1 % $Id: mp.web,v 1.8 2005/08/24 10:54:02 taco Exp $
2 % MetaPost, by John Hobby. Public domain.
4 % Much of this program was copied with permission from MF.web Version 1.9
5 % It interprets a language very similar to D.E. Knuth's METAFONT, but with
6 % changes designed to make it more suitable for PostScript output.
8 % TeX is a trademark of the American Mathematical Society.
9 % METAFONT is a trademark of Addison-Wesley Publishing Company.
10 % PostScript is a trademark of Adobe Systems Incorporated.
12 % Here is TeX material that gets inserted after \input webmac
13 \def\hang{\hangindent 3em\noindent\ignorespaces}
14 \def\textindent#1{\hangindent2.5em\noindent\hbox to2.5em{\hss#1 }\ignorespaces}
17 \def\ph{\hbox{Pascal-H}}
18 \def\psqrt#1{\sqrt{\mathstrut#1}}
20 \def\pct!{{\char`\%}} % percent sign in ordinary text
21 \font\tenlogo=logo10 % font used for the METAFONT logo
23 \def\MF{{\tenlogo META}\-{\tenlogo FONT}}
24 \def\MP{{\tenlogo META}\-{\tenlogo POST}}
25 \def\[#1]{#1.} % from pascal web
26 \def\<#1>{$\langle#1\rangle$}
27 \def\section{\mathhexbox278}
28 \let\swap=\leftrightarrow
29 \def\round{\mathop{\rm round}\nolimits}
30 \mathchardef\vb="026A % synonym for `\|'
32 \def\(#1){} % this is used to make section names sort themselves better
33 \def\9#1{} % this is used for sort keys in the index via @@:sort key}{entry@@>
35 \def\glob{15} % this should be the section number of "<Global...>"
36 \def\gglob{23, 28} % this should be the next two sections of "<Global...>"
41 This is \MP, a graphics-language processor based on D. E. Knuth's \MF.
43 The main purpose of the following program is to explain the algorithms of \MP\
44 as clearly as possible. As a result, the program will not necessarily be very
45 efficient when a particular \PASCAL\ compiler has translated it into a
46 particular machine language. However, the program has been written so that it
47 can be tuned to run efficiently in a wide variety of operating environments
48 by making comparatively few changes. Such flexibility is possible because
49 the documentation that follows is written in the \.{WEB} language, which is
50 at a higher level than \PASCAL; the preprocessing step that converts \.{WEB}
51 to \PASCAL\ is able to introduce most of the necessary refinements.
52 Semi-automatic translation to other languages is also feasible, because the
53 program below does not make extensive use of features that are peculiar to
56 A large piece of software like \MP\ has inherent complexity that cannot
57 be reduced below a certain level of difficulty, although each individual
58 part is fairly simple by itself. The \.{WEB} language is intended to make
59 the algorithms as readable as possible, by reflecting the way the
60 individual program pieces fit together and by providing the
61 cross-references that connect different parts. Detailed comments about
62 what is going on, and about why things were done in certain ways, have
63 been liberally sprinkled throughout the program. These comments explain
64 features of the implementation, but they rarely attempt to explain the
65 \MP\ language itself, since the reader is supposed to be familiar with
66 {\sl The {\logos METAFONT\/}book} as well as the manual
68 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
69 {\sl A User's Manual for MetaPost}, Computing Science Technical Report 162,
70 AT\AM T Bell Laboratories.
72 @ The present implementation is a preliminary version, but the possibilities
73 for new features are limited by the desire to remain as nearly compatible
74 with \MF\ as possible.
76 On the other hand, the \.{WEB} description can be extended without changing
77 the core of the program, and it has been designed so that such
78 extensions are not extremely difficult to make.
79 The |banner| string defined here should be changed whenever \MP\
80 undergoes any modifications, so that it will be clear which version of
81 \MP\ might be the guilty party when a problem arises.
83 @^system dependencies@>
85 @d banner "This is MetaPost, Version 1.002" /* printed when \MP\ starts */
86 @d metapost_version "1.002"
87 @d mplib_version "0.10"
88 @d version_string " (Cweb version 0.10)"
90 @ Different \PASCAL s have slightly different conventions, and the present
92 program is expressed in a version of \PASCAL\ that D. E. Knuth used for \MF.
93 Constructions that apply to
94 this particular compiler, which we shall call \ph, should help the
95 reader see how to make an appropriate interface for other systems
96 if necessary. (\ph\ is Charles Hedrick's modification of a compiler
97 @^Hedrick, Charles Locke@>
98 for the DECsystem-10 that was originally developed at the University of
99 Hamburg; cf.\ {\sl SOFTWARE---Practice \AM\ Experience \bf6} (1976),
100 29--42. The \MP\ program below is intended to be adaptable, without
101 extensive changes, to most other versions of \PASCAL\ and commonly used
102 \PASCAL-to-C translators, so it does not fully
104 use the admirable features of \ph. Indeed, a conscious effort has been
105 made here to avoid using several idiosyncratic features of standard
106 \PASCAL\ itself, so that most of the code can be translated mechanically
107 into other high-level languages. For example, the `\&{with}' and `\\{new}'
108 features are not used, nor are pointer types, set types, or enumerated
109 scalar types; there are no `\&{var}' parameters, except in the case of files;
110 there are no tag fields on variant records; there are no |real| variables;
111 no procedures are declared local to other procedures.)
113 The portions of this program that involve system-dependent code, where
114 changes might be necessary because of differences between \PASCAL\ compilers
115 and/or differences between
116 operating systems, can be identified by looking at the sections whose
117 numbers are listed under `system dependencies' in the index. Furthermore,
118 the index entries for `dirty \PASCAL' list all places where the restrictions
119 of \PASCAL\ have not been followed perfectly, for one reason or another.
120 @^system dependencies@>
123 @ The program begins with a normal \PASCAL\ program heading, whose
124 components will be filled in later, using the conventions of \.{WEB}.
126 For example, the portion of the program called `\X\glob:Global
127 variables\X' below will be replaced by a sequence of variable declarations
128 that starts in $\section\glob$ of this documentation. In this way, we are able
129 to define each individual global variable when we are prepared to
130 understand what it means; we do not have to define all of the globals at
131 once. Cross references in $\section\glob$, where it says ``See also
132 sections \gglob, \dots,'' also make it possible to look at the set of
133 all global variables, if desired. Similar remarks apply to the other
134 portions of the program heading.
136 Actually the heading shown here is not quite normal: The |program| line
137 does not mention any |output| file, because \ph\ would ask the \MP\ user
138 to specify a file name if |output| were specified here.
139 @^system dependencies@>
145 typedef struct MP_instance * MP;
147 typedef struct MP_options {
150 @<Exported function headers@>
154 typedef struct psout_data_struct * psout_data;
156 typedef signed int integer;
158 @<Types in the outer block@>;
159 @<Constants in the outer block@>
160 # ifndef LIBAVL_ALLOCATOR
161 # define LIBAVL_ALLOCATOR
162 struct libavl_allocator {
163 void *(*libavl_malloc) (struct libavl_allocator *, size_t libavl_size);
164 void (*libavl_free) (struct libavl_allocator *, void *libavl_block);
167 typedef struct MP_instance {
170 @<Internal library declarations@>
178 #include <unistd.h> /* for access() */
179 #include <time.h> /* for struct tm \& co */
181 #include "mpmp.h" /* internal header */
182 #include "mppsout.h" /* internal header */
185 @<Basic printing procedures@>
186 @<Error handling procedures@>
188 @ Here are the functions that set up the \MP\ instance.
191 @<Declare |mp_reallocate| functions@>;
192 struct MP_options *mp_options (void);
193 MP mp_new (struct MP_options *opt);
196 struct MP_options *mp_options (void) {
197 struct MP_options *opt;
198 opt = malloc(sizeof(MP_options));
200 memset (opt,0,sizeof(MP_options));
204 MP mp_new (struct MP_options *opt) {
206 mp = xmalloc(1,sizeof(MP_instance));
207 @<Set |ini_version|@>;
208 @<Setup the non-local jump buffer in |mp_new|@>;
209 @<Allocate or initialize variables@>
210 if (opt->main_memory>mp->mem_max)
211 mp_reallocate_memory(mp,opt->main_memory);
212 mp_reallocate_paths(mp,1000);
213 mp_reallocate_fonts(mp,8);
215 mp->term_out = stdout;
218 void mp_free (MP mp) {
219 int k; /* loop variable */
220 @<Dealloc variables@>
225 void mp_do_initialize ( MP mp) {
226 @<Local variables for initialization@>
227 @<Set initial values of key variables@>
229 int mp_initialize (MP mp) { /* this procedure gets things started properly */
230 mp->history=mp_fatal_error_stop; /* in case we quit during initialization */
231 @<Install and test the non-local jump buffer@>;
232 t_open_out; /* open the terminal for output */
233 @<Check the ``constant'' values...@>;
235 fprintf(stdout,"Ouch---my internal constants have been clobbered!\n"
236 "---case %i",(int)mp->bad);
240 mp_do_initialize(mp); /* erase preloaded mem */
241 if (mp->ini_version) {
242 @<Run inimpost commands@>;
244 @<Initialize the output routines@>;
245 @<Get the first line of input and prepare to start@>;
247 mp_init_map_file(mp, mp->troff_mode);
248 mp->history=mp_spotless; /* ready to go! */
249 if (mp->troff_mode) {
250 mp->internal[mp_gtroffmode]=unity;
251 mp->internal[mp_prologues]=unity;
253 if ( mp->start_sym>0 ) { /* insert the `\&{everyjob}' symbol */
254 mp->cur_sym=mp->start_sym; mp_back_input(mp);
260 @<Exported function headers@>=
261 extern struct MP_options *mp_options (void);
262 extern MP mp_new (struct MP_options *opt) ;
263 extern void mp_free (MP mp);
264 extern int mp_initialize (MP mp);
267 void mp_do_initialize (MP mp);
270 @ The overall \MP\ program begins with the heading just shown, after which
271 comes a bunch of procedure declarations and function declarations.
272 Finally we will get to the main program, which begins with the
273 comment `|start_here|'. If you want to skip down to the
274 main program now, you can look up `|start_here|' in the index.
275 But the author suggests that the best way to understand this program
276 is to follow pretty much the order of \MP's components as they appear in the
277 \.{WEB} description you are now reading, since the present ordering is
278 intended to combine the advantages of the ``bottom up'' and ``top down''
279 approaches to the problem of understanding a somewhat complicated system.
281 @ Some of the code below is intended to be used only when diagnosing the
282 strange behavior that sometimes occurs when \MP\ is being installed or
283 when system wizards are fooling around with \MP\ without quite knowing
284 what they are doing. Such code will not normally be compiled; it is
285 delimited by the preprocessor test `|#ifdef DEBUG .. #endif|'.
287 @ This program has two important variations: (1) There is a long and slow
288 version called \.{INIMP}, which does the extra calculations needed to
290 initialize \MP's internal tables; and (2)~there is a shorter and faster
291 production version, which cuts the initialization to a bare minimum.
293 Which is which is decided at runtime.
295 @ The following parameters can be changed at compile time to extend or
296 reduce \MP's capacity. They may have different values in \.{INIMP} and
297 in production versions of \MP.
299 @^system dependencies@>
302 #define file_name_size 255 /* file names shouldn't be longer than this */
303 #define bistack_size 1500 /* size of stack for bisection algorithms;
304 should probably be left at this value */
306 @ Like the preceding parameters, the following quantities can be changed
307 at compile time to extend or reduce \MP's capacity. But if they are changed,
308 it is necessary to rerun the initialization program \.{INIMP}
310 to generate new tables for the production \MP\ program.
311 One can't simply make helter-skelter changes to the following constants,
312 since certain rather complex initialization
313 numbers are computed from them.
316 int max_strings; /* maximum number of strings; must not exceed |max_halfword| */
317 int pool_size; /* maximum number of characters in strings, including all
318 error messages and help texts, and the names of all identifiers */
319 int error_line; /* width of context lines on terminal error messages */
320 int half_error_line; /* width of first lines of contexts in terminal
321 error messages; should be between 30 and |error_line-15| */
322 int max_print_line; /* width of longest text lines output; should be at least 60 */
323 int mem_max; /* greatest index in \MP's internal |mem| array;
324 must be strictly less than |max_halfword|;
325 must be equal to |mem_top| in \.{INIMP}, otherwise |>=mem_top| */
326 int mem_top; /* largest index in the |mem| array dumped by \.{INIMP};
327 must not be greater than |mem_max| */
328 int hash_size; /* maximum number of symbolic tokens,
329 must be less than |max_halfword-3*param_size| */
330 int hash_prime; /* a prime number equal to about 85\pct! of |hash_size| */
331 int param_size; /* maximum number of simultaneous macro parameters */
332 int max_in_open; /* maximum number of input files and error insertions that
333 can be going on simultaneously */
335 @ @<Option variables@>=
346 @d set_value(a,b,c) do { a=c; if (b>c) a=b; } while (0)
351 set_value(mp->error_line,opt->error_line,79);
352 set_value(mp->half_error_line,opt->half_error_line,50);
353 set_value(mp->max_print_line,opt->max_print_line,79);
356 set_value(mp->hash_size,opt->hash_size,9500);
357 set_value(mp->hash_prime,opt->hash_prime,7919);
358 set_value(mp->param_size,opt->param_size,150);
359 set_value(mp->max_in_open,opt->max_in_open,10);
362 @ In case somebody has inadvertently made bad settings of the ``constants,''
363 \MP\ checks them using a global variable called |bad|.
365 This is the first of many sections of \MP\ where global variables are
369 integer bad; /* is some ``constant'' wrong? */
371 @ Later on we will say `\ignorespaces|if (mem_max>=max_halfword) bad=10;|',
372 or something similar. (We can't do that until |max_halfword| has been defined.)
374 @<Check the ``constant'' values for consistency@>=
376 if ( (mp->half_error_line<30)||(mp->half_error_line>mp->error_line-15) ) mp->bad=1;
377 if ( mp->max_print_line<60 ) mp->bad=2;
378 if ( mp->mem_top<=1100 ) mp->bad=4;
379 if (mp->hash_prime>mp->hash_size ) mp->bad=5;
381 @ Labels are given symbolic names by the following definitions, so that
382 occasional |goto| statements will be meaningful. We insert the label
383 `|exit|:' just before the `\ignorespaces|end|\unskip' of a procedure in
384 which we have used the `|return|' statement defined below; the label
385 `|restart|' is occasionally used at the very beginning of a procedure; and
386 the label `|reswitch|' is occasionally used just prior to a |case|
387 statement in which some cases change the conditions and we wish to branch
388 to the newly applicable case. Loops that are set up with the |loop|
389 construction defined below are commonly exited by going to `|done|' or to
390 `|found|' or to `|not_found|', and they are sometimes repeated by going to
391 `|continue|'. If two or more parts of a subroutine start differently but
392 end up the same, the shared code may be gathered together at
395 Incidentally, this program never declares a label that isn't actually used,
396 because some fussy \PASCAL\ compilers will complain about redundant labels.
398 @d label_exit 10 /* go here to leave a procedure */
399 @d restart 20 /* go here to start a procedure again */
400 @d reswitch 21 /* go here to start a case statement again */
401 @d continue 22 /* go here to resume a loop */
402 @d done 30 /* go here to exit a loop */
403 @d done1 31 /* like |done|, when there is more than one loop */
404 @d done2 32 /* for exiting the second loop in a long block */
405 @d done3 33 /* for exiting the third loop in a very long block */
406 @d done4 34 /* for exiting the fourth loop in an extremely long block */
407 @d done5 35 /* for exiting the fifth loop in an immense block */
408 @d done6 36 /* for exiting the sixth loop in a block */
409 @d found 40 /* go here when you've found it */
410 @d found1 41 /* like |found|, when there's more than one per routine */
411 @d found2 42 /* like |found|, when there's more than two per routine */
412 @d found3 43 /* like |found|, when there's more than three per routine */
413 @d not_found 45 /* go here when you've found nothing */
414 @d common_ending 50 /* go here when you want to merge with another branch */
416 @ Here are some macros for common programming idioms.
418 @d incr(A) (A)=(A)+1 /* increase a variable by unity */
419 @d decr(A) (A)=(A)-1 /* decrease a variable by unity */
420 @d negate(A) (A)=-(A) /* change the sign of a variable */
421 @d double(A) (A)=(A)+(A)
424 @d do_nothing /* empty statement */
425 @d Return goto exit /* terminate a procedure call */
426 @f return nil /* \.{WEB} will henceforth say |return| instead of \\{return} */
428 @* \[2] The character set.
429 In order to make \MP\ readily portable to a wide variety of
430 computers, all of its input text is converted to an internal eight-bit
431 code that includes standard ASCII, the ``American Standard Code for
432 Information Interchange.'' This conversion is done immediately when each
433 character is read in. Conversely, characters are converted from ASCII to
434 the user's external representation just before they are output to a
438 Such an internal code is relevant to users of \MP\ only with respect to
439 the \&{char} and \&{ASCII} operations, and the comparison of strings.
441 @ Characters of text that have been converted to \MP's internal form
442 are said to be of type |ASCII_code|, which is a subrange of the integers.
445 typedef unsigned char ASCII_code; /* eight-bit numbers */
447 @ The original \PASCAL\ compiler was designed in the late 60s, when six-bit
448 character sets were common, so it did not make provision for lowercase
449 letters. Nowadays, of course, we need to deal with both capital and small
450 letters in a convenient way, especially in a program for font design;
451 so the present specification of \MP\ has been written under the assumption
452 that the \PASCAL\ compiler and run-time system permit the use of text files
453 with more than 64 distinguishable characters. More precisely, we assume that
454 the character set contains at least the letters and symbols associated
455 with ASCII codes 040 through 0176; all of these characters are now
456 available on most computer terminals.
458 Since we are dealing with more characters than were present in the first
459 \PASCAL\ compilers, we have to decide what to call the associated data
460 type. Some \PASCAL s use the original name |char| for the
461 characters in text files, even though there now are more than 64 such
462 characters, while other \PASCAL s consider |char| to be a 64-element
463 subrange of a larger data type that has some other name.
465 In order to accommodate this difference, we shall use the name |text_char|
466 to stand for the data type of the characters that are converted to and
467 from |ASCII_code| when they are input and output. We shall also assume
468 that |text_char| consists of the elements |chr(first_text_char)| through
469 |chr(last_text_char)|, inclusive. The following definitions should be
470 adjusted if necessary.
471 @^system dependencies@>
473 @d first_text_char 0 /* ordinal number of the smallest element of |text_char| */
474 @d last_text_char 255 /* ordinal number of the largest element of |text_char| */
477 typedef unsigned char text_char; /* the data type of characters in text files */
479 @ @<Local variables for init...@>=
482 @ The \MP\ processor converts between ASCII code and
483 the user's external character set by means of arrays |xord| and |xchr|
484 that are analogous to \PASCAL's |ord| and |chr| functions.
486 @d xchr(A) mp->xchr[(A)]
487 @d xord(A) mp->xord[(A)]
490 ASCII_code xord[256]; /* specifies conversion of input characters */
491 text_char xchr[256]; /* specifies conversion of output characters */
493 @ The core system assumes all 8-bit is acceptable. If it is not,
494 a change file has to alter the below section.
495 @^system dependencies@>
497 Additionally, people with extended character sets can
498 assign codes arbitrarily, giving an |xchr| equivalent to whatever
499 characters the users of \MP\ are allowed to have in their input files.
500 Appropriate changes to \MP's |char_class| table should then be made.
501 (Unlike \TeX, each installation of \MP\ has a fixed assignment of category
502 codes, called the |char_class|.) Such changes make portability of programs
503 more difficult, so they should be introduced cautiously if at all.
504 @^character set dependencies@>
505 @^system dependencies@>
508 for (i=0;i<=0377;i++) { xchr(i)=i; }
510 @ The following system-independent code makes the |xord| array contain a
511 suitable inverse to the information in |xchr|. Note that if |xchr[i]=xchr[j]|
512 where |i<j<0177|, the value of |xord[xchr[i]]| will turn out to be
513 |j| or more; hence, standard ASCII code numbers will be used instead of
514 codes below 040 in case there is a coincidence.
517 for (i=first_text_char;i<=last_text_char;i++) {
520 for (i=0200;i<=0377;i++) { xord(xchr(i))=i;}
521 for (i=0;i<=0176;i++) { xord(xchr(i))=i;}
523 @* \[3] Input and output.
524 The bane of portability is the fact that different operating systems treat
525 input and output quite differently, perhaps because computer scientists
526 have not given sufficient attention to this problem. People have felt somehow
527 that input and output are not part of ``real'' programming. Well, it is true
528 that some kinds of programming are more fun than others. With existing
529 input/output conventions being so diverse and so messy, the only sources of
530 joy in such parts of the code are the rare occasions when one can find a
531 way to make the program a little less bad than it might have been. We have
532 two choices, either to attack I/O now and get it over with, or to postpone
533 I/O until near the end. Neither prospect is very attractive, so let's
536 The basic operations we need to do are (1)~inputting and outputting of
537 text, to or from a file or the user's terminal; (2)~inputting and
538 outputting of eight-bit bytes, to or from a file; (3)~instructing the
539 operating system to initiate (``open'') or to terminate (``close'') input or
540 output from a specified file; (4)~testing whether the end of an input
541 file has been reached; (5)~display of bits on the user's screen.
542 The bit-display operation will be discussed in a later section; we shall
543 deal here only with more traditional kinds of I/O.
545 @ Finding files happens in a slightly roundabout fashion: the \MP\
546 instance object contains a field that holds a function pointer that finds a
547 file, and returns its name, or NULL. For this, it receives three
548 parameters: the non-qualified name |fname|, the intended |fopen|
549 operation type |fmode|, and the type of the file |ftype|.
551 The file types that are passed on in |ftype| can be used to
552 differentiate file searches if a library like kpathsea is used,
553 the fopen mode is passed along for the same reason.
556 typedef unsigned char eight_bits ; /* unsigned one-byte quantity */
558 @ @<Exported types@>=
560 mp_filetype_program = 1, /* \MP\ language input */
561 mp_filetype_log, /* the log file */
562 mp_filetype_postscript, /* the postscript output */
563 mp_filetype_text, /* text files for readfrom and writeto primitives */
564 mp_filetype_memfile, /* memory dumps */
565 mp_filetype_metrics, /* TeX font metric files */
566 mp_filetype_fontmap, /* PostScript font mapping files */
567 mp_filetype_font, /* PostScript type1 font programs */
568 mp_filetype_encoding, /* PostScript font encoding files */
570 typedef char *(*mp_file_finder)(char *, char *, int);
573 mp_file_finder find_file;
575 @ @<Option variables@>=
576 mp_file_finder find_file;
578 @ The default function for finding files is |mp_find_file|. It is
579 pretty stupid: it will only find files in the current directory.
582 char *mp_find_file (char *fname, char *fmode, int ftype) {
583 if (fmode[0] != 'r' || access (fname,R_OK) || ftype)
584 return strdup(fname);
588 @ This has to be done very early on, so it is best to put it in with
589 the |mp_new| allocations
591 @d set_callback_option(A) do { mp->A = mp_##A;
592 if (opt->A!=NULL) mp->A = opt->A;
595 @<Allocate or initialize ...@>=
596 set_callback_option(find_file);
598 @ Because |mp_find_file| is used so early, it has to be in the helpers
602 char *mp_find_file (char *fname, char *fmode, int ftype) ;
604 @ The function to open files can now be very short.
607 FILE *mp_open_file(MP mp, char *fname, char *fmode, int ftype) {
608 char *s = (mp->find_file)(fname,fmode,ftype);
610 FILE *f = fopen(s, fmode);
617 @ This is a legacy interface: (almost) all file names pass through |name_of_file|.
620 char name_of_file[file_name_size+1]; /* the name of a system file */
621 int name_length;/* this many characters are actually
622 relevant in |name_of_file| (the rest are blank) */
623 boolean print_found_names; /* configuration parameter */
625 @ @<Option variables@>=
626 int print_found_names; /* configuration parameter */
628 @ If this parameter is true, the terminal and log will report the found
629 file names for input files instead of the requested ones.
630 It is off by default because it creates an extra filename lookup.
632 @<Allocate or initialize ...@>=
633 mp->print_found_names = (opt->print_found_names>0 ? true : false);
635 @ \MP's file-opening procedures return |false| if no file identified by
636 |name_of_file| could be opened.
638 The |OPEN_FILE| macro takes care of the |print_found_names| parameter.
639 It is not used for opening a mem file for read, because that file name
643 if (mp->print_found_names) {
644 char *s = (mp->find_file)(mp->name_of_file,A,ftype);
646 *f = mp_open_file(mp,mp->name_of_file,A, ftype);
647 strncpy(mp->name_of_file,s,file_name_size);
653 *f = mp_open_file(mp,mp->name_of_file,A, ftype);
656 return (*f ? true : false)
659 boolean mp_a_open_in (MP mp, FILE **f, int ftype) {
660 /* open a text file for input */
664 boolean mp_w_open_in (MP mp, FILE **f) {
665 /* open a word file for input */
666 *f = mp_open_file(mp,mp->name_of_file,"rb",mp_filetype_memfile);
667 return (*f ? true : false);
670 boolean mp_a_open_out (MP mp, FILE **f, int ftype) {
671 /* open a text file for output */
675 boolean mp_b_open_out (MP mp, FILE **f, int ftype) {
676 /* open a binary file for output */
680 boolean mp_w_open_out (MP mp, FILE**f) {
681 /* open a word file for output */
682 int ftype = mp_filetype_memfile;
687 FILE *mp_open_file(MP mp, char *fname, char *fmode, int ftype);
689 @ Binary input and output are done with \PASCAL's ordinary |get| and |put|
690 procedures, so we don't have to make any other special arrangements for
691 binary~I/O. Text output is also easy to do with standard \PASCAL\ routines.
692 The treatment of text input is more difficult, however, because
693 of the necessary translation to |ASCII_code| values.
694 \MP's conventions should be efficient, and they should
695 blend nicely with the user's operating environment.
697 @ Input from text files is read one line at a time, using a routine called
698 |input_ln|. This function is defined in terms of global variables called
699 |buffer|, |first|, and |last| that will be described in detail later; for
700 now, it suffices for us to know that |buffer| is an array of |ASCII_code|
701 values, and that |first| and |last| are indices into this array
702 representing the beginning and ending of a line of text.
705 size_t buf_size; /* maximum number of characters simultaneously present in
706 current lines of open files */
707 ASCII_code *buffer; /* lines of characters being read */
708 size_t first; /* the first unused position in |buffer| */
709 size_t last; /* end of the line just input to |buffer| */
710 size_t max_buf_stack; /* largest index used in |buffer| */
712 @ @<Allocate or initialize ...@>=
714 mp->buffer = xmalloc((mp->buf_size+1),sizeof(ASCII_code));
716 @ @<Dealloc variables@>=
720 void mp_reallocate_buffer(MP mp, size_t l) {
722 if (l>max_halfword) {
723 mp_confusion(mp,"buffer size"); /* can't happen (I hope) */
725 buffer = xmalloc((l+1),sizeof(ASCII_code));
726 memcpy(buffer,mp->buffer,(mp->buf_size+1));
728 mp->buffer = buffer ;
732 @ The |input_ln| function brings the next line of input from the specified
733 field into available positions of the buffer array and returns the value
734 |true|, unless the file has already been entirely read, in which case it
735 returns |false| and sets |last:=first|. In general, the |ASCII_code|
736 numbers that represent the next line of the file are input into
737 |buffer[first]|, |buffer[first+1]|, \dots, |buffer[last-1]|; and the
738 global variable |last| is set equal to |first| plus the length of the
739 line. Trailing blanks are removed from the line; thus, either |last=first|
740 (in which case the line was entirely blank) or |buffer[last-1]<>" "|.
743 An overflow error is given, however, if the normal actions of |input_ln|
744 would make |last>=buf_size|; this is done so that other parts of \MP\
745 can safely look at the contents of |buffer[last+1]| without overstepping
746 the bounds of the |buffer| array. Upon entry to |input_ln|, the condition
747 |first<buf_size| will always hold, so that there is always room for an
750 The variable |max_buf_stack|, which is used to keep track of how large
751 the |buf_size| parameter must be to accommodate the present job, is
752 also kept up to date by |input_ln|.
754 If the |bypass_eoln| parameter is |true|, |input_ln| will do a |get|
755 before looking at the first character of the line; this skips over
756 an |eoln| that was in |f^|. The procedure does not do a |get| when it
757 reaches the end of the line; therefore it can be used to acquire input
758 from the user's terminal as well as from ordinary text files.
760 Standard \PASCAL\ says that a file should have |eoln| immediately
761 before |eof|, but \MP\ needs only a weaker restriction: If |eof|
762 occurs in the middle of a line, the system function |eoln| should return
763 a |true| result (even though |f^| will be undefined).
766 boolean mp_input_ln (MP mp,FILE * f, boolean bypass_eoln) {
767 /* inputs the next line or returns |false| */
768 int last_nonblank; /* |last| with trailing blanks removed */
774 if (c!='\n' && c!='\r') {
778 /* input the first character of the line into |f^| */
779 mp->last=mp->first; /* cf.\ Matthew 19\thinspace:\thinspace30 */
783 last_nonblank=mp->first;
784 while (c!=EOF && c!='\n' && c!='\r') {
785 if ( mp->last>=mp->max_buf_stack ) {
786 mp->max_buf_stack=mp->last+1;
787 if ( mp->max_buf_stack==mp->buf_size ) {
788 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
791 mp->buffer[mp->last]=xord(c);
793 if ( mp->buffer[mp->last-1]!=' ' )
794 last_nonblank=mp->last;
800 mp->last=last_nonblank;
804 @ The user's terminal acts essentially like other files of text, except
805 that it is used both for input and for output. When the terminal is
806 considered an input file, the file variable is called |term_in|, and when it
807 is considered an output file the file variable is |term_out|.
808 @^system dependencies@>
811 FILE * term_in; /* the terminal as an input file */
812 FILE * term_out; /* the terminal as an output file */
814 @ Here is how to open the terminal files. In the default configuration,
815 nothing happens except that the command line (if there is one) is copied
816 to the input buffer. The variable |command_line| will be filled by the
817 |main| procedure. The copying can not be done earlier in the program
818 logic because in the |INI| version, the |buffer| is also used for primitive
821 @^system dependencies@>
823 @d t_open_out /* open the terminal for text output */
824 @d t_open_in do { /* open the terminal for text input */
825 if (mp->command_line!=NULL) {
826 mp->last = strlen(mp->command_line);
827 strncpy((char *)mp->buffer,mp->command_line,mp->last);
828 xfree(mp->command_line);
835 @ @<Option variables@>=
838 @ @<Allocate or initialize ...@>=
839 mp->command_line = opt->command_line;
841 @ Sometimes it is necessary to synchronize the input/output mixture that
842 happens on the user's terminal, and three system-dependent
843 procedures are used for this
844 purpose. The first of these, |update_terminal|, is called when we want
845 to make sure that everything we have output to the terminal so far has
846 actually left the computer's internal buffers and been sent.
847 The second, |clear_terminal|, is called when we wish to cancel any
848 input that the user may have typed ahead (since we are about to
849 issue an unexpected error message). The third, |wake_up_terminal|,
850 is supposed to revive the terminal if the user has disabled it by
851 some instruction to the operating system. The following macros show how
852 these operations can be specified in \ph:
853 @^system dependencies@>
855 @d update_terminal fflush(mp->term_out) /* empty the terminal output buffer */
856 @d clear_terminal do_nothing /* clear the terminal input buffer */
857 @d wake_up_terminal fflush(mp->term_out) /* cancel the user's cancellation of output */
859 @ We need a special routine to read the first line of \MP\ input from
860 the user's terminal. This line is different because it is read before we
861 have opened the transcript file; there is sort of a ``chicken and
862 egg'' problem here. If the user types `\.{input cmr10}' on the first
863 line, or if some macro invoked by that line does such an \.{input},
864 the transcript file will be named `\.{cmr10.log}'; but if no \.{input}
865 commands are performed during the first line of terminal input, the transcript
866 file will acquire its default name `\.{mpout.log}'. (The transcript file
867 will not contain error messages generated by the first line before the
868 first \.{input} command.)
870 The first line is even more special if we are lucky enough to have an operating
871 system that treats \MP\ differently from a run-of-the-mill \PASCAL\ object
872 program. It's nice to let the user start running a \MP\ job by typing
873 a command line like `\.{MP cmr10}'; in such a case, \MP\ will operate
874 as if the first line of input were `\.{cmr10}', i.e., the first line will
875 consist of the remainder of the command line, after the part that invoked \MP.
877 @ Different systems have different ways to get started. But regardless of
878 what conventions are adopted, the routine that initializes the terminal
879 should satisfy the following specifications:
881 \yskip\textindent{1)}It should open file |term_in| for input from the
882 terminal. (The file |term_out| will already be open for output to the
885 \textindent{2)}If the user has given a command line, this line should be
886 considered the first line of terminal input. Otherwise the
887 user should be prompted with `\.{**}', and the first line of input
888 should be whatever is typed in response.
890 \textindent{3)}The first line of input, which might or might not be a
891 command line, should appear in locations |first| to |last-1| of the
894 \textindent{4)}The global variable |loc| should be set so that the
895 character to be read next by \MP\ is in |buffer[loc]|. This
896 character should not be blank, and we should have |loc<last|.
898 \yskip\noindent(It may be necessary to prompt the user several times
899 before a non-blank line comes in. The prompt is `\.{**}' instead of the
900 later `\.*' because the meaning is slightly different: `\.{input}' need
901 not be typed immediately after~`\.{**}'.)
903 @d loc mp->cur_input.loc_field /* location of first unread character in |buffer| */
905 @ The following program does the required initialization
906 without retrieving a possible command line.
907 It should be clear how to modify this routine to deal with command lines,
908 if the system permits them.
909 @^system dependencies@>
912 boolean mp_init_terminal (MP mp) { /* gets the terminal input started */
919 wake_up_terminal; fprintf(mp->term_out,"**"); update_terminal;
921 if ( ! mp_input_ln(mp, mp->term_in,true) ) { /* this shouldn't happen */
922 fprintf(mp->term_out,"\n! End of file on the terminal... why?");
923 @.End of file on the terminal@>
927 while ( (loc<(int)mp->last)&&(mp->buffer[loc]==' ') )
929 if ( loc<(int)mp->last ) {
930 return true; /* return unless the line was all blank */
932 fprintf(mp->term_out,"Please type the name of your input file.\n");
937 boolean mp_init_terminal (MP mp) ;
940 @* \[4] String handling.
941 Symbolic token names and diagnostic messages are variable-length strings
942 of eight-bit characters. Since \PASCAL\ does not have a well-developed string
943 mechanism, \MP\ does all of its string processing by homegrown methods.
945 \MP\ uses strings more extensively than \MF\ does, but the necessary
946 operations can still be handled with a fairly simple data structure.
947 The array |str_pool| contains all of the (eight-bit) ASCII codes in all
948 of the strings, and the array |str_start| contains indices of the starting
949 points of each string. Strings are referred to by integer numbers, so that
950 string number |s| comprises the characters |str_pool[j]| for
951 |str_start[s]<=j<str_start[ss]| where |ss=next_str[s]|. The string pool
952 is allocated sequentially and |str_pool[pool_ptr]| is the next unused
953 location. The first string number not currently in use is |str_ptr|
954 and |next_str[str_ptr]| begins a list of free string numbers. String
955 pool entries |str_start[str_ptr]| up to |pool_ptr| are reserved for a
956 string currently being constructed.
958 String numbers 0 to 255 are reserved for strings that correspond to single
959 ASCII characters. This is in accordance with the conventions of \.{WEB},
961 which converts single-character strings into the ASCII code number of the
962 single character involved, while it converts other strings into integers
963 and builds a string pool file. Thus, when the string constant \.{"."} appears
964 in the program below, \.{WEB} converts it into the integer 46, which is the
965 ASCII code for a period, while \.{WEB} will convert a string like \.{"hello"}
966 into some integer greater than~255. String number 46 will presumably be the
967 single character `\..'\thinspace; but some ASCII codes have no standard visible
968 representation, and \MP\ may need to be able to print an arbitrary
969 ASCII character, so the first 256 strings are used to specify exactly what
970 should be printed for each of the 256 possibilities.
973 typedef int pool_pointer; /* for variables that point into |str_pool| */
974 typedef int str_number; /* for variables that point into |str_start| */
977 ASCII_code *str_pool; /* the characters */
978 pool_pointer *str_start; /* the starting pointers */
979 str_number *next_str; /* for linking strings in order */
980 pool_pointer pool_ptr; /* first unused position in |str_pool| */
981 str_number str_ptr; /* number of the current string being created */
982 pool_pointer init_pool_ptr; /* the starting value of |pool_ptr| */
983 str_number init_str_use; /* the initial number of strings in use */
984 pool_pointer max_pool_ptr; /* the maximum so far of |pool_ptr| */
985 str_number max_str_ptr; /* the maximum so far of |str_ptr| */
987 @ @<Allocate or initialize ...@>=
988 mp->str_pool = xmalloc ((mp->pool_size +1),sizeof(ASCII_code));
989 mp->str_start = xmalloc ((mp->max_strings+1),sizeof(pool_pointer));
990 mp->next_str = xmalloc ((mp->max_strings+1),sizeof(str_number));
992 @ @<Dealloc variables@>=
994 xfree(mp->str_start);
997 @ Most printing is done from |char *|s, but sometimes not. Here are
998 functions that convert an internal string into a |char *| for use
999 by the printing routines, and vice versa.
1001 @d str(A) mp_str(mp,A)
1002 @d rts(A) mp_rts(mp,A)
1005 int mp_xstrcmp (const char *a, const char *b);
1006 char * mp_str (MP mp, str_number s);
1009 str_number mp_rts (MP mp, char *s);
1010 str_number mp_make_string (MP mp);
1012 @ The attempt to catch interrupted strings that is in |mp_rts|, is not
1013 very good: it does not handle nesting over more than one level.
1016 int mp_xstrcmp (const char *a, const char *b) {
1017 if (a==NULL && b==NULL)
1027 char * mp_str (MP mp, str_number ss) {
1030 if (ss==mp->str_ptr) {
1034 s = xmalloc(len+1,sizeof(char));
1035 strncpy(s,(char *)(mp->str_pool+(mp->str_start[ss])),len);
1040 str_number mp_rts (MP mp, char *s) {
1041 int r; /* the new string */
1042 int old; /* a possible string in progress */
1046 } else if (strlen(s)==1) {
1050 str_room((integer)strlen(s));
1051 if (mp->str_start[mp->str_ptr]<mp->pool_ptr)
1052 old = mp_make_string(mp);
1057 r = mp_make_string(mp);
1059 str_room(length(old));
1060 while (i<length(old)) {
1061 append_char((mp->str_start[old]+i));
1063 mp_flush_string(mp,old);
1069 @ Except for |strs_used_up|, the following string statistics are only
1070 maintained when code between |stat| $\ldots$ |tats| delimiters is not
1074 integer strs_used_up; /* strings in use or unused but not reclaimed */
1075 integer pool_in_use; /* total number of cells of |str_pool| actually in use */
1076 integer strs_in_use; /* total number of strings actually in use */
1077 integer max_pl_used; /* maximum |pool_in_use| so far */
1078 integer max_strs_used; /* maximum |strs_in_use| so far */
1080 @ Several of the elementary string operations are performed using \.{WEB}
1081 macros instead of \PASCAL\ procedures, because many of the
1082 operations are done quite frequently and we want to avoid the
1083 overhead of procedure calls. For example, here is
1084 a simple macro that computes the length of a string.
1087 @d str_stop(A) mp->str_start[mp->next_str[(A)]] /* one cell past the end of string
1089 @d length(A) (str_stop((A))-mp->str_start[(A)]) /* the number of characters in string \# */
1091 @ The length of the current string is called |cur_length|. If we decide that
1092 the current string is not needed, |flush_cur_string| resets |pool_ptr| so that
1093 |cur_length| becomes zero.
1095 @d cur_length (mp->pool_ptr - mp->str_start[mp->str_ptr])
1096 @d flush_cur_string mp->pool_ptr=mp->str_start[mp->str_ptr]
1098 @ Strings are created by appending character codes to |str_pool|.
1099 The |append_char| macro, defined here, does not check to see if the
1100 value of |pool_ptr| has gotten too high; this test is supposed to be
1101 made before |append_char| is used.
1103 To test if there is room to append |l| more characters to |str_pool|,
1104 we shall write |str_room(l)|, which tries to make sure there is enough room
1105 by compacting the string pool if necessary. If this does not work,
1106 |do_compaction| aborts \MP\ and gives an apologetic error message.
1108 @d append_char(A) /* put |ASCII_code| \# at the end of |str_pool| */
1109 { mp->str_pool[mp->pool_ptr]=(A); incr(mp->pool_ptr);
1111 @d str_room(A) /* make sure that the pool hasn't overflowed */
1112 { if ( mp->pool_ptr+(A) > mp->max_pool_ptr ) {
1113 if ( mp->pool_ptr+(A) > mp->pool_size ) mp_do_compaction(mp, (A));
1114 else mp->max_pool_ptr=mp->pool_ptr+(A); }
1117 @ The following routine is similar to |str_room(1)| but it uses the
1118 argument |mp->pool_size| to prevent |do_compaction| from aborting when
1119 string space is exhausted.
1121 @<Declare the procedure called |unit_str_room|@>=
1122 void mp_unit_str_room (MP mp);
1125 void mp_unit_str_room (MP mp) {
1126 if ( mp->pool_ptr>=mp->pool_size ) mp_do_compaction(mp, mp->pool_size);
1127 if ( mp->pool_ptr>=mp->max_pool_ptr ) mp->max_pool_ptr=mp->pool_ptr+1;
1130 @ \MP's string expressions are implemented in a brute-force way: Every
1131 new string or substring that is needed is simply copied into the string pool.
1132 Space is eventually reclaimed by a procedure called |do_compaction| with
1133 the aid of a simple system system of reference counts.
1134 @^reference counts@>
1136 The number of references to string number |s| will be |str_ref[s]|. The
1137 special value |str_ref[s]=max_str_ref=127| is used to denote an unknown
1138 positive number of references; such strings will never be recycled. If
1139 a string is ever referred to more than 126 times, simultaneously, we
1140 put it in this category. Hence a single byte suffices to store each |str_ref|.
1142 @d max_str_ref 127 /* ``infinite'' number of references */
1143 @d add_str_ref(A) { if ( mp->str_ref[(A)]<max_str_ref ) incr(mp->str_ref[(A)]);
1149 @ @<Allocate or initialize ...@>=
1150 mp->str_ref = xmalloc ((mp->max_strings+1),sizeof(int));
1152 @ @<Dealloc variables@>=
1155 @ Here's what we do when a string reference disappears:
1157 @d delete_str_ref(A) {
1158 if ( mp->str_ref[(A)]<max_str_ref ) {
1159 if ( mp->str_ref[(A)]>1 ) decr(mp->str_ref[(A)]);
1160 else mp_flush_string(mp, (A));
1164 @<Declare the procedure called |flush_string|@>=
1165 void mp_flush_string (MP mp,str_number s) ;
1168 @ We can't flush the first set of static strings at all, so there
1169 is no point in trying
1172 void mp_flush_string (MP mp,str_number s) {
1174 mp->pool_in_use=mp->pool_in_use-length(s);
1175 decr(mp->strs_in_use);
1176 if ( mp->next_str[s]!=mp->str_ptr ) {
1180 decr(mp->strs_used_up);
1182 mp->pool_ptr=mp->str_start[mp->str_ptr];
1186 @ C literals cannot be simply added, they need to be set so they can't
1189 @d intern(A) mp_intern(mp,(A))
1192 str_number mp_intern (MP mp, char *s) {
1195 mp->str_ref[r] = max_str_ref;
1200 str_number mp_intern (MP mp, char *s);
1203 @ Once a sequence of characters has been appended to |str_pool|, it
1204 officially becomes a string when the function |make_string| is called.
1205 This function returns the identification number of the new string as its
1208 When getting the next unused string number from the linked list, we pretend
1210 $$ \hbox{|max_str_ptr+1|, |max_str_ptr+2|, $\ldots$, |mp->max_strings|} $$
1211 are linked sequentially even though the |next_str| entries have not been
1212 initialized yet. We never allow |str_ptr| to reach |mp->max_strings|;
1213 |do_compaction| is responsible for making sure of this.
1216 @<Declare the procedure called |do_compaction|@>;
1217 @<Declare the procedure called |unit_str_room|@>;
1218 str_number mp_make_string (MP mp);
1221 str_number mp_make_string (MP mp) { /* current string enters the pool */
1222 str_number s; /* the new string */
1225 mp->str_ptr=mp->next_str[s];
1226 if ( mp->str_ptr>mp->max_str_ptr ) {
1227 if ( mp->str_ptr==mp->max_strings ) {
1229 mp_do_compaction(mp, 0);
1233 if ( mp->strs_used_up!=mp->max_str_ptr ) mp_confusion(mp, "s");
1234 @:this can't happen s}{\quad \.s@>
1236 mp->max_str_ptr=mp->str_ptr;
1237 mp->next_str[mp->str_ptr]=mp->max_str_ptr+1;
1241 mp->str_start[mp->str_ptr]=mp->pool_ptr;
1242 incr(mp->strs_used_up);
1243 incr(mp->strs_in_use);
1244 mp->pool_in_use=mp->pool_in_use+length(s);
1245 if ( mp->pool_in_use>mp->max_pl_used )
1246 mp->max_pl_used=mp->pool_in_use;
1247 if ( mp->strs_in_use>mp->max_strs_used )
1248 mp->max_strs_used=mp->strs_in_use;
1252 @ The most interesting string operation is string pool compaction. The idea
1253 is to recover unused space in the |str_pool| array by recopying the strings
1254 to close the gaps created when some strings become unused. All string
1255 numbers~$k$ where |str_ref[k]=0| are to be linked into the list of free string
1256 numbers after |str_ptr|. If this fails to free enough pool space we issue an
1257 |overflow| error unless |needed=mp->pool_size|. Calling |do_compaction|
1258 with |needed=mp->pool_size| supresses all overflow tests.
1260 The compaction process starts with |last_fixed_str| because all lower numbered
1261 strings are permanently allocated with |max_str_ref| in their |str_ref| entries.
1264 str_number last_fixed_str; /* last permanently allocated string */
1265 str_number fixed_str_use; /* number of permanently allocated strings */
1267 @ @<Declare the procedure called |do_compaction|@>=
1268 void mp_do_compaction (MP mp, pool_pointer needed) ;
1271 void mp_do_compaction (MP mp, pool_pointer needed) {
1272 str_number str_use; /* a count of strings in use */
1273 str_number r,s,t; /* strings being manipulated */
1274 pool_pointer p,q; /* destination and source for copying string characters */
1275 @<Advance |last_fixed_str| as far as possible and set |str_use|@>;
1276 r=mp->last_fixed_str;
1279 while ( s!=mp->str_ptr ) {
1280 while ( mp->str_ref[s]==0 ) {
1281 @<Advance |s| and add the old |s| to the list of free string numbers;
1282 then |break| if |s=str_ptr|@>;
1284 r=s; s=mp->next_str[s];
1286 @<Move string |r| back so that |str_start[r]=p|; make |p| the location
1287 after the end of the string@>;
1289 @<Move the current string back so that it starts at |p|@>;
1290 if ( needed<mp->pool_size ) {
1291 @<Make sure that there is room for another string with |needed| characters@>;
1293 @<Account for the compaction and make sure the statistics agree with the
1295 mp->strs_used_up=str_use;
1298 @ @<Advance |last_fixed_str| as far as possible and set |str_use|@>=
1299 t=mp->next_str[mp->last_fixed_str];
1300 while (t!=mp->str_ptr && mp->str_ref[t]==max_str_ref) {
1301 incr(mp->fixed_str_use);
1302 mp->last_fixed_str=t;
1305 str_use=mp->fixed_str_use
1307 @ Because of the way |flush_string| has been written, it should never be
1308 necessary to |break| here. The extra line of code seems worthwhile to
1309 preserve the generality of |do_compaction|.
1311 @<Advance |s| and add the old |s| to the list of free string numbers;...@>=
1316 mp->next_str[t]=mp->next_str[mp->str_ptr];
1317 mp->next_str[mp->str_ptr]=t;
1318 if ( s==mp->str_ptr ) break;
1321 @ The string currently starts at |str_start[r]| and ends just before
1322 |str_start[s]|. We don't change |str_start[s]| because it might be needed
1323 to locate the next string.
1325 @<Move string |r| back so that |str_start[r]=p|; make |p| the location...@>=
1328 while ( q<mp->str_start[s] ) {
1329 mp->str_pool[p]=mp->str_pool[q];
1333 @ Pointers |str_start[str_ptr]| and |pool_ptr| have not been updated. When
1334 we do this, anything between them should be moved.
1336 @ @<Move the current string back so that it starts at |p|@>=
1337 q=mp->str_start[mp->str_ptr];
1338 mp->str_start[mp->str_ptr]=p;
1339 while ( q<mp->pool_ptr ) {
1340 mp->str_pool[p]=mp->str_pool[q];
1345 @ We must remember that |str_ptr| is not allowed to reach |mp->max_strings|.
1347 @<Make sure that there is room for another string with |needed| char...@>=
1348 if ( str_use>=mp->max_strings-1 )
1349 mp_reallocate_strings (mp,str_use);
1350 if ( mp->pool_ptr+needed>mp->max_pool_ptr ) {
1351 mp_reallocate_pool(mp, mp->pool_ptr+needed);
1352 mp->max_pool_ptr=mp->pool_ptr+needed;
1356 void mp_reallocate_strings (MP mp, str_number str_use) ;
1357 void mp_reallocate_pool(MP mp, pool_pointer needed) ;
1360 void mp_reallocate_strings (MP mp, str_number str_use) {
1361 while ( str_use>=mp->max_strings-1 ) {
1362 int l = mp->max_strings + (mp->max_strings>>2);
1363 XREALLOC (mp->str_ref, l, int);
1364 XREALLOC (mp->str_start, l, pool_pointer);
1365 XREALLOC (mp->next_str, l, str_number);
1366 mp->max_strings = l;
1369 void mp_reallocate_pool(MP mp, pool_pointer needed) {
1370 while ( needed>mp->pool_size ) {
1371 int l = mp->pool_size + (mp->pool_size>>2);
1372 XREALLOC (mp->str_pool, l, ASCII_code);
1377 @ @<Account for the compaction and make sure the statistics agree with...@>=
1378 if ( (mp->str_start[mp->str_ptr]!=mp->pool_in_use)||(str_use!=mp->strs_in_use) )
1379 mp_confusion(mp, "string");
1380 @:this can't happen string}{\quad string@>
1381 incr(mp->pact_count);
1382 mp->pact_chars=mp->pact_chars+mp->pool_ptr-str_stop(mp->last_fixed_str);
1383 mp->pact_strs=mp->pact_strs+str_use-mp->fixed_str_use;
1385 s=mp->str_ptr; t=str_use;
1386 while ( s<=mp->max_str_ptr ){
1387 if ( t>mp->max_str_ptr ) mp_confusion(mp, "\"");
1388 incr(t); s=mp->next_str[s];
1390 if ( t<=mp->max_str_ptr ) mp_confusion(mp, "\"");
1393 @ A few more global variables are needed to keep track of statistics when
1394 |stat| $\ldots$ |tats| blocks are not commented out.
1397 integer pact_count; /* number of string pool compactions so far */
1398 integer pact_chars; /* total number of characters moved during compactions */
1399 integer pact_strs; /* total number of strings moved during compactions */
1401 @ @<Initialize compaction statistics@>=
1406 @ The following subroutine compares string |s| with another string of the
1407 same length that appears in |buffer| starting at position |k|;
1408 the result is |true| if and only if the strings are equal.
1411 boolean mp_str_eq_buf (MP mp,str_number s, integer k) {
1412 /* test equality of strings */
1413 pool_pointer j; /* running index */
1415 while ( j<str_stop(s) ) {
1416 if ( mp->str_pool[j++]!=mp->buffer[k++] )
1422 @ Here is a similar routine, but it compares two strings in the string pool,
1423 and it does not assume that they have the same length. If the first string
1424 is lexicographically greater than, less than, or equal to the second,
1425 the result is respectively positive, negative, or zero.
1428 integer mp_str_vs_str (MP mp, str_number s, str_number t) {
1429 /* test equality of strings */
1430 pool_pointer j,k; /* running indices */
1431 integer ls,lt; /* lengths */
1432 integer l; /* length remaining to test */
1433 ls=length(s); lt=length(t);
1434 if ( ls<=lt ) l=ls; else l=lt;
1435 j=mp->str_start[s]; k=mp->str_start[t];
1437 if ( mp->str_pool[j]!=mp->str_pool[k] ) {
1438 return (mp->str_pool[j]-mp->str_pool[k]);
1445 @ The initial values of |str_pool|, |str_start|, |pool_ptr|,
1446 and |str_ptr| are computed by the \.{INIMP} program, based in part
1447 on the information that \.{WEB} has output while processing \MP.
1452 void mp_get_strings_started (MP mp) {
1453 /* initializes the string pool,
1454 but returns |false| if something goes wrong */
1455 int k; /* small indices or counters */
1456 str_number g; /* a new string */
1457 mp->pool_ptr=0; mp->str_ptr=0; mp->max_pool_ptr=0; mp->max_str_ptr=0;
1460 mp->pool_in_use=0; mp->strs_in_use=0;
1461 mp->max_pl_used=0; mp->max_strs_used=0;
1462 @<Initialize compaction statistics@>;
1464 @<Make the first 256 strings@>;
1465 g=mp_make_string(mp); /* string 256 == "" */
1466 mp->str_ref[g]=max_str_ref;
1467 mp->last_fixed_str=mp->str_ptr-1;
1468 mp->fixed_str_use=mp->str_ptr;
1473 void mp_get_strings_started (MP mp);
1475 @ The first 256 strings will consist of a single character only.
