101 dx=x_coord(p)-right_x(p);
10102 dy=y_coord(p)-right_y(p);
10103 if ( (dx==0)&&(dy==0) ) {
10104 dx=x_coord(p)-left_x(q);
10105 dy=y_coord(p)-left_y(q);
10108 dx=x_coord(p)-left_x(p);
10109 dy=y_coord(p)-left_y(p);
10110 if ( (dx==0)&&(dy==0) ) {
10111 dx=x_coord(p)-right_x(q);
10112 dy=y_coord(p)-right_y(q);
10115 dx=x_coord(p)-x_coord(q);
10116 dy=y_coord(p)-y_coord(q)
10118 @ @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>=
10119 dx=mp_make_fraction(mp, dx,d);
10120 dy=mp_make_fraction(mp, dy,d);
10121 mp_find_offset(mp, -dy,dx,pp);
10122 xx=mp->cur_x; yy=mp->cur_y
10124 @ @<Use |(dx,dy)| to generate a vertex of the square end cap and...@>=
10125 mp_find_offset(mp, dx,dy,pp);
10126 d=mp_take_fraction(mp, xx-mp->cur_x,dx)+mp_take_fraction(mp, yy-mp->cur_y,dy);
10127 if ( ((d<0)&&(i==1)) || ((d>0)&&(i==2)))
10128 mp_confusion(mp, "box_ends");
10129 @:this can't happen box ends}{\quad\\{box\_ends}@>
10130 z=x_coord(p)+mp->cur_x+mp_take_fraction(mp, d,dx);
10131 if ( z<minx_val(h) ) minx_val(h)=z;
10132 if ( z>maxx_val(h) ) maxx_val(h)=z;
10133 z=y_coord(p)+mp->cur_y+mp_take_fraction(mp, d,dy);
10134 if ( z<miny_val(h) ) miny_val(h)=z;
10135 if ( z>maxy_val(h) ) maxy_val(h)=z
10137 @ @<Advance |p| to the end of the path and make |q| the previous knot@>=
10141 } while (right_type(p)!=mp_endpoint)
10143 @ The major difficulty in finding the bounding box of an edge structure is the
10144 effect of clipping paths. We treat them conservatively by only clipping to the
10145 clipping path's bounding box, but this still
10146 requires recursive calls to |set_bbox| in order to find the bounding box of
10148 the objects to be clipped. Such calls are distinguished by the fact that the
10149 boolean parameter |top_level| is false.
10151 @c void mp_set_bbox (MP mp,pointer h, boolean top_level) {
10152 pointer p; /* a graphical object being considered */
10153 scaled sminx,sminy,smaxx,smaxy;
10154 /* for saving the bounding box during recursive calls */
10155 scaled x0,x1,y0,y1; /* temporary registers */
10156 integer lev; /* nesting level for |mp_start_bounds_code| nodes */
10157 @<Wipe out any existing bounding box information if |bbtype(h)| is
10158 incompatible with |internal[mp_true_corners]|@>;
10159 while ( link(bblast(h))!=null ) {
10163 case mp_stop_clip_code:
10164 if ( top_level ) mp_confusion(mp, "bbox"); else return;
10165 @:this can't happen bbox}{\quad bbox@>
10167 @<Other cases for updating the bounding box based on the type of object |p|@>;
10168 } /* all cases are enumerated above */
10170 if ( ! top_level ) mp_confusion(mp, "bbox");
10173 @ @<Internal library declarations@>=
10174 void mp_set_bbox (MP mp,pointer h, boolean top_level);
10176 @ @<Wipe out any existing bounding box information if |bbtype(h)| is...@>=
10177 switch (bbtype(h)) {
10181 if ( mp->internal[mp_true_corners]>0 ) mp_init_bbox(mp, h);
10184 if ( mp->internal[mp_true_corners]<=0 ) mp_init_bbox(mp, h);
10186 } /* there are no other cases */
10188 @ @<Other cases for updating the bounding box...@>=
10190 mp_path_bbox(mp, path_p(p));
10191 if ( pen_p(p)!=null ) {
10194 mp_pen_bbox(mp, pen_p(p));
10200 mp_adjust_bbox(mp, h);
10203 @ @<Other cases for updating the bounding box...@>=
10204 case mp_start_bounds_code:
10205 if ( mp->internal[mp_true_corners]>0 ) {
10206 bbtype(h)=bounds_unset;
10208 bbtype(h)=bounds_set;
10209 mp_path_bbox(mp, path_p(p));
10210 mp_adjust_bbox(mp, h);
10211 @<Scan to the matching |mp_stop_bounds_code| node and update |p| and
10215 case mp_stop_bounds_code:
10216 if ( mp->internal[mp_true_corners]<=0 ) mp_confusion(mp, "bbox2");
10217 @:this can't happen bbox2}{\quad bbox2@>
10220 @ @<Scan to the matching |mp_stop_bounds_code| node and update |p| and...@>=
10223 if ( link(p)==null ) mp_confusion(mp, "bbox2");
10224 @:this can't happen bbox2}{\quad bbox2@>
10226 if ( type(p)==mp_start_bounds_code ) incr(lev);
10227 else if ( type(p)==mp_stop_bounds_code ) decr(lev);
10231 @ It saves a lot of grief here to be slightly conservative and not account for
10232 omitted parts of dashed lines. We also don't worry about the material omitted
10233 when using butt end caps. The basic computation is for round end caps and
10234 |box_ends| augments it for square end caps.
10236 @<Other cases for updating the bounding box...@>=
10237 case mp_stroked_code:
10238 mp_path_bbox(mp, path_p(p));
10241 mp_pen_bbox(mp, pen_p(p));
10246 mp_adjust_bbox(mp, h);
10247 if ( (left_type(path_p(p))==mp_endpoint)&&(lcap_val(p)==2) )
10248 mp_box_ends(mp, path_p(p), pen_p(p), h);
10251 @ The height width and depth information stored in a text node determines a
10252 rectangle that needs to be transformed according to the transformation
10253 parameters stored in the text node.
10255 @<Other cases for updating the bounding box...@>=
10257 x1=mp_take_scaled(mp, txx_val(p),width_val(p));
10258 y0=mp_take_scaled(mp, txy_val(p),-depth_val(p));
10259 y1=mp_take_scaled(mp, txy_val(p),height_val(p));
10262 if ( y0<y1 ) { minx=minx+y0; maxx=maxx+y1; }
10263 else { minx=minx+y1; maxx=maxx+y0; }
10264 if ( x1<0 ) minx=minx+x1; else maxx=maxx+x1;
10265 x1=mp_take_scaled(mp, tyx_val(p),width_val(p));
10266 y0=mp_take_scaled(mp, tyy_val(p),-depth_val(p));
10267 y1=mp_take_scaled(mp, tyy_val(p),height_val(p));
10270 if ( y0<y1 ) { miny=miny+y0; maxy=maxy+y1; }
10271 else { miny=miny+y1; maxy=maxy+y0; }
10272 if ( x1<0 ) miny=miny+x1; else maxy=maxy+x1;
10273 mp_adjust_bbox(mp, h);
10276 @ This case involves a recursive call that advances |bblast(h)| to the node of
10277 type |mp_stop_clip_code| that matches |p|.
10279 @<Other cases for updating the bounding box...@>=
10280 case mp_start_clip_code:
10281 mp_path_bbox(mp, path_p(p));
10284 sminx=minx_val(h); sminy=miny_val(h);
10285 smaxx=maxx_val(h); smaxy=maxy_val(h);
10286 @<Reinitialize the bounding box in header |h| and call |set_bbox| recursively
10287 starting at |link(p)|@>;
10288 @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,
10290 minx=sminx; miny=sminy;
10291 maxx=smaxx; maxy=smaxy;
10292 mp_adjust_bbox(mp, h);
10295 @ @<Reinitialize the bounding box in header |h| and call |set_bbox|...@>=
10296 minx_val(h)=el_gordo;
10297 miny_val(h)=el_gordo;
10298 maxx_val(h)=-el_gordo;
10299 maxy_val(h)=-el_gordo;
10300 mp_set_bbox(mp, h,false)
10302 @ @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,...@>=
10303 if ( minx_val(h)<x0 ) minx_val(h)=x0;
10304 if ( miny_val(h)<y0 ) miny_val(h)=y0;
10305 if ( maxx_val(h)>x1 ) maxx_val(h)=x1;
10306 if ( maxy_val(h)>y1 ) maxy_val(h)=y1
10308 @* \[22] Finding an envelope.
10309 When \MP\ has a path and a polygonal pen, it needs to express the desired
10310 shape in terms of things \ps\ can understand. The present task is to compute
10311 a new path that describes the region to be filled. It is convenient to
10312 define this as a two step process where the first step is determining what
10313 offset to use for each segment of the path.
10315 @ Given a pointer |c| to a cyclic path,
10316 and a pointer~|h| to the first knot of a pen polygon,
10317 the |offset_prep| routine changes the path into cubics that are
10318 associated with particular pen offsets. Thus if the cubic between |p|
10319 and~|q| is associated with the |k|th offset and the cubic between |q| and~|r|
10320 has offset |l| then |info(q)=zero_off+l-k|. (The constant |zero_off| is added
10321 to because |l-k| could be negative.)
10323 After overwriting the type information with offset differences, we no longer
10324 have a true path so we refer to the knot list returned by |offset_prep| as an
10327 Since an envelope spec only determines relative changes in pen offsets,
10328 |offset_prep| sets a global variable |spec_offset| to the relative change from
10329 |h| to the first offset.
10331 @d zero_off 16384 /* added to offset changes to make them positive */
10334 integer spec_offset; /* number of pen edges between |h| and the initial offset */
10336 @ @c @<Declare subroutines needed by |offset_prep|@>;
10337 pointer mp_offset_prep (MP mp,pointer c, pointer h) {
10338 halfword n; /* the number of vertices in the pen polygon */
10339 pointer p,q,q0,r,w, ww; /* for list manipulation */
10340 integer k_needed; /* amount to be added to |info(p)| when it is computed */
10341 pointer w0; /* a pointer to pen offset to use just before |p| */
10342 scaled dxin,dyin; /* the direction into knot |p| */
10343 integer turn_amt; /* change in pen offsets for the current cubic */
10344 @<Other local variables for |offset_prep|@>;
10346 @<Initialize the pen size~|n|@>;
10347 @<Initialize the incoming direction and pen offset at |c|@>;
10351 @<Split the cubic between |p| and |q|, if necessary, into cubics
10352 associated with single offsets, after which |q| should
10353 point to the end of the final such cubic@>;
10355 @<Advance |p| to node |q|, removing any ``dead'' cubics that
10356 might have been introduced by the splitting process@>;
10358 @<Fix the offset change in |info(c)| and set |c| to the return value of
10363 @ We shall want to keep track of where certain knots on the cyclic path
10364 wind up in the envelope spec. It doesn't suffice just to keep pointers to
10365 knot nodes because some nodes are deleted while removing dead cubics. Thus
10366 |offset_prep| updates the following pointers
10370 pointer spec_p2; /* pointers to distinguished knots */
10373 mp->spec_p1=null; mp->spec_p2=null;
10375 @ @<Initialize the pen size~|n|@>=
10382 @ Since the true incoming direction isn't known yet, we just pick a direction
10383 consistent with the pen offset~|h|. If this is wrong, it can be corrected
10386 @<Initialize the incoming direction and pen offset at |c|@>=
10387 dxin=x_coord(link(h))-x_coord(knil(h));
10388 dyin=y_coord(link(h))-y_coord(knil(h));
10389 if ( (dxin==0)&&(dyin==0) ) {
10390 dxin=y_coord(knil(h))-y_coord(h);
10391 dyin=x_coord(h)-x_coord(knil(h));
10395 @ We must be careful not to remove the only cubic in a cycle.
10397 But we must also be careful for another reason. If the user-supplied
10398 path starts with a set of degenerate cubics, the target node |q| can
10399 be collapsed to the initial node |p| which might be the same as the
10400 initial node |c| of the curve. This would cause the |offset_prep| routine
10401 to bail out too early, causing distress later on. (See for example
10402 the testcase reported by Bogus\l{}aw Jackowski in tracker id 267, case 52c
10405 @<Advance |p| to node |q|, removing any ``dead'' cubics...@>=
10409 if ( x_coord(p)==right_x(p) && y_coord(p)==right_y(p) &&
10410 x_coord(p)==left_x(r) && y_coord(p)==left_y(r) &&
10411 x_coord(p)==x_coord(r) && y_coord(p)==y_coord(r) &&
10413 @<Remove the cubic following |p| and update the data structures
10414 to merge |r| into |p|@>;
10418 /* Check if we removed too much */
10422 @ @<Remove the cubic following |p| and update the data structures...@>=
10423 { k_needed=info(p)-zero_off;
10427 info(p)=k_needed+info(r);
10430 if ( r==c ) { info(p)=info(c); c=p; };
10431 if ( r==mp->spec_p1 ) mp->spec_p1=p;
10432 if ( r==mp->spec_p2 ) mp->spec_p2=p;
10433 r=p; mp_remove_cubic(mp, p);
10436 @ Not setting the |info| field of the newly created knot allows the splitting
10437 routine to work for paths.
10439 @<Declare subroutines needed by |offset_prep|@>=
10440 void mp_split_cubic (MP mp,pointer p, fraction t) { /* splits the cubic after |p| */
10441 scaled v; /* an intermediate value */
10442 pointer q,r; /* for list manipulation */
10443 q=link(p); r=mp_get_node(mp, knot_node_size); link(p)=r; link(r)=q;
10444 originator(r)=mp_program_code;
10445 left_type(r)=mp_explicit; right_type(r)=mp_explicit;
10446 v=t_of_the_way(right_x(p),left_x(q));
10447 right_x(p)=t_of_the_way(x_coord(p),right_x(p));
10448 left_x(q)=t_of_the_way(left_x(q),x_coord(q));
10449 left_x(r)=t_of_the_way(right_x(p),v);
10450 right_x(r)=t_of_the_way(v,left_x(q));
10451 x_coord(r)=t_of_the_way(left_x(r),right_x(r));
10452 v=t_of_the_way(right_y(p),left_y(q));
10453 right_y(p)=t_of_the_way(y_coord(p),right_y(p));
10454 left_y(q)=t_of_the_way(left_y(q),y_coord(q));
10455 left_y(r)=t_of_the_way(right_y(p),v);
10456 right_y(r)=t_of_the_way(v,left_y(q));
10457 y_coord(r)=t_of_the_way(left_y(r),right_y(r));
10460 @ This does not set |info(p)| or |right_type(p)|.
10462 @<Declare subroutines needed by |offset_prep|@>=
10463 void mp_remove_cubic (MP mp,pointer p) { /* removes the dead cubic following~|p| */
10464 pointer q; /* the node that disappears */
10465 q=link(p); link(p)=link(q);
10466 right_x(p)=right_x(q); right_y(p)=right_y(q);
10467 mp_free_node(mp, q,knot_node_size);
10470 @ Let $d\prec d'$ mean that the counter-clockwise angle from $d$ to~$d'$ is
10471 strictly between zero and $180^\circ$. Then we can define $d\preceq d'$ to
10472 mean that the angle could be zero or $180^\circ$. If $w_k=(u_k,v_k)$ is the
10473 $k$th pen offset, the $k$th pen edge direction is defined by the formula
10474 $$d_k=(u\k-u_k,\,v\k-v_k).$$
10475 When listed by increasing $k$, these directions occur in counter-clockwise
10476 order so that $d_k\preceq d\k$ for all~$k$.
10477 The goal of |offset_prep| is to find an offset index~|k| to associate with
10478 each cubic, such that the direction $d(t)$ of the cubic satisfies
10479 $$d_{k-1}\preceq d(t)\preceq d_k\qquad\hbox{for $0\le t\le 1$.}\eqno(*)$$
10480 We may have to split a cubic into many pieces before each
10481 piece corresponds to a unique offset.
10483 @<Split the cubic between |p| and |q|, if necessary, into cubics...@>=
10484 info(p)=zero_off+k_needed;
10486 @<Prepare for derivative computations;
10487 |goto not_found| if the current cubic is dead@>;
10488 @<Find the initial direction |(dx,dy)|@>;
10489 @<Update |info(p)| and find the offset $w_k$ such that
10490 $d_{k-1}\preceq(\\{dx},\\{dy})\prec d_k$; also advance |w0| for
10491 the direction change at |p|@>;
10492 @<Find the final direction |(dxin,dyin)|@>;
10493 @<Decide on the net change in pen offsets and set |turn_amt|@>;
10494 @<Complete the offset splitting process@>;
10495 w0=mp_pen_walk(mp, w0,turn_amt)
10497 @ @<Declare subroutines needed by |offset_prep|@>=
10498 pointer mp_pen_walk (MP mp,pointer w, integer k) {
10499 /* walk |k| steps around a pen from |w| */
10500 while ( k>0 ) { w=link(w); decr(k); };
10501 while ( k<0 ) { w=knil(w); incr(k); };
10505 @ The direction of a cubic $B(z_0,z_1,z_2,z_3;t)=\bigl(x(t),y(t)\bigr)$ can be
10506 calculated from the quadratic polynomials
10507 ${1\over3}x'(t)=B(x_1-x_0,x_2-x_1,x_3-x_2;t)$ and
10508 ${1\over3}y'(t)=B(y_1-y_0,y_2-y_1,y_3-y_2;t)$.
10509 Since we may be calculating directions from several cubics
10510 split from the current one, it is desirable to do these calculations
10511 without losing too much precision. ``Scaled up'' values of the
10512 derivatives, which will be less tainted by accumulated errors than
10513 derivatives found from the cubics themselves, are maintained in
10514 local variables |x0|, |x1|, and |x2|, representing $X_0=2^l(x_1-x_0)$,
10515 $X_1=2^l(x_2-x_1)$, and $X_2=2^l(x_3-x_2)$; similarly |y0|, |y1|, and~|y2|
10516 represent $Y_0=2^l(y_1-y_0)$, $Y_1=2^l(y_2-y_1)$, and $Y_2=2^l(y_3-y_2)$.
10518 @<Other local variables for |offset_prep|@>=
10519 integer x0,x1,x2,y0,y1,y2; /* representatives of derivatives */
10520 integer t0,t1,t2; /* coefficients of polynomial for slope testing */
10521 integer du,dv,dx,dy; /* for directions of the pen and the curve */
10522 integer dx0,dy0; /* initial direction for the first cubic in the curve */
10523 integer max_coef; /* used while scaling */
10524 integer x0a,x1a,x2a,y0a,y1a,y2a; /* intermediate values */
10525 fraction t; /* where the derivative passes through zero */
10526 fraction s; /* a temporary value */
10528 @ @<Prepare for derivative computations...@>=
10529 x0=right_x(p)-x_coord(p);
10530 x2=x_coord(q)-left_x(q);
10531 x1=left_x(q)-right_x(p);
10532 y0=right_y(p)-y_coord(p); y2=y_coord(q)-left_y(q);
10533 y1=left_y(q)-right_y(p);
10535 if ( abs(x1)>max_coef ) max_coef=abs(x1);
10536 if ( abs(x2)>max_coef ) max_coef=abs(x2);
10537 if ( abs(y0)>max_coef ) max_coef=abs(y0);
10538 if ( abs(y1)>max_coef ) max_coef=abs(y1);
10539 if ( abs(y2)>max_coef ) max_coef=abs(y2);
10540 if ( max_coef==0 ) goto NOT_FOUND;
10541 while ( max_coef<fraction_half ) {
10543 double(x0); double(x1); double(x2);
10544 double(y0); double(y1); double(y2);
10547 @ Let us first solve a special case of the problem: Suppose we
10548 know an index~$k$ such that either (i)~$d(t)\succeq d_{k-1}$ for all~$t$
10549 and $d(0)\prec d_k$, or (ii)~$d(t)\preceq d_k$ for all~$t$ and
10550 $d(0)\succ d_{k-1}$.
10551 Then, in a sense, we're halfway done, since one of the two relations
10552 in $(*)$ is satisfied, and the other couldn't be satisfied for
10553 any other value of~|k|.
10555 Actually, the conditions can be relaxed somewhat since a relation such as
10556 $d(t)\succeq d_{k-1}$ restricts $d(t)$ to a half plane when all that really
10557 matters is whether $d(t)$ crosses the ray in the $d_{k-1}$ direction from
10558 the origin. The condition for case~(i) becomes $d_{k-1}\preceq d(0)\prec d_k$
10559 and $d(t)$ never crosses the $d_{k-1}$ ray in the clockwise direction.
10560 Case~(ii) is similar except $d(t)$ cannot cross the $d_k$ ray in the
10561 counterclockwise direction.
10563 The |fin_offset_prep| subroutine solves the stated subproblem.
10564 It has a parameter called |rise| that is |1| in
10565 case~(i), |-1| in case~(ii). Parameters |x0| through |y2| represent
10566 the derivative of the cubic following |p|.
10567 The |w| parameter should point to offset~$w_k$ and |info(p)| should already
10568 be set properly. The |turn_amt| parameter gives the absolute value of the
10569 overall net change in pen offsets.
10571 @<Declare subroutines needed by |offset_prep|@>=
10572 void mp_fin_offset_prep (MP mp,pointer p, pointer w, integer
10573 x0,integer x1, integer x2, integer y0, integer y1, integer y2,
10574 integer rise, integer turn_amt) {
10575 pointer ww; /* for list manipulation */
10576 scaled du,dv; /* for slope calculation */
10577 integer t0,t1,t2; /* test coefficients */
10578 fraction t; /* place where the derivative passes a critical slope */
10579 fraction s; /* slope or reciprocal slope */
10580 integer v; /* intermediate value for updating |x0..y2| */
10581 pointer q; /* original |link(p)| */
10584 if ( rise>0 ) ww=link(w); /* a pointer to $w\k$ */
10585 else ww=knil(w); /* a pointer to $w_{k-1}$ */
10586 @<Compute test coefficients |(t0,t1,t2)|
10587 for $d(t)$ versus $d_k$ or $d_{k-1}$@>;
10588 t=mp_crossing_point(mp, t0,t1,t2);
10589 if ( t>=fraction_one ) {
10590 if ( turn_amt>0 ) t=fraction_one; else return;
10592 @<Split the cubic at $t$,
10593 and split off another cubic if the derivative crosses back@>;
10598 @ We want $B(\\{t0},\\{t1},\\{t2};t)$ to be the dot product of $d(t)$ with a
10599 $-90^\circ$ rotation of the vector from |w| to |ww|. This makes the resulting
10600 function cross from positive to negative when $d_{k-1}\preceq d(t)\preceq d_k$
10603 @<Compute test coefficients |(t0,t1,t2)| for $d(t)$ versus...@>=
10604 du=x_coord(ww)-x_coord(w); dv=y_coord(ww)-y_coord(w);
10605 if ( abs(du)>=abs(dv) ) {
10606 s=mp_make_fraction(mp, dv,du);
10607 t0=mp_take_fraction(mp, x0,s)-y0;
10608 t1=mp_take_fraction(mp, x1,s)-y1;
10609 t2=mp_take_fraction(mp, x2,s)-y2;
10610 if ( du<0 ) { negate(t0); negate(t1); negate(t2); }
10612 s=mp_make_fraction(mp, du,dv);
10613 t0=x0-mp_take_fraction(mp, y0,s);
10614 t1=x1-mp_take_fraction(mp, y1,s);
10615 t2=x2-mp_take_fraction(mp, y2,s);
10616 if ( dv<0 ) { negate(t0); negate(t1); negate(t2); }
10618 if ( t0<0 ) t0=0 /* should be positive without rounding error */
10620 @ The curve has crossed $d_k$ or $d_{k-1}$; its initial segment satisfies
10621 $(*)$, and it might cross again, yielding another solution of $(*)$.
10623 @<Split the cubic at $t$, and split off another...@>=
10625 mp_split_cubic(mp, p,t); p=link(p); info(p)=zero_off+rise;
10627 v=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10628 x0=t_of_the_way(v,x1);
10629 v=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10630 y0=t_of_the_way(v,y1);
10631 if ( turn_amt<0 ) {
10632 t1=t_of_the_way(t1,t2);
10633 if ( t1>0 ) t1=0; /* without rounding error, |t1| would be |<=0| */
10634 t=mp_crossing_point(mp, 0,-t1,-t2);
10635 if ( t>fraction_one ) t=fraction_one;
10637 if ( (t==fraction_one)&&(link(p)!=q) ) {
10638 info(link(p))=info(link(p))-rise;
10640 mp_split_cubic(mp, p,t); info(link(p))=zero_off-rise;
10641 v=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10642 x2=t_of_the_way(x1,v);
10643 v=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10644 y2=t_of_the_way(y1,v);
10649 @ Now we must consider the general problem of |offset_prep|, when
10650 nothing is known about a given cubic. We start by finding its
10651 direction in the vicinity of |t=0|.
10653 If $z'(t)=0$, the given cubic is numerically unstable but |offset_prep|
10654 has not yet introduced any more numerical errors. Thus we can compute
10655 the true initial direction for the given cubic, even if it is almost
10658 @<Find the initial direction |(dx,dy)|@>=
10660 if ( dx==0 && dy==0 ) {
10662 if ( dx==0 && dy==0 ) {
10666 if ( p==c ) { dx0=dx; dy0=dy; }
10668 @ @<Find the final direction |(dxin,dyin)|@>=
10670 if ( dxin==0 && dyin==0 ) {
10672 if ( dxin==0 && dyin==0 ) {
10677 @ The next step is to bracket the initial direction between consecutive
10678 edges of the pen polygon. We must be careful to turn clockwise only if
10679 this makes the turn less than $180^\circ$. (A $180^\circ$ turn must be
10680 counter-clockwise in order to make \&{doublepath} envelopes come out
10681 @:double_path_}{\&{doublepath} primitive@>
10682 right.) This code depends on |w0| being the offset for |(dxin,dyin)|.
10684 @<Update |info(p)| and find the offset $w_k$ such that...@>=
10685 turn_amt=mp_get_turn_amt(mp,w0,dx,dy,(mp_ab_vs_cd(mp, dy,dxin,dx,dyin)>=0));
10686 w=mp_pen_walk(mp, w0, turn_amt);
10688 info(p)=info(p)+turn_amt
10690 @ Decide how many pen offsets to go away from |w| in order to find the offset
10691 for |(dx,dy)|, going counterclockwise if |ccw| is |true|. This assumes that
10692 |w| is the offset for some direction $(x',y')$ from which the angle to |(dx,dy)|
10693 in the sense determined by |ccw| is less than or equal to $180^\circ$.
10695 If the pen polygon has only two edges, they could both be parallel
10696 to |(dx,dy)|. In this case, we must be careful to stop after crossing the first
10697 such edge in order to avoid an infinite loop.
10699 @<Declare subroutines needed by |offset_prep|@>=
10700 integer mp_get_turn_amt (MP mp,pointer w, scaled dx,
10701 scaled dy, boolean ccw) {
10702 pointer ww; /* a neighbor of knot~|w| */
10703 integer s; /* turn amount so far */
10704 integer t; /* |ab_vs_cd| result */
10709 t=mp_ab_vs_cd(mp, dy,(x_coord(ww)-x_coord(w)),
10710 dx,(y_coord(ww)-y_coord(w)));
10717 while ( mp_ab_vs_cd(mp, dy,(x_coord(w)-x_coord(ww)),
10718 dx,(y_coord(w)-y_coord(ww))) < 0) {
10726 @ When we're all done, the final offset is |w0| and the final curve direction
10727 is |(dxin,dyin)|. With this knowledge of the incoming direction at |c|, we
10728 can correct |info(c)| which was erroneously based on an incoming offset
10731 @d fix_by(A) info(c)=info(c)+(A)
10733 @<Fix the offset change in |info(c)| and set |c| to the return value of...@>=
10734 mp->spec_offset=info(c)-zero_off;
10735 if ( link(c)==c ) {
10736 info(c)=zero_off+n;
10739 while ( w0!=h ) { fix_by(1); w0=link(w0); };
10740 while ( info(c)<=zero_off-n ) fix_by(n);
10741 while ( info(c)>zero_off ) fix_by(-n);
10742 if ( (info(c)!=zero_off)&&(mp_ab_vs_cd(mp, dy0,dxin,dx0,dyin)>=0) ) fix_by(n);
10746 @ Finally we want to reduce the general problem to situations that
10747 |fin_offset_prep| can handle. We split the cubic into at most three parts
10748 with respect to $d_{k-1}$, and apply |fin_offset_prep| to each part.
10750 @<Complete the offset splitting process@>=
10752 @<Compute test coeff...@>;
10753 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set
10754 |t:=fraction_one+1|@>;
10755 if ( t>fraction_one ) {
10756 mp_fin_offset_prep(mp, p,w,x0,x1,x2,y0,y1,y2,1,turn_amt);
10758 mp_split_cubic(mp, p,t); r=link(p);
10759 x1a=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10760 x2a=t_of_the_way(x1a,x1);
10761 y1a=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10762 y2a=t_of_the_way(y1a,y1);
10763 mp_fin_offset_prep(mp, p,w,x0,x1a,x2a,y0,y1a,y2a,1,0); x0=x2a; y0=y2a;
10764 info(r)=zero_off-1;
10765 if ( turn_amt>=0 ) {
10766 t1=t_of_the_way(t1,t2);
10768 t=mp_crossing_point(mp, 0,-t1,-t2);
10769 if ( t>fraction_one ) t=fraction_one;
10770 @<Split off another rising cubic for |fin_offset_prep|@>;
10771 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,0);
10773 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,(-1-turn_amt));
10777 @ @<Split off another rising cubic for |fin_offset_prep|@>=
10778 mp_split_cubic(mp, r,t); info(link(r))=zero_off+1;
10779 x1a=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10780 x0a=t_of_the_way(x1,x1a);
10781 y1a=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10782 y0a=t_of_the_way(y1,y1a);
10783 mp_fin_offset_prep(mp, link(r),w,x0a,x1a,x2,y0a,y1a,y2,1,turn_amt);
10786 @ At this point, the direction of the incoming pen edge is |(-du,-dv)|.
10787 When the component of $d(t)$ perpendicular to |(-du,-dv)| crosses zero, we
10788 need to decide whether the directions are parallel or antiparallel. We
10789 can test this by finding the dot product of $d(t)$ and |(-du,-dv)|, but this
10790 should be avoided when the value of |turn_amt| already determines the
10791 answer. If |t2<0|, there is one crossing and it is antiparallel only if
10792 |turn_amt>=0|. If |turn_amt<0|, there should always be at least one
10793 crossing and the first crossing cannot be antiparallel.
10795 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set...@>=
10796 t=mp_crossing_point(mp, t0,t1,t2);
10797 if ( turn_amt>=0 ) {
10801 u0=t_of_the_way(x0,x1);
10802 u1=t_of_the_way(x1,x2);
10803 ss=mp_take_fraction(mp, -du,t_of_the_way(u0,u1));
10804 v0=t_of_the_way(y0,y1);
10805 v1=t_of_the_way(y1,y2);
10806 ss=ss+mp_take_fraction(mp, -dv,t_of_the_way(v0,v1));
10807 if ( ss<0 ) t=fraction_one+1;
10809 } else if ( t>fraction_one ) {
10813 @ @<Other local variables for |offset_prep|@>=
10814 integer u0,u1,v0,v1; /* intermediate values for $d(t)$ calculation */
10815 integer ss = 0; /* the part of the dot product computed so far */
10816 int d_sign; /* sign of overall change in direction for this cubic */
10818 @ If the cubic almost has a cusp, it is a numerically ill-conditioned
10819 problem to decide which way it loops around but that's OK as long we're
10820 consistent. To make \&{doublepath} envelopes work properly, reversing
10821 the path should always change the sign of |turn_amt|.
10823 @<Decide on the net change in pen offsets and set |turn_amt|@>=
10824 d_sign=mp_ab_vs_cd(mp, dx,dyin, dxin,dy);
10826 @<Check rotation direction based on node position@>
10830 if ( dy>0 ) d_sign=1; else d_sign=-1;
10832 if ( dx>0 ) d_sign=1; else d_sign=-1;
10835 @<Make |ss| negative if and only if the total change in direction is
10836 more than $180^\circ$@>;
10837 turn_amt=mp_get_turn_amt(mp, w, dxin, dyin, (d_sign>0));
10838 if ( ss<0 ) turn_amt=turn_amt-d_sign*n
10840 @ We check rotation direction by looking at the vector connecting the current
10841 node with the next. If its angle with incoming and outgoing tangents has the
10842 same sign, we pick this as |d_sign|, since it means we have a flex, not a cusp.
10843 Otherwise we proceed to the cusp code.
10845 @<Check rotation direction based on node position@>=
10846 u0=x_coord(q)-x_coord(p);
10847 u1=y_coord(q)-y_coord(p);
10848 d_sign = half(mp_ab_vs_cd(mp, dx, u1, u0, dy)+
10849 mp_ab_vs_cd(mp, u0, dyin, dxin, u1));
10851 @ In order to be invariant under path reversal, the result of this computation
10852 should not change when |x0|, |y0|, $\ldots$ are all negated and |(x0,y0)| is
10853 then swapped with |(x2,y2)|. We make use of the identities
10854 |take_fraction(-a,-b)=take_fraction(a,b)| and
10855 |t_of_the_way(-a,-b)=-(t_of_the_way(a,b))|.
10857 @<Make |ss| negative if and only if the total change in direction is...@>=
10858 t0=half(mp_take_fraction(mp, x0,y2))-half(mp_take_fraction(mp, x2,y0));
10859 t1=half(mp_take_fraction(mp, x1,(y0+y2)))-half(mp_take_fraction(mp, y1,(x0+x2)));
10860 if ( t0==0 ) t0=d_sign; /* path reversal always negates |d_sign| */
10862 t=mp_crossing_point(mp, t0,t1,-t0);
10863 u0=t_of_the_way(x0,x1);
10864 u1=t_of_the_way(x1,x2);
10865 v0=t_of_the_way(y0,y1);
10866 v1=t_of_the_way(y1,y2);
10868 t=mp_crossing_point(mp, -t0,t1,t0);
10869 u0=t_of_the_way(x2,x1);
10870 u1=t_of_the_way(x1,x0);
10871 v0=t_of_the_way(y2,y1);
10872 v1=t_of_the_way(y1,y0);
10874 ss=mp_take_fraction(mp, (x0+x2),t_of_the_way(u0,u1))+
10875 mp_take_fraction(mp, (y0+y2),t_of_the_way(v0,v1))
10877 @ Here's a routine that prints an envelope spec in symbolic form. It assumes
10878 that the |cur_pen| has not been walked around to the first offset.
10881 void mp_print_spec (MP mp,pointer cur_spec, pointer cur_pen, char *s) {
10882 pointer p,q; /* list traversal */
10883 pointer w; /* the current pen offset */
10884 mp_print_diagnostic(mp, "Envelope spec",s,true);
10885 p=cur_spec; w=mp_pen_walk(mp, cur_pen,mp->spec_offset);
10887 mp_print_two(mp, x_coord(cur_spec),y_coord(cur_spec));
10888 mp_print(mp, " % beginning with offset ");
10889 mp_print_two(mp, x_coord(w),y_coord(w));
10893 @<Print the cubic between |p| and |q|@>;
10895 if ((p==cur_spec) || (info(p)!=zero_off))
10898 if ( info(p)!=zero_off ) {
10899 @<Update |w| as indicated by |info(p)| and print an explanation@>;
10901 } while (p!=cur_spec);
10902 mp_print_nl(mp, " & cycle");
10903 mp_end_diagnostic(mp, true);
10906 @ @<Update |w| as indicated by |info(p)| and print an explanation@>=
10908 w=mp_pen_walk(mp, w, (info(p)-zero_off));
10909 mp_print(mp, " % ");
10910 if ( info(p)>zero_off ) mp_print(mp, "counter");
10911 mp_print(mp, "clockwise to offset ");
10912 mp_print_two(mp, x_coord(w),y_coord(w));
10915 @ @<Print the cubic between |p| and |q|@>=
10917 mp_print_nl(mp, " ..controls ");
10918 mp_print_two(mp, right_x(p),right_y(p));
10919 mp_print(mp, " and ");
10920 mp_print_two(mp, left_x(q),left_y(q));
10921 mp_print_nl(mp, " ..");
10922 mp_print_two(mp, x_coord(q),y_coord(q));
10925 @ Once we have an envelope spec, the remaining task to construct the actual
10926 envelope by offsetting each cubic as determined by the |info| fields in
10927 the knots. First we use |offset_prep| to convert the |c| into an envelope
10928 spec. Then we add the offsets so that |c| becomes a cyclic path that represents
10931 The |ljoin| and |miterlim| parameters control the treatment of points where the
10932 pen offset changes, and |lcap| controls the endpoints of a \&{doublepath}.
10933 The endpoints are easily located because |c| is given in undoubled form
10934 and then doubled in this procedure. We use |spec_p1| and |spec_p2| to keep
10935 track of the endpoints and treat them like very sharp corners.
10936 Butt end caps are treated like beveled joins; round end caps are treated like
10937 round joins; and square end caps are achieved by setting |join_type:=3|.
10939 None of these parameters apply to inside joins where the convolution tracing
10940 has retrograde lines. In such cases we use a simple connect-the-endpoints
10941 approach that is achieved by setting |join_type:=2|.
10943 @c @<Declare a function called |insert_knot|@>;
10944 pointer mp_make_envelope (MP mp,pointer c, pointer h, small_number ljoin,
10945 small_number lcap, scaled miterlim) {
10946 pointer p,q,r,q0; /* for manipulating the path */
10947 int join_type=0; /* codes |0..3| for mitered, round, beveled, or square */
10948 pointer w,w0; /* the pen knot for the current offset */
10949 scaled qx,qy; /* unshifted coordinates of |q| */
10950 halfword k,k0; /* controls pen edge insertion */
10951 @<Other local variables for |make_envelope|@>;
10952 dxin=0; dyin=0; dxout=0; dyout=0;
10953 mp->spec_p1=null; mp->spec_p2=null;
10954 @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>;
10955 @<Use |offset_prep| to compute the envelope spec then walk |h| around to
10956 the initial offset@>;
10961 qx=x_coord(q); qy=y_coord(q);
10964 if ( k!=zero_off ) {
10965 @<Set |join_type| to indicate how to handle offset changes at~|q|@>;
10967 @<Add offset |w| to the cubic from |p| to |q|@>;
10968 while ( k!=zero_off ) {
10969 @<Step |w| and move |k| one step closer to |zero_off|@>;
10970 if ( (join_type==1)||(k==zero_off) )
10971 q=mp_insert_knot(mp, q,qx+x_coord(w),qy+y_coord(w));
10973 if ( q!=link(p) ) {
10974 @<Set |p=link(p)| and add knots between |p| and |q| as
10975 required by |join_type|@>;
10982 @ @<Use |offset_prep| to compute the envelope spec then walk |h| around to...@>=
10983 c=mp_offset_prep(mp, c,h);
10984 if ( mp->internal[mp_tracing_specs]>0 )
10985 mp_print_spec(mp, c,h,"");
10986 h=mp_pen_walk(mp, h,mp->spec_offset)
10988 @ Mitered and squared-off joins depend on path directions that are difficult to
10989 compute for degenerate cubics. The envelope spec computed by |offset_prep| can
10990 have degenerate cubics only if the entire cycle collapses to a single
10991 degenerate cubic. Setting |join_type:=2| in this case makes the computed
10992 envelope degenerate as well.
10994 @<Set |join_type| to indicate how to handle offset changes at~|q|@>=
10995 if ( k<zero_off ) {
10998 if ( (q!=mp->spec_p1)&&(q!=mp->spec_p2) ) join_type=ljoin;
10999 else if ( lcap==2 ) join_type=3;
11000 else join_type=2-lcap;
11001 if ( (join_type==0)||(join_type==3) ) {
11002 @<Set the incoming and outgoing directions at |q|; in case of
11003 degeneracy set |join_type:=2|@>;
11004 if ( join_type==0 ) {
11005 @<If |miterlim| is less than the secant of half the angle at |q|
11006 then set |join_type:=2|@>;
11011 @ @<If |miterlim| is less than the secant of half the angle at |q|...@>=
11013 tmp=mp_take_fraction(mp, miterlim,fraction_half+
11014 half(mp_take_fraction(mp, dxin,dxout)+mp_take_fraction(mp, dyin,dyout)));
11016 if ( mp_take_scaled(mp, miterlim,tmp)<unity ) join_type=2;
11019 @ @<Other local variables for |make_envelope|@>=
11020 fraction dxin,dyin,dxout,dyout; /* directions at |q| when square or mitered */
11021 scaled tmp; /* a temporary value */
11023 @ The coordinates of |p| have already been shifted unless |p| is the first
11024 knot in which case they get shifted at the very end.
11026 @<Add offset |w| to the cubic from |p| to |q|@>=
11027 right_x(p)=right_x(p)+x_coord(w);
11028 right_y(p)=right_y(p)+y_coord(w);
11029 left_x(q)=left_x(q)+x_coord(w);
11030 left_y(q)=left_y(q)+y_coord(w);
11031 x_coord(q)=x_coord(q)+x_coord(w);
11032 y_coord(q)=y_coord(q)+y_coord(w);
11033 left_type(q)=mp_explicit;
11034 right_type(q)=mp_explicit
11036 @ @<Step |w| and move |k| one step closer to |zero_off|@>=
11037 if ( k>zero_off ){ w=link(w); decr(k); }
11038 else { w=knil(w); incr(k); }
11040 @ The cubic from |q| to the new knot at |(x,y)| becomes a line segment and
11041 the |right_x| and |right_y| fields of |r| are set from |q|. This is done in
11042 case the cubic containing these control points is ``yet to be examined.''
11044 @<Declare a function called |insert_knot|@>=
11045 pointer mp_insert_knot (MP mp,pointer q, scaled x, scaled y) {
11046 /* returns the inserted knot */
11047 pointer r; /* the new knot */
11048 r=mp_get_node(mp, knot_node_size);
11049 link(r)=link(q); link(q)=r;
11050 right_x(r)=right_x(q);
11051 right_y(r)=right_y(q);
11054 right_x(q)=x_coord(q);
11055 right_y(q)=y_coord(q);
11056 left_x(r)=x_coord(r);
11057 left_y(r)=y_coord(r);
11058 left_type(r)=mp_explicit;
11059 right_type(r)=mp_explicit;
11060 originator(r)=mp_program_code;
11064 @ After setting |p:=link(p)|, either |join_type=1| or |q=link(p)|.
11066 @<Set |p=link(p)| and add knots between |p| and |q| as...@>=
11069 if ( (join_type==0)||(join_type==3) ) {
11070 if ( join_type==0 ) {
11071 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>
11073 @<Make |r| the last of two knots inserted between |p| and |q| to form a
11077 right_x(r)=x_coord(r);
11078 right_y(r)=y_coord(r);
11083 @ For very small angles, adding a knot is unnecessary and would cause numerical
11084 problems, so we just set |r:=null| in that case.
11086 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>=
11088 det=mp_take_fraction(mp, dyout,dxin)-mp_take_fraction(mp, dxout,dyin);
11089 if ( abs(det)<26844 ) {
11090 r=null; /* sine $<10^{-4}$ */
11092 tmp=mp_take_fraction(mp, x_coord(q)-x_coord(p),dyout)-
11093 mp_take_fraction(mp, y_coord(q)-y_coord(p),dxout);
11094 tmp=mp_make_fraction(mp, tmp,det);
11095 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11096 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11100 @ @<Other local variables for |make_envelope|@>=
11101 fraction det; /* a determinant used for mitered join calculations */
11103 @ @<Make |r| the last of two knots inserted between |p| and |q| to form a...@>=
11105 ht_x=y_coord(w)-y_coord(w0);
11106 ht_y=x_coord(w0)-x_coord(w);
11107 while ( (abs(ht_x)<fraction_half)&&(abs(ht_y)<fraction_half) ) {
11108 ht_x+=ht_x; ht_y+=ht_y;
11110 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range dot
11111 product with |(ht_x,ht_y)|@>;
11112 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxin,ht_x)+
11113 mp_take_fraction(mp, dyin,ht_y));
11114 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11115 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11116 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxout,ht_x)+
11117 mp_take_fraction(mp, dyout,ht_y));
11118 r=mp_insert_knot(mp, r,x_coord(q)+mp_take_fraction(mp, tmp,dxout),
11119 y_coord(q)+mp_take_fraction(mp, tmp,dyout));
11122 @ @<Other local variables for |make_envelope|@>=
11123 fraction ht_x,ht_y; /* perpendicular to the segment from |p| to |q| */
11124 scaled max_ht; /* maximum height of the pen polygon above the |w0|-|w| line */
11125 halfword kk; /* keeps track of the pen vertices being scanned */
11126 pointer ww; /* the pen vertex being tested */
11128 @ The dot product of the vector from |w0| to |ww| with |(ht_x,ht_y)| ranges
11129 from zero to |max_ht|.
11131 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range...@>=
11136 @<Step |ww| and move |kk| one step closer to |k0|@>;
11137 if ( kk==k0 ) break;
11138 tmp=mp_take_fraction(mp, (x_coord(ww)-x_coord(w0)),ht_x)+
11139 mp_take_fraction(mp, (y_coord(ww)-y_coord(w0)),ht_y);
11140 if ( tmp>max_ht ) max_ht=tmp;
11144 @ @<Step |ww| and move |kk| one step closer to |k0|@>=
11145 if ( kk>k0 ) { ww=link(ww); decr(kk); }
11146 else { ww=knil(ww); incr(kk); }
11148 @ @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>=
11149 if ( left_type(c)==mp_endpoint ) {
11150 mp->spec_p1=mp_htap_ypoc(mp, c);
11151 mp->spec_p2=mp->path_tail;
11152 originator(mp->spec_p1)=mp_program_code;
11153 link(mp->spec_p2)=link(mp->spec_p1);
11154 link(mp->spec_p1)=c;
11155 mp_remove_cubic(mp, mp->spec_p1);
11157 if ( c!=link(c) ) {
11158 originator(mp->spec_p2)=mp_program_code;
11159 mp_remove_cubic(mp, mp->spec_p2);
11161 @<Make |c| look like a cycle of length one@>;
11165 @ @<Make |c| look like a cycle of length one@>=
11167 left_type(c)=mp_explicit; right_type(c)=mp_explicit;
11168 left_x(c)=x_coord(c); left_y(c)=y_coord(c);
11169 right_x(c)=x_coord(c); right_y(c)=y_coord(c);
11172 @ In degenerate situations we might have to look at the knot preceding~|q|.
11173 That knot is |p| but if |p<>c|, its coordinates have already been offset by |w|.
11175 @<Set the incoming and outgoing directions at |q|; in case of...@>=
11176 dxin=x_coord(q)-left_x(q);
11177 dyin=y_coord(q)-left_y(q);
11178 if ( (dxin==0)&&(dyin==0) ) {
11179 dxin=x_coord(q)-right_x(p);
11180 dyin=y_coord(q)-right_y(p);
11181 if ( (dxin==0)&&(dyin==0) ) {
11182 dxin=x_coord(q)-x_coord(p);
11183 dyin=y_coord(q)-y_coord(p);
11184 if ( p!=c ) { /* the coordinates of |p| have been offset by |w| */
11185 dxin=dxin+x_coord(w);
11186 dyin=dyin+y_coord(w);
11190 tmp=mp_pyth_add(mp, dxin,dyin);
11194 dxin=mp_make_fraction(mp, dxin,tmp);
11195 dyin=mp_make_fraction(mp, dyin,tmp);
11196 @<Set the outgoing direction at |q|@>;
11199 @ If |q=c| then the coordinates of |r| and the control points between |q|
11200 and~|r| have already been offset by |h|.
11202 @<Set the outgoing direction at |q|@>=
11203 dxout=right_x(q)-x_coord(q);
11204 dyout=right_y(q)-y_coord(q);
11205 if ( (dxout==0)&&(dyout==0) ) {
11207 dxout=left_x(r)-x_coord(q);
11208 dyout=left_y(r)-y_coord(q);
11209 if ( (dxout==0)&&(dyout==0) ) {
11210 dxout=x_coord(r)-x_coord(q);
11211 dyout=y_coord(r)-y_coord(q);
11215 dxout=dxout-x_coord(h);
11216 dyout=dyout-y_coord(h);
11218 tmp=mp_pyth_add(mp, dxout,dyout);
11219 if ( tmp==0 ) mp_confusion(mp, "degenerate spec");
11220 @:this can't happen degerate spec}{\quad degenerate spec@>
11221 dxout=mp_make_fraction(mp, dxout,tmp);
11222 dyout=mp_make_fraction(mp, dyout,tmp)
11224 @* \[23] Direction and intersection times.
11225 A path of length $n$ is defined parametrically by functions $x(t)$ and
11226 $y(t)$, for |0<=t<=n|; we can regard $t$ as the ``time'' at which the path
11227 reaches the point $\bigl(x(t),y(t)\bigr)$. In this section of the program
11228 we shall consider operations that determine special times associated with
11229 given paths: the first time that a path travels in a given direction, and
11230 a pair of times at which two paths cross each other.
11232 @ Let's start with the easier task. The function |find_direction_time| is
11233 given a direction |(x,y)| and a path starting at~|h|. If the path never
11234 travels in direction |(x,y)|, the direction time will be~|-1|; otherwise
11235 it will be nonnegative.
11237 Certain anomalous cases can arise: If |(x,y)=(0,0)|, so that the given
11238 direction is undefined, the direction time will be~0. If $\bigl(x'(t),
11239 y'(t)\bigr)=(0,0)$, so that the path direction is undefined, it will be
11240 assumed to match any given direction at time~|t|.
11242 The routine solves this problem in nondegenerate cases by rotating the path
11243 and the given direction so that |(x,y)=(1,0)|; i.e., the main task will be
11244 to find when a given path first travels ``due east.''
11247 scaled mp_find_direction_time (MP mp,scaled x, scaled y, pointer h) {
11248 scaled max; /* $\max\bigl(\vert x\vert,\vert y\vert\bigr)$ */
11249 pointer p,q; /* for list traversal */
11250 scaled n; /* the direction time at knot |p| */
11251 scaled tt; /* the direction time within a cubic */
11252 @<Other local variables for |find_direction_time|@>;
11253 @<Normalize the given direction for better accuracy;
11254 but |return| with zero result if it's zero@>;
11257 if ( right_type(p)==mp_endpoint ) break;
11259 @<Rotate the cubic between |p| and |q|; then
11260 |goto found| if the rotated cubic travels due east at some time |tt|;
11261 but |break| if an entire cyclic path has been traversed@>;
11269 @ @<Normalize the given direction for better accuracy...@>=
11270 if ( abs(x)<abs(y) ) {
11271 x=mp_make_fraction(mp, x,abs(y));
11272 if ( y>0 ) y=fraction_one; else y=-fraction_one;
11273 } else if ( x==0 ) {
11276 y=mp_make_fraction(mp, y,abs(x));
11277 if ( x>0 ) x=fraction_one; else x=-fraction_one;
11280 @ Since we're interested in the tangent directions, we work with the
11281 derivative $${\textstyle1\over3}B'(x_0,x_1,x_2,x_3;t)=
11282 B(x_1-x_0,x_2-x_1,x_3-x_2;t)$$ instead of
11283 $B(x_0,x_1,x_2,x_3;t)$ itself. The derived coefficients are also scaled up
11284 in order to achieve better accuracy.
11286 The given path may turn abruptly at a knot, and it might pass the critical
11287 tangent direction at such a time. Therefore we remember the direction |phi|
11288 in which the previous rotated cubic was traveling. (The value of |phi| will be
11289 undefined on the first cubic, i.e., when |n=0|.)
11291 @<Rotate the cubic between |p| and |q|; then...@>=
11293 @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples of the control
11294 points of the rotated derivatives@>;
11295 if ( y1==0 ) if ( x1>=0 ) goto FOUND;
11297 @<Exit to |found| if an eastward direction occurs at knot |p|@>;
11300 if ( (x3!=0)||(y3!=0) ) phi=mp_n_arg(mp, x3,y3);
11301 @<Exit to |found| if the curve whose derivatives are specified by
11302 |x1,x2,x3,y1,y2,y3| travels eastward at some time~|tt|@>
11304 @ @<Other local variables for |find_direction_time|@>=
11305 scaled x1,x2,x3,y1,y2,y3; /* multiples of rotated derivatives */
11306 angle theta,phi; /* angles of exit and entry at a knot */
11307 fraction t; /* temp storage */
11309 @ @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples...@>=
11310 x1=right_x(p)-x_coord(p); x2=left_x(q)-right_x(p);
11311 x3=x_coord(q)-left_x(q);
11312 y1=right_y(p)-y_coord(p); y2=left_y(q)-right_y(p);
11313 y3=y_coord(q)-left_y(q);
11315 if ( abs(x2)>max ) max=abs(x2);
11316 if ( abs(x3)>max ) max=abs(x3);
11317 if ( abs(y1)>max ) max=abs(y1);
11318 if ( abs(y2)>max ) max=abs(y2);
11319 if ( abs(y3)>max ) max=abs(y3);
11320 if ( max==0 ) goto FOUND;
11321 while ( max<fraction_half ){
11322 max+=max; x1+=x1; x2+=x2; x3+=x3;
11323 y1+=y1; y2+=y2; y3+=y3;
11325 t=x1; x1=mp_take_fraction(mp, x1,x)+mp_take_fraction(mp, y1,y);
11326 y1=mp_take_fraction(mp, y1,x)-mp_take_fraction(mp, t,y);
11327 t=x2; x2=mp_take_fraction(mp, x2,x)+mp_take_fraction(mp, y2,y);
11328 y2=mp_take_fraction(mp, y2,x)-mp_take_fraction(mp, t,y);
11329 t=x3; x3=mp_take_fraction(mp, x3,x)+mp_take_fraction(mp, y3,y);
11330 y3=mp_take_fraction(mp, y3,x)-mp_take_fraction(mp, t,y)
11332 @ @<Exit to |found| if an eastward direction occurs at knot |p|@>=
11333 theta=mp_n_arg(mp, x1,y1);
11334 if ( theta>=0 ) if ( phi<=0 ) if ( phi>=theta-one_eighty_deg ) goto FOUND;
11335 if ( theta<=0 ) if ( phi>=0 ) if ( phi<=theta+one_eighty_deg ) goto FOUND
11337 @ In this step we want to use the |crossing_point| routine to find the
11338 roots of the quadratic equation $B(y_1,y_2,y_3;t)=0$.
11339 Several complications arise: If the quadratic equation has a double root,
11340 the curve never crosses zero, and |crossing_point| will find nothing;
11341 this case occurs iff $y_1y_3=y_2^2$ and $y_1y_2<0$. If the quadratic
11342 equation has simple roots, or only one root, we may have to negate it
11343 so that $B(y_1,y_2,y_3;t)$ crosses from positive to negative at its first root.
11344 And finally, we need to do special things if $B(y_1,y_2,y_3;t)$ is
11347 @ @<Exit to |found| if the curve whose derivatives are specified by...@>=
11348 if ( x1<0 ) if ( x2<0 ) if ( x3<0 ) goto DONE;
11349 if ( mp_ab_vs_cd(mp, y1,y3,y2,y2)==0 ) {
11350 @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11351 either |goto found| or |goto done|@>;
11354 if ( y1<0 ) { y1=-y1; y2=-y2; y3=-y3; }
11355 else if ( y2>0 ){ y2=-y2; y3=-y3; };
11357 @<Check the places where $B(y_1,y_2,y_3;t)=0$ to see if
11358 $B(x_1,x_2,x_3;t)\ge0$@>;
11361 @ The quadratic polynomial $B(y_1,y_2,y_3;t)$ begins |>=0| and has at most
11362 two roots, because we know that it isn't identically zero.
11364 It must be admitted that the |crossing_point| routine is not perfectly accurate;
11365 rounding errors might cause it to find a root when $y_1y_3>y_2^2$, or to
11366 miss the roots when $y_1y_3<y_2^2$. The rotation process is itself
11367 subject to rounding errors. Yet this code optimistically tries to
11368 do the right thing.
11370 @d we_found_it { tt=(t+04000) / 010000; goto FOUND; }
11372 @<Check the places where $B(y_1,y_2,y_3;t)=0$...@>=
11373 t=mp_crossing_point(mp, y1,y2,y3);
11374 if ( t>fraction_one ) goto DONE;
11375 y2=t_of_the_way(y2,y3);
11376 x1=t_of_the_way(x1,x2);
11377 x2=t_of_the_way(x2,x3);
11378 x1=t_of_the_way(x1,x2);
11379 if ( x1>=0 ) we_found_it;
11381 tt=t; t=mp_crossing_point(mp, 0,-y2,-y3);
11382 if ( t>fraction_one ) goto DONE;
11383 x1=t_of_the_way(x1,x2);
11384 x2=t_of_the_way(x2,x3);
11385 if ( t_of_the_way(x1,x2)>=0 ) {
11386 t=t_of_the_way(tt,fraction_one); we_found_it;
11389 @ @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11390 either |goto found| or |goto done|@>=
11392 if ( mp_ab_vs_cd(mp, y1,y2,0,0)<0 ) {
11393 t=mp_make_fraction(mp, y1,y1-y2);
11394 x1=t_of_the_way(x1,x2);
11395 x2=t_of_the_way(x2,x3);
11396 if ( t_of_the_way(x1,x2)>=0 ) we_found_it;
11397 } else if ( y3==0 ) {
11399 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|@>;
11400 } else if ( x3>=0 ) {
11401 tt=unity; goto FOUND;
11407 @ At this point we know that the derivative of |y(t)| is identically zero,
11408 and that |x1<0|; but either |x2>=0| or |x3>=0|, so there's some hope of
11411 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|...@>=
11413 t=mp_crossing_point(mp, -x1,-x2,-x3);
11414 if ( t<=fraction_one ) we_found_it;
11415 if ( mp_ab_vs_cd(mp, x1,x3,x2,x2)<=0 ) {
11416 t=mp_make_fraction(mp, x1,x1-x2); we_found_it;
11420 @ The intersection of two cubics can be found by an interesting variant
11421 of the general bisection scheme described in the introduction to
11423 Given $w(t)=B(w_0,w_1,w_2,w_3;t)$ and $z(t)=B(z_0,z_1,z_2,z_3;t)$,
11424 we wish to find a pair of times $(t_1,t_2)$ such that $w(t_1)=z(t_2)$,
11425 if an intersection exists. First we find the smallest rectangle that
11426 encloses the points $\{w_0,w_1,w_2,w_3\}$ and check that it overlaps
11427 the smallest rectangle that encloses
11428 $\{z_0,z_1,z_2,z_3\}$; if not, the cubics certainly don't intersect.
11429 But if the rectangles do overlap, we bisect the intervals, getting
11430 new cubics $w'$ and~$w''$, $z'$~and~$z''$; the intersection routine first
11431 tries for an intersection between $w'$ and~$z'$, then (if unsuccessful)
11432 between $w'$ and~$z''$, then (if still unsuccessful) between $w''$ and~$z'$,
11433 finally (if thrice unsuccessful) between $w''$ and~$z''$. After $l$~successful
11434 levels of bisection we will have determined the intersection times $t_1$
11435 and~$t_2$ to $l$~bits of accuracy.
11437 \def\submin{_{\rm min}} \def\submax{_{\rm max}}
11438 As before, it is better to work with the numbers $W_k=2^l(w_k-w_{k-1})$
11439 and $Z_k=2^l(z_k-z_{k-1})$ rather than the coefficients $w_k$ and $z_k$
11440 themselves. We also need one other quantity, $\Delta=2^l(w_0-z_0)$,
11441 to determine when the enclosing rectangles overlap. Here's why:
11442 The $x$~coordinates of~$w(t)$ are between $u\submin$ and $u\submax$,
11443 and the $x$~coordinates of~$z(t)$ are between $x\submin$ and $x\submax$,
11444 if we write $w_k=(u_k,v_k)$ and $z_k=(x_k,y_k)$ and $u\submin=
11445 \min(u_0,u_1,u_2,u_3)$, etc. These intervals of $x$~coordinates
11446 overlap if and only if $u\submin\L x\submax$ and
11447 $x\submin\L u\submax$. Letting
11448 $$U\submin=\min(0,U_1,U_1+U_2,U_1+U_2+U_3),\;
11449 U\submax=\max(0,U_1,U_1+U_2,U_1+U_2+U_3),$$
11450 we have $u\submin=2^lu_0+U\submin$, etc.; the condition for overlap
11452 $$X\submin-U\submax\L 2^l(u_0-x_0)\L X\submax-U\submin.$$
11453 Thus we want to maintain the quantity $2^l(u_0-x_0)$; similarly,
11454 the quantity $2^l(v_0-y_0)$ accounts for the $y$~coordinates. The
11455 coordinates of $\Delta=2^l(w_0-z_0)$ must stay bounded as $l$ increases,
11456 because of the overlap condition; i.e., we know that $X\submin$,
11457 $X\submax$, and their relatives are bounded, hence $X\submax-
11458 U\submin$ and $X\submin-U\submax$ are bounded.
11460 @ Incidentally, if the given cubics intersect more than once, the process
11461 just sketched will not necessarily find the lexicographically smallest pair
11462 $(t_1,t_2)$. The solution actually obtained will be smallest in ``shuffled
11463 order''; i.e., if $t_1=(.a_1a_2\ldots a_{16})_2$ and
11464 $t_2=(.b_1b_2\ldots b_{16})_2$, then we will minimize
11465 $a_1b_1a_2b_2\ldots a_{16}b_{16}$, not
11466 $a_1a_2\ldots a_{16}b_1b_2\ldots b_{16}$.
11467 Shuffled order agrees with lexicographic order if all pairs of solutions
11468 $(t_1,t_2)$ and $(t_1',t_2')$ have the property that $t_1<t_1'$ iff
11469 $t_2<t_2'$; but in general, lexicographic order can be quite different,
11470 and the bisection algorithm would be substantially less efficient if it were
11471 constrained by lexicographic order.
11473 For example, suppose that an overlap has been found for $l=3$ and
11474 $(t_1,t_2)= (.101,.011)$ in binary, but that no overlap is produced by
11475 either of the alternatives $(.1010,.0110)$, $(.1010,.0111)$ at level~4.
11476 Then there is probably an intersection in one of the subintervals
11477 $(.1011,.011x)$; but lexicographic order would require us to explore
11478 $(.1010,.1xxx)$ and $(.1011,.00xx)$ and $(.1011,.010x)$ first. We wouldn't
11479 want to store all of the subdivision data for the second path, so the
11480 subdivisions would have to be regenerated many times. Such inefficiencies
11481 would be associated with every `1' in the binary representation of~$t_1$.
11483 @ The subdivision process introduces rounding errors, hence we need to
11484 make a more liberal test for overlap. It is not hard to show that the
11485 computed values of $U_i$ differ from the truth by at most~$l$, on
11486 level~$l$, hence $U\submin$ and $U\submax$ will be at most $3l$ in error.
11487 If $\beta$ is an upper bound on the absolute error in the computed
11488 components of $\Delta=(|delx|,|dely|)$ on level~$l$, we will replace
11489 the test `$X\submin-U\submax\L|delx|$' by the more liberal test
11490 `$X\submin-U\submax\L|delx|+|tol|$', where $|tol|=6l+\beta$.
11492 More accuracy is obtained if we try the algorithm first with |tol=0|;
11493 the more liberal tolerance is used only if an exact approach fails.
11494 It is convenient to do this double-take by letting `3' in the preceding
11495 paragraph be a parameter, which is first 0, then 3.
11498 unsigned int tol_step; /* either 0 or 3, usually */
11500 @ We shall use an explicit stack to implement the recursive bisection
11501 method described above. The |bisect_stack| array will contain numerous 5-word
11502 packets like $(U_1,U_2,U_3,U\submin,U\submax)$, as well as 20-word packets
11503 comprising the 5-word packets for $U$, $V$, $X$, and~$Y$.
11505 The following macros define the allocation of stack positions to
11506 the quantities needed for bisection-intersection.
11508 @d stack_1(A) mp->bisect_stack[(A)] /* $U_1$, $V_1$, $X_1$, or $Y_1$ */
11509 @d stack_2(A) mp->bisect_stack[(A)+1] /* $U_2$, $V_2$, $X_2$, or $Y_2$ */
11510 @d stack_3(A) mp->bisect_stack[(A)+2] /* $U_3$, $V_3$, $X_3$, or $Y_3$ */
11511 @d stack_min(A) mp->bisect_stack[(A)+3]
11512 /* $U\submin$, $V\submin$, $X\submin$, or $Y\submin$ */
11513 @d stack_max(A) mp->bisect_stack[(A)+4]
11514 /* $U\submax$, $V\submax$, $X\submax$, or $Y\submax$ */
11515 @d int_packets 20 /* number of words to represent $U_k$, $V_k$, $X_k$, and $Y_k$ */
11517 @d u_packet(A) ((A)-5)
11518 @d v_packet(A) ((A)-10)
11519 @d x_packet(A) ((A)-15)
11520 @d y_packet(A) ((A)-20)
11521 @d l_packets (mp->bisect_ptr-int_packets)
11522 @d r_packets mp->bisect_ptr
11523 @d ul_packet u_packet(l_packets) /* base of $U'_k$ variables */
11524 @d vl_packet v_packet(l_packets) /* base of $V'_k$ variables */
11525 @d xl_packet x_packet(l_packets) /* base of $X'_k$ variables */
11526 @d yl_packet y_packet(l_packets) /* base of $Y'_k$ variables */
11527 @d ur_packet u_packet(r_packets) /* base of $U''_k$ variables */
11528 @d vr_packet v_packet(r_packets) /* base of $V''_k$ variables */
11529 @d xr_packet x_packet(r_packets) /* base of $X''_k$ variables */
11530 @d yr_packet y_packet(r_packets) /* base of $Y''_k$ variables */
11532 @d u1l stack_1(ul_packet) /* $U'_1$ */
11533 @d u2l stack_2(ul_packet) /* $U'_2$ */
11534 @d u3l stack_3(ul_packet) /* $U'_3$ */
11535 @d v1l stack_1(vl_packet) /* $V'_1$ */
11536 @d v2l stack_2(vl_packet) /* $V'_2$ */
11537 @d v3l stack_3(vl_packet) /* $V'_3$ */
11538 @d x1l stack_1(xl_packet) /* $X'_1$ */
11539 @d x2l stack_2(xl_packet) /* $X'_2$ */
11540 @d x3l stack_3(xl_packet) /* $X'_3$ */
11541 @d y1l stack_1(yl_packet) /* $Y'_1$ */
11542 @d y2l stack_2(yl_packet) /* $Y'_2$ */
11543 @d y3l stack_3(yl_packet) /* $Y'_3$ */
11544 @d u1r stack_1(ur_packet) /* $U''_1$ */
11545 @d u2r stack_2(ur_packet) /* $U''_2$ */
11546 @d u3r stack_3(ur_packet) /* $U''_3$ */
11547 @d v1r stack_1(vr_packet) /* $V''_1$ */
11548 @d v2r stack_2(vr_packet) /* $V''_2$ */
11549 @d v3r stack_3(vr_packet) /* $V''_3$ */
11550 @d x1r stack_1(xr_packet) /* $X''_1$ */
11551 @d x2r stack_2(xr_packet) /* $X''_2$ */
11552 @d x3r stack_3(xr_packet) /* $X''_3$ */
11553 @d y1r stack_1(yr_packet) /* $Y''_1$ */
11554 @d y2r stack_2(yr_packet) /* $Y''_2$ */
11555 @d y3r stack_3(yr_packet) /* $Y''_3$ */
11557 @d stack_dx mp->bisect_stack[mp->bisect_ptr] /* stacked value of |delx| */
11558 @d stack_dy mp->bisect_stack[mp->bisect_ptr+1] /* stacked value of |dely| */
11559 @d stack_tol mp->bisect_stack[mp->bisect_ptr+2] /* stacked value of |tol| */
11560 @d stack_uv mp->bisect_stack[mp->bisect_ptr+3] /* stacked value of |uv| */
11561 @d stack_xy mp->bisect_stack[mp->bisect_ptr+4] /* stacked value of |xy| */
11562 @d int_increment (int_packets+int_packets+5) /* number of stack words per level */
11565 integer *bisect_stack;
11566 unsigned int bisect_ptr;
11568 @ @<Allocate or initialize ...@>=
11569 mp->bisect_stack = xmalloc((bistack_size+1),sizeof(integer));
11571 @ @<Dealloc variables@>=
11572 xfree(mp->bisect_stack);
11574 @ @<Check the ``constant''...@>=
11575 if ( int_packets+17*int_increment>bistack_size ) mp->bad=19;
11577 @ Computation of the min and max is a tedious but fairly fast sequence of
11578 instructions; exactly four comparisons are made in each branch.
11581 if ( stack_1((A))<0 ) {
11582 if ( stack_3((A))>=0 ) {
11583 if ( stack_2((A))<0 ) stack_min((A))=stack_1((A))+stack_2((A));
11584 else stack_min((A))=stack_1((A));
11585 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11586 if ( stack_max((A))<0 ) stack_max((A))=0;
11588 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11589 if ( stack_min((A))>stack_1((A)) ) stack_min((A))=stack_1((A));
11590 stack_max((A))=stack_1((A))+stack_2((A));
11591 if ( stack_max((A))<0 ) stack_max((A))=0;
11593 } else if ( stack_3((A))<=0 ) {
11594 if ( stack_2((A))>0 ) stack_max((A))=stack_1((A))+stack_2((A));
11595 else stack_max((A))=stack_1((A));
11596 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11597 if ( stack_min((A))>0 ) stack_min((A))=0;
11599 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11600 if ( stack_max((A))<stack_1((A)) ) stack_max((A))=stack_1((A));
11601 stack_min((A))=stack_1((A))+stack_2((A));
11602 if ( stack_min((A))>0 ) stack_min((A))=0;
11605 @ It's convenient to keep the current values of $l$, $t_1$, and $t_2$ in
11606 the integer form $2^l+2^lt_1$ and $2^l+2^lt_2$. The |cubic_intersection|
11607 routine uses global variables |cur_t| and |cur_tt| for this purpose;
11608 after successful completion, |cur_t| and |cur_tt| will contain |unity|
11609 plus the |scaled| values of $t_1$ and~$t_2$.
11611 The values of |cur_t| and |cur_tt| will be set to zero if |cubic_intersection|
11612 finds no intersection. The routine gives up and gives an approximate answer
11613 if it has backtracked
11614 more than 5000 times (otherwise there are cases where several minutes
11615 of fruitless computation would be possible).
11617 @d max_patience 5000
11620 integer cur_t;integer cur_tt; /* controls and results of |cubic_intersection| */
11621 integer time_to_go; /* this many backtracks before giving up */
11622 integer max_t; /* maximum of $2^{l+1}$ so far achieved */
11624 @ The given cubics $B(w_0,w_1,w_2,w_3;t)$ and
11625 $B(z_0,z_1,z_2,z_3;t)$ are specified in adjacent knot nodes |(p,link(p))|
11626 and |(pp,link(pp))|, respectively.
11628 @c void mp_cubic_intersection (MP mp,pointer p, pointer pp) {
11629 pointer q,qq; /* |link(p)|, |link(pp)| */
11630 mp->time_to_go=max_patience; mp->max_t=2;
11631 @<Initialize for intersections at level zero@>;
11634 if ( mp->delx-mp->tol<=stack_max(x_packet(mp->xy))-stack_min(u_packet(mp->uv)))
11635 if ( mp->delx+mp->tol>=stack_min(x_packet(mp->xy))-stack_max(u_packet(mp->uv)))
11636 if ( mp->dely-mp->tol<=stack_max(y_packet(mp->xy))-stack_min(v_packet(mp->uv)))
11637 if ( mp->dely+mp->tol>=stack_min(y_packet(mp->xy))-stack_max(v_packet(mp->uv)))
11639 if ( mp->cur_t>=mp->max_t ){
11640 if ( mp->max_t==two ) { /* we've done 17 bisections */
11641 mp->cur_t=halfp(mp->cur_t+1); mp->cur_tt=halfp(mp->cur_tt+1); return;
11643 mp->max_t+=mp->max_t; mp->appr_t=mp->cur_t; mp->appr_tt=mp->cur_tt;
11645 @<Subdivide for a new level of intersection@>;
11648 if ( mp->time_to_go>0 ) {
11649 decr(mp->time_to_go);
11651 while ( mp->appr_t<unity ) {
11652 mp->appr_t+=mp->appr_t; mp->appr_tt+=mp->appr_tt;
11654 mp->cur_t=mp->appr_t; mp->cur_tt=mp->appr_tt; return;
11656 @<Advance to the next pair |(cur_t,cur_tt)|@>;
11660 @ The following variables are global, although they are used only by
11661 |cubic_intersection|, because it is necessary on some machines to
11662 split |cubic_intersection| up into two procedures.
11665 integer delx;integer dely; /* the components of $\Delta=2^l(w_0-z_0)$ */
11666 integer tol; /* bound on the uncertainly in the overlap test */
11668 unsigned int xy; /* pointers to the current packets of interest */
11669 integer three_l; /* |tol_step| times the bisection level */
11670 integer appr_t;integer appr_tt; /* best approximations known to the answers */
11672 @ We shall assume that the coordinates are sufficiently non-extreme that
11673 integer overflow will not occur.
11675 @<Initialize for intersections at level zero@>=
11676 q=link(p); qq=link(pp); mp->bisect_ptr=int_packets;
11677 u1r=right_x(p)-x_coord(p); u2r=left_x(q)-right_x(p);
11678 u3r=x_coord(q)-left_x(q); set_min_max(ur_packet);
11679 v1r=right_y(p)-y_coord(p); v2r=left_y(q)-right_y(p);
11680 v3r=y_coord(q)-left_y(q); set_min_max(vr_packet);
11681 x1r=right_x(pp)-x_coord(pp); x2r=left_x(qq)-right_x(pp);
11682 x3r=x_coord(qq)-left_x(qq); set_min_max(xr_packet);
11683 y1r=right_y(pp)-y_coord(pp); y2r=left_y(qq)-right_y(pp);
11684 y3r=y_coord(qq)-left_y(qq); set_min_max(yr_packet);
11685 mp->delx=x_coord(p)-x_coord(pp); mp->dely=y_coord(p)-y_coord(pp);
11686 mp->tol=0; mp->uv=r_packets; mp->xy=r_packets;
11687 mp->three_l=0; mp->cur_t=1; mp->cur_tt=1
11689 @ @<Subdivide for a new level of intersection@>=
11690 stack_dx=mp->delx; stack_dy=mp->dely; stack_tol=mp->tol;
11691 stack_uv=mp->uv; stack_xy=mp->xy;
11692 mp->bisect_ptr=mp->bisect_ptr+int_increment;
11693 mp->cur_t+=mp->cur_t; mp->cur_tt+=mp->cur_tt;
11694 u1l=stack_1(u_packet(mp->uv)); u3r=stack_3(u_packet(mp->uv));
11695 u2l=half(u1l+stack_2(u_packet(mp->uv)));
11696 u2r=half(u3r+stack_2(u_packet(mp->uv)));
11697 u3l=half(u2l+u2r); u1r=u3l;
11698 set_min_max(ul_packet); set_min_max(ur_packet);
11699 v1l=stack_1(v_packet(mp->uv)); v3r=stack_3(v_packet(mp->uv));
11700 v2l=half(v1l+stack_2(v_packet(mp->uv)));
11701 v2r=half(v3r+stack_2(v_packet(mp->uv)));
11702 v3l=half(v2l+v2r); v1r=v3l;
11703 set_min_max(vl_packet); set_min_max(vr_packet);
11704 x1l=stack_1(x_packet(mp->xy)); x3r=stack_3(x_packet(mp->xy));
11705 x2l=half(x1l+stack_2(x_packet(mp->xy)));
11706 x2r=half(x3r+stack_2(x_packet(mp->xy)));
11707 x3l=half(x2l+x2r); x1r=x3l;
11708 set_min_max(xl_packet); set_min_max(xr_packet);
11709 y1l=stack_1(y_packet(mp->xy)); y3r=stack_3(y_packet(mp->xy));
11710 y2l=half(y1l+stack_2(y_packet(mp->xy)));
11711 y2r=half(y3r+stack_2(y_packet(mp->xy)));
11712 y3l=half(y2l+y2r); y1r=y3l;
11713 set_min_max(yl_packet); set_min_max(yr_packet);
11714 mp->uv=l_packets; mp->xy=l_packets;
11715 mp->delx+=mp->delx; mp->dely+=mp->dely;
11716 mp->tol=mp->tol-mp->three_l+mp->tol_step;
11717 mp->tol+=mp->tol; mp->three_l=mp->three_l+mp->tol_step
11719 @ @<Advance to the next pair |(cur_t,cur_tt)|@>=
11721 if ( odd(mp->cur_tt) ) {
11722 if ( odd(mp->cur_t) ) {
11723 @<Descend to the previous level and |goto not_found|@>;
11726 mp->delx=mp->delx+stack_1(u_packet(mp->uv))+stack_2(u_packet(mp->uv))
11727 +stack_3(u_packet(mp->uv));
11728 mp->dely=mp->dely+stack_1(v_packet(mp->uv))+stack_2(v_packet(mp->uv))
11729 +stack_3(v_packet(mp->uv));
11730 mp->uv=mp->uv+int_packets; /* switch from |l_packet| to |r_packet| */
11731 decr(mp->cur_tt); mp->xy=mp->xy-int_packets;
11732 /* switch from |r_packet| to |l_packet| */
11733 mp->delx=mp->delx+stack_1(x_packet(mp->xy))+stack_2(x_packet(mp->xy))
11734 +stack_3(x_packet(mp->xy));
11735 mp->dely=mp->dely+stack_1(y_packet(mp->xy))+stack_2(y_packet(mp->xy))
11736 +stack_3(y_packet(mp->xy));
11739 incr(mp->cur_tt); mp->tol=mp->tol+mp->three_l;
11740 mp->delx=mp->delx-stack_1(x_packet(mp->xy))-stack_2(x_packet(mp->xy))
11741 -stack_3(x_packet(mp->xy));
11742 mp->dely=mp->dely-stack_1(y_packet(mp->xy))-stack_2(y_packet(mp->xy))
11743 -stack_3(y_packet(mp->xy));
11744 mp->xy=mp->xy+int_packets; /* switch from |l_packet| to |r_packet| */
11747 @ @<Descend to the previous level...@>=
11749 mp->cur_t=halfp(mp->cur_t); mp->cur_tt=halfp(mp->cur_tt);
11750 if ( mp->cur_t==0 ) return;
11751 mp->bisect_ptr=mp->bisect_ptr-int_increment;
11752 mp->three_l=mp->three_l-mp->tol_step;
11753 mp->delx=stack_dx; mp->dely=stack_dy; mp->tol=stack_tol;
11754 mp->uv=stack_uv; mp->xy=stack_xy;
11758 @ The |path_intersection| procedure is much simpler.
11759 It invokes |cubic_intersection| in lexicographic order until finding a
11760 pair of cubics that intersect. The final intersection times are placed in
11761 |cur_t| and~|cur_tt|.
