1 % $Id: mp.web,v 1.8 2005/08/24 10:54:02 taco Exp $
2 % MetaPost, by John Hobby. Public domain.
4 % Much of this program was copied with permission from MF.web Version 1.9
5 % It interprets a language very similar to D.E. Knuth's METAFONT, but with
6 % changes designed to make it more suitable for PostScript output.
8 % TeX is a trademark of the American Mathematical Society.
9 % METAFONT is a trademark of Addison-Wesley Publishing Company.
10 % PostScript is a trademark of Adobe Systems Incorporated.
12 % Here is TeX material that gets inserted after \input webmac
13 \def\hang{\hangindent 3em\noindent\ignorespaces}
14 \def\textindent#1{\hangindent2.5em\noindent\hbox to2.5em{\hss#1 }\ignorespaces}
17 \def\ph{\hbox{Pascal-H}}
18 \def\psqrt#1{\sqrt{\mathstrut#1}}
20 \def\pct!{{\char`\%}} % percent sign in ordinary text
21 \font\tenlogo=logo10 % font used for the METAFONT logo
23 \def\MF{{\tenlogo META}\-{\tenlogo FONT}}
24 \def\MP{{\tenlogo META}\-{\tenlogo POST}}
25 \def\[#1]{#1.} % from pascal web
26 \def\<#1>{$\langle#1\rangle$}
27 \def\section{\mathhexbox278}
28 \let\swap=\leftrightarrow
29 \def\round{\mathop{\rm round}\nolimits}
30 \mathchardef\vb="026A % synonym for `\|'
32 \def\(#1){} % this is used to make section names sort themselves better
33 \def\9#1{} % this is used for sort keys in the index via @@:sort key}{entry@@>
35 \def\glob{15} % this should be the section number of "<Global...>"
36 \def\gglob{23, 28} % this should be the next two sections of "<Global...>"
41 This is \MP, a graphics-language processor based on D. E. Knuth's \MF.
43 The main purpose of the following program is to explain the algorithms of \MP\
44 as clearly as possible. As a result, the program will not necessarily be very
45 efficient when a particular \PASCAL\ compiler has translated it into a
46 particular machine language. However, the program has been written so that it
47 can be tuned to run efficiently in a wide variety of operating environments
48 by making comparatively few changes. Such flexibility is possible because
49 the documentation that follows is written in the \.{WEB} language, which is
50 at a higher level than \PASCAL; the preprocessing step that converts \.{WEB}
51 to \PASCAL\ is able to introduce most of the necessary refinements.
52 Semi-automatic translation to other languages is also feasible, because the
53 program below does not make extensive use of features that are peculiar to
56 A large piece of software like \MP\ has inherent complexity that cannot
57 be reduced below a certain level of difficulty, although each individual
58 part is fairly simple by itself. The \.{WEB} language is intended to make
59 the algorithms as readable as possible, by reflecting the way the
60 individual program pieces fit together and by providing the
61 cross-references that connect different parts. Detailed comments about
62 what is going on, and about why things were done in certain ways, have
63 been liberally sprinkled throughout the program. These comments explain
64 features of the implementation, but they rarely attempt to explain the
65 \MP\ language itself, since the reader is supposed to be familiar with
66 {\sl The {\logos METAFONT\/}book} as well as the manual
68 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
69 {\sl A User's Manual for MetaPost}, Computing Science Technical Report 162,
70 AT\AM T Bell Laboratories.
72 @ The present implementation is a preliminary version, but the possibilities
73 for new features are limited by the desire to remain as nearly compatible
74 with \MF\ as possible.
76 On the other hand, the \.{WEB} description can be extended without changing
77 the core of the program, and it has been designed so that such
78 extensions are not extremely difficult to make.
79 The |banner| string defined here should be changed whenever \MP\
80 undergoes any modifications, so that it will be clear which version of
81 \MP\ might be the guilty party when a problem arises.
83 @^system dependencies@>
85 @d banner "This is MetaPost, Version 1.002" /* printed when \MP\ starts */
86 @d metapost_version "1.002"
87 @d mplib_version "0.10"
88 @d version_string " (Cweb version 0.10)"
90 @ Different \PASCAL s have slightly different conventions, and the present
92 program is expressed in a version of \PASCAL\ that D. E. Knuth used for \MF.
93 Constructions that apply to
94 this particular compiler, which we shall call \ph, should help the
95 reader see how to make an appropriate interface for other systems
96 if necessary. (\ph\ is Charles Hedrick's modification of a compiler
97 @^Hedrick, Charles Locke@>
98 for the DECsystem-10 that was originally developed at the University of
99 Hamburg; cf.\ {\sl SOFTWARE---Practice \AM\ Experience \bf6} (1976),
100 29--42. The \MP\ program below is intended to be adaptable, without
101 extensive changes, to most other versions of \PASCAL\ and commonly used
102 \PASCAL-to-C translators, so it does not fully
104 use the admirable features of \ph. Indeed, a conscious effort has been
105 made here to avoid using several idiosyncratic features of standard
106 \PASCAL\ itself, so that most of the code can be translated mechanically
107 into other high-level languages. For example, the `\&{with}' and `\\{new}'
108 features are not used, nor are pointer types, set types, or enumerated
109 scalar types; there are no `\&{var}' parameters, except in the case of files;
110 there are no tag fields on variant records; there are no |real| variables;
111 no procedures are declared local to other procedures.)
113 The portions of this program that involve system-dependent code, where
114 changes might be necessary because of differences between \PASCAL\ compilers
115 and/or differences between
116 operating systems, can be identified by looking at the sections whose
117 numbers are listed under `system dependencies' in the index. Furthermore,
118 the index entries for `dirty \PASCAL' list all places where the restrictions
119 of \PASCAL\ have not been followed perfectly, for one reason or another.
120 @^system dependencies@>
123 @ The program begins with a normal \PASCAL\ program heading, whose
124 components will be filled in later, using the conventions of \.{WEB}.
126 For example, the portion of the program called `\X\glob:Global
127 variables\X' below will be replaced by a sequence of variable declarations
128 that starts in $\section\glob$ of this documentation. In this way, we are able
129 to define each individual global variable when we are prepared to
130 understand what it means; we do not have to define all of the globals at
131 once. Cross references in $\section\glob$, where it says ``See also
132 sections \gglob, \dots,'' also make it possible to look at the set of
133 all global variables, if desired. Similar remarks apply to the other
134 portions of the program heading.
136 Actually the heading shown here is not quite normal: The |program| line
137 does not mention any |output| file, because \ph\ would ask the \MP\ user
138 to specify a file name if |output| were specified here.
139 @^system dependencies@>
145 typedef struct MP_instance * MP;
147 typedef struct MP_options {
150 @<Exported function headers@>
154 typedef struct psout_data_struct * psout_data;
156 typedef signed int integer;
158 @<Types in the outer block@>;
159 @<Constants in the outer block@>
160 # ifndef LIBAVL_ALLOCATOR
161 # define LIBAVL_ALLOCATOR
162 struct libavl_allocator {
163 void *(*libavl_malloc) (struct libavl_allocator *, size_t libavl_size);
164 void (*libavl_free) (struct libavl_allocator *, void *libavl_block);
167 typedef struct MP_instance {
170 @<Internal library declarations@>
178 #include <unistd.h> /* for access() */
179 #include <time.h> /* for struct tm \& co */
181 #include "mpmp.h" /* internal header */
182 #include "mppsout.h" /* internal header */
185 @<Basic printing procedures@>
186 @<Error handling procedures@>
188 @ Here are the functions that set up the \MP\ instance.
191 @<Declare |mp_reallocate| functions@>;
192 struct MP_options *mp_options (void);
193 MP mp_new (struct MP_options *opt);
196 struct MP_options *mp_options (void) {
197 struct MP_options *opt;
198 opt = malloc(sizeof(MP_options));
200 memset (opt,0,sizeof(MP_options));
204 MP mp_new (struct MP_options *opt) {
206 mp = xmalloc(1,sizeof(MP_instance));
207 @<Set |ini_version|@>;
208 @<Setup the non-local jump buffer in |mp_new|@>;
209 @<Allocate or initialize variables@>
210 if (opt->main_memory>mp->mem_max)
211 mp_reallocate_memory(mp,opt->main_memory);
212 mp_reallocate_paths(mp,1000);
213 mp_reallocate_fonts(mp,8);
215 mp->term_out = stdout;
218 void mp_free (MP mp) {
219 int k; /* loop variable */
220 @<Dealloc variables@>
225 void mp_do_initialize ( MP mp) {
226 @<Local variables for initialization@>
227 @<Set initial values of key variables@>
229 int mp_initialize (MP mp) { /* this procedure gets things started properly */
230 mp->history=mp_fatal_error_stop; /* in case we quit during initialization */
231 @<Install and test the non-local jump buffer@>;
232 t_open_out; /* open the terminal for output */
233 @<Check the ``constant'' values...@>;
235 fprintf(stdout,"Ouch---my internal constants have been clobbered!\n"
236 "---case %i",(int)mp->bad);
240 mp_do_initialize(mp); /* erase preloaded mem */
241 if (mp->ini_version) {
242 @<Run inimpost commands@>;
244 @<Initialize the output routines@>;
245 @<Get the first line of input and prepare to start@>;
247 mp_init_map_file(mp, mp->troff_mode);
248 mp->history=mp_spotless; /* ready to go! */
249 if (mp->troff_mode) {
250 mp->internal[mp_gtroffmode]=unity;
251 mp->internal[mp_prologues]=unity;
253 if ( mp->start_sym>0 ) { /* insert the `\&{everyjob}' symbol */
254 mp->cur_sym=mp->start_sym; mp_back_input(mp);
260 @<Exported function headers@>=
261 extern struct MP_options *mp_options (void);
262 extern MP mp_new (struct MP_options *opt) ;
263 extern void mp_free (MP mp);
264 extern int mp_initialize (MP mp);
267 void mp_do_initialize (MP mp);
270 @ The overall \MP\ program begins with the heading just shown, after which
271 comes a bunch of procedure declarations and function declarations.
272 Finally we will get to the main program, which begins with the
273 comment `|start_here|'. If you want to skip down to the
274 main program now, you can look up `|start_here|' in the index.
275 But the author suggests that the best way to understand this program
276 is to follow pretty much the order of \MP's components as they appear in the
277 \.{WEB} description you are now reading, since the present ordering is
278 intended to combine the advantages of the ``bottom up'' and ``top down''
279 approaches to the problem of understanding a somewhat complicated system.
281 @ Some of the code below is intended to be used only when diagnosing the
282 strange behavior that sometimes occurs when \MP\ is being installed or
283 when system wizards are fooling around with \MP\ without quite knowing
284 what they are doing. Such code will not normally be compiled; it is
285 delimited by the preprocessor test `|#ifdef DEBUG .. #endif|'.
287 @ This program has two important variations: (1) There is a long and slow
288 version called \.{INIMP}, which does the extra calculations needed to
290 initialize \MP's internal tables; and (2)~there is a shorter and faster
291 production version, which cuts the initialization to a bare minimum.
293 Which is which is decided at runtime.
295 @ The following parameters can be changed at compile time to extend or
296 reduce \MP's capacity. They may have different values in \.{INIMP} and
297 in production versions of \MP.
299 @^system dependencies@>
302 #define file_name_size 255 /* file names shouldn't be longer than this */
303 #define bistack_size 1500 /* size of stack for bisection algorithms;
304 should probably be left at this value */
306 @ Like the preceding parameters, the following quantities can be changed
307 at compile time to extend or reduce \MP's capacity. But if they are changed,
308 it is necessary to rerun the initialization program \.{INIMP}
310 to generate new tables for the production \MP\ program.
311 One can't simply make helter-skelter changes to the following constants,
312 since certain rather complex initialization
313 numbers are computed from them.
316 int max_strings; /* maximum number of strings; must not exceed |max_halfword| */
317 int pool_size; /* maximum number of characters in strings, including all
318 error messages and help texts, and the names of all identifiers */
319 int error_line; /* width of context lines on terminal error messages */
320 int half_error_line; /* width of first lines of contexts in terminal
321 error messages; should be between 30 and |error_line-15| */
322 int max_print_line; /* width of longest text lines output; should be at least 60 */
323 int mem_max; /* greatest index in \MP's internal |mem| array;
324 must be strictly less than |max_halfword|;
325 must be equal to |mem_top| in \.{INIMP}, otherwise |>=mem_top| */
326 int mem_top; /* largest index in the |mem| array dumped by \.{INIMP};
327 must not be greater than |mem_max| */
328 int hash_size; /* maximum number of symbolic tokens,
329 must be less than |max_halfword-3*param_size| */
330 int hash_prime; /* a prime number equal to about 85\pct! of |hash_size| */
331 int param_size; /* maximum number of simultaneous macro parameters */
332 int max_in_open; /* maximum number of input files and error insertions that
333 can be going on simultaneously */
335 @ @<Option variables@>=
346 @d set_value(a,b,c) do { a=c; if (b>c) a=b; } while (0)
351 set_value(mp->error_line,opt->error_line,79);
352 set_value(mp->half_error_line,opt->half_error_line,50);
353 set_value(mp->max_print_line,opt->max_print_line,79);
356 set_value(mp->hash_size,opt->hash_size,9500);
357 set_value(mp->hash_prime,opt->hash_prime,7919);
358 set_value(mp->param_size,opt->param_size,150);
359 set_value(mp->max_in_open,opt->max_in_open,10);
362 @ In case somebody has inadvertently made bad settings of the ``constants,''
363 \MP\ checks them using a global variable called |bad|.
365 This is the first of many sections of \MP\ where global variables are
369 integer bad; /* is some ``constant'' wrong? */
371 @ Later on we will say `\ignorespaces|if (mem_max>=max_halfword) bad=10;|',
372 or something similar. (We can't do that until |max_halfword| has been defined.)
374 @<Check the ``constant'' values for consistency@>=
376 if ( (mp->half_error_line<30)||(mp->half_error_line>mp->error_line-15) ) mp->bad=1;
377 if ( mp->max_print_line<60 ) mp->bad=2;
378 if ( mp->mem_top<=1100 ) mp->bad=4;
379 if (mp->hash_prime>mp->hash_size ) mp->bad=5;
381 @ Labels are given symbolic names by the following definitions, so that
382 occasional |goto| statements will be meaningful. We insert the label
383 `|exit|:' just before the `\ignorespaces|end|\unskip' of a procedure in
384 which we have used the `|return|' statement defined below; the label
385 `|restart|' is occasionally used at the very beginning of a procedure; and
386 the label `|reswitch|' is occasionally used just prior to a |case|
387 statement in which some cases change the conditions and we wish to branch
388 to the newly applicable case. Loops that are set up with the |loop|
389 construction defined below are commonly exited by going to `|done|' or to
390 `|found|' or to `|not_found|', and they are sometimes repeated by going to
391 `|continue|'. If two or more parts of a subroutine start differently but
392 end up the same, the shared code may be gathered together at
395 Incidentally, this program never declares a label that isn't actually used,
396 because some fussy \PASCAL\ compilers will complain about redundant labels.
398 @d label_exit 10 /* go here to leave a procedure */
399 @d restart 20 /* go here to start a procedure again */
400 @d reswitch 21 /* go here to start a case statement again */
401 @d continue 22 /* go here to resume a loop */
402 @d done 30 /* go here to exit a loop */
403 @d done1 31 /* like |done|, when there is more than one loop */
404 @d done2 32 /* for exiting the second loop in a long block */
405 @d done3 33 /* for exiting the third loop in a very long block */
406 @d done4 34 /* for exiting the fourth loop in an extremely long block */
407 @d done5 35 /* for exiting the fifth loop in an immense block */
408 @d done6 36 /* for exiting the sixth loop in a block */
409 @d found 40 /* go here when you've found it */
410 @d found1 41 /* like |found|, when there's more than one per routine */
411 @d found2 42 /* like |found|, when there's more than two per routine */
412 @d found3 43 /* like |found|, when there's more than three per routine */
413 @d not_found 45 /* go here when you've found nothing */
414 @d common_ending 50 /* go here when you want to merge with another branch */
416 @ Here are some macros for common programming idioms.
418 @d incr(A) (A)=(A)+1 /* increase a variable by unity */
419 @d decr(A) (A)=(A)-1 /* decrease a variable by unity */
420 @d negate(A) (A)=-(A) /* change the sign of a variable */
421 @d double(A) (A)=(A)+(A)
424 @d do_nothing /* empty statement */
425 @d Return goto exit /* terminate a procedure call */
426 @f return nil /* \.{WEB} will henceforth say |return| instead of \\{return} */
428 @* \[2] The character set.
429 In order to make \MP\ readily portable to a wide variety of
430 computers, all of its input text is converted to an internal eight-bit
431 code that includes standard ASCII, the ``American Standard Code for
432 Information Interchange.'' This conversion is done immediately when each
433 character is read in. Conversely, characters are converted from ASCII to
434 the user's external representation just before they are output to a
438 Such an internal code is relevant to users of \MP\ only with respect to
439 the \&{char} and \&{ASCII} operations, and the comparison of strings.
441 @ Characters of text that have been converted to \MP's internal form
442 are said to be of type |ASCII_code|, which is a subrange of the integers.
445 typedef unsigned char ASCII_code; /* eight-bit numbers */
447 @ The original \PASCAL\ compiler was designed in the late 60s, when six-bit
448 character sets were common, so it did not make provision for lowercase
449 letters. Nowadays, of course, we need to deal with both capital and small
450 letters in a convenient way, especially in a program for font design;
451 so the present specification of \MP\ has been written under the assumption
452 that the \PASCAL\ compiler and run-time system permit the use of text files
453 with more than 64 distinguishable characters. More precisely, we assume that
454 the character set contains at least the letters and symbols associated
455 with ASCII codes 040 through 0176; all of these characters are now
456 available on most computer terminals.
458 Since we are dealing with more characters than were present in the first
459 \PASCAL\ compilers, we have to decide what to call the associated data
460 type. Some \PASCAL s use the original name |char| for the
461 characters in text files, even though there now are more than 64 such
462 characters, while other \PASCAL s consider |char| to be a 64-element
463 subrange of a larger data type that has some other name.
465 In order to accommodate this difference, we shall use the name |text_char|
466 to stand for the data type of the characters that are converted to and
467 from |ASCII_code| when they are input and output. We shall also assume
468 that |text_char| consists of the elements |chr(first_text_char)| through
469 |chr(last_text_char)|, inclusive. The following definitions should be
470 adjusted if necessary.
471 @^system dependencies@>
473 @d first_text_char 0 /* ordinal number of the smallest element of |text_char| */
474 @d last_text_char 255 /* ordinal number of the largest element of |text_char| */
477 typedef unsigned char text_char; /* the data type of characters in text files */
479 @ @<Local variables for init...@>=
482 @ The \MP\ processor converts between ASCII code and
483 the user's external character set by means of arrays |xord| and |xchr|
484 that are analogous to \PASCAL's |ord| and |chr| functions.
486 @d xchr(A) mp->xchr[(A)]
487 @d xord(A) mp->xord[(A)]
490 ASCII_code xord[256]; /* specifies conversion of input characters */
491 text_char xchr[256]; /* specifies conversion of output characters */
493 @ The core system assumes all 8-bit is acceptable. If it is not,
494 a change file has to alter the below section.
495 @^system dependencies@>
497 Additionally, people with extended character sets can
498 assign codes arbitrarily, giving an |xchr| equivalent to whatever
499 characters the users of \MP\ are allowed to have in their input files.
500 Appropriate changes to \MP's |char_class| table should then be made.
501 (Unlike \TeX, each installation of \MP\ has a fixed assignment of category
502 codes, called the |char_class|.) Such changes make portability of programs
503 more difficult, so they should be introduced cautiously if at all.
504 @^character set dependencies@>
505 @^system dependencies@>
508 for (i=0;i<=0377;i++) { xchr(i)=i; }
510 @ The following system-independent code makes the |xord| array contain a
511 suitable inverse to the information in |xchr|. Note that if |xchr[i]=xchr[j]|
512 where |i<j<0177|, the value of |xord[xchr[i]]| will turn out to be
513 |j| or more; hence, standard ASCII code numbers will be used instead of
514 codes below 040 in case there is a coincidence.
517 for (i=first_text_char;i<=last_text_char;i++) {
520 for (i=0200;i<=0377;i++) { xord(xchr(i))=i;}
521 for (i=0;i<=0176;i++) { xord(xchr(i))=i;}
523 @* \[3] Input and output.
524 The bane of portability is the fact that different operating systems treat
525 input and output quite differently, perhaps because computer scientists
526 have not given sufficient attention to this problem. People have felt somehow
527 that input and output are not part of ``real'' programming. Well, it is true
528 that some kinds of programming are more fun than others. With existing
529 input/output conventions being so diverse and so messy, the only sources of
530 joy in such parts of the code are the rare occasions when one can find a
531 way to make the program a little less bad than it might have been. We have
532 two choices, either to attack I/O now and get it over with, or to postpone
533 I/O until near the end. Neither prospect is very attractive, so let's
536 The basic operations we need to do are (1)~inputting and outputting of
537 text, to or from a file or the user's terminal; (2)~inputting and
538 outputting of eight-bit bytes, to or from a file; (3)~instructing the
539 operating system to initiate (``open'') or to terminate (``close'') input or
540 output from a specified file; (4)~testing whether the end of an input
541 file has been reached; (5)~display of bits on the user's screen.
542 The bit-display operation will be discussed in a later section; we shall
543 deal here only with more traditional kinds of I/O.
545 @ Finding files happens in a slightly roundabout fashion: the \MP\
546 instance object contains a field that holds a function pointer that finds a
547 file, and returns its name, or NULL. For this, it receives three
548 parameters: the non-qualified name |fname|, the intended |fopen|
549 operation type |fmode|, and the type of the file |ftype|.
551 The file types that are passed on in |ftype| can be used to
552 differentiate file searches if a library like kpathsea is used,
553 the fopen mode is passed along for the same reason.
556 typedef unsigned char eight_bits ; /* unsigned one-byte quantity */
558 @ @<Exported types@>=
560 mp_filetype_program = 1, /* \MP\ language input */
561 mp_filetype_log, /* the log file */
562 mp_filetype_postscript, /* the postscript output */
563 mp_filetype_text, /* text files for readfrom and writeto primitives */
564 mp_filetype_memfile, /* memory dumps */
565 mp_filetype_metrics, /* TeX font metric files */
566 mp_filetype_fontmap, /* PostScript font mapping files */
567 mp_filetype_font, /* PostScript type1 font programs */
568 mp_filetype_encoding, /* PostScript font encoding files */
570 typedef char *(*mp_file_finder)(char *, char *, int);
573 mp_file_finder find_file;
575 @ @<Option variables@>=
576 mp_file_finder find_file;
578 @ The default function for finding files is |mp_find_file|. It is
579 pretty stupid: it will only find files in the current directory.
582 char *mp_find_file (char *fname, char *fmode, int ftype) {
583 if (fmode[0] != 'r' || access (fname,R_OK) || ftype)
584 return strdup(fname);
588 @ This has to be done very early on, so it is best to put it in with
589 the |mp_new| allocations
591 @d set_callback_option(A) do { mp->A = mp_##A;
592 if (opt->A!=NULL) mp->A = opt->A;
595 @<Allocate or initialize ...@>=
596 set_callback_option(find_file);
598 @ Because |mp_find_file| is used so early, it has to be in the helpers
602 char *mp_find_file (char *fname, char *fmode, int ftype) ;
604 @ The function to open files can now be very short.
607 FILE *mp_open_file(MP mp, char *fname, char *fmode, int ftype) {
608 char *s = (mp->find_file)(fname,fmode,ftype);
610 FILE *f = fopen(s, fmode);
617 @ This is a legacy interface: (almost) all file names pass through |name_of_file|.
620 char name_of_file[file_name_size+1]; /* the name of a system file */
621 int name_length;/* this many characters are actually
622 relevant in |name_of_file| (the rest are blank) */
623 boolean print_found_names; /* configuration parameter */
625 @ @<Option variables@>=
626 int print_found_names; /* configuration parameter */
628 @ If this parameter is true, the terminal and log will report the found
629 file names for input files instead of the requested ones.
630 It is off by default because it creates an extra filename lookup.
632 @<Allocate or initialize ...@>=
633 mp->print_found_names = (opt->print_found_names>0 ? true : false);
635 @ \MP's file-opening procedures return |false| if no file identified by
636 |name_of_file| could be opened.
638 The |OPEN_FILE| macro takes care of the |print_found_names| parameter.
639 It is not used for opening a mem file for read, because that file name
643 if (mp->print_found_names) {
644 char *s = (mp->find_file)(mp->name_of_file,A,ftype);
646 *f = mp_open_file(mp,mp->name_of_file,A, ftype);
647 strncpy(mp->name_of_file,s,file_name_size);
653 *f = mp_open_file(mp,mp->name_of_file,A, ftype);
656 return (*f ? true : false)
659 boolean mp_a_open_in (MP mp, FILE **f, int ftype) {
660 /* open a text file for input */
664 boolean mp_w_open_in (MP mp, FILE **f) {
665 /* open a word file for input */
666 *f = mp_open_file(mp,mp->name_of_file,"rb",mp_filetype_memfile);
667 return (*f ? true : false);
670 boolean mp_a_open_out (MP mp, FILE **f, int ftype) {
671 /* open a text file for output */
675 boolean mp_b_open_out (MP mp, FILE **f, int ftype) {
676 /* open a binary file for output */
680 boolean mp_w_open_out (MP mp, FILE**f) {
681 /* open a word file for output */
682 int ftype = mp_filetype_memfile;
687 FILE *mp_open_file(MP mp, char *fname, char *fmode, int ftype);
689 @ Binary input and output are done with \PASCAL's ordinary |get| and |put|
690 procedures, so we don't have to make any other special arrangements for
691 binary~I/O. Text output is also easy to do with standard \PASCAL\ routines.
692 The treatment of text input is more difficult, however, because
693 of the necessary translation to |ASCII_code| values.
694 \MP's conventions should be efficient, and they should
695 blend nicely with the user's operating environment.
697 @ Input from text files is read one line at a time, using a routine called
698 |input_ln|. This function is defined in terms of global variables called
699 |buffer|, |first|, and |last| that will be described in detail later; for
700 now, it suffices for us to know that |buffer| is an array of |ASCII_code|
701 values, and that |first| and |last| are indices into this array
702 representing the beginning and ending of a line of text.
705 size_t buf_size; /* maximum number of characters simultaneously present in
706 current lines of open files */
707 ASCII_code *buffer; /* lines of characters being read */
708 size_t first; /* the first unused position in |buffer| */
709 size_t last; /* end of the line just input to |buffer| */
710 size_t max_buf_stack; /* largest index used in |buffer| */
712 @ @<Allocate or initialize ...@>=
714 mp->buffer = xmalloc((mp->buf_size+1),sizeof(ASCII_code));
716 @ @<Dealloc variables@>=
720 void mp_reallocate_buffer(MP mp, size_t l) {
722 if (l>max_halfword) {
723 mp_confusion(mp,"buffer size"); /* can't happen (I hope) */
725 buffer = xmalloc((l+1),sizeof(ASCII_code));
726 memcpy(buffer,mp->buffer,(mp->buf_size+1));
728 mp->buffer = buffer ;
732 @ The |input_ln| function brings the next line of input from the specified
733 field into available positions of the buffer array and returns the value
734 |true|, unless the file has already been entirely read, in which case it
735 returns |false| and sets |last:=first|. In general, the |ASCII_code|
736 numbers that represent the next line of the file are input into
737 |buffer[first]|, |buffer[first+1]|, \dots, |buffer[last-1]|; and the
738 global variable |last| is set equal to |first| plus the length of the
739 line. Trailing blanks are removed from the line; thus, either |last=first|
740 (in which case the line was entirely blank) or |buffer[last-1]<>" "|.
743 An overflow error is given, however, if the normal actions of |input_ln|
744 would make |last>=buf_size|; this is done so that other parts of \MP\
745 can safely look at the contents of |buffer[last+1]| without overstepping
746 the bounds of the |buffer| array. Upon entry to |input_ln|, the condition
747 |first<buf_size| will always hold, so that there is always room for an
750 The variable |max_buf_stack|, which is used to keep track of how large
751 the |buf_size| parameter must be to accommodate the present job, is
752 also kept up to date by |input_ln|.
754 If the |bypass_eoln| parameter is |true|, |input_ln| will do a |get|
755 before looking at the first character of the line; this skips over
756 an |eoln| that was in |f^|. The procedure does not do a |get| when it
757 reaches the end of the line; therefore it can be used to acquire input
758 from the user's terminal as well as from ordinary text files.
760 Standard \PASCAL\ says that a file should have |eoln| immediately
761 before |eof|, but \MP\ needs only a weaker restriction: If |eof|
762 occurs in the middle of a line, the system function |eoln| should return
763 a |true| result (even though |f^| will be undefined).
766 boolean mp_input_ln (MP mp,FILE * f, boolean bypass_eoln) {
767 /* inputs the next line or returns |false| */
768 int last_nonblank; /* |last| with trailing blanks removed */
774 if (c!='\n' && c!='\r') {
778 /* input the first character of the line into |f^| */
779 mp->last=mp->first; /* cf.\ Matthew 19\thinspace:\thinspace30 */
783 last_nonblank=mp->first;
784 while (c!=EOF && c!='\n' && c!='\r') {
785 if ( mp->last>=mp->max_buf_stack ) {
786 mp->max_buf_stack=mp->last+1;
787 if ( mp->max_buf_stack==mp->buf_size ) {
788 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
791 mp->buffer[mp->last]=xord(c);
793 if ( mp->buffer[mp->last-1]!=' ' )
794 last_nonblank=mp->last;
800 mp->last=last_nonblank;
804 @ The user's terminal acts essentially like other files of text, except
805 that it is used both for input and for output. When the terminal is
806 considered an input file, the file variable is called |term_in|, and when it
807 is considered an output file the file variable is |term_out|.
808 @^system dependencies@>
811 FILE * term_in; /* the terminal as an input file */
812 FILE * term_out; /* the terminal as an output file */
814 @ Here is how to open the terminal files. In the default configuration,
815 nothing happens except that the command line (if there is one) is copied
816 to the input buffer. The variable |command_line| will be filled by the
817 |main| procedure. The copying can not be done earlier in the program
818 logic because in the |INI| version, the |buffer| is also used for primitive
821 @^system dependencies@>
823 @d t_open_out /* open the terminal for text output */
824 @d t_open_in do { /* open the terminal for text input */
825 if (mp->command_line!=NULL) {
826 mp->last = strlen(mp->command_line);
827 strncpy((char *)mp->buffer,mp->command_line,mp->last);
828 xfree(mp->command_line);
835 @ @<Option variables@>=
838 @ @<Allocate or initialize ...@>=
839 mp->command_line = opt->command_line;
841 @ Sometimes it is necessary to synchronize the input/output mixture that
842 happens on the user's terminal, and three system-dependent
843 procedures are used for this
844 purpose. The first of these, |update_terminal|, is called when we want
845 to make sure that everything we have output to the terminal so far has
846 actually left the computer's internal buffers and been sent.
847 The second, |clear_terminal|, is called when we wish to cancel any
848 input that the user may have typed ahead (since we are about to
849 issue an unexpected error message). The third, |wake_up_terminal|,
850 is supposed to revive the terminal if the user has disabled it by
851 some instruction to the operating system. The following macros show how
852 these operations can be specified in \ph:
853 @^system dependencies@>
855 @d update_terminal fflush(mp->term_out) /* empty the terminal output buffer */
856 @d clear_terminal do_nothing /* clear the terminal input buffer */
857 @d wake_up_terminal fflush(mp->term_out) /* cancel the user's cancellation of output */
859 @ We need a special routine to read the first line of \MP\ input from
860 the user's terminal. This line is different because it is read before we
861 have opened the transcript file; there is sort of a ``chicken and
862 egg'' problem here. If the user types `\.{input cmr10}' on the first
863 line, or if some macro invoked by that line does such an \.{input},
864 the transcript file will be named `\.{cmr10.log}'; but if no \.{input}
865 commands are performed during the first line of terminal input, the transcript
866 file will acquire its default name `\.{mpout.log}'. (The transcript file
867 will not contain error messages generated by the first line before the
868 first \.{input} command.)
870 The first line is even more special if we are lucky enough to have an operating
871 system that treats \MP\ differently from a run-of-the-mill \PASCAL\ object
872 program. It's nice to let the user start running a \MP\ job by typing
873 a command line like `\.{MP cmr10}'; in such a case, \MP\ will operate
874 as if the first line of input were `\.{cmr10}', i.e., the first line will
875 consist of the remainder of the command line, after the part that invoked \MP.
877 @ Different systems have different ways to get started. But regardless of
878 what conventions are adopted, the routine that initializes the terminal
879 should satisfy the following specifications:
881 \yskip\textindent{1)}It should open file |term_in| for input from the
882 terminal. (The file |term_out| will already be open for output to the
885 \textindent{2)}If the user has given a command line, this line should be
886 considered the first line of terminal input. Otherwise the
887 user should be prompted with `\.{**}', and the first line of input
888 should be whatever is typed in response.
890 \textindent{3)}The first line of input, which might or might not be a
891 command line, should appear in locations |first| to |last-1| of the
894 \textindent{4)}The global variable |loc| should be set so that the
895 character to be read next by \MP\ is in |buffer[loc]|. This
896 character should not be blank, and we should have |loc<last|.
898 \yskip\noindent(It may be necessary to prompt the user several times
899 before a non-blank line comes in. The prompt is `\.{**}' instead of the
900 later `\.*' because the meaning is slightly different: `\.{input}' need
901 not be typed immediately after~`\.{**}'.)
903 @d loc mp->cur_input.loc_field /* location of first unread character in |buffer| */
905 @ The following program does the required initialization
906 without retrieving a possible command line.
907 It should be clear how to modify this routine to deal with command lines,
908 if the system permits them.
909 @^system dependencies@>
912 boolean mp_init_terminal (MP mp) { /* gets the terminal input started */
919 wake_up_terminal; fprintf(mp->term_out,"**"); update_terminal;
921 if ( ! mp_input_ln(mp, mp->term_in,true) ) { /* this shouldn't happen */
922 fprintf(mp->term_out,"\n! End of file on the terminal... why?");
923 @.End of file on the terminal@>
927 while ( (loc<(int)mp->last)&&(mp->buffer[loc]==' ') )
929 if ( loc<(int)mp->last ) {
930 return true; /* return unless the line was all blank */
932 fprintf(mp->term_out,"Please type the name of your input file.\n");
937 boolean mp_init_terminal (MP mp) ;
940 @* \[4] String handling.
941 Symbolic token names and diagnostic messages are variable-length strings
942 of eight-bit characters. Since \PASCAL\ does not have a well-developed string
943 mechanism, \MP\ does all of its string processing by homegrown methods.
945 \MP\ uses strings more extensively than \MF\ does, but the necessary
946 operations can still be handled with a fairly simple data structure.
947 The array |str_pool| contains all of the (eight-bit) ASCII codes in all
948 of the strings, and the array |str_start| contains indices of the starting
949 points of each string. Strings are referred to by integer numbers, so that
950 string number |s| comprises the characters |str_pool[j]| for
951 |str_start[s]<=j<str_start[ss]| where |ss=next_str[s]|. The string pool
952 is allocated sequentially and |str_pool[pool_ptr]| is the next unused
953 location. The first string number not currently in use is |str_ptr|
954 and |next_str[str_ptr]| begins a list of free string numbers. String
955 pool entries |str_start[str_ptr]| up to |pool_ptr| are reserved for a
956 string currently being constructed.
958 String numbers 0 to 255 are reserved for strings that correspond to single
959 ASCII characters. This is in accordance with the conventions of \.{WEB},
961 which converts single-character strings into the ASCII code number of the
962 single character involved, while it converts other strings into integers
963 and builds a string pool file. Thus, when the string constant \.{"."} appears
964 in the program below, \.{WEB} converts it into the integer 46, which is the
965 ASCII code for a period, while \.{WEB} will convert a string like \.{"hello"}
966 into some integer greater than~255. String number 46 will presumably be the
967 single character `\..'\thinspace; but some ASCII codes have no standard visible
968 representation, and \MP\ may need to be able to print an arbitrary
969 ASCII character, so the first 256 strings are used to specify exactly what
970 should be printed for each of the 256 possibilities.
973 typedef int pool_pointer; /* for variables that point into |str_pool| */
974 typedef int str_number; /* for variables that point into |str_start| */
977 ASCII_code *str_pool; /* the characters */
978 pool_pointer *str_start; /* the starting pointers */
979 str_number *next_str; /* for linking strings in order */
980 pool_pointer pool_ptr; /* first unused position in |str_pool| */
981 str_number str_ptr; /* number of the current string being created */
982 pool_pointer init_pool_ptr; /* the starting value of |pool_ptr| */
983 str_number init_str_use; /* the initial number of strings in use */
984 pool_pointer max_pool_ptr; /* the maximum so far of |pool_ptr| */
985 str_number max_str_ptr; /* the maximum so far of |str_ptr| */
987 @ @<Allocate or initialize ...@>=
988 mp->str_pool = xmalloc ((mp->pool_size +1),sizeof(ASCII_code));
989 mp->str_start = xmalloc ((mp->max_strings+1),sizeof(pool_pointer));
990 mp->next_str = xmalloc ((mp->max_strings+1),sizeof(str_number));
992 @ @<Dealloc variables@>=
994 xfree(mp->str_start);
997 @ Most printing is done from |char *|s, but sometimes not. Here are
998 functions that convert an internal string into a |char *| for use
999 by the printing routines, and vice versa.
1001 @d str(A) mp_str(mp,A)
1002 @d rts(A) mp_rts(mp,A)
1005 int mp_xstrcmp (const char *a, const char *b);
1006 char * mp_str (MP mp, str_number s);
1009 str_number mp_rts (MP mp, char *s);
1010 str_number mp_make_string (MP mp);
1012 @ The attempt to catch interrupted strings that is in |mp_rts|, is not
1013 very good: it does not handle nesting over more than one level.
1016 int mp_xstrcmp (const char *a, const char *b) {
1017 if (a==NULL && b==NULL)
1027 char * mp_str (MP mp, str_number ss) {
1030 if (ss==mp->str_ptr) {
1034 s = xmalloc(len+1,sizeof(char));
1035 strncpy(s,(char *)(mp->str_pool+(mp->str_start[ss])),len);
1040 str_number mp_rts (MP mp, char *s) {
1041 int r; /* the new string */
1042 int old; /* a possible string in progress */
1046 } else if (strlen(s)==1) {
1050 str_room((integer)strlen(s));
1051 if (mp->str_start[mp->str_ptr]<mp->pool_ptr)
1052 old = mp_make_string(mp);
1057 r = mp_make_string(mp);
1059 str_room(length(old));
1060 while (i<length(old)) {
1061 append_char((mp->str_start[old]+i));
1063 mp_flush_string(mp,old);
1069 @ Except for |strs_used_up|, the following string statistics are only
1070 maintained when code between |stat| $\ldots$ |tats| delimiters is not
1074 integer strs_used_up; /* strings in use or unused but not reclaimed */
1075 integer pool_in_use; /* total number of cells of |str_pool| actually in use */
1076 integer strs_in_use; /* total number of strings actually in use */
1077 integer max_pl_used; /* maximum |pool_in_use| so far */
1078 integer max_strs_used; /* maximum |strs_in_use| so far */
1080 @ Several of the elementary string operations are performed using \.{WEB}
1081 macros instead of \PASCAL\ procedures, because many of the
1082 operations are done quite frequently and we want to avoid the
1083 overhead of procedure calls. For example, here is
1084 a simple macro that computes the length of a string.
1087 @d str_stop(A) mp->str_start[mp->next_str[(A)]] /* one cell past the end of string
1089 @d length(A) (str_stop((A))-mp->str_start[(A)]) /* the number of characters in string \# */
1091 @ The length of the current string is called |cur_length|. If we decide that
1092 the current string is not needed, |flush_cur_string| resets |pool_ptr| so that
1093 |cur_length| becomes zero.
1095 @d cur_length (mp->pool_ptr - mp->str_start[mp->str_ptr])
1096 @d flush_cur_string mp->pool_ptr=mp->str_start[mp->str_ptr]
1098 @ Strings are created by appending character codes to |str_pool|.
1099 The |append_char| macro, defined here, does not check to see if the
1100 value of |pool_ptr| has gotten too high; this test is supposed to be
1101 made before |append_char| is used.
1103 To test if there is room to append |l| more characters to |str_pool|,
1104 we shall write |str_room(l)|, which tries to make sure there is enough room
1105 by compacting the string pool if necessary. If this does not work,
1106 |do_compaction| aborts \MP\ and gives an apologetic error message.
1108 @d append_char(A) /* put |ASCII_code| \# at the end of |str_pool| */
1109 { mp->str_pool[mp->pool_ptr]=(A); incr(mp->pool_ptr);
1111 @d str_room(A) /* make sure that the pool hasn't overflowed */
1112 { if ( mp->pool_ptr+(A) > mp->max_pool_ptr ) {
1113 if ( mp->pool_ptr+(A) > mp->pool_size ) mp_do_compaction(mp, (A));
1114 else mp->max_pool_ptr=mp->pool_ptr+(A); }
1117 @ The following routine is similar to |str_room(1)| but it uses the
1118 argument |mp->pool_size| to prevent |do_compaction| from aborting when
1119 string space is exhausted.
1121 @<Declare the procedure called |unit_str_room|@>=
1122 void mp_unit_str_room (MP mp);
1125 void mp_unit_str_room (MP mp) {
1126 if ( mp->pool_ptr>=mp->pool_size ) mp_do_compaction(mp, mp->pool_size);
1127 if ( mp->pool_ptr>=mp->max_pool_ptr ) mp->max_pool_ptr=mp->pool_ptr+1;
1130 @ \MP's string expressions are implemented in a brute-force way: Every
1131 new string or substring that is needed is simply copied into the string pool.
1132 Space is eventually reclaimed by a procedure called |do_compaction| with
1133 the aid of a simple system system of reference counts.
1134 @^reference counts@>
1136 The number of references to string number |s| will be |str_ref[s]|. The
1137 special value |str_ref[s]=max_str_ref=127| is used to denote an unknown
1138 positive number of references; such strings will never be recycled. If
1139 a string is ever referred to more than 126 times, simultaneously, we
1140 put it in this category. Hence a single byte suffices to store each |str_ref|.
1142 @d max_str_ref 127 /* ``infinite'' number of references */
1143 @d add_str_ref(A) { if ( mp->str_ref[(A)]<max_str_ref ) incr(mp->str_ref[(A)]);
1149 @ @<Allocate or initialize ...@>=
1150 mp->str_ref = xmalloc ((mp->max_strings+1),sizeof(int));
1152 @ @<Dealloc variables@>=
1155 @ Here's what we do when a string reference disappears:
1157 @d delete_str_ref(A) {
1158 if ( mp->str_ref[(A)]<max_str_ref ) {
1159 if ( mp->str_ref[(A)]>1 ) decr(mp->str_ref[(A)]);
1160 else mp_flush_string(mp, (A));
1164 @<Declare the procedure called |flush_string|@>=
1165 void mp_flush_string (MP mp,str_number s) ;
1168 @ We can't flush the first set of static strings at all, so there
1169 is no point in trying
1172 void mp_flush_string (MP mp,str_number s) {
1174 mp->pool_in_use=mp->pool_in_use-length(s);
1175 decr(mp->strs_in_use);
1176 if ( mp->next_str[s]!=mp->str_ptr ) {
1180 decr(mp->strs_used_up);
1182 mp->pool_ptr=mp->str_start[mp->str_ptr];
1186 @ C literals cannot be simply added, they need to be set so they can't
1189 @d intern(A) mp_intern(mp,(A))
1192 str_number mp_intern (MP mp, char *s) {
1195 mp->str_ref[r] = max_str_ref;
1200 str_number mp_intern (MP mp, char *s);
1203 @ Once a sequence of characters has been appended to |str_pool|, it
1204 officially becomes a string when the function |make_string| is called.
1205 This function returns the identification number of the new string as its
1208 When getting the next unused string number from the linked list, we pretend
1210 $$ \hbox{|max_str_ptr+1|, |max_str_ptr+2|, $\ldots$, |mp->max_strings|} $$
1211 are linked sequentially even though the |next_str| entries have not been
1212 initialized yet. We never allow |str_ptr| to reach |mp->max_strings|;
1213 |do_compaction| is responsible for making sure of this.
1216 @<Declare the procedure called |do_compaction|@>;
1217 @<Declare the procedure called |unit_str_room|@>;
1218 str_number mp_make_string (MP mp);
1221 str_number mp_make_string (MP mp) { /* current string enters the pool */
1222 str_number s; /* the new string */
1225 mp->str_ptr=mp->next_str[s];
1226 if ( mp->str_ptr>mp->max_str_ptr ) {
1227 if ( mp->str_ptr==mp->max_strings ) {
1229 mp_do_compaction(mp, 0);
1233 if ( mp->strs_used_up!=mp->max_str_ptr ) mp_confusion(mp, "s");
1234 @:this can't happen s}{\quad \.s@>
1236 mp->max_str_ptr=mp->str_ptr;
1237 mp->next_str[mp->str_ptr]=mp->max_str_ptr+1;
1241 mp->str_start[mp->str_ptr]=mp->pool_ptr;
1242 incr(mp->strs_used_up);
1243 incr(mp->strs_in_use);
1244 mp->pool_in_use=mp->pool_in_use+length(s);
1245 if ( mp->pool_in_use>mp->max_pl_used )
1246 mp->max_pl_used=mp->pool_in_use;
1247 if ( mp->strs_in_use>mp->max_strs_used )
1248 mp->max_strs_used=mp->strs_in_use;
1252 @ The most interesting string operation is string pool compaction. The idea
1253 is to recover unused space in the |str_pool| array by recopying the strings
1254 to close the gaps created when some strings become unused. All string
1255 numbers~$k$ where |str_ref[k]=0| are to be linked into the list of free string
1256 numbers after |str_ptr|. If this fails to free enough pool space we issue an
1257 |overflow| error unless |needed=mp->pool_size|. Calling |do_compaction|
1258 with |needed=mp->pool_size| supresses all overflow tests.
1260 The compaction process starts with |last_fixed_str| because all lower numbered
1261 strings are permanently allocated with |max_str_ref| in their |str_ref| entries.
1264 str_number last_fixed_str; /* last permanently allocated string */
1265 str_number fixed_str_use; /* number of permanently allocated strings */
1267 @ @<Declare the procedure called |do_compaction|@>=
1268 void mp_do_compaction (MP mp, pool_pointer needed) ;
1271 void mp_do_compaction (MP mp, pool_pointer needed) {
1272 str_number str_use; /* a count of strings in use */
1273 str_number r,s,t; /* strings being manipulated */
1274 pool_pointer p,q; /* destination and source for copying string characters */
1275 @<Advance |last_fixed_str| as far as possible and set |str_use|@>;
1276 r=mp->last_fixed_str;
1279 while ( s!=mp->str_ptr ) {
1280 while ( mp->str_ref[s]==0 ) {
1281 @<Advance |s| and add the old |s| to the list of free string numbers;
1282 then |break| if |s=str_ptr|@>;
1284 r=s; s=mp->next_str[s];
1286 @<Move string |r| back so that |str_start[r]=p|; make |p| the location
1287 after the end of the string@>;
1289 @<Move the current string back so that it starts at |p|@>;
1290 if ( needed<mp->pool_size ) {
1291 @<Make sure that there is room for another string with |needed| characters@>;
1293 @<Account for the compaction and make sure the statistics agree with the
1295 mp->strs_used_up=str_use;
1298 @ @<Advance |last_fixed_str| as far as possible and set |str_use|@>=
1299 t=mp->next_str[mp->last_fixed_str];
1300 while (t!=mp->str_ptr && mp->str_ref[t]==max_str_ref) {
1301 incr(mp->fixed_str_use);
1302 mp->last_fixed_str=t;
1305 str_use=mp->fixed_str_use
1307 @ Because of the way |flush_string| has been written, it should never be
1308 necessary to |break| here. The extra line of code seems worthwhile to
1309 preserve the generality of |do_compaction|.
1311 @<Advance |s| and add the old |s| to the list of free string numbers;...@>=
1316 mp->next_str[t]=mp->next_str[mp->str_ptr];
1317 mp->next_str[mp->str_ptr]=t;
1318 if ( s==mp->str_ptr ) break;
1321 @ The string currently starts at |str_start[r]| and ends just before
1322 |str_start[s]|. We don't change |str_start[s]| because it might be needed
1323 to locate the next string.
1325 @<Move string |r| back so that |str_start[r]=p|; make |p| the location...@>=
1328 while ( q<mp->str_start[s] ) {
1329 mp->str_pool[p]=mp->str_pool[q];
1333 @ Pointers |str_start[str_ptr]| and |pool_ptr| have not been updated. When
1334 we do this, anything between them should be moved.
1336 @ @<Move the current string back so that it starts at |p|@>=
1337 q=mp->str_start[mp->str_ptr];
1338 mp->str_start[mp->str_ptr]=p;
1339 while ( q<mp->pool_ptr ) {
1340 mp->str_pool[p]=mp->str_pool[q];
1345 @ We must remember that |str_ptr| is not allowed to reach |mp->max_strings|.
1347 @<Make sure that there is room for another string with |needed| char...@>=
1348 if ( str_use>=mp->max_strings-1 )
1349 mp_reallocate_strings (mp,str_use);
1350 if ( mp->pool_ptr+needed>mp->max_pool_ptr ) {
1351 mp_reallocate_pool(mp, mp->pool_ptr+needed);
1352 mp->max_pool_ptr=mp->pool_ptr+needed;
1356 void mp_reallocate_strings (MP mp, str_number str_use) ;
1357 void mp_reallocate_pool(MP mp, pool_pointer needed) ;
1360 void mp_reallocate_strings (MP mp, str_number str_use) {
1361 while ( str_use>=mp->max_strings-1 ) {
1362 int l = mp->max_strings + (mp->max_strings>>2);
1363 XREALLOC (mp->str_ref, l, int);
1364 XREALLOC (mp->str_start, l, pool_pointer);
1365 XREALLOC (mp->next_str, l, str_number);
1366 mp->max_strings = l;
1369 void mp_reallocate_pool(MP mp, pool_pointer needed) {
1370 while ( needed>mp->pool_size ) {
1371 int l = mp->pool_size + (mp->pool_size>>2);
1372 XREALLOC (mp->str_pool, l, ASCII_code);
1377 @ @<Account for the compaction and make sure the statistics agree with...@>=
1378 if ( (mp->str_start[mp->str_ptr]!=mp->pool_in_use)||(str_use!=mp->strs_in_use) )
1379 mp_confusion(mp, "string");
1380 @:this can't happen string}{\quad string@>
1381 incr(mp->pact_count);
1382 mp->pact_chars=mp->pact_chars+mp->pool_ptr-str_stop(mp->last_fixed_str);
1383 mp->pact_strs=mp->pact_strs+str_use-mp->fixed_str_use;
1385 s=mp->str_ptr; t=str_use;
1386 while ( s<=mp->max_str_ptr ){
1387 if ( t>mp->max_str_ptr ) mp_confusion(mp, "\"");
1388 incr(t); s=mp->next_str[s];
1390 if ( t<=mp->max_str_ptr ) mp_confusion(mp, "\"");
1393 @ A few more global variables are needed to keep track of statistics when
1394 |stat| $\ldots$ |tats| blocks are not commented out.
1397 integer pact_count; /* number of string pool compactions so far */
1398 integer pact_chars; /* total number of characters moved during compactions */
1399 integer pact_strs; /* total number of strings moved during compactions */
1401 @ @<Initialize compaction statistics@>=
1406 @ The following subroutine compares string |s| with another string of the
1407 same length that appears in |buffer| starting at position |k|;
1408 the result is |true| if and only if the strings are equal.
1411 boolean mp_str_eq_buf (MP mp,str_number s, integer k) {
1412 /* test equality of strings */
1413 pool_pointer j; /* running index */
1415 while ( j<str_stop(s) ) {
1416 if ( mp->str_pool[j++]!=mp->buffer[k++] )
1422 @ Here is a similar routine, but it compares two strings in the string pool,
1423 and it does not assume that they have the same length. If the first string
1424 is lexicographically greater than, less than, or equal to the second,
1425 the result is respectively positive, negative, or zero.
1428 integer mp_str_vs_str (MP mp, str_number s, str_number t) {
1429 /* test equality of strings */
1430 pool_pointer j,k; /* running indices */
1431 integer ls,lt; /* lengths */
1432 integer l; /* length remaining to test */
1433 ls=length(s); lt=length(t);
1434 if ( ls<=lt ) l=ls; else l=lt;
1435 j=mp->str_start[s]; k=mp->str_start[t];
1437 if ( mp->str_pool[j]!=mp->str_pool[k] ) {
1438 return (mp->str_pool[j]-mp->str_pool[k]);
1445 @ The initial values of |str_pool|, |str_start|, |pool_ptr|,
1446 and |str_ptr| are computed by the \.{INIMP} program, based in part
1447 on the information that \.{WEB} has output while processing \MP.
1452 void mp_get_strings_started (MP mp) {
1453 /* initializes the string pool,
1454 but returns |false| if something goes wrong */
1455 int k; /* small indices or counters */
1456 str_number g; /* a new string */
1457 mp->pool_ptr=0; mp->str_ptr=0; mp->max_pool_ptr=0; mp->max_str_ptr=0;
1460 mp->pool_in_use=0; mp->strs_in_use=0;
1461 mp->max_pl_used=0; mp->max_strs_used=0;
1462 @<Initialize compaction statistics@>;
1464 @<Make the first 256 strings@>;
1465 g=mp_make_string(mp); /* string 256 == "" */
1466 mp->str_ref[g]=max_str_ref;
1467 mp->last_fixed_str=mp->str_ptr-1;
1468 mp->fixed_str_use=mp->str_ptr;
1473 void mp_get_strings_started (MP mp);
1475 @ The first 256 strings will consist of a single character only.
1477 @<Make the first 256...@>=
1478 for (k=0;k<=255;k++) {
1480 g=mp_make_string(mp);
1481 mp->str_ref[g]=max_str_ref;
1484 @ The first 128 strings will contain 95 standard ASCII characters, and the
1485 other 33 characters will be printed in three-symbol form like `\.{\^\^A}'
1486 unless a system-dependent change is made here. Installations that have
1487 an extended character set, where for example |xchr[032]=@t\.{'^^Z'}@>|,
1488 would like string 032 to be printed as the single character 032 instead
1489 of the three characters 0136, 0136, 0132 (\.{\^\^Z}). On the other hand,
1490 even people with an extended character set will want to represent string
1491 015 by \.{\^\^M}, since 015 is ASCII's ``carriage return'' code; the idea is
1492 to produce visible strings instead of tabs or line-feeds or carriage-returns
1493 or bell-rings or characters that are treated anomalously in text files.
1495 Unprintable characters of codes 128--255 are, similarly, rendered
1496 \.{\^\^80}--\.{\^\^ff}.
1498 The boolean expression defined here should be |true| unless \MP\ internal
1499 code number~|k| corresponds to a non-troublesome visible symbol in the
1500 local character set.
1501 If character |k| cannot be printed, and |k<0200|, then character |k+0100| or
1502 |k-0100| must be printable; moreover, ASCII codes |[060..071, 0141..0146]|
1504 @^character set dependencies@>
1505 @^system dependencies@>
1507 @<Character |k| cannot be printed@>=
1510 @* \[5] On-line and off-line printing.
1511 Messages that are sent to a user's terminal and to the transcript-log file
1512 are produced by several `|print|' procedures. These procedures will
1513 direct their output to a variety of places, based on the setting of
1514 the global variable |selector|, which has the following possible
1518 \hang |term_and_log|, the normal setting, prints on the terminal and on the
1521 \hang |log_only|, prints only on the transcript file.
1523 \hang |term_only|, prints only on the terminal.
1525 \hang |no_print|, doesn't print at all. This is used only in rare cases
1526 before the transcript file is open.
1528 \hang |ps_file_only| prints only on the \ps\ output file.
1530 \hang |pseudo|, puts output into a cyclic buffer that is used
1531 by the |show_context| routine; when we get to that routine we shall discuss
1532 the reasoning behind this curious mode.
1534 \hang |new_string|, appends the output to the current string in the
1537 \hang |>=write_file| prints on one of the files used for the \&{write}
1538 @:write_}{\&{write} primitive@>
1542 \noindent The symbolic names `|term_and_log|', etc., have been assigned
1543 numeric codes that satisfy the convenient relations |no_print+1=term_only|,
1544 |no_print+2=log_only|, |term_only+2=log_only+1=term_and_log|. These
1545 relations are not used when |selector| could be |pseudo|, |new_string|,
1546 or |ps_file_only|. We need not check for unprintable characters when
1549 Four additional global variables, |tally|, |term_offset|, |file_offset|,
1550 and |ps_offset| record the number of characters that have been printed
1551 since they were most recently cleared to zero. We use |tally| to record
1552 the length of (possibly very long) stretches of printing; |term_offset|,
1553 |file_offset|, and |ps_offset|, on the other hand, keep track of how many
1554 characters have appeared so far on the current line that has been output
1555 to the terminal, the transcript file, or the \ps\ output file, respectively.
1557 @d new_string 0 /* printing is deflected to the string pool */
1558 @d ps_file_only 1 /* printing goes to the \ps\ output file */
1559 @d pseudo 2 /* special |selector| setting for |show_context| */
1560 @d no_print 3 /* |selector| setting that makes data disappear */
1561 @d term_only 4 /* printing is destined for the terminal only */
1562 @d log_only 5 /* printing is destined for the transcript file only */
1563 @d term_and_log 6 /* normal |selector| setting */
1564 @d write_file 7 /* first write file selector */
1567 FILE * log_file; /* transcript of \MP\ session */
1568 FILE * ps_file; /* the generic font output goes here */
1569 unsigned int selector; /* where to print a message */
1570 unsigned char dig[23]; /* digits in a number being output */
1571 integer tally; /* the number of characters recently printed */
1572 unsigned int term_offset;
1573 /* the number of characters on the current terminal line */
1574 unsigned int file_offset;
1575 /* the number of characters on the current file line */
1577 /* the number of characters on the current \ps\ file line */
1578 ASCII_code *trick_buf; /* circular buffer for pseudoprinting */
1579 integer trick_count; /* threshold for pseudoprinting, explained later */
1580 integer first_count; /* another variable for pseudoprinting */
1582 @ @<Allocate or initialize ...@>=
1583 memset(mp->dig,0,23);
1584 mp->trick_buf = xmalloc((mp->error_line+1),sizeof(ASCII_code));
1586 @ @<Dealloc variables@>=
1587 xfree(mp->trick_buf);
1589 @ @<Initialize the output routines@>=
1590 mp->selector=term_only; mp->tally=0; mp->term_offset=0; mp->file_offset=0; mp->ps_offset=0;
1592 @ Macro abbreviations for output to the terminal and to the log file are
1593 defined here for convenience. Some systems need special conventions
1594 for terminal output, and it is possible to adhere to those conventions
1595 by changing |wterm|, |wterm_ln|, and |wterm_cr| here.
1596 @^system dependencies@>
1598 @d wterm(A) fprintf(mp->term_out,"%s",(A))
1599 @d wterm_chr(A)fprintf(mp->term_out,"%c",(A))
1600 @d wterm_ln(A) fprintf(mp->term_out,"\n%s",(A))
1601 @d wterm_cr fprintf(mp->term_out,"\n")
1602 @d wlog(A) fprintf(mp->log_file,"%s",(A))
1603 @d wlog_chr(A) fprintf(mp->log_file,"%c",(A))
1604 @d wlog_ln(A) fprintf(mp->log_file,"\n%s",(A))
1605 @d wlog_cr fprintf(mp->log_file, "\n")
1606 @d wps(A) fprintf(mp->ps_file,"%s",(A))
1607 @d wps_chr(A) fprintf(mp->ps_file,"%c",(A))
1608 @d wps_ln(A) fprintf(mp->ps_file,,"\n%s",(A))
1609 @d wps_cr fprintf(mp->ps_file,"\n")
1611 @ To end a line of text output, we call |print_ln|. Cases |0..max_write_files|
1612 use an array |wr_file| that will be declared later.
1614 @d mp_print_text(A) mp_print_str(mp,text((A)))
1617 void mp_print_ln (MP mp);
1618 void mp_print_visible_char (MP mp, ASCII_code s);
1619 void mp_print_char (MP mp, ASCII_code k);
1620 void mp_print (MP mp, char *s);
1621 void mp_print_str (MP mp, str_number s);
1622 void mp_print_nl (MP mp, char *s);
1623 void mp_print_two (MP mp,scaled x, scaled y) ;
1624 void mp_print_scaled (MP mp,scaled s);
1626 @ @<Basic print...@>=
1627 void mp_print_ln (MP mp) { /* prints an end-of-line */
1628 switch (mp->selector) {
1631 mp->term_offset=0; mp->file_offset=0;
1634 wlog_cr; mp->file_offset=0;
1637 wterm_cr; mp->term_offset=0;
1640 wps_cr; mp->ps_offset=0;
1647 fprintf(mp->wr_file[(mp->selector-write_file)],"\n");
1649 } /* note that |tally| is not affected */
1651 @ The |print_visible_char| procedure sends one character to the desired
1652 destination, using the |xchr| array to map it into an external character
1653 compatible with |input_ln|. (It assumes that it is always called with
1654 a visible ASCII character.) All printing comes through |print_ln| or
1655 |print_char|, which ultimately calls |print_visible_char|, hence these
1656 routines are the ones that limit lines to at most |max_print_line| characters.
1657 But we must make an exception for the \ps\ output file since it is not safe
1658 to cut up lines arbitrarily in \ps.
1660 Procedure |unit_str_room| needs to be declared |forward| here because it calls
1661 |do_compaction| and |do_compaction| can call the error routines. Actually,
1662 |unit_str_room| avoids |overflow| errors but it can call |confusion|.
1664 @<Basic printing...@>=
1665 void mp_print_visible_char (MP mp, ASCII_code s) { /* prints a single character */
1666 switch (mp->selector) {
1668 wterm_chr(xchr(s)); wlog_chr(xchr(s));
1669 incr(mp->term_offset); incr(mp->file_offset);
1670 if ( mp->term_offset==(unsigned)mp->max_print_line ) {
1671 wterm_cr; mp->term_offset=0;
1673 if ( mp->file_offset==(unsigned)mp->max_print_line ) {
1674 wlog_cr; mp->file_offset=0;
1678 wlog_chr(xchr(s)); incr(mp->file_offset);
1679 if ( mp->file_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1682 wterm_chr(xchr(s)); incr(mp->term_offset);
1683 if ( mp->term_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1687 wps_cr; mp->ps_offset=0;
1689 wps_chr(xchr(s)); incr(mp->ps_offset);
1695 if ( mp->tally<mp->trick_count )
1696 mp->trick_buf[mp->tally % mp->error_line]=s;
1699 if ( mp->pool_ptr>=mp->max_pool_ptr ) {
1700 mp_unit_str_room(mp);
1701 if ( mp->pool_ptr>=mp->pool_size )
1702 goto DONE; /* drop characters if string space is full */
1707 fprintf(mp->wr_file[(mp->selector-write_file)],"%c",xchr(s));
1713 @ The |print_char| procedure sends one character to the desired destination.
1714 File names and string expressions might contain |ASCII_code| values that
1715 can't be printed using |print_visible_char|. These characters will be
1716 printed in three- or four-symbol form like `\.{\^\^A}' or `\.{\^\^e4}'.
1717 (This procedure assumes that it is safe to bypass all checks for unprintable
1718 characters when |selector| is in the range |0..max_write_files-1| or when
1719 |selector=ps_file_only|. In the former case the user might want to write
1720 unprintable characters, and in the latter case the \ps\ printing routines
1721 check their arguments themselves before calling |print_char| or |print|.)
1723 @d print_lc_hex(A) do { l=(A);
1724 mp_print_visible_char(mp, (l<10 ? l+'0' : l-10+'a'));
1727 @<Basic printing...@>=
1728 void mp_print_char (MP mp, ASCII_code k) { /* prints a single character */
1729 int l; /* small index or counter */
1730 if ( mp->selector<pseudo || mp->selector>=write_file) {
1731 mp_print_visible_char(mp, k);
1732 } else if ( @<Character |k| cannot be printed@> ) {
1735 mp_print_visible_char(mp, k+0100);
1736 } else if ( k<0200 ) {
1737 mp_print_visible_char(mp, k-0100);
1739 print_lc_hex(k / 16);
1740 print_lc_hex(k % 16);
1743 mp_print_visible_char(mp, k);
1747 @ An entire string is output by calling |print|. Note that if we are outputting
1748 the single standard ASCII character \.c, we could call |print("c")|, since
1749 |"c"=99| is the number of a single-character string, as explained above. But
1750 |print_char("c")| is quicker, so \MP\ goes directly to the |print_char|
1751 routine when it knows that this is safe. (The present implementation
1752 assumes that it is always safe to print a visible ASCII character.)
1753 @^system dependencies@>
1756 void mp_do_print (MP mp, char *ss, unsigned int len) { /* prints string |s| */
1759 mp_print_char(mp, ss[j]); incr(j);
1765 void mp_print (MP mp, char *ss) {
1766 mp_do_print(mp, ss, strlen(ss));
1768 void mp_print_str (MP mp, str_number s) {
1769 pool_pointer j; /* current character code position */
1770 if ( (s<0)||(s>mp->max_str_ptr) ) {
1771 mp_do_print(mp,"???",3); /* this can't happen */
1775 mp_do_print(mp, (char *)(mp->str_pool+j), (str_stop(s)-j));
1779 @ Here is the very first thing that \MP\ prints: a headline that identifies
1780 the version number and base name. The |term_offset| variable is temporarily
1781 incorrect, but the discrepancy is not serious since we assume that the banner
1782 and mem identifier together will occupy at most |max_print_line|
1783 character positions.
1785 @<Initialize the output...@>=
1787 wterm (version_string);
1788 if (mp->mem_ident!=NULL)
1789 mp_print(mp,mp->mem_ident);
1793 @ The procedure |print_nl| is like |print|, but it makes sure that the
1794 string appears at the beginning of a new line.
1797 void mp_print_nl (MP mp, char *s) { /* prints string |s| at beginning of line */
1798 switch(mp->selector) {
1800 if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_ln(mp);
1803 if ( mp->file_offset>0 ) mp_print_ln(mp);
1806 if ( mp->term_offset>0 ) mp_print_ln(mp);
1809 if ( mp->ps_offset>0 ) mp_print_ln(mp);
1815 } /* there are no other cases */
1819 @ An array of digits in the range |0..9| is printed by |print_the_digs|.
1822 void mp_print_the_digs (MP mp, eight_bits k) {
1823 /* prints |dig[k-1]|$\,\ldots\,$|dig[0]| */
1825 decr(k); mp_print_char(mp, '0'+mp->dig[k]);
1829 @ The following procedure, which prints out the decimal representation of a
1830 given integer |n|, has been written carefully so that it works properly
1831 if |n=0| or if |(-n)| would cause overflow. It does not apply |mod| or |div|
1832 to negative arguments, since such operations are not implemented consistently
1833 by all \PASCAL\ compilers.
1836 void mp_print_int (MP mp,integer n) { /* prints an integer in decimal form */
1837 integer m; /* used to negate |n| in possibly dangerous cases */
1838 int k = 0; /* index to current digit; we assume that $|n|<10^{23}$ */
1840 mp_print_char(mp, '-');
1841 if ( n>-100000000 ) {
1844 m=-1-n; n=m / 10; m=(m % 10)+1; k=1;
1848 mp->dig[0]=0; incr(n);
1853 mp->dig[k]=n % 10; n=n / 10; incr(k);
1855 mp_print_the_digs(mp, k);
1859 void mp_print_int (MP mp,integer n);
1861 @ \MP\ also makes use of a trivial procedure to print two digits. The
1862 following subroutine is usually called with a parameter in the range |0<=n<=99|.
1865 void mp_print_dd (MP mp,integer n) { /* prints two least significant digits */
1867 mp_print_char(mp, '0'+(n / 10));
1868 mp_print_char(mp, '0'+(n % 10));
1873 void mp_print_dd (MP mp,integer n);
1875 @ Here is a procedure that asks the user to type a line of input,
1876 assuming that the |selector| setting is either |term_only| or |term_and_log|.
1877 The input is placed into locations |first| through |last-1| of the
1878 |buffer| array, and echoed on the transcript file if appropriate.
1880 This procedure is never called when |interaction<mp_scroll_mode|.
1882 @d prompt_input(A) do {
1883 wake_up_terminal; mp_print(mp, (A)); mp_term_input(mp);
1884 } while (0) /* prints a string and gets a line of input */
1887 void mp_term_input (MP mp) { /* gets a line from the terminal */
1888 size_t k; /* index into |buffer| */
1889 update_terminal; /* Now the user sees the prompt for sure */
1890 if (!mp_input_ln(mp, mp->term_in,true))
1891 mp_fatal_error(mp, "End of file on the terminal!");
1892 @.End of file on the terminal@>
1893 mp->term_offset=0; /* the user's line ended with \<\rm return> */
1894 decr(mp->selector); /* prepare to echo the input */
1895 if ( mp->last!=mp->first ) {
1896 for (k=mp->first;k<=mp->last-1;k++) {
1897 mp_print_char(mp, mp->buffer[k]);
1901 mp->buffer[mp->last]='%';
1902 incr(mp->selector); /* restore previous status */
1905 @* \[6] Reporting errors.
1906 When something anomalous is detected, \MP\ typically does something like this:
1907 $$\vbox{\halign{#\hfil\cr
1908 |print_err("Something anomalous has been detected");|\cr
1909 |help3("This is the first line of my offer to help.")|\cr
1910 |("This is the second line. I'm trying to")|\cr
1911 |("explain the best way for you to proceed.");|\cr
1913 A two-line help message would be given using |help2|, etc.; these informal
1914 helps should use simple vocabulary that complements the words used in the
1915 official error message that was printed. (Outside the U.S.A., the help
1916 messages should preferably be translated into the local vernacular. Each
1917 line of help is at most 60 characters long, in the present implementation,
1918 so that |max_print_line| will not be exceeded.)
1920 The |print_err| procedure supplies a `\.!' before the official message,
1921 and makes sure that the terminal is awake if a stop is going to occur.
1922 The |error| procedure supplies a `\..' after the official message, then it
1923 shows the location of the error; and if |interaction=error_stop_mode|,
1924 it also enters into a dialog with the user, during which time the help
1925 message may be printed.
1926 @^system dependencies@>
1928 @ The global variable |interaction| has four settings, representing increasing
1929 amounts of user interaction:
1932 enum mp_interaction_mode {
1933 mp_unspecified_mode=0, /* extra value for command-line switch */
1934 mp_batch_mode, /* omits all stops and omits terminal output */
1935 mp_nonstop_mode, /* omits all stops */
1936 mp_scroll_mode, /* omits error stops */
1937 mp_error_stop_mode, /* stops at every opportunity to interact */
1941 int interaction; /* current level of interaction */
1943 @ @<Option variables@>=
1944 int interaction; /* current level of interaction */
1946 @ Set it here so it can be overwritten by the commandline
1948 @<Allocate or initialize ...@>=
1949 mp->interaction=opt->interaction;
1950 if (mp->interaction==mp_unspecified_mode || mp->interaction>mp_error_stop_mode)
1951 mp->interaction=mp_error_stop_mode;
1952 if (mp->interaction<mp_unspecified_mode)
1953 mp->interaction=mp_batch_mode;
1957 @d print_err(A) mp_print_err(mp,(A))
1960 void mp_print_err(MP mp, char * A);
1963 void mp_print_err(MP mp, char * A) {
1964 if ( mp->interaction==mp_error_stop_mode )
1966 mp_print_nl(mp, "! ");
1972 @ \MP\ is careful not to call |error| when the print |selector| setting
1973 might be unusual. The only possible values of |selector| at the time of
1976 \yskip\hang|no_print| (when |interaction=mp_batch_mode|
1977 and |log_file| not yet open);
1979 \hang|term_only| (when |interaction>mp_batch_mode| and |log_file| not yet open);
1981 \hang|log_only| (when |interaction=mp_batch_mode| and |log_file| is open);
1983 \hang|term_and_log| (when |interaction>mp_batch_mode| and |log_file| is open).
1985 @<Initialize the print |selector| based on |interaction|@>=
1986 if ( mp->interaction==mp_batch_mode ) mp->selector=no_print; else mp->selector=term_only
1988 @ A global variable |deletions_allowed| is set |false| if the |get_next|
1989 routine is active when |error| is called; this ensures that |get_next|
1990 will never be called recursively.
1993 The global variable |history| records the worst level of error that
1994 has been detected. It has four possible values: |spotless|, |warning_issued|,
1995 |error_message_issued|, and |fatal_error_stop|.
1997 Another global variable, |error_count|, is increased by one when an
1998 |error| occurs without an interactive dialog, and it is reset to zero at
1999 the end of every statement. If |error_count| reaches 100, \MP\ decides
2000 that there is no point in continuing further.
2003 enum mp_history_states {
2004 mp_spotless=0, /* |history| value when nothing has been amiss yet */
2005 mp_warning_issued, /* |history| value when |begin_diagnostic| has been called */
2006 mp_error_message_issued, /* |history| value when |error| has been called */
2007 mp_fatal_error_stop, /* |history| value when termination was premature */
2011 boolean deletions_allowed; /* is it safe for |error| to call |get_next|? */
2012 int history; /* has the source input been clean so far? */
2013 int error_count; /* the number of scrolled errors since the last statement ended */
2015 @ The value of |history| is initially |fatal_error_stop|, but it will
2016 be changed to |spotless| if \MP\ survives the initialization process.
2018 @<Allocate or ...@>=
2019 mp->deletions_allowed=true; mp->error_count=0; /* |history| is initialized elsewhere */
2021 @ Since errors can be detected almost anywhere in \MP, we want to declare the
2022 error procedures near the beginning of the program. But the error procedures
2023 in turn use some other procedures, which need to be declared |forward|
2024 before we get to |error| itself.
2026 It is possible for |error| to be called recursively if some error arises
2027 when |get_next| is being used to delete a token, and/or if some fatal error
2028 occurs while \MP\ is trying to fix a non-fatal one. But such recursion
2030 is never more than two levels deep.
2033 void mp_get_next (MP mp);
2034 void mp_term_input (MP mp);
2035 void mp_show_context (MP mp);
2036 void mp_begin_file_reading (MP mp);
2037 void mp_open_log_file (MP mp);
2038 void mp_clear_for_error_prompt (MP mp);
2039 void mp_debug_help (MP mp);
2040 @<Declare the procedure called |flush_string|@>
2043 void mp_normalize_selector (MP mp);
2045 @ Individual lines of help are recorded in the array |help_line|, which
2046 contains entries in positions |0..(help_ptr-1)|. They should be printed
2047 in reverse order, i.e., with |help_line[0]| appearing last.
2049 @d hlp1(A) mp->help_line[0]=(A); }
2050 @d hlp2(A) mp->help_line[1]=(A); hlp1
2051 @d hlp3(A) mp->help_line[2]=(A); hlp2
2052 @d hlp4(A) mp->help_line[3]=(A); hlp3
2053 @d hlp5(A) mp->help_line[4]=(A); hlp4
2054 @d hlp6(A) mp->help_line[5]=(A); hlp5
2055 @d help0 mp->help_ptr=0 /* sometimes there might be no help */
2056 @d help1 { mp->help_ptr=1; hlp1 /* use this with one help line */
2057 @d help2 { mp->help_ptr=2; hlp2 /* use this with two help lines */
2058 @d help3 { mp->help_ptr=3; hlp3 /* use this with three help lines */
2059 @d help4 { mp->help_ptr=4; hlp4 /* use this with four help lines */
2060 @d help5 { mp->help_ptr=5; hlp5 /* use this with five help lines */
2061 @d help6 { mp->help_ptr=6; hlp6 /* use this with six help lines */
2064 char * help_line[6]; /* helps for the next |error| */
2065 unsigned int help_ptr; /* the number of help lines present */
2066 boolean use_err_help; /* should the |err_help| string be shown? */
2067 str_number err_help; /* a string set up by \&{errhelp} */
2068 str_number filename_template; /* a string set up by \&{filenametemplate} */
2070 @ @<Allocate or ...@>=
2071 mp->help_ptr=0; mp->use_err_help=false; mp->err_help=0; mp->filename_template=0;
2073 @ The |jump_out| procedure just cuts across all active procedure levels and
2074 goes to |end_of_MP|. This is the only nonlocal |goto| statement in the
2075 whole program. It is used when there is no recovery from a particular error.
2077 The program uses a |jump_buf| to handle this, this is initialized at three
2078 spots: the start of |mp_new|, the start of |mp_initialize|, and the start
2079 of |mp_run|. Those are the only library enty points.
2081 @^system dependencies@>
2086 @ @<Install and test the non-local jump buffer@>=
2087 if (setjmp(mp->jump_buf) != 0) return mp->history;
2089 @ @<Setup the non-local jump buffer in |mp_new|@>=
2090 if (setjmp(mp->jump_buf) != 0) return NULL;
2092 @ If |mp->internal| is zero, then a crash occured during initialization,
2093 and it is not safe to run |mp_close_files_and_terminate|.
2096 void mp_jump_out (MP mp) {
2097 if(mp->internal!=NULL)
2098 mp_close_files_and_terminate(mp);
2099 longjmp(mp->jump_buf,1);
2102 @ Here now is the general |error| routine.
2105 void mp_error (MP mp) { /* completes the job of error reporting */
2106 ASCII_code c; /* what the user types */
2107 integer s1,s2,s3; /* used to save global variables when deleting tokens */
2108 pool_pointer j; /* character position being printed */
2109 if ( mp->history<mp_error_message_issued ) mp->history=mp_error_message_issued;
2110 mp_print_char(mp, '.'); mp_show_context(mp);
2111 if ( mp->interaction==mp_error_stop_mode ) {
2112 @<Get user's advice and |return|@>;
2114 incr(mp->error_count);
2115 if ( mp->error_count==100 ) {
2116 mp_print_nl(mp,"(That makes 100 errors; please try again.)");
2117 @.That makes 100 errors...@>
2118 mp->history=mp_fatal_error_stop; mp_jump_out(mp);
2120 @<Put help message on the transcript file@>;
2122 void mp_warn (MP mp, char *msg) {
2123 int saved_selector = mp->selector;
2124 mp_normalize_selector(mp);
2125 mp_print_nl(mp,"Warning: ");
2127 mp->selector = saved_selector;
2130 @ @<Exported function ...@>=
2131 void mp_error (MP mp);
2132 void mp_warn (MP mp, char *msg);
2135 @ @<Get user's advice...@>=
2138 mp_clear_for_error_prompt(mp); prompt_input("? ");
2140 if ( mp->last==mp->first ) return;
2141 c=mp->buffer[mp->first];
2142 if ( c>='a' ) c=c+'A'-'a'; /* convert to uppercase */
2143 @<Interpret code |c| and |return| if done@>;
2146 @ It is desirable to provide an `\.E' option here that gives the user
2147 an easy way to return from \MP\ to the system editor, with the offending
2148 line ready to be edited. But such an extension requires some system
2149 wizardry, so the present implementation simply types out the name of the
2151 edited and the relevant line number.
2152 @^system dependencies@>
2155 typedef void (*mp_run_editor_command)(MP, char *, int);
2158 mp_run_editor_command run_editor;
2160 @ @<Option variables@>=
2161 mp_run_editor_command run_editor;
2163 @ @<Allocate or initialize ...@>=
2164 set_callback_option(run_editor);
2167 void mp_run_editor (MP mp, char *fname, int fline);
2169 @ @c void mp_run_editor (MP mp, char *fname, int fline) {
2170 mp_print_nl(mp, "You want to edit file ");
2171 @.You want to edit file x@>
2172 mp_print(mp, fname);
2173 mp_print(mp, " at line ");
2174 mp_print_int(mp, fline);
2175 mp->interaction=mp_scroll_mode;
2180 There is a secret `\.D' option available when the debugging routines haven't
2184 @<Interpret code |c| and |return| if done@>=
2186 case '0': case '1': case '2': case '3': case '4':
2187 case '5': case '6': case '7': case '8': case '9':
2188 if ( mp->deletions_allowed ) {
2189 @<Delete |c-"0"| tokens and |continue|@>;
2194 mp_debug_help(mp); continue;
2198 if ( mp->file_ptr>0 ){
2199 (mp->run_editor)(mp,
2200 str(mp->input_stack[mp->file_ptr].name_field),
2205 @<Print the help information and |continue|@>;
2208 @<Introduce new material from the terminal and |return|@>;
2210 case 'Q': case 'R': case 'S':
2211 @<Change the interaction level and |return|@>;
2214 mp->interaction=mp_scroll_mode; mp_jump_out(mp);
2219 @<Print the menu of available options@>
2221 @ @<Print the menu...@>=
2223 mp_print(mp, "Type <return> to proceed, S to scroll future error messages,");
2224 @.Type <return> to proceed...@>
2225 mp_print_nl(mp, "R to run without stopping, Q to run quietly,");
2226 mp_print_nl(mp, "I to insert something, ");
2227 if ( mp->file_ptr>0 )
2228 mp_print(mp, "E to edit your file,");
2229 if ( mp->deletions_allowed )
2230 mp_print_nl(mp, "1 or ... or 9 to ignore the next 1 to 9 tokens of input,");
2231 mp_print_nl(mp, "H for help, X to quit.");
2234 @ Here the author of \MP\ apologizes for making use of the numerical
2235 relation between |"Q"|, |"R"|, |"S"|, and the desired interaction settings
2236 |mp_batch_mode|, |mp_nonstop_mode|, |mp_scroll_mode|.
2237 @^Knuth, Donald Ervin@>
2239 @<Change the interaction...@>=
2241 mp->error_count=0; mp->interaction=mp_batch_mode+c-'Q';
2242 mp_print(mp, "OK, entering ");
2244 case 'Q': mp_print(mp, "batchmode"); decr(mp->selector); break;
2245 case 'R': mp_print(mp, "nonstopmode"); break;
2246 case 'S': mp_print(mp, "scrollmode"); break;
2247 } /* there are no other cases */
2248 mp_print(mp, "..."); mp_print_ln(mp); update_terminal; return;
2251 @ When the following code is executed, |buffer[(first+1)..(last-1)]| may
2252 contain the material inserted by the user; otherwise another prompt will
2253 be given. In order to understand this part of the program fully, you need
2254 to be familiar with \MP's input stacks.
2256 @<Introduce new material...@>=
2258 mp_begin_file_reading(mp); /* enter a new syntactic level for terminal input */
2259 if ( mp->last>mp->first+1 ) {
2260 loc=mp->first+1; mp->buffer[mp->first]=' ';
2262 prompt_input("insert>"); loc=mp->first;
2265 mp->first=mp->last+1; mp->cur_input.limit_field=mp->last; return;
2268 @ We allow deletion of up to 99 tokens at a time.
2270 @<Delete |c-"0"| tokens...@>=
2272 s1=mp->cur_cmd; s2=mp->cur_mod; s3=mp->cur_sym; mp->OK_to_interrupt=false;
2273 if ( (mp->last>mp->first+1) && (mp->buffer[mp->first+1]>='0')&&(mp->buffer[mp->first+1]<='9') )
2274 c=c*10+mp->buffer[mp->first+1]-'0'*11;
2278 mp_get_next(mp); /* one-level recursive call of |error| is possible */
2279 @<Decrease the string reference count, if the current token is a string@>;
2282 mp->cur_cmd=s1; mp->cur_mod=s2; mp->cur_sym=s3; mp->OK_to_interrupt=true;
2283 help2("I have just deleted some text, as you asked.")
2284 ("You can now delete more, or insert, or whatever.");
2285 mp_show_context(mp);
2289 @ @<Print the help info...@>=
2291 if ( mp->use_err_help ) {
2292 @<Print the string |err_help|, possibly on several lines@>;
2293 mp->use_err_help=false;
2295 if ( mp->help_ptr==0 ) {
2296 help2("Sorry, I don't know how to help in this situation.")
2297 ("Maybe you should try asking a human?");
2300 decr(mp->help_ptr); mp_print(mp, mp->help_line[mp->help_ptr]); mp_print_ln(mp);
2301 } while (mp->help_ptr!=0);
2303 help4("Sorry, I already gave what help I could...")
2304 ("Maybe you should try asking a human?")
2305 ("An error might have occurred before I noticed any problems.")
2306 ("``If all else fails, read the instructions.''");
2310 @ @<Print the string |err_help|, possibly on several lines@>=
2311 j=mp->str_start[mp->err_help];
2312 while ( j<str_stop(mp->err_help) ) {
2313 if ( mp->str_pool[j]!='%' ) mp_print_str(mp, mp->str_pool[j]);
2314 else if ( j+1==str_stop(mp->err_help) ) mp_print_ln(mp);
2315 else if ( mp->str_pool[j+1]!='%' ) mp_print_ln(mp);
2316 else { incr(j); mp_print_char(mp, '%'); };
2320 @ @<Put help message on the transcript file@>=
2321 if ( mp->interaction>mp_batch_mode ) decr(mp->selector); /* avoid terminal output */
2322 if ( mp->use_err_help ) {
2323 mp_print_nl(mp, "");
2324 @<Print the string |err_help|, possibly on several lines@>;
2326 while ( mp->help_ptr>0 ){
2327 decr(mp->help_ptr); mp_print_nl(mp, mp->help_line[mp->help_ptr]);
2331 if ( mp->interaction>mp_batch_mode ) incr(mp->selector); /* re-enable terminal output */
2334 @ In anomalous cases, the print selector might be in an unknown state;
2335 the following subroutine is called to fix things just enough to keep
2336 running a bit longer.
2339 void mp_normalize_selector (MP mp) {
2340 if ( mp->log_opened ) mp->selector=term_and_log;
2341 else mp->selector=term_only;
2342 if ( mp->job_name==NULL ) mp_open_log_file(mp);
2343 if ( mp->interaction==mp_batch_mode ) decr(mp->selector);
2346 @ The following procedure prints \MP's last words before dying.
2348 @d succumb { if ( mp->interaction==mp_error_stop_mode )
2349 mp->interaction=mp_scroll_mode; /* no more interaction */
2350 if ( mp->log_opened ) mp_error(mp);
2351 /* if ( mp->interaction>mp_batch_mode ) mp_debug_help(mp); */
2352 mp->history=mp_fatal_error_stop; mp_jump_out(mp); /* irrecoverable error */
2356 void mp_fatal_error (MP mp, char *s) { /* prints |s|, and that's it */
2357 mp_normalize_selector(mp);
2358 print_err("Emergency stop"); help1(s); succumb;
2362 @ @<Exported function ...@>=
2363 void mp_fatal_error (MP mp, char *s);
2366 @ Here is the most dreaded error message.
2369 void mp_overflow (MP mp, char *s, integer n) { /* stop due to finiteness */
2370 mp_normalize_selector(mp);
2371 print_err("MetaPost capacity exceeded, sorry [");
2372 @.MetaPost capacity exceeded ...@>
2373 mp_print(mp, s); mp_print_char(mp, '='); mp_print_int(mp, n); mp_print_char(mp, ']');
2374 help2("If you really absolutely need more capacity,")
2375 ("you can ask a wizard to enlarge me.");
2380 void mp_overflow (MP mp, char *s, integer n);
2382 @ The program might sometime run completely amok, at which point there is
2383 no choice but to stop. If no previous error has been detected, that's bad
2384 news; a message is printed that is really intended for the \MP\
2385 maintenance person instead of the user (unless the user has been
2386 particularly diabolical). The index entries for `this can't happen' may
2387 help to pinpoint the problem.
2391 void mp_confusion (MP mp,char *s);
2393 @ @<Error hand...@>=
2394 void mp_confusion (MP mp,char *s) {
2395 /* consistency check violated; |s| tells where */
2396 mp_normalize_selector(mp);
2397 if ( mp->history<mp_error_message_issued ) {
2398 print_err("This can't happen ("); mp_print(mp, s); mp_print_char(mp, ')');
2399 @.This can't happen@>
2400 help1("I'm broken. Please show this to someone who can fix can fix");
2402 print_err("I can\'t go on meeting you like this");
2403 @.I can't go on...@>
2404 help2("One of your faux pas seems to have wounded me deeply...")
2405 ("in fact, I'm barely conscious. Please fix it and try again.");
2410 @ Users occasionally want to interrupt \MP\ while it's running.
2411 If the \PASCAL\ runtime system allows this, one can implement
2412 a routine that sets the global variable |interrupt| to some nonzero value
2413 when such an interrupt is signaled. Otherwise there is probably at least
2414 a way to make |interrupt| nonzero using the \PASCAL\ debugger.
2415 @^system dependencies@>
2418 @d check_interrupt { if ( mp->interrupt!=0 )
2419 mp_pause_for_instructions(mp); }
2422 integer interrupt; /* should \MP\ pause for instructions? */
2423 boolean OK_to_interrupt; /* should interrupts be observed? */
2425 @ @<Allocate or ...@>=
2426 mp->interrupt=0; mp->OK_to_interrupt=true;
2428 @ When an interrupt has been detected, the program goes into its
2429 highest interaction level and lets the user have the full flexibility of
2430 the |error| routine. \MP\ checks for interrupts only at times when it is
2434 void mp_pause_for_instructions (MP mp) {
2435 if ( mp->OK_to_interrupt ) {
2436 mp->interaction=mp_error_stop_mode;
2437 if ( (mp->selector==log_only)||(mp->selector==no_print) )
2439 print_err("Interruption");
2442 ("Try to insert some instructions for me (e.g.,`I show x'),")
2443 ("unless you just want to quit by typing `X'.");
2444 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
2449 @ Many of \MP's error messages state that a missing token has been
2450 inserted behind the scenes. We can save string space and program space
2451 by putting this common code into a subroutine.
2454 void mp_missing_err (MP mp, char *s) {
2455 print_err("Missing `"); mp_print(mp, s); mp_print(mp, "' has been inserted");
2456 @.Missing...inserted@>
2459 @* \[7] Arithmetic with scaled numbers.
2460 The principal computations performed by \MP\ are done entirely in terms of
2461 integers less than $2^{31}$ in magnitude; thus, the arithmetic specified in this
2462 program can be carried out in exactly the same way on a wide variety of
2463 computers, including some small ones.
2466 But \PASCAL\ does not define the |div|
2467 operation in the case of negative dividends; for example, the result of
2468 |(-2*n-1) div 2| is |-(n+1)| on some computers and |-n| on others.
2469 There are two principal types of arithmetic: ``translation-preserving,''
2470 in which the identity |(a+q*b)div b=(a div b)+q| is valid; and
2471 ``negation-preserving,'' in which |(-a)div b=-(a div b)|. This leads to
2472 two \MP s, which can produce different results, although the differences
2473 should be negligible when the language is being used properly.
2474 The \TeX\ processor has been defined carefully so that both varieties
2475 of arithmetic will produce identical output, but it would be too
2476 inefficient to constrain \MP\ in a similar way.
2478 @d el_gordo 017777777777 /* $2^{31}-1$, the largest value that \MP\ likes */
2480 @ One of \MP's most common operations is the calculation of
2481 $\lfloor{a+b\over2}\rfloor$,
2482 the midpoint of two given integers |a| and~|b|. The only decent way to do
2483 this in \PASCAL\ is to write `|(a+b) div 2|'; but on most machines it is
2484 far more efficient to calculate `|(a+b)| right shifted one bit'.
2486 Therefore the midpoint operation will always be denoted by `|half(a+b)|'
2487 in this program. If \MP\ is being implemented with languages that permit
2488 binary shifting, the |half| macro should be changed to make this operation
2489 as efficient as possible. Since some languages have shift operators that can
2490 only be trusted to work on positive numbers, there is also a macro |halfp|
2491 that is used only when the quantity being halved is known to be positive
2494 @d half(A) ((A)) / 2
2495 @d halfp(A) ((A)) / 2
2497 @ A single computation might use several subroutine calls, and it is
2498 desirable to avoid producing multiple error messages in case of arithmetic
2499 overflow. So the routines below set the global variable |arith_error| to |true|
2500 instead of reporting errors directly to the user.
2503 boolean arith_error; /* has arithmetic overflow occurred recently? */
2505 @ @<Allocate or ...@>=
2506 mp->arith_error=false;
2508 @ At crucial points the program will say |check_arith|, to test if
2509 an arithmetic error has been detected.
2511 @d check_arith { if ( mp->arith_error ) mp_clear_arith(mp); }
2514 void mp_clear_arith (MP mp) {
2515 print_err("Arithmetic overflow");
2516 @.Arithmetic overflow@>
2517 help4("Uh, oh. A little while ago one of the quantities that I was")
2518 ("computing got too large, so I'm afraid your answers will be")
2519 ("somewhat askew. You'll probably have to adopt different")
2520 ("tactics next time. But I shall try to carry on anyway.");
2522 mp->arith_error=false;
2525 @ Addition is not always checked to make sure that it doesn't overflow,
2526 but in places where overflow isn't too unlikely the |slow_add| routine
2529 @c integer mp_slow_add (MP mp,integer x, integer y) {
2531 if ( y<=el_gordo-x ) {
2534 mp->arith_error=true;
2537 } else if ( -y<=el_gordo+x ) {
2540 mp->arith_error=true;
2545 @ Fixed-point arithmetic is done on {\sl scaled integers\/} that are multiples
2546 of $2^{-16}$. In other words, a binary point is assumed to be sixteen bit
2547 positions from the right end of a binary computer word.
2549 @d quarter_unit 040000 /* $2^{14}$, represents 0.250000 */
2550 @d half_unit 0100000 /* $2^{15}$, represents 0.50000 */
2551 @d three_quarter_unit 0140000 /* $3\cdot2^{14}$, represents 0.75000 */
2552 @d unity 0200000 /* $2^{16}$, represents 1.00000 */
2553 @d two 0400000 /* $2^{17}$, represents 2.00000 */
2554 @d three 0600000 /* $2^{17}+2^{16}$, represents 3.00000 */
2557 typedef integer scaled; /* this type is used for scaled integers */
2558 typedef unsigned char small_number; /* this type is self-explanatory */
2560 @ The following function is used to create a scaled integer from a given decimal
2561 fraction $(.d_0d_1\ldots d_{k-1})$, where |0<=k<=17|. The digit $d_i$ is
2562 given in |dig[i]|, and the calculation produces a correctly rounded result.
2565 scaled mp_round_decimals (MP mp,small_number k) {
2566 /* converts a decimal fraction */
2567 integer a = 0; /* the accumulator */
2569 a=(a+mp->dig[k]*two) / 10;
2574 @ Conversely, here is a procedure analogous to |print_int|. If the output
2575 of this procedure is subsequently read by \MP\ and converted by the
2576 |round_decimals| routine above, it turns out that the original value will
2577 be reproduced exactly. A decimal point is printed only if the value is
2578 not an integer. If there is more than one way to print the result with
2579 the optimum number of digits following the decimal point, the closest
2580 possible value is given.
2582 The invariant relation in the \&{repeat} loop is that a sequence of
2583 decimal digits yet to be printed will yield the original number if and only if
2584 they form a fraction~$f$ in the range $s-\delta\L10\cdot2^{16}f<s$.
2585 We can stop if and only if $f=0$ satisfies this condition; the loop will
2586 terminate before $s$ can possibly become zero.
2588 @<Basic printing...@>=
2589 void mp_print_scaled (MP mp,scaled s) { /* prints scaled real, rounded to five digits */
2590 scaled delta; /* amount of allowable inaccuracy */
2592 mp_print_char(mp, '-');
2593 negate(s); /* print the sign, if negative */
2595 mp_print_int(mp, s / unity); /* print the integer part */
2599 mp_print_char(mp, '.');
2602 s=s+0100000-(delta / 2); /* round the final digit */
2603 mp_print_char(mp, '0'+(s / unity));
2610 @ We often want to print two scaled quantities in parentheses,
2611 separated by a comma.
2613 @<Basic printing...@>=
2614 void mp_print_two (MP mp,scaled x, scaled y) { /* prints `|(x,y)|' */
2615 mp_print_char(mp, '(');
2616 mp_print_scaled(mp, x);
2617 mp_print_char(mp, ',');
2618 mp_print_scaled(mp, y);
2619 mp_print_char(mp, ')');
2622 @ The |scaled| quantities in \MP\ programs are generally supposed to be
2623 less than $2^{12}$ in absolute value, so \MP\ does much of its internal
2624 arithmetic with 28~significant bits of precision. A |fraction| denotes
2625 a scaled integer whose binary point is assumed to be 28 bit positions
2628 @d fraction_half 01000000000 /* $2^{27}$, represents 0.50000000 */
2629 @d fraction_one 02000000000 /* $2^{28}$, represents 1.00000000 */
2630 @d fraction_two 04000000000 /* $2^{29}$, represents 2.00000000 */
2631 @d fraction_three 06000000000 /* $3\cdot2^{28}$, represents 3.00000000 */
2632 @d fraction_four 010000000000 /* $2^{30}$, represents 4.00000000 */
2635 typedef integer fraction; /* this type is used for scaled fractions */
2637 @ In fact, the two sorts of scaling discussed above aren't quite
2638 sufficient; \MP\ has yet another, used internally to keep track of angles
2639 in units of $2^{-20}$ degrees.
2641 @d forty_five_deg 0264000000 /* $45\cdot2^{20}$, represents $45^\circ$ */
2642 @d ninety_deg 0550000000 /* $90\cdot2^{20}$, represents $90^\circ$ */
2643 @d one_eighty_deg 01320000000 /* $180\cdot2^{20}$, represents $180^\circ$ */
2644 @d three_sixty_deg 02640000000 /* $360\cdot2^{20}$, represents $360^\circ$ */
2647 typedef integer angle; /* this type is used for scaled angles */
2649 @ The |make_fraction| routine produces the |fraction| equivalent of
2650 |p/q|, given integers |p| and~|q|; it computes the integer
2651 $f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are
2652 positive. If |p| and |q| are both of the same scaled type |t|,
2653 the ``type relation'' |make_fraction(t,t)=fraction| is valid;
2654 and it's also possible to use the subroutine ``backwards,'' using
2655 the relation |make_fraction(t,fraction)=t| between scaled types.
2657 If the result would have magnitude $2^{31}$ or more, |make_fraction|
2658 sets |arith_error:=true|. Most of \MP's internal computations have
2659 been designed to avoid this sort of error.
2661 If this subroutine were programmed in assembly language on a typical
2662 machine, we could simply compute |(@t$2^{28}$@>*p)div q|, since a
2663 double-precision product can often be input to a fixed-point division
2664 instruction. But when we are restricted to \PASCAL\ arithmetic it
2665 is necessary either to resort to multiple-precision maneuvering
2666 or to use a simple but slow iteration. The multiple-precision technique
2667 would be about three times faster than the code adopted here, but it
2668 would be comparatively long and tricky, involving about sixteen
2669 additional multiplications and divisions.
2671 This operation is part of \MP's ``inner loop''; indeed, it will
2672 consume nearly 10\pct! of the running time (exclusive of input and output)
2673 if the code below is left unchanged. A machine-dependent recoding
2674 will therefore make \MP\ run faster. The present implementation
2675 is highly portable, but slow; it avoids multiplication and division
2676 except in the initial stage. System wizards should be careful to
2677 replace it with a routine that is guaranteed to produce identical
2678 results in all cases.
2679 @^system dependencies@>
2681 As noted below, a few more routines should also be replaced by machine-dependent
2682 code, for efficiency. But when a procedure is not part of the ``inner loop,''
2683 such changes aren't advisable; simplicity and robustness are
2684 preferable to trickery, unless the cost is too high.
2688 fraction mp_make_fraction (MP mp,integer p, integer q);
2689 integer mp_take_scaled (MP mp,integer q, scaled f) ;
2691 @ If FIXPT is not defined, we need these preprocessor values
2693 @d ELGORDO 0x7fffffff
2694 @d TWEXP31 2147483648.0
2695 @d TWEXP28 268435456.0
2697 @d TWEXP_16 (1.0/65536.0)
2698 @d TWEXP_28 (1.0/268435456.0)
2702 fraction mp_make_fraction (MP mp,integer p, integer q) {
2704 integer f; /* the fraction bits, with a leading 1 bit */
2705 integer n; /* the integer part of $\vert p/q\vert$ */
2706 integer be_careful; /* disables certain compiler optimizations */
2707 boolean negative = false; /* should the result be negated? */
2709 negate(p); negative=true;
2713 if ( q==0 ) mp_confusion(mp, '/');
2715 @:this can't happen /}{\quad \./@>
2716 negate(q); negative = ! negative;
2720 mp->arith_error=true;
2721 return ( negative ? -el_gordo : el_gordo);
2723 n=(n-1)*fraction_one;
2724 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>;
2725 return (negative ? (-(f+n)) : (f+n));
2731 if (q==0) mp_confusion(mp,'/');
2733 d = TWEXP28 * (double)p /(double)q;
2736 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
2738 if (d==i && ( ((q>0 ? -q : q)&077777)
2739 * (((i&037777)<<1)-1) & 04000)!=0) --i;
2742 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
2744 if (d==i && ( ((q>0 ? q : -q)&077777)
2745 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
2751 @ The |repeat| loop here preserves the following invariant relations
2752 between |f|, |p|, and~|q|:
2753 (i)~|0<=p<q|; (ii)~$fq+p=2^k(q+p_0)$, where $k$ is an integer and
2754 $p_0$ is the original value of~$p$.
2756 Notice that the computation specifies
2757 |(p-q)+p| instead of |(p+p)-q|, because the latter could overflow.
2758 Let us hope that optimizing compilers do not miss this point; a
2759 special variable |be_careful| is used to emphasize the necessary
2760 order of computation. Optimizing compilers should keep |be_careful|
2761 in a register, not store it in memory.
2764 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>=
2768 be_careful=p-q; p=be_careful+p;
2774 } while (f<fraction_one);
2776 if ( be_careful+p>=0 ) incr(f);
2779 @ The dual of |make_fraction| is |take_fraction|, which multiplies a
2780 given integer~|q| by a fraction~|f|. When the operands are positive, it
2781 computes $p=\lfloor qf/2^{28}+{1\over2}\rfloor$, a symmetric function
2784 This routine is even more ``inner loopy'' than |make_fraction|;
2785 the present implementation consumes almost 20\pct! of \MP's computation
2786 time during typical jobs, so a machine-language substitute is advisable.
2787 @^inner loop@> @^system dependencies@>
2790 integer mp_take_fraction (MP mp,integer q, fraction f) ;
2794 integer mp_take_fraction (MP mp,integer q, fraction f) {
2795 integer p; /* the fraction so far */
2796 boolean negative; /* should the result be negated? */
2797 integer n; /* additional multiple of $q$ */
2798 integer be_careful; /* disables certain compiler optimizations */
2799 @<Reduce to the case that |f>=0| and |q>0|@>;
2800 if ( f<fraction_one ) {
2803 n=f / fraction_one; f=f % fraction_one;
2804 if ( q<=el_gordo / n ) {
2807 mp->arith_error=true; n=el_gordo;
2811 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>;
2812 be_careful=n-el_gordo;
2813 if ( be_careful+p>0 ){
2814 mp->arith_error=true; n=el_gordo-p;
2821 integer mp_take_fraction (MP mp,integer p, fraction q) {
2824 d = (double)p * (double)q * TWEXP_28;
2828 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2829 mp->arith_error = true;
2833 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2837 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2838 mp->arith_error = true;
2842 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2848 @ @<Reduce to the case that |f>=0| and |q>0|@>=
2852 negate( f); negative=true;
2855 negate(q); negative=! negative;
2858 @ The invariant relations in this case are (i)~$\lfloor(qf+p)/2^k\rfloor
2859 =\lfloor qf_0/2^{28}+{1\over2}\rfloor$, where $k$ is an integer and
2860 $f_0$ is the original value of~$f$; (ii)~$2^k\L f<2^{k+1}$.
2863 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>=
2864 p=fraction_half; /* that's $2^{27}$; the invariants hold now with $k=28$ */
2865 if ( q<fraction_four ) {
2867 if ( odd(f) ) p=halfp(p+q); else p=halfp(p);
2872 if ( odd(f) ) p=p+halfp(q-p); else p=halfp(p);
2878 @ When we want to multiply something by a |scaled| quantity, we use a scheme
2879 analogous to |take_fraction| but with a different scaling.
2880 Given positive operands, |take_scaled|
2881 computes the quantity $p=\lfloor qf/2^{16}+{1\over2}\rfloor$.
2883 Once again it is a good idea to use a machine-language replacement if
2884 possible; otherwise |take_scaled| will use more than 2\pct! of the running time
2885 when the Computer Modern fonts are being generated.
2890 integer mp_take_scaled (MP mp,integer q, scaled f) {
2891 integer p; /* the fraction so far */
2892 boolean negative; /* should the result be negated? */
2893 integer n; /* additional multiple of $q$ */
2894 integer be_careful; /* disables certain compiler optimizations */
2895 @<Reduce to the case that |f>=0| and |q>0|@>;
2899 n=f / unity; f=f % unity;
2900 if ( q<=el_gordo / n ) {
2903 mp->arith_error=true; n=el_gordo;
2907 @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>;
2908 be_careful=n-el_gordo;
2909 if ( be_careful+p>0 ) {
2910 mp->arith_error=true; n=el_gordo-p;
2912 return ( negative ?(-(n+p)) :(n+p));
2914 integer mp_take_scaled (MP mp,integer p, scaled q) {
2917 d = (double)p * (double)q * TWEXP_16;
2921 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2922 mp->arith_error = true;
2926 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2930 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2931 mp->arith_error = true;
2935 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2941 @ @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>=
2942 p=half_unit; /* that's $2^{15}$; the invariants hold now with $k=16$ */
2944 if ( q<fraction_four ) {
2946 p = (odd(f) ? halfp(p+q) : halfp(p));
2951 p = (odd(f) ? p+halfp(q-p) : halfp(p));
2956 @ For completeness, there's also |make_scaled|, which computes a
2957 quotient as a |scaled| number instead of as a |fraction|.
2958 In other words, the result is $\lfloor2^{16}p/q+{1\over2}\rfloor$, if the
2959 operands are positive. \ (This procedure is not used especially often,
2960 so it is not part of \MP's inner loop.)
2963 scaled mp_make_scaled (MP mp,integer p, integer q) {
2965 integer f; /* the fraction bits, with a leading 1 bit */
2966 integer n; /* the integer part of $\vert p/q\vert$ */
2967 boolean negative; /* should the result be negated? */
2968 integer be_careful; /* disables certain compiler optimizations */
2969 if ( p>=0 ) negative=false;
2970 else { negate(p); negative=true; };
2973 if ( q==0 ) mp_confusion(mp, "/");
2974 @:this can't happen /}{\quad \./@>
2976 negate(q); negative=! negative;
2980 mp->arith_error=true;
2981 return (negative ? (-el_gordo) : el_gordo);
2984 @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>;
2985 return ( negative ? (-(f+n)) :(f+n));
2991 if (q==0) mp_confusion(mp,"/");
2993 d = TWEXP16 * (double)p /(double)q;
2996 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
2998 if (d==i && ( ((q>0 ? -q : q)&077777)
2999 * (((i&037777)<<1)-1) & 04000)!=0) --i;
3002 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
3004 if (d==i && ( ((q>0 ? q : -q)&077777)
3005 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
3011 @ @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>=
3014 be_careful=p-q; p=be_careful+p;
3015 if ( p>=0 ) f=f+f+1;
3016 else { f+=f; p=p+q; };
3019 if ( be_careful+p>=0 ) incr(f)
3021 @ Here is a typical example of how the routines above can be used.
3022 It computes the function
3023 $${1\over3\tau}f(\theta,\phi)=
3024 {\tau^{-1}\bigl(2+\sqrt2\,(\sin\theta-{1\over16}\sin\phi)
3025 (\sin\phi-{1\over16}\sin\theta)(\cos\theta-\cos\phi)\bigr)\over
3026 3\,\bigl(1+{1\over2}(\sqrt5-1)\cos\theta+{1\over2}(3-\sqrt5\,)\cos\phi\bigr)},$$
3027 where $\tau$ is a |scaled| ``tension'' parameter. This is \MP's magic
3028 fudge factor for placing the first control point of a curve that starts
3029 at an angle $\theta$ and ends at an angle $\phi$ from the straight path.
3030 (Actually, if the stated quantity exceeds 4, \MP\ reduces it to~4.)
3032 The trigonometric quantity to be multiplied by $\sqrt2$ is less than $\sqrt2$.
3033 (It's a sum of eight terms whose absolute values can be bounded using
3034 relations such as $\sin\theta\cos\theta\L{1\over2}$.) Thus the numerator
3035 is positive; and since the tension $\tau$ is constrained to be at least
3036 $3\over4$, the numerator is less than $16\over3$. The denominator is
3037 nonnegative and at most~6. Hence the fixed-point calculations below
3038 are guaranteed to stay within the bounds of a 32-bit computer word.
3040 The angles $\theta$ and $\phi$ are given implicitly in terms of |fraction|
3041 arguments |st|, |ct|, |sf|, and |cf|, representing $\sin\theta$, $\cos\theta$,
3042 $\sin\phi$, and $\cos\phi$, respectively.
3045 fraction mp_velocity (MP mp,fraction st, fraction ct, fraction sf,
3046 fraction cf, scaled t) {
3047 integer acc,num,denom; /* registers for intermediate calculations */
3048 acc=mp_take_fraction(mp, st-(sf / 16), sf-(st / 16));
3049 acc=mp_take_fraction(mp, acc,ct-cf);
3050 num=fraction_two+mp_take_fraction(mp, acc,379625062);
3051 /* $2^{28}\sqrt2\approx379625062.497$ */
3052 denom=fraction_three+mp_take_fraction(mp, ct,497706707)+mp_take_fraction(mp, cf,307599661);
3053 /* $3\cdot2^{27}\cdot(\sqrt5-1)\approx497706706.78$ and
3054 $3\cdot2^{27}\cdot(3-\sqrt5\,)\approx307599661.22$ */
3055 if ( t!=unity ) num=mp_make_scaled(mp, num,t);
3056 /* |make_scaled(fraction,scaled)=fraction| */
3057 if ( num / 4>=denom )
3058 return fraction_four;
3060 return mp_make_fraction(mp, num, denom);
3063 @ The following somewhat different subroutine tests rigorously if $ab$ is
3064 greater than, equal to, or less than~$cd$,
3065 given integers $(a,b,c,d)$. In most cases a quick decision is reached.
3066 The result is $+1$, 0, or~$-1$ in the three respective cases.
3068 @d mp_ab_vs_cd(M,A,B,C,D) mp_do_ab_vs_cd(A,B,C,D)
3071 integer mp_do_ab_vs_cd (integer a,integer b, integer c, integer d) {
3072 integer q,r; /* temporary registers */
3073 @<Reduce to the case that |a,c>=0|, |b,d>0|@>;
3075 q = a / d; r = c / b;
3077 return ( q>r ? 1 : -1);
3078 q = a % d; r = c % b;
3081 if ( q==0 ) return -1;
3083 } /* now |a>d>0| and |c>b>0| */
3086 @ @<Reduce to the case that |a...@>=
3087 if ( a<0 ) { negate(a); negate(b); };
3088 if ( c<0 ) { negate(c); negate(d); };
3091 if ( (a==0||b==0)&&(c==0||d==0) ) return 0;
3095 return ( a==0 ? 0 : -1);
3096 q=a; a=c; c=q; q=-b; b=-d; d=q;
3097 } else if ( b<=0 ) {
3098 if ( b<0 ) if ( a>0 ) return -1;
3099 return (c==0 ? 0 : -1);
3102 @ We conclude this set of elementary routines with some simple rounding
3103 and truncation operations.
3105 @<Internal library declarations@>=
3106 #define mp_floor_scaled(M,i) ((i)&(-65536))
3107 #define mp_round_unscaled(M,i) (((i>>15)+1)>>1)
3108 #define mp_round_fraction(M,i) (((i>>11)+1)>>1)
3111 @* \[8] Algebraic and transcendental functions.
3112 \MP\ computes all of the necessary special functions from scratch, without
3113 relying on |real| arithmetic or system subroutines for sines, cosines, etc.
3115 @ To get the square root of a |scaled| number |x|, we want to calculate
3116 $s=\lfloor 2^8\!\sqrt x +{1\over2}\rfloor$. If $x>0$, this is the unique
3117 integer such that $2^{16}x-s\L s^2<2^{16}x+s$. The following subroutine
3118 determines $s$ by an iterative method that maintains the invariant
3119 relations $x=2^{46-2k}x_0\bmod 2^{30}$, $0<y=\lfloor 2^{16-2k}x_0\rfloor
3120 -s^2+s\L q=2s$, where $x_0$ is the initial value of $x$. The value of~$y$
3121 might, however, be zero at the start of the first iteration.
3124 scaled mp_square_rt (MP mp,scaled x) ;
3127 scaled mp_square_rt (MP mp,scaled x) {
3128 small_number k; /* iteration control counter */
3129 integer y,q; /* registers for intermediate calculations */
3131 @<Handle square root of zero or negative argument@>;
3134 while ( x<fraction_two ) { /* i.e., |while x<@t$2^{29}$@>|\unskip */
3137 if ( x<fraction_four ) y=0;
3138 else { x=x-fraction_four; y=1; };
3140 @<Decrease |k| by 1, maintaining the invariant
3141 relations between |x|, |y|, and~|q|@>;
3147 @ @<Handle square root of zero...@>=
3150 print_err("Square root of ");
3151 @.Square root...replaced by 0@>
3152 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3153 help2("Since I don't take square roots of negative numbers,")
3154 ("I'm zeroing this one. Proceed, with fingers crossed.");
3160 @ @<Decrease |k| by 1, maintaining...@>=
3162 if ( x>=fraction_four ) { /* note that |fraction_four=@t$2^{30}$@>| */
3163 x=x-fraction_four; incr(y);
3165 x+=x; y=y+y-q; q+=q;
3166 if ( x>=fraction_four ) { x=x-fraction_four; incr(y); };
3167 if ( y>q ){ y=y-q; q=q+2; }
3168 else if ( y<=0 ) { q=q-2; y=y+q; };
3171 @ Pythagorean addition $\psqrt{a^2+b^2}$ is implemented by an elegant
3172 iterative scheme due to Cleve Moler and Donald Morrison [{\sl IBM Journal
3173 @^Moler, Cleve Barry@>
3174 @^Morrison, Donald Ross@>
3175 of Research and Development\/ \bf27} (1983), 577--581]. It modifies |a| and~|b|
3176 in such a way that their Pythagorean sum remains invariant, while the
3177 smaller argument decreases.
3180 integer mp_pyth_add (MP mp,integer a, integer b) {
3181 fraction r; /* register used to transform |a| and |b| */
3182 boolean big; /* is the result dangerously near $2^{31}$? */
3184 if ( a<b ) { r=b; b=a; a=r; }; /* now |0<=b<=a| */
3186 if ( a<fraction_two ) {
3189 a=a / 4; b=b / 4; big=true;
3190 }; /* we reduced the precision to avoid arithmetic overflow */
3191 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>;
3193 if ( a<fraction_two ) {
3196 mp->arith_error=true; a=el_gordo;
3203 @ The key idea here is to reflect the vector $(a,b)$ about the
3204 line through $(a,b/2)$.
3206 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>=
3208 r=mp_make_fraction(mp, b,a);
3209 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3211 r=mp_make_fraction(mp, r,fraction_four+r);
3212 a=a+mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3216 @ Here is a similar algorithm for $\psqrt{a^2-b^2}$.
3217 It converges slowly when $b$ is near $a$, but otherwise it works fine.
3220 integer mp_pyth_sub (MP mp,integer a, integer b) {
3221 fraction r; /* register used to transform |a| and |b| */
3222 boolean big; /* is the input dangerously near $2^{31}$? */
3225 @<Handle erroneous |pyth_sub| and set |a:=0|@>;
3227 if ( a<fraction_four ) {
3230 a=halfp(a); b=halfp(b); big=true;
3232 @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>;
3233 if ( big ) double(a);
3238 @ @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>=
3240 r=mp_make_fraction(mp, b,a);
3241 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3243 r=mp_make_fraction(mp, r,fraction_four-r);
3244 a=a-mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3247 @ @<Handle erroneous |pyth_sub| and set |a:=0|@>=
3250 print_err("Pythagorean subtraction "); mp_print_scaled(mp, a);
3251 mp_print(mp, "+-+"); mp_print_scaled(mp, b);
3252 mp_print(mp, " has been replaced by 0");
3254 help2("Since I don't take square roots of negative numbers,")
3255 ("I'm zeroing this one. Proceed, with fingers crossed.");
3261 @ The subroutines for logarithm and exponential involve two tables.
3262 The first is simple: |two_to_the[k]| equals $2^k$. The second involves
3263 a bit more calculation, which the author claims to have done correctly:
3264 |spec_log[k]| is $2^{27}$ times $\ln\bigl(1/(1-2^{-k})\bigr)=
3265 2^{-k}+{1\over2}2^{-2k}+{1\over3}2^{-3k}+\cdots\,$, rounded to the
3268 @d two_to_the(A) (1<<(A))
3271 static const integer spec_log[29] = { 0, /* special logarithms */
3272 93032640, 38612034, 17922280, 8662214, 4261238, 2113709,
3273 1052693, 525315, 262400, 131136, 65552, 32772, 16385,
3274 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1 };
3276 @ @<Local variables for initialization@>=
3277 integer k; /* all-purpose loop index */
3280 @ Here is the routine that calculates $2^8$ times the natural logarithm
3281 of a |scaled| quantity; it is an integer approximation to $2^{24}\ln(x/2^{16})$,
3282 when |x| is a given positive integer.
3284 The method is based on exercise 1.2.2--25 in {\sl The Art of Computer
3285 Programming\/}: During the main iteration we have $1\L 2^{-30}x<1/(1-2^{1-k})$,
3286 and the logarithm of $2^{30}x$ remains to be added to an accumulator
3287 register called~$y$. Three auxiliary bits of accuracy are retained in~$y$
3288 during the calculation, and sixteen auxiliary bits to extend |y| are
3289 kept in~|z| during the initial argument reduction. (We add
3290 $100\cdot2^{16}=6553600$ to~|z| and subtract 100 from~|y| so that |z| will
3291 not become negative; also, the actual amount subtracted from~|y| is~96,
3292 not~100, because we want to add~4 for rounding before the final division by~8.)
3295 scaled mp_m_log (MP mp,scaled x) {
3296 integer y,z; /* auxiliary registers */
3297 integer k; /* iteration counter */
3299 @<Handle non-positive logarithm@>;
3301 y=1302456956+4-100; /* $14\times2^{27}\ln2\approx1302456956.421063$ */
3302 z=27595+6553600; /* and $2^{16}\times .421063\approx 27595$ */
3303 while ( x<fraction_four ) {
3304 double(x); y-=93032639; z-=48782;
3305 } /* $2^{27}\ln2\approx 93032639.74436163$ and $2^{16}\times.74436163\approx 48782$ */
3306 y=y+(z / unity); k=2;
3307 while ( x>fraction_four+4 ) {
3308 @<Increase |k| until |x| can be multiplied by a
3309 factor of $2^{-k}$, and adjust $y$ accordingly@>;
3315 @ @<Increase |k| until |x| can...@>=
3317 z=((x-1) / two_to_the(k))+1; /* $z=\lceil x/2^k\rceil$ */
3318 while ( x<fraction_four+z ) { z=halfp(z+1); incr(k); };
3319 y+=spec_log[k]; x-=z;
3322 @ @<Handle non-positive logarithm@>=
3324 print_err("Logarithm of ");
3325 @.Logarithm...replaced by 0@>
3326 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3327 help2("Since I don't take logs of non-positive numbers,")
3328 ("I'm zeroing this one. Proceed, with fingers crossed.");
3333 @ Conversely, the exponential routine calculates $\exp(x/2^8)$,
3334 when |x| is |scaled|. The result is an integer approximation to
3335 $2^{16}\exp(x/2^{24})$, when |x| is regarded as an integer.
3338 scaled mp_m_exp (MP mp,scaled x) {
3339 small_number k; /* loop control index */
3340 integer y,z; /* auxiliary registers */
3341 if ( x>174436200 ) {
3342 /* $2^{24}\ln((2^{31}-1)/2^{16})\approx 174436199.51$ */
3343 mp->arith_error=true;
3345 } else if ( x<-197694359 ) {
3346 /* $2^{24}\ln(2^{-1}/2^{16})\approx-197694359.45$ */
3350 z=-8*x; y=04000000; /* $y=2^{20}$ */
3352 if ( x<=127919879 ) {
3354 /* $2^{27}\ln((2^{31}-1)/2^{20})\approx 1023359037.125$ */
3356 z=8*(174436200-x); /* |z| is always nonnegative */
3360 @<Multiply |y| by $\exp(-z/2^{27})$@>;
3362 return ((y+8) / 16);
3368 @ The idea here is that subtracting |spec_log[k]| from |z| corresponds
3369 to multiplying |y| by $1-2^{-k}$.
3371 A subtle point (which had to be checked) was that if $x=127919879$, the
3372 value of~|y| will decrease so that |y+8| doesn't overflow. In fact,
3373 $z$ will be 5 in this case, and |y| will decrease by~64 when |k=25|
3374 and by~16 when |k=27|.
3376 @<Multiply |y| by...@>=
3379 while ( z>=spec_log[k] ) {
3381 y=y-1-((y-two_to_the(k-1)) / two_to_the(k));
3386 @ The trigonometric subroutines use an auxiliary table such that
3387 |spec_atan[k]| contains an approximation to the |angle| whose tangent
3388 is~$1/2^k$. $\arctan2^{-k}$ times $2^{20}\cdot180/\pi$
3391 static const angle spec_atan[27] = { 0, 27855475, 14718068, 7471121, 3750058,
3392 1876857, 938658, 469357, 234682, 117342, 58671, 29335, 14668, 7334, 3667,
3393 1833, 917, 458, 229, 115, 57, 29, 14, 7, 4, 2, 1 };
3395 @ Given integers |x| and |y|, not both zero, the |n_arg| function
3396 returns the |angle| whose tangent points in the direction $(x,y)$.
3397 This subroutine first determines the correct octant, then solves the
3398 problem for |0<=y<=x|, then converts the result appropriately to
3399 return an answer in the range |-one_eighty_deg<=@t$\theta$@><=one_eighty_deg|.
3400 (The answer is |+one_eighty_deg| if |y=0| and |x<0|, but an answer of
3401 |-one_eighty_deg| is possible if, for example, |y=-1| and $x=-2^{30}$.)
3403 The octants are represented in a ``Gray code,'' since that turns out
3404 to be computationally simplest.
3410 @d second_octant (first_octant+switch_x_and_y)
3411 @d third_octant (first_octant+switch_x_and_y+negate_x)
3412 @d fourth_octant (first_octant+negate_x)
3413 @d fifth_octant (first_octant+negate_x+negate_y)
3414 @d sixth_octant (first_octant+switch_x_and_y+negate_x+negate_y)
3415 @d seventh_octant (first_octant+switch_x_and_y+negate_y)
3416 @d eighth_octant (first_octant+negate_y)
3419 angle mp_n_arg (MP mp,integer x, integer y) {
3420 angle z; /* auxiliary register */
3421 integer t; /* temporary storage */
3422 small_number k; /* loop counter */
3423 int octant; /* octant code */
3425 octant=first_octant;
3427 negate(x); octant=first_octant+negate_x;
3430 negate(y); octant=octant+negate_y;
3433 t=y; y=x; x=t; octant=octant+switch_x_and_y;
3436 @<Handle undefined arg@>;
3438 @<Set variable |z| to the arg of $(x,y)$@>;
3439 @<Return an appropriate answer based on |z| and |octant|@>;
3443 @ @<Handle undefined arg@>=
3445 print_err("angle(0,0) is taken as zero");
3446 @.angle(0,0)...zero@>
3447 help2("The `angle' between two identical points is undefined.")
3448 ("I'm zeroing this one. Proceed, with fingers crossed.");
3453 @ @<Return an appropriate answer...@>=
3455 case first_octant: return z;
3456 case second_octant: return (ninety_deg-z);
3457 case third_octant: return (ninety_deg+z);
3458 case fourth_octant: return (one_eighty_deg-z);
3459 case fifth_octant: return (z-one_eighty_deg);
3460 case sixth_octant: return (-z-ninety_deg);
3461 case seventh_octant: return (z-ninety_deg);
3462 case eighth_octant: return (-z);
3463 }; /* there are no other cases */
3466 @ At this point we have |x>=y>=0|, and |x>0|. The numbers are scaled up
3467 or down until $2^{28}\L x<2^{29}$, so that accurate fixed-point calculations
3470 @<Set variable |z| to the arg...@>=
3471 while ( x>=fraction_two ) {
3472 x=halfp(x); y=halfp(y);
3476 while ( x<fraction_one ) {
3479 @<Increase |z| to the arg of $(x,y)$@>;
3482 @ During the calculations of this section, variables |x| and~|y|
3483 represent actual coordinates $(x,2^{-k}y)$. We will maintain the
3484 condition |x>=y|, so that the tangent will be at most $2^{-k}$.
3485 If $x<2y$, the tangent is greater than $2^{-k-1}$. The transformation
3486 $(a,b)\mapsto(a+b\tan\phi,b-a\tan\phi)$ replaces $(a,b)$ by
3487 coordinates whose angle has decreased by~$\phi$; in the special case
3488 $a=x$, $b=2^{-k}y$, and $\tan\phi=2^{-k-1}$, this operation reduces
3489 to the particularly simple iteration shown here. [Cf.~John E. Meggitt,
3490 @^Meggitt, John E.@>
3491 {\sl IBM Journal of Research and Development\/ \bf6} (1962), 210--226.]
3493 The initial value of |x| will be multiplied by at most
3494 $(1+{1\over2})(1+{1\over8})(1+{1\over32})\cdots\approx 1.7584$; hence
3495 there is no chance of integer overflow.
3497 @<Increase |z|...@>=
3502 z=z+spec_atan[k]; t=x; x=x+(y / two_to_the(k+k)); y=y-t;
3507 if ( y>x ) { z=z+spec_atan[k]; y=y-x; };
3510 @ Conversely, the |n_sin_cos| routine takes an |angle| and produces the sine
3511 and cosine of that angle. The results of this routine are
3512 stored in global integer variables |n_sin| and |n_cos|.
3515 fraction n_sin;fraction n_cos; /* results computed by |n_sin_cos| */
3517 @ Given an integer |z| that is $2^{20}$ times an angle $\theta$ in degrees,
3518 the purpose of |n_sin_cos(z)| is to set
3519 |x=@t$r\cos\theta$@>| and |y=@t$r\sin\theta$@>| (approximately),
3520 for some rather large number~|r|. The maximum of |x| and |y|
3521 will be between $2^{28}$ and $2^{30}$, so that there will be hardly
3522 any loss of accuracy. Then |x| and~|y| are divided by~|r|.
3525 void mp_n_sin_cos (MP mp,angle z) { /* computes a multiple of the sine
3527 small_number k; /* loop control variable */
3528 int q; /* specifies the quadrant */
3529 fraction r; /* magnitude of |(x,y)| */
3530 integer x,y,t; /* temporary registers */
3531 while ( z<0 ) z=z+three_sixty_deg;
3532 z=z % three_sixty_deg; /* now |0<=z<three_sixty_deg| */
3533 q=z / forty_five_deg; z=z % forty_five_deg;
3534 x=fraction_one; y=x;
3535 if ( ! odd(q) ) z=forty_five_deg-z;
3536 @<Subtract angle |z| from |(x,y)|@>;
3537 @<Convert |(x,y)| to the octant determined by~|q|@>;
3538 r=mp_pyth_add(mp, x,y);
3539 mp->n_cos=mp_make_fraction(mp, x,r);
3540 mp->n_sin=mp_make_fraction(mp, y,r);
3543 @ In this case the octants are numbered sequentially.
3545 @<Convert |(x,...@>=
3548 case 1: t=x; x=y; y=t; break;
3549 case 2: t=x; x=-y; y=t; break;
3550 case 3: negate(x); break;
3551 case 4: negate(x); negate(y); break;
3552 case 5: t=x; x=-y; y=-t; break;
3553 case 6: t=x; x=y; y=-t; break;
3554 case 7: negate(y); break;
3555 } /* there are no other cases */
3557 @ The main iteration of |n_sin_cos| is similar to that of |n_arg| but
3558 applied in reverse. The values of |spec_atan[k]| decrease slowly enough
3559 that this loop is guaranteed to terminate before the (nonexistent) value
3560 |spec_atan[27]| would be required.
3562 @<Subtract angle |z|...@>=
3565 if ( z>=spec_atan[k] ) {
3566 z=z-spec_atan[k]; t=x;
3567 x=t+y / two_to_the(k);
3568 y=y-t / two_to_the(k);
3572 if ( y<0 ) y=0 /* this precaution may never be needed */
3574 @ And now let's complete our collection of numeric utility routines
3575 by considering random number generation.
3576 \MP\ generates pseudo-random numbers with the additive scheme recommended
3577 in Section 3.6 of {\sl The Art of Computer Programming}; however, the
3578 results are random fractions between 0 and |fraction_one-1|, inclusive.
3580 There's an auxiliary array |randoms| that contains 55 pseudo-random
3581 fractions. Using the recurrence $x_n=(x_{n-55}-x_{n-31})\bmod 2^{28}$,
3582 we generate batches of 55 new $x_n$'s at a time by calling |new_randoms|.
3583 The global variable |j_random| tells which element has most recently
3585 The global variable |sys_random_seed| was introduced in version 0.9,
3586 for the sole reason of stressing the fact that the initial value of the
3587 random seed is system-dependant. The pascal code below will initialize
3588 this variable to |(internal[mp_time] div unity)+internal[mp_day]|, but this
3589 is not good enough on modern fast machines that are capable of running
3590 multiple MetaPost processes within the same second.
3591 @^system dependencies@>
3594 fraction randoms[55]; /* the last 55 random values generated */
3595 int j_random; /* the number of unused |randoms| */
3596 scaled sys_random_seed; /* the default random seed */
3598 @ @<Exported types@>=
3599 typedef int (*mp_get_random_seed_command)(MP mp);
3602 mp_get_random_seed_command get_random_seed;
3604 @ @<Option variables@>=
3605 mp_get_random_seed_command get_random_seed;
3607 @ @<Allocate or initialize ...@>=
3608 set_callback_option(get_random_seed);
3610 @ @<Internal library declarations@>=
3611 int mp_get_random_seed (MP mp);
3614 int mp_get_random_seed (MP mp) {
3615 return (mp->internal[mp_time] / unity)+mp->internal[mp_day];
3618 @ To consume a random fraction, the program below will say `|next_random|'
3619 and then it will fetch |randoms[j_random]|.
3621 @d next_random { if ( mp->j_random==0 ) mp_new_randoms(mp);
3622 else decr(mp->j_random); }
3625 void mp_new_randoms (MP mp) {
3626 int k; /* index into |randoms| */
3627 fraction x; /* accumulator */
3628 for (k=0;k<=23;k++) {
3629 x=mp->randoms[k]-mp->randoms[k+31];
3630 if ( x<0 ) x=x+fraction_one;
3633 for (k=24;k<= 54;k++){
3634 x=mp->randoms[k]-mp->randoms[k-24];
3635 if ( x<0 ) x=x+fraction_one;
3642 void mp_init_randoms (MP mp,scaled seed);
3644 @ To initialize the |randoms| table, we call the following routine.
3647 void mp_init_randoms (MP mp,scaled seed) {
3648 fraction j,jj,k; /* more or less random integers */
3649 int i; /* index into |randoms| */
3651 while ( j>=fraction_one ) j=halfp(j);
3653 for (i=0;i<=54;i++ ){
3655 if ( k<0 ) k=k+fraction_one;
3656 mp->randoms[(i*21)% 55]=j;
3660 mp_new_randoms(mp); /* ``warm up'' the array */
3663 @ To produce a uniform random number in the range |0<=u<x| or |0>=u>x|
3664 or |0=u=x|, given a |scaled| value~|x|, we proceed as shown here.
3666 Note that the call of |take_fraction| will produce the values 0 and~|x|
3667 with about half the probability that it will produce any other particular
3668 values between 0 and~|x|, because it rounds its answers.
3671 scaled mp_unif_rand (MP mp,scaled x) {
3672 scaled y; /* trial value */
3673 next_random; y=mp_take_fraction(mp, abs(x),mp->randoms[mp->j_random]);
3674 if ( y==abs(x) ) return 0;
3675 else if ( x>0 ) return y;
3679 @ Finally, a normal deviate with mean zero and unit standard deviation
3680 can readily be obtained with the ratio method (Algorithm 3.4.1R in
3681 {\sl The Art of Computer Programming\/}).
3684 scaled mp_norm_rand (MP mp) {
3685 integer x,u,l; /* what the book would call $2^{16}X$, $2^{28}U$, and $-2^{24}\ln U$ */
3689 x=mp_take_fraction(mp, 112429,mp->randoms[mp->j_random]-fraction_half);
3690 /* $2^{16}\sqrt{8/e}\approx 112428.82793$ */
3691 next_random; u=mp->randoms[mp->j_random];
3692 } while (abs(x)>=u);
3693 x=mp_make_fraction(mp, x,u);
3694 l=139548960-mp_m_log(mp, u); /* $2^{24}\cdot12\ln2\approx139548959.6165$ */
3695 } while (mp_ab_vs_cd(mp, 1024,l,x,x)<0);
3699 @* \[9] Packed data.
3700 In order to make efficient use of storage space, \MP\ bases its major data
3701 structures on a |memory_word|, which contains either a (signed) integer,
3702 possibly scaled, or a small number of fields that are one half or one
3703 quarter of the size used for storing integers.
3705 If |x| is a variable of type |memory_word|, it contains up to four
3706 fields that can be referred to as follows:
3707 $$\vbox{\halign{\hfil#&#\hfil&#\hfil\cr
3708 |x|&.|int|&(an |integer|)\cr
3709 |x|&.|sc|\qquad&(a |scaled| integer)\cr
3710 |x.hh.lh|, |x.hh|&.|rh|&(two halfword fields)\cr
3711 |x.hh.b0|, |x.hh.b1|, |x.hh|&.|rh|&(two quarterword fields, one halfword
3713 |x.qqqq.b0|, |x.qqqq.b1|, |x.qqqq|&.|b2|, |x.qqqq.b3|\hskip-100pt
3714 &\qquad\qquad\qquad(four quarterword fields)\cr}}$$
3715 This is somewhat cumbersome to write, and not very readable either, but
3716 macros will be used to make the notation shorter and more transparent.
3717 The code below gives a formal definition of |memory_word| and
3718 its subsidiary types, using packed variant records. \MP\ makes no
3719 assumptions about the relative positions of the fields within a word.