1477 @<Make the first 256...@>=
1478 for (k=0;k<=255;k++) {
1480 g=mp_make_string(mp);
1481 mp->str_ref[g]=max_str_ref;
1484 @ The first 128 strings will contain 95 standard ASCII characters, and the
1485 other 33 characters will be printed in three-symbol form like `\.{\^\^A}'
1486 unless a system-dependent change is made here. Installations that have
1487 an extended character set, where for example |xchr[032]=@t\.{'^^Z'}@>|,
1488 would like string 032 to be printed as the single character 032 instead
1489 of the three characters 0136, 0136, 0132 (\.{\^\^Z}). On the other hand,
1490 even people with an extended character set will want to represent string
1491 015 by \.{\^\^M}, since 015 is ASCII's ``carriage return'' code; the idea is
1492 to produce visible strings instead of tabs or line-feeds or carriage-returns
1493 or bell-rings or characters that are treated anomalously in text files.
1495 Unprintable characters of codes 128--255 are, similarly, rendered
1496 \.{\^\^80}--\.{\^\^ff}.
1498 The boolean expression defined here should be |true| unless \MP\ internal
1499 code number~|k| corresponds to a non-troublesome visible symbol in the
1500 local character set.
1501 If character |k| cannot be printed, and |k<0200|, then character |k+0100| or
1502 |k-0100| must be printable; moreover, ASCII codes |[060..071, 0141..0146]|
1504 @^character set dependencies@>
1505 @^system dependencies@>
1507 @<Character |k| cannot be printed@>=
1510 @* \[5] On-line and off-line printing.
1511 Messages that are sent to a user's terminal and to the transcript-log file
1512 are produced by several `|print|' procedures. These procedures will
1513 direct their output to a variety of places, based on the setting of
1514 the global variable |selector|, which has the following possible
1518 \hang |term_and_log|, the normal setting, prints on the terminal and on the
1521 \hang |log_only|, prints only on the transcript file.
1523 \hang |term_only|, prints only on the terminal.
1525 \hang |no_print|, doesn't print at all. This is used only in rare cases
1526 before the transcript file is open.
1528 \hang |ps_file_only| prints only on the \ps\ output file.
1530 \hang |pseudo|, puts output into a cyclic buffer that is used
1531 by the |show_context| routine; when we get to that routine we shall discuss
1532 the reasoning behind this curious mode.
1534 \hang |new_string|, appends the output to the current string in the
1537 \hang |>=write_file| prints on one of the files used for the \&{write}
1538 @:write_}{\&{write} primitive@>
1542 \noindent The symbolic names `|term_and_log|', etc., have been assigned
1543 numeric codes that satisfy the convenient relations |no_print+1=term_only|,
1544 |no_print+2=log_only|, |term_only+2=log_only+1=term_and_log|. These
1545 relations are not used when |selector| could be |pseudo|, |new_string|,
1546 or |ps_file_only|. We need not check for unprintable characters when
1549 Four additional global variables, |tally|, |term_offset|, |file_offset|,
1550 and |ps_offset| record the number of characters that have been printed
1551 since they were most recently cleared to zero. We use |tally| to record
1552 the length of (possibly very long) stretches of printing; |term_offset|,
1553 |file_offset|, and |ps_offset|, on the other hand, keep track of how many
1554 characters have appeared so far on the current line that has been output
1555 to the terminal, the transcript file, or the \ps\ output file, respectively.
1557 @d new_string 0 /* printing is deflected to the string pool */
1558 @d ps_file_only 1 /* printing goes to the \ps\ output file */
1559 @d pseudo 2 /* special |selector| setting for |show_context| */
1560 @d no_print 3 /* |selector| setting that makes data disappear */
1561 @d term_only 4 /* printing is destined for the terminal only */
1562 @d log_only 5 /* printing is destined for the transcript file only */
1563 @d term_and_log 6 /* normal |selector| setting */
1564 @d write_file 7 /* first write file selector */
1567 FILE * log_file; /* transcript of \MP\ session */
1568 FILE * ps_file; /* the generic font output goes here */
1569 unsigned int selector; /* where to print a message */
1570 unsigned char dig[23]; /* digits in a number being output */
1571 integer tally; /* the number of characters recently printed */
1572 unsigned int term_offset;
1573 /* the number of characters on the current terminal line */
1574 unsigned int file_offset;
1575 /* the number of characters on the current file line */
1577 /* the number of characters on the current \ps\ file line */
1578 ASCII_code *trick_buf; /* circular buffer for pseudoprinting */
1579 integer trick_count; /* threshold for pseudoprinting, explained later */
1580 integer first_count; /* another variable for pseudoprinting */
1582 @ @<Allocate or initialize ...@>=
1583 memset(mp->dig,0,23);
1584 mp->trick_buf = xmalloc((mp->error_line+1),sizeof(ASCII_code));
1586 @ @<Dealloc variables@>=
1587 xfree(mp->trick_buf);
1589 @ @<Initialize the output routines@>=
1590 mp->selector=term_only; mp->tally=0; mp->term_offset=0; mp->file_offset=0; mp->ps_offset=0;
1592 @ Macro abbreviations for output to the terminal and to the log file are
1593 defined here for convenience. Some systems need special conventions
1594 for terminal output, and it is possible to adhere to those conventions
1595 by changing |wterm|, |wterm_ln|, and |wterm_cr| here.
1596 @^system dependencies@>
1598 @d wterm(A) fprintf(mp->term_out,"%s",(A))
1599 @d wterm_chr(A)fprintf(mp->term_out,"%c",(A))
1600 @d wterm_ln(A) fprintf(mp->term_out,"\n%s",(A))
1601 @d wterm_cr fprintf(mp->term_out,"\n")
1602 @d wlog(A) fprintf(mp->log_file,"%s",(A))
1603 @d wlog_chr(A) fprintf(mp->log_file,"%c",(A))
1604 @d wlog_ln(A) fprintf(mp->log_file,"\n%s",(A))
1605 @d wlog_cr fprintf(mp->log_file, "\n")
1606 @d wps(A) fprintf(mp->ps_file,"%s",(A))
1607 @d wps_chr(A) fprintf(mp->ps_file,"%c",(A))
1608 @d wps_ln(A) fprintf(mp->ps_file,,"\n%s",(A))
1609 @d wps_cr fprintf(mp->ps_file,"\n")
1611 @ To end a line of text output, we call |print_ln|. Cases |0..max_write_files|
1612 use an array |wr_file| that will be declared later.
1614 @d mp_print_text(A) mp_print_str(mp,text((A)))
1617 void mp_print_ln (MP mp);
1618 void mp_print_visible_char (MP mp, ASCII_code s);
1619 void mp_print_char (MP mp, ASCII_code k);
1620 void mp_print (MP mp, char *s);
1621 void mp_print_str (MP mp, str_number s);
1622 void mp_print_nl (MP mp, char *s);
1623 void mp_print_two (MP mp,scaled x, scaled y) ;
1624 void mp_print_scaled (MP mp,scaled s);
1626 @ @<Basic print...@>=
1627 void mp_print_ln (MP mp) { /* prints an end-of-line */
1628 switch (mp->selector) {
1631 mp->term_offset=0; mp->file_offset=0;
1634 wlog_cr; mp->file_offset=0;
1637 wterm_cr; mp->term_offset=0;
1640 wps_cr; mp->ps_offset=0;
1647 fprintf(mp->wr_file[(mp->selector-write_file)],"\n");
1649 } /* note that |tally| is not affected */
1651 @ The |print_visible_char| procedure sends one character to the desired
1652 destination, using the |xchr| array to map it into an external character
1653 compatible with |input_ln|. (It assumes that it is always called with
1654 a visible ASCII character.) All printing comes through |print_ln| or
1655 |print_char|, which ultimately calls |print_visible_char|, hence these
1656 routines are the ones that limit lines to at most |max_print_line| characters.
1657 But we must make an exception for the \ps\ output file since it is not safe
1658 to cut up lines arbitrarily in \ps.
1660 Procedure |unit_str_room| needs to be declared |forward| here because it calls
1661 |do_compaction| and |do_compaction| can call the error routines. Actually,
1662 |unit_str_room| avoids |overflow| errors but it can call |confusion|.
1664 @<Basic printing...@>=
1665 void mp_print_visible_char (MP mp, ASCII_code s) { /* prints a single character */
1666 switch (mp->selector) {
1668 wterm_chr(xchr(s)); wlog_chr(xchr(s));
1669 incr(mp->term_offset); incr(mp->file_offset);
1670 if ( mp->term_offset==(unsigned)mp->max_print_line ) {
1671 wterm_cr; mp->term_offset=0;
1673 if ( mp->file_offset==(unsigned)mp->max_print_line ) {
1674 wlog_cr; mp->file_offset=0;
1678 wlog_chr(xchr(s)); incr(mp->file_offset);
1679 if ( mp->file_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1682 wterm_chr(xchr(s)); incr(mp->term_offset);
1683 if ( mp->term_offset==(unsigned)mp->max_print_line ) mp_print_ln(mp);
1687 wps_cr; mp->ps_offset=0;
1689 wps_chr(xchr(s)); incr(mp->ps_offset);
1695 if ( mp->tally<mp->trick_count )
1696 mp->trick_buf[mp->tally % mp->error_line]=s;
1699 if ( mp->pool_ptr>=mp->max_pool_ptr ) {
1700 mp_unit_str_room(mp);
1701 if ( mp->pool_ptr>=mp->pool_size )
1702 goto DONE; /* drop characters if string space is full */
1707 fprintf(mp->wr_file[(mp->selector-write_file)],"%c",xchr(s));
1713 @ The |print_char| procedure sends one character to the desired destination.
1714 File names and string expressions might contain |ASCII_code| values that
1715 can't be printed using |print_visible_char|. These characters will be
1716 printed in three- or four-symbol form like `\.{\^\^A}' or `\.{\^\^e4}'.
1717 (This procedure assumes that it is safe to bypass all checks for unprintable
1718 characters when |selector| is in the range |0..max_write_files-1| or when
1719 |selector=ps_file_only|. In the former case the user might want to write
1720 unprintable characters, and in the latter case the \ps\ printing routines
1721 check their arguments themselves before calling |print_char| or |print|.)
1723 @d print_lc_hex(A) do { l=(A);
1724 mp_print_visible_char(mp, (l<10 ? l+'0' : l-10+'a'));
1727 @<Basic printing...@>=
1728 void mp_print_char (MP mp, ASCII_code k) { /* prints a single character */
1729 int l; /* small index or counter */
1730 if ( mp->selector<pseudo || mp->selector>=write_file) {
1731 mp_print_visible_char(mp, k);
1732 } else if ( @<Character |k| cannot be printed@> ) {
1735 mp_print_visible_char(mp, k+0100);
1736 } else if ( k<0200 ) {
1737 mp_print_visible_char(mp, k-0100);
1739 print_lc_hex(k / 16);
1740 print_lc_hex(k % 16);
1743 mp_print_visible_char(mp, k);
1747 @ An entire string is output by calling |print|. Note that if we are outputting
1748 the single standard ASCII character \.c, we could call |print("c")|, since
1749 |"c"=99| is the number of a single-character string, as explained above. But
1750 |print_char("c")| is quicker, so \MP\ goes directly to the |print_char|
1751 routine when it knows that this is safe. (The present implementation
1752 assumes that it is always safe to print a visible ASCII character.)
1753 @^system dependencies@>
1756 void mp_do_print (MP mp, char *ss, unsigned int len) { /* prints string |s| */
1759 mp_print_char(mp, ss[j]); incr(j);
1765 void mp_print (MP mp, char *ss) {
1766 mp_do_print(mp, ss, strlen(ss));
1768 void mp_print_str (MP mp, str_number s) {
1769 pool_pointer j; /* current character code position */
1770 if ( (s<0)||(s>mp->max_str_ptr) ) {
1771 mp_do_print(mp,"???",3); /* this can't happen */
1775 mp_do_print(mp, (char *)(mp->str_pool+j), (str_stop(s)-j));
1779 @ Here is the very first thing that \MP\ prints: a headline that identifies
1780 the version number and base name. The |term_offset| variable is temporarily
1781 incorrect, but the discrepancy is not serious since we assume that the banner
1782 and mem identifier together will occupy at most |max_print_line|
1783 character positions.
1785 @<Initialize the output...@>=
1787 wterm (version_string);
1788 if (mp->mem_ident!=NULL)
1789 mp_print(mp,mp->mem_ident);
1793 @ The procedure |print_nl| is like |print|, but it makes sure that the
1794 string appears at the beginning of a new line.
1797 void mp_print_nl (MP mp, char *s) { /* prints string |s| at beginning of line */
1798 switch(mp->selector) {
1800 if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_ln(mp);
1803 if ( mp->file_offset>0 ) mp_print_ln(mp);
1806 if ( mp->term_offset>0 ) mp_print_ln(mp);
1809 if ( mp->ps_offset>0 ) mp_print_ln(mp);
1815 } /* there are no other cases */
1819 @ An array of digits in the range |0..9| is printed by |print_the_digs|.
1822 void mp_print_the_digs (MP mp, eight_bits k) {
1823 /* prints |dig[k-1]|$\,\ldots\,$|dig[0]| */
1825 decr(k); mp_print_char(mp, '0'+mp->dig[k]);
1829 @ The following procedure, which prints out the decimal representation of a
1830 given integer |n|, has been written carefully so that it works properly
1831 if |n=0| or if |(-n)| would cause overflow. It does not apply |mod| or |div|
1832 to negative arguments, since such operations are not implemented consistently
1833 by all \PASCAL\ compilers.
1836 void mp_print_int (MP mp,integer n) { /* prints an integer in decimal form */
1837 integer m; /* used to negate |n| in possibly dangerous cases */
1838 int k = 0; /* index to current digit; we assume that $|n|<10^{23}$ */
1840 mp_print_char(mp, '-');
1841 if ( n>-100000000 ) {
1844 m=-1-n; n=m / 10; m=(m % 10)+1; k=1;
1848 mp->dig[0]=0; incr(n);
1853 mp->dig[k]=n % 10; n=n / 10; incr(k);
1855 mp_print_the_digs(mp, k);
1859 void mp_print_int (MP mp,integer n);
1861 @ \MP\ also makes use of a trivial procedure to print two digits. The
1862 following subroutine is usually called with a parameter in the range |0<=n<=99|.
1865 void mp_print_dd (MP mp,integer n) { /* prints two least significant digits */
1867 mp_print_char(mp, '0'+(n / 10));
1868 mp_print_char(mp, '0'+(n % 10));
1873 void mp_print_dd (MP mp,integer n);
1875 @ Here is a procedure that asks the user to type a line of input,
1876 assuming that the |selector| setting is either |term_only| or |term_and_log|.
1877 The input is placed into locations |first| through |last-1| of the
1878 |buffer| array, and echoed on the transcript file if appropriate.
1880 This procedure is never called when |interaction<mp_scroll_mode|.
1882 @d prompt_input(A) do {
1883 wake_up_terminal; mp_print(mp, (A)); mp_term_input(mp);
1884 } while (0) /* prints a string and gets a line of input */
1887 void mp_term_input (MP mp) { /* gets a line from the terminal */
1888 size_t k; /* index into |buffer| */
1889 update_terminal; /* Now the user sees the prompt for sure */
1890 if (!mp_input_ln(mp, mp->term_in,true))
1891 mp_fatal_error(mp, "End of file on the terminal!");
1892 @.End of file on the terminal@>
1893 mp->term_offset=0; /* the user's line ended with \<\rm return> */
1894 decr(mp->selector); /* prepare to echo the input */
1895 if ( mp->last!=mp->first ) {
1896 for (k=mp->first;k<=mp->last-1;k++) {
1897 mp_print_char(mp, mp->buffer[k]);
1901 mp->buffer[mp->last]='%';
1902 incr(mp->selector); /* restore previous status */
1905 @* \[6] Reporting errors.
1906 When something anomalous is detected, \MP\ typically does something like this:
1907 $$\vbox{\halign{#\hfil\cr
1908 |print_err("Something anomalous has been detected");|\cr
1909 |help3("This is the first line of my offer to help.")|\cr
1910 |("This is the second line. I'm trying to")|\cr
1911 |("explain the best way for you to proceed.");|\cr
1913 A two-line help message would be given using |help2|, etc.; these informal
1914 helps should use simple vocabulary that complements the words used in the
1915 official error message that was printed. (Outside the U.S.A., the help
1916 messages should preferably be translated into the local vernacular. Each
1917 line of help is at most 60 characters long, in the present implementation,
1918 so that |max_print_line| will not be exceeded.)
1920 The |print_err| procedure supplies a `\.!' before the official message,
1921 and makes sure that the terminal is awake if a stop is going to occur.
1922 The |error| procedure supplies a `\..' after the official message, then it
1923 shows the location of the error; and if |interaction=error_stop_mode|,
1924 it also enters into a dialog with the user, during which time the help
1925 message may be printed.
1926 @^system dependencies@>
1928 @ The global variable |interaction| has four settings, representing increasing
1929 amounts of user interaction:
1932 enum mp_interaction_mode {
1933 mp_unspecified_mode=0, /* extra value for command-line switch */
1934 mp_batch_mode, /* omits all stops and omits terminal output */
1935 mp_nonstop_mode, /* omits all stops */
1936 mp_scroll_mode, /* omits error stops */
1937 mp_error_stop_mode, /* stops at every opportunity to interact */
1941 int interaction; /* current level of interaction */
1943 @ @<Option variables@>=
1944 int interaction; /* current level of interaction */
1946 @ Set it here so it can be overwritten by the commandline
1948 @<Allocate or initialize ...@>=
1949 mp->interaction=opt->interaction;
1950 if (mp->interaction==mp_unspecified_mode || mp->interaction>mp_error_stop_mode)
1951 mp->interaction=mp_error_stop_mode;
1952 if (mp->interaction<mp_unspecified_mode)
1953 mp->interaction=mp_batch_mode;
1957 @d print_err(A) mp_print_err(mp,(A))
1960 void mp_print_err(MP mp, char * A);
1963 void mp_print_err(MP mp, char * A) {
1964 if ( mp->interaction==mp_error_stop_mode )
1966 mp_print_nl(mp, "! ");
1972 @ \MP\ is careful not to call |error| when the print |selector| setting
1973 might be unusual. The only possible values of |selector| at the time of
1976 \yskip\hang|no_print| (when |interaction=mp_batch_mode|
1977 and |log_file| not yet open);
1979 \hang|term_only| (when |interaction>mp_batch_mode| and |log_file| not yet open);
1981 \hang|log_only| (when |interaction=mp_batch_mode| and |log_file| is open);
1983 \hang|term_and_log| (when |interaction>mp_batch_mode| and |log_file| is open).
1985 @<Initialize the print |selector| based on |interaction|@>=
1986 if ( mp->interaction==mp_batch_mode ) mp->selector=no_print; else mp->selector=term_only
1988 @ A global variable |deletions_allowed| is set |false| if the |get_next|
1989 routine is active when |error| is called; this ensures that |get_next|
1990 will never be called recursively.
1993 The global variable |history| records the worst level of error that
1994 has been detected. It has four possible values: |spotless|, |warning_issued|,
1995 |error_message_issued|, and |fatal_error_stop|.
1997 Another global variable, |error_count|, is increased by one when an
1998 |error| occurs without an interactive dialog, and it is reset to zero at
1999 the end of every statement. If |error_count| reaches 100, \MP\ decides
2000 that there is no point in continuing further.
2003 enum mp_history_states {
2004 mp_spotless=0, /* |history| value when nothing has been amiss yet */
2005 mp_warning_issued, /* |history| value when |begin_diagnostic| has been called */
2006 mp_error_message_issued, /* |history| value when |error| has been called */
2007 mp_fatal_error_stop, /* |history| value when termination was premature */
2011 boolean deletions_allowed; /* is it safe for |error| to call |get_next|? */
2012 int history; /* has the source input been clean so far? */
2013 int error_count; /* the number of scrolled errors since the last statement ended */
2015 @ The value of |history| is initially |fatal_error_stop|, but it will
2016 be changed to |spotless| if \MP\ survives the initialization process.
2018 @<Allocate or ...@>=
2019 mp->deletions_allowed=true; mp->error_count=0; /* |history| is initialized elsewhere */
2021 @ Since errors can be detected almost anywhere in \MP, we want to declare the
2022 error procedures near the beginning of the program. But the error procedures
2023 in turn use some other procedures, which need to be declared |forward|
2024 before we get to |error| itself.
2026 It is possible for |error| to be called recursively if some error arises
2027 when |get_next| is being used to delete a token, and/or if some fatal error
2028 occurs while \MP\ is trying to fix a non-fatal one. But such recursion
2030 is never more than two levels deep.
2033 void mp_get_next (MP mp);
2034 void mp_term_input (MP mp);
2035 void mp_show_context (MP mp);
2036 void mp_begin_file_reading (MP mp);
2037 void mp_open_log_file (MP mp);
2038 void mp_clear_for_error_prompt (MP mp);
2039 void mp_debug_help (MP mp);
2040 @<Declare the procedure called |flush_string|@>
2043 void mp_normalize_selector (MP mp);
2045 @ Individual lines of help are recorded in the array |help_line|, which
2046 contains entries in positions |0..(help_ptr-1)|. They should be printed
2047 in reverse order, i.e., with |help_line[0]| appearing last.
2049 @d hlp1(A) mp->help_line[0]=(A); }
2050 @d hlp2(A) mp->help_line[1]=(A); hlp1
2051 @d hlp3(A) mp->help_line[2]=(A); hlp2
2052 @d hlp4(A) mp->help_line[3]=(A); hlp3
2053 @d hlp5(A) mp->help_line[4]=(A); hlp4
2054 @d hlp6(A) mp->help_line[5]=(A); hlp5
2055 @d help0 mp->help_ptr=0 /* sometimes there might be no help */
2056 @d help1 { mp->help_ptr=1; hlp1 /* use this with one help line */
2057 @d help2 { mp->help_ptr=2; hlp2 /* use this with two help lines */
2058 @d help3 { mp->help_ptr=3; hlp3 /* use this with three help lines */
2059 @d help4 { mp->help_ptr=4; hlp4 /* use this with four help lines */
2060 @d help5 { mp->help_ptr=5; hlp5 /* use this with five help lines */
2061 @d help6 { mp->help_ptr=6; hlp6 /* use this with six help lines */
2064 char * help_line[6]; /* helps for the next |error| */
2065 unsigned int help_ptr; /* the number of help lines present */
2066 boolean use_err_help; /* should the |err_help| string be shown? */
2067 str_number err_help; /* a string set up by \&{errhelp} */
2068 str_number filename_template; /* a string set up by \&{filenametemplate} */
2070 @ @<Allocate or ...@>=
2071 mp->help_ptr=0; mp->use_err_help=false; mp->err_help=0; mp->filename_template=0;
2073 @ The |jump_out| procedure just cuts across all active procedure levels and
2074 goes to |end_of_MP|. This is the only nonlocal |goto| statement in the
2075 whole program. It is used when there is no recovery from a particular error.
2077 The program uses a |jump_buf| to handle this, this is initialized at three
2078 spots: the start of |mp_new|, the start of |mp_initialize|, and the start
2079 of |mp_run|. Those are the only library enty points.
2081 @^system dependencies@>
2086 @ @<Install and test the non-local jump buffer@>=
2087 if (setjmp(mp->jump_buf) != 0) return mp->history;
2089 @ @<Setup the non-local jump buffer in |mp_new|@>=
2090 if (setjmp(mp->jump_buf) != 0) return NULL;
2092 @ If |mp->internal| is zero, then a crash occured during initialization,
2093 and it is not safe to run |mp_close_files_and_terminate|.
2096 void mp_jump_out (MP mp) {
2097 if(mp->internal!=NULL)
2098 mp_close_files_and_terminate(mp);
2099 longjmp(mp->jump_buf,1);
2102 @ Here now is the general |error| routine.
2105 void mp_error (MP mp) { /* completes the job of error reporting */
2106 ASCII_code c; /* what the user types */
2107 integer s1,s2,s3; /* used to save global variables when deleting tokens */
2108 pool_pointer j; /* character position being printed */
2109 if ( mp->history<mp_error_message_issued ) mp->history=mp_error_message_issued;
2110 mp_print_char(mp, '.'); mp_show_context(mp);
2111 if ( mp->interaction==mp_error_stop_mode ) {
2112 @<Get user's advice and |return|@>;
2114 incr(mp->error_count);
2115 if ( mp->error_count==100 ) {
2116 mp_print_nl(mp,"(That makes 100 errors; please try again.)");
2117 @.That makes 100 errors...@>
2118 mp->history=mp_fatal_error_stop; mp_jump_out(mp);
2120 @<Put help message on the transcript file@>;
2122 void mp_warn (MP mp, char *msg) {
2123 int saved_selector = mp->selector;
2124 mp_normalize_selector(mp);
2125 mp_print_nl(mp,"Warning: ");
2127 mp->selector = saved_selector;
2130 @ @<Exported function ...@>=
2131 void mp_error (MP mp);
2132 void mp_warn (MP mp, char *msg);
2135 @ @<Get user's advice...@>=
2138 mp_clear_for_error_prompt(mp); prompt_input("? ");
2140 if ( mp->last==mp->first ) return;
2141 c=mp->buffer[mp->first];
2142 if ( c>='a' ) c=c+'A'-'a'; /* convert to uppercase */
2143 @<Interpret code |c| and |return| if done@>;
2146 @ It is desirable to provide an `\.E' option here that gives the user
2147 an easy way to return from \MP\ to the system editor, with the offending
2148 line ready to be edited. But such an extension requires some system
2149 wizardry, so the present implementation simply types out the name of the
2151 edited and the relevant line number.
2152 @^system dependencies@>
2155 typedef void (*mp_run_editor_command)(MP, char *, int);
2158 mp_run_editor_command run_editor;
2160 @ @<Option variables@>=
2161 mp_run_editor_command run_editor;
2163 @ @<Allocate or initialize ...@>=
2164 set_callback_option(run_editor);
2167 void mp_run_editor (MP mp, char *fname, int fline);
2169 @ @c void mp_run_editor (MP mp, char *fname, int fline) {
2170 mp_print_nl(mp, "You want to edit file ");
2171 @.You want to edit file x@>
2172 mp_print(mp, fname);
2173 mp_print(mp, " at line ");
2174 mp_print_int(mp, fline);
2175 mp->interaction=mp_scroll_mode;
2180 There is a secret `\.D' option available when the debugging routines haven't
2184 @<Interpret code |c| and |return| if done@>=
2186 case '0': case '1': case '2': case '3': case '4':
2187 case '5': case '6': case '7': case '8': case '9':
2188 if ( mp->deletions_allowed ) {
2189 @<Delete |c-"0"| tokens and |continue|@>;
2194 mp_debug_help(mp); continue;
2198 if ( mp->file_ptr>0 ){
2199 (mp->run_editor)(mp,
2200 str(mp->input_stack[mp->file_ptr].name_field),
2205 @<Print the help information and |continue|@>;
2208 @<Introduce new material from the terminal and |return|@>;
2210 case 'Q': case 'R': case 'S':
2211 @<Change the interaction level and |return|@>;
2214 mp->interaction=mp_scroll_mode; mp_jump_out(mp);
2219 @<Print the menu of available options@>
2221 @ @<Print the menu...@>=
2223 mp_print(mp, "Type <return> to proceed, S to scroll future error messages,");
2224 @.Type <return> to proceed...@>
2225 mp_print_nl(mp, "R to run without stopping, Q to run quietly,");
2226 mp_print_nl(mp, "I to insert something, ");
2227 if ( mp->file_ptr>0 )
2228 mp_print(mp, "E to edit your file,");
2229 if ( mp->deletions_allowed )
2230 mp_print_nl(mp, "1 or ... or 9 to ignore the next 1 to 9 tokens of input,");
2231 mp_print_nl(mp, "H for help, X to quit.");
2234 @ Here the author of \MP\ apologizes for making use of the numerical
2235 relation between |"Q"|, |"R"|, |"S"|, and the desired interaction settings
2236 |mp_batch_mode|, |mp_nonstop_mode|, |mp_scroll_mode|.
2237 @^Knuth, Donald Ervin@>
2239 @<Change the interaction...@>=
2241 mp->error_count=0; mp->interaction=mp_batch_mode+c-'Q';
2242 mp_print(mp, "OK, entering ");
2244 case 'Q': mp_print(mp, "batchmode"); decr(mp->selector); break;
2245 case 'R': mp_print(mp, "nonstopmode"); break;
2246 case 'S': mp_print(mp, "scrollmode"); break;
2247 } /* there are no other cases */
2248 mp_print(mp, "..."); mp_print_ln(mp); update_terminal; return;
2251 @ When the following code is executed, |buffer[(first+1)..(last-1)]| may
2252 contain the material inserted by the user; otherwise another prompt will
2253 be given. In order to understand this part of the program fully, you need
2254 to be familiar with \MP's input stacks.
2256 @<Introduce new material...@>=
2258 mp_begin_file_reading(mp); /* enter a new syntactic level for terminal input */
2259 if ( mp->last>mp->first+1 ) {
2260 loc=mp->first+1; mp->buffer[mp->first]=' ';
2262 prompt_input("insert>"); loc=mp->first;
2265 mp->first=mp->last+1; mp->cur_input.limit_field=mp->last; return;
2268 @ We allow deletion of up to 99 tokens at a time.
2270 @<Delete |c-"0"| tokens...@>=
2272 s1=mp->cur_cmd; s2=mp->cur_mod; s3=mp->cur_sym; mp->OK_to_interrupt=false;
2273 if ( (mp->last>mp->first+1) && (mp->buffer[mp->first+1]>='0')&&(mp->buffer[mp->first+1]<='9') )
2274 c=c*10+mp->buffer[mp->first+1]-'0'*11;
2278 mp_get_next(mp); /* one-level recursive call of |error| is possible */
2279 @<Decrease the string reference count, if the current token is a string@>;
2282 mp->cur_cmd=s1; mp->cur_mod=s2; mp->cur_sym=s3; mp->OK_to_interrupt=true;
2283 help2("I have just deleted some text, as you asked.")
2284 ("You can now delete more, or insert, or whatever.");
2285 mp_show_context(mp);
2289 @ @<Print the help info...@>=
2291 if ( mp->use_err_help ) {
2292 @<Print the string |err_help|, possibly on several lines@>;
2293 mp->use_err_help=false;
2295 if ( mp->help_ptr==0 ) {
2296 help2("Sorry, I don't know how to help in this situation.")
2297 ("Maybe you should try asking a human?");
2300 decr(mp->help_ptr); mp_print(mp, mp->help_line[mp->help_ptr]); mp_print_ln(mp);
2301 } while (mp->help_ptr!=0);
2303 help4("Sorry, I already gave what help I could...")
2304 ("Maybe you should try asking a human?")
2305 ("An error might have occurred before I noticed any problems.")
2306 ("``If all else fails, read the instructions.''");
2310 @ @<Print the string |err_help|, possibly on several lines@>=
2311 j=mp->str_start[mp->err_help];
2312 while ( j<str_stop(mp->err_help) ) {
2313 if ( mp->str_pool[j]!='%' ) mp_print_str(mp, mp->str_pool[j]);
2314 else if ( j+1==str_stop(mp->err_help) ) mp_print_ln(mp);
2315 else if ( mp->str_pool[j+1]!='%' ) mp_print_ln(mp);
2316 else { incr(j); mp_print_char(mp, '%'); };
2320 @ @<Put help message on the transcript file@>=
2321 if ( mp->interaction>mp_batch_mode ) decr(mp->selector); /* avoid terminal output */
2322 if ( mp->use_err_help ) {
2323 mp_print_nl(mp, "");
2324 @<Print the string |err_help|, possibly on several lines@>;
2326 while ( mp->help_ptr>0 ){
2327 decr(mp->help_ptr); mp_print_nl(mp, mp->help_line[mp->help_ptr]);
2331 if ( mp->interaction>mp_batch_mode ) incr(mp->selector); /* re-enable terminal output */
2334 @ In anomalous cases, the print selector might be in an unknown state;
2335 the following subroutine is called to fix things just enough to keep
2336 running a bit longer.
2339 void mp_normalize_selector (MP mp) {
2340 if ( mp->log_opened ) mp->selector=term_and_log;
2341 else mp->selector=term_only;
2342 if ( mp->job_name==NULL ) mp_open_log_file(mp);
2343 if ( mp->interaction==mp_batch_mode ) decr(mp->selector);
2346 @ The following procedure prints \MP's last words before dying.
2348 @d succumb { if ( mp->interaction==mp_error_stop_mode )
2349 mp->interaction=mp_scroll_mode; /* no more interaction */
2350 if ( mp->log_opened ) mp_error(mp);
2351 /* if ( mp->interaction>mp_batch_mode ) mp_debug_help(mp); */
2352 mp->history=mp_fatal_error_stop; mp_jump_out(mp); /* irrecoverable error */
2356 void mp_fatal_error (MP mp, char *s) { /* prints |s|, and that's it */
2357 mp_normalize_selector(mp);
2358 print_err("Emergency stop"); help1(s); succumb;
2362 @ @<Exported function ...@>=
2363 void mp_fatal_error (MP mp, char *s);
2366 @ Here is the most dreaded error message.
2369 void mp_overflow (MP mp, char *s, integer n) { /* stop due to finiteness */
2370 mp_normalize_selector(mp);
2371 print_err("MetaPost capacity exceeded, sorry [");
2372 @.MetaPost capacity exceeded ...@>
2373 mp_print(mp, s); mp_print_char(mp, '='); mp_print_int(mp, n); mp_print_char(mp, ']');
2374 help2("If you really absolutely need more capacity,")
2375 ("you can ask a wizard to enlarge me.");
2380 void mp_overflow (MP mp, char *s, integer n);
2382 @ The program might sometime run completely amok, at which point there is
2383 no choice but to stop. If no previous error has been detected, that's bad
2384 news; a message is printed that is really intended for the \MP\
2385 maintenance person instead of the user (unless the user has been
2386 particularly diabolical). The index entries for `this can't happen' may
2387 help to pinpoint the problem.
2390 @<Internal library ...@>=
2391 void mp_confusion (MP mp,char *s);
2393 @ @<Error hand...@>=
2394 void mp_confusion (MP mp,char *s) {
2395 /* consistency check violated; |s| tells where */
2396 mp_normalize_selector(mp);
2397 if ( mp->history<mp_error_message_issued ) {
2398 print_err("This can't happen ("); mp_print(mp, s); mp_print_char(mp, ')');
2399 @.This can't happen@>
2400 help1("I'm broken. Please show this to someone who can fix can fix");
2402 print_err("I can\'t go on meeting you like this");
2403 @.I can't go on...@>
2404 help2("One of your faux pas seems to have wounded me deeply...")
2405 ("in fact, I'm barely conscious. Please fix it and try again.");
2410 @ Users occasionally want to interrupt \MP\ while it's running.
2411 If the \PASCAL\ runtime system allows this, one can implement
2412 a routine that sets the global variable |interrupt| to some nonzero value
2413 when such an interrupt is signaled. Otherwise there is probably at least
2414 a way to make |interrupt| nonzero using the \PASCAL\ debugger.
2415 @^system dependencies@>
2418 @d check_interrupt { if ( mp->interrupt!=0 )
2419 mp_pause_for_instructions(mp); }
2422 integer interrupt; /* should \MP\ pause for instructions? */
2423 boolean OK_to_interrupt; /* should interrupts be observed? */
2425 @ @<Allocate or ...@>=
2426 mp->interrupt=0; mp->OK_to_interrupt=true;
2428 @ When an interrupt has been detected, the program goes into its
2429 highest interaction level and lets the user have the full flexibility of
2430 the |error| routine. \MP\ checks for interrupts only at times when it is
2434 void mp_pause_for_instructions (MP mp) {
2435 if ( mp->OK_to_interrupt ) {
2436 mp->interaction=mp_error_stop_mode;
2437 if ( (mp->selector==log_only)||(mp->selector==no_print) )
2439 print_err("Interruption");
2442 ("Try to insert some instructions for me (e.g.,`I show x'),")
2443 ("unless you just want to quit by typing `X'.");
2444 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
2449 @ Many of \MP's error messages state that a missing token has been
2450 inserted behind the scenes. We can save string space and program space
2451 by putting this common code into a subroutine.
2454 void mp_missing_err (MP mp, char *s) {
2455 print_err("Missing `"); mp_print(mp, s); mp_print(mp, "' has been inserted");
2456 @.Missing...inserted@>
2459 @* \[7] Arithmetic with scaled numbers.
2460 The principal computations performed by \MP\ are done entirely in terms of
2461 integers less than $2^{31}$ in magnitude; thus, the arithmetic specified in this
2462 program can be carried out in exactly the same way on a wide variety of
2463 computers, including some small ones.
2466 But \PASCAL\ does not define the |div|
2467 operation in the case of negative dividends; for example, the result of
2468 |(-2*n-1) div 2| is |-(n+1)| on some computers and |-n| on others.
2469 There are two principal types of arithmetic: ``translation-preserving,''
2470 in which the identity |(a+q*b)div b=(a div b)+q| is valid; and
2471 ``negation-preserving,'' in which |(-a)div b=-(a div b)|. This leads to
2472 two \MP s, which can produce different results, although the differences
2473 should be negligible when the language is being used properly.
2474 The \TeX\ processor has been defined carefully so that both varieties
2475 of arithmetic will produce identical output, but it would be too
2476 inefficient to constrain \MP\ in a similar way.
2478 @d el_gordo 017777777777 /* $2^{31}-1$, the largest value that \MP\ likes */
2480 @ One of \MP's most common operations is the calculation of
2481 $\lfloor{a+b\over2}\rfloor$,
2482 the midpoint of two given integers |a| and~|b|. The only decent way to do
2483 this in \PASCAL\ is to write `|(a+b) div 2|'; but on most machines it is
2484 far more efficient to calculate `|(a+b)| right shifted one bit'.
2486 Therefore the midpoint operation will always be denoted by `|half(a+b)|'
2487 in this program. If \MP\ is being implemented with languages that permit
2488 binary shifting, the |half| macro should be changed to make this operation
2489 as efficient as possible. Since some languages have shift operators that can
2490 only be trusted to work on positive numbers, there is also a macro |halfp|
2491 that is used only when the quantity being halved is known to be positive
2494 @d half(A) ((A) / 2)
2495 @d halfp(A) ((A) / 2)
2497 @ A single computation might use several subroutine calls, and it is
2498 desirable to avoid producing multiple error messages in case of arithmetic
2499 overflow. So the routines below set the global variable |arith_error| to |true|
2500 instead of reporting errors directly to the user.
2503 boolean arith_error; /* has arithmetic overflow occurred recently? */
2505 @ @<Allocate or ...@>=
2506 mp->arith_error=false;
2508 @ At crucial points the program will say |check_arith|, to test if
2509 an arithmetic error has been detected.
2511 @d check_arith { if ( mp->arith_error ) mp_clear_arith(mp); }
2514 void mp_clear_arith (MP mp) {
2515 print_err("Arithmetic overflow");
2516 @.Arithmetic overflow@>
2517 help4("Uh, oh. A little while ago one of the quantities that I was")
2518 ("computing got too large, so I'm afraid your answers will be")
2519 ("somewhat askew. You'll probably have to adopt different")
2520 ("tactics next time. But I shall try to carry on anyway.");
2522 mp->arith_error=false;
2525 @ Addition is not always checked to make sure that it doesn't overflow,
2526 but in places where overflow isn't too unlikely the |slow_add| routine
2529 @c integer mp_slow_add (MP mp,integer x, integer y) {
2531 if ( y<=el_gordo-x ) {
2534 mp->arith_error=true;
2537 } else if ( -y<=el_gordo+x ) {
2540 mp->arith_error=true;
2545 @ Fixed-point arithmetic is done on {\sl scaled integers\/} that are multiples
2546 of $2^{-16}$. In other words, a binary point is assumed to be sixteen bit
2547 positions from the right end of a binary computer word.
2549 @d quarter_unit 040000 /* $2^{14}$, represents 0.250000 */
2550 @d half_unit 0100000 /* $2^{15}$, represents 0.50000 */
2551 @d three_quarter_unit 0140000 /* $3\cdot2^{14}$, represents 0.75000 */
2552 @d unity 0200000 /* $2^{16}$, represents 1.00000 */
2553 @d two 0400000 /* $2^{17}$, represents 2.00000 */
2554 @d three 0600000 /* $2^{17}+2^{16}$, represents 3.00000 */
2557 typedef integer scaled; /* this type is used for scaled integers */
2558 typedef unsigned char small_number; /* this type is self-explanatory */
2560 @ The following function is used to create a scaled integer from a given decimal
2561 fraction $(.d_0d_1\ldots d_{k-1})$, where |0<=k<=17|. The digit $d_i$ is
2562 given in |dig[i]|, and the calculation produces a correctly rounded result.
2565 scaled mp_round_decimals (MP mp,small_number k) {
2566 /* converts a decimal fraction */
2567 integer a = 0; /* the accumulator */
2569 a=(a+mp->dig[k]*two) / 10;
2574 @ Conversely, here is a procedure analogous to |print_int|. If the output
2575 of this procedure is subsequently read by \MP\ and converted by the
2576 |round_decimals| routine above, it turns out that the original value will
2577 be reproduced exactly. A decimal point is printed only if the value is
2578 not an integer. If there is more than one way to print the result with
2579 the optimum number of digits following the decimal point, the closest
2580 possible value is given.
2582 The invariant relation in the \&{repeat} loop is that a sequence of
2583 decimal digits yet to be printed will yield the original number if and only if
2584 they form a fraction~$f$ in the range $s-\delta\L10\cdot2^{16}f<s$.
2585 We can stop if and only if $f=0$ satisfies this condition; the loop will
2586 terminate before $s$ can possibly become zero.
2588 @<Basic printing...@>=
2589 void mp_print_scaled (MP mp,scaled s) { /* prints scaled real, rounded to five digits */
2590 scaled delta; /* amount of allowable inaccuracy */
2592 mp_print_char(mp, '-');
2593 negate(s); /* print the sign, if negative */
2595 mp_print_int(mp, s / unity); /* print the integer part */
2599 mp_print_char(mp, '.');
2602 s=s+0100000-(delta / 2); /* round the final digit */
2603 mp_print_char(mp, '0'+(s / unity));
2610 @ We often want to print two scaled quantities in parentheses,
2611 separated by a comma.
2613 @<Basic printing...@>=
2614 void mp_print_two (MP mp,scaled x, scaled y) { /* prints `|(x,y)|' */
2615 mp_print_char(mp, '(');
2616 mp_print_scaled(mp, x);
2617 mp_print_char(mp, ',');
2618 mp_print_scaled(mp, y);
2619 mp_print_char(mp, ')');
2622 @ The |scaled| quantities in \MP\ programs are generally supposed to be
2623 less than $2^{12}$ in absolute value, so \MP\ does much of its internal
2624 arithmetic with 28~significant bits of precision. A |fraction| denotes
2625 a scaled integer whose binary point is assumed to be 28 bit positions
2628 @d fraction_half 01000000000 /* $2^{27}$, represents 0.50000000 */
2629 @d fraction_one 02000000000 /* $2^{28}$, represents 1.00000000 */
2630 @d fraction_two 04000000000 /* $2^{29}$, represents 2.00000000 */
2631 @d fraction_three 06000000000 /* $3\cdot2^{28}$, represents 3.00000000 */
2632 @d fraction_four 010000000000 /* $2^{30}$, represents 4.00000000 */
2635 typedef integer fraction; /* this type is used for scaled fractions */
2637 @ In fact, the two sorts of scaling discussed above aren't quite
2638 sufficient; \MP\ has yet another, used internally to keep track of angles
2639 in units of $2^{-20}$ degrees.
2641 @d forty_five_deg 0264000000 /* $45\cdot2^{20}$, represents $45^\circ$ */
2642 @d ninety_deg 0550000000 /* $90\cdot2^{20}$, represents $90^\circ$ */
2643 @d one_eighty_deg 01320000000 /* $180\cdot2^{20}$, represents $180^\circ$ */
2644 @d three_sixty_deg 02640000000 /* $360\cdot2^{20}$, represents $360^\circ$ */
2647 typedef integer angle; /* this type is used for scaled angles */
2649 @ The |make_fraction| routine produces the |fraction| equivalent of
2650 |p/q|, given integers |p| and~|q|; it computes the integer
2651 $f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are
2652 positive. If |p| and |q| are both of the same scaled type |t|,
2653 the ``type relation'' |make_fraction(t,t)=fraction| is valid;
2654 and it's also possible to use the subroutine ``backwards,'' using
2655 the relation |make_fraction(t,fraction)=t| between scaled types.
2657 If the result would have magnitude $2^{31}$ or more, |make_fraction|
2658 sets |arith_error:=true|. Most of \MP's internal computations have
2659 been designed to avoid this sort of error.
2661 If this subroutine were programmed in assembly language on a typical
2662 machine, we could simply compute |(@t$2^{28}$@>*p)div q|, since a
2663 double-precision product can often be input to a fixed-point division
2664 instruction. But when we are restricted to \PASCAL\ arithmetic it
2665 is necessary either to resort to multiple-precision maneuvering
2666 or to use a simple but slow iteration. The multiple-precision technique
2667 would be about three times faster than the code adopted here, but it
2668 would be comparatively long and tricky, involving about sixteen
2669 additional multiplications and divisions.
2671 This operation is part of \MP's ``inner loop''; indeed, it will
2672 consume nearly 10\pct! of the running time (exclusive of input and output)
2673 if the code below is left unchanged. A machine-dependent recoding
2674 will therefore make \MP\ run faster. The present implementation
2675 is highly portable, but slow; it avoids multiplication and division
2676 except in the initial stage. System wizards should be careful to
2677 replace it with a routine that is guaranteed to produce identical
2678 results in all cases.
2679 @^system dependencies@>
2681 As noted below, a few more routines should also be replaced by machine-dependent
2682 code, for efficiency. But when a procedure is not part of the ``inner loop,''
2683 such changes aren't advisable; simplicity and robustness are
2684 preferable to trickery, unless the cost is too high.
2688 fraction mp_make_fraction (MP mp,integer p, integer q);
2689 integer mp_take_scaled (MP mp,integer q, scaled f) ;
2691 @ If FIXPT is not defined, we need these preprocessor values
2693 @d ELGORDO 0x7fffffff
2694 @d TWEXP31 2147483648.0
2695 @d TWEXP28 268435456.0
2697 @d TWEXP_16 (1.0/65536.0)
2698 @d TWEXP_28 (1.0/268435456.0)
2702 fraction mp_make_fraction (MP mp,integer p, integer q) {
2704 integer f; /* the fraction bits, with a leading 1 bit */
2705 integer n; /* the integer part of $\vert p/q\vert$ */
2706 integer be_careful; /* disables certain compiler optimizations */
2707 boolean negative = false; /* should the result be negated? */
2709 negate(p); negative=true;
2713 if ( q==0 ) mp_confusion(mp, '/');
2715 @:this can't happen /}{\quad \./@>
2716 negate(q); negative = ! negative;
2720 mp->arith_error=true;
2721 return ( negative ? -el_gordo : el_gordo);
2723 n=(n-1)*fraction_one;
2724 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>;
2725 return (negative ? (-(f+n)) : (f+n));
2731 if (q==0) mp_confusion(mp,'/');
2733 d = TWEXP28 * (double)p /(double)q;
2736 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
2738 if (d==i && ( ((q>0 ? -q : q)&077777)
2739 * (((i&037777)<<1)-1) & 04000)!=0) --i;
2742 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
2744 if (d==i && ( ((q>0 ? q : -q)&077777)
2745 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
2751 @ The |repeat| loop here preserves the following invariant relations
2752 between |f|, |p|, and~|q|:
2753 (i)~|0<=p<q|; (ii)~$fq+p=2^k(q+p_0)$, where $k$ is an integer and
2754 $p_0$ is the original value of~$p$.
2756 Notice that the computation specifies
2757 |(p-q)+p| instead of |(p+p)-q|, because the latter could overflow.
2758 Let us hope that optimizing compilers do not miss this point; a
2759 special variable |be_careful| is used to emphasize the necessary
2760 order of computation. Optimizing compilers should keep |be_careful|
2761 in a register, not store it in memory.
2764 @<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>=
2768 be_careful=p-q; p=be_careful+p;
2774 } while (f<fraction_one);
2776 if ( be_careful+p>=0 ) incr(f);
2779 @ The dual of |make_fraction| is |take_fraction|, which multiplies a
2780 given integer~|q| by a fraction~|f|. When the operands are positive, it
2781 computes $p=\lfloor qf/2^{28}+{1\over2}\rfloor$, a symmetric function
2784 This routine is even more ``inner loopy'' than |make_fraction|;
2785 the present implementation consumes almost 20\pct! of \MP's computation
2786 time during typical jobs, so a machine-language substitute is advisable.
2787 @^inner loop@> @^system dependencies@>
2790 integer mp_take_fraction (MP mp,integer q, fraction f) ;
2794 integer mp_take_fraction (MP mp,integer q, fraction f) {
2795 integer p; /* the fraction so far */
2796 boolean negative; /* should the result be negated? */
2797 integer n; /* additional multiple of $q$ */
2798 integer be_careful; /* disables certain compiler optimizations */
2799 @<Reduce to the case that |f>=0| and |q>0|@>;
2800 if ( f<fraction_one ) {
2803 n=f / fraction_one; f=f % fraction_one;
2804 if ( q<=el_gordo / n ) {
2807 mp->arith_error=true; n=el_gordo;
2811 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>;
2812 be_careful=n-el_gordo;
2813 if ( be_careful+p>0 ){
2814 mp->arith_error=true; n=el_gordo-p;
2821 integer mp_take_fraction (MP mp,integer p, fraction q) {
2824 d = (double)p * (double)q * TWEXP_28;
2828 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2829 mp->arith_error = true;
2833 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2837 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2838 mp->arith_error = true;
2842 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2848 @ @<Reduce to the case that |f>=0| and |q>0|@>=
2852 negate( f); negative=true;
2855 negate(q); negative=! negative;
2858 @ The invariant relations in this case are (i)~$\lfloor(qf+p)/2^k\rfloor
2859 =\lfloor qf_0/2^{28}+{1\over2}\rfloor$, where $k$ is an integer and
2860 $f_0$ is the original value of~$f$; (ii)~$2^k\L f<2^{k+1}$.
2863 @<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>=
2864 p=fraction_half; /* that's $2^{27}$; the invariants hold now with $k=28$ */
2865 if ( q<fraction_four ) {
2867 if ( odd(f) ) p=halfp(p+q); else p=halfp(p);
2872 if ( odd(f) ) p=p+halfp(q-p); else p=halfp(p);
2878 @ When we want to multiply something by a |scaled| quantity, we use a scheme
2879 analogous to |take_fraction| but with a different scaling.
2880 Given positive operands, |take_scaled|
2881 computes the quantity $p=\lfloor qf/2^{16}+{1\over2}\rfloor$.
2883 Once again it is a good idea to use a machine-language replacement if
2884 possible; otherwise |take_scaled| will use more than 2\pct! of the running time
2885 when the Computer Modern fonts are being generated.
2890 integer mp_take_scaled (MP mp,integer q, scaled f) {
2891 integer p; /* the fraction so far */
2892 boolean negative; /* should the result be negated? */
2893 integer n; /* additional multiple of $q$ */
2894 integer be_careful; /* disables certain compiler optimizations */
2895 @<Reduce to the case that |f>=0| and |q>0|@>;
2899 n=f / unity; f=f % unity;
2900 if ( q<=el_gordo / n ) {
2903 mp->arith_error=true; n=el_gordo;
2907 @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>;
2908 be_careful=n-el_gordo;
2909 if ( be_careful+p>0 ) {
2910 mp->arith_error=true; n=el_gordo-p;
2912 return ( negative ?(-(n+p)) :(n+p));
2914 integer mp_take_scaled (MP mp,integer p, scaled q) {
2917 d = (double)p * (double)q * TWEXP_16;
2921 if (d!=TWEXP31 || (((p&077777)*(q&077777))&040000)==0)
2922 mp->arith_error = true;
2926 if (d==i && (((p&077777)*(q&077777))&040000)!=0) --i;
2930 if (d!= -TWEXP31 || ((-(p&077777)*(q&077777))&040000)==0)
2931 mp->arith_error = true;
2935 if (d==i && ((-(p&077777)*(q&077777))&040000)!=0) ++i;
2941 @ @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>=
2942 p=half_unit; /* that's $2^{15}$; the invariants hold now with $k=16$ */
2944 if ( q<fraction_four ) {
2946 p = (odd(f) ? halfp(p+q) : halfp(p));
2951 p = (odd(f) ? p+halfp(q-p) : halfp(p));
2956 @ For completeness, there's also |make_scaled|, which computes a
2957 quotient as a |scaled| number instead of as a |fraction|.
2958 In other words, the result is $\lfloor2^{16}p/q+{1\over2}\rfloor$, if the
2959 operands are positive. \ (This procedure is not used especially often,
2960 so it is not part of \MP's inner loop.)