11763 @c void mp_path_intersection (MP mp,pointer h, pointer hh) {
11764 pointer p,pp; /* link registers that traverse the given paths */
11765 integer n,nn; /* integer parts of intersection times, minus |unity| */
11766 @<Change one-point paths into dead cycles@>;
11771 if ( right_type(p)!=mp_endpoint ) {
11774 if ( right_type(pp)!=mp_endpoint ) {
11775 mp_cubic_intersection(mp, p,pp);
11776 if ( mp->cur_t>0 ) {
11777 mp->cur_t=mp->cur_t+n; mp->cur_tt=mp->cur_tt+nn;
11781 nn=nn+unity; pp=link(pp);
11784 n=n+unity; p=link(p);
11786 mp->tol_step=mp->tol_step+3;
11787 } while (mp->tol_step<=3);
11788 mp->cur_t=-unity; mp->cur_tt=-unity;
11791 @ @<Change one-point paths...@>=
11792 if ( right_type(h)==mp_endpoint ) {
11793 right_x(h)=x_coord(h); left_x(h)=x_coord(h);
11794 right_y(h)=y_coord(h); left_y(h)=y_coord(h); right_type(h)=mp_explicit;
11796 if ( right_type(hh)==mp_endpoint ) {
11797 right_x(hh)=x_coord(hh); left_x(hh)=x_coord(hh);
11798 right_y(hh)=y_coord(hh); left_y(hh)=y_coord(hh); right_type(hh)=mp_explicit;
11801 @* \[24] Dynamic linear equations.
11802 \MP\ users define variables implicitly by stating equations that should be
11803 satisfied; the computer is supposed to be smart enough to solve those equations.
11804 And indeed, the computer tries valiantly to do so, by distinguishing five
11805 different types of numeric values:
11808 |type(p)=mp_known| is the nice case, when |value(p)| is the |scaled| value
11809 of the variable whose address is~|p|.
11812 |type(p)=mp_dependent| means that |value(p)| is not present, but |dep_list(p)|
11813 points to a {\sl dependency list\/} that expresses the value of variable~|p|
11814 as a |scaled| number plus a sum of independent variables with |fraction|
11818 |type(p)=mp_independent| means that |value(p)=64s+m|, where |s>0| is a ``serial
11819 number'' reflecting the time this variable was first used in an equation;
11820 also |0<=m<64|, and each dependent variable
11821 that refers to this one is actually referring to the future value of
11822 this variable times~$2^m$. (Usually |m=0|, but higher degrees of
11823 scaling are sometimes needed to keep the coefficients in dependency lists
11824 from getting too large. The value of~|m| will always be even.)
11827 |type(p)=mp_numeric_type| means that variable |p| hasn't appeared in an
11828 equation before, but it has been explicitly declared to be numeric.
11831 |type(p)=undefined| means that variable |p| hasn't appeared before.
11833 \smallskip\noindent
11834 We have actually discussed these five types in the reverse order of their
11835 history during a computation: Once |known|, a variable never again
11836 becomes |dependent|; once |dependent|, it almost never again becomes
11837 |mp_independent|; once |mp_independent|, it never again becomes |mp_numeric_type|;
11838 and once |mp_numeric_type|, it never again becomes |undefined| (except
11839 of course when the user specifically decides to scrap the old value
11840 and start again). A backward step may, however, take place: Sometimes
11841 a |dependent| variable becomes |mp_independent| again, when one of the
11842 independent variables it depends on is reverting to |undefined|.
11845 The next patch detects overflow of independent-variable serial
11846 numbers. Diagnosed and patched by Thorsten Dahlheimer.
11848 @d s_scale 64 /* the serial numbers are multiplied by this factor */
11849 @d max_indep_vars 0177777777 /* $2^{25}-1$ */
11850 @d max_serial_no 017777777700 /* |max_indep_vars*s_scale| */
11851 @d new_indep(A) /* create a new independent variable */
11852 { if ( mp->serial_no==max_serial_no )
11853 mp_fatal_error(mp, "variable instance identifiers exhausted");
11854 type((A))=mp_independent; mp->serial_no=mp->serial_no+s_scale;
11855 value((A))=mp->serial_no;
11859 integer serial_no; /* the most recent serial number, times |s_scale| */
11861 @ @<Make variable |q+s| newly independent@>=new_indep(q+s)
11863 @ But how are dependency lists represented? It's simple: The linear combination
11864 $\alpha_1v_1+\cdots+\alpha_kv_k+\beta$ appears in |k+1| value nodes. If
11865 |q=dep_list(p)| points to this list, and if |k>0|, then |value(q)=
11866 @t$\alpha_1$@>| (which is a |fraction|); |info(q)| points to the location
11867 of $\alpha_1$; and |link(p)| points to the dependency list
11868 $\alpha_2v_2+\cdots+\alpha_kv_k+\beta$. On the other hand if |k=0|,
11869 then |value(q)=@t$\beta$@>| (which is |scaled|) and |info(q)=null|.
11870 The independent variables $v_1$, \dots,~$v_k$ have been sorted so that
11871 they appear in decreasing order of their |value| fields (i.e., of
11872 their serial numbers). \ (It is convenient to use decreasing order,
11873 since |value(null)=0|. If the independent variables were not sorted by
11874 serial number but by some other criterion, such as their location in |mem|,
11875 the equation-solving mechanism would be too system-dependent, because
11876 the ordering can affect the computed results.)
11878 The |link| field in the node that contains the constant term $\beta$ is
11879 called the {\sl final link\/} of the dependency list. \MP\ maintains
11880 a doubly-linked master list of all dependency lists, in terms of a permanently
11882 in |mem| called |dep_head|. If there are no dependencies, we have
11883 |link(dep_head)=dep_head| and |prev_dep(dep_head)=dep_head|;
11884 otherwise |link(dep_head)| points to the first dependent variable, say~|p|,
11885 and |prev_dep(p)=dep_head|. We have |type(p)=mp_dependent|, and |dep_list(p)|
11886 points to its dependency list. If the final link of that dependency list
11887 occurs in location~|q|, then |link(q)| points to the next dependent
11888 variable (say~|r|); and we have |prev_dep(r)=q|, etc.
11890 @d dep_list(A) link(value_loc((A)))
11891 /* half of the |value| field in a |dependent| variable */
11892 @d prev_dep(A) info(value_loc((A)))
11893 /* the other half; makes a doubly linked list */
11894 @d dep_node_size 2 /* the number of words per dependency node */
11896 @<Initialize table entries...@>= mp->serial_no=0;
11897 link(dep_head)=dep_head; prev_dep(dep_head)=dep_head;
11898 info(dep_head)=null; dep_list(dep_head)=null;
11900 @ Actually the description above contains a little white lie. There's
11901 another kind of variable called |mp_proto_dependent|, which is
11902 just like a |dependent| one except that the $\alpha$ coefficients
11903 in its dependency list are |scaled| instead of being fractions.
11904 Proto-dependency lists are mixed with dependency lists in the
11905 nodes reachable from |dep_head|.
11907 @ Here is a procedure that prints a dependency list in symbolic form.
11908 The second parameter should be either |dependent| or |mp_proto_dependent|,
11909 to indicate the scaling of the coefficients.
11911 @<Declare subroutines for printing expressions@>=
11912 void mp_print_dependency (MP mp,pointer p, small_number t) {
11913 integer v; /* a coefficient */
11914 pointer pp,q; /* for list manipulation */
11917 v=abs(value(p)); q=info(p);
11918 if ( q==null ) { /* the constant term */
11919 if ( (v!=0)||(p==pp) ) {
11920 if ( value(p)>0 ) if ( p!=pp ) mp_print_char(mp, '+');
11921 mp_print_scaled(mp, value(p));
11925 @<Print the coefficient, unless it's $\pm1.0$@>;
11926 if ( type(q)!=mp_independent ) mp_confusion(mp, "dep");
11927 @:this can't happen dep}{\quad dep@>
11928 mp_print_variable_name(mp, q); v=value(q) % s_scale;
11929 while ( v>0 ) { mp_print(mp, "*4"); v=v-2; }
11934 @ @<Print the coefficient, unless it's $\pm1.0$@>=
11935 if ( value(p)<0 ) mp_print_char(mp, '-');
11936 else if ( p!=pp ) mp_print_char(mp, '+');
11937 if ( t==mp_dependent ) v=mp_round_fraction(mp, v);
11938 if ( v!=unity ) mp_print_scaled(mp, v)
11940 @ The maximum absolute value of a coefficient in a given dependency list
11941 is returned by the following simple function.
11943 @c fraction mp_max_coef (MP mp,pointer p) {
11944 fraction x; /* the maximum so far */
11946 while ( info(p)!=null ) {
11947 if ( abs(value(p))>x ) x=abs(value(p));
11953 @ One of the main operations needed on dependency lists is to add a multiple
11954 of one list to the other; we call this |p_plus_fq|, where |p| and~|q| point
11955 to dependency lists and |f| is a fraction.
11957 If the coefficient of any independent variable becomes |coef_bound| or
11958 more, in absolute value, this procedure changes the type of that variable
11959 to `|independent_needing_fix|', and sets the global variable |fix_needed|
11960 to~|true|. The value of $|coef_bound|=\mu$ is chosen so that
11961 $\mu^2+\mu<8$; this means that the numbers we deal with won't
11962 get too large. (Instead of the ``optimum'' $\mu=(\sqrt{33}-1)/2\approx
11963 2.3723$, the safer value 7/3 is taken as the threshold.)
11965 The changes mentioned in the preceding paragraph are actually done only if
11966 the global variable |watch_coefs| is |true|. But it usually is; in fact,
11967 it is |false| only when \MP\ is making a dependency list that will soon
11968 be equated to zero.
11970 Several procedures that act on dependency lists, including |p_plus_fq|,
11971 set the global variable |dep_final| to the final (constant term) node of
11972 the dependency list that they produce.
11974 @d coef_bound 04525252525 /* |fraction| approximation to 7/3 */
11975 @d independent_needing_fix 0
11978 boolean fix_needed; /* does at least one |independent| variable need scaling? */
11979 boolean watch_coefs; /* should we scale coefficients that exceed |coef_bound|? */
11980 pointer dep_final; /* location of the constant term and final link */
11983 mp->fix_needed=false; mp->watch_coefs=true;
11985 @ The |p_plus_fq| procedure has a fourth parameter, |t|, that should be
11986 set to |mp_proto_dependent| if |p| is a proto-dependency list. In this
11987 case |f| will be |scaled|, not a |fraction|. Similarly, the fifth parameter~|tt|
11988 should be |mp_proto_dependent| if |q| is a proto-dependency list.
11990 List |q| is unchanged by the operation; but list |p| is totally destroyed.
11992 The final link of the dependency list or proto-dependency list returned
11993 by |p_plus_fq| is the same as the original final link of~|p|. Indeed, the
11994 constant term of the result will be located in the same |mem| location
11995 as the original constant term of~|p|.
11997 Coefficients of the result are assumed to be zero if they are less than
11998 a certain threshold. This compensates for inevitable rounding errors,
11999 and tends to make more variables `|known|'. The threshold is approximately
12000 $10^{-5}$ in the case of normal dependency lists, $10^{-4}$ for
12001 proto-dependencies.
12003 @d fraction_threshold 2685 /* a |fraction| coefficient less than this is zeroed */
12004 @d half_fraction_threshold 1342 /* half of |fraction_threshold| */
12005 @d scaled_threshold 8 /* a |scaled| coefficient less than this is zeroed */
12006 @d half_scaled_threshold 4 /* half of |scaled_threshold| */
12008 @<Declare basic dependency-list subroutines@>=
12009 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12010 pointer q, small_number t, small_number tt) ;
12013 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12014 pointer q, small_number t, small_number tt) {
12015 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12016 pointer r,s; /* for list manipulation */
12017 integer mp_threshold; /* defines a neighborhood of zero */
12018 integer v; /* temporary register */
12019 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
12020 else mp_threshold=scaled_threshold;
12021 r=temp_head; pp=info(p); qq=info(q);
12027 @<Contribute a term from |p|, plus |f| times the
12028 corresponding term from |q|@>
12030 } else if ( value(pp)<value(qq) ) {
12031 @<Contribute a term from |q|, multiplied by~|f|@>
12033 link(r)=p; r=p; p=link(p); pp=info(p);
12036 if ( t==mp_dependent )
12037 value(p)=mp_slow_add(mp, value(p),mp_take_fraction(mp, value(q),f));
12039 value(p)=mp_slow_add(mp, value(p),mp_take_scaled(mp, value(q),f));
12040 link(r)=p; mp->dep_final=p;
12041 return link(temp_head);
12044 @ @<Contribute a term from |p|, plus |f|...@>=
12046 if ( tt==mp_dependent ) v=value(p)+mp_take_fraction(mp, f,value(q));
12047 else v=value(p)+mp_take_scaled(mp, f,value(q));
12048 value(p)=v; s=p; p=link(p);
12049 if ( abs(v)<mp_threshold ) {
12050 mp_free_node(mp, s,dep_node_size);
12052 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12053 type(qq)=independent_needing_fix; mp->fix_needed=true;
12057 pp=info(p); q=link(q); qq=info(q);
12060 @ @<Contribute a term from |q|, multiplied by~|f|@>=
12062 if ( tt==mp_dependent ) v=mp_take_fraction(mp, f,value(q));
12063 else v=mp_take_scaled(mp, f,value(q));
12064 if ( abs(v)>halfp(mp_threshold) ) {
12065 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=v;
12066 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12067 type(qq)=independent_needing_fix; mp->fix_needed=true;
12071 q=link(q); qq=info(q);
12074 @ It is convenient to have another subroutine for the special case
12075 of |p_plus_fq| when |f=1.0|. In this routine lists |p| and |q| are
12076 both of the same type~|t| (either |dependent| or |mp_proto_dependent|).
12078 @c pointer mp_p_plus_q (MP mp,pointer p, pointer q, small_number t) {
12079 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12080 pointer r,s; /* for list manipulation */
12081 integer mp_threshold; /* defines a neighborhood of zero */
12082 integer v; /* temporary register */
12083 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
12084 else mp_threshold=scaled_threshold;
12085 r=temp_head; pp=info(p); qq=info(q);
12091 @<Contribute a term from |p|, plus the
12092 corresponding term from |q|@>
12094 } else if ( value(pp)<value(qq) ) {
12095 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=value(q);
12096 q=link(q); qq=info(q); link(r)=s; r=s;
12098 link(r)=p; r=p; p=link(p); pp=info(p);
12101 value(p)=mp_slow_add(mp, value(p),value(q));
12102 link(r)=p; mp->dep_final=p;
12103 return link(temp_head);
12106 @ @<Contribute a term from |p|, plus the...@>=
12108 v=value(p)+value(q);
12109 value(p)=v; s=p; p=link(p); pp=info(p);
12110 if ( abs(v)<mp_threshold ) {
12111 mp_free_node(mp, s,dep_node_size);
12113 if ( (abs(v)>=coef_bound ) && mp->watch_coefs ) {
12114 type(qq)=independent_needing_fix; mp->fix_needed=true;
12118 q=link(q); qq=info(q);
12121 @ A somewhat simpler routine will multiply a dependency list
12122 by a given constant~|v|. The constant is either a |fraction| less than
12123 |fraction_one|, or it is |scaled|. In the latter case we might be forced to
12124 convert a dependency list to a proto-dependency list.
12125 Parameters |t0| and |t1| are the list types before and after;
12126 they should agree unless |t0=mp_dependent| and |t1=mp_proto_dependent|
12127 and |v_is_scaled=true|.
12129 @c pointer mp_p_times_v (MP mp,pointer p, integer v, small_number t0,
12130 small_number t1, boolean v_is_scaled) {
12131 pointer r,s; /* for list manipulation */
12132 integer w; /* tentative coefficient */
12133 integer mp_threshold;
12134 boolean scaling_down;
12135 if ( t0!=t1 ) scaling_down=true; else scaling_down=! v_is_scaled;
12136 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
12137 else mp_threshold=half_scaled_threshold;
12139 while ( info(p)!=null ) {
12140 if ( scaling_down ) w=mp_take_fraction(mp, v,value(p));
12141 else w=mp_take_scaled(mp, v,value(p));
12142 if ( abs(w)<=mp_threshold ) {
12143 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12145 if ( abs(w)>=coef_bound ) {
12146 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12148 link(r)=p; r=p; value(p)=w; p=link(p);
12152 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
12153 else value(p)=mp_take_fraction(mp, value(p),v);
12154 return link(temp_head);
12157 @ Similarly, we sometimes need to divide a dependency list
12158 by a given |scaled| constant.
12160 @<Declare basic dependency-list subroutines@>=
12161 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12162 t0, small_number t1) ;
12165 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12166 t0, small_number t1) {
12167 pointer r,s; /* for list manipulation */
12168 integer w; /* tentative coefficient */
12169 integer mp_threshold;
12170 boolean scaling_down;
12171 if ( t0!=t1 ) scaling_down=true; else scaling_down=false;
12172 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
12173 else mp_threshold=half_scaled_threshold;
12175 while ( info( p)!=null ) {
12176 if ( scaling_down ) {
12177 if ( abs(v)<02000000 ) w=mp_make_scaled(mp, value(p),v*010000);
12178 else w=mp_make_scaled(mp, mp_round_fraction(mp, value(p)),v);
12180 w=mp_make_scaled(mp, value(p),v);
12182 if ( abs(w)<=mp_threshold ) {
12183 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12185 if ( abs(w)>=coef_bound ) {
12186 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12188 link(r)=p; r=p; value(p)=w; p=link(p);
12191 link(r)=p; value(p)=mp_make_scaled(mp, value(p),v);
12192 return link(temp_head);
12195 @ Here's another utility routine for dependency lists. When an independent
12196 variable becomes dependent, we want to remove it from all existing
12197 dependencies. The |p_with_x_becoming_q| function computes the
12198 dependency list of~|p| after variable~|x| has been replaced by~|q|.
12200 This procedure has basically the same calling conventions as |p_plus_fq|:
12201 List~|q| is unchanged; list~|p| is destroyed; the constant node and the
12202 final link are inherited from~|p|; and the fourth parameter tells whether
12203 or not |p| is |mp_proto_dependent|. However, the global variable |dep_final|
12204 is not altered if |x| does not occur in list~|p|.
12206 @c pointer mp_p_with_x_becoming_q (MP mp,pointer p,
12207 pointer x, pointer q, small_number t) {
12208 pointer r,s; /* for list manipulation */
12209 integer v; /* coefficient of |x| */
12210 integer sx; /* serial number of |x| */
12211 s=p; r=temp_head; sx=value(x);
12212 while ( value(info(s))>sx ) { r=s; s=link(s); };
12213 if ( info(s)!=x ) {
12216 link(temp_head)=p; link(r)=link(s); v=value(s);
12217 mp_free_node(mp, s,dep_node_size);
12218 return mp_p_plus_fq(mp, link(temp_head),v,q,t,mp_dependent);
12222 @ Here's a simple procedure that reports an error when a variable
12223 has just received a known value that's out of the required range.
12225 @<Declare basic dependency-list subroutines@>=
12226 void mp_val_too_big (MP mp,scaled x) ;
12228 @ @c void mp_val_too_big (MP mp,scaled x) {
12229 if ( mp->internal[mp_warning_check]>0 ) {
12230 print_err("Value is too large ("); mp_print_scaled(mp, x); mp_print_char(mp, ')');
12231 @.Value is too large@>
12232 help4("The equation I just processed has given some variable")
12233 ("a value of 4096 or more. Continue and I'll try to cope")
12234 ("with that big value; but it might be dangerous.")
12235 ("(Set warningcheck:=0 to suppress this message.)");
12240 @ When a dependent variable becomes known, the following routine
12241 removes its dependency list. Here |p| points to the variable, and
12242 |q| points to the dependency list (which is one node long).
12244 @<Declare basic dependency-list subroutines@>=
12245 void mp_make_known (MP mp,pointer p, pointer q) ;
12247 @ @c void mp_make_known (MP mp,pointer p, pointer q) {
12248 int t; /* the previous type */
12249 prev_dep(link(q))=prev_dep(p);
12250 link(prev_dep(p))=link(q); t=type(p);
12251 type(p)=mp_known; value(p)=value(q); mp_free_node(mp, q,dep_node_size);
12252 if ( abs(value(p))>=fraction_one ) mp_val_too_big(mp, value(p));
12253 if (( mp->internal[mp_tracing_equations]>0) && mp_interesting(mp, p) ) {
12254 mp_begin_diagnostic(mp); mp_print_nl(mp, "#### ");
12255 @:]]]\#\#\#\#_}{\.{\#\#\#\#}@>
12256 mp_print_variable_name(mp, p);
12257 mp_print_char(mp, '='); mp_print_scaled(mp, value(p));
12258 mp_end_diagnostic(mp, false);
12260 if (( mp->cur_exp==p ) && mp->cur_type==t ) {
12261 mp->cur_type=mp_known; mp->cur_exp=value(p);
12262 mp_free_node(mp, p,value_node_size);
12266 @ The |fix_dependencies| routine is called into action when |fix_needed|
12267 has been triggered. The program keeps a list~|s| of independent variables
12268 whose coefficients must be divided by~4.
12270 In unusual cases, this fixup process might reduce one or more coefficients
12271 to zero, so that a variable will become known more or less by default.
12273 @<Declare basic dependency-list subroutines@>=
12274 void mp_fix_dependencies (MP mp);
12276 @ @c void mp_fix_dependencies (MP mp) {
12277 pointer p,q,r,s,t; /* list manipulation registers */
12278 pointer x; /* an independent variable */
12279 r=link(dep_head); s=null;
12280 while ( r!=dep_head ){
12282 @<Run through the dependency list for variable |t|, fixing
12283 all nodes, and ending with final link~|q|@>;
12285 if ( q==dep_list(t) ) mp_make_known(mp, t,q);
12287 while ( s!=null ) {
12288 p=link(s); x=info(s); free_avail(s); s=p;
12289 type(x)=mp_independent; value(x)=value(x)+2;
12291 mp->fix_needed=false;
12294 @ @d independent_being_fixed 1 /* this variable already appears in |s| */
12296 @<Run through the dependency list for variable |t|...@>=
12297 r=value_loc(t); /* |link(r)=dep_list(t)| */
12299 q=link(r); x=info(q);
12300 if ( x==null ) break;
12301 if ( type(x)<=independent_being_fixed ) {
12302 if ( type(x)<independent_being_fixed ) {
12303 p=mp_get_avail(mp); link(p)=s; s=p;
12304 info(s)=x; type(x)=independent_being_fixed;
12306 value(q)=value(q) / 4;
12307 if ( value(q)==0 ) {
12308 link(r)=link(q); mp_free_node(mp, q,dep_node_size); q=r;
12315 @ The |new_dep| routine installs a dependency list~|p| into the value node~|q|,
12316 linking it into the list of all known dependencies. We assume that
12317 |dep_final| points to the final node of list~|p|.
12319 @c void mp_new_dep (MP mp,pointer q, pointer p) {
12320 pointer r; /* what used to be the first dependency */
12321 dep_list(q)=p; prev_dep(q)=dep_head;
12322 r=link(dep_head); link(mp->dep_final)=r; prev_dep(r)=mp->dep_final;
12326 @ Here is one of the ways a dependency list gets started.
12327 The |const_dependency| routine produces a list that has nothing but
12330 @c pointer mp_const_dependency (MP mp, scaled v) {
12331 mp->dep_final=mp_get_node(mp, dep_node_size);
12332 value(mp->dep_final)=v; info(mp->dep_final)=null;
12333 return mp->dep_final;
12336 @ And here's a more interesting way to start a dependency list from scratch:
12337 The parameter to |single_dependency| is the location of an
12338 independent variable~|x|, and the result is the simple dependency list
12341 In the unlikely event that the given independent variable has been doubled so
12342 often that we can't refer to it with a nonzero coefficient,
12343 |single_dependency| returns the simple list `0'. This case can be
12344 recognized by testing that the returned list pointer is equal to
12347 @c pointer mp_single_dependency (MP mp,pointer p) {
12348 pointer q; /* the new dependency list */
12349 integer m; /* the number of doublings */
12350 m=value(p) % s_scale;
12352 return mp_const_dependency(mp, 0);
12354 q=mp_get_node(mp, dep_node_size);
12355 value(q)=two_to_the(28-m); info(q)=p;
12356 link(q)=mp_const_dependency(mp, 0);
12361 @ We sometimes need to make an exact copy of a dependency list.
12363 @c pointer mp_copy_dep_list (MP mp,pointer p) {
12364 pointer q; /* the new dependency list */
12365 q=mp_get_node(mp, dep_node_size); mp->dep_final=q;
12367 info(mp->dep_final)=info(p); value(mp->dep_final)=value(p);
12368 if ( info(mp->dep_final)==null ) break;
12369 link(mp->dep_final)=mp_get_node(mp, dep_node_size);
12370 mp->dep_final=link(mp->dep_final); p=link(p);
12375 @ But how do variables normally become known? Ah, now we get to the heart of the
12376 equation-solving mechanism. The |linear_eq| procedure is given a |dependent|
12377 or |mp_proto_dependent| list,~|p|, in which at least one independent variable
12378 appears. It equates this list to zero, by choosing an independent variable
12379 with the largest coefficient and making it dependent on the others. The
12380 newly dependent variable is eliminated from all current dependencies,
12381 thereby possibly making other dependent variables known.
12383 The given list |p| is, of course, totally destroyed by all this processing.
12385 @c void mp_linear_eq (MP mp, pointer p, small_number t) {
12386 pointer q,r,s; /* for link manipulation */
12387 pointer x; /* the variable that loses its independence */
12388 integer n; /* the number of times |x| had been halved */
12389 integer v; /* the coefficient of |x| in list |p| */
12390 pointer prev_r; /* lags one step behind |r| */
12391 pointer final_node; /* the constant term of the new dependency list */
12392 integer w; /* a tentative coefficient */
12393 @<Find a node |q| in list |p| whose coefficient |v| is largest@>;
12394 x=info(q); n=value(x) % s_scale;
12395 @<Divide list |p| by |-v|, removing node |q|@>;
12396 if ( mp->internal[mp_tracing_equations]>0 ) {
12397 @<Display the new dependency@>;
12399 @<Simplify all existing dependencies by substituting for |x|@>;
12400 @<Change variable |x| from |independent| to |dependent| or |known|@>;
12401 if ( mp->fix_needed ) mp_fix_dependencies(mp);
12404 @ @<Find a node |q| in list |p| whose coefficient |v| is largest@>=
12405 q=p; r=link(p); v=value(q);
12406 while ( info(r)!=null ) {
12407 if ( abs(value(r))>abs(v) ) { q=r; v=value(r); };
12411 @ Here we want to change the coefficients from |scaled| to |fraction|,
12412 except in the constant term. In the common case of a trivial equation
12413 like `\.{x=3.14}', we will have |v=-fraction_one|, |q=p|, and |t=mp_dependent|.
12415 @<Divide list |p| by |-v|, removing node |q|@>=
12416 s=temp_head; link(s)=p; r=p;
12419 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12421 w=mp_make_fraction(mp, value(r),v);
12422 if ( abs(w)<=half_fraction_threshold ) {
12423 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12429 } while (info(r)!=null);
12430 if ( t==mp_proto_dependent ) {
12431 value(r)=-mp_make_scaled(mp, value(r),v);
12432 } else if ( v!=-fraction_one ) {
12433 value(r)=-mp_make_fraction(mp, value(r),v);
12435 final_node=r; p=link(temp_head)
12437 @ @<Display the new dependency@>=
12438 if ( mp_interesting(mp, x) ) {
12439 mp_begin_diagnostic(mp); mp_print_nl(mp, "## ");
12440 mp_print_variable_name(mp, x);
12441 @:]]]\#\#_}{\.{\#\#}@>
12443 while ( w>0 ) { mp_print(mp, "*4"); w=w-2; };
12444 mp_print_char(mp, '='); mp_print_dependency(mp, p,mp_dependent);
12445 mp_end_diagnostic(mp, false);
12448 @ @<Simplify all existing dependencies by substituting for |x|@>=
12449 prev_r=dep_head; r=link(dep_head);
12450 while ( r!=dep_head ) {
12451 s=dep_list(r); q=mp_p_with_x_becoming_q(mp, s,x,p,type(r));
12452 if ( info(q)==null ) {
12453 mp_make_known(mp, r,q);
12456 do { q=link(q); } while (info(q)!=null);
12462 @ @<Change variable |x| from |independent| to |dependent| or |known|@>=
12463 if ( n>0 ) @<Divide list |p| by $2^n$@>;
12464 if ( info(p)==null ) {
12467 if ( abs(value(x))>=fraction_one ) mp_val_too_big(mp, value(x));
12468 mp_free_node(mp, p,dep_node_size);
12469 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) {
12470 mp->cur_exp=value(x); mp->cur_type=mp_known;
12471 mp_free_node(mp, x,value_node_size);
12474 type(x)=mp_dependent; mp->dep_final=final_node; mp_new_dep(mp, x,p);
12475 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) mp->cur_type=mp_dependent;
12478 @ @<Divide list |p| by $2^n$@>=
12480 s=temp_head; link(temp_head)=p; r=p;
12483 else w=value(r) / two_to_the(n);
12484 if ( (abs(w)<=half_fraction_threshold)&&(info(r)!=null) ) {
12486 mp_free_node(mp, r,dep_node_size);
12491 } while (info(s)!=null);
12495 @ The |check_mem| procedure, which is used only when \MP\ is being
12496 debugged, makes sure that the current dependency lists are well formed.
12498 @<Check the list of linear dependencies@>=
12499 q=dep_head; p=link(q);
12500 while ( p!=dep_head ) {
12501 if ( prev_dep(p)!=q ) {
12502 mp_print_nl(mp, "Bad PREVDEP at "); mp_print_int(mp, p);
12507 r=info(p); q=p; p=link(q);
12508 if ( r==null ) break;
12509 if ( value(info(p))>=value(r) ) {
12510 mp_print_nl(mp, "Out of order at "); mp_print_int(mp, p);
12511 @.Out of order...@>
12516 @* \[25] Dynamic nonlinear equations.
12517 Variables of numeric type are maintained by the general scheme of
12518 independent, dependent, and known values that we have just studied;
12519 and the components of pair and transform variables are handled in the
12520 same way. But \MP\ also has five other types of values: \&{boolean},
12521 \&{string}, \&{pen}, \&{path}, and \&{picture}; what about them?
12523 Equations are allowed between nonlinear quantities, but only in a
12524 simple form. Two variables that haven't yet been assigned values are
12525 either equal to each other, or they're not.
12527 Before a boolean variable has received a value, its type is |mp_unknown_boolean|;
12528 similarly, there are variables whose type is |mp_unknown_string|, |mp_unknown_pen|,
12529 |mp_unknown_path|, and |mp_unknown_picture|. In such cases the value is either
12530 |null| (which means that no other variables are equivalent to this one), or
12531 it points to another variable of the same undefined type. The pointers in the
12532 latter case form a cycle of nodes, which we shall call a ``ring.''
12533 Rings of undefined variables may include capsules, which arise as
12534 intermediate results within expressions or as \&{expr} parameters to macros.
12536 When one member of a ring receives a value, the same value is given to
12537 all the other members. In the case of paths and pictures, this implies
12538 making separate copies of a potentially large data structure; users should
12539 restrain their enthusiasm for such generality, unless they have lots and
12540 lots of memory space.
12542 @ The following procedure is called when a capsule node is being
12543 added to a ring (e.g., when an unknown variable is mentioned in an expression).
12545 @c pointer mp_new_ring_entry (MP mp,pointer p) {
12546 pointer q; /* the new capsule node */
12547 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
12549 if ( value(p)==null ) value(q)=p; else value(q)=value(p);
12554 @ Conversely, we might delete a capsule or a variable before it becomes known.
12555 The following procedure simply detaches a quantity from its ring,
12556 without recycling the storage.
12558 @<Declare the recycling subroutines@>=
12559 void mp_ring_delete (MP mp,pointer p) {
12562 if ( q!=null ) if ( q!=p ){
12563 while ( value(q)!=p ) q=value(q);
12568 @ Eventually there might be an equation that assigns values to all of the
12569 variables in a ring. The |nonlinear_eq| subroutine does the necessary
12570 propagation of values.
12572 If the parameter |flush_p| is |true|, node |p| itself needn't receive a
12573 value, it will soon be recycled.
12575 @c void mp_nonlinear_eq (MP mp,integer v, pointer p, boolean flush_p) {
12576 small_number t; /* the type of ring |p| */
12577 pointer q,r; /* link manipulation registers */
12578 t=type(p)-unknown_tag; q=value(p);
12579 if ( flush_p ) type(p)=mp_vacuous; else p=q;
12581 r=value(q); type(q)=t;
12583 case mp_boolean_type: value(q)=v; break;
12584 case mp_string_type: value(q)=v; add_str_ref(v); break;
12585 case mp_pen_type: value(q)=copy_pen(v); break;
12586 case mp_path_type: value(q)=mp_copy_path(mp, v); break;
12587 case mp_picture_type: value(q)=v; add_edge_ref(v); break;
12588 } /* there ain't no more cases */
12593 @ If two members of rings are equated, and if they have the same type,
12594 the |ring_merge| procedure is called on to make them equivalent.
12596 @c void mp_ring_merge (MP mp,pointer p, pointer q) {
12597 pointer r; /* traverses one list */
12601 @<Exclaim about a redundant equation@>;
12606 r=value(p); value(p)=value(q); value(q)=r;
12609 @ @<Exclaim about a redundant equation@>=
12611 print_err("Redundant equation");
12612 @.Redundant equation@>
12613 help2("I already knew that this equation was true.")
12614 ("But perhaps no harm has been done; let's continue.");
12615 mp_put_get_error(mp);
12618 @* \[26] Introduction to the syntactic routines.
12619 Let's pause a moment now and try to look at the Big Picture.
12620 The \MP\ program consists of three main parts: syntactic routines,
12621 semantic routines, and output routines. The chief purpose of the
12622 syntactic routines is to deliver the user's input to the semantic routines,
12623 while parsing expressions and locating operators and operands. The
12624 semantic routines act as an interpreter responding to these operators,
12625 which may be regarded as commands. And the output routines are
12626 periodically called on to produce compact font descriptions that can be
12627 used for typesetting or for making interim proof drawings. We have
12628 discussed the basic data structures and many of the details of semantic
12629 operations, so we are good and ready to plunge into the part of \MP\ that
12630 actually controls the activities.
12632 Our current goal is to come to grips with the |get_next| procedure,
12633 which is the keystone of \MP's input mechanism. Each call of |get_next|
12634 sets the value of three variables |cur_cmd|, |cur_mod|, and |cur_sym|,
12635 representing the next input token.
12636 $$\vbox{\halign{#\hfil\cr
12637 \hbox{|cur_cmd| denotes a command code from the long list of codes
12639 \hbox{|cur_mod| denotes a modifier of the command code;}\cr
12640 \hbox{|cur_sym| is the hash address of the symbolic token that was
12642 \hbox{\qquad or zero in the case of a numeric or string
12643 or capsule token.}\cr}}$$
12644 Underlying this external behavior of |get_next| is all the machinery
12645 necessary to convert from character files to tokens. At a given time we
12646 may be only partially finished with the reading of several files (for
12647 which \&{input} was specified), and partially finished with the expansion
12648 of some user-defined macros and/or some macro parameters, and partially
12649 finished reading some text that the user has inserted online,
12650 and so on. When reading a character file, the characters must be
12651 converted to tokens; comments and blank spaces must
12652 be removed, numeric and string tokens must be evaluated.
12654 To handle these situations, which might all be present simultaneously,
12655 \MP\ uses various stacks that hold information about the incomplete
12656 activities, and there is a finite state control for each level of the
12657 input mechanism. These stacks record the current state of an implicitly
12658 recursive process, but the |get_next| procedure is not recursive.
12661 eight_bits cur_cmd; /* current command set by |get_next| */
12662 integer cur_mod; /* operand of current command */
12663 halfword cur_sym; /* hash address of current symbol */
12665 @ The |print_cmd_mod| routine prints a symbolic interpretation of a
12666 command code and its modifier.
12667 It consists of a rather tedious sequence of print
12668 commands, and most of it is essentially an inverse to the |primitive|
12669 routine that enters a \MP\ primitive into |hash| and |eqtb|. Therefore almost
12670 all of this procedure appears elsewhere in the program, together with the
12671 corresponding |primitive| calls.
12673 @<Declare the procedure called |print_cmd_mod|@>=
12674 void mp_print_cmd_mod (MP mp,integer c, integer m) {
12676 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>
12677 default: mp_print(mp, "[unknown command code!]"); break;
12681 @ Here is a procedure that displays a given command in braces, in the
12682 user's transcript file.
12684 @d show_cur_cmd_mod mp_show_cmd_mod(mp, mp->cur_cmd,mp->cur_mod)
12687 void mp_show_cmd_mod (MP mp,integer c, integer m) {
12688 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
12689 mp_print_cmd_mod(mp, c,m); mp_print_char(mp, '}');
12690 mp_end_diagnostic(mp, false);
12693 @* \[27] Input stacks and states.
12694 The state of \MP's input mechanism appears in the input stack, whose
12695 entries are records with five fields, called |index|, |start|, |loc|,
12696 |limit|, and |name|. The top element of this stack is maintained in a
12697 global variable for which no subscripting needs to be done; the other
12698 elements of the stack appear in an array. Hence the stack is declared thus:
12702 quarterword index_field;
12703 halfword start_field, loc_field, limit_field, name_field;
12707 in_state_record *input_stack;
12708 integer input_ptr; /* first unused location of |input_stack| */
12709 integer max_in_stack; /* largest value of |input_ptr| when pushing */
12710 in_state_record cur_input; /* the ``top'' input state */
12711 int stack_size; /* maximum number of simultaneous input sources */
12713 @ @<Allocate or initialize ...@>=
12714 mp->stack_size = 300;
12715 mp->input_stack = xmalloc((mp->stack_size+1),sizeof(in_state_record));
12717 @ @<Dealloc variables@>=
12718 xfree(mp->input_stack);
12720 @ We've already defined the special variable |loc==cur_input.loc_field|
12721 in our discussion of basic input-output routines. The other components of
12722 |cur_input| are defined in the same way:
12724 @d index mp->cur_input.index_field /* reference for buffer information */
12725 @d start mp->cur_input.start_field /* starting position in |buffer| */
12726 @d limit mp->cur_input.limit_field /* end of current line in |buffer| */
12727 @d name mp->cur_input.name_field /* name of the current file */
12729 @ Let's look more closely now at the five control variables
12730 (|index|,~|start|,~|loc|,~|limit|,~|name|),
12731 assuming that \MP\ is reading a line of characters that have been input
12732 from some file or from the user's terminal. There is an array called
12733 |buffer| that acts as a stack of all lines of characters that are
12734 currently being read from files, including all lines on subsidiary
12735 levels of the input stack that are not yet completed. \MP\ will return to
12736 the other lines when it is finished with the present input file.
12738 (Incidentally, on a machine with byte-oriented addressing, it would be
12739 appropriate to combine |buffer| with the |str_pool| array,
12740 letting the buffer entries grow downward from the top of the string pool
12741 and checking that these two tables don't bump into each other.)
12743 The line we are currently working on begins in position |start| of the
12744 buffer; the next character we are about to read is |buffer[loc]|; and
12745 |limit| is the location of the last character present. We always have
12746 |loc<=limit|. For convenience, |buffer[limit]| has been set to |"%"|, so
12747 that the end of a line is easily sensed.
12749 The |name| variable is a string number that designates the name of
12750 the current file, if we are reading an ordinary text file. Special codes
12751 |is_term..max_spec_src| indicate other sources of input text.
12753 @d is_term 0 /* |name| value when reading from the terminal for normal input */
12754 @d is_read 1 /* |name| value when executing a \&{readstring} or \&{readfrom} */
12755 @d is_scantok 2 /* |name| value when reading text generated by \&{scantokens} */
12756 @d max_spec_src is_scantok
12758 @ Additional information about the current line is available via the
12759 |index| variable, which counts how many lines of characters are present
12760 in the buffer below the current level. We have |index=0| when reading
12761 from the terminal and prompting the user for each line; then if the user types,
12762 e.g., `\.{input figs}', we will have |index=1| while reading
12763 the file \.{figs.mp}. However, it does not follow that |index| is the
12764 same as the input stack pointer, since many of the levels on the input
12765 stack may come from token lists and some |index| values may correspond
12766 to \.{MPX} files that are not currently on the stack.
12768 The global variable |in_open| is equal to the highest |index| value counting
12769 \.{MPX} files but excluding token-list input levels. Thus, the number of
12770 partially read lines in the buffer is |in_open+1| and we have |in_open>=index|
12771 when we are not reading a token list.
12773 If we are not currently reading from the terminal,
12774 we are reading from the file variable |input_file[index]|. We use
12775 the notation |terminal_input| as a convenient abbreviation for |name=is_term|,
12776 and |cur_file| as an abbreviation for |input_file[index]|.
12778 When \MP\ is not reading from the terminal, the global variable |line| contains
12779 the line number in the current file, for use in error messages. More precisely,
12780 |line| is a macro for |line_stack[index]| and the |line_stack| array gives
12781 the line number for each file in the |input_file| array.
12783 When an \.{MPX} file is opened the file name is stored in the |mpx_name|
12784 array so that the name doesn't get lost when the file is temporarily removed
12785 from the input stack.
12786 Thus when |input_file[k]| is an \.{MPX} file, its name is |mpx_name[k]|
12787 and it contains translated \TeX\ pictures for |input_file[k-1]|.
12788 Since this is not an \.{MPX} file, we have
12789 $$ \hbox{|mpx_name[k-1]<=absent|}. $$
12790 This |name| field is set to |finished| when |input_file[k]| is completely
12793 If more information about the input state is needed, it can be
12794 included in small arrays like those shown here. For example,
12795 the current page or segment number in the input file might be put
12796 into a variable |page|, that is really a macro for the current entry
12797 in `\ignorespaces|page_stack:array[0..max_in_open] of integer|\unskip'
12798 by analogy with |line_stack|.
12799 @^system dependencies@>
12801 @d terminal_input (name==is_term) /* are we reading from the terminal? */
12802 @d cur_file mp->input_file[index] /* the current |void *| variable */
12803 @d line mp->line_stack[index] /* current line number in the current source file */
12804 @d in_name mp->iname_stack[index] /* a string used to construct \.{MPX} file names */
12805 @d in_area mp->iarea_stack[index] /* another string for naming \.{MPX} files */
12806 @d absent 1 /* |name_field| value for unused |mpx_in_stack| entries */
12807 @d mpx_reading (mp->mpx_name[index]>absent)
12808 /* when reading a file, is it an \.{MPX} file? */
12810 /* |name_field| value when the corresponding \.{MPX} file is finished */
12813 integer in_open; /* the number of lines in the buffer, less one */
12814 unsigned int open_parens; /* the number of open text files */
12815 void * *input_file ;
12816 integer *line_stack ; /* the line number for each file */
12817 char * *iname_stack; /* used for naming \.{MPX} files */
12818 char * *iarea_stack; /* used for naming \.{MPX} files */
12819 halfword*mpx_name ;
12821 @ @<Allocate or ...@>=
12822 mp->input_file = xmalloc((mp->max_in_open+1),sizeof(void *));
12823 mp->line_stack = xmalloc((mp->max_in_open+1),sizeof(integer));
12824 mp->iname_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12825 mp->iarea_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12826 mp->mpx_name = xmalloc((mp->max_in_open+1),sizeof(halfword));
12829 for (k=0;k<=mp->max_in_open;k++) {
12830 mp->iname_stack[k] =NULL;
12831 mp->iarea_stack[k] =NULL;
12835 @ @<Dealloc variables@>=
12838 for (l=0;l<=mp->max_in_open;l++) {
12839 xfree(mp->iname_stack[l]);
12840 xfree(mp->iarea_stack[l]);
12843 xfree(mp->input_file);
12844 xfree(mp->line_stack);
12845 xfree(mp->iname_stack);
12846 xfree(mp->iarea_stack);
12847 xfree(mp->mpx_name);
12850 @ However, all this discussion about input state really applies only to the
12851 case that we are inputting from a file. There is another important case,
12852 namely when we are currently getting input from a token list. In this case
12853 |index>max_in_open|, and the conventions about the other state variables
12856 \yskip\hang|loc| is a pointer to the current node in the token list, i.e.,
12857 the node that will be read next. If |loc=null|, the token list has been
12860 \yskip\hang|start| points to the first node of the token list; this node
12861 may or may not contain a reference count, depending on the type of token
12864 \yskip\hang|token_type|, which takes the place of |index| in the
12865 discussion above, is a code number that explains what kind of token list
12868 \yskip\hang|name| points to the |eqtb| address of the control sequence
12869 being expanded, if the current token list is a macro not defined by
12870 \&{vardef}. Macros defined by \&{vardef} have |name=null|; their name
12871 can be deduced by looking at their first two parameters.
12873 \yskip\hang|param_start|, which takes the place of |limit|, tells where
12874 the parameters of the current macro or loop text begin in the |param_stack|.
12876 \yskip\noindent The |token_type| can take several values, depending on
12877 where the current token list came from:
12880 \indent|forever_text|, if the token list being scanned is the body of
12881 a \&{forever} loop;
12883 \indent|loop_text|, if the token list being scanned is the body of
12884 a \&{for} or \&{forsuffixes} loop;
12886 \indent|parameter|, if a \&{text} or \&{suffix} parameter is being scanned;
12888 \indent|backed_up|, if the token list being scanned has been inserted as
12889 `to be read again'.
12891 \indent|inserted|, if the token list being scanned has been inserted as
12892 part of error recovery;
12894 \indent|macro|, if the expansion of a user-defined symbolic token is being
12898 The token list begins with a reference count if and only if |token_type=
12900 @^reference counts@>
12902 @d token_type index /* type of current token list */
12903 @d token_state (index>(int)mp->max_in_open) /* are we scanning a token list? */
12904 @d file_state (index<=(int)mp->max_in_open) /* are we scanning a file line? */
12905 @d param_start limit /* base of macro parameters in |param_stack| */
12906 @d forever_text (mp->max_in_open+1) /* |token_type| code for loop texts */
12907 @d loop_text (mp->max_in_open+2) /* |token_type| code for loop texts */
12908 @d parameter (mp->max_in_open+3) /* |token_type| code for parameter texts */
12909 @d backed_up (mp->max_in_open+4) /* |token_type| code for texts to be reread */
12910 @d inserted (mp->max_in_open+5) /* |token_type| code for inserted texts */
12911 @d macro (mp->max_in_open+6) /* |token_type| code for macro replacement texts */
12913 @ The |param_stack| is an auxiliary array used to hold pointers to the token
12914 lists for parameters at the current level and subsidiary levels of input.
12915 This stack grows at a different rate from the others.
12918 pointer *param_stack; /* token list pointers for parameters */
12919 integer param_ptr; /* first unused entry in |param_stack| */
12920 integer max_param_stack; /* largest value of |param_ptr| */
12922 @ @<Allocate or initialize ...@>=
12923 mp->param_stack = xmalloc((mp->param_size+1),sizeof(pointer));
12925 @ @<Dealloc variables@>=
12926 xfree(mp->param_stack);
12928 @ Notice that the |line| isn't valid when |token_state| is true because it
12929 depends on |index|. If we really need to know the line number for the
12930 topmost file in the index stack we use the following function. If a page
12931 number or other information is needed, this routine should be modified to
12932 compute it as well.
12933 @^system dependencies@>
12935 @<Declare a function called |true_line|@>=
12936 integer mp_true_line (MP mp) {
12937 int k; /* an index into the input stack */
12938 if ( file_state && (name>max_spec_src) ) {
12943 ((mp->input_stack[(k-1)].index_field>mp->max_in_open)||
12944 (mp->input_stack[(k-1)].name_field<=max_spec_src))) {
12947 return mp->line_stack[(k-1)];
12952 @ Thus, the ``current input state'' can be very complicated indeed; there
12953 can be many levels and each level can arise in a variety of ways. The
12954 |show_context| procedure, which is used by \MP's error-reporting routine to
12955 print out the current input state on all levels down to the most recent
12956 line of characters from an input file, illustrates most of these conventions.
12957 The global variable |file_ptr| contains the lowest level that was
12958 displayed by this procedure.
12961 integer file_ptr; /* shallowest level shown by |show_context| */
12963 @ The status at each level is indicated by printing two lines, where the first
12964 line indicates what was read so far and the second line shows what remains
12965 to be read. The context is cropped, if necessary, so that the first line
12966 contains at most |half_error_line| characters, and the second contains
12967 at most |error_line|. Non-current input levels whose |token_type| is
12968 `|backed_up|' are shown only if they have not been fully read.
12970 @c void mp_show_context (MP mp) { /* prints where the scanner is */
12971 int old_setting; /* saved |selector| setting */
12972 @<Local variables for formatting calculations@>
12973 mp->file_ptr=mp->input_ptr; mp->input_stack[mp->file_ptr]=mp->cur_input;
12974 /* store current state */
12976 mp->cur_input=mp->input_stack[mp->file_ptr]; /* enter into the context */
12977 @<Display the current context@>;
12979 if ( (name>max_spec_src) || (mp->file_ptr==0) ) break;
12980 decr(mp->file_ptr);
12982 mp->cur_input=mp->input_stack[mp->input_ptr]; /* restore original state */
12985 @ @<Display the current context@>=
12986 if ( (mp->file_ptr==mp->input_ptr) || file_state ||
12987 (token_type!=backed_up) || (loc!=null) ) {
12988 /* we omit backed-up token lists that have already been read */
12989 mp->tally=0; /* get ready to count characters */
12990 old_setting=mp->selector;
12991 if ( file_state ) {
12992 @<Print location of current line@>;
12993 @<Pseudoprint the line@>;
12995 @<Print type of token list@>;
12996 @<Pseudoprint the token list@>;
12998 mp->selector=old_setting; /* stop pseudoprinting */
12999 @<Print two lines using the tricky pseudoprinted information@>;
13002 @ This routine should be changed, if necessary, to give the best possible
13003 indication of where the current line resides in the input file.
13004 For example, on some systems it is best to print both a page and line number.
13005 @^system dependencies@>
13007 @<Print location of current line@>=
13008 if ( name>max_spec_src ) {
13009 mp_print_nl(mp, "l."); mp_print_int(mp, mp_true_line(mp));
13010 } else if ( terminal_input ) {
13011 if ( mp->file_ptr==0 ) mp_print_nl(mp, "<*>");
13012 else mp_print_nl(mp, "<insert>");
13013 } else if ( name==is_scantok ) {
13014 mp_print_nl(mp, "<scantokens>");
13016 mp_print_nl(mp, "<read>");
13018 mp_print_char(mp, ' ')
13020 @ Can't use case statement here because the |token_type| is not
13021 a constant expression.
13023 @<Print type of token list@>=
13025 if(token_type==forever_text) {
13026 mp_print_nl(mp, "<forever> ");
13027 } else if (token_type==loop_text) {
13028 @<Print the current loop value@>;
13029 } else if (token_type==parameter) {
13030 mp_print_nl(mp, "<argument> ");
13031 } else if (token_type==backed_up) {
13032 if ( loc==null ) mp_print_nl(mp, "<recently read> ");
13033 else mp_print_nl(mp, "<to be read again> ");
13034 } else if (token_type==inserted) {
13035 mp_print_nl(mp, "<inserted text> ");
13036 } else if (token_type==macro) {
13038 if ( name!=null ) mp_print_text(name);
13039 else @<Print the name of a \&{vardef}'d macro@>;
13040 mp_print(mp, "->");
13042 mp_print_nl(mp, "?");/* this should never happen */
13047 @ The parameter that corresponds to a loop text is either a token list
13048 (in the case of \&{forsuffixes}) or a ``capsule'' (in the case of \&{for}).
13049 We'll discuss capsules later; for now, all we need to know is that
13050 the |link| field in a capsule parameter is |void| and that
13051 |print_exp(p,0)| displays the value of capsule~|p| in abbreviated form.
13053 @<Print the current loop value@>=
13054 { mp_print_nl(mp, "<for("); p=mp->param_stack[param_start];
13056 if ( link(p)==mp_void ) mp_print_exp(mp, p,0); /* we're in a \&{for} loop */
13057 else mp_show_token_list(mp, p,null,20,mp->tally);
13059 mp_print(mp, ")> ");
13062 @ The first two parameters of a macro defined by \&{vardef} will be token
13063 lists representing the macro's prefix and ``at point.'' By putting these
13064 together, we get the macro's full name.
13066 @<Print the name of a \&{vardef}'d macro@>=
13067 { p=mp->param_stack[param_start];
13069 mp_show_token_list(mp, mp->param_stack[param_start+1],null,20,mp->tally);
13072 while ( link(q)!=null ) q=link(q);
13073 link(q)=mp->param_stack[param_start+1];
13074 mp_show_token_list(mp, p,null,20,mp->tally);
13079 @ Now it is necessary to explain a little trick. We don't want to store a long
13080 string that corresponds to a token list, because that string might take up
13081 lots of memory; and we are printing during a time when an error message is
13082 being given, so we dare not do anything that might overflow one of \MP's
13083 tables. So `pseudoprinting' is the answer: We enter a mode of printing
13084 that stores characters into a buffer of length |error_line|, where character
13085 $k+1$ is placed into \hbox{|trick_buf[k mod error_line]|} if
13086 |k<trick_count|, otherwise character |k| is dropped. Initially we set
13087 |tally:=0| and |trick_count:=1000000|; then when we reach the
13088 point where transition from line 1 to line 2 should occur, we
13089 set |first_count:=tally| and |trick_count:=@tmax@>(error_line,
13090 tally+1+error_line-half_error_line)|. At the end of the
13091 pseudoprinting, the values of |first_count|, |tally|, and
13092 |trick_count| give us all the information we need to print the two lines,
13093 and all of the necessary text is in |trick_buf|.
13095 Namely, let |l| be the length of the descriptive information that appears
13096 on the first line. The length of the context information gathered for that
13097 line is |k=first_count|, and the length of the context information
13098 gathered for line~2 is $m=\min(|tally|, |trick_count|)-k$. If |l+k<=h|,
13099 where |h=half_error_line|, we print |trick_buf[0..k-1]| after the
13100 descriptive information on line~1, and set |n:=l+k|; here |n| is the
13101 length of line~1. If $l+k>h$, some cropping is necessary, so we set |n:=h|
13102 and print `\.{...}' followed by
13103 $$\hbox{|trick_buf[(l+k-h+3)..k-1]|,}$$
13104 where subscripts of |trick_buf| are circular modulo |error_line|. The
13105 second line consists of |n|~spaces followed by |trick_buf[k..(k+m-1)]|,
13106 unless |n+m>error_line|; in the latter case, further cropping is done.
13107 This is easier to program than to explain.
13109 @<Local variables for formatting...@>=
13110 int i; /* index into |buffer| */
13111 integer l; /* length of descriptive information on line 1 */
13112 integer m; /* context information gathered for line 2 */
13113 int n; /* length of line 1 */
13114 integer p; /* starting or ending place in |trick_buf| */
13115 integer q; /* temporary index */
13117 @ The following code tells the print routines to gather
13118 the desired information.
13120 @d begin_pseudoprint {
13121 l=mp->tally; mp->tally=0; mp->selector=pseudo;
13122 mp->trick_count=1000000;
13124 @d set_trick_count {
13125 mp->first_count=mp->tally;
13126 mp->trick_count=mp->tally+1+mp->error_line-mp->half_error_line;
13127 if ( mp->trick_count<mp->error_line ) mp->trick_count=mp->error_line;
13130 @ And the following code uses the information after it has been gathered.
13132 @<Print two lines using the tricky pseudoprinted information@>=
13133 if ( mp->trick_count==1000000 ) set_trick_count;
13134 /* |set_trick_count| must be performed */
13135 if ( mp->tally<mp->trick_count ) m=mp->tally-mp->first_count;
13136 else m=mp->trick_count-mp->first_count; /* context on line 2 */
13137 if ( l+mp->first_count<=mp->half_error_line ) {
13138 p=0; n=l+mp->first_count;
13140 mp_print(mp, "..."); p=l+mp->first_count-mp->half_error_line+3;
13141 n=mp->half_error_line;
13143 for (q=p;q<=mp->first_count-1;q++) {
13144 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13147 for (q=1;q<=n;q++) {
13148 mp_print_char(mp, ' '); /* print |n| spaces to begin line~2 */
13150 if ( m+n<=mp->error_line ) p=mp->first_count+m;
13151 else p=mp->first_count+(mp->error_line-n-3);
13152 for (q=mp->first_count;q<=p-1;q++) {
13153 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13155 if ( m+n>mp->error_line ) mp_print(mp, "...")
13157 @ But the trick is distracting us from our current goal, which is to
13158 understand the input state. So let's concentrate on the data structures that
13159 are being pseudoprinted as we finish up the |show_context| procedure.
13161 @<Pseudoprint the line@>=
13164 for (i=start;i<=limit-1;i++) {
13165 if ( i==loc ) set_trick_count;
13166 mp_print_str(mp, mp->buffer[i]);
13170 @ @<Pseudoprint the token list@>=
13172 if ( token_type!=macro ) mp_show_token_list(mp, start,loc,100000,0);
13173 else mp_show_macro(mp, start,loc,100000)
13175 @ Here is the missing piece of |show_token_list| that is activated when the
13176 token beginning line~2 is about to be shown:
13178 @<Do magic computation@>=set_trick_count
13180 @* \[28] Maintaining the input stacks.
13181 The following subroutines change the input status in commonly needed ways.
13183 First comes |push_input|, which stores the current state and creates a
13184 new level (having, initially, the same properties as the old).
13186 @d push_input { /* enter a new input level, save the old */
13187 if ( mp->input_ptr>mp->max_in_stack ) {
13188 mp->max_in_stack=mp->input_ptr;
13189 if ( mp->input_ptr==mp->stack_size ) {
13190 int l = (mp->stack_size+(mp->stack_size>>2));
13191 XREALLOC(mp->input_stack, l, in_state_record);
13192 mp->stack_size = l;
13195 mp->input_stack[mp->input_ptr]=mp->cur_input; /* stack the record */
13196 incr(mp->input_ptr);
13199 @ And of course what goes up must come down.
13201 @d pop_input { /* leave an input level, re-enter the old */
13202 decr(mp->input_ptr); mp->cur_input=mp->input_stack[mp->input_ptr];
13205 @ Here is a procedure that starts a new level of token-list input, given
13206 a token list |p| and its type |t|. If |t=macro|, the calling routine should
13207 set |name|, reset~|loc|, and increase the macro's reference count.
13209 @d back_list(A) mp_begin_token_list(mp, (A),backed_up) /* backs up a simple token list */
13211 @c void mp_begin_token_list (MP mp,pointer p, quarterword t) {
13212 push_input; start=p; token_type=t;
13213 param_start=mp->param_ptr; loc=p;
13216 @ When a token list has been fully scanned, the following computations
13217 should be done as we leave that level of input.
13220 @c void mp_end_token_list (MP mp) { /* leave a token-list input level */
13221 pointer p; /* temporary register */
13222 if ( token_type>=backed_up ) { /* token list to be deleted */
13223 if ( token_type<=inserted ) {
13224 mp_flush_token_list(mp, start); goto DONE;
13226 mp_delete_mac_ref(mp, start); /* update reference count */
13229 while ( mp->param_ptr>param_start ) { /* parameters must be flushed */
13230 decr(mp->param_ptr);
13231 p=mp->param_stack[mp->param_ptr];
13233 if ( link(p)==mp_void ) { /* it's an \&{expr} parameter */
13234 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
13236 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
13241 pop_input; check_interrupt;
13244 @ The contents of |cur_cmd,cur_mod,cur_sym| are placed into an equivalent
13245 token by the |cur_tok| routine.
13248 @c @<Declare the procedure called |make_exp_copy|@>;
13249 pointer mp_cur_tok (MP mp) {
13250 pointer p; /* a new token node */
13251 small_number save_type; /* |cur_type| to be restored */
13252 integer save_exp; /* |cur_exp| to be restored */
13253 if ( mp->cur_sym==0 ) {
13254 if ( mp->cur_cmd==capsule_token ) {
13255 save_type=mp->cur_type; save_exp=mp->cur_exp;
13256 mp_make_exp_copy(mp, mp->cur_mod); p=mp_stash_cur_exp(mp); link(p)=null;
13257 mp->cur_type=save_type; mp->cur_exp=save_exp;
13259 p=mp_get_node(mp, token_node_size);
13260 value(p)=mp->cur_mod; name_type(p)=mp_token;
13261 if ( mp->cur_cmd==numeric_token ) type(p)=mp_known;
13262 else type(p)=mp_string_type;
13265 fast_get_avail(p); info(p)=mp->cur_sym;
13270 @ Sometimes \MP\ has read too far and wants to ``unscan'' what it has
13271 seen. The |back_input| procedure takes care of this by putting the token
13272 just scanned back into the input stream, ready to be read again.
13273 If |cur_sym<>0|, the values of |cur_cmd| and |cur_mod| are irrelevant.
13276 void mp_back_input (MP mp);
13278 @ @c void mp_back_input (MP mp) {/* undoes one token of input */
13279 pointer p; /* a token list of length one */
13281 while ( token_state &&(loc==null) )
13282 mp_end_token_list(mp); /* conserve stack space */
13286 @ The |back_error| routine is used when we want to restore or replace an
13287 offending token just before issuing an error message. We disable interrupts
13288 during the call of |back_input| so that the help message won't be lost.
13291 void mp_error (MP mp);
13292 void mp_back_error (MP mp);
13294 @ @c void mp_back_error (MP mp) { /* back up one token and call |error| */
13295 mp->OK_to_interrupt=false;
13297 mp->OK_to_interrupt=true; mp_error(mp);
13299 void mp_ins_error (MP mp) { /* back up one inserted token and call |error| */
13300 mp->OK_to_interrupt=false;
13301 mp_back_input(mp); token_type=inserted;
13302 mp->OK_to_interrupt=true; mp_error(mp);
13305 @ The |begin_file_reading| procedure starts a new level of input for lines
13306 of characters to be read from a file, or as an insertion from the
13307 terminal. It does not take care of opening the file, nor does it set |loc|
13308 or |limit| or |line|.
13309 @^system dependencies@>
13311 @c void mp_begin_file_reading (MP mp) {
13312 if ( mp->in_open==mp->max_in_open )
13313 mp_overflow(mp, "text input levels",mp->max_in_open);
13314 @:MetaPost capacity exceeded text input levels}{\quad text input levels@>
13315 if ( mp->first==mp->buf_size )
13316 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13317 incr(mp->in_open); push_input; index=mp->in_open;
13318 mp->mpx_name[index]=absent;
13320 name=is_term; /* |terminal_input| is now |true| */
13323 @ Conversely, the variables must be downdated when such a level of input
13324 is finished. Any associated \.{MPX} file must also be closed and popped
13325 off the file stack.
13327 @c void mp_end_file_reading (MP mp) {
13328 if ( mp->in_open>index ) {
13329 if ( (mp->mpx_name[mp->in_open]==absent)||(name<=max_spec_src) ) {
13330 mp_confusion(mp, "endinput");
13331 @:this can't happen endinput}{\quad endinput@>
13333 (mp->close_file)(mp->input_file[mp->in_open]); /* close an \.{MPX} file */
13334 delete_str_ref(mp->mpx_name[mp->in_open]);
13339 if ( index!=mp->in_open ) mp_confusion(mp, "endinput");
13340 if ( name>max_spec_src ) {
13341 (mp->close_file)(cur_file);
13342 delete_str_ref(name);
13346 pop_input; decr(mp->in_open);
13349 @ Here is a function that tries to resume input from an \.{MPX} file already
13350 associated with the current input file. It returns |false| if this doesn't
13353 @c boolean mp_begin_mpx_reading (MP mp) {
13354 if ( mp->in_open!=index+1 ) {
13357 if ( mp->mpx_name[mp->in_open]<=absent ) mp_confusion(mp, "mpx");
13358 @:this can't happen mpx}{\quad mpx@>
13359 if ( mp->first==mp->buf_size )
13360 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13361 push_input; index=mp->in_open;
13363 name=mp->mpx_name[mp->in_open]; add_str_ref(name);
13364 @<Put an empty line in the input buffer@>;
13369 @ This procedure temporarily stops reading an \.{MPX} file.
13371 @c void mp_end_mpx_reading (MP mp) {
13372 if ( mp->in_open!=index ) mp_confusion(mp, "mpx");
13373 @:this can't happen mpx}{\quad mpx@>
13375 @<Complain that we are not at the end of a line in the \.{MPX} file@>;
13381 @ Here we enforce a restriction that simplifies the input stacks considerably.
13382 This should not inconvenience the user because \.{MPX} files are generated
13383 by an auxiliary program called \.{DVItoMP}.
13385 @ @<Complain that we are not at the end of a line in the \.{MPX} file@>=
13387 print_err("`mpxbreak' must be at the end of a line");
13388 help4("This file contains picture expressions for btex...etex")
13389 ("blocks. Such files are normally generated automatically")
13390 ("but this one seems to be messed up. I'm going to ignore")
13391 ("the rest of this line.");
13395 @ In order to keep the stack from overflowing during a long sequence of
13396 inserted `\.{show}' commands, the following routine removes completed
13397 error-inserted lines from memory.
13399 @c void mp_clear_for_error_prompt (MP mp) {
13400 while ( file_state && terminal_input &&
13401 (mp->input_ptr>0)&&(loc==limit) ) mp_end_file_reading(mp);
13402 mp_print_ln(mp); clear_terminal;
13405 @ To get \MP's whole input mechanism going, we perform the following
13408 @<Initialize the input routines@>=
13409 { mp->input_ptr=0; mp->max_in_stack=0;
13410 mp->in_open=0; mp->open_parens=0; mp->max_buf_stack=0;
13411 mp->param_ptr=0; mp->max_param_stack=0;
13413 start=1; index=0; line=0; name=is_term;
13414 mp->mpx_name[0]=absent;
13415 mp->force_eof=false;
13416 if ( ! mp_init_terminal(mp) ) mp_jump_out(mp);
13417 limit=mp->last; mp->first=mp->last+1;
13418 /* |init_terminal| has set |loc| and |last| */
13421 @* \[29] Getting the next token.
13422 The heart of \MP's input mechanism is the |get_next| procedure, which
13423 we shall develop in the next few sections of the program. Perhaps we
13424 shouldn't actually call it the ``heart,'' however; it really acts as \MP's
13425 eyes and mouth, reading the source files and gobbling them up. And it also
13426 helps \MP\ to regurgitate stored token lists that are to be processed again.
13428 The main duty of |get_next| is to input one token and to set |cur_cmd|
13429 and |cur_mod| to that token's command code and modifier. Furthermore, if
13430 the input token is a symbolic token, that token's |hash| address
13431 is stored in |cur_sym|; otherwise |cur_sym| is set to zero.
13433 Underlying this simple description is a certain amount of complexity
13434 because of all the cases that need to be handled.
13435 However, the inner loop of |get_next| is reasonably short and fast.
13437 @ Before getting into |get_next|, we need to consider a mechanism by which
13438 \MP\ helps keep errors from propagating too far. Whenever the program goes
13439 into a mode where it keeps calling |get_next| repeatedly until a certain
13440 condition is met, it sets |scanner_status| to some value other than |normal|.
13441 Then if an input file ends, or if an `\&{outer}' symbol appears,
13442 an appropriate error recovery will be possible.
13444 The global variable |warning_info| helps in this error recovery by providing
13445 additional information. For example, |warning_info| might indicate the
13446 name of a macro whose replacement text is being scanned.
13448 @d normal 0 /* |scanner_status| at ``quiet times'' */
13449 @d skipping 1 /* |scanner_status| when false conditional text is being skipped */
13450 @d flushing 2 /* |scanner_status| when junk after a statement is being ignored */
13451 @d absorbing 3 /* |scanner_status| when a \&{text} parameter is being scanned */
13452 @d var_defining 4 /* |scanner_status| when a \&{vardef} is being scanned */
13453 @d op_defining 5 /* |scanner_status| when a macro \&{def} is being scanned */
13454 @d loop_defining 6 /* |scanner_status| when a \&{for} loop is being scanned */
13455 @d tex_flushing 7 /* |scanner_status| when skipping \TeX\ material */
13458 integer scanner_status; /* are we scanning at high speed? */
13459 integer warning_info; /* if so, what else do we need to know,
13460 in case an error occurs? */
13462 @ @<Initialize the input routines@>=
13463 mp->scanner_status=normal;
13465 @ The following subroutine
13466 is called when an `\&{outer}' symbolic token has been scanned or
13467 when the end of a file has been reached. These two cases are distinguished
13468 by |cur_sym|, which is zero at the end of a file.
13470 @c boolean mp_check_outer_validity (MP mp) {
13471 pointer p; /* points to inserted token list */
13472 if ( mp->scanner_status==normal ) {
13474 } else if ( mp->scanner_status==tex_flushing ) {
13475 @<Check if the file has ended while flushing \TeX\ material and set the
13476 result value for |check_outer_validity|@>;
13478 mp->deletions_allowed=false;
13479 @<Back up an outer symbolic token so that it can be reread@>;
13480 if ( mp->scanner_status>skipping ) {
13481 @<Tell the user what has run away and try to recover@>;
13483 print_err("Incomplete if; all text was ignored after line ");
13484 @.Incomplete if...@>
13485 mp_print_int(mp, mp->warning_info);
13486 help3("A forbidden `outer' token occurred in skipped text.")
13487 ("This kind of error happens when you say `if...' and forget")
13488 ("the matching `fi'. I've inserted a `fi'; this might work.");
13489 if ( mp->cur_sym==0 )
13490 mp->help_line[2]="The file ended while I was skipping conditional text.";
13491 mp->cur_sym=frozen_fi; mp_ins_error(mp);
13493 mp->deletions_allowed=true;
13498 @ @<Check if the file has ended while flushing \TeX\ material and set...@>=
13499 if ( mp->cur_sym!=0 ) {
13502 mp->deletions_allowed=false;
13503 print_err("TeX mode didn't end; all text was ignored after line ");
13504 mp_print_int(mp, mp->warning_info);
13505 help2("The file ended while I was looking for the `etex' to")
13506 ("finish this TeX material. I've inserted `etex' now.");
13507 mp->cur_sym = frozen_etex;
13509 mp->deletions_allowed=true;
13513 @ @<Back up an outer symbolic token so that it can be reread@>=
13514 if ( mp->cur_sym!=0 ) {
13515 p=mp_get_avail(mp); info(p)=mp->cur_sym;
13516 back_list(p); /* prepare to read the symbolic token again */
13519 @ @<Tell the user what has run away...@>=
13521 mp_runaway(mp); /* print the definition-so-far */
13522 if ( mp->cur_sym==0 ) {
13523 print_err("File ended");
13524 @.File ended while scanning...@>
13526 print_err("Forbidden token found");
13527 @.Forbidden token found...@>
13529 mp_print(mp, " while scanning ");
13530 help4("I suspect you have forgotten an `enddef',")
13531 ("causing me to read past where you wanted me to stop.")
13532 ("I'll try to recover; but if the error is serious,")
13533 ("you'd better type `E' or `X' now and fix your file.");
13534 switch (mp->scanner_status) {
13535 @<Complete the error message,
13536 and set |cur_sym| to a token that might help recover from the error@>
13537 } /* there are no other cases */
13541 @ As we consider various kinds of errors, it is also appropriate to
13542 change the first line of the help message just given; |help_line[3]|
13543 points to the string that might be changed.
13545 @<Complete the error message,...@>=
13547 mp_print(mp, "to the end of the statement");
13548 mp->help_line[3]="A previous error seems to have propagated,";
13549 mp->cur_sym=frozen_semicolon;
13552 mp_print(mp, "a text argument");
13553 mp->help_line[3]="It seems that a right delimiter was left out,";
13554 if ( mp->warning_info==0 ) {
13555 mp->cur_sym=frozen_end_group;
13557 mp->cur_sym=frozen_right_delimiter;
13558 equiv(frozen_right_delimiter)=mp->warning_info;
13563 mp_print(mp, "the definition of ");
13564 if ( mp->scanner_status==op_defining )
13565 mp_print_text(mp->warning_info);
13567 mp_print_variable_name(mp, mp->warning_info);
13568 mp->cur_sym=frozen_end_def;
13570 case loop_defining:
13571 mp_print(mp, "the text of a ");
13572 mp_print_text(mp->warning_info);
13573 mp_print(mp, " loop");
13574 mp->help_line[3]="I suspect you have forgotten an `endfor',";
13575 mp->cur_sym=frozen_end_for;
13578 @ The |runaway| procedure displays the first part of the text that occurred
13579 when \MP\ began its special |scanner_status|, if that text has been saved.
13581 @<Declare the procedure called |runaway|@>=
13582 void mp_runaway (MP mp) {
13583 if ( mp->scanner_status>flushing ) {
13584 mp_print_nl(mp, "Runaway ");
13585 switch (mp->scanner_status) {
13586 case absorbing: mp_print(mp, "text?"); break;
13588 case op_defining: mp_print(mp,"definition?"); break;
13589 case loop_defining: mp_print(mp, "loop?"); break;
13590 } /* there are no other cases */
13592 mp_show_token_list(mp, link(hold_head),null,mp->error_line-10,0);
13596 @ We need to mention a procedure that may be called by |get_next|.
13599 void mp_firm_up_the_line (MP mp);
13601 @ And now we're ready to take the plunge into |get_next| itself.
13602 Note that the behavior depends on the |scanner_status| because percent signs
13603 and double quotes need to be passed over when skipping TeX material.
13606 void mp_get_next (MP mp) {
13607 /* sets |cur_cmd|, |cur_mod|, |cur_sym| to next token */
13609 /*restart*/ /* go here to get the next input token */
13610 /*exit*/ /* go here when the next input token has been got */
13611 /*|common_ending|*/ /* go here to finish getting a symbolic token */
13612 /*found*/ /* go here when the end of a symbolic token has been found */
13613 /*switch*/ /* go here to branch on the class of an input character */
13614 /*|start_numeric_token|,|start_decimal_token|,|fin_numeric_token|,|done|*/
13615 /* go here at crucial stages when scanning a number */
13616 int k; /* an index into |buffer| */
13617 ASCII_code c; /* the current character in the buffer */
13618 ASCII_code class; /* its class number */
13619 integer n,f; /* registers for decimal-to-binary conversion */
13622 if ( file_state ) {
13623 @<Input from external file; |goto restart| if no input found,
13624 or |return| if a non-symbolic token is found@>;
13626 @<Input from token list; |goto restart| if end of list or
13627 if a parameter needs to be expanded,
13628 or |return| if a non-symbolic token is found@>;
13631 @<Finish getting the symbolic token in |cur_sym|;
13632 |goto restart| if it is illegal@>;
13635 @ When a symbolic token is declared to be `\&{outer}', its command code
13636 is increased by |outer_tag|.
13639 @<Finish getting the symbolic token in |cur_sym|...@>=
13640 mp->cur_cmd=eq_type(mp->cur_sym); mp->cur_mod=equiv(mp->cur_sym);
13641 if ( mp->cur_cmd>=outer_tag ) {
13642 if ( mp_check_outer_validity(mp) )
13643 mp->cur_cmd=mp->cur_cmd-outer_tag;
13648 @ A percent sign appears in |buffer[limit]|; this makes it unnecessary
13649 to have a special test for end-of-line.
13652 @<Input from external file;...@>=
13655 c=mp->buffer[loc]; incr(loc); class=mp->char_class[c];
13657 case digit_class: goto START_NUMERIC_TOKEN; break;
13659 class=mp->char_class[mp->buffer[loc]];
13660 if ( class>period_class ) {
13662 } else if ( class<period_class ) { /* |class=digit_class| */
13663 n=0; goto START_DECIMAL_TOKEN;
13667 case space_class: goto SWITCH; break;
13668 case percent_class:
13669 if ( mp->scanner_status==tex_flushing ) {
13670 if ( loc<limit ) goto SWITCH;
13672 @<Move to next line of file, or |goto restart| if there is no next line@>;
13677 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13678 else @<Get a string token and |return|@>;
13680 case isolated_classes:
13681 k=loc-1; goto FOUND; break;
13682 case invalid_class:
13683 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13684 else @<Decry the invalid character and |goto restart|@>;
13686 default: break; /* letters, etc. */
13689 while ( mp->char_class[mp->buffer[loc]]==class ) incr(loc);
13691 START_NUMERIC_TOKEN:
13692 @<Get the integer part |n| of a numeric token;
13693 set |f:=0| and |goto fin_numeric_token| if there is no decimal point@>;
13694 START_DECIMAL_TOKEN:
13695 @<Get the fraction part |f| of a numeric token@>;
13697 @<Pack the numeric and fraction parts of a numeric token
13700 mp->cur_sym=mp_id_lookup(mp, k,loc-k);
13703 @ We go to |restart| instead of to |SWITCH|, because |state| might equal
13704 |token_list| after the error has been dealt with
13705 (cf.\ |clear_for_error_prompt|).
13707 @<Decry the invalid...@>=
13709 print_err("Text line contains an invalid character");
13710 @.Text line contains...@>
13711 help2("A funny symbol that I can\'t read has just been input.")
13712 ("Continue, and I'll forget that it ever happened.");
13713 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13717 @ @<Get a string token and |return|@>=
13719 if ( mp->buffer[loc]=='"' ) {
13720 mp->cur_mod=rts("");
13722 k=loc; mp->buffer[limit+1]='"';
13725 } while (mp->buffer[loc]!='"');
13727 @<Decry the missing string delimiter and |goto restart|@>;
13730 mp->cur_mod=mp->buffer[k];
13734 append_char(mp->buffer[k]); incr(k);
13736 mp->cur_mod=mp_make_string(mp);
13739 incr(loc); mp->cur_cmd=string_token;
13743 @ We go to |restart| after this error message, not to |SWITCH|,
13744 because the |clear_for_error_prompt| routine might have reinstated
13745 |token_state| after |error| has finished.
13747 @<Decry the missing string delimiter and |goto restart|@>=
13749 loc=limit; /* the next character to be read on this line will be |"%"| */
13750 print_err("Incomplete string token has been flushed");
13751 @.Incomplete string token...@>
13752 help3("Strings should finish on the same line as they began.")
13753 ("I've deleted the partial string; you might want to")
13754 ("insert another by typing, e.g., `I\"new string\"'.");
13755 mp->deletions_allowed=false; mp_error(mp);
13756 mp->deletions_allowed=true;
13760 @ @<Get the integer part |n| of a numeric token...@>=
13762 while ( mp->char_class[mp->buffer[loc]]==digit_class ) {
13763 if ( n<32768 ) n=10*n+mp->buffer[loc]-'0';
13766 if ( mp->buffer[loc]=='.' )
13767 if ( mp->char_class[mp->buffer[loc+1]]==digit_class )
13770 goto FIN_NUMERIC_TOKEN;
13773 @ @<Get the fraction part |f| of a numeric token@>=
13776 if ( k<17 ) { /* digits for |k>=17| cannot affect the result */
13777 mp->dig[k]=mp->buffer[loc]-'0'; incr(k);
13780 } while (mp->char_class[mp->buffer[loc]]==digit_class);
13781 f=mp_round_decimals(mp, k);
13786 @ @<Pack the numeric and fraction parts of a numeric token and |return|@>=
13788 @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>;
13789 } else if ( mp->scanner_status!=tex_flushing ) {
13790 print_err("Enormous number has been reduced");
13791 @.Enormous number...@>
13792 help2("I can\'t handle numbers bigger than 32767.99998;")
13793 ("so I've changed your constant to that maximum amount.");
13794 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13795 mp->cur_mod=el_gordo;
13797 mp->cur_cmd=numeric_token; return
13799 @ @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>=
13801 mp->cur_mod=n*unity+f;
13802 if ( mp->cur_mod>=fraction_one ) {
13803 if ( (mp->internal[mp_warning_check]>0) &&
13804 (mp->scanner_status!=tex_flushing) ) {
13805 print_err("Number is too large (");
13806 mp_print_scaled(mp, mp->cur_mod);
13807 mp_print_char(mp, ')');
13808 help3("It is at least 4096. Continue and I'll try to cope")
13809 ("with that big value; but it might be dangerous.")
