1 % $Id: mp.web,v 1.8 2005/08/24 10:54:02 taco Exp $
2 % MetaPost, by John Hobby. Public domain.
4 % Much of this program was copied with permission from MF.web Version 1.9
5 % It interprets a language very similar to D.E. Knuth's METAFONT, but with
6 % changes designed to make it more suitable for PostScript output.
8 % TeX is a trademark of the American Mathematical Society.
9 % METAFONT is a trademark of Addison-Wesley Publishing Company.
10 % PostScript is a trademark of Adobe Systems Incorporated.
12 % Here is TeX material that gets inserted after \input webmac
13 \def\hang{\hangindent 3em\noindent\ignorespaces}
14 \def\textindent#1{\hangindent2.5em\noindent\hbox to2.5em{\hss#1 }\ignorespaces}
17 \def\ph{\hbox{Pascal-H}}
18 \def\psqrt#1{\sqrt{\mathstrut#1}}
20 \def\pct!{{\char`\%}} % percent sign in ordinary text
21 \font\tenlogo=logo10 % font used for the METAFONT logo
23 \def\MF{{\tenlogo META}\-{\tenlogo FONT}}
24 \def\MP{{\tenlogo META}\-{\tenlogo POST}}
25 \def\[#1]{#1.} % from pascal web
26 \def\<#1>{$\langle#1\rangle$}
27 \def\section{\mathhexbox278}
28 \let\swap=\leftrightarrow
29 \def\round{\mathop{\rm round}\nolimits}
30 \mathchardef\vb="026A % synonym for `\|'
32 \def\(#1){} % this is used to make section names sort themselves better
33 \def\9#1{} % this is used for sort keys in the index via @@:sort key}{entry@@>
35 \def\glob{15} % this should be the section number of "<Global...>"
36 \def\gglob{23, 28} % this should be the next two sections of "<Global...>"
41 This is \MP, a graphics-language processor based on D. E. Knuth's \MF.
43 The main purpose of the following program is to explain the algorithms of \MP\
44 as clearly as possible. As a result, the program will not necessarily be very
45 efficient when a particular \PASCAL\ compiler has translated it into a
46 particular machine language. However, the program has been written so that it
47 can be tuned to run efficiently in a wide variety of operating environments
48 by making comparatively few changes. Such flexibility is possible because
49 the documentation that follows is written in the \.{WEB} language, which is
50 at a higher level than \PASCAL; the preprocessing step that converts \.{WEB}
51 to \PASCAL\ is able to introduce most of the necessary refinements.
52 Semi-automatic translation to other languages is also feasible, because the
53 program below does not make extensive use of features that are peculiar to
56 A large piece of software like \MP\ has inherent complexity that cannot
57 be reduced below a certain level of difficulty, although each individual
58 part is fairly simple by itself. The \.{WEB} language is intended to make
59 the algorithms as readable as possible, by reflecting the way the
60 individual program pieces fit together and by providing the
61 cross-references that connect different parts. Detailed comments about
62 what is going on, and about why things were done in certain ways, have
63 been liberally sprinkled throughout the program. These comments explain
64 features of the implementation, but they rarely attempt to explain the
65 \MP\ language itself, since the reader is supposed to be familiar with
66 {\sl The {\logos METAFONT\/}book} as well as the manual
68 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
69 {\sl A User's Manual for MetaPost}, Computing Science Technical Report 162,
70 AT\AM T Bell Laboratories.
72 @ The present implementation is a preliminary version, but the possibilities
73 for new features are limited by the desire to remain as nearly compatible
74 with \MF\ as possible.
76 On the other hand, the \.{WEB} description can be extended without changing
77 the core of the program, and it has been designed so that such
78 extensions are not extremely difficult to make.
79 The |banner| string defined here should be changed whenever \MP\
80 undergoes any modifications, so that it will be clear which version of
81 \MP\ might be the guilty party when a problem arises.
83 @^system dependencies@>
85 @d banner "This is MetaPost, Version 1.002" /* printed when \MP\ starts */
86 @d metapost_version "1.002"
87 @d mplib_version "0.10"
88 @d version_string " (Cweb version 0.10)"
90 @ Different \PASCAL s have slightly different conventions, and the present
92 program is expressed in a version of \PASCAL\ that D. E. Knuth used for \MF.
93 Constructions that apply to
94 this particular compiler, which we shall call \ph, should help the
95 reader see how to make an appropriate interface for other systems
96 if necessary. (\ph\ is Charles Hedrick's modification of a compiler
97 @^Hedrick, Charles Locke@>
98 for the DECsystem-10 that was originally developed at the University of
99 Hamburg; cf.\ {\sl SOFTWARE---Practice \AM\ Experience \bf6} (1976),
100 29--42. The \MP\ program below is intended to be adaptable, without
101 extensive changes, to most other versions of \PASCAL\ and commonly used
102 \PASCAL-to-C translators, so it does not fully
104 use the admirable features of \ph. Indeed, a conscious effort has been
105 made here to avoid using several idiosyncratic features of standard
106 \PASCAL\ itself, so that most of the code can be translated mechanically
107 into other high-level languages. For example, the `\&{with}' and `\\{new}'
108 features are not used, nor are pointer types, set types, or enumerated
109 scalar types; there are no `\&{var}' parameters, except in the case of files;
110 there are no tag fields on variant records; there are no |real| variables;
111 no procedures are declared local to other procedures.)
113 The portions of this program that involve system-dependent code, where
114 changes might be necessary because of differences between \PASCAL\ compilers
115 and/or differences between
116 operating systems, can be identified by looking at the sections whose
117 numbers are listed under `system dependencies' in the index. Furthermore,
118 the index entries for `dirty \PASCAL' list all places where the restrictions
119 of \PASCAL\ have not been followed perfectly, for one reason or another.
120 @^system dependencies@>
123 @ The program begins with a normal \PASCAL\ program heading, whose
124 components will be filled in later, using the conventions of \.{WEB}.
126 For example, the portion of the program called `\X\glob:Global
127 variables\X' below will be replaced by a sequence of variable declarations
128 that starts in $\section\glob$ of this documentation. In this way, we are able
129 to define each individual global variable when we are prepared to
130 understand what it means; we do not have to define all of the globals at
131 once. Cross references in $\section\glob$, where it says ``See also
132 sections \gglob, \dots,'' also make it possible to look at the set of
133 all global variables, if desired. Similar remarks apply to the other
134 portions of the program heading.
136 Actually the heading shown here is not quite normal: The |program| line
137 does not mention any |output| file, because \ph\ would ask the \MP\ user
138 to specify a file name if |output| were specified here.
139 @^system dependencies@>
145 typedef struct MP_instance * MP;
147 typedef struct MP_options {
150 @<Exported function headers@>
154 typedef struct psout_data_struct * psout_data;
156 typedef signed int integer;
158 @<Types in the outer block@>;
159 @<Constants in the outer block@>
160 # ifndef LIBAVL_ALLOCATOR
161 # define LIBAVL_ALLOCATOR
162 struct libavl_allocator {
163 void *(*libavl_malloc) (struct libavl_allocator *, size_t libavl_size);
164 void (*libavl_free) (struct libavl_allocator *, void *libavl_block);
167 typedef struct MP_instance {
170 @<Internal library declarations@>
178 #include <unistd.h> /* for access() */
179 #include <time.h> /* for struct tm \& co */
181 #include "mpmp.h" /* internal header */
182 #include "mppsout.h" /* internal header */
185 @<Basic printing procedures@>
186 @<Error handling procedures@>
188 @ Here are the functions that set up the \MP\ instance.
191 @<Declare |mp_reallocate| functions@>;
192 struct MP_options *mp_options (void);
193 MP mp_new (struct MP_options *opt);
196 struct MP_options *mp_options (void) {
197 struct MP_options *opt;
198 opt = malloc(sizeof(MP_options));
200 memset (opt,0,sizeof(MP_options));
204 MP mp_new (struct MP_options *opt) {
206 mp = xmalloc(1,sizeof(MP_instance));
207 @<Set |ini_version|@>;
208 @<Setup the non-local jump buffer in |mp_new|@>;
209 @<Allocate or initialize variables@>
210 if (opt->main_memory>mp->mem_max)
211 mp_reallocate_memory(mp,opt->main_memory);
212 mp_reallocate_paths(mp,1000);
213 mp_reallocate_fonts(mp,8);
215 mp->term_out = stdout;
218 void mp_free (MP mp) {
219 int k; /* loop variable */
220 @<Dealloc variables@>
225 void mp_do_initialize ( MP mp) {
226 @<Local variables for initialization@>
227 @<Set initial values of key variables@>
229 int mp_initialize (MP mp) { /* this procedure gets things started properly */
230 mp->history=mp_fatal_error_stop; /* in case we quit during initialization */
231 @<Install and test the non-local jump buffer@>;
232 t_open_out; /* open the terminal for output */
233 @<Check the ``constant'' values...@>;
235 fprintf(stdout,"Ouch---my internal constants have been clobbered!\n"
236 "---case %i",(int)mp->bad);
240 mp_do_initialize(mp); /* erase preloaded mem */
241 if (mp->ini_version) {
242 @<Run inimpost commands@>;
244 @<Initialize the output routines@>;
245 @<Get the first line of input and prepare to start@>;
247 mp_init_map_file(mp, mp->troff_mode);
248 mp->history=mp_spotless; /* ready to go! */
249 if (mp->troff_mode) {
250 mp->internal[mp_gtroffmode]=unity;
251 mp->internal[mp_prologues]=unity;
253 if ( mp->start_sym>0 ) { /* insert the `\&{everyjob}' symbol */
254 mp->cur_sym=mp->start_sym; mp_back_input(mp);
260 @<Exported function headers@>=
261 extern struct MP_options *mp_options (void);
262 extern MP mp_new (struct MP_options *opt) ;
263 extern void mp_free (MP mp);
264 extern int mp_initialize (MP mp);
267 void mp_do_initialize (MP mp);
270 @ The overall \MP\ program begins with the heading just shown, after which
271 comes a bunch of procedure declarations and function declarations.
272 Finally we will get to the main program, which begins with the
273 comment `|start_here|'. If you want to skip down to the
274 main program now, you can look up `|start_here|' in the index.
275 But the author suggests that the best way to understand this program
276 is to follow pretty much the order of \MP's components as they appear in the
277 \.{WEB} description you are now reading, since the present ordering is
278 intended to combine the advantages of the ``bottom up'' and ``top down''
279 approaches to the problem of understanding a somewhat complicated system.
281 @ Some of the code below is intended to be used only when diagnosing the
282 strange behavior that sometimes occurs when \MP\ is being installed or
283 when system wizards are fooling around with \MP\ without quite knowing
284 what they are doing. Such code will not normally be compiled; it is
285 delimited by the preprocessor test `|#ifdef DEBUG .. #endif|'.
287 @ This program has two important variations: (1) There is a long and slow
288 version called \.{INIMP}, which does the extra calculations needed to
290 initialize \MP's internal tables; and (2)~there is a shorter and faster
291 production version, which cuts the initialization to a bare minimum.
293 Which is which is decided at runtime.
295 @ The following parameters can be changed at compile time to extend or
296 reduce \MP's capacity. They may have different values in \.{INIMP} and
297 in production versions of \MP.
299 @^system dependencies@>
302 #define file_name_size 255 /* file names shouldn't be longer than this */
303 #define bistack_size 1500 /* size of stack for bisection algorithms;
304 should probably be left at this value */
306 @ Like the preceding parameters, the following quantities can be changed
307 at compile time to extend or reduce \MP's capacity. But if they are changed,
308 it is necessary to rerun the initialization program \.{INIMP}
310 to generate new tables for the production \MP\ program.
311 One can't simply make helter-skelter changes to the following constants,
312 since certain rather complex initialization
313 numbers are computed from them.
316 int max_strings; /* maximum number of strings; must not exceed |max_halfword| */
317 int pool_size; /* maximum number of characters in strings, including all
318 error messages and help texts, and the names of all identifiers */
319 int error_line; /* width of context lines on terminal error messages */
320 int half_error_line; /* width of first lines of contexts in terminal
321 error messages; should be between 30 and |error_line-15| */
322 int max_print_line; /* width of longest text lines output; should be at least 60 */
323 int mem_max; /* greatest index in \MP's internal |mem| array;
324 must be strictly less than |max_halfword|;
325 must be equal to |mem_top| in \.{INIMP}, otherwise |>=mem_top| */
326 int mem_top; /* largest index in the |mem| array dumped by \.{INIMP};
327 must not be greater than |mem_max| */
328 int hash_size; /* maximum number of symbolic tokens,
329 must be less than |max_halfword-3*param_size| */
330 int hash_prime; /* a prime number equal to about 85\pct! of |hash_size| */
331 int param_size; /* maximum number of simultaneous macro parameters */
332 int max_in_open; /* maximum number of input files and error insertions that
333 can be going on simultaneously */
335 @ @<Option variables@>=
346 @d set_value(a,b,c) do { a=c; if (b>c) a=b; } while (0)
351 set_value(mp->error_line,opt->error_line,79);
352 set_value(mp->half_error_line,opt->half_error_line,50);
353 set_value(mp->max_print_line,opt->max_print_line,79);
356 set_value(mp->hash_size,opt->hash_size,9500);
357 set_value(mp->hash_prime,opt->hash_prime,7919);
358 set_value(mp->param_size,opt->param_size,150);
359 set_value(mp->max_in_open,opt->max_in_open,10);
362 @ In case somebody has inadvertently made bad settings of the ``constants,''
363 \MP\ checks them using a global variable called |bad|.
365 This is the first of many sections of \MP\ where global variables are
369 integer bad; /* is some ``constant'' wrong? */
371 @ Later on we will say `\ignorespaces|if (mem_max>=max_halfword) bad=10;|',
372 or something similar. (We can't do that until |max_halfword| has been defined.)
374 @<Check the ``constant'' values for consistency@>=
376 if ( (mp->half_error_line<30)||(mp->half_error_line>mp->error_line-15) ) mp->bad=1;
377 if ( mp->max_print_line<60 ) mp->bad=2;
378 if ( mp->mem_top<=1100 ) mp->bad=4;
379 if (mp->hash_prime>mp->hash_size ) mp->bad=5;
381 @ Labels are given symbolic names by the following definitions, so that
382 occasional |goto| statements will be meaningful. We insert the label
383 `|exit|:' just before the `\ignorespaces|end|\unskip' of a procedure in
384 which we have used the `|return|' statement defined below; the label
385 `|restart|' is occasionally used at the very beginning of a procedure; and
386 the label `|reswitch|' is occasionally used just prior to a |case|
387 statement in which some cases change the conditions and we wish to branch
388 to the newly applicable case. Loops that are set up with the |loop|
389 construction defined below are commonly exited by going to `|done|' or to
390 `|found|' or to `|not_found|', and they are sometimes repeated by going to
391 `|continue|'. If two or more parts of a subroutine start differently but
392 end up the same, the shared code may be gathered together at
395 Incidentally, this program never declares a label that isn't actually used,
396 because some fussy \PASCAL\ compilers will complain about redundant labels.
398 @d label_exit 10 /* go here to leave a procedure */
399 @d restart 20 /* go here to start a procedure again */
400 @d reswitch 21 /* go here to start a case statement again */
401 @d continue 22 /* go here to resume a loop */
402 @d done 30 /* go here to exit a loop */
403 @d done1 31 /* like |done|, when there is more than one loop */
404 @d done2 32 /* for exiting the second loop in a long block */
405 @d done3 33 /* for exiting the third loop in a very long block */
406 @d done4 34 /* for exiting the fourth loop in an extremely long block */
407 @d done5 35 /* for exiting the fifth loop in an immense block */
408 @d done6 36 /* for exiting the sixth loop in a block */
409 @d found 40 /* go here when you've found it */
410 @d found1 41 /* like |found|, when there's more than one per routine */
411 @d found2 42 /* like |found|, when there's more than two per routine */
412 @d found3 43 /* like |found|, when there's more than three per routine */
413 @d not_found 45 /* go here when you've found nothing */
414 @d common_ending 50 /* go here when you want to merge with another branch */
416 @ Here are some macros for common programming idioms.
418 @d incr(A) (A)=(A)+1 /* increase a variable by unity */
419 @d decr(A) (A)=(A)-1 /* decrease a variable by unity */
420 @d negate(A) (A)=-(A) /* change the sign of a variable */
421 @d double(A) (A)=(A)+(A)
424 @d do_nothing /* empty statement */
425 @d Return goto exit /* terminate a procedure call */
426 @f return nil /* \.{WEB} will henceforth say |return| instead of \\{return} */
428 @* \[2] The character set.
429 In order to make \MP\ readily portable to a wide variety of
430 computers, all of its input text is converted to an internal eight-bit
431 code that includes standard ASCII, the ``American Standard Code for
432 Information Interchange.'' This conversion is done immediately when each
433 character is read in. Conversely, characters are converted from ASCII to
434 the user's external representation just before they are output to a
438 Such an internal code is relevant to users of \MP\ only with respect to
439 the \&{char} and \&{ASCII} operations, and the comparison of strings.
441 @ Characters of text that have been converted to \MP's internal form
442 are said to be of type |ASCII_code|, which is a subrange of the integers.
445 typedef unsigned char ASCII_code; /* eight-bit numbers */
447 @ The original \PASCAL\ compiler was designed in the late 60s, when six-bit
448 character sets were common, so it did not make provision for lowercase
449 letters. Nowadays, of course, we need to deal with both capital and small
450 letters in a convenient way, especially in a program for font design;
451 so the present specification of \MP\ has been written under the assumption
452 that the \PASCAL\ compiler and run-time system permit the use of text files
453 with more than 64 distinguishable characters. More precisely, we assume that
454 the character set contains at least the letters and symbols associated
455 with ASCII codes 040 through 0176; all of these characters are now
456 available on most computer terminals.
458 Since we are dealing with more characters than were present in the first
459 \PASCAL\ compilers, we have to decide what to call the associated data
460 type. Some \PASCAL s use the original name |char| for the
461 characters in text files, even though there now are more than 64 such
462 characters, while other \PASCAL s consider |char| to be a 64-element
463 subrange of a larger data type that has some other name.
465 In order to accommodate this difference, we shall use the name |text_char|
466 to stand for the data type of the characters that are converted to and
467 from |ASCII_code| when they are input and output. We shall also assume
468 that |text_char| consists of the elements |chr(first_text_char)| through
469 |chr(last_text_char)|, inclusive. The following definitions should be
470 adjusted if necessary.
471 @^system dependencies@>
473 @d first_text_char 0 /* ordinal number of the smallest element of |text_char| */
474 @d last_text_char 255 /* ordinal number of the largest element of |text_char| */
477 typedef unsigned char text_char; /* the data type of characters in text files */
479 @ @<Local variables for init...@>=
482 @ The \MP\ processor converts between ASCII code and
483 the user's external character set by means of arrays |xord| and |xchr|
484 that are analogous to \PASCAL's |ord| and |chr| functions.
486 @d xchr(A) mp->xchr[(A)]
487 @d xord(A) mp->xord[(A)]
490 ASCII_code xord[256]; /* specifies conversion of input characters */
491 text_char xchr[256]; /* specifies conversion of output characters */
493 @ The core system assumes all 8-bit is acceptable. If it is not,
494 a change file has to alter the below section.
495 @^system dependencies@>
497 Additionally, people with extended character sets can
498 assign codes arbitrarily, giving an |xchr| equivalent to whatever
499 characters the users of \MP\ are allowed to have in their input files.
500 Appropriate changes to \MP's |char_class| table should then be made.
501 (Unlike \TeX, each installation of \MP\ has a fixed assignment of category
502 codes, called the |char_class|.) Such changes make portability of programs
503 more difficult, so they should be introduced cautiously if at all.
504 @^character set dependencies@>
505 @^system dependencies@>
508 for (i=0;i<=0377;i++) { xchr(i)=i; }
510 @ The following system-independent code makes the |xord| array contain a
511 suitable inverse to the information in |xchr|. Note that if |xchr[i]=xchr[j]|
512 where |i<j<0177|, the value of |xord[xchr[i]]| will turn out to be
513 |j| or more; hence, standard ASCII code numbers will be used instead of
514 codes below 040 in case there is a coincidence.
517 for (i=first_text_char;i<=last_text_char;i++) {
520 for (i=0200;i<=0377;i++) { xord(xchr(i))=i;}
521 for (i=0;i<=0176;i++) { xord(xchr(i))=i;}
523 @* \[3] Input and output.
524 The bane of portability is the fact that different operating systems treat
525 input and output quite differently, perhaps because computer scientists
526 have not given sufficient attention to this problem. People have felt somehow
527 that input and output are not part of ``real'' programming. Well, it is true
528 that some kinds of programming are more fun than others. With existing
529 input/output conventions being so diverse and so messy, the only sources of
530 joy in such parts of the code are the rare occasions when one can find a
531 way to make the program a little less bad than it might have been. We have
532 two choices, either to attack I/O now and get it over with, or to postpone
533 I/O until near the end. Neither prospect is very attractive, so let's
536 The basic operations we need to do are (1)~inputting and outputting of
537 text, to or from a file or the user's terminal; (2)~inputting and
538 outputting of eight-bit bytes, to or from a file; (3)~instructing the
539 operating system to initiate (``open'') or to terminate (``close'') input or
540 output from a specified file; (4)~testing whether the end of an input
541 file has been reached; (5)~display of bits on the user's screen.
542 The bit-display operation will be discussed in a later section; we shall
543 deal here only with more traditional kinds of I/O.
545 @ Finding files happens in a slightly roundabout fashion: the \MP\
546 instance object contains a field that holds a function pointer that finds a
547 file, and returns its name, or NULL. For this, it receives three
548 parameters: the non-qualified name |fname|, the intended |fopen|
549 operation type |fmode|, and the type of the file |ftype|.
551 The file types that are passed on in |ftype| can be used to
552 differentiate file searches if a library like kpathsea is used,
553 the fopen mode is passed along for the same reason.
556 typedef unsigned char eight_bits ; /* unsigned one-byte quantity */
558 @ @<Exported types@>=
560 mp_filetype_program = 1, /* \MP\ language input */
561 mp_filetype_log, /* the log file */
562 mp_filetype_postscript, /* the postscript output */
563 mp_filetype_text, /* text files for readfrom and writeto primitives */
564 mp_filetype_memfile, /* memory dumps */
565 mp_filetype_metrics, /* TeX font metric files */
566 mp_filetype_fontmap, /* PostScript font mapping files */
567 mp_filetype_font, /* PostScript type1 font programs */
568 mp_filetype_encoding, /* PostScript font encoding files */
570 typedef char *(*mp_file_finder)(char *, char *, int);
573 mp_file_finder find_file;
575 @ @<Option variables@>=
576 mp_file_finder find_file;
578 @ The default function for finding files is |mp_find_file|. It is
579 pretty stupid: it will only find files in the current directory.
582 char *mp_find_file (char *fname, char *fmode, int ftype) {
583 if (fmode[0] != 'r' || access (fname,R_OK) || ftype)
584 return strdup(fname);
588 @ This has to be done very early on, so it is best to put it in with
589 the |mp_new| allocations
591 @d set_callback_option(A) do { mp->A = mp_##A;
592 if (opt->A!=NULL) mp->A = opt->A;
595 @<Allocate or initialize ...@>=
596 set_callback_option(find_file);
598 @ Because |mp_find_file| is used so early, it has to be in the helpers
602 char *mp_find_file (char *fname, char *fmode, int ftype) ;
604 @ The function to open files can now be very short.
607 FILE *mp_open_file(MP mp, char *fname, char *fmode, int ftype) {
608 char *s = (mp->find_file)(fname,fmode,ftype);
610 FILE *f = fopen(s, fmode);
617 @ This is a legacy interface: (almost) all file names pass through |name_of_file|.
620 char name_of_file[file_name_size+1]; /* the name of a system file */
621 int name_length;/* this many characters are actually
622 relevant in |name_of_file| (the rest are blank) */
623 boolean print_found_names; /* configuration parameter */
625 @ @<Option variables@>=
626 int print_found_names; /* configuration parameter */
628 @ If this parameter is true, the terminal and log will report the found
629 file names for input files instead of the requested ones.
630 It is off by default because it creates an extra filename lookup.
632 @<Allocate or initialize ...@>=
633 mp->print_found_names = (opt->print_found_names>0 ? true : false);
635 @ \MP's file-opening procedures return |false| if no file identified by
636 |name_of_file| could be opened.
638 The |OPEN_FILE| macro takes care of the |print_found_names| parameter.
639 It is not used for opening a mem file for read, because that file name
643 if (mp->print_found_names) {
644 char *s = (mp->find_file)(mp->name_of_file,A,ftype);
646 *f = mp_open_file(mp,mp->name_of_file,A, ftype);
647 strncpy(mp->name_of_file,s,file_name_size);
653 *f = mp_open_file(mp,mp->name_of_file,A, ftype);
656 return (*f ? true : false)
659 boolean mp_a_open_in (MP mp, FILE **f, int ftype) {
660 /* open a text file for input */
664 boolean mp_w_open_in (MP mp, FILE **f) {
665 /* open a word file for input */
666 *f = mp_open_file(mp,mp->name_of_file,"rb",mp_filetype_memfile);
667 return (*f ? true : false);
670 boolean mp_a_open_out (MP mp, FILE **f, int ftype) {
671 /* open a text file for output */
675 boolean mp_b_open_out (MP mp, FILE **f, int ftype) {
676 /* open a binary file for output */
680 boolean mp_w_open_out (MP mp, FILE**f) {
681 /* open a word file for output */
682 int ftype = mp_filetype_memfile;
687 FILE *mp_open_file(MP mp, char *fname, char *fmode, int ftype);
689 @ Binary input and output are done with \PASCAL's ordinary |get| and |put|
690 procedures, so we don't have to make any other special arrangements for
691 binary~I/O. Text output is also easy to do with standard \PASCAL\ routines.
692 The treatment of text input is more difficult, however, because
693 of the necessary translation to |ASCII_code| values.
694 \MP's conventions should be efficient, and they should
695 blend nicely with the user's operating environment.
697 @ Input from text files is read one line at a time, using a routine called
698 |input_ln|. This function is defined in terms of global variables called
699 |buffer|, |first|, and |last| that will be described in detail later; for
700 now, it suffices for us to know that |buffer| is an array of |ASCII_code|
701 values, and that |first| and |last| are indices into this array
702 representing the beginning and ending of a line of text.
705 size_t buf_size; /* maximum number of characters simultaneously present in
706 current lines of open files */
707 ASCII_code *buffer; /* lines of characters being read */
708 size_t first; /* the first unused position in |buffer| */
709 size_t last; /* end of the line just input to |buffer| */
710 size_t max_buf_stack; /* largest index used in |buffer| */
712 @ @<Allocate or initialize ...@>=
714 mp->buffer = xmalloc((mp->buf_size+1),sizeof(ASCII_code));
716 @ @<Dealloc variables@>=
720 void mp_reallocate_buffer(MP mp, size_t l) {
722 if (l>max_halfword) {
723 mp_confusion(mp,"buffer size"); /* can't happen (I hope) */
725 buffer = xmalloc((l+1),sizeof(ASCII_code));
726 memcpy(buffer,mp->buffer,(mp->buf_size+1));
728 mp->buffer = buffer ;
732 @ The |input_ln| function brings the next line of input from the specified
733 field into available positions of the buffer array and returns the value
734 |true|, unless the file has already been entirely read, in which case it
735 returns |false| and sets |last:=first|. In general, the |ASCII_code|
736 numbers that represent the next line of the file are input into
737 |buffer[first]|, |buffer[first+1]|, \dots, |buffer[last-1]|; and the
738 global variable |last| is set equal to |first| plus the length of the
739 line. Trailing blanks are removed from the line; thus, either |last=first|
740 (in which case the line was entirely blank) or |buffer[last-1]<>" "|.
743 An overflow error is given, however, if the normal actions of |input_ln|
744 would make |last>=buf_size|; this is done so that other parts of \MP\
745 can safely look at the contents of |buffer[last+1]| without overstepping
746 the bounds of the |buffer| array. Upon entry to |input_ln|, the condition
747 |first<buf_size| will always hold, so that there is always room for an
750 The variable |max_buf_stack|, which is used to keep track of how large
751 the |buf_size| parameter must be to accommodate the present job, is
752 also kept up to date by |input_ln|.
754 If the |bypass_eoln| parameter is |true|, |input_ln| will do a |get|
755 before looking at the first character of the line; this skips over
756 an |eoln| that was in |f^|. The procedure does not do a |get| when it
757 reaches the end of the line; therefore it can be used to acquire input
758 from the user's terminal as well as from ordinary text files.
760 Standard \PASCAL\ says that a file should have |eoln| immediately
761 before |eof|, but \MP\ needs only a weaker restriction: If |eof|
762 occurs in the middle of a line, the system function |eoln| should return
763 a |true| result (even though |f^| will be undefined).
766 boolean mp_input_ln (MP mp,FILE * f, boolean bypass_eoln) {
767 /* inputs the next line or returns |false| */
768 int last_nonblank; /* |last| with trailing blanks removed */
774 if (c!='\n' && c!='\r') {
778 /* input the first character of the line into |f^| */
779 mp->last=mp->first; /* cf.\ Matthew 19\thinspace:\thinspace30 */
783 last_nonblank=mp->first;
784 while (c!=EOF && c!='\n' && c!='\r') {
785 if ( mp->last>=mp->max_buf_stack ) {
786 mp->max_buf_stack=mp->last+1;
787 if ( mp->max_buf_stack==mp->buf_size ) {
788 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
791 mp->buffer[mp->last]=xord(c);
793 if ( mp->buffer[mp->last-1]!=' ' )
794 last_nonblank=mp->last;
800 mp->last=last_nonblank;
804 @ The user's terminal acts essentially like other files of text, except
805 that it is used both for input and for output. When the terminal is
806 considered an input file, the file variable is called |term_in|, and when it
807 is considered an output file the file variable is |term_out|.
808 @^system dependencies@>
811 FILE * term_in; /* the terminal as an input file */
812 FILE * term_out; /* the terminal as an output file */
814 @ Here is how to open the terminal files. In the default configuration,
815 nothing happens except that the command line (if there is one) is copied
816 to the input buffer. The variable |command_line| will be filled by the
817 |main| procedure. The copying can not be done earlier in the program
818 logic because in the |INI| version, the |buffer| is also used for primitive
821 @^system dependencies@>
823 @d t_open_out /* open the terminal for text output */
824 @d t_open_in do { /* open the terminal for text input */
825 if (mp->command_line!=NULL) {
826 mp->last = strlen(mp->command_line);
827 strncpy((char *)mp->buffer,mp->command_line,mp->last);
828 xfree(mp->command_line);
835 @ @<Option variables@>=
838 @ @<Allocate or initialize ...@>=
839 mp->command_line = opt->command_line;
841 @ Sometimes it is necessary to synchronize the input/output mixture that
842 happens on the user's terminal, and three system-dependent
843 procedures are used for this
844 purpose. The first of these, |update_terminal|, is called when we want
845 to make sure that everything we have output to the terminal so far has
846 actually left the computer's internal buffers and been sent.
847 The second, |clear_terminal|, is called when we wish to cancel any
848 input that the user may have typed ahead (since we are about to
849 issue an unexpected error message). The third, |wake_up_terminal|,
850 is supposed to revive the terminal if the user has disabled it by
851 some instruction to the operating system. The following macros show how
852 these operations can be specified in \ph:
853 @^system dependencies@>
855 @d update_terminal fflush(mp->term_out) /* empty the terminal output buffer */
856 @d clear_terminal do_nothing /* clear the terminal input buffer */
857 @d wake_up_terminal fflush(mp->term_out) /* cancel the user's cancellation of output */
859 @ We need a special routine to read the first line of \MP\ input from
860 the user's terminal. This line is different because it is read before we
861 have opened the transcript file; there is sort of a ``chicken and
862 egg'' problem here. If the user types `\.{input cmr10}' on the first
863 line, or if some macro invoked by that line does such an \.{input},
864 the transcript file will be named `\.{cmr10.log}'; but if no \.{input}
865 commands are performed during the first line of terminal input, the transcript
866 file will acquire its default name `\.{mpout.log}'. (The transcript file
867 will not contain error messages generated by the first line before the
868 first \.{input} command.)
870 The first line is even more special if we are lucky enough to have an operating
871 system that treats \MP\ differently from a run-of-the-mill \PASCAL\ object
872 program. It's nice to let the user start running a \MP\ job by typing
873 a command line like `\.{MP cmr10}'; in such a case, \MP\ will operate
874 as if the first line of input were `\.{cmr10}', i.e., the first line will
875 consist of the remainder of the command line, after the part that invoked \MP.
877 @ Different systems have different ways to get started. But regardless of
878 what conventions are adopted, the routine that initializes the terminal
879 should satisfy the following specifications:
881 \yskip\textindent{1)}It should open file |term_in| for input from the
882 terminal. (The file |term_out| will already be open for output to the
885 \textindent{2)}If the user has given a command line, this line should be
886 considered the first line of terminal input. Otherwise the
887 user should be prompted with `\.{**}', and the first line of input
888 should be whatever is typed in response.
890 \textindent{3)}The first line of input, which might or might not be a
891 command line, should appear in locations |first| to |last-1| of the
894 \textindent{4)}The global variable |loc| should be set so that the
895 character to be read next by \MP\ is in |buffer[loc]|. This
896 character should not be blank, and we should have |loc<last|.
898 \yskip\noindent(It may be necessary to prompt the user several times
899 before a non-blank line comes in. The prompt is `\.{**}' instead of the
900 later `\.*' because the meaning is slightly different: `\.{input}' need
901 not be typed immediately after~`\.{**}'.)
903 @d loc mp->cur_input.loc_field /* location of first unread character in |buffer| */
905 @ The following program does the required initialization
906 without retrieving a possible command line.
907 It should be clear how to modify this routine to deal with command lines,
908 if the system permits them.
909 @^system dependencies@>
912 boolean mp_init_terminal (MP mp) { /* gets the terminal input started */
919 wake_up_terminal; fprintf(mp->term_out,"**"); update_terminal;
921 if ( ! mp_input_ln(mp, mp->term_in,true) ) { /* this shouldn't happen */
922 fprintf(mp->term_out,"\n! End of file on the terminal... why?");
923 @.End of file on the terminal@>
927 while ( (loc<(int)mp->last)&&(mp->buffer[loc]==' ') )
929 if ( loc<(int)mp->last ) {
930 return true; /* return unless the line was all blank */
932 fprintf(mp->term_out,"Please type the name of your input file.\n");
937 boolean mp_init_terminal (MP mp) ;
940 @* \[4] String handling.
941 Symbolic token names and diagnostic messages are variable-length strings
942 of eight-bit characters. Since \PASCAL\ does not have a well-developed string
943 mechanism, \MP\ does all of its string processing by homegrown methods.
945 \MP\ uses strings more extensively than \MF\ does, but the necessary
946 operations can still be handled with a fairly simple data structure.
947 The array |str_pool| contains all of the (eight-bit) ASCII codes in all
948 of the strings, and the array |str_start| contains indices of the starting
949 points of each string. Strings are referred to by integer numbers, so that
950 string number |s| comprises the characters |str_pool[j]| for
951 |str_start[s]<=j<str_start[ss]| where |ss=next_str[s]|. The string pool
952 is allocated sequentially and |str_pool[pool_ptr]| is the next unused
953 location. The first string number not currently in use is |str_ptr|
954 and |next_str[str_ptr]| begins a list of free string numbers. String
955 pool entries |str_start[str_ptr]| up to |pool_ptr| are reserved for a
956 string currently being constructed.
958 String numbers 0 to 255 are reserved for strings that correspond to single
959 ASCII characters. This is in accordance with the conventions of \.{WEB},
961 which converts single-character strings into the ASCII code number of the
962 single character involved, while it converts other strings into integers
963 and builds a string pool file. Thus, when the string constant \.{"."} appears
964 in the program below, \.{WEB} converts it into the integer 46, which is the
965 ASCII code for a period, while \.{WEB} will convert a string like \.{"hello"}
966 into some integer greater than~255. String number 46 will presumably be the
967 single character `\..'\thinspace; but some ASCII codes have no standard visible
968 representation, and \MP\ may need to be able to print an arbitrary
969 ASCII character, so the first 256 strings are used to specify exactly what
970 should be printed for each of the 256 possibilities.
973 typedef int pool_pointer; /* for variables that point into |str_pool| */
974 typedef int str_number; /* for variables that point into |str_start| */
977 ASCII_code *str_pool; /* the characters */
978 pool_pointer *str_start; /* the starting pointers */
979 str_number *next_str; /* for linking strings in order */
980 pool_pointer pool_ptr; /* first unused position in |str_pool| */
981 str_number str_ptr; /* number of the current string being created */
982 pool_pointer init_pool_ptr; /* the starting value of |pool_ptr| */
983 str_number init_str_use; /* the initial number of strings in use */
984 pool_pointer max_pool_ptr; /* the maximum so far of |pool_ptr| */
985 str_number max_str_ptr; /* the maximum so far of |str_ptr| */
987 @ @<Allocate or initialize ...@>=
988 mp->str_pool = xmalloc ((mp->pool_size +1),sizeof(ASCII_code));
989 mp->str_start = xmalloc ((mp->max_strings+1),sizeof(pool_pointer));
990 mp->next_str = xmalloc ((mp->max_strings+1),sizeof(str_number));
992 @ @<Dealloc variables@>=
994 xfree(mp->str_start);
997 @ Most printing is done from |char *|s, but sometimes not. Here are
998 functions that convert an internal string into a |char *| for use
999 by the printing routines, and vice versa.
1001 @d str(A) mp_str(mp,A)
1002 @d rts(A) mp_rts(mp,A)
1005 int mp_xstrcmp (const char *a, const char *b);
1006 char * mp_str (MP mp, str_number s);
1009 str_number mp_rts (MP mp, char *s);
1010 str_number mp_make_string (MP mp);
1012 @ The attempt to catch interrupted strings that is in |mp_rts|, is not
1013 very good: it does not handle nesting over more than one level.
1016 int mp_xstrcmp (const char *a, const char *b) {
1017 if (a==NULL && b==NULL)
1027 char * mp_str (MP mp, str_number ss) {
1030 if (ss==mp->str_ptr) {
1034 s = xmalloc(len+1,sizeof(char));
1035 strncpy(s,(char *)(mp->str_pool+(mp->str_start[ss])),len);
1040 str_number mp_rts (MP mp, char *s) {
1041 int r; /* the new string */
1042 int old; /* a possible string in progress */
1046 } else if (strlen(s)==1) {
1050 str_room((integer)strlen(s));
1051 if (mp->str_start[mp->str_ptr]<mp->pool_ptr)
1052 old = mp_make_string(mp);
1057 r = mp_make_string(mp);
1059 str_room(length(old));
1060 while (i<length(old)) {
1061 append_char((mp->str_start[old]+i));
1063 mp_flush_string(mp,old);
1069 @ Except for |strs_used_up|, the following string statistics are only
1070 maintained when code between |stat| $\ldots$ |tats| delimiters is not
1074 integer strs_used_up; /* strings in use or unused but not reclaimed */
1075 integer pool_in_use; /* total number of cells of |str_pool| actually in use */
1076 integer strs_in_use; /* total number of strings actually in use */
1077 integer max_pl_used; /* maximum |pool_in_use| so far */
1078 integer max_strs_used; /* maximum |strs_in_use| so far */
1080 @ Several of the elementary string operations are performed using \.{WEB}
1081 macros instead of \PASCAL\ procedures, because many of the
1082 operations are done quite frequently and we want to avoid the
1083 overhead of procedure calls. For example, here is
1084 a simple macro that computes the length of a string.
1087 @d str_stop(A) mp->str_start[mp->next_str[(A)]] /* one cell past the end of string
1089 @d length(A) (str_stop((A))-mp->str_start[(A)]) /* the number of characters in string \# */
1091 @ The length of the current string is called |cur_length|. If we decide that
1092 the current string is not needed, |flush_cur_string| resets |pool_ptr| so that
1093 |cur_length| becomes zero.
1095 @d cur_length (mp->pool_ptr - mp->str_start[mp->str_ptr])
1096 @d flush_cur_string mp->pool_ptr=mp->str_start[mp->str_ptr]
1098 @ Strings are created by appending character codes to |str_pool|.
1099 The |append_char| macro, defined here, does not check to see if the
1100 value of |pool_ptr| has gotten too high; this test is supposed to be
1101 made before |append_char| is used.
1103 To test if there is room to append |l| more characters to |str_pool|,
1104 we shall write |str_room(l)|, which tries to make sure there is enough room
1105 by compacting the string pool if necessary. If this does not work,
1106 |do_compaction| aborts \MP\ and gives an apologetic error message.
1108 @d append_char(A) /* put |ASCII_code| \# at the end of |str_pool| */
1109 { mp->str_pool[mp->pool_ptr]=(A); incr(mp->pool_ptr);
1111 @d str_room(A) /* make sure that the pool hasn't overflowed */
1112 { if ( mp->pool_ptr+(A) > mp->max_pool_ptr ) {
1113 if ( mp->pool_ptr+(A) > mp->pool_size ) mp_do_compaction(mp, (A));
1114 else mp->max_pool_ptr=mp->pool_ptr+(A); }
1117 @ The following routine is similar to |str_room(1)| but it uses the
1118 argument |mp->pool_size| to prevent |do_compaction| from aborting when
1119 string space is exhausted.
1121 @<Declare the procedure called |unit_str_room|@>=
1122 void mp_unit_str_room (MP mp);
1125 void mp_unit_str_room (MP mp) {
1126 if ( mp->pool_ptr>=mp->pool_size ) mp_do_compaction(mp, mp->pool_size);
1127 if ( mp->pool_ptr>=mp->max_pool_ptr ) mp->max_pool_ptr=mp->pool_ptr+1;
1130 @ \MP's string expressions are implemented in a brute-force way: Every
1131 new string or substring that is needed is simply copied into the string pool.
1132 Space is eventually reclaimed by a procedure called |do_compaction| with
1133 the aid of a simple system system of reference counts.
1134 @^reference counts@>
1136 The number of references to string number |s| will be |str_ref[s]|. The
1137 special value |str_ref[s]=max_str_ref=127| is used to denote an unknown
1138 positive number of references; such strings will never be recycled. If
1139 a string is ever referred to more than 126 times, simultaneously, we
1140 put it in this category. Hence a single byte suffices to store each |str_ref|.
1142 @d max_str_ref 127 /* ``infinite'' number of references */
1143 @d add_str_ref(A) { if ( mp->str_ref[(A)]<max_str_ref ) incr(mp->str_ref[(A)]);
1149 @ @<Allocate or initialize ...@>=
1150 mp->str_ref = xmalloc ((mp->max_strings+1),sizeof(int));
1152 @ @<Dealloc variables@>=
1155 @ Here's what we do when a string reference disappears:
1157 @d delete_str_ref(A) {
1158 if ( mp->str_ref[(A)]<max_str_ref ) {
1159 if ( mp->str_ref[(A)]>1 ) decr(mp->str_ref[(A)]);
1160 else mp_flush_string(mp, (A));
1164 @<Declare the procedure called |flush_string|@>=
1165 void mp_flush_string (MP mp,str_number s) ;
1168 @ We can't flush the first set of static strings at all, so there
1169 is no point in trying
1172 void mp_flush_string (MP mp,str_number s) {
1174 mp->pool_in_use=mp->pool_in_use-length(s);
1175 decr(mp->strs_in_use);
1176 if ( mp->next_str[s]!=mp->str_ptr ) {
1180 decr(mp->strs_used_up);
1182 mp->pool_ptr=mp->str_start[mp->str_ptr];
1186 @ C literals cannot be simply added, they need to be set so they can't
1189 @d intern(A) mp_intern(mp,(A))
1192 str_number mp_intern (MP mp, char *s) {
1195 mp->str_ref[r] = max_str_ref;
1200 str_number mp_intern (MP mp, char *s);
1203 @ Once a sequence of characters has been appended to |str_pool|, it
1204 officially becomes a string when the function |make_string| is called.
1205 This function returns the identification number of the new string as its
1208 When getting the next unused string number from the linked list, we pretend
1210 $$ \hbox{|max_str_ptr+1|, |max_str_ptr+2|, $\ldots$, |mp->max_strings|} $$
1211 are linked sequentially even though the |next_str| entries have not been
1212 initialized yet. We never allow |str_ptr| to reach |mp->max_strings|;
1213 |do_compaction| is responsible for making sure of this.
1216 @<Declare the procedure called |do_compaction|@>;
1217 @<Declare the procedure called |unit_str_room|@>;
1218 str_number mp_make_string (MP mp);
1221 str_number mp_make_string (MP mp) { /* current string enters the pool */
1222 str_number s; /* the new string */
1225 mp->str_ptr=mp->next_str[s];
1226 if ( mp->str_ptr>mp->max_str_ptr ) {
1227 if ( mp->str_ptr==mp->max_strings ) {
1229 mp_do_compaction(mp, 0);
1233 if ( mp->strs_used_up!=mp->max_str_ptr ) mp_confusion(mp, "s");
1234 @:this can't happen s}{\quad \.s@>
1236 mp->max_str_ptr=mp->str_ptr;
1237 mp->next_str[mp->str_ptr]=mp->max_str_ptr+1;
1241 mp->str_start[mp->str_ptr]=mp->pool_ptr;
1242 incr(mp->strs_used_up);
1243 incr(mp->strs_in_use);
1244 mp->pool_in_use=mp->pool_in_use+length(s);
1245 if ( mp->pool_in_use>mp->max_pl_used )
1246 mp->max_pl_used=mp->pool_in_use;
1247 if ( mp->strs_in_use>mp->max_strs_used )
1248 mp->max_strs_used=mp->strs_in_use;
1252 @ The most interesting string operation is string pool compaction. The idea
1253 is to recover unused space in the |str_pool| array by recopying the strings
1254 to close the gaps created when some strings become unused. All string
1255 numbers~$k$ where |str_ref[k]=0| are to be linked into the list of free string
1256 numbers after |str_ptr|. If this fails to free enough pool space we issue an
1257 |overflow| error unless |needed=mp->pool_size|. Calling |do_compaction|
1258 with |needed=mp->pool_size| supresses all overflow tests.
1260 The compaction process starts with |last_fixed_str| because all lower numbered
1261 strings are permanently allocated with |max_str_ref| in their |str_ref| entries.
1264 str_number last_fixed_str; /* last permanently allocated string */
1265 str_number fixed_str_use; /* number of permanently allocated strings */
1267 @ @<Declare the procedure called |do_compaction|@>=
1268 void mp_do_compaction (MP mp, pool_pointer needed) ;
1271 void mp_do_compaction (MP mp, pool_pointer needed) {
1272 str_number str_use; /* a count of strings in use */
1273 str_number r,s,t; /* strings being manipulated */
1274 pool_pointer p,q; /* destination and source for copying string characters */
1275 @<Advance |last_fixed_str| as far as possible and set |str_use|@>;
1276 r=mp->last_fixed_str;
1279 while ( s!=mp->str_ptr ) {
1280 while ( mp->str_ref[s]==0 ) {
1281 @<Advance |s| and add the old |s| to the list of free string numbers;
1282 then |break| if |s=str_ptr|@>;
1284 r=s; s=mp->next_str[s];
1286 @<Move string |r| back so that |str_start[r]=p|; make |p| the location
1287 after the end of the string@>;
1289 @<Move the current string back so that it starts at |p|@>;
1290 if ( needed<mp->pool_size ) {
1291 @<Make sure that there is room for another string with |needed| characters@>;
1293 @<Account for the compaction and make sure the statistics agree with the
1295 mp->strs_used_up=str_use;
1298 @ @<Advance |last_fixed_str| as far as possible and set |str_use|@>=
1299 t=mp->next_str[mp->last_fixed_str];
1300 while (t!=mp->str_ptr && mp->str_ref[t]==max_str_ref) {
1301 incr(mp->fixed_str_use);
1302 mp->last_fixed_str=t;
1305 str_use=mp->fixed_str_use
1307 @ Because of the way |flush_string| has been written, it should never be
1308 necessary to |break| here. The extra line of code seems worthwhile to
1309 preserve the generality of |do_compaction|.
1311 @<Advance |s| and add the old |s| to the list of free string numbers;...@>=
1316 mp->next_str[t]=mp->next_str[mp->str_ptr];
1317 mp->next_str[mp->str_ptr]=t;
1318 if ( s==mp->str_ptr ) break;
1321 @ The string currently starts at |str_start[r]| and ends just before
1322 |str_start[s]|. We don't change |str_start[s]| because it might be needed
1323 to locate the next string.
1325 @<Move string |r| back so that |str_start[r]=p|; make |p| the location...@>=
1328 while ( q<mp->str_start[s] ) {
1329 mp->str_pool[p]=mp->str_pool[q];
1333 @ Pointers |str_start[str_ptr]| and |pool_ptr| have not been updated. When
1334 we do this, anything between them should be moved.
1336 @ @<Move the current string back so that it starts at |p|@>=
1337 q=mp->str_start[mp->str_ptr];
1338 mp->str_start[mp->str_ptr]=p;
1339 while ( q<mp->pool_ptr ) {
1340 mp->str_pool[p]=mp->str_pool[q];
1345 @ We must remember that |str_ptr| is not allowed to reach |mp->max_strings|.
1347 @<Make sure that there is room for another string with |needed| char...@>=
1348 if ( str_use>=mp->max_strings-1 )
1349 mp_reallocate_strings (mp,str_use);
1350 if ( mp->pool_ptr+needed>mp->max_pool_ptr ) {
1351 mp_reallocate_pool(mp, mp->pool_ptr+needed);
1352 mp->max_pool_ptr=mp->pool_ptr+needed;
1356 void mp_reallocate_strings (MP mp, str_number str_use) ;
1357 void mp_reallocate_pool(MP mp, pool_pointer needed) ;
1360 void mp_reallocate_strings (MP mp, str_number str_use) {
1361 while ( str_use>=mp->max_strings-1 ) {
1362 int l = mp->max_strings + (mp->max_strings>>2);
1363 XREALLOC (mp->str_ref, l, int);
1364 XREALLOC (mp->str_start, l, pool_pointer);
1365 XREALLOC (mp->next_str, l, str_number);
1366 mp->max_strings = l;
1369 void mp_reallocate_pool(MP mp, pool_pointer needed) {
1370 while ( needed>mp->pool_size ) {
1371 int l = mp->pool_size + (mp->pool_size>>2);
1372 XREALLOC (mp->str_pool, l, ASCII_code);
1377 @ @<Account for the compaction and make sure the statistics agree with...@>=
1378 if ( (mp->str_start[mp->str_ptr]!=mp->pool_in_use)||(str_use!=mp->strs_in_use) )
1379 mp_confusion(mp, "string");
1380 @:this can't happen string}{\quad string@>
1381 incr(mp->pact_count);
1382 mp->pact_chars=mp->pact_chars+mp->pool_ptr-str_stop(mp->last_fixed_str);
1383 mp->pact_strs=mp->pact_strs+str_use-mp->fixed_str_use;
1385 s=mp->str_ptr; t=str_use;
1386 while ( s<=mp->max_str_ptr ){
1387 if ( t>mp->max_str_ptr ) mp_confusion(mp, "\"");
1388 incr(t); s=mp->next_str[s];
1390 if ( t<=mp->max_str_ptr ) mp_confusion(mp, "\"");
1393 @ A few more global variables are needed to keep track of statistics when
1394 |stat| $\ldots$ |tats| blocks are not commented out.
1397 integer pact_count; /* number of string pool compactions so far */
1398 integer pact_chars; /* total number of characters moved during compactions */
1399 integer pact_strs; /* total number of strings moved during compactions */
1401 @ @<Initialize compaction statistics@>=
1406 @ The following subroutine compares string |s| with another string of the
1407 same length that appears in |buffer| starting at position |k|;
1408 the result is |true| if and only if the strings are equal.
1411 boolean mp_str_eq_buf (MP mp,str_number s, integer k) {
1412 /* test equality of strings */
1413 pool_pointer j; /* running index */
1415 while ( j<str_stop(s) ) {
1416 if ( mp->str_pool[j++]!=mp->buffer[k++] )
1422 @ Here is a similar routine, but it compares two strings in the string pool,
1423 and it does not assume that they have the same length. If the first string
1424 is lexicographically greater than, less than, or equal to the second,
1425 the result is respectively positive, negative, or zero.
1428 integer mp_str_vs_str (MP mp, str_number s, str_number t) {
1429 /* test equality of strings */
1430 pool_pointer j,k; /* running indices */
1431 integer ls,lt; /* lengths */
1432 integer l; /* length remaining to test */
1433 ls=length(s); lt=length(t);
1434 if ( ls<=lt ) l=ls; else l=lt;
1435 j=mp->str_start[s]; k=mp->str_start[t];
1437 if ( mp->str_pool[j]!=mp->str_pool[k] ) {
1438 return (mp->str_pool[j]-mp->str_pool[k]);
1445 @ The initial values of |str_pool|, |str_start|, |pool_ptr|,
1446 and |str_ptr| are computed by the \.{INIMP} program, based in part
1447 on the information that \.{WEB} has output while processing \MP.
1452 void mp_get_strings_started (MP mp) {
1453 /* initializes the string pool,
1454 but returns |false| if something goes wrong */
1455 int k; /* small indices or counters */
1456 str_number g; /* a new string */
1457 mp->pool_ptr=0; mp->str_ptr=0; mp->max_pool_ptr=0; mp->max_str_ptr=0;
1460 mp->pool_in_use=0; mp->strs_in_use=0;
1461 mp->max_pl_used=0; mp->max_strs_used=0;
1462 @<Initialize compaction statistics@>;
1464 @<Make the first 256 strings@>;
1465 g=mp_make_string(mp); /* string 256 == "" */
1466 mp->str_ref[g]=max_str_ref;
1467 mp->last_fixed_str=mp->str_ptr-1;
1468 mp->fixed_str_use=mp->str_ptr;
1473 void mp_get_strings_started (MP mp);
1475 @ The first 256 strings will consist of a single character only.
1477 @<Make the first 256...@>=
1478 for (k=0;k<=255;k++) {
1480 g=mp_make_string(mp);
1481 mp->str_ref[g]=max_str_ref;
1484 @ The first 128 strings will contain 95 standard ASCII characters, and the
1485 other 33 characters will be printed in three-symbol form like `\.{\^\^A}'
1486 unless a system-dependent change is made here. Installations that have
1487 an extended character set, where for example |xchr[032]=@t\.{'^^Z'}@>|,
1488 would like string 032 to be printed as the single character 032 instead
1489 of the three characters 0136, 0136, 0132 (\.{\^\^Z}). On the other hand,
1490 even people with an extended character set will want to represent string
1491 015 by \.{\^\^M}, since 015 is ASCII's ``carriage return'' code; the idea is
1492 to produce visible strings instead of tabs or line-feeds or carriage-returns
1493 or bell-rings or characters that are treated anomalously in text files.
1495 Unprintable characters of codes 128--255 are, similarly, rendered
1496 \.{\^\^80}--\.{\^\^ff}.
1498 The boolean expression defined here should be |true| unless \MP\ internal
1499 code number~|k| corresponds to a non-troublesome visible symbol in the
1500 local character set.
1501 If character |k| cannot be printed, and |k<0200|, then character |k+0100| or
1502 |k-0100| must be printable; moreover, ASCII codes |[060..071, 0141..0146]|
1504 @^character set dependencies@>
1505 @^system dependencies@>
1507 @<Character |k| cannot be printed@>=
1510 @* \[5] On-line and off-line printing.
1511 Messages that are sent to a user's terminal and to the transcript-log file
1512 are produced by several `|print|' procedures. These procedures will
1513 direct their output to a variety of places, based on the setting of
1514 the global variable |selector|, which has the following possible
1518 \hang |term_and_log|, the normal setting, prints on the terminal and on the
1521 \hang |log_only|, prints only on the transcript file.
1523 \hang |term_only|, prints only on the terminal.
1525 \hang |no_print|, doesn't print at all. This is used only in rare cases
1526 before the transcript file is open.
1528 \hang |ps_file_only| prints only on the \ps\ output file.
1530 \hang |pseudo|, puts output into a cyclic buffer that is used
1531 by the |show_context| routine; when we get to that routine we shall discuss
1532 the reasoning behind this curious mode.
1534 \hang |new_string|, appends the output to the current string in the
1537 \hang |>=write_file| prints on one of the files used for the \&{write}
1538 @:write_}{\&{write} primitive@>
1542 \noindent The symbolic names `|term_and_log|', etc., have been assigned
1543 numeric codes that satisfy the convenient relations |no_print+1=term_only|,
1544 |no_print+2=log_only|, |term_only+2=log_only+1=term_and_log|. These
1545 relations are not used when |selector| could be |pseudo|, |new_string|,
1546 or |ps_file_only|. We need not check for unprintable characters when
1549 Four additional global variables, |tally|, |term_offset|, |file_offset|,
1550 and |ps_offset| record the number of characters that have been printed
1551 since they were most recently cleared to zero. We use |tally| to record
1552 the length of (possibly very long) stretches of printing; |term_offset|,
1553 |file_offset|, and |ps_offset|, on the other hand, keep track of how many
1554 characters have appeared so far on the current line that has been output
1555 to the terminal, the transcript file, or the \ps\ output file, respectively.
1557 @d new_string 0 /* printing is deflected to the string pool */
1558 @d ps_file_only 1 /* printing goes to the \ps\ output file */
1559 @d pseudo 2 /* special |selector| setting for |show_context| */
1560 @d no_print 3 /* |selector| setting that makes data disappear */
1561 @d term_only 4 /* printing is destined for the terminal only */
1562 @d log_only 5 /* printing is destined for the transcript file only */
1563 @d term_and_log 6 /* normal |selector| setting */
1564 @d write_file 7 /* first write file selector */
1567 FILE * log_file; /* transcript of \MP\ session */
1568 FILE * ps_file; /* the generic font output goes here */
1569 unsigned int selector; /* where to print a message */
1570 unsigned char dig[23]; /* digits in a number being output */
1571 integer tally; /* the number of characters recently printed */
1572 unsigned int term_offset;
1573 /* the number of characters on the current terminal line */
1574 unsigned int file_offset;
1575 /* the number of characters on the current file line */
1577 /* the number of characters on the current \ps\ file line */
1578 ASCII_code *trick_buf; /* circular buffer for pseudoprinting */
1579 integer trick_count; /* threshold for pseudoprinting, explained later */
1580 integer first_count; /* another variable for pseudoprinting */
1582 @ @<Allocate or initialize ...@>=
1583 memset(mp->dig,0,23);
1584 mp->trick_buf = xmalloc((mp->error_line+1),sizeof(ASCII_code));
1586 @ @<Dealloc variables@>=
1587 xfree(mp->trick_buf);
1589 @ @<Initialize the output routines@>=
1590 mp->selector=term_only; mp->tally=0; mp->term_offset=0; mp->file_offset=0; mp->ps_offset=0;
1592 @ Macro abbreviations for output to the terminal and to the log file are
1593 defined here for convenience. Some systems need special conventions
1594 for terminal output, and it is possible to adhere to those conventions
1595 by changing |wterm|, |wterm_ln|, and |wterm_cr| here.
1596 @^system dependencies@>
1598 @d wterm(A) fprintf(mp->term_out,"%s",(A))
1599 @d wterm_chr(A)fprintf(mp->term_out,"%c",(A))
1600 @d wterm_ln(A) fprintf(mp->term_out,"\n%s",(A))
1601 @d wterm_cr fprintf(mp->term_out,"\n")
1602 @d wlog(A) fprintf(mp->log_file,"%s",(A))
1603 @d wlog_chr(A) fprintf(mp->log_file,"%c",(A))
1604 @d wlog_ln(A) fprintf(mp->log_file,"\n%s",(A))
1605 @d wlog_cr fprintf(mp->log_file, "\n")
1606 @d wps(A) fprintf(mp->ps_file,"%s",(A))
1607 @d wps_chr(A) fprintf(mp->ps_file,"%c",(A))
1608 @d wps_ln(A) fprintf(mp->ps_file,,"\n%s",(A))
1609 @d wps_cr fprintf(mp->ps_file,"\n")
1611 @ To end a line of text output, we call |print_ln|. Cases |0..max_write_files|
1612 use an array |wr_file| that will be declared later.
1614 @d mp_print_text(A) mp_print_str(mp,text((A)))
1617 void mp_print_ln (MP mp);
1618 void mp_print_visible_char (MP mp, ASCII_code s);
1619 void mp_print_char (MP mp, ASCII_code k);
1620 void mp_print (MP mp, char *s);
1621 void mp_print_str (MP mp, str_number s);
1622 void mp_print_nl (MP mp, char *s);
1623 void mp_print_two (MP mp,scaled x, scaled y) ;
1624 void mp_print_scaled (MP mp,scaled s);
1626 @ @<Basic print...@>=
1627 void mp_print_ln (MP mp) { /* prints an end-of-line */
1628 switch (mp->selector) {
1631 mp->term_offset=0; mp->file_offset=0;
1634 wlog_cr; mp->file_offset=0;
1637 wterm_cr; mp->term_offset=0;
1640 wps_cr; mp->ps_offset=0;
1647 fprintf(mp->wr_file[(mp->selector-write_file)],"\n");
1649 } /* note that |tally| is not affected */
1651 @ The |print_visible_char| procedure sends one character to the desired
1652 destination, using the |xchr| array to map it into an external character
1653 compatible with |input_ln|. (It assumes that it is always called with
1654 a visible ASCII character.) All printing comes through |print_ln| or
1655 |print_char|, which ultimately calls |print_visible_char|, hence these
1656 routines are the ones that limit lines to at most |max_print_line| characters.
1657 But we must make an exception for the \ps\ output file since it is not safe
1658 to cut up lines arbitrarily in \ps.
1660 Procedure |unit_str_room| needs to be declared |forward| here because it calls
1661 |do_compaction| and |do_compaction| can call the error routines. Actually,
1662 |unit_str_room| avoids |overflow| errors but it can call |confusion|.
1664 @<Basic printing...@>=
1665 void mp_print_visible_char (MP mp, ASCII_code s) { /* prints a single character */
1666 switch (mp->selector) {
1668 wterm_chr(xchr(s)); wlog_chr(xchr(s));
1669 incr(mp->term_offset); incr(mp->file_offset);
1670 if ( mp->term_offset==(unsigned)mp->max_print_line ) {
1671 wterm_cr; mp->term_offset=0;
1673 if ( mp->file_offset==(unsigned)mp->max_print_line ) {
1674 wlog_cr; mp->file_offset=0;
1678 wlog_chr(xchr(s)); incr(mp->file_offset);
1679 if ( mp->file_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1682 wterm_chr(xchr(s)); incr(mp->term_offset);
1683 if ( mp->term_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1687 wps_cr; mp->ps_offset=0;
1689 wps_chr(xchr(s)); incr(mp->ps_offset);
1695 if ( mp->tally<mp->trick_count )
1696 mp->trick_buf[mp->tally % mp->error_line]=s;
1699 if ( mp->pool_ptr>=mp->max_pool_ptr ) {
1700 mp_unit_str_room(mp);
1701 if ( mp->pool_ptr>=mp->pool_size )
1702 goto DONE; /* drop characters if string space is full */
1707 fprintf(mp->wr_file[(mp->selector-write_file)],"%c",xchr(s));
1713 @ The |print_char| procedure sends one character to the desired destination.
1714 File names and string expressions might contain |ASCII_code| values that
1715 can't be printed using |print_visible_char|. These characters will be
1716 printed in three- or four-symbol form like `\.{\^\^A}' or `\.{\^\^e4}'.
1717 (This procedure assumes that it is safe to bypass all checks for unprintable
1718 characters when |selector| is in the range |0..max_write_files-1| or when
1719 |selector=ps_file_only|. In the former case the user might want to write
1720 unprintable characters, and in the latter case the \ps\ printing routines
1721 check their arguments themselves before calling |print_char| or |print|.)
1723 @d print_lc_hex(A) do { l=(A);
1724 mp_print_visible_char(mp, (l<10 ? l+'0' : l-10+'a'));
1727 @<Basic printing...@>=
1728 void mp_print_char (MP mp, ASCII_code k) { /* prints a single character */
1729 int l; /* small index or counter */
1730 if ( mp->selector<pseudo || mp->selector>=write_file) {
1731 mp_print_visible_char(mp, k);
1732 } else if ( @<Character |k| cannot be printed@> ) {
1735 mp_print_visible_char(mp, k+0100);
1736 } else if ( k<0200 ) {
1737 mp_print_visible_char(mp, k-0100);
1739 print_lc_hex(k / 16);
1740 print_lc_hex(k % 16);
1743 mp_print_visible_char(mp, k);
1747 @ An entire string is output by calling |print|. Note that if we are outputting
1748 the single standard ASCII character \.c, we could call |print("c")|, since
1749 |"c"=99| is the number of a single-character string, as explained above. But
1750 |print_char("c")| is quicker, so \MP\ goes directly to the |print_char|
1751 routine when it knows that this is safe. (The present implementation
1752 assumes that it is always safe to print a visible ASCII character.)
1753 @^system dependencies@>
1756 void mp_do_print (MP mp, char *ss, unsigned int len) { /* prints string |s| */
1759 mp_print_char(mp, ss[j]); incr(j);
1765 void mp_print (MP mp, char *ss) {
1766 mp_do_print(mp, ss, strlen(ss));
1768 void mp_print_str (MP mp, str_number s) {
1769 pool_pointer j; /* current character code position */
1770 if ( (s<0)||(s>mp->max_str_ptr) ) {
1771 mp_do_print(mp,"???",3); /* this can't happen */
1775 mp_do_print(mp, (char *)(mp->str_pool+j), (str_stop(s)-j));
1779 @ Here is the very first thing that \MP\ prints: a headline that identifies
1780 the version number and base name. The |term_offset| variable is temporarily
1781 incorrect, but the discrepancy is not serious since we assume that the banner
1782 and mem identifier together will occupy at most |max_print_line|
1783 character positions.
1785 @<Initialize the output...@>=
1787 wterm (version_string);
1788 if (mp->mem_ident!=NULL)
1789 mp_print(mp,mp->mem_ident);
1793 @ The procedure |print_nl| is like |print|, but it makes sure that the
1794 string appears at the beginning of a new line.
1797 void mp_print_nl (MP mp, char *s) { /* prints string |s| at beginning of line */
1798 switch(mp->selector) {
1800 if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_ln(mp);
1803 if ( mp->file_offset>0 ) mp_print_ln(mp);
1806 if ( mp->term_offset>0 ) mp_print_ln(mp);
1809 if ( mp->ps_offset>0 ) mp_print_ln(mp);
1815 } /* there are no other cases */
1819 @ An array of digits in the range |0..9| is printed by |print_the_digs|.
1822 void mp_print_the_digs (MP mp, eight_bits k) {
1823 /* prints |dig[k-1]|$\,\ldots\,$|dig[0]| */
1825 decr(k); mp_print_char(mp, '0'+mp->dig[k]);
1829 @ The following procedure, which prints out the decimal representation of a
1830 given integer |n|, has been written carefully so that it works properly
1831 if |n=0| or if |(-n)| would cause overflow. It does not apply |mod| or |div|
1832 to negative arguments, since such operations are not implemented consistently
1833 by all \PASCAL\ compilers.
1836 void mp_print_int (MP mp,integer n) { /* prints an integer in decimal form */
1837 integer m; /* used to negate |n| in possibly dangerous cases */
1838 int k = 0; /* index to current digit; we assume that $|n|<10^{23}$ */
1840 mp_print_char(mp, '-');
1841 if ( n>-100000000 ) {
1844 m=-1-n; n=m / 10; m=(m % 10)+1; k=1;
1848 mp->dig[0]=0; incr(n);
1853 mp->dig[k]=n % 10; n=n / 10; incr(k);
1855 mp_print_the_digs(mp, k);
1859 void mp_print_int (MP mp,integer n);
1861 @ \MP\ also makes use of a trivial procedure to print two digits. The
1862 following subroutine is usually called with a parameter in the range |0<=n<=99|.
1865 void mp_print_dd (MP mp,integer n) { /* prints two least significant digits */
1867 mp_print_char(mp, '0'+(n / 10));
1868 mp_print_char(mp, '0'+(n % 10));
1873 void mp_print_dd (MP mp,integer n);
1875 @ Here is a procedure that asks the user to type a line of input,
1876 assuming that the |selector| setting is either |term_only| or |term_and_log|.
1877 The input is placed into locations |first| through |last-1| of the
1878 |buffer| array, and echoed on the transcript file if appropriate.
1880 This procedure is never called when |interaction<mp_scroll_mode|.
1882 @d prompt_input(A) do {
1883 wake_up_terminal; mp_print(mp, (A)); mp_term_input(mp);
1884 } while (0) /* prints a string and gets a line of input */
1887 void mp_term_input (MP mp) { /* gets a line from the terminal */
1888 size_t k; /* index into |buffer| */
1889 update_terminal; /* Now the user sees the prompt for sure */
1890 if (!mp_input_ln(mp, mp->term_in,true))
1891 mp_fatal_error(mp, "End of file on the terminal!");
1892 @.End of file on the terminal@>
1893 mp->term_offset=0; /* the user's line ended with \<\rm return> */
1894 decr(mp->selector); /* prepare to echo the input */
1895 if ( mp->last!=mp->first ) {
1896 for (k=mp->first;k<=mp->last-1;k++) {
1897 mp_print_char(mp, mp->buffer[k]);
1901 mp->buffer[mp->last]='%';
1902 incr(mp->selector); /* restore previous status */
1905 @* \[6] Reporting errors.
1906 When something anomalous is detected, \MP\ typically does something like this:
1907 $$\vbox{\halign{#\hfil\cr
1908 |print_err("Something anomalous has been detected");|\cr
1909 |help3("This is the first line of my offer to help.")|\cr
1910 |("This is the second line. I'm trying to")|\cr
1911 |("explain the best way for you to proceed.");|\cr
1913 A two-line help message would be given using |help2|, etc.; these informal
1914 helps should use simple vocabulary that complements the words used in the
1915 official error message that was printed. (Outside the U.S.A., the help
1916 messages should preferably be translated into the local vernacular. Each
1917 line of help is at most 60 characters long, in the present implementation,
1918 so that |max_print_line| will not be exceeded.)
1920 The |print_err| procedure supplies a `\.!' before the official message,
1921 and makes sure that the terminal is awake if a stop is going to occur.
1922 The |error| procedure supplies a `\..' after the official message, then it
1923 shows the location of the error; and if |interaction=error_stop_mode|,
1924 it also enters into a dialog with the user, during which time the help
1925 message may be printed.
1926 @^system dependencies@>
1928 @ The global variable |interaction| has four settings, representing increasing
1929 amounts of user interaction:
1932 enum mp_interaction_mode {
1933 mp_unspecified_mode=0, /* extra value for command-line switch */
1934 mp_batch_mode, /* omits all stops and omits terminal output */
1935 mp_nonstop_mode, /* omits all stops */
1936 mp_scroll_mode, /* omits error stops */
1937 mp_error_stop_mode, /* stops at every opportunity to interact */
1941 int interaction; /* current level of interaction */
1943 @ @<Option variables@>=
1944 int interaction; /* current level of interaction */
1946 @ Set it here so it can be overwritten by the commandline
1948 @<Allocate or initialize ...@>=
1949 mp->interaction=opt->interaction;
1950 if (mp->interaction==mp_unspecified_mode || mp->interaction>mp_error_stop_mode)
1951 mp->interaction=mp_error_stop_mode;
1952 if (mp->interaction<mp_unspecified_mode)
1953 mp->interaction=mp_batch_mode;
1957 @d print_err(A) mp_print_err(mp,(A))
1960 void mp_print_err(MP mp, char * A);
1963 void mp_print_err(MP mp, char * A) {
1964 if ( mp->interaction==mp_error_stop_mode )
1966 mp_print_nl(mp, "! ");
1972 @ \MP\ is careful not to call |error| when the print |selector| setting
1973 might be unusual. The only possible values of |selector| at the time of
1976 \yskip\hang|no_print| (when |interaction=mp_batch_mode|
1977 and |log_file| not yet open);
1979 \hang|term_only| (when |interaction>mp_batch_mode| and |log_file| not yet open);
1981 \hang|log_only| (when |interaction=mp_batch_mode| and |log_file| is open);
1983 \hang|term_and_log| (when |interaction>mp_batch_mode| and |log_file| is open).
1985 @<Initialize the print |selector| based on |interaction|@>=
1986 if ( mp->interaction==mp_batch_mode ) mp->selector=no_print; else mp->selector=term_only
1988 @ A global variable |deletions_allowed| is set |false| if the |get_next|
1989 routine is active when |error| is called; this ensures that |get_next|
1990 will never be called recursively.
1993 The global variable |history| records the worst level of error that
1994 has been detected. It has four possible values: |spotless|, |warning_issued|,
1995 |error_message_issued|, and |fatal_error_stop|.
1997 Another global variable, |error_count|, is increased by one when an
1998 |error| occurs without an interactive dialog, and it is reset to zero at
1999 the end of every statement. If |error_count| reaches 100, \MP\ decides
2000 that there is no point in continuing further.
2003 enum mp_history_states {
2004 mp_spotless=0, /* |history| value when nothing has been amiss yet */
2005 mp_warning_issued, /* |history| value when |begin_diagnostic| has been called */
2006 mp_error_message_issued, /* |history| value when |error| has been called */
2007 mp_fatal_error_stop, /* |history| value when termination was premature */
2011 boolean deletions_allowed; /* is it safe for |error| to call |get_next|? */
2012 int history; /* has the source input been clean so far? */
2013 int error_count; /* the number of scrolled errors since the last statement ended */
2015 @ The value of |history| is initially |fatal_error_stop|, but it will
2016 be changed to |spotless| if \MP\ survives the initialization process.
2018 @<Allocate or ...@>=
2019 mp->deletions_allowed=true; mp->error_count=0; /* |history| is initialized elsewhere */
2021 @ Since errors can be detected almost anywhere in \MP, we want to declare the
2022 error procedures near the beginning of the program. But the error procedures
2023 in turn use some other procedures, which need to be declared |forward|
2024 before we get to |error| itself.
2026 It is possible for |error| to be called recursively if some error arises
2027 when |get_next| is being used to delete a token, and/or if some fatal error
2028 occurs while \MP\ is trying to fix a non-fatal one. But such recursion
2030 is never more than two levels deep.
2033 void mp_get_next (MP mp);
2034 void mp_term_input (MP mp);
2035 void mp_show_context (MP mp);
2036 void mp_begin_file_reading (MP mp);
2037 void mp_open_log_file (MP mp);
2038 void mp_clear_for_error_prompt (MP mp);
2039 void mp_debug_help (MP mp);
2040 @<Declare the procedure called |flush_string|@>
2043 void mp_normalize_selector (MP mp);
2045 @ Individual lines of help are recorded in the array |help_line|, which
2046 contains entries in positions |0..(help_ptr-1)|. They should be printed
2047 in reverse order, i.e., with |help_line[0]| appearing last.
2049 @d hlp1(A) mp->help_line[0]=(A); }
2050 @d hlp2(A) mp->help_line[1]=(A); hlp1
2051 @d hlp3(A) mp->help_line[2]=(A); hlp2
2052 @d hlp4(A) mp->help_line[3]=(A); hlp3
2053 @d hlp5(A) mp->help_line[4]=(A); hlp4
2054 @d hlp6(A) mp->help_line[5]=(A); hlp5
2055 @d help0 mp->help_ptr=0 /* sometimes there might be no help */
2056 @d help1 { mp->help_ptr=1; hlp1 /* use this with one help line */
2057 @d help2 { mp->help_ptr=2; hlp2 /* use this with two help lines */
2058 @d help3 { mp->help_ptr=3; hlp3 /* use this with three help lines */
2059 @d help4 { mp->help_ptr=4; hlp4 /* use this with four help lines */
2060 @d help5 { mp->help_ptr=5; hlp5 /* use this with five help lines */
2061 @d help6 { mp->help_ptr=6; hlp6 /* use this with six help lines */
2064 char * help_line[6]; /* helps for the next |error| */
2065 unsigned int help_ptr; /* the number of help lines present */
2066 boolean use_err_help; /* should the |err_help| string be shown? */
2067 str_number err_help; /* a string set up by \&{errhelp} */
2068 str_number filename_template; /* a string set up by \&{filenametemplate} */
2070 @ @<Allocate or ...@>=
2071 mp->help_ptr=0; mp->use_err_help=false; mp->err_help=0; mp->filename_template=0;
2073 @ The |jump_out| procedure just cuts across all active procedure levels and
2074 goes to |end_of_MP|. This is the only nonlocal |goto| statement in the
2075 whole program. It is used when there is no recovery from a particular error.
2077 The program uses a |jump_buf| to handle this, this is initialized at three
2078 spots: the start of |mp_new|, the start of |mp_initialize|, and the start
2079 of |mp_run|. Those are the only library enty points.
2081 @^system dependencies@>
2086 @ @<Install and test the non-local jump buffer@>=
2087 if (setjmp(mp->jump_buf) != 0) return mp->history;
2089 @ @<Setup the non-local jump buffer in |mp_new|@>=
2090 if (setjmp(mp->jump_buf) != 0) return NULL;
2092 @ If |mp->internal| is zero, then a crash occured during initialization,
2093 and it is not safe to run |mp_close_files_and_terminate|.
2096 void mp_jump_out (MP mp) {
2097 if(mp->internal!=NULL)
2098 mp_close_files_and_terminate(mp);
2099 longjmp(mp->jump_buf,1);
2102 @ Here now is the general |error| routine.
2105 void mp_error (MP mp) { /* completes the job of error reporting */
2106 ASCII_code c; /* what the user types */
2107 integer s1,s2,s3; /* used to save global variables when deleting tokens */
2108 pool_pointer j; /* character position being printed */
2109 if ( mp->history<mp_error_message_issued ) mp->history=mp_error_message_issued;
2110 mp_print_char(mp, '.'); mp_show_context(mp);
2111 if ( mp->interaction==mp_error_stop_mode ) {
2112 @<Get user's advice and |return|@>;
2114 incr(mp->error_count);
2115 if ( mp->error_count==100 ) {
2116 mp_print_nl(mp,"(That makes 100 errors; please try again.)");
2117 @.That makes 100 errors...@>
2118 mp->history=mp_fatal_error_stop; mp_jump_out(mp);
2120 @<Put help message on the transcript file@>;
2122 void mp_warn (MP mp, char *msg) {
2123 int saved_selector = mp->selector;
2124 mp_normalize_selector(mp);
2125 mp_print_nl(mp,"Warning: ");
2127 mp->selector = saved_selector;
2130 @ @<Exported function ...@>=
2131 void mp_error (MP mp);
2132 void mp_warn (MP mp, char *msg);
2135 @ @<Get user's advice...@>=
2138 mp_clear_for_error_prompt(mp); prompt_input("? ");
2140 if ( mp->last==mp->first ) return;
2141 c=mp->buffer[mp->first];
2142 if ( c>='a' ) c=c+'A'-'a'; /* convert to uppercase */
2143 @<Interpret code |c| and |return| if done@>;
2146 @ It is desirable to provide an `\.E' option here that gives the user
2147 an easy way to return from \MP\ to the system editor, with the offending
2148 line ready to be edited. But such an extension requires some system
2149 wizardry, so the present implementation simply types out the name of the
2151 edited and the relevant line number.
2152 @^system dependencies@>
2155 typedef void (*mp_run_editor_command)(MP, char *, int);
2158 mp_run_editor_command run_editor;
2160 @ @<Option variables@>=
2161 mp_run_editor_command run_editor;
2163 @ @<Allocate or initialize ...@>=
2164 set_callback_option(run_editor);
2167 void mp_run_editor (MP mp, char *fname, int fline);
2169 @ @c void mp_run_editor (MP mp, char *fname, int fline) {
2170 mp_print_nl(mp, "You want to edit file ");
2171 @.You want to edit file x@>
2172 mp_print(mp, fname);
2173 mp_print(mp, " at line ");
2174 mp_print_int(mp, fline);
2175 mp->interaction=mp_scroll_mode;
2180 There is a secret `\.D' option available when the debugging routines haven't
2184 @<Interpret code |c| and |return| if done@>=
2186 case '0': case '1': case '2': case '3': case '4':
2187 case '5': case '6': case '7': case '8': case '9':
2188 if ( mp->deletions_allowed ) {
2189 @<Delete |c-"0"| tokens and |continue|@>;
2194 mp_debug_help(mp); continue;
2198 if ( mp->file_ptr>0 ){
2199 (mp->run_editor)(mp,
2200 str(mp->input_stack[mp->file_ptr].name_field),
2205 @<Print the help information and |continue|@>;
2208 @<Introduce new material from the terminal and |return|@>;
2210 case 'Q': case 'R': case 'S':
2211 @<Change the interaction level and |return|@>;
2214 mp->interaction=mp_scroll_mode; mp_jump_out(mp);
2219 @<Print the menu of available options@>
2221 @ @<Print the menu...@>=
2223 mp_print(mp, "Type <return> to proceed, S to scroll future error messages,");
2224 @.Type <return> to proceed...@>
2225 mp_print_nl(mp, "R to run without stopping, Q to run quietly,");
2226 mp_print_nl(mp, "I to insert something, ");
2227 if ( mp->file_ptr>0 )
2228 mp_print(mp, "E to edit your file,");
2229 if ( mp->deletions_allowed )
2230 mp_print_nl(mp, "1 or ... or 9 to ignore the next 1 to 9 tokens of input,");
2231 mp_print_nl(mp, "H for help, X to quit.");
2234 @ Here the author of \MP\ apologizes for making use of the numerical
2235 relation between |"Q"|, |"R"|, |"S"|, and the desired interaction settings
2236 |mp_batch_mode|, |mp_nonstop_mode|, |mp_scroll_mode|.
2237 @^Knuth, Donald Ervin@>
2239 @<Change the interaction...@>=
2241 mp->error_count=0; mp->interaction=mp_batch_mode+c-'Q';
2242 mp_print(mp, "OK, entering ");
2244 case 'Q': mp_print(mp, "batchmode"); decr(mp->selector); break;
2245 case 'R': mp_print(mp, "nonstopmode"); break;
2246 case 'S': mp_print(mp, "scrollmode"); break;
2247 } /* there are no other cases */
2248 mp_print(mp, "..."); mp_print_ln(mp); update_terminal; return;
2251 @ When the following code is executed, |buffer[(first+1)..(last-1)]| may
2252 contain the material inserted by the user; otherwise another prompt will
2253 be given. In order to understand this part of the program fully, you need
2254 to be familiar with \MP's input stacks.
2256 @<Introduce new material...@>=
2258 mp_begin_file_reading(mp); /* enter a new syntactic level for terminal input */
2259 if ( mp->last>mp->first+1 ) {
2260 loc=mp->first+1; mp->buffer[mp->first]=' ';
2262 prompt_input("insert>"); loc=mp->first;
2265 mp->first=mp->last+1; mp->cur_input.limit_field=mp->last; return;
2268 @ We allow deletion of up to 99 tokens at a time.
2270 @<Delete |c-"0"| tokens...@>=
2272 s1=mp->cur_cmd; s2=mp->cur_mod; s3=mp->cur_sym; mp->OK_to_interrupt=false;
2273 if ( (mp->last>mp->first+1) && (mp->buffer[mp->first+1]>='0')&&(mp->buffer[mp->first+1]<='9') )
2274 c=c*10+mp->buffer[mp->first+1]-'0'*11;
2278 mp_get_next(mp); /* one-level recursive call of |error| is possible */
2279 @<Decrease the string reference count, if the current token is a string@>;
2282 mp->cur_cmd=s1; mp->cur_mod=s2; mp->cur_sym=s3; mp->OK_to_interrupt=true;
2283 help2("I have just deleted some text, as you asked.")
2284 ("You can now delete more, or insert, or whatever.");
2285 mp_show_context(mp);
2289 @ @<Print the help info...@>=
2291 if ( mp->use_err_help ) {
2292 @<Print the string |err_help|, possibly on several lines@>;
2293 mp->use_err_help=false;
2295 if ( mp->help_ptr==0 ) {
2296 help2("Sorry, I don't know how to help in this situation.")
2297 ("Maybe you should try asking a human?");
2300 decr(mp->help_ptr); mp_print(mp, mp->help_line[mp->help_ptr]); mp_print_ln(mp);
2301 } while (mp->help_ptr!=0);
2303 help4("Sorry, I already gave what help I could...")
2304 ("Maybe you should try asking a human?")
2305 ("An error might have occurred before I noticed any problems.")
2306 ("``If all else fails, read the instructions.''");
2310 @ @<Print the string |err_help|, possibly on several lines@>=
2311 j=mp->str_start[mp->err_help];
2312 while ( j<str_stop(mp->err_help) ) {
2313 if ( mp->str_pool[j]!='%' ) mp_print_str(mp, mp->str_pool[j]);
2314 else if ( j+1==str_stop(mp->err_help) ) mp_print_ln(mp);
2315 else if ( mp->str_pool[j+1]!='%' ) mp_print_ln(mp);
2316 else { incr(j); mp_print_char(mp, '%'); };
2320 @ @<Put help message on the transcript file@>=
2321 if ( mp->interaction>mp_batch_mode ) decr(mp->selector); /* avoid terminal output */
2322 if ( mp->use_err_help ) {
2323 mp_print_nl(mp, "");
2324 @<Print the string |err_help|, possibly on several lines@>;
2326 while ( mp->help_ptr>0 ){
2327 decr(mp->help_ptr); mp_print_nl(mp, mp->help_line[mp->help_ptr]);
2331 if ( mp->interaction>mp_batch_mode ) incr(mp->selector); /* re-enable terminal output */
2334 @ In anomalous cases, the print selector might be in an unknown state;
2335 the following subroutine is called to fix things just enough to keep
2336 running a bit longer.
2339 void mp_normalize_selector (MP mp) {
2340 if ( mp->log_opened ) mp->selector=term_and_log;
2341 else mp->selector=term_only;
2342 if ( mp->job_name==NULL ) mp_open_log_file(mp);
2343 if ( mp->interaction==mp_batch_mode ) decr(mp->selector);
2346 @ The following procedure prints \MP's last words before dying.
2348 @d succumb { if ( mp->interaction==mp_error_stop_mode )
2349 mp->interaction=mp_scroll_mode; /* no more interaction */
2350 if ( mp->log_opened ) mp_error(mp);
2351 /* if ( mp->interaction>mp_batch_mode ) mp_debug_help(mp); */
2352 mp->history=mp_fatal_error_stop; mp_jump_out(mp); /* irrecoverable error */
2356 void mp_fatal_error (MP mp, char *s) { /* prints |s|, and that's it */
2357 mp_normalize_selector(mp);
2358 print_err("Emergency stop"); help1(s); succumb;
2362 @ @<Exported function ...@>=
2363 void mp_fatal_error (MP mp, char *s);
2366 @ Here is the most dreaded error message.
2369 void mp_overflow (MP mp, char *s, integer n) { /* stop due to finiteness */
2370 mp_normalize_selector(mp);
2371 print_err("MetaPost capacity exceeded, sorry [");
2372 @.MetaPost capacity exceeded ...@>
2373 mp_print(mp, s); mp_print_char(mp, '='); mp_print_int(mp, n); mp_print_char(mp, ']');
2374 help2("If you really absolutely need more capacity,")
2375 ("you can ask a wizard to enlarge me.");
2380 void mp_overflow (MP mp, char *s, integer n);
2382 @ The program might sometime run completely amok, at which point there is
2383 no choice but to stop. If no previous error has been detected, that's bad
2384 news; a message is printed that is really intended for the \MP\
2385 maintenance person instead of the user (unless the user has been
2386 particularly diabolical). The index entries for `this can't happen' may
2387 help to pinpoint the problem.
2390 @<Internal library ...@>=
2391 void mp_confusion (MP mp,char *s);
2393 @ @<Error hand...@>=
2394 void mp_confusion (MP mp,char *s) {
2395 /* consistency check violated; |s| tells where */
2396 mp_normalize_selector(mp);
2397 if ( mp->history<mp_error_message_issued ) {
2398 print_err("This can't happen ("); mp_print(mp, s); mp_print_char(mp, ')');
2399 @.This can't happen@>
2400 help1("I'm broken. Please show this to someone who can fix can fix");
2402 print_err("I can\'t go on meeting you like this");
2403 @.I can't go on...@>
2404 help2("One of your faux pas seems to have wounded me deeply...")
2405 ("in fact, I'm barely conscious. Please fix it and try again.");
2410 @ Users occasionally want to interrupt \MP\ while it's running.
2411 If the \PASCAL\ runtime system allows this, one can implement
2412 a routine that sets the global variable |interrupt| to some nonzero value
2413 when such an interrupt is signaled. Otherwise there is probably at least
2414 a way to make |interrupt| nonzero using the \PASCAL\ debugger.
2415 @^system dependencies@>
2418 @d check_interrupt { if ( mp->interrupt!=0 )
2419 mp_pause_for_instructions(mp); }
2422 integer interrupt; /* should \MP\ pause for instructions? */
2423 boolean OK_to_interrupt; /* should interrupts be observed? */
2425 @ @<Allocate or ...@>=
2426 mp->interrupt=0; mp->OK_to_interrupt=true;
2428 @ When an interrupt has been detected, the program goes into its
2429 highest interaction level and lets the user have the full flexibility of
2430 the |error| routine. \MP\ checks for interrupts only at times when it is
2434 void mp_pause_for_instructions (MP mp) {
2435 if ( mp->OK_to_interrupt ) {
2436 mp->interaction=mp_error_stop_mode;
2437 if ( (mp->selector==log_only)||(mp->selector==no_print) )
2439 print_err("Interruption");
2442 ("Try to insert some instructions for me (e.g.,`I show x'),")
2443 ("unless you just want to quit by typing `X'.");
2444 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
2449 @ Many of \MP's error messages state that a missing token has been
2450 inserted behind the scenes. We can save string space and program space
2451 by putting this common code into a subroutine.
2454 void mp_missing_err (MP mp, char *s) {
2455 print_err("Missing `"); mp_print(mp, s); mp_print(mp, "' has been inserted");
2456 @.Missing...inserted@>
2459 @* \[7] Arithmetic with scaled numbers.
2460 The principal computations performed by \MP\ are done entirely in terms of
2461 integers less than $2^{31}$ in magnitude; thus, the arithmetic specified in this
2462 program can be carried out in exactly the same way on a wide variety of
2463 computers, including some small ones.
2466 But \PASCAL\ does not define the |div|
2467 operation in the case of negative dividends; for example, the result of
2468 |(-2*n-1) div 2| is |-(n+1)| on some computers and |-n| on others.
2469 There are two principal types of arithmetic: ``translation-preserving,''
2470 in which the identity |(a+q*b)div b=(a div b)+q| is valid; and
2471 ``negation-preserving,'' in which |(-a)div b=-(a div b)|. This leads to
2472 two \MP s, which can produce different results, although the differences
2473 should be negligible when the language is being used properly.
2474 The \TeX\ processor has been defined carefully so that both varieties
2475 of arithmetic will produce identical output, but it would be too
2476 inefficient to constrain \MP\ in a similar way.
2478 @d el_gordo 017777777777 /* $2^{31}-1$, the largest value that \MP\ likes */
2480 @ One of \MP's most common operations is the calculation of
2481 $\lfloor{a+b\over2}\rfloor$,
2482 the midpoint of two given integers |a| and~|b|. The only decent way to do
2483 this in \PASCAL\ is to write `|(a+b) div 2|'; but on most machines it is
2484 far more efficient to calculate `|(a+b)| right shifted one bit'.
2486 Therefore the midpoint operation will always be denoted by `|half(a+b)|'
2487 in this program. If \MP\ is being implemented with languages that permit
2488 binary shifting, the |half| macro should be changed to make this operation
2489 as efficient as possible. Since some languages have shift operators that can
2490 only be trusted to work on positive numbers, there is also a macro |halfp|
2491 that is used only when the quantity being halved is known to be positive
2494 @d half(A) ((A) / 2)
2495 @d halfp(A) ((A) / 2)
2497 @ A single computation might use several subroutine calls, and it is
2498 desirable to avoid producing multiple error messages in case of arithmetic
2499 overflow. So the routines below set the global variable |arith_error| to |true|
2500 instead of reporting errors directly to the user.
2503 boolean arith_error; /* has arithmetic overflow occurred recently? */
2505 @ @<Allocate or ...@>=
2506 mp->arith_error=false;
2508 @ At crucial points the program will say |check_arith|, to test if
2509 an arithmetic error has been detected.
2511 @d check_arith { if ( mp->arith_error ) mp_clear_arith(mp); }
2514 void mp_clear_arith (MP mp) {
2515 print_err("Arithmetic overflow");
2516 @.Arithmetic overflow@>
2517 help4("Uh, oh. A little while ago one of the quantities that I was")
2518 ("computing got too large, so I'm afraid your answers will be")
2519 ("somewhat askew. You'll probably have to adopt different")
2520 ("tactics next time. But I shall try to carry on anyway.");
2522 mp->arith_error=false;
2525 @ Addition is not always checked to make sure that it doesn't overflow,
2526 but in places where overflow isn't too unlikely the |slow_add| routine
2529 @c integer mp_slow_add (MP mp,integer x, integer y) {
2531 if ( y<=el_gordo-x ) {
2534 mp->arith_error=true;
2537 } else if ( -y<=el_gordo+x ) {
2540 mp->arith_error=true;
2545 @ Fixed-point arithmetic is done on {\sl scaled integers\/} that are multiples
2546 of $2^{-16}$. In other words, a binary point is assumed to be sixteen bit
2547 positions from the right end of a binary computer word.
2549 @d quarter_unit 040000 /* $2^{14}$, represents 0.250000 */
2550 @d half_unit 0100000 /* $2^{15}$, represents 0.50000 */
2551 @d three_quarter_unit 0140000 /* $3\cdot2^{14}$, represents 0.75000 */
2552 @d unity 0200000 /* $2^{16}$, represents 1.00000 */
2553 @d two 0400000 /* $2^{17}$, represents 2.00000 */
2554 @d three 0600000 /* $2^{17}+2^{16}$, represents 3.00000 */
2557 typedef integer scaled; /* this type is used for scaled integers */
2558 typedef unsigned char small_number; /* this type is self-explanatory */
2560 @ The following function is used to create a scaled integer from a given decimal
2561 fraction $(.d_0d_1\ldots d_{k-1})$, where |0<=k<=17|. The digit $d_i$ is
2562 given in |dig[i]|, and the calculation produces a correctly rounded result.
2565 scaled mp_round_decimals (MP mp,small_number k) {
2566 /* converts a decimal fraction */
2567 integer a = 0; /* the accumulator */
2569 a=(a+mp->dig[k]*two) / 10;
2574 @ Conversely, here is a procedure analogous to |print_int|. If the output
2575 of this procedure is subsequently read by \MP\ and converted by the
2576 |round_decimals| routine above, it turns out that the original value will
2577 be reproduced exactly. A decimal point is printed only if the value is
2578 not an integer. If there is more than one way to print the result with
2579 the optimum number of digits following the decimal point, the closest
2580 possible value is given.
2582 The invariant relation in the \&{repeat} loop is that a sequence of
2583 decimal digits yet to be printed will yield the original number if and only if
2584 they form a fraction~$f$ in the range $s-\delta\L10\cdot2^{16}f<s$.
2585 We can stop if and only if $f=0$ satisfies this condition; the loop will
2586 terminate before $s$ can possibly become zero.
2588 @<Basic printing...@>=
2589 void mp_print_scaled (MP mp,scaled s) { /* prints scaled real, rounded to five digits */
2590 scaled delta; /* amount of allowable inaccuracy */
2592 mp_print_char(mp, '-');
2593 negate(s); /* print the sign, if negative */
2595 mp_print_int(mp, s / unity); /* print the integer part */
2599 mp_print_char(mp, '.');
2602 s=s+0100000-(delta / 2); /* round the final digit */
2603 mp_print_char(mp, '0'+(s / unity));
2610 @ We often want to print two scaled quantities in parentheses,
2611 separated by a comma.
2613 @<Basic printing...@>=
2614 void mp_print_two (MP mp,scaled x, scaled y) { /* prints `|(x,y)|' */
2615 mp_print_char(mp, '(');
2616 mp_print_scaled(mp, x);
2617 mp_print_char(mp, ',');
2618 mp_print_scaled(mp, y);
2619 mp_print_char(mp, ')');
2622 @ The |scaled| quantities in \MP\ programs are generally supposed to be
2623 less than $2^{12}$ in absolute value, so \MP\ does much of its internal
2624 arithmetic with 28~significant bits of precision. A |fraction| denotes
2625 a scaled integer whose binary point is assumed to be 28 bit positions
2628 @d fraction_half 01000000000 /* $2^{27}$, represents 0.50000000 */
2629 @d fraction_one 02000000000 /* $2^{28}$, represents 1.00000000 */
2630 @d fraction_two 04000000000 /* $2^{29}$, represents 2.00000000 */
2631 @d fraction_three 06000000000 /* $3\cdot2^{28}$, represents 3.00000000 */
2632 @d fraction_four 010000000000 /* $2^{30}$, represents 4.00000000 */
2635 typedef integer fraction; /* this type is used for scaled fractions */
2637 @ In fact, the two sorts of scaling discussed above aren't quite
2638 sufficient; \MP\ has yet another, used internally to keep track of angles
2639 in units of $2^{-20}$ degrees.
2641 @d forty_five_deg 0264000000 /* $45\cdot2^{20}$, represents $45^\circ$ */
2642 @d ninety_deg 0550000000 /* $90\cdot2^{20}$, represents $90^\circ$ */
2643 @d one_eighty_deg 01320000000 /* $180\cdot2^{20}$, represents $180^\circ$ */
2644 @d three_sixty_deg 02640000000 /* $360\cdot2^{20}$, represents $360^\circ$ */
2647 typedef integer angle; /* this type is used for scaled angles */
2649 @ The |make_fraction| routine produces the |fraction| equivalent of
2650 |p/q|, given integers |p| and~|q|; it computes the integer
2651 $f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are
2652 positive. If |p| and |q| are both of the same scaled type |t|,
2653 the ``type relation'' |make_fraction(t,t)=fraction| is valid;
2654 and it's also possible to use the subroutine ``backwards,'' using
2655 the relation |make_fraction(t,fraction)=t| between scaled types.
2657 If the result would have magnitude $2^{31}$ or more, |make_fraction|
2658 sets |arith_error:=true|. Most of \MP's internal computations have
2659 been designed to avoid this sort of error.
2661 If this subroutine were programmed in assembly language on a typical
2662 machine, we could simply compute |(@t$2^{28}$@>*p)div q|, since a
2663 double-precision product can often be input to a fixed-point division
2664 instruction. But when we are restricted to \PASCAL\ arithmetic it
2665 is necessary either to resort to multiple-precision maneuvering
2666 or to use a simple but slow iteration. The multiple-precision technique
2667 would be about three times faster than the code adopted here, but it
2668 would be comparatively long and tricky, involving about sixteen
2669 additional multiplications and divisions.
2671 This operation is part of \MP's ``inner loop''; indeed, it will
2672 consume nearly 10\pct! of the running time (exclusive of input and output)
2673 if the code below is left unchanged. A machine-dependent recoding
2674 will therefore make \MP\ run faster. The present implementation
2675 is highly portable, but slow; it avoids multiplication and division
2676 except in the initial stage. System wizards should be careful to
2677 replace it with a routine that is guaranteed to produce identical
2678 results in all cases.
2679 @^system dependencies@>
2681 As noted below, a few more routines should also be replaced by machine-dependent
2682 code, for efficiency. But when a procedure is not part of the ``inner loop,''
2683 such changes aren't advisable; simplicity and robustness are
2684 preferable to trickery, unless the cost is too high.
2688 fraction mp_make_fraction (MP mp,integer p, integer q);
2689 integer mp_take_scaled (MP mp,integer q, scaled f) ;
2691 @ If FIXPT is not defined, we need these preprocessor values
2693 @d ELGORDO 0x7fffffff
2694 @d TWEXP31 2147483648.0
2695 @d TWEXP28 268435456.0
2697 @d TWEXP_16 (1.0/65536.0)
2698 @d TWEXP_28 (1.0/268435456.0)
2702 fraction mp_make_fraction (MP mp,integer p, integer q) {
2704 integer f; /* the fraction bits, with a leading 1 bit */
2705 integer n; /* the integer part of $\vert p/q\vert$ */
2706 integer be_careful; /* disables certain compiler optimizations */
2707 boolean negative = false; /* should the result be negated? */
2709 negate(p); negative=true;
2713 if ( q==0 ) mp_confusion(mp, '/');
2715 @:this can't happen /}{\quad \./@>
2716 negate(q); negative = ! negative;
2720 mp->arith_error=true;
2721 return ( negative ? -el_gordo : el_gordo);
2723 n=(n-1)*fraction_one;
2724 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>;
2725 return (negative ? (-(f+n)) : (f+n));
2731 if (q==0) mp_confusion(mp,'/');
2733 d = TWEXP28 * (double)p /(double)q;
2736 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
2738 if (d==i && ( ((q>0 ? -q : q)&077777)
2739 * (((i&037777)<<1)-1) & 04000)!=0) --i;
2742 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
2744 if (d==i && ( ((q>0 ? q : -q)&077777)
2745 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
2751 @ The |repeat| loop here preserves the following invariant relations
2752 between |f|, |p|, and~|q|:
2753 (i)~|0<=p<q|; (ii)~$fq+p=2^k(q+p_0)$, where $k$ is an integer and
2754 $p_0$ is the original value of~$p$.
2756 Notice that the computation specifies
2757 |(p-q)+p| instead of |(p+p)-q|, because the latter could overflow.
2758 Let us hope that optimizing compilers do not miss this point; a
2759 special variable |be_careful| is used to emphasize the necessary
2760 order of computation. Optimizing compilers should keep |be_careful|
2761 in a register, not store it in memory.
2764 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>=
2768 be_careful=p-q; p=be_careful+p;
2774 } while (f<fraction_one);
2776 if ( be_careful+p>=0 ) incr(f);
2779 @ The dual of |make_fraction| is |take_fraction|, which multiplies a
2780 given integer~|q| by a fraction~|f|. When the operands are positive, it
2781 computes $p=\lfloor qf/2^{28}+{1\over2}\rfloor$, a symmetric function
2784 This routine is even more ``inner loopy'' than |make_fraction|;
2785 the present implementation consumes almost 20\pct! of \MP's computation
2786 time during typical jobs, so a machine-language substitute is advisable.
2787 @^inner loop@> @^system dependencies@>
2790 integer mp_take_fraction (MP mp,integer q, fraction f) ;
2794 integer mp_take_fraction (MP mp,integer q, fraction f) {
2795 integer p; /* the fraction so far */
2796 boolean negative; /* should the result be negated? */
2797 integer n; /* additional multiple of $q$ */
2798 integer be_careful; /* disables certain compiler optimizations */
2799 @<Reduce to the case that |f>=0| and |q>0|@>;
2800 if ( f<fraction_one ) {
2803 n=f / fraction_one; f=f % fraction_one;
2804 if ( q<=el_gordo / n ) {
2807 mp->arith_error=true; n=el_gordo;
2811 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>;
2812 be_careful=n-el_gordo;
2813 if ( be_careful+p>0 ){
2814 mp->arith_error=true; n=el_gordo-p;
2821 integer mp_take_fraction (MP mp,integer p, fraction q) {
2824 d = (double)p * (double)q * TWEXP_28;
2828 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2829 mp->arith_error = true;
2833 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2837 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2838 mp->arith_error = true;
2842 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2848 @ @<Reduce to the case that |f>=0| and |q>0|@>=
2852 negate( f); negative=true;
2855 negate(q); negative=! negative;
2858 @ The invariant relations in this case are (i)~$\lfloor(qf+p)/2^k\rfloor
2859 =\lfloor qf_0/2^{28}+{1\over2}\rfloor$, where $k$ is an integer and
2860 $f_0$ is the original value of~$f$; (ii)~$2^k\L f<2^{k+1}$.
2863 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>=
2864 p=fraction_half; /* that's $2^{27}$; the invariants hold now with $k=28$ */
2865 if ( q<fraction_four ) {
2867 if ( odd(f) ) p=halfp(p+q); else p=halfp(p);
2872 if ( odd(f) ) p=p+halfp(q-p); else p=halfp(p);
2878 @ When we want to multiply something by a |scaled| quantity, we use a scheme
2879 analogous to |take_fraction| but with a different scaling.
2880 Given positive operands, |take_scaled|
2881 computes the quantity $p=\lfloor qf/2^{16}+{1\over2}\rfloor$.
2883 Once again it is a good idea to use a machine-language replacement if
2884 possible; otherwise |take_scaled| will use more than 2\pct! of the running time
2885 when the Computer Modern fonts are being generated.
2890 integer mp_take_scaled (MP mp,integer q, scaled f) {
2891 integer p; /* the fraction so far */
2892 boolean negative; /* should the result be negated? */
2893 integer n; /* additional multiple of $q$ */
2894 integer be_careful; /* disables certain compiler optimizations */
2895 @<Reduce to the case that |f>=0| and |q>0|@>;
2899 n=f / unity; f=f % unity;
2900 if ( q<=el_gordo / n ) {
2903 mp->arith_error=true; n=el_gordo;
2907 @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>;
2908 be_careful=n-el_gordo;
2909 if ( be_careful+p>0 ) {
2910 mp->arith_error=true; n=el_gordo-p;
2912 return ( negative ?(-(n+p)) :(n+p));
2914 integer mp_take_scaled (MP mp,integer p, scaled q) {
2917 d = (double)p * (double)q * TWEXP_16;
2921 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2922 mp->arith_error = true;
2926 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2930 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2931 mp->arith_error = true;
2935 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2941 @ @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>=
2942 p=half_unit; /* that's $2^{15}$; the invariants hold now with $k=16$ */
2944 if ( q<fraction_four ) {
2946 p = (odd(f) ? halfp(p+q) : halfp(p));
2951 p = (odd(f) ? p+halfp(q-p) : halfp(p));
2956 @ For completeness, there's also |make_scaled|, which computes a
2957 quotient as a |scaled| number instead of as a |fraction|.
2958 In other words, the result is $\lfloor2^{16}p/q+{1\over2}\rfloor$, if the
2959 operands are positive. \ (This procedure is not used especially often,
2960 so it is not part of \MP's inner loop.)
2962 @<Internal library ...@>=
2963 scaled mp_make_scaled (MP mp,integer p, integer q) ;
2966 scaled mp_make_scaled (MP mp,integer p, integer q) {
2968 integer f; /* the fraction bits, with a leading 1 bit */
2969 integer n; /* the integer part of $\vert p/q\vert$ */
2970 boolean negative; /* should the result be negated? */
2971 integer be_careful; /* disables certain compiler optimizations */
2972 if ( p>=0 ) negative=false;
2973 else { negate(p); negative=true; };
2976 if ( q==0 ) mp_confusion(mp, "/");
2977 @:this can't happen /}{\quad \./@>
2979 negate(q); negative=! negative;
2983 mp->arith_error=true;
2984 return (negative ? (-el_gordo) : el_gordo);
2987 @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>;
2988 return ( negative ? (-(f+n)) :(f+n));
2994 if (q==0) mp_confusion(mp,"/");
2996 d = TWEXP16 * (double)p /(double)q;
2999 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
3001 if (d==i && ( ((q>0 ? -q : q)&077777)
3002 * (((i&037777)<<1)-1) & 04000)!=0) --i;
3005 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
3007 if (d==i && ( ((q>0 ? q : -q)&077777)
3008 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
3014 @ @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>=
3017 be_careful=p-q; p=be_careful+p;
3018 if ( p>=0 ) f=f+f+1;
3019 else { f+=f; p=p+q; };
3022 if ( be_careful+p>=0 ) incr(f)
3024 @ Here is a typical example of how the routines above can be used.
3025 It computes the function
3026 $${1\over3\tau}f(\theta,\phi)=
3027 {\tau^{-1}\bigl(2+\sqrt2\,(\sin\theta-{1\over16}\sin\phi)
3028 (\sin\phi-{1\over16}\sin\theta)(\cos\theta-\cos\phi)\bigr)\over
3029 3\,\bigl(1+{1\over2}(\sqrt5-1)\cos\theta+{1\over2}(3-\sqrt5\,)\cos\phi\bigr)},$$
3030 where $\tau$ is a |scaled| ``tension'' parameter. This is \MP's magic
3031 fudge factor for placing the first control point of a curve that starts
3032 at an angle $\theta$ and ends at an angle $\phi$ from the straight path.
3033 (Actually, if the stated quantity exceeds 4, \MP\ reduces it to~4.)
3035 The trigonometric quantity to be multiplied by $\sqrt2$ is less than $\sqrt2$.
3036 (It's a sum of eight terms whose absolute values can be bounded using
3037 relations such as $\sin\theta\cos\theta\L{1\over2}$.) Thus the numerator
3038 is positive; and since the tension $\tau$ is constrained to be at least
3039 $3\over4$, the numerator is less than $16\over3$. The denominator is
3040 nonnegative and at most~6. Hence the fixed-point calculations below
3041 are guaranteed to stay within the bounds of a 32-bit computer word.
3043 The angles $\theta$ and $\phi$ are given implicitly in terms of |fraction|
3044 arguments |st|, |ct|, |sf|, and |cf|, representing $\sin\theta$, $\cos\theta$,
3045 $\sin\phi$, and $\cos\phi$, respectively.
3048 fraction mp_velocity (MP mp,fraction st, fraction ct, fraction sf,
3049 fraction cf, scaled t) {
3050 integer acc,num,denom; /* registers for intermediate calculations */
3051 acc=mp_take_fraction(mp, st-(sf / 16), sf-(st / 16));
3052 acc=mp_take_fraction(mp, acc,ct-cf);
3053 num=fraction_two+mp_take_fraction(mp, acc,379625062);
3054 /* $2^{28}\sqrt2\approx379625062.497$ */
3055 denom=fraction_three+mp_take_fraction(mp, ct,497706707)+mp_take_fraction(mp, cf,307599661);
3056 /* $3\cdot2^{27}\cdot(\sqrt5-1)\approx497706706.78$ and
3057 $3\cdot2^{27}\cdot(3-\sqrt5\,)\approx307599661.22$ */
3058 if ( t!=unity ) num=mp_make_scaled(mp, num,t);
3059 /* |make_scaled(fraction,scaled)=fraction| */
3060 if ( num / 4>=denom )
3061 return fraction_four;
3063 return mp_make_fraction(mp, num, denom);
3066 @ The following somewhat different subroutine tests rigorously if $ab$ is
3067 greater than, equal to, or less than~$cd$,
3068 given integers $(a,b,c,d)$. In most cases a quick decision is reached.
3069 The result is $+1$, 0, or~$-1$ in the three respective cases.
3071 @d mp_ab_vs_cd(M,A,B,C,D) mp_do_ab_vs_cd(A,B,C,D)
3074 integer mp_do_ab_vs_cd (integer a,integer b, integer c, integer d) {
3075 integer q,r; /* temporary registers */
3076 @<Reduce to the case that |a,c>=0|, |b,d>0|@>;
3078 q = a / d; r = c / b;
3080 return ( q>r ? 1 : -1);
3081 q = a % d; r = c % b;
3084 if ( q==0 ) return -1;
3086 } /* now |a>d>0| and |c>b>0| */
3089 @ @<Reduce to the case that |a...@>=
3090 if ( a<0 ) { negate(a); negate(b); };
3091 if ( c<0 ) { negate(c); negate(d); };
3094 if ( (a==0||b==0)&&(c==0||d==0) ) return 0;
3098 return ( a==0 ? 0 : -1);
3099 q=a; a=c; c=q; q=-b; b=-d; d=q;
3100 } else if ( b<=0 ) {
3101 if ( b<0 ) if ( a>0 ) return -1;
3102 return (c==0 ? 0 : -1);
3105 @ We conclude this set of elementary routines with some simple rounding
3106 and truncation operations.
3108 @<Internal library declarations@>=
3109 #define mp_floor_scaled(M,i) ((i)&(-65536))
3110 #define mp_round_unscaled(M,i) (((i>>15)+1)>>1)
3111 #define mp_round_fraction(M,i) (((i>>11)+1)>>1)
3114 @* \[8] Algebraic and transcendental functions.
3115 \MP\ computes all of the necessary special functions from scratch, without
3116 relying on |real| arithmetic or system subroutines for sines, cosines, etc.
3118 @ To get the square root of a |scaled| number |x|, we want to calculate
3119 $s=\lfloor 2^8\!\sqrt x +{1\over2}\rfloor$. If $x>0$, this is the unique
3120 integer such that $2^{16}x-s\L s^2<2^{16}x+s$. The following subroutine
3121 determines $s$ by an iterative method that maintains the invariant
3122 relations $x=2^{46-2k}x_0\bmod 2^{30}$, $0<y=\lfloor 2^{16-2k}x_0\rfloor
3123 -s^2+s\L q=2s$, where $x_0$ is the initial value of $x$. The value of~$y$
3124 might, however, be zero at the start of the first iteration.
3127 scaled mp_square_rt (MP mp,scaled x) ;
3130 scaled mp_square_rt (MP mp,scaled x) {
3131 small_number k; /* iteration control counter */
3132 integer y,q; /* registers for intermediate calculations */
3134 @<Handle square root of zero or negative argument@>;
3137 while ( x<fraction_two ) { /* i.e., |while x<@t$2^{29}$@>|\unskip */
3140 if ( x<fraction_four ) y=0;
3141 else { x=x-fraction_four; y=1; };
3143 @<Decrease |k| by 1, maintaining the invariant
3144 relations between |x|, |y|, and~|q|@>;
3150 @ @<Handle square root of zero...@>=
3153 print_err("Square root of ");
3154 @.Square root...replaced by 0@>
3155 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3156 help2("Since I don't take square roots of negative numbers,")
3157 ("I'm zeroing this one. Proceed, with fingers crossed.");
3163 @ @<Decrease |k| by 1, maintaining...@>=
3165 if ( x>=fraction_four ) { /* note that |fraction_four=@t$2^{30}$@>| */
3166 x=x-fraction_four; incr(y);
3168 x+=x; y=y+y-q; q+=q;
3169 if ( x>=fraction_four ) { x=x-fraction_four; incr(y); };
3170 if ( y>q ){ y=y-q; q=q+2; }
3171 else if ( y<=0 ) { q=q-2; y=y+q; };
3174 @ Pythagorean addition $\psqrt{a^2+b^2}$ is implemented by an elegant
3175 iterative scheme due to Cleve Moler and Donald Morrison [{\sl IBM Journal
3176 @^Moler, Cleve Barry@>
3177 @^Morrison, Donald Ross@>
3178 of Research and Development\/ \bf27} (1983), 577--581]. It modifies |a| and~|b|
3179 in such a way that their Pythagorean sum remains invariant, while the
3180 smaller argument decreases.
3182 @<Internal library ...@>=
3183 integer mp_pyth_add (MP mp,integer a, integer b);
3187 integer mp_pyth_add (MP mp,integer a, integer b) {
3188 fraction r; /* register used to transform |a| and |b| */
3189 boolean big; /* is the result dangerously near $2^{31}$? */
3191 if ( a<b ) { r=b; b=a; a=r; }; /* now |0<=b<=a| */
3193 if ( a<fraction_two ) {
3196 a=a / 4; b=b / 4; big=true;
3197 }; /* we reduced the precision to avoid arithmetic overflow */
3198 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>;
3200 if ( a<fraction_two ) {
3203 mp->arith_error=true; a=el_gordo;
3210 @ The key idea here is to reflect the vector $(a,b)$ about the
3211 line through $(a,b/2)$.
3213 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>=
3215 r=mp_make_fraction(mp, b,a);
3216 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3218 r=mp_make_fraction(mp, r,fraction_four+r);
3219 a=a+mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3223 @ Here is a similar algorithm for $\psqrt{a^2-b^2}$.
3224 It converges slowly when $b$ is near $a$, but otherwise it works fine.
3227 integer mp_pyth_sub (MP mp,integer a, integer b) {
3228 fraction r; /* register used to transform |a| and |b| */
3229 boolean big; /* is the input dangerously near $2^{31}$? */
3232 @<Handle erroneous |pyth_sub| and set |a:=0|@>;
3234 if ( a<fraction_four ) {
3237 a=halfp(a); b=halfp(b); big=true;
3239 @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>;
3240 if ( big ) double(a);
3245 @ @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>=
3247 r=mp_make_fraction(mp, b,a);
3248 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3250 r=mp_make_fraction(mp, r,fraction_four-r);
3251 a=a-mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3254 @ @<Handle erroneous |pyth_sub| and set |a:=0|@>=
3257 print_err("Pythagorean subtraction "); mp_print_scaled(mp, a);
3258 mp_print(mp, "+-+"); mp_print_scaled(mp, b);
3259 mp_print(mp, " has been replaced by 0");
3261 help2("Since I don't take square roots of negative numbers,")
3262 ("I'm zeroing this one. Proceed, with fingers crossed.");
3268 @ The subroutines for logarithm and exponential involve two tables.
3269 The first is simple: |two_to_the[k]| equals $2^k$. The second involves
3270 a bit more calculation, which the author claims to have done correctly:
3271 |spec_log[k]| is $2^{27}$ times $\ln\bigl(1/(1-2^{-k})\bigr)=
3272 2^{-k}+{1\over2}2^{-2k}+{1\over3}2^{-3k}+\cdots\,$, rounded to the
3275 @d two_to_the(A) (1<<(A))
3278 static const integer spec_log[29] = { 0, /* special logarithms */
3279 93032640, 38612034, 17922280, 8662214, 4261238, 2113709,
3280 1052693, 525315, 262400, 131136, 65552, 32772, 16385,
3281 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1 };
3283 @ @<Local variables for initialization@>=
3284 integer k; /* all-purpose loop index */
3287 @ Here is the routine that calculates $2^8$ times the natural logarithm
3288 of a |scaled| quantity; it is an integer approximation to $2^{24}\ln(x/2^{16})$,
3289 when |x| is a given positive integer.
3291 The method is based on exercise 1.2.2--25 in {\sl The Art of Computer
3292 Programming\/}: During the main iteration we have $1\L 2^{-30}x<1/(1-2^{1-k})$,
3293 and the logarithm of $2^{30}x$ remains to be added to an accumulator
3294 register called~$y$. Three auxiliary bits of accuracy are retained in~$y$
3295 during the calculation, and sixteen auxiliary bits to extend |y| are
3296 kept in~|z| during the initial argument reduction. (We add
3297 $100\cdot2^{16}=6553600$ to~|z| and subtract 100 from~|y| so that |z| will
3298 not become negative; also, the actual amount subtracted from~|y| is~96,
3299 not~100, because we want to add~4 for rounding before the final division by~8.)
3302 scaled mp_m_log (MP mp,scaled x) {
3303 integer y,z; /* auxiliary registers */
3304 integer k; /* iteration counter */
3306 @<Handle non-positive logarithm@>;
3308 y=1302456956+4-100; /* $14\times2^{27}\ln2\approx1302456956.421063$ */
3309 z=27595+6553600; /* and $2^{16}\times .421063\approx 27595$ */
3310 while ( x<fraction_four ) {
3311 double(x); y-=93032639; z-=48782;
3312 } /* $2^{27}\ln2\approx 93032639.74436163$ and $2^{16}\times.74436163\approx 48782$ */
3313 y=y+(z / unity); k=2;
3314 while ( x>fraction_four+4 ) {
3315 @<Increase |k| until |x| can be multiplied by a
3316 factor of $2^{-k}$, and adjust $y$ accordingly@>;
3322 @ @<Increase |k| until |x| can...@>=
3324 z=((x-1) / two_to_the(k))+1; /* $z=\lceil x/2^k\rceil$ */
3325 while ( x<fraction_four+z ) { z=halfp(z+1); incr(k); };
3326 y+=spec_log[k]; x-=z;
3329 @ @<Handle non-positive logarithm@>=
3331 print_err("Logarithm of ");
3332 @.Logarithm...replaced by 0@>
3333 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3334 help2("Since I don't take logs of non-positive numbers,")
3335 ("I'm zeroing this one. Proceed, with fingers crossed.");
3340 @ Conversely, the exponential routine calculates $\exp(x/2^8)$,
3341 when |x| is |scaled|. The result is an integer approximation to
3342 $2^{16}\exp(x/2^{24})$, when |x| is regarded as an integer.
3345 scaled mp_m_exp (MP mp,scaled x) {
3346 small_number k; /* loop control index */
3347 integer y,z; /* auxiliary registers */
3348 if ( x>174436200 ) {
3349 /* $2^{24}\ln((2^{31}-1)/2^{16})\approx 174436199.51$ */
3350 mp->arith_error=true;
3352 } else if ( x<-197694359 ) {
3353 /* $2^{24}\ln(2^{-1}/2^{16})\approx-197694359.45$ */
3357 z=-8*x; y=04000000; /* $y=2^{20}$ */
3359 if ( x<=127919879 ) {
3361 /* $2^{27}\ln((2^{31}-1)/2^{20})\approx 1023359037.125$ */
3363 z=8*(174436200-x); /* |z| is always nonnegative */
3367 @<Multiply |y| by $\exp(-z/2^{27})$@>;
3369 return ((y+8) / 16);
3375 @ The idea here is that subtracting |spec_log[k]| from |z| corresponds
3376 to multiplying |y| by $1-2^{-k}$.
3378 A subtle point (which had to be checked) was that if $x=127919879$, the
3379 value of~|y| will decrease so that |y+8| doesn't overflow. In fact,
3380 $z$ will be 5 in this case, and |y| will decrease by~64 when |k=25|
3381 and by~16 when |k=27|.
3383 @<Multiply |y| by...@>=
3386 while ( z>=spec_log[k] ) {
3388 y=y-1-((y-two_to_the(k-1)) / two_to_the(k));
3393 @ The trigonometric subroutines use an auxiliary table such that
3394 |spec_atan[k]| contains an approximation to the |angle| whose tangent
3395 is~$1/2^k$. $\arctan2^{-k}$ times $2^{20}\cdot180/\pi$
3398 static const angle spec_atan[27] = { 0, 27855475, 14718068, 7471121, 3750058,
3399 1876857, 938658, 469357, 234682, 117342, 58671, 29335, 14668, 7334, 3667,
3400 1833, 917, 458, 229, 115, 57, 29, 14, 7, 4, 2, 1 };
3402 @ Given integers |x| and |y|, not both zero, the |n_arg| function
3403 returns the |angle| whose tangent points in the direction $(x,y)$.
3404 This subroutine first determines the correct octant, then solves the
3405 problem for |0<=y<=x|, then converts the result appropriately to
3406 return an answer in the range |-one_eighty_deg<=@t$\theta$@><=one_eighty_deg|.
3407 (The answer is |+one_eighty_deg| if |y=0| and |x<0|, but an answer of
3408 |-one_eighty_deg| is possible if, for example, |y=-1| and $x=-2^{30}$.)
3410 The octants are represented in a ``Gray code,'' since that turns out
3411 to be computationally simplest.
3417 @d second_octant (first_octant+switch_x_and_y)
3418 @d third_octant (first_octant+switch_x_and_y+negate_x)
3419 @d fourth_octant (first_octant+negate_x)
3420 @d fifth_octant (first_octant+negate_x+negate_y)
3421 @d sixth_octant (first_octant+switch_x_and_y+negate_x+negate_y)
3422 @d seventh_octant (first_octant+switch_x_and_y+negate_y)
3423 @d eighth_octant (first_octant+negate_y)
3426 angle mp_n_arg (MP mp,integer x, integer y) {
3427 angle z; /* auxiliary register */
3428 integer t; /* temporary storage */
3429 small_number k; /* loop counter */
3430 int octant; /* octant code */
3432 octant=first_octant;
3434 negate(x); octant=first_octant+negate_x;
3437 negate(y); octant=octant+negate_y;
3440 t=y; y=x; x=t; octant=octant+switch_x_and_y;
3443 @<Handle undefined arg@>;
3445 @<Set variable |z| to the arg of $(x,y)$@>;
3446 @<Return an appropriate answer based on |z| and |octant|@>;
3450 @ @<Handle undefined arg@>=
3452 print_err("angle(0,0) is taken as zero");
3453 @.angle(0,0)...zero@>
3454 help2("The `angle' between two identical points is undefined.")
3455 ("I'm zeroing this one. Proceed, with fingers crossed.");
3460 @ @<Return an appropriate answer...@>=
3462 case first_octant: return z;
3463 case second_octant: return (ninety_deg-z);
3464 case third_octant: return (ninety_deg+z);
3465 case fourth_octant: return (one_eighty_deg-z);
3466 case fifth_octant: return (z-one_eighty_deg);
3467 case sixth_octant: return (-z-ninety_deg);
3468 case seventh_octant: return (z-ninety_deg);
3469 case eighth_octant: return (-z);
3470 }; /* there are no other cases */
3473 @ At this point we have |x>=y>=0|, and |x>0|. The numbers are scaled up
3474 or down until $2^{28}\L x<2^{29}$, so that accurate fixed-point calculations
3477 @<Set variable |z| to the arg...@>=
3478 while ( x>=fraction_two ) {
3479 x=halfp(x); y=halfp(y);
3483 while ( x<fraction_one ) {
3486 @<Increase |z| to the arg of $(x,y)$@>;
3489 @ During the calculations of this section, variables |x| and~|y|
3490 represent actual coordinates $(x,2^{-k}y)$. We will maintain the
3491 condition |x>=y|, so that the tangent will be at most $2^{-k}$.
3492 If $x<2y$, the tangent is greater than $2^{-k-1}$. The transformation
3493 $(a,b)\mapsto(a+b\tan\phi,b-a\tan\phi)$ replaces $(a,b)$ by
3494 coordinates whose angle has decreased by~$\phi$; in the special case
3495 $a=x$, $b=2^{-k}y$, and $\tan\phi=2^{-k-1}$, this operation reduces
3496 to the particularly simple iteration shown here. [Cf.~John E. Meggitt,
3497 @^Meggitt, John E.@>
3498 {\sl IBM Journal of Research and Development\/ \bf6} (1962), 210--226.]
3500 The initial value of |x| will be multiplied by at most
3501 $(1+{1\over2})(1+{1\over8})(1+{1\over32})\cdots\approx 1.7584$; hence
3502 there is no chance of integer overflow.
3504 @<Increase |z|...@>=
3509 z=z+spec_atan[k]; t=x; x=x+(y / two_to_the(k+k)); y=y-t;
3514 if ( y>x ) { z=z+spec_atan[k]; y=y-x; };
3517 @ Conversely, the |n_sin_cos| routine takes an |angle| and produces the sine
3518 and cosine of that angle. The results of this routine are
3519 stored in global integer variables |n_sin| and |n_cos|.
3522 fraction n_sin;fraction n_cos; /* results computed by |n_sin_cos| */
3524 @ Given an integer |z| that is $2^{20}$ times an angle $\theta$ in degrees,
3525 the purpose of |n_sin_cos(z)| is to set
3526 |x=@t$r\cos\theta$@>| and |y=@t$r\sin\theta$@>| (approximately),
3527 for some rather large number~|r|. The maximum of |x| and |y|
3528 will be between $2^{28}$ and $2^{30}$, so that there will be hardly
3529 any loss of accuracy. Then |x| and~|y| are divided by~|r|.
3532 void mp_n_sin_cos (MP mp,angle z) { /* computes a multiple of the sine
3534 small_number k; /* loop control variable */
3535 int q; /* specifies the quadrant */
3536 fraction r; /* magnitude of |(x,y)| */
3537 integer x,y,t; /* temporary registers */
3538 while ( z<0 ) z=z+three_sixty_deg;
3539 z=z % three_sixty_deg; /* now |0<=z<three_sixty_deg| */
3540 q=z / forty_five_deg; z=z % forty_five_deg;
3541 x=fraction_one; y=x;
3542 if ( ! odd(q) ) z=forty_five_deg-z;
3543 @<Subtract angle |z| from |(x,y)|@>;
3544 @<Convert |(x,y)| to the octant determined by~|q|@>;
3545 r=mp_pyth_add(mp, x,y);
3546 mp->n_cos=mp_make_fraction(mp, x,r);
3547 mp->n_sin=mp_make_fraction(mp, y,r);
3550 @ In this case the octants are numbered sequentially.
3552 @<Convert |(x,...@>=
3555 case 1: t=x; x=y; y=t; break;
3556 case 2: t=x; x=-y; y=t; break;
3557 case 3: negate(x); break;
3558 case 4: negate(x); negate(y); break;
3559 case 5: t=x; x=-y; y=-t; break;
3560 case 6: t=x; x=y; y=-t; break;
3561 case 7: negate(y); break;
3562 } /* there are no other cases */
3564 @ The main iteration of |n_sin_cos| is similar to that of |n_arg| but
3565 applied in reverse. The values of |spec_atan[k]| decrease slowly enough
3566 that this loop is guaranteed to terminate before the (nonexistent) value
3567 |spec_atan[27]| would be required.
3569 @<Subtract angle |z|...@>=
3572 if ( z>=spec_atan[k] ) {
3573 z=z-spec_atan[k]; t=x;
3574 x=t+y / two_to_the(k);
3575 y=y-t / two_to_the(k);
3579 if ( y<0 ) y=0 /* this precaution may never be needed */
3581 @ And now let's complete our collection of numeric utility routines
3582 by considering random number generation.
3583 \MP\ generates pseudo-random numbers with the additive scheme recommended
3584 in Section 3.6 of {\sl The Art of Computer Programming}; however, the
3585 results are random fractions between 0 and |fraction_one-1|, inclusive.
3587 There's an auxiliary array |randoms| that contains 55 pseudo-random
3588 fractions. Using the recurrence $x_n=(x_{n-55}-x_{n-31})\bmod 2^{28}$,
3589 we generate batches of 55 new $x_n$'s at a time by calling |new_randoms|.
3590 The global variable |j_random| tells which element has most recently
3592 The global variable |sys_random_seed| was introduced in version 0.9,
3593 for the sole reason of stressing the fact that the initial value of the
3594 random seed is system-dependant. The pascal code below will initialize
3595 this variable to |(internal[mp_time] div unity)+internal[mp_day]|, but this
3596 is not good enough on modern fast machines that are capable of running
3597 multiple MetaPost processes within the same second.
3598 @^system dependencies@>
3601 fraction randoms[55]; /* the last 55 random values generated */
3602 int j_random; /* the number of unused |randoms| */
3603 scaled sys_random_seed; /* the default random seed */
3605 @ @<Exported types@>=
3606 typedef int (*mp_get_random_seed_command)(MP mp);
3609 mp_get_random_seed_command get_random_seed;
3611 @ @<Option variables@>=
3612 mp_get_random_seed_command get_random_seed;
3614 @ @<Allocate or initialize ...@>=
3615 set_callback_option(get_random_seed);
3617 @ @<Internal library declarations@>=
3618 int mp_get_random_seed (MP mp);
3621 int mp_get_random_seed (MP mp) {
3622 return (mp->internal[mp_time] / unity)+mp->internal[mp_day];
3625 @ To consume a random fraction, the program below will say `|next_random|'
3626 and then it will fetch |randoms[j_random]|.
3628 @d next_random { if ( mp->j_random==0 ) mp_new_randoms(mp);
3629 else decr(mp->j_random); }
3632 void mp_new_randoms (MP mp) {
3633 int k; /* index into |randoms| */
3634 fraction x; /* accumulator */
3635 for (k=0;k<=23;k++) {
3636 x=mp->randoms[k]-mp->randoms[k+31];
3637 if ( x<0 ) x=x+fraction_one;
3640 for (k=24;k<= 54;k++){
3641 x=mp->randoms[k]-mp->randoms[k-24];
3642 if ( x<0 ) x=x+fraction_one;
3649 void mp_init_randoms (MP mp,scaled seed);
3651 @ To initialize the |randoms| table, we call the following routine.
3654 void mp_init_randoms (MP mp,scaled seed) {
3655 fraction j,jj,k; /* more or less random integers */
3656 int i; /* index into |randoms| */
3658 while ( j>=fraction_one ) j=halfp(j);
3660 for (i=0;i<=54;i++ ){
3662 if ( k<0 ) k=k+fraction_one;
3663 mp->randoms[(i*21)% 55]=j;
3667 mp_new_randoms(mp); /* ``warm up'' the array */
3670 @ To produce a uniform random number in the range |0<=u<x| or |0>=u>x|
3671 or |0=u=x|, given a |scaled| value~|x|, we proceed as shown here.