2962 @<Internal library ...@>=
2963 scaled mp_make_scaled (MP mp,integer p, integer q) ;
2966 scaled mp_make_scaled (MP mp,integer p, integer q) {
2968 integer f; /* the fraction bits, with a leading 1 bit */
2969 integer n; /* the integer part of $\vert p/q\vert$ */
2970 boolean negative; /* should the result be negated? */
2971 integer be_careful; /* disables certain compiler optimizations */
2972 if ( p>=0 ) negative=false;
2973 else { negate(p); negative=true; };
2976 if ( q==0 ) mp_confusion(mp, "/");
2977 @:this can't happen /}{\quad \./@>
2979 negate(q); negative=! negative;
2983 mp->arith_error=true;
2984 return (negative ? (-el_gordo) : el_gordo);
2987 @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>;
2988 return ( negative ? (-(f+n)) :(f+n));
2994 if (q==0) mp_confusion(mp,"/");
2996 d = TWEXP16 * (double)p /(double)q;
2999 if (d>=TWEXP31) {mp->arith_error=true; return ELGORDO;}
3001 if (d==i && ( ((q>0 ? -q : q)&077777)
3002 * (((i&037777)<<1)-1) & 04000)!=0) --i;
3005 if (d<= -TWEXP31) {mp->arith_error=true; return -ELGORDO;}
3007 if (d==i && ( ((q>0 ? q : -q)&077777)
3008 * (((i&037777)<<1)+1) & 04000)!=0) ++i;
3014 @ @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>=
3017 be_careful=p-q; p=be_careful+p;
3018 if ( p>=0 ) f=f+f+1;
3019 else { f+=f; p=p+q; };
3022 if ( be_careful+p>=0 ) incr(f)
3024 @ Here is a typical example of how the routines above can be used.
3025 It computes the function
3026 $${1\over3\tau}f(\theta,\phi)=
3027 {\tau^{-1}\bigl(2+\sqrt2\,(\sin\theta-{1\over16}\sin\phi)
3028 (\sin\phi-{1\over16}\sin\theta)(\cos\theta-\cos\phi)\bigr)\over
3029 3\,\bigl(1+{1\over2}(\sqrt5-1)\cos\theta+{1\over2}(3-\sqrt5\,)\cos\phi\bigr)},$$
3030 where $\tau$ is a |scaled| ``tension'' parameter. This is \MP's magic
3031 fudge factor for placing the first control point of a curve that starts
3032 at an angle $\theta$ and ends at an angle $\phi$ from the straight path.
3033 (Actually, if the stated quantity exceeds 4, \MP\ reduces it to~4.)
3035 The trigonometric quantity to be multiplied by $\sqrt2$ is less than $\sqrt2$.
3036 (It's a sum of eight terms whose absolute values can be bounded using
3037 relations such as $\sin\theta\cos\theta\L{1\over2}$.) Thus the numerator
3038 is positive; and since the tension $\tau$ is constrained to be at least
3039 $3\over4$, the numerator is less than $16\over3$. The denominator is
3040 nonnegative and at most~6. Hence the fixed-point calculations below
3041 are guaranteed to stay within the bounds of a 32-bit computer word.
3043 The angles $\theta$ and $\phi$ are given implicitly in terms of |fraction|
3044 arguments |st|, |ct|, |sf|, and |cf|, representing $\sin\theta$, $\cos\theta$,
3045 $\sin\phi$, and $\cos\phi$, respectively.
3048 fraction mp_velocity (MP mp,fraction st, fraction ct, fraction sf,
3049 fraction cf, scaled t) {
3050 integer acc,num,denom; /* registers for intermediate calculations */
3051 acc=mp_take_fraction(mp, st-(sf / 16), sf-(st / 16));
3052 acc=mp_take_fraction(mp, acc,ct-cf);
3053 num=fraction_two+mp_take_fraction(mp, acc,379625062);
3054 /* $2^{28}\sqrt2\approx379625062.497$ */
3055 denom=fraction_three+mp_take_fraction(mp, ct,497706707)+mp_take_fraction(mp, cf,307599661);
3056 /* $3\cdot2^{27}\cdot(\sqrt5-1)\approx497706706.78$ and
3057 $3\cdot2^{27}\cdot(3-\sqrt5\,)\approx307599661.22$ */
3058 if ( t!=unity ) num=mp_make_scaled(mp, num,t);
3059 /* |make_scaled(fraction,scaled)=fraction| */
3060 if ( num / 4>=denom )
3061 return fraction_four;
3063 return mp_make_fraction(mp, num, denom);
3066 @ The following somewhat different subroutine tests rigorously if $ab$ is
3067 greater than, equal to, or less than~$cd$,
3068 given integers $(a,b,c,d)$. In most cases a quick decision is reached.
3069 The result is $+1$, 0, or~$-1$ in the three respective cases.
3071 @d mp_ab_vs_cd(M,A,B,C,D) mp_do_ab_vs_cd(A,B,C,D)
3074 integer mp_do_ab_vs_cd (integer a,integer b, integer c, integer d) {
3075 integer q,r; /* temporary registers */
3076 @<Reduce to the case that |a,c>=0|, |b,d>0|@>;
3078 q = a / d; r = c / b;
3080 return ( q>r ? 1 : -1);
3081 q = a % d; r = c % b;
3084 if ( q==0 ) return -1;
3086 } /* now |a>d>0| and |c>b>0| */
3089 @ @<Reduce to the case that |a...@>=
3090 if ( a<0 ) { negate(a); negate(b); };
3091 if ( c<0 ) { negate(c); negate(d); };
3094 if ( (a==0||b==0)&&(c==0||d==0) ) return 0;
3098 return ( a==0 ? 0 : -1);
3099 q=a; a=c; c=q; q=-b; b=-d; d=q;
3100 } else if ( b<=0 ) {
3101 if ( b<0 ) if ( a>0 ) return -1;
3102 return (c==0 ? 0 : -1);
3105 @ We conclude this set of elementary routines with some simple rounding
3106 and truncation operations.
3108 @<Internal library declarations@>=
3109 #define mp_floor_scaled(M,i) ((i)&(-65536))
3110 #define mp_round_unscaled(M,i) (((i>>15)+1)>>1)
3111 #define mp_round_fraction(M,i) (((i>>11)+1)>>1)
3114 @* \[8] Algebraic and transcendental functions.
3115 \MP\ computes all of the necessary special functions from scratch, without
3116 relying on |real| arithmetic or system subroutines for sines, cosines, etc.
3118 @ To get the square root of a |scaled| number |x|, we want to calculate
3119 $s=\lfloor 2^8\!\sqrt x +{1\over2}\rfloor$. If $x>0$, this is the unique
3120 integer such that $2^{16}x-s\L s^2<2^{16}x+s$. The following subroutine
3121 determines $s$ by an iterative method that maintains the invariant
3122 relations $x=2^{46-2k}x_0\bmod 2^{30}$, $0<y=\lfloor 2^{16-2k}x_0\rfloor
3123 -s^2+s\L q=2s$, where $x_0$ is the initial value of $x$. The value of~$y$
3124 might, however, be zero at the start of the first iteration.
3127 scaled mp_square_rt (MP mp,scaled x) ;
3130 scaled mp_square_rt (MP mp,scaled x) {
3131 small_number k; /* iteration control counter */
3132 integer y,q; /* registers for intermediate calculations */
3134 @<Handle square root of zero or negative argument@>;
3137 while ( x<fraction_two ) { /* i.e., |while x<@t$2^{29}$@>|\unskip */
3140 if ( x<fraction_four ) y=0;
3141 else { x=x-fraction_four; y=1; };
3143 @<Decrease |k| by 1, maintaining the invariant
3144 relations between |x|, |y|, and~|q|@>;
3150 @ @<Handle square root of zero...@>=
3153 print_err("Square root of ");
3154 @.Square root...replaced by 0@>
3155 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3156 help2("Since I don't take square roots of negative numbers,")
3157 ("I'm zeroing this one. Proceed, with fingers crossed.");
3163 @ @<Decrease |k| by 1, maintaining...@>=
3165 if ( x>=fraction_four ) { /* note that |fraction_four=@t$2^{30}$@>| */
3166 x=x-fraction_four; incr(y);
3168 x+=x; y=y+y-q; q+=q;
3169 if ( x>=fraction_four ) { x=x-fraction_four; incr(y); };
3170 if ( y>q ){ y=y-q; q=q+2; }
3171 else if ( y<=0 ) { q=q-2; y=y+q; };
3174 @ Pythagorean addition $\psqrt{a^2+b^2}$ is implemented by an elegant
3175 iterative scheme due to Cleve Moler and Donald Morrison [{\sl IBM Journal
3176 @^Moler, Cleve Barry@>
3177 @^Morrison, Donald Ross@>
3178 of Research and Development\/ \bf27} (1983), 577--581]. It modifies |a| and~|b|
3179 in such a way that their Pythagorean sum remains invariant, while the
3180 smaller argument decreases.
3182 @<Internal library ...@>=
3183 integer mp_pyth_add (MP mp,integer a, integer b);
3187 integer mp_pyth_add (MP mp,integer a, integer b) {
3188 fraction r; /* register used to transform |a| and |b| */
3189 boolean big; /* is the result dangerously near $2^{31}$? */
3191 if ( a<b ) { r=b; b=a; a=r; }; /* now |0<=b<=a| */
3193 if ( a<fraction_two ) {
3196 a=a / 4; b=b / 4; big=true;
3197 }; /* we reduced the precision to avoid arithmetic overflow */
3198 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>;
3200 if ( a<fraction_two ) {
3203 mp->arith_error=true; a=el_gordo;
3210 @ The key idea here is to reflect the vector $(a,b)$ about the
3211 line through $(a,b/2)$.
3213 @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>=
3215 r=mp_make_fraction(mp, b,a);
3216 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3218 r=mp_make_fraction(mp, r,fraction_four+r);
3219 a=a+mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3223 @ Here is a similar algorithm for $\psqrt{a^2-b^2}$.
3224 It converges slowly when $b$ is near $a$, but otherwise it works fine.
3227 integer mp_pyth_sub (MP mp,integer a, integer b) {
3228 fraction r; /* register used to transform |a| and |b| */
3229 boolean big; /* is the input dangerously near $2^{31}$? */
3232 @<Handle erroneous |pyth_sub| and set |a:=0|@>;
3234 if ( a<fraction_four ) {
3237 a=halfp(a); b=halfp(b); big=true;
3239 @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>;
3240 if ( big ) double(a);
3245 @ @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>=
3247 r=mp_make_fraction(mp, b,a);
3248 r=mp_take_fraction(mp, r,r); /* now $r\approx b^2/a^2$ */
3250 r=mp_make_fraction(mp, r,fraction_four-r);
3251 a=a-mp_take_fraction(mp, a+a,r); b=mp_take_fraction(mp, b,r);
3254 @ @<Handle erroneous |pyth_sub| and set |a:=0|@>=
3257 print_err("Pythagorean subtraction "); mp_print_scaled(mp, a);
3258 mp_print(mp, "+-+"); mp_print_scaled(mp, b);
3259 mp_print(mp, " has been replaced by 0");
3261 help2("Since I don't take square roots of negative numbers,")
3262 ("I'm zeroing this one. Proceed, with fingers crossed.");
3268 @ The subroutines for logarithm and exponential involve two tables.
3269 The first is simple: |two_to_the[k]| equals $2^k$. The second involves
3270 a bit more calculation, which the author claims to have done correctly:
3271 |spec_log[k]| is $2^{27}$ times $\ln\bigl(1/(1-2^{-k})\bigr)=
3272 2^{-k}+{1\over2}2^{-2k}+{1\over3}2^{-3k}+\cdots\,$, rounded to the
3275 @d two_to_the(A) (1<<(A))
3278 static const integer spec_log[29] = { 0, /* special logarithms */
3279 93032640, 38612034, 17922280, 8662214, 4261238, 2113709,
3280 1052693, 525315, 262400, 131136, 65552, 32772, 16385,
3281 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1 };
3283 @ @<Local variables for initialization@>=
3284 integer k; /* all-purpose loop index */
3287 @ Here is the routine that calculates $2^8$ times the natural logarithm
3288 of a |scaled| quantity; it is an integer approximation to $2^{24}\ln(x/2^{16})$,
3289 when |x| is a given positive integer.
3291 The method is based on exercise 1.2.2--25 in {\sl The Art of Computer
3292 Programming\/}: During the main iteration we have $1\L 2^{-30}x<1/(1-2^{1-k})$,
3293 and the logarithm of $2^{30}x$ remains to be added to an accumulator
3294 register called~$y$. Three auxiliary bits of accuracy are retained in~$y$
3295 during the calculation, and sixteen auxiliary bits to extend |y| are
3296 kept in~|z| during the initial argument reduction. (We add
3297 $100\cdot2^{16}=6553600$ to~|z| and subtract 100 from~|y| so that |z| will
3298 not become negative; also, the actual amount subtracted from~|y| is~96,
3299 not~100, because we want to add~4 for rounding before the final division by~8.)
3302 scaled mp_m_log (MP mp,scaled x) {
3303 integer y,z; /* auxiliary registers */
3304 integer k; /* iteration counter */
3306 @<Handle non-positive logarithm@>;
3308 y=1302456956+4-100; /* $14\times2^{27}\ln2\approx1302456956.421063$ */
3309 z=27595+6553600; /* and $2^{16}\times .421063\approx 27595$ */
3310 while ( x<fraction_four ) {
3311 double(x); y-=93032639; z-=48782;
3312 } /* $2^{27}\ln2\approx 93032639.74436163$ and $2^{16}\times.74436163\approx 48782$ */
3313 y=y+(z / unity); k=2;
3314 while ( x>fraction_four+4 ) {
3315 @<Increase |k| until |x| can be multiplied by a
3316 factor of $2^{-k}$, and adjust $y$ accordingly@>;
3322 @ @<Increase |k| until |x| can...@>=
3324 z=((x-1) / two_to_the(k))+1; /* $z=\lceil x/2^k\rceil$ */
3325 while ( x<fraction_four+z ) { z=halfp(z+1); incr(k); };
3326 y+=spec_log[k]; x-=z;
3329 @ @<Handle non-positive logarithm@>=
3331 print_err("Logarithm of ");
3332 @.Logarithm...replaced by 0@>
3333 mp_print_scaled(mp, x); mp_print(mp, " has been replaced by 0");
3334 help2("Since I don't take logs of non-positive numbers,")
3335 ("I'm zeroing this one. Proceed, with fingers crossed.");
3340 @ Conversely, the exponential routine calculates $\exp(x/2^8)$,
3341 when |x| is |scaled|. The result is an integer approximation to
3342 $2^{16}\exp(x/2^{24})$, when |x| is regarded as an integer.
3345 scaled mp_m_exp (MP mp,scaled x) {
3346 small_number k; /* loop control index */
3347 integer y,z; /* auxiliary registers */
3348 if ( x>174436200 ) {
3349 /* $2^{24}\ln((2^{31}-1)/2^{16})\approx 174436199.51$ */
3350 mp->arith_error=true;
3352 } else if ( x<-197694359 ) {
3353 /* $2^{24}\ln(2^{-1}/2^{16})\approx-197694359.45$ */
3357 z=-8*x; y=04000000; /* $y=2^{20}$ */
3359 if ( x<=127919879 ) {
3361 /* $2^{27}\ln((2^{31}-1)/2^{20})\approx 1023359037.125$ */
3363 z=8*(174436200-x); /* |z| is always nonnegative */
3367 @<Multiply |y| by $\exp(-z/2^{27})$@>;
3369 return ((y+8) / 16);
3375 @ The idea here is that subtracting |spec_log[k]| from |z| corresponds
3376 to multiplying |y| by $1-2^{-k}$.
3378 A subtle point (which had to be checked) was that if $x=127919879$, the
3379 value of~|y| will decrease so that |y+8| doesn't overflow. In fact,
3380 $z$ will be 5 in this case, and |y| will decrease by~64 when |k=25|
3381 and by~16 when |k=27|.
3383 @<Multiply |y| by...@>=
3386 while ( z>=spec_log[k] ) {
3388 y=y-1-((y-two_to_the(k-1)) / two_to_the(k));
3393 @ The trigonometric subroutines use an auxiliary table such that
3394 |spec_atan[k]| contains an approximation to the |angle| whose tangent
3395 is~$1/2^k$. $\arctan2^{-k}$ times $2^{20}\cdot180/\pi$
3398 static const angle spec_atan[27] = { 0, 27855475, 14718068, 7471121, 3750058,
3399 1876857, 938658, 469357, 234682, 117342, 58671, 29335, 14668, 7334, 3667,
3400 1833, 917, 458, 229, 115, 57, 29, 14, 7, 4, 2, 1 };
3402 @ Given integers |x| and |y|, not both zero, the |n_arg| function
3403 returns the |angle| whose tangent points in the direction $(x,y)$.
3404 This subroutine first determines the correct octant, then solves the
3405 problem for |0<=y<=x|, then converts the result appropriately to
3406 return an answer in the range |-one_eighty_deg<=@t$\theta$@><=one_eighty_deg|.
3407 (The answer is |+one_eighty_deg| if |y=0| and |x<0|, but an answer of
3408 |-one_eighty_deg| is possible if, for example, |y=-1| and $x=-2^{30}$.)
3410 The octants are represented in a ``Gray code,'' since that turns out
3411 to be computationally simplest.
3417 @d second_octant (first_octant+switch_x_and_y)
3418 @d third_octant (first_octant+switch_x_and_y+negate_x)
3419 @d fourth_octant (first_octant+negate_x)
3420 @d fifth_octant (first_octant+negate_x+negate_y)
3421 @d sixth_octant (first_octant+switch_x_and_y+negate_x+negate_y)
3422 @d seventh_octant (first_octant+switch_x_and_y+negate_y)
3423 @d eighth_octant (first_octant+negate_y)
3426 angle mp_n_arg (MP mp,integer x, integer y) {
3427 angle z; /* auxiliary register */
3428 integer t; /* temporary storage */
3429 small_number k; /* loop counter */
3430 int octant; /* octant code */
3432 octant=first_octant;
3434 negate(x); octant=first_octant+negate_x;
3437 negate(y); octant=octant+negate_y;
3440 t=y; y=x; x=t; octant=octant+switch_x_and_y;
3443 @<Handle undefined arg@>;
3445 @<Set variable |z| to the arg of $(x,y)$@>;
3446 @<Return an appropriate answer based on |z| and |octant|@>;
3450 @ @<Handle undefined arg@>=
3452 print_err("angle(0,0) is taken as zero");
3453 @.angle(0,0)...zero@>
3454 help2("The `angle' between two identical points is undefined.")
3455 ("I'm zeroing this one. Proceed, with fingers crossed.");
3460 @ @<Return an appropriate answer...@>=
3462 case first_octant: return z;
3463 case second_octant: return (ninety_deg-z);
3464 case third_octant: return (ninety_deg+z);
3465 case fourth_octant: return (one_eighty_deg-z);
3466 case fifth_octant: return (z-one_eighty_deg);
3467 case sixth_octant: return (-z-ninety_deg);
3468 case seventh_octant: return (z-ninety_deg);
3469 case eighth_octant: return (-z);
3470 }; /* there are no other cases */
3473 @ At this point we have |x>=y>=0|, and |x>0|. The numbers are scaled up
3474 or down until $2^{28}\L x<2^{29}$, so that accurate fixed-point calculations
3477 @<Set variable |z| to the arg...@>=
3478 while ( x>=fraction_two ) {
3479 x=halfp(x); y=halfp(y);
3483 while ( x<fraction_one ) {
3486 @<Increase |z| to the arg of $(x,y)$@>;
3489 @ During the calculations of this section, variables |x| and~|y|
3490 represent actual coordinates $(x,2^{-k}y)$. We will maintain the
3491 condition |x>=y|, so that the tangent will be at most $2^{-k}$.
3492 If $x<2y$, the tangent is greater than $2^{-k-1}$. The transformation
3493 $(a,b)\mapsto(a+b\tan\phi,b-a\tan\phi)$ replaces $(a,b)$ by
3494 coordinates whose angle has decreased by~$\phi$; in the special case
3495 $a=x$, $b=2^{-k}y$, and $\tan\phi=2^{-k-1}$, this operation reduces
3496 to the particularly simple iteration shown here. [Cf.~John E. Meggitt,
3497 @^Meggitt, John E.@>
3498 {\sl IBM Journal of Research and Development\/ \bf6} (1962), 210--226.]
3500 The initial value of |x| will be multiplied by at most
3501 $(1+{1\over2})(1+{1\over8})(1+{1\over32})\cdots\approx 1.7584$; hence
3502 there is no chance of integer overflow.
3504 @<Increase |z|...@>=
3509 z=z+spec_atan[k]; t=x; x=x+(y / two_to_the(k+k)); y=y-t;
3514 if ( y>x ) { z=z+spec_atan[k]; y=y-x; };
3517 @ Conversely, the |n_sin_cos| routine takes an |angle| and produces the sine
3518 and cosine of that angle. The results of this routine are
3519 stored in global integer variables |n_sin| and |n_cos|.
3522 fraction n_sin;fraction n_cos; /* results computed by |n_sin_cos| */
3524 @ Given an integer |z| that is $2^{20}$ times an angle $\theta$ in degrees,
3525 the purpose of |n_sin_cos(z)| is to set
3526 |x=@t$r\cos\theta$@>| and |y=@t$r\sin\theta$@>| (approximately),
3527 for some rather large number~|r|. The maximum of |x| and |y|
3528 will be between $2^{28}$ and $2^{30}$, so that there will be hardly
3529 any loss of accuracy. Then |x| and~|y| are divided by~|r|.
3532 void mp_n_sin_cos (MP mp,angle z) { /* computes a multiple of the sine
3534 small_number k; /* loop control variable */
3535 int q; /* specifies the quadrant */
3536 fraction r; /* magnitude of |(x,y)| */
3537 integer x,y,t; /* temporary registers */
3538 while ( z<0 ) z=z+three_sixty_deg;
3539 z=z % three_sixty_deg; /* now |0<=z<three_sixty_deg| */
3540 q=z / forty_five_deg; z=z % forty_five_deg;
3541 x=fraction_one; y=x;
3542 if ( ! odd(q) ) z=forty_five_deg-z;
3543 @<Subtract angle |z| from |(x,y)|@>;
3544 @<Convert |(x,y)| to the octant determined by~|q|@>;
3545 r=mp_pyth_add(mp, x,y);
3546 mp->n_cos=mp_make_fraction(mp, x,r);
3547 mp->n_sin=mp_make_fraction(mp, y,r);
3550 @ In this case the octants are numbered sequentially.
3552 @<Convert |(x,...@>=
3555 case 1: t=x; x=y; y=t; break;
3556 case 2: t=x; x=-y; y=t; break;
3557 case 3: negate(x); break;
3558 case 4: negate(x); negate(y); break;
3559 case 5: t=x; x=-y; y=-t; break;
3560 case 6: t=x; x=y; y=-t; break;
3561 case 7: negate(y); break;
3562 } /* there are no other cases */
3564 @ The main iteration of |n_sin_cos| is similar to that of |n_arg| but
3565 applied in reverse. The values of |spec_atan[k]| decrease slowly enough
3566 that this loop is guaranteed to terminate before the (nonexistent) value
3567 |spec_atan[27]| would be required.
3569 @<Subtract angle |z|...@>=
3572 if ( z>=spec_atan[k] ) {
3573 z=z-spec_atan[k]; t=x;
3574 x=t+y / two_to_the(k);
3575 y=y-t / two_to_the(k);
3579 if ( y<0 ) y=0 /* this precaution may never be needed */
3581 @ And now let's complete our collection of numeric utility routines
3582 by considering random number generation.
3583 \MP\ generates pseudo-random numbers with the additive scheme recommended
3584 in Section 3.6 of {\sl The Art of Computer Programming}; however, the
3585 results are random fractions between 0 and |fraction_one-1|, inclusive.
3587 There's an auxiliary array |randoms| that contains 55 pseudo-random
3588 fractions. Using the recurrence $x_n=(x_{n-55}-x_{n-31})\bmod 2^{28}$,
3589 we generate batches of 55 new $x_n$'s at a time by calling |new_randoms|.
3590 The global variable |j_random| tells which element has most recently
3592 The global variable |sys_random_seed| was introduced in version 0.9,
3593 for the sole reason of stressing the fact that the initial value of the
3594 random seed is system-dependant. The pascal code below will initialize
3595 this variable to |(internal[mp_time] div unity)+internal[mp_day]|, but this
3596 is not good enough on modern fast machines that are capable of running
3597 multiple MetaPost processes within the same second.
3598 @^system dependencies@>
3601 fraction randoms[55]; /* the last 55 random values generated */
3602 int j_random; /* the number of unused |randoms| */
3603 scaled sys_random_seed; /* the default random seed */
3605 @ @<Exported types@>=
3606 typedef int (*mp_get_random_seed_command)(MP mp);
3609 mp_get_random_seed_command get_random_seed;
3611 @ @<Option variables@>=
3612 mp_get_random_seed_command get_random_seed;
3614 @ @<Allocate or initialize ...@>=
3615 set_callback_option(get_random_seed);
3617 @ @<Internal library declarations@>=
3618 int mp_get_random_seed (MP mp);
3621 int mp_get_random_seed (MP mp) {
3622 return (mp->internal[mp_time] / unity)+mp->internal[mp_day];
3625 @ To consume a random fraction, the program below will say `|next_random|'
3626 and then it will fetch |randoms[j_random]|.
3628 @d next_random { if ( mp->j_random==0 ) mp_new_randoms(mp);
3629 else decr(mp->j_random); }
3632 void mp_new_randoms (MP mp) {
3633 int k; /* index into |randoms| */
3634 fraction x; /* accumulator */
3635 for (k=0;k<=23;k++) {
3636 x=mp->randoms[k]-mp->randoms[k+31];
3637 if ( x<0 ) x=x+fraction_one;
3640 for (k=24;k<= 54;k++){
3641 x=mp->randoms[k]-mp->randoms[k-24];
3642 if ( x<0 ) x=x+fraction_one;
3649 void mp_init_randoms (MP mp,scaled seed);
3651 @ To initialize the |randoms| table, we call the following routine.
3654 void mp_init_randoms (MP mp,scaled seed) {
3655 fraction j,jj,k; /* more or less random integers */
3656 int i; /* index into |randoms| */
3658 while ( j>=fraction_one ) j=halfp(j);
3660 for (i=0;i<=54;i++ ){
3662 if ( k<0 ) k=k+fraction_one;
3663 mp->randoms[(i*21)% 55]=j;
3667 mp_new_randoms(mp); /* ``warm up'' the array */
3670 @ To produce a uniform random number in the range |0<=u<x| or |0>=u>x|
3671 or |0=u=x|, given a |scaled| value~|x|, we proceed as shown here.
3673 Note that the call of |take_fraction| will produce the values 0 and~|x|
3674 with about half the probability that it will produce any other particular
3675 values between 0 and~|x|, because it rounds its answers.
3678 scaled mp_unif_rand (MP mp,scaled x) {
3679 scaled y; /* trial value */
3680 next_random; y=mp_take_fraction(mp, abs(x),mp->randoms[mp->j_random]);
3681 if ( y==abs(x) ) return 0;
3682 else if ( x>0 ) return y;
3686 @ Finally, a normal deviate with mean zero and unit standard deviation
3687 can readily be obtained with the ratio method (Algorithm 3.4.1R in
3688 {\sl The Art of Computer Programming\/}).
3691 scaled mp_norm_rand (MP mp) {
3692 integer x,u,l; /* what the book would call $2^{16}X$, $2^{28}U$, and $-2^{24}\ln U$ */
3696 x=mp_take_fraction(mp, 112429,mp->randoms[mp->j_random]-fraction_half);
3697 /* $2^{16}\sqrt{8/e}\approx 112428.82793$ */
3698 next_random; u=mp->randoms[mp->j_random];
3699 } while (abs(x)>=u);
3700 x=mp_make_fraction(mp, x,u);
3701 l=139548960-mp_m_log(mp, u); /* $2^{24}\cdot12\ln2\approx139548959.6165$ */
3702 } while (mp_ab_vs_cd(mp, 1024,l,x,x)<0);
3706 @* \[9] Packed data.
3707 In order to make efficient use of storage space, \MP\ bases its major data
3708 structures on a |memory_word|, which contains either a (signed) integer,
3709 possibly scaled, or a small number of fields that are one half or one
3710 quarter of the size used for storing integers.
3712 If |x| is a variable of type |memory_word|, it contains up to four
3713 fields that can be referred to as follows:
3714 $$\vbox{\halign{\hfil#&#\hfil&#\hfil\cr
3715 |x|&.|int|&(an |integer|)\cr
3716 |x|&.|sc|\qquad&(a |scaled| integer)\cr
3717 |x.hh.lh|, |x.hh|&.|rh|&(two halfword fields)\cr
3718 |x.hh.b0|, |x.hh.b1|, |x.hh|&.|rh|&(two quarterword fields, one halfword
3720 |x.qqqq.b0|, |x.qqqq.b1|, |x.qqqq|&.|b2|, |x.qqqq.b3|\hskip-100pt
3721 &\qquad\qquad\qquad(four quarterword fields)\cr}}$$
3722 This is somewhat cumbersome to write, and not very readable either, but
3723 macros will be used to make the notation shorter and more transparent.
3724 The code below gives a formal definition of |memory_word| and
3725 its subsidiary types, using packed variant records. \MP\ makes no
3726 assumptions about the relative positions of the fields within a word.
3728 @d max_quarterword 0x3FFF /* largest allowable value in a |quarterword| */
3729 @d max_halfword 0xFFFFFFF /* largest allowable value in a |halfword| */
3731 @ Here are the inequalities that the quarterword and halfword values
3732 must satisfy (or rather, the inequalities that they mustn't satisfy):
3734 @<Check the ``constant''...@>=
3735 if (mp->ini_version) {
3736 if ( mp->mem_max!=mp->mem_top ) mp->bad=8;
3738 if ( mp->mem_max<mp->mem_top ) mp->bad=8;
3740 if ( max_quarterword<255 ) mp->bad=9;
3741 if ( max_halfword<65535 ) mp->bad=10;
3742 if ( max_quarterword>max_halfword ) mp->bad=11;
3743 if ( mp->mem_max>=max_halfword ) mp->bad=12;
3744 if ( mp->max_strings>max_halfword ) mp->bad=13;
3746 @ The macros |qi| and |qo| are used for input to and output
3747 from quarterwords. These are legacy macros.
3748 @^system dependencies@>
3750 @d qo(A) (A) /* to read eight bits from a quarterword */
3751 @d qi(A) (A) /* to store eight bits in a quarterword */
3753 @ The reader should study the following definitions closely:
3754 @^system dependencies@>
3756 @d sc cint /* |scaled| data is equivalent to |integer| */
3759 typedef short quarterword; /* 1/4 of a word */
3760 typedef int halfword; /* 1/2 of a word */
3765 struct { /* Make B0,B1 overlap the most significant bytes of LH. */
3772 quarterword B2, B3, B0, B1;
3787 @ When debugging, we may want to print a |memory_word| without knowing
3788 what type it is; so we print it in all modes.
3789 @^dirty \PASCAL@>@^debugging@>
3792 void mp_print_word (MP mp,memory_word w) {
3793 /* prints |w| in all ways */
3794 mp_print_int(mp, w.cint); mp_print_char(mp, ' ');
3795 mp_print_scaled(mp, w.sc); mp_print_char(mp, ' ');
3796 mp_print_scaled(mp, w.sc / 010000); mp_print_ln(mp);
3797 mp_print_int(mp, w.hh.lh); mp_print_char(mp, '=');
3798 mp_print_int(mp, w.hh.b0); mp_print_char(mp, ':');
3799 mp_print_int(mp, w.hh.b1); mp_print_char(mp, ';');
3800 mp_print_int(mp, w.hh.rh); mp_print_char(mp, ' ');
3801 mp_print_int(mp, w.qqqq.b0); mp_print_char(mp, ':');
3802 mp_print_int(mp, w.qqqq.b1); mp_print_char(mp, ':');
3803 mp_print_int(mp, w.qqqq.b2); mp_print_char(mp, ':');
3804 mp_print_int(mp, w.qqqq.b3);
3808 @* \[10] Dynamic memory allocation.
3810 The \MP\ system does nearly all of its own memory allocation, so that it
3811 can readily be transported into environments that do not have automatic
3812 facilities for strings, garbage collection, etc., and so that it can be in
3813 control of what error messages the user receives. The dynamic storage
3814 requirements of \MP\ are handled by providing a large array |mem| in
3815 which consecutive blocks of words are used as nodes by the \MP\ routines.
3817 Pointer variables are indices into this array, or into another array
3818 called |eqtb| that will be explained later. A pointer variable might
3819 also be a special flag that lies outside the bounds of |mem|, so we
3820 allow pointers to assume any |halfword| value. The minimum memory
3821 index represents a null pointer.
3823 @d null 0 /* the null pointer */
3824 @d mp_void (null+1) /* a null pointer different from |null| */
3828 typedef halfword pointer; /* a flag or a location in |mem| or |eqtb| */
3830 @ The |mem| array is divided into two regions that are allocated separately,
3831 but the dividing line between these two regions is not fixed; they grow
3832 together until finding their ``natural'' size in a particular job.
3833 Locations less than or equal to |lo_mem_max| are used for storing
3834 variable-length records consisting of two or more words each. This region
3835 is maintained using an algorithm similar to the one described in exercise
3836 2.5--19 of {\sl The Art of Computer Programming}. However, no size field
3837 appears in the allocated nodes; the program is responsible for knowing the
3838 relevant size when a node is freed. Locations greater than or equal to
3839 |hi_mem_min| are used for storing one-word records; a conventional
3840 \.{AVAIL} stack is used for allocation in this region.
3842 Locations of |mem| between |0| and |mem_top| may be dumped as part
3843 of preloaded format files, by the \.{INIMP} preprocessor.
3845 Production versions of \MP\ may extend the memory at the top end in order to
3846 provide more space; these locations, between |mem_top| and |mem_max|,
3847 are always used for single-word nodes.
3849 The key pointers that govern |mem| allocation have a prescribed order:
3850 $$\hbox{|null=0<lo_mem_max<hi_mem_min<mem_top<=mem_end<=mem_max|.}$$
3853 memory_word *mem; /* the big dynamic storage area */
3854 pointer lo_mem_max; /* the largest location of variable-size memory in use */
3855 pointer hi_mem_min; /* the smallest location of one-word memory in use */
3859 @d xfree(A) do { mp_xfree(A); A=NULL; } while (0)
3860 @d xrealloc(P,A,B) mp_xrealloc(mp,P,A,B)
3861 @d xmalloc(A,B) mp_xmalloc(mp,A,B)
3862 @d xstrdup(A) mp_xstrdup(mp,A)
3863 @d XREALLOC(a,b,c) a = xrealloc(a,(b+1),sizeof(c));
3865 @<Declare helpers@>=
3866 void mp_xfree (void *x);
3867 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) ;
3868 void *mp_xmalloc (MP mp, size_t nmem, size_t size) ;
3869 char *mp_xstrdup(MP mp, const char *s);
3871 @ The |max_size_test| guards against overflow, on the assumption that
3872 |size_t| is at least 31bits wide.
3874 @d max_size_test 0x7FFFFFFF
3877 void mp_xfree (void *x) {
3878 if (x!=NULL) free(x);
3880 void *mp_xrealloc (MP mp, void *p, size_t nmem, size_t size) {
3882 if ((max_size_test/size)<nmem) {
3883 fprintf(stderr,"Memory size overflow!\n");
3884 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3886 w = realloc (p,(nmem*size));
3888 fprintf(stderr,"Out of memory!\n");
3889 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3893 void *mp_xmalloc (MP mp, size_t nmem, size_t size) {
3895 if ((max_size_test/size)<nmem) {
3896 fprintf(stderr,"Memory size overflow!\n");
3897 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3899 w = malloc (nmem*size);
3901 fprintf(stderr,"Out of memory!\n");
3902 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3906 char *mp_xstrdup(MP mp, const char *s) {
3912 fprintf(stderr,"Out of memory!\n");
3913 mp->history =mp_fatal_error_stop; mp_jump_out(mp);
3920 @<Allocate or initialize ...@>=
3921 mp->mem = xmalloc ((mp->mem_max+1),sizeof (memory_word));
3922 memset(mp->mem,0,(mp->mem_max+1)*sizeof (memory_word));
3924 @ @<Dealloc variables@>=
3927 @ Users who wish to study the memory requirements of particular applications can
3928 can use optional special features that keep track of current and
3929 maximum memory usage. When code between the delimiters |stat| $\ldots$
3930 |tats| is not ``commented out,'' \MP\ will run a bit slower but it will
3931 report these statistics when |mp_tracing_stats| is positive.
3934 integer var_used; integer dyn_used; /* how much memory is in use */
3936 @ Let's consider the one-word memory region first, since it's the
3937 simplest. The pointer variable |mem_end| holds the highest-numbered location
3938 of |mem| that has ever been used. The free locations of |mem| that
3939 occur between |hi_mem_min| and |mem_end|, inclusive, are of type
3940 |two_halves|, and we write |info(p)| and |link(p)| for the |lh|
3941 and |rh| fields of |mem[p]| when it is of this type. The single-word
3942 free locations form a linked list
3943 $$|avail|,\;\hbox{|link(avail)|},\;\hbox{|link(link(avail))|},\;\ldots$$
3944 terminated by |null|.
3946 @d link(A) mp->mem[(A)].hh.rh /* the |link| field of a memory word */
3947 @d info(A) mp->mem[(A)].hh.lh /* the |info| field of a memory word */
3950 pointer avail; /* head of the list of available one-word nodes */
3951 pointer mem_end; /* the last one-word node used in |mem| */
3953 @ If one-word memory is exhausted, it might mean that the user has forgotten
3954 a token like `\&{enddef}' or `\&{endfor}'. We will define some procedures
3955 later that try to help pinpoint the trouble.
3958 @<Declare the procedure called |show_token_list|@>;
3959 @<Declare the procedure called |runaway|@>
3961 @ The function |get_avail| returns a pointer to a new one-word node whose
3962 |link| field is null. However, \MP\ will halt if there is no more room left.
3966 pointer mp_get_avail (MP mp) { /* single-word node allocation */
3967 pointer p; /* the new node being got */
3968 p=mp->avail; /* get top location in the |avail| stack */
3970 mp->avail=link(mp->avail); /* and pop it off */
3971 } else if ( mp->mem_end<mp->mem_max ) { /* or go into virgin territory */
3972 incr(mp->mem_end); p=mp->mem_end;
3974 decr(mp->hi_mem_min); p=mp->hi_mem_min;
3975 if ( mp->hi_mem_min<=mp->lo_mem_max ) {
3976 mp_runaway(mp); /* if memory is exhausted, display possible runaway text */
3977 mp_overflow(mp, "main memory size",mp->mem_max);
3978 /* quit; all one-word nodes are busy */
3979 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
3982 link(p)=null; /* provide an oft-desired initialization of the new node */
3983 incr(mp->dyn_used);/* maintain statistics */
3987 @ Conversely, a one-word node is recycled by calling |free_avail|.
3989 @d free_avail(A) /* single-word node liberation */
3990 { link((A))=mp->avail; mp->avail=(A); decr(mp->dyn_used); }
3992 @ There's also a |fast_get_avail| routine, which saves the procedure-call
3993 overhead at the expense of extra programming. This macro is used in
3994 the places that would otherwise account for the most calls of |get_avail|.
3997 @d fast_get_avail(A) {
3998 (A)=mp->avail; /* avoid |get_avail| if possible, to save time */
3999 if ( (A)==null ) { (A)=mp_get_avail(mp); }
4000 else { mp->avail=link((A)); link((A))=null; incr(mp->dyn_used); }
4003 @ The available-space list that keeps track of the variable-size portion
4004 of |mem| is a nonempty, doubly-linked circular list of empty nodes,
4005 pointed to by the roving pointer |rover|.
4007 Each empty node has size 2 or more; the first word contains the special
4008 value |max_halfword| in its |link| field and the size in its |info| field;
4009 the second word contains the two pointers for double linking.
4011 Each nonempty node also has size 2 or more. Its first word is of type
4012 |two_halves|\kern-1pt, and its |link| field is never equal to |max_halfword|.
4013 Otherwise there is complete flexibility with respect to the contents
4014 of its other fields and its other words.
4016 (We require |mem_max<max_halfword| because terrible things can happen
4017 when |max_halfword| appears in the |link| field of a nonempty node.)
4019 @d empty_flag max_halfword /* the |link| of an empty variable-size node */
4020 @d is_empty(A) (link((A))==empty_flag) /* tests for empty node */
4021 @d node_size info /* the size field in empty variable-size nodes */
4022 @d llink(A) info((A)+1) /* left link in doubly-linked list of empty nodes */
4023 @d rlink(A) link((A)+1) /* right link in doubly-linked list of empty nodes */
4026 pointer rover; /* points to some node in the list of empties */
4028 @ A call to |get_node| with argument |s| returns a pointer to a new node
4029 of size~|s|, which must be 2~or more. The |link| field of the first word
4030 of this new node is set to null. An overflow stop occurs if no suitable
4033 If |get_node| is called with $s=2^{30}$, it simply merges adjacent free
4034 areas and returns the value |max_halfword|.
4037 pointer mp_get_node (MP mp,integer s) ;
4040 pointer mp_get_node (MP mp,integer s) { /* variable-size node allocation */
4041 pointer p; /* the node currently under inspection */
4042 pointer q; /* the node physically after node |p| */
4043 integer r; /* the newly allocated node, or a candidate for this honor */
4044 integer t,tt; /* temporary registers */
4047 p=mp->rover; /* start at some free node in the ring */
4049 @<Try to allocate within node |p| and its physical successors,
4050 and |goto found| if allocation was possible@>;
4051 if (rlink(p)==null || rlink(p)==p) {
4052 print_err("Free list garbled");
4053 help3("I found an entry in the list of free nodes that links")
4054 ("badly. I will try to ignore the broken link, but something")
4055 ("is seriously amiss. It is wise to warn the maintainers.")
4059 p=rlink(p); /* move to the next node in the ring */
4060 } while (p!=mp->rover); /* repeat until the whole list has been traversed */
4061 if ( s==010000000000 ) {
4062 return max_halfword;
4064 if ( mp->lo_mem_max+2<mp->hi_mem_min ) {
4065 if ( mp->lo_mem_max+2<=max_halfword ) {
4066 @<Grow more variable-size memory and |goto restart|@>;
4069 mp_overflow(mp, "main memory size",mp->mem_max);
4070 /* sorry, nothing satisfactory is left */
4071 @:MetaPost capacity exceeded main memory size}{\quad main memory size@>
4073 link(r)=null; /* this node is now nonempty */
4074 mp->var_used+=s; /* maintain usage statistics */
4078 @ The lower part of |mem| grows by 1000 words at a time, unless
4079 we are very close to going under. When it grows, we simply link
4080 a new node into the available-space list. This method of controlled
4081 growth helps to keep the |mem| usage consecutive when \MP\ is
4082 implemented on ``virtual memory'' systems.
4085 @<Grow more variable-size memory and |goto restart|@>=
4087 if ( mp->hi_mem_min-mp->lo_mem_max>=1998 ) {
4088 t=mp->lo_mem_max+1000;
4090 t=mp->lo_mem_max+1+(mp->hi_mem_min-mp->lo_mem_max) / 2;
4091 /* |lo_mem_max+2<=t<hi_mem_min| */
4093 if ( t>max_halfword ) t=max_halfword;
4094 p=llink(mp->rover); q=mp->lo_mem_max; rlink(p)=q; llink(mp->rover)=q;
4095 rlink(q)=mp->rover; llink(q)=p; link(q)=empty_flag;
4096 node_size(q)=t-mp->lo_mem_max;
4097 mp->lo_mem_max=t; link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4102 @ @<Try to allocate...@>=
4103 q=p+node_size(p); /* find the physical successor */
4104 while ( is_empty(q) ) { /* merge node |p| with node |q| */
4105 t=rlink(q); tt=llink(q);
4107 if ( q==mp->rover ) mp->rover=t;
4108 llink(t)=tt; rlink(tt)=t;
4113 @<Allocate from the top of node |p| and |goto found|@>;
4116 if ( rlink(p)!=p ) {
4117 @<Allocate entire node |p| and |goto found|@>;
4120 node_size(p)=q-p /* reset the size in case it grew */
4122 @ @<Allocate from the top...@>=
4124 node_size(p)=r-p; /* store the remaining size */
4125 mp->rover=p; /* start searching here next time */
4129 @ Here we delete node |p| from the ring, and let |rover| rove around.
4131 @<Allocate entire...@>=
4133 mp->rover=rlink(p); t=llink(p);
4134 llink(mp->rover)=t; rlink(t)=mp->rover;
4138 @ Conversely, when some variable-size node |p| of size |s| is no longer needed,
4139 the operation |free_node(p,s)| will make its words available, by inserting
4140 |p| as a new empty node just before where |rover| now points.
4143 void mp_free_node (MP mp, pointer p, halfword s) ;
4146 void mp_free_node (MP mp, pointer p, halfword s) { /* variable-size node
4148 pointer q; /* |llink(rover)| */
4149 node_size(p)=s; link(p)=empty_flag;
4151 q=llink(mp->rover); llink(p)=q; rlink(p)=mp->rover; /* set both links */
4152 llink(mp->rover)=p; rlink(q)=p; /* insert |p| into the ring */
4153 mp->var_used-=s; /* maintain statistics */
4156 @ Just before \.{INIMP} writes out the memory, it sorts the doubly linked
4157 available space list. The list is probably very short at such times, so a
4158 simple insertion sort is used. The smallest available location will be
4159 pointed to by |rover|, the next-smallest by |rlink(rover)|, etc.
4162 void mp_sort_avail (MP mp) { /* sorts the available variable-size nodes
4164 pointer p,q,r; /* indices into |mem| */
4165 pointer old_rover; /* initial |rover| setting */
4166 p=mp_get_node(mp, 010000000000); /* merge adjacent free areas */
4167 p=rlink(mp->rover); rlink(mp->rover)=max_halfword; old_rover=mp->rover;
4168 while ( p!=old_rover ) {
4169 @<Sort |p| into the list starting at |rover|
4170 and advance |p| to |rlink(p)|@>;
4173 while ( rlink(p)!=max_halfword ) {
4174 llink(rlink(p))=p; p=rlink(p);
4176 rlink(p)=mp->rover; llink(mp->rover)=p;
4179 @ The following |while| loop is guaranteed to
4180 terminate, since the list that starts at
4181 |rover| ends with |max_halfword| during the sorting procedure.
4184 if ( p<mp->rover ) {
4185 q=p; p=rlink(q); rlink(q)=mp->rover; mp->rover=q;
4188 while ( rlink(q)<p ) q=rlink(q);
4189 r=rlink(p); rlink(p)=rlink(q); rlink(q)=p; p=r;
4192 @* \[11] Memory layout.
4193 Some areas of |mem| are dedicated to fixed usage, since static allocation is
4194 more efficient than dynamic allocation when we can get away with it. For
4195 example, locations |0| to |1| are always used to store a
4196 two-word dummy token whose second word is zero.
4197 The following macro definitions accomplish the static allocation by giving
4198 symbolic names to the fixed positions. Static variable-size nodes appear
4199 in locations |0| through |lo_mem_stat_max|, and static single-word nodes
4200 appear in locations |hi_mem_stat_min| through |mem_top|, inclusive.
4202 @d null_dash (2) /* the first two words are reserved for a null value */
4203 @d dep_head (null_dash+3) /* we will define |dash_node_size=3| */
4204 @d zero_val (dep_head+2) /* two words for a permanently zero value */
4205 @d temp_val (zero_val+2) /* two words for a temporary value node */
4206 @d end_attr temp_val /* we use |end_attr+2| only */
4207 @d inf_val (end_attr+2) /* and |inf_val+1| only */
4208 @d test_pen (inf_val+2)
4209 /* nine words for a pen used when testing the turning number */
4210 @d bad_vardef (test_pen+9) /* two words for \&{vardef} error recovery */
4211 @d lo_mem_stat_max (bad_vardef+1) /* largest statically
4212 allocated word in the variable-size |mem| */
4214 @d sentinel mp->mem_top /* end of sorted lists */
4215 @d temp_head (mp->mem_top-1) /* head of a temporary list of some kind */
4216 @d hold_head (mp->mem_top-2) /* head of a temporary list of another kind */
4217 @d spec_head (mp->mem_top-3) /* head of a list of unprocessed \&{special} items */
4218 @d hi_mem_stat_min (mp->mem_top-3) /* smallest statically allocated word in
4219 the one-word |mem| */
4221 @ The following code gets the dynamic part of |mem| off to a good start,
4222 when \MP\ is initializing itself the slow way.
4224 @<Initialize table entries (done by \.{INIMP} only)@>=
4225 @^data structure assumptions@>
4226 mp->rover=lo_mem_stat_max+1; /* initialize the dynamic memory */
4227 link(mp->rover)=empty_flag;
4228 node_size(mp->rover)=1000; /* which is a 1000-word available node */
4229 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
4230 mp->lo_mem_max=mp->rover+1000;
4231 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null;
4232 for (k=hi_mem_stat_min;k<=(int)mp->mem_top;k++) {
4233 mp->mem[k]=mp->mem[mp->lo_mem_max]; /* clear list heads */
4235 mp->avail=null; mp->mem_end=mp->mem_top;
4236 mp->hi_mem_min=hi_mem_stat_min; /* initialize the one-word memory */
4237 mp->var_used=lo_mem_stat_max+1;
4238 mp->dyn_used=mp->mem_top+1-(hi_mem_stat_min); /* initialize statistics */
4239 @<Initialize a pen at |test_pen| so that it fits in nine words@>;
4241 @ The procedure |flush_list(p)| frees an entire linked list of one-word
4242 nodes that starts at a given position, until coming to |sentinel| or a
4243 pointer that is not in the one-word region. Another procedure,
4244 |flush_node_list|, frees an entire linked list of one-word and two-word
4245 nodes, until coming to a |null| pointer.
4249 void mp_flush_list (MP mp,pointer p) { /* makes list of single-word nodes available */
4250 pointer q,r; /* list traversers */
4251 if ( p>=mp->hi_mem_min ) if ( p!=sentinel ) {
4256 if ( r<mp->hi_mem_min ) break;
4257 } while (r!=sentinel);
4258 /* now |q| is the last node on the list */
4259 link(q)=mp->avail; mp->avail=p;
4263 void mp_flush_node_list (MP mp,pointer p) {
4264 pointer q; /* the node being recycled */
4267 if ( q<mp->hi_mem_min )
4268 mp_free_node(mp, q,2);
4274 @ If \MP\ is extended improperly, the |mem| array might get screwed up.
4275 For example, some pointers might be wrong, or some ``dead'' nodes might not
4276 have been freed when the last reference to them disappeared. Procedures
4277 |check_mem| and |search_mem| are available to help diagnose such
4278 problems. These procedures make use of two arrays called |free| and
4279 |was_free| that are present only if \MP's debugging routines have
4280 been included. (You may want to decrease the size of |mem| while you
4284 Because |boolean|s are typedef-d as ints, it is better to use
4285 unsigned chars here.
4288 unsigned char *free; /* free cells */
4289 unsigned char *was_free; /* previously free cells */
4290 pointer was_mem_end; pointer was_lo_max; pointer was_hi_min;
4291 /* previous |mem_end|, |lo_mem_max|,and |hi_mem_min| */
4292 boolean panicking; /* do we want to check memory constantly? */
4294 @ @<Allocate or initialize ...@>=
4295 mp->free = xmalloc ((mp->mem_max+1),sizeof (unsigned char));
4296 mp->was_free = xmalloc ((mp->mem_max+1), sizeof (unsigned char));
4298 @ @<Dealloc variables@>=
4300 xfree(mp->was_free);
4302 @ @<Allocate or ...@>=
4303 mp->was_mem_end=0; /* indicate that everything was previously free */
4304 mp->was_lo_max=0; mp->was_hi_min=mp->mem_max;
4305 mp->panicking=false;
4307 @ @<Declare |mp_reallocate| functions@>=
4308 void mp_reallocate_memory(MP mp, int l) ;
4311 void mp_reallocate_memory(MP mp, int l) {
4312 XREALLOC(mp->free, l, unsigned char);
4313 XREALLOC(mp->was_free, l, unsigned char);
4315 int newarea = l-mp->mem_max;
4316 XREALLOC(mp->mem, l, memory_word);
4317 memset (mp->mem+(mp->mem_max+1),0,sizeof(memory_word)*(newarea));
4319 XREALLOC(mp->mem, l, memory_word);
4320 memset(mp->mem,0,sizeof(memory_word)*(l+1));
4323 if (mp->ini_version)
4329 @ Procedure |check_mem| makes sure that the available space lists of
4330 |mem| are well formed, and it optionally prints out all locations
4331 that are reserved now but were free the last time this procedure was called.