13810 ("(Set warningcheck:=0 to suppress this message.)");
13816 @ Let's consider now what happens when |get_next| is looking at a token list.
13819 @<Input from token list;...@>=
13820 if ( loc>=mp->hi_mem_min ) { /* one-word token */
13821 mp->cur_sym=info(loc); loc=link(loc); /* move to next */
13822 if ( mp->cur_sym>=expr_base ) {
13823 if ( mp->cur_sym>=suffix_base ) {
13824 @<Insert a suffix or text parameter and |goto restart|@>;
13826 mp->cur_cmd=capsule_token;
13827 mp->cur_mod=mp->param_stack[param_start+mp->cur_sym-(expr_base)];
13828 mp->cur_sym=0; return;
13831 } else if ( loc>null ) {
13832 @<Get a stored numeric or string or capsule token and |return|@>
13833 } else { /* we are done with this token list */
13834 mp_end_token_list(mp); goto RESTART; /* resume previous level */
13837 @ @<Insert a suffix or text parameter...@>=
13839 if ( mp->cur_sym>=text_base ) mp->cur_sym=mp->cur_sym-mp->param_size;
13840 /* |param_size=text_base-suffix_base| */
13841 mp_begin_token_list(mp,
13842 mp->param_stack[param_start+mp->cur_sym-(suffix_base)],
13847 @ @<Get a stored numeric or string or capsule token...@>=
13849 if ( name_type(loc)==mp_token ) {
13850 mp->cur_mod=value(loc);
13851 if ( type(loc)==mp_known ) {
13852 mp->cur_cmd=numeric_token;
13854 mp->cur_cmd=string_token; add_str_ref(mp->cur_mod);
13857 mp->cur_mod=loc; mp->cur_cmd=capsule_token;
13859 loc=link(loc); return;
13862 @ All of the easy branches of |get_next| have now been taken care of.
13863 There is one more branch.
13865 @<Move to next line of file, or |goto restart|...@>=
13866 if ( name>max_spec_src ) {
13867 @<Read next line of file into |buffer|, or
13868 |goto restart| if the file has ended@>;
13870 if ( mp->input_ptr>0 ) {
13871 /* text was inserted during error recovery or by \&{scantokens} */
13872 mp_end_file_reading(mp); goto RESTART; /* resume previous level */
13874 if ( mp->selector<log_only || mp->selector>=write_file) mp_open_log_file(mp);
13875 if ( mp->interaction>mp_nonstop_mode ) {
13876 if ( limit==start ) /* previous line was empty */
13877 mp_print_nl(mp, "(Please type a command or say `end')");
13879 mp_print_ln(mp); mp->first=start;
13880 prompt_input("*"); /* input on-line into |buffer| */
13882 limit=mp->last; mp->buffer[limit]='%';
13883 mp->first=limit+1; loc=start;
13885 mp_fatal_error(mp, "*** (job aborted, no legal end found)");
13887 /* nonstop mode, which is intended for overnight batch processing,
13888 never waits for on-line input */
13892 @ The global variable |force_eof| is normally |false|; it is set |true|
13893 by an \&{endinput} command.
13896 boolean force_eof; /* should the next \&{input} be aborted early? */
13898 @ We must decrement |loc| in order to leave the buffer in a valid state
13899 when an error condition causes us to |goto restart| without calling
13900 |end_file_reading|.
13902 @<Read next line of file into |buffer|, or
13903 |goto restart| if the file has ended@>=
13905 incr(line); mp->first=start;
13906 if ( ! mp->force_eof ) {
13907 if ( mp_input_ln(mp, cur_file ) ) /* not end of file */
13908 mp_firm_up_the_line(mp); /* this sets |limit| */
13910 mp->force_eof=true;
13912 if ( mp->force_eof ) {
13913 mp->force_eof=false;
13915 if ( mpx_reading ) {
13916 @<Complain that the \.{MPX} file ended unexpectly; then set
13917 |cur_sym:=frozen_mpx_break| and |goto comon_ending|@>;
13919 mp_print_char(mp, ')'); decr(mp->open_parens);
13920 update_terminal; /* show user that file has been read */
13921 mp_end_file_reading(mp); /* resume previous level */
13922 if ( mp_check_outer_validity(mp) ) goto RESTART;
13926 mp->buffer[limit]='%'; mp->first=limit+1; loc=start; /* ready to read */
13929 @ We should never actually come to the end of an \.{MPX} file because such
13930 files should have an \&{mpxbreak} after the translation of the last
13931 \&{btex}$\,\ldots\,$\&{etex} block.
13933 @<Complain that the \.{MPX} file ended unexpectly; then set...@>=
13935 mp->mpx_name[index]=finished;
13936 print_err("mpx file ended unexpectedly");
13937 help4("The file had too few picture expressions for btex...etex")
13938 ("blocks. Such files are normally generated automatically")
13939 ("but this one got messed up. You might want to insert a")
13940 ("picture expression now.");
13941 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13942 mp->cur_sym=frozen_mpx_break; goto COMMON_ENDING;
13945 @ Sometimes we want to make it look as though we have just read a blank line
13946 without really doing so.
13948 @<Put an empty line in the input buffer@>=
13949 mp->last=mp->first; limit=mp->last; /* simulate |input_ln| and |firm_up_the_line| */
13950 mp->buffer[limit]='%'; mp->first=limit+1; loc=start
13952 @ If the user has set the |mp_pausing| parameter to some positive value,
13953 and if nonstop mode has not been selected, each line of input is displayed
13954 on the terminal and the transcript file, followed by `\.{=>}'.
13955 \MP\ waits for a response. If the response is null (i.e., if nothing is
13956 typed except perhaps a few blank spaces), the original
13957 line is accepted as it stands; otherwise the line typed is
13958 used instead of the line in the file.
13960 @c void mp_firm_up_the_line (MP mp) {
13961 size_t k; /* an index into |buffer| */
13963 if ( mp->internal[mp_pausing]>0) if ( mp->interaction>mp_nonstop_mode ) {
13964 wake_up_terminal; mp_print_ln(mp);
13965 if ( start<limit ) {
13966 for (k=(size_t)start;k<=(size_t)(limit-1);k++) {
13967 mp_print_str(mp, mp->buffer[k]);
13970 mp->first=limit; prompt_input("=>"); /* wait for user response */
13972 if ( mp->last>mp->first ) {
13973 for (k=mp->first;k<=mp->last-1;k++) { /* move line down in buffer */
13974 mp->buffer[k+start-mp->first]=mp->buffer[k];
13976 limit=start+mp->last-mp->first;
13981 @* \[30] Dealing with \TeX\ material.
13982 The \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}$\,\ldots\,$\&{etex}
13983 features need to be implemented at a low level in the scanning process
13984 so that \MP\ can stay in synch with the a preprocessor that treats
13985 blocks of \TeX\ material as they occur in the input file without trying
13986 to expand \MP\ macros. Thus we need a special version of |get_next|
13987 that does not expand macros and such but does handle \&{btex},
13988 \&{verbatimtex}, etc.
13990 The special version of |get_next| is called |get_t_next|. It works by flushing
13991 \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}\allowbreak
13992 $\,\ldots\,$\&{etex} blocks, switching to the \.{MPX} file when it sees
13993 \&{btex}, and switching back when it sees \&{mpxbreak}.
13999 mp_primitive(mp, "btex",start_tex,btex_code);
14000 @:btex_}{\&{btex} primitive@>
14001 mp_primitive(mp, "verbatimtex",start_tex,verbatim_code);
14002 @:verbatimtex_}{\&{verbatimtex} primitive@>
14003 mp_primitive(mp, "etex",etex_marker,0); mp->eqtb[frozen_etex]=mp->eqtb[mp->cur_sym];
14004 @:etex_}{\&{etex} primitive@>
14005 mp_primitive(mp, "mpxbreak",mpx_break,0); mp->eqtb[frozen_mpx_break]=mp->eqtb[mp->cur_sym];
14006 @:mpx_break_}{\&{mpxbreak} primitive@>
14008 @ @<Cases of |print_cmd...@>=
14009 case start_tex: if ( m==btex_code ) mp_print(mp, "btex");
14010 else mp_print(mp, "verbatimtex"); break;
14011 case etex_marker: mp_print(mp, "etex"); break;
14012 case mpx_break: mp_print(mp, "mpxbreak"); break;
14014 @ Actually, |get_t_next| is a macro that avoids procedure overhead except
14015 in the unusual case where \&{btex}, \&{verbatimtex}, \&{etex}, or \&{mpxbreak}
14018 @d get_t_next {mp_get_next(mp); if ( mp->cur_cmd<=max_pre_command ) mp_t_next(mp); }
14021 void mp_start_mpx_input (MP mp);
14024 void mp_t_next (MP mp) {
14025 int old_status; /* saves the |scanner_status| */
14026 integer old_info; /* saves the |warning_info| */
14027 while ( mp->cur_cmd<=max_pre_command ) {
14028 if ( mp->cur_cmd==mpx_break ) {
14029 if ( ! file_state || (mp->mpx_name[index]==absent) ) {
14030 @<Complain about a misplaced \&{mpxbreak}@>;
14032 mp_end_mpx_reading(mp);
14035 } else if ( mp->cur_cmd==start_tex ) {
14036 if ( token_state || (name<=max_spec_src) ) {
14037 @<Complain that we are not reading a file@>;
14038 } else if ( mpx_reading ) {
14039 @<Complain that \.{MPX} files cannot contain \TeX\ material@>;
14040 } else if ( (mp->cur_mod!=verbatim_code)&&
14041 (mp->mpx_name[index]!=finished) ) {
14042 if ( ! mp_begin_mpx_reading(mp) ) mp_start_mpx_input(mp);
14047 @<Complain about a misplaced \&{etex}@>;
14049 goto COMMON_ENDING;
14051 @<Flush the \TeX\ material@>;
14057 @ We could be in the middle of an operation such as skipping false conditional
14058 text when \TeX\ material is encountered, so we must be careful to save the
14061 @<Flush the \TeX\ material@>=
14062 old_status=mp->scanner_status;
14063 old_info=mp->warning_info;
14064 mp->scanner_status=tex_flushing;
14065 mp->warning_info=line;
14066 do { mp_get_next(mp); } while (mp->cur_cmd!=etex_marker);
14067 mp->scanner_status=old_status;
14068 mp->warning_info=old_info
14070 @ @<Complain that \.{MPX} files cannot contain \TeX\ material@>=
14071 { print_err("An mpx file cannot contain btex or verbatimtex blocks");
14072 help4("This file contains picture expressions for btex...etex")
14073 ("blocks. Such files are normally generated automatically")
14074 ("but this one seems to be messed up. I'll just keep going")
14075 ("and hope for the best.");
14079 @ @<Complain that we are not reading a file@>=
14080 { print_err("You can only use `btex' or `verbatimtex' in a file");
14081 help3("I'll have to ignore this preprocessor command because it")
14082 ("only works when there is a file to preprocess. You might")
14083 ("want to delete everything up to the next `etex`.");
14087 @ @<Complain about a misplaced \&{mpxbreak}@>=
14088 { print_err("Misplaced mpxbreak");
14089 help2("I'll ignore this preprocessor command because it")
14090 ("doesn't belong here");
14094 @ @<Complain about a misplaced \&{etex}@>=
14095 { print_err("Extra etex will be ignored");
14096 help1("There is no btex or verbatimtex for this to match");
14100 @* \[31] Scanning macro definitions.
14101 \MP\ has a variety of ways to tuck tokens away into token lists for later
14102 use: Macros can be defined with \&{def}, \&{vardef}, \&{primarydef}, etc.;
14103 repeatable code can be defined with \&{for}, \&{forever}, \&{forsuffixes}.
14104 All such operations are handled by the routines in this part of the program.
14106 The modifier part of each command code is zero for the ``ending delimiters''
14107 like \&{enddef} and \&{endfor}.
14109 @d start_def 1 /* command modifier for \&{def} */
14110 @d var_def 2 /* command modifier for \&{vardef} */
14111 @d end_def 0 /* command modifier for \&{enddef} */
14112 @d start_forever 1 /* command modifier for \&{forever} */
14113 @d end_for 0 /* command modifier for \&{endfor} */
14116 mp_primitive(mp, "def",macro_def,start_def);
14117 @:def_}{\&{def} primitive@>
14118 mp_primitive(mp, "vardef",macro_def,var_def);
14119 @:var_def_}{\&{vardef} primitive@>
14120 mp_primitive(mp, "primarydef",macro_def,secondary_primary_macro);
14121 @:primary_def_}{\&{primarydef} primitive@>
14122 mp_primitive(mp, "secondarydef",macro_def,tertiary_secondary_macro);
14123 @:secondary_def_}{\&{secondarydef} primitive@>
14124 mp_primitive(mp, "tertiarydef",macro_def,expression_tertiary_macro);
14125 @:tertiary_def_}{\&{tertiarydef} primitive@>
14126 mp_primitive(mp, "enddef",macro_def,end_def); mp->eqtb[frozen_end_def]=mp->eqtb[mp->cur_sym];
14127 @:end_def_}{\&{enddef} primitive@>
14129 mp_primitive(mp, "for",iteration,expr_base);
14130 @:for_}{\&{for} primitive@>
14131 mp_primitive(mp, "forsuffixes",iteration,suffix_base);
14132 @:for_suffixes_}{\&{forsuffixes} primitive@>
14133 mp_primitive(mp, "forever",iteration,start_forever);
14134 @:forever_}{\&{forever} primitive@>
14135 mp_primitive(mp, "endfor",iteration,end_for); mp->eqtb[frozen_end_for]=mp->eqtb[mp->cur_sym];
14136 @:end_for_}{\&{endfor} primitive@>
14138 @ @<Cases of |print_cmd...@>=
14140 if ( m<=var_def ) {
14141 if ( m==start_def ) mp_print(mp, "def");
14142 else if ( m<start_def ) mp_print(mp, "enddef");
14143 else mp_print(mp, "vardef");
14144 } else if ( m==secondary_primary_macro ) {
14145 mp_print(mp, "primarydef");
14146 } else if ( m==tertiary_secondary_macro ) {
14147 mp_print(mp, "secondarydef");
14149 mp_print(mp, "tertiarydef");
14153 if ( m<=start_forever ) {
14154 if ( m==start_forever ) mp_print(mp, "forever");
14155 else mp_print(mp, "endfor");
14156 } else if ( m==expr_base ) {
14157 mp_print(mp, "for");
14159 mp_print(mp, "forsuffixes");
14163 @ Different macro-absorbing operations have different syntaxes, but they
14164 also have a lot in common. There is a list of special symbols that are to
14165 be replaced by parameter tokens; there is a special command code that
14166 ends the definition; the quotation conventions are identical. Therefore
14167 it makes sense to have most of the work done by a single subroutine. That
14168 subroutine is called |scan_toks|.
14170 The first parameter to |scan_toks| is the command code that will
14171 terminate scanning (either |macro_def|, |loop_repeat|, or |iteration|).
14173 The second parameter, |subst_list|, points to a (possibly empty) list
14174 of two-word nodes whose |info| and |value| fields specify symbol tokens
14175 before and after replacement. The list will be returned to free storage
14178 The third parameter is simply appended to the token list that is built.
14179 And the final parameter tells how many of the special operations
14180 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#} are to be replaced by suffix parameters.
14181 When such parameters are present, they are called \.{(SUFFIX0)},
14182 \.{(SUFFIX1)}, and \.{(SUFFIX2)}.
14184 @c pointer mp_scan_toks (MP mp,command_code terminator, pointer
14185 subst_list, pointer tail_end, small_number suffix_count) {
14186 pointer p; /* tail of the token list being built */
14187 pointer q; /* temporary for link management */
14188 integer balance; /* left delimiters minus right delimiters */
14189 p=hold_head; balance=1; link(hold_head)=null;
14192 if ( mp->cur_sym>0 ) {
14193 @<Substitute for |cur_sym|, if it's on the |subst_list|@>;
14194 if ( mp->cur_cmd==terminator ) {
14195 @<Adjust the balance; |break| if it's zero@>;
14196 } else if ( mp->cur_cmd==macro_special ) {
14197 @<Handle quoted symbols, \.{\#\AT!}, \.{\AT!}, or \.{\AT!\#}@>;
14200 link(p)=mp_cur_tok(mp); p=link(p);
14202 link(p)=tail_end; mp_flush_node_list(mp, subst_list);
14203 return link(hold_head);
14206 @ @<Substitute for |cur_sym|...@>=
14209 while ( q!=null ) {
14210 if ( info(q)==mp->cur_sym ) {
14211 mp->cur_sym=value(q); mp->cur_cmd=relax; break;
14217 @ @<Adjust the balance; |break| if it's zero@>=
14218 if ( mp->cur_mod>0 ) {
14226 @ Four commands are intended to be used only within macro texts: \&{quote},
14227 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#}. They are variants of a single command
14228 code called |macro_special|.
14230 @d quote 0 /* |macro_special| modifier for \&{quote} */
14231 @d macro_prefix 1 /* |macro_special| modifier for \.{\#\AT!} */
14232 @d macro_at 2 /* |macro_special| modifier for \.{\AT!} */
14233 @d macro_suffix 3 /* |macro_special| modifier for \.{\AT!\#} */
14236 mp_primitive(mp, "quote",macro_special,quote);
14237 @:quote_}{\&{quote} primitive@>
14238 mp_primitive(mp, "#@@",macro_special,macro_prefix);
14239 @:]]]\#\AT!_}{\.{\#\AT!} primitive@>
14240 mp_primitive(mp, "@@",macro_special,macro_at);
14241 @:]]]\AT!_}{\.{\AT!} primitive@>
14242 mp_primitive(mp, "@@#",macro_special,macro_suffix);
14243 @:]]]\AT!\#_}{\.{\AT!\#} primitive@>
14245 @ @<Cases of |print_cmd...@>=
14246 case macro_special:
14248 case macro_prefix: mp_print(mp, "#@@"); break;
14249 case macro_at: mp_print_char(mp, '@@'); break;
14250 case macro_suffix: mp_print(mp, "@@#"); break;
14251 default: mp_print(mp, "quote"); break;
14255 @ @<Handle quoted...@>=
14257 if ( mp->cur_mod==quote ) { get_t_next; }
14258 else if ( mp->cur_mod<=suffix_count )
14259 mp->cur_sym=suffix_base-1+mp->cur_mod;
14262 @ Here is a routine that's used whenever a token will be redefined. If
14263 the user's token is unredefinable, the `|frozen_inaccessible|' token is
14264 substituted; the latter is redefinable but essentially impossible to use,
14265 hence \MP's tables won't get fouled up.
14267 @c void mp_get_symbol (MP mp) { /* sets |cur_sym| to a safe symbol */
14270 if ( (mp->cur_sym==0)||(mp->cur_sym>frozen_inaccessible) ) {
14271 print_err("Missing symbolic token inserted");
14272 @.Missing symbolic token...@>
14273 help3("Sorry: You can\'t redefine a number, string, or expr.")
14274 ("I've inserted an inaccessible symbol so that your")
14275 ("definition will be completed without mixing me up too badly.");
14276 if ( mp->cur_sym>0 )
14277 mp->help_line[2]="Sorry: You can\'t redefine my error-recovery tokens.";
14278 else if ( mp->cur_cmd==string_token )
14279 delete_str_ref(mp->cur_mod);
14280 mp->cur_sym=frozen_inaccessible; mp_ins_error(mp); goto RESTART;
14284 @ Before we actually redefine a symbolic token, we need to clear away its
14285 former value, if it was a variable. The following stronger version of
14286 |get_symbol| does that.
14288 @c void mp_get_clear_symbol (MP mp) {
14289 mp_get_symbol(mp); mp_clear_symbol(mp, mp->cur_sym,false);
14292 @ Here's another little subroutine; it checks that an equals sign
14293 or assignment sign comes along at the proper place in a macro definition.
14295 @c void mp_check_equals (MP mp) {
14296 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
14297 mp_missing_err(mp, "=");
14299 help5("The next thing in this `def' should have been `=',")
14300 ("because I've already looked at the definition heading.")
14301 ("But don't worry; I'll pretend that an equals sign")
14302 ("was present. Everything from here to `enddef'")
14303 ("will be the replacement text of this macro.");
14308 @ A \&{primarydef}, \&{secondarydef}, or \&{tertiarydef} is rather easily
14309 handled now that we have |scan_toks|. In this case there are
14310 two parameters, which will be \.{EXPR0} and \.{EXPR1} (i.e.,
14311 |expr_base| and |expr_base+1|).
14313 @c void mp_make_op_def (MP mp) {
14314 command_code m; /* the type of definition */
14315 pointer p,q,r; /* for list manipulation */
14317 mp_get_symbol(mp); q=mp_get_node(mp, token_node_size);
14318 info(q)=mp->cur_sym; value(q)=expr_base;
14319 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym;
14320 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14321 info(p)=mp->cur_sym; value(p)=expr_base+1; link(p)=q;
14322 get_t_next; mp_check_equals(mp);
14323 mp->scanner_status=op_defining; q=mp_get_avail(mp); ref_count(q)=null;
14324 r=mp_get_avail(mp); link(q)=r; info(r)=general_macro;
14325 link(r)=mp_scan_toks(mp, macro_def,p,null,0);
14326 mp->scanner_status=normal; eq_type(mp->warning_info)=m;
14327 equiv(mp->warning_info)=q; mp_get_x_next(mp);
14330 @ Parameters to macros are introduced by the keywords \&{expr},
14331 \&{suffix}, \&{text}, \&{primary}, \&{secondary}, and \&{tertiary}.
14334 mp_primitive(mp, "expr",param_type,expr_base);
14335 @:expr_}{\&{expr} primitive@>
14336 mp_primitive(mp, "suffix",param_type,suffix_base);
14337 @:suffix_}{\&{suffix} primitive@>
14338 mp_primitive(mp, "text",param_type,text_base);
14339 @:text_}{\&{text} primitive@>
14340 mp_primitive(mp, "primary",param_type,primary_macro);
14341 @:primary_}{\&{primary} primitive@>
14342 mp_primitive(mp, "secondary",param_type,secondary_macro);
14343 @:secondary_}{\&{secondary} primitive@>
14344 mp_primitive(mp, "tertiary",param_type,tertiary_macro);
14345 @:tertiary_}{\&{tertiary} primitive@>
14347 @ @<Cases of |print_cmd...@>=
14349 if ( m>=expr_base ) {
14350 if ( m==expr_base ) mp_print(mp, "expr");
14351 else if ( m==suffix_base ) mp_print(mp, "suffix");
14352 else mp_print(mp, "text");
14353 } else if ( m<secondary_macro ) {
14354 mp_print(mp, "primary");
14355 } else if ( m==secondary_macro ) {
14356 mp_print(mp, "secondary");
14358 mp_print(mp, "tertiary");
14362 @ Let's turn next to the more complex processing associated with \&{def}
14363 and \&{vardef}. When the following procedure is called, |cur_mod|
14364 should be either |start_def| or |var_def|.
14366 @c @<Declare the procedure called |check_delimiter|@>;
14367 @<Declare the function called |scan_declared_variable|@>;
14368 void mp_scan_def (MP mp) {
14369 int m; /* the type of definition */
14370 int n; /* the number of special suffix parameters */
14371 int k; /* the total number of parameters */
14372 int c; /* the kind of macro we're defining */
14373 pointer r; /* parameter-substitution list */
14374 pointer q; /* tail of the macro token list */
14375 pointer p; /* temporary storage */
14376 halfword base; /* |expr_base|, |suffix_base|, or |text_base| */
14377 pointer l_delim,r_delim; /* matching delimiters */
14378 m=mp->cur_mod; c=general_macro; link(hold_head)=null;
14379 q=mp_get_avail(mp); ref_count(q)=null; r=null;
14380 @<Scan the token or variable to be defined;
14381 set |n|, |scanner_status|, and |warning_info|@>;
14383 if ( mp->cur_cmd==left_delimiter ) {
14384 @<Absorb delimited parameters, putting them into lists |q| and |r|@>;
14386 if ( mp->cur_cmd==param_type ) {
14387 @<Absorb undelimited parameters, putting them into list |r|@>;
14389 mp_check_equals(mp);
14390 p=mp_get_avail(mp); info(p)=c; link(q)=p;
14391 @<Attach the replacement text to the tail of node |p|@>;
14392 mp->scanner_status=normal; mp_get_x_next(mp);
14395 @ We don't put `|frozen_end_group|' into the replacement text of
14396 a \&{vardef}, because the user may want to redefine `\.{endgroup}'.
14398 @<Attach the replacement text to the tail of node |p|@>=
14399 if ( m==start_def ) {
14400 link(p)=mp_scan_toks(mp, macro_def,r,null,n);
14402 q=mp_get_avail(mp); info(q)=mp->bg_loc; link(p)=q;
14403 p=mp_get_avail(mp); info(p)=mp->eg_loc;
14404 link(q)=mp_scan_toks(mp, macro_def,r,p,n);
14406 if ( mp->warning_info==bad_vardef )
14407 mp_flush_token_list(mp, value(bad_vardef))
14411 int eg_loc; /* hash addresses of `\.{begingroup}' and `\.{endgroup}' */
14413 @ @<Scan the token or variable to be defined;...@>=
14414 if ( m==start_def ) {
14415 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym; get_t_next;
14416 mp->scanner_status=op_defining; n=0;
14417 eq_type(mp->warning_info)=defined_macro; equiv(mp->warning_info)=q;
14419 p=mp_scan_declared_variable(mp);
14420 mp_flush_variable(mp, equiv(info(p)),link(p),true);
14421 mp->warning_info=mp_find_variable(mp, p); mp_flush_list(mp, p);
14422 if ( mp->warning_info==null ) @<Change to `\.{a bad variable}'@>;
14423 mp->scanner_status=var_defining; n=2;
14424 if ( mp->cur_cmd==macro_special ) if ( mp->cur_mod==macro_suffix ) {/* \.{\AT!\#} */
14427 type(mp->warning_info)=mp_unsuffixed_macro-2+n; value(mp->warning_info)=q;
14428 } /* |mp_suffixed_macro=mp_unsuffixed_macro+1| */
14430 @ @<Change to `\.{a bad variable}'@>=
14432 print_err("This variable already starts with a macro");
14433 @.This variable already...@>
14434 help2("After `vardef a' you can\'t say `vardef a.b'.")
14435 ("So I'll have to discard this definition.");
14436 mp_error(mp); mp->warning_info=bad_vardef;
14439 @ @<Initialize table entries...@>=
14440 name_type(bad_vardef)=mp_root; link(bad_vardef)=frozen_bad_vardef;
14441 equiv(frozen_bad_vardef)=bad_vardef; eq_type(frozen_bad_vardef)=tag_token;
14443 @ @<Absorb delimited parameters, putting them into lists |q| and |r|@>=
14445 l_delim=mp->cur_sym; r_delim=mp->cur_mod; get_t_next;
14446 if ( (mp->cur_cmd==param_type)&&(mp->cur_mod>=expr_base) ) {
14449 print_err("Missing parameter type; `expr' will be assumed");
14450 @.Missing parameter type@>
14451 help1("You should've had `expr' or `suffix' or `text' here.");
14452 mp_back_error(mp); base=expr_base;
14454 @<Absorb parameter tokens for type |base|@>;
14455 mp_check_delimiter(mp, l_delim,r_delim);
14457 } while (mp->cur_cmd==left_delimiter)
14459 @ @<Absorb parameter tokens for type |base|@>=
14461 link(q)=mp_get_avail(mp); q=link(q); info(q)=base+k;
14462 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14463 value(p)=base+k; info(p)=mp->cur_sym;
14464 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14465 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
14466 incr(k); link(p)=r; r=p; get_t_next;
14467 } while (mp->cur_cmd==comma)
14469 @ @<Absorb undelimited parameters, putting them into list |r|@>=
14471 p=mp_get_node(mp, token_node_size);
14472 if ( mp->cur_mod<expr_base ) {
14473 c=mp->cur_mod; value(p)=expr_base+k;
14475 value(p)=mp->cur_mod+k;
14476 if ( mp->cur_mod==expr_base ) c=expr_macro;
14477 else if ( mp->cur_mod==suffix_base ) c=suffix_macro;
14480 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14481 incr(k); mp_get_symbol(mp); info(p)=mp->cur_sym; link(p)=r; r=p; get_t_next;
14482 if ( c==expr_macro ) if ( mp->cur_cmd==of_token ) {
14483 c=of_macro; p=mp_get_node(mp, token_node_size);
14484 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14485 value(p)=expr_base+k; mp_get_symbol(mp); info(p)=mp->cur_sym;
14486 link(p)=r; r=p; get_t_next;
14490 @* \[32] Expanding the next token.
14491 Only a few command codes |<min_command| can possibly be returned by
14492 |get_t_next|; in increasing order, they are
14493 |if_test|, |fi_or_else|, |input|, |iteration|, |repeat_loop|,
14494 |exit_test|, |relax|, |scan_tokens|, |expand_after|, and |defined_macro|.
14496 \MP\ usually gets the next token of input by saying |get_x_next|. This is
14497 like |get_t_next| except that it keeps getting more tokens until
14498 finding |cur_cmd>=min_command|. In other words, |get_x_next| expands
14499 macros and removes conditionals or iterations or input instructions that
14502 It follows that |get_x_next| might invoke itself recursively. In fact,
14503 there is massive recursion, since macro expansion can involve the
14504 scanning of arbitrarily complex expressions, which in turn involve
14505 macro expansion and conditionals, etc.
14508 Therefore it's necessary to declare a whole bunch of |forward|
14509 procedures at this point, and to insert some other procedures
14510 that will be invoked by |get_x_next|.
14513 void mp_scan_primary (MP mp);
14514 void mp_scan_secondary (MP mp);
14515 void mp_scan_tertiary (MP mp);
14516 void mp_scan_expression (MP mp);
14517 void mp_scan_suffix (MP mp);
14518 @<Declare the procedure called |macro_call|@>;
14519 void mp_get_boolean (MP mp);
14520 void mp_pass_text (MP mp);
14521 void mp_conditional (MP mp);
14522 void mp_start_input (MP mp);
14523 void mp_begin_iteration (MP mp);
14524 void mp_resume_iteration (MP mp);
14525 void mp_stop_iteration (MP mp);
14527 @ An auxiliary subroutine called |expand| is used by |get_x_next|
14528 when it has to do exotic expansion commands.
14530 @c void mp_expand (MP mp) {
14531 pointer p; /* for list manipulation */
14532 size_t k; /* something that we hope is |<=buf_size| */
14533 pool_pointer j; /* index into |str_pool| */
14534 if ( mp->internal[mp_tracing_commands]>unity )
14535 if ( mp->cur_cmd!=defined_macro )
14537 switch (mp->cur_cmd) {
14539 mp_conditional(mp); /* this procedure is discussed in Part 36 below */
14542 @<Terminate the current conditional and skip to \&{fi}@>;
14545 @<Initiate or terminate input from a file@>;
14548 if ( mp->cur_mod==end_for ) {
14549 @<Scold the user for having an extra \&{endfor}@>;
14551 mp_begin_iteration(mp); /* this procedure is discussed in Part 37 below */
14558 @<Exit a loop if the proper time has come@>;
14563 @<Expand the token after the next token@>;
14566 @<Put a string into the input buffer@>;
14568 case defined_macro:
14569 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14571 }; /* there are no other cases */
14574 @ @<Scold the user...@>=
14576 print_err("Extra `endfor'");
14578 help2("I'm not currently working on a for loop,")
14579 ("so I had better not try to end anything.");
14583 @ The processing of \&{input} involves the |start_input| subroutine,
14584 which will be declared later; the processing of \&{endinput} is trivial.
14587 mp_primitive(mp, "input",input,0);
14588 @:input_}{\&{input} primitive@>
14589 mp_primitive(mp, "endinput",input,1);
14590 @:end_input_}{\&{endinput} primitive@>
14592 @ @<Cases of |print_cmd_mod|...@>=
14594 if ( m==0 ) mp_print(mp, "input");
14595 else mp_print(mp, "endinput");
14598 @ @<Initiate or terminate input...@>=
14599 if ( mp->cur_mod>0 ) mp->force_eof=true;
14600 else mp_start_input(mp)
14602 @ We'll discuss the complicated parts of loop operations later. For now
14603 it suffices to know that there's a global variable called |loop_ptr|
14604 that will be |null| if no loop is in progress.
14607 { while ( token_state &&(loc==null) )
14608 mp_end_token_list(mp); /* conserve stack space */
14609 if ( mp->loop_ptr==null ) {
14610 print_err("Lost loop");
14612 help2("I'm confused; after exiting from a loop, I still seem")
14613 ("to want to repeat it. I'll try to forget the problem.");
14616 mp_resume_iteration(mp); /* this procedure is in Part 37 below */
14620 @ @<Exit a loop if the proper time has come@>=
14621 { mp_get_boolean(mp);
14622 if ( mp->internal[mp_tracing_commands]>unity )
14623 mp_show_cmd_mod(mp, nullary,mp->cur_exp);
14624 if ( mp->cur_exp==true_code ) {
14625 if ( mp->loop_ptr==null ) {
14626 print_err("No loop is in progress");
14627 @.No loop is in progress@>
14628 help1("Why say `exitif' when there's nothing to exit from?");
14629 if ( mp->cur_cmd==semicolon ) mp_error(mp); else mp_back_error(mp);
14631 @<Exit prematurely from an iteration@>;
14633 } else if ( mp->cur_cmd!=semicolon ) {
14634 mp_missing_err(mp, ";");
14636 help2("After `exitif <boolean exp>' I expect to see a semicolon.")
14637 ("I shall pretend that one was there."); mp_back_error(mp);
14641 @ Here we use the fact that |forever_text| is the only |token_type| that
14642 is less than |loop_text|.
14644 @<Exit prematurely...@>=
14647 if ( file_state ) {
14648 mp_end_file_reading(mp);
14650 if ( token_type<=loop_text ) p=start;
14651 mp_end_token_list(mp);
14654 if ( p!=info(mp->loop_ptr) ) mp_fatal_error(mp, "*** (loop confusion)");
14656 mp_stop_iteration(mp); /* this procedure is in Part 34 below */
14659 @ @<Expand the token after the next token@>=
14661 p=mp_cur_tok(mp); get_t_next;
14662 if ( mp->cur_cmd<min_command ) mp_expand(mp);
14663 else mp_back_input(mp);
14667 @ @<Put a string into the input buffer@>=
14668 { mp_get_x_next(mp); mp_scan_primary(mp);
14669 if ( mp->cur_type!=mp_string_type ) {
14670 mp_disp_err(mp, null,"Not a string");
14672 help2("I'm going to flush this expression, since")
14673 ("scantokens should be followed by a known string.");
14674 mp_put_get_flush_error(mp, 0);
14677 if ( length(mp->cur_exp)>0 )
14678 @<Pretend we're reading a new one-line file@>;
14682 @ @<Pretend we're reading a new one-line file@>=
14683 { mp_begin_file_reading(mp); name=is_scantok;
14684 k=mp->first+length(mp->cur_exp);
14685 if ( k>=mp->max_buf_stack ) {
14686 while ( k>=mp->buf_size ) {
14687 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
14689 mp->max_buf_stack=k+1;
14691 j=mp->str_start[mp->cur_exp]; limit=k;
14692 while ( mp->first<(size_t)limit ) {
14693 mp->buffer[mp->first]=mp->str_pool[j]; incr(j); incr(mp->first);
14695 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
14696 mp_flush_cur_exp(mp, 0);
14699 @ Here finally is |get_x_next|.
14701 The expression scanning routines to be considered later
14702 communicate via the global quantities |cur_type| and |cur_exp|;
14703 we must be very careful to save and restore these quantities while
14704 macros are being expanded.
14708 void mp_get_x_next (MP mp);
14710 @ @c void mp_get_x_next (MP mp) {
14711 pointer save_exp; /* a capsule to save |cur_type| and |cur_exp| */
14713 if ( mp->cur_cmd<min_command ) {
14714 save_exp=mp_stash_cur_exp(mp);
14716 if ( mp->cur_cmd==defined_macro )
14717 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14721 } while (mp->cur_cmd<min_command);
14722 mp_unstash_cur_exp(mp, save_exp); /* that restores |cur_type| and |cur_exp| */
14726 @ Now let's consider the |macro_call| procedure, which is used to start up
14727 all user-defined macros. Since the arguments to a macro might be expressions,
14728 |macro_call| is recursive.
14731 The first parameter to |macro_call| points to the reference count of the
14732 token list that defines the macro. The second parameter contains any
14733 arguments that have already been parsed (see below). The third parameter
14734 points to the symbolic token that names the macro. If the third parameter
14735 is |null|, the macro was defined by \&{vardef}, so its name can be
14736 reconstructed from the prefix and ``at'' arguments found within the
14739 What is this second parameter? It's simply a linked list of one-word items,
14740 whose |info| fields point to the arguments. In other words, if |arg_list=null|,
14741 no arguments have been scanned yet; otherwise |info(arg_list)| points to
14742 the first scanned argument, and |link(arg_list)| points to the list of
14743 further arguments (if any).
14745 Arguments of type \&{expr} are so-called capsules, which we will
14746 discuss later when we concentrate on expressions; they can be
14747 recognized easily because their |link| field is |void|. Arguments of type
14748 \&{suffix} and \&{text} are token lists without reference counts.
14750 @ After argument scanning is complete, the arguments are moved to the
14751 |param_stack|. (They can't be put on that stack any sooner, because
14752 the stack is growing and shrinking in unpredictable ways as more arguments
14753 are being acquired.) Then the macro body is fed to the scanner; i.e.,
14754 the replacement text of the macro is placed at the top of the \MP's
14755 input stack, so that |get_t_next| will proceed to read it next.
14757 @<Declare the procedure called |macro_call|@>=
14758 @<Declare the procedure called |print_macro_name|@>;
14759 @<Declare the procedure called |print_arg|@>;
14760 @<Declare the procedure called |scan_text_arg|@>;
14761 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14762 pointer macro_name) ;
14765 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14766 pointer macro_name) {
14767 /* invokes a user-defined control sequence */
14768 pointer r; /* current node in the macro's token list */
14769 pointer p,q; /* for list manipulation */
14770 integer n; /* the number of arguments */
14771 pointer tail = 0; /* tail of the argument list */
14772 pointer l_delim=0,r_delim=0; /* a delimiter pair */
14773 r=link(def_ref); add_mac_ref(def_ref);
14774 if ( arg_list==null ) {
14777 @<Determine the number |n| of arguments already supplied,
14778 and set |tail| to the tail of |arg_list|@>;
14780 if ( mp->internal[mp_tracing_macros]>0 ) {
14781 @<Show the text of the macro being expanded, and the existing arguments@>;
14783 @<Scan the remaining arguments, if any; set |r| to the first token
14784 of the replacement text@>;
14785 @<Feed the arguments and replacement text to the scanner@>;
14788 @ @<Show the text of the macro...@>=
14789 mp_begin_diagnostic(mp); mp_print_ln(mp);
14790 mp_print_macro_name(mp, arg_list,macro_name);
14791 if ( n==3 ) mp_print(mp, "@@#"); /* indicate a suffixed macro */
14792 mp_show_macro(mp, def_ref,null,100000);
14793 if ( arg_list!=null ) {
14797 mp_print_arg(mp, q,n,0);
14798 incr(n); p=link(p);
14801 mp_end_diagnostic(mp, false)
14804 @ @<Declare the procedure called |print_macro_name|@>=
14805 void mp_print_macro_name (MP mp,pointer a, pointer n);
14808 void mp_print_macro_name (MP mp,pointer a, pointer n) {
14809 pointer p,q; /* they traverse the first part of |a| */
14815 mp_print_text(info(info(link(a))));
14818 while ( link(q)!=null ) q=link(q);
14819 link(q)=info(link(a));
14820 mp_show_token_list(mp, p,null,1000,0);
14826 @ @<Declare the procedure called |print_arg|@>=
14827 void mp_print_arg (MP mp,pointer q, integer n, pointer b) ;
14830 void mp_print_arg (MP mp,pointer q, integer n, pointer b) {
14831 if ( link(q)==mp_void ) mp_print_nl(mp, "(EXPR");
14832 else if ( (b<text_base)&&(b!=text_macro) ) mp_print_nl(mp, "(SUFFIX");
14833 else mp_print_nl(mp, "(TEXT");
14834 mp_print_int(mp, n); mp_print(mp, ")<-");
14835 if ( link(q)==mp_void ) mp_print_exp(mp, q,1);
14836 else mp_show_token_list(mp, q,null,1000,0);
14839 @ @<Determine the number |n| of arguments already supplied...@>=
14841 n=1; tail=arg_list;
14842 while ( link(tail)!=null ) {
14843 incr(n); tail=link(tail);
14847 @ @<Scan the remaining arguments, if any; set |r|...@>=
14848 mp->cur_cmd=comma+1; /* anything |<>comma| will do */
14849 while ( info(r)>=expr_base ) {
14850 @<Scan the delimited argument represented by |info(r)|@>;
14853 if ( mp->cur_cmd==comma ) {
14854 print_err("Too many arguments to ");
14855 @.Too many arguments...@>
14856 mp_print_macro_name(mp, arg_list,macro_name); mp_print_char(mp, ';');
14857 mp_print_nl(mp, " Missing `"); mp_print_text(r_delim);
14859 mp_print(mp, "' has been inserted");
14860 help3("I'm going to assume that the comma I just read was a")
14861 ("right delimiter, and then I'll begin expanding the macro.")
14862 ("You might want to delete some tokens before continuing.");
14865 if ( info(r)!=general_macro ) {
14866 @<Scan undelimited argument(s)@>;
14870 @ At this point, the reader will find it advisable to review the explanation
14871 of token list format that was presented earlier, paying special attention to
14872 the conventions that apply only at the beginning of a macro's token list.
14874 On the other hand, the reader will have to take the expression-parsing
14875 aspects of the following program on faith; we will explain |cur_type|
14876 and |cur_exp| later. (Several things in this program depend on each other,
14877 and it's necessary to jump into the circle somewhere.)
14879 @<Scan the delimited argument represented by |info(r)|@>=
14880 if ( mp->cur_cmd!=comma ) {
14882 if ( mp->cur_cmd!=left_delimiter ) {
14883 print_err("Missing argument to ");
14884 @.Missing argument...@>
14885 mp_print_macro_name(mp, arg_list,macro_name);
14886 help3("That macro has more parameters than you thought.")
14887 ("I'll continue by pretending that each missing argument")
14888 ("is either zero or null.");
14889 if ( info(r)>=suffix_base ) {
14890 mp->cur_exp=null; mp->cur_type=mp_token_list;
14892 mp->cur_exp=0; mp->cur_type=mp_known;
14894 mp_back_error(mp); mp->cur_cmd=right_delimiter;
14897 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
14899 @<Scan the argument represented by |info(r)|@>;
14900 if ( mp->cur_cmd!=comma )
14901 @<Check that the proper right delimiter was present@>;
14903 @<Append the current expression to |arg_list|@>
14905 @ @<Check that the proper right delim...@>=
14906 if ( (mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
14907 if ( info(link(r))>=expr_base ) {
14908 mp_missing_err(mp, ",");
14910 help3("I've finished reading a macro argument and am about to")
14911 ("read another; the arguments weren't delimited correctly.")
14912 ("You might want to delete some tokens before continuing.");
14913 mp_back_error(mp); mp->cur_cmd=comma;
14915 mp_missing_err(mp, str(text(r_delim)));
14917 help2("I've gotten to the end of the macro parameter list.")
14918 ("You might want to delete some tokens before continuing.");
14923 @ A \&{suffix} or \&{text} parameter will be have been scanned as
14924 a token list pointed to by |cur_exp|, in which case we will have
14925 |cur_type=token_list|.
14927 @<Append the current expression to |arg_list|@>=
14929 p=mp_get_avail(mp);
14930 if ( mp->cur_type==mp_token_list ) info(p)=mp->cur_exp;
14931 else info(p)=mp_stash_cur_exp(mp);
14932 if ( mp->internal[mp_tracing_macros]>0 ) {
14933 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,info(r));
14934 mp_end_diagnostic(mp, false);
14936 if ( arg_list==null ) arg_list=p;
14941 @ @<Scan the argument represented by |info(r)|@>=
14942 if ( info(r)>=text_base ) {
14943 mp_scan_text_arg(mp, l_delim,r_delim);
14946 if ( info(r)>=suffix_base ) mp_scan_suffix(mp);
14947 else mp_scan_expression(mp);
14950 @ The parameters to |scan_text_arg| are either a pair of delimiters
14951 or zero; the latter case is for undelimited text arguments, which
14952 end with the first semicolon or \&{endgroup} or \&{end} that is not
14953 contained in a group.
14955 @<Declare the procedure called |scan_text_arg|@>=
14956 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) ;
14959 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) {
14960 integer balance; /* excess of |l_delim| over |r_delim| */
14961 pointer p; /* list tail */
14962 mp->warning_info=l_delim; mp->scanner_status=absorbing;
14963 p=hold_head; balance=1; link(hold_head)=null;
14966 if ( l_delim==0 ) {
14967 @<Adjust the balance for an undelimited argument; |break| if done@>;
14969 @<Adjust the balance for a delimited argument; |break| if done@>;
14971 link(p)=mp_cur_tok(mp); p=link(p);
14973 mp->cur_exp=link(hold_head); mp->cur_type=mp_token_list;
14974 mp->scanner_status=normal;
14977 @ @<Adjust the balance for a delimited argument...@>=
14978 if ( mp->cur_cmd==right_delimiter ) {
14979 if ( mp->cur_mod==l_delim ) {
14981 if ( balance==0 ) break;
14983 } else if ( mp->cur_cmd==left_delimiter ) {
14984 if ( mp->cur_mod==r_delim ) incr(balance);
14987 @ @<Adjust the balance for an undelimited...@>=
14988 if ( end_of_statement ) { /* |cur_cmd=semicolon|, |end_group|, or |stop| */
14989 if ( balance==1 ) { break; }
14990 else { if ( mp->cur_cmd==end_group ) decr(balance); }
14991 } else if ( mp->cur_cmd==begin_group ) {
14995 @ @<Scan undelimited argument(s)@>=
14997 if ( info(r)<text_macro ) {
14999 if ( info(r)!=suffix_macro ) {
15000 if ( (mp->cur_cmd==equals)||(mp->cur_cmd==assignment) ) mp_get_x_next(mp);
15004 case primary_macro:mp_scan_primary(mp); break;
15005 case secondary_macro:mp_scan_secondary(mp); break;
15006 case tertiary_macro:mp_scan_tertiary(mp); break;
15007 case expr_macro:mp_scan_expression(mp); break;
15009 @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>;
15012 @<Scan a suffix with optional delimiters@>;
15014 case text_macro:mp_scan_text_arg(mp, 0,0); break;
15015 } /* there are no other cases */
15017 @<Append the current expression to |arg_list|@>;
15020 @ @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>=
15022 mp_scan_expression(mp); p=mp_get_avail(mp); info(p)=mp_stash_cur_exp(mp);
15023 if ( mp->internal[mp_tracing_macros]>0 ) {
15024 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,0);
15025 mp_end_diagnostic(mp, false);
15027 if ( arg_list==null ) arg_list=p; else link(tail)=p;
15029 if ( mp->cur_cmd!=of_token ) {
15030 mp_missing_err(mp, "of"); mp_print(mp, " for ");
15032 mp_print_macro_name(mp, arg_list,macro_name);
15033 help1("I've got the first argument; will look now for the other.");
15036 mp_get_x_next(mp); mp_scan_primary(mp);
15039 @ @<Scan a suffix with optional delimiters@>=
15041 if ( mp->cur_cmd!=left_delimiter ) {
15044 l_delim=mp->cur_sym; r_delim=mp->cur_mod; mp_get_x_next(mp);
15046 mp_scan_suffix(mp);
15047 if ( l_delim!=null ) {
15048 if ((mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
15049 mp_missing_err(mp, str(text(r_delim)));
15051 help2("I've gotten to the end of the macro parameter list.")
15052 ("You might want to delete some tokens before continuing.");
15059 @ Before we put a new token list on the input stack, it is wise to clean off
15060 all token lists that have recently been depleted. Then a user macro that ends
15061 with a call to itself will not require unbounded stack space.
15063 @<Feed the arguments and replacement text to the scanner@>=
15064 while ( token_state &&(loc==null) ) mp_end_token_list(mp); /* conserve stack space */
15065 if ( mp->param_ptr+n>mp->max_param_stack ) {
15066 mp->max_param_stack=mp->param_ptr+n;
15067 if ( mp->max_param_stack>mp->param_size )
15068 mp_overflow(mp, "parameter stack size",mp->param_size);
15069 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15071 mp_begin_token_list(mp, def_ref,macro); name=macro_name; loc=r;
15075 mp->param_stack[mp->param_ptr]=info(p); incr(mp->param_ptr); p=link(p);
15077 mp_flush_list(mp, arg_list);
15080 @ It's sometimes necessary to put a single argument onto |param_stack|.
15081 The |stack_argument| subroutine does this.
15083 @c void mp_stack_argument (MP mp,pointer p) {
15084 if ( mp->param_ptr==mp->max_param_stack ) {
15085 incr(mp->max_param_stack);
15086 if ( mp->max_param_stack>mp->param_size )
15087 mp_overflow(mp, "parameter stack size",mp->param_size);
15088 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15090 mp->param_stack[mp->param_ptr]=p; incr(mp->param_ptr);
15093 @* \[33] Conditional processing.
15094 Let's consider now the way \&{if} commands are handled.
15096 Conditions can be inside conditions, and this nesting has a stack
15097 that is independent of other stacks.
15098 Four global variables represent the top of the condition stack:
15099 |cond_ptr| points to pushed-down entries, if~any; |cur_if| tells whether
15100 we are processing \&{if} or \&{elseif}; |if_limit| specifies
15101 the largest code of a |fi_or_else| command that is syntactically legal;
15102 and |if_line| is the line number at which the current conditional began.
15104 If no conditions are currently in progress, the condition stack has the
15105 special state |cond_ptr=null|, |if_limit=normal|, |cur_if=0|, |if_line=0|.
15106 Otherwise |cond_ptr| points to a two-word node; the |type|, |name_type|, and
15107 |link| fields of the first word contain |if_limit|, |cur_if|, and
15108 |cond_ptr| at the next level, and the second word contains the
15109 corresponding |if_line|.
15111 @d if_node_size 2 /* number of words in stack entry for conditionals */
15112 @d if_line_field(A) mp->mem[(A)+1].cint
15113 @d if_code 1 /* code for \&{if} being evaluated */
15114 @d fi_code 2 /* code for \&{fi} */
15115 @d else_code 3 /* code for \&{else} */
15116 @d else_if_code 4 /* code for \&{elseif} */
15119 pointer cond_ptr; /* top of the condition stack */
15120 integer if_limit; /* upper bound on |fi_or_else| codes */
15121 small_number cur_if; /* type of conditional being worked on */
15122 integer if_line; /* line where that conditional began */
15125 mp->cond_ptr=null; mp->if_limit=normal; mp->cur_if=0; mp->if_line=0;
15128 mp_primitive(mp, "if",if_test,if_code);
15129 @:if_}{\&{if} primitive@>
15130 mp_primitive(mp, "fi",fi_or_else,fi_code); mp->eqtb[frozen_fi]=mp->eqtb[mp->cur_sym];
15131 @:fi_}{\&{fi} primitive@>
15132 mp_primitive(mp, "else",fi_or_else,else_code);
15133 @:else_}{\&{else} primitive@>
15134 mp_primitive(mp, "elseif",fi_or_else,else_if_code);
15135 @:else_if_}{\&{elseif} primitive@>
15137 @ @<Cases of |print_cmd_mod|...@>=
15141 case if_code:mp_print(mp, "if"); break;
15142 case fi_code:mp_print(mp, "fi"); break;
15143 case else_code:mp_print(mp, "else"); break;
15144 default: mp_print(mp, "elseif"); break;
15148 @ Here is a procedure that ignores text until coming to an \&{elseif},
15149 \&{else}, or \&{fi} at level zero of $\&{if}\ldots\&{fi}$
15150 nesting. After it has acted, |cur_mod| will indicate the token that
15153 \MP's smallest two command codes are |if_test| and |fi_or_else|; this
15154 makes the skipping process a bit simpler.
15157 void mp_pass_text (MP mp) {
15159 mp->scanner_status=skipping;
15160 mp->warning_info=mp_true_line(mp);
15163 if ( mp->cur_cmd<=fi_or_else ) {
15164 if ( mp->cur_cmd<fi_or_else ) {
15168 if ( mp->cur_mod==fi_code ) decr(l);
15171 @<Decrease the string reference count,
15172 if the current token is a string@>;
15175 mp->scanner_status=normal;
15178 @ @<Decrease the string reference count...@>=
15179 if ( mp->cur_cmd==string_token ) { delete_str_ref(mp->cur_mod); }
15181 @ When we begin to process a new \&{if}, we set |if_limit:=if_code|; then
15182 if \&{elseif} or \&{else} or \&{fi} occurs before the current \&{if}
15183 condition has been evaluated, a colon will be inserted.
15184 A construction like `\.{if fi}' would otherwise get \MP\ confused.
15186 @<Push the condition stack@>=
15187 { p=mp_get_node(mp, if_node_size); link(p)=mp->cond_ptr; type(p)=mp->if_limit;
15188 name_type(p)=mp->cur_if; if_line_field(p)=mp->if_line;
15189 mp->cond_ptr=p; mp->if_limit=if_code; mp->if_line=mp_true_line(mp);
15190 mp->cur_if=if_code;
15193 @ @<Pop the condition stack@>=
15194 { p=mp->cond_ptr; mp->if_line=if_line_field(p);
15195 mp->cur_if=name_type(p); mp->if_limit=type(p); mp->cond_ptr=link(p);
15196 mp_free_node(mp, p,if_node_size);
15199 @ Here's a procedure that changes the |if_limit| code corresponding to
15200 a given value of |cond_ptr|.
15202 @c void mp_change_if_limit (MP mp,small_number l, pointer p) {
15204 if ( p==mp->cond_ptr ) {
15205 mp->if_limit=l; /* that's the easy case */
15209 if ( q==null ) mp_confusion(mp, "if");
15210 @:this can't happen if}{\quad if@>
15211 if ( link(q)==p ) {
15219 @ The user is supposed to put colons into the proper parts of conditional
15220 statements. Therefore, \MP\ has to check for their presence.
15223 void mp_check_colon (MP mp) {
15224 if ( mp->cur_cmd!=colon ) {
15225 mp_missing_err(mp, ":");
15227 help2("There should've been a colon after the condition.")
15228 ("I shall pretend that one was there.");;
15233 @ A condition is started when the |get_x_next| procedure encounters
15234 an |if_test| command; in that case |get_x_next| calls |conditional|,
15235 which is a recursive procedure.
15238 @c void mp_conditional (MP mp) {
15239 pointer save_cond_ptr; /* |cond_ptr| corresponding to this conditional */
15240 int new_if_limit; /* future value of |if_limit| */
15241 pointer p; /* temporary register */
15242 @<Push the condition stack@>;
15243 save_cond_ptr=mp->cond_ptr;
15245 mp_get_boolean(mp); new_if_limit=else_if_code;
15246 if ( mp->internal[mp_tracing_commands]>unity ) {
15247 @<Display the boolean value of |cur_exp|@>;
15250 mp_check_colon(mp);
15251 if ( mp->cur_exp==true_code ) {
15252 mp_change_if_limit(mp, new_if_limit,save_cond_ptr);
15253 return; /* wait for \&{elseif}, \&{else}, or \&{fi} */
15255 @<Skip to \&{elseif} or \&{else} or \&{fi}, then |goto done|@>;
15257 mp->cur_if=mp->cur_mod; mp->if_line=mp_true_line(mp);
15258 if ( mp->cur_mod==fi_code ) {
15259 @<Pop the condition stack@>
15260 } else if ( mp->cur_mod==else_if_code ) {
15263 mp->cur_exp=true_code; new_if_limit=fi_code; mp_get_x_next(mp);
15268 @ In a construction like `\&{if} \&{if} \&{true}: $0=1$: \\{foo}
15269 \&{else}: \\{bar} \&{fi}', the first \&{else}
15270 that we come to after learning that the \&{if} is false is not the
15271 \&{else} we're looking for. Hence the following curious logic is needed.
15273 @<Skip to \&{elseif}...@>=
15276 if ( mp->cond_ptr==save_cond_ptr ) goto DONE;
15277 else if ( mp->cur_mod==fi_code ) @<Pop the condition stack@>;
15281 @ @<Display the boolean value...@>=
15282 { mp_begin_diagnostic(mp);
15283 if ( mp->cur_exp==true_code ) mp_print(mp, "{true}");
15284 else mp_print(mp, "{false}");
15285 mp_end_diagnostic(mp, false);
15288 @ The processing of conditionals is complete except for the following
15289 code, which is actually part of |get_x_next|. It comes into play when
15290 \&{elseif}, \&{else}, or \&{fi} is scanned.
15292 @<Terminate the current conditional and skip to \&{fi}@>=
15293 if ( mp->cur_mod>mp->if_limit ) {
15294 if ( mp->if_limit==if_code ) { /* condition not yet evaluated */
15295 mp_missing_err(mp, ":");
15297 mp_back_input(mp); mp->cur_sym=frozen_colon; mp_ins_error(mp);
15299 print_err("Extra "); mp_print_cmd_mod(mp, fi_or_else,mp->cur_mod);
15303 help1("I'm ignoring this; it doesn't match any if.");
15307 while ( mp->cur_mod!=fi_code ) mp_pass_text(mp); /* skip to \&{fi} */
15308 @<Pop the condition stack@>;
15311 @* \[34] Iterations.
15312 To bring our treatment of |get_x_next| to a close, we need to consider what
15313 \MP\ does when it sees \&{for}, \&{forsuffixes}, and \&{forever}.
15315 There's a global variable |loop_ptr| that keeps track of the \&{for} loops
15316 that are currently active. If |loop_ptr=null|, no loops are in progress;
15317 otherwise |info(loop_ptr)| points to the iterative text of the current
15318 (innermost) loop, and |link(loop_ptr)| points to the data for any other
15319 loops that enclose the current one.
15321 A loop-control node also has two other fields, called |loop_type| and
15322 |loop_list|, whose contents depend on the type of loop:
15324 \yskip\indent|loop_type(loop_ptr)=null| means that |loop_list(loop_ptr)|
15325 points to a list of one-word nodes whose |info| fields point to the
15326 remaining argument values of a suffix list and expression list.
15328 \yskip\indent|loop_type(loop_ptr)=mp_void| means that the current loop is
15331 \yskip\indent|loop_type(loop_ptr)=progression_flag| means that
15332 |p=loop_list(loop_ptr)| points to a ``progression node'' and |value(p)|,
15333 |step_size(p)|, and |final_value(p)| contain the data for an arithmetic
15336 \yskip\indent|loop_type(loop_ptr)=p>mp_void| means that |p| points to an edge
15337 header and |loop_list(loop_ptr)| points into the graphical object list for
15340 \yskip\noindent In the case of a progression node, the first word is not used
15341 because the link field of words in the dynamic memory area cannot be arbitrary.
15343 @d loop_list_loc(A) ((A)+1) /* where the |loop_list| field resides */
15344 @d loop_type(A) info(loop_list_loc((A))) /* the type of \&{for} loop */
15345 @d loop_list(A) link(loop_list_loc((A))) /* the remaining list elements */
15346 @d loop_node_size 2 /* the number of words in a loop control node */
15347 @d progression_node_size 4 /* the number of words in a progression node */
15348 @d step_size(A) mp->mem[(A)+2].sc /* the step size in an arithmetic progression */
15349 @d final_value(A) mp->mem[(A)+3].sc /* the final value in an arithmetic progression */
15350 @d progression_flag (null+2)
15351 /* |loop_type| value when |loop_list| points to a progression node */
15354 pointer loop_ptr; /* top of the loop-control-node stack */
15359 @ If the expressions that define an arithmetic progression in
15360 a \&{for} loop don't have known numeric values, the |bad_for|
15361 subroutine screams at the user.
15363 @c void mp_bad_for (MP mp, char * s) {
15364 mp_disp_err(mp, null,"Improper "); /* show the bad expression above the message */
15365 @.Improper...replaced by 0@>
15366 mp_print(mp, s); mp_print(mp, " has been replaced by 0");
15367 help4("When you say `for x=a step b until c',")
15368 ("the initial value `a' and the step size `b'")
15369 ("and the final value `c' must have known numeric values.")
15370 ("I'm zeroing this one. Proceed, with fingers crossed.");
15371 mp_put_get_flush_error(mp, 0);
15374 @ Here's what \MP\ does when \&{for}, \&{forsuffixes}, or \&{forever}
15375 has just been scanned. (This code requires slight familiarity with
15376 expression-parsing routines that we have not yet discussed; but it seems
15377 to belong in the present part of the program, even though the original author
15378 didn't write it until later. The reader may wish to come back to it.)
15380 @c void mp_begin_iteration (MP mp) {
15381 halfword m; /* |expr_base| (\&{for}) or |suffix_base| (\&{forsuffixes}) */
15382 halfword n; /* hash address of the current symbol */
15383 pointer s; /* the new loop-control node */
15384 pointer p; /* substitution list for |scan_toks| */
15385 pointer q; /* link manipulation register */
15386 pointer pp; /* a new progression node */
15387 m=mp->cur_mod; n=mp->cur_sym; s=mp_get_node(mp, loop_node_size);
15388 if ( m==start_forever ){
15389 loop_type(s)=mp_void; p=null; mp_get_x_next(mp);
15391 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
15392 info(p)=mp->cur_sym; value(p)=m;
15394 if ( mp->cur_cmd==within_token ) {
15395 @<Set up a picture iteration@>;
15397 @<Check for the |"="| or |":="| in a loop header@>;
15398 @<Scan the values to be used in the loop@>;
15401 @<Check for the presence of a colon@>;
15402 @<Scan the loop text and put it on the loop control stack@>;
15403 mp_resume_iteration(mp);
15406 @ @<Check for the |"="| or |":="| in a loop header@>=
15407 if ( (mp->cur_cmd!=equals)&&(mp->cur_cmd!=assignment) ) {
15408 mp_missing_err(mp, "=");
15410 help3("The next thing in this loop should have been `=' or `:='.")
15411 ("But don't worry; I'll pretend that an equals sign")
15412 ("was present, and I'll look for the values next.");
15416 @ @<Check for the presence of a colon@>=
15417 if ( mp->cur_cmd!=colon ) {
15418 mp_missing_err(mp, ":");
15420 help3("The next thing in this loop should have been a `:'.")
15421 ("So I'll pretend that a colon was present;")
15422 ("everything from here to `endfor' will be iterated.");
15426 @ We append a special |frozen_repeat_loop| token in place of the
15427 `\&{endfor}' at the end of the loop. This will come through \MP's scanner
15428 at the proper time to cause the loop to be repeated.
15430 (If the user tries some shenanigan like `\&{for} $\ldots$ \&{let} \&{endfor}',
15431 he will be foiled by the |get_symbol| routine, which keeps frozen
15432 tokens unchanged. Furthermore the |frozen_repeat_loop| is an \&{outer}
15433 token, so it won't be lost accidentally.)
15435 @ @<Scan the loop text...@>=
15436 q=mp_get_avail(mp); info(q)=frozen_repeat_loop;
15437 mp->scanner_status=loop_defining; mp->warning_info=n;
15438 info(s)=mp_scan_toks(mp, iteration,p,q,0); mp->scanner_status=normal;
15439 link(s)=mp->loop_ptr; mp->loop_ptr=s
15441 @ @<Initialize table...@>=
15442 eq_type(frozen_repeat_loop)=repeat_loop+outer_tag;
15443 text(frozen_repeat_loop)=intern(" ENDFOR");
15445 @ The loop text is inserted into \MP's scanning apparatus by the
15446 |resume_iteration| routine.
15448 @c void mp_resume_iteration (MP mp) {
15449 pointer p,q; /* link registers */
15450 p=loop_type(mp->loop_ptr);
15451 if ( p==progression_flag ) {
15452 p=loop_list(mp->loop_ptr); /* now |p| points to a progression node */
15453 mp->cur_exp=value(p);
15454 if ( @<The arithmetic progression has ended@> ) {
15455 mp_stop_iteration(mp);
15458 mp->cur_type=mp_known; q=mp_stash_cur_exp(mp); /* make |q| an \&{expr} argument */
15459 value(p)=mp->cur_exp+step_size(p); /* set |value(p)| for the next iteration */
15460 } else if ( p==null ) {
15461 p=loop_list(mp->loop_ptr);
15463 mp_stop_iteration(mp);
15466 loop_list(mp->loop_ptr)=link(p); q=info(p); free_avail(p);
15467 } else if ( p==mp_void ) {
15468 mp_begin_token_list(mp, info(mp->loop_ptr),forever_text); return;
15470 @<Make |q| a capsule containing the next picture component from
15471 |loop_list(loop_ptr)| or |goto not_found|@>;
15473 mp_begin_token_list(mp, info(mp->loop_ptr),loop_text);
15474 mp_stack_argument(mp, q);
15475 if ( mp->internal[mp_tracing_commands]>unity ) {
15476 @<Trace the start of a loop@>;
15480 mp_stop_iteration(mp);
15483 @ @<The arithmetic progression has ended@>=
15484 ((step_size(p)>0)&&(mp->cur_exp>final_value(p)))||
15485 ((step_size(p)<0)&&(mp->cur_exp<final_value(p)))
15487 @ @<Trace the start of a loop@>=
15489 mp_begin_diagnostic(mp); mp_print_nl(mp, "{loop value=");
15491 if ( (q!=null)&&(link(q)==mp_void) ) mp_print_exp(mp, q,1);
15492 else mp_show_token_list(mp, q,null,50,0);
15493 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
15496 @ @<Make |q| a capsule containing the next picture component from...@>=
15497 { q=loop_list(mp->loop_ptr);
15498 if ( q==null ) goto NOT_FOUND;
15499 skip_component(q) goto NOT_FOUND;
15500 mp->cur_exp=mp_copy_objects(mp, loop_list(mp->loop_ptr),q);
15501 mp_init_bbox(mp, mp->cur_exp);
15502 mp->cur_type=mp_picture_type;
15503 loop_list(mp->loop_ptr)=q;
15504 q=mp_stash_cur_exp(mp);
15507 @ A level of loop control disappears when |resume_iteration| has decided
15508 not to resume, or when an \&{exitif} construction has removed the loop text
15509 from the input stack.
15511 @c void mp_stop_iteration (MP mp) {
15512 pointer p,q; /* the usual */
15513 p=loop_type(mp->loop_ptr);
15514 if ( p==progression_flag ) {
15515 mp_free_node(mp, loop_list(mp->loop_ptr),progression_node_size);
15516 } else if ( p==null ){
15517 q=loop_list(mp->loop_ptr);
15518 while ( q!=null ) {
15521 if ( link(p)==mp_void ) { /* it's an \&{expr} parameter */
15522 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
15524 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
15527 p=q; q=link(q); free_avail(p);
15529 } else if ( p>progression_flag ) {
15530 delete_edge_ref(p);
15532 p=mp->loop_ptr; mp->loop_ptr=link(p); mp_flush_token_list(mp, info(p));
15533 mp_free_node(mp, p,loop_node_size);
15536 @ Now that we know all about loop control, we can finish up
15537 the missing portion of |begin_iteration| and we'll be done.
15539 The following code is performed after the `\.=' has been scanned in
15540 a \&{for} construction (if |m=expr_base|) or a \&{forsuffixes} construction
15541 (if |m=suffix_base|).
15543 @<Scan the values to be used in the loop@>=
15544 loop_type(s)=null; q=loop_list_loc(s); link(q)=null; /* |link(q)=loop_list(s)| */
15547 if ( m!=expr_base ) {
15548 mp_scan_suffix(mp);
15550 if ( mp->cur_cmd>=colon ) if ( mp->cur_cmd<=comma )
15552 mp_scan_expression(mp);
15553 if ( mp->cur_cmd==step_token ) if ( q==loop_list_loc(s) ) {
15554 @<Prepare for step-until construction and |break|@>;
15556 mp->cur_exp=mp_stash_cur_exp(mp);
15558 link(q)=mp_get_avail(mp); q=link(q);
15559 info(q)=mp->cur_exp; mp->cur_type=mp_vacuous;
15562 } while (mp->cur_cmd==comma)
15564 @ @<Prepare for step-until construction and |break|@>=
15566 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "initial value");
15567 pp=mp_get_node(mp, progression_node_size); value(pp)=mp->cur_exp;
15568 mp_get_x_next(mp); mp_scan_expression(mp);
15569 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "step size");
15570 step_size(pp)=mp->cur_exp;
15571 if ( mp->cur_cmd!=until_token ) {
15572 mp_missing_err(mp, "until");
15573 @.Missing `until'@>
15574 help2("I assume you meant to say `until' after `step'.")
15575 ("So I'll look for the final value and colon next.");
15578 mp_get_x_next(mp); mp_scan_expression(mp);
15579 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "final value");
15580 final_value(pp)=mp->cur_exp; loop_list(s)=pp;
15581 loop_type(s)=progression_flag;
15585 @ The last case is when we have just seen ``\&{within}'', and we need to
15586 parse a picture expression and prepare to iterate over it.
15588 @<Set up a picture iteration@>=
15589 { mp_get_x_next(mp);
15590 mp_scan_expression(mp);
15591 @<Make sure the current expression is a known picture@>;
15592 loop_type(s)=mp->cur_exp; mp->cur_type=mp_vacuous;
15593 q=link(dummy_loc(mp->cur_exp));
15595 if ( is_start_or_stop(q) )
15596 if ( mp_skip_1component(mp, q)==null ) q=link(q);
15600 @ @<Make sure the current expression is a known picture@>=
15601 if ( mp->cur_type!=mp_picture_type ) {
15602 mp_disp_err(mp, null,"Improper iteration spec has been replaced by nullpicture");
15603 help1("When you say `for x in p', p must be a known picture.");
15604 mp_put_get_flush_error(mp, mp_get_node(mp, edge_header_size));
15605 mp_init_edges(mp, mp->cur_exp); mp->cur_type=mp_picture_type;
15608 @* \[35] File names.
15609 It's time now to fret about file names. Besides the fact that different
15610 operating systems treat files in different ways, we must cope with the
15611 fact that completely different naming conventions are used by different
15612 groups of people. The following programs show what is required for one
15613 particular operating system; similar routines for other systems are not
15614 difficult to devise.
15615 @^system dependencies@>
15617 \MP\ assumes that a file name has three parts: the name proper; its
15618 ``extension''; and a ``file area'' where it is found in an external file
15619 system. The extension of an input file is assumed to be
15620 `\.{.mp}' unless otherwise specified; it is `\.{.log}' on the
15621 transcript file that records each run of \MP; it is `\.{.tfm}' on the font
15622 metric files that describe characters in any fonts created by \MP; it is
15623 `\.{.ps}' or `.{\it nnn}' for some number {\it nnn} on the \ps\ output files;
15624 and it is `\.{.mem}' on the mem files written by \.{INIMP} to initialize \MP.
15625 The file area can be arbitrary on input files, but files are usually
15626 output to the user's current area. If an input file cannot be
15627 found on the specified area, \MP\ will look for it on a special system
15628 area; this special area is intended for commonly used input files.
15630 Simple uses of \MP\ refer only to file names that have no explicit
15631 extension or area. For example, a person usually says `\.{input} \.{cmr10}'
15632 instead of `\.{input} \.{cmr10.new}'. Simple file
15633 names are best, because they make the \MP\ source files portable;
15634 whenever a file name consists entirely of letters and digits, it should be
15635 treated in the same way by all implementations of \MP. However, users
15636 need the ability to refer to other files in their environment, especially
15637 when responding to error messages concerning unopenable files; therefore
15638 we want to let them use the syntax that appears in their favorite
15641 @ \MP\ uses the same conventions that have proved to be satisfactory for
15642 \TeX\ and \MF. In order to isolate the system-dependent aspects of file names,
15643 @^system dependencies@>
15644 the system-independent parts of \MP\ are expressed in terms
15645 of three system-dependent
15646 procedures called |begin_name|, |more_name|, and |end_name|. In
15647 essence, if the user-specified characters of the file name are $c_1\ldots c_n$,
15648 the system-independent driver program does the operations
15649 $$|begin_name|;\,|more_name|(c_1);\,\ldots\,;|more_name|(c_n);
15651 These three procedures communicate with each other via global variables.
15652 Afterwards the file name will appear in the string pool as three strings
15653 called |cur_name|\penalty10000\hskip-.05em,
15654 |cur_area|, and |cur_ext|; the latter two are null (i.e.,
15655 |""|), unless they were explicitly specified by the user.
15657 Actually the situation is slightly more complicated, because \MP\ needs
15658 to know when the file name ends. The |more_name| routine is a function
15659 (with side effects) that returns |true| on the calls |more_name|$(c_1)$,
15660 \dots, |more_name|$(c_{n-1})$. The final call |more_name|$(c_n)$
15661 returns |false|; or, it returns |true| and $c_n$ is the last character
15662 on the current input line. In other words,
15663 |more_name| is supposed to return |true| unless it is sure that the
15664 file name has been completely scanned; and |end_name| is supposed to be able
15665 to finish the assembly of |cur_name|, |cur_area|, and |cur_ext| regardless of
15666 whether $|more_name|(c_n)$ returned |true| or |false|.
15669 char * cur_name; /* name of file just scanned */
15670 char * cur_area; /* file area just scanned, or \.{""} */
15671 char * cur_ext; /* file extension just scanned, or \.{""} */
15673 @ It is easier to maintain reference counts if we assign initial values.
15676 mp->cur_name=xstrdup("");
15677 mp->cur_area=xstrdup("");
15678 mp->cur_ext=xstrdup("");
15680 @ @<Dealloc variables@>=
15681 xfree(mp->cur_area);
15682 xfree(mp->cur_name);
15683 xfree(mp->cur_ext);
15685 @ The file names we shall deal with for illustrative purposes have the
15686 following structure: If the name contains `\.>' or `\.:', the file area
15687 consists of all characters up to and including the final such character;
15688 otherwise the file area is null. If the remaining file name contains
15689 `\..', the file extension consists of all such characters from the first
15690 remaining `\..' to the end, otherwise the file extension is null.
15691 @^system dependencies@>
15693 We can scan such file names easily by using two global variables that keep track
15694 of the occurrences of area and extension delimiters. Note that these variables
15695 cannot be of type |pool_pointer| because a string pool compaction could occur
15696 while scanning a file name.
15699 integer area_delimiter;
15700 /* most recent `\.>' or `\.:' relative to |str_start[str_ptr]| */
15701 integer ext_delimiter; /* the relevant `\..', if any */
15703 @ Input files that can't be found in the user's area may appear in standard
15704 system areas called |MP_area| and |MF_area|. (The latter is used when the file
15705 extension is |".mf"|.) The standard system area for font metric files
15706 to be read is |MP_font_area|.
15707 This system area name will, of course, vary from place to place.
15708 @^system dependencies@>
15710 @d MP_area "MPinputs:"
15712 @d MF_area "MFinputs:"
15717 @ Here now is the first of the system-dependent routines for file name scanning.
15718 @^system dependencies@>
15720 @<Declare subroutines for parsing file names@>=
15721 void mp_begin_name (MP mp) {
15722 xfree(mp->cur_name);
15723 xfree(mp->cur_area);
15724 xfree(mp->cur_ext);
15725 mp->area_delimiter=-1;
15726 mp->ext_delimiter=-1;
15729 @ And here's the second.
15730 @^system dependencies@>
15732 @<Declare subroutines for parsing file names@>=
15733 boolean mp_more_name (MP mp, ASCII_code c) {
15737 if ( (c=='>')||(c==':') ) {
15738 mp->area_delimiter=mp->pool_ptr;
15739 mp->ext_delimiter=-1;
15740 } else if ( (c=='.')&&(mp->ext_delimiter<0) ) {
15741 mp->ext_delimiter=mp->pool_ptr;
15743 str_room(1); append_char(c); /* contribute |c| to the current string */
15749 @^system dependencies@>
15751 @d copy_pool_segment(A,B,C) {
15752 A = xmalloc(C+1,sizeof(char));
15753 strncpy(A,(char *)(mp->str_pool+B),C);
15756 @<Declare subroutines for parsing file names@>=
15757 void mp_end_name (MP mp) {
15758 pool_pointer s; /* length of area, name, and extension */
15761 s = mp->str_start[mp->str_ptr];
15762 if ( mp->area_delimiter<0 ) {
15763 mp->cur_area=xstrdup("");
15765 len = mp->area_delimiter-s;
15766 copy_pool_segment(mp->cur_area,s,len);
15769 if ( mp->ext_delimiter<0 ) {
15770 mp->cur_ext=xstrdup("");
15771 len = mp->pool_ptr-s;
15773 copy_pool_segment(mp->cur_ext,mp->ext_delimiter,(mp->pool_ptr-mp->ext_delimiter));
15774 len = mp->ext_delimiter-s;
15776 copy_pool_segment(mp->cur_name,s,len);
15777 mp->pool_ptr=s; /* don't need this partial string */
15780 @ Conversely, here is a routine that takes three strings and prints a file
15781 name that might have produced them. (The routine is system dependent, because
15782 some operating systems put the file area last instead of first.)
15783 @^system dependencies@>
15785 @<Basic printing...@>=
15786 void mp_print_file_name (MP mp, char * n, char * a, char * e) {
15787 mp_print(mp, a); mp_print(mp, n); mp_print(mp, e);
15790 @ Another system-dependent routine is needed to convert three internal
15792 to the |name_of_file| value that is used to open files. The present code
15793 allows both lowercase and uppercase letters in the file name.
15794 @^system dependencies@>
15796 @d append_to_name(A) { c=(A);
15797 if ( k<file_name_size ) {
15798 mp->name_of_file[k]=xchr(c);
15803 @<Declare subroutines for parsing file names@>=
15804 void mp_pack_file_name (MP mp, char *n, char *a, char *e) {
15805 integer k; /* number of positions filled in |name_of_file| */
15806 ASCII_code c; /* character being packed */
15807 char *j; /* a character index */
15811 for (j=a;*j;j++) { append_to_name(*j); }
15813 for (j=n;*j;j++) { append_to_name(*j); }
15815 for (j=e;*j;j++) { append_to_name(*j); }
15817 mp->name_of_file[k]=0;
15821 @ @<Internal library declarations@>=
15822 void mp_pack_file_name (MP mp, char *n, char *a, char *e) ;
15824 @ A messier routine is also needed, since mem file names must be scanned
15825 before \MP's string mechanism has been initialized. We shall use the
15826 global variable |MP_mem_default| to supply the text for default system areas
15827 and extensions related to mem files.