3673 Note that the call of |take_fraction| will produce the values 0 and~|x|
3674 with about half the probability that it will produce any other particular
3675 values between 0 and~|x|, because it rounds its answers.
3678 scaled mp_unif_rand (MP mp,scaled x) {
3679 scaled y; /* trial value */
3680 next_random; y=mp_take_fraction(mp, abs(x),mp->randoms[mp->j_random]);
3681 if ( y==abs(x) ) return 0;
3682 else if ( x>0 ) return y;
3686 @ Finally, a normal deviate with mean zero and unit standard deviation
3687 can readily be obtained with the ratio method (Algorithm 3.4.1R in
3688 {\sl The Art of Computer Programming\/}).
3691 scaled mp_norm_rand (MP mp) {
3692 integer x,u,l; /* what the book would call $2^{16}X$, $2^{28}U$, and $-2^{24}\ln U$ */
3696 x=mp_take_fraction(mp, 112429,mp->randoms[mp->j_random]-fraction_half);
3697 /* $2^{16}\sqrt{8/e}\approx 112428.82793$ */
3698 next_random; u=mp->randoms[mp->j_random];
3699 } while (abs(x)>=u);
3700 x=mp_make_fraction(mp, x,u);
3701 l=139548960-mp_m_log(mp, u); /* $2^{24}\cdot12\ln2\approx139548959.6165$ */
3702 } while (mp_ab_vs_cd(mp, 1024,l,x,x)<0);
3706 @* \[9] Packed data.
3707 In order to make efficient use of storage space, \MP\ bases its major data
3708 structures on a |memory_word|, which contains either a (signed) integer,
3709 possibly scaled, or a small number of fields that are one half or one
3710 quarter of the size used for storing integers.
3712 If |x| is a variable of type |memory_word|, it contains up to four
3713 fields that can be referred to as follows:
3714 $$\vbox{\halign{\hfil#&#\hfil&#\hfil\cr
3715 |x|&.|int|&(an |integer|)\cr
3716 |x|&.|sc|\qquad&(a |scaled| integer)\cr
3717 |x.hh.lh|, |x.hh|&.|rh|&(two halfword fields)\cr
3718 |x.hh.b0|, |x.hh.b1|, |x.hh|&.|rh|&(two quarterword fields, one halfword
3720 |x.qqqq.b0|, |x.qqqq.b1|, |x.qqqq|&.|b2|, |x.qqqq.b3|\hskip-100pt
3721 &\qquad\qquad\qquad(four quarterword fields)\cr}}$$
3722 This is somewhat cumbersome to write, and not very readable either, but
3723 macros will be used to make the notation shorter and more transparent.
3724 The code below gives a formal definition of |memory_word| and
3725 its subsidiary types, using packed variant records. \MP\ makes no
3726 assumptions about the relative positions of the fields within a word.
3728 @d max_quarterword 0x3FFF /* largest allowable value in a |quarterword| */
3729 @d max_halfword 0xFFFFFFF /* largest allowable value in a |halfword| */
3731 @ Here are the inequalities that the quarterword and halfword values
3732 must satisfy (or rather, the inequalities that they mustn't satisfy):
3734 @<Check the ``constant''...@>=
3735 if (mp->ini_version) {
3736 if ( mp->mem_max!=mp->mem_top ) mp->bad=8;
3738 if ( mp->mem_max<mp->mem_top ) mp->bad=8;
3740 if ( max_quarterword<255 ) mp->bad=9;
3741 if ( max_halfword<65535 ) mp->bad=10;
3742 if ( max_quarterword>max_halfword ) mp->bad=11;
3743 if ( mp->mem_max>=max_halfword ) mp->bad=12;
3744 if ( mp->max_strings>max_halfword ) mp->bad=13;
3746 @ The macros |qi| and |qo| are used for input to and output
3747 from quarterwords. These are legacy macros.
3748 @^system dependencies@>
3750 @d qo(A) (A) /* to read eight bits from a quarterword */
3751 @d qi(A) (A) /* to store eight bits in a quarterword */
3753 @ The reader should study the following definitions closely:
3754 @^system dependencies@>
3756 @d sc cint /* |scaled| data is equivalent to |integer| */
3759 typedef short quarterword; /* 1/4 of a word */
3760 typedef int halfword; /* 1/2 of a word */
3765 struct { /* Make B0,B1 overlap the most significant bytes of LH. */
3772 quarterword B2, B3, B0, B1;
3787 @ When debugging, we may want to print a |memory_word| without knowing
3788 what type it is; so we print it in all modes.
3789 @^dirty \PASCAL@>@^debugging@>
3792 void mp_print_word (MP mp,memory_word w) {
3793 /* prints |w| in all ways */
3794 mp_print_int(mp, w.cint); mp_print_char(mp, ' ');
3795 mp_print_scaled(mp, w.sc); mp_print_char(mp, ' ');
3796 mp_print_scaled(mp, w.sc / 010000); mp_print_ln(mp);
3797 mp_print_int(mp, w.hh.lh); mp_print_char(mp, '=');
3798 mp_print_int(mp, w.hh.b0); mp_print_char(mp, ':');
3799 mp_print_int(mp, w.hh.b1); mp_print_char(mp, ';');
3800 mp_print_int(mp, w.hh.rh); mp_print_char(mp, ' ');
3801 mp_print_int(mp, w.qqqq.b0); mp_print_char(mp, ':');
3802 mp_print_int(mp, w.qqqq.b1); mp_print_char(mp, ':');
3803 mp_print_int(mp, w.qqqq.b2); mp_print_char(mp, ':');
3804 mp_print_int(mp, w.qqqq.b3);
3808 @* \[10] Dynamic memory allocation.
3810 The \MP\ system does nearly all of its own memory allocation, so that it
3811 can readily be transported into environments that do not have automatic
3812 facilities for strings, garbage collection, etc., and so that it can be in
3813 control of what error messages the user receives. The dynamic storage
3814 requirements of \MP\ are handled by providing a large array |mem| in
3815 which consecutive blocks of words are used as nodes by the \MP\ routines.
3817 Pointer variables are indices into this array, or into another array
3818 called |eqtb| that will be explained later. A pointer variable might
3819 also be a special flag that lies outside the bounds of |mem|, so we
3820 allow pointers to assume any |halfword| value. The minimum memory
3821 index represents a null pointer.
3823 @d null 0 /* the null pointer */
3824 @d mp_void (null+1) /* a null pointer different from |null| */
3828 typedef halfword pointer; /* a flag or a location in |mem| or |eqtb| */
3830 @ The |mem| array is divided into two regions that are allocated separately,
3831 but the dividing line between these two regions is not fixed; they grow
3832 together until finding their ``natural'' size in a particular job.
3833 Locations less than or equal to |lo_mem_max| are used for storing
3834 variable-length records consisting of two or more words each. This region
3835 is maintained using an algorithm similar to the one described in exercise
3836 2.5--19 of {\sl The Art of Computer Programming}. However, no size field
3837 appears in the allocated nodes; the program is responsible for knowing the
3838 relevant size when a node is freed. Locations greater than or equal to
3839 |hi_mem_min| are used for storing one-word records; a conventional
3840 \.{AVAIL} stack is used for allocation in this region.
3842 Locations of |mem| between |0| and |mem_top| may be dumped as part
3843 of preloaded format files, by the \.{INIMP} preprocessor.
3845 Production versions of \MP\ may extend the memory at the top end in order to
3846 provide more space; these locations, between |mem_top| and |mem_max|,
3847 are always used for single-word nodes.
3849 The key pointers that govern |mem| allocation have a prescribed order:
3850 $$\hbox{|null=0<lo_mem_max<hi_mem_min<mem_top<=mem_end<=mem_max|.}$$
3853 memory_word *mem; /* the big dynamic storage area */
3854 pointer lo_mem_max; /* the largest location of variable-size memory in use */
3855 pointer hi_mem_min; /* the smallest location of one-word memory in use */
3859 @d xfree(A) do { mp_xfree(A); A=NULL; } while (0)
3860 @d xrealloc(P,A,B) mp_xrealloc(mp,P,A,B)
3861 @d xmalloc(A,B) mp_xmalloc(mp,A,B)
3862 @d xstrdup(A) mp_xstrdup(mp,A)
3863 @d XREALLOC(a,b,c) a = xrealloc(a,(b+1),sizeof(c));
3865 @<Declare helpers@>=
3866 void mp_xfree (void *x);
3867 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) ;
3868 void *mp_xmalloc (MP mp, size_t nmem, size_t size) ;
3869 char *mp_xstrdup(MP mp, const char *s);
3871 @ The |max_size_test| guards against overflow, on the assumption that
3872 |size_t| is at least 31bits wide.
3874 @d max_size_test 0x7FFFFFFF
3877 void mp_xfree (void *x) {
3878 if (x!=NULL) free(x);
3880 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) {
3882 if ((max_size_test/size)<nmem) {
3883 fprintf(stderr,"Memory size overflow!\n");
3884 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3886 w = realloc (p,(nmem*size));
3888 fprintf(stderr,"Out of memory!\n");
3889 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3893 void *mp_xmalloc (MP mp, size_t nmem, size_t size) {
3895 if ((max_size_test/size)<nmem) {
3896 fprintf(stderr,"Memory size overflow!\n");
3897 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3899 w = malloc (nmem*size);
3901 fprintf(stderr,"Out of memory!\n");
3902 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3906 char *mp_xstrdup(MP mp, const char *s) {
3912 fprintf(stderr,"Out of memory!\n");
3913 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3920 @<Allocate or initialize ...@>=
3921 mp->mem = xmalloc ((mp->mem_max+1),sizeof (memory_word));
3922 memset(mp->mem,0,(mp->mem_max+1)*sizeof (memory_word));
3924 @ @<Dealloc variables@>=
3927 @ Users who wish to study the memory requirements of particular applications can
3928 can use optional special features that keep track of current and
3929 maximum memory usage. When code between the delimiters |stat| $\ldots$
3930 |tats| is not ``commented out,'' \MP\ will run a bit slower but it will
3931 report these statistics when |mp_tracing_stats| is positive.
3934 integer var_used; integer dyn_used; /* how much memory is in use */
3936 @ Let's consider the one-word memory region first, since it's the
3937 simplest. The pointer variable |mem_end| holds the highest-numbered location
3938 of |mem| that has ever been used. The free locations of |mem| that
3939 occur between |hi_mem_min| and |mem_end|, inclusive, are of type
3940 |two_halves|, and we write |info(p)| and |link(p)| for the |lh|
3941 and |rh| fields of |mem[p]| when it is of this type. The single-word
3942 free locations form a linked list
3943 $$|avail|,\;\hbox{|link(avail)|},\;\hbox{|link(link(avail))|},\;\ldots$$
3944 terminated by |null|.
3946 @d link(A) mp->mem[(A)].hh.rh /* the |link| field of a memory word */
3947 @d info(A) mp->mem[(A)].hh.lh /* the |info| field of a memory word */
3950 pointer avail; /* head of the list of available one-word nodes */
3951 pointer mem_end; /* the last one-word node used in |mem| */
3953 @ If one-word memory is exhausted, it might mean that the user has forgotten
3954 a token like `\&{enddef}' or `\&{endfor}'. We will define some procedures
3955 later that try to help pinpoint the trouble.
3958 @<Declare the procedure called |show_token_list|@>;
3959 @<Declare the procedure called |runaway|@>
3961 @ The function |get_avail| returns a pointer to a new one-word node whose
3962 |link| field is null. However, \MP\ will halt if there is no more room left.
3966 pointer mp_get_avail (MP mp) { /* single-word node allocation */
3967 pointer p; /* the new node being got */
3968 p=mp->avail; /* get top location in the |avail| stack */
3970 mp->avail=link(mp->avail); /* and pop it off */
3971 } else if ( mp->mem_end<mp->mem_max ) { /* or go into virgin territory */
3972 incr(mp->mem_end); p=mp->mem_end;
3974 decr(mp->hi_mem_min); p=mp->hi_mem_min;
3975 if ( mp->hi_mem_min<=mp->lo_mem_max ) {
3976 mp_runaway(mp); /* if memory is exhausted, display possible runaway text */
3977 mp_overflow(mp, "main memory size",mp->mem_max);
3978 /* quit; all one-word nodes are busy */
3979 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
3982 link(p)=null; /* provide an oft-desired initialization of the new node */
3983 incr(mp->dyn_used);/* maintain statistics */
3987 @ Conversely, a one-word node is recycled by calling |free_avail|.
3989 @d free_avail(A) /* single-word node liberation */
3990 { link((A))=mp->avail; mp->avail=(A); decr(mp->dyn_used); }
3992 @ There's also a |fast_get_avail| routine, which saves the procedure-call
3993 overhead at the expense of extra programming. This macro is used in
3994 the places that would otherwise account for the most calls of |get_avail|.
3997 @d fast_get_avail(A) {
3998 (A)=mp->avail; /* avoid |get_avail| if possible, to save time */
3999 if ( (A)==null ) { (A)=mp_get_avail(mp); }
4000 else { mp->avail=link((A)); link((A))=null; incr(mp->dyn_used); }
4003 @ The available-space list that keeps track of the variable-size portion
4004 of |mem| is a nonempty, doubly-linked circular list of empty nodes,
4005 pointed to by the roving pointer |rover|.
4007 Each empty node has size 2 or more; the first word contains the special
4008 value |max_halfword| in its |link| field and the size in its |info| field;
4009 the second word contains the two pointers for double linking.
4011 Each nonempty node also has size 2 or more. Its first word is of type
4012 |two_halves|\kern-1pt, and its |link| field is never equal to |max_halfword|.
4013 Otherwise there is complete flexibility with respect to the contents
4014 of its other fields and its other words.
4016 (We require |mem_max<max_halfword| because terrible things can happen
4017 when |max_halfword| appears in the |link| field of a nonempty node.)
4019 @d empty_flag max_halfword /* the |link| of an empty variable-size node */
4020 @d is_empty(A) (link((A))==empty_flag) /* tests for empty node */
4021 @d node_size info /* the size field in empty variable-size nodes */
4022 @d llink(A) info((A)+1) /* left link in doubly-linked list of empty nodes */
4023 @d rlink(A) link((A)+1) /* right link in doubly-linked list of empty nodes */
4026 pointer rover; /* points to some node in the list of empties */
4028 @ A call to |get_node| with argument |s| returns a pointer to a new node
4029 of size~|s|, which must be 2~or more. The |link| field of the first word
4030 of this new node is set to null. An overflow stop occurs if no suitable
4033 If |get_node| is called with $s=2^{30}$, it simply merges adjacent free
4034 areas and returns the value |max_halfword|.
4037 pointer mp_get_node (MP mp,integer s) ;
4040 pointer mp_get_node (MP mp,integer s) { /* variable-size node allocation */
4041 pointer p; /* the node currently under inspection */
4042 pointer q; /* the node physically after node |p| */
4043 integer r; /* the newly allocated node, or a candidate for this honor */
4044 integer t,tt; /* temporary registers */
4047 p=mp->rover; /* start at some free node in the ring */
4049 @<Try to allocate within node |p| and its physical successors,
4050 and |goto found| if allocation was possible@>;
4051 if (rlink(p)==null) {
4052 print_err("Free list garbled");
4053 help3("I found an entry in the list of free nodes that points")
4054 ("nowhere. I will try to ignore the broken link, but something")
4055 ("is seriously amiss. It is wise to warn the maintainers.")
4059 p=rlink(p); /* move to the next node in the ring */
4060 } while (p!=mp->rover); /* repeat until the whole list has been traversed */
4061 if ( s==010000000000 ) {
4062 return max_halfword;
4064 if ( mp->lo_mem_max+2<mp->hi_mem_min ) {
4065 if ( mp->lo_mem_max+2<=max_halfword ) {
4066 @<Grow more variable-size memory and |goto restart|@>;
4069 mp_overflow(mp, "main memory size",mp->mem_max);
4070 /* sorry, nothing satisfactory is left */
4071 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
4073 link(r)=null; /* this node is now nonempty */
4074 mp->var_used+=s; /* maintain usage statistics */
4078 @ The lower part of |mem| grows by 1000 words at a time, unless
4079 we are very close to going under. When it grows, we simply link
4080 a new node into the available-space list. This method of controlled
4081 growth helps to keep the |mem| usage consecutive when \MP\ is
4082 implemented on ``virtual memory'' systems.
4085 @<Grow more variable-size memory and |goto restart|@>=
4087 if ( mp->hi_mem_min-mp->lo_mem_max>=1998 ) {
4088 t=mp->lo_mem_max+1000;
4090 t=mp->lo_mem_max+1+(mp->hi_mem_min-mp->lo_mem_max) / 2;
4091 /* |lo_mem_max+2<=t<hi_mem_min| */
4093 if ( t>max_halfword ) t=max_halfword;
4094 p=llink(mp->rover); q=mp->lo_mem_max; rlink(p)=q; llink(mp->rover)=q;
4095 rlink(q)=mp->rover; llink(q)=p; link(q)=empty_flag;
4096 node_size(q)=t-mp->lo_mem_max;
4097 mp->lo_mem_max=t; link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4102 @ @<Try to allocate...@>=
4103 q=p+node_size(p); /* find the physical successor */
4104 while ( is_empty(q) ) { /* merge node |p| with node |q| */
4105 t=rlink(q); tt=llink(q);
4107 if ( q==mp->rover ) mp->rover=t;
4108 llink(t)=tt; rlink(tt)=t;
4113 @<Allocate from the top of node |p| and |goto found|@>;
4116 if ( rlink(p)!=p ) {
4117 @<Allocate entire node |p| and |goto found|@>;
4120 node_size(p)=q-p /* reset the size in case it grew */
4122 @ @<Allocate from the top...@>=
4124 node_size(p)=r-p; /* store the remaining size */
4125 mp->rover=p; /* start searching here next time */
4129 @ Here we delete node |p| from the ring, and let |rover| rove around.
4131 @<Allocate entire...@>=
4133 mp->rover=rlink(p); t=llink(p);
4134 llink(mp->rover)=t; rlink(t)=mp->rover;
4138 @ Conversely, when some variable-size node |p| of size |s| is no longer needed,
4139 the operation |free_node(p,s)| will make its words available, by inserting
4140 |p| as a new empty node just before where |rover| now points.
4143 void mp_free_node (MP mp, pointer p, halfword s) ;
4146 void mp_free_node (MP mp, pointer p, halfword s) { /* variable-size node
4148 pointer q; /* |llink(rover)| */
4149 node_size(p)=s; link(p)=empty_flag;
4151 q=llink(mp->rover); llink(p)=q; rlink(p)=mp->rover; /* set both links */
4152 llink(mp->rover)=p; rlink(q)=p; /* insert |p| into the ring */
4153 mp->var_used-=s; /* maintain statistics */
4156 @ Just before \.{INIMP} writes out the memory, it sorts the doubly linked
4157 available space list. The list is probably very short at such times, so a
4158 simple insertion sort is used. The smallest available location will be
4159 pointed to by |rover|, the next-smallest by |rlink(rover)|, etc.
4162 void mp_sort_avail (MP mp) { /* sorts the available variable-size nodes
4164 pointer p,q,r; /* indices into |mem| */
4165 pointer old_rover; /* initial |rover| setting */
4166 p=mp_get_node(mp, 010000000000); /* merge adjacent free areas */
4167 p=rlink(mp->rover); rlink(mp->rover)=max_halfword; old_rover=mp->rover;
4168 while ( p!=old_rover ) {
4169 @<Sort |p| into the list starting at |rover|
4170 and advance |p| to |rlink(p)|@>;
4173 while ( rlink(p)!=max_halfword ) {
4174 llink(rlink(p))=p; p=rlink(p);
4176 rlink(p)=mp->rover; llink(mp->rover)=p;
4179 @ The following |while| loop is guaranteed to
4180 terminate, since the list that starts at
4181 |rover| ends with |max_halfword| during the sorting procedure.
4184 if ( p<mp->rover ) {
4185 q=p; p=rlink(q); rlink(q)=mp->rover; mp->rover=q;
4188 while ( rlink(q)<p ) q=rlink(q);
4189 r=rlink(p); rlink(p)=rlink(q); rlink(q)=p; p=r;
4192 @* \[11] Memory layout.
4193 Some areas of |mem| are dedicated to fixed usage, since static allocation is
4194 more efficient than dynamic allocation when we can get away with it. For
4195 example, locations |0| to |1| are always used to store a
4196 two-word dummy token whose second word is zero.
4197 The following macro definitions accomplish the static allocation by giving
4198 symbolic names to the fixed positions. Static variable-size nodes appear
4199 in locations |0| through |lo_mem_stat_max|, and static single-word nodes
4200 appear in locations |hi_mem_stat_min| through |mem_top|, inclusive.
4202 @d null_dash (2) /* the first two words are reserved for a null value */
4203 @d dep_head (null_dash+3) /* we will define |dash_node_size=3| */
4204 @d zero_val (dep_head+2) /* two words for a permanently zero value */
4205 @d temp_val (zero_val+2) /* two words for a temporary value node */
4206 @d end_attr temp_val /* we use |end_attr+2| only */
4207 @d inf_val (end_attr+2) /* and |inf_val+1| only */
4208 @d test_pen (inf_val+2)
4209 /* nine words for a pen used when testing the turning number */
4210 @d bad_vardef (test_pen+9) /* two words for \&{vardef} error recovery */
4211 @d lo_mem_stat_max (bad_vardef+1) /* largest statically
4212 allocated word in the variable-size |mem| */
4214 @d sentinel mp->mem_top /* end of sorted lists */
4215 @d temp_head (mp->mem_top-1) /* head of a temporary list of some kind */
4216 @d hold_head (mp->mem_top-2) /* head of a temporary list of another kind */
4217 @d spec_head (mp->mem_top-3) /* head of a list of unprocessed \&{special} items */
4218 @d hi_mem_stat_min (mp->mem_top-3) /* smallest statically allocated word in
4219 the one-word |mem| */
4221 @ The following code gets the dynamic part of |mem| off to a good start,
4222 when \MP\ is initializing itself the slow way.
4224 @<Initialize table entries (done by \.{INIMP} only)@>=
4225 @^data structure assumptions@>
4226 mp->rover=lo_mem_stat_max+1; /* initialize the dynamic memory */
4227 link(mp->rover)=empty_flag;
4228 node_size(mp->rover)=1000; /* which is a 1000-word available node */
4229 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
4230 mp->lo_mem_max=mp->rover+1000;
4231 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4232 for (k=hi_mem_stat_min;k<=(int)mp->mem_top;k++) {
4233 mp->mem[k]=mp->mem[mp->lo_mem_max]; /* clear list heads */
4235 mp->avail=null; mp->mem_end=mp->mem_top;
4236 mp->hi_mem_min=hi_mem_stat_min; /* initialize the one-word memory */
4237 mp->var_used=lo_mem_stat_max+1;
4238 mp->dyn_used=mp->mem_top+1-(hi_mem_stat_min); /* initialize statistics */
4239 @<Initialize a pen at |test_pen| so that it fits in nine words@>;
4241 @ The procedure |flush_list(p)| frees an entire linked list of one-word
4242 nodes that starts at a given position, until coming to |sentinel| or a
4243 pointer that is not in the one-word region. Another procedure,
4244 |flush_node_list|, frees an entire linked list of one-word and two-word
4245 nodes, until coming to a |null| pointer.
4249 void mp_flush_list (MP mp,pointer p) { /* makes list of single-word nodes available */
4250 pointer q,r; /* list traversers */
4251 if ( p>=mp->hi_mem_min ) if ( p!=sentinel ) {
4256 if ( r<mp->hi_mem_min ) break;
4257 } while (r!=sentinel);
4258 /* now |q| is the last node on the list */
4259 link(q)=mp->avail; mp->avail=p;
4263 void mp_flush_node_list (MP mp,pointer p) {
4264 pointer q; /* the node being recycled */
4267 if ( q<mp->hi_mem_min )
4268 mp_free_node(mp, q,2);
4274 @ If \MP\ is extended improperly, the |mem| array might get screwed up.
4275 For example, some pointers might be wrong, or some ``dead'' nodes might not
4276 have been freed when the last reference to them disappeared. Procedures
4277 |check_mem| and |search_mem| are available to help diagnose such
4278 problems. These procedures make use of two arrays called |free| and
4279 |was_free| that are present only if \MP's debugging routines have
4280 been included. (You may want to decrease the size of |mem| while you
4284 Because |boolean|s are typedef-d as ints, it is better to use
4285 unsigned chars here.
4288 unsigned char *free; /* free cells */
4289 unsigned char *was_free; /* previously free cells */
4290 pointer was_mem_end; pointer was_lo_max; pointer was_hi_min;
4291 /* previous |mem_end|, |lo_mem_max|,and |hi_mem_min| */
4292 boolean panicking; /* do we want to check memory constantly? */
4294 @ @<Allocate or initialize ...@>=
4295 mp->free = xmalloc ((mp->mem_max+1),sizeof (unsigned char));
4296 mp->was_free = xmalloc ((mp->mem_max+1), sizeof (unsigned char));
4298 @ @<Dealloc variables@>=
4300 xfree(mp->was_free);
4302 @ @<Allocate or ...@>=
4303 mp->was_mem_end=0; /* indicate that everything was previously free */
4304 mp->was_lo_max=0; mp->was_hi_min=mp->mem_max;
4305 mp->panicking=false;
4307 @ @<Declare |mp_reallocate| functions@>=
4308 void mp_reallocate_memory(MP mp, int l) ;
4311 void mp_reallocate_memory(MP mp, int l) {
4312 XREALLOC(mp->free, l, unsigned char);
4313 XREALLOC(mp->was_free, l, unsigned char);
4315 int newarea = l-mp->mem_max;
4316 XREALLOC(mp->mem, l, memory_word);
4317 memset (mp->mem+(mp->mem_max+1),0,sizeof(memory_word)*(newarea));
4319 XREALLOC(mp->mem, l, memory_word);
4320 memset(mp->mem,0,sizeof(memory_word)*(l+1));
4323 if (mp->ini_version)
4329 @ Procedure |check_mem| makes sure that the available space lists of
4330 |mem| are well formed, and it optionally prints out all locations
4331 that are reserved now but were free the last time this procedure was called.
4334 void mp_check_mem (MP mp,boolean print_locs ) {
4335 pointer p,q,r; /* current locations of interest in |mem| */
4336 boolean clobbered; /* is something amiss? */
4337 for (p=0;p<=mp->lo_mem_max;p++) {
4338 mp->free[p]=false; /* you can probably do this faster */
4340 for (p=mp->hi_mem_min;p<= mp->mem_end;p++) {
4341 mp->free[p]=false; /* ditto */
4343 @<Check single-word |avail| list@>;
4344 @<Check variable-size |avail| list@>;
4345 @<Check flags of unavailable nodes@>;
4346 @<Check the list of linear dependencies@>;
4348 @<Print newly busy locations@>;
4350 memcpy(mp->was_free,mp->free, sizeof(char)*(mp->mem_end+1));
4351 mp->was_mem_end=mp->mem_end;
4352 mp->was_lo_max=mp->lo_mem_max;
4353 mp->was_hi_min=mp->hi_mem_min;
4356 @ @<Check single-word...@>=
4357 p=mp->avail; q=null; clobbered=false;
4359 if ( (p>mp->mem_end)||(p<mp->hi_mem_min) ) clobbered=true;
4360 else if ( mp->free[p] ) clobbered=true;
4362 mp_print_nl(mp, "AVAIL list clobbered at ");
4363 @.AVAIL list clobbered...@>
4364 mp_print_int(mp, q); break;
4366 mp->free[p]=true; q=p; p=link(q);
4369 @ @<Check variable-size...@>=
4370 p=mp->rover; q=null; clobbered=false;
4372 if ( (p>=mp->lo_mem_max)||(p<0) ) clobbered=true;
4373 else if ( (rlink(p)>=mp->lo_mem_max)||(rlink(p)<0) ) clobbered=true;
4374 else if ( !(is_empty(p))||(node_size(p)<2)||
4375 (p+node_size(p)>mp->lo_mem_max)|| (llink(rlink(p))!=p) ) clobbered=true;
4377 mp_print_nl(mp, "Double-AVAIL list clobbered at ");
4378 @.Double-AVAIL list clobbered...@>
4379 mp_print_int(mp, q); break;
4381 for (q=p;q<=p+node_size(p)-1;q++) { /* mark all locations free */
4382 if ( mp->free[q] ) {
4383 mp_print_nl(mp, "Doubly free location at ");
4384 @.Doubly free location...@>
4385 mp_print_int(mp, q); break;
4390 } while (p!=mp->rover)
4393 @ @<Check flags...@>=
4395 while ( p<=mp->lo_mem_max ) { /* node |p| should not be empty */
4396 if ( is_empty(p) ) {
4397 mp_print_nl(mp, "Bad flag at "); mp_print_int(mp, p);
4400 while ( (p<=mp->lo_mem_max) && ! mp->free[p] ) incr(p);
4401 while ( (p<=mp->lo_mem_max) && mp->free[p] ) incr(p);
4404 @ @<Print newly busy...@>=
4406 @<Do intialization required before printing new busy locations@>;
4407 mp_print_nl(mp, "New busy locs:");
4409 for (p=0;p<= mp->lo_mem_max;p++ ) {
4410 if ( ! mp->free[p] && ((p>mp->was_lo_max) || mp->was_free[p]) ) {
4411 @<Indicate that |p| is a new busy location@>;
4414 for (p=mp->hi_mem_min;p<=mp->mem_end;p++ ) {
4415 if ( ! mp->free[p] &&
4416 ((p<mp->was_hi_min) || (p>mp->was_mem_end) || mp->was_free[p]) ) {
4417 @<Indicate that |p| is a new busy location@>;
4420 @<Finish printing new busy locations@>;
4423 @ There might be many new busy locations so we are careful to print contiguous
4424 blocks compactly. During this operation |q| is the last new busy location and
4425 |r| is the start of the block containing |q|.
4427 @<Indicate that |p| is a new busy location@>=
4431 mp_print(mp, ".."); mp_print_int(mp, q);
4433 mp_print_char(mp, ' '); mp_print_int(mp, p);
4439 @ @<Do intialization required before printing new busy locations@>=
4440 q=mp->mem_max; r=mp->mem_max
4442 @ @<Finish printing new busy locations@>=
4444 mp_print(mp, ".."); mp_print_int(mp, q);
4447 @ The |search_mem| procedure attempts to answer the question ``Who points
4448 to node~|p|?'' In doing so, it fetches |link| and |info| fields of |mem|
4449 that might not be of type |two_halves|. Strictly speaking, this is
4451 undefined in \PASCAL, and it can lead to ``false drops'' (words that seem to
4452 point to |p| purely by coincidence). But for debugging purposes, we want
4453 to rule out the places that do {\sl not\/} point to |p|, so a few false
4454 drops are tolerable.
4457 void mp_search_mem (MP mp, pointer p) { /* look for pointers to |p| */
4458 integer q; /* current position being searched */
4459 for (q=0;q<=mp->lo_mem_max;q++) {
4461 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4464 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4467 for (q=mp->hi_mem_min;q<=mp->mem_end;q++) {
4469 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4472 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4475 @<Search |eqtb| for equivalents equal to |p|@>;
4478 @* \[12] The command codes.
4479 Before we can go much further, we need to define symbolic names for the internal
4480 code numbers that represent the various commands obeyed by \MP. These codes
4481 are somewhat arbitrary, but not completely so. For example,
4482 some codes have been made adjacent so that |case| statements in the
4483 program need not consider cases that are widely spaced, or so that |case|
4484 statements can be replaced by |if| statements. A command can begin an
4485 expression if and only if its code lies between |min_primary_command| and
4486 |max_primary_command|, inclusive. The first token of a statement that doesn't
4487 begin with an expression has a command code between |min_command| and
4488 |max_statement_command|, inclusive. Anything less than |min_command| is
4489 eliminated during macro expansions, and anything no more than |max_pre_command|
4490 is eliminated when expanding \TeX\ material. Ranges such as
4491 |min_secondary_command..max_secondary_command| are used when parsing
4492 expressions, but the relative ordering within such a range is generally not
4495 The ordering of the highest-numbered commands
4496 (|comma<semicolon<end_group<stop|) is crucial for the parsing and
4497 error-recovery methods of this program as is the ordering |if_test<fi_or_else|
4498 for the smallest two commands. The ordering is also important in the ranges
4499 |numeric_token..plus_or_minus| and |left_brace..ampersand|.
4501 At any rate, here is the list, for future reference.
4503 @d start_tex 1 /* begin \TeX\ material (\&{btex}, \&{verbatimtex}) */
4504 @d etex_marker 2 /* end \TeX\ material (\&{etex}) */
4505 @d mpx_break 3 /* stop reading an \.{MPX} file (\&{mpxbreak}) */
4506 @d max_pre_command mpx_break
4507 @d if_test 4 /* conditional text (\&{if}) */
4508 @d fi_or_else 5 /* delimiters for conditionals (\&{elseif}, \&{else}, \&{fi} */
4509 @d input 6 /* input a source file (\&{input}, \&{endinput}) */
4510 @d iteration 7 /* iterate (\&{for}, \&{forsuffixes}, \&{forever}, \&{endfor}) */
4511 @d repeat_loop 8 /* special command substituted for \&{endfor} */
4512 @d exit_test 9 /* premature exit from a loop (\&{exitif}) */
4513 @d relax 10 /* do nothing (\.{\char`\\}) */
4514 @d scan_tokens 11 /* put a string into the input buffer */
4515 @d expand_after 12 /* look ahead one token */
4516 @d defined_macro 13 /* a macro defined by the user */
4517 @d min_command (defined_macro+1)
4518 @d save_command 14 /* save a list of tokens (\&{save}) */
4519 @d interim_command 15 /* save an internal quantity (\&{interim}) */
4520 @d let_command 16 /* redefine a symbolic token (\&{let}) */
4521 @d new_internal 17 /* define a new internal quantity (\&{newinternal}) */
4522 @d macro_def 18 /* define a macro (\&{def}, \&{vardef}, etc.) */
4523 @d ship_out_command 19 /* output a character (\&{shipout}) */
4524 @d add_to_command 20 /* add to edges (\&{addto}) */
4525 @d bounds_command 21 /* add bounding path to edges (\&{setbounds}, \&{clip}) */
4526 @d tfm_command 22 /* command for font metric info (\&{ligtable}, etc.) */
4527 @d protection_command 23 /* set protection flag (\&{outer}, \&{inner}) */
4528 @d show_command 24 /* diagnostic output (\&{show}, \&{showvariable}, etc.) */
4529 @d mode_command 25 /* set interaction level (\&{batchmode}, etc.) */
4530 @d random_seed 26 /* initialize random number generator (\&{randomseed}) */
4531 @d message_command 27 /* communicate to user (\&{message}, \&{errmessage}) */
4532 @d every_job_command 28 /* designate a starting token (\&{everyjob}) */
4533 @d delimiters 29 /* define a pair of delimiters (\&{delimiters}) */
4534 @d special_command 30 /* output special info (\&{special})
4535 or font map info (\&{fontmapfile}, \&{fontmapline}) */
4536 @d write_command 31 /* write text to a file (\&{write}) */
4537 @d type_name 32 /* declare a type (\&{numeric}, \&{pair}, etc. */
4538 @d max_statement_command type_name
4539 @d min_primary_command type_name
4540 @d left_delimiter 33 /* the left delimiter of a matching pair */
4541 @d begin_group 34 /* beginning of a group (\&{begingroup}) */
4542 @d nullary 35 /* an operator without arguments (e.g., \&{normaldeviate}) */
4543 @d unary 36 /* an operator with one argument (e.g., \&{sqrt}) */
4544 @d str_op 37 /* convert a suffix to a string (\&{str}) */
4545 @d cycle 38 /* close a cyclic path (\&{cycle}) */
4546 @d primary_binary 39 /* binary operation taking `\&{of}' (e.g., \&{point}) */
4547 @d capsule_token 40 /* a value that has been put into a token list */
4548 @d string_token 41 /* a string constant (e.g., |"hello"|) */
4549 @d internal_quantity 42 /* internal numeric parameter (e.g., \&{pausing}) */
4550 @d min_suffix_token internal_quantity
4551 @d tag_token 43 /* a symbolic token without a primitive meaning */
4552 @d numeric_token 44 /* a numeric constant (e.g., \.{3.14159}) */
4553 @d max_suffix_token numeric_token
4554 @d plus_or_minus 45 /* either `\.+' or `\.-' */
4555 @d max_primary_command plus_or_minus /* should also be |numeric_token+1| */
4556 @d min_tertiary_command plus_or_minus
4557 @d tertiary_secondary_macro 46 /* a macro defined by \&{secondarydef} */
4558 @d tertiary_binary 47 /* an operator at the tertiary level (e.g., `\.{++}') */
4559 @d max_tertiary_command tertiary_binary
4560 @d left_brace 48 /* the operator `\.{\char`\{}' */
4561 @d min_expression_command left_brace
4562 @d path_join 49 /* the operator `\.{..}' */
4563 @d ampersand 50 /* the operator `\.\&' */
4564 @d expression_tertiary_macro 51 /* a macro defined by \&{tertiarydef} */
4565 @d expression_binary 52 /* an operator at the expression level (e.g., `\.<') */
4566 @d equals 53 /* the operator `\.=' */
4567 @d max_expression_command equals
4568 @d and_command 54 /* the operator `\&{and}' */
4569 @d min_secondary_command and_command
4570 @d secondary_primary_macro 55 /* a macro defined by \&{primarydef} */
4571 @d slash 56 /* the operator `\./' */
4572 @d secondary_binary 57 /* an operator at the binary level (e.g., \&{shifted}) */
4573 @d max_secondary_command secondary_binary
4574 @d param_type 58 /* type of parameter (\&{primary}, \&{expr}, \&{suffix}, etc.) */
4575 @d controls 59 /* specify control points explicitly (\&{controls}) */
4576 @d tension 60 /* specify tension between knots (\&{tension}) */
4577 @d at_least 61 /* bounded tension value (\&{atleast}) */
4578 @d curl_command 62 /* specify curl at an end knot (\&{curl}) */
4579 @d macro_special 63 /* special macro operators (\&{quote}, \.{\#\AT!}, etc.) */
4580 @d right_delimiter 64 /* the right delimiter of a matching pair */
4581 @d left_bracket 65 /* the operator `\.[' */
4582 @d right_bracket 66 /* the operator `\.]' */
4583 @d right_brace 67 /* the operator `\.{\char`\}}' */
4584 @d with_option 68 /* option for filling (\&{withpen}, \&{withweight}, etc.) */
4586 /* variant of \&{addto} (\&{contour}, \&{doublepath}, \&{also}) */
4587 @d of_token 70 /* the operator `\&{of}' */
4588 @d to_token 71 /* the operator `\&{to}' */
4589 @d step_token 72 /* the operator `\&{step}' */
4590 @d until_token 73 /* the operator `\&{until}' */
4591 @d within_token 74 /* the operator `\&{within}' */
4592 @d lig_kern_token 75
4593 /* the operators `\&{kern}' and `\.{=:}' and `\.{=:\char'174}, etc. */
4594 @d assignment 76 /* the operator `\.{:=}' */
4595 @d skip_to 77 /* the operation `\&{skipto}' */
4596 @d bchar_label 78 /* the operator `\.{\char'174\char'174:}' */
4597 @d double_colon 79 /* the operator `\.{::}' */
4598 @d colon 80 /* the operator `\.:' */
4600 @d comma 81 /* the operator `\.,', must be |colon+1| */
4601 @d end_of_statement (mp->cur_cmd>comma)
4602 @d semicolon 82 /* the operator `\.;', must be |comma+1| */
4603 @d end_group 83 /* end a group (\&{endgroup}), must be |semicolon+1| */
4604 @d stop 84 /* end a job (\&{end}, \&{dump}), must be |end_group+1| */
4605 @d max_command_code stop
4606 @d outer_tag (max_command_code+1) /* protection code added to command code */
4609 typedef int command_code;
4611 @ Variables and capsules in \MP\ have a variety of ``types,''
4612 distinguished by the code numbers defined here. These numbers are also
4613 not completely arbitrary. Things that get expanded must have types
4614 |>mp_independent|; a type remaining after expansion is numeric if and only if
4615 its code number is at least |numeric_type|; objects containing numeric
4616 parts must have types between |transform_type| and |pair_type|;
4617 all other types must be smaller than |transform_type|; and among the types
4618 that are not unknown or vacuous, the smallest two must be |boolean_type|
4619 and |string_type| in that order.
4621 @d undefined 0 /* no type has been declared */
4622 @d unknown_tag 1 /* this constant is added to certain type codes below */
4623 @d unknown_types mp_unknown_boolean: case mp_unknown_string:
4624 case mp_unknown_pen: case mp_unknown_picture: case mp_unknown_path
4627 enum mp_variable_type {
4628 mp_vacuous=1, /* no expression was present */
4629 mp_boolean_type, /* \&{boolean} with a known value */
4631 mp_string_type, /* \&{string} with a known value */
4633 mp_pen_type, /* \&{pen} with a known value */
4635 mp_path_type, /* \&{path} with a known value */
4637 mp_picture_type, /* \&{picture} with a known value */
4639 mp_transform_type, /* \&{transform} variable or capsule */
4640 mp_color_type, /* \&{color} variable or capsule */
4641 mp_cmykcolor_type, /* \&{cmykcolor} variable or capsule */
4642 mp_pair_type, /* \&{pair} variable or capsule */
4643 mp_numeric_type, /* variable that has been declared \&{numeric} but not used */
4644 mp_known, /* \&{numeric} with a known value */
4645 mp_dependent, /* a linear combination with |fraction| coefficients */
4646 mp_proto_dependent, /* a linear combination with |scaled| coefficients */
4647 mp_independent, /* \&{numeric} with unknown value */
4648 mp_token_list, /* variable name or suffix argument or text argument */
4649 mp_structured, /* variable with subscripts and attributes */
4650 mp_unsuffixed_macro, /* variable defined with \&{vardef} but no \.{\AT!\#} */
4651 mp_suffixed_macro /* variable defined with \&{vardef} and \.{\AT!\#} */
4655 void mp_print_type (MP mp,small_number t) ;
4657 @ @<Basic printing procedures@>=
4658 void mp_print_type (MP mp,small_number t) {
4660 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
4661 case mp_boolean_type:mp_print(mp, "boolean"); break;
4662 case mp_unknown_boolean:mp_print(mp, "unknown boolean"); break;
4663 case mp_string_type:mp_print(mp, "string"); break;
4664 case mp_unknown_string:mp_print(mp, "unknown string"); break;
4665 case mp_pen_type:mp_print(mp, "pen"); break;
4666 case mp_unknown_pen:mp_print(mp, "unknown pen"); break;
4667 case mp_path_type:mp_print(mp, "path"); break;
4668 case mp_unknown_path:mp_print(mp, "unknown path"); break;
4669 case mp_picture_type:mp_print(mp, "picture"); break;
4670 case mp_unknown_picture:mp_print(mp, "unknown picture"); break;
4671 case mp_transform_type:mp_print(mp, "transform"); break;
4672 case mp_color_type:mp_print(mp, "color"); break;
4673 case mp_cmykcolor_type:mp_print(mp, "cmykcolor"); break;
4674 case mp_pair_type:mp_print(mp, "pair"); break;
4675 case mp_known:mp_print(mp, "known numeric"); break;
4676 case mp_dependent:mp_print(mp, "dependent"); break;
4677 case mp_proto_dependent:mp_print(mp, "proto-dependent"); break;
4678 case mp_numeric_type:mp_print(mp, "numeric"); break;
4679 case mp_independent:mp_print(mp, "independent"); break;
4680 case mp_token_list:mp_print(mp, "token list"); break;
4681 case mp_structured:mp_print(mp, "mp_structured"); break;
4682 case mp_unsuffixed_macro:mp_print(mp, "unsuffixed macro"); break;
4683 case mp_suffixed_macro:mp_print(mp, "suffixed macro"); break;
4684 default: mp_print(mp, "undefined"); break;
4688 @ Values inside \MP\ are stored in two-word nodes that have a |name_type|
4689 as well as a |type|. The possibilities for |name_type| are defined
4690 here; they will be explained in more detail later.
4694 mp_root=0, /* |name_type| at the top level of a variable */
4695 mp_saved_root, /* same, when the variable has been saved */
4696 mp_structured_root, /* |name_type| where a |mp_structured| branch occurs */
4697 mp_subscr, /* |name_type| in a subscript node */
4698 mp_attr, /* |name_type| in an attribute node */
4699 mp_x_part_sector, /* |name_type| in the \&{xpart} of a node */
4700 mp_y_part_sector, /* |name_type| in the \&{ypart} of a node */
4701 mp_xx_part_sector, /* |name_type| in the \&{xxpart} of a node */
4702 mp_xy_part_sector, /* |name_type| in the \&{xypart} of a node */
4703 mp_yx_part_sector, /* |name_type| in the \&{yxpart} of a node */
4704 mp_yy_part_sector, /* |name_type| in the \&{yypart} of a node */
4705 mp_red_part_sector, /* |name_type| in the \&{redpart} of a node */
4706 mp_green_part_sector, /* |name_type| in the \&{greenpart} of a node */
4707 mp_blue_part_sector, /* |name_type| in the \&{bluepart} of a node */
4708 mp_cyan_part_sector, /* |name_type| in the \&{redpart} of a node */
4709 mp_magenta_part_sector, /* |name_type| in the \&{greenpart} of a node */
4710 mp_yellow_part_sector, /* |name_type| in the \&{bluepart} of a node */
4711 mp_black_part_sector, /* |name_type| in the \&{greenpart} of a node */
4712 mp_grey_part_sector, /* |name_type| in the \&{bluepart} of a node */
4713 mp_capsule, /* |name_type| in stashed-away subexpressions */
4714 mp_token /* |name_type| in a numeric token or string token */
4717 @ Primitive operations that produce values have a secondary identification
4718 code in addition to their command code; it's something like genera and species.
4719 For example, `\.*' has the command code |primary_binary|, and its
4720 secondary identification is |times|. The secondary codes start at 30 so that
4721 they don't overlap with the type codes; some type codes (e.g., |mp_string_type|)
4722 are used as operators as well as type identifications. The relative values
4723 are not critical, except for |true_code..false_code|, |or_op..and_op|,
4724 and |filled_op..bounded_op|. The restrictions are that
4725 |and_op-false_code=or_op-true_code|, that the ordering of
4726 |x_part...blue_part| must match that of |x_part_sector..mp_blue_part_sector|,
4727 and the ordering of |filled_op..bounded_op| must match that of the code
4728 values they test for.
4730 @d true_code 30 /* operation code for \.{true} */
4731 @d false_code 31 /* operation code for \.{false} */
4732 @d null_picture_code 32 /* operation code for \.{nullpicture} */
4733 @d null_pen_code 33 /* operation code for \.{nullpen} */
4734 @d job_name_op 34 /* operation code for \.{jobname} */
4735 @d read_string_op 35 /* operation code for \.{readstring} */
4736 @d pen_circle 36 /* operation code for \.{pencircle} */
4737 @d normal_deviate 37 /* operation code for \.{normaldeviate} */
4738 @d read_from_op 38 /* operation code for \.{readfrom} */
4739 @d close_from_op 39 /* operation code for \.{closefrom} */
4740 @d odd_op 40 /* operation code for \.{odd} */
4741 @d known_op 41 /* operation code for \.{known} */
4742 @d unknown_op 42 /* operation code for \.{unknown} */
4743 @d not_op 43 /* operation code for \.{not} */
4744 @d decimal 44 /* operation code for \.{decimal} */
4745 @d reverse 45 /* operation code for \.{reverse} */
4746 @d make_path_op 46 /* operation code for \.{makepath} */
4747 @d make_pen_op 47 /* operation code for \.{makepen} */
4748 @d oct_op 48 /* operation code for \.{oct} */
4749 @d hex_op 49 /* operation code for \.{hex} */
4750 @d ASCII_op 50 /* operation code for \.{ASCII} */
4751 @d char_op 51 /* operation code for \.{char} */
4752 @d length_op 52 /* operation code for \.{length} */
4753 @d turning_op 53 /* operation code for \.{turningnumber} */
4754 @d color_model_part 54 /* operation code for \.{colormodel} */
4755 @d x_part 55 /* operation code for \.{xpart} */
4756 @d y_part 56 /* operation code for \.{ypart} */
4757 @d xx_part 57 /* operation code for \.{xxpart} */
4758 @d xy_part 58 /* operation code for \.{xypart} */
4759 @d yx_part 59 /* operation code for \.{yxpart} */
4760 @d yy_part 60 /* operation code for \.{yypart} */
4761 @d red_part 61 /* operation code for \.{redpart} */
4762 @d green_part 62 /* operation code for \.{greenpart} */
4763 @d blue_part 63 /* operation code for \.{bluepart} */
4764 @d cyan_part 64 /* operation code for \.{cyanpart} */
4765 @d magenta_part 65 /* operation code for \.{magentapart} */
4766 @d yellow_part 66 /* operation code for \.{yellowpart} */
4767 @d black_part 67 /* operation code for \.{blackpart} */
4768 @d grey_part 68 /* operation code for \.{greypart} */
4769 @d font_part 69 /* operation code for \.{fontpart} */
4770 @d text_part 70 /* operation code for \.{textpart} */
4771 @d path_part 71 /* operation code for \.{pathpart} */
4772 @d pen_part 72 /* operation code for \.{penpart} */
4773 @d dash_part 73 /* operation code for \.{dashpart} */
4774 @d sqrt_op 74 /* operation code for \.{sqrt} */
4775 @d m_exp_op 75 /* operation code for \.{mexp} */
4776 @d m_log_op 76 /* operation code for \.{mlog} */
4777 @d sin_d_op 77 /* operation code for \.{sind} */
4778 @d cos_d_op 78 /* operation code for \.{cosd} */
4779 @d floor_op 79 /* operation code for \.{floor} */
4780 @d uniform_deviate 80 /* operation code for \.{uniformdeviate} */
4781 @d char_exists_op 81 /* operation code for \.{charexists} */
4782 @d font_size 82 /* operation code for \.{fontsize} */
4783 @d ll_corner_op 83 /* operation code for \.{llcorner} */
4784 @d lr_corner_op 84 /* operation code for \.{lrcorner} */
4785 @d ul_corner_op 85 /* operation code for \.{ulcorner} */
4786 @d ur_corner_op 86 /* operation code for \.{urcorner} */
4787 @d arc_length 87 /* operation code for \.{arclength} */
4788 @d angle_op 88 /* operation code for \.{angle} */
4789 @d cycle_op 89 /* operation code for \.{cycle} */
4790 @d filled_op 90 /* operation code for \.{filled} */
4791 @d stroked_op 91 /* operation code for \.{stroked} */
4792 @d textual_op 92 /* operation code for \.{textual} */
4793 @d clipped_op 93 /* operation code for \.{clipped} */
4794 @d bounded_op 94 /* operation code for \.{bounded} */
4795 @d plus 95 /* operation code for \.+ */
4796 @d minus 96 /* operation code for \.- */
4797 @d times 97 /* operation code for \.* */
4798 @d over 98 /* operation code for \./ */
4799 @d pythag_add 99 /* operation code for \.{++} */
4800 @d pythag_sub 100 /* operation code for \.{+-+} */
4801 @d or_op 101 /* operation code for \.{or} */
4802 @d and_op 102 /* operation code for \.{and} */
4803 @d less_than 103 /* operation code for \.< */
4804 @d less_or_equal 104 /* operation code for \.{<=} */
4805 @d greater_than 105 /* operation code for \.> */
4806 @d greater_or_equal 106 /* operation code for \.{>=} */
4807 @d equal_to 107 /* operation code for \.= */
4808 @d unequal_to 108 /* operation code for \.{<>} */
4809 @d concatenate 109 /* operation code for \.\& */
4810 @d rotated_by 110 /* operation code for \.{rotated} */
4811 @d slanted_by 111 /* operation code for \.{slanted} */
4812 @d scaled_by 112 /* operation code for \.{scaled} */
4813 @d shifted_by 113 /* operation code for \.{shifted} */
4814 @d transformed_by 114 /* operation code for \.{transformed} */
4815 @d x_scaled 115 /* operation code for \.{xscaled} */
4816 @d y_scaled 116 /* operation code for \.{yscaled} */
4817 @d z_scaled 117 /* operation code for \.{zscaled} */
4818 @d in_font 118 /* operation code for \.{infont} */
4819 @d intersect 119 /* operation code for \.{intersectiontimes} */
4820 @d double_dot 120 /* operation code for improper \.{..} */
4821 @d substring_of 121 /* operation code for \.{substring} */
4822 @d min_of substring_of
4823 @d subpath_of 122 /* operation code for \.{subpath} */
4824 @d direction_time_of 123 /* operation code for \.{directiontime} */
4825 @d point_of 124 /* operation code for \.{point} */
4826 @d precontrol_of 125 /* operation code for \.{precontrol} */
4827 @d postcontrol_of 126 /* operation code for \.{postcontrol} */
4828 @d pen_offset_of 127 /* operation code for \.{penoffset} */
4829 @d arc_time_of 128 /* operation code for \.{arctime} */
4830 @d mp_version 129 /* operation code for \.{mpversion} */
4832 @c void mp_print_op (MP mp,quarterword c) {
4833 if (c<=mp_numeric_type ) {
4834 mp_print_type(mp, c);
4837 case true_code:mp_print(mp, "true"); break;
4838 case false_code:mp_print(mp, "false"); break;
4839 case null_picture_code:mp_print(mp, "nullpicture"); break;
4840 case null_pen_code:mp_print(mp, "nullpen"); break;
4841 case job_name_op:mp_print(mp, "jobname"); break;
4842 case read_string_op:mp_print(mp, "readstring"); break;
4843 case pen_circle:mp_print(mp, "pencircle"); break;
4844 case normal_deviate:mp_print(mp, "normaldeviate"); break;
4845 case read_from_op:mp_print(mp, "readfrom"); break;
4846 case close_from_op:mp_print(mp, "closefrom"); break;
4847 case odd_op:mp_print(mp, "odd"); break;
4848 case known_op:mp_print(mp, "known"); break;
4849 case unknown_op:mp_print(mp, "unknown"); break;
4850 case not_op:mp_print(mp, "not"); break;
4851 case decimal:mp_print(mp, "decimal"); break;
4852 case reverse:mp_print(mp, "reverse"); break;
4853 case make_path_op:mp_print(mp, "makepath"); break;
4854 case make_pen_op:mp_print(mp, "makepen"); break;
4855 case oct_op:mp_print(mp, "oct"); break;
4856 case hex_op:mp_print(mp, "hex"); break;
4857 case ASCII_op:mp_print(mp, "ASCII"); break;
4858 case char_op:mp_print(mp, "char"); break;
4859 case length_op:mp_print(mp, "length"); break;
4860 case turning_op:mp_print(mp, "turningnumber"); break;
4861 case x_part:mp_print(mp, "xpart"); break;
4862 case y_part:mp_print(mp, "ypart"); break;
4863 case xx_part:mp_print(mp, "xxpart"); break;
4864 case xy_part:mp_print(mp, "xypart"); break;
4865 case yx_part:mp_print(mp, "yxpart"); break;
4866 case yy_part:mp_print(mp, "yypart"); break;
4867 case red_part:mp_print(mp, "redpart"); break;
4868 case green_part:mp_print(mp, "greenpart"); break;
4869 case blue_part:mp_print(mp, "bluepart"); break;
4870 case cyan_part:mp_print(mp, "cyanpart"); break;
4871 case magenta_part:mp_print(mp, "magentapart"); break;
4872 case yellow_part:mp_print(mp, "yellowpart"); break;
4873 case black_part:mp_print(mp, "blackpart"); break;
4874 case grey_part:mp_print(mp, "greypart"); break;
4875 case color_model_part:mp_print(mp, "colormodel"); break;
4876 case font_part:mp_print(mp, "fontpart"); break;
4877 case text_part:mp_print(mp, "textpart"); break;
4878 case path_part:mp_print(mp, "pathpart"); break;
4879 case pen_part:mp_print(mp, "penpart"); break;
4880 case dash_part:mp_print(mp, "dashpart"); break;
4881 case sqrt_op:mp_print(mp, "sqrt"); break;
4882 case m_exp_op:mp_print(mp, "mexp"); break;
4883 case m_log_op:mp_print(mp, "mlog"); break;
4884 case sin_d_op:mp_print(mp, "sind"); break;
4885 case cos_d_op:mp_print(mp, "cosd"); break;
4886 case floor_op:mp_print(mp, "floor"); break;
4887 case uniform_deviate:mp_print(mp, "uniformdeviate"); break;
4888 case char_exists_op:mp_print(mp, "charexists"); break;
4889 case font_size:mp_print(mp, "fontsize"); break;
4890 case ll_corner_op:mp_print(mp, "llcorner"); break;
4891 case lr_corner_op:mp_print(mp, "lrcorner"); break;
4892 case ul_corner_op:mp_print(mp, "ulcorner"); break;
4893 case ur_corner_op:mp_print(mp, "urcorner"); break;
4894 case arc_length:mp_print(mp, "arclength"); break;
4895 case angle_op:mp_print(mp, "angle"); break;
4896 case cycle_op:mp_print(mp, "cycle"); break;
4897 case filled_op:mp_print(mp, "filled"); break;
4898 case stroked_op:mp_print(mp, "stroked"); break;
4899 case textual_op:mp_print(mp, "textual"); break;
4900 case clipped_op:mp_print(mp, "clipped"); break;
4901 case bounded_op:mp_print(mp, "bounded"); break;
4902 case plus:mp_print_char(mp, '+'); break;
4903 case minus:mp_print_char(mp, '-'); break;
4904 case times:mp_print_char(mp, '*'); break;
4905 case over:mp_print_char(mp, '/'); break;
4906 case pythag_add:mp_print(mp, "++"); break;
4907 case pythag_sub:mp_print(mp, "+-+"); break;
4908 case or_op:mp_print(mp, "or"); break;
4909 case and_op:mp_print(mp, "and"); break;
4910 case less_than:mp_print_char(mp, '<'); break;
4911 case less_or_equal:mp_print(mp, "<="); break;
4912 case greater_than:mp_print_char(mp, '>'); break;
4913 case greater_or_equal:mp_print(mp, ">="); break;
4914 case equal_to:mp_print_char(mp, '='); break;
4915 case unequal_to:mp_print(mp, "<>"); break;
4916 case concatenate:mp_print(mp, "&"); break;
4917 case rotated_by:mp_print(mp, "rotated"); break;
4918 case slanted_by:mp_print(mp, "slanted"); break;
4919 case scaled_by:mp_print(mp, "scaled"); break;
4920 case shifted_by:mp_print(mp, "shifted"); break;
4921 case transformed_by:mp_print(mp, "transformed"); break;
4922 case x_scaled:mp_print(mp, "xscaled"); break;
4923 case y_scaled:mp_print(mp, "yscaled"); break;
4924 case z_scaled:mp_print(mp, "zscaled"); break;
4925 case in_font:mp_print(mp, "infont"); break;
4926 case intersect:mp_print(mp, "intersectiontimes"); break;
4927 case substring_of:mp_print(mp, "substring"); break;
4928 case subpath_of:mp_print(mp, "subpath"); break;
4929 case direction_time_of:mp_print(mp, "directiontime"); break;
4930 case point_of:mp_print(mp, "point"); break;
4931 case precontrol_of:mp_print(mp, "precontrol"); break;
4932 case postcontrol_of:mp_print(mp, "postcontrol"); break;
4933 case pen_offset_of:mp_print(mp, "penoffset"); break;
4934 case arc_time_of:mp_print(mp, "arctime"); break;
4935 case mp_version:mp_print(mp, "mpversion"); break;
4936 default: mp_print(mp, ".."); break;
4941 @ \MP\ also has a bunch of internal parameters that a user might want to
4942 fuss with. Every such parameter has an identifying code number, defined here.
4945 enum mp_given_internal {
4946 mp_tracing_titles=1, /* show titles online when they appear */
4947 mp_tracing_equations, /* show each variable when it becomes known */
4948 mp_tracing_capsules, /* show capsules too */
4949 mp_tracing_choices, /* show the control points chosen for paths */
4950 mp_tracing_specs, /* show path subdivision prior to filling with polygonal a pen */
4951 mp_tracing_commands, /* show commands and operations before they are performed */
4952 mp_tracing_restores, /* show when a variable or internal is restored */
4953 mp_tracing_macros, /* show macros before they are expanded */
4954 mp_tracing_output, /* show digitized edges as they are output */
4955 mp_tracing_stats, /* show memory usage at end of job */
4956 mp_tracing_lost_chars, /* show characters that aren't \&{infont} */
4957 mp_tracing_online, /* show long diagnostics on terminal and in the log file */
4958 mp_year, /* the current year (e.g., 1984) */
4959 mp_month, /* the current month (e.g, 3 $\equiv$ March) */
4960 mp_day, /* the current day of the month */
4961 mp_time, /* the number of minutes past midnight when this job started */
4962 mp_char_code, /* the number of the next character to be output */
4963 mp_char_ext, /* the extension code of the next character to be output */
4964 mp_char_wd, /* the width of the next character to be output */
4965 mp_char_ht, /* the height of the next character to be output */
4966 mp_char_dp, /* the depth of the next character to be output */
4967 mp_char_ic, /* the italic correction of the next character to be output */
4968 mp_design_size, /* the unit of measure used for |mp_char_wd..mp_char_ic|, in points */
4969 mp_pausing, /* positive to display lines on the terminal before they are read */
4970 mp_showstopping, /* positive to stop after each \&{show} command */
4971 mp_fontmaking, /* positive if font metric output is to be produced */
4972 mp_linejoin, /* as in \ps: 0 for mitered, 1 for round, 2 for beveled */
4973 mp_linecap, /* as in \ps: 0 for butt, 1 for round, 2 for square */
4974 mp_miterlimit, /* controls miter length as in \ps */
4975 mp_warning_check, /* controls error message when variable value is large */
4976 mp_boundary_char, /* the right boundary character for ligatures */
4977 mp_prologues, /* positive to output conforming PostScript using built-in fonts */
4978 mp_true_corners, /* positive to make \&{llcorner} etc. ignore \&{setbounds} */
4979 mp_default_color_model, /* the default color model for unspecified items */
4980 mp_restore_clip_color,
4981 mp_procset, /* wether or not create PostScript command shortcuts */
4982 mp_gtroffmode, /* whether the user specified |-troff| on the command line */
4987 @d max_given_internal mp_gtroffmode
4990 scaled *internal; /* the values of internal quantities */
4991 char **int_name; /* their names */
4992 int int_ptr; /* the maximum internal quantity defined so far */
4993 int max_internal; /* current maximum number of internal quantities */
4996 @ @<Option variables@>=
4999 @ @<Allocate or initialize ...@>=
5000 mp->max_internal=2*max_given_internal;
5001 mp->internal = xmalloc ((mp->max_internal+1), sizeof(scaled));
5002 mp->int_name = xmalloc ((mp->max_internal+1), sizeof(char *));
5003 mp->troff_mode=(opt->troff_mode>0 ? true : false);
5005 @ @<Exported function ...@>=
5006 int mp_troff_mode(MP mp);
5009 int mp_troff_mode(MP mp) { return mp->troff_mode; }
5011 @ @<Set initial ...@>=
5012 for (k=0;k<= mp->max_internal; k++ ) {
5014 mp->int_name[k]=NULL;
5016 mp->int_ptr=max_given_internal;
5018 @ The symbolic names for internal quantities are put into \MP's hash table
5019 by using a routine called |primitive|, which will be defined later. Let us
5020 enter them now, so that we don't have to list all those names again
5023 @<Put each of \MP's primitives into the hash table@>=
5024 mp_primitive(mp, "tracingtitles",internal_quantity,mp_tracing_titles);
5025 @:tracingtitles_}{\&{tracingtitles} primitive@>
5026 mp_primitive(mp, "tracingequations",internal_quantity,mp_tracing_equations);
5027 @:mp_tracing_equations_}{\&{tracingequations} primitive@>
5028 mp_primitive(mp, "tracingcapsules",internal_quantity,mp_tracing_capsules);
5029 @:mp_tracing_capsules_}{\&{tracingcapsules} primitive@>
5030 mp_primitive(mp, "tracingchoices",internal_quantity,mp_tracing_choices);
5031 @:mp_tracing_choices_}{\&{tracingchoices} primitive@>
5032 mp_primitive(mp, "tracingspecs",internal_quantity,mp_tracing_specs);
5033 @:mp_tracing_specs_}{\&{tracingspecs} primitive@>
5034 mp_primitive(mp, "tracingcommands",internal_quantity,mp_tracing_commands);
5035 @:mp_tracing_commands_}{\&{tracingcommands} primitive@>
5036 mp_primitive(mp, "tracingrestores",internal_quantity,mp_tracing_restores);
5037 @:mp_tracing_restores_}{\&{tracingrestores} primitive@>
5038 mp_primitive(mp, "tracingmacros",internal_quantity,mp_tracing_macros);
5039 @:mp_tracing_macros_}{\&{tracingmacros} primitive@>
5040 mp_primitive(mp, "tracingoutput",internal_quantity,mp_tracing_output);
5041 @:mp_tracing_output_}{\&{tracingoutput} primitive@>
5042 mp_primitive(mp, "tracingstats",internal_quantity,mp_tracing_stats);
5043 @:mp_tracing_stats_}{\&{tracingstats} primitive@>
5044 mp_primitive(mp, "tracinglostchars",internal_quantity,mp_tracing_lost_chars);
5045 @:mp_tracing_lost_chars_}{\&{tracinglostchars} primitive@>
5046 mp_primitive(mp, "tracingonline",internal_quantity,mp_tracing_online);
5047 @:mp_tracing_online_}{\&{tracingonline} primitive@>
5048 mp_primitive(mp, "year",internal_quantity,mp_year);
5049 @:mp_year_}{\&{year} primitive@>
5050 mp_primitive(mp, "month",internal_quantity,mp_month);
5051 @:mp_month_}{\&{month} primitive@>
5052 mp_primitive(mp, "day",internal_quantity,mp_day);
5053 @:mp_day_}{\&{day} primitive@>
5054 mp_primitive(mp, "time",internal_quantity,mp_time);
5055 @:time_}{\&{time} primitive@>
5056 mp_primitive(mp, "charcode",internal_quantity,mp_char_code);
5057 @:mp_char_code_}{\&{charcode} primitive@>
5058 mp_primitive(mp, "charext",internal_quantity,mp_char_ext);
5059 @:mp_char_ext_}{\&{charext} primitive@>
5060 mp_primitive(mp, "charwd",internal_quantity,mp_char_wd);
5061 @:mp_char_wd_}{\&{charwd} primitive@>
5062 mp_primitive(mp, "charht",internal_quantity,mp_char_ht);
5063 @:mp_char_ht_}{\&{charht} primitive@>
5064 mp_primitive(mp, "chardp",internal_quantity,mp_char_dp);
5065 @:mp_char_dp_}{\&{chardp} primitive@>
5066 mp_primitive(mp, "charic",internal_quantity,mp_char_ic);
5067 @:mp_char_ic_}{\&{charic} primitive@>
5068 mp_primitive(mp, "designsize",internal_quantity,mp_design_size);
5069 @:mp_design_size_}{\&{designsize} primitive@>
5070 mp_primitive(mp, "pausing",internal_quantity,mp_pausing);
5071 @:mp_pausing_}{\&{pausing} primitive@>
5072 mp_primitive(mp, "showstopping",internal_quantity,mp_showstopping);
5073 @:mp_showstopping_}{\&{showstopping} primitive@>
5074 mp_primitive(mp, "fontmaking",internal_quantity,mp_fontmaking);
5075 @:mp_fontmaking_}{\&{fontmaking} primitive@>
5076 mp_primitive(mp, "linejoin",internal_quantity,mp_linejoin);
5077 @:mp_linejoin_}{\&{linejoin} primitive@>
5078 mp_primitive(mp, "linecap",internal_quantity,mp_linecap);
5079 @:mp_linecap_}{\&{linecap} primitive@>
5080 mp_primitive(mp, "miterlimit",internal_quantity,mp_miterlimit);
5081 @:mp_miterlimit_}{\&{miterlimit} primitive@>
5082 mp_primitive(mp, "warningcheck",internal_quantity,mp_warning_check);
5083 @:mp_warning_check_}{\&{warningcheck} primitive@>
5084 mp_primitive(mp, "boundarychar",internal_quantity,mp_boundary_char);
5085 @:mp_boundary_char_}{\&{boundarychar} primitive@>
5086 mp_primitive(mp, "prologues",internal_quantity,mp_prologues);
5087 @:mp_prologues_}{\&{prologues} primitive@>
5088 mp_primitive(mp, "truecorners",internal_quantity,mp_true_corners);
5089 @:mp_true_corners_}{\&{truecorners} primitive@>
5090 mp_primitive(mp, "mpprocset",internal_quantity,mp_procset);
5091 @:mp_procset_}{\&{mpprocset} primitive@>
5092 mp_primitive(mp, "troffmode",internal_quantity,mp_gtroffmode);
5093 @:troffmode_}{\&{troffmode} primitive@>
5094 mp_primitive(mp, "defaultcolormodel",internal_quantity,mp_default_color_model);
5095 @:mp_default_color_model_}{\&{defaultcolormodel} primitive@>
5096 mp_primitive(mp, "restoreclipcolor",internal_quantity,mp_restore_clip_color);
5097 @:mp_restore_clip_color_}{\&{restoreclipcolor} primitive@>
5099 @ Colors can be specified in four color models. In the special
5100 case of |no_model|, MetaPost does not output any color operator to
5101 the postscript output.
5103 Note: these values are passed directly on to |with_option|. This only
5104 works because the other possible values passed to |with_option| are
5105 8 and 10 respectively (from |with_pen| and |with_picture|).
5107 There is a first state, that is only used for |gs_colormodel|. It flags
5108 the fact that there has not been any kind of color specification by
5109 the user so far in the game.
5112 enum mp_color_model {
5117 mp_uninitialized_model=9,
5121 @ @<Initialize table entries (done by \.{INIMP} only)@>=
5122 mp->internal[mp_default_color_model]=(mp_rgb_model*unity);
5123 mp->internal[mp_restore_clip_color]=unity;
5125 @ Well, we do have to list the names one more time, for use in symbolic
5128 @<Initialize table...@>=
5129 mp->int_name[mp_tracing_titles]=xstrdup("tracingtitles");
5130 mp->int_name[mp_tracing_equations]=xstrdup("tracingequations");
5131 mp->int_name[mp_tracing_capsules]=xstrdup("tracingcapsules");
5132 mp->int_name[mp_tracing_choices]=xstrdup("tracingchoices");
5133 mp->int_name[mp_tracing_specs]=xstrdup("tracingspecs");
5134 mp->int_name[mp_tracing_commands]=xstrdup("tracingcommands");
5135 mp->int_name[mp_tracing_restores]=xstrdup("tracingrestores");
5136 mp->int_name[mp_tracing_macros]=xstrdup("tracingmacros");
5137 mp->int_name[mp_tracing_output]=xstrdup("tracingoutput");
5138 mp->int_name[mp_tracing_stats]=xstrdup("tracingstats");
5139 mp->int_name[mp_tracing_lost_chars]=xstrdup("tracinglostchars");
5140 mp->int_name[mp_tracing_online]=xstrdup("tracingonline");
5141 mp->int_name[mp_year]=xstrdup("year");
5142 mp->int_name[mp_month]=xstrdup("month");
5143 mp->int_name[mp_day]=xstrdup("day");
5144 mp->int_name[mp_time]=xstrdup("time");
5145 mp->int_name[mp_char_code]=xstrdup("charcode");
5146 mp->int_name[mp_char_ext]=xstrdup("charext");
5147 mp->int_name[mp_char_wd]=xstrdup("charwd");
5148 mp->int_name[mp_char_ht]=xstrdup("charht");
5149 mp->int_name[mp_char_dp]=xstrdup("chardp");
5150 mp->int_name[mp_char_ic]=xstrdup("charic");
5151 mp->int_name[mp_design_size]=xstrdup("designsize");
5152 mp->int_name[mp_pausing]=xstrdup("pausing");
5153 mp->int_name[mp_showstopping]=xstrdup("showstopping");
5154 mp->int_name[mp_fontmaking]=xstrdup("fontmaking");
5155 mp->int_name[mp_linejoin]=xstrdup("linejoin");
5156 mp->int_name[mp_linecap]=xstrdup("linecap");
5157 mp->int_name[mp_miterlimit]=xstrdup("miterlimit");
5158 mp->int_name[mp_warning_check]=xstrdup("warningcheck");
5159 mp->int_name[mp_boundary_char]=xstrdup("boundarychar");
5160 mp->int_name[mp_prologues]=xstrdup("prologues");
5161 mp->int_name[mp_true_corners]=xstrdup("truecorners");
5162 mp->int_name[mp_default_color_model]=xstrdup("defaultcolormodel");
5163 mp->int_name[mp_procset]=xstrdup("mpprocset");
5164 mp->int_name[mp_gtroffmode]=xstrdup("troffmode");
5165 mp->int_name[mp_restore_clip_color]=xstrdup("restoreclipcolor");
5167 @ The following procedure, which is called just before \MP\ initializes its
5168 input and output, establishes the initial values of the date and time.
5169 @^system dependencies@>
5171 Note that the values are |scaled| integers. Hence \MP\ can no longer
5172 be used after the year 32767.
5175 void mp_fix_date_and_time (MP mp) {
5176 time_t clock = time ((time_t *) 0);
5177 struct tm *tmptr = localtime (&clock);
5178 mp->internal[mp_time]=
5179 (tmptr->tm_hour*60+tmptr->tm_min)*unity; /* minutes since midnight */
5180 mp->internal[mp_day]=(tmptr->tm_mday)*unity; /* fourth day of the month */
5181 mp->internal[mp_month]=(tmptr->tm_mon+1)*unity; /* seventh month of the year */
5182 mp->internal[mp_year]=(tmptr->tm_year+1900)*unity; /* Anno Domini */
5186 void mp_fix_date_and_time (MP mp) ;
5188 @ \MP\ is occasionally supposed to print diagnostic information that
5189 goes only into the transcript file, unless |mp_tracing_online| is positive.
5190 Now that we have defined |mp_tracing_online| we can define
5191 two routines that adjust the destination of print commands:
5194 void mp_begin_diagnostic (MP mp) ;
5195 void mp_end_diagnostic (MP mp,boolean blank_line);
5196 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) ;
5198 @ @<Basic printing...@>=
5199 @<Declare a function called |true_line|@>;
5200 void mp_begin_diagnostic (MP mp) { /* prepare to do some tracing */
5201 mp->old_setting=mp->selector;
5202 if ( mp->selector==ps_file_only ) mp->selector=mp->non_ps_setting;
5203 if ((mp->internal[mp_tracing_online]<=0)&&(mp->selector==term_and_log)){
5205 if ( mp->history==mp_spotless ) mp->history=mp_warning_issued;
5209 void mp_end_diagnostic (MP mp,boolean blank_line) {
5210 /* restore proper conditions after tracing */
5211 mp_print_nl(mp, "");
5212 if ( blank_line ) mp_print_ln(mp);
5213 mp->selector=mp->old_setting;
5216 @ The global variable |non_ps_setting| is initialized when it is time to print
5220 unsigned int old_setting;
5221 unsigned int non_ps_setting;
5223 @ We will occasionally use |begin_diagnostic| in connection with line-number
5224 printing, as follows. (The parameter |s| is typically |"Path"| or
5225 |"Cycle spec"|, etc.)
5227 @<Basic printing...@>=
5228 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) {
5229 mp_begin_diagnostic(mp);
5230 if ( nuline ) mp_print_nl(mp, s); else mp_print(mp, s);
5231 mp_print(mp, " at line ");
5232 mp_print_int(mp, mp_true_line(mp));
5233 mp_print(mp, t); mp_print_char(mp, ':');
5236 @ The 256 |ASCII_code| characters are grouped into classes by means of
5237 the |char_class| table. Individual class numbers have no semantic
5238 or syntactic significance, except in a few instances defined here.
5239 There's also |max_class|, which can be used as a basis for additional
5240 class numbers in nonstandard extensions of \MP.
5242 @d digit_class 0 /* the class number of \.{0123456789} */
5243 @d period_class 1 /* the class number of `\..' */
5244 @d space_class 2 /* the class number of spaces and nonstandard characters */
5245 @d percent_class 3 /* the class number of `\.\%' */
5246 @d string_class 4 /* the class number of `\."' */
5247 @d right_paren_class 8 /* the class number of `\.)' */
5248 @d isolated_classes 5: case 6: case 7: case 8 /* characters that make length-one tokens only */
5249 @d letter_class 9 /* letters and the underline character */
5250 @d left_bracket_class 17 /* `\.[' */
5251 @d right_bracket_class 18 /* `\.]' */
5252 @d invalid_class 20 /* bad character in the input */
5253 @d max_class 20 /* the largest class number */
5256 int char_class[256]; /* the class numbers */
5258 @ If changes are made to accommodate non-ASCII character sets, they should
5259 follow the guidelines in Appendix~C of {\sl The {\logos METAFONT\/}book}.
5260 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
5261 @^system dependencies@>
5263 @<Set initial ...@>=
5264 for (k='0';k<='9';k++)
5265 mp->char_class[k]=digit_class;
5266 mp->char_class['.']=period_class;
5267 mp->char_class[' ']=space_class;
5268 mp->char_class['%']=percent_class;
5269 mp->char_class['"']=string_class;
5270 mp->char_class[',']=5;
5271 mp->char_class[';']=6;
5272 mp->char_class['(']=7;
5273 mp->char_class[')']=right_paren_class;
5274 for (k='A';k<= 'Z';k++ )
5275 mp->char_class[k]=letter_class;
5276 for (k='a';k<='z';k++)
5277 mp->char_class[k]=letter_class;
5278 mp->char_class['_']=letter_class;
5279 mp->char_class['<']=10;
5280 mp->char_class['=']=10;
5281 mp->char_class['>']=10;
5282 mp->char_class[':']=10;
5283 mp->char_class['|']=10;
5284 mp->char_class['`']=11;
5285 mp->char_class['\'']=11;
5286 mp->char_class['+']=12;
5287 mp->char_class['-']=12;
5288 mp->char_class['/']=13;
5289 mp->char_class['*']=13;
5290 mp->char_class['\\']=13;
5291 mp->char_class['!']=14;
5292 mp->char_class['?']=14;
5293 mp->char_class['#']=15;
5294 mp->char_class['&']=15;
5295 mp->char_class['@@']=15;
5296 mp->char_class['$']=15;
5297 mp->char_class['^']=16;
5298 mp->char_class['~']=16;
5299 mp->char_class['[']=left_bracket_class;
5300 mp->char_class[']']=right_bracket_class;
5301 mp->char_class['{']=19;
5302 mp->char_class['}']=19;
5304 mp->char_class[k]=invalid_class;
5305 mp->char_class['\t']=space_class;
5306 mp->char_class['\f']=space_class;
5307 for (k=127;k<=255;k++)
5308 mp->char_class[k]=invalid_class;
5310 @* \[13] The hash table.
5311 Symbolic tokens are stored and retrieved by means of a fairly standard hash
5312 table algorithm called the method of ``coalescing lists'' (cf.\ Algorithm 6.4C
5313 in {\sl The Art of Computer Programming\/}). Once a symbolic token enters the
5314 table, it is never removed.
5316 The actual sequence of characters forming a symbolic token is
5317 stored in the |str_pool| array together with all the other strings. An
5318 auxiliary array |hash| consists of items with two halfword fields per
5319 word. The first of these, called |next(p)|, points to the next identifier
5320 belonging to the same coalesced list as the identifier corresponding to~|p|;
5321 and the other, called |text(p)|, points to the |str_start| entry for
5322 |p|'s identifier. If position~|p| of the hash table is empty, we have
5323 |text(p)=0|; if position |p| is either empty or the end of a coalesced
5324 hash list, we have |next(p)=0|.
5326 An auxiliary pointer variable called |hash_used| is maintained in such a
5327 way that all locations |p>=hash_used| are nonempty. The global variable
5328 |st_count| tells how many symbolic tokens have been defined, if statistics
5331 The first 256 locations of |hash| are reserved for symbols of length one.
5333 There's a parallel array called |eqtb| that contains the current equivalent
5334 values of each symbolic token. The entries of this array consist of
5335 two halfwords called |eq_type| (a command code) and |equiv| (a secondary
5336 piece of information that qualifies the |eq_type|).
5338 @d next(A) mp->hash[(A)].lh /* link for coalesced lists */
5339 @d text(A) mp->hash[(A)].rh /* string number for symbolic token name */
5340 @d eq_type(A) mp->eqtb[(A)].lh /* the current ``meaning'' of a symbolic token */
5341 @d equiv(A) mp->eqtb[(A)].rh /* parametric part of a token's meaning */
5342 @d hash_base 257 /* hashing actually starts here */
5343 @d hash_is_full (mp->hash_used==hash_base) /* are all positions occupied? */
5346 pointer hash_used; /* allocation pointer for |hash| */
5347 integer st_count; /* total number of known identifiers */
5349 @ Certain entries in the hash table are ``frozen'' and not redefinable,
5350 since they are used in error recovery.
5352 @d hash_top (hash_base+mp->hash_size) /* the first location of the frozen area */
5353 @d frozen_inaccessible hash_top /* |hash| location to protect the frozen area */
5354 @d frozen_repeat_loop (hash_top+1) /* |hash| location of a loop-repeat token */
5355 @d frozen_right_delimiter (hash_top+2) /* |hash| location of a permanent `\.)' */
5356 @d frozen_left_bracket (hash_top+3) /* |hash| location of a permanent `\.[' */
5357 @d frozen_slash (hash_top+4) /* |hash| location of a permanent `\./' */
5358 @d frozen_colon (hash_top+5) /* |hash| location of a permanent `\.:' */
5359 @d frozen_semicolon (hash_top+6) /* |hash| location of a permanent `\.;' */
5360 @d frozen_end_for (hash_top+7) /* |hash| location of a permanent \&{endfor} */
5361 @d frozen_end_def (hash_top+8) /* |hash| location of a permanent \&{enddef} */
5362 @d frozen_fi (hash_top+9) /* |hash| location of a permanent \&{fi} */
5363 @d frozen_end_group (hash_top+10) /* |hash| location of a permanent `\.{endgroup}' */
5364 @d frozen_etex (hash_top+11) /* |hash| location of a permanent \&{etex} */
5365 @d frozen_mpx_break (hash_top+12) /* |hash| location of a permanent \&{mpxbreak} */
5366 @d frozen_bad_vardef (hash_top+13) /* |hash| location of `\.{a bad variable}' */
5367 @d frozen_undefined (hash_top+14) /* |hash| location that never gets defined */
5368 @d hash_end (hash_top+14) /* the actual size of the |hash| and |eqtb| arrays */
5371 two_halves *hash; /* the hash table */
5372 two_halves *eqtb; /* the equivalents */
5374 @ @<Allocate or initialize ...@>=
5375 mp->hash = xmalloc((hash_end+1),sizeof(two_halves));
5376 mp->eqtb = xmalloc((hash_end+1),sizeof(two_halves));
5378 @ @<Dealloc variables@>=
5383 next(1)=0; text(1)=0; eq_type(1)=tag_token; equiv(1)=null;
5384 for (k=2;k<=hash_end;k++) {
5385 mp->hash[k]=mp->hash[1]; mp->eqtb[k]=mp->eqtb[1];
5388 @ @<Initialize table entries...@>=
5389 mp->hash_used=frozen_inaccessible; /* nothing is used */
5391 text(frozen_bad_vardef)=intern("a bad variable");
5392 text(frozen_etex)=intern("etex");
5393 text(frozen_mpx_break)=intern("mpxbreak");
5394 text(frozen_fi)=intern("fi");
5395 text(frozen_end_group)=intern("endgroup");
5396 text(frozen_end_def)=intern("enddef");
5397 text(frozen_end_for)=intern("endfor");
5398 text(frozen_semicolon)=intern(";");
5399 text(frozen_colon)=intern(":");
5400 text(frozen_slash)=intern("/");
5401 text(frozen_left_bracket)=intern("[");
5402 text(frozen_right_delimiter)=intern(")");
5403 text(frozen_inaccessible)=intern(" INACCESSIBLE");
5404 eq_type(frozen_right_delimiter)=right_delimiter;
5406 @ @<Check the ``constant'' values...@>=
5407 if ( hash_end+mp->max_internal>max_halfword ) mp->bad=17;
5409 @ Here is the subroutine that searches the hash table for an identifier
5410 that matches a given string of length~|l| appearing in |buffer[j..
5411 (j+l-1)]|. If the identifier is not found, it is inserted; hence it
5412 will always be found, and the corresponding hash table address
5416 pointer mp_id_lookup (MP mp,integer j, integer l) { /* search the hash table */
5417 integer h; /* hash code */
5418 pointer p; /* index in |hash| array */
5419 pointer k; /* index in |buffer| array */
5421 @<Treat special case of length 1 and |break|@>;
5423 @<Compute the hash code |h|@>;
5424 p=h+hash_base; /* we start searching here; note that |0<=h<hash_prime| */
5426 if (text(p)>0 && length(text(p))==l && mp_str_eq_buf(mp, text(p),j))
5429 @<Insert a new symbolic token after |p|, then
5430 make |p| point to it and |break|@>;
5437 @ @<Treat special case of length 1...@>=
5438 p=mp->buffer[j]+1; text(p)=p-1; return p;
5441 @ @<Insert a new symbolic...@>=
5446 mp_overflow(mp, "hash size",mp->hash_size);
5447 @:MetaPost capacity exceeded hash size}{\quad hash size@>
5448 decr(mp->hash_used);
5449 } while (text(mp->hash_used)!=0); /* search for an empty location in |hash| */
5450 next(p)=mp->hash_used;
5454 for (k=j;k<=j+l-1;k++) {
5455 append_char(mp->buffer[k]);
5457 text(p)=mp_make_string(mp);
5458 mp->str_ref[text(p)]=max_str_ref;
5464 @ The value of |hash_prime| should be roughly 85\pct! of |hash_size|, and it
5465 should be a prime number. The theory of hashing tells us to expect fewer
5466 than two table probes, on the average, when the search is successful.
5467 [See J.~S. Vitter, {\sl Journal of the ACM\/ \bf30} (1983), 231--258.]
5468 @^Vitter, Jeffrey Scott@>
5470 @<Compute the hash code |h|@>=
5472 for (k=j+1;k<=j+l-1;k++){
5473 h=h+h+mp->buffer[k];
5474 while ( h>=mp->hash_prime ) h=h-mp->hash_prime;
5477 @ @<Search |eqtb| for equivalents equal to |p|@>=
5478 for (q=1;q<=hash_end;q++) {
5479 if ( equiv(q)==p ) {
5480 mp_print_nl(mp, "EQUIV(");
5481 mp_print_int(mp, q);
5482 mp_print_char(mp, ')');
5486 @ We need to put \MP's ``primitive'' symbolic tokens into the hash
5487 table, together with their command code (which will be the |eq_type|)
5488 and an operand (which will be the |equiv|). The |primitive| procedure
5489 does this, in a way that no \MP\ user can. The global value |cur_sym|
5490 contains the new |eqtb| pointer after |primitive| has acted.
5493 void mp_primitive (MP mp, char *ss, halfword c, halfword o) {
5494 pool_pointer k; /* index into |str_pool| */
5495 small_number j; /* index into |buffer| */
5496 small_number l; /* length of the string */
5499 k=mp->str_start[s]; l=str_stop(s)-k;
5500 /* we will move |s| into the (empty) |buffer| */
5501 for (j=0;j<=l-1;j++) {
5502 mp->buffer[j]=mp->str_pool[k+j];
5504 mp->cur_sym=mp_id_lookup(mp, 0,l);
5505 if ( s>=256 ) { /* we don't want to have the string twice */
5506 mp_flush_string(mp, text(mp->cur_sym)); text(mp->cur_sym)=s;
5508 eq_type(mp->cur_sym)=c;
5509 equiv(mp->cur_sym)=o;
5513 @ Many of \MP's primitives need no |equiv|, since they are identifiable
5514 by their |eq_type| alone. These primitives are loaded into the hash table
5517 @<Put each of \MP's primitives into the hash table@>=
5518 mp_primitive(mp, "..",path_join,0);
5519 @:.._}{\.{..} primitive@>
5520 mp_primitive(mp, "[",left_bracket,0); mp->eqtb[frozen_left_bracket]=mp->eqtb[mp->cur_sym];
5521 @:[ }{\.{[} primitive@>
5522 mp_primitive(mp, "]",right_bracket,0);
5523 @:] }{\.{]} primitive@>
5524 mp_primitive(mp, "}",right_brace,0);
5525 @:]]}{\.{\char`\}} primitive@>
5526 mp_primitive(mp, "{",left_brace,0);
5527 @:][}{\.{\char`\{} primitive@>
5528 mp_primitive(mp, ":",colon,0); mp->eqtb[frozen_colon]=mp->eqtb[mp->cur_sym];
5529 @:: }{\.{:} primitive@>
5530 mp_primitive(mp, "::",double_colon,0);
5531 @::: }{\.{::} primitive@>
5532 mp_primitive(mp, "||:",bchar_label,0);
5533 @:::: }{\.{\char'174\char'174:} primitive@>
5534 mp_primitive(mp, ":=",assignment,0);
5535 @::=_}{\.{:=} primitive@>
5536 mp_primitive(mp, ",",comma,0);
5537 @:, }{\., primitive@>
5538 mp_primitive(mp, ";",semicolon,0); mp->eqtb[frozen_semicolon]=mp->eqtb[mp->cur_sym];
5539 @:; }{\.; primitive@>
5540 mp_primitive(mp, "\\",relax,0);
5541 @:]]\\}{\.{\char`\\} primitive@>
5543 mp_primitive(mp, "addto",add_to_command,0);
5544 @:add_to_}{\&{addto} primitive@>
5545 mp_primitive(mp, "atleast",at_least,0);
5546 @:at_least_}{\&{atleast} primitive@>
5547 mp_primitive(mp, "begingroup",begin_group,0); mp->bg_loc=mp->cur_sym;
5548 @:begin_group_}{\&{begingroup} primitive@>
5549 mp_primitive(mp, "controls",controls,0);
5550 @:controls_}{\&{controls} primitive@>
5551 mp_primitive(mp, "curl",curl_command,0);
5552 @:curl_}{\&{curl} primitive@>
5553 mp_primitive(mp, "delimiters",delimiters,0);
5554 @:delimiters_}{\&{delimiters} primitive@>
5555 mp_primitive(mp, "endgroup",end_group,0);
5556 mp->eqtb[frozen_end_group]=mp->eqtb[mp->cur_sym]; mp->eg_loc=mp->cur_sym;
5557 @:endgroup_}{\&{endgroup} primitive@>
5558 mp_primitive(mp, "everyjob",every_job_command,0);
5559 @:every_job_}{\&{everyjob} primitive@>
5560 mp_primitive(mp, "exitif",exit_test,0);
5561 @:exit_if_}{\&{exitif} primitive@>
5562 mp_primitive(mp, "expandafter",expand_after,0);
5563 @:expand_after_}{\&{expandafter} primitive@>
5564 mp_primitive(mp, "interim",interim_command,0);
5565 @:interim_}{\&{interim} primitive@>
5566 mp_primitive(mp, "let",let_command,0);
5567 @:let_}{\&{let} primitive@>
5568 mp_primitive(mp, "newinternal",new_internal,0);
5569 @:new_internal_}{\&{newinternal} primitive@>
5570 mp_primitive(mp, "of",of_token,0);
5571 @:of_}{\&{of} primitive@>
5572 mp_primitive(mp, "randomseed",random_seed,0);
5573 @:random_seed_}{\&{randomseed} primitive@>
5574 mp_primitive(mp, "save",save_command,0);
5575 @:save_}{\&{save} primitive@>
5576 mp_primitive(mp, "scantokens",scan_tokens,0);
5577 @:scan_tokens_}{\&{scantokens} primitive@>
5578 mp_primitive(mp, "shipout",ship_out_command,0);
5579 @:ship_out_}{\&{shipout} primitive@>
5580 mp_primitive(mp, "skipto",skip_to,0);
5581 @:skip_to_}{\&{skipto} primitive@>
5582 mp_primitive(mp, "special",special_command,0);
5583 @:special}{\&{special} primitive@>
5584 mp_primitive(mp, "fontmapfile",special_command,1);
5585 @:fontmapfile}{\&{fontmapfile} primitive@>
5586 mp_primitive(mp, "fontmapline",special_command,2);
5587 @:fontmapline}{\&{fontmapline} primitive@>
5588 mp_primitive(mp, "step",step_token,0);
5589 @:step_}{\&{step} primitive@>
5590 mp_primitive(mp, "str",str_op,0);
5591 @:str_}{\&{str} primitive@>
5592 mp_primitive(mp, "tension",tension,0);
5593 @:tension_}{\&{tension} primitive@>
5594 mp_primitive(mp, "to",to_token,0);
5595 @:to_}{\&{to} primitive@>
5596 mp_primitive(mp, "until",until_token,0);
5597 @:until_}{\&{until} primitive@>
5598 mp_primitive(mp, "within",within_token,0);
5599 @:within_}{\&{within} primitive@>
5600 mp_primitive(mp, "write",write_command,0);
5601 @:write_}{\&{write} primitive@>
5603 @ Each primitive has a corresponding inverse, so that it is possible to
5604 display the cryptic numeric contents of |eqtb| in symbolic form.
5605 Every call of |primitive| in this program is therefore accompanied by some
5606 straightforward code that forms part of the |print_cmd_mod| routine
5609 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>=
5610 case add_to_command:mp_print(mp, "addto"); break;
5611 case assignment:mp_print(mp, ":="); break;
5612 case at_least:mp_print(mp, "atleast"); break;
5613 case bchar_label:mp_print(mp, "||:"); break;
5614 case begin_group:mp_print(mp, "begingroup"); break;
5615 case colon:mp_print(mp, ":"); break;
5616 case comma:mp_print(mp, ","); break;
5617 case controls:mp_print(mp, "controls"); break;
5618 case curl_command:mp_print(mp, "curl"); break;
5619 case delimiters:mp_print(mp, "delimiters"); break;
5620 case double_colon:mp_print(mp, "::"); break;
5621 case end_group:mp_print(mp, "endgroup"); break;
5622 case every_job_command:mp_print(mp, "everyjob"); break;
5623 case exit_test:mp_print(mp, "exitif"); break;
5624 case expand_after:mp_print(mp, "expandafter"); break;
5625 case interim_command:mp_print(mp, "interim"); break;
5626 case left_brace:mp_print(mp, "{"); break;
5627 case left_bracket:mp_print(mp, "["); break;
5628 case let_command:mp_print(mp, "let"); break;
5629 case new_internal:mp_print(mp, "newinternal"); break;
5630 case of_token:mp_print(mp, "of"); break;
5631 case path_join:mp_print(mp, ".."); break;
5632 case random_seed:mp_print(mp, "randomseed"); break;
5633 case relax:mp_print_char(mp, '\\'); break;
5634 case right_brace:mp_print(mp, "}"); break;
5635 case right_bracket:mp_print(mp, "]"); break;
5636 case save_command:mp_print(mp, "save"); break;
5637 case scan_tokens:mp_print(mp, "scantokens"); break;
5638 case semicolon:mp_print(mp, ";"); break;
5639 case ship_out_command:mp_print(mp, "shipout"); break;
5640 case skip_to:mp_print(mp, "skipto"); break;
5641 case special_command: if ( m==2 ) mp_print(mp, "fontmapline"); else
5642 if ( m==1 ) mp_print(mp, "fontmapfile"); else
5643 mp_print(mp, "special"); break;
5644 case step_token:mp_print(mp, "step"); break;
5645 case str_op:mp_print(mp, "str"); break;
5646 case tension:mp_print(mp, "tension"); break;
5647 case to_token:mp_print(mp, "to"); break;
5648 case until_token:mp_print(mp, "until"); break;
5649 case within_token:mp_print(mp, "within"); break;
5650 case write_command:mp_print(mp, "write"); break;
5652 @ We will deal with the other primitives later, at some point in the program
5653 where their |eq_type| and |equiv| values are more meaningful. For example,
5654 the primitives for macro definitions will be loaded when we consider the
5655 routines that define macros.
5656 It is easy to find where each particular
5657 primitive was treated by looking in the index at the end; for example, the
5658 section where |"def"| entered |eqtb| is listed under `\&{def} primitive'.
5660 @* \[14] Token lists.
5661 A \MP\ token is either symbolic or numeric or a string, or it denotes
5662 a macro parameter or capsule; so there are five corresponding ways to encode it
5664 internally: (1)~A symbolic token whose hash code is~|p|
5665 is represented by the number |p|, in the |info| field of a single-word
5666 node in~|mem|. (2)~A numeric token whose |scaled| value is~|v| is
5667 represented in a two-word node of~|mem|; the |type| field is |known|,
5668 the |name_type| field is |token|, and the |value| field holds~|v|.
5669 The fact that this token appears in a two-word node rather than a
5670 one-word node is, of course, clear from the node address.
5671 (3)~A string token is also represented in a two-word node; the |type|
5672 field is |mp_string_type|, the |name_type| field is |token|, and the
5673 |value| field holds the corresponding |str_number|. (4)~Capsules have
5674 |name_type=capsule|, and their |type| and |value| fields represent
5675 arbitrary values (in ways to be explained later). (5)~Macro parameters
5676 are like symbolic tokens in that they appear in |info| fields of
5677 one-word nodes. The $k$th parameter is represented by |expr_base+k| if it
5678 is of type \&{expr}, or by |suffix_base+k| if it is of type \&{suffix}, or
5679 by |text_base+k| if it is of type \&{text}. (Here |0<=k<param_size|.)
5680 Actual values of these parameters are kept in a separate stack, as we will
5681 see later. The constants |expr_base|, |suffix_base|, and |text_base| are,
5682 of course, chosen so that there will be no confusion between symbolic
5683 tokens and parameters of various types.
5686 the `\\{type}' field of a node has nothing to do with ``type'' in a
5687 printer's sense. It's curious that the same word is used in such different ways.
5689 @d type(A) mp->mem[(A)].hh.b0 /* identifies what kind of value this is */
5690 @d name_type(A) mp->mem[(A)].hh.b1 /* a clue to the name of this value */
5691 @d token_node_size 2 /* the number of words in a large token node */
5692 @d value_loc(A) ((A)+1) /* the word that contains the |value| field */
5693 @d value(A) mp->mem[value_loc((A))].cint /* the value stored in a large token node */
5694 @d expr_base (hash_end+1) /* code for the zeroth \&{expr} parameter */
5695 @d suffix_base (expr_base+mp->param_size) /* code for the zeroth \&{suffix} parameter */
5696 @d text_base (suffix_base+mp->param_size) /* code for the zeroth \&{text} parameter */
5698 @<Check the ``constant''...@>=
5699 if ( text_base+mp->param_size>max_halfword ) mp->bad=18;
5701 @ We have set aside a two word node beginning at |null| so that we can have
5702 |value(null)=0|. We will make use of this coincidence later.
5704 @<Initialize table entries...@>=
5705 link(null)=null; value(null)=0;
5707 @ A numeric token is created by the following trivial routine.
5710 pointer mp_new_num_tok (MP mp,scaled v) {
5711 pointer p; /* the new node */
5712 p=mp_get_node(mp, token_node_size); value(p)=v;
5713 type(p)=mp_known; name_type(p)=mp_token;
5717 @ A token list is a singly linked list of nodes in |mem|, where
5718 each node contains a token and a link. Here's a subroutine that gets rid
5719 of a token list when it is no longer needed.
5722 void mp_token_recycle (MP mp);
5725 @c void mp_flush_token_list (MP mp,pointer p) {
5726 pointer q; /* the node being recycled */
5729 if ( q>=mp->hi_mem_min ) {
5733 case mp_vacuous: case mp_boolean_type: case mp_known:
5735 case mp_string_type:
5736 delete_str_ref(value(q));
5738 case unknown_types: case mp_pen_type: case mp_path_type:
5739 case mp_picture_type: case mp_pair_type: case mp_color_type:
5740 case mp_cmykcolor_type: case mp_transform_type: case mp_dependent:
5741 case mp_proto_dependent: case mp_independent:
5742 mp->g_pointer=q; mp_token_recycle(mp);
5744 default: mp_confusion(mp, "token");
5745 @:this can't happen token}{\quad token@>
5747 mp_free_node(mp, q,token_node_size);
5752 @ The procedure |show_token_list|, which prints a symbolic form of
5753 the token list that starts at a given node |p|, illustrates these
5754 conventions. The token list being displayed should not begin with a reference
5755 count. However, the procedure is intended to be fairly robust, so that if the
5756 memory links are awry or if |p| is not really a pointer to a token list,
5757 almost nothing catastrophic can happen.
5759 An additional parameter |q| is also given; this parameter is either null
5760 or it points to a node in the token list where a certain magic computation
5761 takes place that will be explained later. (Basically, |q| is non-null when
5762 we are printing the two-line context information at the time of an error
5763 message; |q| marks the place corresponding to where the second line
5766 The generation will stop, and `\.{\char`\ ETC.}' will be printed, if the length
5767 of printing exceeds a given limit~|l|; the length of printing upon entry is
5768 assumed to be a given amount called |null_tally|. (Note that
5769 |show_token_list| sometimes uses itself recursively to print
5770 variable names within a capsule.)
5773 Unusual entries are printed in the form of all-caps tokens
5774 preceded by a space, e.g., `\.{\char`\ BAD}'.
5777 void mp_print_capsule (MP mp);
5779 @ @<Declare the procedure called |show_token_list|@>=
5780 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5781 integer null_tally) ;
5784 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5785 integer null_tally) {
5786 small_number class,c; /* the |char_class| of previous and new tokens */
5787 integer r,v; /* temporary registers */
5788 class=percent_class;
5789 mp->tally=null_tally;
5790 while ( (p!=null) && (mp->tally<l) ) {
5792 @<Do magic computation@>;
5793 @<Display token |p| and set |c| to its class;
5794 but |return| if there are problems@>;
5798 mp_print(mp, " ETC.");
5803 @ @<Display token |p| and set |c| to its class...@>=
5804 c=letter_class; /* the default */
5805 if ( (p<0)||(p>mp->mem_end) ) {
5806 mp_print(mp, " CLOBBERED"); return;
5809 if ( p<mp->hi_mem_min ) {
5810 @<Display two-word token@>;
5813 if ( r>=expr_base ) {
5814 @<Display a parameter token@>;
5818 @<Display a collective subscript@>
5820 mp_print(mp, " IMPOSSIBLE");
5825 if ( (r<0)||(r>mp->max_str_ptr) ) {
5826 mp_print(mp, " NONEXISTENT");
5829 @<Print string |r| as a symbolic token
5830 and set |c| to its class@>;
5836 @ @<Display two-word token@>=
5837 if ( name_type(p)==mp_token ) {
5838 if ( type(p)==mp_known ) {
5839 @<Display a numeric token@>;
5840 } else if ( type(p)!=mp_string_type ) {
5841 mp_print(mp, " BAD");
5844 mp_print_char(mp, '"'); mp_print_str(mp, value(p)); mp_print_char(mp, '"');
5847 } else if ((name_type(p)!=mp_capsule)||(type(p)<mp_vacuous)||(type(p)>mp_independent) ) {
5848 mp_print(mp, " BAD");
5850 mp->g_pointer=p; mp_print_capsule(mp); c=right_paren_class;
5853 @ @<Display a numeric token@>=
5854 if ( class==digit_class )
5855 mp_print_char(mp, ' ');
5858 if ( class==left_bracket_class )
5859 mp_print_char(mp, ' ');
5860 mp_print_char(mp, '['); mp_print_scaled(mp, v); mp_print_char(mp, ']');
5861 c=right_bracket_class;
5863 mp_print_scaled(mp, v); c=digit_class;
5867 @ Strictly speaking, a genuine token will never have |info(p)=0|.
5868 But we will see later (in the |print_variable_name| routine) that
5869 it is convenient to let |info(p)=0| stand for `\.{[]}'.
5871 @<Display a collective subscript@>=
5873 if ( class==left_bracket_class )
5874 mp_print_char(mp, ' ');
5875 mp_print(mp, "[]"); c=right_bracket_class;
5878 @ @<Display a parameter token@>=
5880 if ( r<suffix_base ) {
5881 mp_print(mp, "(EXPR"); r=r-(expr_base);
5883 } else if ( r<text_base ) {
5884 mp_print(mp, "(SUFFIX"); r=r-(suffix_base);
5887 mp_print(mp, "(TEXT"); r=r-(text_base);
5890 mp_print_int(mp, r); mp_print_char(mp, ')'); c=right_paren_class;
5894 @ @<Print string |r| as a symbolic token...@>=
5896 c=mp->char_class[mp->str_pool[mp->str_start[r]]];
5899 case letter_class:mp_print_char(mp, '.'); break;
5900 case isolated_classes: break;
5901 default: mp_print_char(mp, ' '); break;
5904 mp_print_str(mp, r);
5907 @ The following procedures have been declared |forward| with no parameters,
5908 because the author dislikes \PASCAL's convention about |forward| procedures
5909 with parameters. It was necessary to do something, because |show_token_list|
5910 is recursive (although the recursion is limited to one level), and because
5911 |flush_token_list| is syntactically (but not semantically) recursive.
5914 @<Declare miscellaneous procedures that were declared |forward|@>=
5915 void mp_print_capsule (MP mp) {
5916 mp_print_char(mp, '('); mp_print_exp(mp, mp->g_pointer,0); mp_print_char(mp, ')');
5919 void mp_token_recycle (MP mp) {
5920 mp_recycle_value(mp, mp->g_pointer);
5924 pointer g_pointer; /* (global) parameter to the |forward| procedures */
5926 @ Macro definitions are kept in \MP's memory in the form of token lists
5927 that have a few extra one-word nodes at the beginning.
5929 The first node contains a reference count that is used to tell when the
5930 list is no longer needed. To emphasize the fact that a reference count is
5931 present, we shall refer to the |info| field of this special node as the
5933 @^reference counts@>
5935 The next node or nodes after the reference count serve to describe the
5936 formal parameters. They either contain a code word that specifies all
5937 of the parameters, or they contain zero or more parameter tokens followed
5938 by the code `|general_macro|'.
5941 /* reference count preceding a macro definition or picture header */
5942 @d add_mac_ref(A) incr(ref_count((A))) /* make a new reference to a macro list */
5943 @d general_macro 0 /* preface to a macro defined with a parameter list */
5944 @d primary_macro 1 /* preface to a macro with a \&{primary} parameter */
5945 @d secondary_macro 2 /* preface to a macro with a \&{secondary} parameter */
5946 @d tertiary_macro 3 /* preface to a macro with a \&{tertiary} parameter */
5947 @d expr_macro 4 /* preface to a macro with an undelimited \&{expr} parameter */
5948 @d of_macro 5 /* preface to a macro with
5949 undelimited `\&{expr} |x| \&{of}~|y|' parameters */
5950 @d suffix_macro 6 /* preface to a macro with an undelimited \&{suffix} parameter */
5951 @d text_macro 7 /* preface to a macro with an undelimited \&{text} parameter */
5954 void mp_delete_mac_ref (MP mp,pointer p) {
5955 /* |p| points to the reference count of a macro list that is
5956 losing one reference */
5957 if ( ref_count(p)==null ) mp_flush_token_list(mp, p);
5958 else decr(ref_count(p));
5961 @ The following subroutine displays a macro, given a pointer to its
5965 @<Declare the procedure called |print_cmd_mod|@>;
5966 void mp_show_macro (MP mp, pointer p, integer q, integer l) {
5967 pointer r; /* temporary storage */
5968 p=link(p); /* bypass the reference count */
5969 while ( info(p)>text_macro ){
5970 r=link(p); link(p)=null;
5971 mp_show_token_list(mp, p,null,l,0); link(p)=r; p=r;
5972 if ( l>0 ) l=l-mp->tally; else return;
5973 } /* control printing of `\.{ETC.}' */
5977 case general_macro:mp_print(mp, "->"); break;
5979 case primary_macro: case secondary_macro: case tertiary_macro:
5980 mp_print_char(mp, '<');
5981 mp_print_cmd_mod(mp, param_type,info(p));
5982 mp_print(mp, ">->");
5984 case expr_macro:mp_print(mp, "<expr>->"); break;
5985 case of_macro:mp_print(mp, "<expr>of<primary>->"); break;
5986 case suffix_macro:mp_print(mp, "<suffix>->"); break;
5987 case text_macro:mp_print(mp, "<text>->"); break;
5988 } /* there are no other cases */
5989 mp_show_token_list(mp, link(p),q,l-mp->tally,0);
5992 @* \[15] Data structures for variables.
5993 The variables of \MP\ programs can be simple, like `\.x', or they can
5994 combine the structural properties of arrays and records, like `\.{x20a.b}'.
5995 A \MP\ user assigns a type to a variable like \.{x20a.b} by saying, for
5996 example, `\.{boolean} \.{x20a.b}'. It's time for us to study how such
5997 things are represented inside of the computer.
5999 Each variable value occupies two consecutive words, either in a two-word
6000 node called a value node, or as a two-word subfield of a larger node. One
6001 of those two words is called the |value| field; it is an integer,
6002 containing either a |scaled| numeric value or the representation of some
6003 other type of quantity. (It might also be subdivided into halfwords, in
6004 which case it is referred to by other names instead of |value|.) The other
6005 word is broken into subfields called |type|, |name_type|, and |link|. The
6006 |type| field is a quarterword that specifies the variable's type, and
6007 |name_type| is a quarterword from which \MP\ can reconstruct the
6008 variable's name (sometimes by using the |link| field as well). Thus, only
6009 1.25 words are actually devoted to the value itself; the other
6010 three-quarters of a word are overhead, but they aren't wasted because they
6011 allow \MP\ to deal with sparse arrays and to provide meaningful diagnostics.
6013 In this section we shall be concerned only with the structural aspects of
6014 variables, not their values. Later parts of the program will change the
6015 |type| and |value| fields, but we shall treat those fields as black boxes
6016 whose contents should not be touched.
6018 However, if the |type| field is |mp_structured|, there is no |value| field,
6019 and the second word is broken into two pointer fields called |attr_head|
6020 and |subscr_head|. Those fields point to additional nodes that
6021 contain structural information, as we shall see.
6023 @d subscr_head_loc(A) (A)+1 /* where |value|, |subscr_head| and |attr_head| are */
6024 @d attr_head(A) info(subscr_head_loc((A))) /* pointer to attribute info */
6025 @d subscr_head(A) link(subscr_head_loc((A))) /* pointer to subscript info */
6026 @d value_node_size 2 /* the number of words in a value node */
6028 @ An attribute node is three words long. Two of these words contain |type|
6029 and |value| fields as described above, and the third word contains
6030 additional information: There is an |attr_loc| field, which contains the
6031 hash address of the token that names this attribute; and there's also a
6032 |parent| field, which points to the value node of |mp_structured| type at the
6033 next higher level (i.e., at the level to which this attribute is
6034 subsidiary). The |name_type| in an attribute node is `|attr|'. The
6035 |link| field points to the next attribute with the same parent; these are
6036 arranged in increasing order, so that |attr_loc(link(p))>attr_loc(p)|. The
6037 final attribute node links to the constant |end_attr|, whose |attr_loc|
6038 field is greater than any legal hash address. The |attr_head| in the
6039 parent points to a node whose |name_type| is |mp_structured_root|; this
6040 node represents the null attribute, i.e., the variable that is relevant
6041 when no attributes are attached to the parent. The |attr_head| node is either
6042 a value node, a subscript node, or an attribute node, depending on what
6043 the parent would be if it were not structured; but the subscript and
6044 attribute fields are ignored, so it effectively contains only the data of
6045 a value node. The |link| field in this special node points to an attribute
6046 node whose |attr_loc| field is zero; the latter node represents a collective
6047 subscript `\.{[]}' attached to the parent, and its |link| field points to
6048 the first non-special attribute node (or to |end_attr| if there are none).
6050 A subscript node likewise occupies three words, with |type| and |value| fields
6051 plus extra information; its |name_type| is |subscr|. In this case the
6052 third word is called the |subscript| field, which is a |scaled| integer.
6053 The |link| field points to the subscript node with the next larger
6054 subscript, if any; otherwise the |link| points to the attribute node
6055 for collective subscripts at this level. We have seen that the latter node
6056 contains an upward pointer, so that the parent can be deduced.
6058 The |name_type| in a parent-less value node is |root|, and the |link|
6059 is the hash address of the token that names this value.
6061 In other words, variables have a hierarchical structure that includes
6062 enough threads running around so that the program is able to move easily
6063 between siblings, parents, and children. An example should be helpful:
6064 (The reader is advised to draw a picture while reading the following
6065 description, since that will help to firm up the ideas.)
6066 Suppose that `\.x' and `\.{x.a}' and `\.{x[]b}' and `\.{x5}'
6067 and `\.{x20b}' have been mentioned in a user's program, where
6068 \.{x[]b} has been declared to be of \&{boolean} type. Let |h(x)|, |h(a)|,
6069 and |h(b)| be the hash addresses of \.x, \.a, and~\.b. Then
6070 |eq_type(h(x))=name| and |equiv(h(x))=p|, where |p|~is a two-word value
6071 node with |name_type(p)=root| and |link(p)=h(x)|. We have |type(p)=mp_structured|,
6072 |attr_head(p)=q|, and |subscr_head(p)=r|, where |q| points to a value
6073 node and |r| to a subscript node. (Are you still following this? Use
6074 a pencil to draw a diagram.) The lone variable `\.x' is represented by
6075 |type(q)| and |value(q)|; furthermore
6076 |name_type(q)=mp_structured_root| and |link(q)=q1|, where |q1| points
6077 to an attribute node representing `\.{x[]}'. Thus |name_type(q1)=attr|,
6078 |attr_loc(q1)=collective_subscript=0|, |parent(q1)=p|,
6079 |type(q1)=mp_structured|, |attr_head(q1)=qq|, and |subscr_head(q1)=qq1|;
6080 |qq| is a value node with |type(qq)=mp_numeric_type| (assuming that \.{x5} is
6081 numeric, because |qq| represents `\.{x[]}' with no further attributes),
6082 |name_type(qq)=mp_structured_root|, and
6083 |link(qq)=qq1|. (Now pay attention to the next part.) Node |qq1| is
6084 an attribute node representing `\.{x[][]}', which has never yet
6085 occurred; its |type| field is |undefined|, and its |value| field is
6086 undefined. We have |name_type(qq1)=attr|, |attr_loc(qq1)=collective_subscript|,
6087 |parent(qq1)=q1|, and |link(qq1)=qq2|. Since |qq2| represents
6088 `\.{x[]b}', |type(qq2)=mp_unknown_boolean|; also |attr_loc(qq2)=h(b)|,
6089 |parent(qq2)=q1|, |name_type(qq2)=attr|, |link(qq2)=end_attr|.
6090 (Maybe colored lines will help untangle your picture.)
6091 Node |r| is a subscript node with |type| and |value|
6092 representing `\.{x5}'; |name_type(r)=subscr|, |subscript(r)=5.0|,
6093 and |link(r)=r1| is another subscript node. To complete the picture,
6094 see if you can guess what |link(r1)| is; give up? It's~|q1|.
6095 Furthermore |subscript(r1)=20.0|, |name_type(r1)=subscr|,
6096 |type(r1)=mp_structured|, |attr_head(r1)=qqq|, |subscr_head(r1)=qqq1|,
6097 and we finish things off with three more nodes
6098 |qqq|, |qqq1|, and |qqq2| hung onto~|r1|. (Perhaps you should start again
6099 with a larger sheet of paper.) The value of variable \.{x20b}
6100 appears in node~|qqq2|, as you can well imagine.
6102 If the example in the previous paragraph doesn't make things crystal
6103 clear, a glance at some of the simpler subroutines below will reveal how
6104 things work out in practice.
6106 The only really unusual thing about these conventions is the use of
6107 collective subscript attributes. The idea is to avoid repeating a lot of
6108 type information when many elements of an array are identical macros
6109 (for which distinct values need not be stored) or when they don't have
6110 all of the possible attributes. Branches of the structure below collective
6111 subscript attributes do not carry actual values except for macro identifiers;
6112 branches of the structure below subscript nodes do not carry significant
6113 information in their collective subscript attributes.
6115 @d attr_loc_loc(A) ((A)+2) /* where the |attr_loc| and |parent| fields are */
6116 @d attr_loc(A) info(attr_loc_loc((A))) /* hash address of this attribute */
6117 @d parent(A) link(attr_loc_loc((A))) /* pointer to |mp_structured| variable */
6118 @d subscript_loc(A) ((A)+2) /* where the |subscript| field lives */
6119 @d subscript(A) mp->mem[subscript_loc((A))].sc /* subscript of this variable */
6120 @d attr_node_size 3 /* the number of words in an attribute node */
6121 @d subscr_node_size 3 /* the number of words in a subscript node */
6122 @d collective_subscript 0 /* code for the attribute `\.{[]}' */
6124 @<Initialize table...@>=
6125 attr_loc(end_attr)=hash_end+1; parent(end_attr)=null;
6127 @ Variables of type \&{pair} will have values that point to four-word
6128 nodes containing two numeric values. The first of these values has
6129 |name_type=mp_x_part_sector| and the second has |name_type=mp_y_part_sector|;
6130 the |link| in the first points back to the node whose |value| points
6131 to this four-word node.
6133 Variables of type \&{transform} are similar, but in this case their
6134 |value| points to a 12-word node containing six values, identified by
6135 |x_part_sector|, |y_part_sector|, |mp_xx_part_sector|, |mp_xy_part_sector|,
6136 |mp_yx_part_sector|, and |mp_yy_part_sector|.
6137 Finally, variables of type \&{color} have three values in six words
6138 identified by |mp_red_part_sector|, |mp_green_part_sector|, and |mp_blue_part_sector|.
6140 When an entire structured variable is saved, the |root| indication
6141 is temporarily replaced by |saved_root|.
6143 Some variables have no name; they just are used for temporary storage
6144 while expressions are being evaluated. We call them {\sl capsules}.
6146 @d x_part_loc(A) (A) /* where the \&{xpart} is found in a pair or transform node */
6147 @d y_part_loc(A) ((A)+2) /* where the \&{ypart} is found in a pair or transform node */
6148 @d xx_part_loc(A) ((A)+4) /* where the \&{xxpart} is found in a transform node */
6149 @d xy_part_loc(A) ((A)+6) /* where the \&{xypart} is found in a transform node */
6150 @d yx_part_loc(A) ((A)+8) /* where the \&{yxpart} is found in a transform node */
6151 @d yy_part_loc(A) ((A)+10) /* where the \&{yypart} is found in a transform node */
6152 @d red_part_loc(A) (A) /* where the \&{redpart} is found in a color node */
6153 @d green_part_loc(A) ((A)+2) /* where the \&{greenpart} is found in a color node */
6154 @d blue_part_loc(A) ((A)+4) /* where the \&{bluepart} is found in a color node */
6155 @d cyan_part_loc(A) (A) /* where the \&{cyanpart} is found in a color node */
6156 @d magenta_part_loc(A) ((A)+2) /* where the \&{magentapart} is found in a color node */
6157 @d yellow_part_loc(A) ((A)+4) /* where the \&{yellowpart} is found in a color node */
6158 @d black_part_loc(A) ((A)+6) /* where the \&{blackpart} is found in a color node */
6159 @d grey_part_loc(A) (A) /* where the \&{greypart} is found in a color node */
6161 @d pair_node_size 4 /* the number of words in a pair node */
6162 @d transform_node_size 12 /* the number of words in a transform node */
6163 @d color_node_size 6 /* the number of words in a color node */
6164 @d cmykcolor_node_size 8 /* the number of words in a color node */
6167 small_number big_node_size[mp_pair_type+1];
6168 small_number sector0[mp_pair_type+1];
6169 small_number sector_offset[mp_black_part_sector+1];
6171 @ The |sector0| array gives for each big node type, |name_type| values
6172 for its first subfield; the |sector_offset| array gives for each
6173 |name_type| value, the offset from the first subfield in words;
6174 and the |big_node_size| array gives the size in words for each type of
6178 mp->big_node_size[mp_transform_type]=transform_node_size;
6179 mp->big_node_size[mp_pair_type]=pair_node_size;
6180 mp->big_node_size[mp_color_type]=color_node_size;
6181 mp->big_node_size[mp_cmykcolor_type]=cmykcolor_node_size;
6182 mp->sector0[mp_transform_type]=mp_x_part_sector;
6183 mp->sector0[mp_pair_type]=mp_x_part_sector;
6184 mp->sector0[mp_color_type]=mp_red_part_sector;
6185 mp->sector0[mp_cmykcolor_type]=mp_cyan_part_sector;
6186 for (k=mp_x_part_sector;k<= mp_yy_part_sector;k++ ) {
6187 mp->sector_offset[k]=2*(k-mp_x_part_sector);
6189 for (k=mp_red_part_sector;k<= mp_blue_part_sector ; k++) {
6190 mp->sector_offset[k]=2*(k-mp_red_part_sector);
6192 for (k=mp_cyan_part_sector;k<= mp_black_part_sector;k++ ) {
6193 mp->sector_offset[k]=2*(k-mp_cyan_part_sector);
6196 @ If |type(p)=mp_pair_type| or |mp_transform_type| and if |value(p)=null|, the
6197 procedure call |init_big_node(p)| will allocate a pair or transform node
6198 for~|p|. The individual parts of such nodes are initially of type
6202 void mp_init_big_node (MP mp,pointer p) {
6203 pointer q; /* the new node */
6204 small_number s; /* its size */
6205 s=mp->big_node_size[type(p)]; q=mp_get_node(mp, s);
6208 @<Make variable |q+s| newly independent@>;
6209 name_type(q+s)=halfp(s)+mp->sector0[type(p)];
6212 link(q)=p; value(p)=q;
6215 @ The |id_transform| function creates a capsule for the
6216 identity transformation.
6219 pointer mp_id_transform (MP mp) {
6220 pointer p,q,r; /* list manipulation registers */
6221 p=mp_get_node(mp, value_node_size); type(p)=mp_transform_type;
6222 name_type(p)=mp_capsule; value(p)=null; mp_init_big_node(mp, p); q=value(p);
6223 r=q+transform_node_size;
6226 type(r)=mp_known; value(r)=0;
6228 value(xx_part_loc(q))=unity;
6229 value(yy_part_loc(q))=unity;
6233 @ Tokens are of type |tag_token| when they first appear, but they point
6234 to |null| until they are first used as the root of a variable.
6235 The following subroutine establishes the root node on such grand occasions.
6238 void mp_new_root (MP mp,pointer x) {
6239 pointer p; /* the new node */
6240 p=mp_get_node(mp, value_node_size); type(p)=undefined; name_type(p)=mp_root;
6241 link(p)=x; equiv(x)=p;
6244 @ These conventions for variable representation are illustrated by the
6245 |print_variable_name| routine, which displays the full name of a
6246 variable given only a pointer to its two-word value packet.
6249 void mp_print_variable_name (MP mp, pointer p);
6252 void mp_print_variable_name (MP mp, pointer p) {
6253 pointer q; /* a token list that will name the variable's suffix */
6254 pointer r; /* temporary for token list creation */
6255 while ( name_type(p)>=mp_x_part_sector ) {
6256 @<Preface the output with a part specifier; |return| in the
6257 case of a capsule@>;
6260 while ( name_type(p)>mp_saved_root ) {
6261 @<Ascend one level, pushing a token onto list |q|
6262 and replacing |p| by its parent@>;
6264 r=mp_get_avail(mp); info(r)=link(p); link(r)=q;
6265 if ( name_type(p)==mp_saved_root ) mp_print(mp, "(SAVED)");
6267 mp_show_token_list(mp, r,null,el_gordo,mp->tally);
6268 mp_flush_token_list(mp, r);
6271 @ @<Ascend one level, pushing a token onto list |q|...@>=
6273 if ( name_type(p)==mp_subscr ) {
6274 r=mp_new_num_tok(mp, subscript(p));
6277 } while (name_type(p)!=mp_attr);
6278 } else if ( name_type(p)==mp_structured_root ) {
6279 p=link(p); goto FOUND;
6281 if ( name_type(p)!=mp_attr ) mp_confusion(mp, "var");
6282 @:this can't happen var}{\quad var@>
6283 r=mp_get_avail(mp); info(r)=attr_loc(p);
6290 @ @<Preface the output with a part specifier...@>=
6291 { switch (name_type(p)) {
6292 case mp_x_part_sector: mp_print_char(mp, 'x'); break;
6293 case mp_y_part_sector: mp_print_char(mp, 'y'); break;
6294 case mp_xx_part_sector: mp_print(mp, "xx"); break;
6295 case mp_xy_part_sector: mp_print(mp, "xy"); break;
6296 case mp_yx_part_sector: mp_print(mp, "yx"); break;
6297 case mp_yy_part_sector: mp_print(mp, "yy"); break;
6298 case mp_red_part_sector: mp_print(mp, "red"); break;
6299 case mp_green_part_sector: mp_print(mp, "green"); break;
6300 case mp_blue_part_sector: mp_print(mp, "blue"); break;
6301 case mp_cyan_part_sector: mp_print(mp, "cyan"); break;
6302 case mp_magenta_part_sector: mp_print(mp, "magenta"); break;
6303 case mp_yellow_part_sector: mp_print(mp, "yellow"); break;
6304 case mp_black_part_sector: mp_print(mp, "black"); break;
6305 case mp_grey_part_sector: mp_print(mp, "grey"); break;
6307 mp_print(mp, "%CAPSULE"); mp_print_int(mp, p-null); return;
6310 } /* there are no other cases */
6311 mp_print(mp, "part ");
6312 p=link(p-mp->sector_offset[name_type(p)]);
6315 @ The |interesting| function returns |true| if a given variable is not
6316 in a capsule, or if the user wants to trace capsules.
6319 boolean mp_interesting (MP mp,pointer p) {
6320 small_number t; /* a |name_type| */
6321 if ( mp->internal[mp_tracing_capsules]>0 ) {
6325 if ( t>=mp_x_part_sector ) if ( t!=mp_capsule )
6326 t=name_type(link(p-mp->sector_offset[t]));
6327 return (t!=mp_capsule);
6331 @ Now here is a subroutine that converts an unstructured type into an
6332 equivalent structured type, by inserting a |mp_structured| node that is
6333 capable of growing. This operation is done only when |name_type(p)=root|,
6334 |subscr|, or |attr|.
6336 The procedure returns a pointer to the new node that has taken node~|p|'s
6337 place in the structure. Node~|p| itself does not move, nor are its
6338 |value| or |type| fields changed in any way.
6341 pointer mp_new_structure (MP mp,pointer p) {
6342 pointer q,r=0; /* list manipulation registers */
6343 switch (name_type(p)) {
6345 q=link(p); r=mp_get_node(mp, value_node_size); equiv(q)=r;
6348 @<Link a new subscript node |r| in place of node |p|@>;
6351 @<Link a new attribute node |r| in place of node |p|@>;
6354 mp_confusion(mp, "struct");
6355 @:this can't happen struct}{\quad struct@>
6358 link(r)=link(p); type(r)=mp_structured; name_type(r)=name_type(p);
6359 attr_head(r)=p; name_type(p)=mp_structured_root;
6360 q=mp_get_node(mp, attr_node_size); link(p)=q; subscr_head(r)=q;
6361 parent(q)=r; type(q)=undefined; name_type(q)=mp_attr; link(q)=end_attr;
6362 attr_loc(q)=collective_subscript;
6366 @ @<Link a new subscript node |r| in place of node |p|@>=
6371 } while (name_type(q)!=mp_attr);
6372 q=parent(q); r=subscr_head_loc(q); /* |link(r)=subscr_head(q)| */
6376 r=mp_get_node(mp, subscr_node_size);
6377 link(q)=r; subscript(r)=subscript(p);
6380 @ If the attribute is |collective_subscript|, there are two pointers to
6381 node~|p|, so we must change both of them.
6383 @<Link a new attribute node |r| in place of node |p|@>=
6385 q=parent(p); r=attr_head(q);
6389 r=mp_get_node(mp, attr_node_size); link(q)=r;
6390 mp->mem[attr_loc_loc(r)]=mp->mem[attr_loc_loc(p)]; /* copy |attr_loc| and |parent| */
6391 if ( attr_loc(p)==collective_subscript ) {
6392 q=subscr_head_loc(parent(p));
6393 while ( link(q)!=p ) q=link(q);
6398 @ The |find_variable| routine is given a pointer~|t| to a nonempty token
6399 list of suffixes; it returns a pointer to the corresponding two-word
6400 value. For example, if |t| points to token \.x followed by a numeric
6401 token containing the value~7, |find_variable| finds where the value of
6402 \.{x7} is stored in memory. This may seem a simple task, and it
6403 usually is, except when \.{x7} has never been referenced before.
6404 Indeed, \.x may never have even been subscripted before; complexities
6405 arise with respect to updating the collective subscript information.
6407 If a macro type is detected anywhere along path~|t|, or if the first
6408 item on |t| isn't a |tag_token|, the value |null| is returned.
6409 Otherwise |p| will be a non-null pointer to a node such that
6410 |undefined<type(p)<mp_structured|.
6412 @d abort_find { return null; }
6415 pointer mp_find_variable (MP mp,pointer t) {
6416 pointer p,q,r,s; /* nodes in the ``value'' line */
6417 pointer pp,qq,rr,ss; /* nodes in the ``collective'' line */
6418 integer n; /* subscript or attribute */
6419 memory_word save_word; /* temporary storage for a word of |mem| */
6421 p=info(t); t=link(t);
6422 if ( (eq_type(p) % outer_tag) != tag_token ) abort_find;
6423 if ( equiv(p)==null ) mp_new_root(mp, p);
6426 @<Make sure that both nodes |p| and |pp| are of |mp_structured| type@>;
6427 if ( t<mp->hi_mem_min ) {
6428 @<Descend one level for the subscript |value(t)|@>
6430 @<Descend one level for the attribute |info(t)|@>;
6434 if ( type(pp)>=mp_structured ) {
6435 if ( type(pp)==mp_structured ) pp=attr_head(pp); else abort_find;
6437 if ( type(p)==mp_structured ) p=attr_head(p);
6438 if ( type(p)==undefined ) {
6439 if ( type(pp)==undefined ) { type(pp)=mp_numeric_type; value(pp)=null; };
6440 type(p)=type(pp); value(p)=null;
6445 @ Although |pp| and |p| begin together, they diverge when a subscript occurs;
6446 |pp|~stays in the collective line while |p|~goes through actual subscript
6449 @<Make sure that both nodes |p| and |pp|...@>=
6450 if ( type(pp)!=mp_structured ) {
6451 if ( type(pp)>mp_structured ) abort_find;
6452 ss=mp_new_structure(mp, pp);
6455 }; /* now |type(pp)=mp_structured| */
6456 if ( type(p)!=mp_structured ) /* it cannot be |>mp_structured| */
6457 p=mp_new_structure(mp, p) /* now |type(p)=mp_structured| */
6459 @ We want this part of the program to be reasonably fast, in case there are
6461 lots of subscripts at the same level of the data structure. Therefore
6462 we store an ``infinite'' value in the word that appears at the end of the
6463 subscript list, even though that word isn't part of a subscript node.
6465 @<Descend one level for the subscript |value(t)|@>=
6468 pp=link(attr_head(pp)); /* now |attr_loc(pp)=collective_subscript| */
6469 q=link(attr_head(p)); save_word=mp->mem[subscript_loc(q)];
6470 subscript(q)=el_gordo; s=subscr_head_loc(p); /* |link(s)=subscr_head(p)| */
6473 } while (n>subscript(s));
6474 if ( n==subscript(s) ) {
6477 p=mp_get_node(mp, subscr_node_size); link(r)=p; link(p)=s;
6478 subscript(p)=n; name_type(p)=mp_subscr; type(p)=undefined;
6480 mp->mem[subscript_loc(q)]=save_word;
6483 @ @<Descend one level for the attribute |info(t)|@>=
6489 } while (n>attr_loc(ss));
6490 if ( n<attr_loc(ss) ) {
6491 qq=mp_get_node(mp, attr_node_size); link(rr)=qq; link(qq)=ss;
6492 attr_loc(qq)=n; name_type(qq)=mp_attr; type(qq)=undefined;
6493 parent(qq)=pp; ss=qq;
6498 pp=ss; s=attr_head(p);
6501 } while (n>attr_loc(s));
6502 if ( n==attr_loc(s) ) {
6505 q=mp_get_node(mp, attr_node_size); link(r)=q; link(q)=s;
6506 attr_loc(q)=n; name_type(q)=mp_attr; type(q)=undefined;
6512 @ Variables lose their former values when they appear in a type declaration,
6513 or when they are defined to be macros or \&{let} equal to something else.