3721 @d max_quarterword 0x3FFF /* largest allowable value in a |quarterword| */
3722 @d max_halfword 0xFFFFFFF /* largest allowable value in a |halfword| */
3724 @ Here are the inequalities that the quarterword and halfword values
3725 must satisfy (or rather, the inequalities that they mustn't satisfy):
3727 @<Check the ``constant''...@>=
3728 if (mp->ini_version) {
3729 if ( mp->mem_max!=mp->mem_top ) mp->bad=8;
3731 if ( mp->mem_max<mp->mem_top ) mp->bad=8;
3733 if ( max_quarterword<255 ) mp->bad=9;
3734 if ( max_halfword<65535 ) mp->bad=10;
3735 if ( max_quarterword>max_halfword ) mp->bad=11;
3736 if ( mp->mem_max>=max_halfword ) mp->bad=12;
3737 if ( mp->max_strings>max_halfword ) mp->bad=13;
3739 @ The macros |qi| and |qo| are used for input to and output
3740 from quarterwords. These are legacy macros.
3741 @^system dependencies@>
3743 @d qo(A) (A) /* to read eight bits from a quarterword */
3744 @d qi(A) (A) /* to store eight bits in a quarterword */
3746 @ The reader should study the following definitions closely:
3747 @^system dependencies@>
3749 @d sc cint /* |scaled| data is equivalent to |integer| */
3752 typedef short quarterword; /* 1/4 of a word */
3753 typedef int halfword; /* 1/2 of a word */
3758 struct { /* Make B0,B1 overlap the most significant bytes of LH. */
3765 quarterword B2, B3, B0, B1;
3780 @ When debugging, we may want to print a |memory_word| without knowing
3781 what type it is; so we print it in all modes.
3782 @^dirty \PASCAL@>@^debugging@>
3785 void mp_print_word (MP mp,memory_word w) {
3786 /* prints |w| in all ways */
3787 mp_print_int(mp, w.cint); mp_print_char(mp, ' ');
3788 mp_print_scaled(mp, w.sc); mp_print_char(mp, ' ');
3789 mp_print_scaled(mp, w.sc / 010000); mp_print_ln(mp);
3790 mp_print_int(mp, w.hh.lh); mp_print_char(mp, '=');
3791 mp_print_int(mp, w.hh.b0); mp_print_char(mp, ':');
3792 mp_print_int(mp, w.hh.b1); mp_print_char(mp, ';');
3793 mp_print_int(mp, w.hh.rh); mp_print_char(mp, ' ');
3794 mp_print_int(mp, w.qqqq.b0); mp_print_char(mp, ':');
3795 mp_print_int(mp, w.qqqq.b1); mp_print_char(mp, ':');
3796 mp_print_int(mp, w.qqqq.b2); mp_print_char(mp, ':');
3797 mp_print_int(mp, w.qqqq.b3);
3801 @* \[10] Dynamic memory allocation.
3803 The \MP\ system does nearly all of its own memory allocation, so that it
3804 can readily be transported into environments that do not have automatic
3805 facilities for strings, garbage collection, etc., and so that it can be in
3806 control of what error messages the user receives. The dynamic storage
3807 requirements of \MP\ are handled by providing a large array |mem| in
3808 which consecutive blocks of words are used as nodes by the \MP\ routines.
3810 Pointer variables are indices into this array, or into another array
3811 called |eqtb| that will be explained later. A pointer variable might
3812 also be a special flag that lies outside the bounds of |mem|, so we
3813 allow pointers to assume any |halfword| value. The minimum memory
3814 index represents a null pointer.
3816 @d null 0 /* the null pointer */
3819 typedef halfword pointer; /* a flag or a location in |mem| or |eqtb| */
3821 @ The |mem| array is divided into two regions that are allocated separately,
3822 but the dividing line between these two regions is not fixed; they grow
3823 together until finding their ``natural'' size in a particular job.
3824 Locations less than or equal to |lo_mem_max| are used for storing
3825 variable-length records consisting of two or more words each. This region
3826 is maintained using an algorithm similar to the one described in exercise
3827 2.5--19 of {\sl The Art of Computer Programming}. However, no size field
3828 appears in the allocated nodes; the program is responsible for knowing the
3829 relevant size when a node is freed. Locations greater than or equal to
3830 |hi_mem_min| are used for storing one-word records; a conventional
3831 \.{AVAIL} stack is used for allocation in this region.
3833 Locations of |mem| between |0| and |mem_top| may be dumped as part
3834 of preloaded format files, by the \.{INIMP} preprocessor.
3836 Production versions of \MP\ may extend the memory at the top end in order to
3837 provide more space; these locations, between |mem_top| and |mem_max|,
3838 are always used for single-word nodes.
3840 The key pointers that govern |mem| allocation have a prescribed order:
3841 $$\hbox{|null=0<lo_mem_max<hi_mem_min<mem_top<=mem_end<=mem_max|.}$$
3844 memory_word *mem; /* the big dynamic storage area */
3845 pointer lo_mem_max; /* the largest location of variable-size memory in use */
3846 pointer hi_mem_min; /* the smallest location of one-word memory in use */
3850 @d xfree(A) do { mp_xfree(A); A=NULL; } while (0)
3851 @d xrealloc(P,A,B) mp_xrealloc(mp,P,A,B)
3852 @d xmalloc(A,B) mp_xmalloc(mp,A,B)
3853 @d xstrdup(A) mp_xstrdup(mp,A)
3854 @d XREALLOC(a,b,c) a = xrealloc(a,(b+1),sizeof(c));
3856 @<Declare helpers@>=
3857 void mp_xfree (void *x);
3858 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) ;
3859 void *mp_xmalloc (MP mp, size_t nmem, size_t size) ;
3860 char *mp_xstrdup(MP mp, const char *s);
3862 @ The |max_size_test| guards against overflow, on the assumption that
3863 |size_t| is at least 31bits wide.
3865 @d max_size_test 0x7FFFFFFF
3868 void mp_xfree (void *x) {
3869 if (x!=NULL) free(x);
3871 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) {
3873 if ((max_size_test/size)<nmem) {
3874 fprintf(stderr,"Memory size overflow!\n");
3875 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3877 w = realloc (p,(nmem*size));
3879 fprintf(stderr,"Out of memory!\n");
3880 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3884 void *mp_xmalloc (MP mp, size_t nmem, size_t size) {
3886 if ((max_size_test/size)<nmem) {
3887 fprintf(stderr,"Memory size overflow!\n");
3888 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3890 w = malloc (nmem*size);
3892 fprintf(stderr,"Out of memory!\n");
3893 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3897 char *mp_xstrdup(MP mp, const char *s) {
3903 fprintf(stderr,"Out of memory!\n");
3904 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3911 @<Allocate or initialize ...@>=
3912 mp->mem = xmalloc ((mp->mem_max+1),sizeof (memory_word));
3913 memset(mp->mem,0,(mp->mem_max+1)*sizeof (memory_word));
3915 @ @<Dealloc variables@>=
3918 @ Users who wish to study the memory requirements of particular applications can
3919 can use optional special features that keep track of current and
3920 maximum memory usage. When code between the delimiters |stat| $\ldots$
3921 |tats| is not ``commented out,'' \MP\ will run a bit slower but it will
3922 report these statistics when |mp_tracing_stats| is positive.
3925 integer var_used; integer dyn_used; /* how much memory is in use */
3927 @ Let's consider the one-word memory region first, since it's the
3928 simplest. The pointer variable |mem_end| holds the highest-numbered location
3929 of |mem| that has ever been used. The free locations of |mem| that
3930 occur between |hi_mem_min| and |mem_end|, inclusive, are of type
3931 |two_halves|, and we write |info(p)| and |link(p)| for the |lh|
3932 and |rh| fields of |mem[p]| when it is of this type. The single-word
3933 free locations form a linked list
3934 $$|avail|,\;\hbox{|link(avail)|},\;\hbox{|link(link(avail))|},\;\ldots$$
3935 terminated by |null|.
3937 @d link(A) mp->mem[(A)].hh.rh /* the |link| field of a memory word */
3938 @d info(A) mp->mem[(A)].hh.lh /* the |info| field of a memory word */
3941 pointer avail; /* head of the list of available one-word nodes */
3942 pointer mem_end; /* the last one-word node used in |mem| */
3944 @ If one-word memory is exhausted, it might mean that the user has forgotten
3945 a token like `\&{enddef}' or `\&{endfor}'. We will define some procedures
3946 later that try to help pinpoint the trouble.
3949 @<Declare the procedure called |show_token_list|@>;
3950 @<Declare the procedure called |runaway|@>
3952 @ The function |get_avail| returns a pointer to a new one-word node whose
3953 |link| field is null. However, \MP\ will halt if there is no more room left.
3957 pointer mp_get_avail (MP mp) { /* single-word node allocation */
3958 pointer p; /* the new node being got */
3959 p=mp->avail; /* get top location in the |avail| stack */
3961 mp->avail=link(mp->avail); /* and pop it off */
3962 } else if ( mp->mem_end<mp->mem_max ) { /* or go into virgin territory */
3963 incr(mp->mem_end); p=mp->mem_end;
3965 decr(mp->hi_mem_min); p=mp->hi_mem_min;
3966 if ( mp->hi_mem_min<=mp->lo_mem_max ) {
3967 mp_runaway(mp); /* if memory is exhausted, display possible runaway text */
3968 mp_overflow(mp, "main memory size",mp->mem_max);
3969 /* quit; all one-word nodes are busy */
3970 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
3973 link(p)=null; /* provide an oft-desired initialization of the new node */
3974 incr(mp->dyn_used);/* maintain statistics */
3978 @ Conversely, a one-word node is recycled by calling |free_avail|.
3980 @d free_avail(A) /* single-word node liberation */
3981 { link((A))=mp->avail; mp->avail=(A); decr(mp->dyn_used); }
3983 @ There's also a |fast_get_avail| routine, which saves the procedure-call
3984 overhead at the expense of extra programming. This macro is used in
3985 the places that would otherwise account for the most calls of |get_avail|.
3988 @d fast_get_avail(A) {
3989 (A)=mp->avail; /* avoid |get_avail| if possible, to save time */
3990 if ( (A)==null ) { (A)=mp_get_avail(mp); }
3991 else { mp->avail=link((A)); link((A))=null; incr(mp->dyn_used); }
3994 @ The available-space list that keeps track of the variable-size portion
3995 of |mem| is a nonempty, doubly-linked circular list of empty nodes,
3996 pointed to by the roving pointer |rover|.
3998 Each empty node has size 2 or more; the first word contains the special
3999 value |max_halfword| in its |link| field and the size in its |info| field;
4000 the second word contains the two pointers for double linking.
4002 Each nonempty node also has size 2 or more. Its first word is of type
4003 |two_halves|\kern-1pt, and its |link| field is never equal to |max_halfword|.
4004 Otherwise there is complete flexibility with respect to the contents
4005 of its other fields and its other words.
4007 (We require |mem_max<max_halfword| because terrible things can happen
4008 when |max_halfword| appears in the |link| field of a nonempty node.)
4010 @d empty_flag max_halfword /* the |link| of an empty variable-size node */
4011 @d is_empty(A) (link((A))==empty_flag) /* tests for empty node */
4012 @d node_size info /* the size field in empty variable-size nodes */
4013 @d llink(A) info((A)+1) /* left link in doubly-linked list of empty nodes */
4014 @d rlink(A) link((A)+1) /* right link in doubly-linked list of empty nodes */
4017 pointer rover; /* points to some node in the list of empties */
4019 @ A call to |get_node| with argument |s| returns a pointer to a new node
4020 of size~|s|, which must be 2~or more. The |link| field of the first word
4021 of this new node is set to null. An overflow stop occurs if no suitable
4024 If |get_node| is called with $s=2^{30}$, it simply merges adjacent free
4025 areas and returns the value |max_halfword|.
4028 pointer mp_get_node (MP mp,integer s) ;
4031 pointer mp_get_node (MP mp,integer s) { /* variable-size node allocation */
4032 pointer p; /* the node currently under inspection */
4033 pointer q; /* the node physically after node |p| */
4034 integer r; /* the newly allocated node, or a candidate for this honor */
4035 integer t,tt; /* temporary registers */
4038 p=mp->rover; /* start at some free node in the ring */
4040 @<Try to allocate within node |p| and its physical successors,
4041 and |goto found| if allocation was possible@>;
4042 p=rlink(p); /* move to the next node in the ring */
4043 } while (p!=mp->rover); /* repeat until the whole list has been traversed */
4044 if ( s==010000000000 ) {
4045 return max_halfword;
4047 if ( mp->lo_mem_max+2<mp->hi_mem_min ) {
4048 if ( mp->lo_mem_max+2<=max_halfword ) {
4049 @<Grow more variable-size memory and |goto restart|@>;
4052 mp_overflow(mp, "main memory size",mp->mem_max);
4053 /* sorry, nothing satisfactory is left */
4054 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
4056 link(r)=null; /* this node is now nonempty */
4057 mp->var_used=mp->var_used+s; /* maintain usage statistics */
4061 @ The lower part of |mem| grows by 1000 words at a time, unless
4062 we are very close to going under. When it grows, we simply link
4063 a new node into the available-space list. This method of controlled
4064 growth helps to keep the |mem| usage consecutive when \MP\ is
4065 implemented on ``virtual memory'' systems.
4068 @<Grow more variable-size memory and |goto restart|@>=
4070 if ( mp->hi_mem_min-mp->lo_mem_max>=1998 ) {
4071 t=mp->lo_mem_max+1000;
4073 t=mp->lo_mem_max+1+(mp->hi_mem_min-mp->lo_mem_max) / 2;
4074 /* |lo_mem_max+2<=t<hi_mem_min| */
4076 if ( t>max_halfword ) t=max_halfword;
4077 p=llink(mp->rover); q=mp->lo_mem_max; rlink(p)=q; llink(mp->rover)=q;
4078 rlink(q)=mp->rover; llink(q)=p; link(q)=empty_flag; node_size(q)=t-mp->lo_mem_max;
4079 mp->lo_mem_max=t; link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4084 @ @<Try to allocate...@>=
4085 q=p+node_size(p); /* find the physical successor */
4086 while ( is_empty(q) ) { /* merge node |p| with node |q| */
4087 t=rlink(q); tt=llink(q);
4089 if ( q==mp->rover ) mp->rover=t;
4090 llink(t)=tt; rlink(tt)=t;
4095 @<Allocate from the top of node |p| and |goto found|@>;
4098 if ( rlink(p)!=p ) {
4099 @<Allocate entire node |p| and |goto found|@>;
4102 node_size(p)=q-p /* reset the size in case it grew */
4104 @ @<Allocate from the top...@>=
4106 node_size(p)=r-p; /* store the remaining size */
4107 mp->rover=p; /* start searching here next time */
4111 @ Here we delete node |p| from the ring, and let |rover| rove around.
4113 @<Allocate entire...@>=
4115 mp->rover=rlink(p); t=llink(p);
4116 llink(mp->rover)=t; rlink(t)=mp->rover;
4120 @ Conversely, when some variable-size node |p| of size |s| is no longer needed,
4121 the operation |free_node(p,s)| will make its words available, by inserting
4122 |p| as a new empty node just before where |rover| now points.
4125 void mp_free_node (MP mp, pointer p, halfword s) ;
4128 void mp_free_node (MP mp, pointer p, halfword s) { /* variable-size node
4130 pointer q; /* |llink(rover)| */
4131 node_size(p)=s; link(p)=empty_flag;
4133 q=llink(mp->rover); llink(p)=q; rlink(p)=mp->rover; /* set both links */
4134 llink(mp->rover)=p; rlink(q)=p; /* insert |p| into the ring */
4135 mp->var_used=mp->var_used-s; /* maintain statistics */
4138 @ Just before \.{INIMP} writes out the memory, it sorts the doubly linked
4139 available space list. The list is probably very short at such times, so a
4140 simple insertion sort is used. The smallest available location will be
4141 pointed to by |rover|, the next-smallest by |rlink(rover)|, etc.
4144 void mp_sort_avail (MP mp) { /* sorts the available variable-size nodes
4146 pointer p,q,r; /* indices into |mem| */
4147 pointer old_rover; /* initial |rover| setting */
4148 p=mp_get_node(mp, 010000000000); /* merge adjacent free areas */
4149 p=rlink(mp->rover); rlink(mp->rover)=max_halfword; old_rover=mp->rover;
4150 while ( p!=old_rover ) {
4151 @<Sort |p| into the list starting at |rover|
4152 and advance |p| to |rlink(p)|@>;
4155 while ( rlink(p)!=max_halfword ) {
4156 llink(rlink(p))=p; p=rlink(p);
4158 rlink(p)=mp->rover; llink(mp->rover)=p;
4161 @ The following |while| loop is guaranteed to
4162 terminate, since the list that starts at
4163 |rover| ends with |max_halfword| during the sorting procedure.
4166 if ( p<mp->rover ) {
4167 q=p; p=rlink(q); rlink(q)=mp->rover; mp->rover=q;
4170 while ( rlink(q)<p ) q=rlink(q);
4171 r=rlink(p); rlink(p)=rlink(q); rlink(q)=p; p=r;
4174 @* \[11] Memory layout.
4175 Some areas of |mem| are dedicated to fixed usage, since static allocation is
4176 more efficient than dynamic allocation when we can get away with it. For
4177 example, locations |0| to |1| are always used to store a
4178 two-word dummy token whose second word is zero.
4179 The following macro definitions accomplish the static allocation by giving
4180 symbolic names to the fixed positions. Static variable-size nodes appear
4181 in locations |0| through |lo_mem_stat_max|, and static single-word nodes
4182 appear in locations |hi_mem_stat_min| through |mem_top|, inclusive.
4184 @d null_dash (2) /* the first two words are reserved for a null value */
4185 @d dep_head (null_dash+3) /* we will define |dash_node_size=3| */
4186 @d zero_val (dep_head+2) /* two words for a permanently zero value */
4187 @d temp_val (zero_val+2) /* two words for a temporary value node */
4188 @d end_attr temp_val /* we use |end_attr+2| only */
4189 @d inf_val (end_attr+2) /* and |inf_val+1| only */
4190 @d test_pen (inf_val+2)
4191 /* nine words for a pen used when testing the turning number */
4192 @d bad_vardef (test_pen+9) /* two words for \&{vardef} error recovery */
4193 @d lo_mem_stat_max (bad_vardef+1) /* largest statically
4194 allocated word in the variable-size |mem| */
4196 @d sentinel mp->mem_top /* end of sorted lists */
4197 @d temp_head (mp->mem_top-1) /* head of a temporary list of some kind */
4198 @d hold_head (mp->mem_top-2) /* head of a temporary list of another kind */
4199 @d spec_head (mp->mem_top-3) /* head of a list of unprocessed \&{special} items */
4200 @d hi_mem_stat_min (mp->mem_top-3) /* smallest statically allocated word in
4201 the one-word |mem| */
4203 @ The following code gets the dynamic part of |mem| off to a good start,
4204 when \MP\ is initializing itself the slow way.
4206 @<Initialize table entries (done by \.{INIMP} only)@>=
4207 @^data structure assumptions@>
4208 mp->rover=lo_mem_stat_max+1; /* initialize the dynamic memory */
4209 link(mp->rover)=empty_flag;
4210 node_size(mp->rover)=1000; /* which is a 1000-word available node */
4211 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
4212 mp->lo_mem_max=mp->rover+1000; link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4213 for (k=hi_mem_stat_min;k<=(int)mp->mem_top;k++) {
4214 mp->mem[k]=mp->mem[mp->lo_mem_max]; /* clear list heads */
4216 mp->avail=null; mp->mem_end=mp->mem_top;
4217 mp->hi_mem_min=hi_mem_stat_min; /* initialize the one-word memory */
4218 mp->var_used=lo_mem_stat_max+1;
4219 mp->dyn_used=mp->mem_top+1-(hi_mem_stat_min); /* initialize statistics */
4220 @<Initialize a pen at |test_pen| so that it fits in nine words@>;
4222 @ The procedure |flush_list(p)| frees an entire linked list of one-word
4223 nodes that starts at a given position, until coming to |sentinel| or a
4224 pointer that is not in the one-word region. Another procedure,
4225 |flush_node_list|, frees an entire linked list of one-word and two-word
4226 nodes, until coming to a |null| pointer.
4230 void mp_flush_list (MP mp,pointer p) { /* makes list of single-word nodes available */
4231 pointer q,r; /* list traversers */
4232 if ( p>=mp->hi_mem_min ) if ( p!=sentinel ) {
4237 if ( r<mp->hi_mem_min ) break;
4238 } while (r!=sentinel);
4239 /* now |q| is the last node on the list */
4240 link(q)=mp->avail; mp->avail=p;
4244 void mp_flush_node_list (MP mp,pointer p) {
4245 pointer q; /* the node being recycled */
4248 if ( q<mp->hi_mem_min )
4249 mp_free_node(mp, q,2);
4255 @ If \MP\ is extended improperly, the |mem| array might get screwed up.
4256 For example, some pointers might be wrong, or some ``dead'' nodes might not
4257 have been freed when the last reference to them disappeared. Procedures
4258 |check_mem| and |search_mem| are available to help diagnose such
4259 problems. These procedures make use of two arrays called |free| and
4260 |was_free| that are present only if \MP's debugging routines have
4261 been included. (You may want to decrease the size of |mem| while you
4265 Because |boolean|s are typedef-d as ints, it is better to use
4266 unsigned chars here.
4269 unsigned char *free; /* free cells */
4270 unsigned char *was_free; /* previously free cells */
4271 pointer was_mem_end; pointer was_lo_max; pointer was_hi_min;
4272 /* previous |mem_end|, |lo_mem_max|,and |hi_mem_min| */
4273 boolean panicking; /* do we want to check memory constantly? */
4275 @ @<Allocate or initialize ...@>=
4276 mp->free = xmalloc ((mp->mem_max+1),sizeof (unsigned char));
4277 mp->was_free = xmalloc ((mp->mem_max+1), sizeof (unsigned char));
4279 @ @<Dealloc variables@>=
4281 xfree(mp->was_free);
4283 @ @<Allocate or ...@>=
4284 mp->was_mem_end=0; /* indicate that everything was previously free */
4285 mp->was_lo_max=0; mp->was_hi_min=mp->mem_max;
4286 mp->panicking=false;
4288 @ @<Declare |mp_reallocate| functions@>=
4289 void mp_reallocate_memory(MP mp, int l) ;
4292 void mp_reallocate_memory(MP mp, int l) {
4293 XREALLOC(mp->free, l, unsigned char);
4294 XREALLOC(mp->was_free, l, unsigned char);
4296 int newarea = l-mp->mem_max;
4297 XREALLOC(mp->mem, l, memory_word);
4298 memset (mp->mem+(mp->mem_max+1),0,sizeof(memory_word)*(newarea));
4300 XREALLOC(mp->mem, l, memory_word);
4301 memset(mp->mem,0,sizeof(memory_word)*(l+1));
4304 if (mp->ini_version)
4310 @ Procedure |check_mem| makes sure that the available space lists of
4311 |mem| are well formed, and it optionally prints out all locations
4312 that are reserved now but were free the last time this procedure was called.
4315 void mp_check_mem (MP mp,boolean print_locs ) {
4316 pointer p,q,r; /* current locations of interest in |mem| */
4317 boolean clobbered; /* is something amiss? */
4318 for (p=0;p<=mp->lo_mem_max;p++) {
4319 mp->free[p]=false; /* you can probably do this faster */
4321 for (p=mp->hi_mem_min;p<= mp->mem_end;p++) {
4322 mp->free[p]=false; /* ditto */
4324 @<Check single-word |avail| list@>;
4325 @<Check variable-size |avail| list@>;
4326 @<Check flags of unavailable nodes@>;
4327 @<Check the list of linear dependencies@>;
4329 @<Print newly busy locations@>;
4331 memcpy(mp->was_free,mp->free, sizeof(char)*(mp->mem_end+1));
4332 mp->was_mem_end=mp->mem_end;
4333 mp->was_lo_max=mp->lo_mem_max;
4334 mp->was_hi_min=mp->hi_mem_min;
4337 @ @<Check single-word...@>=
4338 p=mp->avail; q=null; clobbered=false;
4340 if ( (p>mp->mem_end)||(p<mp->hi_mem_min) ) clobbered=true;
4341 else if ( mp->free[p] ) clobbered=true;
4343 mp_print_nl(mp, "AVAIL list clobbered at ");
4344 @.AVAIL list clobbered...@>
4345 mp_print_int(mp, q); break;
4347 mp->free[p]=true; q=p; p=link(q);
4350 @ @<Check variable-size...@>=
4351 p=mp->rover; q=null; clobbered=false;
4353 if ( (p>=mp->lo_mem_max)||(p<0) ) clobbered=true;
4354 else if ( (rlink(p)>=mp->lo_mem_max)||(rlink(p)<0) ) clobbered=true;
4355 else if ( !(is_empty(p))||(node_size(p)<2)||
4356 (p+node_size(p)>mp->lo_mem_max)|| (llink(rlink(p))!=p) ) clobbered=true;
4358 mp_print_nl(mp, "Double-AVAIL list clobbered at ");
4359 @.Double-AVAIL list clobbered...@>
4360 mp_print_int(mp, q); break;
4362 for (q=p;q<=p+node_size(p)-1;q++) { /* mark all locations free */
4363 if ( mp->free[q] ) {
4364 mp_print_nl(mp, "Doubly free location at ");
4365 @.Doubly free location...@>
4366 mp_print_int(mp, q); break;
4371 } while (p!=mp->rover)
4374 @ @<Check flags...@>=
4376 while ( p<=mp->lo_mem_max ) { /* node |p| should not be empty */
4377 if ( is_empty(p) ) {
4378 mp_print_nl(mp, "Bad flag at "); mp_print_int(mp, p);
4381 while ( (p<=mp->lo_mem_max) && ! mp->free[p] ) incr(p);
4382 while ( (p<=mp->lo_mem_max) && mp->free[p] ) incr(p);
4385 @ @<Print newly busy...@>=
4387 @<Do intialization required before printing new busy locations@>;
4388 mp_print_nl(mp, "New busy locs:");
4390 for (p=0;p<= mp->lo_mem_max;p++ ) {
4391 if ( ! mp->free[p] && ((p>mp->was_lo_max) || mp->was_free[p]) ) {
4392 @<Indicate that |p| is a new busy location@>;
4395 for (p=mp->hi_mem_min;p<=mp->mem_end;p++ ) {
4396 if ( ! mp->free[p] &&
4397 ((p<mp->was_hi_min) || (p>mp->was_mem_end) || mp->was_free[p]) ) {
4398 @<Indicate that |p| is a new busy location@>;
4401 @<Finish printing new busy locations@>;
4404 @ There might be many new busy locations so we are careful to print contiguous
4405 blocks compactly. During this operation |q| is the last new busy location and
4406 |r| is the start of the block containing |q|.
4408 @<Indicate that |p| is a new busy location@>=
4412 mp_print(mp, ".."); mp_print_int(mp, q);
4414 mp_print_char(mp, ' '); mp_print_int(mp, p);
4420 @ @<Do intialization required before printing new busy locations@>=
4421 q=mp->mem_max; r=mp->mem_max
4423 @ @<Finish printing new busy locations@>=
4425 mp_print(mp, ".."); mp_print_int(mp, q);
4428 @ The |search_mem| procedure attempts to answer the question ``Who points
4429 to node~|p|?'' In doing so, it fetches |link| and |info| fields of |mem|
4430 that might not be of type |two_halves|. Strictly speaking, this is
4432 undefined in \PASCAL, and it can lead to ``false drops'' (words that seem to
4433 point to |p| purely by coincidence). But for debugging purposes, we want
4434 to rule out the places that do {\sl not\/} point to |p|, so a few false
4435 drops are tolerable.
4438 void mp_search_mem (MP mp, pointer p) { /* look for pointers to |p| */
4439 integer q; /* current position being searched */
4440 for (q=0;q<=mp->lo_mem_max;q++) {
4442 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4445 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4448 for (q=mp->hi_mem_min;q<=mp->mem_end;q++) {
4450 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4453 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4456 @<Search |eqtb| for equivalents equal to |p|@>;
4459 @* \[12] The command codes.
4460 Before we can go much further, we need to define symbolic names for the internal
4461 code numbers that represent the various commands obeyed by \MP. These codes
4462 are somewhat arbitrary, but not completely so. For example,
4463 some codes have been made adjacent so that |case| statements in the
4464 program need not consider cases that are widely spaced, or so that |case|
4465 statements can be replaced by |if| statements. A command can begin an
4466 expression if and only if its code lies between |min_primary_command| and
4467 |max_primary_command|, inclusive. The first token of a statement that doesn't
4468 begin with an expression has a command code between |min_command| and
4469 |max_statement_command|, inclusive. Anything less than |min_command| is
4470 eliminated during macro expansions, and anything no more than |max_pre_command|
4471 is eliminated when expanding \TeX\ material. Ranges such as
4472 |min_secondary_command..max_secondary_command| are used when parsing
4473 expressions, but the relative ordering within such a range is generally not
4476 The ordering of the highest-numbered commands
4477 (|comma<semicolon<end_group<stop|) is crucial for the parsing and
4478 error-recovery methods of this program as is the ordering |if_test<fi_or_else|
4479 for the smallest two commands. The ordering is also important in the ranges
4480 |numeric_token..plus_or_minus| and |left_brace..ampersand|.
4482 At any rate, here is the list, for future reference.
4484 @d start_tex 1 /* begin \TeX\ material (\&{btex}, \&{verbatimtex}) */
4485 @d etex_marker 2 /* end \TeX\ material (\&{etex}) */
4486 @d mpx_break 3 /* stop reading an \.{MPX} file (\&{mpxbreak}) */
4487 @d max_pre_command mpx_break
4488 @d if_test 4 /* conditional text (\&{if}) */
4489 @d fi_or_else 5 /* delimiters for conditionals (\&{elseif}, \&{else}, \&{fi} */
4490 @d input 6 /* input a source file (\&{input}, \&{endinput}) */
4491 @d iteration 7 /* iterate (\&{for}, \&{forsuffixes}, \&{forever}, \&{endfor}) */
4492 @d repeat_loop 8 /* special command substituted for \&{endfor} */
4493 @d exit_test 9 /* premature exit from a loop (\&{exitif}) */
4494 @d relax 10 /* do nothing (\.{\char`\\}) */
4495 @d scan_tokens 11 /* put a string into the input buffer */
4496 @d expand_after 12 /* look ahead one token */
4497 @d defined_macro 13 /* a macro defined by the user */
4498 @d min_command (defined_macro+1)
4499 @d save_command 14 /* save a list of tokens (\&{save}) */
4500 @d interim_command 15 /* save an internal quantity (\&{interim}) */
4501 @d let_command 16 /* redefine a symbolic token (\&{let}) */
4502 @d new_internal 17 /* define a new internal quantity (\&{newinternal}) */
4503 @d macro_def 18 /* define a macro (\&{def}, \&{vardef}, etc.) */
4504 @d ship_out_command 19 /* output a character (\&{shipout}) */
4505 @d add_to_command 20 /* add to edges (\&{addto}) */
4506 @d bounds_command 21 /* add bounding path to edges (\&{setbounds}, \&{clip}) */
4507 @d tfm_command 22 /* command for font metric info (\&{ligtable}, etc.) */
4508 @d protection_command 23 /* set protection flag (\&{outer}, \&{inner}) */
4509 @d show_command 24 /* diagnostic output (\&{show}, \&{showvariable}, etc.) */
4510 @d mode_command 25 /* set interaction level (\&{batchmode}, etc.) */
4511 @d random_seed 26 /* initialize random number generator (\&{randomseed}) */
4512 @d message_command 27 /* communicate to user (\&{message}, \&{errmessage}) */
4513 @d every_job_command 28 /* designate a starting token (\&{everyjob}) */
4514 @d delimiters 29 /* define a pair of delimiters (\&{delimiters}) */
4515 @d special_command 30 /* output special info (\&{special})
4516 or font map info (\&{fontmapfile}, \&{fontmapline}) */
4517 @d write_command 31 /* write text to a file (\&{write}) */
4518 @d type_name 32 /* declare a type (\&{numeric}, \&{pair}, etc. */
4519 @d max_statement_command type_name
4520 @d min_primary_command type_name
4521 @d left_delimiter 33 /* the left delimiter of a matching pair */
4522 @d begin_group 34 /* beginning of a group (\&{begingroup}) */
4523 @d nullary 35 /* an operator without arguments (e.g., \&{normaldeviate}) */
4524 @d unary 36 /* an operator with one argument (e.g., \&{sqrt}) */
4525 @d str_op 37 /* convert a suffix to a string (\&{str}) */
4526 @d cycle 38 /* close a cyclic path (\&{cycle}) */
4527 @d primary_binary 39 /* binary operation taking `\&{of}' (e.g., \&{point}) */
4528 @d capsule_token 40 /* a value that has been put into a token list */
4529 @d string_token 41 /* a string constant (e.g., |"hello"|) */
4530 @d internal_quantity 42 /* internal numeric parameter (e.g., \&{pausing}) */
4531 @d min_suffix_token internal_quantity
4532 @d tag_token 43 /* a symbolic token without a primitive meaning */
4533 @d numeric_token 44 /* a numeric constant (e.g., \.{3.14159}) */
4534 @d max_suffix_token numeric_token
4535 @d plus_or_minus 45 /* either `\.+' or `\.-' */
4536 @d max_primary_command plus_or_minus /* should also be |numeric_token+1| */
4537 @d min_tertiary_command plus_or_minus
4538 @d tertiary_secondary_macro 46 /* a macro defined by \&{secondarydef} */
4539 @d tertiary_binary 47 /* an operator at the tertiary level (e.g., `\.{++}') */
4540 @d max_tertiary_command tertiary_binary
4541 @d left_brace 48 /* the operator `\.{\char`\{}' */
4542 @d min_expression_command left_brace
4543 @d path_join 49 /* the operator `\.{..}' */
4544 @d ampersand 50 /* the operator `\.\&' */
4545 @d expression_tertiary_macro 51 /* a macro defined by \&{tertiarydef} */
4546 @d expression_binary 52 /* an operator at the expression level (e.g., `\.<') */
4547 @d equals 53 /* the operator `\.=' */
4548 @d max_expression_command equals
4549 @d and_command 54 /* the operator `\&{and}' */
4550 @d min_secondary_command and_command
4551 @d secondary_primary_macro 55 /* a macro defined by \&{primarydef} */
4552 @d slash 56 /* the operator `\./' */
4553 @d secondary_binary 57 /* an operator at the binary level (e.g., \&{shifted}) */
4554 @d max_secondary_command secondary_binary
4555 @d param_type 58 /* type of parameter (\&{primary}, \&{expr}, \&{suffix}, etc.) */
4556 @d controls 59 /* specify control points explicitly (\&{controls}) */
4557 @d tension 60 /* specify tension between knots (\&{tension}) */
4558 @d at_least 61 /* bounded tension value (\&{atleast}) */
4559 @d curl_command 62 /* specify curl at an end knot (\&{curl}) */
4560 @d macro_special 63 /* special macro operators (\&{quote}, \.{\#\AT!}, etc.) */
4561 @d right_delimiter 64 /* the right delimiter of a matching pair */
4562 @d left_bracket 65 /* the operator `\.[' */
4563 @d right_bracket 66 /* the operator `\.]' */
4564 @d right_brace 67 /* the operator `\.{\char`\}}' */
4565 @d with_option 68 /* option for filling (\&{withpen}, \&{withweight}, etc.) */
4567 /* variant of \&{addto} (\&{contour}, \&{doublepath}, \&{also}) */
4568 @d of_token 70 /* the operator `\&{of}' */
4569 @d to_token 71 /* the operator `\&{to}' */
4570 @d step_token 72 /* the operator `\&{step}' */
4571 @d until_token 73 /* the operator `\&{until}' */
4572 @d within_token 74 /* the operator `\&{within}' */
4573 @d lig_kern_token 75
4574 /* the operators `\&{kern}' and `\.{=:}' and `\.{=:\char'174}, etc. */
4575 @d assignment 76 /* the operator `\.{:=}' */
4576 @d skip_to 77 /* the operation `\&{skipto}' */
4577 @d bchar_label 78 /* the operator `\.{\char'174\char'174:}' */
4578 @d double_colon 79 /* the operator `\.{::}' */
4579 @d colon 80 /* the operator `\.:' */
4581 @d comma 81 /* the operator `\.,', must be |colon+1| */
4582 @d end_of_statement (mp->cur_cmd>comma)
4583 @d semicolon 82 /* the operator `\.;', must be |comma+1| */
4584 @d end_group 83 /* end a group (\&{endgroup}), must be |semicolon+1| */
4585 @d stop 84 /* end a job (\&{end}, \&{dump}), must be |end_group+1| */
4586 @d max_command_code stop
4587 @d outer_tag (max_command_code+1) /* protection code added to command code */
4590 typedef int command_code;
4592 @ Variables and capsules in \MP\ have a variety of ``types,''
4593 distinguished by the code numbers defined here. These numbers are also
4594 not completely arbitrary. Things that get expanded must have types
4595 |>mp_independent|; a type remaining after expansion is numeric if and only if
4596 its code number is at least |numeric_type|; objects containing numeric
4597 parts must have types between |transform_type| and |pair_type|;
4598 all other types must be smaller than |transform_type|; and among the types
4599 that are not unknown or vacuous, the smallest two must be |boolean_type|
4600 and |string_type| in that order.
4602 @d undefined 0 /* no type has been declared */
4603 @d unknown_tag 1 /* this constant is added to certain type codes below */
4604 @d unknown_types mp_unknown_boolean: case mp_unknown_string:
4605 case mp_unknown_pen: case mp_unknown_picture: case mp_unknown_path
4608 enum mp_variable_type {
4609 mp_vacuous=1, /* no expression was present */
4610 mp_boolean_type, /* \&{boolean} with a known value */
4612 mp_string_type, /* \&{string} with a known value */
4614 mp_pen_type, /* \&{pen} with a known value */
4616 mp_path_type, /* \&{path} with a known value */
4618 mp_picture_type, /* \&{picture} with a known value */
4620 mp_transform_type, /* \&{transform} variable or capsule */
4621 mp_color_type, /* \&{color} variable or capsule */
4622 mp_cmykcolor_type, /* \&{cmykcolor} variable or capsule */
4623 mp_pair_type, /* \&{pair} variable or capsule */
4624 mp_numeric_type, /* variable that has been declared \&{numeric} but not used */
4625 mp_known, /* \&{numeric} with a known value */
4626 mp_dependent, /* a linear combination with |fraction| coefficients */
4627 mp_proto_dependent, /* a linear combination with |scaled| coefficients */
4628 mp_independent, /* \&{numeric} with unknown value */
4629 mp_token_list, /* variable name or suffix argument or text argument */
4630 mp_structured, /* variable with subscripts and attributes */
4631 mp_unsuffixed_macro, /* variable defined with \&{vardef} but no \.{\AT!\#} */
4632 mp_suffixed_macro /* variable defined with \&{vardef} and \.{\AT!\#} */
4636 void mp_print_type (MP mp,small_number t) ;
4638 @ @<Basic printing procedures@>=
4639 void mp_print_type (MP mp,small_number t) {
4641 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
4642 case mp_boolean_type:mp_print(mp, "boolean"); break;
4643 case mp_unknown_boolean:mp_print(mp, "unknown boolean"); break;
4644 case mp_string_type:mp_print(mp, "string"); break;
4645 case mp_unknown_string:mp_print(mp, "unknown string"); break;
4646 case mp_pen_type:mp_print(mp, "pen"); break;
4647 case mp_unknown_pen:mp_print(mp, "unknown pen"); break;
4648 case mp_path_type:mp_print(mp, "path"); break;
4649 case mp_unknown_path:mp_print(mp, "unknown path"); break;
4650 case mp_picture_type:mp_print(mp, "picture"); break;
4651 case mp_unknown_picture:mp_print(mp, "unknown picture"); break;
4652 case mp_transform_type:mp_print(mp, "transform"); break;
4653 case mp_color_type:mp_print(mp, "color"); break;
4654 case mp_cmykcolor_type:mp_print(mp, "cmykcolor"); break;
4655 case mp_pair_type:mp_print(mp, "pair"); break;
4656 case mp_known:mp_print(mp, "known numeric"); break;
4657 case mp_dependent:mp_print(mp, "dependent"); break;
4658 case mp_proto_dependent:mp_print(mp, "proto-dependent"); break;
4659 case mp_numeric_type:mp_print(mp, "numeric"); break;
4660 case mp_independent:mp_print(mp, "independent"); break;
4661 case mp_token_list:mp_print(mp, "token list"); break;
4662 case mp_structured:mp_print(mp, "mp_structured"); break;
4663 case mp_unsuffixed_macro:mp_print(mp, "unsuffixed macro"); break;
4664 case mp_suffixed_macro:mp_print(mp, "suffixed macro"); break;
4665 default: mp_print(mp, "undefined"); break;
4669 @ Values inside \MP\ are stored in two-word nodes that have a |name_type|
4670 as well as a |type|. The possibilities for |name_type| are defined
4671 here; they will be explained in more detail later.
4675 mp_root=0, /* |name_type| at the top level of a variable */
4676 mp_saved_root, /* same, when the variable has been saved */
4677 mp_structured_root, /* |name_type| where a |mp_structured| branch occurs */
4678 mp_subscr, /* |name_type| in a subscript node */
4679 mp_attr, /* |name_type| in an attribute node */
4680 mp_x_part_sector, /* |name_type| in the \&{xpart} of a node */
4681 mp_y_part_sector, /* |name_type| in the \&{ypart} of a node */
4682 mp_xx_part_sector, /* |name_type| in the \&{xxpart} of a node */
4683 mp_xy_part_sector, /* |name_type| in the \&{xypart} of a node */
4684 mp_yx_part_sector, /* |name_type| in the \&{yxpart} of a node */
4685 mp_yy_part_sector, /* |name_type| in the \&{yypart} of a node */
4686 mp_red_part_sector, /* |name_type| in the \&{redpart} of a node */
4687 mp_green_part_sector, /* |name_type| in the \&{greenpart} of a node */
4688 mp_blue_part_sector, /* |name_type| in the \&{bluepart} of a node */
4689 mp_cyan_part_sector, /* |name_type| in the \&{redpart} of a node */
4690 mp_magenta_part_sector, /* |name_type| in the \&{greenpart} of a node */
4691 mp_yellow_part_sector, /* |name_type| in the \&{bluepart} of a node */
4692 mp_black_part_sector, /* |name_type| in the \&{greenpart} of a node */
4693 mp_grey_part_sector, /* |name_type| in the \&{bluepart} of a node */
4694 mp_capsule, /* |name_type| in stashed-away subexpressions */
4695 mp_token /* |name_type| in a numeric token or string token */
4698 @ Primitive operations that produce values have a secondary identification
4699 code in addition to their command code; it's something like genera and species.
4700 For example, `\.*' has the command code |primary_binary|, and its
4701 secondary identification is |times|. The secondary codes start at 30 so that
4702 they don't overlap with the type codes; some type codes (e.g., |mp_string_type|)
4703 are used as operators as well as type identifications. The relative values
4704 are not critical, except for |true_code..false_code|, |or_op..and_op|,
4705 and |filled_op..bounded_op|. The restrictions are that
4706 |and_op-false_code=or_op-true_code|, that the ordering of
4707 |x_part...blue_part| must match that of |x_part_sector..mp_blue_part_sector|,
4708 and the ordering of |filled_op..bounded_op| must match that of the code
4709 values they test for.
4711 @d true_code 30 /* operation code for \.{true} */
4712 @d false_code 31 /* operation code for \.{false} */
4713 @d null_picture_code 32 /* operation code for \.{nullpicture} */
4714 @d null_pen_code 33 /* operation code for \.{nullpen} */
4715 @d job_name_op 34 /* operation code for \.{jobname} */
4716 @d read_string_op 35 /* operation code for \.{readstring} */
4717 @d pen_circle 36 /* operation code for \.{pencircle} */
4718 @d normal_deviate 37 /* operation code for \.{normaldeviate} */
4719 @d read_from_op 38 /* operation code for \.{readfrom} */
4720 @d close_from_op 39 /* operation code for \.{closefrom} */
4721 @d odd_op 40 /* operation code for \.{odd} */
4722 @d known_op 41 /* operation code for \.{known} */
4723 @d unknown_op 42 /* operation code for \.{unknown} */
4724 @d not_op 43 /* operation code for \.{not} */
4725 @d decimal 44 /* operation code for \.{decimal} */
4726 @d reverse 45 /* operation code for \.{reverse} */
4727 @d make_path_op 46 /* operation code for \.{makepath} */
4728 @d make_pen_op 47 /* operation code for \.{makepen} */
4729 @d oct_op 48 /* operation code for \.{oct} */
4730 @d hex_op 49 /* operation code for \.{hex} */
4731 @d ASCII_op 50 /* operation code for \.{ASCII} */
4732 @d char_op 51 /* operation code for \.{char} */
4733 @d length_op 52 /* operation code for \.{length} */
4734 @d turning_op 53 /* operation code for \.{turningnumber} */
4735 @d color_model_part 54 /* operation code for \.{colormodel} */
4736 @d x_part 55 /* operation code for \.{xpart} */
4737 @d y_part 56 /* operation code for \.{ypart} */
4738 @d xx_part 57 /* operation code for \.{xxpart} */
4739 @d xy_part 58 /* operation code for \.{xypart} */
4740 @d yx_part 59 /* operation code for \.{yxpart} */
4741 @d yy_part 60 /* operation code for \.{yypart} */
4742 @d red_part 61 /* operation code for \.{redpart} */
4743 @d green_part 62 /* operation code for \.{greenpart} */
4744 @d blue_part 63 /* operation code for \.{bluepart} */
4745 @d cyan_part 64 /* operation code for \.{cyanpart} */
4746 @d magenta_part 65 /* operation code for \.{magentapart} */
4747 @d yellow_part 66 /* operation code for \.{yellowpart} */
4748 @d black_part 67 /* operation code for \.{blackpart} */
4749 @d grey_part 68 /* operation code for \.{greypart} */
4750 @d font_part 69 /* operation code for \.{fontpart} */
4751 @d text_part 70 /* operation code for \.{textpart} */
4752 @d path_part 71 /* operation code for \.{pathpart} */
4753 @d pen_part 72 /* operation code for \.{penpart} */
4754 @d dash_part 73 /* operation code for \.{dashpart} */
4755 @d sqrt_op 74 /* operation code for \.{sqrt} */
4756 @d m_exp_op 75 /* operation code for \.{mexp} */
4757 @d m_log_op 76 /* operation code for \.{mlog} */
4758 @d sin_d_op 77 /* operation code for \.{sind} */
4759 @d cos_d_op 78 /* operation code for \.{cosd} */
4760 @d floor_op 79 /* operation code for \.{floor} */
4761 @d uniform_deviate 80 /* operation code for \.{uniformdeviate} */
4762 @d char_exists_op 81 /* operation code for \.{charexists} */
4763 @d font_size 82 /* operation code for \.{fontsize} */
4764 @d ll_corner_op 83 /* operation code for \.{llcorner} */
4765 @d lr_corner_op 84 /* operation code for \.{lrcorner} */
4766 @d ul_corner_op 85 /* operation code for \.{ulcorner} */
4767 @d ur_corner_op 86 /* operation code for \.{urcorner} */
4768 @d arc_length 87 /* operation code for \.{arclength} */
4769 @d angle_op 88 /* operation code for \.{angle} */
4770 @d cycle_op 89 /* operation code for \.{cycle} */
4771 @d filled_op 90 /* operation code for \.{filled} */
4772 @d stroked_op 91 /* operation code for \.{stroked} */
4773 @d textual_op 92 /* operation code for \.{textual} */
4774 @d clipped_op 93 /* operation code for \.{clipped} */
4775 @d bounded_op 94 /* operation code for \.{bounded} */
4776 @d plus 95 /* operation code for \.+ */
4777 @d minus 96 /* operation code for \.- */
4778 @d times 97 /* operation code for \.* */
4779 @d over 98 /* operation code for \./ */
4780 @d pythag_add 99 /* operation code for \.{++} */
4781 @d pythag_sub 100 /* operation code for \.{+-+} */
4782 @d or_op 101 /* operation code for \.{or} */
4783 @d and_op 102 /* operation code for \.{and} */
4784 @d less_than 103 /* operation code for \.< */
4785 @d less_or_equal 104 /* operation code for \.{<=} */
4786 @d greater_than 105 /* operation code for \.> */
4787 @d greater_or_equal 106 /* operation code for \.{>=} */
4788 @d equal_to 107 /* operation code for \.= */
4789 @d unequal_to 108 /* operation code for \.{<>} */
4790 @d concatenate 109 /* operation code for \.\& */
4791 @d rotated_by 110 /* operation code for \.{rotated} */
4792 @d slanted_by 111 /* operation code for \.{slanted} */
4793 @d scaled_by 112 /* operation code for \.{scaled} */
4794 @d shifted_by 113 /* operation code for \.{shifted} */
4795 @d transformed_by 114 /* operation code for \.{transformed} */
4796 @d x_scaled 115 /* operation code for \.{xscaled} */
4797 @d y_scaled 116 /* operation code for \.{yscaled} */
4798 @d z_scaled 117 /* operation code for \.{zscaled} */
4799 @d in_font 118 /* operation code for \.{infont} */
4800 @d intersect 119 /* operation code for \.{intersectiontimes} */
4801 @d double_dot 120 /* operation code for improper \.{..} */
4802 @d substring_of 121 /* operation code for \.{substring} */
4803 @d min_of substring_of
4804 @d subpath_of 122 /* operation code for \.{subpath} */
4805 @d direction_time_of 123 /* operation code for \.{directiontime} */
4806 @d point_of 124 /* operation code for \.{point} */
4807 @d precontrol_of 125 /* operation code for \.{precontrol} */
4808 @d postcontrol_of 126 /* operation code for \.{postcontrol} */
4809 @d pen_offset_of 127 /* operation code for \.{penoffset} */
4810 @d arc_time_of 128 /* operation code for \.{arctime} */
4811 @d mp_version 129 /* operation code for \.{mpversion} */
4813 @c void mp_print_op (MP mp,quarterword c) {
4814 if (c<=mp_numeric_type ) {
4815 mp_print_type(mp, c);
4818 case true_code:mp_print(mp, "true"); break;
4819 case false_code:mp_print(mp, "false"); break;
4820 case null_picture_code:mp_print(mp, "nullpicture"); break;
4821 case null_pen_code:mp_print(mp, "nullpen"); break;
4822 case job_name_op:mp_print(mp, "jobname"); break;
4823 case read_string_op:mp_print(mp, "readstring"); break;
4824 case pen_circle:mp_print(mp, "pencircle"); break;
4825 case normal_deviate:mp_print(mp, "normaldeviate"); break;
4826 case read_from_op:mp_print(mp, "readfrom"); break;
4827 case close_from_op:mp_print(mp, "closefrom"); break;
4828 case odd_op:mp_print(mp, "odd"); break;
4829 case known_op:mp_print(mp, "known"); break;
4830 case unknown_op:mp_print(mp, "unknown"); break;
4831 case not_op:mp_print(mp, "not"); break;
4832 case decimal:mp_print(mp, "decimal"); break;
4833 case reverse:mp_print(mp, "reverse"); break;
4834 case make_path_op:mp_print(mp, "makepath"); break;
4835 case make_pen_op:mp_print(mp, "makepen"); break;
4836 case oct_op:mp_print(mp, "oct"); break;
4837 case hex_op:mp_print(mp, "hex"); break;
4838 case ASCII_op:mp_print(mp, "ASCII"); break;
4839 case char_op:mp_print(mp, "char"); break;
4840 case length_op:mp_print(mp, "length"); break;
4841 case turning_op:mp_print(mp, "turningnumber"); break;
4842 case x_part:mp_print(mp, "xpart"); break;
4843 case y_part:mp_print(mp, "ypart"); break;
4844 case xx_part:mp_print(mp, "xxpart"); break;
4845 case xy_part:mp_print(mp, "xypart"); break;
4846 case yx_part:mp_print(mp, "yxpart"); break;
4847 case yy_part:mp_print(mp, "yypart"); break;
4848 case red_part:mp_print(mp, "redpart"); break;
4849 case green_part:mp_print(mp, "greenpart"); break;
4850 case blue_part:mp_print(mp, "bluepart"); break;
4851 case cyan_part:mp_print(mp, "cyanpart"); break;
4852 case magenta_part:mp_print(mp, "magentapart"); break;
4853 case yellow_part:mp_print(mp, "yellowpart"); break;
4854 case black_part:mp_print(mp, "blackpart"); break;
4855 case grey_part:mp_print(mp, "greypart"); break;
4856 case color_model_part:mp_print(mp, "colormodel"); break;
4857 case font_part:mp_print(mp, "fontpart"); break;
4858 case text_part:mp_print(mp, "textpart"); break;
4859 case path_part:mp_print(mp, "pathpart"); break;
4860 case pen_part:mp_print(mp, "penpart"); break;
4861 case dash_part:mp_print(mp, "dashpart"); break;
4862 case sqrt_op:mp_print(mp, "sqrt"); break;
4863 case m_exp_op:mp_print(mp, "mexp"); break;
4864 case m_log_op:mp_print(mp, "mlog"); break;
4865 case sin_d_op:mp_print(mp, "sind"); break;
4866 case cos_d_op:mp_print(mp, "cosd"); break;
4867 case floor_op:mp_print(mp, "floor"); break;
4868 case uniform_deviate:mp_print(mp, "uniformdeviate"); break;
4869 case char_exists_op:mp_print(mp, "charexists"); break;
4870 case font_size:mp_print(mp, "fontsize"); break;
4871 case ll_corner_op:mp_print(mp, "llcorner"); break;
4872 case lr_corner_op:mp_print(mp, "lrcorner"); break;
4873 case ul_corner_op:mp_print(mp, "ulcorner"); break;
4874 case ur_corner_op:mp_print(mp, "urcorner"); break;
4875 case arc_length:mp_print(mp, "arclength"); break;
4876 case angle_op:mp_print(mp, "angle"); break;
4877 case cycle_op:mp_print(mp, "cycle"); break;
4878 case filled_op:mp_print(mp, "filled"); break;
4879 case stroked_op:mp_print(mp, "stroked"); break;
4880 case textual_op:mp_print(mp, "textual"); break;
4881 case clipped_op:mp_print(mp, "clipped"); break;
4882 case bounded_op:mp_print(mp, "bounded"); break;
4883 case plus:mp_print_char(mp, '+'); break;
4884 case minus:mp_print_char(mp, '-'); break;
4885 case times:mp_print_char(mp, '*'); break;
4886 case over:mp_print_char(mp, '/'); break;
4887 case pythag_add:mp_print(mp, "++"); break;
4888 case pythag_sub:mp_print(mp, "+-+"); break;
4889 case or_op:mp_print(mp, "or"); break;
4890 case and_op:mp_print(mp, "and"); break;
4891 case less_than:mp_print_char(mp, '<'); break;
4892 case less_or_equal:mp_print(mp, "<="); break;
4893 case greater_than:mp_print_char(mp, '>'); break;
4894 case greater_or_equal:mp_print(mp, ">="); break;
4895 case equal_to:mp_print_char(mp, '='); break;
4896 case unequal_to:mp_print(mp, "<>"); break;
4897 case concatenate:mp_print(mp, "&"); break;
4898 case rotated_by:mp_print(mp, "rotated"); break;
4899 case slanted_by:mp_print(mp, "slanted"); break;
4900 case scaled_by:mp_print(mp, "scaled"); break;
4901 case shifted_by:mp_print(mp, "shifted"); break;
4902 case transformed_by:mp_print(mp, "transformed"); break;
4903 case x_scaled:mp_print(mp, "xscaled"); break;
4904 case y_scaled:mp_print(mp, "yscaled"); break;
4905 case z_scaled:mp_print(mp, "zscaled"); break;
4906 case in_font:mp_print(mp, "infont"); break;
4907 case intersect:mp_print(mp, "intersectiontimes"); break;
4908 case substring_of:mp_print(mp, "substring"); break;
4909 case subpath_of:mp_print(mp, "subpath"); break;
4910 case direction_time_of:mp_print(mp, "directiontime"); break;
4911 case point_of:mp_print(mp, "point"); break;
4912 case precontrol_of:mp_print(mp, "precontrol"); break;
4913 case postcontrol_of:mp_print(mp, "postcontrol"); break;
4914 case pen_offset_of:mp_print(mp, "penoffset"); break;
4915 case arc_time_of:mp_print(mp, "arctime"); break;
4916 case mp_version:mp_print(mp, "mpversion"); break;
4917 default: mp_print(mp, ".."); break;
4922 @ \MP\ also has a bunch of internal parameters that a user might want to
4923 fuss with. Every such parameter has an identifying code number, defined here.
4926 enum mp_given_internal {
4927 mp_tracing_titles=1, /* show titles online when they appear */
4928 mp_tracing_equations, /* show each variable when it becomes known */
4929 mp_tracing_capsules, /* show capsules too */
4930 mp_tracing_choices, /* show the control points chosen for paths */
4931 mp_tracing_specs, /* show path subdivision prior to filling with polygonal a pen */
4932 mp_tracing_commands, /* show commands and operations before they are performed */
4933 mp_tracing_restores, /* show when a variable or internal is restored */
4934 mp_tracing_macros, /* show macros before they are expanded */
4935 mp_tracing_output, /* show digitized edges as they are output */
4936 mp_tracing_stats, /* show memory usage at end of job */
4937 mp_tracing_lost_chars, /* show characters that aren't \&{infont} */
4938 mp_tracing_online, /* show long diagnostics on terminal and in the log file */
4939 mp_year, /* the current year (e.g., 1984) */
4940 mp_month, /* the current month (e.g, 3 $\equiv$ March) */
4941 mp_day, /* the current day of the month */
4942 mp_time, /* the number of minutes past midnight when this job started */
4943 mp_char_code, /* the number of the next character to be output */
4944 mp_char_ext, /* the extension code of the next character to be output */
4945 mp_char_wd, /* the width of the next character to be output */
4946 mp_char_ht, /* the height of the next character to be output */
4947 mp_char_dp, /* the depth of the next character to be output */
4948 mp_char_ic, /* the italic correction of the next character to be output */
4949 mp_design_size, /* the unit of measure used for |mp_char_wd..mp_char_ic|, in points */
4950 mp_pausing, /* positive to display lines on the terminal before they are read */
4951 mp_showstopping, /* positive to stop after each \&{show} command */
4952 mp_fontmaking, /* positive if font metric output is to be produced */
4953 mp_linejoin, /* as in \ps: 0 for mitered, 1 for round, 2 for beveled */
4954 mp_linecap, /* as in \ps: 0 for butt, 1 for round, 2 for square */
4955 mp_miterlimit, /* controls miter length as in \ps */
4956 mp_warning_check, /* controls error message when variable value is large */
4957 mp_boundary_char, /* the right boundary character for ligatures */
4958 mp_prologues, /* positive to output conforming PostScript using built-in fonts */
4959 mp_true_corners, /* positive to make \&{llcorner} etc. ignore \&{setbounds} */
4960 mp_default_color_model, /* the default color model for unspecified items */
4961 mp_restore_clip_color,
4962 mp_procset, /* wether or not create PostScript command shortcuts */
4963 mp_gtroffmode, /* whether the user specified |-troff| on the command line */
4968 @d max_given_internal mp_gtroffmode
4971 scaled *internal; /* the values of internal quantities */
4972 char **int_name; /* their names */
4973 int int_ptr; /* the maximum internal quantity defined so far */
4974 int max_internal; /* current maximum number of internal quantities */
4977 @ @<Option variables@>=
4980 @ @<Allocate or initialize ...@>=
4981 mp->max_internal=2*max_given_internal;
4982 mp->internal = xmalloc ((mp->max_internal+1), sizeof(scaled));
4983 mp->int_name = xmalloc ((mp->max_internal+1), sizeof(char *));
4984 mp->troff_mode=(opt->troff_mode>0 ? true : false);
4986 @ @<Exported function ...@>=
4987 int mp_troff_mode(MP mp);
4990 int mp_troff_mode(MP mp) { return mp->troff_mode; }
4992 @ @<Set initial ...@>=
4993 for (k=0;k<= mp->max_internal; k++ ) {
4995 mp->int_name[k]=NULL;
4997 mp->int_ptr=max_given_internal;
4999 @ The symbolic names for internal quantities are put into \MP's hash table
5000 by using a routine called |primitive|, which will be defined later. Let us
5001 enter them now, so that we don't have to list all those names again
5004 @<Put each of \MP's primitives into the hash table@>=
5005 mp_primitive(mp, "tracingtitles",internal_quantity,mp_tracing_titles);
5006 @:tracingtitles_}{\&{tracingtitles} primitive@>
5007 mp_primitive(mp, "tracingequations",internal_quantity,mp_tracing_equations);
5008 @:mp_tracing_equations_}{\&{tracingequations} primitive@>
5009 mp_primitive(mp, "tracingcapsules",internal_quantity,mp_tracing_capsules);
5010 @:mp_tracing_capsules_}{\&{tracingcapsules} primitive@>
5011 mp_primitive(mp, "tracingchoices",internal_quantity,mp_tracing_choices);
5012 @:mp_tracing_choices_}{\&{tracingchoices} primitive@>
5013 mp_primitive(mp, "tracingspecs",internal_quantity,mp_tracing_specs);
5014 @:mp_tracing_specs_}{\&{tracingspecs} primitive@>
5015 mp_primitive(mp, "tracingcommands",internal_quantity,mp_tracing_commands);
5016 @:mp_tracing_commands_}{\&{tracingcommands} primitive@>
5017 mp_primitive(mp, "tracingrestores",internal_quantity,mp_tracing_restores);
5018 @:mp_tracing_restores_}{\&{tracingrestores} primitive@>
5019 mp_primitive(mp, "tracingmacros",internal_quantity,mp_tracing_macros);
5020 @:mp_tracing_macros_}{\&{tracingmacros} primitive@>
5021 mp_primitive(mp, "tracingoutput",internal_quantity,mp_tracing_output);
5022 @:mp_tracing_output_}{\&{tracingoutput} primitive@>
5023 mp_primitive(mp, "tracingstats",internal_quantity,mp_tracing_stats);
5024 @:mp_tracing_stats_}{\&{tracingstats} primitive@>
5025 mp_primitive(mp, "tracinglostchars",internal_quantity,mp_tracing_lost_chars);
5026 @:mp_tracing_lost_chars_}{\&{tracinglostchars} primitive@>
5027 mp_primitive(mp, "tracingonline",internal_quantity,mp_tracing_online);
5028 @:mp_tracing_online_}{\&{tracingonline} primitive@>
5029 mp_primitive(mp, "year",internal_quantity,mp_year);
5030 @:mp_year_}{\&{year} primitive@>
5031 mp_primitive(mp, "month",internal_quantity,mp_month);
5032 @:mp_month_}{\&{month} primitive@>
5033 mp_primitive(mp, "day",internal_quantity,mp_day);
5034 @:mp_day_}{\&{day} primitive@>
5035 mp_primitive(mp, "time",internal_quantity,mp_time);
5036 @:time_}{\&{time} primitive@>
5037 mp_primitive(mp, "charcode",internal_quantity,mp_char_code);
5038 @:mp_char_code_}{\&{charcode} primitive@>
5039 mp_primitive(mp, "charext",internal_quantity,mp_char_ext);
5040 @:mp_char_ext_}{\&{charext} primitive@>
5041 mp_primitive(mp, "charwd",internal_quantity,mp_char_wd);
5042 @:mp_char_wd_}{\&{charwd} primitive@>
5043 mp_primitive(mp, "charht",internal_quantity,mp_char_ht);
5044 @:mp_char_ht_}{\&{charht} primitive@>
5045 mp_primitive(mp, "chardp",internal_quantity,mp_char_dp);
5046 @:mp_char_dp_}{\&{chardp} primitive@>
5047 mp_primitive(mp, "charic",internal_quantity,mp_char_ic);
5048 @:mp_char_ic_}{\&{charic} primitive@>
5049 mp_primitive(mp, "designsize",internal_quantity,mp_design_size);
5050 @:mp_design_size_}{\&{designsize} primitive@>
5051 mp_primitive(mp, "pausing",internal_quantity,mp_pausing);
5052 @:mp_pausing_}{\&{pausing} primitive@>
5053 mp_primitive(mp, "showstopping",internal_quantity,mp_showstopping);
5054 @:mp_showstopping_}{\&{showstopping} primitive@>
5055 mp_primitive(mp, "fontmaking",internal_quantity,mp_fontmaking);
5056 @:mp_fontmaking_}{\&{fontmaking} primitive@>
5057 mp_primitive(mp, "linejoin",internal_quantity,mp_linejoin);
5058 @:mp_linejoin_}{\&{linejoin} primitive@>
5059 mp_primitive(mp, "linecap",internal_quantity,mp_linecap);
5060 @:mp_linecap_}{\&{linecap} primitive@>
5061 mp_primitive(mp, "miterlimit",internal_quantity,mp_miterlimit);
5062 @:mp_miterlimit_}{\&{miterlimit} primitive@>
5063 mp_primitive(mp, "warningcheck",internal_quantity,mp_warning_check);
5064 @:mp_warning_check_}{\&{warningcheck} primitive@>
5065 mp_primitive(mp, "boundarychar",internal_quantity,mp_boundary_char);
5066 @:mp_boundary_char_}{\&{boundarychar} primitive@>
5067 mp_primitive(mp, "prologues",internal_quantity,mp_prologues);
5068 @:mp_prologues_}{\&{prologues} primitive@>
5069 mp_primitive(mp, "truecorners",internal_quantity,mp_true_corners);
5070 @:mp_true_corners_}{\&{truecorners} primitive@>
5071 mp_primitive(mp, "mpprocset",internal_quantity,mp_procset);
5072 @:mp_procset_}{\&{mpprocset} primitive@>
5073 mp_primitive(mp, "troffmode",internal_quantity,mp_gtroffmode);
5074 @:troffmode_}{\&{troffmode} primitive@>
5075 mp_primitive(mp, "defaultcolormodel",internal_quantity,mp_default_color_model);
5076 @:mp_default_color_model_}{\&{defaultcolormodel} primitive@>
5077 mp_primitive(mp, "restoreclipcolor",internal_quantity,mp_restore_clip_color);
5078 @:mp_restore_clip_color_}{\&{restoreclipcolor} primitive@>
5080 @ Colors can be specified in four color models. In the special
5081 case of |no_model|, MetaPost does not output any color operator to
5082 the postscript output.
5084 Note: these values are passed directly on to |with_option|. This only
5085 works because the other possible values passed to |with_option| are
5086 8 and 10 respectively (from |with_pen| and |with_picture|).
5088 There is a first state, that is only used for |gs_colormodel|. It flags
5089 the fact that there has not been any kind of color specification by
5090 the user so far in the game.
5096 @d uninitialized_model 9
5098 @<Initialize table entries (done by \.{INIMP} only)@>=
5099 mp->internal[mp_default_color_model]=(rgb_model*unity);
5100 mp->internal[mp_restore_clip_color]=unity;
5102 @ Well, we do have to list the names one more time, for use in symbolic
5105 @<Initialize table...@>=
5106 mp->int_name[mp_tracing_titles]=xstrdup("tracingtitles");
5107 mp->int_name[mp_tracing_equations]=xstrdup("tracingequations");
5108 mp->int_name[mp_tracing_capsules]=xstrdup("tracingcapsules");
5109 mp->int_name[mp_tracing_choices]=xstrdup("tracingchoices");
5110 mp->int_name[mp_tracing_specs]=xstrdup("tracingspecs");
5111 mp->int_name[mp_tracing_commands]=xstrdup("tracingcommands");
5112 mp->int_name[mp_tracing_restores]=xstrdup("tracingrestores");
5113 mp->int_name[mp_tracing_macros]=xstrdup("tracingmacros");
5114 mp->int_name[mp_tracing_output]=xstrdup("tracingoutput");
5115 mp->int_name[mp_tracing_stats]=xstrdup("tracingstats");
5116 mp->int_name[mp_tracing_lost_chars]=xstrdup("tracinglostchars");
5117 mp->int_name[mp_tracing_online]=xstrdup("tracingonline");
5118 mp->int_name[mp_year]=xstrdup("year");
5119 mp->int_name[mp_month]=xstrdup("month");
5120 mp->int_name[mp_day]=xstrdup("day");
5121 mp->int_name[mp_time]=xstrdup("time");
5122 mp->int_name[mp_char_code]=xstrdup("charcode");
5123 mp->int_name[mp_char_ext]=xstrdup("charext");
5124 mp->int_name[mp_char_wd]=xstrdup("charwd");
5125 mp->int_name[mp_char_ht]=xstrdup("charht");
5126 mp->int_name[mp_char_dp]=xstrdup("chardp");
5127 mp->int_name[mp_char_ic]=xstrdup("charic");
5128 mp->int_name[mp_design_size]=xstrdup("designsize");
5129 mp->int_name[mp_pausing]=xstrdup("pausing");
5130 mp->int_name[mp_showstopping]=xstrdup("showstopping");
5131 mp->int_name[mp_fontmaking]=xstrdup("fontmaking");
5132 mp->int_name[mp_linejoin]=xstrdup("linejoin");
5133 mp->int_name[mp_linecap]=xstrdup("linecap");
5134 mp->int_name[mp_miterlimit]=xstrdup("miterlimit");
5135 mp->int_name[mp_warning_check]=xstrdup("warningcheck");
5136 mp->int_name[mp_boundary_char]=xstrdup("boundarychar");
5137 mp->int_name[mp_prologues]=xstrdup("prologues");
5138 mp->int_name[mp_true_corners]=xstrdup("truecorners");
5139 mp->int_name[mp_default_color_model]=xstrdup("defaultcolormodel");
5140 mp->int_name[mp_procset]=xstrdup("mpprocset");
5141 mp->int_name[mp_gtroffmode]=xstrdup("troffmode");
5142 mp->int_name[mp_restore_clip_color]=xstrdup("restoreclipcolor");
5144 @ The following procedure, which is called just before \MP\ initializes its
5145 input and output, establishes the initial values of the date and time.
5146 @^system dependencies@>
5148 Note that the values are |scaled| integers. Hence \MP\ can no longer
5149 be used after the year 32767.
5152 void mp_fix_date_and_time (MP mp) {
5153 time_t clock = time ((time_t *) 0);
5154 struct tm *tmptr = localtime (&clock);
5155 mp->internal[mp_time]=
5156 (tmptr->tm_hour*60+tmptr->tm_min)*unity; /* minutes since midnight */
5157 mp->internal[mp_day]=(tmptr->tm_mday)*unity; /* fourth day of the month */
5158 mp->internal[mp_month]=(tmptr->tm_mon+1)*unity; /* seventh month of the year */
5159 mp->internal[mp_year]=(tmptr->tm_year+1900)*unity; /* Anno Domini */
5163 void mp_fix_date_and_time (MP mp) ;
5165 @ \MP\ is occasionally supposed to print diagnostic information that
5166 goes only into the transcript file, unless |mp_tracing_online| is positive.
5167 Now that we have defined |mp_tracing_online| we can define
5168 two routines that adjust the destination of print commands:
5171 void mp_begin_diagnostic (MP mp) ;
5172 void mp_end_diagnostic (MP mp,boolean blank_line);
5173 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) ;
5175 @ @<Basic printing...@>=
5176 @<Declare a function called |true_line|@>;
5177 void mp_begin_diagnostic (MP mp) { /* prepare to do some tracing */
5178 mp->old_setting=mp->selector;
5179 if ( mp->selector==ps_file_only ) mp->selector=mp->non_ps_setting;
5180 if ((mp->internal[mp_tracing_online]<=0)&&(mp->selector==term_and_log)){
5182 if ( mp->history==mp_spotless ) mp->history=mp_warning_issued;
5186 void mp_end_diagnostic (MP mp,boolean blank_line) {
5187 /* restore proper conditions after tracing */
5188 mp_print_nl(mp, "");
5189 if ( blank_line ) mp_print_ln(mp);
5190 mp->selector=mp->old_setting;
5193 @ The global variable |non_ps_setting| is initialized when it is time to print
5197 unsigned int old_setting;
5198 unsigned int non_ps_setting;
5200 @ We will occasionally use |begin_diagnostic| in connection with line-number
5201 printing, as follows. (The parameter |s| is typically |"Path"| or
5202 |"Cycle spec"|, etc.)
5204 @<Basic printing...@>=
5205 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) {
5206 mp_begin_diagnostic(mp);
5207 if ( nuline ) mp_print_nl(mp, s); else mp_print(mp, s);
5208 mp_print(mp, " at line ");
5209 mp_print_int(mp, mp_true_line(mp));
5210 mp_print(mp, t); mp_print_char(mp, ':');
5213 @ The 256 |ASCII_code| characters are grouped into classes by means of
5214 the |char_class| table. Individual class numbers have no semantic
5215 or syntactic significance, except in a few instances defined here.
5216 There's also |max_class|, which can be used as a basis for additional
5217 class numbers in nonstandard extensions of \MP.
5219 @d digit_class 0 /* the class number of \.{0123456789} */
5220 @d period_class 1 /* the class number of `\..' */
5221 @d space_class 2 /* the class number of spaces and nonstandard characters */
5222 @d percent_class 3 /* the class number of `\.\%' */
5223 @d string_class 4 /* the class number of `\."' */
5224 @d right_paren_class 8 /* the class number of `\.)' */
5225 @d isolated_classes 5: case 6: case 7: case 8 /* characters that make length-one tokens only */
5226 @d letter_class 9 /* letters and the underline character */
5227 @d left_bracket_class 17 /* `\.[' */
5228 @d right_bracket_class 18 /* `\.]' */
5229 @d invalid_class 20 /* bad character in the input */
5230 @d max_class 20 /* the largest class number */
5233 int char_class[256]; /* the class numbers */
5235 @ If changes are made to accommodate non-ASCII character sets, they should
5236 follow the guidelines in Appendix~C of {\sl The {\logos METAFONT\/}book}.
5237 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
5238 @^system dependencies@>
5240 @<Set initial ...@>=
5241 for (k='0';k<='9';k++)
5242 mp->char_class[k]=digit_class;
5243 mp->char_class['.']=period_class;
5244 mp->char_class[' ']=space_class;
5245 mp->char_class['%']=percent_class;
5246 mp->char_class['"']=string_class;
5247 mp->char_class[',']=5;
5248 mp->char_class[';']=6;
5249 mp->char_class['(']=7;
5250 mp->char_class[')']=right_paren_class;
5251 for (k='A';k<= 'Z';k++ )
5252 mp->char_class[k]=letter_class;
5253 for (k='a';k<='z';k++)
5254 mp->char_class[k]=letter_class;
5255 mp->char_class['_']=letter_class;
5256 mp->char_class['<']=10;
5257 mp->char_class['=']=10;
5258 mp->char_class['>']=10;
5259 mp->char_class[':']=10;
5260 mp->char_class['|']=10;
5261 mp->char_class['`']=11;
5262 mp->char_class['\'']=11;
5263 mp->char_class['+']=12;
5264 mp->char_class['-']=12;
5265 mp->char_class['/']=13;
5266 mp->char_class['*']=13;
5267 mp->char_class['\\']=13;
5268 mp->char_class['!']=14;
5269 mp->char_class['?']=14;
5270 mp->char_class['#']=15;
5271 mp->char_class['&']=15;
5272 mp->char_class['@@']=15;
5273 mp->char_class['$']=15;
5274 mp->char_class['^']=16;
5275 mp->char_class['~']=16;
5276 mp->char_class['[']=left_bracket_class;
5277 mp->char_class[']']=right_bracket_class;
5278 mp->char_class['{']=19;
5279 mp->char_class['}']=19;
5281 mp->char_class[k]=invalid_class;
5282 mp->char_class['\t']=space_class;
5283 mp->char_class['\f']=space_class;
5284 for (k=127;k<=255;k++)
5285 mp->char_class[k]=invalid_class;
5287 @* \[13] The hash table.
5288 Symbolic tokens are stored and retrieved by means of a fairly standard hash
5289 table algorithm called the method of ``coalescing lists'' (cf.\ Algorithm 6.4C
5290 in {\sl The Art of Computer Programming\/}). Once a symbolic token enters the
5291 table, it is never removed.
5293 The actual sequence of characters forming a symbolic token is
5294 stored in the |str_pool| array together with all the other strings. An
5295 auxiliary array |hash| consists of items with two halfword fields per
5296 word. The first of these, called |next(p)|, points to the next identifier
5297 belonging to the same coalesced list as the identifier corresponding to~|p|;
5298 and the other, called |text(p)|, points to the |str_start| entry for
5299 |p|'s identifier. If position~|p| of the hash table is empty, we have
5300 |text(p)=0|; if position |p| is either empty or the end of a coalesced
5301 hash list, we have |next(p)=0|.
5303 An auxiliary pointer variable called |hash_used| is maintained in such a
5304 way that all locations |p>=hash_used| are nonempty. The global variable
5305 |st_count| tells how many symbolic tokens have been defined, if statistics
5308 The first 256 locations of |hash| are reserved for symbols of length one.
5310 There's a parallel array called |eqtb| that contains the current equivalent
5311 values of each symbolic token. The entries of this array consist of
5312 two halfwords called |eq_type| (a command code) and |equiv| (a secondary
5313 piece of information that qualifies the |eq_type|).
5315 @d next(A) mp->hash[(A)].lh /* link for coalesced lists */
5316 @d text(A) mp->hash[(A)].rh /* string number for symbolic token name */
5317 @d eq_type(A) mp->eqtb[(A)].lh /* the current ``meaning'' of a symbolic token */
5318 @d equiv(A) mp->eqtb[(A)].rh /* parametric part of a token's meaning */
5319 @d hash_base 257 /* hashing actually starts here */
5320 @d hash_is_full (mp->hash_used==hash_base) /* are all positions occupied? */
5323 pointer hash_used; /* allocation pointer for |hash| */
5324 integer st_count; /* total number of known identifiers */
5326 @ Certain entries in the hash table are ``frozen'' and not redefinable,
5327 since they are used in error recovery.
5329 @d hash_top (hash_base+mp->hash_size) /* the first location of the frozen area */
5330 @d frozen_inaccessible hash_top /* |hash| location to protect the frozen area */
5331 @d frozen_repeat_loop (hash_top+1) /* |hash| location of a loop-repeat token */
5332 @d frozen_right_delimiter (hash_top+2) /* |hash| location of a permanent `\.)' */
5333 @d frozen_left_bracket (hash_top+3) /* |hash| location of a permanent `\.[' */
5334 @d frozen_slash (hash_top+4) /* |hash| location of a permanent `\./' */
5335 @d frozen_colon (hash_top+5) /* |hash| location of a permanent `\.:' */
5336 @d frozen_semicolon (hash_top+6) /* |hash| location of a permanent `\.;' */
5337 @d frozen_end_for (hash_top+7) /* |hash| location of a permanent \&{endfor} */
5338 @d frozen_end_def (hash_top+8) /* |hash| location of a permanent \&{enddef} */
5339 @d frozen_fi (hash_top+9) /* |hash| location of a permanent \&{fi} */
5340 @d frozen_end_group (hash_top+10) /* |hash| location of a permanent `\.{endgroup}' */
5341 @d frozen_etex (hash_top+11) /* |hash| location of a permanent \&{etex} */
5342 @d frozen_mpx_break (hash_top+12) /* |hash| location of a permanent \&{mpxbreak} */
5343 @d frozen_bad_vardef (hash_top+13) /* |hash| location of `\.{a bad variable}' */
5344 @d frozen_undefined (hash_top+14) /* |hash| location that never gets defined */
5345 @d hash_end (hash_top+14) /* the actual size of the |hash| and |eqtb| arrays */
5348 two_halves *hash; /* the hash table */
5349 two_halves *eqtb; /* the equivalents */
5351 @ @<Allocate or initialize ...@>=
5352 mp->hash = xmalloc((hash_end+1),sizeof(two_halves));
5353 mp->eqtb = xmalloc((hash_end+1),sizeof(two_halves));
5355 @ @<Dealloc variables@>=
5360 next(1)=0; text(1)=0; eq_type(1)=tag_token; equiv(1)=null;
5361 for (k=2;k<=hash_end;k++) {
5362 mp->hash[k]=mp->hash[1]; mp->eqtb[k]=mp->eqtb[1];
5365 @ @<Initialize table entries...@>=
5366 mp->hash_used=frozen_inaccessible; /* nothing is used */
5368 text(frozen_bad_vardef)=intern("a bad variable");
5369 text(frozen_etex)=intern("etex");
5370 text(frozen_mpx_break)=intern("mpxbreak");
5371 text(frozen_fi)=intern("fi");
5372 text(frozen_end_group)=intern("endgroup");
5373 text(frozen_end_def)=intern("enddef");
5374 text(frozen_end_for)=intern("endfor");
5375 text(frozen_semicolon)=intern(";");
5376 text(frozen_colon)=intern(":");
5377 text(frozen_slash)=intern("/");
5378 text(frozen_left_bracket)=intern("[");
5379 text(frozen_right_delimiter)=intern(")");
5380 text(frozen_inaccessible)=intern(" INACCESSIBLE");
5381 eq_type(frozen_right_delimiter)=right_delimiter;
5383 @ @<Check the ``constant'' values...@>=
5384 if ( hash_end+mp->max_internal>max_halfword ) mp->bad=17;
5386 @ Here is the subroutine that searches the hash table for an identifier
5387 that matches a given string of length~|l| appearing in |buffer[j..
5388 (j+l-1)]|. If the identifier is not found, it is inserted; hence it
5389 will always be found, and the corresponding hash table address
5393 pointer mp_id_lookup (MP mp,integer j, integer l) { /* search the hash table */
5394 integer h; /* hash code */
5395 pointer p; /* index in |hash| array */
5396 pointer k; /* index in |buffer| array */
5398 @<Treat special case of length 1 and |break|@>;
5400 @<Compute the hash code |h|@>;
5401 p=h+hash_base; /* we start searching here; note that |0<=h<hash_prime| */
5403 if (text(p)>0 && length(text(p))==l && mp_str_eq_buf(mp, text(p),j))
5406 @<Insert a new symbolic token after |p|, then
5407 make |p| point to it and |break|@>;
5414 @ @<Treat special case of length 1...@>=
5415 p=mp->buffer[j]+1; text(p)=p-1; return p;
5418 @ @<Insert a new symbolic...@>=
5423 mp_overflow(mp, "hash size",mp->hash_size);
5424 @:MetaPost capacity exceeded hash size}{\quad hash size@>
5425 decr(mp->hash_used);
5426 } while (text(mp->hash_used)!=0); /* search for an empty location in |hash| */
5427 next(p)=mp->hash_used;
5431 for (k=j;k<=j+l-1;k++) {
5432 append_char(mp->buffer[k]);
5434 text(p)=mp_make_string(mp);
5435 mp->str_ref[text(p)]=max_str_ref;
5441 @ The value of |hash_prime| should be roughly 85\pct! of |hash_size|, and it
5442 should be a prime number. The theory of hashing tells us to expect fewer
5443 than two table probes, on the average, when the search is successful.
5444 [See J.~S. Vitter, {\sl Journal of the ACM\/ \bf30} (1983), 231--258.]
5445 @^Vitter, Jeffrey Scott@>
5447 @<Compute the hash code |h|@>=
5449 for (k=j+1;k<=j+l-1;k++){
5450 h=h+h+mp->buffer[k];
5451 while ( h>=mp->hash_prime ) h=h-mp->hash_prime;
5454 @ @<Search |eqtb| for equivalents equal to |p|@>=
5455 for (q=1;q<=hash_end;q++) {
5456 if ( equiv(q)==p ) {
5457 mp_print_nl(mp, "EQUIV(");
5458 mp_print_int(mp, q);
5459 mp_print_char(mp, ')');
5463 @ We need to put \MP's ``primitive'' symbolic tokens into the hash
5464 table, together with their command code (which will be the |eq_type|)
5465 and an operand (which will be the |equiv|). The |primitive| procedure
5466 does this, in a way that no \MP\ user can. The global value |cur_sym|
5467 contains the new |eqtb| pointer after |primitive| has acted.
5470 void mp_primitive (MP mp, char *ss, halfword c, halfword o) {
5471 pool_pointer k; /* index into |str_pool| */
5472 small_number j; /* index into |buffer| */
5473 small_number l; /* length of the string */
5476 k=mp->str_start[s]; l=str_stop(s)-k;
5477 /* we will move |s| into the (empty) |buffer| */
5478 for (j=0;j<=l-1;j++) {
5479 mp->buffer[j]=mp->str_pool[k+j];
5481 mp->cur_sym=mp_id_lookup(mp, 0,l);
5482 if ( s>=256 ) { /* we don't want to have the string twice */
5483 mp_flush_string(mp, text(mp->cur_sym)); text(mp->cur_sym)=s;
5485 eq_type(mp->cur_sym)=c;
5486 equiv(mp->cur_sym)=o;
5490 @ Many of \MP's primitives need no |equiv|, since they are identifiable
5491 by their |eq_type| alone. These primitives are loaded into the hash table
5494 @<Put each of \MP's primitives into the hash table@>=
5495 mp_primitive(mp, "..",path_join,0);
5496 @:.._}{\.{..} primitive@>
5497 mp_primitive(mp, "[",left_bracket,0); mp->eqtb[frozen_left_bracket]=mp->eqtb[mp->cur_sym];
5498 @:[ }{\.{[} primitive@>
5499 mp_primitive(mp, "]",right_bracket,0);
5500 @:] }{\.{]} primitive@>
5501 mp_primitive(mp, "}",right_brace,0);
5502 @:]]}{\.{\char`\}} primitive@>
5503 mp_primitive(mp, "{",left_brace,0);
5504 @:][}{\.{\char`\{} primitive@>
5505 mp_primitive(mp, ":",colon,0); mp->eqtb[frozen_colon]=mp->eqtb[mp->cur_sym];
5506 @:: }{\.{:} primitive@>
5507 mp_primitive(mp, "::",double_colon,0);
5508 @::: }{\.{::} primitive@>
5509 mp_primitive(mp, "||:",bchar_label,0);
5510 @:::: }{\.{\char'174\char'174:} primitive@>
5511 mp_primitive(mp, ":=",assignment,0);
5512 @::=_}{\.{:=} primitive@>
5513 mp_primitive(mp, ",",comma,0);
5514 @:, }{\., primitive@>
5515 mp_primitive(mp, ";",semicolon,0); mp->eqtb[frozen_semicolon]=mp->eqtb[mp->cur_sym];
5516 @:; }{\.; primitive@>
5517 mp_primitive(mp, "\\",relax,0);
5518 @:]]\\}{\.{\char`\\} primitive@>
5520 mp_primitive(mp, "addto",add_to_command,0);
5521 @:add_to_}{\&{addto} primitive@>
5522 mp_primitive(mp, "atleast",at_least,0);
5523 @:at_least_}{\&{atleast} primitive@>
5524 mp_primitive(mp, "begingroup",begin_group,0); mp->bg_loc=mp->cur_sym;
5525 @:begin_group_}{\&{begingroup} primitive@>
5526 mp_primitive(mp, "controls",controls,0);
5527 @:controls_}{\&{controls} primitive@>
5528 mp_primitive(mp, "curl",curl_command,0);
5529 @:curl_}{\&{curl} primitive@>
5530 mp_primitive(mp, "delimiters",delimiters,0);
5531 @:delimiters_}{\&{delimiters} primitive@>
5532 mp_primitive(mp, "endgroup",end_group,0);
5533 mp->eqtb[frozen_end_group]=mp->eqtb[mp->cur_sym]; mp->eg_loc=mp->cur_sym;
5534 @:endgroup_}{\&{endgroup} primitive@>
5535 mp_primitive(mp, "everyjob",every_job_command,0);
5536 @:every_job_}{\&{everyjob} primitive@>
5537 mp_primitive(mp, "exitif",exit_test,0);
5538 @:exit_if_}{\&{exitif} primitive@>
5539 mp_primitive(mp, "expandafter",expand_after,0);
5540 @:expand_after_}{\&{expandafter} primitive@>
5541 mp_primitive(mp, "interim",interim_command,0);
5542 @:interim_}{\&{interim} primitive@>
5543 mp_primitive(mp, "let",let_command,0);
5544 @:let_}{\&{let} primitive@>
5545 mp_primitive(mp, "newinternal",new_internal,0);
5546 @:new_internal_}{\&{newinternal} primitive@>
5547 mp_primitive(mp, "of",of_token,0);
5548 @:of_}{\&{of} primitive@>
5549 mp_primitive(mp, "randomseed",random_seed,0);
5550 @:random_seed_}{\&{randomseed} primitive@>
5551 mp_primitive(mp, "save",save_command,0);
5552 @:save_}{\&{save} primitive@>
5553 mp_primitive(mp, "scantokens",scan_tokens,0);
5554 @:scan_tokens_}{\&{scantokens} primitive@>
5555 mp_primitive(mp, "shipout",ship_out_command,0);
5556 @:ship_out_}{\&{shipout} primitive@>
5557 mp_primitive(mp, "skipto",skip_to,0);
5558 @:skip_to_}{\&{skipto} primitive@>
5559 mp_primitive(mp, "special",special_command,0);
5560 @:special}{\&{special} primitive@>
5561 mp_primitive(mp, "fontmapfile",special_command,1);
5562 @:fontmapfile}{\&{fontmapfile} primitive@>
5563 mp_primitive(mp, "fontmapline",special_command,2);
5564 @:fontmapline}{\&{fontmapline} primitive@>
5565 mp_primitive(mp, "step",step_token,0);
5566 @:step_}{\&{step} primitive@>
5567 mp_primitive(mp, "str",str_op,0);
5568 @:str_}{\&{str} primitive@>
5569 mp_primitive(mp, "tension",tension,0);
5570 @:tension_}{\&{tension} primitive@>
5571 mp_primitive(mp, "to",to_token,0);
5572 @:to_}{\&{to} primitive@>
5573 mp_primitive(mp, "until",until_token,0);
5574 @:until_}{\&{until} primitive@>
5575 mp_primitive(mp, "within",within_token,0);
5576 @:within_}{\&{within} primitive@>
5577 mp_primitive(mp, "write",write_command,0);
5578 @:write_}{\&{write} primitive@>
5580 @ Each primitive has a corresponding inverse, so that it is possible to
5581 display the cryptic numeric contents of |eqtb| in symbolic form.
5582 Every call of |primitive| in this program is therefore accompanied by some
5583 straightforward code that forms part of the |print_cmd_mod| routine
5586 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>=
5587 case add_to_command:mp_print(mp, "addto"); break;
5588 case assignment:mp_print(mp, ":="); break;
5589 case at_least:mp_print(mp, "atleast"); break;
5590 case bchar_label:mp_print(mp, "||:"); break;
5591 case begin_group:mp_print(mp, "begingroup"); break;
5592 case colon:mp_print(mp, ":"); break;
5593 case comma:mp_print(mp, ","); break;
5594 case controls:mp_print(mp, "controls"); break;
5595 case curl_command:mp_print(mp, "curl"); break;
5596 case delimiters:mp_print(mp, "delimiters"); break;
5597 case double_colon:mp_print(mp, "::"); break;
5598 case end_group:mp_print(mp, "endgroup"); break;
5599 case every_job_command:mp_print(mp, "everyjob"); break;
5600 case exit_test:mp_print(mp, "exitif"); break;
5601 case expand_after:mp_print(mp, "expandafter"); break;
5602 case interim_command:mp_print(mp, "interim"); break;
5603 case left_brace:mp_print(mp, "{"); break;
5604 case left_bracket:mp_print(mp, "["); break;
5605 case let_command:mp_print(mp, "let"); break;
5606 case new_internal:mp_print(mp, "newinternal"); break;
5607 case of_token:mp_print(mp, "of"); break;
5608 case path_join:mp_print(mp, ".."); break;
5609 case random_seed:mp_print(mp, "randomseed"); break;
5610 case relax:mp_print_char(mp, '\\'); break;
5611 case right_brace:mp_print(mp, "}"); break;
5612 case right_bracket:mp_print(mp, "]"); break;
5613 case save_command:mp_print(mp, "save"); break;
5614 case scan_tokens:mp_print(mp, "scantokens"); break;
5615 case semicolon:mp_print(mp, ";"); break;
5616 case ship_out_command:mp_print(mp, "shipout"); break;
5617 case skip_to:mp_print(mp, "skipto"); break;
5618 case special_command: if ( m==2 ) mp_print(mp, "fontmapline"); else
5619 if ( m==1 ) mp_print(mp, "fontmapfile"); else
5620 mp_print(mp, "special"); break;
5621 case step_token:mp_print(mp, "step"); break;
5622 case str_op:mp_print(mp, "str"); break;
5623 case tension:mp_print(mp, "tension"); break;
5624 case to_token:mp_print(mp, "to"); break;
5625 case until_token:mp_print(mp, "until"); break;
5626 case within_token:mp_print(mp, "within"); break;
5627 case write_command:mp_print(mp, "write"); break;
5629 @ We will deal with the other primitives later, at some point in the program
5630 where their |eq_type| and |equiv| values are more meaningful. For example,
5631 the primitives for macro definitions will be loaded when we consider the
5632 routines that define macros.
5633 It is easy to find where each particular
5634 primitive was treated by looking in the index at the end; for example, the
5635 section where |"def"| entered |eqtb| is listed under `\&{def} primitive'.
5637 @* \[14] Token lists.
5638 A \MP\ token is either symbolic or numeric or a string, or it denotes
5639 a macro parameter or capsule; so there are five corresponding ways to encode it
5641 internally: (1)~A symbolic token whose hash code is~|p|
5642 is represented by the number |p|, in the |info| field of a single-word
5643 node in~|mem|. (2)~A numeric token whose |scaled| value is~|v| is
5644 represented in a two-word node of~|mem|; the |type| field is |known|,
5645 the |name_type| field is |token|, and the |value| field holds~|v|.
5646 The fact that this token appears in a two-word node rather than a
5647 one-word node is, of course, clear from the node address.
5648 (3)~A string token is also represented in a two-word node; the |type|
5649 field is |mp_string_type|, the |name_type| field is |token|, and the
5650 |value| field holds the corresponding |str_number|. (4)~Capsules have
5651 |name_type=capsule|, and their |type| and |value| fields represent
5652 arbitrary values (in ways to be explained later). (5)~Macro parameters
5653 are like symbolic tokens in that they appear in |info| fields of
5654 one-word nodes. The $k$th parameter is represented by |expr_base+k| if it
5655 is of type \&{expr}, or by |suffix_base+k| if it is of type \&{suffix}, or
5656 by |text_base+k| if it is of type \&{text}. (Here |0<=k<param_size|.)
5657 Actual values of these parameters are kept in a separate stack, as we will
5658 see later. The constants |expr_base|, |suffix_base|, and |text_base| are,
5659 of course, chosen so that there will be no confusion between symbolic
5660 tokens and parameters of various types.
5663 the `\\{type}' field of a node has nothing to do with ``type'' in a
5664 printer's sense. It's curious that the same word is used in such different ways.
5666 @d type(A) mp->mem[(A)].hh.b0 /* identifies what kind of value this is */
5667 @d name_type(A) mp->mem[(A)].hh.b1 /* a clue to the name of this value */
5668 @d token_node_size 2 /* the number of words in a large token node */
5669 @d value_loc(A) ((A)+1) /* the word that contains the |value| field */
5670 @d value(A) mp->mem[value_loc((A))].cint /* the value stored in a large token node */
5671 @d expr_base (hash_end+1) /* code for the zeroth \&{expr} parameter */
5672 @d suffix_base (expr_base+mp->param_size) /* code for the zeroth \&{suffix} parameter */
5673 @d text_base (suffix_base+mp->param_size) /* code for the zeroth \&{text} parameter */
5675 @<Check the ``constant''...@>=
5676 if ( text_base+mp->param_size>max_halfword ) mp->bad=18;
5678 @ We have set aside a two word node beginning at |null| so that we can have
5679 |value(null)=0|. We will make use of this coincidence later.
5681 @<Initialize table entries...@>=
5682 link(null)=null; value(null)=0;
5684 @ A numeric token is created by the following trivial routine.
5687 pointer mp_new_num_tok (MP mp,scaled v) {
5688 pointer p; /* the new node */
5689 p=mp_get_node(mp, token_node_size); value(p)=v;
5690 type(p)=mp_known; name_type(p)=mp_token;
5694 @ A token list is a singly linked list of nodes in |mem|, where
5695 each node contains a token and a link. Here's a subroutine that gets rid
5696 of a token list when it is no longer needed.
5699 void mp_token_recycle (MP mp);
5702 @c void mp_flush_token_list (MP mp,pointer p) {
5703 pointer q; /* the node being recycled */
5706 if ( q>=mp->hi_mem_min ) {
5710 case mp_vacuous: case mp_boolean_type: case mp_known:
5712 case mp_string_type:
5713 delete_str_ref(value(q));
5715 case unknown_types: case mp_pen_type: case mp_path_type:
5716 case mp_picture_type: case mp_pair_type: case mp_color_type:
5717 case mp_cmykcolor_type: case mp_transform_type: case mp_dependent:
5718 case mp_proto_dependent: case mp_independent:
5719 mp->g_pointer=q; mp_token_recycle(mp);
5721 default: mp_confusion(mp, "token");
5722 @:this can't happen token}{\quad token@>
5724 mp_free_node(mp, q,token_node_size);
5729 @ The procedure |show_token_list|, which prints a symbolic form of
5730 the token list that starts at a given node |p|, illustrates these
5731 conventions. The token list being displayed should not begin with a reference
5732 count. However, the procedure is intended to be fairly robust, so that if the
5733 memory links are awry or if |p| is not really a pointer to a token list,
5734 almost nothing catastrophic can happen.
5736 An additional parameter |q| is also given; this parameter is either null
5737 or it points to a node in the token list where a certain magic computation
5738 takes place that will be explained later. (Basically, |q| is non-null when
5739 we are printing the two-line context information at the time of an error
5740 message; |q| marks the place corresponding to where the second line
5743 The generation will stop, and `\.{\char`\ ETC.}' will be printed, if the length
5744 of printing exceeds a given limit~|l|; the length of printing upon entry is
5745 assumed to be a given amount called |null_tally|. (Note that
5746 |show_token_list| sometimes uses itself recursively to print
5747 variable names within a capsule.)
5750 Unusual entries are printed in the form of all-caps tokens
5751 preceded by a space, e.g., `\.{\char`\ BAD}'.
5754 void mp_print_capsule (MP mp);
5756 @ @<Declare the procedure called |show_token_list|@>=
5757 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5758 integer null_tally) ;
5761 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5762 integer null_tally) {
5763 small_number class,c; /* the |char_class| of previous and new tokens */
5764 integer r,v; /* temporary registers */
5765 class=percent_class;
5766 mp->tally=null_tally;
5767 while ( (p!=null) && (mp->tally<l) ) {
5769 @<Do magic computation@>;
5770 @<Display token |p| and set |c| to its class;
5771 but |return| if there are problems@>;
5775 mp_print(mp, " ETC.");
5780 @ @<Display token |p| and set |c| to its class...@>=
5781 c=letter_class; /* the default */
5782 if ( (p<0)||(p>mp->mem_end) ) {
5783 mp_print(mp, " CLOBBERED"); return;
5786 if ( p<mp->hi_mem_min ) {
5787 @<Display two-word token@>;
5790 if ( r>=expr_base ) {
5791 @<Display a parameter token@>;
5795 @<Display a collective subscript@>
5797 mp_print(mp, " IMPOSSIBLE");
5802 if ( (r<0)||(r>mp->max_str_ptr) ) {
5803 mp_print(mp, " NONEXISTENT");
5806 @<Print string |r| as a symbolic token
5807 and set |c| to its class@>;
5813 @ @<Display two-word token@>=
5814 if ( name_type(p)==mp_token ) {
5815 if ( type(p)==mp_known ) {
5816 @<Display a numeric token@>;
5817 } else if ( type(p)!=mp_string_type ) {
5818 mp_print(mp, " BAD");
5821 mp_print_char(mp, '"'); mp_print_str(mp, value(p)); mp_print_char(mp, '"');
5824 } else if ((name_type(p)!=mp_capsule)||(type(p)<mp_vacuous)||(type(p)>mp_independent) ) {
5825 mp_print(mp, " BAD");
5827 mp->g_pointer=p; mp_print_capsule(mp); c=right_paren_class;
5830 @ @<Display a numeric token@>=
5831 if ( class==digit_class )
5832 mp_print_char(mp, ' ');
5835 if ( class==left_bracket_class )
5836 mp_print_char(mp, ' ');
5837 mp_print_char(mp, '['); mp_print_scaled(mp, v); mp_print_char(mp, ']');
5838 c=right_bracket_class;
5840 mp_print_scaled(mp, v); c=digit_class;
5844 @ Strictly speaking, a genuine token will never have |info(p)=0|.
5845 But we will see later (in the |print_variable_name| routine) that
5846 it is convenient to let |info(p)=0| stand for `\.{[]}'.
5848 @<Display a collective subscript@>=
5850 if ( class==left_bracket_class )
5851 mp_print_char(mp, ' ');
5852 mp_print(mp, "[]"); c=right_bracket_class;
5855 @ @<Display a parameter token@>=
5857 if ( r<suffix_base ) {
5858 mp_print(mp, "(EXPR"); r=r-(expr_base);
5860 } else if ( r<text_base ) {
5861 mp_print(mp, "(SUFFIX"); r=r-(suffix_base);
5864 mp_print(mp, "(TEXT"); r=r-(text_base);
5867 mp_print_int(mp, r); mp_print_char(mp, ')'); c=right_paren_class;
5871 @ @<Print string |r| as a symbolic token...@>=
5873 c=mp->char_class[mp->str_pool[mp->str_start[r]]];
5876 case letter_class:mp_print_char(mp, '.'); break;
5877 case isolated_classes: break;
5878 default: mp_print_char(mp, ' '); break;
5881 mp_print_str(mp, r);
5884 @ The following procedures have been declared |forward| with no parameters,
5885 because the author dislikes \PASCAL's convention about |forward| procedures
5886 with parameters. It was necessary to do something, because |show_token_list|
5887 is recursive (although the recursion is limited to one level), and because
5888 |flush_token_list| is syntactically (but not semantically) recursive.
5891 @<Declare miscellaneous procedures that were declared |forward|@>=
5892 void mp_print_capsule (MP mp) {
5893 mp_print_char(mp, '('); mp_print_exp(mp, mp->g_pointer,0); mp_print_char(mp, ')');
5896 void mp_token_recycle (MP mp) {
5897 mp_recycle_value(mp, mp->g_pointer);
5901 pointer g_pointer; /* (global) parameter to the |forward| procedures */
5903 @ Macro definitions are kept in \MP's memory in the form of token lists
5904 that have a few extra one-word nodes at the beginning.
5906 The first node contains a reference count that is used to tell when the
5907 list is no longer needed. To emphasize the fact that a reference count is
5908 present, we shall refer to the |info| field of this special node as the
5910 @^reference counts@>
5912 The next node or nodes after the reference count serve to describe the
5913 formal parameters. They either contain a code word that specifies all
5914 of the parameters, or they contain zero or more parameter tokens followed
5915 by the code `|general_macro|'.
5918 /* reference count preceding a macro definition or picture header */
5919 @d add_mac_ref(A) incr(ref_count((A))) /* make a new reference to a macro list */
5920 @d general_macro 0 /* preface to a macro defined with a parameter list */
5921 @d primary_macro 1 /* preface to a macro with a \&{primary} parameter */
5922 @d secondary_macro 2 /* preface to a macro with a \&{secondary} parameter */
5923 @d tertiary_macro 3 /* preface to a macro with a \&{tertiary} parameter */
5924 @d expr_macro 4 /* preface to a macro with an undelimited \&{expr} parameter */
5925 @d of_macro 5 /* preface to a macro with
5926 undelimited `\&{expr} |x| \&{of}~|y|' parameters */
5927 @d suffix_macro 6 /* preface to a macro with an undelimited \&{suffix} parameter */
5928 @d text_macro 7 /* preface to a macro with an undelimited \&{text} parameter */
5931 void mp_delete_mac_ref (MP mp,pointer p) {
5932 /* |p| points to the reference count of a macro list that is
5933 losing one reference */
5934 if ( ref_count(p)==null ) mp_flush_token_list(mp, p);
5935 else decr(ref_count(p));
5938 @ The following subroutine displays a macro, given a pointer to its
5942 @<Declare the procedure called |print_cmd_mod|@>;
5943 void mp_show_macro (MP mp, pointer p, integer q, integer l) {
5944 pointer r; /* temporary storage */
5945 p=link(p); /* bypass the reference count */
5946 while ( info(p)>text_macro ){
5947 r=link(p); link(p)=null;
5948 mp_show_token_list(mp, p,null,l,0); link(p)=r; p=r;
5949 if ( l>0 ) l=l-mp->tally; else return;
5950 } /* control printing of `\.{ETC.}' */
5954 case general_macro:mp_print(mp, "->"); break;
5956 case primary_macro: case secondary_macro: case tertiary_macro:
5957 mp_print_char(mp, '<');
5958 mp_print_cmd_mod(mp, param_type,info(p));
5959 mp_print(mp, ">->");
5961 case expr_macro:mp_print(mp, "<expr>->"); break;
5962 case of_macro:mp_print(mp, "<expr>of<primary>->"); break;
5963 case suffix_macro:mp_print(mp, "<suffix>->"); break;
5964 case text_macro:mp_print(mp, "<text>->"); break;
5965 } /* there are no other cases */
5966 mp_show_token_list(mp, link(p),q,l-mp->tally,0);
5969 @* \[15] Data structures for variables.
5970 The variables of \MP\ programs can be simple, like `\.x', or they can
5971 combine the structural properties of arrays and records, like `\.{x20a.b}'.
5972 A \MP\ user assigns a type to a variable like \.{x20a.b} by saying, for
5973 example, `\.{boolean} \.{x20a.b}'. It's time for us to study how such
5974 things are represented inside of the computer.
5976 Each variable value occupies two consecutive words, either in a two-word
5977 node called a value node, or as a two-word subfield of a larger node. One
5978 of those two words is called the |value| field; it is an integer,
5979 containing either a |scaled| numeric value or the representation of some
5980 other type of quantity. (It might also be subdivided into halfwords, in
5981 which case it is referred to by other names instead of |value|.) The other
5982 word is broken into subfields called |type|, |name_type|, and |link|. The
5983 |type| field is a quarterword that specifies the variable's type, and
5984 |name_type| is a quarterword from which \MP\ can reconstruct the
5985 variable's name (sometimes by using the |link| field as well). Thus, only
5986 1.25 words are actually devoted to the value itself; the other
5987 three-quarters of a word are overhead, but they aren't wasted because they
5988 allow \MP\ to deal with sparse arrays and to provide meaningful diagnostics.
5990 In this section we shall be concerned only with the structural aspects of
5991 variables, not their values. Later parts of the program will change the
5992 |type| and |value| fields, but we shall treat those fields as black boxes
5993 whose contents should not be touched.
5995 However, if the |type| field is |mp_structured|, there is no |value| field,
5996 and the second word is broken into two pointer fields called |attr_head|
5997 and |subscr_head|. Those fields point to additional nodes that
5998 contain structural information, as we shall see.
6000 @d subscr_head_loc(A) (A)+1 /* where |value|, |subscr_head| and |attr_head| are */
6001 @d attr_head(A) info(subscr_head_loc((A))) /* pointer to attribute info */
6002 @d subscr_head(A) link(subscr_head_loc((A))) /* pointer to subscript info */
6003 @d value_node_size 2 /* the number of words in a value node */
6005 @ An attribute node is three words long. Two of these words contain |type|
6006 and |value| fields as described above, and the third word contains
6007 additional information: There is an |attr_loc| field, which contains the
6008 hash address of the token that names this attribute; and there's also a
6009 |parent| field, which points to the value node of |mp_structured| type at the
6010 next higher level (i.e., at the level to which this attribute is
6011 subsidiary). The |name_type| in an attribute node is `|attr|'. The
6012 |link| field points to the next attribute with the same parent; these are
6013 arranged in increasing order, so that |attr_loc(link(p))>attr_loc(p)|. The
6014 final attribute node links to the constant |end_attr|, whose |attr_loc|
6015 field is greater than any legal hash address. The |attr_head| in the
6016 parent points to a node whose |name_type| is |mp_structured_root|; this
6017 node represents the null attribute, i.e., the variable that is relevant
6018 when no attributes are attached to the parent. The |attr_head| node is either
6019 a value node, a subscript node, or an attribute node, depending on what
6020 the parent would be if it were not structured; but the subscript and
6021 attribute fields are ignored, so it effectively contains only the data of
6022 a value node. The |link| field in this special node points to an attribute
6023 node whose |attr_loc| field is zero; the latter node represents a collective
6024 subscript `\.{[]}' attached to the parent, and its |link| field points to
6025 the first non-special attribute node (or to |end_attr| if there are none).
6027 A subscript node likewise occupies three words, with |type| and |value| fields
6028 plus extra information; its |name_type| is |subscr|. In this case the
6029 third word is called the |subscript| field, which is a |scaled| integer.
6030 The |link| field points to the subscript node with the next larger
6031 subscript, if any; otherwise the |link| points to the attribute node
6032 for collective subscripts at this level. We have seen that the latter node
6033 contains an upward pointer, so that the parent can be deduced.
6035 The |name_type| in a parent-less value node is |root|, and the |link|
6036 is the hash address of the token that names this value.
6038 In other words, variables have a hierarchical structure that includes
6039 enough threads running around so that the program is able to move easily
6040 between siblings, parents, and children. An example should be helpful:
6041 (The reader is advised to draw a picture while reading the following
6042 description, since that will help to firm up the ideas.)
6043 Suppose that `\.x' and `\.{x.a}' and `\.{x[]b}' and `\.{x5}'
6044 and `\.{x20b}' have been mentioned in a user's program, where
6045 \.{x[]b} has been declared to be of \&{boolean} type. Let |h(x)|, |h(a)|,
6046 and |h(b)| be the hash addresses of \.x, \.a, and~\.b. Then
6047 |eq_type(h(x))=name| and |equiv(h(x))=p|, where |p|~is a two-word value
6048 node with |name_type(p)=root| and |link(p)=h(x)|. We have |type(p)=mp_structured|,
6049 |attr_head(p)=q|, and |subscr_head(p)=r|, where |q| points to a value
6050 node and |r| to a subscript node. (Are you still following this? Use
6051 a pencil to draw a diagram.) The lone variable `\.x' is represented by
6052 |type(q)| and |value(q)|; furthermore
6053 |name_type(q)=mp_structured_root| and |link(q)=q1|, where |q1| points
6054 to an attribute node representing `\.{x[]}'. Thus |name_type(q1)=attr|,
6055 |attr_loc(q1)=collective_subscript=0|, |parent(q1)=p|,
6056 |type(q1)=mp_structured|, |attr_head(q1)=qq|, and |subscr_head(q1)=qq1|;
6057 |qq| is a value node with |type(qq)=mp_numeric_type| (assuming that \.{x5} is
6058 numeric, because |qq| represents `\.{x[]}' with no further attributes),
6059 |name_type(qq)=mp_structured_root|, and
6060 |link(qq)=qq1|. (Now pay attention to the next part.) Node |qq1| is
6061 an attribute node representing `\.{x[][]}', which has never yet
6062 occurred; its |type| field is |undefined|, and its |value| field is
6063 undefined. We have |name_type(qq1)=attr|, |attr_loc(qq1)=collective_subscript|,
6064 |parent(qq1)=q1|, and |link(qq1)=qq2|. Since |qq2| represents
6065 `\.{x[]b}', |type(qq2)=mp_unknown_boolean|; also |attr_loc(qq2)=h(b)|,
6066 |parent(qq2)=q1|, |name_type(qq2)=attr|, |link(qq2)=end_attr|.
6067 (Maybe colored lines will help untangle your picture.)
6068 Node |r| is a subscript node with |type| and |value|
6069 representing `\.{x5}'; |name_type(r)=subscr|, |subscript(r)=5.0|,
6070 and |link(r)=r1| is another subscript node. To complete the picture,
6071 see if you can guess what |link(r1)| is; give up? It's~|q1|.
6072 Furthermore |subscript(r1)=20.0|, |name_type(r1)=subscr|,
6073 |type(r1)=mp_structured|, |attr_head(r1)=qqq|, |subscr_head(r1)=qqq1|,
6074 and we finish things off with three more nodes
6075 |qqq|, |qqq1|, and |qqq2| hung onto~|r1|. (Perhaps you should start again
6076 with a larger sheet of paper.) The value of variable \.{x20b}
6077 appears in node~|qqq2|, as you can well imagine.
6079 If the example in the previous paragraph doesn't make things crystal
6080 clear, a glance at some of the simpler subroutines below will reveal how
6081 things work out in practice.
6083 The only really unusual thing about these conventions is the use of
6084 collective subscript attributes. The idea is to avoid repeating a lot of
6085 type information when many elements of an array are identical macros
6086 (for which distinct values need not be stored) or when they don't have
6087 all of the possible attributes. Branches of the structure below collective
6088 subscript attributes do not carry actual values except for macro identifiers;
6089 branches of the structure below subscript nodes do not carry significant
6090 information in their collective subscript attributes.
6092 @d attr_loc_loc(A) ((A)+2) /* where the |attr_loc| and |parent| fields are */
6093 @d attr_loc(A) info(attr_loc_loc((A))) /* hash address of this attribute */
6094 @d parent(A) link(attr_loc_loc((A))) /* pointer to |mp_structured| variable */
6095 @d subscript_loc(A) ((A)+2) /* where the |subscript| field lives */
6096 @d subscript(A) mp->mem[subscript_loc((A))].sc /* subscript of this variable */
6097 @d attr_node_size 3 /* the number of words in an attribute node */
6098 @d subscr_node_size 3 /* the number of words in a subscript node */
6099 @d collective_subscript 0 /* code for the attribute `\.{[]}' */
6101 @<Initialize table...@>=
6102 attr_loc(end_attr)=hash_end+1; parent(end_attr)=null;
6104 @ Variables of type \&{pair} will have values that point to four-word
6105 nodes containing two numeric values. The first of these values has
6106 |name_type=mp_x_part_sector| and the second has |name_type=mp_y_part_sector|;
6107 the |link| in the first points back to the node whose |value| points
6108 to this four-word node.
6110 Variables of type \&{transform} are similar, but in this case their
6111 |value| points to a 12-word node containing six values, identified by
6112 |x_part_sector|, |y_part_sector|, |mp_xx_part_sector|, |mp_xy_part_sector|,
6113 |mp_yx_part_sector|, and |mp_yy_part_sector|.
6114 Finally, variables of type \&{color} have three values in six words
6115 identified by |mp_red_part_sector|, |mp_green_part_sector|, and |mp_blue_part_sector|.
6117 When an entire structured variable is saved, the |root| indication
6118 is temporarily replaced by |saved_root|.
6120 Some variables have no name; they just are used for temporary storage
6121 while expressions are being evaluated. We call them {\sl capsules}.
6123 @d x_part_loc(A) (A) /* where the \&{xpart} is found in a pair or transform node */
6124 @d y_part_loc(A) ((A)+2) /* where the \&{ypart} is found in a pair or transform node */
6125 @d xx_part_loc(A) ((A)+4) /* where the \&{xxpart} is found in a transform node */
6126 @d xy_part_loc(A) ((A)+6) /* where the \&{xypart} is found in a transform node */
6127 @d yx_part_loc(A) ((A)+8) /* where the \&{yxpart} is found in a transform node */
6128 @d yy_part_loc(A) ((A)+10) /* where the \&{yypart} is found in a transform node */
6129 @d red_part_loc(A) (A) /* where the \&{redpart} is found in a color node */
6130 @d green_part_loc(A) ((A)+2) /* where the \&{greenpart} is found in a color node */
6131 @d blue_part_loc(A) ((A)+4) /* where the \&{bluepart} is found in a color node */
6132 @d cyan_part_loc(A) (A) /* where the \&{cyanpart} is found in a color node */
6133 @d magenta_part_loc(A) ((A)+2) /* where the \&{magentapart} is found in a color node */
6134 @d yellow_part_loc(A) ((A)+4) /* where the \&{yellowpart} is found in a color node */
6135 @d black_part_loc(A) ((A)+6) /* where the \&{blackpart} is found in a color node */
6136 @d grey_part_loc(A) (A) /* where the \&{greypart} is found in a color node */
6138 @d pair_node_size 4 /* the number of words in a pair node */
6139 @d transform_node_size 12 /* the number of words in a transform node */
6140 @d color_node_size 6 /* the number of words in a color node */
6141 @d cmykcolor_node_size 8 /* the number of words in a color node */
6144 small_number big_node_size[mp_pair_type+1];
6145 small_number sector0[mp_pair_type+1];
6146 small_number sector_offset[mp_black_part_sector+1];
6148 @ The |sector0| array gives for each big node type, |name_type| values
6149 for its first subfield; the |sector_offset| array gives for each
6150 |name_type| value, the offset from the first subfield in words;
6151 and the |big_node_size| array gives the size in words for each type of
6155 mp->big_node_size[mp_transform_type]=transform_node_size;
6156 mp->big_node_size[mp_pair_type]=pair_node_size;
6157 mp->big_node_size[mp_color_type]=color_node_size;
6158 mp->big_node_size[mp_cmykcolor_type]=cmykcolor_node_size;
6159 mp->sector0[mp_transform_type]=mp_x_part_sector;
6160 mp->sector0[mp_pair_type]=mp_x_part_sector;
6161 mp->sector0[mp_color_type]=mp_red_part_sector;
6162 mp->sector0[mp_cmykcolor_type]=mp_cyan_part_sector;
6163 for (k=mp_x_part_sector;k<= mp_yy_part_sector;k++ ) {
6164 mp->sector_offset[k]=2*(k-mp_x_part_sector);
6166 for (k=mp_red_part_sector;k<= mp_blue_part_sector ; k++) {
6167 mp->sector_offset[k]=2*(k-mp_red_part_sector);
6169 for (k=mp_cyan_part_sector;k<= mp_black_part_sector;k++ ) {
6170 mp->sector_offset[k]=2*(k-mp_cyan_part_sector);
6173 @ If |type(p)=mp_pair_type| or |mp_transform_type| and if |value(p)=null|, the
6174 procedure call |init_big_node(p)| will allocate a pair or transform node
6175 for~|p|. The individual parts of such nodes are initially of type
6179 void mp_init_big_node (MP mp,pointer p) {
6180 pointer q; /* the new node */
6181 small_number s; /* its size */
6182 s=mp->big_node_size[type(p)]; q=mp_get_node(mp, s);
6185 @<Make variable |q+s| newly independent@>;
6186 name_type(q+s)=halfp(s)+mp->sector0[type(p)];
6189 link(q)=p; value(p)=q;
6192 @ The |id_transform| function creates a capsule for the
6193 identity transformation.
6196 pointer mp_id_transform (MP mp) {
6197 pointer p,q,r; /* list manipulation registers */
6198 p=mp_get_node(mp, value_node_size); type(p)=mp_transform_type;
6199 name_type(p)=mp_capsule; value(p)=null; mp_init_big_node(mp, p); q=value(p);
6200 r=q+transform_node_size;
6203 type(r)=mp_known; value(r)=0;
6205 value(xx_part_loc(q))=unity;
6206 value(yy_part_loc(q))=unity;
6210 @ Tokens are of type |tag_token| when they first appear, but they point
6211 to |null| until they are first used as the root of a variable.
6212 The following subroutine establishes the root node on such grand occasions.
6215 void mp_new_root (MP mp,pointer x) {
6216 pointer p; /* the new node */
6217 p=mp_get_node(mp, value_node_size); type(p)=undefined; name_type(p)=mp_root;
6218 link(p)=x; equiv(x)=p;
6221 @ These conventions for variable representation are illustrated by the
6222 |print_variable_name| routine, which displays the full name of a
6223 variable given only a pointer to its two-word value packet.
6226 void mp_print_variable_name (MP mp, pointer p);
6229 void mp_print_variable_name (MP mp, pointer p) {
6230 pointer q; /* a token list that will name the variable's suffix */
6231 pointer r; /* temporary for token list creation */
6232 while ( name_type(p)>=mp_x_part_sector ) {
6233 @<Preface the output with a part specifier; |return| in the
6234 case of a capsule@>;
6237 while ( name_type(p)>mp_saved_root ) {
6238 @<Ascend one level, pushing a token onto list |q|
6239 and replacing |p| by its parent@>;
6241 r=mp_get_avail(mp); info(r)=link(p); link(r)=q;
6242 if ( name_type(p)==mp_saved_root ) mp_print(mp, "(SAVED)");
6244 mp_show_token_list(mp, r,null,el_gordo,mp->tally);
6245 mp_flush_token_list(mp, r);
6248 @ @<Ascend one level, pushing a token onto list |q|...@>=
6250 if ( name_type(p)==mp_subscr ) {
6251 r=mp_new_num_tok(mp, subscript(p));
6254 } while (name_type(p)!=mp_attr);
6255 } else if ( name_type(p)==mp_structured_root ) {
6256 p=link(p); goto FOUND;
6258 if ( name_type(p)!=mp_attr ) mp_confusion(mp, "var");
6259 @:this can't happen var}{\quad var@>
6260 r=mp_get_avail(mp); info(r)=attr_loc(p);
6267 @ @<Preface the output with a part specifier...@>=
6268 { switch (name_type(p)) {
6269 case mp_x_part_sector: mp_print_char(mp, 'x'); break;
6270 case mp_y_part_sector: mp_print_char(mp, 'y'); break;
6271 case mp_xx_part_sector: mp_print(mp, "xx"); break;
6272 case mp_xy_part_sector: mp_print(mp, "xy"); break;
6273 case mp_yx_part_sector: mp_print(mp, "yx"); break;
6274 case mp_yy_part_sector: mp_print(mp, "yy"); break;
6275 case mp_red_part_sector: mp_print(mp, "red"); break;
6276 case mp_green_part_sector: mp_print(mp, "green"); break;
6277 case mp_blue_part_sector: mp_print(mp, "blue"); break;
6278 case mp_cyan_part_sector: mp_print(mp, "cyan"); break;
6279 case mp_magenta_part_sector: mp_print(mp, "magenta"); break;
6280 case mp_yellow_part_sector: mp_print(mp, "yellow"); break;
6281 case mp_black_part_sector: mp_print(mp, "black"); break;
6282 case mp_grey_part_sector: mp_print(mp, "grey"); break;
6284 mp_print(mp, "%CAPSULE"); mp_print_int(mp, p-null); return;
6287 } /* there are no other cases */
6288 mp_print(mp, "part ");
6289 p=link(p-mp->sector_offset[name_type(p)]);
6292 @ The |interesting| function returns |true| if a given variable is not
6293 in a capsule, or if the user wants to trace capsules.
6296 boolean mp_interesting (MP mp,pointer p) {
6297 small_number t; /* a |name_type| */
6298 if ( mp->internal[mp_tracing_capsules]>0 ) {
6302 if ( t>=mp_x_part_sector ) if ( t!=mp_capsule )
6303 t=name_type(link(p-mp->sector_offset[t]));
6304 return (t!=mp_capsule);
6308 @ Now here is a subroutine that converts an unstructured type into an
6309 equivalent structured type, by inserting a |mp_structured| node that is
6310 capable of growing. This operation is done only when |name_type(p)=root|,
6311 |subscr|, or |attr|.
6313 The procedure returns a pointer to the new node that has taken node~|p|'s
6314 place in the structure. Node~|p| itself does not move, nor are its
6315 |value| or |type| fields changed in any way.
6318 pointer mp_new_structure (MP mp,pointer p) {
6319 pointer q,r=0; /* list manipulation registers */
6320 switch (name_type(p)) {
6322 q=link(p); r=mp_get_node(mp, value_node_size); equiv(q)=r;
6325 @<Link a new subscript node |r| in place of node |p|@>;
6328 @<Link a new attribute node |r| in place of node |p|@>;
6331 mp_confusion(mp, "struct");
6332 @:this can't happen struct}{\quad struct@>
6335 link(r)=link(p); type(r)=mp_structured; name_type(r)=name_type(p);
6336 attr_head(r)=p; name_type(p)=mp_structured_root;
6337 q=mp_get_node(mp, attr_node_size); link(p)=q; subscr_head(r)=q;
6338 parent(q)=r; type(q)=undefined; name_type(q)=mp_attr; link(q)=end_attr;
6339 attr_loc(q)=collective_subscript;
6343 @ @<Link a new subscript node |r| in place of node |p|@>=
6348 } while (name_type(q)!=mp_attr);
6349 q=parent(q); r=subscr_head_loc(q); /* |link(r)=subscr_head(q)| */
6353 r=mp_get_node(mp, subscr_node_size);
6354 link(q)=r; subscript(r)=subscript(p);
6357 @ If the attribute is |collective_subscript|, there are two pointers to
6358 node~|p|, so we must change both of them.
6360 @<Link a new attribute node |r| in place of node |p|@>=
6362 q=parent(p); r=attr_head(q);
6366 r=mp_get_node(mp, attr_node_size); link(q)=r;
6367 mp->mem[attr_loc_loc(r)]=mp->mem[attr_loc_loc(p)]; /* copy |attr_loc| and |parent| */
6368 if ( attr_loc(p)==collective_subscript ) {
6369 q=subscr_head_loc(parent(p));
6370 while ( link(q)!=p ) q=link(q);
6375 @ The |find_variable| routine is given a pointer~|t| to a nonempty token
6376 list of suffixes; it returns a pointer to the corresponding two-word
6377 value. For example, if |t| points to token \.x followed by a numeric
6378 token containing the value~7, |find_variable| finds where the value of
6379 \.{x7} is stored in memory. This may seem a simple task, and it
6380 usually is, except when \.{x7} has never been referenced before.
6381 Indeed, \.x may never have even been subscripted before; complexities
6382 arise with respect to updating the collective subscript information.
6384 If a macro type is detected anywhere along path~|t|, or if the first
6385 item on |t| isn't a |tag_token|, the value |null| is returned.
6386 Otherwise |p| will be a non-null pointer to a node such that
6387 |undefined<type(p)<mp_structured|.
6389 @d abort_find { return null; }
6392 pointer mp_find_variable (MP mp,pointer t) {
6393 pointer p,q,r,s; /* nodes in the ``value'' line */
6394 pointer pp,qq,rr,ss; /* nodes in the ``collective'' line */
6395 integer n; /* subscript or attribute */
6396 memory_word save_word; /* temporary storage for a word of |mem| */
6398 p=info(t); t=link(t);
6399 if ( (eq_type(p) % outer_tag) != tag_token ) abort_find;
6400 if ( equiv(p)==null ) mp_new_root(mp, p);
6403 @<Make sure that both nodes |p| and |pp| are of |mp_structured| type@>;
6404 if ( t<mp->hi_mem_min ) {
6405 @<Descend one level for the subscript |value(t)|@>
6407 @<Descend one level for the attribute |info(t)|@>;
6411 if ( type(pp)>=mp_structured ) {
6412 if ( type(pp)==mp_structured ) pp=attr_head(pp); else abort_find;
6414 if ( type(p)==mp_structured ) p=attr_head(p);
6415 if ( type(p)==undefined ) {
6416 if ( type(pp)==undefined ) { type(pp)=mp_numeric_type; value(pp)=null; };
6417 type(p)=type(pp); value(p)=null;
6422 @ Although |pp| and |p| begin together, they diverge when a subscript occurs;
6423 |pp|~stays in the collective line while |p|~goes through actual subscript
6426 @<Make sure that both nodes |p| and |pp|...@>=
6427 if ( type(pp)!=mp_structured ) {
6428 if ( type(pp)>mp_structured ) abort_find;
6429 ss=mp_new_structure(mp, pp);
6432 }; /* now |type(pp)=mp_structured| */
6433 if ( type(p)!=mp_structured ) /* it cannot be |>mp_structured| */
6434 p=mp_new_structure(mp, p) /* now |type(p)=mp_structured| */
6436 @ We want this part of the program to be reasonably fast, in case there are
6438 lots of subscripts at the same level of the data structure. Therefore
6439 we store an ``infinite'' value in the word that appears at the end of the
6440 subscript list, even though that word isn't part of a subscript node.
6442 @<Descend one level for the subscript |value(t)|@>=
6445 pp=link(attr_head(pp)); /* now |attr_loc(pp)=collective_subscript| */
6446 q=link(attr_head(p)); save_word=mp->mem[subscript_loc(q)];
6447 subscript(q)=el_gordo; s=subscr_head_loc(p); /* |link(s)=subscr_head(p)| */
6450 } while (n>subscript(s));
6451 if ( n==subscript(s) ) {
6454 p=mp_get_node(mp, subscr_node_size); link(r)=p; link(p)=s;
6455 subscript(p)=n; name_type(p)=mp_subscr; type(p)=undefined;
6457 mp->mem[subscript_loc(q)]=save_word;
6460 @ @<Descend one level for the attribute |info(t)|@>=
6466 } while (n>attr_loc(ss));
6467 if ( n<attr_loc(ss) ) {
6468 qq=mp_get_node(mp, attr_node_size); link(rr)=qq; link(qq)=ss;
6469 attr_loc(qq)=n; name_type(qq)=mp_attr; type(qq)=undefined;
6470 parent(qq)=pp; ss=qq;
6475 pp=ss; s=attr_head(p);
6478 } while (n>attr_loc(s));
6479 if ( n==attr_loc(s) ) {
6482 q=mp_get_node(mp, attr_node_size); link(r)=q; link(q)=s;
6483 attr_loc(q)=n; name_type(q)=mp_attr; type(q)=undefined;
6489 @ Variables lose their former values when they appear in a type declaration,
6490 or when they are defined to be macros or \&{let} equal to something else.
6491 A subroutine will be defined later that recycles the storage associated
6492 with any particular |type| or |value|; our goal now is to study a higher
6493 level process called |flush_variable|, which selectively frees parts of a
6496 This routine has some complexity because of examples such as
6497 `\hbox{\tt numeric x[]a[]b}'
6498 which recycles all variables of the form \.{x[i]a[j]b} (and no others), while
6499 `\hbox{\tt vardef x[]a[]=...}'
6500 discards all variables of the form \.{x[i]a[j]} followed by an arbitrary
6501 suffix, except for the collective node \.{x[]a[]} itself. The obvious way
6502 to handle such examples is to use recursion; so that's what we~do.
6505 Parameter |p| points to the root information of the variable;
6506 parameter |t| points to a list of one-word nodes that represent
6507 suffixes, with |info=collective_subscript| for subscripts.
6510 @<Declare subroutines for printing expressions@>
6511 @<Declare basic dependency-list subroutines@>
6512 @<Declare the recycling subroutines@>
6513 void mp_flush_cur_exp (MP mp,scaled v) ;
6514 @<Declare the procedure called |flush_below_variable|@>
6517 void mp_flush_variable (MP mp,pointer p, pointer t, boolean discard_suffixes) {
6518 pointer q,r; /* list manipulation */
6519 halfword n; /* attribute to match */
6521 if ( type(p)!=mp_structured ) return;
6522 n=info(t); t=link(t);
6523 if ( n==collective_subscript ) {
6524 r=subscr_head_loc(p); q=link(r); /* |q=subscr_head(p)| */
6525 while ( name_type(q)==mp_subscr ){
6526 mp_flush_variable(mp, q,t,discard_suffixes);
6528 if ( type(q)==mp_structured ) r=q;
6529 else { link(r)=link(q); mp_free_node(mp, q,subscr_node_size); }
6539 } while (attr_loc(p)<n);
6540 if ( attr_loc(p)!=n ) return;
6542 if ( discard_suffixes ) {
6543 mp_flush_below_variable(mp, p);
6545 if ( type(p)==mp_structured ) p=attr_head(p);
6546 mp_recycle_value(mp, p);
6550 @ The next procedure is simpler; it wipes out everything but |p| itself,
6551 which becomes undefined.
6553 @<Declare the procedure called |flush_below_variable|@>=
6554 void mp_flush_below_variable (MP mp, pointer p);
6557 void mp_flush_below_variable (MP mp,pointer p) {
6558 pointer q,r; /* list manipulation registers */
6559 if ( type(p)!=mp_structured ) {
6560 mp_recycle_value(mp, p); /* this sets |type(p)=undefined| */
6563 while ( name_type(q)==mp_subscr ) {
6564 mp_flush_below_variable(mp, q); r=q; q=link(q);
6565 mp_free_node(mp, r,subscr_node_size);
6567 r=attr_head(p); q=link(r); mp_recycle_value(mp, r);
6568 if ( name_type(p)<=mp_saved_root ) mp_free_node(mp, r,value_node_size);
6569 else mp_free_node(mp, r,subscr_node_size);
6570 /* we assume that |subscr_node_size=attr_node_size| */
6572 mp_flush_below_variable(mp, q); r=q; q=link(q); mp_free_node(mp, r,attr_node_size);
6573 } while (q!=end_attr);
6578 @ Just before assigning a new value to a variable, we will recycle the
6579 old value and make the old value undefined. The |und_type| routine
6580 determines what type of undefined value should be given, based on
6581 the current type before recycling.
6584 small_number mp_und_type (MP mp,pointer p) {
6586 case undefined: case mp_vacuous:
6588 case mp_boolean_type: case mp_unknown_boolean:
6589 return mp_unknown_boolean;
6590 case mp_string_type: case mp_unknown_string:
6591 return mp_unknown_string;
6592 case mp_pen_type: case mp_unknown_pen:
6593 return mp_unknown_pen;
6594 case mp_path_type: case mp_unknown_path:
6595 return mp_unknown_path;
6596 case mp_picture_type: case mp_unknown_picture:
6597 return mp_unknown_picture;
6598 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
6599 case mp_pair_type: case mp_numeric_type:
6601 case mp_known: case mp_dependent: case mp_proto_dependent: case mp_independent:
6602 return mp_numeric_type;
6603 } /* there are no other cases */
6607 @ The |clear_symbol| routine is used when we want to redefine the equivalent
6608 of a symbolic token. It must remove any variable structure or macro
6609 definition that is currently attached to that symbol. If the |saving|
6610 parameter is true, a subsidiary structure is saved instead of destroyed.
6613 void mp_clear_symbol (MP mp,pointer p, boolean saving) {
6614 pointer q; /* |equiv(p)| */
6616 switch (eq_type(p) % outer_tag) {
6618 case secondary_primary_macro:
6619 case tertiary_secondary_macro:
6620 case expression_tertiary_macro:
6621 if ( ! saving ) mp_delete_mac_ref(mp, q);
6626 name_type(q)=mp_saved_root;
6628 mp_flush_below_variable(mp, q); mp_free_node(mp,q,value_node_size);
6635 mp->eqtb[p]=mp->eqtb[frozen_undefined];
6638 @* \[16] Saving and restoring equivalents.
6639 The nested structure given by \&{begingroup} and \&{endgroup}
6640 allows |eqtb| entries to be saved and restored, so that temporary changes
6641 can be made without difficulty. When the user requests a current value to
6642 be saved, \MP\ puts that value into its ``save stack.'' An appearance of
6643 \&{endgroup} ultimately causes the old values to be removed from the save
6644 stack and put back in their former places.