15828 @^system dependencies@>
15830 @d mem_default_length 9 /* length of the |MP_mem_default| string */
15831 @d mem_ext_length 4 /* length of its `\.{.mem}' part */
15832 @d mem_extension ".mem" /* the extension, as a \.{WEB} constant */
15835 char *MP_mem_default;
15837 @ @<Option variables@>=
15838 char *mem_name; /* for commandline */
15840 @ @<Allocate or initialize ...@>=
15841 mp->MP_mem_default = xstrdup("plain.mem");
15842 mp->mem_name = xstrdup(opt->mem_name);
15844 @^system dependencies@>
15846 @ @<Dealloc variables@>=
15847 xfree(mp->MP_mem_default);
15848 xfree(mp->mem_name);
15850 @ @<Check the ``constant'' values for consistency@>=
15851 if ( mem_default_length>file_name_size ) mp->bad=20;
15853 @ Here is the messy routine that was just mentioned. It sets |name_of_file|
15854 from the first |n| characters of |MP_mem_default|, followed by
15855 |buffer[a..b-1]|, followed by the last |mem_ext_length| characters of
15858 We dare not give error messages here, since \MP\ calls this routine before
15859 the |error| routine is ready to roll. Instead, we simply drop excess characters,
15860 since the error will be detected in another way when a strange file name
15862 @^system dependencies@>
15864 @c void mp_pack_buffered_name (MP mp,small_number n, integer a,
15866 integer k; /* number of positions filled in |name_of_file| */
15867 ASCII_code c; /* character being packed */
15868 integer j; /* index into |buffer| or |MP_mem_default| */
15869 if ( n+b-a+1+mem_ext_length>file_name_size )
15870 b=a+file_name_size-n-1-mem_ext_length;
15872 for (j=0;j<n;j++) {
15873 append_to_name(xord((int)mp->MP_mem_default[j]));
15875 for (j=a;j<b;j++) {
15876 append_to_name(mp->buffer[j]);
15878 for (j=mem_default_length-mem_ext_length;
15879 j<mem_default_length;j++) {
15880 append_to_name(xord((int)mp->MP_mem_default[j]));
15882 mp->name_of_file[k]=0;
15886 @ Here is the only place we use |pack_buffered_name|. This part of the program
15887 becomes active when a ``virgin'' \MP\ is trying to get going, just after
15888 the preliminary initialization, or when the user is substituting another
15889 mem file by typing `\.\&' after the initial `\.{**}' prompt. The buffer
15890 contains the first line of input in |buffer[loc..(last-1)]|, where
15891 |loc<last| and |buffer[loc]<>" "|.
15894 boolean mp_open_mem_file (MP mp) ;
15897 boolean mp_open_mem_file (MP mp) {
15898 int j; /* the first space after the file name */
15899 if (mp->mem_name!=NULL) {
15900 mp->mem_file = (mp->open_file)(mp->mem_name, "rb", mp_filetype_memfile);
15901 if ( mp->mem_file ) return true;
15904 if ( mp->buffer[loc]=='&' ) {
15905 incr(loc); j=loc; mp->buffer[mp->last]=' ';
15906 while ( mp->buffer[j]!=' ' ) incr(j);
15907 mp_pack_buffered_name(mp, 0,loc,j); /* try first without the system file area */
15908 if ( mp_w_open_in(mp, &mp->mem_file) ) goto FOUND;
15910 wterm_ln("Sorry, I can\'t find that mem file; will try PLAIN.");
15911 @.Sorry, I can't find...@>
15914 /* now pull out all the stops: try for the system \.{plain} file */
15915 mp_pack_buffered_name(mp, mem_default_length-mem_ext_length,0,0);
15916 if ( ! mp_w_open_in(mp, &mp->mem_file) ) {
15918 wterm_ln("I can\'t find the PLAIN mem file!\n");
15919 @.I can't find PLAIN...@>
15924 loc=j; return true;
15927 @ Operating systems often make it possible to determine the exact name (and
15928 possible version number) of a file that has been opened. The following routine,
15929 which simply makes a \MP\ string from the value of |name_of_file|, should
15930 ideally be changed to deduce the full name of file~|f|, which is the file
15931 most recently opened, if it is possible to do this.
15932 @^system dependencies@>
15935 #define mp_a_make_name_string(A,B) mp_make_name_string(A)
15936 #define mp_b_make_name_string(A,B) mp_make_name_string(A)
15937 #define mp_w_make_name_string(A,B) mp_make_name_string(A)
15940 str_number mp_make_name_string (MP mp) {
15941 int k; /* index into |name_of_file| */
15942 str_room(mp->name_length);
15943 for (k=0;k<mp->name_length;k++) {
15944 append_char(xord((int)mp->name_of_file[k]));
15946 return mp_make_string(mp);
15949 @ Now let's consider the ``driver''
15950 routines by which \MP\ deals with file names
15951 in a system-independent manner. First comes a procedure that looks for a
15952 file name in the input by taking the information from the input buffer.
15953 (We can't use |get_next|, because the conversion to tokens would
15954 destroy necessary information.)
15956 This procedure doesn't allow semicolons or percent signs to be part of
15957 file names, because of other conventions of \MP.
15958 {\sl The {\logos METAFONT\/}book} doesn't
15959 use semicolons or percents immediately after file names, but some users
15960 no doubt will find it natural to do so; therefore system-dependent
15961 changes to allow such characters in file names should probably
15962 be made with reluctance, and only when an entire file name that
15963 includes special characters is ``quoted'' somehow.
15964 @^system dependencies@>
15966 @c void mp_scan_file_name (MP mp) {
15968 while ( mp->buffer[loc]==' ' ) incr(loc);
15970 if ( (mp->buffer[loc]==';')||(mp->buffer[loc]=='%') ) break;
15971 if ( ! mp_more_name(mp, mp->buffer[loc]) ) break;
15977 @ Here is another version that takes its input from a string.
15979 @<Declare subroutines for parsing file names@>=
15980 void mp_str_scan_file (MP mp, str_number s) {
15981 pool_pointer p,q; /* current position and stopping point */
15983 p=mp->str_start[s]; q=str_stop(s);
15985 if ( ! mp_more_name(mp, mp->str_pool[p]) ) break;
15991 @ And one that reads from a |char*|.
15993 @<Declare subroutines for parsing file names@>=
15994 void mp_ptr_scan_file (MP mp, char *s) {
15995 char *p, *q; /* current position and stopping point */
15997 p=s; q=p+strlen(s);
15999 if ( ! mp_more_name(mp, *p)) break;
16006 @ The global variable |job_name| contains the file name that was first
16007 \&{input} by the user. This name is extended by `\.{.log}' and `\.{ps}' and
16008 `\.{.mem}' and `\.{.tfm}' in order to make the names of \MP's output files.
16011 boolean log_opened; /* has the transcript file been opened? */
16012 char *log_name; /* full name of the log file */
16014 @ @<Option variables@>=
16015 char *job_name; /* principal file name */
16017 @ Initially |job_name=NULL|; it becomes nonzero as soon as the true name is known.
16018 We have |job_name=NULL| if and only if the `\.{log}' file has not been opened,
16019 except of course for a short time just after |job_name| has become nonzero.
16021 @<Allocate or ...@>=
16022 mp->job_name=opt->job_name;
16023 mp->log_opened=false;
16025 @ @<Dealloc variables@>=
16026 xfree(mp->job_name);
16028 @ Here is a routine that manufactures the output file names, assuming that
16029 |job_name<>0|. It ignores and changes the current settings of |cur_area|
16032 @d pack_cur_name mp_pack_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext)
16035 void mp_pack_job_name (MP mp, char *s) ;
16037 @ @c void mp_pack_job_name (MP mp, char *s) { /* |s = ".log"|, |".mem"|, |".ps"|, or .\\{nnn} */
16038 xfree(mp->cur_name); mp->cur_name=xstrdup(mp->job_name);
16039 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16040 xfree(mp->cur_ext); mp->cur_ext=xstrdup(s);
16044 @ If some trouble arises when \MP\ tries to open a file, the following
16045 routine calls upon the user to supply another file name. Parameter~|s|
16046 is used in the error message to identify the type of file; parameter~|e|
16047 is the default extension if none is given. Upon exit from the routine,
16048 variables |cur_name|, |cur_area|, |cur_ext|, and |name_of_file| are
16049 ready for another attempt at file opening.
16052 void mp_prompt_file_name (MP mp,char * s, char * e) ;
16054 @ @c void mp_prompt_file_name (MP mp,char * s, char * e) {
16055 size_t k; /* index into |buffer| */
16056 char * saved_cur_name;
16057 if ( mp->interaction==mp_scroll_mode )
16059 if (strcmp(s,"input file name")==0) {
16060 print_err("I can\'t find file `");
16061 @.I can't find file x@>
16063 print_err("I can\'t write on file `");
16065 @.I can't write on file x@>
16066 mp_print_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext);
16067 mp_print(mp, "'.");
16068 if (strcmp(e,"")==0)
16069 mp_show_context(mp);
16070 mp_print_nl(mp, "Please type another "); mp_print(mp, s);
16072 if ( mp->interaction<mp_scroll_mode )
16073 mp_fatal_error(mp, "*** (job aborted, file error in nonstop mode)");
16074 @.job aborted, file error...@>
16075 saved_cur_name = xstrdup(mp->cur_name);
16076 clear_terminal; prompt_input(": "); @<Scan file name in the buffer@>;
16077 if (strcmp(mp->cur_ext,"")==0)
16079 if (strlen(mp->cur_name)==0) {
16080 mp->cur_name=saved_cur_name;
16082 xfree(saved_cur_name);
16087 @ @<Scan file name in the buffer@>=
16089 mp_begin_name(mp); k=mp->first;
16090 while ( (mp->buffer[k]==' ')&&(k<mp->last) ) incr(k);
16092 if ( k==mp->last ) break;
16093 if ( ! mp_more_name(mp, mp->buffer[k]) ) break;
16099 @ The |open_log_file| routine is used to open the transcript file and to help
16100 it catch up to what has previously been printed on the terminal.
16102 @c void mp_open_log_file (MP mp) {
16103 int old_setting; /* previous |selector| setting */
16104 int k; /* index into |months| and |buffer| */
16105 int l; /* end of first input line */
16106 integer m; /* the current month */
16107 char *months="JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC";
16108 /* abbreviations of month names */
16109 old_setting=mp->selector;
16110 if ( mp->job_name==NULL ) {
16111 mp->job_name=xstrdup("mpout");
16113 mp_pack_job_name(mp,".log");
16114 while ( ! mp_a_open_out(mp, &mp->log_file, mp_filetype_log) ) {
16115 @<Try to get a different log file name@>;
16117 mp->log_name=xstrdup(mp->name_of_file);
16118 mp->selector=log_only; mp->log_opened=true;
16119 @<Print the banner line, including the date and time@>;
16120 mp->input_stack[mp->input_ptr]=mp->cur_input;
16121 /* make sure bottom level is in memory */
16122 mp_print_nl(mp, "**");
16124 l=mp->input_stack[0].limit_field-1; /* last position of first line */
16125 for (k=0;k<=l;k++) mp_print_str(mp, mp->buffer[k]);
16126 mp_print_ln(mp); /* now the transcript file contains the first line of input */
16127 mp->selector=old_setting+2; /* |log_only| or |term_and_log| */
16130 @ @<Dealloc variables@>=
16131 xfree(mp->log_name);
16133 @ Sometimes |open_log_file| is called at awkward moments when \MP\ is
16134 unable to print error messages or even to |show_context|.
16135 The |prompt_file_name| routine can result in a |fatal_error|, but the |error|
16136 routine will not be invoked because |log_opened| will be false.
16138 The normal idea of |mp_batch_mode| is that nothing at all should be written
16139 on the terminal. However, in the unusual case that
16140 no log file could be opened, we make an exception and allow
16141 an explanatory message to be seen.
16143 Incidentally, the program always refers to the log file as a `\.{transcript
16144 file}', because some systems cannot use the extension `\.{.log}' for
16147 @<Try to get a different log file name@>=
16149 mp->selector=term_only;
16150 mp_prompt_file_name(mp, "transcript file name",".log");
16153 @ @<Print the banner...@>=
16156 mp_print(mp, mp->mem_ident); mp_print(mp, " ");
16157 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_day]));
16158 mp_print_char(mp, ' ');
16159 m=mp_round_unscaled(mp, mp->internal[mp_month]);
16160 for (k=3*m-3;k<3*m;k++) { wlog_chr(months[k]); }
16161 mp_print_char(mp, ' ');
16162 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_year]));
16163 mp_print_char(mp, ' ');
16164 m=mp_round_unscaled(mp, mp->internal[mp_time]);
16165 mp_print_dd(mp, m / 60); mp_print_char(mp, ':'); mp_print_dd(mp, m % 60);
16168 @ The |try_extension| function tries to open an input file determined by
16169 |cur_name|, |cur_area|, and the argument |ext|. It returns |false| if it
16170 can't find the file in |cur_area| or the appropriate system area.
16172 @c boolean mp_try_extension (MP mp,char *ext) {
16173 mp_pack_file_name(mp, mp->cur_name,mp->cur_area, ext);
16174 in_name=xstrdup(mp->cur_name);
16175 in_area=xstrdup(mp->cur_area);
16176 if ( mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16179 if (strcmp(ext,".mf")==0 ) in_area=xstrdup(MF_area);
16180 else in_area=xstrdup(MP_area);
16181 mp_pack_file_name(mp, mp->cur_name,in_area,ext);
16182 return mp_a_open_in(mp, &cur_file, mp_filetype_program);
16187 @ Let's turn now to the procedure that is used to initiate file reading
16188 when an `\.{input}' command is being processed.
16190 @c void mp_start_input (MP mp) { /* \MP\ will \.{input} something */
16191 char *fname = NULL;
16192 @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>;
16194 mp_begin_file_reading(mp); /* set up |cur_file| and new level of input */
16195 if ( strlen(mp->cur_ext)==0 ) {
16196 if ( mp_try_extension(mp, ".mp") ) break;
16197 else if ( mp_try_extension(mp, "") ) break;
16198 else if ( mp_try_extension(mp, ".mf") ) break;
16199 /* |else do_nothing; | */
16200 } else if ( mp_try_extension(mp, mp->cur_ext) ) {
16203 mp_end_file_reading(mp); /* remove the level that didn't work */
16204 mp_prompt_file_name(mp, "input file name","");
16206 name=mp_a_make_name_string(mp, cur_file);
16207 fname = xstrdup(mp->name_of_file);
16208 if ( mp->job_name==NULL ) {
16209 mp->job_name=xstrdup(mp->cur_name);
16210 mp_open_log_file(mp);
16211 } /* |open_log_file| doesn't |show_context|, so |limit|
16212 and |loc| needn't be set to meaningful values yet */
16213 if ( ((int)mp->term_offset+(int)strlen(fname)) > (mp->max_print_line-2)) mp_print_ln(mp);
16214 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
16215 mp_print_char(mp, '('); incr(mp->open_parens); mp_print(mp, fname);
16218 @<Flush |name| and replace it with |cur_name| if it won't be needed@>;
16219 @<Read the first line of the new file@>;
16222 @ This code should be omitted if |a_make_name_string| returns something other
16223 than just a copy of its argument and the full file name is needed for opening
16224 \.{MPX} files or implementing the switch-to-editor option.
16225 @^system dependencies@>
16227 @<Flush |name| and replace it with |cur_name| if it won't be needed@>=
16228 mp_flush_string(mp, name); name=rts(mp->cur_name); xfree(mp->cur_name)
16230 @ If the file is empty, it is considered to contain a single blank line,
16231 so there is no need to test the return value.
16233 @<Read the first line...@>=
16236 (void)mp_input_ln(mp, cur_file );
16237 mp_firm_up_the_line(mp);
16238 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
16241 @ @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>=
16242 while ( token_state &&(loc==null) ) mp_end_token_list(mp);
16243 if ( token_state ) {
16244 print_err("File names can't appear within macros");
16245 @.File names can't...@>
16246 help3("Sorry...I've converted what follows to tokens,")
16247 ("possibly garbaging the name you gave.")
16248 ("Please delete the tokens and insert the name again.");
16251 if ( file_state ) {
16252 mp_scan_file_name(mp);
16254 xfree(mp->cur_name); mp->cur_name=xstrdup("");
16255 xfree(mp->cur_ext); mp->cur_ext =xstrdup("");
16256 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16259 @ The following simple routine starts reading the \.{MPX} file associated
16260 with the current input file.
16262 @c void mp_start_mpx_input (MP mp) {
16263 char *origname = NULL; /* a copy of nameoffile */
16264 mp_pack_file_name(mp, in_name, in_area, ".mpx");
16265 @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16266 |goto not_found| if there is a problem@>;
16267 mp_begin_file_reading(mp);
16268 if ( ! mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16269 mp_end_file_reading(mp);
16272 name=mp_a_make_name_string(mp, cur_file);
16273 mp->mpx_name[index]=name; add_str_ref(name);
16274 @<Read the first line of the new file@>;
16277 @<Explain that the \.{MPX} file can't be read and |succumb|@>;
16281 @ This should ideally be changed to do whatever is necessary to create the
16282 \.{MPX} file given by |name_of_file| if it does not exist or if it is out
16283 of date. This requires invoking \.{MPtoTeX} on the |origname| and passing
16284 the results through \TeX\ and \.{DVItoMP}. (It is possible to use a
16285 completely different typesetting program if suitable postprocessor is
16286 available to perform the function of \.{DVItoMP}.)
16287 @^system dependencies@>
16289 @ @<Exported types@>=
16290 typedef int (*mp_run_make_mpx_command)(MP mp, char *origname, char *mtxname);
16292 @ @<Option variables@>=
16293 mp_run_make_mpx_command run_make_mpx;
16295 @ @<Allocate or initialize ...@>=
16296 set_callback_option(run_make_mpx);
16298 @ @<Internal library declarations@>=
16299 int mp_run_make_mpx (MP mp, char *origname, char *mtxname);
16301 @ The default does nothing.
16303 int mp_run_make_mpx (MP mp, char *origname, char *mtxname) {
16304 if (mp && origname && mtxname) /* for -W */
16309 @ @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16310 |goto not_found| if there is a problem@>=
16311 origname = mp_xstrdup(mp,mp->name_of_file);
16312 *(origname+strlen(origname)-1)=0; /* drop the x */
16313 if (!(mp->run_make_mpx)(mp, origname, mp->name_of_file))
16316 @ @<Explain that the \.{MPX} file can't be read and |succumb|@>=
16317 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16318 mp_print_nl(mp, ">> ");
16319 mp_print(mp, origname);
16320 mp_print_nl(mp, ">> ");
16321 mp_print(mp, mp->name_of_file);
16322 mp_print_nl(mp, "! Unable to make mpx file");
16323 help4("The two files given above are one of your source files")
16324 ("and an auxiliary file I need to read to find out what your")
16325 ("btex..etex blocks mean. If you don't know why I had trouble,")
16326 ("try running it manually through MPtoTeX, TeX, and DVItoMP");
16329 @ The last file-opening commands are for files accessed via the \&{readfrom}
16330 @:read_from_}{\&{readfrom} primitive@>
16331 operator and the \&{write} command. Such files are stored in separate arrays.
16332 @:write_}{\&{write} primitive@>
16334 @<Types in the outer block@>=
16335 typedef unsigned int readf_index; /* |0..max_read_files| */
16336 typedef unsigned int write_index; /* |0..max_write_files| */
16339 readf_index max_read_files; /* maximum number of simultaneously open \&{readfrom} files */
16340 void ** rd_file; /* \&{readfrom} files */
16341 char ** rd_fname; /* corresponding file name or 0 if file not open */
16342 readf_index read_files; /* number of valid entries in the above arrays */
16343 write_index max_write_files; /* maximum number of simultaneously open \&{write} */
16344 void ** wr_file; /* \&{write} files */
16345 char ** wr_fname; /* corresponding file name or 0 if file not open */
16346 write_index write_files; /* number of valid entries in the above arrays */
16348 @ @<Allocate or initialize ...@>=
16349 mp->max_read_files=8;
16350 mp->rd_file = xmalloc((mp->max_read_files+1),sizeof(void *));
16351 mp->rd_fname = xmalloc((mp->max_read_files+1),sizeof(char *));
16352 memset(mp->rd_fname, 0, sizeof(char *)*(mp->max_read_files+1));
16354 mp->max_write_files=8;
16355 mp->wr_file = xmalloc((mp->max_write_files+1),sizeof(void *));
16356 mp->wr_fname = xmalloc((mp->max_write_files+1),sizeof(char *));
16357 memset(mp->wr_fname, 0, sizeof(char *)*(mp->max_write_files+1));
16361 @ This routine starts reading the file named by string~|s| without setting
16362 |loc|, |limit|, or |name|. It returns |false| if the file is empty or cannot
16363 be opened. Otherwise it updates |rd_file[n]| and |rd_fname[n]|.
16365 @c boolean mp_start_read_input (MP mp,char *s, readf_index n) {
16366 mp_ptr_scan_file(mp, s);
16368 mp_begin_file_reading(mp);
16369 if ( ! mp_a_open_in(mp, &mp->rd_file[n], (mp_filetype_text+n)) )
16371 if ( ! mp_input_ln(mp, mp->rd_file[n] ) ) {
16372 (mp->close_file)(mp->rd_file[n]);
16375 mp->rd_fname[n]=xstrdup(mp->name_of_file);
16378 mp_end_file_reading(mp);
16382 @ Open |wr_file[n]| using file name~|s| and update |wr_fname[n]|.
16385 void mp_open_write_file (MP mp, char *s, readf_index n) ;
16387 @ @c void mp_open_write_file (MP mp,char *s, readf_index n) {
16388 mp_ptr_scan_file(mp, s);
16390 while ( ! mp_a_open_out(mp, &mp->wr_file[n], (mp_filetype_text+n)) )
16391 mp_prompt_file_name(mp, "file name for write output","");
16392 mp->wr_fname[n]=xstrdup(mp->name_of_file);
16396 @* \[36] Introduction to the parsing routines.
16397 We come now to the central nervous system that sparks many of \MP's activities.
16398 By evaluating expressions, from their primary constituents to ever larger
16399 subexpressions, \MP\ builds the structures that ultimately define complete
16400 pictures or fonts of type.
16402 Four mutually recursive subroutines are involved in this process: We call them
16403 $$\hbox{|scan_primary|, |scan_secondary|, |scan_tertiary|,
16404 and |scan_expression|.}$$
16406 Each of them is parameterless and begins with the first token to be scanned
16407 already represented in |cur_cmd|, |cur_mod|, and |cur_sym|. After execution,
16408 the value of the primary or secondary or tertiary or expression that was
16409 found will appear in the global variables |cur_type| and |cur_exp|. The
16410 token following the expression will be represented in |cur_cmd|, |cur_mod|,
16413 Technically speaking, the parsing algorithms are ``LL(1),'' more or less;
16414 backup mechanisms have been added in order to provide reasonable error
16418 small_number cur_type; /* the type of the expression just found */
16419 integer cur_exp; /* the value of the expression just found */
16424 @ Many different kinds of expressions are possible, so it is wise to have
16425 precise descriptions of what |cur_type| and |cur_exp| mean in all cases:
16428 |cur_type=mp_vacuous| means that this expression didn't turn out to have a
16429 value at all, because it arose from a \&{begingroup}$\,\ldots\,$\&{endgroup}
16430 construction in which there was no expression before the \&{endgroup}.
16431 In this case |cur_exp| has some irrelevant value.
16434 |cur_type=mp_boolean_type| means that |cur_exp| is either |true_code|
16438 |cur_type=mp_unknown_boolean| means that |cur_exp| points to a capsule
16439 node that is in the ring of variables equivalent
16440 to at least one undefined boolean variable.
16443 |cur_type=mp_string_type| means that |cur_exp| is a string number (i.e., an
16444 integer in the range |0<=cur_exp<str_ptr|). That string's reference count
16445 includes this particular reference.
16448 |cur_type=mp_unknown_string| means that |cur_exp| points to a capsule
16449 node that is in the ring of variables equivalent
16450 to at least one undefined string variable.
16453 |cur_type=mp_pen_type| means that |cur_exp| points to a node in a pen. Nobody
16454 else points to any of the nodes in this pen. The pen may be polygonal or
16458 |cur_type=mp_unknown_pen| means that |cur_exp| points to a capsule
16459 node that is in the ring of variables equivalent
16460 to at least one undefined pen variable.
16463 |cur_type=mp_path_type| means that |cur_exp| points to a the first node of
16464 a path; nobody else points to this particular path. The control points of
16465 the path will have been chosen.
16468 |cur_type=mp_unknown_path| means that |cur_exp| points to a capsule
16469 node that is in the ring of variables equivalent
16470 to at least one undefined path variable.
16473 |cur_type=mp_picture_type| means that |cur_exp| points to an edge header node.
16474 There may be other pointers to this particular set of edges. The header node
16475 contains a reference count that includes this particular reference.
16478 |cur_type=mp_unknown_picture| means that |cur_exp| points to a capsule
16479 node that is in the ring of variables equivalent
16480 to at least one undefined picture variable.
16483 |cur_type=mp_transform_type| means that |cur_exp| points to a |mp_transform_type|
16484 capsule node. The |value| part of this capsule
16485 points to a transform node that contains six numeric values,
16486 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16489 |cur_type=mp_color_type| means that |cur_exp| points to a |color_type|
16490 capsule node. The |value| part of this capsule
16491 points to a color node that contains three numeric values,
16492 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16495 |cur_type=mp_cmykcolor_type| means that |cur_exp| points to a |mp_cmykcolor_type|
16496 capsule node. The |value| part of this capsule
16497 points to a color node that contains four numeric values,
16498 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16501 |cur_type=mp_pair_type| means that |cur_exp| points to a capsule
16502 node whose type is |mp_pair_type|. The |value| part of this capsule
16503 points to a pair node that contains two numeric values,
16504 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16507 |cur_type=mp_known| means that |cur_exp| is a |scaled| value.
16510 |cur_type=mp_dependent| means that |cur_exp| points to a capsule node whose type
16511 is |dependent|. The |dep_list| field in this capsule points to the associated
16515 |cur_type=mp_proto_dependent| means that |cur_exp| points to a |mp_proto_dependent|
16516 capsule node. The |dep_list| field in this capsule
16517 points to the associated dependency list.
16520 |cur_type=independent| means that |cur_exp| points to a capsule node
16521 whose type is |independent|. This somewhat unusual case can arise, for
16522 example, in the expression
16523 `$x+\&{begingroup}\penalty0\,\&{string}\,x; 0\,\&{endgroup}$'.
16526 |cur_type=mp_token_list| means that |cur_exp| points to a linked list of
16527 tokens. This case arises only on the left-hand side of an assignment
16528 (`\.{:=}') operation, under very special circumstances.
16530 \smallskip\noindent
16531 The possible settings of |cur_type| have been listed here in increasing
16532 numerical order. Notice that |cur_type| will never be |mp_numeric_type| or
16533 |suffixed_macro| or |mp_unsuffixed_macro|, although variables of those types
16534 are allowed. Conversely, \MP\ has no variables of type |mp_vacuous| or
16537 @ Capsules are two-word nodes that have a similar meaning
16538 to |cur_type| and |cur_exp|. Such nodes have |name_type=capsule|
16539 and |link<=mp_void|; and their |type| field is one of the possibilities for
16540 |cur_type| listed above.
16542 The |value| field of a capsule is, in most cases, the value that
16543 corresponds to its |type|, as |cur_exp| corresponds to |cur_type|.
16544 However, when |cur_exp| would point to a capsule,
16545 no extra layer of indirection is present; the |value|
16546 field is what would have been called |value(cur_exp)| if it had not been
16547 encapsulated. Furthermore, if the type is |dependent| or
16548 |mp_proto_dependent|, the |value| field of a capsule is replaced by
16549 |dep_list| and |prev_dep| fields, since dependency lists in capsules are
16550 always part of the general |dep_list| structure.
16552 The |get_x_next| routine is careful not to change the values of |cur_type|
16553 and |cur_exp| when it gets an expanded token. However, |get_x_next| might
16554 call a macro, which might parse an expression, which might execute lots of
16555 commands in a group; hence it's possible that |cur_type| might change
16556 from, say, |mp_unknown_boolean| to |mp_boolean_type|, or from |dependent| to
16557 |known| or |independent|, during the time |get_x_next| is called. The
16558 programs below are careful to stash sensitive intermediate results in
16559 capsules, so that \MP's generality doesn't cause trouble.
16561 Here's a procedure that illustrates these conventions. It takes
16562 the contents of $(|cur_type|\kern-.3pt,|cur_exp|\kern-.3pt)$
16563 and stashes them away in a
16564 capsule. It is not used when |cur_type=mp_token_list|.
16565 After the operation, |cur_type=mp_vacuous|; hence there is no need to
16566 copy path lists or to update reference counts, etc.
16568 The special link |mp_void| is put on the capsule returned by
16569 |stash_cur_exp|, because this procedure is used to store macro parameters
16570 that must be easily distinguishable from token lists.
16572 @<Declare the stashing/unstashing routines@>=
16573 pointer mp_stash_cur_exp (MP mp) {
16574 pointer p; /* the capsule that will be returned */
16575 switch (mp->cur_type) {
16576 case unknown_types:
16577 case mp_transform_type:
16578 case mp_color_type:
16581 case mp_proto_dependent:
16582 case mp_independent:
16583 case mp_cmykcolor_type:
16587 p=mp_get_node(mp, value_node_size); name_type(p)=mp_capsule;
16588 type(p)=mp->cur_type; value(p)=mp->cur_exp;
16591 mp->cur_type=mp_vacuous; link(p)=mp_void;
16595 @ The inverse of |stash_cur_exp| is the following procedure, which
16596 deletes an unnecessary capsule and puts its contents into |cur_type|
16599 The program steps of \MP\ can be divided into two categories: those in
16600 which |cur_type| and |cur_exp| are ``alive'' and those in which they are
16601 ``dead,'' in the sense that |cur_type| and |cur_exp| contain relevant
16602 information or not. It's important not to ignore them when they're alive,
16603 and it's important not to pay attention to them when they're dead.
16605 There's also an intermediate category: If |cur_type=mp_vacuous|, then
16606 |cur_exp| is irrelevant, hence we can proceed without caring if |cur_type|
16607 and |cur_exp| are alive or dead. In such cases we say that |cur_type|
16608 and |cur_exp| are {\sl dormant}. It is permissible to call |get_x_next|
16609 only when they are alive or dormant.
16611 The \\{stash} procedure above assumes that |cur_type| and |cur_exp|
16612 are alive or dormant. The \\{unstash} procedure assumes that they are
16613 dead or dormant; it resuscitates them.
16615 @<Declare the stashing/unstashing...@>=
16616 void mp_unstash_cur_exp (MP mp,pointer p) ;
16619 void mp_unstash_cur_exp (MP mp,pointer p) {
16620 mp->cur_type=type(p);
16621 switch (mp->cur_type) {
16622 case unknown_types:
16623 case mp_transform_type:
16624 case mp_color_type:
16627 case mp_proto_dependent:
16628 case mp_independent:
16629 case mp_cmykcolor_type:
16633 mp->cur_exp=value(p);
16634 mp_free_node(mp, p,value_node_size);
16639 @ The following procedure prints the values of expressions in an
16640 abbreviated format. If its first parameter |p| is null, the value of
16641 |(cur_type,cur_exp)| is displayed; otherwise |p| should be a capsule
16642 containing the desired value. The second parameter controls the amount of
16643 output. If it is~0, dependency lists will be abbreviated to
16644 `\.{linearform}' unless they consist of a single term. If it is greater
16645 than~1, complicated structures (pens, pictures, and paths) will be displayed
16648 @<Declare subroutines for printing expressions@>=
16649 @<Declare the procedure called |print_dp|@>;
16650 @<Declare the stashing/unstashing routines@>;
16651 void mp_print_exp (MP mp,pointer p, small_number verbosity) {
16652 boolean restore_cur_exp; /* should |cur_exp| be restored? */
16653 small_number t; /* the type of the expression */
16654 pointer q; /* a big node being displayed */
16655 integer v=0; /* the value of the expression */
16657 restore_cur_exp=false;
16659 p=mp_stash_cur_exp(mp); restore_cur_exp=true;
16662 if ( t<mp_dependent ) v=value(p); else if ( t<mp_independent ) v=dep_list(p);
16663 @<Print an abbreviated value of |v| with format depending on |t|@>;
16664 if ( restore_cur_exp ) mp_unstash_cur_exp(mp, p);
16667 @ @<Print an abbreviated value of |v| with format depending on |t|@>=
16669 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
16670 case mp_boolean_type:
16671 if ( v==true_code ) mp_print(mp, "true"); else mp_print(mp, "false");
16673 case unknown_types: case mp_numeric_type:
16674 @<Display a variable that's been declared but not defined@>;
16676 case mp_string_type:
16677 mp_print_char(mp, '"'); mp_print_str(mp, v); mp_print_char(mp, '"');
16679 case mp_pen_type: case mp_path_type: case mp_picture_type:
16680 @<Display a complex type@>;
16682 case mp_transform_type: case mp_color_type: case mp_pair_type: case mp_cmykcolor_type:
16683 if ( v==null ) mp_print_type(mp, t);
16684 else @<Display a big node@>;
16686 case mp_known:mp_print_scaled(mp, v); break;
16687 case mp_dependent: case mp_proto_dependent:
16688 mp_print_dp(mp, t,v,verbosity);
16690 case mp_independent:mp_print_variable_name(mp, p); break;
16691 default: mp_confusion(mp, "exp"); break;
16692 @:this can't happen exp}{\quad exp@>
16695 @ @<Display a big node@>=
16697 mp_print_char(mp, '('); q=v+mp->big_node_size[t];
16699 if ( type(v)==mp_known ) mp_print_scaled(mp, value(v));
16700 else if ( type(v)==mp_independent ) mp_print_variable_name(mp, v);
16701 else mp_print_dp(mp, type(v),dep_list(v),verbosity);
16703 if ( v!=q ) mp_print_char(mp, ',');
16705 mp_print_char(mp, ')');
16708 @ Values of type \&{picture}, \&{path}, and \&{pen} are displayed verbosely
16709 in the log file only, unless the user has given a positive value to
16712 @<Display a complex type@>=
16713 if ( verbosity<=1 ) {
16714 mp_print_type(mp, t);
16716 if ( mp->selector==term_and_log )
16717 if ( mp->internal[mp_tracing_online]<=0 ) {
16718 mp->selector=term_only;
16719 mp_print_type(mp, t); mp_print(mp, " (see the transcript file)");
16720 mp->selector=term_and_log;
16723 case mp_pen_type:mp_print_pen(mp, v,"",false); break;
16724 case mp_path_type:mp_print_path(mp, v,"",false); break;
16725 case mp_picture_type:mp_print_edges(mp, v,"",false); break;
16726 } /* there are no other cases */
16729 @ @<Declare the procedure called |print_dp|@>=
16730 void mp_print_dp (MP mp,small_number t, pointer p,
16731 small_number verbosity) {
16732 pointer q; /* the node following |p| */
16734 if ( (info(q)==null) || (verbosity>0) ) mp_print_dependency(mp, p,t);
16735 else mp_print(mp, "linearform");
16738 @ The displayed name of a variable in a ring will not be a capsule unless
16739 the ring consists entirely of capsules.
16741 @<Display a variable that's been declared but not defined@>=
16742 { mp_print_type(mp, t);
16744 { mp_print_char(mp, ' ');
16745 while ( (name_type(v)==mp_capsule) && (v!=p) ) v=value(v);
16746 mp_print_variable_name(mp, v);
16750 @ When errors are detected during parsing, it is often helpful to
16751 display an expression just above the error message, using |exp_err|
16752 or |disp_err| instead of |print_err|.
16754 @d exp_err(A) mp_disp_err(mp, null,(A)) /* displays the current expression */
16756 @<Declare subroutines for printing expressions@>=
16757 void mp_disp_err (MP mp,pointer p, char *s) {
16758 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16759 mp_print_nl(mp, ">> ");
16761 mp_print_exp(mp, p,1); /* ``medium verbose'' printing of the expression */
16763 mp_print_nl(mp, "! "); mp_print(mp, s);
16768 @ If |cur_type| and |cur_exp| contain relevant information that should
16769 be recycled, we will use the following procedure, which changes |cur_type|
16770 to |known| and stores a given value in |cur_exp|. We can think of |cur_type|
16771 and |cur_exp| as either alive or dormant after this has been done,
16772 because |cur_exp| will not contain a pointer value.
16774 @ @c void mp_flush_cur_exp (MP mp,scaled v) {
16775 switch (mp->cur_type) {
16776 case unknown_types: case mp_transform_type: case mp_color_type: case mp_pair_type:
16777 case mp_dependent: case mp_proto_dependent: case mp_independent: case mp_cmykcolor_type:
16778 mp_recycle_value(mp, mp->cur_exp);
16779 mp_free_node(mp, mp->cur_exp,value_node_size);
16781 case mp_string_type:
16782 delete_str_ref(mp->cur_exp); break;
16783 case mp_pen_type: case mp_path_type:
16784 mp_toss_knot_list(mp, mp->cur_exp); break;
16785 case mp_picture_type:
16786 delete_edge_ref(mp->cur_exp); break;
16790 mp->cur_type=mp_known; mp->cur_exp=v;
16793 @ There's a much more general procedure that is capable of releasing
16794 the storage associated with any two-word value packet.
16796 @<Declare the recycling subroutines@>=
16797 void mp_recycle_value (MP mp,pointer p) ;
16799 @ @c void mp_recycle_value (MP mp,pointer p) {
16800 small_number t; /* a type code */
16801 integer vv; /* another value */
16802 pointer q,r,s,pp; /* link manipulation registers */
16803 integer v=0; /* a value */
16805 if ( t<mp_dependent ) v=value(p);
16807 case undefined: case mp_vacuous: case mp_boolean_type: case mp_known:
16808 case mp_numeric_type:
16810 case unknown_types:
16811 mp_ring_delete(mp, p); break;
16812 case mp_string_type:
16813 delete_str_ref(v); break;
16814 case mp_path_type: case mp_pen_type:
16815 mp_toss_knot_list(mp, v); break;
16816 case mp_picture_type:
16817 delete_edge_ref(v); break;
16818 case mp_cmykcolor_type: case mp_pair_type: case mp_color_type:
16819 case mp_transform_type:
16820 @<Recycle a big node@>; break;
16821 case mp_dependent: case mp_proto_dependent:
16822 @<Recycle a dependency list@>; break;
16823 case mp_independent:
16824 @<Recycle an independent variable@>; break;
16825 case mp_token_list: case mp_structured:
16826 mp_confusion(mp, "recycle"); break;
16827 @:this can't happen recycle}{\quad recycle@>
16828 case mp_unsuffixed_macro: case mp_suffixed_macro:
16829 mp_delete_mac_ref(mp, value(p)); break;
16830 } /* there are no other cases */
16834 @ @<Recycle a big node@>=
16836 q=v+mp->big_node_size[t];
16838 q=q-2; mp_recycle_value(mp, q);
16840 mp_free_node(mp, v,mp->big_node_size[t]);
16843 @ @<Recycle a dependency list@>=
16846 while ( info(q)!=null ) q=link(q);
16847 link(prev_dep(p))=link(q);
16848 prev_dep(link(q))=prev_dep(p);
16849 link(q)=null; mp_flush_node_list(mp, dep_list(p));
16852 @ When an independent variable disappears, it simply fades away, unless
16853 something depends on it. In the latter case, a dependent variable whose
16854 coefficient of dependence is maximal will take its place.
16855 The relevant algorithm is due to Ignacio~A. Zabala, who implemented it
16856 as part of his Ph.D. thesis (Stanford University, December 1982).
16857 @^Zabala Salelles, Ignacio Andres@>
16859 For example, suppose that variable $x$ is being recycled, and that the
16860 only variables depending on~$x$ are $y=2x+a$ and $z=x+b$. In this case
16861 we want to make $y$ independent and $z=.5y-.5a+b$; no other variables
16862 will depend on~$y$. If $\\{tracingequations}>0$ in this situation,
16863 we will print `\.{\#\#\# -2x=-y+a}'.
16865 There's a slight complication, however: An independent variable $x$
16866 can occur both in dependency lists and in proto-dependency lists.
16867 This makes it necessary to be careful when deciding which coefficient
16870 Furthermore, this complication is not so slight when
16871 a proto-dependent variable is chosen to become independent. For example,
16872 suppose that $y=2x+100a$ is proto-dependent while $z=x+b$ is dependent;
16873 then we must change $z=.5y-50a+b$ to a proto-dependency, because of the
16874 large coefficient `50'.
16876 In order to deal with these complications without wasting too much time,
16877 we shall link together the occurrences of~$x$ among all the linear
16878 dependencies, maintaining separate lists for the dependent and
16879 proto-dependent cases.
16881 @<Recycle an independent variable@>=
16883 mp->max_c[mp_dependent]=0; mp->max_c[mp_proto_dependent]=0;
16884 mp->max_link[mp_dependent]=null; mp->max_link[mp_proto_dependent]=null;
16886 while ( q!=dep_head ) {
16887 s=value_loc(q); /* now |link(s)=dep_list(q)| */
16890 if ( info(r)==null ) break;;
16891 if ( info(r)!=p ) {
16894 t=type(q); link(s)=link(r); info(r)=q;
16895 if ( abs(value(r))>mp->max_c[t] ) {
16896 @<Record a new maximum coefficient of type |t|@>;
16898 link(r)=mp->max_link[t]; mp->max_link[t]=r;
16904 if ( (mp->max_c[mp_dependent]>0)||(mp->max_c[mp_proto_dependent]>0) ) {
16905 @<Choose a dependent variable to take the place of the disappearing
16906 independent variable, and change all remaining dependencies
16911 @ The code for independency removal makes use of three two-word arrays.
16914 integer max_c[mp_proto_dependent+1]; /* max coefficient magnitude */
16915 pointer max_ptr[mp_proto_dependent+1]; /* where |p| occurs with |max_c| */
16916 pointer max_link[mp_proto_dependent+1]; /* other occurrences of |p| */
16918 @ @<Record a new maximum coefficient...@>=
16920 if ( mp->max_c[t]>0 ) {
16921 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
16923 mp->max_c[t]=abs(value(r)); mp->max_ptr[t]=r;
16926 @ @<Choose a dependent...@>=
16928 if ( (mp->max_c[mp_dependent] / 010000 >= mp->max_c[mp_proto_dependent]) )
16931 t=mp_proto_dependent;
16932 @<Determine the dependency list |s| to substitute for the independent
16934 t=mp_dependent+mp_proto_dependent-t; /* complement |t| */
16935 if ( mp->max_c[t]>0 ) { /* we need to pick up an unchosen dependency */
16936 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
16938 if ( t!=mp_dependent ) { @<Substitute new dependencies in place of |p|@>; }
16939 else { @<Substitute new proto-dependencies in place of |p|@>;}
16940 mp_flush_node_list(mp, s);
16941 if ( mp->fix_needed ) mp_fix_dependencies(mp);
16945 @ Let |s=max_ptr[t]|. At this point we have $|value|(s)=\pm|max_c|[t]$,
16946 and |info(s)| points to the dependent variable~|pp| of type~|t| from
16947 whose dependency list we have removed node~|s|. We must reinsert
16948 node~|s| into the dependency list, with coefficient $-1.0$, and with
16949 |pp| as the new independent variable. Since |pp| will have a larger serial
16950 number than any other variable, we can put node |s| at the head of the
16953 @<Determine the dep...@>=
16954 s=mp->max_ptr[t]; pp=info(s); v=value(s);
16955 if ( t==mp_dependent ) value(s)=-fraction_one; else value(s)=-unity;
16956 r=dep_list(pp); link(s)=r;
16957 while ( info(r)!=null ) r=link(r);
16958 q=link(r); link(r)=null;
16959 prev_dep(q)=prev_dep(pp); link(prev_dep(pp))=q;
16961 if ( mp->cur_exp==pp ) if ( mp->cur_type==t ) mp->cur_type=mp_independent;
16962 if ( mp->internal[mp_tracing_equations]>0 ) {
16963 @<Show the transformed dependency@>;
16966 @ Now $(-v)$ times the formerly independent variable~|p| is being replaced
16967 by the dependency list~|s|.
16969 @<Show the transformed...@>=
16970 if ( mp_interesting(mp, p) ) {
16971 mp_begin_diagnostic(mp); mp_print_nl(mp, "### ");
16972 @:]]]\#\#\#_}{\.{\#\#\#}@>
16973 if ( v>0 ) mp_print_char(mp, '-');
16974 if ( t==mp_dependent ) vv=mp_round_fraction(mp, mp->max_c[mp_dependent]);
16975 else vv=mp->max_c[mp_proto_dependent];
16976 if ( vv!=unity ) mp_print_scaled(mp, vv);
16977 mp_print_variable_name(mp, p);
16978 while ( value(p) % s_scale>0 ) {
16979 mp_print(mp, "*4"); value(p)=value(p)-2;
16981 if ( t==mp_dependent ) mp_print_char(mp, '='); else mp_print(mp, " = ");
16982 mp_print_dependency(mp, s,t);
16983 mp_end_diagnostic(mp, false);
16986 @ Finally, there are dependent and proto-dependent variables whose
16987 dependency lists must be brought up to date.
16989 @<Substitute new dependencies...@>=
16990 for (t=mp_dependent;t<=mp_proto_dependent;t++){
16992 while ( r!=null ) {
16994 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
16995 mp_make_fraction(mp, value(r),-v),s,t,mp_dependent);
16996 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
16997 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
17001 @ @<Substitute new proto...@>=
17002 for (t=mp_dependent;t<=mp_proto_dependent;t++) {
17004 while ( r!=null ) {
17006 if ( t==mp_dependent ) { /* for safety's sake, we change |q| to |mp_proto_dependent| */
17007 if ( mp->cur_exp==q ) if ( mp->cur_type==mp_dependent )
17008 mp->cur_type=mp_proto_dependent;
17009 dep_list(q)=mp_p_over_v(mp, dep_list(q),unity,mp_dependent,mp_proto_dependent);
17010 type(q)=mp_proto_dependent; value(r)=mp_round_fraction(mp, value(r));
17012 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17013 mp_make_scaled(mp, value(r),-v),s,mp_proto_dependent,mp_proto_dependent);
17014 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
17015 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
17019 @ Here are some routines that provide handy combinations of actions
17020 that are often needed during error recovery. For example,
17021 `|flush_error|' flushes the current expression, replaces it by
17022 a given value, and calls |error|.
17024 Errors often are detected after an extra token has already been scanned.
17025 The `\\{put\_get}' routines put that token back before calling |error|;
17026 then they get it back again. (Or perhaps they get another token, if
17027 the user has changed things.)
17030 void mp_flush_error (MP mp,scaled v);
17031 void mp_put_get_error (MP mp);
17032 void mp_put_get_flush_error (MP mp,scaled v) ;
17035 void mp_flush_error (MP mp,scaled v) {
17036 mp_error(mp); mp_flush_cur_exp(mp, v);
17038 void mp_put_get_error (MP mp) {
17039 mp_back_error(mp); mp_get_x_next(mp);
17041 void mp_put_get_flush_error (MP mp,scaled v) {
17042 mp_put_get_error(mp);
17043 mp_flush_cur_exp(mp, v);
17046 @ A global variable |var_flag| is set to a special command code
17047 just before \MP\ calls |scan_expression|, if the expression should be
17048 treated as a variable when this command code immediately follows. For
17049 example, |var_flag| is set to |assignment| at the beginning of a
17050 statement, because we want to know the {\sl location\/} of a variable at
17051 the left of `\.{:=}', not the {\sl value\/} of that variable.
17053 The |scan_expression| subroutine calls |scan_tertiary|,
17054 which calls |scan_secondary|, which calls |scan_primary|, which sets
17055 |var_flag:=0|. In this way each of the scanning routines ``knows''
17056 when it has been called with a special |var_flag|, but |var_flag| is
17059 A variable preceding a command that equals |var_flag| is converted to a
17060 token list rather than a value. Furthermore, an `\.{=}' sign following an
17061 expression with |var_flag=assignment| is not considered to be a relation
17062 that produces boolean expressions.
17066 int var_flag; /* command that wants a variable */
17071 @* \[37] Parsing primary expressions.
17072 The first parsing routine, |scan_primary|, is also the most complicated one,
17073 since it involves so many different cases. But each case---with one
17074 exception---is fairly simple by itself.
17076 When |scan_primary| begins, the first token of the primary to be scanned
17077 should already appear in |cur_cmd|, |cur_mod|, and |cur_sym|. The values
17078 of |cur_type| and |cur_exp| should be either dead or dormant, as explained
17079 earlier. If |cur_cmd| is not between |min_primary_command| and
17080 |max_primary_command|, inclusive, a syntax error will be signaled.
17082 @<Declare the basic parsing subroutines@>=
17083 void mp_scan_primary (MP mp) {
17084 pointer p,q,r; /* for list manipulation */
17085 quarterword c; /* a primitive operation code */
17086 int my_var_flag; /* initial value of |my_var_flag| */
17087 pointer l_delim,r_delim; /* hash addresses of a delimiter pair */
17088 @<Other local variables for |scan_primary|@>;
17089 my_var_flag=mp->var_flag; mp->var_flag=0;
17092 @<Supply diagnostic information, if requested@>;
17093 switch (mp->cur_cmd) {
17094 case left_delimiter:
17095 @<Scan a delimited primary@>; break;
17097 @<Scan a grouped primary@>; break;
17099 @<Scan a string constant@>; break;
17100 case numeric_token:
17101 @<Scan a primary that starts with a numeric token@>; break;
17103 @<Scan a nullary operation@>; break;
17104 case unary: case type_name: case cycle: case plus_or_minus:
17105 @<Scan a unary operation@>; break;
17106 case primary_binary:
17107 @<Scan a binary operation with `\&{of}' between its operands@>; break;
17109 @<Convert a suffix to a string@>; break;
17110 case internal_quantity:
17111 @<Scan an internal numeric quantity@>; break;
17112 case capsule_token:
17113 mp_make_exp_copy(mp, mp->cur_mod); break;
17115 @<Scan a variable primary; |goto restart| if it turns out to be a macro@>; break;
17117 mp_bad_exp(mp, "A primary"); goto RESTART; break;
17118 @.A primary expression...@>
17120 mp_get_x_next(mp); /* the routines |goto done| if they don't want this */
17122 if ( mp->cur_cmd==left_bracket ) {
17123 if ( mp->cur_type>=mp_known ) {
17124 @<Scan a mediation construction@>;
17131 @ Errors at the beginning of expressions are flagged by |bad_exp|.
17133 @c void mp_bad_exp (MP mp,char * s) {
17135 print_err(s); mp_print(mp, " expression can't begin with `");
17136 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
17137 mp_print_char(mp, '\'');
17138 help4("I'm afraid I need some sort of value in order to continue,")
17139 ("so I've tentatively inserted `0'. You may want to")
17140 ("delete this zero and insert something else;")
17141 ("see Chapter 27 of The METAFONTbook for an example.");
17142 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17143 mp_back_input(mp); mp->cur_sym=0; mp->cur_cmd=numeric_token;
17144 mp->cur_mod=0; mp_ins_error(mp);
17145 save_flag=mp->var_flag; mp->var_flag=0; mp_get_x_next(mp);
17146 mp->var_flag=save_flag;
17149 @ @<Supply diagnostic information, if requested@>=
17151 if ( mp->panicking ) mp_check_mem(mp, false);
17153 if ( mp->interrupt!=0 ) if ( mp->OK_to_interrupt ) {
17154 mp_back_input(mp); check_interrupt; mp_get_x_next(mp);
17157 @ @<Scan a delimited primary@>=
17159 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
17160 mp_get_x_next(mp); mp_scan_expression(mp);
17161 if ( (mp->cur_cmd==comma) && (mp->cur_type>=mp_known) ) {
17162 @<Scan the rest of a delimited set of numerics@>;
17164 mp_check_delimiter(mp, l_delim,r_delim);
17168 @ The |stash_in| subroutine puts the current (numeric) expression into a field
17169 within a ``big node.''
17171 @c void mp_stash_in (MP mp,pointer p) {
17172 pointer q; /* temporary register */
17173 type(p)=mp->cur_type;
17174 if ( mp->cur_type==mp_known ) {
17175 value(p)=mp->cur_exp;
17177 if ( mp->cur_type==mp_independent ) {
17178 @<Stash an independent |cur_exp| into a big node@>;
17180 mp->mem[value_loc(p)]=mp->mem[value_loc(mp->cur_exp)];
17181 /* |dep_list(p):=dep_list(cur_exp)| and |prev_dep(p):=prev_dep(cur_exp)| */
17182 link(prev_dep(p))=p;
17184 mp_free_node(mp, mp->cur_exp,value_node_size);
17186 mp->cur_type=mp_vacuous;
17189 @ In rare cases the current expression can become |independent|. There
17190 may be many dependency lists pointing to such an independent capsule,
17191 so we can't simply move it into place within a big node. Instead,
17192 we copy it, then recycle it.
17194 @ @<Stash an independent |cur_exp|...@>=
17196 q=mp_single_dependency(mp, mp->cur_exp);
17197 if ( q==mp->dep_final ){
17198 type(p)=mp_known; value(p)=0; mp_free_node(mp, q,dep_node_size);
17200 type(p)=mp_dependent; mp_new_dep(mp, p,q);
17202 mp_recycle_value(mp, mp->cur_exp);
17205 @ This code uses the fact that |red_part_loc| and |green_part_loc|
17206 are synonymous with |x_part_loc| and |y_part_loc|.
17208 @<Scan the rest of a delimited set of numerics@>=
17210 p=mp_stash_cur_exp(mp);
17211 mp_get_x_next(mp); mp_scan_expression(mp);
17212 @<Make sure the second part of a pair or color has a numeric type@>;
17213 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
17214 if ( mp->cur_cmd==comma ) type(q)=mp_color_type;
17215 else type(q)=mp_pair_type;
17216 mp_init_big_node(mp, q); r=value(q);
17217 mp_stash_in(mp, y_part_loc(r));
17218 mp_unstash_cur_exp(mp, p);
17219 mp_stash_in(mp, x_part_loc(r));
17220 if ( mp->cur_cmd==comma ) {
17221 @<Scan the last of a triplet of numerics@>;
17223 if ( mp->cur_cmd==comma ) {
17224 type(q)=mp_cmykcolor_type;
17225 mp_init_big_node(mp, q); t=value(q);
17226 mp->mem[cyan_part_loc(t)]=mp->mem[red_part_loc(r)];
17227 value(cyan_part_loc(t))=value(red_part_loc(r));
17228 mp->mem[magenta_part_loc(t)]=mp->mem[green_part_loc(r)];
17229 value(magenta_part_loc(t))=value(green_part_loc(r));
17230 mp->mem[yellow_part_loc(t)]=mp->mem[blue_part_loc(r)];
17231 value(yellow_part_loc(t))=value(blue_part_loc(r));
17232 mp_recycle_value(mp, r);
17234 @<Scan the last of a quartet of numerics@>;
17236 mp_check_delimiter(mp, l_delim,r_delim);
17237 mp->cur_type=type(q);
17241 @ @<Make sure the second part of a pair or color has a numeric type@>=
17242 if ( mp->cur_type<mp_known ) {
17243 exp_err("Nonnumeric ypart has been replaced by 0");
17244 @.Nonnumeric...replaced by 0@>
17245 help4("I've started to scan a pair `(a,b)' or a color `(a,b,c)';")
17246 ("but after finding a nice `a' I found a `b' that isn't")
17247 ("of numeric type. So I've changed that part to zero.")
17248 ("(The b that I didn't like appears above the error message.)");
17249 mp_put_get_flush_error(mp, 0);
17252 @ @<Scan the last of a triplet of numerics@>=
17254 mp_get_x_next(mp); mp_scan_expression(mp);
17255 if ( mp->cur_type<mp_known ) {
17256 exp_err("Nonnumeric third part has been replaced by 0");
17257 @.Nonnumeric...replaced by 0@>
17258 help3("I've just scanned a color `(a,b,c)' or cmykcolor(a,b,c,d); but the `c'")
17259 ("isn't of numeric type. So I've changed that part to zero.")
17260 ("(The c that I didn't like appears above the error message.)");
17261 mp_put_get_flush_error(mp, 0);
17263 mp_stash_in(mp, blue_part_loc(r));
17266 @ @<Scan the last of a quartet of numerics@>=
17268 mp_get_x_next(mp); mp_scan_expression(mp);
17269 if ( mp->cur_type<mp_known ) {
17270 exp_err("Nonnumeric blackpart has been replaced by 0");
17271 @.Nonnumeric...replaced by 0@>
17272 help3("I've just scanned a cmykcolor `(c,m,y,k)'; but the `k' isn't")
17273 ("of numeric type. So I've changed that part to zero.")
17274 ("(The k that I didn't like appears above the error message.)");
17275 mp_put_get_flush_error(mp, 0);
17277 mp_stash_in(mp, black_part_loc(r));
17280 @ The local variable |group_line| keeps track of the line
17281 where a \&{begingroup} command occurred; this will be useful
17282 in an error message if the group doesn't actually end.
17284 @<Other local variables for |scan_primary|@>=
17285 integer group_line; /* where a group began */
17287 @ @<Scan a grouped primary@>=
17289 group_line=mp_true_line(mp);
17290 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17291 save_boundary_item(p);
17293 mp_do_statement(mp); /* ends with |cur_cmd>=semicolon| */
17294 } while (! (mp->cur_cmd!=semicolon));
17295 if ( mp->cur_cmd!=end_group ) {
17296 print_err("A group begun on line ");
17297 @.A group...never ended@>
17298 mp_print_int(mp, group_line);
17299 mp_print(mp, " never ended");
17300 help2("I saw a `begingroup' back there that hasn't been matched")
17301 ("by `endgroup'. So I've inserted `endgroup' now.");
17302 mp_back_error(mp); mp->cur_cmd=end_group;
17305 /* this might change |cur_type|, if independent variables are recycled */
17306 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17309 @ @<Scan a string constant@>=
17311 mp->cur_type=mp_string_type; mp->cur_exp=mp->cur_mod;
17314 @ Later we'll come to procedures that perform actual operations like
17315 addition, square root, and so on; our purpose now is to do the parsing.
17316 But we might as well mention those future procedures now, so that the
17317 suspense won't be too bad:
17320 |do_nullary(c)| does primitive operations that have no operands (e.g.,
17321 `\&{true}' or `\&{pencircle}');
17324 |do_unary(c)| applies a primitive operation to the current expression;
17327 |do_binary(p,c)| applies a primitive operation to the capsule~|p|
17328 and the current expression.
17330 @<Scan a nullary operation@>=mp_do_nullary(mp, mp->cur_mod)
17332 @ @<Scan a unary operation@>=
17334 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_primary(mp);
17335 mp_do_unary(mp, c); goto DONE;
17338 @ A numeric token might be a primary by itself, or it might be the
17339 numerator of a fraction composed solely of numeric tokens, or it might
17340 multiply the primary that follows (provided that the primary doesn't begin
17341 with a plus sign or a minus sign). The code here uses the facts that
17342 |max_primary_command=plus_or_minus| and
17343 |max_primary_command-1=numeric_token|. If a fraction is found that is less
17344 than unity, we try to retain higher precision when we use it in scalar
17347 @<Other local variables for |scan_primary|@>=
17348 scaled num,denom; /* for primaries that are fractions, like `1/2' */
17350 @ @<Scan a primary that starts with a numeric token@>=
17352 mp->cur_exp=mp->cur_mod; mp->cur_type=mp_known; mp_get_x_next(mp);
17353 if ( mp->cur_cmd!=slash ) {
17357 if ( mp->cur_cmd!=numeric_token ) {
17359 mp->cur_cmd=slash; mp->cur_mod=over; mp->cur_sym=frozen_slash;
17362 num=mp->cur_exp; denom=mp->cur_mod;
17363 if ( denom==0 ) { @<Protest division by zero@>; }
17364 else { mp->cur_exp=mp_make_scaled(mp, num,denom); }
17365 check_arith; mp_get_x_next(mp);
17367 if ( mp->cur_cmd>=min_primary_command ) {
17368 if ( mp->cur_cmd<numeric_token ) { /* in particular, |cur_cmd<>plus_or_minus| */
17369 p=mp_stash_cur_exp(mp); mp_scan_primary(mp);
17370 if ( (abs(num)>=abs(denom))||(mp->cur_type<mp_color_type) ) {
17371 mp_do_binary(mp, p,times);
17373 mp_frac_mult(mp, num,denom);
17374 mp_free_node(mp, p,value_node_size);
17381 @ @<Protest division...@>=
17383 print_err("Division by zero");
17384 @.Division by zero@>
17385 help1("I'll pretend that you meant to divide by 1."); mp_error(mp);
17388 @ @<Scan a binary operation with `\&{of}' between its operands@>=
17390 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
17391 if ( mp->cur_cmd!=of_token ) {
17392 mp_missing_err(mp, "of"); mp_print(mp, " for ");
17393 mp_print_cmd_mod(mp, primary_binary,c);
17395 help1("I've got the first argument; will look now for the other.");
17398 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_primary(mp);
17399 mp_do_binary(mp, p,c); goto DONE;
17402 @ @<Convert a suffix to a string@>=
17404 mp_get_x_next(mp); mp_scan_suffix(mp);
17405 mp->old_setting=mp->selector; mp->selector=new_string;
17406 mp_show_token_list(mp, mp->cur_exp,null,100000,0);
17407 mp_flush_token_list(mp, mp->cur_exp);
17408 mp->cur_exp=mp_make_string(mp); mp->selector=mp->old_setting;
17409 mp->cur_type=mp_string_type;
17413 @ If an internal quantity appears all by itself on the left of an
17414 assignment, we return a token list of length one, containing the address
17415 of the internal quantity plus |hash_end|. (This accords with the conventions
17416 of the save stack, as described earlier.)
17418 @<Scan an internal...@>=
17421 if ( my_var_flag==assignment ) {
17423 if ( mp->cur_cmd==assignment ) {
17424 mp->cur_exp=mp_get_avail(mp);
17425 info(mp->cur_exp)=q+hash_end; mp->cur_type=mp_token_list;
17430 mp->cur_type=mp_known; mp->cur_exp=mp->internal[q];
17433 @ The most difficult part of |scan_primary| has been saved for last, since
17434 it was necessary to build up some confidence first. We can now face the task
17435 of scanning a variable.
17437 As we scan a variable, we build a token list containing the relevant
17438 names and subscript values, simultaneously following along in the
17439 ``collective'' structure to see if we are actually dealing with a macro
17440 instead of a value.
17442 The local variables |pre_head| and |post_head| will point to the beginning
17443 of the prefix and suffix lists; |tail| will point to the end of the list
17444 that is currently growing.
17446 Another local variable, |tt|, contains partial information about the
17447 declared type of the variable-so-far. If |tt>=mp_unsuffixed_macro|, the
17448 relation |tt=type(q)| will always hold. If |tt=undefined|, the routine
17449 doesn't bother to update its information about type. And if
17450 |undefined<tt<mp_unsuffixed_macro|, the precise value of |tt| isn't critical.
17452 @ @<Other local variables for |scan_primary|@>=
17453 pointer pre_head,post_head,tail;
17454 /* prefix and suffix list variables */
17455 small_number tt; /* approximation to the type of the variable-so-far */
17456 pointer t; /* a token */
17457 pointer macro_ref = 0; /* reference count for a suffixed macro */
17459 @ @<Scan a variable primary...@>=
17461 fast_get_avail(pre_head); tail=pre_head; post_head=null; tt=mp_vacuous;
17463 t=mp_cur_tok(mp); link(tail)=t;
17464 if ( tt!=undefined ) {
17465 @<Find the approximate type |tt| and corresponding~|q|@>;
17466 if ( tt>=mp_unsuffixed_macro ) {
17467 @<Either begin an unsuffixed macro call or
17468 prepare for a suffixed one@>;
17471 mp_get_x_next(mp); tail=t;
17472 if ( mp->cur_cmd==left_bracket ) {
17473 @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>;
17475 if ( mp->cur_cmd>max_suffix_token ) break;
17476 if ( mp->cur_cmd<min_suffix_token ) break;
17477 } /* now |cur_cmd| is |internal_quantity|, |tag_token|, or |numeric_token| */
17478 @<Handle unusual cases that masquerade as variables, and |goto restart|
17479 or |goto done| if appropriate;
17480 otherwise make a copy of the variable and |goto done|@>;
17483 @ @<Either begin an unsuffixed macro call or...@>=
17486 if ( tt>mp_unsuffixed_macro ) { /* |tt=mp_suffixed_macro| */
17487 post_head=mp_get_avail(mp); tail=post_head; link(tail)=t;
17488 tt=undefined; macro_ref=value(q); add_mac_ref(macro_ref);
17490 @<Set up unsuffixed macro call and |goto restart|@>;
17494 @ @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>=
17496 mp_get_x_next(mp); mp_scan_expression(mp);
17497 if ( mp->cur_cmd!=right_bracket ) {
17498 @<Put the left bracket and the expression back to be rescanned@>;
17500 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17501 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp; mp->cur_sym=0;
17505 @ The left bracket that we thought was introducing a subscript might have
17506 actually been the left bracket in a mediation construction like `\.{x[a,b]}'.
17507 So we don't issue an error message at this point; but we do want to back up
17508 so as to avoid any embarrassment about our incorrect assumption.
17510 @<Put the left bracket and the expression back to be rescanned@>=
17512 mp_back_input(mp); /* that was the token following the current expression */
17513 mp_back_expr(mp); mp->cur_cmd=left_bracket;
17514 mp->cur_mod=0; mp->cur_sym=frozen_left_bracket;
17517 @ Here's a routine that puts the current expression back to be read again.
17519 @c void mp_back_expr (MP mp) {
17520 pointer p; /* capsule token */
17521 p=mp_stash_cur_exp(mp); link(p)=null; back_list(p);
17524 @ Unknown subscripts lead to the following error message.
17526 @c void mp_bad_subscript (MP mp) {
17527 exp_err("Improper subscript has been replaced by zero");
17528 @.Improper subscript...@>
17529 help3("A bracketed subscript must have a known numeric value;")
17530 ("unfortunately, what I found was the value that appears just")
17531 ("above this error message. So I'll try a zero subscript.");
17532 mp_flush_error(mp, 0);
17535 @ Every time we call |get_x_next|, there's a chance that the variable we've
17536 been looking at will disappear. Thus, we cannot safely keep |q| pointing
17537 into the variable structure; we need to start searching from the root each time.
17539 @<Find the approximate type |tt| and corresponding~|q|@>=
17542 p=link(pre_head); q=info(p); tt=undefined;
17543 if ( eq_type(q) % outer_tag==tag_token ) {
17545 if ( q==null ) goto DONE2;
17549 tt=type(q); goto DONE2;
17551 if ( type(q)!=mp_structured ) goto DONE2;
17552 q=link(attr_head(q)); /* the |collective_subscript| attribute */
17553 if ( p>=mp->hi_mem_min ) { /* it's not a subscript */
17554 do { q=link(q); } while (! (attr_loc(q)>=info(p)));
17555 if ( attr_loc(q)>info(p) ) goto DONE2;
17563 @ How do things stand now? Well, we have scanned an entire variable name,
17564 including possible subscripts and/or attributes; |cur_cmd|, |cur_mod|, and
17565 |cur_sym| represent the token that follows. If |post_head=null|, a
17566 token list for this variable name starts at |link(pre_head)|, with all
17567 subscripts evaluated. But if |post_head<>null|, the variable turned out
17568 to be a suffixed macro; |pre_head| is the head of the prefix list, while
17569 |post_head| is the head of a token list containing both `\.{\AT!}' and
17572 Our immediate problem is to see if this variable still exists. (Variable
17573 structures can change drastically whenever we call |get_x_next|; users
17574 aren't supposed to do this, but the fact that it is possible means that
17575 we must be cautious.)
17577 The following procedure prints an error message when a variable
17578 unexpectedly disappears. Its help message isn't quite right for
17579 our present purposes, but we'll be able to fix that up.
17582 void mp_obliterated (MP mp,pointer q) {
17583 print_err("Variable "); mp_show_token_list(mp, q,null,1000,0);
17584 mp_print(mp, " has been obliterated");
17585 @.Variable...obliterated@>
17586 help5("It seems you did a nasty thing---probably by accident,")
17587 ("but nevertheless you nearly hornswoggled me...")
17588 ("While I was evaluating the right-hand side of this")
17589 ("command, something happened, and the left-hand side")
17590 ("is no longer a variable! So I won't change anything.");
17593 @ If the variable does exist, we also need to check
17594 for a few other special cases before deciding that a plain old ordinary
17595 variable has, indeed, been scanned.
17597 @<Handle unusual cases that masquerade as variables...@>=
17598 if ( post_head!=null ) {
17599 @<Set up suffixed macro call and |goto restart|@>;
17601 q=link(pre_head); free_avail(pre_head);
17602 if ( mp->cur_cmd==my_var_flag ) {
17603 mp->cur_type=mp_token_list; mp->cur_exp=q; goto DONE;
17605 p=mp_find_variable(mp, q);
17607 mp_make_exp_copy(mp, p);
17609 mp_obliterated(mp, q);
17610 mp->help_line[2]="While I was evaluating the suffix of this variable,";
17611 mp->help_line[1]="something was redefined, and it's no longer a variable!";
17612 mp->help_line[0]="In order to get back on my feet, I've inserted `0' instead.";
17613 mp_put_get_flush_error(mp, 0);
17615 mp_flush_node_list(mp, q);
17618 @ The only complication associated with macro calling is that the prefix
17619 and ``at'' parameters must be packaged in an appropriate list of lists.
17621 @<Set up unsuffixed macro call and |goto restart|@>=
17623 p=mp_get_avail(mp); info(pre_head)=link(pre_head); link(pre_head)=p;
17624 info(p)=t; mp_macro_call(mp, value(q),pre_head,null);
17629 @ If the ``variable'' that turned out to be a suffixed macro no longer exists,
17630 we don't care, because we have reserved a pointer (|macro_ref|) to its
17633 @<Set up suffixed macro call and |goto restart|@>=
17635 mp_back_input(mp); p=mp_get_avail(mp); q=link(post_head);
17636 info(pre_head)=link(pre_head); link(pre_head)=post_head;
17637 info(post_head)=q; link(post_head)=p; info(p)=link(q); link(q)=null;
17638 mp_macro_call(mp, macro_ref,pre_head,null); decr(ref_count(macro_ref));
17639 mp_get_x_next(mp); goto RESTART;
17642 @ Our remaining job is simply to make a copy of the value that has been
17643 found. Some cases are harder than others, but complexity arises solely
17644 because of the multiplicity of possible cases.
17646 @<Declare the procedure called |make_exp_copy|@>=
17647 @<Declare subroutines needed by |make_exp_copy|@>;
17648 void mp_make_exp_copy (MP mp,pointer p) {
17649 pointer q,r,t; /* registers for list manipulation */
17651 mp->cur_type=type(p);
17652 switch (mp->cur_type) {
17653 case mp_vacuous: case mp_boolean_type: case mp_known:
17654 mp->cur_exp=value(p); break;
17655 case unknown_types:
17656 mp->cur_exp=mp_new_ring_entry(mp, p);
17658 case mp_string_type:
17659 mp->cur_exp=value(p); add_str_ref(mp->cur_exp);
17661 case mp_picture_type:
17662 mp->cur_exp=value(p);add_edge_ref(mp->cur_exp);
17665 mp->cur_exp=copy_pen(value(p));
17668 mp->cur_exp=mp_copy_path(mp, value(p));
17670 case mp_transform_type: case mp_color_type:
17671 case mp_cmykcolor_type: case mp_pair_type:
17672 @<Copy the big node |p|@>;
17674 case mp_dependent: case mp_proto_dependent:
17675 mp_encapsulate(mp, mp_copy_dep_list(mp, dep_list(p)));
17677 case mp_numeric_type:
17678 new_indep(p); goto RESTART;
17680 case mp_independent:
17681 q=mp_single_dependency(mp, p);
17682 if ( q==mp->dep_final ){
17683 mp->cur_type=mp_known; mp->cur_exp=0; mp_free_node(mp, q,value_node_size);
17685 mp->cur_type=mp_dependent; mp_encapsulate(mp, q);
17689 mp_confusion(mp, "copy");
17690 @:this can't happen copy}{\quad copy@>
17695 @ The |encapsulate| subroutine assumes that |dep_final| is the
17696 tail of dependency list~|p|.
17698 @<Declare subroutines needed by |make_exp_copy|@>=
17699 void mp_encapsulate (MP mp,pointer p) {
17700 mp->cur_exp=mp_get_node(mp, value_node_size); type(mp->cur_exp)=mp->cur_type;
17701 name_type(mp->cur_exp)=mp_capsule; mp_new_dep(mp, mp->cur_exp,p);
17704 @ The most tedious case arises when the user refers to a
17705 \&{pair}, \&{color}, or \&{transform} variable; we must copy several fields,
17706 each of which can be |independent|, |dependent|, |mp_proto_dependent|,
17709 @<Copy the big node |p|@>=
17711 if ( value(p)==null )
17712 mp_init_big_node(mp, p);
17713 t=mp_get_node(mp, value_node_size); name_type(t)=mp_capsule; type(t)=mp->cur_type;
17714 mp_init_big_node(mp, t);
17715 q=value(p)+mp->big_node_size[mp->cur_type];
17716 r=value(t)+mp->big_node_size[mp->cur_type];
17718 q=q-2; r=r-2; mp_install(mp, r,q);
17719 } while (q!=value(p));
17723 @ The |install| procedure copies a numeric field~|q| into field~|r| of
17724 a big node that will be part of a capsule.
17726 @<Declare subroutines needed by |make_exp_copy|@>=
17727 void mp_install (MP mp,pointer r, pointer q) {
17728 pointer p; /* temporary register */
17729 if ( type(q)==mp_known ){
17730 value(r)=value(q); type(r)=mp_known;
17731 } else if ( type(q)==mp_independent ) {
17732 p=mp_single_dependency(mp, q);
17733 if ( p==mp->dep_final ) {
17734 type(r)=mp_known; value(r)=0; mp_free_node(mp, p,value_node_size);
17736 type(r)=mp_dependent; mp_new_dep(mp, r,p);
17739 type(r)=type(q); mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(q)));
17743 @ Expressions of the form `\.{a[b,c]}' are converted into
17744 `\.{b+a*(c-b)}', without checking the types of \.b~or~\.c,
17745 provided that \.a is numeric.
17747 @<Scan a mediation...@>=
17749 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17750 if ( mp->cur_cmd!=comma ) {
17751 @<Put the left bracket and the expression back...@>;
17752 mp_unstash_cur_exp(mp, p);
17754 q=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17755 if ( mp->cur_cmd!=right_bracket ) {
17756 mp_missing_err(mp, "]");
17758 help3("I've scanned an expression of the form `a[b,c',")
17759 ("so a right bracket should have come next.")
17760 ("I shall pretend that one was there.");
17763 r=mp_stash_cur_exp(mp); mp_make_exp_copy(mp, q);
17764 mp_do_binary(mp, r,minus); mp_do_binary(mp, p,times);
17765 mp_do_binary(mp, q,plus); mp_get_x_next(mp);
17769 @ Here is a comparatively simple routine that is used to scan the
17770 \&{suffix} parameters of a macro.
17772 @<Declare the basic parsing subroutines@>=
17773 void mp_scan_suffix (MP mp) {
17774 pointer h,t; /* head and tail of the list being built */
17775 pointer p; /* temporary register */
17776 h=mp_get_avail(mp); t=h;
17778 if ( mp->cur_cmd==left_bracket ) {
17779 @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>;
17781 if ( mp->cur_cmd==numeric_token ) {
17782 p=mp_new_num_tok(mp, mp->cur_mod);
17783 } else if ((mp->cur_cmd==tag_token)||(mp->cur_cmd==internal_quantity) ) {
17784 p=mp_get_avail(mp); info(p)=mp->cur_sym;
17788 link(t)=p; t=p; mp_get_x_next(mp);
17790 mp->cur_exp=link(h); free_avail(h); mp->cur_type=mp_token_list;
17793 @ @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>=
17795 mp_get_x_next(mp); mp_scan_expression(mp);
17796 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17797 if ( mp->cur_cmd!=right_bracket ) {
17798 mp_missing_err(mp, "]");
17800 help3("I've seen a `[' and a subscript value, in a suffix,")
17801 ("so a right bracket should have come next.")
17802 ("I shall pretend that one was there.");
17805 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp;
17808 @* \[38] Parsing secondary and higher expressions.
17810 After the intricacies of |scan_primary|\kern-1pt,
17811 the |scan_secondary| routine is
17812 refreshingly simple. It's not trivial, but the operations are relatively
17813 straightforward; the main difficulty is, again, that expressions and data
17814 structures might change drastically every time we call |get_x_next|, so a
17815 cautious approach is mandatory. For example, a macro defined by
17816 \&{primarydef} might have disappeared by the time its second argument has
17817 been scanned; we solve this by increasing the reference count of its token
17818 list, so that the macro can be called even after it has been clobbered.
17820 @<Declare the basic parsing subroutines@>=
17821 void mp_scan_secondary (MP mp) {
17822 pointer p; /* for list manipulation */
17823 halfword c,d; /* operation codes or modifiers */
17824 pointer mac_name; /* token defined with \&{primarydef} */
17826 if ((mp->cur_cmd<min_primary_command)||
17827 (mp->cur_cmd>max_primary_command) )
17828 mp_bad_exp(mp, "A secondary");
17829 @.A secondary expression...@>
17830 mp_scan_primary(mp);
17832 if ( mp->cur_cmd<=max_secondary_command )
17833 if ( mp->cur_cmd>=min_secondary_command ) {
17834 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17835 if ( d==secondary_primary_macro ) {
17836 mac_name=mp->cur_sym; add_mac_ref(c);
17838 mp_get_x_next(mp); mp_scan_primary(mp);
17839 if ( d!=secondary_primary_macro ) {
17840 mp_do_binary(mp, p,c);
17842 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17843 decr(ref_count(c)); mp_get_x_next(mp);
17850 @ The following procedure calls a macro that has two parameters,
17853 @c void mp_binary_mac (MP mp,pointer p, pointer c, pointer n) {
17854 pointer q,r; /* nodes in the parameter list */
17855 q=mp_get_avail(mp); r=mp_get_avail(mp); link(q)=r;
17856 info(q)=p; info(r)=mp_stash_cur_exp(mp);
17857 mp_macro_call(mp, c,q,n);
17860 @ The next procedure, |scan_tertiary|, is pretty much the same deal.
17862 @<Declare the basic parsing subroutines@>=
17863 void mp_scan_tertiary (MP mp) {
17864 pointer p; /* for list manipulation */
17865 halfword c,d; /* operation codes or modifiers */
17866 pointer mac_name; /* token defined with \&{secondarydef} */
17868 if ((mp->cur_cmd<min_primary_command)||
17869 (mp->cur_cmd>max_primary_command) )
17870 mp_bad_exp(mp, "A tertiary");
17871 @.A tertiary expression...@>
17872 mp_scan_secondary(mp);
17874 if ( mp->cur_cmd<=max_tertiary_command ) {
17875 if ( mp->cur_cmd>=min_tertiary_command ) {
17876 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17877 if ( d==tertiary_secondary_macro ) {
17878 mac_name=mp->cur_sym; add_mac_ref(c);
17880 mp_get_x_next(mp); mp_scan_secondary(mp);
17881 if ( d!=tertiary_secondary_macro ) {
17882 mp_do_binary(mp, p,c);
17884 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17885 decr(ref_count(c)); mp_get_x_next(mp);
17893 @ Finally we reach the deepest level in our quartet of parsing routines.
17894 This one is much like the others; but it has an extra complication from
17895 paths, which materialize here.