6514 A subroutine will be defined later that recycles the storage associated
6515 with any particular |type| or |value|; our goal now is to study a higher
6516 level process called |flush_variable|, which selectively frees parts of a
6519 This routine has some complexity because of examples such as
6520 `\hbox{\tt numeric x[]a[]b}'
6521 which recycles all variables of the form \.{x[i]a[j]b} (and no others), while
6522 `\hbox{\tt vardef x[]a[]=...}'
6523 discards all variables of the form \.{x[i]a[j]} followed by an arbitrary
6524 suffix, except for the collective node \.{x[]a[]} itself. The obvious way
6525 to handle such examples is to use recursion; so that's what we~do.
6528 Parameter |p| points to the root information of the variable;
6529 parameter |t| points to a list of one-word nodes that represent
6530 suffixes, with |info=collective_subscript| for subscripts.
6533 @<Declare subroutines for printing expressions@>
6534 @<Declare basic dependency-list subroutines@>
6535 @<Declare the recycling subroutines@>
6536 void mp_flush_cur_exp (MP mp,scaled v) ;
6537 @<Declare the procedure called |flush_below_variable|@>
6540 void mp_flush_variable (MP mp,pointer p, pointer t, boolean discard_suffixes) {
6541 pointer q,r; /* list manipulation */
6542 halfword n; /* attribute to match */
6544 if ( type(p)!=mp_structured ) return;
6545 n=info(t); t=link(t);
6546 if ( n==collective_subscript ) {
6547 r=subscr_head_loc(p); q=link(r); /* |q=subscr_head(p)| */
6548 while ( name_type(q)==mp_subscr ){
6549 mp_flush_variable(mp, q,t,discard_suffixes);
6551 if ( type(q)==mp_structured ) r=q;
6552 else { link(r)=link(q); mp_free_node(mp, q,subscr_node_size); }
6562 } while (attr_loc(p)<n);
6563 if ( attr_loc(p)!=n ) return;
6565 if ( discard_suffixes ) {
6566 mp_flush_below_variable(mp, p);
6568 if ( type(p)==mp_structured ) p=attr_head(p);
6569 mp_recycle_value(mp, p);
6573 @ The next procedure is simpler; it wipes out everything but |p| itself,
6574 which becomes undefined.
6576 @<Declare the procedure called |flush_below_variable|@>=
6577 void mp_flush_below_variable (MP mp, pointer p);
6580 void mp_flush_below_variable (MP mp,pointer p) {
6581 pointer q,r; /* list manipulation registers */
6582 if ( type(p)!=mp_structured ) {
6583 mp_recycle_value(mp, p); /* this sets |type(p)=undefined| */
6586 while ( name_type(q)==mp_subscr ) {
6587 mp_flush_below_variable(mp, q); r=q; q=link(q);
6588 mp_free_node(mp, r,subscr_node_size);
6590 r=attr_head(p); q=link(r); mp_recycle_value(mp, r);
6591 if ( name_type(p)<=mp_saved_root ) mp_free_node(mp, r,value_node_size);
6592 else mp_free_node(mp, r,subscr_node_size);
6593 /* we assume that |subscr_node_size=attr_node_size| */
6595 mp_flush_below_variable(mp, q); r=q; q=link(q); mp_free_node(mp, r,attr_node_size);
6596 } while (q!=end_attr);
6601 @ Just before assigning a new value to a variable, we will recycle the
6602 old value and make the old value undefined. The |und_type| routine
6603 determines what type of undefined value should be given, based on
6604 the current type before recycling.
6607 small_number mp_und_type (MP mp,pointer p) {
6609 case undefined: case mp_vacuous:
6611 case mp_boolean_type: case mp_unknown_boolean:
6612 return mp_unknown_boolean;
6613 case mp_string_type: case mp_unknown_string:
6614 return mp_unknown_string;
6615 case mp_pen_type: case mp_unknown_pen:
6616 return mp_unknown_pen;
6617 case mp_path_type: case mp_unknown_path:
6618 return mp_unknown_path;
6619 case mp_picture_type: case mp_unknown_picture:
6620 return mp_unknown_picture;
6621 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
6622 case mp_pair_type: case mp_numeric_type:
6624 case mp_known: case mp_dependent: case mp_proto_dependent: case mp_independent:
6625 return mp_numeric_type;
6626 } /* there are no other cases */
6630 @ The |clear_symbol| routine is used when we want to redefine the equivalent
6631 of a symbolic token. It must remove any variable structure or macro
6632 definition that is currently attached to that symbol. If the |saving|
6633 parameter is true, a subsidiary structure is saved instead of destroyed.
6636 void mp_clear_symbol (MP mp,pointer p, boolean saving) {
6637 pointer q; /* |equiv(p)| */
6639 switch (eq_type(p) % outer_tag) {
6641 case secondary_primary_macro:
6642 case tertiary_secondary_macro:
6643 case expression_tertiary_macro:
6644 if ( ! saving ) mp_delete_mac_ref(mp, q);
6649 name_type(q)=mp_saved_root;
6651 mp_flush_below_variable(mp, q); mp_free_node(mp,q,value_node_size);
6658 mp->eqtb[p]=mp->eqtb[frozen_undefined];
6661 @* \[16] Saving and restoring equivalents.
6662 The nested structure given by \&{begingroup} and \&{endgroup}
6663 allows |eqtb| entries to be saved and restored, so that temporary changes
6664 can be made without difficulty. When the user requests a current value to
6665 be saved, \MP\ puts that value into its ``save stack.'' An appearance of
6666 \&{endgroup} ultimately causes the old values to be removed from the save
6667 stack and put back in their former places.
6669 The save stack is a linked list containing three kinds of entries,
6670 distinguished by their |info| fields. If |p| points to a saved item,
6674 |info(p)=0| stands for a group boundary; each \&{begingroup} contributes
6675 such an item to the save stack and each \&{endgroup} cuts back the stack
6676 until the most recent such entry has been removed.
6679 |info(p)=q|, where |1<=q<=hash_end|, means that |mem[p+1]| holds the former
6680 contents of |eqtb[q]|. Such save stack entries are generated by \&{save}
6681 commands or suitable \&{interim} commands.
6684 |info(p)=hash_end+q|, where |q>0|, means that |value(p)| is a |scaled|
6685 integer to be restored to internal parameter number~|q|. Such entries
6686 are generated by \&{interim} commands.
6689 The global variable |save_ptr| points to the top item on the save stack.
6691 @d save_node_size 2 /* number of words per non-boundary save-stack node */
6692 @d saved_equiv(A) mp->mem[(A)+1].hh /* where an |eqtb| entry gets saved */
6693 @d save_boundary_item(A) { (A)=mp_get_avail(mp); info((A))=0;
6694 link((A))=mp->save_ptr; mp->save_ptr=(A);
6698 pointer save_ptr; /* the most recently saved item */
6700 @ @<Set init...@>=mp->save_ptr=null;
6702 @ The |save_variable| routine is given a hash address |q|; it salts this
6703 address in the save stack, together with its current equivalent,
6704 then makes token~|q| behave as though it were brand new.
6706 Nothing is stacked when |save_ptr=null|, however; there's no way to remove
6707 things from the stack when the program is not inside a group, so there's
6708 no point in wasting the space.
6710 @c void mp_save_variable (MP mp,pointer q) {
6711 pointer p; /* temporary register */
6712 if ( mp->save_ptr!=null ){
6713 p=mp_get_node(mp, save_node_size); info(p)=q; link(p)=mp->save_ptr;
6714 saved_equiv(p)=mp->eqtb[q]; mp->save_ptr=p;
6716 mp_clear_symbol(mp, q,(mp->save_ptr!=null));
6719 @ Similarly, |save_internal| is given the location |q| of an internal
6720 quantity like |mp_tracing_pens|. It creates a save stack entry of the
6723 @c void mp_save_internal (MP mp,halfword q) {
6724 pointer p; /* new item for the save stack */
6725 if ( mp->save_ptr!=null ){
6726 p=mp_get_node(mp, save_node_size); info(p)=hash_end+q;
6727 link(p)=mp->save_ptr; value(p)=mp->internal[q]; mp->save_ptr=p;
6731 @ At the end of a group, the |unsave| routine restores all of the saved
6732 equivalents in reverse order. This routine will be called only when there
6733 is at least one boundary item on the save stack.
6736 void mp_unsave (MP mp) {
6737 pointer q; /* index to saved item */
6738 pointer p; /* temporary register */
6739 while ( info(mp->save_ptr)!=0 ) {
6740 q=info(mp->save_ptr);
6742 if ( mp->internal[mp_tracing_restores]>0 ) {
6743 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6744 mp_print(mp, mp->int_name[q-(hash_end)]); mp_print_char(mp, '=');
6745 mp_print_scaled(mp, value(mp->save_ptr)); mp_print_char(mp, '}');
6746 mp_end_diagnostic(mp, false);
6748 mp->internal[q-(hash_end)]=value(mp->save_ptr);
6750 if ( mp->internal[mp_tracing_restores]>0 ) {
6751 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6752 mp_print_text(q); mp_print_char(mp, '}');
6753 mp_end_diagnostic(mp, false);
6755 mp_clear_symbol(mp, q,false);
6756 mp->eqtb[q]=saved_equiv(mp->save_ptr);
6757 if ( eq_type(q) % outer_tag==tag_token ) {
6759 if ( p!=null ) name_type(p)=mp_root;
6762 p=link(mp->save_ptr);
6763 mp_free_node(mp, mp->save_ptr,save_node_size); mp->save_ptr=p;
6765 p=link(mp->save_ptr); free_avail(mp->save_ptr); mp->save_ptr=p;
6768 @* \[17] Data structures for paths.
6769 When a \MP\ user specifies a path, \MP\ will create a list of knots
6770 and control points for the associated cubic spline curves. If the
6771 knots are $z_0$, $z_1$, \dots, $z_n$, there are control points
6772 $z_k^+$ and $z_{k+1}^-$ such that the cubic splines between knots
6773 $z_k$ and $z_{k+1}$ are defined by B\'ezier's formula
6774 @:Bezier}{B\'ezier, Pierre Etienne@>
6775 $$\eqalign{z(t)&=B(z_k,z_k^+,z_{k+1}^-,z_{k+1};t)\cr
6776 &=(1-t)^3z_k+3(1-t)^2tz_k^++3(1-t)t^2z_{k+1}^-+t^3z_{k+1}\cr}$$
6779 There is a 8-word node for each knot $z_k$, containing one word of
6780 control information and six words for the |x| and |y| coordinates of
6781 $z_k^-$ and $z_k$ and~$z_k^+$. The control information appears in the
6782 |left_type| and |right_type| fields, which each occupy a quarter of
6783 the first word in the node; they specify properties of the curve as it
6784 enters and leaves the knot. There's also a halfword |link| field,
6785 which points to the following knot, and a final supplementary word (of
6786 which only a quarter is used).
6788 If the path is a closed contour, knots 0 and |n| are identical;
6789 i.e., the |link| in knot |n-1| points to knot~0. But if the path
6790 is not closed, the |left_type| of knot~0 and the |right_type| of knot~|n|
6791 are equal to |endpoint|. In the latter case the |link| in knot~|n| points
6792 to knot~0, and the control points $z_0^-$ and $z_n^+$ are not used.
6794 @d left_type(A) mp->mem[(A)].hh.b0 /* characterizes the path entering this knot */
6795 @d right_type(A) mp->mem[(A)].hh.b1 /* characterizes the path leaving this knot */
6796 @d x_coord(A) mp->mem[(A)+1].sc /* the |x| coordinate of this knot */
6797 @d y_coord(A) mp->mem[(A)+2].sc /* the |y| coordinate of this knot */
6798 @d left_x(A) mp->mem[(A)+3].sc /* the |x| coordinate of previous control point */
6799 @d left_y(A) mp->mem[(A)+4].sc /* the |y| coordinate of previous control point */
6800 @d right_x(A) mp->mem[(A)+5].sc /* the |x| coordinate of next control point */
6801 @d right_y(A) mp->mem[(A)+6].sc /* the |y| coordinate of next control point */
6802 @d x_loc(A) ((A)+1) /* where the |x| coordinate is stored in a knot */
6803 @d y_loc(A) ((A)+2) /* where the |y| coordinate is stored in a knot */
6804 @d knot_coord(A) mp->mem[(A)].sc /* |x| or |y| coordinate given |x_loc| or |y_loc| */
6805 @d left_coord(A) mp->mem[(A)+2].sc
6806 /* coordinate of previous control point given |x_loc| or |y_loc| */
6807 @d right_coord(A) mp->mem[(A)+4].sc
6808 /* coordinate of next control point given |x_loc| or |y_loc| */
6809 @d knot_node_size 8 /* number of words in a knot node */
6813 mp_endpoint=0, /* |left_type| at path beginning and |right_type| at path end */
6814 mp_explicit, /* |left_type| or |right_type| when control points are known */
6815 mp_given, /* |left_type| or |right_type| when a direction is given */
6816 mp_curl, /* |left_type| or |right_type| when a curl is desired */
6817 mp_open, /* |left_type| or |right_type| when \MP\ should choose the direction */
6821 @ Before the B\'ezier control points have been calculated, the memory
6822 space they will ultimately occupy is taken up by information that can be
6823 used to compute them. There are four cases:
6826 \textindent{$\bullet$} If |right_type=mp_open|, the curve should leave
6827 the knot in the same direction it entered; \MP\ will figure out a
6831 \textindent{$\bullet$} If |right_type=mp_curl|, the curve should leave the
6832 knot in a direction depending on the angle at which it enters the next
6833 knot and on the curl parameter stored in |right_curl|.
6836 \textindent{$\bullet$} If |right_type=mp_given|, the curve should leave the
6837 knot in a nonzero direction stored as an |angle| in |right_given|.
6840 \textindent{$\bullet$} If |right_type=mp_explicit|, the B\'ezier control
6841 point for leaving this knot has already been computed; it is in the
6842 |right_x| and |right_y| fields.
6845 The rules for |left_type| are similar, but they refer to the curve entering
6846 the knot, and to \\{left} fields instead of \\{right} fields.
6848 Non-|explicit| control points will be chosen based on ``tension'' parameters
6849 in the |left_tension| and |right_tension| fields. The
6850 `\&{atleast}' option is represented by negative tension values.
6851 @:at_least_}{\&{atleast} primitive@>
6853 For example, the \MP\ path specification
6854 $$\.{z0..z1..tension atleast 1..\{curl 2\}z2..z3\{-1,-2\}..tension
6856 where \.p is the path `\.{z4..controls z45 and z54..z5}', will be represented
6858 \def\lodash{\hbox to 1.1em{\thinspace\hrulefill\thinspace}}
6859 $$\vbox{\halign{#\hfil&&\qquad#\hfil\cr
6860 |left_type|&\\{left} info&|x_coord,y_coord|&|right_type|&\\{right} info\cr
6862 |endpoint|&\lodash$,\,$\lodash&$x_0,y_0$&|curl|&$1.0,1.0$\cr
6863 |open|&\lodash$,1.0$&$x_1,y_1$&|open|&\lodash$,-1.0$\cr
6864 |curl|&$2.0,-1.0$&$x_2,y_2$&|curl|&$2.0,1.0$\cr
6865 |given|&$d,1.0$&$x_3,y_3$&|given|&$d,3.0$\cr
6866 |open|&\lodash$,4.0$&$x_4,y_4$&|explicit|&$x_{45},y_{45}$\cr
6867 |explicit|&$x_{54},y_{54}$&$x_5,y_5$&|endpoint|&\lodash$,\,$\lodash\cr}}$$
6868 Here |d| is the |angle| obtained by calling |n_arg(-unity,-two)|.
6869 Of course, this example is more complicated than anything a normal user
6872 These types must satisfy certain restrictions because of the form of \MP's
6874 (i)~|open| type never appears in the same node together with |endpoint|,
6876 (ii)~The |right_type| of a node is |explicit| if and only if the
6877 |left_type| of the following node is |explicit|.
6878 (iii)~|endpoint| types occur only at the ends, as mentioned above.
6880 @d left_curl left_x /* curl information when entering this knot */
6881 @d left_given left_x /* given direction when entering this knot */
6882 @d left_tension left_y /* tension information when entering this knot */
6883 @d right_curl right_x /* curl information when leaving this knot */
6884 @d right_given right_x /* given direction when leaving this knot */
6885 @d right_tension right_y /* tension information when leaving this knot */
6887 @ Knots can be user-supplied, or they can be created by program code,
6888 like the |split_cubic| function, or |copy_path|. The distinction is
6889 needed for the cleanup routine that runs after |split_cubic|, because
6890 it should only delete knots it has previously inserted, and never
6891 anything that was user-supplied. In order to be able to differentiate
6892 one knot from another, we will set |originator(p):=mp_metapost_user| when
6893 it appeared in the actual metapost program, and
6894 |originator(p):=mp_program_code| in all other cases.
6896 @d originator(A) mp->mem[(A)+7].hh.b0 /* the creator of this knot */
6900 mp_program_code=0, /* not created by a user */
6901 mp_metapost_user, /* created by a user */
6904 @ Here is a routine that prints a given knot list
6905 in symbolic form. It illustrates the conventions discussed above,
6906 and checks for anomalies that might arise while \MP\ is being debugged.
6908 @<Declare subroutines for printing expressions@>=
6909 void mp_pr_path (MP mp,pointer h);
6912 void mp_pr_path (MP mp,pointer h) {
6913 pointer p,q; /* for list traversal */
6917 if ( (p==null)||(q==null) ) {
6918 mp_print_nl(mp, "???"); return; /* this won't happen */
6921 @<Print information for adjacent knots |p| and |q|@>;
6924 if ( (p!=h)||(left_type(h)!=mp_endpoint) ) {
6925 @<Print two dots, followed by |given| or |curl| if present@>;
6928 if ( left_type(h)!=mp_endpoint )
6929 mp_print(mp, "cycle");
6932 @ @<Print information for adjacent knots...@>=
6933 mp_print_two(mp, x_coord(p),y_coord(p));
6934 switch (right_type(p)) {
6936 if ( left_type(p)==mp_open ) mp_print(mp, "{open?}"); /* can't happen */
6938 if ( (left_type(q)!=mp_endpoint)||(q!=h) ) q=null; /* force an error */
6942 @<Print control points between |p| and |q|, then |goto done1|@>;
6945 @<Print information for a curve that begins |open|@>;
6949 @<Print information for a curve that begins |curl| or |given|@>;
6952 mp_print(mp, "???"); /* can't happen */
6956 if ( left_type(q)<=mp_explicit ) {
6957 mp_print(mp, "..control?"); /* can't happen */
6959 } else if ( (right_tension(p)!=unity)||(left_tension(q)!=unity) ) {
6960 @<Print tension between |p| and |q|@>;
6963 @ Since |n_sin_cos| produces |fraction| results, which we will print as if they
6964 were |scaled|, the magnitude of a |given| direction vector will be~4096.
6966 @<Print two dots...@>=
6968 mp_print_nl(mp, " ..");
6969 if ( left_type(p)==mp_given ) {
6970 mp_n_sin_cos(mp, left_given(p)); mp_print_char(mp, '{');
6971 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
6972 mp_print_scaled(mp, mp->n_sin); mp_print_char(mp, '}');
6973 } else if ( left_type(p)==mp_curl ){
6974 mp_print(mp, "{curl ");
6975 mp_print_scaled(mp, left_curl(p)); mp_print_char(mp, '}');
6979 @ @<Print tension between |p| and |q|@>=
6981 mp_print(mp, "..tension ");
6982 if ( right_tension(p)<0 ) mp_print(mp, "atleast");
6983 mp_print_scaled(mp, abs(right_tension(p)));
6984 if ( right_tension(p)!=left_tension(q) ){
6985 mp_print(mp, " and ");
6986 if ( left_tension(q)<0 ) mp_print(mp, "atleast");
6987 mp_print_scaled(mp, abs(left_tension(q)));
6991 @ @<Print control points between |p| and |q|, then |goto done1|@>=
6993 mp_print(mp, "..controls ");
6994 mp_print_two(mp, right_x(p),right_y(p));
6995 mp_print(mp, " and ");
6996 if ( left_type(q)!=mp_explicit ) {
6997 mp_print(mp, "??"); /* can't happen */
7000 mp_print_two(mp, left_x(q),left_y(q));
7005 @ @<Print information for a curve that begins |open|@>=
7006 if ( (left_type(p)!=mp_explicit)&&(left_type(p)!=mp_open) ) {
7007 mp_print(mp, "{open?}"); /* can't happen */
7011 @ A curl of 1 is shown explicitly, so that the user sees clearly that
7012 \MP's default curl is present.
7014 The code here uses the fact that |left_curl==left_given| and
7015 |right_curl==right_given|.
7017 @<Print information for a curve that begins |curl|...@>=
7019 if ( left_type(p)==mp_open )
7020 mp_print(mp, "??"); /* can't happen */
7022 if ( right_type(p)==mp_curl ) {
7023 mp_print(mp, "{curl "); mp_print_scaled(mp, right_curl(p));
7025 mp_n_sin_cos(mp, right_given(p)); mp_print_char(mp, '{');
7026 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
7027 mp_print_scaled(mp, mp->n_sin);
7029 mp_print_char(mp, '}');
7032 @ It is convenient to have another version of |pr_path| that prints the path
7033 as a diagnostic message.
7035 @<Declare subroutines for printing expressions@>=
7036 void mp_print_path (MP mp,pointer h, char *s, boolean nuline) {
7037 mp_print_diagnostic(mp, "Path", s, nuline); mp_print_ln(mp);
7040 mp_end_diagnostic(mp, true);
7043 @ If we want to duplicate a knot node, we can say |copy_knot|:
7046 pointer mp_copy_knot (MP mp,pointer p) {
7047 pointer q; /* the copy */
7048 int k; /* runs through the words of a knot node */
7049 q=mp_get_node(mp, knot_node_size);
7050 for (k=0;k<knot_node_size;k++) {
7051 mp->mem[q+k]=mp->mem[p+k];
7053 originator(q)=originator(p);
7057 @ The |copy_path| routine makes a clone of a given path.
7060 pointer mp_copy_path (MP mp, pointer p) {
7061 pointer q,pp,qq; /* for list manipulation */
7062 q=mp_copy_knot(mp, p);
7065 link(qq)=mp_copy_knot(mp, pp);
7074 @ Just before |ship_out|, knot lists are exported for printing.
7076 @d gr_left_type(A) (A)->left_type_field
7077 @d gr_right_type(A) (A)->right_type_field
7078 @d gr_x_coord(A) (A)->x_coord_field
7079 @d gr_y_coord(A) (A)->y_coord_field
7080 @d gr_left_x(A) (A)->left_x_field
7081 @d gr_left_y(A) (A)->left_y_field
7082 @d gr_right_x(A) (A)->right_x_field
7083 @d gr_right_y(A) (A)->right_y_field
7084 @d gr_next_knot(A) (A)->next_field
7085 @d gr_originator(A) (A)->originator_field
7088 struct mp_knot *mp_export_knot (MP mp,pointer p) {
7089 struct mp_knot *q; /* the copy */
7092 q = mp_xmalloc(mp, 1, sizeof (struct mp_knot));
7093 memset(q,0,sizeof (struct mp_knot));
7094 gr_left_type(q) = left_type(p);
7095 gr_right_type(q) = right_type(p);
7096 gr_x_coord(q) = x_coord(p);
7097 gr_y_coord(q) = y_coord(p);
7098 gr_left_x(q) = left_x(p);
7099 gr_left_y(q) = left_y(p);
7100 gr_right_x(q) = right_x(p);
7101 gr_right_y(q) = right_y(p);
7102 gr_originator(q) = originator(p);
7106 @ The |export_knot_list| routine therefore also makes a clone
7110 struct mp_knot *mp_export_knot_list (MP mp, pointer p) {
7111 struct mp_knot *q, *qq; /* for list manipulation */
7112 pointer pp; /* for list manipulation */
7115 q=mp_export_knot(mp, p);
7118 gr_next_knot(qq)=mp_export_knot(mp, pp);
7119 qq=gr_next_knot(qq);
7127 @ Similarly, there's a way to copy the {\sl reverse\/} of a path. This procedure
7128 returns a pointer to the first node of the copy, if the path is a cycle,
7129 but to the final node of a non-cyclic copy. The global
7130 variable |path_tail| will point to the final node of the original path;
7131 this trick makes it easier to implement `\&{doublepath}'.
7133 All node types are assumed to be |endpoint| or |explicit| only.
7136 pointer mp_htap_ypoc (MP mp,pointer p) {
7137 pointer q,pp,qq,rr; /* for list manipulation */
7138 q=mp_get_node(mp, knot_node_size); /* this will correspond to |p| */
7141 right_type(qq)=left_type(pp); left_type(qq)=right_type(pp);
7142 x_coord(qq)=x_coord(pp); y_coord(qq)=y_coord(pp);
7143 right_x(qq)=left_x(pp); right_y(qq)=left_y(pp);
7144 left_x(qq)=right_x(pp); left_y(qq)=right_y(pp);
7145 originator(qq)=originator(pp);
7146 if ( link(pp)==p ) {
7147 link(q)=qq; mp->path_tail=pp; return q;
7149 rr=mp_get_node(mp, knot_node_size); link(rr)=qq; qq=rr; pp=link(pp);
7154 pointer path_tail; /* the node that links to the beginning of a path */
7156 @ When a cyclic list of knot nodes is no longer needed, it can be recycled by
7157 calling the following subroutine.
7159 @<Declare the recycling subroutines@>=
7160 void mp_toss_knot_list (MP mp,pointer p) ;
7163 void mp_toss_knot_list (MP mp,pointer p) {
7164 pointer q; /* the node being freed */
7165 pointer r; /* the next node */
7169 mp_free_node(mp, q,knot_node_size); q=r;
7173 @* \[18] Choosing control points.
7174 Now we must actually delve into one of \MP's more difficult routines,
7175 the |make_choices| procedure that chooses angles and control points for
7176 the splines of a curve when the user has not specified them explicitly.
7177 The parameter to |make_choices| points to a list of knots and
7178 path information, as described above.
7180 A path decomposes into independent segments at ``breakpoint'' knots,
7181 which are knots whose left and right angles are both prespecified in
7182 some way (i.e., their |left_type| and |right_type| aren't both open).
7185 @<Declare the procedure called |solve_choices|@>;
7186 void mp_make_choices (MP mp,pointer knots) {
7187 pointer h; /* the first breakpoint */
7188 pointer p,q; /* consecutive breakpoints being processed */
7189 @<Other local variables for |make_choices|@>;
7190 check_arith; /* make sure that |arith_error=false| */
7191 if ( mp->internal[mp_tracing_choices]>0 )
7192 mp_print_path(mp, knots,", before choices",true);
7193 @<If consecutive knots are equal, join them explicitly@>;
7194 @<Find the first breakpoint, |h|, on the path;
7195 insert an artificial breakpoint if the path is an unbroken cycle@>;
7198 @<Fill in the control points between |p| and the next breakpoint,
7199 then advance |p| to that breakpoint@>;
7201 if ( mp->internal[mp_tracing_choices]>0 )
7202 mp_print_path(mp, knots,", after choices",true);
7203 if ( mp->arith_error ) {
7204 @<Report an unexpected problem during the choice-making@>;
7208 @ @<Report an unexpected problem during the choice...@>=
7210 print_err("Some number got too big");
7211 @.Some number got too big@>
7212 help2("The path that I just computed is out of range.")
7213 ("So it will probably look funny. Proceed, for a laugh.");
7214 mp_put_get_error(mp); mp->arith_error=false;
7217 @ Two knots in a row with the same coordinates will always be joined
7218 by an explicit ``curve'' whose control points are identical with the
7221 @<If consecutive knots are equal, join them explicitly@>=
7225 if ( x_coord(p)==x_coord(q) && y_coord(p)==y_coord(q) && right_type(p)>mp_explicit ) {
7226 right_type(p)=mp_explicit;
7227 if ( left_type(p)==mp_open ) {
7228 left_type(p)=mp_curl; left_curl(p)=unity;
7230 left_type(q)=mp_explicit;
7231 if ( right_type(q)==mp_open ) {
7232 right_type(q)=mp_curl; right_curl(q)=unity;
7234 right_x(p)=x_coord(p); left_x(q)=x_coord(p);
7235 right_y(p)=y_coord(p); left_y(q)=y_coord(p);
7240 @ If there are no breakpoints, it is necessary to compute the direction
7241 angles around an entire cycle. In this case the |left_type| of the first
7242 node is temporarily changed to |end_cycle|.
7244 @<Find the first breakpoint, |h|, on the path...@>=
7247 if ( left_type(h)!=mp_open ) break;
7248 if ( right_type(h)!=mp_open ) break;
7251 left_type(h)=mp_end_cycle; break;
7255 @ If |right_type(p)<given| and |q=link(p)|, we must have
7256 |right_type(p)=left_type(q)=mp_explicit| or |endpoint|.
7258 @<Fill in the control points between |p| and the next breakpoint...@>=
7260 if ( right_type(p)>=mp_given ) {
7261 while ( (left_type(q)==mp_open)&&(right_type(q)==mp_open) ) q=link(q);
7262 @<Fill in the control information between
7263 consecutive breakpoints |p| and |q|@>;
7264 } else if ( right_type(p)==mp_endpoint ) {
7265 @<Give reasonable values for the unused control points between |p| and~|q|@>;
7269 @ This step makes it possible to transform an explicitly computed path without
7270 checking the |left_type| and |right_type| fields.
7272 @<Give reasonable values for the unused control points between |p| and~|q|@>=
7274 right_x(p)=x_coord(p); right_y(p)=y_coord(p);
7275 left_x(q)=x_coord(q); left_y(q)=y_coord(q);
7278 @ Before we can go further into the way choices are made, we need to
7279 consider the underlying theory. The basic ideas implemented in |make_choices|
7280 are due to John Hobby, who introduced the notion of ``mock curvature''
7281 @^Hobby, John Douglas@>
7282 at a knot. Angles are chosen so that they preserve mock curvature when
7283 a knot is passed, and this has been found to produce excellent results.
7285 It is convenient to introduce some notations that simplify the necessary
7286 formulas. Let $d_{k,k+1}=\vert z\k-z_k\vert$ be the (nonzero) distance
7287 between knots |k| and |k+1|; and let
7288 $${z\k-z_k\over z_k-z_{k-1}}={d_{k,k+1}\over d_{k-1,k}}e^{i\psi_k}$$
7289 so that a polygonal line from $z_{k-1}$ to $z_k$ to $z\k$ turns left
7290 through an angle of~$\psi_k$. We assume that $\vert\psi_k\vert\L180^\circ$.
7291 The control points for the spline from $z_k$ to $z\k$ will be denoted by
7292 $$\eqalign{z_k^+&=z_k+
7293 \textstyle{1\over3}\rho_k e^{i\theta_k}(z\k-z_k),\cr
7295 \textstyle{1\over3}\sigma\k e^{-i\phi\k}(z\k-z_k),\cr}$$
7296 where $\rho_k$ and $\sigma\k$ are nonnegative ``velocity ratios'' at the
7297 beginning and end of the curve, while $\theta_k$ and $\phi\k$ are the
7298 corresponding ``offset angles.'' These angles satisfy the condition
7299 $$\theta_k+\phi_k+\psi_k=0,\eqno(*)$$
7300 whenever the curve leaves an intermediate knot~|k| in the direction that
7303 @ Let $\alpha_k$ and $\beta\k$ be the reciprocals of the ``tension'' of
7304 the curve at its beginning and ending points. This means that
7305 $\rho_k=\alpha_k f(\theta_k,\phi\k)$ and $\sigma\k=\beta\k f(\phi\k,\theta_k)$,
7306 where $f(\theta,\phi)$ is \MP's standard velocity function defined in
7307 the |velocity| subroutine. The cubic spline $B(z_k^{\phantom+},z_k^+,
7308 z\k^-,z\k^{\phantom+};t)$
7311 $${2\sigma\k\sin(\theta_k+\phi\k)-6\sin\theta_k\over\rho_k^2d_{k,k+1}}
7312 \qquad{\rm and}\qquad
7313 {2\rho_k\sin(\theta_k+\phi\k)-6\sin\phi\k\over\sigma\k^2d_{k,k+1}}$$
7314 at |t=0| and |t=1|, respectively. The mock curvature is the linear
7316 approximation to this true curvature that arises in the limit for
7317 small $\theta_k$ and~$\phi\k$, if second-order terms are discarded.
7318 The standard velocity function satisfies
7319 $$f(\theta,\phi)=1+O(\theta^2+\theta\phi+\phi^2);$$
7320 hence the mock curvatures are respectively
7321 $${2\beta\k(\theta_k+\phi\k)-6\theta_k\over\alpha_k^2d_{k,k+1}}
7322 \qquad{\rm and}\qquad
7323 {2\alpha_k(\theta_k+\phi\k)-6\phi\k\over\beta\k^2d_{k,k+1}}.\eqno(**)$$
7325 @ The turning angles $\psi_k$ are given, and equation $(*)$ above
7326 determines $\phi_k$ when $\theta_k$ is known, so the task of
7327 angle selection is essentially to choose appropriate values for each
7328 $\theta_k$. When equation~$(*)$ is used to eliminate $\phi$~variables
7329 from $(**)$, we obtain a system of linear equations of the form
7330 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7332 $$A_k={\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7333 \qquad B_k={3-\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7334 \qquad C_k={3-\beta\k\over\alpha_k^2d_{k,k+1}},
7335 \qquad D_k={\beta\k\over\alpha_k^2d_{k,k+1}}.$$
7336 The tensions are always $3\over4$ or more, hence each $\alpha$ and~$\beta$
7337 will be at most $4\over3$. It follows that $B_k\G{5\over4}A_k$ and
7338 $C_k\G{5\over4}D_k$; hence the equations are diagonally dominant;
7339 hence they have a unique solution. Moreover, in most cases the tensions
7340 are equal to~1, so that $B_k=2A_k$ and $C_k=2D_k$. This makes the
7341 solution numerically stable, and there is an exponential damping
7342 effect: The data at knot $k\pm j$ affects the angle at knot~$k$ by
7343 a factor of~$O(2^{-j})$.
7345 @ However, we still must consider the angles at the starting and ending
7346 knots of a non-cyclic path. These angles might be given explicitly, or
7347 they might be specified implicitly in terms of an amount of ``curl.''
7349 Let's assume that angles need to be determined for a non-cyclic path
7350 starting at $z_0$ and ending at~$z_n$. Then equations of the form
7351 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta_{k+1}=R_k$$
7352 have been given for $0<k<n$, and it will be convenient to introduce
7353 equations of the same form for $k=0$ and $k=n$, where
7354 $$A_0=B_0=C_n=D_n=0.$$
7355 If $\theta_0$ is supposed to have a given value $E_0$, we simply
7356 define $C_0=0$, $D_0=0$, and $R_0=E_0$. Otherwise a curl
7357 parameter, $\gamma_0$, has been specified at~$z_0$; this means
7358 that the mock curvature at $z_0$ should be $\gamma_0$ times the
7359 mock curvature at $z_1$; i.e.,
7360 $${2\beta_1(\theta_0+\phi_1)-6\theta_0\over\alpha_0^2d_{01}}
7361 =\gamma_0{2\alpha_0(\theta_0+\phi_1)-6\phi_1\over\beta_1^2d_{01}}.$$
7362 This equation simplifies to
7363 $$(\alpha_0\chi_0+3-\beta_1)\theta_0+
7364 \bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\theta_1=
7365 -\bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\psi_1,$$
7366 where $\chi_0=\alpha_0^2\gamma_0/\beta_1^2$; so we can set $C_0=
7367 \chi_0\alpha_0+3-\beta_1$, $D_0=(3-\alpha_0)\chi_0+\beta_1$, $R_0=-D_0\psi_1$.
7368 It can be shown that $C_0>0$ and $C_0B_1-A_1D_0>0$ when $\gamma_0\G0$,
7369 hence the linear equations remain nonsingular.
7371 Similar considerations apply at the right end, when the final angle $\phi_n$
7372 may or may not need to be determined. It is convenient to let $\psi_n=0$,
7373 hence $\theta_n=-\phi_n$. We either have an explicit equation $\theta_n=E_n$,
7375 $$\bigl((3-\beta_n)\chi_n+\alpha_{n-1}\bigr)\theta_{n-1}+
7376 (\beta_n\chi_n+3-\alpha_{n-1})\theta_n=0,\qquad
7377 \chi_n={\beta_n^2\gamma_n\over\alpha_{n-1}^2}.$$
7379 When |make_choices| chooses angles, it must compute the coefficients of
7380 these linear equations, then solve the equations. To compute the coefficients,
7381 it is necessary to compute arctangents of the given turning angles~$\psi_k$.
7382 When the equations are solved, the chosen directions $\theta_k$ are put
7383 back into the form of control points by essentially computing sines and
7386 @ OK, we are ready to make the hard choices of |make_choices|.
7387 Most of the work is relegated to an auxiliary procedure
7388 called |solve_choices|, which has been introduced to keep
7389 |make_choices| from being extremely long.
7391 @<Fill in the control information between...@>=
7392 @<Calculate the turning angles $\psi_k$ and the distances $d_{k,k+1}$;
7393 set $n$ to the length of the path@>;
7394 @<Remove |open| types at the breakpoints@>;
7395 mp_solve_choices(mp, p,q,n)
7397 @ It's convenient to precompute quantities that will be needed several
7398 times later. The values of |delta_x[k]| and |delta_y[k]| will be the
7399 coordinates of $z\k-z_k$, and the magnitude of this vector will be
7400 |delta[k]=@t$d_{k,k+1}$@>|. The path angle $\psi_k$ between $z_k-z_{k-1}$
7401 and $z\k-z_k$ will be stored in |psi[k]|.
7404 int path_size; /* maximum number of knots between breakpoints of a path */
7407 scaled *delta; /* knot differences */
7408 angle *psi; /* turning angles */
7410 @ @<Allocate or initialize ...@>=
7416 @ @<Dealloc variables@>=
7422 @ @<Other local variables for |make_choices|@>=
7423 int k,n; /* current and final knot numbers */
7424 pointer s,t; /* registers for list traversal */
7425 scaled delx,dely; /* directions where |open| meets |explicit| */
7426 fraction sine,cosine; /* trig functions of various angles */
7428 @ @<Calculate the turning angles...@>=
7431 k=0; s=p; n=mp->path_size;
7434 mp->delta_x[k]=x_coord(t)-x_coord(s);
7435 mp->delta_y[k]=y_coord(t)-y_coord(s);
7436 mp->delta[k]=mp_pyth_add(mp, mp->delta_x[k],mp->delta_y[k]);
7438 sine=mp_make_fraction(mp, mp->delta_y[k-1],mp->delta[k-1]);
7439 cosine=mp_make_fraction(mp, mp->delta_x[k-1],mp->delta[k-1]);
7440 mp->psi[k]=mp_n_arg(mp, mp_take_fraction(mp, mp->delta_x[k],cosine)+
7441 mp_take_fraction(mp, mp->delta_y[k],sine),
7442 mp_take_fraction(mp, mp->delta_y[k],cosine)-
7443 mp_take_fraction(mp, mp->delta_x[k],sine));
7446 if ( k==mp->path_size ) {
7447 mp_reallocate_paths(mp, mp->path_size+(mp->path_size>>2));
7448 goto RESTART; /* retry, loop size has changed */
7451 } while (!((k>=n)&&(left_type(s)!=mp_end_cycle)));
7452 if ( k==n ) mp->psi[n]=0; else mp->psi[k]=mp->psi[1];
7455 @ When we get to this point of the code, |right_type(p)| is either
7456 |given| or |curl| or |open|. If it is |open|, we must have
7457 |left_type(p)=mp_end_cycle| or |left_type(p)=mp_explicit|. In the latter
7458 case, the |open| type is converted to |given|; however, if the
7459 velocity coming into this knot is zero, the |open| type is
7460 converted to a |curl|, since we don't know the incoming direction.
7462 Similarly, |left_type(q)| is either |given| or |curl| or |open| or
7463 |mp_end_cycle|. The |open| possibility is reduced either to |given| or to |curl|.
7465 @<Remove |open| types at the breakpoints@>=
7466 if ( left_type(q)==mp_open ) {
7467 delx=right_x(q)-x_coord(q); dely=right_y(q)-y_coord(q);
7468 if ( (delx==0)&&(dely==0) ) {
7469 left_type(q)=mp_curl; left_curl(q)=unity;
7471 left_type(q)=mp_given; left_given(q)=mp_n_arg(mp, delx,dely);
7474 if ( (right_type(p)==mp_open)&&(left_type(p)==mp_explicit) ) {
7475 delx=x_coord(p)-left_x(p); dely=y_coord(p)-left_y(p);
7476 if ( (delx==0)&&(dely==0) ) {
7477 right_type(p)=mp_curl; right_curl(p)=unity;
7479 right_type(p)=mp_given; right_given(p)=mp_n_arg(mp, delx,dely);
7483 @ Linear equations need to be solved whenever |n>1|; and also when |n=1|
7484 and exactly one of the breakpoints involves a curl. The simplest case occurs
7485 when |n=1| and there is a curl at both breakpoints; then we simply draw
7488 But before coding up the simple cases, we might as well face the general case,
7489 since we must deal with it sooner or later, and since the general case
7490 is likely to give some insight into the way simple cases can be handled best.
7492 When there is no cycle, the linear equations to be solved form a tridiagonal
7493 system, and we can apply the standard technique of Gaussian elimination
7494 to convert that system to a sequence of equations of the form
7495 $$\theta_0+u_0\theta_1=v_0,\quad
7496 \theta_1+u_1\theta_2=v_1,\quad\ldots,\quad
7497 \theta_{n-1}+u_{n-1}\theta_n=v_{n-1},\quad
7499 It is possible to do this diagonalization while generating the equations.
7500 Once $\theta_n$ is known, it is easy to determine $\theta_{n-1}$, \dots,
7501 $\theta_1$, $\theta_0$; thus, the equations will be solved.
7503 The procedure is slightly more complex when there is a cycle, but the
7504 basic idea will be nearly the same. In the cyclic case the right-hand
7505 sides will be $v_k+w_k\theta_0$ instead of simply $v_k$, and we will start
7506 the process off with $u_0=v_0=0$, $w_0=1$. The final equation will be not
7507 $\theta_n=v_n$ but $\theta_n+u_n\theta_1=v_n+w_n\theta_0$; an appropriate
7508 ending routine will take account of the fact that $\theta_n=\theta_0$ and
7509 eliminate the $w$'s from the system, after which the solution can be
7512 When $u_k$, $v_k$, and $w_k$ are being computed, the three pointer
7513 variables |r|, |s|,~|t| will point respectively to knots |k-1|, |k|,
7514 and~|k+1|. The $u$'s and $w$'s are scaled by $2^{28}$, i.e., they are
7515 of type |fraction|; the $\theta$'s and $v$'s are of type |angle|.
7518 angle *theta; /* values of $\theta_k$ */
7519 fraction *uu; /* values of $u_k$ */
7520 angle *vv; /* values of $v_k$ */
7521 fraction *ww; /* values of $w_k$ */
7523 @ @<Allocate or initialize ...@>=
7529 @ @<Dealloc variables@>=
7535 @ @<Declare |mp_reallocate| functions@>=
7536 void mp_reallocate_paths (MP mp, int l);
7539 void mp_reallocate_paths (MP mp, int l) {
7540 XREALLOC (mp->delta_x, l, scaled);
7541 XREALLOC (mp->delta_y, l, scaled);
7542 XREALLOC (mp->delta, l, scaled);
7543 XREALLOC (mp->psi, l, angle);
7544 XREALLOC (mp->theta, l, angle);
7545 XREALLOC (mp->uu, l, fraction);
7546 XREALLOC (mp->vv, l, angle);
7547 XREALLOC (mp->ww, l, fraction);
7551 @ Our immediate problem is to get the ball rolling by setting up the
7552 first equation or by realizing that no equations are needed, and to fit
7553 this initialization into a framework suitable for the overall computation.
7555 @<Declare the procedure called |solve_choices|@>=
7556 @<Declare subroutines needed by |solve_choices|@>;
7557 void mp_solve_choices (MP mp,pointer p, pointer q, halfword n) {
7558 int k; /* current knot number */
7559 pointer r,s,t; /* registers for list traversal */
7560 @<Other local variables for |solve_choices|@>;
7565 @<Get the linear equations started; or |return|
7566 with the control points in place, if linear equations
7569 switch (left_type(s)) {
7570 case mp_end_cycle: case mp_open:
7571 @<Set up equation to match mock curvatures
7572 at $z_k$; then |goto found| with $\theta_n$
7573 adjusted to equal $\theta_0$, if a cycle has ended@>;
7576 @<Set up equation for a curl at $\theta_n$
7580 @<Calculate the given value of $\theta_n$
7583 } /* there are no other cases */
7588 @<Finish choosing angles and assigning control points@>;
7591 @ On the first time through the loop, we have |k=0| and |r| is not yet
7592 defined. The first linear equation, if any, will have $A_0=B_0=0$.
7594 @<Get the linear equations started...@>=
7595 switch (right_type(s)) {
7597 if ( left_type(t)==mp_given ) {
7598 @<Reduce to simple case of two givens and |return|@>
7600 @<Set up the equation for a given value of $\theta_0$@>;
7604 if ( left_type(t)==mp_curl ) {
7605 @<Reduce to simple case of straight line and |return|@>
7607 @<Set up the equation for a curl at $\theta_0$@>;
7611 mp->uu[0]=0; mp->vv[0]=0; mp->ww[0]=fraction_one;
7612 /* this begins a cycle */
7614 } /* there are no other cases */
7616 @ The general equation that specifies equality of mock curvature at $z_k$ is
7617 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7618 as derived above. We want to combine this with the already-derived equation
7619 $\theta_{k-1}+u_{k-1}\theta_k=v_{k-1}+w_{k-1}\theta_0$ in order to obtain
7621 $\theta_k+u_k\theta\k=v_k+w_k\theta_0$. This can be done by dividing the
7623 $$(B_k-u_{k-1}A_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k-A_kv_{k-1}
7624 -A_kw_{k-1}\theta_0$$
7625 by $B_k-u_{k-1}A_k+C_k$. The trick is to do this carefully with
7626 fixed-point arithmetic, avoiding the chance of overflow while retaining
7629 The calculations will be performed in several registers that
7630 provide temporary storage for intermediate quantities.
7632 @<Other local variables for |solve_choices|@>=
7633 fraction aa,bb,cc,ff,acc; /* temporary registers */
7634 scaled dd,ee; /* likewise, but |scaled| */
7635 scaled lt,rt; /* tension values */
7637 @ @<Set up equation to match mock curvatures...@>=
7638 { @<Calculate the values $\\{aa}=A_k/B_k$, $\\{bb}=D_k/C_k$,
7639 $\\{dd}=(3-\alpha_{k-1})d_{k,k+1}$, $\\{ee}=(3-\beta\k)d_{k-1,k}$,
7640 and $\\{cc}=(B_k-u_{k-1}A_k)/B_k$@>;
7641 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>;
7642 mp->uu[k]=mp_take_fraction(mp, ff,bb);
7643 @<Calculate the values of $v_k$ and $w_k$@>;
7644 if ( left_type(s)==mp_end_cycle ) {
7645 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>;
7649 @ Since tension values are never less than 3/4, the values |aa| and
7650 |bb| computed here are never more than 4/5.
7652 @<Calculate the values $\\{aa}=...@>=
7653 if ( abs(right_tension(r))==unity) {
7654 aa=fraction_half; dd=2*mp->delta[k];
7656 aa=mp_make_fraction(mp, unity,3*abs(right_tension(r))-unity);
7657 dd=mp_take_fraction(mp, mp->delta[k],
7658 fraction_three-mp_make_fraction(mp, unity,abs(right_tension(r))));
7660 if ( abs(left_tension(t))==unity ){
7661 bb=fraction_half; ee=2*mp->delta[k-1];
7663 bb=mp_make_fraction(mp, unity,3*abs(left_tension(t))-unity);
7664 ee=mp_take_fraction(mp, mp->delta[k-1],
7665 fraction_three-mp_make_fraction(mp, unity,abs(left_tension(t))));
7667 cc=fraction_one-mp_take_fraction(mp, mp->uu[k-1],aa)
7669 @ The ratio to be calculated in this step can be written in the form
7670 $$\beta_k^2\cdot\\{ee}\over\beta_k^2\cdot\\{ee}+\alpha_k^2\cdot
7671 \\{cc}\cdot\\{dd},$$
7672 because of the quantities just calculated. The values of |dd| and |ee|
7673 will not be needed after this step has been performed.
7675 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>=
7676 dd=mp_take_fraction(mp, dd,cc); lt=abs(left_tension(s)); rt=abs(right_tension(s));
7677 if ( lt!=rt ) { /* $\beta_k^{-1}\ne\alpha_k^{-1}$ */
7679 ff=mp_make_fraction(mp, lt,rt);
7680 ff=mp_take_fraction(mp, ff,ff); /* $\alpha_k^2/\beta_k^2$ */
7681 dd=mp_take_fraction(mp, dd,ff);
7683 ff=mp_make_fraction(mp, rt,lt);
7684 ff=mp_take_fraction(mp, ff,ff); /* $\beta_k^2/\alpha_k^2$ */
7685 ee=mp_take_fraction(mp, ee,ff);
7688 ff=mp_make_fraction(mp, ee,ee+dd)
7690 @ The value of $u_{k-1}$ will be |<=1| except when $k=1$ and the previous
7691 equation was specified by a curl. In that case we must use a special
7692 method of computation to prevent overflow.
7694 Fortunately, the calculations turn out to be even simpler in this ``hard''
7695 case. The curl equation makes $w_0=0$ and $v_0=-u_0\psi_1$, hence
7696 $-B_1\psi_1-A_1v_0=-(B_1-u_0A_1)\psi_1=-\\{cc}\cdot B_1\psi_1$.
7698 @<Calculate the values of $v_k$ and $w_k$@>=
7699 acc=-mp_take_fraction(mp, mp->psi[k+1],mp->uu[k]);
7700 if ( right_type(r)==mp_curl ) {
7702 mp->vv[k]=acc-mp_take_fraction(mp, mp->psi[1],fraction_one-ff);
7704 ff=mp_make_fraction(mp, fraction_one-ff,cc); /* this is
7705 $B_k/(C_k+B_k-u_{k-1}A_k)<5$ */
7706 acc=acc-mp_take_fraction(mp, mp->psi[k],ff);
7707 ff=mp_take_fraction(mp, ff,aa); /* this is $A_k/(C_k+B_k-u_{k-1}A_k)$ */
7708 mp->vv[k]=acc-mp_take_fraction(mp, mp->vv[k-1],ff);
7709 if ( mp->ww[k-1]==0 ) mp->ww[k]=0;
7710 else mp->ww[k]=-mp_take_fraction(mp, mp->ww[k-1],ff);
7713 @ When a complete cycle has been traversed, we have $\theta_k+u_k\theta\k=
7714 v_k+w_k\theta_0$, for |1<=k<=n|. We would like to determine the value of
7715 $\theta_n$ and reduce the system to the form $\theta_k+u_k\theta\k=v_k$
7716 for |0<=k<n|, so that the cyclic case can be finished up just as if there
7719 The idea in the following code is to observe that
7720 $$\eqalign{\theta_n&=v_n+w_n\theta_0-u_n\theta_1=\cdots\cr
7721 &=v_n+w_n\theta_0-u_n\bigl(v_1+w_1\theta_0-u_1(v_2+\cdots
7722 -u_{n-2}(v_{n-1}+w_{n-1}\theta_0-u_{n-1}\theta_0))\bigr),\cr}$$
7723 so we can solve for $\theta_n=\theta_0$.
7725 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>=
7727 aa=0; bb=fraction_one; /* we have |k=n| */
7730 aa=mp->vv[k]-mp_take_fraction(mp, aa,mp->uu[k]);
7731 bb=mp->ww[k]-mp_take_fraction(mp, bb,mp->uu[k]);
7732 } while (k!=n); /* now $\theta_n=\\{aa}+\\{bb}\cdot\theta_n$ */
7733 aa=mp_make_fraction(mp, aa,fraction_one-bb);
7734 mp->theta[n]=aa; mp->vv[0]=aa;
7735 for (k=1;k<=n-1;k++) {
7736 mp->vv[k]=mp->vv[k]+mp_take_fraction(mp, aa,mp->ww[k]);
7741 @ @d reduce_angle(A) if ( abs((A))>one_eighty_deg ) {
7742 if ( (A)>0 ) (A)=(A)-three_sixty_deg; else (A)=(A)+three_sixty_deg; }
7744 @<Calculate the given value of $\theta_n$...@>=
7746 mp->theta[n]=left_given(s)-mp_n_arg(mp, mp->delta_x[n-1],mp->delta_y[n-1]);
7747 reduce_angle(mp->theta[n]);
7751 @ @<Set up the equation for a given value of $\theta_0$@>=
7753 mp->vv[0]=right_given(s)-mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7754 reduce_angle(mp->vv[0]);
7755 mp->uu[0]=0; mp->ww[0]=0;
7758 @ @<Set up the equation for a curl at $\theta_0$@>=
7759 { cc=right_curl(s); lt=abs(left_tension(t)); rt=abs(right_tension(s));
7760 if ( (rt==unity)&&(lt==unity) )
7761 mp->uu[0]=mp_make_fraction(mp, cc+cc+unity,cc+two);
7763 mp->uu[0]=mp_curl_ratio(mp, cc,rt,lt);
7764 mp->vv[0]=-mp_take_fraction(mp, mp->psi[1],mp->uu[0]); mp->ww[0]=0;
7767 @ @<Set up equation for a curl at $\theta_n$...@>=
7768 { cc=left_curl(s); lt=abs(left_tension(s)); rt=abs(right_tension(r));
7769 if ( (rt==unity)&&(lt==unity) )
7770 ff=mp_make_fraction(mp, cc+cc+unity,cc+two);
7772 ff=mp_curl_ratio(mp, cc,lt,rt);
7773 mp->theta[n]=-mp_make_fraction(mp, mp_take_fraction(mp, mp->vv[n-1],ff),
7774 fraction_one-mp_take_fraction(mp, ff,mp->uu[n-1]));
7778 @ The |curl_ratio| subroutine has three arguments, which our previous notation
7779 encourages us to call $\gamma$, $\alpha^{-1}$, and $\beta^{-1}$. It is
7780 a somewhat tedious program to calculate
7781 $${(3-\alpha)\alpha^2\gamma+\beta^3\over
7782 \alpha^3\gamma+(3-\beta)\beta^2},$$
7783 with the result reduced to 4 if it exceeds 4. (This reduction of curl
7784 is necessary only if the curl and tension are both large.)
7785 The values of $\alpha$ and $\beta$ will be at most~4/3.
7787 @<Declare subroutines needed by |solve_choices|@>=
7788 fraction mp_curl_ratio (MP mp,scaled gamma, scaled a_tension,
7790 fraction alpha,beta,num,denom,ff; /* registers */
7791 alpha=mp_make_fraction(mp, unity,a_tension);
7792 beta=mp_make_fraction(mp, unity,b_tension);
7793 if ( alpha<=beta ) {
7794 ff=mp_make_fraction(mp, alpha,beta); ff=mp_take_fraction(mp, ff,ff);
7795 gamma=mp_take_fraction(mp, gamma,ff);
7796 beta=beta / 010000; /* convert |fraction| to |scaled| */
7797 denom=mp_take_fraction(mp, gamma,alpha)+three-beta;
7798 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7800 ff=mp_make_fraction(mp, beta,alpha); ff=mp_take_fraction(mp, ff,ff);
7801 beta=mp_take_fraction(mp, beta,ff) / 010000; /* convert |fraction| to |scaled| */
7802 denom=mp_take_fraction(mp, gamma,alpha)+(ff / 1365)-beta;
7803 /* $1365\approx 2^{12}/3$ */
7804 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7806 if ( num>=denom+denom+denom+denom ) return fraction_four;
7807 else return mp_make_fraction(mp, num,denom);
7810 @ We're in the home stretch now.
7812 @<Finish choosing angles and assigning control points@>=
7813 for (k=n-1;k>=0;k--) {
7814 mp->theta[k]=mp->vv[k]-mp_take_fraction(mp,mp->theta[k+1],mp->uu[k]);
7819 mp_n_sin_cos(mp, mp->theta[k]); mp->st=mp->n_sin; mp->ct=mp->n_cos;
7820 mp_n_sin_cos(mp, -mp->psi[k+1]-mp->theta[k+1]); mp->sf=mp->n_sin; mp->cf=mp->n_cos;
7821 mp_set_controls(mp, s,t,k);
7825 @ The |set_controls| routine actually puts the control points into
7826 a pair of consecutive nodes |p| and~|q|. Global variables are used to
7827 record the values of $\sin\theta$, $\cos\theta$, $\sin\phi$, and
7828 $\cos\phi$ needed in this calculation.
7834 fraction cf; /* sines and cosines */
7836 @ @<Declare subroutines needed by |solve_choices|@>=
7837 void mp_set_controls (MP mp,pointer p, pointer q, integer k) {
7838 fraction rr,ss; /* velocities, divided by thrice the tension */
7839 scaled lt,rt; /* tensions */
7840 fraction sine; /* $\sin(\theta+\phi)$ */
7841 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7842 rr=mp_velocity(mp, mp->st,mp->ct,mp->sf,mp->cf,rt);
7843 ss=mp_velocity(mp, mp->sf,mp->cf,mp->st,mp->ct,lt);
7844 if ( (right_tension(p)<0)||(left_tension(q)<0) ) {
7845 @<Decrease the velocities,
7846 if necessary, to stay inside the bounding triangle@>;
7848 right_x(p)=x_coord(p)+mp_take_fraction(mp,
7849 mp_take_fraction(mp, mp->delta_x[k],mp->ct)-
7850 mp_take_fraction(mp, mp->delta_y[k],mp->st),rr);
7851 right_y(p)=y_coord(p)+mp_take_fraction(mp,
7852 mp_take_fraction(mp, mp->delta_y[k],mp->ct)+
7853 mp_take_fraction(mp, mp->delta_x[k],mp->st),rr);
7854 left_x(q)=x_coord(q)-mp_take_fraction(mp,
7855 mp_take_fraction(mp, mp->delta_x[k],mp->cf)+
7856 mp_take_fraction(mp, mp->delta_y[k],mp->sf),ss);
7857 left_y(q)=y_coord(q)-mp_take_fraction(mp,
7858 mp_take_fraction(mp, mp->delta_y[k],mp->cf)-
7859 mp_take_fraction(mp, mp->delta_x[k],mp->sf),ss);
7860 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7863 @ The boundedness conditions $\\{rr}\L\sin\phi\,/\sin(\theta+\phi)$ and
7864 $\\{ss}\L\sin\theta\,/\sin(\theta+\phi)$ are to be enforced if $\sin\theta$,
7865 $\sin\phi$, and $\sin(\theta+\phi)$ all have the same sign. Otherwise
7866 there is no ``bounding triangle.''
7867 @:at_least_}{\&{atleast} primitive@>
7869 @<Decrease the velocities, if necessary...@>=
7870 if (((mp->st>=0)&&(mp->sf>=0))||((mp->st<=0)&&(mp->sf<=0)) ) {
7871 sine=mp_take_fraction(mp, abs(mp->st),mp->cf)+
7872 mp_take_fraction(mp, abs(mp->sf),mp->ct);
7874 sine=mp_take_fraction(mp, sine,fraction_one+unity); /* safety factor */
7875 if ( right_tension(p)<0 )
7876 if ( mp_ab_vs_cd(mp, abs(mp->sf),fraction_one,rr,sine)<0 )
7877 rr=mp_make_fraction(mp, abs(mp->sf),sine);
7878 if ( left_tension(q)<0 )
7879 if ( mp_ab_vs_cd(mp, abs(mp->st),fraction_one,ss,sine)<0 )
7880 ss=mp_make_fraction(mp, abs(mp->st),sine);
7884 @ Only the simple cases remain to be handled.
7886 @<Reduce to simple case of two givens and |return|@>=
7888 aa=mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7889 mp_n_sin_cos(mp, right_given(p)-aa); mp->ct=mp->n_cos; mp->st=mp->n_sin;
7890 mp_n_sin_cos(mp, left_given(q)-aa); mp->cf=mp->n_cos; mp->sf=-mp->n_sin;
7891 mp_set_controls(mp, p,q,0); return;
7894 @ @<Reduce to simple case of straight line and |return|@>=
7896 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7897 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7899 if ( mp->delta_x[0]>=0 ) right_x(p)=x_coord(p)+((mp->delta_x[0]+1) / 3);
7900 else right_x(p)=x_coord(p)+((mp->delta_x[0]-1) / 3);
7901 if ( mp->delta_y[0]>=0 ) right_y(p)=y_coord(p)+((mp->delta_y[0]+1) / 3);
7902 else right_y(p)=y_coord(p)+((mp->delta_y[0]-1) / 3);
7904 ff=mp_make_fraction(mp, unity,3*rt); /* $\alpha/3$ */
7905 right_x(p)=x_coord(p)+mp_take_fraction(mp, mp->delta_x[0],ff);
7906 right_y(p)=y_coord(p)+mp_take_fraction(mp, mp->delta_y[0],ff);
7909 if ( mp->delta_x[0]>=0 ) left_x(q)=x_coord(q)-((mp->delta_x[0]+1) / 3);
7910 else left_x(q)=x_coord(q)-((mp->delta_x[0]-1) / 3);
7911 if ( mp->delta_y[0]>=0 ) left_y(q)=y_coord(q)-((mp->delta_y[0]+1) / 3);
7912 else left_y(q)=y_coord(q)-((mp->delta_y[0]-1) / 3);
7914 ff=mp_make_fraction(mp, unity,3*lt); /* $\beta/3$ */
7915 left_x(q)=x_coord(q)-mp_take_fraction(mp, mp->delta_x[0],ff);
7916 left_y(q)=y_coord(q)-mp_take_fraction(mp, mp->delta_y[0],ff);
7921 @* \[19] Measuring paths.
7922 \MP's \&{llcorner}, \&{lrcorner}, \&{ulcorner}, and \&{urcorner} operators
7923 allow the user to measure the bounding box of anything that can go into a
7924 picture. It's easy to get rough bounds on the $x$ and $y$ extent of a path
7925 by just finding the bounding box of the knots and the control points. We
7926 need a more accurate version of the bounding box, but we can still use the
7927 easy estimate to save time by focusing on the interesting parts of the path.
7929 @ Computing an accurate bounding box involves a theme that will come up again
7930 and again. Given a Bernshte{\u\i}n polynomial
7931 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
7932 $$B(z_0,z_1,\ldots,z_n;t)=\sum_k{n\choose k}t^k(1-t)^{n-k}z_k,$$
7933 we can conveniently bisect its range as follows:
7936 \textindent{1)} Let $z_k^{(0)}=z_k$, for |0<=k<=n|.
7939 \textindent{2)} Let $z_k^{(j+1)}={1\over2}(z_k^{(j)}+z\k^{(j)})$, for
7940 |0<=k<n-j|, for |0<=j<n|.
7944 $$B(z_0,z_1,\ldots,z_n;t)=B(z_0^{(0)},z_0^{(1)},\ldots,z_0^{(n)};2t)
7945 =B(z_0^{(n)},z_1^{(n-1)},\ldots,z_n^{(0)};2t-1).$$
7946 This formula gives us the coefficients of polynomials to use over the ranges
7947 $0\L t\L{1\over2}$ and ${1\over2}\L t\L1$.
7949 @ Now here's a subroutine that's handy for all sorts of path computations:
7950 Given a quadratic polynomial $B(a,b,c;t)$, the |crossing_point| function
7951 returns the unique |fraction| value |t| between 0 and~1 at which
7952 $B(a,b,c;t)$ changes from positive to negative, or returns
7953 |t=fraction_one+1| if no such value exists. If |a<0| (so that $B(a,b,c;t)$
7954 is already negative at |t=0|), |crossing_point| returns the value zero.
7956 @d no_crossing { return (fraction_one+1); }
7957 @d one_crossing { return fraction_one; }
7958 @d zero_crossing { return 0; }
7959 @d mp_crossing_point(M,A,B,C) mp_do_crossing_point(A,B,C)
7961 @c fraction mp_do_crossing_point (integer a, integer b, integer c) {
7962 integer d; /* recursive counter */
7963 integer x,xx,x0,x1,x2; /* temporary registers for bisection */
7964 if ( a<0 ) zero_crossing;
7967 if ( c>0 ) { no_crossing; }
7968 else if ( (a==0)&&(b==0) ) { no_crossing;}
7969 else { one_crossing; }
7971 if ( a==0 ) zero_crossing;
7972 } else if ( a==0 ) {
7973 if ( b<=0 ) zero_crossing;
7975 @<Use bisection to find the crossing point, if one exists@>;
7978 @ The general bisection method is quite simple when $n=2$, hence
7979 |crossing_point| does not take much time. At each stage in the
7980 recursion we have a subinterval defined by |l| and~|j| such that
7981 $B(a,b,c;2^{-l}(j+t))=B(x_0,x_1,x_2;t)$, and we want to ``zero in'' on
7982 the subinterval where $x_0\G0$ and $\min(x_1,x_2)<0$.
7984 It is convenient for purposes of calculation to combine the values
7985 of |l| and~|j| in a single variable $d=2^l+j$, because the operation
7986 of bisection then corresponds simply to doubling $d$ and possibly
7987 adding~1. Furthermore it proves to be convenient to modify
7988 our previous conventions for bisection slightly, maintaining the
7989 variables $X_0=2^lx_0$, $X_1=2^l(x_0-x_1)$, and $X_2=2^l(x_1-x_2)$.
7990 With these variables the conditions $x_0\ge0$ and $\min(x_1,x_2)<0$ are
7991 equivalent to $\max(X_1,X_1+X_2)>X_0\ge0$.
7993 The following code maintains the invariant relations
7994 $0\L|x0|<\max(|x1|,|x1|+|x2|)$,
7995 $\vert|x1|\vert<2^{30}$, $\vert|x2|\vert<2^{30}$;
7996 it has been constructed in such a way that no arithmetic overflow
7997 will occur if the inputs satisfy
7998 $a<2^{30}$, $\vert a-b\vert<2^{30}$, and $\vert b-c\vert<2^{30}$.
8000 @<Use bisection to find the crossing point...@>=
8001 d=1; x0=a; x1=a-b; x2=b-c;
8012 if ( x<=x0 ) { if ( x+x2<=x0 ) no_crossing; }
8016 } while (d<fraction_one);
8017 return (d-fraction_one)
8019 @ Here is a routine that computes the $x$ or $y$ coordinate of the point on
8020 a cubic corresponding to the |fraction| value~|t|.
8022 It is convenient to define a \.{WEB} macro |t_of_the_way| such that
8023 |t_of_the_way(a,b)| expands to |a-(a-b)*t|, i.e., to |t[a,b]|.
8025 @d t_of_the_way(A,B) ((A)-mp_take_fraction(mp,((A)-(B)),t))
8027 @c scaled mp_eval_cubic (MP mp,pointer p, pointer q, fraction t) {
8028 scaled x1,x2,x3; /* intermediate values */
8029 x1=t_of_the_way(knot_coord(p),right_coord(p));
8030 x2=t_of_the_way(right_coord(p),left_coord(q));
8031 x3=t_of_the_way(left_coord(q),knot_coord(q));
8032 x1=t_of_the_way(x1,x2);
8033 x2=t_of_the_way(x2,x3);
8034 return t_of_the_way(x1,x2);
8037 @ The actual bounding box information is stored in global variables.
8038 Since it is convenient to address the $x$ and $y$ information
8039 separately, we define arrays indexed by |x_code..y_code| and use
8040 macros to give them more convenient names.
8044 mp_x_code=0, /* index for |minx| and |maxx| */
8045 mp_y_code /* index for |miny| and |maxy| */
8049 @d minx mp->bbmin[mp_x_code]
8050 @d maxx mp->bbmax[mp_x_code]
8051 @d miny mp->bbmin[mp_y_code]
8052 @d maxy mp->bbmax[mp_y_code]
8055 scaled bbmin[mp_y_code+1];
8056 scaled bbmax[mp_y_code+1];
8057 /* the result of procedures that compute bounding box information */
8059 @ Now we're ready for the key part of the bounding box computation.
8060 The |bound_cubic| procedure updates |bbmin[c]| and |bbmax[c]| based on
8061 $$B(\hbox{|knot_coord(p)|}, \hbox{|right_coord(p)|},
8062 \hbox{|left_coord(q)|}, \hbox{|knot_coord(q)|};t)
8064 for $0<t\le1$. In other words, the procedure adjusts the bounds to
8065 accommodate |knot_coord(q)| and any extremes over the range $0<t<1$.
8066 The |c| parameter is |x_code| or |y_code|.
8068 @c void mp_bound_cubic (MP mp,pointer p, pointer q, small_number c) {
8069 boolean wavy; /* whether we need to look for extremes */
8070 scaled del1,del2,del3,del,dmax; /* proportional to the control
8071 points of a quadratic derived from a cubic */
8072 fraction t,tt; /* where a quadratic crosses zero */
8073 scaled x; /* a value that |bbmin[c]| and |bbmax[c]| must accommodate */
8075 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8076 @<Check the control points against the bounding box and set |wavy:=true|
8077 if any of them lie outside@>;
8079 del1=right_coord(p)-knot_coord(p);
8080 del2=left_coord(q)-right_coord(p);
8081 del3=knot_coord(q)-left_coord(q);
8082 @<Scale up |del1|, |del2|, and |del3| for greater accuracy;
8083 also set |del| to the first nonzero element of |(del1,del2,del3)|@>;
8085 negate(del1); negate(del2); negate(del3);
8087 t=mp_crossing_point(mp, del1,del2,del3);
8088 if ( t<fraction_one ) {
8089 @<Test the extremes of the cubic against the bounding box@>;
8094 @ @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>=
8095 if ( x<mp->bbmin[c] ) mp->bbmin[c]=x;
8096 if ( x>mp->bbmax[c] ) mp->bbmax[c]=x
8098 @ @<Check the control points against the bounding box and set...@>=
8100 if ( mp->bbmin[c]<=right_coord(p) )
8101 if ( right_coord(p)<=mp->bbmax[c] )
8102 if ( mp->bbmin[c]<=left_coord(q) )
8103 if ( left_coord(q)<=mp->bbmax[c] )
8106 @ If |del1=del2=del3=0|, it's impossible to obey the title of this
8107 section. We just set |del=0| in that case.
8109 @<Scale up |del1|, |del2|, and |del3| for greater accuracy...@>=
8110 if ( del1!=0 ) del=del1;
8111 else if ( del2!=0 ) del=del2;
8115 if ( abs(del2)>dmax ) dmax=abs(del2);
8116 if ( abs(del3)>dmax ) dmax=abs(del3);
8117 while ( dmax<fraction_half ) {
8118 dmax+=dmax; del1+=del1; del2+=del2; del3+=del3;
8122 @ Since |crossing_point| has tried to choose |t| so that
8123 $B(|del1|,|del2|,|del3|;\tau)$ crosses zero at $\tau=|t|$ with negative
8124 slope, the value of |del2| computed below should not be positive.
8125 But rounding error could make it slightly positive in which case we
8126 must cut it to zero to avoid confusion.
8128 @<Test the extremes of the cubic against the bounding box@>=
8130 x=mp_eval_cubic(mp, p,q,t);
8131 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8132 del2=t_of_the_way(del2,del3);
8133 /* now |0,del2,del3| represent the derivative on the remaining interval */
8134 if ( del2>0 ) del2=0;
8135 tt=mp_crossing_point(mp, 0,-del2,-del3);
8136 if ( tt<fraction_one ) {
8137 @<Test the second extreme against the bounding box@>;
8141 @ @<Test the second extreme against the bounding box@>=
8143 x=mp_eval_cubic(mp, p,q,t_of_the_way(tt,fraction_one));
8144 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8147 @ Finding the bounding box of a path is basically a matter of applying
8148 |bound_cubic| twice for each pair of adjacent knots.
8150 @c void mp_path_bbox (MP mp,pointer h) {
8151 pointer p,q; /* a pair of adjacent knots */
8152 minx=x_coord(h); miny=y_coord(h);
8153 maxx=minx; maxy=miny;
8156 if ( right_type(p)==mp_endpoint ) return;
8158 mp_bound_cubic(mp, x_loc(p),x_loc(q),mp_x_code);
8159 mp_bound_cubic(mp, y_loc(p),y_loc(q),mp_y_code);
8164 @ Another important way to measure a path is to find its arc length. This
8165 is best done by using the general bisection algorithm to subdivide the path
8166 until obtaining ``well behaved'' subpaths whose arc lengths can be approximated
8169 Since the arc length is the integral with respect to time of the magnitude of
8170 the velocity, it is natural to use Simpson's rule for the approximation.
8172 If $\dot B(t)$ is the spline velocity, Simpson's rule gives
8173 $$ \vb\dot B(0)\vb + 4\vb\dot B({1\over2})\vb + \vb\dot B(1)\vb \over 6 $$
8174 for the arc length of a path of length~1. For a cubic spline
8175 $B(z_0,z_1,z_2,z_3;t)$, the time derivative $\dot B(t)$ is
8176 $3B(dz_0,dz_1,dz_2;t)$, where $dz_i=z_{i+1}-z_i$. Hence the arc length
8178 $$ {\vb dz_0\vb \over 2} + 2\vb dz_{02}\vb + {\vb dz_2\vb \over 2}, $$
8180 $$ dz_{02}={1\over2}\left({dz_0+dz_1\over 2}+{dz_1+dz_2\over 2}\right)$$
8181 is the result of the bisection algorithm.
8183 @ The remaining problem is how to decide when a subpath is ``well behaved.''
8184 This could be done via the theoretical error bound for Simpson's rule,
8186 but this is impractical because it requires an estimate of the fourth
8187 derivative of the quantity being integrated. It is much easier to just perform
8188 a bisection step and see how much the arc length estimate changes. Since the
8189 error for Simpson's rule is proportional to the fourth power of the sample
8190 spacing, the remaining error is typically about $1\over16$ of the amount of
8191 the change. We say ``typically'' because the error has a pseudo-random behavior
8192 that could cause the two estimates to agree when each contain large errors.
8194 To protect against disasters such as undetected cusps, the bisection process
8195 should always continue until all the $dz_i$ vectors belong to a single
8196 $90^\circ$ sector. This ensures that no point on the spline can have velocity
8197 less than 70\% of the minimum of $\vb dz_0\vb$, $\vb dz_1\vb$ and $\vb dz_2\vb$.
8198 If such a spline happens to produce an erroneous arc length estimate that
8199 is little changed by bisection, the amount of the error is likely to be fairly
8200 small. We will try to arrange things so that freak accidents of this type do
8201 not destroy the inverse relationship between the \&{arclength} and
8202 \&{arctime} operations.
8203 @:arclength_}{\&{arclength} primitive@>
8204 @:arctime_}{\&{arctime} primitive@>
8206 @ The \&{arclength} and \&{arctime} operations are both based on a recursive
8208 function that finds the arc length of a cubic spline given $dz_0$, $dz_1$,
8209 $dz_2$. This |arc_test| routine also takes an arc length goal |a_goal| and
8210 returns the time when the arc length reaches |a_goal| if there is such a time.
8211 Thus the return value is either an arc length less than |a_goal| or, if the
8212 arc length would be at least |a_goal|, it returns a time value decreased by
8213 |two|. This allows the caller to use the sign of the result to distinguish
8214 between arc lengths and time values. On certain types of overflow, it is
8215 possible for |a_goal| and the result of |arc_test| both to be |el_gordo|.
8216 Otherwise, the result is always less than |a_goal|.
8218 Rather than halving the control point coordinates on each recursive call to
8219 |arc_test|, it is better to keep them proportional to velocity on the original
8220 curve and halve the results instead. This means that recursive calls can
8221 potentially use larger error tolerances in their arc length estimates. How
8222 much larger depends on to what extent the errors behave as though they are
8223 independent of each other. To save computing time, we use optimistic assumptions
8224 and increase the tolerance by a factor of about $\sqrt2$ for each recursive
8227 In addition to the tolerance parameter, |arc_test| should also have parameters
8228 for ${1\over3}\vb\dot B(0)\vb$, ${2\over3}\vb\dot B({1\over2})\vb$, and
8229 ${1\over3}\vb\dot B(1)\vb$. These quantities are relatively expensive to compute
8230 and they are needed in different instances of |arc_test|.
8232 @c @t\4@>@<Declare subroutines needed by |arc_test|@>;
8233 scaled mp_arc_test (MP mp, scaled dx0, scaled dy0, scaled dx1, scaled dy1,
8234 scaled dx2, scaled dy2, scaled v0, scaled v02,
8235 scaled v2, scaled a_goal, scaled tol) {
8236 boolean simple; /* are the control points confined to a $90^\circ$ sector? */
8237 scaled dx01, dy01, dx12, dy12, dx02, dy02; /* bisection results */
8239 /* twice the velocity magnitudes at $t={1\over4}$ and $t={3\over4}$ */
8240 scaled arc; /* best arc length estimate before recursion */
8241 @<Other local variables in |arc_test|@>;
8242 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,
8244 @<Initialize |v002|, |v022|, and the arc length estimate |arc|; if it overflows
8245 set |arc_test| and |return|@>;
8246 @<Test if the control points are confined to one quadrant or rotating them
8247 $45^\circ$ would put them in one quadrant. Then set |simple| appropriately@>;
8248 if ( simple && (abs(arc-v02-halfp(v0+v2)) <= tol) ) {
8249 if ( arc < a_goal ) {
8252 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to
8253 that time minus |two|@>;
8256 @<Use one or two recursive calls to compute the |arc_test| function@>;
8260 @ The |tol| value should by multiplied by $\sqrt 2$ before making recursive
8261 calls, but $1.5$ is an adequate approximation. It is best to avoid using
8262 |make_fraction| in this inner loop.
8265 @<Use one or two recursive calls to compute the |arc_test| function@>=
8267 @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is as
8268 large as possible@>;
8269 tol = tol + halfp(tol);
8270 a = mp_arc_test(mp, dx0,dy0, dx01,dy01, dx02,dy02, v0, v002,
8271 halfp(v02), a_new, tol);
8273 return (-halfp(two-a));
8275 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>;
8276 b = mp_arc_test(mp, dx02,dy02, dx12,dy12, dx2,dy2,
8277 halfp(v02), v022, v2, a_new, tol);
8279 return (-halfp(-b) - half_unit);
8281 return (a + half(b-a));
8285 @ @<Other local variables in |arc_test|@>=
8286 scaled a,b; /* results of recursive calls */
8287 scaled a_new,a_aux; /* the sum of these gives the |a_goal| */
8289 @ @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is...@>=
8290 a_aux = el_gordo - a_goal;
8291 if ( a_goal > a_aux ) {
8292 a_aux = a_goal - a_aux;
8295 a_new = a_goal + a_goal;
8299 @ There is no need to maintain |a_aux| at this point so we use it as a temporary
8300 to force the additions and subtractions to be done in an order that avoids
8303 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>=
8306 a_new = a_new + a_aux;
8309 @ This code assumes all {\it dx} and {\it dy} variables have magnitude less than
8310 |fraction_four|. To simplify the rest of the |arc_test| routine, we strengthen
8311 this assumption by requiring the norm of each $({\it dx},{\it dy})$ pair to obey
8312 this bound. Note that recursive calls will maintain this invariant.
8314 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,...@>=
8315 dx01 = half(dx0 + dx1);
8316 dx12 = half(dx1 + dx2);
8317 dx02 = half(dx01 + dx12);
8318 dy01 = half(dy0 + dy1);
8319 dy12 = half(dy1 + dy2);
8320 dy02 = half(dy01 + dy12)
8322 @ We should be careful to keep |arc<el_gordo| so that calling |arc_test| with
8323 |a_goal=el_gordo| is guaranteed to yield the arc length.
8325 @<Initialize |v002|, |v022|, and the arc length estimate |arc|;...@>=
8326 v002 = mp_pyth_add(mp, dx01+half(dx0+dx02), dy01+half(dy0+dy02));
8327 v022 = mp_pyth_add(mp, dx12+half(dx02+dx2), dy12+half(dy02+dy2));
8329 arc1 = v002 + half(halfp(v0+tmp) - v002);
8330 arc = v022 + half(halfp(v2+tmp) - v022);
8331 if ( (arc < el_gordo-arc1) ) {
8334 mp->arith_error = true;
8335 if ( a_goal==el_gordo ) return (el_gordo);
8339 @ @<Other local variables in |arc_test|@>=
8340 scaled tmp, tmp2; /* all purpose temporary registers */
8341 scaled arc1; /* arc length estimate for the first half */
8343 @ @<Test if the control points are confined to one quadrant or rotating...@>=
8344 simple = ((dx0>=0) && (dx1>=0) && (dx2>=0)) ||
8345 ((dx0<=0) && (dx1<=0) && (dx2<=0));
8347 simple = ((dy0>=0) && (dy1>=0) && (dy2>=0)) ||
8348 ((dy0<=0) && (dy1<=0) && (dy2<=0));
8350 simple = ((dx0>=dy0) && (dx1>=dy1) && (dx2>=dy2)) ||
8351 ((dx0<=dy0) && (dx1<=dy1) && (dx2<=dy2));
8353 simple = ((-dx0>=dy0) && (-dx1>=dy1) && (-dx2>=dy2)) ||
8354 ((-dx0<=dy0) && (-dx1<=dy1) && (-dx2<=dy2));
8357 @ Since Simpson's rule is based on approximating the integrand by a parabola,
8359 it is appropriate to use the same approximation to decide when the integral
8360 reaches the intermediate value |a_goal|. At this point
8362 {\vb\dot B(0)\vb\over 3} &= \hbox{|v0|}, \qquad
8363 {\vb\dot B({1\over4})\vb\over 3} = {\hbox{|v002|}\over 2}, \qquad
8364 {\vb\dot B({1\over2})\vb\over 3} = {\hbox{|v02|}\over 2}, \cr
8365 {\vb\dot B({3\over4})\vb\over 3} &= {\hbox{|v022|}\over 2}, \qquad
8366 {\vb\dot B(1)\vb\over 3} = \hbox{|v2|} \cr
8370 $$ {\vb\dot B(t)\vb\over 3} \approx
8371 \cases{B\left(\hbox{|v0|},
8372 \hbox{|v002|}-{1\over 2}\hbox{|v0|}-{1\over 4}\hbox{|v02|},
8373 {1\over 2}\hbox{|v02|}; 2t \right)&
8374 if $t\le{1\over 2}$\cr
8375 B\left({1\over 2}\hbox{|v02|},
8376 \hbox{|v022|}-{1\over 4}\hbox{|v02|}-{1\over 2}\hbox{|v2|},
8377 \hbox{|v2|}; 2t-1 \right)&
8378 if $t\ge{1\over 2}$.\cr}
8381 We can integrate $\vb\dot B(t)\vb$ by using
8382 $$\int 3B(a,b,c;\tau)\,dt =
8383 {B(0,a,a+b,a+b+c;\tau) + {\rm constant} \over {d\tau\over dt}}.
8386 This construction allows us to find the time when the arc length reaches
8387 |a_goal| by solving a cubic equation of the form
8388 $$ B(0,a,a+b,a+b+c;\tau) = x, $$
8389 where $\tau$ is $2t$ or $2t+1$, $x$ is |a_goal| or |a_goal-arc1|, and $a$, $b$,
8390 and $c$ are the Bernshte{\u\i}n coefficients from $(*)$ divided by
8391 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
8392 $d\tau\over dt$. We shall define a function |solve_rising_cubic| that finds
8393 $\tau$ given $a$, $b$, $c$, and $x$.
8395 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to...@>=
8397 tmp = (v02 + 2) / 4;
8398 if ( a_goal<=arc1 ) {
8401 (halfp(mp_solve_rising_cubic(mp, tmp2, arc1-tmp2-tmp, tmp, a_goal))- two);
8404 return ((half_unit - two) +
8405 halfp(mp_solve_rising_cubic(mp, tmp, arc-arc1-tmp-tmp2, tmp2, a_goal-arc1)));
8409 @ Here is the |solve_rising_cubic| routine that finds the time~$t$ when
8410 $$ B(0, a, a+b, a+b+c; t) = x. $$
8411 This routine is based on |crossing_point| but is simplified by the
8412 assumptions that $B(a,b,c;t)\ge0$ for $0\le t\le1$ and that |0<=x<=a+b+c|.
8413 If rounding error causes this condition to be violated slightly, we just ignore
8414 it and proceed with binary search. This finds a time when the function value
8415 reaches |x| and the slope is positive.
8417 @<Declare subroutines needed by |arc_test|@>=
8418 scaled mp_solve_rising_cubic (MP mp,scaled a, scaled b, scaled c, scaled x) {
8419 scaled ab, bc, ac; /* bisection results */
8420 integer t; /* $2^k+q$ where unscaled answer is in $[q2^{-k},(q+1)2^{-k})$ */
8421 integer xx; /* temporary for updating |x| */
8422 if ( (a<0) || (c<0) ) mp_confusion(mp, "rising?");
8423 @:this can't happen rising?}{\quad rising?@>
8426 } else if ( x >= a+b+c ) {
8430 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than
8434 @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>;
8435 xx = x - a - ab - ac;
8436 if ( xx < -x ) { x+=x; b=ab; c=ac; }
8437 else { x = x + xx; a=ac; b=mp->bc; t = t+1; };
8438 } while (t < unity);
8443 @ @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>=
8448 @ @d one_third_el_gordo 05252525252 /* upper bound on |a|, |b|, and |c| */
8450 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than...@>=
8451 while ((a>one_third_el_gordo)||(b>one_third_el_gordo)||(c>one_third_el_gordo)) {
8458 @ It is convenient to have a simpler interface to |arc_test| that requires no
8459 unnecessary arguments and ensures that each $({\it dx},{\it dy})$ pair has
8460 length less than |fraction_four|.
8462 @d arc_tol 16 /* quit when change in arc length estimate reaches this */
8464 @c scaled mp_do_arc_test (MP mp,scaled dx0, scaled dy0, scaled dx1,
8465 scaled dy1, scaled dx2, scaled dy2, scaled a_goal) {
8466 scaled v0,v1,v2; /* length of each $({\it dx},{\it dy})$ pair */
8467 scaled v02; /* twice the norm of the quadratic at $t={1\over2}$ */
8468 v0 = mp_pyth_add(mp, dx0,dy0);
8469 v1 = mp_pyth_add(mp, dx1,dy1);
8470 v2 = mp_pyth_add(mp, dx2,dy2);
8471 if ( (v0>=fraction_four) || (v1>=fraction_four) || (v2>=fraction_four) ) {
8472 mp->arith_error = true;
8473 if ( a_goal==el_gordo ) return el_gordo;
8476 v02 = mp_pyth_add(mp, dx1+half(dx0+dx2), dy1+half(dy0+dy2));
8477 return (mp_arc_test(mp, dx0,dy0, dx1,dy1, dx2,dy2,
8478 v0, v02, v2, a_goal, arc_tol));
8482 @ Now it is easy to find the arc length of an entire path.
8484 @c scaled mp_get_arc_length (MP mp,pointer h) {
8485 pointer p,q; /* for traversing the path */
8486 scaled a,a_tot; /* current and total arc lengths */
8489 while ( right_type(p)!=mp_endpoint ){
8491 a = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8492 left_x(q)-right_x(p), left_y(q)-right_y(p),
8493 x_coord(q)-left_x(q), y_coord(q)-left_y(q), el_gordo);
8494 a_tot = mp_slow_add(mp, a, a_tot);
8495 if ( q==h ) break; else p=q;
8501 @ The inverse operation of finding the time on a path~|h| when the arc length
8502 reaches some value |arc0| can also be accomplished via |do_arc_test|. Some care
8503 is required to handle very large times or negative times on cyclic paths. For
8504 non-cyclic paths, |arc0| values that are negative or too large cause
8505 |get_arc_time| to return 0 or the length of path~|h|.
8507 If |arc0| is greater than the arc length of a cyclic path~|h|, the result is a
8508 time value greater than the length of the path. Since it could be much greater,
8509 we must be prepared to compute the arc length of path~|h| and divide this into
8510 |arc0| to find how many multiples of the length of path~|h| to add.
8512 @c scaled mp_get_arc_time (MP mp,pointer h, scaled arc0) {
8513 pointer p,q; /* for traversing the path */
8514 scaled t_tot; /* accumulator for the result */
8515 scaled t; /* the result of |do_arc_test| */
8516 scaled arc; /* portion of |arc0| not used up so far */
8517 integer n; /* number of extra times to go around the cycle */
8519 @<Deal with a negative |arc0| value and |return|@>;
8521 if ( arc0==el_gordo ) decr(arc0);
8525 while ( (right_type(p)!=mp_endpoint) && (arc>0) ) {
8527 t = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8528 left_x(q)-right_x(p), left_y(q)-right_y(p),
8529 x_coord(q)-left_x(q), y_coord(q)-left_y(q), arc);
8530 @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>;
8532 @<Update |t_tot| and |arc| to avoid going around the cyclic
8533 path too many times but set |arith_error:=true| and |goto done| on
8542 @ @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>=
8543 if ( t<0 ) { t_tot = t_tot + t + two; arc = 0; }
8544 else { t_tot = t_tot + unity; arc = arc - t; }
8546 @ @<Deal with a negative |arc0| value and |return|@>=
8548 if ( left_type(h)==mp_endpoint ) {
8551 p = mp_htap_ypoc(mp, h);
8552 t_tot = -mp_get_arc_time(mp, p, -arc0);
8553 mp_toss_knot_list(mp, p);
8559 @ @<Update |t_tot| and |arc| to avoid going around the cyclic...@>=
8561 n = arc / (arc0 - arc);
8562 arc = arc - n*(arc0 - arc);
8563 if ( t_tot > el_gordo / (n+1) ) {
8564 mp->arith_error = true;
8568 t_tot = (n + 1)*t_tot;
8571 @* \[20] Data structures for pens.
8572 A Pen in \MP\ can be either elliptical or polygonal. Elliptical pens result
8573 in \ps\ \&{stroke} commands, while anything drawn with a polygonal pen is
8574 @:stroke}{\&{stroke} command@>
8575 converted into an area fill as described in the next part of this program.
8576 The mathematics behind this process is based on simple aspects of the theory
8577 of tracings developed by Leo Guibas, Lyle Ramshaw, and Jorge Stolfi
8578 [``A kinematic framework for computational geometry,'' Proc.\ IEEE Symp.\
8579 Foundations of Computer Science {\bf 24} (1983), 100--111].
8581 Polygonal pens are created from paths via \MP's \&{makepen} primitive.
8582 @:makepen_}{\&{makepen} primitive@>
8583 This path representation is almost sufficient for our purposes except that
8584 a pen path should always be a convex polygon with the vertices in
8585 counter-clockwise order.
8586 Since we will need to scan pen polygons both forward and backward, a pen
8587 should be represented as a doubly linked ring of knot nodes. There is
8588 room for the extra back pointer because we do not need the
8589 |left_type| or |right_type| fields. In fact, we don't need the |left_x|,
8590 |left_y|, |right_x|, or |right_y| fields either but we leave these alone
8591 so that certain procedures can operate on both pens and paths. In particular,
8592 pens can be copied using |copy_path| and recycled using |toss_knot_list|.
8595 /* this replaces the |left_type| and |right_type| fields in a pen knot */
8597 @ The |make_pen| procedure turns a path into a pen by initializing
8598 the |knil| pointers and making sure the knots form a convex polygon.
8599 Thus each cubic in the given path becomes a straight line and the control
8600 points are ignored. If the path is not cyclic, the ends are connected by a
8603 @d copy_pen(A) mp_make_pen(mp, mp_copy_path(mp, (A)),false)
8605 @c @<Declare a function called |convex_hull|@>;
8606 pointer mp_make_pen (MP mp,pointer h, boolean need_hull) {
8607 pointer p,q; /* two consecutive knots */
8614 h=mp_convex_hull(mp, h);
8615 @<Make sure |h| isn't confused with an elliptical pen@>;
8620 @ The only information required about an elliptical pen is the overall
8621 transformation that has been applied to the original \&{pencircle}.
8622 @:pencircle_}{\&{pencircle} primitive@>
8623 Since it suffices to keep track of how the three points $(0,0)$, $(1,0)$,
8624 and $(0,1)$ are transformed, an elliptical pen can be stored in a single
8625 knot node and transformed as if it were a path.
8627 @d pen_is_elliptical(A) ((A)==link((A)))
8629 @c pointer mp_get_pen_circle (MP mp,scaled diam) {
8630 pointer h; /* the knot node to return */
8631 h=mp_get_node(mp, knot_node_size);
8632 link(h)=h; knil(h)=h;
8633 originator(h)=mp_program_code;
8634 x_coord(h)=0; y_coord(h)=0;
8635 left_x(h)=diam; left_y(h)=0;
8636 right_x(h)=0; right_y(h)=diam;
8640 @ If the polygon being returned by |make_pen| has only one vertex, it will
8641 be interpreted as an elliptical pen. This is no problem since a degenerate
8642 polygon can equally well be thought of as a degenerate ellipse. We need only
8643 initialize the |left_x|, |left_y|, |right_x|, and |right_y| fields.
8645 @<Make sure |h| isn't confused with an elliptical pen@>=
8646 if ( pen_is_elliptical( h) ){
8647 left_x(h)=x_coord(h); left_y(h)=y_coord(h);
8648 right_x(h)=x_coord(h); right_y(h)=y_coord(h);
8651 @ We have to cheat a little here but most operations on pens only use
8652 the first three words in each knot node.
8653 @^data structure assumptions@>
8655 @<Initialize a pen at |test_pen| so that it fits in nine words@>=
8656 x_coord(test_pen)=-half_unit;
8657 y_coord(test_pen)=0;
8658 x_coord(test_pen+3)=half_unit;
8659 y_coord(test_pen+3)=0;
8660 x_coord(test_pen+6)=0;
8661 y_coord(test_pen+6)=unity;
8662 link(test_pen)=test_pen+3;
8663 link(test_pen+3)=test_pen+6;
8664 link(test_pen+6)=test_pen;
8665 knil(test_pen)=test_pen+6;
8666 knil(test_pen+3)=test_pen;
8667 knil(test_pen+6)=test_pen+3
8669 @ Printing a polygonal pen is very much like printing a path
8671 @<Declare subroutines for printing expressions@>=
8672 void mp_pr_pen (MP mp,pointer h) {
8673 pointer p,q; /* for list traversal */
8674 if ( pen_is_elliptical(h) ) {
8675 @<Print the elliptical pen |h|@>;
8679 mp_print_two(mp, x_coord(p),y_coord(p));
8680 mp_print_nl(mp, " .. ");
8681 @<Advance |p| making sure the links are OK and |return| if there is
8684 mp_print(mp, "cycle");
8688 @ @<Advance |p| making sure the links are OK and |return| if there is...@>=
8690 if ( (q==null) || (knil(q)!=p) ) {
8691 mp_print_nl(mp, "???"); return; /* this won't happen */
8696 @ @<Print the elliptical pen |h|@>=
8698 mp_print(mp, "pencircle transformed (");
8699 mp_print_scaled(mp, x_coord(h));
8700 mp_print_char(mp, ',');
8701 mp_print_scaled(mp, y_coord(h));
8702 mp_print_char(mp, ',');
8703 mp_print_scaled(mp, left_x(h)-x_coord(h));
8704 mp_print_char(mp, ',');
8705 mp_print_scaled(mp, right_x(h)-x_coord(h));
8706 mp_print_char(mp, ',');
8707 mp_print_scaled(mp, left_y(h)-y_coord(h));
8708 mp_print_char(mp, ',');
8709 mp_print_scaled(mp, right_y(h)-y_coord(h));
8710 mp_print_char(mp, ')');
8713 @ Here us another version of |pr_pen| that prints the pen as a diagnostic
8716 @<Declare subroutines for printing expressions@>=
8717 void mp_print_pen (MP mp,pointer h, char *s, boolean nuline) {
8718 mp_print_diagnostic(mp, "Pen",s,nuline); mp_print_ln(mp);
8721 mp_end_diagnostic(mp, true);
8724 @ Making a polygonal pen into a path involves restoring the |left_type| and
8725 |right_type| fields and setting the control points so as to make a polygonal
8729 void mp_make_path (MP mp,pointer h) {
8730 pointer p; /* for traversing the knot list */
8731 small_number k; /* a loop counter */
8732 @<Other local variables in |make_path|@>;
8733 if ( pen_is_elliptical(h) ) {
8734 @<Make the elliptical pen |h| into a path@>;
8738 left_type(p)=mp_explicit;
8739 right_type(p)=mp_explicit;
8740 @<copy the coordinates of knot |p| into its control points@>;
8746 @ @<copy the coordinates of knot |p| into its control points@>=
8747 left_x(p)=x_coord(p);
8748 left_y(p)=y_coord(p);
8749 right_x(p)=x_coord(p);
8750 right_y(p)=y_coord(p)
8752 @ We need an eight knot path to get a good approximation to an ellipse.
8754 @<Make the elliptical pen |h| into a path@>=
8756 @<Extract the transformation parameters from the elliptical pen~|h|@>;
8758 for (k=0;k<=7;k++ ) {
8759 @<Initialize |p| as the |k|th knot of a circle of unit diameter,
8760 transforming it appropriately@>;
8761 if ( k==7 ) link(p)=h; else link(p)=mp_get_node(mp, knot_node_size);
8766 @ @<Extract the transformation parameters from the elliptical pen~|h|@>=
8767 center_x=x_coord(h);
8768 center_y=y_coord(h);
8769 width_x=left_x(h)-center_x;
8770 width_y=left_y(h)-center_y;
8771 height_x=right_x(h)-center_x;
8772 height_y=right_y(h)-center_y
8774 @ @<Other local variables in |make_path|@>=
8775 scaled center_x,center_y; /* translation parameters for an elliptical pen */
8776 scaled width_x,width_y; /* the effect of a unit change in $x$ */
8777 scaled height_x,height_y; /* the effect of a unit change in $y$ */
8778 scaled dx,dy; /* the vector from knot |p| to its right control point */
8780 /* |k| advanced $270^\circ$ around the ring (cf. $\sin\theta=\cos(\theta+270)$) */
8782 @ The only tricky thing here are the tables |half_cos| and |d_cos| used to
8783 find the point $k/8$ of the way around the circle and the direction vector
8786 @<Initialize |p| as the |k|th knot of a circle of unit diameter,...@>=
8788 x_coord(p)=center_x+mp_take_fraction(mp, mp->half_cos[k],width_x)
8789 +mp_take_fraction(mp, mp->half_cos[kk],height_x);
8790 y_coord(p)=center_y+mp_take_fraction(mp, mp->half_cos[k],width_y)
8791 +mp_take_fraction(mp, mp->half_cos[kk],height_y);
8792 dx=-mp_take_fraction(mp, mp->d_cos[kk],width_x)
8793 +mp_take_fraction(mp, mp->d_cos[k],height_x);
8794 dy=-mp_take_fraction(mp, mp->d_cos[kk],width_y)
8795 +mp_take_fraction(mp, mp->d_cos[k],height_y);
8796 right_x(p)=x_coord(p)+dx;
8797 right_y(p)=y_coord(p)+dy;
8798 left_x(p)=x_coord(p)-dx;
8799 left_y(p)=y_coord(p)-dy;
8800 left_type(p)=mp_explicit;
8801 right_type(p)=mp_explicit;
8802 originator(p)=mp_program_code
8805 fraction half_cos[8]; /* ${1\over2}\cos(45k)$ */
8806 fraction d_cos[8]; /* a magic constant times $\cos(45k)$ */
8808 @ The magic constant for |d_cos| is the distance between $({1\over2},0)$ and
8809 $({1\over4}\sqrt2,{1\over4}\sqrt2)$ times the result of the |velocity|
8810 function for $\theta=\phi=22.5^\circ$. This comes out to be
8811 $$ d = {\sqrt{2-\sqrt2}\over 3+3\cos22.5^\circ}
8812 \approx 0.132608244919772.
8816 mp->half_cos[0]=fraction_half;
8817 mp->half_cos[1]=94906266; /* $2^{26}\sqrt2\approx94906265.62$ */
8819 mp->d_cos[0]=35596755; /* $2^{28}d\approx35596754.69$ */
8820 mp->d_cos[1]=25170707; /* $2^{27}\sqrt2\,d\approx25170706.63$ */
8822 for (k=3;k<= 4;k++ ) {
8823 mp->half_cos[k]=-mp->half_cos[4-k];
8824 mp->d_cos[k]=-mp->d_cos[4-k];
8826 for (k=5;k<= 7;k++ ) {
8827 mp->half_cos[k]=mp->half_cos[8-k];
8828 mp->d_cos[k]=mp->d_cos[8-k];
8831 @ The |convex_hull| function forces a pen polygon to be convex when it is
8832 returned by |make_pen| and after any subsequent transformation where rounding
8833 error might allow the convexity to be lost.
8834 The convex hull algorithm used here is described by F.~P. Preparata and
8835 M.~I. Shamos [{\sl Computational Geometry}, Springer-Verlag, 1985].
8837 @<Declare a function called |convex_hull|@>=
8838 @<Declare a procedure called |move_knot|@>;
8839 pointer mp_convex_hull (MP mp,pointer h) { /* Make a polygonal pen convex */
8840 pointer l,r; /* the leftmost and rightmost knots */
8841 pointer p,q; /* knots being scanned */
8842 pointer s; /* the starting point for an upcoming scan */
8843 scaled dx,dy; /* a temporary pointer */
8844 if ( pen_is_elliptical(h) ) {
8847 @<Set |l| to the leftmost knot in polygon~|h|@>;
8848 @<Set |r| to the rightmost knot in polygon~|h|@>;
8851 @<Find any knots on the path from |l| to |r| above the |l|-|r| line and
8852 move them past~|r|@>;
8853 @<Find any knots on the path from |s| to |l| below the |l|-|r| line and
8854 move them past~|l|@>;
8855 @<Sort the path from |l| to |r| by increasing $x$@>;
8856 @<Sort the path from |r| to |l| by decreasing $x$@>;
8859 @<Do a Gramm scan and remove vertices where there is no left turn@>;
8865 @ All comparisons are done primarily on $x$ and secondarily on $y$.
8867 @<Set |l| to the leftmost knot in polygon~|h|@>=
8871 if ( x_coord(p)<=x_coord(l) )
8872 if ( (x_coord(p)<x_coord(l)) || (y_coord(p)<y_coord(l)) )
8877 @ @<Set |r| to the rightmost knot in polygon~|h|@>=
8881 if ( x_coord(p)>=x_coord(r) )
8882 if ( (x_coord(p)>x_coord(r)) || (y_coord(p)>y_coord(r)) )
8887 @ @<Find any knots on the path from |l| to |r| above the |l|-|r| line...@>=
8888 dx=x_coord(r)-x_coord(l);
8889 dy=y_coord(r)-y_coord(l);
8893 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))>0 )
8894 mp_move_knot(mp, p, r);
8898 @ The |move_knot| procedure removes |p| from a doubly linked list and inserts
8901 @ @<Declare a procedure called |move_knot|@>=
8902 void mp_move_knot (MP mp,pointer p, pointer q) {
8903 link(knil(p))=link(p);
8904 knil(link(p))=knil(p);
8911 @ @<Find any knots on the path from |s| to |l| below the |l|-|r| line...@>=
8915 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))<0 )
8916 mp_move_knot(mp, p,l);
8920 @ The list is likely to be in order already so we just do linear insertions.
8921 Secondary comparisons on $y$ ensure that the sort is consistent with the
8922 choice of |l| and |r|.
8924 @<Sort the path from |l| to |r| by increasing $x$@>=
8928 while ( x_coord(q)>x_coord(p) ) q=knil(q);
8929 while ( x_coord(q)==x_coord(p) ) {
8930 if ( y_coord(q)>y_coord(p) ) q=knil(q); else break;
8932 if ( q==knil(p) ) p=link(p);
8933 else { p=link(p); mp_move_knot(mp, knil(p),q); };
8936 @ @<Sort the path from |r| to |l| by decreasing $x$@>=
8940 while ( x_coord(q)<x_coord(p) ) q=knil(q);
8941 while ( x_coord(q)==x_coord(p) ) {
8942 if ( y_coord(q)<y_coord(p) ) q=knil(q); else break;
8944 if ( q==knil(p) ) p=link(p);
8945 else { p=link(p); mp_move_knot(mp, knil(p),q); };
8948 @ The condition involving |ab_vs_cd| tests if there is not a left turn
8949 at knot |q|. There usually will be a left turn so we streamline the case
8950 where the |then| clause is not executed.
8952 @<Do a Gramm scan and remove vertices where there...@>=
8956 dx=x_coord(q)-x_coord(p);
8957 dy=y_coord(q)-y_coord(p);
8961 if ( mp_ab_vs_cd(mp, dx,y_coord(q)-y_coord(p),dy,x_coord(q)-x_coord(p))<=0 ) {
8962 @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>;
8967 @ @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>=
8970 mp_free_node(mp, p,knot_node_size);
8971 link(s)=q; knil(q)=s;
8973 else { p=knil(s); q=s; };
8976 @ The |find_offset| procedure sets global variables |(cur_x,cur_y)| to the
8977 offset associated with the given direction |(x,y)|. If two different offsets
8978 apply, it chooses one of them.
8981 void mp_find_offset (MP mp,scaled x, scaled y, pointer h) {
8982 pointer p,q; /* consecutive knots */
8984 /* the transformation matrix for an elliptical pen */
8985 fraction xx,yy; /* untransformed offset for an elliptical pen */
8986 fraction d; /* a temporary register */
8987 if ( pen_is_elliptical(h) ) {
8988 @<Find the offset for |(x,y)| on the elliptical pen~|h|@>
8993 } while (!(mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)>=0));
8996 } while (!(mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)<=0));
8997 mp->cur_x=x_coord(p);
8998 mp->cur_y=y_coord(p);
9004 scaled cur_y; /* all-purpose return value registers */
9006 @ @<Find the offset for |(x,y)| on the elliptical pen~|h|@>=
9007 if ( (x==0) && (y==0) ) {
9008 mp->cur_x=x_coord(h); mp->cur_y=y_coord(h);
9010 @<Find the non-constant part of the transformation for |h|@>;
9011 while ( (abs(x)<fraction_half) && (abs(y)<fraction_half) ){
9014 @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the
9015 untransformed version of |(x,y)|@>;
9016 mp->cur_x=x_coord(h)+mp_take_fraction(mp, xx,wx)+mp_take_fraction(mp, yy,hx);
9017 mp->cur_y=y_coord(h)+mp_take_fraction(mp, xx,wy)+mp_take_fraction(mp, yy,hy);
9020 @ @<Find the non-constant part of the transformation for |h|@>=
9021 wx=left_x(h)-x_coord(h);
9022 wy=left_y(h)-y_coord(h);
9023 hx=right_x(h)-x_coord(h);
9024 hy=right_y(h)-y_coord(h)
9026 @ @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the...@>=
9027 yy=-(mp_take_fraction(mp, x,hy)+mp_take_fraction(mp, y,-hx));
9028 xx=mp_take_fraction(mp, x,-wy)+mp_take_fraction(mp, y,wx);
9029 d=mp_pyth_add(mp, xx,yy);
9031 xx=half(mp_make_fraction(mp, xx,d));
9032 yy=half(mp_make_fraction(mp, yy,d));
9035 @ Finding the bounding box of a pen is easy except if the pen is elliptical.
9036 But we can handle that case by just calling |find_offset| twice. The answer
9037 is stored in the global variables |minx|, |maxx|, |miny|, and |maxy|.
9040 void mp_pen_bbox (MP mp,pointer h) {
9041 pointer p; /* for scanning the knot list */
9042 if ( pen_is_elliptical(h) ) {
9043 @<Find the bounding box of an elliptical pen@>;
9045 minx=x_coord(h); maxx=minx;
9046 miny=y_coord(h); maxy=miny;
9049 if ( x_coord(p)<minx ) minx=x_coord(p);
9050 if ( y_coord(p)<miny ) miny=y_coord(p);
9051 if ( x_coord(p)>maxx ) maxx=x_coord(p);
9052 if ( y_coord(p)>maxy ) maxy=y_coord(p);
9058 @ @<Find the bounding box of an elliptical pen@>=
9060 mp_find_offset(mp, 0,fraction_one,h);
9062 minx=2*x_coord(h)-mp->cur_x;
9063 mp_find_offset(mp, -fraction_one,0,h);
9065 miny=2*y_coord(h)-mp->cur_y;
9068 @* \[21] Edge structures.
9069 Now we come to \MP's internal scheme for representing pictures.
9070 The representation is very different from \MF's edge structures
9071 because \MP\ pictures contain \ps\ graphics objects instead of pixel
9072 images. However, the basic idea is somewhat similar in that shapes
9073 are represented via their boundaries.
9075 The main purpose of edge structures is to keep track of graphical objects
9076 until it is time to translate them into \ps. Since \MP\ does not need to
9077 know anything about an edge structure other than how to translate it into
9078 \ps\ and how to find its bounding box, edge structures can be just linked
9079 lists of graphical objects. \MP\ has no easy way to determine whether
9080 two such objects overlap, but it suffices to draw the first one first and
9081 let the second one overwrite it if necessary.
9084 enum mp_graphical_object_code {
9085 @<Graphical object codes@>
9088 @ Let's consider the types of graphical objects one at a time.
9089 First of all, a filled contour is represented by a eight-word node. The first
9090 word contains |type| and |link| fields, and the next six words contain a
9091 pointer to a cyclic path and the value to use for \ps' \&{currentrgbcolor}
9092 parameter. If a pen is used for filling |pen_p|, |ljoin_val| and |miterlim_val|
9093 give the relevant information.
9095 @d path_p(A) link((A)+1)
9096 /* a pointer to the path that needs filling */
9097 @d pen_p(A) info((A)+1)
9098 /* a pointer to the pen to fill or stroke with */
9099 @d color_model(A) type((A)+2) /* the color model */
9100 @d obj_red_loc(A) ((A)+3) /* the first of three locations for the color */
9101 @d obj_cyan_loc obj_red_loc /* the first of four locations for the color */
9102 @d obj_grey_loc obj_red_loc /* the location for the color */
9103 @d red_val(A) mp->mem[(A)+3].sc
9104 /* the red component of the color in the range $0\ldots1$ */
9107 @d green_val(A) mp->mem[(A)+4].sc
9108 /* the green component of the color in the range $0\ldots1$ */
9109 @d magenta_val green_val
9110 @d blue_val(A) mp->mem[(A)+5].sc
9111 /* the blue component of the color in the range $0\ldots1$ */
9112 @d yellow_val blue_val
9113 @d black_val(A) mp->mem[(A)+6].sc
9114 /* the blue component of the color in the range $0\ldots1$ */
9115 @d ljoin_val(A) name_type((A)) /* the value of \&{linejoin} */
9116 @:mp_linejoin_}{\&{linejoin} primitive@>
9117 @d miterlim_val(A) mp->mem[(A)+7].sc /* the value of \&{miterlimit} */
9118 @:mp_miterlimit_}{\&{miterlimit} primitive@>
9119 @d obj_color_part(A) mp->mem[(A)+3-red_part].sc
9120 /* interpret an object pointer that has been offset by |red_part..blue_part| */
9121 @d pre_script(A) mp->mem[(A)+8].hh.lh
9122 @d post_script(A) mp->mem[(A)+8].hh.rh
9125 @ @<Graphical object codes@>=
9129 pointer mp_new_fill_node (MP mp,pointer p) {
9130 /* make a fill node for cyclic path |p| and color black */
9131 pointer t; /* the new node */
9132 t=mp_get_node(mp, fill_node_size);
9133 type(t)=mp_fill_code;
9135 pen_p(t)=null; /* |null| means don't use a pen */
9140 color_model(t)=mp_uninitialized_model;
9142 post_script(t)=null;
9143 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9147 @ @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>=
9148 if ( mp->internal[mp_linejoin]>unity ) ljoin_val(t)=2;
9149 else if ( mp->internal[mp_linejoin]>0 ) ljoin_val(t)=1;
9150 else ljoin_val(t)=0;
9151 if ( mp->internal[mp_miterlimit]<unity )
9152 miterlim_val(t)=unity;
9154 miterlim_val(t)=mp->internal[mp_miterlimit]
9156 @ A stroked path is represented by an eight-word node that is like a filled
9157 contour node except that it contains the current \&{linecap} value, a scale
9158 factor for the dash pattern, and a pointer that is non-null if the stroke
9159 is to be dashed. The purpose of the scale factor is to allow a picture to
9160 be transformed without touching the picture that |dash_p| points to.
9162 @d dash_p(A) link((A)+9)
9163 /* a pointer to the edge structure that gives the dash pattern */
9164 @d lcap_val(A) type((A)+9)
9165 /* the value of \&{linecap} */
9166 @:mp_linecap_}{\&{linecap} primitive@>
9167 @d dash_scale(A) mp->mem[(A)+10].sc /* dash lengths are scaled by this factor */
9168 @d stroked_node_size 11
9170 @ @<Graphical object codes@>=
9174 pointer mp_new_stroked_node (MP mp,pointer p) {
9175 /* make a stroked node for path |p| with |pen_p(p)| temporarily |null| */
9176 pointer t; /* the new node */
9177 t=mp_get_node(mp, stroked_node_size);
9178 type(t)=mp_stroked_code;
9179 path_p(t)=p; pen_p(t)=null;
9181 dash_scale(t)=unity;
9186 color_model(t)=mp_uninitialized_model;
9188 post_script(t)=null;
9189 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9190 if ( mp->internal[mp_linecap]>unity ) lcap_val(t)=2;
9191 else if ( mp->internal[mp_linecap]>0 ) lcap_val(t)=1;
9196 @ When a dashed line is computed in a transformed coordinate system, the dash
9197 lengths get scaled like the pen shape and we need to compensate for this. Since
9198 there is no unique scale factor for an arbitrary transformation, we use the
9199 the square root of the determinant. The properties of the determinant make it
9200 easier to maintain the |dash_scale|. The computation is fairly straight-forward
9201 except for the initialization of the scale factor |s|. The factor of 64 is
9202 needed because |square_rt| scales its result by $2^8$ while we need $2^{14}$
9203 to counteract the effect of |take_fraction|.
9205 @<Declare subroutines needed by |print_edges|@>=
9206 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) {
9207 scaled maxabs; /* $max(|a|,|b|,|c|,|d|)$ */
9208 integer s; /* amount by which the result of |square_rt| needs to be scaled */
9209 @<Initialize |maxabs|@>;
9211 while ( (maxabs<fraction_one) && (s>1) ){
9212 a+=a; b+=b; c+=c; d+=d;
9213 maxabs+=maxabs; s=halfp(s);
9215 return s*mp_square_rt(mp, abs(mp_take_fraction(mp, a,d)-mp_take_fraction(mp, b,c)));
9218 scaled mp_get_pen_scale (MP mp,pointer p) {
9219 return mp_sqrt_det(mp,
9220 left_x(p)-x_coord(p), right_x(p)-x_coord(p),
9221 left_y(p)-y_coord(p), right_y(p)-y_coord(p));
9224 @ @<Internal library ...@>=
9225 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) ;
9228 @ @<Initialize |maxabs|@>=
9230 if ( abs(b)>maxabs ) maxabs=abs(b);
9231 if ( abs(c)>maxabs ) maxabs=abs(c);
9232 if ( abs(d)>maxabs ) maxabs=abs(d)
9234 @ When a picture contains text, this is represented by a fourteen-word node
9235 where the color information and |type| and |link| fields are augmented by
9236 additional fields that describe the text and how it is transformed.
9237 The |path_p| and |pen_p| pointers are replaced by a number that identifies
9238 the font and a string number that gives the text to be displayed.
9239 The |width|, |height|, and |depth| fields
9240 give the dimensions of the text at its design size, and the remaining six
9241 words give a transformation to be applied to the text. The |new_text_node|
9242 function initializes everything to default values so that the text comes out
9243 black with its reference point at the origin.
9245 @d text_p(A) link((A)+1) /* a string pointer for the text to display */
9246 @d font_n(A) info((A)+1) /* the font number */
9247 @d width_val(A) mp->mem[(A)+7].sc /* unscaled width of the text */
9248 @d height_val(A) mp->mem[(A)+9].sc /* unscaled height of the text */
9249 @d depth_val(A) mp->mem[(A)+10].sc /* unscaled depth of the text */
9250 @d text_tx_loc(A) ((A)+11)
9251 /* the first of six locations for transformation parameters */
9252 @d tx_val(A) mp->mem[(A)+11].sc /* $x$ shift amount */
9253 @d ty_val(A) mp->mem[(A)+12].sc /* $y$ shift amount */
9254 @d txx_val(A) mp->mem[(A)+13].sc /* |txx| transformation parameter */
9255 @d txy_val(A) mp->mem[(A)+14].sc /* |txy| transformation parameter */
9256 @d tyx_val(A) mp->mem[(A)+15].sc /* |tyx| transformation parameter */
9257 @d tyy_val(A) mp->mem[(A)+16].sc /* |tyy| transformation parameter */
9258 @d text_trans_part(A) mp->mem[(A)+11-x_part].sc
9259 /* interpret a text node pointer that has been offset by |x_part..yy_part| */
9260 @d text_node_size 17
9262 @ @<Graphical object codes@>=
9265 @ @c @<Declare text measuring subroutines@>;
9266 pointer mp_new_text_node (MP mp,char *f,str_number s) {
9267 /* make a text node for font |f| and text string |s| */
9268 pointer t; /* the new node */
9269 t=mp_get_node(mp, text_node_size);
9270 type(t)=mp_text_code;
9272 font_n(t)=mp_find_font(mp, f); /* this identifies the font */
9277 color_model(t)=mp_uninitialized_model;
9279 post_script(t)=null;
9280 tx_val(t)=0; ty_val(t)=0;
9281 txx_val(t)=unity; txy_val(t)=0;
9282 tyx_val(t)=0; tyy_val(t)=unity;
9283 mp_set_text_box(mp, t); /* this finds the bounding box */
9287 @ The last two types of graphical objects that can occur in an edge structure
9288 are clipping paths and \&{setbounds} paths. These are slightly more difficult
9289 @:set_bounds_}{\&{setbounds} primitive@>
9290 to implement because we must keep track of exactly what is being clipped or
9291 bounded when pictures get merged together. For this reason, each clipping or
9292 \&{setbounds} operation is represented by a pair of nodes: first comes a
9293 two-word node whose |path_p| gives the relevant path, then there is the list
9294 of objects to clip or bound followed by a two-word node whose second word is
9297 Using at least two words for each graphical object node allows them all to be
9298 allocated and deallocated similarly with a global array |gr_object_size| to
9299 give the size in words for each object type.
9301 @d start_clip_size 2
9302 @d start_bounds_size 2
9303 @d stop_clip_size 2 /* the second word is not used here */
9304 @d stop_bounds_size 2 /* the second word is not used here */
9306 @d stop_type(A) ((A)+2)
9307 /* matching |type| for |start_clip_code| or |start_bounds_code| */
9308 @d has_color(A) (type((A))<mp_start_clip_code)
9309 /* does a graphical object have color fields? */
9310 @d has_pen(A) (type((A))<mp_text_code)
9311 /* does a graphical object have a |pen_p| field? */
9312 @d is_start_or_stop(A) (type((A))>=mp_start_clip_code)
9313 @d is_stop(A) (type((A))>=mp_stop_clip_code)
9315 @ @<Graphical object codes@>=
9316 mp_start_clip_code=4, /* |type| of a node that starts clipping */
9317 mp_start_bounds_code=5, /* |type| of a node that gives a \&{setbounds} path */
9318 mp_stop_clip_code=6, /* |type| of a node that stops clipping */
9319 mp_stop_bounds_code=7, /* |type| of a node that stops \&{setbounds} */
9323 pointer mp_new_bounds_node (MP mp,pointer p, small_number c) {
9324 /* make a node of type |c| where |p| is the clipping or \&{setbounds} path */
9325 pointer t; /* the new node */
9326 t=mp_get_node(mp, mp->gr_object_size[c]);
9332 @ We need an array to keep track of the sizes of graphical objects.
9335 small_number gr_object_size[mp_stop_bounds_code+1];
9338 mp->gr_object_size[mp_fill_code]=fill_node_size;
9339 mp->gr_object_size[mp_stroked_code]=stroked_node_size;
9340 mp->gr_object_size[mp_text_code]=text_node_size;
9341 mp->gr_object_size[mp_start_clip_code]=start_clip_size;
9342 mp->gr_object_size[mp_stop_clip_code]=stop_clip_size;
9343 mp->gr_object_size[mp_start_bounds_code]=start_bounds_size;
9344 mp->gr_object_size[mp_stop_bounds_code]=stop_bounds_size;
9346 @ All the essential information in an edge structure is encoded as a linked list
9347 of graphical objects as we have just seen, but it is helpful to add some
9348 redundant information. A single edge structure might be used as a dash pattern
9349 many times, and it would be nice to avoid scanning the same structure
9350 repeatedly. Thus, an edge structure known to be a suitable dash pattern
9351 has a header that gives a list of dashes in a sorted order designed for rapid
9352 translation into \ps.
9354 Each dash is represented by a three-word node containing the initial and final
9355 $x$~coordinates as well as the usual |link| field. The |link| fields points to
9356 the dash node with the next higher $x$-coordinates and the final link points
9357 to a special location called |null_dash|. (There should be no overlap between
9358 dashes). Since the $y$~coordinate of the dash pattern is needed to determine
9359 the period of repetition, this needs to be stored in the edge header along
9360 with a pointer to the list of dash nodes.
9362 @d start_x(A) mp->mem[(A)+1].sc /* the starting $x$~coordinate in a dash node */
9363 @d stop_x(A) mp->mem[(A)+2].sc /* the ending $x$~coordinate in a dash node */
9366 /* in an edge header this points to the first dash node */
9367 @d dash_y(A) mp->mem[(A)+1].sc /* $y$ value for the dash list in an edge header */
9369 @ It is also convenient for an edge header to contain the bounding
9370 box information needed by the \&{llcorner} and \&{urcorner} operators
9371 so that this does not have to be recomputed unnecessarily. This is done by
9372 adding fields for the $x$~and $y$ extremes as well as a pointer that indicates
9373 how far the bounding box computation has gotten. Thus if the user asks for
9374 the bounding box and then adds some more text to the picture before asking
9375 for more bounding box information, the second computation need only look at
9376 the additional text.
9378 When the bounding box has not been computed, the |bblast| pointer points
9379 to a dummy link at the head of the graphical object list while the |minx_val|
9380 and |miny_val| fields contain |el_gordo| and the |maxx_val| and |maxy_val|
9381 fields contain |-el_gordo|.
9383 Since the bounding box of pictures containing objects of type
9384 |mp_start_bounds_code| depends on the value of \&{truecorners}, the bounding box
9385 @:mp_true_corners_}{\&{truecorners} primitive@>
9386 data might not be valid for all values of this parameter. Hence, the |bbtype|
9387 field is needed to keep track of this.
9389 @d minx_val(A) mp->mem[(A)+2].sc
9390 @d miny_val(A) mp->mem[(A)+3].sc
9391 @d maxx_val(A) mp->mem[(A)+4].sc
9392 @d maxy_val(A) mp->mem[(A)+5].sc
9393 @d bblast(A) link((A)+6) /* last item considered in bounding box computation */
9394 @d bbtype(A) info((A)+6) /* tells how bounding box data depends on \&{truecorners} */
9395 @d dummy_loc(A) ((A)+7) /* where the object list begins in an edge header */
9397 /* |bbtype| value when bounding box data is valid for all \&{truecorners} values */
9399 /* |bbtype| value when bounding box data is for \&{truecorners}${}\le 0$ */
9401 /* |bbtype| value when bounding box data is for \&{truecorners}${}>0$ */
9404 void mp_init_bbox (MP mp,pointer h) {
9405 /* Initialize the bounding box information in edge structure |h| */
9406 bblast(h)=dummy_loc(h);
9407 bbtype(h)=no_bounds;
9408 minx_val(h)=el_gordo;
9409 miny_val(h)=el_gordo;
9410 maxx_val(h)=-el_gordo;
9411 maxy_val(h)=-el_gordo;
9414 @ The only other entries in an edge header are a reference count in the first
9415 word and a pointer to the tail of the object list in the last word.
9417 @d obj_tail(A) info((A)+7) /* points to the last entry in the object list */
9418 @d edge_header_size 8
9421 void mp_init_edges (MP mp,pointer h) {
9422 /* initialize an edge header to null values */
9423 dash_list(h)=null_dash;
9424 obj_tail(h)=dummy_loc(h);
9425 link(dummy_loc(h))=null;
9427 mp_init_bbox(mp, h);
9430 @ Here is how edge structures are deleted. The process can be recursive because
9431 of the need to dereference edge structures that are used as dash patterns.
9434 @d add_edge_ref(A) incr(ref_count(A))
9435 @d delete_edge_ref(A) {
9436 if ( ref_count((A))==null )
9437 mp_toss_edges(mp, A);
9442 @<Declare the recycling subroutines@>=
9443 void mp_flush_dash_list (MP mp,pointer h);
9444 pointer mp_toss_gr_object (MP mp,pointer p) ;
9445 void mp_toss_edges (MP mp,pointer h) ;
9447 @ @c void mp_toss_edges (MP mp,pointer h) {
9448 pointer p,q; /* pointers that scan the list being recycled */
9449 pointer r; /* an edge structure that object |p| refers to */
9450 mp_flush_dash_list(mp, h);
9451 q=link(dummy_loc(h));
9452 while ( (q!=null) ) {
9454 r=mp_toss_gr_object(mp, p);
9455 if ( r!=null ) delete_edge_ref(r);
9457 mp_free_node(mp, h,edge_header_size);
9459 void mp_flush_dash_list (MP mp,pointer h) {
9460 pointer p,q; /* pointers that scan the list being recycled */
9462 while ( q!=null_dash ) {
9464 mp_free_node(mp, p,dash_node_size);
9466 dash_list(h)=null_dash;
9468 pointer mp_toss_gr_object (MP mp,pointer p) {
9469 /* returns an edge structure that needs to be dereferenced */
9470 pointer e; /* the edge structure to return */
9472 @<Prepare to recycle graphical object |p|@>;
9473 mp_free_node(mp, p,mp->gr_object_size[type(p)]);
9477 @ @<Prepare to recycle graphical object |p|@>=
9480 mp_toss_knot_list(mp, path_p(p));
9481 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9482 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9483 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9485 case mp_stroked_code:
9486 mp_toss_knot_list(mp, path_p(p));
9487 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9488 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9489 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9493 delete_str_ref(text_p(p));
9494 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9495 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9497 case mp_start_clip_code:
9498 case mp_start_bounds_code:
9499 mp_toss_knot_list(mp, path_p(p));
9501 case mp_stop_clip_code:
9502 case mp_stop_bounds_code:
9504 } /* there are no other cases */
9506 @ If we use |add_edge_ref| to ``copy'' edge structures, the real copying needs
9507 to be done before making a significant change to an edge structure. Much of
9508 the work is done in a separate routine |copy_objects| that copies a list of
9509 graphical objects into a new edge header.
9511 @c @<Declare a function called |copy_objects|@>;
9512 pointer mp_private_edges (MP mp,pointer h) {
9513 /* make a private copy of the edge structure headed by |h| */
9514 pointer hh; /* the edge header for the new copy */
9515 pointer p,pp; /* pointers for copying the dash list */
9516 if ( ref_count(h)==null ) {
9520 hh=mp_copy_objects(mp, link(dummy_loc(h)),null);
9521 @<Copy the dash list from |h| to |hh|@>;
9522 @<Copy the bounding box information from |h| to |hh| and make |bblast(hh)|
9523 point into the new object list@>;
9528 @ Here we use the fact that |dash_list(hh)=link(hh)|.
9529 @^data structure assumptions@>
9531 @<Copy the dash list from |h| to |hh|@>=
9532 pp=hh; p=dash_list(h);
9533 while ( (p!=null_dash) ) {
9534 link(pp)=mp_get_node(mp, dash_node_size);
9536 start_x(pp)=start_x(p);
9537 stop_x(pp)=stop_x(p);
9541 dash_y(hh)=dash_y(h)
9544 @ |h| is an edge structure
9546 @d gr_start_x(A) (A)->start_x_field
9547 @d gr_stop_x(A) (A)->stop_x_field
9548 @d gr_dash_link(A) (A)->next_field
9550 @d gr_dash_list(A) (A)->list_field
9551 @d gr_dash_y(A) (A)->y_field
9554 struct mp_dash_list *mp_export_dashes (MP mp, pointer h) {
9555 struct mp_dash_list *dl;
9556 struct mp_dash_item *dh, *di;
9558 if (h==null || dash_list(h)==null_dash)
9561 dl = mp_xmalloc(mp,1,sizeof(struct mp_dash_list));
9562 gr_dash_list(dl) = NULL;
9563 gr_dash_y(dl) = dash_y(h);
9565 while (p != null_dash) {
9566 di=mp_xmalloc(mp,1,sizeof(struct mp_dash_item));
9567 gr_dash_link(di) = NULL;
9568 gr_start_x(di) = start_x(p);
9569 gr_stop_x(di) = stop_x(p);
9571 gr_dash_list(dl) = di;
9573 gr_dash_link(dh) = di;
9582 @ @<Copy the bounding box information from |h| to |hh|...@>=
9583 minx_val(hh)=minx_val(h);
9584 miny_val(hh)=miny_val(h);
9585 maxx_val(hh)=maxx_val(h);
9586 maxy_val(hh)=maxy_val(h);
9587 bbtype(hh)=bbtype(h);
9588 p=dummy_loc(h); pp=dummy_loc(hh);
9589 while ((p!=bblast(h)) ) {
9590 if ( p==null ) mp_confusion(mp, "bblast");
9591 @:this can't happen bblast}{\quad bblast@>
9592 p=link(p); pp=link(pp);
9596 @ Here is the promised routine for copying graphical objects into a new edge
9597 structure. It starts copying at object~|p| and stops just before object~|q|.
9598 If |q| is null, it copies the entire sublist headed at |p|. The resulting edge
9599 structure requires further initialization by |init_bbox|.
9601 @<Declare a function called |copy_objects|@>=
9602 pointer mp_copy_objects (MP mp, pointer p, pointer q) {
9603 pointer hh; /* the new edge header */
9604 pointer pp; /* the last newly copied object */
9605 small_number k; /* temporary register */
9606 hh=mp_get_node(mp, edge_header_size);
9607 dash_list(hh)=null_dash;
9611 @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>;
9618 @ @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>=
9619 { k=mp->gr_object_size[type(p)];
9620 link(pp)=mp_get_node(mp, k);
9622 while ( (k>0) ) { decr(k); mp->mem[pp+k]=mp->mem[p+k]; };
9623 @<Fix anything in graphical object |pp| that should differ from the
9624 corresponding field in |p|@>;
9628 @ @<Fix anything in graphical object |pp| that should differ from the...@>=
9630 case mp_start_clip_code:
9631 case mp_start_bounds_code:
9632 path_p(pp)=mp_copy_path(mp, path_p(p));
9635 path_p(pp)=mp_copy_path(mp, path_p(p));
9636 if ( pen_p(p)!=null ) pen_p(pp)=copy_pen(pen_p(p));
9638 case mp_stroked_code:
9639 path_p(pp)=mp_copy_path(mp, path_p(p));
9640 pen_p(pp)=copy_pen(pen_p(p));
9641 if ( dash_p(p)!=null ) add_edge_ref(dash_p(pp));
9644 add_str_ref(text_p(pp));
9646 case mp_stop_clip_code:
9647 case mp_stop_bounds_code:
9649 } /* there are no other cases */
9651 @ Here is one way to find an acceptable value for the second argument to
9652 |copy_objects|. Given a non-null graphical object list, |skip_1component|
9653 skips past one picture component, where a ``picture component'' is a single
9654 graphical object, or a start bounds or start clip object and everything up
9655 through the matching stop bounds or stop clip object. The macro version avoids
9656 procedure call overhead and error handling: |skip_component(p)(e)| advances |p|
9657 unless |p| points to a stop bounds or stop clip node, in which case it executes
9660 @d skip_component(A)
9661 if ( ! is_start_or_stop((A)) ) (A)=link((A));
9662 else if ( ! is_stop((A)) ) (A)=mp_skip_1component(mp, (A));
9666 pointer mp_skip_1component (MP mp,pointer p) {
9667 integer lev; /* current nesting level */
9670 if ( is_start_or_stop(p) ) {
9671 if ( is_stop(p) ) decr(lev); else incr(lev);
9678 @ Here is a diagnostic routine for printing an edge structure in symbolic form.