4334 void mp_check_mem (MP mp,boolean print_locs ) {
4335 pointer p,q,r; /* current locations of interest in |mem| */
4336 boolean clobbered; /* is something amiss? */
4337 for (p=0;p<=mp->lo_mem_max;p++) {
4338 mp->free[p]=false; /* you can probably do this faster */
4340 for (p=mp->hi_mem_min;p<= mp->mem_end;p++) {
4341 mp->free[p]=false; /* ditto */
4343 @<Check single-word |avail| list@>;
4344 @<Check variable-size |avail| list@>;
4345 @<Check flags of unavailable nodes@>;
4346 @<Check the list of linear dependencies@>;
4348 @<Print newly busy locations@>;
4350 memcpy(mp->was_free,mp->free, sizeof(char)*(mp->mem_end+1));
4351 mp->was_mem_end=mp->mem_end;
4352 mp->was_lo_max=mp->lo_mem_max;
4353 mp->was_hi_min=mp->hi_mem_min;
4356 @ @<Check single-word...@>=
4357 p=mp->avail; q=null; clobbered=false;
4359 if ( (p>mp->mem_end)||(p<mp->hi_mem_min) ) clobbered=true;
4360 else if ( mp->free[p] ) clobbered=true;
4362 mp_print_nl(mp, "AVAIL list clobbered at ");
4363 @.AVAIL list clobbered...@>
4364 mp_print_int(mp, q); break;
4366 mp->free[p]=true; q=p; p=link(q);
4369 @ @<Check variable-size...@>=
4370 p=mp->rover; q=null; clobbered=false;
4372 if ( (p>=mp->lo_mem_max)||(p<0) ) clobbered=true;
4373 else if ( (rlink(p)>=mp->lo_mem_max)||(rlink(p)<0) ) clobbered=true;
4374 else if ( !(is_empty(p))||(node_size(p)<2)||
4375 (p+node_size(p)>mp->lo_mem_max)|| (llink(rlink(p))!=p) ) clobbered=true;
4377 mp_print_nl(mp, "Double-AVAIL list clobbered at ");
4378 @.Double-AVAIL list clobbered...@>
4379 mp_print_int(mp, q); break;
4381 for (q=p;q<=p+node_size(p)-1;q++) { /* mark all locations free */
4382 if ( mp->free[q] ) {
4383 mp_print_nl(mp, "Doubly free location at ");
4384 @.Doubly free location...@>
4385 mp_print_int(mp, q); break;
4390 } while (p!=mp->rover)
4393 @ @<Check flags...@>=
4395 while ( p<=mp->lo_mem_max ) { /* node |p| should not be empty */
4396 if ( is_empty(p) ) {
4397 mp_print_nl(mp, "Bad flag at "); mp_print_int(mp, p);
4400 while ( (p<=mp->lo_mem_max) && ! mp->free[p] ) incr(p);
4401 while ( (p<=mp->lo_mem_max) && mp->free[p] ) incr(p);
4404 @ @<Print newly busy...@>=
4406 @<Do intialization required before printing new busy locations@>;
4407 mp_print_nl(mp, "New busy locs:");
4409 for (p=0;p<= mp->lo_mem_max;p++ ) {
4410 if ( ! mp->free[p] && ((p>mp->was_lo_max) || mp->was_free[p]) ) {
4411 @<Indicate that |p| is a new busy location@>;
4414 for (p=mp->hi_mem_min;p<=mp->mem_end;p++ ) {
4415 if ( ! mp->free[p] &&
4416 ((p<mp->was_hi_min) || (p>mp->was_mem_end) || mp->was_free[p]) ) {
4417 @<Indicate that |p| is a new busy location@>;
4420 @<Finish printing new busy locations@>;
4423 @ There might be many new busy locations so we are careful to print contiguous
4424 blocks compactly. During this operation |q| is the last new busy location and
4425 |r| is the start of the block containing |q|.
4427 @<Indicate that |p| is a new busy location@>=
4431 mp_print(mp, ".."); mp_print_int(mp, q);
4433 mp_print_char(mp, ' '); mp_print_int(mp, p);
4439 @ @<Do intialization required before printing new busy locations@>=
4440 q=mp->mem_max; r=mp->mem_max
4442 @ @<Finish printing new busy locations@>=
4444 mp_print(mp, ".."); mp_print_int(mp, q);
4447 @ The |search_mem| procedure attempts to answer the question ``Who points
4448 to node~|p|?'' In doing so, it fetches |link| and |info| fields of |mem|
4449 that might not be of type |two_halves|. Strictly speaking, this is
4451 undefined in \PASCAL, and it can lead to ``false drops'' (words that seem to
4452 point to |p| purely by coincidence). But for debugging purposes, we want
4453 to rule out the places that do {\sl not\/} point to |p|, so a few false
4454 drops are tolerable.
4457 void mp_search_mem (MP mp, pointer p) { /* look for pointers to |p| */
4458 integer q; /* current position being searched */
4459 for (q=0;q<=mp->lo_mem_max;q++) {
4461 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4464 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4467 for (q=mp->hi_mem_min;q<=mp->mem_end;q++) {
4469 mp_print_nl(mp, "LINK("); mp_print_int(mp, q); mp_print_char(mp, ')');
4472 mp_print_nl(mp, "INFO("); mp_print_int(mp, q); mp_print_char(mp, ')');
4475 @<Search |eqtb| for equivalents equal to |p|@>;
4478 @* \[12] The command codes.
4479 Before we can go much further, we need to define symbolic names for the internal
4480 code numbers that represent the various commands obeyed by \MP. These codes
4481 are somewhat arbitrary, but not completely so. For example,
4482 some codes have been made adjacent so that |case| statements in the
4483 program need not consider cases that are widely spaced, or so that |case|
4484 statements can be replaced by |if| statements. A command can begin an
4485 expression if and only if its code lies between |min_primary_command| and
4486 |max_primary_command|, inclusive. The first token of a statement that doesn't
4487 begin with an expression has a command code between |min_command| and
4488 |max_statement_command|, inclusive. Anything less than |min_command| is
4489 eliminated during macro expansions, and anything no more than |max_pre_command|
4490 is eliminated when expanding \TeX\ material. Ranges such as
4491 |min_secondary_command..max_secondary_command| are used when parsing
4492 expressions, but the relative ordering within such a range is generally not
4495 The ordering of the highest-numbered commands
4496 (|comma<semicolon<end_group<stop|) is crucial for the parsing and
4497 error-recovery methods of this program as is the ordering |if_test<fi_or_else|
4498 for the smallest two commands. The ordering is also important in the ranges
4499 |numeric_token..plus_or_minus| and |left_brace..ampersand|.
4501 At any rate, here is the list, for future reference.
4503 @d start_tex 1 /* begin \TeX\ material (\&{btex}, \&{verbatimtex}) */
4504 @d etex_marker 2 /* end \TeX\ material (\&{etex}) */
4505 @d mpx_break 3 /* stop reading an \.{MPX} file (\&{mpxbreak}) */
4506 @d max_pre_command mpx_break
4507 @d if_test 4 /* conditional text (\&{if}) */
4508 @d fi_or_else 5 /* delimiters for conditionals (\&{elseif}, \&{else}, \&{fi} */
4509 @d input 6 /* input a source file (\&{input}, \&{endinput}) */
4510 @d iteration 7 /* iterate (\&{for}, \&{forsuffixes}, \&{forever}, \&{endfor}) */
4511 @d repeat_loop 8 /* special command substituted for \&{endfor} */
4512 @d exit_test 9 /* premature exit from a loop (\&{exitif}) */
4513 @d relax 10 /* do nothing (\.{\char`\\}) */
4514 @d scan_tokens 11 /* put a string into the input buffer */
4515 @d expand_after 12 /* look ahead one token */
4516 @d defined_macro 13 /* a macro defined by the user */
4517 @d min_command (defined_macro+1)
4518 @d save_command 14 /* save a list of tokens (\&{save}) */
4519 @d interim_command 15 /* save an internal quantity (\&{interim}) */
4520 @d let_command 16 /* redefine a symbolic token (\&{let}) */
4521 @d new_internal 17 /* define a new internal quantity (\&{newinternal}) */
4522 @d macro_def 18 /* define a macro (\&{def}, \&{vardef}, etc.) */
4523 @d ship_out_command 19 /* output a character (\&{shipout}) */
4524 @d add_to_command 20 /* add to edges (\&{addto}) */
4525 @d bounds_command 21 /* add bounding path to edges (\&{setbounds}, \&{clip}) */
4526 @d tfm_command 22 /* command for font metric info (\&{ligtable}, etc.) */
4527 @d protection_command 23 /* set protection flag (\&{outer}, \&{inner}) */
4528 @d show_command 24 /* diagnostic output (\&{show}, \&{showvariable}, etc.) */
4529 @d mode_command 25 /* set interaction level (\&{batchmode}, etc.) */
4530 @d random_seed 26 /* initialize random number generator (\&{randomseed}) */
4531 @d message_command 27 /* communicate to user (\&{message}, \&{errmessage}) */
4532 @d every_job_command 28 /* designate a starting token (\&{everyjob}) */
4533 @d delimiters 29 /* define a pair of delimiters (\&{delimiters}) */
4534 @d special_command 30 /* output special info (\&{special})
4535 or font map info (\&{fontmapfile}, \&{fontmapline}) */
4536 @d write_command 31 /* write text to a file (\&{write}) */
4537 @d type_name 32 /* declare a type (\&{numeric}, \&{pair}, etc. */
4538 @d max_statement_command type_name
4539 @d min_primary_command type_name
4540 @d left_delimiter 33 /* the left delimiter of a matching pair */
4541 @d begin_group 34 /* beginning of a group (\&{begingroup}) */
4542 @d nullary 35 /* an operator without arguments (e.g., \&{normaldeviate}) */
4543 @d unary 36 /* an operator with one argument (e.g., \&{sqrt}) */
4544 @d str_op 37 /* convert a suffix to a string (\&{str}) */
4545 @d cycle 38 /* close a cyclic path (\&{cycle}) */
4546 @d primary_binary 39 /* binary operation taking `\&{of}' (e.g., \&{point}) */
4547 @d capsule_token 40 /* a value that has been put into a token list */
4548 @d string_token 41 /* a string constant (e.g., |"hello"|) */
4549 @d internal_quantity 42 /* internal numeric parameter (e.g., \&{pausing}) */
4550 @d min_suffix_token internal_quantity
4551 @d tag_token 43 /* a symbolic token without a primitive meaning */
4552 @d numeric_token 44 /* a numeric constant (e.g., \.{3.14159}) */
4553 @d max_suffix_token numeric_token
4554 @d plus_or_minus 45 /* either `\.+' or `\.-' */
4555 @d max_primary_command plus_or_minus /* should also be |numeric_token+1| */
4556 @d min_tertiary_command plus_or_minus
4557 @d tertiary_secondary_macro 46 /* a macro defined by \&{secondarydef} */
4558 @d tertiary_binary 47 /* an operator at the tertiary level (e.g., `\.{++}') */
4559 @d max_tertiary_command tertiary_binary
4560 @d left_brace 48 /* the operator `\.{\char`\{}' */
4561 @d min_expression_command left_brace
4562 @d path_join 49 /* the operator `\.{..}' */
4563 @d ampersand 50 /* the operator `\.\&' */
4564 @d expression_tertiary_macro 51 /* a macro defined by \&{tertiarydef} */
4565 @d expression_binary 52 /* an operator at the expression level (e.g., `\.<') */
4566 @d equals 53 /* the operator `\.=' */
4567 @d max_expression_command equals
4568 @d and_command 54 /* the operator `\&{and}' */
4569 @d min_secondary_command and_command
4570 @d secondary_primary_macro 55 /* a macro defined by \&{primarydef} */
4571 @d slash 56 /* the operator `\./' */
4572 @d secondary_binary 57 /* an operator at the binary level (e.g., \&{shifted}) */
4573 @d max_secondary_command secondary_binary
4574 @d param_type 58 /* type of parameter (\&{primary}, \&{expr}, \&{suffix}, etc.) */
4575 @d controls 59 /* specify control points explicitly (\&{controls}) */
4576 @d tension 60 /* specify tension between knots (\&{tension}) */
4577 @d at_least 61 /* bounded tension value (\&{atleast}) */
4578 @d curl_command 62 /* specify curl at an end knot (\&{curl}) */
4579 @d macro_special 63 /* special macro operators (\&{quote}, \.{\#\AT!}, etc.) */
4580 @d right_delimiter 64 /* the right delimiter of a matching pair */
4581 @d left_bracket 65 /* the operator `\.[' */
4582 @d right_bracket 66 /* the operator `\.]' */
4583 @d right_brace 67 /* the operator `\.{\char`\}}' */
4584 @d with_option 68 /* option for filling (\&{withpen}, \&{withweight}, etc.) */
4586 /* variant of \&{addto} (\&{contour}, \&{doublepath}, \&{also}) */
4587 @d of_token 70 /* the operator `\&{of}' */
4588 @d to_token 71 /* the operator `\&{to}' */
4589 @d step_token 72 /* the operator `\&{step}' */
4590 @d until_token 73 /* the operator `\&{until}' */
4591 @d within_token 74 /* the operator `\&{within}' */
4592 @d lig_kern_token 75
4593 /* the operators `\&{kern}' and `\.{=:}' and `\.{=:\char'174}, etc. */
4594 @d assignment 76 /* the operator `\.{:=}' */
4595 @d skip_to 77 /* the operation `\&{skipto}' */
4596 @d bchar_label 78 /* the operator `\.{\char'174\char'174:}' */
4597 @d double_colon 79 /* the operator `\.{::}' */
4598 @d colon 80 /* the operator `\.:' */
4600 @d comma 81 /* the operator `\.,', must be |colon+1| */
4601 @d end_of_statement (mp->cur_cmd>comma)
4602 @d semicolon 82 /* the operator `\.;', must be |comma+1| */
4603 @d end_group 83 /* end a group (\&{endgroup}), must be |semicolon+1| */
4604 @d stop 84 /* end a job (\&{end}, \&{dump}), must be |end_group+1| */
4605 @d max_command_code stop
4606 @d outer_tag (max_command_code+1) /* protection code added to command code */
4609 typedef int command_code;
4611 @ Variables and capsules in \MP\ have a variety of ``types,''
4612 distinguished by the code numbers defined here. These numbers are also
4613 not completely arbitrary. Things that get expanded must have types
4614 |>mp_independent|; a type remaining after expansion is numeric if and only if
4615 its code number is at least |numeric_type|; objects containing numeric
4616 parts must have types between |transform_type| and |pair_type|;
4617 all other types must be smaller than |transform_type|; and among the types
4618 that are not unknown or vacuous, the smallest two must be |boolean_type|
4619 and |string_type| in that order.
4621 @d undefined 0 /* no type has been declared */
4622 @d unknown_tag 1 /* this constant is added to certain type codes below */
4623 @d unknown_types mp_unknown_boolean: case mp_unknown_string:
4624 case mp_unknown_pen: case mp_unknown_picture: case mp_unknown_path
4627 enum mp_variable_type {
4628 mp_vacuous=1, /* no expression was present */
4629 mp_boolean_type, /* \&{boolean} with a known value */
4631 mp_string_type, /* \&{string} with a known value */
4633 mp_pen_type, /* \&{pen} with a known value */
4635 mp_path_type, /* \&{path} with a known value */
4637 mp_picture_type, /* \&{picture} with a known value */
4639 mp_transform_type, /* \&{transform} variable or capsule */
4640 mp_color_type, /* \&{color} variable or capsule */
4641 mp_cmykcolor_type, /* \&{cmykcolor} variable or capsule */
4642 mp_pair_type, /* \&{pair} variable or capsule */
4643 mp_numeric_type, /* variable that has been declared \&{numeric} but not used */
4644 mp_known, /* \&{numeric} with a known value */
4645 mp_dependent, /* a linear combination with |fraction| coefficients */
4646 mp_proto_dependent, /* a linear combination with |scaled| coefficients */
4647 mp_independent, /* \&{numeric} with unknown value */
4648 mp_token_list, /* variable name or suffix argument or text argument */
4649 mp_structured, /* variable with subscripts and attributes */
4650 mp_unsuffixed_macro, /* variable defined with \&{vardef} but no \.{\AT!\#} */
4651 mp_suffixed_macro /* variable defined with \&{vardef} and \.{\AT!\#} */
4655 void mp_print_type (MP mp,small_number t) ;
4657 @ @<Basic printing procedures@>=
4658 void mp_print_type (MP mp,small_number t) {
4660 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
4661 case mp_boolean_type:mp_print(mp, "boolean"); break;
4662 case mp_unknown_boolean:mp_print(mp, "unknown boolean"); break;
4663 case mp_string_type:mp_print(mp, "string"); break;
4664 case mp_unknown_string:mp_print(mp, "unknown string"); break;
4665 case mp_pen_type:mp_print(mp, "pen"); break;
4666 case mp_unknown_pen:mp_print(mp, "unknown pen"); break;
4667 case mp_path_type:mp_print(mp, "path"); break;
4668 case mp_unknown_path:mp_print(mp, "unknown path"); break;
4669 case mp_picture_type:mp_print(mp, "picture"); break;
4670 case mp_unknown_picture:mp_print(mp, "unknown picture"); break;
4671 case mp_transform_type:mp_print(mp, "transform"); break;
4672 case mp_color_type:mp_print(mp, "color"); break;
4673 case mp_cmykcolor_type:mp_print(mp, "cmykcolor"); break;
4674 case mp_pair_type:mp_print(mp, "pair"); break;
4675 case mp_known:mp_print(mp, "known numeric"); break;
4676 case mp_dependent:mp_print(mp, "dependent"); break;
4677 case mp_proto_dependent:mp_print(mp, "proto-dependent"); break;
4678 case mp_numeric_type:mp_print(mp, "numeric"); break;
4679 case mp_independent:mp_print(mp, "independent"); break;
4680 case mp_token_list:mp_print(mp, "token list"); break;
4681 case mp_structured:mp_print(mp, "mp_structured"); break;
4682 case mp_unsuffixed_macro:mp_print(mp, "unsuffixed macro"); break;
4683 case mp_suffixed_macro:mp_print(mp, "suffixed macro"); break;
4684 default: mp_print(mp, "undefined"); break;
4688 @ Values inside \MP\ are stored in two-word nodes that have a |name_type|
4689 as well as a |type|. The possibilities for |name_type| are defined
4690 here; they will be explained in more detail later.
4694 mp_root=0, /* |name_type| at the top level of a variable */
4695 mp_saved_root, /* same, when the variable has been saved */
4696 mp_structured_root, /* |name_type| where a |mp_structured| branch occurs */
4697 mp_subscr, /* |name_type| in a subscript node */
4698 mp_attr, /* |name_type| in an attribute node */
4699 mp_x_part_sector, /* |name_type| in the \&{xpart} of a node */
4700 mp_y_part_sector, /* |name_type| in the \&{ypart} of a node */
4701 mp_xx_part_sector, /* |name_type| in the \&{xxpart} of a node */
4702 mp_xy_part_sector, /* |name_type| in the \&{xypart} of a node */
4703 mp_yx_part_sector, /* |name_type| in the \&{yxpart} of a node */
4704 mp_yy_part_sector, /* |name_type| in the \&{yypart} of a node */
4705 mp_red_part_sector, /* |name_type| in the \&{redpart} of a node */
4706 mp_green_part_sector, /* |name_type| in the \&{greenpart} of a node */
4707 mp_blue_part_sector, /* |name_type| in the \&{bluepart} of a node */
4708 mp_cyan_part_sector, /* |name_type| in the \&{redpart} of a node */
4709 mp_magenta_part_sector, /* |name_type| in the \&{greenpart} of a node */
4710 mp_yellow_part_sector, /* |name_type| in the \&{bluepart} of a node */
4711 mp_black_part_sector, /* |name_type| in the \&{greenpart} of a node */
4712 mp_grey_part_sector, /* |name_type| in the \&{bluepart} of a node */
4713 mp_capsule, /* |name_type| in stashed-away subexpressions */
4714 mp_token /* |name_type| in a numeric token or string token */
4717 @ Primitive operations that produce values have a secondary identification
4718 code in addition to their command code; it's something like genera and species.
4719 For example, `\.*' has the command code |primary_binary|, and its
4720 secondary identification is |times|. The secondary codes start at 30 so that
4721 they don't overlap with the type codes; some type codes (e.g., |mp_string_type|)
4722 are used as operators as well as type identifications. The relative values
4723 are not critical, except for |true_code..false_code|, |or_op..and_op|,
4724 and |filled_op..bounded_op|. The restrictions are that
4725 |and_op-false_code=or_op-true_code|, that the ordering of
4726 |x_part...blue_part| must match that of |x_part_sector..mp_blue_part_sector|,
4727 and the ordering of |filled_op..bounded_op| must match that of the code
4728 values they test for.
4730 @d true_code 30 /* operation code for \.{true} */
4731 @d false_code 31 /* operation code for \.{false} */
4732 @d null_picture_code 32 /* operation code for \.{nullpicture} */
4733 @d null_pen_code 33 /* operation code for \.{nullpen} */
4734 @d job_name_op 34 /* operation code for \.{jobname} */
4735 @d read_string_op 35 /* operation code for \.{readstring} */
4736 @d pen_circle 36 /* operation code for \.{pencircle} */
4737 @d normal_deviate 37 /* operation code for \.{normaldeviate} */
4738 @d read_from_op 38 /* operation code for \.{readfrom} */
4739 @d close_from_op 39 /* operation code for \.{closefrom} */
4740 @d odd_op 40 /* operation code for \.{odd} */
4741 @d known_op 41 /* operation code for \.{known} */
4742 @d unknown_op 42 /* operation code for \.{unknown} */
4743 @d not_op 43 /* operation code for \.{not} */
4744 @d decimal 44 /* operation code for \.{decimal} */
4745 @d reverse 45 /* operation code for \.{reverse} */
4746 @d make_path_op 46 /* operation code for \.{makepath} */
4747 @d make_pen_op 47 /* operation code for \.{makepen} */
4748 @d oct_op 48 /* operation code for \.{oct} */
4749 @d hex_op 49 /* operation code for \.{hex} */
4750 @d ASCII_op 50 /* operation code for \.{ASCII} */
4751 @d char_op 51 /* operation code for \.{char} */
4752 @d length_op 52 /* operation code for \.{length} */
4753 @d turning_op 53 /* operation code for \.{turningnumber} */
4754 @d color_model_part 54 /* operation code for \.{colormodel} */
4755 @d x_part 55 /* operation code for \.{xpart} */
4756 @d y_part 56 /* operation code for \.{ypart} */
4757 @d xx_part 57 /* operation code for \.{xxpart} */
4758 @d xy_part 58 /* operation code for \.{xypart} */
4759 @d yx_part 59 /* operation code for \.{yxpart} */
4760 @d yy_part 60 /* operation code for \.{yypart} */
4761 @d red_part 61 /* operation code for \.{redpart} */
4762 @d green_part 62 /* operation code for \.{greenpart} */
4763 @d blue_part 63 /* operation code for \.{bluepart} */
4764 @d cyan_part 64 /* operation code for \.{cyanpart} */
4765 @d magenta_part 65 /* operation code for \.{magentapart} */
4766 @d yellow_part 66 /* operation code for \.{yellowpart} */
4767 @d black_part 67 /* operation code for \.{blackpart} */
4768 @d grey_part 68 /* operation code for \.{greypart} */
4769 @d font_part 69 /* operation code for \.{fontpart} */
4770 @d text_part 70 /* operation code for \.{textpart} */
4771 @d path_part 71 /* operation code for \.{pathpart} */
4772 @d pen_part 72 /* operation code for \.{penpart} */
4773 @d dash_part 73 /* operation code for \.{dashpart} */
4774 @d sqrt_op 74 /* operation code for \.{sqrt} */
4775 @d m_exp_op 75 /* operation code for \.{mexp} */
4776 @d m_log_op 76 /* operation code for \.{mlog} */
4777 @d sin_d_op 77 /* operation code for \.{sind} */
4778 @d cos_d_op 78 /* operation code for \.{cosd} */
4779 @d floor_op 79 /* operation code for \.{floor} */
4780 @d uniform_deviate 80 /* operation code for \.{uniformdeviate} */
4781 @d char_exists_op 81 /* operation code for \.{charexists} */
4782 @d font_size 82 /* operation code for \.{fontsize} */
4783 @d ll_corner_op 83 /* operation code for \.{llcorner} */
4784 @d lr_corner_op 84 /* operation code for \.{lrcorner} */
4785 @d ul_corner_op 85 /* operation code for \.{ulcorner} */
4786 @d ur_corner_op 86 /* operation code for \.{urcorner} */
4787 @d arc_length 87 /* operation code for \.{arclength} */
4788 @d angle_op 88 /* operation code for \.{angle} */
4789 @d cycle_op 89 /* operation code for \.{cycle} */
4790 @d filled_op 90 /* operation code for \.{filled} */
4791 @d stroked_op 91 /* operation code for \.{stroked} */
4792 @d textual_op 92 /* operation code for \.{textual} */
4793 @d clipped_op 93 /* operation code for \.{clipped} */
4794 @d bounded_op 94 /* operation code for \.{bounded} */
4795 @d plus 95 /* operation code for \.+ */
4796 @d minus 96 /* operation code for \.- */
4797 @d times 97 /* operation code for \.* */
4798 @d over 98 /* operation code for \./ */
4799 @d pythag_add 99 /* operation code for \.{++} */
4800 @d pythag_sub 100 /* operation code for \.{+-+} */
4801 @d or_op 101 /* operation code for \.{or} */
4802 @d and_op 102 /* operation code for \.{and} */
4803 @d less_than 103 /* operation code for \.< */
4804 @d less_or_equal 104 /* operation code for \.{<=} */
4805 @d greater_than 105 /* operation code for \.> */
4806 @d greater_or_equal 106 /* operation code for \.{>=} */
4807 @d equal_to 107 /* operation code for \.= */
4808 @d unequal_to 108 /* operation code for \.{<>} */
4809 @d concatenate 109 /* operation code for \.\& */
4810 @d rotated_by 110 /* operation code for \.{rotated} */
4811 @d slanted_by 111 /* operation code for \.{slanted} */
4812 @d scaled_by 112 /* operation code for \.{scaled} */
4813 @d shifted_by 113 /* operation code for \.{shifted} */
4814 @d transformed_by 114 /* operation code for \.{transformed} */
4815 @d x_scaled 115 /* operation code for \.{xscaled} */
4816 @d y_scaled 116 /* operation code for \.{yscaled} */
4817 @d z_scaled 117 /* operation code for \.{zscaled} */
4818 @d in_font 118 /* operation code for \.{infont} */
4819 @d intersect 119 /* operation code for \.{intersectiontimes} */
4820 @d double_dot 120 /* operation code for improper \.{..} */
4821 @d substring_of 121 /* operation code for \.{substring} */
4822 @d min_of substring_of
4823 @d subpath_of 122 /* operation code for \.{subpath} */
4824 @d direction_time_of 123 /* operation code for \.{directiontime} */
4825 @d point_of 124 /* operation code for \.{point} */
4826 @d precontrol_of 125 /* operation code for \.{precontrol} */
4827 @d postcontrol_of 126 /* operation code for \.{postcontrol} */
4828 @d pen_offset_of 127 /* operation code for \.{penoffset} */
4829 @d arc_time_of 128 /* operation code for \.{arctime} */
4830 @d mp_version 129 /* operation code for \.{mpversion} */
4832 @c void mp_print_op (MP mp,quarterword c) {
4833 if (c<=mp_numeric_type ) {
4834 mp_print_type(mp, c);
4837 case true_code:mp_print(mp, "true"); break;
4838 case false_code:mp_print(mp, "false"); break;
4839 case null_picture_code:mp_print(mp, "nullpicture"); break;
4840 case null_pen_code:mp_print(mp, "nullpen"); break;
4841 case job_name_op:mp_print(mp, "jobname"); break;
4842 case read_string_op:mp_print(mp, "readstring"); break;
4843 case pen_circle:mp_print(mp, "pencircle"); break;
4844 case normal_deviate:mp_print(mp, "normaldeviate"); break;
4845 case read_from_op:mp_print(mp, "readfrom"); break;
4846 case close_from_op:mp_print(mp, "closefrom"); break;
4847 case odd_op:mp_print(mp, "odd"); break;
4848 case known_op:mp_print(mp, "known"); break;
4849 case unknown_op:mp_print(mp, "unknown"); break;
4850 case not_op:mp_print(mp, "not"); break;
4851 case decimal:mp_print(mp, "decimal"); break;
4852 case reverse:mp_print(mp, "reverse"); break;
4853 case make_path_op:mp_print(mp, "makepath"); break;
4854 case make_pen_op:mp_print(mp, "makepen"); break;
4855 case oct_op:mp_print(mp, "oct"); break;
4856 case hex_op:mp_print(mp, "hex"); break;
4857 case ASCII_op:mp_print(mp, "ASCII"); break;
4858 case char_op:mp_print(mp, "char"); break;
4859 case length_op:mp_print(mp, "length"); break;
4860 case turning_op:mp_print(mp, "turningnumber"); break;
4861 case x_part:mp_print(mp, "xpart"); break;
4862 case y_part:mp_print(mp, "ypart"); break;
4863 case xx_part:mp_print(mp, "xxpart"); break;
4864 case xy_part:mp_print(mp, "xypart"); break;
4865 case yx_part:mp_print(mp, "yxpart"); break;
4866 case yy_part:mp_print(mp, "yypart"); break;
4867 case red_part:mp_print(mp, "redpart"); break;
4868 case green_part:mp_print(mp, "greenpart"); break;
4869 case blue_part:mp_print(mp, "bluepart"); break;
4870 case cyan_part:mp_print(mp, "cyanpart"); break;
4871 case magenta_part:mp_print(mp, "magentapart"); break;
4872 case yellow_part:mp_print(mp, "yellowpart"); break;
4873 case black_part:mp_print(mp, "blackpart"); break;
4874 case grey_part:mp_print(mp, "greypart"); break;
4875 case color_model_part:mp_print(mp, "colormodel"); break;
4876 case font_part:mp_print(mp, "fontpart"); break;
4877 case text_part:mp_print(mp, "textpart"); break;
4878 case path_part:mp_print(mp, "pathpart"); break;
4879 case pen_part:mp_print(mp, "penpart"); break;
4880 case dash_part:mp_print(mp, "dashpart"); break;
4881 case sqrt_op:mp_print(mp, "sqrt"); break;
4882 case m_exp_op:mp_print(mp, "mexp"); break;
4883 case m_log_op:mp_print(mp, "mlog"); break;
4884 case sin_d_op:mp_print(mp, "sind"); break;
4885 case cos_d_op:mp_print(mp, "cosd"); break;
4886 case floor_op:mp_print(mp, "floor"); break;
4887 case uniform_deviate:mp_print(mp, "uniformdeviate"); break;
4888 case char_exists_op:mp_print(mp, "charexists"); break;
4889 case font_size:mp_print(mp, "fontsize"); break;
4890 case ll_corner_op:mp_print(mp, "llcorner"); break;
4891 case lr_corner_op:mp_print(mp, "lrcorner"); break;
4892 case ul_corner_op:mp_print(mp, "ulcorner"); break;
4893 case ur_corner_op:mp_print(mp, "urcorner"); break;
4894 case arc_length:mp_print(mp, "arclength"); break;
4895 case angle_op:mp_print(mp, "angle"); break;
4896 case cycle_op:mp_print(mp, "cycle"); break;
4897 case filled_op:mp_print(mp, "filled"); break;
4898 case stroked_op:mp_print(mp, "stroked"); break;
4899 case textual_op:mp_print(mp, "textual"); break;
4900 case clipped_op:mp_print(mp, "clipped"); break;
4901 case bounded_op:mp_print(mp, "bounded"); break;
4902 case plus:mp_print_char(mp, '+'); break;
4903 case minus:mp_print_char(mp, '-'); break;
4904 case times:mp_print_char(mp, '*'); break;
4905 case over:mp_print_char(mp, '/'); break;
4906 case pythag_add:mp_print(mp, "++"); break;
4907 case pythag_sub:mp_print(mp, "+-+"); break;
4908 case or_op:mp_print(mp, "or"); break;
4909 case and_op:mp_print(mp, "and"); break;
4910 case less_than:mp_print_char(mp, '<'); break;
4911 case less_or_equal:mp_print(mp, "<="); break;
4912 case greater_than:mp_print_char(mp, '>'); break;
4913 case greater_or_equal:mp_print(mp, ">="); break;
4914 case equal_to:mp_print_char(mp, '='); break;
4915 case unequal_to:mp_print(mp, "<>"); break;
4916 case concatenate:mp_print(mp, "&"); break;
4917 case rotated_by:mp_print(mp, "rotated"); break;
4918 case slanted_by:mp_print(mp, "slanted"); break;
4919 case scaled_by:mp_print(mp, "scaled"); break;
4920 case shifted_by:mp_print(mp, "shifted"); break;
4921 case transformed_by:mp_print(mp, "transformed"); break;
4922 case x_scaled:mp_print(mp, "xscaled"); break;
4923 case y_scaled:mp_print(mp, "yscaled"); break;
4924 case z_scaled:mp_print(mp, "zscaled"); break;
4925 case in_font:mp_print(mp, "infont"); break;
4926 case intersect:mp_print(mp, "intersectiontimes"); break;
4927 case substring_of:mp_print(mp, "substring"); break;
4928 case subpath_of:mp_print(mp, "subpath"); break;
4929 case direction_time_of:mp_print(mp, "directiontime"); break;
4930 case point_of:mp_print(mp, "point"); break;
4931 case precontrol_of:mp_print(mp, "precontrol"); break;
4932 case postcontrol_of:mp_print(mp, "postcontrol"); break;
4933 case pen_offset_of:mp_print(mp, "penoffset"); break;
4934 case arc_time_of:mp_print(mp, "arctime"); break;
4935 case mp_version:mp_print(mp, "mpversion"); break;
4936 default: mp_print(mp, ".."); break;
4941 @ \MP\ also has a bunch of internal parameters that a user might want to
4942 fuss with. Every such parameter has an identifying code number, defined here.
4945 enum mp_given_internal {
4946 mp_tracing_titles=1, /* show titles online when they appear */
4947 mp_tracing_equations, /* show each variable when it becomes known */
4948 mp_tracing_capsules, /* show capsules too */
4949 mp_tracing_choices, /* show the control points chosen for paths */
4950 mp_tracing_specs, /* show path subdivision prior to filling with polygonal a pen */
4951 mp_tracing_commands, /* show commands and operations before they are performed */
4952 mp_tracing_restores, /* show when a variable or internal is restored */
4953 mp_tracing_macros, /* show macros before they are expanded */
4954 mp_tracing_output, /* show digitized edges as they are output */
4955 mp_tracing_stats, /* show memory usage at end of job */
4956 mp_tracing_lost_chars, /* show characters that aren't \&{infont} */
4957 mp_tracing_online, /* show long diagnostics on terminal and in the log file */
4958 mp_year, /* the current year (e.g., 1984) */
4959 mp_month, /* the current month (e.g, 3 $\equiv$ March) */
4960 mp_day, /* the current day of the month */
4961 mp_time, /* the number of minutes past midnight when this job started */
4962 mp_char_code, /* the number of the next character to be output */
4963 mp_char_ext, /* the extension code of the next character to be output */
4964 mp_char_wd, /* the width of the next character to be output */
4965 mp_char_ht, /* the height of the next character to be output */
4966 mp_char_dp, /* the depth of the next character to be output */
4967 mp_char_ic, /* the italic correction of the next character to be output */
4968 mp_design_size, /* the unit of measure used for |mp_char_wd..mp_char_ic|, in points */
4969 mp_pausing, /* positive to display lines on the terminal before they are read */
4970 mp_showstopping, /* positive to stop after each \&{show} command */
4971 mp_fontmaking, /* positive if font metric output is to be produced */
4972 mp_linejoin, /* as in \ps: 0 for mitered, 1 for round, 2 for beveled */
4973 mp_linecap, /* as in \ps: 0 for butt, 1 for round, 2 for square */
4974 mp_miterlimit, /* controls miter length as in \ps */
4975 mp_warning_check, /* controls error message when variable value is large */
4976 mp_boundary_char, /* the right boundary character for ligatures */
4977 mp_prologues, /* positive to output conforming PostScript using built-in fonts */
4978 mp_true_corners, /* positive to make \&{llcorner} etc. ignore \&{setbounds} */
4979 mp_default_color_model, /* the default color model for unspecified items */
4980 mp_restore_clip_color,
4981 mp_procset, /* wether or not create PostScript command shortcuts */
4982 mp_gtroffmode, /* whether the user specified |-troff| on the command line */
4987 @d max_given_internal mp_gtroffmode
4990 scaled *internal; /* the values of internal quantities */
4991 char **int_name; /* their names */
4992 int int_ptr; /* the maximum internal quantity defined so far */
4993 int max_internal; /* current maximum number of internal quantities */
4996 @ @<Option variables@>=
4999 @ @<Allocate or initialize ...@>=
5000 mp->max_internal=2*max_given_internal;
5001 mp->internal = xmalloc ((mp->max_internal+1), sizeof(scaled));
5002 mp->int_name = xmalloc ((mp->max_internal+1), sizeof(char *));
5003 mp->troff_mode=(opt->troff_mode>0 ? true : false);
5005 @ @<Exported function ...@>=
5006 int mp_troff_mode(MP mp);
5009 int mp_troff_mode(MP mp) { return mp->troff_mode; }
5011 @ @<Set initial ...@>=
5012 for (k=0;k<= mp->max_internal; k++ ) {
5014 mp->int_name[k]=NULL;
5016 mp->int_ptr=max_given_internal;
5018 @ The symbolic names for internal quantities are put into \MP's hash table
5019 by using a routine called |primitive|, which will be defined later. Let us
5020 enter them now, so that we don't have to list all those names again
5023 @<Put each of \MP's primitives into the hash table@>=
5024 mp_primitive(mp, "tracingtitles",internal_quantity,mp_tracing_titles);
5025 @:tracingtitles_}{\&{tracingtitles} primitive@>
5026 mp_primitive(mp, "tracingequations",internal_quantity,mp_tracing_equations);
5027 @:mp_tracing_equations_}{\&{tracingequations} primitive@>
5028 mp_primitive(mp, "tracingcapsules",internal_quantity,mp_tracing_capsules);
5029 @:mp_tracing_capsules_}{\&{tracingcapsules} primitive@>
5030 mp_primitive(mp, "tracingchoices",internal_quantity,mp_tracing_choices);
5031 @:mp_tracing_choices_}{\&{tracingchoices} primitive@>
5032 mp_primitive(mp, "tracingspecs",internal_quantity,mp_tracing_specs);
5033 @:mp_tracing_specs_}{\&{tracingspecs} primitive@>
5034 mp_primitive(mp, "tracingcommands",internal_quantity,mp_tracing_commands);
5035 @:mp_tracing_commands_}{\&{tracingcommands} primitive@>
5036 mp_primitive(mp, "tracingrestores",internal_quantity,mp_tracing_restores);
5037 @:mp_tracing_restores_}{\&{tracingrestores} primitive@>
5038 mp_primitive(mp, "tracingmacros",internal_quantity,mp_tracing_macros);
5039 @:mp_tracing_macros_}{\&{tracingmacros} primitive@>
5040 mp_primitive(mp, "tracingoutput",internal_quantity,mp_tracing_output);
5041 @:mp_tracing_output_}{\&{tracingoutput} primitive@>
5042 mp_primitive(mp, "tracingstats",internal_quantity,mp_tracing_stats);
5043 @:mp_tracing_stats_}{\&{tracingstats} primitive@>
5044 mp_primitive(mp, "tracinglostchars",internal_quantity,mp_tracing_lost_chars);
5045 @:mp_tracing_lost_chars_}{\&{tracinglostchars} primitive@>
5046 mp_primitive(mp, "tracingonline",internal_quantity,mp_tracing_online);
5047 @:mp_tracing_online_}{\&{tracingonline} primitive@>
5048 mp_primitive(mp, "year",internal_quantity,mp_year);
5049 @:mp_year_}{\&{year} primitive@>
5050 mp_primitive(mp, "month",internal_quantity,mp_month);
5051 @:mp_month_}{\&{month} primitive@>
5052 mp_primitive(mp, "day",internal_quantity,mp_day);
5053 @:mp_day_}{\&{day} primitive@>
5054 mp_primitive(mp, "time",internal_quantity,mp_time);
5055 @:time_}{\&{time} primitive@>
5056 mp_primitive(mp, "charcode",internal_quantity,mp_char_code);
5057 @:mp_char_code_}{\&{charcode} primitive@>
5058 mp_primitive(mp, "charext",internal_quantity,mp_char_ext);
5059 @:mp_char_ext_}{\&{charext} primitive@>
5060 mp_primitive(mp, "charwd",internal_quantity,mp_char_wd);
5061 @:mp_char_wd_}{\&{charwd} primitive@>
5062 mp_primitive(mp, "charht",internal_quantity,mp_char_ht);
5063 @:mp_char_ht_}{\&{charht} primitive@>
5064 mp_primitive(mp, "chardp",internal_quantity,mp_char_dp);
5065 @:mp_char_dp_}{\&{chardp} primitive@>
5066 mp_primitive(mp, "charic",internal_quantity,mp_char_ic);
5067 @:mp_char_ic_}{\&{charic} primitive@>
5068 mp_primitive(mp, "designsize",internal_quantity,mp_design_size);
5069 @:mp_design_size_}{\&{designsize} primitive@>
5070 mp_primitive(mp, "pausing",internal_quantity,mp_pausing);
5071 @:mp_pausing_}{\&{pausing} primitive@>
5072 mp_primitive(mp, "showstopping",internal_quantity,mp_showstopping);
5073 @:mp_showstopping_}{\&{showstopping} primitive@>
5074 mp_primitive(mp, "fontmaking",internal_quantity,mp_fontmaking);
5075 @:mp_fontmaking_}{\&{fontmaking} primitive@>
5076 mp_primitive(mp, "linejoin",internal_quantity,mp_linejoin);
5077 @:mp_linejoin_}{\&{linejoin} primitive@>
5078 mp_primitive(mp, "linecap",internal_quantity,mp_linecap);
5079 @:mp_linecap_}{\&{linecap} primitive@>
5080 mp_primitive(mp, "miterlimit",internal_quantity,mp_miterlimit);
5081 @:mp_miterlimit_}{\&{miterlimit} primitive@>
5082 mp_primitive(mp, "warningcheck",internal_quantity,mp_warning_check);
5083 @:mp_warning_check_}{\&{warningcheck} primitive@>
5084 mp_primitive(mp, "boundarychar",internal_quantity,mp_boundary_char);
5085 @:mp_boundary_char_}{\&{boundarychar} primitive@>
5086 mp_primitive(mp, "prologues",internal_quantity,mp_prologues);
5087 @:mp_prologues_}{\&{prologues} primitive@>
5088 mp_primitive(mp, "truecorners",internal_quantity,mp_true_corners);
5089 @:mp_true_corners_}{\&{truecorners} primitive@>
5090 mp_primitive(mp, "mpprocset",internal_quantity,mp_procset);
5091 @:mp_procset_}{\&{mpprocset} primitive@>
5092 mp_primitive(mp, "troffmode",internal_quantity,mp_gtroffmode);
5093 @:troffmode_}{\&{troffmode} primitive@>
5094 mp_primitive(mp, "defaultcolormodel",internal_quantity,mp_default_color_model);
5095 @:mp_default_color_model_}{\&{defaultcolormodel} primitive@>
5096 mp_primitive(mp, "restoreclipcolor",internal_quantity,mp_restore_clip_color);
5097 @:mp_restore_clip_color_}{\&{restoreclipcolor} primitive@>
5099 @ Colors can be specified in four color models. In the special
5100 case of |no_model|, MetaPost does not output any color operator to
5101 the postscript output.
5103 Note: these values are passed directly on to |with_option|. This only
5104 works because the other possible values passed to |with_option| are
5105 8 and 10 respectively (from |with_pen| and |with_picture|).
5107 There is a first state, that is only used for |gs_colormodel|. It flags
5108 the fact that there has not been any kind of color specification by
5109 the user so far in the game.
5112 enum mp_color_model {
5117 mp_uninitialized_model=9,
5121 @ @<Initialize table entries (done by \.{INIMP} only)@>=
5122 mp->internal[mp_default_color_model]=(mp_rgb_model*unity);
5123 mp->internal[mp_restore_clip_color]=unity;
5125 @ Well, we do have to list the names one more time, for use in symbolic
5128 @<Initialize table...@>=
5129 mp->int_name[mp_tracing_titles]=xstrdup("tracingtitles");
5130 mp->int_name[mp_tracing_equations]=xstrdup("tracingequations");
5131 mp->int_name[mp_tracing_capsules]=xstrdup("tracingcapsules");
5132 mp->int_name[mp_tracing_choices]=xstrdup("tracingchoices");
5133 mp->int_name[mp_tracing_specs]=xstrdup("tracingspecs");
5134 mp->int_name[mp_tracing_commands]=xstrdup("tracingcommands");
5135 mp->int_name[mp_tracing_restores]=xstrdup("tracingrestores");
5136 mp->int_name[mp_tracing_macros]=xstrdup("tracingmacros");
5137 mp->int_name[mp_tracing_output]=xstrdup("tracingoutput");
5138 mp->int_name[mp_tracing_stats]=xstrdup("tracingstats");
5139 mp->int_name[mp_tracing_lost_chars]=xstrdup("tracinglostchars");
5140 mp->int_name[mp_tracing_online]=xstrdup("tracingonline");
5141 mp->int_name[mp_year]=xstrdup("year");
5142 mp->int_name[mp_month]=xstrdup("month");
5143 mp->int_name[mp_day]=xstrdup("day");
5144 mp->int_name[mp_time]=xstrdup("time");
5145 mp->int_name[mp_char_code]=xstrdup("charcode");
5146 mp->int_name[mp_char_ext]=xstrdup("charext");
5147 mp->int_name[mp_char_wd]=xstrdup("charwd");
5148 mp->int_name[mp_char_ht]=xstrdup("charht");
5149 mp->int_name[mp_char_dp]=xstrdup("chardp");
5150 mp->int_name[mp_char_ic]=xstrdup("charic");
5151 mp->int_name[mp_design_size]=xstrdup("designsize");
5152 mp->int_name[mp_pausing]=xstrdup("pausing");
5153 mp->int_name[mp_showstopping]=xstrdup("showstopping");
5154 mp->int_name[mp_fontmaking]=xstrdup("fontmaking");
5155 mp->int_name[mp_linejoin]=xstrdup("linejoin");
5156 mp->int_name[mp_linecap]=xstrdup("linecap");
5157 mp->int_name[mp_miterlimit]=xstrdup("miterlimit");
5158 mp->int_name[mp_warning_check]=xstrdup("warningcheck");
5159 mp->int_name[mp_boundary_char]=xstrdup("boundarychar");
5160 mp->int_name[mp_prologues]=xstrdup("prologues");
5161 mp->int_name[mp_true_corners]=xstrdup("truecorners");
5162 mp->int_name[mp_default_color_model]=xstrdup("defaultcolormodel");
5163 mp->int_name[mp_procset]=xstrdup("mpprocset");
5164 mp->int_name[mp_gtroffmode]=xstrdup("troffmode");
5165 mp->int_name[mp_restore_clip_color]=xstrdup("restoreclipcolor");
5167 @ The following procedure, which is called just before \MP\ initializes its
5168 input and output, establishes the initial values of the date and time.
5169 @^system dependencies@>
5171 Note that the values are |scaled| integers. Hence \MP\ can no longer
5172 be used after the year 32767.
5175 void mp_fix_date_and_time (MP mp) {
5176 time_t clock = time ((time_t *) 0);
5177 struct tm *tmptr = localtime (&clock);
5178 mp->internal[mp_time]=
5179 (tmptr->tm_hour*60+tmptr->tm_min)*unity; /* minutes since midnight */
5180 mp->internal[mp_day]=(tmptr->tm_mday)*unity; /* fourth day of the month */
5181 mp->internal[mp_month]=(tmptr->tm_mon+1)*unity; /* seventh month of the year */
5182 mp->internal[mp_year]=(tmptr->tm_year+1900)*unity; /* Anno Domini */
5186 void mp_fix_date_and_time (MP mp) ;
5188 @ \MP\ is occasionally supposed to print diagnostic information that
5189 goes only into the transcript file, unless |mp_tracing_online| is positive.
5190 Now that we have defined |mp_tracing_online| we can define
5191 two routines that adjust the destination of print commands:
5194 void mp_begin_diagnostic (MP mp) ;
5195 void mp_end_diagnostic (MP mp,boolean blank_line);
5196 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) ;
5198 @ @<Basic printing...@>=
5199 @<Declare a function called |true_line|@>;
5200 void mp_begin_diagnostic (MP mp) { /* prepare to do some tracing */
5201 mp->old_setting=mp->selector;
5202 if ( mp->selector==ps_file_only ) mp->selector=mp->non_ps_setting;
5203 if ((mp->internal[mp_tracing_online]<=0)&&(mp->selector==term_and_log)){
5205 if ( mp->history==mp_spotless ) mp->history=mp_warning_issued;
5209 void mp_end_diagnostic (MP mp,boolean blank_line) {
5210 /* restore proper conditions after tracing */
5211 mp_print_nl(mp, "");
5212 if ( blank_line ) mp_print_ln(mp);
5213 mp->selector=mp->old_setting;
5216 @ The global variable |non_ps_setting| is initialized when it is time to print
5220 unsigned int old_setting;
5221 unsigned int non_ps_setting;
5223 @ We will occasionally use |begin_diagnostic| in connection with line-number
5224 printing, as follows. (The parameter |s| is typically |"Path"| or
5225 |"Cycle spec"|, etc.)
5227 @<Basic printing...@>=
5228 void mp_print_diagnostic (MP mp, char *s, char *t, boolean nuline) {
5229 mp_begin_diagnostic(mp);
5230 if ( nuline ) mp_print_nl(mp, s); else mp_print(mp, s);
5231 mp_print(mp, " at line ");
5232 mp_print_int(mp, mp_true_line(mp));
5233 mp_print(mp, t); mp_print_char(mp, ':');
5236 @ The 256 |ASCII_code| characters are grouped into classes by means of
5237 the |char_class| table. Individual class numbers have no semantic
5238 or syntactic significance, except in a few instances defined here.
5239 There's also |max_class|, which can be used as a basis for additional
5240 class numbers in nonstandard extensions of \MP.
5242 @d digit_class 0 /* the class number of \.{0123456789} */
5243 @d period_class 1 /* the class number of `\..' */
5244 @d space_class 2 /* the class number of spaces and nonstandard characters */
5245 @d percent_class 3 /* the class number of `\.\%' */
5246 @d string_class 4 /* the class number of `\."' */
5247 @d right_paren_class 8 /* the class number of `\.)' */
5248 @d isolated_classes 5: case 6: case 7: case 8 /* characters that make length-one tokens only */
5249 @d letter_class 9 /* letters and the underline character */
5250 @d left_bracket_class 17 /* `\.[' */
5251 @d right_bracket_class 18 /* `\.]' */
5252 @d invalid_class 20 /* bad character in the input */
5253 @d max_class 20 /* the largest class number */
5256 int char_class[256]; /* the class numbers */
5258 @ If changes are made to accommodate non-ASCII character sets, they should
5259 follow the guidelines in Appendix~C of {\sl The {\logos METAFONT\/}book}.
5260 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
5261 @^system dependencies@>
5263 @<Set initial ...@>=
5264 for (k='0';k<='9';k++)
5265 mp->char_class[k]=digit_class;
5266 mp->char_class['.']=period_class;
5267 mp->char_class[' ']=space_class;
5268 mp->char_class['%']=percent_class;
5269 mp->char_class['"']=string_class;
5270 mp->char_class[',']=5;
5271 mp->char_class[';']=6;
5272 mp->char_class['(']=7;
5273 mp->char_class[')']=right_paren_class;
5274 for (k='A';k<= 'Z';k++ )
5275 mp->char_class[k]=letter_class;
5276 for (k='a';k<='z';k++)
5277 mp->char_class[k]=letter_class;
5278 mp->char_class['_']=letter_class;
5279 mp->char_class['<']=10;
5280 mp->char_class['=']=10;
5281 mp->char_class['>']=10;
5282 mp->char_class[':']=10;
5283 mp->char_class['|']=10;
5284 mp->char_class['`']=11;
5285 mp->char_class['\'']=11;
5286 mp->char_class['+']=12;
5287 mp->char_class['-']=12;
5288 mp->char_class['/']=13;
5289 mp->char_class['*']=13;
5290 mp->char_class['\\']=13;
5291 mp->char_class['!']=14;
5292 mp->char_class['?']=14;
5293 mp->char_class['#']=15;
5294 mp->char_class['&']=15;
5295 mp->char_class['@@']=15;
5296 mp->char_class['$']=15;
5297 mp->char_class['^']=16;
5298 mp->char_class['~']=16;
5299 mp->char_class['[']=left_bracket_class;
5300 mp->char_class[']']=right_bracket_class;
5301 mp->char_class['{']=19;
5302 mp->char_class['}']=19;
5304 mp->char_class[k]=invalid_class;
5305 mp->char_class['\t']=space_class;
5306 mp->char_class['\f']=space_class;
5307 for (k=127;k<=255;k++)
5308 mp->char_class[k]=invalid_class;
5310 @* \[13] The hash table.
5311 Symbolic tokens are stored and retrieved by means of a fairly standard hash
5312 table algorithm called the method of ``coalescing lists'' (cf.\ Algorithm 6.4C
5313 in {\sl The Art of Computer Programming\/}). Once a symbolic token enters the
5314 table, it is never removed.
5316 The actual sequence of characters forming a symbolic token is
5317 stored in the |str_pool| array together with all the other strings. An
5318 auxiliary array |hash| consists of items with two halfword fields per
5319 word. The first of these, called |next(p)|, points to the next identifier
5320 belonging to the same coalesced list as the identifier corresponding to~|p|;
5321 and the other, called |text(p)|, points to the |str_start| entry for
5322 |p|'s identifier. If position~|p| of the hash table is empty, we have
5323 |text(p)=0|; if position |p| is either empty or the end of a coalesced
5324 hash list, we have |next(p)=0|.
5326 An auxiliary pointer variable called |hash_used| is maintained in such a
5327 way that all locations |p>=hash_used| are nonempty. The global variable
5328 |st_count| tells how many symbolic tokens have been defined, if statistics
5331 The first 256 locations of |hash| are reserved for symbols of length one.
5333 There's a parallel array called |eqtb| that contains the current equivalent
5334 values of each symbolic token. The entries of this array consist of
5335 two halfwords called |eq_type| (a command code) and |equiv| (a secondary
5336 piece of information that qualifies the |eq_type|).
5338 @d next(A) mp->hash[(A)].lh /* link for coalesced lists */
5339 @d text(A) mp->hash[(A)].rh /* string number for symbolic token name */
5340 @d eq_type(A) mp->eqtb[(A)].lh /* the current ``meaning'' of a symbolic token */
5341 @d equiv(A) mp->eqtb[(A)].rh /* parametric part of a token's meaning */
5342 @d hash_base 257 /* hashing actually starts here */
5343 @d hash_is_full (mp->hash_used==hash_base) /* are all positions occupied? */
5346 pointer hash_used; /* allocation pointer for |hash| */
5347 integer st_count; /* total number of known identifiers */
5349 @ Certain entries in the hash table are ``frozen'' and not redefinable,
5350 since they are used in error recovery.