6646 The save stack is a linked list containing three kinds of entries,
6647 distinguished by their |info| fields. If |p| points to a saved item,
6651 |info(p)=0| stands for a group boundary; each \&{begingroup} contributes
6652 such an item to the save stack and each \&{endgroup} cuts back the stack
6653 until the most recent such entry has been removed.
6656 |info(p)=q|, where |1<=q<=hash_end|, means that |mem[p+1]| holds the former
6657 contents of |eqtb[q]|. Such save stack entries are generated by \&{save}
6658 commands or suitable \&{interim} commands.
6661 |info(p)=hash_end+q|, where |q>0|, means that |value(p)| is a |scaled|
6662 integer to be restored to internal parameter number~|q|. Such entries
6663 are generated by \&{interim} commands.
6666 The global variable |save_ptr| points to the top item on the save stack.
6668 @d save_node_size 2 /* number of words per non-boundary save-stack node */
6669 @d saved_equiv(A) mp->mem[(A)+1].hh /* where an |eqtb| entry gets saved */
6670 @d save_boundary_item(A) { (A)=mp_get_avail(mp); info((A))=0;
6671 link((A))=mp->save_ptr; mp->save_ptr=(A);
6675 pointer save_ptr; /* the most recently saved item */
6677 @ @<Set init...@>=mp->save_ptr=null;
6679 @ The |save_variable| routine is given a hash address |q|; it salts this
6680 address in the save stack, together with its current equivalent,
6681 then makes token~|q| behave as though it were brand new.
6683 Nothing is stacked when |save_ptr=null|, however; there's no way to remove
6684 things from the stack when the program is not inside a group, so there's
6685 no point in wasting the space.
6687 @c void mp_save_variable (MP mp,pointer q) {
6688 pointer p; /* temporary register */
6689 if ( mp->save_ptr!=null ){
6690 p=mp_get_node(mp, save_node_size); info(p)=q; link(p)=mp->save_ptr;
6691 saved_equiv(p)=mp->eqtb[q]; mp->save_ptr=p;
6693 mp_clear_symbol(mp, q,(mp->save_ptr!=null));
6696 @ Similarly, |save_internal| is given the location |q| of an internal
6697 quantity like |mp_tracing_pens|. It creates a save stack entry of the
6700 @c void mp_save_internal (MP mp,halfword q) {
6701 pointer p; /* new item for the save stack */
6702 if ( mp->save_ptr!=null ){
6703 p=mp_get_node(mp, save_node_size); info(p)=hash_end+q;
6704 link(p)=mp->save_ptr; value(p)=mp->internal[q]; mp->save_ptr=p;
6708 @ At the end of a group, the |unsave| routine restores all of the saved
6709 equivalents in reverse order. This routine will be called only when there
6710 is at least one boundary item on the save stack.
6713 void mp_unsave (MP mp) {
6714 pointer q; /* index to saved item */
6715 pointer p; /* temporary register */
6716 while ( info(mp->save_ptr)!=0 ) {
6717 q=info(mp->save_ptr);
6719 if ( mp->internal[mp_tracing_restores]>0 ) {
6720 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6721 mp_print(mp, mp->int_name[q-(hash_end)]); mp_print_char(mp, '=');
6722 mp_print_scaled(mp, value(mp->save_ptr)); mp_print_char(mp, '}');
6723 mp_end_diagnostic(mp, false);
6725 mp->internal[q-(hash_end)]=value(mp->save_ptr);
6727 if ( mp->internal[mp_tracing_restores]>0 ) {
6728 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6729 mp_print_text(q); mp_print_char(mp, '}');
6730 mp_end_diagnostic(mp, false);
6732 mp_clear_symbol(mp, q,false);
6733 mp->eqtb[q]=saved_equiv(mp->save_ptr);
6734 if ( eq_type(q) % outer_tag==tag_token ) {
6736 if ( p!=null ) name_type(p)=mp_root;
6739 p=link(mp->save_ptr);
6740 mp_free_node(mp, mp->save_ptr,save_node_size); mp->save_ptr=p;
6742 p=link(mp->save_ptr); free_avail(mp->save_ptr); mp->save_ptr=p;
6745 @* \[17] Data structures for paths.
6746 When a \MP\ user specifies a path, \MP\ will create a list of knots
6747 and control points for the associated cubic spline curves. If the
6748 knots are $z_0$, $z_1$, \dots, $z_n$, there are control points
6749 $z_k^+$ and $z_{k+1}^-$ such that the cubic splines between knots
6750 $z_k$ and $z_{k+1}$ are defined by B\'ezier's formula
6751 @:Bezier}{B\'ezier, Pierre Etienne@>
6752 $$\eqalign{z(t)&=B(z_k,z_k^+,z_{k+1}^-,z_{k+1};t)\cr
6753 &=(1-t)^3z_k+3(1-t)^2tz_k^++3(1-t)t^2z_{k+1}^-+t^3z_{k+1}\cr}$$
6756 There is a 8-word node for each knot $z_k$, containing one word of
6757 control information and six words for the |x| and |y| coordinates of
6758 $z_k^-$ and $z_k$ and~$z_k^+$. The control information appears in the
6759 |left_type| and |right_type| fields, which each occupy a quarter of
6760 the first word in the node; they specify properties of the curve as it
6761 enters and leaves the knot. There's also a halfword |link| field,
6762 which points to the following knot, and a final supplementary word (of
6763 which only a quarter is used).
6765 If the path is a closed contour, knots 0 and |n| are identical;
6766 i.e., the |link| in knot |n-1| points to knot~0. But if the path
6767 is not closed, the |left_type| of knot~0 and the |right_type| of knot~|n|
6768 are equal to |endpoint|. In the latter case the |link| in knot~|n| points
6769 to knot~0, and the control points $z_0^-$ and $z_n^+$ are not used.
6771 @d left_type(A) mp->mem[(A)].hh.b0 /* characterizes the path entering this knot */
6772 @d right_type(A) mp->mem[(A)].hh.b1 /* characterizes the path leaving this knot */
6773 @d x_coord(A) mp->mem[(A)+1].sc /* the |x| coordinate of this knot */
6774 @d y_coord(A) mp->mem[(A)+2].sc /* the |y| coordinate of this knot */
6775 @d left_x(A) mp->mem[(A)+3].sc /* the |x| coordinate of previous control point */
6776 @d left_y(A) mp->mem[(A)+4].sc /* the |y| coordinate of previous control point */
6777 @d right_x(A) mp->mem[(A)+5].sc /* the |x| coordinate of next control point */
6778 @d right_y(A) mp->mem[(A)+6].sc /* the |y| coordinate of next control point */
6779 @d x_loc(A) ((A)+1) /* where the |x| coordinate is stored in a knot */
6780 @d y_loc(A) ((A)+2) /* where the |y| coordinate is stored in a knot */
6781 @d knot_coord(A) mp->mem[(A)].sc /* |x| or |y| coordinate given |x_loc| or |y_loc| */
6782 @d left_coord(A) mp->mem[(A)+2].sc
6783 /* coordinate of previous control point given |x_loc| or |y_loc| */
6784 @d right_coord(A) mp->mem[(A)+4].sc
6785 /* coordinate of next control point given |x_loc| or |y_loc| */
6786 @d knot_node_size 8 /* number of words in a knot node */
6790 mp_endpoint=0, /* |left_type| at path beginning and |right_type| at path end */
6791 mp_explicit, /* |left_type| or |right_type| when control points are known */
6792 mp_given, /* |left_type| or |right_type| when a direction is given */
6793 mp_curl, /* |left_type| or |right_type| when a curl is desired */
6794 mp_open, /* |left_type| or |right_type| when \MP\ should choose the direction */
6798 @ Before the B\'ezier control points have been calculated, the memory
6799 space they will ultimately occupy is taken up by information that can be
6800 used to compute them. There are four cases:
6803 \textindent{$\bullet$} If |right_type=mp_open|, the curve should leave
6804 the knot in the same direction it entered; \MP\ will figure out a
6808 \textindent{$\bullet$} If |right_type=mp_curl|, the curve should leave the
6809 knot in a direction depending on the angle at which it enters the next
6810 knot and on the curl parameter stored in |right_curl|.
6813 \textindent{$\bullet$} If |right_type=mp_given|, the curve should leave the
6814 knot in a nonzero direction stored as an |angle| in |right_given|.
6817 \textindent{$\bullet$} If |right_type=mp_explicit|, the B\'ezier control
6818 point for leaving this knot has already been computed; it is in the
6819 |right_x| and |right_y| fields.
6822 The rules for |left_type| are similar, but they refer to the curve entering
6823 the knot, and to \\{left} fields instead of \\{right} fields.
6825 Non-|explicit| control points will be chosen based on ``tension'' parameters
6826 in the |left_tension| and |right_tension| fields. The
6827 `\&{atleast}' option is represented by negative tension values.
6828 @:at_least_}{\&{atleast} primitive@>
6830 For example, the \MP\ path specification
6831 $$\.{z0..z1..tension atleast 1..\{curl 2\}z2..z3\{-1,-2\}..tension
6833 where \.p is the path `\.{z4..controls z45 and z54..z5}', will be represented
6835 \def\lodash{\hbox to 1.1em{\thinspace\hrulefill\thinspace}}
6836 $$\vbox{\halign{#\hfil&&\qquad#\hfil\cr
6837 |left_type|&\\{left} info&|x_coord,y_coord|&|right_type|&\\{right} info\cr
6839 |endpoint|&\lodash$,\,$\lodash&$x_0,y_0$&|curl|&$1.0,1.0$\cr
6840 |open|&\lodash$,1.0$&$x_1,y_1$&|open|&\lodash$,-1.0$\cr
6841 |curl|&$2.0,-1.0$&$x_2,y_2$&|curl|&$2.0,1.0$\cr
6842 |given|&$d,1.0$&$x_3,y_3$&|given|&$d,3.0$\cr
6843 |open|&\lodash$,4.0$&$x_4,y_4$&|explicit|&$x_{45},y_{45}$\cr
6844 |explicit|&$x_{54},y_{54}$&$x_5,y_5$&|endpoint|&\lodash$,\,$\lodash\cr}}$$
6845 Here |d| is the |angle| obtained by calling |n_arg(-unity,-two)|.
6846 Of course, this example is more complicated than anything a normal user
6849 These types must satisfy certain restrictions because of the form of \MP's
6851 (i)~|open| type never appears in the same node together with |endpoint|,
6853 (ii)~The |right_type| of a node is |explicit| if and only if the
6854 |left_type| of the following node is |explicit|.
6855 (iii)~|endpoint| types occur only at the ends, as mentioned above.
6857 @d left_curl left_x /* curl information when entering this knot */
6858 @d left_given left_x /* given direction when entering this knot */
6859 @d left_tension left_y /* tension information when entering this knot */
6860 @d right_curl right_x /* curl information when leaving this knot */
6861 @d right_given right_x /* given direction when leaving this knot */
6862 @d right_tension right_y /* tension information when leaving this knot */
6864 @ Knots can be user-supplied, or they can be created by program code,
6865 like the |split_cubic| function, or |copy_path|. The distinction is
6866 needed for the cleanup routine that runs after |split_cubic|, because
6867 it should only delete knots it has previously inserted, and never
6868 anything that was user-supplied. In order to be able to differentiate
6869 one knot from another, we will set |originator(p):=metapost_user| when
6870 it appeared in the actual metapost program, and
6871 |originator(p):=program_code| in all other cases.
6873 @d originator(A) mp->mem[(A)+7].hh.b0 /* the creator of this knot */
6874 @d program_code 0 /* not created by a user */
6875 @d metapost_user 1 /* created by a user */
6877 @ Here is a routine that prints a given knot list
6878 in symbolic form. It illustrates the conventions discussed above,
6879 and checks for anomalies that might arise while \MP\ is being debugged.
6881 @<Declare subroutines for printing expressions@>=
6882 void mp_pr_path (MP mp,pointer h);
6885 void mp_pr_path (MP mp,pointer h) {
6886 pointer p,q; /* for list traversal */
6890 if ( (p==null)||(q==null) ) {
6891 mp_print_nl(mp, "???"); return; /* this won't happen */
6894 @<Print information for adjacent knots |p| and |q|@>;
6897 if ( (p!=h)||(left_type(h)!=mp_endpoint) ) {
6898 @<Print two dots, followed by |given| or |curl| if present@>;
6901 if ( left_type(h)!=mp_endpoint )
6902 mp_print(mp, "cycle");
6905 @ @<Print information for adjacent knots...@>=
6906 mp_print_two(mp, x_coord(p),y_coord(p));
6907 switch (right_type(p)) {
6909 if ( left_type(p)==mp_open ) mp_print(mp, "{open?}"); /* can't happen */
6911 if ( (left_type(q)!=mp_endpoint)||(q!=h) ) q=null; /* force an error */
6915 @<Print control points between |p| and |q|, then |goto done1|@>;
6918 @<Print information for a curve that begins |open|@>;
6922 @<Print information for a curve that begins |curl| or |given|@>;
6925 mp_print(mp, "???"); /* can't happen */
6929 if ( left_type(q)<=mp_explicit ) {
6930 mp_print(mp, "..control?"); /* can't happen */
6932 } else if ( (right_tension(p)!=unity)||(left_tension(q)!=unity) ) {
6933 @<Print tension between |p| and |q|@>;
6936 @ Since |n_sin_cos| produces |fraction| results, which we will print as if they
6937 were |scaled|, the magnitude of a |given| direction vector will be~4096.
6939 @<Print two dots...@>=
6941 mp_print_nl(mp, " ..");
6942 if ( left_type(p)==mp_given ) {
6943 mp_n_sin_cos(mp, left_given(p)); mp_print_char(mp, '{');
6944 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
6945 mp_print_scaled(mp, mp->n_sin); mp_print_char(mp, '}');
6946 } else if ( left_type(p)==mp_curl ){
6947 mp_print(mp, "{curl ");
6948 mp_print_scaled(mp, left_curl(p)); mp_print_char(mp, '}');
6952 @ @<Print tension between |p| and |q|@>=
6954 mp_print(mp, "..tension ");
6955 if ( right_tension(p)<0 ) mp_print(mp, "atleast");
6956 mp_print_scaled(mp, abs(right_tension(p)));
6957 if ( right_tension(p)!=left_tension(q) ){
6958 mp_print(mp, " and ");
6959 if ( left_tension(q)<0 ) mp_print(mp, "atleast");
6960 mp_print_scaled(mp, abs(left_tension(q)));
6964 @ @<Print control points between |p| and |q|, then |goto done1|@>=
6966 mp_print(mp, "..controls ");
6967 mp_print_two(mp, right_x(p),right_y(p));
6968 mp_print(mp, " and ");
6969 if ( left_type(q)!=mp_explicit ) {
6970 mp_print(mp, "??"); /* can't happen */
6973 mp_print_two(mp, left_x(q),left_y(q));
6978 @ @<Print information for a curve that begins |open|@>=
6979 if ( (left_type(p)!=mp_explicit)&&(left_type(p)!=mp_open) ) {
6980 mp_print(mp, "{open?}"); /* can't happen */
6984 @ A curl of 1 is shown explicitly, so that the user sees clearly that
6985 \MP's default curl is present.
6987 The code here uses the fact that |left_curl==left_given| and
6988 |right_curl==right_given|.
6990 @<Print information for a curve that begins |curl|...@>=
6992 if ( left_type(p)==mp_open )
6993 mp_print(mp, "??"); /* can't happen */
6995 if ( right_type(p)==mp_curl ) {
6996 mp_print(mp, "{curl "); mp_print_scaled(mp, right_curl(p));
6998 mp_n_sin_cos(mp, right_given(p)); mp_print_char(mp, '{');
6999 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
7000 mp_print_scaled(mp, mp->n_sin);
7002 mp_print_char(mp, '}');
7005 @ It is convenient to have another version of |pr_path| that prints the path
7006 as a diagnostic message.
7008 @<Declare subroutines for printing expressions@>=
7009 void mp_print_path (MP mp,pointer h, char *s, boolean nuline) {
7010 mp_print_diagnostic(mp, "Path", s, nuline); mp_print_ln(mp);
7013 mp_end_diagnostic(mp, true);
7016 @ If we want to duplicate a knot node, we can say |copy_knot|:
7019 pointer mp_copy_knot (MP mp,pointer p) {
7020 pointer q; /* the copy */
7021 int k; /* runs through the words of a knot node */
7022 q=mp_get_node(mp, knot_node_size);
7023 for (k=0;k<=knot_node_size-1;k++) {
7024 mp->mem[q+k]=mp->mem[p+k];
7026 originator(q)=originator(p);
7030 @ The |copy_path| routine makes a clone of a given path.
7033 pointer mp_copy_path (MP mp, pointer p) {
7034 pointer q,pp,qq; /* for list manipulation */
7035 q=mp_copy_knot(mp, p);
7038 link(qq)=mp_copy_knot(mp, pp);
7046 @ Similarly, there's a way to copy the {\sl reverse\/} of a path. This procedure
7047 returns a pointer to the first node of the copy, if the path is a cycle,
7048 but to the final node of a non-cyclic copy. The global
7049 variable |path_tail| will point to the final node of the original path;
7050 this trick makes it easier to implement `\&{doublepath}'.
7052 All node types are assumed to be |endpoint| or |explicit| only.
7055 pointer mp_htap_ypoc (MP mp,pointer p) {
7056 pointer q,pp,qq,rr; /* for list manipulation */
7057 q=mp_get_node(mp, knot_node_size); /* this will correspond to |p| */
7060 right_type(qq)=left_type(pp); left_type(qq)=right_type(pp);
7061 x_coord(qq)=x_coord(pp); y_coord(qq)=y_coord(pp);
7062 right_x(qq)=left_x(pp); right_y(qq)=left_y(pp);
7063 left_x(qq)=right_x(pp); left_y(qq)=right_y(pp);
7064 originator(qq)=originator(pp);
7065 if ( link(pp)==p ) {
7066 link(q)=qq; mp->path_tail=pp; return q;
7068 rr=mp_get_node(mp, knot_node_size); link(rr)=qq; qq=rr; pp=link(pp);
7073 pointer path_tail; /* the node that links to the beginning of a path */
7075 @ When a cyclic list of knot nodes is no longer needed, it can be recycled by
7076 calling the following subroutine.
7078 @<Declare the recycling subroutines@>=
7079 void mp_toss_knot_list (MP mp,pointer p) ;
7082 void mp_toss_knot_list (MP mp,pointer p) {
7083 pointer q; /* the node being freed */
7084 pointer r; /* the next node */
7088 mp_free_node(mp, q,knot_node_size); q=r;
7092 @* \[18] Choosing control points.
7093 Now we must actually delve into one of \MP's more difficult routines,
7094 the |make_choices| procedure that chooses angles and control points for
7095 the splines of a curve when the user has not specified them explicitly.
7096 The parameter to |make_choices| points to a list of knots and
7097 path information, as described above.
7099 A path decomposes into independent segments at ``breakpoint'' knots,
7100 which are knots whose left and right angles are both prespecified in
7101 some way (i.e., their |left_type| and |right_type| aren't both open).
7104 @<Declare the procedure called |solve_choices|@>;
7105 void mp_make_choices (MP mp,pointer knots) {
7106 pointer h; /* the first breakpoint */
7107 pointer p,q; /* consecutive breakpoints being processed */
7108 @<Other local variables for |make_choices|@>;
7109 check_arith; /* make sure that |arith_error=false| */
7110 if ( mp->internal[mp_tracing_choices]>0 )
7111 mp_print_path(mp, knots,", before choices",true);
7112 @<If consecutive knots are equal, join them explicitly@>;
7113 @<Find the first breakpoint, |h|, on the path;
7114 insert an artificial breakpoint if the path is an unbroken cycle@>;
7117 @<Fill in the control points between |p| and the next breakpoint,
7118 then advance |p| to that breakpoint@>;
7120 if ( mp->internal[mp_tracing_choices]>0 )
7121 mp_print_path(mp, knots,", after choices",true);
7122 if ( mp->arith_error ) {
7123 @<Report an unexpected problem during the choice-making@>;
7127 @ @<Report an unexpected problem during the choice...@>=
7129 print_err("Some number got too big");
7130 @.Some number got too big@>
7131 help2("The path that I just computed is out of range.")
7132 ("So it will probably look funny. Proceed, for a laugh.");
7133 mp_put_get_error(mp); mp->arith_error=false;
7136 @ Two knots in a row with the same coordinates will always be joined
7137 by an explicit ``curve'' whose control points are identical with the
7140 @<If consecutive knots are equal, join them explicitly@>=
7144 if ( x_coord(p)==x_coord(q) && y_coord(p)==y_coord(q) && right_type(p)>mp_explicit ) {
7145 right_type(p)=mp_explicit;
7146 if ( left_type(p)==mp_open ) {
7147 left_type(p)=mp_curl; left_curl(p)=unity;
7149 left_type(q)=mp_explicit;
7150 if ( right_type(q)==mp_open ) {
7151 right_type(q)=mp_curl; right_curl(q)=unity;
7153 right_x(p)=x_coord(p); left_x(q)=x_coord(p);
7154 right_y(p)=y_coord(p); left_y(q)=y_coord(p);
7159 @ If there are no breakpoints, it is necessary to compute the direction
7160 angles around an entire cycle. In this case the |left_type| of the first
7161 node is temporarily changed to |end_cycle|.
7163 @<Find the first breakpoint, |h|, on the path...@>=
7166 if ( left_type(h)!=mp_open ) break;
7167 if ( right_type(h)!=mp_open ) break;
7170 left_type(h)=mp_end_cycle; break;
7174 @ If |right_type(p)<given| and |q=link(p)|, we must have
7175 |right_type(p)=left_type(q)=mp_explicit| or |endpoint|.
7177 @<Fill in the control points between |p| and the next breakpoint...@>=
7179 if ( right_type(p)>=mp_given ) {
7180 while ( (left_type(q)==mp_open)&&(right_type(q)==mp_open) ) q=link(q);
7181 @<Fill in the control information between
7182 consecutive breakpoints |p| and |q|@>;
7183 } else if ( right_type(p)==mp_endpoint ) {
7184 @<Give reasonable values for the unused control points between |p| and~|q|@>;
7188 @ This step makes it possible to transform an explicitly computed path without
7189 checking the |left_type| and |right_type| fields.
7191 @<Give reasonable values for the unused control points between |p| and~|q|@>=
7193 right_x(p)=x_coord(p); right_y(p)=y_coord(p);
7194 left_x(q)=x_coord(q); left_y(q)=y_coord(q);
7197 @ Before we can go further into the way choices are made, we need to
7198 consider the underlying theory. The basic ideas implemented in |make_choices|
7199 are due to John Hobby, who introduced the notion of ``mock curvature''
7200 @^Hobby, John Douglas@>
7201 at a knot. Angles are chosen so that they preserve mock curvature when
7202 a knot is passed, and this has been found to produce excellent results.
7204 It is convenient to introduce some notations that simplify the necessary
7205 formulas. Let $d_{k,k+1}=\vert z\k-z_k\vert$ be the (nonzero) distance
7206 between knots |k| and |k+1|; and let
7207 $${z\k-z_k\over z_k-z_{k-1}}={d_{k,k+1}\over d_{k-1,k}}e^{i\psi_k}$$
7208 so that a polygonal line from $z_{k-1}$ to $z_k$ to $z\k$ turns left
7209 through an angle of~$\psi_k$. We assume that $\vert\psi_k\vert\L180^\circ$.
7210 The control points for the spline from $z_k$ to $z\k$ will be denoted by
7211 $$\eqalign{z_k^+&=z_k+
7212 \textstyle{1\over3}\rho_k e^{i\theta_k}(z\k-z_k),\cr
7214 \textstyle{1\over3}\sigma\k e^{-i\phi\k}(z\k-z_k),\cr}$$
7215 where $\rho_k$ and $\sigma\k$ are nonnegative ``velocity ratios'' at the
7216 beginning and end of the curve, while $\theta_k$ and $\phi\k$ are the
7217 corresponding ``offset angles.'' These angles satisfy the condition
7218 $$\theta_k+\phi_k+\psi_k=0,\eqno(*)$$
7219 whenever the curve leaves an intermediate knot~|k| in the direction that
7222 @ Let $\alpha_k$ and $\beta\k$ be the reciprocals of the ``tension'' of
7223 the curve at its beginning and ending points. This means that
7224 $\rho_k=\alpha_k f(\theta_k,\phi\k)$ and $\sigma\k=\beta\k f(\phi\k,\theta_k)$,
7225 where $f(\theta,\phi)$ is \MP's standard velocity function defined in
7226 the |velocity| subroutine. The cubic spline $B(z_k^{\phantom+},z_k^+,
7227 z\k^-,z\k^{\phantom+};t)$
7230 $${2\sigma\k\sin(\theta_k+\phi\k)-6\sin\theta_k\over\rho_k^2d_{k,k+1}}
7231 \qquad{\rm and}\qquad
7232 {2\rho_k\sin(\theta_k+\phi\k)-6\sin\phi\k\over\sigma\k^2d_{k,k+1}}$$
7233 at |t=0| and |t=1|, respectively. The mock curvature is the linear
7235 approximation to this true curvature that arises in the limit for
7236 small $\theta_k$ and~$\phi\k$, if second-order terms are discarded.
7237 The standard velocity function satisfies
7238 $$f(\theta,\phi)=1+O(\theta^2+\theta\phi+\phi^2);$$
7239 hence the mock curvatures are respectively
7240 $${2\beta\k(\theta_k+\phi\k)-6\theta_k\over\alpha_k^2d_{k,k+1}}
7241 \qquad{\rm and}\qquad
7242 {2\alpha_k(\theta_k+\phi\k)-6\phi\k\over\beta\k^2d_{k,k+1}}.\eqno(**)$$
7244 @ The turning angles $\psi_k$ are given, and equation $(*)$ above
7245 determines $\phi_k$ when $\theta_k$ is known, so the task of
7246 angle selection is essentially to choose appropriate values for each
7247 $\theta_k$. When equation~$(*)$ is used to eliminate $\phi$~variables
7248 from $(**)$, we obtain a system of linear equations of the form
7249 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7251 $$A_k={\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7252 \qquad B_k={3-\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7253 \qquad C_k={3-\beta\k\over\alpha_k^2d_{k,k+1}},
7254 \qquad D_k={\beta\k\over\alpha_k^2d_{k,k+1}}.$$
7255 The tensions are always $3\over4$ or more, hence each $\alpha$ and~$\beta$
7256 will be at most $4\over3$. It follows that $B_k\G{5\over4}A_k$ and
7257 $C_k\G{5\over4}D_k$; hence the equations are diagonally dominant;
7258 hence they have a unique solution. Moreover, in most cases the tensions
7259 are equal to~1, so that $B_k=2A_k$ and $C_k=2D_k$. This makes the
7260 solution numerically stable, and there is an exponential damping
7261 effect: The data at knot $k\pm j$ affects the angle at knot~$k$ by
7262 a factor of~$O(2^{-j})$.
7264 @ However, we still must consider the angles at the starting and ending
7265 knots of a non-cyclic path. These angles might be given explicitly, or
7266 they might be specified implicitly in terms of an amount of ``curl.''
7268 Let's assume that angles need to be determined for a non-cyclic path
7269 starting at $z_0$ and ending at~$z_n$. Then equations of the form
7270 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta_{k+1}=R_k$$
7271 have been given for $0<k<n$, and it will be convenient to introduce
7272 equations of the same form for $k=0$ and $k=n$, where
7273 $$A_0=B_0=C_n=D_n=0.$$
7274 If $\theta_0$ is supposed to have a given value $E_0$, we simply
7275 define $C_0=0$, $D_0=0$, and $R_0=E_0$. Otherwise a curl
7276 parameter, $\gamma_0$, has been specified at~$z_0$; this means
7277 that the mock curvature at $z_0$ should be $\gamma_0$ times the
7278 mock curvature at $z_1$; i.e.,
7279 $${2\beta_1(\theta_0+\phi_1)-6\theta_0\over\alpha_0^2d_{01}}
7280 =\gamma_0{2\alpha_0(\theta_0+\phi_1)-6\phi_1\over\beta_1^2d_{01}}.$$
7281 This equation simplifies to
7282 $$(\alpha_0\chi_0+3-\beta_1)\theta_0+
7283 \bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\theta_1=
7284 -\bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\psi_1,$$
7285 where $\chi_0=\alpha_0^2\gamma_0/\beta_1^2$; so we can set $C_0=
7286 \chi_0\alpha_0+3-\beta_1$, $D_0=(3-\alpha_0)\chi_0+\beta_1$, $R_0=-D_0\psi_1$.
7287 It can be shown that $C_0>0$ and $C_0B_1-A_1D_0>0$ when $\gamma_0\G0$,
7288 hence the linear equations remain nonsingular.
7290 Similar considerations apply at the right end, when the final angle $\phi_n$
7291 may or may not need to be determined. It is convenient to let $\psi_n=0$,
7292 hence $\theta_n=-\phi_n$. We either have an explicit equation $\theta_n=E_n$,
7294 $$\bigl((3-\beta_n)\chi_n+\alpha_{n-1}\bigr)\theta_{n-1}+
7295 (\beta_n\chi_n+3-\alpha_{n-1})\theta_n=0,\qquad
7296 \chi_n={\beta_n^2\gamma_n\over\alpha_{n-1}^2}.$$
7298 When |make_choices| chooses angles, it must compute the coefficients of
7299 these linear equations, then solve the equations. To compute the coefficients,
7300 it is necessary to compute arctangents of the given turning angles~$\psi_k$.
7301 When the equations are solved, the chosen directions $\theta_k$ are put
7302 back into the form of control points by essentially computing sines and
7305 @ OK, we are ready to make the hard choices of |make_choices|.
7306 Most of the work is relegated to an auxiliary procedure
7307 called |solve_choices|, which has been introduced to keep
7308 |make_choices| from being extremely long.
7310 @<Fill in the control information between...@>=
7311 @<Calculate the turning angles $\psi_k$ and the distances $d_{k,k+1}$;
7312 set $n$ to the length of the path@>;
7313 @<Remove |open| types at the breakpoints@>;
7314 mp_solve_choices(mp, p,q,n)
7316 @ It's convenient to precompute quantities that will be needed several
7317 times later. The values of |delta_x[k]| and |delta_y[k]| will be the
7318 coordinates of $z\k-z_k$, and the magnitude of this vector will be
7319 |delta[k]=@t$d_{k,k+1}$@>|. The path angle $\psi_k$ between $z_k-z_{k-1}$
7320 and $z\k-z_k$ will be stored in |psi[k]|.
7323 int path_size; /* maximum number of knots between breakpoints of a path */
7326 scaled *delta; /* knot differences */
7327 angle *psi; /* turning angles */
7329 @ @<Allocate or initialize ...@>=
7335 @ @<Dealloc variables@>=
7341 @ @<Other local variables for |make_choices|@>=
7342 int k,n; /* current and final knot numbers */
7343 pointer s,t; /* registers for list traversal */
7344 scaled delx,dely; /* directions where |open| meets |explicit| */
7345 fraction sine,cosine; /* trig functions of various angles */
7347 @ @<Calculate the turning angles...@>=
7350 k=0; s=p; n=mp->path_size;
7353 mp->delta_x[k]=x_coord(t)-x_coord(s);
7354 mp->delta_y[k]=y_coord(t)-y_coord(s);
7355 mp->delta[k]=mp_pyth_add(mp, mp->delta_x[k],mp->delta_y[k]);
7357 sine=mp_make_fraction(mp, mp->delta_y[k-1],mp->delta[k-1]);
7358 cosine=mp_make_fraction(mp, mp->delta_x[k-1],mp->delta[k-1]);
7359 mp->psi[k]=mp_n_arg(mp, mp_take_fraction(mp, mp->delta_x[k],cosine)+
7360 mp_take_fraction(mp, mp->delta_y[k],sine),
7361 mp_take_fraction(mp, mp->delta_y[k],cosine)-
7362 mp_take_fraction(mp, mp->delta_x[k],sine));
7365 if ( k==mp->path_size ) {
7366 mp_reallocate_paths(mp, mp->path_size+(mp->path_size>>2));
7367 goto RESTART; /* retry, loop size has changed */
7370 } while (! (k>=n)&&(left_type(s)!=mp_end_cycle));
7371 if ( k==n ) mp->psi[n]=0; else mp->psi[k]=mp->psi[1];
7374 @ When we get to this point of the code, |right_type(p)| is either
7375 |given| or |curl| or |open|. If it is |open|, we must have
7376 |left_type(p)=mp_end_cycle| or |left_type(p)=mp_explicit|. In the latter
7377 case, the |open| type is converted to |given|; however, if the
7378 velocity coming into this knot is zero, the |open| type is
7379 converted to a |curl|, since we don't know the incoming direction.
7381 Similarly, |left_type(q)| is either |given| or |curl| or |open| or
7382 |mp_end_cycle|. The |open| possibility is reduced either to |given| or to |curl|.
7384 @<Remove |open| types at the breakpoints@>=
7385 if ( left_type(q)==mp_open ) {
7386 delx=right_x(q)-x_coord(q); dely=right_y(q)-y_coord(q);
7387 if ( (delx==0)&&(dely==0) ) {
7388 left_type(q)=mp_curl; left_curl(q)=unity;
7390 left_type(q)=mp_given; left_given(q)=mp_n_arg(mp, delx,dely);
7393 if ( (right_type(p)==mp_open)&&(left_type(p)==mp_explicit) ) {
7394 delx=x_coord(p)-left_x(p); dely=y_coord(p)-left_y(p);
7395 if ( (delx==0)&&(dely==0) ) {
7396 right_type(p)=mp_curl; right_curl(p)=unity;
7398 right_type(p)=mp_given; right_given(p)=mp_n_arg(mp, delx,dely);
7402 @ Linear equations need to be solved whenever |n>1|; and also when |n=1|
7403 and exactly one of the breakpoints involves a curl. The simplest case occurs
7404 when |n=1| and there is a curl at both breakpoints; then we simply draw
7407 But before coding up the simple cases, we might as well face the general case,
7408 since we must deal with it sooner or later, and since the general case
7409 is likely to give some insight into the way simple cases can be handled best.
7411 When there is no cycle, the linear equations to be solved form a tridiagonal
7412 system, and we can apply the standard technique of Gaussian elimination
7413 to convert that system to a sequence of equations of the form
7414 $$\theta_0+u_0\theta_1=v_0,\quad
7415 \theta_1+u_1\theta_2=v_1,\quad\ldots,\quad
7416 \theta_{n-1}+u_{n-1}\theta_n=v_{n-1},\quad
7418 It is possible to do this diagonalization while generating the equations.
7419 Once $\theta_n$ is known, it is easy to determine $\theta_{n-1}$, \dots,
7420 $\theta_1$, $\theta_0$; thus, the equations will be solved.
7422 The procedure is slightly more complex when there is a cycle, but the
7423 basic idea will be nearly the same. In the cyclic case the right-hand
7424 sides will be $v_k+w_k\theta_0$ instead of simply $v_k$, and we will start
7425 the process off with $u_0=v_0=0$, $w_0=1$. The final equation will be not
7426 $\theta_n=v_n$ but $\theta_n+u_n\theta_1=v_n+w_n\theta_0$; an appropriate
7427 ending routine will take account of the fact that $\theta_n=\theta_0$ and
7428 eliminate the $w$'s from the system, after which the solution can be
7431 When $u_k$, $v_k$, and $w_k$ are being computed, the three pointer
7432 variables |r|, |s|,~|t| will point respectively to knots |k-1|, |k|,
7433 and~|k+1|. The $u$'s and $w$'s are scaled by $2^{28}$, i.e., they are
7434 of type |fraction|; the $\theta$'s and $v$'s are of type |angle|.
7437 angle *theta; /* values of $\theta_k$ */
7438 fraction *uu; /* values of $u_k$ */
7439 angle *vv; /* values of $v_k$ */
7440 fraction *ww; /* values of $w_k$ */
7442 @ @<Allocate or initialize ...@>=
7448 @ @<Dealloc variables@>=
7454 @ @<Declare |mp_reallocate| functions@>=
7455 void mp_reallocate_paths (MP mp, int l);
7458 void mp_reallocate_paths (MP mp, int l) {
7459 XREALLOC (mp->delta_x, l, scaled);
7460 XREALLOC (mp->delta_y, l, scaled);
7461 XREALLOC (mp->delta, l, scaled);
7462 XREALLOC (mp->psi, l, angle);
7463 XREALLOC (mp->theta, l, angle);
7464 XREALLOC (mp->uu, l, fraction);
7465 XREALLOC (mp->vv, l, angle);
7466 XREALLOC (mp->ww, l, fraction);
7470 @ Our immediate problem is to get the ball rolling by setting up the
7471 first equation or by realizing that no equations are needed, and to fit
7472 this initialization into a framework suitable for the overall computation.
7474 @<Declare the procedure called |solve_choices|@>=
7475 @<Declare subroutines needed by |solve_choices|@>;
7476 void mp_solve_choices (MP mp,pointer p, pointer q, halfword n) {
7477 int k; /* current knot number */
7478 pointer r,s,t; /* registers for list traversal */
7479 @<Other local variables for |solve_choices|@>;
7484 @<Get the linear equations started; or |return|
7485 with the control points in place, if linear equations
7488 switch (left_type(s)) {
7489 case mp_end_cycle: case mp_open:
7490 @<Set up equation to match mock curvatures
7491 at $z_k$; then |goto found| with $\theta_n$
7492 adjusted to equal $\theta_0$, if a cycle has ended@>;
7495 @<Set up equation for a curl at $\theta_n$
7499 @<Calculate the given value of $\theta_n$
7502 } /* there are no other cases */
7507 @<Finish choosing angles and assigning control points@>;
7510 @ On the first time through the loop, we have |k=0| and |r| is not yet
7511 defined. The first linear equation, if any, will have $A_0=B_0=0$.
7513 @<Get the linear equations started...@>=
7514 switch (right_type(s)) {
7516 if ( left_type(t)==mp_given ) {
7517 @<Reduce to simple case of two givens and |return|@>
7519 @<Set up the equation for a given value of $\theta_0$@>;
7523 if ( left_type(t)==mp_curl ) {
7524 @<Reduce to simple case of straight line and |return|@>
7526 @<Set up the equation for a curl at $\theta_0$@>;
7530 mp->uu[0]=0; mp->vv[0]=0; mp->ww[0]=fraction_one;
7531 /* this begins a cycle */
7533 } /* there are no other cases */
7535 @ The general equation that specifies equality of mock curvature at $z_k$ is
7536 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7537 as derived above. We want to combine this with the already-derived equation
7538 $\theta_{k-1}+u_{k-1}\theta_k=v_{k-1}+w_{k-1}\theta_0$ in order to obtain
7540 $\theta_k+u_k\theta\k=v_k+w_k\theta_0$. This can be done by dividing the
7542 $$(B_k-u_{k-1}A_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k-A_kv_{k-1}
7543 -A_kw_{k-1}\theta_0$$
7544 by $B_k-u_{k-1}A_k+C_k$. The trick is to do this carefully with
7545 fixed-point arithmetic, avoiding the chance of overflow while retaining
7548 The calculations will be performed in several registers that
7549 provide temporary storage for intermediate quantities.
7551 @<Other local variables for |solve_choices|@>=
7552 fraction aa,bb,cc,ff,acc; /* temporary registers */
7553 scaled dd,ee; /* likewise, but |scaled| */
7554 scaled lt,rt; /* tension values */
7556 @ @<Set up equation to match mock curvatures...@>=
7557 { @<Calculate the values $\\{aa}=A_k/B_k$, $\\{bb}=D_k/C_k$,
7558 $\\{dd}=(3-\alpha_{k-1})d_{k,k+1}$, $\\{ee}=(3-\beta\k)d_{k-1,k}$,
7559 and $\\{cc}=(B_k-u_{k-1}A_k)/B_k$@>;
7560 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>;
7561 mp->uu[k]=mp_take_fraction(mp, ff,bb);
7562 @<Calculate the values of $v_k$ and $w_k$@>;
7563 if ( left_type(s)==mp_end_cycle ) {
7564 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>;
7568 @ Since tension values are never less than 3/4, the values |aa| and
7569 |bb| computed here are never more than 4/5.
7571 @<Calculate the values $\\{aa}=...@>=
7572 if ( abs(right_tension(r))==unity) {
7573 aa=fraction_half; dd=2*mp->delta[k];
7575 aa=mp_make_fraction(mp, unity,3*abs(right_tension(r))-unity);
7576 dd=mp_take_fraction(mp, mp->delta[k],
7577 fraction_three-mp_make_fraction(mp, unity,abs(right_tension(r))));
7579 if ( abs(left_tension(t))==unity ){
7580 bb=fraction_half; ee=2*mp->delta[k-1];
7582 bb=mp_make_fraction(mp, unity,3*abs(left_tension(t))-unity);
7583 ee=mp_take_fraction(mp, mp->delta[k-1],
7584 fraction_three-mp_make_fraction(mp, unity,abs(left_tension(t))));
7586 cc=fraction_one-mp_take_fraction(mp, mp->uu[k-1],aa)
7588 @ The ratio to be calculated in this step can be written in the form
7589 $$\beta_k^2\cdot\\{ee}\over\beta_k^2\cdot\\{ee}+\alpha_k^2\cdot
7590 \\{cc}\cdot\\{dd},$$
7591 because of the quantities just calculated. The values of |dd| and |ee|
7592 will not be needed after this step has been performed.
7594 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>=
7595 dd=mp_take_fraction(mp, dd,cc); lt=abs(left_tension(s)); rt=abs(right_tension(s));
7596 if ( lt!=rt ) { /* $\beta_k^{-1}\ne\alpha_k^{-1}$ */
7598 ff=mp_make_fraction(mp, lt,rt);
7599 ff=mp_take_fraction(mp, ff,ff); /* $\alpha_k^2/\beta_k^2$ */
7600 dd=mp_take_fraction(mp, dd,ff);
7602 ff=mp_make_fraction(mp, rt,lt);
7603 ff=mp_take_fraction(mp, ff,ff); /* $\beta_k^2/\alpha_k^2$ */
7604 ee=mp_take_fraction(mp, ee,ff);
7607 ff=mp_make_fraction(mp, ee,ee+dd)
7609 @ The value of $u_{k-1}$ will be |<=1| except when $k=1$ and the previous
7610 equation was specified by a curl. In that case we must use a special
7611 method of computation to prevent overflow.
7613 Fortunately, the calculations turn out to be even simpler in this ``hard''
7614 case. The curl equation makes $w_0=0$ and $v_0=-u_0\psi_1$, hence
7615 $-B_1\psi_1-A_1v_0=-(B_1-u_0A_1)\psi_1=-\\{cc}\cdot B_1\psi_1$.
7617 @<Calculate the values of $v_k$ and $w_k$@>=
7618 acc=-mp_take_fraction(mp, mp->psi[k+1],mp->uu[k]);
7619 if ( right_type(r)==mp_curl ) {
7621 mp->vv[k]=acc-mp_take_fraction(mp, mp->psi[1],fraction_one-ff);
7623 ff=mp_make_fraction(mp, fraction_one-ff,cc); /* this is
7624 $B_k/(C_k+B_k-u_{k-1}A_k)<5$ */
7625 acc=acc-mp_take_fraction(mp, mp->psi[k],ff);
7626 ff=mp_take_fraction(mp, ff,aa); /* this is $A_k/(C_k+B_k-u_{k-1}A_k)$ */
7627 mp->vv[k]=acc-mp_take_fraction(mp, mp->vv[k-1],ff);
7628 if ( mp->ww[k-1]==0 ) mp->ww[k]=0;
7629 else mp->ww[k]=-mp_take_fraction(mp, mp->ww[k-1],ff);
7632 @ When a complete cycle has been traversed, we have $\theta_k+u_k\theta\k=
7633 v_k+w_k\theta_0$, for |1<=k<=n|. We would like to determine the value of
7634 $\theta_n$ and reduce the system to the form $\theta_k+u_k\theta\k=v_k$
7635 for |0<=k<n|, so that the cyclic case can be finished up just as if there
7638 The idea in the following code is to observe that
7639 $$\eqalign{\theta_n&=v_n+w_n\theta_0-u_n\theta_1=\cdots\cr
7640 &=v_n+w_n\theta_0-u_n\bigl(v_1+w_1\theta_0-u_1(v_2+\cdots
7641 -u_{n-2}(v_{n-1}+w_{n-1}\theta_0-u_{n-1}\theta_0))\bigr),\cr}$$
7642 so we can solve for $\theta_n=\theta_0$.
7644 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>=
7646 aa=0; bb=fraction_one; /* we have |k=n| */
7649 aa=mp->vv[k]-mp_take_fraction(mp, aa,mp->uu[k]);
7650 bb=mp->ww[k]-mp_take_fraction(mp, bb,mp->uu[k]);
7651 } while (k!=n); /* now $\theta_n=\\{aa}+\\{bb}\cdot\theta_n$ */
7652 aa=mp_make_fraction(mp, aa,fraction_one-bb);
7653 mp->theta[n]=aa; mp->vv[0]=aa;
7654 for (k=1;k<=n-1;k++) {
7655 mp->vv[k]=mp->vv[k]+mp_take_fraction(mp, aa,mp->ww[k]);
7660 @ @d reduce_angle(A) if ( abs((A))>one_eighty_deg ) {
7661 if ( (A)>0 ) (A)=(A)-three_sixty_deg; else (A)=(A)+three_sixty_deg; }
7663 @<Calculate the given value of $\theta_n$...@>=
7665 mp->theta[n]=left_given(s)-mp_n_arg(mp, mp->delta_x[n-1],mp->delta_y[n-1]);
7666 reduce_angle(mp->theta[n]);
7670 @ @<Set up the equation for a given value of $\theta_0$@>=
7672 mp->vv[0]=right_given(s)-mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7673 reduce_angle(mp->vv[0]);
7674 mp->uu[0]=0; mp->ww[0]=0;
7677 @ @<Set up the equation for a curl at $\theta_0$@>=
7678 { cc=right_curl(s); lt=abs(left_tension(t)); rt=abs(right_tension(s));
7679 if ( (rt==unity)&&(lt==unity) )
7680 mp->uu[0]=mp_make_fraction(mp, cc+cc+unity,cc+two);
7682 mp->uu[0]=mp_curl_ratio(mp, cc,rt,lt);
7683 mp->vv[0]=-mp_take_fraction(mp, mp->psi[1],mp->uu[0]); mp->ww[0]=0;
7686 @ @<Set up equation for a curl at $\theta_n$...@>=
7687 { cc=left_curl(s); lt=abs(left_tension(s)); rt=abs(right_tension(r));
7688 if ( (rt==unity)&&(lt==unity) )
7689 ff=mp_make_fraction(mp, cc+cc+unity,cc+two);
7691 ff=mp_curl_ratio(mp, cc,lt,rt);
7692 mp->theta[n]=-mp_make_fraction(mp, mp_take_fraction(mp, mp->vv[n-1],ff),
7693 fraction_one-mp_take_fraction(mp, ff,mp->uu[n-1]));
7697 @ The |curl_ratio| subroutine has three arguments, which our previous notation
7698 encourages us to call $\gamma$, $\alpha^{-1}$, and $\beta^{-1}$. It is
7699 a somewhat tedious program to calculate
7700 $${(3-\alpha)\alpha^2\gamma+\beta^3\over
7701 \alpha^3\gamma+(3-\beta)\beta^2},$$
7702 with the result reduced to 4 if it exceeds 4. (This reduction of curl
7703 is necessary only if the curl and tension are both large.)
7704 The values of $\alpha$ and $\beta$ will be at most~4/3.
7706 @<Declare subroutines needed by |solve_choices|@>=
7707 fraction mp_curl_ratio (MP mp,scaled gamma, scaled a_tension,
7709 fraction alpha,beta,num,denom,ff; /* registers */
7710 alpha=mp_make_fraction(mp, unity,a_tension);
7711 beta=mp_make_fraction(mp, unity,b_tension);
7712 if ( alpha<=beta ) {
7713 ff=mp_make_fraction(mp, alpha,beta); ff=mp_take_fraction(mp, ff,ff);
7714 gamma=mp_take_fraction(mp, gamma,ff);
7715 beta=beta / 010000; /* convert |fraction| to |scaled| */
7716 denom=mp_take_fraction(mp, gamma,alpha)+three-beta;
7717 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7719 ff=mp_make_fraction(mp, beta,alpha); ff=mp_take_fraction(mp, ff,ff);
7720 beta=mp_take_fraction(mp, beta,ff) / 010000; /* convert |fraction| to |scaled| */
7721 denom=mp_take_fraction(mp, gamma,alpha)+(ff / 1365)-beta;
7722 /* $1365\approx 2^{12}/3$ */
7723 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7725 if ( num>=denom+denom+denom+denom ) return fraction_four;
7726 else return mp_make_fraction(mp, num,denom);
7729 @ We're in the home stretch now.
7731 @<Finish choosing angles and assigning control points@>=
7732 for (k=n-1;k>=0;k--) {
7733 mp->theta[k]=mp->vv[k]-mp_take_fraction(mp,mp->theta[k+1],mp->uu[k]);
7738 mp_n_sin_cos(mp, mp->theta[k]); mp->st=mp->n_sin; mp->ct=mp->n_cos;
7739 mp_n_sin_cos(mp, -mp->psi[k+1]-mp->theta[k+1]); mp->sf=mp->n_sin; mp->cf=mp->n_cos;
7740 mp_set_controls(mp, s,t,k);
7744 @ The |set_controls| routine actually puts the control points into
7745 a pair of consecutive nodes |p| and~|q|. Global variables are used to
7746 record the values of $\sin\theta$, $\cos\theta$, $\sin\phi$, and
7747 $\cos\phi$ needed in this calculation.
7753 fraction cf; /* sines and cosines */
7755 @ @<Declare subroutines needed by |solve_choices|@>=
7756 void mp_set_controls (MP mp,pointer p, pointer q, integer k) {
7757 fraction rr,ss; /* velocities, divided by thrice the tension */
7758 scaled lt,rt; /* tensions */
7759 fraction sine; /* $\sin(\theta+\phi)$ */
7760 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7761 rr=mp_velocity(mp, mp->st,mp->ct,mp->sf,mp->cf,rt);
7762 ss=mp_velocity(mp, mp->sf,mp->cf,mp->st,mp->ct,lt);
7763 if ( (right_tension(p)<0)||(left_tension(q)<0) ) {
7764 @<Decrease the velocities,
7765 if necessary, to stay inside the bounding triangle@>;
7767 right_x(p)=x_coord(p)+mp_take_fraction(mp,
7768 mp_take_fraction(mp, mp->delta_x[k],mp->ct)-
7769 mp_take_fraction(mp, mp->delta_y[k],mp->st),rr);
7770 right_y(p)=y_coord(p)+mp_take_fraction(mp,
7771 mp_take_fraction(mp, mp->delta_y[k],mp->ct)+
7772 mp_take_fraction(mp, mp->delta_x[k],mp->st),rr);
7773 left_x(q)=x_coord(q)-mp_take_fraction(mp,
7774 mp_take_fraction(mp, mp->delta_x[k],mp->cf)+
7775 mp_take_fraction(mp, mp->delta_y[k],mp->sf),ss);
7776 left_y(q)=y_coord(q)-mp_take_fraction(mp,
7777 mp_take_fraction(mp, mp->delta_y[k],mp->cf)-
7778 mp_take_fraction(mp, mp->delta_x[k],mp->sf),ss);
7779 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7782 @ The boundedness conditions $\\{rr}\L\sin\phi\,/\sin(\theta+\phi)$ and
7783 $\\{ss}\L\sin\theta\,/\sin(\theta+\phi)$ are to be enforced if $\sin\theta$,
7784 $\sin\phi$, and $\sin(\theta+\phi)$ all have the same sign. Otherwise
7785 there is no ``bounding triangle.''
7786 @:at_least_}{\&{atleast} primitive@>
7788 @<Decrease the velocities, if necessary...@>=
7789 if (((mp->st>=0)&&(mp->sf>=0))||((mp->st<=0)&&(mp->sf<=0)) ) {
7790 sine=mp_take_fraction(mp, abs(mp->st),mp->cf)+
7791 mp_take_fraction(mp, abs(mp->sf),mp->ct);
7793 sine=mp_take_fraction(mp, sine,fraction_one+unity); /* safety factor */
7794 if ( right_tension(p)<0 )
7795 if ( mp_ab_vs_cd(mp, abs(mp->sf),fraction_one,rr,sine)<0 )
7796 rr=mp_make_fraction(mp, abs(mp->sf),sine);
7797 if ( left_tension(q)<0 )
7798 if ( mp_ab_vs_cd(mp, abs(mp->st),fraction_one,ss,sine)<0 )
7799 ss=mp_make_fraction(mp, abs(mp->st),sine);
7803 @ Only the simple cases remain to be handled.
7805 @<Reduce to simple case of two givens and |return|@>=
7807 aa=mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7808 mp_n_sin_cos(mp, right_given(p)-aa); mp->ct=mp->n_cos; mp->st=mp->n_sin;
7809 mp_n_sin_cos(mp, left_given(q)-aa); mp->cf=mp->n_cos; mp->sf=-mp->n_sin;
7810 mp_set_controls(mp, p,q,0); return;
7813 @ @<Reduce to simple case of straight line and |return|@>=
7815 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7816 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7818 if ( mp->delta_x[0]>=0 ) right_x(p)=x_coord(p)+((mp->delta_x[0]+1) / 3);
7819 else right_x(p)=x_coord(p)+((mp->delta_x[0]-1) / 3);
7820 if ( mp->delta_y[0]>=0 ) right_y(p)=y_coord(p)+((mp->delta_y[0]+1) / 3);
7821 else right_y(p)=y_coord(p)+((mp->delta_y[0]-1) / 3);
7823 ff=mp_make_fraction(mp, unity,3*rt); /* $\alpha/3$ */
7824 right_x(p)=x_coord(p)+mp_take_fraction(mp, mp->delta_x[0],ff);
7825 right_y(p)=y_coord(p)+mp_take_fraction(mp, mp->delta_y[0],ff);
7828 if ( mp->delta_x[0]>=0 ) left_x(q)=x_coord(q)-((mp->delta_x[0]+1) / 3);
7829 else left_x(q)=x_coord(q)-((mp->delta_x[0]-1) / 3);
7830 if ( mp->delta_y[0]>=0 ) left_y(q)=y_coord(q)-((mp->delta_y[0]+1) / 3);
7831 else left_y(q)=y_coord(q)-((mp->delta_y[0]-1) / 3);
7833 ff=mp_make_fraction(mp, unity,3*lt); /* $\beta/3$ */
7834 left_x(q)=x_coord(q)-mp_take_fraction(mp, mp->delta_x[0],ff);
7835 left_y(q)=y_coord(q)-mp_take_fraction(mp, mp->delta_y[0],ff);
7840 @* \[19] Measuring paths.
7841 \MP's \&{llcorner}, \&{lrcorner}, \&{ulcorner}, and \&{urcorner} operators
7842 allow the user to measure the bounding box of anything that can go into a
7843 picture. It's easy to get rough bounds on the $x$ and $y$ extent of a path
7844 by just finding the bounding box of the knots and the control points. We
7845 need a more accurate version of the bounding box, but we can still use the
7846 easy estimate to save time by focusing on the interesting parts of the path.
7848 @ Computing an accurate bounding box involves a theme that will come up again
7849 and again. Given a Bernshte{\u\i}n polynomial
7850 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
7851 $$B(z_0,z_1,\ldots,z_n;t)=\sum_k{n\choose k}t^k(1-t)^{n-k}z_k,$$
7852 we can conveniently bisect its range as follows:
7855 \textindent{1)} Let $z_k^{(0)}=z_k$, for |0<=k<=n|.
7858 \textindent{2)} Let $z_k^{(j+1)}={1\over2}(z_k^{(j)}+z\k^{(j)})$, for
7859 |0<=k<n-j|, for |0<=j<n|.
7863 $$B(z_0,z_1,\ldots,z_n;t)=B(z_0^{(0)},z_0^{(1)},\ldots,z_0^{(n)};2t)
7864 =B(z_0^{(n)},z_1^{(n-1)},\ldots,z_n^{(0)};2t-1).$$
7865 This formula gives us the coefficients of polynomials to use over the ranges
7866 $0\L t\L{1\over2}$ and ${1\over2}\L t\L1$.
7868 @ Now here's a subroutine that's handy for all sorts of path computations:
7869 Given a quadratic polynomial $B(a,b,c;t)$, the |crossing_point| function
7870 returns the unique |fraction| value |t| between 0 and~1 at which
7871 $B(a,b,c;t)$ changes from positive to negative, or returns
7872 |t=fraction_one+1| if no such value exists. If |a<0| (so that $B(a,b,c;t)$
7873 is already negative at |t=0|), |crossing_point| returns the value zero.
7875 @d no_crossing { return (fraction_one+1); }
7876 @d one_crossing { return fraction_one; }
7877 @d zero_crossing { return 0; }
7878 @d mp_crossing_point(M,A,B,C) mp_do_crossing_point(A,B,C)
7880 @c fraction mp_do_crossing_point (integer a, integer b, integer c) {
7881 integer d; /* recursive counter */
7882 integer x,xx,x0,x1,x2; /* temporary registers for bisection */
7883 if ( a<0 ) zero_crossing;
7886 if ( c>0 ) { no_crossing; }
7887 else if ( (a==0)&&(b==0) ) { no_crossing;}
7888 else { one_crossing; }
7890 if ( a==0 ) zero_crossing;
7891 } else if ( a==0 ) {
7892 if ( b<=0 ) zero_crossing;
7894 @<Use bisection to find the crossing point, if one exists@>;
7897 @ The general bisection method is quite simple when $n=2$, hence
7898 |crossing_point| does not take much time. At each stage in the
7899 recursion we have a subinterval defined by |l| and~|j| such that
7900 $B(a,b,c;2^{-l}(j+t))=B(x_0,x_1,x_2;t)$, and we want to ``zero in'' on
7901 the subinterval where $x_0\G0$ and $\min(x_1,x_2)<0$.
7903 It is convenient for purposes of calculation to combine the values
7904 of |l| and~|j| in a single variable $d=2^l+j$, because the operation
7905 of bisection then corresponds simply to doubling $d$ and possibly
7906 adding~1. Furthermore it proves to be convenient to modify
7907 our previous conventions for bisection slightly, maintaining the
7908 variables $X_0=2^lx_0$, $X_1=2^l(x_0-x_1)$, and $X_2=2^l(x_1-x_2)$.
7909 With these variables the conditions $x_0\ge0$ and $\min(x_1,x_2)<0$ are
7910 equivalent to $\max(X_1,X_1+X_2)>X_0\ge0$.
7912 The following code maintains the invariant relations
7913 $0\L|x0|<\max(|x1|,|x1|+|x2|)$,
7914 $\vert|x1|\vert<2^{30}$, $\vert|x2|\vert<2^{30}$;
7915 it has been constructed in such a way that no arithmetic overflow
7916 will occur if the inputs satisfy
7917 $a<2^{30}$, $\vert a-b\vert<2^{30}$, and $\vert b-c\vert<2^{30}$.
7919 @<Use bisection to find the crossing point...@>=
7920 d=1; x0=a; x1=a-b; x2=b-c;
7931 if ( x<=x0 ) { if ( x+x2<=x0 ) no_crossing; }
7935 } while (d<fraction_one);
7936 return (d-fraction_one)
7938 @ Here is a routine that computes the $x$ or $y$ coordinate of the point on
7939 a cubic corresponding to the |fraction| value~|t|.
7941 It is convenient to define a \.{WEB} macro |t_of_the_way| such that
7942 |t_of_the_way(a,b)| expands to |a-(a-b)*t|, i.e., to |t[a,b]|.
7944 @d t_of_the_way(A,B) ((A)-mp_take_fraction(mp,(A)-(B),t))
7946 @c scaled mp_eval_cubic (MP mp,pointer p, pointer q, fraction t) {
7947 scaled x1,x2,x3; /* intermediate values */
7948 x1=t_of_the_way(knot_coord(p),right_coord(p));
7949 x2=t_of_the_way(right_coord(p),left_coord(q));
7950 x3=t_of_the_way(left_coord(q),knot_coord(q));
7951 x1=t_of_the_way(x1,x2);
7952 x2=t_of_the_way(x2,x3);
7953 return t_of_the_way(x1,x2);
7956 @ The actual bounding box information is stored in global variables.
7957 Since it is convenient to address the $x$ and $y$ information
7958 separately, we define arrays indexed by |x_code..y_code| and use
7959 macros to give them more convenient names.
7963 mp_x_code=0, /* index for |minx| and |maxx| */
7964 mp_y_code /* index for |miny| and |maxy| */
7968 @d minx mp->bbmin[mp_x_code]
7969 @d maxx mp->bbmax[mp_x_code]
7970 @d miny mp->bbmin[mp_y_code]
7971 @d maxy mp->bbmax[mp_y_code]
7974 scaled bbmin[mp_y_code+1];
7975 scaled bbmax[mp_y_code+1];
7976 /* the result of procedures that compute bounding box information */
7978 @ Now we're ready for the key part of the bounding box computation.
7979 The |bound_cubic| procedure updates |bbmin[c]| and |bbmax[c]| based on
7980 $$B(\hbox{|knot_coord(p)|}, \hbox{|right_coord(p)|},
7981 \hbox{|left_coord(q)|}, \hbox{|knot_coord(q)|};t)
7983 for $0<t\le1$. In other words, the procedure adjusts the bounds to
7984 accommodate |knot_coord(q)| and any extremes over the range $0<t<1$.
7985 The |c| parameter is |x_code| or |y_code|.
7987 @c void mp_bound_cubic (MP mp,pointer p, pointer q, small_number c) {
7988 boolean wavy; /* whether we need to look for extremes */
7989 scaled del1,del2,del3,del,dmax; /* proportional to the control
7990 points of a quadratic derived from a cubic */
7991 fraction t,tt; /* where a quadratic crosses zero */
7992 scaled x; /* a value that |bbmin[c]| and |bbmax[c]| must accommodate */
7994 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
7995 @<Check the control points against the bounding box and set |wavy:=true|
7996 if any of them lie outside@>;
7998 del1=right_coord(p)-knot_coord(p);
7999 del2=left_coord(q)-right_coord(p);
8000 del3=knot_coord(q)-left_coord(q);
8001 @<Scale up |del1|, |del2|, and |del3| for greater accuracy;
8002 also set |del| to the first nonzero element of |(del1,del2,del3)|@>;
8004 negate(del1); negate(del2); negate(del3);
8006 t=mp_crossing_point(mp, del1,del2,del3);
8007 if ( t<fraction_one ) {
8008 @<Test the extremes of the cubic against the bounding box@>;
8013 @ @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>=
8014 if ( x<mp->bbmin[c] ) mp->bbmin[c]=x;
8015 if ( x>mp->bbmax[c] ) mp->bbmax[c]=x
8017 @ @<Check the control points against the bounding box and set...@>=
8019 if ( mp->bbmin[c]<=right_coord(p) )
8020 if ( right_coord(p)<=mp->bbmax[c] )
8021 if ( mp->bbmin[c]<=left_coord(q) )
8022 if ( left_coord(q)<=mp->bbmax[c] )
8025 @ If |del1=del2=del3=0|, it's impossible to obey the title of this
8026 section. We just set |del=0| in that case.
8028 @<Scale up |del1|, |del2|, and |del3| for greater accuracy...@>=
8029 if ( del1!=0 ) del=del1;
8030 else if ( del2!=0 ) del=del2;
8034 if ( abs(del2)>dmax ) dmax=abs(del2);
8035 if ( abs(del3)>dmax ) dmax=abs(del3);
8036 while ( dmax<fraction_half ) {
8037 dmax+=dmax; del1+=del1; del2+=del2; del3+=del3;
8041 @ Since |crossing_point| has tried to choose |t| so that
8042 $B(|del1|,|del2|,|del3|;\tau)$ crosses zero at $\tau=|t|$ with negative
8043 slope, the value of |del2| computed below should not be positive.
8044 But rounding error could make it slightly positive in which case we
8045 must cut it to zero to avoid confusion.
8047 @<Test the extremes of the cubic against the bounding box@>=
8049 x=mp_eval_cubic(mp, p,q,t);
8050 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8051 del2=t_of_the_way(del2,del3);
8052 /* now |0,del2,del3| represent the derivative on the remaining interval */
8053 if ( del2>0 ) del2=0;
8054 tt=mp_crossing_point(mp, 0,-del2,-del3);
8055 if ( tt<fraction_one ) {
8056 @<Test the second extreme against the bounding box@>;
8060 @ @<Test the second extreme against the bounding box@>=
8062 x=mp_eval_cubic(mp, p,q,t_of_the_way(tt,fraction_one));
8063 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8066 @ Finding the bounding box of a path is basically a matter of applying
8067 |bound_cubic| twice for each pair of adjacent knots.
8069 @c void mp_path_bbox (MP mp,pointer h) {
8070 pointer p,q; /* a pair of adjacent knots */
8071 minx=x_coord(h); miny=y_coord(h);
8072 maxx=minx; maxy=miny;
8075 if ( right_type(p)==mp_endpoint ) return;
8077 mp_bound_cubic(mp, x_loc(p),x_loc(q),mp_x_code);
8078 mp_bound_cubic(mp, y_loc(p),y_loc(q),mp_y_code);
8083 @ Another important way to measure a path is to find its arc length. This
8084 is best done by using the general bisection algorithm to subdivide the path
8085 until obtaining ``well behaved'' subpaths whose arc lengths can be approximated
8088 Since the arc length is the integral with respect to time of the magnitude of
8089 the velocity, it is natural to use Simpson's rule for the approximation.
8091 If $\dot B(t)$ is the spline velocity, Simpson's rule gives
8092 $$ \vb\dot B(0)\vb + 4\vb\dot B({1\over2})\vb + \vb\dot B(1)\vb \over 6 $$
8093 for the arc length of a path of length~1. For a cubic spline
8094 $B(z_0,z_1,z_2,z_3;t)$, the time derivative $\dot B(t)$ is
8095 $3B(dz_0,dz_1,dz_2;t)$, where $dz_i=z_{i+1}-z_i$. Hence the arc length
8097 $$ {\vb dz_0\vb \over 2} + 2\vb dz_{02}\vb + {\vb dz_2\vb \over 2}, $$
8099 $$ dz_{02}={1\over2}\left({dz_0+dz_1\over 2}+{dz_1+dz_2\over 2}\right)$$
8100 is the result of the bisection algorithm.
8102 @ The remaining problem is how to decide when a subpath is ``well behaved.''
8103 This could be done via the theoretical error bound for Simpson's rule,
8105 but this is impractical because it requires an estimate of the fourth
8106 derivative of the quantity being integrated. It is much easier to just perform
8107 a bisection step and see how much the arc length estimate changes. Since the
8108 error for Simpson's rule is proportional to the fourth power of the sample
8109 spacing, the remaining error is typically about $1\over16$ of the amount of
8110 the change. We say ``typically'' because the error has a pseudo-random behavior
8111 that could cause the two estimates to agree when each contain large errors.
8113 To protect against disasters such as undetected cusps, the bisection process
8114 should always continue until all the $dz_i$ vectors belong to a single
8115 $90^\circ$ sector. This ensures that no point on the spline can have velocity
8116 less than 70\% of the minimum of $\vb dz_0\vb$, $\vb dz_1\vb$ and $\vb dz_2\vb$.
8117 If such a spline happens to produce an erroneous arc length estimate that
8118 is little changed by bisection, the amount of the error is likely to be fairly
8119 small. We will try to arrange things so that freak accidents of this type do
8120 not destroy the inverse relationship between the \&{arclength} and
8121 \&{arctime} operations.
8122 @:arclength_}{\&{arclength} primitive@>
8123 @:arctime_}{\&{arctime} primitive@>
8125 @ The \&{arclength} and \&{arctime} operations are both based on a recursive
8127 function that finds the arc length of a cubic spline given $dz_0$, $dz_1$,
8128 $dz_2$. This |arc_test| routine also takes an arc length goal |a_goal| and
8129 returns the time when the arc length reaches |a_goal| if there is such a time.
8130 Thus the return value is either an arc length less than |a_goal| or, if the
8131 arc length would be at least |a_goal|, it returns a time value decreased by
8132 |two|. This allows the caller to use the sign of the result to distinguish
8133 between arc lengths and time values. On certain types of overflow, it is
8134 possible for |a_goal| and the result of |arc_test| both to be |el_gordo|.
8135 Otherwise, the result is always less than |a_goal|.
8137 Rather than halving the control point coordinates on each recursive call to
8138 |arc_test|, it is better to keep them proportional to velocity on the original
8139 curve and halve the results instead. This means that recursive calls can
8140 potentially use larger error tolerances in their arc length estimates. How
8141 much larger depends on to what extent the errors behave as though they are
8142 independent of each other. To save computing time, we use optimistic assumptions
8143 and increase the tolerance by a factor of about $\sqrt2$ for each recursive
8146 In addition to the tolerance parameter, |arc_test| should also have parameters
8147 for ${1\over3}\vb\dot B(0)\vb$, ${2\over3}\vb\dot B({1\over2})\vb$, and
8148 ${1\over3}\vb\dot B(1)\vb$. These quantities are relatively expensive to compute
8149 and they are needed in different instances of |arc_test|.
8151 @c @t\4@>@<Declare subroutines needed by |arc_test|@>;
8152 scaled mp_arc_test (MP mp, scaled dx0, scaled dy0, scaled dx1, scaled dy1,
8153 scaled dx2, scaled dy2, scaled v0, scaled v02,
8154 scaled v2, scaled a_goal, scaled tol) {
8155 boolean simple; /* are the control points confined to a $90^\circ$ sector? */
8156 scaled dx01, dy01, dx12, dy12, dx02, dy02; /* bisection results */
8158 /* twice the velocity magnitudes at $t={1\over4}$ and $t={3\over4}$ */
8159 scaled arc; /* best arc length estimate before recursion */
8160 @<Other local variables in |arc_test|@>;
8161 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,
8163 @<Initialize |v002|, |v022|, and the arc length estimate |arc|; if it overflows
8164 set |arc_test| and |return|@>;
8165 @<Test if the control points are confined to one quadrant or rotating them
8166 $45^\circ$ would put them in one quadrant. Then set |simple| appropriately@>;
8167 if ( simple && (abs(arc-v02-halfp(v0+v2)) <= tol) ) {
8168 if ( arc < a_goal ) {
8171 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to
8172 that time minus |two|@>;
8175 @<Use one or two recursive calls to compute the |arc_test| function@>;
8179 @ The |tol| value should by multiplied by $\sqrt 2$ before making recursive
8180 calls, but $1.5$ is an adequate approximation. It is best to avoid using
8181 |make_fraction| in this inner loop.
8184 @<Use one or two recursive calls to compute the |arc_test| function@>=
8186 @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is as
8187 large as possible@>;
8188 tol = tol + halfp(tol);
8189 a = mp_arc_test(mp, dx0,dy0, dx01,dy01, dx02,dy02, v0, v002,
8190 halfp(v02), a_new, tol);
8192 return (-halfp(two-a));
8194 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>;
8195 b = mp_arc_test(mp, dx02,dy02, dx12,dy12, dx2,dy2,
8196 halfp(v02), v022, v2, a_new, tol);
8198 return (-halfp(-b) - half_unit);
8200 return (a + half(b-a));
8204 @ @<Other local variables in |arc_test|@>=
8205 scaled a,b; /* results of recursive calls */
8206 scaled a_new,a_aux; /* the sum of these gives the |a_goal| */
8208 @ @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is...@>=
8209 a_aux = el_gordo - a_goal;
8210 if ( a_goal > a_aux ) {
8211 a_aux = a_goal - a_aux;
8214 a_new = a_goal + a_goal;
8218 @ There is no need to maintain |a_aux| at this point so we use it as a temporary
8219 to force the additions and subtractions to be done in an order that avoids
8222 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>=
8225 a_new = a_new + a_aux;
8228 @ This code assumes all {\it dx} and {\it dy} variables have magnitude less than
8229 |fraction_four|. To simplify the rest of the |arc_test| routine, we strengthen
8230 this assumption by requiring the norm of each $({\it dx},{\it dy})$ pair to obey
8231 this bound. Note that recursive calls will maintain this invariant.
8233 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,...@>=
8234 dx01 = half(dx0 + dx1);
8235 dx12 = half(dx1 + dx2);
8236 dx02 = half(dx01 + dx12);
8237 dy01 = half(dy0 + dy1);
8238 dy12 = half(dy1 + dy2);
8239 dy02 = half(dy01 + dy12)
8241 @ We should be careful to keep |arc<el_gordo| so that calling |arc_test| with
8242 |a_goal=el_gordo| is guaranteed to yield the arc length.
8244 @<Initialize |v002|, |v022|, and the arc length estimate |arc|;...@>=
8245 v002 = mp_pyth_add(mp, dx01+half(dx0+dx02), dy01+half(dy0+dy02));
8246 v022 = mp_pyth_add(mp, dx12+half(dx02+dx2), dy12+half(dy02+dy2));
8248 arc1 = v002 + half(halfp(v0+tmp) - v002);
8249 arc = v022 + half(halfp(v2+tmp) - v022);
8250 if ( (arc < el_gordo-arc1) ) {
8253 mp->arith_error = true;
8254 if ( a_goal==el_gordo ) return (el_gordo);
8258 @ @<Other local variables in |arc_test|@>=
8259 scaled tmp, tmp2; /* all purpose temporary registers */
8260 scaled arc1; /* arc length estimate for the first half */
8262 @ @<Test if the control points are confined to one quadrant or rotating...@>=
8263 simple = ((dx0>=0) && (dx1>=0) && (dx2>=0)) ||
8264 ((dx0<=0) && (dx1<=0) && (dx2<=0));
8266 simple = ((dy0>=0) && (dy1>=0) && (dy2>=0)) ||
8267 ((dy0<=0) && (dy1<=0) && (dy2<=0));
8269 simple = ((dx0>=dy0) && (dx1>=dy1) && (dx2>=dy2)) ||
8270 ((dx0<=dy0) && (dx1<=dy1) && (dx2<=dy2));
8272 simple = ((-dx0>=dy0) && (-dx1>=dy1) && (-dx2>=dy2)) ||
8273 ((-dx0<=dy0) && (-dx1<=dy1) && (-dx2<=dy2));
8276 @ Since Simpson's rule is based on approximating the integrand by a parabola,
8278 it is appropriate to use the same approximation to decide when the integral
8279 reaches the intermediate value |a_goal|. At this point
8281 {\vb\dot B(0)\vb\over 3} &= \hbox{|v0|}, \qquad
8282 {\vb\dot B({1\over4})\vb\over 3} = {\hbox{|v002|}\over 2}, \qquad
8283 {\vb\dot B({1\over2})\vb\over 3} = {\hbox{|v02|}\over 2}, \cr
8284 {\vb\dot B({3\over4})\vb\over 3} &= {\hbox{|v022|}\over 2}, \qquad
8285 {\vb\dot B(1)\vb\over 3} = \hbox{|v2|} \cr
8289 $$ {\vb\dot B(t)\vb\over 3} \approx
8290 \cases{B\left(\hbox{|v0|},
8291 \hbox{|v002|}-{1\over 2}\hbox{|v0|}-{1\over 4}\hbox{|v02|},
8292 {1\over 2}\hbox{|v02|}; 2t \right)&
8293 if $t\le{1\over 2}$\cr
8294 B\left({1\over 2}\hbox{|v02|},
8295 \hbox{|v022|}-{1\over 4}\hbox{|v02|}-{1\over 2}\hbox{|v2|},
8296 \hbox{|v2|}; 2t-1 \right)&
8297 if $t\ge{1\over 2}$.\cr}
8300 We can integrate $\vb\dot B(t)\vb$ by using
8301 $$\int 3B(a,b,c;\tau)\,dt =
8302 {B(0,a,a+b,a+b+c;\tau) + {\rm constant} \over {d\tau\over dt}}.
8305 This construction allows us to find the time when the arc length reaches
8306 |a_goal| by solving a cubic equation of the form
8307 $$ B(0,a,a+b,a+b+c;\tau) = x, $$
8308 where $\tau$ is $2t$ or $2t+1$, $x$ is |a_goal| or |a_goal-arc1|, and $a$, $b$,
8309 and $c$ are the Bernshte{\u\i}n coefficients from $(*)$ divided by
8310 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
8311 $d\tau\over dt$. We shall define a function |solve_rising_cubic| that finds
8312 $\tau$ given $a$, $b$, $c$, and $x$.
8314 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to...@>=
8316 tmp = (v02 + 2) / 4;
8317 if ( a_goal<=arc1 ) {
8320 (halfp(mp_solve_rising_cubic(mp, tmp2, arc1-tmp2-tmp, tmp, a_goal))- two);
8323 return ((half_unit - two) +
8324 halfp(mp_solve_rising_cubic(mp, tmp, arc-arc1-tmp-tmp2, tmp2, a_goal-arc1)));
8328 @ Here is the |solve_rising_cubic| routine that finds the time~$t$ when
8329 $$ B(0, a, a+b, a+b+c; t) = x. $$
8330 This routine is based on |crossing_point| but is simplified by the
8331 assumptions that $B(a,b,c;t)\ge0$ for $0\le t\le1$ and that |0<=x<=a+b+c|.
8332 If rounding error causes this condition to be violated slightly, we just ignore
8333 it and proceed with binary search. This finds a time when the function value
8334 reaches |x| and the slope is positive.
8336 @<Declare subroutines needed by |arc_test|@>=
8337 scaled mp_solve_rising_cubic (MP mp,scaled a, scaled b, scaled c, scaled x) {
8338 scaled ab, bc, ac; /* bisection results */
8339 integer t; /* $2^k+q$ where unscaled answer is in $[q2^{-k},(q+1)2^{-k})$ */
8340 integer xx; /* temporary for updating |x| */
8341 if ( (a<0) || (c<0) ) mp_confusion(mp, "rising?");
8342 @:this can't happen rising?}{\quad rising?@>
8345 } else if ( x >= a+b+c ) {
8349 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than
8353 @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>;
8354 xx = x - a - ab - ac;
8355 if ( xx < -x ) { x+=x; b=ab; c=ac; }
8356 else { x = x + xx; a=ac; b=mp->bc; t = t+1; };
8357 } while (t < unity);
8362 @ @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>=
8367 @ @d one_third_el_gordo 05252525252 /* upper bound on |a|, |b|, and |c| */
8369 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than...@>=
8370 while ((a>one_third_el_gordo)||(b>one_third_el_gordo)||(c>one_third_el_gordo)) {
8377 @ It is convenient to have a simpler interface to |arc_test| that requires no
8378 unnecessary arguments and ensures that each $({\it dx},{\it dy})$ pair has
8379 length less than |fraction_four|.
8381 @d arc_tol 16 /* quit when change in arc length estimate reaches this */
8383 @c scaled mp_do_arc_test (MP mp,scaled dx0, scaled dy0, scaled dx1,
8384 scaled dy1, scaled dx2, scaled dy2, scaled a_goal) {
8385 scaled v0,v1,v2; /* length of each $({\it dx},{\it dy})$ pair */
8386 scaled v02; /* twice the norm of the quadratic at $t={1\over2}$ */
8387 v0 = mp_pyth_add(mp, dx0,dy0);
8388 v1 = mp_pyth_add(mp, dx1,dy1);
8389 v2 = mp_pyth_add(mp, dx2,dy2);
8390 if ( (v0>=fraction_four) || (v1>=fraction_four) || (v2>=fraction_four) ) {
8391 mp->arith_error = true;
8392 if ( a_goal==el_gordo ) return el_gordo;
8395 v02 = mp_pyth_add(mp, dx1+half(dx0+dx2), dy1+half(dy0+dy2));
8396 return (mp_arc_test(mp, dx0,dy0, dx1,dy1, dx2,dy2,
8397 v0, v02, v2, a_goal, arc_tol));
8401 @ Now it is easy to find the arc length of an entire path.
8403 @c scaled mp_get_arc_length (MP mp,pointer h) {
8404 pointer p,q; /* for traversing the path */
8405 scaled a,a_tot; /* current and total arc lengths */
8408 while ( right_type(p)!=mp_endpoint ){
8410 a = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8411 left_x(q)-right_x(p), left_y(q)-right_y(p),
8412 x_coord(q)-left_x(q), y_coord(q)-left_y(q), el_gordo);
8413 a_tot = mp_slow_add(mp, a, a_tot);
8414 if ( q==h ) break; else p=q;
8420 @ The inverse operation of finding the time on a path~|h| when the arc length
8421 reaches some value |arc0| can also be accomplished via |do_arc_test|. Some care
8422 is required to handle very large times or negative times on cyclic paths. For
8423 non-cyclic paths, |arc0| values that are negative or too large cause
8424 |get_arc_time| to return 0 or the length of path~|h|.
8426 If |arc0| is greater than the arc length of a cyclic path~|h|, the result is a
8427 time value greater than the length of the path. Since it could be much greater,
8428 we must be prepared to compute the arc length of path~|h| and divide this into
8429 |arc0| to find how many multiples of the length of path~|h| to add.
8431 @c scaled mp_get_arc_time (MP mp,pointer h, scaled arc0) {
8432 pointer p,q; /* for traversing the path */
8433 scaled t_tot; /* accumulator for the result */
8434 scaled t; /* the result of |do_arc_test| */
8435 scaled arc; /* portion of |arc0| not used up so far */
8436 integer n; /* number of extra times to go around the cycle */
8438 @<Deal with a negative |arc0| value and |return|@>;
8440 if ( arc0==el_gordo ) decr(arc0);
8444 while ( (right_type(p)!=mp_endpoint) && (arc>0) ) {
8446 t = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8447 left_x(q)-right_x(p), left_y(q)-right_y(p),
8448 x_coord(q)-left_x(q), y_coord(q)-left_y(q), arc);
8449 @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>;
8451 @<Update |t_tot| and |arc| to avoid going around the cyclic
8452 path too many times but set |arith_error:=true| and |goto done| on
8461 @ @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>=
8462 if ( t<0 ) { t_tot = t_tot + t + two; arc = 0; }
8463 else { t_tot = t_tot + unity; arc = arc - t; }
8465 @ @<Deal with a negative |arc0| value and |return|@>=
8467 if ( left_type(h)==mp_endpoint ) {
8470 p = mp_htap_ypoc(mp, h);
8471 t_tot = -mp_get_arc_time(mp, p, -arc0);
8472 mp_toss_knot_list(mp, p);
8478 @ @<Update |t_tot| and |arc| to avoid going around the cyclic...@>=
8480 n = arc / (arc0 - arc);
8481 arc = arc - n*(arc0 - arc);
8482 if ( t_tot > el_gordo / (n+1) ) {
8483 mp->arith_error = true;
8487 t_tot = (n + 1)*t_tot;
8490 @* \[20] Data structures for pens.
8491 A Pen in \MP\ can be either elliptical or polygonal. Elliptical pens result
8492 in \ps\ \&{stroke} commands, while anything drawn with a polygonal pen is
8493 @:stroke}{\&{stroke} command@>
8494 converted into an area fill as described in the next part of this program.
8495 The mathematics behind this process is based on simple aspects of the theory
8496 of tracings developed by Leo Guibas, Lyle Ramshaw, and Jorge Stolfi
8497 [``A kinematic framework for computational geometry,'' Proc.\ IEEE Symp.\
8498 Foundations of Computer Science {\bf 24} (1983), 100--111].
8500 Polygonal pens are created from paths via \MP's \&{makepen} primitive.
8501 @:makepen_}{\&{makepen} primitive@>
8502 This path representation is almost sufficient for our purposes except that
8503 a pen path should always be a convex polygon with the vertices in
8504 counter-clockwise order.
8505 Since we will need to scan pen polygons both forward and backward, a pen
8506 should be represented as a doubly linked ring of knot nodes. There is
8507 room for the extra back pointer because we do not need the
8508 |left_type| or |right_type| fields. In fact, we don't need the |left_x|,
8509 |left_y|, |right_x|, or |right_y| fields either but we leave these alone
8510 so that certain procedures can operate on both pens and paths. In particular,
8511 pens can be copied using |copy_path| and recycled using |toss_knot_list|.
8514 /* this replaces the |left_type| and |right_type| fields in a pen knot */
8516 @ The |make_pen| procedure turns a path into a pen by initializing
8517 the |knil| pointers and making sure the knots form a convex polygon.
8518 Thus each cubic in the given path becomes a straight line and the control
8519 points are ignored. If the path is not cyclic, the ends are connected by a
8522 @d copy_pen(A) mp_make_pen(mp, mp_copy_path(mp, (A)),false)
8524 @c @<Declare a function called |convex_hull|@>;
8525 pointer mp_make_pen (MP mp,pointer h, boolean need_hull) {
8526 pointer p,q; /* two consecutive knots */
8533 h=mp_convex_hull(mp, h);
8534 @<Make sure |h| isn't confused with an elliptical pen@>;
8539 @ The only information required about an elliptical pen is the overall
8540 transformation that has been applied to the original \&{pencircle}.
8541 @:pencircle_}{\&{pencircle} primitive@>
8542 Since it suffices to keep track of how the three points $(0,0)$, $(1,0)$,
8543 and $(0,1)$ are transformed, an elliptical pen can be stored in a single
8544 knot node and transformed as if it were a path.
8546 @d pen_is_elliptical(A) ((A)==link((A)))
8548 @c pointer mp_get_pen_circle (MP mp,scaled diam) {
8549 pointer h; /* the knot node to return */
8550 h=mp_get_node(mp, knot_node_size);
8551 link(h)=h; knil(h)=h;
8552 originator(h)=program_code;
8553 x_coord(h)=0; y_coord(h)=0;
8554 left_x(h)=diam; left_y(h)=0;
8555 right_x(h)=0; right_y(h)=diam;
8559 @ If the polygon being returned by |make_pen| has only one vertex, it will
8560 be interpreted as an elliptical pen. This is no problem since a degenerate
8561 polygon can equally well be thought of as a degenerate ellipse. We need only
8562 initialize the |left_x|, |left_y|, |right_x|, and |right_y| fields.
8564 @<Make sure |h| isn't confused with an elliptical pen@>=
8565 if ( pen_is_elliptical( h) ){
8566 left_x(h)=x_coord(h); left_y(h)=y_coord(h);
8567 right_x(h)=x_coord(h); right_y(h)=y_coord(h);
8570 @ We have to cheat a little here but most operations on pens only use
8571 the first three words in each knot node.
8572 @^data structure assumptions@>
8574 @<Initialize a pen at |test_pen| so that it fits in nine words@>=
8575 x_coord(test_pen)=-half_unit;
8576 y_coord(test_pen)=0;
8577 x_coord(test_pen+3)=half_unit;
8578 y_coord(test_pen+3)=0;
8579 x_coord(test_pen+6)=0;
8580 y_coord(test_pen+6)=unity;
8581 link(test_pen)=test_pen+3;
8582 link(test_pen+3)=test_pen+6;
8583 link(test_pen+6)=test_pen;
8584 knil(test_pen)=test_pen+6;
8585 knil(test_pen+3)=test_pen;
8586 knil(test_pen+6)=test_pen+3
8588 @ Printing a polygonal pen is very much like printing a path
8590 @<Declare subroutines for printing expressions@>=
8591 void mp_pr_pen (MP mp,pointer h) {
8592 pointer p,q; /* for list traversal */
8593 if ( pen_is_elliptical(h) ) {
8594 @<Print the elliptical pen |h|@>;
8598 mp_print_two(mp, x_coord(p),y_coord(p));
8599 mp_print_nl(mp, " .. ");
8600 @<Advance |p| making sure the links are OK and |return| if there is
8603 mp_print(mp, "cycle");
8607 @ @<Advance |p| making sure the links are OK and |return| if there is...@>=
8609 if ( (q==null) || (knil(q)!=p) ) {
8610 mp_print_nl(mp, "???"); return; /* this won't happen */
8615 @ @<Print the elliptical pen |h|@>=
8617 mp_print(mp, "pencircle transformed (");
8618 mp_print_scaled(mp, x_coord(h));
8619 mp_print_char(mp, ',');
8620 mp_print_scaled(mp, y_coord(h));
8621 mp_print_char(mp, ',');
8622 mp_print_scaled(mp, left_x(h)-x_coord(h));
8623 mp_print_char(mp, ',');
8624 mp_print_scaled(mp, right_x(h)-x_coord(h));
8625 mp_print_char(mp, ',');
8626 mp_print_scaled(mp, left_y(h)-y_coord(h));
8627 mp_print_char(mp, ',');
8628 mp_print_scaled(mp, right_y(h)-y_coord(h));
8629 mp_print_char(mp, ')');
8632 @ Here us another version of |pr_pen| that prints the pen as a diagnostic
8635 @<Declare subroutines for printing expressions@>=
8636 void mp_print_pen (MP mp,pointer h, char *s, boolean nuline) {
8637 mp_print_diagnostic(mp, "Pen",s,nuline); mp_print_ln(mp);
8640 mp_end_diagnostic(mp, true);
8643 @ Making a polygonal pen into a path involves restoring the |left_type| and
8644 |right_type| fields and setting the control points so as to make a polygonal
8648 void mp_make_path (MP mp,pointer h) {
8649 pointer p; /* for traversing the knot list */
8650 small_number k; /* a loop counter */
8651 @<Other local variables in |make_path|@>;
8652 if ( pen_is_elliptical(h) ) {
8653 @<Make the elliptical pen |h| into a path@>;
8657 left_type(p)=mp_explicit;
8658 right_type(p)=mp_explicit;
8659 @<copy the coordinates of knot |p| into its control points@>;
8665 @ @<copy the coordinates of knot |p| into its control points@>=
8666 left_x(p)=x_coord(p);
8667 left_y(p)=y_coord(p);
8668 right_x(p)=x_coord(p);
8669 right_y(p)=y_coord(p)
8671 @ We need an eight knot path to get a good approximation to an ellipse.
8673 @<Make the elliptical pen |h| into a path@>=
8675 @<Extract the transformation parameters from the elliptical pen~|h|@>;
8677 for (k=0;k<=7;k++ ) {
8678 @<Initialize |p| as the |k|th knot of a circle of unit diameter,
8679 transforming it appropriately@>;
8680 if ( k==7 ) link(p)=h; else link(p)=mp_get_node(mp, knot_node_size);
8685 @ @<Extract the transformation parameters from the elliptical pen~|h|@>=
8686 center_x=x_coord(h);
8687 center_y=y_coord(h);
8688 width_x=left_x(h)-center_x;
8689 width_y=left_y(h)-center_y;
8690 height_x=right_x(h)-center_x;
8691 height_y=right_y(h)-center_y
8693 @ @<Other local variables in |make_path|@>=
8694 scaled center_x,center_y; /* translation parameters for an elliptical pen */
8695 scaled width_x,width_y; /* the effect of a unit change in $x$ */
8696 scaled height_x,height_y; /* the effect of a unit change in $y$ */
8697 scaled dx,dy; /* the vector from knot |p| to its right control point */
8699 /* |k| advanced $270^\circ$ around the ring (cf. $\sin\theta=\cos(\theta+270)$) */
8701 @ The only tricky thing here are the tables |half_cos| and |d_cos| used to
8702 find the point $k/8$ of the way around the circle and the direction vector
8705 @<Initialize |p| as the |k|th knot of a circle of unit diameter,...@>=
8707 x_coord(p)=center_x+mp_take_fraction(mp, mp->half_cos[k],width_x)
8708 +mp_take_fraction(mp, mp->half_cos[kk],height_x);
8709 y_coord(p)=center_y+mp_take_fraction(mp, mp->half_cos[k],width_y)
8710 +mp_take_fraction(mp, mp->half_cos[kk],height_y);
8711 dx=-mp_take_fraction(mp, mp->d_cos[kk],width_x)
8712 +mp_take_fraction(mp, mp->d_cos[k],height_x);
8713 dy=-mp_take_fraction(mp, mp->d_cos[kk],width_y)
8714 +mp_take_fraction(mp, mp->d_cos[k],height_y);
8715 right_x(p)=x_coord(p)+dx;
8716 right_y(p)=y_coord(p)+dy;
8717 left_x(p)=x_coord(p)-dx;
8718 left_y(p)=y_coord(p)-dy;
8719 left_type(p)=mp_explicit;
8720 right_type(p)=mp_explicit;
8721 originator(p)=program_code
8724 fraction half_cos[8]; /* ${1\over2}\cos(45k)$ */
8725 fraction d_cos[8]; /* a magic constant times $\cos(45k)$ */
8727 @ The magic constant for |d_cos| is the distance between $({1\over2},0)$ and
8728 $({1\over4}\sqrt2,{1\over4}\sqrt2)$ times the result of the |velocity|
8729 function for $\theta=\phi=22.5^\circ$. This comes out to be
8730 $$ d = {\sqrt{2-\sqrt2}\over 3+3\cos22.5^\circ}
8731 \approx 0.132608244919772.
8735 mp->half_cos[0]=fraction_half;
8736 mp->half_cos[1]=94906266; /* $2^{26}\sqrt2\approx94906265.62$ */
8738 mp->d_cos[0]=35596755; /* $2^{28}d\approx35596754.69$ */
8739 mp->d_cos[1]=25170707; /* $2^{27}\sqrt2\,d\approx25170706.63$ */
8741 for (k=3;k<= 4;k++ ) {
8742 mp->half_cos[k]=-mp->half_cos[4-k];
8743 mp->d_cos[k]=-mp->d_cos[4-k];
8745 for (k=5;k<= 7;k++ ) {
8746 mp->half_cos[k]=mp->half_cos[8-k];
8747 mp->d_cos[k]=mp->d_cos[8-k];
8750 @ The |convex_hull| function forces a pen polygon to be convex when it is
8751 returned by |make_pen| and after any subsequent transformation where rounding
8752 error might allow the convexity to be lost.
8753 The convex hull algorithm used here is described by F.~P. Preparata and
8754 M.~I. Shamos [{\sl Computational Geometry}, Springer-Verlag, 1985].
8756 @<Declare a function called |convex_hull|@>=
8757 @<Declare a procedure called |move_knot|@>;
8758 pointer mp_convex_hull (MP mp,pointer h) { /* Make a polygonal pen convex */
8759 pointer l,r; /* the leftmost and rightmost knots */
8760 pointer p,q; /* knots being scanned */
8761 pointer s; /* the starting point for an upcoming scan */
8762 scaled dx,dy; /* a temporary pointer */
8763 if ( pen_is_elliptical(h) ) {
8766 @<Set |l| to the leftmost knot in polygon~|h|@>;
8767 @<Set |r| to the rightmost knot in polygon~|h|@>;
8770 @<Find any knots on the path from |l| to |r| above the |l|-|r| line and
8771 move them past~|r|@>;
8772 @<Find any knots on the path from |s| to |l| below the |l|-|r| line and
8773 move them past~|l|@>;
8774 @<Sort the path from |l| to |r| by increasing $x$@>;
8775 @<Sort the path from |r| to |l| by decreasing $x$@>;
8778 @<Do a Gramm scan and remove vertices where there is no left turn@>;
8784 @ All comparisons are done primarily on $x$ and secondarily on $y$.
8786 @<Set |l| to the leftmost knot in polygon~|h|@>=
8790 if ( x_coord(p)<=x_coord(l) )
8791 if ( (x_coord(p)<x_coord(l)) || (y_coord(p)<y_coord(l)) )
8796 @ @<Set |r| to the rightmost knot in polygon~|h|@>=
8800 if ( x_coord(p)>=x_coord(r) )
8801 if ( (x_coord(p)>x_coord(r)) || (y_coord(p)>y_coord(r)) )
8806 @ @<Find any knots on the path from |l| to |r| above the |l|-|r| line...@>=
8807 dx=x_coord(r)-x_coord(l);
8808 dy=y_coord(r)-y_coord(l);
8812 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))>0 )
8813 mp_move_knot(mp, p, r);
8817 @ The |move_knot| procedure removes |p| from a doubly linked list and inserts
8820 @ @<Declare a procedure called |move_knot|@>=
8821 void mp_move_knot (MP mp,pointer p, pointer q) {
8822 link(knil(p))=link(p);
8823 knil(link(p))=knil(p);
8830 @ @<Find any knots on the path from |s| to |l| below the |l|-|r| line...@>=
8834 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))<0 )
8835 mp_move_knot(mp, p,l);
8839 @ The list is likely to be in order already so we just do linear insertions.
8840 Secondary comparisons on $y$ ensure that the sort is consistent with the
8841 choice of |l| and |r|.
8843 @<Sort the path from |l| to |r| by increasing $x$@>=
8847 while ( x_coord(q)>x_coord(p) ) q=knil(q);
8848 while ( x_coord(q)==x_coord(p) ) {
8849 if ( y_coord(q)>y_coord(p) ) q=knil(q); else break;
8851 if ( q==knil(p) ) p=link(p);
8852 else { p=link(p); mp_move_knot(mp, knil(p),q); };
8855 @ @<Sort the path from |r| to |l| by decreasing $x$@>=
8859 while ( x_coord(q)<x_coord(p) ) q=knil(q);
8860 while ( x_coord(q)==x_coord(p) ) {
8861 if ( y_coord(q)<y_coord(p) ) q=knil(q); else break;
8863 if ( q==knil(p) ) p=link(p);
8864 else { p=link(p); mp_move_knot(mp, knil(p),q); };
8867 @ The condition involving |ab_vs_cd| tests if there is not a left turn
8868 at knot |q|. There usually will be a left turn so we streamline the case
8869 where the |then| clause is not executed.
8871 @<Do a Gramm scan and remove vertices where there...@>=
8875 dx=x_coord(q)-x_coord(p);
8876 dy=y_coord(q)-y_coord(p);
8880 if ( mp_ab_vs_cd(mp, dx,y_coord(q)-y_coord(p),dy,x_coord(q)-x_coord(p))<=0 ) {
8881 @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>;
8886 @ @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>=
8889 mp_free_node(mp, p,knot_node_size);
8890 link(s)=q; knil(q)=s;
8892 else { p=knil(s); q=s; };
8895 @ The |find_offset| procedure sets global variables |(cur_x,cur_y)| to the
8896 offset associated with the given direction |(x,y)|. If two different offsets
8897 apply, it chooses one of them.
8900 void mp_find_offset (MP mp,scaled x, scaled y, pointer h) {
8901 pointer p,q; /* consecutive knots */
8903 /* the transformation matrix for an elliptical pen */
8904 fraction xx,yy; /* untransformed offset for an elliptical pen */
8905 fraction d; /* a temporary register */
8906 if ( pen_is_elliptical(h) ) {
8907 @<Find the offset for |(x,y)| on the elliptical pen~|h|@>
8912 } while (! mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)>=0);
8915 } while (! mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)<=0);
8916 mp->cur_x=x_coord(p);
8917 mp->cur_y=y_coord(p);
8923 scaled cur_y; /* all-purpose return value registers */
8925 @ @<Find the offset for |(x,y)| on the elliptical pen~|h|@>=
8926 if ( (x==0) && (y==0) ) {
8927 mp->cur_x=x_coord(h); mp->cur_y=y_coord(h);
8929 @<Find the non-constant part of the transformation for |h|@>;
8930 while ( (abs(x)<fraction_half) && (abs(y)<fraction_half) ){
8933 @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the
8934 untransformed version of |(x,y)|@>;
8935 mp->cur_x=x_coord(h)+mp_take_fraction(mp, xx,wx)+mp_take_fraction(mp, yy,hx);
8936 mp->cur_y=y_coord(h)+mp_take_fraction(mp, xx,wy)+mp_take_fraction(mp, yy,hy);
8939 @ @<Find the non-constant part of the transformation for |h|@>=
8940 wx=left_x(h)-x_coord(h);
8941 wy=left_y(h)-y_coord(h);
8942 hx=right_x(h)-x_coord(h);
8943 hy=right_y(h)-y_coord(h)
8945 @ @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the...@>=
8946 yy=-(mp_take_fraction(mp, x,hy)+mp_take_fraction(mp, y,-hx));
8947 xx=mp_take_fraction(mp, x,-wy)+mp_take_fraction(mp, y,wx);
8948 d=mp_pyth_add(mp, xx,yy);
8950 xx=half(mp_make_fraction(mp, xx,d));
8951 yy=half(mp_make_fraction(mp, yy,d));
8954 @ Finding the bounding box of a pen is easy except if the pen is elliptical.
8955 But we can handle that case by just calling |find_offset| twice. The answer
8956 is stored in the global variables |minx|, |maxx|, |miny|, and |maxy|.
8959 void mp_pen_bbox (MP mp,pointer h) {
8960 pointer p; /* for scanning the knot list */
8961 if ( pen_is_elliptical(h) ) {
8962 @<Find the bounding box of an elliptical pen@>;
8964 minx=x_coord(h); maxx=minx;
8965 miny=y_coord(h); maxy=miny;
8968 if ( x_coord(p)<minx ) minx=x_coord(p);
8969 if ( y_coord(p)<miny ) miny=y_coord(p);
8970 if ( x_coord(p)>maxx ) maxx=x_coord(p);
8971 if ( y_coord(p)>maxy ) maxy=y_coord(p);
8977 @ @<Find the bounding box of an elliptical pen@>=
8979 mp_find_offset(mp, 0,fraction_one,h);
8981 minx=2*x_coord(h)-mp->cur_x;
8982 mp_find_offset(mp, -fraction_one,0,h);
8984 miny=2*y_coord(h)-mp->cur_y;
8987 @* \[21] Edge structures.
8988 Now we come to \MP's internal scheme for representing pictures.
8989 The representation is very different from \MF's edge structures
8990 because \MP\ pictures contain \ps\ graphics objects instead of pixel
8991 images. However, the basic idea is somewhat similar in that shapes
8992 are represented via their boundaries.
8994 The main purpose of edge structures is to keep track of graphical objects
8995 until it is time to translate them into \ps. Since \MP\ does not need to
8996 know anything about an edge structure other than how to translate it into
8997 \ps\ and how to find its bounding box, edge structures can be just linked
8998 lists of graphical objects. \MP\ has no easy way to determine whether
8999 two such objects overlap, but it suffices to draw the first one first and
9000 let the second one overwrite it if necessary.
9003 enum mp_graphical_object_code {
9004 @<Graphical object codes@>
9007 @ Let's consider the types of graphical objects one at a time.
9008 First of all, a filled contour is represented by a eight-word node. The first
9009 word contains |type| and |link| fields, and the next six words contain a
9010 pointer to a cyclic path and the value to use for \ps' \&{currentrgbcolor}
9011 parameter. If a pen is used for filling |pen_p|, |ljoin_val| and |miterlim_val|
9012 give the relevant information.
9014 @d path_p(A) link((A)+1)
9015 /* a pointer to the path that needs filling */
9016 @d pen_p(A) info((A)+1)
9017 /* a pointer to the pen to fill or stroke with */
9018 @d color_model(A) type((A)+2) /* the color model */
9019 @d obj_red_loc(A) ((A)+3) /* the first of three locations for the color */
9020 @d obj_cyan_loc obj_red_loc /* the first of four locations for the color */
9021 @d obj_grey_loc obj_red_loc /* the location for the color */
9022 @d red_val(A) mp->mem[(A)+3].sc
9023 /* the red component of the color in the range $0\ldots1$ */
9026 @d green_val(A) mp->mem[(A)+4].sc
9027 /* the green component of the color in the range $0\ldots1$ */
9028 @d magenta_val green_val
9029 @d blue_val(A) mp->mem[(A)+5].sc
9030 /* the blue component of the color in the range $0\ldots1$ */
9031 @d yellow_val blue_val
9032 @d black_val(A) mp->mem[(A)+6].sc
9033 /* the blue component of the color in the range $0\ldots1$ */
9034 @d ljoin_val(A) name_type((A)) /* the value of \&{linejoin} */
9035 @:mp_linejoin_}{\&{linejoin} primitive@>
9036 @d miterlim_val(A) mp->mem[(A)+7].sc /* the value of \&{miterlimit} */
9037 @:mp_miterlimit_}{\&{miterlimit} primitive@>
9038 @d obj_color_part(A) mp->mem[(A)+3-red_part].sc
9039 /* interpret an object pointer that has been offset by |red_part..blue_part| */
9040 @d pre_script(A) mp->mem[(A)+8].hh.lh
9041 @d post_script(A) mp->mem[(A)+8].hh.rh
9044 @ @<Graphical object codes@>=
9048 pointer mp_new_fill_node (MP mp,pointer p) {
9049 /* make a fill node for cyclic path |p| and color black */
9050 pointer t; /* the new node */
9051 t=mp_get_node(mp, fill_node_size);
9052 type(t)=mp_fill_code;
9054 pen_p(t)=null; /* |null| means don't use a pen */
9059 color_model(t)=uninitialized_model;
9061 post_script(t)=null;
9062 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9066 @ @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>=
9067 if ( mp->internal[mp_linejoin]>unity ) ljoin_val(t)=2;
9068 else if ( mp->internal[mp_linejoin]>0 ) ljoin_val(t)=1;
9069 else ljoin_val(t)=0;
9070 if ( mp->internal[mp_miterlimit]<unity )
9071 miterlim_val(t)=unity;
9073 miterlim_val(t)=mp->internal[mp_miterlimit]
9075 @ A stroked path is represented by an eight-word node that is like a filled
9076 contour node except that it contains the current \&{linecap} value, a scale
9077 factor for the dash pattern, and a pointer that is non-null if the stroke
9078 is to be dashed. The purpose of the scale factor is to allow a picture to
9079 be transformed without touching the picture that |dash_p| points to.
9081 @d dash_p(A) link((A)+9)
9082 /* a pointer to the edge structure that gives the dash pattern */
9083 @d lcap_val(A) type((A)+9)
9084 /* the value of \&{linecap} */
9085 @:mp_linecap_}{\&{linecap} primitive@>
9086 @d dash_scale(A) mp->mem[(A)+10].sc /* dash lengths are scaled by this factor */
9087 @d stroked_node_size 11
9089 @ @<Graphical object codes@>=
9093 pointer mp_new_stroked_node (MP mp,pointer p) {
9094 /* make a stroked node for path |p| with |pen_p(p)| temporarily |null| */
9095 pointer t; /* the new node */
9096 t=mp_get_node(mp, stroked_node_size);
9097 type(t)=mp_stroked_code;
9098 path_p(t)=p; pen_p(t)=null;
9100 dash_scale(t)=unity;
9105 color_model(t)=uninitialized_model;
9107 post_script(t)=null;
9108 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9109 if ( mp->internal[mp_linecap]>unity ) lcap_val(t)=2;
9110 else if ( mp->internal[mp_linecap]>0 ) lcap_val(t)=1;
9115 @ When a dashed line is computed in a transformed coordinate system, the dash
9116 lengths get scaled like the pen shape and we need to compensate for this. Since
9117 there is no unique scale factor for an arbitrary transformation, we use the
9118 the square root of the determinant. The properties of the determinant make it
9119 easier to maintain the |dash_scale|. The computation is fairly straight-forward
9120 except for the initialization of the scale factor |s|. The factor of 64 is
9121 needed because |square_rt| scales its result by $2^8$ while we need $2^{14}$
9122 to counteract the effect of |take_fraction|.
9124 @<Declare subroutines needed by |print_edges|@>=
9125 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) {
9126 scaled maxabs; /* $max(|a|,|b|,|c|,|d|)$ */
9127 integer s; /* amount by which the result of |square_rt| needs to be scaled */
9128 @<Initialize |maxabs|@>;
9130 while ( (maxabs<fraction_one) && (s>1) ){
9131 a+=a; b+=b; c+=c; d+=d;
9132 maxabs+=maxabs; s=halfp(s);
9134 return s*mp_square_rt(mp, abs(mp_take_fraction(mp, a,d)-mp_take_fraction(mp, b,c)));
9137 scaled mp_get_pen_scale (MP mp,pointer p) {
9138 return mp_sqrt_det(mp,
9139 left_x(p)-x_coord(p), right_x(p)-x_coord(p),
9140 left_y(p)-y_coord(p), right_y(p)-y_coord(p));
9143 @ @<Initialize |maxabs|@>=
9145 if ( abs(b)>maxabs ) maxabs=abs(b);
9146 if ( abs(c)>maxabs ) maxabs=abs(c);
9147 if ( abs(d)>maxabs ) maxabs=abs(d)
9149 @ When a picture contains text, this is represented by a fourteen-word node
9150 where the color information and |type| and |link| fields are augmented by
9151 additional fields that describe the text and how it is transformed.
9152 The |path_p| and |pen_p| pointers are replaced by a number that identifies
9153 the font and a string number that gives the text to be displayed.
9154 The |width|, |height|, and |depth| fields
9155 give the dimensions of the text at its design size, and the remaining six
9156 words give a transformation to be applied to the text. The |new_text_node|
9157 function initializes everything to default values so that the text comes out
9158 black with its reference point at the origin.
9160 @d text_p(A) link((A)+1) /* a string pointer for the text to display */
9161 @d font_n(A) info((A)+1) /* the font number */
9162 @d width_val(A) mp->mem[(A)+7].sc /* unscaled width of the text */
9163 @d height_val(A) mp->mem[(A)+9].sc /* unscaled height of the text */
9164 @d depth_val(A) mp->mem[(A)+10].sc /* unscaled depth of the text */
9165 @d text_tx_loc(A) ((A)+11)
9166 /* the first of six locations for transformation parameters */
9167 @d tx_val(A) mp->mem[(A)+11].sc /* $x$ shift amount */
9168 @d ty_val(A) mp->mem[(A)+12].sc /* $y$ shift amount */
9169 @d txx_val(A) mp->mem[(A)+13].sc /* |txx| transformation parameter */
9170 @d txy_val(A) mp->mem[(A)+14].sc /* |txy| transformation parameter */
9171 @d tyx_val(A) mp->mem[(A)+15].sc /* |tyx| transformation parameter */
9172 @d tyy_val(A) mp->mem[(A)+16].sc /* |tyy| transformation parameter */
9173 @d text_trans_part(A) mp->mem[(A)+11-x_part].sc
9174 /* interpret a text node ponter that has been offset by |x_part..yy_part| */
9175 @d text_node_size 17
9177 @ @<Graphical object codes@>=
9180 @ @c @<Declare text measuring subroutines@>;
9181 pointer mp_new_text_node (MP mp,char *f,str_number s) {
9182 /* make a text node for font |f| and text string |s| */
9183 pointer t; /* the new node */
9184 t=mp_get_node(mp, text_node_size);
9185 type(t)=mp_text_code;
9187 font_n(t)=mp_find_font(mp, f); /* this identifies the font */
9192 color_model(t)=uninitialized_model;
9194 post_script(t)=null;
9195 tx_val(t)=0; ty_val(t)=0;
9196 txx_val(t)=unity; txy_val(t)=0;
9197 tyx_val(t)=0; tyy_val(t)=unity;
9198 mp_set_text_box(mp, t); /* this finds the bounding box */
9202 @ The last two types of graphical objects that can occur in an edge structure
9203 are clipping paths and \&{setbounds} paths. These are slightly more difficult
9204 @:set_bounds_}{\&{setbounds} primitive@>
9205 to implement because we must keep track of exactly what is being clipped or
9206 bounded when pictures get merged together. For this reason, each clipping or
9207 \&{setbounds} operation is represented by a pair of nodes: first comes a
9208 two-word node whose |path_p| gives the relevant path, then there is the list
9209 of objects to clip or bound followed by a two-word node whose second word is
9212 Using at least two words for each graphical object node allows them all to be
9213 allocated and deallocated similarly with a global array |gr_object_size| to
9214 give the size in words for each object type.
9216 @d start_clip_size 2
9217 @d start_bounds_size 2
9218 @d stop_clip_size 2 /* the second word is not used here */
9219 @d stop_bounds_size 2 /* the second word is not used here */
9221 @d stop_type(A) ((A)+2)
9222 /* matching |type| for |start_clip_code| or |start_bounds_code| */
9223 @d has_color(A) (type((A))<mp_start_clip_code)
9224 /* does a graphical object have color fields? */
9225 @d has_pen(A) (type((A))<mp_text_code)
9226 /* does a graphical object have a |pen_p| field? */
9227 @d is_start_or_stop(A) (type((A))>=mp_start_clip_code)
9228 @d is_stop(A) (type((A))>=mp_stop_clip_code)
9230 @ @<Graphical object codes@>=
9231 mp_start_clip_code=4, /* |type| of a node that starts clipping */
9232 mp_start_bounds_code=5, /* |type| of a node that gives a \&{setbounds} path */
9233 mp_stop_clip_code=6, /* |type| of a node that stops clipping */
9234 mp_stop_bounds_code=7, /* |type| of a node that stops \&{setbounds} */
9238 pointer mp_new_bounds_node (MP mp,pointer p, small_number c) {
9239 /* make a node of type |c| where |p| is the clipping or \&{setbounds} path */
9240 pointer t; /* the new node */
9241 t=mp_get_node(mp, mp->gr_object_size[c]);
9247 @ We need an array to keep track of the sizes of graphical objects.
9250 small_number gr_object_size[mp_stop_bounds_code+1];
9253 mp->gr_object_size[mp_fill_code]=fill_node_size;
9254 mp->gr_object_size[mp_stroked_code]=stroked_node_size;
9255 mp->gr_object_size[mp_text_code]=text_node_size;
9256 mp->gr_object_size[mp_start_clip_code]=start_clip_size;
9257 mp->gr_object_size[mp_stop_clip_code]=stop_clip_size;
9258 mp->gr_object_size[mp_start_bounds_code]=start_bounds_size;
9259 mp->gr_object_size[mp_stop_bounds_code]=stop_bounds_size;
9261 @ All the essential information in an edge structure is encoded as a linked list
9262 of graphical objects as we have just seen, but it is helpful to add some
9263 redundant information. A single edge structure might be used as a dash pattern
9264 many times, and it would be nice to avoid scanning the same structure
9265 repeatedly. Thus, an edge structure known to be a suitable dash pattern
9266 has a header that gives a list of dashes in a sorted order designed for rapid
9267 translation into \ps.
9269 Each dash is represented by a three-word node containing the initial and final
9270 $x$~coordinates as well as the usual |link| field. The |link| fields points to
9271 the dash node with the next higher $x$-coordinates and the final link points
9272 to a special location called |null_dash|. (There should be no overlap between
9273 dashes). Since the $y$~coordinate of the dash pattern is needed to determine
9274 the period of repetition, this needs to be stored in the edge header along
9275 with a pointer to the list of dash nodes.
9277 @d start_x(A) mp->mem[(A)+1].sc /* the starting $x$~coordinate in a dash node */
9278 @d stop_x(A) mp->mem[(A)+2].sc /* the ending $x$~coordinate in a dash node */
9281 /* in an edge header this points to the first dash node */
9282 @d dash_y(A) mp->mem[(A)+1].sc /* $y$ value for the dash list in an edge header */
9284 @ It is also convenient for an edge header to contain the bounding
9285 box information needed by the \&{llcorner} and \&{urcorner} operators
9286 so that this does not have to be recomputed unnecessarily. This is done by
9287 adding fields for the $x$~and $y$ extremes as well as a pointer that indicates
9288 how far the bounding box computation has gotten. Thus if the user asks for
9289 the bounding box and then adds some more text to the picture before asking
9290 for more bounding box information, the second computation need only look at
9291 the additional text.
9293 When the bounding box has not been computed, the |bblast| pointer points
9294 to a dummy link at the head of the graphical object list while the |minx_val|
9295 and |miny_val| fields contain |el_gordo| and the |maxx_val| and |maxy_val|
9296 fields contain |-el_gordo|.
9298 Since the bounding box of pictures containing objects of type
9299 |mp_start_bounds_code| depends on the value of \&{truecorners}, the bounding box
9300 @:mp_true_corners_}{\&{truecorners} primitive@>
9301 data might not be valid for all values of this parameter. Hence, the |bbtype|
9302 field is needed to keep track of this.
9304 @d minx_val(A) mp->mem[(A)+2].sc
9305 @d miny_val(A) mp->mem[(A)+3].sc
9306 @d maxx_val(A) mp->mem[(A)+4].sc
9307 @d maxy_val(A) mp->mem[(A)+5].sc
9308 @d bblast(A) link((A)+6) /* last item considered in bounding box computation */
9309 @d bbtype(A) info((A)+6) /* tells how bounding box data depends on \&{truecorners} */
9310 @d dummy_loc(A) ((A)+7) /* where the object list begins in an edge header */
9312 /* |bbtype| value when bounding box data is valid for all \&{truecorners} values */
9314 /* |bbtype| value when bounding box data is for \&{truecorners}${}\le 0$ */
9316 /* |bbtype| value when bounding box data is for \&{truecorners}${}>0$ */
9319 void mp_init_bbox (MP mp,pointer h) {
9320 /* Initialize the bounding box information in edge structure |h| */
9321 bblast(h)=dummy_loc(h);
9322 bbtype(h)=no_bounds;
9323 minx_val(h)=el_gordo;
9324 miny_val(h)=el_gordo;
9325 maxx_val(h)=-el_gordo;
9326 maxy_val(h)=-el_gordo;
9329 @ The only other entries in an edge header are a reference count in the first
9330 word and a pointer to the tail of the object list in the last word.
9332 @d obj_tail(A) info((A)+7) /* points to the last entry in the object list */
9333 @d edge_header_size 8
9336 void mp_init_edges (MP mp,pointer h) {
9337 /* initialize an edge header to null values */
9338 dash_list(h)=null_dash;
9339 obj_tail(h)=dummy_loc(h);
9340 link(dummy_loc(h))=null;
9342 mp_init_bbox(mp, h);
9345 @ Here is how edge structures are deleted. The process can be recursive because
9346 of the need to dereference edge structures that are used as dash patterns.
9349 @d add_edge_ref(A) incr(ref_count((A)))
9350 @d delete_edge_ref(A) { if ( ref_count((A))==null ) mp_toss_edges(mp, (A));
9351 else decr(ref_count((A))); }
9353 @<Declare the recycling subroutines@>=
9354 void mp_flush_dash_list (MP mp,pointer h);
9355 pointer mp_toss_gr_object (MP mp,pointer p) ;
9356 void mp_toss_edges (MP mp,pointer h) ;
9358 @ @c void mp_toss_edges (MP mp,pointer h) {
9359 pointer p,q; /* pointers that scan the list being recycled */
9360 pointer r; /* an edge structure that object |p| refers to */
9361 mp_flush_dash_list(mp, h);
9362 q=link(dummy_loc(h));
9363 while ( (q!=null) ) {
9365 r=mp_toss_gr_object(mp, p);
9366 if ( r!=null ) delete_edge_ref(r);
9368 mp_free_node(mp, h,edge_header_size);
9370 void mp_flush_dash_list (MP mp,pointer h) {
9371 pointer p,q; /* pointers that scan the list being recycled */
9373 while ( q!=null_dash ) {
9375 mp_free_node(mp, p,dash_node_size);
9377 dash_list(h)=null_dash;
9379 pointer mp_toss_gr_object (MP mp,pointer p) {
9380 /* returns an edge structure that needs to be dereferenced */
9381 pointer e; /* the edge structure to return */
9383 @<Prepare to recycle graphical object |p|@>;
9384 mp_free_node(mp, p,mp->gr_object_size[type(p)]);
9388 @ @<Prepare to recycle graphical object |p|@>=
9391 mp_toss_knot_list(mp, path_p(p));
9392 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9393 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9394 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9396 case mp_stroked_code:
9397 mp_toss_knot_list(mp, path_p(p));
9398 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9399 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9400 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9404 delete_str_ref(text_p(p));
9405 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9406 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9408 case mp_start_clip_code:
9409 case mp_start_bounds_code:
9410 mp_toss_knot_list(mp, path_p(p));
9412 case mp_stop_clip_code:
9413 case mp_stop_bounds_code:
9415 } /* there are no other cases */
9417 @ If we use |add_edge_ref| to ``copy'' edge structures, the real copying needs
9418 to be done before making a significant change to an edge structure. Much of
9419 the work is done in a separate routine |copy_objects| that copies a list of
9420 graphical objects into a new edge header.
9422 @c @<Declare a function called |copy_objects|@>;
9423 pointer mp_private_edges (MP mp,pointer h) {
9424 /* make a private copy of the edge structure headed by |h| */
9425 pointer hh; /* the edge header for the new copy */
9426 pointer p,pp; /* pointers for copying the dash list */
9427 if ( ref_count(h)==null ) {
9431 hh=mp_copy_objects(mp, link(dummy_loc(h)),null);
9432 @<Copy the dash list from |h| to |hh|@>;
9433 @<Copy the bounding box information from |h| to |hh| and make |bblast(hh)|
9434 point into the new object list@>;
9439 @ Here we use the fact that |dash_list(hh)=link(hh)|.
9440 @^data structure assumptions@>
9442 @<Copy the dash list from |h| to |hh|@>=
9443 pp=hh; p=dash_list(h);
9444 while ( (p!=null_dash) ) {
9445 link(pp)=mp_get_node(mp, dash_node_size);
9447 start_x(pp)=start_x(p);
9448 stop_x(pp)=stop_x(p);
9452 dash_y(hh)=dash_y(h)
9454 @ @<Copy the bounding box information from |h| to |hh|...@>=
9455 minx_val(hh)=minx_val(h);
9456 miny_val(hh)=miny_val(h);
9457 maxx_val(hh)=maxx_val(h);
9458 maxy_val(hh)=maxy_val(h);
9459 bbtype(hh)=bbtype(h);
9460 p=dummy_loc(h); pp=dummy_loc(hh);
9461 while ((p!=bblast(h)) ) {
9462 if ( p==null ) mp_confusion(mp, "bblast");
9463 @:this can't happen bblast}{\quad bblast@>
9464 p=link(p); pp=link(pp);
9468 @ Here is the promised routine for copying graphical objects into a new edge
9469 structure. It starts copying at object~|p| and stops just before object~|q|.
9470 If |q| is null, it copies the entire sublist headed at |p|. The resulting edge
9471 structure requires further initialization by |init_bbox|.
9473 @<Declare a function called |copy_objects|@>=
9474 pointer mp_copy_objects (MP mp, pointer p, pointer q) {
9475 pointer hh; /* the new edge header */
9476 pointer pp; /* the last newly copied object */
9477 small_number k; /* temporary register */
9478 hh=mp_get_node(mp, edge_header_size);
9479 dash_list(hh)=null_dash;
9483 @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>;
9490 @ @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>=
9491 { k=mp->gr_object_size[type(p)];
9492 link(pp)=mp_get_node(mp, k);
9494 while ( (k>0) ) { decr(k); mp->mem[pp+k]=mp->mem[p+k]; };
9495 @<Fix anything in graphical object |pp| that should differ from the
9496 corresponding field in |p|@>;
9500 @ @<Fix anything in graphical object |pp| that should differ from the...@>=
9502 case mp_start_clip_code:
9503 case mp_start_bounds_code:
9504 path_p(pp)=mp_copy_path(mp, path_p(p));
9507 path_p(pp)=mp_copy_path(mp, path_p(p));
9508 if ( pen_p(p)!=null ) pen_p(pp)=copy_pen(pen_p(p));
9510 case mp_stroked_code:
9511 path_p(pp)=mp_copy_path(mp, path_p(p));
9512 pen_p(pp)=copy_pen(pen_p(p));
9513 if ( dash_p(p)!=null ) add_edge_ref(dash_p(pp));
9516 add_str_ref(text_p(pp));
9518 case mp_stop_clip_code:
9519 case mp_stop_bounds_code:
9521 } /* there are no other cases */
9523 @ Here is one way to find an acceptable value for the second argument to
9524 |copy_objects|. Given a non-null graphical object list, |skip_1component|
9525 skips past one picture component, where a ``picture component'' is a single
9526 graphical object, or a start bounds or start clip object and everything up
9527 through the matching stop bounds or stop clip object. The macro version avoids
9528 procedure call overhead and error handling: |skip_component(p)(e)| advances |p|
9529 unless |p| points to a stop bounds or stop clip node, in which case it executes
9532 @d skip_component(A)
9533 if ( ! is_start_or_stop((A)) ) (A)=link((A));
9534 else if ( ! is_stop((A)) ) (A)=mp_skip_1component(mp, (A));
9538 pointer mp_skip_1component (MP mp,pointer p) {
9539 integer lev; /* current nesting level */
9542 if ( is_start_or_stop(p) ) {
9543 if ( is_stop(p) ) decr(lev); else incr(lev);
9550 @ Here is a diagnostic routine for printing an edge structure in symbolic form.
9552 @<Declare subroutines for printing expressions@>=
9553 @<Declare subroutines needed by |print_edges|@>;
9554 void mp_print_edges (MP mp,pointer h, char *s, boolean nuline) {
9555 pointer p; /* a graphical object to be printed */
9556 pointer hh,pp; /* temporary pointers */
9557 scaled scf; /* a scale factor for the dash pattern */
9558 boolean ok_to_dash; /* |false| for polygonal pen strokes */
9559 mp_print_diagnostic(mp, "Edge structure",s,nuline);
9561 while ( link(p)!=null ) {
9565 @<Cases for printing graphical object node |p|@>;
9567 mp_print(mp, "[unknown object type!]");
9571 mp_print_nl(mp, "End edges");
9572 if ( p!=obj_tail(h) ) mp_print(mp, "?");
9574 mp_end_diagnostic(mp, true);
9577 @ @<Cases for printing graphical object node |p|@>=
9579 mp_print(mp, "Filled contour ");
9580 mp_print_obj_color(mp, p);
9581 mp_print_char(mp, ':'); mp_print_ln(mp);
9582 mp_pr_path(mp, path_p(p)); mp_print_ln(mp);
9583 if ( (pen_p(p)!=null) ) {
9584 @<Print join type for graphical object |p|@>;
9585 mp_print(mp, " with pen"); mp_print_ln(mp);
9586 mp_pr_pen(mp, pen_p(p));
9590 @ @<Print join type for graphical object |p|@>=
9591 switch (ljoin_val(p)) {
9593 mp_print(mp, "mitered joins limited ");
9594 mp_print_scaled(mp, miterlim_val(p));
9597 mp_print(mp, "round joins");
9600 mp_print(mp, "beveled joins");
9603 mp_print(mp, "?? joins");
9608 @ For stroked nodes, we need to print |lcap_val(p)| as well.
9610 @<Print join and cap types for stroked node |p|@>=
9611 switch (lcap_val(p)) {
9612 case 0:mp_print(mp, "butt"); break;
9613 case 1:mp_print(mp, "round"); break;
9614 case 2:mp_print(mp, "square"); break;
9615 default: mp_print(mp, "??"); break;
9618 mp_print(mp, " ends, ");
9619 @<Print join type for graphical object |p|@>
9621 @ Here is a routine that prints the color of a graphical object if it isn't
9622 black (the default color).
9624 @<Declare subroutines needed by |print_edges|@>=
9625 @<Declare a procedure called |print_compact_node|@>;
9626 void mp_print_obj_color (MP mp,pointer p) {
9627 if ( color_model(p)==grey_model ) {
9628 if ( grey_val(p)>0 ) {
9629 mp_print(mp, "greyed ");
9630 mp_print_compact_node(mp, obj_grey_loc(p),1);
9632 } else if ( color_model(p)==cmyk_model ) {
9633 if ( (cyan_val(p)>0) || (magenta_val(p)>0) ||
9634 (yellow_val(p)>0) || (black_val(p)>0) ) {
9635 mp_print(mp, "processcolored ");
9636 mp_print_compact_node(mp, obj_cyan_loc(p),4);
9638 } else if ( color_model(p)==rgb_model ) {
9639 if ( (red_val(p)>0) || (green_val(p)>0) || (blue_val(p)>0) ) {
9640 mp_print(mp, "colored ");
9641 mp_print_compact_node(mp, obj_red_loc(p),3);
9646 @ We also need a procedure for printing consecutive scaled values as if they
9647 were a known big node.
9649 @<Declare a procedure called |print_compact_node|@>=
9650 void mp_print_compact_node (MP mp,pointer p, small_number k) {
9651 pointer q; /* last location to print */
9653 mp_print_char(mp, '(');
9655 mp_print_scaled(mp, mp->mem[p].sc);
9656 if ( p<q ) mp_print_char(mp, ',');
9659 mp_print_char(mp, ')');
9662 @ @<Cases for printing graphical object node |p|@>=
9663 case mp_stroked_code:
9664 mp_print(mp, "Filled pen stroke ");
9665 mp_print_obj_color(mp, p);
9666 mp_print_char(mp, ':'); mp_print_ln(mp);
9667 mp_pr_path(mp, path_p(p));
9668 if ( dash_p(p)!=null ) {
9669 mp_print_nl(mp, "dashed (");
9670 @<Finish printing the dash pattern that |p| refers to@>;
9673 @<Print join and cap types for stroked node |p|@>;
9674 mp_print(mp, " with pen"); mp_print_ln(mp);
9675 if ( pen_p(p)==null ) mp_print(mp, "???"); /* shouldn't happen */
9677 else mp_pr_pen(mp, pen_p(p));
9680 @ Normally, the |dash_list| field in an edge header is set to |null_dash|
9681 when it is not known to define a suitable dash pattern. This is disallowed
9682 here because the |dash_p| field should never point to such an edge header.
9683 Note that memory is allocated for |start_x(null_dash)| and we are free to
9684 give it any convenient value.
9686 @<Finish printing the dash pattern that |p| refers to@>=
9687 ok_to_dash=pen_is_elliptical(pen_p(p));
9688 if ( ! ok_to_dash ) scf=unity; else scf=dash_scale(p);
9691 if ( (pp==null_dash) || (dash_y(hh)<0) ) {
9692 mp_print(mp, " ??");
9693 } else { start_x(null_dash)=start_x(pp)+dash_y(hh);
9694 while ( pp!=null_dash ) {
9695 mp_print(mp, "on ");
9696 mp_print_scaled(mp, mp_take_scaled(mp, stop_x(pp)-start_x(pp),scf));
9697 mp_print(mp, " off ");
9698 mp_print_scaled(mp, mp_take_scaled(mp, start_x(link(pp))-stop_x(pp),scf));
9700 if ( pp!=null_dash ) mp_print_char(mp, ' ');
9702 mp_print(mp, ") shifted ");
9703 mp_print_scaled(mp, -mp_take_scaled(mp, mp_dash_offset(mp, hh),scf));
9704 if ( ! ok_to_dash || (dash_y(hh)==0) ) mp_print(mp, " (this will be ignored)");
9707 @ @<Declare subroutines needed by |print_edges|@>=
9708 scaled mp_dash_offset (MP mp,pointer h) {
9709 scaled x; /* the answer */
9710 if ( (dash_list(h)==null_dash) || (dash_y(h)<0) ) mp_confusion(mp, "dash0");
9711 @:this can't happen dash0}{\quad dash0@>
9712 if ( dash_y(h)==0 ) {
9715 x=-(start_x(dash_list(h)) % dash_y(h));
9716 if ( x<0 ) x=x+dash_y(h);
9721 @ @<Cases for printing graphical object node |p|@>=
9723 mp_print_char(mp, '"'); mp_print_str(mp,text_p(p));
9724 mp_print(mp, "\" infont \""); mp_print(mp, mp->font_name[font_n(p)]);
9725 mp_print_char(mp, '"'); mp_print_ln(mp);
9726 mp_print_obj_color(mp, p);
9727 mp_print(mp, "transformed ");
9728 mp_print_compact_node(mp, text_tx_loc(p),6);
9731 @ @<Cases for printing graphical object node |p|@>=
9732 case mp_start_clip_code:
9733 mp_print(mp, "clipping path:");
9735 mp_pr_path(mp, path_p(p));
9737 case mp_stop_clip_code:
9738 mp_print(mp, "stop clipping");
9741 @ @<Cases for printing graphical object node |p|@>=
9742 case mp_start_bounds_code:
9743 mp_print(mp, "setbounds path:");
9745 mp_pr_path(mp, path_p(p));
9747 case mp_stop_bounds_code:
9748 mp_print(mp, "end of setbounds");
9751 @ To initialize the |dash_list| field in an edge header~|h|, we need a
9752 subroutine that scans an edge structure and tries to interpret it as a dash
9753 pattern. This can only be done when there are no filled regions or clipping
9754 paths and all the pen strokes have the same color. The first step is to let
9755 $y_0$ be the initial $y$~coordinate of the first pen stroke. Then we implicitly
9756 project all the pen stroke paths onto the line $y=y_0$ and require that there
9757 be no retracing. If the resulting paths cover a range of $x$~coordinates of
9758 length $\Delta x$, we set |dash_y(h)| to the length of the dash pattern by
9759 finding the maximum of $\Delta x$ and the absolute value of~$y_0$.
9761 @c @<Declare a procedure called |x_retrace_error|@>;
9762 pointer mp_make_dashes (MP mp,pointer h) { /* returns |h| or |null| */
9763 pointer p; /* this scans the stroked nodes in the object list */
9764 pointer p0; /* if not |null| this points to the first stroked node */
9765 pointer pp,qq,rr; /* pointers into |path_p(p)| */
9766 pointer d,dd; /* pointers used to create the dash list */
9767 @<Other local variables in |make_dashes|@>;
9768 scaled y0=0; /* the initial $y$ coordinate */
9769 if ( dash_list(h)!=null_dash )
9772 p=link(dummy_loc(h));
9774 if ( type(p)!=mp_stroked_code ) {
9775 @<Compain that the edge structure contains a node of the wrong type
9776 and |goto not_found|@>;
9779 if ( p0==null ){ p0=p; y0=y_coord(pp); };
9780 @<Make |d| point to a new dash node created from stroke |p| and path |pp|
9781 or |goto not_found| if there is an error@>;
9782 @<Insert |d| into the dash list and |goto not_found| if there is an error@>;
9785 if ( dash_list(h)==null_dash )
9786 goto NOT_FOUND; /* No error message */
9787 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>;
9788 @<Set |dash_y(h)| and merge the first and last dashes if necessary@>;
9791 @<Flush the dash list, recycle |h| and return |null|@>;
9794 @ @<Compain that the edge structure contains a node of the wrong type...@>=
9796 print_err("Picture is too complicated to use as a dash pattern");
9797 help3("When you say `dashed p', picture p should not contain any")
9798 ("text, filled regions, or clipping paths. This time it did")
9799 ("so I'll just make it a solid line instead.");
9800 mp_put_get_error(mp);
9804 @ A similar error occurs when monotonicity fails.
9806 @<Declare a procedure called |x_retrace_error|@>=
9807 void mp_x_retrace_error (MP mp) {
9808 print_err("Picture is too complicated to use as a dash pattern");
9809 help3("When you say `dashed p', every path in p should be monotone")
9810 ("in x and there must be no overlapping. This failed")
9811 ("so I'll just make it a solid line instead.");
9812 mp_put_get_error(mp);
9815 @ We stash |p| in |info(d)| if |dash_p(p)<>0| so that subsequent processing can
9816 handle the case where the pen stroke |p| is itself dashed.
9818 @<Make |d| point to a new dash node created from stroke |p| and path...@>=
9819 @<Make sure |p| and |p0| are the same color and |goto not_found| if there is
9822 if ( link(pp)!=pp ) {
9825 @<Check for retracing between knots |qq| and |rr| and |goto not_found|
9826 if there is a problem@>;
9827 } while (right_type(rr)!=mp_endpoint);
9829 d=mp_get_node(mp, dash_node_size);
9830 if ( dash_p(p)==0 ) info(d)=0; else info(d)=p;
9831 if ( x_coord(pp)<x_coord(rr) ) {
9832 start_x(d)=x_coord(pp);
9833 stop_x(d)=x_coord(rr);
9835 start_x(d)=x_coord(rr);
9836 stop_x(d)=x_coord(pp);
9839 @ We also need to check for the case where the segment from |qq| to |rr| is
9840 monotone in $x$ but is reversed relative to the path from |pp| to |qq|.