9680 @<Declare subroutines for printing expressions@>=
9681 @<Declare subroutines needed by |print_edges|@>;
9682 void mp_print_edges (MP mp,pointer h, char *s, boolean nuline) {
9683 pointer p; /* a graphical object to be printed */
9684 pointer hh,pp; /* temporary pointers */
9685 scaled scf; /* a scale factor for the dash pattern */
9686 boolean ok_to_dash; /* |false| for polygonal pen strokes */
9687 mp_print_diagnostic(mp, "Edge structure",s,nuline);
9689 while ( link(p)!=null ) {
9693 @<Cases for printing graphical object node |p|@>;
9695 mp_print(mp, "[unknown object type!]");
9699 mp_print_nl(mp, "End edges");
9700 if ( p!=obj_tail(h) ) mp_print(mp, "?");
9702 mp_end_diagnostic(mp, true);
9705 @ @<Cases for printing graphical object node |p|@>=
9707 mp_print(mp, "Filled contour ");
9708 mp_print_obj_color(mp, p);
9709 mp_print_char(mp, ':'); mp_print_ln(mp);
9710 mp_pr_path(mp, path_p(p)); mp_print_ln(mp);
9711 if ( (pen_p(p)!=null) ) {
9712 @<Print join type for graphical object |p|@>;
9713 mp_print(mp, " with pen"); mp_print_ln(mp);
9714 mp_pr_pen(mp, pen_p(p));
9718 @ @<Print join type for graphical object |p|@>=
9719 switch (ljoin_val(p)) {
9721 mp_print(mp, "mitered joins limited ");
9722 mp_print_scaled(mp, miterlim_val(p));
9725 mp_print(mp, "round joins");
9728 mp_print(mp, "beveled joins");
9731 mp_print(mp, "?? joins");
9736 @ For stroked nodes, we need to print |lcap_val(p)| as well.
9738 @<Print join and cap types for stroked node |p|@>=
9739 switch (lcap_val(p)) {
9740 case 0:mp_print(mp, "butt"); break;
9741 case 1:mp_print(mp, "round"); break;
9742 case 2:mp_print(mp, "square"); break;
9743 default: mp_print(mp, "??"); break;
9746 mp_print(mp, " ends, ");
9747 @<Print join type for graphical object |p|@>
9749 @ Here is a routine that prints the color of a graphical object if it isn't
9750 black (the default color).
9752 @<Declare subroutines needed by |print_edges|@>=
9753 @<Declare a procedure called |print_compact_node|@>;
9754 void mp_print_obj_color (MP mp,pointer p) {
9755 if ( color_model(p)==mp_grey_model ) {
9756 if ( grey_val(p)>0 ) {
9757 mp_print(mp, "greyed ");
9758 mp_print_compact_node(mp, obj_grey_loc(p),1);
9760 } else if ( color_model(p)==mp_cmyk_model ) {
9761 if ( (cyan_val(p)>0) || (magenta_val(p)>0) ||
9762 (yellow_val(p)>0) || (black_val(p)>0) ) {
9763 mp_print(mp, "processcolored ");
9764 mp_print_compact_node(mp, obj_cyan_loc(p),4);
9766 } else if ( color_model(p)==mp_rgb_model ) {
9767 if ( (red_val(p)>0) || (green_val(p)>0) || (blue_val(p)>0) ) {
9768 mp_print(mp, "colored ");
9769 mp_print_compact_node(mp, obj_red_loc(p),3);
9774 @ We also need a procedure for printing consecutive scaled values as if they
9775 were a known big node.
9777 @<Declare a procedure called |print_compact_node|@>=
9778 void mp_print_compact_node (MP mp,pointer p, small_number k) {
9779 pointer q; /* last location to print */
9781 mp_print_char(mp, '(');
9783 mp_print_scaled(mp, mp->mem[p].sc);
9784 if ( p<q ) mp_print_char(mp, ',');
9787 mp_print_char(mp, ')');
9790 @ @<Cases for printing graphical object node |p|@>=
9791 case mp_stroked_code:
9792 mp_print(mp, "Filled pen stroke ");
9793 mp_print_obj_color(mp, p);
9794 mp_print_char(mp, ':'); mp_print_ln(mp);
9795 mp_pr_path(mp, path_p(p));
9796 if ( dash_p(p)!=null ) {
9797 mp_print_nl(mp, "dashed (");
9798 @<Finish printing the dash pattern that |p| refers to@>;
9801 @<Print join and cap types for stroked node |p|@>;
9802 mp_print(mp, " with pen"); mp_print_ln(mp);
9803 if ( pen_p(p)==null ) mp_print(mp, "???"); /* shouldn't happen */
9805 else mp_pr_pen(mp, pen_p(p));
9808 @ Normally, the |dash_list| field in an edge header is set to |null_dash|
9809 when it is not known to define a suitable dash pattern. This is disallowed
9810 here because the |dash_p| field should never point to such an edge header.
9811 Note that memory is allocated for |start_x(null_dash)| and we are free to
9812 give it any convenient value.
9814 @<Finish printing the dash pattern that |p| refers to@>=
9815 ok_to_dash=pen_is_elliptical(pen_p(p));
9816 if ( ! ok_to_dash ) scf=unity; else scf=dash_scale(p);
9819 if ( (pp==null_dash) || (dash_y(hh)<0) ) {
9820 mp_print(mp, " ??");
9821 } else { start_x(null_dash)=start_x(pp)+dash_y(hh);
9822 while ( pp!=null_dash ) {
9823 mp_print(mp, "on ");
9824 mp_print_scaled(mp, mp_take_scaled(mp, stop_x(pp)-start_x(pp),scf));
9825 mp_print(mp, " off ");
9826 mp_print_scaled(mp, mp_take_scaled(mp, start_x(link(pp))-stop_x(pp),scf));
9828 if ( pp!=null_dash ) mp_print_char(mp, ' ');
9830 mp_print(mp, ") shifted ");
9831 mp_print_scaled(mp, -mp_take_scaled(mp, mp_dash_offset(mp, hh),scf));
9832 if ( ! ok_to_dash || (dash_y(hh)==0) ) mp_print(mp, " (this will be ignored)");
9835 @ @<Declare subroutines needed by |print_edges|@>=
9836 scaled mp_dash_offset (MP mp,pointer h) {
9837 scaled x; /* the answer */
9838 if (dash_list(h)==null_dash || dash_y(h)<0) mp_confusion(mp, "dash0");
9839 @:this can't happen dash0}{\quad dash0@>
9840 if ( dash_y(h)==0 ) {
9843 x=-(start_x(dash_list(h)) % dash_y(h));
9844 if ( x<0 ) x=x+dash_y(h);
9849 @ @<Cases for printing graphical object node |p|@>=
9851 mp_print_char(mp, '"'); mp_print_str(mp,text_p(p));
9852 mp_print(mp, "\" infont \""); mp_print(mp, mp->font_name[font_n(p)]);
9853 mp_print_char(mp, '"'); mp_print_ln(mp);
9854 mp_print_obj_color(mp, p);
9855 mp_print(mp, "transformed ");
9856 mp_print_compact_node(mp, text_tx_loc(p),6);
9859 @ @<Cases for printing graphical object node |p|@>=
9860 case mp_start_clip_code:
9861 mp_print(mp, "clipping path:");
9863 mp_pr_path(mp, path_p(p));
9865 case mp_stop_clip_code:
9866 mp_print(mp, "stop clipping");
9869 @ @<Cases for printing graphical object node |p|@>=
9870 case mp_start_bounds_code:
9871 mp_print(mp, "setbounds path:");
9873 mp_pr_path(mp, path_p(p));
9875 case mp_stop_bounds_code:
9876 mp_print(mp, "end of setbounds");
9879 @ To initialize the |dash_list| field in an edge header~|h|, we need a
9880 subroutine that scans an edge structure and tries to interpret it as a dash
9881 pattern. This can only be done when there are no filled regions or clipping
9882 paths and all the pen strokes have the same color. The first step is to let
9883 $y_0$ be the initial $y$~coordinate of the first pen stroke. Then we implicitly
9884 project all the pen stroke paths onto the line $y=y_0$ and require that there
9885 be no retracing. If the resulting paths cover a range of $x$~coordinates of
9886 length $\Delta x$, we set |dash_y(h)| to the length of the dash pattern by
9887 finding the maximum of $\Delta x$ and the absolute value of~$y_0$.
9889 @c @<Declare a procedure called |x_retrace_error|@>;
9890 pointer mp_make_dashes (MP mp,pointer h) { /* returns |h| or |null| */
9891 pointer p; /* this scans the stroked nodes in the object list */
9892 pointer p0; /* if not |null| this points to the first stroked node */
9893 pointer pp,qq,rr; /* pointers into |path_p(p)| */
9894 pointer d,dd; /* pointers used to create the dash list */
9895 @<Other local variables in |make_dashes|@>;
9896 scaled y0=0; /* the initial $y$ coordinate */
9897 if ( dash_list(h)!=null_dash )
9900 p=link(dummy_loc(h));
9902 if ( type(p)!=mp_stroked_code ) {
9903 @<Compain that the edge structure contains a node of the wrong type
9904 and |goto not_found|@>;
9907 if ( p0==null ){ p0=p; y0=y_coord(pp); };
9908 @<Make |d| point to a new dash node created from stroke |p| and path |pp|
9909 or |goto not_found| if there is an error@>;
9910 @<Insert |d| into the dash list and |goto not_found| if there is an error@>;
9913 if ( dash_list(h)==null_dash )
9914 goto NOT_FOUND; /* No error message */
9915 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>;
9916 @<Set |dash_y(h)| and merge the first and last dashes if necessary@>;
9919 @<Flush the dash list, recycle |h| and return |null|@>;
9922 @ @<Compain that the edge structure contains a node of the wrong type...@>=
9924 print_err("Picture is too complicated to use as a dash pattern");
9925 help3("When you say `dashed p', picture p should not contain any")
9926 ("text, filled regions, or clipping paths. This time it did")
9927 ("so I'll just make it a solid line instead.");
9928 mp_put_get_error(mp);
9932 @ A similar error occurs when monotonicity fails.
9934 @<Declare a procedure called |x_retrace_error|@>=
9935 void mp_x_retrace_error (MP mp) {
9936 print_err("Picture is too complicated to use as a dash pattern");
9937 help3("When you say `dashed p', every path in p should be monotone")
9938 ("in x and there must be no overlapping. This failed")
9939 ("so I'll just make it a solid line instead.");
9940 mp_put_get_error(mp);
9943 @ We stash |p| in |info(d)| if |dash_p(p)<>0| so that subsequent processing can
9944 handle the case where the pen stroke |p| is itself dashed.
9946 @<Make |d| point to a new dash node created from stroke |p| and path...@>=
9947 @<Make sure |p| and |p0| are the same color and |goto not_found| if there is
9950 if ( link(pp)!=pp ) {
9953 @<Check for retracing between knots |qq| and |rr| and |goto not_found|
9954 if there is a problem@>;
9955 } while (right_type(rr)!=mp_endpoint);
9957 d=mp_get_node(mp, dash_node_size);
9958 if ( dash_p(p)==0 ) info(d)=0; else info(d)=p;
9959 if ( x_coord(pp)<x_coord(rr) ) {
9960 start_x(d)=x_coord(pp);
9961 stop_x(d)=x_coord(rr);
9963 start_x(d)=x_coord(rr);
9964 stop_x(d)=x_coord(pp);
9967 @ We also need to check for the case where the segment from |qq| to |rr| is
9968 monotone in $x$ but is reversed relative to the path from |pp| to |qq|.
9970 @<Check for retracing between knots |qq| and |rr| and |goto not_found|...@>=
9975 if ( (x0>x1) || (x1>x2) || (x2>x3) ) {
9976 if ( (x0<x1) || (x1<x2) || (x2<x3) ) {
9977 if ( mp_ab_vs_cd(mp, x2-x1,x2-x1,x1-x0,x3-x2)>0 ) {
9978 mp_x_retrace_error(mp); goto NOT_FOUND;
9982 if ( (x_coord(pp)>x0) || (x0>x3) ) {
9983 if ( (x_coord(pp)<x0) || (x0<x3) ) {
9984 mp_x_retrace_error(mp); goto NOT_FOUND;
9988 @ @<Other local variables in |make_dashes|@>=
9989 scaled x0,x1,x2,x3; /* $x$ coordinates of the segment from |qq| to |rr| */
9991 @ @<Make sure |p| and |p0| are the same color and |goto not_found|...@>=
9992 if ( (red_val(p)!=red_val(p0)) || (black_val(p)!=black_val(p0)) ||
9993 (green_val(p)!=green_val(p0)) || (blue_val(p)!=blue_val(p0)) ) {
9994 print_err("Picture is too complicated to use as a dash pattern");
9995 help3("When you say `dashed p', everything in picture p should")
9996 ("be the same color. I can\'t handle your color changes")
9997 ("so I'll just make it a solid line instead.");
9998 mp_put_get_error(mp);
10002 @ @<Insert |d| into the dash list and |goto not_found| if there is an error@>=
10003 start_x(null_dash)=stop_x(d);
10004 dd=h; /* this makes |link(dd)=dash_list(h)| */
10005 while ( start_x(link(dd))<stop_x(d) )
10008 if ( (stop_x(dd)>start_x(d)) )
10009 { mp_x_retrace_error(mp); goto NOT_FOUND; };
10014 @ @<Set |dash_y(h)| and merge the first and last dashes if necessary@>=
10016 while ( (link(d)!=null_dash) )
10019 dash_y(h)=stop_x(d)-start_x(dd);
10020 if ( abs(y0)>dash_y(h) ) {
10022 } else if ( d!=dd ) {
10023 dash_list(h)=link(dd);
10024 stop_x(d)=stop_x(dd)+dash_y(h);
10025 mp_free_node(mp, dd,dash_node_size);
10028 @ We get here when the argument is a null picture or when there is an error.
10029 Recovering from an error involves making |dash_list(h)| empty to indicate
10030 that |h| is not known to be a valid dash pattern. We also dereference |h|
10031 since it is not being used for the return value.
10033 @<Flush the dash list, recycle |h| and return |null|@>=
10034 mp_flush_dash_list(mp, h);
10035 delete_edge_ref(h);
10038 @ Having carefully saved the dashed stroked nodes in the
10039 corresponding dash nodes, we must be prepared to break up these dashes into
10042 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>=
10043 d=h; /* now |link(d)=dash_list(h)| */
10044 while ( link(d)!=null_dash ) {
10050 hsf=dash_scale(ds);
10051 if ( (hh==null) ) mp_confusion(mp, "dash1");
10052 @:this can't happen dash0}{\quad dash1@>
10053 if ( dash_y(hh)==0 ) {
10056 if ( dash_list(hh)==null ) mp_confusion(mp, "dash1");
10057 @:this can't happen dash0}{\quad dash1@>
10058 @<Replace |link(d)| by a dashed version as determined by edge header
10059 |hh| and scale factor |ds|@>;
10064 @ @<Other local variables in |make_dashes|@>=
10065 pointer dln; /* |link(d)| */
10066 pointer hh; /* an edge header that tells how to break up |dln| */
10067 scaled hsf; /* the dash pattern from |hh| gets scaled by this */
10068 pointer ds; /* the stroked node from which |hh| and |hsf| are derived */
10069 scaled xoff; /* added to $x$ values in |dash_list(hh)| to match |dln| */
10071 @ @<Replace |link(d)| by a dashed version as determined by edge header...@>=
10074 xoff=start_x(dln)-mp_take_scaled(mp, hsf,start_x(dd))-
10075 mp_take_scaled(mp, hsf,mp_dash_offset(mp, hh));
10076 start_x(null_dash)=mp_take_scaled(mp, hsf,start_x(dd))
10077 +mp_take_scaled(mp, hsf,dash_y(hh));
10078 stop_x(null_dash)=start_x(null_dash);
10079 @<Advance |dd| until finding the first dash that overlaps |dln| when
10080 offset by |xoff|@>;
10081 while ( start_x(dln)<=stop_x(dln) ) {
10082 @<If |dd| has `fallen off the end', back up to the beginning and fix |xoff|@>;
10083 @<Insert a dash between |d| and |dln| for the overlap with the offset version
10086 start_x(dln)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10089 mp_free_node(mp, dln,dash_node_size)
10091 @ The name of this module is a bit of a lie because we actually just find the
10092 first |dd| where |take_scaled (hsf, stop_x(dd))| is large enough to make an
10093 overlap possible. It could be that the unoffset version of dash |dln| falls
10094 in the gap between |dd| and its predecessor.
10096 @<Advance |dd| until finding the first dash that overlaps |dln| when...@>=
10097 while ( xoff+mp_take_scaled(mp, hsf,stop_x(dd))<start_x(dln) ) {
10101 @ @<If |dd| has `fallen off the end', back up to the beginning and fix...@>=
10102 if ( dd==null_dash ) {
10104 xoff=xoff+mp_take_scaled(mp, hsf,dash_y(hh));
10107 @ At this point we already know that
10108 |start_x(dln)<=xoff+take_scaled(hsf,stop_x(dd))|.
10110 @<Insert a dash between |d| and |dln| for the overlap with the offset...@>=
10111 if ( (xoff+mp_take_scaled(mp, hsf,start_x(dd)))<=stop_x(dln) ) {
10112 link(d)=mp_get_node(mp, dash_node_size);
10115 if ( start_x(dln)>(xoff+mp_take_scaled(mp, hsf,start_x(dd))))
10116 start_x(d)=start_x(dln);
10118 start_x(d)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10119 if ( stop_x(dln)<(xoff+mp_take_scaled(mp, hsf,stop_x(dd))))
10120 stop_x(d)=stop_x(dln);
10122 stop_x(d)=xoff+mp_take_scaled(mp, hsf,stop_x(dd));
10125 @ The next major task is to update the bounding box information in an edge
10126 header~|h|. This is done via a procedure |adjust_bbox| that enlarges an edge
10127 header's bounding box to accommodate the box computed by |path_bbox| or
10128 |pen_bbox|. (This is stored in global variables |minx|, |miny|, |maxx|, and
10131 @c void mp_adjust_bbox (MP mp,pointer h) {
10132 if ( minx<minx_val(h) ) minx_val(h)=minx;
10133 if ( miny<miny_val(h) ) miny_val(h)=miny;
10134 if ( maxx>maxx_val(h) ) maxx_val(h)=maxx;
10135 if ( maxy>maxy_val(h) ) maxy_val(h)=maxy;
10138 @ Here is a special routine for updating the bounding box information in
10139 edge header~|h| to account for the squared-off ends of a non-cyclic path~|p|
10140 that is to be stroked with the pen~|pp|.
10142 @c void mp_box_ends (MP mp, pointer p, pointer pp, pointer h) {
10143 pointer q; /* a knot node adjacent to knot |p| */
10144 fraction dx,dy; /* a unit vector in the direction out of the path at~|p| */
10145 scaled d; /* a factor for adjusting the length of |(dx,dy)| */
10146 scaled z; /* a coordinate being tested against the bounding box */
10147 scaled xx,yy; /* the extreme pen vertex in the |(dx,dy)| direction */
10148 integer i; /* a loop counter */
10149 if ( right_type(p)!=mp_endpoint ) {
10152 @<Make |(dx,dy)| the final direction for the path segment from
10153 |q| to~|p|; set~|d|@>;
10154 d=mp_pyth_add(mp, dx,dy);
10156 @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>;
10157 for (i=1;i<= 2;i++) {
10158 @<Use |(dx,dy)| to generate a vertex of the square end cap and
10159 update the bounding box to accommodate it@>;
10163 if ( right_type(p)==mp_endpoint ) {
10166 @<Advance |p| to the end of the path and make |q| the previous knot@>;
10172 @ @<Make |(dx,dy)| the final direction for the path segment from...@>=
10173 if ( q==link(p) ) {
10174 dx=x_coord(p)-right_x(p);
10175 dy=y_coord(p)-right_y(p);
10176 if ( (dx==0)&&(dy==0) ) {
10177 dx=x_coord(p)-left_x(q);
10178 dy=y_coord(p)-left_y(q);
10181 dx=x_coord(p)-left_x(p);
10182 dy=y_coord(p)-left_y(p);
10183 if ( (dx==0)&&(dy==0) ) {
10184 dx=x_coord(p)-right_x(q);
10185 dy=y_coord(p)-right_y(q);
10188 dx=x_coord(p)-x_coord(q);
10189 dy=y_coord(p)-y_coord(q)
10191 @ @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>=
10192 dx=mp_make_fraction(mp, dx,d);
10193 dy=mp_make_fraction(mp, dy,d);
10194 mp_find_offset(mp, -dy,dx,pp);
10195 xx=mp->cur_x; yy=mp->cur_y
10197 @ @<Use |(dx,dy)| to generate a vertex of the square end cap and...@>=
10198 mp_find_offset(mp, dx,dy,pp);
10199 d=mp_take_fraction(mp, xx-mp->cur_x,dx)+mp_take_fraction(mp, yy-mp->cur_y,dy);
10200 if ( ((d<0)&&(i==1)) || ((d>0)&&(i==2)))
10201 mp_confusion(mp, "box_ends");
10202 @:this can't happen box ends}{\quad\\{box\_ends}@>
10203 z=x_coord(p)+mp->cur_x+mp_take_fraction(mp, d,dx);
10204 if ( z<minx_val(h) ) minx_val(h)=z;
10205 if ( z>maxx_val(h) ) maxx_val(h)=z;
10206 z=y_coord(p)+mp->cur_y+mp_take_fraction(mp, d,dy);
10207 if ( z<miny_val(h) ) miny_val(h)=z;
10208 if ( z>maxy_val(h) ) maxy_val(h)=z
10210 @ @<Advance |p| to the end of the path and make |q| the previous knot@>=
10214 } while (right_type(p)!=mp_endpoint)
10216 @ The major difficulty in finding the bounding box of an edge structure is the
10217 effect of clipping paths. We treat them conservatively by only clipping to the
10218 clipping path's bounding box, but this still
10219 requires recursive calls to |set_bbox| in order to find the bounding box of
10221 the objects to be clipped. Such calls are distinguished by the fact that the
10222 boolean parameter |top_level| is false.
10224 @c void mp_set_bbox (MP mp,pointer h, boolean top_level) {
10225 pointer p; /* a graphical object being considered */
10226 scaled sminx,sminy,smaxx,smaxy;
10227 /* for saving the bounding box during recursive calls */
10228 scaled x0,x1,y0,y1; /* temporary registers */
10229 integer lev; /* nesting level for |mp_start_bounds_code| nodes */
10230 @<Wipe out any existing bounding box information if |bbtype(h)| is
10231 incompatible with |internal[mp_true_corners]|@>;
10232 while ( link(bblast(h))!=null ) {
10236 case mp_stop_clip_code:
10237 if ( top_level ) mp_confusion(mp, "bbox"); else return;
10238 @:this can't happen bbox}{\quad bbox@>
10240 @<Other cases for updating the bounding box based on the type of object |p|@>;
10241 } /* all cases are enumerated above */
10243 if ( ! top_level ) mp_confusion(mp, "bbox");
10246 @ @<Internal library declarations@>=
10247 void mp_set_bbox (MP mp,pointer h, boolean top_level);
10249 @ @<Wipe out any existing bounding box information if |bbtype(h)| is...@>=
10250 switch (bbtype(h)) {
10254 if ( mp->internal[mp_true_corners]>0 ) mp_init_bbox(mp, h);
10257 if ( mp->internal[mp_true_corners]<=0 ) mp_init_bbox(mp, h);
10259 } /* there are no other cases */
10261 @ @<Other cases for updating the bounding box...@>=
10263 mp_path_bbox(mp, path_p(p));
10264 if ( pen_p(p)!=null ) {
10267 mp_pen_bbox(mp, pen_p(p));
10273 mp_adjust_bbox(mp, h);
10276 @ @<Other cases for updating the bounding box...@>=
10277 case mp_start_bounds_code:
10278 if ( mp->internal[mp_true_corners]>0 ) {
10279 bbtype(h)=bounds_unset;
10281 bbtype(h)=bounds_set;
10282 mp_path_bbox(mp, path_p(p));
10283 mp_adjust_bbox(mp, h);
10284 @<Scan to the matching |mp_stop_bounds_code| node and update |p| and
10288 case mp_stop_bounds_code:
10289 if ( mp->internal[mp_true_corners]<=0 ) mp_confusion(mp, "bbox2");
10290 @:this can't happen bbox2}{\quad bbox2@>
10293 @ @<Scan to the matching |mp_stop_bounds_code| node and update |p| and...@>=
10296 if ( link(p)==null ) mp_confusion(mp, "bbox2");
10297 @:this can't happen bbox2}{\quad bbox2@>
10299 if ( type(p)==mp_start_bounds_code ) incr(lev);
10300 else if ( type(p)==mp_stop_bounds_code ) decr(lev);
10304 @ It saves a lot of grief here to be slightly conservative and not account for
10305 omitted parts of dashed lines. We also don't worry about the material omitted
10306 when using butt end caps. The basic computation is for round end caps and
10307 |box_ends| augments it for square end caps.
10309 @<Other cases for updating the bounding box...@>=
10310 case mp_stroked_code:
10311 mp_path_bbox(mp, path_p(p));
10314 mp_pen_bbox(mp, pen_p(p));
10319 mp_adjust_bbox(mp, h);
10320 if ( (left_type(path_p(p))==mp_endpoint)&&(lcap_val(p)==2) )
10321 mp_box_ends(mp, path_p(p), pen_p(p), h);
10324 @ The height width and depth information stored in a text node determines a
10325 rectangle that needs to be transformed according to the transformation
10326 parameters stored in the text node.
10328 @<Other cases for updating the bounding box...@>=
10330 x1=mp_take_scaled(mp, txx_val(p),width_val(p));
10331 y0=mp_take_scaled(mp, txy_val(p),-depth_val(p));
10332 y1=mp_take_scaled(mp, txy_val(p),height_val(p));
10335 if ( y0<y1 ) { minx=minx+y0; maxx=maxx+y1; }
10336 else { minx=minx+y1; maxx=maxx+y0; }
10337 if ( x1<0 ) minx=minx+x1; else maxx=maxx+x1;
10338 x1=mp_take_scaled(mp, tyx_val(p),width_val(p));
10339 y0=mp_take_scaled(mp, tyy_val(p),-depth_val(p));
10340 y1=mp_take_scaled(mp, tyy_val(p),height_val(p));
10343 if ( y0<y1 ) { miny=miny+y0; maxy=maxy+y1; }
10344 else { miny=miny+y1; maxy=maxy+y0; }
10345 if ( x1<0 ) miny=miny+x1; else maxy=maxy+x1;
10346 mp_adjust_bbox(mp, h);
10349 @ This case involves a recursive call that advances |bblast(h)| to the node of
10350 type |mp_stop_clip_code| that matches |p|.
10352 @<Other cases for updating the bounding box...@>=
10353 case mp_start_clip_code:
10354 mp_path_bbox(mp, path_p(p));
10357 sminx=minx_val(h); sminy=miny_val(h);
10358 smaxx=maxx_val(h); smaxy=maxy_val(h);
10359 @<Reinitialize the bounding box in header |h| and call |set_bbox| recursively
10360 starting at |link(p)|@>;
10361 @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,
10363 minx=sminx; miny=sminy;
10364 maxx=smaxx; maxy=smaxy;
10365 mp_adjust_bbox(mp, h);
10368 @ @<Reinitialize the bounding box in header |h| and call |set_bbox|...@>=
10369 minx_val(h)=el_gordo;
10370 miny_val(h)=el_gordo;
10371 maxx_val(h)=-el_gordo;
10372 maxy_val(h)=-el_gordo;
10373 mp_set_bbox(mp, h,false)
10375 @ @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,...@>=
10376 if ( minx_val(h)<x0 ) minx_val(h)=x0;
10377 if ( miny_val(h)<y0 ) miny_val(h)=y0;
10378 if ( maxx_val(h)>x1 ) maxx_val(h)=x1;
10379 if ( maxy_val(h)>y1 ) maxy_val(h)=y1
10381 @* \[22] Finding an envelope.
10382 When \MP\ has a path and a polygonal pen, it needs to express the desired
10383 shape in terms of things \ps\ can understand. The present task is to compute
10384 a new path that describes the region to be filled. It is convenient to
10385 define this as a two step process where the first step is determining what
10386 offset to use for each segment of the path.
10388 @ Given a pointer |c| to a cyclic path,
10389 and a pointer~|h| to the first knot of a pen polygon,
10390 the |offset_prep| routine changes the path into cubics that are
10391 associated with particular pen offsets. Thus if the cubic between |p|
10392 and~|q| is associated with the |k|th offset and the cubic between |q| and~|r|
10393 has offset |l| then |info(q)=zero_off+l-k|. (The constant |zero_off| is added
10394 to because |l-k| could be negative.)
10396 After overwriting the type information with offset differences, we no longer
10397 have a true path so we refer to the knot list returned by |offset_prep| as an
10400 Since an envelope spec only determines relative changes in pen offsets,
10401 |offset_prep| sets a global variable |spec_offset| to the relative change from
10402 |h| to the first offset.
10404 @d zero_off 16384 /* added to offset changes to make them positive */
10407 integer spec_offset; /* number of pen edges between |h| and the initial offset */
10409 @ @c @<Declare subroutines needed by |offset_prep|@>;
10410 pointer mp_offset_prep (MP mp,pointer c, pointer h) {
10411 halfword n; /* the number of vertices in the pen polygon */
10412 pointer p,q,q0,r,w, ww; /* for list manipulation */
10413 integer k_needed; /* amount to be added to |info(p)| when it is computed */
10414 pointer w0; /* a pointer to pen offset to use just before |p| */
10415 scaled dxin,dyin; /* the direction into knot |p| */
10416 integer turn_amt; /* change in pen offsets for the current cubic */
10417 @<Other local variables for |offset_prep|@>;
10419 @<Initialize the pen size~|n|@>;
10420 @<Initialize the incoming direction and pen offset at |c|@>;
10424 @<Split the cubic between |p| and |q|, if necessary, into cubics
10425 associated with single offsets, after which |q| should
10426 point to the end of the final such cubic@>;
10428 @<Advance |p| to node |q|, removing any ``dead'' cubics that
10429 might have been introduced by the splitting process@>;
10431 @<Fix the offset change in |info(c)| and set |c| to the return value of
10436 @ We shall want to keep track of where certain knots on the cyclic path
10437 wind up in the envelope spec. It doesn't suffice just to keep pointers to
10438 knot nodes because some nodes are deleted while removing dead cubics. Thus
10439 |offset_prep| updates the following pointers
10443 pointer spec_p2; /* pointers to distinguished knots */
10446 mp->spec_p1=null; mp->spec_p2=null;
10448 @ @<Initialize the pen size~|n|@>=
10455 @ Since the true incoming direction isn't known yet, we just pick a direction
10456 consistent with the pen offset~|h|. If this is wrong, it can be corrected
10459 @<Initialize the incoming direction and pen offset at |c|@>=
10460 dxin=x_coord(link(h))-x_coord(knil(h));
10461 dyin=y_coord(link(h))-y_coord(knil(h));
10462 if ( (dxin==0)&&(dyin==0) ) {
10463 dxin=y_coord(knil(h))-y_coord(h);
10464 dyin=x_coord(h)-x_coord(knil(h));
10468 @ We must be careful not to remove the only cubic in a cycle.
10470 But we must also be careful for another reason. If the user-supplied
10471 path starts with a set of degenerate cubics, the target node |q| can
10472 be collapsed to the initial node |p| which might be the same as the
10473 initial node |c| of the curve. This would cause the |offset_prep| routine
10474 to bail out too early, causing distress later on. (See for example
10475 the testcase reported by Bogus\l{}aw Jackowski in tracker id 267, case 52c
10478 @<Advance |p| to node |q|, removing any ``dead'' cubics...@>=
10482 if ( x_coord(p)==right_x(p) && y_coord(p)==right_y(p) &&
10483 x_coord(p)==left_x(r) && y_coord(p)==left_y(r) &&
10484 x_coord(p)==x_coord(r) && y_coord(p)==y_coord(r) &&
10486 @<Remove the cubic following |p| and update the data structures
10487 to merge |r| into |p|@>;
10491 /* Check if we removed too much */
10495 @ @<Remove the cubic following |p| and update the data structures...@>=
10496 { k_needed=info(p)-zero_off;
10500 info(p)=k_needed+info(r);
10503 if ( r==c ) { info(p)=info(c); c=p; };
10504 if ( r==mp->spec_p1 ) mp->spec_p1=p;
10505 if ( r==mp->spec_p2 ) mp->spec_p2=p;
10506 r=p; mp_remove_cubic(mp, p);
10509 @ Not setting the |info| field of the newly created knot allows the splitting
10510 routine to work for paths.
10512 @<Declare subroutines needed by |offset_prep|@>=
10513 void mp_split_cubic (MP mp,pointer p, fraction t) { /* splits the cubic after |p| */
10514 scaled v; /* an intermediate value */
10515 pointer q,r; /* for list manipulation */
10516 q=link(p); r=mp_get_node(mp, knot_node_size); link(p)=r; link(r)=q;
10517 originator(r)=mp_program_code;
10518 left_type(r)=mp_explicit; right_type(r)=mp_explicit;
10519 v=t_of_the_way(right_x(p),left_x(q));
10520 right_x(p)=t_of_the_way(x_coord(p),right_x(p));
10521 left_x(q)=t_of_the_way(left_x(q),x_coord(q));
10522 left_x(r)=t_of_the_way(right_x(p),v);
10523 right_x(r)=t_of_the_way(v,left_x(q));
10524 x_coord(r)=t_of_the_way(left_x(r),right_x(r));
10525 v=t_of_the_way(right_y(p),left_y(q));
10526 right_y(p)=t_of_the_way(y_coord(p),right_y(p));
10527 left_y(q)=t_of_the_way(left_y(q),y_coord(q));
10528 left_y(r)=t_of_the_way(right_y(p),v);
10529 right_y(r)=t_of_the_way(v,left_y(q));
10530 y_coord(r)=t_of_the_way(left_y(r),right_y(r));
10533 @ This does not set |info(p)| or |right_type(p)|.
10535 @<Declare subroutines needed by |offset_prep|@>=
10536 void mp_remove_cubic (MP mp,pointer p) { /* removes the dead cubic following~|p| */
10537 pointer q; /* the node that disappears */
10538 q=link(p); link(p)=link(q);
10539 right_x(p)=right_x(q); right_y(p)=right_y(q);
10540 mp_free_node(mp, q,knot_node_size);
10543 @ Let $d\prec d'$ mean that the counter-clockwise angle from $d$ to~$d'$ is
10544 strictly between zero and $180^\circ$. Then we can define $d\preceq d'$ to
10545 mean that the angle could be zero or $180^\circ$. If $w_k=(u_k,v_k)$ is the
10546 $k$th pen offset, the $k$th pen edge direction is defined by the formula
10547 $$d_k=(u\k-u_k,\,v\k-v_k).$$
10548 When listed by increasing $k$, these directions occur in counter-clockwise
10549 order so that $d_k\preceq d\k$ for all~$k$.
10550 The goal of |offset_prep| is to find an offset index~|k| to associate with
10551 each cubic, such that the direction $d(t)$ of the cubic satisfies
10552 $$d_{k-1}\preceq d(t)\preceq d_k\qquad\hbox{for $0\le t\le 1$.}\eqno(*)$$
10553 We may have to split a cubic into many pieces before each
10554 piece corresponds to a unique offset.
10556 @<Split the cubic between |p| and |q|, if necessary, into cubics...@>=
10557 info(p)=zero_off+k_needed;
10559 @<Prepare for derivative computations;
10560 |goto not_found| if the current cubic is dead@>;
10561 @<Find the initial direction |(dx,dy)|@>;
10562 @<Update |info(p)| and find the offset $w_k$ such that
10563 $d_{k-1}\preceq(\\{dx},\\{dy})\prec d_k$; also advance |w0| for
10564 the direction change at |p|@>;
10565 @<Find the final direction |(dxin,dyin)|@>;
10566 @<Decide on the net change in pen offsets and set |turn_amt|@>;
10567 @<Complete the offset splitting process@>;
10568 w0=mp_pen_walk(mp, w0,turn_amt)
10570 @ @<Declare subroutines needed by |offset_prep|@>=
10571 pointer mp_pen_walk (MP mp,pointer w, integer k) {
10572 /* walk |k| steps around a pen from |w| */
10573 while ( k>0 ) { w=link(w); decr(k); };
10574 while ( k<0 ) { w=knil(w); incr(k); };
10578 @ The direction of a cubic $B(z_0,z_1,z_2,z_3;t)=\bigl(x(t),y(t)\bigr)$ can be
10579 calculated from the quadratic polynomials
10580 ${1\over3}x'(t)=B(x_1-x_0,x_2-x_1,x_3-x_2;t)$ and
10581 ${1\over3}y'(t)=B(y_1-y_0,y_2-y_1,y_3-y_2;t)$.
10582 Since we may be calculating directions from several cubics
10583 split from the current one, it is desirable to do these calculations
10584 without losing too much precision. ``Scaled up'' values of the
10585 derivatives, which will be less tainted by accumulated errors than
10586 derivatives found from the cubics themselves, are maintained in
10587 local variables |x0|, |x1|, and |x2|, representing $X_0=2^l(x_1-x_0)$,
10588 $X_1=2^l(x_2-x_1)$, and $X_2=2^l(x_3-x_2)$; similarly |y0|, |y1|, and~|y2|
10589 represent $Y_0=2^l(y_1-y_0)$, $Y_1=2^l(y_2-y_1)$, and $Y_2=2^l(y_3-y_2)$.
10591 @<Other local variables for |offset_prep|@>=
10592 integer x0,x1,x2,y0,y1,y2; /* representatives of derivatives */
10593 integer t0,t1,t2; /* coefficients of polynomial for slope testing */
10594 integer du,dv,dx,dy; /* for directions of the pen and the curve */
10595 integer dx0,dy0; /* initial direction for the first cubic in the curve */
10596 integer max_coef; /* used while scaling */
10597 integer x0a,x1a,x2a,y0a,y1a,y2a; /* intermediate values */
10598 fraction t; /* where the derivative passes through zero */
10599 fraction s; /* a temporary value */
10601 @ @<Prepare for derivative computations...@>=
10602 x0=right_x(p)-x_coord(p);
10603 x2=x_coord(q)-left_x(q);
10604 x1=left_x(q)-right_x(p);
10605 y0=right_y(p)-y_coord(p); y2=y_coord(q)-left_y(q);
10606 y1=left_y(q)-right_y(p);
10608 if ( abs(x1)>max_coef ) max_coef=abs(x1);
10609 if ( abs(x2)>max_coef ) max_coef=abs(x2);
10610 if ( abs(y0)>max_coef ) max_coef=abs(y0);
10611 if ( abs(y1)>max_coef ) max_coef=abs(y1);
10612 if ( abs(y2)>max_coef ) max_coef=abs(y2);
10613 if ( max_coef==0 ) goto NOT_FOUND;
10614 while ( max_coef<fraction_half ) {
10616 double(x0); double(x1); double(x2);
10617 double(y0); double(y1); double(y2);
10620 @ Let us first solve a special case of the problem: Suppose we
10621 know an index~$k$ such that either (i)~$d(t)\succeq d_{k-1}$ for all~$t$
10622 and $d(0)\prec d_k$, or (ii)~$d(t)\preceq d_k$ for all~$t$ and
10623 $d(0)\succ d_{k-1}$.
10624 Then, in a sense, we're halfway done, since one of the two relations
10625 in $(*)$ is satisfied, and the other couldn't be satisfied for
10626 any other value of~|k|.
10628 Actually, the conditions can be relaxed somewhat since a relation such as
10629 $d(t)\succeq d_{k-1}$ restricts $d(t)$ to a half plane when all that really
10630 matters is whether $d(t)$ crosses the ray in the $d_{k-1}$ direction from
10631 the origin. The condition for case~(i) becomes $d_{k-1}\preceq d(0)\prec d_k$
10632 and $d(t)$ never crosses the $d_{k-1}$ ray in the clockwise direction.
10633 Case~(ii) is similar except $d(t)$ cannot cross the $d_k$ ray in the
10634 counterclockwise direction.
10636 The |fin_offset_prep| subroutine solves the stated subproblem.
10637 It has a parameter called |rise| that is |1| in
10638 case~(i), |-1| in case~(ii). Parameters |x0| through |y2| represent
10639 the derivative of the cubic following |p|.
10640 The |w| parameter should point to offset~$w_k$ and |info(p)| should already
10641 be set properly. The |turn_amt| parameter gives the absolute value of the
10642 overall net change in pen offsets.
10644 @<Declare subroutines needed by |offset_prep|@>=
10645 void mp_fin_offset_prep (MP mp,pointer p, pointer w, integer
10646 x0,integer x1, integer x2, integer y0, integer y1, integer y2,
10647 integer rise, integer turn_amt) {
10648 pointer ww; /* for list manipulation */
10649 scaled du,dv; /* for slope calculation */
10650 integer t0,t1,t2; /* test coefficients */
10651 fraction t; /* place where the derivative passes a critical slope */
10652 fraction s; /* slope or reciprocal slope */
10653 integer v; /* intermediate value for updating |x0..y2| */
10654 pointer q; /* original |link(p)| */
10657 if ( rise>0 ) ww=link(w); /* a pointer to $w\k$ */
10658 else ww=knil(w); /* a pointer to $w_{k-1}$ */
10659 @<Compute test coefficients |(t0,t1,t2)|
10660 for $d(t)$ versus $d_k$ or $d_{k-1}$@>;
10661 t=mp_crossing_point(mp, t0,t1,t2);
10662 if ( t>=fraction_one ) {
10663 if ( turn_amt>0 ) t=fraction_one; else return;
10665 @<Split the cubic at $t$,
10666 and split off another cubic if the derivative crosses back@>;
10671 @ We want $B(\\{t0},\\{t1},\\{t2};t)$ to be the dot product of $d(t)$ with a
10672 $-90^\circ$ rotation of the vector from |w| to |ww|. This makes the resulting
10673 function cross from positive to negative when $d_{k-1}\preceq d(t)\preceq d_k$
10676 @<Compute test coefficients |(t0,t1,t2)| for $d(t)$ versus...@>=
10677 du=x_coord(ww)-x_coord(w); dv=y_coord(ww)-y_coord(w);
10678 if ( abs(du)>=abs(dv) ) {
10679 s=mp_make_fraction(mp, dv,du);
10680 t0=mp_take_fraction(mp, x0,s)-y0;
10681 t1=mp_take_fraction(mp, x1,s)-y1;
10682 t2=mp_take_fraction(mp, x2,s)-y2;
10683 if ( du<0 ) { negate(t0); negate(t1); negate(t2); }
10685 s=mp_make_fraction(mp, du,dv);
10686 t0=x0-mp_take_fraction(mp, y0,s);
10687 t1=x1-mp_take_fraction(mp, y1,s);
10688 t2=x2-mp_take_fraction(mp, y2,s);
10689 if ( dv<0 ) { negate(t0); negate(t1); negate(t2); }
10691 if ( t0<0 ) t0=0 /* should be positive without rounding error */
10693 @ The curve has crossed $d_k$ or $d_{k-1}$; its initial segment satisfies
10694 $(*)$, and it might cross again, yielding another solution of $(*)$.
10696 @<Split the cubic at $t$, and split off another...@>=
10698 mp_split_cubic(mp, p,t); p=link(p); info(p)=zero_off+rise;
10700 v=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10701 x0=t_of_the_way(v,x1);
10702 v=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10703 y0=t_of_the_way(v,y1);
10704 if ( turn_amt<0 ) {
10705 t1=t_of_the_way(t1,t2);
10706 if ( t1>0 ) t1=0; /* without rounding error, |t1| would be |<=0| */
10707 t=mp_crossing_point(mp, 0,-t1,-t2);
10708 if ( t>fraction_one ) t=fraction_one;
10710 if ( (t==fraction_one)&&(link(p)!=q) ) {
10711 info(link(p))=info(link(p))-rise;
10713 mp_split_cubic(mp, p,t); info(link(p))=zero_off-rise;
10714 v=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10715 x2=t_of_the_way(x1,v);
10716 v=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10717 y2=t_of_the_way(y1,v);
10722 @ Now we must consider the general problem of |offset_prep|, when
10723 nothing is known about a given cubic. We start by finding its
10724 direction in the vicinity of |t=0|.
10726 If $z'(t)=0$, the given cubic is numerically unstable but |offset_prep|
10727 has not yet introduced any more numerical errors. Thus we can compute
10728 the true initial direction for the given cubic, even if it is almost
10731 @<Find the initial direction |(dx,dy)|@>=
10733 if ( dx==0 && dy==0 ) {
10735 if ( dx==0 && dy==0 ) {
10739 if ( p==c ) { dx0=dx; dy0=dy; }
10741 @ @<Find the final direction |(dxin,dyin)|@>=
10743 if ( dxin==0 && dyin==0 ) {
10745 if ( dxin==0 && dyin==0 ) {
10750 @ The next step is to bracket the initial direction between consecutive
10751 edges of the pen polygon. We must be careful to turn clockwise only if
10752 this makes the turn less than $180^\circ$. (A $180^\circ$ turn must be
10753 counter-clockwise in order to make \&{doublepath} envelopes come out
10754 @:double_path_}{\&{doublepath} primitive@>
10755 right.) This code depends on |w0| being the offset for |(dxin,dyin)|.
10757 @<Update |info(p)| and find the offset $w_k$ such that...@>=
10758 turn_amt=mp_get_turn_amt(mp,w0,dx,dy,(mp_ab_vs_cd(mp, dy,dxin,dx,dyin)>=0));
10759 w=mp_pen_walk(mp, w0, turn_amt);
10761 info(p)=info(p)+turn_amt
10763 @ Decide how many pen offsets to go away from |w| in order to find the offset
10764 for |(dx,dy)|, going counterclockwise if |ccw| is |true|. This assumes that
10765 |w| is the offset for some direction $(x',y')$ from which the angle to |(dx,dy)|
10766 in the sense determined by |ccw| is less than or equal to $180^\circ$.
10768 If the pen polygon has only two edges, they could both be parallel
10769 to |(dx,dy)|. In this case, we must be careful to stop after crossing the first
10770 such edge in order to avoid an infinite loop.
10772 @<Declare subroutines needed by |offset_prep|@>=
10773 integer mp_get_turn_amt (MP mp,pointer w, scaled dx,
10774 scaled dy, boolean ccw) {
10775 pointer ww; /* a neighbor of knot~|w| */
10776 integer s; /* turn amount so far */
10777 integer t; /* |ab_vs_cd| result */
10782 t=mp_ab_vs_cd(mp, dy,(x_coord(ww)-x_coord(w)),
10783 dx,(y_coord(ww)-y_coord(w)));
10790 while ( mp_ab_vs_cd(mp, dy,(x_coord(w)-x_coord(ww)),
10791 dx,(y_coord(w)-y_coord(ww))) < 0) {
10799 @ When we're all done, the final offset is |w0| and the final curve direction
10800 is |(dxin,dyin)|. With this knowledge of the incoming direction at |c|, we
10801 can correct |info(c)| which was erroneously based on an incoming offset
10804 @d fix_by(A) info(c)=info(c)+(A)
10806 @<Fix the offset change in |info(c)| and set |c| to the return value of...@>=
10807 mp->spec_offset=info(c)-zero_off;
10808 if ( link(c)==c ) {
10809 info(c)=zero_off+n;
10812 while ( w0!=h ) { fix_by(1); w0=link(w0); };
10813 while ( info(c)<=zero_off-n ) fix_by(n);
10814 while ( info(c)>zero_off ) fix_by(-n);
10815 if ( (info(c)!=zero_off)&&(mp_ab_vs_cd(mp, dy0,dxin,dx0,dyin)>=0) ) fix_by(n);
10819 @ Finally we want to reduce the general problem to situations that
10820 |fin_offset_prep| can handle. We split the cubic into at most three parts
10821 with respect to $d_{k-1}$, and apply |fin_offset_prep| to each part.
10823 @<Complete the offset splitting process@>=
10825 @<Compute test coeff...@>;
10826 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set
10827 |t:=fraction_one+1|@>;
10828 if ( t>fraction_one ) {
10829 mp_fin_offset_prep(mp, p,w,x0,x1,x2,y0,y1,y2,1,turn_amt);
10831 mp_split_cubic(mp, p,t); r=link(p);
10832 x1a=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10833 x2a=t_of_the_way(x1a,x1);
10834 y1a=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10835 y2a=t_of_the_way(y1a,y1);
10836 mp_fin_offset_prep(mp, p,w,x0,x1a,x2a,y0,y1a,y2a,1,0); x0=x2a; y0=y2a;
10837 info(r)=zero_off-1;
10838 if ( turn_amt>=0 ) {
10839 t1=t_of_the_way(t1,t2);
10841 t=mp_crossing_point(mp, 0,-t1,-t2);
10842 if ( t>fraction_one ) t=fraction_one;
10843 @<Split off another rising cubic for |fin_offset_prep|@>;
10844 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,0);
10846 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,(-1-turn_amt));
10850 @ @<Split off another rising cubic for |fin_offset_prep|@>=
10851 mp_split_cubic(mp, r,t); info(link(r))=zero_off+1;
10852 x1a=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10853 x0a=t_of_the_way(x1,x1a);
10854 y1a=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10855 y0a=t_of_the_way(y1,y1a);
10856 mp_fin_offset_prep(mp, link(r),w,x0a,x1a,x2,y0a,y1a,y2,1,turn_amt);
10859 @ At this point, the direction of the incoming pen edge is |(-du,-dv)|.
10860 When the component of $d(t)$ perpendicular to |(-du,-dv)| crosses zero, we
10861 need to decide whether the directions are parallel or antiparallel. We
10862 can test this by finding the dot product of $d(t)$ and |(-du,-dv)|, but this
10863 should be avoided when the value of |turn_amt| already determines the
10864 answer. If |t2<0|, there is one crossing and it is antiparallel only if
10865 |turn_amt>=0|. If |turn_amt<0|, there should always be at least one
10866 crossing and the first crossing cannot be antiparallel.
10868 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set...@>=
10869 t=mp_crossing_point(mp, t0,t1,t2);
10870 if ( turn_amt>=0 ) {
10874 u0=t_of_the_way(x0,x1);
10875 u1=t_of_the_way(x1,x2);
10876 ss=mp_take_fraction(mp, -du,t_of_the_way(u0,u1));
10877 v0=t_of_the_way(y0,y1);
10878 v1=t_of_the_way(y1,y2);
10879 ss=ss+mp_take_fraction(mp, -dv,t_of_the_way(v0,v1));
10880 if ( ss<0 ) t=fraction_one+1;
10882 } else if ( t>fraction_one ) {
10886 @ @<Other local variables for |offset_prep|@>=
10887 integer u0,u1,v0,v1; /* intermediate values for $d(t)$ calculation */
10888 integer ss = 0; /* the part of the dot product computed so far */
10889 int d_sign; /* sign of overall change in direction for this cubic */
10891 @ If the cubic almost has a cusp, it is a numerically ill-conditioned
10892 problem to decide which way it loops around but that's OK as long we're
10893 consistent. To make \&{doublepath} envelopes work properly, reversing
10894 the path should always change the sign of |turn_amt|.
10896 @<Decide on the net change in pen offsets and set |turn_amt|@>=
10897 d_sign=mp_ab_vs_cd(mp, dx,dyin, dxin,dy);
10899 @<Check rotation direction based on node position@>
10903 if ( dy>0 ) d_sign=1; else d_sign=-1;
10905 if ( dx>0 ) d_sign=1; else d_sign=-1;
10908 @<Make |ss| negative if and only if the total change in direction is
10909 more than $180^\circ$@>;
10910 turn_amt=mp_get_turn_amt(mp, w, dxin, dyin, (d_sign>0));
10911 if ( ss<0 ) turn_amt=turn_amt-d_sign*n
10913 @ We check rotation direction by looking at the vector connecting the current
10914 node with the next. If its angle with incoming and outgoing tangents has the
10915 same sign, we pick this as |d_sign|, since it means we have a flex, not a cusp.
10916 Otherwise we proceed to the cusp code.
10918 @<Check rotation direction based on node position@>=
10919 u0=x_coord(q)-x_coord(p);
10920 u1=y_coord(q)-y_coord(p);
10921 d_sign = half(mp_ab_vs_cd(mp, dx, u1, u0, dy)+
10922 mp_ab_vs_cd(mp, u0, dyin, dxin, u1));
10924 @ In order to be invariant under path reversal, the result of this computation
10925 should not change when |x0|, |y0|, $\ldots$ are all negated and |(x0,y0)| is
10926 then swapped with |(x2,y2)|. We make use of the identities
10927 |take_fraction(-a,-b)=take_fraction(a,b)| and
10928 |t_of_the_way(-a,-b)=-(t_of_the_way(a,b))|.
10930 @<Make |ss| negative if and only if the total change in direction is...@>=
10931 t0=half(mp_take_fraction(mp, x0,y2))-half(mp_take_fraction(mp, x2,y0));
10932 t1=half(mp_take_fraction(mp, x1,(y0+y2)))-half(mp_take_fraction(mp, y1,(x0+x2)));
10933 if ( t0==0 ) t0=d_sign; /* path reversal always negates |d_sign| */
10935 t=mp_crossing_point(mp, t0,t1,-t0);
10936 u0=t_of_the_way(x0,x1);
10937 u1=t_of_the_way(x1,x2);
10938 v0=t_of_the_way(y0,y1);
10939 v1=t_of_the_way(y1,y2);
10941 t=mp_crossing_point(mp, -t0,t1,t0);
10942 u0=t_of_the_way(x2,x1);
10943 u1=t_of_the_way(x1,x0);
10944 v0=t_of_the_way(y2,y1);
10945 v1=t_of_the_way(y1,y0);
10947 ss=mp_take_fraction(mp, (x0+x2),t_of_the_way(u0,u1))+
10948 mp_take_fraction(mp, (y0+y2),t_of_the_way(v0,v1))
10950 @ Here's a routine that prints an envelope spec in symbolic form. It assumes
10951 that the |cur_pen| has not been walked around to the first offset.
10954 void mp_print_spec (MP mp,pointer cur_spec, pointer cur_pen, char *s) {
10955 pointer p,q; /* list traversal */
10956 pointer w; /* the current pen offset */
10957 mp_print_diagnostic(mp, "Envelope spec",s,true);
10958 p=cur_spec; w=mp_pen_walk(mp, cur_pen,mp->spec_offset);
10960 mp_print_two(mp, x_coord(cur_spec),y_coord(cur_spec));
10961 mp_print(mp, " % beginning with offset ");
10962 mp_print_two(mp, x_coord(w),y_coord(w));
10966 @<Print the cubic between |p| and |q|@>;
10968 if ((p==cur_spec) || (info(p)!=zero_off))
10971 if ( info(p)!=zero_off ) {
10972 @<Update |w| as indicated by |info(p)| and print an explanation@>;
10974 } while (p!=cur_spec);
10975 mp_print_nl(mp, " & cycle");
10976 mp_end_diagnostic(mp, true);
10979 @ @<Update |w| as indicated by |info(p)| and print an explanation@>=
10981 w=mp_pen_walk(mp, w, (info(p)-zero_off));
10982 mp_print(mp, " % ");
10983 if ( info(p)>zero_off ) mp_print(mp, "counter");
10984 mp_print(mp, "clockwise to offset ");
10985 mp_print_two(mp, x_coord(w),y_coord(w));
10988 @ @<Print the cubic between |p| and |q|@>=
10990 mp_print_nl(mp, " ..controls ");
10991 mp_print_two(mp, right_x(p),right_y(p));
10992 mp_print(mp, " and ");
10993 mp_print_two(mp, left_x(q),left_y(q));
10994 mp_print_nl(mp, " ..");
10995 mp_print_two(mp, x_coord(q),y_coord(q));
10998 @ Once we have an envelope spec, the remaining task to construct the actual
10999 envelope by offsetting each cubic as determined by the |info| fields in
11000 the knots. First we use |offset_prep| to convert the |c| into an envelope
11001 spec. Then we add the offsets so that |c| becomes a cyclic path that represents
11004 The |ljoin| and |miterlim| parameters control the treatment of points where the
11005 pen offset changes, and |lcap| controls the endpoints of a \&{doublepath}.
11006 The endpoints are easily located because |c| is given in undoubled form
11007 and then doubled in this procedure. We use |spec_p1| and |spec_p2| to keep
11008 track of the endpoints and treat them like very sharp corners.
11009 Butt end caps are treated like beveled joins; round end caps are treated like
11010 round joins; and square end caps are achieved by setting |join_type:=3|.
11012 None of these parameters apply to inside joins where the convolution tracing
11013 has retrograde lines. In such cases we use a simple connect-the-endpoints
11014 approach that is achieved by setting |join_type:=2|.
11016 @c @<Declare a function called |insert_knot|@>;
11017 pointer mp_make_envelope (MP mp,pointer c, pointer h, small_number ljoin,
11018 small_number lcap, scaled miterlim) {
11019 pointer p,q,r,q0; /* for manipulating the path */
11020 int join_type=0; /* codes |0..3| for mitered, round, beveled, or square */
11021 pointer w,w0; /* the pen knot for the current offset */
11022 scaled qx,qy; /* unshifted coordinates of |q| */
11023 halfword k,k0; /* controls pen edge insertion */
11024 @<Other local variables for |make_envelope|@>;
11025 dxin=0; dyin=0; dxout=0; dyout=0;
11026 mp->spec_p1=null; mp->spec_p2=null;
11027 @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>;
11028 @<Use |offset_prep| to compute the envelope spec then walk |h| around to
11029 the initial offset@>;
11034 qx=x_coord(q); qy=y_coord(q);
11037 if ( k!=zero_off ) {
11038 @<Set |join_type| to indicate how to handle offset changes at~|q|@>;
11040 @<Add offset |w| to the cubic from |p| to |q|@>;
11041 while ( k!=zero_off ) {
11042 @<Step |w| and move |k| one step closer to |zero_off|@>;
11043 if ( (join_type==1)||(k==zero_off) )
11044 q=mp_insert_knot(mp, q,qx+x_coord(w),qy+y_coord(w));
11046 if ( q!=link(p) ) {
11047 @<Set |p=link(p)| and add knots between |p| and |q| as
11048 required by |join_type|@>;
11055 @ @<Use |offset_prep| to compute the envelope spec then walk |h| around to...@>=
11056 c=mp_offset_prep(mp, c,h);
11057 if ( mp->internal[mp_tracing_specs]>0 )
11058 mp_print_spec(mp, c,h,"");
11059 h=mp_pen_walk(mp, h,mp->spec_offset)
11061 @ Mitered and squared-off joins depend on path directions that are difficult to
11062 compute for degenerate cubics. The envelope spec computed by |offset_prep| can
11063 have degenerate cubics only if the entire cycle collapses to a single
11064 degenerate cubic. Setting |join_type:=2| in this case makes the computed
11065 envelope degenerate as well.
11067 @<Set |join_type| to indicate how to handle offset changes at~|q|@>=
11068 if ( k<zero_off ) {
11071 if ( (q!=mp->spec_p1)&&(q!=mp->spec_p2) ) join_type=ljoin;
11072 else if ( lcap==2 ) join_type=3;
11073 else join_type=2-lcap;
11074 if ( (join_type==0)||(join_type==3) ) {
11075 @<Set the incoming and outgoing directions at |q|; in case of
11076 degeneracy set |join_type:=2|@>;
11077 if ( join_type==0 ) {
11078 @<If |miterlim| is less than the secant of half the angle at |q|
11079 then set |join_type:=2|@>;
11084 @ @<If |miterlim| is less than the secant of half the angle at |q|...@>=
11086 tmp=mp_take_fraction(mp, miterlim,fraction_half+
11087 half(mp_take_fraction(mp, dxin,dxout)+mp_take_fraction(mp, dyin,dyout)));
11089 if ( mp_take_scaled(mp, miterlim,tmp)<unity ) join_type=2;
11092 @ @<Other local variables for |make_envelope|@>=
11093 fraction dxin,dyin,dxout,dyout; /* directions at |q| when square or mitered */
11094 scaled tmp; /* a temporary value */
11096 @ The coordinates of |p| have already been shifted unless |p| is the first
11097 knot in which case they get shifted at the very end.
11099 @<Add offset |w| to the cubic from |p| to |q|@>=
11100 right_x(p)=right_x(p)+x_coord(w);
11101 right_y(p)=right_y(p)+y_coord(w);
11102 left_x(q)=left_x(q)+x_coord(w);
11103 left_y(q)=left_y(q)+y_coord(w);
11104 x_coord(q)=x_coord(q)+x_coord(w);
11105 y_coord(q)=y_coord(q)+y_coord(w);
11106 left_type(q)=mp_explicit;
11107 right_type(q)=mp_explicit
11109 @ @<Step |w| and move |k| one step closer to |zero_off|@>=
11110 if ( k>zero_off ){ w=link(w); decr(k); }
11111 else { w=knil(w); incr(k); }
11113 @ The cubic from |q| to the new knot at |(x,y)| becomes a line segment and
11114 the |right_x| and |right_y| fields of |r| are set from |q|. This is done in
11115 case the cubic containing these control points is ``yet to be examined.''
11117 @<Declare a function called |insert_knot|@>=
11118 pointer mp_insert_knot (MP mp,pointer q, scaled x, scaled y) {
11119 /* returns the inserted knot */
11120 pointer r; /* the new knot */
11121 r=mp_get_node(mp, knot_node_size);
11122 link(r)=link(q); link(q)=r;
11123 right_x(r)=right_x(q);
11124 right_y(r)=right_y(q);
11127 right_x(q)=x_coord(q);
11128 right_y(q)=y_coord(q);
11129 left_x(r)=x_coord(r);
11130 left_y(r)=y_coord(r);
11131 left_type(r)=mp_explicit;
11132 right_type(r)=mp_explicit;
11133 originator(r)=mp_program_code;
11137 @ After setting |p:=link(p)|, either |join_type=1| or |q=link(p)|.
11139 @<Set |p=link(p)| and add knots between |p| and |q| as...@>=
11142 if ( (join_type==0)||(join_type==3) ) {
11143 if ( join_type==0 ) {
11144 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>
11146 @<Make |r| the last of two knots inserted between |p| and |q| to form a
11150 right_x(r)=x_coord(r);
11151 right_y(r)=y_coord(r);
11156 @ For very small angles, adding a knot is unnecessary and would cause numerical
11157 problems, so we just set |r:=null| in that case.
11159 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>=
11161 det=mp_take_fraction(mp, dyout,dxin)-mp_take_fraction(mp, dxout,dyin);
11162 if ( abs(det)<26844 ) {
11163 r=null; /* sine $<10^{-4}$ */
11165 tmp=mp_take_fraction(mp, x_coord(q)-x_coord(p),dyout)-
11166 mp_take_fraction(mp, y_coord(q)-y_coord(p),dxout);
11167 tmp=mp_make_fraction(mp, tmp,det);
11168 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11169 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11173 @ @<Other local variables for |make_envelope|@>=
11174 fraction det; /* a determinant used for mitered join calculations */
11176 @ @<Make |r| the last of two knots inserted between |p| and |q| to form a...@>=
11178 ht_x=y_coord(w)-y_coord(w0);
11179 ht_y=x_coord(w0)-x_coord(w);
11180 while ( (abs(ht_x)<fraction_half)&&(abs(ht_y)<fraction_half) ) {
11181 ht_x+=ht_x; ht_y+=ht_y;
11183 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range dot
11184 product with |(ht_x,ht_y)|@>;
11185 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxin,ht_x)+
11186 mp_take_fraction(mp, dyin,ht_y));
11187 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11188 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11189 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxout,ht_x)+
11190 mp_take_fraction(mp, dyout,ht_y));
11191 r=mp_insert_knot(mp, r,x_coord(q)+mp_take_fraction(mp, tmp,dxout),
11192 y_coord(q)+mp_take_fraction(mp, tmp,dyout));
11195 @ @<Other local variables for |make_envelope|@>=
11196 fraction ht_x,ht_y; /* perpendicular to the segment from |p| to |q| */
11197 scaled max_ht; /* maximum height of the pen polygon above the |w0|-|w| line */
11198 halfword kk; /* keeps track of the pen vertices being scanned */
11199 pointer ww; /* the pen vertex being tested */
11201 @ The dot product of the vector from |w0| to |ww| with |(ht_x,ht_y)| ranges
11202 from zero to |max_ht|.
11204 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range...@>=
11209 @<Step |ww| and move |kk| one step closer to |k0|@>;
11210 if ( kk==k0 ) break;
11211 tmp=mp_take_fraction(mp, (x_coord(ww)-x_coord(w0)),ht_x)+
11212 mp_take_fraction(mp, (y_coord(ww)-y_coord(w0)),ht_y);
11213 if ( tmp>max_ht ) max_ht=tmp;
11217 @ @<Step |ww| and move |kk| one step closer to |k0|@>=
11218 if ( kk>k0 ) { ww=link(ww); decr(kk); }
11219 else { ww=knil(ww); incr(kk); }
11221 @ @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>=
11222 if ( left_type(c)==mp_endpoint ) {
11223 mp->spec_p1=mp_htap_ypoc(mp, c);
11224 mp->spec_p2=mp->path_tail;
11225 originator(mp->spec_p1)=mp_program_code;
11226 link(mp->spec_p2)=link(mp->spec_p1);
11227 link(mp->spec_p1)=c;
11228 mp_remove_cubic(mp, mp->spec_p1);
11230 if ( c!=link(c) ) {
11231 originator(mp->spec_p2)=mp_program_code;
11232 mp_remove_cubic(mp, mp->spec_p2);
11234 @<Make |c| look like a cycle of length one@>;
11238 @ @<Make |c| look like a cycle of length one@>=
11240 left_type(c)=mp_explicit; right_type(c)=mp_explicit;
11241 left_x(c)=x_coord(c); left_y(c)=y_coord(c);
11242 right_x(c)=x_coord(c); right_y(c)=y_coord(c);
11245 @ In degenerate situations we might have to look at the knot preceding~|q|.
11246 That knot is |p| but if |p<>c|, its coordinates have already been offset by |w|.
11248 @<Set the incoming and outgoing directions at |q|; in case of...@>=
11249 dxin=x_coord(q)-left_x(q);
11250 dyin=y_coord(q)-left_y(q);
11251 if ( (dxin==0)&&(dyin==0) ) {
11252 dxin=x_coord(q)-right_x(p);
11253 dyin=y_coord(q)-right_y(p);
11254 if ( (dxin==0)&&(dyin==0) ) {
11255 dxin=x_coord(q)-x_coord(p);
11256 dyin=y_coord(q)-y_coord(p);
11257 if ( p!=c ) { /* the coordinates of |p| have been offset by |w| */
11258 dxin=dxin+x_coord(w);
11259 dyin=dyin+y_coord(w);
11263 tmp=mp_pyth_add(mp, dxin,dyin);
11267 dxin=mp_make_fraction(mp, dxin,tmp);
11268 dyin=mp_make_fraction(mp, dyin,tmp);
11269 @<Set the outgoing direction at |q|@>;
11272 @ If |q=c| then the coordinates of |r| and the control points between |q|
11273 and~|r| have already been offset by |h|.
11275 @<Set the outgoing direction at |q|@>=
11276 dxout=right_x(q)-x_coord(q);
11277 dyout=right_y(q)-y_coord(q);
11278 if ( (dxout==0)&&(dyout==0) ) {
11280 dxout=left_x(r)-x_coord(q);
11281 dyout=left_y(r)-y_coord(q);
11282 if ( (dxout==0)&&(dyout==0) ) {
11283 dxout=x_coord(r)-x_coord(q);
11284 dyout=y_coord(r)-y_coord(q);
11288 dxout=dxout-x_coord(h);
11289 dyout=dyout-y_coord(h);
11291 tmp=mp_pyth_add(mp, dxout,dyout);
11292 if ( tmp==0 ) mp_confusion(mp, "degenerate spec");
11293 @:this can't happen degerate spec}{\quad degenerate spec@>
11294 dxout=mp_make_fraction(mp, dxout,tmp);
11295 dyout=mp_make_fraction(mp, dyout,tmp)
11297 @* \[23] Direction and intersection times.
11298 A path of length $n$ is defined parametrically by functions $x(t)$ and
11299 $y(t)$, for |0<=t<=n|; we can regard $t$ as the ``time'' at which the path
11300 reaches the point $\bigl(x(t),y(t)\bigr)$. In this section of the program
11301 we shall consider operations that determine special times associated with
11302 given paths: the first time that a path travels in a given direction, and
11303 a pair of times at which two paths cross each other.
11305 @ Let's start with the easier task. The function |find_direction_time| is
11306 given a direction |(x,y)| and a path starting at~|h|. If the path never
11307 travels in direction |(x,y)|, the direction time will be~|-1|; otherwise
11308 it will be nonnegative.
11310 Certain anomalous cases can arise: If |(x,y)=(0,0)|, so that the given
11311 direction is undefined, the direction time will be~0. If $\bigl(x'(t),
11312 y'(t)\bigr)=(0,0)$, so that the path direction is undefined, it will be
11313 assumed to match any given direction at time~|t|.
11315 The routine solves this problem in nondegenerate cases by rotating the path
11316 and the given direction so that |(x,y)=(1,0)|; i.e., the main task will be
11317 to find when a given path first travels ``due east.''
11320 scaled mp_find_direction_time (MP mp,scaled x, scaled y, pointer h) {
11321 scaled max; /* $\max\bigl(\vert x\vert,\vert y\vert\bigr)$ */
11322 pointer p,q; /* for list traversal */
11323 scaled n; /* the direction time at knot |p| */
11324 scaled tt; /* the direction time within a cubic */
11325 @<Other local variables for |find_direction_time|@>;
11326 @<Normalize the given direction for better accuracy;
11327 but |return| with zero result if it's zero@>;
11330 if ( right_type(p)==mp_endpoint ) break;
11332 @<Rotate the cubic between |p| and |q|; then
11333 |goto found| if the rotated cubic travels due east at some time |tt|;
11334 but |break| if an entire cyclic path has been traversed@>;
11342 @ @<Normalize the given direction for better accuracy...@>=
11343 if ( abs(x)<abs(y) ) {
11344 x=mp_make_fraction(mp, x,abs(y));
11345 if ( y>0 ) y=fraction_one; else y=-fraction_one;
11346 } else if ( x==0 ) {
11349 y=mp_make_fraction(mp, y,abs(x));
11350 if ( x>0 ) x=fraction_one; else x=-fraction_one;
11353 @ Since we're interested in the tangent directions, we work with the
11354 derivative $${\textstyle1\over3}B'(x_0,x_1,x_2,x_3;t)=
11355 B(x_1-x_0,x_2-x_1,x_3-x_2;t)$$ instead of
11356 $B(x_0,x_1,x_2,x_3;t)$ itself. The derived coefficients are also scaled up
11357 in order to achieve better accuracy.
11359 The given path may turn abruptly at a knot, and it might pass the critical
11360 tangent direction at such a time. Therefore we remember the direction |phi|
11361 in which the previous rotated cubic was traveling. (The value of |phi| will be
11362 undefined on the first cubic, i.e., when |n=0|.)
11364 @<Rotate the cubic between |p| and |q|; then...@>=
11366 @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples of the control
11367 points of the rotated derivatives@>;
11368 if ( y1==0 ) if ( x1>=0 ) goto FOUND;
11370 @<Exit to |found| if an eastward direction occurs at knot |p|@>;
11373 if ( (x3!=0)||(y3!=0) ) phi=mp_n_arg(mp, x3,y3);
11374 @<Exit to |found| if the curve whose derivatives are specified by
11375 |x1,x2,x3,y1,y2,y3| travels eastward at some time~|tt|@>
11377 @ @<Other local variables for |find_direction_time|@>=
11378 scaled x1,x2,x3,y1,y2,y3; /* multiples of rotated derivatives */
11379 angle theta,phi; /* angles of exit and entry at a knot */
11380 fraction t; /* temp storage */
11382 @ @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples...@>=
11383 x1=right_x(p)-x_coord(p); x2=left_x(q)-right_x(p);
11384 x3=x_coord(q)-left_x(q);
11385 y1=right_y(p)-y_coord(p); y2=left_y(q)-right_y(p);
11386 y3=y_coord(q)-left_y(q);
11388 if ( abs(x2)>max ) max=abs(x2);
11389 if ( abs(x3)>max ) max=abs(x3);
11390 if ( abs(y1)>max ) max=abs(y1);
11391 if ( abs(y2)>max ) max=abs(y2);
11392 if ( abs(y3)>max ) max=abs(y3);
11393 if ( max==0 ) goto FOUND;
11394 while ( max<fraction_half ){
11395 max+=max; x1+=x1; x2+=x2; x3+=x3;
11396 y1+=y1; y2+=y2; y3+=y3;
11398 t=x1; x1=mp_take_fraction(mp, x1,x)+mp_take_fraction(mp, y1,y);
11399 y1=mp_take_fraction(mp, y1,x)-mp_take_fraction(mp, t,y);
11400 t=x2; x2=mp_take_fraction(mp, x2,x)+mp_take_fraction(mp, y2,y);
11401 y2=mp_take_fraction(mp, y2,x)-mp_take_fraction(mp, t,y);
11402 t=x3; x3=mp_take_fraction(mp, x3,x)+mp_take_fraction(mp, y3,y);
11403 y3=mp_take_fraction(mp, y3,x)-mp_take_fraction(mp, t,y)
11405 @ @<Exit to |found| if an eastward direction occurs at knot |p|@>=
11406 theta=mp_n_arg(mp, x1,y1);
11407 if ( theta>=0 ) if ( phi<=0 ) if ( phi>=theta-one_eighty_deg ) goto FOUND;
11408 if ( theta<=0 ) if ( phi>=0 ) if ( phi<=theta+one_eighty_deg ) goto FOUND
11410 @ In this step we want to use the |crossing_point| routine to find the
11411 roots of the quadratic equation $B(y_1,y_2,y_3;t)=0$.
11412 Several complications arise: If the quadratic equation has a double root,
11413 the curve never crosses zero, and |crossing_point| will find nothing;
11414 this case occurs iff $y_1y_3=y_2^2$ and $y_1y_2<0$. If the quadratic
11415 equation has simple roots, or only one root, we may have to negate it
11416 so that $B(y_1,y_2,y_3;t)$ crosses from positive to negative at its first root.
11417 And finally, we need to do special things if $B(y_1,y_2,y_3;t)$ is
11420 @ @<Exit to |found| if the curve whose derivatives are specified by...@>=
11421 if ( x1<0 ) if ( x2<0 ) if ( x3<0 ) goto DONE;
11422 if ( mp_ab_vs_cd(mp, y1,y3,y2,y2)==0 ) {
11423 @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11424 either |goto found| or |goto done|@>;
11427 if ( y1<0 ) { y1=-y1; y2=-y2; y3=-y3; }
11428 else if ( y2>0 ){ y2=-y2; y3=-y3; };
11430 @<Check the places where $B(y_1,y_2,y_3;t)=0$ to see if
11431 $B(x_1,x_2,x_3;t)\ge0$@>;
11434 @ The quadratic polynomial $B(y_1,y_2,y_3;t)$ begins |>=0| and has at most
11435 two roots, because we know that it isn't identically zero.
11437 It must be admitted that the |crossing_point| routine is not perfectly accurate;
11438 rounding errors might cause it to find a root when $y_1y_3>y_2^2$, or to
11439 miss the roots when $y_1y_3<y_2^2$. The rotation process is itself
11440 subject to rounding errors. Yet this code optimistically tries to
11441 do the right thing.
11443 @d we_found_it { tt=(t+04000) / 010000; goto FOUND; }
11445 @<Check the places where $B(y_1,y_2,y_3;t)=0$...@>=
11446 t=mp_crossing_point(mp, y1,y2,y3);
11447 if ( t>fraction_one ) goto DONE;
11448 y2=t_of_the_way(y2,y3);
11449 x1=t_of_the_way(x1,x2);
11450 x2=t_of_the_way(x2,x3);
11451 x1=t_of_the_way(x1,x2);
11452 if ( x1>=0 ) we_found_it;
11454 tt=t; t=mp_crossing_point(mp, 0,-y2,-y3);
11455 if ( t>fraction_one ) goto DONE;
11456 x1=t_of_the_way(x1,x2);
11457 x2=t_of_the_way(x2,x3);
11458 if ( t_of_the_way(x1,x2)>=0 ) {
11459 t=t_of_the_way(tt,fraction_one); we_found_it;
11462 @ @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11463 either |goto found| or |goto done|@>=
11465 if ( mp_ab_vs_cd(mp, y1,y2,0,0)<0 ) {
11466 t=mp_make_fraction(mp, y1,y1-y2);
11467 x1=t_of_the_way(x1,x2);
11468 x2=t_of_the_way(x2,x3);
11469 if ( t_of_the_way(x1,x2)>=0 ) we_found_it;
11470 } else if ( y3==0 ) {
11472 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|@>;
11473 } else if ( x3>=0 ) {
11474 tt=unity; goto FOUND;
11480 @ At this point we know that the derivative of |y(t)| is identically zero,
11481 and that |x1<0|; but either |x2>=0| or |x3>=0|, so there's some hope of
11484 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|...@>=
11486 t=mp_crossing_point(mp, -x1,-x2,-x3);
11487 if ( t<=fraction_one ) we_found_it;
11488 if ( mp_ab_vs_cd(mp, x1,x3,x2,x2)<=0 ) {
11489 t=mp_make_fraction(mp, x1,x1-x2); we_found_it;
11493 @ The intersection of two cubics can be found by an interesting variant
11494 of the general bisection scheme described in the introduction to
11496 Given $w(t)=B(w_0,w_1,w_2,w_3;t)$ and $z(t)=B(z_0,z_1,z_2,z_3;t)$,
11497 we wish to find a pair of times $(t_1,t_2)$ such that $w(t_1)=z(t_2)$,
11498 if an intersection exists. First we find the smallest rectangle that
11499 encloses the points $\{w_0,w_1,w_2,w_3\}$ and check that it overlaps
11500 the smallest rectangle that encloses
11501 $\{z_0,z_1,z_2,z_3\}$; if not, the cubics certainly don't intersect.
11502 But if the rectangles do overlap, we bisect the intervals, getting
11503 new cubics $w'$ and~$w''$, $z'$~and~$z''$; the intersection routine first
11504 tries for an intersection between $w'$ and~$z'$, then (if unsuccessful)
11505 between $w'$ and~$z''$, then (if still unsuccessful) between $w''$ and~$z'$,
11506 finally (if thrice unsuccessful) between $w''$ and~$z''$. After $l$~successful
11507 levels of bisection we will have determined the intersection times $t_1$
11508 and~$t_2$ to $l$~bits of accuracy.
11510 \def\submin{_{\rm min}} \def\submax{_{\rm max}}
11511 As before, it is better to work with the numbers $W_k=2^l(w_k-w_{k-1})$
11512 and $Z_k=2^l(z_k-z_{k-1})$ rather than the coefficients $w_k$ and $z_k$
11513 themselves. We also need one other quantity, $\Delta=2^l(w_0-z_0)$,
11514 to determine when the enclosing rectangles overlap. Here's why:
11515 The $x$~coordinates of~$w(t)$ are between $u\submin$ and $u\submax$,
11516 and the $x$~coordinates of~$z(t)$ are between $x\submin$ and $x\submax$,
11517 if we write $w_k=(u_k,v_k)$ and $z_k=(x_k,y_k)$ and $u\submin=
11518 \min(u_0,u_1,u_2,u_3)$, etc. These intervals of $x$~coordinates
11519 overlap if and only if $u\submin\L x\submax$ and
11520 $x\submin\L u\submax$. Letting
11521 $$U\submin=\min(0,U_1,U_1+U_2,U_1+U_2+U_3),\;
11522 U\submax=\max(0,U_1,U_1+U_2,U_1+U_2+U_3),$$
11523 we have $u\submin=2^lu_0+U\submin$, etc.; the condition for overlap
11525 $$X\submin-U\submax\L 2^l(u_0-x_0)\L X\submax-U\submin.$$
11526 Thus we want to maintain the quantity $2^l(u_0-x_0)$; similarly,
11527 the quantity $2^l(v_0-y_0)$ accounts for the $y$~coordinates. The
11528 coordinates of $\Delta=2^l(w_0-z_0)$ must stay bounded as $l$ increases,
11529 because of the overlap condition; i.e., we know that $X\submin$,
11530 $X\submax$, and their relatives are bounded, hence $X\submax-
11531 U\submin$ and $X\submin-U\submax$ are bounded.
11533 @ Incidentally, if the given cubics intersect more than once, the process
11534 just sketched will not necessarily find the lexicographically smallest pair
11535 $(t_1,t_2)$. The solution actually obtained will be smallest in ``shuffled
11536 order''; i.e., if $t_1=(.a_1a_2\ldots a_{16})_2$ and
11537 $t_2=(.b_1b_2\ldots b_{16})_2$, then we will minimize
11538 $a_1b_1a_2b_2\ldots a_{16}b_{16}$, not
11539 $a_1a_2\ldots a_{16}b_1b_2\ldots b_{16}$.
11540 Shuffled order agrees with lexicographic order if all pairs of solutions
11541 $(t_1,t_2)$ and $(t_1',t_2')$ have the property that $t_1<t_1'$ iff
11542 $t_2<t_2'$; but in general, lexicographic order can be quite different,
11543 and the bisection algorithm would be substantially less efficient if it were
11544 constrained by lexicographic order.
11546 For example, suppose that an overlap has been found for $l=3$ and
11547 $(t_1,t_2)= (.101,.011)$ in binary, but that no overlap is produced by
11548 either of the alternatives $(.1010,.0110)$, $(.1010,.0111)$ at level~4.
11549 Then there is probably an intersection in one of the subintervals
11550 $(.1011,.011x)$; but lexicographic order would require us to explore
11551 $(.1010,.1xxx)$ and $(.1011,.00xx)$ and $(.1011,.010x)$ first. We wouldn't
11552 want to store all of the subdivision data for the second path, so the
11553 subdivisions would have to be regenerated many times. Such inefficiencies
11554 would be associated with every `1' in the binary representation of~$t_1$.
11556 @ The subdivision process introduces rounding errors, hence we need to
11557 make a more liberal test for overlap. It is not hard to show that the
11558 computed values of $U_i$ differ from the truth by at most~$l$, on
11559 level~$l$, hence $U\submin$ and $U\submax$ will be at most $3l$ in error.
11560 If $\beta$ is an upper bound on the absolute error in the computed
11561 components of $\Delta=(|delx|,|dely|)$ on level~$l$, we will replace
11562 the test `$X\submin-U\submax\L|delx|$' by the more liberal test
11563 `$X\submin-U\submax\L|delx|+|tol|$', where $|tol|=6l+\beta$.
11565 More accuracy is obtained if we try the algorithm first with |tol=0|;
11566 the more liberal tolerance is used only if an exact approach fails.
11567 It is convenient to do this double-take by letting `3' in the preceding
11568 paragraph be a parameter, which is first 0, then 3.
11571 unsigned int tol_step; /* either 0 or 3, usually */
11573 @ We shall use an explicit stack to implement the recursive bisection
11574 method described above. The |bisect_stack| array will contain numerous 5-word
11575 packets like $(U_1,U_2,U_3,U\submin,U\submax)$, as well as 20-word packets
11576 comprising the 5-word packets for $U$, $V$, $X$, and~$Y$.
11578 The following macros define the allocation of stack positions to
11579 the quantities needed for bisection-intersection.
11581 @d stack_1(A) mp->bisect_stack[(A)] /* $U_1$, $V_1$, $X_1$, or $Y_1$ */
11582 @d stack_2(A) mp->bisect_stack[(A)+1] /* $U_2$, $V_2$, $X_2$, or $Y_2$ */
11583 @d stack_3(A) mp->bisect_stack[(A)+2] /* $U_3$, $V_3$, $X_3$, or $Y_3$ */
11584 @d stack_min(A) mp->bisect_stack[(A)+3]
11585 /* $U\submin$, $V\submin$, $X\submin$, or $Y\submin$ */
11586 @d stack_max(A) mp->bisect_stack[(A)+4]
11587 /* $U\submax$, $V\submax$, $X\submax$, or $Y\submax$ */
11588 @d int_packets 20 /* number of words to represent $U_k$, $V_k$, $X_k$, and $Y_k$ */
11590 @d u_packet(A) ((A)-5)
11591 @d v_packet(A) ((A)-10)
11592 @d x_packet(A) ((A)-15)
11593 @d y_packet(A) ((A)-20)
11594 @d l_packets (mp->bisect_ptr-int_packets)
11595 @d r_packets mp->bisect_ptr
11596 @d ul_packet u_packet(l_packets) /* base of $U'_k$ variables */
11597 @d vl_packet v_packet(l_packets) /* base of $V'_k$ variables */
11598 @d xl_packet x_packet(l_packets) /* base of $X'_k$ variables */
11599 @d yl_packet y_packet(l_packets) /* base of $Y'_k$ variables */
11600 @d ur_packet u_packet(r_packets) /* base of $U''_k$ variables */
11601 @d vr_packet v_packet(r_packets) /* base of $V''_k$ variables */
11602 @d xr_packet x_packet(r_packets) /* base of $X''_k$ variables */
11603 @d yr_packet y_packet(r_packets) /* base of $Y''_k$ variables */
11605 @d u1l stack_1(ul_packet) /* $U'_1$ */
11606 @d u2l stack_2(ul_packet) /* $U'_2$ */
11607 @d u3l stack_3(ul_packet) /* $U'_3$ */
11608 @d v1l stack_1(vl_packet) /* $V'_1$ */
11609 @d v2l stack_2(vl_packet) /* $V'_2$ */
11610 @d v3l stack_3(vl_packet) /* $V'_3$ */
11611 @d x1l stack_1(xl_packet) /* $X'_1$ */
11612 @d x2l stack_2(xl_packet) /* $X'_2$ */
11613 @d x3l stack_3(xl_packet) /* $X'_3$ */
11614 @d y1l stack_1(yl_packet) /* $Y'_1$ */
11615 @d y2l stack_2(yl_packet) /* $Y'_2$ */
11616 @d y3l stack_3(yl_packet) /* $Y'_3$ */
11617 @d u1r stack_1(ur_packet) /* $U''_1$ */
11618 @d u2r stack_2(ur_packet) /* $U''_2$ */
11619 @d u3r stack_3(ur_packet) /* $U''_3$ */
11620 @d v1r stack_1(vr_packet) /* $V''_1$ */
11621 @d v2r stack_2(vr_packet) /* $V''_2$ */
11622 @d v3r stack_3(vr_packet) /* $V''_3$ */
11623 @d x1r stack_1(xr_packet) /* $X''_1$ */
11624 @d x2r stack_2(xr_packet) /* $X''_2$ */
11625 @d x3r stack_3(xr_packet) /* $X''_3$ */
11626 @d y1r stack_1(yr_packet) /* $Y''_1$ */
11627 @d y2r stack_2(yr_packet) /* $Y''_2$ */
11628 @d y3r stack_3(yr_packet) /* $Y''_3$ */
11630 @d stack_dx mp->bisect_stack[mp->bisect_ptr] /* stacked value of |delx| */
11631 @d stack_dy mp->bisect_stack[mp->bisect_ptr+1] /* stacked value of |dely| */
11632 @d stack_tol mp->bisect_stack[mp->bisect_ptr+2] /* stacked value of |tol| */
11633 @d stack_uv mp->bisect_stack[mp->bisect_ptr+3] /* stacked value of |uv| */
11634 @d stack_xy mp->bisect_stack[mp->bisect_ptr+4] /* stacked value of |xy| */
11635 @d int_increment (int_packets+int_packets+5) /* number of stack words per level */
11638 integer *bisect_stack;
11639 unsigned int bisect_ptr;
11641 @ @<Allocate or initialize ...@>=
11642 mp->bisect_stack = xmalloc((bistack_size+1),sizeof(integer));
11644 @ @<Dealloc variables@>=
11645 xfree(mp->bisect_stack);
11647 @ @<Check the ``constant''...@>=
11648 if ( int_packets+17*int_increment>bistack_size ) mp->bad=19;
11650 @ Computation of the min and max is a tedious but fairly fast sequence of
11651 instructions; exactly four comparisons are made in each branch.
11654 if ( stack_1((A))<0 ) {
11655 if ( stack_3((A))>=0 ) {
11656 if ( stack_2((A))<0 ) stack_min((A))=stack_1((A))+stack_2((A));
11657 else stack_min((A))=stack_1((A));
11658 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11659 if ( stack_max((A))<0 ) stack_max((A))=0;
11661 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11662 if ( stack_min((A))>stack_1((A)) ) stack_min((A))=stack_1((A));
11663 stack_max((A))=stack_1((A))+stack_2((A));
11664 if ( stack_max((A))<0 ) stack_max((A))=0;
11666 } else if ( stack_3((A))<=0 ) {
11667 if ( stack_2((A))>0 ) stack_max((A))=stack_1((A))+stack_2((A));
11668 else stack_max((A))=stack_1((A));
11669 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11670 if ( stack_min((A))>0 ) stack_min((A))=0;
11672 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11673 if ( stack_max((A))<stack_1((A)) ) stack_max((A))=stack_1((A));
11674 stack_min((A))=stack_1((A))+stack_2((A));
11675 if ( stack_min((A))>0 ) stack_min((A))=0;
11678 @ It's convenient to keep the current values of $l$, $t_1$, and $t_2$ in
11679 the integer form $2^l+2^lt_1$ and $2^l+2^lt_2$. The |cubic_intersection|
11680 routine uses global variables |cur_t| and |cur_tt| for this purpose;
11681 after successful completion, |cur_t| and |cur_tt| will contain |unity|
11682 plus the |scaled| values of $t_1$ and~$t_2$.
11684 The values of |cur_t| and |cur_tt| will be set to zero if |cubic_intersection|
11685 finds no intersection. The routine gives up and gives an approximate answer
11686 if it has backtracked
11687 more than 5000 times (otherwise there are cases where several minutes
11688 of fruitless computation would be possible).
11690 @d max_patience 5000
11693 integer cur_t;integer cur_tt; /* controls and results of |cubic_intersection| */
11694 integer time_to_go; /* this many backtracks before giving up */
11695 integer max_t; /* maximum of $2^{l+1}$ so far achieved */
11697 @ The given cubics $B(w_0,w_1,w_2,w_3;t)$ and
11698 $B(z_0,z_1,z_2,z_3;t)$ are specified in adjacent knot nodes |(p,link(p))|
11699 and |(pp,link(pp))|, respectively.
11701 @c void mp_cubic_intersection (MP mp,pointer p, pointer pp) {
11702 pointer q,qq; /* |link(p)|, |link(pp)| */
11703 mp->time_to_go=max_patience; mp->max_t=2;
11704 @<Initialize for intersections at level zero@>;
11707 if ( mp->delx-mp->tol<=stack_max(x_packet(mp->xy))-stack_min(u_packet(mp->uv)))
11708 if ( mp->delx+mp->tol>=stack_min(x_packet(mp->xy))-stack_max(u_packet(mp->uv)))
11709 if ( mp->dely-mp->tol<=stack_max(y_packet(mp->xy))-stack_min(v_packet(mp->uv)))
11710 if ( mp->dely+mp->tol>=stack_min(y_packet(mp->xy))-stack_max(v_packet(mp->uv)))
11712 if ( mp->cur_t>=mp->max_t ){
11713 if ( mp->max_t==two ) { /* we've done 17 bisections */
11714 mp->cur_t=halfp(mp->cur_t+1); mp->cur_tt=halfp(mp->cur_tt+1); return;
11716 mp->max_t+=mp->max_t; mp->appr_t=mp->cur_t; mp->appr_tt=mp->cur_tt;
11718 @<Subdivide for a new level of intersection@>;
11721 if ( mp->time_to_go>0 ) {
11722 decr(mp->time_to_go);
11724 while ( mp->appr_t<unity ) {
11725 mp->appr_t+=mp->appr_t; mp->appr_tt+=mp->appr_tt;
11727 mp->cur_t=mp->appr_t; mp->cur_tt=mp->appr_tt; return;
11729 @<Advance to the next pair |(cur_t,cur_tt)|@>;
11733 @ The following variables are global, although they are used only by
11734 |cubic_intersection|, because it is necessary on some machines to
11735 split |cubic_intersection| up into two procedures.
11738 integer delx;integer dely; /* the components of $\Delta=2^l(w_0-z_0)$ */
11739 integer tol; /* bound on the uncertainly in the overlap test */
11741 unsigned int xy; /* pointers to the current packets of interest */
11742 integer three_l; /* |tol_step| times the bisection level */
11743 integer appr_t;integer appr_tt; /* best approximations known to the answers */
11745 @ We shall assume that the coordinates are sufficiently non-extreme that
11746 integer overflow will not occur.
11748 @<Initialize for intersections at level zero@>=
11749 q=link(p); qq=link(pp); mp->bisect_ptr=int_packets;
11750 u1r=right_x(p)-x_coord(p); u2r=left_x(q)-right_x(p);
11751 u3r=x_coord(q)-left_x(q); set_min_max(ur_packet);
11752 v1r=right_y(p)-y_coord(p); v2r=left_y(q)-right_y(p);
11753 v3r=y_coord(q)-left_y(q); set_min_max(vr_packet);
11754 x1r=right_x(pp)-x_coord(pp); x2r=left_x(qq)-right_x(pp);
11755 x3r=x_coord(qq)-left_x(qq); set_min_max(xr_packet);
11756 y1r=right_y(pp)-y_coord(pp); y2r=left_y(qq)-right_y(pp);
11757 y3r=y_coord(qq)-left_y(qq); set_min_max(yr_packet);
11758 mp->delx=x_coord(p)-x_coord(pp); mp->dely=y_coord(p)-y_coord(pp);
11759 mp->tol=0; mp->uv=r_packets; mp->xy=r_packets;
11760 mp->three_l=0; mp->cur_t=1; mp->cur_tt=1
11762 @ @<Subdivide for a new level of intersection@>=
11763 stack_dx=mp->delx; stack_dy=mp->dely; stack_tol=mp->tol;
11764 stack_uv=mp->uv; stack_xy=mp->xy;
11765 mp->bisect_ptr=mp->bisect_ptr+int_increment;
11766 mp->cur_t+=mp->cur_t; mp->cur_tt+=mp->cur_tt;
11767 u1l=stack_1(u_packet(mp->uv)); u3r=stack_3(u_packet(mp->uv));
11768 u2l=half(u1l+stack_2(u_packet(mp->uv)));
11769 u2r=half(u3r+stack_2(u_packet(mp->uv)));
11770 u3l=half(u2l+u2r); u1r=u3l;
11771 set_min_max(ul_packet); set_min_max(ur_packet);
11772 v1l=stack_1(v_packet(mp->uv)); v3r=stack_3(v_packet(mp->uv));
11773 v2l=half(v1l+stack_2(v_packet(mp->uv)));
11774 v2r=half(v3r+stack_2(v_packet(mp->uv)));
11775 v3l=half(v2l+v2r); v1r=v3l;
11776 set_min_max(vl_packet); set_min_max(vr_packet);
11777 x1l=stack_1(x_packet(mp->xy)); x3r=stack_3(x_packet(mp->xy));
11778 x2l=half(x1l+stack_2(x_packet(mp->xy)));
11779 x2r=half(x3r+stack_2(x_packet(mp->xy)));
11780 x3l=half(x2l+x2r); x1r=x3l;
11781 set_min_max(xl_packet); set_min_max(xr_packet);
11782 y1l=stack_1(y_packet(mp->xy)); y3r=stack_3(y_packet(mp->xy));
11783 y2l=half(y1l+stack_2(y_packet(mp->xy)));
11784 y2r=half(y3r+stack_2(y_packet(mp->xy)));
11785 y3l=half(y2l+y2r); y1r=y3l;
11786 set_min_max(yl_packet); set_min_max(yr_packet);
11787 mp->uv=l_packets; mp->xy=l_packets;
11788 mp->delx+=mp->delx; mp->dely+=mp->dely;
11789 mp->tol=mp->tol-mp->three_l+mp->tol_step;
11790 mp->tol+=mp->tol; mp->three_l=mp->three_l+mp->tol_step
11792 @ @<Advance to the next pair |(cur_t,cur_tt)|@>=
11794 if ( odd(mp->cur_tt) ) {
11795 if ( odd(mp->cur_t) ) {
11796 @<Descend to the previous level and |goto not_found|@>;
11799 mp->delx=mp->delx+stack_1(u_packet(mp->uv))+stack_2(u_packet(mp->uv))
11800 +stack_3(u_packet(mp->uv));
11801 mp->dely=mp->dely+stack_1(v_packet(mp->uv))+stack_2(v_packet(mp->uv))
11802 +stack_3(v_packet(mp->uv));
11803 mp->uv=mp->uv+int_packets; /* switch from |l_packet| to |r_packet| */
11804 decr(mp->cur_tt); mp->xy=mp->xy-int_packets;
11805 /* switch from |r_packet| to |l_packet| */
11806 mp->delx=mp->delx+stack_1(x_packet(mp->xy))+stack_2(x_packet(mp->xy))
11807 +stack_3(x_packet(mp->xy));
11808 mp->dely=mp->dely+stack_1(y_packet(mp->xy))+stack_2(y_packet(mp->xy))
11809 +stack_3(y_packet(mp->xy));
11812 incr(mp->cur_tt); mp->tol=mp->tol+mp->three_l;
11813 mp->delx=mp->delx-stack_1(x_packet(mp->xy))-stack_2(x_packet(mp->xy))
11814 -stack_3(x_packet(mp->xy));
11815 mp->dely=mp->dely-stack_1(y_packet(mp->xy))-stack_2(y_packet(mp->xy))
11816 -stack_3(y_packet(mp->xy));
11817 mp->xy=mp->xy+int_packets; /* switch from |l_packet| to |r_packet| */
11820 @ @<Descend to the previous level...@>=
11822 mp->cur_t=halfp(mp->cur_t); mp->cur_tt=halfp(mp->cur_tt);
11823 if ( mp->cur_t==0 ) return;
11824 mp->bisect_ptr=mp->bisect_ptr-int_increment;
11825 mp->three_l=mp->three_l-mp->tol_step;
11826 mp->delx=stack_dx; mp->dely=stack_dy; mp->tol=stack_tol;
11827 mp->uv=stack_uv; mp->xy=stack_xy;
11831 @ The |path_intersection| procedure is much simpler.
11832 It invokes |cubic_intersection| in lexicographic order until finding a
11833 pair of cubics that intersect. The final intersection times are placed in
11834 |cur_t| and~|cur_tt|.
11836 @c void mp_path_intersection (MP mp,pointer h, pointer hh) {
11837 pointer p,pp; /* link registers that traverse the given paths */
11838 integer n,nn; /* integer parts of intersection times, minus |unity| */
11839 @<Change one-point paths into dead cycles@>;
11844 if ( right_type(p)!=mp_endpoint ) {
11847 if ( right_type(pp)!=mp_endpoint ) {
11848 mp_cubic_intersection(mp, p,pp);
11849 if ( mp->cur_t>0 ) {
11850 mp->cur_t=mp->cur_t+n; mp->cur_tt=mp->cur_tt+nn;
11854 nn=nn+unity; pp=link(pp);
11857 n=n+unity; p=link(p);
11859 mp->tol_step=mp->tol_step+3;
11860 } while (mp->tol_step<=3);
11861 mp->cur_t=-unity; mp->cur_tt=-unity;
11864 @ @<Change one-point paths...@>=
11865 if ( right_type(h)==mp_endpoint ) {
11866 right_x(h)=x_coord(h); left_x(h)=x_coord(h);
11867 right_y(h)=y_coord(h); left_y(h)=y_coord(h); right_type(h)=mp_explicit;
11869 if ( right_type(hh)==mp_endpoint ) {
11870 right_x(hh)=x_coord(hh); left_x(hh)=x_coord(hh);
11871 right_y(hh)=y_coord(hh); left_y(hh)=y_coord(hh); right_type(hh)=mp_explicit;
11874 @* \[24] Dynamic linear equations.
11875 \MP\ users define variables implicitly by stating equations that should be
11876 satisfied; the computer is supposed to be smart enough to solve those equations.
11877 And indeed, the computer tries valiantly to do so, by distinguishing five
11878 different types of numeric values:
11881 |type(p)=mp_known| is the nice case, when |value(p)| is the |scaled| value
11882 of the variable whose address is~|p|.
11885 |type(p)=mp_dependent| means that |value(p)| is not present, but |dep_list(p)|
11886 points to a {\sl dependency list\/} that expresses the value of variable~|p|
11887 as a |scaled| number plus a sum of independent variables with |fraction|
11891 |type(p)=mp_independent| means that |value(p)=64s+m|, where |s>0| is a ``serial
11892 number'' reflecting the time this variable was first used in an equation;
11893 also |0<=m<64|, and each dependent variable
11894 that refers to this one is actually referring to the future value of
11895 this variable times~$2^m$. (Usually |m=0|, but higher degrees of
11896 scaling are sometimes needed to keep the coefficients in dependency lists
11897 from getting too large. The value of~|m| will always be even.)
11900 |type(p)=mp_numeric_type| means that variable |p| hasn't appeared in an
11901 equation before, but it has been explicitly declared to be numeric.
11904 |type(p)=undefined| means that variable |p| hasn't appeared before.
11906 \smallskip\noindent
11907 We have actually discussed these five types in the reverse order of their
11908 history during a computation: Once |known|, a variable never again
11909 becomes |dependent|; once |dependent|, it almost never again becomes
11910 |mp_independent|; once |mp_independent|, it never again becomes |mp_numeric_type|;
11911 and once |mp_numeric_type|, it never again becomes |undefined| (except
11912 of course when the user specifically decides to scrap the old value
11913 and start again). A backward step may, however, take place: Sometimes
11914 a |dependent| variable becomes |mp_independent| again, when one of the
11915 independent variables it depends on is reverting to |undefined|.
11918 The next patch detects overflow of independent-variable serial
11919 numbers. Diagnosed and patched by Thorsten Dahlheimer.
11921 @d s_scale 64 /* the serial numbers are multiplied by this factor */
11922 @d max_indep_vars 0177777777 /* $2^{25}-1$ */
11923 @d max_serial_no 017777777700 /* |max_indep_vars*s_scale| */
11924 @d new_indep(A) /* create a new independent variable */
11925 { if ( mp->serial_no==max_serial_no )
11926 mp_fatal_error(mp, "variable instance identifiers exhausted");
11927 type((A))=mp_independent; mp->serial_no=mp->serial_no+s_scale;
11928 value((A))=mp->serial_no;
11932 integer serial_no; /* the most recent serial number, times |s_scale| */
11934 @ @<Make variable |q+s| newly independent@>=new_indep(q+s)
11936 @ But how are dependency lists represented? It's simple: The linear combination
11937 $\alpha_1v_1+\cdots+\alpha_kv_k+\beta$ appears in |k+1| value nodes. If
11938 |q=dep_list(p)| points to this list, and if |k>0|, then |value(q)=
11939 @t$\alpha_1$@>| (which is a |fraction|); |info(q)| points to the location
11940 of $\alpha_1$; and |link(p)| points to the dependency list
11941 $\alpha_2v_2+\cdots+\alpha_kv_k+\beta$. On the other hand if |k=0|,
11942 then |value(q)=@t$\beta$@>| (which is |scaled|) and |info(q)=null|.
11943 The independent variables $v_1$, \dots,~$v_k$ have been sorted so that
11944 they appear in decreasing order of their |value| fields (i.e., of
11945 their serial numbers). \ (It is convenient to use decreasing order,
11946 since |value(null)=0|. If the independent variables were not sorted by
11947 serial number but by some other criterion, such as their location in |mem|,
11948 the equation-solving mechanism would be too system-dependent, because
11949 the ordering can affect the computed results.)
11951 The |link| field in the node that contains the constant term $\beta$ is
11952 called the {\sl final link\/} of the dependency list. \MP\ maintains
11953 a doubly-linked master list of all dependency lists, in terms of a permanently
11955 in |mem| called |dep_head|. If there are no dependencies, we have
11956 |link(dep_head)=dep_head| and |prev_dep(dep_head)=dep_head|;
11957 otherwise |link(dep_head)| points to the first dependent variable, say~|p|,
11958 and |prev_dep(p)=dep_head|. We have |type(p)=mp_dependent|, and |dep_list(p)|
11959 points to its dependency list. If the final link of that dependency list
11960 occurs in location~|q|, then |link(q)| points to the next dependent
11961 variable (say~|r|); and we have |prev_dep(r)=q|, etc.
11963 @d dep_list(A) link(value_loc((A)))
11964 /* half of the |value| field in a |dependent| variable */
11965 @d prev_dep(A) info(value_loc((A)))
11966 /* the other half; makes a doubly linked list */
11967 @d dep_node_size 2 /* the number of words per dependency node */
11969 @<Initialize table entries...@>= mp->serial_no=0;
11970 link(dep_head)=dep_head; prev_dep(dep_head)=dep_head;
11971 info(dep_head)=null; dep_list(dep_head)=null;
11973 @ Actually the description above contains a little white lie. There's
11974 another kind of variable called |mp_proto_dependent|, which is
11975 just like a |dependent| one except that the $\alpha$ coefficients
11976 in its dependency list are |scaled| instead of being fractions.
11977 Proto-dependency lists are mixed with dependency lists in the
11978 nodes reachable from |dep_head|.
11980 @ Here is a procedure that prints a dependency list in symbolic form.
11981 The second parameter should be either |dependent| or |mp_proto_dependent|,
11982 to indicate the scaling of the coefficients.
11984 @<Declare subroutines for printing expressions@>=
11985 void mp_print_dependency (MP mp,pointer p, small_number t) {
11986 integer v; /* a coefficient */
11987 pointer pp,q; /* for list manipulation */
11990 v=abs(value(p)); q=info(p);
11991 if ( q==null ) { /* the constant term */
11992 if ( (v!=0)||(p==pp) ) {
11993 if ( value(p)>0 ) if ( p!=pp ) mp_print_char(mp, '+');
11994 mp_print_scaled(mp, value(p));
11998 @<Print the coefficient, unless it's $\pm1.0$@>;
11999 if ( type(q)!=mp_independent ) mp_confusion(mp, "dep");
12000 @:this can't happen dep}{\quad dep@>
12001 mp_print_variable_name(mp, q); v=value(q) % s_scale;
12002 while ( v>0 ) { mp_print(mp, "*4"); v=v-2; }
12007 @ @<Print the coefficient, unless it's $\pm1.0$@>=
12008 if ( value(p)<0 ) mp_print_char(mp, '-');
12009 else if ( p!=pp ) mp_print_char(mp, '+');
12010 if ( t==mp_dependent ) v=mp_round_fraction(mp, v);
12011 if ( v!=unity ) mp_print_scaled(mp, v)
12013 @ The maximum absolute value of a coefficient in a given dependency list
12014 is returned by the following simple function.
12016 @c fraction mp_max_coef (MP mp,pointer p) {
12017 fraction x; /* the maximum so far */
12019 while ( info(p)!=null ) {
12020 if ( abs(value(p))>x ) x=abs(value(p));
12026 @ One of the main operations needed on dependency lists is to add a multiple
12027 of one list to the other; we call this |p_plus_fq|, where |p| and~|q| point
12028 to dependency lists and |f| is a fraction.
12030 If the coefficient of any independent variable becomes |coef_bound| or
12031 more, in absolute value, this procedure changes the type of that variable
12032 to `|independent_needing_fix|', and sets the global variable |fix_needed|
12033 to~|true|. The value of $|coef_bound|=\mu$ is chosen so that
12034 $\mu^2+\mu<8$; this means that the numbers we deal with won't
12035 get too large. (Instead of the ``optimum'' $\mu=(\sqrt{33}-1)/2\approx
12036 2.3723$, the safer value 7/3 is taken as the threshold.)
12038 The changes mentioned in the preceding paragraph are actually done only if
12039 the global variable |watch_coefs| is |true|. But it usually is; in fact,
12040 it is |false| only when \MP\ is making a dependency list that will soon
12041 be equated to zero.
12043 Several procedures that act on dependency lists, including |p_plus_fq|,
12044 set the global variable |dep_final| to the final (constant term) node of
12045 the dependency list that they produce.
12047 @d coef_bound 04525252525 /* |fraction| approximation to 7/3 */
12048 @d independent_needing_fix 0
12051 boolean fix_needed; /* does at least one |independent| variable need scaling? */
12052 boolean watch_coefs; /* should we scale coefficients that exceed |coef_bound|? */
12053 pointer dep_final; /* location of the constant term and final link */
12056 mp->fix_needed=false; mp->watch_coefs=true;
12058 @ The |p_plus_fq| procedure has a fourth parameter, |t|, that should be
12059 set to |mp_proto_dependent| if |p| is a proto-dependency list. In this
12060 case |f| will be |scaled|, not a |fraction|. Similarly, the fifth parameter~|tt|
12061 should be |mp_proto_dependent| if |q| is a proto-dependency list.
12063 List |q| is unchanged by the operation; but list |p| is totally destroyed.
12065 The final link of the dependency list or proto-dependency list returned
12066 by |p_plus_fq| is the same as the original final link of~|p|. Indeed, the
12067 constant term of the result will be located in the same |mem| location
12068 as the original constant term of~|p|.
12070 Coefficients of the result are assumed to be zero if they are less than
12071 a certain threshold. This compensates for inevitable rounding errors,
12072 and tends to make more variables `|known|'. The threshold is approximately
12073 $10^{-5}$ in the case of normal dependency lists, $10^{-4}$ for
12074 proto-dependencies.
12076 @d fraction_threshold 2685 /* a |fraction| coefficient less than this is zeroed */
12077 @d half_fraction_threshold 1342 /* half of |fraction_threshold| */
12078 @d scaled_threshold 8 /* a |scaled| coefficient less than this is zeroed */
12079 @d half_scaled_threshold 4 /* half of |scaled_threshold| */
12081 @<Declare basic dependency-list subroutines@>=
12082 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12083 pointer q, small_number t, small_number tt) ;
12086 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12087 pointer q, small_number t, small_number tt) {
12088 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12089 pointer r,s; /* for list manipulation */
12090 integer mp_threshold; /* defines a neighborhood of zero */
12091 integer v; /* temporary register */
12092 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
12093 else mp_threshold=scaled_threshold;
12094 r=temp_head; pp=info(p); qq=info(q);
12100 @<Contribute a term from |p|, plus |f| times the
12101 corresponding term from |q|@>
12103 } else if ( value(pp)<value(qq) ) {
12104 @<Contribute a term from |q|, multiplied by~|f|@>
12106 link(r)=p; r=p; p=link(p); pp=info(p);
12109 if ( t==mp_dependent )
12110 value(p)=mp_slow_add(mp, value(p),mp_take_fraction(mp, value(q),f));
12112 value(p)=mp_slow_add(mp, value(p),mp_take_scaled(mp, value(q),f));
12113 link(r)=p; mp->dep_final=p;
12114 return link(temp_head);
12117 @ @<Contribute a term from |p|, plus |f|...@>=
12119 if ( tt==mp_dependent ) v=value(p)+mp_take_fraction(mp, f,value(q));
12120 else v=value(p)+mp_take_scaled(mp, f,value(q));
12121 value(p)=v; s=p; p=link(p);
12122 if ( abs(v)<mp_threshold ) {
12123 mp_free_node(mp, s,dep_node_size);
12125 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12126 type(qq)=independent_needing_fix; mp->fix_needed=true;
12130 pp=info(p); q=link(q); qq=info(q);
12133 @ @<Contribute a term from |q|, multiplied by~|f|@>=
12135 if ( tt==mp_dependent ) v=mp_take_fraction(mp, f,value(q));
12136 else v=mp_take_scaled(mp, f,value(q));
12137 if ( abs(v)>halfp(mp_threshold) ) {
12138 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=v;
12139 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12140 type(qq)=independent_needing_fix; mp->fix_needed=true;
12144 q=link(q); qq=info(q);
12147 @ It is convenient to have another subroutine for the special case
12148 of |p_plus_fq| when |f=1.0|. In this routine lists |p| and |q| are
12149 both of the same type~|t| (either |dependent| or |mp_proto_dependent|).
12151 @c pointer mp_p_plus_q (MP mp,pointer p, pointer q, small_number t) {
12152 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12153 pointer r,s; /* for list manipulation */
12154 integer mp_threshold; /* defines a neighborhood of zero */
12155 integer v; /* temporary register */
12156 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
12157 else mp_threshold=scaled_threshold;
12158 r=temp_head; pp=info(p); qq=info(q);
12164 @<Contribute a term from |p|, plus the
12165 corresponding term from |q|@>
12167 } else if ( value(pp)<value(qq) ) {
12168 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=value(q);
12169 q=link(q); qq=info(q); link(r)=s; r=s;
12171 link(r)=p; r=p; p=link(p); pp=info(p);
12174 value(p)=mp_slow_add(mp, value(p),value(q));
12175 link(r)=p; mp->dep_final=p;
12176 return link(temp_head);
12179 @ @<Contribute a term from |p|, plus the...@>=
12181 v=value(p)+value(q);
12182 value(p)=v; s=p; p=link(p); pp=info(p);
12183 if ( abs(v)<mp_threshold ) {
12184 mp_free_node(mp, s,dep_node_size);
12186 if ( (abs(v)>=coef_bound ) && mp->watch_coefs ) {
12187 type(qq)=independent_needing_fix; mp->fix_needed=true;
12191 q=link(q); qq=info(q);
12194 @ A somewhat simpler routine will multiply a dependency list
12195 by a given constant~|v|. The constant is either a |fraction| less than
12196 |fraction_one|, or it is |scaled|. In the latter case we might be forced to
12197 convert a dependency list to a proto-dependency list.
12198 Parameters |t0| and |t1| are the list types before and after;
12199 they should agree unless |t0=mp_dependent| and |t1=mp_proto_dependent|
12200 and |v_is_scaled=true|.
12202 @c pointer mp_p_times_v (MP mp,pointer p, integer v, small_number t0,
12203 small_number t1, boolean v_is_scaled) {
12204 pointer r,s; /* for list manipulation */
12205 integer w; /* tentative coefficient */
12206 integer mp_threshold;
12207 boolean scaling_down;
12208 if ( t0!=t1 ) scaling_down=true; else scaling_down=! v_is_scaled;
12209 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
12210 else mp_threshold=half_scaled_threshold;
12212 while ( info(p)!=null ) {
12213 if ( scaling_down ) w=mp_take_fraction(mp, v,value(p));
12214 else w=mp_take_scaled(mp, v,value(p));
12215 if ( abs(w)<=mp_threshold ) {
12216 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12218 if ( abs(w)>=coef_bound ) {
12219 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12221 link(r)=p; r=p; value(p)=w; p=link(p);
12225 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
12226 else value(p)=mp_take_fraction(mp, value(p),v);
12227 return link(temp_head);
12230 @ Similarly, we sometimes need to divide a dependency list
12231 by a given |scaled| constant.
12233 @<Declare basic dependency-list subroutines@>=
12234 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12235 t0, small_number t1) ;
12238 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12239 t0, small_number t1) {
12240 pointer r,s; /* for list manipulation */
12241 integer w; /* tentative coefficient */
12242 integer mp_threshold;
12243 boolean scaling_down;
12244 if ( t0!=t1 ) scaling_down=true; else scaling_down=false;
12245 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
12246 else mp_threshold=half_scaled_threshold;
12248 while ( info( p)!=null ) {
12249 if ( scaling_down ) {
12250 if ( abs(v)<02000000 ) w=mp_make_scaled(mp, value(p),v*010000);
12251 else w=mp_make_scaled(mp, mp_round_fraction(mp, value(p)),v);
12253 w=mp_make_scaled(mp, value(p),v);
12255 if ( abs(w)<=mp_threshold ) {
12256 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12258 if ( abs(w)>=coef_bound ) {
12259 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12261 link(r)=p; r=p; value(p)=w; p=link(p);
12264 link(r)=p; value(p)=mp_make_scaled(mp, value(p),v);
12265 return link(temp_head);
12268 @ Here's another utility routine for dependency lists. When an independent
12269 variable becomes dependent, we want to remove it from all existing
12270 dependencies. The |p_with_x_becoming_q| function computes the
12271 dependency list of~|p| after variable~|x| has been replaced by~|q|.
12273 This procedure has basically the same calling conventions as |p_plus_fq|:
12274 List~|q| is unchanged; list~|p| is destroyed; the constant node and the
12275 final link are inherited from~|p|; and the fourth parameter tells whether
12276 or not |p| is |mp_proto_dependent|. However, the global variable |dep_final|
12277 is not altered if |x| does not occur in list~|p|.
12279 @c pointer mp_p_with_x_becoming_q (MP mp,pointer p,
12280 pointer x, pointer q, small_number t) {
12281 pointer r,s; /* for list manipulation */
12282 integer v; /* coefficient of |x| */
12283 integer sx; /* serial number of |x| */
12284 s=p; r=temp_head; sx=value(x);
12285 while ( value(info(s))>sx ) { r=s; s=link(s); };
12286 if ( info(s)!=x ) {
12289 link(temp_head)=p; link(r)=link(s); v=value(s);
12290 mp_free_node(mp, s,dep_node_size);
12291 return mp_p_plus_fq(mp, link(temp_head),v,q,t,mp_dependent);
12295 @ Here's a simple procedure that reports an error when a variable
12296 has just received a known value that's out of the required range.
12298 @<Declare basic dependency-list subroutines@>=
12299 void mp_val_too_big (MP mp,scaled x) ;
12301 @ @c void mp_val_too_big (MP mp,scaled x) {
12302 if ( mp->internal[mp_warning_check]>0 ) {
12303 print_err("Value is too large ("); mp_print_scaled(mp, x); mp_print_char(mp, ')');
12304 @.Value is too large@>
12305 help4("The equation I just processed has given some variable")
12306 ("a value of 4096 or more. Continue and I'll try to cope")
12307 ("with that big value; but it might be dangerous.")
12308 ("(Set warningcheck:=0 to suppress this message.)");
12313 @ When a dependent variable becomes known, the following routine
12314 removes its dependency list. Here |p| points to the variable, and
12315 |q| points to the dependency list (which is one node long).
12317 @<Declare basic dependency-list subroutines@>=
12318 void mp_make_known (MP mp,pointer p, pointer q) ;
12320 @ @c void mp_make_known (MP mp,pointer p, pointer q) {
12321 int t; /* the previous type */
12322 prev_dep(link(q))=prev_dep(p);
12323 link(prev_dep(p))=link(q); t=type(p);
12324 type(p)=mp_known; value(p)=value(q); mp_free_node(mp, q,dep_node_size);
12325 if ( abs(value(p))>=fraction_one ) mp_val_too_big(mp, value(p));
12326 if (( mp->internal[mp_tracing_equations]>0) && mp_interesting(mp, p) ) {
12327 mp_begin_diagnostic(mp); mp_print_nl(mp, "#### ");
12328 @:]]]\#\#\#\#_}{\.{\#\#\#\#}@>
12329 mp_print_variable_name(mp, p);
12330 mp_print_char(mp, '='); mp_print_scaled(mp, value(p));
12331 mp_end_diagnostic(mp, false);
12333 if (( mp->cur_exp==p ) && mp->cur_type==t ) {
12334 mp->cur_type=mp_known; mp->cur_exp=value(p);
12335 mp_free_node(mp, p,value_node_size);
12339 @ The |fix_dependencies| routine is called into action when |fix_needed|
12340 has been triggered. The program keeps a list~|s| of independent variables
12341 whose coefficients must be divided by~4.
12343 In unusual cases, this fixup process might reduce one or more coefficients
12344 to zero, so that a variable will become known more or less by default.
12346 @<Declare basic dependency-list subroutines@>=
12347 void mp_fix_dependencies (MP mp);
12349 @ @c void mp_fix_dependencies (MP mp) {
12350 pointer p,q,r,s,t; /* list manipulation registers */
12351 pointer x; /* an independent variable */
12352 r=link(dep_head); s=null;
12353 while ( r!=dep_head ){
12355 @<Run through the dependency list for variable |t|, fixing
12356 all nodes, and ending with final link~|q|@>;
12358 if ( q==dep_list(t) ) mp_make_known(mp, t,q);
12360 while ( s!=null ) {
12361 p=link(s); x=info(s); free_avail(s); s=p;
12362 type(x)=mp_independent; value(x)=value(x)+2;
12364 mp->fix_needed=false;
12367 @ @d independent_being_fixed 1 /* this variable already appears in |s| */
12369 @<Run through the dependency list for variable |t|...@>=
12370 r=value_loc(t); /* |link(r)=dep_list(t)| */
12372 q=link(r); x=info(q);
12373 if ( x==null ) break;
12374 if ( type(x)<=independent_being_fixed ) {
12375 if ( type(x)<independent_being_fixed ) {
12376 p=mp_get_avail(mp); link(p)=s; s=p;
12377 info(s)=x; type(x)=independent_being_fixed;
12379 value(q)=value(q) / 4;
12380 if ( value(q)==0 ) {
12381 link(r)=link(q); mp_free_node(mp, q,dep_node_size); q=r;
12388 @ The |new_dep| routine installs a dependency list~|p| into the value node~|q|,
12389 linking it into the list of all known dependencies. We assume that
12390 |dep_final| points to the final node of list~|p|.
12392 @c void mp_new_dep (MP mp,pointer q, pointer p) {
12393 pointer r; /* what used to be the first dependency */
12394 dep_list(q)=p; prev_dep(q)=dep_head;
12395 r=link(dep_head); link(mp->dep_final)=r; prev_dep(r)=mp->dep_final;
12399 @ Here is one of the ways a dependency list gets started.
12400 The |const_dependency| routine produces a list that has nothing but
12403 @c pointer mp_const_dependency (MP mp, scaled v) {
12404 mp->dep_final=mp_get_node(mp, dep_node_size);
12405 value(mp->dep_final)=v; info(mp->dep_final)=null;
12406 return mp->dep_final;
12409 @ And here's a more interesting way to start a dependency list from scratch:
12410 The parameter to |single_dependency| is the location of an
12411 independent variable~|x|, and the result is the simple dependency list
12414 In the unlikely event that the given independent variable has been doubled so
12415 often that we can't refer to it with a nonzero coefficient,
12416 |single_dependency| returns the simple list `0'. This case can be
12417 recognized by testing that the returned list pointer is equal to
12420 @c pointer mp_single_dependency (MP mp,pointer p) {
12421 pointer q; /* the new dependency list */
12422 integer m; /* the number of doublings */
12423 m=value(p) % s_scale;
12425 return mp_const_dependency(mp, 0);
12427 q=mp_get_node(mp, dep_node_size);
12428 value(q)=two_to_the(28-m); info(q)=p;
12429 link(q)=mp_const_dependency(mp, 0);
12434 @ We sometimes need to make an exact copy of a dependency list.
12436 @c pointer mp_copy_dep_list (MP mp,pointer p) {
12437 pointer q; /* the new dependency list */
12438 q=mp_get_node(mp, dep_node_size); mp->dep_final=q;
12440 info(mp->dep_final)=info(p); value(mp->dep_final)=value(p);
12441 if ( info(mp->dep_final)==null ) break;
12442 link(mp->dep_final)=mp_get_node(mp, dep_node_size);
12443 mp->dep_final=link(mp->dep_final); p=link(p);
12448 @ But how do variables normally become known? Ah, now we get to the heart of the
12449 equation-solving mechanism. The |linear_eq| procedure is given a |dependent|
12450 or |mp_proto_dependent| list,~|p|, in which at least one independent variable
12451 appears. It equates this list to zero, by choosing an independent variable
12452 with the largest coefficient and making it dependent on the others. The
12453 newly dependent variable is eliminated from all current dependencies,
12454 thereby possibly making other dependent variables known.
12456 The given list |p| is, of course, totally destroyed by all this processing.
12458 @c void mp_linear_eq (MP mp, pointer p, small_number t) {
12459 pointer q,r,s; /* for link manipulation */
12460 pointer x; /* the variable that loses its independence */
12461 integer n; /* the number of times |x| had been halved */
12462 integer v; /* the coefficient of |x| in list |p| */
12463 pointer prev_r; /* lags one step behind |r| */
12464 pointer final_node; /* the constant term of the new dependency list */
12465 integer w; /* a tentative coefficient */
12466 @<Find a node |q| in list |p| whose coefficient |v| is largest@>;
12467 x=info(q); n=value(x) % s_scale;
12468 @<Divide list |p| by |-v|, removing node |q|@>;
12469 if ( mp->internal[mp_tracing_equations]>0 ) {
12470 @<Display the new dependency@>;
12472 @<Simplify all existing dependencies by substituting for |x|@>;
12473 @<Change variable |x| from |independent| to |dependent| or |known|@>;
12474 if ( mp->fix_needed ) mp_fix_dependencies(mp);
12477 @ @<Find a node |q| in list |p| whose coefficient |v| is largest@>=
12478 q=p; r=link(p); v=value(q);
12479 while ( info(r)!=null ) {
12480 if ( abs(value(r))>abs(v) ) { q=r; v=value(r); };
12484 @ Here we want to change the coefficients from |scaled| to |fraction|,
12485 except in the constant term. In the common case of a trivial equation
12486 like `\.{x=3.14}', we will have |v=-fraction_one|, |q=p|, and |t=mp_dependent|.
12488 @<Divide list |p| by |-v|, removing node |q|@>=
12489 s=temp_head; link(s)=p; r=p;
12492 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12494 w=mp_make_fraction(mp, value(r),v);
12495 if ( abs(w)<=half_fraction_threshold ) {
12496 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12502 } while (info(r)!=null);
12503 if ( t==mp_proto_dependent ) {
12504 value(r)=-mp_make_scaled(mp, value(r),v);
12505 } else if ( v!=-fraction_one ) {
12506 value(r)=-mp_make_fraction(mp, value(r),v);
12508 final_node=r; p=link(temp_head)
12510 @ @<Display the new dependency@>=
12511 if ( mp_interesting(mp, x) ) {
12512 mp_begin_diagnostic(mp); mp_print_nl(mp, "## ");
12513 mp_print_variable_name(mp, x);
12514 @:]]]\#\#_}{\.{\#\#}@>
12516 while ( w>0 ) { mp_print(mp, "*4"); w=w-2; };
12517 mp_print_char(mp, '='); mp_print_dependency(mp, p,mp_dependent);
12518 mp_end_diagnostic(mp, false);
12521 @ @<Simplify all existing dependencies by substituting for |x|@>=
12522 prev_r=dep_head; r=link(dep_head);
12523 while ( r!=dep_head ) {
12524 s=dep_list(r); q=mp_p_with_x_becoming_q(mp, s,x,p,type(r));
12525 if ( info(q)==null ) {
12526 mp_make_known(mp, r,q);
12529 do { q=link(q); } while (info(q)!=null);
12535 @ @<Change variable |x| from |independent| to |dependent| or |known|@>=
12536 if ( n>0 ) @<Divide list |p| by $2^n$@>;
12537 if ( info(p)==null ) {
12540 if ( abs(value(x))>=fraction_one ) mp_val_too_big(mp, value(x));
12541 mp_free_node(mp, p,dep_node_size);
12542 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) {
12543 mp->cur_exp=value(x); mp->cur_type=mp_known;
12544 mp_free_node(mp, x,value_node_size);
12547 type(x)=mp_dependent; mp->dep_final=final_node; mp_new_dep(mp, x,p);
12548 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) mp->cur_type=mp_dependent;
12551 @ @<Divide list |p| by $2^n$@>=
12553 s=temp_head; link(temp_head)=p; r=p;
12556 else w=value(r) / two_to_the(n);
12557 if ( (abs(w)<=half_fraction_threshold)&&(info(r)!=null) ) {
12559 mp_free_node(mp, r,dep_node_size);
12564 } while (info(s)!=null);
12568 @ The |check_mem| procedure, which is used only when \MP\ is being
12569 debugged, makes sure that the current dependency lists are well formed.
12571 @<Check the list of linear dependencies@>=
12572 q=dep_head; p=link(q);
12573 while ( p!=dep_head ) {
12574 if ( prev_dep(p)!=q ) {
12575 mp_print_nl(mp, "Bad PREVDEP at "); mp_print_int(mp, p);
12580 r=info(p); q=p; p=link(q);
12581 if ( r==null ) break;
12582 if ( value(info(p))>=value(r) ) {
12583 mp_print_nl(mp, "Out of order at "); mp_print_int(mp, p);
12584 @.Out of order...@>
12589 @* \[25] Dynamic nonlinear equations.
12590 Variables of numeric type are maintained by the general scheme of
12591 independent, dependent, and known values that we have just studied;
12592 and the components of pair and transform variables are handled in the
12593 same way. But \MP\ also has five other types of values: \&{boolean},
12594 \&{string}, \&{pen}, \&{path}, and \&{picture}; what about them?
12596 Equations are allowed between nonlinear quantities, but only in a
12597 simple form. Two variables that haven't yet been assigned values are
12598 either equal to each other, or they're not.
12600 Before a boolean variable has received a value, its type is |mp_unknown_boolean|;
12601 similarly, there are variables whose type is |mp_unknown_string|, |mp_unknown_pen|,
12602 |mp_unknown_path|, and |mp_unknown_picture|. In such cases the value is either
12603 |null| (which means that no other variables are equivalent to this one), or
12604 it points to another variable of the same undefined type. The pointers in the
12605 latter case form a cycle of nodes, which we shall call a ``ring.''
12606 Rings of undefined variables may include capsules, which arise as
12607 intermediate results within expressions or as \&{expr} parameters to macros.
12609 When one member of a ring receives a value, the same value is given to
12610 all the other members. In the case of paths and pictures, this implies
12611 making separate copies of a potentially large data structure; users should
12612 restrain their enthusiasm for such generality, unless they have lots and
12613 lots of memory space.
12615 @ The following procedure is called when a capsule node is being
12616 added to a ring (e.g., when an unknown variable is mentioned in an expression).
12618 @c pointer mp_new_ring_entry (MP mp,pointer p) {
12619 pointer q; /* the new capsule node */
12620 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
12622 if ( value(p)==null ) value(q)=p; else value(q)=value(p);
12627 @ Conversely, we might delete a capsule or a variable before it becomes known.
12628 The following procedure simply detaches a quantity from its ring,
12629 without recycling the storage.
12631 @<Declare the recycling subroutines@>=
12632 void mp_ring_delete (MP mp,pointer p) {
12635 if ( q!=null ) if ( q!=p ){
12636 while ( value(q)!=p ) q=value(q);
12641 @ Eventually there might be an equation that assigns values to all of the
12642 variables in a ring. The |nonlinear_eq| subroutine does the necessary
12643 propagation of values.
12645 If the parameter |flush_p| is |true|, node |p| itself needn't receive a
12646 value, it will soon be recycled.
12648 @c void mp_nonlinear_eq (MP mp,integer v, pointer p, boolean flush_p) {
12649 small_number t; /* the type of ring |p| */
12650 pointer q,r; /* link manipulation registers */
12651 t=type(p)-unknown_tag; q=value(p);
12652 if ( flush_p ) type(p)=mp_vacuous; else p=q;
12654 r=value(q); type(q)=t;
12656 case mp_boolean_type: value(q)=v; break;
12657 case mp_string_type: value(q)=v; add_str_ref(v); break;
12658 case mp_pen_type: value(q)=copy_pen(v); break;
12659 case mp_path_type: value(q)=mp_copy_path(mp, v); break;
12660 case mp_picture_type: value(q)=v; add_edge_ref(v); break;
12661 } /* there ain't no more cases */
12666 @ If two members of rings are equated, and if they have the same type,
12667 the |ring_merge| procedure is called on to make them equivalent.
12669 @c void mp_ring_merge (MP mp,pointer p, pointer q) {
12670 pointer r; /* traverses one list */
12674 @<Exclaim about a redundant equation@>;
12679 r=value(p); value(p)=value(q); value(q)=r;
12682 @ @<Exclaim about a redundant equation@>=
12684 print_err("Redundant equation");
12685 @.Redundant equation@>
12686 help2("I already knew that this equation was true.")