5352 @d hash_top (hash_base+mp->hash_size) /* the first location of the frozen area */
5353 @d frozen_inaccessible hash_top /* |hash| location to protect the frozen area */
5354 @d frozen_repeat_loop (hash_top+1) /* |hash| location of a loop-repeat token */
5355 @d frozen_right_delimiter (hash_top+2) /* |hash| location of a permanent `\.)' */
5356 @d frozen_left_bracket (hash_top+3) /* |hash| location of a permanent `\.[' */
5357 @d frozen_slash (hash_top+4) /* |hash| location of a permanent `\./' */
5358 @d frozen_colon (hash_top+5) /* |hash| location of a permanent `\.:' */
5359 @d frozen_semicolon (hash_top+6) /* |hash| location of a permanent `\.;' */
5360 @d frozen_end_for (hash_top+7) /* |hash| location of a permanent \&{endfor} */
5361 @d frozen_end_def (hash_top+8) /* |hash| location of a permanent \&{enddef} */
5362 @d frozen_fi (hash_top+9) /* |hash| location of a permanent \&{fi} */
5363 @d frozen_end_group (hash_top+10) /* |hash| location of a permanent `\.{endgroup}' */
5364 @d frozen_etex (hash_top+11) /* |hash| location of a permanent \&{etex} */
5365 @d frozen_mpx_break (hash_top+12) /* |hash| location of a permanent \&{mpxbreak} */
5366 @d frozen_bad_vardef (hash_top+13) /* |hash| location of `\.{a bad variable}' */
5367 @d frozen_undefined (hash_top+14) /* |hash| location that never gets defined */
5368 @d hash_end (hash_top+14) /* the actual size of the |hash| and |eqtb| arrays */
5371 two_halves *hash; /* the hash table */
5372 two_halves *eqtb; /* the equivalents */
5374 @ @<Allocate or initialize ...@>=
5375 mp->hash = xmalloc((hash_end+1),sizeof(two_halves));
5376 mp->eqtb = xmalloc((hash_end+1),sizeof(two_halves));
5378 @ @<Dealloc variables@>=
5383 next(1)=0; text(1)=0; eq_type(1)=tag_token; equiv(1)=null;
5384 for (k=2;k<=hash_end;k++) {
5385 mp->hash[k]=mp->hash[1]; mp->eqtb[k]=mp->eqtb[1];
5388 @ @<Initialize table entries...@>=
5389 mp->hash_used=frozen_inaccessible; /* nothing is used */
5391 text(frozen_bad_vardef)=intern("a bad variable");
5392 text(frozen_etex)=intern("etex");
5393 text(frozen_mpx_break)=intern("mpxbreak");
5394 text(frozen_fi)=intern("fi");
5395 text(frozen_end_group)=intern("endgroup");
5396 text(frozen_end_def)=intern("enddef");
5397 text(frozen_end_for)=intern("endfor");
5398 text(frozen_semicolon)=intern(";");
5399 text(frozen_colon)=intern(":");
5400 text(frozen_slash)=intern("/");
5401 text(frozen_left_bracket)=intern("[");
5402 text(frozen_right_delimiter)=intern(")");
5403 text(frozen_inaccessible)=intern(" INACCESSIBLE");
5404 eq_type(frozen_right_delimiter)=right_delimiter;
5406 @ @<Check the ``constant'' values...@>=
5407 if ( hash_end+mp->max_internal>max_halfword ) mp->bad=17;
5409 @ Here is the subroutine that searches the hash table for an identifier
5410 that matches a given string of length~|l| appearing in |buffer[j..
5411 (j+l-1)]|. If the identifier is not found, it is inserted; hence it
5412 will always be found, and the corresponding hash table address
5416 pointer mp_id_lookup (MP mp,integer j, integer l) { /* search the hash table */
5417 integer h; /* hash code */
5418 pointer p; /* index in |hash| array */
5419 pointer k; /* index in |buffer| array */
5421 @<Treat special case of length 1 and |break|@>;
5423 @<Compute the hash code |h|@>;
5424 p=h+hash_base; /* we start searching here; note that |0<=h<hash_prime| */
5426 if (text(p)>0 && length(text(p))==l && mp_str_eq_buf(mp, text(p),j))
5429 @<Insert a new symbolic token after |p|, then
5430 make |p| point to it and |break|@>;
5437 @ @<Treat special case of length 1...@>=
5438 p=mp->buffer[j]+1; text(p)=p-1; return p;
5441 @ @<Insert a new symbolic...@>=
5446 mp_overflow(mp, "hash size",mp->hash_size);
5447 @:MetaPost capacity exceeded hash size}{\quad hash size@>
5448 decr(mp->hash_used);
5449 } while (text(mp->hash_used)!=0); /* search for an empty location in |hash| */
5450 next(p)=mp->hash_used;
5454 for (k=j;k<=j+l-1;k++) {
5455 append_char(mp->buffer[k]);
5457 text(p)=mp_make_string(mp);
5458 mp->str_ref[text(p)]=max_str_ref;
5464 @ The value of |hash_prime| should be roughly 85\pct! of |hash_size|, and it
5465 should be a prime number. The theory of hashing tells us to expect fewer
5466 than two table probes, on the average, when the search is successful.
5467 [See J.~S. Vitter, {\sl Journal of the ACM\/ \bf30} (1983), 231--258.]
5468 @^Vitter, Jeffrey Scott@>
5470 @<Compute the hash code |h|@>=
5472 for (k=j+1;k<=j+l-1;k++){
5473 h=h+h+mp->buffer[k];
5474 while ( h>=mp->hash_prime ) h=h-mp->hash_prime;
5477 @ @<Search |eqtb| for equivalents equal to |p|@>=
5478 for (q=1;q<=hash_end;q++) {
5479 if ( equiv(q)==p ) {
5480 mp_print_nl(mp, "EQUIV(");
5481 mp_print_int(mp, q);
5482 mp_print_char(mp, ')');
5486 @ We need to put \MP's ``primitive'' symbolic tokens into the hash
5487 table, together with their command code (which will be the |eq_type|)
5488 and an operand (which will be the |equiv|). The |primitive| procedure
5489 does this, in a way that no \MP\ user can. The global value |cur_sym|
5490 contains the new |eqtb| pointer after |primitive| has acted.
5493 void mp_primitive (MP mp, char *ss, halfword c, halfword o) {
5494 pool_pointer k; /* index into |str_pool| */
5495 small_number j; /* index into |buffer| */
5496 small_number l; /* length of the string */
5499 k=mp->str_start[s]; l=str_stop(s)-k;
5500 /* we will move |s| into the (empty) |buffer| */
5501 for (j=0;j<=l-1;j++) {
5502 mp->buffer[j]=mp->str_pool[k+j];
5504 mp->cur_sym=mp_id_lookup(mp, 0,l);
5505 if ( s>=256 ) { /* we don't want to have the string twice */
5506 mp_flush_string(mp, text(mp->cur_sym)); text(mp->cur_sym)=s;
5508 eq_type(mp->cur_sym)=c;
5509 equiv(mp->cur_sym)=o;
5513 @ Many of \MP's primitives need no |equiv|, since they are identifiable
5514 by their |eq_type| alone. These primitives are loaded into the hash table
5517 @<Put each of \MP's primitives into the hash table@>=
5518 mp_primitive(mp, "..",path_join,0);
5519 @:.._}{\.{..} primitive@>
5520 mp_primitive(mp, "[",left_bracket,0); mp->eqtb[frozen_left_bracket]=mp->eqtb[mp->cur_sym];
5521 @:[ }{\.{[} primitive@>
5522 mp_primitive(mp, "]",right_bracket,0);
5523 @:] }{\.{]} primitive@>
5524 mp_primitive(mp, "}",right_brace,0);
5525 @:]]}{\.{\char`\}} primitive@>
5526 mp_primitive(mp, "{",left_brace,0);
5527 @:][}{\.{\char`\{} primitive@>
5528 mp_primitive(mp, ":",colon,0); mp->eqtb[frozen_colon]=mp->eqtb[mp->cur_sym];
5529 @:: }{\.{:} primitive@>
5530 mp_primitive(mp, "::",double_colon,0);
5531 @::: }{\.{::} primitive@>
5532 mp_primitive(mp, "||:",bchar_label,0);
5533 @:::: }{\.{\char'174\char'174:} primitive@>
5534 mp_primitive(mp, ":=",assignment,0);
5535 @::=_}{\.{:=} primitive@>
5536 mp_primitive(mp, ",",comma,0);
5537 @:, }{\., primitive@>
5538 mp_primitive(mp, ";",semicolon,0); mp->eqtb[frozen_semicolon]=mp->eqtb[mp->cur_sym];
5539 @:; }{\.; primitive@>
5540 mp_primitive(mp, "\\",relax,0);
5541 @:]]\\}{\.{\char`\\} primitive@>
5543 mp_primitive(mp, "addto",add_to_command,0);
5544 @:add_to_}{\&{addto} primitive@>
5545 mp_primitive(mp, "atleast",at_least,0);
5546 @:at_least_}{\&{atleast} primitive@>
5547 mp_primitive(mp, "begingroup",begin_group,0); mp->bg_loc=mp->cur_sym;
5548 @:begin_group_}{\&{begingroup} primitive@>
5549 mp_primitive(mp, "controls",controls,0);
5550 @:controls_}{\&{controls} primitive@>
5551 mp_primitive(mp, "curl",curl_command,0);
5552 @:curl_}{\&{curl} primitive@>
5553 mp_primitive(mp, "delimiters",delimiters,0);
5554 @:delimiters_}{\&{delimiters} primitive@>
5555 mp_primitive(mp, "endgroup",end_group,0);
5556 mp->eqtb[frozen_end_group]=mp->eqtb[mp->cur_sym]; mp->eg_loc=mp->cur_sym;
5557 @:endgroup_}{\&{endgroup} primitive@>
5558 mp_primitive(mp, "everyjob",every_job_command,0);
5559 @:every_job_}{\&{everyjob} primitive@>
5560 mp_primitive(mp, "exitif",exit_test,0);
5561 @:exit_if_}{\&{exitif} primitive@>
5562 mp_primitive(mp, "expandafter",expand_after,0);
5563 @:expand_after_}{\&{expandafter} primitive@>
5564 mp_primitive(mp, "interim",interim_command,0);
5565 @:interim_}{\&{interim} primitive@>
5566 mp_primitive(mp, "let",let_command,0);
5567 @:let_}{\&{let} primitive@>
5568 mp_primitive(mp, "newinternal",new_internal,0);
5569 @:new_internal_}{\&{newinternal} primitive@>
5570 mp_primitive(mp, "of",of_token,0);
5571 @:of_}{\&{of} primitive@>
5572 mp_primitive(mp, "randomseed",random_seed,0);
5573 @:random_seed_}{\&{randomseed} primitive@>
5574 mp_primitive(mp, "save",save_command,0);
5575 @:save_}{\&{save} primitive@>
5576 mp_primitive(mp, "scantokens",scan_tokens,0);
5577 @:scan_tokens_}{\&{scantokens} primitive@>
5578 mp_primitive(mp, "shipout",ship_out_command,0);
5579 @:ship_out_}{\&{shipout} primitive@>
5580 mp_primitive(mp, "skipto",skip_to,0);
5581 @:skip_to_}{\&{skipto} primitive@>
5582 mp_primitive(mp, "special",special_command,0);
5583 @:special}{\&{special} primitive@>
5584 mp_primitive(mp, "fontmapfile",special_command,1);
5585 @:fontmapfile}{\&{fontmapfile} primitive@>
5586 mp_primitive(mp, "fontmapline",special_command,2);
5587 @:fontmapline}{\&{fontmapline} primitive@>
5588 mp_primitive(mp, "step",step_token,0);
5589 @:step_}{\&{step} primitive@>
5590 mp_primitive(mp, "str",str_op,0);
5591 @:str_}{\&{str} primitive@>
5592 mp_primitive(mp, "tension",tension,0);
5593 @:tension_}{\&{tension} primitive@>
5594 mp_primitive(mp, "to",to_token,0);
5595 @:to_}{\&{to} primitive@>
5596 mp_primitive(mp, "until",until_token,0);
5597 @:until_}{\&{until} primitive@>
5598 mp_primitive(mp, "within",within_token,0);
5599 @:within_}{\&{within} primitive@>
5600 mp_primitive(mp, "write",write_command,0);
5601 @:write_}{\&{write} primitive@>
5603 @ Each primitive has a corresponding inverse, so that it is possible to
5604 display the cryptic numeric contents of |eqtb| in symbolic form.
5605 Every call of |primitive| in this program is therefore accompanied by some
5606 straightforward code that forms part of the |print_cmd_mod| routine
5609 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>=
5610 case add_to_command:mp_print(mp, "addto"); break;
5611 case assignment:mp_print(mp, ":="); break;
5612 case at_least:mp_print(mp, "atleast"); break;
5613 case bchar_label:mp_print(mp, "||:"); break;
5614 case begin_group:mp_print(mp, "begingroup"); break;
5615 case colon:mp_print(mp, ":"); break;
5616 case comma:mp_print(mp, ","); break;
5617 case controls:mp_print(mp, "controls"); break;
5618 case curl_command:mp_print(mp, "curl"); break;
5619 case delimiters:mp_print(mp, "delimiters"); break;
5620 case double_colon:mp_print(mp, "::"); break;
5621 case end_group:mp_print(mp, "endgroup"); break;
5622 case every_job_command:mp_print(mp, "everyjob"); break;
5623 case exit_test:mp_print(mp, "exitif"); break;
5624 case expand_after:mp_print(mp, "expandafter"); break;
5625 case interim_command:mp_print(mp, "interim"); break;
5626 case left_brace:mp_print(mp, "{"); break;
5627 case left_bracket:mp_print(mp, "["); break;
5628 case let_command:mp_print(mp, "let"); break;
5629 case new_internal:mp_print(mp, "newinternal"); break;
5630 case of_token:mp_print(mp, "of"); break;
5631 case path_join:mp_print(mp, ".."); break;
5632 case random_seed:mp_print(mp, "randomseed"); break;
5633 case relax:mp_print_char(mp, '\\'); break;
5634 case right_brace:mp_print(mp, "}"); break;
5635 case right_bracket:mp_print(mp, "]"); break;
5636 case save_command:mp_print(mp, "save"); break;
5637 case scan_tokens:mp_print(mp, "scantokens"); break;
5638 case semicolon:mp_print(mp, ";"); break;
5639 case ship_out_command:mp_print(mp, "shipout"); break;
5640 case skip_to:mp_print(mp, "skipto"); break;
5641 case special_command: if ( m==2 ) mp_print(mp, "fontmapline"); else
5642 if ( m==1 ) mp_print(mp, "fontmapfile"); else
5643 mp_print(mp, "special"); break;
5644 case step_token:mp_print(mp, "step"); break;
5645 case str_op:mp_print(mp, "str"); break;
5646 case tension:mp_print(mp, "tension"); break;
5647 case to_token:mp_print(mp, "to"); break;
5648 case until_token:mp_print(mp, "until"); break;
5649 case within_token:mp_print(mp, "within"); break;
5650 case write_command:mp_print(mp, "write"); break;
5652 @ We will deal with the other primitives later, at some point in the program
5653 where their |eq_type| and |equiv| values are more meaningful. For example,
5654 the primitives for macro definitions will be loaded when we consider the
5655 routines that define macros.
5656 It is easy to find where each particular
5657 primitive was treated by looking in the index at the end; for example, the
5658 section where |"def"| entered |eqtb| is listed under `\&{def} primitive'.
5660 @* \[14] Token lists.
5661 A \MP\ token is either symbolic or numeric or a string, or it denotes
5662 a macro parameter or capsule; so there are five corresponding ways to encode it
5664 internally: (1)~A symbolic token whose hash code is~|p|
5665 is represented by the number |p|, in the |info| field of a single-word
5666 node in~|mem|. (2)~A numeric token whose |scaled| value is~|v| is
5667 represented in a two-word node of~|mem|; the |type| field is |known|,
5668 the |name_type| field is |token|, and the |value| field holds~|v|.
5669 The fact that this token appears in a two-word node rather than a
5670 one-word node is, of course, clear from the node address.
5671 (3)~A string token is also represented in a two-word node; the |type|
5672 field is |mp_string_type|, the |name_type| field is |token|, and the
5673 |value| field holds the corresponding |str_number|. (4)~Capsules have
5674 |name_type=capsule|, and their |type| and |value| fields represent
5675 arbitrary values (in ways to be explained later). (5)~Macro parameters
5676 are like symbolic tokens in that they appear in |info| fields of
5677 one-word nodes. The $k$th parameter is represented by |expr_base+k| if it
5678 is of type \&{expr}, or by |suffix_base+k| if it is of type \&{suffix}, or
5679 by |text_base+k| if it is of type \&{text}. (Here |0<=k<param_size|.)
5680 Actual values of these parameters are kept in a separate stack, as we will
5681 see later. The constants |expr_base|, |suffix_base|, and |text_base| are,
5682 of course, chosen so that there will be no confusion between symbolic
5683 tokens and parameters of various types.
5686 the `\\{type}' field of a node has nothing to do with ``type'' in a
5687 printer's sense. It's curious that the same word is used in such different ways.
5689 @d type(A) mp->mem[(A)].hh.b0 /* identifies what kind of value this is */
5690 @d name_type(A) mp->mem[(A)].hh.b1 /* a clue to the name of this value */
5691 @d token_node_size 2 /* the number of words in a large token node */
5692 @d value_loc(A) ((A)+1) /* the word that contains the |value| field */
5693 @d value(A) mp->mem[value_loc((A))].cint /* the value stored in a large token node */
5694 @d expr_base (hash_end+1) /* code for the zeroth \&{expr} parameter */
5695 @d suffix_base (expr_base+mp->param_size) /* code for the zeroth \&{suffix} parameter */
5696 @d text_base (suffix_base+mp->param_size) /* code for the zeroth \&{text} parameter */
5698 @<Check the ``constant''...@>=
5699 if ( text_base+mp->param_size>max_halfword ) mp->bad=18;
5701 @ We have set aside a two word node beginning at |null| so that we can have
5702 |value(null)=0|. We will make use of this coincidence later.
5704 @<Initialize table entries...@>=
5705 link(null)=null; value(null)=0;
5707 @ A numeric token is created by the following trivial routine.
5710 pointer mp_new_num_tok (MP mp,scaled v) {
5711 pointer p; /* the new node */
5712 p=mp_get_node(mp, token_node_size); value(p)=v;
5713 type(p)=mp_known; name_type(p)=mp_token;
5717 @ A token list is a singly linked list of nodes in |mem|, where
5718 each node contains a token and a link. Here's a subroutine that gets rid
5719 of a token list when it is no longer needed.
5722 void mp_token_recycle (MP mp);
5725 @c void mp_flush_token_list (MP mp,pointer p) {
5726 pointer q; /* the node being recycled */
5729 if ( q>=mp->hi_mem_min ) {
5733 case mp_vacuous: case mp_boolean_type: case mp_known:
5735 case mp_string_type:
5736 delete_str_ref(value(q));
5738 case unknown_types: case mp_pen_type: case mp_path_type:
5739 case mp_picture_type: case mp_pair_type: case mp_color_type:
5740 case mp_cmykcolor_type: case mp_transform_type: case mp_dependent:
5741 case mp_proto_dependent: case mp_independent:
5742 mp->g_pointer=q; mp_token_recycle(mp);
5744 default: mp_confusion(mp, "token");
5745 @:this can't happen token}{\quad token@>
5747 mp_free_node(mp, q,token_node_size);
5752 @ The procedure |show_token_list|, which prints a symbolic form of
5753 the token list that starts at a given node |p|, illustrates these
5754 conventions. The token list being displayed should not begin with a reference
5755 count. However, the procedure is intended to be fairly robust, so that if the
5756 memory links are awry or if |p| is not really a pointer to a token list,
5757 almost nothing catastrophic can happen.
5759 An additional parameter |q| is also given; this parameter is either null
5760 or it points to a node in the token list where a certain magic computation
5761 takes place that will be explained later. (Basically, |q| is non-null when
5762 we are printing the two-line context information at the time of an error
5763 message; |q| marks the place corresponding to where the second line
5766 The generation will stop, and `\.{\char`\ ETC.}' will be printed, if the length
5767 of printing exceeds a given limit~|l|; the length of printing upon entry is
5768 assumed to be a given amount called |null_tally|. (Note that
5769 |show_token_list| sometimes uses itself recursively to print
5770 variable names within a capsule.)
5773 Unusual entries are printed in the form of all-caps tokens
5774 preceded by a space, e.g., `\.{\char`\ BAD}'.
5777 void mp_print_capsule (MP mp);
5779 @ @<Declare the procedure called |show_token_list|@>=
5780 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5781 integer null_tally) ;
5784 void mp_show_token_list (MP mp, integer p, integer q, integer l,
5785 integer null_tally) {
5786 small_number class,c; /* the |char_class| of previous and new tokens */
5787 integer r,v; /* temporary registers */
5788 class=percent_class;
5789 mp->tally=null_tally;
5790 while ( (p!=null) && (mp->tally<l) ) {
5792 @<Do magic computation@>;
5793 @<Display token |p| and set |c| to its class;
5794 but |return| if there are problems@>;
5798 mp_print(mp, " ETC.");
5803 @ @<Display token |p| and set |c| to its class...@>=
5804 c=letter_class; /* the default */
5805 if ( (p<0)||(p>mp->mem_end) ) {
5806 mp_print(mp, " CLOBBERED"); return;
5809 if ( p<mp->hi_mem_min ) {
5810 @<Display two-word token@>;
5813 if ( r>=expr_base ) {
5814 @<Display a parameter token@>;
5818 @<Display a collective subscript@>
5820 mp_print(mp, " IMPOSSIBLE");
5825 if ( (r<0)||(r>mp->max_str_ptr) ) {
5826 mp_print(mp, " NONEXISTENT");
5829 @<Print string |r| as a symbolic token
5830 and set |c| to its class@>;
5836 @ @<Display two-word token@>=
5837 if ( name_type(p)==mp_token ) {
5838 if ( type(p)==mp_known ) {
5839 @<Display a numeric token@>;
5840 } else if ( type(p)!=mp_string_type ) {
5841 mp_print(mp, " BAD");
5844 mp_print_char(mp, '"'); mp_print_str(mp, value(p)); mp_print_char(mp, '"');
5847 } else if ((name_type(p)!=mp_capsule)||(type(p)<mp_vacuous)||(type(p)>mp_independent) ) {
5848 mp_print(mp, " BAD");
5850 mp->g_pointer=p; mp_print_capsule(mp); c=right_paren_class;
5853 @ @<Display a numeric token@>=
5854 if ( class==digit_class )
5855 mp_print_char(mp, ' ');
5858 if ( class==left_bracket_class )
5859 mp_print_char(mp, ' ');
5860 mp_print_char(mp, '['); mp_print_scaled(mp, v); mp_print_char(mp, ']');
5861 c=right_bracket_class;
5863 mp_print_scaled(mp, v); c=digit_class;
5867 @ Strictly speaking, a genuine token will never have |info(p)=0|.
5868 But we will see later (in the |print_variable_name| routine) that
5869 it is convenient to let |info(p)=0| stand for `\.{[]}'.
5871 @<Display a collective subscript@>=
5873 if ( class==left_bracket_class )
5874 mp_print_char(mp, ' ');
5875 mp_print(mp, "[]"); c=right_bracket_class;
5878 @ @<Display a parameter token@>=
5880 if ( r<suffix_base ) {
5881 mp_print(mp, "(EXPR"); r=r-(expr_base);
5883 } else if ( r<text_base ) {
5884 mp_print(mp, "(SUFFIX"); r=r-(suffix_base);
5887 mp_print(mp, "(TEXT"); r=r-(text_base);
5890 mp_print_int(mp, r); mp_print_char(mp, ')'); c=right_paren_class;
5894 @ @<Print string |r| as a symbolic token...@>=
5896 c=mp->char_class[mp->str_pool[mp->str_start[r]]];
5899 case letter_class:mp_print_char(mp, '.'); break;
5900 case isolated_classes: break;
5901 default: mp_print_char(mp, ' '); break;
5904 mp_print_str(mp, r);
5907 @ The following procedures have been declared |forward| with no parameters,
5908 because the author dislikes \PASCAL's convention about |forward| procedures
5909 with parameters. It was necessary to do something, because |show_token_list|
5910 is recursive (although the recursion is limited to one level), and because
5911 |flush_token_list| is syntactically (but not semantically) recursive.
5914 @<Declare miscellaneous procedures that were declared |forward|@>=
5915 void mp_print_capsule (MP mp) {
5916 mp_print_char(mp, '('); mp_print_exp(mp, mp->g_pointer,0); mp_print_char(mp, ')');
5919 void mp_token_recycle (MP mp) {
5920 mp_recycle_value(mp, mp->g_pointer);
5924 pointer g_pointer; /* (global) parameter to the |forward| procedures */
5926 @ Macro definitions are kept in \MP's memory in the form of token lists
5927 that have a few extra one-word nodes at the beginning.
5929 The first node contains a reference count that is used to tell when the
5930 list is no longer needed. To emphasize the fact that a reference count is
5931 present, we shall refer to the |info| field of this special node as the
5933 @^reference counts@>
5935 The next node or nodes after the reference count serve to describe the
5936 formal parameters. They either contain a code word that specifies all
5937 of the parameters, or they contain zero or more parameter tokens followed
5938 by the code `|general_macro|'.
5941 /* reference count preceding a macro definition or picture header */
5942 @d add_mac_ref(A) incr(ref_count((A))) /* make a new reference to a macro list */
5943 @d general_macro 0 /* preface to a macro defined with a parameter list */
5944 @d primary_macro 1 /* preface to a macro with a \&{primary} parameter */
5945 @d secondary_macro 2 /* preface to a macro with a \&{secondary} parameter */
5946 @d tertiary_macro 3 /* preface to a macro with a \&{tertiary} parameter */
5947 @d expr_macro 4 /* preface to a macro with an undelimited \&{expr} parameter */
5948 @d of_macro 5 /* preface to a macro with
5949 undelimited `\&{expr} |x| \&{of}~|y|' parameters */
5950 @d suffix_macro 6 /* preface to a macro with an undelimited \&{suffix} parameter */
5951 @d text_macro 7 /* preface to a macro with an undelimited \&{text} parameter */
5954 void mp_delete_mac_ref (MP mp,pointer p) {
5955 /* |p| points to the reference count of a macro list that is
5956 losing one reference */
5957 if ( ref_count(p)==null ) mp_flush_token_list(mp, p);
5958 else decr(ref_count(p));
5961 @ The following subroutine displays a macro, given a pointer to its
5965 @<Declare the procedure called |print_cmd_mod|@>;
5966 void mp_show_macro (MP mp, pointer p, integer q, integer l) {
5967 pointer r; /* temporary storage */
5968 p=link(p); /* bypass the reference count */
5969 while ( info(p)>text_macro ){
5970 r=link(p); link(p)=null;
5971 mp_show_token_list(mp, p,null,l,0); link(p)=r; p=r;
5972 if ( l>0 ) l=l-mp->tally; else return;
5973 } /* control printing of `\.{ETC.}' */
5977 case general_macro:mp_print(mp, "->"); break;
5979 case primary_macro: case secondary_macro: case tertiary_macro:
5980 mp_print_char(mp, '<');
5981 mp_print_cmd_mod(mp, param_type,info(p));
5982 mp_print(mp, ">->");
5984 case expr_macro:mp_print(mp, "<expr>->"); break;
5985 case of_macro:mp_print(mp, "<expr>of<primary>->"); break;
5986 case suffix_macro:mp_print(mp, "<suffix>->"); break;
5987 case text_macro:mp_print(mp, "<text>->"); break;
5988 } /* there are no other cases */
5989 mp_show_token_list(mp, link(p),q,l-mp->tally,0);
5992 @* \[15] Data structures for variables.
5993 The variables of \MP\ programs can be simple, like `\.x', or they can
5994 combine the structural properties of arrays and records, like `\.{x20a.b}'.
5995 A \MP\ user assigns a type to a variable like \.{x20a.b} by saying, for
5996 example, `\.{boolean} \.{x20a.b}'. It's time for us to study how such
5997 things are represented inside of the computer.
5999 Each variable value occupies two consecutive words, either in a two-word
6000 node called a value node, or as a two-word subfield of a larger node. One
6001 of those two words is called the |value| field; it is an integer,
6002 containing either a |scaled| numeric value or the representation of some
6003 other type of quantity. (It might also be subdivided into halfwords, in
6004 which case it is referred to by other names instead of |value|.) The other
6005 word is broken into subfields called |type|, |name_type|, and |link|. The
6006 |type| field is a quarterword that specifies the variable's type, and
6007 |name_type| is a quarterword from which \MP\ can reconstruct the
6008 variable's name (sometimes by using the |link| field as well). Thus, only
6009 1.25 words are actually devoted to the value itself; the other
6010 three-quarters of a word are overhead, but they aren't wasted because they
6011 allow \MP\ to deal with sparse arrays and to provide meaningful diagnostics.
6013 In this section we shall be concerned only with the structural aspects of
6014 variables, not their values. Later parts of the program will change the
6015 |type| and |value| fields, but we shall treat those fields as black boxes
6016 whose contents should not be touched.
6018 However, if the |type| field is |mp_structured|, there is no |value| field,
6019 and the second word is broken into two pointer fields called |attr_head|
6020 and |subscr_head|. Those fields point to additional nodes that
6021 contain structural information, as we shall see.
6023 @d subscr_head_loc(A) (A)+1 /* where |value|, |subscr_head| and |attr_head| are */
6024 @d attr_head(A) info(subscr_head_loc((A))) /* pointer to attribute info */
6025 @d subscr_head(A) link(subscr_head_loc((A))) /* pointer to subscript info */
6026 @d value_node_size 2 /* the number of words in a value node */
6028 @ An attribute node is three words long. Two of these words contain |type|
6029 and |value| fields as described above, and the third word contains
6030 additional information: There is an |attr_loc| field, which contains the
6031 hash address of the token that names this attribute; and there's also a
6032 |parent| field, which points to the value node of |mp_structured| type at the
6033 next higher level (i.e., at the level to which this attribute is
6034 subsidiary). The |name_type| in an attribute node is `|attr|'. The
6035 |link| field points to the next attribute with the same parent; these are
6036 arranged in increasing order, so that |attr_loc(link(p))>attr_loc(p)|. The
6037 final attribute node links to the constant |end_attr|, whose |attr_loc|
6038 field is greater than any legal hash address. The |attr_head| in the
6039 parent points to a node whose |name_type| is |mp_structured_root|; this
6040 node represents the null attribute, i.e., the variable that is relevant
6041 when no attributes are attached to the parent. The |attr_head| node is either
6042 a value node, a subscript node, or an attribute node, depending on what
6043 the parent would be if it were not structured; but the subscript and
6044 attribute fields are ignored, so it effectively contains only the data of
6045 a value node. The |link| field in this special node points to an attribute
6046 node whose |attr_loc| field is zero; the latter node represents a collective
6047 subscript `\.{[]}' attached to the parent, and its |link| field points to
6048 the first non-special attribute node (or to |end_attr| if there are none).
6050 A subscript node likewise occupies three words, with |type| and |value| fields
6051 plus extra information; its |name_type| is |subscr|. In this case the
6052 third word is called the |subscript| field, which is a |scaled| integer.
6053 The |link| field points to the subscript node with the next larger
6054 subscript, if any; otherwise the |link| points to the attribute node
6055 for collective subscripts at this level. We have seen that the latter node
6056 contains an upward pointer, so that the parent can be deduced.
6058 The |name_type| in a parent-less value node is |root|, and the |link|
6059 is the hash address of the token that names this value.
6061 In other words, variables have a hierarchical structure that includes
6062 enough threads running around so that the program is able to move easily
6063 between siblings, parents, and children. An example should be helpful:
6064 (The reader is advised to draw a picture while reading the following
6065 description, since that will help to firm up the ideas.)
6066 Suppose that `\.x' and `\.{x.a}' and `\.{x[]b}' and `\.{x5}'
6067 and `\.{x20b}' have been mentioned in a user's program, where
6068 \.{x[]b} has been declared to be of \&{boolean} type. Let |h(x)|, |h(a)|,
6069 and |h(b)| be the hash addresses of \.x, \.a, and~\.b. Then
6070 |eq_type(h(x))=name| and |equiv(h(x))=p|, where |p|~is a two-word value
6071 node with |name_type(p)=root| and |link(p)=h(x)|. We have |type(p)=mp_structured|,
6072 |attr_head(p)=q|, and |subscr_head(p)=r|, where |q| points to a value
6073 node and |r| to a subscript node. (Are you still following this? Use
6074 a pencil to draw a diagram.) The lone variable `\.x' is represented by
6075 |type(q)| and |value(q)|; furthermore
6076 |name_type(q)=mp_structured_root| and |link(q)=q1|, where |q1| points
6077 to an attribute node representing `\.{x[]}'. Thus |name_type(q1)=attr|,
6078 |attr_loc(q1)=collective_subscript=0|, |parent(q1)=p|,
6079 |type(q1)=mp_structured|, |attr_head(q1)=qq|, and |subscr_head(q1)=qq1|;
6080 |qq| is a value node with |type(qq)=mp_numeric_type| (assuming that \.{x5} is
6081 numeric, because |qq| represents `\.{x[]}' with no further attributes),
6082 |name_type(qq)=mp_structured_root|, and
6083 |link(qq)=qq1|. (Now pay attention to the next part.) Node |qq1| is
6084 an attribute node representing `\.{x[][]}', which has never yet
6085 occurred; its |type| field is |undefined|, and its |value| field is
6086 undefined. We have |name_type(qq1)=attr|, |attr_loc(qq1)=collective_subscript|,
6087 |parent(qq1)=q1|, and |link(qq1)=qq2|. Since |qq2| represents
6088 `\.{x[]b}', |type(qq2)=mp_unknown_boolean|; also |attr_loc(qq2)=h(b)|,
6089 |parent(qq2)=q1|, |name_type(qq2)=attr|, |link(qq2)=end_attr|.
6090 (Maybe colored lines will help untangle your picture.)
6091 Node |r| is a subscript node with |type| and |value|
6092 representing `\.{x5}'; |name_type(r)=subscr|, |subscript(r)=5.0|,
6093 and |link(r)=r1| is another subscript node. To complete the picture,
6094 see if you can guess what |link(r1)| is; give up? It's~|q1|.
6095 Furthermore |subscript(r1)=20.0|, |name_type(r1)=subscr|,
6096 |type(r1)=mp_structured|, |attr_head(r1)=qqq|, |subscr_head(r1)=qqq1|,
6097 and we finish things off with three more nodes
6098 |qqq|, |qqq1|, and |qqq2| hung onto~|r1|. (Perhaps you should start again
6099 with a larger sheet of paper.) The value of variable \.{x20b}
6100 appears in node~|qqq2|, as you can well imagine.
6102 If the example in the previous paragraph doesn't make things crystal
6103 clear, a glance at some of the simpler subroutines below will reveal how
6104 things work out in practice.
6106 The only really unusual thing about these conventions is the use of
6107 collective subscript attributes. The idea is to avoid repeating a lot of
6108 type information when many elements of an array are identical macros
6109 (for which distinct values need not be stored) or when they don't have
6110 all of the possible attributes. Branches of the structure below collective
6111 subscript attributes do not carry actual values except for macro identifiers;
6112 branches of the structure below subscript nodes do not carry significant
6113 information in their collective subscript attributes.
6115 @d attr_loc_loc(A) ((A)+2) /* where the |attr_loc| and |parent| fields are */
6116 @d attr_loc(A) info(attr_loc_loc((A))) /* hash address of this attribute */
6117 @d parent(A) link(attr_loc_loc((A))) /* pointer to |mp_structured| variable */
6118 @d subscript_loc(A) ((A)+2) /* where the |subscript| field lives */
6119 @d subscript(A) mp->mem[subscript_loc((A))].sc /* subscript of this variable */
6120 @d attr_node_size 3 /* the number of words in an attribute node */
6121 @d subscr_node_size 3 /* the number of words in a subscript node */
6122 @d collective_subscript 0 /* code for the attribute `\.{[]}' */
6124 @<Initialize table...@>=
6125 attr_loc(end_attr)=hash_end+1; parent(end_attr)=null;
6127 @ Variables of type \&{pair} will have values that point to four-word
6128 nodes containing two numeric values. The first of these values has
6129 |name_type=mp_x_part_sector| and the second has |name_type=mp_y_part_sector|;
6130 the |link| in the first points back to the node whose |value| points
6131 to this four-word node.
6133 Variables of type \&{transform} are similar, but in this case their
6134 |value| points to a 12-word node containing six values, identified by
6135 |x_part_sector|, |y_part_sector|, |mp_xx_part_sector|, |mp_xy_part_sector|,
6136 |mp_yx_part_sector|, and |mp_yy_part_sector|.
6137 Finally, variables of type \&{color} have three values in six words
6138 identified by |mp_red_part_sector|, |mp_green_part_sector|, and |mp_blue_part_sector|.
6140 When an entire structured variable is saved, the |root| indication
6141 is temporarily replaced by |saved_root|.
6143 Some variables have no name; they just are used for temporary storage
6144 while expressions are being evaluated. We call them {\sl capsules}.
6146 @d x_part_loc(A) (A) /* where the \&{xpart} is found in a pair or transform node */
6147 @d y_part_loc(A) ((A)+2) /* where the \&{ypart} is found in a pair or transform node */
6148 @d xx_part_loc(A) ((A)+4) /* where the \&{xxpart} is found in a transform node */
6149 @d xy_part_loc(A) ((A)+6) /* where the \&{xypart} is found in a transform node */
6150 @d yx_part_loc(A) ((A)+8) /* where the \&{yxpart} is found in a transform node */
6151 @d yy_part_loc(A) ((A)+10) /* where the \&{yypart} is found in a transform node */
6152 @d red_part_loc(A) (A) /* where the \&{redpart} is found in a color node */
6153 @d green_part_loc(A) ((A)+2) /* where the \&{greenpart} is found in a color node */
6154 @d blue_part_loc(A) ((A)+4) /* where the \&{bluepart} is found in a color node */
6155 @d cyan_part_loc(A) (A) /* where the \&{cyanpart} is found in a color node */
6156 @d magenta_part_loc(A) ((A)+2) /* where the \&{magentapart} is found in a color node */
6157 @d yellow_part_loc(A) ((A)+4) /* where the \&{yellowpart} is found in a color node */
6158 @d black_part_loc(A) ((A)+6) /* where the \&{blackpart} is found in a color node */
6159 @d grey_part_loc(A) (A) /* where the \&{greypart} is found in a color node */
6161 @d pair_node_size 4 /* the number of words in a pair node */
6162 @d transform_node_size 12 /* the number of words in a transform node */
6163 @d color_node_size 6 /* the number of words in a color node */
6164 @d cmykcolor_node_size 8 /* the number of words in a color node */
6167 small_number big_node_size[mp_pair_type+1];
6168 small_number sector0[mp_pair_type+1];
6169 small_number sector_offset[mp_black_part_sector+1];
6171 @ The |sector0| array gives for each big node type, |name_type| values
6172 for its first subfield; the |sector_offset| array gives for each
6173 |name_type| value, the offset from the first subfield in words;
6174 and the |big_node_size| array gives the size in words for each type of
6178 mp->big_node_size[mp_transform_type]=transform_node_size;
6179 mp->big_node_size[mp_pair_type]=pair_node_size;
6180 mp->big_node_size[mp_color_type]=color_node_size;
6181 mp->big_node_size[mp_cmykcolor_type]=cmykcolor_node_size;
6182 mp->sector0[mp_transform_type]=mp_x_part_sector;
6183 mp->sector0[mp_pair_type]=mp_x_part_sector;
6184 mp->sector0[mp_color_type]=mp_red_part_sector;
6185 mp->sector0[mp_cmykcolor_type]=mp_cyan_part_sector;
6186 for (k=mp_x_part_sector;k<= mp_yy_part_sector;k++ ) {
6187 mp->sector_offset[k]=2*(k-mp_x_part_sector);
6189 for (k=mp_red_part_sector;k<= mp_blue_part_sector ; k++) {
6190 mp->sector_offset[k]=2*(k-mp_red_part_sector);
6192 for (k=mp_cyan_part_sector;k<= mp_black_part_sector;k++ ) {
6193 mp->sector_offset[k]=2*(k-mp_cyan_part_sector);
6196 @ If |type(p)=mp_pair_type| or |mp_transform_type| and if |value(p)=null|, the
6197 procedure call |init_big_node(p)| will allocate a pair or transform node
6198 for~|p|. The individual parts of such nodes are initially of type
6202 void mp_init_big_node (MP mp,pointer p) {
6203 pointer q; /* the new node */
6204 small_number s; /* its size */
6205 s=mp->big_node_size[type(p)]; q=mp_get_node(mp, s);
6208 @<Make variable |q+s| newly independent@>;
6209 name_type(q+s)=halfp(s)+mp->sector0[type(p)];
6212 link(q)=p; value(p)=q;
6215 @ The |id_transform| function creates a capsule for the
6216 identity transformation.
6219 pointer mp_id_transform (MP mp) {
6220 pointer p,q,r; /* list manipulation registers */
6221 p=mp_get_node(mp, value_node_size); type(p)=mp_transform_type;
6222 name_type(p)=mp_capsule; value(p)=null; mp_init_big_node(mp, p); q=value(p);
6223 r=q+transform_node_size;
6226 type(r)=mp_known; value(r)=0;
6228 value(xx_part_loc(q))=unity;
6229 value(yy_part_loc(q))=unity;
6233 @ Tokens are of type |tag_token| when they first appear, but they point
6234 to |null| until they are first used as the root of a variable.
6235 The following subroutine establishes the root node on such grand occasions.
6238 void mp_new_root (MP mp,pointer x) {
6239 pointer p; /* the new node */
6240 p=mp_get_node(mp, value_node_size); type(p)=undefined; name_type(p)=mp_root;
6241 link(p)=x; equiv(x)=p;
6244 @ These conventions for variable representation are illustrated by the
6245 |print_variable_name| routine, which displays the full name of a
6246 variable given only a pointer to its two-word value packet.
6249 void mp_print_variable_name (MP mp, pointer p);
6252 void mp_print_variable_name (MP mp, pointer p) {
6253 pointer q; /* a token list that will name the variable's suffix */
6254 pointer r; /* temporary for token list creation */
6255 while ( name_type(p)>=mp_x_part_sector ) {
6256 @<Preface the output with a part specifier; |return| in the
6257 case of a capsule@>;
6260 while ( name_type(p)>mp_saved_root ) {
6261 @<Ascend one level, pushing a token onto list |q|
6262 and replacing |p| by its parent@>;
6264 r=mp_get_avail(mp); info(r)=link(p); link(r)=q;
6265 if ( name_type(p)==mp_saved_root ) mp_print(mp, "(SAVED)");
6267 mp_show_token_list(mp, r,null,el_gordo,mp->tally);
6268 mp_flush_token_list(mp, r);
6271 @ @<Ascend one level, pushing a token onto list |q|...@>=
6273 if ( name_type(p)==mp_subscr ) {
6274 r=mp_new_num_tok(mp, subscript(p));
6277 } while (name_type(p)!=mp_attr);
6278 } else if ( name_type(p)==mp_structured_root ) {
6279 p=link(p); goto FOUND;
6281 if ( name_type(p)!=mp_attr ) mp_confusion(mp, "var");
6282 @:this can't happen var}{\quad var@>
6283 r=mp_get_avail(mp); info(r)=attr_loc(p);
6290 @ @<Preface the output with a part specifier...@>=
6291 { switch (name_type(p)) {
6292 case mp_x_part_sector: mp_print_char(mp, 'x'); break;
6293 case mp_y_part_sector: mp_print_char(mp, 'y'); break;
6294 case mp_xx_part_sector: mp_print(mp, "xx"); break;
6295 case mp_xy_part_sector: mp_print(mp, "xy"); break;
6296 case mp_yx_part_sector: mp_print(mp, "yx"); break;
6297 case mp_yy_part_sector: mp_print(mp, "yy"); break;
6298 case mp_red_part_sector: mp_print(mp, "red"); break;
6299 case mp_green_part_sector: mp_print(mp, "green"); break;
6300 case mp_blue_part_sector: mp_print(mp, "blue"); break;
6301 case mp_cyan_part_sector: mp_print(mp, "cyan"); break;
6302 case mp_magenta_part_sector: mp_print(mp, "magenta"); break;
6303 case mp_yellow_part_sector: mp_print(mp, "yellow"); break;
6304 case mp_black_part_sector: mp_print(mp, "black"); break;
6305 case mp_grey_part_sector: mp_print(mp, "grey"); break;
6307 mp_print(mp, "%CAPSULE"); mp_print_int(mp, p-null); return;
6310 } /* there are no other cases */
6311 mp_print(mp, "part ");
6312 p=link(p-mp->sector_offset[name_type(p)]);
6315 @ The |interesting| function returns |true| if a given variable is not
6316 in a capsule, or if the user wants to trace capsules.
6319 boolean mp_interesting (MP mp,pointer p) {
6320 small_number t; /* a |name_type| */
6321 if ( mp->internal[mp_tracing_capsules]>0 ) {
6325 if ( t>=mp_x_part_sector ) if ( t!=mp_capsule )
6326 t=name_type(link(p-mp->sector_offset[t]));
6327 return (t!=mp_capsule);
6331 @ Now here is a subroutine that converts an unstructured type into an
6332 equivalent structured type, by inserting a |mp_structured| node that is
6333 capable of growing. This operation is done only when |name_type(p)=root|,
6334 |subscr|, or |attr|.
6336 The procedure returns a pointer to the new node that has taken node~|p|'s
6337 place in the structure. Node~|p| itself does not move, nor are its
6338 |value| or |type| fields changed in any way.
6341 pointer mp_new_structure (MP mp,pointer p) {
6342 pointer q,r=0; /* list manipulation registers */
6343 switch (name_type(p)) {
6345 q=link(p); r=mp_get_node(mp, value_node_size); equiv(q)=r;
6348 @<Link a new subscript node |r| in place of node |p|@>;
6351 @<Link a new attribute node |r| in place of node |p|@>;
6354 mp_confusion(mp, "struct");
6355 @:this can't happen struct}{\quad struct@>
6358 link(r)=link(p); type(r)=mp_structured; name_type(r)=name_type(p);
6359 attr_head(r)=p; name_type(p)=mp_structured_root;
6360 q=mp_get_node(mp, attr_node_size); link(p)=q; subscr_head(r)=q;
6361 parent(q)=r; type(q)=undefined; name_type(q)=mp_attr; link(q)=end_attr;
6362 attr_loc(q)=collective_subscript;
6366 @ @<Link a new subscript node |r| in place of node |p|@>=
6371 } while (name_type(q)!=mp_attr);
6372 q=parent(q); r=subscr_head_loc(q); /* |link(r)=subscr_head(q)| */
6376 r=mp_get_node(mp, subscr_node_size);
6377 link(q)=r; subscript(r)=subscript(p);
6380 @ If the attribute is |collective_subscript|, there are two pointers to
6381 node~|p|, so we must change both of them.
6383 @<Link a new attribute node |r| in place of node |p|@>=
6385 q=parent(p); r=attr_head(q);
6389 r=mp_get_node(mp, attr_node_size); link(q)=r;
6390 mp->mem[attr_loc_loc(r)]=mp->mem[attr_loc_loc(p)]; /* copy |attr_loc| and |parent| */
6391 if ( attr_loc(p)==collective_subscript ) {
6392 q=subscr_head_loc(parent(p));
6393 while ( link(q)!=p ) q=link(q);
6398 @ The |find_variable| routine is given a pointer~|t| to a nonempty token
6399 list of suffixes; it returns a pointer to the corresponding two-word
6400 value. For example, if |t| points to token \.x followed by a numeric
6401 token containing the value~7, |find_variable| finds where the value of
6402 \.{x7} is stored in memory. This may seem a simple task, and it
6403 usually is, except when \.{x7} has never been referenced before.
6404 Indeed, \.x may never have even been subscripted before; complexities
6405 arise with respect to updating the collective subscript information.
6407 If a macro type is detected anywhere along path~|t|, or if the first
6408 item on |t| isn't a |tag_token|, the value |null| is returned.
6409 Otherwise |p| will be a non-null pointer to a node such that
6410 |undefined<type(p)<mp_structured|.
6412 @d abort_find { return null; }
6415 pointer mp_find_variable (MP mp,pointer t) {
6416 pointer p,q,r,s; /* nodes in the ``value'' line */
6417 pointer pp,qq,rr,ss; /* nodes in the ``collective'' line */
6418 integer n; /* subscript or attribute */
6419 memory_word save_word; /* temporary storage for a word of |mem| */
6421 p=info(t); t=link(t);
6422 if ( (eq_type(p) % outer_tag) != tag_token ) abort_find;
6423 if ( equiv(p)==null ) mp_new_root(mp, p);
6426 @<Make sure that both nodes |p| and |pp| are of |mp_structured| type@>;
6427 if ( t<mp->hi_mem_min ) {
6428 @<Descend one level for the subscript |value(t)|@>
6430 @<Descend one level for the attribute |info(t)|@>;
6434 if ( type(pp)>=mp_structured ) {
6435 if ( type(pp)==mp_structured ) pp=attr_head(pp); else abort_find;
6437 if ( type(p)==mp_structured ) p=attr_head(p);
6438 if ( type(p)==undefined ) {
6439 if ( type(pp)==undefined ) { type(pp)=mp_numeric_type; value(pp)=null; };
6440 type(p)=type(pp); value(p)=null;
6445 @ Although |pp| and |p| begin together, they diverge when a subscript occurs;
6446 |pp|~stays in the collective line while |p|~goes through actual subscript
6449 @<Make sure that both nodes |p| and |pp|...@>=
6450 if ( type(pp)!=mp_structured ) {
6451 if ( type(pp)>mp_structured ) abort_find;
6452 ss=mp_new_structure(mp, pp);
6455 }; /* now |type(pp)=mp_structured| */
6456 if ( type(p)!=mp_structured ) /* it cannot be |>mp_structured| */
6457 p=mp_new_structure(mp, p) /* now |type(p)=mp_structured| */
6459 @ We want this part of the program to be reasonably fast, in case there are
6461 lots of subscripts at the same level of the data structure. Therefore
6462 we store an ``infinite'' value in the word that appears at the end of the
6463 subscript list, even though that word isn't part of a subscript node.
6465 @<Descend one level for the subscript |value(t)|@>=
6468 pp=link(attr_head(pp)); /* now |attr_loc(pp)=collective_subscript| */
6469 q=link(attr_head(p)); save_word=mp->mem[subscript_loc(q)];
6470 subscript(q)=el_gordo; s=subscr_head_loc(p); /* |link(s)=subscr_head(p)| */
6473 } while (n>subscript(s));
6474 if ( n==subscript(s) ) {
6477 p=mp_get_node(mp, subscr_node_size); link(r)=p; link(p)=s;
6478 subscript(p)=n; name_type(p)=mp_subscr; type(p)=undefined;
6480 mp->mem[subscript_loc(q)]=save_word;
6483 @ @<Descend one level for the attribute |info(t)|@>=
6489 } while (n>attr_loc(ss));
6490 if ( n<attr_loc(ss) ) {
6491 qq=mp_get_node(mp, attr_node_size); link(rr)=qq; link(qq)=ss;
6492 attr_loc(qq)=n; name_type(qq)=mp_attr; type(qq)=undefined;
6493 parent(qq)=pp; ss=qq;
6498 pp=ss; s=attr_head(p);
6501 } while (n>attr_loc(s));
6502 if ( n==attr_loc(s) ) {
6505 q=mp_get_node(mp, attr_node_size); link(r)=q; link(q)=s;
6506 attr_loc(q)=n; name_type(q)=mp_attr; type(q)=undefined;
6512 @ Variables lose their former values when they appear in a type declaration,
6513 or when they are defined to be macros or \&{let} equal to something else.
6514 A subroutine will be defined later that recycles the storage associated
6515 with any particular |type| or |value|; our goal now is to study a higher
6516 level process called |flush_variable|, which selectively frees parts of a
6519 This routine has some complexity because of examples such as
6520 `\hbox{\tt numeric x[]a[]b}'
6521 which recycles all variables of the form \.{x[i]a[j]b} (and no others), while
6522 `\hbox{\tt vardef x[]a[]=...}'
6523 discards all variables of the form \.{x[i]a[j]} followed by an arbitrary
6524 suffix, except for the collective node \.{x[]a[]} itself. The obvious way
6525 to handle such examples is to use recursion; so that's what we~do.
6528 Parameter |p| points to the root information of the variable;
6529 parameter |t| points to a list of one-word nodes that represent
6530 suffixes, with |info=collective_subscript| for subscripts.
6533 @<Declare subroutines for printing expressions@>
6534 @<Declare basic dependency-list subroutines@>
6535 @<Declare the recycling subroutines@>
6536 void mp_flush_cur_exp (MP mp,scaled v) ;
6537 @<Declare the procedure called |flush_below_variable|@>
6540 void mp_flush_variable (MP mp,pointer p, pointer t, boolean discard_suffixes) {
6541 pointer q,r; /* list manipulation */
6542 halfword n; /* attribute to match */
6544 if ( type(p)!=mp_structured ) return;
6545 n=info(t); t=link(t);
6546 if ( n==collective_subscript ) {
6547 r=subscr_head_loc(p); q=link(r); /* |q=subscr_head(p)| */
6548 while ( name_type(q)==mp_subscr ){
6549 mp_flush_variable(mp, q,t,discard_suffixes);
6551 if ( type(q)==mp_structured ) r=q;
6552 else { link(r)=link(q); mp_free_node(mp, q,subscr_node_size); }
6562 } while (attr_loc(p)<n);
6563 if ( attr_loc(p)!=n ) return;
6565 if ( discard_suffixes ) {
6566 mp_flush_below_variable(mp, p);
6568 if ( type(p)==mp_structured ) p=attr_head(p);
6569 mp_recycle_value(mp, p);
6573 @ The next procedure is simpler; it wipes out everything but |p| itself,
6574 which becomes undefined.