17897 @d continue_path 25 /* a label inside of |scan_expression| */
17898 @d finish_path 26 /* another */
17900 @<Declare the basic parsing subroutines@>=
17901 void mp_scan_expression (MP mp) {
17902 pointer p,q,r,pp,qq; /* for list manipulation */
17903 halfword c,d; /* operation codes or modifiers */
17904 int my_var_flag; /* initial value of |var_flag| */
17905 pointer mac_name; /* token defined with \&{tertiarydef} */
17906 boolean cycle_hit; /* did a path expression just end with `\&{cycle}'? */
17907 scaled x,y; /* explicit coordinates or tension at a path join */
17908 int t; /* knot type following a path join */
17910 my_var_flag=mp->var_flag; mac_name=null;
17912 if ((mp->cur_cmd<min_primary_command)||
17913 (mp->cur_cmd>max_primary_command) )
17914 mp_bad_exp(mp, "An");
17915 @.An expression...@>
17916 mp_scan_tertiary(mp);
17918 if ( mp->cur_cmd<=max_expression_command )
17919 if ( mp->cur_cmd>=min_expression_command ) {
17920 if ( (mp->cur_cmd!=equals)||(my_var_flag!=assignment) ) {
17921 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17922 if ( d==expression_tertiary_macro ) {
17923 mac_name=mp->cur_sym; add_mac_ref(c);
17925 if ( (d<ampersand)||((d==ampersand)&&
17926 ((type(p)==mp_pair_type)||(type(p)==mp_path_type))) ) {
17927 @<Scan a path construction operation;
17928 but |return| if |p| has the wrong type@>;
17930 mp_get_x_next(mp); mp_scan_tertiary(mp);
17931 if ( d!=expression_tertiary_macro ) {
17932 mp_do_binary(mp, p,c);
17934 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17935 decr(ref_count(c)); mp_get_x_next(mp);
17944 @ The reader should review the data structure conventions for paths before
17945 hoping to understand the next part of this code.
17947 @<Scan a path construction operation...@>=
17950 @<Convert the left operand, |p|, into a partial path ending at~|q|;
17951 but |return| if |p| doesn't have a suitable type@>;
17953 @<Determine the path join parameters;
17954 but |goto finish_path| if there's only a direction specifier@>;
17955 if ( mp->cur_cmd==cycle ) {
17956 @<Get ready to close a cycle@>;
17958 mp_scan_tertiary(mp);
17959 @<Convert the right operand, |cur_exp|,
17960 into a partial path from |pp| to~|qq|@>;
17962 @<Join the partial paths and reset |p| and |q| to the head and tail
17964 if ( mp->cur_cmd>=min_expression_command )
17965 if ( mp->cur_cmd<=ampersand ) if ( ! cycle_hit ) goto CONTINUE_PATH;
17967 @<Choose control points for the path and put the result into |cur_exp|@>;
17970 @ @<Convert the left operand, |p|, into a partial path ending at~|q|...@>=
17972 mp_unstash_cur_exp(mp, p);
17973 if ( mp->cur_type==mp_pair_type ) p=mp_new_knot(mp);
17974 else if ( mp->cur_type==mp_path_type ) p=mp->cur_exp;
17977 while ( link(q)!=p ) q=link(q);
17978 if ( left_type(p)!=mp_endpoint ) { /* open up a cycle */
17979 r=mp_copy_knot(mp, p); link(q)=r; q=r;
17981 left_type(p)=mp_open; right_type(q)=mp_open;
17984 @ A pair of numeric values is changed into a knot node for a one-point path
17985 when \MP\ discovers that the pair is part of a path.
17987 @c@<Declare the procedure called |known_pair|@>;
17988 pointer mp_new_knot (MP mp) { /* convert a pair to a knot with two endpoints */
17989 pointer q; /* the new node */
17990 q=mp_get_node(mp, knot_node_size); left_type(q)=mp_endpoint;
17991 right_type(q)=mp_endpoint; originator(q)=mp_metapost_user; link(q)=q;
17992 mp_known_pair(mp); x_coord(q)=mp->cur_x; y_coord(q)=mp->cur_y;
17996 @ The |known_pair| subroutine sets |cur_x| and |cur_y| to the components
17997 of the current expression, assuming that the current expression is a
17998 pair of known numerics. Unknown components are zeroed, and the
17999 current expression is flushed.
18001 @<Declare the procedure called |known_pair|@>=
18002 void mp_known_pair (MP mp) {
18003 pointer p; /* the pair node */
18004 if ( mp->cur_type!=mp_pair_type ) {
18005 exp_err("Undefined coordinates have been replaced by (0,0)");
18006 @.Undefined coordinates...@>
18007 help5("I need x and y numbers for this part of the path.")
18008 ("The value I found (see above) was no good;")
18009 ("so I'll try to keep going by using zero instead.")
18010 ("(Chapter 27 of The METAFONTbook explains that")
18011 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18012 ("you might want to type `I ??" "?' now.)");
18013 mp_put_get_flush_error(mp, 0); mp->cur_x=0; mp->cur_y=0;
18015 p=value(mp->cur_exp);
18016 @<Make sure that both |x| and |y| parts of |p| are known;
18017 copy them into |cur_x| and |cur_y|@>;
18018 mp_flush_cur_exp(mp, 0);
18022 @ @<Make sure that both |x| and |y| parts of |p| are known...@>=
18023 if ( type(x_part_loc(p))==mp_known ) {
18024 mp->cur_x=value(x_part_loc(p));
18026 mp_disp_err(mp, x_part_loc(p),
18027 "Undefined x coordinate has been replaced by 0");
18028 @.Undefined coordinates...@>
18029 help5("I need a `known' x value for this part of the path.")
18030 ("The value I found (see above) was no good;")
18031 ("so I'll try to keep going by using zero instead.")
18032 ("(Chapter 27 of The METAFONTbook explains that")
18033 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18034 ("you might want to type `I ??" "?' now.)");
18035 mp_put_get_error(mp); mp_recycle_value(mp, x_part_loc(p)); mp->cur_x=0;
18037 if ( type(y_part_loc(p))==mp_known ) {
18038 mp->cur_y=value(y_part_loc(p));
18040 mp_disp_err(mp, y_part_loc(p),
18041 "Undefined y coordinate has been replaced by 0");
18042 help5("I need a `known' y value for this part of the path.")
18043 ("The value I found (see above) was no good;")
18044 ("so I'll try to keep going by using zero instead.")
18045 ("(Chapter 27 of The METAFONTbook explains that")
18046 ("you might want to type `I ??" "?' now.)");
18047 mp_put_get_error(mp); mp_recycle_value(mp, y_part_loc(p)); mp->cur_y=0;
18050 @ At this point |cur_cmd| is either |ampersand|, |left_brace|, or |path_join|.
18052 @<Determine the path join parameters...@>=
18053 if ( mp->cur_cmd==left_brace ) {
18054 @<Put the pre-join direction information into node |q|@>;
18057 if ( d==path_join ) {
18058 @<Determine the tension and/or control points@>;
18059 } else if ( d!=ampersand ) {
18063 if ( mp->cur_cmd==left_brace ) {
18064 @<Put the post-join direction information into |x| and |t|@>;
18065 } else if ( right_type(q)!=mp_explicit ) {
18069 @ The |scan_direction| subroutine looks at the directional information
18070 that is enclosed in braces, and also scans ahead to the following character.
18071 A type code is returned, either |open| (if the direction was $(0,0)$),
18072 or |curl| (if the direction was a curl of known value |cur_exp|), or
18073 |given| (if the direction is given by the |angle| value that now
18074 appears in |cur_exp|).
18076 There's nothing difficult about this subroutine, but the program is rather
18077 lengthy because a variety of potential errors need to be nipped in the bud.
18079 @c small_number mp_scan_direction (MP mp) {
18080 int t; /* the type of information found */
18081 scaled x; /* an |x| coordinate */
18083 if ( mp->cur_cmd==curl_command ) {
18084 @<Scan a curl specification@>;
18086 @<Scan a given direction@>;
18088 if ( mp->cur_cmd!=right_brace ) {
18089 mp_missing_err(mp, "}");
18090 @.Missing `\char`\}'@>
18091 help3("I've scanned a direction spec for part of a path,")
18092 ("so a right brace should have come next.")
18093 ("I shall pretend that one was there.");
18100 @ @<Scan a curl specification@>=
18101 { mp_get_x_next(mp); mp_scan_expression(mp);
18102 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<0) ){
18103 exp_err("Improper curl has been replaced by 1");
18105 help1("A curl must be a known, nonnegative number.");
18106 mp_put_get_flush_error(mp, unity);
18111 @ @<Scan a given direction@>=
18112 { mp_scan_expression(mp);
18113 if ( mp->cur_type>mp_pair_type ) {
18114 @<Get given directions separated by commas@>;
18118 if ( (mp->cur_x==0)&&(mp->cur_y==0) ) t=mp_open;
18119 else { t=mp_given; mp->cur_exp=mp_n_arg(mp, mp->cur_x,mp->cur_y);}
18122 @ @<Get given directions separated by commas@>=
18124 if ( mp->cur_type!=mp_known ) {
18125 exp_err("Undefined x coordinate has been replaced by 0");
18126 @.Undefined coordinates...@>
18127 help5("I need a `known' x value for this part of the path.")
18128 ("The value I found (see above) was no good;")
18129 ("so I'll try to keep going by using zero instead.")
18130 ("(Chapter 27 of The METAFONTbook explains that")
18131 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18132 ("you might want to type `I ??" "?' now.)");
18133 mp_put_get_flush_error(mp, 0);
18136 if ( mp->cur_cmd!=comma ) {
18137 mp_missing_err(mp, ",");
18139 help2("I've got the x coordinate of a path direction;")
18140 ("will look for the y coordinate next.");
18143 mp_get_x_next(mp); mp_scan_expression(mp);
18144 if ( mp->cur_type!=mp_known ) {
18145 exp_err("Undefined y coordinate has been replaced by 0");
18146 help5("I need a `known' y value for this part of the path.")
18147 ("The value I found (see above) was no good;")
18148 ("so I'll try to keep going by using zero instead.")
18149 ("(Chapter 27 of The METAFONTbook explains that")
18150 ("you might want to type `I ??" "?' now.)");
18151 mp_put_get_flush_error(mp, 0);
18153 mp->cur_y=mp->cur_exp; mp->cur_x=x;
18156 @ At this point |right_type(q)| is usually |open|, but it may have been
18157 set to some other value by a previous splicing operation. We must maintain
18158 the value of |right_type(q)| in unusual cases such as
18159 `\.{..z1\{z2\}\&\{z3\}z1\{0,0\}..}'.
18161 @<Put the pre-join...@>=
18163 t=mp_scan_direction(mp);
18164 if ( t!=mp_open ) {
18165 right_type(q)=t; right_given(q)=mp->cur_exp;
18166 if ( left_type(q)==mp_open ) {
18167 left_type(q)=t; left_given(q)=mp->cur_exp;
18168 } /* note that |left_given(q)=left_curl(q)| */
18172 @ Since |left_tension| and |left_y| share the same position in knot nodes,
18173 and since |left_given| is similarly equivalent to |left_x|, we use
18174 |x| and |y| to hold the given direction and tension information when
18175 there are no explicit control points.
18177 @<Put the post-join...@>=
18179 t=mp_scan_direction(mp);
18180 if ( right_type(q)!=mp_explicit ) x=mp->cur_exp;
18181 else t=mp_explicit; /* the direction information is superfluous */
18184 @ @<Determine the tension and/or...@>=
18187 if ( mp->cur_cmd==tension ) {
18188 @<Set explicit tensions@>;
18189 } else if ( mp->cur_cmd==controls ) {
18190 @<Set explicit control points@>;
18192 right_tension(q)=unity; y=unity; mp_back_input(mp); /* default tension */
18195 if ( mp->cur_cmd!=path_join ) {
18196 mp_missing_err(mp, "..");
18198 help1("A path join command should end with two dots.");
18205 @ @<Set explicit tensions@>=
18207 mp_get_x_next(mp); y=mp->cur_cmd;
18208 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18209 mp_scan_primary(mp);
18210 @<Make sure that the current expression is a valid tension setting@>;
18211 if ( y==at_least ) negate(mp->cur_exp);
18212 right_tension(q)=mp->cur_exp;
18213 if ( mp->cur_cmd==and_command ) {
18214 mp_get_x_next(mp); y=mp->cur_cmd;
18215 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18216 mp_scan_primary(mp);
18217 @<Make sure that the current expression is a valid tension setting@>;
18218 if ( y==at_least ) negate(mp->cur_exp);
18223 @ @d min_tension three_quarter_unit
18225 @<Make sure that the current expression is a valid tension setting@>=
18226 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<min_tension) ) {
18227 exp_err("Improper tension has been set to 1");
18228 @.Improper tension@>
18229 help1("The expression above should have been a number >=3/4.");
18230 mp_put_get_flush_error(mp, unity);
18233 @ @<Set explicit control points@>=
18235 right_type(q)=mp_explicit; t=mp_explicit; mp_get_x_next(mp); mp_scan_primary(mp);
18236 mp_known_pair(mp); right_x(q)=mp->cur_x; right_y(q)=mp->cur_y;
18237 if ( mp->cur_cmd!=and_command ) {
18238 x=right_x(q); y=right_y(q);
18240 mp_get_x_next(mp); mp_scan_primary(mp);
18241 mp_known_pair(mp); x=mp->cur_x; y=mp->cur_y;
18245 @ @<Convert the right operand, |cur_exp|, into a partial path...@>=
18247 if ( mp->cur_type!=mp_path_type ) pp=mp_new_knot(mp);
18248 else pp=mp->cur_exp;
18250 while ( link(qq)!=pp ) qq=link(qq);
18251 if ( left_type(pp)!=mp_endpoint ) { /* open up a cycle */
18252 r=mp_copy_knot(mp, pp); link(qq)=r; qq=r;
18254 left_type(pp)=mp_open; right_type(qq)=mp_open;
18257 @ If a person tries to define an entire path by saying `\.{(x,y)\&cycle}',
18258 we silently change the specification to `\.{(x,y)..cycle}', since a cycle
18259 shouldn't have length zero.
18261 @<Get ready to close a cycle@>=
18263 cycle_hit=true; mp_get_x_next(mp); pp=p; qq=p;
18264 if ( d==ampersand ) if ( p==q ) {
18265 d=path_join; right_tension(q)=unity; y=unity;
18269 @ @<Join the partial paths and reset |p| and |q|...@>=
18271 if ( d==ampersand ) {
18272 if ( (x_coord(q)!=x_coord(pp))||(y_coord(q)!=y_coord(pp)) ) {
18273 print_err("Paths don't touch; `&' will be changed to `..'");
18274 @.Paths don't touch@>
18275 help3("When you join paths `p&q', the ending point of p")
18276 ("must be exactly equal to the starting point of q.")
18277 ("So I'm going to pretend that you said `p..q' instead.");
18278 mp_put_get_error(mp); d=path_join; right_tension(q)=unity; y=unity;
18281 @<Plug an opening in |right_type(pp)|, if possible@>;
18282 if ( d==ampersand ) {
18283 @<Splice independent paths together@>;
18285 @<Plug an opening in |right_type(q)|, if possible@>;
18286 link(q)=pp; left_y(pp)=y;
18287 if ( t!=mp_open ) { left_x(pp)=x; left_type(pp)=t; };
18292 @ @<Plug an opening in |right_type(q)|...@>=
18293 if ( right_type(q)==mp_open ) {
18294 if ( (left_type(q)==mp_curl)||(left_type(q)==mp_given) ) {
18295 right_type(q)=left_type(q); right_given(q)=left_given(q);
18299 @ @<Plug an opening in |right_type(pp)|...@>=
18300 if ( right_type(pp)==mp_open ) {
18301 if ( (t==mp_curl)||(t==mp_given) ) {
18302 right_type(pp)=t; right_given(pp)=x;
18306 @ @<Splice independent paths together@>=
18308 if ( left_type(q)==mp_open ) if ( right_type(q)==mp_open ) {
18309 left_type(q)=mp_curl; left_curl(q)=unity;
18311 if ( right_type(pp)==mp_open ) if ( t==mp_open ) {
18312 right_type(pp)=mp_curl; right_curl(pp)=unity;
18314 right_type(q)=right_type(pp); link(q)=link(pp);
18315 right_x(q)=right_x(pp); right_y(q)=right_y(pp);
18316 mp_free_node(mp, pp,knot_node_size);
18317 if ( qq==pp ) qq=q;
18320 @ @<Choose control points for the path...@>=
18322 if ( d==ampersand ) p=q;
18324 left_type(p)=mp_endpoint;
18325 if ( right_type(p)==mp_open ) {
18326 right_type(p)=mp_curl; right_curl(p)=unity;
18328 right_type(q)=mp_endpoint;
18329 if ( left_type(q)==mp_open ) {
18330 left_type(q)=mp_curl; left_curl(q)=unity;
18334 mp_make_choices(mp, p);
18335 mp->cur_type=mp_path_type; mp->cur_exp=p
18337 @ Finally, we sometimes need to scan an expression whose value is
18338 supposed to be either |true_code| or |false_code|.
18340 @<Declare the basic parsing subroutines@>=
18341 void mp_get_boolean (MP mp) {
18342 mp_get_x_next(mp); mp_scan_expression(mp);
18343 if ( mp->cur_type!=mp_boolean_type ) {
18344 exp_err("Undefined condition will be treated as `false'");
18345 @.Undefined condition...@>
18346 help2("The expression shown above should have had a definite")
18347 ("true-or-false value. I'm changing it to `false'.");
18348 mp_put_get_flush_error(mp, false_code); mp->cur_type=mp_boolean_type;
18352 @* \[39] Doing the operations.
18353 The purpose of parsing is primarily to permit people to avoid piles of
18354 parentheses. But the real work is done after the structure of an expression
18355 has been recognized; that's when new expressions are generated. We
18356 turn now to the guts of \MP, which handles individual operators that
18357 have come through the parsing mechanism.
18359 We'll start with the easy ones that take no operands, then work our way
18360 up to operators with one and ultimately two arguments. In other words,
18361 we will write the three procedures |do_nullary|, |do_unary|, and |do_binary|
18362 that are invoked periodically by the expression scanners.
18364 First let's make sure that all of the primitive operators are in the
18365 hash table. Although |scan_primary| and its relatives made use of the
18366 \\{cmd} code for these operators, the \\{do} routines base everything
18367 on the \\{mod} code. For example, |do_binary| doesn't care whether the
18368 operation it performs is a |primary_binary| or |secondary_binary|, etc.
18371 mp_primitive(mp, "true",nullary,true_code);
18372 @:true_}{\&{true} primitive@>
18373 mp_primitive(mp, "false",nullary,false_code);
18374 @:false_}{\&{false} primitive@>
18375 mp_primitive(mp, "nullpicture",nullary,null_picture_code);
18376 @:null_picture_}{\&{nullpicture} primitive@>
18377 mp_primitive(mp, "nullpen",nullary,null_pen_code);
18378 @:null_pen_}{\&{nullpen} primitive@>
18379 mp_primitive(mp, "jobname",nullary,job_name_op);
18380 @:job_name_}{\&{jobname} primitive@>
18381 mp_primitive(mp, "readstring",nullary,read_string_op);
18382 @:read_string_}{\&{readstring} primitive@>
18383 mp_primitive(mp, "pencircle",nullary,pen_circle);
18384 @:pen_circle_}{\&{pencircle} primitive@>
18385 mp_primitive(mp, "normaldeviate",nullary,normal_deviate);
18386 @:normal_deviate_}{\&{normaldeviate} primitive@>
18387 mp_primitive(mp, "readfrom",unary,read_from_op);
18388 @:read_from_}{\&{readfrom} primitive@>
18389 mp_primitive(mp, "closefrom",unary,close_from_op);
18390 @:close_from_}{\&{closefrom} primitive@>
18391 mp_primitive(mp, "odd",unary,odd_op);
18392 @:odd_}{\&{odd} primitive@>
18393 mp_primitive(mp, "known",unary,known_op);
18394 @:known_}{\&{known} primitive@>
18395 mp_primitive(mp, "unknown",unary,unknown_op);
18396 @:unknown_}{\&{unknown} primitive@>
18397 mp_primitive(mp, "not",unary,not_op);
18398 @:not_}{\&{not} primitive@>
18399 mp_primitive(mp, "decimal",unary,decimal);
18400 @:decimal_}{\&{decimal} primitive@>
18401 mp_primitive(mp, "reverse",unary,reverse);
18402 @:reverse_}{\&{reverse} primitive@>
18403 mp_primitive(mp, "makepath",unary,make_path_op);
18404 @:make_path_}{\&{makepath} primitive@>
18405 mp_primitive(mp, "makepen",unary,make_pen_op);
18406 @:make_pen_}{\&{makepen} primitive@>
18407 mp_primitive(mp, "oct",unary,oct_op);
18408 @:oct_}{\&{oct} primitive@>
18409 mp_primitive(mp, "hex",unary,hex_op);
18410 @:hex_}{\&{hex} primitive@>
18411 mp_primitive(mp, "ASCII",unary,ASCII_op);
18412 @:ASCII_}{\&{ASCII} primitive@>
18413 mp_primitive(mp, "char",unary,char_op);
18414 @:char_}{\&{char} primitive@>
18415 mp_primitive(mp, "length",unary,length_op);
18416 @:length_}{\&{length} primitive@>
18417 mp_primitive(mp, "turningnumber",unary,turning_op);
18418 @:turning_number_}{\&{turningnumber} primitive@>
18419 mp_primitive(mp, "xpart",unary,x_part);
18420 @:x_part_}{\&{xpart} primitive@>
18421 mp_primitive(mp, "ypart",unary,y_part);
18422 @:y_part_}{\&{ypart} primitive@>
18423 mp_primitive(mp, "xxpart",unary,xx_part);
18424 @:xx_part_}{\&{xxpart} primitive@>
18425 mp_primitive(mp, "xypart",unary,xy_part);
18426 @:xy_part_}{\&{xypart} primitive@>
18427 mp_primitive(mp, "yxpart",unary,yx_part);
18428 @:yx_part_}{\&{yxpart} primitive@>
18429 mp_primitive(mp, "yypart",unary,yy_part);
18430 @:yy_part_}{\&{yypart} primitive@>
18431 mp_primitive(mp, "redpart",unary,red_part);
18432 @:red_part_}{\&{redpart} primitive@>
18433 mp_primitive(mp, "greenpart",unary,green_part);
18434 @:green_part_}{\&{greenpart} primitive@>
18435 mp_primitive(mp, "bluepart",unary,blue_part);
18436 @:blue_part_}{\&{bluepart} primitive@>
18437 mp_primitive(mp, "cyanpart",unary,cyan_part);
18438 @:cyan_part_}{\&{cyanpart} primitive@>
18439 mp_primitive(mp, "magentapart",unary,magenta_part);
18440 @:magenta_part_}{\&{magentapart} primitive@>
18441 mp_primitive(mp, "yellowpart",unary,yellow_part);
18442 @:yellow_part_}{\&{yellowpart} primitive@>
18443 mp_primitive(mp, "blackpart",unary,black_part);
18444 @:black_part_}{\&{blackpart} primitive@>
18445 mp_primitive(mp, "greypart",unary,grey_part);
18446 @:grey_part_}{\&{greypart} primitive@>
18447 mp_primitive(mp, "colormodel",unary,color_model_part);
18448 @:color_model_part_}{\&{colormodel} primitive@>
18449 mp_primitive(mp, "fontpart",unary,font_part);
18450 @:font_part_}{\&{fontpart} primitive@>
18451 mp_primitive(mp, "textpart",unary,text_part);
18452 @:text_part_}{\&{textpart} primitive@>
18453 mp_primitive(mp, "pathpart",unary,path_part);
18454 @:path_part_}{\&{pathpart} primitive@>
18455 mp_primitive(mp, "penpart",unary,pen_part);
18456 @:pen_part_}{\&{penpart} primitive@>
18457 mp_primitive(mp, "dashpart",unary,dash_part);
18458 @:dash_part_}{\&{dashpart} primitive@>
18459 mp_primitive(mp, "sqrt",unary,sqrt_op);
18460 @:sqrt_}{\&{sqrt} primitive@>
18461 mp_primitive(mp, "mexp",unary,m_exp_op);
18462 @:m_exp_}{\&{mexp} primitive@>
18463 mp_primitive(mp, "mlog",unary,m_log_op);
18464 @:m_log_}{\&{mlog} primitive@>
18465 mp_primitive(mp, "sind",unary,sin_d_op);
18466 @:sin_d_}{\&{sind} primitive@>
18467 mp_primitive(mp, "cosd",unary,cos_d_op);
18468 @:cos_d_}{\&{cosd} primitive@>
18469 mp_primitive(mp, "floor",unary,floor_op);
18470 @:floor_}{\&{floor} primitive@>
18471 mp_primitive(mp, "uniformdeviate",unary,uniform_deviate);
18472 @:uniform_deviate_}{\&{uniformdeviate} primitive@>
18473 mp_primitive(mp, "charexists",unary,char_exists_op);
18474 @:char_exists_}{\&{charexists} primitive@>
18475 mp_primitive(mp, "fontsize",unary,font_size);
18476 @:font_size_}{\&{fontsize} primitive@>
18477 mp_primitive(mp, "llcorner",unary,ll_corner_op);
18478 @:ll_corner_}{\&{llcorner} primitive@>
18479 mp_primitive(mp, "lrcorner",unary,lr_corner_op);
18480 @:lr_corner_}{\&{lrcorner} primitive@>
18481 mp_primitive(mp, "ulcorner",unary,ul_corner_op);
18482 @:ul_corner_}{\&{ulcorner} primitive@>
18483 mp_primitive(mp, "urcorner",unary,ur_corner_op);
18484 @:ur_corner_}{\&{urcorner} primitive@>
18485 mp_primitive(mp, "arclength",unary,arc_length);
18486 @:arc_length_}{\&{arclength} primitive@>
18487 mp_primitive(mp, "angle",unary,angle_op);
18488 @:angle_}{\&{angle} primitive@>
18489 mp_primitive(mp, "cycle",cycle,cycle_op);
18490 @:cycle_}{\&{cycle} primitive@>
18491 mp_primitive(mp, "stroked",unary,stroked_op);
18492 @:stroked_}{\&{stroked} primitive@>
18493 mp_primitive(mp, "filled",unary,filled_op);
18494 @:filled_}{\&{filled} primitive@>
18495 mp_primitive(mp, "textual",unary,textual_op);
18496 @:textual_}{\&{textual} primitive@>
18497 mp_primitive(mp, "clipped",unary,clipped_op);
18498 @:clipped_}{\&{clipped} primitive@>
18499 mp_primitive(mp, "bounded",unary,bounded_op);
18500 @:bounded_}{\&{bounded} primitive@>
18501 mp_primitive(mp, "+",plus_or_minus,plus);
18502 @:+ }{\.{+} primitive@>
18503 mp_primitive(mp, "-",plus_or_minus,minus);
18504 @:- }{\.{-} primitive@>
18505 mp_primitive(mp, "*",secondary_binary,times);
18506 @:* }{\.{*} primitive@>
18507 mp_primitive(mp, "/",slash,over); mp->eqtb[frozen_slash]=mp->eqtb[mp->cur_sym];
18508 @:/ }{\.{/} primitive@>
18509 mp_primitive(mp, "++",tertiary_binary,pythag_add);
18510 @:++_}{\.{++} primitive@>
18511 mp_primitive(mp, "+-+",tertiary_binary,pythag_sub);
18512 @:+-+_}{\.{+-+} primitive@>
18513 mp_primitive(mp, "or",tertiary_binary,or_op);
18514 @:or_}{\&{or} primitive@>
18515 mp_primitive(mp, "and",and_command,and_op);
18516 @:and_}{\&{and} primitive@>
18517 mp_primitive(mp, "<",expression_binary,less_than);
18518 @:< }{\.{<} primitive@>
18519 mp_primitive(mp, "<=",expression_binary,less_or_equal);
18520 @:<=_}{\.{<=} primitive@>
18521 mp_primitive(mp, ">",expression_binary,greater_than);
18522 @:> }{\.{>} primitive@>
18523 mp_primitive(mp, ">=",expression_binary,greater_or_equal);
18524 @:>=_}{\.{>=} primitive@>
18525 mp_primitive(mp, "=",equals,equal_to);
18526 @:= }{\.{=} primitive@>
18527 mp_primitive(mp, "<>",expression_binary,unequal_to);
18528 @:<>_}{\.{<>} primitive@>
18529 mp_primitive(mp, "substring",primary_binary,substring_of);
18530 @:substring_}{\&{substring} primitive@>
18531 mp_primitive(mp, "subpath",primary_binary,subpath_of);
18532 @:subpath_}{\&{subpath} primitive@>
18533 mp_primitive(mp, "directiontime",primary_binary,direction_time_of);
18534 @:direction_time_}{\&{directiontime} primitive@>
18535 mp_primitive(mp, "point",primary_binary,point_of);
18536 @:point_}{\&{point} primitive@>
18537 mp_primitive(mp, "precontrol",primary_binary,precontrol_of);
18538 @:precontrol_}{\&{precontrol} primitive@>
18539 mp_primitive(mp, "postcontrol",primary_binary,postcontrol_of);
18540 @:postcontrol_}{\&{postcontrol} primitive@>
18541 mp_primitive(mp, "penoffset",primary_binary,pen_offset_of);
18542 @:pen_offset_}{\&{penoffset} primitive@>
18543 mp_primitive(mp, "arctime",primary_binary,arc_time_of);
18544 @:arc_time_of_}{\&{arctime} primitive@>
18545 mp_primitive(mp, "mpversion",nullary,mp_version);
18546 @:mp_verison_}{\&{mpversion} primitive@>
18547 mp_primitive(mp, "&",ampersand,concatenate);
18548 @:!!!}{\.{\&} primitive@>
18549 mp_primitive(mp, "rotated",secondary_binary,rotated_by);
18550 @:rotated_}{\&{rotated} primitive@>
18551 mp_primitive(mp, "slanted",secondary_binary,slanted_by);
18552 @:slanted_}{\&{slanted} primitive@>
18553 mp_primitive(mp, "scaled",secondary_binary,scaled_by);
18554 @:scaled_}{\&{scaled} primitive@>
18555 mp_primitive(mp, "shifted",secondary_binary,shifted_by);
18556 @:shifted_}{\&{shifted} primitive@>
18557 mp_primitive(mp, "transformed",secondary_binary,transformed_by);
18558 @:transformed_}{\&{transformed} primitive@>
18559 mp_primitive(mp, "xscaled",secondary_binary,x_scaled);
18560 @:x_scaled_}{\&{xscaled} primitive@>
18561 mp_primitive(mp, "yscaled",secondary_binary,y_scaled);
18562 @:y_scaled_}{\&{yscaled} primitive@>
18563 mp_primitive(mp, "zscaled",secondary_binary,z_scaled);
18564 @:z_scaled_}{\&{zscaled} primitive@>
18565 mp_primitive(mp, "infont",secondary_binary,in_font);
18566 @:in_font_}{\&{infont} primitive@>
18567 mp_primitive(mp, "intersectiontimes",tertiary_binary,intersect);
18568 @:intersection_times_}{\&{intersectiontimes} primitive@>
18569 mp_primitive(mp, "envelope",primary_binary,envelope_of);
18570 @:envelope_}{\&{envelope} primitive@>
18572 @ @<Cases of |print_cmd...@>=
18575 case primary_binary:
18576 case secondary_binary:
18577 case tertiary_binary:
18578 case expression_binary:
18580 case plus_or_minus:
18585 mp_print_op(mp, m);
18588 @ OK, let's look at the simplest \\{do} procedure first.
18590 @c @<Declare nullary action procedure@>;
18591 void mp_do_nullary (MP mp,quarterword c) {
18593 if ( mp->internal[mp_tracing_commands]>two )
18594 mp_show_cmd_mod(mp, nullary,c);
18596 case true_code: case false_code:
18597 mp->cur_type=mp_boolean_type; mp->cur_exp=c;
18599 case null_picture_code:
18600 mp->cur_type=mp_picture_type;
18601 mp->cur_exp=mp_get_node(mp, edge_header_size);
18602 mp_init_edges(mp, mp->cur_exp);
18604 case null_pen_code:
18605 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, 0);
18607 case normal_deviate:
18608 mp->cur_type=mp_known; mp->cur_exp=mp_norm_rand(mp);
18611 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, unity);
18614 if ( mp->job_name==NULL ) mp_open_log_file(mp);
18615 mp->cur_type=mp_string_type; mp->cur_exp=rts(mp->job_name);
18618 mp->cur_type=mp_string_type;
18619 mp->cur_exp=intern(metapost_version) ;
18621 case read_string_op:
18622 @<Read a string from the terminal@>;
18624 } /* there are no other cases */
18628 @ @<Read a string...@>=
18630 if ( mp->interaction<=mp_nonstop_mode )
18631 mp_fatal_error(mp, "*** (cannot readstring in nonstop modes)");
18632 mp_begin_file_reading(mp); name=is_read;
18633 limit=start; prompt_input("");
18634 mp_finish_read(mp);
18637 @ @<Declare nullary action procedure@>=
18638 void mp_finish_read (MP mp) { /* copy |buffer| line to |cur_exp| */
18640 str_room((int)mp->last-start);
18641 for (k=start;k<=mp->last-1;k++) {
18642 append_char(mp->buffer[k]);
18644 mp_end_file_reading(mp); mp->cur_type=mp_string_type;
18645 mp->cur_exp=mp_make_string(mp);
18648 @ Things get a bit more interesting when there's an operand. The
18649 operand to |do_unary| appears in |cur_type| and |cur_exp|.
18651 @c @<Declare unary action procedures@>;
18652 void mp_do_unary (MP mp,quarterword c) {
18653 pointer p,q,r; /* for list manipulation */
18654 integer x; /* a temporary register */
18656 if ( mp->internal[mp_tracing_commands]>two )
18657 @<Trace the current unary operation@>;
18660 if ( mp->cur_type<mp_color_type ) mp_bad_unary(mp, plus);
18663 @<Negate the current expression@>;
18665 @<Additional cases of unary operators@>;
18666 } /* there are no other cases */
18670 @ The |nice_pair| function returns |true| if both components of a pair
18673 @<Declare unary action procedures@>=
18674 boolean mp_nice_pair (MP mp,integer p, quarterword t) {
18675 if ( t==mp_pair_type ) {
18677 if ( type(x_part_loc(p))==mp_known )
18678 if ( type(y_part_loc(p))==mp_known )
18684 @ The |nice_color_or_pair| function is analogous except that it also accepts
18685 fully known colors.
18687 @<Declare unary action procedures@>=
18688 boolean mp_nice_color_or_pair (MP mp,integer p, quarterword t) {
18689 pointer q,r; /* for scanning the big node */
18690 if ( (t!=mp_pair_type)&&(t!=mp_color_type)&&(t!=mp_cmykcolor_type) ) {
18694 r=q+mp->big_node_size[type(p)];
18697 if ( type(r)!=mp_known )
18704 @ @<Declare unary action...@>=
18705 void mp_print_known_or_unknown_type (MP mp,small_number t, integer v) {
18706 mp_print_char(mp, '(');
18707 if ( t>mp_known ) mp_print(mp, "unknown numeric");
18708 else { if ( (t==mp_pair_type)||(t==mp_color_type)||(t==mp_cmykcolor_type) )
18709 if ( ! mp_nice_color_or_pair(mp, v,t) ) mp_print(mp, "unknown ");
18710 mp_print_type(mp, t);
18712 mp_print_char(mp, ')');
18715 @ @<Declare unary action...@>=
18716 void mp_bad_unary (MP mp,quarterword c) {
18717 exp_err("Not implemented: "); mp_print_op(mp, c);
18718 @.Not implemented...@>
18719 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
18720 help3("I'm afraid I don't know how to apply that operation to that")
18721 ("particular type. Continue, and I'll simply return the")
18722 ("argument (shown above) as the result of the operation.");
18723 mp_put_get_error(mp);
18726 @ @<Trace the current unary operation@>=
18728 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
18729 mp_print_op(mp, c); mp_print_char(mp, '(');
18730 mp_print_exp(mp, null,0); /* show the operand, but not verbosely */
18731 mp_print(mp, ")}"); mp_end_diagnostic(mp, false);
18734 @ Negation is easy except when the current expression
18735 is of type |independent|, or when it is a pair with one or more
18736 |independent| components.
18738 It is tempting to argue that the negative of an independent variable
18739 is an independent variable, hence we don't have to do anything when
18740 negating it. The fallacy is that other dependent variables pointing
18741 to the current expression must change the sign of their
18742 coefficients if we make no change to the current expression.
18744 Instead, we work around the problem by copying the current expression
18745 and recycling it afterwards (cf.~the |stash_in| routine).
18747 @<Negate the current expression@>=
18748 switch (mp->cur_type) {
18749 case mp_color_type:
18750 case mp_cmykcolor_type:
18752 case mp_independent:
18753 q=mp->cur_exp; mp_make_exp_copy(mp, q);
18754 if ( mp->cur_type==mp_dependent ) {
18755 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18756 } else if ( mp->cur_type<=mp_pair_type ) { /* |mp_color_type| or |mp_pair_type| */
18757 p=value(mp->cur_exp);
18758 r=p+mp->big_node_size[mp->cur_type];
18761 if ( type(r)==mp_known ) negate(value(r));
18762 else mp_negate_dep_list(mp, dep_list(r));
18764 } /* if |cur_type=mp_known| then |cur_exp=0| */
18765 mp_recycle_value(mp, q); mp_free_node(mp, q,value_node_size);
18768 case mp_proto_dependent:
18769 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18772 negate(mp->cur_exp);
18775 mp_bad_unary(mp, minus);
18779 @ @<Declare unary action...@>=
18780 void mp_negate_dep_list (MP mp,pointer p) {
18783 if ( info(p)==null ) return;
18788 @ @<Additional cases of unary operators@>=
18790 if ( mp->cur_type!=mp_boolean_type ) mp_bad_unary(mp, not_op);
18791 else mp->cur_exp=true_code+false_code-mp->cur_exp;
18794 @ @d three_sixty_units 23592960 /* that's |360*unity| */
18795 @d boolean_reset(A) if ( (A) ) mp->cur_exp=true_code; else mp->cur_exp=false_code
18797 @<Additional cases of unary operators@>=
18804 case uniform_deviate:
18806 case char_exists_op:
18807 if ( mp->cur_type!=mp_known ) {
18808 mp_bad_unary(mp, c);
18811 case sqrt_op:mp->cur_exp=mp_square_rt(mp, mp->cur_exp);break;
18812 case m_exp_op:mp->cur_exp=mp_m_exp(mp, mp->cur_exp);break;
18813 case m_log_op:mp->cur_exp=mp_m_log(mp, mp->cur_exp);break;
18816 mp_n_sin_cos(mp, (mp->cur_exp % three_sixty_units)*16);
18817 if ( c==sin_d_op ) mp->cur_exp=mp_round_fraction(mp, mp->n_sin);
18818 else mp->cur_exp=mp_round_fraction(mp, mp->n_cos);
18820 case floor_op:mp->cur_exp=mp_floor_scaled(mp, mp->cur_exp);break;
18821 case uniform_deviate:mp->cur_exp=mp_unif_rand(mp, mp->cur_exp);break;
18823 boolean_reset(odd(mp_round_unscaled(mp, mp->cur_exp)));
18824 mp->cur_type=mp_boolean_type;
18826 case char_exists_op:
18827 @<Determine if a character has been shipped out@>;
18829 } /* there are no other cases */
18833 @ @<Additional cases of unary operators@>=
18835 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) ) {
18836 p=value(mp->cur_exp);
18837 x=mp_n_arg(mp, value(x_part_loc(p)),value(y_part_loc(p)));
18838 if ( x>=0 ) mp_flush_cur_exp(mp, (x+8)/ 16);
18839 else mp_flush_cur_exp(mp, -((-x+8)/ 16));
18841 mp_bad_unary(mp, angle_op);
18845 @ If the current expression is a pair, but the context wants it to
18846 be a path, we call |pair_to_path|.
18848 @<Declare unary action...@>=
18849 void mp_pair_to_path (MP mp) {
18850 mp->cur_exp=mp_new_knot(mp);
18851 mp->cur_type=mp_path_type;
18854 @ @<Additional cases of unary operators@>=
18857 if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_transform_type) )
18858 mp_take_part(mp, c);
18859 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18860 else mp_bad_unary(mp, c);
18866 if ( mp->cur_type==mp_transform_type ) mp_take_part(mp, c);
18867 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18868 else mp_bad_unary(mp, c);
18873 if ( mp->cur_type==mp_color_type ) mp_take_part(mp, c);
18874 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18875 else mp_bad_unary(mp, c);
18881 if ( mp->cur_type==mp_cmykcolor_type) mp_take_part(mp, c);
18882 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18883 else mp_bad_unary(mp, c);
18886 if ( mp->cur_type==mp_known ) mp->cur_exp=value(c);
18887 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18888 else mp_bad_unary(mp, c);
18890 case color_model_part:
18891 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18892 else mp_bad_unary(mp, c);
18895 @ In the following procedure, |cur_exp| points to a capsule, which points to
18896 a big node. We want to delete all but one part of the big node.
18898 @<Declare unary action...@>=
18899 void mp_take_part (MP mp,quarterword c) {
18900 pointer p; /* the big node */
18901 p=value(mp->cur_exp); value(temp_val)=p; type(temp_val)=mp->cur_type;
18902 link(p)=temp_val; mp_free_node(mp, mp->cur_exp,value_node_size);
18903 mp_make_exp_copy(mp, p+mp->sector_offset[c+mp_x_part_sector-x_part]);
18904 mp_recycle_value(mp, temp_val);
18907 @ @<Initialize table entries...@>=
18908 name_type(temp_val)=mp_capsule;
18910 @ @<Additional cases of unary operators@>=
18916 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18917 else mp_bad_unary(mp, c);
18920 @ @<Declarations@>=
18921 void mp_scale_edges (MP mp);
18923 @ @<Declare unary action...@>=
18924 void mp_take_pict_part (MP mp,quarterword c) {
18925 pointer p; /* first graphical object in |cur_exp| */
18926 p=link(dummy_loc(mp->cur_exp));
18929 case x_part: case y_part: case xx_part:
18930 case xy_part: case yx_part: case yy_part:
18931 if ( type(p)==mp_text_code ) mp_flush_cur_exp(mp, text_trans_part(p+c));
18932 else goto NOT_FOUND;
18934 case red_part: case green_part: case blue_part:
18935 if ( has_color(p) ) mp_flush_cur_exp(mp, obj_color_part(p+c));
18936 else goto NOT_FOUND;
18938 case cyan_part: case magenta_part: case yellow_part:
18940 if ( has_color(p) ) {
18941 if ( color_model(p)==mp_uninitialized_model )
18942 mp_flush_cur_exp(mp, unity);
18944 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-cyan_part)));
18945 } else goto NOT_FOUND;
18948 if ( has_color(p) )
18949 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-grey_part)));
18950 else goto NOT_FOUND;
18952 case color_model_part:
18953 if ( has_color(p) ) {
18954 if ( color_model(p)==mp_uninitialized_model )
18955 mp_flush_cur_exp(mp, mp->internal[mp_default_color_model]);
18957 mp_flush_cur_exp(mp, color_model(p)*unity);
18958 } else goto NOT_FOUND;
18960 @<Handle other cases in |take_pict_part| or |goto not_found|@>;
18961 } /* all cases have been enumerated */
18965 @<Convert the current expression to a null value appropriate
18969 @ @<Handle other cases in |take_pict_part| or |goto not_found|@>=
18971 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
18973 mp_flush_cur_exp(mp, text_p(p));
18974 add_str_ref(mp->cur_exp);
18975 mp->cur_type=mp_string_type;
18979 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
18981 mp_flush_cur_exp(mp, rts(mp->font_name[font_n(p)]));
18982 add_str_ref(mp->cur_exp);
18983 mp->cur_type=mp_string_type;
18987 if ( type(p)==mp_text_code ) goto NOT_FOUND;
18988 else if ( is_stop(p) ) mp_confusion(mp, "pict");
18989 @:this can't happen pict}{\quad pict@>
18991 mp_flush_cur_exp(mp, mp_copy_path(mp, path_p(p)));
18992 mp->cur_type=mp_path_type;
18996 if ( ! has_pen(p) ) goto NOT_FOUND;
18998 if ( pen_p(p)==null ) goto NOT_FOUND;
18999 else { mp_flush_cur_exp(mp, copy_pen(pen_p(p)));
19000 mp->cur_type=mp_pen_type;
19005 if ( type(p)!=mp_stroked_code ) goto NOT_FOUND;
19006 else { if ( dash_p(p)==null ) goto NOT_FOUND;
19007 else { add_edge_ref(dash_p(p));
19008 mp->se_sf=dash_scale(p);
19009 mp->se_pic=dash_p(p);
19010 mp_scale_edges(mp);
19011 mp_flush_cur_exp(mp, mp->se_pic);
19012 mp->cur_type=mp_picture_type;
19017 @ Since |scale_edges| had to be declared |forward|, it had to be declared as a
19018 parameterless procedure even though it really takes two arguments and updates
19019 one of them. Hence the following globals are needed.
19022 pointer se_pic; /* edge header used and updated by |scale_edges| */
19023 scaled se_sf; /* the scale factor argument to |scale_edges| */
19025 @ @<Convert the current expression to a null value appropriate...@>=
19027 case text_part: case font_part:
19028 mp_flush_cur_exp(mp, rts(""));
19029 mp->cur_type=mp_string_type;
19032 mp_flush_cur_exp(mp, mp_get_node(mp, knot_node_size));
19033 left_type(mp->cur_exp)=mp_endpoint;
19034 right_type(mp->cur_exp)=mp_endpoint;
19035 link(mp->cur_exp)=mp->cur_exp;
19036 x_coord(mp->cur_exp)=0;
19037 y_coord(mp->cur_exp)=0;
19038 originator(mp->cur_exp)=mp_metapost_user;
19039 mp->cur_type=mp_path_type;
19042 mp_flush_cur_exp(mp, mp_get_pen_circle(mp, 0));
19043 mp->cur_type=mp_pen_type;
19046 mp_flush_cur_exp(mp, mp_get_node(mp, edge_header_size));
19047 mp_init_edges(mp, mp->cur_exp);
19048 mp->cur_type=mp_picture_type;
19051 mp_flush_cur_exp(mp, 0);
19055 @ @<Additional cases of unary...@>=
19057 if ( mp->cur_type!=mp_known ) {
19058 mp_bad_unary(mp, char_op);
19060 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
19061 mp->cur_type=mp_string_type;
19062 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
19066 if ( mp->cur_type!=mp_known ) {
19067 mp_bad_unary(mp, decimal);
19069 mp->old_setting=mp->selector; mp->selector=new_string;
19070 mp_print_scaled(mp, mp->cur_exp); mp->cur_exp=mp_make_string(mp);
19071 mp->selector=mp->old_setting; mp->cur_type=mp_string_type;
19077 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19078 else mp_str_to_num(mp, c);
19081 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, font_size);
19082 else @<Find the design size of the font whose name is |cur_exp|@>;
19085 @ @<Declare unary action...@>=
19086 void mp_str_to_num (MP mp,quarterword c) { /* converts a string to a number */
19087 integer n; /* accumulator */
19088 ASCII_code m; /* current character */
19089 pool_pointer k; /* index into |str_pool| */
19090 int b; /* radix of conversion */
19091 boolean bad_char; /* did the string contain an invalid digit? */
19092 if ( c==ASCII_op ) {
19093 if ( length(mp->cur_exp)==0 ) n=-1;
19094 else n=mp->str_pool[mp->str_start[mp->cur_exp]];
19096 if ( c==oct_op ) b=8; else b=16;
19097 n=0; bad_char=false;
19098 for (k=mp->str_start[mp->cur_exp];k<=str_stop(mp->cur_exp)-1;k++) {
19100 if ( (m>='0')&&(m<='9') ) m=m-'0';
19101 else if ( (m>='A')&&(m<='F') ) m=m-'A'+10;
19102 else if ( (m>='a')&&(m<='f') ) m=m-'a'+10;
19103 else { bad_char=true; m=0; };
19104 if ( m>=b ) { bad_char=true; m=0; };
19105 if ( n<32768 / b ) n=n*b+m; else n=32767;
19107 @<Give error messages if |bad_char| or |n>=4096|@>;
19109 mp_flush_cur_exp(mp, n*unity);
19112 @ @<Give error messages if |bad_char|...@>=
19114 exp_err("String contains illegal digits");
19115 @.String contains illegal digits@>
19117 help1("I zeroed out characters that weren't in the range 0..7.");
19119 help1("I zeroed out characters that weren't hex digits.");
19121 mp_put_get_error(mp);
19124 if ( mp->internal[mp_warning_check]>0 ) {
19125 print_err("Number too large (");
19126 mp_print_int(mp, n); mp_print_char(mp, ')');
19127 @.Number too large@>
19128 help2("I have trouble with numbers greater than 4095; watch out.")
19129 ("(Set warningcheck:=0 to suppress this message.)");
19130 mp_put_get_error(mp);
19134 @ The length operation is somewhat unusual in that it applies to a variety
19135 of different types of operands.
19137 @<Additional cases of unary...@>=
19139 switch (mp->cur_type) {
19140 case mp_string_type: mp_flush_cur_exp(mp, length(mp->cur_exp)*unity); break;
19141 case mp_path_type: mp_flush_cur_exp(mp, mp_path_length(mp)); break;
19142 case mp_known: mp->cur_exp=abs(mp->cur_exp); break;
19143 case mp_picture_type: mp_flush_cur_exp(mp, mp_pict_length(mp)); break;
19145 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) )
19146 mp_flush_cur_exp(mp, mp_pyth_add(mp,
19147 value(x_part_loc(value(mp->cur_exp))),
19148 value(y_part_loc(value(mp->cur_exp)))));
19149 else mp_bad_unary(mp, c);
19154 @ @<Declare unary action...@>=
19155 scaled mp_path_length (MP mp) { /* computes the length of the current path */
19156 scaled n; /* the path length so far */
19157 pointer p; /* traverser */
19159 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
19160 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
19164 @ @<Declare unary action...@>=
19165 scaled mp_pict_length (MP mp) {
19166 /* counts interior components in picture |cur_exp| */
19167 scaled n; /* the count so far */
19168 pointer p; /* traverser */
19170 p=link(dummy_loc(mp->cur_exp));
19172 if ( is_start_or_stop(p) )
19173 if ( mp_skip_1component(mp, p)==null ) p=link(p);
19174 while ( p!=null ) {
19175 skip_component(p) return n;
19182 @ Implement |turningnumber|
19184 @<Additional cases of unary...@>=
19186 if ( mp->cur_type==mp_pair_type ) mp_flush_cur_exp(mp, 0);
19187 else if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, turning_op);
19188 else if ( left_type(mp->cur_exp)==mp_endpoint )
19189 mp_flush_cur_exp(mp, 0); /* not a cyclic path */
19191 mp_flush_cur_exp(mp, mp_turn_cycles_wrapper(mp, mp->cur_exp));
19194 @ The function |an_angle| returns the value of the |angle| primitive, or $0$ if the
19195 argument is |origin|.
19197 @<Declare unary action...@>=
19198 angle mp_an_angle (MP mp,scaled xpar, scaled ypar) {
19199 if ( (! ((xpar==0) && (ypar==0))) )
19200 return mp_n_arg(mp, xpar,ypar);
19205 @ The actual turning number is (for the moment) computed in a C function
19206 that receives eight integers corresponding to the four controlling points,
19207 and returns a single angle. Besides those, we have to account for discrete
19208 moves at the actual points.
19210 @d floor(a) (a>=0 ? a : -(int)(-a))
19211 @d bezier_error (720<<20)+1
19212 @d sign(v) ((v)>0 ? 1 : ((v)<0 ? -1 : 0 ))
19214 @d out ((double)(xo>>20))
19215 @d mid ((double)(xm>>20))
19216 @d in ((double)(xi>>20))
19217 @d divisor (256*256)
19218 @d double2angle(a) (int)floor(a*256.0*256.0*16.0)
19220 @<Declare unary action...@>=
19221 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19222 integer CX,integer CY,integer DX,integer DY);
19225 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19226 integer CX,integer CY,integer DX,integer DY) {
19228 integer deltax,deltay;
19229 double ax,ay,bx,by,cx,cy,dx,dy;
19230 angle xi = 0, xo = 0, xm = 0;
19232 ax=AX/divisor; ay=AY/divisor;
19233 bx=BX/divisor; by=BY/divisor;
19234 cx=CX/divisor; cy=CY/divisor;
19235 dx=DX/divisor; dy=DY/divisor;
19237 deltax = (BX-AX); deltay = (BY-AY);
19238 if (deltax==0 && deltay == 0) { deltax=(CX-AX); deltay=(CY-AY); }
19239 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19240 xi = mp_an_angle(mp,deltax,deltay);
19242 deltax = (CX-BX); deltay = (CY-BY);
19243 xm = mp_an_angle(mp,deltax,deltay);
19245 deltax = (DX-CX); deltay = (DY-CY);
19246 if (deltax==0 && deltay == 0) { deltax=(DX-BX); deltay=(DY-BY); }
19247 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19248 xo = mp_an_angle(mp,deltax,deltay);
19250 a = (bx-ax)*(cy-by) - (cx-bx)*(by-ay); /* a = (bp-ap)x(cp-bp); */
19251 b = (bx-ax)*(dy-cy) - (by-ay)*(dx-cx);; /* b = (bp-ap)x(dp-cp);*/
19252 c = (cx-bx)*(dy-cy) - (dx-cx)*(cy-by); /* c = (cp-bp)x(dp-cp);*/
19254 if ((a==0)&&(c==0)) {
19255 res = (b==0 ? 0 : (out-in));
19256 print_roots("no roots (a)");
19257 } else if ((a==0)||(c==0)) {
19258 if ((sign(b) == sign(a)) || (sign(b) == sign(c))) {
19259 res = out-in; /* ? */
19262 else if (res>180.0)
19264 print_roots("no roots (b)");
19266 res = out-in; /* ? */
19267 print_roots("one root (a)");
19269 } else if ((sign(a)*sign(c))<0) {
19270 res = out-in; /* ? */
19273 else if (res>180.0)
19275 print_roots("one root (b)");
19277 if (sign(a) == sign(b)) {
19278 res = out-in; /* ? */
19281 else if (res>180.0)
19283 print_roots("no roots (d)");
19285 if ((b*b) == (4*a*c)) {
19286 res = bezier_error;
19287 print_roots("double root"); /* cusp */
19288 } else if ((b*b) < (4*a*c)) {
19289 res = out-in; /* ? */
19290 if (res<=0.0 &&res>-180.0)
19292 else if (res>=0.0 && res<180.0)
19294 print_roots("no roots (e)");
19299 else if (res>180.0)
19301 print_roots("two roots"); /* two inflections */
19305 return double2angle(res);
19309 @d p_nextnext link(link(p))
19311 @d seven_twenty_deg 05500000000 /* $720\cdot2^{20}$, represents $720^\circ$ */
19313 @<Declare unary action...@>=
19314 scaled mp_new_turn_cycles (MP mp,pointer c) {
19315 angle res,ang; /* the angles of intermediate results */
19316 scaled turns; /* the turn counter */
19317 pointer p; /* for running around the path */
19318 integer xp,yp; /* coordinates of next point */
19319 integer x,y; /* helper coordinates */
19320 angle in_angle,out_angle; /* helper angles */
19321 int old_setting; /* saved |selector| setting */
19325 old_setting = mp->selector; mp->selector=term_only;
19326 if ( mp->internal[mp_tracing_commands]>unity ) {
19327 mp_begin_diagnostic(mp);
19328 mp_print_nl(mp, "");
19329 mp_end_diagnostic(mp, false);
19332 xp = x_coord(p_next); yp = y_coord(p_next);
19333 ang = mp_bezier_slope(mp,x_coord(p), y_coord(p), right_x(p), right_y(p),
19334 left_x(p_next), left_y(p_next), xp, yp);
19335 if ( ang>seven_twenty_deg ) {
19336 print_err("Strange path");
19338 mp->selector=old_setting;
19342 if ( res > one_eighty_deg ) {
19343 res = res - three_sixty_deg;
19344 turns = turns + unity;
19346 if ( res <= -one_eighty_deg ) {
19347 res = res + three_sixty_deg;
19348 turns = turns - unity;
19350 /* incoming angle at next point */
19351 x = left_x(p_next); y = left_y(p_next);
19352 if ( (xp==x)&&(yp==y) ) { x = right_x(p); y = right_y(p); };
19353 if ( (xp==x)&&(yp==y) ) { x = x_coord(p); y = y_coord(p); };
19354 in_angle = mp_an_angle(mp, xp - x, yp - y);
19355 /* outgoing angle at next point */
19356 x = right_x(p_next); y = right_y(p_next);
19357 if ( (xp==x)&&(yp==y) ) { x = left_x(p_nextnext); y = left_y(p_nextnext); };
19358 if ( (xp==x)&&(yp==y) ) { x = x_coord(p_nextnext); y = y_coord(p_nextnext); };
19359 out_angle = mp_an_angle(mp, x - xp, y- yp);
19360 ang = (out_angle - in_angle);
19364 if ( res >= one_eighty_deg ) {
19365 res = res - three_sixty_deg;
19366 turns = turns + unity;
19368 if ( res <= -one_eighty_deg ) {
19369 res = res + three_sixty_deg;
19370 turns = turns - unity;
19375 mp->selector=old_setting;
19380 @ This code is based on Bogus\l{}av Jackowski's
19381 |emergency_turningnumber| macro, with some minor changes by Taco
19382 Hoekwater. The macro code looked more like this:
19384 vardef turning\_number primary p =
19385 ~~save res, ang, turns;
19387 ~~if length p <= 2:
19388 ~~~~if Angle ((point 0 of p) - (postcontrol 0 of p)) >= 0: 1 else: -1 fi
19390 ~~~~for t = 0 upto length p-1 :
19391 ~~~~~~angc := Angle ((point t+1 of p) - (point t of p))
19392 ~~~~~~~~- Angle ((point t of p) - (point t-1 of p));
19393 ~~~~~~if angc > 180: angc := angc - 360; fi;
19394 ~~~~~~if angc < -180: angc := angc + 360; fi;
19395 ~~~~~~res := res + angc;
19400 The general idea is to calculate only the sum of the angles of
19401 straight lines between the points, of a path, not worrying about cusps
19402 or self-intersections in the segments at all. If the segment is not
19403 well-behaved, the result is not necesarily correct. But the old code
19404 was not always correct either, and worse, it sometimes failed for
19405 well-behaved paths as well. All known bugs that were triggered by the
19406 original code no longer occur with this code, and it runs roughly 3
19407 times as fast because the algorithm is much simpler.
19409 @ It is possible to overflow the return value of the |turn_cycles|
19410 function when the path is sufficiently long and winding, but I am not
19411 going to bother testing for that. In any case, it would only return
19412 the looped result value, which is not a big problem.
19414 The macro code for the repeat loop was a bit nicer to look
19415 at than the pascal code, because it could use |point -1 of p|. In
19416 pascal, the fastest way to loop around the path is not to look
19417 backward once, but forward twice. These defines help hide the trick.
19419 @d p_to link(link(p))
19423 @<Declare unary action...@>=
19424 scaled mp_turn_cycles (MP mp,pointer c) {
19425 angle res,ang; /* the angles of intermediate results */
19426 scaled turns; /* the turn counter */
19427 pointer p; /* for running around the path */
19428 res=0; turns= 0; p=c;
19430 ang = mp_an_angle (mp, x_coord(p_to) - x_coord(p_here),
19431 y_coord(p_to) - y_coord(p_here))
19432 - mp_an_angle (mp, x_coord(p_here) - x_coord(p_from),
19433 y_coord(p_here) - y_coord(p_from));
19436 if ( res >= three_sixty_deg ) {
19437 res = res - three_sixty_deg;
19438 turns = turns + unity;
19440 if ( res <= -three_sixty_deg ) {
19441 res = res + three_sixty_deg;
19442 turns = turns - unity;
19449 @ @<Declare unary action...@>=
19450 scaled mp_turn_cycles_wrapper (MP mp,pointer c) {
19452 scaled saved_t_o; /* tracing\_online saved */
19453 if ( (link(c)==c)||(link(link(c))==c) ) {
19454 if ( mp_an_angle (mp, x_coord(c) - right_x(c), y_coord(c) - right_y(c)) > 0 )
19459 nval = mp_new_turn_cycles(mp, c);
19460 oval = mp_turn_cycles(mp, c);
19461 if ( nval!=oval ) {
19462 saved_t_o=mp->internal[mp_tracing_online];
19463 mp->internal[mp_tracing_online]=unity;
19464 mp_begin_diagnostic(mp);
19465 mp_print_nl (mp, "Warning: the turningnumber algorithms do not agree."
19466 " The current computed value is ");
19467 mp_print_scaled(mp, nval);
19468 mp_print(mp, ", but the 'connect-the-dots' algorithm returned ");
19469 mp_print_scaled(mp, oval);
19470 mp_end_diagnostic(mp, false);
19471 mp->internal[mp_tracing_online]=saved_t_o;
19477 @ @<Declare unary action...@>=
19478 scaled mp_count_turns (MP mp,pointer c) {
19479 pointer p; /* a knot in envelope spec |c| */
19480 integer t; /* total pen offset changes counted */
19483 t=t+info(p)-zero_off;
19486 return ((t / 3)*unity);
19489 @ @d type_range(A,B) {
19490 if ( (mp->cur_type>=(A)) && (mp->cur_type<=(B)) )
19491 mp_flush_cur_exp(mp, true_code);
19492 else mp_flush_cur_exp(mp, false_code);
19493 mp->cur_type=mp_boolean_type;
19496 if ( mp->cur_type==(A) ) mp_flush_cur_exp(mp, true_code);
19497 else mp_flush_cur_exp(mp, false_code);
19498 mp->cur_type=mp_boolean_type;
19501 @<Additional cases of unary operators@>=
19502 case mp_boolean_type:
19503 type_range(mp_boolean_type,mp_unknown_boolean); break;
19504 case mp_string_type:
19505 type_range(mp_string_type,mp_unknown_string); break;
19507 type_range(mp_pen_type,mp_unknown_pen); break;
19509 type_range(mp_path_type,mp_unknown_path); break;
19510 case mp_picture_type:
19511 type_range(mp_picture_type,mp_unknown_picture); break;
19512 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
19514 type_test(c); break;
19515 case mp_numeric_type:
19516 type_range(mp_known,mp_independent); break;
19517 case known_op: case unknown_op:
19518 mp_test_known(mp, c); break;
19520 @ @<Declare unary action procedures@>=
19521 void mp_test_known (MP mp,quarterword c) {
19522 int b; /* is the current expression known? */
19523 pointer p,q; /* locations in a big node */
19525 switch (mp->cur_type) {
19526 case mp_vacuous: case mp_boolean_type: case mp_string_type:
19527 case mp_pen_type: case mp_path_type: case mp_picture_type:
19531 case mp_transform_type:
19532 case mp_color_type: case mp_cmykcolor_type: case mp_pair_type:
19533 p=value(mp->cur_exp);
19534 q=p+mp->big_node_size[mp->cur_type];
19537 if ( type(q)!=mp_known )
19546 if ( c==known_op ) mp_flush_cur_exp(mp, b);
19547 else mp_flush_cur_exp(mp, true_code+false_code-b);
19548 mp->cur_type=mp_boolean_type;
19551 @ @<Additional cases of unary operators@>=
19553 if ( mp->cur_type!=mp_path_type ) mp_flush_cur_exp(mp, false_code);
19554 else if ( left_type(mp->cur_exp)!=mp_endpoint ) mp_flush_cur_exp(mp, true_code);
19555 else mp_flush_cur_exp(mp, false_code);
19556 mp->cur_type=mp_boolean_type;
19559 @ @<Additional cases of unary operators@>=
19561 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19562 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, arc_length);
19563 else mp_flush_cur_exp(mp, mp_get_arc_length(mp, mp->cur_exp));
19566 @ Here we use the fact that |c-filled_op+fill_code| is the desired graphical
19568 @^data structure assumptions@>
19570 @<Additional cases of unary operators@>=
19576 if ( mp->cur_type!=mp_picture_type ) mp_flush_cur_exp(mp, false_code);
19577 else if ( link(dummy_loc(mp->cur_exp))==null ) mp_flush_cur_exp(mp, false_code);
19578 else if ( type(link(dummy_loc(mp->cur_exp)))==c+mp_fill_code-filled_op )
19579 mp_flush_cur_exp(mp, true_code);
19580 else mp_flush_cur_exp(mp, false_code);
19581 mp->cur_type=mp_boolean_type;
19584 @ @<Additional cases of unary operators@>=
19586 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19587 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, make_pen_op);
19589 mp->cur_type=mp_pen_type;
19590 mp->cur_exp=mp_make_pen(mp, mp->cur_exp,true);
19594 if ( mp->cur_type!=mp_pen_type ) mp_bad_unary(mp, make_path_op);
19596 mp->cur_type=mp_path_type;
19597 mp_make_path(mp, mp->cur_exp);
19601 if ( mp->cur_type==mp_path_type ) {
19602 p=mp_htap_ypoc(mp, mp->cur_exp);
19603 if ( right_type(p)==mp_endpoint ) p=link(p);
19604 mp_toss_knot_list(mp, mp->cur_exp); mp->cur_exp=p;
19605 } else if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19606 else mp_bad_unary(mp, reverse);
19609 @ The |pair_value| routine changes the current expression to a
19610 given ordered pair of values.
19612 @<Declare unary action procedures@>=
19613 void mp_pair_value (MP mp,scaled x, scaled y) {
19614 pointer p; /* a pair node */
19615 p=mp_get_node(mp, value_node_size);
19616 mp_flush_cur_exp(mp, p); mp->cur_type=mp_pair_type;
19617 type(p)=mp_pair_type; name_type(p)=mp_capsule; mp_init_big_node(mp, p);
19619 type(x_part_loc(p))=mp_known; value(x_part_loc(p))=x;
19620 type(y_part_loc(p))=mp_known; value(y_part_loc(p))=y;
19623 @ @<Additional cases of unary operators@>=
19625 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ll_corner_op);
19626 else mp_pair_value(mp, minx,miny);
19629 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, lr_corner_op);
19630 else mp_pair_value(mp, maxx,miny);
19633 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ul_corner_op);
19634 else mp_pair_value(mp, minx,maxy);
19637 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ur_corner_op);
19638 else mp_pair_value(mp, maxx,maxy);
19641 @ Here is a function that sets |minx|, |maxx|, |miny|, |maxy| to the bounding
19642 box of the current expression. The boolean result is |false| if the expression
19643 has the wrong type.
19645 @<Declare unary action procedures@>=
19646 boolean mp_get_cur_bbox (MP mp) {
19647 switch (mp->cur_type) {
19648 case mp_picture_type:
19649 mp_set_bbox(mp, mp->cur_exp,true);
19650 if ( minx_val(mp->cur_exp)>maxx_val(mp->cur_exp) ) {
19651 minx=0; maxx=0; miny=0; maxy=0;
19653 minx=minx_val(mp->cur_exp);
19654 maxx=maxx_val(mp->cur_exp);
19655 miny=miny_val(mp->cur_exp);
19656 maxy=maxy_val(mp->cur_exp);
19660 mp_path_bbox(mp, mp->cur_exp);
19663 mp_pen_bbox(mp, mp->cur_exp);
19671 @ @<Additional cases of unary operators@>=
19673 case close_from_op:
19674 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19675 else mp_do_read_or_close(mp,c);
19678 @ Here is a routine that interprets |cur_exp| as a file name and tries to read
19679 a line from the file or to close the file.
19681 @<Declare unary action procedures@>=
19682 void mp_do_read_or_close (MP mp,quarterword c) {
19683 readf_index n,n0; /* indices for searching |rd_fname| */
19684 @<Find the |n| where |rd_fname[n]=cur_exp|; if |cur_exp| must be inserted,
19685 call |start_read_input| and |goto found| or |not_found|@>;
19686 mp_begin_file_reading(mp);
19688 if ( mp_input_ln(mp, mp->rd_file[n] ) )
19690 mp_end_file_reading(mp);
19692 @<Record the end of file and set |cur_exp| to a dummy value@>;
19695 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
19698 mp_flush_cur_exp(mp, 0);
19699 mp_finish_read(mp);
19702 @ Free slots in the |rd_file| and |rd_fname| arrays are marked with NULL's in
19705 @<Find the |n| where |rd_fname[n]=cur_exp|...@>=
19710 fn = str(mp->cur_exp);
19711 while (mp_xstrcmp(fn,mp->rd_fname[n])!=0) {
19714 } else if ( c==close_from_op ) {
19717 if ( n0==mp->read_files ) {
19718 if ( mp->read_files<mp->max_read_files ) {
19719 incr(mp->read_files);
19724 l = mp->max_read_files + (mp->max_read_files>>2);
19725 rd_file = xmalloc((l+1), sizeof(void *));
19726 rd_fname = xmalloc((l+1), sizeof(char *));
19727 for (k=0;k<=l;k++) {
19728 if (k<=mp->max_read_files) {
19729 rd_file[k]=mp->rd_file[k];
19730 rd_fname[k]=mp->rd_fname[k];
19736 xfree(mp->rd_file); xfree(mp->rd_fname);
19737 mp->max_read_files = l;
19738 mp->rd_file = rd_file;
19739 mp->rd_fname = rd_fname;
19743 if ( mp_start_read_input(mp,fn,n) )
19748 if ( mp->rd_fname[n]==NULL ) { n0=n; }
19750 if ( c==close_from_op ) {
19751 (mp->close_file)(mp->rd_file[n]);
19756 @ @<Record the end of file and set |cur_exp| to a dummy value@>=
19757 xfree(mp->rd_fname[n]);
19758 mp->rd_fname[n]=NULL;
19759 if ( n==mp->read_files-1 ) mp->read_files=n;
19760 if ( c==close_from_op )
19762 mp_flush_cur_exp(mp, mp->eof_line);
19763 mp->cur_type=mp_string_type
19765 @ The string denoting end-of-file is a one-byte string at position zero, by definition
19768 str_number eof_line;
19773 @ Finally, we have the operations that combine a capsule~|p|
19774 with the current expression.
19776 @c @<Declare binary action procedures@>;
19777 void mp_do_binary (MP mp,pointer p, quarterword c) {
19778 pointer q,r,rr; /* for list manipulation */
19779 pointer old_p,old_exp; /* capsules to recycle */
19780 integer v; /* for numeric manipulation */
19782 if ( mp->internal[mp_tracing_commands]>two ) {
19783 @<Trace the current binary operation@>;
19785 @<Sidestep |independent| cases in capsule |p|@>;
19786 @<Sidestep |independent| cases in the current expression@>;
19788 case plus: case minus:
19789 @<Add or subtract the current expression from |p|@>;
19791 @<Additional cases of binary operators@>;
19792 }; /* there are no other cases */
19793 mp_recycle_value(mp, p);
19794 mp_free_node(mp, p,value_node_size); /* |return| to avoid this */
19796 @<Recycle any sidestepped |independent| capsules@>;
19799 @ @<Declare binary action...@>=
19800 void mp_bad_binary (MP mp,pointer p, quarterword c) {
19801 mp_disp_err(mp, p,"");
19802 exp_err("Not implemented: ");
19803 @.Not implemented...@>
19804 if ( c>=min_of ) mp_print_op(mp, c);
19805 mp_print_known_or_unknown_type(mp, type(p),p);
19806 if ( c>=min_of ) mp_print(mp, "of"); else mp_print_op(mp, c);
19807 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
19808 help3("I'm afraid I don't know how to apply that operation to that")
19809 ("combination of types. Continue, and I'll return the second")
19810 ("argument (see above) as the result of the operation.");
19811 mp_put_get_error(mp);
19813 void mp_bad_envelope_pen (MP mp) {
19814 mp_disp_err(mp, null,"");
19815 exp_err("Not implemented: envelope(elliptical pen)of(path)");
19816 @.Not implemented...@>
19817 help3("I'm afraid I don't know how to apply that operation to that")
19818 ("combination of types. Continue, and I'll return the second")
19819 ("argument (see above) as the result of the operation.");
19820 mp_put_get_error(mp);
19823 @ @<Trace the current binary operation@>=
19825 mp_begin_diagnostic(mp); mp_print_nl(mp, "{(");
19826 mp_print_exp(mp,p,0); /* show the operand, but not verbosely */
19827 mp_print_char(mp,')'); mp_print_op(mp,c); mp_print_char(mp,'(');
19828 mp_print_exp(mp,null,0); mp_print(mp,")}");
19829 mp_end_diagnostic(mp, false);
19832 @ Several of the binary operations are potentially complicated by the
19833 fact that |independent| values can sneak into capsules. For example,
19834 we've seen an instance of this difficulty in the unary operation
19835 of negation. In order to reduce the number of cases that need to be
19836 handled, we first change the two operands (if necessary)
19837 to rid them of |independent| components. The original operands are
19838 put into capsules called |old_p| and |old_exp|, which will be
19839 recycled after the binary operation has been safely carried out.
19841 @<Recycle any sidestepped |independent| capsules@>=
19842 if ( old_p!=null ) {
19843 mp_recycle_value(mp, old_p); mp_free_node(mp, old_p,value_node_size);
19845 if ( old_exp!=null ) {
19846 mp_recycle_value(mp, old_exp); mp_free_node(mp, old_exp,value_node_size);
19849 @ A big node is considered to be ``tarnished'' if it contains at least one
19850 independent component. We will define a simple function called `|tarnished|'
19851 that returns |null| if and only if its argument is not tarnished.
19853 @<Sidestep |independent| cases in capsule |p|@>=
19855 case mp_transform_type:
19856 case mp_color_type:
19857 case mp_cmykcolor_type:
19859 old_p=mp_tarnished(mp, p);
19861 case mp_independent: old_p=mp_void; break;
19862 default: old_p=null; break;
19864 if ( old_p!=null ) {
19865 q=mp_stash_cur_exp(mp); old_p=p; mp_make_exp_copy(mp, old_p);
19866 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
19869 @ @<Sidestep |independent| cases in the current expression@>=
19870 switch (mp->cur_type) {
19871 case mp_transform_type:
19872 case mp_color_type:
19873 case mp_cmykcolor_type:
19875 old_exp=mp_tarnished(mp, mp->cur_exp);
19877 case mp_independent:old_exp=mp_void; break;
19878 default: old_exp=null; break;
19880 if ( old_exp!=null ) {
19881 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
19884 @ @<Declare binary action...@>=
19885 pointer mp_tarnished (MP mp,pointer p) {
19886 pointer q; /* beginning of the big node */
19887 pointer r; /* current position in the big node */
19888 q=value(p); r=q+mp->big_node_size[type(p)];
19891 if ( type(r)==mp_independent ) return mp_void;
19896 @ @<Add or subtract the current expression from |p|@>=
19897 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
19898 mp_bad_binary(mp, p,c);
19900 if ((mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
19901 mp_add_or_subtract(mp, p,null,c);
19903 if ( mp->cur_type!=type(p) ) {
19904 mp_bad_binary(mp, p,c);
19906 q=value(p); r=value(mp->cur_exp);
19907 rr=r+mp->big_node_size[mp->cur_type];
19909 mp_add_or_subtract(mp, q,r,c);
19916 @ The first argument to |add_or_subtract| is the location of a value node
19917 in a capsule or pair node that will soon be recycled. The second argument
19918 is either a location within a pair or transform node of |cur_exp|,
19919 or it is null (which means that |cur_exp| itself should be the second
19920 argument). The third argument is either |plus| or |minus|.
19922 The sum or difference of the numeric quantities will replace the second
19923 operand. Arithmetic overflow may go undetected; users aren't supposed to
19924 be monkeying around with really big values.
19926 @<Declare binary action...@>=
19927 @<Declare the procedure called |dep_finish|@>;
19928 void mp_add_or_subtract (MP mp,pointer p, pointer q, quarterword c) {
19929 small_number s,t; /* operand types */
19930 pointer r; /* list traverser */
19931 integer v; /* second operand value */
19934 if ( t<mp_dependent ) v=mp->cur_exp; else v=dep_list(mp->cur_exp);
19937 if ( t<mp_dependent ) v=value(q); else v=dep_list(q);
19939 if ( t==mp_known ) {
19940 if ( c==minus ) negate(v);
19941 if ( type(p)==mp_known ) {
19942 v=mp_slow_add(mp, value(p),v);
19943 if ( q==null ) mp->cur_exp=v; else value(q)=v;
19946 @<Add a known value to the constant term of |dep_list(p)|@>;
19948 if ( c==minus ) mp_negate_dep_list(mp, v);
19949 @<Add operand |p| to the dependency list |v|@>;
19953 @ @<Add a known value to the constant term of |dep_list(p)|@>=
19955 while ( info(r)!=null ) r=link(r);
19956 value(r)=mp_slow_add(mp, value(r),v);
19958 q=mp_get_node(mp, value_node_size); mp->cur_exp=q; mp->cur_type=type(p);
19959 name_type(q)=mp_capsule;
19961 dep_list(q)=dep_list(p); type(q)=type(p);
19962 prev_dep(q)=prev_dep(p); link(prev_dep(p))=q;
19963 type(p)=mp_known; /* this will keep the recycler from collecting non-garbage */
19965 @ We prefer |dependent| lists to |mp_proto_dependent| ones, because it is
19966 nice to retain the extra accuracy of |fraction| coefficients.
19967 But we have to handle both kinds, and mixtures too.
19969 @<Add operand |p| to the dependency list |v|@>=
19970 if ( type(p)==mp_known ) {
19971 @<Add the known |value(p)| to the constant term of |v|@>;
19973 s=type(p); r=dep_list(p);
19974 if ( t==mp_dependent ) {
19975 if ( s==mp_dependent ) {
19976 if ( mp_max_coef(mp, r)+mp_max_coef(mp, v)<coef_bound )
19977 v=mp_p_plus_q(mp, v,r,mp_dependent); goto DONE;
19978 } /* |fix_needed| will necessarily be false */
19979 t=mp_proto_dependent;
19980 v=mp_p_over_v(mp, v,unity,mp_dependent,mp_proto_dependent);
19982 if ( s==mp_proto_dependent ) v=mp_p_plus_q(mp, v,r,mp_proto_dependent);
19983 else v=mp_p_plus_fq(mp, v,unity,r,mp_proto_dependent,mp_dependent);
19985 @<Output the answer, |v| (which might have become |known|)@>;
19988 @ @<Add the known |value(p)| to the constant term of |v|@>=
19990 while ( info(v)!=null ) v=link(v);
19991 value(v)=mp_slow_add(mp, value(p),value(v));
19994 @ @<Output the answer, |v| (which might have become |known|)@>=
19995 if ( q!=null ) mp_dep_finish(mp, v,q,t);
19996 else { mp->cur_type=t; mp_dep_finish(mp, v,null,t); }
19998 @ Here's the current situation: The dependency list |v| of type |t|
19999 should either be put into the current expression (if |q=null|) or
20000 into location |q| within a pair node (otherwise). The destination (|cur_exp|
20001 or |q|) formerly held a dependency list with the same
20002 final pointer as the list |v|.
20004 @<Declare the procedure called |dep_finish|@>=
20005 void mp_dep_finish (MP mp, pointer v, pointer q, small_number t) {
20006 pointer p; /* the destination */
20007 scaled vv; /* the value, if it is |known| */
20008 if ( q==null ) p=mp->cur_exp; else p=q;
20009 dep_list(p)=v; type(p)=t;
20010 if ( info(v)==null ) {
20013 mp_flush_cur_exp(mp, vv);
20015 mp_recycle_value(mp, p); type(q)=mp_known; value(q)=vv;
20017 } else if ( q==null ) {
20020 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20023 @ Let's turn now to the six basic relations of comparison.