9842 @<Check for retracing between knots |qq| and |rr| and |goto not_found|...@>=
9847 if ( (x0>x1) || (x1>x2) || (x2>x3) ) {
9848 if ( (x0<x1) || (x1<x2) || (x2<x3) ) {
9849 if ( mp_ab_vs_cd(mp, x2-x1,x2-x1,x1-x0,x3-x2)>0 ) {
9850 mp_x_retrace_error(mp); goto NOT_FOUND;
9854 if ( (x_coord(pp)>x0) || (x0>x3) ) {
9855 if ( (x_coord(pp)<x0) || (x0<x3) ) {
9856 mp_x_retrace_error(mp); goto NOT_FOUND;
9860 @ @<Other local variables in |make_dashes|@>=
9861 scaled x0,x1,x2,x3; /* $x$ coordinates of the segment from |qq| to |rr| */
9863 @ @<Make sure |p| and |p0| are the same color and |goto not_found|...@>=
9864 if ( (red_val(p)!=red_val(p0)) || (black_val(p)!=black_val(p0)) ||
9865 (green_val(p)!=green_val(p0)) || (blue_val(p)!=blue_val(p0)) ) {
9866 print_err("Picture is too complicated to use as a dash pattern");
9867 help3("When you say `dashed p', everything in picture p should")
9868 ("be the same color. I can\'t handle your color changes")
9869 ("so I'll just make it a solid line instead.");
9870 mp_put_get_error(mp);
9874 @ @<Insert |d| into the dash list and |goto not_found| if there is an error@>=
9875 start_x(null_dash)=stop_x(d);
9876 dd=h; /* this makes |link(dd)=dash_list(h)| */
9877 while ( start_x(link(dd))<stop_x(d) )
9880 if ( (stop_x(dd)>start_x(d)) )
9881 { mp_x_retrace_error(mp); goto NOT_FOUND; };
9886 @ @<Set |dash_y(h)| and merge the first and last dashes if necessary@>=
9888 while ( (link(d)!=null_dash) )
9891 dash_y(h)=stop_x(d)-start_x(dd);
9892 if ( abs(y0)>dash_y(h) ) {
9894 } else if ( d!=dd ) {
9895 dash_list(h)=link(dd);
9896 stop_x(d)=stop_x(dd)+dash_y(h);
9897 mp_free_node(mp, dd,dash_node_size);
9900 @ We get here when the argument is a null picture or when there is an error.
9901 Recovering from an error involves making |dash_list(h)| empty to indicate
9902 that |h| is not known to be a valid dash pattern. We also dereference |h|
9903 since it is not being used for the return value.
9905 @<Flush the dash list, recycle |h| and return |null|@>=
9906 mp_flush_dash_list(mp, h);
9910 @ Having carefully saved the dashed stroked nodes in the
9911 corresponding dash nodes, we must be prepared to break up these dashes into
9914 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>=
9915 d=h; /* now |link(d)=dash_list(h)| */
9916 while ( link(d)!=null_dash ) {
9923 if ( (hh==null) ) mp_confusion(mp, "dash1");
9924 @:this can't happen dash0}{\quad dash1@>
9925 if ( dash_y(hh)==0 ) {
9928 if ( dash_list(hh)==null ) mp_confusion(mp, "dash1");
9929 @:this can't happen dash0}{\quad dash1@>
9930 @<Replace |link(d)| by a dashed version as determined by edge header
9931 |hh| and scale factor |ds|@>;
9936 @ @<Other local variables in |make_dashes|@>=
9937 pointer dln; /* |link(d)| */
9938 pointer hh; /* an edge header that tells how to break up |dln| */
9939 scaled hsf; /* the dash pattern from |hh| gets scaled by this */
9940 pointer ds; /* the stroked node from which |hh| and |hsf| are derived */
9941 scaled xoff; /* added to $x$ values in |dash_list(hh)| to match |dln| */
9943 @ @<Replace |link(d)| by a dashed version as determined by edge header...@>=
9946 xoff=start_x(dln)-mp_take_scaled(mp, hsf,start_x(dd))-
9947 mp_take_scaled(mp, hsf,mp_dash_offset(mp, hh));
9948 start_x(null_dash)=mp_take_scaled(mp, hsf,start_x(dd))
9949 +mp_take_scaled(mp, hsf,dash_y(hh));
9950 stop_x(null_dash)=start_x(null_dash);
9951 @<Advance |dd| until finding the first dash that overlaps |dln| when
9953 while ( start_x(dln)<=stop_x(dln) ) {
9954 @<If |dd| has `fallen off the end', back up to the beginning and fix |xoff|@>;
9955 @<Insert a dash between |d| and |dln| for the overlap with the offset version
9958 start_x(dln)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
9961 mp_free_node(mp, dln,dash_node_size)
9963 @ The name of this module is a bit of a lie because we actually just find the
9964 first |dd| where |take_scaled (hsf, stop_x(dd))| is large enough to make an
9965 overlap possible. It could be that the unoffset version of dash |dln| falls
9966 in the gap between |dd| and its predecessor.
9968 @<Advance |dd| until finding the first dash that overlaps |dln| when...@>=
9969 while ( xoff+mp_take_scaled(mp, hsf,stop_x(dd))<start_x(dln) ) {
9973 @ @<If |dd| has `fallen off the end', back up to the beginning and fix...@>=
9974 if ( dd==null_dash ) {
9976 xoff=xoff+mp_take_scaled(mp, hsf,dash_y(hh));
9979 @ At this point we already know that
9980 |start_x(dln)<=xoff+take_scaled(hsf,stop_x(dd))|.
9982 @<Insert a dash between |d| and |dln| for the overlap with the offset...@>=
9983 if ( xoff+mp_take_scaled(mp, hsf,start_x(dd))<=stop_x(dln) ) {
9984 link(d)=mp_get_node(mp, dash_node_size);
9987 if ( start_x(dln)>xoff+mp_take_scaled(mp, hsf,start_x(dd)))
9988 start_x(d)=start_x(dln);
9990 start_x(d)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
9991 if ( stop_x(dln)<xoff+mp_take_scaled(mp, hsf,stop_x(dd)) )
9992 stop_x(d)=stop_x(dln);
9994 stop_x(d)=xoff+mp_take_scaled(mp, hsf,stop_x(dd));
9997 @ The next major task is to update the bounding box information in an edge
9998 header~|h|. This is done via a procedure |adjust_bbox| that enlarges an edge
9999 header's bounding box to accommodate the box computed by |path_bbox| or
10000 |pen_bbox|. (This is stored in global variables |minx|, |miny|, |maxx|, and
10003 @c void mp_adjust_bbox (MP mp,pointer h) {
10004 if ( minx<minx_val(h) ) minx_val(h)=minx;
10005 if ( miny<miny_val(h) ) miny_val(h)=miny;
10006 if ( maxx>maxx_val(h) ) maxx_val(h)=maxx;
10007 if ( maxy>maxy_val(h) ) maxy_val(h)=maxy;
10010 @ Here is a special routine for updating the bounding box information in
10011 edge header~|h| to account for the squared-off ends of a non-cyclic path~|p|
10012 that is to be stroked with the pen~|pp|.
10014 @c void mp_box_ends (MP mp, pointer p, pointer pp, pointer h) {
10015 pointer q; /* a knot node adjacent to knot |p| */
10016 fraction dx,dy; /* a unit vector in the direction out of the path at~|p| */
10017 scaled d; /* a factor for adjusting the length of |(dx,dy)| */
10018 scaled z; /* a coordinate being tested against the bounding box */
10019 scaled xx,yy; /* the extreme pen vertex in the |(dx,dy)| direction */
10020 integer i; /* a loop counter */
10021 if ( right_type(p)!=mp_endpoint ) {
10024 @<Make |(dx,dy)| the final direction for the path segment from
10025 |q| to~|p|; set~|d|@>;
10026 d=mp_pyth_add(mp, dx,dy);
10028 @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>;
10029 for (i=1;i<= 2;i++) {
10030 @<Use |(dx,dy)| to generate a vertex of the square end cap and
10031 update the bounding box to accommodate it@>;
10035 if ( right_type(p)==mp_endpoint ) {
10038 @<Advance |p| to the end of the path and make |q| the previous knot@>;
10044 @ @<Make |(dx,dy)| the final direction for the path segment from...@>=
10045 if ( q==link(p) ) {
10046 dx=x_coord(p)-right_x(p);
10047 dy=y_coord(p)-right_y(p);
10048 if ( (dx==0)&&(dy==0) ) {
10049 dx=x_coord(p)-left_x(q);
10050 dy=y_coord(p)-left_y(q);
10053 dx=x_coord(p)-left_x(p);
10054 dy=y_coord(p)-left_y(p);
10055 if ( (dx==0)&&(dy==0) ) {
10056 dx=x_coord(p)-right_x(q);
10057 dy=y_coord(p)-right_y(q);
10060 dx=x_coord(p)-x_coord(q);
10061 dy=y_coord(p)-y_coord(q)
10063 @ @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>=
10064 dx=mp_make_fraction(mp, dx,d);
10065 dy=mp_make_fraction(mp, dy,d);
10066 mp_find_offset(mp, -dy,dx,pp);
10067 xx=mp->cur_x; yy=mp->cur_y
10069 @ @<Use |(dx,dy)| to generate a vertex of the square end cap and...@>=
10070 mp_find_offset(mp, dx,dy,pp);
10071 d=mp_take_fraction(mp, xx-mp->cur_x,dx)+mp_take_fraction(mp, yy-mp->cur_y,dy);
10072 if ( ((d<0)&&(i==1)) || ((d>0)&&(i==2)))
10073 mp_confusion(mp, "box_ends");
10074 @:this can't happen box ends}{\quad\\{box\_ends}@>
10075 z=x_coord(p)+mp->cur_x+mp_take_fraction(mp, d,dx);
10076 if ( z<minx_val(h) ) minx_val(h)=z;
10077 if ( z>maxx_val(h) ) maxx_val(h)=z;
10078 z=y_coord(p)+mp->cur_y+mp_take_fraction(mp, d,dy);
10079 if ( z<miny_val(h) ) miny_val(h)=z;
10080 if ( z>maxy_val(h) ) maxy_val(h)=z
10082 @ @<Advance |p| to the end of the path and make |q| the previous knot@>=
10086 } while (right_type(p)!=mp_endpoint)
10088 @ The major difficulty in finding the bounding box of an edge structure is the
10089 effect of clipping paths. We treat them conservatively by only clipping to the
10090 clipping path's bounding box, but this still
10091 requires recursive calls to |set_bbox| in order to find the bounding box of
10093 the objects to be clipped. Such calls are distinguished by the fact that the
10094 boolean parameter |top_level| is false.
10096 @c void mp_set_bbox (MP mp,pointer h, boolean top_level) {
10097 pointer p; /* a graphical object being considered */
10098 scaled sminx,sminy,smaxx,smaxy;
10099 /* for saving the bounding box during recursive calls */
10100 scaled x0,x1,y0,y1; /* temporary registers */
10101 integer lev; /* nesting level for |mp_start_bounds_code| nodes */
10102 @<Wipe out any existing bounding box information if |bbtype(h)| is
10103 incompatible with |internal[mp_true_corners]|@>;
10104 while ( link(bblast(h))!=null ) {
10108 case mp_stop_clip_code:
10109 if ( top_level ) mp_confusion(mp, "bbox"); else return;
10110 @:this can't happen bbox}{\quad bbox@>
10112 @<Other cases for updating the bounding box based on the type of object |p|@>;
10113 } /* all cases are enumerated above */
10115 if ( ! top_level ) mp_confusion(mp, "bbox");
10118 @ @<Internal library declarations@>=
10119 void mp_set_bbox (MP mp,pointer h, boolean top_level);
10121 @ @<Wipe out any existing bounding box information if |bbtype(h)| is...@>=
10122 switch (bbtype(h)) {
10126 if ( mp->internal[mp_true_corners]>0 ) mp_init_bbox(mp, h);
10129 if ( mp->internal[mp_true_corners]<=0 ) mp_init_bbox(mp, h);
10131 } /* there are no other cases */
10133 @ @<Other cases for updating the bounding box...@>=
10135 mp_path_bbox(mp, path_p(p));
10136 if ( pen_p(p)!=null ) {
10139 mp_pen_bbox(mp, pen_p(p));
10145 mp_adjust_bbox(mp, h);
10148 @ @<Other cases for updating the bounding box...@>=
10149 case mp_start_bounds_code:
10150 if ( mp->internal[mp_true_corners]>0 ) {
10151 bbtype(h)=bounds_unset;
10153 bbtype(h)=bounds_set;
10154 mp_path_bbox(mp, path_p(p));
10155 mp_adjust_bbox(mp, h);
10156 @<Scan to the matching |mp_stop_bounds_code| node and update |p| and
10160 case mp_stop_bounds_code:
10161 if ( mp->internal[mp_true_corners]<=0 ) mp_confusion(mp, "bbox2");
10162 @:this can't happen bbox2}{\quad bbox2@>
10165 @ @<Scan to the matching |mp_stop_bounds_code| node and update |p| and...@>=
10168 if ( link(p)==null ) mp_confusion(mp, "bbox2");
10169 @:this can't happen bbox2}{\quad bbox2@>
10171 if ( type(p)==mp_start_bounds_code ) incr(lev);
10172 else if ( type(p)==mp_stop_bounds_code ) decr(lev);
10176 @ It saves a lot of grief here to be slightly conservative and not account for
10177 omitted parts of dashed lines. We also don't worry about the material omitted
10178 when using butt end caps. The basic computation is for round end caps and
10179 |box_ends| augments it for square end caps.
10181 @<Other cases for updating the bounding box...@>=
10182 case mp_stroked_code:
10183 mp_path_bbox(mp, path_p(p));
10186 mp_pen_bbox(mp, pen_p(p));
10191 mp_adjust_bbox(mp, h);
10192 if ( (left_type(path_p(p))==mp_endpoint)&&(lcap_val(p)==2) )
10193 mp_box_ends(mp, path_p(p), pen_p(p), h);
10196 @ The height width and depth information stored in a text node determines a
10197 rectangle that needs to be transformed according to the transformation
10198 parameters stored in the text node.
10200 @<Other cases for updating the bounding box...@>=
10202 x1=mp_take_scaled(mp, txx_val(p),width_val(p));
10203 y0=mp_take_scaled(mp, txy_val(p),-depth_val(p));
10204 y1=mp_take_scaled(mp, txy_val(p),height_val(p));
10207 if ( y0<y1 ) { minx=minx+y0; maxx=maxx+y1; }
10208 else { minx=minx+y1; maxx=maxx+y0; }
10209 if ( x1<0 ) minx=minx+x1; else maxx=maxx+x1;
10210 x1=mp_take_scaled(mp, tyx_val(p),width_val(p));
10211 y0=mp_take_scaled(mp, tyy_val(p),-depth_val(p));
10212 y1=mp_take_scaled(mp, tyy_val(p),height_val(p));
10215 if ( y0<y1 ) { miny=miny+y0; maxy=maxy+y1; }
10216 else { miny=miny+y1; maxy=maxy+y0; }
10217 if ( x1<0 ) miny=miny+x1; else maxy=maxy+x1;
10218 mp_adjust_bbox(mp, h);
10221 @ This case involves a recursive call that advances |bblast(h)| to the node of
10222 type |mp_stop_clip_code| that matches |p|.
10224 @<Other cases for updating the bounding box...@>=
10225 case mp_start_clip_code:
10226 mp_path_bbox(mp, path_p(p));
10229 sminx=minx_val(h); sminy=miny_val(h);
10230 smaxx=maxx_val(h); smaxy=maxy_val(h);
10231 @<Reinitialize the bounding box in header |h| and call |set_bbox| recursively
10232 starting at |link(p)|@>;
10233 @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,
10235 minx=sminx; miny=sminy;
10236 maxx=smaxx; maxy=smaxy;
10237 mp_adjust_bbox(mp, h);
10240 @ @<Reinitialize the bounding box in header |h| and call |set_bbox|...@>=
10241 minx_val(h)=el_gordo;
10242 miny_val(h)=el_gordo;
10243 maxx_val(h)=-el_gordo;
10244 maxy_val(h)=-el_gordo;
10245 mp_set_bbox(mp, h,false)
10247 @ @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,...@>=
10248 if ( minx_val(h)<x0 ) minx_val(h)=x0;
10249 if ( miny_val(h)<y0 ) miny_val(h)=y0;
10250 if ( maxx_val(h)>x1 ) maxx_val(h)=x1;
10251 if ( maxy_val(h)>y1 ) maxy_val(h)=y1
10253 @* \[22] Finding an envelope.
10254 When \MP\ has a path and a polygonal pen, it needs to express the desired
10255 shape in terms of things \ps\ can understand. The present task is to compute
10256 a new path that describes the region to be filled. It is convenient to
10257 define this as a two step process where the first step is determining what
10258 offset to use for each segment of the path.
10260 @ Given a pointer |c| to a cyclic path,
10261 and a pointer~|h| to the first knot of a pen polygon,
10262 the |offset_prep| routine changes the path into cubics that are
10263 associated with particular pen offsets. Thus if the cubic between |p|
10264 and~|q| is associated with the |k|th offset and the cubic between |q| and~|r|
10265 has offset |l| then |info(q)=zero_off+l-k|. (The constant |zero_off| is added
10266 to because |l-k| could be negative.)
10268 After overwriting the type information with offset differences, we no longer
10269 have a true path so we refer to the knot list returned by |offset_prep| as an
10272 Since an envelope spec only determines relative changes in pen offsets,
10273 |offset_prep| sets a global variable |spec_offset| to the relative change from
10274 |h| to the first offset.
10276 @d zero_off 16384 /* added to offset changes to make them positive */
10279 integer spec_offset; /* number of pen edges between |h| and the initial offset */
10281 @ @c @<Declare subroutines needed by |offset_prep|@>;
10282 pointer mp_offset_prep (MP mp,pointer c, pointer h) {
10283 halfword n; /* the number of vertices in the pen polygon */
10284 pointer p,q,r,w, ww; /* for list manipulation */
10285 integer k_needed; /* amount to be added to |info(p)| when it is computed */
10286 pointer w0; /* a pointer to pen offset to use just before |p| */
10287 scaled dxin,dyin; /* the direction into knot |p| */
10288 integer turn_amt; /* change in pen offsets for the current cubic */
10289 @<Other local variables for |offset_prep|@>;
10291 @<Initialize the pen size~|n|@>;
10292 @<Initialize the incoming direction and pen offset at |c|@>;
10296 @<Split the cubic between |p| and |q|, if necessary, into cubics
10297 associated with single offsets, after which |q| should
10298 point to the end of the final such cubic@>;
10299 @<Advance |p| to node |q|, removing any ``dead'' cubics that
10300 might have been introduced by the splitting process@>;
10302 @<Fix the offset change in |info(c)| and set the return value of
10306 @ We shall want to keep track of where certain knots on the cyclic path
10307 wind up in the envelope spec. It doesn't suffice just to keep pointers to
10308 knot nodes because some nodes are deleted while removing dead cubics. Thus
10309 |offset_prep| updates the following pointers
10313 pointer spec_p2; /* pointers to distinguished knots */
10316 mp->spec_p1=null; mp->spec_p2=null;
10318 @ @<Initialize the pen size~|n|@>=
10325 @ Since the true incoming direction isn't known yet, we just pick a direction
10326 consistent with the pen offset~|h|. If this is wrong, it can be corrected
10329 @<Initialize the incoming direction and pen offset at |c|@>=
10330 dxin=x_coord(link(h))-x_coord(knil(h));
10331 dyin=y_coord(link(h))-y_coord(knil(h));
10332 if ( (dxin==0)&&(dyin==0) ) {
10333 dxin=y_coord(knil(h))-y_coord(h);
10334 dyin=x_coord(h)-x_coord(knil(h));
10338 @ We must be careful not to remove the only cubic in a cycle.
10340 But we must also be careful for another reason. If the user-supplied
10341 path starts with a set of degenerate cubics, these should not be removed
10342 because at this point we cannot do so cleanly. The relevant bug is
10343 tracker id 267, bugs 52c, reported by Boguslav.
10345 @<Advance |p| to node |q|, removing any ``dead'' cubics...@>=
10347 if ( x_coord(p)==right_x(p) ) if ( y_coord(p)==right_y(p) )
10348 if ( x_coord(p)==left_x(r) ) if ( y_coord(p)==left_y(r) )
10349 if ( x_coord(p)==x_coord(r) ) if ( y_coord(p)==y_coord(r) )
10350 if ( r!=p ) if ( ((r!=q) || (originator(r)!=metapost_user)) ) {
10351 @<Remove the cubic following |p| and update the data structures
10352 to merge |r| into |p|@>;
10357 @ @<Remove the cubic following |p| and update the data structures...@>=
10358 { k_needed=info(p)-zero_off;
10362 info(p)=k_needed+info(r);
10365 if ( r==c ) { info(p)=info(c); c=p; };
10366 if ( r==mp->spec_p1 ) mp->spec_p1=p;
10367 if ( r==mp->spec_p2 ) mp->spec_p2=p;
10368 r=p; mp_remove_cubic(mp, p);
10371 @ Not setting the |info| field of the newly created knot allows the splitting
10372 routine to work for paths.
10374 @<Declare subroutines needed by |offset_prep|@>=
10375 void mp_split_cubic (MP mp,pointer p, fraction t) { /* splits the cubic after |p| */
10376 scaled v; /* an intermediate value */
10377 pointer q,r; /* for list manipulation */
10378 q=link(p); r=mp_get_node(mp, knot_node_size); link(p)=r; link(r)=q;
10379 originator(r)=program_code;
10380 left_type(r)=mp_explicit; right_type(r)=mp_explicit;
10381 v=t_of_the_way(right_x(p),left_x(q));
10382 right_x(p)=t_of_the_way(x_coord(p),right_x(p));
10383 left_x(q)=t_of_the_way(left_x(q),x_coord(q));
10384 left_x(r)=t_of_the_way(right_x(p),v);
10385 right_x(r)=t_of_the_way(v,left_x(q));
10386 x_coord(r)=t_of_the_way(left_x(r),right_x(r));
10387 v=t_of_the_way(right_y(p),left_y(q));
10388 right_y(p)=t_of_the_way(y_coord(p),right_y(p));
10389 left_y(q)=t_of_the_way(left_y(q),y_coord(q));
10390 left_y(r)=t_of_the_way(right_y(p),v);
10391 right_y(r)=t_of_the_way(v,left_y(q));
10392 y_coord(r)=t_of_the_way(left_y(r),right_y(r));
10395 @ This does not set |info(p)| or |right_type(p)|.
10397 @<Declare subroutines needed by |offset_prep|@>=
10398 void mp_remove_cubic (MP mp,pointer p) { /* removes the dead cubic following~|p| */
10399 pointer q; /* the node that disappears */
10400 q=link(p); link(p)=link(q);
10401 right_x(p)=right_x(q); right_y(p)=right_y(q);
10402 mp_free_node(mp, q,knot_node_size);
10405 @ Let $d\prec d'$ mean that the counter-clockwise angle from $d$ to~$d'$ is
10406 strictly between zero and $180^\circ$. Then we can define $d\preceq d'$ to
10407 mean that the angle could be zero or $180^\circ$. If $w_k=(u_k,v_k)$ is the
10408 $k$th pen offset, the $k$th pen edge direction is defined by the formula
10409 $$d_k=(u\k-u_k,\,v\k-v_k).$$
10410 When listed by increasing $k$, these directions occur in counter-clockwise
10411 order so that $d_k\preceq d\k$ for all~$k$.
10412 The goal of |offset_prep| is to find an offset index~|k| to associate with
10413 each cubic, such that the direction $d(t)$ of the cubic satisfies
10414 $$d_{k-1}\preceq d(t)\preceq d_k\qquad\hbox{for $0\le t\le 1$.}\eqno(*)$$
10415 We may have to split a cubic into many pieces before each
10416 piece corresponds to a unique offset.
10418 @<Split the cubic between |p| and |q|, if necessary, into cubics...@>=
10419 info(p)=zero_off+k_needed;
10421 @<Prepare for derivative computations;
10422 |goto not_found| if the current cubic is dead@>;
10423 @<Find the initial direction |(dx,dy)|@>;
10424 @<Update |info(p)| and find the offset $w_k$ such that
10425 $d_{k-1}\preceq(\\{dx},\\{dy})\prec d_k$; also advance |w0| for
10426 the direction change at |p|@>;
10427 @<Find the final direction |(dxin,dyin)|@>;
10428 @<Decide on the net change in pen offsets and set |turn_amt|@>;
10429 @<Complete the offset splitting process@>;
10430 w0=mp_pen_walk(mp, w0,turn_amt);
10431 NOT_FOUND: do_nothing
10433 @ @<Declare subroutines needed by |offset_prep|@>=
10434 pointer mp_pen_walk (MP mp,pointer w, integer k) {
10435 /* walk |k| steps around a pen from |w| */
10436 while ( k>0 ) { w=link(w); decr(k); };
10437 while ( k<0 ) { w=knil(w); incr(k); };
10441 @ The direction of a cubic $B(z_0,z_1,z_2,z_3;t)=\bigl(x(t),y(t)\bigr)$ can be
10442 calculated from the quadratic polynomials
10443 ${1\over3}x'(t)=B(x_1-x_0,x_2-x_1,x_3-x_2;t)$ and
10444 ${1\over3}y'(t)=B(y_1-y_0,y_2-y_1,y_3-y_2;t)$.
10445 Since we may be calculating directions from several cubics
10446 split from the current one, it is desirable to do these calculations
10447 without losing too much precision. ``Scaled up'' values of the
10448 derivatives, which will be less tainted by accumulated errors than
10449 derivatives found from the cubics themselves, are maintained in
10450 local variables |x0|, |x1|, and |x2|, representing $X_0=2^l(x_1-x_0)$,
10451 $X_1=2^l(x_2-x_1)$, and $X_2=2^l(x_3-x_2)$; similarly |y0|, |y1|, and~|y2|
10452 represent $Y_0=2^l(y_1-y_0)$, $Y_1=2^l(y_2-y_1)$, and $Y_2=2^l(y_3-y_2)$.
10454 @<Other local variables for |offset_prep|@>=
10455 integer x0,x1,x2,y0,y1,y2; /* representatives of derivatives */
10456 integer t0,t1,t2; /* coefficients of polynomial for slope testing */
10457 integer du,dv,dx,dy; /* for directions of the pen and the curve */
10458 integer dx0,dy0; /* initial direction for the first cubic in the curve */
10459 integer mp_max_coef; /* used while scaling */
10460 integer x0a,x1a,x2a,y0a,y1a,y2a; /* intermediate values */
10461 fraction t; /* where the derivative passes through zero */
10462 fraction s; /* a temporary value */
10464 @ @<Prepare for derivative computations...@>=
10465 x0=right_x(p)-x_coord(p);
10466 x2=x_coord(q)-left_x(q);
10467 x1=left_x(q)-right_x(p);
10468 y0=right_y(p)-y_coord(p); y2=y_coord(q)-left_y(q);
10469 y1=left_y(q)-right_y(p);
10470 mp_max_coef=abs(x0);
10471 if ( abs(x1)>mp_max_coef ) mp_max_coef=abs(x1);
10472 if ( abs(x2)>mp_max_coef ) mp_max_coef=abs(x2);
10473 if ( abs(y0)>mp_max_coef ) mp_max_coef=abs(y0);
10474 if ( abs(y1)>mp_max_coef ) mp_max_coef=abs(y1);
10475 if ( abs(y2)>mp_max_coef ) mp_max_coef=abs(y2);
10476 if ( mp_max_coef==0 ) goto NOT_FOUND;
10477 while ( mp_max_coef<fraction_half ) {
10478 mp_max_coef+=mp_max_coef;
10479 x0+=x0; x1+=x1; x2+=x2;
10480 y0+=y0; y1+=y1; y2+=y2;
10483 @ Let us first solve a special case of the problem: Suppose we
10484 know an index~$k$ such that either (i)~$d(t)\succeq d_{k-1}$ for all~$t$
10485 and $d(0)\prec d_k$, or (ii)~$d(t)\preceq d_k$ for all~$t$ and
10486 $d(0)\succ d_{k-1}$.
10487 Then, in a sense, we're halfway done, since one of the two relations
10488 in $(*)$ is satisfied, and the other couldn't be satisfied for
10489 any other value of~|k|.
10491 Actually, the conditions can be relaxed somewhat since a relation such as
10492 $d(t)\succeq d_{k-1}$ restricts $d(t)$ to a half plane when all that really
10493 matters is whether $d(t)$ crosses the ray in the $d_{k-1}$ direction from
10494 the origin. The condition for case~(i) becomes $d_{k-1}\preceq d(0)\prec d_k$
10495 and $d(t)$ never crosses the $d_{k-1}$ ray in the clockwise direction.
10496 Case~(ii) is similar except $d(t)$ cannot cross the $d_k$ ray in the
10497 counterclockwise direction.
10499 The |fin_offset_prep| subroutine solves the stated subproblem.
10500 It has a parameter called |rise| that is |1| in
10501 case~(i), |-1| in case~(ii). Parameters |x0| through |y2| represent
10502 the derivative of the cubic following |p|.
10503 The |w| parameter should point to offset~$w_k$ and |info(p)| should already
10504 be set properly. The |turn_amt| parameter gives the absolute value of the
10505 overall net change in pen offsets.
10507 @<Declare subroutines needed by |offset_prep|@>=
10508 void mp_fin_offset_prep (MP mp,pointer p, pointer w, integer
10509 x0,integer x1, integer x2, integer y0, integer y1, integer y2,
10510 integer rise, integer turn_amt) {
10511 pointer ww; /* for list manipulation */
10512 scaled du,dv; /* for slope calculation */
10513 integer t0,t1,t2; /* test coefficients */
10514 fraction t; /* place where the derivative passes a critical slope */
10515 fraction s; /* slope or reciprocal slope */
10516 integer v; /* intermediate value for updating |x0..y2| */
10517 pointer q; /* original |link(p)| */
10520 if ( rise>0 ) ww=link(w); /* a pointer to $w\k$ */
10521 else ww=knil(w); /* a pointer to $w_{k-1}$ */
10522 @<Compute test coefficients |(t0,t1,t2)|
10523 for $d(t)$ versus $d_k$ or $d_{k-1}$@>;
10524 t=mp_crossing_point(mp, t0,t1,t2);
10525 if ( t>=fraction_one ) {
10526 if ( turn_amt>0 ) t=fraction_one; else return;
10528 @<Split the cubic at $t$,
10529 and split off another cubic if the derivative crosses back@>;
10534 @ We want $B(\\{t0},\\{t1},\\{t2};t)$ to be the dot product of $d(t)$ with a
10535 $-90^\circ$ rotation of the vector from |w| to |ww|. This makes the resulting
10536 function cross from positive to negative when $d_{k-1}\preceq d(t)\preceq d_k$
10539 @<Compute test coefficients |(t0,t1,t2)| for $d(t)$ versus...@>=
10540 du=x_coord(ww)-x_coord(w); dv=y_coord(ww)-y_coord(w);
10541 if ( abs(du)>=abs(dv) ) {
10542 s=mp_make_fraction(mp, dv,du);
10543 t0=mp_take_fraction(mp, x0,s)-y0;
10544 t1=mp_take_fraction(mp, x1,s)-y1;
10545 t2=mp_take_fraction(mp, x2,s)-y2;
10546 if ( du<0 ) { negate(t0); negate(t1); negate(t2); }
10548 s=mp_make_fraction(mp, du,dv);
10549 t0=x0-mp_take_fraction(mp, y0,s);
10550 t1=x1-mp_take_fraction(mp, y1,s);
10551 t2=x2-mp_take_fraction(mp, y2,s);
10552 if ( dv<0 ) { negate(t0); negate(t1); negate(t2); }
10554 if ( t0<0 ) t0=0 /* should be positive without rounding error */
10556 @ The curve has crossed $d_k$ or $d_{k-1}$; its initial segment satisfies
10557 $(*)$, and it might cross again, yielding another solution of $(*)$.
10559 @<Split the cubic at $t$, and split off another...@>=
10561 mp_split_cubic(mp, p,t); p=link(p); info(p)=zero_off+rise;
10563 v=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10564 x0=t_of_the_way(v,x1);
10565 v=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10566 y0=t_of_the_way(v,y1);
10567 if ( turn_amt<0 ) {
10568 t1=t_of_the_way(t1,t2);
10569 if ( t1>0 ) t1=0; /* without rounding error, |t1| would be |<=0| */
10570 t=mp_crossing_point(mp, 0,-t1,-t2);
10571 if ( t>fraction_one ) t=fraction_one;
10573 if ( (t==fraction_one)&&(link(p)!=q) ) {
10574 info(link(p))=info(link(p))-rise;
10576 mp_split_cubic(mp, p,t); info(link(p))=zero_off-rise;
10577 v=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10578 x2=t_of_the_way(x1,v);
10579 v=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10580 y2=t_of_the_way(y1,v);
10585 @ Now we must consider the general problem of |offset_prep|, when
10586 nothing is known about a given cubic. We start by finding its
10587 direction in the vicinity of |t=0|.
10589 If $z'(t)=0$, the given cubic is numerically unstable but |offset_prep|
10590 has not yet introduced any more numerical errors. Thus we can compute
10591 the true initial direction for the given cubic, even if it is almost
10594 @<Find the initial direction |(dx,dy)|@>=
10596 if ( dx==0 ) if ( dy==0 ) {
10598 if ( dx==0 ) if ( dy==0 ) {
10602 if ( p==c ) { dx0=dx; dy0=dy; }
10604 @ @<Find the final direction |(dxin,dyin)|@>=
10606 if ( dxin==0 ) if ( dyin==0 ) {
10608 if ( dxin==0 ) if ( dyin==0 ) {
10613 @ The next step is to bracket the initial direction between consecutive
10614 edges of the pen polygon. We must be careful to turn clockwise only if
10615 this makes the turn less than $180^\circ$. (A $180^\circ$ turn must be
10616 counter-clockwise in order to make \&{doublepath} envelopes come out
10617 @:double_path_}{\&{doublepath} primitive@>
10618 right.) This code depends on |w0| being the offset for |(dxin,dyin)|.
10620 @<Update |info(p)| and find the offset $w_k$ such that...@>=
10621 turn_amt=mp_get_turn_amt(mp, w0, dx, dy, mp_ab_vs_cd(mp, dy,dxin,dx,dyin)>=0);
10622 w=mp_pen_walk(mp, w0, turn_amt);
10624 info(p)=info(p)+turn_amt
10626 @ Decide how many pen offsets to go away from |w| in order to find the offset
10627 for |(dx,dy)|, going counterclockwise if |ccw| is |true|. This assumes that
10628 |w| is the offset for some direction $(x',y')$ from which the angle to |(dx,dy)|
10629 in the sense determined by |ccw| is less than or equal to $180^\circ$.
10631 If the pen polygon has only two edges, they could both be parallel
10632 to |(dx,dy)|. In this case, we must be careful to stop after crossing the first
10633 such edge in order to avoid an infinite loop.
10635 @<Declare subroutines needed by |offset_prep|@>=
10636 integer mp_get_turn_amt (MP mp,pointer w, scaled dx,
10637 scaled dy, boolean ccw) {
10638 pointer ww; /* a neighbor of knot~|w| */
10639 integer s; /* turn amount so far */
10640 integer t; /* |ab_vs_cd| result */
10645 t=mp_ab_vs_cd(mp, dy,x_coord(ww)-x_coord(w),
10646 dx,y_coord(ww)-y_coord(w));
10653 while ( mp_ab_vs_cd(mp, dy,x_coord(w)-x_coord(ww),
10654 dx,y_coord(w)-y_coord(ww))<0 ) {
10662 @ When we're all done, the final offset is |w0| and the final curve direction
10663 is |(dxin,dyin)|. With this knowledge of the incoming direction at |c|, we
10664 can correct |info(c)| which was erroneously based on an incoming offset
10667 @d fix_by(A) info(c)=info(c)+(A)
10669 @<Fix the offset change in |info(c)| and set the return value of...@>=
10670 mp->spec_offset=info(c)-zero_off;
10671 if ( link(c)==c ) {
10672 info(c)=zero_off+n;
10675 while ( w0!=h ) { fix_by(1); w0=link(w0); };
10676 while ( info(c)<=zero_off-n ) fix_by(n);
10677 while ( info(c)>zero_off ) fix_by(-n);
10678 if ( (info(c)!=zero_off)&&(mp_ab_vs_cd(mp, dy0,dxin,dx0,dyin)>=0) ) fix_by(n);
10682 @ Finally we want to reduce the general problem to situations that
10683 |fin_offset_prep| can handle. We split the cubic into at most three parts
10684 with respect to $d_{k-1}$, and apply |fin_offset_prep| to each part.
10686 @<Complete the offset splitting process@>=
10688 @<Compute test coeff...@>;
10689 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set
10690 |t:=fraction_one+1|@>;
10691 if ( t>fraction_one ) {
10692 mp_fin_offset_prep(mp, p,w,x0,x1,x2,y0,y1,y2,1,turn_amt);
10694 mp_split_cubic(mp, p,t); r=link(p);
10695 x1a=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10696 x2a=t_of_the_way(x1a,x1);
10697 y1a=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10698 y2a=t_of_the_way(y1a,y1);
10699 mp_fin_offset_prep(mp, p,w,x0,x1a,x2a,y0,y1a,y2a,1,0); x0=x2a; y0=y2a;
10700 info(r)=zero_off-1;
10701 if ( turn_amt>=0 ) {
10702 t1=t_of_the_way(t1,t2);
10704 t=mp_crossing_point(mp, 0,-t1,-t2);
10705 if ( t>fraction_one ) t=fraction_one;
10706 @<Split off another rising cubic for |fin_offset_prep|@>;
10707 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,0);
10709 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,-1-turn_amt);
10713 @ @<Split off another rising cubic for |fin_offset_prep|@>=
10714 mp_split_cubic(mp, r,t); info(link(r))=zero_off+1;
10715 x1a=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10716 x0a=t_of_the_way(x1,x1a);
10717 y1a=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10718 y0a=t_of_the_way(y1,y1a);
10719 mp_fin_offset_prep(mp, link(r),w,x0a,x1a,x2,y0a,y1a,y2,1,turn_amt);
10722 @ At this point, the direction of the incoming pen edge is |(-du,-dv)|.
10723 When the component of $d(t)$ perpendicular to |(-du,-dv)| crosses zero, we
10724 need to decide whether the directions are parallel or antiparallel. We
10725 can test this by finding the dot product of $d(t)$ and |(-du,-dv)|, but this
10726 should be avoided when the value of |turn_amt| already determines the
10727 answer. If |t2<0|, there is one crossing and it is antiparallel only if
10728 |turn_amt>=0|. If |turn_amt<0|, there should always be at least one
10729 crossing and the first crossing cannot be antiparallel.
10731 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set...@>=
10732 t=mp_crossing_point(mp, t0,t1,t2);
10733 if ( turn_amt>=0 ) {
10737 u0=t_of_the_way(x0,x1);
10738 u1=t_of_the_way(x1,x2);
10739 ss=mp_take_fraction(mp, -du,t_of_the_way(u0,u1));
10740 v0=t_of_the_way(y0,y1);
10741 v1=t_of_the_way(y1,y2);
10742 ss=ss+mp_take_fraction(mp, -dv,t_of_the_way(v0,v1));
10743 if ( ss<0 ) t=fraction_one+1;
10745 } else if ( t>fraction_one ) {
10749 @ @<Other local variables for |offset_prep|@>=
10750 integer u0,u1,v0,v1; /* intermediate values for $d(t)$ calculation */
10751 integer ss = 0; /* the part of the dot product computed so far */
10752 int d_sign; /* sign of overall change in direction for this cubic */
10754 @ If the cubic almost has a cusp, it is a numerically ill-conditioned
10755 problem to decide which way it loops around but that's OK as long we're
10756 consistent. To make \&{doublepath} envelopes work properly, reversing
10757 the path should always change the sign of |turn_amt|.
10759 @<Decide on the net change in pen offsets and set |turn_amt|@>=
10760 d_sign=mp_ab_vs_cd(mp, dx,dyin, dxin,dy);
10763 if ( dy>0 ) d_sign=1; else d_sign=-1;
10764 } else if ( dx>0 ) {
10770 @<Make |ss| negative if and only if the total change in direction is
10771 more than $180^\circ$@>;
10772 turn_amt=mp_get_turn_amt(mp, w, dxin, dyin, d_sign>0);
10773 if ( ss<0 ) turn_amt=turn_amt-d_sign*n
10775 @ In order to be invariant under path reversal, the result of this computation
10776 should not change when |x0|, |y0|, $\ldots$ are all negated and |(x0,y0)| is
10777 then swapped with |(x2,y2)|. We make use of the identities
10778 |take_fraction(-a,-b)=take_fraction(a,b)| and
10779 |t_of_the_way(-a,-b)=-(t_of_the_way(a,b))|.
10781 @<Make |ss| negative if and only if the total change in direction is...@>=
10782 t0=half(mp_take_fraction(mp, x0,y2))-half(mp_take_fraction(mp, x2,y0));
10783 t1=half(mp_take_fraction(mp, x1,y0+y2))-half(mp_take_fraction(mp, y1,x0+x2));
10784 if ( t0==0 ) t0=d_sign; /* path reversal always negates |d_sign| */
10786 t=mp_crossing_point(mp, t0,t1,-t0);
10787 u0=t_of_the_way(x0,x1);
10788 u1=t_of_the_way(x1,x2);
10789 v0=t_of_the_way(y0,y1);
10790 v1=t_of_the_way(y1,y2);
10792 t=mp_crossing_point(mp, -t0,t1,t0);
10793 u0=t_of_the_way(x2,x1);
10794 u1=t_of_the_way(x1,x0);
10795 v0=t_of_the_way(y2,y1);
10796 v1=t_of_the_way(y1,y0);
10798 s=mp_take_fraction(mp, x0+x2,t_of_the_way(u0,u1))+
10799 mp_take_fraction(mp, y0+y2,t_of_the_way(v0,v1))
10801 @ Here's a routine that prints an envelope spec in symbolic form. It assumes
10802 that the |cur_pen| has not been walked around to the first offset.
10805 void mp_print_spec (MP mp,pointer cur_spec, pointer cur_pen, char *s) {
10806 pointer p,q; /* list traversal */
10807 pointer w; /* the current pen offset */
10808 mp_print_diagnostic(mp, "Envelope spec",s,true);
10809 p=cur_spec; w=mp_pen_walk(mp, cur_pen,mp->spec_offset);
10811 mp_print_two(mp, x_coord(cur_spec),y_coord(cur_spec));
10812 mp_print(mp, " % beginning with offset ");
10813 mp_print_two(mp, x_coord(w),y_coord(w));
10817 @<Print the cubic between |p| and |q|@>;
10819 } while (! ((p==cur_spec) || (info(p)!=zero_off)));
10820 if ( info(p)!=zero_off ) {
10821 @<Update |w| as indicated by |info(p)| and print an explanation@>;
10823 } while (p!=cur_spec);
10824 mp_print_nl(mp, " & cycle");
10825 mp_end_diagnostic(mp, true);
10828 @ @<Update |w| as indicated by |info(p)| and print an explanation@>=
10830 w=mp_pen_walk(mp, w,info(p)-zero_off);
10831 mp_print(mp, " % ");
10832 if ( info(p)>zero_off ) mp_print(mp, "counter");
10833 mp_print(mp, "clockwise to offset ");
10834 mp_print_two(mp, x_coord(w),y_coord(w));
10837 @ @<Print the cubic between |p| and |q|@>=
10839 mp_print_nl(mp, " ..controls ");
10840 mp_print_two(mp, right_x(p),right_y(p));
10841 mp_print(mp, " and ");
10842 mp_print_two(mp, left_x(q),left_y(q));
10843 mp_print_nl(mp, " ..");
10844 mp_print_two(mp, x_coord(q),y_coord(q));
10847 @ Once we have an envelope spec, the remaining task to construct the actual
10848 envelope by offsetting each cubic as determined by the |info| fields in
10849 the knots. First we use |offset_prep| to convert the |c| into an envelope
10850 spec. Then we add the offsets so that |c| becomes a cyclic path that represents
10853 The |ljoin| and |miterlim| parameters control the treatment of points where the
10854 pen offset changes, and |lcap| controls the endpoints of a \&{doublepath}.
10855 The endpoints are easily located because |c| is given in undoubled form
10856 and then doubled in this procedure. We use |spec_p1| and |spec_p2| to keep
10857 track of the endpoints and treat them like very sharp corners.
10858 Butt end caps are treated like beveled joins; round end caps are treated like
10859 round joins; and square end caps are achieved by setting |join_type:=3|.
10861 None of these parameters apply to inside joins where the convolution tracing
10862 has retrograde lines. In such cases we use a simple connect-the-endpoints
10863 approach that is achieved by setting |join_type:=2|.
10865 @c @<Declare a function called |insert_knot|@>;
10866 pointer mp_make_envelope (MP mp,pointer c, pointer h, small_number ljoin,
10867 small_number lcap, scaled miterlim) {
10868 pointer p,q,r,q0; /* for manipulating the path */
10869 int join_type=0; /* codes |0..3| for mitered, round, beveled, or square */
10870 pointer w,w0; /* the pen knot for the current offset */
10871 scaled qx,qy; /* unshifted coordinates of |q| */
10872 halfword k,k0; /* controls pen edge insertion */
10873 @<Other local variables for |make_envelope|@>;
10874 dxin=0; dyin=0; dxout=0; dyout=0;
10875 mp->spec_p1=null; mp->spec_p2=null;
10876 @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>;
10877 @<Use |offset_prep| to compute the envelope spec then walk |h| around to
10878 the initial offset@>;
10883 qx=x_coord(q); qy=y_coord(q);
10886 if ( k!=zero_off ) {
10887 @<Set |join_type| to indicate how to handle offset changes at~|q|@>;
10889 @<Add offset |w| to the cubic from |p| to |q|@>;
10890 while ( k!=zero_off ) {
10891 @<Step |w| and move |k| one step closer to |zero_off|@>;
10892 if ( (join_type==1)||(k==zero_off) )
10893 q=mp_insert_knot(mp, q,qx+x_coord(w),qy+y_coord(w));
10895 if ( q!=link(p) ) {
10896 @<Set |p=link(p)| and add knots between |p| and |q| as
10897 required by |join_type|@>;
10904 @ @<Use |offset_prep| to compute the envelope spec then walk |h| around to...@>=
10905 c=mp_offset_prep(mp, c,h);
10906 if ( mp->internal[mp_tracing_specs]>0 )
10907 mp_print_spec(mp, c,h,"");
10908 h=mp_pen_walk(mp, h,mp->spec_offset)
10910 @ Mitered and squared-off joins depend on path directions that are difficult to
10911 compute for degenerate cubics. The envelope spec computed by |offset_prep| can
10912 have degenerate cubics only if the entire cycle collapses to a single
10913 degenerate cubic. Setting |join_type:=2| in this case makes the computed
10914 envelope degenerate as well.
10916 @<Set |join_type| to indicate how to handle offset changes at~|q|@>=
10917 if ( k<zero_off ) {
10920 if ( (q!=mp->spec_p1)&&(q!=mp->spec_p2) ) join_type=ljoin;
10921 else if ( lcap==2 ) join_type=3;
10922 else join_type=2-lcap;
10923 if ( (join_type==0)||(join_type==3) ) {
10924 @<Set the incoming and outgoing directions at |q|; in case of
10925 degeneracy set |join_type:=2|@>;
10926 if ( join_type==0 ) {
10927 @<If |miterlim| is less than the secant of half the angle at |q|
10928 then set |join_type:=2|@>;
10933 @ @<If |miterlim| is less than the secant of half the angle at |q|...@>=
10935 tmp=mp_take_fraction(mp, miterlim,fraction_half+
10936 half(mp_take_fraction(mp, dxin,dxout)+mp_take_fraction(mp, dyin,dyout)));
10938 if ( mp_take_scaled(mp, miterlim,tmp)<unity ) join_type=2;
10941 @ @<Other local variables for |make_envelope|@>=
10942 fraction dxin,dyin,dxout,dyout; /* directions at |q| when square or mitered */
10943 scaled tmp; /* a temporary value */
10945 @ The coordinates of |p| have already been shifted unless |p| is the first
10946 knot in which case they get shifted at the very end.
10948 @<Add offset |w| to the cubic from |p| to |q|@>=
10949 right_x(p)=right_x(p)+x_coord(w);
10950 right_y(p)=right_y(p)+y_coord(w);
10951 left_x(q)=left_x(q)+x_coord(w);
10952 left_y(q)=left_y(q)+y_coord(w);
10953 x_coord(q)=x_coord(q)+x_coord(w);
10954 y_coord(q)=y_coord(q)+y_coord(w);
10955 left_type(q)=mp_explicit;
10956 right_type(q)=mp_explicit
10958 @ @<Step |w| and move |k| one step closer to |zero_off|@>=
10959 if ( k>zero_off ){ w=link(w); decr(k); }
10960 else { w=knil(w); incr(k); }
10962 @ The cubic from |q| to the new knot at |(x,y)| becomes a line segment and
10963 the |right_x| and |right_y| fields of |r| are set from |q|. This is done in
10964 case the cubic containing these control points is ``yet to be examined.''
10966 @<Declare a function called |insert_knot|@>=
10967 pointer mp_insert_knot (MP mp,pointer q, scaled x, scaled y) {
10968 /* returns the inserted knot */
10969 pointer r; /* the new knot */
10970 r=mp_get_node(mp, knot_node_size);
10971 link(r)=link(q); link(q)=r;
10972 right_x(r)=right_x(q);
10973 right_y(r)=right_y(q);
10976 right_x(q)=x_coord(q);
10977 right_y(q)=y_coord(q);
10978 left_x(r)=x_coord(r);
10979 left_y(r)=y_coord(r);
10980 left_type(r)=mp_explicit;
10981 right_type(r)=mp_explicit;
10982 originator(r)=program_code;
10986 @ After setting |p:=link(p)|, either |join_type=1| or |q=link(p)|.
10988 @<Set |p=link(p)| and add knots between |p| and |q| as...@>=
10991 if ( (join_type==0)||(join_type==3) ) {
10992 if ( join_type==0 ) {
10993 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>
10995 @<Make |r| the last of two knots inserted between |p| and |q| to form a
10999 right_x(r)=x_coord(r);
11000 right_y(r)=y_coord(r);
11005 @ For very small angles, adding a knot is unnecessary and would cause numerical
11006 problems, so we just set |r:=null| in that case.
11008 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>=
11010 det=mp_take_fraction(mp, dyout,dxin)-mp_take_fraction(mp, dxout,dyin);
11011 if ( abs(det)<26844 ) {
11012 r=null; /* sine $<10^{-4}$ */
11014 tmp=mp_take_fraction(mp, x_coord(q)-x_coord(p),dyout)-
11015 mp_take_fraction(mp, y_coord(q)-y_coord(p),dxout);
11016 tmp=mp_make_fraction(mp, tmp,det);
11017 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11018 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11022 @ @<Other local variables for |make_envelope|@>=
11023 fraction det; /* a determinant used for mitered join calculations */
11025 @ @<Make |r| the last of two knots inserted between |p| and |q| to form a...@>=
11027 ht_x=y_coord(w)-y_coord(w0);
11028 ht_y=x_coord(w0)-x_coord(w);
11029 while ( (abs(ht_x)<fraction_half)&&(abs(ht_y)<fraction_half) ) {
11030 ht_x+=ht_x; ht_y+=ht_y;
11032 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range dot
11033 product with |(ht_x,ht_y)|@>;
11034 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxin,ht_x)+
11035 mp_take_fraction(mp, dyin,ht_y));
11036 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11037 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11038 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxout,ht_x)+
11039 mp_take_fraction(mp, dyout,ht_y));
11040 r=mp_insert_knot(mp, r,x_coord(q)+mp_take_fraction(mp, tmp,dxout),
11041 y_coord(q)+mp_take_fraction(mp, tmp,dyout));
11044 @ @<Other local variables for |make_envelope|@>=
11045 fraction ht_x,ht_y; /* perpendicular to the segment from |p| to |q| */
11046 scaled max_ht; /* maximum height of the pen polygon above the |w0|-|w| line */
11047 halfword kk; /* keeps track of the pen vertices being scanned */
11048 pointer ww; /* the pen vertex being tested */
11050 @ The dot product of the vector from |w0| to |ww| with |(ht_x,ht_y)| ranges
11051 from zero to |max_ht|.
11053 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range...@>=
11058 @<Step |ww| and move |kk| one step closer to |k0|@>;
11059 if ( kk==k0 ) break;
11060 tmp=mp_take_fraction(mp, x_coord(ww)-x_coord(w0),ht_x)+
11061 mp_take_fraction(mp, y_coord(ww)-y_coord(w0),ht_y);
11062 if ( tmp>max_ht ) max_ht=tmp;
11066 @ @<Step |ww| and move |kk| one step closer to |k0|@>=
11067 if ( kk>k0 ) { ww=link(ww); decr(kk); }
11068 else { ww=knil(ww); incr(kk); }
11070 @ @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>=
11071 if ( left_type(c)==mp_endpoint ) {
11072 mp->spec_p1=mp_htap_ypoc(mp, c);
11073 mp->spec_p2=mp->path_tail;
11074 originator(mp->spec_p1)=program_code;
11075 link(mp->spec_p2)=link(mp->spec_p1);
11076 link(mp->spec_p1)=c;
11077 mp_remove_cubic(mp, mp->spec_p1);
11079 if ( c!=link(c) ) {
11080 originator(mp->spec_p2)=program_code;
11081 mp_remove_cubic(mp, mp->spec_p2);
11083 @<Make |c| look like a cycle of length one@>;
11087 @ @<Make |c| look like a cycle of length one@>=
11089 left_type(c)=mp_explicit; right_type(c)=mp_explicit;
11090 left_x(c)=x_coord(c); left_y(c)=y_coord(c);
11091 right_x(c)=x_coord(c); right_y(c)=y_coord(c);
11094 @ In degenerate situations we might have to look at the knot preceding~|q|.
11095 That knot is |p| but if |p<>c|, its coordinates have already been offset by |w|.
11097 @<Set the incoming and outgoing directions at |q|; in case of...@>=
11098 dxin=x_coord(q)-left_x(q);
11099 dyin=y_coord(q)-left_y(q);
11100 if ( (dxin==0)&&(dyin==0) ) {
11101 dxin=x_coord(q)-right_x(p);
11102 dyin=y_coord(q)-right_y(p);
11103 if ( (dxin==0)&&(dyin==0) ) {
11104 dxin=x_coord(q)-x_coord(p);
11105 dyin=y_coord(q)-y_coord(p);
11106 if ( p!=c ) { /* the coordinates of |p| have been offset by |w| */
11107 dxin=dxin+x_coord(w);
11108 dyin=dyin+y_coord(w);
11112 tmp=mp_pyth_add(mp, dxin,dyin);
11116 dxin=mp_make_fraction(mp, dxin,tmp);
11117 dyin=mp_make_fraction(mp, dyin,tmp);
11118 @<Set the outgoing direction at |q|@>;
11121 @ If |q=c| then the coordinates of |r| and the control points between |q|
11122 and~|r| have already been offset by |h|.
11124 @<Set the outgoing direction at |q|@>=
11125 dxout=right_x(q)-x_coord(q);
11126 dyout=right_y(q)-y_coord(q);
11127 if ( (dxout==0)&&(dyout==0) ) {
11129 dxout=left_x(r)-x_coord(q);
11130 dyout=left_y(r)-y_coord(q);
11131 if ( (dxout==0)&&(dyout==0) ) {
11132 dxout=x_coord(r)-x_coord(q);
11133 dyout=y_coord(r)-y_coord(q);
11137 dxout=dxout-x_coord(h);
11138 dyout=dyout-y_coord(h);
11140 tmp=mp_pyth_add(mp, dxout,dyout);
11141 if ( tmp==0 ) mp_confusion(mp, "degenerate spec");
11142 @:this can't happen degerate spec}{\quad degenerate spec@>
11143 dxout=mp_make_fraction(mp, dxout,tmp);
11144 dyout=mp_make_fraction(mp, dyout,tmp)
11146 @* \[23] Direction and intersection times.
11147 A path of length $n$ is defined parametrically by functions $x(t)$ and
11148 $y(t)$, for |0<=t<=n|; we can regard $t$ as the ``time'' at which the path
11149 reaches the point $\bigl(x(t),y(t)\bigr)$. In this section of the program
11150 we shall consider operations that determine special times associated with
11151 given paths: the first time that a path travels in a given direction, and
11152 a pair of times at which two paths cross each other.
11154 @ Let's start with the easier task. The function |find_direction_time| is
11155 given a direction |(x,y)| and a path starting at~|h|. If the path never
11156 travels in direction |(x,y)|, the direction time will be~|-1|; otherwise
11157 it will be nonnegative.
11159 Certain anomalous cases can arise: If |(x,y)=(0,0)|, so that the given
11160 direction is undefined, the direction time will be~0. If $\bigl(x'(t),
11161 y'(t)\bigr)=(0,0)$, so that the path direction is undefined, it will be
11162 assumed to match any given direction at time~|t|.
11164 The routine solves this problem in nondegenerate cases by rotating the path
11165 and the given direction so that |(x,y)=(1,0)|; i.e., the main task will be
11166 to find when a given path first travels ``due east.''
11169 scaled mp_find_direction_time (MP mp,scaled x, scaled y, pointer h) {
11170 scaled max; /* $\max\bigl(\vert x\vert,\vert y\vert\bigr)$ */
11171 pointer p,q; /* for list traversal */
11172 scaled n; /* the direction time at knot |p| */
11173 scaled tt; /* the direction time within a cubic */
11174 @<Other local variables for |find_direction_time|@>;
11175 @<Normalize the given direction for better accuracy;
11176 but |return| with zero result if it's zero@>;
11179 if ( right_type(p)==mp_endpoint ) break;
11181 @<Rotate the cubic between |p| and |q|; then
11182 |goto found| if the rotated cubic travels due east at some time |tt|;
11183 but |break| if an entire cyclic path has been traversed@>;
11191 @ @<Normalize the given direction for better accuracy...@>=
11192 if ( abs(x)<abs(y) ) {
11193 x=mp_make_fraction(mp, x,abs(y));
11194 if ( y>0 ) y=fraction_one; else y=-fraction_one;
11195 } else if ( x==0 ) {
11198 y=mp_make_fraction(mp, y,abs(x));
11199 if ( x>0 ) x=fraction_one; else x=-fraction_one;
11202 @ Since we're interested in the tangent directions, we work with the
11203 derivative $${\textstyle1\over3}B'(x_0,x_1,x_2,x_3;t)=
11204 B(x_1-x_0,x_2-x_1,x_3-x_2;t)$$ instead of
11205 $B(x_0,x_1,x_2,x_3;t)$ itself. The derived coefficients are also scaled up
11206 in order to achieve better accuracy.
11208 The given path may turn abruptly at a knot, and it might pass the critical
11209 tangent direction at such a time. Therefore we remember the direction |phi|
11210 in which the previous rotated cubic was traveling. (The value of |phi| will be
11211 undefined on the first cubic, i.e., when |n=0|.)
11213 @<Rotate the cubic between |p| and |q|; then...@>=
11215 @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples of the control
11216 points of the rotated derivatives@>;
11217 if ( y1==0 ) if ( x1>=0 ) goto FOUND;
11219 @<Exit to |found| if an eastward direction occurs at knot |p|@>;
11222 if ( (x3!=0)||(y3!=0) ) phi=mp_n_arg(mp, x3,y3);
11223 @<Exit to |found| if the curve whose derivatives are specified by
11224 |x1,x2,x3,y1,y2,y3| travels eastward at some time~|tt|@>
11226 @ @<Other local variables for |find_direction_time|@>=
11227 scaled x1,x2,x3,y1,y2,y3; /* multiples of rotated derivatives */
11228 angle theta,phi; /* angles of exit and entry at a knot */
11229 fraction t; /* temp storage */
11231 @ @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples...@>=
11232 x1=right_x(p)-x_coord(p); x2=left_x(q)-right_x(p);
11233 x3=x_coord(q)-left_x(q);
11234 y1=right_y(p)-y_coord(p); y2=left_y(q)-right_y(p);
11235 y3=y_coord(q)-left_y(q);
11237 if ( abs(x2)>max ) max=abs(x2);
11238 if ( abs(x3)>max ) max=abs(x3);
11239 if ( abs(y1)>max ) max=abs(y1);
11240 if ( abs(y2)>max ) max=abs(y2);
11241 if ( abs(y3)>max ) max=abs(y3);
11242 if ( max==0 ) goto FOUND;
11243 while ( max<fraction_half ){
11244 max+=max; x1+=x1; x2+=x2; x3+=x3;
11245 y1+=y1; y2+=y2; y3+=y3;
11247 t=x1; x1=mp_take_fraction(mp, x1,x)+mp_take_fraction(mp, y1,y);
11248 y1=mp_take_fraction(mp, y1,x)-mp_take_fraction(mp, t,y);
11249 t=x2; x2=mp_take_fraction(mp, x2,x)+mp_take_fraction(mp, y2,y);
11250 y2=mp_take_fraction(mp, y2,x)-mp_take_fraction(mp, t,y);
11251 t=x3; x3=mp_take_fraction(mp, x3,x)+mp_take_fraction(mp, y3,y);
11252 y3=mp_take_fraction(mp, y3,x)-mp_take_fraction(mp, t,y)
11254 @ @<Exit to |found| if an eastward direction occurs at knot |p|@>=
11255 theta=mp_n_arg(mp, x1,y1);
11256 if ( theta>=0 ) if ( phi<=0 ) if ( phi>=theta-one_eighty_deg ) goto FOUND;
11257 if ( theta<=0 ) if ( phi>=0 ) if ( phi<=theta+one_eighty_deg ) goto FOUND
11259 @ In this step we want to use the |crossing_point| routine to find the
11260 roots of the quadratic equation $B(y_1,y_2,y_3;t)=0$.
11261 Several complications arise: If the quadratic equation has a double root,
11262 the curve never crosses zero, and |crossing_point| will find nothing;
11263 this case occurs iff $y_1y_3=y_2^2$ and $y_1y_2<0$. If the quadratic
11264 equation has simple roots, or only one root, we may have to negate it
11265 so that $B(y_1,y_2,y_3;t)$ crosses from positive to negative at its first root.
11266 And finally, we need to do special things if $B(y_1,y_2,y_3;t)$ is
11269 @ @<Exit to |found| if the curve whose derivatives are specified by...@>=
11270 if ( x1<0 ) if ( x2<0 ) if ( x3<0 ) goto DONE;
11271 if ( mp_ab_vs_cd(mp, y1,y3,y2,y2)==0 ) {
11272 @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11273 either |goto found| or |goto done|@>;
11276 if ( y1<0 ) { y1=-y1; y2=-y2; y3=-y3; }
11277 else if ( y2>0 ){ y2=-y2; y3=-y3; };
11279 @<Check the places where $B(y_1,y_2,y_3;t)=0$ to see if
11280 $B(x_1,x_2,x_3;t)\ge0$@>;
11283 @ The quadratic polynomial $B(y_1,y_2,y_3;t)$ begins |>=0| and has at most
11284 two roots, because we know that it isn't identically zero.
11286 It must be admitted that the |crossing_point| routine is not perfectly accurate;
11287 rounding errors might cause it to find a root when $y_1y_3>y_2^2$, or to
11288 miss the roots when $y_1y_3<y_2^2$. The rotation process is itself
11289 subject to rounding errors. Yet this code optimistically tries to
11290 do the right thing.
11292 @d we_found_it { tt=(t+04000) / 010000; goto FOUND; }
11294 @<Check the places where $B(y_1,y_2,y_3;t)=0$...@>=
11295 t=mp_crossing_point(mp, y1,y2,y3);
11296 if ( t>fraction_one ) goto DONE;
11297 y2=t_of_the_way(y2,y3);
11298 x1=t_of_the_way(x1,x2);
11299 x2=t_of_the_way(x2,x3);
11300 x1=t_of_the_way(x1,x2);
11301 if ( x1>=0 ) we_found_it;
11303 tt=t; t=mp_crossing_point(mp, 0,-y2,-y3);
11304 if ( t>fraction_one ) goto DONE;
11305 x1=t_of_the_way(x1,x2);
11306 x2=t_of_the_way(x2,x3);
11307 if ( t_of_the_way(x1,x2)>=0 ) {
11308 t=t_of_the_way(tt,fraction_one); we_found_it;
11311 @ @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11312 either |goto found| or |goto done|@>=
11314 if ( mp_ab_vs_cd(mp, y1,y2,0,0)<0 ) {
11315 t=mp_make_fraction(mp, y1,y1-y2);
11316 x1=t_of_the_way(x1,x2);
11317 x2=t_of_the_way(x2,x3);
11318 if ( t_of_the_way(x1,x2)>=0 ) we_found_it;
11319 } else if ( y3==0 ) {
11321 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|@>;
11322 } else if ( x3>=0 ) {
11323 tt=unity; goto FOUND;
11329 @ At this point we know that the derivative of |y(t)| is identically zero,
11330 and that |x1<0|; but either |x2>=0| or |x3>=0|, so there's some hope of
11333 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|...@>=
11335 t=mp_crossing_point(mp, -x1,-x2,-x3);
11336 if ( t<=fraction_one ) we_found_it;
11337 if ( mp_ab_vs_cd(mp, x1,x3,x2,x2)<=0 ) {
11338 t=mp_make_fraction(mp, x1,x1-x2); we_found_it;
11342 @ The intersection of two cubics can be found by an interesting variant
11343 of the general bisection scheme described in the introduction to
11345 Given $w(t)=B(w_0,w_1,w_2,w_3;t)$ and $z(t)=B(z_0,z_1,z_2,z_3;t)$,
11346 we wish to find a pair of times $(t_1,t_2)$ such that $w(t_1)=z(t_2)$,
11347 if an intersection exists. First we find the smallest rectangle that
11348 encloses the points $\{w_0,w_1,w_2,w_3\}$ and check that it overlaps
11349 the smallest rectangle that encloses
11350 $\{z_0,z_1,z_2,z_3\}$; if not, the cubics certainly don't intersect.
11351 But if the rectangles do overlap, we bisect the intervals, getting
11352 new cubics $w'$ and~$w''$, $z'$~and~$z''$; the intersection routine first
11353 tries for an intersection between $w'$ and~$z'$, then (if unsuccessful)
11354 between $w'$ and~$z''$, then (if still unsuccessful) between $w''$ and~$z'$,
11355 finally (if thrice unsuccessful) between $w''$ and~$z''$. After $l$~successful
11356 levels of bisection we will have determined the intersection times $t_1$
11357 and~$t_2$ to $l$~bits of accuracy.
11359 \def\submin{_{\rm min}} \def\submax{_{\rm max}}
11360 As before, it is better to work with the numbers $W_k=2^l(w_k-w_{k-1})$
11361 and $Z_k=2^l(z_k-z_{k-1})$ rather than the coefficients $w_k$ and $z_k$
11362 themselves. We also need one other quantity, $\Delta=2^l(w_0-z_0)$,
11363 to determine when the enclosing rectangles overlap. Here's why:
11364 The $x$~coordinates of~$w(t)$ are between $u\submin$ and $u\submax$,
11365 and the $x$~coordinates of~$z(t)$ are between $x\submin$ and $x\submax$,
11366 if we write $w_k=(u_k,v_k)$ and $z_k=(x_k,y_k)$ and $u\submin=
11367 \min(u_0,u_1,u_2,u_3)$, etc. These intervals of $x$~coordinates
11368 overlap if and only if $u\submin\L x\submax$ and
11369 $x\submin\L u\submax$. Letting
11370 $$U\submin=\min(0,U_1,U_1+U_2,U_1+U_2+U_3),\;
11371 U\submax=\max(0,U_1,U_1+U_2,U_1+U_2+U_3),$$
11372 we have $u\submin=2^lu_0+U\submin$, etc.; the condition for overlap
11374 $$X\submin-U\submax\L 2^l(u_0-x_0)\L X\submax-U\submin.$$
11375 Thus we want to maintain the quantity $2^l(u_0-x_0)$; similarly,
11376 the quantity $2^l(v_0-y_0)$ accounts for the $y$~coordinates. The
11377 coordinates of $\Delta=2^l(w_0-z_0)$ must stay bounded as $l$ increases,
11378 because of the overlap condition; i.e., we know that $X\submin$,
11379 $X\submax$, and their relatives are bounded, hence $X\submax-
11380 U\submin$ and $X\submin-U\submax$ are bounded.
11382 @ Incidentally, if the given cubics intersect more than once, the process
11383 just sketched will not necessarily find the lexicographically smallest pair
11384 $(t_1,t_2)$. The solution actually obtained will be smallest in ``shuffled
11385 order''; i.e., if $t_1=(.a_1a_2\ldots a_{16})_2$ and
11386 $t_2=(.b_1b_2\ldots b_{16})_2$, then we will minimize
11387 $a_1b_1a_2b_2\ldots a_{16}b_{16}$, not
11388 $a_1a_2\ldots a_{16}b_1b_2\ldots b_{16}$.
11389 Shuffled order agrees with lexicographic order if all pairs of solutions
11390 $(t_1,t_2)$ and $(t_1',t_2')$ have the property that $t_1<t_1'$ iff
11391 $t_2<t_2'$; but in general, lexicographic order can be quite different,
11392 and the bisection algorithm would be substantially less efficient if it were
11393 constrained by lexicographic order.
11395 For example, suppose that an overlap has been found for $l=3$ and
11396 $(t_1,t_2)= (.101,.011)$ in binary, but that no overlap is produced by
11397 either of the alternatives $(.1010,.0110)$, $(.1010,.0111)$ at level~4.
11398 Then there is probably an intersection in one of the subintervals
11399 $(.1011,.011x)$; but lexicographic order would require us to explore
11400 $(.1010,.1xxx)$ and $(.1011,.00xx)$ and $(.1011,.010x)$ first. We wouldn't
11401 want to store all of the subdivision data for the second path, so the
11402 subdivisions would have to be regenerated many times. Such inefficiencies
11403 would be associated with every `1' in the binary representation of~$t_1$.
11405 @ The subdivision process introduces rounding errors, hence we need to
11406 make a more liberal test for overlap. It is not hard to show that the
11407 computed values of $U_i$ differ from the truth by at most~$l$, on
11408 level~$l$, hence $U\submin$ and $U\submax$ will be at most $3l$ in error.
11409 If $\beta$ is an upper bound on the absolute error in the computed
11410 components of $\Delta=(|delx|,|dely|)$ on level~$l$, we will replace
11411 the test `$X\submin-U\submax\L|delx|$' by the more liberal test
11412 `$X\submin-U\submax\L|delx|+|tol|$', where $|tol|=6l+\beta$.
11414 More accuracy is obtained if we try the algorithm first with |tol=0|;
11415 the more liberal tolerance is used only if an exact approach fails.
11416 It is convenient to do this double-take by letting `3' in the preceding
11417 paragraph be a parameter, which is first 0, then 3.
11420 unsigned int tol_step; /* either 0 or 3, usually */
11422 @ We shall use an explicit stack to implement the recursive bisection
11423 method described above. The |bisect_stack| array will contain numerous 5-word
11424 packets like $(U_1,U_2,U_3,U\submin,U\submax)$, as well as 20-word packets
11425 comprising the 5-word packets for $U$, $V$, $X$, and~$Y$.
11427 The following macros define the allocation of stack positions to
11428 the quantities needed for bisection-intersection.
11430 @d stack_1(A) mp->bisect_stack[(A)] /* $U_1$, $V_1$, $X_1$, or $Y_1$ */
11431 @d stack_2(A) mp->bisect_stack[(A)+1] /* $U_2$, $V_2$, $X_2$, or $Y_2$ */
11432 @d stack_3(A) mp->bisect_stack[(A)+2] /* $U_3$, $V_3$, $X_3$, or $Y_3$ */
11433 @d stack_min(A) mp->bisect_stack[(A)+3]
11434 /* $U\submin$, $V\submin$, $X\submin$, or $Y\submin$ */
11435 @d stack_max(A) mp->bisect_stack[(A)+4]
11436 /* $U\submax$, $V\submax$, $X\submax$, or $Y\submax$ */
11437 @d int_packets 20 /* number of words to represent $U_k$, $V_k$, $X_k$, and $Y_k$ */
11439 @d u_packet(A) ((A)-5)
11440 @d v_packet(A) ((A)-10)
11441 @d x_packet(A) ((A)-15)
11442 @d y_packet(A) ((A)-20)
11443 @d l_packets (mp->bisect_ptr-int_packets)
11444 @d r_packets mp->bisect_ptr
11445 @d ul_packet u_packet(l_packets) /* base of $U'_k$ variables */
11446 @d vl_packet v_packet(l_packets) /* base of $V'_k$ variables */
11447 @d xl_packet x_packet(l_packets) /* base of $X'_k$ variables */
11448 @d yl_packet y_packet(l_packets) /* base of $Y'_k$ variables */
11449 @d ur_packet u_packet(r_packets) /* base of $U''_k$ variables */
11450 @d vr_packet v_packet(r_packets) /* base of $V''_k$ variables */
11451 @d xr_packet x_packet(r_packets) /* base of $X''_k$ variables */
11452 @d yr_packet y_packet(r_packets) /* base of $Y''_k$ variables */
11454 @d u1l stack_1(ul_packet) /* $U'_1$ */
11455 @d u2l stack_2(ul_packet) /* $U'_2$ */
11456 @d u3l stack_3(ul_packet) /* $U'_3$ */
11457 @d v1l stack_1(vl_packet) /* $V'_1$ */
11458 @d v2l stack_2(vl_packet) /* $V'_2$ */
11459 @d v3l stack_3(vl_packet) /* $V'_3$ */
11460 @d x1l stack_1(xl_packet) /* $X'_1$ */
11461 @d x2l stack_2(xl_packet) /* $X'_2$ */
11462 @d x3l stack_3(xl_packet) /* $X'_3$ */
11463 @d y1l stack_1(yl_packet) /* $Y'_1$ */
11464 @d y2l stack_2(yl_packet) /* $Y'_2$ */
11465 @d y3l stack_3(yl_packet) /* $Y'_3$ */
11466 @d u1r stack_1(ur_packet) /* $U''_1$ */
11467 @d u2r stack_2(ur_packet) /* $U''_2$ */
11468 @d u3r stack_3(ur_packet) /* $U''_3$ */
11469 @d v1r stack_1(vr_packet) /* $V''_1$ */
11470 @d v2r stack_2(vr_packet) /* $V''_2$ */
11471 @d v3r stack_3(vr_packet) /* $V''_3$ */
11472 @d x1r stack_1(xr_packet) /* $X''_1$ */
11473 @d x2r stack_2(xr_packet) /* $X''_2$ */
11474 @d x3r stack_3(xr_packet) /* $X''_3$ */
11475 @d y1r stack_1(yr_packet) /* $Y''_1$ */
11476 @d y2r stack_2(yr_packet) /* $Y''_2$ */
11477 @d y3r stack_3(yr_packet) /* $Y''_3$ */
11479 @d stack_dx mp->bisect_stack[mp->bisect_ptr] /* stacked value of |delx| */
11480 @d stack_dy mp->bisect_stack[mp->bisect_ptr+1] /* stacked value of |dely| */
11481 @d stack_tol mp->bisect_stack[mp->bisect_ptr+2] /* stacked value of |tol| */
11482 @d stack_uv mp->bisect_stack[mp->bisect_ptr+3] /* stacked value of |uv| */
11483 @d stack_xy mp->bisect_stack[mp->bisect_ptr+4] /* stacked value of |xy| */
11484 @d int_increment (int_packets+int_packets+5) /* number of stack words per level */
11487 integer *bisect_stack;
11488 unsigned int bisect_ptr;
11490 @ @<Allocate or initialize ...@>=
11491 mp->bisect_stack = xmalloc((bistack_size+1),sizeof(integer));
11493 @ @<Dealloc variables@>=
11494 xfree(mp->bisect_stack);
11496 @ @<Check the ``constant''...@>=
11497 if ( int_packets+17*int_increment>bistack_size ) mp->bad=19;
11499 @ Computation of the min and max is a tedious but fairly fast sequence of
11500 instructions; exactly four comparisons are made in each branch.
11503 if ( stack_1((A))<0 ) {
11504 if ( stack_3((A))>=0 ) {
11505 if ( stack_2((A))<0 ) stack_min((A))=stack_1((A))+stack_2((A));
11506 else stack_min((A))=stack_1((A));
11507 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11508 if ( stack_max((A))<0 ) stack_max((A))=0;
11510 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11511 if ( stack_min((A))>stack_1((A)) ) stack_min((A))=stack_1((A));
11512 stack_max((A))=stack_1((A))+stack_2((A));
11513 if ( stack_max((A))<0 ) stack_max((A))=0;
11515 } else if ( stack_3((A))<=0 ) {
11516 if ( stack_2((A))>0 ) stack_max((A))=stack_1((A))+stack_2((A));
11517 else stack_max((A))=stack_1((A));
11518 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11519 if ( stack_min((A))>0 ) stack_min((A))=0;
11521 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11522 if ( stack_max((A))<stack_1((A)) ) stack_max((A))=stack_1((A));
11523 stack_min((A))=stack_1((A))+stack_2((A));
11524 if ( stack_min((A))>0 ) stack_min((A))=0;
11527 @ It's convenient to keep the current values of $l$, $t_1$, and $t_2$ in
11528 the integer form $2^l+2^lt_1$ and $2^l+2^lt_2$. The |cubic_intersection|
11529 routine uses global variables |cur_t| and |cur_tt| for this purpose;
11530 after successful completion, |cur_t| and |cur_tt| will contain |unity|
11531 plus the |scaled| values of $t_1$ and~$t_2$.
11533 The values of |cur_t| and |cur_tt| will be set to zero if |cubic_intersection|
11534 finds no intersection. The routine gives up and gives an approximate answer
11535 if it has backtracked
11536 more than 5000 times (otherwise there are cases where several minutes
11537 of fruitless computation would be possible).
11539 @d max_patience 5000
11542 integer cur_t;integer cur_tt; /* controls and results of |cubic_intersection| */
11543 integer time_to_go; /* this many backtracks before giving up */
11544 integer max_t; /* maximum of $2^{l+1}$ so far achieved */
11546 @ The given cubics $B(w_0,w_1,w_2,w_3;t)$ and
11547 $B(z_0,z_1,z_2,z_3;t)$ are specified in adjacent knot nodes |(p,link(p))|
11548 and |(pp,link(pp))|, respectively.
11550 @c void mp_cubic_intersection (MP mp,pointer p, pointer pp) {
11551 pointer q,qq; /* |link(p)|, |link(pp)| */
11552 mp->time_to_go=max_patience; mp->max_t=2;
11553 @<Initialize for intersections at level zero@>;
11556 if ( mp->delx-mp->tol<=stack_max(x_packet(mp->xy))-stack_min(u_packet(mp->uv)))
11557 if ( mp->delx+mp->tol>=stack_min(x_packet(mp->xy))-stack_max(u_packet(mp->uv)))
11558 if ( mp->dely-mp->tol<=stack_max(y_packet(mp->xy))-stack_min(v_packet(mp->uv)))
11559 if ( mp->dely+mp->tol>=stack_min(y_packet(mp->xy))-stack_max(v_packet(mp->uv)))
11561 if ( mp->cur_t>=mp->max_t ){
11562 if ( mp->max_t==two ) { /* we've done 17 bisections */
11563 mp->cur_t=halfp(mp->cur_t+1); mp->cur_tt=halfp(mp->cur_tt+1); return;
11565 mp->max_t+=mp->max_t; mp->appr_t=mp->cur_t; mp->appr_tt=mp->cur_tt;
11567 @<Subdivide for a new level of intersection@>;
11570 if ( mp->time_to_go>0 ) {
11571 decr(mp->time_to_go);
11573 while ( mp->appr_t<unity ) {
11574 mp->appr_t+=mp->appr_t; mp->appr_tt+=mp->appr_tt;
11576 mp->cur_t=mp->appr_t; mp->cur_tt=mp->appr_tt; return;
11578 @<Advance to the next pair |(cur_t,cur_tt)|@>;
11582 @ The following variables are global, although they are used only by
11583 |cubic_intersection|, because it is necessary on some machines to
11584 split |cubic_intersection| up into two procedures.
11587 integer delx;integer dely; /* the components of $\Delta=2^l(w_0-z_0)$ */
11588 integer tol; /* bound on the uncertainly in the overlap test */
11590 unsigned int xy; /* pointers to the current packets of interest */
11591 integer three_l; /* |tol_step| times the bisection level */
11592 integer appr_t;integer appr_tt; /* best approximations known to the answers */
11594 @ We shall assume that the coordinates are sufficiently non-extreme that
11595 integer overflow will not occur.
11597 @<Initialize for intersections at level zero@>=
11598 q=link(p); qq=link(pp); mp->bisect_ptr=int_packets;
11599 u1r=right_x(p)-x_coord(p); u2r=left_x(q)-right_x(p);
11600 u3r=x_coord(q)-left_x(q); set_min_max(ur_packet);
11601 v1r=right_y(p)-y_coord(p); v2r=left_y(q)-right_y(p);
11602 v3r=y_coord(q)-left_y(q); set_min_max(vr_packet);
11603 x1r=right_x(pp)-x_coord(pp); x2r=left_x(qq)-right_x(pp);
11604 x3r=x_coord(qq)-left_x(qq); set_min_max(xr_packet);
11605 y1r=right_y(pp)-y_coord(pp); y2r=left_y(qq)-right_y(pp);
11606 y3r=y_coord(qq)-left_y(qq); set_min_max(yr_packet);
11607 mp->delx=x_coord(p)-x_coord(pp); mp->dely=y_coord(p)-y_coord(pp);
11608 mp->tol=0; mp->uv=r_packets; mp->xy=r_packets;
11609 mp->three_l=0; mp->cur_t=1; mp->cur_tt=1
11611 @ @<Subdivide for a new level of intersection@>=
11612 stack_dx=mp->delx; stack_dy=mp->dely; stack_tol=mp->tol;
11613 stack_uv=mp->uv; stack_xy=mp->xy;
11614 mp->bisect_ptr=mp->bisect_ptr+int_increment;
11615 mp->cur_t+=mp->cur_t; mp->cur_tt+=mp->cur_tt;
11616 u1l=stack_1(u_packet(mp->uv)); u3r=stack_3(u_packet(mp->uv));
11617 u2l=half(u1l+stack_2(u_packet(mp->uv)));
11618 u2r=half(u3r+stack_2(u_packet(mp->uv)));
11619 u3l=half(u2l+u2r); u1r=u3l;
11620 set_min_max(ul_packet); set_min_max(ur_packet);
11621 v1l=stack_1(v_packet(mp->uv)); v3r=stack_3(v_packet(mp->uv));
11622 v2l=half(v1l+stack_2(v_packet(mp->uv)));
11623 v2r=half(v3r+stack_2(v_packet(mp->uv)));
11624 v3l=half(v2l+v2r); v1r=v3l;
11625 set_min_max(vl_packet); set_min_max(vr_packet);
11626 x1l=stack_1(x_packet(mp->xy)); x3r=stack_3(x_packet(mp->xy));
11627 x2l=half(x1l+stack_2(x_packet(mp->xy)));
11628 x2r=half(x3r+stack_2(x_packet(mp->xy)));
11629 x3l=half(x2l+x2r); x1r=x3l;
11630 set_min_max(xl_packet); set_min_max(xr_packet);
11631 y1l=stack_1(y_packet(mp->xy)); y3r=stack_3(y_packet(mp->xy));
11632 y2l=half(y1l+stack_2(y_packet(mp->xy)));
11633 y2r=half(y3r+stack_2(y_packet(mp->xy)));
11634 y3l=half(y2l+y2r); y1r=y3l;
11635 set_min_max(yl_packet); set_min_max(yr_packet);
11636 mp->uv=l_packets; mp->xy=l_packets;
11637 mp->delx+=mp->delx; mp->dely+=mp->dely;
11638 mp->tol=mp->tol-mp->three_l+mp->tol_step;
11639 mp->tol+=mp->tol; mp->three_l=mp->three_l+mp->tol_step
11641 @ @<Advance to the next pair |(cur_t,cur_tt)|@>=
11643 if ( odd(mp->cur_tt) ) {
11644 if ( odd(mp->cur_t) ) {
11645 @<Descend to the previous level and |goto not_found|@>;
11648 mp->delx=mp->delx+stack_1(u_packet(mp->uv))+stack_2(u_packet(mp->uv))
11649 +stack_3(u_packet(mp->uv));
11650 mp->dely=mp->dely+stack_1(v_packet(mp->uv))+stack_2(v_packet(mp->uv))
11651 +stack_3(v_packet(mp->uv));
11652 mp->uv=mp->uv+int_packets; /* switch from |l_packet| to |r_packet| */
11653 decr(mp->cur_tt); mp->xy=mp->xy-int_packets;
11654 /* switch from |r_packet| to |l_packet| */
11655 mp->delx=mp->delx+stack_1(x_packet(mp->xy))+stack_2(x_packet(mp->xy))
11656 +stack_3(x_packet(mp->xy));
11657 mp->dely=mp->dely+stack_1(y_packet(mp->xy))+stack_2(y_packet(mp->xy))
11658 +stack_3(y_packet(mp->xy));
11661 incr(mp->cur_tt); mp->tol=mp->tol+mp->three_l;
11662 mp->delx=mp->delx-stack_1(x_packet(mp->xy))-stack_2(x_packet(mp->xy))
11663 -stack_3(x_packet(mp->xy));
11664 mp->dely=mp->dely-stack_1(y_packet(mp->xy))-stack_2(y_packet(mp->xy))
11665 -stack_3(y_packet(mp->xy));
11666 mp->xy=mp->xy+int_packets; /* switch from |l_packet| to |r_packet| */
11669 @ @<Descend to the previous level...@>=
11671 mp->cur_t=halfp(mp->cur_t); mp->cur_tt=halfp(mp->cur_tt);
11672 if ( mp->cur_t==0 ) return;
11673 mp->bisect_ptr=mp->bisect_ptr-int_increment;
11674 mp->three_l=mp->three_l-mp->tol_step;
11675 mp->delx=stack_dx; mp->dely=stack_dy; mp->tol=stack_tol;
11676 mp->uv=stack_uv; mp->xy=stack_xy;
11680 @ The |path_intersection| procedure is much simpler.
11681 It invokes |cubic_intersection| in lexicographic order until finding a
11682 pair of cubics that intersect. The final intersection times are placed in
11683 |cur_t| and~|cur_tt|.
11685 @c void mp_path_intersection (MP mp,pointer h, pointer hh) {
11686 pointer p,pp; /* link registers that traverse the given paths */
11687 integer n,nn; /* integer parts of intersection times, minus |unity| */
11688 @<Change one-point paths into dead cycles@>;
11693 if ( right_type(p)!=mp_endpoint ) {
11696 if ( right_type(pp)!=mp_endpoint ) {
11697 mp_cubic_intersection(mp, p,pp);
11698 if ( mp->cur_t>0 ) {
11699 mp->cur_t=mp->cur_t+n; mp->cur_tt=mp->cur_tt+nn;
11703 nn=nn+unity; pp=link(pp);
11706 n=n+unity; p=link(p);
11708 mp->tol_step=mp->tol_step+3;
11709 } while (mp->tol_step<=3);
11710 mp->cur_t=-unity; mp->cur_tt=-unity;
11713 @ @<Change one-point paths...@>=
11714 if ( right_type(h)==mp_endpoint ) {
11715 right_x(h)=x_coord(h); left_x(h)=x_coord(h);
11716 right_y(h)=y_coord(h); left_y(h)=y_coord(h); right_type(h)=mp_explicit;
11718 if ( right_type(hh)==mp_endpoint ) {
11719 right_x(hh)=x_coord(hh); left_x(hh)=x_coord(hh);
11720 right_y(hh)=y_coord(hh); left_y(hh)=y_coord(hh); right_type(hh)=mp_explicit;
11723 @* \[24] Dynamic linear equations.
11724 \MP\ users define variables implicitly by stating equations that should be
11725 satisfied; the computer is supposed to be smart enough to solve those equations.
11726 And indeed, the computer tries valiantly to do so, by distinguishing five
11727 different types of numeric values:
11730 |type(p)=mp_known| is the nice case, when |value(p)| is the |scaled| value
11731 of the variable whose address is~|p|.
11734 |type(p)=mp_dependent| means that |value(p)| is not present, but |dep_list(p)|
11735 points to a {\sl dependency list\/} that expresses the value of variable~|p|
11736 as a |scaled| number plus a sum of independent variables with |fraction|
11740 |type(p)=mp_independent| means that |value(p)=64s+m|, where |s>0| is a ``serial
11741 number'' reflecting the time this variable was first used in an equation;
11742 also |0<=m<64|, and each dependent variable
11743 that refers to this one is actually referring to the future value of
11744 this variable times~$2^m$. (Usually |m=0|, but higher degrees of
11745 scaling are sometimes needed to keep the coefficients in dependency lists
11746 from getting too large. The value of~|m| will always be even.)
11749 |type(p)=mp_numeric_type| means that variable |p| hasn't appeared in an
11750 equation before, but it has been explicitly declared to be numeric.
11753 |type(p)=undefined| means that variable |p| hasn't appeared before.
11755 \smallskip\noindent
11756 We have actually discussed these five types in the reverse order of their
11757 history during a computation: Once |known|, a variable never again
11758 becomes |dependent|; once |dependent|, it almost never again becomes
11759 |mp_independent|; once |mp_independent|, it never again becomes |mp_numeric_type|;
11760 and once |mp_numeric_type|, it never again becomes |undefined| (except
11761 of course when the user specifically decides to scrap the old value
11762 and start again). A backward step may, however, take place: Sometimes
11763 a |dependent| variable becomes |mp_independent| again, when one of the
11764 independent variables it depends on is reverting to |undefined|.
11767 The next patch detects overflow of independent-variable serial
11768 numbers. Diagnosed and patched by Thorsten Dahlheimer.
11770 @d s_scale 64 /* the serial numbers are multiplied by this factor */
11771 @d max_indep_vars 0177777777 /* $2^{25}-1$ */
11772 @d max_serial_no 017777777700 /* |max_indep_vars*s_scale| */
11773 @d new_indep(A) /* create a new independent variable */
11774 { if ( mp->serial_no==max_serial_no )
11775 mp_fatal_error(mp, "variable instance identifiers exhausted");
11776 type((A))=mp_independent; mp->serial_no=mp->serial_no+s_scale;
11777 value((A))=mp->serial_no;
11781 integer serial_no; /* the most recent serial number, times |s_scale| */
11783 @ @<Make variable |q+s| newly independent@>=new_indep(q+s)
11785 @ But how are dependency lists represented? It's simple: The linear combination
11786 $\alpha_1v_1+\cdots+\alpha_kv_k+\beta$ appears in |k+1| value nodes. If
11787 |q=dep_list(p)| points to this list, and if |k>0|, then |value(q)=
11788 @t$\alpha_1$@>| (which is a |fraction|); |info(q)| points to the location
11789 of $\alpha_1$; and |link(p)| points to the dependency list
11790 $\alpha_2v_2+\cdots+\alpha_kv_k+\beta$. On the other hand if |k=0|,
11791 then |value(q)=@t$\beta$@>| (which is |scaled|) and |info(q)=null|.
11792 The independent variables $v_1$, \dots,~$v_k$ have been sorted so that
11793 they appear in decreasing order of their |value| fields (i.e., of
11794 their serial numbers). \ (It is convenient to use decreasing order,
11795 since |value(null)=0|. If the independent variables were not sorted by
11796 serial number but by some other criterion, such as their location in |mem|,
11797 the equation-solving mechanism would be too system-dependent, because
11798 the ordering can affect the computed results.)
11800 The |link| field in the node that contains the constant term $\beta$ is
11801 called the {\sl final link\/} of the dependency list. \MP\ maintains
11802 a doubly-linked master list of all dependency lists, in terms of a permanently
11804 in |mem| called |dep_head|. If there are no dependencies, we have
11805 |link(dep_head)=dep_head| and |prev_dep(dep_head)=dep_head|;
11806 otherwise |link(dep_head)| points to the first dependent variable, say~|p|,
11807 and |prev_dep(p)=dep_head|. We have |type(p)=mp_dependent|, and |dep_list(p)|
11808 points to its dependency list. If the final link of that dependency list
11809 occurs in location~|q|, then |link(q)| points to the next dependent
11810 variable (say~|r|); and we have |prev_dep(r)=q|, etc.
11812 @d dep_list(A) link(value_loc((A)))
11813 /* half of the |value| field in a |dependent| variable */
11814 @d prev_dep(A) info(value_loc((A)))
11815 /* the other half; makes a doubly linked list */
11816 @d dep_node_size 2 /* the number of words per dependency node */
11818 @<Initialize table entries...@>= mp->serial_no=0;
11819 link(dep_head)=dep_head; prev_dep(dep_head)=dep_head;
11820 info(dep_head)=null; dep_list(dep_head)=null;
11822 @ Actually the description above contains a little white lie. There's
11823 another kind of variable called |mp_proto_dependent|, which is
11824 just like a |dependent| one except that the $\alpha$ coefficients
11825 in its dependency list are |scaled| instead of being fractions.
11826 Proto-dependency lists are mixed with dependency lists in the
11827 nodes reachable from |dep_head|.
11829 @ Here is a procedure that prints a dependency list in symbolic form.
11830 The second parameter should be either |dependent| or |mp_proto_dependent|,
11831 to indicate the scaling of the coefficients.
11833 @<Declare subroutines for printing expressions@>=
11834 void mp_print_dependency (MP mp,pointer p, small_number t) {
11835 integer v; /* a coefficient */
11836 pointer pp,q; /* for list manipulation */
11839 v=abs(value(p)); q=info(p);
11840 if ( q==null ) { /* the constant term */
11841 if ( (v!=0)||(p==pp) ) {
11842 if ( value(p)>0 ) if ( p!=pp ) mp_print_char(mp, '+');
11843 mp_print_scaled(mp, value(p));
11847 @<Print the coefficient, unless it's $\pm1.0$@>;
11848 if ( type(q)!=mp_independent ) mp_confusion(mp, "dep");
11849 @:this can't happen dep}{\quad dep@>
11850 mp_print_variable_name(mp, q); v=value(q) % s_scale;
11851 while ( v>0 ) { mp_print(mp, "*4"); v=v-2; }
11856 @ @<Print the coefficient, unless it's $\pm1.0$@>=
11857 if ( value(p)<0 ) mp_print_char(mp, '-');
11858 else if ( p!=pp ) mp_print_char(mp, '+');
11859 if ( t==mp_dependent ) v=mp_round_fraction(mp, v);
11860 if ( v!=unity ) mp_print_scaled(mp, v)
11862 @ The maximum absolute value of a coefficient in a given dependency list
11863 is returned by the following simple function.
11865 @c fraction mp_max_coef (MP mp,pointer p) {
11866 fraction x; /* the maximum so far */
11868 while ( info(p)!=null ) {
11869 if ( abs(value(p))>x ) x=abs(value(p));
11875 @ One of the main operations needed on dependency lists is to add a multiple
11876 of one list to the other; we call this |p_plus_fq|, where |p| and~|q| point
11877 to dependency lists and |f| is a fraction.
11879 If the coefficient of any independent variable becomes |coef_bound| or
11880 more, in absolute value, this procedure changes the type of that variable
11881 to `|independent_needing_fix|', and sets the global variable |fix_needed|
11882 to~|true|. The value of $|coef_bound|=\mu$ is chosen so that
11883 $\mu^2+\mu<8$; this means that the numbers we deal with won't
11884 get too large. (Instead of the ``optimum'' $\mu=(\sqrt{33}-1)/2\approx
11885 2.3723$, the safer value 7/3 is taken as the threshold.)
11887 The changes mentioned in the preceding paragraph are actually done only if
11888 the global variable |watch_coefs| is |true|. But it usually is; in fact,
11889 it is |false| only when \MP\ is making a dependency list that will soon
11890 be equated to zero.
11892 Several procedures that act on dependency lists, including |p_plus_fq|,
11893 set the global variable |dep_final| to the final (constant term) node of
11894 the dependency list that they produce.
11896 @d coef_bound 04525252525 /* |fraction| approximation to 7/3 */
11897 @d independent_needing_fix 0
11900 boolean fix_needed; /* does at least one |independent| variable need scaling? */
11901 boolean watch_coefs; /* should we scale coefficients that exceed |coef_bound|? */
11902 pointer dep_final; /* location of the constant term and final link */
11905 mp->fix_needed=false; mp->watch_coefs=true;
11907 @ The |p_plus_fq| procedure has a fourth parameter, |t|, that should be
11908 set to |mp_proto_dependent| if |p| is a proto-dependency list. In this
11909 case |f| will be |scaled|, not a |fraction|. Similarly, the fifth parameter~|tt|
11910 should be |mp_proto_dependent| if |q| is a proto-dependency list.
11912 List |q| is unchanged by the operation; but list |p| is totally destroyed.
11914 The final link of the dependency list or proto-dependency list returned
11915 by |p_plus_fq| is the same as the original final link of~|p|. Indeed, the
11916 constant term of the result will be located in the same |mem| location
11917 as the original constant term of~|p|.
11919 Coefficients of the result are assumed to be zero if they are less than
11920 a certain threshold. This compensates for inevitable rounding errors,
11921 and tends to make more variables `|known|'. The threshold is approximately
11922 $10^{-5}$ in the case of normal dependency lists, $10^{-4}$ for
11923 proto-dependencies.
11925 @d fraction_threshold 2685 /* a |fraction| coefficient less than this is zeroed */
11926 @d half_fraction_threshold 1342 /* half of |fraction_threshold| */
11927 @d scaled_threshold 8 /* a |scaled| coefficient less than this is zeroed */
11928 @d half_scaled_threshold 4 /* half of |scaled_threshold| */
11930 @<Declare basic dependency-list subroutines@>=
11931 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
11932 pointer q, small_number t, small_number tt) ;
11935 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
11936 pointer q, small_number t, small_number tt) {
11937 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
11938 pointer r,s; /* for list manipulation */
11939 integer mp_threshold; /* defines a neighborhood of zero */
11940 integer v; /* temporary register */
11941 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
11942 else mp_threshold=scaled_threshold;
11943 r=temp_head; pp=info(p); qq=info(q);
11949 @<Contribute a term from |p|, plus |f| times the
11950 corresponding term from |q|@>
11952 } else if ( value(pp)<value(qq) ) {
11953 @<Contribute a term from |q|, multiplied by~|f|@>
11955 link(r)=p; r=p; p=link(p); pp=info(p);
11958 if ( t==mp_dependent )
11959 value(p)=mp_slow_add(mp, value(p),mp_take_fraction(mp, value(q),f));
11961 value(p)=mp_slow_add(mp, value(p),mp_take_scaled(mp, value(q),f));
11962 link(r)=p; mp->dep_final=p;
11963 return link(temp_head);
11966 @ @<Contribute a term from |p|, plus |f|...@>=
11968 if ( tt==mp_dependent ) v=value(p)+mp_take_fraction(mp, f,value(q));
11969 else v=value(p)+mp_take_scaled(mp, f,value(q));
11970 value(p)=v; s=p; p=link(p);
11971 if ( abs(v)<mp_threshold ) {
11972 mp_free_node(mp, s,dep_node_size);
11974 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
11975 type(qq)=independent_needing_fix; mp->fix_needed=true;
11979 pp=info(p); q=link(q); qq=info(q);
11982 @ @<Contribute a term from |q|, multiplied by~|f|@>=
11984 if ( tt==mp_dependent ) v=mp_take_fraction(mp, f,value(q));
11985 else v=mp_take_scaled(mp, f,value(q));
11986 if ( abs(v)>halfp(mp_threshold) ) {
11987 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=v;
11988 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
11989 type(qq)=independent_needing_fix; mp->fix_needed=true;
11993 q=link(q); qq=info(q);
11996 @ It is convenient to have another subroutine for the special case
11997 of |p_plus_fq| when |f=1.0|. In this routine lists |p| and |q| are
11998 both of the same type~|t| (either |dependent| or |mp_proto_dependent|).
12000 @c pointer mp_p_plus_q (MP mp,pointer p, pointer q, small_number t) {
12001 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12002 pointer r,s; /* for list manipulation */
12003 integer mp_threshold; /* defines a neighborhood of zero */
12004 integer v; /* temporary register */
12005 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
12006 else mp_threshold=scaled_threshold;
12007 r=temp_head; pp=info(p); qq=info(q);
12013 @<Contribute a term from |p|, plus the
12014 corresponding term from |q|@>
12016 } else if ( value(pp)<value(qq) ) {
12017 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=value(q);
12018 q=link(q); qq=info(q); link(r)=s; r=s;
12020 link(r)=p; r=p; p=link(p); pp=info(p);
12023 value(p)=mp_slow_add(mp, value(p),value(q));
12024 link(r)=p; mp->dep_final=p;
12025 return link(temp_head);
12028 @ @<Contribute a term from |p|, plus the...@>=
12030 v=value(p)+value(q);
12031 value(p)=v; s=p; p=link(p); pp=info(p);
12032 if ( abs(v)<mp_threshold ) {
12033 mp_free_node(mp, s,dep_node_size);
12035 if ( (abs(v)>=coef_bound ) && mp->watch_coefs ) {
12036 type(qq)=independent_needing_fix; mp->fix_needed=true;
12040 q=link(q); qq=info(q);
12043 @ A somewhat simpler routine will multiply a dependency list
12044 by a given constant~|v|. The constant is either a |fraction| less than
12045 |fraction_one|, or it is |scaled|. In the latter case we might be forced to
12046 convert a dependency list to a proto-dependency list.
12047 Parameters |t0| and |t1| are the list types before and after;
12048 they should agree unless |t0=mp_dependent| and |t1=mp_proto_dependent|
12049 and |v_is_scaled=true|.
12051 @c pointer mp_p_times_v (MP mp,pointer p, integer v, small_number t0,
12052 small_number t1, boolean v_is_scaled) {
12053 pointer r,s; /* for list manipulation */
12054 integer w; /* tentative coefficient */
12055 integer mp_threshold;
12056 boolean scaling_down;
12057 if ( t0!=t1 ) scaling_down=true; else scaling_down=! v_is_scaled;
12058 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
12059 else mp_threshold=half_scaled_threshold;
12061 while ( info(p)!=null ) {
12062 if ( scaling_down ) w=mp_take_fraction(mp, v,value(p));
12063 else w=mp_take_scaled(mp, v,value(p));
12064 if ( abs(w)<=mp_threshold ) {
12065 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12067 if ( abs(w)>=coef_bound ) {
12068 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12070 link(r)=p; r=p; value(p)=w; p=link(p);
12074 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
12075 else value(p)=mp_take_fraction(mp, value(p),v);
12076 return link(temp_head);
12079 @ Similarly, we sometimes need to divide a dependency list
12080 by a given |scaled| constant.
12082 @<Declare basic dependency-list subroutines@>=
12083 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12084 t0, small_number t1) ;
12087 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12088 t0, small_number t1) {
12089 pointer r,s; /* for list manipulation */
12090 integer w; /* tentative coefficient */
12091 integer mp_threshold;
12092 boolean scaling_down;
12093 if ( t0!=t1 ) scaling_down=true; else scaling_down=false;
12094 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
12095 else mp_threshold=half_scaled_threshold;
12097 while ( info( p)!=null ) {
12098 if ( scaling_down ) {
12099 if ( abs(v)<02000000 ) w=mp_make_scaled(mp, value(p),v*010000);
12100 else w=mp_make_scaled(mp, mp_round_fraction(mp, value(p)),v);
12102 w=mp_make_scaled(mp, value(p),v);
12104 if ( abs(w)<=mp_threshold ) {
12105 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12107 if ( abs(w)>=coef_bound ) {
12108 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12110 link(r)=p; r=p; value(p)=w; p=link(p);
12113 link(r)=p; value(p)=mp_make_scaled(mp, value(p),v);
12114 return link(temp_head);
12117 @ Here's another utility routine for dependency lists. When an independent
12118 variable becomes dependent, we want to remove it from all existing
12119 dependencies. The |p_with_x_becoming_q| function computes the
12120 dependency list of~|p| after variable~|x| has been replaced by~|q|.
12122 This procedure has basically the same calling conventions as |p_plus_fq|:
12123 List~|q| is unchanged; list~|p| is destroyed; the constant node and the
12124 final link are inherited from~|p|; and the fourth parameter tells whether
12125 or not |p| is |mp_proto_dependent|. However, the global variable |dep_final|
12126 is not altered if |x| does not occur in list~|p|.
12128 @c pointer mp_p_with_x_becoming_q (MP mp,pointer p,
12129 pointer x, pointer q, small_number t) {
12130 pointer r,s; /* for list manipulation */
12131 integer v; /* coefficient of |x| */
12132 integer sx; /* serial number of |x| */
12133 s=p; r=temp_head; sx=value(x);
12134 while ( value(info(s))>sx ) { r=s; s=link(s); };
12135 if ( info(s)!=x ) {
12138 link(temp_head)=p; link(r)=link(s); v=value(s);
12139 mp_free_node(mp, s,dep_node_size);
12140 return mp_p_plus_fq(mp, link(temp_head),v,q,t,mp_dependent);
12144 @ Here's a simple procedure that reports an error when a variable
12145 has just received a known value that's out of the required range.
12147 @<Declare basic dependency-list subroutines@>=
12148 void mp_val_too_big (MP mp,scaled x) ;
12150 @ @c void mp_val_too_big (MP mp,scaled x) {
12151 if ( mp->internal[mp_warning_check]>0 ) {
12152 print_err("Value is too large ("); mp_print_scaled(mp, x); mp_print_char(mp, ')');
12153 @.Value is too large@>
12154 help4("The equation I just processed has given some variable")
12155 ("a value of 4096 or more. Continue and I'll try to cope")
12156 ("with that big value; but it might be dangerous.")
12157 ("(Set warningcheck:=0 to suppress this message.)");
12162 @ When a dependent variable becomes known, the following routine
12163 removes its dependency list. Here |p| points to the variable, and
12164 |q| points to the dependency list (which is one node long).
12166 @<Declare basic dependency-list subroutines@>=
12167 void mp_make_known (MP mp,pointer p, pointer q) ;
12169 @ @c void mp_make_known (MP mp,pointer p, pointer q) {
12170 int t; /* the previous type */
12171 prev_dep(link(q))=prev_dep(p);
12172 link(prev_dep(p))=link(q); t=type(p);
12173 type(p)=mp_known; value(p)=value(q); mp_free_node(mp, q,dep_node_size);
12174 if ( abs(value(p))>=fraction_one ) mp_val_too_big(mp, value(p));
12175 if (( mp->internal[mp_tracing_equations]>0) && mp_interesting(mp, p) ) {
12176 mp_begin_diagnostic(mp); mp_print_nl(mp, "#### ");
12177 @:]]]\#\#\#\#_}{\.{\#\#\#\#}@>
12178 mp_print_variable_name(mp, p);
12179 mp_print_char(mp, '='); mp_print_scaled(mp, value(p));
12180 mp_end_diagnostic(mp, false);
12182 if (( mp->cur_exp==p ) && mp->cur_type==t ) {
12183 mp->cur_type=mp_known; mp->cur_exp=value(p);
12184 mp_free_node(mp, p,value_node_size);
12188 @ The |fix_dependencies| routine is called into action when |fix_needed|
12189 has been triggered. The program keeps a list~|s| of independent variables
12190 whose coefficients must be divided by~4.
12192 In unusual cases, this fixup process might reduce one or more coefficients
12193 to zero, so that a variable will become known more or less by default.
12195 @<Declare basic dependency-list subroutines@>=
12196 void mp_fix_dependencies (MP mp);
12198 @ @c void mp_fix_dependencies (MP mp) {
12199 pointer p,q,r,s,t; /* list manipulation registers */
12200 pointer x; /* an independent variable */
12201 r=link(dep_head); s=null;
12202 while ( r!=dep_head ){
12204 @<Run through the dependency list for variable |t|, fixing
12205 all nodes, and ending with final link~|q|@>;
12207 if ( q==dep_list(t) ) mp_make_known(mp, t,q);
12209 while ( s!=null ) {
12210 p=link(s); x=info(s); free_avail(s); s=p;
12211 type(x)=mp_independent; value(x)=value(x)+2;
12213 mp->fix_needed=false;
12216 @ @d independent_being_fixed 1 /* this variable already appears in |s| */
12218 @<Run through the dependency list for variable |t|...@>=
12219 r=value_loc(t); /* |link(r)=dep_list(t)| */
12221 q=link(r); x=info(q);
12222 if ( x==null ) break;
12223 if ( type(x)<=independent_being_fixed ) {
12224 if ( type(x)<independent_being_fixed ) {
12225 p=mp_get_avail(mp); link(p)=s; s=p;
12226 info(s)=x; type(x)=independent_being_fixed;
12228 value(q)=value(q) / 4;
12229 if ( value(q)==0 ) {
12230 link(r)=link(q); mp_free_node(mp, q,dep_node_size); q=r;
12237 @ The |new_dep| routine installs a dependency list~|p| into the value node~|q|,
12238 linking it into the list of all known dependencies. We assume that
12239 |dep_final| points to the final node of list~|p|.
12241 @c void mp_new_dep (MP mp,pointer q, pointer p) {
12242 pointer r; /* what used to be the first dependency */
12243 dep_list(q)=p; prev_dep(q)=dep_head;
12244 r=link(dep_head); link(mp->dep_final)=r; prev_dep(r)=mp->dep_final;
12248 @ Here is one of the ways a dependency list gets started.
12249 The |const_dependency| routine produces a list that has nothing but
12252 @c pointer mp_const_dependency (MP mp, scaled v) {
12253 mp->dep_final=mp_get_node(mp, dep_node_size);
12254 value(mp->dep_final)=v; info(mp->dep_final)=null;
12255 return mp->dep_final;
12258 @ And here's a more interesting way to start a dependency list from scratch:
12259 The parameter to |single_dependency| is the location of an
12260 independent variable~|x|, and the result is the simple dependency list
12263 In the unlikely event that the given independent variable has been doubled so
12264 often that we can't refer to it with a nonzero coefficient,
12265 |single_dependency| returns the simple list `0'. This case can be
12266 recognized by testing that the returned list pointer is equal to
12269 @c pointer mp_single_dependency (MP mp,pointer p) {
12270 pointer q; /* the new dependency list */
12271 integer m; /* the number of doublings */
12272 m=value(p) % s_scale;
12274 return mp_const_dependency(mp, 0);
12276 q=mp_get_node(mp, dep_node_size);
12277 value(q)=two_to_the(28-m); info(q)=p;
12278 link(q)=mp_const_dependency(mp, 0);
12283 @ We sometimes need to make an exact copy of a dependency list.
12285 @c pointer mp_copy_dep_list (MP mp,pointer p) {
12286 pointer q; /* the new dependency list */
12287 q=mp_get_node(mp, dep_node_size); mp->dep_final=q;
12289 info(mp->dep_final)=info(p); value(mp->dep_final)=value(p);
12290 if ( info(mp->dep_final)==null ) break;
12291 link(mp->dep_final)=mp_get_node(mp, dep_node_size);
12292 mp->dep_final=link(mp->dep_final); p=link(p);
12297 @ But how do variables normally become known? Ah, now we get to the heart of the
12298 equation-solving mechanism. The |linear_eq| procedure is given a |dependent|
12299 or |mp_proto_dependent| list,~|p|, in which at least one independent variable
12300 appears. It equates this list to zero, by choosing an independent variable
12301 with the largest coefficient and making it dependent on the others. The
12302 newly dependent variable is eliminated from all current dependencies,
12303 thereby possibly making other dependent variables known.
12305 The given list |p| is, of course, totally destroyed by all this processing.
12307 @c void mp_linear_eq (MP mp, pointer p, small_number t) {
12308 pointer q,r,s; /* for link manipulation */
12309 pointer x; /* the variable that loses its independence */
12310 integer n; /* the number of times |x| had been halved */
12311 integer v; /* the coefficient of |x| in list |p| */
12312 pointer prev_r; /* lags one step behind |r| */
12313 pointer final_node; /* the constant term of the new dependency list */
12314 integer w; /* a tentative coefficient */
12315 @<Find a node |q| in list |p| whose coefficient |v| is largest@>;
12316 x=info(q); n=value(x) % s_scale;
12317 @<Divide list |p| by |-v|, removing node |q|@>;
12318 if ( mp->internal[mp_tracing_equations]>0 ) {
12319 @<Display the new dependency@>;
12321 @<Simplify all existing dependencies by substituting for |x|@>;
12322 @<Change variable |x| from |independent| to |dependent| or |known|@>;
12323 if ( mp->fix_needed ) mp_fix_dependencies(mp);
12326 @ @<Find a node |q| in list |p| whose coefficient |v| is largest@>=
12327 q=p; r=link(p); v=value(q);
12328 while ( info(r)!=null ) {
12329 if ( abs(value(r))>abs(v) ) { q=r; v=value(r); };
12333 @ Here we want to change the coefficients from |scaled| to |fraction|,
12334 except in the constant term. In the common case of a trivial equation
12335 like `\.{x=3.14}', we will have |v=-fraction_one|, |q=p|, and |t=mp_dependent|.
12337 @<Divide list |p| by |-v|, removing node |q|@>=
12338 s=temp_head; link(s)=p; r=p;
12341 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12343 w=mp_make_fraction(mp, value(r),v);
12344 if ( abs(w)<=half_fraction_threshold ) {
12345 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12351 } while (info(r)!=null);
12352 if ( t==mp_proto_dependent ) {
12353 value(r)=-mp_make_scaled(mp, value(r),v);
12354 } else if ( v!=-fraction_one ) {
12355 value(r)=-mp_make_fraction(mp, value(r),v);
12357 final_node=r; p=link(temp_head)
12359 @ @<Display the new dependency@>=
12360 if ( mp_interesting(mp, x) ) {
12361 mp_begin_diagnostic(mp); mp_print_nl(mp, "## ");
12362 mp_print_variable_name(mp, x);
12363 @:]]]\#\#_}{\.{\#\#}@>
12365 while ( w>0 ) { mp_print(mp, "*4"); w=w-2; };
12366 mp_print_char(mp, '='); mp_print_dependency(mp, p,mp_dependent);
12367 mp_end_diagnostic(mp, false);
12370 @ @<Simplify all existing dependencies by substituting for |x|@>=
12371 prev_r=dep_head; r=link(dep_head);
12372 while ( r!=dep_head ) {
12373 s=dep_list(r); q=mp_p_with_x_becoming_q(mp, s,x,p,type(r));
12374 if ( info(q)==null ) {
12375 mp_make_known(mp, r,q);
12378 do { q=link(q); } while (info(q)!=null);
12384 @ @<Change variable |x| from |independent| to |dependent| or |known|@>=
12385 if ( n>0 ) @<Divide list |p| by $2^n$@>;
12386 if ( info(p)==null ) {
12389 if ( abs(value(x))>=fraction_one ) mp_val_too_big(mp, value(x));
12390 mp_free_node(mp, p,dep_node_size);
12391 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) {
12392 mp->cur_exp=value(x); mp->cur_type=mp_known;
12393 mp_free_node(mp, x,value_node_size);
12396 type(x)=mp_dependent; mp->dep_final=final_node; mp_new_dep(mp, x,p);
12397 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) mp->cur_type=mp_dependent;
12400 @ @<Divide list |p| by $2^n$@>=
12402 s=temp_head; link(temp_head)=p; r=p;
12405 else w=value(r) / two_to_the(n);
12406 if ( (abs(w)<=half_fraction_threshold)&&(info(r)!=null) ) {
12408 mp_free_node(mp, r,dep_node_size);
12413 } while (info(s)!=null);
12417 @ The |check_mem| procedure, which is used only when \MP\ is being
12418 debugged, makes sure that the current dependency lists are well formed.
12420 @<Check the list of linear dependencies@>=
12421 q=dep_head; p=link(q);
12422 while ( p!=dep_head ) {
12423 if ( prev_dep(p)!=q ) {
12424 mp_print_nl(mp, "Bad PREVDEP at "); mp_print_int(mp, p);
12429 r=info(p); q=p; p=link(q);
12430 if ( r==null ) break;
12431 if ( value(info(p))>=value(r) ) {
12432 mp_print_nl(mp, "Out of order at "); mp_print_int(mp, p);
12433 @.Out of order...@>
12438 @* \[25] Dynamic nonlinear equations.
12439 Variables of numeric type are maintained by the general scheme of
12440 independent, dependent, and known values that we have just studied;
12441 and the components of pair and transform variables are handled in the
12442 same way. But \MP\ also has five other types of values: \&{boolean},
12443 \&{string}, \&{pen}, \&{path}, and \&{picture}; what about them?
12445 Equations are allowed between nonlinear quantities, but only in a
12446 simple form. Two variables that haven't yet been assigned values are
12447 either equal to each other, or they're not.
12449 Before a boolean variable has received a value, its type is |mp_unknown_boolean|;
12450 similarly, there are variables whose type is |mp_unknown_string|, |mp_unknown_pen|,
12451 |mp_unknown_path|, and |mp_unknown_picture|. In such cases the value is either
12452 |null| (which means that no other variables are equivalent to this one), or
12453 it points to another variable of the same undefined type. The pointers in the
12454 latter case form a cycle of nodes, which we shall call a ``ring.''
12455 Rings of undefined variables may include capsules, which arise as
12456 intermediate results within expressions or as \&{expr} parameters to macros.
12458 When one member of a ring receives a value, the same value is given to
12459 all the other members. In the case of paths and pictures, this implies
12460 making separate copies of a potentially large data structure; users should
12461 restrain their enthusiasm for such generality, unless they have lots and
12462 lots of memory space.
12464 @ The following procedure is called when a capsule node is being
12465 added to a ring (e.g., when an unknown variable is mentioned in an expression).
12467 @c pointer mp_new_ring_entry (MP mp,pointer p) {
12468 pointer q; /* the new capsule node */
12469 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
12471 if ( value(p)==null ) value(q)=p; else value(q)=value(p);
12476 @ Conversely, we might delete a capsule or a variable before it becomes known.
12477 The following procedure simply detaches a quantity from its ring,
12478 without recycling the storage.
12480 @<Declare the recycling subroutines@>=
12481 void mp_ring_delete (MP mp,pointer p) {
12484 if ( q!=null ) if ( q!=p ){
12485 while ( value(q)!=p ) q=value(q);
12490 @ Eventually there might be an equation that assigns values to all of the
12491 variables in a ring. The |nonlinear_eq| subroutine does the necessary
12492 propagation of values.
12494 If the parameter |flush_p| is |true|, node |p| itself needn't receive a
12495 value, it will soon be recycled.
12497 @c void mp_nonlinear_eq (MP mp,integer v, pointer p, boolean flush_p) {
12498 small_number t; /* the type of ring |p| */
12499 pointer q,r; /* link manipulation registers */
12500 t=type(p)-unknown_tag; q=value(p);
12501 if ( flush_p ) type(p)=mp_vacuous; else p=q;
12503 r=value(q); type(q)=t;
12505 case mp_boolean_type: value(q)=v; break;
12506 case mp_string_type: value(q)=v; add_str_ref(v); break;
12507 case mp_pen_type: value(q)=copy_pen(v); break;
12508 case mp_path_type: value(q)=mp_copy_path(mp, v); break;
12509 case mp_picture_type: value(q)=v; add_edge_ref(v); break;
12510 } /* there ain't no more cases */
12515 @ If two members of rings are equated, and if they have the same type,
12516 the |ring_merge| procedure is called on to make them equivalent.
12518 @c void mp_ring_merge (MP mp,pointer p, pointer q) {
12519 pointer r; /* traverses one list */
12523 @<Exclaim about a redundant equation@>;
12528 r=value(p); value(p)=value(q); value(q)=r;
12531 @ @<Exclaim about a redundant equation@>=
12533 print_err("Redundant equation");
12534 @.Redundant equation@>
12535 help2("I already knew that this equation was true.")
12536 ("But perhaps no harm has been done; let's continue.");
12537 mp_put_get_error(mp);
12540 @* \[26] Introduction to the syntactic routines.
12541 Let's pause a moment now and try to look at the Big Picture.
12542 The \MP\ program consists of three main parts: syntactic routines,
12543 semantic routines, and output routines. The chief purpose of the
12544 syntactic routines is to deliver the user's input to the semantic routines,
12545 while parsing expressions and locating operators and operands. The
12546 semantic routines act as an interpreter responding to these operators,
12547 which may be regarded as commands. And the output routines are
12548 periodically called on to produce compact font descriptions that can be
12549 used for typesetting or for making interim proof drawings. We have
12550 discussed the basic data structures and many of the details of semantic
12551 operations, so we are good and ready to plunge into the part of \MP\ that
12552 actually controls the activities.
12554 Our current goal is to come to grips with the |get_next| procedure,
12555 which is the keystone of \MP's input mechanism. Each call of |get_next|
12556 sets the value of three variables |cur_cmd|, |cur_mod|, and |cur_sym|,
12557 representing the next input token.
12558 $$\vbox{\halign{#\hfil\cr
12559 \hbox{|cur_cmd| denotes a command code from the long list of codes
12561 \hbox{|cur_mod| denotes a modifier of the command code;}\cr
12562 \hbox{|cur_sym| is the hash address of the symbolic token that was
12564 \hbox{\qquad or zero in the case of a numeric or string
12565 or capsule token.}\cr}}$$
12566 Underlying this external behavior of |get_next| is all the machinery
12567 necessary to convert from character files to tokens. At a given time we
12568 may be only partially finished with the reading of several files (for
12569 which \&{input} was specified), and partially finished with the expansion
12570 of some user-defined macros and/or some macro parameters, and partially
12571 finished reading some text that the user has inserted online,
12572 and so on. When reading a character file, the characters must be
12573 converted to tokens; comments and blank spaces must
12574 be removed, numeric and string tokens must be evaluated.
12576 To handle these situations, which might all be present simultaneously,
12577 \MP\ uses various stacks that hold information about the incomplete
12578 activities, and there is a finite state control for each level of the
12579 input mechanism. These stacks record the current state of an implicitly
12580 recursive process, but the |get_next| procedure is not recursive.
12583 eight_bits cur_cmd; /* current command set by |get_next| */
12584 integer cur_mod; /* operand of current command */
12585 halfword cur_sym; /* hash address of current symbol */
12587 @ The |print_cmd_mod| routine prints a symbolic interpretation of a
12588 command code and its modifier.
12589 It consists of a rather tedious sequence of print
12590 commands, and most of it is essentially an inverse to the |primitive|
12591 routine that enters a \MP\ primitive into |hash| and |eqtb|. Therefore almost
12592 all of this procedure appears elsewhere in the program, together with the
12593 corresponding |primitive| calls.
12595 @<Declare the procedure called |print_cmd_mod|@>=
12596 void mp_print_cmd_mod (MP mp,integer c, integer m) {
12598 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>
12599 default: mp_print(mp, "[unknown command code!]"); break;
12603 @ Here is a procedure that displays a given command in braces, in the
12604 user's transcript file.
12606 @d show_cur_cmd_mod mp_show_cmd_mod(mp, mp->cur_cmd,mp->cur_mod)
12609 void mp_show_cmd_mod (MP mp,integer c, integer m) {
12610 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
12611 mp_print_cmd_mod(mp, c,m); mp_print_char(mp, '}');
12612 mp_end_diagnostic(mp, false);
12615 @* \[27] Input stacks and states.
12616 The state of \MP's input mechanism appears in the input stack, whose
12617 entries are records with five fields, called |index|, |start|, |loc|,
12618 |limit|, and |name|. The top element of this stack is maintained in a
12619 global variable for which no subscripting needs to be done; the other
12620 elements of the stack appear in an array. Hence the stack is declared thus:
12624 quarterword index_field;
12625 halfword start_field, loc_field, limit_field, name_field;
12629 in_state_record *input_stack;
12630 integer input_ptr; /* first unused location of |input_stack| */
12631 integer max_in_stack; /* largest value of |input_ptr| when pushing */
12632 in_state_record cur_input; /* the ``top'' input state */
12633 int stack_size; /* maximum number of simultaneous input sources */
12635 @ @<Allocate or initialize ...@>=
12636 mp->stack_size = 300;
12637 mp->input_stack = xmalloc((mp->stack_size+1),sizeof(in_state_record));
12639 @ @<Dealloc variables@>=
12640 xfree(mp->input_stack);
12642 @ We've already defined the special variable |loc==cur_input.loc_field|
12643 in our discussion of basic input-output routines. The other components of
12644 |cur_input| are defined in the same way:
12646 @d index mp->cur_input.index_field /* reference for buffer information */
12647 @d start mp->cur_input.start_field /* starting position in |buffer| */
12648 @d limit mp->cur_input.limit_field /* end of current line in |buffer| */
12649 @d name mp->cur_input.name_field /* name of the current file */
12651 @ Let's look more closely now at the five control variables
12652 (|index|,~|start|,~|loc|,~|limit|,~|name|),
12653 assuming that \MP\ is reading a line of characters that have been input
12654 from some file or from the user's terminal. There is an array called
12655 |buffer| that acts as a stack of all lines of characters that are
12656 currently being read from files, including all lines on subsidiary
12657 levels of the input stack that are not yet completed. \MP\ will return to
12658 the other lines when it is finished with the present input file.
12660 (Incidentally, on a machine with byte-oriented addressing, it would be
12661 appropriate to combine |buffer| with the |str_pool| array,
12662 letting the buffer entries grow downward from the top of the string pool
12663 and checking that these two tables don't bump into each other.)
12665 The line we are currently working on begins in position |start| of the
12666 buffer; the next character we are about to read is |buffer[loc]|; and
12667 |limit| is the location of the last character present. We always have
12668 |loc<=limit|. For convenience, |buffer[limit]| has been set to |"%"|, so
12669 that the end of a line is easily sensed.
12671 The |name| variable is a string number that designates the name of
12672 the current file, if we are reading an ordinary text file. Special codes
12673 |is_term..max_spec_src| indicate other sources of input text.
12675 @d is_term 0 /* |name| value when reading from the terminal for normal input */
12676 @d is_read 1 /* |name| value when executing a \&{readstring} or \&{readfrom} */
12677 @d is_scantok 2 /* |name| value when reading text generated by \&{scantokens} */
12678 @d max_spec_src is_scantok
12680 @ Additional information about the current line is available via the
12681 |index| variable, which counts how many lines of characters are present
12682 in the buffer below the current level. We have |index=0| when reading
12683 from the terminal and prompting the user for each line; then if the user types,
12684 e.g., `\.{input figs}', we will have |index=1| while reading
12685 the file \.{figs.mp}. However, it does not follow that |index| is the
12686 same as the input stack pointer, since many of the levels on the input
12687 stack may come from token lists and some |index| values may correspond
12688 to \.{MPX} files that are not currently on the stack.
12690 The global variable |in_open| is equal to the highest |index| value counting
12691 \.{MPX} files but excluding token-list input levels. Thus, the number of
12692 partially read lines in the buffer is |in_open+1| and we have |in_open>=index|
12693 when we are not reading a token list.
12695 If we are not currently reading from the terminal,
12696 we are reading from the file variable |input_file[index]|. We use
12697 the notation |terminal_input| as a convenient abbreviation for |name=is_term|,
12698 and |cur_file| as an abbreviation for |input_file[index]|.
12700 When \MP\ is not reading from the terminal, the global variable |line| contains
12701 the line number in the current file, for use in error messages. More precisely,
12702 |line| is a macro for |line_stack[index]| and the |line_stack| array gives
12703 the line number for each file in the |input_file| array.
12705 When an \.{MPX} file is opened the file name is stored in the |mpx_name|
12706 array so that the name doesn't get lost when the file is temporarily removed
12707 from the input stack.
12708 Thus when |input_file[k]| is an \.{MPX} file, its name is |mpx_name[k]|
12709 and it contains translated \TeX\ pictures for |input_file[k-1]|.
12710 Since this is not an \.{MPX} file, we have
12711 $$ \hbox{|mpx_name[k-1]<=absent|}. $$
12712 This |name| field is set to |finished| when |input_file[k]| is completely
12715 If more information about the input state is needed, it can be
12716 included in small arrays like those shown here. For example,
12717 the current page or segment number in the input file might be put
12718 into a variable |page|, that is really a macro for the current entry
12719 in `\ignorespaces|page_stack:array[0..max_in_open] of integer|\unskip'
12720 by analogy with |line_stack|.
12721 @^system dependencies@>
12723 @d terminal_input (name==is_term) /* are we reading from the terminal? */
12724 @d cur_file mp->input_file[index] /* the current |FILE *| variable */
12725 @d line mp->line_stack[index] /* current line number in the current source file */
12726 @d in_name mp->iname_stack[index] /* a string used to construct \.{MPX} file names */
12727 @d in_area mp->iarea_stack[index] /* another string for naming \.{MPX} files */
12728 @d absent 1 /* |name_field| value for unused |mpx_in_stack| entries */
12729 @d mpx_reading (mp->mpx_name[index]>absent)
12730 /* when reading a file, is it an \.{MPX} file? */
12732 /* |name_field| value when the corresponding \.{MPX} file is finished */
12735 integer in_open; /* the number of lines in the buffer, less one */
12736 unsigned int open_parens; /* the number of open text files */
12737 FILE * *input_file ;
12738 integer *line_stack ; /* the line number for each file */
12739 char * *iname_stack; /* used for naming \.{MPX} files */
12740 char * *iarea_stack; /* used for naming \.{MPX} files */
12741 halfword*mpx_name ;
12743 @ @<Allocate or ...@>=
12744 mp->input_file = xmalloc((mp->max_in_open+1),sizeof(FILE *));
12745 mp->line_stack = xmalloc((mp->max_in_open+1),sizeof(integer));
12746 mp->iname_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12747 mp->iarea_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12748 mp->mpx_name = xmalloc((mp->max_in_open+1),sizeof(halfword));
12751 for (k=0;k<=mp->max_in_open;k++) {
12752 mp->iname_stack[k] =NULL;
12753 mp->iarea_stack[k] =NULL;
12757 @ @<Dealloc variables@>=
12760 for (l=0;l<=mp->max_in_open;l++) {
12761 xfree(mp->iname_stack[l]);
12762 xfree(mp->iarea_stack[l]);
12765 xfree(mp->input_file);
12766 xfree(mp->line_stack);
12767 xfree(mp->iname_stack);
12768 xfree(mp->iarea_stack);
12769 xfree(mp->mpx_name);
12772 @ However, all this discussion about input state really applies only to the
12773 case that we are inputting from a file. There is another important case,
12774 namely when we are currently getting input from a token list. In this case
12775 |index>max_in_open|, and the conventions about the other state variables
12778 \yskip\hang|loc| is a pointer to the current node in the token list, i.e.,
12779 the node that will be read next. If |loc=null|, the token list has been
12782 \yskip\hang|start| points to the first node of the token list; this node
12783 may or may not contain a reference count, depending on the type of token
12786 \yskip\hang|token_type|, which takes the place of |index| in the
12787 discussion above, is a code number that explains what kind of token list
12790 \yskip\hang|name| points to the |eqtb| address of the control sequence
12791 being expanded, if the current token list is a macro not defined by
12792 \&{vardef}. Macros defined by \&{vardef} have |name=null|; their name
12793 can be deduced by looking at their first two parameters.
12795 \yskip\hang|param_start|, which takes the place of |limit|, tells where
12796 the parameters of the current macro or loop text begin in the |param_stack|.
12798 \yskip\noindent The |token_type| can take several values, depending on
12799 where the current token list came from:
12802 \indent|forever_text|, if the token list being scanned is the body of
12803 a \&{forever} loop;
12805 \indent|loop_text|, if the token list being scanned is the body of
12806 a \&{for} or \&{forsuffixes} loop;
12808 \indent|parameter|, if a \&{text} or \&{suffix} parameter is being scanned;
12810 \indent|backed_up|, if the token list being scanned has been inserted as
12811 `to be read again'.
12813 \indent|inserted|, if the token list being scanned has been inserted as
12814 part of error recovery;
12816 \indent|macro|, if the expansion of a user-defined symbolic token is being
12820 The token list begins with a reference count if and only if |token_type=
12822 @^reference counts@>
12824 @d token_type index /* type of current token list */
12825 @d token_state (index>(int)mp->max_in_open) /* are we scanning a token list? */
12826 @d file_state (index<=(int)mp->max_in_open) /* are we scanning a file line? */
12827 @d param_start limit /* base of macro parameters in |param_stack| */
12828 @d forever_text (mp->max_in_open+1) /* |token_type| code for loop texts */
12829 @d loop_text (mp->max_in_open+2) /* |token_type| code for loop texts */
12830 @d parameter (mp->max_in_open+3) /* |token_type| code for parameter texts */
12831 @d backed_up (mp->max_in_open+4) /* |token_type| code for texts to be reread */
12832 @d inserted (mp->max_in_open+5) /* |token_type| code for inserted texts */
12833 @d macro (mp->max_in_open+6) /* |token_type| code for macro replacement texts */
12835 @ The |param_stack| is an auxiliary array used to hold pointers to the token
12836 lists for parameters at the current level and subsidiary levels of input.
12837 This stack grows at a different rate from the others.
12840 pointer *param_stack; /* token list pointers for parameters */
12841 integer param_ptr; /* first unused entry in |param_stack| */
12842 integer max_param_stack; /* largest value of |param_ptr| */
12844 @ @<Allocate or initialize ...@>=
12845 mp->param_stack = xmalloc((mp->param_size+1),sizeof(pointer));
12847 @ @<Dealloc variables@>=
12848 xfree(mp->param_stack);
12850 @ Notice that the |line| isn't valid when |token_state| is true because it
12851 depends on |index|. If we really need to know the line number for the
12852 topmost file in the index stack we use the following function. If a page
12853 number or other information is needed, this routine should be modified to
12854 compute it as well.
12855 @^system dependencies@>
12857 @<Declare a function called |true_line|@>=
12858 integer mp_true_line (MP mp) {
12859 int k; /* an index into the input stack */
12860 if ( file_state && (name>max_spec_src) ) {
12865 ((mp->input_stack[(k-1)].index_field>mp->max_in_open)||
12866 (mp->input_stack[(k-1)].name_field<=max_spec_src))) {
12869 return mp->line_stack[(k-1)];
12874 @ Thus, the ``current input state'' can be very complicated indeed; there
12875 can be many levels and each level can arise in a variety of ways. The
12876 |show_context| procedure, which is used by \MP's error-reporting routine to
12877 print out the current input state on all levels down to the most recent
12878 line of characters from an input file, illustrates most of these conventions.