6576 @<Declare the procedure called |flush_below_variable|@>=
6577 void mp_flush_below_variable (MP mp, pointer p);
6580 void mp_flush_below_variable (MP mp,pointer p) {
6581 pointer q,r; /* list manipulation registers */
6582 if ( type(p)!=mp_structured ) {
6583 mp_recycle_value(mp, p); /* this sets |type(p)=undefined| */
6586 while ( name_type(q)==mp_subscr ) {
6587 mp_flush_below_variable(mp, q); r=q; q=link(q);
6588 mp_free_node(mp, r,subscr_node_size);
6590 r=attr_head(p); q=link(r); mp_recycle_value(mp, r);
6591 if ( name_type(p)<=mp_saved_root ) mp_free_node(mp, r,value_node_size);
6592 else mp_free_node(mp, r,subscr_node_size);
6593 /* we assume that |subscr_node_size=attr_node_size| */
6595 mp_flush_below_variable(mp, q); r=q; q=link(q); mp_free_node(mp, r,attr_node_size);
6596 } while (q!=end_attr);
6601 @ Just before assigning a new value to a variable, we will recycle the
6602 old value and make the old value undefined. The |und_type| routine
6603 determines what type of undefined value should be given, based on
6604 the current type before recycling.
6607 small_number mp_und_type (MP mp,pointer p) {
6609 case undefined: case mp_vacuous:
6611 case mp_boolean_type: case mp_unknown_boolean:
6612 return mp_unknown_boolean;
6613 case mp_string_type: case mp_unknown_string:
6614 return mp_unknown_string;
6615 case mp_pen_type: case mp_unknown_pen:
6616 return mp_unknown_pen;
6617 case mp_path_type: case mp_unknown_path:
6618 return mp_unknown_path;
6619 case mp_picture_type: case mp_unknown_picture:
6620 return mp_unknown_picture;
6621 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
6622 case mp_pair_type: case mp_numeric_type:
6624 case mp_known: case mp_dependent: case mp_proto_dependent: case mp_independent:
6625 return mp_numeric_type;
6626 } /* there are no other cases */
6630 @ The |clear_symbol| routine is used when we want to redefine the equivalent
6631 of a symbolic token. It must remove any variable structure or macro
6632 definition that is currently attached to that symbol. If the |saving|
6633 parameter is true, a subsidiary structure is saved instead of destroyed.
6636 void mp_clear_symbol (MP mp,pointer p, boolean saving) {
6637 pointer q; /* |equiv(p)| */
6639 switch (eq_type(p) % outer_tag) {
6641 case secondary_primary_macro:
6642 case tertiary_secondary_macro:
6643 case expression_tertiary_macro:
6644 if ( ! saving ) mp_delete_mac_ref(mp, q);
6649 name_type(q)=mp_saved_root;
6651 mp_flush_below_variable(mp, q); mp_free_node(mp,q,value_node_size);
6658 mp->eqtb[p]=mp->eqtb[frozen_undefined];
6661 @* \[16] Saving and restoring equivalents.
6662 The nested structure given by \&{begingroup} and \&{endgroup}
6663 allows |eqtb| entries to be saved and restored, so that temporary changes
6664 can be made without difficulty. When the user requests a current value to
6665 be saved, \MP\ puts that value into its ``save stack.'' An appearance of
6666 \&{endgroup} ultimately causes the old values to be removed from the save
6667 stack and put back in their former places.
6669 The save stack is a linked list containing three kinds of entries,
6670 distinguished by their |info| fields. If |p| points to a saved item,
6674 |info(p)=0| stands for a group boundary; each \&{begingroup} contributes
6675 such an item to the save stack and each \&{endgroup} cuts back the stack
6676 until the most recent such entry has been removed.
6679 |info(p)=q|, where |1<=q<=hash_end|, means that |mem[p+1]| holds the former
6680 contents of |eqtb[q]|. Such save stack entries are generated by \&{save}
6681 commands or suitable \&{interim} commands.
6684 |info(p)=hash_end+q|, where |q>0|, means that |value(p)| is a |scaled|
6685 integer to be restored to internal parameter number~|q|. Such entries
6686 are generated by \&{interim} commands.
6689 The global variable |save_ptr| points to the top item on the save stack.
6691 @d save_node_size 2 /* number of words per non-boundary save-stack node */
6692 @d saved_equiv(A) mp->mem[(A)+1].hh /* where an |eqtb| entry gets saved */
6693 @d save_boundary_item(A) { (A)=mp_get_avail(mp); info((A))=0;
6694 link((A))=mp->save_ptr; mp->save_ptr=(A);
6698 pointer save_ptr; /* the most recently saved item */
6700 @ @<Set init...@>=mp->save_ptr=null;
6702 @ The |save_variable| routine is given a hash address |q|; it salts this
6703 address in the save stack, together with its current equivalent,
6704 then makes token~|q| behave as though it were brand new.
6706 Nothing is stacked when |save_ptr=null|, however; there's no way to remove
6707 things from the stack when the program is not inside a group, so there's
6708 no point in wasting the space.
6710 @c void mp_save_variable (MP mp,pointer q) {
6711 pointer p; /* temporary register */
6712 if ( mp->save_ptr!=null ){
6713 p=mp_get_node(mp, save_node_size); info(p)=q; link(p)=mp->save_ptr;
6714 saved_equiv(p)=mp->eqtb[q]; mp->save_ptr=p;
6716 mp_clear_symbol(mp, q,(mp->save_ptr!=null));
6719 @ Similarly, |save_internal| is given the location |q| of an internal
6720 quantity like |mp_tracing_pens|. It creates a save stack entry of the
6723 @c void mp_save_internal (MP mp,halfword q) {
6724 pointer p; /* new item for the save stack */
6725 if ( mp->save_ptr!=null ){
6726 p=mp_get_node(mp, save_node_size); info(p)=hash_end+q;
6727 link(p)=mp->save_ptr; value(p)=mp->internal[q]; mp->save_ptr=p;
6731 @ At the end of a group, the |unsave| routine restores all of the saved
6732 equivalents in reverse order. This routine will be called only when there
6733 is at least one boundary item on the save stack.
6736 void mp_unsave (MP mp) {
6737 pointer q; /* index to saved item */
6738 pointer p; /* temporary register */
6739 while ( info(mp->save_ptr)!=0 ) {
6740 q=info(mp->save_ptr);
6742 if ( mp->internal[mp_tracing_restores]>0 ) {
6743 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6744 mp_print(mp, mp->int_name[q-(hash_end)]); mp_print_char(mp, '=');
6745 mp_print_scaled(mp, value(mp->save_ptr)); mp_print_char(mp, '}');
6746 mp_end_diagnostic(mp, false);
6748 mp->internal[q-(hash_end)]=value(mp->save_ptr);
6750 if ( mp->internal[mp_tracing_restores]>0 ) {
6751 mp_begin_diagnostic(mp); mp_print_nl(mp, "{restoring ");
6752 mp_print_text(q); mp_print_char(mp, '}');
6753 mp_end_diagnostic(mp, false);
6755 mp_clear_symbol(mp, q,false);
6756 mp->eqtb[q]=saved_equiv(mp->save_ptr);
6757 if ( eq_type(q) % outer_tag==tag_token ) {
6759 if ( p!=null ) name_type(p)=mp_root;
6762 p=link(mp->save_ptr);
6763 mp_free_node(mp, mp->save_ptr,save_node_size); mp->save_ptr=p;
6765 p=link(mp->save_ptr); free_avail(mp->save_ptr); mp->save_ptr=p;
6768 @* \[17] Data structures for paths.
6769 When a \MP\ user specifies a path, \MP\ will create a list of knots
6770 and control points for the associated cubic spline curves. If the
6771 knots are $z_0$, $z_1$, \dots, $z_n$, there are control points
6772 $z_k^+$ and $z_{k+1}^-$ such that the cubic splines between knots
6773 $z_k$ and $z_{k+1}$ are defined by B\'ezier's formula
6774 @:Bezier}{B\'ezier, Pierre Etienne@>
6775 $$\eqalign{z(t)&=B(z_k,z_k^+,z_{k+1}^-,z_{k+1};t)\cr
6776 &=(1-t)^3z_k+3(1-t)^2tz_k^++3(1-t)t^2z_{k+1}^-+t^3z_{k+1}\cr}$$
6779 There is a 8-word node for each knot $z_k$, containing one word of
6780 control information and six words for the |x| and |y| coordinates of
6781 $z_k^-$ and $z_k$ and~$z_k^+$. The control information appears in the
6782 |left_type| and |right_type| fields, which each occupy a quarter of
6783 the first word in the node; they specify properties of the curve as it
6784 enters and leaves the knot. There's also a halfword |link| field,
6785 which points to the following knot, and a final supplementary word (of
6786 which only a quarter is used).
6788 If the path is a closed contour, knots 0 and |n| are identical;
6789 i.e., the |link| in knot |n-1| points to knot~0. But if the path
6790 is not closed, the |left_type| of knot~0 and the |right_type| of knot~|n|
6791 are equal to |endpoint|. In the latter case the |link| in knot~|n| points
6792 to knot~0, and the control points $z_0^-$ and $z_n^+$ are not used.
6794 @d left_type(A) mp->mem[(A)].hh.b0 /* characterizes the path entering this knot */
6795 @d right_type(A) mp->mem[(A)].hh.b1 /* characterizes the path leaving this knot */
6796 @d x_coord(A) mp->mem[(A)+1].sc /* the |x| coordinate of this knot */
6797 @d y_coord(A) mp->mem[(A)+2].sc /* the |y| coordinate of this knot */
6798 @d left_x(A) mp->mem[(A)+3].sc /* the |x| coordinate of previous control point */
6799 @d left_y(A) mp->mem[(A)+4].sc /* the |y| coordinate of previous control point */
6800 @d right_x(A) mp->mem[(A)+5].sc /* the |x| coordinate of next control point */
6801 @d right_y(A) mp->mem[(A)+6].sc /* the |y| coordinate of next control point */
6802 @d x_loc(A) ((A)+1) /* where the |x| coordinate is stored in a knot */
6803 @d y_loc(A) ((A)+2) /* where the |y| coordinate is stored in a knot */
6804 @d knot_coord(A) mp->mem[(A)].sc /* |x| or |y| coordinate given |x_loc| or |y_loc| */
6805 @d left_coord(A) mp->mem[(A)+2].sc
6806 /* coordinate of previous control point given |x_loc| or |y_loc| */
6807 @d right_coord(A) mp->mem[(A)+4].sc
6808 /* coordinate of next control point given |x_loc| or |y_loc| */
6809 @d knot_node_size 8 /* number of words in a knot node */
6813 mp_endpoint=0, /* |left_type| at path beginning and |right_type| at path end */
6814 mp_explicit, /* |left_type| or |right_type| when control points are known */
6815 mp_given, /* |left_type| or |right_type| when a direction is given */
6816 mp_curl, /* |left_type| or |right_type| when a curl is desired */
6817 mp_open, /* |left_type| or |right_type| when \MP\ should choose the direction */
6821 @ Before the B\'ezier control points have been calculated, the memory
6822 space they will ultimately occupy is taken up by information that can be
6823 used to compute them. There are four cases:
6826 \textindent{$\bullet$} If |right_type=mp_open|, the curve should leave
6827 the knot in the same direction it entered; \MP\ will figure out a
6831 \textindent{$\bullet$} If |right_type=mp_curl|, the curve should leave the
6832 knot in a direction depending on the angle at which it enters the next
6833 knot and on the curl parameter stored in |right_curl|.
6836 \textindent{$\bullet$} If |right_type=mp_given|, the curve should leave the
6837 knot in a nonzero direction stored as an |angle| in |right_given|.
6840 \textindent{$\bullet$} If |right_type=mp_explicit|, the B\'ezier control
6841 point for leaving this knot has already been computed; it is in the
6842 |right_x| and |right_y| fields.
6845 The rules for |left_type| are similar, but they refer to the curve entering
6846 the knot, and to \\{left} fields instead of \\{right} fields.
6848 Non-|explicit| control points will be chosen based on ``tension'' parameters
6849 in the |left_tension| and |right_tension| fields. The
6850 `\&{atleast}' option is represented by negative tension values.
6851 @:at_least_}{\&{atleast} primitive@>
6853 For example, the \MP\ path specification
6854 $$\.{z0..z1..tension atleast 1..\{curl 2\}z2..z3\{-1,-2\}..tension
6856 where \.p is the path `\.{z4..controls z45 and z54..z5}', will be represented
6858 \def\lodash{\hbox to 1.1em{\thinspace\hrulefill\thinspace}}
6859 $$\vbox{\halign{#\hfil&&\qquad#\hfil\cr
6860 |left_type|&\\{left} info&|x_coord,y_coord|&|right_type|&\\{right} info\cr
6862 |endpoint|&\lodash$,\,$\lodash&$x_0,y_0$&|curl|&$1.0,1.0$\cr
6863 |open|&\lodash$,1.0$&$x_1,y_1$&|open|&\lodash$,-1.0$\cr
6864 |curl|&$2.0,-1.0$&$x_2,y_2$&|curl|&$2.0,1.0$\cr
6865 |given|&$d,1.0$&$x_3,y_3$&|given|&$d,3.0$\cr
6866 |open|&\lodash$,4.0$&$x_4,y_4$&|explicit|&$x_{45},y_{45}$\cr
6867 |explicit|&$x_{54},y_{54}$&$x_5,y_5$&|endpoint|&\lodash$,\,$\lodash\cr}}$$
6868 Here |d| is the |angle| obtained by calling |n_arg(-unity,-two)|.
6869 Of course, this example is more complicated than anything a normal user
6872 These types must satisfy certain restrictions because of the form of \MP's
6874 (i)~|open| type never appears in the same node together with |endpoint|,
6876 (ii)~The |right_type| of a node is |explicit| if and only if the
6877 |left_type| of the following node is |explicit|.
6878 (iii)~|endpoint| types occur only at the ends, as mentioned above.
6880 @d left_curl left_x /* curl information when entering this knot */
6881 @d left_given left_x /* given direction when entering this knot */
6882 @d left_tension left_y /* tension information when entering this knot */
6883 @d right_curl right_x /* curl information when leaving this knot */
6884 @d right_given right_x /* given direction when leaving this knot */
6885 @d right_tension right_y /* tension information when leaving this knot */
6887 @ Knots can be user-supplied, or they can be created by program code,
6888 like the |split_cubic| function, or |copy_path|. The distinction is
6889 needed for the cleanup routine that runs after |split_cubic|, because
6890 it should only delete knots it has previously inserted, and never
6891 anything that was user-supplied. In order to be able to differentiate
6892 one knot from another, we will set |originator(p):=mp_metapost_user| when
6893 it appeared in the actual metapost program, and
6894 |originator(p):=mp_program_code| in all other cases.
6896 @d originator(A) mp->mem[(A)+7].hh.b0 /* the creator of this knot */
6900 mp_program_code=0, /* not created by a user */
6901 mp_metapost_user, /* created by a user */
6904 @ Here is a routine that prints a given knot list
6905 in symbolic form. It illustrates the conventions discussed above,
6906 and checks for anomalies that might arise while \MP\ is being debugged.
6908 @<Declare subroutines for printing expressions@>=
6909 void mp_pr_path (MP mp,pointer h);
6912 void mp_pr_path (MP mp,pointer h) {
6913 pointer p,q; /* for list traversal */
6917 if ( (p==null)||(q==null) ) {
6918 mp_print_nl(mp, "???"); return; /* this won't happen */
6921 @<Print information for adjacent knots |p| and |q|@>;
6924 if ( (p!=h)||(left_type(h)!=mp_endpoint) ) {
6925 @<Print two dots, followed by |given| or |curl| if present@>;
6928 if ( left_type(h)!=mp_endpoint )
6929 mp_print(mp, "cycle");
6932 @ @<Print information for adjacent knots...@>=
6933 mp_print_two(mp, x_coord(p),y_coord(p));
6934 switch (right_type(p)) {
6936 if ( left_type(p)==mp_open ) mp_print(mp, "{open?}"); /* can't happen */
6938 if ( (left_type(q)!=mp_endpoint)||(q!=h) ) q=null; /* force an error */
6942 @<Print control points between |p| and |q|, then |goto done1|@>;
6945 @<Print information for a curve that begins |open|@>;
6949 @<Print information for a curve that begins |curl| or |given|@>;
6952 mp_print(mp, "???"); /* can't happen */
6956 if ( left_type(q)<=mp_explicit ) {
6957 mp_print(mp, "..control?"); /* can't happen */
6959 } else if ( (right_tension(p)!=unity)||(left_tension(q)!=unity) ) {
6960 @<Print tension between |p| and |q|@>;
6963 @ Since |n_sin_cos| produces |fraction| results, which we will print as if they
6964 were |scaled|, the magnitude of a |given| direction vector will be~4096.
6966 @<Print two dots...@>=
6968 mp_print_nl(mp, " ..");
6969 if ( left_type(p)==mp_given ) {
6970 mp_n_sin_cos(mp, left_given(p)); mp_print_char(mp, '{');
6971 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
6972 mp_print_scaled(mp, mp->n_sin); mp_print_char(mp, '}');
6973 } else if ( left_type(p)==mp_curl ){
6974 mp_print(mp, "{curl ");
6975 mp_print_scaled(mp, left_curl(p)); mp_print_char(mp, '}');
6979 @ @<Print tension between |p| and |q|@>=
6981 mp_print(mp, "..tension ");
6982 if ( right_tension(p)<0 ) mp_print(mp, "atleast");
6983 mp_print_scaled(mp, abs(right_tension(p)));
6984 if ( right_tension(p)!=left_tension(q) ){
6985 mp_print(mp, " and ");
6986 if ( left_tension(q)<0 ) mp_print(mp, "atleast");
6987 mp_print_scaled(mp, abs(left_tension(q)));
6991 @ @<Print control points between |p| and |q|, then |goto done1|@>=
6993 mp_print(mp, "..controls ");
6994 mp_print_two(mp, right_x(p),right_y(p));
6995 mp_print(mp, " and ");
6996 if ( left_type(q)!=mp_explicit ) {
6997 mp_print(mp, "??"); /* can't happen */
7000 mp_print_two(mp, left_x(q),left_y(q));
7005 @ @<Print information for a curve that begins |open|@>=
7006 if ( (left_type(p)!=mp_explicit)&&(left_type(p)!=mp_open) ) {
7007 mp_print(mp, "{open?}"); /* can't happen */
7011 @ A curl of 1 is shown explicitly, so that the user sees clearly that
7012 \MP's default curl is present.
7014 The code here uses the fact that |left_curl==left_given| and
7015 |right_curl==right_given|.
7017 @<Print information for a curve that begins |curl|...@>=
7019 if ( left_type(p)==mp_open )
7020 mp_print(mp, "??"); /* can't happen */
7022 if ( right_type(p)==mp_curl ) {
7023 mp_print(mp, "{curl "); mp_print_scaled(mp, right_curl(p));
7025 mp_n_sin_cos(mp, right_given(p)); mp_print_char(mp, '{');
7026 mp_print_scaled(mp, mp->n_cos); mp_print_char(mp, ',');
7027 mp_print_scaled(mp, mp->n_sin);
7029 mp_print_char(mp, '}');
7032 @ It is convenient to have another version of |pr_path| that prints the path
7033 as a diagnostic message.
7035 @<Declare subroutines for printing expressions@>=
7036 void mp_print_path (MP mp,pointer h, char *s, boolean nuline) {
7037 mp_print_diagnostic(mp, "Path", s, nuline); mp_print_ln(mp);
7040 mp_end_diagnostic(mp, true);
7043 @ If we want to duplicate a knot node, we can say |copy_knot|:
7046 pointer mp_copy_knot (MP mp,pointer p) {
7047 pointer q; /* the copy */
7048 int k; /* runs through the words of a knot node */
7049 q=mp_get_node(mp, knot_node_size);
7050 for (k=0;k<knot_node_size;k++) {
7051 mp->mem[q+k]=mp->mem[p+k];
7053 originator(q)=originator(p);
7057 @ The |copy_path| routine makes a clone of a given path.
7060 pointer mp_copy_path (MP mp, pointer p) {
7061 pointer q,pp,qq; /* for list manipulation */
7062 q=mp_copy_knot(mp, p);
7065 link(qq)=mp_copy_knot(mp, pp);
7074 @ Just before |ship_out|, knot lists are exported for printing.
7076 @d gr_left_type(A) (A)->left_type_field
7077 @d gr_right_type(A) (A)->right_type_field
7078 @d gr_x_coord(A) (A)->x_coord_field
7079 @d gr_y_coord(A) (A)->y_coord_field
7080 @d gr_left_x(A) (A)->left_x_field
7081 @d gr_left_y(A) (A)->left_y_field
7082 @d gr_right_x(A) (A)->right_x_field
7083 @d gr_right_y(A) (A)->right_y_field
7084 @d gr_next_knot(A) (A)->next_field
7085 @d gr_originator(A) (A)->originator_field
7088 struct mp_knot *mp_export_knot (MP mp,pointer p) {
7089 struct mp_knot *q; /* the copy */
7092 q = mp_xmalloc(mp, 1, sizeof (struct mp_knot));
7093 memset(q,0,sizeof (struct mp_knot));
7094 gr_left_type(q) = left_type(p);
7095 gr_right_type(q) = right_type(p);
7096 gr_x_coord(q) = x_coord(p);
7097 gr_y_coord(q) = y_coord(p);
7098 gr_left_x(q) = left_x(p);
7099 gr_left_y(q) = left_y(p);
7100 gr_right_x(q) = right_x(p);
7101 gr_right_y(q) = right_y(p);
7102 gr_originator(q) = originator(p);
7106 @ The |export_knot_list| routine therefore also makes a clone
7110 struct mp_knot *mp_export_knot_list (MP mp, pointer p) {
7111 struct mp_knot *q, *qq; /* for list manipulation */
7112 pointer pp; /* for list manipulation */
7115 q=mp_export_knot(mp, p);
7118 gr_next_knot(qq)=mp_export_knot(mp, pp);
7119 qq=gr_next_knot(qq);
7127 @ Similarly, there's a way to copy the {\sl reverse\/} of a path. This procedure
7128 returns a pointer to the first node of the copy, if the path is a cycle,
7129 but to the final node of a non-cyclic copy. The global
7130 variable |path_tail| will point to the final node of the original path;
7131 this trick makes it easier to implement `\&{doublepath}'.
7133 All node types are assumed to be |endpoint| or |explicit| only.
7136 pointer mp_htap_ypoc (MP mp,pointer p) {
7137 pointer q,pp,qq,rr; /* for list manipulation */
7138 q=mp_get_node(mp, knot_node_size); /* this will correspond to |p| */
7141 right_type(qq)=left_type(pp); left_type(qq)=right_type(pp);
7142 x_coord(qq)=x_coord(pp); y_coord(qq)=y_coord(pp);
7143 right_x(qq)=left_x(pp); right_y(qq)=left_y(pp);
7144 left_x(qq)=right_x(pp); left_y(qq)=right_y(pp);
7145 originator(qq)=originator(pp);
7146 if ( link(pp)==p ) {
7147 link(q)=qq; mp->path_tail=pp; return q;
7149 rr=mp_get_node(mp, knot_node_size); link(rr)=qq; qq=rr; pp=link(pp);
7154 pointer path_tail; /* the node that links to the beginning of a path */
7156 @ When a cyclic list of knot nodes is no longer needed, it can be recycled by
7157 calling the following subroutine.
7159 @<Declare the recycling subroutines@>=
7160 void mp_toss_knot_list (MP mp,pointer p) ;
7163 void mp_toss_knot_list (MP mp,pointer p) {
7164 pointer q; /* the node being freed */
7165 pointer r; /* the next node */
7169 mp_free_node(mp, q,knot_node_size); q=r;
7173 @* \[18] Choosing control points.
7174 Now we must actually delve into one of \MP's more difficult routines,
7175 the |make_choices| procedure that chooses angles and control points for
7176 the splines of a curve when the user has not specified them explicitly.
7177 The parameter to |make_choices| points to a list of knots and
7178 path information, as described above.
7180 A path decomposes into independent segments at ``breakpoint'' knots,
7181 which are knots whose left and right angles are both prespecified in
7182 some way (i.e., their |left_type| and |right_type| aren't both open).
7185 @<Declare the procedure called |solve_choices|@>;
7186 void mp_make_choices (MP mp,pointer knots) {
7187 pointer h; /* the first breakpoint */
7188 pointer p,q; /* consecutive breakpoints being processed */
7189 @<Other local variables for |make_choices|@>;
7190 check_arith; /* make sure that |arith_error=false| */
7191 if ( mp->internal[mp_tracing_choices]>0 )
7192 mp_print_path(mp, knots,", before choices",true);
7193 @<If consecutive knots are equal, join them explicitly@>;
7194 @<Find the first breakpoint, |h|, on the path;
7195 insert an artificial breakpoint if the path is an unbroken cycle@>;
7198 @<Fill in the control points between |p| and the next breakpoint,
7199 then advance |p| to that breakpoint@>;
7201 if ( mp->internal[mp_tracing_choices]>0 )
7202 mp_print_path(mp, knots,", after choices",true);
7203 if ( mp->arith_error ) {
7204 @<Report an unexpected problem during the choice-making@>;
7208 @ @<Report an unexpected problem during the choice...@>=
7210 print_err("Some number got too big");
7211 @.Some number got too big@>
7212 help2("The path that I just computed is out of range.")
7213 ("So it will probably look funny. Proceed, for a laugh.");
7214 mp_put_get_error(mp); mp->arith_error=false;
7217 @ Two knots in a row with the same coordinates will always be joined
7218 by an explicit ``curve'' whose control points are identical with the
7221 @<If consecutive knots are equal, join them explicitly@>=
7225 if ( x_coord(p)==x_coord(q) && y_coord(p)==y_coord(q) && right_type(p)>mp_explicit ) {
7226 right_type(p)=mp_explicit;
7227 if ( left_type(p)==mp_open ) {
7228 left_type(p)=mp_curl; left_curl(p)=unity;
7230 left_type(q)=mp_explicit;
7231 if ( right_type(q)==mp_open ) {
7232 right_type(q)=mp_curl; right_curl(q)=unity;
7234 right_x(p)=x_coord(p); left_x(q)=x_coord(p);
7235 right_y(p)=y_coord(p); left_y(q)=y_coord(p);
7240 @ If there are no breakpoints, it is necessary to compute the direction
7241 angles around an entire cycle. In this case the |left_type| of the first
7242 node is temporarily changed to |end_cycle|.
7244 @<Find the first breakpoint, |h|, on the path...@>=
7247 if ( left_type(h)!=mp_open ) break;
7248 if ( right_type(h)!=mp_open ) break;
7251 left_type(h)=mp_end_cycle; break;
7255 @ If |right_type(p)<given| and |q=link(p)|, we must have
7256 |right_type(p)=left_type(q)=mp_explicit| or |endpoint|.
7258 @<Fill in the control points between |p| and the next breakpoint...@>=
7260 if ( right_type(p)>=mp_given ) {
7261 while ( (left_type(q)==mp_open)&&(right_type(q)==mp_open) ) q=link(q);
7262 @<Fill in the control information between
7263 consecutive breakpoints |p| and |q|@>;
7264 } else if ( right_type(p)==mp_endpoint ) {
7265 @<Give reasonable values for the unused control points between |p| and~|q|@>;
7269 @ This step makes it possible to transform an explicitly computed path without
7270 checking the |left_type| and |right_type| fields.
7272 @<Give reasonable values for the unused control points between |p| and~|q|@>=
7274 right_x(p)=x_coord(p); right_y(p)=y_coord(p);
7275 left_x(q)=x_coord(q); left_y(q)=y_coord(q);
7278 @ Before we can go further into the way choices are made, we need to
7279 consider the underlying theory. The basic ideas implemented in |make_choices|
7280 are due to John Hobby, who introduced the notion of ``mock curvature''
7281 @^Hobby, John Douglas@>
7282 at a knot. Angles are chosen so that they preserve mock curvature when
7283 a knot is passed, and this has been found to produce excellent results.
7285 It is convenient to introduce some notations that simplify the necessary
7286 formulas. Let $d_{k,k+1}=\vert z\k-z_k\vert$ be the (nonzero) distance
7287 between knots |k| and |k+1|; and let
7288 $${z\k-z_k\over z_k-z_{k-1}}={d_{k,k+1}\over d_{k-1,k}}e^{i\psi_k}$$
7289 so that a polygonal line from $z_{k-1}$ to $z_k$ to $z\k$ turns left
7290 through an angle of~$\psi_k$. We assume that $\vert\psi_k\vert\L180^\circ$.
7291 The control points for the spline from $z_k$ to $z\k$ will be denoted by
7292 $$\eqalign{z_k^+&=z_k+
7293 \textstyle{1\over3}\rho_k e^{i\theta_k}(z\k-z_k),\cr
7295 \textstyle{1\over3}\sigma\k e^{-i\phi\k}(z\k-z_k),\cr}$$
7296 where $\rho_k$ and $\sigma\k$ are nonnegative ``velocity ratios'' at the
7297 beginning and end of the curve, while $\theta_k$ and $\phi\k$ are the
7298 corresponding ``offset angles.'' These angles satisfy the condition
7299 $$\theta_k+\phi_k+\psi_k=0,\eqno(*)$$
7300 whenever the curve leaves an intermediate knot~|k| in the direction that
7303 @ Let $\alpha_k$ and $\beta\k$ be the reciprocals of the ``tension'' of
7304 the curve at its beginning and ending points. This means that
7305 $\rho_k=\alpha_k f(\theta_k,\phi\k)$ and $\sigma\k=\beta\k f(\phi\k,\theta_k)$,
7306 where $f(\theta,\phi)$ is \MP's standard velocity function defined in
7307 the |velocity| subroutine. The cubic spline $B(z_k^{\phantom+},z_k^+,
7308 z\k^-,z\k^{\phantom+};t)$
7311 $${2\sigma\k\sin(\theta_k+\phi\k)-6\sin\theta_k\over\rho_k^2d_{k,k+1}}
7312 \qquad{\rm and}\qquad
7313 {2\rho_k\sin(\theta_k+\phi\k)-6\sin\phi\k\over\sigma\k^2d_{k,k+1}}$$
7314 at |t=0| and |t=1|, respectively. The mock curvature is the linear
7316 approximation to this true curvature that arises in the limit for
7317 small $\theta_k$ and~$\phi\k$, if second-order terms are discarded.
7318 The standard velocity function satisfies
7319 $$f(\theta,\phi)=1+O(\theta^2+\theta\phi+\phi^2);$$
7320 hence the mock curvatures are respectively
7321 $${2\beta\k(\theta_k+\phi\k)-6\theta_k\over\alpha_k^2d_{k,k+1}}
7322 \qquad{\rm and}\qquad
7323 {2\alpha_k(\theta_k+\phi\k)-6\phi\k\over\beta\k^2d_{k,k+1}}.\eqno(**)$$
7325 @ The turning angles $\psi_k$ are given, and equation $(*)$ above
7326 determines $\phi_k$ when $\theta_k$ is known, so the task of
7327 angle selection is essentially to choose appropriate values for each
7328 $\theta_k$. When equation~$(*)$ is used to eliminate $\phi$~variables
7329 from $(**)$, we obtain a system of linear equations of the form
7330 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7332 $$A_k={\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7333 \qquad B_k={3-\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
7334 \qquad C_k={3-\beta\k\over\alpha_k^2d_{k,k+1}},
7335 \qquad D_k={\beta\k\over\alpha_k^2d_{k,k+1}}.$$
7336 The tensions are always $3\over4$ or more, hence each $\alpha$ and~$\beta$
7337 will be at most $4\over3$. It follows that $B_k\G{5\over4}A_k$ and
7338 $C_k\G{5\over4}D_k$; hence the equations are diagonally dominant;
7339 hence they have a unique solution. Moreover, in most cases the tensions
7340 are equal to~1, so that $B_k=2A_k$ and $C_k=2D_k$. This makes the
7341 solution numerically stable, and there is an exponential damping
7342 effect: The data at knot $k\pm j$ affects the angle at knot~$k$ by
7343 a factor of~$O(2^{-j})$.
7345 @ However, we still must consider the angles at the starting and ending
7346 knots of a non-cyclic path. These angles might be given explicitly, or
7347 they might be specified implicitly in terms of an amount of ``curl.''
7349 Let's assume that angles need to be determined for a non-cyclic path
7350 starting at $z_0$ and ending at~$z_n$. Then equations of the form
7351 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta_{k+1}=R_k$$
7352 have been given for $0<k<n$, and it will be convenient to introduce
7353 equations of the same form for $k=0$ and $k=n$, where
7354 $$A_0=B_0=C_n=D_n=0.$$
7355 If $\theta_0$ is supposed to have a given value $E_0$, we simply
7356 define $C_0=0$, $D_0=0$, and $R_0=E_0$. Otherwise a curl
7357 parameter, $\gamma_0$, has been specified at~$z_0$; this means
7358 that the mock curvature at $z_0$ should be $\gamma_0$ times the
7359 mock curvature at $z_1$; i.e.,
7360 $${2\beta_1(\theta_0+\phi_1)-6\theta_0\over\alpha_0^2d_{01}}
7361 =\gamma_0{2\alpha_0(\theta_0+\phi_1)-6\phi_1\over\beta_1^2d_{01}}.$$
7362 This equation simplifies to
7363 $$(\alpha_0\chi_0+3-\beta_1)\theta_0+
7364 \bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\theta_1=
7365 -\bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\psi_1,$$
7366 where $\chi_0=\alpha_0^2\gamma_0/\beta_1^2$; so we can set $C_0=
7367 \chi_0\alpha_0+3-\beta_1$, $D_0=(3-\alpha_0)\chi_0+\beta_1$, $R_0=-D_0\psi_1$.
7368 It can be shown that $C_0>0$ and $C_0B_1-A_1D_0>0$ when $\gamma_0\G0$,
7369 hence the linear equations remain nonsingular.
7371 Similar considerations apply at the right end, when the final angle $\phi_n$
7372 may or may not need to be determined. It is convenient to let $\psi_n=0$,
7373 hence $\theta_n=-\phi_n$. We either have an explicit equation $\theta_n=E_n$,
7375 $$\bigl((3-\beta_n)\chi_n+\alpha_{n-1}\bigr)\theta_{n-1}+
7376 (\beta_n\chi_n+3-\alpha_{n-1})\theta_n=0,\qquad
7377 \chi_n={\beta_n^2\gamma_n\over\alpha_{n-1}^2}.$$
7379 When |make_choices| chooses angles, it must compute the coefficients of
7380 these linear equations, then solve the equations. To compute the coefficients,
7381 it is necessary to compute arctangents of the given turning angles~$\psi_k$.
7382 When the equations are solved, the chosen directions $\theta_k$ are put
7383 back into the form of control points by essentially computing sines and
7386 @ OK, we are ready to make the hard choices of |make_choices|.
7387 Most of the work is relegated to an auxiliary procedure
7388 called |solve_choices|, which has been introduced to keep
7389 |make_choices| from being extremely long.
7391 @<Fill in the control information between...@>=
7392 @<Calculate the turning angles $\psi_k$ and the distances $d_{k,k+1}$;
7393 set $n$ to the length of the path@>;
7394 @<Remove |open| types at the breakpoints@>;
7395 mp_solve_choices(mp, p,q,n)
7397 @ It's convenient to precompute quantities that will be needed several
7398 times later. The values of |delta_x[k]| and |delta_y[k]| will be the
7399 coordinates of $z\k-z_k$, and the magnitude of this vector will be
7400 |delta[k]=@t$d_{k,k+1}$@>|. The path angle $\psi_k$ between $z_k-z_{k-1}$
7401 and $z\k-z_k$ will be stored in |psi[k]|.
7404 int path_size; /* maximum number of knots between breakpoints of a path */
7407 scaled *delta; /* knot differences */
7408 angle *psi; /* turning angles */
7410 @ @<Allocate or initialize ...@>=
7416 @ @<Dealloc variables@>=
7422 @ @<Other local variables for |make_choices|@>=
7423 int k,n; /* current and final knot numbers */
7424 pointer s,t; /* registers for list traversal */
7425 scaled delx,dely; /* directions where |open| meets |explicit| */
7426 fraction sine,cosine; /* trig functions of various angles */
7428 @ @<Calculate the turning angles...@>=
7431 k=0; s=p; n=mp->path_size;
7434 mp->delta_x[k]=x_coord(t)-x_coord(s);
7435 mp->delta_y[k]=y_coord(t)-y_coord(s);
7436 mp->delta[k]=mp_pyth_add(mp, mp->delta_x[k],mp->delta_y[k]);
7438 sine=mp_make_fraction(mp, mp->delta_y[k-1],mp->delta[k-1]);
7439 cosine=mp_make_fraction(mp, mp->delta_x[k-1],mp->delta[k-1]);
7440 mp->psi[k]=mp_n_arg(mp, mp_take_fraction(mp, mp->delta_x[k],cosine)+
7441 mp_take_fraction(mp, mp->delta_y[k],sine),
7442 mp_take_fraction(mp, mp->delta_y[k],cosine)-
7443 mp_take_fraction(mp, mp->delta_x[k],sine));
7446 if ( k==mp->path_size ) {
7447 mp_reallocate_paths(mp, mp->path_size+(mp->path_size>>2));
7448 goto RESTART; /* retry, loop size has changed */
7451 } while (!((k>=n)&&(left_type(s)!=mp_end_cycle)));
7452 if ( k==n ) mp->psi[n]=0; else mp->psi[k]=mp->psi[1];
7455 @ When we get to this point of the code, |right_type(p)| is either
7456 |given| or |curl| or |open|. If it is |open|, we must have
7457 |left_type(p)=mp_end_cycle| or |left_type(p)=mp_explicit|. In the latter
7458 case, the |open| type is converted to |given|; however, if the
7459 velocity coming into this knot is zero, the |open| type is
7460 converted to a |curl|, since we don't know the incoming direction.
7462 Similarly, |left_type(q)| is either |given| or |curl| or |open| or
7463 |mp_end_cycle|. The |open| possibility is reduced either to |given| or to |curl|.
7465 @<Remove |open| types at the breakpoints@>=
7466 if ( left_type(q)==mp_open ) {
7467 delx=right_x(q)-x_coord(q); dely=right_y(q)-y_coord(q);
7468 if ( (delx==0)&&(dely==0) ) {
7469 left_type(q)=mp_curl; left_curl(q)=unity;
7471 left_type(q)=mp_given; left_given(q)=mp_n_arg(mp, delx,dely);
7474 if ( (right_type(p)==mp_open)&&(left_type(p)==mp_explicit) ) {
7475 delx=x_coord(p)-left_x(p); dely=y_coord(p)-left_y(p);
7476 if ( (delx==0)&&(dely==0) ) {
7477 right_type(p)=mp_curl; right_curl(p)=unity;
7479 right_type(p)=mp_given; right_given(p)=mp_n_arg(mp, delx,dely);
7483 @ Linear equations need to be solved whenever |n>1|; and also when |n=1|
7484 and exactly one of the breakpoints involves a curl. The simplest case occurs
7485 when |n=1| and there is a curl at both breakpoints; then we simply draw
7488 But before coding up the simple cases, we might as well face the general case,
7489 since we must deal with it sooner or later, and since the general case
7490 is likely to give some insight into the way simple cases can be handled best.
7492 When there is no cycle, the linear equations to be solved form a tridiagonal
7493 system, and we can apply the standard technique of Gaussian elimination
7494 to convert that system to a sequence of equations of the form
7495 $$\theta_0+u_0\theta_1=v_0,\quad
7496 \theta_1+u_1\theta_2=v_1,\quad\ldots,\quad
7497 \theta_{n-1}+u_{n-1}\theta_n=v_{n-1},\quad
7499 It is possible to do this diagonalization while generating the equations.
7500 Once $\theta_n$ is known, it is easy to determine $\theta_{n-1}$, \dots,
7501 $\theta_1$, $\theta_0$; thus, the equations will be solved.
7503 The procedure is slightly more complex when there is a cycle, but the
7504 basic idea will be nearly the same. In the cyclic case the right-hand
7505 sides will be $v_k+w_k\theta_0$ instead of simply $v_k$, and we will start
7506 the process off with $u_0=v_0=0$, $w_0=1$. The final equation will be not
7507 $\theta_n=v_n$ but $\theta_n+u_n\theta_1=v_n+w_n\theta_0$; an appropriate
7508 ending routine will take account of the fact that $\theta_n=\theta_0$ and
7509 eliminate the $w$'s from the system, after which the solution can be
7512 When $u_k$, $v_k$, and $w_k$ are being computed, the three pointer
7513 variables |r|, |s|,~|t| will point respectively to knots |k-1|, |k|,
7514 and~|k+1|. The $u$'s and $w$'s are scaled by $2^{28}$, i.e., they are
7515 of type |fraction|; the $\theta$'s and $v$'s are of type |angle|.
7518 angle *theta; /* values of $\theta_k$ */
7519 fraction *uu; /* values of $u_k$ */
7520 angle *vv; /* values of $v_k$ */
7521 fraction *ww; /* values of $w_k$ */
7523 @ @<Allocate or initialize ...@>=
7529 @ @<Dealloc variables@>=
7535 @ @<Declare |mp_reallocate| functions@>=
7536 void mp_reallocate_paths (MP mp, int l);
7539 void mp_reallocate_paths (MP mp, int l) {
7540 XREALLOC (mp->delta_x, l, scaled);
7541 XREALLOC (mp->delta_y, l, scaled);
7542 XREALLOC (mp->delta, l, scaled);
7543 XREALLOC (mp->psi, l, angle);
7544 XREALLOC (mp->theta, l, angle);
7545 XREALLOC (mp->uu, l, fraction);
7546 XREALLOC (mp->vv, l, angle);
7547 XREALLOC (mp->ww, l, fraction);
7551 @ Our immediate problem is to get the ball rolling by setting up the
7552 first equation or by realizing that no equations are needed, and to fit
7553 this initialization into a framework suitable for the overall computation.
7555 @<Declare the procedure called |solve_choices|@>=
7556 @<Declare subroutines needed by |solve_choices|@>;
7557 void mp_solve_choices (MP mp,pointer p, pointer q, halfword n) {
7558 int k; /* current knot number */
7559 pointer r,s,t; /* registers for list traversal */
7560 @<Other local variables for |solve_choices|@>;
7565 @<Get the linear equations started; or |return|
7566 with the control points in place, if linear equations
7569 switch (left_type(s)) {
7570 case mp_end_cycle: case mp_open:
7571 @<Set up equation to match mock curvatures
7572 at $z_k$; then |goto found| with $\theta_n$
7573 adjusted to equal $\theta_0$, if a cycle has ended@>;
7576 @<Set up equation for a curl at $\theta_n$
7580 @<Calculate the given value of $\theta_n$
7583 } /* there are no other cases */
7588 @<Finish choosing angles and assigning control points@>;
7591 @ On the first time through the loop, we have |k=0| and |r| is not yet
7592 defined. The first linear equation, if any, will have $A_0=B_0=0$.
7594 @<Get the linear equations started...@>=
7595 switch (right_type(s)) {
7597 if ( left_type(t)==mp_given ) {
7598 @<Reduce to simple case of two givens and |return|@>
7600 @<Set up the equation for a given value of $\theta_0$@>;
7604 if ( left_type(t)==mp_curl ) {
7605 @<Reduce to simple case of straight line and |return|@>
7607 @<Set up the equation for a curl at $\theta_0$@>;
7611 mp->uu[0]=0; mp->vv[0]=0; mp->ww[0]=fraction_one;
7612 /* this begins a cycle */
7614 } /* there are no other cases */
7616 @ The general equation that specifies equality of mock curvature at $z_k$ is
7617 $$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
7618 as derived above. We want to combine this with the already-derived equation
7619 $\theta_{k-1}+u_{k-1}\theta_k=v_{k-1}+w_{k-1}\theta_0$ in order to obtain
7621 $\theta_k+u_k\theta\k=v_k+w_k\theta_0$. This can be done by dividing the
7623 $$(B_k-u_{k-1}A_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k-A_kv_{k-1}
7624 -A_kw_{k-1}\theta_0$$
7625 by $B_k-u_{k-1}A_k+C_k$. The trick is to do this carefully with
7626 fixed-point arithmetic, avoiding the chance of overflow while retaining
7629 The calculations will be performed in several registers that
7630 provide temporary storage for intermediate quantities.
7632 @<Other local variables for |solve_choices|@>=
7633 fraction aa,bb,cc,ff,acc; /* temporary registers */
7634 scaled dd,ee; /* likewise, but |scaled| */
7635 scaled lt,rt; /* tension values */
7637 @ @<Set up equation to match mock curvatures...@>=
7638 { @<Calculate the values $\\{aa}=A_k/B_k$, $\\{bb}=D_k/C_k$,
7639 $\\{dd}=(3-\alpha_{k-1})d_{k,k+1}$, $\\{ee}=(3-\beta\k)d_{k-1,k}$,
7640 and $\\{cc}=(B_k-u_{k-1}A_k)/B_k$@>;
7641 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>;
7642 mp->uu[k]=mp_take_fraction(mp, ff,bb);
7643 @<Calculate the values of $v_k$ and $w_k$@>;
7644 if ( left_type(s)==mp_end_cycle ) {
7645 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>;
7649 @ Since tension values are never less than 3/4, the values |aa| and
7650 |bb| computed here are never more than 4/5.
7652 @<Calculate the values $\\{aa}=...@>=
7653 if ( abs(right_tension(r))==unity) {
7654 aa=fraction_half; dd=2*mp->delta[k];
7656 aa=mp_make_fraction(mp, unity,3*abs(right_tension(r))-unity);
7657 dd=mp_take_fraction(mp, mp->delta[k],
7658 fraction_three-mp_make_fraction(mp, unity,abs(right_tension(r))));
7660 if ( abs(left_tension(t))==unity ){
7661 bb=fraction_half; ee=2*mp->delta[k-1];
7663 bb=mp_make_fraction(mp, unity,3*abs(left_tension(t))-unity);
7664 ee=mp_take_fraction(mp, mp->delta[k-1],
7665 fraction_three-mp_make_fraction(mp, unity,abs(left_tension(t))));
7667 cc=fraction_one-mp_take_fraction(mp, mp->uu[k-1],aa)
7669 @ The ratio to be calculated in this step can be written in the form
7670 $$\beta_k^2\cdot\\{ee}\over\beta_k^2\cdot\\{ee}+\alpha_k^2\cdot
7671 \\{cc}\cdot\\{dd},$$
7672 because of the quantities just calculated. The values of |dd| and |ee|
7673 will not be needed after this step has been performed.
7675 @<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>=
7676 dd=mp_take_fraction(mp, dd,cc); lt=abs(left_tension(s)); rt=abs(right_tension(s));
7677 if ( lt!=rt ) { /* $\beta_k^{-1}\ne\alpha_k^{-1}$ */
7679 ff=mp_make_fraction(mp, lt,rt);
7680 ff=mp_take_fraction(mp, ff,ff); /* $\alpha_k^2/\beta_k^2$ */
7681 dd=mp_take_fraction(mp, dd,ff);
7683 ff=mp_make_fraction(mp, rt,lt);
7684 ff=mp_take_fraction(mp, ff,ff); /* $\beta_k^2/\alpha_k^2$ */
7685 ee=mp_take_fraction(mp, ee,ff);
7688 ff=mp_make_fraction(mp, ee,ee+dd)
7690 @ The value of $u_{k-1}$ will be |<=1| except when $k=1$ and the previous
7691 equation was specified by a curl. In that case we must use a special
7692 method of computation to prevent overflow.
7694 Fortunately, the calculations turn out to be even simpler in this ``hard''
7695 case. The curl equation makes $w_0=0$ and $v_0=-u_0\psi_1$, hence
7696 $-B_1\psi_1-A_1v_0=-(B_1-u_0A_1)\psi_1=-\\{cc}\cdot B_1\psi_1$.
7698 @<Calculate the values of $v_k$ and $w_k$@>=
7699 acc=-mp_take_fraction(mp, mp->psi[k+1],mp->uu[k]);
7700 if ( right_type(r)==mp_curl ) {
7702 mp->vv[k]=acc-mp_take_fraction(mp, mp->psi[1],fraction_one-ff);
7704 ff=mp_make_fraction(mp, fraction_one-ff,cc); /* this is
7705 $B_k/(C_k+B_k-u_{k-1}A_k)<5$ */
7706 acc=acc-mp_take_fraction(mp, mp->psi[k],ff);
7707 ff=mp_take_fraction(mp, ff,aa); /* this is $A_k/(C_k+B_k-u_{k-1}A_k)$ */
7708 mp->vv[k]=acc-mp_take_fraction(mp, mp->vv[k-1],ff);
7709 if ( mp->ww[k-1]==0 ) mp->ww[k]=0;
7710 else mp->ww[k]=-mp_take_fraction(mp, mp->ww[k-1],ff);
7713 @ When a complete cycle has been traversed, we have $\theta_k+u_k\theta\k=
7714 v_k+w_k\theta_0$, for |1<=k<=n|. We would like to determine the value of
7715 $\theta_n$ and reduce the system to the form $\theta_k+u_k\theta\k=v_k$
7716 for |0<=k<n|, so that the cyclic case can be finished up just as if there
7719 The idea in the following code is to observe that
7720 $$\eqalign{\theta_n&=v_n+w_n\theta_0-u_n\theta_1=\cdots\cr
7721 &=v_n+w_n\theta_0-u_n\bigl(v_1+w_1\theta_0-u_1(v_2+\cdots
7722 -u_{n-2}(v_{n-1}+w_{n-1}\theta_0-u_{n-1}\theta_0))\bigr),\cr}$$
7723 so we can solve for $\theta_n=\theta_0$.
7725 @<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>=
7727 aa=0; bb=fraction_one; /* we have |k=n| */
7730 aa=mp->vv[k]-mp_take_fraction(mp, aa,mp->uu[k]);
7731 bb=mp->ww[k]-mp_take_fraction(mp, bb,mp->uu[k]);
7732 } while (k!=n); /* now $\theta_n=\\{aa}+\\{bb}\cdot\theta_n$ */
7733 aa=mp_make_fraction(mp, aa,fraction_one-bb);
7734 mp->theta[n]=aa; mp->vv[0]=aa;
7735 for (k=1;k<=n-1;k++) {
7736 mp->vv[k]=mp->vv[k]+mp_take_fraction(mp, aa,mp->ww[k]);
7741 @ @d reduce_angle(A) if ( abs((A))>one_eighty_deg ) {
7742 if ( (A)>0 ) (A)=(A)-three_sixty_deg; else (A)=(A)+three_sixty_deg; }
7744 @<Calculate the given value of $\theta_n$...@>=
7746 mp->theta[n]=left_given(s)-mp_n_arg(mp, mp->delta_x[n-1],mp->delta_y[n-1]);
7747 reduce_angle(mp->theta[n]);
7751 @ @<Set up the equation for a given value of $\theta_0$@>=
7753 mp->vv[0]=right_given(s)-mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7754 reduce_angle(mp->vv[0]);
7755 mp->uu[0]=0; mp->ww[0]=0;
7758 @ @<Set up the equation for a curl at $\theta_0$@>=
7759 { cc=right_curl(s); lt=abs(left_tension(t)); rt=abs(right_tension(s));
7760 if ( (rt==unity)&&(lt==unity) )
7761 mp->uu[0]=mp_make_fraction(mp, cc+cc+unity,cc+two);
7763 mp->uu[0]=mp_curl_ratio(mp, cc,rt,lt);
7764 mp->vv[0]=-mp_take_fraction(mp, mp->psi[1],mp->uu[0]); mp->ww[0]=0;
7767 @ @<Set up equation for a curl at $\theta_n$...@>=
7768 { cc=left_curl(s); lt=abs(left_tension(s)); rt=abs(right_tension(r));
7769 if ( (rt==unity)&&(lt==unity) )
7770 ff=mp_make_fraction(mp, cc+cc+unity,cc+two);
7772 ff=mp_curl_ratio(mp, cc,lt,rt);
7773 mp->theta[n]=-mp_make_fraction(mp, mp_take_fraction(mp, mp->vv[n-1],ff),
7774 fraction_one-mp_take_fraction(mp, ff,mp->uu[n-1]));
7778 @ The |curl_ratio| subroutine has three arguments, which our previous notation
7779 encourages us to call $\gamma$, $\alpha^{-1}$, and $\beta^{-1}$. It is
7780 a somewhat tedious program to calculate
7781 $${(3-\alpha)\alpha^2\gamma+\beta^3\over
7782 \alpha^3\gamma+(3-\beta)\beta^2},$$
7783 with the result reduced to 4 if it exceeds 4. (This reduction of curl
7784 is necessary only if the curl and tension are both large.)
7785 The values of $\alpha$ and $\beta$ will be at most~4/3.
7787 @<Declare subroutines needed by |solve_choices|@>=
7788 fraction mp_curl_ratio (MP mp,scaled gamma, scaled a_tension,
7790 fraction alpha,beta,num,denom,ff; /* registers */
7791 alpha=mp_make_fraction(mp, unity,a_tension);
7792 beta=mp_make_fraction(mp, unity,b_tension);
7793 if ( alpha<=beta ) {
7794 ff=mp_make_fraction(mp, alpha,beta); ff=mp_take_fraction(mp, ff,ff);
7795 gamma=mp_take_fraction(mp, gamma,ff);
7796 beta=beta / 010000; /* convert |fraction| to |scaled| */
7797 denom=mp_take_fraction(mp, gamma,alpha)+three-beta;
7798 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7800 ff=mp_make_fraction(mp, beta,alpha); ff=mp_take_fraction(mp, ff,ff);
7801 beta=mp_take_fraction(mp, beta,ff) / 010000; /* convert |fraction| to |scaled| */
7802 denom=mp_take_fraction(mp, gamma,alpha)+(ff / 1365)-beta;
7803 /* $1365\approx 2^{12}/3$ */
7804 num=mp_take_fraction(mp, gamma,fraction_three-alpha)+beta;
7806 if ( num>=denom+denom+denom+denom ) return fraction_four;
7807 else return mp_make_fraction(mp, num,denom);
7810 @ We're in the home stretch now.