20025 @<Additional cases of binary operators@>=
20026 case less_than: case less_or_equal: case greater_than:
20027 case greater_or_equal: case equal_to: case unequal_to:
20028 check_arith; /* at this point |arith_error| should be |false|? */
20029 if ( (mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
20030 mp_add_or_subtract(mp, p,null,minus); /* |cur_exp:=(p)-cur_exp| */
20031 } else if ( mp->cur_type!=type(p) ) {
20032 mp_bad_binary(mp, p,c); goto DONE;
20033 } else if ( mp->cur_type==mp_string_type ) {
20034 mp_flush_cur_exp(mp, mp_str_vs_str(mp, value(p),mp->cur_exp));
20035 } else if ((mp->cur_type==mp_unknown_string)||
20036 (mp->cur_type==mp_unknown_boolean) ) {
20037 @<Check if unknowns have been equated@>;
20038 } else if ( (mp->cur_type<=mp_pair_type)&&(mp->cur_type>=mp_transform_type)) {
20039 @<Reduce comparison of big nodes to comparison of scalars@>;
20040 } else if ( mp->cur_type==mp_boolean_type ) {
20041 mp_flush_cur_exp(mp, mp->cur_exp-value(p));
20043 mp_bad_binary(mp, p,c); goto DONE;
20045 @<Compare the current expression with zero@>;
20047 mp->arith_error=false; /* ignore overflow in comparisons */
20050 @ @<Compare the current expression with zero@>=
20051 if ( mp->cur_type!=mp_known ) {
20052 if ( mp->cur_type<mp_known ) {
20053 mp_disp_err(mp, p,"");
20054 help1("The quantities shown above have not been equated.")
20056 help2("Oh dear. I can\'t decide if the expression above is positive,")
20057 ("negative, or zero. So this comparison test won't be `true'.");
20059 exp_err("Unknown relation will be considered false");
20060 @.Unknown relation...@>
20061 mp_put_get_flush_error(mp, false_code);
20064 case less_than: boolean_reset(mp->cur_exp<0); break;
20065 case less_or_equal: boolean_reset(mp->cur_exp<=0); break;
20066 case greater_than: boolean_reset(mp->cur_exp>0); break;
20067 case greater_or_equal: boolean_reset(mp->cur_exp>=0); break;
20068 case equal_to: boolean_reset(mp->cur_exp==0); break;
20069 case unequal_to: boolean_reset(mp->cur_exp!=0); break;
20070 }; /* there are no other cases */
20072 mp->cur_type=mp_boolean_type
20074 @ When two unknown strings are in the same ring, we know that they are
20075 equal. Otherwise, we don't know whether they are equal or not, so we
20078 @<Check if unknowns have been equated@>=
20080 q=value(mp->cur_exp);
20081 while ( (q!=mp->cur_exp)&&(q!=p) ) q=value(q);
20082 if ( q==p ) mp_flush_cur_exp(mp, 0);
20085 @ @<Reduce comparison of big nodes to comparison of scalars@>=
20087 q=value(p); r=value(mp->cur_exp);
20088 rr=r+mp->big_node_size[mp->cur_type]-2;
20089 while (1) { mp_add_or_subtract(mp, q,r,minus);
20090 if ( type(r)!=mp_known ) break;
20091 if ( value(r)!=0 ) break;
20092 if ( r==rr ) break;
20095 mp_take_part(mp, name_type(r)+x_part-mp_x_part_sector);
20098 @ Here we use the sneaky fact that |and_op-false_code=or_op-true_code|.
20100 @<Additional cases of binary operators@>=
20103 if ( (type(p)!=mp_boolean_type)||(mp->cur_type!=mp_boolean_type) )
20104 mp_bad_binary(mp, p,c);
20105 else if ( value(p)==c+false_code-and_op ) mp->cur_exp=value(p);
20108 @ @<Additional cases of binary operators@>=
20110 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
20111 mp_bad_binary(mp, p,times);
20112 } else if ( (mp->cur_type==mp_known)||(type(p)==mp_known) ) {
20113 @<Multiply when at least one operand is known@>;
20114 } else if ( (mp_nice_color_or_pair(mp, p,type(p))&&(mp->cur_type>mp_pair_type))
20115 ||(mp_nice_color_or_pair(mp, mp->cur_exp,mp->cur_type)&&
20116 (type(p)>mp_pair_type)) ) {
20117 mp_hard_times(mp, p); return;
20119 mp_bad_binary(mp, p,times);
20123 @ @<Multiply when at least one operand is known@>=
20125 if ( type(p)==mp_known ) {
20126 v=value(p); mp_free_node(mp, p,value_node_size);
20128 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20130 if ( mp->cur_type==mp_known ) {
20131 mp->cur_exp=mp_take_scaled(mp, mp->cur_exp,v);
20132 } else if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_color_type)||
20133 (mp->cur_type==mp_cmykcolor_type) ) {
20134 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20136 p=p-2; mp_dep_mult(mp, p,v,true);
20137 } while (p!=value(mp->cur_exp));
20139 mp_dep_mult(mp, null,v,true);
20144 @ @<Declare binary action...@>=
20145 void mp_dep_mult (MP mp,pointer p, integer v, boolean v_is_scaled) {
20146 pointer q; /* the dependency list being multiplied by |v| */
20147 small_number s,t; /* its type, before and after */
20150 } else if ( type(p)!=mp_known ) {
20153 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
20154 else value(p)=mp_take_fraction(mp, value(p),v);
20157 t=type(q); q=dep_list(q); s=t;
20158 if ( t==mp_dependent ) if ( v_is_scaled )
20159 if (mp_ab_vs_cd(mp, mp_max_coef(mp,q),abs(v),coef_bound-1,unity)>=0 )
20160 t=mp_proto_dependent;
20161 q=mp_p_times_v(mp, q,v,s,t,v_is_scaled);
20162 mp_dep_finish(mp, q,p,t);
20165 @ Here is a routine that is similar to |times|; but it is invoked only
20166 internally, when |v| is a |fraction| whose magnitude is at most~1,
20167 and when |cur_type>=mp_color_type|.
20169 @c void mp_frac_mult (MP mp,scaled n, scaled d) {
20170 /* multiplies |cur_exp| by |n/d| */
20171 pointer p; /* a pair node */
20172 pointer old_exp; /* a capsule to recycle */
20173 fraction v; /* |n/d| */
20174 if ( mp->internal[mp_tracing_commands]>two ) {
20175 @<Trace the fraction multiplication@>;
20177 switch (mp->cur_type) {
20178 case mp_transform_type:
20179 case mp_color_type:
20180 case mp_cmykcolor_type:
20182 old_exp=mp_tarnished(mp, mp->cur_exp);
20184 case mp_independent: old_exp=mp_void; break;
20185 default: old_exp=null; break;
20187 if ( old_exp!=null ) {
20188 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
20190 v=mp_make_fraction(mp, n,d);
20191 if ( mp->cur_type==mp_known ) {
20192 mp->cur_exp=mp_take_fraction(mp, mp->cur_exp,v);
20193 } else if ( mp->cur_type<=mp_pair_type ) {
20194 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20197 mp_dep_mult(mp, p,v,false);
20198 } while (p!=value(mp->cur_exp));
20200 mp_dep_mult(mp, null,v,false);
20202 if ( old_exp!=null ) {
20203 mp_recycle_value(mp, old_exp);
20204 mp_free_node(mp, old_exp,value_node_size);
20208 @ @<Trace the fraction multiplication@>=
20210 mp_begin_diagnostic(mp);
20211 mp_print_nl(mp, "{("); mp_print_scaled(mp,n); mp_print_char(mp,'/');
20212 mp_print_scaled(mp,d); mp_print(mp,")*("); mp_print_exp(mp,null,0);
20214 mp_end_diagnostic(mp, false);
20217 @ The |hard_times| routine multiplies a nice color or pair by a dependency list.
20219 @<Declare binary action procedures@>=
20220 void mp_hard_times (MP mp,pointer p) {
20221 pointer q; /* a copy of the dependent variable |p| */
20222 pointer r; /* a component of the big node for the nice color or pair */
20223 scaled v; /* the known value for |r| */
20224 if ( type(p)<=mp_pair_type ) {
20225 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p); p=q;
20226 }; /* now |cur_type=mp_pair_type| or |cur_type=mp_color_type| */
20227 r=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20232 if ( r==value(mp->cur_exp) )
20234 mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(p)));
20235 mp_dep_mult(mp, r,v,true);
20237 mp->mem[value_loc(r)]=mp->mem[value_loc(p)];
20238 link(prev_dep(p))=r;
20239 mp_free_node(mp, p,value_node_size);
20240 mp_dep_mult(mp, r,v,true);
20243 @ @<Additional cases of binary operators@>=
20245 if ( (mp->cur_type!=mp_known)||(type(p)<mp_color_type) ) {
20246 mp_bad_binary(mp, p,over);
20248 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20250 @<Squeal about division by zero@>;
20252 if ( mp->cur_type==mp_known ) {
20253 mp->cur_exp=mp_make_scaled(mp, mp->cur_exp,v);
20254 } else if ( mp->cur_type<=mp_pair_type ) {
20255 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20257 p=p-2; mp_dep_div(mp, p,v);
20258 } while (p!=value(mp->cur_exp));
20260 mp_dep_div(mp, null,v);
20267 @ @<Declare binary action...@>=
20268 void mp_dep_div (MP mp,pointer p, scaled v) {
20269 pointer q; /* the dependency list being divided by |v| */
20270 small_number s,t; /* its type, before and after */
20271 if ( p==null ) q=mp->cur_exp;
20272 else if ( type(p)!=mp_known ) q=p;
20273 else { value(p)=mp_make_scaled(mp, value(p),v); return; };
20274 t=type(q); q=dep_list(q); s=t;
20275 if ( t==mp_dependent )
20276 if ( mp_ab_vs_cd(mp, mp_max_coef(mp,q),unity,coef_bound-1,abs(v))>=0 )
20277 t=mp_proto_dependent;
20278 q=mp_p_over_v(mp, q,v,s,t);
20279 mp_dep_finish(mp, q,p,t);
20282 @ @<Squeal about division by zero@>=
20284 exp_err("Division by zero");
20285 @.Division by zero@>
20286 help2("You're trying to divide the quantity shown above the error")
20287 ("message by zero. I'm going to divide it by one instead.");
20288 mp_put_get_error(mp);
20291 @ @<Additional cases of binary operators@>=
20294 if ( (mp->cur_type==mp_known)&&(type(p)==mp_known) ) {
20295 if ( c==pythag_add ) mp->cur_exp=mp_pyth_add(mp, value(p),mp->cur_exp);
20296 else mp->cur_exp=mp_pyth_sub(mp, value(p),mp->cur_exp);
20297 } else mp_bad_binary(mp, p,c);
20300 @ The next few sections of the program deal with affine transformations
20301 of coordinate data.
20303 @<Additional cases of binary operators@>=
20304 case rotated_by: case slanted_by:
20305 case scaled_by: case shifted_by: case transformed_by:
20306 case x_scaled: case y_scaled: case z_scaled:
20307 if ( type(p)==mp_path_type ) {
20308 path_trans(c,p); return;
20309 } else if ( type(p)==mp_pen_type ) {
20311 mp->cur_exp=mp_convex_hull(mp, mp->cur_exp);
20312 /* rounding error could destroy convexity */
20314 } else if ( (type(p)==mp_pair_type)||(type(p)==mp_transform_type) ) {
20315 mp_big_trans(mp, p,c);
20316 } else if ( type(p)==mp_picture_type ) {
20317 mp_do_edges_trans(mp, p,c); return;
20319 mp_bad_binary(mp, p,c);
20323 @ Let |c| be one of the eight transform operators. The procedure call
20324 |set_up_trans(c)| first changes |cur_exp| to a transform that corresponds to
20325 |c| and the original value of |cur_exp|. (In particular, |cur_exp| doesn't
20326 change at all if |c=transformed_by|.)
20328 Then, if all components of the resulting transform are |known|, they are
20329 moved to the global variables |txx|, |txy|, |tyx|, |tyy|, |tx|, |ty|;
20330 and |cur_exp| is changed to the known value zero.
20332 @<Declare binary action...@>=
20333 void mp_set_up_trans (MP mp,quarterword c) {
20334 pointer p,q,r; /* list manipulation registers */
20335 if ( (c!=transformed_by)||(mp->cur_type!=mp_transform_type) ) {
20336 @<Put the current transform into |cur_exp|@>;
20338 @<If the current transform is entirely known, stash it in global variables;
20339 otherwise |return|@>;
20348 scaled ty; /* current transform coefficients */
20350 @ @<Put the current transform...@>=
20352 p=mp_stash_cur_exp(mp);
20353 mp->cur_exp=mp_id_transform(mp);
20354 mp->cur_type=mp_transform_type;
20355 q=value(mp->cur_exp);
20357 @<For each of the eight cases, change the relevant fields of |cur_exp|
20359 but do nothing if capsule |p| doesn't have the appropriate type@>;
20360 }; /* there are no other cases */
20361 mp_disp_err(mp, p,"Improper transformation argument");
20362 @.Improper transformation argument@>
20363 help3("The expression shown above has the wrong type,")
20364 ("so I can\'t transform anything using it.")
20365 ("Proceed, and I'll omit the transformation.");
20366 mp_put_get_error(mp);
20368 mp_recycle_value(mp, p);
20369 mp_free_node(mp, p,value_node_size);
20372 @ @<If the current transform is entirely known, ...@>=
20373 q=value(mp->cur_exp); r=q+transform_node_size;
20376 if ( type(r)!=mp_known ) return;
20378 mp->txx=value(xx_part_loc(q));
20379 mp->txy=value(xy_part_loc(q));
20380 mp->tyx=value(yx_part_loc(q));
20381 mp->tyy=value(yy_part_loc(q));
20382 mp->tx=value(x_part_loc(q));
20383 mp->ty=value(y_part_loc(q));
20384 mp_flush_cur_exp(mp, 0)
20386 @ @<For each of the eight cases...@>=
20388 if ( type(p)==mp_known )
20389 @<Install sines and cosines, then |goto done|@>;
20392 if ( type(p)>mp_pair_type ) {
20393 mp_install(mp, xy_part_loc(q),p); goto DONE;
20397 if ( type(p)>mp_pair_type ) {
20398 mp_install(mp, xx_part_loc(q),p); mp_install(mp, yy_part_loc(q),p);
20403 if ( type(p)==mp_pair_type ) {
20404 r=value(p); mp_install(mp, x_part_loc(q),x_part_loc(r));
20405 mp_install(mp, y_part_loc(q),y_part_loc(r)); goto DONE;
20409 if ( type(p)>mp_pair_type ) {
20410 mp_install(mp, xx_part_loc(q),p); goto DONE;
20414 if ( type(p)>mp_pair_type ) {
20415 mp_install(mp, yy_part_loc(q),p); goto DONE;
20419 if ( type(p)==mp_pair_type )
20420 @<Install a complex multiplier, then |goto done|@>;
20422 case transformed_by:
20426 @ @<Install sines and cosines, then |goto done|@>=
20427 { mp_n_sin_cos(mp, (value(p) % three_sixty_units)*16);
20428 value(xx_part_loc(q))=mp_round_fraction(mp, mp->n_cos);
20429 value(yx_part_loc(q))=mp_round_fraction(mp, mp->n_sin);
20430 value(xy_part_loc(q))=-value(yx_part_loc(q));
20431 value(yy_part_loc(q))=value(xx_part_loc(q));
20435 @ @<Install a complex multiplier, then |goto done|@>=
20438 mp_install(mp, xx_part_loc(q),x_part_loc(r));
20439 mp_install(mp, yy_part_loc(q),x_part_loc(r));
20440 mp_install(mp, yx_part_loc(q),y_part_loc(r));
20441 if ( type(y_part_loc(r))==mp_known ) negate(value(y_part_loc(r)));
20442 else mp_negate_dep_list(mp, dep_list(y_part_loc(r)));
20443 mp_install(mp, xy_part_loc(q),y_part_loc(r));
20447 @ Procedure |set_up_known_trans| is like |set_up_trans|, but it
20448 insists that the transformation be entirely known.
20450 @<Declare binary action...@>=
20451 void mp_set_up_known_trans (MP mp,quarterword c) {
20452 mp_set_up_trans(mp, c);
20453 if ( mp->cur_type!=mp_known ) {
20454 exp_err("Transform components aren't all known");
20455 @.Transform components...@>
20456 help3("I'm unable to apply a partially specified transformation")
20457 ("except to a fully known pair or transform.")
20458 ("Proceed, and I'll omit the transformation.");
20459 mp_put_get_flush_error(mp, 0);
20460 mp->txx=unity; mp->txy=0; mp->tyx=0; mp->tyy=unity;
20461 mp->tx=0; mp->ty=0;
20465 @ Here's a procedure that applies the transform |txx..ty| to a pair of
20466 coordinates in locations |p| and~|q|.
20468 @<Declare binary action...@>=
20469 void mp_trans (MP mp,pointer p, pointer q) {
20470 scaled v; /* the new |x| value */
20471 v=mp_take_scaled(mp, mp->mem[p].sc,mp->txx)+
20472 mp_take_scaled(mp, mp->mem[q].sc,mp->txy)+mp->tx;
20473 mp->mem[q].sc=mp_take_scaled(mp, mp->mem[p].sc,mp->tyx)+
20474 mp_take_scaled(mp, mp->mem[q].sc,mp->tyy)+mp->ty;
20478 @ The simplest transformation procedure applies a transform to all
20479 coordinates of a path. The |path_trans(c)(p)| macro applies
20480 a transformation defined by |cur_exp| and the transform operator |c|
20483 @d path_trans(A,B) { mp_set_up_known_trans(mp, (A));
20484 mp_unstash_cur_exp(mp, (B));
20485 mp_do_path_trans(mp, mp->cur_exp); }
20487 @<Declare binary action...@>=
20488 void mp_do_path_trans (MP mp,pointer p) {
20489 pointer q; /* list traverser */
20492 if ( left_type(q)!=mp_endpoint )
20493 mp_trans(mp, q+3,q+4); /* that's |left_x| and |left_y| */
20494 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20495 if ( right_type(q)!=mp_endpoint )
20496 mp_trans(mp, q+5,q+6); /* that's |right_x| and |right_y| */
20497 @^data structure assumptions@>
20502 @ Transforming a pen is very similar, except that there are no |left_type|
20503 and |right_type| fields.
20505 @d pen_trans(A,B) { mp_set_up_known_trans(mp, (A));
20506 mp_unstash_cur_exp(mp, (B));
20507 mp_do_pen_trans(mp, mp->cur_exp); }
20509 @<Declare binary action...@>=
20510 void mp_do_pen_trans (MP mp,pointer p) {
20511 pointer q; /* list traverser */
20512 if ( pen_is_elliptical(p) ) {
20513 mp_trans(mp, p+3,p+4); /* that's |left_x| and |left_y| */
20514 mp_trans(mp, p+5,p+6); /* that's |right_x| and |right_y| */
20518 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20519 @^data structure assumptions@>
20524 @ The next transformation procedure applies to edge structures. It will do
20525 any transformation, but the results may be substandard if the picture contains
20526 text that uses downloaded bitmap fonts. The binary action procedure is
20527 |do_edges_trans|, but we also need a function that just scales a picture.
20528 That routine is |scale_edges|. Both it and the underlying routine |edges_trans|
20529 should be thought of as procedures that update an edge structure |h|, except
20530 that they have to return a (possibly new) structure because of the need to call
20533 @<Declare binary action...@>=
20534 pointer mp_edges_trans (MP mp, pointer h) {
20535 pointer q; /* the object being transformed */
20536 pointer r,s; /* for list manipulation */
20537 scaled sx,sy; /* saved transformation parameters */
20538 scaled sqdet; /* square root of determinant for |dash_scale| */
20539 integer sgndet; /* sign of the determinant */
20540 scaled v; /* a temporary value */
20541 h=mp_private_edges(mp, h);
20542 sqdet=mp_sqrt_det(mp, mp->txx,mp->txy,mp->tyx,mp->tyy);
20543 sgndet=mp_ab_vs_cd(mp, mp->txx,mp->tyy,mp->txy,mp->tyx);
20544 if ( dash_list(h)!=null_dash ) {
20545 @<Try to transform the dash list of |h|@>;
20547 @<Make the bounding box of |h| unknown if it can't be updated properly
20548 without scanning the whole structure@>;
20549 q=link(dummy_loc(h));
20550 while ( q!=null ) {
20551 @<Transform graphical object |q|@>;
20556 void mp_do_edges_trans (MP mp,pointer p, quarterword c) {
20557 mp_set_up_known_trans(mp, c);
20558 value(p)=mp_edges_trans(mp, value(p));
20559 mp_unstash_cur_exp(mp, p);
20561 void mp_scale_edges (MP mp) {
20562 mp->txx=mp->se_sf; mp->tyy=mp->se_sf;
20563 mp->txy=0; mp->tyx=0; mp->tx=0; mp->ty=0;
20564 mp->se_pic=mp_edges_trans(mp, mp->se_pic);
20567 @ @<Try to transform the dash list of |h|@>=
20568 if ( (mp->txy!=0)||(mp->tyx!=0)||
20569 (mp->ty!=0)||(abs(mp->txx)!=abs(mp->tyy))) {
20570 mp_flush_dash_list(mp, h);
20572 if ( mp->txx<0 ) { @<Reverse the dash list of |h|@>; }
20573 @<Scale the dash list by |txx| and shift it by |tx|@>;
20574 dash_y(h)=mp_take_scaled(mp, dash_y(h),abs(mp->tyy));
20577 @ @<Reverse the dash list of |h|@>=
20580 dash_list(h)=null_dash;
20581 while ( r!=null_dash ) {
20583 v=start_x(s); start_x(s)=stop_x(s); stop_x(s)=v;
20584 link(s)=dash_list(h);
20589 @ @<Scale the dash list by |txx| and shift it by |tx|@>=
20591 while ( r!=null_dash ) {
20592 start_x(r)=mp_take_scaled(mp, start_x(r),mp->txx)+mp->tx;
20593 stop_x(r)=mp_take_scaled(mp, stop_x(r),mp->txx)+mp->tx;
20597 @ @<Make the bounding box of |h| unknown if it can't be updated properly...@>=
20598 if ( (mp->txx==0)&&(mp->tyy==0) ) {
20599 @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>;
20600 } else if ( (mp->txy!=0)||(mp->tyx!=0) ) {
20601 mp_init_bbox(mp, h);
20604 if ( minx_val(h)<=maxx_val(h) ) {
20605 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift by
20612 @ @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>=
20614 v=minx_val(h); minx_val(h)=miny_val(h); miny_val(h)=v;
20615 v=maxx_val(h); maxx_val(h)=maxy_val(h); maxy_val(h)=v;
20618 @ The sum ``|txx+txy|'' is whichever of |txx| or |txy| is nonzero. The other
20621 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift...@>=
20623 minx_val(h)=mp_take_scaled(mp, minx_val(h),mp->txx+mp->txy)+mp->tx;
20624 maxx_val(h)=mp_take_scaled(mp, maxx_val(h),mp->txx+mp->txy)+mp->tx;
20625 miny_val(h)=mp_take_scaled(mp, miny_val(h),mp->tyx+mp->tyy)+mp->ty;
20626 maxy_val(h)=mp_take_scaled(mp, maxy_val(h),mp->tyx+mp->tyy)+mp->ty;
20627 if ( mp->txx+mp->txy<0 ) {
20628 v=minx_val(h); minx_val(h)=maxx_val(h); maxx_val(h)=v;
20630 if ( mp->tyx+mp->tyy<0 ) {
20631 v=miny_val(h); miny_val(h)=maxy_val(h); maxy_val(h)=v;
20635 @ Now we ready for the main task of transforming the graphical objects in edge
20638 @<Transform graphical object |q|@>=
20640 case mp_fill_code: case mp_stroked_code:
20641 mp_do_path_trans(mp, path_p(q));
20642 @<Transform |pen_p(q)|, making sure polygonal pens stay counter-clockwise@>;
20644 case mp_start_clip_code: case mp_start_bounds_code:
20645 mp_do_path_trans(mp, path_p(q));
20649 @<Transform the compact transformation starting at |r|@>;
20651 case mp_stop_clip_code: case mp_stop_bounds_code:
20653 } /* there are no other cases */
20655 @ Note that the shift parameters |(tx,ty)| apply only to the path being stroked.
20656 The |dash_scale| has to be adjusted to scale the dash lengths in |dash_p(q)|
20657 since the \ps\ output procedures will try to compensate for the transformation
20658 we are applying to |pen_p(q)|. Since this compensation is based on the square
20659 root of the determinant, |sqdet| is the appropriate factor.
20661 @<Transform |pen_p(q)|, making sure...@>=
20662 if ( pen_p(q)!=null ) {
20663 sx=mp->tx; sy=mp->ty;
20664 mp->tx=0; mp->ty=0;
20665 mp_do_pen_trans(mp, pen_p(q));
20666 if ( ((type(q)==mp_stroked_code)&&(dash_p(q)!=null)) )
20667 dash_scale(q)=mp_take_scaled(mp, dash_scale(q),sqdet);
20668 if ( ! pen_is_elliptical(pen_p(q)) )
20670 pen_p(q)=mp_make_pen(mp, mp_copy_path(mp, pen_p(q)),true);
20671 /* this unreverses the pen */
20672 mp->tx=sx; mp->ty=sy;
20675 @ This uses the fact that transformations are stored in the order
20676 |(tx,ty,txx,txy,tyx,tyy)|.
20677 @^data structure assumptions@>
20679 @<Transform the compact transformation starting at |r|@>=
20680 mp_trans(mp, r,r+1);
20681 sx=mp->tx; sy=mp->ty;
20682 mp->tx=0; mp->ty=0;
20683 mp_trans(mp, r+2,r+4);
20684 mp_trans(mp, r+3,r+5);
20685 mp->tx=sx; mp->ty=sy
20687 @ The hard cases of transformation occur when big nodes are involved,
20688 and when some of their components are unknown.
20690 @<Declare binary action...@>=
20691 @<Declare subroutines needed by |big_trans|@>;
20692 void mp_big_trans (MP mp,pointer p, quarterword c) {
20693 pointer q,r,pp,qq; /* list manipulation registers */
20694 small_number s; /* size of a big node */
20695 s=mp->big_node_size[type(p)]; q=value(p); r=q+s;
20698 if ( type(r)!=mp_known ) {
20699 @<Transform an unknown big node and |return|@>;
20702 @<Transform a known big node@>;
20703 }; /* node |p| will now be recycled by |do_binary| */
20705 @ @<Transform an unknown big node and |return|@>=
20707 mp_set_up_known_trans(mp, c); mp_make_exp_copy(mp, p);
20708 r=value(mp->cur_exp);
20709 if ( mp->cur_type==mp_transform_type ) {
20710 mp_bilin1(mp, yy_part_loc(r),mp->tyy,xy_part_loc(q),mp->tyx,0);
20711 mp_bilin1(mp, yx_part_loc(r),mp->tyy,xx_part_loc(q),mp->tyx,0);
20712 mp_bilin1(mp, xy_part_loc(r),mp->txx,yy_part_loc(q),mp->txy,0);
20713 mp_bilin1(mp, xx_part_loc(r),mp->txx,yx_part_loc(q),mp->txy,0);
20715 mp_bilin1(mp, y_part_loc(r),mp->tyy,x_part_loc(q),mp->tyx,mp->ty);
20716 mp_bilin1(mp, x_part_loc(r),mp->txx,y_part_loc(q),mp->txy,mp->tx);
20720 @ Let |p| point to a two-word value field inside a big node of |cur_exp|,
20721 and let |q| point to a another value field. The |bilin1| procedure
20722 replaces |p| by $p\cdot t+q\cdot u+\delta$.
20724 @<Declare subroutines needed by |big_trans|@>=
20725 void mp_bilin1 (MP mp, pointer p, scaled t, pointer q,
20726 scaled u, scaled delta) {
20727 pointer r; /* list traverser */
20728 if ( t!=unity ) mp_dep_mult(mp, p,t,true);
20730 if ( type(q)==mp_known ) {
20731 delta+=mp_take_scaled(mp, value(q),u);
20733 @<Ensure that |type(p)=mp_proto_dependent|@>;
20734 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),u,dep_list(q),
20735 mp_proto_dependent,type(q));
20738 if ( type(p)==mp_known ) {
20742 while ( info(r)!=null ) r=link(r);
20744 if ( r!=dep_list(p) ) value(r)=delta;
20745 else { mp_recycle_value(mp, p); type(p)=mp_known; value(p)=delta; };
20747 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20750 @ @<Ensure that |type(p)=mp_proto_dependent|@>=
20751 if ( type(p)!=mp_proto_dependent ) {
20752 if ( type(p)==mp_known )
20753 mp_new_dep(mp, p,mp_const_dependency(mp, value(p)));
20755 dep_list(p)=mp_p_times_v(mp, dep_list(p),unity,mp_dependent,
20756 mp_proto_dependent,true);
20757 type(p)=mp_proto_dependent;
20760 @ @<Transform a known big node@>=
20761 mp_set_up_trans(mp, c);
20762 if ( mp->cur_type==mp_known ) {
20763 @<Transform known by known@>;
20765 pp=mp_stash_cur_exp(mp); qq=value(pp);
20766 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20767 if ( mp->cur_type==mp_transform_type ) {
20768 mp_bilin2(mp, yy_part_loc(r),yy_part_loc(qq),
20769 value(xy_part_loc(q)),yx_part_loc(qq),null);
20770 mp_bilin2(mp, yx_part_loc(r),yy_part_loc(qq),
20771 value(xx_part_loc(q)),yx_part_loc(qq),null);
20772 mp_bilin2(mp, xy_part_loc(r),xx_part_loc(qq),
20773 value(yy_part_loc(q)),xy_part_loc(qq),null);
20774 mp_bilin2(mp, xx_part_loc(r),xx_part_loc(qq),
20775 value(yx_part_loc(q)),xy_part_loc(qq),null);
20777 mp_bilin2(mp, y_part_loc(r),yy_part_loc(qq),
20778 value(x_part_loc(q)),yx_part_loc(qq),y_part_loc(qq));
20779 mp_bilin2(mp, x_part_loc(r),xx_part_loc(qq),
20780 value(y_part_loc(q)),xy_part_loc(qq),x_part_loc(qq));
20781 mp_recycle_value(mp, pp); mp_free_node(mp, pp,value_node_size);
20784 @ Let |p| be a |mp_proto_dependent| value whose dependency list ends
20785 at |dep_final|. The following procedure adds |v| times another
20786 numeric quantity to~|p|.
20788 @<Declare subroutines needed by |big_trans|@>=
20789 void mp_add_mult_dep (MP mp,pointer p, scaled v, pointer r) {
20790 if ( type(r)==mp_known ) {
20791 value(mp->dep_final)+=mp_take_scaled(mp, value(r),v);
20793 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),v,dep_list(r),
20794 mp_proto_dependent,type(r));
20795 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20799 @ The |bilin2| procedure is something like |bilin1|, but with known
20800 and unknown quantities reversed. Parameter |p| points to a value field
20801 within the big node for |cur_exp|; and |type(p)=mp_known|. Parameters
20802 |t| and~|u| point to value fields elsewhere; so does parameter~|q|,
20803 unless it is |null| (which stands for zero). Location~|p| will be
20804 replaced by $p\cdot t+v\cdot u+q$.
20806 @<Declare subroutines needed by |big_trans|@>=
20807 void mp_bilin2 (MP mp,pointer p, pointer t, scaled v,
20808 pointer u, pointer q) {
20809 scaled vv; /* temporary storage for |value(p)| */
20810 vv=value(p); type(p)=mp_proto_dependent;
20811 mp_new_dep(mp, p,mp_const_dependency(mp, 0)); /* this sets |dep_final| */
20813 mp_add_mult_dep(mp, p,vv,t); /* |dep_final| doesn't change */
20814 if ( v!=0 ) mp_add_mult_dep(mp, p,v,u);
20815 if ( q!=null ) mp_add_mult_dep(mp, p,unity,q);
20816 if ( dep_list(p)==mp->dep_final ) {
20817 vv=value(mp->dep_final); mp_recycle_value(mp, p);
20818 type(p)=mp_known; value(p)=vv;
20822 @ @<Transform known by known@>=
20824 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20825 if ( mp->cur_type==mp_transform_type ) {
20826 mp_bilin3(mp, yy_part_loc(r),mp->tyy,value(xy_part_loc(q)),mp->tyx,0);
20827 mp_bilin3(mp, yx_part_loc(r),mp->tyy,value(xx_part_loc(q)),mp->tyx,0);
20828 mp_bilin3(mp, xy_part_loc(r),mp->txx,value(yy_part_loc(q)),mp->txy,0);
20829 mp_bilin3(mp, xx_part_loc(r),mp->txx,value(yx_part_loc(q)),mp->txy,0);
20831 mp_bilin3(mp, y_part_loc(r),mp->tyy,value(x_part_loc(q)),mp->tyx,mp->ty);
20832 mp_bilin3(mp, x_part_loc(r),mp->txx,value(y_part_loc(q)),mp->txy,mp->tx);
20835 @ Finally, in |bilin3| everything is |known|.
20837 @<Declare subroutines needed by |big_trans|@>=
20838 void mp_bilin3 (MP mp,pointer p, scaled t,
20839 scaled v, scaled u, scaled delta) {
20841 delta+=mp_take_scaled(mp, value(p),t);
20844 if ( u!=0 ) value(p)=delta+mp_take_scaled(mp, v,u);
20845 else value(p)=delta;
20848 @ @<Additional cases of binary operators@>=
20850 if ( (mp->cur_type==mp_string_type)&&(type(p)==mp_string_type) ) mp_cat(mp, p);
20851 else mp_bad_binary(mp, p,concatenate);
20854 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_string_type) )
20855 mp_chop_string(mp, value(p));
20856 else mp_bad_binary(mp, p,substring_of);
20859 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
20860 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_path_type) )
20861 mp_chop_path(mp, value(p));
20862 else mp_bad_binary(mp, p,subpath_of);
20865 @ @<Declare binary action...@>=
20866 void mp_cat (MP mp,pointer p) {
20867 str_number a,b; /* the strings being concatenated */
20868 pool_pointer k; /* index into |str_pool| */
20869 a=value(p); b=mp->cur_exp; str_room(length(a)+length(b));
20870 for (k=mp->str_start[a];k<=str_stop(a)-1;k++) {
20871 append_char(mp->str_pool[k]);
20873 for (k=mp->str_start[b];k<=str_stop(b)-1;k++) {
20874 append_char(mp->str_pool[k]);
20876 mp->cur_exp=mp_make_string(mp); delete_str_ref(b);
20879 @ @<Declare binary action...@>=
20880 void mp_chop_string (MP mp,pointer p) {
20881 integer a, b; /* start and stop points */
20882 integer l; /* length of the original string */
20883 integer k; /* runs from |a| to |b| */
20884 str_number s; /* the original string */
20885 boolean reversed; /* was |a>b|? */
20886 a=mp_round_unscaled(mp, value(x_part_loc(p)));
20887 b=mp_round_unscaled(mp, value(y_part_loc(p)));
20888 if ( a<=b ) reversed=false;
20889 else { reversed=true; k=a; a=b; b=k; };
20890 s=mp->cur_exp; l=length(s);
20901 for (k=mp->str_start[s]+b-1;k>=mp->str_start[s]+a;k--) {
20902 append_char(mp->str_pool[k]);
20905 for (k=mp->str_start[s]+a;k<=mp->str_start[s]+b-1;k++) {
20906 append_char(mp->str_pool[k]);
20909 mp->cur_exp=mp_make_string(mp); delete_str_ref(s);
20912 @ @<Declare binary action...@>=
20913 void mp_chop_path (MP mp,pointer p) {
20914 pointer q; /* a knot in the original path */
20915 pointer pp,qq,rr,ss; /* link variables for copies of path nodes */
20916 scaled a,b,k,l; /* indices for chopping */
20917 boolean reversed; /* was |a>b|? */
20918 l=mp_path_length(mp); a=value(x_part_loc(p)); b=value(y_part_loc(p));
20919 if ( a<=b ) reversed=false;
20920 else { reversed=true; k=a; a=b; b=k; };
20921 @<Dispense with the cases |a<0| and/or |b>l|@>;
20923 while ( a>=unity ) {
20924 q=link(q); a=a-unity; b=b-unity;
20927 @<Construct a path from |pp| to |qq| of length zero@>;
20929 @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>;
20931 left_type(pp)=mp_endpoint; right_type(qq)=mp_endpoint; link(qq)=pp;
20932 mp_toss_knot_list(mp, mp->cur_exp);
20934 mp->cur_exp=link(mp_htap_ypoc(mp, pp)); mp_toss_knot_list(mp, pp);
20940 @ @<Dispense with the cases |a<0| and/or |b>l|@>=
20942 if ( left_type(mp->cur_exp)==mp_endpoint ) {
20943 a=0; if ( b<0 ) b=0;
20945 do { a=a+l; b=b+l; } while (a<0); /* a cycle always has length |l>0| */
20949 if ( left_type(mp->cur_exp)==mp_endpoint ) {
20950 b=l; if ( a>l ) a=l;
20958 @ @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>=
20960 pp=mp_copy_knot(mp, q); qq=pp;
20962 q=link(q); rr=qq; qq=mp_copy_knot(mp, q); link(rr)=qq; b=b-unity;
20965 ss=pp; pp=link(pp);
20966 mp_split_cubic(mp, ss,a*010000); pp=link(ss);
20967 mp_free_node(mp, ss,knot_node_size);
20969 b=mp_make_scaled(mp, b,unity-a); rr=pp;
20973 mp_split_cubic(mp, rr,(b+unity)*010000);
20974 mp_free_node(mp, qq,knot_node_size);
20979 @ @<Construct a path from |pp| to |qq| of length zero@>=
20981 if ( a>0 ) { mp_split_cubic(mp, q,a*010000); q=link(q); };
20982 pp=mp_copy_knot(mp, q); qq=pp;
20985 @ @<Additional cases of binary operators@>=
20986 case point_of: case precontrol_of: case postcontrol_of:
20987 if ( mp->cur_type==mp_pair_type )
20988 mp_pair_to_path(mp);
20989 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
20990 mp_find_point(mp, value(p),c);
20992 mp_bad_binary(mp, p,c);
20994 case pen_offset_of:
20995 if ( (mp->cur_type==mp_pen_type)&& mp_nice_pair(mp, p,type(p)) )
20996 mp_set_up_offset(mp, value(p));
20998 mp_bad_binary(mp, p,pen_offset_of);
21000 case direction_time_of:
21001 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21002 if ( (mp->cur_type==mp_path_type)&& mp_nice_pair(mp, p,type(p)) )
21003 mp_set_up_direction_time(mp, value(p));
21005 mp_bad_binary(mp, p,direction_time_of);
21008 if ( (type(p) != mp_pen_type) || (mp->cur_type != mp_path_type) )
21009 mp_bad_binary(mp, p,envelope_of);
21011 mp_set_up_envelope(mp, p);
21014 @ @<Declare binary action...@>=
21015 void mp_set_up_offset (MP mp,pointer p) {
21016 mp_find_offset(mp, value(x_part_loc(p)),value(y_part_loc(p)),mp->cur_exp);
21017 mp_pair_value(mp, mp->cur_x,mp->cur_y);
21019 void mp_set_up_direction_time (MP mp,pointer p) {
21020 mp_flush_cur_exp(mp, mp_find_direction_time(mp, value(x_part_loc(p)),
21021 value(y_part_loc(p)),mp->cur_exp));
21023 void mp_set_up_envelope (MP mp,pointer p) {
21024 pointer q = mp_copy_path(mp, mp->cur_exp); /* the original path */
21025 /* TODO: accept elliptical pens for straight paths */
21026 if (pen_is_elliptical(value(p))) {
21027 mp_bad_envelope_pen(mp);
21029 mp->cur_type = mp_path_type;
21032 small_number ljoin, lcap;
21034 if ( mp->internal[mp_linejoin]>unity ) ljoin=2;
21035 else if ( mp->internal[mp_linejoin]>0 ) ljoin=1;
21037 if ( mp->internal[mp_linecap]>unity ) lcap=2;
21038 else if ( mp->internal[mp_linecap]>0 ) lcap=1;
21040 if ( mp->internal[mp_miterlimit]<unity )
21043 miterlim=mp->internal[mp_miterlimit];
21044 mp->cur_exp = mp_make_envelope(mp, q, value(p), ljoin,lcap,miterlim);
21045 mp->cur_type = mp_path_type;
21048 @ @<Declare binary action...@>=
21049 void mp_find_point (MP mp,scaled v, quarterword c) {
21050 pointer p; /* the path */
21051 scaled n; /* its length */
21053 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
21054 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
21057 } else if ( v<0 ) {
21058 if ( left_type(p)==mp_endpoint ) v=0;
21059 else v=n-1-((-v-1) % n);
21060 } else if ( v>n ) {
21061 if ( left_type(p)==mp_endpoint ) v=n;
21065 while ( v>=unity ) { p=link(p); v=v-unity; };
21067 @<Insert a fractional node by splitting the cubic@>;
21069 @<Set the current expression to the desired path coordinates@>;
21072 @ @<Insert a fractional node...@>=
21073 { mp_split_cubic(mp, p,v*010000); p=link(p); }
21075 @ @<Set the current expression to the desired path coordinates...@>=
21078 mp_pair_value(mp, x_coord(p),y_coord(p));
21080 case precontrol_of:
21081 if ( left_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21082 else mp_pair_value(mp, left_x(p),left_y(p));
21084 case postcontrol_of:
21085 if ( right_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21086 else mp_pair_value(mp, right_x(p),right_y(p));
21088 } /* there are no other cases */
21090 @ @<Additional cases of binary operators@>=
21092 if ( mp->cur_type==mp_pair_type )
21093 mp_pair_to_path(mp);
21094 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
21095 mp_flush_cur_exp(mp, mp_get_arc_time(mp, mp->cur_exp,value(p)));
21097 mp_bad_binary(mp, p,c);
21100 @ @<Additional cases of bin...@>=
21102 if ( type(p)==mp_pair_type ) {
21103 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p);
21104 mp_pair_to_path(mp); p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
21106 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21107 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_path_type) ) {
21108 mp_path_intersection(mp, value(p),mp->cur_exp);
21109 mp_pair_value(mp, mp->cur_t,mp->cur_tt);
21111 mp_bad_binary(mp, p,intersect);
21115 @ @<Additional cases of bin...@>=
21117 if ( (mp->cur_type!=mp_string_type)||(type(p)!=mp_string_type))
21118 mp_bad_binary(mp, p,in_font);
21119 else { mp_do_infont(mp, p); return; }
21122 @ Function |new_text_node| owns the reference count for its second argument
21123 (the text string) but not its first (the font name).
21125 @<Declare binary action...@>=
21126 void mp_do_infont (MP mp,pointer p) {
21128 q=mp_get_node(mp, edge_header_size);
21129 mp_init_edges(mp, q);
21130 link(obj_tail(q))=mp_new_text_node(mp,str(mp->cur_exp),value(p));
21131 obj_tail(q)=link(obj_tail(q));
21132 mp_free_node(mp, p,value_node_size);
21133 mp_flush_cur_exp(mp, q);
21134 mp->cur_type=mp_picture_type;
21137 @* \[40] Statements and commands.
21138 The chief executive of \MP\ is the |do_statement| routine, which
21139 contains the master switch that causes all the various pieces of \MP\
21140 to do their things, in the right order.
21142 In a sense, this is the grand climax of the program: It applies all the
21143 tools that we have worked so hard to construct. In another sense, this is
21144 the messiest part of the program: It necessarily refers to other pieces
21145 of code all over the place, so that a person can't fully understand what is
21146 going on without paging back and forth to be reminded of conventions that
21147 are defined elsewhere. We are now at the hub of the web.
21149 The structure of |do_statement| itself is quite simple. The first token
21150 of the statement is fetched using |get_x_next|. If it can be the first
21151 token of an expression, we look for an equation, an assignment, or a
21152 title. Otherwise we use a \&{case} construction to branch at high speed to
21153 the appropriate routine for various and sundry other types of commands,
21154 each of which has an ``action procedure'' that does the necessary work.
21156 The program uses the fact that
21157 $$\hbox{|min_primary_command=max_statement_command=type_name|}$$
21158 to interpret a statement that starts with, e.g., `\&{string}',
21159 as a type declaration rather than a boolean expression.
21161 @c void mp_do_statement (MP mp) { /* governs \MP's activities */
21162 mp->cur_type=mp_vacuous; mp_get_x_next(mp);
21163 if ( mp->cur_cmd>max_primary_command ) {
21164 @<Worry about bad statement@>;
21165 } else if ( mp->cur_cmd>max_statement_command ) {
21166 @<Do an equation, assignment, title, or
21167 `$\langle\,$expression$\,\rangle\,$\&{endgroup}'@>;
21169 @<Do a statement that doesn't begin with an expression@>;
21171 if ( mp->cur_cmd<semicolon )
21172 @<Flush unparsable junk that was found after the statement@>;
21176 @ @<Declarations@>=
21177 @<Declare action procedures for use by |do_statement|@>;
21179 @ The only command codes |>max_primary_command| that can be present
21180 at the beginning of a statement are |semicolon| and higher; these
21181 occur when the statement is null.
21183 @<Worry about bad statement@>=
21185 if ( mp->cur_cmd<semicolon ) {
21186 print_err("A statement can't begin with `");
21187 @.A statement can't begin with x@>
21188 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod); mp_print_char(mp, '\'');
21189 help5("I was looking for the beginning of a new statement.")
21190 ("If you just proceed without changing anything, I'll ignore")
21191 ("everything up to the next `;'. Please insert a semicolon")
21192 ("now in front of anything that you don't want me to delete.")
21193 ("(See Chapter 27 of The METAFONTbook for an example.)");
21194 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21195 mp_back_error(mp); mp_get_x_next(mp);
21199 @ The help message printed here says that everything is flushed up to
21200 a semicolon, but actually the commands |end_group| and |stop| will
21201 also terminate a statement.
21203 @<Flush unparsable junk that was found after the statement@>=
21205 print_err("Extra tokens will be flushed");
21206 @.Extra tokens will be flushed@>
21207 help6("I've just read as much of that statement as I could fathom,")
21208 ("so a semicolon should have been next. It's very puzzling...")
21209 ("but I'll try to get myself back together, by ignoring")
21210 ("everything up to the next `;'. Please insert a semicolon")
21211 ("now in front of anything that you don't want me to delete.")
21212 ("(See Chapter 27 of The METAFONTbook for an example.)");
21213 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21214 mp_back_error(mp); mp->scanner_status=flushing;
21217 @<Decrease the string reference count...@>;
21218 } while (! end_of_statement); /* |cur_cmd=semicolon|, |end_group|, or |stop| */
21219 mp->scanner_status=normal;
21222 @ If |do_statement| ends with |cur_cmd=end_group|, we should have
21223 |cur_type=mp_vacuous| unless the statement was simply an expression;
21224 in the latter case, |cur_type| and |cur_exp| should represent that
21227 @<Do a statement that doesn't...@>=
21229 if ( mp->internal[mp_tracing_commands]>0 )
21231 switch (mp->cur_cmd ) {
21232 case type_name:mp_do_type_declaration(mp); break;
21234 if ( mp->cur_mod>var_def ) mp_make_op_def(mp);
21235 else if ( mp->cur_mod>end_def ) mp_scan_def(mp);
21237 @<Cases of |do_statement| that invoke particular commands@>;
21238 } /* there are no other cases */
21239 mp->cur_type=mp_vacuous;
21242 @ The most important statements begin with expressions.
21244 @<Do an equation, assignment, title, or...@>=
21246 mp->var_flag=assignment; mp_scan_expression(mp);
21247 if ( mp->cur_cmd<end_group ) {
21248 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21249 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21250 else if ( mp->cur_type==mp_string_type ) {@<Do a title@> ; }
21251 else if ( mp->cur_type!=mp_vacuous ){
21252 exp_err("Isolated expression");
21253 @.Isolated expression@>
21254 help3("I couldn't find an `=' or `:=' after the")
21255 ("expression that is shown above this error message,")
21256 ("so I guess I'll just ignore it and carry on.");
21257 mp_put_get_error(mp);
21259 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
21265 if ( mp->internal[mp_tracing_titles]>0 ) {
21266 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp); update_terminal;
21270 @ Equations and assignments are performed by the pair of mutually recursive
21272 routines |do_equation| and |do_assignment|. These routines are called when
21273 |cur_cmd=equals| and when |cur_cmd=assignment|, respectively; the left-hand
21274 side is in |cur_type| and |cur_exp|, while the right-hand side is yet
21275 to be scanned. After the routines are finished, |cur_type| and |cur_exp|
21276 will be equal to the right-hand side (which will normally be equal
21277 to the left-hand side).
21279 @<Declare action procedures for use by |do_statement|@>=
21280 @<Declare the procedure called |try_eq|@>;
21281 @<Declare the procedure called |make_eq|@>;
21282 void mp_do_equation (MP mp) ;
21285 void mp_do_equation (MP mp) {
21286 pointer lhs; /* capsule for the left-hand side */
21287 pointer p; /* temporary register */
21288 lhs=mp_stash_cur_exp(mp); mp_get_x_next(mp);
21289 mp->var_flag=assignment; mp_scan_expression(mp);
21290 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21291 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21292 if ( mp->internal[mp_tracing_commands]>two )
21293 @<Trace the current equation@>;
21294 if ( mp->cur_type==mp_unknown_path ) if ( type(lhs)==mp_pair_type ) {
21295 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, lhs); lhs=p;
21296 }; /* in this case |make_eq| will change the pair to a path */
21297 mp_make_eq(mp, lhs); /* equate |lhs| to |(cur_type,cur_exp)| */
21300 @ And |do_assignment| is similar to |do_expression|:
21303 void mp_do_assignment (MP mp);
21305 @ @<Declare action procedures for use by |do_statement|@>=
21306 void mp_do_assignment (MP mp) ;
21309 void mp_do_assignment (MP mp) {
21310 pointer lhs; /* token list for the left-hand side */
21311 pointer p; /* where the left-hand value is stored */
21312 pointer q; /* temporary capsule for the right-hand value */
21313 if ( mp->cur_type!=mp_token_list ) {
21314 exp_err("Improper `:=' will be changed to `='");
21316 help2("I didn't find a variable name at the left of the `:=',")
21317 ("so I'm going to pretend that you said `=' instead.");
21318 mp_error(mp); mp_do_equation(mp);
21320 lhs=mp->cur_exp; mp->cur_type=mp_vacuous;
21321 mp_get_x_next(mp); mp->var_flag=assignment; mp_scan_expression(mp);
21322 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21323 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21324 if ( mp->internal[mp_tracing_commands]>two )
21325 @<Trace the current assignment@>;
21326 if ( info(lhs)>hash_end ) {
21327 @<Assign the current expression to an internal variable@>;
21329 @<Assign the current expression to the variable |lhs|@>;
21331 mp_flush_node_list(mp, lhs);
21335 @ @<Trace the current equation@>=
21337 mp_begin_diagnostic(mp); mp_print_nl(mp, "{("); mp_print_exp(mp,lhs,0);
21338 mp_print(mp,")=("); mp_print_exp(mp,null,0);
21339 mp_print(mp,")}"); mp_end_diagnostic(mp, false);
21342 @ @<Trace the current assignment@>=
21344 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
21345 if ( info(lhs)>hash_end )
21346 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21348 mp_show_token_list(mp, lhs,null,1000,0);
21349 mp_print(mp, ":="); mp_print_exp(mp, null,0);
21350 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
21353 @ @<Assign the current expression to an internal variable@>=
21354 if ( mp->cur_type==mp_known ) {
21355 mp->internal[info(lhs)-(hash_end)]=mp->cur_exp;
21357 exp_err("Internal quantity `");
21358 @.Internal quantity...@>
21359 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21360 mp_print(mp, "' must receive a known value");
21361 help2("I can\'t set an internal quantity to anything but a known")
21362 ("numeric value, so I'll have to ignore this assignment.");
21363 mp_put_get_error(mp);
21366 @ @<Assign the current expression to the variable |lhs|@>=
21368 p=mp_find_variable(mp, lhs);
21370 q=mp_stash_cur_exp(mp); mp->cur_type=mp_und_type(mp, p);
21371 mp_recycle_value(mp, p);
21372 type(p)=mp->cur_type; value(p)=null; mp_make_exp_copy(mp, p);
21373 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q); mp_make_eq(mp, p);
21375 mp_obliterated(mp, lhs); mp_put_get_error(mp);
21380 @ And now we get to the nitty-gritty. The |make_eq| procedure is given
21381 a pointer to a capsule that is to be equated to the current expression.
21383 @<Declare the procedure called |make_eq|@>=
21384 void mp_make_eq (MP mp,pointer lhs) ;
21388 @c void mp_make_eq (MP mp,pointer lhs) {
21389 small_number t; /* type of the left-hand side */
21390 pointer p,q; /* pointers inside of big nodes */
21391 integer v=0; /* value of the left-hand side */
21394 if ( t<=mp_pair_type ) v=value(lhs);
21396 @<For each type |t|, make an equation and |goto done| unless |cur_type|
21397 is incompatible with~|t|@>;
21398 } /* all cases have been listed */
21399 @<Announce that the equation cannot be performed@>;
21401 check_arith; mp_recycle_value(mp, lhs);
21402 mp_free_node(mp, lhs,value_node_size);
21405 @ @<Announce that the equation cannot be performed@>=
21406 mp_disp_err(mp, lhs,"");
21407 exp_err("Equation cannot be performed (");
21408 @.Equation cannot be performed@>
21409 if ( type(lhs)<=mp_pair_type ) mp_print_type(mp, type(lhs));
21410 else mp_print(mp, "numeric");
21411 mp_print_char(mp, '=');
21412 if ( mp->cur_type<=mp_pair_type ) mp_print_type(mp, mp->cur_type);
21413 else mp_print(mp, "numeric");
21414 mp_print_char(mp, ')');
21415 help2("I'm sorry, but I don't know how to make such things equal.")
21416 ("(See the two expressions just above the error message.)");
21417 mp_put_get_error(mp)
21419 @ @<For each type |t|, make an equation and |goto done| unless...@>=
21420 case mp_boolean_type: case mp_string_type: case mp_pen_type:
21421 case mp_path_type: case mp_picture_type:
21422 if ( mp->cur_type==t+unknown_tag ) {
21423 mp_nonlinear_eq(mp, v,mp->cur_exp,false); goto DONE;
21424 } else if ( mp->cur_type==t ) {
21425 @<Report redundant or inconsistent equation and |goto done|@>;
21428 case unknown_types:
21429 if ( mp->cur_type==t-unknown_tag ) {
21430 mp_nonlinear_eq(mp, mp->cur_exp,lhs,true); goto DONE;
21431 } else if ( mp->cur_type==t ) {
21432 mp_ring_merge(mp, lhs,mp->cur_exp); goto DONE;
21433 } else if ( mp->cur_type==mp_pair_type ) {
21434 if ( t==mp_unknown_path ) {
21435 mp_pair_to_path(mp); goto RESTART;
21439 case mp_transform_type: case mp_color_type:
21440 case mp_cmykcolor_type: case mp_pair_type:
21441 if ( mp->cur_type==t ) {
21442 @<Do multiple equations and |goto done|@>;
21445 case mp_known: case mp_dependent:
21446 case mp_proto_dependent: case mp_independent:
21447 if ( mp->cur_type>=mp_known ) {
21448 mp_try_eq(mp, lhs,null); goto DONE;
21454 @ @<Report redundant or inconsistent equation and |goto done|@>=
21456 if ( mp->cur_type<=mp_string_type ) {
21457 if ( mp->cur_type==mp_string_type ) {
21458 if ( mp_str_vs_str(mp, v,mp->cur_exp)!=0 ) {
21461 } else if ( v!=mp->cur_exp ) {
21464 @<Exclaim about a redundant equation@>; goto DONE;
21466 print_err("Redundant or inconsistent equation");
21467 @.Redundant or inconsistent equation@>
21468 help2("An equation between already-known quantities can't help.")
21469 ("But don't worry; continue and I'll just ignore it.");
21470 mp_put_get_error(mp); goto DONE;
21472 print_err("Inconsistent equation");
21473 @.Inconsistent equation@>
21474 help2("The equation I just read contradicts what was said before.")
21475 ("But don't worry; continue and I'll just ignore it.");
21476 mp_put_get_error(mp); goto DONE;
21479 @ @<Do multiple equations and |goto done|@>=
21481 p=v+mp->big_node_size[t];
21482 q=value(mp->cur_exp)+mp->big_node_size[t];
21484 p=p-2; q=q-2; mp_try_eq(mp, p,q);
21489 @ The first argument to |try_eq| is the location of a value node
21490 in a capsule that will soon be recycled. The second argument is
21491 either a location within a pair or transform node pointed to by
21492 |cur_exp|, or it is |null| (which means that |cur_exp| itself
21493 serves as the second argument). The idea is to leave |cur_exp| unchanged,
21494 but to equate the two operands.
21496 @<Declare the procedure called |try_eq|@>=
21497 void mp_try_eq (MP mp,pointer l, pointer r) ;
21500 @c void mp_try_eq (MP mp,pointer l, pointer r) {
21501 pointer p; /* dependency list for right operand minus left operand */
21502 int t; /* the type of list |p| */
21503 pointer q; /* the constant term of |p| is here */
21504 pointer pp; /* dependency list for right operand */
21505 int tt; /* the type of list |pp| */
21506 boolean copied; /* have we copied a list that ought to be recycled? */
21507 @<Remove the left operand from its container, negate it, and
21508 put it into dependency list~|p| with constant term~|q|@>;
21509 @<Add the right operand to list |p|@>;
21510 if ( info(p)==null ) {
21511 @<Deal with redundant or inconsistent equation@>;
21513 mp_linear_eq(mp, p,t);
21514 if ( r==null ) if ( mp->cur_type!=mp_known ) {
21515 if ( type(mp->cur_exp)==mp_known ) {
21516 pp=mp->cur_exp; mp->cur_exp=value(mp->cur_exp); mp->cur_type=mp_known;
21517 mp_free_node(mp, pp,value_node_size);
21523 @ @<Remove the left operand from its container, negate it, and...@>=
21525 if ( t==mp_known ) {
21526 t=mp_dependent; p=mp_const_dependency(mp, -value(l)); q=p;
21527 } else if ( t==mp_independent ) {
21528 t=mp_dependent; p=mp_single_dependency(mp, l); negate(value(p));
21531 p=dep_list(l); q=p;
21534 if ( info(q)==null ) break;
21537 link(prev_dep(l))=link(q); prev_dep(link(q))=prev_dep(l);
21541 @ @<Deal with redundant or inconsistent equation@>=
21543 if ( abs(value(p))>64 ) { /* off by .001 or more */
21544 print_err("Inconsistent equation");
21545 @.Inconsistent equation@>
21546 mp_print(mp, " (off by "); mp_print_scaled(mp, value(p));
21547 mp_print_char(mp, ')');
21548 help2("The equation I just read contradicts what was said before.")
21549 ("But don't worry; continue and I'll just ignore it.");
21550 mp_put_get_error(mp);
21551 } else if ( r==null ) {
21552 @<Exclaim about a redundant equation@>;
21554 mp_free_node(mp, p,dep_node_size);
21557 @ @<Add the right operand to list |p|@>=
21559 if ( mp->cur_type==mp_known ) {
21560 value(q)=value(q)+mp->cur_exp; goto DONE1;
21563 if ( tt==mp_independent ) pp=mp_single_dependency(mp, mp->cur_exp);
21564 else pp=dep_list(mp->cur_exp);
21567 if ( type(r)==mp_known ) {
21568 value(q)=value(q)+value(r); goto DONE1;
21571 if ( tt==mp_independent ) pp=mp_single_dependency(mp, r);
21572 else pp=dep_list(r);
21575 if ( tt!=mp_independent ) copied=false;
21576 else { copied=true; tt=mp_dependent; };
21577 @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>;
21578 if ( copied ) mp_flush_node_list(mp, pp);
21581 @ @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>=
21582 mp->watch_coefs=false;
21584 p=mp_p_plus_q(mp, p,pp,t);
21585 } else if ( t==mp_proto_dependent ) {
21586 p=mp_p_plus_fq(mp, p,unity,pp,mp_proto_dependent,mp_dependent);
21589 while ( info(q)!=null ) {
21590 value(q)=mp_round_fraction(mp, value(q)); q=link(q);
21592 t=mp_proto_dependent; p=mp_p_plus_q(mp, p,pp,t);
21594 mp->watch_coefs=true;
21596 @ Our next goal is to process type declarations. For this purpose it's
21597 convenient to have a procedure that scans a $\langle\,$declared
21598 variable$\,\rangle$ and returns the corresponding token list. After the
21599 following procedure has acted, the token after the declared variable
21600 will have been scanned, so it will appear in |cur_cmd|, |cur_mod|,
21603 @<Declare the function called |scan_declared_variable|@>=
21604 pointer mp_scan_declared_variable (MP mp) {
21605 pointer x; /* hash address of the variable's root */
21606 pointer h,t; /* head and tail of the token list to be returned */
21607 pointer l; /* hash address of left bracket */
21608 mp_get_symbol(mp); x=mp->cur_sym;
21609 if ( mp->cur_cmd!=tag_token ) mp_clear_symbol(mp, x,false);
21610 h=mp_get_avail(mp); info(h)=x; t=h;
21613 if ( mp->cur_sym==0 ) break;
21614 if ( mp->cur_cmd!=tag_token ) if ( mp->cur_cmd!=internal_quantity) {
21615 if ( mp->cur_cmd==left_bracket ) {
21616 @<Descend past a collective subscript@>;
21621 link(t)=mp_get_avail(mp); t=link(t); info(t)=mp->cur_sym;
21623 if ( eq_type(x)!=tag_token ) mp_clear_symbol(mp, x,false);
21624 if ( equiv(x)==null ) mp_new_root(mp, x);
21628 @ If the subscript isn't collective, we don't accept it as part of the
21631 @<Descend past a collective subscript@>=
21633 l=mp->cur_sym; mp_get_x_next(mp);
21634 if ( mp->cur_cmd!=right_bracket ) {
21635 mp_back_input(mp); mp->cur_sym=l; mp->cur_cmd=left_bracket; break;
21637 mp->cur_sym=collective_subscript;
21641 @ Type declarations are introduced by the following primitive operations.
21644 mp_primitive(mp, "numeric",type_name,mp_numeric_type);
21645 @:numeric_}{\&{numeric} primitive@>
21646 mp_primitive(mp, "string",type_name,mp_string_type);
21647 @:string_}{\&{string} primitive@>
21648 mp_primitive(mp, "boolean",type_name,mp_boolean_type);
21649 @:boolean_}{\&{boolean} primitive@>
21650 mp_primitive(mp, "path",type_name,mp_path_type);
21651 @:path_}{\&{path} primitive@>
21652 mp_primitive(mp, "pen",type_name,mp_pen_type);
21653 @:pen_}{\&{pen} primitive@>
21654 mp_primitive(mp, "picture",type_name,mp_picture_type);
21655 @:picture_}{\&{picture} primitive@>
21656 mp_primitive(mp, "transform",type_name,mp_transform_type);
21657 @:transform_}{\&{transform} primitive@>
21658 mp_primitive(mp, "color",type_name,mp_color_type);
21659 @:color_}{\&{color} primitive@>
21660 mp_primitive(mp, "rgbcolor",type_name,mp_color_type);
21661 @:color_}{\&{rgbcolor} primitive@>
21662 mp_primitive(mp, "cmykcolor",type_name,mp_cmykcolor_type);
21663 @:color_}{\&{cmykcolor} primitive@>
21664 mp_primitive(mp, "pair",type_name,mp_pair_type);
21665 @:pair_}{\&{pair} primitive@>
21667 @ @<Cases of |print_cmd...@>=
21668 case type_name: mp_print_type(mp, m); break;
21670 @ Now we are ready to handle type declarations, assuming that a
21671 |type_name| has just been scanned.
21673 @<Declare action procedures for use by |do_statement|@>=
21674 void mp_do_type_declaration (MP mp) ;
21677 void mp_do_type_declaration (MP mp) {
21678 small_number t; /* the type being declared */
21679 pointer p; /* token list for a declared variable */
21680 pointer q; /* value node for the variable */
21681 if ( mp->cur_mod>=mp_transform_type )
21684 t=mp->cur_mod+unknown_tag;
21686 p=mp_scan_declared_variable(mp);
21687 mp_flush_variable(mp, equiv(info(p)),link(p),false);
21688 q=mp_find_variable(mp, p);
21690 type(q)=t; value(q)=null;
21692 print_err("Declared variable conflicts with previous vardef");
21693 @.Declared variable conflicts...@>
21694 help2("You can't use, e.g., `numeric foo[]' after `vardef foo'.")
21695 ("Proceed, and I'll ignore the illegal redeclaration.");
21696 mp_put_get_error(mp);
21698 mp_flush_list(mp, p);
21699 if ( mp->cur_cmd<comma ) {
21700 @<Flush spurious symbols after the declared variable@>;
21702 } while (! end_of_statement);
21705 @ @<Flush spurious symbols after the declared variable@>=
21707 print_err("Illegal suffix of declared variable will be flushed");
21708 @.Illegal suffix...flushed@>
21709 help5("Variables in declarations must consist entirely of")
21710 ("names and collective subscripts, e.g., `x[]a'.")
21711 ("Are you trying to use a reserved word in a variable name?")
21712 ("I'm going to discard the junk I found here,")
21713 ("up to the next comma or the end of the declaration.");
21714 if ( mp->cur_cmd==numeric_token )
21715 mp->help_line[2]="Explicit subscripts like `x15a' aren't permitted.";
21716 mp_put_get_error(mp); mp->scanner_status=flushing;
21719 @<Decrease the string reference count...@>;
21720 } while (mp->cur_cmd<comma); /* either |end_of_statement| or |cur_cmd=comma| */
21721 mp->scanner_status=normal;
21724 @ \MP's |main_control| procedure just calls |do_statement| repeatedly
21725 until coming to the end of the user's program.
21726 Each execution of |do_statement| concludes with
21727 |cur_cmd=semicolon|, |end_group|, or |stop|.
21729 @c void mp_main_control (MP mp) {
21731 mp_do_statement(mp);
21732 if ( mp->cur_cmd==end_group ) {
21733 print_err("Extra `endgroup'");
21734 @.Extra `endgroup'@>
21735 help2("I'm not currently working on a `begingroup',")
21736 ("so I had better not try to end anything.");
21737 mp_flush_error(mp, 0);
21739 } while (mp->cur_cmd!=stop);
21741 int mp_run (MP mp) {
21742 @<Install and test the non-local jump buffer@>;
21743 mp_main_control(mp); /* come to life */
21744 mp_final_cleanup(mp); /* prepare for death */
21745 mp_close_files_and_terminate(mp);
21746 return mp->history;
21748 char * mp_mplib_version (MP mp) {
21750 return mplib_version;
21752 char * mp_metapost_version (MP mp) {
21754 return metapost_version;
21757 @ @<Exported function headers@>=
21758 int mp_run (MP mp);
21759 char * mp_mplib_version (MP mp);
21760 char * mp_metapost_version (MP mp);
21763 mp_primitive(mp, "end",stop,0);
21764 @:end_}{\&{end} primitive@>
21765 mp_primitive(mp, "dump",stop,1);
21766 @:dump_}{\&{dump} primitive@>
21768 @ @<Cases of |print_cmd...@>=
21770 if ( m==0 ) mp_print(mp, "end");
21771 else mp_print(mp, "dump");
21775 Let's turn now to statements that are classified as ``commands'' because
21776 of their imperative nature. We'll begin with simple ones, so that it
21777 will be clear how to hook command processing into the |do_statement| routine;
21778 then we'll tackle the tougher commands.
21780 Here's one of the simplest:
21782 @<Cases of |do_statement|...@>=
21783 case mp_random_seed: mp_do_random_seed(mp); break;
21785 @ @<Declare action procedures for use by |do_statement|@>=
21786 void mp_do_random_seed (MP mp) ;
21788 @ @c void mp_do_random_seed (MP mp) {
21790 if ( mp->cur_cmd!=assignment ) {
21791 mp_missing_err(mp, ":=");
21793 help1("Always say `randomseed:=<numeric expression>'.");
21796 mp_get_x_next(mp); mp_scan_expression(mp);
21797 if ( mp->cur_type!=mp_known ) {
21798 exp_err("Unknown value will be ignored");
21799 @.Unknown value...ignored@>
21800 help2("Your expression was too random for me to handle,")
21801 ("so I won't change the random seed just now.");
21802 mp_put_get_flush_error(mp, 0);
21804 @<Initialize the random seed to |cur_exp|@>;
21808 @ @<Initialize the random seed to |cur_exp|@>=
21810 mp_init_randoms(mp, mp->cur_exp);
21811 if ( mp->selector>=log_only && mp->selector<write_file) {
21812 mp->old_setting=mp->selector; mp->selector=log_only;
21813 mp_print_nl(mp, "{randomseed:=");
21814 mp_print_scaled(mp, mp->cur_exp);
21815 mp_print_char(mp, '}');
21816 mp_print_nl(mp, ""); mp->selector=mp->old_setting;
21820 @ And here's another simple one (somewhat different in flavor):
21822 @<Cases of |do_statement|...@>=
21824 mp_print_ln(mp); mp->interaction=mp->cur_mod;
21825 @<Initialize the print |selector| based on |interaction|@>;
21826 if ( mp->log_opened ) mp->selector=mp->selector+2;
21831 mp_primitive(mp, "batchmode",mode_command,mp_batch_mode);
21832 @:mp_batch_mode_}{\&{batchmode} primitive@>
21833 mp_primitive(mp, "nonstopmode",mode_command,mp_nonstop_mode);
21834 @:mp_nonstop_mode_}{\&{nonstopmode} primitive@>
21835 mp_primitive(mp, "scrollmode",mode_command,mp_scroll_mode);
21836 @:mp_scroll_mode_}{\&{scrollmode} primitive@>
21837 mp_primitive(mp, "errorstopmode",mode_command,mp_error_stop_mode);
21838 @:mp_error_stop_mode_}{\&{errorstopmode} primitive@>
21840 @ @<Cases of |print_cmd_mod|...@>=
21843 case mp_batch_mode: mp_print(mp, "batchmode"); break;
21844 case mp_nonstop_mode: mp_print(mp, "nonstopmode"); break;
21845 case mp_scroll_mode: mp_print(mp, "scrollmode"); break;
21846 default: mp_print(mp, "errorstopmode"); break;
21850 @ The `\&{inner}' and `\&{outer}' commands are only slightly harder.
21852 @<Cases of |do_statement|...@>=
21853 case protection_command: mp_do_protection(mp); break;
21856 mp_primitive(mp, "inner",protection_command,0);
21857 @:inner_}{\&{inner} primitive@>
21858 mp_primitive(mp, "outer",protection_command,1);
21859 @:outer_}{\&{outer} primitive@>
21861 @ @<Cases of |print_cmd...@>=
21862 case protection_command:
21863 if ( m==0 ) mp_print(mp, "inner");
21864 else mp_print(mp, "outer");
21867 @ @<Declare action procedures for use by |do_statement|@>=
21868 void mp_do_protection (MP mp) ;
21870 @ @c void mp_do_protection (MP mp) {
21871 int m; /* 0 to unprotect, 1 to protect */
21872 halfword t; /* the |eq_type| before we change it */
21875 mp_get_symbol(mp); t=eq_type(mp->cur_sym);
21877 if ( t>=outer_tag )
21878 eq_type(mp->cur_sym)=t-outer_tag;
21879 } else if ( t<outer_tag ) {
21880 eq_type(mp->cur_sym)=t+outer_tag;
21883 } while (mp->cur_cmd==comma);
21886 @ \MP\ never defines the tokens `\.(' and `\.)' to be primitives, but
21887 plain \MP\ begins with the declaration `\&{delimiters} \.{()}'. Such a
21888 declaration assigns the command code |left_delimiter| to `\.{(}' and
21889 |right_delimiter| to `\.{)}'; the |equiv| of each delimiter is the
21890 hash address of its mate.
21892 @<Cases of |do_statement|...@>=
21893 case delimiters: mp_def_delims(mp); break;
21895 @ @<Declare action procedures for use by |do_statement|@>=
21896 void mp_def_delims (MP mp) ;
21898 @ @c void mp_def_delims (MP mp) {
21899 pointer l_delim,r_delim; /* the new delimiter pair */
21900 mp_get_clear_symbol(mp); l_delim=mp->cur_sym;
21901 mp_get_clear_symbol(mp); r_delim=mp->cur_sym;
21902 eq_type(l_delim)=left_delimiter; equiv(l_delim)=r_delim;
21903 eq_type(r_delim)=right_delimiter; equiv(r_delim)=l_delim;
21907 @ Here is a procedure that is called when \MP\ has reached a point
21908 where some right delimiter is mandatory.
21910 @<Declare the procedure called |check_delimiter|@>=
21911 void mp_check_delimiter (MP mp,pointer l_delim, pointer r_delim) {
21912 if ( mp->cur_cmd==right_delimiter )
21913 if ( mp->cur_mod==l_delim )
21915 if ( mp->cur_sym!=r_delim ) {
21916 mp_missing_err(mp, str(text(r_delim)));
21918 help2("I found no right delimiter to match a left one. So I've")
21919 ("put one in, behind the scenes; this may fix the problem.");
21922 print_err("The token `"); mp_print_text(r_delim);
21923 @.The token...delimiter@>
21924 mp_print(mp, "' is no longer a right delimiter");
21925 help3("Strange: This token has lost its former meaning!")
21926 ("I'll read it as a right delimiter this time;")
21927 ("but watch out, I'll probably miss it later.");
21932 @ The next four commands save or change the values associated with tokens.
21934 @<Cases of |do_statement|...@>=
21937 mp_get_symbol(mp); mp_save_variable(mp, mp->cur_sym); mp_get_x_next(mp);
21938 } while (mp->cur_cmd==comma);
21940 case interim_command: mp_do_interim(mp); break;
21941 case let_command: mp_do_let(mp); break;
21942 case new_internal: mp_do_new_internal(mp); break;
21944 @ @<Declare action procedures for use by |do_statement|@>=
21945 void mp_do_statement (MP mp);
21946 void mp_do_interim (MP mp);
21948 @ @c void mp_do_interim (MP mp) {
21950 if ( mp->cur_cmd!=internal_quantity ) {
21951 print_err("The token `");
21952 @.The token...quantity@>
21953 if ( mp->cur_sym==0 ) mp_print(mp, "(%CAPSULE)");
21954 else mp_print_text(mp->cur_sym);
21955 mp_print(mp, "' isn't an internal quantity");
21956 help1("Something like `tracingonline' should follow `interim'.");
21959 mp_save_internal(mp, mp->cur_mod); mp_back_input(mp);
21961 mp_do_statement(mp);
21964 @ The following procedure is careful not to undefine the left-hand symbol
21965 too soon, lest commands like `{\tt let x=x}' have a surprising effect.
21967 @<Declare action procedures for use by |do_statement|@>=
21968 void mp_do_let (MP mp) ;
21970 @ @c void mp_do_let (MP mp) {
21971 pointer l; /* hash location of the left-hand symbol */
21972 mp_get_symbol(mp); l=mp->cur_sym; mp_get_x_next(mp);
21973 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
21974 mp_missing_err(mp, "=");
21976 help3("You should have said `let symbol = something'.")
21977 ("But don't worry; I'll pretend that an equals sign")
21978 ("was present. The next token I read will be `something'.");
21982 switch (mp->cur_cmd) {
21983 case defined_macro: case secondary_primary_macro:
21984 case tertiary_secondary_macro: case expression_tertiary_macro:
21985 add_mac_ref(mp->cur_mod);
21990 mp_clear_symbol(mp, l,false); eq_type(l)=mp->cur_cmd;
21991 if ( mp->cur_cmd==tag_token ) equiv(l)=null;
21992 else equiv(l)=mp->cur_mod;
21996 @ @<Declarations@>=
21997 void mp_grow_internals (MP mp, int l);
21998 void mp_do_new_internal (MP mp) ;
22001 void mp_grow_internals (MP mp, int l) {
22005 if ( hash_end+l>max_halfword ) {
22006 mp_confusion(mp, "out of memory space"); /* can't be reached */
22008 int_name = xmalloc ((l+1),sizeof(char *));
22009 internal = xmalloc ((l+1),sizeof(scaled));
22010 for (k=0;k<=l; k++ ) {
22011 if (k<=mp->max_internal) {
22012 internal[k]=mp->internal[k];
22013 int_name[k]=mp->int_name[k];
22019 xfree(mp->internal); xfree(mp->int_name);
22020 mp->int_name = int_name;
22021 mp->internal = internal;
22022 mp->max_internal = l;
22026 void mp_do_new_internal (MP mp) {
22028 if ( mp->int_ptr==mp->max_internal ) {
22029 mp_grow_internals(mp, (mp->max_internal + (mp->max_internal>>2)));
22031 mp_get_clear_symbol(mp); incr(mp->int_ptr);
22032 eq_type(mp->cur_sym)=internal_quantity;
22033 equiv(mp->cur_sym)=mp->int_ptr;
22034 if(mp->int_name[mp->int_ptr]!=NULL)
22035 xfree(mp->int_name[mp->int_ptr]);
22036 mp->int_name[mp->int_ptr]=str(text(mp->cur_sym));
22037 mp->internal[mp->int_ptr]=0;
22039 } while (mp->cur_cmd==comma);
22042 @ @<Dealloc variables@>=
22043 for (k=0;k<=mp->max_internal;k++) {
22044 xfree(mp->int_name[k]);
22046 xfree(mp->internal);
22047 xfree(mp->int_name);
22050 @ The various `\&{show}' commands are distinguished by modifier fields
22053 @d show_token_code 0 /* show the meaning of a single token */
22054 @d show_stats_code 1 /* show current memory and string usage */
22055 @d show_code 2 /* show a list of expressions */
22056 @d show_var_code 3 /* show a variable and its descendents */
22057 @d show_dependencies_code 4 /* show dependent variables in terms of independents */
22060 mp_primitive(mp, "showtoken",show_command,show_token_code);
22061 @:show_token_}{\&{showtoken} primitive@>
22062 mp_primitive(mp, "showstats",show_command,show_stats_code);
22063 @:show_stats_}{\&{showstats} primitive@>
22064 mp_primitive(mp, "show",show_command,show_code);
22065 @:show_}{\&{show} primitive@>
22066 mp_primitive(mp, "showvariable",show_command,show_var_code);
22067 @:show_var_}{\&{showvariable} primitive@>
22068 mp_primitive(mp, "showdependencies",show_command,show_dependencies_code);
22069 @:show_dependencies_}{\&{showdependencies} primitive@>
22071 @ @<Cases of |print_cmd...@>=
22074 case show_token_code:mp_print(mp, "showtoken"); break;
22075 case show_stats_code:mp_print(mp, "showstats"); break;
22076 case show_code:mp_print(mp, "show"); break;
22077 case show_var_code:mp_print(mp, "showvariable"); break;
22078 default: mp_print(mp, "showdependencies"); break;
22082 @ @<Cases of |do_statement|...@>=
22083 case show_command:mp_do_show_whatever(mp); break;
22085 @ The value of |cur_mod| controls the |verbosity| in the |print_exp| routine:
22086 if it's |show_code|, complicated structures are abbreviated, otherwise
22089 @<Declare action procedures for use by |do_statement|@>=
22090 void mp_do_show (MP mp) ;
22092 @ @c void mp_do_show (MP mp) {
22094 mp_get_x_next(mp); mp_scan_expression(mp);
22095 mp_print_nl(mp, ">> ");
22097 mp_print_exp(mp, null,2); mp_flush_cur_exp(mp, 0);
22098 } while (mp->cur_cmd==comma);
22101 @ @<Declare action procedures for use by |do_statement|@>=
22102 void mp_disp_token (MP mp) ;
22104 @ @c void mp_disp_token (MP mp) {
22105 mp_print_nl(mp, "> ");
22107 if ( mp->cur_sym==0 ) {
22108 @<Show a numeric or string or capsule token@>;
22110 mp_print_text(mp->cur_sym); mp_print_char(mp, '=');
22111 if ( eq_type(mp->cur_sym)>=outer_tag ) mp_print(mp, "(outer) ");
22112 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
22113 if ( mp->cur_cmd==defined_macro ) {
22114 mp_print_ln(mp); mp_show_macro(mp, mp->cur_mod,null,100000);
22115 } /* this avoids recursion between |show_macro| and |print_cmd_mod| */
22120 @ @<Show a numeric or string or capsule token@>=
22122 if ( mp->cur_cmd==numeric_token ) {
22123 mp_print_scaled(mp, mp->cur_mod);
22124 } else if ( mp->cur_cmd==capsule_token ) {
22125 mp_print_capsule(mp,mp->cur_mod);
22127 mp_print_char(mp, '"');
22128 mp_print_str(mp, mp->cur_mod); mp_print_char(mp, '"');
22129 delete_str_ref(mp->cur_mod);
22133 @ The following cases of |print_cmd_mod| might arise in connection
22134 with |disp_token|, although they don't correspond to any
22137 @<Cases of |print_cmd_...@>=
22138 case left_delimiter:
22139 case right_delimiter:
22140 if ( c==left_delimiter ) mp_print(mp, "left");
22141 else mp_print(mp, "right");
22142 mp_print(mp, " delimiter that matches ");
22146 if ( m==null ) mp_print(mp, "tag");
22147 else mp_print(mp, "variable");
22149 case defined_macro:
22150 mp_print(mp, "macro:");
22152 case secondary_primary_macro:
22153 case tertiary_secondary_macro:
22154 case expression_tertiary_macro:
22155 mp_print_cmd_mod(mp, macro_def,c);
22156 mp_print(mp, "'d macro:");
22157 mp_print_ln(mp); mp_show_token_list(mp, link(link(m)),null,1000,0);
22160 mp_print(mp, "[repeat the loop]");
22162 case internal_quantity:
22163 mp_print(mp, mp->int_name[m]);
22166 @ @<Declare action procedures for use by |do_statement|@>=
22167 void mp_do_show_token (MP mp) ;
22169 @ @c void mp_do_show_token (MP mp) {
22171 get_t_next; mp_disp_token(mp);
22173 } while (mp->cur_cmd==comma);
22176 @ @<Declare action procedures for use by |do_statement|@>=
22177 void mp_do_show_stats (MP mp) ;
22179 @ @c void mp_do_show_stats (MP mp) {
22180 mp_print_nl(mp, "Memory usage ");
22181 @.Memory usage...@>
22182 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used);
22184 mp_print(mp, "unknown");
22185 mp_print(mp, " ("); mp_print_int(mp, mp->hi_mem_min-mp->lo_mem_max-1);
22186 mp_print(mp, " still untouched)"); mp_print_ln(mp);
22187 mp_print_nl(mp, "String usage ");
22188 mp_print_int(mp, mp->strs_in_use-mp->init_str_use);
22189 mp_print_char(mp, '&'); mp_print_int(mp, mp->pool_in_use-mp->init_pool_ptr);
22191 mp_print(mp, "unknown");
22192 mp_print(mp, " (");
22193 mp_print_int(mp, mp->max_strings-1-mp->strs_used_up); mp_print_char(mp, '&');
22194 mp_print_int(mp, mp->pool_size-mp->pool_ptr);
22195 mp_print(mp, " now untouched)"); mp_print_ln(mp);
22199 @ Here's a recursive procedure that gives an abbreviated account
22200 of a variable, for use by |do_show_var|.