12879 The global variable |file_ptr| contains the lowest level that was
12880 displayed by this procedure.
12883 integer file_ptr; /* shallowest level shown by |show_context| */
12885 @ The status at each level is indicated by printing two lines, where the first
12886 line indicates what was read so far and the second line shows what remains
12887 to be read. The context is cropped, if necessary, so that the first line
12888 contains at most |half_error_line| characters, and the second contains
12889 at most |error_line|. Non-current input levels whose |token_type| is
12890 `|backed_up|' are shown only if they have not been fully read.
12892 @c void mp_show_context (MP mp) { /* prints where the scanner is */
12893 int old_setting; /* saved |selector| setting */
12894 @<Local variables for formatting calculations@>
12895 mp->file_ptr=mp->input_ptr; mp->input_stack[mp->file_ptr]=mp->cur_input;
12896 /* store current state */
12898 mp->cur_input=mp->input_stack[mp->file_ptr]; /* enter into the context */
12899 @<Display the current context@>;
12901 if ( (name>max_spec_src) || (mp->file_ptr==0) ) break;
12902 decr(mp->file_ptr);
12904 mp->cur_input=mp->input_stack[mp->input_ptr]; /* restore original state */
12907 @ @<Display the current context@>=
12908 if ( (mp->file_ptr==mp->input_ptr) || file_state ||
12909 (token_type!=backed_up) || (loc!=null) ) {
12910 /* we omit backed-up token lists that have already been read */
12911 mp->tally=0; /* get ready to count characters */
12912 old_setting=mp->selector;
12913 if ( file_state ) {
12914 @<Print location of current line@>;
12915 @<Pseudoprint the line@>;
12917 @<Print type of token list@>;
12918 @<Pseudoprint the token list@>;
12920 mp->selector=old_setting; /* stop pseudoprinting */
12921 @<Print two lines using the tricky pseudoprinted information@>;
12924 @ This routine should be changed, if necessary, to give the best possible
12925 indication of where the current line resides in the input file.
12926 For example, on some systems it is best to print both a page and line number.
12927 @^system dependencies@>
12929 @<Print location of current line@>=
12930 if ( name>max_spec_src ) {
12931 mp_print_nl(mp, "l."); mp_print_int(mp, mp_true_line(mp));
12932 } else if ( terminal_input ) {
12933 if ( mp->file_ptr==0 ) mp_print_nl(mp, "<*>");
12934 else mp_print_nl(mp, "<insert>");
12935 } else if ( name==is_scantok ) {
12936 mp_print_nl(mp, "<scantokens>");
12938 mp_print_nl(mp, "<read>");
12940 mp_print_char(mp, ' ')
12942 @ Can't use case statement here because the |token_type| is not
12943 a constant expression.
12945 @<Print type of token list@>=
12947 if(token_type==forever_text) {
12948 mp_print_nl(mp, "<forever> ");
12949 } else if (token_type==loop_text) {
12950 @<Print the current loop value@>;
12951 } else if (token_type==parameter) {
12952 mp_print_nl(mp, "<argument> ");
12953 } else if (token_type==backed_up) {
12954 if ( loc==null ) mp_print_nl(mp, "<recently read> ");
12955 else mp_print_nl(mp, "<to be read again> ");
12956 } else if (token_type==inserted) {
12957 mp_print_nl(mp, "<inserted text> ");
12958 } else if (token_type==macro) {
12960 if ( name!=null ) mp_print_text(name);
12961 else @<Print the name of a \&{vardef}'d macro@>;
12962 mp_print(mp, "->");
12964 mp_print_nl(mp, "?");/* this should never happen */
12969 @ The parameter that corresponds to a loop text is either a token list
12970 (in the case of \&{forsuffixes}) or a ``capsule'' (in the case of \&{for}).
12971 We'll discuss capsules later; for now, all we need to know is that
12972 the |link| field in a capsule parameter is |void| and that
12973 |print_exp(p,0)| displays the value of capsule~|p| in abbreviated form.
12975 @d mp_void (null+1) /* a null pointer different from |null| */
12977 @<Print the current loop value@>=
12978 { mp_print_nl(mp, "<for("); p=mp->param_stack[param_start];
12980 if ( link(p)==mp_void ) mp_print_exp(mp, p,0); /* we're in a \&{for} loop */
12981 else mp_show_token_list(mp, p,null,20,mp->tally);
12983 mp_print(mp, ")> ");
12986 @ The first two parameters of a macro defined by \&{vardef} will be token
12987 lists representing the macro's prefix and ``at point.'' By putting these
12988 together, we get the macro's full name.
12990 @<Print the name of a \&{vardef}'d macro@>=
12991 { p=mp->param_stack[param_start];
12993 mp_show_token_list(mp, mp->param_stack[param_start+1],null,20,mp->tally);
12996 while ( link(q)!=null ) q=link(q);
12997 link(q)=mp->param_stack[param_start+1];
12998 mp_show_token_list(mp, p,null,20,mp->tally);
13003 @ Now it is necessary to explain a little trick. We don't want to store a long
13004 string that corresponds to a token list, because that string might take up
13005 lots of memory; and we are printing during a time when an error message is
13006 being given, so we dare not do anything that might overflow one of \MP's
13007 tables. So `pseudoprinting' is the answer: We enter a mode of printing
13008 that stores characters into a buffer of length |error_line|, where character
13009 $k+1$ is placed into \hbox{|trick_buf[k mod error_line]|} if
13010 |k<trick_count|, otherwise character |k| is dropped. Initially we set
13011 |tally:=0| and |trick_count:=1000000|; then when we reach the
13012 point where transition from line 1 to line 2 should occur, we
13013 set |first_count:=tally| and |trick_count:=@tmax@>(error_line,
13014 tally+1+error_line-half_error_line)|. At the end of the
13015 pseudoprinting, the values of |first_count|, |tally|, and
13016 |trick_count| give us all the information we need to print the two lines,
13017 and all of the necessary text is in |trick_buf|.
13019 Namely, let |l| be the length of the descriptive information that appears
13020 on the first line. The length of the context information gathered for that
13021 line is |k=first_count|, and the length of the context information
13022 gathered for line~2 is $m=\min(|tally|, |trick_count|)-k$. If |l+k<=h|,
13023 where |h=half_error_line|, we print |trick_buf[0..k-1]| after the
13024 descriptive information on line~1, and set |n:=l+k|; here |n| is the
13025 length of line~1. If $l+k>h$, some cropping is necessary, so we set |n:=h|
13026 and print `\.{...}' followed by
13027 $$\hbox{|trick_buf[(l+k-h+3)..k-1]|,}$$
13028 where subscripts of |trick_buf| are circular modulo |error_line|. The
13029 second line consists of |n|~spaces followed by |trick_buf[k..(k+m-1)]|,
13030 unless |n+m>error_line|; in the latter case, further cropping is done.
13031 This is easier to program than to explain.
13033 @<Local variables for formatting...@>=
13034 int i; /* index into |buffer| */
13035 integer l; /* length of descriptive information on line 1 */
13036 integer m; /* context information gathered for line 2 */
13037 int n; /* length of line 1 */
13038 integer p; /* starting or ending place in |trick_buf| */
13039 integer q; /* temporary index */
13041 @ The following code tells the print routines to gather
13042 the desired information.
13044 @d begin_pseudoprint {
13045 l=mp->tally; mp->tally=0; mp->selector=pseudo;
13046 mp->trick_count=1000000;
13048 @d set_trick_count {
13049 mp->first_count=mp->tally;
13050 mp->trick_count=mp->tally+1+mp->error_line-mp->half_error_line;
13051 if ( mp->trick_count<mp->error_line ) mp->trick_count=mp->error_line;
13054 @ And the following code uses the information after it has been gathered.
13056 @<Print two lines using the tricky pseudoprinted information@>=
13057 if ( mp->trick_count==1000000 ) set_trick_count;
13058 /* |set_trick_count| must be performed */
13059 if ( mp->tally<mp->trick_count ) m=mp->tally-mp->first_count;
13060 else m=mp->trick_count-mp->first_count; /* context on line 2 */
13061 if ( l+mp->first_count<=mp->half_error_line ) {
13062 p=0; n=l+mp->first_count;
13064 mp_print(mp, "..."); p=l+mp->first_count-mp->half_error_line+3;
13065 n=mp->half_error_line;
13067 for (q=p;q<=mp->first_count-1;q++) {
13068 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13071 for (q=1;q<=n;q++) {
13072 mp_print_char(mp, ' '); /* print |n| spaces to begin line~2 */
13074 if ( m+n<=mp->error_line ) p=mp->first_count+m;
13075 else p=mp->first_count+(mp->error_line-n-3);
13076 for (q=mp->first_count;q<=p-1;q++) {
13077 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13079 if ( m+n>mp->error_line ) mp_print(mp, "...")
13081 @ But the trick is distracting us from our current goal, which is to
13082 understand the input state. So let's concentrate on the data structures that
13083 are being pseudoprinted as we finish up the |show_context| procedure.
13085 @<Pseudoprint the line@>=
13088 for (i=start;i<=limit-1;i++) {
13089 if ( i==loc ) set_trick_count;
13090 mp_print_str(mp, mp->buffer[i]);
13094 @ @<Pseudoprint the token list@>=
13096 if ( token_type!=macro ) mp_show_token_list(mp, start,loc,100000,0);
13097 else mp_show_macro(mp, start,loc,100000)
13099 @ Here is the missing piece of |show_token_list| that is activated when the
13100 token beginning line~2 is about to be shown:
13102 @<Do magic computation@>=set_trick_count
13104 @* \[28] Maintaining the input stacks.
13105 The following subroutines change the input status in commonly needed ways.
13107 First comes |push_input|, which stores the current state and creates a
13108 new level (having, initially, the same properties as the old).
13110 @d push_input { /* enter a new input level, save the old */
13111 if ( mp->input_ptr>mp->max_in_stack ) {
13112 mp->max_in_stack=mp->input_ptr;
13113 if ( mp->input_ptr==mp->stack_size ) {
13114 int l = (mp->stack_size+(mp->stack_size>>2));
13115 XREALLOC(mp->input_stack, l, in_state_record);
13116 mp->stack_size = l;
13119 mp->input_stack[mp->input_ptr]=mp->cur_input; /* stack the record */
13120 incr(mp->input_ptr);
13123 @ And of course what goes up must come down.
13125 @d pop_input { /* leave an input level, re-enter the old */
13126 decr(mp->input_ptr); mp->cur_input=mp->input_stack[mp->input_ptr];
13129 @ Here is a procedure that starts a new level of token-list input, given
13130 a token list |p| and its type |t|. If |t=macro|, the calling routine should
13131 set |name|, reset~|loc|, and increase the macro's reference count.
13133 @d back_list(A) mp_begin_token_list(mp, (A),backed_up) /* backs up a simple token list */
13135 @c void mp_begin_token_list (MP mp,pointer p, quarterword t) {
13136 push_input; start=p; token_type=t;
13137 param_start=mp->param_ptr; loc=p;
13140 @ When a token list has been fully scanned, the following computations
13141 should be done as we leave that level of input.
13144 @c void mp_end_token_list (MP mp) { /* leave a token-list input level */
13145 pointer p; /* temporary register */
13146 if ( token_type>=backed_up ) { /* token list to be deleted */
13147 if ( token_type<=inserted ) {
13148 mp_flush_token_list(mp, start); goto DONE;
13150 mp_delete_mac_ref(mp, start); /* update reference count */
13153 while ( mp->param_ptr>param_start ) { /* parameters must be flushed */
13154 decr(mp->param_ptr);
13155 p=mp->param_stack[mp->param_ptr];
13157 if ( link(p)==mp_void ) { /* it's an \&{expr} parameter */
13158 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
13160 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
13165 pop_input; check_interrupt;
13168 @ The contents of |cur_cmd,cur_mod,cur_sym| are placed into an equivalent
13169 token by the |cur_tok| routine.
13172 @c @<Declare the procedure called |make_exp_copy|@>;
13173 pointer mp_cur_tok (MP mp) {
13174 pointer p; /* a new token node */
13175 small_number save_type; /* |cur_type| to be restored */
13176 integer save_exp; /* |cur_exp| to be restored */
13177 if ( mp->cur_sym==0 ) {
13178 if ( mp->cur_cmd==capsule_token ) {
13179 save_type=mp->cur_type; save_exp=mp->cur_exp;
13180 mp_make_exp_copy(mp, mp->cur_mod); p=mp_stash_cur_exp(mp); link(p)=null;
13181 mp->cur_type=save_type; mp->cur_exp=save_exp;
13183 p=mp_get_node(mp, token_node_size);
13184 value(p)=mp->cur_mod; name_type(p)=mp_token;
13185 if ( mp->cur_cmd==numeric_token ) type(p)=mp_known;
13186 else type(p)=mp_string_type;
13189 fast_get_avail(p); info(p)=mp->cur_sym;
13194 @ Sometimes \MP\ has read too far and wants to ``unscan'' what it has
13195 seen. The |back_input| procedure takes care of this by putting the token
13196 just scanned back into the input stream, ready to be read again.
13197 If |cur_sym<>0|, the values of |cur_cmd| and |cur_mod| are irrelevant.
13200 void mp_back_input (MP mp);
13202 @ @c void mp_back_input (MP mp) {/* undoes one token of input */
13203 pointer p; /* a token list of length one */
13205 while ( token_state &&(loc==null) )
13206 mp_end_token_list(mp); /* conserve stack space */
13210 @ The |back_error| routine is used when we want to restore or replace an
13211 offending token just before issuing an error message. We disable interrupts
13212 during the call of |back_input| so that the help message won't be lost.
13215 void mp_error (MP mp);
13216 void mp_back_error (MP mp);
13218 @ @c void mp_back_error (MP mp) { /* back up one token and call |error| */
13219 mp->OK_to_interrupt=false;
13221 mp->OK_to_interrupt=true; mp_error(mp);
13223 void mp_ins_error (MP mp) { /* back up one inserted token and call |error| */
13224 mp->OK_to_interrupt=false;
13225 mp_back_input(mp); token_type=inserted;
13226 mp->OK_to_interrupt=true; mp_error(mp);
13229 @ The |begin_file_reading| procedure starts a new level of input for lines
13230 of characters to be read from a file, or as an insertion from the
13231 terminal. It does not take care of opening the file, nor does it set |loc|
13232 or |limit| or |line|.
13233 @^system dependencies@>
13235 @c void mp_begin_file_reading (MP mp) {
13236 if ( mp->in_open==mp->max_in_open )
13237 mp_overflow(mp, "text input levels",mp->max_in_open);
13238 @:MetaPost capacity exceeded text input levels}{\quad text input levels@>
13239 if ( mp->first==mp->buf_size )
13240 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13241 incr(mp->in_open); push_input; index=mp->in_open;
13242 mp->mpx_name[index]=absent;
13244 name=is_term; /* |terminal_input| is now |true| */
13247 @ Conversely, the variables must be downdated when such a level of input
13248 is finished. Any associated \.{MPX} file must also be closed and popped
13249 off the file stack.
13251 @c void mp_end_file_reading (MP mp) {
13252 if ( mp->in_open>index ) {
13253 if ( (mp->mpx_name[mp->in_open]==absent)||(name<=max_spec_src) ) {
13254 mp_confusion(mp, "endinput");
13255 @:this can't happen endinput}{\quad endinput@>
13257 fclose(mp->input_file[mp->in_open]); /* close an \.{MPX} file */
13258 delete_str_ref(mp->mpx_name[mp->in_open]);
13263 if ( index!=mp->in_open ) mp_confusion(mp, "endinput");
13264 if ( name>max_spec_src ) {
13266 delete_str_ref(name);
13270 pop_input; decr(mp->in_open);
13273 @ Here is a function that tries to resume input from an \.{MPX} file already
13274 associated with the current input file. It returns |false| if this doesn't
13277 @c boolean mp_begin_mpx_reading (MP mp) {
13278 if ( mp->in_open!=index+1 ) {
13281 if ( mp->mpx_name[mp->in_open]<=absent ) mp_confusion(mp, "mpx");
13282 @:this can't happen mpx}{\quad mpx@>
13283 if ( mp->first==mp->buf_size )
13284 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13285 push_input; index=mp->in_open;
13287 name=mp->mpx_name[mp->in_open]; add_str_ref(name);
13288 @<Put an empty line in the input buffer@>;
13293 @ This procedure temporarily stops reading an \.{MPX} file.
13295 @c void mp_end_mpx_reading (MP mp) {
13296 if ( mp->in_open!=index ) mp_confusion(mp, "mpx");
13297 @:this can't happen mpx}{\quad mpx@>
13299 @<Complain that we are not at the end of a line in the \.{MPX} file@>;
13305 @ Here we enforce a restriction that simplifies the input stacks considerably.
13306 This should not inconvenience the user because \.{MPX} files are generated
13307 by an auxiliary program called \.{DVItoMP}.
13309 @ @<Complain that we are not at the end of a line in the \.{MPX} file@>=
13311 print_err("`mpxbreak' must be at the end of a line");
13312 help4("This file contains picture expressions for btex...etex")
13313 ("blocks. Such files are normally generated automatically")
13314 ("but this one seems to be messed up. I'm going to ignore")
13315 ("the rest of this line.");
13319 @ In order to keep the stack from overflowing during a long sequence of
13320 inserted `\.{show}' commands, the following routine removes completed
13321 error-inserted lines from memory.
13323 @c void mp_clear_for_error_prompt (MP mp) {
13324 while ( file_state && terminal_input &&
13325 (mp->input_ptr>0)&&(loc==limit) ) mp_end_file_reading(mp);
13326 mp_print_ln(mp); clear_terminal;
13329 @ To get \MP's whole input mechanism going, we perform the following
13332 @<Initialize the input routines@>=
13333 { mp->input_ptr=0; mp->max_in_stack=0;
13334 mp->in_open=0; mp->open_parens=0; mp->max_buf_stack=0;
13335 mp->param_ptr=0; mp->max_param_stack=0;
13337 start=1; index=0; line=0; name=is_term;
13338 mp->mpx_name[0]=absent;
13339 mp->force_eof=false;
13340 if ( ! mp_init_terminal(mp) ) mp_jump_out(mp);
13341 limit=mp->last; mp->first=mp->last+1;
13342 /* |init_terminal| has set |loc| and |last| */
13345 @* \[29] Getting the next token.
13346 The heart of \MP's input mechanism is the |get_next| procedure, which
13347 we shall develop in the next few sections of the program. Perhaps we
13348 shouldn't actually call it the ``heart,'' however; it really acts as \MP's
13349 eyes and mouth, reading the source files and gobbling them up. And it also
13350 helps \MP\ to regurgitate stored token lists that are to be processed again.
13352 The main duty of |get_next| is to input one token and to set |cur_cmd|
13353 and |cur_mod| to that token's command code and modifier. Furthermore, if
13354 the input token is a symbolic token, that token's |hash| address
13355 is stored in |cur_sym|; otherwise |cur_sym| is set to zero.
13357 Underlying this simple description is a certain amount of complexity
13358 because of all the cases that need to be handled.
13359 However, the inner loop of |get_next| is reasonably short and fast.
13361 @ Before getting into |get_next|, we need to consider a mechanism by which
13362 \MP\ helps keep errors from propagating too far. Whenever the program goes
13363 into a mode where it keeps calling |get_next| repeatedly until a certain
13364 condition is met, it sets |scanner_status| to some value other than |normal|.
13365 Then if an input file ends, or if an `\&{outer}' symbol appears,
13366 an appropriate error recovery will be possible.
13368 The global variable |warning_info| helps in this error recovery by providing
13369 additional information. For example, |warning_info| might indicate the
13370 name of a macro whose replacement text is being scanned.
13372 @d normal 0 /* |scanner_status| at ``quiet times'' */
13373 @d skipping 1 /* |scanner_status| when false conditional text is being skipped */
13374 @d flushing 2 /* |scanner_status| when junk after a statement is being ignored */
13375 @d absorbing 3 /* |scanner_status| when a \&{text} parameter is being scanned */
13376 @d var_defining 4 /* |scanner_status| when a \&{vardef} is being scanned */
13377 @d op_defining 5 /* |scanner_status| when a macro \&{def} is being scanned */
13378 @d loop_defining 6 /* |scanner_status| when a \&{for} loop is being scanned */
13379 @d tex_flushing 7 /* |scanner_status| when skipping \TeX\ material */
13382 integer scanner_status; /* are we scanning at high speed? */
13383 integer warning_info; /* if so, what else do we need to know,
13384 in case an error occurs? */
13386 @ @<Initialize the input routines@>=
13387 mp->scanner_status=normal;
13389 @ The following subroutine
13390 is called when an `\&{outer}' symbolic token has been scanned or
13391 when the end of a file has been reached. These two cases are distinguished
13392 by |cur_sym|, which is zero at the end of a file.
13394 @c boolean mp_check_outer_validity (MP mp) {
13395 pointer p; /* points to inserted token list */
13396 if ( mp->scanner_status==normal ) {
13398 } else if ( mp->scanner_status==tex_flushing ) {
13399 @<Check if the file has ended while flushing \TeX\ material and set the
13400 result value for |check_outer_validity|@>;
13402 mp->deletions_allowed=false;
13403 @<Back up an outer symbolic token so that it can be reread@>;
13404 if ( mp->scanner_status>skipping ) {
13405 @<Tell the user what has run away and try to recover@>;
13407 print_err("Incomplete if; all text was ignored after line ");
13408 @.Incomplete if...@>
13409 mp_print_int(mp, mp->warning_info);
13410 help3("A forbidden `outer' token occurred in skipped text.")
13411 ("This kind of error happens when you say `if...' and forget")
13412 ("the matching `fi'. I've inserted a `fi'; this might work.");
13413 if ( mp->cur_sym==0 )
13414 mp->help_line[2]="The file ended while I was skipping conditional text.";
13415 mp->cur_sym=frozen_fi; mp_ins_error(mp);
13417 mp->deletions_allowed=true;
13422 @ @<Check if the file has ended while flushing \TeX\ material and set...@>=
13423 if ( mp->cur_sym!=0 ) {
13426 mp->deletions_allowed=false;
13427 print_err("TeX mode didn't end; all text was ignored after line ");
13428 mp_print_int(mp, mp->warning_info);
13429 help2("The file ended while I was looking for the `etex' to")
13430 ("finish this TeX material. I've inserted `etex' now.");
13431 mp->cur_sym = frozen_etex;
13433 mp->deletions_allowed=true;
13437 @ @<Back up an outer symbolic token so that it can be reread@>=
13438 if ( mp->cur_sym!=0 ) {
13439 p=mp_get_avail(mp); info(p)=mp->cur_sym;
13440 back_list(p); /* prepare to read the symbolic token again */
13443 @ @<Tell the user what has run away...@>=
13445 mp_runaway(mp); /* print the definition-so-far */
13446 if ( mp->cur_sym==0 ) {
13447 print_err("File ended");
13448 @.File ended while scanning...@>
13450 print_err("Forbidden token found");
13451 @.Forbidden token found...@>
13453 mp_print(mp, " while scanning ");
13454 help4("I suspect you have forgotten an `enddef',")
13455 ("causing me to read past where you wanted me to stop.")
13456 ("I'll try to recover; but if the error is serious,")
13457 ("you'd better type `E' or `X' now and fix your file.");
13458 switch (mp->scanner_status) {
13459 @<Complete the error message,
13460 and set |cur_sym| to a token that might help recover from the error@>
13461 } /* there are no other cases */
13465 @ As we consider various kinds of errors, it is also appropriate to
13466 change the first line of the help message just given; |help_line[3]|
13467 points to the string that might be changed.
13469 @<Complete the error message,...@>=
13471 mp_print(mp, "to the end of the statement");
13472 mp->help_line[3]="A previous error seems to have propagated,";
13473 mp->cur_sym=frozen_semicolon;
13476 mp_print(mp, "a text argument");
13477 mp->help_line[3]="It seems that a right delimiter was left out,";
13478 if ( mp->warning_info==0 ) {
13479 mp->cur_sym=frozen_end_group;
13481 mp->cur_sym=frozen_right_delimiter;
13482 equiv(frozen_right_delimiter)=mp->warning_info;
13487 mp_print(mp, "the definition of ");
13488 if ( mp->scanner_status==op_defining )
13489 mp_print_text(mp->warning_info);
13491 mp_print_variable_name(mp, mp->warning_info);
13492 mp->cur_sym=frozen_end_def;
13494 case loop_defining:
13495 mp_print(mp, "the text of a ");
13496 mp_print_text(mp->warning_info);
13497 mp_print(mp, " loop");
13498 mp->help_line[3]="I suspect you have forgotten an `endfor',";
13499 mp->cur_sym=frozen_end_for;
13502 @ The |runaway| procedure displays the first part of the text that occurred
13503 when \MP\ began its special |scanner_status|, if that text has been saved.
13505 @<Declare the procedure called |runaway|@>=
13506 void mp_runaway (MP mp) {
13507 if ( mp->scanner_status>flushing ) {
13508 mp_print_nl(mp, "Runaway ");
13509 switch (mp->scanner_status) {
13510 case absorbing: mp_print(mp, "text?"); break;
13512 case op_defining: mp_print(mp,"definition?"); break;
13513 case loop_defining: mp_print(mp, "loop?"); break;
13514 } /* there are no other cases */
13516 mp_show_token_list(mp, link(hold_head),null,mp->error_line-10,0);
13520 @ We need to mention a procedure that may be called by |get_next|.
13523 void mp_firm_up_the_line (MP mp);
13525 @ And now we're ready to take the plunge into |get_next| itself.
13526 Note that the behavior depends on the |scanner_status| because percent signs
13527 and double quotes need to be passed over when skipping TeX material.
13530 void mp_get_next (MP mp) {
13531 /* sets |cur_cmd|, |cur_mod|, |cur_sym| to next token */
13533 /*restart*/ /* go here to get the next input token */
13534 /*exit*/ /* go here when the next input token has been got */
13535 /*|common_ending|*/ /* go here to finish getting a symbolic token */
13536 /*found*/ /* go here when the end of a symbolic token has been found */
13537 /*switch*/ /* go here to branch on the class of an input character */
13538 /*|start_numeric_token|,|start_decimal_token|,|fin_numeric_token|,|done|*/
13539 /* go here at crucial stages when scanning a number */
13540 int k; /* an index into |buffer| */
13541 ASCII_code c; /* the current character in the buffer */
13542 ASCII_code class; /* its class number */
13543 integer n,f; /* registers for decimal-to-binary conversion */
13546 if ( file_state ) {
13547 @<Input from external file; |goto restart| if no input found,
13548 or |return| if a non-symbolic token is found@>;
13550 @<Input from token list; |goto restart| if end of list or
13551 if a parameter needs to be expanded,
13552 or |return| if a non-symbolic token is found@>;
13555 @<Finish getting the symbolic token in |cur_sym|;
13556 |goto restart| if it is illegal@>;
13559 @ When a symbolic token is declared to be `\&{outer}', its command code
13560 is increased by |outer_tag|.
13563 @<Finish getting the symbolic token in |cur_sym|...@>=
13564 mp->cur_cmd=eq_type(mp->cur_sym); mp->cur_mod=equiv(mp->cur_sym);
13565 if ( mp->cur_cmd>=outer_tag ) {
13566 if ( mp_check_outer_validity(mp) )
13567 mp->cur_cmd=mp->cur_cmd-outer_tag;
13572 @ A percent sign appears in |buffer[limit]|; this makes it unnecessary
13573 to have a special test for end-of-line.
13576 @<Input from external file;...@>=
13579 c=mp->buffer[loc]; incr(loc); class=mp->char_class[c];
13581 case digit_class: goto START_NUMERIC_TOKEN; break;
13583 class=mp->char_class[mp->buffer[loc]];
13584 if ( class>period_class ) {
13586 } else if ( class<period_class ) { /* |class=digit_class| */
13587 n=0; goto START_DECIMAL_TOKEN;
13591 case space_class: goto SWITCH; break;
13592 case percent_class:
13593 if ( mp->scanner_status==tex_flushing ) {
13594 if ( loc<limit ) goto SWITCH;
13596 @<Move to next line of file, or |goto restart| if there is no next line@>;
13601 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13602 else @<Get a string token and |return|@>;
13604 case isolated_classes:
13605 k=loc-1; goto FOUND; break;
13606 case invalid_class:
13607 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13608 else @<Decry the invalid character and |goto restart|@>;
13610 default: break; /* letters, etc. */
13613 while ( mp->char_class[mp->buffer[loc]]==class ) incr(loc);
13615 START_NUMERIC_TOKEN:
13616 @<Get the integer part |n| of a numeric token;
13617 set |f:=0| and |goto fin_numeric_token| if there is no decimal point@>;
13618 START_DECIMAL_TOKEN:
13619 @<Get the fraction part |f| of a numeric token@>;
13621 @<Pack the numeric and fraction parts of a numeric token
13624 mp->cur_sym=mp_id_lookup(mp, k,loc-k);
13627 @ We go to |restart| instead of to |SWITCH|, because |state| might equal
13628 |token_list| after the error has been dealt with
13629 (cf.\ |clear_for_error_prompt|).
13631 @<Decry the invalid...@>=
13633 print_err("Text line contains an invalid character");
13634 @.Text line contains...@>
13635 help2("A funny symbol that I can\'t read has just been input.")
13636 ("Continue, and I'll forget that it ever happened.");
13637 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13641 @ @<Get a string token and |return|@>=
13643 if ( mp->buffer[loc]=='"' ) {
13644 mp->cur_mod=rts("");
13646 k=loc; mp->buffer[limit+1]='"';
13649 } while (mp->buffer[loc]!='"');
13651 @<Decry the missing string delimiter and |goto restart|@>;
13654 mp->cur_mod=mp->buffer[k];
13658 append_char(mp->buffer[k]); incr(k);
13660 mp->cur_mod=mp_make_string(mp);
13663 incr(loc); mp->cur_cmd=string_token;
13667 @ We go to |restart| after this error message, not to |SWITCH|,
13668 because the |clear_for_error_prompt| routine might have reinstated
13669 |token_state| after |error| has finished.
13671 @<Decry the missing string delimiter and |goto restart|@>=
13673 loc=limit; /* the next character to be read on this line will be |"%"| */
13674 print_err("Incomplete string token has been flushed");
13675 @.Incomplete string token...@>
13676 help3("Strings should finish on the same line as they began.")
13677 ("I've deleted the partial string; you might want to")
13678 ("insert another by typing, e.g., `I\"new string\"'.");
13679 mp->deletions_allowed=false; mp_error(mp);
13680 mp->deletions_allowed=true;
13684 @ @<Get the integer part |n| of a numeric token...@>=
13686 while ( mp->char_class[mp->buffer[loc]]==digit_class ) {
13687 if ( n<32768 ) n=10*n+mp->buffer[loc]-'0';
13690 if ( mp->buffer[loc]=='.' )
13691 if ( mp->char_class[mp->buffer[loc+1]]==digit_class )
13694 goto FIN_NUMERIC_TOKEN;
13697 @ @<Get the fraction part |f| of a numeric token@>=
13700 if ( k<17 ) { /* digits for |k>=17| cannot affect the result */
13701 mp->dig[k]=mp->buffer[loc]-'0'; incr(k);
13704 } while (mp->char_class[mp->buffer[loc]]==digit_class);
13705 f=mp_round_decimals(mp, k);
13710 @ @<Pack the numeric and fraction parts of a numeric token and |return|@>=
13712 @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>;
13713 } else if ( mp->scanner_status!=tex_flushing ) {
13714 print_err("Enormous number has been reduced");
13715 @.Enormous number...@>
13716 help2("I can\'t handle numbers bigger than 32767.99998;")
13717 ("so I've changed your constant to that maximum amount.");
13718 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13719 mp->cur_mod=el_gordo;
13721 mp->cur_cmd=numeric_token; return
13723 @ @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>=
13725 mp->cur_mod=n*unity+f;
13726 if ( mp->cur_mod>=fraction_one ) {
13727 if ( (mp->internal[mp_warning_check]>0) &&
13728 (mp->scanner_status!=tex_flushing) ) {
13729 print_err("Number is too large (");
13730 mp_print_scaled(mp, mp->cur_mod);
13731 mp_print_char(mp, ')');
13732 help3("It is at least 4096. Continue and I'll try to cope")
13733 ("with that big value; but it might be dangerous.")
13734 ("(Set warningcheck:=0 to suppress this message.)");
13740 @ Let's consider now what happens when |get_next| is looking at a token list.
13743 @<Input from token list;...@>=
13744 if ( loc>=mp->hi_mem_min ) { /* one-word token */
13745 mp->cur_sym=info(loc); loc=link(loc); /* move to next */
13746 if ( mp->cur_sym>=expr_base ) {
13747 if ( mp->cur_sym>=suffix_base ) {
13748 @<Insert a suffix or text parameter and |goto restart|@>;
13750 mp->cur_cmd=capsule_token;
13751 mp->cur_mod=mp->param_stack[param_start+mp->cur_sym-(expr_base)];
13752 mp->cur_sym=0; return;
13755 } else if ( loc>null ) {
13756 @<Get a stored numeric or string or capsule token and |return|@>
13757 } else { /* we are done with this token list */
13758 mp_end_token_list(mp); goto RESTART; /* resume previous level */
13761 @ @<Insert a suffix or text parameter...@>=
13763 if ( mp->cur_sym>=text_base ) mp->cur_sym=mp->cur_sym-mp->param_size;
13764 /* |param_size=text_base-suffix_base| */
13765 mp_begin_token_list(mp,
13766 mp->param_stack[param_start+mp->cur_sym-(suffix_base)],
13771 @ @<Get a stored numeric or string or capsule token...@>=
13773 if ( name_type(loc)==mp_token ) {
13774 mp->cur_mod=value(loc);
13775 if ( type(loc)==mp_known ) {
13776 mp->cur_cmd=numeric_token;
13778 mp->cur_cmd=string_token; add_str_ref(mp->cur_mod);
13781 mp->cur_mod=loc; mp->cur_cmd=capsule_token;
13783 loc=link(loc); return;
13786 @ All of the easy branches of |get_next| have now been taken care of.
13787 There is one more branch.
13789 @<Move to next line of file, or |goto restart|...@>=
13790 if ( name>max_spec_src ) {
13791 @<Read next line of file into |buffer|, or
13792 |goto restart| if the file has ended@>;
13794 if ( mp->input_ptr>0 ) {
13795 /* text was inserted during error recovery or by \&{scantokens} */
13796 mp_end_file_reading(mp); goto RESTART; /* resume previous level */
13798 if ( mp->selector<log_only || mp->selector>=write_file) mp_open_log_file(mp);
13799 if ( mp->interaction>mp_nonstop_mode ) {
13800 if ( limit==start ) /* previous line was empty */
13801 mp_print_nl(mp, "(Please type a command or say `end')");
13803 mp_print_ln(mp); mp->first=start;
13804 prompt_input("*"); /* input on-line into |buffer| */
13806 limit=mp->last; mp->buffer[limit]='%';
13807 mp->first=limit+1; loc=start;
13809 mp_fatal_error(mp, "*** (job aborted, no legal end found)");
13811 /* nonstop mode, which is intended for overnight batch processing,
13812 never waits for on-line input */
13816 @ The global variable |force_eof| is normally |false|; it is set |true|
13817 by an \&{endinput} command.
13820 boolean force_eof; /* should the next \&{input} be aborted early? */
13822 @ We must decrement |loc| in order to leave the buffer in a valid state
13823 when an error condition causes us to |goto restart| without calling
13824 |end_file_reading|.
13826 @<Read next line of file into |buffer|, or
13827 |goto restart| if the file has ended@>=
13829 incr(line); mp->first=start;
13830 if ( ! mp->force_eof ) {
13831 if ( mp_input_ln(mp, cur_file,true) ) /* not end of file */
13832 mp_firm_up_the_line(mp); /* this sets |limit| */
13834 mp->force_eof=true;
13836 if ( mp->force_eof ) {
13837 mp->force_eof=false;
13839 if ( mpx_reading ) {
13840 @<Complain that the \.{MPX} file ended unexpectly; then set
13841 |cur_sym:=frozen_mpx_break| and |goto comon_ending|@>;
13843 mp_print_char(mp, ')'); decr(mp->open_parens);
13844 update_terminal; /* show user that file has been read */
13845 mp_end_file_reading(mp); /* resume previous level */
13846 if ( mp_check_outer_validity(mp) ) goto RESTART;
13850 mp->buffer[limit]='%'; mp->first=limit+1; loc=start; /* ready to read */
13853 @ We should never actually come to the end of an \.{MPX} file because such
13854 files should have an \&{mpxbreak} after the translation of the last
13855 \&{btex}$\,\ldots\,$\&{etex} block.
13857 @<Complain that the \.{MPX} file ended unexpectly; then set...@>=
13859 mp->mpx_name[index]=finished;
13860 print_err("mpx file ended unexpectedly");
13861 help4("The file had too few picture expressions for btex...etex")
13862 ("blocks. Such files are normally generated automatically")
13863 ("but this one got messed up. You might want to insert a")
13864 ("picture expression now.");
13865 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13866 mp->cur_sym=frozen_mpx_break; goto COMMON_ENDING;
13869 @ Sometimes we want to make it look as though we have just read a blank line
13870 without really doing so.
13872 @<Put an empty line in the input buffer@>=
13873 mp->last=mp->first; limit=mp->last; /* simulate |input_ln| and |firm_up_the_line| */
13874 mp->buffer[limit]='%'; mp->first=limit+1; loc=start
13876 @ If the user has set the |mp_pausing| parameter to some positive value,
13877 and if nonstop mode has not been selected, each line of input is displayed
13878 on the terminal and the transcript file, followed by `\.{=>}'.
13879 \MP\ waits for a response. If the response is null (i.e., if nothing is
13880 typed except perhaps a few blank spaces), the original
13881 line is accepted as it stands; otherwise the line typed is
13882 used instead of the line in the file.
13884 @c void mp_firm_up_the_line (MP mp) {
13885 size_t k; /* an index into |buffer| */
13887 if ( mp->internal[mp_pausing]>0 ) if ( mp->interaction>mp_nonstop_mode ) {
13888 wake_up_terminal; mp_print_ln(mp);
13889 if ( start<limit ) {
13890 for (k=(size_t)start;k<=(size_t)(limit-1);k++) {
13891 mp_print_str(mp, mp->buffer[k]);
13894 mp->first=limit; prompt_input("=>"); /* wait for user response */
13896 if ( mp->last>mp->first ) {
13897 for (k=mp->first;k<=mp->last-1;k++) { /* move line down in buffer */
13898 mp->buffer[k+start-mp->first]=mp->buffer[k];
13900 limit=start+mp->last-mp->first;
13905 @* \[30] Dealing with \TeX\ material.
13906 The \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}$\,\ldots\,$\&{etex}
13907 features need to be implemented at a low level in the scanning process
13908 so that \MP\ can stay in synch with the a preprocessor that treats
13909 blocks of \TeX\ material as they occur in the input file without trying
13910 to expand \MP\ macros. Thus we need a special version of |get_next|
13911 that does not expand macros and such but does handle \&{btex},
13912 \&{verbatimtex}, etc.
13914 The special version of |get_next| is called |get_t_next|. It works by flushing
13915 \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}\allowbreak
13916 $\,\ldots\,$\&{etex} blocks, switching to the \.{MPX} file when it sees
13917 \&{btex}, and switching back when it sees \&{mpxbreak}.
13923 mp_primitive(mp, "btex",start_tex,btex_code);
13924 @:btex_}{\&{btex} primitive@>
13925 mp_primitive(mp, "verbatimtex",start_tex,verbatim_code);
13926 @:verbatimtex_}{\&{verbatimtex} primitive@>
13927 mp_primitive(mp, "etex",etex_marker,0); mp->eqtb[frozen_etex]=mp->eqtb[mp->cur_sym];
13928 @:etex_}{\&{etex} primitive@>
13929 mp_primitive(mp, "mpxbreak",mpx_break,0); mp->eqtb[frozen_mpx_break]=mp->eqtb[mp->cur_sym];
13930 @:mpx_break_}{\&{mpxbreak} primitive@>
13932 @ @<Cases of |print_cmd...@>=
13933 case start_tex: if ( m==btex_code ) mp_print(mp, "btex");
13934 else mp_print(mp, "verbatimtex"); break;
13935 case etex_marker: mp_print(mp, "etex"); break;
13936 case mpx_break: mp_print(mp, "mpxbreak"); break;
13938 @ Actually, |get_t_next| is a macro that avoids procedure overhead except
13939 in the unusual case where \&{btex}, \&{verbatimtex}, \&{etex}, or \&{mpxbreak}
13942 @d get_t_next {mp_get_next(mp); if ( mp->cur_cmd<=max_pre_command ) mp_t_next(mp); }
13945 void mp_start_mpx_input (MP mp);
13948 void mp_t_next (MP mp) {
13949 int old_status; /* saves the |scanner_status| */
13950 integer old_info; /* saves the |warning_info| */
13951 while ( mp->cur_cmd<=max_pre_command ) {
13952 if ( mp->cur_cmd==mpx_break ) {
13953 if ( ! file_state || (mp->mpx_name[index]==absent) ) {
13954 @<Complain about a misplaced \&{mpxbreak}@>;
13956 mp_end_mpx_reading(mp);
13959 } else if ( mp->cur_cmd==start_tex ) {
13960 if ( token_state || (name<=max_spec_src) ) {
13961 @<Complain that we are not reading a file@>;
13962 } else if ( mpx_reading ) {
13963 @<Complain that \.{MPX} files cannot contain \TeX\ material@>;
13964 } else if ( (mp->cur_mod!=verbatim_code)&&
13965 (mp->mpx_name[index]!=finished) ) {
13966 if ( ! mp_begin_mpx_reading(mp) ) mp_start_mpx_input(mp);
13971 @<Complain about a misplaced \&{etex}@>;
13973 goto COMMON_ENDING;
13975 @<Flush the \TeX\ material@>;
13981 @ We could be in the middle of an operation such as skipping false conditional
13982 text when \TeX\ material is encountered, so we must be careful to save the
13985 @<Flush the \TeX\ material@>=
13986 old_status=mp->scanner_status;
13987 old_info=mp->warning_info;
13988 mp->scanner_status=tex_flushing;
13989 mp->warning_info=line;
13990 do { mp_get_next(mp); } while (mp->cur_cmd!=etex_marker);
13991 mp->scanner_status=old_status;
13992 mp->warning_info=old_info
13994 @ @<Complain that \.{MPX} files cannot contain \TeX\ material@>=
13995 { print_err("An mpx file cannot contain btex or verbatimtex blocks");
13996 help4("This file contains picture expressions for btex...etex")
13997 ("blocks. Such files are normally generated automatically")
13998 ("but this one seems to be messed up. I'll just keep going")
13999 ("and hope for the best.");
14003 @ @<Complain that we are not reading a file@>=
14004 { print_err("You can only use `btex' or `verbatimtex' in a file");
14005 help3("I'll have to ignore this preprocessor command because it")
14006 ("only works when there is a file to preprocess. You might")
14007 ("want to delete everything up to the next `etex`.");
14011 @ @<Complain about a misplaced \&{mpxbreak}@>=
14012 { print_err("Misplaced mpxbreak");
14013 help2("I'll ignore this preprocessor command because it")
14014 ("doesn't belong here");
14018 @ @<Complain about a misplaced \&{etex}@>=
14019 { print_err("Extra etex will be ignored");
14020 help1("There is no btex or verbatimtex for this to match");
14024 @* \[31] Scanning macro definitions.
14025 \MP\ has a variety of ways to tuck tokens away into token lists for later
14026 use: Macros can be defined with \&{def}, \&{vardef}, \&{primarydef}, etc.;
14027 repeatable code can be defined with \&{for}, \&{forever}, \&{forsuffixes}.
14028 All such operations are handled by the routines in this part of the program.
14030 The modifier part of each command code is zero for the ``ending delimiters''
14031 like \&{enddef} and \&{endfor}.
14033 @d start_def 1 /* command modifier for \&{def} */
14034 @d var_def 2 /* command modifier for \&{vardef} */
14035 @d end_def 0 /* command modifier for \&{enddef} */
14036 @d start_forever 1 /* command modifier for \&{forever} */
14037 @d end_for 0 /* command modifier for \&{endfor} */
14040 mp_primitive(mp, "def",macro_def,start_def);
14041 @:def_}{\&{def} primitive@>
14042 mp_primitive(mp, "vardef",macro_def,var_def);
14043 @:var_def_}{\&{vardef} primitive@>
14044 mp_primitive(mp, "primarydef",macro_def,secondary_primary_macro);
14045 @:primary_def_}{\&{primarydef} primitive@>
14046 mp_primitive(mp, "secondarydef",macro_def,tertiary_secondary_macro);
14047 @:secondary_def_}{\&{secondarydef} primitive@>
14048 mp_primitive(mp, "tertiarydef",macro_def,expression_tertiary_macro);
14049 @:tertiary_def_}{\&{tertiarydef} primitive@>
14050 mp_primitive(mp, "enddef",macro_def,end_def); mp->eqtb[frozen_end_def]=mp->eqtb[mp->cur_sym];
14051 @:end_def_}{\&{enddef} primitive@>
14053 mp_primitive(mp, "for",iteration,expr_base);
14054 @:for_}{\&{for} primitive@>
14055 mp_primitive(mp, "forsuffixes",iteration,suffix_base);
14056 @:for_suffixes_}{\&{forsuffixes} primitive@>
14057 mp_primitive(mp, "forever",iteration,start_forever);
14058 @:forever_}{\&{forever} primitive@>
14059 mp_primitive(mp, "endfor",iteration,end_for); mp->eqtb[frozen_end_for]=mp->eqtb[mp->cur_sym];
14060 @:end_for_}{\&{endfor} primitive@>
14062 @ @<Cases of |print_cmd...@>=
14064 if ( m<=var_def ) {
14065 if ( m==start_def ) mp_print(mp, "def");
14066 else if ( m<start_def ) mp_print(mp, "enddef");
14067 else mp_print(mp, "vardef");
14068 } else if ( m==secondary_primary_macro ) {
14069 mp_print(mp, "primarydef");
14070 } else if ( m==tertiary_secondary_macro ) {
14071 mp_print(mp, "secondarydef");
14073 mp_print(mp, "tertiarydef");
14077 if ( m<=start_forever ) {
14078 if ( m==start_forever ) mp_print(mp, "forever");
14079 else mp_print(mp, "endfor");
14080 } else if ( m==expr_base ) {
14081 mp_print(mp, "for");
14083 mp_print(mp, "forsuffixes");
14087 @ Different macro-absorbing operations have different syntaxes, but they
14088 also have a lot in common. There is a list of special symbols that are to
14089 be replaced by parameter tokens; there is a special command code that
14090 ends the definition; the quotation conventions are identical. Therefore
14091 it makes sense to have most of the work done by a single subroutine. That
14092 subroutine is called |scan_toks|.
14094 The first parameter to |scan_toks| is the command code that will
14095 terminate scanning (either |macro_def|, |loop_repeat|, or |iteration|).
14097 The second parameter, |subst_list|, points to a (possibly empty) list
14098 of two-word nodes whose |info| and |value| fields specify symbol tokens
14099 before and after replacement. The list will be returned to free storage
14102 The third parameter is simply appended to the token list that is built.
14103 And the final parameter tells how many of the special operations
14104 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#} are to be replaced by suffix parameters.
14105 When such parameters are present, they are called \.{(SUFFIX0)},
14106 \.{(SUFFIX1)}, and \.{(SUFFIX2)}.
14108 @c pointer mp_scan_toks (MP mp,command_code terminator, pointer
14109 subst_list, pointer tail_end, small_number suffix_count) {
14110 pointer p; /* tail of the token list being built */
14111 pointer q; /* temporary for link management */
14112 integer balance; /* left delimiters minus right delimiters */
14113 p=hold_head; balance=1; link(hold_head)=null;
14116 if ( mp->cur_sym>0 ) {
14117 @<Substitute for |cur_sym|, if it's on the |subst_list|@>;
14118 if ( mp->cur_cmd==terminator ) {
14119 @<Adjust the balance; |break| if it's zero@>;
14120 } else if ( mp->cur_cmd==macro_special ) {
14121 @<Handle quoted symbols, \.{\#\AT!}, \.{\AT!}, or \.{\AT!\#}@>;
14124 link(p)=mp_cur_tok(mp); p=link(p);
14126 link(p)=tail_end; mp_flush_node_list(mp, subst_list);
14127 return link(hold_head);
14130 @ @<Substitute for |cur_sym|...@>=
14133 while ( q!=null ) {
14134 if ( info(q)==mp->cur_sym ) {
14135 mp->cur_sym=value(q); mp->cur_cmd=relax; break;
14141 @ @<Adjust the balance; |break| if it's zero@>=
14142 if ( mp->cur_mod>0 ) {
14150 @ Four commands are intended to be used only within macro texts: \&{quote},
14151 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#}. They are variants of a single command
14152 code called |macro_special|.
14154 @d quote 0 /* |macro_special| modifier for \&{quote} */
14155 @d macro_prefix 1 /* |macro_special| modifier for \.{\#\AT!} */
14156 @d macro_at 2 /* |macro_special| modifier for \.{\AT!} */
14157 @d macro_suffix 3 /* |macro_special| modifier for \.{\AT!\#} */
14160 mp_primitive(mp, "quote",macro_special,quote);
14161 @:quote_}{\&{quote} primitive@>
14162 mp_primitive(mp, "#@@",macro_special,macro_prefix);
14163 @:]]]\#\AT!_}{\.{\#\AT!} primitive@>
14164 mp_primitive(mp, "@@",macro_special,macro_at);
14165 @:]]]\AT!_}{\.{\AT!} primitive@>
14166 mp_primitive(mp, "@@#",macro_special,macro_suffix);
14167 @:]]]\AT!\#_}{\.{\AT!\#} primitive@>
14169 @ @<Cases of |print_cmd...@>=
14170 case macro_special:
14172 case macro_prefix: mp_print(mp, "#@@"); break;
14173 case macro_at: mp_print_char(mp, '@@'); break;
14174 case macro_suffix: mp_print(mp, "@@#"); break;
14175 default: mp_print(mp, "quote"); break;
14179 @ @<Handle quoted...@>=
14181 if ( mp->cur_mod==quote ) { get_t_next; }
14182 else if ( mp->cur_mod<=suffix_count )
14183 mp->cur_sym=suffix_base-1+mp->cur_mod;
14186 @ Here is a routine that's used whenever a token will be redefined. If
14187 the user's token is unredefinable, the `|frozen_inaccessible|' token is
14188 substituted; the latter is redefinable but essentially impossible to use,
14189 hence \MP's tables won't get fouled up.
14191 @c void mp_get_symbol (MP mp) { /* sets |cur_sym| to a safe symbol */
14194 if ( (mp->cur_sym==0)||(mp->cur_sym>frozen_inaccessible) ) {
14195 print_err("Missing symbolic token inserted");
14196 @.Missing symbolic token...@>
14197 help3("Sorry: You can\'t redefine a number, string, or expr.")
14198 ("I've inserted an inaccessible symbol so that your")
14199 ("definition will be completed without mixing me up too badly.");
14200 if ( mp->cur_sym>0 )
14201 mp->help_line[2]="Sorry: You can\'t redefine my error-recovery tokens.";
14202 else if ( mp->cur_cmd==string_token )
14203 delete_str_ref(mp->cur_mod);
14204 mp->cur_sym=frozen_inaccessible; mp_ins_error(mp); goto RESTART;
14208 @ Before we actually redefine a symbolic token, we need to clear away its
14209 former value, if it was a variable. The following stronger version of
14210 |get_symbol| does that.
14212 @c void mp_get_clear_symbol (MP mp) {
14213 mp_get_symbol(mp); mp_clear_symbol(mp, mp->cur_sym,false);
14216 @ Here's another little subroutine; it checks that an equals sign
14217 or assignment sign comes along at the proper place in a macro definition.
14219 @c void mp_check_equals (MP mp) {
14220 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
14221 mp_missing_err(mp, "=");
14223 help5("The next thing in this `def' should have been `=',")
14224 ("because I've already looked at the definition heading.")
14225 ("But don't worry; I'll pretend that an equals sign")
14226 ("was present. Everything from here to `enddef'")
14227 ("will be the replacement text of this macro.");
14232 @ A \&{primarydef}, \&{secondarydef}, or \&{tertiarydef} is rather easily
14233 handled now that we have |scan_toks|. In this case there are
14234 two parameters, which will be \.{EXPR0} and \.{EXPR1} (i.e.,
14235 |expr_base| and |expr_base+1|).
14237 @c void mp_make_op_def (MP mp) {
14238 command_code m; /* the type of definition */
14239 pointer p,q,r; /* for list manipulation */
14241 mp_get_symbol(mp); q=mp_get_node(mp, token_node_size);
14242 info(q)=mp->cur_sym; value(q)=expr_base;
14243 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym;
14244 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14245 info(p)=mp->cur_sym; value(p)=expr_base+1; link(p)=q;
14246 get_t_next; mp_check_equals(mp);
14247 mp->scanner_status=op_defining; q=mp_get_avail(mp); ref_count(q)=null;
14248 r=mp_get_avail(mp); link(q)=r; info(r)=general_macro;
14249 link(r)=mp_scan_toks(mp, macro_def,p,null,0);
14250 mp->scanner_status=normal; eq_type(mp->warning_info)=m;
14251 equiv(mp->warning_info)=q; mp_get_x_next(mp);
14254 @ Parameters to macros are introduced by the keywords \&{expr},
14255 \&{suffix}, \&{text}, \&{primary}, \&{secondary}, and \&{tertiary}.
14258 mp_primitive(mp, "expr",param_type,expr_base);
14259 @:expr_}{\&{expr} primitive@>
14260 mp_primitive(mp, "suffix",param_type,suffix_base);
14261 @:suffix_}{\&{suffix} primitive@>
14262 mp_primitive(mp, "text",param_type,text_base);
14263 @:text_}{\&{text} primitive@>
14264 mp_primitive(mp, "primary",param_type,primary_macro);
14265 @:primary_}{\&{primary} primitive@>
14266 mp_primitive(mp, "secondary",param_type,secondary_macro);
14267 @:secondary_}{\&{secondary} primitive@>
14268 mp_primitive(mp, "tertiary",param_type,tertiary_macro);
14269 @:tertiary_}{\&{tertiary} primitive@>
14271 @ @<Cases of |print_cmd...@>=
14273 if ( m>=expr_base ) {
14274 if ( m==expr_base ) mp_print(mp, "expr");
14275 else if ( m==suffix_base ) mp_print(mp, "suffix");
14276 else mp_print(mp, "text");
14277 } else if ( m<secondary_macro ) {
14278 mp_print(mp, "primary");
14279 } else if ( m==secondary_macro ) {
14280 mp_print(mp, "secondary");
14282 mp_print(mp, "tertiary");
14286 @ Let's turn next to the more complex processing associated with \&{def}
14287 and \&{vardef}. When the following procedure is called, |cur_mod|
14288 should be either |start_def| or |var_def|.
14290 @c @<Declare the procedure called |check_delimiter|@>;
14291 @<Declare the function called |scan_declared_variable|@>;
14292 void mp_scan_def (MP mp) {
14293 int m; /* the type of definition */
14294 int n; /* the number of special suffix parameters */
14295 int k; /* the total number of parameters */
14296 int c; /* the kind of macro we're defining */
14297 pointer r; /* parameter-substitution list */
14298 pointer q; /* tail of the macro token list */
14299 pointer p; /* temporary storage */
14300 halfword base; /* |expr_base|, |suffix_base|, or |text_base| */
14301 pointer l_delim,r_delim; /* matching delimiters */
14302 m=mp->cur_mod; c=general_macro; link(hold_head)=null;
14303 q=mp_get_avail(mp); ref_count(q)=null; r=null;
14304 @<Scan the token or variable to be defined;
14305 set |n|, |scanner_status|, and |warning_info|@>;
14307 if ( mp->cur_cmd==left_delimiter ) {
14308 @<Absorb delimited parameters, putting them into lists |q| and |r|@>;
14310 if ( mp->cur_cmd==param_type ) {
14311 @<Absorb undelimited parameters, putting them into list |r|@>;
14313 mp_check_equals(mp);
14314 p=mp_get_avail(mp); info(p)=c; link(q)=p;
14315 @<Attach the replacement text to the tail of node |p|@>;
14316 mp->scanner_status=normal; mp_get_x_next(mp);
14319 @ We don't put `|frozen_end_group|' into the replacement text of
14320 a \&{vardef}, because the user may want to redefine `\.{endgroup}'.
14322 @<Attach the replacement text to the tail of node |p|@>=
14323 if ( m==start_def ) {
14324 link(p)=mp_scan_toks(mp, macro_def,r,null,n);
14326 q=mp_get_avail(mp); info(q)=mp->bg_loc; link(p)=q;
14327 p=mp_get_avail(mp); info(p)=mp->eg_loc;
14328 link(q)=mp_scan_toks(mp, macro_def,r,p,n);
14330 if ( mp->warning_info==bad_vardef )
14331 mp_flush_token_list(mp, value(bad_vardef))
14335 int eg_loc; /* hash addresses of `\.{begingroup}' and `\.{endgroup}' */
14337 @ @<Scan the token or variable to be defined;...@>=
14338 if ( m==start_def ) {
14339 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym; get_t_next;
14340 mp->scanner_status=op_defining; n=0;
14341 eq_type(mp->warning_info)=defined_macro; equiv(mp->warning_info)=q;
14343 p=mp_scan_declared_variable(mp);
14344 mp_flush_variable(mp, equiv(info(p)),link(p),true);
14345 mp->warning_info=mp_find_variable(mp, p); mp_flush_list(mp, p);
14346 if ( mp->warning_info==null ) @<Change to `\.{a bad variable}'@>;
14347 mp->scanner_status=var_defining; n=2;
14348 if ( mp->cur_cmd==macro_special ) if ( mp->cur_mod==macro_suffix ) {/* \.{\AT!\#} */
14351 type(mp->warning_info)=mp_unsuffixed_macro-2+n; value(mp->warning_info)=q;
14352 } /* |mp_suffixed_macro=mp_unsuffixed_macro+1| */
14354 @ @<Change to `\.{a bad variable}'@>=
14356 print_err("This variable already starts with a macro");
14357 @.This variable already...@>
14358 help2("After `vardef a' you can\'t say `vardef a.b'.")
14359 ("So I'll have to discard this definition.");
14360 mp_error(mp); mp->warning_info=bad_vardef;
14363 @ @<Initialize table entries...@>=
14364 name_type(bad_vardef)=mp_root; link(bad_vardef)=frozen_bad_vardef;
14365 equiv(frozen_bad_vardef)=bad_vardef; eq_type(frozen_bad_vardef)=tag_token;
14367 @ @<Absorb delimited parameters, putting them into lists |q| and |r|@>=
14369 l_delim=mp->cur_sym; r_delim=mp->cur_mod; get_t_next;
14370 if ( (mp->cur_cmd==param_type)&&(mp->cur_mod>=expr_base) ) {
14373 print_err("Missing parameter type; `expr' will be assumed");
14374 @.Missing parameter type@>
14375 help1("You should've had `expr' or `suffix' or `text' here.");
14376 mp_back_error(mp); base=expr_base;
14378 @<Absorb parameter tokens for type |base|@>;
14379 mp_check_delimiter(mp, l_delim,r_delim);
14381 } while (mp->cur_cmd==left_delimiter)
14383 @ @<Absorb parameter tokens for type |base|@>=
14385 link(q)=mp_get_avail(mp); q=link(q); info(q)=base+k;
14386 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14387 value(p)=base+k; info(p)=mp->cur_sym;
14388 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14389 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
14390 incr(k); link(p)=r; r=p; get_t_next;
14391 } while (mp->cur_cmd==comma)
14393 @ @<Absorb undelimited parameters, putting them into list |r|@>=
14395 p=mp_get_node(mp, token_node_size);
14396 if ( mp->cur_mod<expr_base ) {
14397 c=mp->cur_mod; value(p)=expr_base+k;
14399 value(p)=mp->cur_mod+k;
14400 if ( mp->cur_mod==expr_base ) c=expr_macro;
14401 else if ( mp->cur_mod==suffix_base ) c=suffix_macro;
14404 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14405 incr(k); mp_get_symbol(mp); info(p)=mp->cur_sym; link(p)=r; r=p; get_t_next;
14406 if ( c==expr_macro ) if ( mp->cur_cmd==of_token ) {
14407 c=of_macro; p=mp_get_node(mp, token_node_size);
14408 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14409 value(p)=expr_base+k; mp_get_symbol(mp); info(p)=mp->cur_sym;
14410 link(p)=r; r=p; get_t_next;
14414 @* \[32] Expanding the next token.
14415 Only a few command codes |<min_command| can possibly be returned by
14416 |get_t_next|; in increasing order, they are
14417 |if_test|, |fi_or_else|, |input|, |iteration|, |repeat_loop|,
14418 |exit_test|, |relax|, |scan_tokens|, |expand_after|, and |defined_macro|.
14420 \MP\ usually gets the next token of input by saying |get_x_next|. This is
14421 like |get_t_next| except that it keeps getting more tokens until
14422 finding |cur_cmd>=min_command|. In other words, |get_x_next| expands
14423 macros and removes conditionals or iterations or input instructions that
14426 It follows that |get_x_next| might invoke itself recursively. In fact,
14427 there is massive recursion, since macro expansion can involve the
14428 scanning of arbitrarily complex expressions, which in turn involve
14429 macro expansion and conditionals, etc.
14432 Therefore it's necessary to declare a whole bunch of |forward|
14433 procedures at this point, and to insert some other procedures
14434 that will be invoked by |get_x_next|.
14437 void mp_scan_primary (MP mp);
14438 void mp_scan_secondary (MP mp);
14439 void mp_scan_tertiary (MP mp);
14440 void mp_scan_expression (MP mp);
14441 void mp_scan_suffix (MP mp);
14442 @<Declare the procedure called |macro_call|@>;
14443 void mp_get_boolean (MP mp);
14444 void mp_pass_text (MP mp);
14445 void mp_conditional (MP mp);
14446 void mp_start_input (MP mp);
14447 void mp_begin_iteration (MP mp);
14448 void mp_resume_iteration (MP mp);
14449 void mp_stop_iteration (MP mp);
14451 @ An auxiliary subroutine called |expand| is used by |get_x_next|
14452 when it has to do exotic expansion commands.
14454 @c void mp_expand (MP mp) {
14455 pointer p; /* for list manipulation */
14456 size_t k; /* something that we hope is |<=buf_size| */
14457 pool_pointer j; /* index into |str_pool| */
14458 if ( mp->internal[mp_tracing_commands]>unity )
14459 if ( mp->cur_cmd!=defined_macro )
14461 switch (mp->cur_cmd) {
14463 mp_conditional(mp); /* this procedure is discussed in Part 36 below */
14466 @<Terminate the current conditional and skip to \&{fi}@>;
14469 @<Initiate or terminate input from a file@>;
14472 if ( mp->cur_mod==end_for ) {
14473 @<Scold the user for having an extra \&{endfor}@>;
14475 mp_begin_iteration(mp); /* this procedure is discussed in Part 37 below */
14482 @<Exit a loop if the proper time has come@>;
14487 @<Expand the token after the next token@>;
14490 @<Put a string into the input buffer@>;
14492 case defined_macro:
14493 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14495 }; /* there are no other cases */
14498 @ @<Scold the user...@>=
14500 print_err("Extra `endfor'");
14502 help2("I'm not currently working on a for loop,")
14503 ("so I had better not try to end anything.");
14507 @ The processing of \&{input} involves the |start_input| subroutine,
14508 which will be declared later; the processing of \&{endinput} is trivial.
14511 mp_primitive(mp, "input",input,0);
14512 @:input_}{\&{input} primitive@>
14513 mp_primitive(mp, "endinput",input,1);
14514 @:end_input_}{\&{endinput} primitive@>
14516 @ @<Cases of |print_cmd_mod|...@>=
14518 if ( m==0 ) mp_print(mp, "input");
14519 else mp_print(mp, "endinput");
14522 @ @<Initiate or terminate input...@>=
14523 if ( mp->cur_mod>0 ) mp->force_eof=true;
14524 else mp_start_input(mp)
14526 @ We'll discuss the complicated parts of loop operations later. For now
14527 it suffices to know that there's a global variable called |loop_ptr|
14528 that will be |null| if no loop is in progress.
14531 { while ( token_state &&(loc==null) )
14532 mp_end_token_list(mp); /* conserve stack space */
14533 if ( mp->loop_ptr==null ) {
14534 print_err("Lost loop");
14536 help2("I'm confused; after exiting from a loop, I still seem")
14537 ("to want to repeat it. I'll try to forget the problem.");
14540 mp_resume_iteration(mp); /* this procedure is in Part 37 below */
14544 @ @<Exit a loop if the proper time has come@>=
14545 { mp_get_boolean(mp);
14546 if ( mp->internal[mp_tracing_commands]>unity )
14547 mp_show_cmd_mod(mp, nullary,mp->cur_exp);
14548 if ( mp->cur_exp==true_code ) {
14549 if ( mp->loop_ptr==null ) {
14550 print_err("No loop is in progress");
14551 @.No loop is in progress@>
14552 help1("Why say `exitif' when there's nothing to exit from?");
14553 if ( mp->cur_cmd==semicolon ) mp_error(mp); else mp_back_error(mp);
14555 @<Exit prematurely from an iteration@>;
14557 } else if ( mp->cur_cmd!=semicolon ) {
14558 mp_missing_err(mp, ";");
14560 help2("After `exitif <boolean exp>' I expect to see a semicolon.")
14561 ("I shall pretend that one was there."); mp_back_error(mp);
14565 @ Here we use the fact that |forever_text| is the only |token_type| that
14566 is less than |loop_text|.
14568 @<Exit prematurely...@>=
14571 if ( file_state ) {
14572 mp_end_file_reading(mp);
14574 if ( token_type<=loop_text ) p=start;
14575 mp_end_token_list(mp);
14578 if ( p!=info(mp->loop_ptr) ) mp_fatal_error(mp, "*** (loop confusion)");
14580 mp_stop_iteration(mp); /* this procedure is in Part 34 below */
14583 @ @<Expand the token after the next token@>=
14585 p=mp_cur_tok(mp); get_t_next;
14586 if ( mp->cur_cmd<min_command ) mp_expand(mp);
14587 else mp_back_input(mp);
14591 @ @<Put a string into the input buffer@>=
14592 { mp_get_x_next(mp); mp_scan_primary(mp);
14593 if ( mp->cur_type!=mp_string_type ) {
14594 mp_disp_err(mp, null,"Not a string");
14596 help2("I'm going to flush this expression, since")
14597 ("scantokens should be followed by a known string.");
14598 mp_put_get_flush_error(mp, 0);
14601 if ( length(mp->cur_exp)>0 )
14602 @<Pretend we're reading a new one-line file@>;
14606 @ @<Pretend we're reading a new one-line file@>=
14607 { mp_begin_file_reading(mp); name=is_scantok;
14608 k=mp->first+length(mp->cur_exp);
14609 if ( k>=mp->max_buf_stack ) {
14610 while ( k>=mp->buf_size ) {
14611 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
14613 mp->max_buf_stack=k+1;
14615 j=mp->str_start[mp->cur_exp]; limit=k;
14616 while ( mp->first<(size_t)limit ) {
14617 mp->buffer[mp->first]=mp->str_pool[j]; incr(j); incr(mp->first);
14619 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
14620 mp_flush_cur_exp(mp, 0);
14623 @ Here finally is |get_x_next|.
14625 The expression scanning routines to be considered later
14626 communicate via the global quantities |cur_type| and |cur_exp|;
14627 we must be very careful to save and restore these quantities while
14628 macros are being expanded.
14632 void mp_get_x_next (MP mp);
14634 @ @c void mp_get_x_next (MP mp) {
14635 pointer save_exp; /* a capsule to save |cur_type| and |cur_exp| */
14637 if ( mp->cur_cmd<min_command ) {
14638 save_exp=mp_stash_cur_exp(mp);
14640 if ( mp->cur_cmd==defined_macro )
14641 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14645 } while (mp->cur_cmd<min_command);
14646 mp_unstash_cur_exp(mp, save_exp); /* that restores |cur_type| and |cur_exp| */
14650 @ Now let's consider the |macro_call| procedure, which is used to start up
14651 all user-defined macros. Since the arguments to a macro might be expressions,
14652 |macro_call| is recursive.
14655 The first parameter to |macro_call| points to the reference count of the
14656 token list that defines the macro. The second parameter contains any
14657 arguments that have already been parsed (see below). The third parameter
14658 points to the symbolic token that names the macro. If the third parameter
14659 is |null|, the macro was defined by \&{vardef}, so its name can be
14660 reconstructed from the prefix and ``at'' arguments found within the
14663 What is this second parameter? It's simply a linked list of one-word items,
14664 whose |info| fields point to the arguments. In other words, if |arg_list=null|,
14665 no arguments have been scanned yet; otherwise |info(arg_list)| points to
14666 the first scanned argument, and |link(arg_list)| points to the list of
14667 further arguments (if any).
14669 Arguments of type \&{expr} are so-called capsules, which we will
14670 discuss later when we concentrate on expressions; they can be
14671 recognized easily because their |link| field is |void|. Arguments of type
14672 \&{suffix} and \&{text} are token lists without reference counts.
14674 @ After argument scanning is complete, the arguments are moved to the
14675 |param_stack|. (They can't be put on that stack any sooner, because
14676 the stack is growing and shrinking in unpredictable ways as more arguments
14677 are being acquired.) Then the macro body is fed to the scanner; i.e.,
14678 the replacement text of the macro is placed at the top of the \MP's
14679 input stack, so that |get_t_next| will proceed to read it next.
14681 @<Declare the procedure called |macro_call|@>=
14682 @<Declare the procedure called |print_macro_name|@>;
14683 @<Declare the procedure called |print_arg|@>;
14684 @<Declare the procedure called |scan_text_arg|@>;
14685 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14686 pointer macro_name) ;
14689 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14690 pointer macro_name) {
14691 /* invokes a user-defined control sequence */
14692 pointer r; /* current node in the macro's token list */
14693 pointer p,q; /* for list manipulation */
14694 integer n; /* the number of arguments */
14695 pointer tail = 0; /* tail of the argument list */
14696 pointer l_delim=0,r_delim=0; /* a delimiter pair */
14697 r=link(def_ref); add_mac_ref(def_ref);
14698 if ( arg_list==null ) {
14701 @<Determine the number |n| of arguments already supplied,
14702 and set |tail| to the tail of |arg_list|@>;
14704 if ( mp->internal[mp_tracing_macros]>0 ) {
14705 @<Show the text of the macro being expanded, and the existing arguments@>;
14707 @<Scan the remaining arguments, if any; set |r| to the first token
14708 of the replacement text@>;
14709 @<Feed the arguments and replacement text to the scanner@>;
14712 @ @<Show the text of the macro...@>=
14713 mp_begin_diagnostic(mp); mp_print_ln(mp);
14714 mp_print_macro_name(mp, arg_list,macro_name);
14715 if ( n==3 ) mp_print(mp, "@@#"); /* indicate a suffixed macro */
14716 mp_show_macro(mp, def_ref,null,100000);
14717 if ( arg_list!=null ) {
14721 mp_print_arg(mp, q,n,0);
14722 incr(n); p=link(p);
14725 mp_end_diagnostic(mp, false)
14728 @ @<Declare the procedure called |print_macro_name|@>=
14729 void mp_print_macro_name (MP mp,pointer a, pointer n);
14732 void mp_print_macro_name (MP mp,pointer a, pointer n) {
14733 pointer p,q; /* they traverse the first part of |a| */
14739 mp_print_text(info(info(link(a))));
14742 while ( link(q)!=null ) q=link(q);
14743 link(q)=info(link(a));
14744 mp_show_token_list(mp, p,null,1000,0);
14750 @ @<Declare the procedure called |print_arg|@>=
14751 void mp_print_arg (MP mp,pointer q, integer n, pointer b) ;
14754 void mp_print_arg (MP mp,pointer q, integer n, pointer b) {
14755 if ( link(q)==mp_void ) mp_print_nl(mp, "(EXPR");
14756 else if ( (b<text_base)&&(b!=text_macro) ) mp_print_nl(mp, "(SUFFIX");
14757 else mp_print_nl(mp, "(TEXT");
14758 mp_print_int(mp, n); mp_print(mp, ")<-");
14759 if ( link(q)==mp_void ) mp_print_exp(mp, q,1);
14760 else mp_show_token_list(mp, q,null,1000,0);
14763 @ @<Determine the number |n| of arguments already supplied...@>=
14765 n=1; tail=arg_list;
14766 while ( link(tail)!=null ) {
14767 incr(n); tail=link(tail);
14771 @ @<Scan the remaining arguments, if any; set |r|...@>=
14772 mp->cur_cmd=comma+1; /* anything |<>comma| will do */
14773 while ( info(r)>=expr_base ) {
14774 @<Scan the delimited argument represented by |info(r)|@>;
14777 if ( mp->cur_cmd==comma ) {
14778 print_err("Too many arguments to ");
14779 @.Too many arguments...@>
14780 mp_print_macro_name(mp, arg_list,macro_name); mp_print_char(mp, ';');
14781 mp_print_nl(mp, " Missing `"); mp_print_text(r_delim);
14783 mp_print(mp, "' has been inserted");
14784 help3("I'm going to assume that the comma I just read was a")
14785 ("right delimiter, and then I'll begin expanding the macro.")
14786 ("You might want to delete some tokens before continuing.");
14789 if ( info(r)!=general_macro ) {
14790 @<Scan undelimited argument(s)@>;
14794 @ At this point, the reader will find it advisable to review the explanation
14795 of token list format that was presented earlier, paying special attention to
14796 the conventions that apply only at the beginning of a macro's token list.
14798 On the other hand, the reader will have to take the expression-parsing
14799 aspects of the following program on faith; we will explain |cur_type|
14800 and |cur_exp| later. (Several things in this program depend on each other,
14801 and it's necessary to jump into the circle somewhere.)
14803 @<Scan the delimited argument represented by |info(r)|@>=
14804 if ( mp->cur_cmd!=comma ) {
14806 if ( mp->cur_cmd!=left_delimiter ) {
14807 print_err("Missing argument to ");
14808 @.Missing argument...@>
14809 mp_print_macro_name(mp, arg_list,macro_name);
14810 help3("That macro has more parameters than you thought.")
14811 ("I'll continue by pretending that each missing argument")
14812 ("is either zero or null.");
14813 if ( info(r)>=suffix_base ) {
14814 mp->cur_exp=null; mp->cur_type=mp_token_list;
14816 mp->cur_exp=0; mp->cur_type=mp_known;
14818 mp_back_error(mp); mp->cur_cmd=right_delimiter;
14821 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
14823 @<Scan the argument represented by |info(r)|@>;
14824 if ( mp->cur_cmd!=comma )
14825 @<Check that the proper right delimiter was present@>;
14827 @<Append the current expression to |arg_list|@>
14829 @ @<Check that the proper right delim...@>=
14830 if ( (mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
14831 if ( info(link(r))>=expr_base ) {
14832 mp_missing_err(mp, ",");
14834 help3("I've finished reading a macro argument and am about to")
14835 ("read another; the arguments weren't delimited correctly.")
14836 ("You might want to delete some tokens before continuing.");
14837 mp_back_error(mp); mp->cur_cmd=comma;
14839 mp_missing_err(mp, str(text(r_delim)));
14841 help2("I've gotten to the end of the macro parameter list.")
14842 ("You might want to delete some tokens before continuing.");
14847 @ A \&{suffix} or \&{text} parameter will be have been scanned as
14848 a token list pointed to by |cur_exp|, in which case we will have
14849 |cur_type=token_list|.
14851 @<Append the current expression to |arg_list|@>=
14853 p=mp_get_avail(mp);
14854 if ( mp->cur_type==mp_token_list ) info(p)=mp->cur_exp;
14855 else info(p)=mp_stash_cur_exp(mp);
14856 if ( mp->internal[mp_tracing_macros]>0 ) {
14857 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,info(r));
14858 mp_end_diagnostic(mp, false);
14860 if ( arg_list==null ) arg_list=p;
14865 @ @<Scan the argument represented by |info(r)|@>=
14866 if ( info(r)>=text_base ) {
14867 mp_scan_text_arg(mp, l_delim,r_delim);
14870 if ( info(r)>=suffix_base ) mp_scan_suffix(mp);
14871 else mp_scan_expression(mp);
14874 @ The parameters to |scan_text_arg| are either a pair of delimiters
14875 or zero; the latter case is for undelimited text arguments, which
14876 end with the first semicolon or \&{endgroup} or \&{end} that is not
14877 contained in a group.
14879 @<Declare the procedure called |scan_text_arg|@>=
14880 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) ;
14883 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) {
14884 integer balance; /* excess of |l_delim| over |r_delim| */
14885 pointer p; /* list tail */
14886 mp->warning_info=l_delim; mp->scanner_status=absorbing;
14887 p=hold_head; balance=1; link(hold_head)=null;
14890 if ( l_delim==0 ) {
14891 @<Adjust the balance for an undelimited argument; |break| if done@>;
14893 @<Adjust the balance for a delimited argument; |break| if done@>;
14895 link(p)=mp_cur_tok(mp); p=link(p);
14897 mp->cur_exp=link(hold_head); mp->cur_type=mp_token_list;
14898 mp->scanner_status=normal;
14901 @ @<Adjust the balance for a delimited argument...@>=
14902 if ( mp->cur_cmd==right_delimiter ) {
14903 if ( mp->cur_mod==l_delim ) {
14905 if ( balance==0 ) break;
14907 } else if ( mp->cur_cmd==left_delimiter ) {
14908 if ( mp->cur_mod==r_delim ) incr(balance);
14911 @ @<Adjust the balance for an undelimited...@>=
14912 if ( end_of_statement ) { /* |cur_cmd=semicolon|, |end_group|, or |stop| */
14913 if ( balance==1 ) { break; }
14914 else { if ( mp->cur_cmd==end_group ) decr(balance); }
14915 } else if ( mp->cur_cmd==begin_group ) {
14919 @ @<Scan undelimited argument(s)@>=
14921 if ( info(r)<text_macro ) {
14923 if ( info(r)!=suffix_macro ) {
14924 if ( (mp->cur_cmd==equals)||(mp->cur_cmd==assignment) ) mp_get_x_next(mp);
14928 case primary_macro:mp_scan_primary(mp); break;
14929 case secondary_macro:mp_scan_secondary(mp); break;
14930 case tertiary_macro:mp_scan_tertiary(mp); break;
14931 case expr_macro:mp_scan_expression(mp); break;
14933 @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>;
14936 @<Scan a suffix with optional delimiters@>;
14938 case text_macro:mp_scan_text_arg(mp, 0,0); break;
14939 } /* there are no other cases */
14941 @<Append the current expression to |arg_list|@>;
14944 @ @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>=
14946 mp_scan_expression(mp); p=mp_get_avail(mp); info(p)=mp_stash_cur_exp(mp);
14947 if ( mp->internal[mp_tracing_macros]>0 ) {
14948 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,0);
14949 mp_end_diagnostic(mp, false);
14951 if ( arg_list==null ) arg_list=p; else link(tail)=p;
14953 if ( mp->cur_cmd!=of_token ) {
14954 mp_missing_err(mp, "of"); mp_print(mp, " for ");
14956 mp_print_macro_name(mp, arg_list,macro_name);
14957 help1("I've got the first argument; will look now for the other.");
14960 mp_get_x_next(mp); mp_scan_primary(mp);
14963 @ @<Scan a suffix with optional delimiters@>=
14965 if ( mp->cur_cmd!=left_delimiter ) {
14968 l_delim=mp->cur_sym; r_delim=mp->cur_mod; mp_get_x_next(mp);
14970 mp_scan_suffix(mp);
14971 if ( l_delim!=null ) {
14972 if ((mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
14973 mp_missing_err(mp, str(text(r_delim)));
14975 help2("I've gotten to the end of the macro parameter list.")
14976 ("You might want to delete some tokens before continuing.");
14983 @ Before we put a new token list on the input stack, it is wise to clean off
14984 all token lists that have recently been depleted. Then a user macro that ends
14985 with a call to itself will not require unbounded stack space.
14987 @<Feed the arguments and replacement text to the scanner@>=
14988 while ( token_state &&(loc==null) ) mp_end_token_list(mp); /* conserve stack space */
14989 if ( mp->param_ptr+n>mp->max_param_stack ) {
14990 mp->max_param_stack=mp->param_ptr+n;
14991 if ( mp->max_param_stack>mp->param_size )
14992 mp_overflow(mp, "parameter stack size",mp->param_size);
14993 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
14995 mp_begin_token_list(mp, def_ref,macro); name=macro_name; loc=r;
14999 mp->param_stack[mp->param_ptr]=info(p); incr(mp->param_ptr); p=link(p);
15001 mp_flush_list(mp, arg_list);
15004 @ It's sometimes necessary to put a single argument onto |param_stack|.
15005 The |stack_argument| subroutine does this.
15007 @c void mp_stack_argument (MP mp,pointer p) {
15008 if ( mp->param_ptr==mp->max_param_stack ) {
15009 incr(mp->max_param_stack);
15010 if ( mp->max_param_stack>mp->param_size )
15011 mp_overflow(mp, "parameter stack size",mp->param_size);
15012 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15014 mp->param_stack[mp->param_ptr]=p; incr(mp->param_ptr);
15017 @* \[33] Conditional processing.
15018 Let's consider now the way \&{if} commands are handled.
15020 Conditions can be inside conditions, and this nesting has a stack
15021 that is independent of other stacks.
15022 Four global variables represent the top of the condition stack:
15023 |cond_ptr| points to pushed-down entries, if~any; |cur_if| tells whether
15024 we are processing \&{if} or \&{elseif}; |if_limit| specifies
15025 the largest code of a |fi_or_else| command that is syntactically legal;
15026 and |if_line| is the line number at which the current conditional began.
15028 If no conditions are currently in progress, the condition stack has the
15029 special state |cond_ptr=null|, |if_limit=normal|, |cur_if=0|, |if_line=0|.
15030 Otherwise |cond_ptr| points to a two-word node; the |type|, |name_type|, and
15031 |link| fields of the first word contain |if_limit|, |cur_if|, and
15032 |cond_ptr| at the next level, and the second word contains the
15033 corresponding |if_line|.
15035 @d if_node_size 2 /* number of words in stack entry for conditionals */
15036 @d if_line_field(A) mp->mem[(A)+1].cint
15037 @d if_code 1 /* code for \&{if} being evaluated */
15038 @d fi_code 2 /* code for \&{fi} */
15039 @d else_code 3 /* code for \&{else} */
15040 @d else_if_code 4 /* code for \&{elseif} */
15043 pointer cond_ptr; /* top of the condition stack */
15044 integer if_limit; /* upper bound on |fi_or_else| codes */
15045 small_number cur_if; /* type of conditional being worked on */
15046 integer if_line; /* line where that conditional began */
15049 mp->cond_ptr=null; mp->if_limit=normal; mp->cur_if=0; mp->if_line=0;
15052 mp_primitive(mp, "if",if_test,if_code);
15053 @:if_}{\&{if} primitive@>
15054 mp_primitive(mp, "fi",fi_or_else,fi_code); mp->eqtb[frozen_fi]=mp->eqtb[mp->cur_sym];
15055 @:fi_}{\&{fi} primitive@>
15056 mp_primitive(mp, "else",fi_or_else,else_code);
15057 @:else_}{\&{else} primitive@>
15058 mp_primitive(mp, "elseif",fi_or_else,else_if_code);
15059 @:else_if_}{\&{elseif} primitive@>
15061 @ @<Cases of |print_cmd_mod|...@>=
15065 case if_code:mp_print(mp, "if"); break;
15066 case fi_code:mp_print(mp, "fi"); break;
15067 case else_code:mp_print(mp, "else"); break;
15068 default: mp_print(mp, "elseif"); break;
15072 @ Here is a procedure that ignores text until coming to an \&{elseif},
15073 \&{else}, or \&{fi} at level zero of $\&{if}\ldots\&{fi}$
15074 nesting. After it has acted, |cur_mod| will indicate the token that
15077 \MP's smallest two command codes are |if_test| and |fi_or_else|; this
15078 makes the skipping process a bit simpler.
15081 void mp_pass_text (MP mp) {
15083 mp->scanner_status=skipping;
15084 mp->warning_info=mp_true_line(mp);
15087 if ( mp->cur_cmd<=fi_or_else ) {
15088 if ( mp->cur_cmd<fi_or_else ) {
15092 if ( mp->cur_mod==fi_code ) decr(l);
15095 @<Decrease the string reference count,
15096 if the current token is a string@>;
15099 mp->scanner_status=normal;
15102 @ @<Decrease the string reference count...@>=
15103 if ( mp->cur_cmd==string_token ) { delete_str_ref(mp->cur_mod); }
15105 @ When we begin to process a new \&{if}, we set |if_limit:=if_code|; then
15106 if \&{elseif} or \&{else} or \&{fi} occurs before the current \&{if}
15107 condition has been evaluated, a colon will be inserted.
15108 A construction like `\.{if fi}' would otherwise get \MP\ confused.
15110 @<Push the condition stack@>=
15111 { p=mp_get_node(mp, if_node_size); link(p)=mp->cond_ptr; type(p)=mp->if_limit;
15112 name_type(p)=mp->cur_if; if_line_field(p)=mp->if_line;
15113 mp->cond_ptr=p; mp->if_limit=if_code; mp->if_line=mp_true_line(mp);
15114 mp->cur_if=if_code;
15117 @ @<Pop the condition stack@>=
15118 { p=mp->cond_ptr; mp->if_line=if_line_field(p);
15119 mp->cur_if=name_type(p); mp->if_limit=type(p); mp->cond_ptr=link(p);
15120 mp_free_node(mp, p,if_node_size);
15123 @ Here's a procedure that changes the |if_limit| code corresponding to
15124 a given value of |cond_ptr|.
15126 @c void mp_change_if_limit (MP mp,small_number l, pointer p) {
15128 if ( p==mp->cond_ptr ) {
15129 mp->if_limit=l; /* that's the easy case */
15133 if ( q==null ) mp_confusion(mp, "if");
15134 @:this can't happen if}{\quad if@>
15135 if ( link(q)==p ) {
15143 @ The user is supposed to put colons into the proper parts of conditional
15144 statements. Therefore, \MP\ has to check for their presence.
15147 void mp_check_colon (MP mp) {
15148 if ( mp->cur_cmd!=colon ) {
15149 mp_missing_err(mp, ":");
15151 help2("There should've been a colon after the condition.")
15152 ("I shall pretend that one was there.");;
15157 @ A condition is started when the |get_x_next| procedure encounters
15158 an |if_test| command; in that case |get_x_next| calls |conditional|,
15159 which is a recursive procedure.
15162 @c void mp_conditional (MP mp) {
15163 pointer save_cond_ptr; /* |cond_ptr| corresponding to this conditional */
15164 int new_if_limit; /* future value of |if_limit| */
15165 pointer p; /* temporary register */
15166 @<Push the condition stack@>;
15167 save_cond_ptr=mp->cond_ptr;
15169 mp_get_boolean(mp); new_if_limit=else_if_code;
15170 if ( mp->internal[mp_tracing_commands]>unity ) {
15171 @<Display the boolean value of |cur_exp|@>;
15174 mp_check_colon(mp);
15175 if ( mp->cur_exp==true_code ) {
15176 mp_change_if_limit(mp, new_if_limit,save_cond_ptr);
15177 return; /* wait for \&{elseif}, \&{else}, or \&{fi} */
15179 @<Skip to \&{elseif} or \&{else} or \&{fi}, then |goto done|@>;
15181 mp->cur_if=mp->cur_mod; mp->if_line=mp_true_line(mp);
15182 if ( mp->cur_mod==fi_code ) {
15183 @<Pop the condition stack@>
15184 } else if ( mp->cur_mod==else_if_code ) {
15187 mp->cur_exp=true_code; new_if_limit=fi_code; mp_get_x_next(mp);
15192 @ In a construction like `\&{if} \&{if} \&{true}: $0=1$: \\{foo}
15193 \&{else}: \\{bar} \&{fi}', the first \&{else}
15194 that we come to after learning that the \&{if} is false is not the
15195 \&{else} we're looking for. Hence the following curious logic is needed.
15197 @<Skip to \&{elseif}...@>=
15200 if ( mp->cond_ptr==save_cond_ptr ) goto DONE;
15201 else if ( mp->cur_mod==fi_code ) @<Pop the condition stack@>;
15205 @ @<Display the boolean value...@>=
15206 { mp_begin_diagnostic(mp);
15207 if ( mp->cur_exp==true_code ) mp_print(mp, "{true}");
15208 else mp_print(mp, "{false}");
15209 mp_end_diagnostic(mp, false);
15212 @ The processing of conditionals is complete except for the following
15213 code, which is actually part of |get_x_next|. It comes into play when
15214 \&{elseif}, \&{else}, or \&{fi} is scanned.
15216 @<Terminate the current conditional and skip to \&{fi}@>=
15217 if ( mp->cur_mod>mp->if_limit ) {
15218 if ( mp->if_limit==if_code ) { /* condition not yet evaluated */
15219 mp_missing_err(mp, ":");
15221 mp_back_input(mp); mp->cur_sym=frozen_colon; mp_ins_error(mp);
15223 print_err("Extra "); mp_print_cmd_mod(mp, fi_or_else,mp->cur_mod);
15227 help1("I'm ignoring this; it doesn't match any if.");
15231 while ( mp->cur_mod!=fi_code ) mp_pass_text(mp); /* skip to \&{fi} */
15232 @<Pop the condition stack@>;
15235 @* \[34] Iterations.
15236 To bring our treatment of |get_x_next| to a close, we need to consider what
15237 \MP\ does when it sees \&{for}, \&{forsuffixes}, and \&{forever}.
15239 There's a global variable |loop_ptr| that keeps track of the \&{for} loops
15240 that are currently active. If |loop_ptr=null|, no loops are in progress;
15241 otherwise |info(loop_ptr)| points to the iterative text of the current
15242 (innermost) loop, and |link(loop_ptr)| points to the data for any other
15243 loops that enclose the current one.
15245 A loop-control node also has two other fields, called |loop_type| and
15246 |loop_list|, whose contents depend on the type of loop:
15248 \yskip\indent|loop_type(loop_ptr)=null| means that |loop_list(loop_ptr)|
15249 points to a list of one-word nodes whose |info| fields point to the
15250 remaining argument values of a suffix list and expression list.
15252 \yskip\indent|loop_type(loop_ptr)=mp_void| means that the current loop is
15255 \yskip\indent|loop_type(loop_ptr)=progression_flag| means that
15256 |p=loop_list(loop_ptr)| points to a ``progression node'' and |value(p)|,
15257 |step_size(p)|, and |final_value(p)| contain the data for an arithmetic
15260 \yskip\indent|loop_type(loop_ptr)=p>mp_void| means that |p| points to an edge
15261 header and |loop_list(loop_ptr)| points into the graphical object list for
15264 \yskip\noindent In the case of a progression node, the first word is not used
15265 because the link field of words in the dynamic memory area cannot be arbitrary.
15267 @d loop_list_loc(A) ((A)+1) /* where the |loop_list| field resides */
15268 @d loop_type(A) info(loop_list_loc((A))) /* the type of \&{for} loop */
15269 @d loop_list(A) link(loop_list_loc((A))) /* the remaining list elements */
15270 @d loop_node_size 2 /* the number of words in a loop control node */
15271 @d progression_node_size 4 /* the number of words in a progression node */
15272 @d step_size(A) mp->mem[(A)+2].sc /* the step size in an arithmetic progression */
15273 @d final_value(A) mp->mem[(A)+3].sc /* the final value in an arithmetic progression */
15274 @d progression_flag (null+2)
15275 /* |loop_type| value when |loop_list| points to a progression node */
15278 pointer loop_ptr; /* top of the loop-control-node stack */
15283 @ If the expressions that define an arithmetic progression in
15284 a \&{for} loop don't have known numeric values, the |bad_for|
15285 subroutine screams at the user.
15287 @c void mp_bad_for (MP mp, char * s) {
15288 mp_disp_err(mp, null,"Improper "); /* show the bad expression above the message */
15289 @.Improper...replaced by 0@>
15290 mp_print(mp, s); mp_print(mp, " has been replaced by 0");
15291 help4("When you say `for x=a step b until c',")
15292 ("the initial value `a' and the step size `b'")
15293 ("and the final value `c' must have known numeric values.")
15294 ("I'm zeroing this one. Proceed, with fingers crossed.");
15295 mp_put_get_flush_error(mp, 0);
15298 @ Here's what \MP\ does when \&{for}, \&{forsuffixes}, or \&{forever}
15299 has just been scanned. (This code requires slight familiarity with
15300 expression-parsing routines that we have not yet discussed; but it seems
15301 to belong in the present part of the program, even though the original author
15302 didn't write it until later. The reader may wish to come back to it.)
15304 @c void mp_begin_iteration (MP mp) {
15305 halfword m; /* |expr_base| (\&{for}) or |suffix_base| (\&{forsuffixes}) */
15306 halfword n; /* hash address of the current symbol */
15307 pointer s; /* the new loop-control node */
15308 pointer p; /* substitution list for |scan_toks| */
15309 pointer q; /* link manipulation register */
15310 pointer pp; /* a new progression node */
15311 m=mp->cur_mod; n=mp->cur_sym; s=mp_get_node(mp, loop_node_size);
15312 if ( m==start_forever ){
15313 loop_type(s)=mp_void; p=null; mp_get_x_next(mp);
15315 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
15316 info(p)=mp->cur_sym; value(p)=m;
15318 if ( mp->cur_cmd==within_token ) {
15319 @<Set up a picture iteration@>;
15321 @<Check for the |"="| or |":="| in a loop header@>;
15322 @<Scan the values to be used in the loop@>;
15325 @<Check for the presence of a colon@>;
15326 @<Scan the loop text and put it on the loop control stack@>;
15327 mp_resume_iteration(mp);
15330 @ @<Check for the |"="| or |":="| in a loop header@>=
15331 if ( (mp->cur_cmd!=equals)&&(mp->cur_cmd!=assignment) ) {
15332 mp_missing_err(mp, "=");
15334 help3("The next thing in this loop should have been `=' or `:='.")
15335 ("But don't worry; I'll pretend that an equals sign")
15336 ("was present, and I'll look for the values next.");
15340 @ @<Check for the presence of a colon@>=
15341 if ( mp->cur_cmd!=colon ) {
15342 mp_missing_err(mp, ":");
15344 help3("The next thing in this loop should have been a `:'.")
15345 ("So I'll pretend that a colon was present;")
15346 ("everything from here to `endfor' will be iterated.");
15350 @ We append a special |frozen_repeat_loop| token in place of the
15351 `\&{endfor}' at the end of the loop. This will come through \MP's scanner
15352 at the proper time to cause the loop to be repeated.
15354 (If the user tries some shenanigan like `\&{for} $\ldots$ \&{let} \&{endfor}',
15355 he will be foiled by the |get_symbol| routine, which keeps frozen
15356 tokens unchanged. Furthermore the |frozen_repeat_loop| is an \&{outer}
15357 token, so it won't be lost accidentally.)
15359 @ @<Scan the loop text...@>=
15360 q=mp_get_avail(mp); info(q)=frozen_repeat_loop;
15361 mp->scanner_status=loop_defining; mp->warning_info=n;
15362 info(s)=mp_scan_toks(mp, iteration,p,q,0); mp->scanner_status=normal;
15363 link(s)=mp->loop_ptr; mp->loop_ptr=s
15365 @ @<Initialize table...@>=
15366 eq_type(frozen_repeat_loop)=repeat_loop+outer_tag;
15367 text(frozen_repeat_loop)=intern(" ENDFOR");
15369 @ The loop text is inserted into \MP's scanning apparatus by the
15370 |resume_iteration| routine.
15372 @c void mp_resume_iteration (MP mp) {
15373 pointer p,q; /* link registers */
15374 p=loop_type(mp->loop_ptr);
15375 if ( p==progression_flag ) {
15376 p=loop_list(mp->loop_ptr); /* now |p| points to a progression node */
15377 mp->cur_exp=value(p);
15378 if ( @<The arithmetic progression has ended@> ) {
15379 mp_stop_iteration(mp);
15382 mp->cur_type=mp_known; q=mp_stash_cur_exp(mp); /* make |q| an \&{expr} argument */
15383 value(p)=mp->cur_exp+step_size(p); /* set |value(p)| for the next iteration */
15384 } else if ( p==null ) {
15385 p=loop_list(mp->loop_ptr);
15387 mp_stop_iteration(mp);
15390 loop_list(mp->loop_ptr)=link(p); q=info(p); free_avail(p);
15391 } else if ( p==mp_void ) {
15392 mp_begin_token_list(mp, info(mp->loop_ptr),forever_text); return;
15394 @<Make |q| a capsule containing the next picture component from
15395 |loop_list(loop_ptr)| or |goto not_found|@>;
15397 mp_begin_token_list(mp, info(mp->loop_ptr),loop_text);
15398 mp_stack_argument(mp, q);
15399 if ( mp->internal[mp_tracing_commands]>unity ) {
15400 @<Trace the start of a loop@>;
15404 mp_stop_iteration(mp);
15407 @ @<The arithmetic progression has ended@>=
15408 ((step_size(p)>0)&&(mp->cur_exp>final_value(p)))||
15409 ((step_size(p)<0)&&(mp->cur_exp<final_value(p)))
15411 @ @<Trace the start of a loop@>=
15413 mp_begin_diagnostic(mp); mp_print_nl(mp, "{loop value=");
15415 if ( (q!=null)&&(link(q)==mp_void) ) mp_print_exp(mp, q,1);
15416 else mp_show_token_list(mp, q,null,50,0);
15417 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
15420 @ @<Make |q| a capsule containing the next picture component from...@>=
15421 { q=loop_list(mp->loop_ptr);
15422 if ( q==null ) goto NOT_FOUND;
15423 skip_component(q) goto NOT_FOUND;
15424 mp->cur_exp=mp_copy_objects(mp, loop_list(mp->loop_ptr),q);
15425 mp_init_bbox(mp, mp->cur_exp);
15426 mp->cur_type=mp_picture_type;
15427 loop_list(mp->loop_ptr)=q;
15428 q=mp_stash_cur_exp(mp);
15431 @ A level of loop control disappears when |resume_iteration| has decided
15432 not to resume, or when an \&{exitif} construction has removed the loop text
15433 from the input stack.
15435 @c void mp_stop_iteration (MP mp) {
15436 pointer p,q; /* the usual */
15437 p=loop_type(mp->loop_ptr);
15438 if ( p==progression_flag ) {
15439 mp_free_node(mp, loop_list(mp->loop_ptr),progression_node_size);
15440 } else if ( p==null ){
15441 q=loop_list(mp->loop_ptr);
15442 while ( q!=null ) {
15445 if ( link(p)==mp_void ) { /* it's an \&{expr} parameter */
15446 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
15448 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
15451 p=q; q=link(q); free_avail(p);
15453 } else if ( p>progression_flag ) {
15454 delete_edge_ref(p);
15456 p=mp->loop_ptr; mp->loop_ptr=link(p); mp_flush_token_list(mp, info(p));
15457 mp_free_node(mp, p,loop_node_size);
15460 @ Now that we know all about loop control, we can finish up
15461 the missing portion of |begin_iteration| and we'll be done.
15463 The following code is performed after the `\.=' has been scanned in
15464 a \&{for} construction (if |m=expr_base|) or a \&{forsuffixes} construction
15465 (if |m=suffix_base|).
15467 @<Scan the values to be used in the loop@>=
15468 loop_type(s)=null; q=loop_list_loc(s); link(q)=null; /* |link(q)=loop_list(s)| */
15471 if ( m!=expr_base ) {
15472 mp_scan_suffix(mp);
15474 if ( mp->cur_cmd>=colon ) if ( mp->cur_cmd<=comma )
15476 mp_scan_expression(mp);
15477 if ( mp->cur_cmd==step_token ) if ( q==loop_list_loc(s) ) {
15478 @<Prepare for step-until construction and |break|@>;
15480 mp->cur_exp=mp_stash_cur_exp(mp);
15482 link(q)=mp_get_avail(mp); q=link(q);
15483 info(q)=mp->cur_exp; mp->cur_type=mp_vacuous;
15486 } while (mp->cur_cmd==comma)
15488 @ @<Prepare for step-until construction and |break|@>=
15490 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "initial value");
15491 pp=mp_get_node(mp, progression_node_size); value(pp)=mp->cur_exp;
15492 mp_get_x_next(mp); mp_scan_expression(mp);
15493 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "step size");
15494 step_size(pp)=mp->cur_exp;
15495 if ( mp->cur_cmd!=until_token ) {
15496 mp_missing_err(mp, "until");
15497 @.Missing `until'@>
15498 help2("I assume you meant to say `until' after `step'.")
15499 ("So I'll look for the final value and colon next.");
15502 mp_get_x_next(mp); mp_scan_expression(mp);
15503 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "final value");
15504 final_value(pp)=mp->cur_exp; loop_list(s)=pp;
15505 loop_type(s)=progression_flag;
15509 @ The last case is when we have just seen ``\&{within}'', and we need to
15510 parse a picture expression and prepare to iterate over it.
15512 @<Set up a picture iteration@>=
15513 { mp_get_x_next(mp);
15514 mp_scan_expression(mp);
15515 @<Make sure the current expression is a known picture@>;
15516 loop_type(s)=mp->cur_exp; mp->cur_type=mp_vacuous;
15517 q=link(dummy_loc(mp->cur_exp));
15519 if ( is_start_or_stop(q) )
15520 if ( mp_skip_1component(mp, q)==null ) q=link(q);
15524 @ @<Make sure the current expression is a known picture@>=
15525 if ( mp->cur_type!=mp_picture_type ) {
15526 mp_disp_err(mp, null,"Improper iteration spec has been replaced by nullpicture");
15527 help1("When you say `for x in p', p must be a known picture.");
15528 mp_put_get_flush_error(mp, mp_get_node(mp, edge_header_size));
15529 mp_init_edges(mp, mp->cur_exp); mp->cur_type=mp_picture_type;
15532 @* \[35] File names.
15533 It's time now to fret about file names. Besides the fact that different
15534 operating systems treat files in different ways, we must cope with the
15535 fact that completely different naming conventions are used by different
15536 groups of people. The following programs show what is required for one
15537 particular operating system; similar routines for other systems are not
15538 difficult to devise.
15539 @^system dependencies@>
15541 \MP\ assumes that a file name has three parts: the name proper; its
15542 ``extension''; and a ``file area'' where it is found in an external file
15543 system. The extension of an input file is assumed to be
15544 `\.{.mp}' unless otherwise specified; it is `\.{.log}' on the
15545 transcript file that records each run of \MP; it is `\.{.tfm}' on the font
15546 metric files that describe characters in any fonts created by \MP; it is
15547 `\.{.ps}' or `.{\it nnn}' for some number {\it nnn} on the \ps\ output files;
15548 and it is `\.{.mem}' on the mem files written by \.{INIMP} to initialize \MP.
15549 The file area can be arbitrary on input files, but files are usually
15550 output to the user's current area. If an input file cannot be
15551 found on the specified area, \MP\ will look for it on a special system
15552 area; this special area is intended for commonly used input files.
15554 Simple uses of \MP\ refer only to file names that have no explicit
15555 extension or area. For example, a person usually says `\.{input} \.{cmr10}'
15556 instead of `\.{input} \.{cmr10.new}'. Simple file
15557 names are best, because they make the \MP\ source files portable;
15558 whenever a file name consists entirely of letters and digits, it should be
15559 treated in the same way by all implementations of \MP. However, users
15560 need the ability to refer to other files in their environment, especially
15561 when responding to error messages concerning unopenable files; therefore
15562 we want to let them use the syntax that appears in their favorite
15565 @ \MP\ uses the same conventions that have proved to be satisfactory for
15566 \TeX\ and \MF. In order to isolate the system-dependent aspects of file names,
15567 @^system dependencies@>
15568 the system-independent parts of \MP\ are expressed in terms
15569 of three system-dependent
15570 procedures called |begin_name|, |more_name|, and |end_name|. In
15571 essence, if the user-specified characters of the file name are $c_1\ldots c_n$,
15572 the system-independent driver program does the operations
15573 $$|begin_name|;\,|more_name|(c_1);\,\ldots\,;|more_name|(c_n);
15575 These three procedures communicate with each other via global variables.
15576 Afterwards the file name will appear in the string pool as three strings
15577 called |cur_name|\penalty10000\hskip-.05em,
15578 |cur_area|, and |cur_ext|; the latter two are null (i.e.,
15579 |""|), unless they were explicitly specified by the user.
15581 Actually the situation is slightly more complicated, because \MP\ needs
15582 to know when the file name ends. The |more_name| routine is a function
15583 (with side effects) that returns |true| on the calls |more_name|$(c_1)$,
15584 \dots, |more_name|$(c_{n-1})$. The final call |more_name|$(c_n)$
15585 returns |false|; or, it returns |true| and $c_n$ is the last character
15586 on the current input line. In other words,
15587 |more_name| is supposed to return |true| unless it is sure that the
15588 file name has been completely scanned; and |end_name| is supposed to be able
15589 to finish the assembly of |cur_name|, |cur_area|, and |cur_ext| regardless of
15590 whether $|more_name|(c_n)$ returned |true| or |false|.
15593 char * cur_name; /* name of file just scanned */
15594 char * cur_area; /* file area just scanned, or \.{""} */
15595 char * cur_ext; /* file extension just scanned, or \.{""} */
15597 @ It is easier to maintain reference counts if we assign initial values.
15600 mp->cur_name=xstrdup("");
15601 mp->cur_area=xstrdup("");
15602 mp->cur_ext=xstrdup("");
15604 @ @<Dealloc variables@>=
15605 xfree(mp->cur_area);
15606 xfree(mp->cur_name);
15607 xfree(mp->cur_ext);
15609 @ The file names we shall deal with for illustrative purposes have the
15610 following structure: If the name contains `\.>' or `\.:', the file area
15611 consists of all characters up to and including the final such character;
15612 otherwise the file area is null. If the remaining file name contains
15613 `\..', the file extension consists of all such characters from the first
15614 remaining `\..' to the end, otherwise the file extension is null.
15615 @^system dependencies@>
15617 We can scan such file names easily by using two global variables that keep track
15618 of the occurrences of area and extension delimiters. Note that these variables
15619 cannot be of type |pool_pointer| because a string pool compaction could occur
15620 while scanning a file name.
15623 integer area_delimiter;
15624 /* most recent `\.>' or `\.:' relative to |str_start[str_ptr]| */
15625 integer ext_delimiter; /* the relevant `\..', if any */
15627 @ Input files that can't be found in the user's area may appear in standard
15628 system areas called |MP_area| and |MF_area|. (The latter is used when the file
15629 extension is |".mf"|.) The standard system area for font metric files
15630 to be read is |MP_font_area|.
15631 This system area name will, of course, vary from place to place.
15632 @^system dependencies@>
15634 @d MP_area "MPinputs:"
15636 @d MF_area "MFinputs:"
15641 @ Here now is the first of the system-dependent routines for file name scanning.
15642 @^system dependencies@>
15644 @<Declare subroutines for parsing file names@>=
15645 void mp_begin_name (MP mp) {
15646 xfree(mp->cur_name);
15647 xfree(mp->cur_area);
15648 xfree(mp->cur_ext);
15649 mp->area_delimiter=-1;
15650 mp->ext_delimiter=-1;
15653 @ And here's the second.
15654 @^system dependencies@>
15656 @<Declare subroutines for parsing file names@>=
15657 boolean mp_more_name (MP mp, ASCII_code c) {
15661 if ( (c=='>')||(c==':') ) {
15662 mp->area_delimiter=mp->pool_ptr;
15663 mp->ext_delimiter=-1;
15664 } else if ( (c=='.')&&(mp->ext_delimiter<0) ) {
15665 mp->ext_delimiter=mp->pool_ptr;
15667 str_room(1); append_char(c); /* contribute |c| to the current string */
15673 @^system dependencies@>
15675 @d copy_pool_segment(A,B,C) {
15676 A = xmalloc(C+1,sizeof(char));
15677 strncpy(A,(char *)(mp->str_pool+B),C);
15680 @<Declare subroutines for parsing file names@>=
15681 void mp_end_name (MP mp) {
15682 pool_pointer s; /* length of area, name, and extension */
15685 s = mp->str_start[mp->str_ptr];
15686 if ( mp->area_delimiter<0 ) {
15687 mp->cur_area=xstrdup("");
15689 len = mp->area_delimiter-s;
15690 copy_pool_segment(mp->cur_area,s,len);
15693 if ( mp->ext_delimiter<0 ) {
15694 mp->cur_ext=xstrdup("");
15695 len = mp->pool_ptr-s;
15697 copy_pool_segment(mp->cur_ext,mp->ext_delimiter,(mp->pool_ptr-mp->ext_delimiter));
15698 len = mp->ext_delimiter-s;
15700 copy_pool_segment(mp->cur_name,s,len);
15701 mp->pool_ptr=s; /* don't need this partial string */
15704 @ Conversely, here is a routine that takes three strings and prints a file
15705 name that might have produced them. (The routine is system dependent, because
15706 some operating systems put the file area last instead of first.)
15707 @^system dependencies@>
15709 @<Basic printing...@>=
15710 void mp_print_file_name (MP mp, char * n, char * a, char * e) {
15711 mp_print(mp, a); mp_print(mp, n); mp_print(mp, e);
15714 @ Another system-dependent routine is needed to convert three internal
15716 to the |name_of_file| value that is used to open files. The present code
15717 allows both lowercase and uppercase letters in the file name.
15718 @^system dependencies@>
15720 @d append_to_name(A) { c=(A);
15721 if ( k<file_name_size ) {
15722 mp->name_of_file[k]=xchr(c);
15727 @<Declare subroutines for parsing file names@>=
15728 void mp_pack_file_name (MP mp, char *n, char *a, char *e) {
15729 integer k; /* number of positions filled in |name_of_file| */
15730 ASCII_code c; /* character being packed */
15731 char *j; /* a character index */
15735 for (j=a;*j;j++) { append_to_name(*j); }
15737 for (j=n;*j;j++) { append_to_name(*j); }
15739 for (j=e;*j;j++) { append_to_name(*j); }
15741 mp->name_of_file[k]=0;
15745 @ @<Internal library declarations@>=
15746 void mp_pack_file_name (MP mp, char *n, char *a, char *e) ;
15748 @ A messier routine is also needed, since mem file names must be scanned
15749 before \MP's string mechanism has been initialized. We shall use the
15750 global variable |MP_mem_default| to supply the text for default system areas
15751 and extensions related to mem files.
15752 @^system dependencies@>
15754 @d mem_default_length 9 /* length of the |MP_mem_default| string */
15755 @d mem_ext_length 4 /* length of its `\.{.mem}' part */
15756 @d mem_extension ".mem" /* the extension, as a \.{WEB} constant */
15759 char *MP_mem_default;
15760 char *mem_name; /* for commandline */
15762 @ @<Option variables@>=
15763 char *mem_name; /* for commandline */
15765 @ @<Allocate or initialize ...@>=
15766 mp->MP_mem_default = xstrdup("plain.mem");
15767 mp->mem_name = xstrdup(opt->mem_name);
15769 @^system dependencies@>
15771 @ @<Dealloc variables@>=
15772 xfree(mp->MP_mem_default);
15773 xfree(mp->mem_name);
15775 @ @<Check the ``constant'' values for consistency@>=
15776 if ( mem_default_length>file_name_size ) mp->bad=20;
15778 @ Here is the messy routine that was just mentioned. It sets |name_of_file|
15779 from the first |n| characters of |MP_mem_default|, followed by
15780 |buffer[a..b]|, followed by the last |mem_ext_length| characters of
15783 We dare not give error messages here, since \MP\ calls this routine before
15784 the |error| routine is ready to roll. Instead, we simply drop excess characters,
15785 since the error will be detected in another way when a strange file name
15787 @^system dependencies@>
15789 @c void mp_pack_buffered_name (MP mp,small_number n, integer a,
15791 integer k; /* number of positions filled in |name_of_file| */
15792 ASCII_code c; /* character being packed */
15793 integer j; /* index into |buffer| or |MP_mem_default| */
15794 if ( n+b-a+1+mem_ext_length>file_name_size )
15795 b=a+file_name_size-n-1-mem_ext_length;
15797 for (j=0;j<n;j++) {
15798 append_to_name(xord((int)mp->MP_mem_default[j]));
15800 for (j=a;j<=b;j++) {
15801 append_to_name(mp->buffer[j]);
15803 for (j=mem_default_length-mem_ext_length;
15804 j<mem_default_length;j++) {
15805 append_to_name(xord((int)mp->MP_mem_default[j]));
15807 mp->name_of_file[k]=0;
15811 @ Here is the only place we use |pack_buffered_name|. This part of the program
15812 becomes active when a ``virgin'' \MP\ is trying to get going, just after
15813 the preliminary initialization, or when the user is substituting another
15814 mem file by typing `\.\&' after the initial `\.{**}' prompt. The buffer
15815 contains the first line of input in |buffer[loc..(last-1)]|, where
15816 |loc<last| and |buffer[loc]<>" "|.
15819 boolean mp_open_mem_file (MP mp) ;
15822 boolean mp_open_mem_file (MP mp) {
15823 int j; /* the first space after the file name */
15824 if (mp->mem_name!=NULL) {
15825 mp->mem_file = mp_open_file(mp, mp->mem_name, "rb", mp_filetype_memfile);
15826 if ( mp->mem_file ) return true;
15829 if ( mp->buffer[loc]=='&' ) {
15830 incr(loc); j=loc; mp->buffer[mp->last]=' ';
15831 while ( mp->buffer[j]!=' ' ) incr(j);
15832 mp_pack_buffered_name(mp, 0,loc,j-1); /* try first without the system file area */
15833 if ( mp_w_open_in(mp, &mp->mem_file) ) goto FOUND;
15835 wterm_ln("Sorry, I can\'t find that mem file; will try PLAIN.");
15836 @.Sorry, I can't find...@>
15839 /* now pull out all the stops: try for the system \.{plain} file */
15840 mp_pack_buffered_name(mp, mem_default_length-mem_ext_length,0,0);
15841 if ( ! mp_w_open_in(mp, &mp->mem_file) ) {
15843 wterm_ln("I can\'t find the PLAIN mem file!\n");
15844 @.I can't find PLAIN...@>
15849 loc=j; return true;
15852 @ Operating systems often make it possible to determine the exact name (and
15853 possible version number) of a file that has been opened. The following routine,
15854 which simply makes a \MP\ string from the value of |name_of_file|, should
15855 ideally be changed to deduce the full name of file~|f|, which is the file
15856 most recently opened, if it is possible to do this in a \PASCAL\ program.
15857 @^system dependencies@>
15860 #define mp_a_make_name_string(A,B) mp_make_name_string(A)
15861 #define mp_b_make_name_string(A,B) mp_make_name_string(A)
15862 #define mp_w_make_name_string(A,B) mp_make_name_string(A)
15865 str_number mp_make_name_string (MP mp) {
15866 int k; /* index into |name_of_file| */
15867 str_room(mp->name_length);
15868 for (k=0;k<mp->name_length;k++) {
15869 append_char(xord((int)mp->name_of_file[k]));
15871 return mp_make_string(mp);
15874 @ Now let's consider the ``driver''
15875 routines by which \MP\ deals with file names
15876 in a system-independent manner. First comes a procedure that looks for a
15877 file name in the input by taking the information from the input buffer.
15878 (We can't use |get_next|, because the conversion to tokens would
15879 destroy necessary information.)
15881 This procedure doesn't allow semicolons or percent signs to be part of
15882 file names, because of other conventions of \MP.
15883 {\sl The {\logos METAFONT\/}book} doesn't
15884 use semicolons or percents immediately after file names, but some users
15885 no doubt will find it natural to do so; therefore system-dependent
15886 changes to allow such characters in file names should probably
15887 be made with reluctance, and only when an entire file name that
15888 includes special characters is ``quoted'' somehow.
15889 @^system dependencies@>
15891 @c void mp_scan_file_name (MP mp) {
15893 while ( mp->buffer[loc]==' ' ) incr(loc);
15895 if ( (mp->buffer[loc]==';')||(mp->buffer[loc]=='%') ) break;
15896 if ( ! mp_more_name(mp, mp->buffer[loc]) ) break;
15902 @ Here is another version that takes its input from a string.
15904 @<Declare subroutines for parsing file names@>=
15905 void mp_str_scan_file (MP mp, str_number s) {
15906 pool_pointer p,q; /* current position and stopping point */
15908 p=mp->str_start[s]; q=str_stop(s);
15910 if ( ! mp_more_name(mp, mp->str_pool[p]) ) break;
15916 @ And one that reads from a |char*|.
15918 @<Declare subroutines for parsing file names@>=
15919 void mp_ptr_scan_file (MP mp, char *s) {
15920 char *p, *q; /* current position and stopping point */
15922 p=s; q=p+strlen(s);
15924 if ( ! mp_more_name(mp, *p)) break;
15931 @ The global variable |job_name| contains the file name that was first
15932 \&{input} by the user. This name is extended by `\.{.log}' and `\.{ps}' and
15933 `\.{.mem}' and `\.{.tfm}' in order to make the names of \MP's output files.
15936 char *job_name; /* principal file name */
15937 boolean log_opened; /* has the transcript file been opened? */
15938 char *log_name; /* full name of the log file */
15940 @ @<Option variables@>=
15941 char *job_name; /* principal file name */
15943 @ Initially |job_name=NULL|; it becomes nonzero as soon as the true name is known.
15944 We have |job_name=NULL| if and only if the `\.{log}' file has not been opened,
15945 except of course for a short time just after |job_name| has become nonzero.
15947 @<Allocate or ...@>=
15948 mp->job_name=opt->job_name;
15949 mp->log_opened=false;
15951 @ @<Dealloc variables@>=
15952 xfree(mp->job_name);
15954 @ Here is a routine that manufactures the output file names, assuming that
15955 |job_name<>0|. It ignores and changes the current settings of |cur_area|
15958 @d pack_cur_name mp_pack_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext)
15961 void mp_pack_job_name (MP mp, char *s) ;
15963 @ @c void mp_pack_job_name (MP mp, char *s) { /* |s = ".log"|, |".mem"|, |".ps"|, or .\\{nnn} */
15964 xfree(mp->cur_name); mp->cur_name=xstrdup(mp->job_name);
15965 xfree(mp->cur_area); mp->cur_area=xstrdup("");
15966 xfree(mp->cur_ext); mp->cur_ext=xstrdup(s);
15970 @ If some trouble arises when \MP\ tries to open a file, the following
15971 routine calls upon the user to supply another file name. Parameter~|s|
15972 is used in the error message to identify the type of file; parameter~|e|
15973 is the default extension if none is given. Upon exit from the routine,
15974 variables |cur_name|, |cur_area|, |cur_ext|, and |name_of_file| are
15975 ready for another attempt at file opening.
15978 void mp_prompt_file_name (MP mp,char * s, char * e) ;
15980 @ @c void mp_prompt_file_name (MP mp,char * s, char * e) {
15981 size_t k; /* index into |buffer| */
15982 char * saved_cur_name;
15983 if ( mp->interaction==mp_scroll_mode )
15985 if (strcmp(s,"input file name")==0) {
15986 print_err("I can\'t find file `");
15987 @.I can't find file x@>
15989 print_err("I can\'t write on file `");
15991 @.I can't write on file x@>
15992 mp_print_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext);
15993 mp_print(mp, "'.");
15994 if (strcmp(e,"")==0)
15995 mp_show_context(mp);
15996 mp_print_nl(mp, "Please type another "); mp_print(mp, s);
15998 if ( mp->interaction<mp_scroll_mode )
15999 mp_fatal_error(mp, "*** (job aborted, file error in nonstop mode)");
16000 @.job aborted, file error...@>
16001 saved_cur_name = xstrdup(mp->cur_name);
16002 clear_terminal; prompt_input(": "); @<Scan file name in the buffer@>;
16003 if (strcmp(mp->cur_ext,"")==0)
16005 if (strlen(mp->cur_name)==0) {
16006 mp->cur_name=saved_cur_name;
16008 xfree(saved_cur_name);
16013 @ @<Scan file name in the buffer@>=
16015 mp_begin_name(mp); k=mp->first;
16016 while ( (mp->buffer[k]==' ')&&(k<mp->last) ) incr(k);
16018 if ( k==mp->last ) break;
16019 if ( ! mp_more_name(mp, mp->buffer[k]) ) break;
16025 @ The |open_log_file| routine is used to open the transcript file and to help
16026 it catch up to what has previously been printed on the terminal.
16028 @c void mp_open_log_file (MP mp) {
16029 int old_setting; /* previous |selector| setting */
16030 int k; /* index into |months| and |buffer| */
16031 int l; /* end of first input line */
16032 integer m; /* the current month */
16033 char *months="JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC";
16034 /* abbreviations of month names */
16035 old_setting=mp->selector;
16036 if ( mp->job_name==NULL ) {
16037 mp->job_name=xstrdup("mpout");
16039 mp_pack_job_name(mp,".log");
16040 while ( ! mp_a_open_out(mp, &mp->log_file, mp_filetype_log) ) {
16041 @<Try to get a different log file name@>;
16043 mp->log_name=xstrdup(mp->name_of_file);
16044 mp->selector=log_only; mp->log_opened=true;
16045 @<Print the banner line, including the date and time@>;
16046 mp->input_stack[mp->input_ptr]=mp->cur_input;
16047 /* make sure bottom level is in memory */
16048 mp_print_nl(mp, "**");
16050 l=mp->input_stack[0].limit_field-1; /* last position of first line */
16051 for (k=0;k<=l;k++) mp_print_str(mp, mp->buffer[k]);
16052 mp_print_ln(mp); /* now the transcript file contains the first line of input */
16053 mp->selector=old_setting+2; /* |log_only| or |term_and_log| */
16056 @ @<Dealloc variables@>=
16057 xfree(mp->log_name);
16059 @ Sometimes |open_log_file| is called at awkward moments when \MP\ is
16060 unable to print error messages or even to |show_context|.
16061 The |prompt_file_name| routine can result in a |fatal_error|, but the |error|
16062 routine will not be invoked because |log_opened| will be false.
16064 The normal idea of |mp_batch_mode| is that nothing at all should be written
16065 on the terminal. However, in the unusual case that
16066 no log file could be opened, we make an exception and allow
16067 an explanatory message to be seen.
16069 Incidentally, the program always refers to the log file as a `\.{transcript
16070 file}', because some systems cannot use the extension `\.{.log}' for
16073 @<Try to get a different log file name@>=
16075 mp->selector=term_only;
16076 mp_prompt_file_name(mp, "transcript file name",".log");
16079 @ @<Print the banner...@>=
16082 mp_print(mp, mp->mem_ident); mp_print(mp, " ");
16083 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_day]));
16084 mp_print_char(mp, ' ');
16085 m=mp_round_unscaled(mp, mp->internal[mp_month]);
16086 for (k=3*m-3;k<3*m;k++) { wlog_chr(months[k]); }
16087 mp_print_char(mp, ' ');
16088 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_year]));
16089 mp_print_char(mp, ' ');
16090 m=mp_round_unscaled(mp, mp->internal[mp_time]);
16091 mp_print_dd(mp, m / 60); mp_print_char(mp, ':'); mp_print_dd(mp, m % 60);
16094 @ The |try_extension| function tries to open an input file determined by
16095 |cur_name|, |cur_area|, and the argument |ext|. It returns |false| if it
16096 can't find the file in |cur_area| or the appropriate system area.
16098 @c boolean mp_try_extension (MP mp,char *ext) {
16099 mp_pack_file_name(mp, mp->cur_name,mp->cur_area, ext);
16100 in_name=xstrdup(mp->cur_name);
16101 in_area=xstrdup(mp->cur_area);
16102 if ( mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16105 if (strcmp(ext,".mf")==0 ) in_area=xstrdup(MF_area);
16106 else in_area=xstrdup(MP_area);
16107 mp_pack_file_name(mp, mp->cur_name,in_area,ext);
16108 return mp_a_open_in(mp, &cur_file, mp_filetype_program);
16113 @ Let's turn now to the procedure that is used to initiate file reading
16114 when an `\.{input}' command is being processed.
16116 @c void mp_start_input (MP mp) { /* \MP\ will \.{input} something */
16117 char *fname = NULL;
16118 @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>;
16120 mp_begin_file_reading(mp); /* set up |cur_file| and new level of input */
16121 if ( strlen(mp->cur_ext)==0 ) {
16122 if ( mp_try_extension(mp, ".mp") ) break;
16123 else if ( mp_try_extension(mp, "") ) break;
16124 else if ( mp_try_extension(mp, ".mf") ) break;
16125 /* |else do_nothing; | */
16126 } else if ( mp_try_extension(mp, mp->cur_ext) ) {
16129 mp_end_file_reading(mp); /* remove the level that didn't work */
16130 mp_prompt_file_name(mp, "input file name","");
16132 name=mp_a_make_name_string(mp, cur_file);
16133 fname = xstrdup(mp->name_of_file);
16134 if ( mp->job_name==NULL ) {
16135 mp->job_name=xstrdup(mp->cur_name);
16136 mp_open_log_file(mp);
16137 } /* |open_log_file| doesn't |show_context|, so |limit|
16138 and |loc| needn't be set to meaningful values yet */
16139 if ( ((int)mp->term_offset+(int)strlen(fname)) > (mp->max_print_line-2)) mp_print_ln(mp);
16140 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
16141 mp_print_char(mp, '('); incr(mp->open_parens); mp_print(mp, fname);
16144 @<Flush |name| and replace it with |cur_name| if it won't be needed@>;
16145 @<Read the first line of the new file@>;
16148 @ This code should be omitted if |a_make_name_string| returns something other
16149 than just a copy of its argument and the full file name is needed for opening
16150 \.{MPX} files or implementing the switch-to-editor option.
16151 @^system dependencies@>
16153 @<Flush |name| and replace it with |cur_name| if it won't be needed@>=
16154 mp_flush_string(mp, name); name=rts(mp->cur_name); xfree(mp->cur_name)
16156 @ Here we have to remember to tell the |input_ln| routine not to
16157 start with a |get|. If the file is empty, it is considered to
16158 contain a single blank line.
16159 @^system dependencies@>
16161 @<Read the first line...@>=
16164 (void)mp_input_ln(mp, cur_file,false);
16165 mp_firm_up_the_line(mp);
16166 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
16169 @ @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>=
16170 while ( token_state &&(loc==null) ) mp_end_token_list(mp);
16171 if ( token_state ) {
16172 print_err("File names can't appear within macros");
16173 @.File names can't...@>
16174 help3("Sorry...I've converted what follows to tokens,")
16175 ("possibly garbaging the name you gave.")
16176 ("Please delete the tokens and insert the name again.");
16179 if ( file_state ) {
16180 mp_scan_file_name(mp);
16182 xfree(mp->cur_name); mp->cur_name=xstrdup("");
16183 xfree(mp->cur_ext); mp->cur_ext =xstrdup("");
16184 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16187 @ Sometimes we need to deal with two file names at once. This procedure
16188 copies the given string into a special array for an old file name.
16190 @c void mp_copy_old_name (MP mp,str_number s) {
16191 integer k; /* number of positions filled in |old_file_name| */
16192 pool_pointer j; /* index into |str_pool| */
16194 for (j=mp->str_start[s];j<=str_stop(s)-1;j++) {
16196 if ( k<=file_name_size )
16197 mp->old_file_name[k]=xchr(mp->str_pool[j]);
16199 mp->old_file_name[++k] = 0;
16203 char old_file_name[file_name_size+1]; /* analogous to |name_of_file| */
16205 @ The following simple routine starts reading the \.{MPX} file associated
16206 with the current input file.
16208 @c void mp_start_mpx_input (MP mp) {
16209 mp_pack_file_name(mp, in_name, in_area, ".mpx");
16210 @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16211 |goto not_found| if there is a problem@>;
16212 mp_begin_file_reading(mp);
16213 if ( ! mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16214 mp_end_file_reading(mp);
16217 name=mp_a_make_name_string(mp, cur_file);
16218 mp->mpx_name[index]=name; add_str_ref(name);
16219 @<Read the first line of the new file@>;
16222 @<Explain that the \.{MPX} file can't be read and |succumb|@>;
16225 @ This should ideally be changed to do whatever is necessary to create the
16226 \.{MPX} file given by |name_of_file| if it does not exist or if it is out
16227 of date. This requires invoking \.{MPtoTeX} on the |old_file_name| and passing
16228 the results through \TeX\ and \.{DVItoMP}. (It is possible to use a
16229 completely different typesetting program if suitable postprocessor is
16230 available to perform the function of \.{DVItoMP}.)
16231 @^system dependencies@>
16233 @ @<Exported types@>=
16234 typedef int (*mp_run_make_mpx_command)(MP mp, char *origname, char *mtxname);
16237 mp_run_make_mpx_command run_make_mpx;
16239 @ @<Option variables@>=
16240 mp_run_make_mpx_command run_make_mpx;
16242 @ @<Allocate or initialize ...@>=
16243 set_callback_option(run_make_mpx);
16245 @ @<Internal library declarations@>=
16246 int mp_run_make_mpx (MP mp, char *origname, char *mtxname);
16248 @ The default does nothing.
16250 int mp_run_make_mpx (MP mp, char *origname, char *mtxname) {
16251 if (mp && origname && mtxname) /* for -W */
16258 @ @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16259 |goto not_found| if there is a problem@>=
16260 mp_copy_old_name(mp, name);
16261 if (!(mp->run_make_mpx)(mp, mp->old_file_name, mp->name_of_file))
16264 @ @<Explain that the \.{MPX} file can't be read and |succumb|@>=
16265 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16266 mp_print_nl(mp, ">> ");
16267 mp_print(mp, mp->old_file_name);
16268 mp_print_nl(mp, ">> ");
16269 mp_print(mp, mp->name_of_file);
16270 mp_print_nl(mp, "! Unable to make mpx file");
16271 help4("The two files given above are one of your source files")
16272 ("and an auxiliary file I need to read to find out what your")
16273 ("btex..etex blocks mean. If you don't know why I had trouble,")
16274 ("try running it manually through MPtoTeX, TeX, and DVItoMP");
16277 @ The last file-opening commands are for files accessed via the \&{readfrom}
16278 @:read_from_}{\&{readfrom} primitive@>
16279 operator and the \&{write} command. Such files are stored in separate arrays.
16280 @:write_}{\&{write} primitive@>
16282 @<Types in the outer block@>=
16283 typedef unsigned int readf_index; /* |0..max_read_files| */
16284 typedef unsigned int write_index; /* |0..max_write_files| */
16287 readf_index max_read_files; /* maximum number of simultaneously open \&{readfrom} files */
16288 FILE ** rd_file; /* \&{readfrom} files */
16289 char ** rd_fname; /* corresponding file name or 0 if file not open */
16290 readf_index read_files; /* number of valid entries in the above arrays */
16291 write_index max_write_files; /* maximum number of simultaneously open \&{write} */
16292 FILE ** wr_file; /* \&{write} files */
16293 char ** wr_fname; /* corresponding file name or 0 if file not open */
16294 write_index write_files; /* number of valid entries in the above arrays */
16296 @ @<Allocate or initialize ...@>=
16297 mp->max_read_files=8;
16298 mp->rd_file = xmalloc((mp->max_read_files+1),sizeof(FILE *));
16299 mp->rd_fname = xmalloc((mp->max_read_files+1),sizeof(char *));
16300 memset(mp->rd_fname, 0, sizeof(char *)*(mp->max_read_files+1));
16302 mp->max_write_files=8;
16303 mp->wr_file = xmalloc((mp->max_write_files+1),sizeof(FILE *));
16304 mp->wr_fname = xmalloc((mp->max_write_files+1),sizeof(char *));
16305 memset(mp->wr_fname, 0, sizeof(char *)*(mp->max_write_files+1));
16309 @ This routine starts reading the file named by string~|s| without setting
16310 |loc|, |limit|, or |name|. It returns |false| if the file is empty or cannot
16311 be opened. Otherwise it updates |rd_file[n]| and |rd_fname[n]|.
16313 @c boolean mp_start_read_input (MP mp,char *s, readf_index n) {
16314 mp_ptr_scan_file(mp, s);
16316 mp_begin_file_reading(mp);
16317 if ( ! mp_a_open_in(mp, &mp->rd_file[n], mp_filetype_text) )
16319 if ( ! mp_input_ln(mp, mp->rd_file[n], false) ) {
16320 fclose(mp->rd_file[n]);
16323 mp->rd_fname[n]=xstrdup(mp->name_of_file);
16326 mp_end_file_reading(mp);
16330 @ Open |wr_file[n]| using file name~|s| and update |wr_fname[n]|.
16333 void mp_open_write_file (MP mp, char *s, readf_index n) ;
16335 @ @c void mp_open_write_file (MP mp,char *s, readf_index n) {
16336 mp_ptr_scan_file(mp, s);
16338 while ( ! mp_a_open_out(mp, &mp->wr_file[n], mp_filetype_text) )
16339 mp_prompt_file_name(mp, "file name for write output","");
16340 mp->wr_fname[n]=xstrdup(mp->name_of_file);
16344 @* \[36] Introduction to the parsing routines.
16345 We come now to the central nervous system that sparks many of \MP's activities.
16346 By evaluating expressions, from their primary constituents to ever larger
16347 subexpressions, \MP\ builds the structures that ultimately define complete
16348 pictures or fonts of type.
16350 Four mutually recursive subroutines are involved in this process: We call them
16351 $$\hbox{|scan_primary|, |scan_secondary|, |scan_tertiary|,
16352 and |scan_expression|.}$$
16354 Each of them is parameterless and begins with the first token to be scanned
16355 already represented in |cur_cmd|, |cur_mod|, and |cur_sym|. After execution,
16356 the value of the primary or secondary or tertiary or expression that was
16357 found will appear in the global variables |cur_type| and |cur_exp|. The
16358 token following the expression will be represented in |cur_cmd|, |cur_mod|,
16361 Technically speaking, the parsing algorithms are ``LL(1),'' more or less;
16362 backup mechanisms have been added in order to provide reasonable error
16366 small_number cur_type; /* the type of the expression just found */
16367 integer cur_exp; /* the value of the expression just found */
16372 @ Many different kinds of expressions are possible, so it is wise to have
16373 precise descriptions of what |cur_type| and |cur_exp| mean in all cases:
16376 |cur_type=mp_vacuous| means that this expression didn't turn out to have a
16377 value at all, because it arose from a \&{begingroup}$\,\ldots\,$\&{endgroup}
16378 construction in which there was no expression before the \&{endgroup}.
16379 In this case |cur_exp| has some irrelevant value.
16382 |cur_type=mp_boolean_type| means that |cur_exp| is either |true_code|
16386 |cur_type=mp_unknown_boolean| means that |cur_exp| points to a capsule
16387 node that is in the ring of variables equivalent
16388 to at least one undefined boolean variable.