12687 ("But perhaps no harm has been done; let's continue.");
12688 mp_put_get_error(mp);
12691 @* \[26] Introduction to the syntactic routines.
12692 Let's pause a moment now and try to look at the Big Picture.
12693 The \MP\ program consists of three main parts: syntactic routines,
12694 semantic routines, and output routines. The chief purpose of the
12695 syntactic routines is to deliver the user's input to the semantic routines,
12696 while parsing expressions and locating operators and operands. The
12697 semantic routines act as an interpreter responding to these operators,
12698 which may be regarded as commands. And the output routines are
12699 periodically called on to produce compact font descriptions that can be
12700 used for typesetting or for making interim proof drawings. We have
12701 discussed the basic data structures and many of the details of semantic
12702 operations, so we are good and ready to plunge into the part of \MP\ that
12703 actually controls the activities.
12705 Our current goal is to come to grips with the |get_next| procedure,
12706 which is the keystone of \MP's input mechanism. Each call of |get_next|
12707 sets the value of three variables |cur_cmd|, |cur_mod|, and |cur_sym|,
12708 representing the next input token.
12709 $$\vbox{\halign{#\hfil\cr
12710 \hbox{|cur_cmd| denotes a command code from the long list of codes
12712 \hbox{|cur_mod| denotes a modifier of the command code;}\cr
12713 \hbox{|cur_sym| is the hash address of the symbolic token that was
12715 \hbox{\qquad or zero in the case of a numeric or string
12716 or capsule token.}\cr}}$$
12717 Underlying this external behavior of |get_next| is all the machinery
12718 necessary to convert from character files to tokens. At a given time we
12719 may be only partially finished with the reading of several files (for
12720 which \&{input} was specified), and partially finished with the expansion
12721 of some user-defined macros and/or some macro parameters, and partially
12722 finished reading some text that the user has inserted online,
12723 and so on. When reading a character file, the characters must be
12724 converted to tokens; comments and blank spaces must
12725 be removed, numeric and string tokens must be evaluated.
12727 To handle these situations, which might all be present simultaneously,
12728 \MP\ uses various stacks that hold information about the incomplete
12729 activities, and there is a finite state control for each level of the
12730 input mechanism. These stacks record the current state of an implicitly
12731 recursive process, but the |get_next| procedure is not recursive.
12734 eight_bits cur_cmd; /* current command set by |get_next| */
12735 integer cur_mod; /* operand of current command */
12736 halfword cur_sym; /* hash address of current symbol */
12738 @ The |print_cmd_mod| routine prints a symbolic interpretation of a
12739 command code and its modifier.
12740 It consists of a rather tedious sequence of print
12741 commands, and most of it is essentially an inverse to the |primitive|
12742 routine that enters a \MP\ primitive into |hash| and |eqtb|. Therefore almost
12743 all of this procedure appears elsewhere in the program, together with the
12744 corresponding |primitive| calls.
12746 @<Declare the procedure called |print_cmd_mod|@>=
12747 void mp_print_cmd_mod (MP mp,integer c, integer m) {
12749 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>
12750 default: mp_print(mp, "[unknown command code!]"); break;
12754 @ Here is a procedure that displays a given command in braces, in the
12755 user's transcript file.
12757 @d show_cur_cmd_mod mp_show_cmd_mod(mp, mp->cur_cmd,mp->cur_mod)
12760 void mp_show_cmd_mod (MP mp,integer c, integer m) {
12761 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
12762 mp_print_cmd_mod(mp, c,m); mp_print_char(mp, '}');
12763 mp_end_diagnostic(mp, false);
12766 @* \[27] Input stacks and states.
12767 The state of \MP's input mechanism appears in the input stack, whose
12768 entries are records with five fields, called |index|, |start|, |loc|,
12769 |limit|, and |name|. The top element of this stack is maintained in a
12770 global variable for which no subscripting needs to be done; the other
12771 elements of the stack appear in an array. Hence the stack is declared thus:
12775 quarterword index_field;
12776 halfword start_field, loc_field, limit_field, name_field;
12780 in_state_record *input_stack;
12781 integer input_ptr; /* first unused location of |input_stack| */
12782 integer max_in_stack; /* largest value of |input_ptr| when pushing */
12783 in_state_record cur_input; /* the ``top'' input state */
12784 int stack_size; /* maximum number of simultaneous input sources */
12786 @ @<Allocate or initialize ...@>=
12787 mp->stack_size = 300;
12788 mp->input_stack = xmalloc((mp->stack_size+1),sizeof(in_state_record));
12790 @ @<Dealloc variables@>=
12791 xfree(mp->input_stack);
12793 @ We've already defined the special variable |loc==cur_input.loc_field|
12794 in our discussion of basic input-output routines. The other components of
12795 |cur_input| are defined in the same way:
12797 @d index mp->cur_input.index_field /* reference for buffer information */
12798 @d start mp->cur_input.start_field /* starting position in |buffer| */
12799 @d limit mp->cur_input.limit_field /* end of current line in |buffer| */
12800 @d name mp->cur_input.name_field /* name of the current file */
12802 @ Let's look more closely now at the five control variables
12803 (|index|,~|start|,~|loc|,~|limit|,~|name|),
12804 assuming that \MP\ is reading a line of characters that have been input
12805 from some file or from the user's terminal. There is an array called
12806 |buffer| that acts as a stack of all lines of characters that are
12807 currently being read from files, including all lines on subsidiary
12808 levels of the input stack that are not yet completed. \MP\ will return to
12809 the other lines when it is finished with the present input file.
12811 (Incidentally, on a machine with byte-oriented addressing, it would be
12812 appropriate to combine |buffer| with the |str_pool| array,
12813 letting the buffer entries grow downward from the top of the string pool
12814 and checking that these two tables don't bump into each other.)
12816 The line we are currently working on begins in position |start| of the
12817 buffer; the next character we are about to read is |buffer[loc]|; and
12818 |limit| is the location of the last character present. We always have
12819 |loc<=limit|. For convenience, |buffer[limit]| has been set to |"%"|, so
12820 that the end of a line is easily sensed.
12822 The |name| variable is a string number that designates the name of
12823 the current file, if we are reading an ordinary text file. Special codes
12824 |is_term..max_spec_src| indicate other sources of input text.
12826 @d is_term 0 /* |name| value when reading from the terminal for normal input */
12827 @d is_read 1 /* |name| value when executing a \&{readstring} or \&{readfrom} */
12828 @d is_scantok 2 /* |name| value when reading text generated by \&{scantokens} */
12829 @d max_spec_src is_scantok
12831 @ Additional information about the current line is available via the
12832 |index| variable, which counts how many lines of characters are present
12833 in the buffer below the current level. We have |index=0| when reading
12834 from the terminal and prompting the user for each line; then if the user types,
12835 e.g., `\.{input figs}', we will have |index=1| while reading
12836 the file \.{figs.mp}. However, it does not follow that |index| is the
12837 same as the input stack pointer, since many of the levels on the input
12838 stack may come from token lists and some |index| values may correspond
12839 to \.{MPX} files that are not currently on the stack.
12841 The global variable |in_open| is equal to the highest |index| value counting
12842 \.{MPX} files but excluding token-list input levels. Thus, the number of
12843 partially read lines in the buffer is |in_open+1| and we have |in_open>=index|
12844 when we are not reading a token list.
12846 If we are not currently reading from the terminal,
12847 we are reading from the file variable |input_file[index]|. We use
12848 the notation |terminal_input| as a convenient abbreviation for |name=is_term|,
12849 and |cur_file| as an abbreviation for |input_file[index]|.
12851 When \MP\ is not reading from the terminal, the global variable |line| contains
12852 the line number in the current file, for use in error messages. More precisely,
12853 |line| is a macro for |line_stack[index]| and the |line_stack| array gives
12854 the line number for each file in the |input_file| array.
12856 When an \.{MPX} file is opened the file name is stored in the |mpx_name|
12857 array so that the name doesn't get lost when the file is temporarily removed
12858 from the input stack.
12859 Thus when |input_file[k]| is an \.{MPX} file, its name is |mpx_name[k]|
12860 and it contains translated \TeX\ pictures for |input_file[k-1]|.
12861 Since this is not an \.{MPX} file, we have
12862 $$ \hbox{|mpx_name[k-1]<=absent|}. $$
12863 This |name| field is set to |finished| when |input_file[k]| is completely
12866 If more information about the input state is needed, it can be
12867 included in small arrays like those shown here. For example,
12868 the current page or segment number in the input file might be put
12869 into a variable |page|, that is really a macro for the current entry
12870 in `\ignorespaces|page_stack:array[0..max_in_open] of integer|\unskip'
12871 by analogy with |line_stack|.
12872 @^system dependencies@>
12874 @d terminal_input (name==is_term) /* are we reading from the terminal? */
12875 @d cur_file mp->input_file[index] /* the current |FILE *| variable */
12876 @d line mp->line_stack[index] /* current line number in the current source file */
12877 @d in_name mp->iname_stack[index] /* a string used to construct \.{MPX} file names */
12878 @d in_area mp->iarea_stack[index] /* another string for naming \.{MPX} files */
12879 @d absent 1 /* |name_field| value for unused |mpx_in_stack| entries */
12880 @d mpx_reading (mp->mpx_name[index]>absent)
12881 /* when reading a file, is it an \.{MPX} file? */
12883 /* |name_field| value when the corresponding \.{MPX} file is finished */
12886 integer in_open; /* the number of lines in the buffer, less one */
12887 unsigned int open_parens; /* the number of open text files */
12888 FILE * *input_file ;
12889 integer *line_stack ; /* the line number for each file */
12890 char * *iname_stack; /* used for naming \.{MPX} files */
12891 char * *iarea_stack; /* used for naming \.{MPX} files */
12892 halfword*mpx_name ;
12894 @ @<Allocate or ...@>=
12895 mp->input_file = xmalloc((mp->max_in_open+1),sizeof(FILE *));
12896 mp->line_stack = xmalloc((mp->max_in_open+1),sizeof(integer));
12897 mp->iname_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12898 mp->iarea_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12899 mp->mpx_name = xmalloc((mp->max_in_open+1),sizeof(halfword));
12902 for (k=0;k<=mp->max_in_open;k++) {
12903 mp->iname_stack[k] =NULL;
12904 mp->iarea_stack[k] =NULL;
12908 @ @<Dealloc variables@>=
12911 for (l=0;l<=mp->max_in_open;l++) {
12912 xfree(mp->iname_stack[l]);
12913 xfree(mp->iarea_stack[l]);
12916 xfree(mp->input_file);
12917 xfree(mp->line_stack);
12918 xfree(mp->iname_stack);
12919 xfree(mp->iarea_stack);
12920 xfree(mp->mpx_name);
12923 @ However, all this discussion about input state really applies only to the
12924 case that we are inputting from a file. There is another important case,
12925 namely when we are currently getting input from a token list. In this case
12926 |index>max_in_open|, and the conventions about the other state variables
12929 \yskip\hang|loc| is a pointer to the current node in the token list, i.e.,
12930 the node that will be read next. If |loc=null|, the token list has been
12933 \yskip\hang|start| points to the first node of the token list; this node
12934 may or may not contain a reference count, depending on the type of token
12937 \yskip\hang|token_type|, which takes the place of |index| in the
12938 discussion above, is a code number that explains what kind of token list
12941 \yskip\hang|name| points to the |eqtb| address of the control sequence
12942 being expanded, if the current token list is a macro not defined by
12943 \&{vardef}. Macros defined by \&{vardef} have |name=null|; their name
12944 can be deduced by looking at their first two parameters.
12946 \yskip\hang|param_start|, which takes the place of |limit|, tells where
12947 the parameters of the current macro or loop text begin in the |param_stack|.
12949 \yskip\noindent The |token_type| can take several values, depending on
12950 where the current token list came from:
12953 \indent|forever_text|, if the token list being scanned is the body of
12954 a \&{forever} loop;
12956 \indent|loop_text|, if the token list being scanned is the body of
12957 a \&{for} or \&{forsuffixes} loop;
12959 \indent|parameter|, if a \&{text} or \&{suffix} parameter is being scanned;
12961 \indent|backed_up|, if the token list being scanned has been inserted as
12962 `to be read again'.
12964 \indent|inserted|, if the token list being scanned has been inserted as
12965 part of error recovery;
12967 \indent|macro|, if the expansion of a user-defined symbolic token is being
12971 The token list begins with a reference count if and only if |token_type=
12973 @^reference counts@>
12975 @d token_type index /* type of current token list */
12976 @d token_state (index>(int)mp->max_in_open) /* are we scanning a token list? */
12977 @d file_state (index<=(int)mp->max_in_open) /* are we scanning a file line? */
12978 @d param_start limit /* base of macro parameters in |param_stack| */
12979 @d forever_text (mp->max_in_open+1) /* |token_type| code for loop texts */
12980 @d loop_text (mp->max_in_open+2) /* |token_type| code for loop texts */
12981 @d parameter (mp->max_in_open+3) /* |token_type| code for parameter texts */
12982 @d backed_up (mp->max_in_open+4) /* |token_type| code for texts to be reread */
12983 @d inserted (mp->max_in_open+5) /* |token_type| code for inserted texts */
12984 @d macro (mp->max_in_open+6) /* |token_type| code for macro replacement texts */
12986 @ The |param_stack| is an auxiliary array used to hold pointers to the token
12987 lists for parameters at the current level and subsidiary levels of input.
12988 This stack grows at a different rate from the others.
12991 pointer *param_stack; /* token list pointers for parameters */
12992 integer param_ptr; /* first unused entry in |param_stack| */
12993 integer max_param_stack; /* largest value of |param_ptr| */
12995 @ @<Allocate or initialize ...@>=
12996 mp->param_stack = xmalloc((mp->param_size+1),sizeof(pointer));
12998 @ @<Dealloc variables@>=
12999 xfree(mp->param_stack);
13001 @ Notice that the |line| isn't valid when |token_state| is true because it
13002 depends on |index|. If we really need to know the line number for the
13003 topmost file in the index stack we use the following function. If a page
13004 number or other information is needed, this routine should be modified to
13005 compute it as well.
13006 @^system dependencies@>
13008 @<Declare a function called |true_line|@>=
13009 integer mp_true_line (MP mp) {
13010 int k; /* an index into the input stack */
13011 if ( file_state && (name>max_spec_src) ) {
13016 ((mp->input_stack[(k-1)].index_field>mp->max_in_open)||
13017 (mp->input_stack[(k-1)].name_field<=max_spec_src))) {
13020 return mp->line_stack[(k-1)];
13025 @ Thus, the ``current input state'' can be very complicated indeed; there
13026 can be many levels and each level can arise in a variety of ways. The
13027 |show_context| procedure, which is used by \MP's error-reporting routine to
13028 print out the current input state on all levels down to the most recent
13029 line of characters from an input file, illustrates most of these conventions.
13030 The global variable |file_ptr| contains the lowest level that was
13031 displayed by this procedure.
13034 integer file_ptr; /* shallowest level shown by |show_context| */
13036 @ The status at each level is indicated by printing two lines, where the first
13037 line indicates what was read so far and the second line shows what remains
13038 to be read. The context is cropped, if necessary, so that the first line
13039 contains at most |half_error_line| characters, and the second contains
13040 at most |error_line|. Non-current input levels whose |token_type| is
13041 `|backed_up|' are shown only if they have not been fully read.
13043 @c void mp_show_context (MP mp) { /* prints where the scanner is */
13044 int old_setting; /* saved |selector| setting */
13045 @<Local variables for formatting calculations@>
13046 mp->file_ptr=mp->input_ptr; mp->input_stack[mp->file_ptr]=mp->cur_input;
13047 /* store current state */
13049 mp->cur_input=mp->input_stack[mp->file_ptr]; /* enter into the context */
13050 @<Display the current context@>;
13052 if ( (name>max_spec_src) || (mp->file_ptr==0) ) break;
13053 decr(mp->file_ptr);
13055 mp->cur_input=mp->input_stack[mp->input_ptr]; /* restore original state */
13058 @ @<Display the current context@>=
13059 if ( (mp->file_ptr==mp->input_ptr) || file_state ||
13060 (token_type!=backed_up) || (loc!=null) ) {
13061 /* we omit backed-up token lists that have already been read */
13062 mp->tally=0; /* get ready to count characters */
13063 old_setting=mp->selector;
13064 if ( file_state ) {
13065 @<Print location of current line@>;
13066 @<Pseudoprint the line@>;
13068 @<Print type of token list@>;
13069 @<Pseudoprint the token list@>;
13071 mp->selector=old_setting; /* stop pseudoprinting */
13072 @<Print two lines using the tricky pseudoprinted information@>;
13075 @ This routine should be changed, if necessary, to give the best possible
13076 indication of where the current line resides in the input file.
13077 For example, on some systems it is best to print both a page and line number.
13078 @^system dependencies@>
13080 @<Print location of current line@>=
13081 if ( name>max_spec_src ) {
13082 mp_print_nl(mp, "l."); mp_print_int(mp, mp_true_line(mp));
13083 } else if ( terminal_input ) {
13084 if ( mp->file_ptr==0 ) mp_print_nl(mp, "<*>");
13085 else mp_print_nl(mp, "<insert>");
13086 } else if ( name==is_scantok ) {
13087 mp_print_nl(mp, "<scantokens>");
13089 mp_print_nl(mp, "<read>");
13091 mp_print_char(mp, ' ')
13093 @ Can't use case statement here because the |token_type| is not
13094 a constant expression.
13096 @<Print type of token list@>=
13098 if(token_type==forever_text) {
13099 mp_print_nl(mp, "<forever> ");
13100 } else if (token_type==loop_text) {
13101 @<Print the current loop value@>;
13102 } else if (token_type==parameter) {
13103 mp_print_nl(mp, "<argument> ");
13104 } else if (token_type==backed_up) {
13105 if ( loc==null ) mp_print_nl(mp, "<recently read> ");
13106 else mp_print_nl(mp, "<to be read again> ");
13107 } else if (token_type==inserted) {
13108 mp_print_nl(mp, "<inserted text> ");
13109 } else if (token_type==macro) {
13111 if ( name!=null ) mp_print_text(name);
13112 else @<Print the name of a \&{vardef}'d macro@>;
13113 mp_print(mp, "->");
13115 mp_print_nl(mp, "?");/* this should never happen */
13120 @ The parameter that corresponds to a loop text is either a token list
13121 (in the case of \&{forsuffixes}) or a ``capsule'' (in the case of \&{for}).
13122 We'll discuss capsules later; for now, all we need to know is that
13123 the |link| field in a capsule parameter is |void| and that
13124 |print_exp(p,0)| displays the value of capsule~|p| in abbreviated form.
13126 @<Print the current loop value@>=
13127 { mp_print_nl(mp, "<for("); p=mp->param_stack[param_start];
13129 if ( link(p)==mp_void ) mp_print_exp(mp, p,0); /* we're in a \&{for} loop */
13130 else mp_show_token_list(mp, p,null,20,mp->tally);
13132 mp_print(mp, ")> ");
13135 @ The first two parameters of a macro defined by \&{vardef} will be token
13136 lists representing the macro's prefix and ``at point.'' By putting these
13137 together, we get the macro's full name.
13139 @<Print the name of a \&{vardef}'d macro@>=
13140 { p=mp->param_stack[param_start];
13142 mp_show_token_list(mp, mp->param_stack[param_start+1],null,20,mp->tally);
13145 while ( link(q)!=null ) q=link(q);
13146 link(q)=mp->param_stack[param_start+1];
13147 mp_show_token_list(mp, p,null,20,mp->tally);
13152 @ Now it is necessary to explain a little trick. We don't want to store a long
13153 string that corresponds to a token list, because that string might take up
13154 lots of memory; and we are printing during a time when an error message is
13155 being given, so we dare not do anything that might overflow one of \MP's
13156 tables. So `pseudoprinting' is the answer: We enter a mode of printing
13157 that stores characters into a buffer of length |error_line|, where character
13158 $k+1$ is placed into \hbox{|trick_buf[k mod error_line]|} if
13159 |k<trick_count|, otherwise character |k| is dropped. Initially we set
13160 |tally:=0| and |trick_count:=1000000|; then when we reach the
13161 point where transition from line 1 to line 2 should occur, we
13162 set |first_count:=tally| and |trick_count:=@tmax@>(error_line,
13163 tally+1+error_line-half_error_line)|. At the end of the
13164 pseudoprinting, the values of |first_count|, |tally|, and
13165 |trick_count| give us all the information we need to print the two lines,
13166 and all of the necessary text is in |trick_buf|.
13168 Namely, let |l| be the length of the descriptive information that appears
13169 on the first line. The length of the context information gathered for that
13170 line is |k=first_count|, and the length of the context information
13171 gathered for line~2 is $m=\min(|tally|, |trick_count|)-k$. If |l+k<=h|,
13172 where |h=half_error_line|, we print |trick_buf[0..k-1]| after the
13173 descriptive information on line~1, and set |n:=l+k|; here |n| is the
13174 length of line~1. If $l+k>h$, some cropping is necessary, so we set |n:=h|
13175 and print `\.{...}' followed by
13176 $$\hbox{|trick_buf[(l+k-h+3)..k-1]|,}$$
13177 where subscripts of |trick_buf| are circular modulo |error_line|. The
13178 second line consists of |n|~spaces followed by |trick_buf[k..(k+m-1)]|,
13179 unless |n+m>error_line|; in the latter case, further cropping is done.
13180 This is easier to program than to explain.
13182 @<Local variables for formatting...@>=
13183 int i; /* index into |buffer| */
13184 integer l; /* length of descriptive information on line 1 */
13185 integer m; /* context information gathered for line 2 */
13186 int n; /* length of line 1 */
13187 integer p; /* starting or ending place in |trick_buf| */
13188 integer q; /* temporary index */
13190 @ The following code tells the print routines to gather
13191 the desired information.
13193 @d begin_pseudoprint {
13194 l=mp->tally; mp->tally=0; mp->selector=pseudo;
13195 mp->trick_count=1000000;
13197 @d set_trick_count {
13198 mp->first_count=mp->tally;
13199 mp->trick_count=mp->tally+1+mp->error_line-mp->half_error_line;
13200 if ( mp->trick_count<mp->error_line ) mp->trick_count=mp->error_line;
13203 @ And the following code uses the information after it has been gathered.
13205 @<Print two lines using the tricky pseudoprinted information@>=
13206 if ( mp->trick_count==1000000 ) set_trick_count;
13207 /* |set_trick_count| must be performed */
13208 if ( mp->tally<mp->trick_count ) m=mp->tally-mp->first_count;
13209 else m=mp->trick_count-mp->first_count; /* context on line 2 */
13210 if ( l+mp->first_count<=mp->half_error_line ) {
13211 p=0; n=l+mp->first_count;
13213 mp_print(mp, "..."); p=l+mp->first_count-mp->half_error_line+3;
13214 n=mp->half_error_line;
13216 for (q=p;q<=mp->first_count-1;q++) {
13217 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13220 for (q=1;q<=n;q++) {
13221 mp_print_char(mp, ' '); /* print |n| spaces to begin line~2 */
13223 if ( m+n<=mp->error_line ) p=mp->first_count+m;
13224 else p=mp->first_count+(mp->error_line-n-3);
13225 for (q=mp->first_count;q<=p-1;q++) {
13226 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13228 if ( m+n>mp->error_line ) mp_print(mp, "...")
13230 @ But the trick is distracting us from our current goal, which is to
13231 understand the input state. So let's concentrate on the data structures that
13232 are being pseudoprinted as we finish up the |show_context| procedure.
13234 @<Pseudoprint the line@>=
13237 for (i=start;i<=limit-1;i++) {
13238 if ( i==loc ) set_trick_count;
13239 mp_print_str(mp, mp->buffer[i]);
13243 @ @<Pseudoprint the token list@>=
13245 if ( token_type!=macro ) mp_show_token_list(mp, start,loc,100000,0);
13246 else mp_show_macro(mp, start,loc,100000)
13248 @ Here is the missing piece of |show_token_list| that is activated when the
13249 token beginning line~2 is about to be shown:
13251 @<Do magic computation@>=set_trick_count
13253 @* \[28] Maintaining the input stacks.
13254 The following subroutines change the input status in commonly needed ways.
13256 First comes |push_input|, which stores the current state and creates a
13257 new level (having, initially, the same properties as the old).
13259 @d push_input { /* enter a new input level, save the old */
13260 if ( mp->input_ptr>mp->max_in_stack ) {
13261 mp->max_in_stack=mp->input_ptr;
13262 if ( mp->input_ptr==mp->stack_size ) {
13263 int l = (mp->stack_size+(mp->stack_size>>2));
13264 XREALLOC(mp->input_stack, l, in_state_record);
13265 mp->stack_size = l;
13268 mp->input_stack[mp->input_ptr]=mp->cur_input; /* stack the record */
13269 incr(mp->input_ptr);
13272 @ And of course what goes up must come down.
13274 @d pop_input { /* leave an input level, re-enter the old */
13275 decr(mp->input_ptr); mp->cur_input=mp->input_stack[mp->input_ptr];
13278 @ Here is a procedure that starts a new level of token-list input, given
13279 a token list |p| and its type |t|. If |t=macro|, the calling routine should
13280 set |name|, reset~|loc|, and increase the macro's reference count.
13282 @d back_list(A) mp_begin_token_list(mp, (A),backed_up) /* backs up a simple token list */
13284 @c void mp_begin_token_list (MP mp,pointer p, quarterword t) {
13285 push_input; start=p; token_type=t;
13286 param_start=mp->param_ptr; loc=p;
13289 @ When a token list has been fully scanned, the following computations
13290 should be done as we leave that level of input.
13293 @c void mp_end_token_list (MP mp) { /* leave a token-list input level */
13294 pointer p; /* temporary register */
13295 if ( token_type>=backed_up ) { /* token list to be deleted */
13296 if ( token_type<=inserted ) {
13297 mp_flush_token_list(mp, start); goto DONE;
13299 mp_delete_mac_ref(mp, start); /* update reference count */
13302 while ( mp->param_ptr>param_start ) { /* parameters must be flushed */
13303 decr(mp->param_ptr);
13304 p=mp->param_stack[mp->param_ptr];
13306 if ( link(p)==mp_void ) { /* it's an \&{expr} parameter */
13307 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
13309 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
13314 pop_input; check_interrupt;
13317 @ The contents of |cur_cmd,cur_mod,cur_sym| are placed into an equivalent
13318 token by the |cur_tok| routine.
13321 @c @<Declare the procedure called |make_exp_copy|@>;
13322 pointer mp_cur_tok (MP mp) {
13323 pointer p; /* a new token node */
13324 small_number save_type; /* |cur_type| to be restored */
13325 integer save_exp; /* |cur_exp| to be restored */
13326 if ( mp->cur_sym==0 ) {
13327 if ( mp->cur_cmd==capsule_token ) {
13328 save_type=mp->cur_type; save_exp=mp->cur_exp;
13329 mp_make_exp_copy(mp, mp->cur_mod); p=mp_stash_cur_exp(mp); link(p)=null;
13330 mp->cur_type=save_type; mp->cur_exp=save_exp;
13332 p=mp_get_node(mp, token_node_size);
13333 value(p)=mp->cur_mod; name_type(p)=mp_token;
13334 if ( mp->cur_cmd==numeric_token ) type(p)=mp_known;
13335 else type(p)=mp_string_type;
13338 fast_get_avail(p); info(p)=mp->cur_sym;
13343 @ Sometimes \MP\ has read too far and wants to ``unscan'' what it has
13344 seen. The |back_input| procedure takes care of this by putting the token
13345 just scanned back into the input stream, ready to be read again.
13346 If |cur_sym<>0|, the values of |cur_cmd| and |cur_mod| are irrelevant.
13349 void mp_back_input (MP mp);
13351 @ @c void mp_back_input (MP mp) {/* undoes one token of input */
13352 pointer p; /* a token list of length one */
13354 while ( token_state &&(loc==null) )
13355 mp_end_token_list(mp); /* conserve stack space */
13359 @ The |back_error| routine is used when we want to restore or replace an
13360 offending token just before issuing an error message. We disable interrupts
13361 during the call of |back_input| so that the help message won't be lost.
13364 void mp_error (MP mp);
13365 void mp_back_error (MP mp);
13367 @ @c void mp_back_error (MP mp) { /* back up one token and call |error| */
13368 mp->OK_to_interrupt=false;
13370 mp->OK_to_interrupt=true; mp_error(mp);
13372 void mp_ins_error (MP mp) { /* back up one inserted token and call |error| */
13373 mp->OK_to_interrupt=false;
13374 mp_back_input(mp); token_type=inserted;
13375 mp->OK_to_interrupt=true; mp_error(mp);
13378 @ The |begin_file_reading| procedure starts a new level of input for lines
13379 of characters to be read from a file, or as an insertion from the
13380 terminal. It does not take care of opening the file, nor does it set |loc|
13381 or |limit| or |line|.
13382 @^system dependencies@>
13384 @c void mp_begin_file_reading (MP mp) {
13385 if ( mp->in_open==mp->max_in_open )
13386 mp_overflow(mp, "text input levels",mp->max_in_open);
13387 @:MetaPost capacity exceeded text input levels}{\quad text input levels@>
13388 if ( mp->first==mp->buf_size )
13389 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13390 incr(mp->in_open); push_input; index=mp->in_open;
13391 mp->mpx_name[index]=absent;
13393 name=is_term; /* |terminal_input| is now |true| */
13396 @ Conversely, the variables must be downdated when such a level of input
13397 is finished. Any associated \.{MPX} file must also be closed and popped
13398 off the file stack.
13400 @c void mp_end_file_reading (MP mp) {
13401 if ( mp->in_open>index ) {
13402 if ( (mp->mpx_name[mp->in_open]==absent)||(name<=max_spec_src) ) {
13403 mp_confusion(mp, "endinput");
13404 @:this can't happen endinput}{\quad endinput@>
13406 fclose(mp->input_file[mp->in_open]); /* close an \.{MPX} file */
13407 delete_str_ref(mp->mpx_name[mp->in_open]);
13412 if ( index!=mp->in_open ) mp_confusion(mp, "endinput");
13413 if ( name>max_spec_src ) {
13415 delete_str_ref(name);
13419 pop_input; decr(mp->in_open);
13422 @ Here is a function that tries to resume input from an \.{MPX} file already
13423 associated with the current input file. It returns |false| if this doesn't
13426 @c boolean mp_begin_mpx_reading (MP mp) {
13427 if ( mp->in_open!=index+1 ) {
13430 if ( mp->mpx_name[mp->in_open]<=absent ) mp_confusion(mp, "mpx");
13431 @:this can't happen mpx}{\quad mpx@>
13432 if ( mp->first==mp->buf_size )
13433 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13434 push_input; index=mp->in_open;
13436 name=mp->mpx_name[mp->in_open]; add_str_ref(name);
13437 @<Put an empty line in the input buffer@>;
13442 @ This procedure temporarily stops reading an \.{MPX} file.
13444 @c void mp_end_mpx_reading (MP mp) {
13445 if ( mp->in_open!=index ) mp_confusion(mp, "mpx");
13446 @:this can't happen mpx}{\quad mpx@>
13448 @<Complain that we are not at the end of a line in the \.{MPX} file@>;
13454 @ Here we enforce a restriction that simplifies the input stacks considerably.
13455 This should not inconvenience the user because \.{MPX} files are generated
13456 by an auxiliary program called \.{DVItoMP}.
13458 @ @<Complain that we are not at the end of a line in the \.{MPX} file@>=
13460 print_err("`mpxbreak' must be at the end of a line");
13461 help4("This file contains picture expressions for btex...etex")
13462 ("blocks. Such files are normally generated automatically")
13463 ("but this one seems to be messed up. I'm going to ignore")
13464 ("the rest of this line.");
13468 @ In order to keep the stack from overflowing during a long sequence of
13469 inserted `\.{show}' commands, the following routine removes completed
13470 error-inserted lines from memory.
13472 @c void mp_clear_for_error_prompt (MP mp) {
13473 while ( file_state && terminal_input &&
13474 (mp->input_ptr>0)&&(loc==limit) ) mp_end_file_reading(mp);
13475 mp_print_ln(mp); clear_terminal;
13478 @ To get \MP's whole input mechanism going, we perform the following
13481 @<Initialize the input routines@>=
13482 { mp->input_ptr=0; mp->max_in_stack=0;
13483 mp->in_open=0; mp->open_parens=0; mp->max_buf_stack=0;
13484 mp->param_ptr=0; mp->max_param_stack=0;
13486 start=1; index=0; line=0; name=is_term;
13487 mp->mpx_name[0]=absent;
13488 mp->force_eof=false;
13489 if ( ! mp_init_terminal(mp) ) mp_jump_out(mp);
13490 limit=mp->last; mp->first=mp->last+1;
13491 /* |init_terminal| has set |loc| and |last| */
13494 @* \[29] Getting the next token.
13495 The heart of \MP's input mechanism is the |get_next| procedure, which
13496 we shall develop in the next few sections of the program. Perhaps we
13497 shouldn't actually call it the ``heart,'' however; it really acts as \MP's
13498 eyes and mouth, reading the source files and gobbling them up. And it also
13499 helps \MP\ to regurgitate stored token lists that are to be processed again.
13501 The main duty of |get_next| is to input one token and to set |cur_cmd|
13502 and |cur_mod| to that token's command code and modifier. Furthermore, if
13503 the input token is a symbolic token, that token's |hash| address
13504 is stored in |cur_sym|; otherwise |cur_sym| is set to zero.
13506 Underlying this simple description is a certain amount of complexity
13507 because of all the cases that need to be handled.
13508 However, the inner loop of |get_next| is reasonably short and fast.
13510 @ Before getting into |get_next|, we need to consider a mechanism by which
13511 \MP\ helps keep errors from propagating too far. Whenever the program goes
13512 into a mode where it keeps calling |get_next| repeatedly until a certain
13513 condition is met, it sets |scanner_status| to some value other than |normal|.
13514 Then if an input file ends, or if an `\&{outer}' symbol appears,
13515 an appropriate error recovery will be possible.
13517 The global variable |warning_info| helps in this error recovery by providing
13518 additional information. For example, |warning_info| might indicate the
13519 name of a macro whose replacement text is being scanned.
13521 @d normal 0 /* |scanner_status| at ``quiet times'' */
13522 @d skipping 1 /* |scanner_status| when false conditional text is being skipped */
13523 @d flushing 2 /* |scanner_status| when junk after a statement is being ignored */
13524 @d absorbing 3 /* |scanner_status| when a \&{text} parameter is being scanned */
13525 @d var_defining 4 /* |scanner_status| when a \&{vardef} is being scanned */
13526 @d op_defining 5 /* |scanner_status| when a macro \&{def} is being scanned */
13527 @d loop_defining 6 /* |scanner_status| when a \&{for} loop is being scanned */
13528 @d tex_flushing 7 /* |scanner_status| when skipping \TeX\ material */
13531 integer scanner_status; /* are we scanning at high speed? */
13532 integer warning_info; /* if so, what else do we need to know,
13533 in case an error occurs? */
13535 @ @<Initialize the input routines@>=
13536 mp->scanner_status=normal;
13538 @ The following subroutine
13539 is called when an `\&{outer}' symbolic token has been scanned or
13540 when the end of a file has been reached. These two cases are distinguished
13541 by |cur_sym|, which is zero at the end of a file.
13543 @c boolean mp_check_outer_validity (MP mp) {
13544 pointer p; /* points to inserted token list */
13545 if ( mp->scanner_status==normal ) {
13547 } else if ( mp->scanner_status==tex_flushing ) {
13548 @<Check if the file has ended while flushing \TeX\ material and set the
13549 result value for |check_outer_validity|@>;
13551 mp->deletions_allowed=false;
13552 @<Back up an outer symbolic token so that it can be reread@>;
13553 if ( mp->scanner_status>skipping ) {
13554 @<Tell the user what has run away and try to recover@>;
13556 print_err("Incomplete if; all text was ignored after line ");
13557 @.Incomplete if...@>
13558 mp_print_int(mp, mp->warning_info);
13559 help3("A forbidden `outer' token occurred in skipped text.")
13560 ("This kind of error happens when you say `if...' and forget")
13561 ("the matching `fi'. I've inserted a `fi'; this might work.");
13562 if ( mp->cur_sym==0 )
13563 mp->help_line[2]="The file ended while I was skipping conditional text.";
13564 mp->cur_sym=frozen_fi; mp_ins_error(mp);
13566 mp->deletions_allowed=true;
13571 @ @<Check if the file has ended while flushing \TeX\ material and set...@>=
13572 if ( mp->cur_sym!=0 ) {
13575 mp->deletions_allowed=false;
13576 print_err("TeX mode didn't end; all text was ignored after line ");
13577 mp_print_int(mp, mp->warning_info);
13578 help2("The file ended while I was looking for the `etex' to")
13579 ("finish this TeX material. I've inserted `etex' now.");
13580 mp->cur_sym = frozen_etex;
13582 mp->deletions_allowed=true;
13586 @ @<Back up an outer symbolic token so that it can be reread@>=
13587 if ( mp->cur_sym!=0 ) {
13588 p=mp_get_avail(mp); info(p)=mp->cur_sym;
13589 back_list(p); /* prepare to read the symbolic token again */
13592 @ @<Tell the user what has run away...@>=
13594 mp_runaway(mp); /* print the definition-so-far */
13595 if ( mp->cur_sym==0 ) {
13596 print_err("File ended");
13597 @.File ended while scanning...@>
13599 print_err("Forbidden token found");
13600 @.Forbidden token found...@>
13602 mp_print(mp, " while scanning ");
13603 help4("I suspect you have forgotten an `enddef',")
13604 ("causing me to read past where you wanted me to stop.")
13605 ("I'll try to recover; but if the error is serious,")
13606 ("you'd better type `E' or `X' now and fix your file.");
13607 switch (mp->scanner_status) {
13608 @<Complete the error message,
13609 and set |cur_sym| to a token that might help recover from the error@>
13610 } /* there are no other cases */
13614 @ As we consider various kinds of errors, it is also appropriate to
13615 change the first line of the help message just given; |help_line[3]|
13616 points to the string that might be changed.
13618 @<Complete the error message,...@>=
13620 mp_print(mp, "to the end of the statement");
13621 mp->help_line[3]="A previous error seems to have propagated,";
13622 mp->cur_sym=frozen_semicolon;
13625 mp_print(mp, "a text argument");
13626 mp->help_line[3]="It seems that a right delimiter was left out,";
13627 if ( mp->warning_info==0 ) {
13628 mp->cur_sym=frozen_end_group;
13630 mp->cur_sym=frozen_right_delimiter;
13631 equiv(frozen_right_delimiter)=mp->warning_info;
13636 mp_print(mp, "the definition of ");
13637 if ( mp->scanner_status==op_defining )
13638 mp_print_text(mp->warning_info);
13640 mp_print_variable_name(mp, mp->warning_info);
13641 mp->cur_sym=frozen_end_def;
13643 case loop_defining:
13644 mp_print(mp, "the text of a ");
13645 mp_print_text(mp->warning_info);
13646 mp_print(mp, " loop");
13647 mp->help_line[3]="I suspect you have forgotten an `endfor',";
13648 mp->cur_sym=frozen_end_for;
13651 @ The |runaway| procedure displays the first part of the text that occurred
13652 when \MP\ began its special |scanner_status|, if that text has been saved.
13654 @<Declare the procedure called |runaway|@>=
13655 void mp_runaway (MP mp) {
13656 if ( mp->scanner_status>flushing ) {
13657 mp_print_nl(mp, "Runaway ");
13658 switch (mp->scanner_status) {
13659 case absorbing: mp_print(mp, "text?"); break;
13661 case op_defining: mp_print(mp,"definition?"); break;
13662 case loop_defining: mp_print(mp, "loop?"); break;
13663 } /* there are no other cases */
13665 mp_show_token_list(mp, link(hold_head),null,mp->error_line-10,0);
13669 @ We need to mention a procedure that may be called by |get_next|.
13672 void mp_firm_up_the_line (MP mp);
13674 @ And now we're ready to take the plunge into |get_next| itself.
13675 Note that the behavior depends on the |scanner_status| because percent signs
13676 and double quotes need to be passed over when skipping TeX material.
13679 void mp_get_next (MP mp) {
13680 /* sets |cur_cmd|, |cur_mod|, |cur_sym| to next token */
13682 /*restart*/ /* go here to get the next input token */
13683 /*exit*/ /* go here when the next input token has been got */
13684 /*|common_ending|*/ /* go here to finish getting a symbolic token */
13685 /*found*/ /* go here when the end of a symbolic token has been found */
13686 /*switch*/ /* go here to branch on the class of an input character */
13687 /*|start_numeric_token|,|start_decimal_token|,|fin_numeric_token|,|done|*/
13688 /* go here at crucial stages when scanning a number */
13689 int k; /* an index into |buffer| */
13690 ASCII_code c; /* the current character in the buffer */
13691 ASCII_code class; /* its class number */
13692 integer n,f; /* registers for decimal-to-binary conversion */
13695 if ( file_state ) {
13696 @<Input from external file; |goto restart| if no input found,
13697 or |return| if a non-symbolic token is found@>;
13699 @<Input from token list; |goto restart| if end of list or
13700 if a parameter needs to be expanded,
13701 or |return| if a non-symbolic token is found@>;
13704 @<Finish getting the symbolic token in |cur_sym|;
13705 |goto restart| if it is illegal@>;
13708 @ When a symbolic token is declared to be `\&{outer}', its command code
13709 is increased by |outer_tag|.
13712 @<Finish getting the symbolic token in |cur_sym|...@>=
13713 mp->cur_cmd=eq_type(mp->cur_sym); mp->cur_mod=equiv(mp->cur_sym);
13714 if ( mp->cur_cmd>=outer_tag ) {
13715 if ( mp_check_outer_validity(mp) )
13716 mp->cur_cmd=mp->cur_cmd-outer_tag;
13721 @ A percent sign appears in |buffer[limit]|; this makes it unnecessary
13722 to have a special test for end-of-line.
13725 @<Input from external file;...@>=
13728 c=mp->buffer[loc]; incr(loc); class=mp->char_class[c];
13730 case digit_class: goto START_NUMERIC_TOKEN; break;
13732 class=mp->char_class[mp->buffer[loc]];
13733 if ( class>period_class ) {
13735 } else if ( class<period_class ) { /* |class=digit_class| */
13736 n=0; goto START_DECIMAL_TOKEN;
13740 case space_class: goto SWITCH; break;
13741 case percent_class:
13742 if ( mp->scanner_status==tex_flushing ) {
13743 if ( loc<limit ) goto SWITCH;
13745 @<Move to next line of file, or |goto restart| if there is no next line@>;
13750 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13751 else @<Get a string token and |return|@>;
13753 case isolated_classes:
13754 k=loc-1; goto FOUND; break;
13755 case invalid_class:
13756 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13757 else @<Decry the invalid character and |goto restart|@>;
13759 default: break; /* letters, etc. */
13762 while ( mp->char_class[mp->buffer[loc]]==class ) incr(loc);
13764 START_NUMERIC_TOKEN:
13765 @<Get the integer part |n| of a numeric token;
13766 set |f:=0| and |goto fin_numeric_token| if there is no decimal point@>;
13767 START_DECIMAL_TOKEN:
13768 @<Get the fraction part |f| of a numeric token@>;
13770 @<Pack the numeric and fraction parts of a numeric token
13773 mp->cur_sym=mp_id_lookup(mp, k,loc-k);
13776 @ We go to |restart| instead of to |SWITCH|, because |state| might equal
13777 |token_list| after the error has been dealt with
13778 (cf.\ |clear_for_error_prompt|).
13780 @<Decry the invalid...@>=
13782 print_err("Text line contains an invalid character");
13783 @.Text line contains...@>
13784 help2("A funny symbol that I can\'t read has just been input.")
13785 ("Continue, and I'll forget that it ever happened.");
13786 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13790 @ @<Get a string token and |return|@>=
13792 if ( mp->buffer[loc]=='"' ) {
13793 mp->cur_mod=rts("");
13795 k=loc; mp->buffer[limit+1]='"';
13798 } while (mp->buffer[loc]!='"');
13800 @<Decry the missing string delimiter and |goto restart|@>;
13803 mp->cur_mod=mp->buffer[k];
13807 append_char(mp->buffer[k]); incr(k);
13809 mp->cur_mod=mp_make_string(mp);
13812 incr(loc); mp->cur_cmd=string_token;
13816 @ We go to |restart| after this error message, not to |SWITCH|,
13817 because the |clear_for_error_prompt| routine might have reinstated
13818 |token_state| after |error| has finished.
13820 @<Decry the missing string delimiter and |goto restart|@>=
13822 loc=limit; /* the next character to be read on this line will be |"%"| */
13823 print_err("Incomplete string token has been flushed");
13824 @.Incomplete string token...@>
13825 help3("Strings should finish on the same line as they began.")
13826 ("I've deleted the partial string; you might want to")
13827 ("insert another by typing, e.g., `I\"new string\"'.");
13828 mp->deletions_allowed=false; mp_error(mp);
13829 mp->deletions_allowed=true;
13833 @ @<Get the integer part |n| of a numeric token...@>=
13835 while ( mp->char_class[mp->buffer[loc]]==digit_class ) {
13836 if ( n<32768 ) n=10*n+mp->buffer[loc]-'0';
13839 if ( mp->buffer[loc]=='.' )
13840 if ( mp->char_class[mp->buffer[loc+1]]==digit_class )
13843 goto FIN_NUMERIC_TOKEN;
13846 @ @<Get the fraction part |f| of a numeric token@>=
13849 if ( k<17 ) { /* digits for |k>=17| cannot affect the result */
13850 mp->dig[k]=mp->buffer[loc]-'0'; incr(k);
13853 } while (mp->char_class[mp->buffer[loc]]==digit_class);
13854 f=mp_round_decimals(mp, k);
13859 @ @<Pack the numeric and fraction parts of a numeric token and |return|@>=
13861 @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>;
13862 } else if ( mp->scanner_status!=tex_flushing ) {
13863 print_err("Enormous number has been reduced");
13864 @.Enormous number...@>
13865 help2("I can\'t handle numbers bigger than 32767.99998;")
13866 ("so I've changed your constant to that maximum amount.");
13867 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13868 mp->cur_mod=el_gordo;
13870 mp->cur_cmd=numeric_token; return
13872 @ @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>=
13874 mp->cur_mod=n*unity+f;
13875 if ( mp->cur_mod>=fraction_one ) {
13876 if ( (mp->internal[mp_warning_check]>0) &&
13877 (mp->scanner_status!=tex_flushing) ) {
13878 print_err("Number is too large (");
13879 mp_print_scaled(mp, mp->cur_mod);
13880 mp_print_char(mp, ')');
13881 help3("It is at least 4096. Continue and I'll try to cope")
13882 ("with that big value; but it might be dangerous.")
13883 ("(Set warningcheck:=0 to suppress this message.)");
13889 @ Let's consider now what happens when |get_next| is looking at a token list.
13892 @<Input from token list;...@>=
13893 if ( loc>=mp->hi_mem_min ) { /* one-word token */
13894 mp->cur_sym=info(loc); loc=link(loc); /* move to next */
13895 if ( mp->cur_sym>=expr_base ) {
13896 if ( mp->cur_sym>=suffix_base ) {
13897 @<Insert a suffix or text parameter and |goto restart|@>;
13899 mp->cur_cmd=capsule_token;
13900 mp->cur_mod=mp->param_stack[param_start+mp->cur_sym-(expr_base)];
13901 mp->cur_sym=0; return;
13904 } else if ( loc>null ) {
13905 @<Get a stored numeric or string or capsule token and |return|@>
13906 } else { /* we are done with this token list */
13907 mp_end_token_list(mp); goto RESTART; /* resume previous level */
13910 @ @<Insert a suffix or text parameter...@>=
13912 if ( mp->cur_sym>=text_base ) mp->cur_sym=mp->cur_sym-mp->param_size;
13913 /* |param_size=text_base-suffix_base| */
13914 mp_begin_token_list(mp,
13915 mp->param_stack[param_start+mp->cur_sym-(suffix_base)],
13920 @ @<Get a stored numeric or string or capsule token...@>=
13922 if ( name_type(loc)==mp_token ) {
13923 mp->cur_mod=value(loc);
13924 if ( type(loc)==mp_known ) {
13925 mp->cur_cmd=numeric_token;
13927 mp->cur_cmd=string_token; add_str_ref(mp->cur_mod);
13930 mp->cur_mod=loc; mp->cur_cmd=capsule_token;
13932 loc=link(loc); return;
13935 @ All of the easy branches of |get_next| have now been taken care of.
13936 There is one more branch.
13938 @<Move to next line of file, or |goto restart|...@>=
13939 if ( name>max_spec_src ) {
13940 @<Read next line of file into |buffer|, or
13941 |goto restart| if the file has ended@>;
13943 if ( mp->input_ptr>0 ) {
13944 /* text was inserted during error recovery or by \&{scantokens} */
13945 mp_end_file_reading(mp); goto RESTART; /* resume previous level */
13947 if ( mp->selector<log_only || mp->selector>=write_file) mp_open_log_file(mp);
13948 if ( mp->interaction>mp_nonstop_mode ) {
13949 if ( limit==start ) /* previous line was empty */
13950 mp_print_nl(mp, "(Please type a command or say `end')");
13952 mp_print_ln(mp); mp->first=start;
13953 prompt_input("*"); /* input on-line into |buffer| */
13955 limit=mp->last; mp->buffer[limit]='%';
13956 mp->first=limit+1; loc=start;
13958 mp_fatal_error(mp, "*** (job aborted, no legal end found)");
13960 /* nonstop mode, which is intended for overnight batch processing,
13961 never waits for on-line input */
13965 @ The global variable |force_eof| is normally |false|; it is set |true|
13966 by an \&{endinput} command.
13969 boolean force_eof; /* should the next \&{input} be aborted early? */
13971 @ We must decrement |loc| in order to leave the buffer in a valid state
13972 when an error condition causes us to |goto restart| without calling
13973 |end_file_reading|.
13975 @<Read next line of file into |buffer|, or
13976 |goto restart| if the file has ended@>=
13978 incr(line); mp->first=start;
13979 if ( ! mp->force_eof ) {
13980 if ( mp_input_ln(mp, cur_file,true) ) /* not end of file */
13981 mp_firm_up_the_line(mp); /* this sets |limit| */
13983 mp->force_eof=true;
13985 if ( mp->force_eof ) {
13986 mp->force_eof=false;
13988 if ( mpx_reading ) {
13989 @<Complain that the \.{MPX} file ended unexpectly; then set
13990 |cur_sym:=frozen_mpx_break| and |goto comon_ending|@>;
13992 mp_print_char(mp, ')'); decr(mp->open_parens);
13993 update_terminal; /* show user that file has been read */
13994 mp_end_file_reading(mp); /* resume previous level */
13995 if ( mp_check_outer_validity(mp) ) goto RESTART;
13999 mp->buffer[limit]='%'; mp->first=limit+1; loc=start; /* ready to read */
14002 @ We should never actually come to the end of an \.{MPX} file because such
14003 files should have an \&{mpxbreak} after the translation of the last
14004 \&{btex}$\,\ldots\,$\&{etex} block.
14006 @<Complain that the \.{MPX} file ended unexpectly; then set...@>=
14008 mp->mpx_name[index]=finished;
14009 print_err("mpx file ended unexpectedly");
14010 help4("The file had too few picture expressions for btex...etex")
14011 ("blocks. Such files are normally generated automatically")
14012 ("but this one got messed up. You might want to insert a")
14013 ("picture expression now.");
14014 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
14015 mp->cur_sym=frozen_mpx_break; goto COMMON_ENDING;
14018 @ Sometimes we want to make it look as though we have just read a blank line
14019 without really doing so.
14021 @<Put an empty line in the input buffer@>=
14022 mp->last=mp->first; limit=mp->last; /* simulate |input_ln| and |firm_up_the_line| */
14023 mp->buffer[limit]='%'; mp->first=limit+1; loc=start
14025 @ If the user has set the |mp_pausing| parameter to some positive value,
14026 and if nonstop mode has not been selected, each line of input is displayed
14027 on the terminal and the transcript file, followed by `\.{=>}'.
14028 \MP\ waits for a response. If the response is null (i.e., if nothing is
14029 typed except perhaps a few blank spaces), the original
14030 line is accepted as it stands; otherwise the line typed is
14031 used instead of the line in the file.
14033 @c void mp_firm_up_the_line (MP mp) {
14034 size_t k; /* an index into |buffer| */
14036 if ( mp->internal[mp_pausing]>0 ) if ( mp->interaction>mp_nonstop_mode ) {
14037 wake_up_terminal; mp_print_ln(mp);
14038 if ( start<limit ) {
14039 for (k=(size_t)start;k<=(size_t)(limit-1);k++) {
14040 mp_print_str(mp, mp->buffer[k]);
14043 mp->first=limit; prompt_input("=>"); /* wait for user response */
14045 if ( mp->last>mp->first ) {
14046 for (k=mp->first;k<=mp->last-1;k++) { /* move line down in buffer */
14047 mp->buffer[k+start-mp->first]=mp->buffer[k];
14049 limit=start+mp->last-mp->first;
14054 @* \[30] Dealing with \TeX\ material.
14055 The \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}$\,\ldots\,$\&{etex}
14056 features need to be implemented at a low level in the scanning process
14057 so that \MP\ can stay in synch with the a preprocessor that treats
14058 blocks of \TeX\ material as they occur in the input file without trying
14059 to expand \MP\ macros. Thus we need a special version of |get_next|
14060 that does not expand macros and such but does handle \&{btex},
14061 \&{verbatimtex}, etc.
14063 The special version of |get_next| is called |get_t_next|. It works by flushing
14064 \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}\allowbreak
14065 $\,\ldots\,$\&{etex} blocks, switching to the \.{MPX} file when it sees
14066 \&{btex}, and switching back when it sees \&{mpxbreak}.
14072 mp_primitive(mp, "btex",start_tex,btex_code);
14073 @:btex_}{\&{btex} primitive@>
14074 mp_primitive(mp, "verbatimtex",start_tex,verbatim_code);
14075 @:verbatimtex_}{\&{verbatimtex} primitive@>
14076 mp_primitive(mp, "etex",etex_marker,0); mp->eqtb[frozen_etex]=mp->eqtb[mp->cur_sym];
14077 @:etex_}{\&{etex} primitive@>
14078 mp_primitive(mp, "mpxbreak",mpx_break,0); mp->eqtb[frozen_mpx_break]=mp->eqtb[mp->cur_sym];
14079 @:mpx_break_}{\&{mpxbreak} primitive@>
14081 @ @<Cases of |print_cmd...@>=
14082 case start_tex: if ( m==btex_code ) mp_print(mp, "btex");
14083 else mp_print(mp, "verbatimtex"); break;
14084 case etex_marker: mp_print(mp, "etex"); break;
14085 case mpx_break: mp_print(mp, "mpxbreak"); break;
14087 @ Actually, |get_t_next| is a macro that avoids procedure overhead except
14088 in the unusual case where \&{btex}, \&{verbatimtex}, \&{etex}, or \&{mpxbreak}
14091 @d get_t_next {mp_get_next(mp); if ( mp->cur_cmd<=max_pre_command ) mp_t_next(mp); }
14094 void mp_start_mpx_input (MP mp);
14097 void mp_t_next (MP mp) {
14098 int old_status; /* saves the |scanner_status| */
14099 integer old_info; /* saves the |warning_info| */
14100 while ( mp->cur_cmd<=max_pre_command ) {
14101 if ( mp->cur_cmd==mpx_break ) {
14102 if ( ! file_state || (mp->mpx_name[index]==absent) ) {
14103 @<Complain about a misplaced \&{mpxbreak}@>;
14105 mp_end_mpx_reading(mp);
14108 } else if ( mp->cur_cmd==start_tex ) {
14109 if ( token_state || (name<=max_spec_src) ) {
14110 @<Complain that we are not reading a file@>;
14111 } else if ( mpx_reading ) {
14112 @<Complain that \.{MPX} files cannot contain \TeX\ material@>;
14113 } else if ( (mp->cur_mod!=verbatim_code)&&
14114 (mp->mpx_name[index]!=finished) ) {
14115 if ( ! mp_begin_mpx_reading(mp) ) mp_start_mpx_input(mp);
14120 @<Complain about a misplaced \&{etex}@>;
14122 goto COMMON_ENDING;
14124 @<Flush the \TeX\ material@>;
14130 @ We could be in the middle of an operation such as skipping false conditional
14131 text when \TeX\ material is encountered, so we must be careful to save the
14134 @<Flush the \TeX\ material@>=
14135 old_status=mp->scanner_status;
14136 old_info=mp->warning_info;
14137 mp->scanner_status=tex_flushing;
14138 mp->warning_info=line;
14139 do { mp_get_next(mp); } while (mp->cur_cmd!=etex_marker);
14140 mp->scanner_status=old_status;
14141 mp->warning_info=old_info
14143 @ @<Complain that \.{MPX} files cannot contain \TeX\ material@>=
14144 { print_err("An mpx file cannot contain btex or verbatimtex blocks");
14145 help4("This file contains picture expressions for btex...etex")
14146 ("blocks. Such files are normally generated automatically")
14147 ("but this one seems to be messed up. I'll just keep going")
14148 ("and hope for the best.");
14152 @ @<Complain that we are not reading a file@>=
14153 { print_err("You can only use `btex' or `verbatimtex' in a file");
14154 help3("I'll have to ignore this preprocessor command because it")
14155 ("only works when there is a file to preprocess. You might")
14156 ("want to delete everything up to the next `etex`.");
14160 @ @<Complain about a misplaced \&{mpxbreak}@>=
14161 { print_err("Misplaced mpxbreak");
14162 help2("I'll ignore this preprocessor command because it")
14163 ("doesn't belong here");
14167 @ @<Complain about a misplaced \&{etex}@>=
14168 { print_err("Extra etex will be ignored");
14169 help1("There is no btex or verbatimtex for this to match");
14173 @* \[31] Scanning macro definitions.
14174 \MP\ has a variety of ways to tuck tokens away into token lists for later
14175 use: Macros can be defined with \&{def}, \&{vardef}, \&{primarydef}, etc.;
14176 repeatable code can be defined with \&{for}, \&{forever}, \&{forsuffixes}.
14177 All such operations are handled by the routines in this part of the program.
14179 The modifier part of each command code is zero for the ``ending delimiters''
14180 like \&{enddef} and \&{endfor}.
14182 @d start_def 1 /* command modifier for \&{def} */
14183 @d var_def 2 /* command modifier for \&{vardef} */
14184 @d end_def 0 /* command modifier for \&{enddef} */
14185 @d start_forever 1 /* command modifier for \&{forever} */
14186 @d end_for 0 /* command modifier for \&{endfor} */
14189 mp_primitive(mp, "def",macro_def,start_def);
14190 @:def_}{\&{def} primitive@>
14191 mp_primitive(mp, "vardef",macro_def,var_def);
14192 @:var_def_}{\&{vardef} primitive@>
14193 mp_primitive(mp, "primarydef",macro_def,secondary_primary_macro);
14194 @:primary_def_}{\&{primarydef} primitive@>
14195 mp_primitive(mp, "secondarydef",macro_def,tertiary_secondary_macro);
14196 @:secondary_def_}{\&{secondarydef} primitive@>
14197 mp_primitive(mp, "tertiarydef",macro_def,expression_tertiary_macro);
14198 @:tertiary_def_}{\&{tertiarydef} primitive@>
14199 mp_primitive(mp, "enddef",macro_def,end_def); mp->eqtb[frozen_end_def]=mp->eqtb[mp->cur_sym];
14200 @:end_def_}{\&{enddef} primitive@>
14202 mp_primitive(mp, "for",iteration,expr_base);
14203 @:for_}{\&{for} primitive@>
14204 mp_primitive(mp, "forsuffixes",iteration,suffix_base);
14205 @:for_suffixes_}{\&{forsuffixes} primitive@>
14206 mp_primitive(mp, "forever",iteration,start_forever);
14207 @:forever_}{\&{forever} primitive@>
14208 mp_primitive(mp, "endfor",iteration,end_for); mp->eqtb[frozen_end_for]=mp->eqtb[mp->cur_sym];
14209 @:end_for_}{\&{endfor} primitive@>
14211 @ @<Cases of |print_cmd...@>=
14213 if ( m<=var_def ) {
14214 if ( m==start_def ) mp_print(mp, "def");
14215 else if ( m<start_def ) mp_print(mp, "enddef");
14216 else mp_print(mp, "vardef");
14217 } else if ( m==secondary_primary_macro ) {
14218 mp_print(mp, "primarydef");
14219 } else if ( m==tertiary_secondary_macro ) {
14220 mp_print(mp, "secondarydef");
14222 mp_print(mp, "tertiarydef");
14226 if ( m<=start_forever ) {
14227 if ( m==start_forever ) mp_print(mp, "forever");
14228 else mp_print(mp, "endfor");
14229 } else if ( m==expr_base ) {
14230 mp_print(mp, "for");
14232 mp_print(mp, "forsuffixes");
14236 @ Different macro-absorbing operations have different syntaxes, but they
14237 also have a lot in common. There is a list of special symbols that are to
14238 be replaced by parameter tokens; there is a special command code that
14239 ends the definition; the quotation conventions are identical. Therefore
14240 it makes sense to have most of the work done by a single subroutine. That
14241 subroutine is called |scan_toks|.
14243 The first parameter to |scan_toks| is the command code that will
14244 terminate scanning (either |macro_def|, |loop_repeat|, or |iteration|).
14246 The second parameter, |subst_list|, points to a (possibly empty) list
14247 of two-word nodes whose |info| and |value| fields specify symbol tokens
14248 before and after replacement. The list will be returned to free storage
14251 The third parameter is simply appended to the token list that is built.
14252 And the final parameter tells how many of the special operations
14253 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#} are to be replaced by suffix parameters.
14254 When such parameters are present, they are called \.{(SUFFIX0)},
14255 \.{(SUFFIX1)}, and \.{(SUFFIX2)}.
14257 @c pointer mp_scan_toks (MP mp,command_code terminator, pointer
14258 subst_list, pointer tail_end, small_number suffix_count) {
14259 pointer p; /* tail of the token list being built */
14260 pointer q; /* temporary for link management */
14261 integer balance; /* left delimiters minus right delimiters */
14262 p=hold_head; balance=1; link(hold_head)=null;
14265 if ( mp->cur_sym>0 ) {
14266 @<Substitute for |cur_sym|, if it's on the |subst_list|@>;
14267 if ( mp->cur_cmd==terminator ) {
14268 @<Adjust the balance; |break| if it's zero@>;
14269 } else if ( mp->cur_cmd==macro_special ) {
14270 @<Handle quoted symbols, \.{\#\AT!}, \.{\AT!}, or \.{\AT!\#}@>;
14273 link(p)=mp_cur_tok(mp); p=link(p);
14275 link(p)=tail_end; mp_flush_node_list(mp, subst_list);
14276 return link(hold_head);
14279 @ @<Substitute for |cur_sym|...@>=
14282 while ( q!=null ) {
14283 if ( info(q)==mp->cur_sym ) {
14284 mp->cur_sym=value(q); mp->cur_cmd=relax; break;
14290 @ @<Adjust the balance; |break| if it's zero@>=
14291 if ( mp->cur_mod>0 ) {
14299 @ Four commands are intended to be used only within macro texts: \&{quote},
14300 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#}. They are variants of a single command
14301 code called |macro_special|.
14303 @d quote 0 /* |macro_special| modifier for \&{quote} */
14304 @d macro_prefix 1 /* |macro_special| modifier for \.{\#\AT!} */
14305 @d macro_at 2 /* |macro_special| modifier for \.{\AT!} */
14306 @d macro_suffix 3 /* |macro_special| modifier for \.{\AT!\#} */
14309 mp_primitive(mp, "quote",macro_special,quote);
14310 @:quote_}{\&{quote} primitive@>
14311 mp_primitive(mp, "#@@",macro_special,macro_prefix);
14312 @:]]]\#\AT!_}{\.{\#\AT!} primitive@>
14313 mp_primitive(mp, "@@",macro_special,macro_at);
14314 @:]]]\AT!_}{\.{\AT!} primitive@>
14315 mp_primitive(mp, "@@#",macro_special,macro_suffix);
14316 @:]]]\AT!\#_}{\.{\AT!\#} primitive@>
14318 @ @<Cases of |print_cmd...@>=
14319 case macro_special:
14321 case macro_prefix: mp_print(mp, "#@@"); break;
14322 case macro_at: mp_print_char(mp, '@@'); break;
14323 case macro_suffix: mp_print(mp, "@@#"); break;
14324 default: mp_print(mp, "quote"); break;
14328 @ @<Handle quoted...@>=
14330 if ( mp->cur_mod==quote ) { get_t_next; }
14331 else if ( mp->cur_mod<=suffix_count )
14332 mp->cur_sym=suffix_base-1+mp->cur_mod;
14335 @ Here is a routine that's used whenever a token will be redefined. If
14336 the user's token is unredefinable, the `|frozen_inaccessible|' token is
14337 substituted; the latter is redefinable but essentially impossible to use,
14338 hence \MP's tables won't get fouled up.
14340 @c void mp_get_symbol (MP mp) { /* sets |cur_sym| to a safe symbol */
14343 if ( (mp->cur_sym==0)||(mp->cur_sym>frozen_inaccessible) ) {
14344 print_err("Missing symbolic token inserted");
14345 @.Missing symbolic token...@>
14346 help3("Sorry: You can\'t redefine a number, string, or expr.")
14347 ("I've inserted an inaccessible symbol so that your")
14348 ("definition will be completed without mixing me up too badly.");
14349 if ( mp->cur_sym>0 )
14350 mp->help_line[2]="Sorry: You can\'t redefine my error-recovery tokens.";
14351 else if ( mp->cur_cmd==string_token )
14352 delete_str_ref(mp->cur_mod);
14353 mp->cur_sym=frozen_inaccessible; mp_ins_error(mp); goto RESTART;
14357 @ Before we actually redefine a symbolic token, we need to clear away its
14358 former value, if it was a variable. The following stronger version of
14359 |get_symbol| does that.
14361 @c void mp_get_clear_symbol (MP mp) {
14362 mp_get_symbol(mp); mp_clear_symbol(mp, mp->cur_sym,false);
14365 @ Here's another little subroutine; it checks that an equals sign
14366 or assignment sign comes along at the proper place in a macro definition.
14368 @c void mp_check_equals (MP mp) {
14369 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
14370 mp_missing_err(mp, "=");
14372 help5("The next thing in this `def' should have been `=',")
14373 ("because I've already looked at the definition heading.")
14374 ("But don't worry; I'll pretend that an equals sign")
14375 ("was present. Everything from here to `enddef'")
14376 ("will be the replacement text of this macro.");
14381 @ A \&{primarydef}, \&{secondarydef}, or \&{tertiarydef} is rather easily
14382 handled now that we have |scan_toks|. In this case there are
14383 two parameters, which will be \.{EXPR0} and \.{EXPR1} (i.e.,
14384 |expr_base| and |expr_base+1|).
14386 @c void mp_make_op_def (MP mp) {
14387 command_code m; /* the type of definition */
14388 pointer p,q,r; /* for list manipulation */
14390 mp_get_symbol(mp); q=mp_get_node(mp, token_node_size);
14391 info(q)=mp->cur_sym; value(q)=expr_base;
14392 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym;
14393 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14394 info(p)=mp->cur_sym; value(p)=expr_base+1; link(p)=q;
14395 get_t_next; mp_check_equals(mp);
14396 mp->scanner_status=op_defining; q=mp_get_avail(mp); ref_count(q)=null;
14397 r=mp_get_avail(mp); link(q)=r; info(r)=general_macro;
14398 link(r)=mp_scan_toks(mp, macro_def,p,null,0);
14399 mp->scanner_status=normal; eq_type(mp->warning_info)=m;
14400 equiv(mp->warning_info)=q; mp_get_x_next(mp);
14403 @ Parameters to macros are introduced by the keywords \&{expr},
14404 \&{suffix}, \&{text}, \&{primary}, \&{secondary}, and \&{tertiary}.
14407 mp_primitive(mp, "expr",param_type,expr_base);
14408 @:expr_}{\&{expr} primitive@>
14409 mp_primitive(mp, "suffix",param_type,suffix_base);
14410 @:suffix_}{\&{suffix} primitive@>
14411 mp_primitive(mp, "text",param_type,text_base);
14412 @:text_}{\&{text} primitive@>
14413 mp_primitive(mp, "primary",param_type,primary_macro);
14414 @:primary_}{\&{primary} primitive@>
14415 mp_primitive(mp, "secondary",param_type,secondary_macro);
14416 @:secondary_}{\&{secondary} primitive@>
14417 mp_primitive(mp, "tertiary",param_type,tertiary_macro);
14418 @:tertiary_}{\&{tertiary} primitive@>
14420 @ @<Cases of |print_cmd...@>=
14422 if ( m>=expr_base ) {
14423 if ( m==expr_base ) mp_print(mp, "expr");
14424 else if ( m==suffix_base ) mp_print(mp, "suffix");
14425 else mp_print(mp, "text");
14426 } else if ( m<secondary_macro ) {
14427 mp_print(mp, "primary");
14428 } else if ( m==secondary_macro ) {
14429 mp_print(mp, "secondary");
14431 mp_print(mp, "tertiary");
14435 @ Let's turn next to the more complex processing associated with \&{def}
14436 and \&{vardef}. When the following procedure is called, |cur_mod|
14437 should be either |start_def| or |var_def|.
14439 @c @<Declare the procedure called |check_delimiter|@>;
14440 @<Declare the function called |scan_declared_variable|@>;
14441 void mp_scan_def (MP mp) {
14442 int m; /* the type of definition */
14443 int n; /* the number of special suffix parameters */
14444 int k; /* the total number of parameters */
14445 int c; /* the kind of macro we're defining */
14446 pointer r; /* parameter-substitution list */
14447 pointer q; /* tail of the macro token list */
14448 pointer p; /* temporary storage */
14449 halfword base; /* |expr_base|, |suffix_base|, or |text_base| */
14450 pointer l_delim,r_delim; /* matching delimiters */
14451 m=mp->cur_mod; c=general_macro; link(hold_head)=null;
14452 q=mp_get_avail(mp); ref_count(q)=null; r=null;
14453 @<Scan the token or variable to be defined;
14454 set |n|, |scanner_status|, and |warning_info|@>;
14456 if ( mp->cur_cmd==left_delimiter ) {
14457 @<Absorb delimited parameters, putting them into lists |q| and |r|@>;
14459 if ( mp->cur_cmd==param_type ) {
14460 @<Absorb undelimited parameters, putting them into list |r|@>;
14462 mp_check_equals(mp);
14463 p=mp_get_avail(mp); info(p)=c; link(q)=p;
14464 @<Attach the replacement text to the tail of node |p|@>;
14465 mp->scanner_status=normal; mp_get_x_next(mp);
14468 @ We don't put `|frozen_end_group|' into the replacement text of
14469 a \&{vardef}, because the user may want to redefine `\.{endgroup}'.
14471 @<Attach the replacement text to the tail of node |p|@>=
14472 if ( m==start_def ) {
14473 link(p)=mp_scan_toks(mp, macro_def,r,null,n);
14475 q=mp_get_avail(mp); info(q)=mp->bg_loc; link(p)=q;
14476 p=mp_get_avail(mp); info(p)=mp->eg_loc;
14477 link(q)=mp_scan_toks(mp, macro_def,r,p,n);
14479 if ( mp->warning_info==bad_vardef )
14480 mp_flush_token_list(mp, value(bad_vardef))
14484 int eg_loc; /* hash addresses of `\.{begingroup}' and `\.{endgroup}' */
14486 @ @<Scan the token or variable to be defined;...@>=
14487 if ( m==start_def ) {
14488 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym; get_t_next;
14489 mp->scanner_status=op_defining; n=0;
14490 eq_type(mp->warning_info)=defined_macro; equiv(mp->warning_info)=q;
14492 p=mp_scan_declared_variable(mp);
14493 mp_flush_variable(mp, equiv(info(p)),link(p),true);
14494 mp->warning_info=mp_find_variable(mp, p); mp_flush_list(mp, p);
14495 if ( mp->warning_info==null ) @<Change to `\.{a bad variable}'@>;
14496 mp->scanner_status=var_defining; n=2;
14497 if ( mp->cur_cmd==macro_special ) if ( mp->cur_mod==macro_suffix ) {/* \.{\AT!\#} */
14500 type(mp->warning_info)=mp_unsuffixed_macro-2+n; value(mp->warning_info)=q;
14501 } /* |mp_suffixed_macro=mp_unsuffixed_macro+1| */
14503 @ @<Change to `\.{a bad variable}'@>=
14505 print_err("This variable already starts with a macro");
14506 @.This variable already...@>
14507 help2("After `vardef a' you can\'t say `vardef a.b'.")
14508 ("So I'll have to discard this definition.");
14509 mp_error(mp); mp->warning_info=bad_vardef;
14512 @ @<Initialize table entries...@>=
14513 name_type(bad_vardef)=mp_root; link(bad_vardef)=frozen_bad_vardef;
14514 equiv(frozen_bad_vardef)=bad_vardef; eq_type(frozen_bad_vardef)=tag_token;
14516 @ @<Absorb delimited parameters, putting them into lists |q| and |r|@>=
14518 l_delim=mp->cur_sym; r_delim=mp->cur_mod; get_t_next;
14519 if ( (mp->cur_cmd==param_type)&&(mp->cur_mod>=expr_base) ) {
14522 print_err("Missing parameter type; `expr' will be assumed");
14523 @.Missing parameter type@>
14524 help1("You should've had `expr' or `suffix' or `text' here.");
14525 mp_back_error(mp); base=expr_base;
14527 @<Absorb parameter tokens for type |base|@>;
14528 mp_check_delimiter(mp, l_delim,r_delim);
14530 } while (mp->cur_cmd==left_delimiter)
14532 @ @<Absorb parameter tokens for type |base|@>=
14534 link(q)=mp_get_avail(mp); q=link(q); info(q)=base+k;
14535 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14536 value(p)=base+k; info(p)=mp->cur_sym;
14537 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14538 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
14539 incr(k); link(p)=r; r=p; get_t_next;
14540 } while (mp->cur_cmd==comma)
14542 @ @<Absorb undelimited parameters, putting them into list |r|@>=
14544 p=mp_get_node(mp, token_node_size);
14545 if ( mp->cur_mod<expr_base ) {
14546 c=mp->cur_mod; value(p)=expr_base+k;
14548 value(p)=mp->cur_mod+k;
14549 if ( mp->cur_mod==expr_base ) c=expr_macro;
14550 else if ( mp->cur_mod==suffix_base ) c=suffix_macro;
14553 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14554 incr(k); mp_get_symbol(mp); info(p)=mp->cur_sym; link(p)=r; r=p; get_t_next;
14555 if ( c==expr_macro ) if ( mp->cur_cmd==of_token ) {
14556 c=of_macro; p=mp_get_node(mp, token_node_size);
14557 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14558 value(p)=expr_base+k; mp_get_symbol(mp); info(p)=mp->cur_sym;
14559 link(p)=r; r=p; get_t_next;
14563 @* \[32] Expanding the next token.
14564 Only a few command codes |<min_command| can possibly be returned by
14565 |get_t_next|; in increasing order, they are
14566 |if_test|, |fi_or_else|, |input|, |iteration|, |repeat_loop|,
14567 |exit_test|, |relax|, |scan_tokens|, |expand_after|, and |defined_macro|.
14569 \MP\ usually gets the next token of input by saying |get_x_next|. This is
14570 like |get_t_next| except that it keeps getting more tokens until
14571 finding |cur_cmd>=min_command|. In other words, |get_x_next| expands
14572 macros and removes conditionals or iterations or input instructions that
14575 It follows that |get_x_next| might invoke itself recursively. In fact,
14576 there is massive recursion, since macro expansion can involve the
14577 scanning of arbitrarily complex expressions, which in turn involve
14578 macro expansion and conditionals, etc.
14581 Therefore it's necessary to declare a whole bunch of |forward|
14582 procedures at this point, and to insert some other procedures
14583 that will be invoked by |get_x_next|.
14586 void mp_scan_primary (MP mp);
14587 void mp_scan_secondary (MP mp);
14588 void mp_scan_tertiary (MP mp);
14589 void mp_scan_expression (MP mp);
14590 void mp_scan_suffix (MP mp);
14591 @<Declare the procedure called |macro_call|@>;
14592 void mp_get_boolean (MP mp);
14593 void mp_pass_text (MP mp);
14594 void mp_conditional (MP mp);
14595 void mp_start_input (MP mp);
14596 void mp_begin_iteration (MP mp);
14597 void mp_resume_iteration (MP mp);
14598 void mp_stop_iteration (MP mp);
14600 @ An auxiliary subroutine called |expand| is used by |get_x_next|
14601 when it has to do exotic expansion commands.
14603 @c void mp_expand (MP mp) {
14604 pointer p; /* for list manipulation */
14605 size_t k; /* something that we hope is |<=buf_size| */
14606 pool_pointer j; /* index into |str_pool| */
14607 if ( mp->internal[mp_tracing_commands]>unity )
14608 if ( mp->cur_cmd!=defined_macro )
14610 switch (mp->cur_cmd) {
14612 mp_conditional(mp); /* this procedure is discussed in Part 36 below */
14615 @<Terminate the current conditional and skip to \&{fi}@>;
14618 @<Initiate or terminate input from a file@>;
14621 if ( mp->cur_mod==end_for ) {
14622 @<Scold the user for having an extra \&{endfor}@>;
14624 mp_begin_iteration(mp); /* this procedure is discussed in Part 37 below */
14631 @<Exit a loop if the proper time has come@>;
14636 @<Expand the token after the next token@>;
14639 @<Put a string into the input buffer@>;
14641 case defined_macro:
14642 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14644 }; /* there are no other cases */
14647 @ @<Scold the user...@>=
14649 print_err("Extra `endfor'");
14651 help2("I'm not currently working on a for loop,")
14652 ("so I had better not try to end anything.");
14656 @ The processing of \&{input} involves the |start_input| subroutine,
14657 which will be declared later; the processing of \&{endinput} is trivial.
14660 mp_primitive(mp, "input",input,0);
14661 @:input_}{\&{input} primitive@>
14662 mp_primitive(mp, "endinput",input,1);
14663 @:end_input_}{\&{endinput} primitive@>
14665 @ @<Cases of |print_cmd_mod|...@>=
14667 if ( m==0 ) mp_print(mp, "input");
14668 else mp_print(mp, "endinput");
14671 @ @<Initiate or terminate input...@>=
14672 if ( mp->cur_mod>0 ) mp->force_eof=true;
14673 else mp_start_input(mp)
14675 @ We'll discuss the complicated parts of loop operations later. For now
14676 it suffices to know that there's a global variable called |loop_ptr|
14677 that will be |null| if no loop is in progress.
14680 { while ( token_state &&(loc==null) )
14681 mp_end_token_list(mp); /* conserve stack space */
14682 if ( mp->loop_ptr==null ) {
14683 print_err("Lost loop");
14685 help2("I'm confused; after exiting from a loop, I still seem")
14686 ("to want to repeat it. I'll try to forget the problem.");
14689 mp_resume_iteration(mp); /* this procedure is in Part 37 below */
14693 @ @<Exit a loop if the proper time has come@>=
14694 { mp_get_boolean(mp);
14695 if ( mp->internal[mp_tracing_commands]>unity )
14696 mp_show_cmd_mod(mp, nullary,mp->cur_exp);
14697 if ( mp->cur_exp==true_code ) {
14698 if ( mp->loop_ptr==null ) {
14699 print_err("No loop is in progress");
14700 @.No loop is in progress@>
14701 help1("Why say `exitif' when there's nothing to exit from?");
14702 if ( mp->cur_cmd==semicolon ) mp_error(mp); else mp_back_error(mp);
14704 @<Exit prematurely from an iteration@>;
14706 } else if ( mp->cur_cmd!=semicolon ) {
14707 mp_missing_err(mp, ";");
14709 help2("After `exitif <boolean exp>' I expect to see a semicolon.")
14710 ("I shall pretend that one was there."); mp_back_error(mp);
14714 @ Here we use the fact that |forever_text| is the only |token_type| that
14715 is less than |loop_text|.
14717 @<Exit prematurely...@>=
14720 if ( file_state ) {
14721 mp_end_file_reading(mp);
14723 if ( token_type<=loop_text ) p=start;
14724 mp_end_token_list(mp);
14727 if ( p!=info(mp->loop_ptr) ) mp_fatal_error(mp, "*** (loop confusion)");
14729 mp_stop_iteration(mp); /* this procedure is in Part 34 below */
14732 @ @<Expand the token after the next token@>=
14734 p=mp_cur_tok(mp); get_t_next;
14735 if ( mp->cur_cmd<min_command ) mp_expand(mp);
14736 else mp_back_input(mp);
14740 @ @<Put a string into the input buffer@>=
14741 { mp_get_x_next(mp); mp_scan_primary(mp);
14742 if ( mp->cur_type!=mp_string_type ) {
14743 mp_disp_err(mp, null,"Not a string");
14745 help2("I'm going to flush this expression, since")
14746 ("scantokens should be followed by a known string.");
14747 mp_put_get_flush_error(mp, 0);
14750 if ( length(mp->cur_exp)>0 )
14751 @<Pretend we're reading a new one-line file@>;
14755 @ @<Pretend we're reading a new one-line file@>=
14756 { mp_begin_file_reading(mp); name=is_scantok;
14757 k=mp->first+length(mp->cur_exp);
14758 if ( k>=mp->max_buf_stack ) {
14759 while ( k>=mp->buf_size ) {
14760 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
14762 mp->max_buf_stack=k+1;
14764 j=mp->str_start[mp->cur_exp]; limit=k;
14765 while ( mp->first<(size_t)limit ) {
14766 mp->buffer[mp->first]=mp->str_pool[j]; incr(j); incr(mp->first);
14768 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
14769 mp_flush_cur_exp(mp, 0);
14772 @ Here finally is |get_x_next|.
14774 The expression scanning routines to be considered later
14775 communicate via the global quantities |cur_type| and |cur_exp|;
14776 we must be very careful to save and restore these quantities while
14777 macros are being expanded.
14781 void mp_get_x_next (MP mp);
14783 @ @c void mp_get_x_next (MP mp) {
14784 pointer save_exp; /* a capsule to save |cur_type| and |cur_exp| */
14786 if ( mp->cur_cmd<min_command ) {
14787 save_exp=mp_stash_cur_exp(mp);
14789 if ( mp->cur_cmd==defined_macro )
14790 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14794 } while (mp->cur_cmd<min_command);
14795 mp_unstash_cur_exp(mp, save_exp); /* that restores |cur_type| and |cur_exp| */
14799 @ Now let's consider the |macro_call| procedure, which is used to start up
14800 all user-defined macros. Since the arguments to a macro might be expressions,
14801 |macro_call| is recursive.
14804 The first parameter to |macro_call| points to the reference count of the
14805 token list that defines the macro. The second parameter contains any
14806 arguments that have already been parsed (see below). The third parameter
14807 points to the symbolic token that names the macro. If the third parameter
14808 is |null|, the macro was defined by \&{vardef}, so its name can be
14809 reconstructed from the prefix and ``at'' arguments found within the
14812 What is this second parameter? It's simply a linked list of one-word items,
14813 whose |info| fields point to the arguments. In other words, if |arg_list=null|,
14814 no arguments have been scanned yet; otherwise |info(arg_list)| points to
14815 the first scanned argument, and |link(arg_list)| points to the list of
14816 further arguments (if any).
14818 Arguments of type \&{expr} are so-called capsules, which we will
14819 discuss later when we concentrate on expressions; they can be
14820 recognized easily because their |link| field is |void|. Arguments of type
14821 \&{suffix} and \&{text} are token lists without reference counts.
14823 @ After argument scanning is complete, the arguments are moved to the
14824 |param_stack|. (They can't be put on that stack any sooner, because
14825 the stack is growing and shrinking in unpredictable ways as more arguments
14826 are being acquired.) Then the macro body is fed to the scanner; i.e.,
14827 the replacement text of the macro is placed at the top of the \MP's
14828 input stack, so that |get_t_next| will proceed to read it next.
14830 @<Declare the procedure called |macro_call|@>=
14831 @<Declare the procedure called |print_macro_name|@>;
14832 @<Declare the procedure called |print_arg|@>;
14833 @<Declare the procedure called |scan_text_arg|@>;
14834 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14835 pointer macro_name) ;
14838 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14839 pointer macro_name) {
14840 /* invokes a user-defined control sequence */
14841 pointer r; /* current node in the macro's token list */
14842 pointer p,q; /* for list manipulation */
14843 integer n; /* the number of arguments */
14844 pointer tail = 0; /* tail of the argument list */
14845 pointer l_delim=0,r_delim=0; /* a delimiter pair */
14846 r=link(def_ref); add_mac_ref(def_ref);
14847 if ( arg_list==null ) {
14850 @<Determine the number |n| of arguments already supplied,
14851 and set |tail| to the tail of |arg_list|@>;
14853 if ( mp->internal[mp_tracing_macros]>0 ) {
14854 @<Show the text of the macro being expanded, and the existing arguments@>;
14856 @<Scan the remaining arguments, if any; set |r| to the first token
14857 of the replacement text@>;
14858 @<Feed the arguments and replacement text to the scanner@>;
14861 @ @<Show the text of the macro...@>=
14862 mp_begin_diagnostic(mp); mp_print_ln(mp);
14863 mp_print_macro_name(mp, arg_list,macro_name);
14864 if ( n==3 ) mp_print(mp, "@@#"); /* indicate a suffixed macro */
14865 mp_show_macro(mp, def_ref,null,100000);
14866 if ( arg_list!=null ) {
14870 mp_print_arg(mp, q,n,0);
14871 incr(n); p=link(p);
14874 mp_end_diagnostic(mp, false)
14877 @ @<Declare the procedure called |print_macro_name|@>=
14878 void mp_print_macro_name (MP mp,pointer a, pointer n);
14881 void mp_print_macro_name (MP mp,pointer a, pointer n) {
14882 pointer p,q; /* they traverse the first part of |a| */
14888 mp_print_text(info(info(link(a))));
14891 while ( link(q)!=null ) q=link(q);
14892 link(q)=info(link(a));
14893 mp_show_token_list(mp, p,null,1000,0);
14899 @ @<Declare the procedure called |print_arg|@>=
14900 void mp_print_arg (MP mp,pointer q, integer n, pointer b) ;
14903 void mp_print_arg (MP mp,pointer q, integer n, pointer b) {
14904 if ( link(q)==mp_void ) mp_print_nl(mp, "(EXPR");
14905 else if ( (b<text_base)&&(b!=text_macro) ) mp_print_nl(mp, "(SUFFIX");
14906 else mp_print_nl(mp, "(TEXT");
14907 mp_print_int(mp, n); mp_print(mp, ")<-");
14908 if ( link(q)==mp_void ) mp_print_exp(mp, q,1);
14909 else mp_show_token_list(mp, q,null,1000,0);
14912 @ @<Determine the number |n| of arguments already supplied...@>=
14914 n=1; tail=arg_list;
14915 while ( link(tail)!=null ) {
14916 incr(n); tail=link(tail);
14920 @ @<Scan the remaining arguments, if any; set |r|...@>=
14921 mp->cur_cmd=comma+1; /* anything |<>comma| will do */
14922 while ( info(r)>=expr_base ) {
14923 @<Scan the delimited argument represented by |info(r)|@>;
14926 if ( mp->cur_cmd==comma ) {
14927 print_err("Too many arguments to ");
14928 @.Too many arguments...@>
14929 mp_print_macro_name(mp, arg_list,macro_name); mp_print_char(mp, ';');
14930 mp_print_nl(mp, " Missing `"); mp_print_text(r_delim);
14932 mp_print(mp, "' has been inserted");
14933 help3("I'm going to assume that the comma I just read was a")
14934 ("right delimiter, and then I'll begin expanding the macro.")
14935 ("You might want to delete some tokens before continuing.");
14938 if ( info(r)!=general_macro ) {
14939 @<Scan undelimited argument(s)@>;
14943 @ At this point, the reader will find it advisable to review the explanation
14944 of token list format that was presented earlier, paying special attention to
14945 the conventions that apply only at the beginning of a macro's token list.
14947 On the other hand, the reader will have to take the expression-parsing
14948 aspects of the following program on faith; we will explain |cur_type|
14949 and |cur_exp| later. (Several things in this program depend on each other,
14950 and it's necessary to jump into the circle somewhere.)
14952 @<Scan the delimited argument represented by |info(r)|@>=
14953 if ( mp->cur_cmd!=comma ) {
14955 if ( mp->cur_cmd!=left_delimiter ) {
14956 print_err("Missing argument to ");
14957 @.Missing argument...@>
14958 mp_print_macro_name(mp, arg_list,macro_name);
14959 help3("That macro has more parameters than you thought.")
14960 ("I'll continue by pretending that each missing argument")
14961 ("is either zero or null.");
14962 if ( info(r)>=suffix_base ) {
14963 mp->cur_exp=null; mp->cur_type=mp_token_list;
14965 mp->cur_exp=0; mp->cur_type=mp_known;
14967 mp_back_error(mp); mp->cur_cmd=right_delimiter;
14970 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
14972 @<Scan the argument represented by |info(r)|@>;
14973 if ( mp->cur_cmd!=comma )
14974 @<Check that the proper right delimiter was present@>;
14976 @<Append the current expression to |arg_list|@>
14978 @ @<Check that the proper right delim...@>=
14979 if ( (mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
14980 if ( info(link(r))>=expr_base ) {
14981 mp_missing_err(mp, ",");
14983 help3("I've finished reading a macro argument and am about to")
14984 ("read another; the arguments weren't delimited correctly.")
14985 ("You might want to delete some tokens before continuing.");
14986 mp_back_error(mp); mp->cur_cmd=comma;
14988 mp_missing_err(mp, str(text(r_delim)));
14990 help2("I've gotten to the end of the macro parameter list.")
14991 ("You might want to delete some tokens before continuing.");
14996 @ A \&{suffix} or \&{text} parameter will be have been scanned as
14997 a token list pointed to by |cur_exp|, in which case we will have
14998 |cur_type=token_list|.
15000 @<Append the current expression to |arg_list|@>=
15002 p=mp_get_avail(mp);
15003 if ( mp->cur_type==mp_token_list ) info(p)=mp->cur_exp;
15004 else info(p)=mp_stash_cur_exp(mp);
15005 if ( mp->internal[mp_tracing_macros]>0 ) {
15006 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,info(r));
15007 mp_end_diagnostic(mp, false);
15009 if ( arg_list==null ) arg_list=p;
15014 @ @<Scan the argument represented by |info(r)|@>=
15015 if ( info(r)>=text_base ) {
15016 mp_scan_text_arg(mp, l_delim,r_delim);
15019 if ( info(r)>=suffix_base ) mp_scan_suffix(mp);
15020 else mp_scan_expression(mp);
15023 @ The parameters to |scan_text_arg| are either a pair of delimiters
15024 or zero; the latter case is for undelimited text arguments, which
15025 end with the first semicolon or \&{endgroup} or \&{end} that is not
15026 contained in a group.
15028 @<Declare the procedure called |scan_text_arg|@>=
15029 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) ;
15032 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) {
15033 integer balance; /* excess of |l_delim| over |r_delim| */
15034 pointer p; /* list tail */
15035 mp->warning_info=l_delim; mp->scanner_status=absorbing;
15036 p=hold_head; balance=1; link(hold_head)=null;
15039 if ( l_delim==0 ) {
15040 @<Adjust the balance for an undelimited argument; |break| if done@>;
15042 @<Adjust the balance for a delimited argument; |break| if done@>;
15044 link(p)=mp_cur_tok(mp); p=link(p);
15046 mp->cur_exp=link(hold_head); mp->cur_type=mp_token_list;
15047 mp->scanner_status=normal;
15050 @ @<Adjust the balance for a delimited argument...@>=
15051 if ( mp->cur_cmd==right_delimiter ) {
15052 if ( mp->cur_mod==l_delim ) {
15054 if ( balance==0 ) break;
15056 } else if ( mp->cur_cmd==left_delimiter ) {
15057 if ( mp->cur_mod==r_delim ) incr(balance);
15060 @ @<Adjust the balance for an undelimited...@>=
15061 if ( end_of_statement ) { /* |cur_cmd=semicolon|, |end_group|, or |stop| */
15062 if ( balance==1 ) { break; }
15063 else { if ( mp->cur_cmd==end_group ) decr(balance); }
15064 } else if ( mp->cur_cmd==begin_group ) {
15068 @ @<Scan undelimited argument(s)@>=
15070 if ( info(r)<text_macro ) {
15072 if ( info(r)!=suffix_macro ) {
15073 if ( (mp->cur_cmd==equals)||(mp->cur_cmd==assignment) ) mp_get_x_next(mp);
15077 case primary_macro:mp_scan_primary(mp); break;
15078 case secondary_macro:mp_scan_secondary(mp); break;
15079 case tertiary_macro:mp_scan_tertiary(mp); break;
15080 case expr_macro:mp_scan_expression(mp); break;
15082 @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>;
15085 @<Scan a suffix with optional delimiters@>;
15087 case text_macro:mp_scan_text_arg(mp, 0,0); break;
15088 } /* there are no other cases */
15090 @<Append the current expression to |arg_list|@>;
15093 @ @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>=
15095 mp_scan_expression(mp); p=mp_get_avail(mp); info(p)=mp_stash_cur_exp(mp);
15096 if ( mp->internal[mp_tracing_macros]>0 ) {
15097 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,0);
15098 mp_end_diagnostic(mp, false);
15100 if ( arg_list==null ) arg_list=p; else link(tail)=p;
15102 if ( mp->cur_cmd!=of_token ) {
15103 mp_missing_err(mp, "of"); mp_print(mp, " for ");
15105 mp_print_macro_name(mp, arg_list,macro_name);
15106 help1("I've got the first argument; will look now for the other.");
15109 mp_get_x_next(mp); mp_scan_primary(mp);
15112 @ @<Scan a suffix with optional delimiters@>=
15114 if ( mp->cur_cmd!=left_delimiter ) {
15117 l_delim=mp->cur_sym; r_delim=mp->cur_mod; mp_get_x_next(mp);
15119 mp_scan_suffix(mp);
15120 if ( l_delim!=null ) {
15121 if ((mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
15122 mp_missing_err(mp, str(text(r_delim)));
15124 help2("I've gotten to the end of the macro parameter list.")
15125 ("You might want to delete some tokens before continuing.");
15132 @ Before we put a new token list on the input stack, it is wise to clean off
15133 all token lists that have recently been depleted. Then a user macro that ends
15134 with a call to itself will not require unbounded stack space.
15136 @<Feed the arguments and replacement text to the scanner@>=
15137 while ( token_state &&(loc==null) ) mp_end_token_list(mp); /* conserve stack space */
15138 if ( mp->param_ptr+n>mp->max_param_stack ) {
15139 mp->max_param_stack=mp->param_ptr+n;
15140 if ( mp->max_param_stack>mp->param_size )
15141 mp_overflow(mp, "parameter stack size",mp->param_size);
15142 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15144 mp_begin_token_list(mp, def_ref,macro); name=macro_name; loc=r;
15148 mp->param_stack[mp->param_ptr]=info(p); incr(mp->param_ptr); p=link(p);
15150 mp_flush_list(mp, arg_list);
15153 @ It's sometimes necessary to put a single argument onto |param_stack|.
15154 The |stack_argument| subroutine does this.
15156 @c void mp_stack_argument (MP mp,pointer p) {
15157 if ( mp->param_ptr==mp->max_param_stack ) {
15158 incr(mp->max_param_stack);
15159 if ( mp->max_param_stack>mp->param_size )
15160 mp_overflow(mp, "parameter stack size",mp->param_size);
15161 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15163 mp->param_stack[mp->param_ptr]=p; incr(mp->param_ptr);
15166 @* \[33] Conditional processing.
15167 Let's consider now the way \&{if} commands are handled.
15169 Conditions can be inside conditions, and this nesting has a stack
15170 that is independent of other stacks.
15171 Four global variables represent the top of the condition stack:
15172 |cond_ptr| points to pushed-down entries, if~any; |cur_if| tells whether
15173 we are processing \&{if} or \&{elseif}; |if_limit| specifies
15174 the largest code of a |fi_or_else| command that is syntactically legal;
15175 and |if_line| is the line number at which the current conditional began.
15177 If no conditions are currently in progress, the condition stack has the
15178 special state |cond_ptr=null|, |if_limit=normal|, |cur_if=0|, |if_line=0|.
15179 Otherwise |cond_ptr| points to a two-word node; the |type|, |name_type|, and
15180 |link| fields of the first word contain |if_limit|, |cur_if|, and
15181 |cond_ptr| at the next level, and the second word contains the
15182 corresponding |if_line|.
15184 @d if_node_size 2 /* number of words in stack entry for conditionals */
15185 @d if_line_field(A) mp->mem[(A)+1].cint
15186 @d if_code 1 /* code for \&{if} being evaluated */
15187 @d fi_code 2 /* code for \&{fi} */
15188 @d else_code 3 /* code for \&{else} */
15189 @d else_if_code 4 /* code for \&{elseif} */
15192 pointer cond_ptr; /* top of the condition stack */
15193 integer if_limit; /* upper bound on |fi_or_else| codes */
15194 small_number cur_if; /* type of conditional being worked on */
15195 integer if_line; /* line where that conditional began */
15198 mp->cond_ptr=null; mp->if_limit=normal; mp->cur_if=0; mp->if_line=0;
15201 mp_primitive(mp, "if",if_test,if_code);
15202 @:if_}{\&{if} primitive@>
15203 mp_primitive(mp, "fi",fi_or_else,fi_code); mp->eqtb[frozen_fi]=mp->eqtb[mp->cur_sym];
15204 @:fi_}{\&{fi} primitive@>
15205 mp_primitive(mp, "else",fi_or_else,else_code);
15206 @:else_}{\&{else} primitive@>
15207 mp_primitive(mp, "elseif",fi_or_else,else_if_code);
15208 @:else_if_}{\&{elseif} primitive@>
15210 @ @<Cases of |print_cmd_mod|...@>=
15214 case if_code:mp_print(mp, "if"); break;
15215 case fi_code:mp_print(mp, "fi"); break;
15216 case else_code:mp_print(mp, "else"); break;
15217 default: mp_print(mp, "elseif"); break;
15221 @ Here is a procedure that ignores text until coming to an \&{elseif},
15222 \&{else}, or \&{fi} at level zero of $\&{if}\ldots\&{fi}$
15223 nesting. After it has acted, |cur_mod| will indicate the token that
15226 \MP's smallest two command codes are |if_test| and |fi_or_else|; this
15227 makes the skipping process a bit simpler.
15230 void mp_pass_text (MP mp) {
15232 mp->scanner_status=skipping;
15233 mp->warning_info=mp_true_line(mp);
15236 if ( mp->cur_cmd<=fi_or_else ) {
15237 if ( mp->cur_cmd<fi_or_else ) {
15241 if ( mp->cur_mod==fi_code ) decr(l);
15244 @<Decrease the string reference count,
15245 if the current token is a string@>;
15248 mp->scanner_status=normal;
15251 @ @<Decrease the string reference count...@>=
15252 if ( mp->cur_cmd==string_token ) { delete_str_ref(mp->cur_mod); }
15254 @ When we begin to process a new \&{if}, we set |if_limit:=if_code|; then
15255 if \&{elseif} or \&{else} or \&{fi} occurs before the current \&{if}
15256 condition has been evaluated, a colon will be inserted.
15257 A construction like `\.{if fi}' would otherwise get \MP\ confused.
15259 @<Push the condition stack@>=
15260 { p=mp_get_node(mp, if_node_size); link(p)=mp->cond_ptr; type(p)=mp->if_limit;
15261 name_type(p)=mp->cur_if; if_line_field(p)=mp->if_line;
15262 mp->cond_ptr=p; mp->if_limit=if_code; mp->if_line=mp_true_line(mp);
15263 mp->cur_if=if_code;
15266 @ @<Pop the condition stack@>=
15267 { p=mp->cond_ptr; mp->if_line=if_line_field(p);
15268 mp->cur_if=name_type(p); mp->if_limit=type(p); mp->cond_ptr=link(p);
15269 mp_free_node(mp, p,if_node_size);
15272 @ Here's a procedure that changes the |if_limit| code corresponding to
15273 a given value of |cond_ptr|.
15275 @c void mp_change_if_limit (MP mp,small_number l, pointer p) {
15277 if ( p==mp->cond_ptr ) {
15278 mp->if_limit=l; /* that's the easy case */
15282 if ( q==null ) mp_confusion(mp, "if");
15283 @:this can't happen if}{\quad if@>
15284 if ( link(q)==p ) {
15292 @ The user is supposed to put colons into the proper parts of conditional
15293 statements. Therefore, \MP\ has to check for their presence.
15296 void mp_check_colon (MP mp) {
15297 if ( mp->cur_cmd!=colon ) {
15298 mp_missing_err(mp, ":");
15300 help2("There should've been a colon after the condition.")
15301 ("I shall pretend that one was there.");;
15306 @ A condition is started when the |get_x_next| procedure encounters
15307 an |if_test| command; in that case |get_x_next| calls |conditional|,
15308 which is a recursive procedure.
15311 @c void mp_conditional (MP mp) {
15312 pointer save_cond_ptr; /* |cond_ptr| corresponding to this conditional */
15313 int new_if_limit; /* future value of |if_limit| */
15314 pointer p; /* temporary register */
15315 @<Push the condition stack@>;
15316 save_cond_ptr=mp->cond_ptr;
15318 mp_get_boolean(mp); new_if_limit=else_if_code;
15319 if ( mp->internal[mp_tracing_commands]>unity ) {
15320 @<Display the boolean value of |cur_exp|@>;
15323 mp_check_colon(mp);
15324 if ( mp->cur_exp==true_code ) {
15325 mp_change_if_limit(mp, new_if_limit,save_cond_ptr);
15326 return; /* wait for \&{elseif}, \&{else}, or \&{fi} */
15328 @<Skip to \&{elseif} or \&{else} or \&{fi}, then |goto done|@>;
15330 mp->cur_if=mp->cur_mod; mp->if_line=mp_true_line(mp);
15331 if ( mp->cur_mod==fi_code ) {
15332 @<Pop the condition stack@>
15333 } else if ( mp->cur_mod==else_if_code ) {
15336 mp->cur_exp=true_code; new_if_limit=fi_code; mp_get_x_next(mp);
15341 @ In a construction like `\&{if} \&{if} \&{true}: $0=1$: \\{foo}
15342 \&{else}: \\{bar} \&{fi}', the first \&{else}
15343 that we come to after learning that the \&{if} is false is not the
15344 \&{else} we're looking for. Hence the following curious logic is needed.
15346 @<Skip to \&{elseif}...@>=
15349 if ( mp->cond_ptr==save_cond_ptr ) goto DONE;
15350 else if ( mp->cur_mod==fi_code ) @<Pop the condition stack@>;
15354 @ @<Display the boolean value...@>=
15355 { mp_begin_diagnostic(mp);
15356 if ( mp->cur_exp==true_code ) mp_print(mp, "{true}");
15357 else mp_print(mp, "{false}");
15358 mp_end_diagnostic(mp, false);
15361 @ The processing of conditionals is complete except for the following
15362 code, which is actually part of |get_x_next|. It comes into play when
15363 \&{elseif}, \&{else}, or \&{fi} is scanned.
15365 @<Terminate the current conditional and skip to \&{fi}@>=
15366 if ( mp->cur_mod>mp->if_limit ) {
15367 if ( mp->if_limit==if_code ) { /* condition not yet evaluated */
15368 mp_missing_err(mp, ":");
15370 mp_back_input(mp); mp->cur_sym=frozen_colon; mp_ins_error(mp);
15372 print_err("Extra "); mp_print_cmd_mod(mp, fi_or_else,mp->cur_mod);
15376 help1("I'm ignoring this; it doesn't match any if.");
15380 while ( mp->cur_mod!=fi_code ) mp_pass_text(mp); /* skip to \&{fi} */
15381 @<Pop the condition stack@>;
15384 @* \[34] Iterations.
15385 To bring our treatment of |get_x_next| to a close, we need to consider what
15386 \MP\ does when it sees \&{for}, \&{forsuffixes}, and \&{forever}.
15388 There's a global variable |loop_ptr| that keeps track of the \&{for} loops
15389 that are currently active. If |loop_ptr=null|, no loops are in progress;
15390 otherwise |info(loop_ptr)| points to the iterative text of the current
15391 (innermost) loop, and |link(loop_ptr)| points to the data for any other
15392 loops that enclose the current one.
15394 A loop-control node also has two other fields, called |loop_type| and
15395 |loop_list|, whose contents depend on the type of loop:
15397 \yskip\indent|loop_type(loop_ptr)=null| means that |loop_list(loop_ptr)|
15398 points to a list of one-word nodes whose |info| fields point to the
15399 remaining argument values of a suffix list and expression list.
15401 \yskip\indent|loop_type(loop_ptr)=mp_void| means that the current loop is
15404 \yskip\indent|loop_type(loop_ptr)=progression_flag| means that
15405 |p=loop_list(loop_ptr)| points to a ``progression node'' and |value(p)|,
15406 |step_size(p)|, and |final_value(p)| contain the data for an arithmetic
15409 \yskip\indent|loop_type(loop_ptr)=p>mp_void| means that |p| points to an edge
15410 header and |loop_list(loop_ptr)| points into the graphical object list for
15413 \yskip\noindent In the case of a progression node, the first word is not used
15414 because the link field of words in the dynamic memory area cannot be arbitrary.
15416 @d loop_list_loc(A) ((A)+1) /* where the |loop_list| field resides */
15417 @d loop_type(A) info(loop_list_loc((A))) /* the type of \&{for} loop */
15418 @d loop_list(A) link(loop_list_loc((A))) /* the remaining list elements */
15419 @d loop_node_size 2 /* the number of words in a loop control node */
15420 @d progression_node_size 4 /* the number of words in a progression node */
15421 @d step_size(A) mp->mem[(A)+2].sc /* the step size in an arithmetic progression */
15422 @d final_value(A) mp->mem[(A)+3].sc /* the final value in an arithmetic progression */
15423 @d progression_flag (null+2)
15424 /* |loop_type| value when |loop_list| points to a progression node */
15427 pointer loop_ptr; /* top of the loop-control-node stack */
15432 @ If the expressions that define an arithmetic progression in
15433 a \&{for} loop don't have known numeric values, the |bad_for|
15434 subroutine screams at the user.
15436 @c void mp_bad_for (MP mp, char * s) {
15437 mp_disp_err(mp, null,"Improper "); /* show the bad expression above the message */
15438 @.Improper...replaced by 0@>
15439 mp_print(mp, s); mp_print(mp, " has been replaced by 0");
15440 help4("When you say `for x=a step b until c',")
15441 ("the initial value `a' and the step size `b'")
15442 ("and the final value `c' must have known numeric values.")
15443 ("I'm zeroing this one. Proceed, with fingers crossed.");
15444 mp_put_get_flush_error(mp, 0);
15447 @ Here's what \MP\ does when \&{for}, \&{forsuffixes}, or \&{forever}
15448 has just been scanned. (This code requires slight familiarity with
15449 expression-parsing routines that we have not yet discussed; but it seems
15450 to belong in the present part of the program, even though the original author
15451 didn't write it until later. The reader may wish to come back to it.)
15453 @c void mp_begin_iteration (MP mp) {
15454 halfword m; /* |expr_base| (\&{for}) or |suffix_base| (\&{forsuffixes}) */
15455 halfword n; /* hash address of the current symbol */
15456 pointer s; /* the new loop-control node */
15457 pointer p; /* substitution list for |scan_toks| */
15458 pointer q; /* link manipulation register */
15459 pointer pp; /* a new progression node */
15460 m=mp->cur_mod; n=mp->cur_sym; s=mp_get_node(mp, loop_node_size);
15461 if ( m==start_forever ){
15462 loop_type(s)=mp_void; p=null; mp_get_x_next(mp);
15464 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
15465 info(p)=mp->cur_sym; value(p)=m;
15467 if ( mp->cur_cmd==within_token ) {
15468 @<Set up a picture iteration@>;
15470 @<Check for the |"="| or |":="| in a loop header@>;
15471 @<Scan the values to be used in the loop@>;
15474 @<Check for the presence of a colon@>;
15475 @<Scan the loop text and put it on the loop control stack@>;
15476 mp_resume_iteration(mp);
15479 @ @<Check for the |"="| or |":="| in a loop header@>=
15480 if ( (mp->cur_cmd!=equals)&&(mp->cur_cmd!=assignment) ) {
15481 mp_missing_err(mp, "=");
15483 help3("The next thing in this loop should have been `=' or `:='.")
15484 ("But don't worry; I'll pretend that an equals sign")
15485 ("was present, and I'll look for the values next.");
15489 @ @<Check for the presence of a colon@>=
15490 if ( mp->cur_cmd!=colon ) {
15491 mp_missing_err(mp, ":");
15493 help3("The next thing in this loop should have been a `:'.")
15494 ("So I'll pretend that a colon was present;")
15495 ("everything from here to `endfor' will be iterated.");
15499 @ We append a special |frozen_repeat_loop| token in place of the
15500 `\&{endfor}' at the end of the loop. This will come through \MP's scanner
15501 at the proper time to cause the loop to be repeated.
15503 (If the user tries some shenanigan like `\&{for} $\ldots$ \&{let} \&{endfor}',
15504 he will be foiled by the |get_symbol| routine, which keeps frozen
15505 tokens unchanged. Furthermore the |frozen_repeat_loop| is an \&{outer}
15506 token, so it won't be lost accidentally.)
15508 @ @<Scan the loop text...@>=
15509 q=mp_get_avail(mp); info(q)=frozen_repeat_loop;
15510 mp->scanner_status=loop_defining; mp->warning_info=n;
15511 info(s)=mp_scan_toks(mp, iteration,p,q,0); mp->scanner_status=normal;
15512 link(s)=mp->loop_ptr; mp->loop_ptr=s
15514 @ @<Initialize table...@>=
15515 eq_type(frozen_repeat_loop)=repeat_loop+outer_tag;
15516 text(frozen_repeat_loop)=intern(" ENDFOR");
15518 @ The loop text is inserted into \MP's scanning apparatus by the
15519 |resume_iteration| routine.
15521 @c void mp_resume_iteration (MP mp) {
15522 pointer p,q; /* link registers */
15523 p=loop_type(mp->loop_ptr);
15524 if ( p==progression_flag ) {
15525 p=loop_list(mp->loop_ptr); /* now |p| points to a progression node */
15526 mp->cur_exp=value(p);
15527 if ( @<The arithmetic progression has ended@> ) {
15528 mp_stop_iteration(mp);
15531 mp->cur_type=mp_known; q=mp_stash_cur_exp(mp); /* make |q| an \&{expr} argument */
15532 value(p)=mp->cur_exp+step_size(p); /* set |value(p)| for the next iteration */
15533 } else if ( p==null ) {
15534 p=loop_list(mp->loop_ptr);
15536 mp_stop_iteration(mp);
15539 loop_list(mp->loop_ptr)=link(p); q=info(p); free_avail(p);
15540 } else if ( p==mp_void ) {
15541 mp_begin_token_list(mp, info(mp->loop_ptr),forever_text); return;
15543 @<Make |q| a capsule containing the next picture component from
15544 |loop_list(loop_ptr)| or |goto not_found|@>;
15546 mp_begin_token_list(mp, info(mp->loop_ptr),loop_text);
15547 mp_stack_argument(mp, q);
15548 if ( mp->internal[mp_tracing_commands]>unity ) {
15549 @<Trace the start of a loop@>;
15553 mp_stop_iteration(mp);
15556 @ @<The arithmetic progression has ended@>=
15557 ((step_size(p)>0)&&(mp->cur_exp>final_value(p)))||
15558 ((step_size(p)<0)&&(mp->cur_exp<final_value(p)))
15560 @ @<Trace the start of a loop@>=
15562 mp_begin_diagnostic(mp); mp_print_nl(mp, "{loop value=");
15564 if ( (q!=null)&&(link(q)==mp_void) ) mp_print_exp(mp, q,1);
15565 else mp_show_token_list(mp, q,null,50,0);
15566 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
15569 @ @<Make |q| a capsule containing the next picture component from...@>=
15570 { q=loop_list(mp->loop_ptr);
15571 if ( q==null ) goto NOT_FOUND;
15572 skip_component(q) goto NOT_FOUND;
15573 mp->cur_exp=mp_copy_objects(mp, loop_list(mp->loop_ptr),q);
15574 mp_init_bbox(mp, mp->cur_exp);
15575 mp->cur_type=mp_picture_type;
15576 loop_list(mp->loop_ptr)=q;
15577 q=mp_stash_cur_exp(mp);
15580 @ A level of loop control disappears when |resume_iteration| has decided
15581 not to resume, or when an \&{exitif} construction has removed the loop text
15582 from the input stack.
15584 @c void mp_stop_iteration (MP mp) {
15585 pointer p,q; /* the usual */
15586 p=loop_type(mp->loop_ptr);
15587 if ( p==progression_flag ) {
15588 mp_free_node(mp, loop_list(mp->loop_ptr),progression_node_size);
15589 } else if ( p==null ){
15590 q=loop_list(mp->loop_ptr);
15591 while ( q!=null ) {
15594 if ( link(p)==mp_void ) { /* it's an \&{expr} parameter */
15595 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
15597 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
15600 p=q; q=link(q); free_avail(p);
15602 } else if ( p>progression_flag ) {
15603 delete_edge_ref(p);
15605 p=mp->loop_ptr; mp->loop_ptr=link(p); mp_flush_token_list(mp, info(p));
15606 mp_free_node(mp, p,loop_node_size);
15609 @ Now that we know all about loop control, we can finish up
15610 the missing portion of |begin_iteration| and we'll be done.
15612 The following code is performed after the `\.=' has been scanned in
15613 a \&{for} construction (if |m=expr_base|) or a \&{forsuffixes} construction
15614 (if |m=suffix_base|).
15616 @<Scan the values to be used in the loop@>=
15617 loop_type(s)=null; q=loop_list_loc(s); link(q)=null; /* |link(q)=loop_list(s)| */
15620 if ( m!=expr_base ) {
15621 mp_scan_suffix(mp);
15623 if ( mp->cur_cmd>=colon ) if ( mp->cur_cmd<=comma )
15625 mp_scan_expression(mp);
15626 if ( mp->cur_cmd==step_token ) if ( q==loop_list_loc(s) ) {
15627 @<Prepare for step-until construction and |break|@>;
15629 mp->cur_exp=mp_stash_cur_exp(mp);
15631 link(q)=mp_get_avail(mp); q=link(q);
15632 info(q)=mp->cur_exp; mp->cur_type=mp_vacuous;
15635 } while (mp->cur_cmd==comma)
15637 @ @<Prepare for step-until construction and |break|@>=
15639 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "initial value");
15640 pp=mp_get_node(mp, progression_node_size); value(pp)=mp->cur_exp;
15641 mp_get_x_next(mp); mp_scan_expression(mp);
15642 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "step size");
15643 step_size(pp)=mp->cur_exp;
15644 if ( mp->cur_cmd!=until_token ) {
15645 mp_missing_err(mp, "until");
15646 @.Missing `until'@>
15647 help2("I assume you meant to say `until' after `step'.")
15648 ("So I'll look for the final value and colon next.");
15651 mp_get_x_next(mp); mp_scan_expression(mp);
15652 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "final value");
15653 final_value(pp)=mp->cur_exp; loop_list(s)=pp;
15654 loop_type(s)=progression_flag;
15658 @ The last case is when we have just seen ``\&{within}'', and we need to
15659 parse a picture expression and prepare to iterate over it.
15661 @<Set up a picture iteration@>=
15662 { mp_get_x_next(mp);
15663 mp_scan_expression(mp);
15664 @<Make sure the current expression is a known picture@>;
15665 loop_type(s)=mp->cur_exp; mp->cur_type=mp_vacuous;
15666 q=link(dummy_loc(mp->cur_exp));
15668 if ( is_start_or_stop(q) )
15669 if ( mp_skip_1component(mp, q)==null ) q=link(q);
15673 @ @<Make sure the current expression is a known picture@>=
15674 if ( mp->cur_type!=mp_picture_type ) {
15675 mp_disp_err(mp, null,"Improper iteration spec has been replaced by nullpicture");
15676 help1("When you say `for x in p', p must be a known picture.");
15677 mp_put_get_flush_error(mp, mp_get_node(mp, edge_header_size));
15678 mp_init_edges(mp, mp->cur_exp); mp->cur_type=mp_picture_type;
15681 @* \[35] File names.
15682 It's time now to fret about file names. Besides the fact that different
15683 operating systems treat files in different ways, we must cope with the
15684 fact that completely different naming conventions are used by different
15685 groups of people. The following programs show what is required for one
15686 particular operating system; similar routines for other systems are not
15687 difficult to devise.
15688 @^system dependencies@>
15690 \MP\ assumes that a file name has three parts: the name proper; its
15691 ``extension''; and a ``file area'' where it is found in an external file
15692 system. The extension of an input file is assumed to be
15693 `\.{.mp}' unless otherwise specified; it is `\.{.log}' on the
15694 transcript file that records each run of \MP; it is `\.{.tfm}' on the font
15695 metric files that describe characters in any fonts created by \MP; it is
15696 `\.{.ps}' or `.{\it nnn}' for some number {\it nnn} on the \ps\ output files;
15697 and it is `\.{.mem}' on the mem files written by \.{INIMP} to initialize \MP.
15698 The file area can be arbitrary on input files, but files are usually
15699 output to the user's current area. If an input file cannot be
15700 found on the specified area, \MP\ will look for it on a special system
15701 area; this special area is intended for commonly used input files.
15703 Simple uses of \MP\ refer only to file names that have no explicit
15704 extension or area. For example, a person usually says `\.{input} \.{cmr10}'
15705 instead of `\.{input} \.{cmr10.new}'. Simple file
15706 names are best, because they make the \MP\ source files portable;
15707 whenever a file name consists entirely of letters and digits, it should be
15708 treated in the same way by all implementations of \MP. However, users
15709 need the ability to refer to other files in their environment, especially
15710 when responding to error messages concerning unopenable files; therefore
15711 we want to let them use the syntax that appears in their favorite
15714 @ \MP\ uses the same conventions that have proved to be satisfactory for
15715 \TeX\ and \MF. In order to isolate the system-dependent aspects of file names,
15716 @^system dependencies@>
15717 the system-independent parts of \MP\ are expressed in terms
15718 of three system-dependent
15719 procedures called |begin_name|, |more_name|, and |end_name|. In
15720 essence, if the user-specified characters of the file name are $c_1\ldots c_n$,
15721 the system-independent driver program does the operations
15722 $$|begin_name|;\,|more_name|(c_1);\,\ldots\,;|more_name|(c_n);
15724 These three procedures communicate with each other via global variables.
15725 Afterwards the file name will appear in the string pool as three strings
15726 called |cur_name|\penalty10000\hskip-.05em,
15727 |cur_area|, and |cur_ext|; the latter two are null (i.e.,
15728 |""|), unless they were explicitly specified by the user.
15730 Actually the situation is slightly more complicated, because \MP\ needs
15731 to know when the file name ends. The |more_name| routine is a function
15732 (with side effects) that returns |true| on the calls |more_name|$(c_1)$,
15733 \dots, |more_name|$(c_{n-1})$. The final call |more_name|$(c_n)$
15734 returns |false|; or, it returns |true| and $c_n$ is the last character
15735 on the current input line. In other words,
15736 |more_name| is supposed to return |true| unless it is sure that the
15737 file name has been completely scanned; and |end_name| is supposed to be able
15738 to finish the assembly of |cur_name|, |cur_area|, and |cur_ext| regardless of
15739 whether $|more_name|(c_n)$ returned |true| or |false|.
15742 char * cur_name; /* name of file just scanned */
15743 char * cur_area; /* file area just scanned, or \.{""} */
15744 char * cur_ext; /* file extension just scanned, or \.{""} */
15746 @ It is easier to maintain reference counts if we assign initial values.
15749 mp->cur_name=xstrdup("");
15750 mp->cur_area=xstrdup("");
15751 mp->cur_ext=xstrdup("");
15753 @ @<Dealloc variables@>=
15754 xfree(mp->cur_area);
15755 xfree(mp->cur_name);
15756 xfree(mp->cur_ext);
15758 @ The file names we shall deal with for illustrative purposes have the
15759 following structure: If the name contains `\.>' or `\.:', the file area
15760 consists of all characters up to and including the final such character;
15761 otherwise the file area is null. If the remaining file name contains
15762 `\..', the file extension consists of all such characters from the first
15763 remaining `\..' to the end, otherwise the file extension is null.
15764 @^system dependencies@>
15766 We can scan such file names easily by using two global variables that keep track
15767 of the occurrences of area and extension delimiters. Note that these variables
15768 cannot be of type |pool_pointer| because a string pool compaction could occur
15769 while scanning a file name.
15772 integer area_delimiter;
15773 /* most recent `\.>' or `\.:' relative to |str_start[str_ptr]| */
15774 integer ext_delimiter; /* the relevant `\..', if any */
15776 @ Input files that can't be found in the user's area may appear in standard
15777 system areas called |MP_area| and |MF_area|. (The latter is used when the file
15778 extension is |".mf"|.) The standard system area for font metric files
15779 to be read is |MP_font_area|.
15780 This system area name will, of course, vary from place to place.
15781 @^system dependencies@>
15783 @d MP_area "MPinputs:"
15785 @d MF_area "MFinputs:"
15790 @ Here now is the first of the system-dependent routines for file name scanning.
15791 @^system dependencies@>
15793 @<Declare subroutines for parsing file names@>=
15794 void mp_begin_name (MP mp) {
15795 xfree(mp->cur_name);
15796 xfree(mp->cur_area);
15797 xfree(mp->cur_ext);
15798 mp->area_delimiter=-1;
15799 mp->ext_delimiter=-1;
15802 @ And here's the second.
15803 @^system dependencies@>
15805 @<Declare subroutines for parsing file names@>=
15806 boolean mp_more_name (MP mp, ASCII_code c) {
15810 if ( (c=='>')||(c==':') ) {
15811 mp->area_delimiter=mp->pool_ptr;
15812 mp->ext_delimiter=-1;
15813 } else if ( (c=='.')&&(mp->ext_delimiter<0) ) {
15814 mp->ext_delimiter=mp->pool_ptr;
15816 str_room(1); append_char(c); /* contribute |c| to the current string */
15822 @^system dependencies@>
15824 @d copy_pool_segment(A,B,C) {
15825 A = xmalloc(C+1,sizeof(char));
15826 strncpy(A,(char *)(mp->str_pool+B),C);
15829 @<Declare subroutines for parsing file names@>=
15830 void mp_end_name (MP mp) {
15831 pool_pointer s; /* length of area, name, and extension */
15834 s = mp->str_start[mp->str_ptr];
15835 if ( mp->area_delimiter<0 ) {
15836 mp->cur_area=xstrdup("");
15838 len = mp->area_delimiter-s;
15839 copy_pool_segment(mp->cur_area,s,len);
15842 if ( mp->ext_delimiter<0 ) {
15843 mp->cur_ext=xstrdup("");
15844 len = mp->pool_ptr-s;
15846 copy_pool_segment(mp->cur_ext,mp->ext_delimiter,(mp->pool_ptr-mp->ext_delimiter));
15847 len = mp->ext_delimiter-s;
15849 copy_pool_segment(mp->cur_name,s,len);
15850 mp->pool_ptr=s; /* don't need this partial string */
15853 @ Conversely, here is a routine that takes three strings and prints a file
15854 name that might have produced them. (The routine is system dependent, because
15855 some operating systems put the file area last instead of first.)
15856 @^system dependencies@>
15858 @<Basic printing...@>=
15859 void mp_print_file_name (MP mp, char * n, char * a, char * e) {
15860 mp_print(mp, a); mp_print(mp, n); mp_print(mp, e);
15863 @ Another system-dependent routine is needed to convert three internal
15865 to the |name_of_file| value that is used to open files. The present code
15866 allows both lowercase and uppercase letters in the file name.
15867 @^system dependencies@>
15869 @d append_to_name(A) { c=(A);
15870 if ( k<file_name_size ) {
15871 mp->name_of_file[k]=xchr(c);
15876 @<Declare subroutines for parsing file names@>=
15877 void mp_pack_file_name (MP mp, char *n, char *a, char *e) {
15878 integer k; /* number of positions filled in |name_of_file| */
15879 ASCII_code c; /* character being packed */
15880 char *j; /* a character index */
15884 for (j=a;*j;j++) { append_to_name(*j); }
15886 for (j=n;*j;j++) { append_to_name(*j); }
15888 for (j=e;*j;j++) { append_to_name(*j); }
15890 mp->name_of_file[k]=0;
15894 @ @<Internal library declarations@>=
15895 void mp_pack_file_name (MP mp, char *n, char *a, char *e) ;
15897 @ A messier routine is also needed, since mem file names must be scanned
15898 before \MP's string mechanism has been initialized. We shall use the
15899 global variable |MP_mem_default| to supply the text for default system areas
15900 and extensions related to mem files.
15901 @^system dependencies@>
15903 @d mem_default_length 9 /* length of the |MP_mem_default| string */
15904 @d mem_ext_length 4 /* length of its `\.{.mem}' part */
15905 @d mem_extension ".mem" /* the extension, as a \.{WEB} constant */
15908 char *MP_mem_default;
15909 char *mem_name; /* for commandline */
15911 @ @<Option variables@>=
15912 char *mem_name; /* for commandline */
15914 @ @<Allocate or initialize ...@>=
15915 mp->MP_mem_default = xstrdup("plain.mem");
15916 mp->mem_name = xstrdup(opt->mem_name);
15918 @^system dependencies@>
15920 @ @<Dealloc variables@>=
15921 xfree(mp->MP_mem_default);
15922 xfree(mp->mem_name);
15924 @ @<Check the ``constant'' values for consistency@>=
15925 if ( mem_default_length>file_name_size ) mp->bad=20;
15927 @ Here is the messy routine that was just mentioned. It sets |name_of_file|
15928 from the first |n| characters of |MP_mem_default|, followed by
15929 |buffer[a..b-1]|, followed by the last |mem_ext_length| characters of
15932 We dare not give error messages here, since \MP\ calls this routine before
15933 the |error| routine is ready to roll. Instead, we simply drop excess characters,
15934 since the error will be detected in another way when a strange file name
15936 @^system dependencies@>
15938 @c void mp_pack_buffered_name (MP mp,small_number n, integer a,
15940 integer k; /* number of positions filled in |name_of_file| */
15941 ASCII_code c; /* character being packed */
15942 integer j; /* index into |buffer| or |MP_mem_default| */
15943 if ( n+b-a+1+mem_ext_length>file_name_size )
15944 b=a+file_name_size-n-1-mem_ext_length;
15946 for (j=0;j<n;j++) {
15947 append_to_name(xord((int)mp->MP_mem_default[j]));
15949 for (j=a;j<b;j++) {
15950 append_to_name(mp->buffer[j]);
15952 for (j=mem_default_length-mem_ext_length;
15953 j<mem_default_length;j++) {
15954 append_to_name(xord((int)mp->MP_mem_default[j]));
15956 mp->name_of_file[k]=0;
15960 @ Here is the only place we use |pack_buffered_name|. This part of the program
15961 becomes active when a ``virgin'' \MP\ is trying to get going, just after
15962 the preliminary initialization, or when the user is substituting another
15963 mem file by typing `\.\&' after the initial `\.{**}' prompt. The buffer
15964 contains the first line of input in |buffer[loc..(last-1)]|, where
15965 |loc<last| and |buffer[loc]<>" "|.
15968 boolean mp_open_mem_file (MP mp) ;
15971 boolean mp_open_mem_file (MP mp) {
15972 int j; /* the first space after the file name */
15973 if (mp->mem_name!=NULL) {
15974 mp->mem_file = mp_open_file(mp, mp->mem_name, "rb", mp_filetype_memfile);
15975 if ( mp->mem_file ) return true;
15978 if ( mp->buffer[loc]=='&' ) {
15979 incr(loc); j=loc; mp->buffer[mp->last]=' ';
15980 while ( mp->buffer[j]!=' ' ) incr(j);
15981 mp_pack_buffered_name(mp, 0,loc,j); /* try first without the system file area */
15982 if ( mp_w_open_in(mp, &mp->mem_file) ) goto FOUND;
15984 wterm_ln("Sorry, I can\'t find that mem file; will try PLAIN.");
15985 @.Sorry, I can't find...@>
15988 /* now pull out all the stops: try for the system \.{plain} file */
15989 mp_pack_buffered_name(mp, mem_default_length-mem_ext_length,0,0);
15990 if ( ! mp_w_open_in(mp, &mp->mem_file) ) {
15992 wterm_ln("I can\'t find the PLAIN mem file!\n");
15993 @.I can't find PLAIN...@>
15998 loc=j; return true;
16001 @ Operating systems often make it possible to determine the exact name (and
16002 possible version number) of a file that has been opened. The following routine,
16003 which simply makes a \MP\ string from the value of |name_of_file|, should
16004 ideally be changed to deduce the full name of file~|f|, which is the file
16005 most recently opened, if it is possible to do this in a \PASCAL\ program.
16006 @^system dependencies@>
16009 #define mp_a_make_name_string(A,B) mp_make_name_string(A)
16010 #define mp_b_make_name_string(A,B) mp_make_name_string(A)
16011 #define mp_w_make_name_string(A,B) mp_make_name_string(A)
16014 str_number mp_make_name_string (MP mp) {
16015 int k; /* index into |name_of_file| */
16016 str_room(mp->name_length);
16017 for (k=0;k<mp->name_length;k++) {
16018 append_char(xord((int)mp->name_of_file[k]));
16020 return mp_make_string(mp);
16023 @ Now let's consider the ``driver''
16024 routines by which \MP\ deals with file names
16025 in a system-independent manner. First comes a procedure that looks for a
16026 file name in the input by taking the information from the input buffer.
16027 (We can't use |get_next|, because the conversion to tokens would
16028 destroy necessary information.)
16030 This procedure doesn't allow semicolons or percent signs to be part of
16031 file names, because of other conventions of \MP.
16032 {\sl The {\logos METAFONT\/}book} doesn't
16033 use semicolons or percents immediately after file names, but some users
16034 no doubt will find it natural to do so; therefore system-dependent
16035 changes to allow such characters in file names should probably
16036 be made with reluctance, and only when an entire file name that
16037 includes special characters is ``quoted'' somehow.
16038 @^system dependencies@>
16040 @c void mp_scan_file_name (MP mp) {
16042 while ( mp->buffer[loc]==' ' ) incr(loc);
16044 if ( (mp->buffer[loc]==';')||(mp->buffer[loc]=='%') ) break;
16045 if ( ! mp_more_name(mp, mp->buffer[loc]) ) break;
16051 @ Here is another version that takes its input from a string.
16053 @<Declare subroutines for parsing file names@>=
16054 void mp_str_scan_file (MP mp, str_number s) {
16055 pool_pointer p,q; /* current position and stopping point */
16057 p=mp->str_start[s]; q=str_stop(s);
16059 if ( ! mp_more_name(mp, mp->str_pool[p]) ) break;
16065 @ And one that reads from a |char*|.
16067 @<Declare subroutines for parsing file names@>=
16068 void mp_ptr_scan_file (MP mp, char *s) {
16069 char *p, *q; /* current position and stopping point */
16071 p=s; q=p+strlen(s);
16073 if ( ! mp_more_name(mp, *p)) break;
16080 @ The global variable |job_name| contains the file name that was first
16081 \&{input} by the user. This name is extended by `\.{.log}' and `\.{ps}' and
16082 `\.{.mem}' and `\.{.tfm}' in order to make the names of \MP's output files.
16085 char *job_name; /* principal file name */
16086 boolean log_opened; /* has the transcript file been opened? */
16087 char *log_name; /* full name of the log file */
16089 @ @<Option variables@>=
16090 char *job_name; /* principal file name */
16092 @ Initially |job_name=NULL|; it becomes nonzero as soon as the true name is known.
16093 We have |job_name=NULL| if and only if the `\.{log}' file has not been opened,
16094 except of course for a short time just after |job_name| has become nonzero.