22202 @<Declare action procedures for use by |do_statement|@>=
22203 void mp_disp_var (MP mp,pointer p) ;
22205 @ @c void mp_disp_var (MP mp,pointer p) {
22206 pointer q; /* traverses attributes and subscripts */
22207 int n; /* amount of macro text to show */
22208 if ( type(p)==mp_structured ) {
22209 @<Descend the structure@>;
22210 } else if ( type(p)>=mp_unsuffixed_macro ) {
22211 @<Display a variable macro@>;
22212 } else if ( type(p)!=undefined ){
22213 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22214 mp_print_char(mp, '=');
22215 mp_print_exp(mp, p,0);
22219 @ @<Descend the structure@>=
22222 do { mp_disp_var(mp, q); q=link(q); } while (q!=end_attr);
22224 while ( name_type(q)==mp_subscr ) {
22225 mp_disp_var(mp, q); q=link(q);
22229 @ @<Display a variable macro@>=
22231 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22232 if ( type(p)>mp_unsuffixed_macro )
22233 mp_print(mp, "@@#"); /* |suffixed_macro| */
22234 mp_print(mp, "=macro:");
22235 if ( (int)mp->file_offset>=mp->max_print_line-20 ) n=5;
22236 else n=mp->max_print_line-mp->file_offset-15;
22237 mp_show_macro(mp, value(p),null,n);
22240 @ @<Declare action procedures for use by |do_statement|@>=
22241 void mp_do_show_var (MP mp) ;
22243 @ @c void mp_do_show_var (MP mp) {
22246 if ( mp->cur_sym>0 ) if ( mp->cur_sym<=hash_end )
22247 if ( mp->cur_cmd==tag_token ) if ( mp->cur_mod!=null ) {
22248 mp_disp_var(mp, mp->cur_mod); goto DONE;
22253 } while (mp->cur_cmd==comma);
22256 @ @<Declare action procedures for use by |do_statement|@>=
22257 void mp_do_show_dependencies (MP mp) ;
22259 @ @c void mp_do_show_dependencies (MP mp) {
22260 pointer p; /* link that runs through all dependencies */
22262 while ( p!=dep_head ) {
22263 if ( mp_interesting(mp, p) ) {
22264 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22265 if ( type(p)==mp_dependent ) mp_print_char(mp, '=');
22266 else mp_print(mp, " = "); /* extra spaces imply proto-dependency */
22267 mp_print_dependency(mp, dep_list(p),type(p));
22270 while ( info(p)!=null ) p=link(p);
22276 @ Finally we are ready for the procedure that governs all of the
22279 @<Declare action procedures for use by |do_statement|@>=
22280 void mp_do_show_whatever (MP mp) ;
22282 @ @c void mp_do_show_whatever (MP mp) {
22283 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
22284 switch (mp->cur_mod) {
22285 case show_token_code:mp_do_show_token(mp); break;
22286 case show_stats_code:mp_do_show_stats(mp); break;
22287 case show_code:mp_do_show(mp); break;
22288 case show_var_code:mp_do_show_var(mp); break;
22289 case show_dependencies_code:mp_do_show_dependencies(mp); break;
22290 } /* there are no other cases */
22291 if ( mp->internal[mp_showstopping]>0 ){
22294 if ( mp->interaction<mp_error_stop_mode ) {
22295 help0; decr(mp->error_count);
22297 help1("This isn't an error message; I'm just showing something.");
22299 if ( mp->cur_cmd==semicolon ) mp_error(mp);
22300 else mp_put_get_error(mp);
22304 @ The `\&{addto}' command needs the following additional primitives:
22306 @d double_path_code 0 /* command modifier for `\&{doublepath}' */
22307 @d contour_code 1 /* command modifier for `\&{contour}' */
22308 @d also_code 2 /* command modifier for `\&{also}' */
22310 @ Pre and postscripts need two new identifiers:
22312 @d with_pre_script 11
22313 @d with_post_script 13
22316 mp_primitive(mp, "doublepath",thing_to_add,double_path_code);
22317 @:double_path_}{\&{doublepath} primitive@>
22318 mp_primitive(mp, "contour",thing_to_add,contour_code);
22319 @:contour_}{\&{contour} primitive@>
22320 mp_primitive(mp, "also",thing_to_add,also_code);
22321 @:also_}{\&{also} primitive@>
22322 mp_primitive(mp, "withpen",with_option,mp_pen_type);
22323 @:with_pen_}{\&{withpen} primitive@>
22324 mp_primitive(mp, "dashed",with_option,mp_picture_type);
22325 @:dashed_}{\&{dashed} primitive@>
22326 mp_primitive(mp, "withprescript",with_option,with_pre_script);
22327 @:with_pre_script_}{\&{withprescript} primitive@>
22328 mp_primitive(mp, "withpostscript",with_option,with_post_script);
22329 @:with_post_script_}{\&{withpostscript} primitive@>
22330 mp_primitive(mp, "withoutcolor",with_option,mp_no_model);
22331 @:with_color_}{\&{withoutcolor} primitive@>
22332 mp_primitive(mp, "withgreyscale",with_option,mp_grey_model);
22333 @:with_color_}{\&{withgreyscale} primitive@>
22334 mp_primitive(mp, "withcolor",with_option,mp_uninitialized_model);
22335 @:with_color_}{\&{withcolor} primitive@>
22336 /* \&{withrgbcolor} is an alias for \&{withcolor} */
22337 mp_primitive(mp, "withrgbcolor",with_option,mp_rgb_model);
22338 @:with_color_}{\&{withrgbcolor} primitive@>
22339 mp_primitive(mp, "withcmykcolor",with_option,mp_cmyk_model);
22340 @:with_color_}{\&{withcmykcolor} primitive@>
22342 @ @<Cases of |print_cmd...@>=
22344 if ( m==contour_code ) mp_print(mp, "contour");
22345 else if ( m==double_path_code ) mp_print(mp, "doublepath");
22346 else mp_print(mp, "also");
22349 if ( m==mp_pen_type ) mp_print(mp, "withpen");
22350 else if ( m==with_pre_script ) mp_print(mp, "withprescript");
22351 else if ( m==with_post_script ) mp_print(mp, "withpostscript");
22352 else if ( m==mp_no_model ) mp_print(mp, "withoutcolor");
22353 else if ( m==mp_rgb_model ) mp_print(mp, "withrgbcolor");
22354 else if ( m==mp_uninitialized_model ) mp_print(mp, "withcolor");
22355 else if ( m==mp_cmyk_model ) mp_print(mp, "withcmykcolor");
22356 else if ( m==mp_grey_model ) mp_print(mp, "withgreyscale");
22357 else mp_print(mp, "dashed");
22360 @ The |scan_with_list| procedure parses a $\langle$with list$\rangle$ and
22361 updates the list of graphical objects starting at |p|. Each $\langle$with
22362 clause$\rangle$ updates all graphical objects whose |type| is compatible.
22363 Other objects are ignored.
22365 @<Declare action procedures for use by |do_statement|@>=
22366 void mp_scan_with_list (MP mp,pointer p) ;
22368 @ @c void mp_scan_with_list (MP mp,pointer p) {
22369 small_number t; /* |cur_mod| of the |with_option| (should match |cur_type|) */
22370 pointer q; /* for list manipulation */
22371 int old_setting; /* saved |selector| setting */
22372 pointer k; /* for finding the near-last item in a list */
22373 str_number s; /* for string cleanup after combining */
22374 pointer cp,pp,dp,ap,bp;
22375 /* objects being updated; |void| initially; |null| to suppress update */
22376 cp=mp_void; pp=mp_void; dp=mp_void; ap=mp_void; bp=mp_void;
22378 while ( mp->cur_cmd==with_option ){
22381 if ( t!=mp_no_model ) mp_scan_expression(mp);
22382 if (((t==with_pre_script)&&(mp->cur_type!=mp_string_type))||
22383 ((t==with_post_script)&&(mp->cur_type!=mp_string_type))||
22384 ((t==mp_uninitialized_model)&&
22385 ((mp->cur_type!=mp_cmykcolor_type)&&(mp->cur_type!=mp_color_type)
22386 &&(mp->cur_type!=mp_known)&&(mp->cur_type!=mp_boolean_type)))||
22387 ((t==mp_cmyk_model)&&(mp->cur_type!=mp_cmykcolor_type))||
22388 ((t==mp_rgb_model)&&(mp->cur_type!=mp_color_type))||
22389 ((t==mp_grey_model)&&(mp->cur_type!=mp_known))||
22390 ((t==mp_pen_type)&&(mp->cur_type!=t))||
22391 ((t==mp_picture_type)&&(mp->cur_type!=t)) ) {
22392 @<Complain about improper type@>;
22393 } else if ( t==mp_uninitialized_model ) {
22394 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22396 @<Transfer a color from the current expression to object~|cp|@>;
22397 mp_flush_cur_exp(mp, 0);
22398 } else if ( t==mp_rgb_model ) {
22399 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22401 @<Transfer a rgbcolor from the current expression to object~|cp|@>;
22402 mp_flush_cur_exp(mp, 0);
22403 } else if ( t==mp_cmyk_model ) {
22404 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22406 @<Transfer a cmykcolor from the current expression to object~|cp|@>;
22407 mp_flush_cur_exp(mp, 0);
22408 } else if ( t==mp_grey_model ) {
22409 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22411 @<Transfer a greyscale from the current expression to object~|cp|@>;
22412 mp_flush_cur_exp(mp, 0);
22413 } else if ( t==mp_no_model ) {
22414 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22416 @<Transfer a noncolor from the current expression to object~|cp|@>;
22417 } else if ( t==mp_pen_type ) {
22418 if ( pp==mp_void ) @<Make |pp| an object in list~|p| that needs a pen@>;
22420 if ( pen_p(pp)!=null ) mp_toss_knot_list(mp, pen_p(pp));
22421 pen_p(pp)=mp->cur_exp; mp->cur_type=mp_vacuous;
22423 } else if ( t==with_pre_script ) {
22426 while ( (ap!=null)&&(! has_color(ap)) )
22429 if ( pre_script(ap)!=null ) { /* build a new,combined string */
22431 old_setting=mp->selector;
22432 mp->selector=new_string;
22433 str_room(length(pre_script(ap))+length(mp->cur_exp)+2);
22434 mp_print_str(mp, mp->cur_exp);
22435 append_char(13); /* a forced \ps\ newline */
22436 mp_print_str(mp, pre_script(ap));
22437 pre_script(ap)=mp_make_string(mp);
22439 mp->selector=old_setting;
22441 pre_script(ap)=mp->cur_exp;
22443 mp->cur_type=mp_vacuous;
22445 } else if ( t==with_post_script ) {
22449 while ( link(k)!=null ) {
22451 if ( has_color(k) ) bp=k;
22454 if ( post_script(bp)!=null ) {
22456 old_setting=mp->selector;
22457 mp->selector=new_string;
22458 str_room(length(post_script(bp))+length(mp->cur_exp)+2);
22459 mp_print_str(mp, post_script(bp));
22460 append_char(13); /* a forced \ps\ newline */
22461 mp_print_str(mp, mp->cur_exp);
22462 post_script(bp)=mp_make_string(mp);
22464 mp->selector=old_setting;
22466 post_script(bp)=mp->cur_exp;
22468 mp->cur_type=mp_vacuous;
22471 if ( dp==mp_void ) {
22472 @<Make |dp| a stroked node in list~|p|@>;
22475 if ( dash_p(dp)!=null ) delete_edge_ref(dash_p(dp));
22476 dash_p(dp)=mp_make_dashes(mp, mp->cur_exp);
22477 dash_scale(dp)=unity;
22478 mp->cur_type=mp_vacuous;
22482 @<Copy the information from objects |cp|, |pp|, and |dp| into the rest
22486 @ @<Complain about improper type@>=
22487 { exp_err("Improper type");
22489 help2("Next time say `withpen <known pen expression>';")
22490 ("I'll ignore the bad `with' clause and look for another.");
22491 if ( t==with_pre_script )
22492 mp->help_line[1]="Next time say `withprescript <known string expression>';";
22493 else if ( t==with_post_script )
22494 mp->help_line[1]="Next time say `withpostscript <known string expression>';";
22495 else if ( t==mp_picture_type )
22496 mp->help_line[1]="Next time say `dashed <known picture expression>';";
22497 else if ( t==mp_uninitialized_model )
22498 mp->help_line[1]="Next time say `withcolor <known color expression>';";
22499 else if ( t==mp_rgb_model )
22500 mp->help_line[1]="Next time say `withrgbcolor <known color expression>';";
22501 else if ( t==mp_cmyk_model )
22502 mp->help_line[1]="Next time say `withcmykcolor <known cmykcolor expression>';";
22503 else if ( t==mp_grey_model )
22504 mp->help_line[1]="Next time say `withgreyscale <known numeric expression>';";;
22505 mp_put_get_flush_error(mp, 0);
22508 @ Forcing the color to be between |0| and |unity| here guarantees that no
22509 picture will ever contain a color outside the legal range for \ps\ graphics.
22511 @<Transfer a color from the current expression to object~|cp|@>=
22512 { if ( mp->cur_type==mp_color_type )
22513 @<Transfer a rgbcolor from the current expression to object~|cp|@>
22514 else if ( mp->cur_type==mp_cmykcolor_type )
22515 @<Transfer a cmykcolor from the current expression to object~|cp|@>
22516 else if ( mp->cur_type==mp_known )
22517 @<Transfer a greyscale from the current expression to object~|cp|@>
22518 else if ( mp->cur_exp==false_code )
22519 @<Transfer a noncolor from the current expression to object~|cp|@>;
22522 @ @<Transfer a rgbcolor from the current expression to object~|cp|@>=
22523 { q=value(mp->cur_exp);
22528 red_val(cp)=value(red_part_loc(q));
22529 green_val(cp)=value(green_part_loc(q));
22530 blue_val(cp)=value(blue_part_loc(q));
22531 color_model(cp)=mp_rgb_model;
22532 if ( red_val(cp)<0 ) red_val(cp)=0;
22533 if ( green_val(cp)<0 ) green_val(cp)=0;
22534 if ( blue_val(cp)<0 ) blue_val(cp)=0;
22535 if ( red_val(cp)>unity ) red_val(cp)=unity;
22536 if ( green_val(cp)>unity ) green_val(cp)=unity;
22537 if ( blue_val(cp)>unity ) blue_val(cp)=unity;
22540 @ @<Transfer a cmykcolor from the current expression to object~|cp|@>=
22541 { q=value(mp->cur_exp);
22542 cyan_val(cp)=value(cyan_part_loc(q));
22543 magenta_val(cp)=value(magenta_part_loc(q));
22544 yellow_val(cp)=value(yellow_part_loc(q));
22545 black_val(cp)=value(black_part_loc(q));
22546 color_model(cp)=mp_cmyk_model;
22547 if ( cyan_val(cp)<0 ) cyan_val(cp)=0;
22548 if ( magenta_val(cp)<0 ) magenta_val(cp)=0;
22549 if ( yellow_val(cp)<0 ) yellow_val(cp)=0;
22550 if ( black_val(cp)<0 ) black_val(cp)=0;
22551 if ( cyan_val(cp)>unity ) cyan_val(cp)=unity;
22552 if ( magenta_val(cp)>unity ) magenta_val(cp)=unity;
22553 if ( yellow_val(cp)>unity ) yellow_val(cp)=unity;
22554 if ( black_val(cp)>unity ) black_val(cp)=unity;
22557 @ @<Transfer a greyscale from the current expression to object~|cp|@>=
22564 color_model(cp)=mp_grey_model;
22565 if ( grey_val(cp)<0 ) grey_val(cp)=0;
22566 if ( grey_val(cp)>unity ) grey_val(cp)=unity;
22569 @ @<Transfer a noncolor from the current expression to object~|cp|@>=
22576 color_model(cp)=mp_no_model;
22579 @ @<Make |cp| a colored object in object list~|p|@>=
22581 while ( cp!=null ){
22582 if ( has_color(cp) ) break;
22587 @ @<Make |pp| an object in list~|p| that needs a pen@>=
22589 while ( pp!=null ) {
22590 if ( has_pen(pp) ) break;
22595 @ @<Make |dp| a stroked node in list~|p|@>=
22597 while ( dp!=null ) {
22598 if ( type(dp)==mp_stroked_code ) break;
22603 @ @<Copy the information from objects |cp|, |pp|, and |dp| into...@>=
22604 @<Copy |cp|'s color into the colored objects linked to~|cp|@>;
22605 if ( pp>mp_void ) {
22606 @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>;
22608 if ( dp>mp_void ) {
22609 @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>;
22613 @ @<Copy |cp|'s color into the colored objects linked to~|cp|@>=
22615 while ( q!=null ) {
22616 if ( has_color(q) ) {
22617 red_val(q)=red_val(cp);
22618 green_val(q)=green_val(cp);
22619 blue_val(q)=blue_val(cp);
22620 black_val(q)=black_val(cp);
22621 color_model(q)=color_model(cp);
22627 @ @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>=
22629 while ( q!=null ) {
22630 if ( has_pen(q) ) {
22631 if ( pen_p(q)!=null ) mp_toss_knot_list(mp, pen_p(q));
22632 pen_p(q)=copy_pen(pen_p(pp));
22638 @ @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>=
22640 while ( q!=null ) {
22641 if ( type(q)==mp_stroked_code ) {
22642 if ( dash_p(q)!=null ) delete_edge_ref(dash_p(q));
22643 dash_p(q)=dash_p(dp);
22644 dash_scale(q)=unity;
22645 if ( dash_p(q)!=null ) add_edge_ref(dash_p(q));
22651 @ One of the things we need to do when we've parsed an \&{addto} or
22652 similar command is find the header of a supposed \&{picture} variable, given
22653 a token list for that variable. Since the edge structure is about to be
22654 updated, we use |private_edges| to make sure that this is possible.
22656 @<Declare action procedures for use by |do_statement|@>=
22657 pointer mp_find_edges_var (MP mp, pointer t) ;
22659 @ @c pointer mp_find_edges_var (MP mp, pointer t) {
22661 pointer cur_edges; /* the return value */
22662 p=mp_find_variable(mp, t); cur_edges=null;
22664 mp_obliterated(mp, t); mp_put_get_error(mp);
22665 } else if ( type(p)!=mp_picture_type ) {
22666 print_err("Variable "); mp_show_token_list(mp, t,null,1000,0);
22667 @.Variable x is the wrong type@>
22668 mp_print(mp, " is the wrong type (");
22669 mp_print_type(mp, type(p)); mp_print_char(mp, ')');
22670 help2("I was looking for a \"known\" picture variable.")
22671 ("So I'll not change anything just now.");
22672 mp_put_get_error(mp);
22674 value(p)=mp_private_edges(mp, value(p));
22675 cur_edges=value(p);
22677 mp_flush_node_list(mp, t);
22681 @ @<Cases of |do_statement|...@>=
22682 case add_to_command: mp_do_add_to(mp); break;
22683 case bounds_command:mp_do_bounds(mp); break;
22686 mp_primitive(mp, "clip",bounds_command,mp_start_clip_code);
22687 @:clip_}{\&{clip} primitive@>
22688 mp_primitive(mp, "setbounds",bounds_command,mp_start_bounds_code);
22689 @:set_bounds_}{\&{setbounds} primitive@>
22691 @ @<Cases of |print_cmd...@>=
22692 case bounds_command:
22693 if ( m==mp_start_clip_code ) mp_print(mp, "clip");
22694 else mp_print(mp, "setbounds");
22697 @ The following function parses the beginning of an \&{addto} or \&{clip}
22698 command: it expects a variable name followed by a token with |cur_cmd=sep|
22699 and then an expression. The function returns the token list for the variable
22700 and stores the command modifier for the separator token in the global variable
22701 |last_add_type|. We must be careful because this variable might get overwritten
22702 any time we call |get_x_next|.
22705 quarterword last_add_type;
22706 /* command modifier that identifies the last \&{addto} command */
22708 @ @<Declare action procedures for use by |do_statement|@>=
22709 pointer mp_start_draw_cmd (MP mp,quarterword sep) ;
22711 @ @c pointer mp_start_draw_cmd (MP mp,quarterword sep) {
22712 pointer lhv; /* variable to add to left */
22713 quarterword add_type=0; /* value to be returned in |last_add_type| */
22715 mp_get_x_next(mp); mp->var_flag=sep; mp_scan_primary(mp);
22716 if ( mp->cur_type!=mp_token_list ) {
22717 @<Abandon edges command because there's no variable@>;
22719 lhv=mp->cur_exp; add_type=mp->cur_mod;
22720 mp->cur_type=mp_vacuous; mp_get_x_next(mp); mp_scan_expression(mp);
22722 mp->last_add_type=add_type;
22726 @ @<Abandon edges command because there's no variable@>=
22727 { exp_err("Not a suitable variable");
22728 @.Not a suitable variable@>
22729 help4("At this point I needed to see the name of a picture variable.")
22730 ("(Or perhaps you have indeed presented me with one; I might")
22731 ("have missed it, if it wasn't followed by the proper token.)")
22732 ("So I'll not change anything just now.");
22733 mp_put_get_flush_error(mp, 0);
22736 @ Here is an example of how to use |start_draw_cmd|.
22738 @<Declare action procedures for use by |do_statement|@>=
22739 void mp_do_bounds (MP mp) ;
22741 @ @c void mp_do_bounds (MP mp) {
22742 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22743 pointer p; /* for list manipulation */
22744 integer m; /* initial value of |cur_mod| */
22746 lhv=mp_start_draw_cmd(mp, to_token);
22748 lhe=mp_find_edges_var(mp, lhv);
22750 mp_flush_cur_exp(mp, 0);
22751 } else if ( mp->cur_type!=mp_path_type ) {
22752 exp_err("Improper `clip'");
22753 @.Improper `addto'@>
22754 help2("This expression should have specified a known path.")
22755 ("So I'll not change anything just now.");
22756 mp_put_get_flush_error(mp, 0);
22757 } else if ( left_type(mp->cur_exp)==mp_endpoint ) {
22758 @<Complain about a non-cycle@>;
22760 @<Make |cur_exp| into a \&{setbounds} or clipping path and add it to |lhe|@>;
22765 @ @<Complain about a non-cycle@>=
22766 { print_err("Not a cycle");
22768 help2("That contour should have ended with `..cycle' or `&cycle'.")
22769 ("So I'll not change anything just now."); mp_put_get_error(mp);
22772 @ @<Make |cur_exp| into a \&{setbounds} or clipping path and add...@>=
22773 { p=mp_new_bounds_node(mp, mp->cur_exp,m);
22774 link(p)=link(dummy_loc(lhe));
22775 link(dummy_loc(lhe))=p;
22776 if ( obj_tail(lhe)==dummy_loc(lhe) ) obj_tail(lhe)=p;
22777 p=mp_get_node(mp, mp->gr_object_size[stop_type(m)]);
22778 type(p)=stop_type(m);
22779 link(obj_tail(lhe))=p;
22781 mp_init_bbox(mp, lhe);
22784 @ The |do_add_to| procedure is a little like |do_clip| but there are a lot more
22785 cases to deal with.
22787 @<Declare action procedures for use by |do_statement|@>=
22788 void mp_do_add_to (MP mp) ;
22790 @ @c void mp_do_add_to (MP mp) {
22791 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22792 pointer p; /* the graphical object or list for |scan_with_list| to update */
22793 pointer e; /* an edge structure to be merged */
22794 quarterword add_type; /* |also_code|, |contour_code|, or |double_path_code| */
22795 lhv=mp_start_draw_cmd(mp, thing_to_add); add_type=mp->last_add_type;
22797 if ( add_type==also_code ) {
22798 @<Make sure the current expression is a suitable picture and set |e| and |p|
22801 @<Create a graphical object |p| based on |add_type| and the current
22804 mp_scan_with_list(mp, p);
22805 @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>;
22809 @ Setting |p:=null| causes the $\langle$with list$\rangle$ to be ignored;
22810 setting |e:=null| prevents anything from being added to |lhe|.
22812 @ @<Make sure the current expression is a suitable picture and set |e|...@>=
22815 if ( mp->cur_type!=mp_picture_type ) {
22816 exp_err("Improper `addto'");
22817 @.Improper `addto'@>
22818 help2("This expression should have specified a known picture.")
22819 ("So I'll not change anything just now."); mp_put_get_flush_error(mp, 0);
22821 e=mp_private_edges(mp, mp->cur_exp); mp->cur_type=mp_vacuous;
22822 p=link(dummy_loc(e));
22826 @ In this case |add_type<>also_code| so setting |p:=null| suppresses future
22827 attempts to add to the edge structure.
22829 @<Create a graphical object |p| based on |add_type| and the current...@>=
22831 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
22832 if ( mp->cur_type!=mp_path_type ) {
22833 exp_err("Improper `addto'");
22834 @.Improper `addto'@>
22835 help2("This expression should have specified a known path.")
22836 ("So I'll not change anything just now.");
22837 mp_put_get_flush_error(mp, 0);
22838 } else if ( add_type==contour_code ) {
22839 if ( left_type(mp->cur_exp)==mp_endpoint ) {
22840 @<Complain about a non-cycle@>;
22842 p=mp_new_fill_node(mp, mp->cur_exp);
22843 mp->cur_type=mp_vacuous;
22846 p=mp_new_stroked_node(mp, mp->cur_exp);
22847 mp->cur_type=mp_vacuous;
22851 @ @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>=
22852 lhe=mp_find_edges_var(mp, lhv);
22854 if ( (e==null)&&(p!=null) ) e=mp_toss_gr_object(mp, p);
22855 if ( e!=null ) delete_edge_ref(e);
22856 } else if ( add_type==also_code ) {
22858 @<Merge |e| into |lhe| and delete |e|@>;
22862 } else if ( p!=null ) {
22863 link(obj_tail(lhe))=p;
22865 if ( add_type==double_path_code )
22866 if ( pen_p(p)==null )
22867 pen_p(p)=mp_get_pen_circle(mp, 0);
22870 @ @<Merge |e| into |lhe| and delete |e|@>=
22871 { if ( link(dummy_loc(e))!=null ) {
22872 link(obj_tail(lhe))=link(dummy_loc(e));
22873 obj_tail(lhe)=obj_tail(e);
22874 obj_tail(e)=dummy_loc(e);
22875 link(dummy_loc(e))=null;
22876 mp_flush_dash_list(mp, lhe);
22878 mp_toss_edges(mp, e);
22881 @ @<Cases of |do_statement|...@>=
22882 case ship_out_command: mp_do_ship_out(mp); break;
22884 @ @<Declare action procedures for use by |do_statement|@>=
22885 @<Declare the function called |tfm_check|@>;
22886 @<Declare the \ps\ output procedures@>;
22887 void mp_do_ship_out (MP mp) ;
22889 @ @c void mp_do_ship_out (MP mp) {
22890 integer c; /* the character code */
22891 mp_get_x_next(mp); mp_scan_expression(mp);
22892 if ( mp->cur_type!=mp_picture_type ) {
22893 @<Complain that it's not a known picture@>;
22895 c=mp_round_unscaled(mp, mp->internal[mp_char_code]) % 256;
22896 if ( c<0 ) c=c+256;
22897 @<Store the width information for character code~|c|@>;
22898 mp_ship_out(mp, mp->cur_exp);
22899 mp_flush_cur_exp(mp, 0);
22903 @ @<Complain that it's not a known picture@>=
22905 exp_err("Not a known picture");
22906 help1("I can only output known pictures.");
22907 mp_put_get_flush_error(mp, 0);
22910 @ The \&{everyjob} command simply assigns a nonzero value to the global variable
22913 @<Cases of |do_statement|...@>=
22914 case every_job_command:
22915 mp_get_symbol(mp); mp->start_sym=mp->cur_sym; mp_get_x_next(mp);
22919 halfword start_sym; /* a symbolic token to insert at beginning of job */
22924 @ Finally, we have only the ``message'' commands remaining.
22927 @d err_message_code 1
22929 @d filename_template_code 3
22930 @d print_with_leading_zeroes(A) g = mp->pool_ptr;
22931 mp_print_int(mp, (A)); g = mp->pool_ptr-g;
22933 mp->pool_ptr = mp->pool_ptr - g;
22935 mp_print_char(mp, '0');
22938 mp_print_int(mp, (A));
22943 mp_primitive(mp, "message",message_command,message_code);
22944 @:message_}{\&{message} primitive@>
22945 mp_primitive(mp, "errmessage",message_command,err_message_code);
22946 @:err_message_}{\&{errmessage} primitive@>
22947 mp_primitive(mp, "errhelp",message_command,err_help_code);
22948 @:err_help_}{\&{errhelp} primitive@>
22949 mp_primitive(mp, "filenametemplate",message_command,filename_template_code);
22950 @:filename_template_}{\&{filenametemplate} primitive@>
22952 @ @<Cases of |print_cmd...@>=
22953 case message_command:
22954 if ( m<err_message_code ) mp_print(mp, "message");
22955 else if ( m==err_message_code ) mp_print(mp, "errmessage");
22956 else if ( m==filename_template_code ) mp_print(mp, "filenametemplate");
22957 else mp_print(mp, "errhelp");
22960 @ @<Cases of |do_statement|...@>=
22961 case message_command: mp_do_message(mp); break;
22963 @ @<Declare action procedures for use by |do_statement|@>=
22964 @<Declare a procedure called |no_string_err|@>;
22965 void mp_do_message (MP mp) ;
22968 @c void mp_do_message (MP mp) {
22969 int m; /* the type of message */
22970 m=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
22971 if ( mp->cur_type!=mp_string_type )
22972 mp_no_string_err(mp, "A message should be a known string expression.");
22976 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp);
22978 case err_message_code:
22979 @<Print string |cur_exp| as an error message@>;
22981 case err_help_code:
22982 @<Save string |cur_exp| as the |err_help|@>;
22984 case filename_template_code:
22985 @<Save the filename template@>;
22987 } /* there are no other cases */
22989 mp_flush_cur_exp(mp, 0);
22992 @ @<Declare a procedure called |no_string_err|@>=
22993 void mp_no_string_err (MP mp,char *s) {
22994 exp_err("Not a string");
22997 mp_put_get_error(mp);
23000 @ The global variable |err_help| is zero when the user has most recently
23001 given an empty help string, or if none has ever been given.
23003 @<Save string |cur_exp| as the |err_help|@>=
23005 if ( mp->err_help!=0 ) delete_str_ref(mp->err_help);
23006 if ( length(mp->cur_exp)==0 ) mp->err_help=0;
23007 else { mp->err_help=mp->cur_exp; add_str_ref(mp->err_help); }
23010 @ If \&{errmessage} occurs often in |mp_scroll_mode|, without user-defined
23011 \&{errhelp}, we don't want to give a long help message each time. So we
23012 give a verbose explanation only once.
23015 boolean long_help_seen; /* has the long \.{\\errmessage} help been used? */
23017 @ @<Set init...@>=mp->long_help_seen=false;
23019 @ @<Print string |cur_exp| as an error message@>=
23021 print_err(""); mp_print_str(mp, mp->cur_exp);
23022 if ( mp->err_help!=0 ) {
23023 mp->use_err_help=true;
23024 } else if ( mp->long_help_seen ) {
23025 help1("(That was another `errmessage'.)") ;
23027 if ( mp->interaction<mp_error_stop_mode ) mp->long_help_seen=true;
23028 help4("This error message was generated by an `errmessage'")
23029 ("command, so I can\'t give any explicit help.")
23030 ("Pretend that you're Miss Marple: Examine all clues,")
23032 ("and deduce the truth by inspired guesses.");
23034 mp_put_get_error(mp); mp->use_err_help=false;
23037 @ @<Cases of |do_statement|...@>=
23038 case write_command: mp_do_write(mp); break;
23040 @ @<Declare action procedures for use by |do_statement|@>=
23041 void mp_do_write (MP mp) ;
23043 @ @c void mp_do_write (MP mp) {
23044 str_number t; /* the line of text to be written */
23045 write_index n,n0; /* for searching |wr_fname| and |wr_file| arrays */
23046 int old_setting; /* for saving |selector| during output */
23048 mp_scan_expression(mp);
23049 if ( mp->cur_type!=mp_string_type ) {
23050 mp_no_string_err(mp, "The text to be written should be a known string expression");
23051 } else if ( mp->cur_cmd!=to_token ) {
23052 print_err("Missing `to' clause");
23053 help1("A write command should end with `to <filename>'");
23054 mp_put_get_error(mp);
23056 t=mp->cur_exp; mp->cur_type=mp_vacuous;
23058 mp_scan_expression(mp);
23059 if ( mp->cur_type!=mp_string_type )
23060 mp_no_string_err(mp, "I can\'t write to that file name. It isn't a known string");
23062 @<Write |t| to the file named by |cur_exp|@>;
23066 mp_flush_cur_exp(mp, 0);
23069 @ @<Write |t| to the file named by |cur_exp|@>=
23071 @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if
23072 |cur_exp| must be inserted@>;
23073 if ( mp_str_vs_str(mp, t,mp->eof_line)==0 ) {
23074 @<Record the end of file on |wr_file[n]|@>;
23076 old_setting=mp->selector;
23077 mp->selector=n+write_file;
23078 mp_print_str(mp, t); mp_print_ln(mp);
23079 mp->selector = old_setting;
23083 @ @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if...@>=
23085 char *fn = str(mp->cur_exp);
23087 n0=mp->write_files;
23088 while (mp_xstrcmp(fn,mp->wr_fname[n])!=0) {
23089 if ( n==0 ) { /* bottom reached */
23090 if ( n0==mp->write_files ) {
23091 if ( mp->write_files<mp->max_write_files ) {
23092 incr(mp->write_files);
23097 l = mp->max_write_files + (mp->max_write_files>>2);
23098 wr_file = xmalloc((l+1),sizeof(void *));
23099 wr_fname = xmalloc((l+1),sizeof(char *));
23100 for (k=0;k<=l;k++) {
23101 if (k<=mp->max_write_files) {
23102 wr_file[k]=mp->wr_file[k];
23103 wr_fname[k]=mp->wr_fname[k];
23109 xfree(mp->wr_file); xfree(mp->wr_fname);
23110 mp->max_write_files = l;
23111 mp->wr_file = wr_file;
23112 mp->wr_fname = wr_fname;
23116 mp_open_write_file(mp, fn ,n);
23119 if ( mp->wr_fname[n]==NULL ) n0=n;
23124 @ @<Record the end of file on |wr_file[n]|@>=
23125 { (mp->close_file)(mp->wr_file[n]);
23126 xfree(mp->wr_fname[n]);
23127 mp->wr_fname[n]=NULL;
23128 if ( n==mp->write_files-1 ) mp->write_files=n;
23132 @* \[42] Writing font metric data.
23133 \TeX\ gets its knowledge about fonts from font metric files, also called
23134 \.{TFM} files; the `\.T' in `\.{TFM}' stands for \TeX,
23135 but other programs know about them too. One of \MP's duties is to
23136 write \.{TFM} files so that the user's fonts can readily be
23137 applied to typesetting.
23138 @:TFM files}{\.{TFM} files@>
23139 @^font metric files@>
23141 The information in a \.{TFM} file appears in a sequence of 8-bit bytes.
23142 Since the number of bytes is always a multiple of~4, we could
23143 also regard the file as a sequence of 32-bit words, but \MP\ uses the
23144 byte interpretation. The format of \.{TFM} files was designed by
23145 Lyle Ramshaw in 1980. The intent is to convey a lot of different kinds
23146 @^Ramshaw, Lyle Harold@>
23147 of information in a compact but useful form.
23150 void * tfm_file; /* the font metric output goes here */
23151 char * metric_file_name; /* full name of the font metric file */
23153 @ The first 24 bytes (6 words) of a \.{TFM} file contain twelve 16-bit
23154 integers that give the lengths of the various subsequent portions
23155 of the file. These twelve integers are, in order:
23156 $$\vbox{\halign{\hfil#&$\null=\null$#\hfil\cr
23157 |lf|&length of the entire file, in words;\cr
23158 |lh|&length of the header data, in words;\cr
23159 |bc|&smallest character code in the font;\cr
23160 |ec|&largest character code in the font;\cr
23161 |nw|&number of words in the width table;\cr
23162 |nh|&number of words in the height table;\cr
23163 |nd|&number of words in the depth table;\cr
23164 |ni|&number of words in the italic correction table;\cr
23165 |nl|&number of words in the lig/kern table;\cr
23166 |nk|&number of words in the kern table;\cr
23167 |ne|&number of words in the extensible character table;\cr
23168 |np|&number of font parameter words.\cr}}$$
23169 They are all nonnegative and less than $2^{15}$. We must have |bc-1<=ec<=255|,
23171 $$\hbox{|lf=6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np|.}$$
23172 Note that a font may contain as many as 256 characters (if |bc=0| and |ec=255|),
23173 and as few as 0 characters (if |bc=ec+1|).
23175 Incidentally, when two or more 8-bit bytes are combined to form an integer of
23176 16 or more bits, the most significant bytes appear first in the file.
23177 This is called BigEndian order.
23178 @^BigEndian order@>
23180 @ The rest of the \.{TFM} file may be regarded as a sequence of ten data
23183 The most important data type used here is a |fix_word|, which is
23184 a 32-bit representation of a binary fraction. A |fix_word| is a signed
23185 quantity, with the two's complement of the entire word used to represent
23186 negation. Of the 32 bits in a |fix_word|, exactly 12 are to the left of the
23187 binary point; thus, the largest |fix_word| value is $2048-2^{-20}$, and
23188 the smallest is $-2048$. We will see below, however, that all but two of
23189 the |fix_word| values must lie between $-16$ and $+16$.
23191 @ The first data array is a block of header information, which contains
23192 general facts about the font. The header must contain at least two words,
23193 |header[0]| and |header[1]|, whose meaning is explained below. Additional
23194 header information of use to other software routines might also be
23195 included, and \MP\ will generate it if the \.{headerbyte} command occurs.
23196 For example, 16 more words of header information are in use at the Xerox
23197 Palo Alto Research Center; the first ten specify the character coding
23198 scheme used (e.g., `\.{XEROX TEXT}' or `\.{TEX MATHSY}'), the next five
23199 give the font family name (e.g., `\.{HELVETICA}' or `\.{CMSY}'), and the
23200 last gives the ``face byte.''
23202 \yskip\hang|header[0]| is a 32-bit check sum that \MP\ will copy into
23203 the \.{GF} output file. This helps ensure consistency between files,
23204 since \TeX\ records the check sums from the \.{TFM}'s it reads, and these
23205 should match the check sums on actual fonts that are used. The actual
23206 relation between this check sum and the rest of the \.{TFM} file is not
23207 important; the check sum is simply an identification number with the
23208 property that incompatible fonts almost always have distinct check sums.
23211 \yskip\hang|header[1]| is a |fix_word| containing the design size of the
23212 font, in units of \TeX\ points. This number must be at least 1.0; it is
23213 fairly arbitrary, but usually the design size is 10.0 for a ``10 point''
23214 font, i.e., a font that was designed to look best at a 10-point size,
23215 whatever that really means. When a \TeX\ user asks for a font `\.{at}
23216 $\delta$ \.{pt}', the effect is to override the design size and replace it
23217 by $\delta$, and to multiply the $x$ and~$y$ coordinates of the points in
23218 the font image by a factor of $\delta$ divided by the design size. {\sl
23219 All other dimensions in the\/ \.{TFM} file are |fix_word|\kern-1pt\
23220 numbers in design-size units.} Thus, for example, the value of |param[6]|,
23221 which defines the \.{em} unit, is often the |fix_word| value $2^{20}=1.0$,
23222 since many fonts have a design size equal to one em. The other dimensions
23223 must be less than 16 design-size units in absolute value; thus,
23224 |header[1]| and |param[1]| are the only |fix_word| entries in the whole
23225 \.{TFM} file whose first byte might be something besides 0 or 255.
23227 @ Next comes the |char_info| array, which contains one |char_info_word|
23228 per character. Each word in this part of the file contains six fields
23229 packed into four bytes as follows.
23231 \yskip\hang first byte: |width_index| (8 bits)\par
23232 \hang second byte: |height_index| (4 bits) times 16, plus |depth_index|
23234 \hang third byte: |italic_index| (6 bits) times 4, plus |tag|
23236 \hang fourth byte: |remainder| (8 bits)\par
23238 The actual width of a character is \\{width}|[width_index]|, in design-size
23239 units; this is a device for compressing information, since many characters
23240 have the same width. Since it is quite common for many characters
23241 to have the same height, depth, or italic correction, the \.{TFM} format
23242 imposes a limit of 16 different heights, 16 different depths, and
23243 64 different italic corrections.
23245 Incidentally, the relation $\\{width}[0]=\\{height}[0]=\\{depth}[0]=
23246 \\{italic}[0]=0$ should always hold, so that an index of zero implies a
23247 value of zero. The |width_index| should never be zero unless the
23248 character does not exist in the font, since a character is valid if and
23249 only if it lies between |bc| and |ec| and has a nonzero |width_index|.
23251 @ The |tag| field in a |char_info_word| has four values that explain how to
23252 interpret the |remainder| field.
23254 \yskip\hang|tag=0| (|no_tag|) means that |remainder| is unused.\par
23255 \hang|tag=1| (|lig_tag|) means that this character has a ligature/kerning
23256 program starting at location |remainder| in the |lig_kern| array.\par
23257 \hang|tag=2| (|list_tag|) means that this character is part of a chain of
23258 characters of ascending sizes, and not the largest in the chain. The
23259 |remainder| field gives the character code of the next larger character.\par
23260 \hang|tag=3| (|ext_tag|) means that this character code represents an
23261 extensible character, i.e., a character that is built up of smaller pieces
23262 so that it can be made arbitrarily large. The pieces are specified in
23263 |exten[remainder]|.\par
23265 Characters with |tag=2| and |tag=3| are treated as characters with |tag=0|
23266 unless they are used in special circumstances in math formulas. For example,
23267 \TeX's \.{\\sum} operation looks for a |list_tag|, and the \.{\\left}
23268 operation looks for both |list_tag| and |ext_tag|.
23270 @d no_tag 0 /* vanilla character */
23271 @d lig_tag 1 /* character has a ligature/kerning program */
23272 @d list_tag 2 /* character has a successor in a charlist */
23273 @d ext_tag 3 /* character is extensible */
23275 @ The |lig_kern| array contains instructions in a simple programming language
23276 that explains what to do for special letter pairs. Each word in this array is a
23277 |lig_kern_command| of four bytes.
23279 \yskip\hang first byte: |skip_byte|, indicates that this is the final program
23280 step if the byte is 128 or more, otherwise the next step is obtained by
23281 skipping this number of intervening steps.\par
23282 \hang second byte: |next_char|, ``if |next_char| follows the current character,
23283 then perform the operation and stop, otherwise continue.''\par
23284 \hang third byte: |op_byte|, indicates a ligature step if less than~128,
23285 a kern step otherwise.\par
23286 \hang fourth byte: |remainder|.\par
23289 additional space equal to |kern[256*(op_byte-128)+remainder]| is inserted
23290 between the current character and |next_char|. This amount is
23291 often negative, so that the characters are brought closer together
23292 by kerning; but it might be positive.
23294 There are eight kinds of ligature steps, having |op_byte| codes $4a+2b+c$ where
23295 $0\le a\le b+c$ and $0\le b,c\le1$. The character whose code is
23296 |remainder| is inserted between the current character and |next_char|;
23297 then the current character is deleted if $b=0$, and |next_char| is
23298 deleted if $c=0$; then we pass over $a$~characters to reach the next
23299 current character (which may have a ligature/kerning program of its own).
23301 If the very first instruction of the |lig_kern| array has |skip_byte=255|,
23302 the |next_char| byte is the so-called right boundary character of this font;
23303 the value of |next_char| need not lie between |bc| and~|ec|.
23304 If the very last instruction of the |lig_kern| array has |skip_byte=255|,
23305 there is a special ligature/kerning program for a left boundary character,
23306 beginning at location |256*op_byte+remainder|.
23307 The interpretation is that \TeX\ puts implicit boundary characters
23308 before and after each consecutive string of characters from the same font.
23309 These implicit characters do not appear in the output, but they can affect
23310 ligatures and kerning.
23312 If the very first instruction of a character's |lig_kern| program has
23313 |skip_byte>128|, the program actually begins in location
23314 |256*op_byte+remainder|. This feature allows access to large |lig_kern|
23315 arrays, because the first instruction must otherwise
23316 appear in a location |<=255|.
23318 Any instruction with |skip_byte>128| in the |lig_kern| array must satisfy
23320 $$\hbox{|256*op_byte+remainder<nl|.}$$
23321 If such an instruction is encountered during
23322 normal program execution, it denotes an unconditional halt; no ligature
23323 command is performed.
23326 /* value indicating `\.{STOP}' in a lig/kern program */
23327 @d kern_flag (128) /* op code for a kern step */
23328 @d skip_byte(A) mp->lig_kern[(A)].b0
23329 @d next_char(A) mp->lig_kern[(A)].b1
23330 @d op_byte(A) mp->lig_kern[(A)].b2
23331 @d rem_byte(A) mp->lig_kern[(A)].b3
23333 @ Extensible characters are specified by an |extensible_recipe|, which
23334 consists of four bytes called |top|, |mid|, |bot|, and |rep| (in this
23335 order). These bytes are the character codes of individual pieces used to
23336 build up a large symbol. If |top|, |mid|, or |bot| are zero, they are not
23337 present in the built-up result. For example, an extensible vertical line is
23338 like an extensible bracket, except that the top and bottom pieces are missing.
23340 Let $T$, $M$, $B$, and $R$ denote the respective pieces, or an empty box
23341 if the piece isn't present. Then the extensible characters have the form
23342 $TR^kMR^kB$ from top to bottom, for some |k>=0|, unless $M$ is absent;
23343 in the latter case we can have $TR^kB$ for both even and odd values of~|k|.
23344 The width of the extensible character is the width of $R$; and the
23345 height-plus-depth is the sum of the individual height-plus-depths of the
23346 components used, since the pieces are butted together in a vertical list.
23348 @d ext_top(A) mp->exten[(A)].b0 /* |top| piece in a recipe */
23349 @d ext_mid(A) mp->exten[(A)].b1 /* |mid| piece in a recipe */
23350 @d ext_bot(A) mp->exten[(A)].b2 /* |bot| piece in a recipe */
23351 @d ext_rep(A) mp->exten[(A)].b3 /* |rep| piece in a recipe */
23353 @ The final portion of a \.{TFM} file is the |param| array, which is another
23354 sequence of |fix_word| values.
23356 \yskip\hang|param[1]=slant| is the amount of italic slant, which is used
23357 to help position accents. For example, |slant=.25| means that when you go
23358 up one unit, you also go .25 units to the right. The |slant| is a pure
23359 number; it is the only |fix_word| other than the design size itself that is
23360 not scaled by the design size.
23362 \hang|param[2]=space| is the normal spacing between words in text.
23363 Note that character 040 in the font need not have anything to do with
23366 \hang|param[3]=space_stretch| is the amount of glue stretching between words.
23368 \hang|param[4]=space_shrink| is the amount of glue shrinking between words.
23370 \hang|param[5]=x_height| is the size of one ex in the font; it is also
23371 the height of letters for which accents don't have to be raised or lowered.
23373 \hang|param[6]=quad| is the size of one em in the font.
23375 \hang|param[7]=extra_space| is the amount added to |param[2]| at the
23379 If fewer than seven parameters are present, \TeX\ sets the missing parameters
23384 @d space_stretch_code 3
23385 @d space_shrink_code 4
23388 @d extra_space_code 7
23390 @ So that is what \.{TFM} files hold. One of \MP's duties is to output such
23391 information, and it does this all at once at the end of a job.
23392 In order to prepare for such frenetic activity, it squirrels away the
23393 necessary facts in various arrays as information becomes available.
23395 Character dimensions (\&{charwd}, \&{charht}, \&{chardp}, and \&{charic})
23396 are stored respectively in |tfm_width|, |tfm_height|, |tfm_depth|, and
23397 |tfm_ital_corr|. Other information about a character (e.g., about
23398 its ligatures or successors) is accessible via the |char_tag| and
23399 |char_remainder| arrays. Other information about the font as a whole
23400 is kept in additional arrays called |header_byte|, |lig_kern|,
23401 |kern|, |exten|, and |param|.
23403 @d max_tfm_int 32510
23404 @d undefined_label max_tfm_int /* an undefined local label */
23407 #define TFM_ITEMS 257
23409 eight_bits ec; /* smallest and largest character codes shipped out */
23410 scaled tfm_width[TFM_ITEMS]; /* \&{charwd} values */
23411 scaled tfm_height[TFM_ITEMS]; /* \&{charht} values */
23412 scaled tfm_depth[TFM_ITEMS]; /* \&{chardp} values */
23413 scaled tfm_ital_corr[TFM_ITEMS]; /* \&{charic} values */
23414 boolean char_exists[TFM_ITEMS]; /* has this code been shipped out? */
23415 int char_tag[TFM_ITEMS]; /* |remainder| category */
23416 int char_remainder[TFM_ITEMS]; /* the |remainder| byte */
23417 char *header_byte; /* bytes of the \.{TFM} header */
23418 int header_last; /* last initialized \.{TFM} header byte */
23419 int header_size; /* size of the \.{TFM} header */
23420 four_quarters *lig_kern; /* the ligature/kern table */
23421 short nl; /* the number of ligature/kern steps so far */
23422 scaled *kern; /* distinct kerning amounts */
23423 short nk; /* the number of distinct kerns so far */
23424 four_quarters exten[TFM_ITEMS]; /* extensible character recipes */
23425 short ne; /* the number of extensible characters so far */
23426 scaled *param; /* \&{fontinfo} parameters */
23427 short np; /* the largest \&{fontinfo} parameter specified so far */
23428 short nw;short nh;short nd;short ni; /* sizes of \.{TFM} subtables */
23429 short skip_table[TFM_ITEMS]; /* local label status */
23430 boolean lk_started; /* has there been a lig/kern step in this command yet? */
23431 integer bchar; /* right boundary character */
23432 short bch_label; /* left boundary starting location */
23433 short ll;short lll; /* registers used for lig/kern processing */
23434 short label_loc[257]; /* lig/kern starting addresses */
23435 eight_bits label_char[257]; /* characters for |label_loc| */
23436 short label_ptr; /* highest position occupied in |label_loc| */
23438 @ @<Allocate or initialize ...@>=
23439 mp->header_last = 0; mp->header_size = 128; /* just for init */
23440 mp->header_byte = xmalloc(mp->header_size, sizeof(char));
23441 mp->lig_kern = NULL; /* allocated when needed */
23442 mp->kern = NULL; /* allocated when needed */
23443 mp->param = NULL; /* allocated when needed */
23445 @ @<Dealloc variables@>=
23446 xfree(mp->header_byte);
23447 xfree(mp->lig_kern);
23452 for (k=0;k<= 255;k++ ) {
23453 mp->tfm_width[k]=0; mp->tfm_height[k]=0; mp->tfm_depth[k]=0; mp->tfm_ital_corr[k]=0;
23454 mp->char_exists[k]=false; mp->char_tag[k]=no_tag; mp->char_remainder[k]=0;
23455 mp->skip_table[k]=undefined_label;
23457 memset(mp->header_byte,0,mp->header_size);
23458 mp->bc=255; mp->ec=0; mp->nl=0; mp->nk=0; mp->ne=0; mp->np=0;
23459 mp->internal[mp_boundary_char]=-unity;
23460 mp->bch_label=undefined_label;
23461 mp->label_loc[0]=-1; mp->label_ptr=0;
23463 @ @<Declarations@>=
23464 scaled mp_tfm_check (MP mp,small_number m) ;
23466 @ @<Declare the function called |tfm_check|@>=
23467 scaled mp_tfm_check (MP mp,small_number m) {
23468 if ( abs(mp->internal[m])>=fraction_half ) {
23469 print_err("Enormous "); mp_print(mp, mp->int_name[m]);
23470 @.Enormous charwd...@>
23471 @.Enormous chardp...@>
23472 @.Enormous charht...@>
23473 @.Enormous charic...@>
23474 @.Enormous designsize...@>
23475 mp_print(mp, " has been reduced");
23476 help1("Font metric dimensions must be less than 2048pt.");
23477 mp_put_get_error(mp);
23478 if ( mp->internal[m]>0 ) return (fraction_half-1);
23479 else return (1-fraction_half);
23481 return mp->internal[m];
23485 @ @<Store the width information for character code~|c|@>=
23486 if ( c<mp->bc ) mp->bc=c;
23487 if ( c>mp->ec ) mp->ec=c;
23488 mp->char_exists[c]=true;
23489 mp->tfm_width[c]=mp_tfm_check(mp, mp_char_wd);
23490 mp->tfm_height[c]=mp_tfm_check(mp, mp_char_ht);
23491 mp->tfm_depth[c]=mp_tfm_check(mp, mp_char_dp);
23492 mp->tfm_ital_corr[c]=mp_tfm_check(mp, mp_char_ic)
23494 @ Now let's consider \MP's special \.{TFM}-oriented commands.
23496 @<Cases of |do_statement|...@>=
23497 case tfm_command: mp_do_tfm_command(mp); break;
23499 @ @d char_list_code 0
23500 @d lig_table_code 1
23501 @d extensible_code 2
23502 @d header_byte_code 3
23503 @d font_dimen_code 4
23506 mp_primitive(mp, "charlist",tfm_command,char_list_code);
23507 @:char_list_}{\&{charlist} primitive@>
23508 mp_primitive(mp, "ligtable",tfm_command,lig_table_code);
23509 @:lig_table_}{\&{ligtable} primitive@>
23510 mp_primitive(mp, "extensible",tfm_command,extensible_code);
23511 @:extensible_}{\&{extensible} primitive@>
23512 mp_primitive(mp, "headerbyte",tfm_command,header_byte_code);
23513 @:header_byte_}{\&{headerbyte} primitive@>
23514 mp_primitive(mp, "fontdimen",tfm_command,font_dimen_code);
23515 @:font_dimen_}{\&{fontdimen} primitive@>
23517 @ @<Cases of |print_cmd...@>=
23520 case char_list_code:mp_print(mp, "charlist"); break;
23521 case lig_table_code:mp_print(mp, "ligtable"); break;
23522 case extensible_code:mp_print(mp, "extensible"); break;
23523 case header_byte_code:mp_print(mp, "headerbyte"); break;
23524 default: mp_print(mp, "fontdimen"); break;
23528 @ @<Declare action procedures for use by |do_statement|@>=
23529 eight_bits mp_get_code (MP mp) ;
23531 @ @c eight_bits mp_get_code (MP mp) { /* scans a character code value */
23532 integer c; /* the code value found */
23533 mp_get_x_next(mp); mp_scan_expression(mp);
23534 if ( mp->cur_type==mp_known ) {
23535 c=mp_round_unscaled(mp, mp->cur_exp);
23536 if ( c>=0 ) if ( c<256 ) return c;
23537 } else if ( mp->cur_type==mp_string_type ) {
23538 if ( length(mp->cur_exp)==1 ) {
23539 c=mp->str_pool[mp->str_start[mp->cur_exp]];
23543 exp_err("Invalid code has been replaced by 0");
23544 @.Invalid code...@>
23545 help2("I was looking for a number between 0 and 255, or for a")
23546 ("string of length 1. Didn't find it; will use 0 instead.");
23547 mp_put_get_flush_error(mp, 0); c=0;
23551 @ @<Declare action procedures for use by |do_statement|@>=
23552 void mp_set_tag (MP mp,halfword c, small_number t, halfword r) ;
23554 @ @c void mp_set_tag (MP mp,halfword c, small_number t, halfword r) {
23555 if ( mp->char_tag[c]==no_tag ) {
23556 mp->char_tag[c]=t; mp->char_remainder[c]=r;
23558 incr(mp->label_ptr); mp->label_loc[mp->label_ptr]=r;
23559 mp->label_char[mp->label_ptr]=c;
23562 @<Complain about a character tag conflict@>;
23566 @ @<Complain about a character tag conflict@>=
23568 print_err("Character ");
23569 if ( (c>' ')&&(c<127) ) mp_print_char(mp,c);
23570 else if ( c==256 ) mp_print(mp, "||");
23571 else { mp_print(mp, "code "); mp_print_int(mp, c); };
23572 mp_print(mp, " is already ");
23573 @.Character c is already...@>
23574 switch (mp->char_tag[c]) {
23575 case lig_tag: mp_print(mp, "in a ligtable"); break;
23576 case list_tag: mp_print(mp, "in a charlist"); break;
23577 case ext_tag: mp_print(mp, "extensible"); break;
23578 } /* there are no other cases */
23579 help2("It's not legal to label a character more than once.")
23580 ("So I'll not change anything just now.");
23581 mp_put_get_error(mp);
23584 @ @<Declare action procedures for use by |do_statement|@>=
23585 void mp_do_tfm_command (MP mp) ;
23587 @ @c void mp_do_tfm_command (MP mp) {
23588 int c,cc; /* character codes */
23589 int k; /* index into the |kern| array */
23590 int j; /* index into |header_byte| or |param| */
23591 switch (mp->cur_mod) {
23592 case char_list_code:
23594 /* we will store a list of character successors */
23595 while ( mp->cur_cmd==colon ) {
23596 cc=mp_get_code(mp); mp_set_tag(mp, c,list_tag,cc); c=cc;
23599 case lig_table_code:
23600 if (mp->lig_kern==NULL)
23601 mp->lig_kern = xmalloc((max_tfm_int+1),sizeof(four_quarters));
23602 if (mp->kern==NULL)
23603 mp->kern = xmalloc((max_tfm_int+1),sizeof(scaled));
23604 @<Store a list of ligature/kern steps@>;
23606 case extensible_code:
23607 @<Define an extensible recipe@>;
23609 case header_byte_code:
23610 case font_dimen_code:
23611 c=mp->cur_mod; mp_get_x_next(mp);
23612 mp_scan_expression(mp);
23613 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<half_unit) ) {
23614 exp_err("Improper location");
23615 @.Improper location@>
23616 help2("I was looking for a known, positive number.")
23617 ("For safety's sake I'll ignore the present command.");
23618 mp_put_get_error(mp);
23620 j=mp_round_unscaled(mp, mp->cur_exp);
23621 if ( mp->cur_cmd!=colon ) {
23622 mp_missing_err(mp, ":");
23624 help1("A colon should follow a headerbyte or fontinfo location.");
23627 if ( c==header_byte_code ) {
23628 @<Store a list of header bytes@>;
23630 if (mp->param==NULL)
23631 mp->param = xmalloc((max_tfm_int+1),sizeof(scaled));
23632 @<Store a list of font dimensions@>;
23636 } /* there are no other cases */
23639 @ @<Store a list of ligature/kern steps@>=
23641 mp->lk_started=false;
23644 if ((mp->cur_cmd==skip_to)&& mp->lk_started )
23645 @<Process a |skip_to| command and |goto done|@>;
23646 if ( mp->cur_cmd==bchar_label ) { c=256; mp->cur_cmd=colon; }
23647 else { mp_back_input(mp); c=mp_get_code(mp); };
23648 if ((mp->cur_cmd==colon)||(mp->cur_cmd==double_colon)) {
23649 @<Record a label in a lig/kern subprogram and |goto continue|@>;
23651 if ( mp->cur_cmd==lig_kern_token ) {
23652 @<Compile a ligature/kern command@>;
23654 print_err("Illegal ligtable step");
23655 @.Illegal ligtable step@>
23656 help1("I was looking for `=:' or `kern' here.");
23657 mp_back_error(mp); next_char(mp->nl)=qi(0);
23658 op_byte(mp->nl)=qi(0); rem_byte(mp->nl)=qi(0);
23659 skip_byte(mp->nl)=stop_flag+1; /* this specifies an unconditional stop */
23661 if ( mp->nl==max_tfm_int) mp_fatal_error(mp, "ligtable too large");
23663 if ( mp->cur_cmd==comma ) goto CONTINUE;
23664 if ( skip_byte(mp->nl-1)<stop_flag ) skip_byte(mp->nl-1)=stop_flag;
23669 mp_primitive(mp, "=:",lig_kern_token,0);
23670 @:=:_}{\.{=:} primitive@>
23671 mp_primitive(mp, "=:|",lig_kern_token,1);
23672 @:=:/_}{\.{=:\char'174} primitive@>
23673 mp_primitive(mp, "=:|>",lig_kern_token,5);
23674 @:=:/>_}{\.{=:\char'174>} primitive@>
23675 mp_primitive(mp, "|=:",lig_kern_token,2);
23676 @:=:/_}{\.{\char'174=:} primitive@>
23677 mp_primitive(mp, "|=:>",lig_kern_token,6);
23678 @:=:/>_}{\.{\char'174=:>} primitive@>
23679 mp_primitive(mp, "|=:|",lig_kern_token,3);
23680 @:=:/_}{\.{\char'174=:\char'174} primitive@>
23681 mp_primitive(mp, "|=:|>",lig_kern_token,7);
23682 @:=:/>_}{\.{\char'174=:\char'174>} primitive@>
23683 mp_primitive(mp, "|=:|>>",lig_kern_token,11);
23684 @:=:/>_}{\.{\char'174=:\char'174>>} primitive@>
23685 mp_primitive(mp, "kern",lig_kern_token,128);
23686 @:kern_}{\&{kern} primitive@>
23688 @ @<Cases of |print_cmd...@>=
23689 case lig_kern_token:
23691 case 0:mp_print(mp, "=:"); break;
23692 case 1:mp_print(mp, "=:|"); break;
23693 case 2:mp_print(mp, "|=:"); break;
23694 case 3:mp_print(mp, "|=:|"); break;
23695 case 5:mp_print(mp, "=:|>"); break;
23696 case 6:mp_print(mp, "|=:>"); break;
23697 case 7:mp_print(mp, "|=:|>"); break;
23698 case 11:mp_print(mp, "|=:|>>"); break;
23699 default: mp_print(mp, "kern"); break;
23703 @ Local labels are implemented by maintaining the |skip_table| array,
23704 where |skip_table[c]| is either |undefined_label| or the address of the
23705 most recent lig/kern instruction that skips to local label~|c|. In the
23706 latter case, the |skip_byte| in that instruction will (temporarily)
23707 be zero if there were no prior skips to this label, or it will be the
23708 distance to the prior skip.
23710 We may need to cancel skips that span more than 127 lig/kern steps.
23712 @d cancel_skips(A) mp->ll=(A);
23714 mp->lll=qo(skip_byte(mp->ll));
23715 skip_byte(mp->ll)=stop_flag; mp->ll=mp->ll-mp->lll;
23716 } while (mp->lll!=0)
23717 @d skip_error(A) { print_err("Too far to skip");
23718 @.Too far to skip@>
23719 help1("At most 127 lig/kern steps can separate skipto1 from 1::.");
23720 mp_error(mp); cancel_skips((A));
23723 @<Process a |skip_to| command and |goto done|@>=
23726 if ( mp->nl-mp->skip_table[c]>128 ) { /* |skip_table[c]<<nl<=undefined_label| */
23727 skip_error(mp->skip_table[c]); mp->skip_table[c]=undefined_label;
23729 if ( mp->skip_table[c]==undefined_label ) skip_byte(mp->nl-1)=qi(0);
23730 else skip_byte(mp->nl-1)=qi(mp->nl-mp->skip_table[c]-1);
23731 mp->skip_table[c]=mp->nl-1; goto DONE;
23734 @ @<Record a label in a lig/kern subprogram and |goto continue|@>=
23736 if ( mp->cur_cmd==colon ) {
23737 if ( c==256 ) mp->bch_label=mp->nl;
23738 else mp_set_tag(mp, c,lig_tag,mp->nl);
23739 } else if ( mp->skip_table[c]<undefined_label ) {
23740 mp->ll=mp->skip_table[c]; mp->skip_table[c]=undefined_label;
23742 mp->lll=qo(skip_byte(mp->ll));
23743 if ( mp->nl-mp->ll>128 ) {
23744 skip_error(mp->ll); goto CONTINUE;
23746 skip_byte(mp->ll)=qi(mp->nl-mp->ll-1); mp->ll=mp->ll-mp->lll;
23747 } while (mp->lll!=0);
23752 @ @<Compile a ligature/kern...@>=
23754 next_char(mp->nl)=qi(c); skip_byte(mp->nl)=qi(0);
23755 if ( mp->cur_mod<128 ) { /* ligature op */
23756 op_byte(mp->nl)=qi(mp->cur_mod); rem_byte(mp->nl)=qi(mp_get_code(mp));
23758 mp_get_x_next(mp); mp_scan_expression(mp);
23759 if ( mp->cur_type!=mp_known ) {
23760 exp_err("Improper kern");
23762 help2("The amount of kern should be a known numeric value.")
23763 ("I'm zeroing this one. Proceed, with fingers crossed.");
23764 mp_put_get_flush_error(mp, 0);
23766 mp->kern[mp->nk]=mp->cur_exp;
23768 while ( mp->kern[k]!=mp->cur_exp ) incr(k);
23770 if ( mp->nk==max_tfm_int ) mp_fatal_error(mp, "too many TFM kerns");
23773 op_byte(mp->nl)=kern_flag+(k / 256);
23774 rem_byte(mp->nl)=qi((k % 256));
23776 mp->lk_started=true;
23779 @ @d missing_extensible_punctuation(A)
23780 { mp_missing_err(mp, (A));
23781 @.Missing `\char`\#'@>
23782 help1("I'm processing `extensible c: t,m,b,r'."); mp_back_error(mp);
23785 @<Define an extensible recipe@>=
23787 if ( mp->ne==256 ) mp_fatal_error(mp, "too many extensible recipies");
23788 c=mp_get_code(mp); mp_set_tag(mp, c,ext_tag,mp->ne);
23789 if ( mp->cur_cmd!=colon ) missing_extensible_punctuation(":");
23790 ext_top(mp->ne)=qi(mp_get_code(mp));
23791 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23792 ext_mid(mp->ne)=qi(mp_get_code(mp));
23793 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23794 ext_bot(mp->ne)=qi(mp_get_code(mp));
23795 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23796 ext_rep(mp->ne)=qi(mp_get_code(mp));
23800 @ The header could contain ASCII zeroes, so can't use |strdup|.
23802 @<Store a list of header bytes@>=
23804 if ( j>=mp->header_size ) {
23805 int l = mp->header_size + (mp->header_size >> 2);
23806 char *t = xmalloc(l,sizeof(char));
23808 memcpy(t,mp->header_byte,mp->header_size);
23809 xfree (mp->header_byte);
23810 mp->header_byte = t;
23811 mp->header_size = l;
23813 mp->header_byte[j]=mp_get_code(mp);
23814 incr(j); incr(mp->header_last);
23815 } while (mp->cur_cmd==comma)
23817 @ @<Store a list of font dimensions@>=
23819 if ( j>max_tfm_int ) mp_fatal_error(mp, "too many fontdimens");
23820 while ( j>mp->np ) { incr(mp->np); mp->param[mp->np]=0; };
23821 mp_get_x_next(mp); mp_scan_expression(mp);
23822 if ( mp->cur_type!=mp_known ){
23823 exp_err("Improper font parameter");
23824 @.Improper font parameter@>
23825 help1("I'm zeroing this one. Proceed, with fingers crossed.");
23826 mp_put_get_flush_error(mp, 0);
23828 mp->param[j]=mp->cur_exp; incr(j);
23829 } while (mp->cur_cmd==comma)
23831 @ OK: We've stored all the data that is needed for the \.{TFM} file.
23832 All that remains is to output it in the correct format.
23834 An interesting problem needs to be solved in this connection, because
23835 the \.{TFM} format allows at most 256~widths, 16~heights, 16~depths,
23836 and 64~italic corrections. If the data has more distinct values than
23837 this, we want to meet the necessary restrictions by perturbing the
23838 given values as little as possible.
23840 \MP\ solves this problem in two steps. First the values of a given
23841 kind (widths, heights, depths, or italic corrections) are sorted;
23842 then the list of sorted values is perturbed, if necessary.
23844 The sorting operation is facilitated by having a special node of
23845 essentially infinite |value| at the end of the current list.
23847 @<Initialize table entries...@>=
23848 value(inf_val)=fraction_four;
23850 @ Straight linear insertion is good enough for sorting, since the lists
23851 are usually not terribly long. As we work on the data, the current list
23852 will start at |link(temp_head)| and end at |inf_val|; the nodes in this
23853 list will be in increasing order of their |value| fields.
23855 Given such a list, the |sort_in| function takes a value and returns a pointer
23856 to where that value can be found in the list. The value is inserted in
23857 the proper place, if necessary.
23859 At the time we need to do these operations, most of \MP's work has been
23860 completed, so we will have plenty of memory to play with. The value nodes
23861 that are allocated for sorting will never be returned to free storage.
23863 @d clear_the_list link(temp_head)=inf_val
23865 @c pointer mp_sort_in (MP mp,scaled v) {
23866 pointer p,q,r; /* list manipulation registers */
23870 if ( v<=value(q) ) break;
23873 if ( v<value(q) ) {
23874 r=mp_get_node(mp, value_node_size); value(r)=v; link(r)=q; link(p)=r;
23879 @ Now we come to the interesting part, where we reduce the list if necessary
23880 until it has the required size. The |min_cover| routine is basic to this
23881 process; it computes the minimum number~|m| such that the values of the
23882 current sorted list can be covered by |m|~intervals of width~|d|. It
23883 also sets the global value |perturbation| to the smallest value $d'>d$
23884 such that the covering found by this algorithm would be different.
23886 In particular, |min_cover(0)| returns the number of distinct values in the
23887 current list and sets |perturbation| to the minimum distance between
23890 @c integer mp_min_cover (MP mp,scaled d) {
23891 pointer p; /* runs through the current list */
23892 scaled l; /* the least element covered by the current interval */
23893 integer m; /* lower bound on the size of the minimum cover */
23894 m=0; p=link(temp_head); mp->perturbation=el_gordo;
23895 while ( p!=inf_val ){
23896 incr(m); l=value(p);
23897 do { p=link(p); } while (value(p)<=l+d);
23898 if ( value(p)-l<mp->perturbation )
23899 mp->perturbation=value(p)-l;
23905 scaled perturbation; /* quantity related to \.{TFM} rounding */
23906 integer excess; /* the list is this much too long */
23908 @ The smallest |d| such that a given list can be covered with |m| intervals
23909 is determined by the |threshold| routine, which is sort of an inverse
23910 to |min_cover|. The idea is to increase the interval size rapidly until
23911 finding the range, then to go sequentially until the exact borderline has
23914 @c scaled mp_threshold (MP mp,integer m) {
23915 scaled d; /* lower bound on the smallest interval size */
23916 mp->excess=mp_min_cover(mp, 0)-m;
23917 if ( mp->excess<=0 ) {
23921 d=mp->perturbation;
23922 } while (mp_min_cover(mp, d+d)>m);
23923 while ( mp_min_cover(mp, d)>m )
23924 d=mp->perturbation;
23929 @ The |skimp| procedure reduces the current list to at most |m| entries,
23930 by changing values if necessary. It also sets |info(p):=k| if |value(p)|
23931 is the |k|th distinct value on the resulting list, and it sets
23932 |perturbation| to the maximum amount by which a |value| field has
23933 been changed. The size of the resulting list is returned as the
23936 @c integer mp_skimp (MP mp,integer m) {
23937 scaled d; /* the size of intervals being coalesced */
23938 pointer p,q,r; /* list manipulation registers */
23939 scaled l; /* the least value in the current interval */
23940 scaled v; /* a compromise value */
23941 d=mp_threshold(mp, m); mp->perturbation=0;
23942 q=temp_head; m=0; p=link(temp_head);
23943 while ( p!=inf_val ) {
23944 incr(m); l=value(p); info(p)=m;
23945 if ( value(link(p))<=l+d ) {
23946 @<Replace an interval of values by its midpoint@>;
23953 @ @<Replace an interval...@>=
23956 p=link(p); info(p)=m;
23957 decr(mp->excess); if ( mp->excess==0 ) d=0;
23958 } while (value(link(p))<=l+d);
23959 v=l+halfp(value(p)-l);
23960 if ( value(p)-v>mp->perturbation )
23961 mp->perturbation=value(p)-v;
23964 r=link(r); value(r)=v;
23966 link(q)=p; /* remove duplicate values from the current list */
23969 @ A warning message is issued whenever something is perturbed by
23970 more than 1/16\thinspace pt.
23972 @c void mp_tfm_warning (MP mp,small_number m) {
23973 mp_print_nl(mp, "(some ");
23974 mp_print(mp, mp->int_name[m]);
23975 @.some charwds...@>
23976 @.some chardps...@>
23977 @.some charhts...@>
23978 @.some charics...@>
23979 mp_print(mp, " values had to be adjusted by as much as ");
23980 mp_print_scaled(mp, mp->perturbation); mp_print(mp, "pt)");
23983 @ Here's an example of how we use these routines.
23984 The width data needs to be perturbed only if there are 256 distinct
23985 widths, but \MP\ must check for this case even though it is
23988 An integer variable |k| will be defined when we use this code.
23989 The |dimen_head| array will contain pointers to the sorted
23990 lists of dimensions.
23992 @<Massage the \.{TFM} widths@>=
23994 for (k=mp->bc;k<=mp->ec;k++) {
23995 if ( mp->char_exists[k] )
23996 mp->tfm_width[k]=mp_sort_in(mp, mp->tfm_width[k]);
23998 mp->nw=mp_skimp(mp, 255)+1; mp->dimen_head[1]=link(temp_head);
23999 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_wd)
24002 pointer dimen_head[5]; /* lists of \.{TFM} dimensions */
24004 @ Heights, depths, and italic corrections are different from widths
24005 not only because their list length is more severely restricted, but
24006 also because zero values do not need to be put into the lists.
24008 @<Massage the \.{TFM} heights, depths, and italic corrections@>=
24010 for (k=mp->bc;k<=mp->ec;k++) {
24011 if ( mp->char_exists[k] ) {
24012 if ( mp->tfm_height[k]==0 ) mp->tfm_height[k]=zero_val;
24013 else mp->tfm_height[k]=mp_sort_in(mp, mp->tfm_height[k]);
24016 mp->nh=mp_skimp(mp, 15)+1; mp->dimen_head[2]=link(temp_head);
24017 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ht);
24019 for (k=mp->bc;k<=mp->ec;k++) {
24020 if ( mp->char_exists[k] ) {
24021 if ( mp->tfm_depth[k]==0 ) mp->tfm_depth[k]=zero_val;
24022 else mp->tfm_depth[k]=mp_sort_in(mp, mp->tfm_depth[k]);
24025 mp->nd=mp_skimp(mp, 15)+1; mp->dimen_head[3]=link(temp_head);
24026 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_dp);
24028 for (k=mp->bc;k<=mp->ec;k++) {
24029 if ( mp->char_exists[k] ) {
24030 if ( mp->tfm_ital_corr[k]==0 ) mp->tfm_ital_corr[k]=zero_val;
24031 else mp->tfm_ital_corr[k]=mp_sort_in(mp, mp->tfm_ital_corr[k]);
24034 mp->ni=mp_skimp(mp, 63)+1; mp->dimen_head[4]=link(temp_head);
24035 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ic)
24037 @ @<Initialize table entries...@>=
24038 value(zero_val)=0; info(zero_val)=0;
24040 @ Bytes 5--8 of the header are set to the design size, unless the user has
24041 some crazy reason for specifying them differently.
24043 Error messages are not allowed at the time this procedure is called,
24044 so a warning is printed instead.