7812 @<Finish choosing angles and assigning control points@>=
7813 for (k=n-1;k>=0;k--) {
7814 mp->theta[k]=mp->vv[k]-mp_take_fraction(mp,mp->theta[k+1],mp->uu[k]);
7819 mp_n_sin_cos(mp, mp->theta[k]); mp->st=mp->n_sin; mp->ct=mp->n_cos;
7820 mp_n_sin_cos(mp, -mp->psi[k+1]-mp->theta[k+1]); mp->sf=mp->n_sin; mp->cf=mp->n_cos;
7821 mp_set_controls(mp, s,t,k);
7825 @ The |set_controls| routine actually puts the control points into
7826 a pair of consecutive nodes |p| and~|q|. Global variables are used to
7827 record the values of $\sin\theta$, $\cos\theta$, $\sin\phi$, and
7828 $\cos\phi$ needed in this calculation.
7834 fraction cf; /* sines and cosines */
7836 @ @<Declare subroutines needed by |solve_choices|@>=
7837 void mp_set_controls (MP mp,pointer p, pointer q, integer k) {
7838 fraction rr,ss; /* velocities, divided by thrice the tension */
7839 scaled lt,rt; /* tensions */
7840 fraction sine; /* $\sin(\theta+\phi)$ */
7841 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7842 rr=mp_velocity(mp, mp->st,mp->ct,mp->sf,mp->cf,rt);
7843 ss=mp_velocity(mp, mp->sf,mp->cf,mp->st,mp->ct,lt);
7844 if ( (right_tension(p)<0)||(left_tension(q)<0) ) {
7845 @<Decrease the velocities,
7846 if necessary, to stay inside the bounding triangle@>;
7848 right_x(p)=x_coord(p)+mp_take_fraction(mp,
7849 mp_take_fraction(mp, mp->delta_x[k],mp->ct)-
7850 mp_take_fraction(mp, mp->delta_y[k],mp->st),rr);
7851 right_y(p)=y_coord(p)+mp_take_fraction(mp,
7852 mp_take_fraction(mp, mp->delta_y[k],mp->ct)+
7853 mp_take_fraction(mp, mp->delta_x[k],mp->st),rr);
7854 left_x(q)=x_coord(q)-mp_take_fraction(mp,
7855 mp_take_fraction(mp, mp->delta_x[k],mp->cf)+
7856 mp_take_fraction(mp, mp->delta_y[k],mp->sf),ss);
7857 left_y(q)=y_coord(q)-mp_take_fraction(mp,
7858 mp_take_fraction(mp, mp->delta_y[k],mp->cf)-
7859 mp_take_fraction(mp, mp->delta_x[k],mp->sf),ss);
7860 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7863 @ The boundedness conditions $\\{rr}\L\sin\phi\,/\sin(\theta+\phi)$ and
7864 $\\{ss}\L\sin\theta\,/\sin(\theta+\phi)$ are to be enforced if $\sin\theta$,
7865 $\sin\phi$, and $\sin(\theta+\phi)$ all have the same sign. Otherwise
7866 there is no ``bounding triangle.''
7867 @:at_least_}{\&{atleast} primitive@>
7869 @<Decrease the velocities, if necessary...@>=
7870 if (((mp->st>=0)&&(mp->sf>=0))||((mp->st<=0)&&(mp->sf<=0)) ) {
7871 sine=mp_take_fraction(mp, abs(mp->st),mp->cf)+
7872 mp_take_fraction(mp, abs(mp->sf),mp->ct);
7874 sine=mp_take_fraction(mp, sine,fraction_one+unity); /* safety factor */
7875 if ( right_tension(p)<0 )
7876 if ( mp_ab_vs_cd(mp, abs(mp->sf),fraction_one,rr,sine)<0 )
7877 rr=mp_make_fraction(mp, abs(mp->sf),sine);
7878 if ( left_tension(q)<0 )
7879 if ( mp_ab_vs_cd(mp, abs(mp->st),fraction_one,ss,sine)<0 )
7880 ss=mp_make_fraction(mp, abs(mp->st),sine);
7884 @ Only the simple cases remain to be handled.
7886 @<Reduce to simple case of two givens and |return|@>=
7888 aa=mp_n_arg(mp, mp->delta_x[0],mp->delta_y[0]);
7889 mp_n_sin_cos(mp, right_given(p)-aa); mp->ct=mp->n_cos; mp->st=mp->n_sin;
7890 mp_n_sin_cos(mp, left_given(q)-aa); mp->cf=mp->n_cos; mp->sf=-mp->n_sin;
7891 mp_set_controls(mp, p,q,0); return;
7894 @ @<Reduce to simple case of straight line and |return|@>=
7896 right_type(p)=mp_explicit; left_type(q)=mp_explicit;
7897 lt=abs(left_tension(q)); rt=abs(right_tension(p));
7899 if ( mp->delta_x[0]>=0 ) right_x(p)=x_coord(p)+((mp->delta_x[0]+1) / 3);
7900 else right_x(p)=x_coord(p)+((mp->delta_x[0]-1) / 3);
7901 if ( mp->delta_y[0]>=0 ) right_y(p)=y_coord(p)+((mp->delta_y[0]+1) / 3);
7902 else right_y(p)=y_coord(p)+((mp->delta_y[0]-1) / 3);
7904 ff=mp_make_fraction(mp, unity,3*rt); /* $\alpha/3$ */
7905 right_x(p)=x_coord(p)+mp_take_fraction(mp, mp->delta_x[0],ff);
7906 right_y(p)=y_coord(p)+mp_take_fraction(mp, mp->delta_y[0],ff);
7909 if ( mp->delta_x[0]>=0 ) left_x(q)=x_coord(q)-((mp->delta_x[0]+1) / 3);
7910 else left_x(q)=x_coord(q)-((mp->delta_x[0]-1) / 3);
7911 if ( mp->delta_y[0]>=0 ) left_y(q)=y_coord(q)-((mp->delta_y[0]+1) / 3);
7912 else left_y(q)=y_coord(q)-((mp->delta_y[0]-1) / 3);
7914 ff=mp_make_fraction(mp, unity,3*lt); /* $\beta/3$ */
7915 left_x(q)=x_coord(q)-mp_take_fraction(mp, mp->delta_x[0],ff);
7916 left_y(q)=y_coord(q)-mp_take_fraction(mp, mp->delta_y[0],ff);
7921 @* \[19] Measuring paths.
7922 \MP's \&{llcorner}, \&{lrcorner}, \&{ulcorner}, and \&{urcorner} operators
7923 allow the user to measure the bounding box of anything that can go into a
7924 picture. It's easy to get rough bounds on the $x$ and $y$ extent of a path
7925 by just finding the bounding box of the knots and the control points. We
7926 need a more accurate version of the bounding box, but we can still use the
7927 easy estimate to save time by focusing on the interesting parts of the path.
7929 @ Computing an accurate bounding box involves a theme that will come up again
7930 and again. Given a Bernshte{\u\i}n polynomial
7931 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
7932 $$B(z_0,z_1,\ldots,z_n;t)=\sum_k{n\choose k}t^k(1-t)^{n-k}z_k,$$
7933 we can conveniently bisect its range as follows:
7936 \textindent{1)} Let $z_k^{(0)}=z_k$, for |0<=k<=n|.
7939 \textindent{2)} Let $z_k^{(j+1)}={1\over2}(z_k^{(j)}+z\k^{(j)})$, for
7940 |0<=k<n-j|, for |0<=j<n|.
7944 $$B(z_0,z_1,\ldots,z_n;t)=B(z_0^{(0)},z_0^{(1)},\ldots,z_0^{(n)};2t)
7945 =B(z_0^{(n)},z_1^{(n-1)},\ldots,z_n^{(0)};2t-1).$$
7946 This formula gives us the coefficients of polynomials to use over the ranges
7947 $0\L t\L{1\over2}$ and ${1\over2}\L t\L1$.
7949 @ Now here's a subroutine that's handy for all sorts of path computations:
7950 Given a quadratic polynomial $B(a,b,c;t)$, the |crossing_point| function
7951 returns the unique |fraction| value |t| between 0 and~1 at which
7952 $B(a,b,c;t)$ changes from positive to negative, or returns
7953 |t=fraction_one+1| if no such value exists. If |a<0| (so that $B(a,b,c;t)$
7954 is already negative at |t=0|), |crossing_point| returns the value zero.
7956 @d no_crossing { return (fraction_one+1); }
7957 @d one_crossing { return fraction_one; }
7958 @d zero_crossing { return 0; }
7959 @d mp_crossing_point(M,A,B,C) mp_do_crossing_point(A,B,C)
7961 @c fraction mp_do_crossing_point (integer a, integer b, integer c) {
7962 integer d; /* recursive counter */
7963 integer x,xx,x0,x1,x2; /* temporary registers for bisection */
7964 if ( a<0 ) zero_crossing;
7967 if ( c>0 ) { no_crossing; }
7968 else if ( (a==0)&&(b==0) ) { no_crossing;}
7969 else { one_crossing; }
7971 if ( a==0 ) zero_crossing;
7972 } else if ( a==0 ) {
7973 if ( b<=0 ) zero_crossing;
7975 @<Use bisection to find the crossing point, if one exists@>;
7978 @ The general bisection method is quite simple when $n=2$, hence
7979 |crossing_point| does not take much time. At each stage in the
7980 recursion we have a subinterval defined by |l| and~|j| such that
7981 $B(a,b,c;2^{-l}(j+t))=B(x_0,x_1,x_2;t)$, and we want to ``zero in'' on
7982 the subinterval where $x_0\G0$ and $\min(x_1,x_2)<0$.
7984 It is convenient for purposes of calculation to combine the values
7985 of |l| and~|j| in a single variable $d=2^l+j$, because the operation
7986 of bisection then corresponds simply to doubling $d$ and possibly
7987 adding~1. Furthermore it proves to be convenient to modify
7988 our previous conventions for bisection slightly, maintaining the
7989 variables $X_0=2^lx_0$, $X_1=2^l(x_0-x_1)$, and $X_2=2^l(x_1-x_2)$.
7990 With these variables the conditions $x_0\ge0$ and $\min(x_1,x_2)<0$ are
7991 equivalent to $\max(X_1,X_1+X_2)>X_0\ge0$.
7993 The following code maintains the invariant relations
7994 $0\L|x0|<\max(|x1|,|x1|+|x2|)$,
7995 $\vert|x1|\vert<2^{30}$, $\vert|x2|\vert<2^{30}$;
7996 it has been constructed in such a way that no arithmetic overflow
7997 will occur if the inputs satisfy
7998 $a<2^{30}$, $\vert a-b\vert<2^{30}$, and $\vert b-c\vert<2^{30}$.
8000 @<Use bisection to find the crossing point...@>=
8001 d=1; x0=a; x1=a-b; x2=b-c;
8012 if ( x<=x0 ) { if ( x+x2<=x0 ) no_crossing; }
8016 } while (d<fraction_one);
8017 return (d-fraction_one)
8019 @ Here is a routine that computes the $x$ or $y$ coordinate of the point on
8020 a cubic corresponding to the |fraction| value~|t|.
8022 It is convenient to define a \.{WEB} macro |t_of_the_way| such that
8023 |t_of_the_way(a,b)| expands to |a-(a-b)*t|, i.e., to |t[a,b]|.
8025 @d t_of_the_way(A,B) ((A)-mp_take_fraction(mp,((A)-(B)),t))
8027 @c scaled mp_eval_cubic (MP mp,pointer p, pointer q, fraction t) {
8028 scaled x1,x2,x3; /* intermediate values */
8029 x1=t_of_the_way(knot_coord(p),right_coord(p));
8030 x2=t_of_the_way(right_coord(p),left_coord(q));
8031 x3=t_of_the_way(left_coord(q),knot_coord(q));
8032 x1=t_of_the_way(x1,x2);
8033 x2=t_of_the_way(x2,x3);
8034 return t_of_the_way(x1,x2);
8037 @ The actual bounding box information is stored in global variables.
8038 Since it is convenient to address the $x$ and $y$ information
8039 separately, we define arrays indexed by |x_code..y_code| and use
8040 macros to give them more convenient names.
8044 mp_x_code=0, /* index for |minx| and |maxx| */
8045 mp_y_code /* index for |miny| and |maxy| */
8049 @d minx mp->bbmin[mp_x_code]
8050 @d maxx mp->bbmax[mp_x_code]
8051 @d miny mp->bbmin[mp_y_code]
8052 @d maxy mp->bbmax[mp_y_code]
8055 scaled bbmin[mp_y_code+1];
8056 scaled bbmax[mp_y_code+1];
8057 /* the result of procedures that compute bounding box information */
8059 @ Now we're ready for the key part of the bounding box computation.
8060 The |bound_cubic| procedure updates |bbmin[c]| and |bbmax[c]| based on
8061 $$B(\hbox{|knot_coord(p)|}, \hbox{|right_coord(p)|},
8062 \hbox{|left_coord(q)|}, \hbox{|knot_coord(q)|};t)
8064 for $0<t\le1$. In other words, the procedure adjusts the bounds to
8065 accommodate |knot_coord(q)| and any extremes over the range $0<t<1$.
8066 The |c| parameter is |x_code| or |y_code|.
8068 @c void mp_bound_cubic (MP mp,pointer p, pointer q, small_number c) {
8069 boolean wavy; /* whether we need to look for extremes */
8070 scaled del1,del2,del3,del,dmax; /* proportional to the control
8071 points of a quadratic derived from a cubic */
8072 fraction t,tt; /* where a quadratic crosses zero */
8073 scaled x; /* a value that |bbmin[c]| and |bbmax[c]| must accommodate */
8075 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8076 @<Check the control points against the bounding box and set |wavy:=true|
8077 if any of them lie outside@>;
8079 del1=right_coord(p)-knot_coord(p);
8080 del2=left_coord(q)-right_coord(p);
8081 del3=knot_coord(q)-left_coord(q);
8082 @<Scale up |del1|, |del2|, and |del3| for greater accuracy;
8083 also set |del| to the first nonzero element of |(del1,del2,del3)|@>;
8085 negate(del1); negate(del2); negate(del3);
8087 t=mp_crossing_point(mp, del1,del2,del3);
8088 if ( t<fraction_one ) {
8089 @<Test the extremes of the cubic against the bounding box@>;
8094 @ @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>=
8095 if ( x<mp->bbmin[c] ) mp->bbmin[c]=x;
8096 if ( x>mp->bbmax[c] ) mp->bbmax[c]=x
8098 @ @<Check the control points against the bounding box and set...@>=
8100 if ( mp->bbmin[c]<=right_coord(p) )
8101 if ( right_coord(p)<=mp->bbmax[c] )
8102 if ( mp->bbmin[c]<=left_coord(q) )
8103 if ( left_coord(q)<=mp->bbmax[c] )
8106 @ If |del1=del2=del3=0|, it's impossible to obey the title of this
8107 section. We just set |del=0| in that case.
8109 @<Scale up |del1|, |del2|, and |del3| for greater accuracy...@>=
8110 if ( del1!=0 ) del=del1;
8111 else if ( del2!=0 ) del=del2;
8115 if ( abs(del2)>dmax ) dmax=abs(del2);
8116 if ( abs(del3)>dmax ) dmax=abs(del3);
8117 while ( dmax<fraction_half ) {
8118 dmax+=dmax; del1+=del1; del2+=del2; del3+=del3;
8122 @ Since |crossing_point| has tried to choose |t| so that
8123 $B(|del1|,|del2|,|del3|;\tau)$ crosses zero at $\tau=|t|$ with negative
8124 slope, the value of |del2| computed below should not be positive.
8125 But rounding error could make it slightly positive in which case we
8126 must cut it to zero to avoid confusion.
8128 @<Test the extremes of the cubic against the bounding box@>=
8130 x=mp_eval_cubic(mp, p,q,t);
8131 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8132 del2=t_of_the_way(del2,del3);
8133 /* now |0,del2,del3| represent the derivative on the remaining interval */
8134 if ( del2>0 ) del2=0;
8135 tt=mp_crossing_point(mp, 0,-del2,-del3);
8136 if ( tt<fraction_one ) {
8137 @<Test the second extreme against the bounding box@>;
8141 @ @<Test the second extreme against the bounding box@>=
8143 x=mp_eval_cubic(mp, p,q,t_of_the_way(tt,fraction_one));
8144 @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
8147 @ Finding the bounding box of a path is basically a matter of applying
8148 |bound_cubic| twice for each pair of adjacent knots.
8150 @c void mp_path_bbox (MP mp,pointer h) {
8151 pointer p,q; /* a pair of adjacent knots */
8152 minx=x_coord(h); miny=y_coord(h);
8153 maxx=minx; maxy=miny;
8156 if ( right_type(p)==mp_endpoint ) return;
8158 mp_bound_cubic(mp, x_loc(p),x_loc(q),mp_x_code);
8159 mp_bound_cubic(mp, y_loc(p),y_loc(q),mp_y_code);
8164 @ Another important way to measure a path is to find its arc length. This
8165 is best done by using the general bisection algorithm to subdivide the path
8166 until obtaining ``well behaved'' subpaths whose arc lengths can be approximated
8169 Since the arc length is the integral with respect to time of the magnitude of
8170 the velocity, it is natural to use Simpson's rule for the approximation.
8172 If $\dot B(t)$ is the spline velocity, Simpson's rule gives
8173 $$ \vb\dot B(0)\vb + 4\vb\dot B({1\over2})\vb + \vb\dot B(1)\vb \over 6 $$
8174 for the arc length of a path of length~1. For a cubic spline
8175 $B(z_0,z_1,z_2,z_3;t)$, the time derivative $\dot B(t)$ is
8176 $3B(dz_0,dz_1,dz_2;t)$, where $dz_i=z_{i+1}-z_i$. Hence the arc length
8178 $$ {\vb dz_0\vb \over 2} + 2\vb dz_{02}\vb + {\vb dz_2\vb \over 2}, $$
8180 $$ dz_{02}={1\over2}\left({dz_0+dz_1\over 2}+{dz_1+dz_2\over 2}\right)$$
8181 is the result of the bisection algorithm.
8183 @ The remaining problem is how to decide when a subpath is ``well behaved.''
8184 This could be done via the theoretical error bound for Simpson's rule,
8186 but this is impractical because it requires an estimate of the fourth
8187 derivative of the quantity being integrated. It is much easier to just perform
8188 a bisection step and see how much the arc length estimate changes. Since the
8189 error for Simpson's rule is proportional to the fourth power of the sample
8190 spacing, the remaining error is typically about $1\over16$ of the amount of
8191 the change. We say ``typically'' because the error has a pseudo-random behavior
8192 that could cause the two estimates to agree when each contain large errors.
8194 To protect against disasters such as undetected cusps, the bisection process
8195 should always continue until all the $dz_i$ vectors belong to a single
8196 $90^\circ$ sector. This ensures that no point on the spline can have velocity
8197 less than 70\% of the minimum of $\vb dz_0\vb$, $\vb dz_1\vb$ and $\vb dz_2\vb$.
8198 If such a spline happens to produce an erroneous arc length estimate that
8199 is little changed by bisection, the amount of the error is likely to be fairly
8200 small. We will try to arrange things so that freak accidents of this type do
8201 not destroy the inverse relationship between the \&{arclength} and
8202 \&{arctime} operations.
8203 @:arclength_}{\&{arclength} primitive@>
8204 @:arctime_}{\&{arctime} primitive@>
8206 @ The \&{arclength} and \&{arctime} operations are both based on a recursive
8208 function that finds the arc length of a cubic spline given $dz_0$, $dz_1$,
8209 $dz_2$. This |arc_test| routine also takes an arc length goal |a_goal| and
8210 returns the time when the arc length reaches |a_goal| if there is such a time.
8211 Thus the return value is either an arc length less than |a_goal| or, if the
8212 arc length would be at least |a_goal|, it returns a time value decreased by
8213 |two|. This allows the caller to use the sign of the result to distinguish
8214 between arc lengths and time values. On certain types of overflow, it is
8215 possible for |a_goal| and the result of |arc_test| both to be |el_gordo|.
8216 Otherwise, the result is always less than |a_goal|.
8218 Rather than halving the control point coordinates on each recursive call to
8219 |arc_test|, it is better to keep them proportional to velocity on the original
8220 curve and halve the results instead. This means that recursive calls can
8221 potentially use larger error tolerances in their arc length estimates. How
8222 much larger depends on to what extent the errors behave as though they are
8223 independent of each other. To save computing time, we use optimistic assumptions
8224 and increase the tolerance by a factor of about $\sqrt2$ for each recursive
8227 In addition to the tolerance parameter, |arc_test| should also have parameters
8228 for ${1\over3}\vb\dot B(0)\vb$, ${2\over3}\vb\dot B({1\over2})\vb$, and
8229 ${1\over3}\vb\dot B(1)\vb$. These quantities are relatively expensive to compute
8230 and they are needed in different instances of |arc_test|.
8232 @c @t\4@>@<Declare subroutines needed by |arc_test|@>;
8233 scaled mp_arc_test (MP mp, scaled dx0, scaled dy0, scaled dx1, scaled dy1,
8234 scaled dx2, scaled dy2, scaled v0, scaled v02,
8235 scaled v2, scaled a_goal, scaled tol) {
8236 boolean simple; /* are the control points confined to a $90^\circ$ sector? */
8237 scaled dx01, dy01, dx12, dy12, dx02, dy02; /* bisection results */
8239 /* twice the velocity magnitudes at $t={1\over4}$ and $t={3\over4}$ */
8240 scaled arc; /* best arc length estimate before recursion */
8241 @<Other local variables in |arc_test|@>;
8242 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,
8244 @<Initialize |v002|, |v022|, and the arc length estimate |arc|; if it overflows
8245 set |arc_test| and |return|@>;
8246 @<Test if the control points are confined to one quadrant or rotating them
8247 $45^\circ$ would put them in one quadrant. Then set |simple| appropriately@>;
8248 if ( simple && (abs(arc-v02-halfp(v0+v2)) <= tol) ) {
8249 if ( arc < a_goal ) {
8252 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to
8253 that time minus |two|@>;
8256 @<Use one or two recursive calls to compute the |arc_test| function@>;
8260 @ The |tol| value should by multiplied by $\sqrt 2$ before making recursive
8261 calls, but $1.5$ is an adequate approximation. It is best to avoid using
8262 |make_fraction| in this inner loop.
8265 @<Use one or two recursive calls to compute the |arc_test| function@>=
8267 @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is as
8268 large as possible@>;
8269 tol = tol + halfp(tol);
8270 a = mp_arc_test(mp, dx0,dy0, dx01,dy01, dx02,dy02, v0, v002,
8271 halfp(v02), a_new, tol);
8273 return (-halfp(two-a));
8275 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>;
8276 b = mp_arc_test(mp, dx02,dy02, dx12,dy12, dx2,dy2,
8277 halfp(v02), v022, v2, a_new, tol);
8279 return (-halfp(-b) - half_unit);
8281 return (a + half(b-a));
8285 @ @<Other local variables in |arc_test|@>=
8286 scaled a,b; /* results of recursive calls */
8287 scaled a_new,a_aux; /* the sum of these gives the |a_goal| */
8289 @ @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is...@>=
8290 a_aux = el_gordo - a_goal;
8291 if ( a_goal > a_aux ) {
8292 a_aux = a_goal - a_aux;
8295 a_new = a_goal + a_goal;
8299 @ There is no need to maintain |a_aux| at this point so we use it as a temporary
8300 to force the additions and subtractions to be done in an order that avoids
8303 @<Update |a_new| to reduce |a_new+a_aux| by |a|@>=
8306 a_new = a_new + a_aux;
8309 @ This code assumes all {\it dx} and {\it dy} variables have magnitude less than
8310 |fraction_four|. To simplify the rest of the |arc_test| routine, we strengthen
8311 this assumption by requiring the norm of each $({\it dx},{\it dy})$ pair to obey
8312 this bound. Note that recursive calls will maintain this invariant.
8314 @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,...@>=
8315 dx01 = half(dx0 + dx1);
8316 dx12 = half(dx1 + dx2);
8317 dx02 = half(dx01 + dx12);
8318 dy01 = half(dy0 + dy1);
8319 dy12 = half(dy1 + dy2);
8320 dy02 = half(dy01 + dy12)
8322 @ We should be careful to keep |arc<el_gordo| so that calling |arc_test| with
8323 |a_goal=el_gordo| is guaranteed to yield the arc length.
8325 @<Initialize |v002|, |v022|, and the arc length estimate |arc|;...@>=
8326 v002 = mp_pyth_add(mp, dx01+half(dx0+dx02), dy01+half(dy0+dy02));
8327 v022 = mp_pyth_add(mp, dx12+half(dx02+dx2), dy12+half(dy02+dy2));
8329 arc1 = v002 + half(halfp(v0+tmp) - v002);
8330 arc = v022 + half(halfp(v2+tmp) - v022);
8331 if ( (arc < el_gordo-arc1) ) {
8334 mp->arith_error = true;
8335 if ( a_goal==el_gordo ) return (el_gordo);
8339 @ @<Other local variables in |arc_test|@>=
8340 scaled tmp, tmp2; /* all purpose temporary registers */
8341 scaled arc1; /* arc length estimate for the first half */
8343 @ @<Test if the control points are confined to one quadrant or rotating...@>=
8344 simple = ((dx0>=0) && (dx1>=0) && (dx2>=0)) ||
8345 ((dx0<=0) && (dx1<=0) && (dx2<=0));
8347 simple = ((dy0>=0) && (dy1>=0) && (dy2>=0)) ||
8348 ((dy0<=0) && (dy1<=0) && (dy2<=0));
8350 simple = ((dx0>=dy0) && (dx1>=dy1) && (dx2>=dy2)) ||
8351 ((dx0<=dy0) && (dx1<=dy1) && (dx2<=dy2));
8353 simple = ((-dx0>=dy0) && (-dx1>=dy1) && (-dx2>=dy2)) ||
8354 ((-dx0<=dy0) && (-dx1<=dy1) && (-dx2<=dy2));
8357 @ Since Simpson's rule is based on approximating the integrand by a parabola,
8359 it is appropriate to use the same approximation to decide when the integral
8360 reaches the intermediate value |a_goal|. At this point
8362 {\vb\dot B(0)\vb\over 3} &= \hbox{|v0|}, \qquad
8363 {\vb\dot B({1\over4})\vb\over 3} = {\hbox{|v002|}\over 2}, \qquad
8364 {\vb\dot B({1\over2})\vb\over 3} = {\hbox{|v02|}\over 2}, \cr
8365 {\vb\dot B({3\over4})\vb\over 3} &= {\hbox{|v022|}\over 2}, \qquad
8366 {\vb\dot B(1)\vb\over 3} = \hbox{|v2|} \cr
8370 $$ {\vb\dot B(t)\vb\over 3} \approx
8371 \cases{B\left(\hbox{|v0|},
8372 \hbox{|v002|}-{1\over 2}\hbox{|v0|}-{1\over 4}\hbox{|v02|},
8373 {1\over 2}\hbox{|v02|}; 2t \right)&
8374 if $t\le{1\over 2}$\cr
8375 B\left({1\over 2}\hbox{|v02|},
8376 \hbox{|v022|}-{1\over 4}\hbox{|v02|}-{1\over 2}\hbox{|v2|},
8377 \hbox{|v2|}; 2t-1 \right)&
8378 if $t\ge{1\over 2}$.\cr}
8381 We can integrate $\vb\dot B(t)\vb$ by using
8382 $$\int 3B(a,b,c;\tau)\,dt =
8383 {B(0,a,a+b,a+b+c;\tau) + {\rm constant} \over {d\tau\over dt}}.
8386 This construction allows us to find the time when the arc length reaches
8387 |a_goal| by solving a cubic equation of the form
8388 $$ B(0,a,a+b,a+b+c;\tau) = x, $$
8389 where $\tau$ is $2t$ or $2t+1$, $x$ is |a_goal| or |a_goal-arc1|, and $a$, $b$,
8390 and $c$ are the Bernshte{\u\i}n coefficients from $(*)$ divided by
8391 @^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
8392 $d\tau\over dt$. We shall define a function |solve_rising_cubic| that finds
8393 $\tau$ given $a$, $b$, $c$, and $x$.
8395 @<Estimate when the arc length reaches |a_goal| and set |arc_test| to...@>=
8397 tmp = (v02 + 2) / 4;
8398 if ( a_goal<=arc1 ) {
8401 (halfp(mp_solve_rising_cubic(mp, tmp2, arc1-tmp2-tmp, tmp, a_goal))- two);
8404 return ((half_unit - two) +
8405 halfp(mp_solve_rising_cubic(mp, tmp, arc-arc1-tmp-tmp2, tmp2, a_goal-arc1)));
8409 @ Here is the |solve_rising_cubic| routine that finds the time~$t$ when
8410 $$ B(0, a, a+b, a+b+c; t) = x. $$
8411 This routine is based on |crossing_point| but is simplified by the
8412 assumptions that $B(a,b,c;t)\ge0$ for $0\le t\le1$ and that |0<=x<=a+b+c|.
8413 If rounding error causes this condition to be violated slightly, we just ignore
8414 it and proceed with binary search. This finds a time when the function value
8415 reaches |x| and the slope is positive.
8417 @<Declare subroutines needed by |arc_test|@>=
8418 scaled mp_solve_rising_cubic (MP mp,scaled a, scaled b, scaled c, scaled x) {
8419 scaled ab, bc, ac; /* bisection results */
8420 integer t; /* $2^k+q$ where unscaled answer is in $[q2^{-k},(q+1)2^{-k})$ */
8421 integer xx; /* temporary for updating |x| */
8422 if ( (a<0) || (c<0) ) mp_confusion(mp, "rising?");
8423 @:this can't happen rising?}{\quad rising?@>
8426 } else if ( x >= a+b+c ) {
8430 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than
8434 @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>;
8435 xx = x - a - ab - ac;
8436 if ( xx < -x ) { x+=x; b=ab; c=ac; }
8437 else { x = x + xx; a=ac; b=mp->bc; t = t+1; };
8438 } while (t < unity);
8443 @ @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>=
8448 @ @d one_third_el_gordo 05252525252 /* upper bound on |a|, |b|, and |c| */
8450 @<Rescale if necessary to make sure |a|, |b|, and |c| are all less than...@>=
8451 while ((a>one_third_el_gordo)||(b>one_third_el_gordo)||(c>one_third_el_gordo)) {
8458 @ It is convenient to have a simpler interface to |arc_test| that requires no
8459 unnecessary arguments and ensures that each $({\it dx},{\it dy})$ pair has
8460 length less than |fraction_four|.
8462 @d arc_tol 16 /* quit when change in arc length estimate reaches this */
8464 @c scaled mp_do_arc_test (MP mp,scaled dx0, scaled dy0, scaled dx1,
8465 scaled dy1, scaled dx2, scaled dy2, scaled a_goal) {
8466 scaled v0,v1,v2; /* length of each $({\it dx},{\it dy})$ pair */
8467 scaled v02; /* twice the norm of the quadratic at $t={1\over2}$ */
8468 v0 = mp_pyth_add(mp, dx0,dy0);
8469 v1 = mp_pyth_add(mp, dx1,dy1);
8470 v2 = mp_pyth_add(mp, dx2,dy2);
8471 if ( (v0>=fraction_four) || (v1>=fraction_four) || (v2>=fraction_four) ) {
8472 mp->arith_error = true;
8473 if ( a_goal==el_gordo ) return el_gordo;
8476 v02 = mp_pyth_add(mp, dx1+half(dx0+dx2), dy1+half(dy0+dy2));
8477 return (mp_arc_test(mp, dx0,dy0, dx1,dy1, dx2,dy2,
8478 v0, v02, v2, a_goal, arc_tol));
8482 @ Now it is easy to find the arc length of an entire path.
8484 @c scaled mp_get_arc_length (MP mp,pointer h) {
8485 pointer p,q; /* for traversing the path */
8486 scaled a,a_tot; /* current and total arc lengths */
8489 while ( right_type(p)!=mp_endpoint ){
8491 a = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8492 left_x(q)-right_x(p), left_y(q)-right_y(p),
8493 x_coord(q)-left_x(q), y_coord(q)-left_y(q), el_gordo);
8494 a_tot = mp_slow_add(mp, a, a_tot);
8495 if ( q==h ) break; else p=q;
8501 @ The inverse operation of finding the time on a path~|h| when the arc length
8502 reaches some value |arc0| can also be accomplished via |do_arc_test|. Some care
8503 is required to handle very large times or negative times on cyclic paths. For
8504 non-cyclic paths, |arc0| values that are negative or too large cause
8505 |get_arc_time| to return 0 or the length of path~|h|.
8507 If |arc0| is greater than the arc length of a cyclic path~|h|, the result is a
8508 time value greater than the length of the path. Since it could be much greater,
8509 we must be prepared to compute the arc length of path~|h| and divide this into
8510 |arc0| to find how many multiples of the length of path~|h| to add.
8512 @c scaled mp_get_arc_time (MP mp,pointer h, scaled arc0) {
8513 pointer p,q; /* for traversing the path */
8514 scaled t_tot; /* accumulator for the result */
8515 scaled t; /* the result of |do_arc_test| */
8516 scaled arc; /* portion of |arc0| not used up so far */
8517 integer n; /* number of extra times to go around the cycle */
8519 @<Deal with a negative |arc0| value and |return|@>;
8521 if ( arc0==el_gordo ) decr(arc0);
8525 while ( (right_type(p)!=mp_endpoint) && (arc>0) ) {
8527 t = mp_do_arc_test(mp, right_x(p)-x_coord(p), right_y(p)-y_coord(p),
8528 left_x(q)-right_x(p), left_y(q)-right_y(p),
8529 x_coord(q)-left_x(q), y_coord(q)-left_y(q), arc);
8530 @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>;
8532 @<Update |t_tot| and |arc| to avoid going around the cyclic
8533 path too many times but set |arith_error:=true| and |goto done| on
8542 @ @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>=
8543 if ( t<0 ) { t_tot = t_tot + t + two; arc = 0; }
8544 else { t_tot = t_tot + unity; arc = arc - t; }
8546 @ @<Deal with a negative |arc0| value and |return|@>=
8548 if ( left_type(h)==mp_endpoint ) {
8551 p = mp_htap_ypoc(mp, h);
8552 t_tot = -mp_get_arc_time(mp, p, -arc0);
8553 mp_toss_knot_list(mp, p);
8559 @ @<Update |t_tot| and |arc| to avoid going around the cyclic...@>=
8561 n = arc / (arc0 - arc);
8562 arc = arc - n*(arc0 - arc);
8563 if ( t_tot > el_gordo / (n+1) ) {
8564 mp->arith_error = true;
8568 t_tot = (n + 1)*t_tot;
8571 @* \[20] Data structures for pens.
8572 A Pen in \MP\ can be either elliptical or polygonal. Elliptical pens result
8573 in \ps\ \&{stroke} commands, while anything drawn with a polygonal pen is
8574 @:stroke}{\&{stroke} command@>
8575 converted into an area fill as described in the next part of this program.
8576 The mathematics behind this process is based on simple aspects of the theory
8577 of tracings developed by Leo Guibas, Lyle Ramshaw, and Jorge Stolfi
8578 [``A kinematic framework for computational geometry,'' Proc.\ IEEE Symp.\
8579 Foundations of Computer Science {\bf 24} (1983), 100--111].
8581 Polygonal pens are created from paths via \MP's \&{makepen} primitive.
8582 @:makepen_}{\&{makepen} primitive@>
8583 This path representation is almost sufficient for our purposes except that
8584 a pen path should always be a convex polygon with the vertices in
8585 counter-clockwise order.
8586 Since we will need to scan pen polygons both forward and backward, a pen
8587 should be represented as a doubly linked ring of knot nodes. There is
8588 room for the extra back pointer because we do not need the
8589 |left_type| or |right_type| fields. In fact, we don't need the |left_x|,
8590 |left_y|, |right_x|, or |right_y| fields either but we leave these alone
8591 so that certain procedures can operate on both pens and paths. In particular,
8592 pens can be copied using |copy_path| and recycled using |toss_knot_list|.
8595 /* this replaces the |left_type| and |right_type| fields in a pen knot */
8597 @ The |make_pen| procedure turns a path into a pen by initializing
8598 the |knil| pointers and making sure the knots form a convex polygon.
8599 Thus each cubic in the given path becomes a straight line and the control
8600 points are ignored. If the path is not cyclic, the ends are connected by a
8603 @d copy_pen(A) mp_make_pen(mp, mp_copy_path(mp, (A)),false)
8605 @c @<Declare a function called |convex_hull|@>;
8606 pointer mp_make_pen (MP mp,pointer h, boolean need_hull) {
8607 pointer p,q; /* two consecutive knots */
8614 h=mp_convex_hull(mp, h);
8615 @<Make sure |h| isn't confused with an elliptical pen@>;
8620 @ The only information required about an elliptical pen is the overall
8621 transformation that has been applied to the original \&{pencircle}.
8622 @:pencircle_}{\&{pencircle} primitive@>
8623 Since it suffices to keep track of how the three points $(0,0)$, $(1,0)$,
8624 and $(0,1)$ are transformed, an elliptical pen can be stored in a single
8625 knot node and transformed as if it were a path.
8627 @d pen_is_elliptical(A) ((A)==link((A)))
8629 @c pointer mp_get_pen_circle (MP mp,scaled diam) {
8630 pointer h; /* the knot node to return */
8631 h=mp_get_node(mp, knot_node_size);
8632 link(h)=h; knil(h)=h;
8633 originator(h)=mp_program_code;
8634 x_coord(h)=0; y_coord(h)=0;
8635 left_x(h)=diam; left_y(h)=0;
8636 right_x(h)=0; right_y(h)=diam;
8640 @ If the polygon being returned by |make_pen| has only one vertex, it will
8641 be interpreted as an elliptical pen. This is no problem since a degenerate
8642 polygon can equally well be thought of as a degenerate ellipse. We need only
8643 initialize the |left_x|, |left_y|, |right_x|, and |right_y| fields.
8645 @<Make sure |h| isn't confused with an elliptical pen@>=
8646 if ( pen_is_elliptical( h) ){
8647 left_x(h)=x_coord(h); left_y(h)=y_coord(h);
8648 right_x(h)=x_coord(h); right_y(h)=y_coord(h);
8651 @ We have to cheat a little here but most operations on pens only use
8652 the first three words in each knot node.
8653 @^data structure assumptions@>
8655 @<Initialize a pen at |test_pen| so that it fits in nine words@>=
8656 x_coord(test_pen)=-half_unit;
8657 y_coord(test_pen)=0;
8658 x_coord(test_pen+3)=half_unit;
8659 y_coord(test_pen+3)=0;
8660 x_coord(test_pen+6)=0;
8661 y_coord(test_pen+6)=unity;
8662 link(test_pen)=test_pen+3;
8663 link(test_pen+3)=test_pen+6;
8664 link(test_pen+6)=test_pen;
8665 knil(test_pen)=test_pen+6;
8666 knil(test_pen+3)=test_pen;
8667 knil(test_pen+6)=test_pen+3
8669 @ Printing a polygonal pen is very much like printing a path
8671 @<Declare subroutines for printing expressions@>=
8672 void mp_pr_pen (MP mp,pointer h) {
8673 pointer p,q; /* for list traversal */
8674 if ( pen_is_elliptical(h) ) {
8675 @<Print the elliptical pen |h|@>;
8679 mp_print_two(mp, x_coord(p),y_coord(p));
8680 mp_print_nl(mp, " .. ");
8681 @<Advance |p| making sure the links are OK and |return| if there is
8684 mp_print(mp, "cycle");
8688 @ @<Advance |p| making sure the links are OK and |return| if there is...@>=
8690 if ( (q==null) || (knil(q)!=p) ) {
8691 mp_print_nl(mp, "???"); return; /* this won't happen */
8696 @ @<Print the elliptical pen |h|@>=
8698 mp_print(mp, "pencircle transformed (");
8699 mp_print_scaled(mp, x_coord(h));
8700 mp_print_char(mp, ',');
8701 mp_print_scaled(mp, y_coord(h));
8702 mp_print_char(mp, ',');
8703 mp_print_scaled(mp, left_x(h)-x_coord(h));
8704 mp_print_char(mp, ',');
8705 mp_print_scaled(mp, right_x(h)-x_coord(h));
8706 mp_print_char(mp, ',');
8707 mp_print_scaled(mp, left_y(h)-y_coord(h));
8708 mp_print_char(mp, ',');
8709 mp_print_scaled(mp, right_y(h)-y_coord(h));
8710 mp_print_char(mp, ')');
8713 @ Here us another version of |pr_pen| that prints the pen as a diagnostic
8716 @<Declare subroutines for printing expressions@>=
8717 void mp_print_pen (MP mp,pointer h, char *s, boolean nuline) {
8718 mp_print_diagnostic(mp, "Pen",s,nuline); mp_print_ln(mp);
8721 mp_end_diagnostic(mp, true);
8724 @ Making a polygonal pen into a path involves restoring the |left_type| and
8725 |right_type| fields and setting the control points so as to make a polygonal
8729 void mp_make_path (MP mp,pointer h) {
8730 pointer p; /* for traversing the knot list */
8731 small_number k; /* a loop counter */
8732 @<Other local variables in |make_path|@>;
8733 if ( pen_is_elliptical(h) ) {
8734 @<Make the elliptical pen |h| into a path@>;
8738 left_type(p)=mp_explicit;
8739 right_type(p)=mp_explicit;
8740 @<copy the coordinates of knot |p| into its control points@>;
8746 @ @<copy the coordinates of knot |p| into its control points@>=
8747 left_x(p)=x_coord(p);
8748 left_y(p)=y_coord(p);
8749 right_x(p)=x_coord(p);
8750 right_y(p)=y_coord(p)
8752 @ We need an eight knot path to get a good approximation to an ellipse.
8754 @<Make the elliptical pen |h| into a path@>=
8756 @<Extract the transformation parameters from the elliptical pen~|h|@>;
8758 for (k=0;k<=7;k++ ) {
8759 @<Initialize |p| as the |k|th knot of a circle of unit diameter,
8760 transforming it appropriately@>;
8761 if ( k==7 ) link(p)=h; else link(p)=mp_get_node(mp, knot_node_size);
8766 @ @<Extract the transformation parameters from the elliptical pen~|h|@>=
8767 center_x=x_coord(h);
8768 center_y=y_coord(h);
8769 width_x=left_x(h)-center_x;
8770 width_y=left_y(h)-center_y;
8771 height_x=right_x(h)-center_x;
8772 height_y=right_y(h)-center_y
8774 @ @<Other local variables in |make_path|@>=
8775 scaled center_x,center_y; /* translation parameters for an elliptical pen */
8776 scaled width_x,width_y; /* the effect of a unit change in $x$ */
8777 scaled height_x,height_y; /* the effect of a unit change in $y$ */
8778 scaled dx,dy; /* the vector from knot |p| to its right control point */
8780 /* |k| advanced $270^\circ$ around the ring (cf. $\sin\theta=\cos(\theta+270)$) */
8782 @ The only tricky thing here are the tables |half_cos| and |d_cos| used to
8783 find the point $k/8$ of the way around the circle and the direction vector
8786 @<Initialize |p| as the |k|th knot of a circle of unit diameter,...@>=
8788 x_coord(p)=center_x+mp_take_fraction(mp, mp->half_cos[k],width_x)
8789 +mp_take_fraction(mp, mp->half_cos[kk],height_x);
8790 y_coord(p)=center_y+mp_take_fraction(mp, mp->half_cos[k],width_y)
8791 +mp_take_fraction(mp, mp->half_cos[kk],height_y);
8792 dx=-mp_take_fraction(mp, mp->d_cos[kk],width_x)
8793 +mp_take_fraction(mp, mp->d_cos[k],height_x);
8794 dy=-mp_take_fraction(mp, mp->d_cos[kk],width_y)
8795 +mp_take_fraction(mp, mp->d_cos[k],height_y);
8796 right_x(p)=x_coord(p)+dx;
8797 right_y(p)=y_coord(p)+dy;
8798 left_x(p)=x_coord(p)-dx;
8799 left_y(p)=y_coord(p)-dy;
8800 left_type(p)=mp_explicit;
8801 right_type(p)=mp_explicit;
8802 originator(p)=mp_program_code
8805 fraction half_cos[8]; /* ${1\over2}\cos(45k)$ */
8806 fraction d_cos[8]; /* a magic constant times $\cos(45k)$ */
8808 @ The magic constant for |d_cos| is the distance between $({1\over2},0)$ and
8809 $({1\over4}\sqrt2,{1\over4}\sqrt2)$ times the result of the |velocity|
8810 function for $\theta=\phi=22.5^\circ$. This comes out to be
8811 $$ d = {\sqrt{2-\sqrt2}\over 3+3\cos22.5^\circ}
8812 \approx 0.132608244919772.
8816 mp->half_cos[0]=fraction_half;
8817 mp->half_cos[1]=94906266; /* $2^{26}\sqrt2\approx94906265.62$ */
8819 mp->d_cos[0]=35596755; /* $2^{28}d\approx35596754.69$ */
8820 mp->d_cos[1]=25170707; /* $2^{27}\sqrt2\,d\approx25170706.63$ */
8822 for (k=3;k<= 4;k++ ) {
8823 mp->half_cos[k]=-mp->half_cos[4-k];
8824 mp->d_cos[k]=-mp->d_cos[4-k];
8826 for (k=5;k<= 7;k++ ) {
8827 mp->half_cos[k]=mp->half_cos[8-k];
8828 mp->d_cos[k]=mp->d_cos[8-k];
8831 @ The |convex_hull| function forces a pen polygon to be convex when it is
8832 returned by |make_pen| and after any subsequent transformation where rounding
8833 error might allow the convexity to be lost.
8834 The convex hull algorithm used here is described by F.~P. Preparata and
8835 M.~I. Shamos [{\sl Computational Geometry}, Springer-Verlag, 1985].
8837 @<Declare a function called |convex_hull|@>=
8838 @<Declare a procedure called |move_knot|@>;
8839 pointer mp_convex_hull (MP mp,pointer h) { /* Make a polygonal pen convex */
8840 pointer l,r; /* the leftmost and rightmost knots */
8841 pointer p,q; /* knots being scanned */
8842 pointer s; /* the starting point for an upcoming scan */
8843 scaled dx,dy; /* a temporary pointer */
8844 if ( pen_is_elliptical(h) ) {
8847 @<Set |l| to the leftmost knot in polygon~|h|@>;
8848 @<Set |r| to the rightmost knot in polygon~|h|@>;
8851 @<Find any knots on the path from |l| to |r| above the |l|-|r| line and
8852 move them past~|r|@>;
8853 @<Find any knots on the path from |s| to |l| below the |l|-|r| line and
8854 move them past~|l|@>;
8855 @<Sort the path from |l| to |r| by increasing $x$@>;
8856 @<Sort the path from |r| to |l| by decreasing $x$@>;
8859 @<Do a Gramm scan and remove vertices where there is no left turn@>;
8865 @ All comparisons are done primarily on $x$ and secondarily on $y$.
8867 @<Set |l| to the leftmost knot in polygon~|h|@>=
8871 if ( x_coord(p)<=x_coord(l) )
8872 if ( (x_coord(p)<x_coord(l)) || (y_coord(p)<y_coord(l)) )
8877 @ @<Set |r| to the rightmost knot in polygon~|h|@>=
8881 if ( x_coord(p)>=x_coord(r) )
8882 if ( (x_coord(p)>x_coord(r)) || (y_coord(p)>y_coord(r)) )
8887 @ @<Find any knots on the path from |l| to |r| above the |l|-|r| line...@>=
8888 dx=x_coord(r)-x_coord(l);
8889 dy=y_coord(r)-y_coord(l);
8893 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))>0 )
8894 mp_move_knot(mp, p, r);
8898 @ The |move_knot| procedure removes |p| from a doubly linked list and inserts
8901 @ @<Declare a procedure called |move_knot|@>=
8902 void mp_move_knot (MP mp,pointer p, pointer q) {
8903 link(knil(p))=link(p);
8904 knil(link(p))=knil(p);
8911 @ @<Find any knots on the path from |s| to |l| below the |l|-|r| line...@>=
8915 if ( mp_ab_vs_cd(mp, dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))<0 )
8916 mp_move_knot(mp, p,l);
8920 @ The list is likely to be in order already so we just do linear insertions.
8921 Secondary comparisons on $y$ ensure that the sort is consistent with the
8922 choice of |l| and |r|.
8924 @<Sort the path from |l| to |r| by increasing $x$@>=
8928 while ( x_coord(q)>x_coord(p) ) q=knil(q);
8929 while ( x_coord(q)==x_coord(p) ) {
8930 if ( y_coord(q)>y_coord(p) ) q=knil(q); else break;
8932 if ( q==knil(p) ) p=link(p);
8933 else { p=link(p); mp_move_knot(mp, knil(p),q); };
8936 @ @<Sort the path from |r| to |l| by decreasing $x$@>=
8940 while ( x_coord(q)<x_coord(p) ) q=knil(q);
8941 while ( x_coord(q)==x_coord(p) ) {
8942 if ( y_coord(q)<y_coord(p) ) q=knil(q); else break;
8944 if ( q==knil(p) ) p=link(p);
8945 else { p=link(p); mp_move_knot(mp, knil(p),q); };
8948 @ The condition involving |ab_vs_cd| tests if there is not a left turn
8949 at knot |q|. There usually will be a left turn so we streamline the case
8950 where the |then| clause is not executed.
8952 @<Do a Gramm scan and remove vertices where there...@>=
8956 dx=x_coord(q)-x_coord(p);
8957 dy=y_coord(q)-y_coord(p);
8961 if ( mp_ab_vs_cd(mp, dx,y_coord(q)-y_coord(p),dy,x_coord(q)-x_coord(p))<=0 ) {
8962 @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>;
8967 @ @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>=
8970 mp_free_node(mp, p,knot_node_size);
8971 link(s)=q; knil(q)=s;
8973 else { p=knil(s); q=s; };
8976 @ The |find_offset| procedure sets global variables |(cur_x,cur_y)| to the
8977 offset associated with the given direction |(x,y)|. If two different offsets
8978 apply, it chooses one of them.
8981 void mp_find_offset (MP mp,scaled x, scaled y, pointer h) {
8982 pointer p,q; /* consecutive knots */
8984 /* the transformation matrix for an elliptical pen */
8985 fraction xx,yy; /* untransformed offset for an elliptical pen */
8986 fraction d; /* a temporary register */
8987 if ( pen_is_elliptical(h) ) {
8988 @<Find the offset for |(x,y)| on the elliptical pen~|h|@>
8993 } while (!(mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)>=0));
8996 } while (!(mp_ab_vs_cd(mp, x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)<=0));
8997 mp->cur_x=x_coord(p);
8998 mp->cur_y=y_coord(p);
9004 scaled cur_y; /* all-purpose return value registers */
9006 @ @<Find the offset for |(x,y)| on the elliptical pen~|h|@>=
9007 if ( (x==0) && (y==0) ) {
9008 mp->cur_x=x_coord(h); mp->cur_y=y_coord(h);
9010 @<Find the non-constant part of the transformation for |h|@>;
9011 while ( (abs(x)<fraction_half) && (abs(y)<fraction_half) ){
9014 @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the
9015 untransformed version of |(x,y)|@>;
9016 mp->cur_x=x_coord(h)+mp_take_fraction(mp, xx,wx)+mp_take_fraction(mp, yy,hx);
9017 mp->cur_y=y_coord(h)+mp_take_fraction(mp, xx,wy)+mp_take_fraction(mp, yy,hy);
9020 @ @<Find the non-constant part of the transformation for |h|@>=
9021 wx=left_x(h)-x_coord(h);
9022 wy=left_y(h)-y_coord(h);
9023 hx=right_x(h)-x_coord(h);
9024 hy=right_y(h)-y_coord(h)
9026 @ @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the...@>=
9027 yy=-(mp_take_fraction(mp, x,hy)+mp_take_fraction(mp, y,-hx));
9028 xx=mp_take_fraction(mp, x,-wy)+mp_take_fraction(mp, y,wx);
9029 d=mp_pyth_add(mp, xx,yy);
9031 xx=half(mp_make_fraction(mp, xx,d));
9032 yy=half(mp_make_fraction(mp, yy,d));
9035 @ Finding the bounding box of a pen is easy except if the pen is elliptical.
9036 But we can handle that case by just calling |find_offset| twice. The answer
9037 is stored in the global variables |minx|, |maxx|, |miny|, and |maxy|.
9040 void mp_pen_bbox (MP mp,pointer h) {
9041 pointer p; /* for scanning the knot list */
9042 if ( pen_is_elliptical(h) ) {
9043 @<Find the bounding box of an elliptical pen@>;
9045 minx=x_coord(h); maxx=minx;
9046 miny=y_coord(h); maxy=miny;
9049 if ( x_coord(p)<minx ) minx=x_coord(p);
9050 if ( y_coord(p)<miny ) miny=y_coord(p);
9051 if ( x_coord(p)>maxx ) maxx=x_coord(p);
9052 if ( y_coord(p)>maxy ) maxy=y_coord(p);
9058 @ @<Find the bounding box of an elliptical pen@>=
9060 mp_find_offset(mp, 0,fraction_one,h);
9062 minx=2*x_coord(h)-mp->cur_x;
9063 mp_find_offset(mp, -fraction_one,0,h);
9065 miny=2*y_coord(h)-mp->cur_y;
9068 @* \[21] Edge structures.
9069 Now we come to \MP's internal scheme for representing pictures.
9070 The representation is very different from \MF's edge structures
9071 because \MP\ pictures contain \ps\ graphics objects instead of pixel
9072 images. However, the basic idea is somewhat similar in that shapes
9073 are represented via their boundaries.