16096 @<Allocate or ...@>=
16097 mp->job_name=opt->job_name;
16098 mp->log_opened=false;
16100 @ @<Dealloc variables@>=
16101 xfree(mp->job_name);
16103 @ Here is a routine that manufactures the output file names, assuming that
16104 |job_name<>0|. It ignores and changes the current settings of |cur_area|
16107 @d pack_cur_name mp_pack_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext)
16110 void mp_pack_job_name (MP mp, char *s) ;
16112 @ @c void mp_pack_job_name (MP mp, char *s) { /* |s = ".log"|, |".mem"|, |".ps"|, or .\\{nnn} */
16113 xfree(mp->cur_name); mp->cur_name=xstrdup(mp->job_name);
16114 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16115 xfree(mp->cur_ext); mp->cur_ext=xstrdup(s);
16119 @ If some trouble arises when \MP\ tries to open a file, the following
16120 routine calls upon the user to supply another file name. Parameter~|s|
16121 is used in the error message to identify the type of file; parameter~|e|
16122 is the default extension if none is given. Upon exit from the routine,
16123 variables |cur_name|, |cur_area|, |cur_ext|, and |name_of_file| are
16124 ready for another attempt at file opening.
16127 void mp_prompt_file_name (MP mp,char * s, char * e) ;
16129 @ @c void mp_prompt_file_name (MP mp,char * s, char * e) {
16130 size_t k; /* index into |buffer| */
16131 char * saved_cur_name;
16132 if ( mp->interaction==mp_scroll_mode )
16134 if (strcmp(s,"input file name")==0) {
16135 print_err("I can\'t find file `");
16136 @.I can't find file x@>
16138 print_err("I can\'t write on file `");
16140 @.I can't write on file x@>
16141 mp_print_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext);
16142 mp_print(mp, "'.");
16143 if (strcmp(e,"")==0)
16144 mp_show_context(mp);
16145 mp_print_nl(mp, "Please type another "); mp_print(mp, s);
16147 if ( mp->interaction<mp_scroll_mode )
16148 mp_fatal_error(mp, "*** (job aborted, file error in nonstop mode)");
16149 @.job aborted, file error...@>
16150 saved_cur_name = xstrdup(mp->cur_name);
16151 clear_terminal; prompt_input(": "); @<Scan file name in the buffer@>;
16152 if (strcmp(mp->cur_ext,"")==0)
16154 if (strlen(mp->cur_name)==0) {
16155 mp->cur_name=saved_cur_name;
16157 xfree(saved_cur_name);
16162 @ @<Scan file name in the buffer@>=
16164 mp_begin_name(mp); k=mp->first;
16165 while ( (mp->buffer[k]==' ')&&(k<mp->last) ) incr(k);
16167 if ( k==mp->last ) break;
16168 if ( ! mp_more_name(mp, mp->buffer[k]) ) break;
16174 @ The |open_log_file| routine is used to open the transcript file and to help
16175 it catch up to what has previously been printed on the terminal.
16177 @c void mp_open_log_file (MP mp) {
16178 int old_setting; /* previous |selector| setting */
16179 int k; /* index into |months| and |buffer| */
16180 int l; /* end of first input line */
16181 integer m; /* the current month */
16182 char *months="JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC";
16183 /* abbreviations of month names */
16184 old_setting=mp->selector;
16185 if ( mp->job_name==NULL ) {
16186 mp->job_name=xstrdup("mpout");
16188 mp_pack_job_name(mp,".log");
16189 while ( ! mp_a_open_out(mp, &mp->log_file, mp_filetype_log) ) {
16190 @<Try to get a different log file name@>;
16192 mp->log_name=xstrdup(mp->name_of_file);
16193 mp->selector=log_only; mp->log_opened=true;
16194 @<Print the banner line, including the date and time@>;
16195 mp->input_stack[mp->input_ptr]=mp->cur_input;
16196 /* make sure bottom level is in memory */
16197 mp_print_nl(mp, "**");
16199 l=mp->input_stack[0].limit_field-1; /* last position of first line */
16200 for (k=0;k<=l;k++) mp_print_str(mp, mp->buffer[k]);
16201 mp_print_ln(mp); /* now the transcript file contains the first line of input */
16202 mp->selector=old_setting+2; /* |log_only| or |term_and_log| */
16205 @ @<Dealloc variables@>=
16206 xfree(mp->log_name);
16208 @ Sometimes |open_log_file| is called at awkward moments when \MP\ is
16209 unable to print error messages or even to |show_context|.
16210 The |prompt_file_name| routine can result in a |fatal_error|, but the |error|
16211 routine will not be invoked because |log_opened| will be false.
16213 The normal idea of |mp_batch_mode| is that nothing at all should be written
16214 on the terminal. However, in the unusual case that
16215 no log file could be opened, we make an exception and allow
16216 an explanatory message to be seen.
16218 Incidentally, the program always refers to the log file as a `\.{transcript
16219 file}', because some systems cannot use the extension `\.{.log}' for
16222 @<Try to get a different log file name@>=
16224 mp->selector=term_only;
16225 mp_prompt_file_name(mp, "transcript file name",".log");
16228 @ @<Print the banner...@>=
16231 mp_print(mp, mp->mem_ident); mp_print(mp, " ");
16232 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_day]));
16233 mp_print_char(mp, ' ');
16234 m=mp_round_unscaled(mp, mp->internal[mp_month]);
16235 for (k=3*m-3;k<3*m;k++) { wlog_chr(months[k]); }
16236 mp_print_char(mp, ' ');
16237 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_year]));
16238 mp_print_char(mp, ' ');
16239 m=mp_round_unscaled(mp, mp->internal[mp_time]);
16240 mp_print_dd(mp, m / 60); mp_print_char(mp, ':'); mp_print_dd(mp, m % 60);
16243 @ The |try_extension| function tries to open an input file determined by
16244 |cur_name|, |cur_area|, and the argument |ext|. It returns |false| if it
16245 can't find the file in |cur_area| or the appropriate system area.
16247 @c boolean mp_try_extension (MP mp,char *ext) {
16248 mp_pack_file_name(mp, mp->cur_name,mp->cur_area, ext);
16249 in_name=xstrdup(mp->cur_name);
16250 in_area=xstrdup(mp->cur_area);
16251 if ( mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16254 if (strcmp(ext,".mf")==0 ) in_area=xstrdup(MF_area);
16255 else in_area=xstrdup(MP_area);
16256 mp_pack_file_name(mp, mp->cur_name,in_area,ext);
16257 return mp_a_open_in(mp, &cur_file, mp_filetype_program);
16262 @ Let's turn now to the procedure that is used to initiate file reading
16263 when an `\.{input}' command is being processed.
16265 @c void mp_start_input (MP mp) { /* \MP\ will \.{input} something */
16266 char *fname = NULL;
16267 @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>;
16269 mp_begin_file_reading(mp); /* set up |cur_file| and new level of input */
16270 if ( strlen(mp->cur_ext)==0 ) {
16271 if ( mp_try_extension(mp, ".mp") ) break;
16272 else if ( mp_try_extension(mp, "") ) break;
16273 else if ( mp_try_extension(mp, ".mf") ) break;
16274 /* |else do_nothing; | */
16275 } else if ( mp_try_extension(mp, mp->cur_ext) ) {
16278 mp_end_file_reading(mp); /* remove the level that didn't work */
16279 mp_prompt_file_name(mp, "input file name","");
16281 name=mp_a_make_name_string(mp, cur_file);
16282 fname = xstrdup(mp->name_of_file);
16283 if ( mp->job_name==NULL ) {
16284 mp->job_name=xstrdup(mp->cur_name);
16285 mp_open_log_file(mp);
16286 } /* |open_log_file| doesn't |show_context|, so |limit|
16287 and |loc| needn't be set to meaningful values yet */
16288 if ( ((int)mp->term_offset+(int)strlen(fname)) > (mp->max_print_line-2)) mp_print_ln(mp);
16289 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
16290 mp_print_char(mp, '('); incr(mp->open_parens); mp_print(mp, fname);
16293 @<Flush |name| and replace it with |cur_name| if it won't be needed@>;
16294 @<Read the first line of the new file@>;
16297 @ This code should be omitted if |a_make_name_string| returns something other
16298 than just a copy of its argument and the full file name is needed for opening
16299 \.{MPX} files or implementing the switch-to-editor option.
16300 @^system dependencies@>
16302 @<Flush |name| and replace it with |cur_name| if it won't be needed@>=
16303 mp_flush_string(mp, name); name=rts(mp->cur_name); xfree(mp->cur_name)
16305 @ Here we have to remember to tell the |input_ln| routine not to
16306 start with a |get|. If the file is empty, it is considered to
16307 contain a single blank line.
16308 @^system dependencies@>
16310 @<Read the first line...@>=
16313 (void)mp_input_ln(mp, cur_file,false);
16314 mp_firm_up_the_line(mp);
16315 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
16318 @ @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>=
16319 while ( token_state &&(loc==null) ) mp_end_token_list(mp);
16320 if ( token_state ) {
16321 print_err("File names can't appear within macros");
16322 @.File names can't...@>
16323 help3("Sorry...I've converted what follows to tokens,")
16324 ("possibly garbaging the name you gave.")
16325 ("Please delete the tokens and insert the name again.");
16328 if ( file_state ) {
16329 mp_scan_file_name(mp);
16331 xfree(mp->cur_name); mp->cur_name=xstrdup("");
16332 xfree(mp->cur_ext); mp->cur_ext =xstrdup("");
16333 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16336 @ Sometimes we need to deal with two file names at once. This procedure
16337 copies the given string into a special array for an old file name.
16339 @c void mp_copy_old_name (MP mp,str_number s) {
16340 integer k; /* number of positions filled in |old_file_name| */
16341 pool_pointer j; /* index into |str_pool| */
16343 for (j=mp->str_start[s];j<=str_stop(s)-1;j++) {
16345 if ( k<=file_name_size )
16346 mp->old_file_name[k]=xchr(mp->str_pool[j]);
16348 mp->old_file_name[++k] = 0;
16352 char old_file_name[file_name_size+1]; /* analogous to |name_of_file| */
16354 @ The following simple routine starts reading the \.{MPX} file associated
16355 with the current input file.
16357 @c void mp_start_mpx_input (MP mp) {
16358 mp_pack_file_name(mp, in_name, in_area, ".mpx");
16359 @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16360 |goto not_found| if there is a problem@>;
16361 mp_begin_file_reading(mp);
16362 if ( ! mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16363 mp_end_file_reading(mp);
16366 name=mp_a_make_name_string(mp, cur_file);
16367 mp->mpx_name[index]=name; add_str_ref(name);
16368 @<Read the first line of the new file@>;
16371 @<Explain that the \.{MPX} file can't be read and |succumb|@>;
16374 @ This should ideally be changed to do whatever is necessary to create the
16375 \.{MPX} file given by |name_of_file| if it does not exist or if it is out
16376 of date. This requires invoking \.{MPtoTeX} on the |old_file_name| and passing
16377 the results through \TeX\ and \.{DVItoMP}. (It is possible to use a
16378 completely different typesetting program if suitable postprocessor is
16379 available to perform the function of \.{DVItoMP}.)
16380 @^system dependencies@>
16382 @ @<Exported types@>=
16383 typedef int (*mp_run_make_mpx_command)(MP mp, char *origname, char *mtxname);
16386 mp_run_make_mpx_command run_make_mpx;
16388 @ @<Option variables@>=
16389 mp_run_make_mpx_command run_make_mpx;
16391 @ @<Allocate or initialize ...@>=
16392 set_callback_option(run_make_mpx);
16394 @ @<Internal library declarations@>=
16395 int mp_run_make_mpx (MP mp, char *origname, char *mtxname);
16397 @ The default does nothing.
16399 int mp_run_make_mpx (MP mp, char *origname, char *mtxname) {
16400 if (mp && origname && mtxname) /* for -W */
16407 @ @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16408 |goto not_found| if there is a problem@>=
16409 mp_copy_old_name(mp, name);
16410 if (!(mp->run_make_mpx)(mp, mp->old_file_name, mp->name_of_file))
16413 @ @<Explain that the \.{MPX} file can't be read and |succumb|@>=
16414 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16415 mp_print_nl(mp, ">> ");
16416 mp_print(mp, mp->old_file_name);
16417 mp_print_nl(mp, ">> ");
16418 mp_print(mp, mp->name_of_file);
16419 mp_print_nl(mp, "! Unable to make mpx file");
16420 help4("The two files given above are one of your source files")
16421 ("and an auxiliary file I need to read to find out what your")
16422 ("btex..etex blocks mean. If you don't know why I had trouble,")
16423 ("try running it manually through MPtoTeX, TeX, and DVItoMP");
16426 @ The last file-opening commands are for files accessed via the \&{readfrom}
16427 @:read_from_}{\&{readfrom} primitive@>
16428 operator and the \&{write} command. Such files are stored in separate arrays.
16429 @:write_}{\&{write} primitive@>
16431 @<Types in the outer block@>=
16432 typedef unsigned int readf_index; /* |0..max_read_files| */
16433 typedef unsigned int write_index; /* |0..max_write_files| */
16436 readf_index max_read_files; /* maximum number of simultaneously open \&{readfrom} files */
16437 FILE ** rd_file; /* \&{readfrom} files */
16438 char ** rd_fname; /* corresponding file name or 0 if file not open */
16439 readf_index read_files; /* number of valid entries in the above arrays */
16440 write_index max_write_files; /* maximum number of simultaneously open \&{write} */
16441 FILE ** wr_file; /* \&{write} files */
16442 char ** wr_fname; /* corresponding file name or 0 if file not open */
16443 write_index write_files; /* number of valid entries in the above arrays */
16445 @ @<Allocate or initialize ...@>=
16446 mp->max_read_files=8;
16447 mp->rd_file = xmalloc((mp->max_read_files+1),sizeof(FILE *));
16448 mp->rd_fname = xmalloc((mp->max_read_files+1),sizeof(char *));
16449 memset(mp->rd_fname, 0, sizeof(char *)*(mp->max_read_files+1));
16451 mp->max_write_files=8;
16452 mp->wr_file = xmalloc((mp->max_write_files+1),sizeof(FILE *));
16453 mp->wr_fname = xmalloc((mp->max_write_files+1),sizeof(char *));
16454 memset(mp->wr_fname, 0, sizeof(char *)*(mp->max_write_files+1));
16458 @ This routine starts reading the file named by string~|s| without setting
16459 |loc|, |limit|, or |name|. It returns |false| if the file is empty or cannot
16460 be opened. Otherwise it updates |rd_file[n]| and |rd_fname[n]|.
16462 @c boolean mp_start_read_input (MP mp,char *s, readf_index n) {
16463 mp_ptr_scan_file(mp, s);
16465 mp_begin_file_reading(mp);
16466 if ( ! mp_a_open_in(mp, &mp->rd_file[n], mp_filetype_text) )
16468 if ( ! mp_input_ln(mp, mp->rd_file[n], false) ) {
16469 fclose(mp->rd_file[n]);
16472 mp->rd_fname[n]=xstrdup(mp->name_of_file);
16475 mp_end_file_reading(mp);
16479 @ Open |wr_file[n]| using file name~|s| and update |wr_fname[n]|.
16482 void mp_open_write_file (MP mp, char *s, readf_index n) ;
16484 @ @c void mp_open_write_file (MP mp,char *s, readf_index n) {
16485 mp_ptr_scan_file(mp, s);
16487 while ( ! mp_a_open_out(mp, &mp->wr_file[n], mp_filetype_text) )
16488 mp_prompt_file_name(mp, "file name for write output","");
16489 mp->wr_fname[n]=xstrdup(mp->name_of_file);
16493 @* \[36] Introduction to the parsing routines.
16494 We come now to the central nervous system that sparks many of \MP's activities.
16495 By evaluating expressions, from their primary constituents to ever larger
16496 subexpressions, \MP\ builds the structures that ultimately define complete
16497 pictures or fonts of type.
16499 Four mutually recursive subroutines are involved in this process: We call them
16500 $$\hbox{|scan_primary|, |scan_secondary|, |scan_tertiary|,
16501 and |scan_expression|.}$$
16503 Each of them is parameterless and begins with the first token to be scanned
16504 already represented in |cur_cmd|, |cur_mod|, and |cur_sym|. After execution,
16505 the value of the primary or secondary or tertiary or expression that was
16506 found will appear in the global variables |cur_type| and |cur_exp|. The
16507 token following the expression will be represented in |cur_cmd|, |cur_mod|,
16510 Technically speaking, the parsing algorithms are ``LL(1),'' more or less;
16511 backup mechanisms have been added in order to provide reasonable error
16515 small_number cur_type; /* the type of the expression just found */
16516 integer cur_exp; /* the value of the expression just found */
16521 @ Many different kinds of expressions are possible, so it is wise to have
16522 precise descriptions of what |cur_type| and |cur_exp| mean in all cases:
16525 |cur_type=mp_vacuous| means that this expression didn't turn out to have a
16526 value at all, because it arose from a \&{begingroup}$\,\ldots\,$\&{endgroup}
16527 construction in which there was no expression before the \&{endgroup}.
16528 In this case |cur_exp| has some irrelevant value.
16531 |cur_type=mp_boolean_type| means that |cur_exp| is either |true_code|
16535 |cur_type=mp_unknown_boolean| means that |cur_exp| points to a capsule
16536 node that is in the ring of variables equivalent
16537 to at least one undefined boolean variable.
16540 |cur_type=mp_string_type| means that |cur_exp| is a string number (i.e., an
16541 integer in the range |0<=cur_exp<str_ptr|). That string's reference count
16542 includes this particular reference.
16545 |cur_type=mp_unknown_string| means that |cur_exp| points to a capsule
16546 node that is in the ring of variables equivalent
16547 to at least one undefined string variable.
16550 |cur_type=mp_pen_type| means that |cur_exp| points to a node in a pen. Nobody
16551 else points to any of the nodes in this pen. The pen may be polygonal or
16555 |cur_type=mp_unknown_pen| means that |cur_exp| points to a capsule
16556 node that is in the ring of variables equivalent
16557 to at least one undefined pen variable.
16560 |cur_type=mp_path_type| means that |cur_exp| points to a the first node of
16561 a path; nobody else points to this particular path. The control points of
16562 the path will have been chosen.
16565 |cur_type=mp_unknown_path| means that |cur_exp| points to a capsule
16566 node that is in the ring of variables equivalent
16567 to at least one undefined path variable.
16570 |cur_type=mp_picture_type| means that |cur_exp| points to an edge header node.
16571 There may be other pointers to this particular set of edges. The header node
16572 contains a reference count that includes this particular reference.
16575 |cur_type=mp_unknown_picture| means that |cur_exp| points to a capsule
16576 node that is in the ring of variables equivalent
16577 to at least one undefined picture variable.
16580 |cur_type=mp_transform_type| means that |cur_exp| points to a |mp_transform_type|
16581 capsule node. The |value| part of this capsule
16582 points to a transform node that contains six numeric values,
16583 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16586 |cur_type=mp_color_type| means that |cur_exp| points to a |color_type|
16587 capsule node. The |value| part of this capsule
16588 points to a color node that contains three numeric values,
16589 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16592 |cur_type=mp_cmykcolor_type| means that |cur_exp| points to a |mp_cmykcolor_type|
16593 capsule node. The |value| part of this capsule
16594 points to a color node that contains four numeric values,
16595 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16598 |cur_type=mp_pair_type| means that |cur_exp| points to a capsule
16599 node whose type is |mp_pair_type|. The |value| part of this capsule
16600 points to a pair node that contains two numeric values,
16601 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16604 |cur_type=mp_known| means that |cur_exp| is a |scaled| value.
16607 |cur_type=mp_dependent| means that |cur_exp| points to a capsule node whose type
16608 is |dependent|. The |dep_list| field in this capsule points to the associated
16612 |cur_type=mp_proto_dependent| means that |cur_exp| points to a |mp_proto_dependent|
16613 capsule node. The |dep_list| field in this capsule
16614 points to the associated dependency list.
16617 |cur_type=independent| means that |cur_exp| points to a capsule node
16618 whose type is |independent|. This somewhat unusual case can arise, for
16619 example, in the expression
16620 `$x+\&{begingroup}\penalty0\,\&{string}\,x; 0\,\&{endgroup}$'.
16623 |cur_type=mp_token_list| means that |cur_exp| points to a linked list of
16624 tokens. This case arises only on the left-hand side of an assignment
16625 (`\.{:=}') operation, under very special circumstances.
16627 \smallskip\noindent
16628 The possible settings of |cur_type| have been listed here in increasing
16629 numerical order. Notice that |cur_type| will never be |mp_numeric_type| or
16630 |suffixed_macro| or |mp_unsuffixed_macro|, although variables of those types
16631 are allowed. Conversely, \MP\ has no variables of type |mp_vacuous| or
16634 @ Capsules are two-word nodes that have a similar meaning
16635 to |cur_type| and |cur_exp|. Such nodes have |name_type=capsule|
16636 and |link<=mp_void|; and their |type| field is one of the possibilities for
16637 |cur_type| listed above.
16639 The |value| field of a capsule is, in most cases, the value that
16640 corresponds to its |type|, as |cur_exp| corresponds to |cur_type|.
16641 However, when |cur_exp| would point to a capsule,
16642 no extra layer of indirection is present; the |value|
16643 field is what would have been called |value(cur_exp)| if it had not been
16644 encapsulated. Furthermore, if the type is |dependent| or
16645 |mp_proto_dependent|, the |value| field of a capsule is replaced by
16646 |dep_list| and |prev_dep| fields, since dependency lists in capsules are
16647 always part of the general |dep_list| structure.
16649 The |get_x_next| routine is careful not to change the values of |cur_type|
16650 and |cur_exp| when it gets an expanded token. However, |get_x_next| might
16651 call a macro, which might parse an expression, which might execute lots of
16652 commands in a group; hence it's possible that |cur_type| might change
16653 from, say, |mp_unknown_boolean| to |mp_boolean_type|, or from |dependent| to
16654 |known| or |independent|, during the time |get_x_next| is called. The
16655 programs below are careful to stash sensitive intermediate results in
16656 capsules, so that \MP's generality doesn't cause trouble.
16658 Here's a procedure that illustrates these conventions. It takes
16659 the contents of $(|cur_type|\kern-.3pt,|cur_exp|\kern-.3pt)$
16660 and stashes them away in a
16661 capsule. It is not used when |cur_type=mp_token_list|.
16662 After the operation, |cur_type=mp_vacuous|; hence there is no need to
16663 copy path lists or to update reference counts, etc.
16665 The special link |mp_void| is put on the capsule returned by
16666 |stash_cur_exp|, because this procedure is used to store macro parameters
16667 that must be easily distinguishable from token lists.
16669 @<Declare the stashing/unstashing routines@>=
16670 pointer mp_stash_cur_exp (MP mp) {
16671 pointer p; /* the capsule that will be returned */
16672 switch (mp->cur_type) {
16673 case unknown_types:
16674 case mp_transform_type:
16675 case mp_color_type:
16678 case mp_proto_dependent:
16679 case mp_independent:
16680 case mp_cmykcolor_type:
16684 p=mp_get_node(mp, value_node_size); name_type(p)=mp_capsule;
16685 type(p)=mp->cur_type; value(p)=mp->cur_exp;
16688 mp->cur_type=mp_vacuous; link(p)=mp_void;
16692 @ The inverse of |stash_cur_exp| is the following procedure, which
16693 deletes an unnecessary capsule and puts its contents into |cur_type|
16696 The program steps of \MP\ can be divided into two categories: those in
16697 which |cur_type| and |cur_exp| are ``alive'' and those in which they are
16698 ``dead,'' in the sense that |cur_type| and |cur_exp| contain relevant
16699 information or not. It's important not to ignore them when they're alive,
16700 and it's important not to pay attention to them when they're dead.
16702 There's also an intermediate category: If |cur_type=mp_vacuous|, then
16703 |cur_exp| is irrelevant, hence we can proceed without caring if |cur_type|
16704 and |cur_exp| are alive or dead. In such cases we say that |cur_type|
16705 and |cur_exp| are {\sl dormant}. It is permissible to call |get_x_next|
16706 only when they are alive or dormant.
16708 The \\{stash} procedure above assumes that |cur_type| and |cur_exp|
16709 are alive or dormant. The \\{unstash} procedure assumes that they are
16710 dead or dormant; it resuscitates them.
16712 @<Declare the stashing/unstashing...@>=
16713 void mp_unstash_cur_exp (MP mp,pointer p) ;
16716 void mp_unstash_cur_exp (MP mp,pointer p) {
16717 mp->cur_type=type(p);
16718 switch (mp->cur_type) {
16719 case unknown_types:
16720 case mp_transform_type:
16721 case mp_color_type:
16724 case mp_proto_dependent:
16725 case mp_independent:
16726 case mp_cmykcolor_type:
16730 mp->cur_exp=value(p);
16731 mp_free_node(mp, p,value_node_size);
16736 @ The following procedure prints the values of expressions in an
16737 abbreviated format. If its first parameter |p| is null, the value of
16738 |(cur_type,cur_exp)| is displayed; otherwise |p| should be a capsule
16739 containing the desired value. The second parameter controls the amount of
16740 output. If it is~0, dependency lists will be abbreviated to
16741 `\.{linearform}' unless they consist of a single term. If it is greater
16742 than~1, complicated structures (pens, pictures, and paths) will be displayed
16745 @<Declare subroutines for printing expressions@>=
16746 @<Declare the procedure called |print_dp|@>;
16747 @<Declare the stashing/unstashing routines@>;
16748 void mp_print_exp (MP mp,pointer p, small_number verbosity) {
16749 boolean restore_cur_exp; /* should |cur_exp| be restored? */
16750 small_number t; /* the type of the expression */
16751 pointer q; /* a big node being displayed */
16752 integer v=0; /* the value of the expression */
16754 restore_cur_exp=false;
16756 p=mp_stash_cur_exp(mp); restore_cur_exp=true;
16759 if ( t<mp_dependent ) v=value(p); else if ( t<mp_independent ) v=dep_list(p);
16760 @<Print an abbreviated value of |v| with format depending on |t|@>;
16761 if ( restore_cur_exp ) mp_unstash_cur_exp(mp, p);
16764 @ @<Print an abbreviated value of |v| with format depending on |t|@>=
16766 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
16767 case mp_boolean_type:
16768 if ( v==true_code ) mp_print(mp, "true"); else mp_print(mp, "false");
16770 case unknown_types: case mp_numeric_type:
16771 @<Display a variable that's been declared but not defined@>;
16773 case mp_string_type:
16774 mp_print_char(mp, '"'); mp_print_str(mp, v); mp_print_char(mp, '"');
16776 case mp_pen_type: case mp_path_type: case mp_picture_type:
16777 @<Display a complex type@>;
16779 case mp_transform_type: case mp_color_type: case mp_pair_type: case mp_cmykcolor_type:
16780 if ( v==null ) mp_print_type(mp, t);
16781 else @<Display a big node@>;
16783 case mp_known:mp_print_scaled(mp, v); break;
16784 case mp_dependent: case mp_proto_dependent:
16785 mp_print_dp(mp, t,v,verbosity);
16787 case mp_independent:mp_print_variable_name(mp, p); break;
16788 default: mp_confusion(mp, "exp"); break;
16789 @:this can't happen exp}{\quad exp@>
16792 @ @<Display a big node@>=
16794 mp_print_char(mp, '('); q=v+mp->big_node_size[t];
16796 if ( type(v)==mp_known ) mp_print_scaled(mp, value(v));
16797 else if ( type(v)==mp_independent ) mp_print_variable_name(mp, v);
16798 else mp_print_dp(mp, type(v),dep_list(v),verbosity);
16800 if ( v!=q ) mp_print_char(mp, ',');
16802 mp_print_char(mp, ')');
16805 @ Values of type \&{picture}, \&{path}, and \&{pen} are displayed verbosely
16806 in the log file only, unless the user has given a positive value to
16809 @<Display a complex type@>=
16810 if ( verbosity<=1 ) {
16811 mp_print_type(mp, t);
16813 if ( mp->selector==term_and_log )
16814 if ( mp->internal[mp_tracing_online]<=0 ) {
16815 mp->selector=term_only;
16816 mp_print_type(mp, t); mp_print(mp, " (see the transcript file)");
16817 mp->selector=term_and_log;
16820 case mp_pen_type:mp_print_pen(mp, v,"",false); break;
16821 case mp_path_type:mp_print_path(mp, v,"",false); break;
16822 case mp_picture_type:mp_print_edges(mp, v,"",false); break;
16823 } /* there are no other cases */
16826 @ @<Declare the procedure called |print_dp|@>=
16827 void mp_print_dp (MP mp,small_number t, pointer p,
16828 small_number verbosity) {
16829 pointer q; /* the node following |p| */
16831 if ( (info(q)==null) || (verbosity>0) ) mp_print_dependency(mp, p,t);
16832 else mp_print(mp, "linearform");
16835 @ The displayed name of a variable in a ring will not be a capsule unless
16836 the ring consists entirely of capsules.
16838 @<Display a variable that's been declared but not defined@>=
16839 { mp_print_type(mp, t);
16841 { mp_print_char(mp, ' ');
16842 while ( (name_type(v)==mp_capsule) && (v!=p) ) v=value(v);
16843 mp_print_variable_name(mp, v);
16847 @ When errors are detected during parsing, it is often helpful to
16848 display an expression just above the error message, using |exp_err|
16849 or |disp_err| instead of |print_err|.
16851 @d exp_err(A) mp_disp_err(mp, null,(A)) /* displays the current expression */
16853 @<Declare subroutines for printing expressions@>=
16854 void mp_disp_err (MP mp,pointer p, char *s) {
16855 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16856 mp_print_nl(mp, ">> ");
16858 mp_print_exp(mp, p,1); /* ``medium verbose'' printing of the expression */
16860 mp_print_nl(mp, "! "); mp_print(mp, s);
16865 @ If |cur_type| and |cur_exp| contain relevant information that should
16866 be recycled, we will use the following procedure, which changes |cur_type|
16867 to |known| and stores a given value in |cur_exp|. We can think of |cur_type|
16868 and |cur_exp| as either alive or dormant after this has been done,
16869 because |cur_exp| will not contain a pointer value.
16871 @ @c void mp_flush_cur_exp (MP mp,scaled v) {
16872 switch (mp->cur_type) {
16873 case unknown_types: case mp_transform_type: case mp_color_type: case mp_pair_type:
16874 case mp_dependent: case mp_proto_dependent: case mp_independent: case mp_cmykcolor_type:
16875 mp_recycle_value(mp, mp->cur_exp);
16876 mp_free_node(mp, mp->cur_exp,value_node_size);
16878 case mp_string_type:
16879 delete_str_ref(mp->cur_exp); break;
16880 case mp_pen_type: case mp_path_type:
16881 mp_toss_knot_list(mp, mp->cur_exp); break;
16882 case mp_picture_type:
16883 delete_edge_ref(mp->cur_exp); break;
16887 mp->cur_type=mp_known; mp->cur_exp=v;
16890 @ There's a much more general procedure that is capable of releasing
16891 the storage associated with any two-word value packet.
16893 @<Declare the recycling subroutines@>=
16894 void mp_recycle_value (MP mp,pointer p) ;
16896 @ @c void mp_recycle_value (MP mp,pointer p) {
16897 small_number t; /* a type code */
16898 integer vv; /* another value */
16899 pointer q,r,s,pp; /* link manipulation registers */
16900 integer v=0; /* a value */
16902 if ( t<mp_dependent ) v=value(p);
16904 case undefined: case mp_vacuous: case mp_boolean_type: case mp_known:
16905 case mp_numeric_type:
16907 case unknown_types:
16908 mp_ring_delete(mp, p); break;
16909 case mp_string_type:
16910 delete_str_ref(v); break;
16911 case mp_path_type: case mp_pen_type:
16912 mp_toss_knot_list(mp, v); break;
16913 case mp_picture_type:
16914 delete_edge_ref(v); break;
16915 case mp_cmykcolor_type: case mp_pair_type: case mp_color_type:
16916 case mp_transform_type:
16917 @<Recycle a big node@>; break;
16918 case mp_dependent: case mp_proto_dependent:
16919 @<Recycle a dependency list@>; break;
16920 case mp_independent:
16921 @<Recycle an independent variable@>; break;
16922 case mp_token_list: case mp_structured:
16923 mp_confusion(mp, "recycle"); break;
16924 @:this can't happen recycle}{\quad recycle@>
16925 case mp_unsuffixed_macro: case mp_suffixed_macro:
16926 mp_delete_mac_ref(mp, value(p)); break;
16927 } /* there are no other cases */
16931 @ @<Recycle a big node@>=
16933 q=v+mp->big_node_size[t];
16935 q=q-2; mp_recycle_value(mp, q);
16937 mp_free_node(mp, v,mp->big_node_size[t]);
16940 @ @<Recycle a dependency list@>=
16943 while ( info(q)!=null ) q=link(q);
16944 link(prev_dep(p))=link(q);
16945 prev_dep(link(q))=prev_dep(p);
16946 link(q)=null; mp_flush_node_list(mp, dep_list(p));
16949 @ When an independent variable disappears, it simply fades away, unless
16950 something depends on it. In the latter case, a dependent variable whose
16951 coefficient of dependence is maximal will take its place.
16952 The relevant algorithm is due to Ignacio~A. Zabala, who implemented it
16953 as part of his Ph.D. thesis (Stanford University, December 1982).
16954 @^Zabala Salelles, Ignacio Andres@>
16956 For example, suppose that variable $x$ is being recycled, and that the
16957 only variables depending on~$x$ are $y=2x+a$ and $z=x+b$. In this case
16958 we want to make $y$ independent and $z=.5y-.5a+b$; no other variables
16959 will depend on~$y$. If $\\{tracingequations}>0$ in this situation,
16960 we will print `\.{\#\#\# -2x=-y+a}'.
16962 There's a slight complication, however: An independent variable $x$
16963 can occur both in dependency lists and in proto-dependency lists.
16964 This makes it necessary to be careful when deciding which coefficient
16967 Furthermore, this complication is not so slight when
16968 a proto-dependent variable is chosen to become independent. For example,
16969 suppose that $y=2x+100a$ is proto-dependent while $z=x+b$ is dependent;
16970 then we must change $z=.5y-50a+b$ to a proto-dependency, because of the
16971 large coefficient `50'.
16973 In order to deal with these complications without wasting too much time,
16974 we shall link together the occurrences of~$x$ among all the linear
16975 dependencies, maintaining separate lists for the dependent and
16976 proto-dependent cases.
16978 @<Recycle an independent variable@>=
16980 mp->max_c[mp_dependent]=0; mp->max_c[mp_proto_dependent]=0;
16981 mp->max_link[mp_dependent]=null; mp->max_link[mp_proto_dependent]=null;
16983 while ( q!=dep_head ) {
16984 s=value_loc(q); /* now |link(s)=dep_list(q)| */
16987 if ( info(r)==null ) break;;
16988 if ( info(r)!=p ) {
16991 t=type(q); link(s)=link(r); info(r)=q;
16992 if ( abs(value(r))>mp->max_c[t] ) {
16993 @<Record a new maximum coefficient of type |t|@>;
16995 link(r)=mp->max_link[t]; mp->max_link[t]=r;
17001 if ( (mp->max_c[mp_dependent]>0)||(mp->max_c[mp_proto_dependent]>0) ) {
17002 @<Choose a dependent variable to take the place of the disappearing
17003 independent variable, and change all remaining dependencies
17008 @ The code for independency removal makes use of three two-word arrays.
17011 integer max_c[mp_proto_dependent+1]; /* max coefficient magnitude */
17012 pointer max_ptr[mp_proto_dependent+1]; /* where |p| occurs with |max_c| */
17013 pointer max_link[mp_proto_dependent+1]; /* other occurrences of |p| */
17015 @ @<Record a new maximum coefficient...@>=
17017 if ( mp->max_c[t]>0 ) {
17018 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
17020 mp->max_c[t]=abs(value(r)); mp->max_ptr[t]=r;
17023 @ @<Choose a dependent...@>=
17025 if ( (mp->max_c[mp_dependent] / 010000 >= mp->max_c[mp_proto_dependent]) )
17028 t=mp_proto_dependent;
17029 @<Determine the dependency list |s| to substitute for the independent
17031 t=mp_dependent+mp_proto_dependent-t; /* complement |t| */
17032 if ( mp->max_c[t]>0 ) { /* we need to pick up an unchosen dependency */
17033 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
17035 if ( t!=mp_dependent ) { @<Substitute new dependencies in place of |p|@>; }
17036 else { @<Substitute new proto-dependencies in place of |p|@>;}
17037 mp_flush_node_list(mp, s);
17038 if ( mp->fix_needed ) mp_fix_dependencies(mp);
17042 @ Let |s=max_ptr[t]|. At this point we have $|value|(s)=\pm|max_c|[t]$,
17043 and |info(s)| points to the dependent variable~|pp| of type~|t| from
17044 whose dependency list we have removed node~|s|. We must reinsert
17045 node~|s| into the dependency list, with coefficient $-1.0$, and with
17046 |pp| as the new independent variable. Since |pp| will have a larger serial
17047 number than any other variable, we can put node |s| at the head of the
17050 @<Determine the dep...@>=
17051 s=mp->max_ptr[t]; pp=info(s); v=value(s);
17052 if ( t==mp_dependent ) value(s)=-fraction_one; else value(s)=-unity;
17053 r=dep_list(pp); link(s)=r;
17054 while ( info(r)!=null ) r=link(r);
17055 q=link(r); link(r)=null;
17056 prev_dep(q)=prev_dep(pp); link(prev_dep(pp))=q;
17058 if ( mp->cur_exp==pp ) if ( mp->cur_type==t ) mp->cur_type=mp_independent;
17059 if ( mp->internal[mp_tracing_equations]>0 ) {
17060 @<Show the transformed dependency@>;
17063 @ Now $(-v)$ times the formerly independent variable~|p| is being replaced
17064 by the dependency list~|s|.
17066 @<Show the transformed...@>=
17067 if ( mp_interesting(mp, p) ) {
17068 mp_begin_diagnostic(mp); mp_print_nl(mp, "### ");
17069 @:]]]\#\#\#_}{\.{\#\#\#}@>
17070 if ( v>0 ) mp_print_char(mp, '-');
17071 if ( t==mp_dependent ) vv=mp_round_fraction(mp, mp->max_c[mp_dependent]);
17072 else vv=mp->max_c[mp_proto_dependent];
17073 if ( vv!=unity ) mp_print_scaled(mp, vv);
17074 mp_print_variable_name(mp, p);
17075 while ( value(p) % s_scale>0 ) {
17076 mp_print(mp, "*4"); value(p)=value(p)-2;
17078 if ( t==mp_dependent ) mp_print_char(mp, '='); else mp_print(mp, " = ");
17079 mp_print_dependency(mp, s,t);
17080 mp_end_diagnostic(mp, false);
17083 @ Finally, there are dependent and proto-dependent variables whose
17084 dependency lists must be brought up to date.
17086 @<Substitute new dependencies...@>=
17087 for (t=mp_dependent;t<=mp_proto_dependent;t++){
17089 while ( r!=null ) {
17091 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17092 mp_make_fraction(mp, value(r),-v),s,t,mp_dependent);
17093 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
17094 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
17098 @ @<Substitute new proto...@>=
17099 for (t=mp_dependent;t<=mp_proto_dependent;t++) {
17101 while ( r!=null ) {
17103 if ( t==mp_dependent ) { /* for safety's sake, we change |q| to |mp_proto_dependent| */
17104 if ( mp->cur_exp==q ) if ( mp->cur_type==mp_dependent )
17105 mp->cur_type=mp_proto_dependent;
17106 dep_list(q)=mp_p_over_v(mp, dep_list(q),unity,mp_dependent,mp_proto_dependent);
17107 type(q)=mp_proto_dependent; value(r)=mp_round_fraction(mp, value(r));
17109 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17110 mp_make_scaled(mp, value(r),-v),s,mp_proto_dependent,mp_proto_dependent);
17111 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
17112 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
17116 @ Here are some routines that provide handy combinations of actions
17117 that are often needed during error recovery. For example,
17118 `|flush_error|' flushes the current expression, replaces it by
17119 a given value, and calls |error|.
17121 Errors often are detected after an extra token has already been scanned.
17122 The `\\{put\_get}' routines put that token back before calling |error|;
17123 then they get it back again. (Or perhaps they get another token, if
17124 the user has changed things.)
17127 void mp_flush_error (MP mp,scaled v);
17128 void mp_put_get_error (MP mp);
17129 void mp_put_get_flush_error (MP mp,scaled v) ;
17132 void mp_flush_error (MP mp,scaled v) {
17133 mp_error(mp); mp_flush_cur_exp(mp, v);
17135 void mp_put_get_error (MP mp) {
17136 mp_back_error(mp); mp_get_x_next(mp);
17138 void mp_put_get_flush_error (MP mp,scaled v) {
17139 mp_put_get_error(mp);
17140 mp_flush_cur_exp(mp, v);
17143 @ A global variable |var_flag| is set to a special command code
17144 just before \MP\ calls |scan_expression|, if the expression should be
17145 treated as a variable when this command code immediately follows. For
17146 example, |var_flag| is set to |assignment| at the beginning of a
17147 statement, because we want to know the {\sl location\/} of a variable at
17148 the left of `\.{:=}', not the {\sl value\/} of that variable.
17150 The |scan_expression| subroutine calls |scan_tertiary|,
17151 which calls |scan_secondary|, which calls |scan_primary|, which sets
17152 |var_flag:=0|. In this way each of the scanning routines ``knows''
17153 when it has been called with a special |var_flag|, but |var_flag| is
17156 A variable preceding a command that equals |var_flag| is converted to a
17157 token list rather than a value. Furthermore, an `\.{=}' sign following an
17158 expression with |var_flag=assignment| is not considered to be a relation
17159 that produces boolean expressions.
17163 int var_flag; /* command that wants a variable */
17168 @* \[37] Parsing primary expressions.
17169 The first parsing routine, |scan_primary|, is also the most complicated one,
17170 since it involves so many different cases. But each case---with one
17171 exception---is fairly simple by itself.
17173 When |scan_primary| begins, the first token of the primary to be scanned
17174 should already appear in |cur_cmd|, |cur_mod|, and |cur_sym|. The values
17175 of |cur_type| and |cur_exp| should be either dead or dormant, as explained
17176 earlier. If |cur_cmd| is not between |min_primary_command| and
17177 |max_primary_command|, inclusive, a syntax error will be signaled.
17179 @<Declare the basic parsing subroutines@>=
17180 void mp_scan_primary (MP mp) {
17181 pointer p,q,r; /* for list manipulation */
17182 quarterword c; /* a primitive operation code */
17183 int my_var_flag; /* initial value of |my_var_flag| */
17184 pointer l_delim,r_delim; /* hash addresses of a delimiter pair */
17185 @<Other local variables for |scan_primary|@>;
17186 my_var_flag=mp->var_flag; mp->var_flag=0;
17189 @<Supply diagnostic information, if requested@>;
17190 switch (mp->cur_cmd) {
17191 case left_delimiter:
17192 @<Scan a delimited primary@>; break;
17194 @<Scan a grouped primary@>; break;
17196 @<Scan a string constant@>; break;
17197 case numeric_token:
17198 @<Scan a primary that starts with a numeric token@>; break;
17200 @<Scan a nullary operation@>; break;
17201 case unary: case type_name: case cycle: case plus_or_minus:
17202 @<Scan a unary operation@>; break;
17203 case primary_binary:
17204 @<Scan a binary operation with `\&{of}' between its operands@>; break;
17206 @<Convert a suffix to a string@>; break;
17207 case internal_quantity:
17208 @<Scan an internal numeric quantity@>; break;
17209 case capsule_token:
17210 mp_make_exp_copy(mp, mp->cur_mod); break;
17212 @<Scan a variable primary; |goto restart| if it turns out to be a macro@>; break;
17214 mp_bad_exp(mp, "A primary"); goto RESTART; break;
17215 @.A primary expression...@>
17217 mp_get_x_next(mp); /* the routines |goto done| if they don't want this */
17219 if ( mp->cur_cmd==left_bracket ) {
17220 if ( mp->cur_type>=mp_known ) {
17221 @<Scan a mediation construction@>;
17228 @ Errors at the beginning of expressions are flagged by |bad_exp|.
17230 @c void mp_bad_exp (MP mp,char * s) {
17232 print_err(s); mp_print(mp, " expression can't begin with `");
17233 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
17234 mp_print_char(mp, '\'');
17235 help4("I'm afraid I need some sort of value in order to continue,")
17236 ("so I've tentatively inserted `0'. You may want to")
17237 ("delete this zero and insert something else;")
17238 ("see Chapter 27 of The METAFONTbook for an example.");
17239 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17240 mp_back_input(mp); mp->cur_sym=0; mp->cur_cmd=numeric_token;
17241 mp->cur_mod=0; mp_ins_error(mp);
17242 save_flag=mp->var_flag; mp->var_flag=0; mp_get_x_next(mp);
17243 mp->var_flag=save_flag;
17246 @ @<Supply diagnostic information, if requested@>=
17248 if ( mp->panicking ) mp_check_mem(mp, false);
17250 if ( mp->interrupt!=0 ) if ( mp->OK_to_interrupt ) {
17251 mp_back_input(mp); check_interrupt; mp_get_x_next(mp);
17254 @ @<Scan a delimited primary@>=
17256 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
17257 mp_get_x_next(mp); mp_scan_expression(mp);
17258 if ( (mp->cur_cmd==comma) && (mp->cur_type>=mp_known) ) {
17259 @<Scan the rest of a delimited set of numerics@>;
17261 mp_check_delimiter(mp, l_delim,r_delim);
17265 @ The |stash_in| subroutine puts the current (numeric) expression into a field
17266 within a ``big node.''
17268 @c void mp_stash_in (MP mp,pointer p) {
17269 pointer q; /* temporary register */
17270 type(p)=mp->cur_type;
17271 if ( mp->cur_type==mp_known ) {
17272 value(p)=mp->cur_exp;
17274 if ( mp->cur_type==mp_independent ) {
17275 @<Stash an independent |cur_exp| into a big node@>;
17277 mp->mem[value_loc(p)]=mp->mem[value_loc(mp->cur_exp)];
17278 /* |dep_list(p):=dep_list(cur_exp)| and |prev_dep(p):=prev_dep(cur_exp)| */
17279 link(prev_dep(p))=p;
17281 mp_free_node(mp, mp->cur_exp,value_node_size);
17283 mp->cur_type=mp_vacuous;
17286 @ In rare cases the current expression can become |independent|. There
17287 may be many dependency lists pointing to such an independent capsule,
17288 so we can't simply move it into place within a big node. Instead,
17289 we copy it, then recycle it.
17291 @ @<Stash an independent |cur_exp|...@>=
17293 q=mp_single_dependency(mp, mp->cur_exp);
17294 if ( q==mp->dep_final ){
17295 type(p)=mp_known; value(p)=0; mp_free_node(mp, q,dep_node_size);
17297 type(p)=mp_dependent; mp_new_dep(mp, p,q);
17299 mp_recycle_value(mp, mp->cur_exp);
17302 @ This code uses the fact that |red_part_loc| and |green_part_loc|
17303 are synonymous with |x_part_loc| and |y_part_loc|.
17305 @<Scan the rest of a delimited set of numerics@>=
17307 p=mp_stash_cur_exp(mp);
17308 mp_get_x_next(mp); mp_scan_expression(mp);
17309 @<Make sure the second part of a pair or color has a numeric type@>;
17310 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
17311 if ( mp->cur_cmd==comma ) type(q)=mp_color_type;
17312 else type(q)=mp_pair_type;
17313 mp_init_big_node(mp, q); r=value(q);
17314 mp_stash_in(mp, y_part_loc(r));
17315 mp_unstash_cur_exp(mp, p);
17316 mp_stash_in(mp, x_part_loc(r));
17317 if ( mp->cur_cmd==comma ) {
17318 @<Scan the last of a triplet of numerics@>;
17320 if ( mp->cur_cmd==comma ) {
17321 type(q)=mp_cmykcolor_type;
17322 mp_init_big_node(mp, q); t=value(q);
17323 mp->mem[cyan_part_loc(t)]=mp->mem[red_part_loc(r)];
17324 value(cyan_part_loc(t))=value(red_part_loc(r));
17325 mp->mem[magenta_part_loc(t)]=mp->mem[green_part_loc(r)];
17326 value(magenta_part_loc(t))=value(green_part_loc(r));
17327 mp->mem[yellow_part_loc(t)]=mp->mem[blue_part_loc(r)];
17328 value(yellow_part_loc(t))=value(blue_part_loc(r));
17329 mp_recycle_value(mp, r);
17331 @<Scan the last of a quartet of numerics@>;
17333 mp_check_delimiter(mp, l_delim,r_delim);
17334 mp->cur_type=type(q);
17338 @ @<Make sure the second part of a pair or color has a numeric type@>=
17339 if ( mp->cur_type<mp_known ) {
17340 exp_err("Nonnumeric ypart has been replaced by 0");
17341 @.Nonnumeric...replaced by 0@>
17342 help4("I've started to scan a pair `(a,b)' or a color `(a,b,c)';")
17343 ("but after finding a nice `a' I found a `b' that isn't")
17344 ("of numeric type. So I've changed that part to zero.")
17345 ("(The b that I didn't like appears above the error message.)");
17346 mp_put_get_flush_error(mp, 0);
17349 @ @<Scan the last of a triplet of numerics@>=
17351 mp_get_x_next(mp); mp_scan_expression(mp);
17352 if ( mp->cur_type<mp_known ) {
17353 exp_err("Nonnumeric third part has been replaced by 0");
17354 @.Nonnumeric...replaced by 0@>
17355 help3("I've just scanned a color `(a,b,c)' or cmykcolor(a,b,c,d); but the `c'")
17356 ("isn't of numeric type. So I've changed that part to zero.")
17357 ("(The c that I didn't like appears above the error message.)");
17358 mp_put_get_flush_error(mp, 0);
17360 mp_stash_in(mp, blue_part_loc(r));
17363 @ @<Scan the last of a quartet of numerics@>=
17365 mp_get_x_next(mp); mp_scan_expression(mp);
17366 if ( mp->cur_type<mp_known ) {
17367 exp_err("Nonnumeric blackpart has been replaced by 0");
17368 @.Nonnumeric...replaced by 0@>
17369 help3("I've just scanned a cmykcolor `(c,m,y,k)'; but the `k' isn't")
17370 ("of numeric type. So I've changed that part to zero.")
17371 ("(The k that I didn't like appears above the error message.)");
17372 mp_put_get_flush_error(mp, 0);
17374 mp_stash_in(mp, black_part_loc(r));
17377 @ The local variable |group_line| keeps track of the line
17378 where a \&{begingroup} command occurred; this will be useful
17379 in an error message if the group doesn't actually end.
17381 @<Other local variables for |scan_primary|@>=
17382 integer group_line; /* where a group began */
17384 @ @<Scan a grouped primary@>=
17386 group_line=mp_true_line(mp);
17387 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17388 save_boundary_item(p);
17390 mp_do_statement(mp); /* ends with |cur_cmd>=semicolon| */
17391 } while (! (mp->cur_cmd!=semicolon));
17392 if ( mp->cur_cmd!=end_group ) {
17393 print_err("A group begun on line ");
17394 @.A group...never ended@>
17395 mp_print_int(mp, group_line);
17396 mp_print(mp, " never ended");
17397 help2("I saw a `begingroup' back there that hasn't been matched")
17398 ("by `endgroup'. So I've inserted `endgroup' now.");
17399 mp_back_error(mp); mp->cur_cmd=end_group;
17402 /* this might change |cur_type|, if independent variables are recycled */
17403 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17406 @ @<Scan a string constant@>=
17408 mp->cur_type=mp_string_type; mp->cur_exp=mp->cur_mod;
17411 @ Later we'll come to procedures that perform actual operations like
17412 addition, square root, and so on; our purpose now is to do the parsing.
17413 But we might as well mention those future procedures now, so that the
17414 suspense won't be too bad:
17417 |do_nullary(c)| does primitive operations that have no operands (e.g.,
17418 `\&{true}' or `\&{pencircle}');
17421 |do_unary(c)| applies a primitive operation to the current expression;
17424 |do_binary(p,c)| applies a primitive operation to the capsule~|p|
17425 and the current expression.
17427 @<Scan a nullary operation@>=mp_do_nullary(mp, mp->cur_mod)
17429 @ @<Scan a unary operation@>=
17431 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_primary(mp);
17432 mp_do_unary(mp, c); goto DONE;
17435 @ A numeric token might be a primary by itself, or it might be the
17436 numerator of a fraction composed solely of numeric tokens, or it might
17437 multiply the primary that follows (provided that the primary doesn't begin
17438 with a plus sign or a minus sign). The code here uses the facts that
17439 |max_primary_command=plus_or_minus| and
17440 |max_primary_command-1=numeric_token|. If a fraction is found that is less
17441 than unity, we try to retain higher precision when we use it in scalar
17444 @<Other local variables for |scan_primary|@>=
17445 scaled num,denom; /* for primaries that are fractions, like `1/2' */
17447 @ @<Scan a primary that starts with a numeric token@>=
17449 mp->cur_exp=mp->cur_mod; mp->cur_type=mp_known; mp_get_x_next(mp);
17450 if ( mp->cur_cmd!=slash ) {
17454 if ( mp->cur_cmd!=numeric_token ) {
17456 mp->cur_cmd=slash; mp->cur_mod=over; mp->cur_sym=frozen_slash;
17459 num=mp->cur_exp; denom=mp->cur_mod;
17460 if ( denom==0 ) { @<Protest division by zero@>; }
17461 else { mp->cur_exp=mp_make_scaled(mp, num,denom); }
17462 check_arith; mp_get_x_next(mp);
17464 if ( mp->cur_cmd>=min_primary_command ) {
17465 if ( mp->cur_cmd<numeric_token ) { /* in particular, |cur_cmd<>plus_or_minus| */
17466 p=mp_stash_cur_exp(mp); mp_scan_primary(mp);
17467 if ( (abs(num)>=abs(denom))||(mp->cur_type<mp_color_type) ) {
17468 mp_do_binary(mp, p,times);
17470 mp_frac_mult(mp, num,denom);
17471 mp_free_node(mp, p,value_node_size);
17478 @ @<Protest division...@>=
17480 print_err("Division by zero");
17481 @.Division by zero@>
17482 help1("I'll pretend that you meant to divide by 1."); mp_error(mp);
17485 @ @<Scan a binary operation with `\&{of}' between its operands@>=
17487 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
17488 if ( mp->cur_cmd!=of_token ) {
17489 mp_missing_err(mp, "of"); mp_print(mp, " for ");
17490 mp_print_cmd_mod(mp, primary_binary,c);
17492 help1("I've got the first argument; will look now for the other.");
17495 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_primary(mp);
17496 mp_do_binary(mp, p,c); goto DONE;
17499 @ @<Convert a suffix to a string@>=
17501 mp_get_x_next(mp); mp_scan_suffix(mp);
17502 mp->old_setting=mp->selector; mp->selector=new_string;
17503 mp_show_token_list(mp, mp->cur_exp,null,100000,0);
17504 mp_flush_token_list(mp, mp->cur_exp);
17505 mp->cur_exp=mp_make_string(mp); mp->selector=mp->old_setting;
17506 mp->cur_type=mp_string_type;
17510 @ If an internal quantity appears all by itself on the left of an
17511 assignment, we return a token list of length one, containing the address
17512 of the internal quantity plus |hash_end|. (This accords with the conventions
17513 of the save stack, as described earlier.)
17515 @<Scan an internal...@>=
17518 if ( my_var_flag==assignment ) {
17520 if ( mp->cur_cmd==assignment ) {
17521 mp->cur_exp=mp_get_avail(mp);
17522 info(mp->cur_exp)=q+hash_end; mp->cur_type=mp_token_list;
17527 mp->cur_type=mp_known; mp->cur_exp=mp->internal[q];
17530 @ The most difficult part of |scan_primary| has been saved for last, since
17531 it was necessary to build up some confidence first. We can now face the task
17532 of scanning a variable.
17534 As we scan a variable, we build a token list containing the relevant
17535 names and subscript values, simultaneously following along in the
17536 ``collective'' structure to see if we are actually dealing with a macro
17537 instead of a value.
17539 The local variables |pre_head| and |post_head| will point to the beginning
17540 of the prefix and suffix lists; |tail| will point to the end of the list
17541 that is currently growing.
17543 Another local variable, |tt|, contains partial information about the
17544 declared type of the variable-so-far. If |tt>=mp_unsuffixed_macro|, the
17545 relation |tt=type(q)| will always hold. If |tt=undefined|, the routine
17546 doesn't bother to update its information about type. And if
17547 |undefined<tt<mp_unsuffixed_macro|, the precise value of |tt| isn't critical.
17549 @ @<Other local variables for |scan_primary|@>=
17550 pointer pre_head,post_head,tail;
17551 /* prefix and suffix list variables */
17552 small_number tt; /* approximation to the type of the variable-so-far */
17553 pointer t; /* a token */
17554 pointer macro_ref = 0; /* reference count for a suffixed macro */
17556 @ @<Scan a variable primary...@>=
17558 fast_get_avail(pre_head); tail=pre_head; post_head=null; tt=mp_vacuous;
17560 t=mp_cur_tok(mp); link(tail)=t;
17561 if ( tt!=undefined ) {
17562 @<Find the approximate type |tt| and corresponding~|q|@>;
17563 if ( tt>=mp_unsuffixed_macro ) {
17564 @<Either begin an unsuffixed macro call or
17565 prepare for a suffixed one@>;
17568 mp_get_x_next(mp); tail=t;
17569 if ( mp->cur_cmd==left_bracket ) {
17570 @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>;
17572 if ( mp->cur_cmd>max_suffix_token ) break;
17573 if ( mp->cur_cmd<min_suffix_token ) break;
17574 } /* now |cur_cmd| is |internal_quantity|, |tag_token|, or |numeric_token| */
17575 @<Handle unusual cases that masquerade as variables, and |goto restart|
17576 or |goto done| if appropriate;
17577 otherwise make a copy of the variable and |goto done|@>;
17580 @ @<Either begin an unsuffixed macro call or...@>=
17583 if ( tt>mp_unsuffixed_macro ) { /* |tt=mp_suffixed_macro| */
17584 post_head=mp_get_avail(mp); tail=post_head; link(tail)=t;
17585 tt=undefined; macro_ref=value(q); add_mac_ref(macro_ref);
17587 @<Set up unsuffixed macro call and |goto restart|@>;
17591 @ @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>=
17593 mp_get_x_next(mp); mp_scan_expression(mp);
17594 if ( mp->cur_cmd!=right_bracket ) {
17595 @<Put the left bracket and the expression back to be rescanned@>;
17597 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17598 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp; mp->cur_sym=0;
17602 @ The left bracket that we thought was introducing a subscript might have
17603 actually been the left bracket in a mediation construction like `\.{x[a,b]}'.
17604 So we don't issue an error message at this point; but we do want to back up
17605 so as to avoid any embarrassment about our incorrect assumption.
17607 @<Put the left bracket and the expression back to be rescanned@>=
17609 mp_back_input(mp); /* that was the token following the current expression */
17610 mp_back_expr(mp); mp->cur_cmd=left_bracket;
17611 mp->cur_mod=0; mp->cur_sym=frozen_left_bracket;
17614 @ Here's a routine that puts the current expression back to be read again.
17616 @c void mp_back_expr (MP mp) {
17617 pointer p; /* capsule token */
17618 p=mp_stash_cur_exp(mp); link(p)=null; back_list(p);
17621 @ Unknown subscripts lead to the following error message.
17623 @c void mp_bad_subscript (MP mp) {
17624 exp_err("Improper subscript has been replaced by zero");
17625 @.Improper subscript...@>
17626 help3("A bracketed subscript must have a known numeric value;")
17627 ("unfortunately, what I found was the value that appears just")
17628 ("above this error message. So I'll try a zero subscript.");
17629 mp_flush_error(mp, 0);
17632 @ Every time we call |get_x_next|, there's a chance that the variable we've
17633 been looking at will disappear. Thus, we cannot safely keep |q| pointing
17634 into the variable structure; we need to start searching from the root each time.
17636 @<Find the approximate type |tt| and corresponding~|q|@>=
17639 p=link(pre_head); q=info(p); tt=undefined;
17640 if ( eq_type(q) % outer_tag==tag_token ) {
17642 if ( q==null ) goto DONE2;
17646 tt=type(q); goto DONE2;
17648 if ( type(q)!=mp_structured ) goto DONE2;
17649 q=link(attr_head(q)); /* the |collective_subscript| attribute */
17650 if ( p>=mp->hi_mem_min ) { /* it's not a subscript */
17651 do { q=link(q); } while (! (attr_loc(q)>=info(p)));
17652 if ( attr_loc(q)>info(p) ) goto DONE2;
17660 @ How do things stand now? Well, we have scanned an entire variable name,
17661 including possible subscripts and/or attributes; |cur_cmd|, |cur_mod|, and
17662 |cur_sym| represent the token that follows. If |post_head=null|, a
17663 token list for this variable name starts at |link(pre_head)|, with all
17664 subscripts evaluated. But if |post_head<>null|, the variable turned out
17665 to be a suffixed macro; |pre_head| is the head of the prefix list, while
17666 |post_head| is the head of a token list containing both `\.{\AT!}' and
17669 Our immediate problem is to see if this variable still exists. (Variable
17670 structures can change drastically whenever we call |get_x_next|; users
17671 aren't supposed to do this, but the fact that it is possible means that
17672 we must be cautious.)
17674 The following procedure prints an error message when a variable
17675 unexpectedly disappears. Its help message isn't quite right for
17676 our present purposes, but we'll be able to fix that up.
17679 void mp_obliterated (MP mp,pointer q) {
17680 print_err("Variable "); mp_show_token_list(mp, q,null,1000,0);
17681 mp_print(mp, " has been obliterated");
17682 @.Variable...obliterated@>
17683 help5("It seems you did a nasty thing---probably by accident,")
17684 ("but nevertheless you nearly hornswoggled me...")
17685 ("While I was evaluating the right-hand side of this")
17686 ("command, something happened, and the left-hand side")
17687 ("is no longer a variable! So I won't change anything.");
17690 @ If the variable does exist, we also need to check
17691 for a few other special cases before deciding that a plain old ordinary
17692 variable has, indeed, been scanned.
17694 @<Handle unusual cases that masquerade as variables...@>=
17695 if ( post_head!=null ) {
17696 @<Set up suffixed macro call and |goto restart|@>;
17698 q=link(pre_head); free_avail(pre_head);
17699 if ( mp->cur_cmd==my_var_flag ) {
17700 mp->cur_type=mp_token_list; mp->cur_exp=q; goto DONE;
17702 p=mp_find_variable(mp, q);
17704 mp_make_exp_copy(mp, p);
17706 mp_obliterated(mp, q);
17707 mp->help_line[2]="While I was evaluating the suffix of this variable,";
17708 mp->help_line[1]="something was redefined, and it's no longer a variable!";
17709 mp->help_line[0]="In order to get back on my feet, I've inserted `0' instead.";
17710 mp_put_get_flush_error(mp, 0);
17712 mp_flush_node_list(mp, q);
17715 @ The only complication associated with macro calling is that the prefix
17716 and ``at'' parameters must be packaged in an appropriate list of lists.
17718 @<Set up unsuffixed macro call and |goto restart|@>=
17720 p=mp_get_avail(mp); info(pre_head)=link(pre_head); link(pre_head)=p;
17721 info(p)=t; mp_macro_call(mp, value(q),pre_head,null);
17726 @ If the ``variable'' that turned out to be a suffixed macro no longer exists,
17727 we don't care, because we have reserved a pointer (|macro_ref|) to its
17730 @<Set up suffixed macro call and |goto restart|@>=
17732 mp_back_input(mp); p=mp_get_avail(mp); q=link(post_head);
17733 info(pre_head)=link(pre_head); link(pre_head)=post_head;
17734 info(post_head)=q; link(post_head)=p; info(p)=link(q); link(q)=null;
17735 mp_macro_call(mp, macro_ref,pre_head,null); decr(ref_count(macro_ref));
17736 mp_get_x_next(mp); goto RESTART;
17739 @ Our remaining job is simply to make a copy of the value that has been
17740 found. Some cases are harder than others, but complexity arises solely
17741 because of the multiplicity of possible cases.
17743 @<Declare the procedure called |make_exp_copy|@>=
17744 @<Declare subroutines needed by |make_exp_copy|@>;
17745 void mp_make_exp_copy (MP mp,pointer p) {
17746 pointer q,r,t; /* registers for list manipulation */
17748 mp->cur_type=type(p);
17749 switch (mp->cur_type) {
17750 case mp_vacuous: case mp_boolean_type: case mp_known:
17751 mp->cur_exp=value(p); break;
17752 case unknown_types:
17753 mp->cur_exp=mp_new_ring_entry(mp, p);
17755 case mp_string_type:
17756 mp->cur_exp=value(p); add_str_ref(mp->cur_exp);
17758 case mp_picture_type:
17759 mp->cur_exp=value(p);add_edge_ref(mp->cur_exp);
17762 mp->cur_exp=copy_pen(value(p));
17765 mp->cur_exp=mp_copy_path(mp, value(p));
17767 case mp_transform_type: case mp_color_type:
17768 case mp_cmykcolor_type: case mp_pair_type:
17769 @<Copy the big node |p|@>;
17771 case mp_dependent: case mp_proto_dependent:
17772 mp_encapsulate(mp, mp_copy_dep_list(mp, dep_list(p)));
17774 case mp_numeric_type:
17775 new_indep(p); goto RESTART;
17777 case mp_independent:
17778 q=mp_single_dependency(mp, p);
17779 if ( q==mp->dep_final ){
17780 mp->cur_type=mp_known; mp->cur_exp=0; mp_free_node(mp, q,value_node_size);
17782 mp->cur_type=mp_dependent; mp_encapsulate(mp, q);
17786 mp_confusion(mp, "copy");
17787 @:this can't happen copy}{\quad copy@>
17792 @ The |encapsulate| subroutine assumes that |dep_final| is the
17793 tail of dependency list~|p|.
17795 @<Declare subroutines needed by |make_exp_copy|@>=
17796 void mp_encapsulate (MP mp,pointer p) {
17797 mp->cur_exp=mp_get_node(mp, value_node_size); type(mp->cur_exp)=mp->cur_type;
17798 name_type(mp->cur_exp)=mp_capsule; mp_new_dep(mp, mp->cur_exp,p);
17801 @ The most tedious case arises when the user refers to a
17802 \&{pair}, \&{color}, or \&{transform} variable; we must copy several fields,
17803 each of which can be |independent|, |dependent|, |mp_proto_dependent|,
17806 @<Copy the big node |p|@>=
17808 if ( value(p)==null )
17809 mp_init_big_node(mp, p);
17810 t=mp_get_node(mp, value_node_size); name_type(t)=mp_capsule; type(t)=mp->cur_type;
17811 mp_init_big_node(mp, t);
17812 q=value(p)+mp->big_node_size[mp->cur_type];
17813 r=value(t)+mp->big_node_size[mp->cur_type];
17815 q=q-2; r=r-2; mp_install(mp, r,q);
17816 } while (q!=value(p));
17820 @ The |install| procedure copies a numeric field~|q| into field~|r| of
17821 a big node that will be part of a capsule.
17823 @<Declare subroutines needed by |make_exp_copy|@>=
17824 void mp_install (MP mp,pointer r, pointer q) {
17825 pointer p; /* temporary register */
17826 if ( type(q)==mp_known ){
17827 value(r)=value(q); type(r)=mp_known;
17828 } else if ( type(q)==mp_independent ) {
17829 p=mp_single_dependency(mp, q);
17830 if ( p==mp->dep_final ) {
17831 type(r)=mp_known; value(r)=0; mp_free_node(mp, p,value_node_size);
17833 type(r)=mp_dependent; mp_new_dep(mp, r,p);
17836 type(r)=type(q); mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(q)));
17840 @ Expressions of the form `\.{a[b,c]}' are converted into
17841 `\.{b+a*(c-b)}', without checking the types of \.b~or~\.c,
17842 provided that \.a is numeric.
17844 @<Scan a mediation...@>=
17846 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17847 if ( mp->cur_cmd!=comma ) {
17848 @<Put the left bracket and the expression back...@>;
17849 mp_unstash_cur_exp(mp, p);
17851 q=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17852 if ( mp->cur_cmd!=right_bracket ) {
17853 mp_missing_err(mp, "]");
17855 help3("I've scanned an expression of the form `a[b,c',")
17856 ("so a right bracket should have come next.")
17857 ("I shall pretend that one was there.");
17860 r=mp_stash_cur_exp(mp); mp_make_exp_copy(mp, q);
17861 mp_do_binary(mp, r,minus); mp_do_binary(mp, p,times);
17862 mp_do_binary(mp, q,plus); mp_get_x_next(mp);
17866 @ Here is a comparatively simple routine that is used to scan the
17867 \&{suffix} parameters of a macro.
17869 @<Declare the basic parsing subroutines@>=
17870 void mp_scan_suffix (MP mp) {
17871 pointer h,t; /* head and tail of the list being built */
17872 pointer p; /* temporary register */
17873 h=mp_get_avail(mp); t=h;
17875 if ( mp->cur_cmd==left_bracket ) {
17876 @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>;
17878 if ( mp->cur_cmd==numeric_token ) {
17879 p=mp_new_num_tok(mp, mp->cur_mod);
17880 } else if ((mp->cur_cmd==tag_token)||(mp->cur_cmd==internal_quantity) ) {
17881 p=mp_get_avail(mp); info(p)=mp->cur_sym;
17885 link(t)=p; t=p; mp_get_x_next(mp);
17887 mp->cur_exp=link(h); free_avail(h); mp->cur_type=mp_token_list;
17890 @ @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>=
17892 mp_get_x_next(mp); mp_scan_expression(mp);
17893 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17894 if ( mp->cur_cmd!=right_bracket ) {
17895 mp_missing_err(mp, "]");
17897 help3("I've seen a `[' and a subscript value, in a suffix,")
17898 ("so a right bracket should have come next.")
17899 ("I shall pretend that one was there.");
17902 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp;
17905 @* \[38] Parsing secondary and higher expressions.
17906 After the intricacies of |scan_primary|\kern-1pt,
17907 the |scan_secondary| routine is
17908 refreshingly simple. It's not trivial, but the operations are relatively
17909 straightforward; the main difficulty is, again, that expressions and data
17910 structures might change drastically every time we call |get_x_next|, so a
17911 cautious approach is mandatory. For example, a macro defined by
17912 \&{primarydef} might have disappeared by the time its second argument has
17913 been scanned; we solve this by increasing the reference count of its token
17914 list, so that the macro can be called even after it has been clobbered.
17916 @<Declare the basic parsing subroutines@>=
17917 void mp_scan_secondary (MP mp) {
17918 pointer p; /* for list manipulation */
17919 halfword c,d; /* operation codes or modifiers */
17920 pointer mac_name; /* token defined with \&{primarydef} */
17922 if ((mp->cur_cmd<min_primary_command)||
17923 (mp->cur_cmd>max_primary_command) )
17924 mp_bad_exp(mp, "A secondary");
17925 @.A secondary expression...@>
17926 mp_scan_primary(mp);
17928 if ( mp->cur_cmd<=max_secondary_command )
17929 if ( mp->cur_cmd>=min_secondary_command ) {
17930 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17931 if ( d==secondary_primary_macro ) {
17932 mac_name=mp->cur_sym; add_mac_ref(c);
17934 mp_get_x_next(mp); mp_scan_primary(mp);
17935 if ( d!=secondary_primary_macro ) {
17936 mp_do_binary(mp, p,c);
17938 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17939 decr(ref_count(c)); mp_get_x_next(mp);
17946 @ The following procedure calls a macro that has two parameters,
17949 @c void mp_binary_mac (MP mp,pointer p, pointer c, pointer n) {
17950 pointer q,r; /* nodes in the parameter list */
17951 q=mp_get_avail(mp); r=mp_get_avail(mp); link(q)=r;
17952 info(q)=p; info(r)=mp_stash_cur_exp(mp);
17953 mp_macro_call(mp, c,q,n);
17956 @ The next procedure, |scan_tertiary|, is pretty much the same deal.
17958 @<Declare the basic parsing subroutines@>=
17959 void mp_scan_tertiary (MP mp) {
17960 pointer p; /* for list manipulation */
17961 halfword c,d; /* operation codes or modifiers */
17962 pointer mac_name; /* token defined with \&{secondarydef} */
17964 if ((mp->cur_cmd<min_primary_command)||
17965 (mp->cur_cmd>max_primary_command) )
17966 mp_bad_exp(mp, "A tertiary");
17967 @.A tertiary expression...@>
17968 mp_scan_secondary(mp);
17970 if ( mp->cur_cmd<=max_tertiary_command ) {
17971 if ( mp->cur_cmd>=min_tertiary_command ) {
17972 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17973 if ( d==tertiary_secondary_macro ) {
17974 mac_name=mp->cur_sym; add_mac_ref(c);
17976 mp_get_x_next(mp); mp_scan_secondary(mp);
17977 if ( d!=tertiary_secondary_macro ) {
17978 mp_do_binary(mp, p,c);
17980 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17981 decr(ref_count(c)); mp_get_x_next(mp);
17989 @ Finally we reach the deepest level in our quartet of parsing routines.
17990 This one is much like the others; but it has an extra complication from
17991 paths, which materialize here.
17993 @d continue_path 25 /* a label inside of |scan_expression| */
17994 @d finish_path 26 /* another */
17996 @<Declare the basic parsing subroutines@>=
17997 void mp_scan_expression (MP mp) {
17998 pointer p,q,r,pp,qq; /* for list manipulation */
17999 halfword c,d; /* operation codes or modifiers */
18000 int my_var_flag; /* initial value of |var_flag| */
18001 pointer mac_name; /* token defined with \&{tertiarydef} */
18002 boolean cycle_hit; /* did a path expression just end with `\&{cycle}'? */
18003 scaled x,y; /* explicit coordinates or tension at a path join */
18004 int t; /* knot type following a path join */
18006 my_var_flag=mp->var_flag; mac_name=null;
18008 if ((mp->cur_cmd<min_primary_command)||
18009 (mp->cur_cmd>max_primary_command) )
18010 mp_bad_exp(mp, "An");
18011 @.An expression...@>
18012 mp_scan_tertiary(mp);
18014 if ( mp->cur_cmd<=max_expression_command )
18015 if ( mp->cur_cmd>=min_expression_command ) {
18016 if ( (mp->cur_cmd!=equals)||(my_var_flag!=assignment) ) {
18017 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
18018 if ( d==expression_tertiary_macro ) {
18019 mac_name=mp->cur_sym; add_mac_ref(c);
18021 if ( (d<ampersand)||((d==ampersand)&&
18022 ((type(p)==mp_pair_type)||(type(p)==mp_path_type))) ) {
18023 @<Scan a path construction operation;
18024 but |return| if |p| has the wrong type@>;
18026 mp_get_x_next(mp); mp_scan_tertiary(mp);
18027 if ( d!=expression_tertiary_macro ) {
18028 mp_do_binary(mp, p,c);
18030 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
18031 decr(ref_count(c)); mp_get_x_next(mp);
18040 @ The reader should review the data structure conventions for paths before
18041 hoping to understand the next part of this code.
18043 @<Scan a path construction operation...@>=
18046 @<Convert the left operand, |p|, into a partial path ending at~|q|;
18047 but |return| if |p| doesn't have a suitable type@>;
18049 @<Determine the path join parameters;
18050 but |goto finish_path| if there's only a direction specifier@>;
18051 if ( mp->cur_cmd==cycle ) {
18052 @<Get ready to close a cycle@>;
18054 mp_scan_tertiary(mp);
18055 @<Convert the right operand, |cur_exp|,
18056 into a partial path from |pp| to~|qq|@>;
18058 @<Join the partial paths and reset |p| and |q| to the head and tail
18060 if ( mp->cur_cmd>=min_expression_command )
18061 if ( mp->cur_cmd<=ampersand ) if ( ! cycle_hit ) goto CONTINUE_PATH;
18063 @<Choose control points for the path and put the result into |cur_exp|@>;
18066 @ @<Convert the left operand, |p|, into a partial path ending at~|q|...@>=
18068 mp_unstash_cur_exp(mp, p);
18069 if ( mp->cur_type==mp_pair_type ) p=mp_new_knot(mp);
18070 else if ( mp->cur_type==mp_path_type ) p=mp->cur_exp;
18073 while ( link(q)!=p ) q=link(q);
18074 if ( left_type(p)!=mp_endpoint ) { /* open up a cycle */
18075 r=mp_copy_knot(mp, p); link(q)=r; q=r;
18077 left_type(p)=mp_open; right_type(q)=mp_open;
18080 @ A pair of numeric values is changed into a knot node for a one-point path
18081 when \MP\ discovers that the pair is part of a path.
18083 @c@<Declare the procedure called |known_pair|@>;
18084 pointer mp_new_knot (MP mp) { /* convert a pair to a knot with two endpoints */
18085 pointer q; /* the new node */
18086 q=mp_get_node(mp, knot_node_size); left_type(q)=mp_endpoint;
18087 right_type(q)=mp_endpoint; originator(q)=mp_metapost_user; link(q)=q;
18088 mp_known_pair(mp); x_coord(q)=mp->cur_x; y_coord(q)=mp->cur_y;
18092 @ The |known_pair| subroutine sets |cur_x| and |cur_y| to the components
18093 of the current expression, assuming that the current expression is a
18094 pair of known numerics. Unknown components are zeroed, and the
18095 current expression is flushed.
18097 @<Declare the procedure called |known_pair|@>=
18098 void mp_known_pair (MP mp) {
18099 pointer p; /* the pair node */
18100 if ( mp->cur_type!=mp_pair_type ) {
18101 exp_err("Undefined coordinates have been replaced by (0,0)");
18102 @.Undefined coordinates...@>
18103 help5("I need x and y numbers for this part of the path.")
18104 ("The value I found (see above) was no good;")
18105 ("so I'll try to keep going by using zero instead.")
18106 ("(Chapter 27 of The METAFONTbook explains that")
18107 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18108 ("you might want to type `I ??" "?' now.)");
18109 mp_put_get_flush_error(mp, 0); mp->cur_x=0; mp->cur_y=0;
18111 p=value(mp->cur_exp);
18112 @<Make sure that both |x| and |y| parts of |p| are known;
18113 copy them into |cur_x| and |cur_y|@>;
18114 mp_flush_cur_exp(mp, 0);
18118 @ @<Make sure that both |x| and |y| parts of |p| are known...@>=
18119 if ( type(x_part_loc(p))==mp_known ) {
18120 mp->cur_x=value(x_part_loc(p));
18122 mp_disp_err(mp, x_part_loc(p),
18123 "Undefined x coordinate has been replaced by 0");
18124 @.Undefined coordinates...@>
18125 help5("I need a `known' x value for this part of the path.")
18126 ("The value I found (see above) was no good;")
18127 ("so I'll try to keep going by using zero instead.")
18128 ("(Chapter 27 of The METAFONTbook explains that")
18129 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18130 ("you might want to type `I ??" "?' now.)");
18131 mp_put_get_error(mp); mp_recycle_value(mp, x_part_loc(p)); mp->cur_x=0;
18133 if ( type(y_part_loc(p))==mp_known ) {
18134 mp->cur_y=value(y_part_loc(p));
18136 mp_disp_err(mp, y_part_loc(p),
18137 "Undefined y coordinate has been replaced by 0");
18138 help5("I need a `known' y value for this part of the path.")
18139 ("The value I found (see above) was no good;")
18140 ("so I'll try to keep going by using zero instead.")
18141 ("(Chapter 27 of The METAFONTbook explains that")
18142 ("you might want to type `I ??" "?' now.)");
18143 mp_put_get_error(mp); mp_recycle_value(mp, y_part_loc(p)); mp->cur_y=0;
18146 @ At this point |cur_cmd| is either |ampersand|, |left_brace|, or |path_join|.
18148 @<Determine the path join parameters...@>=
18149 if ( mp->cur_cmd==left_brace ) {
18150 @<Put the pre-join direction information into node |q|@>;
18153 if ( d==path_join ) {
18154 @<Determine the tension and/or control points@>;
18155 } else if ( d!=ampersand ) {
18159 if ( mp->cur_cmd==left_brace ) {
18160 @<Put the post-join direction information into |x| and |t|@>;
18161 } else if ( right_type(q)!=mp_explicit ) {
18165 @ The |scan_direction| subroutine looks at the directional information
18166 that is enclosed in braces, and also scans ahead to the following character.
18167 A type code is returned, either |open| (if the direction was $(0,0)$),
18168 or |curl| (if the direction was a curl of known value |cur_exp|), or
18169 |given| (if the direction is given by the |angle| value that now
18170 appears in |cur_exp|).
18172 There's nothing difficult about this subroutine, but the program is rather
18173 lengthy because a variety of potential errors need to be nipped in the bud.
18175 @c small_number mp_scan_direction (MP mp) {
18176 int t; /* the type of information found */
18177 scaled x; /* an |x| coordinate */
18179 if ( mp->cur_cmd==curl_command ) {
18180 @<Scan a curl specification@>;
18182 @<Scan a given direction@>;
18184 if ( mp->cur_cmd!=right_brace ) {
18185 mp_missing_err(mp, "}");
18186 @.Missing `\char`\}'@>
18187 help3("I've scanned a direction spec for part of a path,")
18188 ("so a right brace should have come next.")
18189 ("I shall pretend that one was there.");
18196 @ @<Scan a curl specification@>=
18197 { mp_get_x_next(mp); mp_scan_expression(mp);
18198 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<0) ){
18199 exp_err("Improper curl has been replaced by 1");
18201 help1("A curl must be a known, nonnegative number.");
18202 mp_put_get_flush_error(mp, unity);
18207 @ @<Scan a given direction@>=
18208 { mp_scan_expression(mp);
18209 if ( mp->cur_type>mp_pair_type ) {
18210 @<Get given directions separated by commas@>;
18214 if ( (mp->cur_x==0)&&(mp->cur_y==0) ) t=mp_open;
18215 else { t=mp_given; mp->cur_exp=mp_n_arg(mp, mp->cur_x,mp->cur_y);}
18218 @ @<Get given directions separated by commas@>=
18220 if ( mp->cur_type!=mp_known ) {
18221 exp_err("Undefined x coordinate has been replaced by 0");
18222 @.Undefined coordinates...@>
18223 help5("I need a `known' x value for this part of the path.")
18224 ("The value I found (see above) was no good;")
18225 ("so I'll try to keep going by using zero instead.")
18226 ("(Chapter 27 of The METAFONTbook explains that")
18227 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18228 ("you might want to type `I ??" "?' now.)");
18229 mp_put_get_flush_error(mp, 0);
18232 if ( mp->cur_cmd!=comma ) {
18233 mp_missing_err(mp, ",");
18235 help2("I've got the x coordinate of a path direction;")
18236 ("will look for the y coordinate next.");
18239 mp_get_x_next(mp); mp_scan_expression(mp);
18240 if ( mp->cur_type!=mp_known ) {
18241 exp_err("Undefined y coordinate has been replaced by 0");
18242 help5("I need a `known' y value for this part of the path.")
18243 ("The value I found (see above) was no good;")
18244 ("so I'll try to keep going by using zero instead.")
18245 ("(Chapter 27 of The METAFONTbook explains that")
18246 ("you might want to type `I ??" "?' now.)");
18247 mp_put_get_flush_error(mp, 0);
18249 mp->cur_y=mp->cur_exp; mp->cur_x=x;
18252 @ At this point |right_type(q)| is usually |open|, but it may have been
18253 set to some other value by a previous splicing operation. We must maintain
18254 the value of |right_type(q)| in unusual cases such as
18255 `\.{..z1\{z2\}\&\{z3\}z1\{0,0\}..}'.
18257 @<Put the pre-join...@>=
18259 t=mp_scan_direction(mp);
18260 if ( t!=mp_open ) {
18261 right_type(q)=t; right_given(q)=mp->cur_exp;
18262 if ( left_type(q)==mp_open ) {
18263 left_type(q)=t; left_given(q)=mp->cur_exp;
18264 } /* note that |left_given(q)=left_curl(q)| */
18268 @ Since |left_tension| and |left_y| share the same position in knot nodes,
18269 and since |left_given| is similarly equivalent to |left_x|, we use
18270 |x| and |y| to hold the given direction and tension information when
18271 there are no explicit control points.
18273 @<Put the post-join...@>=
18275 t=mp_scan_direction(mp);
18276 if ( right_type(q)!=mp_explicit ) x=mp->cur_exp;
18277 else t=mp_explicit; /* the direction information is superfluous */
18280 @ @<Determine the tension and/or...@>=
18283 if ( mp->cur_cmd==tension ) {
18284 @<Set explicit tensions@>;
18285 } else if ( mp->cur_cmd==controls ) {
18286 @<Set explicit control points@>;
18288 right_tension(q)=unity; y=unity; mp_back_input(mp); /* default tension */
18291 if ( mp->cur_cmd!=path_join ) {
18292 mp_missing_err(mp, "..");
18294 help1("A path join command should end with two dots.");
18301 @ @<Set explicit tensions@>=
18303 mp_get_x_next(mp); y=mp->cur_cmd;
18304 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18305 mp_scan_primary(mp);
18306 @<Make sure that the current expression is a valid tension setting@>;
18307 if ( y==at_least ) negate(mp->cur_exp);
18308 right_tension(q)=mp->cur_exp;
18309 if ( mp->cur_cmd==and_command ) {
18310 mp_get_x_next(mp); y=mp->cur_cmd;
18311 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18312 mp_scan_primary(mp);
18313 @<Make sure that the current expression is a valid tension setting@>;
18314 if ( y==at_least ) negate(mp->cur_exp);
18319 @ @d min_tension three_quarter_unit
18321 @<Make sure that the current expression is a valid tension setting@>=
18322 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<min_tension) ) {
18323 exp_err("Improper tension has been set to 1");
18324 @.Improper tension@>
18325 help1("The expression above should have been a number >=3/4.");
18326 mp_put_get_flush_error(mp, unity);
18329 @ @<Set explicit control points@>=
18331 right_type(q)=mp_explicit; t=mp_explicit; mp_get_x_next(mp); mp_scan_primary(mp);
18332 mp_known_pair(mp); right_x(q)=mp->cur_x; right_y(q)=mp->cur_y;
18333 if ( mp->cur_cmd!=and_command ) {
18334 x=right_x(q); y=right_y(q);
18336 mp_get_x_next(mp); mp_scan_primary(mp);
18337 mp_known_pair(mp); x=mp->cur_x; y=mp->cur_y;
18341 @ @<Convert the right operand, |cur_exp|, into a partial path...@>=
18343 if ( mp->cur_type!=mp_path_type ) pp=mp_new_knot(mp);
18344 else pp=mp->cur_exp;
18346 while ( link(qq)!=pp ) qq=link(qq);
18347 if ( left_type(pp)!=mp_endpoint ) { /* open up a cycle */
18348 r=mp_copy_knot(mp, pp); link(qq)=r; qq=r;
18350 left_type(pp)=mp_open; right_type(qq)=mp_open;
18353 @ If a person tries to define an entire path by saying `\.{(x,y)\&cycle}',
18354 we silently change the specification to `\.{(x,y)..cycle}', since a cycle
18355 shouldn't have length zero.
18357 @<Get ready to close a cycle@>=
18359 cycle_hit=true; mp_get_x_next(mp); pp=p; qq=p;
18360 if ( d==ampersand ) if ( p==q ) {
18361 d=path_join; right_tension(q)=unity; y=unity;
18365 @ @<Join the partial paths and reset |p| and |q|...@>=
18367 if ( d==ampersand ) {
18368 if ( (x_coord(q)!=x_coord(pp))||(y_coord(q)!=y_coord(pp)) ) {
18369 print_err("Paths don't touch; `&' will be changed to `..'");
18370 @.Paths don't touch@>
18371 help3("When you join paths `p&q', the ending point of p")
18372 ("must be exactly equal to the starting point of q.")
18373 ("So I'm going to pretend that you said `p..q' instead.");
18374 mp_put_get_error(mp); d=path_join; right_tension(q)=unity; y=unity;
18377 @<Plug an opening in |right_type(pp)|, if possible@>;
18378 if ( d==ampersand ) {
18379 @<Splice independent paths together@>;
18381 @<Plug an opening in |right_type(q)|, if possible@>;
18382 link(q)=pp; left_y(pp)=y;
18383 if ( t!=mp_open ) { left_x(pp)=x; left_type(pp)=t; };
18388 @ @<Plug an opening in |right_type(q)|...@>=
18389 if ( right_type(q)==mp_open ) {
18390 if ( (left_type(q)==mp_curl)||(left_type(q)==mp_given) ) {
18391 right_type(q)=left_type(q); right_given(q)=left_given(q);
18395 @ @<Plug an opening in |right_type(pp)|...@>=
18396 if ( right_type(pp)==mp_open ) {
18397 if ( (t==mp_curl)||(t==mp_given) ) {
18398 right_type(pp)=t; right_given(pp)=x;
18402 @ @<Splice independent paths together@>=
18404 if ( left_type(q)==mp_open ) if ( right_type(q)==mp_open ) {
18405 left_type(q)=mp_curl; left_curl(q)=unity;
18407 if ( right_type(pp)==mp_open ) if ( t==mp_open ) {
18408 right_type(pp)=mp_curl; right_curl(pp)=unity;
18410 right_type(q)=right_type(pp); link(q)=link(pp);
18411 right_x(q)=right_x(pp); right_y(q)=right_y(pp);
18412 mp_free_node(mp, pp,knot_node_size);
18413 if ( qq==pp ) qq=q;
18416 @ @<Choose control points for the path...@>=
18418 if ( d==ampersand ) p=q;
18420 left_type(p)=mp_endpoint;
18421 if ( right_type(p)==mp_open ) {
18422 right_type(p)=mp_curl; right_curl(p)=unity;
18424 right_type(q)=mp_endpoint;
18425 if ( left_type(q)==mp_open ) {
18426 left_type(q)=mp_curl; left_curl(q)=unity;
18430 mp_make_choices(mp, p);
18431 mp->cur_type=mp_path_type; mp->cur_exp=p
18433 @ Finally, we sometimes need to scan an expression whose value is
18434 supposed to be either |true_code| or |false_code|.
18436 @<Declare the basic parsing subroutines@>=
18437 void mp_get_boolean (MP mp) {
18438 mp_get_x_next(mp); mp_scan_expression(mp);
18439 if ( mp->cur_type!=mp_boolean_type ) {
18440 exp_err("Undefined condition will be treated as `false'");
18441 @.Undefined condition...@>
18442 help2("The expression shown above should have had a definite")
18443 ("true-or-false value. I'm changing it to `false'.");
18444 mp_put_get_flush_error(mp, false_code); mp->cur_type=mp_boolean_type;
18448 @* \[39] Doing the operations.
18449 The purpose of parsing is primarily to permit people to avoid piles of
18450 parentheses. But the real work is done after the structure of an expression
18451 has been recognized; that's when new expressions are generated. We
18452 turn now to the guts of \MP, which handles individual operators that
18453 have come through the parsing mechanism.
18455 We'll start with the easy ones that take no operands, then work our way
18456 up to operators with one and ultimately two arguments. In other words,
18457 we will write the three procedures |do_nullary|, |do_unary|, and |do_binary|
18458 that are invoked periodically by the expression scanners.
18460 First let's make sure that all of the primitive operators are in the
18461 hash table. Although |scan_primary| and its relatives made use of the
18462 \\{cmd} code for these operators, the \\{do} routines base everything
18463 on the \\{mod} code. For example, |do_binary| doesn't care whether the
18464 operation it performs is a |primary_binary| or |secondary_binary|, etc.
18467 mp_primitive(mp, "true",nullary,true_code);
18468 @:true_}{\&{true} primitive@>
18469 mp_primitive(mp, "false",nullary,false_code);
18470 @:false_}{\&{false} primitive@>
18471 mp_primitive(mp, "nullpicture",nullary,null_picture_code);
18472 @:null_picture_}{\&{nullpicture} primitive@>
18473 mp_primitive(mp, "nullpen",nullary,null_pen_code);
18474 @:null_pen_}{\&{nullpen} primitive@>
18475 mp_primitive(mp, "jobname",nullary,job_name_op);
18476 @:job_name_}{\&{jobname} primitive@>
18477 mp_primitive(mp, "readstring",nullary,read_string_op);
18478 @:read_string_}{\&{readstring} primitive@>
18479 mp_primitive(mp, "pencircle",nullary,pen_circle);
18480 @:pen_circle_}{\&{pencircle} primitive@>
18481 mp_primitive(mp, "normaldeviate",nullary,normal_deviate);
18482 @:normal_deviate_}{\&{normaldeviate} primitive@>
18483 mp_primitive(mp, "readfrom",unary,read_from_op);
18484 @:read_from_}{\&{readfrom} primitive@>
18485 mp_primitive(mp, "closefrom",unary,close_from_op);
18486 @:close_from_}{\&{closefrom} primitive@>
18487 mp_primitive(mp, "odd",unary,odd_op);
18488 @:odd_}{\&{odd} primitive@>
18489 mp_primitive(mp, "known",unary,known_op);
18490 @:known_}{\&{known} primitive@>
18491 mp_primitive(mp, "unknown",unary,unknown_op);
18492 @:unknown_}{\&{unknown} primitive@>
18493 mp_primitive(mp, "not",unary,not_op);
18494 @:not_}{\&{not} primitive@>
18495 mp_primitive(mp, "decimal",unary,decimal);
18496 @:decimal_}{\&{decimal} primitive@>
18497 mp_primitive(mp, "reverse",unary,reverse);
18498 @:reverse_}{\&{reverse} primitive@>
18499 mp_primitive(mp, "makepath",unary,make_path_op);
18500 @:make_path_}{\&{makepath} primitive@>
18501 mp_primitive(mp, "makepen",unary,make_pen_op);
18502 @:make_pen_}{\&{makepen} primitive@>
18503 mp_primitive(mp, "oct",unary,oct_op);
18504 @:oct_}{\&{oct} primitive@>
18505 mp_primitive(mp, "hex",unary,hex_op);
18506 @:hex_}{\&{hex} primitive@>
18507 mp_primitive(mp, "ASCII",unary,ASCII_op);
18508 @:ASCII_}{\&{ASCII} primitive@>
18509 mp_primitive(mp, "char",unary,char_op);
18510 @:char_}{\&{char} primitive@>
18511 mp_primitive(mp, "length",unary,length_op);
18512 @:length_}{\&{length} primitive@>
18513 mp_primitive(mp, "turningnumber",unary,turning_op);
18514 @:turning_number_}{\&{turningnumber} primitive@>
18515 mp_primitive(mp, "xpart",unary,x_part);
18516 @:x_part_}{\&{xpart} primitive@>
18517 mp_primitive(mp, "ypart",unary,y_part);
18518 @:y_part_}{\&{ypart} primitive@>
18519 mp_primitive(mp, "xxpart",unary,xx_part);
18520 @:xx_part_}{\&{xxpart} primitive@>
18521 mp_primitive(mp, "xypart",unary,xy_part);
18522 @:xy_part_}{\&{xypart} primitive@>
18523 mp_primitive(mp, "yxpart",unary,yx_part);
18524 @:yx_part_}{\&{yxpart} primitive@>
18525 mp_primitive(mp, "yypart",unary,yy_part);
18526 @:yy_part_}{\&{yypart} primitive@>
18527 mp_primitive(mp, "redpart",unary,red_part);
18528 @:red_part_}{\&{redpart} primitive@>
18529 mp_primitive(mp, "greenpart",unary,green_part);
18530 @:green_part_}{\&{greenpart} primitive@>
18531 mp_primitive(mp, "bluepart",unary,blue_part);
18532 @:blue_part_}{\&{bluepart} primitive@>
18533 mp_primitive(mp, "cyanpart",unary,cyan_part);
18534 @:cyan_part_}{\&{cyanpart} primitive@>
18535 mp_primitive(mp, "magentapart",unary,magenta_part);
18536 @:magenta_part_}{\&{magentapart} primitive@>
18537 mp_primitive(mp, "yellowpart",unary,yellow_part);
18538 @:yellow_part_}{\&{yellowpart} primitive@>
18539 mp_primitive(mp, "blackpart",unary,black_part);
18540 @:black_part_}{\&{blackpart} primitive@>
18541 mp_primitive(mp, "greypart",unary,grey_part);
18542 @:grey_part_}{\&{greypart} primitive@>
18543 mp_primitive(mp, "colormodel",unary,color_model_part);
18544 @:color_model_part_}{\&{colormodel} primitive@>
18545 mp_primitive(mp, "fontpart",unary,font_part);
18546 @:font_part_}{\&{fontpart} primitive@>
18547 mp_primitive(mp, "textpart",unary,text_part);
18548 @:text_part_}{\&{textpart} primitive@>
18549 mp_primitive(mp, "pathpart",unary,path_part);
18550 @:path_part_}{\&{pathpart} primitive@>
18551 mp_primitive(mp, "penpart",unary,pen_part);
18552 @:pen_part_}{\&{penpart} primitive@>
18553 mp_primitive(mp, "dashpart",unary,dash_part);
18554 @:dash_part_}{\&{dashpart} primitive@>
18555 mp_primitive(mp, "sqrt",unary,sqrt_op);
18556 @:sqrt_}{\&{sqrt} primitive@>
18557 mp_primitive(mp, "mexp",unary,m_exp_op);
18558 @:m_exp_}{\&{mexp} primitive@>
18559 mp_primitive(mp, "mlog",unary,m_log_op);
18560 @:m_log_}{\&{mlog} primitive@>
18561 mp_primitive(mp, "sind",unary,sin_d_op);
18562 @:sin_d_}{\&{sind} primitive@>
18563 mp_primitive(mp, "cosd",unary,cos_d_op);
18564 @:cos_d_}{\&{cosd} primitive@>
18565 mp_primitive(mp, "floor",unary,floor_op);
18566 @:floor_}{\&{floor} primitive@>
18567 mp_primitive(mp, "uniformdeviate",unary,uniform_deviate);
18568 @:uniform_deviate_}{\&{uniformdeviate} primitive@>
18569 mp_primitive(mp, "charexists",unary,char_exists_op);
18570 @:char_exists_}{\&{charexists} primitive@>
18571 mp_primitive(mp, "fontsize",unary,font_size);
18572 @:font_size_}{\&{fontsize} primitive@>
18573 mp_primitive(mp, "llcorner",unary,ll_corner_op);
18574 @:ll_corner_}{\&{llcorner} primitive@>
18575 mp_primitive(mp, "lrcorner",unary,lr_corner_op);
18576 @:lr_corner_}{\&{lrcorner} primitive@>
18577 mp_primitive(mp, "ulcorner",unary,ul_corner_op);
18578 @:ul_corner_}{\&{ulcorner} primitive@>
18579 mp_primitive(mp, "urcorner",unary,ur_corner_op);
18580 @:ur_corner_}{\&{urcorner} primitive@>
18581 mp_primitive(mp, "arclength",unary,arc_length);
18582 @:arc_length_}{\&{arclength} primitive@>
18583 mp_primitive(mp, "angle",unary,angle_op);
18584 @:angle_}{\&{angle} primitive@>
18585 mp_primitive(mp, "cycle",cycle,cycle_op);
18586 @:cycle_}{\&{cycle} primitive@>
18587 mp_primitive(mp, "stroked",unary,stroked_op);
18588 @:stroked_}{\&{stroked} primitive@>
18589 mp_primitive(mp, "filled",unary,filled_op);
18590 @:filled_}{\&{filled} primitive@>
18591 mp_primitive(mp, "textual",unary,textual_op);
18592 @:textual_}{\&{textual} primitive@>
18593 mp_primitive(mp, "clipped",unary,clipped_op);
18594 @:clipped_}{\&{clipped} primitive@>
18595 mp_primitive(mp, "bounded",unary,bounded_op);
18596 @:bounded_}{\&{bounded} primitive@>
18597 mp_primitive(mp, "+",plus_or_minus,plus);
18598 @:+ }{\.{+} primitive@>
18599 mp_primitive(mp, "-",plus_or_minus,minus);
18600 @:- }{\.{-} primitive@>
18601 mp_primitive(mp, "*",secondary_binary,times);
18602 @:* }{\.{*} primitive@>
18603 mp_primitive(mp, "/",slash,over); mp->eqtb[frozen_slash]=mp->eqtb[mp->cur_sym];
18604 @:/ }{\.{/} primitive@>
18605 mp_primitive(mp, "++",tertiary_binary,pythag_add);
18606 @:++_}{\.{++} primitive@>
18607 mp_primitive(mp, "+-+",tertiary_binary,pythag_sub);
18608 @:+-+_}{\.{+-+} primitive@>
18609 mp_primitive(mp, "or",tertiary_binary,or_op);
18610 @:or_}{\&{or} primitive@>
18611 mp_primitive(mp, "and",and_command,and_op);
18612 @:and_}{\&{and} primitive@>
18613 mp_primitive(mp, "<",expression_binary,less_than);
18614 @:< }{\.{<} primitive@>
18615 mp_primitive(mp, "<=",expression_binary,less_or_equal);
18616 @:<=_}{\.{<=} primitive@>
18617 mp_primitive(mp, ">",expression_binary,greater_than);
18618 @:> }{\.{>} primitive@>
18619 mp_primitive(mp, ">=",expression_binary,greater_or_equal);
18620 @:>=_}{\.{>=} primitive@>
18621 mp_primitive(mp, "=",equals,equal_to);
18622 @:= }{\.{=} primitive@>
18623 mp_primitive(mp, "<>",expression_binary,unequal_to);
18624 @:<>_}{\.{<>} primitive@>
18625 mp_primitive(mp, "substring",primary_binary,substring_of);
18626 @:substring_}{\&{substring} primitive@>
18627 mp_primitive(mp, "subpath",primary_binary,subpath_of);
18628 @:subpath_}{\&{subpath} primitive@>
18629 mp_primitive(mp, "directiontime",primary_binary,direction_time_of);
18630 @:direction_time_}{\&{directiontime} primitive@>
18631 mp_primitive(mp, "point",primary_binary,point_of);
18632 @:point_}{\&{point} primitive@>
18633 mp_primitive(mp, "precontrol",primary_binary,precontrol_of);
18634 @:precontrol_}{\&{precontrol} primitive@>
18635 mp_primitive(mp, "postcontrol",primary_binary,postcontrol_of);
18636 @:postcontrol_}{\&{postcontrol} primitive@>
18637 mp_primitive(mp, "penoffset",primary_binary,pen_offset_of);
18638 @:pen_offset_}{\&{penoffset} primitive@>
18639 mp_primitive(mp, "arctime",primary_binary,arc_time_of);
18640 @:arc_time_of_}{\&{arctime} primitive@>
18641 mp_primitive(mp, "mpversion",nullary,mp_version);
18642 @:mp_verison_}{\&{mpversion} primitive@>
18643 mp_primitive(mp, "&",ampersand,concatenate);
18644 @:!!!}{\.{\&} primitive@>
18645 mp_primitive(mp, "rotated",secondary_binary,rotated_by);
18646 @:rotated_}{\&{rotated} primitive@>
18647 mp_primitive(mp, "slanted",secondary_binary,slanted_by);
18648 @:slanted_}{\&{slanted} primitive@>
18649 mp_primitive(mp, "scaled",secondary_binary,scaled_by);
18650 @:scaled_}{\&{scaled} primitive@>
18651 mp_primitive(mp, "shifted",secondary_binary,shifted_by);
18652 @:shifted_}{\&{shifted} primitive@>
18653 mp_primitive(mp, "transformed",secondary_binary,transformed_by);
18654 @:transformed_}{\&{transformed} primitive@>
18655 mp_primitive(mp, "xscaled",secondary_binary,x_scaled);
18656 @:x_scaled_}{\&{xscaled} primitive@>
18657 mp_primitive(mp, "yscaled",secondary_binary,y_scaled);
18658 @:y_scaled_}{\&{yscaled} primitive@>
18659 mp_primitive(mp, "zscaled",secondary_binary,z_scaled);
18660 @:z_scaled_}{\&{zscaled} primitive@>
18661 mp_primitive(mp, "infont",secondary_binary,in_font);
18662 @:in_font_}{\&{infont} primitive@>
18663 mp_primitive(mp, "intersectiontimes",tertiary_binary,intersect);
18664 @:intersection_times_}{\&{intersectiontimes} primitive@>
18666 @ @<Cases of |print_cmd...@>=
18669 case primary_binary:
18670 case secondary_binary:
18671 case tertiary_binary:
18672 case expression_binary:
18674 case plus_or_minus:
18679 mp_print_op(mp, m);
18682 @ OK, let's look at the simplest \\{do} procedure first.
18684 @c @<Declare nullary action procedure@>;
18685 void mp_do_nullary (MP mp,quarterword c) {
18687 if ( mp->internal[mp_tracing_commands]>two )
18688 mp_show_cmd_mod(mp, nullary,c);
18690 case true_code: case false_code:
18691 mp->cur_type=mp_boolean_type; mp->cur_exp=c;
18693 case null_picture_code:
18694 mp->cur_type=mp_picture_type;
18695 mp->cur_exp=mp_get_node(mp, edge_header_size);
18696 mp_init_edges(mp, mp->cur_exp);
18698 case null_pen_code:
18699 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, 0);
18701 case normal_deviate:
18702 mp->cur_type=mp_known; mp->cur_exp=mp_norm_rand(mp);
18705 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, unity);
18708 if ( mp->job_name==NULL ) mp_open_log_file(mp);
18709 mp->cur_type=mp_string_type; mp->cur_exp=rts(mp->job_name);
18712 mp->cur_type=mp_string_type;
18713 mp->cur_exp=intern(metapost_version) ;
18715 case read_string_op:
18716 @<Read a string from the terminal@>;
18718 } /* there are no other cases */
18722 @ @<Read a string...@>=
18724 if ( mp->interaction<=mp_nonstop_mode )
18725 mp_fatal_error(mp, "*** (cannot readstring in nonstop modes)");
18726 mp_begin_file_reading(mp); name=is_read;
18727 limit=start; prompt_input("");
18728 mp_finish_read(mp);
18731 @ @<Declare nullary action procedure@>=
18732 void mp_finish_read (MP mp) { /* copy |buffer| line to |cur_exp| */
18734 str_room((int)mp->last-start);
18735 for (k=start;k<=mp->last-1;k++) {
18736 append_char(mp->buffer[k]);
18738 mp_end_file_reading(mp); mp->cur_type=mp_string_type;
18739 mp->cur_exp=mp_make_string(mp);
18742 @ Things get a bit more interesting when there's an operand. The
18743 operand to |do_unary| appears in |cur_type| and |cur_exp|.
18745 @c @<Declare unary action procedures@>;
18746 void mp_do_unary (MP mp,quarterword c) {
18747 pointer p,q,r; /* for list manipulation */
18748 integer x; /* a temporary register */
18750 if ( mp->internal[mp_tracing_commands]>two )
18751 @<Trace the current unary operation@>;
18754 if ( mp->cur_type<mp_color_type ) mp_bad_unary(mp, plus);
18757 @<Negate the current expression@>;
18759 @<Additional cases of unary operators@>;
18760 } /* there are no other cases */
18764 @ The |nice_pair| function returns |true| if both components of a pair
18767 @<Declare unary action procedures@>=
18768 boolean mp_nice_pair (MP mp,integer p, quarterword t) {
18769 if ( t==mp_pair_type ) {
18771 if ( type(x_part_loc(p))==mp_known )
18772 if ( type(y_part_loc(p))==mp_known )
18778 @ The |nice_color_or_pair| function is analogous except that it also accepts
18779 fully known colors.
18781 @<Declare unary action procedures@>=
18782 boolean mp_nice_color_or_pair (MP mp,integer p, quarterword t) {
18783 pointer q,r; /* for scanning the big node */
18784 if ( (t!=mp_pair_type)&&(t!=mp_color_type)&&(t!=mp_cmykcolor_type) ) {
18788 r=q+mp->big_node_size[type(p)];
18791 if ( type(r)!=mp_known )
18798 @ @<Declare unary action...@>=
18799 void mp_print_known_or_unknown_type (MP mp,small_number t, integer v) {
18800 mp_print_char(mp, '(');
18801 if ( t>mp_known ) mp_print(mp, "unknown numeric");
18802 else { if ( (t==mp_pair_type)||(t==mp_color_type)||(t==mp_cmykcolor_type) )
18803 if ( ! mp_nice_color_or_pair(mp, v,t) ) mp_print(mp, "unknown ");
18804 mp_print_type(mp, t);
18806 mp_print_char(mp, ')');
18809 @ @<Declare unary action...@>=
18810 void mp_bad_unary (MP mp,quarterword c) {
18811 exp_err("Not implemented: "); mp_print_op(mp, c);
18812 @.Not implemented...@>
18813 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
18814 help3("I'm afraid I don't know how to apply that operation to that")
18815 ("particular type. Continue, and I'll simply return the")
18816 ("argument (shown above) as the result of the operation.");
18817 mp_put_get_error(mp);
18820 @ @<Trace the current unary operation@>=
18822 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
18823 mp_print_op(mp, c); mp_print_char(mp, '(');
18824 mp_print_exp(mp, null,0); /* show the operand, but not verbosely */
18825 mp_print(mp, ")}"); mp_end_diagnostic(mp, false);
18828 @ Negation is easy except when the current expression
18829 is of type |independent|, or when it is a pair with one or more
18830 |independent| components.
18832 It is tempting to argue that the negative of an independent variable
18833 is an independent variable, hence we don't have to do anything when
18834 negating it. The fallacy is that other dependent variables pointing
18835 to the current expression must change the sign of their
18836 coefficients if we make no change to the current expression.
18838 Instead, we work around the problem by copying the current expression
18839 and recycling it afterwards (cf.~the |stash_in| routine).
18841 @<Negate the current expression@>=
18842 switch (mp->cur_type) {
18843 case mp_color_type:
18844 case mp_cmykcolor_type:
18846 case mp_independent:
18847 q=mp->cur_exp; mp_make_exp_copy(mp, q);
18848 if ( mp->cur_type==mp_dependent ) {
18849 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18850 } else if ( mp->cur_type<=mp_pair_type ) { /* |mp_color_type| or |mp_pair_type| */
18851 p=value(mp->cur_exp);
18852 r=p+mp->big_node_size[mp->cur_type];
18855 if ( type(r)==mp_known ) negate(value(r));
18856 else mp_negate_dep_list(mp, dep_list(r));
18858 } /* if |cur_type=mp_known| then |cur_exp=0| */
18859 mp_recycle_value(mp, q); mp_free_node(mp, q,value_node_size);
18862 case mp_proto_dependent:
18863 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18866 negate(mp->cur_exp);
18869 mp_bad_unary(mp, minus);
18873 @ @<Declare unary action...@>=
18874 void mp_negate_dep_list (MP mp,pointer p) {
18877 if ( info(p)==null ) return;
18882 @ @<Additional cases of unary operators@>=
18884 if ( mp->cur_type!=mp_boolean_type ) mp_bad_unary(mp, not_op);
18885 else mp->cur_exp=true_code+false_code-mp->cur_exp;
18888 @ @d three_sixty_units 23592960 /* that's |360*unity| */
18889 @d boolean_reset(A) if ( (A) ) mp->cur_exp=true_code; else mp->cur_exp=false_code
18891 @<Additional cases of unary operators@>=
18898 case uniform_deviate:
18900 case char_exists_op:
18901 if ( mp->cur_type!=mp_known ) {
18902 mp_bad_unary(mp, c);
18905 case sqrt_op:mp->cur_exp=mp_square_rt(mp, mp->cur_exp);break;
18906 case m_exp_op:mp->cur_exp=mp_m_exp(mp, mp->cur_exp);break;
18907 case m_log_op:mp->cur_exp=mp_m_log(mp, mp->cur_exp);break;
18910 mp_n_sin_cos(mp, (mp->cur_exp % three_sixty_units)*16);
18911 if ( c==sin_d_op ) mp->cur_exp=mp_round_fraction(mp, mp->n_sin);
18912 else mp->cur_exp=mp_round_fraction(mp, mp->n_cos);
18914 case floor_op:mp->cur_exp=mp_floor_scaled(mp, mp->cur_exp);break;
18915 case uniform_deviate:mp->cur_exp=mp_unif_rand(mp, mp->cur_exp);break;
18917 boolean_reset(odd(mp_round_unscaled(mp, mp->cur_exp)));
18918 mp->cur_type=mp_boolean_type;
18920 case char_exists_op:
18921 @<Determine if a character has been shipped out@>;
18923 } /* there are no other cases */
18927 @ @<Additional cases of unary operators@>=
18929 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) ) {
18930 p=value(mp->cur_exp);
18931 x=mp_n_arg(mp, value(x_part_loc(p)),value(y_part_loc(p)));
18932 if ( x>=0 ) mp_flush_cur_exp(mp, (x+8)/ 16);
18933 else mp_flush_cur_exp(mp, -((-x+8)/ 16));
18935 mp_bad_unary(mp, angle_op);
18939 @ If the current expression is a pair, but the context wants it to
18940 be a path, we call |pair_to_path|.
18942 @<Declare unary action...@>=
18943 void mp_pair_to_path (MP mp) {
18944 mp->cur_exp=mp_new_knot(mp);
18945 mp->cur_type=mp_path_type;
18948 @ @<Additional cases of unary operators@>=
18951 if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_transform_type) )
18952 mp_take_part(mp, c);
18953 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18954 else mp_bad_unary(mp, c);
18960 if ( mp->cur_type==mp_transform_type ) mp_take_part(mp, c);
18961 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18962 else mp_bad_unary(mp, c);
18967 if ( mp->cur_type==mp_color_type ) mp_take_part(mp, c);
18968 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18969 else mp_bad_unary(mp, c);
18975 if ( mp->cur_type==mp_cmykcolor_type) mp_take_part(mp, c);
18976 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18977 else mp_bad_unary(mp, c);
18980 if ( mp->cur_type==mp_known ) mp->cur_exp=value(c);
18981 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18982 else mp_bad_unary(mp, c);
18984 case color_model_part:
18985 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18986 else mp_bad_unary(mp, c);
18989 @ In the following procedure, |cur_exp| points to a capsule, which points to
18990 a big node. We want to delete all but one part of the big node.
18992 @<Declare unary action...@>=
18993 void mp_take_part (MP mp,quarterword c) {
18994 pointer p; /* the big node */
18995 p=value(mp->cur_exp); value(temp_val)=p; type(temp_val)=mp->cur_type;
18996 link(p)=temp_val; mp_free_node(mp, mp->cur_exp,value_node_size);
18997 mp_make_exp_copy(mp, p+mp->sector_offset[c+mp_x_part_sector-x_part]);
18998 mp_recycle_value(mp, temp_val);
19001 @ @<Initialize table entries...@>=
19002 name_type(temp_val)=mp_capsule;
19004 @ @<Additional cases of unary operators@>=
19010 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19011 else mp_bad_unary(mp, c);
19014 @ @<Declarations@>=
19015 void mp_scale_edges (MP mp);
19017 @ @<Declare unary action...@>=
19018 void mp_take_pict_part (MP mp,quarterword c) {
19019 pointer p; /* first graphical object in |cur_exp| */
19020 p=link(dummy_loc(mp->cur_exp));
19023 case x_part: case y_part: case xx_part:
19024 case xy_part: case yx_part: case yy_part:
19025 if ( type(p)==mp_text_code ) mp_flush_cur_exp(mp, text_trans_part(p+c));
19026 else goto NOT_FOUND;
19028 case red_part: case green_part: case blue_part:
19029 if ( has_color(p) ) mp_flush_cur_exp(mp, obj_color_part(p+c));
19030 else goto NOT_FOUND;
19032 case cyan_part: case magenta_part: case yellow_part:
19034 if ( has_color(p) ) {
19035 if ( color_model(p)==mp_uninitialized_model )
19036 mp_flush_cur_exp(mp, unity);
19038 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-cyan_part)));
19039 } else goto NOT_FOUND;
19042 if ( has_color(p) )
19043 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-grey_part)));
19044 else goto NOT_FOUND;
19046 case color_model_part:
19047 if ( has_color(p) ) {
19048 if ( color_model(p)==mp_uninitialized_model )
19049 mp_flush_cur_exp(mp, mp->internal[mp_default_color_model]);
19051 mp_flush_cur_exp(mp, color_model(p)*unity);
19052 } else goto NOT_FOUND;
19054 @<Handle other cases in |take_pict_part| or |goto not_found|@>;
19055 } /* all cases have been enumerated */
19059 @<Convert the current expression to a null value appropriate
19063 @ @<Handle other cases in |take_pict_part| or |goto not_found|@>=
19065 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
19067 mp_flush_cur_exp(mp, text_p(p));
19068 add_str_ref(mp->cur_exp);
19069 mp->cur_type=mp_string_type;
19073 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
19075 mp_flush_cur_exp(mp, rts(mp->font_name[font_n(p)]));
19076 add_str_ref(mp->cur_exp);
19077 mp->cur_type=mp_string_type;
19081 if ( type(p)==mp_text_code ) goto NOT_FOUND;
19082 else if ( is_stop(p) ) mp_confusion(mp, "pict");
19083 @:this can't happen pict}{\quad pict@>
19085 mp_flush_cur_exp(mp, mp_copy_path(mp, path_p(p)));
19086 mp->cur_type=mp_path_type;
19090 if ( ! has_pen(p) ) goto NOT_FOUND;
19092 if ( pen_p(p)==null ) goto NOT_FOUND;
19093 else { mp_flush_cur_exp(mp, copy_pen(pen_p(p)));
19094 mp->cur_type=mp_pen_type;
19099 if ( type(p)!=mp_stroked_code ) goto NOT_FOUND;
19100 else { if ( dash_p(p)==null ) goto NOT_FOUND;
19101 else { add_edge_ref(dash_p(p));
19102 mp->se_sf=dash_scale(p);
19103 mp->se_pic=dash_p(p);
19104 mp_scale_edges(mp);
19105 mp_flush_cur_exp(mp, mp->se_pic);
19106 mp->cur_type=mp_picture_type;
19111 @ Since |scale_edges| had to be declared |forward|, it had to be declared as a
19112 parameterless procedure even though it really takes two arguments and updates
19113 one of them. Hence the following globals are needed.
19116 pointer se_pic; /* edge header used and updated by |scale_edges| */
19117 scaled se_sf; /* the scale factor argument to |scale_edges| */
19119 @ @<Convert the current expression to a null value appropriate...@>=
19121 case text_part: case font_part:
19122 mp_flush_cur_exp(mp, rts(""));
19123 mp->cur_type=mp_string_type;
19126 mp_flush_cur_exp(mp, mp_get_node(mp, knot_node_size));
19127 left_type(mp->cur_exp)=mp_endpoint;
19128 right_type(mp->cur_exp)=mp_endpoint;
19129 link(mp->cur_exp)=mp->cur_exp;
19130 x_coord(mp->cur_exp)=0;
19131 y_coord(mp->cur_exp)=0;
19132 originator(mp->cur_exp)=mp_metapost_user;
19133 mp->cur_type=mp_path_type;
19136 mp_flush_cur_exp(mp, mp_get_pen_circle(mp, 0));
19137 mp->cur_type=mp_pen_type;
19140 mp_flush_cur_exp(mp, mp_get_node(mp, edge_header_size));
19141 mp_init_edges(mp, mp->cur_exp);
19142 mp->cur_type=mp_picture_type;
19145 mp_flush_cur_exp(mp, 0);
19149 @ @<Additional cases of unary...@>=
19151 if ( mp->cur_type!=mp_known ) {
19152 mp_bad_unary(mp, char_op);
19154 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
19155 mp->cur_type=mp_string_type;
19156 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
19160 if ( mp->cur_type!=mp_known ) {
19161 mp_bad_unary(mp, decimal);
19163 mp->old_setting=mp->selector; mp->selector=new_string;
19164 mp_print_scaled(mp, mp->cur_exp); mp->cur_exp=mp_make_string(mp);
19165 mp->selector=mp->old_setting; mp->cur_type=mp_string_type;
19171 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19172 else mp_str_to_num(mp, c);
19175 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, font_size);
19176 else @<Find the design size of the font whose name is |cur_exp|@>;
19179 @ @<Declare unary action...@>=
19180 void mp_str_to_num (MP mp,quarterword c) { /* converts a string to a number */
19181 integer n; /* accumulator */
19182 ASCII_code m; /* current character */
19183 pool_pointer k; /* index into |str_pool| */
19184 int b; /* radix of conversion */
19185 boolean bad_char; /* did the string contain an invalid digit? */
19186 if ( c==ASCII_op ) {
19187 if ( length(mp->cur_exp)==0 ) n=-1;
19188 else n=mp->str_pool[mp->str_start[mp->cur_exp]];
19190 if ( c==oct_op ) b=8; else b=16;
19191 n=0; bad_char=false;
19192 for (k=mp->str_start[mp->cur_exp];k<=str_stop(mp->cur_exp)-1;k++) {
19194 if ( (m>='0')&&(m<='9') ) m=m-'0';
19195 else if ( (m>='A')&&(m<='F') ) m=m-'A'+10;
19196 else if ( (m>='a')&&(m<='f') ) m=m-'a'+10;
19197 else { bad_char=true; m=0; };
19198 if ( m>=b ) { bad_char=true; m=0; };
19199 if ( n<32768 / b ) n=n*b+m; else n=32767;
19201 @<Give error messages if |bad_char| or |n>=4096|@>;
19203 mp_flush_cur_exp(mp, n*unity);
19206 @ @<Give error messages if |bad_char|...@>=
19208 exp_err("String contains illegal digits");
19209 @.String contains illegal digits@>
19211 help1("I zeroed out characters that weren't in the range 0..7.");
19213 help1("I zeroed out characters that weren't hex digits.");
19215 mp_put_get_error(mp);
19218 if ( mp->internal[mp_warning_check]>0 ) {
19219 print_err("Number too large (");
19220 mp_print_int(mp, n); mp_print_char(mp, ')');
19221 @.Number too large@>
19222 help2("I have trouble with numbers greater than 4095; watch out.")
19223 ("(Set warningcheck:=0 to suppress this message.)");
19224 mp_put_get_error(mp);
19228 @ The length operation is somewhat unusual in that it applies to a variety
19229 of different types of operands.
19231 @<Additional cases of unary...@>=
19233 switch (mp->cur_type) {
19234 case mp_string_type: mp_flush_cur_exp(mp, length(mp->cur_exp)*unity); break;
19235 case mp_path_type: mp_flush_cur_exp(mp, mp_path_length(mp)); break;
19236 case mp_known: mp->cur_exp=abs(mp->cur_exp); break;
19237 case mp_picture_type: mp_flush_cur_exp(mp, mp_pict_length(mp)); break;
19239 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) )
19240 mp_flush_cur_exp(mp, mp_pyth_add(mp,
19241 value(x_part_loc(value(mp->cur_exp))),
19242 value(y_part_loc(value(mp->cur_exp)))));
19243 else mp_bad_unary(mp, c);
19248 @ @<Declare unary action...@>=
19249 scaled mp_path_length (MP mp) { /* computes the length of the current path */
19250 scaled n; /* the path length so far */
19251 pointer p; /* traverser */
19253 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
19254 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
19258 @ @<Declare unary action...@>=
19259 scaled mp_pict_length (MP mp) {
19260 /* counts interior components in picture |cur_exp| */
19261 scaled n; /* the count so far */
19262 pointer p; /* traverser */
19264 p=link(dummy_loc(mp->cur_exp));
19266 if ( is_start_or_stop(p) )
19267 if ( mp_skip_1component(mp, p)==null ) p=link(p);
19268 while ( p!=null ) {
19269 skip_component(p) return n;
19276 @ Implement |turningnumber|
19278 @<Additional cases of unary...@>=
19280 if ( mp->cur_type==mp_pair_type ) mp_flush_cur_exp(mp, 0);
19281 else if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, turning_op);
19282 else if ( left_type(mp->cur_exp)==mp_endpoint )
19283 mp_flush_cur_exp(mp, 0); /* not a cyclic path */
19285 mp_flush_cur_exp(mp, mp_turn_cycles_wrapper(mp, mp->cur_exp));
19288 @ The function |an_angle| returns the value of the |angle| primitive, or $0$ if the
19289 argument is |origin|.
19291 @<Declare unary action...@>=
19292 angle mp_an_angle (MP mp,scaled xpar, scaled ypar) {
19293 if ( (! ((xpar==0) && (ypar==0))) )
19294 return mp_n_arg(mp, xpar,ypar);
19299 @ The actual turning number is (for the moment) computed in a C function
19300 that receives eight integers corresponding to the four controlling points,
19301 and returns a single angle. Besides those, we have to account for discrete
19302 moves at the actual points.
19304 @d floor(a) (a>=0 ? a : -(int)(-a))
19305 @d bezier_error (720<<20)+1
19306 @d sign(v) ((v)>0 ? 1 : ((v)<0 ? -1 : 0 ))
19307 @d print_roots(a) { if (debuglevel>(65536*2))
19308 fprintf(stdout,"bezier_slope(): %s, i=%f, o=%f, angle=%f\n", (a),in,out,res); }
19309 @d out ((double)(xo>>20))
19310 @d mid ((double)(xm>>20))
19311 @d in ((double)(xi>>20))
19312 @d divisor (256*256)
19313 @d double2angle(a) (int)floor(a*256.0*256.0*16.0)
19315 @<Declare unary action...@>=
19316 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19317 integer CX,integer CY,integer DX,integer DY, int debuglevel);
19320 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19321 integer CX,integer CY,integer DX,integer DY, int debuglevel) {
19323 integer deltax,deltay;
19324 double ax,ay,bx,by,cx,cy,dx,dy;
19325 angle xi = 0, xo = 0, xm = 0;
19327 ax=AX/divisor; ay=AY/divisor;
19328 bx=BX/divisor; by=BY/divisor;
19329 cx=CX/divisor; cy=CY/divisor;
19330 dx=DX/divisor; dy=DY/divisor;
19332 deltax = (BX-AX); deltay = (BY-AY);
19333 if (deltax==0 && deltay == 0) { deltax=(CX-AX); deltay=(CY-AY); }
19334 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19335 xi = mp_an_angle(mp,deltax,deltay);
19337 deltax = (CX-BX); deltay = (CY-BY);
19338 xm = mp_an_angle(mp,deltax,deltay);
19340 deltax = (DX-CX); deltay = (DY-CY);
19341 if (deltax==0 && deltay == 0) { deltax=(DX-BX); deltay=(DY-BY); }
19342 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19343 xo = mp_an_angle(mp,deltax,deltay);
19345 a = (bx-ax)*(cy-by) - (cx-bx)*(by-ay); /* a = (bp-ap)x(cp-bp); */
19346 b = (bx-ax)*(dy-cy) - (by-ay)*(dx-cx);; /* b = (bp-ap)x(dp-cp);*/
19347 c = (cx-bx)*(dy-cy) - (dx-cx)*(cy-by); /* c = (cp-bp)x(dp-cp);*/
19349 if (debuglevel>(65536*2)) {
19351 "bezier_slope(): (%.2f,%.2f),(%.2f,%.2f),(%.2f,%.2f),(%.2f,%.2f)\n",
19352 ax,ay,bx,by,cx,cy,dx,dy);
19354 "bezier_slope(): a,b,c,b^2,4ac: (%.2f,%.2f,%.2f,%.2f,%.2f)\n",a,b,c,b*b,4*a*c);
19357 if ((a==0)&&(c==0)) {
19358 res = (b==0 ? 0 : (out-in));
19359 print_roots("no roots (a)");
19360 } else if ((a==0)||(c==0)) {
19361 if ((sign(b) == sign(a)) || (sign(b) == sign(c))) {
19362 res = out-in; /* ? */
19365 else if (res>180.0)
19367 print_roots("no roots (b)");
19369 res = out-in; /* ? */
19370 print_roots("one root (a)");
19372 } else if ((sign(a)*sign(c))<0) {
19373 res = out-in; /* ? */
19376 else if (res>180.0)
19378 print_roots("one root (b)");
19380 if (sign(a) == sign(b)) {
19381 res = out-in; /* ? */
19384 else if (res>180.0)
19386 print_roots("no roots (d)");
19388 if ((b*b) == (4*a*c)) {
19389 res = bezier_error;
19390 print_roots("double root"); /* cusp */
19391 } else if ((b*b) < (4*a*c)) {
19392 res = out-in; /* ? */
19393 if (res<=0.0 &&res>-180.0)
19395 else if (res>=0.0 && res<180.0)
19397 print_roots("no roots (e)");
19402 else if (res>180.0)
19404 print_roots("two roots"); /* two inflections */
19408 return double2angle(res);
19412 @d p_nextnext link(link(p))
19414 @d seven_twenty_deg 05500000000 /* $720\cdot2^{20}$, represents $720^\circ$ */
19416 @<Declare unary action...@>=
19417 scaled mp_new_turn_cycles (MP mp,pointer c) {
19418 angle res,ang; /* the angles of intermediate results */
19419 scaled turns; /* the turn counter */
19420 pointer p; /* for running around the path */
19421 integer xp,yp; /* coordinates of next point */
19422 integer x,y; /* helper coordinates */
19423 angle in_angle,out_angle; /* helper angles */
19424 int old_setting; /* saved |selector| setting */
19428 old_setting = mp->selector; mp->selector=term_only;
19429 if ( mp->internal[mp_tracing_commands]>unity ) {
19430 mp_begin_diagnostic(mp);
19431 mp_print_nl(mp, "");
19432 mp_end_diagnostic(mp, false);
19435 xp = x_coord(p_next); yp = y_coord(p_next);
19436 ang = mp_bezier_slope(mp,x_coord(p), y_coord(p), right_x(p), right_y(p),
19437 left_x(p_next), left_y(p_next), xp, yp,
19438 mp->internal[mp_tracing_commands]);
19439 if ( ang>seven_twenty_deg ) {
19440 print_err("Strange path");
19442 mp->selector=old_setting;
19446 if ( res > one_eighty_deg ) {
19447 res = res - three_sixty_deg;
19448 turns = turns + unity;
19450 if ( res <= -one_eighty_deg ) {
19451 res = res + three_sixty_deg;
19452 turns = turns - unity;
19454 /* incoming angle at next point */
19455 x = left_x(p_next); y = left_y(p_next);
19456 if ( (xp==x)&&(yp==y) ) { x = right_x(p); y = right_y(p); };
19457 if ( (xp==x)&&(yp==y) ) { x = x_coord(p); y = y_coord(p); };
19458 in_angle = mp_an_angle(mp, xp - x, yp - y);
19459 /* outgoing angle at next point */
19460 x = right_x(p_next); y = right_y(p_next);
19461 if ( (xp==x)&&(yp==y) ) { x = left_x(p_nextnext); y = left_y(p_nextnext); };
19462 if ( (xp==x)&&(yp==y) ) { x = x_coord(p_nextnext); y = y_coord(p_nextnext); };
19463 out_angle = mp_an_angle(mp, x - xp, y- yp);
19464 ang = (out_angle - in_angle);
19468 if ( res >= one_eighty_deg ) {
19469 res = res - three_sixty_deg;
19470 turns = turns + unity;
19472 if ( res <= -one_eighty_deg ) {
19473 res = res + three_sixty_deg;
19474 turns = turns - unity;
19479 mp->selector=old_setting;
19484 @ This code is based on Bogus\l{}av Jackowski's
19485 |emergency_turningnumber| macro, with some minor changes by Taco
19486 Hoekwater. The macro code looked more like this:
19488 vardef turning\_number primary p =
19489 ~~save res, ang, turns;
19491 ~~if length p <= 2:
19492 ~~~~if Angle ((point 0 of p) - (postcontrol 0 of p)) >= 0: 1 else: -1 fi
19494 ~~~~for t = 0 upto length p-1 :
19495 ~~~~~~angc := Angle ((point t+1 of p) - (point t of p))
19496 ~~~~~~~~- Angle ((point t of p) - (point t-1 of p));
19497 ~~~~~~if angc > 180: angc := angc - 360; fi;
19498 ~~~~~~if angc < -180: angc := angc + 360; fi;
19499 ~~~~~~res := res + angc;
19504 The general idea is to calculate only the sum of the angles of
19505 straight lines between the points, of a path, not worrying about cusps
19506 or self-intersections in the segments at all. If the segment is not
19507 well-behaved, the result is not necesarily correct. But the old code
19508 was not always correct either, and worse, it sometimes failed for
19509 well-behaved paths as well. All known bugs that were triggered by the
19510 original code no longer occur with this code, and it runs roughly 3
19511 times as fast because the algorithm is much simpler.