16391 |cur_type=mp_string_type| means that |cur_exp| is a string number (i.e., an
16392 integer in the range |0<=cur_exp<str_ptr|). That string's reference count
16393 includes this particular reference.
16396 |cur_type=mp_unknown_string| means that |cur_exp| points to a capsule
16397 node that is in the ring of variables equivalent
16398 to at least one undefined string variable.
16401 |cur_type=mp_pen_type| means that |cur_exp| points to a node in a pen. Nobody
16402 else points to any of the nodes in this pen. The pen may be polygonal or
16406 |cur_type=mp_unknown_pen| means that |cur_exp| points to a capsule
16407 node that is in the ring of variables equivalent
16408 to at least one undefined pen variable.
16411 |cur_type=mp_path_type| means that |cur_exp| points to a the first node of
16412 a path; nobody else points to this particular path. The control points of
16413 the path will have been chosen.
16416 |cur_type=mp_unknown_path| means that |cur_exp| points to a capsule
16417 node that is in the ring of variables equivalent
16418 to at least one undefined path variable.
16421 |cur_type=mp_picture_type| means that |cur_exp| points to an edge header node.
16422 There may be other pointers to this particular set of edges. The header node
16423 contains a reference count that includes this particular reference.
16426 |cur_type=mp_unknown_picture| means that |cur_exp| points to a capsule
16427 node that is in the ring of variables equivalent
16428 to at least one undefined picture variable.
16431 |cur_type=mp_transform_type| means that |cur_exp| points to a |mp_transform_type|
16432 capsule node. The |value| part of this capsule
16433 points to a transform node that contains six numeric values,
16434 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16437 |cur_type=mp_color_type| means that |cur_exp| points to a |color_type|
16438 capsule node. The |value| part of this capsule
16439 points to a color node that contains three numeric values,
16440 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16443 |cur_type=mp_cmykcolor_type| means that |cur_exp| points to a |mp_cmykcolor_type|
16444 capsule node. The |value| part of this capsule
16445 points to a color node that contains four numeric values,
16446 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16449 |cur_type=mp_pair_type| means that |cur_exp| points to a capsule
16450 node whose type is |mp_pair_type|. The |value| part of this capsule
16451 points to a pair node that contains two numeric values,
16452 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16455 |cur_type=mp_known| means that |cur_exp| is a |scaled| value.
16458 |cur_type=mp_dependent| means that |cur_exp| points to a capsule node whose type
16459 is |dependent|. The |dep_list| field in this capsule points to the associated
16463 |cur_type=mp_proto_dependent| means that |cur_exp| points to a |mp_proto_dependent|
16464 capsule node. The |dep_list| field in this capsule
16465 points to the associated dependency list.
16468 |cur_type=independent| means that |cur_exp| points to a capsule node
16469 whose type is |independent|. This somewhat unusual case can arise, for
16470 example, in the expression
16471 `$x+\&{begingroup}\penalty0\,\&{string}\,x; 0\,\&{endgroup}$'.
16474 |cur_type=mp_token_list| means that |cur_exp| points to a linked list of
16475 tokens. This case arises only on the left-hand side of an assignment
16476 (`\.{:=}') operation, under very special circumstances.
16478 \smallskip\noindent
16479 The possible settings of |cur_type| have been listed here in increasing
16480 numerical order. Notice that |cur_type| will never be |mp_numeric_type| or
16481 |suffixed_macro| or |mp_unsuffixed_macro|, although variables of those types
16482 are allowed. Conversely, \MP\ has no variables of type |mp_vacuous| or
16485 @ Capsules are two-word nodes that have a similar meaning
16486 to |cur_type| and |cur_exp|. Such nodes have |name_type=capsule|
16487 and |link<=mp_void|; and their |type| field is one of the possibilities for
16488 |cur_type| listed above.
16490 The |value| field of a capsule is, in most cases, the value that
16491 corresponds to its |type|, as |cur_exp| corresponds to |cur_type|.
16492 However, when |cur_exp| would point to a capsule,
16493 no extra layer of indirection is present; the |value|
16494 field is what would have been called |value(cur_exp)| if it had not been
16495 encapsulated. Furthermore, if the type is |dependent| or
16496 |mp_proto_dependent|, the |value| field of a capsule is replaced by
16497 |dep_list| and |prev_dep| fields, since dependency lists in capsules are
16498 always part of the general |dep_list| structure.
16500 The |get_x_next| routine is careful not to change the values of |cur_type|
16501 and |cur_exp| when it gets an expanded token. However, |get_x_next| might
16502 call a macro, which might parse an expression, which might execute lots of
16503 commands in a group; hence it's possible that |cur_type| might change
16504 from, say, |mp_unknown_boolean| to |mp_boolean_type|, or from |dependent| to
16505 |known| or |independent|, during the time |get_x_next| is called. The
16506 programs below are careful to stash sensitive intermediate results in
16507 capsules, so that \MP's generality doesn't cause trouble.
16509 Here's a procedure that illustrates these conventions. It takes
16510 the contents of $(|cur_type|\kern-.3pt,|cur_exp|\kern-.3pt)$
16511 and stashes them away in a
16512 capsule. It is not used when |cur_type=mp_token_list|.
16513 After the operation, |cur_type=mp_vacuous|; hence there is no need to
16514 copy path lists or to update reference counts, etc.
16516 The special link |mp_void| is put on the capsule returned by
16517 |stash_cur_exp|, because this procedure is used to store macro parameters
16518 that must be easily distinguishable from token lists.
16520 @<Declare the stashing/unstashing routines@>=
16521 pointer mp_stash_cur_exp (MP mp) {
16522 pointer p; /* the capsule that will be returned */
16523 switch (mp->cur_type) {
16524 case unknown_types:
16525 case mp_transform_type:
16526 case mp_color_type:
16529 case mp_proto_dependent:
16530 case mp_independent:
16531 case mp_cmykcolor_type:
16535 p=mp_get_node(mp, value_node_size); name_type(p)=mp_capsule;
16536 type(p)=mp->cur_type; value(p)=mp->cur_exp;
16539 mp->cur_type=mp_vacuous; link(p)=mp_void;
16543 @ The inverse of |stash_cur_exp| is the following procedure, which
16544 deletes an unnecessary capsule and puts its contents into |cur_type|
16547 The program steps of \MP\ can be divided into two categories: those in
16548 which |cur_type| and |cur_exp| are ``alive'' and those in which they are
16549 ``dead,'' in the sense that |cur_type| and |cur_exp| contain relevant
16550 information or not. It's important not to ignore them when they're alive,
16551 and it's important not to pay attention to them when they're dead.
16553 There's also an intermediate category: If |cur_type=mp_vacuous|, then
16554 |cur_exp| is irrelevant, hence we can proceed without caring if |cur_type|
16555 and |cur_exp| are alive or dead. In such cases we say that |cur_type|
16556 and |cur_exp| are {\sl dormant}. It is permissible to call |get_x_next|
16557 only when they are alive or dormant.
16559 The \\{stash} procedure above assumes that |cur_type| and |cur_exp|
16560 are alive or dormant. The \\{unstash} procedure assumes that they are
16561 dead or dormant; it resuscitates them.
16563 @<Declare the stashing/unstashing...@>=
16564 void mp_unstash_cur_exp (MP mp,pointer p) ;
16567 void mp_unstash_cur_exp (MP mp,pointer p) {
16568 mp->cur_type=type(p);
16569 switch (mp->cur_type) {
16570 case unknown_types:
16571 case mp_transform_type:
16572 case mp_color_type:
16575 case mp_proto_dependent:
16576 case mp_independent:
16577 case mp_cmykcolor_type:
16581 mp->cur_exp=value(p);
16582 mp_free_node(mp, p,value_node_size);
16587 @ The following procedure prints the values of expressions in an
16588 abbreviated format. If its first parameter |p| is null, the value of
16589 |(cur_type,cur_exp)| is displayed; otherwise |p| should be a capsule
16590 containing the desired value. The second parameter controls the amount of
16591 output. If it is~0, dependency lists will be abbreviated to
16592 `\.{linearform}' unless they consist of a single term. If it is greater
16593 than~1, complicated structures (pens, pictures, and paths) will be displayed
16596 @<Declare subroutines for printing expressions@>=
16597 @<Declare the procedure called |print_dp|@>;
16598 @<Declare the stashing/unstashing routines@>;
16599 void mp_print_exp (MP mp,pointer p, small_number verbosity) {
16600 boolean restore_cur_exp; /* should |cur_exp| be restored? */
16601 small_number t; /* the type of the expression */
16602 pointer q; /* a big node being displayed */
16603 integer v=0; /* the value of the expression */
16605 restore_cur_exp=false;
16607 p=mp_stash_cur_exp(mp); restore_cur_exp=true;
16610 if ( t<mp_dependent ) v=value(p); else if ( t<mp_independent ) v=dep_list(p);
16611 @<Print an abbreviated value of |v| with format depending on |t|@>;
16612 if ( restore_cur_exp ) mp_unstash_cur_exp(mp, p);
16615 @ @<Print an abbreviated value of |v| with format depending on |t|@>=
16617 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
16618 case mp_boolean_type:
16619 if ( v==true_code ) mp_print(mp, "true"); else mp_print(mp, "false");
16621 case unknown_types: case mp_numeric_type:
16622 @<Display a variable that's been declared but not defined@>;
16624 case mp_string_type:
16625 mp_print_char(mp, '"'); mp_print_str(mp, v); mp_print_char(mp, '"');
16627 case mp_pen_type: case mp_path_type: case mp_picture_type:
16628 @<Display a complex type@>;
16630 case mp_transform_type: case mp_color_type: case mp_pair_type: case mp_cmykcolor_type:
16631 if ( v==null ) mp_print_type(mp, t);
16632 else @<Display a big node@>;
16634 case mp_known:mp_print_scaled(mp, v); break;
16635 case mp_dependent: case mp_proto_dependent:
16636 mp_print_dp(mp, t,v,verbosity);
16638 case mp_independent:mp_print_variable_name(mp, p); break;
16639 default: mp_confusion(mp, "exp"); break;
16640 @:this can't happen exp}{\quad exp@>
16643 @ @<Display a big node@>=
16645 mp_print_char(mp, '('); q=v+mp->big_node_size[t];
16647 if ( type(v)==mp_known ) mp_print_scaled(mp, value(v));
16648 else if ( type(v)==mp_independent ) mp_print_variable_name(mp, v);
16649 else mp_print_dp(mp, type(v),dep_list(v),verbosity);
16651 if ( v!=q ) mp_print_char(mp, ',');
16653 mp_print_char(mp, ')');
16656 @ Values of type \&{picture}, \&{path}, and \&{pen} are displayed verbosely
16657 in the log file only, unless the user has given a positive value to
16660 @<Display a complex type@>=
16661 if ( verbosity<=1 ) {
16662 mp_print_type(mp, t);
16664 if ( mp->selector==term_and_log )
16665 if ( mp->internal[mp_tracing_online]<=0 ) {
16666 mp->selector=term_only;
16667 mp_print_type(mp, t); mp_print(mp, " (see the transcript file)");
16668 mp->selector=term_and_log;
16671 case mp_pen_type:mp_print_pen(mp, v,"",false); break;
16672 case mp_path_type:mp_print_path(mp, v,"",false); break;
16673 case mp_picture_type:mp_print_edges(mp, v,"",false); break;
16674 } /* there are no other cases */
16677 @ @<Declare the procedure called |print_dp|@>=
16678 void mp_print_dp (MP mp,small_number t, pointer p,
16679 small_number verbosity) {
16680 pointer q; /* the node following |p| */
16682 if ( (info(q)==null) || (verbosity>0) ) mp_print_dependency(mp, p,t);
16683 else mp_print(mp, "linearform");
16686 @ The displayed name of a variable in a ring will not be a capsule unless
16687 the ring consists entirely of capsules.
16689 @<Display a variable that's been declared but not defined@>=
16690 { mp_print_type(mp, t);
16692 { mp_print_char(mp, ' ');
16693 while ( (name_type(v)==mp_capsule) && (v!=p) ) v=value(v);
16694 mp_print_variable_name(mp, v);
16698 @ When errors are detected during parsing, it is often helpful to
16699 display an expression just above the error message, using |exp_err|
16700 or |disp_err| instead of |print_err|.
16702 @d exp_err(A) mp_disp_err(mp, null,(A)) /* displays the current expression */
16704 @<Declare subroutines for printing expressions@>=
16705 void mp_disp_err (MP mp,pointer p, char *s) {
16706 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16707 mp_print_nl(mp, ">> ");
16709 mp_print_exp(mp, p,1); /* ``medium verbose'' printing of the expression */
16711 mp_print_nl(mp, "! "); mp_print(mp, s);
16716 @ If |cur_type| and |cur_exp| contain relevant information that should
16717 be recycled, we will use the following procedure, which changes |cur_type|
16718 to |known| and stores a given value in |cur_exp|. We can think of |cur_type|
16719 and |cur_exp| as either alive or dormant after this has been done,
16720 because |cur_exp| will not contain a pointer value.
16722 @ @c void mp_flush_cur_exp (MP mp,scaled v) {
16723 switch (mp->cur_type) {
16724 case unknown_types: case mp_transform_type: case mp_color_type: case mp_pair_type:
16725 case mp_dependent: case mp_proto_dependent: case mp_independent: case mp_cmykcolor_type:
16726 mp_recycle_value(mp, mp->cur_exp);
16727 mp_free_node(mp, mp->cur_exp,value_node_size);
16729 case mp_string_type:
16730 delete_str_ref(mp->cur_exp); break;
16731 case mp_pen_type: case mp_path_type:
16732 mp_toss_knot_list(mp, mp->cur_exp); break;
16733 case mp_picture_type:
16734 delete_edge_ref(mp->cur_exp); break;
16738 mp->cur_type=mp_known; mp->cur_exp=v;
16741 @ There's a much more general procedure that is capable of releasing
16742 the storage associated with any two-word value packet.
16744 @<Declare the recycling subroutines@>=
16745 void mp_recycle_value (MP mp,pointer p) ;
16747 @ @c void mp_recycle_value (MP mp,pointer p) {
16748 small_number t; /* a type code */
16749 integer vv; /* another value */
16750 pointer q,r,s,pp; /* link manipulation registers */
16751 integer v=0; /* a value */
16753 if ( t<mp_dependent ) v=value(p);
16755 case undefined: case mp_vacuous: case mp_boolean_type: case mp_known:
16756 case mp_numeric_type:
16758 case unknown_types:
16759 mp_ring_delete(mp, p); break;
16760 case mp_string_type:
16761 delete_str_ref(v); break;
16762 case mp_path_type: case mp_pen_type:
16763 mp_toss_knot_list(mp, v); break;
16764 case mp_picture_type:
16765 delete_edge_ref(v); break;
16766 case mp_cmykcolor_type: case mp_pair_type: case mp_color_type:
16767 case mp_transform_type:
16768 @<Recycle a big node@>; break;
16769 case mp_dependent: case mp_proto_dependent:
16770 @<Recycle a dependency list@>; break;
16771 case mp_independent:
16772 @<Recycle an independent variable@>; break;
16773 case mp_token_list: case mp_structured:
16774 mp_confusion(mp, "recycle"); break;
16775 @:this can't happen recycle}{\quad recycle@>
16776 case mp_unsuffixed_macro: case mp_suffixed_macro:
16777 mp_delete_mac_ref(mp, value(p)); break;
16778 } /* there are no other cases */
16782 @ @<Recycle a big node@>=
16784 q=v+mp->big_node_size[t];
16786 q=q-2; mp_recycle_value(mp, q);
16788 mp_free_node(mp, v,mp->big_node_size[t]);
16791 @ @<Recycle a dependency list@>=
16794 while ( info(q)!=null ) q=link(q);
16795 link(prev_dep(p))=link(q);
16796 prev_dep(link(q))=prev_dep(p);
16797 link(q)=null; mp_flush_node_list(mp, dep_list(p));
16800 @ When an independent variable disappears, it simply fades away, unless
16801 something depends on it. In the latter case, a dependent variable whose
16802 coefficient of dependence is maximal will take its place.
16803 The relevant algorithm is due to Ignacio~A. Zabala, who implemented it
16804 as part of his Ph.D. thesis (Stanford University, December 1982).
16805 @^Zabala Salelles, Ignacio Andres@>
16807 For example, suppose that variable $x$ is being recycled, and that the
16808 only variables depending on~$x$ are $y=2x+a$ and $z=x+b$. In this case
16809 we want to make $y$ independent and $z=.5y-.5a+b$; no other variables
16810 will depend on~$y$. If $\\{tracingequations}>0$ in this situation,
16811 we will print `\.{\#\#\# -2x=-y+a}'.
16813 There's a slight complication, however: An independent variable $x$
16814 can occur both in dependency lists and in proto-dependency lists.
16815 This makes it necessary to be careful when deciding which coefficient
16818 Furthermore, this complication is not so slight when
16819 a proto-dependent variable is chosen to become independent. For example,
16820 suppose that $y=2x+100a$ is proto-dependent while $z=x+b$ is dependent;
16821 then we must change $z=.5y-50a+b$ to a proto-dependency, because of the
16822 large coefficient `50'.
16824 In order to deal with these complications without wasting too much time,
16825 we shall link together the occurrences of~$x$ among all the linear
16826 dependencies, maintaining separate lists for the dependent and
16827 proto-dependent cases.
16829 @<Recycle an independent variable@>=
16831 mp->max_c[mp_dependent]=0; mp->max_c[mp_proto_dependent]=0;
16832 mp->max_link[mp_dependent]=null; mp->max_link[mp_proto_dependent]=null;
16834 while ( q!=dep_head ) {
16835 s=value_loc(q); /* now |link(s)=dep_list(q)| */
16838 if ( info(r)==null ) break;;
16839 if ( info(r)!=p ) {
16842 t=type(q); link(s)=link(r); info(r)=q;
16843 if ( abs(value(r))>mp->max_c[t] ) {
16844 @<Record a new maximum coefficient of type |t|@>;
16846 link(r)=mp->max_link[t]; mp->max_link[t]=r;
16852 if ( (mp->max_c[mp_dependent]>0)||(mp->max_c[mp_proto_dependent]>0) ) {
16853 @<Choose a dependent variable to take the place of the disappearing
16854 independent variable, and change all remaining dependencies
16859 @ The code for independency removal makes use of three two-word arrays.
16862 integer max_c[mp_proto_dependent+1]; /* max coefficient magnitude */
16863 pointer max_ptr[mp_proto_dependent+1]; /* where |p| occurs with |max_c| */
16864 pointer max_link[mp_proto_dependent+1]; /* other occurrences of |p| */
16866 @ @<Record a new maximum coefficient...@>=
16868 if ( mp->max_c[t]>0 ) {
16869 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
16871 mp->max_c[t]=abs(value(r)); mp->max_ptr[t]=r;
16874 @ @<Choose a dependent...@>=
16876 if ( (mp->max_c[mp_dependent] / 010000 >= mp->max_c[mp_proto_dependent]) )
16879 t=mp_proto_dependent;
16880 @<Determine the dependency list |s| to substitute for the independent
16882 t=mp_dependent+mp_proto_dependent-t; /* complement |t| */
16883 if ( mp->max_c[t]>0 ) { /* we need to pick up an unchosen dependency */
16884 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
16886 if ( t!=mp_dependent ) { @<Substitute new dependencies in place of |p|@>; }
16887 else { @<Substitute new proto-dependencies in place of |p|@>;}
16888 mp_flush_node_list(mp, s);
16889 if ( mp->fix_needed ) mp_fix_dependencies(mp);
16893 @ Let |s=max_ptr[t]|. At this point we have $|value|(s)=\pm|max_c|[t]$,
16894 and |info(s)| points to the dependent variable~|pp| of type~|t| from
16895 whose dependency list we have removed node~|s|. We must reinsert
16896 node~|s| into the dependency list, with coefficient $-1.0$, and with
16897 |pp| as the new independent variable. Since |pp| will have a larger serial
16898 number than any other variable, we can put node |s| at the head of the
16901 @<Determine the dep...@>=
16902 s=mp->max_ptr[t]; pp=info(s); v=value(s);
16903 if ( t==mp_dependent ) value(s)=-fraction_one; else value(s)=-unity;
16904 r=dep_list(pp); link(s)=r;
16905 while ( info(r)!=null ) r=link(r);
16906 q=link(r); link(r)=null;
16907 prev_dep(q)=prev_dep(pp); link(prev_dep(pp))=q;
16909 if ( mp->cur_exp==pp ) if ( mp->cur_type==t ) mp->cur_type=mp_independent;
16910 if ( mp->internal[mp_tracing_equations]>0 ) {
16911 @<Show the transformed dependency@>;
16914 @ Now $(-v)$ times the formerly independent variable~|p| is being replaced
16915 by the dependency list~|s|.
16917 @<Show the transformed...@>=
16918 if ( mp_interesting(mp, p) ) {
16919 mp_begin_diagnostic(mp); mp_print_nl(mp, "### ");
16920 @:]]]\#\#\#_}{\.{\#\#\#}@>
16921 if ( v>0 ) mp_print_char(mp, '-');
16922 if ( t==mp_dependent ) vv=mp_round_fraction(mp, mp->max_c[mp_dependent]);
16923 else vv=mp->max_c[mp_proto_dependent];
16924 if ( vv!=unity ) mp_print_scaled(mp, vv);
16925 mp_print_variable_name(mp, p);
16926 while ( value(p) % s_scale>0 ) {
16927 mp_print(mp, "*4"); value(p)=value(p)-2;
16929 if ( t==mp_dependent ) mp_print_char(mp, '='); else mp_print(mp, " = ");
16930 mp_print_dependency(mp, s,t);
16931 mp_end_diagnostic(mp, false);
16934 @ Finally, there are dependent and proto-dependent variables whose
16935 dependency lists must be brought up to date.
16937 @<Substitute new dependencies...@>=
16938 for (t=mp_dependent;t<=mp_proto_dependent;t++){
16940 while ( r!=null ) {
16942 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
16943 mp_make_fraction(mp, value(r),-v),s,t,mp_dependent);
16944 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
16945 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
16949 @ @<Substitute new proto...@>=
16950 for (t=mp_dependent;t<=mp_proto_dependent;t++) {
16952 while ( r!=null ) {
16954 if ( t==mp_dependent ) { /* for safety's sake, we change |q| to |mp_proto_dependent| */
16955 if ( mp->cur_exp==q ) if ( mp->cur_type==mp_dependent )
16956 mp->cur_type=mp_proto_dependent;
16957 dep_list(q)=mp_p_over_v(mp, dep_list(q),unity,mp_dependent,mp_proto_dependent);
16958 type(q)=mp_proto_dependent; value(r)=mp_round_fraction(mp, value(r));
16960 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
16961 mp_make_scaled(mp, value(r),-v),s,mp_proto_dependent,mp_proto_dependent);
16962 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
16963 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
16967 @ Here are some routines that provide handy combinations of actions
16968 that are often needed during error recovery. For example,
16969 `|flush_error|' flushes the current expression, replaces it by
16970 a given value, and calls |error|.
16972 Errors often are detected after an extra token has already been scanned.
16973 The `\\{put\_get}' routines put that token back before calling |error|;
16974 then they get it back again. (Or perhaps they get another token, if
16975 the user has changed things.)
16978 void mp_flush_error (MP mp,scaled v);
16979 void mp_put_get_error (MP mp);
16980 void mp_put_get_flush_error (MP mp,scaled v) ;
16983 void mp_flush_error (MP mp,scaled v) {
16984 mp_error(mp); mp_flush_cur_exp(mp, v);
16986 void mp_put_get_error (MP mp) {
16987 mp_back_error(mp); mp_get_x_next(mp);
16989 void mp_put_get_flush_error (MP mp,scaled v) {
16990 mp_put_get_error(mp);
16991 mp_flush_cur_exp(mp, v);
16994 @ A global variable |var_flag| is set to a special command code
16995 just before \MP\ calls |scan_expression|, if the expression should be
16996 treated as a variable when this command code immediately follows. For
16997 example, |var_flag| is set to |assignment| at the beginning of a
16998 statement, because we want to know the {\sl location\/} of a variable at
16999 the left of `\.{:=}', not the {\sl value\/} of that variable.
17001 The |scan_expression| subroutine calls |scan_tertiary|,
17002 which calls |scan_secondary|, which calls |scan_primary|, which sets
17003 |var_flag:=0|. In this way each of the scanning routines ``knows''
17004 when it has been called with a special |var_flag|, but |var_flag| is
17007 A variable preceding a command that equals |var_flag| is converted to a
17008 token list rather than a value. Furthermore, an `\.{=}' sign following an
17009 expression with |var_flag=assignment| is not considered to be a relation
17010 that produces boolean expressions.
17014 int var_flag; /* command that wants a variable */
17019 @* \[37] Parsing primary expressions.
17020 The first parsing routine, |scan_primary|, is also the most complicated one,
17021 since it involves so many different cases. But each case---with one
17022 exception---is fairly simple by itself.
17024 When |scan_primary| begins, the first token of the primary to be scanned
17025 should already appear in |cur_cmd|, |cur_mod|, and |cur_sym|. The values
17026 of |cur_type| and |cur_exp| should be either dead or dormant, as explained
17027 earlier. If |cur_cmd| is not between |min_primary_command| and
17028 |max_primary_command|, inclusive, a syntax error will be signaled.
17030 @<Declare the basic parsing subroutines@>=
17031 void mp_scan_primary (MP mp) {
17032 pointer p,q,r; /* for list manipulation */
17033 quarterword c; /* a primitive operation code */
17034 int my_var_flag; /* initial value of |my_var_flag| */
17035 pointer l_delim,r_delim; /* hash addresses of a delimiter pair */
17036 @<Other local variables for |scan_primary|@>;
17037 my_var_flag=mp->var_flag; mp->var_flag=0;
17040 @<Supply diagnostic information, if requested@>;
17041 switch (mp->cur_cmd) {
17042 case left_delimiter:
17043 @<Scan a delimited primary@>; break;
17045 @<Scan a grouped primary@>; break;
17047 @<Scan a string constant@>; break;
17048 case numeric_token:
17049 @<Scan a primary that starts with a numeric token@>; break;
17051 @<Scan a nullary operation@>; break;
17052 case unary: case type_name: case cycle: case plus_or_minus:
17053 @<Scan a unary operation@>; break;
17054 case primary_binary:
17055 @<Scan a binary operation with `\&{of}' between its operands@>; break;
17057 @<Convert a suffix to a string@>; break;
17058 case internal_quantity:
17059 @<Scan an internal numeric quantity@>; break;
17060 case capsule_token:
17061 mp_make_exp_copy(mp, mp->cur_mod); break;
17063 @<Scan a variable primary; |goto restart| if it turns out to be a macro@>; break;
17065 mp_bad_exp(mp, "A primary"); goto RESTART; break;
17066 @.A primary expression...@>
17068 mp_get_x_next(mp); /* the routines |goto done| if they don't want this */
17070 if ( mp->cur_cmd==left_bracket ) {
17071 if ( mp->cur_type>=mp_known ) {
17072 @<Scan a mediation construction@>;
17079 @ Errors at the beginning of expressions are flagged by |bad_exp|.
17081 @c void mp_bad_exp (MP mp,char * s) {
17083 print_err(s); mp_print(mp, " expression can't begin with `");
17084 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
17085 mp_print_char(mp, '\'');
17086 help4("I'm afraid I need some sort of value in order to continue,")
17087 ("so I've tentatively inserted `0'. You may want to")
17088 ("delete this zero and insert something else;")
17089 ("see Chapter 27 of The METAFONTbook for an example.");
17090 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17091 mp_back_input(mp); mp->cur_sym=0; mp->cur_cmd=numeric_token;
17092 mp->cur_mod=0; mp_ins_error(mp);
17093 save_flag=mp->var_flag; mp->var_flag=0; mp_get_x_next(mp);
17094 mp->var_flag=save_flag;
17097 @ @<Supply diagnostic information, if requested@>=
17099 if ( mp->panicking ) mp_check_mem(mp, false);
17101 if ( mp->interrupt!=0 ) if ( mp->OK_to_interrupt ) {
17102 mp_back_input(mp); check_interrupt; mp_get_x_next(mp);
17105 @ @<Scan a delimited primary@>=
17107 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
17108 mp_get_x_next(mp); mp_scan_expression(mp);
17109 if ( (mp->cur_cmd==comma) && (mp->cur_type>=mp_known) ) {
17110 @<Scan the rest of a delimited set of numerics@>;
17112 mp_check_delimiter(mp, l_delim,r_delim);
17116 @ The |stash_in| subroutine puts the current (numeric) expression into a field
17117 within a ``big node.''
17119 @c void mp_stash_in (MP mp,pointer p) {
17120 pointer q; /* temporary register */
17121 type(p)=mp->cur_type;
17122 if ( mp->cur_type==mp_known ) {
17123 value(p)=mp->cur_exp;
17125 if ( mp->cur_type==mp_independent ) {
17126 @<Stash an independent |cur_exp| into a big node@>;
17128 mp->mem[value_loc(p)]=mp->mem[value_loc(mp->cur_exp)];
17129 /* |dep_list(p):=dep_list(cur_exp)| and |prev_dep(p):=prev_dep(cur_exp)| */
17130 link(prev_dep(p))=p;
17132 mp_free_node(mp, mp->cur_exp,value_node_size);
17134 mp->cur_type=mp_vacuous;
17137 @ In rare cases the current expression can become |independent|. There
17138 may be many dependency lists pointing to such an independent capsule,
17139 so we can't simply move it into place within a big node. Instead,
17140 we copy it, then recycle it.
17142 @ @<Stash an independent |cur_exp|...@>=
17144 q=mp_single_dependency(mp, mp->cur_exp);
17145 if ( q==mp->dep_final ){
17146 type(p)=mp_known; value(p)=0; mp_free_node(mp, q,dep_node_size);
17148 type(p)=mp_dependent; mp_new_dep(mp, p,q);
17150 mp_recycle_value(mp, mp->cur_exp);
17153 @ This code uses the fact that |red_part_loc| and |green_part_loc|
17154 are synonymous with |x_part_loc| and |y_part_loc|.
17156 @<Scan the rest of a delimited set of numerics@>=
17158 p=mp_stash_cur_exp(mp);
17159 mp_get_x_next(mp); mp_scan_expression(mp);
17160 @<Make sure the second part of a pair or color has a numeric type@>;
17161 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
17162 if ( mp->cur_cmd==comma ) type(q)=mp_color_type;
17163 else type(q)=mp_pair_type;
17164 mp_init_big_node(mp, q); r=value(q);
17165 mp_stash_in(mp, y_part_loc(r));
17166 mp_unstash_cur_exp(mp, p);
17167 mp_stash_in(mp, x_part_loc(r));
17168 if ( mp->cur_cmd==comma ) {
17169 @<Scan the last of a triplet of numerics@>;
17171 if ( mp->cur_cmd==comma ) {
17172 type(q)=mp_cmykcolor_type;
17173 mp_init_big_node(mp, q); t=value(q);
17174 mp->mem[cyan_part_loc(t)]=mp->mem[red_part_loc(r)];
17175 value(cyan_part_loc(t))=value(red_part_loc(r));
17176 mp->mem[magenta_part_loc(t)]=mp->mem[green_part_loc(r)];
17177 value(magenta_part_loc(t))=value(green_part_loc(r));
17178 mp->mem[yellow_part_loc(t)]=mp->mem[blue_part_loc(r)];
17179 value(yellow_part_loc(t))=value(blue_part_loc(r));
17180 mp_recycle_value(mp, r);
17182 @<Scan the last of a quartet of numerics@>;
17184 mp_check_delimiter(mp, l_delim,r_delim);
17185 mp->cur_type=type(q);
17189 @ @<Make sure the second part of a pair or color has a numeric type@>=
17190 if ( mp->cur_type<mp_known ) {
17191 exp_err("Nonnumeric ypart has been replaced by 0");
17192 @.Nonnumeric...replaced by 0@>
17193 help4("I've started to scan a pair `(a,b)' or a color `(a,b,c)';")
17194 ("but after finding a nice `a' I found a `b' that isn't")
17195 ("of numeric type. So I've changed that part to zero.")
17196 ("(The b that I didn't like appears above the error message.)");
17197 mp_put_get_flush_error(mp, 0);
17200 @ @<Scan the last of a triplet of numerics@>=
17202 mp_get_x_next(mp); mp_scan_expression(mp);
17203 if ( mp->cur_type<mp_known ) {
17204 exp_err("Nonnumeric third part has been replaced by 0");
17205 @.Nonnumeric...replaced by 0@>
17206 help3("I've just scanned a color `(a,b,c)' or cmykcolor(a,b,c,d); but the `c'")
17207 ("isn't of numeric type. So I've changed that part to zero.")
17208 ("(The c that I didn't like appears above the error message.)");
17209 mp_put_get_flush_error(mp, 0);
17211 mp_stash_in(mp, blue_part_loc(r));
17214 @ @<Scan the last of a quartet of numerics@>=
17216 mp_get_x_next(mp); mp_scan_expression(mp);
17217 if ( mp->cur_type<mp_known ) {
17218 exp_err("Nonnumeric blackpart has been replaced by 0");
17219 @.Nonnumeric...replaced by 0@>
17220 help3("I've just scanned a cmykcolor `(c,m,y,k)'; but the `k' isn't")
17221 ("of numeric type. So I've changed that part to zero.")
17222 ("(The k that I didn't like appears above the error message.)");
17223 mp_put_get_flush_error(mp, 0);
17225 mp_stash_in(mp, black_part_loc(r));
17228 @ The local variable |group_line| keeps track of the line
17229 where a \&{begingroup} command occurred; this will be useful
17230 in an error message if the group doesn't actually end.
17232 @<Other local variables for |scan_primary|@>=
17233 integer group_line; /* where a group began */
17235 @ @<Scan a grouped primary@>=
17237 group_line=mp_true_line(mp);
17238 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17239 save_boundary_item(p);
17241 mp_do_statement(mp); /* ends with |cur_cmd>=semicolon| */
17242 } while (! (mp->cur_cmd!=semicolon));
17243 if ( mp->cur_cmd!=end_group ) {
17244 print_err("A group begun on line ");
17245 @.A group...never ended@>
17246 mp_print_int(mp, group_line);
17247 mp_print(mp, " never ended");
17248 help2("I saw a `begingroup' back there that hasn't been matched")
17249 ("by `endgroup'. So I've inserted `endgroup' now.");
17250 mp_back_error(mp); mp->cur_cmd=end_group;
17253 /* this might change |cur_type|, if independent variables are recycled */
17254 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17257 @ @<Scan a string constant@>=
17259 mp->cur_type=mp_string_type; mp->cur_exp=mp->cur_mod;
17262 @ Later we'll come to procedures that perform actual operations like
17263 addition, square root, and so on; our purpose now is to do the parsing.
17264 But we might as well mention those future procedures now, so that the
17265 suspense won't be too bad:
17268 |do_nullary(c)| does primitive operations that have no operands (e.g.,
17269 `\&{true}' or `\&{pencircle}');
17272 |do_unary(c)| applies a primitive operation to the current expression;
17275 |do_binary(p,c)| applies a primitive operation to the capsule~|p|
17276 and the current expression.
17278 @<Scan a nullary operation@>=mp_do_nullary(mp, mp->cur_mod)
17280 @ @<Scan a unary operation@>=
17282 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_primary(mp);
17283 mp_do_unary(mp, c); goto DONE;
17286 @ A numeric token might be a primary by itself, or it might be the
17287 numerator of a fraction composed solely of numeric tokens, or it might
17288 multiply the primary that follows (provided that the primary doesn't begin
17289 with a plus sign or a minus sign). The code here uses the facts that
17290 |max_primary_command=plus_or_minus| and
17291 |max_primary_command-1=numeric_token|. If a fraction is found that is less
17292 than unity, we try to retain higher precision when we use it in scalar
17295 @<Other local variables for |scan_primary|@>=
17296 scaled num,denom; /* for primaries that are fractions, like `1/2' */
17298 @ @<Scan a primary that starts with a numeric token@>=
17300 mp->cur_exp=mp->cur_mod; mp->cur_type=mp_known; mp_get_x_next(mp);
17301 if ( mp->cur_cmd!=slash ) {
17305 if ( mp->cur_cmd!=numeric_token ) {
17307 mp->cur_cmd=slash; mp->cur_mod=over; mp->cur_sym=frozen_slash;
17310 num=mp->cur_exp; denom=mp->cur_mod;
17311 if ( denom==0 ) { @<Protest division by zero@>; }
17312 else { mp->cur_exp=mp_make_scaled(mp, num,denom); }
17313 check_arith; mp_get_x_next(mp);
17315 if ( mp->cur_cmd>=min_primary_command ) {
17316 if ( mp->cur_cmd<numeric_token ) { /* in particular, |cur_cmd<>plus_or_minus| */
17317 p=mp_stash_cur_exp(mp); mp_scan_primary(mp);
17318 if ( (abs(num)>=abs(denom))||(mp->cur_type<mp_color_type) ) {
17319 mp_do_binary(mp, p,times);
17321 mp_frac_mult(mp, num,denom);
17322 mp_free_node(mp, p,value_node_size);
17329 @ @<Protest division...@>=
17331 print_err("Division by zero");
17332 @.Division by zero@>
17333 help1("I'll pretend that you meant to divide by 1."); mp_error(mp);
17336 @ @<Scan a binary operation with `\&{of}' between its operands@>=
17338 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
17339 if ( mp->cur_cmd!=of_token ) {
17340 mp_missing_err(mp, "of"); mp_print(mp, " for ");
17341 mp_print_cmd_mod(mp, primary_binary,c);
17343 help1("I've got the first argument; will look now for the other.");
17346 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_primary(mp);
17347 mp_do_binary(mp, p,c); goto DONE;
17350 @ @<Convert a suffix to a string@>=
17352 mp_get_x_next(mp); mp_scan_suffix(mp);
17353 mp->old_setting=mp->selector; mp->selector=new_string;
17354 mp_show_token_list(mp, mp->cur_exp,null,100000,0);
17355 mp_flush_token_list(mp, mp->cur_exp);
17356 mp->cur_exp=mp_make_string(mp); mp->selector=mp->old_setting;
17357 mp->cur_type=mp_string_type;
17361 @ If an internal quantity appears all by itself on the left of an
17362 assignment, we return a token list of length one, containing the address
17363 of the internal quantity plus |hash_end|. (This accords with the conventions
17364 of the save stack, as described earlier.)
17366 @<Scan an internal...@>=
17369 if ( my_var_flag==assignment ) {
17371 if ( mp->cur_cmd==assignment ) {
17372 mp->cur_exp=mp_get_avail(mp);
17373 info(mp->cur_exp)=q+hash_end; mp->cur_type=mp_token_list;
17378 mp->cur_type=mp_known; mp->cur_exp=mp->internal[q];
17381 @ The most difficult part of |scan_primary| has been saved for last, since
17382 it was necessary to build up some confidence first. We can now face the task
17383 of scanning a variable.
17385 As we scan a variable, we build a token list containing the relevant
17386 names and subscript values, simultaneously following along in the
17387 ``collective'' structure to see if we are actually dealing with a macro
17388 instead of a value.
17390 The local variables |pre_head| and |post_head| will point to the beginning
17391 of the prefix and suffix lists; |tail| will point to the end of the list
17392 that is currently growing.
17394 Another local variable, |tt|, contains partial information about the
17395 declared type of the variable-so-far. If |tt>=mp_unsuffixed_macro|, the
17396 relation |tt=type(q)| will always hold. If |tt=undefined|, the routine
17397 doesn't bother to update its information about type. And if
17398 |undefined<tt<mp_unsuffixed_macro|, the precise value of |tt| isn't critical.
17400 @ @<Other local variables for |scan_primary|@>=
17401 pointer pre_head,post_head,tail;
17402 /* prefix and suffix list variables */
17403 small_number tt; /* approximation to the type of the variable-so-far */
17404 pointer t; /* a token */
17405 pointer macro_ref = 0; /* reference count for a suffixed macro */
17407 @ @<Scan a variable primary...@>=
17409 fast_get_avail(pre_head); tail=pre_head; post_head=null; tt=mp_vacuous;
17411 t=mp_cur_tok(mp); link(tail)=t;
17412 if ( tt!=undefined ) {
17413 @<Find the approximate type |tt| and corresponding~|q|@>;
17414 if ( tt>=mp_unsuffixed_macro ) {
17415 @<Either begin an unsuffixed macro call or
17416 prepare for a suffixed one@>;
17419 mp_get_x_next(mp); tail=t;
17420 if ( mp->cur_cmd==left_bracket ) {
17421 @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>;
17423 if ( mp->cur_cmd>max_suffix_token ) break;
17424 if ( mp->cur_cmd<min_suffix_token ) break;
17425 } /* now |cur_cmd| is |internal_quantity|, |tag_token|, or |numeric_token| */
17426 @<Handle unusual cases that masquerade as variables, and |goto restart|
17427 or |goto done| if appropriate;
17428 otherwise make a copy of the variable and |goto done|@>;
17431 @ @<Either begin an unsuffixed macro call or...@>=
17434 if ( tt>mp_unsuffixed_macro ) { /* |tt=mp_suffixed_macro| */
17435 post_head=mp_get_avail(mp); tail=post_head; link(tail)=t;
17436 tt=undefined; macro_ref=value(q); add_mac_ref(macro_ref);
17438 @<Set up unsuffixed macro call and |goto restart|@>;
17442 @ @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>=
17444 mp_get_x_next(mp); mp_scan_expression(mp);
17445 if ( mp->cur_cmd!=right_bracket ) {
17446 @<Put the left bracket and the expression back to be rescanned@>;
17448 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17449 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp; mp->cur_sym=0;
17453 @ The left bracket that we thought was introducing a subscript might have
17454 actually been the left bracket in a mediation construction like `\.{x[a,b]}'.
17455 So we don't issue an error message at this point; but we do want to back up
17456 so as to avoid any embarrassment about our incorrect assumption.
17458 @<Put the left bracket and the expression back to be rescanned@>=
17460 mp_back_input(mp); /* that was the token following the current expression */
17461 mp_back_expr(mp); mp->cur_cmd=left_bracket;
17462 mp->cur_mod=0; mp->cur_sym=frozen_left_bracket;
17465 @ Here's a routine that puts the current expression back to be read again.
17467 @c void mp_back_expr (MP mp) {
17468 pointer p; /* capsule token */
17469 p=mp_stash_cur_exp(mp); link(p)=null; back_list(p);
17472 @ Unknown subscripts lead to the following error message.
17474 @c void mp_bad_subscript (MP mp) {
17475 exp_err("Improper subscript has been replaced by zero");
17476 @.Improper subscript...@>
17477 help3("A bracketed subscript must have a known numeric value;")
17478 ("unfortunately, what I found was the value that appears just")
17479 ("above this error message. So I'll try a zero subscript.");
17480 mp_flush_error(mp, 0);
17483 @ Every time we call |get_x_next|, there's a chance that the variable we've
17484 been looking at will disappear. Thus, we cannot safely keep |q| pointing
17485 into the variable structure; we need to start searching from the root each time.
17487 @<Find the approximate type |tt| and corresponding~|q|@>=
17490 p=link(pre_head); q=info(p); tt=undefined;
17491 if ( eq_type(q) % outer_tag==tag_token ) {
17493 if ( q==null ) goto DONE2;
17497 tt=type(q); goto DONE2;
17499 if ( type(q)!=mp_structured ) goto DONE2;
17500 q=link(attr_head(q)); /* the |collective_subscript| attribute */
17501 if ( p>=mp->hi_mem_min ) { /* it's not a subscript */
17502 do { q=link(q); } while (! (attr_loc(q)>=info(p)));
17503 if ( attr_loc(q)>info(p) ) goto DONE2;
17511 @ How do things stand now? Well, we have scanned an entire variable name,
17512 including possible subscripts and/or attributes; |cur_cmd|, |cur_mod|, and
17513 |cur_sym| represent the token that follows. If |post_head=null|, a
17514 token list for this variable name starts at |link(pre_head)|, with all
17515 subscripts evaluated. But if |post_head<>null|, the variable turned out
17516 to be a suffixed macro; |pre_head| is the head of the prefix list, while
17517 |post_head| is the head of a token list containing both `\.{\AT!}' and
17520 Our immediate problem is to see if this variable still exists. (Variable
17521 structures can change drastically whenever we call |get_x_next|; users
17522 aren't supposed to do this, but the fact that it is possible means that
17523 we must be cautious.)
17525 The following procedure prints an error message when a variable
17526 unexpectedly disappears. Its help message isn't quite right for
17527 our present purposes, but we'll be able to fix that up.
17530 void mp_obliterated (MP mp,pointer q) {
17531 print_err("Variable "); mp_show_token_list(mp, q,null,1000,0);
17532 mp_print(mp, " has been obliterated");
17533 @.Variable...obliterated@>
17534 help5("It seems you did a nasty thing---probably by accident,")
17535 ("but nevertheless you nearly hornswoggled me...")
17536 ("While I was evaluating the right-hand side of this")
17537 ("command, something happened, and the left-hand side")
17538 ("is no longer a variable! So I won't change anything.");
17541 @ If the variable does exist, we also need to check
17542 for a few other special cases before deciding that a plain old ordinary
17543 variable has, indeed, been scanned.
17545 @<Handle unusual cases that masquerade as variables...@>=
17546 if ( post_head!=null ) {
17547 @<Set up suffixed macro call and |goto restart|@>;
17549 q=link(pre_head); free_avail(pre_head);
17550 if ( mp->cur_cmd==my_var_flag ) {
17551 mp->cur_type=mp_token_list; mp->cur_exp=q; goto DONE;
17553 p=mp_find_variable(mp, q);
17555 mp_make_exp_copy(mp, p);
17557 mp_obliterated(mp, q);
17558 mp->help_line[2]="While I was evaluating the suffix of this variable,";
17559 mp->help_line[1]="something was redefined, and it's no longer a variable!";
17560 mp->help_line[0]="In order to get back on my feet, I've inserted `0' instead.";
17561 mp_put_get_flush_error(mp, 0);
17563 mp_flush_node_list(mp, q);
17566 @ The only complication associated with macro calling is that the prefix
17567 and ``at'' parameters must be packaged in an appropriate list of lists.
17569 @<Set up unsuffixed macro call and |goto restart|@>=
17571 p=mp_get_avail(mp); info(pre_head)=link(pre_head); link(pre_head)=p;
17572 info(p)=t; mp_macro_call(mp, value(q),pre_head,null);
17577 @ If the ``variable'' that turned out to be a suffixed macro no longer exists,
17578 we don't care, because we have reserved a pointer (|macro_ref|) to its
17581 @<Set up suffixed macro call and |goto restart|@>=
17583 mp_back_input(mp); p=mp_get_avail(mp); q=link(post_head);
17584 info(pre_head)=link(pre_head); link(pre_head)=post_head;
17585 info(post_head)=q; link(post_head)=p; info(p)=link(q); link(q)=null;
17586 mp_macro_call(mp, macro_ref,pre_head,null); decr(ref_count(macro_ref));
17587 mp_get_x_next(mp); goto RESTART;
17590 @ Our remaining job is simply to make a copy of the value that has been
17591 found. Some cases are harder than others, but complexity arises solely
17592 because of the multiplicity of possible cases.
17594 @<Declare the procedure called |make_exp_copy|@>=
17595 @<Declare subroutines needed by |make_exp_copy|@>;
17596 void mp_make_exp_copy (MP mp,pointer p) {
17597 pointer q,r,t; /* registers for list manipulation */
17599 mp->cur_type=type(p);
17600 switch (mp->cur_type) {
17601 case mp_vacuous: case mp_boolean_type: case mp_known:
17602 mp->cur_exp=value(p); break;
17603 case unknown_types:
17604 mp->cur_exp=mp_new_ring_entry(mp, p);
17606 case mp_string_type:
17607 mp->cur_exp=value(p); add_str_ref(mp->cur_exp);
17609 case mp_picture_type:
17610 mp->cur_exp=value(p);add_edge_ref(mp->cur_exp);
17613 mp->cur_exp=copy_pen(value(p));
17616 mp->cur_exp=mp_copy_path(mp, value(p));
17618 case mp_transform_type: case mp_color_type:
17619 case mp_cmykcolor_type: case mp_pair_type:
17620 @<Copy the big node |p|@>;
17622 case mp_dependent: case mp_proto_dependent:
17623 mp_encapsulate(mp, mp_copy_dep_list(mp, dep_list(p)));
17625 case mp_numeric_type:
17626 new_indep(p); goto RESTART;
17628 case mp_independent:
17629 q=mp_single_dependency(mp, p);
17630 if ( q==mp->dep_final ){
17631 mp->cur_type=mp_known; mp->cur_exp=0; mp_free_node(mp, q,value_node_size);
17633 mp->cur_type=mp_dependent; mp_encapsulate(mp, q);
17637 mp_confusion(mp, "copy");
17638 @:this can't happen copy}{\quad copy@>
17643 @ The |encapsulate| subroutine assumes that |dep_final| is the
17644 tail of dependency list~|p|.
17646 @<Declare subroutines needed by |make_exp_copy|@>=
17647 void mp_encapsulate (MP mp,pointer p) {
17648 mp->cur_exp=mp_get_node(mp, value_node_size); type(mp->cur_exp)=mp->cur_type;
17649 name_type(mp->cur_exp)=mp_capsule; mp_new_dep(mp, mp->cur_exp,p);
17652 @ The most tedious case arises when the user refers to a
17653 \&{pair}, \&{color}, or \&{transform} variable; we must copy several fields,
17654 each of which can be |independent|, |dependent|, |mp_proto_dependent|,
17657 @<Copy the big node |p|@>=
17659 if ( value(p)==null )
17660 mp_init_big_node(mp, p);
17661 t=mp_get_node(mp, value_node_size); name_type(t)=mp_capsule; type(t)=mp->cur_type;
17662 mp_init_big_node(mp, t);
17663 q=value(p)+mp->big_node_size[mp->cur_type];
17664 r=value(t)+mp->big_node_size[mp->cur_type];
17666 q=q-2; r=r-2; mp_install(mp, r,q);
17667 } while (q!=value(p));
17671 @ The |install| procedure copies a numeric field~|q| into field~|r| of
17672 a big node that will be part of a capsule.
17674 @<Declare subroutines needed by |make_exp_copy|@>=
17675 void mp_install (MP mp,pointer r, pointer q) {
17676 pointer p; /* temporary register */
17677 if ( type(q)==mp_known ){
17678 value(r)=value(q); type(r)=mp_known;
17679 } else if ( type(q)==mp_independent ) {
17680 p=mp_single_dependency(mp, q);
17681 if ( p==mp->dep_final ) {
17682 type(r)=mp_known; value(r)=0; mp_free_node(mp, p,value_node_size);
17684 type(r)=mp_dependent; mp_new_dep(mp, r,p);
17687 type(r)=type(q); mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(q)));
17691 @ Expressions of the form `\.{a[b,c]}' are converted into
17692 `\.{b+a*(c-b)}', without checking the types of \.b~or~\.c,
17693 provided that \.a is numeric.
17695 @<Scan a mediation...@>=
17697 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17698 if ( mp->cur_cmd!=comma ) {
17699 @<Put the left bracket and the expression back...@>;
17700 mp_unstash_cur_exp(mp, p);
17702 q=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17703 if ( mp->cur_cmd!=right_bracket ) {
17704 mp_missing_err(mp, "]");
17706 help3("I've scanned an expression of the form `a[b,c',")
17707 ("so a right bracket should have come next.")
17708 ("I shall pretend that one was there.");
17711 r=mp_stash_cur_exp(mp); mp_make_exp_copy(mp, q);
17712 mp_do_binary(mp, r,minus); mp_do_binary(mp, p,times);
17713 mp_do_binary(mp, q,plus); mp_get_x_next(mp);
17717 @ Here is a comparatively simple routine that is used to scan the
17718 \&{suffix} parameters of a macro.
17720 @<Declare the basic parsing subroutines@>=
17721 void mp_scan_suffix (MP mp) {
17722 pointer h,t; /* head and tail of the list being built */
17723 pointer p; /* temporary register */
17724 h=mp_get_avail(mp); t=h;
17726 if ( mp->cur_cmd==left_bracket ) {
17727 @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>;
17729 if ( mp->cur_cmd==numeric_token ) {
17730 p=mp_new_num_tok(mp, mp->cur_mod);
17731 } else if ((mp->cur_cmd==tag_token)||(mp->cur_cmd==internal_quantity) ) {
17732 p=mp_get_avail(mp); info(p)=mp->cur_sym;
17736 link(t)=p; t=p; mp_get_x_next(mp);
17738 mp->cur_exp=link(h); free_avail(h); mp->cur_type=mp_token_list;
17741 @ @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>=
17743 mp_get_x_next(mp); mp_scan_expression(mp);
17744 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17745 if ( mp->cur_cmd!=right_bracket ) {
17746 mp_missing_err(mp, "]");
17748 help3("I've seen a `[' and a subscript value, in a suffix,")
17749 ("so a right bracket should have come next.")
17750 ("I shall pretend that one was there.");
17753 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp;
17756 @* \[38] Parsing secondary and higher expressions.
17757 After the intricacies of |scan_primary|\kern-1pt,
17758 the |scan_secondary| routine is
17759 refreshingly simple. It's not trivial, but the operations are relatively
17760 straightforward; the main difficulty is, again, that expressions and data
17761 structures might change drastically every time we call |get_x_next|, so a
17762 cautious approach is mandatory. For example, a macro defined by
17763 \&{primarydef} might have disappeared by the time its second argument has
17764 been scanned; we solve this by increasing the reference count of its token
17765 list, so that the macro can be called even after it has been clobbered.
17767 @<Declare the basic parsing subroutines@>=
17768 void mp_scan_secondary (MP mp) {
17769 pointer p; /* for list manipulation */
17770 halfword c,d; /* operation codes or modifiers */
17771 pointer mac_name; /* token defined with \&{primarydef} */
17773 if ((mp->cur_cmd<min_primary_command)||
17774 (mp->cur_cmd>max_primary_command) )
17775 mp_bad_exp(mp, "A secondary");
17776 @.A secondary expression...@>
17777 mp_scan_primary(mp);
17779 if ( mp->cur_cmd<=max_secondary_command )
17780 if ( mp->cur_cmd>=min_secondary_command ) {
17781 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17782 if ( d==secondary_primary_macro ) {
17783 mac_name=mp->cur_sym; add_mac_ref(c);
17785 mp_get_x_next(mp); mp_scan_primary(mp);
17786 if ( d!=secondary_primary_macro ) {
17787 mp_do_binary(mp, p,c);
17789 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17790 decr(ref_count(c)); mp_get_x_next(mp);
17797 @ The following procedure calls a macro that has two parameters,
17800 @c void mp_binary_mac (MP mp,pointer p, pointer c, pointer n) {
17801 pointer q,r; /* nodes in the parameter list */
17802 q=mp_get_avail(mp); r=mp_get_avail(mp); link(q)=r;
17803 info(q)=p; info(r)=mp_stash_cur_exp(mp);
17804 mp_macro_call(mp, c,q,n);
17807 @ The next procedure, |scan_tertiary|, is pretty much the same deal.
17809 @<Declare the basic parsing subroutines@>=
17810 void mp_scan_tertiary (MP mp) {
17811 pointer p; /* for list manipulation */
17812 halfword c,d; /* operation codes or modifiers */
17813 pointer mac_name; /* token defined with \&{secondarydef} */
17815 if ((mp->cur_cmd<min_primary_command)||
17816 (mp->cur_cmd>max_primary_command) )
17817 mp_bad_exp(mp, "A tertiary");
17818 @.A tertiary expression...@>
17819 mp_scan_secondary(mp);
17821 if ( mp->cur_cmd<=max_tertiary_command ) {
17822 if ( mp->cur_cmd>=min_tertiary_command ) {
17823 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17824 if ( d==tertiary_secondary_macro ) {
17825 mac_name=mp->cur_sym; add_mac_ref(c);
17827 mp_get_x_next(mp); mp_scan_secondary(mp);
17828 if ( d!=tertiary_secondary_macro ) {
17829 mp_do_binary(mp, p,c);
17831 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17832 decr(ref_count(c)); mp_get_x_next(mp);
17840 @ Finally we reach the deepest level in our quartet of parsing routines.
17841 This one is much like the others; but it has an extra complication from
17842 paths, which materialize here.
17844 @d continue_path 25 /* a label inside of |scan_expression| */
17845 @d finish_path 26 /* another */
17847 @<Declare the basic parsing subroutines@>=
17848 void mp_scan_expression (MP mp) {
17849 pointer p,q,r,pp,qq; /* for list manipulation */
17850 halfword c,d; /* operation codes or modifiers */
17851 int my_var_flag; /* initial value of |var_flag| */
17852 pointer mac_name; /* token defined with \&{tertiarydef} */
17853 boolean cycle_hit; /* did a path expression just end with `\&{cycle}'? */
17854 scaled x,y; /* explicit coordinates or tension at a path join */
17855 int t; /* knot type following a path join */
17857 my_var_flag=mp->var_flag; mac_name=null;
17859 if ((mp->cur_cmd<min_primary_command)||
17860 (mp->cur_cmd>max_primary_command) )
17861 mp_bad_exp(mp, "An");
17862 @.An expression...@>
17863 mp_scan_tertiary(mp);
17865 if ( mp->cur_cmd<=max_expression_command )
17866 if ( mp->cur_cmd>=min_expression_command ) {
17867 if ( (mp->cur_cmd!=equals)||(my_var_flag!=assignment) ) {
17868 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17869 if ( d==expression_tertiary_macro ) {
17870 mac_name=mp->cur_sym; add_mac_ref(c);
17872 if ( (d<ampersand)||((d==ampersand)&&
17873 ((type(p)==mp_pair_type)||(type(p)==mp_path_type))) ) {
17874 @<Scan a path construction operation;
17875 but |return| if |p| has the wrong type@>;
17877 mp_get_x_next(mp); mp_scan_tertiary(mp);
17878 if ( d!=expression_tertiary_macro ) {
17879 mp_do_binary(mp, p,c);
17881 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17882 decr(ref_count(c)); mp_get_x_next(mp);
17891 @ The reader should review the data structure conventions for paths before
17892 hoping to understand the next part of this code.
17894 @<Scan a path construction operation...@>=
17897 @<Convert the left operand, |p|, into a partial path ending at~|q|;
17898 but |return| if |p| doesn't have a suitable type@>;
17900 @<Determine the path join parameters;
17901 but |goto finish_path| if there's only a direction specifier@>;
17902 if ( mp->cur_cmd==cycle ) {
17903 @<Get ready to close a cycle@>;
17905 mp_scan_tertiary(mp);
17906 @<Convert the right operand, |cur_exp|,
17907 into a partial path from |pp| to~|qq|@>;
17909 @<Join the partial paths and reset |p| and |q| to the head and tail
17911 if ( mp->cur_cmd>=min_expression_command )
17912 if ( mp->cur_cmd<=ampersand ) if ( ! cycle_hit ) goto CONTINUE_PATH;
17914 @<Choose control points for the path and put the result into |cur_exp|@>;
17917 @ @<Convert the left operand, |p|, into a partial path ending at~|q|...@>=
17919 mp_unstash_cur_exp(mp, p);
17920 if ( mp->cur_type==mp_pair_type ) p=mp_new_knot(mp);
17921 else if ( mp->cur_type==mp_path_type ) p=mp->cur_exp;
17924 while ( link(q)!=p ) q=link(q);
17925 if ( left_type(p)!=mp_endpoint ) { /* open up a cycle */
17926 r=mp_copy_knot(mp, p); link(q)=r; q=r;
17928 left_type(p)=mp_open; right_type(q)=mp_open;
17931 @ A pair of numeric values is changed into a knot node for a one-point path
17932 when \MP\ discovers that the pair is part of a path.
17934 @c@<Declare the procedure called |known_pair|@>;
17935 pointer mp_new_knot (MP mp) { /* convert a pair to a knot with two endpoints */
17936 pointer q; /* the new node */
17937 q=mp_get_node(mp, knot_node_size); left_type(q)=mp_endpoint;
17938 right_type(q)=mp_endpoint; originator(q)=metapost_user; link(q)=q;
17939 mp_known_pair(mp); x_coord(q)=mp->cur_x; y_coord(q)=mp->cur_y;
17943 @ The |known_pair| subroutine sets |cur_x| and |cur_y| to the components
17944 of the current expression, assuming that the current expression is a
17945 pair of known numerics. Unknown components are zeroed, and the
17946 current expression is flushed.
17948 @<Declare the procedure called |known_pair|@>=
17949 void mp_known_pair (MP mp) {
17950 pointer p; /* the pair node */
17951 if ( mp->cur_type!=mp_pair_type ) {
17952 exp_err("Undefined coordinates have been replaced by (0,0)");
17953 @.Undefined coordinates...@>
17954 help5("I need x and y numbers for this part of the path.")
17955 ("The value I found (see above) was no good;")
17956 ("so I'll try to keep going by using zero instead.")
17957 ("(Chapter 27 of The METAFONTbook explains that")
17958 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17959 ("you might want to type `I ??" "?' now.)");
17960 mp_put_get_flush_error(mp, 0); mp->cur_x=0; mp->cur_y=0;
17962 p=value(mp->cur_exp);
17963 @<Make sure that both |x| and |y| parts of |p| are known;
17964 copy them into |cur_x| and |cur_y|@>;
17965 mp_flush_cur_exp(mp, 0);
17969 @ @<Make sure that both |x| and |y| parts of |p| are known...@>=
17970 if ( type(x_part_loc(p))==mp_known ) {
17971 mp->cur_x=value(x_part_loc(p));
17973 mp_disp_err(mp, x_part_loc(p),
17974 "Undefined x coordinate has been replaced by 0");
17975 @.Undefined coordinates...@>
17976 help5("I need a `known' x value for this part of the path.")
17977 ("The value I found (see above) was no good;")
17978 ("so I'll try to keep going by using zero instead.")
17979 ("(Chapter 27 of The METAFONTbook explains that")
17980 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17981 ("you might want to type `I ??" "?' now.)");
17982 mp_put_get_error(mp); mp_recycle_value(mp, x_part_loc(p)); mp->cur_x=0;
17984 if ( type(y_part_loc(p))==mp_known ) {
17985 mp->cur_y=value(y_part_loc(p));
17987 mp_disp_err(mp, y_part_loc(p),
17988 "Undefined y coordinate has been replaced by 0");
17989 help5("I need a `known' y value for this part of the path.")
17990 ("The value I found (see above) was no good;")
17991 ("so I'll try to keep going by using zero instead.")
17992 ("(Chapter 27 of The METAFONTbook explains that")
17993 ("you might want to type `I ??" "?' now.)");
17994 mp_put_get_error(mp); mp_recycle_value(mp, y_part_loc(p)); mp->cur_y=0;
17997 @ At this point |cur_cmd| is either |ampersand|, |left_brace|, or |path_join|.
17999 @<Determine the path join parameters...@>=
18000 if ( mp->cur_cmd==left_brace ) {
18001 @<Put the pre-join direction information into node |q|@>;
18004 if ( d==path_join ) {
18005 @<Determine the tension and/or control points@>;
18006 } else if ( d!=ampersand ) {
18010 if ( mp->cur_cmd==left_brace ) {
18011 @<Put the post-join direction information into |x| and |t|@>;
18012 } else if ( right_type(q)!=mp_explicit ) {
18016 @ The |scan_direction| subroutine looks at the directional information
18017 that is enclosed in braces, and also scans ahead to the following character.
18018 A type code is returned, either |open| (if the direction was $(0,0)$),
18019 or |curl| (if the direction was a curl of known value |cur_exp|), or
18020 |given| (if the direction is given by the |angle| value that now
18021 appears in |cur_exp|).
18023 There's nothing difficult about this subroutine, but the program is rather
18024 lengthy because a variety of potential errors need to be nipped in the bud.
18026 @c small_number mp_scan_direction (MP mp) {
18027 int t; /* the type of information found */
18028 scaled x; /* an |x| coordinate */
18030 if ( mp->cur_cmd==curl_command ) {
18031 @<Scan a curl specification@>;
18033 @<Scan a given direction@>;
18035 if ( mp->cur_cmd!=right_brace ) {
18036 mp_missing_err(mp, "}");
18037 @.Missing `\char`\}'@>
18038 help3("I've scanned a direction spec for part of a path,")
18039 ("so a right brace should have come next.")
18040 ("I shall pretend that one was there.");
18047 @ @<Scan a curl specification@>=
18048 { mp_get_x_next(mp); mp_scan_expression(mp);
18049 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<0) ){
18050 exp_err("Improper curl has been replaced by 1");
18052 help1("A curl must be a known, nonnegative number.");
18053 mp_put_get_flush_error(mp, unity);
18058 @ @<Scan a given direction@>=
18059 { mp_scan_expression(mp);
18060 if ( mp->cur_type>mp_pair_type ) {
18061 @<Get given directions separated by commas@>;
18065 if ( (mp->cur_x==0)&&(mp->cur_y==0) ) t=mp_open;
18066 else { t=mp_given; mp->cur_exp=mp_n_arg(mp, mp->cur_x,mp->cur_y);}
18069 @ @<Get given directions separated by commas@>=
18071 if ( mp->cur_type!=mp_known ) {
18072 exp_err("Undefined x coordinate has been replaced by 0");
18073 @.Undefined coordinates...@>
18074 help5("I need a `known' x value for this part of the path.")
18075 ("The value I found (see above) was no good;")
18076 ("so I'll try to keep going by using zero instead.")
18077 ("(Chapter 27 of The METAFONTbook explains that")
18078 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18079 ("you might want to type `I ??" "?' now.)");
18080 mp_put_get_flush_error(mp, 0);
18083 if ( mp->cur_cmd!=comma ) {
18084 mp_missing_err(mp, ",");
18086 help2("I've got the x coordinate of a path direction;")
18087 ("will look for the y coordinate next.");
18090 mp_get_x_next(mp); mp_scan_expression(mp);
18091 if ( mp->cur_type!=mp_known ) {
18092 exp_err("Undefined y coordinate has been replaced by 0");
18093 help5("I need a `known' y value for this part of the path.")
18094 ("The value I found (see above) was no good;")
18095 ("so I'll try to keep going by using zero instead.")
18096 ("(Chapter 27 of The METAFONTbook explains that")
18097 ("you might want to type `I ??" "?' now.)");
18098 mp_put_get_flush_error(mp, 0);
18100 mp->cur_y=mp->cur_exp; mp->cur_x=x;
18103 @ At this point |right_type(q)| is usually |open|, but it may have been
18104 set to some other value by a previous splicing operation. We must maintain
18105 the value of |right_type(q)| in unusual cases such as
18106 `\.{..z1\{z2\}\&\{z3\}z1\{0,0\}..}'.
18108 @<Put the pre-join...@>=
18110 t=mp_scan_direction(mp);
18111 if ( t!=mp_open ) {
18112 right_type(q)=t; right_given(q)=mp->cur_exp;
18113 if ( left_type(q)==mp_open ) {
18114 left_type(q)=t; left_given(q)=mp->cur_exp;
18115 } /* note that |left_given(q)=left_curl(q)| */
18119 @ Since |left_tension| and |left_y| share the same position in knot nodes,
18120 and since |left_given| is similarly equivalent to |left_x|, we use
18121 |x| and |y| to hold the given direction and tension information when
18122 there are no explicit control points.
18124 @<Put the post-join...@>=
18126 t=mp_scan_direction(mp);
18127 if ( right_type(q)!=mp_explicit ) x=mp->cur_exp;
18128 else t=mp_explicit; /* the direction information is superfluous */
18131 @ @<Determine the tension and/or...@>=
18134 if ( mp->cur_cmd==tension ) {
18135 @<Set explicit tensions@>;
18136 } else if ( mp->cur_cmd==controls ) {
18137 @<Set explicit control points@>;
18139 right_tension(q)=unity; y=unity; mp_back_input(mp); /* default tension */
18142 if ( mp->cur_cmd!=path_join ) {
18143 mp_missing_err(mp, "..");
18145 help1("A path join command should end with two dots.");
18152 @ @<Set explicit tensions@>=
18154 mp_get_x_next(mp); y=mp->cur_cmd;
18155 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18156 mp_scan_primary(mp);
18157 @<Make sure that the current expression is a valid tension setting@>;
18158 if ( y==at_least ) negate(mp->cur_exp);
18159 right_tension(q)=mp->cur_exp;
18160 if ( mp->cur_cmd==and_command ) {
18161 mp_get_x_next(mp); y=mp->cur_cmd;
18162 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18163 mp_scan_primary(mp);
18164 @<Make sure that the current expression is a valid tension setting@>;
18165 if ( y==at_least ) negate(mp->cur_exp);
18170 @ @d min_tension three_quarter_unit
18172 @<Make sure that the current expression is a valid tension setting@>=
18173 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<min_tension) ) {
18174 exp_err("Improper tension has been set to 1");
18175 @.Improper tension@>
18176 help1("The expression above should have been a number >=3/4.");
18177 mp_put_get_flush_error(mp, unity);
18180 @ @<Set explicit control points@>=
18182 right_type(q)=mp_explicit; t=mp_explicit; mp_get_x_next(mp); mp_scan_primary(mp);
18183 mp_known_pair(mp); right_x(q)=mp->cur_x; right_y(q)=mp->cur_y;
18184 if ( mp->cur_cmd!=and_command ) {
18185 x=right_x(q); y=right_y(q);
18187 mp_get_x_next(mp); mp_scan_primary(mp);
18188 mp_known_pair(mp); x=mp->cur_x; y=mp->cur_y;
18192 @ @<Convert the right operand, |cur_exp|, into a partial path...@>=
18194 if ( mp->cur_type!=mp_path_type ) pp=mp_new_knot(mp);
18195 else pp=mp->cur_exp;
18197 while ( link(qq)!=pp ) qq=link(qq);
18198 if ( left_type(pp)!=mp_endpoint ) { /* open up a cycle */
18199 r=mp_copy_knot(mp, pp); link(qq)=r; qq=r;
18201 left_type(pp)=mp_open; right_type(qq)=mp_open;
18204 @ If a person tries to define an entire path by saying `\.{(x,y)\&cycle}',
18205 we silently change the specification to `\.{(x,y)..cycle}', since a cycle
18206 shouldn't have length zero.
18208 @<Get ready to close a cycle@>=
18210 cycle_hit=true; mp_get_x_next(mp); pp=p; qq=p;
18211 if ( d==ampersand ) if ( p==q ) {
18212 d=path_join; right_tension(q)=unity; y=unity;
18216 @ @<Join the partial paths and reset |p| and |q|...@>=
18218 if ( d==ampersand ) {
18219 if ( (x_coord(q)!=x_coord(pp))||(y_coord(q)!=y_coord(pp)) ) {
18220 print_err("Paths don't touch; `&' will be changed to `..'");
18221 @.Paths don't touch@>
18222 help3("When you join paths `p&q', the ending point of p")
18223 ("must be exactly equal to the starting point of q.")
18224 ("So I'm going to pretend that you said `p..q' instead.");
18225 mp_put_get_error(mp); d=path_join; right_tension(q)=unity; y=unity;
18228 @<Plug an opening in |right_type(pp)|, if possible@>;
18229 if ( d==ampersand ) {
18230 @<Splice independent paths together@>;
18232 @<Plug an opening in |right_type(q)|, if possible@>;
18233 link(q)=pp; left_y(pp)=y;
18234 if ( t!=mp_open ) { left_x(pp)=x; left_type(pp)=t; };
18239 @ @<Plug an opening in |right_type(q)|...@>=
18240 if ( right_type(q)==mp_open ) {
18241 if ( (left_type(q)==mp_curl)||(left_type(q)==mp_given) ) {
18242 right_type(q)=left_type(q); right_given(q)=left_given(q);
18246 @ @<Plug an opening in |right_type(pp)|...@>=
18247 if ( right_type(pp)==mp_open ) {
18248 if ( (t==mp_curl)||(t==mp_given) ) {
18249 right_type(pp)=t; right_given(pp)=x;
18253 @ @<Splice independent paths together@>=
18255 if ( left_type(q)==mp_open ) if ( right_type(q)==mp_open ) {
18256 left_type(q)=mp_curl; left_curl(q)=unity;
18258 if ( right_type(pp)==mp_open ) if ( t==mp_open ) {
18259 right_type(pp)=mp_curl; right_curl(pp)=unity;
18261 right_type(q)=right_type(pp); link(q)=link(pp);
18262 right_x(q)=right_x(pp); right_y(q)=right_y(pp);
18263 mp_free_node(mp, pp,knot_node_size);
18264 if ( qq==pp ) qq=q;
18267 @ @<Choose control points for the path...@>=
18269 if ( d==ampersand ) p=q;
18271 left_type(p)=mp_endpoint;
18272 if ( right_type(p)==mp_open ) {
18273 right_type(p)=mp_curl; right_curl(p)=unity;
18275 right_type(q)=mp_endpoint;
18276 if ( left_type(q)==mp_open ) {
18277 left_type(q)=mp_curl; left_curl(q)=unity;
18281 mp_make_choices(mp, p);
18282 mp->cur_type=mp_path_type; mp->cur_exp=p
18284 @ Finally, we sometimes need to scan an expression whose value is
18285 supposed to be either |true_code| or |false_code|.
18287 @<Declare the basic parsing subroutines@>=
18288 void mp_get_boolean (MP mp) {
18289 mp_get_x_next(mp); mp_scan_expression(mp);
18290 if ( mp->cur_type!=mp_boolean_type ) {
18291 exp_err("Undefined condition will be treated as `false'");
18292 @.Undefined condition...@>
18293 help2("The expression shown above should have had a definite")
18294 ("true-or-false value. I'm changing it to `false'.");
18295 mp_put_get_flush_error(mp, false_code); mp->cur_type=mp_boolean_type;
18299 @* \[39] Doing the operations.
18300 The purpose of parsing is primarily to permit people to avoid piles of
18301 parentheses. But the real work is done after the structure of an expression
18302 has been recognized; that's when new expressions are generated. We
18303 turn now to the guts of \MP, which handles individual operators that
18304 have come through the parsing mechanism.
18306 We'll start with the easy ones that take no operands, then work our way
18307 up to operators with one and ultimately two arguments. In other words,
18308 we will write the three procedures |do_nullary|, |do_unary|, and |do_binary|
18309 that are invoked periodically by the expression scanners.
18311 First let's make sure that all of the primitive operators are in the
18312 hash table. Although |scan_primary| and its relatives made use of the
18313 \\{cmd} code for these operators, the \\{do} routines base everything
18314 on the \\{mod} code. For example, |do_binary| doesn't care whether the
18315 operation it performs is a |primary_binary| or |secondary_binary|, etc.
18318 mp_primitive(mp, "true",nullary,true_code);
18319 @:true_}{\&{true} primitive@>
18320 mp_primitive(mp, "false",nullary,false_code);
18321 @:false_}{\&{false} primitive@>
18322 mp_primitive(mp, "nullpicture",nullary,null_picture_code);
18323 @:null_picture_}{\&{nullpicture} primitive@>
18324 mp_primitive(mp, "nullpen",nullary,null_pen_code);
18325 @:null_pen_}{\&{nullpen} primitive@>
18326 mp_primitive(mp, "jobname",nullary,job_name_op);
18327 @:job_name_}{\&{jobname} primitive@>
18328 mp_primitive(mp, "readstring",nullary,read_string_op);
18329 @:read_string_}{\&{readstring} primitive@>
18330 mp_primitive(mp, "pencircle",nullary,pen_circle);
18331 @:pen_circle_}{\&{pencircle} primitive@>
18332 mp_primitive(mp, "normaldeviate",nullary,normal_deviate);
18333 @:normal_deviate_}{\&{normaldeviate} primitive@>
18334 mp_primitive(mp, "readfrom",unary,read_from_op);
18335 @:read_from_}{\&{readfrom} primitive@>
18336 mp_primitive(mp, "closefrom",unary,close_from_op);
18337 @:close_from_}{\&{closefrom} primitive@>
18338 mp_primitive(mp, "odd",unary,odd_op);
18339 @:odd_}{\&{odd} primitive@>
18340 mp_primitive(mp, "known",unary,known_op);
18341 @:known_}{\&{known} primitive@>
18342 mp_primitive(mp, "unknown",unary,unknown_op);
18343 @:unknown_}{\&{unknown} primitive@>
18344 mp_primitive(mp, "not",unary,not_op);
18345 @:not_}{\&{not} primitive@>
18346 mp_primitive(mp, "decimal",unary,decimal);
18347 @:decimal_}{\&{decimal} primitive@>
18348 mp_primitive(mp, "reverse",unary,reverse);
18349 @:reverse_}{\&{reverse} primitive@>
18350 mp_primitive(mp, "makepath",unary,make_path_op);
18351 @:make_path_}{\&{makepath} primitive@>
18352 mp_primitive(mp, "makepen",unary,make_pen_op);
18353 @:make_pen_}{\&{makepen} primitive@>
18354 mp_primitive(mp, "oct",unary,oct_op);
18355 @:oct_}{\&{oct} primitive@>
18356 mp_primitive(mp, "hex",unary,hex_op);
18357 @:hex_}{\&{hex} primitive@>
18358 mp_primitive(mp, "ASCII",unary,ASCII_op);
18359 @:ASCII_}{\&{ASCII} primitive@>
18360 mp_primitive(mp, "char",unary,char_op);
18361 @:char_}{\&{char} primitive@>
18362 mp_primitive(mp, "length",unary,length_op);
18363 @:length_}{\&{length} primitive@>
18364 mp_primitive(mp, "turningnumber",unary,turning_op);
18365 @:turning_number_}{\&{turningnumber} primitive@>
18366 mp_primitive(mp, "xpart",unary,x_part);
18367 @:x_part_}{\&{xpart} primitive@>
18368 mp_primitive(mp, "ypart",unary,y_part);
18369 @:y_part_}{\&{ypart} primitive@>
18370 mp_primitive(mp, "xxpart",unary,xx_part);
18371 @:xx_part_}{\&{xxpart} primitive@>
18372 mp_primitive(mp, "xypart",unary,xy_part);
18373 @:xy_part_}{\&{xypart} primitive@>
18374 mp_primitive(mp, "yxpart",unary,yx_part);
18375 @:yx_part_}{\&{yxpart} primitive@>
18376 mp_primitive(mp, "yypart",unary,yy_part);
18377 @:yy_part_}{\&{yypart} primitive@>
18378 mp_primitive(mp, "redpart",unary,red_part);
18379 @:red_part_}{\&{redpart} primitive@>
18380 mp_primitive(mp, "greenpart",unary,green_part);
18381 @:green_part_}{\&{greenpart} primitive@>
18382 mp_primitive(mp, "bluepart",unary,blue_part);
18383 @:blue_part_}{\&{bluepart} primitive@>
18384 mp_primitive(mp, "cyanpart",unary,cyan_part);
18385 @:cyan_part_}{\&{cyanpart} primitive@>
18386 mp_primitive(mp, "magentapart",unary,magenta_part);
18387 @:magenta_part_}{\&{magentapart} primitive@>
18388 mp_primitive(mp, "yellowpart",unary,yellow_part);
18389 @:yellow_part_}{\&{yellowpart} primitive@>
18390 mp_primitive(mp, "blackpart",unary,black_part);
18391 @:black_part_}{\&{blackpart} primitive@>
18392 mp_primitive(mp, "greypart",unary,grey_part);
18393 @:grey_part_}{\&{greypart} primitive@>
18394 mp_primitive(mp, "colormodel",unary,color_model_part);
18395 @:color_model_part_}{\&{colormodel} primitive@>
18396 mp_primitive(mp, "fontpart",unary,font_part);
18397 @:font_part_}{\&{fontpart} primitive@>
18398 mp_primitive(mp, "textpart",unary,text_part);
18399 @:text_part_}{\&{textpart} primitive@>
18400 mp_primitive(mp, "pathpart",unary,path_part);
18401 @:path_part_}{\&{pathpart} primitive@>
18402 mp_primitive(mp, "penpart",unary,pen_part);
18403 @:pen_part_}{\&{penpart} primitive@>
18404 mp_primitive(mp, "dashpart",unary,dash_part);
18405 @:dash_part_}{\&{dashpart} primitive@>
18406 mp_primitive(mp, "sqrt",unary,sqrt_op);
18407 @:sqrt_}{\&{sqrt} primitive@>
18408 mp_primitive(mp, "mexp",unary,m_exp_op);
18409 @:m_exp_}{\&{mexp} primitive@>
18410 mp_primitive(mp, "mlog",unary,m_log_op);
18411 @:m_log_}{\&{mlog} primitive@>
18412 mp_primitive(mp, "sind",unary,sin_d_op);
18413 @:sin_d_}{\&{sind} primitive@>
18414 mp_primitive(mp, "cosd",unary,cos_d_op);
18415 @:cos_d_}{\&{cosd} primitive@>
18416 mp_primitive(mp, "floor",unary,floor_op);
18417 @:floor_}{\&{floor} primitive@>
18418 mp_primitive(mp, "uniformdeviate",unary,uniform_deviate);
18419 @:uniform_deviate_}{\&{uniformdeviate} primitive@>
18420 mp_primitive(mp, "charexists",unary,char_exists_op);
18421 @:char_exists_}{\&{charexists} primitive@>
18422 mp_primitive(mp, "fontsize",unary,font_size);
18423 @:font_size_}{\&{fontsize} primitive@>
18424 mp_primitive(mp, "llcorner",unary,ll_corner_op);
18425 @:ll_corner_}{\&{llcorner} primitive@>
18426 mp_primitive(mp, "lrcorner",unary,lr_corner_op);
18427 @:lr_corner_}{\&{lrcorner} primitive@>
18428 mp_primitive(mp, "ulcorner",unary,ul_corner_op);
18429 @:ul_corner_}{\&{ulcorner} primitive@>
18430 mp_primitive(mp, "urcorner",unary,ur_corner_op);
18431 @:ur_corner_}{\&{urcorner} primitive@>
18432 mp_primitive(mp, "arclength",unary,arc_length);
18433 @:arc_length_}{\&{arclength} primitive@>
18434 mp_primitive(mp, "angle",unary,angle_op);
18435 @:angle_}{\&{angle} primitive@>
18436 mp_primitive(mp, "cycle",cycle,cycle_op);
18437 @:cycle_}{\&{cycle} primitive@>
18438 mp_primitive(mp, "stroked",unary,stroked_op);
18439 @:stroked_}{\&{stroked} primitive@>
18440 mp_primitive(mp, "filled",unary,filled_op);
18441 @:filled_}{\&{filled} primitive@>
18442 mp_primitive(mp, "textual",unary,textual_op);
18443 @:textual_}{\&{textual} primitive@>
18444 mp_primitive(mp, "clipped",unary,clipped_op);
18445 @:clipped_}{\&{clipped} primitive@>
18446 mp_primitive(mp, "bounded",unary,bounded_op);
18447 @:bounded_}{\&{bounded} primitive@>
18448 mp_primitive(mp, "+",plus_or_minus,plus);
18449 @:+ }{\.{+} primitive@>
18450 mp_primitive(mp, "-",plus_or_minus,minus);
18451 @:- }{\.{-} primitive@>
18452 mp_primitive(mp, "*",secondary_binary,times);
18453 @:* }{\.{*} primitive@>
18454 mp_primitive(mp, "/",slash,over); mp->eqtb[frozen_slash]=mp->eqtb[mp->cur_sym];
18455 @:/ }{\.{/} primitive@>
18456 mp_primitive(mp, "++",tertiary_binary,pythag_add);
18457 @:++_}{\.{++} primitive@>
18458 mp_primitive(mp, "+-+",tertiary_binary,pythag_sub);
18459 @:+-+_}{\.{+-+} primitive@>
18460 mp_primitive(mp, "or",tertiary_binary,or_op);
18461 @:or_}{\&{or} primitive@>
18462 mp_primitive(mp, "and",and_command,and_op);
18463 @:and_}{\&{and} primitive@>
18464 mp_primitive(mp, "<",expression_binary,less_than);
18465 @:< }{\.{<} primitive@>
18466 mp_primitive(mp, "<=",expression_binary,less_or_equal);
18467 @:<=_}{\.{<=} primitive@>
18468 mp_primitive(mp, ">",expression_binary,greater_than);
18469 @:> }{\.{>} primitive@>
18470 mp_primitive(mp, ">=",expression_binary,greater_or_equal);
18471 @:>=_}{\.{>=} primitive@>
18472 mp_primitive(mp, "=",equals,equal_to);
18473 @:= }{\.{=} primitive@>
18474 mp_primitive(mp, "<>",expression_binary,unequal_to);
18475 @:<>_}{\.{<>} primitive@>
18476 mp_primitive(mp, "substring",primary_binary,substring_of);
18477 @:substring_}{\&{substring} primitive@>
18478 mp_primitive(mp, "subpath",primary_binary,subpath_of);
18479 @:subpath_}{\&{subpath} primitive@>
18480 mp_primitive(mp, "directiontime",primary_binary,direction_time_of);
18481 @:direction_time_}{\&{directiontime} primitive@>
18482 mp_primitive(mp, "point",primary_binary,point_of);
18483 @:point_}{\&{point} primitive@>
18484 mp_primitive(mp, "precontrol",primary_binary,precontrol_of);
18485 @:precontrol_}{\&{precontrol} primitive@>
18486 mp_primitive(mp, "postcontrol",primary_binary,postcontrol_of);
18487 @:postcontrol_}{\&{postcontrol} primitive@>
18488 mp_primitive(mp, "penoffset",primary_binary,pen_offset_of);
18489 @:pen_offset_}{\&{penoffset} primitive@>
18490 mp_primitive(mp, "arctime",primary_binary,arc_time_of);
18491 @:arc_time_of_}{\&{arctime} primitive@>
18492 mp_primitive(mp, "mpversion",nullary,mp_version);
18493 @:mp_verison_}{\&{mpversion} primitive@>
18494 mp_primitive(mp, "&",ampersand,concatenate);
18495 @:!!!}{\.{\&} primitive@>
18496 mp_primitive(mp, "rotated",secondary_binary,rotated_by);
18497 @:rotated_}{\&{rotated} primitive@>
18498 mp_primitive(mp, "slanted",secondary_binary,slanted_by);
18499 @:slanted_}{\&{slanted} primitive@>
18500 mp_primitive(mp, "scaled",secondary_binary,scaled_by);
18501 @:scaled_}{\&{scaled} primitive@>
18502 mp_primitive(mp, "shifted",secondary_binary,shifted_by);
18503 @:shifted_}{\&{shifted} primitive@>
18504 mp_primitive(mp, "transformed",secondary_binary,transformed_by);
18505 @:transformed_}{\&{transformed} primitive@>
18506 mp_primitive(mp, "xscaled",secondary_binary,x_scaled);
18507 @:x_scaled_}{\&{xscaled} primitive@>
18508 mp_primitive(mp, "yscaled",secondary_binary,y_scaled);
18509 @:y_scaled_}{\&{yscaled} primitive@>
18510 mp_primitive(mp, "zscaled",secondary_binary,z_scaled);
18511 @:z_scaled_}{\&{zscaled} primitive@>
18512 mp_primitive(mp, "infont",secondary_binary,in_font);
18513 @:in_font_}{\&{infont} primitive@>
18514 mp_primitive(mp, "intersectiontimes",tertiary_binary,intersect);
18515 @:intersection_times_}{\&{intersectiontimes} primitive@>
18517 @ @<Cases of |print_cmd...@>=
18520 case primary_binary:
18521 case secondary_binary:
18522 case tertiary_binary:
18523 case expression_binary:
18525 case plus_or_minus:
18530 mp_print_op(mp, m);
18533 @ OK, let's look at the simplest \\{do} procedure first.
18535 @c @<Declare nullary action procedure@>;
18536 void mp_do_nullary (MP mp,quarterword c) {
18538 if ( mp->internal[mp_tracing_commands]>two )
18539 mp_show_cmd_mod(mp, nullary,c);
18541 case true_code: case false_code:
18542 mp->cur_type=mp_boolean_type; mp->cur_exp=c;
18544 case null_picture_code:
18545 mp->cur_type=mp_picture_type;
18546 mp->cur_exp=mp_get_node(mp, edge_header_size);
18547 mp_init_edges(mp, mp->cur_exp);
18549 case null_pen_code:
18550 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, 0);
18552 case normal_deviate:
18553 mp->cur_type=mp_known; mp->cur_exp=mp_norm_rand(mp);
18556 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, unity);
18559 if ( mp->job_name==NULL ) mp_open_log_file(mp);
18560 mp->cur_type=mp_string_type; mp->cur_exp=rts(mp->job_name);
18563 mp->cur_type=mp_string_type;
18564 mp->cur_exp=intern(metapost_version) ;
18566 case read_string_op:
18567 @<Read a string from the terminal@>;
18569 } /* there are no other cases */
18573 @ @<Read a string...@>=
18575 if ( mp->interaction<=mp_nonstop_mode )
18576 mp_fatal_error(mp, "*** (cannot readstring in nonstop modes)");
18577 mp_begin_file_reading(mp); name=is_read;
18578 limit=start; prompt_input("");
18579 mp_finish_read(mp);
18582 @ @<Declare nullary action procedure@>=
18583 void mp_finish_read (MP mp) { /* copy |buffer| line to |cur_exp| */
18585 str_room((int)mp->last-start);
18586 for (k=start;k<=mp->last-1;k++) {
18587 append_char(mp->buffer[k]);
18589 mp_end_file_reading(mp); mp->cur_type=mp_string_type;
18590 mp->cur_exp=mp_make_string(mp);
18593 @ Things get a bit more interesting when there's an operand. The
18594 operand to |do_unary| appears in |cur_type| and |cur_exp|.
18596 @c @<Declare unary action procedures@>;
18597 void mp_do_unary (MP mp,quarterword c) {
18598 pointer p,q,r; /* for list manipulation */
18599 integer x; /* a temporary register */
18601 if ( mp->internal[mp_tracing_commands]>two )
18602 @<Trace the current unary operation@>;
18605 if ( mp->cur_type<mp_color_type ) mp_bad_unary(mp, plus);
18608 @<Negate the current expression@>;
18610 @<Additional cases of unary operators@>;
18611 } /* there are no other cases */
18615 @ The |nice_pair| function returns |true| if both components of a pair
18618 @<Declare unary action procedures@>=
18619 boolean mp_nice_pair (MP mp,integer p, quarterword t) {
18620 if ( t==mp_pair_type ) {
18622 if ( type(x_part_loc(p))==mp_known )
18623 if ( type(y_part_loc(p))==mp_known )
18629 @ The |nice_color_or_pair| function is analogous except that it also accepts
18630 fully known colors.
18632 @<Declare unary action procedures@>=
18633 boolean mp_nice_color_or_pair (MP mp,integer p, quarterword t) {
18634 pointer q,r; /* for scanning the big node */
18635 if ( (t!=mp_pair_type)&&(t!=mp_color_type)&&(t!=mp_cmykcolor_type) ) {
18639 r=q+mp->big_node_size[type(p)];
18642 if ( type(r)!=mp_known )
18649 @ @<Declare unary action...@>=
18650 void mp_print_known_or_unknown_type (MP mp,small_number t, integer v) {
18651 mp_print_char(mp, '(');
18652 if ( t>mp_known ) mp_print(mp, "unknown numeric");
18653 else { if ( (t==mp_pair_type)||(t==mp_color_type)||(t==mp_cmykcolor_type) )
18654 if ( ! mp_nice_color_or_pair(mp, v,t) ) mp_print(mp, "unknown ");
18655 mp_print_type(mp, t);
18657 mp_print_char(mp, ')');
18660 @ @<Declare unary action...@>=
18661 void mp_bad_unary (MP mp,quarterword c) {
18662 exp_err("Not implemented: "); mp_print_op(mp, c);
18663 @.Not implemented...@>
18664 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
18665 help3("I'm afraid I don't know how to apply that operation to that")
18666 ("particular type. Continue, and I'll simply return the")
18667 ("argument (shown above) as the result of the operation.");
18668 mp_put_get_error(mp);
18671 @ @<Trace the current unary operation@>=
18673 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
18674 mp_print_op(mp, c); mp_print_char(mp, '(');
18675 mp_print_exp(mp, null,0); /* show the operand, but not verbosely */
18676 mp_print(mp, ")}"); mp_end_diagnostic(mp, false);
18679 @ Negation is easy except when the current expression
18680 is of type |independent|, or when it is a pair with one or more
18681 |independent| components.
18683 It is tempting to argue that the negative of an independent variable
18684 is an independent variable, hence we don't have to do anything when
18685 negating it. The fallacy is that other dependent variables pointing
18686 to the current expression must change the sign of their
18687 coefficients if we make no change to the current expression.
18689 Instead, we work around the problem by copying the current expression
18690 and recycling it afterwards (cf.~the |stash_in| routine).
18692 @<Negate the current expression@>=
18693 switch (mp->cur_type) {
18694 case mp_color_type:
18695 case mp_cmykcolor_type:
18697 case mp_independent:
18698 q=mp->cur_exp; mp_make_exp_copy(mp, q);
18699 if ( mp->cur_type==mp_dependent ) {
18700 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18701 } else if ( mp->cur_type<=mp_pair_type ) { /* |mp_color_type| or |mp_pair_type| */
18702 p=value(mp->cur_exp);
18703 r=p+mp->big_node_size[mp->cur_type];
18706 if ( type(r)==mp_known ) negate(value(r));
18707 else mp_negate_dep_list(mp, dep_list(r));
18709 } /* if |cur_type=mp_known| then |cur_exp=0| */
18710 mp_recycle_value(mp, q); mp_free_node(mp, q,value_node_size);
18713 case mp_proto_dependent:
18714 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18717 negate(mp->cur_exp);
18720 mp_bad_unary(mp, minus);
18724 @ @<Declare unary action...@>=
18725 void mp_negate_dep_list (MP mp,pointer p) {
18728 if ( info(p)==null ) return;
18733 @ @<Additional cases of unary operators@>=
18735 if ( mp->cur_type!=mp_boolean_type ) mp_bad_unary(mp, not_op);
18736 else mp->cur_exp=true_code+false_code-mp->cur_exp;
18739 @ @d three_sixty_units 23592960 /* that's |360*unity| */
18740 @d boolean_reset(A) if ( (A) ) mp->cur_exp=true_code; else mp->cur_exp=false_code
18742 @<Additional cases of unary operators@>=
18749 case uniform_deviate:
18751 case char_exists_op:
18752 if ( mp->cur_type!=mp_known ) {
18753 mp_bad_unary(mp, c);
18756 case sqrt_op:mp->cur_exp=mp_square_rt(mp, mp->cur_exp);break;
18757 case m_exp_op:mp->cur_exp=mp_m_exp(mp, mp->cur_exp);break;
18758 case m_log_op:mp->cur_exp=mp_m_log(mp, mp->cur_exp);break;
18761 mp_n_sin_cos(mp, (mp->cur_exp % three_sixty_units)*16);
18762 if ( c==sin_d_op ) mp->cur_exp=mp_round_fraction(mp, mp->n_sin);
18763 else mp->cur_exp=mp_round_fraction(mp, mp->n_cos);
18765 case floor_op:mp->cur_exp=mp_floor_scaled(mp, mp->cur_exp);break;
18766 case uniform_deviate:mp->cur_exp=mp_unif_rand(mp, mp->cur_exp);break;
18768 boolean_reset(odd(mp_round_unscaled(mp, mp->cur_exp)));
18769 mp->cur_type=mp_boolean_type;
18771 case char_exists_op:
18772 @<Determine if a character has been shipped out@>;
18774 } /* there are no other cases */
18778 @ @<Additional cases of unary operators@>=
18780 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) ) {
18781 p=value(mp->cur_exp);
18782 x=mp_n_arg(mp, value(x_part_loc(p)),value(y_part_loc(p)));
18783 if ( x>=0 ) mp_flush_cur_exp(mp, (x+8)/ 16);
18784 else mp_flush_cur_exp(mp, -((-x+8)/ 16));
18786 mp_bad_unary(mp, angle_op);
18790 @ If the current expression is a pair, but the context wants it to
18791 be a path, we call |pair_to_path|.
18793 @<Declare unary action...@>=
18794 void mp_pair_to_path (MP mp) {
18795 mp->cur_exp=mp_new_knot(mp);
18796 mp->cur_type=mp_path_type;
18799 @ @<Additional cases of unary operators@>=
18802 if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_transform_type) )
18803 mp_take_part(mp, c);
18804 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18805 else mp_bad_unary(mp, c);
18811 if ( mp->cur_type==mp_transform_type ) mp_take_part(mp, c);
18812 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18813 else mp_bad_unary(mp, c);
18818 if ( mp->cur_type==mp_color_type ) mp_take_part(mp, c);
18819 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18820 else mp_bad_unary(mp, c);
18826 if ( mp->cur_type==mp_cmykcolor_type) mp_take_part(mp, c);
18827 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18828 else mp_bad_unary(mp, c);
18831 if ( mp->cur_type==mp_known ) mp->cur_exp=value(c);
18832 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18833 else mp_bad_unary(mp, c);
18835 case color_model_part:
18836 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18837 else mp_bad_unary(mp, c);
18840 @ In the following procedure, |cur_exp| points to a capsule, which points to
18841 a big node. We want to delete all but one part of the big node.
18843 @<Declare unary action...@>=
18844 void mp_take_part (MP mp,quarterword c) {
18845 pointer p; /* the big node */
18846 p=value(mp->cur_exp); value(temp_val)=p; type(temp_val)=mp->cur_type;
18847 link(p)=temp_val; mp_free_node(mp, mp->cur_exp,value_node_size);
18848 mp_make_exp_copy(mp, p+mp->sector_offset[c+mp_x_part_sector-x_part]);
18849 mp_recycle_value(mp, temp_val);
18852 @ @<Initialize table entries...@>=
18853 name_type(temp_val)=mp_capsule;
18855 @ @<Additional cases of unary operators@>=
18861 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18862 else mp_bad_unary(mp, c);
18865 @ @<Declarations@>=
18866 void mp_scale_edges (MP mp);
18868 @ @<Declare unary action...@>=
18869 void mp_take_pict_part (MP mp,quarterword c) {
18870 pointer p; /* first graphical object in |cur_exp| */
18871 p=link(dummy_loc(mp->cur_exp));
18874 case x_part: case y_part: case xx_part:
18875 case xy_part: case yx_part: case yy_part:
18876 if ( type(p)==mp_text_code ) mp_flush_cur_exp(mp, text_trans_part(p+c));
18877 else goto NOT_FOUND;
18879 case red_part: case green_part: case blue_part:
18880 if ( has_color(p) ) mp_flush_cur_exp(mp, obj_color_part(p+c));
18881 else goto NOT_FOUND;
18883 case cyan_part: case magenta_part: case yellow_part:
18885 if ( has_color(p) ) {
18886 if ( color_model(p)==uninitialized_model )
18887 mp_flush_cur_exp(mp, unity);
18889 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-cyan_part)));
18890 } else goto NOT_FOUND;
18893 if ( has_color(p) )
18894 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-grey_part)));
18895 else goto NOT_FOUND;
18897 case color_model_part:
18898 if ( has_color(p) ) {
18899 if ( color_model(p)==uninitialized_model )
18900 mp_flush_cur_exp(mp, mp->internal[mp_default_color_model]);
18902 mp_flush_cur_exp(mp, color_model(p)*unity);
18903 } else goto NOT_FOUND;
18905 @<Handle other cases in |take_pict_part| or |goto not_found|@>;
18906 } /* all cases have been enumerated */
18910 @<Convert the current expression to a null value appropriate
18914 @ @<Handle other cases in |take_pict_part| or |goto not_found|@>=
18916 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
18918 mp_flush_cur_exp(mp, text_p(p));
18919 add_str_ref(mp->cur_exp);
18920 mp->cur_type=mp_string_type;
18924 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
18926 mp_flush_cur_exp(mp, rts(mp->font_name[font_n(p)]));
18927 add_str_ref(mp->cur_exp);
18928 mp->cur_type=mp_string_type;
18932 if ( type(p)==mp_text_code ) goto NOT_FOUND;
18933 else if ( is_stop(p) ) mp_confusion(mp, "pict");
18934 @:this can't happen pict}{\quad pict@>
18936 mp_flush_cur_exp(mp, mp_copy_path(mp, path_p(p)));
18937 mp->cur_type=mp_path_type;
18941 if ( ! has_pen(p) ) goto NOT_FOUND;
18943 if ( pen_p(p)==null ) goto NOT_FOUND;
18944 else { mp_flush_cur_exp(mp, copy_pen(pen_p(p)));
18945 mp->cur_type=mp_pen_type;
18950 if ( type(p)!=mp_stroked_code ) goto NOT_FOUND;
18951 else { if ( dash_p(p)==null ) goto NOT_FOUND;
18952 else { add_edge_ref(dash_p(p));
18953 mp->se_sf=dash_scale(p);
18954 mp->se_pic=dash_p(p);
18955 mp_scale_edges(mp);
18956 mp_flush_cur_exp(mp, mp->se_pic);
18957 mp->cur_type=mp_picture_type;
18962 @ Since |scale_edges| had to be declared |forward|, it had to be declared as a
18963 parameterless procedure even though it really takes two arguments and updates
18964 one of them. Hence the following globals are needed.
18967 pointer se_pic; /* edge header used and updated by |scale_edges| */
18968 scaled se_sf; /* the scale factor argument to |scale_edges| */
18970 @ @<Convert the current expression to a null value appropriate...@>=
18972 case text_part: case font_part:
18973 mp_flush_cur_exp(mp, rts(""));
18974 mp->cur_type=mp_string_type;
18977 mp_flush_cur_exp(mp, mp_get_node(mp, knot_node_size));
18978 left_type(mp->cur_exp)=mp_endpoint;
18979 right_type(mp->cur_exp)=mp_endpoint;
18980 link(mp->cur_exp)=mp->cur_exp;
18981 x_coord(mp->cur_exp)=0;
18982 y_coord(mp->cur_exp)=0;
18983 originator(mp->cur_exp)=metapost_user;
18984 mp->cur_type=mp_path_type;
18987 mp_flush_cur_exp(mp, mp_get_pen_circle(mp, 0));
18988 mp->cur_type=mp_pen_type;
18991 mp_flush_cur_exp(mp, mp_get_node(mp, edge_header_size));
18992 mp_init_edges(mp, mp->cur_exp);
18993 mp->cur_type=mp_picture_type;
18996 mp_flush_cur_exp(mp, 0);
19000 @ @<Additional cases of unary...@>=
19002 if ( mp->cur_type!=mp_known ) {
19003 mp_bad_unary(mp, char_op);
19005 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
19006 mp->cur_type=mp_string_type;
19007 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
19011 if ( mp->cur_type!=mp_known ) {
19012 mp_bad_unary(mp, decimal);
19014 mp->old_setting=mp->selector; mp->selector=new_string;
19015 mp_print_scaled(mp, mp->cur_exp); mp->cur_exp=mp_make_string(mp);
19016 mp->selector=mp->old_setting; mp->cur_type=mp_string_type;
19022 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19023 else mp_str_to_num(mp, c);
19026 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, font_size);
19027 else @<Find the design size of the font whose name is |cur_exp|@>;
19030 @ @<Declare unary action...@>=
19031 void mp_str_to_num (MP mp,quarterword c) { /* converts a string to a number */
19032 integer n; /* accumulator */
19033 ASCII_code m; /* current character */
19034 pool_pointer k; /* index into |str_pool| */
19035 int b; /* radix of conversion */
19036 boolean bad_char; /* did the string contain an invalid digit? */
19037 if ( c==ASCII_op ) {
19038 if ( length(mp->cur_exp)==0 ) n=-1;
19039 else n=mp->str_pool[mp->str_start[mp->cur_exp]];
19041 if ( c==oct_op ) b=8; else b=16;
19042 n=0; bad_char=false;
19043 for (k=mp->str_start[mp->cur_exp];k<=str_stop(mp->cur_exp)-1;k++) {
19045 if ( (m>='0')&&(m<='9') ) m=m-'0';
19046 else if ( (m>='A')&&(m<='F') ) m=m-'A'+10;
19047 else if ( (m>='a')&&(m<='f') ) m=m-'a'+10;
19048 else { bad_char=true; m=0; };
19049 if ( m>=b ) { bad_char=true; m=0; };
19050 if ( n<32768 / b ) n=n*b+m; else n=32767;
19052 @<Give error messages if |bad_char| or |n>=4096|@>;
19054 mp_flush_cur_exp(mp, n*unity);
19057 @ @<Give error messages if |bad_char|...@>=
19059 exp_err("String contains illegal digits");
19060 @.String contains illegal digits@>
19062 help1("I zeroed out characters that weren't in the range 0..7.");
19064 help1("I zeroed out characters that weren't hex digits.");
19066 mp_put_get_error(mp);
19069 if ( mp->internal[mp_warning_check]>0 ) {
19070 print_err("Number too large (");
19071 mp_print_int(mp, n); mp_print_char(mp, ')');
19072 @.Number too large@>
19073 help2("I have trouble with numbers greater than 4095; watch out.")
19074 ("(Set warningcheck:=0 to suppress this message.)");
19075 mp_put_get_error(mp);
19079 @ The length operation is somewhat unusual in that it applies to a variety
19080 of different types of operands.
19082 @<Additional cases of unary...@>=
19084 switch (mp->cur_type) {
19085 case mp_string_type: mp_flush_cur_exp(mp, length(mp->cur_exp)*unity); break;
19086 case mp_path_type: mp_flush_cur_exp(mp, mp_path_length(mp)); break;
19087 case mp_known: mp->cur_exp=abs(mp->cur_exp); break;
19088 case mp_picture_type: mp_flush_cur_exp(mp, mp_pict_length(mp)); break;
19090 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) )
19091 mp_flush_cur_exp(mp, mp_pyth_add(mp,
19092 value(x_part_loc(value(mp->cur_exp))),
19093 value(y_part_loc(value(mp->cur_exp)))));
19094 else mp_bad_unary(mp, c);
19099 @ @<Declare unary action...@>=
19100 scaled mp_path_length (MP mp) { /* computes the length of the current path */
19101 scaled n; /* the path length so far */
19102 pointer p; /* traverser */
19104 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
19105 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
19109 @ @<Declare unary action...@>=
19110 scaled mp_pict_length (MP mp) {
19111 /* counts interior components in picture |cur_exp| */
19112 scaled n; /* the count so far */
19113 pointer p; /* traverser */
19115 p=link(dummy_loc(mp->cur_exp));
19117 if ( is_start_or_stop(p) )
19118 if ( mp_skip_1component(mp, p)==null ) p=link(p);
19119 while ( p!=null ) {
19120 skip_component(p) return n;
19127 @ Implement |turningnumber|
19129 @<Additional cases of unary...@>=
19131 if ( mp->cur_type==mp_pair_type ) mp_flush_cur_exp(mp, 0);
19132 else if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, turning_op);
19133 else if ( left_type(mp->cur_exp)==mp_endpoint )
19134 mp_flush_cur_exp(mp, 0); /* not a cyclic path */
19136 mp_flush_cur_exp(mp, mp_turn_cycles_wrapper(mp, mp->cur_exp));
19139 @ The function |an_angle| returns the value of the |angle| primitive, or $0$ if the
19140 argument is |origin|.
19142 @<Declare unary action...@>=
19143 angle mp_an_angle (MP mp,scaled xpar, scaled ypar) {
19144 if ( (! ((xpar==0) && (ypar==0))) )
19145 return mp_n_arg(mp, xpar,ypar);
19150 @ The actual turning number is (for the moment) computed in a C function
19151 that receives eight integers corresponding to the four controlling points,
19152 and returns a single angle. Besides those, we have to account for discrete
19153 moves at the actual points.
19155 @d floor(a) (a>=0 ? a : -(int)(-a))
19156 @d bezier_error (720<<20)+1
19157 @d sign(v) ((v)>0 ? 1 : ((v)<0 ? -1 : 0 ))
19158 @d print_roots(a) { if (debuglevel>(65536*2))
19159 fprintf(stdout,"bezier_slope(): %s, i=%f, o=%f, angle=%f\n", (a),in,out,res); }
19160 @d out ((double)(xo>>20))
19161 @d mid ((double)(xm>>20))
19162 @d in ((double)(xi>>20))
19163 @d divisor (256*256)
19164 @d double2angle(a) (int)floor(a*256.0*256.0*16.0)
19166 @<Declare unary action...@>=
19167 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19168 integer CX,integer CY,integer DX,integer DY, int debuglevel);
19171 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19172 integer CX,integer CY,integer DX,integer DY, int debuglevel) {
19174 integer deltax,deltay;
19175 double ax,ay,bx,by,cx,cy,dx,dy;
19176 angle xi = 0, xo = 0, xm = 0;
19178 ax=AX/divisor; ay=AY/divisor;
19179 bx=BX/divisor; by=BY/divisor;
19180 cx=CX/divisor; cy=CY/divisor;
19181 dx=DX/divisor; dy=DY/divisor;
19183 deltax = (BX-AX); deltay = (BY-AY);
19184 if (deltax==0 && deltay == 0) { deltax=(CX-AX); deltay=(CY-AY); }
19185 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19186 xi = mp_an_angle(mp,deltax,deltay);
19188 deltax = (CX-BX); deltay = (CY-BY);
19189 xm = mp_an_angle(mp,deltax,deltay);
19191 deltax = (DX-CX); deltay = (DY-CY);
19192 if (deltax==0 && deltay == 0) { deltax=(DX-BX); deltay=(DY-BY); }
19193 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19194 xo = mp_an_angle(mp,deltax,deltay);
19196 a = (bx-ax)*(cy-by) - (cx-bx)*(by-ay); /* a = (bp-ap)x(cp-bp); */
19197 b = (bx-ax)*(dy-cy) - (by-ay)*(dx-cx);; /* b = (bp-ap)x(dp-cp);*/
19198 c = (cx-bx)*(dy-cy) - (dx-cx)*(cy-by); /* c = (cp-bp)x(dp-cp);*/
19200 if (debuglevel>(65536*2)) {
19202 "bezier_slope(): (%.2f,%.2f),(%.2f,%.2f),(%.2f,%.2f),(%.2f,%.2f)\n",
19203 ax,ay,bx,by,cx,cy,dx,dy);
19205 "bezier_slope(): a,b,c,b^2,4ac: (%.2f,%.2f,%.2f,%.2f,%.2f)\n",a,b,c,b*b,4*a*c);
19208 if ((a==0)&&(c==0)) {
19209 res = (b==0 ? 0 : (out-in));
19210 print_roots("no roots (a)");
19211 } else if ((a==0)||(c==0)) {
19212 if ((sign(b) == sign(a)) || (sign(b) == sign(c))) {
19213 res = out-in; /* ? */
19216 else if (res>180.0)
19218 print_roots("no roots (b)");
19220 res = out-in; /* ? */
19221 print_roots("one root (a)");
19223 } else if ((sign(a)*sign(c))<0) {
19224 res = out-in; /* ? */
19227 else if (res>180.0)
19229 print_roots("one root (b)");
19231 if (sign(a) == sign(b)) {
19232 res = out-in; /* ? */
19235 else if (res>180.0)
19237 print_roots("no roots (d)");
19239 if ((b*b) == (4*a*c)) {
19240 res = bezier_error;
19241 print_roots("double root"); /* cusp */
19242 } else if ((b*b) < (4*a*c)) {
19243 res = out-in; /* ? */
19244 if (res<=0.0 &&res>-180.0)
19246 else if (res>=0.0 && res<180.0)
19248 print_roots("no roots (e)");
19253 else if (res>180.0)
19255 print_roots("two roots"); /* two inflections */
19259 return double2angle(res);
19263 @d p_nextnext link(link(p))
19265 @d seven_twenty_deg 05500000000 /* $720\cdot2^{20}$, represents $720^\circ$ */
19267 @<Declare unary action...@>=
19268 scaled mp_new_turn_cycles (MP mp,pointer c) {
19269 angle res,ang; /* the angles of intermediate results */
19270 scaled turns; /* the turn counter */
19271 pointer p; /* for running around the path */
19272 integer xp,yp; /* coordinates of next point */
19273 integer x,y; /* helper coordinates */
19274 angle in_angle,out_angle; /* helper angles */
19275 int old_setting; /* saved |selector| setting */
19279 old_setting = mp->selector; mp->selector=term_only;
19280 if ( mp->internal[mp_tracing_commands]>unity ) {
19281 mp_begin_diagnostic(mp);
19282 mp_print_nl(mp, "");
19283 mp_end_diagnostic(mp, false);
19286 xp = x_coord(p_next); yp = y_coord(p_next);
19287 ang = mp_bezier_slope(mp,x_coord(p), y_coord(p), right_x(p), right_y(p),
19288 left_x(p_next), left_y(p_next), xp, yp,
19289 mp->internal[mp_tracing_commands]);
19290 if ( ang>seven_twenty_deg ) {
19291 print_err("Strange path");
19293 mp->selector=old_setting;
19297 if ( res > one_eighty_deg ) {
19298 res = res - three_sixty_deg;
19299 turns = turns + unity;
19301 if ( res <= -one_eighty_deg ) {
19302 res = res + three_sixty_deg;
19303 turns = turns - unity;
19305 /* incoming angle at next point */
19306 x = left_x(p_next); y = left_y(p_next);
19307 if ( (xp==x)&&(yp==y) ) { x = right_x(p); y = right_y(p); };
19308 if ( (xp==x)&&(yp==y) ) { x = x_coord(p); y = y_coord(p); };
19309 in_angle = mp_an_angle(mp, xp - x, yp - y);
19310 /* outgoing angle at next point */
19311 x = right_x(p_next); y = right_y(p_next);
19312 if ( (xp==x)&&(yp==y) ) { x = left_x(p_nextnext); y = left_y(p_nextnext); };
19313 if ( (xp==x)&&(yp==y) ) { x = x_coord(p_nextnext); y = y_coord(p_nextnext); };
19314 out_angle = mp_an_angle(mp, x - xp, y- yp);
19315 ang = (out_angle - in_angle);
19319 if ( res >= one_eighty_deg ) {
19320 res = res - three_sixty_deg;
19321 turns = turns + unity;
19323 if ( res <= -one_eighty_deg ) {
19324 res = res + three_sixty_deg;
19325 turns = turns - unity;
19330 mp->selector=old_setting;
19335 @ This code is based on Bogus\l{}av Jackowski's
19336 |emergency_turningnumber| macro, with some minor changes by Taco
19337 Hoekwater. The macro code looked more like this:
19339 vardef turning\_number primary p =
19340 ~~save res, ang, turns;
19342 ~~if length p <= 2:
19343 ~~~~if Angle ((point 0 of p) - (postcontrol 0 of p)) >= 0: 1 else: -1 fi
19345 ~~~~for t = 0 upto length p-1 :
19346 ~~~~~~angc := Angle ((point t+1 of p) - (point t of p))
19347 ~~~~~~~~- Angle ((point t of p) - (point t-1 of p));
19348 ~~~~~~if angc > 180: angc := angc - 360; fi;
19349 ~~~~~~if angc < -180: angc := angc + 360; fi;
19350 ~~~~~~res := res + angc;
19355 The general idea is to calculate only the sum of the angles of
19356 straight lines between the points, of a path, not worrying about cusps
19357 or self-intersections in the segments at all. If the segment is not
19358 well-behaved, the result is not necesarily correct. But the old code
19359 was not always correct either, and worse, it sometimes failed for
19360 well-behaved paths as well. All known bugs that were triggered by the
19361 original code no longer occur with this code, and it runs roughly 3
19362 times as fast because the algorithm is much simpler.
19364 @ It is possible to overflow the return value of the |turn_cycles|
19365 function when the path is sufficiently long and winding, but I am not
19366 going to bother testing for that. In any case, it would only return
19367 the looped result value, which is not a big problem.
19369 The macro code for the repeat loop was a bit nicer to look
19370 at than the pascal code, because it could use |point -1 of p|. In
19371 pascal, the fastest way to loop around the path is not to look
19372 backward once, but forward twice. These defines help hide the trick.
19374 @d p_to link(link(p))
19378 @<Declare unary action...@>=
19379 scaled mp_turn_cycles (MP mp,pointer c) {
19380 angle res,ang; /* the angles of intermediate results */
19381 scaled turns; /* the turn counter */
19382 pointer p; /* for running around the path */
19383 res=0; turns= 0; p=c;
19385 ang = mp_an_angle (mp, x_coord(p_to) - x_coord(p_here),
19386 y_coord(p_to) - y_coord(p_here))
19387 - mp_an_angle (mp, x_coord(p_here) - x_coord(p_from),
19388 y_coord(p_here) - y_coord(p_from));
19391 if ( res >= three_sixty_deg ) {
19392 res = res - three_sixty_deg;
19393 turns = turns + unity;
19395 if ( res <= -three_sixty_deg ) {
19396 res = res + three_sixty_deg;
19397 turns = turns - unity;
19404 @ @<Declare unary action...@>=
19405 scaled mp_turn_cycles_wrapper (MP mp,pointer c) {
19407 scaled saved_t_o; /* tracing\_online saved */
19408 if ( (link(c)==c)||(link(link(c))==c) ) {
19409 if ( mp_an_angle (mp, x_coord(c) - right_x(c), y_coord(c) - right_y(c)) > 0 )
19414 nval = mp_new_turn_cycles(mp, c);
19415 oval = mp_turn_cycles(mp, c);
19416 if ( nval!=oval ) {
19417 saved_t_o=mp->internal[mp_tracing_online];
19418 mp->internal[mp_tracing_online]=unity;
19419 mp_begin_diagnostic(mp);
19420 mp_print_nl (mp, "Warning: the turningnumber algorithms do not agree."
19421 " The current computed value is ");
19422 mp_print_scaled(mp, nval);
19423 mp_print(mp, ", but the 'connect-the-dots' algorithm returned ");
19424 mp_print_scaled(mp, oval);
19425 mp_end_diagnostic(mp, false);
19426 mp->internal[mp_tracing_online]=saved_t_o;
19432 @ @<Declare unary action...@>=
19433 scaled mp_count_turns (MP mp,pointer c) {
19434 pointer p; /* a knot in envelope spec |c| */
19435 integer t; /* total pen offset changes counted */
19438 t=t+info(p)-zero_off;
19441 return ((t / 3)*unity);
19444 @ @d type_range(A,B) {
19445 if ( (mp->cur_type>=(A)) && (mp->cur_type<=(B)) )
19446 mp_flush_cur_exp(mp, true_code);
19447 else mp_flush_cur_exp(mp, false_code);
19448 mp->cur_type=mp_boolean_type;
19451 if ( mp->cur_type==(A) ) mp_flush_cur_exp(mp, true_code);
19452 else mp_flush_cur_exp(mp, false_code);
19453 mp->cur_type=mp_boolean_type;
19456 @<Additional cases of unary operators@>=
19457 case mp_boolean_type:
19458 type_range(mp_boolean_type,mp_unknown_boolean); break;
19459 case mp_string_type:
19460 type_range(mp_string_type,mp_unknown_string); break;
19462 type_range(mp_pen_type,mp_unknown_pen); break;
19464 type_range(mp_path_type,mp_unknown_path); break;
19465 case mp_picture_type:
19466 type_range(mp_picture_type,mp_unknown_picture); break;
19467 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
19469 type_test(c); break;
19470 case mp_numeric_type:
19471 type_range(mp_known,mp_independent); break;
19472 case known_op: case unknown_op:
19473 mp_test_known(mp, c); break;
19475 @ @<Declare unary action procedures@>=
19476 void mp_test_known (MP mp,quarterword c) {
19477 int b; /* is the current expression known? */
19478 pointer p,q; /* locations in a big node */
19480 switch (mp->cur_type) {
19481 case mp_vacuous: case mp_boolean_type: case mp_string_type:
19482 case mp_pen_type: case mp_path_type: case mp_picture_type:
19486 case mp_transform_type:
19487 case mp_color_type: case mp_cmykcolor_type: case mp_pair_type:
19488 p=value(mp->cur_exp);
19489 q=p+mp->big_node_size[mp->cur_type];
19492 if ( type(q)!=mp_known )
19501 if ( c==known_op ) mp_flush_cur_exp(mp, b);
19502 else mp_flush_cur_exp(mp, true_code+false_code-b);
19503 mp->cur_type=mp_boolean_type;
19506 @ @<Additional cases of unary operators@>=
19508 if ( mp->cur_type!=mp_path_type ) mp_flush_cur_exp(mp, false_code);
19509 else if ( left_type(mp->cur_exp)!=mp_endpoint ) mp_flush_cur_exp(mp, true_code);
19510 else mp_flush_cur_exp(mp, false_code);
19511 mp->cur_type=mp_boolean_type;
19514 @ @<Additional cases of unary operators@>=
19516 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19517 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, arc_length);
19518 else mp_flush_cur_exp(mp, mp_get_arc_length(mp, mp->cur_exp));
19521 @ Here we use the fact that |c-filled_op+fill_code| is the desired graphical
19523 @^data structure assumptions@>
19525 @<Additional cases of unary operators@>=
19531 if ( mp->cur_type!=mp_picture_type ) mp_flush_cur_exp(mp, false_code);
19532 else if ( link(dummy_loc(mp->cur_exp))==null ) mp_flush_cur_exp(mp, false_code);
19533 else if ( type(link(dummy_loc(mp->cur_exp)))==c+mp_fill_code-filled_op )
19534 mp_flush_cur_exp(mp, true_code);
19535 else mp_flush_cur_exp(mp, false_code);
19536 mp->cur_type=mp_boolean_type;
19539 @ @<Additional cases of unary operators@>=
19541 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19542 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, make_pen_op);
19544 mp->cur_type=mp_pen_type;
19545 mp->cur_exp=mp_make_pen(mp, mp->cur_exp,true);
19549 if ( mp->cur_type!=mp_pen_type ) mp_bad_unary(mp, make_path_op);
19551 mp->cur_type=mp_path_type;
19552 mp_make_path(mp, mp->cur_exp);
19556 if ( mp->cur_type==mp_path_type ) {
19557 p=mp_htap_ypoc(mp, mp->cur_exp);
19558 if ( right_type(p)==mp_endpoint ) p=link(p);
19559 mp_toss_knot_list(mp, mp->cur_exp); mp->cur_exp=p;
19560 } else if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19561 else mp_bad_unary(mp, reverse);
19564 @ The |pair_value| routine changes the current expression to a
19565 given ordered pair of values.
19567 @<Declare unary action procedures@>=
19568 void mp_pair_value (MP mp,scaled x, scaled y) {
19569 pointer p; /* a pair node */
19570 p=mp_get_node(mp, value_node_size);
19571 mp_flush_cur_exp(mp, p); mp->cur_type=mp_pair_type;
19572 type(p)=mp_pair_type; name_type(p)=mp_capsule; mp_init_big_node(mp, p);
19574 type(x_part_loc(p))=mp_known; value(x_part_loc(p))=x;
19575 type(y_part_loc(p))=mp_known; value(y_part_loc(p))=y;
19578 @ @<Additional cases of unary operators@>=
19580 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ll_corner_op);
19581 else mp_pair_value(mp, minx,miny);
19584 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, lr_corner_op);
19585 else mp_pair_value(mp, maxx,miny);
19588 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ul_corner_op);
19589 else mp_pair_value(mp, minx,maxy);
19592 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ur_corner_op);
19593 else mp_pair_value(mp, maxx,maxy);
19596 @ Here is a function that sets |minx|, |maxx|, |miny|, |maxy| to the bounding
19597 box of the current expression. The boolean result is |false| if the expression
19598 has the wrong type.
19600 @<Declare unary action procedures@>=
19601 boolean mp_get_cur_bbox (MP mp) {
19602 switch (mp->cur_type) {
19603 case mp_picture_type:
19604 mp_set_bbox(mp, mp->cur_exp,true);
19605 if ( minx_val(mp->cur_exp)>maxx_val(mp->cur_exp) ) {
19606 minx=0; maxx=0; miny=0; maxy=0;
19608 minx=minx_val(mp->cur_exp);
19609 maxx=maxx_val(mp->cur_exp);
19610 miny=miny_val(mp->cur_exp);
19611 maxy=maxy_val(mp->cur_exp);
19615 mp_path_bbox(mp, mp->cur_exp);
19618 mp_pen_bbox(mp, mp->cur_exp);
19626 @ @<Additional cases of unary operators@>=
19628 case close_from_op:
19629 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19630 else mp_do_read_or_close(mp,c);
19633 @ Here is a routine that interprets |cur_exp| as a file name and tries to read
19634 a line from the file or to close the file.
19636 @d close_file 46 /* go here when closing the file */
19638 @<Declare unary action procedures@>=
19639 void mp_do_read_or_close (MP mp,quarterword c) {
19640 readf_index n,n0; /* indices for searching |rd_fname| */
19641 @<Find the |n| where |rd_fname[n]=cur_exp|; if |cur_exp| must be inserted,
19642 call |start_read_input| and |goto found| or |not_found|@>;
19643 mp_begin_file_reading(mp);
19645 if ( mp_input_ln(mp, mp->rd_file[n],true) )
19647 mp_end_file_reading(mp);
19649 @<Record the end of file and set |cur_exp| to a dummy value@>;
19652 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
19655 mp_flush_cur_exp(mp, 0);
19656 mp_finish_read(mp);
19659 @ Free slots in the |rd_file| and |rd_fname| arrays are marked with NULL's in
19662 @<Find the |n| where |rd_fname[n]=cur_exp|...@>=
19667 fn = str(mp->cur_exp);
19668 while (mp_xstrcmp(fn,mp->rd_fname[n])!=0) {
19671 } else if ( c==close_from_op ) {
19674 if ( n0==mp->read_files ) {
19675 if ( mp->read_files<mp->max_read_files ) {
19676 incr(mp->read_files);
19681 l = mp->max_read_files + (mp->max_read_files>>2);
19682 rd_file = xmalloc((l+1), sizeof(FILE *));
19683 rd_fname = xmalloc((l+1), sizeof(char *));
19684 for (k=0;k<=l;k++) {
19685 if (k<=mp->max_read_files) {
19686 rd_file[k]=mp->rd_file[k];
19687 rd_fname[k]=mp->rd_fname[k];
19693 xfree(mp->rd_file); xfree(mp->rd_fname);
19694 mp->max_read_files = l;
19695 mp->rd_file = rd_file;
19696 mp->rd_fname = rd_fname;
19700 if ( mp_start_read_input(mp,fn,n) )
19705 if ( mp->rd_fname[n]==NULL ) { n0=n; }
19707 if ( c==close_from_op ) {
19708 fclose(mp->rd_file[n]);
19713 @ @<Record the end of file and set |cur_exp| to a dummy value@>=
19714 xfree(mp->rd_fname[n]);
19715 mp->rd_fname[n]=NULL;
19716 if ( n==mp->read_files-1 ) mp->read_files=n;
19717 if ( c==close_from_op )
19719 mp_flush_cur_exp(mp, mp->eof_line);
19720 mp->cur_type=mp_string_type
19722 @ The string denoting end-of-file is a one-byte string at position zero, by definition
19725 str_number eof_line;
19730 @ Finally, we have the operations that combine a capsule~|p|
19731 with the current expression.
19733 @c @<Declare binary action procedures@>;
19734 void mp_do_binary (MP mp,pointer p, quarterword c) {
19735 pointer q,r,rr; /* for list manipulation */
19736 pointer old_p,old_exp; /* capsules to recycle */
19737 integer v; /* for numeric manipulation */
19739 if ( mp->internal[mp_tracing_commands]>two ) {
19740 @<Trace the current binary operation@>;
19742 @<Sidestep |independent| cases in capsule |p|@>;
19743 @<Sidestep |independent| cases in the current expression@>;
19745 case plus: case minus:
19746 @<Add or subtract the current expression from |p|@>;
19748 @<Additional cases of binary operators@>;
19749 }; /* there are no other cases */
19750 mp_recycle_value(mp, p);
19751 mp_free_node(mp, p,value_node_size); /* |return| to avoid this */
19753 @<Recycle any sidestepped |independent| capsules@>;
19756 @ @<Declare binary action...@>=
19757 void mp_bad_binary (MP mp,pointer p, quarterword c) {
19758 mp_disp_err(mp, p,"");
19759 exp_err("Not implemented: ");
19760 @.Not implemented...@>
19761 if ( c>=min_of ) mp_print_op(mp, c);
19762 mp_print_known_or_unknown_type(mp, type(p),p);
19763 if ( c>=min_of ) mp_print(mp, "of"); else mp_print_op(mp, c);
19764 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
19765 help3("I'm afraid I don't know how to apply that operation to that")
19766 ("combination of types. Continue, and I'll return the second")
19767 ("argument (see above) as the result of the operation.");
19768 mp_put_get_error(mp);
19771 @ @<Trace the current binary operation@>=
19773 mp_begin_diagnostic(mp); mp_print_nl(mp, "{(");
19774 mp_print_exp(mp,p,0); /* show the operand, but not verbosely */
19775 mp_print_char(mp,')'); mp_print_op(mp,c); mp_print_char(mp,'(');
19776 mp_print_exp(mp,null,0); mp_print(mp,")}");
19777 mp_end_diagnostic(mp, false);
19780 @ Several of the binary operations are potentially complicated by the
19781 fact that |independent| values can sneak into capsules. For example,
19782 we've seen an instance of this difficulty in the unary operation
19783 of negation. In order to reduce the number of cases that need to be
19784 handled, we first change the two operands (if necessary)
19785 to rid them of |independent| components. The original operands are
19786 put into capsules called |old_p| and |old_exp|, which will be
19787 recycled after the binary operation has been safely carried out.
19789 @<Recycle any sidestepped |independent| capsules@>=
19790 if ( old_p!=null ) {
19791 mp_recycle_value(mp, old_p); mp_free_node(mp, old_p,value_node_size);
19793 if ( old_exp!=null ) {
19794 mp_recycle_value(mp, old_exp); mp_free_node(mp, old_exp,value_node_size);
19797 @ A big node is considered to be ``tarnished'' if it contains at least one
19798 independent component. We will define a simple function called `|tarnished|'
19799 that returns |null| if and only if its argument is not tarnished.
19801 @<Sidestep |independent| cases in capsule |p|@>=
19803 case mp_transform_type:
19804 case mp_color_type:
19805 case mp_cmykcolor_type:
19807 old_p=mp_tarnished(mp, p);
19809 case mp_independent: old_p=mp_void; break;
19810 default: old_p=null; break;
19812 if ( old_p!=null ) {
19813 q=mp_stash_cur_exp(mp); old_p=p; mp_make_exp_copy(mp, old_p);
19814 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
19817 @ @<Sidestep |independent| cases in the current expression@>=
19818 switch (mp->cur_type) {
19819 case mp_transform_type:
19820 case mp_color_type:
19821 case mp_cmykcolor_type:
19823 old_exp=mp_tarnished(mp, mp->cur_exp);
19825 case mp_independent:old_exp=mp_void; break;
19826 default: old_exp=null; break;
19828 if ( old_exp!=null ) {
19829 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
19832 @ @<Declare binary action...@>=
19833 pointer mp_tarnished (MP mp,pointer p) {
19834 pointer q; /* beginning of the big node */
19835 pointer r; /* current position in the big node */
19836 q=value(p); r=q+mp->big_node_size[type(p)];
19839 if ( type(r)==mp_independent ) return mp_void;
19844 @ @<Add or subtract the current expression from |p|@>=
19845 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
19846 mp_bad_binary(mp, p,c);
19848 if ((mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
19849 mp_add_or_subtract(mp, p,null,c);
19851 if ( mp->cur_type!=type(p) ) {
19852 mp_bad_binary(mp, p,c);
19854 q=value(p); r=value(mp->cur_exp);
19855 rr=r+mp->big_node_size[mp->cur_type];
19857 mp_add_or_subtract(mp, q,r,c);
19864 @ The first argument to |add_or_subtract| is the location of a value node
19865 in a capsule or pair node that will soon be recycled. The second argument
19866 is either a location within a pair or transform node of |cur_exp|,
19867 or it is null (which means that |cur_exp| itself should be the second
19868 argument). The third argument is either |plus| or |minus|.
19870 The sum or difference of the numeric quantities will replace the second
19871 operand. Arithmetic overflow may go undetected; users aren't supposed to
19872 be monkeying around with really big values.
19874 @<Declare binary action...@>=
19875 @<Declare the procedure called |dep_finish|@>;
19876 void mp_add_or_subtract (MP mp,pointer p, pointer q, quarterword c) {
19877 small_number s,t; /* operand types */
19878 pointer r; /* list traverser */
19879 integer v; /* second operand value */
19882 if ( t<mp_dependent ) v=mp->cur_exp; else v=dep_list(mp->cur_exp);
19885 if ( t<mp_dependent ) v=value(q); else v=dep_list(q);
19887 if ( t==mp_known ) {
19888 if ( c==minus ) negate(v);
19889 if ( type(p)==mp_known ) {
19890 v=mp_slow_add(mp, value(p),v);
19891 if ( q==null ) mp->cur_exp=v; else value(q)=v;
19894 @<Add a known value to the constant term of |dep_list(p)|@>;
19896 if ( c==minus ) mp_negate_dep_list(mp, v);
19897 @<Add operand |p| to the dependency list |v|@>;
19901 @ @<Add a known value to the constant term of |dep_list(p)|@>=
19903 while ( info(r)!=null ) r=link(r);
19904 value(r)=mp_slow_add(mp, value(r),v);
19906 q=mp_get_node(mp, value_node_size); mp->cur_exp=q; mp->cur_type=type(p);
19907 name_type(q)=mp_capsule;
19909 dep_list(q)=dep_list(p); type(q)=type(p);
19910 prev_dep(q)=prev_dep(p); link(prev_dep(p))=q;
19911 type(p)=mp_known; /* this will keep the recycler from collecting non-garbage */
19913 @ We prefer |dependent| lists to |mp_proto_dependent| ones, because it is
19914 nice to retain the extra accuracy of |fraction| coefficients.
19915 But we have to handle both kinds, and mixtures too.
19917 @<Add operand |p| to the dependency list |v|@>=
19918 if ( type(p)==mp_known ) {
19919 @<Add the known |value(p)| to the constant term of |v|@>;
19921 s=type(p); r=dep_list(p);
19922 if ( t==mp_dependent ) {
19923 if ( s==mp_dependent ) {
19924 if ( mp_max_coef(mp, r)+mp_max_coef(mp, v)<coef_bound )
19925 v=mp_p_plus_q(mp, v,r,mp_dependent); goto DONE;
19926 } /* |fix_needed| will necessarily be false */
19927 t=mp_proto_dependent;
19928 v=mp_p_over_v(mp, v,unity,mp_dependent,mp_proto_dependent);
19930 if ( s==mp_proto_dependent ) v=mp_p_plus_q(mp, v,r,mp_proto_dependent);
19931 else v=mp_p_plus_fq(mp, v,unity,r,mp_proto_dependent,mp_dependent);
19933 @<Output the answer, |v| (which might have become |known|)@>;
19936 @ @<Add the known |value(p)| to the constant term of |v|@>=
19938 while ( info(v)!=null ) v=link(v);
19939 value(v)=mp_slow_add(mp, value(p),value(v));
19942 @ @<Output the answer, |v| (which might have become |known|)@>=
19943 if ( q!=null ) mp_dep_finish(mp, v,q,t);
19944 else { mp->cur_type=t; mp_dep_finish(mp, v,null,t); }
19946 @ Here's the current situation: The dependency list |v| of type |t|
19947 should either be put into the current expression (if |q=null|) or
19948 into location |q| within a pair node (otherwise). The destination (|cur_exp|
19949 or |q|) formerly held a dependency list with the same
19950 final pointer as the list |v|.