24046 The value of |max_tfm_dimen| is calculated so that
24047 $$\hbox{|make_scaled(16*max_tfm_dimen,internal[mp_design_size])|}
24048 < \\{three\_bytes}.$$
24050 @d three_bytes 0100000000 /* $2^{24}$ */
24053 void mp_fix_design_size (MP mp) {
24054 scaled d; /* the design size */
24055 d=mp->internal[mp_design_size];
24056 if ( (d<unity)||(d>=fraction_half) ) {
24058 mp_print_nl(mp, "(illegal design size has been changed to 128pt)");
24059 @.illegal design size...@>
24060 d=040000000; mp->internal[mp_design_size]=d;
24062 if ( mp->header_byte[4]<0 ) if ( mp->header_byte[5]<0 )
24063 if ( mp->header_byte[6]<0 ) if ( mp->header_byte[7]<0 ) {
24064 mp->header_byte[4]=d / 04000000;
24065 mp->header_byte[5]=(d / 4096) % 256;
24066 mp->header_byte[6]=(d / 16) % 256;
24067 mp->header_byte[7]=(d % 16)*16;
24069 mp->max_tfm_dimen=16*mp->internal[mp_design_size]-mp->internal[mp_design_size] / 010000000;
24070 if ( mp->max_tfm_dimen>=fraction_half ) mp->max_tfm_dimen=fraction_half-1;
24073 @ The |dimen_out| procedure computes a |fix_word| relative to the
24074 design size. If the data was out of range, it is corrected and the
24075 global variable |tfm_changed| is increased by~one.
24077 @c integer mp_dimen_out (MP mp,scaled x) {
24078 if ( abs(x)>mp->max_tfm_dimen ) {
24079 incr(mp->tfm_changed);
24080 if ( x>0 ) x=three_bytes-1; else x=1-three_bytes;
24082 x=mp_make_scaled(mp, x*16,mp->internal[mp_design_size]);
24088 scaled max_tfm_dimen; /* bound on widths, heights, kerns, etc. */
24089 integer tfm_changed; /* the number of data entries that were out of bounds */
24091 @ If the user has not specified any of the first four header bytes,
24092 the |fix_check_sum| procedure replaces them by a ``check sum'' computed
24093 from the |tfm_width| data relative to the design size.
24096 @c void mp_fix_check_sum (MP mp) {
24097 eight_bits k; /* runs through character codes */
24098 eight_bits B1,B2,B3,B4; /* bytes of the check sum */
24099 integer x; /* hash value used in check sum computation */
24100 if ( mp->header_byte[0]==0 && mp->header_byte[1]==0 &&
24101 mp->header_byte[2]==0 && mp->header_byte[3]==0 ) {
24102 @<Compute a check sum in |(b1,b2,b3,b4)|@>;
24103 mp->header_byte[0]=B1; mp->header_byte[1]=B2;
24104 mp->header_byte[2]=B3; mp->header_byte[3]=B4;
24109 @ @<Compute a check sum in |(b1,b2,b3,b4)|@>=
24110 B1=mp->bc; B2=mp->ec; B3=mp->bc; B4=mp->ec; mp->tfm_changed=0;
24111 for (k=mp->bc;k<=mp->ec;k++) {
24112 if ( mp->char_exists[k] ) {
24113 x=mp_dimen_out(mp, value(mp->tfm_width[k]))+(k+4)*020000000; /* this is positive */
24114 B1=(B1+B1+x) % 255;
24115 B2=(B2+B2+x) % 253;
24116 B3=(B3+B3+x) % 251;
24117 B4=(B4+B4+x) % 247;
24121 @ Finally we're ready to actually write the \.{TFM} information.
24122 Here are some utility routines for this purpose.
24124 @d tfm_out(A) do { /* output one byte to |tfm_file| */
24125 unsigned char s=(A);
24126 (mp->write_binary_file)(mp->tfm_file,(void *)&s,1);
24129 @c void mp_tfm_two (MP mp,integer x) { /* output two bytes to |tfm_file| */
24130 tfm_out(x / 256); tfm_out(x % 256);
24132 void mp_tfm_four (MP mp,integer x) { /* output four bytes to |tfm_file| */
24133 if ( x>=0 ) tfm_out(x / three_bytes);
24135 x=x+010000000000; /* use two's complement for negative values */
24137 tfm_out((x / three_bytes) + 128);
24139 x=x % three_bytes; tfm_out(x / unity);
24140 x=x % unity; tfm_out(x / 0400);
24143 void mp_tfm_qqqq (MP mp,four_quarters x) { /* output four quarterwords to |tfm_file| */
24144 tfm_out(qo(x.b0)); tfm_out(qo(x.b1));
24145 tfm_out(qo(x.b2)); tfm_out(qo(x.b3));
24148 @ @<Finish the \.{TFM} file@>=
24149 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24150 mp_pack_job_name(mp, ".tfm");
24151 while ( ! mp_b_open_out(mp, &mp->tfm_file, mp_filetype_metrics) )
24152 mp_prompt_file_name(mp, "file name for font metrics",".tfm");
24153 mp->metric_file_name=xstrdup(mp->name_of_file);
24154 @<Output the subfile sizes and header bytes@>;
24155 @<Output the character information bytes, then
24156 output the dimensions themselves@>;
24157 @<Output the ligature/kern program@>;
24158 @<Output the extensible character recipes and the font metric parameters@>;
24159 if ( mp->internal[mp_tracing_stats]>0 )
24160 @<Log the subfile sizes of the \.{TFM} file@>;
24161 mp_print_nl(mp, "Font metrics written on ");
24162 mp_print(mp, mp->metric_file_name); mp_print_char(mp, '.');
24163 @.Font metrics written...@>
24164 (mp->close_file)(mp->tfm_file)
24166 @ Integer variables |lh|, |k|, and |lk_offset| will be defined when we use
24169 @<Output the subfile sizes and header bytes@>=
24171 LH=(k+3) / 4; /* this is the number of header words */
24172 if ( mp->bc>mp->ec ) mp->bc=1; /* if there are no characters, |ec=0| and |bc=1| */
24173 @<Compute the ligature/kern program offset and implant the
24174 left boundary label@>;
24175 mp_tfm_two(mp,6+LH+(mp->ec-mp->bc+1)+mp->nw+mp->nh+mp->nd+mp->ni+mp->nl
24176 +lk_offset+mp->nk+mp->ne+mp->np);
24177 /* this is the total number of file words that will be output */
24178 mp_tfm_two(mp, LH); mp_tfm_two(mp, mp->bc); mp_tfm_two(mp, mp->ec);
24179 mp_tfm_two(mp, mp->nw); mp_tfm_two(mp, mp->nh);
24180 mp_tfm_two(mp, mp->nd); mp_tfm_two(mp, mp->ni); mp_tfm_two(mp, mp->nl+lk_offset);
24181 mp_tfm_two(mp, mp->nk); mp_tfm_two(mp, mp->ne);
24182 mp_tfm_two(mp, mp->np);
24183 for (k=0;k< 4*LH;k++) {
24184 tfm_out(mp->header_byte[k]);
24187 @ @<Output the character information bytes...@>=
24188 for (k=mp->bc;k<=mp->ec;k++) {
24189 if ( ! mp->char_exists[k] ) {
24190 mp_tfm_four(mp, 0);
24192 tfm_out(info(mp->tfm_width[k])); /* the width index */
24193 tfm_out((info(mp->tfm_height[k]))*16+info(mp->tfm_depth[k]));
24194 tfm_out((info(mp->tfm_ital_corr[k]))*4+mp->char_tag[k]);
24195 tfm_out(mp->char_remainder[k]);
24199 for (k=1;k<=4;k++) {
24200 mp_tfm_four(mp, 0); p=mp->dimen_head[k];
24201 while ( p!=inf_val ) {
24202 mp_tfm_four(mp, mp_dimen_out(mp, value(p))); p=link(p);
24207 @ We need to output special instructions at the beginning of the
24208 |lig_kern| array in order to specify the right boundary character
24209 and/or to handle starting addresses that exceed 255. The |label_loc|
24210 and |label_char| arrays have been set up to record all the
24211 starting addresses; we have $-1=|label_loc|[0]<|label_loc|[1]\le\cdots
24212 \le|label_loc|[|label_ptr]|$.
24214 @<Compute the ligature/kern program offset...@>=
24215 mp->bchar=mp_round_unscaled(mp, mp->internal[mp_boundary_char]);
24216 if ((mp->bchar<0)||(mp->bchar>255))
24217 { mp->bchar=-1; mp->lk_started=false; lk_offset=0; }
24218 else { mp->lk_started=true; lk_offset=1; };
24219 @<Find the minimum |lk_offset| and adjust all remainders@>;
24220 if ( mp->bch_label<undefined_label )
24221 { skip_byte(mp->nl)=qi(255); next_char(mp->nl)=qi(0);
24222 op_byte(mp->nl)=qi(((mp->bch_label+lk_offset)/ 256));
24223 rem_byte(mp->nl)=qi(((mp->bch_label+lk_offset)% 256));
24224 incr(mp->nl); /* possibly |nl=lig_table_size+1| */
24227 @ @<Find the minimum |lk_offset|...@>=
24228 k=mp->label_ptr; /* pointer to the largest unallocated label */
24229 if ( mp->label_loc[k]+lk_offset>255 ) {
24230 lk_offset=0; mp->lk_started=false; /* location 0 can do double duty */
24232 mp->char_remainder[mp->label_char[k]]=lk_offset;
24233 while ( mp->label_loc[k-1]==mp->label_loc[k] ) {
24234 decr(k); mp->char_remainder[mp->label_char[k]]=lk_offset;
24236 incr(lk_offset); decr(k);
24237 } while (! (lk_offset+mp->label_loc[k]<256));
24238 /* N.B.: |lk_offset=256| satisfies this when |k=0| */
24240 if ( lk_offset>0 ) {
24242 mp->char_remainder[mp->label_char[k]]
24243 =mp->char_remainder[mp->label_char[k]]+lk_offset;
24248 @ @<Output the ligature/kern program@>=
24249 for (k=0;k<= 255;k++ ) {
24250 if ( mp->skip_table[k]<undefined_label ) {
24251 mp_print_nl(mp, "(local label "); mp_print_int(mp, k); mp_print(mp, ":: was missing)");
24252 @.local label l:: was missing@>
24253 cancel_skips(mp->skip_table[k]);
24256 if ( mp->lk_started ) { /* |lk_offset=1| for the special |bchar| */
24257 tfm_out(255); tfm_out(mp->bchar); mp_tfm_two(mp, 0);
24259 for (k=1;k<=lk_offset;k++) {/* output the redirection specs */
24260 mp->ll=mp->label_loc[mp->label_ptr];
24261 if ( mp->bchar<0 ) { tfm_out(254); tfm_out(0); }
24262 else { tfm_out(255); tfm_out(mp->bchar); };
24263 mp_tfm_two(mp, mp->ll+lk_offset);
24265 decr(mp->label_ptr);
24266 } while (! (mp->label_loc[mp->label_ptr]<mp->ll));
24269 for (k=0;k<=mp->nl-1;k++) mp_tfm_qqqq(mp, mp->lig_kern[k]);
24270 for (k=0;k<=mp->nk-1;k++) mp_tfm_four(mp, mp_dimen_out(mp, mp->kern[k]))
24272 @ @<Output the extensible character recipes...@>=
24273 for (k=0;k<=mp->ne-1;k++)
24274 mp_tfm_qqqq(mp, mp->exten[k]);
24275 for (k=1;k<=mp->np;k++) {
24277 if ( abs(mp->param[1])<fraction_half ) {
24278 mp_tfm_four(mp, mp->param[1]*16);
24280 incr(mp->tfm_changed);
24281 if ( mp->param[1]>0 ) mp_tfm_four(mp, el_gordo);
24282 else mp_tfm_four(mp, -el_gordo);
24285 mp_tfm_four(mp, mp_dimen_out(mp, mp->param[k]));
24288 if ( mp->tfm_changed>0 ) {
24289 if ( mp->tfm_changed==1 ) mp_print_nl(mp, "(a font metric dimension");
24290 @.a font metric dimension...@>
24292 mp_print_nl(mp, "("); mp_print_int(mp, mp->tfm_changed);
24293 @.font metric dimensions...@>
24294 mp_print(mp, " font metric dimensions");
24296 mp_print(mp, " had to be decreased)");
24299 @ @<Log the subfile sizes of the \.{TFM} file@>=
24303 if ( mp->bch_label<undefined_label ) decr(mp->nl);
24304 snprintf(s,128,"(You used %iw,%ih,%id,%ii,%il,%ik,%ie,%ip metric file positions)",
24305 mp->nw, mp->nh, mp->nd, mp->ni, mp->nl, mp->nk, mp->ne,mp->np);
24309 @* \[43] Reading font metric data.
24311 \MP\ isn't a typesetting program but it does need to find the bounding box
24312 of a sequence of typeset characters. Thus it needs to read \.{TFM} files as
24313 well as write them.
24318 @ All the width, height, and depth information is stored in an array called
24319 |font_info|. This array is allocated sequentially and each font is stored
24320 as a series of |char_info| words followed by the width, height, and depth
24321 tables. Since |font_name| entries are permanent, their |str_ref| values are
24322 set to |max_str_ref|.
24325 typedef unsigned int font_number; /* |0..font_max| */
24327 @ The |font_info| array is indexed via a group directory arrays.
24328 For example, the |char_info| data for character~|c| in font~|f| will be
24329 in |font_info[char_base[f]+c].qqqq|.
24332 font_number font_max; /* maximum font number for included text fonts */
24333 size_t font_mem_size; /* number of words for \.{TFM} information for text fonts */
24334 memory_word *font_info; /* height, width, and depth data */
24335 char **font_enc_name; /* encoding names, if any */
24336 boolean *font_ps_name_fixed; /* are the postscript names fixed already? */
24337 int next_fmem; /* next unused entry in |font_info| */
24338 font_number last_fnum; /* last font number used so far */
24339 scaled *font_dsize; /* 16 times the ``design'' size in \ps\ points */
24340 char **font_name; /* name as specified in the \&{infont} command */
24341 char **font_ps_name; /* PostScript name for use when |internal[mp_prologues]>0| */
24342 font_number last_ps_fnum; /* last valid |font_ps_name| index */
24343 eight_bits *font_bc;
24344 eight_bits *font_ec; /* first and last character code */
24345 int *char_base; /* base address for |char_info| */
24346 int *width_base; /* index for zeroth character width */
24347 int *height_base; /* index for zeroth character height */
24348 int *depth_base; /* index for zeroth character depth */
24349 pointer *font_sizes;
24351 @ @<Allocate or initialize ...@>=
24352 mp->font_mem_size = 10000;
24353 mp->font_info = xmalloc ((mp->font_mem_size+1),sizeof(memory_word));
24354 memset (mp->font_info,0,sizeof(memory_word)*(mp->font_mem_size+1));
24355 mp->font_enc_name = NULL;
24356 mp->font_ps_name_fixed = NULL;
24357 mp->font_dsize = NULL;
24358 mp->font_name = NULL;
24359 mp->font_ps_name = NULL;
24360 mp->font_bc = NULL;
24361 mp->font_ec = NULL;
24362 mp->last_fnum = null_font;
24363 mp->char_base = NULL;
24364 mp->width_base = NULL;
24365 mp->height_base = NULL;
24366 mp->depth_base = NULL;
24367 mp->font_sizes = null;
24369 @ @<Dealloc variables@>=
24370 for (k=1;k<=(int)mp->last_fnum;k++) {
24371 xfree(mp->font_enc_name[k]);
24372 xfree(mp->font_name[k]);
24373 xfree(mp->font_ps_name[k]);
24375 xfree(mp->font_info);
24376 xfree(mp->font_enc_name);
24377 xfree(mp->font_ps_name_fixed);
24378 xfree(mp->font_dsize);
24379 xfree(mp->font_name);
24380 xfree(mp->font_ps_name);
24381 xfree(mp->font_bc);
24382 xfree(mp->font_ec);
24383 xfree(mp->char_base);
24384 xfree(mp->width_base);
24385 xfree(mp->height_base);
24386 xfree(mp->depth_base);
24387 xfree(mp->font_sizes);
24391 void mp_reallocate_fonts (MP mp, font_number l) {
24393 XREALLOC(mp->font_enc_name, l, char *);
24394 XREALLOC(mp->font_ps_name_fixed, l, boolean);
24395 XREALLOC(mp->font_dsize, l, scaled);
24396 XREALLOC(mp->font_name, l, char *);
24397 XREALLOC(mp->font_ps_name, l, char *);
24398 XREALLOC(mp->font_bc, l, eight_bits);
24399 XREALLOC(mp->font_ec, l, eight_bits);
24400 XREALLOC(mp->char_base, l, int);
24401 XREALLOC(mp->width_base, l, int);
24402 XREALLOC(mp->height_base, l, int);
24403 XREALLOC(mp->depth_base, l, int);
24404 XREALLOC(mp->font_sizes, l, pointer);
24405 for (f=(mp->last_fnum+1);f<=l;f++) {
24406 mp->font_enc_name[f]=NULL;
24407 mp->font_ps_name_fixed[f] = false;
24408 mp->font_name[f]=NULL;
24409 mp->font_ps_name[f]=NULL;
24410 mp->font_sizes[f]=null;
24415 @ @<Declare |mp_reallocate| functions@>=
24416 void mp_reallocate_fonts (MP mp, font_number l);
24419 @ A |null_font| containing no characters is useful for error recovery. Its
24420 |font_name| entry starts out empty but is reset each time an erroneous font is
24421 found. This helps to cut down on the number of duplicate error messages without
24422 wasting a lot of space.
24424 @d null_font 0 /* the |font_number| for an empty font */
24426 @<Set initial...@>=
24427 mp->font_dsize[null_font]=0;
24428 mp->font_bc[null_font]=1;
24429 mp->font_ec[null_font]=0;
24430 mp->char_base[null_font]=0;
24431 mp->width_base[null_font]=0;
24432 mp->height_base[null_font]=0;
24433 mp->depth_base[null_font]=0;
24435 mp->last_fnum=null_font;
24436 mp->last_ps_fnum=null_font;
24437 mp->font_name[null_font]="nullfont";
24438 mp->font_ps_name[null_font]="";
24439 mp->font_ps_name_fixed[null_font] = false;
24440 mp->font_enc_name[null_font]=NULL;
24441 mp->font_sizes[null_font]=null;
24443 @ Each |char_info| word is of type |four_quarters|. The |b0| field contains
24444 the |width index|; the |b1| field contains the height
24445 index; the |b2| fields contains the depth index, and the |b3| field used only
24446 for temporary storage. (It is used to keep track of which characters occur in
24447 an edge structure that is being shipped out.)
24448 The corresponding words in the width, height, and depth tables are stored as
24449 |scaled| values in units of \ps\ points.
24451 With the macros below, the |char_info| word for character~|c| in font~|f| is
24452 |char_info(f)(c)| and the width is
24453 $$\hbox{|char_width(f)(char_info(f)(c)).sc|.}$$
24455 @d char_info_end(A) (A)].qqqq
24456 @d char_info(A) mp->font_info[mp->char_base[(A)]+char_info_end
24457 @d char_width_end(A) (A).b0].sc
24458 @d char_width(A) mp->font_info[mp->width_base[(A)]+char_width_end
24459 @d char_height_end(A) (A).b1].sc
24460 @d char_height(A) mp->font_info[mp->height_base[(A)]+char_height_end
24461 @d char_depth_end(A) (A).b2].sc
24462 @d char_depth(A) mp->font_info[mp->depth_base[(A)]+char_depth_end
24463 @d ichar_exists(A) ((A).b0>0)
24465 @ The |font_ps_name| for a built-in font should be what PostScript expects.
24466 A preliminary name is obtained here from the \.{TFM} name as given in the
24467 |fname| argument. This gets updated later from an external table if necessary.
24469 @<Declare text measuring subroutines@>=
24470 @<Declare subroutines for parsing file names@>;
24471 font_number mp_read_font_info (MP mp, char *fname) {
24472 boolean file_opened; /* has |tfm_infile| been opened? */
24473 font_number n; /* the number to return */
24474 halfword lf,tfm_lh,bc,ec,nw,nh,nd; /* subfile size parameters */
24475 size_t whd_size; /* words needed for heights, widths, and depths */
24476 int i,ii; /* |font_info| indices */
24477 int jj; /* counts bytes to be ignored */
24478 scaled z; /* used to compute the design size */
24480 /* height, width, or depth as a fraction of design size times $2^{-8}$ */
24481 eight_bits h_and_d; /* height and depth indices being unpacked */
24482 unsigned char tfbyte; /* a byte read from the file */
24484 @<Open |tfm_infile| for input@>;
24485 @<Read data from |tfm_infile|; if there is no room, say so and |goto done|;
24486 otherwise |goto bad_tfm| or |goto done| as appropriate@>;
24488 @<Complain that the \.{TFM} file is bad@>;
24490 if ( file_opened ) (mp->close_file)(mp->tfm_infile);
24491 if ( n!=null_font ) {
24492 mp->font_ps_name[n]=mp_xstrdup(mp,fname);
24493 mp->font_name[n]=mp_xstrdup(mp,fname);
24498 @ \MP\ doesn't bother to check the entire \.{TFM} file for errors or explain
24499 precisely what is wrong if it does find a problem. Programs called \.{TFtoPL}
24500 @.TFtoPL@> @.PLtoTF@>
24501 and \.{PLtoTF} can be used to debug \.{TFM} files.
24503 @<Complain that the \.{TFM} file is bad@>=
24504 print_err("Font ");
24505 mp_print(mp, fname);
24506 if ( file_opened ) mp_print(mp, " not usable: TFM file is bad");
24507 else mp_print(mp, " not usable: TFM file not found");
24508 help3("I wasn't able to read the size data for this font so this")
24509 ("`infont' operation won't produce anything. If the font name")
24510 ("is right, you might ask an expert to make a TFM file");
24512 mp->help_line[0]="is right, try asking an expert to fix the TFM file";
24515 @ @<Read data from |tfm_infile|; if there is no room, say so...@>=
24516 @<Read the \.{TFM} size fields@>;
24517 @<Use the size fields to allocate space in |font_info|@>;
24518 @<Read the \.{TFM} header@>;
24519 @<Read the character data and the width, height, and depth tables and
24522 @ A bad \.{TFM} file can be shorter than it claims to be. The code given here
24523 might try to read past the end of the file if this happens. Changes will be
24524 needed if it causes a system error to refer to |tfm_infile^| or call
24525 |get_tfm_infile| when |eof(tfm_infile)| is true. For example, the definition
24526 @^system dependencies@>
24527 of |tfget| could be changed to
24528 ``|begin get(tfm_infile); if eof(tfm_infile) then goto bad_tfm; end|.''
24532 void *tfbyte_ptr = &tfbyte;
24533 (mp->read_binary_file)(mp->tfm_infile,&tfbyte_ptr,&wanted);
24534 if (wanted==0) goto BAD_TFM;
24536 @d read_two(A) { (A)=tfbyte;
24537 if ( (A)>127 ) goto BAD_TFM;
24538 tfget; (A)=(A)*0400+tfbyte;
24540 @d tf_ignore(A) { for (jj=(A);jj>=1;jj--) tfget; }
24542 @<Read the \.{TFM} size fields@>=
24543 tfget; read_two(lf);
24544 tfget; read_two(tfm_lh);
24545 tfget; read_two(bc);
24546 tfget; read_two(ec);
24547 if ( (bc>1+ec)||(ec>255) ) goto BAD_TFM;
24548 tfget; read_two(nw);
24549 tfget; read_two(nh);
24550 tfget; read_two(nd);
24551 whd_size=(ec+1-bc)+nw+nh+nd;
24552 if ( lf<(int)(6+tfm_lh+whd_size) ) goto BAD_TFM;
24555 @ Offsets are added to |char_base[n]| and |width_base[n]| so that is not
24556 necessary to apply the |so| and |qo| macros when looking up the width of a
24557 character in the string pool. In order to ensure nonnegative |char_base|
24558 values when |bc>0|, it may be necessary to reserve a few unused |font_info|
24561 @<Use the size fields to allocate space in |font_info|@>=
24562 if ( mp->next_fmem<bc) mp->next_fmem=bc; /* ensure nonnegative |char_base| */
24563 if (mp->last_fnum==mp->font_max)
24564 mp_reallocate_fonts(mp,(mp->font_max+(mp->font_max>>2)));
24565 while (mp->next_fmem+whd_size>=mp->font_mem_size) {
24566 size_t l = mp->font_mem_size+(mp->font_mem_size>>2);
24567 memory_word *font_info;
24568 font_info = xmalloc ((l+1),sizeof(memory_word));
24569 memset (font_info,0,sizeof(memory_word)*(l+1));
24570 memcpy (font_info,mp->font_info,sizeof(memory_word)*(mp->font_mem_size+1));
24571 xfree(mp->font_info);
24572 mp->font_info = font_info;
24573 mp->font_mem_size = l;
24575 incr(mp->last_fnum);
24579 mp->char_base[n]=mp->next_fmem-bc;
24580 mp->width_base[n]=mp->next_fmem+ec-bc+1;
24581 mp->height_base[n]=mp->width_base[n]+nw;
24582 mp->depth_base[n]=mp->height_base[n]+nh;
24583 mp->next_fmem=mp->next_fmem+whd_size;
24586 @ @<Read the \.{TFM} header@>=
24587 if ( tfm_lh<2 ) goto BAD_TFM;
24589 tfget; read_two(z);
24590 tfget; z=z*0400+tfbyte;
24591 tfget; z=z*0400+tfbyte; /* now |z| is 16 times the design size */
24592 mp->font_dsize[n]=mp_take_fraction(mp, z,267432584);
24593 /* times ${72\over72.27}2^{28}$ to convert from \TeX\ points */
24594 tf_ignore(4*(tfm_lh-2))
24596 @ @<Read the character data and the width, height, and depth tables...@>=
24597 ii=mp->width_base[n];
24598 i=mp->char_base[n]+bc;
24600 tfget; mp->font_info[i].qqqq.b0=qi(tfbyte);
24601 tfget; h_and_d=tfbyte;
24602 mp->font_info[i].qqqq.b1=h_and_d / 16;
24603 mp->font_info[i].qqqq.b2=h_and_d % 16;
24607 while ( i<mp->next_fmem ) {
24608 @<Read a four byte dimension, scale it by the design size, store it in
24609 |font_info[i]|, and increment |i|@>;
24613 @ The raw dimension read into |d| should have magnitude at most $2^{24}$ when
24614 interpreted as an integer, and this includes a scale factor of $2^{20}$. Thus
24615 we can multiply it by sixteen and think of it as a |fraction| that has been
24616 divided by sixteen. This cancels the extra scale factor contained in
24619 @<Read a four byte dimension, scale it by the design size, store it in...@>=
24622 if ( d>=0200 ) d=d-0400;
24623 tfget; d=d*0400+tfbyte;
24624 tfget; d=d*0400+tfbyte;
24625 tfget; d=d*0400+tfbyte;
24626 mp->font_info[i].sc=mp_take_fraction(mp, d*16,mp->font_dsize[n]);
24630 @ This function does no longer use the file name parser, because |fname| is
24631 a C string already.
24632 @<Open |tfm_infile| for input@>=
24634 mp_ptr_scan_file(mp, fname);
24635 if ( strlen(mp->cur_area)==0 ) { xfree(mp->cur_area); mp->cur_area=xstrdup(MP_font_area);}
24636 if ( strlen(mp->cur_ext)==0 ) { xfree(mp->cur_ext); mp->cur_ext=xstrdup(".tfm"); }
24638 mp->tfm_infile = (mp->open_file)( mp->name_of_file, "rb",mp_filetype_metrics);
24639 if ( !mp->tfm_infile ) goto BAD_TFM;
24642 @ When we have a font name and we don't know whether it has been loaded yet,
24643 we scan the |font_name| array before calling |read_font_info|.
24645 @<Declare text measuring subroutines@>=
24646 font_number mp_find_font (MP mp, char *f) {
24648 for (n=0;n<=mp->last_fnum;n++) {
24649 if (mp_xstrcmp(f,mp->font_name[n])==0 ) {
24654 n = mp_read_font_info(mp, f);
24659 @ One simple application of |find_font| is the implementation of the |font_size|
24660 operator that gets the design size for a given font name.
24662 @<Find the design size of the font whose name is |cur_exp|@>=
24663 mp_flush_cur_exp(mp, (mp->font_dsize[mp_find_font(mp, str(mp->cur_exp))]+8) / 16)
24665 @ If we discover that the font doesn't have a requested character, we omit it
24666 from the bounding box computation and expect the \ps\ interpreter to drop it.
24667 This routine issues a warning message if the user has asked for it.
24669 @<Declare text measuring subroutines@>=
24670 void mp_lost_warning (MP mp,font_number f, pool_pointer k) {
24671 if ( mp->internal[mp_tracing_lost_chars]>0 ) {
24672 mp_begin_diagnostic(mp);
24673 if ( mp->selector==log_only ) incr(mp->selector);
24674 mp_print_nl(mp, "Missing character: There is no ");
24675 @.Missing character@>
24676 mp_print_str(mp, mp->str_pool[k]);
24677 mp_print(mp, " in font ");
24678 mp_print(mp, mp->font_name[f]); mp_print_char(mp, '!');
24679 mp_end_diagnostic(mp, false);
24683 @ The whole purpose of saving the height, width, and depth information is to be
24684 able to find the bounding box of an item of text in an edge structure. The
24685 |set_text_box| procedure takes a text node and adds this information.
24687 @<Declare text measuring subroutines@>=
24688 void mp_set_text_box (MP mp,pointer p) {
24689 font_number f; /* |font_n(p)| */
24690 ASCII_code bc,ec; /* range of valid characters for font |f| */
24691 pool_pointer k,kk; /* current character and character to stop at */
24692 four_quarters cc; /* the |char_info| for the current character */
24693 scaled h,d; /* dimensions of the current character */
24695 height_val(p)=-el_gordo;
24696 depth_val(p)=-el_gordo;
24700 kk=str_stop(text_p(p));
24701 k=mp->str_start[text_p(p)];
24703 @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>;
24705 @<Set the height and depth to zero if the bounding box is empty@>;
24708 @ @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>=
24710 if ( (mp->str_pool[k]<bc)||(mp->str_pool[k]>ec) ) {
24711 mp_lost_warning(mp, f,k);
24713 cc=char_info(f)(mp->str_pool[k]);
24714 if ( ! ichar_exists(cc) ) {
24715 mp_lost_warning(mp, f,k);
24717 width_val(p)=width_val(p)+char_width(f)(cc);
24718 h=char_height(f)(cc);
24719 d=char_depth(f)(cc);
24720 if ( h>height_val(p) ) height_val(p)=h;
24721 if ( d>depth_val(p) ) depth_val(p)=d;
24727 @ Let's hope modern compilers do comparisons correctly when the difference would
24730 @<Set the height and depth to zero if the bounding box is empty@>=
24731 if ( height_val(p)<-depth_val(p) ) {
24736 @ The new primitives fontmapfile and fontmapline.
24738 @<Declare action procedures for use by |do_statement|@>=
24739 void mp_do_mapfile (MP mp) ;
24740 void mp_do_mapline (MP mp) ;
24742 @ @c void mp_do_mapfile (MP mp) {
24743 mp_get_x_next(mp); mp_scan_expression(mp);
24744 if ( mp->cur_type!=mp_string_type ) {
24745 @<Complain about improper map operation@>;
24747 mp_map_file(mp,mp->cur_exp);
24750 void mp_do_mapline (MP mp) {
24751 mp_get_x_next(mp); mp_scan_expression(mp);
24752 if ( mp->cur_type!=mp_string_type ) {
24753 @<Complain about improper map operation@>;
24755 mp_map_line(mp,mp->cur_exp);
24759 @ @<Complain about improper map operation@>=
24761 exp_err("Unsuitable expression");
24762 help1("Only known strings can be map files or map lines.");
24763 mp_put_get_error(mp);
24766 @ To print |scaled| value to PDF output we need some subroutines to ensure
24769 @d max_integer 0x7FFFFFFF /* $2^{31}-1$ */
24772 scaled one_bp; /* scaled value corresponds to 1bp */
24773 scaled one_hundred_bp; /* scaled value corresponds to 100bp */
24774 scaled one_hundred_inch; /* scaled value corresponds to 100in */
24775 integer ten_pow[10]; /* $10^0..10^9$ */
24776 integer scaled_out; /* amount of |scaled| that was taken out in |divide_scaled| */
24779 mp->one_bp = 65782; /* 65781.76 */
24780 mp->one_hundred_bp = 6578176;
24781 mp->one_hundred_inch = 473628672;
24782 mp->ten_pow[0] = 1;
24783 for (i = 1;i<= 9; i++ ) {
24784 mp->ten_pow[i] = 10*mp->ten_pow[i - 1];
24787 @ The following function divides |s| by |m|. |dd| is number of decimal digits.
24789 @c scaled mp_divide_scaled (MP mp,scaled s, scaled m, integer dd) {
24793 if ( s < 0 ) { sign = -sign; s = -s; }
24794 if ( m < 0 ) { sign = -sign; m = -m; }
24796 mp_confusion(mp, "arithmetic: divided by zero");
24797 else if ( m >= (max_integer / 10) )
24798 mp_confusion(mp, "arithmetic: number too big");
24801 for (i = 1;i<=dd;i++) {
24802 q = 10*q + (10*r) / m;
24805 if ( 2*r >= m ) { incr(q); r = r - m; }
24806 mp->scaled_out = sign*(s - (r / mp->ten_pow[dd]));
24810 @* \[44] Shipping pictures out.
24811 The |ship_out| procedure, to be described below, is given a pointer to
24812 an edge structure. Its mission is to output a file containing the \ps\
24813 description of an edge structure.
24815 @ Each time an edge structure is shipped out we write a new \ps\ output
24816 file named according to the current \&{charcode}.
24817 @:char_code_}{\&{charcode} primitive@>
24819 This is the only backend function that remains in the main |mpost.w| file.
24820 There are just too many variable accesses needed for status reporting
24821 etcetera to make it worthwile to move the code to |psout.w|.
24823 @<Internal library declarations@>=
24824 void mp_open_output_file (MP mp) ;
24826 @ @c void mp_open_output_file (MP mp) {
24827 integer c; /* \&{charcode} rounded to the nearest integer */
24828 int old_setting; /* previous |selector| setting */
24829 pool_pointer i; /* indexes into |filename_template| */
24830 integer cc; /* a temporary integer for template building */
24831 integer f,g=0; /* field widths */
24832 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24833 c=mp_round_unscaled(mp, mp->internal[mp_char_code]);
24834 if ( mp->filename_template==0 ) {
24835 char *s; /* a file extension derived from |c| */
24839 @<Use |c| to compute the file extension |s|@>;
24840 mp_pack_job_name(mp, s);
24842 while ( ! mp_a_open_out(mp, (void *)&mp->ps_file, mp_filetype_postscript) )
24843 mp_prompt_file_name(mp, "file name for output",s);
24844 } else { /* initializations */
24845 str_number s, n; /* a file extension derived from |c| */
24846 old_setting=mp->selector;
24847 mp->selector=new_string;
24849 i = mp->str_start[mp->filename_template];
24850 n = rts(""); /* initialize */
24851 while ( i<str_stop(mp->filename_template) ) {
24852 if ( mp->str_pool[i]=='%' ) {
24855 if ( i<str_stop(mp->filename_template) ) {
24856 if ( mp->str_pool[i]=='j' ) {
24857 mp_print(mp, mp->job_name);
24858 } else if ( mp->str_pool[i]=='d' ) {
24859 cc= mp_round_unscaled(mp, mp->internal[mp_day]);
24860 print_with_leading_zeroes(cc);
24861 } else if ( mp->str_pool[i]=='m' ) {
24862 cc= mp_round_unscaled(mp, mp->internal[mp_month]);
24863 print_with_leading_zeroes(cc);
24864 } else if ( mp->str_pool[i]=='y' ) {
24865 cc= mp_round_unscaled(mp, mp->internal[mp_year]);
24866 print_with_leading_zeroes(cc);
24867 } else if ( mp->str_pool[i]=='H' ) {
24868 cc= mp_round_unscaled(mp, mp->internal[mp_time]) / 60;
24869 print_with_leading_zeroes(cc);
24870 } else if ( mp->str_pool[i]=='M' ) {
24871 cc= mp_round_unscaled(mp, mp->internal[mp_time]) % 60;
24872 print_with_leading_zeroes(cc);
24873 } else if ( mp->str_pool[i]=='c' ) {
24874 if ( c<0 ) mp_print(mp, "ps");
24875 else print_with_leading_zeroes(c);
24876 } else if ( (mp->str_pool[i]>='0') &&
24877 (mp->str_pool[i]<='9') ) {
24879 f = (f*10) + mp->str_pool[i]-'0';
24882 mp_print_str(mp, mp->str_pool[i]);
24886 if ( mp->str_pool[i]=='.' )
24888 n = mp_make_string(mp);
24889 mp_print_str(mp, mp->str_pool[i]);
24893 s = mp_make_string(mp);
24894 mp->selector= old_setting;
24895 if (length(n)==0) {
24899 mp_pack_file_name(mp, str(n),"",str(s));
24900 while ( ! mp_a_open_out(mp, (void *)&mp->ps_file, mp_filetype_postscript) )
24901 mp_prompt_file_name(mp, "file name for output",str(s));
24905 @<Store the true output file name if appropriate@>;
24906 @<Begin the progress report for the output of picture~|c|@>;
24909 @ The file extension created here could be up to five characters long in
24910 extreme cases so it may have to be shortened on some systems.
24911 @^system dependencies@>
24913 @<Use |c| to compute the file extension |s|@>=
24916 snprintf(s,7,".%i",(int)c);
24919 @ The user won't want to see all the output file names so we only save the
24920 first and last ones and a count of how many there were. For this purpose
24921 files are ordered primarily by \&{charcode} and secondarily by order of
24923 @:char_code_}{\&{charcode} primitive@>
24925 @<Store the true output file name if appropriate@>=
24926 if ((c<mp->first_output_code)&&(mp->first_output_code>=0)) {
24927 mp->first_output_code=c;
24928 xfree(mp->first_file_name);
24929 mp->first_file_name=xstrdup(mp->name_of_file);
24931 if ( c>=mp->last_output_code ) {
24932 mp->last_output_code=c;
24933 xfree(mp->last_file_name);
24934 mp->last_file_name=xstrdup(mp->name_of_file);
24938 char * first_file_name;
24939 char * last_file_name; /* full file names */
24940 integer first_output_code;integer last_output_code; /* rounded \&{charcode} values */
24941 @:char_code_}{\&{charcode} primitive@>
24942 integer total_shipped; /* total number of |ship_out| operations completed */
24945 mp->first_file_name=xstrdup("");
24946 mp->last_file_name=xstrdup("");
24947 mp->first_output_code=32768;
24948 mp->last_output_code=-32768;
24949 mp->total_shipped=0;
24951 @ @<Dealloc variables@>=
24952 xfree(mp->first_file_name);
24953 xfree(mp->last_file_name);
24955 @ @<Begin the progress report for the output of picture~|c|@>=
24956 if ( (int)mp->term_offset>mp->max_print_line-6 ) mp_print_ln(mp);
24957 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
24958 mp_print_char(mp, '[');
24959 if ( c>=0 ) mp_print_int(mp, c)
24961 @ @<End progress report@>=
24962 mp_print_char(mp, ']');
24964 incr(mp->total_shipped)
24966 @ @<Explain what output files were written@>=
24967 if ( mp->total_shipped>0 ) {
24968 mp_print_nl(mp, "");
24969 mp_print_int(mp, mp->total_shipped);
24970 mp_print(mp, " output file");
24971 if ( mp->total_shipped>1 ) mp_print_char(mp, 's');
24972 mp_print(mp, " written: ");
24973 mp_print(mp, mp->first_file_name);
24974 if ( mp->total_shipped>1 ) {
24975 if ( 31+strlen(mp->first_file_name)+
24976 strlen(mp->last_file_name)> (unsigned)mp->max_print_line)
24978 mp_print(mp, " .. ");
24979 mp_print(mp, mp->last_file_name);
24983 @ @<Internal library declarations@>=
24984 boolean mp_has_font_size(MP mp, font_number f );
24987 boolean mp_has_font_size(MP mp, font_number f ) {
24988 return (mp->font_sizes[f]!=null);
24991 @ The \&{special} command saves up lines of text to be printed during the next
24992 |ship_out| operation. The saved items are stored as a list of capsule tokens.
24995 pointer last_pending; /* the last token in a list of pending specials */
24998 mp->last_pending=spec_head;
25000 @ @<Cases of |do_statement|...@>=
25001 case special_command:
25002 if ( mp->cur_mod==0 ) mp_do_special(mp); else
25003 if ( mp->cur_mod==1 ) mp_do_mapfile(mp); else
25007 @ @<Declare action procedures for use by |do_statement|@>=
25008 void mp_do_special (MP mp) ;
25010 @ @c void mp_do_special (MP mp) {
25011 mp_get_x_next(mp); mp_scan_expression(mp);
25012 if ( mp->cur_type!=mp_string_type ) {
25013 @<Complain about improper special operation@>;
25015 link(mp->last_pending)=mp_stash_cur_exp(mp);
25016 mp->last_pending=link(mp->last_pending);
25017 link(mp->last_pending)=null;
25021 @ @<Complain about improper special operation@>=
25023 exp_err("Unsuitable expression");
25024 help1("Only known strings are allowed for output as specials.");
25025 mp_put_get_error(mp);
25028 @ On the export side, we need an extra object type for special strings.
25030 @<Graphical object codes@>=
25033 @ @<Export pending specials@>=
25035 while ( p!=null ) {
25036 hq = mp_new_graphic_object(mp,mp_special_code);
25037 gr_pre_script(hq) = str(value(p));
25038 if (hh->body==NULL) hh->body=hq; else gr_link(hp) = hq;
25042 mp_flush_token_list(mp, link(spec_head));
25043 link(spec_head)=null;
25044 mp->last_pending=spec_head
25046 @ We are now ready for the main output procedure. Note that the |selector|
25047 setting is saved in a global variable so that |begin_diagnostic| can access it.
25049 @<Declare the \ps\ output procedures@>=
25050 void mp_ship_out (MP mp, pointer h) ;
25052 @ Once again, the |gr_XXXX| macros are defined in |mppsout.h|
25055 struct mp_edge_object *mp_gr_export(MP mp, pointer h) {
25056 pointer p; /* the current graphical object */
25057 integer t; /* a temporary value */
25058 struct mp_edge_object *hh; /* the first graphical object */
25059 struct mp_graphic_object *hp; /* the current graphical object */
25060 struct mp_graphic_object *hq; /* something |hp| points to */
25061 mp_set_bbox(mp, h, true);
25062 hh = mp_xmalloc(mp,1,sizeof(struct mp_edge_object));
25064 hh->_minx = minx_val(h);
25065 hh->_miny = miny_val(h);
25066 hh->_maxx = maxx_val(h);
25067 hh->_maxy = maxy_val(h);
25068 @<Export pending specials@>;
25069 p=link(dummy_loc(h));
25070 while ( p!=null ) {
25071 hq = mp_new_graphic_object(mp,type(p));
25074 gr_pen_p(hq) = mp_export_knot_list(mp,pen_p(p));
25075 if ((pen_p(p)==null) || pen_is_elliptical(pen_p(p))) {
25076 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25079 pc = mp_copy_path(mp, path_p(p));
25080 pp = mp_make_envelope(mp, pc, pen_p(p),ljoin_val(p),0,miterlim_val(p));
25081 gr_path_p(hq) = mp_export_knot_list(mp,pp);
25082 mp_toss_knot_list(mp, pp);
25083 pc = mp_htap_ypoc(mp, path_p(p));
25084 pp = mp_make_envelope(mp, pc, pen_p(p),ljoin_val(p),0,miterlim_val(p));
25085 gr_htap_p(hq) = mp_export_knot_list(mp,pp);
25086 mp_toss_knot_list(mp, pp);
25088 @<Export object color@>;
25089 @<Export object scripts@>;
25090 gr_ljoin_val(hq) = ljoin_val(p);
25091 gr_miterlim_val(hq) = miterlim_val(p);
25093 case mp_stroked_code:
25094 gr_pen_p(hq) = mp_export_knot_list(mp,pen_p(p));
25095 if (pen_is_elliptical(pen_p(p))) {
25096 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25099 pc=mp_copy_path(mp, path_p(p));
25101 if ( left_type(pc)!=mp_endpoint ) {
25102 left_type(mp_insert_knot(mp, pc,x_coord(pc),y_coord(pc)))=mp_endpoint;
25103 right_type(pc)=mp_endpoint;
25107 pc=mp_make_envelope(mp,pc,pen_p(p),ljoin_val(p),t,miterlim_val(p));
25108 gr_path_p(hq) = mp_export_knot_list(mp,pc);
25109 mp_toss_knot_list(mp, pc);
25111 @<Export object color@>;
25112 @<Export object scripts@>;
25113 gr_ljoin_val(hq) = ljoin_val(p);
25114 gr_miterlim_val(hq) = miterlim_val(p);
25115 gr_lcap_val(hq) = lcap_val(p);
25116 gr_dash_scale(hq) = dash_scale(p);
25117 gr_dash_p(hq) = mp_export_dashes(mp,dash_p(p));
25120 gr_text_p(hq) = str(text_p(p));
25121 gr_font_n(hq) = font_n(p);
25122 @<Export object color@>;
25123 @<Export object scripts@>;
25124 gr_width_val(hq) = width_val(p);
25125 gr_height_val(hq) = height_val(p);
25126 gr_depth_val(hq) = depth_val(p);
25127 gr_tx_val(hq) = tx_val(p);
25128 gr_ty_val(hq) = ty_val(p);
25129 gr_txx_val(hq) = txx_val(p);
25130 gr_txy_val(hq) = txy_val(p);
25131 gr_tyx_val(hq) = tyx_val(p);
25132 gr_tyy_val(hq) = tyy_val(p);
25134 case mp_start_clip_code:
25135 case mp_start_bounds_code:
25136 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25138 case mp_stop_clip_code:
25139 case mp_stop_bounds_code:
25140 /* nothing to do here */
25143 if (hh->body==NULL) hh->body=hq; else gr_link(hp) = hq;
25150 @ @<Exported function ...@>=
25151 struct mp_edge_object *mp_gr_export(MP mp, int h);
25152 extern void mp_gr_ship_out (MP mp, struct mp_edge_object *hh) ;
25154 @ This function is now nearly trivial.
25157 void mp_ship_out (MP mp, pointer h) { /* output edge structure |h| */
25158 (mp->shipout_backend) (mp, h);
25159 @<End progress report@>;
25160 if ( mp->internal[mp_tracing_output]>0 )
25161 mp_print_edges(mp, h," (just shipped out)",true);
25164 @ @<Declarations@>=
25165 void mp_shipout_backend (MP mp, pointer h);
25168 void mp_shipout_backend (MP mp, pointer h) {
25169 struct mp_edge_object *hh; /* the first graphical object */
25170 hh = mp_gr_export(mp,h);
25171 mp_gr_ship_out (mp, hh);
25175 @ @<Exported types@>=
25176 typedef void (*mp_backend_writer)(MP, int);
25178 @ @<Option variables@>=
25179 mp_backend_writer shipout_backend;
25181 @ @<Allocate or initialize ...@>=
25182 set_callback_option(shipout_backend);
25186 @ Once again, the |gr_XXXX| macros are defined in |mppsout.h|
25188 @<Export object color@>=
25189 gr_color_model(hq) = color_model(p);
25190 gr_cyan_val(hq) = cyan_val(p);
25191 gr_magenta_val(hq) = magenta_val(p);
25192 gr_yellow_val(hq) = yellow_val(p);
25193 gr_black_val(hq) = black_val(p);
25194 gr_red_val(hq) = red_val(p);
25195 gr_green_val(hq) = green_val(p);
25196 gr_blue_val(hq) = blue_val(p);
25197 gr_grey_val(hq) = grey_val(p)
25200 @ @<Export object scripts@>=
25201 if (pre_script(p)!=null)
25202 gr_pre_script(hq) = str(pre_script(p));
25203 if (post_script(p)!=null)
25204 gr_post_script(hq) = str(post_script(p));
25206 @ Now that we've finished |ship_out|, let's look at the other commands
25207 by which a user can send things to the \.{GF} file.
25209 @ @<Determine if a character has been shipped out@>=
25211 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
25212 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
25213 boolean_reset(mp->char_exists[mp->cur_exp]);
25214 mp->cur_type=mp_boolean_type;
25220 @ @<Allocate or initialize ...@>=
25221 mp_backend_initialize(mp);
25224 mp_backend_free(mp);
25227 @* \[45] Dumping and undumping the tables.
25228 After \.{INIMP} has seen a collection of macros, it
25229 can write all the necessary information on an auxiliary file so
25230 that production versions of \MP\ are able to initialize their
25231 memory at high speed. The present section of the program takes
25232 care of such output and input. We shall consider simultaneously
25233 the processes of storing and restoring,
25234 so that the inverse relation between them is clear.
25237 The global variable |mem_ident| is a string that is printed right
25238 after the |banner| line when \MP\ is ready to start. For \.{INIMP} this
25239 string says simply `\.{(INIMP)}'; for other versions of \MP\ it says,
25240 for example, `\.{(mem=plain 90.4.14)}', showing the year,
25241 month, and day that the mem file was created. We have |mem_ident=0|
25242 before \MP's tables are loaded.
25248 mp->mem_ident=NULL;
25250 @ @<Initialize table entries...@>=
25251 mp->mem_ident=xstrdup(" (INIMP)");
25253 @ @<Declare act...@>=
25254 void mp_store_mem_file (MP mp) ;
25256 @ @c void mp_store_mem_file (MP mp) {
25257 integer k; /* all-purpose index */
25258 pointer p,q; /* all-purpose pointers */
25259 integer x; /* something to dump */
25260 four_quarters w; /* four ASCII codes */
25262 @<Create the |mem_ident|, open the mem file,
25263 and inform the user that dumping has begun@>;
25264 @<Dump constants for consistency check@>;
25265 @<Dump the string pool@>;
25266 @<Dump the dynamic memory@>;
25267 @<Dump the table of equivalents and the hash table@>;
25268 @<Dump a few more things and the closing check word@>;
25269 @<Close the mem file@>;
25272 @ Corresponding to the procedure that dumps a mem file, we also have a function
25273 that reads~one~in. The function returns |false| if the dumped mem is
25274 incompatible with the present \MP\ table sizes, etc.
25276 @d off_base 6666 /* go here if the mem file is unacceptable */
25277 @d too_small(A) { wake_up_terminal;
25278 wterm_ln("---! Must increase the "); wterm((A));
25279 @.Must increase the x@>
25284 boolean mp_load_mem_file (MP mp) {
25285 integer k; /* all-purpose index */
25286 pointer p,q; /* all-purpose pointers */
25287 integer x; /* something undumped */
25288 str_number s; /* some temporary string */
25289 four_quarters w; /* four ASCII codes */
25291 @<Undump constants for consistency check@>;
25292 @<Undump the string pool@>;
25293 @<Undump the dynamic memory@>;
25294 @<Undump the table of equivalents and the hash table@>;
25295 @<Undump a few more things and the closing check word@>;
25296 return true; /* it worked! */
25299 wterm_ln("(Fatal mem file error; I'm stymied)\n");
25300 @.Fatal mem file error@>
25304 @ @<Declarations@>=
25305 boolean mp_load_mem_file (MP mp) ;
25307 @ Mem files consist of |memory_word| items, and we use the following
25308 macros to dump words of different types:
25310 @d dump_wd(A) { WW=(A); (mp->write_binary_file)(mp->mem_file,&WW,sizeof(WW)); }
25311 @d dump_int(A) { int cint=(A); (mp->write_binary_file)(mp->mem_file,&cint,sizeof(cint)); }
25312 @d dump_hh(A) { WW.hh=(A); (mp->write_binary_file)(mp->mem_file,&WW,sizeof(WW)); }
25313 @d dump_qqqq(A) { WW.qqqq=(A); (mp->write_binary_file)(mp->mem_file,&WW,sizeof(WW)); }
25314 @d dump_string(A) { dump_int(strlen(A)+1);
25315 (mp->write_binary_file)(mp->mem_file,A,strlen(A)+1); }
25318 void * mem_file; /* for input or output of mem information */
25320 @ The inverse macros are slightly more complicated, since we need to check
25321 the range of the values we are reading in. We say `|undump(a)(b)(x)|' to
25322 read an integer value |x| that is supposed to be in the range |a<=x<=b|.
25325 size_t wanted = sizeof(A);
25327 (mp->read_binary_file)(mp->mem_file,&A_ptr,&wanted);
25328 if (wanted!=sizeof(A)) goto OFF_BASE;
25332 size_t wanted = sizeof(A);
25334 (mp->read_binary_file)(mp->mem_file,&A_ptr,&wanted);
25335 if (wanted!=sizeof(A)) goto OFF_BASE;
25338 @d undump_wd(A) { mgetw(WW); A=WW; }
25339 @d undump_int(A) { int cint; mgeti(cint); A=cint; }
25340 @d undump_hh(A) { mgetw(WW); A=WW.hh; }
25341 @d undump_qqqq(A) { mgetw(WW); A=WW.qqqq; }
25342 @d undump_strings(A,B,C) {
25343 undump_int(x); if ( (x<(A)) || (x>(B)) ) goto OFF_BASE; else C=str(x); }
25344 @d undump(A,B,C) { undump_int(x); if ( (x<(A)) || (x>(int)(B)) ) goto OFF_BASE; else C=x; }
25345 @d undump_size(A,B,C,D) { undump_int(x);
25346 if (x<(A)) goto OFF_BASE;
25347 if (x>(B)) { too_small((C)); } else { D=x;} }
25348 @d undump_string(A) do {
25353 A = xmalloc(XX,sizeof(char));
25354 (mp->read_binary_file)(mp->mem_file,(void **)&A,&wanted);
25355 if (wanted!=(size_t)XX) goto OFF_BASE;
25358 @ The next few sections of the program should make it clear how we use the
25359 dump/undump macros.
25361 @<Dump constants for consistency check@>=
25362 dump_int(mp->mem_top);
25363 dump_int(mp->hash_size);
25364 dump_int(mp->hash_prime)
25365 dump_int(mp->param_size);
25366 dump_int(mp->max_in_open);
25368 @ Sections of a \.{WEB} program that are ``commented out'' still contribute
25369 strings to the string pool; therefore \.{INIMP} and \MP\ will have
25370 the same strings. (And it is, of course, a good thing that they do.)
25374 @<Undump constants for consistency check@>=
25375 undump_int(x); mp->mem_top = x;
25376 undump_int(x); if (mp->hash_size != x) goto OFF_BASE;
25377 undump_int(x); if (mp->hash_prime != x) goto OFF_BASE;
25378 undump_int(x); if (mp->param_size != x) goto OFF_BASE;
25379 undump_int(x); if (mp->max_in_open != x) goto OFF_BASE
25381 @ We do string pool compaction to avoid dumping unused strings.
25384 w.b0=qi(mp->str_pool[k]); w.b1=qi(mp->str_pool[k+1]);
25385 w.b2=qi(mp->str_pool[k+2]); w.b3=qi(mp->str_pool[k+3]);
25388 @<Dump the string pool@>=
25389 mp_do_compaction(mp, mp->pool_size);
25390 dump_int(mp->pool_ptr);
25391 dump_int(mp->max_str_ptr);
25392 dump_int(mp->str_ptr);
25394 while ( (mp->next_str[k]==k+1) && (k<=mp->max_str_ptr) )
25397 while ( k<=mp->max_str_ptr ) {
25398 dump_int(mp->next_str[k]); incr(k);
25402 dump_int(mp->str_start[k]); /* TODO: valgrind warning here */
25403 if ( k==mp->str_ptr ) {
25410 while (k+4<mp->pool_ptr ) {
25411 dump_four_ASCII; k=k+4;
25413 k=mp->pool_ptr-4; dump_four_ASCII;
25414 mp_print_ln(mp); mp_print(mp, "at most "); mp_print_int(mp, mp->max_str_ptr);
25415 mp_print(mp, " strings of total length ");
25416 mp_print_int(mp, mp->pool_ptr)
25418 @ @d undump_four_ASCII
25420 mp->str_pool[k]=qo(w.b0); mp->str_pool[k+1]=qo(w.b1);
25421 mp->str_pool[k+2]=qo(w.b2); mp->str_pool[k+3]=qo(w.b3)
25423 @<Undump the string pool@>=
25424 undump_int(mp->pool_ptr);
25425 mp_reallocate_pool(mp, mp->pool_ptr) ;
25426 undump_int(mp->max_str_ptr);
25427 mp_reallocate_strings (mp,mp->max_str_ptr) ;
25428 undump(0,mp->max_str_ptr,mp->str_ptr);
25429 undump(0,mp->max_str_ptr+1,s);
25430 for (k=0;k<=s-1;k++)
25431 mp->next_str[k]=k+1;
25432 for (k=s;k<=mp->max_str_ptr;k++)
25433 undump(s+1,mp->max_str_ptr+1,mp->next_str[k]);
25434 mp->fixed_str_use=0;
25437 undump(0,mp->pool_ptr,mp->str_start[k]);
25438 if ( k==mp->str_ptr ) break;
25439 mp->str_ref[k]=max_str_ref;
25440 incr(mp->fixed_str_use);
25441 mp->last_fixed_str=k; k=mp->next_str[k];
25444 while ( k+4<mp->pool_ptr ) {
25445 undump_four_ASCII; k=k+4;
25447 k=mp->pool_ptr-4; undump_four_ASCII;
25448 mp->init_str_use=mp->fixed_str_use; mp->init_pool_ptr=mp->pool_ptr;
25449 mp->max_pool_ptr=mp->pool_ptr;
25450 mp->strs_used_up=mp->fixed_str_use;
25451 mp->pool_in_use=mp->str_start[mp->str_ptr]; mp->strs_in_use=mp->fixed_str_use;
25452 mp->max_pl_used=mp->pool_in_use; mp->max_strs_used=mp->strs_in_use;
25453 mp->pact_count=0; mp->pact_chars=0; mp->pact_strs=0;
25455 @ By sorting the list of available spaces in the variable-size portion of
25456 |mem|, we are usually able to get by without having to dump very much
25457 of the dynamic memory.
25459 We recompute |var_used| and |dyn_used|, so that \.{INIMP} dumps valid
25460 information even when it has not been gathering statistics.
25462 @<Dump the dynamic memory@>=
25463 mp_sort_avail(mp); mp->var_used=0;
25464 dump_int(mp->lo_mem_max); dump_int(mp->rover);
25465 p=0; q=mp->rover; x=0;
25467 for (k=p;k<= q+1;k++)
25468 dump_wd(mp->mem[k]);
25469 x=x+q+2-p; mp->var_used=mp->var_used+q-p;
25470 p=q+node_size(q); q=rlink(q);
25471 } while (q!=mp->rover);
25472 mp->var_used=mp->var_used+mp->lo_mem_max-p;
25473 mp->dyn_used=mp->mem_end+1-mp->hi_mem_min;
25474 for (k=p;k<= mp->lo_mem_max;k++ )
25475 dump_wd(mp->mem[k]);
25476 x=x+mp->lo_mem_max+1-p;
25477 dump_int(mp->hi_mem_min); dump_int(mp->avail);
25478 for (k=mp->hi_mem_min;k<=mp->mem_end;k++ )
25479 dump_wd(mp->mem[k]);
25480 x=x+mp->mem_end+1-mp->hi_mem_min;
25482 while ( p!=null ) {
25483 decr(mp->dyn_used); p=link(p);
25485 dump_int(mp->var_used); dump_int(mp->dyn_used);
25486 mp_print_ln(mp); mp_print_int(mp, x);
25487 mp_print(mp, " memory locations dumped; current usage is ");
25488 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used)
25490 @ @<Undump the dynamic memory@>=
25491 undump(lo_mem_stat_max+1000,hi_mem_stat_min-1,mp->lo_mem_max);
25492 undump(lo_mem_stat_max+1,mp->lo_mem_max,mp->rover);
25495 for (k=p;k<= q+1; k++)
25496 undump_wd(mp->mem[k]);
25498 if ( (p>mp->lo_mem_max)||((q>=rlink(q))&&(rlink(q)!=mp->rover)) )
25501 } while (q!=mp->rover);
25502 for (k=p;k<=mp->lo_mem_max;k++ )
25503 undump_wd(mp->mem[k]);
25504 undump(mp->lo_mem_max+1,hi_mem_stat_min,mp->hi_mem_min);
25505 undump(null,mp->mem_top,mp->avail); mp->mem_end=mp->mem_top;
25506 for (k=mp->hi_mem_min;k<= mp->mem_end;k++)
25507 undump_wd(mp->mem[k]);
25508 undump_int(mp->var_used); undump_int(mp->dyn_used)
25510 @ A different scheme is used to compress the hash table, since its lower region
25511 is usually sparse. When |text(p)<>0| for |p<=hash_used|, we output three
25512 words: |p|, |hash[p]|, and |eqtb[p]|. The hash table is, of course, densely
25513 packed for |p>=hash_used|, so the remaining entries are output in~a~block.
25515 @<Dump the table of equivalents and the hash table@>=
25516 dump_int(mp->hash_used);
25517 mp->st_count=frozen_inaccessible-1-mp->hash_used;
25518 for (p=1;p<=mp->hash_used;p++) {
25519 if ( text(p)!=0 ) {
25520 dump_int(p); dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]); incr(mp->st_count);
25523 for (p=mp->hash_used+1;p<=(int)hash_end;p++) {
25524 dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]);
25526 dump_int(mp->st_count);
25527 mp_print_ln(mp); mp_print_int(mp, mp->st_count); mp_print(mp, " symbolic tokens")
25529 @ @<Undump the table of equivalents and the hash table@>=
25530 undump(1,frozen_inaccessible,mp->hash_used);
25533 undump(p+1,mp->hash_used,p);
25534 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
25535 } while (p!=mp->hash_used);
25536 for (p=mp->hash_used+1;p<=(int)hash_end;p++ ) {
25537 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
25539 undump_int(mp->st_count)
25541 @ We have already printed a lot of statistics, so we set |mp_tracing_stats:=0|
25542 to prevent them appearing again.
25544 @<Dump a few more things and the closing check word@>=
25545 dump_int(mp->max_internal);
25546 dump_int(mp->int_ptr);
25547 for (k=1;k<= mp->int_ptr;k++ ) {
25548 dump_int(mp->internal[k]);
25549 dump_string(mp->int_name[k]);
25551 dump_int(mp->start_sym);
25552 dump_int(mp->interaction);
25553 dump_string(mp->mem_ident);
25554 dump_int(mp->bg_loc); dump_int(mp->eg_loc); dump_int(mp->serial_no); dump_int(69073);
25555 mp->internal[mp_tracing_stats]=0
25557 @ @<Undump a few more things and the closing check word@>=
25559 if (x>mp->max_internal) mp_grow_internals(mp,x);
25560 undump_int(mp->int_ptr);
25561 for (k=1;k<= mp->int_ptr;k++) {
25562 undump_int(mp->internal[k]);
25563 undump_string(mp->int_name[k]);
25565 undump(0,frozen_inaccessible,mp->start_sym);
25566 if (mp->interaction==mp_unspecified_mode) {
25567 undump(mp_unspecified_mode,mp_error_stop_mode,mp->interaction);
25569 undump(mp_unspecified_mode,mp_error_stop_mode,x);
25571 undump_string(mp->mem_ident);
25572 undump(1,hash_end,mp->bg_loc);
25573 undump(1,hash_end,mp->eg_loc);
25574 undump_int(mp->serial_no);
25576 if (x!=69073) goto OFF_BASE
25578 @ @<Create the |mem_ident|...@>=
25580 xfree(mp->mem_ident);
25581 mp->mem_ident = xmalloc(256,1);
25582 snprintf(mp->mem_ident,256," (mem=%s %i.%i.%i)",
25584 (int)(mp_round_unscaled(mp, mp->internal[mp_year]) % 100),
25585 (int)mp_round_unscaled(mp, mp->internal[mp_month]),
25586 (int)mp_round_unscaled(mp, mp->internal[mp_day]));
25587 mp_pack_job_name(mp, mem_extension);
25588 while (! mp_w_open_out(mp, &mp->mem_file) )
25589 mp_prompt_file_name(mp, "mem file name", mem_extension);
25590 mp_print_nl(mp, "Beginning to dump on file ");
25591 @.Beginning to dump...@>
25592 mp_print(mp, mp->name_of_file);
25593 mp_print_nl(mp, mp->mem_ident);
25596 @ @<Dealloc variables@>=
25597 xfree(mp->mem_ident);
25599 @ @<Close the mem file@>=
25600 (mp->close_file)(mp->mem_file)
25602 @* \[46] The main program.
25603 This is it: the part of \MP\ that executes all those procedures we have
25606 Well---almost. We haven't put the parsing subroutines into the
25607 program yet; and we'd better leave space for a few more routines that may
25608 have been forgotten.
25610 @c @<Declare the basic parsing subroutines@>;
25611 @<Declare miscellaneous procedures that were declared |forward|@>;
25612 @<Last-minute procedures@>
25614 @ We've noted that there are two versions of \MP. One, called \.{INIMP},
25616 has to be run first; it initializes everything from scratch, without
25617 reading a mem file, and it has the capability of dumping a mem file.
25618 The other one is called `\.{VIRMP}'; it is a ``virgin'' program that needs
25620 to input a mem file in order to get started. \.{VIRMP} typically has
25621 a bit more memory capacity than \.{INIMP}, because it does not need the
25622 space consumed by the dumping/undumping routines and the numerous calls on
25625 The \.{VIRMP} program cannot read a mem file instantaneously, of course;
25626 the best implementations therefore allow for production versions of \MP\ that
25627 not only avoid the loading routine for object code, they also have
25628 a mem file pre-loaded.
25630 @ @<Option variables@>=
25631 int ini_version; /* are we iniMP? */
25633 @ @<Set |ini_version|@>=
25634 mp->ini_version = (opt->ini_version ? true : false);
25636 @ Here we do whatever is needed to complete \MP's job gracefully on the
25637 local operating system. The code here might come into play after a fatal
25638 error; it must therefore consist entirely of ``safe'' operations that
25639 cannot produce error messages. For example, it would be a mistake to call
25640 |str_room| or |make_string| at this time, because a call on |overflow|
25641 might lead to an infinite loop.
25642 @^system dependencies@>
25644 This program doesn't bother to close the input files that may still be open.
25646 @<Last-minute...@>=
25647 void mp_close_files_and_terminate (MP mp) {
25648 integer k; /* all-purpose index */
25649 integer LH; /* the length of the \.{TFM} header, in words */
25650 int lk_offset; /* extra words inserted at beginning of |lig_kern| array */
25651 pointer p; /* runs through a list of \.{TFM} dimensions */
25652 @<Close all open files in the |rd_file| and |wr_file| arrays@>;
25653 if ( mp->internal[mp_tracing_stats]>0 )
25654 @<Output statistics about this job@>;
25656 @<Do all the finishing work on the \.{TFM} file@>;
25657 @<Explain what output files were written@>;
25658 if ( mp->log_opened ){
25660 (mp->close_file)(mp->log_file);
25661 mp->selector=mp->selector-2;
25662 if ( mp->selector==term_only ) {
25663 mp_print_nl(mp, "Transcript written on ");
25664 @.Transcript written...@>
25665 mp_print(mp, mp->log_name); mp_print_char(mp, '.');
25673 @ @<Declarations@>=
25674 void mp_close_files_and_terminate (MP mp) ;
25676 @ @<Close all open files in the |rd_file| and |wr_file| arrays@>=
25677 if (mp->rd_fname!=NULL) {
25678 for (k=0;k<=(int)mp->read_files-1;k++ ) {
25679 if ( mp->rd_fname[k]!=NULL ) {
25680 (mp->close_file)(mp->rd_file[k]);
25684 if (mp->wr_fname!=NULL) {
25685 for (k=0;k<=(int)mp->write_files-1;k++) {
25686 if ( mp->wr_fname[k]!=NULL ) {
25687 (mp->close_file)(mp->wr_file[k]);
25693 for (k=0;k<(int)mp->max_read_files;k++ ) {
25694 if ( mp->rd_fname[k]!=NULL ) {
25695 (mp->close_file)(mp->rd_file[k]);
25696 mp_xfree(mp->rd_fname[k]);
25699 mp_xfree(mp->rd_file);
25700 mp_xfree(mp->rd_fname);
25701 for (k=0;k<(int)mp->max_write_files;k++) {
25702 if ( mp->wr_fname[k]!=NULL ) {
25703 (mp->close_file)(mp->wr_file[k]);
25704 mp_xfree(mp->wr_fname[k]);
25707 mp_xfree(mp->wr_file);
25708 mp_xfree(mp->wr_fname);
25711 @ We want to produce a \.{TFM} file if and only if |mp_fontmaking| is positive.
25713 We reclaim all of the variable-size memory at this point, so that
25714 there is no chance of another memory overflow after the memory capacity
25715 has already been exceeded.
25717 @<Do all the finishing work on the \.{TFM} file@>=
25718 if ( mp->internal[mp_fontmaking]>0 ) {
25719 @<Make the dynamic memory into one big available node@>;
25720 @<Massage the \.{TFM} widths@>;
25721 mp_fix_design_size(mp); mp_fix_check_sum(mp);
25722 @<Massage the \.{TFM} heights, depths, and italic corrections@>;
25723 mp->internal[mp_fontmaking]=0; /* avoid loop in case of fatal error */
25724 @<Finish the \.{TFM} file@>;
25727 @ @<Make the dynamic memory into one big available node@>=
25728 mp->rover=lo_mem_stat_max+1; link(mp->rover)=empty_flag; mp->lo_mem_max=mp->hi_mem_min-1;
25729 if ( mp->lo_mem_max-mp->rover>max_halfword ) mp->lo_mem_max=max_halfword+mp->rover;
25730 node_size(mp->rover)=mp->lo_mem_max-mp->rover;
25731 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
25732 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null
25734 @ The present section goes directly to the log file instead of using
25735 |print| commands, because there's no need for these strings to take
25736 up |str_pool| memory when a non-{\bf stat} version of \MP\ is being used.
25738 @<Output statistics...@>=
25739 if ( mp->log_opened ) {
25742 wlog_ln("Here is how much of MetaPost's memory you used:");
25743 @.Here is how much...@>
25744 snprintf(s,128," %i string%s out of %i",(int)mp->max_strs_used-mp->init_str_use,
25745 (mp->max_strs_used!=mp->init_str_use+1 ? "s" : ""),
25746 (int)(mp->max_strings-1-mp->init_str_use));
25748 snprintf(s,128," %i string characters out of %i",
25749 (int)mp->max_pl_used-mp->init_pool_ptr,
25750 (int)mp->pool_size-mp->init_pool_ptr);
25752 snprintf(s,128," %i words of memory out of %i",
25753 (int)mp->lo_mem_max+mp->mem_end-mp->hi_mem_min+2,
25754 (int)mp->mem_end+1);
25756 snprintf(s,128," %i symbolic tokens out of %i", (int)mp->st_count, (int)mp->hash_size);
25758 snprintf(s,128," %ii, %in, %ip, %ib stack positions out of %ii, %in, %ip, %ib",
25759 (int)mp->max_in_stack,(int)mp->int_ptr,
25760 (int)mp->max_param_stack,(int)mp->max_buf_stack+1,
25761 (int)mp->stack_size,(int)mp->max_internal,(int)mp->param_size,(int)mp->buf_size);
25763 snprintf(s,128," %i string compactions (moved %i characters, %i strings)",
25764 (int)mp->pact_count,(int)mp->pact_chars,(int)mp->pact_strs);
25768 @ We get to the |final_cleanup| routine when \&{end} or \&{dump} has
25771 @<Last-minute...@>=
25772 void mp_final_cleanup (MP mp) {
25773 small_number c; /* 0 for \&{end}, 1 for \&{dump} */
25775 if ( mp->job_name==NULL ) mp_open_log_file(mp);
25776 while ( mp->input_ptr>0 ) {
25777 if ( token_state ) mp_end_token_list(mp);
25778 else mp_end_file_reading(mp);
25780 while ( mp->loop_ptr!=null ) mp_stop_iteration(mp);
25781 while ( mp->open_parens>0 ) {
25782 mp_print(mp, " )"); decr(mp->open_parens);
25784 while ( mp->cond_ptr!=null ) {
25785 mp_print_nl(mp, "(end occurred when ");
25786 @.end occurred...@>
25787 mp_print_cmd_mod(mp, fi_or_else,mp->cur_if);
25788 /* `\.{if}' or `\.{elseif}' or `\.{else}' */
25789 if ( mp->if_line!=0 ) {
25790 mp_print(mp, " on line "); mp_print_int(mp, mp->if_line);
25792 mp_print(mp, " was incomplete)");
25793 mp->if_line=if_line_field(mp->cond_ptr);
25794 mp->cur_if=name_type(mp->cond_ptr); mp->cond_ptr=link(mp->cond_ptr);
25796 if ( mp->history!=mp_spotless )
25797 if ( ((mp->history==mp_warning_issued)||(mp->interaction<mp_error_stop_mode)) )
25798 if ( mp->selector==term_and_log ) {
25799 mp->selector=term_only;
25800 mp_print_nl(mp, "(see the transcript file for additional information)");
25801 @.see the transcript file...@>
25802 mp->selector=term_and_log;
25805 if (mp->ini_version) {
25806 mp_store_mem_file(mp); return;
25808 mp_print_nl(mp, "(dump is performed only by INIMP)"); return;
25809 @.dump...only by INIMP@>
25813 @ @<Declarations@>=
25814 void mp_final_cleanup (MP mp) ;
25815 void mp_init_prim (MP mp) ;
25816 void mp_init_tab (MP mp) ;
25818 @ @<Last-minute...@>=
25819 void mp_init_prim (MP mp) { /* initialize all the primitives */
25823 void mp_init_tab (MP mp) { /* initialize other tables */
25824 integer k; /* all-purpose index */
25825 @<Initialize table entries (done by \.{INIMP} only)@>;
25829 @ When we begin the following code, \MP's tables may still contain garbage;
25830 the strings might not even be present. Thus we must proceed cautiously to get
25833 But when we finish this part of the program, \MP\ is ready to call on the
25834 |main_control| routine to do its work.
25836 @<Get the first line...@>=
25838 @<Initialize the input routines@>;
25839 if ( (mp->mem_ident==NULL)||(mp->buffer[loc]=='&') ) {
25840 if ( mp->mem_ident!=NULL ) {
25841 mp_do_initialize(mp); /* erase preloaded mem */
25843 if ( ! mp_open_mem_file(mp) ) return mp_fatal_error_stop;
25844 if ( ! mp_load_mem_file(mp) ) {
25845 (mp->close_file)(mp->mem_file);
25846 return mp_fatal_error_stop;
25848 (mp->close_file)( mp->mem_file);
25849 while ( (loc<limit)&&(mp->buffer[loc]==' ') ) incr(loc);
25851 mp->buffer[limit]='%';
25852 mp_fix_date_and_time(mp);
25853 if (mp->random_seed==0)
25854 mp->random_seed = (mp->internal[mp_time] / unity)+mp->internal[mp_day];
25855 mp_init_randoms(mp, mp->random_seed);
25856 @<Initialize the print |selector|...@>;
25857 if ( loc<limit ) if ( mp->buffer[loc]!='\\' )
25858 mp_start_input(mp); /* \&{input} assumed */
25861 @ @<Run inimpost commands@>=
25863 mp_get_strings_started(mp);
25864 mp_init_tab(mp); /* initialize the tables */
25865 mp_init_prim(mp); /* call |primitive| for each primitive */
25866 mp->init_str_use=mp->str_ptr; mp->init_pool_ptr=mp->pool_ptr;
25867 mp->max_str_ptr=mp->str_ptr; mp->max_pool_ptr=mp->pool_ptr;
25868 mp_fix_date_and_time(mp);
25872 @* \[47] Debugging.
25873 Once \MP\ is working, you should be able to diagnose most errors with
25874 the \.{show} commands and other diagnostic features. But for the initial
25875 stages of debugging, and for the revelation of really deep mysteries, you
25876 can compile \MP\ with a few more aids. An additional routine called |debug_help|
25877 will also come into play when you type `\.D' after an error message;
25878 |debug_help| also occurs just before a fatal error causes \MP\ to succumb.
25880 @^system dependencies@>
25882 The interface to |debug_help| is primitive, but it is good enough when used
25883 with a debugger that allows you to set breakpoints and to read
25884 variables and change their values. After getting the prompt `\.{debug \#}', you
25885 type either a negative number (this exits |debug_help|), or zero (this
25886 goes to a location where you can set a breakpoint, thereby entering into
25887 dialog with the debugger), or a positive number |m| followed by
25888 an argument |n|. The meaning of |m| and |n| will be clear from the
25889 program below. (If |m=13|, there is an additional argument, |l|.)
25892 @<Last-minute...@>=
25893 void mp_debug_help (MP mp) { /* routine to display various things */
25900 mp_print_nl(mp, "debug # (-1 to exit):"); update_terminal;
25903 aline = (mp->read_ascii_file)(mp->term_in, &len);
25904 if (len) { sscanf(aline,"%i",&m); xfree(aline); }
25908 aline = (mp->read_ascii_file)(mp->term_in, &len);
25909 if (len) { sscanf(aline,"%i",&n); xfree(aline); }
25911 @<Numbered cases for |debug_help|@>;
25912 default: mp_print(mp, "?"); break;
25917 @ @<Numbered cases...@>=
25918 case 1: mp_print_word(mp, mp->mem[n]); /* display |mem[n]| in all forms */
25920 case 2: mp_print_int(mp, info(n));
25922 case 3: mp_print_int(mp, link(n));
25924 case 4: mp_print_int(mp, eq_type(n)); mp_print_char(mp, ':'); mp_print_int(mp, equiv(n));
25926 case 5: mp_print_variable_name(mp, n);
25928 case 6: mp_print_int(mp, mp->internal[n]);
25930 case 7: mp_do_show_dependencies(mp);
25932 case 9: mp_show_token_list(mp, n,null,100000,0);
25934 case 10: mp_print_str(mp, n);
25936 case 11: mp_check_mem(mp, n>0); /* check wellformedness; print new busy locations if |n>0| */
25938 case 12: mp_search_mem(mp, n); /* look for pointers to |n| */
25942 aline = (mp->read_ascii_file)(mp->term_in, &len);
25943 if (len) { sscanf(aline,"%i",&l); xfree(aline); }
25944 mp_print_cmd_mod(mp, n,l);
25946 case 14: for (k=0;k<=n;k++) mp_print_str(mp, mp->buffer[k]);
25948 case 15: mp->panicking=! mp->panicking;
25952 @ Saving the filename template
25954 @<Save the filename template@>=
25956 if ( mp->filename_template!=0 ) delete_str_ref(mp->filename_template);
25957 if ( length(mp->cur_exp)==0 ) mp->filename_template=0;
25959 mp->filename_template=mp->cur_exp; add_str_ref(mp->filename_template);
25963 @* \[48] System-dependent changes.
25964 This section should be replaced, if necessary, by any special
25965 modification of the program
25966 that are necessary to make \MP\ work at a particular installation.
25967 It is usually best to design your change file so that all changes to
25968 previous sections preserve the section numbering; then everybody's version
25969 will be consistent with the published program. More extensive changes,
25970 which introduce new sections, can be inserted here; then only the index
25971 itself will get a new section number.
25972 @^system dependencies@>
25975 Here is where you can find all uses of each identifier in the program,
25976 with underlined entries pointing to where the identifier was defined.
25977 If the identifier is only one letter long, however, you get to see only
25978 the underlined entries. {\sl All references are to section numbers instead of
25981 This index also lists error messages and other aspects of the program
25982 that you might want to look up some day. For example, the entry
25983 for ``system dependencies'' lists all sections that should receive
25984 special attention from people who are installing \MP\ in a new
25985 operating environment. A list of various things that can't happen appears
25986 under ``this can't happen''.
25987 Approximately 25 sections are listed under ``inner loop''; these account
25988 for more than 60\pct! of \MP's running time, exclusive of input and output.