19513 @ It is possible to overflow the return value of the |turn_cycles|
19514 function when the path is sufficiently long and winding, but I am not
19515 going to bother testing for that. In any case, it would only return
19516 the looped result value, which is not a big problem.
19518 The macro code for the repeat loop was a bit nicer to look
19519 at than the pascal code, because it could use |point -1 of p|. In
19520 pascal, the fastest way to loop around the path is not to look
19521 backward once, but forward twice. These defines help hide the trick.
19523 @d p_to link(link(p))
19527 @<Declare unary action...@>=
19528 scaled mp_turn_cycles (MP mp,pointer c) {
19529 angle res,ang; /* the angles of intermediate results */
19530 scaled turns; /* the turn counter */
19531 pointer p; /* for running around the path */
19532 res=0; turns= 0; p=c;
19534 ang = mp_an_angle (mp, x_coord(p_to) - x_coord(p_here),
19535 y_coord(p_to) - y_coord(p_here))
19536 - mp_an_angle (mp, x_coord(p_here) - x_coord(p_from),
19537 y_coord(p_here) - y_coord(p_from));
19540 if ( res >= three_sixty_deg ) {
19541 res = res - three_sixty_deg;
19542 turns = turns + unity;
19544 if ( res <= -three_sixty_deg ) {
19545 res = res + three_sixty_deg;
19546 turns = turns - unity;
19553 @ @<Declare unary action...@>=
19554 scaled mp_turn_cycles_wrapper (MP mp,pointer c) {
19556 scaled saved_t_o; /* tracing\_online saved */
19557 if ( (link(c)==c)||(link(link(c))==c) ) {
19558 if ( mp_an_angle (mp, x_coord(c) - right_x(c), y_coord(c) - right_y(c)) > 0 )
19563 nval = mp_new_turn_cycles(mp, c);
19564 oval = mp_turn_cycles(mp, c);
19565 if ( nval!=oval ) {
19566 saved_t_o=mp->internal[mp_tracing_online];
19567 mp->internal[mp_tracing_online]=unity;
19568 mp_begin_diagnostic(mp);
19569 mp_print_nl (mp, "Warning: the turningnumber algorithms do not agree."
19570 " The current computed value is ");
19571 mp_print_scaled(mp, nval);
19572 mp_print(mp, ", but the 'connect-the-dots' algorithm returned ");
19573 mp_print_scaled(mp, oval);
19574 mp_end_diagnostic(mp, false);
19575 mp->internal[mp_tracing_online]=saved_t_o;
19581 @ @<Declare unary action...@>=
19582 scaled mp_count_turns (MP mp,pointer c) {
19583 pointer p; /* a knot in envelope spec |c| */
19584 integer t; /* total pen offset changes counted */
19587 t=t+info(p)-zero_off;
19590 return ((t / 3)*unity);
19593 @ @d type_range(A,B) {
19594 if ( (mp->cur_type>=(A)) && (mp->cur_type<=(B)) )
19595 mp_flush_cur_exp(mp, true_code);
19596 else mp_flush_cur_exp(mp, false_code);
19597 mp->cur_type=mp_boolean_type;
19600 if ( mp->cur_type==(A) ) mp_flush_cur_exp(mp, true_code);
19601 else mp_flush_cur_exp(mp, false_code);
19602 mp->cur_type=mp_boolean_type;
19605 @<Additional cases of unary operators@>=
19606 case mp_boolean_type:
19607 type_range(mp_boolean_type,mp_unknown_boolean); break;
19608 case mp_string_type:
19609 type_range(mp_string_type,mp_unknown_string); break;
19611 type_range(mp_pen_type,mp_unknown_pen); break;
19613 type_range(mp_path_type,mp_unknown_path); break;
19614 case mp_picture_type:
19615 type_range(mp_picture_type,mp_unknown_picture); break;
19616 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
19618 type_test(c); break;
19619 case mp_numeric_type:
19620 type_range(mp_known,mp_independent); break;
19621 case known_op: case unknown_op:
19622 mp_test_known(mp, c); break;
19624 @ @<Declare unary action procedures@>=
19625 void mp_test_known (MP mp,quarterword c) {
19626 int b; /* is the current expression known? */
19627 pointer p,q; /* locations in a big node */
19629 switch (mp->cur_type) {
19630 case mp_vacuous: case mp_boolean_type: case mp_string_type:
19631 case mp_pen_type: case mp_path_type: case mp_picture_type:
19635 case mp_transform_type:
19636 case mp_color_type: case mp_cmykcolor_type: case mp_pair_type:
19637 p=value(mp->cur_exp);
19638 q=p+mp->big_node_size[mp->cur_type];
19641 if ( type(q)!=mp_known )
19650 if ( c==known_op ) mp_flush_cur_exp(mp, b);
19651 else mp_flush_cur_exp(mp, true_code+false_code-b);
19652 mp->cur_type=mp_boolean_type;
19655 @ @<Additional cases of unary operators@>=
19657 if ( mp->cur_type!=mp_path_type ) mp_flush_cur_exp(mp, false_code);
19658 else if ( left_type(mp->cur_exp)!=mp_endpoint ) mp_flush_cur_exp(mp, true_code);
19659 else mp_flush_cur_exp(mp, false_code);
19660 mp->cur_type=mp_boolean_type;
19663 @ @<Additional cases of unary operators@>=
19665 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19666 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, arc_length);
19667 else mp_flush_cur_exp(mp, mp_get_arc_length(mp, mp->cur_exp));
19670 @ Here we use the fact that |c-filled_op+fill_code| is the desired graphical
19672 @^data structure assumptions@>
19674 @<Additional cases of unary operators@>=
19680 if ( mp->cur_type!=mp_picture_type ) mp_flush_cur_exp(mp, false_code);
19681 else if ( link(dummy_loc(mp->cur_exp))==null ) mp_flush_cur_exp(mp, false_code);
19682 else if ( type(link(dummy_loc(mp->cur_exp)))==c+mp_fill_code-filled_op )
19683 mp_flush_cur_exp(mp, true_code);
19684 else mp_flush_cur_exp(mp, false_code);
19685 mp->cur_type=mp_boolean_type;
19688 @ @<Additional cases of unary operators@>=
19690 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19691 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, make_pen_op);
19693 mp->cur_type=mp_pen_type;
19694 mp->cur_exp=mp_make_pen(mp, mp->cur_exp,true);
19698 if ( mp->cur_type!=mp_pen_type ) mp_bad_unary(mp, make_path_op);
19700 mp->cur_type=mp_path_type;
19701 mp_make_path(mp, mp->cur_exp);
19705 if ( mp->cur_type==mp_path_type ) {
19706 p=mp_htap_ypoc(mp, mp->cur_exp);
19707 if ( right_type(p)==mp_endpoint ) p=link(p);
19708 mp_toss_knot_list(mp, mp->cur_exp); mp->cur_exp=p;
19709 } else if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19710 else mp_bad_unary(mp, reverse);
19713 @ The |pair_value| routine changes the current expression to a
19714 given ordered pair of values.
19716 @<Declare unary action procedures@>=
19717 void mp_pair_value (MP mp,scaled x, scaled y) {
19718 pointer p; /* a pair node */
19719 p=mp_get_node(mp, value_node_size);
19720 mp_flush_cur_exp(mp, p); mp->cur_type=mp_pair_type;
19721 type(p)=mp_pair_type; name_type(p)=mp_capsule; mp_init_big_node(mp, p);
19723 type(x_part_loc(p))=mp_known; value(x_part_loc(p))=x;
19724 type(y_part_loc(p))=mp_known; value(y_part_loc(p))=y;
19727 @ @<Additional cases of unary operators@>=
19729 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ll_corner_op);
19730 else mp_pair_value(mp, minx,miny);
19733 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, lr_corner_op);
19734 else mp_pair_value(mp, maxx,miny);
19737 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ul_corner_op);
19738 else mp_pair_value(mp, minx,maxy);
19741 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ur_corner_op);
19742 else mp_pair_value(mp, maxx,maxy);
19745 @ Here is a function that sets |minx|, |maxx|, |miny|, |maxy| to the bounding
19746 box of the current expression. The boolean result is |false| if the expression
19747 has the wrong type.
19749 @<Declare unary action procedures@>=
19750 boolean mp_get_cur_bbox (MP mp) {
19751 switch (mp->cur_type) {
19752 case mp_picture_type:
19753 mp_set_bbox(mp, mp->cur_exp,true);
19754 if ( minx_val(mp->cur_exp)>maxx_val(mp->cur_exp) ) {
19755 minx=0; maxx=0; miny=0; maxy=0;
19757 minx=minx_val(mp->cur_exp);
19758 maxx=maxx_val(mp->cur_exp);
19759 miny=miny_val(mp->cur_exp);
19760 maxy=maxy_val(mp->cur_exp);
19764 mp_path_bbox(mp, mp->cur_exp);
19767 mp_pen_bbox(mp, mp->cur_exp);
19775 @ @<Additional cases of unary operators@>=
19777 case close_from_op:
19778 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19779 else mp_do_read_or_close(mp,c);
19782 @ Here is a routine that interprets |cur_exp| as a file name and tries to read
19783 a line from the file or to close the file.
19785 @d close_file 46 /* go here when closing the file */
19787 @<Declare unary action procedures@>=
19788 void mp_do_read_or_close (MP mp,quarterword c) {
19789 readf_index n,n0; /* indices for searching |rd_fname| */
19790 @<Find the |n| where |rd_fname[n]=cur_exp|; if |cur_exp| must be inserted,
19791 call |start_read_input| and |goto found| or |not_found|@>;
19792 mp_begin_file_reading(mp);
19794 if ( mp_input_ln(mp, mp->rd_file[n],true) )
19796 mp_end_file_reading(mp);
19798 @<Record the end of file and set |cur_exp| to a dummy value@>;
19801 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
19804 mp_flush_cur_exp(mp, 0);
19805 mp_finish_read(mp);
19808 @ Free slots in the |rd_file| and |rd_fname| arrays are marked with NULL's in
19811 @<Find the |n| where |rd_fname[n]=cur_exp|...@>=
19816 fn = str(mp->cur_exp);
19817 while (mp_xstrcmp(fn,mp->rd_fname[n])!=0) {
19820 } else if ( c==close_from_op ) {
19823 if ( n0==mp->read_files ) {
19824 if ( mp->read_files<mp->max_read_files ) {
19825 incr(mp->read_files);
19830 l = mp->max_read_files + (mp->max_read_files>>2);
19831 rd_file = xmalloc((l+1), sizeof(FILE *));
19832 rd_fname = xmalloc((l+1), sizeof(char *));
19833 for (k=0;k<=l;k++) {
19834 if (k<=mp->max_read_files) {
19835 rd_file[k]=mp->rd_file[k];
19836 rd_fname[k]=mp->rd_fname[k];
19842 xfree(mp->rd_file); xfree(mp->rd_fname);
19843 mp->max_read_files = l;
19844 mp->rd_file = rd_file;
19845 mp->rd_fname = rd_fname;
19849 if ( mp_start_read_input(mp,fn,n) )
19854 if ( mp->rd_fname[n]==NULL ) { n0=n; }
19856 if ( c==close_from_op ) {
19857 fclose(mp->rd_file[n]);
19862 @ @<Record the end of file and set |cur_exp| to a dummy value@>=
19863 xfree(mp->rd_fname[n]);
19864 mp->rd_fname[n]=NULL;
19865 if ( n==mp->read_files-1 ) mp->read_files=n;
19866 if ( c==close_from_op )
19868 mp_flush_cur_exp(mp, mp->eof_line);
19869 mp->cur_type=mp_string_type
19871 @ The string denoting end-of-file is a one-byte string at position zero, by definition
19874 str_number eof_line;
19879 @ Finally, we have the operations that combine a capsule~|p|
19880 with the current expression.
19882 @c @<Declare binary action procedures@>;
19883 void mp_do_binary (MP mp,pointer p, quarterword c) {
19884 pointer q,r,rr; /* for list manipulation */
19885 pointer old_p,old_exp; /* capsules to recycle */
19886 integer v; /* for numeric manipulation */
19888 if ( mp->internal[mp_tracing_commands]>two ) {
19889 @<Trace the current binary operation@>;
19891 @<Sidestep |independent| cases in capsule |p|@>;
19892 @<Sidestep |independent| cases in the current expression@>;
19894 case plus: case minus:
19895 @<Add or subtract the current expression from |p|@>;
19897 @<Additional cases of binary operators@>;
19898 }; /* there are no other cases */
19899 mp_recycle_value(mp, p);
19900 mp_free_node(mp, p,value_node_size); /* |return| to avoid this */
19902 @<Recycle any sidestepped |independent| capsules@>;
19905 @ @<Declare binary action...@>=
19906 void mp_bad_binary (MP mp,pointer p, quarterword c) {
19907 mp_disp_err(mp, p,"");
19908 exp_err("Not implemented: ");
19909 @.Not implemented...@>
19910 if ( c>=min_of ) mp_print_op(mp, c);
19911 mp_print_known_or_unknown_type(mp, type(p),p);
19912 if ( c>=min_of ) mp_print(mp, "of"); else mp_print_op(mp, c);
19913 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
19914 help3("I'm afraid I don't know how to apply that operation to that")
19915 ("combination of types. Continue, and I'll return the second")
19916 ("argument (see above) as the result of the operation.");
19917 mp_put_get_error(mp);
19920 @ @<Trace the current binary operation@>=
19922 mp_begin_diagnostic(mp); mp_print_nl(mp, "{(");
19923 mp_print_exp(mp,p,0); /* show the operand, but not verbosely */
19924 mp_print_char(mp,')'); mp_print_op(mp,c); mp_print_char(mp,'(');
19925 mp_print_exp(mp,null,0); mp_print(mp,")}");
19926 mp_end_diagnostic(mp, false);
19929 @ Several of the binary operations are potentially complicated by the
19930 fact that |independent| values can sneak into capsules. For example,
19931 we've seen an instance of this difficulty in the unary operation
19932 of negation. In order to reduce the number of cases that need to be
19933 handled, we first change the two operands (if necessary)
19934 to rid them of |independent| components. The original operands are
19935 put into capsules called |old_p| and |old_exp|, which will be
19936 recycled after the binary operation has been safely carried out.
19938 @<Recycle any sidestepped |independent| capsules@>=
19939 if ( old_p!=null ) {
19940 mp_recycle_value(mp, old_p); mp_free_node(mp, old_p,value_node_size);
19942 if ( old_exp!=null ) {
19943 mp_recycle_value(mp, old_exp); mp_free_node(mp, old_exp,value_node_size);
19946 @ A big node is considered to be ``tarnished'' if it contains at least one
19947 independent component. We will define a simple function called `|tarnished|'
19948 that returns |null| if and only if its argument is not tarnished.
19950 @<Sidestep |independent| cases in capsule |p|@>=
19952 case mp_transform_type:
19953 case mp_color_type:
19954 case mp_cmykcolor_type:
19956 old_p=mp_tarnished(mp, p);
19958 case mp_independent: old_p=mp_void; break;
19959 default: old_p=null; break;
19961 if ( old_p!=null ) {
19962 q=mp_stash_cur_exp(mp); old_p=p; mp_make_exp_copy(mp, old_p);
19963 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
19966 @ @<Sidestep |independent| cases in the current expression@>=
19967 switch (mp->cur_type) {
19968 case mp_transform_type:
19969 case mp_color_type:
19970 case mp_cmykcolor_type:
19972 old_exp=mp_tarnished(mp, mp->cur_exp);
19974 case mp_independent:old_exp=mp_void; break;
19975 default: old_exp=null; break;
19977 if ( old_exp!=null ) {
19978 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
19981 @ @<Declare binary action...@>=
19982 pointer mp_tarnished (MP mp,pointer p) {
19983 pointer q; /* beginning of the big node */
19984 pointer r; /* current position in the big node */
19985 q=value(p); r=q+mp->big_node_size[type(p)];
19988 if ( type(r)==mp_independent ) return mp_void;
19993 @ @<Add or subtract the current expression from |p|@>=
19994 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
19995 mp_bad_binary(mp, p,c);
19997 if ((mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
19998 mp_add_or_subtract(mp, p,null,c);
20000 if ( mp->cur_type!=type(p) ) {
20001 mp_bad_binary(mp, p,c);
20003 q=value(p); r=value(mp->cur_exp);
20004 rr=r+mp->big_node_size[mp->cur_type];
20006 mp_add_or_subtract(mp, q,r,c);
20013 @ The first argument to |add_or_subtract| is the location of a value node
20014 in a capsule or pair node that will soon be recycled. The second argument
20015 is either a location within a pair or transform node of |cur_exp|,
20016 or it is null (which means that |cur_exp| itself should be the second
20017 argument). The third argument is either |plus| or |minus|.
20019 The sum or difference of the numeric quantities will replace the second
20020 operand. Arithmetic overflow may go undetected; users aren't supposed to
20021 be monkeying around with really big values.
20023 @<Declare binary action...@>=
20024 @<Declare the procedure called |dep_finish|@>;
20025 void mp_add_or_subtract (MP mp,pointer p, pointer q, quarterword c) {
20026 small_number s,t; /* operand types */
20027 pointer r; /* list traverser */
20028 integer v; /* second operand value */
20031 if ( t<mp_dependent ) v=mp->cur_exp; else v=dep_list(mp->cur_exp);
20034 if ( t<mp_dependent ) v=value(q); else v=dep_list(q);
20036 if ( t==mp_known ) {
20037 if ( c==minus ) negate(v);
20038 if ( type(p)==mp_known ) {
20039 v=mp_slow_add(mp, value(p),v);
20040 if ( q==null ) mp->cur_exp=v; else value(q)=v;
20043 @<Add a known value to the constant term of |dep_list(p)|@>;
20045 if ( c==minus ) mp_negate_dep_list(mp, v);
20046 @<Add operand |p| to the dependency list |v|@>;
20050 @ @<Add a known value to the constant term of |dep_list(p)|@>=
20052 while ( info(r)!=null ) r=link(r);
20053 value(r)=mp_slow_add(mp, value(r),v);
20055 q=mp_get_node(mp, value_node_size); mp->cur_exp=q; mp->cur_type=type(p);
20056 name_type(q)=mp_capsule;
20058 dep_list(q)=dep_list(p); type(q)=type(p);
20059 prev_dep(q)=prev_dep(p); link(prev_dep(p))=q;
20060 type(p)=mp_known; /* this will keep the recycler from collecting non-garbage */
20062 @ We prefer |dependent| lists to |mp_proto_dependent| ones, because it is
20063 nice to retain the extra accuracy of |fraction| coefficients.
20064 But we have to handle both kinds, and mixtures too.
20066 @<Add operand |p| to the dependency list |v|@>=
20067 if ( type(p)==mp_known ) {
20068 @<Add the known |value(p)| to the constant term of |v|@>;
20070 s=type(p); r=dep_list(p);
20071 if ( t==mp_dependent ) {
20072 if ( s==mp_dependent ) {
20073 if ( mp_max_coef(mp, r)+mp_max_coef(mp, v)<coef_bound )
20074 v=mp_p_plus_q(mp, v,r,mp_dependent); goto DONE;
20075 } /* |fix_needed| will necessarily be false */
20076 t=mp_proto_dependent;
20077 v=mp_p_over_v(mp, v,unity,mp_dependent,mp_proto_dependent);
20079 if ( s==mp_proto_dependent ) v=mp_p_plus_q(mp, v,r,mp_proto_dependent);
20080 else v=mp_p_plus_fq(mp, v,unity,r,mp_proto_dependent,mp_dependent);
20082 @<Output the answer, |v| (which might have become |known|)@>;
20085 @ @<Add the known |value(p)| to the constant term of |v|@>=
20087 while ( info(v)!=null ) v=link(v);
20088 value(v)=mp_slow_add(mp, value(p),value(v));
20091 @ @<Output the answer, |v| (which might have become |known|)@>=
20092 if ( q!=null ) mp_dep_finish(mp, v,q,t);
20093 else { mp->cur_type=t; mp_dep_finish(mp, v,null,t); }
20095 @ Here's the current situation: The dependency list |v| of type |t|
20096 should either be put into the current expression (if |q=null|) or
20097 into location |q| within a pair node (otherwise). The destination (|cur_exp|
20098 or |q|) formerly held a dependency list with the same
20099 final pointer as the list |v|.
20101 @<Declare the procedure called |dep_finish|@>=
20102 void mp_dep_finish (MP mp, pointer v, pointer q, small_number t) {
20103 pointer p; /* the destination */
20104 scaled vv; /* the value, if it is |known| */
20105 if ( q==null ) p=mp->cur_exp; else p=q;
20106 dep_list(p)=v; type(p)=t;
20107 if ( info(v)==null ) {
20110 mp_flush_cur_exp(mp, vv);
20112 mp_recycle_value(mp, p); type(q)=mp_known; value(q)=vv;
20114 } else if ( q==null ) {
20117 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20120 @ Let's turn now to the six basic relations of comparison.
20122 @<Additional cases of binary operators@>=
20123 case less_than: case less_or_equal: case greater_than:
20124 case greater_or_equal: case equal_to: case unequal_to:
20125 check_arith; /* at this point |arith_error| should be |false|? */
20126 if ( (mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
20127 mp_add_or_subtract(mp, p,null,minus); /* |cur_exp:=(p)-cur_exp| */
20128 } else if ( mp->cur_type!=type(p) ) {
20129 mp_bad_binary(mp, p,c); goto DONE;
20130 } else if ( mp->cur_type==mp_string_type ) {
20131 mp_flush_cur_exp(mp, mp_str_vs_str(mp, value(p),mp->cur_exp));
20132 } else if ((mp->cur_type==mp_unknown_string)||
20133 (mp->cur_type==mp_unknown_boolean) ) {
20134 @<Check if unknowns have been equated@>;
20135 } else if ( (mp->cur_type<=mp_pair_type)&&(mp->cur_type>=mp_transform_type)) {
20136 @<Reduce comparison of big nodes to comparison of scalars@>;
20137 } else if ( mp->cur_type==mp_boolean_type ) {
20138 mp_flush_cur_exp(mp, mp->cur_exp-value(p));
20140 mp_bad_binary(mp, p,c); goto DONE;
20142 @<Compare the current expression with zero@>;
20144 mp->arith_error=false; /* ignore overflow in comparisons */
20147 @ @<Compare the current expression with zero@>=
20148 if ( mp->cur_type!=mp_known ) {
20149 if ( mp->cur_type<mp_known ) {
20150 mp_disp_err(mp, p,"");
20151 help1("The quantities shown above have not been equated.")
20153 help2("Oh dear. I can\'t decide if the expression above is positive,")
20154 ("negative, or zero. So this comparison test won't be `true'.");
20156 exp_err("Unknown relation will be considered false");
20157 @.Unknown relation...@>
20158 mp_put_get_flush_error(mp, false_code);
20161 case less_than: boolean_reset(mp->cur_exp<0); break;
20162 case less_or_equal: boolean_reset(mp->cur_exp<=0); break;
20163 case greater_than: boolean_reset(mp->cur_exp>0); break;
20164 case greater_or_equal: boolean_reset(mp->cur_exp>=0); break;
20165 case equal_to: boolean_reset(mp->cur_exp==0); break;
20166 case unequal_to: boolean_reset(mp->cur_exp!=0); break;
20167 }; /* there are no other cases */
20169 mp->cur_type=mp_boolean_type
20171 @ When two unknown strings are in the same ring, we know that they are
20172 equal. Otherwise, we don't know whether they are equal or not, so we
20175 @<Check if unknowns have been equated@>=
20177 q=value(mp->cur_exp);
20178 while ( (q!=mp->cur_exp)&&(q!=p) ) q=value(q);
20179 if ( q==p ) mp_flush_cur_exp(mp, 0);
20182 @ @<Reduce comparison of big nodes to comparison of scalars@>=
20184 q=value(p); r=value(mp->cur_exp);
20185 rr=r+mp->big_node_size[mp->cur_type]-2;
20186 while (1) { mp_add_or_subtract(mp, q,r,minus);
20187 if ( type(r)!=mp_known ) break;
20188 if ( value(r)!=0 ) break;
20189 if ( r==rr ) break;
20192 mp_take_part(mp, name_type(r)+x_part-mp_x_part_sector);
20195 @ Here we use the sneaky fact that |and_op-false_code=or_op-true_code|.
20197 @<Additional cases of binary operators@>=
20200 if ( (type(p)!=mp_boolean_type)||(mp->cur_type!=mp_boolean_type) )
20201 mp_bad_binary(mp, p,c);
20202 else if ( value(p)==c+false_code-and_op ) mp->cur_exp=value(p);
20205 @ @<Additional cases of binary operators@>=
20207 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
20208 mp_bad_binary(mp, p,times);
20209 } else if ( (mp->cur_type==mp_known)||(type(p)==mp_known) ) {
20210 @<Multiply when at least one operand is known@>;
20211 } else if ( (mp_nice_color_or_pair(mp, p,type(p))&&(mp->cur_type>mp_pair_type))
20212 ||(mp_nice_color_or_pair(mp, mp->cur_exp,mp->cur_type)&&
20213 (type(p)>mp_pair_type)) ) {
20214 mp_hard_times(mp, p); return;
20216 mp_bad_binary(mp, p,times);
20220 @ @<Multiply when at least one operand is known@>=
20222 if ( type(p)==mp_known ) {
20223 v=value(p); mp_free_node(mp, p,value_node_size);
20225 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20227 if ( mp->cur_type==mp_known ) {
20228 mp->cur_exp=mp_take_scaled(mp, mp->cur_exp,v);
20229 } else if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_color_type)||
20230 (mp->cur_type==mp_cmykcolor_type) ) {
20231 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20233 p=p-2; mp_dep_mult(mp, p,v,true);
20234 } while (p!=value(mp->cur_exp));
20236 mp_dep_mult(mp, null,v,true);
20241 @ @<Declare binary action...@>=
20242 void mp_dep_mult (MP mp,pointer p, integer v, boolean v_is_scaled) {
20243 pointer q; /* the dependency list being multiplied by |v| */
20244 small_number s,t; /* its type, before and after */
20247 } else if ( type(p)!=mp_known ) {
20250 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
20251 else value(p)=mp_take_fraction(mp, value(p),v);
20254 t=type(q); q=dep_list(q); s=t;
20255 if ( t==mp_dependent ) if ( v_is_scaled )
20256 if (mp_ab_vs_cd(mp, mp_max_coef(mp,q),abs(v),coef_bound-1,unity)>=0 )
20257 t=mp_proto_dependent;
20258 q=mp_p_times_v(mp, q,v,s,t,v_is_scaled);
20259 mp_dep_finish(mp, q,p,t);
20262 @ Here is a routine that is similar to |times|; but it is invoked only
20263 internally, when |v| is a |fraction| whose magnitude is at most~1,
20264 and when |cur_type>=mp_color_type|.
20266 @c void mp_frac_mult (MP mp,scaled n, scaled d) {
20267 /* multiplies |cur_exp| by |n/d| */
20268 pointer p; /* a pair node */
20269 pointer old_exp; /* a capsule to recycle */
20270 fraction v; /* |n/d| */
20271 if ( mp->internal[mp_tracing_commands]>two ) {
20272 @<Trace the fraction multiplication@>;
20274 switch (mp->cur_type) {
20275 case mp_transform_type:
20276 case mp_color_type:
20277 case mp_cmykcolor_type:
20279 old_exp=mp_tarnished(mp, mp->cur_exp);
20281 case mp_independent: old_exp=mp_void; break;
20282 default: old_exp=null; break;
20284 if ( old_exp!=null ) {
20285 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
20287 v=mp_make_fraction(mp, n,d);
20288 if ( mp->cur_type==mp_known ) {
20289 mp->cur_exp=mp_take_fraction(mp, mp->cur_exp,v);
20290 } else if ( mp->cur_type<=mp_pair_type ) {
20291 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20294 mp_dep_mult(mp, p,v,false);
20295 } while (p!=value(mp->cur_exp));
20297 mp_dep_mult(mp, null,v,false);
20299 if ( old_exp!=null ) {
20300 mp_recycle_value(mp, old_exp);
20301 mp_free_node(mp, old_exp,value_node_size);
20305 @ @<Trace the fraction multiplication@>=
20307 mp_begin_diagnostic(mp);
20308 mp_print_nl(mp, "{("); mp_print_scaled(mp,n); mp_print_char(mp,'/');
20309 mp_print_scaled(mp,d); mp_print(mp,")*("); mp_print_exp(mp,null,0);
20311 mp_end_diagnostic(mp, false);
20314 @ The |hard_times| routine multiplies a nice color or pair by a dependency list.
20316 @<Declare binary action procedures@>=
20317 void mp_hard_times (MP mp,pointer p) {
20318 pointer q; /* a copy of the dependent variable |p| */
20319 pointer r; /* a component of the big node for the nice color or pair */
20320 scaled v; /* the known value for |r| */
20321 if ( type(p)<=mp_pair_type ) {
20322 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p); p=q;
20323 }; /* now |cur_type=mp_pair_type| or |cur_type=mp_color_type| */
20324 r=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20329 if ( r==value(mp->cur_exp) )
20331 mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(p)));
20332 mp_dep_mult(mp, r,v,true);
20334 mp->mem[value_loc(r)]=mp->mem[value_loc(p)];
20335 link(prev_dep(p))=r;
20336 mp_free_node(mp, p,value_node_size);
20337 mp_dep_mult(mp, r,v,true);
20340 @ @<Additional cases of binary operators@>=
20342 if ( (mp->cur_type!=mp_known)||(type(p)<mp_color_type) ) {
20343 mp_bad_binary(mp, p,over);
20345 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20347 @<Squeal about division by zero@>;
20349 if ( mp->cur_type==mp_known ) {
20350 mp->cur_exp=mp_make_scaled(mp, mp->cur_exp,v);
20351 } else if ( mp->cur_type<=mp_pair_type ) {
20352 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20354 p=p-2; mp_dep_div(mp, p,v);
20355 } while (p!=value(mp->cur_exp));
20357 mp_dep_div(mp, null,v);
20364 @ @<Declare binary action...@>=
20365 void mp_dep_div (MP mp,pointer p, scaled v) {
20366 pointer q; /* the dependency list being divided by |v| */
20367 small_number s,t; /* its type, before and after */
20368 if ( p==null ) q=mp->cur_exp;
20369 else if ( type(p)!=mp_known ) q=p;
20370 else { value(p)=mp_make_scaled(mp, value(p),v); return; };
20371 t=type(q); q=dep_list(q); s=t;
20372 if ( t==mp_dependent )
20373 if ( mp_ab_vs_cd(mp, mp_max_coef(mp,q),unity,coef_bound-1,abs(v))>=0 )
20374 t=mp_proto_dependent;
20375 q=mp_p_over_v(mp, q,v,s,t);
20376 mp_dep_finish(mp, q,p,t);
20379 @ @<Squeal about division by zero@>=
20381 exp_err("Division by zero");
20382 @.Division by zero@>
20383 help2("You're trying to divide the quantity shown above the error")
20384 ("message by zero. I'm going to divide it by one instead.");
20385 mp_put_get_error(mp);
20388 @ @<Additional cases of binary operators@>=
20391 if ( (mp->cur_type==mp_known)&&(type(p)==mp_known) ) {
20392 if ( c==pythag_add ) mp->cur_exp=mp_pyth_add(mp, value(p),mp->cur_exp);
20393 else mp->cur_exp=mp_pyth_sub(mp, value(p),mp->cur_exp);
20394 } else mp_bad_binary(mp, p,c);
20397 @ The next few sections of the program deal with affine transformations
20398 of coordinate data.
20400 @<Additional cases of binary operators@>=
20401 case rotated_by: case slanted_by:
20402 case scaled_by: case shifted_by: case transformed_by:
20403 case x_scaled: case y_scaled: case z_scaled:
20404 if ( type(p)==mp_path_type ) {
20405 path_trans(c,p); return;
20406 } else if ( type(p)==mp_pen_type ) {
20408 mp->cur_exp=mp_convex_hull(mp, mp->cur_exp);
20409 /* rounding error could destroy convexity */
20411 } else if ( (type(p)==mp_pair_type)||(type(p)==mp_transform_type) ) {
20412 mp_big_trans(mp, p,c);
20413 } else if ( type(p)==mp_picture_type ) {
20414 mp_do_edges_trans(mp, p,c); return;
20416 mp_bad_binary(mp, p,c);
20420 @ Let |c| be one of the eight transform operators. The procedure call
20421 |set_up_trans(c)| first changes |cur_exp| to a transform that corresponds to
20422 |c| and the original value of |cur_exp|. (In particular, |cur_exp| doesn't
20423 change at all if |c=transformed_by|.)
20425 Then, if all components of the resulting transform are |known|, they are
20426 moved to the global variables |txx|, |txy|, |tyx|, |tyy|, |tx|, |ty|;
20427 and |cur_exp| is changed to the known value zero.
20429 @<Declare binary action...@>=
20430 void mp_set_up_trans (MP mp,quarterword c) {
20431 pointer p,q,r; /* list manipulation registers */
20432 if ( (c!=transformed_by)||(mp->cur_type!=mp_transform_type) ) {
20433 @<Put the current transform into |cur_exp|@>;
20435 @<If the current transform is entirely known, stash it in global variables;
20436 otherwise |return|@>;
20445 scaled ty; /* current transform coefficients */
20447 @ @<Put the current transform...@>=
20449 p=mp_stash_cur_exp(mp);
20450 mp->cur_exp=mp_id_transform(mp);
20451 mp->cur_type=mp_transform_type;
20452 q=value(mp->cur_exp);
20454 @<For each of the eight cases, change the relevant fields of |cur_exp|
20456 but do nothing if capsule |p| doesn't have the appropriate type@>;
20457 }; /* there are no other cases */
20458 mp_disp_err(mp, p,"Improper transformation argument");
20459 @.Improper transformation argument@>
20460 help3("The expression shown above has the wrong type,")
20461 ("so I can\'t transform anything using it.")
20462 ("Proceed, and I'll omit the transformation.");
20463 mp_put_get_error(mp);
20465 mp_recycle_value(mp, p);
20466 mp_free_node(mp, p,value_node_size);
20469 @ @<If the current transform is entirely known, ...@>=
20470 q=value(mp->cur_exp); r=q+transform_node_size;
20473 if ( type(r)!=mp_known ) return;
20475 mp->txx=value(xx_part_loc(q));
20476 mp->txy=value(xy_part_loc(q));
20477 mp->tyx=value(yx_part_loc(q));
20478 mp->tyy=value(yy_part_loc(q));
20479 mp->tx=value(x_part_loc(q));
20480 mp->ty=value(y_part_loc(q));
20481 mp_flush_cur_exp(mp, 0)
20483 @ @<For each of the eight cases...@>=
20485 if ( type(p)==mp_known )
20486 @<Install sines and cosines, then |goto done|@>;
20489 if ( type(p)>mp_pair_type ) {
20490 mp_install(mp, xy_part_loc(q),p); goto DONE;
20494 if ( type(p)>mp_pair_type ) {
20495 mp_install(mp, xx_part_loc(q),p); mp_install(mp, yy_part_loc(q),p);
20500 if ( type(p)==mp_pair_type ) {
20501 r=value(p); mp_install(mp, x_part_loc(q),x_part_loc(r));
20502 mp_install(mp, y_part_loc(q),y_part_loc(r)); goto DONE;
20506 if ( type(p)>mp_pair_type ) {
20507 mp_install(mp, xx_part_loc(q),p); goto DONE;
20511 if ( type(p)>mp_pair_type ) {
20512 mp_install(mp, yy_part_loc(q),p); goto DONE;
20516 if ( type(p)==mp_pair_type )
20517 @<Install a complex multiplier, then |goto done|@>;
20519 case transformed_by:
20523 @ @<Install sines and cosines, then |goto done|@>=
20524 { mp_n_sin_cos(mp, (value(p) % three_sixty_units)*16);
20525 value(xx_part_loc(q))=mp_round_fraction(mp, mp->n_cos);
20526 value(yx_part_loc(q))=mp_round_fraction(mp, mp->n_sin);
20527 value(xy_part_loc(q))=-value(yx_part_loc(q));
20528 value(yy_part_loc(q))=value(xx_part_loc(q));
20532 @ @<Install a complex multiplier, then |goto done|@>=
20535 mp_install(mp, xx_part_loc(q),x_part_loc(r));
20536 mp_install(mp, yy_part_loc(q),x_part_loc(r));
20537 mp_install(mp, yx_part_loc(q),y_part_loc(r));
20538 if ( type(y_part_loc(r))==mp_known ) negate(value(y_part_loc(r)));
20539 else mp_negate_dep_list(mp, dep_list(y_part_loc(r)));
20540 mp_install(mp, xy_part_loc(q),y_part_loc(r));
20544 @ Procedure |set_up_known_trans| is like |set_up_trans|, but it
20545 insists that the transformation be entirely known.
20547 @<Declare binary action...@>=
20548 void mp_set_up_known_trans (MP mp,quarterword c) {
20549 mp_set_up_trans(mp, c);
20550 if ( mp->cur_type!=mp_known ) {
20551 exp_err("Transform components aren't all known");
20552 @.Transform components...@>
20553 help3("I'm unable to apply a partially specified transformation")
20554 ("except to a fully known pair or transform.")
20555 ("Proceed, and I'll omit the transformation.");
20556 mp_put_get_flush_error(mp, 0);
20557 mp->txx=unity; mp->txy=0; mp->tyx=0; mp->tyy=unity;
20558 mp->tx=0; mp->ty=0;
20562 @ Here's a procedure that applies the transform |txx..ty| to a pair of
20563 coordinates in locations |p| and~|q|.
20565 @<Declare binary action...@>=
20566 void mp_trans (MP mp,pointer p, pointer q) {
20567 scaled v; /* the new |x| value */
20568 v=mp_take_scaled(mp, mp->mem[p].sc,mp->txx)+
20569 mp_take_scaled(mp, mp->mem[q].sc,mp->txy)+mp->tx;
20570 mp->mem[q].sc=mp_take_scaled(mp, mp->mem[p].sc,mp->tyx)+
20571 mp_take_scaled(mp, mp->mem[q].sc,mp->tyy)+mp->ty;
20575 @ The simplest transformation procedure applies a transform to all
20576 coordinates of a path. The |path_trans(c)(p)| macro applies
20577 a transformation defined by |cur_exp| and the transform operator |c|
20580 @d path_trans(A,B) { mp_set_up_known_trans(mp, (A));
20581 mp_unstash_cur_exp(mp, (B));
20582 mp_do_path_trans(mp, mp->cur_exp); }
20584 @<Declare binary action...@>=
20585 void mp_do_path_trans (MP mp,pointer p) {
20586 pointer q; /* list traverser */
20589 if ( left_type(q)!=mp_endpoint )
20590 mp_trans(mp, q+3,q+4); /* that's |left_x| and |left_y| */
20591 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20592 if ( right_type(q)!=mp_endpoint )
20593 mp_trans(mp, q+5,q+6); /* that's |right_x| and |right_y| */
20594 @^data structure assumptions@>
20599 @ Transforming a pen is very similar, except that there are no |left_type|
20600 and |right_type| fields.
20602 @d pen_trans(A,B) { mp_set_up_known_trans(mp, (A));
20603 mp_unstash_cur_exp(mp, (B));
20604 mp_do_pen_trans(mp, mp->cur_exp); }
20606 @<Declare binary action...@>=
20607 void mp_do_pen_trans (MP mp,pointer p) {
20608 pointer q; /* list traverser */
20609 if ( pen_is_elliptical(p) ) {
20610 mp_trans(mp, p+3,p+4); /* that's |left_x| and |left_y| */
20611 mp_trans(mp, p+5,p+6); /* that's |right_x| and |right_y| */
20615 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20616 @^data structure assumptions@>
20621 @ The next transformation procedure applies to edge structures. It will do
20622 any transformation, but the results may be substandard if the picture contains
20623 text that uses downloaded bitmap fonts. The binary action procedure is
20624 |do_edges_trans|, but we also need a function that just scales a picture.
20625 That routine is |scale_edges|. Both it and the underlying routine |edges_trans|
20626 should be thought of as procedures that update an edge structure |h|, except
20627 that they have to return a (possibly new) structure because of the need to call
20630 @<Declare binary action...@>=
20631 pointer mp_edges_trans (MP mp, pointer h) {
20632 pointer q; /* the object being transformed */
20633 pointer r,s; /* for list manipulation */
20634 scaled sx,sy; /* saved transformation parameters */
20635 scaled sqdet; /* square root of determinant for |dash_scale| */
20636 integer sgndet; /* sign of the determinant */
20637 scaled v; /* a temporary value */
20638 h=mp_private_edges(mp, h);
20639 sqdet=mp_sqrt_det(mp, mp->txx,mp->txy,mp->tyx,mp->tyy);
20640 sgndet=mp_ab_vs_cd(mp, mp->txx,mp->tyy,mp->txy,mp->tyx);
20641 if ( dash_list(h)!=null_dash ) {
20642 @<Try to transform the dash list of |h|@>;
20644 @<Make the bounding box of |h| unknown if it can't be updated properly
20645 without scanning the whole structure@>;
20646 q=link(dummy_loc(h));
20647 while ( q!=null ) {
20648 @<Transform graphical object |q|@>;
20653 void mp_do_edges_trans (MP mp,pointer p, quarterword c) {
20654 mp_set_up_known_trans(mp, c);
20655 value(p)=mp_edges_trans(mp, value(p));
20656 mp_unstash_cur_exp(mp, p);
20658 void mp_scale_edges (MP mp) {
20659 mp->txx=mp->se_sf; mp->tyy=mp->se_sf;
20660 mp->txy=0; mp->tyx=0; mp->tx=0; mp->ty=0;
20661 mp->se_pic=mp_edges_trans(mp, mp->se_pic);
20664 @ @<Try to transform the dash list of |h|@>=
20665 if ( (mp->txy!=0)||(mp->tyx!=0)||
20666 (mp->ty!=0)||(abs(mp->txx)!=abs(mp->tyy))) {
20667 mp_flush_dash_list(mp, h);
20669 if ( mp->txx<0 ) { @<Reverse the dash list of |h|@>; }
20670 @<Scale the dash list by |txx| and shift it by |tx|@>;
20671 dash_y(h)=mp_take_scaled(mp, dash_y(h),abs(mp->tyy));
20674 @ @<Reverse the dash list of |h|@>=
20677 dash_list(h)=null_dash;
20678 while ( r!=null_dash ) {
20680 v=start_x(s); start_x(s)=stop_x(s); stop_x(s)=v;
20681 link(s)=dash_list(h);
20686 @ @<Scale the dash list by |txx| and shift it by |tx|@>=
20688 while ( r!=null_dash ) {
20689 start_x(r)=mp_take_scaled(mp, start_x(r),mp->txx)+mp->tx;
20690 stop_x(r)=mp_take_scaled(mp, stop_x(r),mp->txx)+mp->tx;
20694 @ @<Make the bounding box of |h| unknown if it can't be updated properly...@>=
20695 if ( (mp->txx==0)&&(mp->tyy==0) ) {
20696 @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>;
20697 } else if ( (mp->txy!=0)||(mp->tyx!=0) ) {
20698 mp_init_bbox(mp, h);
20701 if ( minx_val(h)<=maxx_val(h) ) {
20702 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift by
20709 @ @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>=
20711 v=minx_val(h); minx_val(h)=miny_val(h); miny_val(h)=v;
20712 v=maxx_val(h); maxx_val(h)=maxy_val(h); maxy_val(h)=v;
20715 @ The sum ``|txx+txy|'' is whichever of |txx| or |txy| is nonzero. The other
20718 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift...@>=
20720 minx_val(h)=mp_take_scaled(mp, minx_val(h),mp->txx+mp->txy)+mp->tx;
20721 maxx_val(h)=mp_take_scaled(mp, maxx_val(h),mp->txx+mp->txy)+mp->tx;
20722 miny_val(h)=mp_take_scaled(mp, miny_val(h),mp->tyx+mp->tyy)+mp->ty;
20723 maxy_val(h)=mp_take_scaled(mp, maxy_val(h),mp->tyx+mp->tyy)+mp->ty;
20724 if ( mp->txx+mp->txy<0 ) {
20725 v=minx_val(h); minx_val(h)=maxx_val(h); maxx_val(h)=v;
20727 if ( mp->tyx+mp->tyy<0 ) {
20728 v=miny_val(h); miny_val(h)=maxy_val(h); maxy_val(h)=v;
20732 @ Now we ready for the main task of transforming the graphical objects in edge
20735 @<Transform graphical object |q|@>=
20737 case mp_fill_code: case mp_stroked_code:
20738 mp_do_path_trans(mp, path_p(q));
20739 @<Transform |pen_p(q)|, making sure polygonal pens stay counter-clockwise@>;
20741 case mp_start_clip_code: case mp_start_bounds_code:
20742 mp_do_path_trans(mp, path_p(q));
20746 @<Transform the compact transformation starting at |r|@>;
20748 case mp_stop_clip_code: case mp_stop_bounds_code:
20750 } /* there are no other cases */
20752 @ Note that the shift parameters |(tx,ty)| apply only to the path being stroked.
20753 The |dash_scale| has to be adjusted to scale the dash lengths in |dash_p(q)|
20754 since the \ps\ output procedures will try to compensate for the transformation
20755 we are applying to |pen_p(q)|. Since this compensation is based on the square
20756 root of the determinant, |sqdet| is the appropriate factor.
20758 @<Transform |pen_p(q)|, making sure...@>=
20759 if ( pen_p(q)!=null ) {
20760 sx=mp->tx; sy=mp->ty;
20761 mp->tx=0; mp->ty=0;
20762 mp_do_pen_trans(mp, pen_p(q));
20763 if ( ((type(q)==mp_stroked_code)&&(dash_p(q)!=null)) )
20764 dash_scale(q)=mp_take_scaled(mp, dash_scale(q),sqdet);
20765 if ( ! pen_is_elliptical(pen_p(q)) )
20767 pen_p(q)=mp_make_pen(mp, mp_copy_path(mp, pen_p(q)),true);
20768 /* this unreverses the pen */
20769 mp->tx=sx; mp->ty=sy;
20772 @ This uses the fact that transformations are stored in the order
20773 |(tx,ty,txx,txy,tyx,tyy)|.
20774 @^data structure assumptions@>
20776 @<Transform the compact transformation starting at |r|@>=
20777 mp_trans(mp, r,r+1);
20778 sx=mp->tx; sy=mp->ty;
20779 mp->tx=0; mp->ty=0;
20780 mp_trans(mp, r+2,r+4);
20781 mp_trans(mp, r+3,r+5);
20782 mp->tx=sx; mp->ty=sy
20784 @ The hard cases of transformation occur when big nodes are involved,
20785 and when some of their components are unknown.
20787 @<Declare binary action...@>=
20788 @<Declare subroutines needed by |big_trans|@>;
20789 void mp_big_trans (MP mp,pointer p, quarterword c) {
20790 pointer q,r,pp,qq; /* list manipulation registers */
20791 small_number s; /* size of a big node */
20792 s=mp->big_node_size[type(p)]; q=value(p); r=q+s;
20795 if ( type(r)!=mp_known ) {
20796 @<Transform an unknown big node and |return|@>;
20799 @<Transform a known big node@>;
20800 }; /* node |p| will now be recycled by |do_binary| */
20802 @ @<Transform an unknown big node and |return|@>=
20804 mp_set_up_known_trans(mp, c); mp_make_exp_copy(mp, p);
20805 r=value(mp->cur_exp);
20806 if ( mp->cur_type==mp_transform_type ) {
20807 mp_bilin1(mp, yy_part_loc(r),mp->tyy,xy_part_loc(q),mp->tyx,0);
20808 mp_bilin1(mp, yx_part_loc(r),mp->tyy,xx_part_loc(q),mp->tyx,0);
20809 mp_bilin1(mp, xy_part_loc(r),mp->txx,yy_part_loc(q),mp->txy,0);
20810 mp_bilin1(mp, xx_part_loc(r),mp->txx,yx_part_loc(q),mp->txy,0);
20812 mp_bilin1(mp, y_part_loc(r),mp->tyy,x_part_loc(q),mp->tyx,mp->ty);
20813 mp_bilin1(mp, x_part_loc(r),mp->txx,y_part_loc(q),mp->txy,mp->tx);
20817 @ Let |p| point to a two-word value field inside a big node of |cur_exp|,
20818 and let |q| point to a another value field. The |bilin1| procedure
20819 replaces |p| by $p\cdot t+q\cdot u+\delta$.
20821 @<Declare subroutines needed by |big_trans|@>=
20822 void mp_bilin1 (MP mp, pointer p, scaled t, pointer q,
20823 scaled u, scaled delta) {
20824 pointer r; /* list traverser */
20825 if ( t!=unity ) mp_dep_mult(mp, p,t,true);
20827 if ( type(q)==mp_known ) {
20828 delta+=mp_take_scaled(mp, value(q),u);
20830 @<Ensure that |type(p)=mp_proto_dependent|@>;
20831 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),u,dep_list(q),
20832 mp_proto_dependent,type(q));
20835 if ( type(p)==mp_known ) {
20839 while ( info(r)!=null ) r=link(r);
20841 if ( r!=dep_list(p) ) value(r)=delta;
20842 else { mp_recycle_value(mp, p); type(p)=mp_known; value(p)=delta; };
20844 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20847 @ @<Ensure that |type(p)=mp_proto_dependent|@>=
20848 if ( type(p)!=mp_proto_dependent ) {
20849 if ( type(p)==mp_known )
20850 mp_new_dep(mp, p,mp_const_dependency(mp, value(p)));
20852 dep_list(p)=mp_p_times_v(mp, dep_list(p),unity,mp_dependent,
20853 mp_proto_dependent,true);
20854 type(p)=mp_proto_dependent;
20857 @ @<Transform a known big node@>=
20858 mp_set_up_trans(mp, c);
20859 if ( mp->cur_type==mp_known ) {
20860 @<Transform known by known@>;
20862 pp=mp_stash_cur_exp(mp); qq=value(pp);
20863 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20864 if ( mp->cur_type==mp_transform_type ) {
20865 mp_bilin2(mp, yy_part_loc(r),yy_part_loc(qq),
20866 value(xy_part_loc(q)),yx_part_loc(qq),null);
20867 mp_bilin2(mp, yx_part_loc(r),yy_part_loc(qq),
20868 value(xx_part_loc(q)),yx_part_loc(qq),null);
20869 mp_bilin2(mp, xy_part_loc(r),xx_part_loc(qq),
20870 value(yy_part_loc(q)),xy_part_loc(qq),null);
20871 mp_bilin2(mp, xx_part_loc(r),xx_part_loc(qq),
20872 value(yx_part_loc(q)),xy_part_loc(qq),null);
20874 mp_bilin2(mp, y_part_loc(r),yy_part_loc(qq),
20875 value(x_part_loc(q)),yx_part_loc(qq),y_part_loc(qq));
20876 mp_bilin2(mp, x_part_loc(r),xx_part_loc(qq),
20877 value(y_part_loc(q)),xy_part_loc(qq),x_part_loc(qq));
20878 mp_recycle_value(mp, pp); mp_free_node(mp, pp,value_node_size);
20881 @ Let |p| be a |mp_proto_dependent| value whose dependency list ends
20882 at |dep_final|. The following procedure adds |v| times another
20883 numeric quantity to~|p|.
20885 @<Declare subroutines needed by |big_trans|@>=
20886 void mp_add_mult_dep (MP mp,pointer p, scaled v, pointer r) {
20887 if ( type(r)==mp_known ) {
20888 value(mp->dep_final)+=mp_take_scaled(mp, value(r),v);
20890 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),v,dep_list(r),
20891 mp_proto_dependent,type(r));
20892 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20896 @ The |bilin2| procedure is something like |bilin1|, but with known
20897 and unknown quantities reversed. Parameter |p| points to a value field
20898 within the big node for |cur_exp|; and |type(p)=mp_known|. Parameters
20899 |t| and~|u| point to value fields elsewhere; so does parameter~|q|,
20900 unless it is |null| (which stands for zero). Location~|p| will be
20901 replaced by $p\cdot t+v\cdot u+q$.
20903 @<Declare subroutines needed by |big_trans|@>=
20904 void mp_bilin2 (MP mp,pointer p, pointer t, scaled v,
20905 pointer u, pointer q) {
20906 scaled vv; /* temporary storage for |value(p)| */
20907 vv=value(p); type(p)=mp_proto_dependent;
20908 mp_new_dep(mp, p,mp_const_dependency(mp, 0)); /* this sets |dep_final| */
20910 mp_add_mult_dep(mp, p,vv,t); /* |dep_final| doesn't change */
20911 if ( v!=0 ) mp_add_mult_dep(mp, p,v,u);
20912 if ( q!=null ) mp_add_mult_dep(mp, p,unity,q);
20913 if ( dep_list(p)==mp->dep_final ) {
20914 vv=value(mp->dep_final); mp_recycle_value(mp, p);
20915 type(p)=mp_known; value(p)=vv;
20919 @ @<Transform known by known@>=
20921 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20922 if ( mp->cur_type==mp_transform_type ) {
20923 mp_bilin3(mp, yy_part_loc(r),mp->tyy,value(xy_part_loc(q)),mp->tyx,0);
20924 mp_bilin3(mp, yx_part_loc(r),mp->tyy,value(xx_part_loc(q)),mp->tyx,0);
20925 mp_bilin3(mp, xy_part_loc(r),mp->txx,value(yy_part_loc(q)),mp->txy,0);
20926 mp_bilin3(mp, xx_part_loc(r),mp->txx,value(yx_part_loc(q)),mp->txy,0);
20928 mp_bilin3(mp, y_part_loc(r),mp->tyy,value(x_part_loc(q)),mp->tyx,mp->ty);
20929 mp_bilin3(mp, x_part_loc(r),mp->txx,value(y_part_loc(q)),mp->txy,mp->tx);
20932 @ Finally, in |bilin3| everything is |known|.
20934 @<Declare subroutines needed by |big_trans|@>=
20935 void mp_bilin3 (MP mp,pointer p, scaled t,
20936 scaled v, scaled u, scaled delta) {
20938 delta+=mp_take_scaled(mp, value(p),t);
20941 if ( u!=0 ) value(p)=delta+mp_take_scaled(mp, v,u);
20942 else value(p)=delta;
20945 @ @<Additional cases of binary operators@>=
20947 if ( (mp->cur_type==mp_string_type)&&(type(p)==mp_string_type) ) mp_cat(mp, p);
20948 else mp_bad_binary(mp, p,concatenate);
20951 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_string_type) )
20952 mp_chop_string(mp, value(p));
20953 else mp_bad_binary(mp, p,substring_of);
20956 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
20957 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_path_type) )
20958 mp_chop_path(mp, value(p));
20959 else mp_bad_binary(mp, p,subpath_of);
20962 @ @<Declare binary action...@>=
20963 void mp_cat (MP mp,pointer p) {
20964 str_number a,b; /* the strings being concatenated */
20965 pool_pointer k; /* index into |str_pool| */
20966 a=value(p); b=mp->cur_exp; str_room(length(a)+length(b));
20967 for (k=mp->str_start[a];k<=str_stop(a)-1;k++) {
20968 append_char(mp->str_pool[k]);
20970 for (k=mp->str_start[b];k<=str_stop(b)-1;k++) {
20971 append_char(mp->str_pool[k]);
20973 mp->cur_exp=mp_make_string(mp); delete_str_ref(b);
20976 @ @<Declare binary action...@>=
20977 void mp_chop_string (MP mp,pointer p) {
20978 integer a, b; /* start and stop points */
20979 integer l; /* length of the original string */
20980 integer k; /* runs from |a| to |b| */
20981 str_number s; /* the original string */
20982 boolean reversed; /* was |a>b|? */
20983 a=mp_round_unscaled(mp, value(x_part_loc(p)));
20984 b=mp_round_unscaled(mp, value(y_part_loc(p)));
20985 if ( a<=b ) reversed=false;
20986 else { reversed=true; k=a; a=b; b=k; };
20987 s=mp->cur_exp; l=length(s);
20998 for (k=mp->str_start[s]+b-1;k>=mp->str_start[s]+a;k--) {
20999 append_char(mp->str_pool[k]);
21002 for (k=mp->str_start[s]+a;k<=mp->str_start[s]+b-1;k++) {
21003 append_char(mp->str_pool[k]);
21006 mp->cur_exp=mp_make_string(mp); delete_str_ref(s);
21009 @ @<Declare binary action...@>=
21010 void mp_chop_path (MP mp,pointer p) {
21011 pointer q; /* a knot in the original path */
21012 pointer pp,qq,rr,ss; /* link variables for copies of path nodes */
21013 scaled a,b,k,l; /* indices for chopping */
21014 boolean reversed; /* was |a>b|? */
21015 l=mp_path_length(mp); a=value(x_part_loc(p)); b=value(y_part_loc(p));
21016 if ( a<=b ) reversed=false;
21017 else { reversed=true; k=a; a=b; b=k; };
21018 @<Dispense with the cases |a<0| and/or |b>l|@>;
21020 while ( a>=unity ) {
21021 q=link(q); a=a-unity; b=b-unity;
21024 @<Construct a path from |pp| to |qq| of length zero@>;
21026 @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>;
21028 left_type(pp)=mp_endpoint; right_type(qq)=mp_endpoint; link(qq)=pp;
21029 mp_toss_knot_list(mp, mp->cur_exp);
21031 mp->cur_exp=link(mp_htap_ypoc(mp, pp)); mp_toss_knot_list(mp, pp);
21037 @ @<Dispense with the cases |a<0| and/or |b>l|@>=
21039 if ( left_type(mp->cur_exp)==mp_endpoint ) {
21040 a=0; if ( b<0 ) b=0;
21042 do { a=a+l; b=b+l; } while (a<0); /* a cycle always has length |l>0| */
21046 if ( left_type(mp->cur_exp)==mp_endpoint ) {
21047 b=l; if ( a>l ) a=l;
21055 @ @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>=
21057 pp=mp_copy_knot(mp, q); qq=pp;
21059 q=link(q); rr=qq; qq=mp_copy_knot(mp, q); link(rr)=qq; b=b-unity;
21062 ss=pp; pp=link(pp);
21063 mp_split_cubic(mp, ss,a*010000); pp=link(ss);
21064 mp_free_node(mp, ss,knot_node_size);
21066 b=mp_make_scaled(mp, b,unity-a); rr=pp;
21070 mp_split_cubic(mp, rr,(b+unity)*010000);
21071 mp_free_node(mp, qq,knot_node_size);
21076 @ @<Construct a path from |pp| to |qq| of length zero@>=
21078 if ( a>0 ) { mp_split_cubic(mp, q,a*010000); q=link(q); };
21079 pp=mp_copy_knot(mp, q); qq=pp;
21082 @ @<Additional cases of binary operators@>=
21083 case point_of: case precontrol_of: case postcontrol_of:
21084 if ( mp->cur_type==mp_pair_type )
21085 mp_pair_to_path(mp);
21086 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
21087 mp_find_point(mp, value(p),c);
21089 mp_bad_binary(mp, p,c);
21091 case pen_offset_of:
21092 if ( (mp->cur_type==mp_pen_type)&& mp_nice_pair(mp, p,type(p)) )
21093 mp_set_up_offset(mp, value(p));
21095 mp_bad_binary(mp, p,pen_offset_of);
21097 case direction_time_of:
21098 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21099 if ( (mp->cur_type==mp_path_type)&& mp_nice_pair(mp, p,type(p)) )
21100 mp_set_up_direction_time(mp, value(p));
21102 mp_bad_binary(mp, p,direction_time_of);
21105 @ @<Declare binary action...@>=
21106 void mp_set_up_offset (MP mp,pointer p) {
21107 mp_find_offset(mp, value(x_part_loc(p)),value(y_part_loc(p)),mp->cur_exp);
21108 mp_pair_value(mp, mp->cur_x,mp->cur_y);
21110 void mp_set_up_direction_time (MP mp,pointer p) {
21111 mp_flush_cur_exp(mp, mp_find_direction_time(mp, value(x_part_loc(p)),
21112 value(y_part_loc(p)),mp->cur_exp));
21115 @ @<Declare binary action...@>=
21116 void mp_find_point (MP mp,scaled v, quarterword c) {
21117 pointer p; /* the path */
21118 scaled n; /* its length */
21120 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
21121 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
21124 } else if ( v<0 ) {
21125 if ( left_type(p)==mp_endpoint ) v=0;
21126 else v=n-1-((-v-1) % n);
21127 } else if ( v>n ) {
21128 if ( left_type(p)==mp_endpoint ) v=n;
21132 while ( v>=unity ) { p=link(p); v=v-unity; };
21134 @<Insert a fractional node by splitting the cubic@>;
21136 @<Set the current expression to the desired path coordinates@>;
21139 @ @<Insert a fractional node...@>=
21140 { mp_split_cubic(mp, p,v*010000); p=link(p); }
21142 @ @<Set the current expression to the desired path coordinates...@>=
21145 mp_pair_value(mp, x_coord(p),y_coord(p));
21147 case precontrol_of:
21148 if ( left_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21149 else mp_pair_value(mp, left_x(p),left_y(p));
21151 case postcontrol_of:
21152 if ( right_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21153 else mp_pair_value(mp, right_x(p),right_y(p));
21155 } /* there are no other cases */
21157 @ @<Additional cases of binary operators@>=
21159 if ( mp->cur_type==mp_pair_type )
21160 mp_pair_to_path(mp);
21161 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
21162 mp_flush_cur_exp(mp, mp_get_arc_time(mp, mp->cur_exp,value(p)));
21164 mp_bad_binary(mp, p,c);
21167 @ @<Additional cases of bin...@>=
21169 if ( type(p)==mp_pair_type ) {
21170 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p);
21171 mp_pair_to_path(mp); p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
21173 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21174 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_path_type) ) {
21175 mp_path_intersection(mp, value(p),mp->cur_exp);
21176 mp_pair_value(mp, mp->cur_t,mp->cur_tt);
21178 mp_bad_binary(mp, p,intersect);
21182 @ @<Additional cases of bin...@>=
21184 if ( (mp->cur_type!=mp_string_type)||(type(p)!=mp_string_type))
21185 mp_bad_binary(mp, p,in_font);
21186 else { mp_do_infont(mp, p); return; }
21189 @ Function |new_text_node| owns the reference count for its second argument
21190 (the text string) but not its first (the font name).
21192 @<Declare binary action...@>=
21193 void mp_do_infont (MP mp,pointer p) {
21195 q=mp_get_node(mp, edge_header_size);
21196 mp_init_edges(mp, q);
21197 link(obj_tail(q))=mp_new_text_node(mp, str(mp->cur_exp),value(p));
21198 obj_tail(q)=link(obj_tail(q));
21199 mp_free_node(mp, p,value_node_size);
21200 mp_flush_cur_exp(mp, q);
21201 mp->cur_type=mp_picture_type;
21204 @* \[40] Statements and commands.
21205 The chief executive of \MP\ is the |do_statement| routine, which
21206 contains the master switch that causes all the various pieces of \MP\
21207 to do their things, in the right order.
21209 In a sense, this is the grand climax of the program: It applies all the
21210 tools that we have worked so hard to construct. In another sense, this is
21211 the messiest part of the program: It necessarily refers to other pieces
21212 of code all over the place, so that a person can't fully understand what is
21213 going on without paging back and forth to be reminded of conventions that
21214 are defined elsewhere. We are now at the hub of the web.
21216 The structure of |do_statement| itself is quite simple. The first token
21217 of the statement is fetched using |get_x_next|. If it can be the first
21218 token of an expression, we look for an equation, an assignment, or a
21219 title. Otherwise we use a \&{case} construction to branch at high speed to
21220 the appropriate routine for various and sundry other types of commands,
21221 each of which has an ``action procedure'' that does the necessary work.
21223 The program uses the fact that
21224 $$\hbox{|min_primary_command=max_statement_command=type_name|}$$
21225 to interpret a statement that starts with, e.g., `\&{string}',
21226 as a type declaration rather than a boolean expression.
21228 @c void mp_do_statement (MP mp) { /* governs \MP's activities */
21229 mp->cur_type=mp_vacuous; mp_get_x_next(mp);
21230 if ( mp->cur_cmd>max_primary_command ) {
21231 @<Worry about bad statement@>;
21232 } else if ( mp->cur_cmd>max_statement_command ) {
21233 @<Do an equation, assignment, title, or
21234 `$\langle\,$expression$\,\rangle\,$\&{endgroup}'@>;
21236 @<Do a statement that doesn't begin with an expression@>;
21238 if ( mp->cur_cmd<semicolon )
21239 @<Flush unparsable junk that was found after the statement@>;
21243 @ @<Declarations@>=
21244 @<Declare action procedures for use by |do_statement|@>;
21246 @ The only command codes |>max_primary_command| that can be present
21247 at the beginning of a statement are |semicolon| and higher; these
21248 occur when the statement is null.
21250 @<Worry about bad statement@>=
21252 if ( mp->cur_cmd<semicolon ) {
21253 print_err("A statement can't begin with `");
21254 @.A statement can't begin with x@>
21255 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod); mp_print_char(mp, '\'');
21256 help5("I was looking for the beginning of a new statement.")
21257 ("If you just proceed without changing anything, I'll ignore")
21258 ("everything up to the next `;'. Please insert a semicolon")
21259 ("now in front of anything that you don't want me to delete.")
21260 ("(See Chapter 27 of The METAFONTbook for an example.)");
21261 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21262 mp_back_error(mp); mp_get_x_next(mp);
21266 @ The help message printed here says that everything is flushed up to
21267 a semicolon, but actually the commands |end_group| and |stop| will
21268 also terminate a statement.
21270 @<Flush unparsable junk that was found after the statement@>=
21272 print_err("Extra tokens will be flushed");
21273 @.Extra tokens will be flushed@>
21274 help6("I've just read as much of that statement as I could fathom,")
21275 ("so a semicolon should have been next. It's very puzzling...")
21276 ("but I'll try to get myself back together, by ignoring")
21277 ("everything up to the next `;'. Please insert a semicolon")
21278 ("now in front of anything that you don't want me to delete.")
21279 ("(See Chapter 27 of The METAFONTbook for an example.)");
21280 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21281 mp_back_error(mp); mp->scanner_status=flushing;
21284 @<Decrease the string reference count...@>;
21285 } while (! end_of_statement); /* |cur_cmd=semicolon|, |end_group|, or |stop| */
21286 mp->scanner_status=normal;
21289 @ If |do_statement| ends with |cur_cmd=end_group|, we should have
21290 |cur_type=mp_vacuous| unless the statement was simply an expression;
21291 in the latter case, |cur_type| and |cur_exp| should represent that
21294 @<Do a statement that doesn't...@>=
21296 if ( mp->internal[mp_tracing_commands]>0 )
21298 switch (mp->cur_cmd ) {
21299 case type_name:mp_do_type_declaration(mp); break;
21301 if ( mp->cur_mod>var_def ) mp_make_op_def(mp);
21302 else if ( mp->cur_mod>end_def ) mp_scan_def(mp);
21304 @<Cases of |do_statement| that invoke particular commands@>;
21305 } /* there are no other cases */
21306 mp->cur_type=mp_vacuous;
21309 @ The most important statements begin with expressions.
21311 @<Do an equation, assignment, title, or...@>=
21313 mp->var_flag=assignment; mp_scan_expression(mp);
21314 if ( mp->cur_cmd<end_group ) {
21315 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21316 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21317 else if ( mp->cur_type==mp_string_type ) {@<Do a title@> ; }
21318 else if ( mp->cur_type!=mp_vacuous ){
21319 exp_err("Isolated expression");
21320 @.Isolated expression@>
21321 help3("I couldn't find an `=' or `:=' after the")
21322 ("expression that is shown above this error message,")
21323 ("so I guess I'll just ignore it and carry on.");
21324 mp_put_get_error(mp);
21326 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
21332 if ( mp->internal[mp_tracing_titles]>0 ) {
21333 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp); update_terminal;
21337 @ Equations and assignments are performed by the pair of mutually recursive
21339 routines |do_equation| and |do_assignment|. These routines are called when
21340 |cur_cmd=equals| and when |cur_cmd=assignment|, respectively; the left-hand
21341 side is in |cur_type| and |cur_exp|, while the right-hand side is yet
21342 to be scanned. After the routines are finished, |cur_type| and |cur_exp|
21343 will be equal to the right-hand side (which will normally be equal
21344 to the left-hand side).
21346 @<Declare action procedures for use by |do_statement|@>=
21347 @<Declare the procedure called |try_eq|@>;
21348 @<Declare the procedure called |make_eq|@>;
21349 void mp_do_equation (MP mp) ;
21352 void mp_do_equation (MP mp) {
21353 pointer lhs; /* capsule for the left-hand side */
21354 pointer p; /* temporary register */
21355 lhs=mp_stash_cur_exp(mp); mp_get_x_next(mp);
21356 mp->var_flag=assignment; mp_scan_expression(mp);
21357 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21358 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21359 if ( mp->internal[mp_tracing_commands]>two )
21360 @<Trace the current equation@>;
21361 if ( mp->cur_type==mp_unknown_path ) if ( type(lhs)==mp_pair_type ) {
21362 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, lhs); lhs=p;
21363 }; /* in this case |make_eq| will change the pair to a path */
21364 mp_make_eq(mp, lhs); /* equate |lhs| to |(cur_type,cur_exp)| */
21367 @ And |do_assignment| is similar to |do_expression|:
21370 void mp_do_assignment (MP mp);
21372 @ @<Declare action procedures for use by |do_statement|@>=
21373 void mp_do_assignment (MP mp) ;
21376 void mp_do_assignment (MP mp) {
21377 pointer lhs; /* token list for the left-hand side */
21378 pointer p; /* where the left-hand value is stored */
21379 pointer q; /* temporary capsule for the right-hand value */
21380 if ( mp->cur_type!=mp_token_list ) {
21381 exp_err("Improper `:=' will be changed to `='");
21383 help2("I didn't find a variable name at the left of the `:=',")
21384 ("so I'm going to pretend that you said `=' instead.");
21385 mp_error(mp); mp_do_equation(mp);
21387 lhs=mp->cur_exp; mp->cur_type=mp_vacuous;
21388 mp_get_x_next(mp); mp->var_flag=assignment; mp_scan_expression(mp);
21389 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21390 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21391 if ( mp->internal[mp_tracing_commands]>two )
21392 @<Trace the current assignment@>;
21393 if ( info(lhs)>hash_end ) {
21394 @<Assign the current expression to an internal variable@>;
21396 @<Assign the current expression to the variable |lhs|@>;
21398 mp_flush_node_list(mp, lhs);
21402 @ @<Trace the current equation@>=
21404 mp_begin_diagnostic(mp); mp_print_nl(mp, "{("); mp_print_exp(mp,lhs,0);
21405 mp_print(mp,")=("); mp_print_exp(mp,null,0);
21406 mp_print(mp,")}"); mp_end_diagnostic(mp, false);
21409 @ @<Trace the current assignment@>=
21411 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
21412 if ( info(lhs)>hash_end )
21413 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21415 mp_show_token_list(mp, lhs,null,1000,0);
21416 mp_print(mp, ":="); mp_print_exp(mp, null,0);
21417 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
21420 @ @<Assign the current expression to an internal variable@>=
21421 if ( mp->cur_type==mp_known ) {
21422 mp->internal[info(lhs)-(hash_end)]=mp->cur_exp;
21424 exp_err("Internal quantity `");
21425 @.Internal quantity...@>
21426 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21427 mp_print(mp, "' must receive a known value");
21428 help2("I can\'t set an internal quantity to anything but a known")
21429 ("numeric value, so I'll have to ignore this assignment.");
21430 mp_put_get_error(mp);
21433 @ @<Assign the current expression to the variable |lhs|@>=
21435 p=mp_find_variable(mp, lhs);
21437 q=mp_stash_cur_exp(mp); mp->cur_type=mp_und_type(mp, p);
21438 mp_recycle_value(mp, p);
21439 type(p)=mp->cur_type; value(p)=null; mp_make_exp_copy(mp, p);
21440 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q); mp_make_eq(mp, p);
21442 mp_obliterated(mp, lhs); mp_put_get_error(mp);
21447 @ And now we get to the nitty-gritty. The |make_eq| procedure is given
21448 a pointer to a capsule that is to be equated to the current expression.
21450 @<Declare the procedure called |make_eq|@>=
21451 void mp_make_eq (MP mp,pointer lhs) ;
21455 @c void mp_make_eq (MP mp,pointer lhs) {
21456 small_number t; /* type of the left-hand side */
21457 pointer p,q; /* pointers inside of big nodes */
21458 integer v=0; /* value of the left-hand side */
21461 if ( t<=mp_pair_type ) v=value(lhs);
21463 @<For each type |t|, make an equation and |goto done| unless |cur_type|
21464 is incompatible with~|t|@>;
21465 } /* all cases have been listed */
21466 @<Announce that the equation cannot be performed@>;
21468 check_arith; mp_recycle_value(mp, lhs);
21469 mp_free_node(mp, lhs,value_node_size);
21472 @ @<Announce that the equation cannot be performed@>=
21473 mp_disp_err(mp, lhs,"");
21474 exp_err("Equation cannot be performed (");
21475 @.Equation cannot be performed@>
21476 if ( type(lhs)<=mp_pair_type ) mp_print_type(mp, type(lhs));
21477 else mp_print(mp, "numeric");
21478 mp_print_char(mp, '=');
21479 if ( mp->cur_type<=mp_pair_type ) mp_print_type(mp, mp->cur_type);
21480 else mp_print(mp, "numeric");
21481 mp_print_char(mp, ')');
21482 help2("I'm sorry, but I don't know how to make such things equal.")
21483 ("(See the two expressions just above the error message.)");
21484 mp_put_get_error(mp)
21486 @ @<For each type |t|, make an equation and |goto done| unless...@>=
21487 case mp_boolean_type: case mp_string_type: case mp_pen_type:
21488 case mp_path_type: case mp_picture_type:
21489 if ( mp->cur_type==t+unknown_tag ) {
21490 mp_nonlinear_eq(mp, v,mp->cur_exp,false); goto DONE;
21491 } else if ( mp->cur_type==t ) {
21492 @<Report redundant or inconsistent equation and |goto done|@>;
21495 case unknown_types:
21496 if ( mp->cur_type==t-unknown_tag ) {
21497 mp_nonlinear_eq(mp, mp->cur_exp,lhs,true); goto DONE;
21498 } else if ( mp->cur_type==t ) {
21499 mp_ring_merge(mp, lhs,mp->cur_exp); goto DONE;
21500 } else if ( mp->cur_type==mp_pair_type ) {
21501 if ( t==mp_unknown_path ) {
21502 mp_pair_to_path(mp); goto RESTART;
21506 case mp_transform_type: case mp_color_type:
21507 case mp_cmykcolor_type: case mp_pair_type:
21508 if ( mp->cur_type==t ) {
21509 @<Do multiple equations and |goto done|@>;
21512 case mp_known: case mp_dependent:
21513 case mp_proto_dependent: case mp_independent:
21514 if ( mp->cur_type>=mp_known ) {
21515 mp_try_eq(mp, lhs,null); goto DONE;
21521 @ @<Report redundant or inconsistent equation and |goto done|@>=
21523 if ( mp->cur_type<=mp_string_type ) {
21524 if ( mp->cur_type==mp_string_type ) {
21525 if ( mp_str_vs_str(mp, v,mp->cur_exp)!=0 ) {
21528 } else if ( v!=mp->cur_exp ) {
21531 @<Exclaim about a redundant equation@>; goto DONE;
21533 print_err("Redundant or inconsistent equation");
21534 @.Redundant or inconsistent equation@>
21535 help2("An equation between already-known quantities can't help.")
21536 ("But don't worry; continue and I'll just ignore it.");
21537 mp_put_get_error(mp); goto DONE;
21539 print_err("Inconsistent equation");
21540 @.Inconsistent equation@>
21541 help2("The equation I just read contradicts what was said before.")
21542 ("But don't worry; continue and I'll just ignore it.");
21543 mp_put_get_error(mp); goto DONE;
21546 @ @<Do multiple equations and |goto done|@>=
21548 p=v+mp->big_node_size[t];
21549 q=value(mp->cur_exp)+mp->big_node_size[t];
21551 p=p-2; q=q-2; mp_try_eq(mp, p,q);
21556 @ The first argument to |try_eq| is the location of a value node
21557 in a capsule that will soon be recycled. The second argument is
21558 either a location within a pair or transform node pointed to by
21559 |cur_exp|, or it is |null| (which means that |cur_exp| itself
21560 serves as the second argument). The idea is to leave |cur_exp| unchanged,
21561 but to equate the two operands.
21563 @<Declare the procedure called |try_eq|@>=
21564 void mp_try_eq (MP mp,pointer l, pointer r) ;
21567 @c void mp_try_eq (MP mp,pointer l, pointer r) {
21568 pointer p; /* dependency list for right operand minus left operand */
21569 int t; /* the type of list |p| */
21570 pointer q; /* the constant term of |p| is here */
21571 pointer pp; /* dependency list for right operand */
21572 int tt; /* the type of list |pp| */
21573 boolean copied; /* have we copied a list that ought to be recycled? */
21574 @<Remove the left operand from its container, negate it, and
21575 put it into dependency list~|p| with constant term~|q|@>;
21576 @<Add the right operand to list |p|@>;
21577 if ( info(p)==null ) {
21578 @<Deal with redundant or inconsistent equation@>;
21580 mp_linear_eq(mp, p,t);
21581 if ( r==null ) if ( mp->cur_type!=mp_known ) {
21582 if ( type(mp->cur_exp)==mp_known ) {
21583 pp=mp->cur_exp; mp->cur_exp=value(mp->cur_exp); mp->cur_type=mp_known;
21584 mp_free_node(mp, pp,value_node_size);
21590 @ @<Remove the left operand from its container, negate it, and...@>=
21592 if ( t==mp_known ) {
21593 t=mp_dependent; p=mp_const_dependency(mp, -value(l)); q=p;
21594 } else if ( t==mp_independent ) {
21595 t=mp_dependent; p=mp_single_dependency(mp, l); negate(value(p));
21598 p=dep_list(l); q=p;
21601 if ( info(q)==null ) break;
21604 link(prev_dep(l))=link(q); prev_dep(link(q))=prev_dep(l);
21608 @ @<Deal with redundant or inconsistent equation@>=
21610 if ( abs(value(p))>64 ) { /* off by .001 or more */
21611 print_err("Inconsistent equation");
21612 @.Inconsistent equation@>
21613 mp_print(mp, " (off by "); mp_print_scaled(mp, value(p));
21614 mp_print_char(mp, ')');
21615 help2("The equation I just read contradicts what was said before.")
21616 ("But don't worry; continue and I'll just ignore it.");
21617 mp_put_get_error(mp);
21618 } else if ( r==null ) {
21619 @<Exclaim about a redundant equation@>;
21621 mp_free_node(mp, p,dep_node_size);
21624 @ @<Add the right operand to list |p|@>=
21626 if ( mp->cur_type==mp_known ) {
21627 value(q)=value(q)+mp->cur_exp; goto DONE1;
21630 if ( tt==mp_independent ) pp=mp_single_dependency(mp, mp->cur_exp);
21631 else pp=dep_list(mp->cur_exp);
21634 if ( type(r)==mp_known ) {
21635 value(q)=value(q)+value(r); goto DONE1;
21638 if ( tt==mp_independent ) pp=mp_single_dependency(mp, r);
21639 else pp=dep_list(r);
21642 if ( tt!=mp_independent ) copied=false;
21643 else { copied=true; tt=mp_dependent; };
21644 @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>;
21645 if ( copied ) mp_flush_node_list(mp, pp);
21648 @ @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>=
21649 mp->watch_coefs=false;
21651 p=mp_p_plus_q(mp, p,pp,t);
21652 } else if ( t==mp_proto_dependent ) {
21653 p=mp_p_plus_fq(mp, p,unity,pp,mp_proto_dependent,mp_dependent);
21656 while ( info(q)!=null ) {
21657 value(q)=mp_round_fraction(mp, value(q)); q=link(q);
21659 t=mp_proto_dependent; p=mp_p_plus_q(mp, p,pp,t);
21661 mp->watch_coefs=true;
21663 @ Our next goal is to process type declarations. For this purpose it's
21664 convenient to have a procedure that scans a $\langle\,$declared
21665 variable$\,\rangle$ and returns the corresponding token list. After the
21666 following procedure has acted, the token after the declared variable
21667 will have been scanned, so it will appear in |cur_cmd|, |cur_mod|,
21670 @<Declare the function called |scan_declared_variable|@>=
21671 pointer mp_scan_declared_variable (MP mp) {
21672 pointer x; /* hash address of the variable's root */
21673 pointer h,t; /* head and tail of the token list to be returned */
21674 pointer l; /* hash address of left bracket */
21675 mp_get_symbol(mp); x=mp->cur_sym;
21676 if ( mp->cur_cmd!=tag_token ) mp_clear_symbol(mp, x,false);
21677 h=mp_get_avail(mp); info(h)=x; t=h;
21680 if ( mp->cur_sym==0 ) break;
21681 if ( mp->cur_cmd!=tag_token ) if ( mp->cur_cmd!=internal_quantity) {
21682 if ( mp->cur_cmd==left_bracket ) {
21683 @<Descend past a collective subscript@>;
21688 link(t)=mp_get_avail(mp); t=link(t); info(t)=mp->cur_sym;
21690 if ( eq_type(x)!=tag_token ) mp_clear_symbol(mp, x,false);
21691 if ( equiv(x)==null ) mp_new_root(mp, x);
21695 @ If the subscript isn't collective, we don't accept it as part of the
21698 @<Descend past a collective subscript@>=
21700 l=mp->cur_sym; mp_get_x_next(mp);
21701 if ( mp->cur_cmd!=right_bracket ) {
21702 mp_back_input(mp); mp->cur_sym=l; mp->cur_cmd=left_bracket; break;
21704 mp->cur_sym=collective_subscript;
21708 @ Type declarations are introduced by the following primitive operations.
21711 mp_primitive(mp, "numeric",type_name,mp_numeric_type);
21712 @:numeric_}{\&{numeric} primitive@>
21713 mp_primitive(mp, "string",type_name,mp_string_type);
21714 @:string_}{\&{string} primitive@>
21715 mp_primitive(mp, "boolean",type_name,mp_boolean_type);
21716 @:boolean_}{\&{boolean} primitive@>
21717 mp_primitive(mp, "path",type_name,mp_path_type);
21718 @:path_}{\&{path} primitive@>
21719 mp_primitive(mp, "pen",type_name,mp_pen_type);
21720 @:pen_}{\&{pen} primitive@>
21721 mp_primitive(mp, "picture",type_name,mp_picture_type);
21722 @:picture_}{\&{picture} primitive@>
21723 mp_primitive(mp, "transform",type_name,mp_transform_type);
21724 @:transform_}{\&{transform} primitive@>
21725 mp_primitive(mp, "color",type_name,mp_color_type);
21726 @:color_}{\&{color} primitive@>
21727 mp_primitive(mp, "rgbcolor",type_name,mp_color_type);
21728 @:color_}{\&{rgbcolor} primitive@>
21729 mp_primitive(mp, "cmykcolor",type_name,mp_cmykcolor_type);
21730 @:color_}{\&{cmykcolor} primitive@>
21731 mp_primitive(mp, "pair",type_name,mp_pair_type);
21732 @:pair_}{\&{pair} primitive@>
21734 @ @<Cases of |print_cmd...@>=
21735 case type_name: mp_print_type(mp, m); break;
21737 @ Now we are ready to handle type declarations, assuming that a
21738 |type_name| has just been scanned.
21740 @<Declare action procedures for use by |do_statement|@>=
21741 void mp_do_type_declaration (MP mp) ;
21744 void mp_do_type_declaration (MP mp) {
21745 small_number t; /* the type being declared */
21746 pointer p; /* token list for a declared variable */
21747 pointer q; /* value node for the variable */
21748 if ( mp->cur_mod>=mp_transform_type )
21751 t=mp->cur_mod+unknown_tag;
21753 p=mp_scan_declared_variable(mp);
21754 mp_flush_variable(mp, equiv(info(p)),link(p),false);
21755 q=mp_find_variable(mp, p);
21757 type(q)=t; value(q)=null;
21759 print_err("Declared variable conflicts with previous vardef");
21760 @.Declared variable conflicts...@>
21761 help2("You can't use, e.g., `numeric foo[]' after `vardef foo'.")
21762 ("Proceed, and I'll ignore the illegal redeclaration.");
21763 mp_put_get_error(mp);
21765 mp_flush_list(mp, p);
21766 if ( mp->cur_cmd<comma ) {
21767 @<Flush spurious symbols after the declared variable@>;
21769 } while (! end_of_statement);
21772 @ @<Flush spurious symbols after the declared variable@>=
21774 print_err("Illegal suffix of declared variable will be flushed");
21775 @.Illegal suffix...flushed@>
21776 help5("Variables in declarations must consist entirely of")
21777 ("names and collective subscripts, e.g., `x[]a'.")
21778 ("Are you trying to use a reserved word in a variable name?")
21779 ("I'm going to discard the junk I found here,")
21780 ("up to the next comma or the end of the declaration.");
21781 if ( mp->cur_cmd==numeric_token )
21782 mp->help_line[2]="Explicit subscripts like `x15a' aren't permitted.";
21783 mp_put_get_error(mp); mp->scanner_status=flushing;
21786 @<Decrease the string reference count...@>;
21787 } while (mp->cur_cmd<comma); /* either |end_of_statement| or |cur_cmd=comma| */
21788 mp->scanner_status=normal;
21791 @ \MP's |main_control| procedure just calls |do_statement| repeatedly
21792 until coming to the end of the user's program.
21793 Each execution of |do_statement| concludes with
21794 |cur_cmd=semicolon|, |end_group|, or |stop|.
21796 @c void mp_main_control (MP mp) {
21798 mp_do_statement(mp);
21799 if ( mp->cur_cmd==end_group ) {
21800 print_err("Extra `endgroup'");
21801 @.Extra `endgroup'@>
21802 help2("I'm not currently working on a `begingroup',")
21803 ("so I had better not try to end anything.");
21804 mp_flush_error(mp, 0);
21806 } while (mp->cur_cmd!=stop);
21808 int mp_run (MP mp) {
21809 @<Install and test the non-local jump buffer@>;
21810 mp_main_control(mp); /* come to life */
21811 mp_final_cleanup(mp); /* prepare for death */
21812 mp_close_files_and_terminate(mp);
21813 return mp->history;
21815 char * mp_mplib_version (MP mp) {
21817 return mplib_version;
21819 char * mp_metapost_version (MP mp) {
21821 return metapost_version;
21824 @ @<Exported function headers@>=
21825 int mp_run (MP mp);
21826 char * mp_mplib_version (MP mp);
21827 char * mp_metapost_version (MP mp);
21830 mp_primitive(mp, "end",stop,0);
21831 @:end_}{\&{end} primitive@>
21832 mp_primitive(mp, "dump",stop,1);
21833 @:dump_}{\&{dump} primitive@>
21835 @ @<Cases of |print_cmd...@>=
21837 if ( m==0 ) mp_print(mp, "end");
21838 else mp_print(mp, "dump");
21842 Let's turn now to statements that are classified as ``commands'' because
21843 of their imperative nature. We'll begin with simple ones, so that it
21844 will be clear how to hook command processing into the |do_statement| routine;
21845 then we'll tackle the tougher commands.
21847 Here's one of the simplest:
21849 @<Cases of |do_statement|...@>=
21850 case random_seed: mp_do_random_seed(mp); break;
21852 @ @<Declare action procedures for use by |do_statement|@>=
21853 void mp_do_random_seed (MP mp) ;
21855 @ @c void mp_do_random_seed (MP mp) {
21857 if ( mp->cur_cmd!=assignment ) {
21858 mp_missing_err(mp, ":=");
21860 help1("Always say `randomseed:=<numeric expression>'.");
21863 mp_get_x_next(mp); mp_scan_expression(mp);
21864 if ( mp->cur_type!=mp_known ) {
21865 exp_err("Unknown value will be ignored");
21866 @.Unknown value...ignored@>
21867 help2("Your expression was too random for me to handle,")
21868 ("so I won't change the random seed just now.");
21869 mp_put_get_flush_error(mp, 0);
21871 @<Initialize the random seed to |cur_exp|@>;
21875 @ @<Initialize the random seed to |cur_exp|@>=
21877 mp_init_randoms(mp, mp->cur_exp);
21878 if ( mp->selector>=log_only && mp->selector<write_file) {
21879 mp->old_setting=mp->selector; mp->selector=log_only;
21880 mp_print_nl(mp, "{randomseed:=");
21881 mp_print_scaled(mp, mp->cur_exp);
21882 mp_print_char(mp, '}');
21883 mp_print_nl(mp, ""); mp->selector=mp->old_setting;
21887 @ And here's another simple one (somewhat different in flavor):
21889 @<Cases of |do_statement|...@>=
21891 mp_print_ln(mp); mp->interaction=mp->cur_mod;
21892 @<Initialize the print |selector| based on |interaction|@>;
21893 if ( mp->log_opened ) mp->selector=mp->selector+2;
21898 mp_primitive(mp, "batchmode",mode_command,mp_batch_mode);
21899 @:mp_batch_mode_}{\&{batchmode} primitive@>
21900 mp_primitive(mp, "nonstopmode",mode_command,mp_nonstop_mode);
21901 @:mp_nonstop_mode_}{\&{nonstopmode} primitive@>
21902 mp_primitive(mp, "scrollmode",mode_command,mp_scroll_mode);
21903 @:mp_scroll_mode_}{\&{scrollmode} primitive@>
21904 mp_primitive(mp, "errorstopmode",mode_command,mp_error_stop_mode);
21905 @:mp_error_stop_mode_}{\&{errorstopmode} primitive@>
21907 @ @<Cases of |print_cmd_mod|...@>=
21910 case mp_batch_mode: mp_print(mp, "batchmode"); break;
21911 case mp_nonstop_mode: mp_print(mp, "nonstopmode"); break;
21912 case mp_scroll_mode: mp_print(mp, "scrollmode"); break;
21913 default: mp_print(mp, "errorstopmode"); break;
21917 @ The `\&{inner}' and `\&{outer}' commands are only slightly harder.
21919 @<Cases of |do_statement|...@>=
21920 case protection_command: mp_do_protection(mp); break;
21923 mp_primitive(mp, "inner",protection_command,0);
21924 @:inner_}{\&{inner} primitive@>
21925 mp_primitive(mp, "outer",protection_command,1);
21926 @:outer_}{\&{outer} primitive@>
21928 @ @<Cases of |print_cmd...@>=
21929 case protection_command:
21930 if ( m==0 ) mp_print(mp, "inner");
21931 else mp_print(mp, "outer");
21934 @ @<Declare action procedures for use by |do_statement|@>=
21935 void mp_do_protection (MP mp) ;
21937 @ @c void mp_do_protection (MP mp) {
21938 int m; /* 0 to unprotect, 1 to protect */
21939 halfword t; /* the |eq_type| before we change it */
21942 mp_get_symbol(mp); t=eq_type(mp->cur_sym);
21944 if ( t>=outer_tag )
21945 eq_type(mp->cur_sym)=t-outer_tag;
21946 } else if ( t<outer_tag ) {
21947 eq_type(mp->cur_sym)=t+outer_tag;
21950 } while (mp->cur_cmd==comma);
21953 @ \MP\ never defines the tokens `\.(' and `\.)' to be primitives, but
21954 plain \MP\ begins with the declaration `\&{delimiters} \.{()}'. Such a
21955 declaration assigns the command code |left_delimiter| to `\.{(}' and
21956 |right_delimiter| to `\.{)}'; the |equiv| of each delimiter is the
21957 hash address of its mate.
21959 @<Cases of |do_statement|...@>=
21960 case delimiters: mp_def_delims(mp); break;
21962 @ @<Declare action procedures for use by |do_statement|@>=
21963 void mp_def_delims (MP mp) ;
21965 @ @c void mp_def_delims (MP mp) {
21966 pointer l_delim,r_delim; /* the new delimiter pair */
21967 mp_get_clear_symbol(mp); l_delim=mp->cur_sym;
21968 mp_get_clear_symbol(mp); r_delim=mp->cur_sym;
21969 eq_type(l_delim)=left_delimiter; equiv(l_delim)=r_delim;
21970 eq_type(r_delim)=right_delimiter; equiv(r_delim)=l_delim;
21974 @ Here is a procedure that is called when \MP\ has reached a point
21975 where some right delimiter is mandatory.
21977 @<Declare the procedure called |check_delimiter|@>=
21978 void mp_check_delimiter (MP mp,pointer l_delim, pointer r_delim) {
21979 if ( mp->cur_cmd==right_delimiter )
21980 if ( mp->cur_mod==l_delim )
21982 if ( mp->cur_sym!=r_delim ) {
21983 mp_missing_err(mp, str(text(r_delim)));
21985 help2("I found no right delimiter to match a left one. So I've")
21986 ("put one in, behind the scenes; this may fix the problem.");
21989 print_err("The token `"); mp_print_text(r_delim);
21990 @.The token...delimiter@>
21991 mp_print(mp, "' is no longer a right delimiter");
21992 help3("Strange: This token has lost its former meaning!")
21993 ("I'll read it as a right delimiter this time;")
21994 ("but watch out, I'll probably miss it later.");
21999 @ The next four commands save or change the values associated with tokens.
22001 @<Cases of |do_statement|...@>=
22004 mp_get_symbol(mp); mp_save_variable(mp, mp->cur_sym); mp_get_x_next(mp);
22005 } while (mp->cur_cmd==comma);
22007 case interim_command: mp_do_interim(mp); break;
22008 case let_command: mp_do_let(mp); break;
22009 case new_internal: mp_do_new_internal(mp); break;
22011 @ @<Declare action procedures for use by |do_statement|@>=
22012 void mp_do_statement (MP mp);
22013 void mp_do_interim (MP mp);
22015 @ @c void mp_do_interim (MP mp) {
22017 if ( mp->cur_cmd!=internal_quantity ) {
22018 print_err("The token `");
22019 @.The token...quantity@>
22020 if ( mp->cur_sym==0 ) mp_print(mp, "(%CAPSULE)");
22021 else mp_print_text(mp->cur_sym);
22022 mp_print(mp, "' isn't an internal quantity");
22023 help1("Something like `tracingonline' should follow `interim'.");
22026 mp_save_internal(mp, mp->cur_mod); mp_back_input(mp);
22028 mp_do_statement(mp);
22031 @ The following procedure is careful not to undefine the left-hand symbol
22032 too soon, lest commands like `{\tt let x=x}' have a surprising effect.
22034 @<Declare action procedures for use by |do_statement|@>=
22035 void mp_do_let (MP mp) ;
22037 @ @c void mp_do_let (MP mp) {
22038 pointer l; /* hash location of the left-hand symbol */
22039 mp_get_symbol(mp); l=mp->cur_sym; mp_get_x_next(mp);
22040 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
22041 mp_missing_err(mp, "=");
22043 help3("You should have said `let symbol = something'.")
22044 ("But don't worry; I'll pretend that an equals sign")
22045 ("was present. The next token I read will be `something'.");
22049 switch (mp->cur_cmd) {
22050 case defined_macro: case secondary_primary_macro:
22051 case tertiary_secondary_macro: case expression_tertiary_macro:
22052 add_mac_ref(mp->cur_mod);
22057 mp_clear_symbol(mp, l,false); eq_type(l)=mp->cur_cmd;
22058 if ( mp->cur_cmd==tag_token ) equiv(l)=null;
22059 else equiv(l)=mp->cur_mod;
22063 @ @<Declarations@>=
22064 void mp_grow_internals (MP mp, int l);
22065 void mp_do_new_internal (MP mp) ;
22068 void mp_grow_internals (MP mp, int l) {
22072 if ( hash_end+l>max_halfword ) {
22073 mp_confusion(mp, "out of memory space"); /* can't be reached */
22075 int_name = xmalloc ((l+1),sizeof(char *));
22076 internal = xmalloc ((l+1),sizeof(scaled));
22077 for (k=0;k<=l; k++ ) {
22078 if (k<=mp->max_internal) {
22079 internal[k]=mp->internal[k];
22080 int_name[k]=mp->int_name[k];
22086 xfree(mp->internal); xfree(mp->int_name);
22087 mp->int_name = int_name;
22088 mp->internal = internal;
22089 mp->max_internal = l;
22093 void mp_do_new_internal (MP mp) {
22095 if ( mp->int_ptr==mp->max_internal ) {
22096 mp_grow_internals(mp, (mp->max_internal + (mp->max_internal>>2)));
22098 mp_get_clear_symbol(mp); incr(mp->int_ptr);
22099 eq_type(mp->cur_sym)=internal_quantity;
22100 equiv(mp->cur_sym)=mp->int_ptr;
22101 if(mp->int_name[mp->int_ptr]!=NULL)
22102 xfree(mp->int_name[mp->int_ptr]);
22103 mp->int_name[mp->int_ptr]=str(text(mp->cur_sym));
22104 mp->internal[mp->int_ptr]=0;
22106 } while (mp->cur_cmd==comma);
22109 @ @<Dealloc variables@>=
22110 for (k=0;k<=mp->max_internal;k++) {
22111 xfree(mp->int_name[k]);
22113 xfree(mp->internal);
22114 xfree(mp->int_name);
22117 @ The various `\&{show}' commands are distinguished by modifier fields
22120 @d show_token_code 0 /* show the meaning of a single token */
22121 @d show_stats_code 1 /* show current memory and string usage */
22122 @d show_code 2 /* show a list of expressions */
22123 @d show_var_code 3 /* show a variable and its descendents */
22124 @d show_dependencies_code 4 /* show dependent variables in terms of independents */
22127 mp_primitive(mp, "showtoken",show_command,show_token_code);
22128 @:show_token_}{\&{showtoken} primitive@>
22129 mp_primitive(mp, "showstats",show_command,show_stats_code);
22130 @:show_stats_}{\&{showstats} primitive@>
22131 mp_primitive(mp, "show",show_command,show_code);
22132 @:show_}{\&{show} primitive@>
22133 mp_primitive(mp, "showvariable",show_command,show_var_code);
22134 @:show_var_}{\&{showvariable} primitive@>
22135 mp_primitive(mp, "showdependencies",show_command,show_dependencies_code);
22136 @:show_dependencies_}{\&{showdependencies} primitive@>
22138 @ @<Cases of |print_cmd...@>=
22141 case show_token_code:mp_print(mp, "showtoken"); break;
22142 case show_stats_code:mp_print(mp, "showstats"); break;
22143 case show_code:mp_print(mp, "show"); break;
22144 case show_var_code:mp_print(mp, "showvariable"); break;
22145 default: mp_print(mp, "showdependencies"); break;
22149 @ @<Cases of |do_statement|...@>=
22150 case show_command:mp_do_show_whatever(mp); break;
22152 @ The value of |cur_mod| controls the |verbosity| in the |print_exp| routine:
22153 if it's |show_code|, complicated structures are abbreviated, otherwise
22156 @<Declare action procedures for use by |do_statement|@>=
22157 void mp_do_show (MP mp) ;
22159 @ @c void mp_do_show (MP mp) {
22161 mp_get_x_next(mp); mp_scan_expression(mp);
22162 mp_print_nl(mp, ">> ");
22164 mp_print_exp(mp, null,2); mp_flush_cur_exp(mp, 0);
22165 } while (mp->cur_cmd==comma);
22168 @ @<Declare action procedures for use by |do_statement|@>=
22169 void mp_disp_token (MP mp) ;
22171 @ @c void mp_disp_token (MP mp) {
22172 mp_print_nl(mp, "> ");
22174 if ( mp->cur_sym==0 ) {
22175 @<Show a numeric or string or capsule token@>;
22177 mp_print_text(mp->cur_sym); mp_print_char(mp, '=');
22178 if ( eq_type(mp->cur_sym)>=outer_tag ) mp_print(mp, "(outer) ");
22179 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
22180 if ( mp->cur_cmd==defined_macro ) {
22181 mp_print_ln(mp); mp_show_macro(mp, mp->cur_mod,null,100000);
22182 } /* this avoids recursion between |show_macro| and |print_cmd_mod| */
22187 @ @<Show a numeric or string or capsule token@>=
22189 if ( mp->cur_cmd==numeric_token ) {
22190 mp_print_scaled(mp, mp->cur_mod);
22191 } else if ( mp->cur_cmd==capsule_token ) {
22192 mp->g_pointer=mp->cur_mod; mp_print_capsule(mp);
22194 mp_print_char(mp, '"');
22195 mp_print_str(mp, mp->cur_mod); mp_print_char(mp, '"');
22196 delete_str_ref(mp->cur_mod);
22200 @ The following cases of |print_cmd_mod| might arise in connection
22201 with |disp_token|, although they don't correspond to any
22204 @<Cases of |print_cmd_...@>=
22205 case left_delimiter:
22206 case right_delimiter:
22207 if ( c==left_delimiter ) mp_print(mp, "left");
22208 else mp_print(mp, "right");
22209 mp_print(mp, " delimiter that matches ");
22213 if ( m==null ) mp_print(mp, "tag");
22214 else mp_print(mp, "variable");
22216 case defined_macro:
22217 mp_print(mp, "macro:");
22219 case secondary_primary_macro:
22220 case tertiary_secondary_macro:
22221 case expression_tertiary_macro:
22222 mp_print_cmd_mod(mp, macro_def,c);
22223 mp_print(mp, "'d macro:");
22224 mp_print_ln(mp); mp_show_token_list(mp, link(link(m)),null,1000,0);
22227 mp_print(mp, "[repeat the loop]");
22229 case internal_quantity:
22230 mp_print(mp, mp->int_name[m]);
22233 @ @<Declare action procedures for use by |do_statement|@>=
22234 void mp_do_show_token (MP mp) ;
22236 @ @c void mp_do_show_token (MP mp) {
22238 get_t_next; mp_disp_token(mp);
22240 } while (mp->cur_cmd==comma);
22243 @ @<Declare action procedures for use by |do_statement|@>=
22244 void mp_do_show_stats (MP mp) ;
22246 @ @c void mp_do_show_stats (MP mp) {
22247 mp_print_nl(mp, "Memory usage ");
22248 @.Memory usage...@>
22249 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used);
22251 mp_print(mp, "unknown");
22252 mp_print(mp, " ("); mp_print_int(mp, mp->hi_mem_min-mp->lo_mem_max-1);
22253 mp_print(mp, " still untouched)"); mp_print_ln(mp);
22254 mp_print_nl(mp, "String usage ");
22255 mp_print_int(mp, mp->strs_in_use-mp->init_str_use);
22256 mp_print_char(mp, '&'); mp_print_int(mp, mp->pool_in_use-mp->init_pool_ptr);
22258 mp_print(mp, "unknown");
22259 mp_print(mp, " (");
22260 mp_print_int(mp, mp->max_strings-1-mp->strs_used_up); mp_print_char(mp, '&');
22261 mp_print_int(mp, mp->pool_size-mp->pool_ptr);
22262 mp_print(mp, " now untouched)"); mp_print_ln(mp);
22266 @ Here's a recursive procedure that gives an abbreviated account
22267 of a variable, for use by |do_show_var|.
22269 @<Declare action procedures for use by |do_statement|@>=
22270 void mp_disp_var (MP mp,pointer p) ;
22272 @ @c void mp_disp_var (MP mp,pointer p) {
22273 pointer q; /* traverses attributes and subscripts */
22274 int n; /* amount of macro text to show */
22275 if ( type(p)==mp_structured ) {
22276 @<Descend the structure@>;
22277 } else if ( type(p)>=mp_unsuffixed_macro ) {
22278 @<Display a variable macro@>;
22279 } else if ( type(p)!=undefined ){
22280 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22281 mp_print_char(mp, '=');
22282 mp_print_exp(mp, p,0);
22286 @ @<Descend the structure@>=
22289 do { mp_disp_var(mp, q); q=link(q); } while (q!=end_attr);
22291 while ( name_type(q)==mp_subscr ) {
22292 mp_disp_var(mp, q); q=link(q);
22296 @ @<Display a variable macro@>=
22298 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22299 if ( type(p)>mp_unsuffixed_macro )
22300 mp_print(mp, "@@#"); /* |suffixed_macro| */
22301 mp_print(mp, "=macro:");
22302 if ( (int)mp->file_offset>=mp->max_print_line-20 ) n=5;
22303 else n=mp->max_print_line-mp->file_offset-15;
22304 mp_show_macro(mp, value(p),null,n);
22307 @ @<Declare action procedures for use by |do_statement|@>=
22308 void mp_do_show_var (MP mp) ;
22310 @ @c void mp_do_show_var (MP mp) {
22313 if ( mp->cur_sym>0 ) if ( mp->cur_sym<=hash_end )
22314 if ( mp->cur_cmd==tag_token ) if ( mp->cur_mod!=null ) {
22315 mp_disp_var(mp, mp->cur_mod); goto DONE;
22320 } while (mp->cur_cmd==comma);
22323 @ @<Declare action procedures for use by |do_statement|@>=
22324 void mp_do_show_dependencies (MP mp) ;
22326 @ @c void mp_do_show_dependencies (MP mp) {
22327 pointer p; /* link that runs through all dependencies */
22329 while ( p!=dep_head ) {
22330 if ( mp_interesting(mp, p) ) {
22331 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22332 if ( type(p)==mp_dependent ) mp_print_char(mp, '=');
22333 else mp_print(mp, " = "); /* extra spaces imply proto-dependency */
22334 mp_print_dependency(mp, dep_list(p),type(p));
22337 while ( info(p)!=null ) p=link(p);
22343 @ Finally we are ready for the procedure that governs all of the
22346 @<Declare action procedures for use by |do_statement|@>=
22347 void mp_do_show_whatever (MP mp) ;
22349 @ @c void mp_do_show_whatever (MP mp) {
22350 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
22351 switch (mp->cur_mod) {
22352 case show_token_code:mp_do_show_token(mp); break;
22353 case show_stats_code:mp_do_show_stats(mp); break;
22354 case show_code:mp_do_show(mp); break;
22355 case show_var_code:mp_do_show_var(mp); break;
22356 case show_dependencies_code:mp_do_show_dependencies(mp); break;
22357 } /* there are no other cases */
22358 if ( mp->internal[mp_showstopping]>0 ){
22361 if ( mp->interaction<mp_error_stop_mode ) {
22362 help0; decr(mp->error_count);
22364 help1("This isn't an error message; I'm just showing something.");
22366 if ( mp->cur_cmd==semicolon ) mp_error(mp);
22367 else mp_put_get_error(mp);
22371 @ The `\&{addto}' command needs the following additional primitives:
22373 @d double_path_code 0 /* command modifier for `\&{doublepath}' */
22374 @d contour_code 1 /* command modifier for `\&{contour}' */
22375 @d also_code 2 /* command modifier for `\&{also}' */
22377 @ Pre and postscripts need two new identifiers:
22379 @d with_pre_script 11
22380 @d with_post_script 13
22383 mp_primitive(mp, "doublepath",thing_to_add,double_path_code);
22384 @:double_path_}{\&{doublepath} primitive@>
22385 mp_primitive(mp, "contour",thing_to_add,contour_code);
22386 @:contour_}{\&{contour} primitive@>
22387 mp_primitive(mp, "also",thing_to_add,also_code);
22388 @:also_}{\&{also} primitive@>
22389 mp_primitive(mp, "withpen",with_option,mp_pen_type);
22390 @:with_pen_}{\&{withpen} primitive@>
22391 mp_primitive(mp, "dashed",with_option,mp_picture_type);
22392 @:dashed_}{\&{dashed} primitive@>
22393 mp_primitive(mp, "withprescript",with_option,with_pre_script);
22394 @:with_pre_script_}{\&{withprescript} primitive@>
22395 mp_primitive(mp, "withpostscript",with_option,with_post_script);
22396 @:with_post_script_}{\&{withpostscript} primitive@>
22397 mp_primitive(mp, "withoutcolor",with_option,mp_no_model);
22398 @:with_color_}{\&{withoutcolor} primitive@>
22399 mp_primitive(mp, "withgreyscale",with_option,mp_grey_model);
22400 @:with_color_}{\&{withgreyscale} primitive@>
22401 mp_primitive(mp, "withcolor",with_option,mp_uninitialized_model);
22402 @:with_color_}{\&{withcolor} primitive@>
22403 /* \&{withrgbcolor} is an alias for \&{withcolor} */
22404 mp_primitive(mp, "withrgbcolor",with_option,mp_rgb_model);
22405 @:with_color_}{\&{withrgbcolor} primitive@>
22406 mp_primitive(mp, "withcmykcolor",with_option,mp_cmyk_model);
22407 @:with_color_}{\&{withcmykcolor} primitive@>
22409 @ @<Cases of |print_cmd...@>=
22411 if ( m==contour_code ) mp_print(mp, "contour");
22412 else if ( m==double_path_code ) mp_print(mp, "doublepath");
22413 else mp_print(mp, "also");
22416 if ( m==mp_pen_type ) mp_print(mp, "withpen");
22417 else if ( m==with_pre_script ) mp_print(mp, "withprescript");
22418 else if ( m==with_post_script ) mp_print(mp, "withpostscript");
22419 else if ( m==mp_no_model ) mp_print(mp, "withoutcolor");
22420 else if ( m==mp_rgb_model ) mp_print(mp, "withrgbcolor");
22421 else if ( m==mp_uninitialized_model ) mp_print(mp, "withcolor");
22422 else if ( m==mp_cmyk_model ) mp_print(mp, "withcmykcolor");
22423 else if ( m==mp_grey_model ) mp_print(mp, "withgreyscale");
22424 else mp_print(mp, "dashed");
22427 @ The |scan_with_list| procedure parses a $\langle$with list$\rangle$ and
22428 updates the list of graphical objects starting at |p|. Each $\langle$with
22429 clause$\rangle$ updates all graphical objects whose |type| is compatible.
22430 Other objects are ignored.
22432 @<Declare action procedures for use by |do_statement|@>=
22433 void mp_scan_with_list (MP mp,pointer p) ;
22435 @ @c void mp_scan_with_list (MP mp,pointer p) {
22436 small_number t; /* |cur_mod| of the |with_option| (should match |cur_type|) */
22437 pointer q; /* for list manipulation */
22438 int old_setting; /* saved |selector| setting */
22439 pointer k; /* for finding the near-last item in a list */
22440 str_number s; /* for string cleanup after combining */
22441 pointer cp,pp,dp,ap,bp;
22442 /* objects being updated; |void| initially; |null| to suppress update */
22443 cp=mp_void; pp=mp_void; dp=mp_void; ap=mp_void; bp=mp_void;
22445 while ( mp->cur_cmd==with_option ){
22448 if ( t!=mp_no_model ) mp_scan_expression(mp);
22449 if (((t==with_pre_script)&&(mp->cur_type!=mp_string_type))||
22450 ((t==with_post_script)&&(mp->cur_type!=mp_string_type))||
22451 ((t==mp_uninitialized_model)&&
22452 ((mp->cur_type!=mp_cmykcolor_type)&&(mp->cur_type!=mp_color_type)
22453 &&(mp->cur_type!=mp_known)&&(mp->cur_type!=mp_boolean_type)))||
22454 ((t==mp_cmyk_model)&&(mp->cur_type!=mp_cmykcolor_type))||
22455 ((t==mp_rgb_model)&&(mp->cur_type!=mp_color_type))||
22456 ((t==mp_grey_model)&&(mp->cur_type!=mp_known))||
22457 ((t==mp_pen_type)&&(mp->cur_type!=t))||
22458 ((t==mp_picture_type)&&(mp->cur_type!=t)) ) {
22459 @<Complain about improper type@>;
22460 } else if ( t==mp_uninitialized_model ) {
22461 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22463 @<Transfer a color from the current expression to object~|cp|@>;
22464 mp_flush_cur_exp(mp, 0);
22465 } else if ( t==mp_rgb_model ) {
22466 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22468 @<Transfer a rgbcolor from the current expression to object~|cp|@>;
22469 mp_flush_cur_exp(mp, 0);
22470 } else if ( t==mp_cmyk_model ) {
22471 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22473 @<Transfer a cmykcolor from the current expression to object~|cp|@>;
22474 mp_flush_cur_exp(mp, 0);
22475 } else if ( t==mp_grey_model ) {
22476 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22478 @<Transfer a greyscale from the current expression to object~|cp|@>;
22479 mp_flush_cur_exp(mp, 0);
22480 } else if ( t==mp_no_model ) {
22481 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22483 @<Transfer a noncolor from the current expression to object~|cp|@>;
22484 } else if ( t==mp_pen_type ) {
22485 if ( pp==mp_void ) @<Make |pp| an object in list~|p| that needs a pen@>;
22487 if ( pen_p(pp)!=null ) mp_toss_knot_list(mp, pen_p(pp));
22488 pen_p(pp)=mp->cur_exp; mp->cur_type=mp_vacuous;
22490 } else if ( t==with_pre_script ) {
22493 while ( (ap!=null)&&(! has_color(ap)) )
22496 if ( pre_script(ap)!=null ) { /* build a new,combined string */
22498 old_setting=mp->selector;
22499 mp->selector=new_string;
22500 str_room(length(pre_script(ap))+length(mp->cur_exp)+2);
22501 mp_print_str(mp, mp->cur_exp);
22502 append_char(13); /* a forced \ps\ newline */
22503 mp_print_str(mp, pre_script(ap));
22504 pre_script(ap)=mp_make_string(mp);
22506 mp->selector=old_setting;
22508 pre_script(ap)=mp->cur_exp;
22510 mp->cur_type=mp_vacuous;
22512 } else if ( t==with_post_script ) {
22516 while ( link(k)!=null ) {
22518 if ( has_color(k) ) bp=k;
22521 if ( post_script(bp)!=null ) {
22523 old_setting=mp->selector;
22524 mp->selector=new_string;
22525 str_room(length(post_script(bp))+length(mp->cur_exp)+2);
22526 mp_print_str(mp, post_script(bp));
22527 append_char(13); /* a forced \ps\ newline */
22528 mp_print_str(mp, mp->cur_exp);
22529 post_script(bp)=mp_make_string(mp);
22531 mp->selector=old_setting;
22533 post_script(bp)=mp->cur_exp;
22535 mp->cur_type=mp_vacuous;
22538 if ( dp==mp_void ) {
22539 @<Make |dp| a stroked node in list~|p|@>;
22542 if ( dash_p(dp)!=null ) delete_edge_ref(dash_p(dp));
22543 dash_p(dp)=mp_make_dashes(mp, mp->cur_exp);
22544 dash_scale(dp)=unity;
22545 mp->cur_type=mp_vacuous;
22549 @<Copy the information from objects |cp|, |pp|, and |dp| into the rest
22553 @ @<Complain about improper type@>=
22554 { exp_err("Improper type");
22556 help2("Next time say `withpen <known pen expression>';")
22557 ("I'll ignore the bad `with' clause and look for another.");
22558 if ( t==with_pre_script )
22559 mp->help_line[1]="Next time say `withprescript <known string expression>';";
22560 else if ( t==with_post_script )
22561 mp->help_line[1]="Next time say `withpostscript <known string expression>';";
22562 else if ( t==mp_picture_type )
22563 mp->help_line[1]="Next time say `dashed <known picture expression>';";
22564 else if ( t==mp_uninitialized_model )
22565 mp->help_line[1]="Next time say `withcolor <known color expression>';";
22566 else if ( t==mp_rgb_model )
22567 mp->help_line[1]="Next time say `withrgbcolor <known color expression>';";
22568 else if ( t==mp_cmyk_model )
22569 mp->help_line[1]="Next time say `withcmykcolor <known cmykcolor expression>';";
22570 else if ( t==mp_grey_model )
22571 mp->help_line[1]="Next time say `withgreyscale <known numeric expression>';";;
22572 mp_put_get_flush_error(mp, 0);
22575 @ Forcing the color to be between |0| and |unity| here guarantees that no
22576 picture will ever contain a color outside the legal range for \ps\ graphics.
22578 @<Transfer a color from the current expression to object~|cp|@>=
22579 { if ( mp->cur_type==mp_color_type )
22580 @<Transfer a rgbcolor from the current expression to object~|cp|@>
22581 else if ( mp->cur_type==mp_cmykcolor_type )
22582 @<Transfer a cmykcolor from the current expression to object~|cp|@>
22583 else if ( mp->cur_type==mp_known )
22584 @<Transfer a greyscale from the current expression to object~|cp|@>
22585 else if ( mp->cur_exp==false_code )
22586 @<Transfer a noncolor from the current expression to object~|cp|@>;
22589 @ @<Transfer a rgbcolor from the current expression to object~|cp|@>=
22590 { q=value(mp->cur_exp);
22595 red_val(cp)=value(red_part_loc(q));
22596 green_val(cp)=value(green_part_loc(q));
22597 blue_val(cp)=value(blue_part_loc(q));
22598 color_model(cp)=mp_rgb_model;
22599 if ( red_val(cp)<0 ) red_val(cp)=0;
22600 if ( green_val(cp)<0 ) green_val(cp)=0;
22601 if ( blue_val(cp)<0 ) blue_val(cp)=0;
22602 if ( red_val(cp)>unity ) red_val(cp)=unity;
22603 if ( green_val(cp)>unity ) green_val(cp)=unity;
22604 if ( blue_val(cp)>unity ) blue_val(cp)=unity;
22607 @ @<Transfer a cmykcolor from the current expression to object~|cp|@>=
22608 { q=value(mp->cur_exp);
22609 cyan_val(cp)=value(cyan_part_loc(q));
22610 magenta_val(cp)=value(magenta_part_loc(q));
22611 yellow_val(cp)=value(yellow_part_loc(q));
22612 black_val(cp)=value(black_part_loc(q));
22613 color_model(cp)=mp_cmyk_model;
22614 if ( cyan_val(cp)<0 ) cyan_val(cp)=0;
22615 if ( magenta_val(cp)<0 ) magenta_val(cp)=0;
22616 if ( yellow_val(cp)<0 ) yellow_val(cp)=0;
22617 if ( black_val(cp)<0 ) black_val(cp)=0;
22618 if ( cyan_val(cp)>unity ) cyan_val(cp)=unity;
22619 if ( magenta_val(cp)>unity ) magenta_val(cp)=unity;
22620 if ( yellow_val(cp)>unity ) yellow_val(cp)=unity;
22621 if ( black_val(cp)>unity ) black_val(cp)=unity;
22624 @ @<Transfer a greyscale from the current expression to object~|cp|@>=
22631 color_model(cp)=mp_grey_model;
22632 if ( grey_val(cp)<0 ) grey_val(cp)=0;
22633 if ( grey_val(cp)>unity ) grey_val(cp)=unity;
22636 @ @<Transfer a noncolor from the current expression to object~|cp|@>=
22643 color_model(cp)=mp_no_model;
22646 @ @<Make |cp| a colored object in object list~|p|@>=
22648 while ( cp!=null ){
22649 if ( has_color(cp) ) break;
22654 @ @<Make |pp| an object in list~|p| that needs a pen@>=
22656 while ( pp!=null ) {
22657 if ( has_pen(pp) ) break;
22662 @ @<Make |dp| a stroked node in list~|p|@>=
22664 while ( dp!=null ) {
22665 if ( type(dp)==mp_stroked_code ) break;
22670 @ @<Copy the information from objects |cp|, |pp|, and |dp| into...@>=
22671 @<Copy |cp|'s color into the colored objects linked to~|cp|@>;
22672 if ( pp>mp_void ) {
22673 @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>;
22675 if ( dp>mp_void ) {
22676 @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>;
22680 @ @<Copy |cp|'s color into the colored objects linked to~|cp|@>=
22682 while ( q!=null ) {
22683 if ( has_color(q) ) {
22684 red_val(q)=red_val(cp);
22685 green_val(q)=green_val(cp);
22686 blue_val(q)=blue_val(cp);
22687 black_val(q)=black_val(cp);
22688 color_model(q)=color_model(cp);
22694 @ @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>=
22696 while ( q!=null ) {
22697 if ( has_pen(q) ) {
22698 if ( pen_p(q)!=null ) mp_toss_knot_list(mp, pen_p(q));
22699 pen_p(q)=copy_pen(pen_p(pp));
22705 @ @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>=
22707 while ( q!=null ) {
22708 if ( type(q)==mp_stroked_code ) {
22709 if ( dash_p(q)!=null ) delete_edge_ref(dash_p(q));
22710 dash_p(q)=dash_p(dp);
22711 dash_scale(q)=unity;
22712 if ( dash_p(q)!=null ) add_edge_ref(dash_p(q));
22718 @ One of the things we need to do when we've parsed an \&{addto} or
22719 similar command is find the header of a supposed \&{picture} variable, given
22720 a token list for that variable. Since the edge structure is about to be
22721 updated, we use |private_edges| to make sure that this is possible.
22723 @<Declare action procedures for use by |do_statement|@>=
22724 pointer mp_find_edges_var (MP mp, pointer t) ;
22726 @ @c pointer mp_find_edges_var (MP mp, pointer t) {
22728 pointer cur_edges; /* the return value */
22729 p=mp_find_variable(mp, t); cur_edges=null;
22731 mp_obliterated(mp, t); mp_put_get_error(mp);
22732 } else if ( type(p)!=mp_picture_type ) {
22733 print_err("Variable "); mp_show_token_list(mp, t,null,1000,0);
22734 @.Variable x is the wrong type@>
22735 mp_print(mp, " is the wrong type (");
22736 mp_print_type(mp, type(p)); mp_print_char(mp, ')');
22737 help2("I was looking for a \"known\" picture variable.")
22738 ("So I'll not change anything just now.");
22739 mp_put_get_error(mp);
22741 value(p)=mp_private_edges(mp, value(p));
22742 cur_edges=value(p);
22744 mp_flush_node_list(mp, t);
22748 @ @<Cases of |do_statement|...@>=
22749 case add_to_command: mp_do_add_to(mp); break;
22750 case bounds_command:mp_do_bounds(mp); break;
22753 mp_primitive(mp, "clip",bounds_command,mp_start_clip_code);
22754 @:clip_}{\&{clip} primitive@>
22755 mp_primitive(mp, "setbounds",bounds_command,mp_start_bounds_code);
22756 @:set_bounds_}{\&{setbounds} primitive@>
22758 @ @<Cases of |print_cmd...@>=
22759 case bounds_command:
22760 if ( m==mp_start_clip_code ) mp_print(mp, "clip");
22761 else mp_print(mp, "setbounds");
22764 @ The following function parses the beginning of an \&{addto} or \&{clip}
22765 command: it expects a variable name followed by a token with |cur_cmd=sep|
22766 and then an expression. The function returns the token list for the variable
22767 and stores the command modifier for the separator token in the global variable
22768 |last_add_type|. We must be careful because this variable might get overwritten
22769 any time we call |get_x_next|.
22772 quarterword last_add_type;
22773 /* command modifier that identifies the last \&{addto} command */
22775 @ @<Declare action procedures for use by |do_statement|@>=
22776 pointer mp_start_draw_cmd (MP mp,quarterword sep) ;
22778 @ @c pointer mp_start_draw_cmd (MP mp,quarterword sep) {
22779 pointer lhv; /* variable to add to left */
22780 quarterword add_type=0; /* value to be returned in |last_add_type| */
22782 mp_get_x_next(mp); mp->var_flag=sep; mp_scan_primary(mp);
22783 if ( mp->cur_type!=mp_token_list ) {
22784 @<Abandon edges command because there's no variable@>;
22786 lhv=mp->cur_exp; add_type=mp->cur_mod;
22787 mp->cur_type=mp_vacuous; mp_get_x_next(mp); mp_scan_expression(mp);
22789 mp->last_add_type=add_type;
22793 @ @<Abandon edges command because there's no variable@>=
22794 { exp_err("Not a suitable variable");
22795 @.Not a suitable variable@>
22796 help4("At this point I needed to see the name of a picture variable.")
22797 ("(Or perhaps you have indeed presented me with one; I might")
22798 ("have missed it, if it wasn't followed by the proper token.)")
22799 ("So I'll not change anything just now.");
22800 mp_put_get_flush_error(mp, 0);
22803 @ Here is an example of how to use |start_draw_cmd|.
22805 @<Declare action procedures for use by |do_statement|@>=
22806 void mp_do_bounds (MP mp) ;
22808 @ @c void mp_do_bounds (MP mp) {
22809 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22810 pointer p; /* for list manipulation */
22811 integer m; /* initial value of |cur_mod| */
22813 lhv=mp_start_draw_cmd(mp, to_token);
22815 lhe=mp_find_edges_var(mp, lhv);
22817 mp_flush_cur_exp(mp, 0);
22818 } else if ( mp->cur_type!=mp_path_type ) {
22819 exp_err("Improper `clip'");
22820 @.Improper `addto'@>
22821 help2("This expression should have specified a known path.")
22822 ("So I'll not change anything just now.");
22823 mp_put_get_flush_error(mp, 0);
22824 } else if ( left_type(mp->cur_exp)==mp_endpoint ) {
22825 @<Complain about a non-cycle@>;
22827 @<Make |cur_exp| into a \&{setbounds} or clipping path and add it to |lhe|@>;
22832 @ @<Complain about a non-cycle@>=
22833 { print_err("Not a cycle");
22835 help2("That contour should have ended with `..cycle' or `&cycle'.")
22836 ("So I'll not change anything just now."); mp_put_get_error(mp);
22839 @ @<Make |cur_exp| into a \&{setbounds} or clipping path and add...@>=
22840 { p=mp_new_bounds_node(mp, mp->cur_exp,m);
22841 link(p)=link(dummy_loc(lhe));
22842 link(dummy_loc(lhe))=p;
22843 if ( obj_tail(lhe)==dummy_loc(lhe) ) obj_tail(lhe)=p;
22844 p=mp_get_node(mp, mp->gr_object_size[stop_type(m)]);
22845 type(p)=stop_type(m);
22846 link(obj_tail(lhe))=p;
22848 mp_init_bbox(mp, lhe);
22851 @ The |do_add_to| procedure is a little like |do_clip| but there are a lot more
22852 cases to deal with.
22854 @<Declare action procedures for use by |do_statement|@>=
22855 void mp_do_add_to (MP mp) ;
22857 @ @c void mp_do_add_to (MP mp) {
22858 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22859 pointer p; /* the graphical object or list for |scan_with_list| to update */
22860 pointer e; /* an edge structure to be merged */
22861 quarterword add_type; /* |also_code|, |contour_code|, or |double_path_code| */
22862 lhv=mp_start_draw_cmd(mp, thing_to_add); add_type=mp->last_add_type;
22864 if ( add_type==also_code ) {
22865 @<Make sure the current expression is a suitable picture and set |e| and |p|
22868 @<Create a graphical object |p| based on |add_type| and the current
22871 mp_scan_with_list(mp, p);
22872 @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>;
22876 @ Setting |p:=null| causes the $\langle$with list$\rangle$ to be ignored;
22877 setting |e:=null| prevents anything from being added to |lhe|.
22879 @ @<Make sure the current expression is a suitable picture and set |e|...@>=
22882 if ( mp->cur_type!=mp_picture_type ) {
22883 exp_err("Improper `addto'");
22884 @.Improper `addto'@>
22885 help2("This expression should have specified a known picture.")
22886 ("So I'll not change anything just now."); mp_put_get_flush_error(mp, 0);
22888 e=mp_private_edges(mp, mp->cur_exp); mp->cur_type=mp_vacuous;
22889 p=link(dummy_loc(e));
22893 @ In this case |add_type<>also_code| so setting |p:=null| suppresses future
22894 attempts to add to the edge structure.
22896 @<Create a graphical object |p| based on |add_type| and the current...@>=
22898 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
22899 if ( mp->cur_type!=mp_path_type ) {
22900 exp_err("Improper `addto'");
22901 @.Improper `addto'@>
22902 help2("This expression should have specified a known path.")
22903 ("So I'll not change anything just now.");
22904 mp_put_get_flush_error(mp, 0);
22905 } else if ( add_type==contour_code ) {
22906 if ( left_type(mp->cur_exp)==mp_endpoint ) {
22907 @<Complain about a non-cycle@>;
22909 p=mp_new_fill_node(mp, mp->cur_exp);
22910 mp->cur_type=mp_vacuous;
22913 p=mp_new_stroked_node(mp, mp->cur_exp);
22914 mp->cur_type=mp_vacuous;
22918 @ @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>=
22919 lhe=mp_find_edges_var(mp, lhv);
22921 if ( (e==null)&&(p!=null) ) e=mp_toss_gr_object(mp, p);
22922 if ( e!=null ) delete_edge_ref(e);
22923 } else if ( add_type==also_code ) {
22925 @<Merge |e| into |lhe| and delete |e|@>;
22929 } else if ( p!=null ) {
22930 link(obj_tail(lhe))=p;
22932 if ( add_type==double_path_code )
22933 if ( pen_p(p)==null )
22934 pen_p(p)=mp_get_pen_circle(mp, 0);
22937 @ @<Merge |e| into |lhe| and delete |e|@>=
22938 { if ( link(dummy_loc(e))!=null ) {
22939 link(obj_tail(lhe))=link(dummy_loc(e));
22940 obj_tail(lhe)=obj_tail(e);
22941 obj_tail(e)=dummy_loc(e);
22942 link(dummy_loc(e))=null;
22943 mp_flush_dash_list(mp, lhe);
22945 mp_toss_edges(mp, e);
22948 @ @<Cases of |do_statement|...@>=
22949 case ship_out_command: mp_do_ship_out(mp); break;
22951 @ @<Declare action procedures for use by |do_statement|@>=
22952 @<Declare the function called |tfm_check|@>;
22953 @<Declare the \ps\ output procedures@>;
22954 void mp_do_ship_out (MP mp) ;
22956 @ @c void mp_do_ship_out (MP mp) {
22957 integer c; /* the character code */
22958 mp_get_x_next(mp); mp_scan_expression(mp);
22959 if ( mp->cur_type!=mp_picture_type ) {
22960 @<Complain that it's not a known picture@>;
22962 c=mp_round_unscaled(mp, mp->internal[mp_char_code]) % 256;
22963 if ( c<0 ) c=c+256;
22964 @<Store the width information for character code~|c|@>;
22965 mp_ship_out(mp, mp->cur_exp);
22966 mp_flush_cur_exp(mp, 0);
22970 @ @<Complain that it's not a known picture@>=
22972 exp_err("Not a known picture");
22973 help1("I can only output known pictures.");
22974 mp_put_get_flush_error(mp, 0);
22977 @ The \&{everyjob} command simply assigns a nonzero value to the global variable
22980 @<Cases of |do_statement|...@>=
22981 case every_job_command:
22982 mp_get_symbol(mp); mp->start_sym=mp->cur_sym; mp_get_x_next(mp);
22986 halfword start_sym; /* a symbolic token to insert at beginning of job */
22991 @ Finally, we have only the ``message'' commands remaining.
22994 @d err_message_code 1
22996 @d filename_template_code 3
22997 @d print_with_leading_zeroes(A) g = mp->pool_ptr;
22998 mp_print_int(mp, (A)); g = mp->pool_ptr-g;
23000 mp->pool_ptr = mp->pool_ptr - g;
23002 mp_print_char(mp, '0');
23005 mp_print_int(mp, (A));
23010 mp_primitive(mp, "message",message_command,message_code);
23011 @:message_}{\&{message} primitive@>
23012 mp_primitive(mp, "errmessage",message_command,err_message_code);
23013 @:err_message_}{\&{errmessage} primitive@>
23014 mp_primitive(mp, "errhelp",message_command,err_help_code);
23015 @:err_help_}{\&{errhelp} primitive@>
23016 mp_primitive(mp, "filenametemplate",message_command,filename_template_code);
23017 @:filename_template_}{\&{filenametemplate} primitive@>
23019 @ @<Cases of |print_cmd...@>=
23020 case message_command:
23021 if ( m<err_message_code ) mp_print(mp, "message");
23022 else if ( m==err_message_code ) mp_print(mp, "errmessage");
23023 else if ( m==filename_template_code ) mp_print(mp, "filenametemplate");
23024 else mp_print(mp, "errhelp");
23027 @ @<Cases of |do_statement|...@>=
23028 case message_command: mp_do_message(mp); break;
23030 @ @<Declare action procedures for use by |do_statement|@>=
23031 @<Declare a procedure called |no_string_err|@>;
23032 void mp_do_message (MP mp) ;
23035 @c void mp_do_message (MP mp) {
23036 int m; /* the type of message */
23037 m=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
23038 if ( mp->cur_type!=mp_string_type )
23039 mp_no_string_err(mp, "A message should be a known string expression.");
23043 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp);
23045 case err_message_code:
23046 @<Print string |cur_exp| as an error message@>;
23048 case err_help_code:
23049 @<Save string |cur_exp| as the |err_help|@>;
23051 case filename_template_code:
23052 @<Save the filename template@>;
23054 } /* there are no other cases */
23056 mp_flush_cur_exp(mp, 0);
23059 @ @<Declare a procedure called |no_string_err|@>=
23060 void mp_no_string_err (MP mp,char *s) {
23061 exp_err("Not a string");
23064 mp_put_get_error(mp);
23067 @ The global variable |err_help| is zero when the user has most recently
23068 given an empty help string, or if none has ever been given.