19952 @<Declare the procedure called |dep_finish|@>=
19953 void mp_dep_finish (MP mp, pointer v, pointer q, small_number t) {
19954 pointer p; /* the destination */
19955 scaled vv; /* the value, if it is |known| */
19956 if ( q==null ) p=mp->cur_exp; else p=q;
19957 dep_list(p)=v; type(p)=t;
19958 if ( info(v)==null ) {
19961 mp_flush_cur_exp(mp, vv);
19963 mp_recycle_value(mp, p); type(q)=mp_known; value(q)=vv;
19965 } else if ( q==null ) {
19968 if ( mp->fix_needed ) mp_fix_dependencies(mp);
19971 @ Let's turn now to the six basic relations of comparison.
19973 @<Additional cases of binary operators@>=
19974 case less_than: case less_or_equal: case greater_than:
19975 case greater_or_equal: case equal_to: case unequal_to:
19976 check_arith; /* at this point |arith_error| should be |false|? */
19977 if ( (mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
19978 mp_add_or_subtract(mp, p,null,minus); /* |cur_exp:=(p)-cur_exp| */
19979 } else if ( mp->cur_type!=type(p) ) {
19980 mp_bad_binary(mp, p,c); goto DONE;
19981 } else if ( mp->cur_type==mp_string_type ) {
19982 mp_flush_cur_exp(mp, mp_str_vs_str(mp, value(p),mp->cur_exp));
19983 } else if ((mp->cur_type==mp_unknown_string)||
19984 (mp->cur_type==mp_unknown_boolean) ) {
19985 @<Check if unknowns have been equated@>;
19986 } else if ( (mp->cur_type<=mp_pair_type)&&(mp->cur_type>=mp_transform_type)) {
19987 @<Reduce comparison of big nodes to comparison of scalars@>;
19988 } else if ( mp->cur_type==mp_boolean_type ) {
19989 mp_flush_cur_exp(mp, mp->cur_exp-value(p));
19991 mp_bad_binary(mp, p,c); goto DONE;
19993 @<Compare the current expression with zero@>;
19995 mp->arith_error=false; /* ignore overflow in comparisons */
19998 @ @<Compare the current expression with zero@>=
19999 if ( mp->cur_type!=mp_known ) {
20000 if ( mp->cur_type<mp_known ) {
20001 mp_disp_err(mp, p,"");
20002 help1("The quantities shown above have not been equated.")
20004 help2("Oh dear. I can\'t decide if the expression above is positive,")
20005 ("negative, or zero. So this comparison test won't be `true'.");
20007 exp_err("Unknown relation will be considered false");
20008 @.Unknown relation...@>
20009 mp_put_get_flush_error(mp, false_code);
20012 case less_than: boolean_reset(mp->cur_exp<0); break;
20013 case less_or_equal: boolean_reset(mp->cur_exp<=0); break;
20014 case greater_than: boolean_reset(mp->cur_exp>0); break;
20015 case greater_or_equal: boolean_reset(mp->cur_exp>=0); break;
20016 case equal_to: boolean_reset(mp->cur_exp==0); break;
20017 case unequal_to: boolean_reset(mp->cur_exp!=0); break;
20018 }; /* there are no other cases */
20020 mp->cur_type=mp_boolean_type
20022 @ When two unknown strings are in the same ring, we know that they are
20023 equal. Otherwise, we don't know whether they are equal or not, so we
20026 @<Check if unknowns have been equated@>=
20028 q=value(mp->cur_exp);
20029 while ( (q!=mp->cur_exp)&&(q!=p) ) q=value(q);
20030 if ( q==p ) mp_flush_cur_exp(mp, 0);
20033 @ @<Reduce comparison of big nodes to comparison of scalars@>=
20035 q=value(p); r=value(mp->cur_exp);
20036 rr=r+mp->big_node_size[mp->cur_type]-2;
20037 while (1) { mp_add_or_subtract(mp, q,r,minus);
20038 if ( type(r)!=mp_known ) break;
20039 if ( value(r)!=0 ) break;
20040 if ( r==rr ) break;
20043 mp_take_part(mp, name_type(r)+x_part-mp_x_part_sector);
20046 @ Here we use the sneaky fact that |and_op-false_code=or_op-true_code|.
20048 @<Additional cases of binary operators@>=
20051 if ( (type(p)!=mp_boolean_type)||(mp->cur_type!=mp_boolean_type) )
20052 mp_bad_binary(mp, p,c);
20053 else if ( value(p)==c+false_code-and_op ) mp->cur_exp=value(p);
20056 @ @<Additional cases of binary operators@>=
20058 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
20059 mp_bad_binary(mp, p,times);
20060 } else if ( (mp->cur_type==mp_known)||(type(p)==mp_known) ) {
20061 @<Multiply when at least one operand is known@>;
20062 } else if ( (mp_nice_color_or_pair(mp, p,type(p))&&(mp->cur_type>mp_pair_type))
20063 ||(mp_nice_color_or_pair(mp, mp->cur_exp,mp->cur_type)&&
20064 (type(p)>mp_pair_type)) ) {
20065 mp_hard_times(mp, p); return;
20067 mp_bad_binary(mp, p,times);
20071 @ @<Multiply when at least one operand is known@>=
20073 if ( type(p)==mp_known ) {
20074 v=value(p); mp_free_node(mp, p,value_node_size);
20076 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20078 if ( mp->cur_type==mp_known ) {
20079 mp->cur_exp=mp_take_scaled(mp, mp->cur_exp,v);
20080 } else if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_color_type)||
20081 (mp->cur_type==mp_cmykcolor_type) ) {
20082 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20084 p=p-2; mp_dep_mult(mp, p,v,true);
20085 } while (p!=value(mp->cur_exp));
20087 mp_dep_mult(mp, null,v,true);
20092 @ @<Declare binary action...@>=
20093 void mp_dep_mult (MP mp,pointer p, integer v, boolean v_is_scaled) {
20094 pointer q; /* the dependency list being multiplied by |v| */
20095 small_number s,t; /* its type, before and after */
20098 } else if ( type(p)!=mp_known ) {
20101 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
20102 else value(p)=mp_take_fraction(mp, value(p),v);
20105 t=type(q); q=dep_list(q); s=t;
20106 if ( t==mp_dependent ) if ( v_is_scaled )
20107 if (mp_ab_vs_cd(mp, mp_max_coef(mp,q),abs(v),coef_bound-1,unity)>=0 )
20108 t=mp_proto_dependent;
20109 q=mp_p_times_v(mp, q,v,s,t,v_is_scaled);
20110 mp_dep_finish(mp, q,p,t);
20113 @ Here is a routine that is similar to |times|; but it is invoked only
20114 internally, when |v| is a |fraction| whose magnitude is at most~1,
20115 and when |cur_type>=mp_color_type|.
20117 @c void mp_frac_mult (MP mp,scaled n, scaled d) {
20118 /* multiplies |cur_exp| by |n/d| */
20119 pointer p; /* a pair node */
20120 pointer old_exp; /* a capsule to recycle */
20121 fraction v; /* |n/d| */
20122 if ( mp->internal[mp_tracing_commands]>two ) {
20123 @<Trace the fraction multiplication@>;
20125 switch (mp->cur_type) {
20126 case mp_transform_type:
20127 case mp_color_type:
20128 case mp_cmykcolor_type:
20130 old_exp=mp_tarnished(mp, mp->cur_exp);
20132 case mp_independent: old_exp=mp_void; break;
20133 default: old_exp=null; break;
20135 if ( old_exp!=null ) {
20136 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
20138 v=mp_make_fraction(mp, n,d);
20139 if ( mp->cur_type==mp_known ) {
20140 mp->cur_exp=mp_take_fraction(mp, mp->cur_exp,v);
20141 } else if ( mp->cur_type<=mp_pair_type ) {
20142 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20145 mp_dep_mult(mp, p,v,false);
20146 } while (p!=value(mp->cur_exp));
20148 mp_dep_mult(mp, null,v,false);
20150 if ( old_exp!=null ) {
20151 mp_recycle_value(mp, old_exp);
20152 mp_free_node(mp, old_exp,value_node_size);
20156 @ @<Trace the fraction multiplication@>=
20158 mp_begin_diagnostic(mp);
20159 mp_print_nl(mp, "{("); mp_print_scaled(mp,n); mp_print_char(mp,'/');
20160 mp_print_scaled(mp,d); mp_print(mp,")*("); mp_print_exp(mp,null,0);
20162 mp_end_diagnostic(mp, false);
20165 @ The |hard_times| routine multiplies a nice color or pair by a dependency list.
20167 @<Declare binary action procedures@>=
20168 void mp_hard_times (MP mp,pointer p) {
20169 pointer q; /* a copy of the dependent variable |p| */
20170 pointer r; /* a component of the big node for the nice color or pair */
20171 scaled v; /* the known value for |r| */
20172 if ( type(p)<=mp_pair_type ) {
20173 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p); p=q;
20174 }; /* now |cur_type=mp_pair_type| or |cur_type=mp_color_type| */
20175 r=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20180 if ( r==value(mp->cur_exp) )
20182 mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(p)));
20183 mp_dep_mult(mp, r,v,true);
20185 mp->mem[value_loc(r)]=mp->mem[value_loc(p)];
20186 link(prev_dep(p))=r;
20187 mp_free_node(mp, p,value_node_size);
20188 mp_dep_mult(mp, r,v,true);
20191 @ @<Additional cases of binary operators@>=
20193 if ( (mp->cur_type!=mp_known)||(type(p)<mp_color_type) ) {
20194 mp_bad_binary(mp, p,over);
20196 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20198 @<Squeal about division by zero@>;
20200 if ( mp->cur_type==mp_known ) {
20201 mp->cur_exp=mp_make_scaled(mp, mp->cur_exp,v);
20202 } else if ( mp->cur_type<=mp_pair_type ) {
20203 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20205 p=p-2; mp_dep_div(mp, p,v);
20206 } while (p!=value(mp->cur_exp));
20208 mp_dep_div(mp, null,v);
20215 @ @<Declare binary action...@>=
20216 void mp_dep_div (MP mp,pointer p, scaled v) {
20217 pointer q; /* the dependency list being divided by |v| */
20218 small_number s,t; /* its type, before and after */
20219 if ( p==null ) q=mp->cur_exp;
20220 else if ( type(p)!=mp_known ) q=p;
20221 else { value(p)=mp_make_scaled(mp, value(p),v); return; };
20222 t=type(q); q=dep_list(q); s=t;
20223 if ( t==mp_dependent )
20224 if ( mp_ab_vs_cd(mp, mp_max_coef(mp,q),unity,coef_bound-1,abs(v))>=0 )
20225 t=mp_proto_dependent;
20226 q=mp_p_over_v(mp, q,v,s,t);
20227 mp_dep_finish(mp, q,p,t);
20230 @ @<Squeal about division by zero@>=
20232 exp_err("Division by zero");
20233 @.Division by zero@>
20234 help2("You're trying to divide the quantity shown above the error")
20235 ("message by zero. I'm going to divide it by one instead.");
20236 mp_put_get_error(mp);
20239 @ @<Additional cases of binary operators@>=
20242 if ( (mp->cur_type==mp_known)&&(type(p)==mp_known) ) {
20243 if ( c==pythag_add ) mp->cur_exp=mp_pyth_add(mp, value(p),mp->cur_exp);
20244 else mp->cur_exp=mp_pyth_sub(mp, value(p),mp->cur_exp);
20245 } else mp_bad_binary(mp, p,c);
20248 @ The next few sections of the program deal with affine transformations
20249 of coordinate data.
20251 @<Additional cases of binary operators@>=
20252 case rotated_by: case slanted_by:
20253 case scaled_by: case shifted_by: case transformed_by:
20254 case x_scaled: case y_scaled: case z_scaled:
20255 if ( type(p)==mp_path_type ) {
20256 path_trans(c,p); return;
20257 } else if ( type(p)==mp_pen_type ) {
20259 mp->cur_exp=mp_convex_hull(mp, mp->cur_exp);
20260 /* rounding error could destroy convexity */
20262 } else if ( (type(p)==mp_pair_type)||(type(p)==mp_transform_type) ) {
20263 mp_big_trans(mp, p,c);
20264 } else if ( type(p)==mp_picture_type ) {
20265 mp_do_edges_trans(mp, p,c); return;
20267 mp_bad_binary(mp, p,c);
20271 @ Let |c| be one of the eight transform operators. The procedure call
20272 |set_up_trans(c)| first changes |cur_exp| to a transform that corresponds to
20273 |c| and the original value of |cur_exp|. (In particular, |cur_exp| doesn't
20274 change at all if |c=transformed_by|.)
20276 Then, if all components of the resulting transform are |known|, they are
20277 moved to the global variables |txx|, |txy|, |tyx|, |tyy|, |tx|, |ty|;
20278 and |cur_exp| is changed to the known value zero.
20280 @<Declare binary action...@>=
20281 void mp_set_up_trans (MP mp,quarterword c) {
20282 pointer p,q,r; /* list manipulation registers */
20283 if ( (c!=transformed_by)||(mp->cur_type!=mp_transform_type) ) {
20284 @<Put the current transform into |cur_exp|@>;
20286 @<If the current transform is entirely known, stash it in global variables;
20287 otherwise |return|@>;
20296 scaled ty; /* current transform coefficients */
20298 @ @<Put the current transform...@>=
20300 p=mp_stash_cur_exp(mp);
20301 mp->cur_exp=mp_id_transform(mp);
20302 mp->cur_type=mp_transform_type;
20303 q=value(mp->cur_exp);
20305 @<For each of the eight cases, change the relevant fields of |cur_exp|
20307 but do nothing if capsule |p| doesn't have the appropriate type@>;
20308 }; /* there are no other cases */
20309 mp_disp_err(mp, p,"Improper transformation argument");
20310 @.Improper transformation argument@>
20311 help3("The expression shown above has the wrong type,")
20312 ("so I can\'t transform anything using it.")
20313 ("Proceed, and I'll omit the transformation.");
20314 mp_put_get_error(mp);
20316 mp_recycle_value(mp, p);
20317 mp_free_node(mp, p,value_node_size);
20320 @ @<If the current transform is entirely known, ...@>=
20321 q=value(mp->cur_exp); r=q+transform_node_size;
20324 if ( type(r)!=mp_known ) return;
20326 mp->txx=value(xx_part_loc(q));
20327 mp->txy=value(xy_part_loc(q));
20328 mp->tyx=value(yx_part_loc(q));
20329 mp->tyy=value(yy_part_loc(q));
20330 mp->tx=value(x_part_loc(q));
20331 mp->ty=value(y_part_loc(q));
20332 mp_flush_cur_exp(mp, 0)
20334 @ @<For each of the eight cases...@>=
20336 if ( type(p)==mp_known )
20337 @<Install sines and cosines, then |goto done|@>;
20340 if ( type(p)>mp_pair_type ) {
20341 mp_install(mp, xy_part_loc(q),p); goto DONE;
20345 if ( type(p)>mp_pair_type ) {
20346 mp_install(mp, xx_part_loc(q),p); mp_install(mp, yy_part_loc(q),p);
20351 if ( type(p)==mp_pair_type ) {
20352 r=value(p); mp_install(mp, x_part_loc(q),x_part_loc(r));
20353 mp_install(mp, y_part_loc(q),y_part_loc(r)); goto DONE;
20357 if ( type(p)>mp_pair_type ) {
20358 mp_install(mp, xx_part_loc(q),p); goto DONE;
20362 if ( type(p)>mp_pair_type ) {
20363 mp_install(mp, yy_part_loc(q),p); goto DONE;
20367 if ( type(p)==mp_pair_type )
20368 @<Install a complex multiplier, then |goto done|@>;
20370 case transformed_by:
20374 @ @<Install sines and cosines, then |goto done|@>=
20375 { mp_n_sin_cos(mp, (value(p) % three_sixty_units)*16);
20376 value(xx_part_loc(q))=mp_round_fraction(mp, mp->n_cos);
20377 value(yx_part_loc(q))=mp_round_fraction(mp, mp->n_sin);
20378 value(xy_part_loc(q))=-value(yx_part_loc(q));
20379 value(yy_part_loc(q))=value(xx_part_loc(q));
20383 @ @<Install a complex multiplier, then |goto done|@>=
20386 mp_install(mp, xx_part_loc(q),x_part_loc(r));
20387 mp_install(mp, yy_part_loc(q),x_part_loc(r));
20388 mp_install(mp, yx_part_loc(q),y_part_loc(r));
20389 if ( type(y_part_loc(r))==mp_known ) negate(value(y_part_loc(r)));
20390 else mp_negate_dep_list(mp, dep_list(y_part_loc(r)));
20391 mp_install(mp, xy_part_loc(q),y_part_loc(r));
20395 @ Procedure |set_up_known_trans| is like |set_up_trans|, but it
20396 insists that the transformation be entirely known.
20398 @<Declare binary action...@>=
20399 void mp_set_up_known_trans (MP mp,quarterword c) {
20400 mp_set_up_trans(mp, c);
20401 if ( mp->cur_type!=mp_known ) {
20402 exp_err("Transform components aren't all known");
20403 @.Transform components...@>
20404 help3("I'm unable to apply a partially specified transformation")
20405 ("except to a fully known pair or transform.")
20406 ("Proceed, and I'll omit the transformation.");
20407 mp_put_get_flush_error(mp, 0);
20408 mp->txx=unity; mp->txy=0; mp->tyx=0; mp->tyy=unity;
20409 mp->tx=0; mp->ty=0;
20413 @ Here's a procedure that applies the transform |txx..ty| to a pair of
20414 coordinates in locations |p| and~|q|.
20416 @<Declare binary action...@>=
20417 void mp_trans (MP mp,pointer p, pointer q) {
20418 scaled v; /* the new |x| value */
20419 v=mp_take_scaled(mp, mp->mem[p].sc,mp->txx)+
20420 mp_take_scaled(mp, mp->mem[q].sc,mp->txy)+mp->tx;
20421 mp->mem[q].sc=mp_take_scaled(mp, mp->mem[p].sc,mp->tyx)+
20422 mp_take_scaled(mp, mp->mem[q].sc,mp->tyy)+mp->ty;
20426 @ The simplest transformation procedure applies a transform to all
20427 coordinates of a path. The |path_trans(c)(p)| macro applies
20428 a transformation defined by |cur_exp| and the transform operator |c|
20431 @d path_trans(A,B) { mp_set_up_known_trans(mp, (A));
20432 mp_unstash_cur_exp(mp, (B));
20433 mp_do_path_trans(mp, mp->cur_exp); }
20435 @<Declare binary action...@>=
20436 void mp_do_path_trans (MP mp,pointer p) {
20437 pointer q; /* list traverser */
20440 if ( left_type(q)!=mp_endpoint )
20441 mp_trans(mp, q+3,q+4); /* that's |left_x| and |left_y| */
20442 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20443 if ( right_type(q)!=mp_endpoint )
20444 mp_trans(mp, q+5,q+6); /* that's |right_x| and |right_y| */
20445 @^data structure assumptions@>
20450 @ Transforming a pen is very similar, except that there are no |left_type|
20451 and |right_type| fields.
20453 @d pen_trans(A,B) { mp_set_up_known_trans(mp, (A));
20454 mp_unstash_cur_exp(mp, (B));
20455 mp_do_pen_trans(mp, mp->cur_exp); }
20457 @<Declare binary action...@>=
20458 void mp_do_pen_trans (MP mp,pointer p) {
20459 pointer q; /* list traverser */
20460 if ( pen_is_elliptical(p) ) {
20461 mp_trans(mp, p+3,p+4); /* that's |left_x| and |left_y| */
20462 mp_trans(mp, p+5,p+6); /* that's |right_x| and |right_y| */
20466 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20467 @^data structure assumptions@>
20472 @ The next transformation procedure applies to edge structures. It will do
20473 any transformation, but the results may be substandard if the picture contains
20474 text that uses downloaded bitmap fonts. The binary action procedure is
20475 |do_edges_trans|, but we also need a function that just scales a picture.
20476 That routine is |scale_edges|. Both it and the underlying routine |edges_trans|
20477 should be thought of as procedures that update an edge structure |h|, except
20478 that they have to return a (possibly new) structure because of the need to call
20481 @<Declare binary action...@>=
20482 pointer mp_edges_trans (MP mp, pointer h) {
20483 pointer q; /* the object being transformed */
20484 pointer r,s; /* for list manipulation */
20485 scaled sx,sy; /* saved transformation parameters */
20486 scaled sqdet; /* square root of determinant for |dash_scale| */
20487 integer sgndet; /* sign of the determinant */
20488 scaled v; /* a temporary value */
20489 h=mp_private_edges(mp, h);
20490 sqdet=mp_sqrt_det(mp, mp->txx,mp->txy,mp->tyx,mp->tyy);
20491 sgndet=mp_ab_vs_cd(mp, mp->txx,mp->tyy,mp->txy,mp->tyx);
20492 if ( dash_list(h)!=null_dash ) {
20493 @<Try to transform the dash list of |h|@>;
20495 @<Make the bounding box of |h| unknown if it can't be updated properly
20496 without scanning the whole structure@>;
20497 q=link(dummy_loc(h));
20498 while ( q!=null ) {
20499 @<Transform graphical object |q|@>;
20504 void mp_do_edges_trans (MP mp,pointer p, quarterword c) {
20505 mp_set_up_known_trans(mp, c);
20506 value(p)=mp_edges_trans(mp, value(p));
20507 mp_unstash_cur_exp(mp, p);
20509 void mp_scale_edges (MP mp) {
20510 mp->txx=mp->se_sf; mp->tyy=mp->se_sf;
20511 mp->txy=0; mp->tyx=0; mp->tx=0; mp->ty=0;
20512 mp->se_pic=mp_edges_trans(mp, mp->se_pic);
20515 @ @<Try to transform the dash list of |h|@>=
20516 if ( (mp->txy!=0)||(mp->tyx!=0)||
20517 (mp->ty!=0)||(abs(mp->txx)!=abs(mp->tyy))) {
20518 mp_flush_dash_list(mp, h);
20520 if ( mp->txx<0 ) { @<Reverse the dash list of |h|@>; }
20521 @<Scale the dash list by |txx| and shift it by |tx|@>;
20522 dash_y(h)=mp_take_scaled(mp, dash_y(h),abs(mp->tyy));
20525 @ @<Reverse the dash list of |h|@>=
20528 dash_list(h)=null_dash;
20529 while ( r!=null_dash ) {
20531 v=start_x(s); start_x(s)=stop_x(s); stop_x(s)=v;
20532 link(s)=dash_list(h);
20537 @ @<Scale the dash list by |txx| and shift it by |tx|@>=
20539 while ( r!=null_dash ) {
20540 start_x(r)=mp_take_scaled(mp, start_x(r),mp->txx)+mp->tx;
20541 stop_x(r)=mp_take_scaled(mp, stop_x(r),mp->txx)+mp->tx;
20545 @ @<Make the bounding box of |h| unknown if it can't be updated properly...@>=
20546 if ( (mp->txx==0)&&(mp->tyy==0) ) {
20547 @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>;
20548 } else if ( (mp->txy!=0)||(mp->tyx!=0) ) {
20549 mp_init_bbox(mp, h);
20552 if ( minx_val(h)<=maxx_val(h) ) {
20553 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift by
20560 @ @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>=
20562 v=minx_val(h); minx_val(h)=miny_val(h); miny_val(h)=v;
20563 v=maxx_val(h); maxx_val(h)=maxy_val(h); maxy_val(h)=v;
20566 @ The sum ``|txx+txy|'' is whichever of |txx| or |txy| is nonzero. The other
20569 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift...@>=
20571 minx_val(h)=mp_take_scaled(mp, minx_val(h),mp->txx+mp->txy)+mp->tx;
20572 maxx_val(h)=mp_take_scaled(mp, maxx_val(h),mp->txx+mp->txy)+mp->tx;
20573 miny_val(h)=mp_take_scaled(mp, miny_val(h),mp->tyx+mp->tyy)+mp->ty;
20574 maxy_val(h)=mp_take_scaled(mp, maxy_val(h),mp->tyx+mp->tyy)+mp->ty;
20575 if ( mp->txx+mp->txy<0 ) {
20576 v=minx_val(h); minx_val(h)=maxx_val(h); maxx_val(h)=v;
20578 if ( mp->tyx+mp->tyy<0 ) {
20579 v=miny_val(h); miny_val(h)=maxy_val(h); maxy_val(h)=v;
20583 @ Now we ready for the main task of transforming the graphical objects in edge
20586 @<Transform graphical object |q|@>=
20588 case mp_fill_code: case mp_stroked_code:
20589 mp_do_path_trans(mp, path_p(q));
20590 @<Transform |pen_p(q)|, making sure polygonal pens stay counter-clockwise@>;
20592 case mp_start_clip_code: case mp_start_bounds_code:
20593 mp_do_path_trans(mp, path_p(q));
20597 @<Transform the compact transformation starting at |r|@>;
20599 case mp_stop_clip_code: case mp_stop_bounds_code:
20601 } /* there are no other cases */
20603 @ Note that the shift parameters |(tx,ty)| apply only to the path being stroked.
20604 The |dash_scale| has to be adjusted to scale the dash lengths in |dash_p(q)|
20605 since the \ps\ output procedures will try to compensate for the transformation
20606 we are applying to |pen_p(q)|. Since this compensation is based on the square
20607 root of the determinant, |sqdet| is the appropriate factor.
20609 @<Transform |pen_p(q)|, making sure...@>=
20610 if ( pen_p(q)!=null ) {
20611 sx=mp->tx; sy=mp->ty;
20612 mp->tx=0; mp->ty=0;
20613 mp_do_pen_trans(mp, pen_p(q));
20614 if ( ((type(q)==mp_stroked_code)&&(dash_p(q)!=null)) )
20615 dash_scale(q)=mp_take_scaled(mp, dash_scale(q),sqdet);
20616 if ( ! pen_is_elliptical(pen_p(q)) )
20618 pen_p(q)=mp_make_pen(mp, mp_copy_path(mp, pen_p(q)),true);
20619 /* this unreverses the pen */
20620 mp->tx=sx; mp->ty=sy;
20623 @ This uses the fact that transformations are stored in the order
20624 |(tx,ty,txx,txy,tyx,tyy)|.
20625 @^data structure assumptions@>
20627 @<Transform the compact transformation starting at |r|@>=
20628 mp_trans(mp, r,r+1);
20629 sx=mp->tx; sy=mp->ty;
20630 mp->tx=0; mp->ty=0;
20631 mp_trans(mp, r+2,r+4);
20632 mp_trans(mp, r+3,r+5);
20633 mp->tx=sx; mp->ty=sy
20635 @ The hard cases of transformation occur when big nodes are involved,
20636 and when some of their components are unknown.
20638 @<Declare binary action...@>=
20639 @<Declare subroutines needed by |big_trans|@>;
20640 void mp_big_trans (MP mp,pointer p, quarterword c) {
20641 pointer q,r,pp,qq; /* list manipulation registers */
20642 small_number s; /* size of a big node */
20643 s=mp->big_node_size[type(p)]; q=value(p); r=q+s;
20646 if ( type(r)!=mp_known ) {
20647 @<Transform an unknown big node and |return|@>;
20650 @<Transform a known big node@>;
20651 }; /* node |p| will now be recycled by |do_binary| */
20653 @ @<Transform an unknown big node and |return|@>=
20655 mp_set_up_known_trans(mp, c); mp_make_exp_copy(mp, p);
20656 r=value(mp->cur_exp);
20657 if ( mp->cur_type==mp_transform_type ) {
20658 mp_bilin1(mp, yy_part_loc(r),mp->tyy,xy_part_loc(q),mp->tyx,0);
20659 mp_bilin1(mp, yx_part_loc(r),mp->tyy,xx_part_loc(q),mp->tyx,0);
20660 mp_bilin1(mp, xy_part_loc(r),mp->txx,yy_part_loc(q),mp->txy,0);
20661 mp_bilin1(mp, xx_part_loc(r),mp->txx,yx_part_loc(q),mp->txy,0);
20663 mp_bilin1(mp, y_part_loc(r),mp->tyy,x_part_loc(q),mp->tyx,mp->ty);
20664 mp_bilin1(mp, x_part_loc(r),mp->txx,y_part_loc(q),mp->txy,mp->tx);
20668 @ Let |p| point to a two-word value field inside a big node of |cur_exp|,
20669 and let |q| point to a another value field. The |bilin1| procedure
20670 replaces |p| by $p\cdot t+q\cdot u+\delta$.
20672 @<Declare subroutines needed by |big_trans|@>=
20673 void mp_bilin1 (MP mp, pointer p, scaled t, pointer q,
20674 scaled u, scaled delta) {
20675 pointer r; /* list traverser */
20676 if ( t!=unity ) mp_dep_mult(mp, p,t,true);
20678 if ( type(q)==mp_known ) {
20679 delta+=mp_take_scaled(mp, value(q),u);
20681 @<Ensure that |type(p)=mp_proto_dependent|@>;
20682 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),u,dep_list(q),
20683 mp_proto_dependent,type(q));
20686 if ( type(p)==mp_known ) {
20690 while ( info(r)!=null ) r=link(r);
20692 if ( r!=dep_list(p) ) value(r)=delta;
20693 else { mp_recycle_value(mp, p); type(p)=mp_known; value(p)=delta; };
20695 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20698 @ @<Ensure that |type(p)=mp_proto_dependent|@>=
20699 if ( type(p)!=mp_proto_dependent ) {
20700 if ( type(p)==mp_known )
20701 mp_new_dep(mp, p,mp_const_dependency(mp, value(p)));
20703 dep_list(p)=mp_p_times_v(mp, dep_list(p),unity,mp_dependent,
20704 mp_proto_dependent,true);
20705 type(p)=mp_proto_dependent;
20708 @ @<Transform a known big node@>=
20709 mp_set_up_trans(mp, c);
20710 if ( mp->cur_type==mp_known ) {
20711 @<Transform known by known@>;
20713 pp=mp_stash_cur_exp(mp); qq=value(pp);
20714 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20715 if ( mp->cur_type==mp_transform_type ) {
20716 mp_bilin2(mp, yy_part_loc(r),yy_part_loc(qq),
20717 value(xy_part_loc(q)),yx_part_loc(qq),null);
20718 mp_bilin2(mp, yx_part_loc(r),yy_part_loc(qq),
20719 value(xx_part_loc(q)),yx_part_loc(qq),null);
20720 mp_bilin2(mp, xy_part_loc(r),xx_part_loc(qq),
20721 value(yy_part_loc(q)),xy_part_loc(qq),null);
20722 mp_bilin2(mp, xx_part_loc(r),xx_part_loc(qq),
20723 value(yx_part_loc(q)),xy_part_loc(qq),null);
20725 mp_bilin2(mp, y_part_loc(r),yy_part_loc(qq),
20726 value(x_part_loc(q)),yx_part_loc(qq),y_part_loc(qq));
20727 mp_bilin2(mp, x_part_loc(r),xx_part_loc(qq),
20728 value(y_part_loc(q)),xy_part_loc(qq),x_part_loc(qq));
20729 mp_recycle_value(mp, pp); mp_free_node(mp, pp,value_node_size);
20732 @ Let |p| be a |mp_proto_dependent| value whose dependency list ends
20733 at |dep_final|. The following procedure adds |v| times another
20734 numeric quantity to~|p|.
20736 @<Declare subroutines needed by |big_trans|@>=
20737 void mp_add_mult_dep (MP mp,pointer p, scaled v, pointer r) {
20738 if ( type(r)==mp_known ) {
20739 value(mp->dep_final)+=mp_take_scaled(mp, value(r),v);
20741 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),v,dep_list(r),
20742 mp_proto_dependent,type(r));
20743 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20747 @ The |bilin2| procedure is something like |bilin1|, but with known
20748 and unknown quantities reversed. Parameter |p| points to a value field
20749 within the big node for |cur_exp|; and |type(p)=mp_known|. Parameters
20750 |t| and~|u| point to value fields elsewhere; so does parameter~|q|,
20751 unless it is |null| (which stands for zero). Location~|p| will be
20752 replaced by $p\cdot t+v\cdot u+q$.
20754 @<Declare subroutines needed by |big_trans|@>=
20755 void mp_bilin2 (MP mp,pointer p, pointer t, scaled v,
20756 pointer u, pointer q) {
20757 scaled vv; /* temporary storage for |value(p)| */
20758 vv=value(p); type(p)=mp_proto_dependent;
20759 mp_new_dep(mp, p,mp_const_dependency(mp, 0)); /* this sets |dep_final| */
20761 mp_add_mult_dep(mp, p,vv,t); /* |dep_final| doesn't change */
20762 if ( v!=0 ) mp_add_mult_dep(mp, p,v,u);
20763 if ( q!=null ) mp_add_mult_dep(mp, p,unity,q);
20764 if ( dep_list(p)==mp->dep_final ) {
20765 vv=value(mp->dep_final); mp_recycle_value(mp, p);
20766 type(p)=mp_known; value(p)=vv;
20770 @ @<Transform known by known@>=
20772 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20773 if ( mp->cur_type==mp_transform_type ) {
20774 mp_bilin3(mp, yy_part_loc(r),mp->tyy,value(xy_part_loc(q)),mp->tyx,0);
20775 mp_bilin3(mp, yx_part_loc(r),mp->tyy,value(xx_part_loc(q)),mp->tyx,0);
20776 mp_bilin3(mp, xy_part_loc(r),mp->txx,value(yy_part_loc(q)),mp->txy,0);
20777 mp_bilin3(mp, xx_part_loc(r),mp->txx,value(yx_part_loc(q)),mp->txy,0);
20779 mp_bilin3(mp, y_part_loc(r),mp->tyy,value(x_part_loc(q)),mp->tyx,mp->ty);
20780 mp_bilin3(mp, x_part_loc(r),mp->txx,value(y_part_loc(q)),mp->txy,mp->tx);
20783 @ Finally, in |bilin3| everything is |known|.
20785 @<Declare subroutines needed by |big_trans|@>=
20786 void mp_bilin3 (MP mp,pointer p, scaled t,
20787 scaled v, scaled u, scaled delta) {
20789 delta+=mp_take_scaled(mp, value(p),t);
20792 if ( u!=0 ) value(p)=delta+mp_take_scaled(mp, v,u);
20793 else value(p)=delta;
20796 @ @<Additional cases of binary operators@>=
20798 if ( (mp->cur_type==mp_string_type)&&(type(p)==mp_string_type) ) mp_cat(mp, p);
20799 else mp_bad_binary(mp, p,concatenate);
20802 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_string_type) )
20803 mp_chop_string(mp, value(p));
20804 else mp_bad_binary(mp, p,substring_of);
20807 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
20808 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_path_type) )
20809 mp_chop_path(mp, value(p));
20810 else mp_bad_binary(mp, p,subpath_of);
20813 @ @<Declare binary action...@>=
20814 void mp_cat (MP mp,pointer p) {
20815 str_number a,b; /* the strings being concatenated */
20816 pool_pointer k; /* index into |str_pool| */
20817 a=value(p); b=mp->cur_exp; str_room(length(a)+length(b));
20818 for (k=mp->str_start[a];k<=str_stop(a)-1;k++) {
20819 append_char(mp->str_pool[k]);
20821 for (k=mp->str_start[b];k<=str_stop(b)-1;k++) {
20822 append_char(mp->str_pool[k]);
20824 mp->cur_exp=mp_make_string(mp); delete_str_ref(b);
20827 @ @<Declare binary action...@>=
20828 void mp_chop_string (MP mp,pointer p) {
20829 integer a, b; /* start and stop points */
20830 integer l; /* length of the original string */
20831 integer k; /* runs from |a| to |b| */
20832 str_number s; /* the original string */
20833 boolean reversed; /* was |a>b|? */
20834 a=mp_round_unscaled(mp, value(x_part_loc(p)));
20835 b=mp_round_unscaled(mp, value(y_part_loc(p)));
20836 if ( a<=b ) reversed=false;
20837 else { reversed=true; k=a; a=b; b=k; };
20838 s=mp->cur_exp; l=length(s);
20849 for (k=mp->str_start[s]+b-1;k>=mp->str_start[s]+a;k--) {
20850 append_char(mp->str_pool[k]);
20853 for (k=mp->str_start[s]+a;k<=mp->str_start[s]+b-1;k++) {
20854 append_char(mp->str_pool[k]);
20857 mp->cur_exp=mp_make_string(mp); delete_str_ref(s);
20860 @ @<Declare binary action...@>=
20861 void mp_chop_path (MP mp,pointer p) {
20862 pointer q; /* a knot in the original path */
20863 pointer pp,qq,rr,ss; /* link variables for copies of path nodes */
20864 scaled a,b,k,l; /* indices for chopping */
20865 boolean reversed; /* was |a>b|? */
20866 l=mp_path_length(mp); a=value(x_part_loc(p)); b=value(y_part_loc(p));
20867 if ( a<=b ) reversed=false;
20868 else { reversed=true; k=a; a=b; b=k; };
20869 @<Dispense with the cases |a<0| and/or |b>l|@>;
20871 while ( a>=unity ) {
20872 q=link(q); a=a-unity; b=b-unity;
20875 @<Construct a path from |pp| to |qq| of length zero@>;
20877 @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>;
20879 left_type(pp)=mp_endpoint; right_type(qq)=mp_endpoint; link(qq)=pp;
20880 mp_toss_knot_list(mp, mp->cur_exp);
20882 mp->cur_exp=link(mp_htap_ypoc(mp, pp)); mp_toss_knot_list(mp, pp);
20888 @ @<Dispense with the cases |a<0| and/or |b>l|@>=
20890 if ( left_type(mp->cur_exp)==mp_endpoint ) {
20891 a=0; if ( b<0 ) b=0;
20893 do { a=a+l; b=b+l; } while (a<0); /* a cycle always has length |l>0| */
20897 if ( left_type(mp->cur_exp)==mp_endpoint ) {
20898 b=l; if ( a>l ) a=l;
20906 @ @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>=
20908 pp=mp_copy_knot(mp, q); qq=pp;
20910 q=link(q); rr=qq; qq=mp_copy_knot(mp, q); link(rr)=qq; b=b-unity;
20913 ss=pp; pp=link(pp);
20914 mp_split_cubic(mp, ss,a*010000); pp=link(ss);
20915 mp_free_node(mp, ss,knot_node_size);
20917 b=mp_make_scaled(mp, b,unity-a); rr=pp;
20921 mp_split_cubic(mp, rr,(b+unity)*010000);
20922 mp_free_node(mp, qq,knot_node_size);
20927 @ @<Construct a path from |pp| to |qq| of length zero@>=
20929 if ( a>0 ) { mp_split_cubic(mp, q,a*010000); q=link(q); };
20930 pp=mp_copy_knot(mp, q); qq=pp;
20933 @ @<Additional cases of binary operators@>=
20934 case point_of: case precontrol_of: case postcontrol_of:
20935 if ( mp->cur_type==mp_pair_type )
20936 mp_pair_to_path(mp);
20937 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
20938 mp_find_point(mp, value(p),c);
20940 mp_bad_binary(mp, p,c);
20942 case pen_offset_of:
20943 if ( (mp->cur_type==mp_pen_type)&& mp_nice_pair(mp, p,type(p)) )
20944 mp_set_up_offset(mp, value(p));
20946 mp_bad_binary(mp, p,pen_offset_of);
20948 case direction_time_of:
20949 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
20950 if ( (mp->cur_type==mp_path_type)&& mp_nice_pair(mp, p,type(p)) )
20951 mp_set_up_direction_time(mp, value(p));
20953 mp_bad_binary(mp, p,direction_time_of);
20956 @ @<Declare binary action...@>=
20957 void mp_set_up_offset (MP mp,pointer p) {
20958 mp_find_offset(mp, value(x_part_loc(p)),value(y_part_loc(p)),mp->cur_exp);
20959 mp_pair_value(mp, mp->cur_x,mp->cur_y);
20961 void mp_set_up_direction_time (MP mp,pointer p) {
20962 mp_flush_cur_exp(mp, mp_find_direction_time(mp, value(x_part_loc(p)),
20963 value(y_part_loc(p)),mp->cur_exp));
20966 @ @<Declare binary action...@>=
20967 void mp_find_point (MP mp,scaled v, quarterword c) {
20968 pointer p; /* the path */
20969 scaled n; /* its length */
20971 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
20972 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
20975 } else if ( v<0 ) {
20976 if ( left_type(p)==mp_endpoint ) v=0;
20977 else v=n-1-((-v-1) % n);
20978 } else if ( v>n ) {
20979 if ( left_type(p)==mp_endpoint ) v=n;
20983 while ( v>=unity ) { p=link(p); v=v-unity; };
20985 @<Insert a fractional node by splitting the cubic@>;
20987 @<Set the current expression to the desired path coordinates@>;
20990 @ @<Insert a fractional node...@>=
20991 { mp_split_cubic(mp, p,v*010000); p=link(p); }
20993 @ @<Set the current expression to the desired path coordinates...@>=
20996 mp_pair_value(mp, x_coord(p),y_coord(p));
20998 case precontrol_of:
20999 if ( left_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21000 else mp_pair_value(mp, left_x(p),left_y(p));
21002 case postcontrol_of:
21003 if ( right_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21004 else mp_pair_value(mp, right_x(p),right_y(p));
21006 } /* there are no other cases */
21008 @ @<Additional cases of binary operators@>=
21010 if ( mp->cur_type==mp_pair_type )
21011 mp_pair_to_path(mp);
21012 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
21013 mp_flush_cur_exp(mp, mp_get_arc_time(mp, mp->cur_exp,value(p)));
21015 mp_bad_binary(mp, p,c);
21018 @ @<Additional cases of bin...@>=
21020 if ( type(p)==mp_pair_type ) {
21021 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p);
21022 mp_pair_to_path(mp); p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
21024 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21025 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_path_type) ) {
21026 mp_path_intersection(mp, value(p),mp->cur_exp);
21027 mp_pair_value(mp, mp->cur_t,mp->cur_tt);
21029 mp_bad_binary(mp, p,intersect);
21033 @ @<Additional cases of bin...@>=
21035 if ( (mp->cur_type!=mp_string_type)||(type(p)!=mp_string_type))
21036 mp_bad_binary(mp, p,in_font);
21037 else { mp_do_infont(mp, p); return; }
21040 @ Function |new_text_node| owns the reference count for its second argument
21041 (the text string) but not its first (the font name).
21043 @<Declare binary action...@>=
21044 void mp_do_infont (MP mp,pointer p) {
21046 q=mp_get_node(mp, edge_header_size);
21047 mp_init_edges(mp, q);
21048 link(obj_tail(q))=mp_new_text_node(mp, str(mp->cur_exp),value(p));
21049 obj_tail(q)=link(obj_tail(q));
21050 mp_free_node(mp, p,value_node_size);
21051 mp_flush_cur_exp(mp, q);
21052 mp->cur_type=mp_picture_type;
21055 @* \[40] Statements and commands.
21056 The chief executive of \MP\ is the |do_statement| routine, which
21057 contains the master switch that causes all the various pieces of \MP\
21058 to do their things, in the right order.
21060 In a sense, this is the grand climax of the program: It applies all the
21061 tools that we have worked so hard to construct. In another sense, this is
21062 the messiest part of the program: It necessarily refers to other pieces
21063 of code all over the place, so that a person can't fully understand what is
21064 going on without paging back and forth to be reminded of conventions that
21065 are defined elsewhere. We are now at the hub of the web.
21067 The structure of |do_statement| itself is quite simple. The first token
21068 of the statement is fetched using |get_x_next|. If it can be the first
21069 token of an expression, we look for an equation, an assignment, or a
21070 title. Otherwise we use a \&{case} construction to branch at high speed to
21071 the appropriate routine for various and sundry other types of commands,
21072 each of which has an ``action procedure'' that does the necessary work.
21074 The program uses the fact that
21075 $$\hbox{|min_primary_command=max_statement_command=type_name|}$$
21076 to interpret a statement that starts with, e.g., `\&{string}',
21077 as a type declaration rather than a boolean expression.
21079 @c void mp_do_statement (MP mp) { /* governs \MP's activities */
21080 mp->cur_type=mp_vacuous; mp_get_x_next(mp);
21081 if ( mp->cur_cmd>max_primary_command ) {
21082 @<Worry about bad statement@>;
21083 } else if ( mp->cur_cmd>max_statement_command ) {
21084 @<Do an equation, assignment, title, or
21085 `$\langle\,$expression$\,\rangle\,$\&{endgroup}'@>;
21087 @<Do a statement that doesn't begin with an expression@>;
21089 if ( mp->cur_cmd<semicolon )
21090 @<Flush unparsable junk that was found after the statement@>;
21094 @ @<Declarations@>=
21095 @<Declare action procedures for use by |do_statement|@>;
21097 @ The only command codes |>max_primary_command| that can be present
21098 at the beginning of a statement are |semicolon| and higher; these
21099 occur when the statement is null.
21101 @<Worry about bad statement@>=
21103 if ( mp->cur_cmd<semicolon ) {
21104 print_err("A statement can't begin with `");
21105 @.A statement can't begin with x@>
21106 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod); mp_print_char(mp, '\'');
21107 help5("I was looking for the beginning of a new statement.")
21108 ("If you just proceed without changing anything, I'll ignore")
21109 ("everything up to the next `;'. Please insert a semicolon")
21110 ("now in front of anything that you don't want me to delete.")
21111 ("(See Chapter 27 of The METAFONTbook for an example.)");
21112 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21113 mp_back_error(mp); mp_get_x_next(mp);
21117 @ The help message printed here says that everything is flushed up to
21118 a semicolon, but actually the commands |end_group| and |stop| will
21119 also terminate a statement.
21121 @<Flush unparsable junk that was found after the statement@>=
21123 print_err("Extra tokens will be flushed");
21124 @.Extra tokens will be flushed@>
21125 help6("I've just read as much of that statement as I could fathom,")
21126 ("so a semicolon should have been next. It's very puzzling...")
21127 ("but I'll try to get myself back together, by ignoring")
21128 ("everything up to the next `;'. Please insert a semicolon")
21129 ("now in front of anything that you don't want me to delete.")
21130 ("(See Chapter 27 of The METAFONTbook for an example.)");
21131 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21132 mp_back_error(mp); mp->scanner_status=flushing;
21135 @<Decrease the string reference count...@>;
21136 } while (! end_of_statement); /* |cur_cmd=semicolon|, |end_group|, or |stop| */
21137 mp->scanner_status=normal;
21140 @ If |do_statement| ends with |cur_cmd=end_group|, we should have
21141 |cur_type=mp_vacuous| unless the statement was simply an expression;
21142 in the latter case, |cur_type| and |cur_exp| should represent that
21145 @<Do a statement that doesn't...@>=
21147 if ( mp->internal[mp_tracing_commands]>0 )
21149 switch (mp->cur_cmd ) {
21150 case type_name:mp_do_type_declaration(mp); break;
21152 if ( mp->cur_mod>var_def ) mp_make_op_def(mp);
21153 else if ( mp->cur_mod>end_def ) mp_scan_def(mp);
21155 @<Cases of |do_statement| that invoke particular commands@>;
21156 } /* there are no other cases */
21157 mp->cur_type=mp_vacuous;
21160 @ The most important statements begin with expressions.
21162 @<Do an equation, assignment, title, or...@>=
21164 mp->var_flag=assignment; mp_scan_expression(mp);
21165 if ( mp->cur_cmd<end_group ) {
21166 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21167 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21168 else if ( mp->cur_type==mp_string_type ) {@<Do a title@> ; }
21169 else if ( mp->cur_type!=mp_vacuous ){
21170 exp_err("Isolated expression");
21171 @.Isolated expression@>
21172 help3("I couldn't find an `=' or `:=' after the")
21173 ("expression that is shown above this error message,")
21174 ("so I guess I'll just ignore it and carry on.");
21175 mp_put_get_error(mp);
21177 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
21183 if ( mp->internal[mp_tracing_titles]>0 ) {
21184 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp); update_terminal;
21188 @ Equations and assignments are performed by the pair of mutually recursive
21190 routines |do_equation| and |do_assignment|. These routines are called when
21191 |cur_cmd=equals| and when |cur_cmd=assignment|, respectively; the left-hand
21192 side is in |cur_type| and |cur_exp|, while the right-hand side is yet
21193 to be scanned. After the routines are finished, |cur_type| and |cur_exp|
21194 will be equal to the right-hand side (which will normally be equal
21195 to the left-hand side).
21197 @<Declare action procedures for use by |do_statement|@>=
21198 @<Declare the procedure called |try_eq|@>;
21199 @<Declare the procedure called |make_eq|@>;
21200 void mp_do_equation (MP mp) ;
21203 void mp_do_equation (MP mp) {
21204 pointer lhs; /* capsule for the left-hand side */
21205 pointer p; /* temporary register */
21206 lhs=mp_stash_cur_exp(mp); mp_get_x_next(mp);
21207 mp->var_flag=assignment; mp_scan_expression(mp);
21208 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21209 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21210 if ( mp->internal[mp_tracing_commands]>two )
21211 @<Trace the current equation@>;
21212 if ( mp->cur_type==mp_unknown_path ) if ( type(lhs)==mp_pair_type ) {
21213 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, lhs); lhs=p;
21214 }; /* in this case |make_eq| will change the pair to a path */
21215 mp_make_eq(mp, lhs); /* equate |lhs| to |(cur_type,cur_exp)| */
21218 @ And |do_assignment| is similar to |do_expression|:
21221 void mp_do_assignment (MP mp);
21223 @ @<Declare action procedures for use by |do_statement|@>=
21224 void mp_do_assignment (MP mp) ;
21227 void mp_do_assignment (MP mp) {
21228 pointer lhs; /* token list for the left-hand side */
21229 pointer p; /* where the left-hand value is stored */
21230 pointer q; /* temporary capsule for the right-hand value */
21231 if ( mp->cur_type!=mp_token_list ) {
21232 exp_err("Improper `:=' will be changed to `='");
21234 help2("I didn't find a variable name at the left of the `:=',")
21235 ("so I'm going to pretend that you said `=' instead.");
21236 mp_error(mp); mp_do_equation(mp);
21238 lhs=mp->cur_exp; mp->cur_type=mp_vacuous;
21239 mp_get_x_next(mp); mp->var_flag=assignment; mp_scan_expression(mp);
21240 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21241 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21242 if ( mp->internal[mp_tracing_commands]>two )
21243 @<Trace the current assignment@>;
21244 if ( info(lhs)>hash_end ) {
21245 @<Assign the current expression to an internal variable@>;
21247 @<Assign the current expression to the variable |lhs|@>;
21249 mp_flush_node_list(mp, lhs);
21253 @ @<Trace the current equation@>=
21255 mp_begin_diagnostic(mp); mp_print_nl(mp, "{("); mp_print_exp(mp,lhs,0);
21256 mp_print(mp,")=("); mp_print_exp(mp,null,0);
21257 mp_print(mp,")}"); mp_end_diagnostic(mp, false);
21260 @ @<Trace the current assignment@>=
21262 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
21263 if ( info(lhs)>hash_end )
21264 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21266 mp_show_token_list(mp, lhs,null,1000,0);
21267 mp_print(mp, ":="); mp_print_exp(mp, null,0);
21268 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
21271 @ @<Assign the current expression to an internal variable@>=
21272 if ( mp->cur_type==mp_known ) {
21273 mp->internal[info(lhs)-(hash_end)]=mp->cur_exp;
21275 exp_err("Internal quantity `");
21276 @.Internal quantity...@>
21277 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21278 mp_print(mp, "' must receive a known value");
21279 help2("I can\'t set an internal quantity to anything but a known")
21280 ("numeric value, so I'll have to ignore this assignment.");
21281 mp_put_get_error(mp);
21284 @ @<Assign the current expression to the variable |lhs|@>=
21286 p=mp_find_variable(mp, lhs);
21288 q=mp_stash_cur_exp(mp); mp->cur_type=mp_und_type(mp, p);
21289 mp_recycle_value(mp, p);
21290 type(p)=mp->cur_type; value(p)=null; mp_make_exp_copy(mp, p);
21291 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q); mp_make_eq(mp, p);
21293 mp_obliterated(mp, lhs); mp_put_get_error(mp);
21298 @ And now we get to the nitty-gritty. The |make_eq| procedure is given
21299 a pointer to a capsule that is to be equated to the current expression.
21301 @<Declare the procedure called |make_eq|@>=
21302 void mp_make_eq (MP mp,pointer lhs) ;
21306 @c void mp_make_eq (MP mp,pointer lhs) {
21307 small_number t; /* type of the left-hand side */
21308 pointer p,q; /* pointers inside of big nodes */
21309 integer v=0; /* value of the left-hand side */
21312 if ( t<=mp_pair_type ) v=value(lhs);
21314 @<For each type |t|, make an equation and |goto done| unless |cur_type|
21315 is incompatible with~|t|@>;
21316 } /* all cases have been listed */
21317 @<Announce that the equation cannot be performed@>;
21319 check_arith; mp_recycle_value(mp, lhs);
21320 mp_free_node(mp, lhs,value_node_size);
21323 @ @<Announce that the equation cannot be performed@>=
21324 mp_disp_err(mp, lhs,"");
21325 exp_err("Equation cannot be performed (");
21326 @.Equation cannot be performed@>
21327 if ( type(lhs)<=mp_pair_type ) mp_print_type(mp, type(lhs));
21328 else mp_print(mp, "numeric");
21329 mp_print_char(mp, '=');
21330 if ( mp->cur_type<=mp_pair_type ) mp_print_type(mp, mp->cur_type);
21331 else mp_print(mp, "numeric");
21332 mp_print_char(mp, ')');
21333 help2("I'm sorry, but I don't know how to make such things equal.")
21334 ("(See the two expressions just above the error message.)");
21335 mp_put_get_error(mp)
21337 @ @<For each type |t|, make an equation and |goto done| unless...@>=
21338 case mp_boolean_type: case mp_string_type: case mp_pen_type:
21339 case mp_path_type: case mp_picture_type:
21340 if ( mp->cur_type==t+unknown_tag ) {
21341 mp_nonlinear_eq(mp, v,mp->cur_exp,false); goto DONE;
21342 } else if ( mp->cur_type==t ) {
21343 @<Report redundant or inconsistent equation and |goto done|@>;
21346 case unknown_types:
21347 if ( mp->cur_type==t-unknown_tag ) {
21348 mp_nonlinear_eq(mp, mp->cur_exp,lhs,true); goto DONE;
21349 } else if ( mp->cur_type==t ) {
21350 mp_ring_merge(mp, lhs,mp->cur_exp); goto DONE;
21351 } else if ( mp->cur_type==mp_pair_type ) {
21352 if ( t==mp_unknown_path ) {
21353 mp_pair_to_path(mp); goto RESTART;
21357 case mp_transform_type: case mp_color_type:
21358 case mp_cmykcolor_type: case mp_pair_type:
21359 if ( mp->cur_type==t ) {
21360 @<Do multiple equations and |goto done|@>;
21363 case mp_known: case mp_dependent:
21364 case mp_proto_dependent: case mp_independent:
21365 if ( mp->cur_type>=mp_known ) {
21366 mp_try_eq(mp, lhs,null); goto DONE;
21372 @ @<Report redundant or inconsistent equation and |goto done|@>=
21374 if ( mp->cur_type<=mp_string_type ) {
21375 if ( mp->cur_type==mp_string_type ) {
21376 if ( mp_str_vs_str(mp, v,mp->cur_exp)!=0 ) {
21379 } else if ( v!=mp->cur_exp ) {
21382 @<Exclaim about a redundant equation@>; goto DONE;
21384 print_err("Redundant or inconsistent equation");
21385 @.Redundant or inconsistent equation@>
21386 help2("An equation between already-known quantities can't help.")
21387 ("But don't worry; continue and I'll just ignore it.");
21388 mp_put_get_error(mp); goto DONE;
21390 print_err("Inconsistent equation");
21391 @.Inconsistent equation@>
21392 help2("The equation I just read contradicts what was said before.")
21393 ("But don't worry; continue and I'll just ignore it.");
21394 mp_put_get_error(mp); goto DONE;
21397 @ @<Do multiple equations and |goto done|@>=
21399 p=v+mp->big_node_size[t];
21400 q=value(mp->cur_exp)+mp->big_node_size[t];
21402 p=p-2; q=q-2; mp_try_eq(mp, p,q);
21407 @ The first argument to |try_eq| is the location of a value node
21408 in a capsule that will soon be recycled. The second argument is
21409 either a location within a pair or transform node pointed to by
21410 |cur_exp|, or it is |null| (which means that |cur_exp| itself
21411 serves as the second argument). The idea is to leave |cur_exp| unchanged,
21412 but to equate the two operands.
21414 @<Declare the procedure called |try_eq|@>=
21415 void mp_try_eq (MP mp,pointer l, pointer r) ;
21418 @c void mp_try_eq (MP mp,pointer l, pointer r) {
21419 pointer p; /* dependency list for right operand minus left operand */
21420 int t; /* the type of list |p| */
21421 pointer q; /* the constant term of |p| is here */
21422 pointer pp; /* dependency list for right operand */
21423 int tt; /* the type of list |pp| */
21424 boolean copied; /* have we copied a list that ought to be recycled? */
21425 @<Remove the left operand from its container, negate it, and
21426 put it into dependency list~|p| with constant term~|q|@>;
21427 @<Add the right operand to list |p|@>;
21428 if ( info(p)==null ) {
21429 @<Deal with redundant or inconsistent equation@>;
21431 mp_linear_eq(mp, p,t);
21432 if ( r==null ) if ( mp->cur_type!=mp_known ) {
21433 if ( type(mp->cur_exp)==mp_known ) {
21434 pp=mp->cur_exp; mp->cur_exp=value(mp->cur_exp); mp->cur_type=mp_known;
21435 mp_free_node(mp, pp,value_node_size);
21441 @ @<Remove the left operand from its container, negate it, and...@>=
21443 if ( t==mp_known ) {
21444 t=mp_dependent; p=mp_const_dependency(mp, -value(l)); q=p;
21445 } else if ( t==mp_independent ) {
21446 t=mp_dependent; p=mp_single_dependency(mp, l); negate(value(p));
21449 p=dep_list(l); q=p;
21452 if ( info(q)==null ) break;
21455 link(prev_dep(l))=link(q); prev_dep(link(q))=prev_dep(l);
21459 @ @<Deal with redundant or inconsistent equation@>=
21461 if ( abs(value(p))>64 ) { /* off by .001 or more */
21462 print_err("Inconsistent equation");
21463 @.Inconsistent equation@>
21464 mp_print(mp, " (off by "); mp_print_scaled(mp, value(p));
21465 mp_print_char(mp, ')');
21466 help2("The equation I just read contradicts what was said before.")
21467 ("But don't worry; continue and I'll just ignore it.");
21468 mp_put_get_error(mp);
21469 } else if ( r==null ) {
21470 @<Exclaim about a redundant equation@>;
21472 mp_free_node(mp, p,dep_node_size);
21475 @ @<Add the right operand to list |p|@>=
21477 if ( mp->cur_type==mp_known ) {
21478 value(q)=value(q)+mp->cur_exp; goto DONE1;
21481 if ( tt==mp_independent ) pp=mp_single_dependency(mp, mp->cur_exp);
21482 else pp=dep_list(mp->cur_exp);
21485 if ( type(r)==mp_known ) {
21486 value(q)=value(q)+value(r); goto DONE1;
21489 if ( tt==mp_independent ) pp=mp_single_dependency(mp, r);
21490 else pp=dep_list(r);
21493 if ( tt!=mp_independent ) copied=false;
21494 else { copied=true; tt=mp_dependent; };
21495 @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>;
21496 if ( copied ) mp_flush_node_list(mp, pp);
21499 @ @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>=
21500 mp->watch_coefs=false;
21502 p=mp_p_plus_q(mp, p,pp,t);
21503 } else if ( t==mp_proto_dependent ) {
21504 p=mp_p_plus_fq(mp, p,unity,pp,mp_proto_dependent,mp_dependent);
21507 while ( info(q)!=null ) {
21508 value(q)=mp_round_fraction(mp, value(q)); q=link(q);
21510 t=mp_proto_dependent; p=mp_p_plus_q(mp, p,pp,t);
21512 mp->watch_coefs=true;
21514 @ Our next goal is to process type declarations. For this purpose it's
21515 convenient to have a procedure that scans a $\langle\,$declared
21516 variable$\,\rangle$ and returns the corresponding token list. After the
21517 following procedure has acted, the token after the declared variable
21518 will have been scanned, so it will appear in |cur_cmd|, |cur_mod|,
21521 @<Declare the function called |scan_declared_variable|@>=
21522 pointer mp_scan_declared_variable (MP mp) {
21523 pointer x; /* hash address of the variable's root */
21524 pointer h,t; /* head and tail of the token list to be returned */
21525 pointer l; /* hash address of left bracket */
21526 mp_get_symbol(mp); x=mp->cur_sym;
21527 if ( mp->cur_cmd!=tag_token ) mp_clear_symbol(mp, x,false);
21528 h=mp_get_avail(mp); info(h)=x; t=h;
21531 if ( mp->cur_sym==0 ) break;
21532 if ( mp->cur_cmd!=tag_token ) if ( mp->cur_cmd!=internal_quantity) {
21533 if ( mp->cur_cmd==left_bracket ) {
21534 @<Descend past a collective subscript@>;
21539 link(t)=mp_get_avail(mp); t=link(t); info(t)=mp->cur_sym;
21541 if ( eq_type(x)!=tag_token ) mp_clear_symbol(mp, x,false);
21542 if ( equiv(x)==null ) mp_new_root(mp, x);
21546 @ If the subscript isn't collective, we don't accept it as part of the
21549 @<Descend past a collective subscript@>=
21551 l=mp->cur_sym; mp_get_x_next(mp);
21552 if ( mp->cur_cmd!=right_bracket ) {
21553 mp_back_input(mp); mp->cur_sym=l; mp->cur_cmd=left_bracket; break;
21555 mp->cur_sym=collective_subscript;
21559 @ Type declarations are introduced by the following primitive operations.
21562 mp_primitive(mp, "numeric",type_name,mp_numeric_type);
21563 @:numeric_}{\&{numeric} primitive@>
21564 mp_primitive(mp, "string",type_name,mp_string_type);
21565 @:string_}{\&{string} primitive@>
21566 mp_primitive(mp, "boolean",type_name,mp_boolean_type);
21567 @:boolean_}{\&{boolean} primitive@>
21568 mp_primitive(mp, "path",type_name,mp_path_type);
21569 @:path_}{\&{path} primitive@>
21570 mp_primitive(mp, "pen",type_name,mp_pen_type);
21571 @:pen_}{\&{pen} primitive@>
21572 mp_primitive(mp, "picture",type_name,mp_picture_type);
21573 @:picture_}{\&{picture} primitive@>
21574 mp_primitive(mp, "transform",type_name,mp_transform_type);
21575 @:transform_}{\&{transform} primitive@>
21576 mp_primitive(mp, "color",type_name,mp_color_type);
21577 @:color_}{\&{color} primitive@>
21578 mp_primitive(mp, "rgbcolor",type_name,mp_color_type);
21579 @:color_}{\&{rgbcolor} primitive@>
21580 mp_primitive(mp, "cmykcolor",type_name,mp_cmykcolor_type);
21581 @:color_}{\&{cmykcolor} primitive@>
21582 mp_primitive(mp, "pair",type_name,mp_pair_type);
21583 @:pair_}{\&{pair} primitive@>
21585 @ @<Cases of |print_cmd...@>=
21586 case type_name: mp_print_type(mp, m); break;
21588 @ Now we are ready to handle type declarations, assuming that a
21589 |type_name| has just been scanned.
21591 @<Declare action procedures for use by |do_statement|@>=
21592 void mp_do_type_declaration (MP mp) ;
21595 void mp_do_type_declaration (MP mp) {
21596 small_number t; /* the type being declared */
21597 pointer p; /* token list for a declared variable */
21598 pointer q; /* value node for the variable */
21599 if ( mp->cur_mod>=mp_transform_type )
21602 t=mp->cur_mod+unknown_tag;
21604 p=mp_scan_declared_variable(mp);
21605 mp_flush_variable(mp, equiv(info(p)),link(p),false);
21606 q=mp_find_variable(mp, p);
21608 type(q)=t; value(q)=null;
21610 print_err("Declared variable conflicts with previous vardef");
21611 @.Declared variable conflicts...@>
21612 help2("You can't use, e.g., `numeric foo[]' after `vardef foo'.")
21613 ("Proceed, and I'll ignore the illegal redeclaration.");
21614 mp_put_get_error(mp);
21616 mp_flush_list(mp, p);
21617 if ( mp->cur_cmd<comma ) {
21618 @<Flush spurious symbols after the declared variable@>;
21620 } while (! end_of_statement);
21623 @ @<Flush spurious symbols after the declared variable@>=
21625 print_err("Illegal suffix of declared variable will be flushed");
21626 @.Illegal suffix...flushed@>
21627 help5("Variables in declarations must consist entirely of")
21628 ("names and collective subscripts, e.g., `x[]a'.")
21629 ("Are you trying to use a reserved word in a variable name?")
21630 ("I'm going to discard the junk I found here,")
21631 ("up to the next comma or the end of the declaration.");
21632 if ( mp->cur_cmd==numeric_token )
21633 mp->help_line[2]="Explicit subscripts like `x15a' aren't permitted.";
21634 mp_put_get_error(mp); mp->scanner_status=flushing;
21637 @<Decrease the string reference count...@>;
21638 } while (mp->cur_cmd<comma); /* either |end_of_statement| or |cur_cmd=comma| */
21639 mp->scanner_status=normal;
21642 @ \MP's |main_control| procedure just calls |do_statement| repeatedly
21643 until coming to the end of the user's program.
21644 Each execution of |do_statement| concludes with
21645 |cur_cmd=semicolon|, |end_group|, or |stop|.
21647 @c void mp_main_control (MP mp) {
21649 mp_do_statement(mp);
21650 if ( mp->cur_cmd==end_group ) {
21651 print_err("Extra `endgroup'");
21652 @.Extra `endgroup'@>
21653 help2("I'm not currently working on a `begingroup',")
21654 ("so I had better not try to end anything.");
21655 mp_flush_error(mp, 0);
21657 } while (mp->cur_cmd!=stop);
21659 int mp_run (MP mp) {
21660 @<Install and test the non-local jump buffer@>;
21661 mp_main_control(mp); /* come to life */
21662 mp_final_cleanup(mp); /* prepare for death */
21663 mp_close_files_and_terminate(mp);
21664 return mp->history;
21666 char * mp_mplib_version (MP mp) {
21668 return mplib_version;
21670 char * mp_metapost_version (MP mp) {
21672 return metapost_version;
21675 @ @<Exported function headers@>=
21676 int mp_run (MP mp);
21677 char * mp_mplib_version (MP mp);
21678 char * mp_metapost_version (MP mp);
21681 mp_primitive(mp, "end",stop,0);
21682 @:end_}{\&{end} primitive@>
21683 mp_primitive(mp, "dump",stop,1);
21684 @:dump_}{\&{dump} primitive@>
21686 @ @<Cases of |print_cmd...@>=
21688 if ( m==0 ) mp_print(mp, "end");
21689 else mp_print(mp, "dump");
21693 Let's turn now to statements that are classified as ``commands'' because
21694 of their imperative nature. We'll begin with simple ones, so that it
21695 will be clear how to hook command processing into the |do_statement| routine;
21696 then we'll tackle the tougher commands.
21698 Here's one of the simplest:
21700 @<Cases of |do_statement|...@>=
21701 case random_seed: mp_do_random_seed(mp); break;
21703 @ @<Declare action procedures for use by |do_statement|@>=
21704 void mp_do_random_seed (MP mp) ;
21706 @ @c void mp_do_random_seed (MP mp) {
21708 if ( mp->cur_cmd!=assignment ) {
21709 mp_missing_err(mp, ":=");
21711 help1("Always say `randomseed:=<numeric expression>'.");
21714 mp_get_x_next(mp); mp_scan_expression(mp);
21715 if ( mp->cur_type!=mp_known ) {
21716 exp_err("Unknown value will be ignored");
21717 @.Unknown value...ignored@>
21718 help2("Your expression was too random for me to handle,")
21719 ("so I won't change the random seed just now.");
21720 mp_put_get_flush_error(mp, 0);
21722 @<Initialize the random seed to |cur_exp|@>;
21726 @ @<Initialize the random seed to |cur_exp|@>=
21728 mp_init_randoms(mp, mp->cur_exp);
21729 if ( mp->selector>=log_only && mp->selector<write_file) {
21730 mp->old_setting=mp->selector; mp->selector=log_only;
21731 mp_print_nl(mp, "{randomseed:=");
21732 mp_print_scaled(mp, mp->cur_exp);
21733 mp_print_char(mp, '}');
21734 mp_print_nl(mp, ""); mp->selector=mp->old_setting;
21738 @ And here's another simple one (somewhat different in flavor):
21740 @<Cases of |do_statement|...@>=
21742 mp_print_ln(mp); mp->interaction=mp->cur_mod;
21743 @<Initialize the print |selector| based on |interaction|@>;
21744 if ( mp->log_opened ) mp->selector=mp->selector+2;
21749 mp_primitive(mp, "batchmode",mode_command,mp_batch_mode);
21750 @:mp_batch_mode_}{\&{batchmode} primitive@>
21751 mp_primitive(mp, "nonstopmode",mode_command,mp_nonstop_mode);
21752 @:mp_nonstop_mode_}{\&{nonstopmode} primitive@>
21753 mp_primitive(mp, "scrollmode",mode_command,mp_scroll_mode);
21754 @:mp_scroll_mode_}{\&{scrollmode} primitive@>
21755 mp_primitive(mp, "errorstopmode",mode_command,mp_error_stop_mode);
21756 @:mp_error_stop_mode_}{\&{errorstopmode} primitive@>
21758 @ @<Cases of |print_cmd_mod|...@>=
21761 case mp_batch_mode: mp_print(mp, "batchmode"); break;
21762 case mp_nonstop_mode: mp_print(mp, "nonstopmode"); break;
21763 case mp_scroll_mode: mp_print(mp, "scrollmode"); break;
21764 default: mp_print(mp, "errorstopmode"); break;
21768 @ The `\&{inner}' and `\&{outer}' commands are only slightly harder.
21770 @<Cases of |do_statement|...@>=
21771 case protection_command: mp_do_protection(mp); break;
21774 mp_primitive(mp, "inner",protection_command,0);
21775 @:inner_}{\&{inner} primitive@>
21776 mp_primitive(mp, "outer",protection_command,1);
21777 @:outer_}{\&{outer} primitive@>
21779 @ @<Cases of |print_cmd...@>=
21780 case protection_command:
21781 if ( m==0 ) mp_print(mp, "inner");
21782 else mp_print(mp, "outer");
21785 @ @<Declare action procedures for use by |do_statement|@>=
21786 void mp_do_protection (MP mp) ;
21788 @ @c void mp_do_protection (MP mp) {
21789 int m; /* 0 to unprotect, 1 to protect */
21790 halfword t; /* the |eq_type| before we change it */
21793 mp_get_symbol(mp); t=eq_type(mp->cur_sym);
21795 if ( t>=outer_tag )
21796 eq_type(mp->cur_sym)=t-outer_tag;
21797 } else if ( t<outer_tag ) {
21798 eq_type(mp->cur_sym)=t+outer_tag;
21801 } while (mp->cur_cmd==comma);
21804 @ \MP\ never defines the tokens `\.(' and `\.)' to be primitives, but
21805 plain \MP\ begins with the declaration `\&{delimiters} \.{()}'. Such a
21806 declaration assigns the command code |left_delimiter| to `\.{(}' and
21807 |right_delimiter| to `\.{)}'; the |equiv| of each delimiter is the
21808 hash address of its mate.
21810 @<Cases of |do_statement|...@>=
21811 case delimiters: mp_def_delims(mp); break;
21813 @ @<Declare action procedures for use by |do_statement|@>=
21814 void mp_def_delims (MP mp) ;
21816 @ @c void mp_def_delims (MP mp) {
21817 pointer l_delim,r_delim; /* the new delimiter pair */
21818 mp_get_clear_symbol(mp); l_delim=mp->cur_sym;
21819 mp_get_clear_symbol(mp); r_delim=mp->cur_sym;
21820 eq_type(l_delim)=left_delimiter; equiv(l_delim)=r_delim;
21821 eq_type(r_delim)=right_delimiter; equiv(r_delim)=l_delim;
21825 @ Here is a procedure that is called when \MP\ has reached a point
21826 where some right delimiter is mandatory.
21828 @<Declare the procedure called |check_delimiter|@>=
21829 void mp_check_delimiter (MP mp,pointer l_delim, pointer r_delim) {
21830 if ( mp->cur_cmd==right_delimiter )
21831 if ( mp->cur_mod==l_delim )
21833 if ( mp->cur_sym!=r_delim ) {
21834 mp_missing_err(mp, str(text(r_delim)));
21836 help2("I found no right delimiter to match a left one. So I've")
21837 ("put one in, behind the scenes; this may fix the problem.");
21840 print_err("The token `"); mp_print_text(r_delim);
21841 @.The token...delimiter@>
21842 mp_print(mp, "' is no longer a right delimiter");
21843 help3("Strange: This token has lost its former meaning!")
21844 ("I'll read it as a right delimiter this time;")
21845 ("but watch out, I'll probably miss it later.");
21850 @ The next four commands save or change the values associated with tokens.
21852 @<Cases of |do_statement|...@>=
21855 mp_get_symbol(mp); mp_save_variable(mp, mp->cur_sym); mp_get_x_next(mp);
21856 } while (mp->cur_cmd==comma);
21858 case interim_command: mp_do_interim(mp); break;
21859 case let_command: mp_do_let(mp); break;
21860 case new_internal: mp_do_new_internal(mp); break;
21862 @ @<Declare action procedures for use by |do_statement|@>=
21863 void mp_do_statement (MP mp);
21864 void mp_do_interim (MP mp);
21866 @ @c void mp_do_interim (MP mp) {
21868 if ( mp->cur_cmd!=internal_quantity ) {
21869 print_err("The token `");
21870 @.The token...quantity@>
21871 if ( mp->cur_sym==0 ) mp_print(mp, "(%CAPSULE)");
21872 else mp_print_text(mp->cur_sym);
21873 mp_print(mp, "' isn't an internal quantity");
21874 help1("Something like `tracingonline' should follow `interim'.");
21877 mp_save_internal(mp, mp->cur_mod); mp_back_input(mp);
21879 mp_do_statement(mp);
21882 @ The following procedure is careful not to undefine the left-hand symbol
21883 too soon, lest commands like `{\tt let x=x}' have a surprising effect.
21885 @<Declare action procedures for use by |do_statement|@>=
21886 void mp_do_let (MP mp) ;
21888 @ @c void mp_do_let (MP mp) {
21889 pointer l; /* hash location of the left-hand symbol */
21890 mp_get_symbol(mp); l=mp->cur_sym; mp_get_x_next(mp);
21891 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
21892 mp_missing_err(mp, "=");
21894 help3("You should have said `let symbol = something'.")
21895 ("But don't worry; I'll pretend that an equals sign")
21896 ("was present. The next token I read will be `something'.");
21900 switch (mp->cur_cmd) {
21901 case defined_macro: case secondary_primary_macro:
21902 case tertiary_secondary_macro: case expression_tertiary_macro:
21903 add_mac_ref(mp->cur_mod);
21908 mp_clear_symbol(mp, l,false); eq_type(l)=mp->cur_cmd;
21909 if ( mp->cur_cmd==tag_token ) equiv(l)=null;
21910 else equiv(l)=mp->cur_mod;
21914 @ @<Declarations@>=
21915 void mp_grow_internals (MP mp, int l);
21916 void mp_do_new_internal (MP mp) ;
21919 void mp_grow_internals (MP mp, int l) {
21923 if ( hash_end+l>max_halfword ) {
21924 mp_confusion(mp, "out of memory space"); /* can't be reached */
21926 int_name = xmalloc ((l+1),sizeof(char *));
21927 internal = xmalloc ((l+1),sizeof(scaled));
21928 for (k=0;k<=l; k++ ) {
21929 if (k<=mp->max_internal) {
21930 internal[k]=mp->internal[k];
21931 int_name[k]=mp->int_name[k];
21937 xfree(mp->internal); xfree(mp->int_name);
21938 mp->int_name = int_name;
21939 mp->internal = internal;
21940 mp->max_internal = l;
21944 void mp_do_new_internal (MP mp) {
21946 if ( mp->int_ptr==mp->max_internal ) {
21947 mp_grow_internals(mp, (mp->max_internal + (mp->max_internal>>2)));
21949 mp_get_clear_symbol(mp); incr(mp->int_ptr);
21950 eq_type(mp->cur_sym)=internal_quantity;
21951 equiv(mp->cur_sym)=mp->int_ptr;
21952 if(mp->int_name[mp->int_ptr]!=NULL)
21953 xfree(mp->int_name[mp->int_ptr]);
21954 mp->int_name[mp->int_ptr]=str(text(mp->cur_sym));
21955 mp->internal[mp->int_ptr]=0;
21957 } while (mp->cur_cmd==comma);
21960 @ @<Dealloc variables@>=
21961 for (k=0;k<=mp->max_internal;k++) {
21962 xfree(mp->int_name[k]);
21964 xfree(mp->internal);
21965 xfree(mp->int_name);
21968 @ The various `\&{show}' commands are distinguished by modifier fields
21971 @d show_token_code 0 /* show the meaning of a single token */
21972 @d show_stats_code 1 /* show current memory and string usage */
21973 @d show_code 2 /* show a list of expressions */
21974 @d show_var_code 3 /* show a variable and its descendents */
21975 @d show_dependencies_code 4 /* show dependent variables in terms of independents */
21978 mp_primitive(mp, "showtoken",show_command,show_token_code);
21979 @:show_token_}{\&{showtoken} primitive@>
21980 mp_primitive(mp, "showstats",show_command,show_stats_code);
21981 @:show_stats_}{\&{showstats} primitive@>
21982 mp_primitive(mp, "show",show_command,show_code);
21983 @:show_}{\&{show} primitive@>
21984 mp_primitive(mp, "showvariable",show_command,show_var_code);
21985 @:show_var_}{\&{showvariable} primitive@>
21986 mp_primitive(mp, "showdependencies",show_command,show_dependencies_code);
21987 @:show_dependencies_}{\&{showdependencies} primitive@>
21989 @ @<Cases of |print_cmd...@>=
21992 case show_token_code:mp_print(mp, "showtoken"); break;
21993 case show_stats_code:mp_print(mp, "showstats"); break;
21994 case show_code:mp_print(mp, "show"); break;
21995 case show_var_code:mp_print(mp, "showvariable"); break;
21996 default: mp_print(mp, "showdependencies"); break;
22000 @ @<Cases of |do_statement|...@>=
22001 case show_command:mp_do_show_whatever(mp); break;
22003 @ The value of |cur_mod| controls the |verbosity| in the |print_exp| routine:
22004 if it's |show_code|, complicated structures are abbreviated, otherwise
22007 @<Declare action procedures for use by |do_statement|@>=
22008 void mp_do_show (MP mp) ;
22010 @ @c void mp_do_show (MP mp) {
22012 mp_get_x_next(mp); mp_scan_expression(mp);
22013 mp_print_nl(mp, ">> ");
22015 mp_print_exp(mp, null,2); mp_flush_cur_exp(mp, 0);
22016 } while (mp->cur_cmd==comma);
22019 @ @<Declare action procedures for use by |do_statement|@>=
22020 void mp_disp_token (MP mp) ;
22022 @ @c void mp_disp_token (MP mp) {
22023 mp_print_nl(mp, "> ");
22025 if ( mp->cur_sym==0 ) {
22026 @<Show a numeric or string or capsule token@>;
22028 mp_print_text(mp->cur_sym); mp_print_char(mp, '=');
22029 if ( eq_type(mp->cur_sym)>=outer_tag ) mp_print(mp, "(outer) ");
22030 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
22031 if ( mp->cur_cmd==defined_macro ) {
22032 mp_print_ln(mp); mp_show_macro(mp, mp->cur_mod,null,100000);
22033 } /* this avoids recursion between |show_macro| and |print_cmd_mod| */
22038 @ @<Show a numeric or string or capsule token@>=
22040 if ( mp->cur_cmd==numeric_token ) {
22041 mp_print_scaled(mp, mp->cur_mod);
22042 } else if ( mp->cur_cmd==capsule_token ) {
22043 mp->g_pointer=mp->cur_mod; mp_print_capsule(mp);
22045 mp_print_char(mp, '"');
22046 mp_print_str(mp, mp->cur_mod); mp_print_char(mp, '"');
22047 delete_str_ref(mp->cur_mod);
22051 @ The following cases of |print_cmd_mod| might arise in connection
22052 with |disp_token|, although they don't correspond to any
22055 @<Cases of |print_cmd_...@>=
22056 case left_delimiter:
22057 case right_delimiter:
22058 if ( c==left_delimiter ) mp_print(mp, "left");
22059 else mp_print(mp, "right");
22060 mp_print(mp, " delimiter that matches ");
22064 if ( m==null ) mp_print(mp, "tag");
22065 else mp_print(mp, "variable");
22067 case defined_macro:
22068 mp_print(mp, "macro:");
22070 case secondary_primary_macro:
22071 case tertiary_secondary_macro:
22072 case expression_tertiary_macro:
22073 mp_print_cmd_mod(mp, macro_def,c);
22074 mp_print(mp, "'d macro:");
22075 mp_print_ln(mp); mp_show_token_list(mp, link(link(m)),null,1000,0);
22078 mp_print(mp, "[repeat the loop]");
22080 case internal_quantity:
22081 mp_print(mp, mp->int_name[m]);
22084 @ @<Declare action procedures for use by |do_statement|@>=
22085 void mp_do_show_token (MP mp) ;
22087 @ @c void mp_do_show_token (MP mp) {
22089 get_t_next; mp_disp_token(mp);
22091 } while (mp->cur_cmd==comma);
22094 @ @<Declare action procedures for use by |do_statement|@>=
22095 void mp_do_show_stats (MP mp) ;
22097 @ @c void mp_do_show_stats (MP mp) {
22098 mp_print_nl(mp, "Memory usage ");
22099 @.Memory usage...@>
22100 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used);
22102 mp_print(mp, "unknown");
22103 mp_print(mp, " ("); mp_print_int(mp, mp->hi_mem_min-mp->lo_mem_max-1);
22104 mp_print(mp, " still untouched)"); mp_print_ln(mp);
22105 mp_print_nl(mp, "String usage ");
22106 mp_print_int(mp, mp->strs_in_use-mp->init_str_use);
22107 mp_print_char(mp, '&'); mp_print_int(mp, mp->pool_in_use-mp->init_pool_ptr);
22109 mp_print(mp, "unknown");
22110 mp_print(mp, " (");
22111 mp_print_int(mp, mp->max_strings-1-mp->strs_used_up); mp_print_char(mp, '&');
22112 mp_print_int(mp, mp->pool_size-mp->pool_ptr);
22113 mp_print(mp, " now untouched)"); mp_print_ln(mp);
22117 @ Here's a recursive procedure that gives an abbreviated account
22118 of a variable, for use by |do_show_var|.
22120 @<Declare action procedures for use by |do_statement|@>=
22121 void mp_disp_var (MP mp,pointer p) ;
22123 @ @c void mp_disp_var (MP mp,pointer p) {
22124 pointer q; /* traverses attributes and subscripts */
22125 int n; /* amount of macro text to show */
22126 if ( type(p)==mp_structured ) {
22127 @<Descend the structure@>;
22128 } else if ( type(p)>=mp_unsuffixed_macro ) {
22129 @<Display a variable macro@>;
22130 } else if ( type(p)!=undefined ){
22131 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22132 mp_print_char(mp, '=');
22133 mp_print_exp(mp, p,0);
22137 @ @<Descend the structure@>=
22140 do { mp_disp_var(mp, q); q=link(q); } while (q!=end_attr);
22142 while ( name_type(q)==mp_subscr ) {
22143 mp_disp_var(mp, q); q=link(q);
22147 @ @<Display a variable macro@>=
22149 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22150 if ( type(p)>mp_unsuffixed_macro )
22151 mp_print(mp, "@@#"); /* |suffixed_macro| */
22152 mp_print(mp, "=macro:");
22153 if ( (int)mp->file_offset>=mp->max_print_line-20 ) n=5;
22154 else n=mp->max_print_line-mp->file_offset-15;
22155 mp_show_macro(mp, value(p),null,n);
22158 @ @<Declare action procedures for use by |do_statement|@>=
22159 void mp_do_show_var (MP mp) ;
22161 @ @c void mp_do_show_var (MP mp) {
22164 if ( mp->cur_sym>0 ) if ( mp->cur_sym<=hash_end )
22165 if ( mp->cur_cmd==tag_token ) if ( mp->cur_mod!=null ) {
22166 mp_disp_var(mp, mp->cur_mod); goto DONE;
22171 } while (mp->cur_cmd==comma);
22174 @ @<Declare action procedures for use by |do_statement|@>=
22175 void mp_do_show_dependencies (MP mp) ;
22177 @ @c void mp_do_show_dependencies (MP mp) {
22178 pointer p; /* link that runs through all dependencies */
22180 while ( p!=dep_head ) {
22181 if ( mp_interesting(mp, p) ) {
22182 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22183 if ( type(p)==mp_dependent ) mp_print_char(mp, '=');
22184 else mp_print(mp, " = "); /* extra spaces imply proto-dependency */
22185 mp_print_dependency(mp, dep_list(p),type(p));
22188 while ( info(p)!=null ) p=link(p);
22194 @ Finally we are ready for the procedure that governs all of the
22197 @<Declare action procedures for use by |do_statement|@>=
22198 void mp_do_show_whatever (MP mp) ;
22200 @ @c void mp_do_show_whatever (MP mp) {
22201 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
22202 switch (mp->cur_mod) {
22203 case show_token_code:mp_do_show_token(mp); break;
22204 case show_stats_code:mp_do_show_stats(mp); break;
22205 case show_code:mp_do_show(mp); break;
22206 case show_var_code:mp_do_show_var(mp); break;
22207 case show_dependencies_code:mp_do_show_dependencies(mp); break;
22208 } /* there are no other cases */
22209 if ( mp->internal[mp_showstopping]>0 ){
22212 if ( mp->interaction<mp_error_stop_mode ) {
22213 help0; decr(mp->error_count);
22215 help1("This isn't an error message; I'm just showing something.");
22217 if ( mp->cur_cmd==semicolon ) mp_error(mp);
22218 else mp_put_get_error(mp);
22222 @ The `\&{addto}' command needs the following additional primitives:
22224 @d double_path_code 0 /* command modifier for `\&{doublepath}' */
22225 @d contour_code 1 /* command modifier for `\&{contour}' */
22226 @d also_code 2 /* command modifier for `\&{also}' */
22228 @ Pre and postscripts need two new identifiers:
22230 @d with_pre_script 11
22231 @d with_post_script 13
22234 mp_primitive(mp, "doublepath",thing_to_add,double_path_code);
22235 @:double_path_}{\&{doublepath} primitive@>
22236 mp_primitive(mp, "contour",thing_to_add,contour_code);
22237 @:contour_}{\&{contour} primitive@>
22238 mp_primitive(mp, "also",thing_to_add,also_code);
22239 @:also_}{\&{also} primitive@>
22240 mp_primitive(mp, "withpen",with_option,mp_pen_type);
22241 @:with_pen_}{\&{withpen} primitive@>
22242 mp_primitive(mp, "dashed",with_option,mp_picture_type);
22243 @:dashed_}{\&{dashed} primitive@>
22244 mp_primitive(mp, "withprescript",with_option,with_pre_script);
22245 @:with_pre_script_}{\&{withprescript} primitive@>
22246 mp_primitive(mp, "withpostscript",with_option,with_post_script);
22247 @:with_post_script_}{\&{withpostscript} primitive@>
22248 mp_primitive(mp, "withoutcolor",with_option,no_model);
22249 @:with_color_}{\&{withoutcolor} primitive@>
22250 mp_primitive(mp, "withgreyscale",with_option,grey_model);
22251 @:with_color_}{\&{withgreyscale} primitive@>
22252 mp_primitive(mp, "withcolor",with_option,uninitialized_model);
22253 @:with_color_}{\&{withcolor} primitive@>
22254 /* \&{withrgbcolor} is an alias for \&{withcolor} */
22255 mp_primitive(mp, "withrgbcolor",with_option,rgb_model);
22256 @:with_color_}{\&{withrgbcolor} primitive@>
22257 mp_primitive(mp, "withcmykcolor",with_option,cmyk_model);
22258 @:with_color_}{\&{withcmykcolor} primitive@>
22260 @ @<Cases of |print_cmd...@>=
22262 if ( m==contour_code ) mp_print(mp, "contour");
22263 else if ( m==double_path_code ) mp_print(mp, "doublepath");
22264 else mp_print(mp, "also");
22267 if ( m==mp_pen_type ) mp_print(mp, "withpen");
22268 else if ( m==with_pre_script ) mp_print(mp, "withprescript");
22269 else if ( m==with_post_script ) mp_print(mp, "withpostscript");
22270 else if ( m==no_model ) mp_print(mp, "withoutcolor");
22271 else if ( m==rgb_model ) mp_print(mp, "withrgbcolor");
22272 else if ( m==uninitialized_model ) mp_print(mp, "withcolor");
22273 else if ( m==cmyk_model ) mp_print(mp, "withcmykcolor");
22274 else if ( m==grey_model ) mp_print(mp, "withgreyscale");
22275 else mp_print(mp, "dashed");
22278 @ The |scan_with_list| procedure parses a $\langle$with list$\rangle$ and
22279 updates the list of graphical objects starting at |p|. Each $\langle$with
22280 clause$\rangle$ updates all graphical objects whose |type| is compatible.
22281 Other objects are ignored.
22283 @<Declare action procedures for use by |do_statement|@>=
22284 void mp_scan_with_list (MP mp,pointer p) ;
22286 @ @c void mp_scan_with_list (MP mp,pointer p) {
22287 small_number t; /* |cur_mod| of the |with_option| (should match |cur_type|) */
22288 pointer q; /* for list manipulation */
22289 int old_setting; /* saved |selector| setting */
22290 pointer k; /* for finding the near-last item in a list */
22291 str_number s; /* for string cleanup after combining */
22292 pointer cp,pp,dp,ap,bp;
22293 /* objects being updated; |void| initially; |null| to suppress update */
22294 cp=mp_void; pp=mp_void; dp=mp_void; ap=mp_void; bp=mp_void;
22296 while ( mp->cur_cmd==with_option ){
22299 if ( t!=no_model ) mp_scan_expression(mp);
22300 if (((t==with_pre_script)&&(mp->cur_type!=mp_string_type))||
22301 ((t==with_post_script)&&(mp->cur_type!=mp_string_type))||
22302 ((t==uninitialized_model)&&
22303 ((mp->cur_type!=mp_cmykcolor_type)&&(mp->cur_type!=mp_color_type)
22304 &&(mp->cur_type!=mp_known)&&(mp->cur_type!=mp_boolean_type)))||
22305 ((t==cmyk_model)&&(mp->cur_type!=mp_cmykcolor_type))||
22306 ((t==rgb_model)&&(mp->cur_type!=mp_color_type))||
22307 ((t==grey_model)&&(mp->cur_type!=mp_known))||
22308 ((t==mp_pen_type)&&(mp->cur_type!=t))||
22309 ((t==mp_picture_type)&&(mp->cur_type!=t)) ) {
22310 @<Complain about improper type@>;
22311 } else if ( t==uninitialized_model ) {
22312 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22314 @<Transfer a color from the current expression to object~|cp|@>;
22315 mp_flush_cur_exp(mp, 0);
22316 } else if ( t==rgb_model ) {
22317 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22319 @<Transfer a rgbcolor from the current expression to object~|cp|@>;
22320 mp_flush_cur_exp(mp, 0);
22321 } else if ( t==cmyk_model ) {
22322 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22324 @<Transfer a cmykcolor from the current expression to object~|cp|@>;
22325 mp_flush_cur_exp(mp, 0);
22326 } else if ( t==grey_model ) {
22327 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22329 @<Transfer a greyscale from the current expression to object~|cp|@>;
22330 mp_flush_cur_exp(mp, 0);
22331 } else if ( t==no_model ) {
22332 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22334 @<Transfer a noncolor from the current expression to object~|cp|@>;
22335 } else if ( t==mp_pen_type ) {
22336 if ( pp==mp_void ) @<Make |pp| an object in list~|p| that needs a pen@>;
22338 if ( pen_p(pp)!=null ) mp_toss_knot_list(mp, pen_p(pp));
22339 pen_p(pp)=mp->cur_exp; mp->cur_type=mp_vacuous;
22341 } else if ( t==with_pre_script ) {
22344 while ( (ap!=null)&&(! has_color(ap)) )
22347 if ( pre_script(ap)!=null ) { /* build a new,combined string */
22349 old_setting=mp->selector;
22350 mp->selector=new_string;
22351 str_room(length(pre_script(ap))+length(mp->cur_exp)+2);
22352 mp_print_str(mp, mp->cur_exp);
22353 append_char(13); /* a forced \ps\ newline */
22354 mp_print_str(mp, pre_script(ap));
22355 pre_script(ap)=mp_make_string(mp);
22357 mp->selector=old_setting;
22359 pre_script(ap)=mp->cur_exp;
22361 mp->cur_type=mp_vacuous;
22363 } else if ( t==with_post_script ) {
22367 while ( link(k)!=null ) {
22369 if ( has_color(k) ) bp=k;
22372 if ( post_script(bp)!=null ) {
22374 old_setting=mp->selector;
22375 mp->selector=new_string;
22376 str_room(length(post_script(bp))+length(mp->cur_exp)+2);
22377 mp_print_str(mp, post_script(bp));
22378 append_char(13); /* a forced \ps\ newline */
22379 mp_print_str(mp, mp->cur_exp);
22380 post_script(bp)=mp_make_string(mp);
22382 mp->selector=old_setting;
22384 post_script(bp)=mp->cur_exp;
22386 mp->cur_type=mp_vacuous;
22390 @<Make |dp| a stroked node in list~|p|@>;
22392 if ( dash_p(dp)!=null ) delete_edge_ref(dash_p(dp));
22393 dash_p(dp)=mp_make_dashes(mp, mp->cur_exp);
22394 dash_scale(dp)=unity;
22395 mp->cur_type=mp_vacuous;
22399 @<Copy the information from objects |cp|, |pp|, and |dp| into the rest
22403 @ @<Complain about improper type@>=
22404 { exp_err("Improper type");
22406 help2("Next time say `withpen <known pen expression>';")
22407 ("I'll ignore the bad `with' clause and look for another.");
22408 if ( t==with_pre_script )
22409 mp->help_line[1]="Next time say `withprescript <known string expression>';";
22410 else if ( t==with_post_script )
22411 mp->help_line[1]="Next time say `withpostscript <known string expression>';";
22412 else if ( t==mp_picture_type )
22413 mp->help_line[1]="Next time say `dashed <known picture expression>';";
22414 else if ( t==uninitialized_model )
22415 mp->help_line[1]="Next time say `withcolor <known color expression>';";
22416 else if ( t==rgb_model )
22417 mp->help_line[1]="Next time say `withrgbcolor <known color expression>';";
22418 else if ( t==cmyk_model )
22419 mp->help_line[1]="Next time say `withcmykcolor <known cmykcolor expression>';";
22420 else if ( t==grey_model )
22421 mp->help_line[1]="Next time say `withgreyscale <known numeric expression>';";;
22422 mp_put_get_flush_error(mp, 0);
22425 @ Forcing the color to be between |0| and |unity| here guarantees that no
22426 picture will ever contain a color outside the legal range for \ps\ graphics.
22428 @<Transfer a color from the current expression to object~|cp|@>=
22429 { if ( mp->cur_type==mp_color_type )
22430 @<Transfer a rgbcolor from the current expression to object~|cp|@>
22431 else if ( mp->cur_type==mp_cmykcolor_type )
22432 @<Transfer a cmykcolor from the current expression to object~|cp|@>
22433 else if ( mp->cur_type==mp_known )
22434 @<Transfer a greyscale from the current expression to object~|cp|@>
22435 else if ( mp->cur_exp==false_code )
22436 @<Transfer a noncolor from the current expression to object~|cp|@>;
22439 @ @<Transfer a rgbcolor from the current expression to object~|cp|@>=
22440 { q=value(mp->cur_exp);
22445 red_val(cp)=value(red_part_loc(q));
22446 green_val(cp)=value(green_part_loc(q));
22447 blue_val(cp)=value(blue_part_loc(q));
22448 color_model(cp)=rgb_model;
22449 if ( red_val(cp)<0 ) red_val(cp)=0;
22450 if ( green_val(cp)<0 ) green_val(cp)=0;
22451 if ( blue_val(cp)<0 ) blue_val(cp)=0;
22452 if ( red_val(cp)>unity ) red_val(cp)=unity;
22453 if ( green_val(cp)>unity ) green_val(cp)=unity;
22454 if ( blue_val(cp)>unity ) blue_val(cp)=unity;
22457 @ @<Transfer a cmykcolor from the current expression to object~|cp|@>=
22458 { q=value(mp->cur_exp);
22459 cyan_val(cp)=value(cyan_part_loc(q));
22460 magenta_val(cp)=value(magenta_part_loc(q));
22461 yellow_val(cp)=value(yellow_part_loc(q));
22462 black_val(cp)=value(black_part_loc(q));
22463 color_model(cp)=cmyk_model;
22464 if ( cyan_val(cp)<0 ) cyan_val(cp)=0;
22465 if ( magenta_val(cp)<0 ) magenta_val(cp)=0;
22466 if ( yellow_val(cp)<0 ) yellow_val(cp)=0;
22467 if ( black_val(cp)<0 ) black_val(cp)=0;
22468 if ( cyan_val(cp)>unity ) cyan_val(cp)=unity;
22469 if ( magenta_val(cp)>unity ) magenta_val(cp)=unity;
22470 if ( yellow_val(cp)>unity ) yellow_val(cp)=unity;
22471 if ( black_val(cp)>unity ) black_val(cp)=unity;
22474 @ @<Transfer a greyscale from the current expression to object~|cp|@>=
22481 color_model(cp)=grey_model;
22482 if ( grey_val(cp)<0 ) grey_val(cp)=0;
22483 if ( grey_val(cp)>unity ) grey_val(cp)=unity;
22486 @ @<Transfer a noncolor from the current expression to object~|cp|@>=
22493 color_model(cp)=no_model;
22496 @ @<Make |cp| a colored object in object list~|p|@>=
22498 while ( cp!=null ){
22499 if ( has_color(cp) ) break;
22504 @ @<Make |pp| an object in list~|p| that needs a pen@>=
22506 while ( pp!=null ) {
22507 if ( has_pen(pp) ) break;
22512 @ @<Make |dp| a stroked node in list~|p|@>=
22514 while ( dp!=null ) {
22515 if ( type(dp)==mp_stroked_code ) break;
22520 @ @<Copy the information from objects |cp|, |pp|, and |dp| into...@>=
22521 @<Copy |cp|'s color into the colored objects linked to~|cp|@>;
22523 @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>;
22524 if ( dp>mp_void ) @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>
22526 @ @<Copy |cp|'s color into the colored objects linked to~|cp|@>=
22528 while ( q!=null ) {
22529 if ( has_color(q) ) {
22530 red_val(q)=red_val(cp);
22531 green_val(q)=green_val(cp);
22532 blue_val(q)=blue_val(cp);
22533 black_val(q)=black_val(cp);
22534 color_model(q)=color_model(cp);
22540 @ @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>=
22542 while ( q!=null ) {
22543 if ( has_pen(q) ) {
22544 if ( pen_p(q)!=null ) mp_toss_knot_list(mp, pen_p(q));
22545 pen_p(q)=copy_pen(pen_p(pp));
22551 @ @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>=
22553 while ( q!=null ) {
22554 if ( type(q)==mp_stroked_code ) {
22555 if ( dash_p(q)!=null ) delete_edge_ref(dash_p(q));
22556 dash_p(q)=dash_p(dp);
22557 dash_scale(q)=unity;
22558 if ( dash_p(q)!=null ) add_edge_ref(dash_p(q));
22564 @ One of the things we need to do when we've parsed an \&{addto} or
22565 similar command is find the header of a supposed \&{picture} variable, given
22566 a token list for that variable. Since the edge structure is about to be
22567 updated, we use |private_edges| to make sure that this is possible.
22569 @<Declare action procedures for use by |do_statement|@>=
22570 pointer mp_find_edges_var (MP mp, pointer t) ;
22572 @ @c pointer mp_find_edges_var (MP mp, pointer t) {
22574 pointer cur_edges; /* the return value */
22575 p=mp_find_variable(mp, t); cur_edges=null;
22577 mp_obliterated(mp, t); mp_put_get_error(mp);
22578 } else if ( type(p)!=mp_picture_type ) {
22579 print_err("Variable "); mp_show_token_list(mp, t,null,1000,0);
22580 @.Variable x is the wrong type@>
22581 mp_print(mp, " is the wrong type (");
22582 mp_print_type(mp, type(p)); mp_print_char(mp, ')');
22583 help2("I was looking for a \"known\" picture variable.")
22584 ("So I'll not change anything just now.");
22585 mp_put_get_error(mp);
22587 value(p)=mp_private_edges(mp, value(p));
22588 cur_edges=value(p);
22590 mp_flush_node_list(mp, t);
22594 @ @<Cases of |do_statement|...@>=
22595 case add_to_command: mp_do_add_to(mp); break;
22596 case bounds_command:mp_do_bounds(mp); break;
22599 mp_primitive(mp, "clip",bounds_command,mp_start_clip_code);
22600 @:clip_}{\&{clip} primitive@>
22601 mp_primitive(mp, "setbounds",bounds_command,mp_start_bounds_code);
22602 @:set_bounds_}{\&{setbounds} primitive@>
22604 @ @<Cases of |print_cmd...@>=
22605 case bounds_command:
22606 if ( m==mp_start_clip_code ) mp_print(mp, "clip");
22607 else mp_print(mp, "setbounds");
22610 @ The following function parses the beginning of an \&{addto} or \&{clip}
22611 command: it expects a variable name followed by a token with |cur_cmd=sep|
22612 and then an expression. The function returns the token list for the variable
22613 and stores the command modifier for the separator token in the global variable
22614 |last_add_type|. We must be careful because this variable might get overwritten
22615 any time we call |get_x_next|.
22618 quarterword last_add_type;
22619 /* command modifier that identifies the last \&{addto} command */
22621 @ @<Declare action procedures for use by |do_statement|@>=
22622 pointer mp_start_draw_cmd (MP mp,quarterword sep) ;
22624 @ @c pointer mp_start_draw_cmd (MP mp,quarterword sep) {
22625 pointer lhv; /* variable to add to left */
22626 quarterword add_type=0; /* value to be returned in |last_add_type| */
22628 mp_get_x_next(mp); mp->var_flag=sep; mp_scan_primary(mp);
22629 if ( mp->cur_type!=mp_token_list ) {
22630 @<Abandon edges command because there's no variable@>;
22632 lhv=mp->cur_exp; add_type=mp->cur_mod;
22633 mp->cur_type=mp_vacuous; mp_get_x_next(mp); mp_scan_expression(mp);
22635 mp->last_add_type=add_type;
22639 @ @<Abandon edges command because there's no variable@>=
22640 { exp_err("Not a suitable variable");
22641 @.Not a suitable variable@>
22642 help4("At this point I needed to see the name of a picture variable.")
22643 ("(Or perhaps you have indeed presented me with one; I might")
22644 ("have missed it, if it wasn't followed by the proper token.)")
22645 ("So I'll not change anything just now.");
22646 mp_put_get_flush_error(mp, 0);
22649 @ Here is an example of how to use |start_draw_cmd|.
22651 @<Declare action procedures for use by |do_statement|@>=
22652 void mp_do_bounds (MP mp) ;
22654 @ @c void mp_do_bounds (MP mp) {
22655 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22656 pointer p; /* for list manipulation */
22657 integer m; /* initial value of |cur_mod| */
22659 lhv=mp_start_draw_cmd(mp, to_token);
22661 lhe=mp_find_edges_var(mp, lhv);
22663 mp_flush_cur_exp(mp, 0);
22664 } else if ( mp->cur_type!=mp_path_type ) {
22665 exp_err("Improper `clip'");
22666 @.Improper `addto'@>
22667 help2("This expression should have specified a known path.")
22668 ("So I'll not change anything just now.");
22669 mp_put_get_flush_error(mp, 0);
22670 } else if ( left_type(mp->cur_exp)==mp_endpoint ) {
22671 @<Complain about a non-cycle@>;
22673 @<Make |cur_exp| into a \&{setbounds} or clipping path and add it to |lhe|@>;
22678 @ @<Complain about a non-cycle@>=
22679 { print_err("Not a cycle");
22681 help2("That contour should have ended with `..cycle' or `&cycle'.")
22682 ("So I'll not change anything just now."); mp_put_get_error(mp);
22685 @ @<Make |cur_exp| into a \&{setbounds} or clipping path and add...@>=
22686 { p=mp_new_bounds_node(mp, mp->cur_exp,m);
22687 link(p)=link(dummy_loc(lhe));
22688 link(dummy_loc(lhe))=p;
22689 if ( obj_tail(lhe)==dummy_loc(lhe) ) obj_tail(lhe)=p;
22690 p=mp_get_node(mp, mp->gr_object_size[stop_type(m)]);
22691 type(p)=stop_type(m);
22692 link(obj_tail(lhe))=p;
22694 mp_init_bbox(mp, lhe);
22697 @ The |do_add_to| procedure is a little like |do_clip| but there are a lot more
22698 cases to deal with.
22700 @<Declare action procedures for use by |do_statement|@>=
22701 void mp_do_add_to (MP mp) ;
22703 @ @c void mp_do_add_to (MP mp) {
22704 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22705 pointer p; /* the graphical object or list for |scan_with_list| to update */
22706 pointer e; /* an edge structure to be merged */
22707 quarterword add_type; /* |also_code|, |contour_code|, or |double_path_code| */
22708 lhv=mp_start_draw_cmd(mp, thing_to_add); add_type=mp->last_add_type;
22710 if ( add_type==also_code ) {
22711 @<Make sure the current expression is a suitable picture and set |e| and |p|
22714 @<Create a graphical object |p| based on |add_type| and the current
22717 mp_scan_with_list(mp, p);
22718 @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>;
22722 @ Setting |p:=null| causes the $\langle$with list$\rangle$ to be ignored;
22723 setting |e:=null| prevents anything from being added to |lhe|.
22725 @ @<Make sure the current expression is a suitable picture and set |e|...@>=
22728 if ( mp->cur_type!=mp_picture_type ) {
22729 exp_err("Improper `addto'");
22730 @.Improper `addto'@>
22731 help2("This expression should have specified a known picture.")
22732 ("So I'll not change anything just now."); mp_put_get_flush_error(mp, 0);
22734 e=mp_private_edges(mp, mp->cur_exp); mp->cur_type=mp_vacuous;
22735 p=link(dummy_loc(e));
22739 @ In this case |add_type<>also_code| so setting |p:=null| suppresses future
22740 attempts to add to the edge structure.
22742 @<Create a graphical object |p| based on |add_type| and the current...@>=
22744 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
22745 if ( mp->cur_type!=mp_path_type ) {
22746 exp_err("Improper `addto'");
22747 @.Improper `addto'@>
22748 help2("This expression should have specified a known path.")
22749 ("So I'll not change anything just now.");
22750 mp_put_get_flush_error(mp, 0);
22751 } else if ( add_type==contour_code ) {
22752 if ( left_type(mp->cur_exp)==mp_endpoint ) {
22753 @<Complain about a non-cycle@>;
22755 p=mp_new_fill_node(mp, mp->cur_exp);
22756 mp->cur_type=mp_vacuous;
22759 p=mp_new_stroked_node(mp, mp->cur_exp);
22760 mp->cur_type=mp_vacuous;
22764 @ @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>=
22765 lhe=mp_find_edges_var(mp, lhv);
22767 if ( (e==null)&&(p!=null) ) e=mp_toss_gr_object(mp, p);
22768 if ( e!=null ) delete_edge_ref(e);
22769 } else if ( add_type==also_code ) {
22771 @<Merge |e| into |lhe| and delete |e|@>;
22775 } else if ( p!=null ) {
22776 link(obj_tail(lhe))=p;
22778 if ( add_type==double_path_code )
22779 if ( pen_p(p)==null )
22780 pen_p(p)=mp_get_pen_circle(mp, 0);
22783 @ @<Merge |e| into |lhe| and delete |e|@>=
22784 { if ( link(dummy_loc(e))!=null ) {
22785 link(obj_tail(lhe))=link(dummy_loc(e));
22786 obj_tail(lhe)=obj_tail(e);
22787 obj_tail(e)=dummy_loc(e);
22788 link(dummy_loc(e))=null;
22789 mp_flush_dash_list(mp, lhe);
22791 mp_toss_edges(mp, e);
22794 @ @<Cases of |do_statement|...@>=
22795 case ship_out_command: mp_do_ship_out(mp); break;
22797 @ @<Declare action procedures for use by |do_statement|@>=
22798 @<Declare the function called |tfm_check|@>;
22799 @<Declare the \ps\ output procedures@>;
22800 void mp_do_ship_out (MP mp) ;
22802 @ @c void mp_do_ship_out (MP mp) {
22803 integer c; /* the character code */
22804 mp_get_x_next(mp); mp_scan_expression(mp);
22805 if ( mp->cur_type!=mp_picture_type ) {
22806 @<Complain that it's not a known picture@>;
22808 c=mp_round_unscaled(mp, mp->internal[mp_char_code]) % 256;
22809 if ( c<0 ) c=c+256;
22810 @<Store the width information for character code~|c|@>;
22811 mp_ship_out(mp, mp->cur_exp);
22812 mp_flush_cur_exp(mp, 0);
22816 @ @<Complain that it's not a known picture@>=
22818 exp_err("Not a known picture");
22819 help1("I can only output known pictures.");
22820 mp_put_get_flush_error(mp, 0);
22823 @ The \&{everyjob} command simply assigns a nonzero value to the global variable
22826 @<Cases of |do_statement|...@>=
22827 case every_job_command:
22828 mp_get_symbol(mp); mp->start_sym=mp->cur_sym; mp_get_x_next(mp);
22832 halfword start_sym; /* a symbolic token to insert at beginning of job */
22837 @ Finally, we have only the ``message'' commands remaining.
22840 @d err_message_code 1
22842 @d filename_template_code 3
22843 @d print_with_leading_zeroes(A) g = mp->pool_ptr;
22844 mp_print_int(mp, (A)); g = mp->pool_ptr-g;
22846 mp->pool_ptr = mp->pool_ptr - g;
22848 mp_print_char(mp, '0');
22851 mp_print_int(mp, (A));
22856 mp_primitive(mp, "message",message_command,message_code);
22857 @:message_}{\&{message} primitive@>
22858 mp_primitive(mp, "errmessage",message_command,err_message_code);
22859 @:err_message_}{\&{errmessage} primitive@>
22860 mp_primitive(mp, "errhelp",message_command,err_help_code);
22861 @:err_help_}{\&{errhelp} primitive@>
22862 mp_primitive(mp, "filenametemplate",message_command,filename_template_code);
22863 @:filename_template_}{\&{filenametemplate} primitive@>
22865 @ @<Cases of |print_cmd...@>=
22866 case message_command:
22867 if ( m<err_message_code ) mp_print(mp, "message");
22868 else if ( m==err_message_code ) mp_print(mp, "errmessage");
22869 else if ( m==filename_template_code ) mp_print(mp, "filenametemplate");
22870 else mp_print(mp, "errhelp");
22873 @ @<Cases of |do_statement|...@>=
22874 case message_command: mp_do_message(mp); break;
22876 @ @<Declare action procedures for use by |do_statement|@>=
22877 @<Declare a procedure called |no_string_err|@>;
22878 void mp_do_message (MP mp) ;
22881 @c void mp_do_message (MP mp) {
22882 int m; /* the type of message */
22883 m=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
22884 if ( mp->cur_type!=mp_string_type )
22885 mp_no_string_err(mp, "A message should be a known string expression.");
22889 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp);
22891 case err_message_code:
22892 @<Print string |cur_exp| as an error message@>;
22894 case err_help_code:
22895 @<Save string |cur_exp| as the |err_help|@>;
22897 case filename_template_code:
22898 @<Save the filename template@>;
22900 } /* there are no other cases */
22902 mp_flush_cur_exp(mp, 0);
22905 @ @<Declare a procedure called |no_string_err|@>=
22906 void mp_no_string_err (MP mp,char *s) {
22907 exp_err("Not a string");
22910 mp_put_get_error(mp);
22913 @ The global variable |err_help| is zero when the user has most recently
22914 given an empty help string, or if none has ever been given.
22916 @<Save string |cur_exp| as the |err_help|@>=
22918 if ( mp->err_help!=0 ) delete_str_ref(mp->err_help);
22919 if ( length(mp->cur_exp)==0 ) mp->err_help=0;
22920 else { mp->err_help=mp->cur_exp; add_str_ref(mp->err_help); }
22923 @ If \&{errmessage} occurs often in |mp_scroll_mode|, without user-defined
22924 \&{errhelp}, we don't want to give a long help message each time. So we
22925 give a verbose explanation only once.
22928 boolean long_help_seen; /* has the long \.{\\errmessage} help been used? */
22930 @ @<Set init...@>=mp->long_help_seen=false;
22932 @ @<Print string |cur_exp| as an error message@>=
22934 print_err(""); mp_print_str(mp, mp->cur_exp);
22935 if ( mp->err_help!=0 ) {
22936 mp->use_err_help=true;
22937 } else if ( mp->long_help_seen ) {
22938 help1("(That was another `errmessage'.)") ;
22940 if ( mp->interaction<mp_error_stop_mode ) mp->long_help_seen=true;
22941 help4("This error message was generated by an `errmessage'")
22942 ("command, so I can\'t give any explicit help.")
22943 ("Pretend that you're Miss Marple: Examine all clues,")
22945 ("and deduce the truth by inspired guesses.");
22947 mp_put_get_error(mp); mp->use_err_help=false;
22950 @ @<Cases of |do_statement|...@>=
22951 case write_command: mp_do_write(mp); break;
22953 @ @<Declare action procedures for use by |do_statement|@>=
22954 void mp_do_write (MP mp) ;
22956 @ @c void mp_do_write (MP mp) {
22957 str_number t; /* the line of text to be written */
22958 write_index n,n0; /* for searching |wr_fname| and |wr_file| arrays */
22959 int old_setting; /* for saving |selector| during output */
22961 mp_scan_expression(mp);
22962 if ( mp->cur_type!=mp_string_type ) {
22963 mp_no_string_err(mp, "The text to be written should be a known string expression");
22964 } else if ( mp->cur_cmd!=to_token ) {
22965 print_err("Missing `to' clause");
22966 help1("A write command should end with `to <filename>'");
22967 mp_put_get_error(mp);
22969 t=mp->cur_exp; mp->cur_type=mp_vacuous;
22971 mp_scan_expression(mp);
22972 if ( mp->cur_type!=mp_string_type )
22973 mp_no_string_err(mp, "I can\'t write to that file name. It isn't a known string");
22975 @<Write |t| to the file named by |cur_exp|@>;
22979 mp_flush_cur_exp(mp, 0);
22982 @ @<Write |t| to the file named by |cur_exp|@>=
22984 @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if
22985 |cur_exp| must be inserted@>;
22986 if ( mp_str_vs_str(mp, t,mp->eof_line)==0 ) {
22987 @<Record the end of file on |wr_file[n]|@>;
22989 old_setting=mp->selector;
22990 mp->selector=n+write_file;
22991 mp_print_str(mp, t); mp_print_ln(mp);
22992 mp->selector = old_setting;
22996 @ @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if...@>=
22998 char *fn = str(mp->cur_exp);
23000 n0=mp->write_files;
23001 while (mp_xstrcmp(fn,mp->wr_fname[n])!=0) {
23002 if ( n==0 ) { /* bottom reached */
23003 if ( n0==mp->write_files ) {
23004 if ( mp->write_files<mp->max_write_files ) {
23005 incr(mp->write_files);
23010 l = mp->max_write_files + (mp->max_write_files>>2);
23011 wr_file = xmalloc((l+1),sizeof(FILE *));
23012 wr_fname = xmalloc((l+1),sizeof(char *));
23013 for (k=0;k<=l;k++) {
23014 if (k<=mp->max_write_files) {
23015 wr_file[k]=mp->wr_file[k];
23016 wr_fname[k]=mp->wr_fname[k];
23022 xfree(mp->wr_file); xfree(mp->wr_fname);
23023 mp->max_write_files = l;
23024 mp->wr_file = wr_file;
23025 mp->wr_fname = wr_fname;
23029 mp_open_write_file(mp, fn ,n);
23032 if ( mp->wr_fname[n]==NULL ) n0=n;
23037 @ @<Record the end of file on |wr_file[n]|@>=
23038 { fclose(mp->wr_file[n]);
23039 xfree(mp->wr_fname[n]);
23040 mp->wr_fname[n]=NULL;
23041 if ( n==mp->write_files-1 ) mp->write_files=n;
23045 @* \[42] Writing font metric data.
23046 \TeX\ gets its knowledge about fonts from font metric files, also called
23047 \.{TFM} files; the `\.T' in `\.{TFM}' stands for \TeX,
23048 but other programs know about them too. One of \MP's duties is to
23049 write \.{TFM} files so that the user's fonts can readily be
23050 applied to typesetting.
23051 @:TFM files}{\.{TFM} files@>
23052 @^font metric files@>
23054 The information in a \.{TFM} file appears in a sequence of 8-bit bytes.
23055 Since the number of bytes is always a multiple of~4, we could
23056 also regard the file as a sequence of 32-bit words, but \MP\ uses the
23057 byte interpretation. The format of \.{TFM} files was designed by
23058 Lyle Ramshaw in 1980. The intent is to convey a lot of different kinds
23059 @^Ramshaw, Lyle Harold@>
23060 of information in a compact but useful form.
23063 FILE * tfm_file; /* the font metric output goes here */
23064 char * metric_file_name; /* full name of the font metric file */
23066 @ The first 24 bytes (6 words) of a \.{TFM} file contain twelve 16-bit
23067 integers that give the lengths of the various subsequent portions
23068 of the file. These twelve integers are, in order:
23069 $$\vbox{\halign{\hfil#&$\null=\null$#\hfil\cr
23070 |lf|&length of the entire file, in words;\cr
23071 |lh|&length of the header data, in words;\cr
23072 |bc|&smallest character code in the font;\cr
23073 |ec|&largest character code in the font;\cr
23074 |nw|&number of words in the width table;\cr
23075 |nh|&number of words in the height table;\cr
23076 |nd|&number of words in the depth table;\cr
23077 |ni|&number of words in the italic correction table;\cr
23078 |nl|&number of words in the lig/kern table;\cr
23079 |nk|&number of words in the kern table;\cr
23080 |ne|&number of words in the extensible character table;\cr
23081 |np|&number of font parameter words.\cr}}$$
23082 They are all nonnegative and less than $2^{15}$. We must have |bc-1<=ec<=255|,
23084 $$\hbox{|lf=6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np|.}$$
23085 Note that a font may contain as many as 256 characters (if |bc=0| and |ec=255|),
23086 and as few as 0 characters (if |bc=ec+1|).
23088 Incidentally, when two or more 8-bit bytes are combined to form an integer of
23089 16 or more bits, the most significant bytes appear first in the file.
23090 This is called BigEndian order.
23091 @^BigEndian order@>
23093 @ The rest of the \.{TFM} file may be regarded as a sequence of ten data
23096 The most important data type used here is a |fix_word|, which is
23097 a 32-bit representation of a binary fraction. A |fix_word| is a signed
23098 quantity, with the two's complement of the entire word used to represent
23099 negation. Of the 32 bits in a |fix_word|, exactly 12 are to the left of the
23100 binary point; thus, the largest |fix_word| value is $2048-2^{-20}$, and
23101 the smallest is $-2048$. We will see below, however, that all but two of
23102 the |fix_word| values must lie between $-16$ and $+16$.
23104 @ The first data array is a block of header information, which contains
23105 general facts about the font. The header must contain at least two words,
23106 |header[0]| and |header[1]|, whose meaning is explained below. Additional
23107 header information of use to other software routines might also be
23108 included, and \MP\ will generate it if the \.{headerbyte} command occurs.
23109 For example, 16 more words of header information are in use at the Xerox
23110 Palo Alto Research Center; the first ten specify the character coding
23111 scheme used (e.g., `\.{XEROX TEXT}' or `\.{TEX MATHSY}'), the next five
23112 give the font family name (e.g., `\.{HELVETICA}' or `\.{CMSY}'), and the
23113 last gives the ``face byte.''
23115 \yskip\hang|header[0]| is a 32-bit check sum that \MP\ will copy into
23116 the \.{GF} output file. This helps ensure consistency between files,
23117 since \TeX\ records the check sums from the \.{TFM}'s it reads, and these
23118 should match the check sums on actual fonts that are used. The actual
23119 relation between this check sum and the rest of the \.{TFM} file is not
23120 important; the check sum is simply an identification number with the
23121 property that incompatible fonts almost always have distinct check sums.
23124 \yskip\hang|header[1]| is a |fix_word| containing the design size of the
23125 font, in units of \TeX\ points. This number must be at least 1.0; it is
23126 fairly arbitrary, but usually the design size is 10.0 for a ``10 point''
23127 font, i.e., a font that was designed to look best at a 10-point size,
23128 whatever that really means. When a \TeX\ user asks for a font `\.{at}
23129 $\delta$ \.{pt}', the effect is to override the design size and replace it
23130 by $\delta$, and to multiply the $x$ and~$y$ coordinates of the points in
23131 the font image by a factor of $\delta$ divided by the design size. {\sl
23132 All other dimensions in the\/ \.{TFM} file are |fix_word|\kern-1pt\
23133 numbers in design-size units.} Thus, for example, the value of |param[6]|,
23134 which defines the \.{em} unit, is often the |fix_word| value $2^{20}=1.0$,
23135 since many fonts have a design size equal to one em. The other dimensions
23136 must be less than 16 design-size units in absolute value; thus,
23137 |header[1]| and |param[1]| are the only |fix_word| entries in the whole
23138 \.{TFM} file whose first byte might be something besides 0 or 255.
23140 @ Next comes the |char_info| array, which contains one |char_info_word|
23141 per character. Each word in this part of the file contains six fields
23142 packed into four bytes as follows.
23144 \yskip\hang first byte: |width_index| (8 bits)\par
23145 \hang second byte: |height_index| (4 bits) times 16, plus |depth_index|
23147 \hang third byte: |italic_index| (6 bits) times 4, plus |tag|
23149 \hang fourth byte: |remainder| (8 bits)\par
23151 The actual width of a character is \\{width}|[width_index]|, in design-size
23152 units; this is a device for compressing information, since many characters
23153 have the same width. Since it is quite common for many characters
23154 to have the same height, depth, or italic correction, the \.{TFM} format
23155 imposes a limit of 16 different heights, 16 different depths, and
23156 64 different italic corrections.
23158 Incidentally, the relation $\\{width}[0]=\\{height}[0]=\\{depth}[0]=
23159 \\{italic}[0]=0$ should always hold, so that an index of zero implies a
23160 value of zero. The |width_index| should never be zero unless the
23161 character does not exist in the font, since a character is valid if and
23162 only if it lies between |bc| and |ec| and has a nonzero |width_index|.
23164 @ The |tag| field in a |char_info_word| has four values that explain how to
23165 interpret the |remainder| field.
23167 \yskip\hang|tag=0| (|no_tag|) means that |remainder| is unused.\par
23168 \hang|tag=1| (|lig_tag|) means that this character has a ligature/kerning
23169 program starting at location |remainder| in the |lig_kern| array.\par
23170 \hang|tag=2| (|list_tag|) means that this character is part of a chain of
23171 characters of ascending sizes, and not the largest in the chain. The
23172 |remainder| field gives the character code of the next larger character.\par
23173 \hang|tag=3| (|ext_tag|) means that this character code represents an
23174 extensible character, i.e., a character that is built up of smaller pieces
23175 so that it can be made arbitrarily large. The pieces are specified in
23176 |exten[remainder]|.\par
23178 Characters with |tag=2| and |tag=3| are treated as characters with |tag=0|
23179 unless they are used in special circumstances in math formulas. For example,
23180 \TeX's \.{\\sum} operation looks for a |list_tag|, and the \.{\\left}
23181 operation looks for both |list_tag| and |ext_tag|.
23183 @d no_tag 0 /* vanilla character */
23184 @d lig_tag 1 /* character has a ligature/kerning program */
23185 @d list_tag 2 /* character has a successor in a charlist */
23186 @d ext_tag 3 /* character is extensible */
23188 @ The |lig_kern| array contains instructions in a simple programming language
23189 that explains what to do for special letter pairs. Each word in this array is a
23190 |lig_kern_command| of four bytes.
23192 \yskip\hang first byte: |skip_byte|, indicates that this is the final program
23193 step if the byte is 128 or more, otherwise the next step is obtained by
23194 skipping this number of intervening steps.\par
23195 \hang second byte: |next_char|, ``if |next_char| follows the current character,
23196 then perform the operation and stop, otherwise continue.''\par
23197 \hang third byte: |op_byte|, indicates a ligature step if less than~128,
23198 a kern step otherwise.\par
23199 \hang fourth byte: |remainder|.\par
23202 additional space equal to |kern[256*(op_byte-128)+remainder]| is inserted
23203 between the current character and |next_char|. This amount is
23204 often negative, so that the characters are brought closer together
23205 by kerning; but it might be positive.
23207 There are eight kinds of ligature steps, having |op_byte| codes $4a+2b+c$ where
23208 $0\le a\le b+c$ and $0\le b,c\le1$. The character whose code is
23209 |remainder| is inserted between the current character and |next_char|;
23210 then the current character is deleted if $b=0$, and |next_char| is
23211 deleted if $c=0$; then we pass over $a$~characters to reach the next
23212 current character (which may have a ligature/kerning program of its own).
23214 If the very first instruction of the |lig_kern| array has |skip_byte=255|,
23215 the |next_char| byte is the so-called right boundary character of this font;
23216 the value of |next_char| need not lie between |bc| and~|ec|.
23217 If the very last instruction of the |lig_kern| array has |skip_byte=255|,
23218 there is a special ligature/kerning program for a left boundary character,
23219 beginning at location |256*op_byte+remainder|.
23220 The interpretation is that \TeX\ puts implicit boundary characters
23221 before and after each consecutive string of characters from the same font.
23222 These implicit characters do not appear in the output, but they can affect
23223 ligatures and kerning.
23225 If the very first instruction of a character's |lig_kern| program has
23226 |skip_byte>128|, the program actually begins in location
23227 |256*op_byte+remainder|. This feature allows access to large |lig_kern|
23228 arrays, because the first instruction must otherwise
23229 appear in a location |<=255|.
23231 Any instruction with |skip_byte>128| in the |lig_kern| array must satisfy
23233 $$\hbox{|256*op_byte+remainder<nl|.}$$
23234 If such an instruction is encountered during
23235 normal program execution, it denotes an unconditional halt; no ligature
23236 command is performed.
23239 /* value indicating `\.{STOP}' in a lig/kern program */
23240 @d kern_flag (128) /* op code for a kern step */
23241 @d skip_byte(A) mp->lig_kern[(A)].b0
23242 @d next_char(A) mp->lig_kern[(A)].b1
23243 @d op_byte(A) mp->lig_kern[(A)].b2
23244 @d rem_byte(A) mp->lig_kern[(A)].b3
23246 @ Extensible characters are specified by an |extensible_recipe|, which
23247 consists of four bytes called |top|, |mid|, |bot|, and |rep| (in this
23248 order). These bytes are the character codes of individual pieces used to
23249 build up a large symbol. If |top|, |mid|, or |bot| are zero, they are not
23250 present in the built-up result. For example, an extensible vertical line is
23251 like an extensible bracket, except that the top and bottom pieces are missing.
23253 Let $T$, $M$, $B$, and $R$ denote the respective pieces, or an empty box
23254 if the piece isn't present. Then the extensible characters have the form
23255 $TR^kMR^kB$ from top to bottom, for some |k>=0|, unless $M$ is absent;
23256 in the latter case we can have $TR^kB$ for both even and odd values of~|k|.
23257 The width of the extensible character is the width of $R$; and the
23258 height-plus-depth is the sum of the individual height-plus-depths of the
23259 components used, since the pieces are butted together in a vertical list.
23261 @d ext_top(A) mp->exten[(A)].b0 /* |top| piece in a recipe */
23262 @d ext_mid(A) mp->exten[(A)].b1 /* |mid| piece in a recipe */
23263 @d ext_bot(A) mp->exten[(A)].b2 /* |bot| piece in a recipe */
23264 @d ext_rep(A) mp->exten[(A)].b3 /* |rep| piece in a recipe */
23266 @ The final portion of a \.{TFM} file is the |param| array, which is another
23267 sequence of |fix_word| values.
23269 \yskip\hang|param[1]=slant| is the amount of italic slant, which is used
23270 to help position accents. For example, |slant=.25| means that when you go
23271 up one unit, you also go .25 units to the right. The |slant| is a pure
23272 number; it is the only |fix_word| other than the design size itself that is
23273 not scaled by the design size.
23275 \hang|param[2]=space| is the normal spacing between words in text.
23276 Note that character 040 in the font need not have anything to do with
23279 \hang|param[3]=space_stretch| is the amount of glue stretching between words.
23281 \hang|param[4]=space_shrink| is the amount of glue shrinking between words.
23283 \hang|param[5]=x_height| is the size of one ex in the font; it is also
23284 the height of letters for which accents don't have to be raised or lowered.
23286 \hang|param[6]=quad| is the size of one em in the font.
23288 \hang|param[7]=extra_space| is the amount added to |param[2]| at the
23292 If fewer than seven parameters are present, \TeX\ sets the missing parameters
23297 @d space_stretch_code 3
23298 @d space_shrink_code 4
23301 @d extra_space_code 7
23303 @ So that is what \.{TFM} files hold. One of \MP's duties is to output such
23304 information, and it does this all at once at the end of a job.
23305 In order to prepare for such frenetic activity, it squirrels away the
23306 necessary facts in various arrays as information becomes available.
23308 Character dimensions (\&{charwd}, \&{charht}, \&{chardp}, and \&{charic})
23309 are stored respectively in |tfm_width|, |tfm_height|, |tfm_depth|, and
23310 |tfm_ital_corr|. Other information about a character (e.g., about
23311 its ligatures or successors) is accessible via the |char_tag| and
23312 |char_remainder| arrays. Other information about the font as a whole
23313 is kept in additional arrays called |header_byte|, |lig_kern|,
23314 |kern|, |exten|, and |param|.
23316 @d max_tfm_int 32510
23317 @d undefined_label max_tfm_int /* an undefined local label */
23320 #define TFM_ITEMS 257
23322 eight_bits ec; /* smallest and largest character codes shipped out */
23323 scaled tfm_width[TFM_ITEMS]; /* \&{charwd} values */
23324 scaled tfm_height[TFM_ITEMS]; /* \&{charht} values */
23325 scaled tfm_depth[TFM_ITEMS]; /* \&{chardp} values */
23326 scaled tfm_ital_corr[TFM_ITEMS]; /* \&{charic} values */
23327 boolean char_exists[TFM_ITEMS]; /* has this code been shipped out? */
23328 int char_tag[TFM_ITEMS]; /* |remainder| category */
23329 int char_remainder[TFM_ITEMS]; /* the |remainder| byte */
23330 char *header_byte; /* bytes of the \.{TFM} header */
23331 int header_last; /* last initialized \.{TFM} header byte */
23332 int header_size; /* size of the \.{TFM} header */
23333 four_quarters *lig_kern; /* the ligature/kern table */
23334 short nl; /* the number of ligature/kern steps so far */
23335 scaled *kern; /* distinct kerning amounts */
23336 short nk; /* the number of distinct kerns so far */
23337 four_quarters exten[TFM_ITEMS]; /* extensible character recipes */
23338 short ne; /* the number of extensible characters so far */
23339 scaled *param; /* \&{fontinfo} parameters */
23340 short np; /* the largest \&{fontinfo} parameter specified so far */
23341 short nw;short nh;short nd;short ni; /* sizes of \.{TFM} subtables */
23342 short skip_table[TFM_ITEMS]; /* local label status */
23343 boolean lk_started; /* has there been a lig/kern step in this command yet? */
23344 integer bchar; /* right boundary character */
23345 short bch_label; /* left boundary starting location */
23346 short ll;short lll; /* registers used for lig/kern processing */
23347 short label_loc[257]; /* lig/kern starting addresses */
23348 eight_bits label_char[257]; /* characters for |label_loc| */
23349 short label_ptr; /* highest position occupied in |label_loc| */
23351 @ @<Allocate or initialize ...@>=
23352 mp->header_last = 0; mp->header_size = 128; /* just for init */
23353 mp->header_byte = xmalloc(mp->header_size, sizeof(char));
23354 mp->lig_kern = NULL; /* allocated when needed */
23355 mp->kern = NULL; /* allocated when needed */
23356 mp->param = NULL; /* allocated when needed */
23358 @ @<Dealloc variables@>=
23359 xfree(mp->header_byte);
23360 xfree(mp->lig_kern);
23365 for (k=0;k<= 255;k++ ) {
23366 mp->tfm_width[k]=0; mp->tfm_height[k]=0; mp->tfm_depth[k]=0; mp->tfm_ital_corr[k]=0;
23367 mp->char_exists[k]=false; mp->char_tag[k]=no_tag; mp->char_remainder[k]=0;
23368 mp->skip_table[k]=undefined_label;
23370 memset(mp->header_byte,0,mp->header_size);
23371 mp->bc=255; mp->ec=0; mp->nl=0; mp->nk=0; mp->ne=0; mp->np=0;
23372 mp->internal[mp_boundary_char]=-unity;
23373 mp->bch_label=undefined_label;
23374 mp->label_loc[0]=-1; mp->label_ptr=0;
23376 @ @<Declarations@>=
23377 scaled mp_tfm_check (MP mp,small_number m) ;
23379 @ @<Declare the function called |tfm_check|@>=
23380 scaled mp_tfm_check (MP mp,small_number m) {
23381 if ( abs(mp->internal[m])>=fraction_half ) {
23382 print_err("Enormous "); mp_print(mp, mp->int_name[m]);
23383 @.Enormous charwd...@>
23384 @.Enormous chardp...@>
23385 @.Enormous charht...@>
23386 @.Enormous charic...@>
23387 @.Enormous designsize...@>
23388 mp_print(mp, " has been reduced");
23389 help1("Font metric dimensions must be less than 2048pt.");
23390 mp_put_get_error(mp);
23391 if ( mp->internal[m]>0 ) return (fraction_half-1);
23392 else return (1-fraction_half);
23394 return mp->internal[m];
23398 @ @<Store the width information for character code~|c|@>=
23399 if ( c<mp->bc ) mp->bc=c;
23400 if ( c>mp->ec ) mp->ec=c;
23401 mp->char_exists[c]=true;
23402 mp->tfm_width[c]=mp_tfm_check(mp, mp_char_wd);
23403 mp->tfm_height[c]=mp_tfm_check(mp, mp_char_ht);
23404 mp->tfm_depth[c]=mp_tfm_check(mp, mp_char_dp);
23405 mp->tfm_ital_corr[c]=mp_tfm_check(mp, mp_char_ic)
23407 @ Now let's consider \MP's special \.{TFM}-oriented commands.
23409 @<Cases of |do_statement|...@>=
23410 case tfm_command: mp_do_tfm_command(mp); break;
23412 @ @d char_list_code 0
23413 @d lig_table_code 1
23414 @d extensible_code 2
23415 @d header_byte_code 3
23416 @d font_dimen_code 4
23419 mp_primitive(mp, "charlist",tfm_command,char_list_code);
23420 @:char_list_}{\&{charlist} primitive@>
23421 mp_primitive(mp, "ligtable",tfm_command,lig_table_code);
23422 @:lig_table_}{\&{ligtable} primitive@>
23423 mp_primitive(mp, "extensible",tfm_command,extensible_code);
23424 @:extensible_}{\&{extensible} primitive@>
23425 mp_primitive(mp, "headerbyte",tfm_command,header_byte_code);
23426 @:header_byte_}{\&{headerbyte} primitive@>
23427 mp_primitive(mp, "fontdimen",tfm_command,font_dimen_code);
23428 @:font_dimen_}{\&{fontdimen} primitive@>
23430 @ @<Cases of |print_cmd...@>=
23433 case char_list_code:mp_print(mp, "charlist"); break;
23434 case lig_table_code:mp_print(mp, "ligtable"); break;
23435 case extensible_code:mp_print(mp, "extensible"); break;
23436 case header_byte_code:mp_print(mp, "headerbyte"); break;
23437 default: mp_print(mp, "fontdimen"); break;
23441 @ @<Declare action procedures for use by |do_statement|@>=
23442 eight_bits mp_get_code (MP mp) ;
23444 @ @c eight_bits mp_get_code (MP mp) { /* scans a character code value */
23445 integer c; /* the code value found */
23446 mp_get_x_next(mp); mp_scan_expression(mp);
23447 if ( mp->cur_type==mp_known ) {
23448 c=mp_round_unscaled(mp, mp->cur_exp);
23449 if ( c>=0 ) if ( c<256 ) return c;
23450 } else if ( mp->cur_type==mp_string_type ) {
23451 if ( length(mp->cur_exp)==1 ) {
23452 c=mp->str_pool[mp->str_start[mp->cur_exp]];
23456 exp_err("Invalid code has been replaced by 0");
23457 @.Invalid code...@>
23458 help2("I was looking for a number between 0 and 255, or for a")
23459 ("string of length 1. Didn't find it; will use 0 instead.");
23460 mp_put_get_flush_error(mp, 0); c=0;
23464 @ @<Declare action procedures for use by |do_statement|@>=
23465 void mp_set_tag (MP mp,halfword c, small_number t, halfword r) ;
23467 @ @c void mp_set_tag (MP mp,halfword c, small_number t, halfword r) {
23468 if ( mp->char_tag[c]==no_tag ) {
23469 mp->char_tag[c]=t; mp->char_remainder[c]=r;
23471 incr(mp->label_ptr); mp->label_loc[mp->label_ptr]=r;
23472 mp->label_char[mp->label_ptr]=c;
23475 @<Complain about a character tag conflict@>;
23479 @ @<Complain about a character tag conflict@>=
23481 print_err("Character ");
23482 if ( (c>' ')&&(c<127) ) mp_print_char(mp,c);
23483 else if ( c==256 ) mp_print(mp, "||");
23484 else { mp_print(mp, "code "); mp_print_int(mp, c); };
23485 mp_print(mp, " is already ");
23486 @.Character c is already...@>
23487 switch (mp->char_tag[c]) {
23488 case lig_tag: mp_print(mp, "in a ligtable"); break;
23489 case list_tag: mp_print(mp, "in a charlist"); break;
23490 case ext_tag: mp_print(mp, "extensible"); break;
23491 } /* there are no other cases */
23492 help2("It's not legal to label a character more than once.")
23493 ("So I'll not change anything just now.");
23494 mp_put_get_error(mp);
23497 @ @<Declare action procedures for use by |do_statement|@>=
23498 void mp_do_tfm_command (MP mp) ;
23500 @ @c void mp_do_tfm_command (MP mp) {
23501 int c,cc; /* character codes */
23502 int k; /* index into the |kern| array */
23503 int j; /* index into |header_byte| or |param| */
23504 switch (mp->cur_mod) {
23505 case char_list_code:
23507 /* we will store a list of character successors */
23508 while ( mp->cur_cmd==colon ) {
23509 cc=mp_get_code(mp); mp_set_tag(mp, c,list_tag,cc); c=cc;
23512 case lig_table_code:
23513 if (mp->lig_kern==NULL)
23514 mp->lig_kern = xmalloc((max_tfm_int+1),sizeof(four_quarters));
23515 if (mp->kern==NULL)
23516 mp->kern = xmalloc((max_tfm_int+1),sizeof(scaled));
23517 @<Store a list of ligature/kern steps@>;
23519 case extensible_code:
23520 @<Define an extensible recipe@>;
23522 case header_byte_code:
23523 case font_dimen_code:
23524 c=mp->cur_mod; mp_get_x_next(mp);
23525 mp_scan_expression(mp);
23526 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<half_unit) ) {
23527 exp_err("Improper location");
23528 @.Improper location@>
23529 help2("I was looking for a known, positive number.")
23530 ("For safety's sake I'll ignore the present command.");
23531 mp_put_get_error(mp);
23533 j=mp_round_unscaled(mp, mp->cur_exp);
23534 if ( mp->cur_cmd!=colon ) {
23535 mp_missing_err(mp, ":");
23537 help1("A colon should follow a headerbyte or fontinfo location.");
23540 if ( c==header_byte_code ) {
23541 @<Store a list of header bytes@>;
23543 if (mp->param==NULL)
23544 mp->param = xmalloc((max_tfm_int+1),sizeof(scaled));
23545 @<Store a list of font dimensions@>;
23549 } /* there are no other cases */
23552 @ @<Store a list of ligature/kern steps@>=
23554 mp->lk_started=false;
23557 if ((mp->cur_cmd==skip_to)&& mp->lk_started )
23558 @<Process a |skip_to| command and |goto done|@>;
23559 if ( mp->cur_cmd==bchar_label ) { c=256; mp->cur_cmd=colon; }
23560 else { mp_back_input(mp); c=mp_get_code(mp); };
23561 if ((mp->cur_cmd==colon)||(mp->cur_cmd==double_colon)) {
23562 @<Record a label in a lig/kern subprogram and |goto continue|@>;
23564 if ( mp->cur_cmd==lig_kern_token ) {
23565 @<Compile a ligature/kern command@>;
23567 print_err("Illegal ligtable step");
23568 @.Illegal ligtable step@>
23569 help1("I was looking for `=:' or `kern' here.");
23570 mp_back_error(mp); next_char(mp->nl)=qi(0);
23571 op_byte(mp->nl)=qi(0); rem_byte(mp->nl)=qi(0);
23572 skip_byte(mp->nl)=stop_flag+1; /* this specifies an unconditional stop */
23574 if ( mp->nl==max_tfm_int) mp_fatal_error(mp, "ligtable too large");
23576 if ( mp->cur_cmd==comma ) goto CONTINUE;
23577 if ( skip_byte(mp->nl-1)<stop_flag ) skip_byte(mp->nl-1)=stop_flag;
23582 mp_primitive(mp, "=:",lig_kern_token,0);
23583 @:=:_}{\.{=:} primitive@>
23584 mp_primitive(mp, "=:|",lig_kern_token,1);
23585 @:=:/_}{\.{=:\char'174} primitive@>
23586 mp_primitive(mp, "=:|>",lig_kern_token,5);
23587 @:=:/>_}{\.{=:\char'174>} primitive@>
23588 mp_primitive(mp, "|=:",lig_kern_token,2);
23589 @:=:/_}{\.{\char'174=:} primitive@>
23590 mp_primitive(mp, "|=:>",lig_kern_token,6);
23591 @:=:/>_}{\.{\char'174=:>} primitive@>
23592 mp_primitive(mp, "|=:|",lig_kern_token,3);
23593 @:=:/_}{\.{\char'174=:\char'174} primitive@>
23594 mp_primitive(mp, "|=:|>",lig_kern_token,7);
23595 @:=:/>_}{\.{\char'174=:\char'174>} primitive@>
23596 mp_primitive(mp, "|=:|>>",lig_kern_token,11);
23597 @:=:/>_}{\.{\char'174=:\char'174>>} primitive@>
23598 mp_primitive(mp, "kern",lig_kern_token,128);
23599 @:kern_}{\&{kern} primitive@>
23601 @ @<Cases of |print_cmd...@>=
23602 case lig_kern_token:
23604 case 0:mp_print(mp, "=:"); break;
23605 case 1:mp_print(mp, "=:|"); break;
23606 case 2:mp_print(mp, "|=:"); break;
23607 case 3:mp_print(mp, "|=:|"); break;
23608 case 5:mp_print(mp, "=:|>"); break;
23609 case 6:mp_print(mp, "|=:>"); break;
23610 case 7:mp_print(mp, "|=:|>"); break;
23611 case 11:mp_print(mp, "|=:|>>"); break;
23612 default: mp_print(mp, "kern"); break;
23616 @ Local labels are implemented by maintaining the |skip_table| array,
23617 where |skip_table[c]| is either |undefined_label| or the address of the
23618 most recent lig/kern instruction that skips to local label~|c|. In the
23619 latter case, the |skip_byte| in that instruction will (temporarily)
23620 be zero if there were no prior skips to this label, or it will be the
23621 distance to the prior skip.
23623 We may need to cancel skips that span more than 127 lig/kern steps.
23625 @d cancel_skips(A) mp->ll=(A);
23627 mp->lll=qo(skip_byte(mp->ll));
23628 skip_byte(mp->ll)=stop_flag; mp->ll=mp->ll-mp->lll;
23629 } while (mp->lll!=0)
23630 @d skip_error(A) { print_err("Too far to skip");
23631 @.Too far to skip@>
23632 help1("At most 127 lig/kern steps can separate skipto1 from 1::.");
23633 mp_error(mp); cancel_skips((A));
23636 @<Process a |skip_to| command and |goto done|@>=
23639 if ( mp->nl-mp->skip_table[c]>128 ) { /* |skip_table[c]<<nl<=undefined_label| */
23640 skip_error(mp->skip_table[c]); mp->skip_table[c]=undefined_label;
23642 if ( mp->skip_table[c]==undefined_label ) skip_byte(mp->nl-1)=qi(0);
23643 else skip_byte(mp->nl-1)=qi(mp->nl-mp->skip_table[c]-1);
23644 mp->skip_table[c]=mp->nl-1; goto DONE;
23647 @ @<Record a label in a lig/kern subprogram and |goto continue|@>=
23649 if ( mp->cur_cmd==colon ) {
23650 if ( c==256 ) mp->bch_label=mp->nl;
23651 else mp_set_tag(mp, c,lig_tag,mp->nl);
23652 } else if ( mp->skip_table[c]<undefined_label ) {
23653 mp->ll=mp->skip_table[c]; mp->skip_table[c]=undefined_label;
23655 mp->lll=qo(skip_byte(mp->ll));
23656 if ( mp->nl-mp->ll>128 ) {
23657 skip_error(mp->ll); goto CONTINUE;
23659 skip_byte(mp->ll)=qi(mp->nl-mp->ll-1); mp->ll=mp->ll-mp->lll;
23660 } while (mp->lll!=0);
23665 @ @<Compile a ligature/kern...@>=
23667 next_char(mp->nl)=qi(c); skip_byte(mp->nl)=qi(0);
23668 if ( mp->cur_mod<128 ) { /* ligature op */
23669 op_byte(mp->nl)=qi(mp->cur_mod); rem_byte(mp->nl)=qi(mp_get_code(mp));
23671 mp_get_x_next(mp); mp_scan_expression(mp);
23672 if ( mp->cur_type!=mp_known ) {
23673 exp_err("Improper kern");
23675 help2("The amount of kern should be a known numeric value.")
23676 ("I'm zeroing this one. Proceed, with fingers crossed.");
23677 mp_put_get_flush_error(mp, 0);
23679 mp->kern[mp->nk]=mp->cur_exp;
23681 while ( mp->kern[k]!=mp->cur_exp ) incr(k);
23683 if ( mp->nk==max_tfm_int ) mp_fatal_error(mp, "too many TFM kerns");
23686 op_byte(mp->nl)=kern_flag+(k / 256);
23687 rem_byte(mp->nl)=qi((k % 256));
23689 mp->lk_started=true;
23692 @ @d missing_extensible_punctuation(A)
23693 { mp_missing_err(mp, (A));
23694 @.Missing `\char`\#'@>
23695 help1("I'm processing `extensible c: t,m,b,r'."); mp_back_error(mp);
23698 @<Define an extensible recipe@>=
23700 if ( mp->ne==256 ) mp_fatal_error(mp, "too many extensible recipies");
23701 c=mp_get_code(mp); mp_set_tag(mp, c,ext_tag,mp->ne);
23702 if ( mp->cur_cmd!=colon ) missing_extensible_punctuation(":");
23703 ext_top(mp->ne)=qi(mp_get_code(mp));
23704 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23705 ext_mid(mp->ne)=qi(mp_get_code(mp));
23706 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23707 ext_bot(mp->ne)=qi(mp_get_code(mp));
23708 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23709 ext_rep(mp->ne)=qi(mp_get_code(mp));
23713 @ The header could contain ASCII zeroes, so can't use |strdup|.
23715 @<Store a list of header bytes@>=
23717 if ( j>=mp->header_size ) {
23718 int l = mp->header_size + (mp->header_size >> 2);
23719 char *t = xmalloc(l,sizeof(char));
23721 memcpy(t,mp->header_byte,mp->header_size);
23722 xfree (mp->header_byte);
23723 mp->header_byte = t;
23724 mp->header_size = l;
23726 mp->header_byte[j]=mp_get_code(mp);
23727 incr(j); incr(mp->header_last);
23728 } while (mp->cur_cmd==comma)
23730 @ @<Store a list of font dimensions@>=
23732 if ( j>max_tfm_int ) mp_fatal_error(mp, "too many fontdimens");
23733 while ( j>mp->np ) { incr(mp->np); mp->param[mp->np]=0; };
23734 mp_get_x_next(mp); mp_scan_expression(mp);
23735 if ( mp->cur_type!=mp_known ){
23736 exp_err("Improper font parameter");
23737 @.Improper font parameter@>
23738 help1("I'm zeroing this one. Proceed, with fingers crossed.");
23739 mp_put_get_flush_error(mp, 0);
23741 mp->param[j]=mp->cur_exp; incr(j);
23742 } while (mp->cur_cmd==comma)
23744 @ OK: We've stored all the data that is needed for the \.{TFM} file.
23745 All that remains is to output it in the correct format.
23747 An interesting problem needs to be solved in this connection, because
23748 the \.{TFM} format allows at most 256~widths, 16~heights, 16~depths,
23749 and 64~italic corrections. If the data has more distinct values than
23750 this, we want to meet the necessary restrictions by perturbing the
23751 given values as little as possible.
23753 \MP\ solves this problem in two steps. First the values of a given
23754 kind (widths, heights, depths, or italic corrections) are sorted;
23755 then the list of sorted values is perturbed, if necessary.
23757 The sorting operation is facilitated by having a special node of
23758 essentially infinite |value| at the end of the current list.
23760 @<Initialize table entries...@>=
23761 value(inf_val)=fraction_four;
23763 @ Straight linear insertion is good enough for sorting, since the lists
23764 are usually not terribly long. As we work on the data, the current list
23765 will start at |link(temp_head)| and end at |inf_val|; the nodes in this
23766 list will be in increasing order of their |value| fields.
23768 Given such a list, the |sort_in| function takes a value and returns a pointer
23769 to where that value can be found in the list. The value is inserted in
23770 the proper place, if necessary.
23772 At the time we need to do these operations, most of \MP's work has been
23773 completed, so we will have plenty of memory to play with. The value nodes
23774 that are allocated for sorting will never be returned to free storage.
23776 @d clear_the_list link(temp_head)=inf_val
23778 @c pointer mp_sort_in (MP mp,scaled v) {
23779 pointer p,q,r; /* list manipulation registers */
23783 if ( v<=value(q) ) break;
23786 if ( v<value(q) ) {
23787 r=mp_get_node(mp, value_node_size); value(r)=v; link(r)=q; link(p)=r;
23792 @ Now we come to the interesting part, where we reduce the list if necessary
23793 until it has the required size. The |min_cover| routine is basic to this
23794 process; it computes the minimum number~|m| such that the values of the
23795 current sorted list can be covered by |m|~intervals of width~|d|. It
23796 also sets the global value |perturbation| to the smallest value $d'>d$
23797 such that the covering found by this algorithm would be different.
23799 In particular, |min_cover(0)| returns the number of distinct values in the
23800 current list and sets |perturbation| to the minimum distance between
23803 @c integer mp_min_cover (MP mp,scaled d) {
23804 pointer p; /* runs through the current list */
23805 scaled l; /* the least element covered by the current interval */
23806 integer m; /* lower bound on the size of the minimum cover */
23807 m=0; p=link(temp_head); mp->perturbation=el_gordo;
23808 while ( p!=inf_val ){
23809 incr(m); l=value(p);
23810 do { p=link(p); } while (value(p)<=l+d);
23811 if ( value(p)-l<mp->perturbation )
23812 mp->perturbation=value(p)-l;
23818 scaled perturbation; /* quantity related to \.{TFM} rounding */
23819 integer excess; /* the list is this much too long */
23821 @ The smallest |d| such that a given list can be covered with |m| intervals
23822 is determined by the |threshold| routine, which is sort of an inverse
23823 to |min_cover|. The idea is to increase the interval size rapidly until
23824 finding the range, then to go sequentially until the exact borderline has
23827 @c scaled mp_threshold (MP mp,integer m) {
23828 scaled d; /* lower bound on the smallest interval size */
23829 mp->excess=mp_min_cover(mp, 0)-m;
23830 if ( mp->excess<=0 ) {
23834 d=mp->perturbation;
23835 } while (mp_min_cover(mp, d+d)>m);
23836 while ( mp_min_cover(mp, d)>m )
23837 d=mp->perturbation;
23842 @ The |skimp| procedure reduces the current list to at most |m| entries,
23843 by changing values if necessary. It also sets |info(p):=k| if |value(p)|
23844 is the |k|th distinct value on the resulting list, and it sets
23845 |perturbation| to the maximum amount by which a |value| field has
23846 been changed. The size of the resulting list is returned as the
23849 @c integer mp_skimp (MP mp,integer m) {
23850 scaled d; /* the size of intervals being coalesced */
23851 pointer p,q,r; /* list manipulation registers */
23852 scaled l; /* the least value in the current interval */
23853 scaled v; /* a compromise value */
23854 d=mp_threshold(mp, m); mp->perturbation=0;
23855 q=temp_head; m=0; p=link(temp_head);
23856 while ( p!=inf_val ) {
23857 incr(m); l=value(p); info(p)=m;
23858 if ( value(link(p))<=l+d ) {
23859 @<Replace an interval of values by its midpoint@>;
23866 @ @<Replace an interval...@>=
23869 p=link(p); info(p)=m;
23870 decr(mp->excess); if ( mp->excess==0 ) d=0;
23871 } while (value(link(p))<=l+d);
23872 v=l+halfp(value(p)-l);
23873 if ( value(p)-v>mp->perturbation )
23874 mp->perturbation=value(p)-v;
23877 r=link(r); value(r)=v;
23879 link(q)=p; /* remove duplicate values from the current list */
23882 @ A warning message is issued whenever something is perturbed by
23883 more than 1/16\thinspace pt.
23885 @c void mp_tfm_warning (MP mp,small_number m) {
23886 mp_print_nl(mp, "(some ");
23887 mp_print(mp, mp->int_name[m]);
23888 @.some charwds...@>
23889 @.some chardps...@>
23890 @.some charhts...@>
23891 @.some charics...@>
23892 mp_print(mp, " values had to be adjusted by as much as ");
23893 mp_print_scaled(mp, mp->perturbation); mp_print(mp, "pt)");
23896 @ Here's an example of how we use these routines.
23897 The width data needs to be perturbed only if there are 256 distinct
23898 widths, but \MP\ must check for this case even though it is
23901 An integer variable |k| will be defined when we use this code.
23902 The |dimen_head| array will contain pointers to the sorted
23903 lists of dimensions.
23905 @<Massage the \.{TFM} widths@>=
23907 for (k=mp->bc;k<=mp->ec;k++) {
23908 if ( mp->char_exists[k] )
23909 mp->tfm_width[k]=mp_sort_in(mp, mp->tfm_width[k]);
23911 mp->nw=mp_skimp(mp, 255)+1; mp->dimen_head[1]=link(temp_head);
23912 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_wd)
23915 pointer dimen_head[5]; /* lists of \.{TFM} dimensions */
23917 @ Heights, depths, and italic corrections are different from widths
23918 not only because their list length is more severely restricted, but
23919 also because zero values do not need to be put into the lists.
23921 @<Massage the \.{TFM} heights, depths, and italic corrections@>=
23923 for (k=mp->bc;k<=mp->ec;k++) {
23924 if ( mp->char_exists[k] ) {
23925 if ( mp->tfm_height[k]==0 ) mp->tfm_height[k]=zero_val;
23926 else mp->tfm_height[k]=mp_sort_in(mp, mp->tfm_height[k]);
23929 mp->nh=mp_skimp(mp, 15)+1; mp->dimen_head[2]=link(temp_head);
23930 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ht);
23932 for (k=mp->bc;k<=mp->ec;k++) {
23933 if ( mp->char_exists[k] ) {
23934 if ( mp->tfm_depth[k]==0 ) mp->tfm_depth[k]=zero_val;
23935 else mp->tfm_depth[k]=mp_sort_in(mp, mp->tfm_depth[k]);
23938 mp->nd=mp_skimp(mp, 15)+1; mp->dimen_head[3]=link(temp_head);
23939 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_dp);
23941 for (k=mp->bc;k<=mp->ec;k++) {
23942 if ( mp->char_exists[k] ) {
23943 if ( mp->tfm_ital_corr[k]==0 ) mp->tfm_ital_corr[k]=zero_val;
23944 else mp->tfm_ital_corr[k]=mp_sort_in(mp, mp->tfm_ital_corr[k]);
23947 mp->ni=mp_skimp(mp, 63)+1; mp->dimen_head[4]=link(temp_head);
23948 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ic)
23950 @ @<Initialize table entries...@>=
23951 value(zero_val)=0; info(zero_val)=0;
23953 @ Bytes 5--8 of the header are set to the design size, unless the user has
23954 some crazy reason for specifying them differently.
23956 Error messages are not allowed at the time this procedure is called,
23957 so a warning is printed instead.
23959 The value of |max_tfm_dimen| is calculated so that
23960 $$\hbox{|make_scaled(16*max_tfm_dimen,internal[mp_design_size])|}
23961 < \\{three\_bytes}.$$
23963 @d three_bytes 0100000000 /* $2^{24}$ */
23966 void mp_fix_design_size (MP mp) {
23967 scaled d; /* the design size */
23968 d=mp->internal[mp_design_size];
23969 if ( (d<unity)||(d>=fraction_half) ) {
23971 mp_print_nl(mp, "(illegal design size has been changed to 128pt)");
23972 @.illegal design size...@>
23973 d=040000000; mp->internal[mp_design_size]=d;
23975 if ( mp->header_byte[4]<0 ) if ( mp->header_byte[5]<0 )
23976 if ( mp->header_byte[6]<0 ) if ( mp->header_byte[7]<0 ) {
23977 mp->header_byte[4]=d / 04000000;
23978 mp->header_byte[5]=(d / 4096) % 256;
23979 mp->header_byte[6]=(d / 16) % 256;
23980 mp->header_byte[7]=(d % 16)*16;
23982 mp->max_tfm_dimen=16*mp->internal[mp_design_size]-mp->internal[mp_design_size] / 010000000;
23983 if ( mp->max_tfm_dimen>=fraction_half ) mp->max_tfm_dimen=fraction_half-1;
23986 @ The |dimen_out| procedure computes a |fix_word| relative to the
23987 design size. If the data was out of range, it is corrected and the
23988 global variable |tfm_changed| is increased by~one.
23990 @c integer mp_dimen_out (MP mp,scaled x) {
23991 if ( abs(x)>mp->max_tfm_dimen ) {
23992 incr(mp->tfm_changed);
23993 if ( x>0 ) x=three_bytes-1; else x=1-three_bytes;
23995 x=mp_make_scaled(mp, x*16,mp->internal[mp_design_size]);
24001 scaled max_tfm_dimen; /* bound on widths, heights, kerns, etc. */
24002 integer tfm_changed; /* the number of data entries that were out of bounds */
24004 @ If the user has not specified any of the first four header bytes,
24005 the |fix_check_sum| procedure replaces them by a ``check sum'' computed
24006 from the |tfm_width| data relative to the design size.
24009 @c void mp_fix_check_sum (MP mp) {
24010 eight_bits k; /* runs through character codes */
24011 eight_bits B1,B2,B3,B4; /* bytes of the check sum */
24012 integer x; /* hash value used in check sum computation */
24013 if ( mp->header_byte[0]==0 && mp->header_byte[1]==0 &&
24014 mp->header_byte[2]==0 && mp->header_byte[3]==0 ) {
24015 @<Compute a check sum in |(b1,b2,b3,b4)|@>;
24016 mp->header_byte[0]=B1; mp->header_byte[1]=B2;
24017 mp->header_byte[2]=B3; mp->header_byte[3]=B4;
24022 @ @<Compute a check sum in |(b1,b2,b3,b4)|@>=
24023 B1=mp->bc; B2=mp->ec; B3=mp->bc; B4=mp->ec; mp->tfm_changed=0;
24024 for (k=mp->bc;k<=mp->ec;k++) {
24025 if ( mp->char_exists[k] ) {
24026 x=mp_dimen_out(mp, value(mp->tfm_width[k]))+(k+4)*020000000; /* this is positive */
24027 B1=(B1+B1+x) % 255;
24028 B2=(B2+B2+x) % 253;
24029 B3=(B3+B3+x) % 251;
24030 B4=(B4+B4+x) % 247;
24034 @ Finally we're ready to actually write the \.{TFM} information.
24035 Here are some utility routines for this purpose.
24037 @d tfm_out(A) fputc((A),mp->tfm_file) /* output one byte to |tfm_file| */
24039 @c void mp_tfm_two (MP mp,integer x) { /* output two bytes to |tfm_file| */
24040 tfm_out(x / 256); tfm_out(x % 256);
24042 void mp_tfm_four (MP mp,integer x) { /* output four bytes to |tfm_file| */
24043 if ( x>=0 ) tfm_out(x / three_bytes);
24045 x=x+010000000000; /* use two's complement for negative values */
24047 tfm_out((x / three_bytes) + 128);
24049 x=x % three_bytes; tfm_out(x / unity);
24050 x=x % unity; tfm_out(x / 0400);
24053 void mp_tfm_qqqq (MP mp,four_quarters x) { /* output four quarterwords to |tfm_file| */
24054 tfm_out(qo(x.b0)); tfm_out(qo(x.b1));
24055 tfm_out(qo(x.b2)); tfm_out(qo(x.b3));
24058 @ @<Finish the \.{TFM} file@>=
24059 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24060 mp_pack_job_name(mp, ".tfm");
24061 while ( ! mp_b_open_out(mp, &mp->tfm_file, mp_filetype_metrics) )
24062 mp_prompt_file_name(mp, "file name for font metrics",".tfm");
24063 mp->metric_file_name=xstrdup(mp->name_of_file);
24064 @<Output the subfile sizes and header bytes@>;
24065 @<Output the character information bytes, then
24066 output the dimensions themselves@>;
24067 @<Output the ligature/kern program@>;
24068 @<Output the extensible character recipes and the font metric parameters@>;
24069 if ( mp->internal[mp_tracing_stats]>0 )
24070 @<Log the subfile sizes of the \.{TFM} file@>;
24071 mp_print_nl(mp, "Font metrics written on ");
24072 mp_print(mp, mp->metric_file_name); mp_print_char(mp, '.');
24073 @.Font metrics written...@>
24074 fclose(mp->tfm_file)
24076 @ Integer variables |lh|, |k|, and |lk_offset| will be defined when we use
24079 @<Output the subfile sizes and header bytes@>=
24081 LH=(k+3) / 4; /* this is the number of header words */
24082 if ( mp->bc>mp->ec ) mp->bc=1; /* if there are no characters, |ec=0| and |bc=1| */
24083 @<Compute the ligature/kern program offset and implant the
24084 left boundary label@>;
24085 mp_tfm_two(mp,6+LH+(mp->ec-mp->bc+1)+mp->nw+mp->nh+mp->nd+mp->ni+mp->nl
24086 +lk_offset+mp->nk+mp->ne+mp->np);
24087 /* this is the total number of file words that will be output */
24088 mp_tfm_two(mp, LH); mp_tfm_two(mp, mp->bc); mp_tfm_two(mp, mp->ec);
24089 mp_tfm_two(mp, mp->nw); mp_tfm_two(mp, mp->nh);
24090 mp_tfm_two(mp, mp->nd); mp_tfm_two(mp, mp->ni); mp_tfm_two(mp, mp->nl+lk_offset);
24091 mp_tfm_two(mp, mp->nk); mp_tfm_two(mp, mp->ne);
24092 mp_tfm_two(mp, mp->np);
24093 for (k=0;k< 4*LH;k++) {
24094 tfm_out(mp->header_byte[k]);
24097 @ @<Output the character information bytes...@>=
24098 for (k=mp->bc;k<=mp->ec;k++) {
24099 if ( ! mp->char_exists[k] ) {
24100 mp_tfm_four(mp, 0);
24102 tfm_out(info(mp->tfm_width[k])); /* the width index */
24103 tfm_out((info(mp->tfm_height[k]))*16+info(mp->tfm_depth[k]));
24104 tfm_out((info(mp->tfm_ital_corr[k]))*4+mp->char_tag[k]);
24105 tfm_out(mp->char_remainder[k]);
24109 for (k=1;k<=4;k++) {
24110 mp_tfm_four(mp, 0); p=mp->dimen_head[k];
24111 while ( p!=inf_val ) {
24112 mp_tfm_four(mp, mp_dimen_out(mp, value(p))); p=link(p);
24117 @ We need to output special instructions at the beginning of the
24118 |lig_kern| array in order to specify the right boundary character
24119 and/or to handle starting addresses that exceed 255. The |label_loc|
24120 and |label_char| arrays have been set up to record all the
24121 starting addresses; we have $-1=|label_loc|[0]<|label_loc|[1]\le\cdots
24122 \le|label_loc|[|label_ptr]|$.
24124 @<Compute the ligature/kern program offset...@>=
24125 mp->bchar=mp_round_unscaled(mp, mp->internal[mp_boundary_char]);
24126 if ((mp->bchar<0)||(mp->bchar>255))
24127 { mp->bchar=-1; mp->lk_started=false; lk_offset=0; }
24128 else { mp->lk_started=true; lk_offset=1; };
24129 @<Find the minimum |lk_offset| and adjust all remainders@>;
24130 if ( mp->bch_label<undefined_label )
24131 { skip_byte(mp->nl)=qi(255); next_char(mp->nl)=qi(0);
24132 op_byte(mp->nl)=qi(((mp->bch_label+lk_offset)/ 256));
24133 rem_byte(mp->nl)=qi(((mp->bch_label+lk_offset)% 256));
24134 incr(mp->nl); /* possibly |nl=lig_table_size+1| */
24137 @ @<Find the minimum |lk_offset|...@>=
24138 k=mp->label_ptr; /* pointer to the largest unallocated label */
24139 if ( mp->label_loc[k]+lk_offset>255 ) {
24140 lk_offset=0; mp->lk_started=false; /* location 0 can do double duty */
24142 mp->char_remainder[mp->label_char[k]]=lk_offset;
24143 while ( mp->label_loc[k-1]==mp->label_loc[k] ) {
24144 decr(k); mp->char_remainder[mp->label_char[k]]=lk_offset;
24146 incr(lk_offset); decr(k);
24147 } while (! (lk_offset+mp->label_loc[k]<256));
24148 /* N.B.: |lk_offset=256| satisfies this when |k=0| */
24150 if ( lk_offset>0 ) {
24152 mp->char_remainder[mp->label_char[k]]
24153 =mp->char_remainder[mp->label_char[k]]+lk_offset;
24158 @ @<Output the ligature/kern program@>=
24159 for (k=0;k<= 255;k++ ) {
24160 if ( mp->skip_table[k]<undefined_label ) {
24161 mp_print_nl(mp, "(local label "); mp_print_int(mp, k); mp_print(mp, ":: was missing)");
24162 @.local label l:: was missing@>
24163 cancel_skips(mp->skip_table[k]);
24166 if ( mp->lk_started ) { /* |lk_offset=1| for the special |bchar| */
24167 tfm_out(255); tfm_out(mp->bchar); mp_tfm_two(mp, 0);
24169 for (k=1;k<=lk_offset;k++) {/* output the redirection specs */
24170 mp->ll=mp->label_loc[mp->label_ptr];
24171 if ( mp->bchar<0 ) { tfm_out(254); tfm_out(0); }
24172 else { tfm_out(255); tfm_out(mp->bchar); };
24173 mp_tfm_two(mp, mp->ll+lk_offset);
24175 decr(mp->label_ptr);
24176 } while (! (mp->label_loc[mp->label_ptr]<mp->ll));
24179 for (k=0;k<=mp->nl-1;k++) mp_tfm_qqqq(mp, mp->lig_kern[k]);
24180 for (k=0;k<=mp->nk-1;k++) mp_tfm_four(mp, mp_dimen_out(mp, mp->kern[k]))
24182 @ @<Output the extensible character recipes...@>=
24183 for (k=0;k<=mp->ne-1;k++)
24184 mp_tfm_qqqq(mp, mp->exten[k]);
24185 for (k=1;k<=mp->np;k++) {
24187 if ( abs(mp->param[1])<fraction_half ) {
24188 mp_tfm_four(mp, mp->param[1]*16);
24190 incr(mp->tfm_changed);
24191 if ( mp->param[1]>0 ) mp_tfm_four(mp, el_gordo);
24192 else mp_tfm_four(mp, -el_gordo);
24195 mp_tfm_four(mp, mp_dimen_out(mp, mp->param[k]));
24198 if ( mp->tfm_changed>0 ) {
24199 if ( mp->tfm_changed==1 ) mp_print_nl(mp, "(a font metric dimension");
24200 @.a font metric dimension...@>
24202 mp_print_nl(mp, "("); mp_print_int(mp, mp->tfm_changed);
24203 @.font metric dimensions...@>
24204 mp_print(mp, " font metric dimensions");
24206 mp_print(mp, " had to be decreased)");
24209 @ @<Log the subfile sizes of the \.{TFM} file@>=
24213 if ( mp->bch_label<undefined_label ) decr(mp->nl);
24214 snprintf(s,128,"(You used %iw,%ih,%id,%ii,%il,%ik,%ie,%ip metric file positions)",
24215 mp->nw, mp->nh, mp->nd, mp->ni, mp->nl, mp->nk, mp->ne,mp->np);
24219 @* \[43] Reading font metric data.
24221 \MP\ isn't a typesetting program but it does need to find the bounding box
24222 of a sequence of typeset characters. Thus it needs to read \.{TFM} files as
24223 well as write them.
24228 @ All the width, height, and depth information is stored in an array called
24229 |font_info|. This array is allocated sequentially and each font is stored
24230 as a series of |char_info| words followed by the width, height, and depth
24231 tables. Since |font_name| entries are permanent, their |str_ref| values are
24232 set to |max_str_ref|.
24235 typedef unsigned int font_number; /* |0..font_max| */
24237 @ The |font_info| array is indexed via a group directory arrays.
24238 For example, the |char_info| data for character~|c| in font~|f| will be
24239 in |font_info[char_base[f]+c].qqqq|.
24242 font_number font_max; /* maximum font number for included text fonts */
24243 size_t font_mem_size; /* number of words for \.{TFM} information for text fonts */
24244 memory_word *font_info; /* height, width, and depth data */
24245 char **font_enc_name; /* encoding names, if any */
24246 boolean *font_ps_name_fixed; /* are the postscript names fixed already? */
24247 int next_fmem; /* next unused entry in |font_info| */
24248 font_number last_fnum; /* last font number used so far */
24249 scaled *font_dsize; /* 16 times the ``design'' size in \ps\ points */
24250 char **font_name; /* name as specified in the \&{infont} command */
24251 char **font_ps_name; /* PostScript name for use when |internal[mp_prologues]>0| */
24252 font_number last_ps_fnum; /* last valid |font_ps_name| index */
24253 eight_bits *font_bc;
24254 eight_bits *font_ec; /* first and last character code */
24255 int *char_base; /* base address for |char_info| */
24256 int *width_base; /* index for zeroth character width */
24257 int *height_base; /* index for zeroth character height */
24258 int *depth_base; /* index for zeroth character depth */
24259 pointer *font_sizes;
24261 @ @<Allocate or initialize ...@>=
24262 mp->font_mem_size = 10000;
24263 mp->font_info = xmalloc ((mp->font_mem_size+1),sizeof(memory_word));
24264 memset (mp->font_info,0,sizeof(memory_word)*(mp->font_mem_size+1));
24265 mp->font_enc_name = NULL;
24266 mp->font_ps_name_fixed = NULL;
24267 mp->font_dsize = NULL;
24268 mp->font_name = NULL;
24269 mp->font_ps_name = NULL;
24270 mp->font_bc = NULL;
24271 mp->font_ec = NULL;
24272 mp->last_fnum = null_font;
24273 mp->char_base = NULL;
24274 mp->width_base = NULL;
24275 mp->height_base = NULL;
24276 mp->depth_base = NULL;
24277 mp->font_sizes = null;
24279 @ @<Dealloc variables@>=
24280 xfree(mp->font_info);
24281 xfree(mp->font_enc_name);
24282 xfree(mp->font_ps_name_fixed);
24283 xfree(mp->font_dsize);
24284 xfree(mp->font_name);
24285 xfree(mp->font_ps_name);
24286 xfree(mp->font_bc);
24287 xfree(mp->font_ec);
24288 xfree(mp->char_base);
24289 xfree(mp->width_base);
24290 xfree(mp->height_base);
24291 xfree(mp->depth_base);
24292 xfree(mp->font_sizes);
24296 void mp_reallocate_fonts (MP mp, font_number l) {
24298 XREALLOC(mp->font_enc_name, l, char *);
24299 XREALLOC(mp->font_ps_name_fixed, l, boolean);
24300 XREALLOC(mp->font_dsize, l, scaled);
24301 XREALLOC(mp->font_name, l, char *);
24302 XREALLOC(mp->font_ps_name, l, char *);
24303 XREALLOC(mp->font_bc, l, eight_bits);
24304 XREALLOC(mp->font_ec, l, eight_bits);
24305 XREALLOC(mp->char_base, l, int);
24306 XREALLOC(mp->width_base, l, int);
24307 XREALLOC(mp->height_base, l, int);
24308 XREALLOC(mp->depth_base, l, int);
24309 XREALLOC(mp->font_sizes, l, pointer);
24310 for (f=(mp->last_fnum+1);f<=l;f++) {
24311 mp->font_enc_name[f]=NULL;
24312 mp->font_ps_name_fixed[f] = false;
24313 mp->font_name[f]=NULL;
24314 mp->font_ps_name[f]=NULL;
24315 mp->font_sizes[f]=null;
24320 @ @<Declare |mp_reallocate| functions@>=
24321 void mp_reallocate_fonts (MP mp, font_number l);
24324 @ A |null_font| containing no characters is useful for error recovery. Its
24325 |font_name| entry starts out empty but is reset each time an erroneous font is
24326 found. This helps to cut down on the number of duplicate error messages without
24327 wasting a lot of space.
24329 @d null_font 0 /* the |font_number| for an empty font */
24331 @<Set initial...@>=
24332 mp->font_dsize[null_font]=0;
24333 mp->font_bc[null_font]=1;
24334 mp->font_ec[null_font]=0;
24335 mp->char_base[null_font]=0;
24336 mp->width_base[null_font]=0;
24337 mp->height_base[null_font]=0;
24338 mp->depth_base[null_font]=0;
24340 mp->last_fnum=null_font;
24341 mp->last_ps_fnum=null_font;
24342 mp->font_name[null_font]="nullfont";
24343 mp->font_ps_name[null_font]="";
24345 @ Each |char_info| word is of type |four_quarters|. The |b0| field contains
24346 the |width index|; the |b1| field contains the height
24347 index; the |b2| fields contains the depth index, and the |b3| field used only
24348 for temporary storage. (It is used to keep track of which characters occur in
24349 an edge structure that is being shipped out.)
24350 The corresponding words in the width, height, and depth tables are stored as
24351 |scaled| values in units of \ps\ points.
24353 With the macros below, the |char_info| word for character~|c| in font~|f| is
24354 |char_info(f)(c)| and the width is
24355 $$\hbox{|char_width(f)(char_info(f)(c)).sc|.}$$
24357 @d char_info_end(A) (A)].qqqq
24358 @d char_info(A) mp->font_info[mp->char_base[(A)]+char_info_end
24359 @d char_width_end(A) (A).b0].sc
24360 @d char_width(A) mp->font_info[mp->width_base[(A)]+char_width_end
24361 @d char_height_end(A) (A).b1].sc
24362 @d char_height(A) mp->font_info[mp->height_base[(A)]+char_height_end
24363 @d char_depth_end(A) (A).b2].sc
24364 @d char_depth(A) mp->font_info[mp->depth_base[(A)]+char_depth_end
24365 @d ichar_exists(A) ((A).b0>0)
24367 @ The |font_ps_name| for a built-in font should be what PostScript expects.
24368 A preliminary name is obtained here from the \.{TFM} name as given in the
24369 |fname| argument. This gets updated later from an external table if necessary.
24371 @<Declare text measuring subroutines@>=
24372 @<Declare subroutines for parsing file names@>;
24373 font_number mp_read_font_info (MP mp, char*fname) {
24374 boolean file_opened; /* has |tfm_infile| been opened? */
24375 font_number n; /* the number to return */
24376 halfword lf,tfm_lh,bc,ec,nw,nh,nd; /* subfile size parameters */
24377 size_t whd_size; /* words needed for heights, widths, and depths */
24378 int i,ii; /* |font_info| indices */
24379 int jj; /* counts bytes to be ignored */
24380 scaled z; /* used to compute the design size */
24382 /* height, width, or depth as a fraction of design size times $2^{-8}$ */
24383 eight_bits h_and_d; /* height and depth indices being unpacked */
24384 int tfbyte; /* a byte read from the file */
24386 @<Open |tfm_infile| for input@>;
24387 @<Read data from |tfm_infile|; if there is no room, say so and |goto done|;
24388 otherwise |goto bad_tfm| or |goto done| as appropriate@>;
24390 @<Complain that the \.{TFM} file is bad@>;
24392 if ( file_opened ) fclose(mp->tfm_infile);
24393 if ( n!=null_font ) {
24394 mp->font_ps_name[n]=fname;
24395 mp->font_name[n]=fname;
24400 @ \MP\ doesn't bother to check the entire \.{TFM} file for errors or explain
24401 precisely what is wrong if it does find a problem. Programs called \.{TFtoPL}
24402 @.TFtoPL@> @.PLtoTF@>
24403 and \.{PLtoTF} can be used to debug \.{TFM} files.
24405 @<Complain that the \.{TFM} file is bad@>=
24406 print_err("Font ");
24407 mp_print(mp, fname);
24408 if ( file_opened ) mp_print(mp, " not usable: TFM file is bad");
24409 else mp_print(mp, " not usable: TFM file not found");
24410 help3("I wasn't able to read the size data for this font so this")
24411 ("`infont' operation won't produce anything. If the font name")
24412 ("is right, you might ask an expert to make a TFM file");
24414 mp->help_line[0]="is right, try asking an expert to fix the TFM file";
24417 @ @<Read data from |tfm_infile|; if there is no room, say so...@>=
24418 @<Read the \.{TFM} size fields@>;
24419 @<Use the size fields to allocate space in |font_info|@>;
24420 @<Read the \.{TFM} header@>;
24421 @<Read the character data and the width, height, and depth tables and
24424 @ A bad \.{TFM} file can be shorter than it claims to be. The code given here
24425 might try to read past the end of the file if this happens. Changes will be
24426 needed if it causes a system error to refer to |tfm_infile^| or call
24427 |get_tfm_infile| when |eof(tfm_infile)| is true. For example, the definition
24428 @^system dependencies@>
24429 of |tfget| could be changed to
24430 ``|begin get(tfm_infile); if eof(tfm_infile) then goto bad_tfm; end|.''
24432 @d tfget {tfbyte = fgetc(mp->tfm_infile); }
24433 @d read_two(A) { (A)=tfbyte;
24434 if ( (A)>127 ) goto BAD_TFM;
24435 tfget; (A)=(A)*0400+tfbyte;
24437 @d tf_ignore(A) { for (jj=(A);jj>=1;jj--) tfget; }
24439 @<Read the \.{TFM} size fields@>=
24440 tfget; read_two(lf);
24441 tfget; read_two(tfm_lh);
24442 tfget; read_two(bc);
24443 tfget; read_two(ec);
24444 if ( (bc>1+ec)||(ec>255) ) goto BAD_TFM;
24445 tfget; read_two(nw);
24446 tfget; read_two(nh);
24447 tfget; read_two(nd);
24448 whd_size=(ec+1-bc)+nw+nh+nd;
24449 if ( lf<(int)(6+tfm_lh+whd_size) ) goto BAD_TFM;
24452 @ Offsets are added to |char_base[n]| and |width_base[n]| so that is not
24453 necessary to apply the |so| and |qo| macros when looking up the width of a
24454 character in the string pool. In order to ensure nonnegative |char_base|
24455 values when |bc>0|, it may be necessary to reserve a few unused |font_info|
24458 @<Use the size fields to allocate space in |font_info|@>=
24459 if ( mp->next_fmem<bc) mp->next_fmem=bc; /* ensure nonnegative |char_base| */
24460 if (mp->last_fnum==mp->font_max)
24461 mp_reallocate_fonts(mp,(mp->font_max+(mp->font_max>>2)));
24462 while (mp->next_fmem+whd_size>=mp->font_mem_size) {
24463 size_t l = mp->font_mem_size+(mp->font_mem_size>>2);
24464 memory_word *font_info;
24465 font_info = xmalloc ((l+1),sizeof(memory_word));
24466 memset (font_info,0,sizeof(memory_word)*(l+1));
24467 memcpy (font_info,mp->font_info,sizeof(memory_word)*(mp->font_mem_size+1));
24468 xfree(mp->font_info);
24469 mp->font_info = font_info;
24470 mp->font_mem_size = l;
24472 incr(mp->last_fnum);
24476 mp->char_base[n]=mp->next_fmem-bc;
24477 mp->width_base[n]=mp->next_fmem+ec-bc+1;
24478 mp->height_base[n]=mp->width_base[n]+nw;
24479 mp->depth_base[n]=mp->height_base[n]+nh;
24480 mp->next_fmem=mp->next_fmem+whd_size;
24483 @ @<Read the \.{TFM} header@>=
24484 if ( tfm_lh<2 ) goto BAD_TFM;
24486 tfget; read_two(z);
24487 tfget; z=z*0400+tfbyte;
24488 tfget; z=z*0400+tfbyte; /* now |z| is 16 times the design size */
24489 mp->font_dsize[n]=mp_take_fraction(mp, z,267432584);
24490 /* times ${72\over72.27}2^{28}$ to convert from \TeX\ points */
24491 tf_ignore(4*(tfm_lh-2))
24493 @ @<Read the character data and the width, height, and depth tables...@>=
24494 ii=mp->width_base[n];
24495 i=mp->char_base[n]+bc;
24497 tfget; mp->font_info[i].qqqq.b0=qi(tfbyte);
24498 tfget; h_and_d=tfbyte;
24499 mp->font_info[i].qqqq.b1=h_and_d / 16;
24500 mp->font_info[i].qqqq.b2=h_and_d % 16;
24504 while ( i<mp->next_fmem ) {
24505 @<Read a four byte dimension, scale it by the design size, store it in
24506 |font_info[i]|, and increment |i|@>;
24508 if (feof(mp->tfm_infile) ) goto BAD_TFM;
24511 @ The raw dimension read into |d| should have magnitude at most $2^{24}$ when
24512 interpreted as an integer, and this includes a scale factor of $2^{20}$. Thus
24513 we can multiply it by sixteen and think of it as a |fraction| that has been
24514 divided by sixteen. This cancels the extra scale factor contained in
24517 @<Read a four byte dimension, scale it by the design size, store it in...@>=
24520 if ( d>=0200 ) d=d-0400;
24521 tfget; d=d*0400+tfbyte;
24522 tfget; d=d*0400+tfbyte;
24523 tfget; d=d*0400+tfbyte;
24524 mp->font_info[i].sc=mp_take_fraction(mp, d*16,mp->font_dsize[n]);
24528 @ This function does no longer use the file name parser, because |fname| is
24529 a C string already.
24530 @<Open |tfm_infile| for input@>=
24532 mp_ptr_scan_file(mp, fname);
24533 if ( strlen(mp->cur_area)==0 ) { xfree(mp->cur_area); mp->cur_area=xstrdup(MP_font_area);}
24534 if ( strlen(mp->cur_ext)==0 ) { xfree(mp->cur_ext); mp->cur_ext=xstrdup(".tfm"); }
24536 mp->tfm_infile = mp_open_file(mp, mp->name_of_file, "rb",mp_filetype_metrics);
24537 if ( !mp->tfm_infile ) goto BAD_TFM;
24540 @ When we have a font name and we don't know whether it has been loaded yet,
24541 we scan the |font_name| array before calling |read_font_info|.
24543 @<Declare text measuring subroutines@>=
24544 font_number mp_find_font (MP mp, char *f) {
24546 for (n=0;n<=mp->last_fnum;n++) {
24547 if (mp_xstrcmp(f,mp->font_name[n])==0 )
24550 return mp_read_font_info(mp, f);
24553 @ One simple application of |find_font| is the implementation of the |font_size|
24554 operator that gets the design size for a given font name.
24556 @<Find the design size of the font whose name is |cur_exp|@>=
24557 mp_flush_cur_exp(mp, (mp->font_dsize[mp_find_font(mp, str(mp->cur_exp))]+8) / 16)
24559 @ If we discover that the font doesn't have a requested character, we omit it
24560 from the bounding box computation and expect the \ps\ interpreter to drop it.
24561 This routine issues a warning message if the user has asked for it.
24563 @<Declare text measuring subroutines@>=
24564 void mp_lost_warning (MP mp,font_number f, pool_pointer k) {
24565 if ( mp->internal[mp_tracing_lost_chars]>0 ) {
24566 mp_begin_diagnostic(mp);
24567 if ( mp->selector==log_only ) incr(mp->selector);
24568 mp_print_nl(mp, "Missing character: There is no ");
24569 @.Missing character@>
24570 mp_print_str(mp, mp->str_pool[k]);
24571 mp_print(mp, " in font ");
24572 mp_print(mp, mp->font_name[f]); mp_print_char(mp, '!');
24573 mp_end_diagnostic(mp, false);
24577 @ The whole purpose of saving the height, width, and depth information is to be
24578 able to find the bounding box of an item of text in an edge structure. The
24579 |set_text_box| procedure takes a text node and adds this information.
24581 @<Declare text measuring subroutines@>=
24582 void mp_set_text_box (MP mp,pointer p) {
24583 font_number f; /* |font_n(p)| */
24584 ASCII_code bc,ec; /* range of valid characters for font |f| */
24585 pool_pointer k,kk; /* current character and character to stop at */
24586 four_quarters cc; /* the |char_info| for the current character */
24587 scaled h,d; /* dimensions of the current character */
24589 height_val(p)=-el_gordo;
24590 depth_val(p)=-el_gordo;
24594 kk=str_stop(text_p(p));
24595 k=mp->str_start[text_p(p)];
24597 @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>;
24599 @<Set the height and depth to zero if the bounding box is empty@>;
24602 @ @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>=
24604 if ( (mp->str_pool[k]<bc)||(mp->str_pool[k]>ec) ) {
24605 mp_lost_warning(mp, f,k);
24607 cc=char_info(f)(mp->str_pool[k]);
24608 if ( ! ichar_exists(cc) ) {
24609 mp_lost_warning(mp, f,k);
24611 width_val(p)=width_val(p)+char_width(f)(cc);
24612 h=char_height(f)(cc);
24613 d=char_depth(f)(cc);
24614 if ( h>height_val(p) ) height_val(p)=h;
24615 if ( d>depth_val(p) ) depth_val(p)=d;
24621 @ Let's hope modern compilers do comparisons correctly when the difference would
24624 @<Set the height and depth to zero if the bounding box is empty@>=
24625 if ( height_val(p)<-depth_val(p) ) {
24630 @ The new primitives fontmapfile and fontmapline.
24632 @<Declare action procedures for use by |do_statement|@>=
24633 void mp_do_mapfile (MP mp) ;
24634 void mp_do_mapline (MP mp) ;
24636 @ @c void mp_do_mapfile (MP mp) {
24637 mp_get_x_next(mp); mp_scan_expression(mp);
24638 if ( mp->cur_type!=mp_string_type ) {
24639 @<Complain about improper map operation@>;
24641 mp_map_file(mp,mp->cur_exp);
24644 void mp_do_mapline (MP mp) {
24645 mp_get_x_next(mp); mp_scan_expression(mp);
24646 if ( mp->cur_type!=mp_string_type ) {
24647 @<Complain about improper map operation@>;
24649 mp_map_line(mp,mp->cur_exp);
24653 @ @<Complain about improper map operation@>=
24655 exp_err("Unsuitable expression");
24656 help1("Only known strings can be map files or map lines.");
24657 mp_put_get_error(mp);
24660 @ This is temporary.
24662 @d ps_room(A) mp_ps_room(mp,A)
24664 @ To print |scaled| value to PDF output we need some subroutines to ensure
24667 @d max_integer 0x7FFFFFFF /* $2^{31}-1$ */
24670 scaled one_bp; /* scaled value corresponds to 1bp */
24671 scaled one_hundred_bp; /* scaled value corresponds to 100bp */
24672 scaled one_hundred_inch; /* scaled value corresponds to 100in */
24673 integer ten_pow[10]; /* $10^0..10^9$ */
24674 integer scaled_out; /* amount of |scaled| that was taken out in |divide_scaled| */
24677 mp->one_bp = 65782; /* 65781.76 */
24678 mp->one_hundred_bp = 6578176;
24679 mp->one_hundred_inch = 473628672;
24680 mp->ten_pow[0] = 1;
24681 for (i = 1;i<= 9; i++ ) {
24682 mp->ten_pow[i] = 10*mp->ten_pow[i - 1];
24685 @ The following function divides |s| by |m|. |dd| is number of decimal digits.
24687 @c scaled mp_divide_scaled (MP mp,scaled s, scaled m, integer dd) {
24691 if ( s < 0 ) { sign = -sign; s = -s; }
24692 if ( m < 0 ) { sign = -sign; m = -m; }
24694 mp_confusion(mp, "arithmetic: divided by zero");
24695 else if ( m >= (max_integer / 10) )
24696 mp_confusion(mp, "arithmetic: number too big");
24699 for (i = 1;i<=dd;i++) {
24700 q = 10*q + (10*r) / m;
24703 if ( 2*r >= m ) { incr(q); r = r - m; }
24704 mp->scaled_out = sign*(s - (r / mp->ten_pow[dd]));
24708 @* \[44] Shipping pictures out.
24709 The |ship_out| procedure, to be described below, is given a pointer to
24710 an edge structure. Its mission is to output a file containing the \ps\
24711 description of an edge structure.
24713 @ Each time an edge structure is shipped out we write a new \ps\ output
24714 file named according to the current \&{charcode}.
24715 @:char_code_}{\&{charcode} primitive@>
24717 @<Declare the \ps\ output procedures@>=
24718 void mp_open_output_file (MP mp) ;
24720 @ @c void mp_open_output_file (MP mp) {
24721 integer c; /* \&{charcode} rounded to the nearest integer */
24722 int old_setting; /* previous |selector| setting */
24723 pool_pointer i; /* indexes into |filename_template| */
24724 integer cc; /* a temporary integer for template building */
24725 integer f,g=0; /* field widths */
24726 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24727 c=mp_round_unscaled(mp, mp->internal[mp_char_code]);
24728 if ( mp->filename_template==0 ) {
24729 char *s; /* a file extension derived from |c| */
24733 @<Use |c| to compute the file extension |s|@>;
24734 mp_pack_job_name(mp, s);
24736 while ( ! mp_a_open_out(mp, &mp->ps_file, mp_filetype_postscript) )
24737 mp_prompt_file_name(mp, "file name for output",s);
24738 } else { /* initializations */
24739 str_number s, n; /* a file extension derived from |c| */
24740 old_setting=mp->selector;
24741 mp->selector=new_string;
24743 i = mp->str_start[mp->filename_template];
24744 n = rts(""); /* initialize */
24745 while ( i<str_stop(mp->filename_template) ) {
24746 if ( mp->str_pool[i]=='%' ) {
24749 if ( i<str_stop(mp->filename_template) ) {
24750 if ( mp->str_pool[i]=='j' ) {
24751 mp_print(mp, mp->job_name);
24752 } else if ( mp->str_pool[i]=='d' ) {
24753 cc= mp_round_unscaled(mp, mp->internal[mp_day]);
24754 print_with_leading_zeroes(cc);
24755 } else if ( mp->str_pool[i]=='m' ) {
24756 cc= mp_round_unscaled(mp, mp->internal[mp_month]);
24757 print_with_leading_zeroes(cc);
24758 } else if ( mp->str_pool[i]=='y' ) {
24759 cc= mp_round_unscaled(mp, mp->internal[mp_year]);
24760 print_with_leading_zeroes(cc);
24761 } else if ( mp->str_pool[i]=='H' ) {
24762 cc= mp_round_unscaled(mp, mp->internal[mp_time]) / 60;
24763 print_with_leading_zeroes(cc);
24764 } else if ( mp->str_pool[i]=='M' ) {
24765 cc= mp_round_unscaled(mp, mp->internal[mp_time]) % 60;
24766 print_with_leading_zeroes(cc);
24767 } else if ( mp->str_pool[i]=='c' ) {
24768 if ( c<0 ) mp_print(mp, "ps");
24769 else print_with_leading_zeroes(c);
24770 } else if ( (mp->str_pool[i]>='0') &&
24771 (mp->str_pool[i]<='9') ) {
24773 f = (f*10) + mp->str_pool[i]-'0';
24776 mp_print_str(mp, mp->str_pool[i]);
24780 if ( mp->str_pool[i]=='.' )
24782 n = mp_make_string(mp);
24783 mp_print_str(mp, mp->str_pool[i]);
24787 s = mp_make_string(mp);
24788 mp->selector= old_setting;
24789 if (length(n)==0) {
24793 mp_pack_file_name(mp, str(n),"",str(s));
24794 while ( ! mp_a_open_out(mp, &mp->ps_file, mp_filetype_postscript) )
24795 mp_prompt_file_name(mp, "file name for output",str(s));
24799 @<Store the true output file name if appropriate@>;
24800 @<Begin the progress report for the output of picture~|c|@>;
24803 @ The file extension created here could be up to five characters long in
24804 extreme cases so it may have to be shortened on some systems.
24805 @^system dependencies@>
24807 @<Use |c| to compute the file extension |s|@>=
24810 snprintf(s,7,".%i",(int)c);
24813 @ The user won't want to see all the output file names so we only save the
24814 first and last ones and a count of how many there were. For this purpose
24815 files are ordered primarily by \&{charcode} and secondarily by order of
24817 @:char_code_}{\&{charcode} primitive@>
24819 @<Store the true output file name if appropriate@>=
24820 if ((c<mp->first_output_code)&&(mp->first_output_code>=0)) {
24821 mp->first_output_code=c;
24822 xfree(mp->first_file_name);
24823 mp->first_file_name=xstrdup(mp->name_of_file);
24825 if ( c>=mp->last_output_code ) {
24826 mp->last_output_code=c;
24827 xfree(mp->last_file_name);
24828 mp->last_file_name=xstrdup(mp->name_of_file);
24832 char * first_file_name;
24833 char * last_file_name; /* full file names */
24834 integer first_output_code;integer last_output_code; /* rounded \&{charcode} values */
24835 @:char_code_}{\&{charcode} primitive@>
24836 integer total_shipped; /* total number of |ship_out| operations completed */
24839 mp->first_file_name=xstrdup("");
24840 mp->last_file_name=xstrdup("");
24841 mp->first_output_code=32768;
24842 mp->last_output_code=-32768;
24843 mp->total_shipped=0;
24845 @ @<Dealloc variables@>=
24846 xfree(mp->first_file_name);
24847 xfree(mp->last_file_name);
24849 @ @<Begin the progress report for the output of picture~|c|@>=
24850 if ( (int)mp->term_offset>mp->max_print_line-6 ) mp_print_ln(mp);
24851 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
24852 mp_print_char(mp, '[');
24853 if ( c>=0 ) mp_print_int(mp, c)
24855 @ @<End progress report@>=
24856 mp_print_char(mp, ']');
24858 incr(mp->total_shipped)
24860 @ @<Explain what output files were written@>=
24861 if ( mp->total_shipped>0 ) {
24862 mp_print_nl(mp, "");
24863 mp_print_int(mp, mp->total_shipped);
24864 mp_print(mp, " output file");
24865 if ( mp->total_shipped>1 ) mp_print_char(mp, 's');
24866 mp_print(mp, " written: ");
24867 mp_print(mp, mp->first_file_name);
24868 if ( mp->total_shipped>1 ) {
24869 if ( 31+strlen(mp->first_file_name)+
24870 strlen(mp->last_file_name)> (unsigned)mp->max_print_line)
24872 mp_print(mp, " .. ");
24873 mp_print(mp, mp->last_file_name);
24878 @ The most important output procedure is the one that gives the \ps\ version of
24881 @<Declare the \ps\ output procedures@>=
24882 void mp_ps_path_out (MP mp,pointer h) {
24883 pointer p,q; /* for scanning the path */
24884 scaled d; /* a temporary value */
24885 boolean curved; /* |true| unless the cubic is almost straight */
24887 if ( mp->need_newpath )
24888 mp_ps_print_cmd(mp, "newpath ","n ");
24889 mp->need_newpath=true;
24890 mp_ps_pair_out(mp, x_coord(h),y_coord(h));
24891 mp_ps_print_cmd(mp, "moveto","m");
24894 if ( right_type(p)==mp_endpoint ) {
24895 if ( p==h ) mp_ps_print_cmd(mp, " 0 0 rlineto"," 0 0 r");
24899 @<Start a new line and print the \ps\ commands for the curve from
24903 mp_ps_print_cmd(mp, " closepath"," p");
24907 boolean need_newpath;
24908 /* will |ps_path_out| need to issue a \&{newpath} command next time */
24909 @:newpath_}{\&{newpath} command@>
24911 @ @<Start a new line and print the \ps\ commands for the curve from...@>=
24913 @<Set |curved:=false| if the cubic from |p| to |q| is almost straight@>;
24916 mp_ps_pair_out(mp, right_x(p),right_y(p));
24917 mp_ps_pair_out(mp, left_x(q),left_y(q));
24918 mp_ps_pair_out(mp, x_coord(q),y_coord(q));
24919 mp_ps_print_cmd(mp, "curveto","c");
24920 } else if ( q!=h ){
24921 mp_ps_pair_out(mp, x_coord(q),y_coord(q));
24922 mp_ps_print_cmd(mp, "lineto","l");
24925 @ Two types of straight lines come up often in \MP\ paths:
24926 cubics with zero initial and final velocity as created by |make_path| or
24927 |make_envelope|, and cubics with control points uniformly spaced on a line
24928 as created by |make_choices|.
24930 @d bend_tolerance 131 /* allow rounding error of $2\cdot10^{-3}$ */
24932 @<Set |curved:=false| if the cubic from |p| to |q| is almost straight@>=
24933 if ( right_x(p)==x_coord(p) )
24934 if ( right_y(p)==y_coord(p) )
24935 if ( left_x(q)==x_coord(q) )
24936 if ( left_y(q)==y_coord(q) ) curved=false;
24937 d=left_x(q)-right_x(p);
24938 if ( abs(right_x(p)-x_coord(p)-d)<=bend_tolerance )
24939 if ( abs(x_coord(q)-left_x(q)-d)<=bend_tolerance )
24940 { d=left_y(q)-right_y(p);
24941 if ( abs(right_y(p)-y_coord(p)-d)<=bend_tolerance )
24942 if ( abs(y_coord(q)-left_y(q)-d)<=bend_tolerance ) curved=false;
24945 @ We need to keep track of several parameters from the \ps\ graphics state.
24947 This allows us to be sure that \ps\ has the correct values when they are
24948 needed without wasting time and space setting them unnecessarily.
24951 @d gs_red mp->mem[mp->gs_state+1].sc
24952 @d gs_green mp->mem[mp->gs_state+2].sc
24953 @d gs_blue mp->mem[mp->gs_state+3].sc
24954 @d gs_black mp->mem[mp->gs_state+4].sc
24955 /* color from the last \&{setcmykcolor} or \&{setrgbcolor} or \&{setgray} command */
24956 @d gs_colormodel mp->mem[mp->gs_state+5].qqqq.b0
24957 /* the current colormodel */
24958 @d gs_ljoin mp->mem[mp->gs_state+5].qqqq.b1
24959 @d gs_lcap mp->mem[mp->gs_state+5].qqqq.b2
24960 /* values from the last \&{setlinejoin} and \&{setlinecap} commands */
24961 @d gs_adj_wx mp->mem[mp->gs_state+5].qqqq.b3
24962 /* what resolution-dependent adjustment applies to the width */
24963 @d gs_miterlim mp->mem[mp->gs_state+6].sc
24964 /* the value from the last \&{setmiterlimit} command */
24965 @d gs_dash_p mp->mem[mp->gs_state+7].hh.lh
24966 /* edge structure for last \&{setdash} command */
24967 @d gs_previous mp->mem[mp->gs_state+7].hh.rh
24968 /* backlink to the previous |gs_state| structure */
24969 @d gs_dash_sc mp->mem[mp->gs_state+8].sc
24970 /* scale factor used with |gs_dash_p| */
24971 @d gs_width mp->mem[mp->gs_state+9].sc
24972 /* width setting or $-1$ if no \&{setlinewidth} command so far */
24980 @ To avoid making undue assumptions about the initial graphics state, these
24981 parameters are given special values that are guaranteed not to match anything
24982 in the edge structure being shipped out. On the other hand, the initial color
24983 should be black so that the translation of an all-black picture will have no
24984 \&{setcolor} commands. (These would be undesirable in a font application.)
24985 Hence we use |c=0| when initializing the graphics state and we use |c<0|
24986 to recover from a situation where we have lost track of the graphics state.
24988 @<Declare the \ps\ output procedures@>=
24989 void mp_unknown_graphics_state (MP mp,scaled c) ;
24991 @ @c void mp_unknown_graphics_state (MP mp,scaled c) {
24992 pointer p; /* to shift graphic states around */
24993 quarterword k; /* a loop index for copying the |gs_state| */
24994 if ( (c==0)||(c==-1) ) {
24995 if ( mp->gs_state==null ) {
24996 mp->gs_state = mp_get_node(mp, gs_node_size);
24999 while ( gs_previous!=null ) {
25001 mp_free_node(mp, mp->gs_state,gs_node_size);
25005 gs_red=c; gs_green=c; gs_blue=c; gs_black=c;
25006 gs_colormodel=uninitialized_model;
25013 } else if ( c==1 ) {
25015 mp->gs_state = mp_get_node(mp, gs_node_size);
25016 for (k=1;k<=gs_node_size-1;k++)
25017 mp->mem[mp->gs_state+k]=mp->mem[p+k];
25019 } else if ( c==2 ) {
25021 mp_free_node(mp, mp->gs_state,gs_node_size);
25026 @ When it is time to output a graphical object, |fix_graphics_state| ensures
25027 that \ps's idea of the graphics state agrees with what is stored in the object.
25029 @<Declare the \ps\ output procedures@>=
25030 @<Declare subroutines needed by |fix_graphics_state|@>;
25031 void mp_fix_graphics_state (MP mp, pointer p) ;
25034 void mp_fix_graphics_state (MP mp, pointer p) {
25035 /* get ready to output graphical object |p| */
25036 pointer hh,pp; /* for list manipulation */
25037 scaled wx,wy,ww; /* dimensions of pen bounding box */
25038 boolean adj_wx; /* whether pixel rounding should be based on |wx| or |wy| */
25039 integer tx,ty; /* temporaries for computing |adj_wx| */
25040 scaled scf; /* a scale factor for the dash pattern */
25041 if ( has_color(p) )
25042 @<Make sure \ps\ will use the right color for object~|p|@>;
25043 if ( (type(p)==mp_fill_code)||(type(p)==mp_stroked_code) )
25044 if ( pen_p(p)!=null )
25045 if ( pen_is_elliptical(pen_p(p)) ) {
25046 @<Generate \ps\ code that sets the stroke width to the
25047 appropriate rounded value@>;
25048 @<Make sure \ps\ will use the right dash pattern for |dash_p(p)|@>;
25049 @<Decide whether the line cap parameter matters and set it if necessary@>;
25050 @<Set the other numeric parameters as needed for object~|p|@>;
25052 if ( mp->ps_offset>0 ) mp_print_ln(mp);
25055 @ @<Decide whether the line cap parameter matters and set it if necessary@>=
25056 if ( type(p)==mp_stroked_code )
25057 if ( (left_type(path_p(p))==mp_endpoint)||(dash_p(p)!=null) )
25058 if ( gs_lcap!=lcap_val(p) ) {
25060 mp_print_char(mp, ' ');
25061 mp_print_char(mp, '0'+lcap_val(p));
25062 mp_ps_print_cmd(mp, " setlinecap"," lc");
25063 gs_lcap=lcap_val(p);
25066 @ @<Set the other numeric parameters as needed for object~|p|@>=
25067 if ( gs_ljoin!=ljoin_val(p) ) {
25069 mp_print_char(mp, ' ');
25070 mp_print_char(mp, '0'+ljoin_val(p)); mp_ps_print_cmd(mp, " setlinejoin"," lj");
25071 gs_ljoin=ljoin_val(p);
25073 if ( gs_miterlim!=miterlim_val(p) ) {
25075 mp_print_char(mp, ' ');
25076 mp_print_scaled(mp, miterlim_val(p)); mp_ps_print_cmd(mp, " setmiterlimit"," ml");
25077 gs_miterlim=miterlim_val(p);
25080 @ @<Make sure \ps\ will use the right color for object~|p|@>=
25082 if ( (color_model(p)==rgb_model)||
25083 ((color_model(p)==uninitialized_model)&&
25084 ((mp->internal[mp_default_color_model] / unity)==rgb_model)) ) {
25085 if ( (gs_colormodel!=rgb_model)||(gs_red!=red_val(p))||
25086 (gs_green!=green_val(p))||(gs_blue!=blue_val(p)) ) {
25088 gs_green=green_val(p);
25089 gs_blue=blue_val(p);
25091 gs_colormodel=rgb_model;
25093 mp_print_char(mp, ' ');
25094 mp_print_scaled(mp, gs_red); mp_print_char(mp, ' ');
25095 mp_print_scaled(mp, gs_green); mp_print_char(mp, ' ');
25096 mp_print_scaled(mp, gs_blue);
25097 mp_ps_print_cmd(mp, " setrgbcolor", " R");
25100 } else if ( (color_model(p)==cmyk_model)||
25101 ((color_model(p)==uninitialized_model)&&
25102 ((mp->internal[mp_default_color_model] / unity)==cmyk_model)) ) {
25103 if ( (gs_red!=cyan_val(p))||(gs_green!=magenta_val(p))||
25104 (gs_blue!=yellow_val(p))||(gs_black!=black_val(p))||
25105 (gs_colormodel!=cmyk_model) ) {
25106 if ( color_model(p)==uninitialized_model ) {
25112 gs_red=cyan_val(p);
25113 gs_green=magenta_val(p);
25114 gs_blue=yellow_val(p);
25115 gs_black=black_val(p);
25117 gs_colormodel=cmyk_model;
25119 mp_print_char(mp, ' ');
25120 mp_print_scaled(mp, gs_red); mp_print_char(mp, ' ');
25121 mp_print_scaled(mp, gs_green); mp_print_char(mp, ' ');
25122 mp_print_scaled(mp, gs_blue); mp_print_char(mp, ' ');
25123 mp_print_scaled(mp, gs_black);
25124 mp_ps_print_cmd(mp, " setcmykcolor"," C");
25127 } else if ( (color_model(p)==grey_model)||
25128 ((color_model(p)==uninitialized_model)&&
25129 ((mp->internal[mp_default_color_model] / unity)==grey_model)) ) {
25130 if ( (gs_red!=grey_val(p))||(gs_colormodel!=grey_model) ) {
25131 gs_red = grey_val(p);
25135 gs_colormodel=grey_model;
25137 mp_print_char(mp, ' ');
25138 mp_print_scaled(mp, gs_red);
25139 mp_ps_print_cmd(mp, " setgray"," G");
25143 if ( color_model(p)==no_model )
25144 gs_colormodel=no_model;
25147 @ In order to get consistent widths for horizontal and vertical pen strokes, we
25148 want \ps\ to use an integer number of pixels for the \&{setwidth} parameter.
25149 @:setwidth}{\&{setwidth}command@>
25150 We set |gs_width| to the ideal horizontal or vertical stroke width and then
25151 generate \ps\ code that computes the rounded value. For non-circular pens, the
25152 pen shape will be rescaled so that horizontal or vertical parts of the stroke
25153 have the computed width.
25155 Rounding the width to whole pixels is not likely to improve the appearance of
25156 diagonal or curved strokes, but we do it anyway for consistency. The
25157 \&{truncate} command generated here tends to make all the strokes a little
25158 @:truncate}{\&{truncate} command@>
25159 thinner, but this is appropriate for \ps's scan-conversion rules. Even with
25160 truncation, an ideal with of $w$~pixels gets mapped into $\lfloor w\rfloor+1$.
25161 It would be better to have $\lceil w\rceil$ but that is ridiculously expensive
25164 @<Generate \ps\ code that sets the stroke width...@>=
25165 @<Set |wx| and |wy| to the width and height of the bounding box for
25167 @<Use |pen_p(p)| and |path_p(p)| to decide whether |wx| or |wy| is more
25168 important and set |adj_wx| and |ww| accordingly@>;
25169 if ( (ww!=gs_width) || (adj_wx!=gs_adj_wx) ) {
25172 mp_print_char(mp, ' '); mp_print_scaled(mp, ww);
25173 mp_ps_print_cmd(mp,
25174 " 0 dtransform exch truncate exch idtransform pop setlinewidth"," hlw");
25176 if ( mp->internal[mp_procset]>0 ) {
25178 mp_print_char(mp, ' ');
25179 mp_print_scaled(mp, ww);
25180 mp_ps_print(mp, " vlw");
25183 mp_print(mp, " 0 "); mp_print_scaled(mp, ww);
25184 mp_ps_print(mp, " dtransform truncate idtransform setlinewidth pop");
25188 gs_adj_wx = adj_wx;
25191 @ @<Set |wx| and |wy| to the width and height of the bounding box for...@>=
25193 if ( (right_x(pp)==x_coord(pp)) && (left_y(pp)==y_coord(pp)) ) {
25194 wx = abs(left_x(pp) - x_coord(pp));
25195 wy = abs(right_y(pp) - y_coord(pp));
25197 wx = mp_pyth_add(mp, left_x(pp)-x_coord(pp), right_x(pp)-x_coord(pp));
25198 wy = mp_pyth_add(mp, left_y(pp)-y_coord(pp), right_y(pp)-y_coord(pp));
25201 @ The path is considered ``essentially horizontal'' if its range of
25202 $y$~coordinates is less than the $y$~range |wy| for the pen. ``Essentially
25203 vertical'' paths are detected similarly. This code ensures that no component
25204 of the pen transformation is more that |aspect_bound*(ww+1)|.
25206 @d aspect_bound 10 /* ``less important'' of |wx|, |wy| cannot exceed the other by
25207 more than this factor */
25209 @<Use |pen_p(p)| and |path_p(p)| to decide whether |wx| or |wy| is more...@>=
25211 if ( mp_coord_rangeOK(mp, path_p(p), y_loc(0), wy) ) tx=aspect_bound;
25212 else if ( mp_coord_rangeOK(mp, path_p(p), x_loc(0), wx) ) ty=aspect_bound;
25213 if ( wy / ty>=wx / tx ) { ww=wy; adj_wx=false; }
25214 else { ww=wx; adj_wx=true; }
25216 @ This routine quickly tests if path |h| is ``essentially horizontal'' or
25217 ``essentially vertical,'' where |zoff| is |x_loc(0)| or |y_loc(0)| and |dz| is
25218 allowable range for $x$ or~$y$. We do not need and cannot afford a full
25219 bounding-box computation.
25221 @<Declare subroutines needed by |fix_graphics_state|@>=
25222 boolean mp_coord_rangeOK (MP mp,pointer h,
25223 small_number zoff, scaled dz) {
25224 pointer p; /* for scanning the path form |h| */
25225 scaled zlo,zhi; /* coordinate range so far */
25226 scaled z; /* coordinate currently being tested */
25227 zlo=knot_coord(h+zoff);
25230 while ( right_type(p)!=mp_endpoint ) {
25231 z=right_coord(p+zoff);
25232 @<Make |zlo..zhi| include |z| and |return false| if |zhi-zlo>dz|@>;
25234 z=left_coord(p+zoff);
25235 @<Make |zlo..zhi| include |z| and |return false| if |zhi-zlo>dz|@>;
25236 z=knot_coord(p+zoff);
25237 @<Make |zlo..zhi| include |z| and |return false| if |zhi-zlo>dz|@>;
25243 @ @<Make |zlo..zhi| include |z| and |return false| if |zhi-zlo>dz|@>=
25244 if ( z<zlo ) zlo=z;
25245 else if ( z>zhi ) zhi=z;
25246 if ( zhi-zlo>dz ) return false
25248 @ Filling with an elliptical pen is implemented via a combination of \&{stroke}
25249 and \&{fill} commands and a nontrivial dash pattern would interfere with this.
25250 @:stroke}{\&{stroke} command@>
25251 @:fill}{\&{fill} command@>
25252 Note that we don't use |delete_edge_ref| because |gs_dash_p| is not counted as
25255 @<Make sure \ps\ will use the right dash pattern for |dash_p(p)|@>=
25256 if ( type(p)==mp_fill_code ) {
25260 scf=mp_get_pen_scale(mp, pen_p(p));
25262 if ( gs_width==0 ) scf=dash_scale(p); else hh=null;
25264 scf=mp_make_scaled(mp, gs_width,scf);
25265 scf=mp_take_scaled(mp, scf,dash_scale(p));
25269 if ( gs_dash_p!=null ) {
25270 mp_ps_print_cmd(mp, " [] 0 setdash"," rd");
25273 } else if ( (gs_dash_sc!=scf) || ! mp_same_dashes(mp, gs_dash_p,hh) ) {
25274 @<Set the dash pattern from |dash_list(hh)| scaled by |scf|@>;
25277 @ Translating a dash list into \ps\ is very similar to printing it symbolically
25278 in |print_edges|. A dash pattern with |dash_y(hh)=0| has length zero and is
25279 ignored. The same fate applies in the bizarre case of a dash pattern that
25280 cannot be printed without overflow.
25282 @<Set the dash pattern from |dash_list(hh)| scaled by |scf|@>=
25285 if ( (dash_y(hh)==0) || (abs(dash_y(hh)) / unity >= el_gordo / scf)){
25286 mp_ps_print_cmd(mp, " [] 0 setdash"," rd");
25289 start_x(null_dash)=start_x(pp)+dash_y(hh);
25291 mp_print(mp, " [");
25292 while ( pp!=null_dash ) {
25293 mp_ps_pair_out(mp, mp_take_scaled(mp, stop_x(pp)-start_x(pp),scf),
25294 mp_take_scaled(mp, start_x(link(pp))-stop_x(pp),scf));
25298 mp_print(mp, "] ");
25299 mp_print_scaled(mp, mp_take_scaled(mp, mp_dash_offset(mp, hh),scf));
25300 mp_ps_print_cmd(mp, " setdash"," sd");
25304 @ @<Declare subroutines needed by |fix_graphics_state|@>=
25305 boolean mp_same_dashes (MP mp,pointer h, pointer hh) ;
25308 boolean mp_same_dashes (MP mp,pointer h, pointer hh) {
25309 /* do |h| and |hh| represent the same dash pattern? */
25310 pointer p,pp; /* dash nodes being compared */
25311 if ( h==hh ) return true;
25312 else if ( (h<=mp_void)||(hh<=mp_void) ) return false;
25313 else if ( dash_y(h)!=dash_y(hh) ) return false;
25314 else { @<Compare |dash_list(h)| and |dash_list(hh)|@>; }
25315 return false; /* can't happen */
25318 @ @<Compare |dash_list(h)| and |dash_list(hh)|@>=
25321 while ( (p!=null_dash)&&(pp!=null_dash) ) {
25322 if ( (start_x(p)!=start_x(pp))||(stop_x(p)!=stop_x(pp)) ) {
25332 @ When stroking a path with an elliptical pen, it is necessary to transform
25333 the coordinate system so that a unit circular pen will have the desired shape.
25334 To keep this transformation local, we enclose it in a
25335 $$\&{gsave}\ldots\&{grestore}$$
25336 block. Any translation component must be applied to the path being stroked
25337 while the rest of the transformation must apply only to the pen.
25338 If |fill_also=true|, the path is to be filled as well as stroked so we must
25339 insert commands to do this after giving the path.
25341 @<Declare the \ps\ output procedures@>=
25342 void mp_stroke_ellipse (MP mp,pointer h, boolean fill_also) ;
25345 @c void mp_stroke_ellipse (MP mp,pointer h, boolean fill_also) {
25346 /* generate an elliptical pen stroke from object |h| */
25347 scaled txx,txy,tyx,tyy; /* transformation parameters */
25348 pointer p; /* the pen to stroke with */
25349 scaled d1,det; /* for tweaking transformation parameters */
25350 integer s; /* also for tweaking transformation paramters */
25351 boolean transformed; /* keeps track of whether gsave/grestore are needed */
25353 @<Use |pen_p(h)| to set the transformation parameters and give the initial
25355 @<Tweak the transformation parameters so the transformation is nonsingular@>;
25356 mp_ps_path_out(mp, path_p(h));
25357 if ( mp->internal[mp_procset]==0 ) {
25358 if ( fill_also ) mp_print_nl(mp, "gsave fill grestore");
25359 @<Issue \ps\ commands to transform the coordinate system@>;
25360 mp_ps_print(mp, " stroke");
25361 if ( transformed ) mp_ps_print(mp, " grestore");
25363 if ( fill_also ) mp_print_nl(mp, "B"); else mp_print_ln(mp);
25364 if ( (txy!=0)||(tyx!=0) ) {
25365 mp_print(mp, " [");
25366 mp_ps_pair_out(mp, txx,tyx);
25367 mp_ps_pair_out(mp, txy,tyy);
25368 mp_ps_print(mp, "0 0] t");
25369 } else if ((txx!=unity)||(tyy!=unity) ) {
25370 mp_ps_pair_out(mp,txx,tyy);
25371 mp_print(mp, " s");
25373 mp_ps_print(mp, " S");
25374 if ( transformed ) mp_ps_print(mp, " Q");
25379 @ @<Use |pen_p(h)| to set the transformation parameters and give the...@>=
25385 if ( (x_coord(p)!=0)||(y_coord(p)!=0) ) {
25386 mp_print_nl(mp, ""); mp_ps_print_cmd(mp, "gsave ","q ");
25387 mp_ps_pair_out(mp, x_coord(p),y_coord(p));
25388 mp_ps_print(mp, "translate ");
25395 mp_print_nl(mp, "");
25397 @<Adjust the transformation to account for |gs_width| and output the
25398 initial \&{gsave} if |transformed| should be |true|@>
25400 @ @<Adjust the transformation to account for |gs_width| and output the...@>=
25401 if ( gs_width!=unity ) {
25402 if ( gs_width==0 ) {
25403 txx=unity; tyy=unity;
25405 txx=mp_make_scaled(mp, txx,gs_width);
25406 txy=mp_make_scaled(mp, txy,gs_width);
25407 tyx=mp_make_scaled(mp, tyx,gs_width);
25408 tyy=mp_make_scaled(mp, tyy,gs_width);
25411 if ( (txy!=0)||(tyx!=0)||(txx!=unity)||(tyy!=unity) ) {
25412 if ( (! transformed) ){
25413 mp_ps_print_cmd(mp, "gsave ","q ");
25418 @ @<Issue \ps\ commands to transform the coordinate system@>=
25419 if ( (txy!=0)||(tyx!=0) ){
25421 mp_print_char(mp, '[');
25422 mp_ps_pair_out(mp, txx,tyx);
25423 mp_ps_pair_out(mp, txy,tyy);
25424 mp_ps_print(mp, "0 0] concat");
25425 } else if ( (txx!=unity)||(tyy!=unity) ){
25427 mp_ps_pair_out(mp, txx,tyy);
25428 mp_print(mp, "scale");
25431 @ The \ps\ interpreter will probably abort if it encounters a singular
25432 transformation matrix. The determinant must be large enough to ensure that
25433 the printed representation will be nonsingular. Since the printed
25434 representation is always within $2^{-17}$ of the internal |scaled| value, the
25435 total error is at most $4T_{\rm max}2^{-17}$, where $T_{\rm max}$ is a bound on
25436 the magnitudes of |txx/65536|, |txy/65536|, etc.
25438 The |aspect_bound*(gs_width+1)| bound on the components of the pen
25439 transformation allows $T_{\rm max}$ to be at most |2*aspect_bound|.
25441 @<Tweak the transformation parameters so the transformation is nonsingular@>=
25442 det=mp_take_scaled(mp, txx,tyy) - mp_take_scaled(mp, txy,tyx);
25443 d1=4*aspect_bound+1;
25444 if ( abs(det)<d1 ) {
25445 if ( det>=0 ) { d1=d1-det; s=1; }
25446 else { d1=-d1-det; s=-1; };
25448 if ( abs(txx)+abs(tyy)>=abs(txy)+abs(tyy) ) {
25449 if ( abs(txx)>abs(tyy) ) tyy=tyy+(d1+s*abs(txx)) / txx;
25450 else txx=txx+(d1+s*abs(tyy)) / tyy;
25452 if ( abs(txy)>abs(tyx) ) tyx=tyx+(d1+s*abs(txy)) / txy;
25453 else txy=txy+(d1+s*abs(tyx)) / tyx;
25457 @ Here is a simple routine that just fills a cycle.
25459 @<Declare the \ps\ output procedures@>=
25460 void mp_ps_fill_out (MP mp,pointer p) ;
25463 void mp_ps_fill_out (MP mp,pointer p) { /* fill cyclic path~|p| */
25464 mp_ps_path_out(mp, p);
25465 mp_ps_print_cmd(mp, " fill"," F");
25469 @ Given a cyclic path~|p| and a graphical object~|h|, the |do_outer_envelope|
25470 procedure fills the cycle generated by |make_envelope|. It need not do
25471 anything unless some region has positive winding number with respect to~|p|,
25472 but it does not seem worthwhile to for test this.
25474 @<Declare the \ps\ output procedures@>=
25475 void mp_do_outer_envelope (MP mp,pointer p, pointer h) ;
25478 void mp_do_outer_envelope (MP mp,pointer p, pointer h) {
25479 p=mp_make_envelope(mp, p, pen_p(h), ljoin_val(h), 0, miterlim_val(h));
25480 mp_ps_fill_out(mp, p);
25481 mp_toss_knot_list(mp, p);
25484 @ A text node may specify an arbitrary transformation but the usual case
25485 involves only shifting, scaling, and occasionally rotation. The purpose
25486 of |choose_scale| is to select a scale factor so that the remaining
25487 transformation is as ``nice'' as possible. The definition of ``nice''
25488 is somewhat arbitrary but shifting and $90^\circ$ rotation are especially
25489 nice because they work out well for bitmap fonts. The code here selects
25490 a scale factor equal to $1/\sqrt2$ times the Frobenius norm of the
25491 non-shifting part of the transformation matrix. It is careful to avoid
25492 additions that might cause undetected overflow.
25494 @<Declare the \ps\ output procedures@>=
25495 scaled mp_choose_scale (MP mp,pointer p) ;
25497 @ @c scaled mp_choose_scale (MP mp,pointer p) {
25498 /* |p| should point to a text node */
25499 scaled a,b,c,d,ad,bc; /* temporary values */
25504 if ( (a<0) ) negate(a);
25505 if ( (b<0) ) negate(b);
25506 if ( (c<0) ) negate(c);
25507 if ( (d<0) ) negate(d);
25510 return mp_pyth_add(mp, mp_pyth_add(mp, d+ad,ad), mp_pyth_add(mp, c+bc,bc));
25513 @ There may be many sizes of one font and we need to keep track of the
25514 characters used for each size. This is done by keeping a linked list of
25515 sizes for each font with a counter in each text node giving the appropriate
25516 position in the size list for its font.
25518 @d sc_factor(A) mp->mem[(A)+1].sc /* the scale factor stored in a font size node */
25519 @d font_size_size 2 /* size of a font size node */
25521 @ @<Internal library declarations@>=
25522 boolean mp_has_font_size(MP mp, font_number f );
25525 boolean mp_has_font_size(MP mp, font_number f ) {
25526 return (mp->font_sizes[f]!=null);
25530 @ The potential overflow here is caused by the fact the returned value
25531 has to fit in a |name_type|, which is a quarterword.
25533 @d fscale_tolerance 65 /* that's $.001\times2^{16}$ */
25535 @<Declare the \ps\ output procedures@>=
25536 quarterword mp_size_index (MP mp, font_number f, scaled s) {
25537 pointer p,q; /* the previous and current font size nodes */
25538 quarterword i; /* the size index for |q| */
25539 q=mp->font_sizes[f];
25541 while ( q!=null ) {
25542 if ( abs(s-sc_factor(q))<=fscale_tolerance )
25545 { p=q; q=link(q); incr(i); };
25546 if ( i==max_quarterword )
25547 mp_overflow(mp, "sizes per font",max_quarterword);
25548 @:MetaPost capacity exceeded sizes per font}{\quad sizes per font@>
25550 q=mp_get_node(mp, font_size_size);
25552 if ( i==0 ) mp->font_sizes[f]=q; else link(p)=q;
25556 @ @<Declare the \ps\ output procedures@>=
25557 scaled mp_indexed_size (MP mp,font_number f, quarterword j) {
25558 pointer p; /* a font size node */
25559 quarterword i; /* the size index for |p| */
25560 p=mp->font_sizes[f];
25562 if ( p==null ) mp_confusion(mp, "size");
25564 incr(i); p=link(p);
25565 if ( p==null ) mp_confusion(mp, "size");
25567 return sc_factor(p);
25570 @ @<Declare the \ps\ output procedures@>=
25571 void mp_clear_sizes (MP mp) ;
25573 @ @c void mp_clear_sizes (MP mp) {
25574 font_number f; /* the font whose size list is being cleared */
25575 pointer p; /* current font size nodes */
25576 for (f=null_font+1;f<=mp->last_fnum;f++) {
25577 while ( mp->font_sizes[f]!=null ) {
25578 p=mp->font_sizes[f];
25579 mp->font_sizes[f]=link(p);
25580 mp_free_node(mp, p,font_size_size);
25585 @ The \&{special} command saves up lines of text to be printed during the next
25586 |ship_out| operation. The saved items are stored as a list of capsule tokens.
25589 pointer last_pending; /* the last token in a list of pending specials */
25592 mp->last_pending=spec_head;
25594 @ @<Cases of |do_statement|...@>=
25595 case special_command:
25596 if ( mp->cur_mod==0 ) mp_do_special(mp); else
25597 if ( mp->cur_mod==1 ) mp_do_mapfile(mp); else
25601 @ @<Declare action procedures for use by |do_statement|@>=
25602 void mp_do_special (MP mp) ;
25604 @ @c void mp_do_special (MP mp) {
25605 mp_get_x_next(mp); mp_scan_expression(mp);
25606 if ( mp->cur_type!=mp_string_type ) {
25607 @<Complain about improper special operation@>;
25609 link(mp->last_pending)=mp_stash_cur_exp(mp);
25610 mp->last_pending=link(mp->last_pending);
25611 link(mp->last_pending)=null;
25615 @ @<Complain about improper special operation@>=
25617 exp_err("Unsuitable expression");
25618 help1("Only known strings are allowed for output as specials.");
25619 mp_put_get_error(mp);
25622 @ @<Print any pending specials@>=
25624 while ( t!=null ) {
25625 mp_print_str(mp, value(t));
25629 mp_flush_token_list(mp, link(spec_head));
25630 link(spec_head)=null;
25631 mp->last_pending=spec_head
25633 @ We are now ready for the main output procedure. Note that the |selector|
25634 setting is saved in a global variable so that |begin_diagnostic| can access it.
25636 @<Declare the \ps\ output procedures@>=
25637 void mp_ship_out (MP mp, pointer h) ;
25640 void mp_ship_out (MP mp, pointer h) { /* output edge structure |h| */
25641 pointer p; /* the current graphical object */
25642 pointer q; /* something that |p| points to */
25643 integer t; /* a temporary value */
25644 font_number f; /* fonts used in a text node or as loop counters */
25645 scaled ds,scf; /* design size and scale factor for a text node */
25646 boolean transformed; /* is the coordinate system being transformed? */
25647 mp_open_output_file(mp);
25648 mp->non_ps_setting=mp->selector;
25649 mp->selector=ps_file_only;
25650 mp_print_initial_comment(mp, h, minx_val(h),miny_val(h),maxx_val(h),maxy_val(h));
25651 if ( (mp->internal[mp_prologues]==two)||(mp->internal[mp_prologues]==three) ) {
25652 @<Scan all the text nodes and mark the used characters@>;
25653 @<Update encoding names@>;
25654 mp_print_improved_prologue(mp, h);
25656 @<Scan all the text nodes and set the |font_sizes| lists;
25657 if |internal[mp_prologues]<=0| list the sizes selected by |choose_scale|,
25658 apply |unmark_font| to each font encountered, and call |mark_string|
25659 whenever the size index is zero@>;
25660 mp_print_prologue(mp, h);
25662 @<Print any pending specials@>;
25663 mp_unknown_graphics_state(mp, 0);
25664 mp->need_newpath=true;
25665 p=link(dummy_loc(h));
25666 while ( p!=null ) {
25667 if ( has_color(p) ) {
25668 if ( (pre_script(p))!=null ) {
25669 mp_print_nl (mp, str(pre_script(p))); mp_print_ln(mp);
25672 mp_fix_graphics_state(mp, p);
25674 @<Cases for translating graphical object~|p| into \ps@>;
25675 case mp_start_bounds_code:
25676 case mp_stop_bounds_code:
25678 } /* all cases are enumerated */
25681 mp_ps_print_cmd(mp, "showpage","P"); mp_print_ln(mp);
25682 mp_print(mp, "%%EOF"); mp_print_ln(mp);
25683 fclose(mp->ps_file);
25684 mp->selector=mp->non_ps_setting;
25685 if ( mp->internal[mp_prologues]<=0 ) mp_clear_sizes(mp);
25686 @<End progress report@>;
25687 if ( mp->internal[mp_tracing_output]>0 )
25688 mp_print_edges(mp, h," (just shipped out)",true);
25691 @ @<Internal library declarations@>=
25692 void mp_apply_mark_string_chars(MP mp, pointer h, int next_size);
25695 void mp_apply_mark_string_chars(MP mp, pointer h, int next_size) {
25697 p=link(dummy_loc(h));
25698 while ( p!=null ) {
25699 if ( type(p)==mp_text_code )
25700 if ( font_n(p)!=null_font )
25701 if ( name_type(p)==next_size )
25702 mp_mark_string_chars(mp, font_n(p),text_p(p));
25707 @ @<Scan all the text nodes and mark the used ...@>=
25708 for (f=null_font+1;f<=mp->last_fnum;f++) {
25709 if ( mp->font_sizes[f]!=null ) {
25710 mp_unmark_font(mp, f);
25711 mp->font_sizes[f]=null;
25714 for (f=null_font+1;f<=mp->last_fnum;f++) {
25715 p=link(dummy_loc(h));
25716 while ( p!=null ) {
25717 if ( type(p)==mp_text_code ) {
25718 if ( font_n(p)!=null_font ) {
25719 mp->font_sizes[font_n(p)] = mp_void;
25720 mp_mark_string_chars(mp, font_n(p),text_p(p));
25721 if ( mp_has_fm_entry(mp,font_n(p),NULL) )
25722 mp->font_ps_name[font_n(p)] = mp_fm_font_name(mp,font_n(p));
25729 @ @<Update encoding names@>=
25730 mp_reload_encodings(mp);
25731 p=link(dummy_loc(h));
25732 while ( p!=null ) {
25733 if ( type(p)==mp_text_code )
25734 if ( font_n(p)!=null_font )
25735 if ( mp_has_fm_entry(mp,font_n(p),NULL) )
25736 if ( mp->font_enc_name[font_n(p)]==NULL )
25737 mp->font_enc_name[font_n(p)] = mp_fm_encoding_name(mp,font_n(p));
25742 @ @<Scan all the text nodes and set the |font_sizes| lists;...@>=
25743 for (f=null_font+1;f<=mp->last_fnum;f++)
25744 mp->font_sizes[f]=null;
25745 p=link(dummy_loc(h));
25746 while ( p!=null ) {
25747 if ( type(p)==mp_text_code ) {
25748 if ( font_n(p)!=null_font ) {
25750 if ( mp->internal[mp_prologues]>0 ) {
25751 mp->font_sizes[f]=mp_void;
25753 if ( mp->font_sizes[f]==null )
25754 mp_unmark_font(mp, f);
25755 name_type(p)=mp_size_index(mp, f,mp_choose_scale(mp, p));
25756 if ( name_type(p)==0 )
25757 mp_mark_string_chars(mp, f,text_p(p));
25767 @ @<Cases for translating graphical object~|p| into \ps@>=
25768 case mp_start_clip_code:
25769 mp_print_nl(mp, ""); mp_ps_print_cmd(mp, "gsave ","q ");
25770 mp_ps_path_out(mp, path_p(p));
25771 mp_ps_print_cmd(mp, " clip"," W");
25773 if ( mp->internal[mp_restore_clip_color]>0 )
25774 mp_unknown_graphics_state(mp, 1);
25776 case mp_stop_clip_code:
25777 mp_print_nl(mp, ""); mp_ps_print_cmd(mp, "grestore","Q");
25779 if ( mp->internal[mp_restore_clip_color]>0 )
25780 mp_unknown_graphics_state(mp, 2);
25782 mp_unknown_graphics_state(mp, -1);
25785 @ @<Cases for translating graphical object~|p| into \ps@>=
25787 if ( pen_p(p)==null ) mp_ps_fill_out(mp, path_p(p));
25788 else if ( pen_is_elliptical(pen_p(p)) ) mp_stroke_ellipse(mp, p,true);
25790 mp_do_outer_envelope(mp, mp_copy_path(mp, path_p(p)), p);
25791 mp_do_outer_envelope(mp, mp_htap_ypoc(mp, path_p(p)), p);
25793 if ( (post_script(p))!=null ) {
25794 mp_print_nl (mp, str(post_script(p))); mp_print_ln(mp);
25797 case mp_stroked_code:
25798 if ( pen_is_elliptical(pen_p(p)) ) mp_stroke_ellipse(mp, p,false);
25800 q=mp_copy_path(mp, path_p(p));
25802 @<Break the cycle and set |t:=1| if path |q| is cyclic@>;
25803 q=mp_make_envelope(mp, q,pen_p(p),ljoin_val(p),t,miterlim_val(p));
25804 mp_ps_fill_out(mp, q);
25805 mp_toss_knot_list(mp, q);
25807 if ( (post_script(p))!=null ) {
25808 mp_print_nl (mp, str(post_script(p))); mp_print_ln(mp);
25812 @ The envelope of a cyclic path~|q| could be computed by calling
25813 |make_envelope| once for |q| and once for its reversal. We don't do this
25814 because it would fail color regions that are covered by the pen regardless
25815 of where it is placed on~|q|.
25817 @<Break the cycle and set |t:=1| if path |q| is cyclic@>=
25818 if ( left_type(q)!=mp_endpoint ) {
25819 left_type(mp_insert_knot(mp, q,x_coord(q),y_coord(q)))=mp_endpoint;
25820 right_type(q)=mp_endpoint;
25825 @ @<Cases for translating graphical object~|p| into \ps@>=
25827 if ( (font_n(p)!=null_font) && (length(text_p(p))>0) ) {
25828 if ( mp->internal[mp_prologues]>0 )
25829 scf=mp_choose_scale(mp, p);
25831 scf=mp_indexed_size(mp, font_n(p), name_type(p));
25832 @<Shift or transform as necessary before outputting text node~|p| at scale
25833 factor~|scf|; set |transformed:=true| if the original transformation must
25835 mp_ps_string_out(mp, str(text_p(p)));
25836 mp_ps_name_out(mp, mp->font_name[font_n(p)],false);
25837 @<Print the size information and \ps\ commands for text node~|p|@>;
25840 if ( (post_script(p))!=null ) {
25841 mp_print_nl (mp, str(post_script(p))); mp_print_ln(mp);
25845 @ @<Print the size information and \ps\ commands for text node~|p|@>=
25847 mp_print_char(mp, ' ');
25848 ds=(mp->font_dsize[font_n(p)]+8) / 16;
25849 mp_print_scaled(mp, mp_take_scaled(mp, ds,scf));
25850 mp_print(mp, " fshow");
25852 mp_ps_print_cmd(mp, " grestore"," Q")
25854 @ @<Shift or transform as necessary before outputting text node~|p| at...@>=
25855 transformed=(txx_val(p)!=scf)||(tyy_val(p)!=scf)||
25856 (txy_val(p)!=0)||(tyx_val(p)!=0);
25857 if ( transformed ) {
25858 mp_ps_print_cmd(mp, "gsave [", "q [");
25859 mp_ps_pair_out(mp, mp_make_scaled(mp, txx_val(p),scf),
25860 mp_make_scaled(mp, tyx_val(p),scf));
25861 mp_ps_pair_out(mp, mp_make_scaled(mp, txy_val(p),scf),
25862 mp_make_scaled(mp, tyy_val(p),scf));
25863 mp_ps_pair_out(mp, tx_val(p),ty_val(p));
25864 mp_ps_print_cmd(mp, "] concat 0 0 moveto","] t 0 0 m");
25866 mp_ps_pair_out(mp, tx_val(p),ty_val(p));
25867 mp_ps_print_cmd(mp, "moveto","m");
25871 @ Now that we've finished |ship_out|, let's look at the other commands
25872 by which a user can send things to the \.{GF} file.
25874 @ @<Determine if a character has been shipped out@>=
25876 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
25877 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
25878 boolean_reset(mp->char_exists[mp->cur_exp]);
25879 mp->cur_type=mp_boolean_type;
25885 @ @<Allocate or initialize ...@>=
25886 mp_backend_initialize(mp);
25889 mp_backend_free(mp);
25892 @* \[45] Dumping and undumping the tables.
25893 After \.{INIMP} has seen a collection of macros, it
25894 can write all the necessary information on an auxiliary file so
25895 that production versions of \MP\ are able to initialize their
25896 memory at high speed. The present section of the program takes
25897 care of such output and input. We shall consider simultaneously
25898 the processes of storing and restoring,
25899 so that the inverse relation between them is clear.
25902 The global variable |mem_ident| is a string that is printed right
25903 after the |banner| line when \MP\ is ready to start. For \.{INIMP} this
25904 string says simply `\.{(INIMP)}'; for other versions of \MP\ it says,
25905 for example, `\.{(mem=plain 90.4.14)}', showing the year,
25906 month, and day that the mem file was created. We have |mem_ident=0|
25907 before \MP's tables are loaded.
25913 mp->mem_ident=NULL;
25915 @ @<Initialize table entries...@>=
25916 mp->mem_ident=xstrdup(" (INIMP)");
25918 @ @<Declare act...@>=
25919 void mp_store_mem_file (MP mp) ;
25921 @ @c void mp_store_mem_file (MP mp) {
25922 integer k; /* all-purpose index */
25923 pointer p,q; /* all-purpose pointers */
25924 integer x; /* something to dump */
25925 four_quarters w; /* four ASCII codes */
25927 @<Create the |mem_ident|, open the mem file,
25928 and inform the user that dumping has begun@>;
25929 @<Dump constants for consistency check@>;
25930 @<Dump the string pool@>;
25931 @<Dump the dynamic memory@>;
25932 @<Dump the table of equivalents and the hash table@>;
25933 @<Dump a few more things and the closing check word@>;
25934 @<Close the mem file@>;
25937 @ Corresponding to the procedure that dumps a mem file, we also have a function
25938 that reads~one~in. The function returns |false| if the dumped mem is
25939 incompatible with the present \MP\ table sizes, etc.
25941 @d off_base 6666 /* go here if the mem file is unacceptable */
25942 @d too_small(A) { wake_up_terminal;
25943 wterm_ln("---! Must increase the "); wterm((A));
25944 @.Must increase the x@>
25949 boolean mp_load_mem_file (MP mp) {
25950 integer k; /* all-purpose index */
25951 pointer p,q; /* all-purpose pointers */
25952 integer x; /* something undumped */
25953 str_number s; /* some temporary string */
25954 four_quarters w; /* four ASCII codes */
25956 @<Undump constants for consistency check@>;
25957 @<Undump the string pool@>;
25958 @<Undump the dynamic memory@>;
25959 @<Undump the table of equivalents and the hash table@>;
25960 @<Undump a few more things and the closing check word@>;
25961 return true; /* it worked! */
25964 wterm_ln("(Fatal mem file error; I'm stymied)\n");
25965 @.Fatal mem file error@>
25969 @ @<Declarations@>=
25970 boolean mp_load_mem_file (MP mp) ;
25972 @ Mem files consist of |memory_word| items, and we use the following
25973 macros to dump words of different types:
25975 @d dump_wd(A) { WW=(A); fwrite(&WW,sizeof(WW),1,mp->mem_file); }
25976 @d dump_int(A) { int cint=(A); fwrite(&cint,sizeof(cint),1,mp->mem_file); }
25977 @d dump_hh(A) { WW.hh=(A); fwrite(&WW,sizeof(WW),1,mp->mem_file); }
25978 @d dump_qqqq(A) { WW.qqqq=(A); fwrite(&WW,sizeof(WW),1,mp->mem_file); }
25979 @d dump_string(A) { dump_int(strlen(A)+1);
25980 fwrite(A,strlen(A)+1,1,mp->mem_file); }
25983 FILE * mem_file; /* for input or output of mem information */
25985 @ The inverse macros are slightly more complicated, since we need to check
25986 the range of the values we are reading in. We say `|undump(a)(b)(x)|' to
25987 read an integer value |x| that is supposed to be in the range |a<=x<=b|.
25989 @d undump_wd(A) { fread(&WW,sizeof(WW),1,mp->mem_file); (A)=WW; }
25990 @d undump_int(A) { int cint; fread(&cint,sizeof(cint),1,mp->mem_file); (A)=cint; }
25991 @d undump_hh(A) { fread(&WW,sizeof(WW),1,mp->mem_file); (A)=WW.hh; }
25992 @d undump_qqqq(A) { fread(&WW,sizeof(WW),1,mp->mem_file); (A)=WW.qqqq; }
25993 @d undump_strings(A,B,C) {
25994 undump_int(x); if ( (x<(A)) || (x>(B)) ) goto OFF_BASE; else (C)=str(x); }
25995 @d undump(A,B,C) { undump_int(x); if ( (x<(A)) || (x>(int)(B)) ) goto OFF_BASE; else (C)=x; }
25996 @d undump_size(A,B,C,D) { undump_int(x);
25997 if (x<(A)) goto OFF_BASE;
25998 if (x>(B)) { too_small((C)); } else {(D)=x;} }
25999 @d undump_string(A) { integer XX=0; undump_int(XX);
26000 A = xmalloc(XX,sizeof(char));
26001 fread(A,XX,1,mp->mem_file); }
26003 @ The next few sections of the program should make it clear how we use the
26004 dump/undump macros.
26006 @<Dump constants for consistency check@>=
26007 dump_int(mp->mem_top);
26008 dump_int(mp->hash_size);
26009 dump_int(mp->hash_prime)
26010 dump_int(mp->param_size);
26011 dump_int(mp->max_in_open);
26013 @ Sections of a \.{WEB} program that are ``commented out'' still contribute
26014 strings to the string pool; therefore \.{INIMP} and \MP\ will have
26015 the same strings. (And it is, of course, a good thing that they do.)
26019 @<Undump constants for consistency check@>=
26020 undump_int(x); mp->mem_top = x;
26021 undump_int(x); if (mp->hash_size != x) goto OFF_BASE;
26022 undump_int(x); if (mp->hash_prime != x) goto OFF_BASE;
26023 undump_int(x); if (mp->param_size != x) goto OFF_BASE;
26024 undump_int(x); if (mp->max_in_open != x) goto OFF_BASE
26026 @ We do string pool compaction to avoid dumping unused strings.
26029 w.b0=qi(mp->str_pool[k]); w.b1=qi(mp->str_pool[k+1]);
26030 w.b2=qi(mp->str_pool[k+2]); w.b3=qi(mp->str_pool[k+3]);
26033 @<Dump the string pool@>=
26034 mp_do_compaction(mp, mp->pool_size);
26035 dump_int(mp->pool_ptr);
26036 dump_int(mp->max_str_ptr);
26037 dump_int(mp->str_ptr);
26039 while ( (mp->next_str[k]==k+1) && (k<=mp->max_str_ptr) )
26042 while ( k<=mp->max_str_ptr ) {
26043 dump_int(mp->next_str[k]); incr(k);
26047 dump_int(mp->str_start[k]); /* TODO: valgrind warning here */
26048 if ( k==mp->str_ptr ) {
26055 while (k+4<mp->pool_ptr ) {
26056 dump_four_ASCII; k=k+4;
26058 k=mp->pool_ptr-4; dump_four_ASCII;
26059 mp_print_ln(mp); mp_print(mp, "at most "); mp_print_int(mp, mp->max_str_ptr);
26060 mp_print(mp, " strings of total length ");
26061 mp_print_int(mp, mp->pool_ptr)
26063 @ @d undump_four_ASCII
26065 mp->str_pool[k]=qo(w.b0); mp->str_pool[k+1]=qo(w.b1);
26066 mp->str_pool[k+2]=qo(w.b2); mp->str_pool[k+3]=qo(w.b3)
26068 @<Undump the string pool@>=
26069 undump_int(mp->pool_ptr);
26070 mp_reallocate_pool(mp, mp->pool_ptr) ;
26071 undump_int(mp->max_str_ptr);
26072 mp_reallocate_strings (mp,mp->max_str_ptr) ;
26073 undump(0,mp->max_str_ptr,mp->str_ptr);
26074 undump(0,mp->max_str_ptr+1,s);
26075 for (k=0;k<=s-1;k++)
26076 mp->next_str[k]=k+1;
26077 for (k=s;k<=mp->max_str_ptr;k++)
26078 undump(s+1,mp->max_str_ptr+1,mp->next_str[k]);
26079 mp->fixed_str_use=0;
26082 undump(0,mp->pool_ptr,mp->str_start[k]);
26083 if ( k==mp->str_ptr ) break;
26084 mp->str_ref[k]=max_str_ref;
26085 incr(mp->fixed_str_use);
26086 mp->last_fixed_str=k; k=mp->next_str[k];
26089 while ( k+4<mp->pool_ptr ) {
26090 undump_four_ASCII; k=k+4;
26092 k=mp->pool_ptr-4; undump_four_ASCII;
26093 mp->init_str_use=mp->fixed_str_use; mp->init_pool_ptr=mp->pool_ptr;
26094 mp->max_pool_ptr=mp->pool_ptr;
26095 mp->strs_used_up=mp->fixed_str_use;
26096 mp->pool_in_use=mp->str_start[mp->str_ptr]; mp->strs_in_use=mp->fixed_str_use;
26097 mp->max_pl_used=mp->pool_in_use; mp->max_strs_used=mp->strs_in_use;
26098 mp->pact_count=0; mp->pact_chars=0; mp->pact_strs=0;
26100 @ By sorting the list of available spaces in the variable-size portion of
26101 |mem|, we are usually able to get by without having to dump very much
26102 of the dynamic memory.
26104 We recompute |var_used| and |dyn_used|, so that \.{INIMP} dumps valid
26105 information even when it has not been gathering statistics.
26107 @<Dump the dynamic memory@>=
26108 mp_sort_avail(mp); mp->var_used=0;
26109 dump_int(mp->lo_mem_max); dump_int(mp->rover);
26110 p=0; q=mp->rover; x=0;
26112 for (k=p;k<= q+1;k++)
26113 dump_wd(mp->mem[k]);
26114 x=x+q+2-p; mp->var_used=mp->var_used+q-p;
26115 p=q+node_size(q); q=rlink(q);
26116 } while (q!=mp->rover);
26117 mp->var_used=mp->var_used+mp->lo_mem_max-p;
26118 mp->dyn_used=mp->mem_end+1-mp->hi_mem_min;
26119 for (k=p;k<= mp->lo_mem_max;k++ )
26120 dump_wd(mp->mem[k]);
26121 x=x+mp->lo_mem_max+1-p;
26122 dump_int(mp->hi_mem_min); dump_int(mp->avail);
26123 for (k=mp->hi_mem_min;k<=mp->mem_end;k++ )
26124 dump_wd(mp->mem[k]);
26125 x=x+mp->mem_end+1-mp->hi_mem_min;
26127 while ( p!=null ) {
26128 decr(mp->dyn_used); p=link(p);
26130 dump_int(mp->var_used); dump_int(mp->dyn_used);
26131 mp_print_ln(mp); mp_print_int(mp, x);
26132 mp_print(mp, " memory locations dumped; current usage is ");
26133 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used)
26135 @ @<Undump the dynamic memory@>=
26136 undump(lo_mem_stat_max+1000,hi_mem_stat_min-1,mp->lo_mem_max);
26137 undump(lo_mem_stat_max+1,mp->lo_mem_max,mp->rover);
26140 for (k=p;k<= q+1; k++)
26141 undump_wd(mp->mem[k]);
26143 if ( (p>mp->lo_mem_max)||((q>=rlink(q))&&(rlink(q)!=mp->rover)) )
26146 } while (q!=mp->rover);
26147 for (k=p;k<=mp->lo_mem_max;k++ )
26148 undump_wd(mp->mem[k]);
26149 undump(mp->lo_mem_max+1,hi_mem_stat_min,mp->hi_mem_min);
26150 undump(null,mp->mem_top,mp->avail); mp->mem_end=mp->mem_top;
26151 for (k=mp->hi_mem_min;k<= mp->mem_end;k++)
26152 undump_wd(mp->mem[k]);
26153 undump_int(mp->var_used); undump_int(mp->dyn_used)
26155 @ A different scheme is used to compress the hash table, since its lower region
26156 is usually sparse. When |text(p)<>0| for |p<=hash_used|, we output three
26157 words: |p|, |hash[p]|, and |eqtb[p]|. The hash table is, of course, densely
26158 packed for |p>=hash_used|, so the remaining entries are output in~a~block.
26160 @<Dump the table of equivalents and the hash table@>=
26161 dump_int(mp->hash_used);
26162 mp->st_count=frozen_inaccessible-1-mp->hash_used;
26163 for (p=1;p<=mp->hash_used;p++) {
26164 if ( text(p)!=0 ) {
26165 dump_int(p); dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]); incr(mp->st_count);
26168 for (p=mp->hash_used+1;p<=(int)hash_end;p++) {
26169 dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]);
26171 dump_int(mp->st_count);
26172 mp_print_ln(mp); mp_print_int(mp, mp->st_count); mp_print(mp, " symbolic tokens")
26174 @ @<Undump the table of equivalents and the hash table@>=
26175 undump(1,frozen_inaccessible,mp->hash_used);
26178 undump(p+1,mp->hash_used,p);
26179 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
26180 } while (p!=mp->hash_used);
26181 for (p=mp->hash_used+1;p<=(int)hash_end;p++ ) {
26182 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
26184 undump_int(mp->st_count)
26186 @ We have already printed a lot of statistics, so we set |mp_tracing_stats:=0|
26187 to prevent them appearing again.
26189 @<Dump a few more things and the closing check word@>=
26190 dump_int(mp->max_internal);
26191 dump_int(mp->int_ptr);
26192 for (k=1;k<= mp->int_ptr;k++ ) {
26193 dump_int(mp->internal[k]);
26194 dump_string(mp->int_name[k]);
26196 dump_int(mp->start_sym);
26197 dump_int(mp->interaction);
26198 dump_string(mp->mem_ident);
26199 dump_int(mp->bg_loc); dump_int(mp->eg_loc); dump_int(mp->serial_no); dump_int(69073);
26200 mp->internal[mp_tracing_stats]=0
26202 @ @<Undump a few more things and the closing check word@>=
26204 if (x>mp->max_internal) mp_grow_internals(mp,x);
26205 undump_int(mp->int_ptr);
26206 for (k=1;k<= mp->int_ptr;k++) {
26207 undump_int(mp->internal[k]);
26208 undump_string(mp->int_name[k]);
26210 undump(0,frozen_inaccessible,mp->start_sym);
26211 if (mp->interaction==mp_unspecified_mode) {
26212 undump(mp_unspecified_mode,mp_error_stop_mode,mp->interaction);
26214 undump(mp_unspecified_mode,mp_error_stop_mode,x);
26216 undump_string(mp->mem_ident);
26217 undump(1,hash_end,mp->bg_loc);
26218 undump(1,hash_end,mp->eg_loc);
26219 undump_int(mp->serial_no);
26221 if ( (x!=69073)|| feof(mp->mem_file) ) goto OFF_BASE
26223 @ @<Create the |mem_ident|...@>=
26225 xfree(mp->mem_ident);
26226 mp->mem_ident = xmalloc(256,1);
26227 snprintf(mp->mem_ident,256," (mem=%s %i.%i.%i)",
26229 (int)(mp_round_unscaled(mp, mp->internal[mp_year]) % 100),
26230 (int)mp_round_unscaled(mp, mp->internal[mp_month]),
26231 (int)mp_round_unscaled(mp, mp->internal[mp_day]));
26232 mp_pack_job_name(mp, mem_extension);
26233 while (! mp_w_open_out(mp, &mp->mem_file) )
26234 mp_prompt_file_name(mp, "mem file name", mem_extension);
26235 mp_print_nl(mp, "Beginning to dump on file ");
26236 @.Beginning to dump...@>
26237 mp_print(mp, mp->name_of_file);
26238 mp_print_nl(mp, mp->mem_ident);
26241 @ @<Dealloc variables@>=
26242 xfree(mp->mem_ident);
26244 @ @<Close the mem file@>=
26245 fclose(mp->mem_file)
26247 @* \[46] The main program.
26248 This is it: the part of \MP\ that executes all those procedures we have
26251 Well---almost. We haven't put the parsing subroutines into the
26252 program yet; and we'd better leave space for a few more routines that may
26253 have been forgotten.
26255 @c @<Declare the basic parsing subroutines@>;
26256 @<Declare miscellaneous procedures that were declared |forward|@>;
26257 @<Last-minute procedures@>
26259 @ We've noted that there are two versions of \MP. One, called \.{INIMP},
26261 has to be run first; it initializes everything from scratch, without
26262 reading a mem file, and it has the capability of dumping a mem file.
26263 The other one is called `\.{VIRMP}'; it is a ``virgin'' program that needs
26265 to input a mem file in order to get started. \.{VIRMP} typically has
26266 a bit more memory capacity than \.{INIMP}, because it does not need the
26267 space consumed by the dumping/undumping routines and the numerous calls on
26270 The \.{VIRMP} program cannot read a mem file instantaneously, of course;
26271 the best implementations therefore allow for production versions of \MP\ that
26272 not only avoid the loading routine for \PASCAL\ object code, they also have
26273 a mem file pre-loaded.
26276 boolean ini_version; /* are we iniMP? */
26278 @ @<Option variables@>=
26279 int ini_version; /* are we iniMP? */
26281 @ @<Set |ini_version|@>=
26282 mp->ini_version = (opt->ini_version ? true : false);
26284 @ Here we do whatever is needed to complete \MP's job gracefully on the
26285 local operating system. The code here might come into play after a fatal
26286 error; it must therefore consist entirely of ``safe'' operations that
26287 cannot produce error messages. For example, it would be a mistake to call
26288 |str_room| or |make_string| at this time, because a call on |overflow|
26289 might lead to an infinite loop.
26290 @^system dependencies@>
26292 This program doesn't bother to close the input files that may still be open.
26294 @<Last-minute...@>=
26295 void mp_close_files_and_terminate (MP mp) {
26296 integer k; /* all-purpose index */
26297 integer LH; /* the length of the \.{TFM} header, in words */
26298 int lk_offset; /* extra words inserted at beginning of |lig_kern| array */
26299 pointer p; /* runs through a list of \.{TFM} dimensions */
26300 @<Close all open files in the |rd_file| and |wr_file| arrays@>;
26301 if ( mp->internal[mp_tracing_stats]>0 )
26302 @<Output statistics about this job@>;
26304 @<Do all the finishing work on the \.{TFM} file@>;
26305 @<Explain what output files were written@>;
26306 if ( mp->log_opened ){
26308 fclose(mp->log_file); mp->selector=mp->selector-2;
26309 if ( mp->selector==term_only ) {
26310 mp_print_nl(mp, "Transcript written on ");
26311 @.Transcript written...@>
26312 mp_print(mp, mp->log_name); mp_print_char(mp, '.');
26318 @ @<Declarations@>=
26319 void mp_close_files_and_terminate (MP mp) ;
26321 @ @<Close all open files in the |rd_file| and |wr_file| arrays@>=
26322 if (mp->rd_fname!=NULL) {
26323 for (k=0;k<=(int)mp->read_files-1;k++ ) {
26324 if ( mp->rd_fname[k]!=NULL ) {
26325 fclose(mp->rd_file[k]);
26329 if (mp->wr_fname!=NULL) {
26330 for (k=0;k<=(int)mp->write_files-1;k++) {
26331 if ( mp->wr_fname[k]!=NULL ) {
26332 fclose(mp->wr_file[k]);
26338 for (k=0;k<(int)mp->max_read_files;k++ ) {
26339 if ( mp->rd_fname[k]!=NULL ) {
26340 fclose(mp->rd_file[k]);
26341 mp_xfree(mp->rd_fname[k]);
26344 mp_xfree(mp->rd_file);
26345 mp_xfree(mp->rd_fname);
26346 for (k=0;k<(int)mp->max_write_files;k++) {
26347 if ( mp->wr_fname[k]!=NULL ) {
26348 fclose(mp->wr_file[k]);
26349 mp_xfree(mp->wr_fname[k]);
26352 mp_xfree(mp->wr_file);
26353 mp_xfree(mp->wr_fname);
26356 @ We want to produce a \.{TFM} file if and only if |mp_fontmaking| is positive.
26358 We reclaim all of the variable-size memory at this point, so that
26359 there is no chance of another memory overflow after the memory capacity
26360 has already been exceeded.
26362 @<Do all the finishing work on the \.{TFM} file@>=
26363 if ( mp->internal[mp_fontmaking]>0 ) {
26364 @<Make the dynamic memory into one big available node@>;
26365 @<Massage the \.{TFM} widths@>;
26366 mp_fix_design_size(mp); mp_fix_check_sum(mp);
26367 @<Massage the \.{TFM} heights, depths, and italic corrections@>;
26368 mp->internal[mp_fontmaking]=0; /* avoid loop in case of fatal error */
26369 @<Finish the \.{TFM} file@>;
26372 @ @<Make the dynamic memory into one big available node@>=
26373 mp->rover=lo_mem_stat_max+1; link(mp->rover)=empty_flag; mp->lo_mem_max=mp->hi_mem_min-1;
26374 if ( mp->lo_mem_max-mp->rover>max_halfword ) mp->lo_mem_max=max_halfword+mp->rover;
26375 node_size(mp->rover)=mp->lo_mem_max-mp->rover;
26376 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
26377 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null
26379 @ The present section goes directly to the log file instead of using
26380 |print| commands, because there's no need for these strings to take
26381 up |str_pool| memory when a non-{\bf stat} version of \MP\ is being used.
26383 @<Output statistics...@>=
26384 if ( mp->log_opened ) {
26387 wlog_ln("Here is how much of MetaPost's memory you used:");
26388 @.Here is how much...@>
26389 snprintf(s,128," %i string%s out of %i",(int)mp->max_strs_used-mp->init_str_use,
26390 (mp->max_strs_used!=mp->init_str_use+1 ? "s" : ""),
26391 (int)(mp->max_strings-1-mp->init_str_use));
26393 snprintf(s,128," %i string characters out of %i",
26394 (int)mp->max_pl_used-mp->init_pool_ptr,
26395 (int)mp->pool_size-mp->init_pool_ptr);
26397 snprintf(s,128," %i words of memory out of %i",
26398 (int)mp->lo_mem_max+mp->mem_end-mp->hi_mem_min+2,
26399 (int)mp->mem_end+1);
26401 snprintf(s,128," %i symbolic tokens out of %i", (int)mp->st_count, (int)mp->hash_size);
26403 snprintf(s,128," %ii, %in, %ip, %ib stack positions out of %ii, %in, %ip, %ib",
26404 (int)mp->max_in_stack,(int)mp->int_ptr,
26405 (int)mp->max_param_stack,(int)mp->max_buf_stack+1,
26406 (int)mp->stack_size,(int)mp->max_internal,(int)mp->param_size,(int)mp->buf_size);
26408 snprintf(s,128," %i string compactions (moved %i characters, %i strings)",
26409 (int)mp->pact_count,(int)mp->pact_chars,(int)mp->pact_strs);
26413 @ We get to the |final_cleanup| routine when \&{end} or \&{dump} has
26416 @<Last-minute...@>=
26417 void mp_final_cleanup (MP mp) {
26418 small_number c; /* 0 for \&{end}, 1 for \&{dump} */
26420 if ( mp->job_name==NULL ) mp_open_log_file(mp);
26421 while ( mp->input_ptr>0 ) {
26422 if ( token_state ) mp_end_token_list(mp);
26423 else mp_end_file_reading(mp);
26425 while ( mp->loop_ptr!=null ) mp_stop_iteration(mp);
26426 while ( mp->open_parens>0 ) {
26427 mp_print(mp, " )"); decr(mp->open_parens);
26429 while ( mp->cond_ptr!=null ) {
26430 mp_print_nl(mp, "(end occurred when ");
26431 @.end occurred...@>
26432 mp_print_cmd_mod(mp, fi_or_else,mp->cur_if);
26433 /* `\.{if}' or `\.{elseif}' or `\.{else}' */
26434 if ( mp->if_line!=0 ) {
26435 mp_print(mp, " on line "); mp_print_int(mp, mp->if_line);
26437 mp_print(mp, " was incomplete)");
26438 mp->if_line=if_line_field(mp->cond_ptr);
26439 mp->cur_if=name_type(mp->cond_ptr); mp->cond_ptr=link(mp->cond_ptr);
26441 if ( mp->history!=mp_spotless )
26442 if ( ((mp->history==mp_warning_issued)||(mp->interaction<mp_error_stop_mode)) )
26443 if ( mp->selector==term_and_log ) {
26444 mp->selector=term_only;
26445 mp_print_nl(mp, "(see the transcript file for additional information)");
26446 @.see the transcript file...@>
26447 mp->selector=term_and_log;
26450 if (mp->ini_version) {
26451 mp_store_mem_file(mp); return;
26453 mp_print_nl(mp, "(dump is performed only by INIMP)"); return;
26454 @.dump...only by INIMP@>
26458 @ @<Declarations@>=
26459 void mp_final_cleanup (MP mp) ;
26460 void mp_init_prim (MP mp) ;
26461 void mp_init_tab (MP mp) ;
26463 @ @<Last-minute...@>=
26464 void mp_init_prim (MP mp) { /* initialize all the primitives */
26468 void mp_init_tab (MP mp) { /* initialize other tables */
26469 integer k; /* all-purpose index */
26470 @<Initialize table entries (done by \.{INIMP} only)@>;
26474 @ When we begin the following code, \MP's tables may still contain garbage;
26475 the strings might not even be present. Thus we must proceed cautiously to get
26478 But when we finish this part of the program, \MP\ is ready to call on the
26479 |main_control| routine to do its work.
26481 @<Get the first line...@>=
26483 @<Initialize the input routines@>;
26484 if ( (mp->mem_ident==NULL)||(mp->buffer[loc]=='&') ) {
26485 if ( mp->mem_ident!=NULL ) {
26486 mp_do_initialize(mp); /* erase preloaded mem */
26488 if ( ! mp_open_mem_file(mp) ) return mp_fatal_error_stop;
26489 if ( ! mp_load_mem_file(mp) ) {
26490 fclose( mp->mem_file); return mp_fatal_error_stop;
26492 fclose( mp->mem_file);
26493 while ( (loc<limit)&&(mp->buffer[loc]==' ') ) incr(loc);
26495 mp->buffer[limit]='%';
26496 mp_fix_date_and_time(mp);
26497 mp->sys_random_seed = (scaled)(mp->get_random_seed)(mp);
26498 mp_init_randoms(mp, mp->sys_random_seed);
26499 @<Initialize the print |selector|...@>;
26500 if ( loc<limit ) if ( mp->buffer[loc]!='\\' )
26501 mp_start_input(mp); /* \&{input} assumed */
26504 @ @<Run inimpost commands@>=
26506 mp_get_strings_started(mp);
26507 mp_init_tab(mp); /* initialize the tables */
26508 mp_init_prim(mp); /* call |primitive| for each primitive */
26509 mp->init_str_use=mp->str_ptr; mp->init_pool_ptr=mp->pool_ptr;
26510 mp->max_str_ptr=mp->str_ptr; mp->max_pool_ptr=mp->pool_ptr;
26511 mp_fix_date_and_time(mp);
26515 @* \[47] Debugging.
26516 Once \MP\ is working, you should be able to diagnose most errors with
26517 the \.{show} commands and other diagnostic features. But for the initial
26518 stages of debugging, and for the revelation of really deep mysteries, you
26519 can compile \MP\ with a few more aids, including the \PASCAL\ runtime
26520 checks and its debugger. An additional routine called |debug_help|
26521 will also come into play when you type `\.D' after an error message;
26522 |debug_help| also occurs just before a fatal error causes \MP\ to succumb.
26524 @^system dependencies@>
26526 The interface to |debug_help| is primitive, but it is good enough when used
26527 with a \PASCAL\ debugger that allows you to set breakpoints and to read
26528 variables and change their values. After getting the prompt `\.{debug \#}', you
26529 type either a negative number (this exits |debug_help|), or zero (this
26530 goes to a location where you can set a breakpoint, thereby entering into
26531 dialog with the \PASCAL\ debugger), or a positive number |m| followed by
26532 an argument |n|. The meaning of |m| and |n| will be clear from the
26533 program below. (If |m=13|, there is an additional argument, |l|.)
26536 @<Last-minute...@>=
26537 void mp_debug_help (MP mp) { /* routine to display various things */
26542 mp_print_nl(mp, "debug # (-1 to exit):"); update_terminal;
26545 fscanf(mp->term_in,"%i",&m);
26549 fscanf(mp->term_in,"%i",&n);
26551 @<Numbered cases for |debug_help|@>;
26552 default: mp_print(mp, "?"); break;
26557 @ @<Numbered cases...@>=
26558 case 1: mp_print_word(mp, mp->mem[n]); /* display |mem[n]| in all forms */
26560 case 2: mp_print_int(mp, info(n));
26562 case 3: mp_print_int(mp, link(n));
26564 case 4: mp_print_int(mp, eq_type(n)); mp_print_char(mp, ':'); mp_print_int(mp, equiv(n));
26566 case 5: mp_print_variable_name(mp, n);
26568 case 6: mp_print_int(mp, mp->internal[n]);
26570 case 7: mp_do_show_dependencies(mp);
26572 case 9: mp_show_token_list(mp, n,null,100000,0);
26574 case 10: mp_print_str(mp, n);
26576 case 11: mp_check_mem(mp, n>0); /* check wellformedness; print new busy locations if |n>0| */
26578 case 12: mp_search_mem(mp, n); /* look for pointers to |n| */
26580 case 13: l = 0; fscanf(mp->term_in,"%i",&l); mp_print_cmd_mod(mp, n,l);
26582 case 14: for (k=0;k<=n;k++) mp_print_str(mp, mp->buffer[k]);
26584 case 15: mp->panicking=! mp->panicking;
26588 @ Saving the filename template
26590 @<Save the filename template@>=
26592 if ( mp->filename_template!=0 ) delete_str_ref(mp->filename_template);
26593 if ( length(mp->cur_exp)==0 ) mp->filename_template=0;
26595 mp->filename_template=mp->cur_exp; add_str_ref(mp->filename_template);
26599 @* \[48] System-dependent changes.
26600 This section should be replaced, if necessary, by any special
26601 modification of the program
26602 that are necessary to make \MP\ work at a particular installation.
26603 It is usually best to design your change file so that all changes to
26604 previous sections preserve the section numbering; then everybody's version
26605 will be consistent with the published program. More extensive changes,
26606 which introduce new sections, can be inserted here; then only the index
26607 itself will get a new section number.
26608 @^system dependencies@>
26611 Here is where you can find all uses of each identifier in the program,
26612 with underlined entries pointing to where the identifier was defined.
26613 If the identifier is only one letter long, however, you get to see only
26614 the underlined entries. {\sl All references are to section numbers instead of
26617 This index also lists error messages and other aspects of the program
26618 that you might want to look up some day. For example, the entry
26619 for ``system dependencies'' lists all sections that should receive
26620 special attention from people who are installing \MP\ in a new
26621 operating environment. A list of various things that can't happen appears
26622 under ``this can't happen''.
26623 Approximately 25 sections are listed under ``inner loop''; these account
26624 for more than 60\pct! of \MP's running time, exclusive of input and output.