23070 @<Save string |cur_exp| as the |err_help|@>=
23072 if ( mp->err_help!=0 ) delete_str_ref(mp->err_help);
23073 if ( length(mp->cur_exp)==0 ) mp->err_help=0;
23074 else { mp->err_help=mp->cur_exp; add_str_ref(mp->err_help); }
23077 @ If \&{errmessage} occurs often in |mp_scroll_mode|, without user-defined
23078 \&{errhelp}, we don't want to give a long help message each time. So we
23079 give a verbose explanation only once.
23082 boolean long_help_seen; /* has the long \.{\\errmessage} help been used? */
23084 @ @<Set init...@>=mp->long_help_seen=false;
23086 @ @<Print string |cur_exp| as an error message@>=
23088 print_err(""); mp_print_str(mp, mp->cur_exp);
23089 if ( mp->err_help!=0 ) {
23090 mp->use_err_help=true;
23091 } else if ( mp->long_help_seen ) {
23092 help1("(That was another `errmessage'.)") ;
23094 if ( mp->interaction<mp_error_stop_mode ) mp->long_help_seen=true;
23095 help4("This error message was generated by an `errmessage'")
23096 ("command, so I can\'t give any explicit help.")
23097 ("Pretend that you're Miss Marple: Examine all clues,")
23099 ("and deduce the truth by inspired guesses.");
23101 mp_put_get_error(mp); mp->use_err_help=false;
23104 @ @<Cases of |do_statement|...@>=
23105 case write_command: mp_do_write(mp); break;
23107 @ @<Declare action procedures for use by |do_statement|@>=
23108 void mp_do_write (MP mp) ;
23110 @ @c void mp_do_write (MP mp) {
23111 str_number t; /* the line of text to be written */
23112 write_index n,n0; /* for searching |wr_fname| and |wr_file| arrays */
23113 int old_setting; /* for saving |selector| during output */
23115 mp_scan_expression(mp);
23116 if ( mp->cur_type!=mp_string_type ) {
23117 mp_no_string_err(mp, "The text to be written should be a known string expression");
23118 } else if ( mp->cur_cmd!=to_token ) {
23119 print_err("Missing `to' clause");
23120 help1("A write command should end with `to <filename>'");
23121 mp_put_get_error(mp);
23123 t=mp->cur_exp; mp->cur_type=mp_vacuous;
23125 mp_scan_expression(mp);
23126 if ( mp->cur_type!=mp_string_type )
23127 mp_no_string_err(mp, "I can\'t write to that file name. It isn't a known string");
23129 @<Write |t| to the file named by |cur_exp|@>;
23133 mp_flush_cur_exp(mp, 0);
23136 @ @<Write |t| to the file named by |cur_exp|@>=
23138 @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if
23139 |cur_exp| must be inserted@>;
23140 if ( mp_str_vs_str(mp, t,mp->eof_line)==0 ) {
23141 @<Record the end of file on |wr_file[n]|@>;
23143 old_setting=mp->selector;
23144 mp->selector=n+write_file;
23145 mp_print_str(mp, t); mp_print_ln(mp);
23146 mp->selector = old_setting;
23150 @ @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if...@>=
23152 char *fn = str(mp->cur_exp);
23154 n0=mp->write_files;
23155 while (mp_xstrcmp(fn,mp->wr_fname[n])!=0) {
23156 if ( n==0 ) { /* bottom reached */
23157 if ( n0==mp->write_files ) {
23158 if ( mp->write_files<mp->max_write_files ) {
23159 incr(mp->write_files);
23164 l = mp->max_write_files + (mp->max_write_files>>2);
23165 wr_file = xmalloc((l+1),sizeof(FILE *));
23166 wr_fname = xmalloc((l+1),sizeof(char *));
23167 for (k=0;k<=l;k++) {
23168 if (k<=mp->max_write_files) {
23169 wr_file[k]=mp->wr_file[k];
23170 wr_fname[k]=mp->wr_fname[k];
23176 xfree(mp->wr_file); xfree(mp->wr_fname);
23177 mp->max_write_files = l;
23178 mp->wr_file = wr_file;
23179 mp->wr_fname = wr_fname;
23183 mp_open_write_file(mp, fn ,n);
23186 if ( mp->wr_fname[n]==NULL ) n0=n;
23191 @ @<Record the end of file on |wr_file[n]|@>=
23192 { fclose(mp->wr_file[n]);
23193 xfree(mp->wr_fname[n]);
23194 mp->wr_fname[n]=NULL;
23195 if ( n==mp->write_files-1 ) mp->write_files=n;
23199 @* \[42] Writing font metric data.
23200 \TeX\ gets its knowledge about fonts from font metric files, also called
23201 \.{TFM} files; the `\.T' in `\.{TFM}' stands for \TeX,
23202 but other programs know about them too. One of \MP's duties is to
23203 write \.{TFM} files so that the user's fonts can readily be
23204 applied to typesetting.
23205 @:TFM files}{\.{TFM} files@>
23206 @^font metric files@>
23208 The information in a \.{TFM} file appears in a sequence of 8-bit bytes.
23209 Since the number of bytes is always a multiple of~4, we could
23210 also regard the file as a sequence of 32-bit words, but \MP\ uses the
23211 byte interpretation. The format of \.{TFM} files was designed by
23212 Lyle Ramshaw in 1980. The intent is to convey a lot of different kinds
23213 @^Ramshaw, Lyle Harold@>
23214 of information in a compact but useful form.
23217 FILE * tfm_file; /* the font metric output goes here */
23218 char * metric_file_name; /* full name of the font metric file */
23220 @ The first 24 bytes (6 words) of a \.{TFM} file contain twelve 16-bit
23221 integers that give the lengths of the various subsequent portions
23222 of the file. These twelve integers are, in order:
23223 $$\vbox{\halign{\hfil#&$\null=\null$#\hfil\cr
23224 |lf|&length of the entire file, in words;\cr
23225 |lh|&length of the header data, in words;\cr
23226 |bc|&smallest character code in the font;\cr
23227 |ec|&largest character code in the font;\cr
23228 |nw|&number of words in the width table;\cr
23229 |nh|&number of words in the height table;\cr
23230 |nd|&number of words in the depth table;\cr
23231 |ni|&number of words in the italic correction table;\cr
23232 |nl|&number of words in the lig/kern table;\cr
23233 |nk|&number of words in the kern table;\cr
23234 |ne|&number of words in the extensible character table;\cr
23235 |np|&number of font parameter words.\cr}}$$
23236 They are all nonnegative and less than $2^{15}$. We must have |bc-1<=ec<=255|,
23238 $$\hbox{|lf=6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np|.}$$
23239 Note that a font may contain as many as 256 characters (if |bc=0| and |ec=255|),
23240 and as few as 0 characters (if |bc=ec+1|).
23242 Incidentally, when two or more 8-bit bytes are combined to form an integer of
23243 16 or more bits, the most significant bytes appear first in the file.
23244 This is called BigEndian order.
23245 @^BigEndian order@>
23247 @ The rest of the \.{TFM} file may be regarded as a sequence of ten data
23250 The most important data type used here is a |fix_word|, which is
23251 a 32-bit representation of a binary fraction. A |fix_word| is a signed
23252 quantity, with the two's complement of the entire word used to represent
23253 negation. Of the 32 bits in a |fix_word|, exactly 12 are to the left of the
23254 binary point; thus, the largest |fix_word| value is $2048-2^{-20}$, and
23255 the smallest is $-2048$. We will see below, however, that all but two of
23256 the |fix_word| values must lie between $-16$ and $+16$.
23258 @ The first data array is a block of header information, which contains
23259 general facts about the font. The header must contain at least two words,
23260 |header[0]| and |header[1]|, whose meaning is explained below. Additional
23261 header information of use to other software routines might also be
23262 included, and \MP\ will generate it if the \.{headerbyte} command occurs.
23263 For example, 16 more words of header information are in use at the Xerox
23264 Palo Alto Research Center; the first ten specify the character coding
23265 scheme used (e.g., `\.{XEROX TEXT}' or `\.{TEX MATHSY}'), the next five
23266 give the font family name (e.g., `\.{HELVETICA}' or `\.{CMSY}'), and the
23267 last gives the ``face byte.''
23269 \yskip\hang|header[0]| is a 32-bit check sum that \MP\ will copy into
23270 the \.{GF} output file. This helps ensure consistency between files,
23271 since \TeX\ records the check sums from the \.{TFM}'s it reads, and these
23272 should match the check sums on actual fonts that are used. The actual
23273 relation between this check sum and the rest of the \.{TFM} file is not
23274 important; the check sum is simply an identification number with the
23275 property that incompatible fonts almost always have distinct check sums.
23278 \yskip\hang|header[1]| is a |fix_word| containing the design size of the
23279 font, in units of \TeX\ points. This number must be at least 1.0; it is
23280 fairly arbitrary, but usually the design size is 10.0 for a ``10 point''
23281 font, i.e., a font that was designed to look best at a 10-point size,
23282 whatever that really means. When a \TeX\ user asks for a font `\.{at}
23283 $\delta$ \.{pt}', the effect is to override the design size and replace it
23284 by $\delta$, and to multiply the $x$ and~$y$ coordinates of the points in
23285 the font image by a factor of $\delta$ divided by the design size. {\sl
23286 All other dimensions in the\/ \.{TFM} file are |fix_word|\kern-1pt\
23287 numbers in design-size units.} Thus, for example, the value of |param[6]|,
23288 which defines the \.{em} unit, is often the |fix_word| value $2^{20}=1.0$,
23289 since many fonts have a design size equal to one em. The other dimensions
23290 must be less than 16 design-size units in absolute value; thus,
23291 |header[1]| and |param[1]| are the only |fix_word| entries in the whole
23292 \.{TFM} file whose first byte might be something besides 0 or 255.
23294 @ Next comes the |char_info| array, which contains one |char_info_word|
23295 per character. Each word in this part of the file contains six fields
23296 packed into four bytes as follows.
23298 \yskip\hang first byte: |width_index| (8 bits)\par
23299 \hang second byte: |height_index| (4 bits) times 16, plus |depth_index|
23301 \hang third byte: |italic_index| (6 bits) times 4, plus |tag|
23303 \hang fourth byte: |remainder| (8 bits)\par
23305 The actual width of a character is \\{width}|[width_index]|, in design-size
23306 units; this is a device for compressing information, since many characters
23307 have the same width. Since it is quite common for many characters
23308 to have the same height, depth, or italic correction, the \.{TFM} format
23309 imposes a limit of 16 different heights, 16 different depths, and
23310 64 different italic corrections.
23312 Incidentally, the relation $\\{width}[0]=\\{height}[0]=\\{depth}[0]=
23313 \\{italic}[0]=0$ should always hold, so that an index of zero implies a
23314 value of zero. The |width_index| should never be zero unless the
23315 character does not exist in the font, since a character is valid if and
23316 only if it lies between |bc| and |ec| and has a nonzero |width_index|.
23318 @ The |tag| field in a |char_info_word| has four values that explain how to
23319 interpret the |remainder| field.
23321 \yskip\hang|tag=0| (|no_tag|) means that |remainder| is unused.\par
23322 \hang|tag=1| (|lig_tag|) means that this character has a ligature/kerning
23323 program starting at location |remainder| in the |lig_kern| array.\par
23324 \hang|tag=2| (|list_tag|) means that this character is part of a chain of
23325 characters of ascending sizes, and not the largest in the chain. The
23326 |remainder| field gives the character code of the next larger character.\par
23327 \hang|tag=3| (|ext_tag|) means that this character code represents an
23328 extensible character, i.e., a character that is built up of smaller pieces
23329 so that it can be made arbitrarily large. The pieces are specified in
23330 |exten[remainder]|.\par
23332 Characters with |tag=2| and |tag=3| are treated as characters with |tag=0|
23333 unless they are used in special circumstances in math formulas. For example,
23334 \TeX's \.{\\sum} operation looks for a |list_tag|, and the \.{\\left}
23335 operation looks for both |list_tag| and |ext_tag|.
23337 @d no_tag 0 /* vanilla character */
23338 @d lig_tag 1 /* character has a ligature/kerning program */
23339 @d list_tag 2 /* character has a successor in a charlist */
23340 @d ext_tag 3 /* character is extensible */
23342 @ The |lig_kern| array contains instructions in a simple programming language
23343 that explains what to do for special letter pairs. Each word in this array is a
23344 |lig_kern_command| of four bytes.
23346 \yskip\hang first byte: |skip_byte|, indicates that this is the final program
23347 step if the byte is 128 or more, otherwise the next step is obtained by
23348 skipping this number of intervening steps.\par
23349 \hang second byte: |next_char|, ``if |next_char| follows the current character,
23350 then perform the operation and stop, otherwise continue.''\par
23351 \hang third byte: |op_byte|, indicates a ligature step if less than~128,
23352 a kern step otherwise.\par
23353 \hang fourth byte: |remainder|.\par
23356 additional space equal to |kern[256*(op_byte-128)+remainder]| is inserted
23357 between the current character and |next_char|. This amount is
23358 often negative, so that the characters are brought closer together
23359 by kerning; but it might be positive.
23361 There are eight kinds of ligature steps, having |op_byte| codes $4a+2b+c$ where
23362 $0\le a\le b+c$ and $0\le b,c\le1$. The character whose code is
23363 |remainder| is inserted between the current character and |next_char|;
23364 then the current character is deleted if $b=0$, and |next_char| is
23365 deleted if $c=0$; then we pass over $a$~characters to reach the next
23366 current character (which may have a ligature/kerning program of its own).
23368 If the very first instruction of the |lig_kern| array has |skip_byte=255|,
23369 the |next_char| byte is the so-called right boundary character of this font;
23370 the value of |next_char| need not lie between |bc| and~|ec|.
23371 If the very last instruction of the |lig_kern| array has |skip_byte=255|,
23372 there is a special ligature/kerning program for a left boundary character,
23373 beginning at location |256*op_byte+remainder|.
23374 The interpretation is that \TeX\ puts implicit boundary characters
23375 before and after each consecutive string of characters from the same font.
23376 These implicit characters do not appear in the output, but they can affect
23377 ligatures and kerning.
23379 If the very first instruction of a character's |lig_kern| program has
23380 |skip_byte>128|, the program actually begins in location
23381 |256*op_byte+remainder|. This feature allows access to large |lig_kern|
23382 arrays, because the first instruction must otherwise
23383 appear in a location |<=255|.
23385 Any instruction with |skip_byte>128| in the |lig_kern| array must satisfy
23387 $$\hbox{|256*op_byte+remainder<nl|.}$$
23388 If such an instruction is encountered during
23389 normal program execution, it denotes an unconditional halt; no ligature
23390 command is performed.
23393 /* value indicating `\.{STOP}' in a lig/kern program */
23394 @d kern_flag (128) /* op code for a kern step */
23395 @d skip_byte(A) mp->lig_kern[(A)].b0
23396 @d next_char(A) mp->lig_kern[(A)].b1
23397 @d op_byte(A) mp->lig_kern[(A)].b2
23398 @d rem_byte(A) mp->lig_kern[(A)].b3
23400 @ Extensible characters are specified by an |extensible_recipe|, which
23401 consists of four bytes called |top|, |mid|, |bot|, and |rep| (in this
23402 order). These bytes are the character codes of individual pieces used to
23403 build up a large symbol. If |top|, |mid|, or |bot| are zero, they are not
23404 present in the built-up result. For example, an extensible vertical line is
23405 like an extensible bracket, except that the top and bottom pieces are missing.
23407 Let $T$, $M$, $B$, and $R$ denote the respective pieces, or an empty box
23408 if the piece isn't present. Then the extensible characters have the form
23409 $TR^kMR^kB$ from top to bottom, for some |k>=0|, unless $M$ is absent;
23410 in the latter case we can have $TR^kB$ for both even and odd values of~|k|.
23411 The width of the extensible character is the width of $R$; and the
23412 height-plus-depth is the sum of the individual height-plus-depths of the
23413 components used, since the pieces are butted together in a vertical list.
23415 @d ext_top(A) mp->exten[(A)].b0 /* |top| piece in a recipe */
23416 @d ext_mid(A) mp->exten[(A)].b1 /* |mid| piece in a recipe */
23417 @d ext_bot(A) mp->exten[(A)].b2 /* |bot| piece in a recipe */
23418 @d ext_rep(A) mp->exten[(A)].b3 /* |rep| piece in a recipe */
23420 @ The final portion of a \.{TFM} file is the |param| array, which is another
23421 sequence of |fix_word| values.
23423 \yskip\hang|param[1]=slant| is the amount of italic slant, which is used
23424 to help position accents. For example, |slant=.25| means that when you go
23425 up one unit, you also go .25 units to the right. The |slant| is a pure
23426 number; it is the only |fix_word| other than the design size itself that is
23427 not scaled by the design size.
23429 \hang|param[2]=space| is the normal spacing between words in text.
23430 Note that character 040 in the font need not have anything to do with
23433 \hang|param[3]=space_stretch| is the amount of glue stretching between words.
23435 \hang|param[4]=space_shrink| is the amount of glue shrinking between words.
23437 \hang|param[5]=x_height| is the size of one ex in the font; it is also
23438 the height of letters for which accents don't have to be raised or lowered.
23440 \hang|param[6]=quad| is the size of one em in the font.
23442 \hang|param[7]=extra_space| is the amount added to |param[2]| at the
23446 If fewer than seven parameters are present, \TeX\ sets the missing parameters
23451 @d space_stretch_code 3
23452 @d space_shrink_code 4
23455 @d extra_space_code 7
23457 @ So that is what \.{TFM} files hold. One of \MP's duties is to output such
23458 information, and it does this all at once at the end of a job.
23459 In order to prepare for such frenetic activity, it squirrels away the
23460 necessary facts in various arrays as information becomes available.
23462 Character dimensions (\&{charwd}, \&{charht}, \&{chardp}, and \&{charic})
23463 are stored respectively in |tfm_width|, |tfm_height|, |tfm_depth|, and
23464 |tfm_ital_corr|. Other information about a character (e.g., about
23465 its ligatures or successors) is accessible via the |char_tag| and
23466 |char_remainder| arrays. Other information about the font as a whole
23467 is kept in additional arrays called |header_byte|, |lig_kern|,
23468 |kern|, |exten|, and |param|.
23470 @d max_tfm_int 32510
23471 @d undefined_label max_tfm_int /* an undefined local label */
23474 #define TFM_ITEMS 257
23476 eight_bits ec; /* smallest and largest character codes shipped out */
23477 scaled tfm_width[TFM_ITEMS]; /* \&{charwd} values */
23478 scaled tfm_height[TFM_ITEMS]; /* \&{charht} values */
23479 scaled tfm_depth[TFM_ITEMS]; /* \&{chardp} values */
23480 scaled tfm_ital_corr[TFM_ITEMS]; /* \&{charic} values */
23481 boolean char_exists[TFM_ITEMS]; /* has this code been shipped out? */
23482 int char_tag[TFM_ITEMS]; /* |remainder| category */
23483 int char_remainder[TFM_ITEMS]; /* the |remainder| byte */
23484 char *header_byte; /* bytes of the \.{TFM} header */
23485 int header_last; /* last initialized \.{TFM} header byte */
23486 int header_size; /* size of the \.{TFM} header */
23487 four_quarters *lig_kern; /* the ligature/kern table */
23488 short nl; /* the number of ligature/kern steps so far */
23489 scaled *kern; /* distinct kerning amounts */
23490 short nk; /* the number of distinct kerns so far */
23491 four_quarters exten[TFM_ITEMS]; /* extensible character recipes */
23492 short ne; /* the number of extensible characters so far */
23493 scaled *param; /* \&{fontinfo} parameters */
23494 short np; /* the largest \&{fontinfo} parameter specified so far */
23495 short nw;short nh;short nd;short ni; /* sizes of \.{TFM} subtables */
23496 short skip_table[TFM_ITEMS]; /* local label status */
23497 boolean lk_started; /* has there been a lig/kern step in this command yet? */
23498 integer bchar; /* right boundary character */
23499 short bch_label; /* left boundary starting location */
23500 short ll;short lll; /* registers used for lig/kern processing */
23501 short label_loc[257]; /* lig/kern starting addresses */
23502 eight_bits label_char[257]; /* characters for |label_loc| */
23503 short label_ptr; /* highest position occupied in |label_loc| */
23505 @ @<Allocate or initialize ...@>=
23506 mp->header_last = 0; mp->header_size = 128; /* just for init */
23507 mp->header_byte = xmalloc(mp->header_size, sizeof(char));
23508 mp->lig_kern = NULL; /* allocated when needed */
23509 mp->kern = NULL; /* allocated when needed */
23510 mp->param = NULL; /* allocated when needed */
23512 @ @<Dealloc variables@>=
23513 xfree(mp->header_byte);
23514 xfree(mp->lig_kern);
23519 for (k=0;k<= 255;k++ ) {
23520 mp->tfm_width[k]=0; mp->tfm_height[k]=0; mp->tfm_depth[k]=0; mp->tfm_ital_corr[k]=0;
23521 mp->char_exists[k]=false; mp->char_tag[k]=no_tag; mp->char_remainder[k]=0;
23522 mp->skip_table[k]=undefined_label;
23524 memset(mp->header_byte,0,mp->header_size);
23525 mp->bc=255; mp->ec=0; mp->nl=0; mp->nk=0; mp->ne=0; mp->np=0;
23526 mp->internal[mp_boundary_char]=-unity;
23527 mp->bch_label=undefined_label;
23528 mp->label_loc[0]=-1; mp->label_ptr=0;
23530 @ @<Declarations@>=
23531 scaled mp_tfm_check (MP mp,small_number m) ;
23533 @ @<Declare the function called |tfm_check|@>=
23534 scaled mp_tfm_check (MP mp,small_number m) {
23535 if ( abs(mp->internal[m])>=fraction_half ) {
23536 print_err("Enormous "); mp_print(mp, mp->int_name[m]);
23537 @.Enormous charwd...@>
23538 @.Enormous chardp...@>
23539 @.Enormous charht...@>
23540 @.Enormous charic...@>
23541 @.Enormous designsize...@>
23542 mp_print(mp, " has been reduced");
23543 help1("Font metric dimensions must be less than 2048pt.");
23544 mp_put_get_error(mp);
23545 if ( mp->internal[m]>0 ) return (fraction_half-1);
23546 else return (1-fraction_half);
23548 return mp->internal[m];
23552 @ @<Store the width information for character code~|c|@>=
23553 if ( c<mp->bc ) mp->bc=c;
23554 if ( c>mp->ec ) mp->ec=c;
23555 mp->char_exists[c]=true;
23556 mp->tfm_width[c]=mp_tfm_check(mp, mp_char_wd);
23557 mp->tfm_height[c]=mp_tfm_check(mp, mp_char_ht);
23558 mp->tfm_depth[c]=mp_tfm_check(mp, mp_char_dp);
23559 mp->tfm_ital_corr[c]=mp_tfm_check(mp, mp_char_ic)
23561 @ Now let's consider \MP's special \.{TFM}-oriented commands.
23563 @<Cases of |do_statement|...@>=
23564 case tfm_command: mp_do_tfm_command(mp); break;
23566 @ @d char_list_code 0
23567 @d lig_table_code 1
23568 @d extensible_code 2
23569 @d header_byte_code 3
23570 @d font_dimen_code 4
23573 mp_primitive(mp, "charlist",tfm_command,char_list_code);
23574 @:char_list_}{\&{charlist} primitive@>
23575 mp_primitive(mp, "ligtable",tfm_command,lig_table_code);
23576 @:lig_table_}{\&{ligtable} primitive@>
23577 mp_primitive(mp, "extensible",tfm_command,extensible_code);
23578 @:extensible_}{\&{extensible} primitive@>
23579 mp_primitive(mp, "headerbyte",tfm_command,header_byte_code);
23580 @:header_byte_}{\&{headerbyte} primitive@>
23581 mp_primitive(mp, "fontdimen",tfm_command,font_dimen_code);
23582 @:font_dimen_}{\&{fontdimen} primitive@>
23584 @ @<Cases of |print_cmd...@>=
23587 case char_list_code:mp_print(mp, "charlist"); break;
23588 case lig_table_code:mp_print(mp, "ligtable"); break;
23589 case extensible_code:mp_print(mp, "extensible"); break;
23590 case header_byte_code:mp_print(mp, "headerbyte"); break;
23591 default: mp_print(mp, "fontdimen"); break;
23595 @ @<Declare action procedures for use by |do_statement|@>=
23596 eight_bits mp_get_code (MP mp) ;
23598 @ @c eight_bits mp_get_code (MP mp) { /* scans a character code value */
23599 integer c; /* the code value found */
23600 mp_get_x_next(mp); mp_scan_expression(mp);
23601 if ( mp->cur_type==mp_known ) {
23602 c=mp_round_unscaled(mp, mp->cur_exp);
23603 if ( c>=0 ) if ( c<256 ) return c;
23604 } else if ( mp->cur_type==mp_string_type ) {
23605 if ( length(mp->cur_exp)==1 ) {
23606 c=mp->str_pool[mp->str_start[mp->cur_exp]];
23610 exp_err("Invalid code has been replaced by 0");
23611 @.Invalid code...@>
23612 help2("I was looking for a number between 0 and 255, or for a")
23613 ("string of length 1. Didn't find it; will use 0 instead.");
23614 mp_put_get_flush_error(mp, 0); c=0;
23618 @ @<Declare action procedures for use by |do_statement|@>=
23619 void mp_set_tag (MP mp,halfword c, small_number t, halfword r) ;
23621 @ @c void mp_set_tag (MP mp,halfword c, small_number t, halfword r) {
23622 if ( mp->char_tag[c]==no_tag ) {
23623 mp->char_tag[c]=t; mp->char_remainder[c]=r;
23625 incr(mp->label_ptr); mp->label_loc[mp->label_ptr]=r;
23626 mp->label_char[mp->label_ptr]=c;
23629 @<Complain about a character tag conflict@>;
23633 @ @<Complain about a character tag conflict@>=
23635 print_err("Character ");
23636 if ( (c>' ')&&(c<127) ) mp_print_char(mp,c);
23637 else if ( c==256 ) mp_print(mp, "||");
23638 else { mp_print(mp, "code "); mp_print_int(mp, c); };
23639 mp_print(mp, " is already ");
23640 @.Character c is already...@>
23641 switch (mp->char_tag[c]) {
23642 case lig_tag: mp_print(mp, "in a ligtable"); break;
23643 case list_tag: mp_print(mp, "in a charlist"); break;
23644 case ext_tag: mp_print(mp, "extensible"); break;
23645 } /* there are no other cases */
23646 help2("It's not legal to label a character more than once.")
23647 ("So I'll not change anything just now.");
23648 mp_put_get_error(mp);
23651 @ @<Declare action procedures for use by |do_statement|@>=
23652 void mp_do_tfm_command (MP mp) ;
23654 @ @c void mp_do_tfm_command (MP mp) {
23655 int c,cc; /* character codes */
23656 int k; /* index into the |kern| array */
23657 int j; /* index into |header_byte| or |param| */
23658 switch (mp->cur_mod) {
23659 case char_list_code:
23661 /* we will store a list of character successors */
23662 while ( mp->cur_cmd==colon ) {
23663 cc=mp_get_code(mp); mp_set_tag(mp, c,list_tag,cc); c=cc;
23666 case lig_table_code:
23667 if (mp->lig_kern==NULL)
23668 mp->lig_kern = xmalloc((max_tfm_int+1),sizeof(four_quarters));
23669 if (mp->kern==NULL)
23670 mp->kern = xmalloc((max_tfm_int+1),sizeof(scaled));
23671 @<Store a list of ligature/kern steps@>;
23673 case extensible_code:
23674 @<Define an extensible recipe@>;
23676 case header_byte_code:
23677 case font_dimen_code:
23678 c=mp->cur_mod; mp_get_x_next(mp);
23679 mp_scan_expression(mp);
23680 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<half_unit) ) {
23681 exp_err("Improper location");
23682 @.Improper location@>
23683 help2("I was looking for a known, positive number.")
23684 ("For safety's sake I'll ignore the present command.");
23685 mp_put_get_error(mp);
23687 j=mp_round_unscaled(mp, mp->cur_exp);
23688 if ( mp->cur_cmd!=colon ) {
23689 mp_missing_err(mp, ":");
23691 help1("A colon should follow a headerbyte or fontinfo location.");
23694 if ( c==header_byte_code ) {
23695 @<Store a list of header bytes@>;
23697 if (mp->param==NULL)
23698 mp->param = xmalloc((max_tfm_int+1),sizeof(scaled));
23699 @<Store a list of font dimensions@>;
23703 } /* there are no other cases */
23706 @ @<Store a list of ligature/kern steps@>=
23708 mp->lk_started=false;
23711 if ((mp->cur_cmd==skip_to)&& mp->lk_started )
23712 @<Process a |skip_to| command and |goto done|@>;
23713 if ( mp->cur_cmd==bchar_label ) { c=256; mp->cur_cmd=colon; }
23714 else { mp_back_input(mp); c=mp_get_code(mp); };
23715 if ((mp->cur_cmd==colon)||(mp->cur_cmd==double_colon)) {
23716 @<Record a label in a lig/kern subprogram and |goto continue|@>;
23718 if ( mp->cur_cmd==lig_kern_token ) {
23719 @<Compile a ligature/kern command@>;
23721 print_err("Illegal ligtable step");
23722 @.Illegal ligtable step@>
23723 help1("I was looking for `=:' or `kern' here.");
23724 mp_back_error(mp); next_char(mp->nl)=qi(0);
23725 op_byte(mp->nl)=qi(0); rem_byte(mp->nl)=qi(0);
23726 skip_byte(mp->nl)=stop_flag+1; /* this specifies an unconditional stop */
23728 if ( mp->nl==max_tfm_int) mp_fatal_error(mp, "ligtable too large");
23730 if ( mp->cur_cmd==comma ) goto CONTINUE;
23731 if ( skip_byte(mp->nl-1)<stop_flag ) skip_byte(mp->nl-1)=stop_flag;
23736 mp_primitive(mp, "=:",lig_kern_token,0);
23737 @:=:_}{\.{=:} primitive@>
23738 mp_primitive(mp, "=:|",lig_kern_token,1);
23739 @:=:/_}{\.{=:\char'174} primitive@>
23740 mp_primitive(mp, "=:|>",lig_kern_token,5);
23741 @:=:/>_}{\.{=:\char'174>} primitive@>
23742 mp_primitive(mp, "|=:",lig_kern_token,2);
23743 @:=:/_}{\.{\char'174=:} primitive@>
23744 mp_primitive(mp, "|=:>",lig_kern_token,6);
23745 @:=:/>_}{\.{\char'174=:>} primitive@>
23746 mp_primitive(mp, "|=:|",lig_kern_token,3);
23747 @:=:/_}{\.{\char'174=:\char'174} primitive@>
23748 mp_primitive(mp, "|=:|>",lig_kern_token,7);
23749 @:=:/>_}{\.{\char'174=:\char'174>} primitive@>
23750 mp_primitive(mp, "|=:|>>",lig_kern_token,11);
23751 @:=:/>_}{\.{\char'174=:\char'174>>} primitive@>
23752 mp_primitive(mp, "kern",lig_kern_token,128);
23753 @:kern_}{\&{kern} primitive@>
23755 @ @<Cases of |print_cmd...@>=
23756 case lig_kern_token:
23758 case 0:mp_print(mp, "=:"); break;
23759 case 1:mp_print(mp, "=:|"); break;
23760 case 2:mp_print(mp, "|=:"); break;
23761 case 3:mp_print(mp, "|=:|"); break;
23762 case 5:mp_print(mp, "=:|>"); break;
23763 case 6:mp_print(mp, "|=:>"); break;
23764 case 7:mp_print(mp, "|=:|>"); break;
23765 case 11:mp_print(mp, "|=:|>>"); break;
23766 default: mp_print(mp, "kern"); break;
23770 @ Local labels are implemented by maintaining the |skip_table| array,
23771 where |skip_table[c]| is either |undefined_label| or the address of the
23772 most recent lig/kern instruction that skips to local label~|c|. In the
23773 latter case, the |skip_byte| in that instruction will (temporarily)
23774 be zero if there were no prior skips to this label, or it will be the
23775 distance to the prior skip.
23777 We may need to cancel skips that span more than 127 lig/kern steps.
23779 @d cancel_skips(A) mp->ll=(A);
23781 mp->lll=qo(skip_byte(mp->ll));
23782 skip_byte(mp->ll)=stop_flag; mp->ll=mp->ll-mp->lll;
23783 } while (mp->lll!=0)
23784 @d skip_error(A) { print_err("Too far to skip");
23785 @.Too far to skip@>
23786 help1("At most 127 lig/kern steps can separate skipto1 from 1::.");
23787 mp_error(mp); cancel_skips((A));
23790 @<Process a |skip_to| command and |goto done|@>=
23793 if ( mp->nl-mp->skip_table[c]>128 ) { /* |skip_table[c]<<nl<=undefined_label| */
23794 skip_error(mp->skip_table[c]); mp->skip_table[c]=undefined_label;
23796 if ( mp->skip_table[c]==undefined_label ) skip_byte(mp->nl-1)=qi(0);
23797 else skip_byte(mp->nl-1)=qi(mp->nl-mp->skip_table[c]-1);
23798 mp->skip_table[c]=mp->nl-1; goto DONE;
23801 @ @<Record a label in a lig/kern subprogram and |goto continue|@>=
23803 if ( mp->cur_cmd==colon ) {
23804 if ( c==256 ) mp->bch_label=mp->nl;
23805 else mp_set_tag(mp, c,lig_tag,mp->nl);
23806 } else if ( mp->skip_table[c]<undefined_label ) {
23807 mp->ll=mp->skip_table[c]; mp->skip_table[c]=undefined_label;
23809 mp->lll=qo(skip_byte(mp->ll));
23810 if ( mp->nl-mp->ll>128 ) {
23811 skip_error(mp->ll); goto CONTINUE;
23813 skip_byte(mp->ll)=qi(mp->nl-mp->ll-1); mp->ll=mp->ll-mp->lll;
23814 } while (mp->lll!=0);
23819 @ @<Compile a ligature/kern...@>=
23821 next_char(mp->nl)=qi(c); skip_byte(mp->nl)=qi(0);
23822 if ( mp->cur_mod<128 ) { /* ligature op */
23823 op_byte(mp->nl)=qi(mp->cur_mod); rem_byte(mp->nl)=qi(mp_get_code(mp));
23825 mp_get_x_next(mp); mp_scan_expression(mp);
23826 if ( mp->cur_type!=mp_known ) {
23827 exp_err("Improper kern");
23829 help2("The amount of kern should be a known numeric value.")
23830 ("I'm zeroing this one. Proceed, with fingers crossed.");
23831 mp_put_get_flush_error(mp, 0);
23833 mp->kern[mp->nk]=mp->cur_exp;
23835 while ( mp->kern[k]!=mp->cur_exp ) incr(k);
23837 if ( mp->nk==max_tfm_int ) mp_fatal_error(mp, "too many TFM kerns");
23840 op_byte(mp->nl)=kern_flag+(k / 256);
23841 rem_byte(mp->nl)=qi((k % 256));
23843 mp->lk_started=true;
23846 @ @d missing_extensible_punctuation(A)
23847 { mp_missing_err(mp, (A));
23848 @.Missing `\char`\#'@>
23849 help1("I'm processing `extensible c: t,m,b,r'."); mp_back_error(mp);
23852 @<Define an extensible recipe@>=
23854 if ( mp->ne==256 ) mp_fatal_error(mp, "too many extensible recipies");
23855 c=mp_get_code(mp); mp_set_tag(mp, c,ext_tag,mp->ne);
23856 if ( mp->cur_cmd!=colon ) missing_extensible_punctuation(":");
23857 ext_top(mp->ne)=qi(mp_get_code(mp));
23858 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23859 ext_mid(mp->ne)=qi(mp_get_code(mp));
23860 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23861 ext_bot(mp->ne)=qi(mp_get_code(mp));
23862 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23863 ext_rep(mp->ne)=qi(mp_get_code(mp));
23867 @ The header could contain ASCII zeroes, so can't use |strdup|.
23869 @<Store a list of header bytes@>=
23871 if ( j>=mp->header_size ) {
23872 int l = mp->header_size + (mp->header_size >> 2);
23873 char *t = xmalloc(l,sizeof(char));
23875 memcpy(t,mp->header_byte,mp->header_size);
23876 xfree (mp->header_byte);
23877 mp->header_byte = t;
23878 mp->header_size = l;
23880 mp->header_byte[j]=mp_get_code(mp);
23881 incr(j); incr(mp->header_last);
23882 } while (mp->cur_cmd==comma)
23884 @ @<Store a list of font dimensions@>=
23886 if ( j>max_tfm_int ) mp_fatal_error(mp, "too many fontdimens");
23887 while ( j>mp->np ) { incr(mp->np); mp->param[mp->np]=0; };
23888 mp_get_x_next(mp); mp_scan_expression(mp);
23889 if ( mp->cur_type!=mp_known ){
23890 exp_err("Improper font parameter");
23891 @.Improper font parameter@>
23892 help1("I'm zeroing this one. Proceed, with fingers crossed.");
23893 mp_put_get_flush_error(mp, 0);
23895 mp->param[j]=mp->cur_exp; incr(j);
23896 } while (mp->cur_cmd==comma)
23898 @ OK: We've stored all the data that is needed for the \.{TFM} file.
23899 All that remains is to output it in the correct format.
23901 An interesting problem needs to be solved in this connection, because
23902 the \.{TFM} format allows at most 256~widths, 16~heights, 16~depths,
23903 and 64~italic corrections. If the data has more distinct values than
23904 this, we want to meet the necessary restrictions by perturbing the
23905 given values as little as possible.
23907 \MP\ solves this problem in two steps. First the values of a given
23908 kind (widths, heights, depths, or italic corrections) are sorted;
23909 then the list of sorted values is perturbed, if necessary.
23911 The sorting operation is facilitated by having a special node of
23912 essentially infinite |value| at the end of the current list.
23914 @<Initialize table entries...@>=
23915 value(inf_val)=fraction_four;
23917 @ Straight linear insertion is good enough for sorting, since the lists
23918 are usually not terribly long. As we work on the data, the current list
23919 will start at |link(temp_head)| and end at |inf_val|; the nodes in this
23920 list will be in increasing order of their |value| fields.
23922 Given such a list, the |sort_in| function takes a value and returns a pointer
23923 to where that value can be found in the list. The value is inserted in
23924 the proper place, if necessary.
23926 At the time we need to do these operations, most of \MP's work has been
23927 completed, so we will have plenty of memory to play with. The value nodes
23928 that are allocated for sorting will never be returned to free storage.
23930 @d clear_the_list link(temp_head)=inf_val
23932 @c pointer mp_sort_in (MP mp,scaled v) {
23933 pointer p,q,r; /* list manipulation registers */
23937 if ( v<=value(q) ) break;
23940 if ( v<value(q) ) {
23941 r=mp_get_node(mp, value_node_size); value(r)=v; link(r)=q; link(p)=r;
23946 @ Now we come to the interesting part, where we reduce the list if necessary
23947 until it has the required size. The |min_cover| routine is basic to this
23948 process; it computes the minimum number~|m| such that the values of the
23949 current sorted list can be covered by |m|~intervals of width~|d|. It
23950 also sets the global value |perturbation| to the smallest value $d'>d$
23951 such that the covering found by this algorithm would be different.
23953 In particular, |min_cover(0)| returns the number of distinct values in the
23954 current list and sets |perturbation| to the minimum distance between
23957 @c integer mp_min_cover (MP mp,scaled d) {
23958 pointer p; /* runs through the current list */
23959 scaled l; /* the least element covered by the current interval */
23960 integer m; /* lower bound on the size of the minimum cover */
23961 m=0; p=link(temp_head); mp->perturbation=el_gordo;
23962 while ( p!=inf_val ){
23963 incr(m); l=value(p);
23964 do { p=link(p); } while (value(p)<=l+d);
23965 if ( value(p)-l<mp->perturbation )
23966 mp->perturbation=value(p)-l;
23972 scaled perturbation; /* quantity related to \.{TFM} rounding */
23973 integer excess; /* the list is this much too long */
23975 @ The smallest |d| such that a given list can be covered with |m| intervals
23976 is determined by the |threshold| routine, which is sort of an inverse
23977 to |min_cover|. The idea is to increase the interval size rapidly until
23978 finding the range, then to go sequentially until the exact borderline has
23981 @c scaled mp_threshold (MP mp,integer m) {
23982 scaled d; /* lower bound on the smallest interval size */
23983 mp->excess=mp_min_cover(mp, 0)-m;
23984 if ( mp->excess<=0 ) {
23988 d=mp->perturbation;
23989 } while (mp_min_cover(mp, d+d)>m);
23990 while ( mp_min_cover(mp, d)>m )
23991 d=mp->perturbation;
23996 @ The |skimp| procedure reduces the current list to at most |m| entries,
23997 by changing values if necessary. It also sets |info(p):=k| if |value(p)|
23998 is the |k|th distinct value on the resulting list, and it sets
23999 |perturbation| to the maximum amount by which a |value| field has
24000 been changed. The size of the resulting list is returned as the
24003 @c integer mp_skimp (MP mp,integer m) {
24004 scaled d; /* the size of intervals being coalesced */
24005 pointer p,q,r; /* list manipulation registers */
24006 scaled l; /* the least value in the current interval */
24007 scaled v; /* a compromise value */
24008 d=mp_threshold(mp, m); mp->perturbation=0;
24009 q=temp_head; m=0; p=link(temp_head);
24010 while ( p!=inf_val ) {
24011 incr(m); l=value(p); info(p)=m;
24012 if ( value(link(p))<=l+d ) {
24013 @<Replace an interval of values by its midpoint@>;
24020 @ @<Replace an interval...@>=
24023 p=link(p); info(p)=m;
24024 decr(mp->excess); if ( mp->excess==0 ) d=0;
24025 } while (value(link(p))<=l+d);
24026 v=l+halfp(value(p)-l);
24027 if ( value(p)-v>mp->perturbation )
24028 mp->perturbation=value(p)-v;
24031 r=link(r); value(r)=v;
24033 link(q)=p; /* remove duplicate values from the current list */
24036 @ A warning message is issued whenever something is perturbed by
24037 more than 1/16\thinspace pt.
24039 @c void mp_tfm_warning (MP mp,small_number m) {
24040 mp_print_nl(mp, "(some ");
24041 mp_print(mp, mp->int_name[m]);
24042 @.some charwds...@>
24043 @.some chardps...@>
24044 @.some charhts...@>
24045 @.some charics...@>
24046 mp_print(mp, " values had to be adjusted by as much as ");
24047 mp_print_scaled(mp, mp->perturbation); mp_print(mp, "pt)");
24050 @ Here's an example of how we use these routines.
24051 The width data needs to be perturbed only if there are 256 distinct
24052 widths, but \MP\ must check for this case even though it is
24055 An integer variable |k| will be defined when we use this code.
24056 The |dimen_head| array will contain pointers to the sorted
24057 lists of dimensions.
24059 @<Massage the \.{TFM} widths@>=
24061 for (k=mp->bc;k<=mp->ec;k++) {
24062 if ( mp->char_exists[k] )
24063 mp->tfm_width[k]=mp_sort_in(mp, mp->tfm_width[k]);
24065 mp->nw=mp_skimp(mp, 255)+1; mp->dimen_head[1]=link(temp_head);
24066 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_wd)
24069 pointer dimen_head[5]; /* lists of \.{TFM} dimensions */
24071 @ Heights, depths, and italic corrections are different from widths
24072 not only because their list length is more severely restricted, but
24073 also because zero values do not need to be put into the lists.
24075 @<Massage the \.{TFM} heights, depths, and italic corrections@>=
24077 for (k=mp->bc;k<=mp->ec;k++) {
24078 if ( mp->char_exists[k] ) {
24079 if ( mp->tfm_height[k]==0 ) mp->tfm_height[k]=zero_val;
24080 else mp->tfm_height[k]=mp_sort_in(mp, mp->tfm_height[k]);
24083 mp->nh=mp_skimp(mp, 15)+1; mp->dimen_head[2]=link(temp_head);
24084 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ht);
24086 for (k=mp->bc;k<=mp->ec;k++) {
24087 if ( mp->char_exists[k] ) {
24088 if ( mp->tfm_depth[k]==0 ) mp->tfm_depth[k]=zero_val;
24089 else mp->tfm_depth[k]=mp_sort_in(mp, mp->tfm_depth[k]);
24092 mp->nd=mp_skimp(mp, 15)+1; mp->dimen_head[3]=link(temp_head);
24093 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_dp);
24095 for (k=mp->bc;k<=mp->ec;k++) {
24096 if ( mp->char_exists[k] ) {
24097 if ( mp->tfm_ital_corr[k]==0 ) mp->tfm_ital_corr[k]=zero_val;
24098 else mp->tfm_ital_corr[k]=mp_sort_in(mp, mp->tfm_ital_corr[k]);
24101 mp->ni=mp_skimp(mp, 63)+1; mp->dimen_head[4]=link(temp_head);
24102 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ic)
24104 @ @<Initialize table entries...@>=
24105 value(zero_val)=0; info(zero_val)=0;
24107 @ Bytes 5--8 of the header are set to the design size, unless the user has
24108 some crazy reason for specifying them differently.
24110 Error messages are not allowed at the time this procedure is called,
24111 so a warning is printed instead.
24113 The value of |max_tfm_dimen| is calculated so that
24114 $$\hbox{|make_scaled(16*max_tfm_dimen,internal[mp_design_size])|}
24115 < \\{three\_bytes}.$$
24117 @d three_bytes 0100000000 /* $2^{24}$ */
24120 void mp_fix_design_size (MP mp) {
24121 scaled d; /* the design size */
24122 d=mp->internal[mp_design_size];
24123 if ( (d<unity)||(d>=fraction_half) ) {
24125 mp_print_nl(mp, "(illegal design size has been changed to 128pt)");
24126 @.illegal design size...@>
24127 d=040000000; mp->internal[mp_design_size]=d;
24129 if ( mp->header_byte[4]<0 ) if ( mp->header_byte[5]<0 )
24130 if ( mp->header_byte[6]<0 ) if ( mp->header_byte[7]<0 ) {
24131 mp->header_byte[4]=d / 04000000;
24132 mp->header_byte[5]=(d / 4096) % 256;
24133 mp->header_byte[6]=(d / 16) % 256;
24134 mp->header_byte[7]=(d % 16)*16;
24136 mp->max_tfm_dimen=16*mp->internal[mp_design_size]-mp->internal[mp_design_size] / 010000000;
24137 if ( mp->max_tfm_dimen>=fraction_half ) mp->max_tfm_dimen=fraction_half-1;
24140 @ The |dimen_out| procedure computes a |fix_word| relative to the
24141 design size. If the data was out of range, it is corrected and the
24142 global variable |tfm_changed| is increased by~one.
24144 @c integer mp_dimen_out (MP mp,scaled x) {
24145 if ( abs(x)>mp->max_tfm_dimen ) {
24146 incr(mp->tfm_changed);
24147 if ( x>0 ) x=three_bytes-1; else x=1-three_bytes;
24149 x=mp_make_scaled(mp, x*16,mp->internal[mp_design_size]);
24155 scaled max_tfm_dimen; /* bound on widths, heights, kerns, etc. */
24156 integer tfm_changed; /* the number of data entries that were out of bounds */
24158 @ If the user has not specified any of the first four header bytes,
24159 the |fix_check_sum| procedure replaces them by a ``check sum'' computed
24160 from the |tfm_width| data relative to the design size.
24163 @c void mp_fix_check_sum (MP mp) {
24164 eight_bits k; /* runs through character codes */
24165 eight_bits B1,B2,B3,B4; /* bytes of the check sum */
24166 integer x; /* hash value used in check sum computation */
24167 if ( mp->header_byte[0]==0 && mp->header_byte[1]==0 &&
24168 mp->header_byte[2]==0 && mp->header_byte[3]==0 ) {
24169 @<Compute a check sum in |(b1,b2,b3,b4)|@>;
24170 mp->header_byte[0]=B1; mp->header_byte[1]=B2;
24171 mp->header_byte[2]=B3; mp->header_byte[3]=B4;
24176 @ @<Compute a check sum in |(b1,b2,b3,b4)|@>=
24177 B1=mp->bc; B2=mp->ec; B3=mp->bc; B4=mp->ec; mp->tfm_changed=0;
24178 for (k=mp->bc;k<=mp->ec;k++) {
24179 if ( mp->char_exists[k] ) {
24180 x=mp_dimen_out(mp, value(mp->tfm_width[k]))+(k+4)*020000000; /* this is positive */
24181 B1=(B1+B1+x) % 255;
24182 B2=(B2+B2+x) % 253;
24183 B3=(B3+B3+x) % 251;
24184 B4=(B4+B4+x) % 247;
24188 @ Finally we're ready to actually write the \.{TFM} information.
24189 Here are some utility routines for this purpose.
24191 @d tfm_out(A) fputc((A),mp->tfm_file) /* output one byte to |tfm_file| */
24193 @c void mp_tfm_two (MP mp,integer x) { /* output two bytes to |tfm_file| */
24194 tfm_out(x / 256); tfm_out(x % 256);
24196 void mp_tfm_four (MP mp,integer x) { /* output four bytes to |tfm_file| */
24197 if ( x>=0 ) tfm_out(x / three_bytes);
24199 x=x+010000000000; /* use two's complement for negative values */
24201 tfm_out((x / three_bytes) + 128);
24203 x=x % three_bytes; tfm_out(x / unity);
24204 x=x % unity; tfm_out(x / 0400);
24207 void mp_tfm_qqqq (MP mp,four_quarters x) { /* output four quarterwords to |tfm_file| */
24208 tfm_out(qo(x.b0)); tfm_out(qo(x.b1));
24209 tfm_out(qo(x.b2)); tfm_out(qo(x.b3));
24212 @ @<Finish the \.{TFM} file@>=
24213 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24214 mp_pack_job_name(mp, ".tfm");
24215 while ( ! mp_b_open_out(mp, &mp->tfm_file, mp_filetype_metrics) )
24216 mp_prompt_file_name(mp, "file name for font metrics",".tfm");
24217 mp->metric_file_name=xstrdup(mp->name_of_file);
24218 @<Output the subfile sizes and header bytes@>;
24219 @<Output the character information bytes, then
24220 output the dimensions themselves@>;
24221 @<Output the ligature/kern program@>;
24222 @<Output the extensible character recipes and the font metric parameters@>;
24223 if ( mp->internal[mp_tracing_stats]>0 )
24224 @<Log the subfile sizes of the \.{TFM} file@>;
24225 mp_print_nl(mp, "Font metrics written on ");
24226 mp_print(mp, mp->metric_file_name); mp_print_char(mp, '.');
24227 @.Font metrics written...@>
24228 fclose(mp->tfm_file)
24230 @ Integer variables |lh|, |k|, and |lk_offset| will be defined when we use
24233 @<Output the subfile sizes and header bytes@>=
24235 LH=(k+3) / 4; /* this is the number of header words */
24236 if ( mp->bc>mp->ec ) mp->bc=1; /* if there are no characters, |ec=0| and |bc=1| */
24237 @<Compute the ligature/kern program offset and implant the
24238 left boundary label@>;
24239 mp_tfm_two(mp,6+LH+(mp->ec-mp->bc+1)+mp->nw+mp->nh+mp->nd+mp->ni+mp->nl
24240 +lk_offset+mp->nk+mp->ne+mp->np);
24241 /* this is the total number of file words that will be output */
24242 mp_tfm_two(mp, LH); mp_tfm_two(mp, mp->bc); mp_tfm_two(mp, mp->ec);
24243 mp_tfm_two(mp, mp->nw); mp_tfm_two(mp, mp->nh);
24244 mp_tfm_two(mp, mp->nd); mp_tfm_two(mp, mp->ni); mp_tfm_two(mp, mp->nl+lk_offset);
24245 mp_tfm_two(mp, mp->nk); mp_tfm_two(mp, mp->ne);
24246 mp_tfm_two(mp, mp->np);
24247 for (k=0;k< 4*LH;k++) {
24248 tfm_out(mp->header_byte[k]);
24251 @ @<Output the character information bytes...@>=
24252 for (k=mp->bc;k<=mp->ec;k++) {
24253 if ( ! mp->char_exists[k] ) {
24254 mp_tfm_four(mp, 0);
24256 tfm_out(info(mp->tfm_width[k])); /* the width index */
24257 tfm_out((info(mp->tfm_height[k]))*16+info(mp->tfm_depth[k]));
24258 tfm_out((info(mp->tfm_ital_corr[k]))*4+mp->char_tag[k]);
24259 tfm_out(mp->char_remainder[k]);
24263 for (k=1;k<=4;k++) {
24264 mp_tfm_four(mp, 0); p=mp->dimen_head[k];
24265 while ( p!=inf_val ) {
24266 mp_tfm_four(mp, mp_dimen_out(mp, value(p))); p=link(p);
24271 @ We need to output special instructions at the beginning of the
24272 |lig_kern| array in order to specify the right boundary character
24273 and/or to handle starting addresses that exceed 255. The |label_loc|
24274 and |label_char| arrays have been set up to record all the
24275 starting addresses; we have $-1=|label_loc|[0]<|label_loc|[1]\le\cdots
24276 \le|label_loc|[|label_ptr]|$.
24278 @<Compute the ligature/kern program offset...@>=
24279 mp->bchar=mp_round_unscaled(mp, mp->internal[mp_boundary_char]);
24280 if ((mp->bchar<0)||(mp->bchar>255))
24281 { mp->bchar=-1; mp->lk_started=false; lk_offset=0; }
24282 else { mp->lk_started=true; lk_offset=1; };
24283 @<Find the minimum |lk_offset| and adjust all remainders@>;
24284 if ( mp->bch_label<undefined_label )
24285 { skip_byte(mp->nl)=qi(255); next_char(mp->nl)=qi(0);
24286 op_byte(mp->nl)=qi(((mp->bch_label+lk_offset)/ 256));
24287 rem_byte(mp->nl)=qi(((mp->bch_label+lk_offset)% 256));
24288 incr(mp->nl); /* possibly |nl=lig_table_size+1| */
24291 @ @<Find the minimum |lk_offset|...@>=
24292 k=mp->label_ptr; /* pointer to the largest unallocated label */
24293 if ( mp->label_loc[k]+lk_offset>255 ) {
24294 lk_offset=0; mp->lk_started=false; /* location 0 can do double duty */
24296 mp->char_remainder[mp->label_char[k]]=lk_offset;
24297 while ( mp->label_loc[k-1]==mp->label_loc[k] ) {
24298 decr(k); mp->char_remainder[mp->label_char[k]]=lk_offset;
24300 incr(lk_offset); decr(k);
24301 } while (! (lk_offset+mp->label_loc[k]<256));
24302 /* N.B.: |lk_offset=256| satisfies this when |k=0| */
24304 if ( lk_offset>0 ) {
24306 mp->char_remainder[mp->label_char[k]]
24307 =mp->char_remainder[mp->label_char[k]]+lk_offset;
24312 @ @<Output the ligature/kern program@>=
24313 for (k=0;k<= 255;k++ ) {
24314 if ( mp->skip_table[k]<undefined_label ) {
24315 mp_print_nl(mp, "(local label "); mp_print_int(mp, k); mp_print(mp, ":: was missing)");
24316 @.local label l:: was missing@>
24317 cancel_skips(mp->skip_table[k]);
24320 if ( mp->lk_started ) { /* |lk_offset=1| for the special |bchar| */
24321 tfm_out(255); tfm_out(mp->bchar); mp_tfm_two(mp, 0);
24323 for (k=1;k<=lk_offset;k++) {/* output the redirection specs */
24324 mp->ll=mp->label_loc[mp->label_ptr];
24325 if ( mp->bchar<0 ) { tfm_out(254); tfm_out(0); }
24326 else { tfm_out(255); tfm_out(mp->bchar); };
24327 mp_tfm_two(mp, mp->ll+lk_offset);
24329 decr(mp->label_ptr);
24330 } while (! (mp->label_loc[mp->label_ptr]<mp->ll));
24333 for (k=0;k<=mp->nl-1;k++) mp_tfm_qqqq(mp, mp->lig_kern[k]);
24334 for (k=0;k<=mp->nk-1;k++) mp_tfm_four(mp, mp_dimen_out(mp, mp->kern[k]))
24336 @ @<Output the extensible character recipes...@>=
24337 for (k=0;k<=mp->ne-1;k++)
24338 mp_tfm_qqqq(mp, mp->exten[k]);
24339 for (k=1;k<=mp->np;k++) {
24341 if ( abs(mp->param[1])<fraction_half ) {
24342 mp_tfm_four(mp, mp->param[1]*16);
24344 incr(mp->tfm_changed);
24345 if ( mp->param[1]>0 ) mp_tfm_four(mp, el_gordo);
24346 else mp_tfm_four(mp, -el_gordo);
24349 mp_tfm_four(mp, mp_dimen_out(mp, mp->param[k]));
24352 if ( mp->tfm_changed>0 ) {
24353 if ( mp->tfm_changed==1 ) mp_print_nl(mp, "(a font metric dimension");
24354 @.a font metric dimension...@>
24356 mp_print_nl(mp, "("); mp_print_int(mp, mp->tfm_changed);
24357 @.font metric dimensions...@>
24358 mp_print(mp, " font metric dimensions");
24360 mp_print(mp, " had to be decreased)");
24363 @ @<Log the subfile sizes of the \.{TFM} file@>=
24367 if ( mp->bch_label<undefined_label ) decr(mp->nl);
24368 snprintf(s,128,"(You used %iw,%ih,%id,%ii,%il,%ik,%ie,%ip metric file positions)",
24369 mp->nw, mp->nh, mp->nd, mp->ni, mp->nl, mp->nk, mp->ne,mp->np);
24373 @* \[43] Reading font metric data.
24375 \MP\ isn't a typesetting program but it does need to find the bounding box
24376 of a sequence of typeset characters. Thus it needs to read \.{TFM} files as
24377 well as write them.
24382 @ All the width, height, and depth information is stored in an array called
24383 |font_info|. This array is allocated sequentially and each font is stored
24384 as a series of |char_info| words followed by the width, height, and depth
24385 tables. Since |font_name| entries are permanent, their |str_ref| values are
24386 set to |max_str_ref|.
24389 typedef unsigned int font_number; /* |0..font_max| */
24391 @ The |font_info| array is indexed via a group directory arrays.
24392 For example, the |char_info| data for character~|c| in font~|f| will be
24393 in |font_info[char_base[f]+c].qqqq|.
24396 font_number font_max; /* maximum font number for included text fonts */
24397 size_t font_mem_size; /* number of words for \.{TFM} information for text fonts */
24398 memory_word *font_info; /* height, width, and depth data */
24399 char **font_enc_name; /* encoding names, if any */
24400 boolean *font_ps_name_fixed; /* are the postscript names fixed already? */
24401 int next_fmem; /* next unused entry in |font_info| */
24402 font_number last_fnum; /* last font number used so far */
24403 scaled *font_dsize; /* 16 times the ``design'' size in \ps\ points */
24404 char **font_name; /* name as specified in the \&{infont} command */
24405 char **font_ps_name; /* PostScript name for use when |internal[mp_prologues]>0| */
24406 font_number last_ps_fnum; /* last valid |font_ps_name| index */
24407 eight_bits *font_bc;
24408 eight_bits *font_ec; /* first and last character code */
24409 int *char_base; /* base address for |char_info| */
24410 int *width_base; /* index for zeroth character width */
24411 int *height_base; /* index for zeroth character height */
24412 int *depth_base; /* index for zeroth character depth */
24413 pointer *font_sizes;
24415 @ @<Allocate or initialize ...@>=
24416 mp->font_mem_size = 10000;
24417 mp->font_info = xmalloc ((mp->font_mem_size+1),sizeof(memory_word));
24418 memset (mp->font_info,0,sizeof(memory_word)*(mp->font_mem_size+1));
24419 mp->font_enc_name = NULL;
24420 mp->font_ps_name_fixed = NULL;
24421 mp->font_dsize = NULL;
24422 mp->font_name = NULL;
24423 mp->font_ps_name = NULL;
24424 mp->font_bc = NULL;
24425 mp->font_ec = NULL;
24426 mp->last_fnum = null_font;
24427 mp->char_base = NULL;
24428 mp->width_base = NULL;
24429 mp->height_base = NULL;
24430 mp->depth_base = NULL;
24431 mp->font_sizes = null;
24433 @ @<Dealloc variables@>=
24434 xfree(mp->font_info);
24435 xfree(mp->font_enc_name);
24436 xfree(mp->font_ps_name_fixed);
24437 xfree(mp->font_dsize);
24438 xfree(mp->font_name);
24439 xfree(mp->font_ps_name);
24440 xfree(mp->font_bc);
24441 xfree(mp->font_ec);
24442 xfree(mp->char_base);
24443 xfree(mp->width_base);
24444 xfree(mp->height_base);
24445 xfree(mp->depth_base);
24446 xfree(mp->font_sizes);
24450 void mp_reallocate_fonts (MP mp, font_number l) {
24452 XREALLOC(mp->font_enc_name, l, char *);
24453 XREALLOC(mp->font_ps_name_fixed, l, boolean);
24454 XREALLOC(mp->font_dsize, l, scaled);
24455 XREALLOC(mp->font_name, l, char *);
24456 XREALLOC(mp->font_ps_name, l, char *);
24457 XREALLOC(mp->font_bc, l, eight_bits);
24458 XREALLOC(mp->font_ec, l, eight_bits);
24459 XREALLOC(mp->char_base, l, int);
24460 XREALLOC(mp->width_base, l, int);
24461 XREALLOC(mp->height_base, l, int);
24462 XREALLOC(mp->depth_base, l, int);
24463 XREALLOC(mp->font_sizes, l, pointer);
24464 for (f=(mp->last_fnum+1);f<=l;f++) {
24465 mp->font_enc_name[f]=NULL;
24466 mp->font_ps_name_fixed[f] = false;
24467 mp->font_name[f]=NULL;
24468 mp->font_ps_name[f]=NULL;
24469 mp->font_sizes[f]=null;
24474 @ @<Declare |mp_reallocate| functions@>=
24475 void mp_reallocate_fonts (MP mp, font_number l);
24478 @ A |null_font| containing no characters is useful for error recovery. Its
24479 |font_name| entry starts out empty but is reset each time an erroneous font is
24480 found. This helps to cut down on the number of duplicate error messages without
24481 wasting a lot of space.
24483 @d null_font 0 /* the |font_number| for an empty font */
24485 @<Set initial...@>=
24486 mp->font_dsize[null_font]=0;
24487 mp->font_bc[null_font]=1;
24488 mp->font_ec[null_font]=0;
24489 mp->char_base[null_font]=0;
24490 mp->width_base[null_font]=0;
24491 mp->height_base[null_font]=0;
24492 mp->depth_base[null_font]=0;
24494 mp->last_fnum=null_font;
24495 mp->last_ps_fnum=null_font;
24496 mp->font_name[null_font]="nullfont";
24497 mp->font_ps_name[null_font]="";
24499 @ Each |char_info| word is of type |four_quarters|. The |b0| field contains
24500 the |width index|; the |b1| field contains the height
24501 index; the |b2| fields contains the depth index, and the |b3| field used only
24502 for temporary storage. (It is used to keep track of which characters occur in
24503 an edge structure that is being shipped out.)
24504 The corresponding words in the width, height, and depth tables are stored as
24505 |scaled| values in units of \ps\ points.
24507 With the macros below, the |char_info| word for character~|c| in font~|f| is
24508 |char_info(f)(c)| and the width is
24509 $$\hbox{|char_width(f)(char_info(f)(c)).sc|.}$$
24511 @d char_info_end(A) (A)].qqqq
24512 @d char_info(A) mp->font_info[mp->char_base[(A)]+char_info_end
24513 @d char_width_end(A) (A).b0].sc
24514 @d char_width(A) mp->font_info[mp->width_base[(A)]+char_width_end
24515 @d char_height_end(A) (A).b1].sc
24516 @d char_height(A) mp->font_info[mp->height_base[(A)]+char_height_end
24517 @d char_depth_end(A) (A).b2].sc
24518 @d char_depth(A) mp->font_info[mp->depth_base[(A)]+char_depth_end
24519 @d ichar_exists(A) ((A).b0>0)
24521 @ The |font_ps_name| for a built-in font should be what PostScript expects.
24522 A preliminary name is obtained here from the \.{TFM} name as given in the
24523 |fname| argument. This gets updated later from an external table if necessary.
24525 @<Declare text measuring subroutines@>=
24526 @<Declare subroutines for parsing file names@>;
24527 font_number mp_read_font_info (MP mp, char*fname) {
24528 boolean file_opened; /* has |tfm_infile| been opened? */
24529 font_number n; /* the number to return */
24530 halfword lf,tfm_lh,bc,ec,nw,nh,nd; /* subfile size parameters */
24531 size_t whd_size; /* words needed for heights, widths, and depths */
24532 int i,ii; /* |font_info| indices */
24533 int jj; /* counts bytes to be ignored */
24534 scaled z; /* used to compute the design size */
24536 /* height, width, or depth as a fraction of design size times $2^{-8}$ */
24537 eight_bits h_and_d; /* height and depth indices being unpacked */
24538 int tfbyte; /* a byte read from the file */
24540 @<Open |tfm_infile| for input@>;
24541 @<Read data from |tfm_infile|; if there is no room, say so and |goto done|;
24542 otherwise |goto bad_tfm| or |goto done| as appropriate@>;
24544 @<Complain that the \.{TFM} file is bad@>;
24546 if ( file_opened ) fclose(mp->tfm_infile);
24547 if ( n!=null_font ) {
24548 mp->font_ps_name[n]=fname;
24549 mp->font_name[n]=fname;
24554 @ \MP\ doesn't bother to check the entire \.{TFM} file for errors or explain
24555 precisely what is wrong if it does find a problem. Programs called \.{TFtoPL}
24556 @.TFtoPL@> @.PLtoTF@>
24557 and \.{PLtoTF} can be used to debug \.{TFM} files.
24559 @<Complain that the \.{TFM} file is bad@>=
24560 print_err("Font ");
24561 mp_print(mp, fname);
24562 if ( file_opened ) mp_print(mp, " not usable: TFM file is bad");
24563 else mp_print(mp, " not usable: TFM file not found");
24564 help3("I wasn't able to read the size data for this font so this")
24565 ("`infont' operation won't produce anything. If the font name")
24566 ("is right, you might ask an expert to make a TFM file");
24568 mp->help_line[0]="is right, try asking an expert to fix the TFM file";
24571 @ @<Read data from |tfm_infile|; if there is no room, say so...@>=
24572 @<Read the \.{TFM} size fields@>;
24573 @<Use the size fields to allocate space in |font_info|@>;
24574 @<Read the \.{TFM} header@>;
24575 @<Read the character data and the width, height, and depth tables and
24578 @ A bad \.{TFM} file can be shorter than it claims to be. The code given here
24579 might try to read past the end of the file if this happens. Changes will be
24580 needed if it causes a system error to refer to |tfm_infile^| or call
24581 |get_tfm_infile| when |eof(tfm_infile)| is true. For example, the definition
24582 @^system dependencies@>
24583 of |tfget| could be changed to
24584 ``|begin get(tfm_infile); if eof(tfm_infile) then goto bad_tfm; end|.''
24586 @d tfget {tfbyte = fgetc(mp->tfm_infile); }
24587 @d read_two(A) { (A)=tfbyte;
24588 if ( (A)>127 ) goto BAD_TFM;
24589 tfget; (A)=(A)*0400+tfbyte;
24591 @d tf_ignore(A) { for (jj=(A);jj>=1;jj--) tfget; }
24593 @<Read the \.{TFM} size fields@>=
24594 tfget; read_two(lf);
24595 tfget; read_two(tfm_lh);
24596 tfget; read_two(bc);
24597 tfget; read_two(ec);
24598 if ( (bc>1+ec)||(ec>255) ) goto BAD_TFM;
24599 tfget; read_two(nw);
24600 tfget; read_two(nh);
24601 tfget; read_two(nd);
24602 whd_size=(ec+1-bc)+nw+nh+nd;
24603 if ( lf<(int)(6+tfm_lh+whd_size) ) goto BAD_TFM;
24606 @ Offsets are added to |char_base[n]| and |width_base[n]| so that is not
24607 necessary to apply the |so| and |qo| macros when looking up the width of a
24608 character in the string pool. In order to ensure nonnegative |char_base|
24609 values when |bc>0|, it may be necessary to reserve a few unused |font_info|
24612 @<Use the size fields to allocate space in |font_info|@>=
24613 if ( mp->next_fmem<bc) mp->next_fmem=bc; /* ensure nonnegative |char_base| */
24614 if (mp->last_fnum==mp->font_max)
24615 mp_reallocate_fonts(mp,(mp->font_max+(mp->font_max>>2)));
24616 while (mp->next_fmem+whd_size>=mp->font_mem_size) {
24617 size_t l = mp->font_mem_size+(mp->font_mem_size>>2);
24618 memory_word *font_info;
24619 font_info = xmalloc ((l+1),sizeof(memory_word));
24620 memset (font_info,0,sizeof(memory_word)*(l+1));
24621 memcpy (font_info,mp->font_info,sizeof(memory_word)*(mp->font_mem_size+1));
24622 xfree(mp->font_info);
24623 mp->font_info = font_info;
24624 mp->font_mem_size = l;
24626 incr(mp->last_fnum);
24630 mp->char_base[n]=mp->next_fmem-bc;
24631 mp->width_base[n]=mp->next_fmem+ec-bc+1;
24632 mp->height_base[n]=mp->width_base[n]+nw;
24633 mp->depth_base[n]=mp->height_base[n]+nh;
24634 mp->next_fmem=mp->next_fmem+whd_size;
24637 @ @<Read the \.{TFM} header@>=
24638 if ( tfm_lh<2 ) goto BAD_TFM;
24640 tfget; read_two(z);
24641 tfget; z=z*0400+tfbyte;
24642 tfget; z=z*0400+tfbyte; /* now |z| is 16 times the design size */
24643 mp->font_dsize[n]=mp_take_fraction(mp, z,267432584);
24644 /* times ${72\over72.27}2^{28}$ to convert from \TeX\ points */
24645 tf_ignore(4*(tfm_lh-2))
24647 @ @<Read the character data and the width, height, and depth tables...@>=
24648 ii=mp->width_base[n];
24649 i=mp->char_base[n]+bc;
24651 tfget; mp->font_info[i].qqqq.b0=qi(tfbyte);
24652 tfget; h_and_d=tfbyte;
24653 mp->font_info[i].qqqq.b1=h_and_d / 16;
24654 mp->font_info[i].qqqq.b2=h_and_d % 16;
24658 while ( i<mp->next_fmem ) {
24659 @<Read a four byte dimension, scale it by the design size, store it in
24660 |font_info[i]|, and increment |i|@>;
24662 if (feof(mp->tfm_infile) ) goto BAD_TFM;
24665 @ The raw dimension read into |d| should have magnitude at most $2^{24}$ when
24666 interpreted as an integer, and this includes a scale factor of $2^{20}$. Thus
24667 we can multiply it by sixteen and think of it as a |fraction| that has been
24668 divided by sixteen. This cancels the extra scale factor contained in
24671 @<Read a four byte dimension, scale it by the design size, store it in...@>=
24674 if ( d>=0200 ) d=d-0400;
24675 tfget; d=d*0400+tfbyte;
24676 tfget; d=d*0400+tfbyte;
24677 tfget; d=d*0400+tfbyte;
24678 mp->font_info[i].sc=mp_take_fraction(mp, d*16,mp->font_dsize[n]);
24682 @ This function does no longer use the file name parser, because |fname| is
24683 a C string already.
24684 @<Open |tfm_infile| for input@>=
24686 mp_ptr_scan_file(mp, fname);
24687 if ( strlen(mp->cur_area)==0 ) { xfree(mp->cur_area); mp->cur_area=xstrdup(MP_font_area);}
24688 if ( strlen(mp->cur_ext)==0 ) { xfree(mp->cur_ext); mp->cur_ext=xstrdup(".tfm"); }
24690 mp->tfm_infile = mp_open_file(mp, mp->name_of_file, "rb",mp_filetype_metrics);
24691 if ( !mp->tfm_infile ) goto BAD_TFM;
24694 @ When we have a font name and we don't know whether it has been loaded yet,
24695 we scan the |font_name| array before calling |read_font_info|.
24697 @<Declare text measuring subroutines@>=
24698 font_number mp_find_font (MP mp, char *f) {
24700 for (n=0;n<=mp->last_fnum;n++) {
24701 if (mp_xstrcmp(f,mp->font_name[n])==0 )
24704 return mp_read_font_info(mp, f);
24707 @ One simple application of |find_font| is the implementation of the |font_size|
24708 operator that gets the design size for a given font name.
24710 @<Find the design size of the font whose name is |cur_exp|@>=
24711 mp_flush_cur_exp(mp, (mp->font_dsize[mp_find_font(mp, str(mp->cur_exp))]+8) / 16)
24713 @ If we discover that the font doesn't have a requested character, we omit it
24714 from the bounding box computation and expect the \ps\ interpreter to drop it.
24715 This routine issues a warning message if the user has asked for it.
24717 @<Declare text measuring subroutines@>=
24718 void mp_lost_warning (MP mp,font_number f, pool_pointer k) {
24719 if ( mp->internal[mp_tracing_lost_chars]>0 ) {
24720 mp_begin_diagnostic(mp);
24721 if ( mp->selector==log_only ) incr(mp->selector);
24722 mp_print_nl(mp, "Missing character: There is no ");
24723 @.Missing character@>
24724 mp_print_str(mp, mp->str_pool[k]);
24725 mp_print(mp, " in font ");
24726 mp_print(mp, mp->font_name[f]); mp_print_char(mp, '!');
24727 mp_end_diagnostic(mp, false);
24731 @ The whole purpose of saving the height, width, and depth information is to be
24732 able to find the bounding box of an item of text in an edge structure. The
24733 |set_text_box| procedure takes a text node and adds this information.
24735 @<Declare text measuring subroutines@>=
24736 void mp_set_text_box (MP mp,pointer p) {
24737 font_number f; /* |font_n(p)| */
24738 ASCII_code bc,ec; /* range of valid characters for font |f| */
24739 pool_pointer k,kk; /* current character and character to stop at */
24740 four_quarters cc; /* the |char_info| for the current character */
24741 scaled h,d; /* dimensions of the current character */
24743 height_val(p)=-el_gordo;
24744 depth_val(p)=-el_gordo;
24748 kk=str_stop(text_p(p));
24749 k=mp->str_start[text_p(p)];
24751 @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>;
24753 @<Set the height and depth to zero if the bounding box is empty@>;
24756 @ @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>=
24758 if ( (mp->str_pool[k]<bc)||(mp->str_pool[k]>ec) ) {
24759 mp_lost_warning(mp, f,k);
24761 cc=char_info(f)(mp->str_pool[k]);
24762 if ( ! ichar_exists(cc) ) {
24763 mp_lost_warning(mp, f,k);
24765 width_val(p)=width_val(p)+char_width(f)(cc);
24766 h=char_height(f)(cc);
24767 d=char_depth(f)(cc);
24768 if ( h>height_val(p) ) height_val(p)=h;
24769 if ( d>depth_val(p) ) depth_val(p)=d;
24775 @ Let's hope modern compilers do comparisons correctly when the difference would
24778 @<Set the height and depth to zero if the bounding box is empty@>=
24779 if ( height_val(p)<-depth_val(p) ) {
24784 @ The new primitives fontmapfile and fontmapline.
24786 @<Declare action procedures for use by |do_statement|@>=
24787 void mp_do_mapfile (MP mp) ;
24788 void mp_do_mapline (MP mp) ;
24790 @ @c void mp_do_mapfile (MP mp) {
24791 mp_get_x_next(mp); mp_scan_expression(mp);
24792 if ( mp->cur_type!=mp_string_type ) {
24793 @<Complain about improper map operation@>;
24795 mp_map_file(mp,mp->cur_exp);
24798 void mp_do_mapline (MP mp) {
24799 mp_get_x_next(mp); mp_scan_expression(mp);
24800 if ( mp->cur_type!=mp_string_type ) {
24801 @<Complain about improper map operation@>;
24803 mp_map_line(mp,mp->cur_exp);
24807 @ @<Complain about improper map operation@>=
24809 exp_err("Unsuitable expression");
24810 help1("Only known strings can be map files or map lines.");
24811 mp_put_get_error(mp);
24814 @ This is temporary.
24816 @d ps_room(A) mp_ps_room(mp,A)
24818 @ To print |scaled| value to PDF output we need some subroutines to ensure
24821 @d max_integer 0x7FFFFFFF /* $2^{31}-1$ */
24824 scaled one_bp; /* scaled value corresponds to 1bp */
24825 scaled one_hundred_bp; /* scaled value corresponds to 100bp */
24826 scaled one_hundred_inch; /* scaled value corresponds to 100in */
24827 integer ten_pow[10]; /* $10^0..10^9$ */
24828 integer scaled_out; /* amount of |scaled| that was taken out in |divide_scaled| */
24831 mp->one_bp = 65782; /* 65781.76 */
24832 mp->one_hundred_bp = 6578176;
24833 mp->one_hundred_inch = 473628672;
24834 mp->ten_pow[0] = 1;
24835 for (i = 1;i<= 9; i++ ) {
24836 mp->ten_pow[i] = 10*mp->ten_pow[i - 1];
24839 @ The following function divides |s| by |m|. |dd| is number of decimal digits.
24841 @c scaled mp_divide_scaled (MP mp,scaled s, scaled m, integer dd) {
24845 if ( s < 0 ) { sign = -sign; s = -s; }
24846 if ( m < 0 ) { sign = -sign; m = -m; }
24848 mp_confusion(mp, "arithmetic: divided by zero");
24849 else if ( m >= (max_integer / 10) )
24850 mp_confusion(mp, "arithmetic: number too big");
24853 for (i = 1;i<=dd;i++) {
24854 q = 10*q + (10*r) / m;
24857 if ( 2*r >= m ) { incr(q); r = r - m; }
24858 mp->scaled_out = sign*(s - (r / mp->ten_pow[dd]));
24862 @* \[44] Shipping pictures out.
24863 The |ship_out| procedure, to be described below, is given a pointer to
24864 an edge structure. Its mission is to output a file containing the \ps\
24865 description of an edge structure.
24867 @ Each time an edge structure is shipped out we write a new \ps\ output
24868 file named according to the current \&{charcode}.
24869 @:char_code_}{\&{charcode} primitive@>
24871 @<Declare the \ps\ output procedures@>=
24872 void mp_open_output_file (MP mp) ;
24874 @ @c void mp_open_output_file (MP mp) {
24875 integer c; /* \&{charcode} rounded to the nearest integer */
24876 int old_setting; /* previous |selector| setting */
24877 pool_pointer i; /* indexes into |filename_template| */
24878 integer cc; /* a temporary integer for template building */
24879 integer f,g=0; /* field widths */
24880 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24881 c=mp_round_unscaled(mp, mp->internal[mp_char_code]);
24882 if ( mp->filename_template==0 ) {
24883 char *s; /* a file extension derived from |c| */
24887 @<Use |c| to compute the file extension |s|@>;
24888 mp_pack_job_name(mp, s);
24890 while ( ! mp_a_open_out(mp, &mp->ps_file, mp_filetype_postscript) )
24891 mp_prompt_file_name(mp, "file name for output",s);
24892 } else { /* initializations */
24893 str_number s, n; /* a file extension derived from |c| */
24894 old_setting=mp->selector;
24895 mp->selector=new_string;
24897 i = mp->str_start[mp->filename_template];
24898 n = rts(""); /* initialize */
24899 while ( i<str_stop(mp->filename_template) ) {
24900 if ( mp->str_pool[i]=='%' ) {
24903 if ( i<str_stop(mp->filename_template) ) {
24904 if ( mp->str_pool[i]=='j' ) {
24905 mp_print(mp, mp->job_name);
24906 } else if ( mp->str_pool[i]=='d' ) {
24907 cc= mp_round_unscaled(mp, mp->internal[mp_day]);
24908 print_with_leading_zeroes(cc);
24909 } else if ( mp->str_pool[i]=='m' ) {
24910 cc= mp_round_unscaled(mp, mp->internal[mp_month]);
24911 print_with_leading_zeroes(cc);
24912 } else if ( mp->str_pool[i]=='y' ) {
24913 cc= mp_round_unscaled(mp, mp->internal[mp_year]);
24914 print_with_leading_zeroes(cc);
24915 } else if ( mp->str_pool[i]=='H' ) {
24916 cc= mp_round_unscaled(mp, mp->internal[mp_time]) / 60;
24917 print_with_leading_zeroes(cc);
24918 } else if ( mp->str_pool[i]=='M' ) {
24919 cc= mp_round_unscaled(mp, mp->internal[mp_time]) % 60;
24920 print_with_leading_zeroes(cc);
24921 } else if ( mp->str_pool[i]=='c' ) {
24922 if ( c<0 ) mp_print(mp, "ps");
24923 else print_with_leading_zeroes(c);
24924 } else if ( (mp->str_pool[i]>='0') &&
24925 (mp->str_pool[i]<='9') ) {
24927 f = (f*10) + mp->str_pool[i]-'0';
24930 mp_print_str(mp, mp->str_pool[i]);
24934 if ( mp->str_pool[i]=='.' )
24936 n = mp_make_string(mp);
24937 mp_print_str(mp, mp->str_pool[i]);
24941 s = mp_make_string(mp);
24942 mp->selector= old_setting;
24943 if (length(n)==0) {
24947 mp_pack_file_name(mp, str(n),"",str(s));
24948 while ( ! mp_a_open_out(mp, &mp->ps_file, mp_filetype_postscript) )
24949 mp_prompt_file_name(mp, "file name for output",str(s));
24953 @<Store the true output file name if appropriate@>;
24954 @<Begin the progress report for the output of picture~|c|@>;
24957 @ The file extension created here could be up to five characters long in
24958 extreme cases so it may have to be shortened on some systems.
24959 @^system dependencies@>
24961 @<Use |c| to compute the file extension |s|@>=
24964 snprintf(s,7,".%i",(int)c);
24967 @ The user won't want to see all the output file names so we only save the
24968 first and last ones and a count of how many there were. For this purpose
24969 files are ordered primarily by \&{charcode} and secondarily by order of
24971 @:char_code_}{\&{charcode} primitive@>
24973 @<Store the true output file name if appropriate@>=
24974 if ((c<mp->first_output_code)&&(mp->first_output_code>=0)) {
24975 mp->first_output_code=c;
24976 xfree(mp->first_file_name);
24977 mp->first_file_name=xstrdup(mp->name_of_file);
24979 if ( c>=mp->last_output_code ) {
24980 mp->last_output_code=c;
24981 xfree(mp->last_file_name);
24982 mp->last_file_name=xstrdup(mp->name_of_file);
24986 char * first_file_name;
24987 char * last_file_name; /* full file names */
24988 integer first_output_code;integer last_output_code; /* rounded \&{charcode} values */
24989 @:char_code_}{\&{charcode} primitive@>
24990 integer total_shipped; /* total number of |ship_out| operations completed */
24993 mp->first_file_name=xstrdup("");
24994 mp->last_file_name=xstrdup("");
24995 mp->first_output_code=32768;
24996 mp->last_output_code=-32768;
24997 mp->total_shipped=0;
24999 @ @<Dealloc variables@>=
25000 xfree(mp->first_file_name);
25001 xfree(mp->last_file_name);
25003 @ @<Begin the progress report for the output of picture~|c|@>=
25004 if ( (int)mp->term_offset>mp->max_print_line-6 ) mp_print_ln(mp);
25005 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
25006 mp_print_char(mp, '[');
25007 if ( c>=0 ) mp_print_int(mp, c)
25009 @ @<End progress report@>=
25010 mp_print_char(mp, ']');
25012 incr(mp->total_shipped)
25014 @ @<Explain what output files were written@>=
25015 if ( mp->total_shipped>0 ) {
25016 mp_print_nl(mp, "");
25017 mp_print_int(mp, mp->total_shipped);
25018 mp_print(mp, " output file");
25019 if ( mp->total_shipped>1 ) mp_print_char(mp, 's');
25020 mp_print(mp, " written: ");
25021 mp_print(mp, mp->first_file_name);
25022 if ( mp->total_shipped>1 ) {
25023 if ( 31+strlen(mp->first_file_name)+
25024 strlen(mp->last_file_name)> (unsigned)mp->max_print_line)
25026 mp_print(mp, " .. ");
25027 mp_print(mp, mp->last_file_name);
25031 @ A text node may specify an arbitrary transformation but the usual case
25032 involves only shifting, scaling, and occasionally rotation. The purpose
25033 of |choose_scale| is to select a scale factor so that the remaining
25034 transformation is as ``nice'' as possible. The definition of ``nice''
25035 is somewhat arbitrary but shifting and $90^\circ$ rotation are especially
25036 nice because they work out well for bitmap fonts. The code here selects
25037 a scale factor equal to $1/\sqrt2$ times the Frobenius norm of the
25038 non-shifting part of the transformation matrix. It is careful to avoid
25039 additions that might cause undetected overflow.
25041 @<Declare the \ps\ output procedures@>=
25042 scaled mp_choose_scale (MP mp,pointer p) ;
25044 @ @c scaled mp_choose_scale (MP mp,pointer p) {
25045 /* |p| should point to a text node */
25046 scaled a,b,c,d,ad,bc; /* temporary values */
25051 if ( (a<0) ) negate(a);
25052 if ( (b<0) ) negate(b);
25053 if ( (c<0) ) negate(c);
25054 if ( (d<0) ) negate(d);
25057 return mp_pyth_add(mp, mp_pyth_add(mp, d+ad,ad), mp_pyth_add(mp, c+bc,bc));
25060 @ There may be many sizes of one font and we need to keep track of the
25061 characters used for each size. This is done by keeping a linked list of
25062 sizes for each font with a counter in each text node giving the appropriate
25063 position in the size list for its font.
25065 @d sc_factor(A) mp->mem[(A)+1].sc /* the scale factor stored in a font size node */
25066 @d font_size_size 2 /* size of a font size node */
25068 @ @<Internal library declarations@>=
25069 boolean mp_has_font_size(MP mp, font_number f );
25072 boolean mp_has_font_size(MP mp, font_number f ) {
25073 return (mp->font_sizes[f]!=null);
25077 @ The potential overflow here is caused by the fact the returned value
25078 has to fit in a |name_type|, which is a quarterword.
25080 @d fscale_tolerance 65 /* that's $.001\times2^{16}$ */
25082 @<Declare the \ps\ output procedures@>=
25083 quarterword mp_size_index (MP mp, font_number f, scaled s) {
25084 pointer p,q; /* the previous and current font size nodes */
25085 quarterword i; /* the size index for |q| */
25086 q=mp->font_sizes[f];
25088 while ( q!=null ) {
25089 if ( abs(s-sc_factor(q))<=fscale_tolerance )
25092 { p=q; q=link(q); incr(i); };
25093 if ( i==max_quarterword )
25094 mp_overflow(mp, "sizes per font",max_quarterword);
25095 @:MetaPost capacity exceeded sizes per font}{\quad sizes per font@>
25097 q=mp_get_node(mp, font_size_size);
25099 if ( i==0 ) mp->font_sizes[f]=q; else link(p)=q;
25103 @ @<Internal library ...@>=
25104 scaled mp_indexed_size (MP mp,font_number f, quarterword j);
25107 scaled mp_indexed_size (MP mp,font_number f, quarterword j) {
25108 pointer p; /* a font size node */
25109 quarterword i; /* the size index for |p| */
25110 p=mp->font_sizes[f];
25112 if ( p==null ) mp_confusion(mp, "size");
25114 incr(i); p=link(p);
25115 if ( p==null ) mp_confusion(mp, "size");
25117 return sc_factor(p);
25120 @ @<Declare the \ps\ output procedures@>=
25121 void mp_clear_sizes (MP mp) ;
25123 @ @c void mp_clear_sizes (MP mp) {
25124 font_number f; /* the font whose size list is being cleared */
25125 pointer p; /* current font size nodes */
25126 for (f=null_font+1;f<=mp->last_fnum;f++) {
25127 while ( mp->font_sizes[f]!=null ) {
25128 p=mp->font_sizes[f];
25129 mp->font_sizes[f]=link(p);
25130 mp_free_node(mp, p,font_size_size);
25135 @ The \&{special} command saves up lines of text to be printed during the next
25136 |ship_out| operation. The saved items are stored as a list of capsule tokens.
25139 pointer last_pending; /* the last token in a list of pending specials */
25142 mp->last_pending=spec_head;
25144 @ @<Cases of |do_statement|...@>=
25145 case special_command:
25146 if ( mp->cur_mod==0 ) mp_do_special(mp); else
25147 if ( mp->cur_mod==1 ) mp_do_mapfile(mp); else
25151 @ @<Declare action procedures for use by |do_statement|@>=
25152 void mp_do_special (MP mp) ;
25154 @ @c void mp_do_special (MP mp) {
25155 mp_get_x_next(mp); mp_scan_expression(mp);
25156 if ( mp->cur_type!=mp_string_type ) {
25157 @<Complain about improper special operation@>;
25159 link(mp->last_pending)=mp_stash_cur_exp(mp);
25160 mp->last_pending=link(mp->last_pending);
25161 link(mp->last_pending)=null;
25165 @ @<Complain about improper special operation@>=
25167 exp_err("Unsuitable expression");
25168 help1("Only known strings are allowed for output as specials.");
25169 mp_put_get_error(mp);
25172 @ @<Print any pending specials@>=
25174 while ( t!=null ) {
25175 mp_print_str(mp, value(t));
25179 mp_flush_token_list(mp, link(spec_head));
25180 link(spec_head)=null;
25181 mp->last_pending=spec_head
25183 @ We are now ready for the main output procedure. Note that the |selector|
25184 setting is saved in a global variable so that |begin_diagnostic| can access it.
25186 @<Declare the \ps\ output procedures@>=
25187 void mp_ship_out (MP mp, pointer h) ;
25190 @d gr_type(A) (A)->_type_field
25191 @d gr_link(A) (A)->_link_field
25192 @d gr_name_type(A) (A)->name_type_field
25193 @d gr_path_p(A) (A)->path_p_field
25194 @d gr_htap_p(A) (A)->htap_p_field
25195 @d gr_pen_p(A) (A)->pen_p_field
25196 @d gr_ljoin_val(A) (A)->ljoin_field
25197 @d gr_lcap_val(A) (A)->lcap_field
25198 @d gr_dash_scale(A) (A)->dash_scale_field
25199 @d gr_miterlim_val(A) (A)->miterlim_field
25200 @d gr_pre_script(A) (A)->pre_script_field
25201 @d gr_post_script(A) (A)->post_script_field
25202 @d gr_dash_p(A) (A)->dash_p_field
25203 @d gr_text_p(A) (A)->text_p_field
25204 @d gr_font_n(A) (A)->font_n_field
25205 @d gr_width_val(A) (A)->width_field
25206 @d gr_height_val(A) (A)->height_field
25207 @d gr_depth_val(A) (A)->depth_field
25208 @d gr_tx_val(A) (A)->tx_field
25209 @d gr_ty_val(A) (A)->ty_field
25210 @d gr_txx_val(A) (A)->txx_field
25211 @d gr_txy_val(A) (A)->txy_field
25212 @d gr_tyx_val(A) (A)->tyx_field
25213 @d gr_tyy_val(A) (A)->tyy_field
25216 void mp_ship_out (MP mp, pointer h) { /* output edge structure |h| */
25217 pointer p; /* the current graphical object */
25218 integer t; /* a temporary value */
25219 font_number f; /* fonts used in a text node or as loop counters */
25220 mp_open_output_file(mp);
25221 mp->non_ps_setting=mp->selector;
25222 mp->selector=ps_file_only;
25223 mp_set_bbox(mp, h, true);
25224 mp_print_initial_comment(mp, minx_val(h),miny_val(h),maxx_val(h),maxy_val(h));
25225 if ( (mp->internal[mp_prologues]==two)||(mp->internal[mp_prologues]==three) ) {
25226 @<Scan all the text nodes and mark the used characters@>;
25227 @<Update encoding names@>;
25228 mp_print_improved_prologue(mp, h);
25230 @<Scan all the text nodes and set the |font_sizes| lists;
25231 if |internal[mp_prologues]<=0| list the sizes selected by |choose_scale|,
25232 apply |unmark_font| to each font encountered, and call |mark_string|
25233 whenever the size index is zero@>;
25234 mp_print_prologue(mp, h);
25236 @<Print any pending specials@>;
25238 struct mp_edge_object *hh; /* the first graphical object */
25239 struct mp_graphic_object *hp; /* the current graphical object */
25240 struct mp_graphic_object *hq; /* something |hp| points to */
25241 hh = mp_xmalloc(mp,1,sizeof(struct mp_edge_object));
25243 p=link(dummy_loc(h));
25244 while ( p!=null ) {
25245 hq = mp_new_graphic_object(mp,type(p));
25248 gr_pen_p(hq) = mp_export_knot_list(mp,pen_p(p));
25249 if ((pen_p(p)==null) || pen_is_elliptical(pen_p(p))) {
25250 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25253 pc = mp_copy_path(mp, path_p(p));
25254 pp = mp_make_envelope(mp, pc, pen_p(p),ljoin_val(p),0,miterlim_val(p));
25255 gr_path_p(hq) = mp_export_knot_list(mp,pp);
25256 mp_toss_knot_list(mp, pp);
25257 pc = mp_htap_ypoc(mp, path_p(p));
25258 pp = mp_make_envelope(mp, pc, pen_p(p),ljoin_val(p),0,miterlim_val(p));
25259 gr_htap_p(hq) = mp_export_knot_list(mp,pp);
25260 mp_toss_knot_list(mp, pp);
25262 @<Export object color@>;
25263 @<Export object scripts@>;
25264 gr_ljoin_val(hq) = ljoin_val(p);
25265 gr_miterlim_val(hq) = miterlim_val(p);
25267 case mp_stroked_code:
25268 gr_pen_p(hq) = mp_export_knot_list(mp,pen_p(p));
25269 if (pen_is_elliptical(pen_p(p))) {
25270 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25273 pc=mp_copy_path(mp, path_p(p));
25275 if ( left_type(pc)!=mp_endpoint ) {
25276 left_type(mp_insert_knot(mp, pc,x_coord(pc),y_coord(pc)))=mp_endpoint;
25277 right_type(pc)=mp_endpoint;
25281 pc=mp_make_envelope(mp,pc,pen_p(p),ljoin_val(p),t,miterlim_val(p));
25282 gr_path_p(hq) = mp_export_knot_list(mp,pc);
25283 mp_toss_knot_list(mp, pc);
25285 @<Export object color@>;
25286 @<Export object scripts@>;
25287 gr_ljoin_val(hq) = ljoin_val(p);
25288 gr_miterlim_val(hq) = miterlim_val(p);
25289 gr_lcap_val(hq) = lcap_val(p);
25290 gr_dash_scale(hq) = dash_scale(p);
25291 gr_dash_p(hq) = mp_export_dashes(mp,dash_p(p));
25294 gr_text_p(hq) = str(text_p(p));
25295 gr_font_n(hq) = font_n(p);
25296 @<Export object color@>;
25297 @<Export object scripts@>;
25298 gr_width_val(hq) = width_val(p);
25299 gr_height_val(hq) = height_val(p);
25300 gr_depth_val(hq) = depth_val(p);
25301 gr_tx_val(hq) = tx_val(p);
25302 gr_ty_val(hq) = ty_val(p);
25303 gr_txx_val(hq) = txx_val(p);
25304 gr_txy_val(hq) = txy_val(p);
25305 gr_tyx_val(hq) = tyx_val(p);
25306 gr_tyy_val(hq) = tyy_val(p);
25308 case mp_start_clip_code:
25309 case mp_start_bounds_code:
25310 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25312 case mp_stop_clip_code:
25313 case mp_stop_bounds_code:
25314 /* nothing to do here */
25317 if (hh->body==NULL) {
25318 hh->body=hq; hp = hq;
25325 mp_gr_ship_out (mp, hh->body);
25328 fclose(mp->ps_file);
25329 mp->selector=mp->non_ps_setting;
25330 if ( mp->internal[mp_prologues]<=0 ) mp_clear_sizes(mp);
25331 @<End progress report@>;
25332 if ( mp->internal[mp_tracing_output]>0 )
25333 mp_print_edges(mp, h," (just shipped out)",true);
25337 @d gr_color_model(A) (A)->color_model_field
25338 @d gr_red_val(A) (A)->color_field.rgb._red_val
25339 @d gr_green_val(A) (A)->color_field.rgb._green_val
25340 @d gr_blue_val(A) (A)->color_field.rgb._blue_val
25341 @d gr_cyan_val(A) (A)->color_field.cmyk._cyan_val
25342 @d gr_magenta_val(A) (A)->color_field.cmyk._magenta_val
25343 @d gr_yellow_val(A) (A)->color_field.cmyk._yellow_val
25344 @d gr_black_val(A) (A)->color_field.cmyk._black_val
25345 @d gr_grey_val(A) (A)->color_field.grey._grey_val
25347 @<Export object color@>=
25348 gr_color_model(hq) = color_model(p);
25349 gr_cyan_val(hq) = cyan_val(p);
25350 gr_magenta_val(hq) = magenta_val(p);
25351 gr_yellow_val(hq) = yellow_val(p);
25352 gr_black_val(hq) = black_val(p);
25353 gr_red_val(hq) = red_val(p);
25354 gr_green_val(hq) = green_val(p);
25355 gr_blue_val(hq) = blue_val(p);
25356 gr_grey_val(hq) = grey_val(p)
25359 @ @<Export object scripts@>=
25360 if (pre_script(p)!=null)
25361 gr_pre_script(hq) = str(pre_script(p));
25362 if (post_script(p)!=null)
25363 gr_post_script(hq) = str(post_script(p));
25365 @ @<Internal library declarations@>=
25366 void mp_apply_mark_string_chars(MP mp, pointer h, int next_size);
25369 void mp_apply_mark_string_chars(MP mp, pointer h, int next_size) {
25371 p=link(dummy_loc(h));
25372 while ( p!=null ) {
25373 if ( type(p)==mp_text_code )
25374 if ( font_n(p)!=null_font )
25375 if ( name_type(p)==next_size )
25376 mp_mark_string_chars(mp, font_n(p),text_p(p));
25381 @ @<Scan all the text nodes and mark the used ...@>=
25382 for (f=null_font+1;f<=mp->last_fnum;f++) {
25383 if ( mp->font_sizes[f]!=null ) {
25384 mp_unmark_font(mp, f);
25385 mp->font_sizes[f]=null;
25388 for (f=null_font+1;f<=mp->last_fnum;f++) {
25389 p=link(dummy_loc(h));
25390 while ( p!=null ) {
25391 if ( type(p)==mp_text_code ) {
25392 if ( font_n(p)!=null_font ) {
25393 mp->font_sizes[font_n(p)] = mp_void;
25394 mp_mark_string_chars(mp, font_n(p),text_p(p));
25395 if ( mp_has_fm_entry(mp,font_n(p),NULL) )
25396 mp->font_ps_name[font_n(p)] = mp_fm_font_name(mp,font_n(p));
25403 @ @<Update encoding names@>=
25404 mp_reload_encodings(mp);
25405 p=link(dummy_loc(h));
25406 while ( p!=null ) {
25407 if ( type(p)==mp_text_code )
25408 if ( font_n(p)!=null_font )
25409 if ( mp_has_fm_entry(mp,font_n(p),NULL) )
25410 if ( mp->font_enc_name[font_n(p)]==NULL )
25411 mp->font_enc_name[font_n(p)] = mp_fm_encoding_name(mp,font_n(p));
25416 @ @<Scan all the text nodes and set the |font_sizes| lists;...@>=
25417 for (f=null_font+1;f<=mp->last_fnum;f++)
25418 mp->font_sizes[f]=null;
25419 p=link(dummy_loc(h));
25420 while ( p!=null ) {
25421 if ( type(p)==mp_text_code ) {
25422 if ( font_n(p)!=null_font ) {
25424 if ( mp->internal[mp_prologues]>0 ) {
25425 mp->font_sizes[f]=mp_void;
25427 if ( mp->font_sizes[f]==null )
25428 mp_unmark_font(mp, f);
25429 name_type(p)=mp_size_index(mp, f,mp_choose_scale(mp, p));
25430 if ( name_type(p)==0 )
25431 mp_mark_string_chars(mp, f,text_p(p));
25438 @ Now that we've finished |ship_out|, let's look at the other commands
25439 by which a user can send things to the \.{GF} file.
25441 @ @<Determine if a character has been shipped out@>=
25443 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
25444 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
25445 boolean_reset(mp->char_exists[mp->cur_exp]);
25446 mp->cur_type=mp_boolean_type;
25452 @ @<Allocate or initialize ...@>=
25453 mp_backend_initialize(mp);
25456 mp_backend_free(mp);
25459 @* \[45] Dumping and undumping the tables.
25460 After \.{INIMP} has seen a collection of macros, it
25461 can write all the necessary information on an auxiliary file so
25462 that production versions of \MP\ are able to initialize their
25463 memory at high speed. The present section of the program takes
25464 care of such output and input. We shall consider simultaneously
25465 the processes of storing and restoring,
25466 so that the inverse relation between them is clear.
25469 The global variable |mem_ident| is a string that is printed right
25470 after the |banner| line when \MP\ is ready to start. For \.{INIMP} this
25471 string says simply `\.{(INIMP)}'; for other versions of \MP\ it says,
25472 for example, `\.{(mem=plain 90.4.14)}', showing the year,
25473 month, and day that the mem file was created. We have |mem_ident=0|
25474 before \MP's tables are loaded.
25480 mp->mem_ident=NULL;
25482 @ @<Initialize table entries...@>=
25483 mp->mem_ident=xstrdup(" (INIMP)");
25485 @ @<Declare act...@>=
25486 void mp_store_mem_file (MP mp) ;
25488 @ @c void mp_store_mem_file (MP mp) {
25489 integer k; /* all-purpose index */
25490 pointer p,q; /* all-purpose pointers */
25491 integer x; /* something to dump */
25492 four_quarters w; /* four ASCII codes */
25494 @<Create the |mem_ident|, open the mem file,
25495 and inform the user that dumping has begun@>;
25496 @<Dump constants for consistency check@>;
25497 @<Dump the string pool@>;
25498 @<Dump the dynamic memory@>;
25499 @<Dump the table of equivalents and the hash table@>;
25500 @<Dump a few more things and the closing check word@>;
25501 @<Close the mem file@>;
25504 @ Corresponding to the procedure that dumps a mem file, we also have a function
25505 that reads~one~in. The function returns |false| if the dumped mem is
25506 incompatible with the present \MP\ table sizes, etc.
25508 @d off_base 6666 /* go here if the mem file is unacceptable */
25509 @d too_small(A) { wake_up_terminal;
25510 wterm_ln("---! Must increase the "); wterm((A));
25511 @.Must increase the x@>
25516 boolean mp_load_mem_file (MP mp) {
25517 integer k; /* all-purpose index */
25518 pointer p,q; /* all-purpose pointers */
25519 integer x; /* something undumped */
25520 str_number s; /* some temporary string */
25521 four_quarters w; /* four ASCII codes */
25523 @<Undump constants for consistency check@>;
25524 @<Undump the string pool@>;
25525 @<Undump the dynamic memory@>;
25526 @<Undump the table of equivalents and the hash table@>;
25527 @<Undump a few more things and the closing check word@>;
25528 return true; /* it worked! */
25531 wterm_ln("(Fatal mem file error; I'm stymied)\n");
25532 @.Fatal mem file error@>
25536 @ @<Declarations@>=
25537 boolean mp_load_mem_file (MP mp) ;
25539 @ Mem files consist of |memory_word| items, and we use the following
25540 macros to dump words of different types:
25542 @d dump_wd(A) { WW=(A); fwrite(&WW,sizeof(WW),1,mp->mem_file); }
25543 @d dump_int(A) { int cint=(A); fwrite(&cint,sizeof(cint),1,mp->mem_file); }
25544 @d dump_hh(A) { WW.hh=(A); fwrite(&WW,sizeof(WW),1,mp->mem_file); }
25545 @d dump_qqqq(A) { WW.qqqq=(A); fwrite(&WW,sizeof(WW),1,mp->mem_file); }
25546 @d dump_string(A) { dump_int(strlen(A)+1);
25547 fwrite(A,strlen(A)+1,1,mp->mem_file); }
25550 FILE * mem_file; /* for input or output of mem information */
25552 @ The inverse macros are slightly more complicated, since we need to check
25553 the range of the values we are reading in. We say `|undump(a)(b)(x)|' to
25554 read an integer value |x| that is supposed to be in the range |a<=x<=b|.
25556 @d undump_wd(A) { fread(&WW,sizeof(WW),1,mp->mem_file); A=WW; }
25557 @d undump_int(A) { int cint; fread(&cint,sizeof(cint),1,mp->mem_file); A=cint; }
25558 @d undump_hh(A) { fread(&WW,sizeof(WW),1,mp->mem_file); A=WW.hh; }
25559 @d undump_qqqq(A) { fread(&WW,sizeof(WW),1,mp->mem_file); A=WW.qqqq; }
25560 @d undump_strings(A,B,C) {
25561 undump_int(x); if ( (x<(A)) || (x>(B)) ) goto OFF_BASE; else C=str(x); }
25562 @d undump(A,B,C) { undump_int(x); if ( (x<(A)) || (x>(int)(B)) ) goto OFF_BASE; else C=x; }
25563 @d undump_size(A,B,C,D) { undump_int(x);
25564 if (x<(A)) goto OFF_BASE;
25565 if (x>(B)) { too_small((C)); } else { D=x;} }
25566 @d undump_string(A) { integer XX=0; undump_int(XX);
25567 A = xmalloc(XX,sizeof(char));
25568 fread(A,XX,1,mp->mem_file); }
25570 @ The next few sections of the program should make it clear how we use the
25571 dump/undump macros.
25573 @<Dump constants for consistency check@>=
25574 dump_int(mp->mem_top);
25575 dump_int(mp->hash_size);
25576 dump_int(mp->hash_prime)
25577 dump_int(mp->param_size);
25578 dump_int(mp->max_in_open);
25580 @ Sections of a \.{WEB} program that are ``commented out'' still contribute
25581 strings to the string pool; therefore \.{INIMP} and \MP\ will have
25582 the same strings. (And it is, of course, a good thing that they do.)
25586 @<Undump constants for consistency check@>=
25587 undump_int(x); mp->mem_top = x;
25588 undump_int(x); if (mp->hash_size != x) goto OFF_BASE;
25589 undump_int(x); if (mp->hash_prime != x) goto OFF_BASE;
25590 undump_int(x); if (mp->param_size != x) goto OFF_BASE;
25591 undump_int(x); if (mp->max_in_open != x) goto OFF_BASE
25593 @ We do string pool compaction to avoid dumping unused strings.
25596 w.b0=qi(mp->str_pool[k]); w.b1=qi(mp->str_pool[k+1]);
25597 w.b2=qi(mp->str_pool[k+2]); w.b3=qi(mp->str_pool[k+3]);
25600 @<Dump the string pool@>=
25601 mp_do_compaction(mp, mp->pool_size);
25602 dump_int(mp->pool_ptr);
25603 dump_int(mp->max_str_ptr);
25604 dump_int(mp->str_ptr);
25606 while ( (mp->next_str[k]==k+1) && (k<=mp->max_str_ptr) )
25609 while ( k<=mp->max_str_ptr ) {
25610 dump_int(mp->next_str[k]); incr(k);
25614 dump_int(mp->str_start[k]); /* TODO: valgrind warning here */
25615 if ( k==mp->str_ptr ) {
25622 while (k+4<mp->pool_ptr ) {
25623 dump_four_ASCII; k=k+4;
25625 k=mp->pool_ptr-4; dump_four_ASCII;
25626 mp_print_ln(mp); mp_print(mp, "at most "); mp_print_int(mp, mp->max_str_ptr);
25627 mp_print(mp, " strings of total length ");
25628 mp_print_int(mp, mp->pool_ptr)
25630 @ @d undump_four_ASCII
25632 mp->str_pool[k]=qo(w.b0); mp->str_pool[k+1]=qo(w.b1);
25633 mp->str_pool[k+2]=qo(w.b2); mp->str_pool[k+3]=qo(w.b3)
25635 @<Undump the string pool@>=
25636 undump_int(mp->pool_ptr);
25637 mp_reallocate_pool(mp, mp->pool_ptr) ;
25638 undump_int(mp->max_str_ptr);
25639 mp_reallocate_strings (mp,mp->max_str_ptr) ;
25640 undump(0,mp->max_str_ptr,mp->str_ptr);
25641 undump(0,mp->max_str_ptr+1,s);
25642 for (k=0;k<=s-1;k++)
25643 mp->next_str[k]=k+1;
25644 for (k=s;k<=mp->max_str_ptr;k++)
25645 undump(s+1,mp->max_str_ptr+1,mp->next_str[k]);
25646 mp->fixed_str_use=0;
25649 undump(0,mp->pool_ptr,mp->str_start[k]);
25650 if ( k==mp->str_ptr ) break;
25651 mp->str_ref[k]=max_str_ref;
25652 incr(mp->fixed_str_use);
25653 mp->last_fixed_str=k; k=mp->next_str[k];
25656 while ( k+4<mp->pool_ptr ) {
25657 undump_four_ASCII; k=k+4;
25659 k=mp->pool_ptr-4; undump_four_ASCII;
25660 mp->init_str_use=mp->fixed_str_use; mp->init_pool_ptr=mp->pool_ptr;
25661 mp->max_pool_ptr=mp->pool_ptr;
25662 mp->strs_used_up=mp->fixed_str_use;
25663 mp->pool_in_use=mp->str_start[mp->str_ptr]; mp->strs_in_use=mp->fixed_str_use;
25664 mp->max_pl_used=mp->pool_in_use; mp->max_strs_used=mp->strs_in_use;
25665 mp->pact_count=0; mp->pact_chars=0; mp->pact_strs=0;
25667 @ By sorting the list of available spaces in the variable-size portion of
25668 |mem|, we are usually able to get by without having to dump very much
25669 of the dynamic memory.
25671 We recompute |var_used| and |dyn_used|, so that \.{INIMP} dumps valid
25672 information even when it has not been gathering statistics.
25674 @<Dump the dynamic memory@>=
25675 mp_sort_avail(mp); mp->var_used=0;
25676 dump_int(mp->lo_mem_max); dump_int(mp->rover);
25677 p=0; q=mp->rover; x=0;
25679 for (k=p;k<= q+1;k++)
25680 dump_wd(mp->mem[k]);
25681 x=x+q+2-p; mp->var_used=mp->var_used+q-p;
25682 p=q+node_size(q); q=rlink(q);
25683 } while (q!=mp->rover);
25684 mp->var_used=mp->var_used+mp->lo_mem_max-p;
25685 mp->dyn_used=mp->mem_end+1-mp->hi_mem_min;
25686 for (k=p;k<= mp->lo_mem_max;k++ )
25687 dump_wd(mp->mem[k]);
25688 x=x+mp->lo_mem_max+1-p;
25689 dump_int(mp->hi_mem_min); dump_int(mp->avail);
25690 for (k=mp->hi_mem_min;k<=mp->mem_end;k++ )
25691 dump_wd(mp->mem[k]);
25692 x=x+mp->mem_end+1-mp->hi_mem_min;
25694 while ( p!=null ) {
25695 decr(mp->dyn_used); p=link(p);
25697 dump_int(mp->var_used); dump_int(mp->dyn_used);
25698 mp_print_ln(mp); mp_print_int(mp, x);
25699 mp_print(mp, " memory locations dumped; current usage is ");
25700 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used)
25702 @ @<Undump the dynamic memory@>=
25703 undump(lo_mem_stat_max+1000,hi_mem_stat_min-1,mp->lo_mem_max);
25704 undump(lo_mem_stat_max+1,mp->lo_mem_max,mp->rover);
25707 for (k=p;k<= q+1; k++)
25708 undump_wd(mp->mem[k]);
25710 if ( (p>mp->lo_mem_max)||((q>=rlink(q))&&(rlink(q)!=mp->rover)) )
25713 } while (q!=mp->rover);
25714 for (k=p;k<=mp->lo_mem_max;k++ )
25715 undump_wd(mp->mem[k]);
25716 undump(mp->lo_mem_max+1,hi_mem_stat_min,mp->hi_mem_min);
25717 undump(null,mp->mem_top,mp->avail); mp->mem_end=mp->mem_top;
25718 for (k=mp->hi_mem_min;k<= mp->mem_end;k++)
25719 undump_wd(mp->mem[k]);
25720 undump_int(mp->var_used); undump_int(mp->dyn_used)
25722 @ A different scheme is used to compress the hash table, since its lower region
25723 is usually sparse. When |text(p)<>0| for |p<=hash_used|, we output three
25724 words: |p|, |hash[p]|, and |eqtb[p]|. The hash table is, of course, densely
25725 packed for |p>=hash_used|, so the remaining entries are output in~a~block.
25727 @<Dump the table of equivalents and the hash table@>=
25728 dump_int(mp->hash_used);
25729 mp->st_count=frozen_inaccessible-1-mp->hash_used;
25730 for (p=1;p<=mp->hash_used;p++) {
25731 if ( text(p)!=0 ) {
25732 dump_int(p); dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]); incr(mp->st_count);
25735 for (p=mp->hash_used+1;p<=(int)hash_end;p++) {
25736 dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]);
25738 dump_int(mp->st_count);
25739 mp_print_ln(mp); mp_print_int(mp, mp->st_count); mp_print(mp, " symbolic tokens")
25741 @ @<Undump the table of equivalents and the hash table@>=
25742 undump(1,frozen_inaccessible,mp->hash_used);
25745 undump(p+1,mp->hash_used,p);
25746 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
25747 } while (p!=mp->hash_used);
25748 for (p=mp->hash_used+1;p<=(int)hash_end;p++ ) {
25749 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
25751 undump_int(mp->st_count)
25753 @ We have already printed a lot of statistics, so we set |mp_tracing_stats:=0|
25754 to prevent them appearing again.
25756 @<Dump a few more things and the closing check word@>=
25757 dump_int(mp->max_internal);
25758 dump_int(mp->int_ptr);
25759 for (k=1;k<= mp->int_ptr;k++ ) {
25760 dump_int(mp->internal[k]);
25761 dump_string(mp->int_name[k]);
25763 dump_int(mp->start_sym);
25764 dump_int(mp->interaction);
25765 dump_string(mp->mem_ident);
25766 dump_int(mp->bg_loc); dump_int(mp->eg_loc); dump_int(mp->serial_no); dump_int(69073);
25767 mp->internal[mp_tracing_stats]=0
25769 @ @<Undump a few more things and the closing check word@>=
25771 if (x>mp->max_internal) mp_grow_internals(mp,x);
25772 undump_int(mp->int_ptr);
25773 for (k=1;k<= mp->int_ptr;k++) {
25774 undump_int(mp->internal[k]);
25775 undump_string(mp->int_name[k]);
25777 undump(0,frozen_inaccessible,mp->start_sym);
25778 if (mp->interaction==mp_unspecified_mode) {
25779 undump(mp_unspecified_mode,mp_error_stop_mode,mp->interaction);
25781 undump(mp_unspecified_mode,mp_error_stop_mode,x);
25783 undump_string(mp->mem_ident);
25784 undump(1,hash_end,mp->bg_loc);
25785 undump(1,hash_end,mp->eg_loc);
25786 undump_int(mp->serial_no);
25788 if ( (x!=69073)|| feof(mp->mem_file) ) goto OFF_BASE
25790 @ @<Create the |mem_ident|...@>=
25792 xfree(mp->mem_ident);
25793 mp->mem_ident = xmalloc(256,1);
25794 snprintf(mp->mem_ident,256," (mem=%s %i.%i.%i)",
25796 (int)(mp_round_unscaled(mp, mp->internal[mp_year]) % 100),
25797 (int)mp_round_unscaled(mp, mp->internal[mp_month]),
25798 (int)mp_round_unscaled(mp, mp->internal[mp_day]));
25799 mp_pack_job_name(mp, mem_extension);
25800 while (! mp_w_open_out(mp, &mp->mem_file) )
25801 mp_prompt_file_name(mp, "mem file name", mem_extension);
25802 mp_print_nl(mp, "Beginning to dump on file ");
25803 @.Beginning to dump...@>
25804 mp_print(mp, mp->name_of_file);
25805 mp_print_nl(mp, mp->mem_ident);
25808 @ @<Dealloc variables@>=
25809 xfree(mp->mem_ident);
25811 @ @<Close the mem file@>=
25812 fclose(mp->mem_file)
25814 @* \[46] The main program.
25815 This is it: the part of \MP\ that executes all those procedures we have
25818 Well---almost. We haven't put the parsing subroutines into the
25819 program yet; and we'd better leave space for a few more routines that may
25820 have been forgotten.
25822 @c @<Declare the basic parsing subroutines@>;
25823 @<Declare miscellaneous procedures that were declared |forward|@>;
25824 @<Last-minute procedures@>
25826 @ We've noted that there are two versions of \MP. One, called \.{INIMP},
25828 has to be run first; it initializes everything from scratch, without
25829 reading a mem file, and it has the capability of dumping a mem file.
25830 The other one is called `\.{VIRMP}'; it is a ``virgin'' program that needs
25832 to input a mem file in order to get started. \.{VIRMP} typically has
25833 a bit more memory capacity than \.{INIMP}, because it does not need the
25834 space consumed by the dumping/undumping routines and the numerous calls on
25837 The \.{VIRMP} program cannot read a mem file instantaneously, of course;
25838 the best implementations therefore allow for production versions of \MP\ that
25839 not only avoid the loading routine for \PASCAL\ object code, they also have
25840 a mem file pre-loaded.
25843 boolean ini_version; /* are we iniMP? */
25845 @ @<Option variables@>=
25846 int ini_version; /* are we iniMP? */
25848 @ @<Set |ini_version|@>=
25849 mp->ini_version = (opt->ini_version ? true : false);
25851 @ Here we do whatever is needed to complete \MP's job gracefully on the
25852 local operating system. The code here might come into play after a fatal
25853 error; it must therefore consist entirely of ``safe'' operations that
25854 cannot produce error messages. For example, it would be a mistake to call
25855 |str_room| or |make_string| at this time, because a call on |overflow|
25856 might lead to an infinite loop.
25857 @^system dependencies@>
25859 This program doesn't bother to close the input files that may still be open.
25861 @<Last-minute...@>=
25862 void mp_close_files_and_terminate (MP mp) {
25863 integer k; /* all-purpose index */
25864 integer LH; /* the length of the \.{TFM} header, in words */
25865 int lk_offset; /* extra words inserted at beginning of |lig_kern| array */
25866 pointer p; /* runs through a list of \.{TFM} dimensions */
25867 @<Close all open files in the |rd_file| and |wr_file| arrays@>;
25868 if ( mp->internal[mp_tracing_stats]>0 )
25869 @<Output statistics about this job@>;
25871 @<Do all the finishing work on the \.{TFM} file@>;
25872 @<Explain what output files were written@>;
25873 if ( mp->log_opened ){
25875 fclose(mp->log_file); mp->selector=mp->selector-2;
25876 if ( mp->selector==term_only ) {
25877 mp_print_nl(mp, "Transcript written on ");
25878 @.Transcript written...@>
25879 mp_print(mp, mp->log_name); mp_print_char(mp, '.');
25885 @ @<Declarations@>=
25886 void mp_close_files_and_terminate (MP mp) ;
25888 @ @<Close all open files in the |rd_file| and |wr_file| arrays@>=
25889 if (mp->rd_fname!=NULL) {
25890 for (k=0;k<=(int)mp->read_files-1;k++ ) {
25891 if ( mp->rd_fname[k]!=NULL ) {
25892 fclose(mp->rd_file[k]);
25896 if (mp->wr_fname!=NULL) {
25897 for (k=0;k<=(int)mp->write_files-1;k++) {
25898 if ( mp->wr_fname[k]!=NULL ) {
25899 fclose(mp->wr_file[k]);
25905 for (k=0;k<(int)mp->max_read_files;k++ ) {
25906 if ( mp->rd_fname[k]!=NULL ) {
25907 fclose(mp->rd_file[k]);
25908 mp_xfree(mp->rd_fname[k]);
25911 mp_xfree(mp->rd_file);
25912 mp_xfree(mp->rd_fname);
25913 for (k=0;k<(int)mp->max_write_files;k++) {
25914 if ( mp->wr_fname[k]!=NULL ) {
25915 fclose(mp->wr_file[k]);
25916 mp_xfree(mp->wr_fname[k]);
25919 mp_xfree(mp->wr_file);
25920 mp_xfree(mp->wr_fname);
25923 @ We want to produce a \.{TFM} file if and only if |mp_fontmaking| is positive.
25925 We reclaim all of the variable-size memory at this point, so that
25926 there is no chance of another memory overflow after the memory capacity
25927 has already been exceeded.
25929 @<Do all the finishing work on the \.{TFM} file@>=
25930 if ( mp->internal[mp_fontmaking]>0 ) {
25931 @<Make the dynamic memory into one big available node@>;
25932 @<Massage the \.{TFM} widths@>;
25933 mp_fix_design_size(mp); mp_fix_check_sum(mp);
25934 @<Massage the \.{TFM} heights, depths, and italic corrections@>;
25935 mp->internal[mp_fontmaking]=0; /* avoid loop in case of fatal error */
25936 @<Finish the \.{TFM} file@>;
25939 @ @<Make the dynamic memory into one big available node@>=
25940 mp->rover=lo_mem_stat_max+1; link(mp->rover)=empty_flag; mp->lo_mem_max=mp->hi_mem_min-1;
25941 if ( mp->lo_mem_max-mp->rover>max_halfword ) mp->lo_mem_max=max_halfword+mp->rover;
25942 node_size(mp->rover)=mp->lo_mem_max-mp->rover;
25943 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
25944 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null
25946 @ The present section goes directly to the log file instead of using
25947 |print| commands, because there's no need for these strings to take
25948 up |str_pool| memory when a non-{\bf stat} version of \MP\ is being used.
25950 @<Output statistics...@>=
25951 if ( mp->log_opened ) {
25954 wlog_ln("Here is how much of MetaPost's memory you used:");
25955 @.Here is how much...@>
25956 snprintf(s,128," %i string%s out of %i",(int)mp->max_strs_used-mp->init_str_use,
25957 (mp->max_strs_used!=mp->init_str_use+1 ? "s" : ""),
25958 (int)(mp->max_strings-1-mp->init_str_use));
25960 snprintf(s,128," %i string characters out of %i",
25961 (int)mp->max_pl_used-mp->init_pool_ptr,
25962 (int)mp->pool_size-mp->init_pool_ptr);
25964 snprintf(s,128," %i words of memory out of %i",
25965 (int)mp->lo_mem_max+mp->mem_end-mp->hi_mem_min+2,
25966 (int)mp->mem_end+1);
25968 snprintf(s,128," %i symbolic tokens out of %i", (int)mp->st_count, (int)mp->hash_size);
25970 snprintf(s,128," %ii, %in, %ip, %ib stack positions out of %ii, %in, %ip, %ib",
25971 (int)mp->max_in_stack,(int)mp->int_ptr,
25972 (int)mp->max_param_stack,(int)mp->max_buf_stack+1,
25973 (int)mp->stack_size,(int)mp->max_internal,(int)mp->param_size,(int)mp->buf_size);
25975 snprintf(s,128," %i string compactions (moved %i characters, %i strings)",
25976 (int)mp->pact_count,(int)mp->pact_chars,(int)mp->pact_strs);
25980 @ We get to the |final_cleanup| routine when \&{end} or \&{dump} has
25983 @<Last-minute...@>=
25984 void mp_final_cleanup (MP mp) {
25985 small_number c; /* 0 for \&{end}, 1 for \&{dump} */
25987 if ( mp->job_name==NULL ) mp_open_log_file(mp);
25988 while ( mp->input_ptr>0 ) {
25989 if ( token_state ) mp_end_token_list(mp);
25990 else mp_end_file_reading(mp);
25992 while ( mp->loop_ptr!=null ) mp_stop_iteration(mp);
25993 while ( mp->open_parens>0 ) {
25994 mp_print(mp, " )"); decr(mp->open_parens);
25996 while ( mp->cond_ptr!=null ) {
25997 mp_print_nl(mp, "(end occurred when ");
25998 @.end occurred...@>
25999 mp_print_cmd_mod(mp, fi_or_else,mp->cur_if);
26000 /* `\.{if}' or `\.{elseif}' or `\.{else}' */
26001 if ( mp->if_line!=0 ) {
26002 mp_print(mp, " on line "); mp_print_int(mp, mp->if_line);
26004 mp_print(mp, " was incomplete)");
26005 mp->if_line=if_line_field(mp->cond_ptr);
26006 mp->cur_if=name_type(mp->cond_ptr); mp->cond_ptr=link(mp->cond_ptr);
26008 if ( mp->history!=mp_spotless )
26009 if ( ((mp->history==mp_warning_issued)||(mp->interaction<mp_error_stop_mode)) )
26010 if ( mp->selector==term_and_log ) {
26011 mp->selector=term_only;
26012 mp_print_nl(mp, "(see the transcript file for additional information)");
26013 @.see the transcript file...@>
26014 mp->selector=term_and_log;
26017 if (mp->ini_version) {
26018 mp_store_mem_file(mp); return;
26020 mp_print_nl(mp, "(dump is performed only by INIMP)"); return;
26021 @.dump...only by INIMP@>
26025 @ @<Declarations@>=
26026 void mp_final_cleanup (MP mp) ;
26027 void mp_init_prim (MP mp) ;
26028 void mp_init_tab (MP mp) ;
26030 @ @<Last-minute...@>=
26031 void mp_init_prim (MP mp) { /* initialize all the primitives */
26035 void mp_init_tab (MP mp) { /* initialize other tables */
26036 integer k; /* all-purpose index */
26037 @<Initialize table entries (done by \.{INIMP} only)@>;
26041 @ When we begin the following code, \MP's tables may still contain garbage;
26042 the strings might not even be present. Thus we must proceed cautiously to get
26045 But when we finish this part of the program, \MP\ is ready to call on the
26046 |main_control| routine to do its work.
26048 @<Get the first line...@>=
26050 @<Initialize the input routines@>;
26051 if ( (mp->mem_ident==NULL)||(mp->buffer[loc]=='&') ) {
26052 if ( mp->mem_ident!=NULL ) {
26053 mp_do_initialize(mp); /* erase preloaded mem */
26055 if ( ! mp_open_mem_file(mp) ) return mp_fatal_error_stop;
26056 if ( ! mp_load_mem_file(mp) ) {
26057 fclose( mp->mem_file); return mp_fatal_error_stop;
26059 fclose( mp->mem_file);
26060 while ( (loc<limit)&&(mp->buffer[loc]==' ') ) incr(loc);
26062 mp->buffer[limit]='%';
26063 mp_fix_date_and_time(mp);
26064 mp->sys_random_seed = (scaled)(mp->get_random_seed)(mp);
26065 mp_init_randoms(mp, mp->sys_random_seed);
26066 @<Initialize the print |selector|...@>;
26067 if ( loc<limit ) if ( mp->buffer[loc]!='\\' )
26068 mp_start_input(mp); /* \&{input} assumed */
26071 @ @<Run inimpost commands@>=
26073 mp_get_strings_started(mp);
26074 mp_init_tab(mp); /* initialize the tables */
26075 mp_init_prim(mp); /* call |primitive| for each primitive */
26076 mp->init_str_use=mp->str_ptr; mp->init_pool_ptr=mp->pool_ptr;
26077 mp->max_str_ptr=mp->str_ptr; mp->max_pool_ptr=mp->pool_ptr;
26078 mp_fix_date_and_time(mp);
26082 @* \[47] Debugging.
26083 Once \MP\ is working, you should be able to diagnose most errors with
26084 the \.{show} commands and other diagnostic features. But for the initial
26085 stages of debugging, and for the revelation of really deep mysteries, you
26086 can compile \MP\ with a few more aids, including the \PASCAL\ runtime
26087 checks and its debugger. An additional routine called |debug_help|
26088 will also come into play when you type `\.D' after an error message;
26089 |debug_help| also occurs just before a fatal error causes \MP\ to succumb.
26091 @^system dependencies@>
26093 The interface to |debug_help| is primitive, but it is good enough when used
26094 with a \PASCAL\ debugger that allows you to set breakpoints and to read
26095 variables and change their values. After getting the prompt `\.{debug \#}', you
26096 type either a negative number (this exits |debug_help|), or zero (this
26097 goes to a location where you can set a breakpoint, thereby entering into
26098 dialog with the \PASCAL\ debugger), or a positive number |m| followed by
26099 an argument |n|. The meaning of |m| and |n| will be clear from the
26100 program below. (If |m=13|, there is an additional argument, |l|.)
26103 @<Last-minute...@>=
26104 void mp_debug_help (MP mp) { /* routine to display various things */
26109 mp_print_nl(mp, "debug # (-1 to exit):"); update_terminal;
26112 fscanf(mp->term_in,"%i",&m);
26116 fscanf(mp->term_in,"%i",&n);
26118 @<Numbered cases for |debug_help|@>;
26119 default: mp_print(mp, "?"); break;
26124 @ @<Numbered cases...@>=
26125 case 1: mp_print_word(mp, mp->mem[n]); /* display |mem[n]| in all forms */
26127 case 2: mp_print_int(mp, info(n));
26129 case 3: mp_print_int(mp, link(n));
26131 case 4: mp_print_int(mp, eq_type(n)); mp_print_char(mp, ':'); mp_print_int(mp, equiv(n));
26133 case 5: mp_print_variable_name(mp, n);
26135 case 6: mp_print_int(mp, mp->internal[n]);
26137 case 7: mp_do_show_dependencies(mp);
26139 case 9: mp_show_token_list(mp, n,null,100000,0);
26141 case 10: mp_print_str(mp, n);
26143 case 11: mp_check_mem(mp, n>0); /* check wellformedness; print new busy locations if |n>0| */
26145 case 12: mp_search_mem(mp, n); /* look for pointers to |n| */
26147 case 13: l = 0; fscanf(mp->term_in,"%i",&l); mp_print_cmd_mod(mp, n,l);
26149 case 14: for (k=0;k<=n;k++) mp_print_str(mp, mp->buffer[k]);
26151 case 15: mp->panicking=! mp->panicking;
26155 @ Saving the filename template
26157 @<Save the filename template@>=
26159 if ( mp->filename_template!=0 ) delete_str_ref(mp->filename_template);
26160 if ( length(mp->cur_exp)==0 ) mp->filename_template=0;
26162 mp->filename_template=mp->cur_exp; add_str_ref(mp->filename_template);
26166 @* \[48] System-dependent changes.
26167 This section should be replaced, if necessary, by any special
26168 modification of the program
26169 that are necessary to make \MP\ work at a particular installation.
26170 It is usually best to design your change file so that all changes to
26171 previous sections preserve the section numbering; then everybody's version
26172 will be consistent with the published program. More extensive changes,
26173 which introduce new sections, can be inserted here; then only the index
26174 itself will get a new section number.
26175 @^system dependencies@>
26178 Here is where you can find all uses of each identifier in the program,
26179 with underlined entries pointing to where the identifier was defined.
26180 If the identifier is only one letter long, however, you get to see only
26181 the underlined entries. {\sl All references are to section numbers instead of
26184 This index also lists error messages and other aspects of the program
26185 that you might want to look up some day. For example, the entry
26186 for ``system dependencies'' lists all sections that should receive
26187 special attention from people who are installing \MP\ in a new
26188 operating environment. A list of various things that can't happen appears
26189 under ``this can't happen''.
26190 Approximately 25 sections are listed under ``inner loop''; these account
26191 for more than 60\pct! of \MP's running time, exclusive of input and output.