9075 The main purpose of edge structures is to keep track of graphical objects
9076 until it is time to translate them into \ps. Since \MP\ does not need to
9077 know anything about an edge structure other than how to translate it into
9078 \ps\ and how to find its bounding box, edge structures can be just linked
9079 lists of graphical objects. \MP\ has no easy way to determine whether
9080 two such objects overlap, but it suffices to draw the first one first and
9081 let the second one overwrite it if necessary.
9084 enum mp_graphical_object_code {
9085 @<Graphical object codes@>
9088 @ Let's consider the types of graphical objects one at a time.
9089 First of all, a filled contour is represented by a eight-word node. The first
9090 word contains |type| and |link| fields, and the next six words contain a
9091 pointer to a cyclic path and the value to use for \ps' \&{currentrgbcolor}
9092 parameter. If a pen is used for filling |pen_p|, |ljoin_val| and |miterlim_val|
9093 give the relevant information.
9095 @d path_p(A) link((A)+1)
9096 /* a pointer to the path that needs filling */
9097 @d pen_p(A) info((A)+1)
9098 /* a pointer to the pen to fill or stroke with */
9099 @d color_model(A) type((A)+2) /* the color model */
9100 @d obj_red_loc(A) ((A)+3) /* the first of three locations for the color */
9101 @d obj_cyan_loc obj_red_loc /* the first of four locations for the color */
9102 @d obj_grey_loc obj_red_loc /* the location for the color */
9103 @d red_val(A) mp->mem[(A)+3].sc
9104 /* the red component of the color in the range $0\ldots1$ */
9107 @d green_val(A) mp->mem[(A)+4].sc
9108 /* the green component of the color in the range $0\ldots1$ */
9109 @d magenta_val green_val
9110 @d blue_val(A) mp->mem[(A)+5].sc
9111 /* the blue component of the color in the range $0\ldots1$ */
9112 @d yellow_val blue_val
9113 @d black_val(A) mp->mem[(A)+6].sc
9114 /* the blue component of the color in the range $0\ldots1$ */
9115 @d ljoin_val(A) name_type((A)) /* the value of \&{linejoin} */
9116 @:mp_linejoin_}{\&{linejoin} primitive@>
9117 @d miterlim_val(A) mp->mem[(A)+7].sc /* the value of \&{miterlimit} */
9118 @:mp_miterlimit_}{\&{miterlimit} primitive@>
9119 @d obj_color_part(A) mp->mem[(A)+3-red_part].sc
9120 /* interpret an object pointer that has been offset by |red_part..blue_part| */
9121 @d pre_script(A) mp->mem[(A)+8].hh.lh
9122 @d post_script(A) mp->mem[(A)+8].hh.rh
9125 @ @<Graphical object codes@>=
9129 pointer mp_new_fill_node (MP mp,pointer p) {
9130 /* make a fill node for cyclic path |p| and color black */
9131 pointer t; /* the new node */
9132 t=mp_get_node(mp, fill_node_size);
9133 type(t)=mp_fill_code;
9135 pen_p(t)=null; /* |null| means don't use a pen */
9140 color_model(t)=mp_uninitialized_model;
9142 post_script(t)=null;
9143 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9147 @ @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>=
9148 if ( mp->internal[mp_linejoin]>unity ) ljoin_val(t)=2;
9149 else if ( mp->internal[mp_linejoin]>0 ) ljoin_val(t)=1;
9150 else ljoin_val(t)=0;
9151 if ( mp->internal[mp_miterlimit]<unity )
9152 miterlim_val(t)=unity;
9154 miterlim_val(t)=mp->internal[mp_miterlimit]
9156 @ A stroked path is represented by an eight-word node that is like a filled
9157 contour node except that it contains the current \&{linecap} value, a scale
9158 factor for the dash pattern, and a pointer that is non-null if the stroke
9159 is to be dashed. The purpose of the scale factor is to allow a picture to
9160 be transformed without touching the picture that |dash_p| points to.
9162 @d dash_p(A) link((A)+9)
9163 /* a pointer to the edge structure that gives the dash pattern */
9164 @d lcap_val(A) type((A)+9)
9165 /* the value of \&{linecap} */
9166 @:mp_linecap_}{\&{linecap} primitive@>
9167 @d dash_scale(A) mp->mem[(A)+10].sc /* dash lengths are scaled by this factor */
9168 @d stroked_node_size 11
9170 @ @<Graphical object codes@>=
9174 pointer mp_new_stroked_node (MP mp,pointer p) {
9175 /* make a stroked node for path |p| with |pen_p(p)| temporarily |null| */
9176 pointer t; /* the new node */
9177 t=mp_get_node(mp, stroked_node_size);
9178 type(t)=mp_stroked_code;
9179 path_p(t)=p; pen_p(t)=null;
9181 dash_scale(t)=unity;
9186 color_model(t)=mp_uninitialized_model;
9188 post_script(t)=null;
9189 @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
9190 if ( mp->internal[mp_linecap]>unity ) lcap_val(t)=2;
9191 else if ( mp->internal[mp_linecap]>0 ) lcap_val(t)=1;
9196 @ When a dashed line is computed in a transformed coordinate system, the dash
9197 lengths get scaled like the pen shape and we need to compensate for this. Since
9198 there is no unique scale factor for an arbitrary transformation, we use the
9199 the square root of the determinant. The properties of the determinant make it
9200 easier to maintain the |dash_scale|. The computation is fairly straight-forward
9201 except for the initialization of the scale factor |s|. The factor of 64 is
9202 needed because |square_rt| scales its result by $2^8$ while we need $2^{14}$
9203 to counteract the effect of |take_fraction|.
9205 @<Declare subroutines needed by |print_edges|@>=
9206 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) {
9207 scaled maxabs; /* $max(|a|,|b|,|c|,|d|)$ */
9208 integer s; /* amount by which the result of |square_rt| needs to be scaled */
9209 @<Initialize |maxabs|@>;
9211 while ( (maxabs<fraction_one) && (s>1) ){
9212 a+=a; b+=b; c+=c; d+=d;
9213 maxabs+=maxabs; s=halfp(s);
9215 return s*mp_square_rt(mp, abs(mp_take_fraction(mp, a,d)-mp_take_fraction(mp, b,c)));
9218 scaled mp_get_pen_scale (MP mp,pointer p) {
9219 return mp_sqrt_det(mp,
9220 left_x(p)-x_coord(p), right_x(p)-x_coord(p),
9221 left_y(p)-y_coord(p), right_y(p)-y_coord(p));
9224 @ @<Internal library ...@>=
9225 scaled mp_sqrt_det (MP mp,scaled a, scaled b, scaled c, scaled d) ;
9228 @ @<Initialize |maxabs|@>=
9230 if ( abs(b)>maxabs ) maxabs=abs(b);
9231 if ( abs(c)>maxabs ) maxabs=abs(c);
9232 if ( abs(d)>maxabs ) maxabs=abs(d)
9234 @ When a picture contains text, this is represented by a fourteen-word node
9235 where the color information and |type| and |link| fields are augmented by
9236 additional fields that describe the text and how it is transformed.
9237 The |path_p| and |pen_p| pointers are replaced by a number that identifies
9238 the font and a string number that gives the text to be displayed.
9239 The |width|, |height|, and |depth| fields
9240 give the dimensions of the text at its design size, and the remaining six
9241 words give a transformation to be applied to the text. The |new_text_node|
9242 function initializes everything to default values so that the text comes out
9243 black with its reference point at the origin.
9245 @d text_p(A) link((A)+1) /* a string pointer for the text to display */
9246 @d font_n(A) info((A)+1) /* the font number */
9247 @d width_val(A) mp->mem[(A)+7].sc /* unscaled width of the text */
9248 @d height_val(A) mp->mem[(A)+9].sc /* unscaled height of the text */
9249 @d depth_val(A) mp->mem[(A)+10].sc /* unscaled depth of the text */
9250 @d text_tx_loc(A) ((A)+11)
9251 /* the first of six locations for transformation parameters */
9252 @d tx_val(A) mp->mem[(A)+11].sc /* $x$ shift amount */
9253 @d ty_val(A) mp->mem[(A)+12].sc /* $y$ shift amount */
9254 @d txx_val(A) mp->mem[(A)+13].sc /* |txx| transformation parameter */
9255 @d txy_val(A) mp->mem[(A)+14].sc /* |txy| transformation parameter */
9256 @d tyx_val(A) mp->mem[(A)+15].sc /* |tyx| transformation parameter */
9257 @d tyy_val(A) mp->mem[(A)+16].sc /* |tyy| transformation parameter */
9258 @d text_trans_part(A) mp->mem[(A)+11-x_part].sc
9259 /* interpret a text node pointer that has been offset by |x_part..yy_part| */
9260 @d text_node_size 17
9262 @ @<Graphical object codes@>=
9265 @ @c @<Declare text measuring subroutines@>;
9266 pointer mp_new_text_node (MP mp,char *f,str_number s) {
9267 /* make a text node for font |f| and text string |s| */
9268 pointer t; /* the new node */
9269 t=mp_get_node(mp, text_node_size);
9270 type(t)=mp_text_code;
9272 font_n(t)=mp_find_font(mp, f); /* this identifies the font */
9277 color_model(t)=mp_uninitialized_model;
9279 post_script(t)=null;
9280 tx_val(t)=0; ty_val(t)=0;
9281 txx_val(t)=unity; txy_val(t)=0;
9282 tyx_val(t)=0; tyy_val(t)=unity;
9283 mp_set_text_box(mp, t); /* this finds the bounding box */
9287 @ The last two types of graphical objects that can occur in an edge structure
9288 are clipping paths and \&{setbounds} paths. These are slightly more difficult
9289 @:set_bounds_}{\&{setbounds} primitive@>
9290 to implement because we must keep track of exactly what is being clipped or
9291 bounded when pictures get merged together. For this reason, each clipping or
9292 \&{setbounds} operation is represented by a pair of nodes: first comes a
9293 two-word node whose |path_p| gives the relevant path, then there is the list
9294 of objects to clip or bound followed by a two-word node whose second word is
9297 Using at least two words for each graphical object node allows them all to be
9298 allocated and deallocated similarly with a global array |gr_object_size| to
9299 give the size in words for each object type.
9301 @d start_clip_size 2
9302 @d start_bounds_size 2
9303 @d stop_clip_size 2 /* the second word is not used here */
9304 @d stop_bounds_size 2 /* the second word is not used here */
9306 @d stop_type(A) ((A)+2)
9307 /* matching |type| for |start_clip_code| or |start_bounds_code| */
9308 @d has_color(A) (type((A))<mp_start_clip_code)
9309 /* does a graphical object have color fields? */
9310 @d has_pen(A) (type((A))<mp_text_code)
9311 /* does a graphical object have a |pen_p| field? */
9312 @d is_start_or_stop(A) (type((A))>=mp_start_clip_code)
9313 @d is_stop(A) (type((A))>=mp_stop_clip_code)
9315 @ @<Graphical object codes@>=
9316 mp_start_clip_code=4, /* |type| of a node that starts clipping */
9317 mp_start_bounds_code=5, /* |type| of a node that gives a \&{setbounds} path */
9318 mp_stop_clip_code=6, /* |type| of a node that stops clipping */
9319 mp_stop_bounds_code=7, /* |type| of a node that stops \&{setbounds} */
9322 pointer mp_new_bounds_node (MP mp,pointer p, small_number c) {
9323 /* make a node of type |c| where |p| is the clipping or \&{setbounds} path */
9324 pointer t; /* the new node */
9325 t=mp_get_node(mp, mp->gr_object_size[c]);
9331 @ We need an array to keep track of the sizes of graphical objects.
9334 small_number gr_object_size[mp_stop_bounds_code+1];
9337 mp->gr_object_size[mp_fill_code]=fill_node_size;
9338 mp->gr_object_size[mp_stroked_code]=stroked_node_size;
9339 mp->gr_object_size[mp_text_code]=text_node_size;
9340 mp->gr_object_size[mp_start_clip_code]=start_clip_size;
9341 mp->gr_object_size[mp_stop_clip_code]=stop_clip_size;
9342 mp->gr_object_size[mp_start_bounds_code]=start_bounds_size;
9343 mp->gr_object_size[mp_stop_bounds_code]=stop_bounds_size;
9345 @ All the essential information in an edge structure is encoded as a linked list
9346 of graphical objects as we have just seen, but it is helpful to add some
9347 redundant information. A single edge structure might be used as a dash pattern
9348 many times, and it would be nice to avoid scanning the same structure
9349 repeatedly. Thus, an edge structure known to be a suitable dash pattern
9350 has a header that gives a list of dashes in a sorted order designed for rapid
9351 translation into \ps.
9353 Each dash is represented by a three-word node containing the initial and final
9354 $x$~coordinates as well as the usual |link| field. The |link| fields points to
9355 the dash node with the next higher $x$-coordinates and the final link points
9356 to a special location called |null_dash|. (There should be no overlap between
9357 dashes). Since the $y$~coordinate of the dash pattern is needed to determine
9358 the period of repetition, this needs to be stored in the edge header along
9359 with a pointer to the list of dash nodes.
9361 @d start_x(A) mp->mem[(A)+1].sc /* the starting $x$~coordinate in a dash node */
9362 @d stop_x(A) mp->mem[(A)+2].sc /* the ending $x$~coordinate in a dash node */
9365 /* in an edge header this points to the first dash node */
9366 @d dash_y(A) mp->mem[(A)+1].sc /* $y$ value for the dash list in an edge header */
9368 @ It is also convenient for an edge header to contain the bounding
9369 box information needed by the \&{llcorner} and \&{urcorner} operators
9370 so that this does not have to be recomputed unnecessarily. This is done by
9371 adding fields for the $x$~and $y$ extremes as well as a pointer that indicates
9372 how far the bounding box computation has gotten. Thus if the user asks for
9373 the bounding box and then adds some more text to the picture before asking
9374 for more bounding box information, the second computation need only look at
9375 the additional text.
9377 When the bounding box has not been computed, the |bblast| pointer points
9378 to a dummy link at the head of the graphical object list while the |minx_val|
9379 and |miny_val| fields contain |el_gordo| and the |maxx_val| and |maxy_val|
9380 fields contain |-el_gordo|.
9382 Since the bounding box of pictures containing objects of type
9383 |mp_start_bounds_code| depends on the value of \&{truecorners}, the bounding box
9384 @:mp_true_corners_}{\&{truecorners} primitive@>
9385 data might not be valid for all values of this parameter. Hence, the |bbtype|
9386 field is needed to keep track of this.
9388 @d minx_val(A) mp->mem[(A)+2].sc
9389 @d miny_val(A) mp->mem[(A)+3].sc
9390 @d maxx_val(A) mp->mem[(A)+4].sc
9391 @d maxy_val(A) mp->mem[(A)+5].sc
9392 @d bblast(A) link((A)+6) /* last item considered in bounding box computation */
9393 @d bbtype(A) info((A)+6) /* tells how bounding box data depends on \&{truecorners} */
9394 @d dummy_loc(A) ((A)+7) /* where the object list begins in an edge header */
9396 /* |bbtype| value when bounding box data is valid for all \&{truecorners} values */
9398 /* |bbtype| value when bounding box data is for \&{truecorners}${}\le 0$ */
9400 /* |bbtype| value when bounding box data is for \&{truecorners}${}>0$ */
9403 void mp_init_bbox (MP mp,pointer h) {
9404 /* Initialize the bounding box information in edge structure |h| */
9405 bblast(h)=dummy_loc(h);
9406 bbtype(h)=no_bounds;
9407 minx_val(h)=el_gordo;
9408 miny_val(h)=el_gordo;
9409 maxx_val(h)=-el_gordo;
9410 maxy_val(h)=-el_gordo;
9413 @ The only other entries in an edge header are a reference count in the first
9414 word and a pointer to the tail of the object list in the last word.
9416 @d obj_tail(A) info((A)+7) /* points to the last entry in the object list */
9417 @d edge_header_size 8
9420 void mp_init_edges (MP mp,pointer h) {
9421 /* initialize an edge header to null values */
9422 dash_list(h)=null_dash;
9423 obj_tail(h)=dummy_loc(h);
9424 link(dummy_loc(h))=null;
9426 mp_init_bbox(mp, h);
9429 @ Here is how edge structures are deleted. The process can be recursive because
9430 of the need to dereference edge structures that are used as dash patterns.
9433 @d add_edge_ref(A) incr(ref_count(A))
9434 @d delete_edge_ref(A) {
9435 if ( ref_count((A))==null )
9436 mp_toss_edges(mp, A);
9441 @<Declare the recycling subroutines@>=
9442 void mp_flush_dash_list (MP mp,pointer h);
9443 pointer mp_toss_gr_object (MP mp,pointer p) ;
9444 void mp_toss_edges (MP mp,pointer h) ;
9446 @ @c void mp_toss_edges (MP mp,pointer h) {
9447 pointer p,q; /* pointers that scan the list being recycled */
9448 pointer r; /* an edge structure that object |p| refers to */
9449 mp_flush_dash_list(mp, h);
9450 q=link(dummy_loc(h));
9451 while ( (q!=null) ) {
9453 r=mp_toss_gr_object(mp, p);
9454 if ( r!=null ) delete_edge_ref(r);
9456 mp_free_node(mp, h,edge_header_size);
9458 void mp_flush_dash_list (MP mp,pointer h) {
9459 pointer p,q; /* pointers that scan the list being recycled */
9461 while ( q!=null_dash ) {
9463 mp_free_node(mp, p,dash_node_size);
9465 dash_list(h)=null_dash;
9467 pointer mp_toss_gr_object (MP mp,pointer p) {
9468 /* returns an edge structure that needs to be dereferenced */
9469 pointer e; /* the edge structure to return */
9471 @<Prepare to recycle graphical object |p|@>;
9472 mp_free_node(mp, p,mp->gr_object_size[type(p)]);
9476 @ @<Prepare to recycle graphical object |p|@>=
9479 mp_toss_knot_list(mp, path_p(p));
9480 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9481 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9482 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9484 case mp_stroked_code:
9485 mp_toss_knot_list(mp, path_p(p));
9486 if ( pen_p(p)!=null ) mp_toss_knot_list(mp, pen_p(p));
9487 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9488 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9492 delete_str_ref(text_p(p));
9493 if ( pre_script(p)!=null ) delete_str_ref(pre_script(p));
9494 if ( post_script(p)!=null ) delete_str_ref(post_script(p));
9496 case mp_start_clip_code:
9497 case mp_start_bounds_code:
9498 mp_toss_knot_list(mp, path_p(p));
9500 case mp_stop_clip_code:
9501 case mp_stop_bounds_code:
9503 } /* there are no other cases */
9505 @ If we use |add_edge_ref| to ``copy'' edge structures, the real copying needs
9506 to be done before making a significant change to an edge structure. Much of
9507 the work is done in a separate routine |copy_objects| that copies a list of
9508 graphical objects into a new edge header.
9510 @c @<Declare a function called |copy_objects|@>;
9511 pointer mp_private_edges (MP mp,pointer h) {
9512 /* make a private copy of the edge structure headed by |h| */
9513 pointer hh; /* the edge header for the new copy */
9514 pointer p,pp; /* pointers for copying the dash list */
9515 if ( ref_count(h)==null ) {
9519 hh=mp_copy_objects(mp, link(dummy_loc(h)),null);
9520 @<Copy the dash list from |h| to |hh|@>;
9521 @<Copy the bounding box information from |h| to |hh| and make |bblast(hh)|
9522 point into the new object list@>;
9527 @ Here we use the fact that |dash_list(hh)=link(hh)|.
9528 @^data structure assumptions@>
9530 @<Copy the dash list from |h| to |hh|@>=
9531 pp=hh; p=dash_list(h);
9532 while ( (p!=null_dash) ) {
9533 link(pp)=mp_get_node(mp, dash_node_size);
9535 start_x(pp)=start_x(p);
9536 stop_x(pp)=stop_x(p);
9540 dash_y(hh)=dash_y(h)
9543 @ |h| is an edge structure
9545 @d gr_start_x(A) (A)->start_x_field
9546 @d gr_stop_x(A) (A)->stop_x_field
9547 @d gr_dash_link(A) (A)->next_field
9549 @d gr_dash_list(A) (A)->list_field
9550 @d gr_dash_y(A) (A)->y_field
9553 struct mp_dash_list *mp_export_dashes (MP mp, pointer h) {
9554 struct mp_dash_list *dl;
9555 struct mp_dash_item *dh, *di;
9557 if (h==null || dash_list(h)==null_dash)
9560 dl = mp_xmalloc(mp,1,sizeof(struct mp_dash_list));
9561 gr_dash_list(dl) = NULL;
9562 gr_dash_y(dl) = dash_y(h);
9564 while (p != null_dash) {
9565 di=mp_xmalloc(mp,1,sizeof(struct mp_dash_item));
9566 gr_dash_link(di) = NULL;
9567 gr_start_x(di) = start_x(p);
9568 gr_stop_x(di) = stop_x(p);
9570 gr_dash_list(dl) = di;
9572 gr_dash_link(dh) = di;
9581 @ @<Copy the bounding box information from |h| to |hh|...@>=
9582 minx_val(hh)=minx_val(h);
9583 miny_val(hh)=miny_val(h);
9584 maxx_val(hh)=maxx_val(h);
9585 maxy_val(hh)=maxy_val(h);
9586 bbtype(hh)=bbtype(h);
9587 p=dummy_loc(h); pp=dummy_loc(hh);
9588 while ((p!=bblast(h)) ) {
9589 if ( p==null ) mp_confusion(mp, "bblast");
9590 @:this can't happen bblast}{\quad bblast@>
9591 p=link(p); pp=link(pp);
9595 @ Here is the promised routine for copying graphical objects into a new edge
9596 structure. It starts copying at object~|p| and stops just before object~|q|.
9597 If |q| is null, it copies the entire sublist headed at |p|. The resulting edge
9598 structure requires further initialization by |init_bbox|.
9600 @<Declare a function called |copy_objects|@>=
9601 pointer mp_copy_objects (MP mp, pointer p, pointer q) {
9602 pointer hh; /* the new edge header */
9603 pointer pp; /* the last newly copied object */
9604 small_number k; /* temporary register */
9605 hh=mp_get_node(mp, edge_header_size);
9606 dash_list(hh)=null_dash;
9610 @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>;
9617 @ @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>=
9618 { k=mp->gr_object_size[type(p)];
9619 link(pp)=mp_get_node(mp, k);
9621 while ( (k>0) ) { decr(k); mp->mem[pp+k]=mp->mem[p+k]; };
9622 @<Fix anything in graphical object |pp| that should differ from the
9623 corresponding field in |p|@>;
9627 @ @<Fix anything in graphical object |pp| that should differ from the...@>=
9629 case mp_start_clip_code:
9630 case mp_start_bounds_code:
9631 path_p(pp)=mp_copy_path(mp, path_p(p));
9634 path_p(pp)=mp_copy_path(mp, path_p(p));
9635 if ( pen_p(p)!=null ) pen_p(pp)=copy_pen(pen_p(p));
9637 case mp_stroked_code:
9638 path_p(pp)=mp_copy_path(mp, path_p(p));
9639 pen_p(pp)=copy_pen(pen_p(p));
9640 if ( dash_p(p)!=null ) add_edge_ref(dash_p(pp));
9643 add_str_ref(text_p(pp));
9645 case mp_stop_clip_code:
9646 case mp_stop_bounds_code:
9648 } /* there are no other cases */
9650 @ Here is one way to find an acceptable value for the second argument to
9651 |copy_objects|. Given a non-null graphical object list, |skip_1component|
9652 skips past one picture component, where a ``picture component'' is a single
9653 graphical object, or a start bounds or start clip object and everything up
9654 through the matching stop bounds or stop clip object. The macro version avoids
9655 procedure call overhead and error handling: |skip_component(p)(e)| advances |p|
9656 unless |p| points to a stop bounds or stop clip node, in which case it executes
9659 @d skip_component(A)
9660 if ( ! is_start_or_stop((A)) ) (A)=link((A));
9661 else if ( ! is_stop((A)) ) (A)=mp_skip_1component(mp, (A));
9665 pointer mp_skip_1component (MP mp,pointer p) {
9666 integer lev; /* current nesting level */
9669 if ( is_start_or_stop(p) ) {
9670 if ( is_stop(p) ) decr(lev); else incr(lev);
9677 @ Here is a diagnostic routine for printing an edge structure in symbolic form.
9679 @<Declare subroutines for printing expressions@>=
9680 @<Declare subroutines needed by |print_edges|@>;
9681 void mp_print_edges (MP mp,pointer h, char *s, boolean nuline) {
9682 pointer p; /* a graphical object to be printed */
9683 pointer hh,pp; /* temporary pointers */
9684 scaled scf; /* a scale factor for the dash pattern */
9685 boolean ok_to_dash; /* |false| for polygonal pen strokes */
9686 mp_print_diagnostic(mp, "Edge structure",s,nuline);
9688 while ( link(p)!=null ) {
9692 @<Cases for printing graphical object node |p|@>;
9694 mp_print(mp, "[unknown object type!]");
9698 mp_print_nl(mp, "End edges");
9699 if ( p!=obj_tail(h) ) mp_print(mp, "?");
9701 mp_end_diagnostic(mp, true);
9704 @ @<Cases for printing graphical object node |p|@>=
9706 mp_print(mp, "Filled contour ");
9707 mp_print_obj_color(mp, p);
9708 mp_print_char(mp, ':'); mp_print_ln(mp);
9709 mp_pr_path(mp, path_p(p)); mp_print_ln(mp);
9710 if ( (pen_p(p)!=null) ) {
9711 @<Print join type for graphical object |p|@>;
9712 mp_print(mp, " with pen"); mp_print_ln(mp);
9713 mp_pr_pen(mp, pen_p(p));
9717 @ @<Print join type for graphical object |p|@>=
9718 switch (ljoin_val(p)) {
9720 mp_print(mp, "mitered joins limited ");
9721 mp_print_scaled(mp, miterlim_val(p));
9724 mp_print(mp, "round joins");
9727 mp_print(mp, "beveled joins");
9730 mp_print(mp, "?? joins");
9735 @ For stroked nodes, we need to print |lcap_val(p)| as well.
9737 @<Print join and cap types for stroked node |p|@>=
9738 switch (lcap_val(p)) {
9739 case 0:mp_print(mp, "butt"); break;
9740 case 1:mp_print(mp, "round"); break;
9741 case 2:mp_print(mp, "square"); break;
9742 default: mp_print(mp, "??"); break;
9745 mp_print(mp, " ends, ");
9746 @<Print join type for graphical object |p|@>
9748 @ Here is a routine that prints the color of a graphical object if it isn't
9749 black (the default color).
9751 @<Declare subroutines needed by |print_edges|@>=
9752 @<Declare a procedure called |print_compact_node|@>;
9753 void mp_print_obj_color (MP mp,pointer p) {
9754 if ( color_model(p)==mp_grey_model ) {
9755 if ( grey_val(p)>0 ) {
9756 mp_print(mp, "greyed ");
9757 mp_print_compact_node(mp, obj_grey_loc(p),1);
9759 } else if ( color_model(p)==mp_cmyk_model ) {
9760 if ( (cyan_val(p)>0) || (magenta_val(p)>0) ||
9761 (yellow_val(p)>0) || (black_val(p)>0) ) {
9762 mp_print(mp, "processcolored ");
9763 mp_print_compact_node(mp, obj_cyan_loc(p),4);
9765 } else if ( color_model(p)==mp_rgb_model ) {
9766 if ( (red_val(p)>0) || (green_val(p)>0) || (blue_val(p)>0) ) {
9767 mp_print(mp, "colored ");
9768 mp_print_compact_node(mp, obj_red_loc(p),3);
9773 @ We also need a procedure for printing consecutive scaled values as if they
9774 were a known big node.
9776 @<Declare a procedure called |print_compact_node|@>=
9777 void mp_print_compact_node (MP mp,pointer p, small_number k) {
9778 pointer q; /* last location to print */
9780 mp_print_char(mp, '(');
9782 mp_print_scaled(mp, mp->mem[p].sc);
9783 if ( p<q ) mp_print_char(mp, ',');
9786 mp_print_char(mp, ')');
9789 @ @<Cases for printing graphical object node |p|@>=
9790 case mp_stroked_code:
9791 mp_print(mp, "Filled pen stroke ");
9792 mp_print_obj_color(mp, p);
9793 mp_print_char(mp, ':'); mp_print_ln(mp);
9794 mp_pr_path(mp, path_p(p));
9795 if ( dash_p(p)!=null ) {
9796 mp_print_nl(mp, "dashed (");
9797 @<Finish printing the dash pattern that |p| refers to@>;
9800 @<Print join and cap types for stroked node |p|@>;
9801 mp_print(mp, " with pen"); mp_print_ln(mp);
9802 if ( pen_p(p)==null ) mp_print(mp, "???"); /* shouldn't happen */
9804 else mp_pr_pen(mp, pen_p(p));
9807 @ Normally, the |dash_list| field in an edge header is set to |null_dash|
9808 when it is not known to define a suitable dash pattern. This is disallowed
9809 here because the |dash_p| field should never point to such an edge header.
9810 Note that memory is allocated for |start_x(null_dash)| and we are free to
9811 give it any convenient value.
9813 @<Finish printing the dash pattern that |p| refers to@>=
9814 ok_to_dash=pen_is_elliptical(pen_p(p));
9815 if ( ! ok_to_dash ) scf=unity; else scf=dash_scale(p);
9818 if ( (pp==null_dash) || (dash_y(hh)<0) ) {
9819 mp_print(mp, " ??");
9820 } else { start_x(null_dash)=start_x(pp)+dash_y(hh);
9821 while ( pp!=null_dash ) {
9822 mp_print(mp, "on ");
9823 mp_print_scaled(mp, mp_take_scaled(mp, stop_x(pp)-start_x(pp),scf));
9824 mp_print(mp, " off ");
9825 mp_print_scaled(mp, mp_take_scaled(mp, start_x(link(pp))-stop_x(pp),scf));
9827 if ( pp!=null_dash ) mp_print_char(mp, ' ');
9829 mp_print(mp, ") shifted ");
9830 mp_print_scaled(mp, -mp_take_scaled(mp, mp_dash_offset(mp, hh),scf));
9831 if ( ! ok_to_dash || (dash_y(hh)==0) ) mp_print(mp, " (this will be ignored)");
9834 @ @<Declare subroutines needed by |print_edges|@>=
9835 scaled mp_dash_offset (MP mp,pointer h) {
9836 scaled x; /* the answer */
9837 if (dash_list(h)==null_dash || dash_y(h)<0) mp_confusion(mp, "dash0");
9838 @:this can't happen dash0}{\quad dash0@>
9839 if ( dash_y(h)==0 ) {
9842 x=-(start_x(dash_list(h)) % dash_y(h));
9843 if ( x<0 ) x=x+dash_y(h);
9848 @ @<Cases for printing graphical object node |p|@>=
9850 mp_print_char(mp, '"'); mp_print_str(mp,text_p(p));
9851 mp_print(mp, "\" infont \""); mp_print(mp, mp->font_name[font_n(p)]);
9852 mp_print_char(mp, '"'); mp_print_ln(mp);
9853 mp_print_obj_color(mp, p);
9854 mp_print(mp, "transformed ");
9855 mp_print_compact_node(mp, text_tx_loc(p),6);
9858 @ @<Cases for printing graphical object node |p|@>=
9859 case mp_start_clip_code:
9860 mp_print(mp, "clipping path:");
9862 mp_pr_path(mp, path_p(p));
9864 case mp_stop_clip_code:
9865 mp_print(mp, "stop clipping");
9868 @ @<Cases for printing graphical object node |p|@>=
9869 case mp_start_bounds_code:
9870 mp_print(mp, "setbounds path:");
9872 mp_pr_path(mp, path_p(p));
9874 case mp_stop_bounds_code:
9875 mp_print(mp, "end of setbounds");
9878 @ To initialize the |dash_list| field in an edge header~|h|, we need a
9879 subroutine that scans an edge structure and tries to interpret it as a dash
9880 pattern. This can only be done when there are no filled regions or clipping
9881 paths and all the pen strokes have the same color. The first step is to let
9882 $y_0$ be the initial $y$~coordinate of the first pen stroke. Then we implicitly
9883 project all the pen stroke paths onto the line $y=y_0$ and require that there
9884 be no retracing. If the resulting paths cover a range of $x$~coordinates of
9885 length $\Delta x$, we set |dash_y(h)| to the length of the dash pattern by
9886 finding the maximum of $\Delta x$ and the absolute value of~$y_0$.
9888 @c @<Declare a procedure called |x_retrace_error|@>;
9889 pointer mp_make_dashes (MP mp,pointer h) { /* returns |h| or |null| */
9890 pointer p; /* this scans the stroked nodes in the object list */
9891 pointer p0; /* if not |null| this points to the first stroked node */
9892 pointer pp,qq,rr; /* pointers into |path_p(p)| */
9893 pointer d,dd; /* pointers used to create the dash list */
9894 @<Other local variables in |make_dashes|@>;
9895 scaled y0=0; /* the initial $y$ coordinate */
9896 if ( dash_list(h)!=null_dash )
9899 p=link(dummy_loc(h));
9901 if ( type(p)!=mp_stroked_code ) {
9902 @<Compain that the edge structure contains a node of the wrong type
9903 and |goto not_found|@>;
9906 if ( p0==null ){ p0=p; y0=y_coord(pp); };
9907 @<Make |d| point to a new dash node created from stroke |p| and path |pp|
9908 or |goto not_found| if there is an error@>;
9909 @<Insert |d| into the dash list and |goto not_found| if there is an error@>;
9912 if ( dash_list(h)==null_dash )
9913 goto NOT_FOUND; /* No error message */
9914 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>;
9915 @<Set |dash_y(h)| and merge the first and last dashes if necessary@>;
9918 @<Flush the dash list, recycle |h| and return |null|@>;
9921 @ @<Compain that the edge structure contains a node of the wrong type...@>=
9923 print_err("Picture is too complicated to use as a dash pattern");
9924 help3("When you say `dashed p', picture p should not contain any")
9925 ("text, filled regions, or clipping paths. This time it did")
9926 ("so I'll just make it a solid line instead.");
9927 mp_put_get_error(mp);
9931 @ A similar error occurs when monotonicity fails.
9933 @<Declare a procedure called |x_retrace_error|@>=
9934 void mp_x_retrace_error (MP mp) {
9935 print_err("Picture is too complicated to use as a dash pattern");
9936 help3("When you say `dashed p', every path in p should be monotone")
9937 ("in x and there must be no overlapping. This failed")
9938 ("so I'll just make it a solid line instead.");
9939 mp_put_get_error(mp);
9942 @ We stash |p| in |info(d)| if |dash_p(p)<>0| so that subsequent processing can
9943 handle the case where the pen stroke |p| is itself dashed.
9945 @<Make |d| point to a new dash node created from stroke |p| and path...@>=
9946 @<Make sure |p| and |p0| are the same color and |goto not_found| if there is
9949 if ( link(pp)!=pp ) {
9952 @<Check for retracing between knots |qq| and |rr| and |goto not_found|
9953 if there is a problem@>;
9954 } while (right_type(rr)!=mp_endpoint);
9956 d=mp_get_node(mp, dash_node_size);
9957 if ( dash_p(p)==0 ) info(d)=0; else info(d)=p;
9958 if ( x_coord(pp)<x_coord(rr) ) {
9959 start_x(d)=x_coord(pp);
9960 stop_x(d)=x_coord(rr);
9962 start_x(d)=x_coord(rr);
9963 stop_x(d)=x_coord(pp);
9966 @ We also need to check for the case where the segment from |qq| to |rr| is
9967 monotone in $x$ but is reversed relative to the path from |pp| to |qq|.
9969 @<Check for retracing between knots |qq| and |rr| and |goto not_found|...@>=
9974 if ( (x0>x1) || (x1>x2) || (x2>x3) ) {
9975 if ( (x0<x1) || (x1<x2) || (x2<x3) ) {
9976 if ( mp_ab_vs_cd(mp, x2-x1,x2-x1,x1-x0,x3-x2)>0 ) {
9977 mp_x_retrace_error(mp); goto NOT_FOUND;
9981 if ( (x_coord(pp)>x0) || (x0>x3) ) {
9982 if ( (x_coord(pp)<x0) || (x0<x3) ) {
9983 mp_x_retrace_error(mp); goto NOT_FOUND;
9987 @ @<Other local variables in |make_dashes|@>=
9988 scaled x0,x1,x2,x3; /* $x$ coordinates of the segment from |qq| to |rr| */
9990 @ @<Make sure |p| and |p0| are the same color and |goto not_found|...@>=
9991 if ( (red_val(p)!=red_val(p0)) || (black_val(p)!=black_val(p0)) ||
9992 (green_val(p)!=green_val(p0)) || (blue_val(p)!=blue_val(p0)) ) {
9993 print_err("Picture is too complicated to use as a dash pattern");
9994 help3("When you say `dashed p', everything in picture p should")
9995 ("be the same color. I can\'t handle your color changes")
9996 ("so I'll just make it a solid line instead.");
9997 mp_put_get_error(mp);
10001 @ @<Insert |d| into the dash list and |goto not_found| if there is an error@>=
10002 start_x(null_dash)=stop_x(d);
10003 dd=h; /* this makes |link(dd)=dash_list(h)| */
10004 while ( start_x(link(dd))<stop_x(d) )
10007 if ( (stop_x(dd)>start_x(d)) )
10008 { mp_x_retrace_error(mp); goto NOT_FOUND; };
10013 @ @<Set |dash_y(h)| and merge the first and last dashes if necessary@>=
10015 while ( (link(d)!=null_dash) )
10018 dash_y(h)=stop_x(d)-start_x(dd);
10019 if ( abs(y0)>dash_y(h) ) {
10021 } else if ( d!=dd ) {
10022 dash_list(h)=link(dd);
10023 stop_x(d)=stop_x(dd)+dash_y(h);
10024 mp_free_node(mp, dd,dash_node_size);
10027 @ We get here when the argument is a null picture or when there is an error.
10028 Recovering from an error involves making |dash_list(h)| empty to indicate
10029 that |h| is not known to be a valid dash pattern. We also dereference |h|
10030 since it is not being used for the return value.
10032 @<Flush the dash list, recycle |h| and return |null|@>=
10033 mp_flush_dash_list(mp, h);
10034 delete_edge_ref(h);
10037 @ Having carefully saved the dashed stroked nodes in the
10038 corresponding dash nodes, we must be prepared to break up these dashes into
10041 @<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>=
10042 d=h; /* now |link(d)=dash_list(h)| */
10043 while ( link(d)!=null_dash ) {
10049 hsf=dash_scale(ds);
10050 if ( (hh==null) ) mp_confusion(mp, "dash1");
10051 @:this can't happen dash0}{\quad dash1@>
10052 if ( dash_y(hh)==0 ) {
10055 if ( dash_list(hh)==null ) mp_confusion(mp, "dash1");
10056 @:this can't happen dash0}{\quad dash1@>
10057 @<Replace |link(d)| by a dashed version as determined by edge header
10058 |hh| and scale factor |ds|@>;
10063 @ @<Other local variables in |make_dashes|@>=
10064 pointer dln; /* |link(d)| */
10065 pointer hh; /* an edge header that tells how to break up |dln| */
10066 scaled hsf; /* the dash pattern from |hh| gets scaled by this */
10067 pointer ds; /* the stroked node from which |hh| and |hsf| are derived */
10068 scaled xoff; /* added to $x$ values in |dash_list(hh)| to match |dln| */
10070 @ @<Replace |link(d)| by a dashed version as determined by edge header...@>=
10073 xoff=start_x(dln)-mp_take_scaled(mp, hsf,start_x(dd))-
10074 mp_take_scaled(mp, hsf,mp_dash_offset(mp, hh));
10075 start_x(null_dash)=mp_take_scaled(mp, hsf,start_x(dd))
10076 +mp_take_scaled(mp, hsf,dash_y(hh));
10077 stop_x(null_dash)=start_x(null_dash);
10078 @<Advance |dd| until finding the first dash that overlaps |dln| when
10079 offset by |xoff|@>;
10080 while ( start_x(dln)<=stop_x(dln) ) {
10081 @<If |dd| has `fallen off the end', back up to the beginning and fix |xoff|@>;
10082 @<Insert a dash between |d| and |dln| for the overlap with the offset version
10085 start_x(dln)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10088 mp_free_node(mp, dln,dash_node_size)
10090 @ The name of this module is a bit of a lie because we actually just find the
10091 first |dd| where |take_scaled (hsf, stop_x(dd))| is large enough to make an
10092 overlap possible. It could be that the unoffset version of dash |dln| falls
10093 in the gap between |dd| and its predecessor.
10095 @<Advance |dd| until finding the first dash that overlaps |dln| when...@>=
10096 while ( xoff+mp_take_scaled(mp, hsf,stop_x(dd))<start_x(dln) ) {
10100 @ @<If |dd| has `fallen off the end', back up to the beginning and fix...@>=
10101 if ( dd==null_dash ) {
10103 xoff=xoff+mp_take_scaled(mp, hsf,dash_y(hh));
10106 @ At this point we already know that
10107 |start_x(dln)<=xoff+take_scaled(hsf,stop_x(dd))|.
10109 @<Insert a dash between |d| and |dln| for the overlap with the offset...@>=
10110 if ( (xoff+mp_take_scaled(mp, hsf,start_x(dd)))<=stop_x(dln) ) {
10111 link(d)=mp_get_node(mp, dash_node_size);
10114 if ( start_x(dln)>(xoff+mp_take_scaled(mp, hsf,start_x(dd))))
10115 start_x(d)=start_x(dln);
10117 start_x(d)=xoff+mp_take_scaled(mp, hsf,start_x(dd));
10118 if ( stop_x(dln)<(xoff+mp_take_scaled(mp, hsf,stop_x(dd))))
10119 stop_x(d)=stop_x(dln);
10121 stop_x(d)=xoff+mp_take_scaled(mp, hsf,stop_x(dd));
10124 @ The next major task is to update the bounding box information in an edge
10125 header~|h|. This is done via a procedure |adjust_bbox| that enlarges an edge
10126 header's bounding box to accommodate the box computed by |path_bbox| or
10127 |pen_bbox|. (This is stored in global variables |minx|, |miny|, |maxx|, and
10130 @c void mp_adjust_bbox (MP mp,pointer h) {
10131 if ( minx<minx_val(h) ) minx_val(h)=minx;
10132 if ( miny<miny_val(h) ) miny_val(h)=miny;
10133 if ( maxx>maxx_val(h) ) maxx_val(h)=maxx;
10134 if ( maxy>maxy_val(h) ) maxy_val(h)=maxy;
10137 @ Here is a special routine for updating the bounding box information in
10138 edge header~|h| to account for the squared-off ends of a non-cyclic path~|p|
10139 that is to be stroked with the pen~|pp|.
10141 @c void mp_box_ends (MP mp, pointer p, pointer pp, pointer h) {
10142 pointer q; /* a knot node adjacent to knot |p| */
10143 fraction dx,dy; /* a unit vector in the direction out of the path at~|p| */
10144 scaled d; /* a factor for adjusting the length of |(dx,dy)| */
10145 scaled z; /* a coordinate being tested against the bounding box */
10146 scaled xx,yy; /* the extreme pen vertex in the |(dx,dy)| direction */
10147 integer i; /* a loop counter */
10148 if ( right_type(p)!=mp_endpoint ) {
10151 @<Make |(dx,dy)| the final direction for the path segment from
10152 |q| to~|p|; set~|d|@>;
10153 d=mp_pyth_add(mp, dx,dy);
10155 @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>;
10156 for (i=1;i<= 2;i++) {
10157 @<Use |(dx,dy)| to generate a vertex of the square end cap and
10158 update the bounding box to accommodate it@>;
10162 if ( right_type(p)==mp_endpoint ) {
10165 @<Advance |p| to the end of the path and make |q| the previous knot@>;
10171 @ @<Make |(dx,dy)| the final direction for the path segment from...@>=
10172 if ( q==link(p) ) {
10173 dx=x_coord(p)-right_x(p);
10174 dy=y_coord(p)-right_y(p);
10175 if ( (dx==0)&&(dy==0) ) {
10176 dx=x_coord(p)-left_x(q);
10177 dy=y_coord(p)-left_y(q);
10180 dx=x_coord(p)-left_x(p);
10181 dy=y_coord(p)-left_y(p);
10182 if ( (dx==0)&&(dy==0) ) {
10183 dx=x_coord(p)-right_x(q);
10184 dy=y_coord(p)-right_y(q);
10187 dx=x_coord(p)-x_coord(q);
10188 dy=y_coord(p)-y_coord(q)
10190 @ @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>=
10191 dx=mp_make_fraction(mp, dx,d);
10192 dy=mp_make_fraction(mp, dy,d);
10193 mp_find_offset(mp, -dy,dx,pp);
10194 xx=mp->cur_x; yy=mp->cur_y
10196 @ @<Use |(dx,dy)| to generate a vertex of the square end cap and...@>=
10197 mp_find_offset(mp, dx,dy,pp);
10198 d=mp_take_fraction(mp, xx-mp->cur_x,dx)+mp_take_fraction(mp, yy-mp->cur_y,dy);
10199 if ( ((d<0)&&(i==1)) || ((d>0)&&(i==2)))
10200 mp_confusion(mp, "box_ends");
10201 @:this can't happen box ends}{\quad\\{box\_ends}@>
10202 z=x_coord(p)+mp->cur_x+mp_take_fraction(mp, d,dx);
10203 if ( z<minx_val(h) ) minx_val(h)=z;
10204 if ( z>maxx_val(h) ) maxx_val(h)=z;
10205 z=y_coord(p)+mp->cur_y+mp_take_fraction(mp, d,dy);
10206 if ( z<miny_val(h) ) miny_val(h)=z;
10207 if ( z>maxy_val(h) ) maxy_val(h)=z
10209 @ @<Advance |p| to the end of the path and make |q| the previous knot@>=
10213 } while (right_type(p)!=mp_endpoint)
10215 @ The major difficulty in finding the bounding box of an edge structure is the
10216 effect of clipping paths. We treat them conservatively by only clipping to the
10217 clipping path's bounding box, but this still
10218 requires recursive calls to |set_bbox| in order to find the bounding box of
10220 the objects to be clipped. Such calls are distinguished by the fact that the
10221 boolean parameter |top_level| is false.
10223 @c void mp_set_bbox (MP mp,pointer h, boolean top_level) {
10224 pointer p; /* a graphical object being considered */
10225 scaled sminx,sminy,smaxx,smaxy;
10226 /* for saving the bounding box during recursive calls */
10227 scaled x0,x1,y0,y1; /* temporary registers */
10228 integer lev; /* nesting level for |mp_start_bounds_code| nodes */
10229 @<Wipe out any existing bounding box information if |bbtype(h)| is
10230 incompatible with |internal[mp_true_corners]|@>;
10231 while ( link(bblast(h))!=null ) {
10235 case mp_stop_clip_code:
10236 if ( top_level ) mp_confusion(mp, "bbox"); else return;
10237 @:this can't happen bbox}{\quad bbox@>
10239 @<Other cases for updating the bounding box based on the type of object |p|@>;
10240 } /* all cases are enumerated above */
10242 if ( ! top_level ) mp_confusion(mp, "bbox");
10245 @ @<Internal library declarations@>=
10246 void mp_set_bbox (MP mp,pointer h, boolean top_level);
10248 @ @<Wipe out any existing bounding box information if |bbtype(h)| is...@>=
10249 switch (bbtype(h)) {
10253 if ( mp->internal[mp_true_corners]>0 ) mp_init_bbox(mp, h);
10256 if ( mp->internal[mp_true_corners]<=0 ) mp_init_bbox(mp, h);
10258 } /* there are no other cases */
10260 @ @<Other cases for updating the bounding box...@>=
10262 mp_path_bbox(mp, path_p(p));
10263 if ( pen_p(p)!=null ) {
10266 mp_pen_bbox(mp, pen_p(p));
10272 mp_adjust_bbox(mp, h);
10275 @ @<Other cases for updating the bounding box...@>=
10276 case mp_start_bounds_code:
10277 if ( mp->internal[mp_true_corners]>0 ) {
10278 bbtype(h)=bounds_unset;
10280 bbtype(h)=bounds_set;
10281 mp_path_bbox(mp, path_p(p));
10282 mp_adjust_bbox(mp, h);
10283 @<Scan to the matching |mp_stop_bounds_code| node and update |p| and
10287 case mp_stop_bounds_code:
10288 if ( mp->internal[mp_true_corners]<=0 ) mp_confusion(mp, "bbox2");
10289 @:this can't happen bbox2}{\quad bbox2@>
10292 @ @<Scan to the matching |mp_stop_bounds_code| node and update |p| and...@>=
10295 if ( link(p)==null ) mp_confusion(mp, "bbox2");
10296 @:this can't happen bbox2}{\quad bbox2@>
10298 if ( type(p)==mp_start_bounds_code ) incr(lev);
10299 else if ( type(p)==mp_stop_bounds_code ) decr(lev);
10303 @ It saves a lot of grief here to be slightly conservative and not account for
10304 omitted parts of dashed lines. We also don't worry about the material omitted
10305 when using butt end caps. The basic computation is for round end caps and
10306 |box_ends| augments it for square end caps.
10308 @<Other cases for updating the bounding box...@>=
10309 case mp_stroked_code:
10310 mp_path_bbox(mp, path_p(p));
10313 mp_pen_bbox(mp, pen_p(p));
10318 mp_adjust_bbox(mp, h);
10319 if ( (left_type(path_p(p))==mp_endpoint)&&(lcap_val(p)==2) )
10320 mp_box_ends(mp, path_p(p), pen_p(p), h);
10323 @ The height width and depth information stored in a text node determines a
10324 rectangle that needs to be transformed according to the transformation
10325 parameters stored in the text node.
10327 @<Other cases for updating the bounding box...@>=
10329 x1=mp_take_scaled(mp, txx_val(p),width_val(p));
10330 y0=mp_take_scaled(mp, txy_val(p),-depth_val(p));
10331 y1=mp_take_scaled(mp, txy_val(p),height_val(p));
10334 if ( y0<y1 ) { minx=minx+y0; maxx=maxx+y1; }
10335 else { minx=minx+y1; maxx=maxx+y0; }
10336 if ( x1<0 ) minx=minx+x1; else maxx=maxx+x1;
10337 x1=mp_take_scaled(mp, tyx_val(p),width_val(p));
10338 y0=mp_take_scaled(mp, tyy_val(p),-depth_val(p));
10339 y1=mp_take_scaled(mp, tyy_val(p),height_val(p));
10342 if ( y0<y1 ) { miny=miny+y0; maxy=maxy+y1; }
10343 else { miny=miny+y1; maxy=maxy+y0; }
10344 if ( x1<0 ) miny=miny+x1; else maxy=maxy+x1;
10345 mp_adjust_bbox(mp, h);
10348 @ This case involves a recursive call that advances |bblast(h)| to the node of
10349 type |mp_stop_clip_code| that matches |p|.
10351 @<Other cases for updating the bounding box...@>=
10352 case mp_start_clip_code:
10353 mp_path_bbox(mp, path_p(p));
10356 sminx=minx_val(h); sminy=miny_val(h);
10357 smaxx=maxx_val(h); smaxy=maxy_val(h);
10358 @<Reinitialize the bounding box in header |h| and call |set_bbox| recursively
10359 starting at |link(p)|@>;
10360 @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,
10362 minx=sminx; miny=sminy;
10363 maxx=smaxx; maxy=smaxy;
10364 mp_adjust_bbox(mp, h);
10367 @ @<Reinitialize the bounding box in header |h| and call |set_bbox|...@>=
10368 minx_val(h)=el_gordo;
10369 miny_val(h)=el_gordo;
10370 maxx_val(h)=-el_gordo;
10371 maxy_val(h)=-el_gordo;
10372 mp_set_bbox(mp, h,false)
10374 @ @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,...@>=
10375 if ( minx_val(h)<x0 ) minx_val(h)=x0;
10376 if ( miny_val(h)<y0 ) miny_val(h)=y0;
10377 if ( maxx_val(h)>x1 ) maxx_val(h)=x1;
10378 if ( maxy_val(h)>y1 ) maxy_val(h)=y1
10380 @* \[22] Finding an envelope.
10381 When \MP\ has a path and a polygonal pen, it needs to express the desired
10382 shape in terms of things \ps\ can understand. The present task is to compute
10383 a new path that describes the region to be filled. It is convenient to
10384 define this as a two step process where the first step is determining what
10385 offset to use for each segment of the path.
10387 @ Given a pointer |c| to a cyclic path,
10388 and a pointer~|h| to the first knot of a pen polygon,
10389 the |offset_prep| routine changes the path into cubics that are
10390 associated with particular pen offsets. Thus if the cubic between |p|
10391 and~|q| is associated with the |k|th offset and the cubic between |q| and~|r|
10392 has offset |l| then |info(q)=zero_off+l-k|. (The constant |zero_off| is added
10393 to because |l-k| could be negative.)
10395 After overwriting the type information with offset differences, we no longer
10396 have a true path so we refer to the knot list returned by |offset_prep| as an
10399 Since an envelope spec only determines relative changes in pen offsets,
10400 |offset_prep| sets a global variable |spec_offset| to the relative change from
10401 |h| to the first offset.
10403 @d zero_off 16384 /* added to offset changes to make them positive */
10406 integer spec_offset; /* number of pen edges between |h| and the initial offset */
10408 @ @c @<Declare subroutines needed by |offset_prep|@>;
10409 pointer mp_offset_prep (MP mp,pointer c, pointer h) {
10410 halfword n; /* the number of vertices in the pen polygon */
10411 pointer p,q,q0,r,w, ww; /* for list manipulation */
10412 integer k_needed; /* amount to be added to |info(p)| when it is computed */
10413 pointer w0; /* a pointer to pen offset to use just before |p| */
10414 scaled dxin,dyin; /* the direction into knot |p| */
10415 integer turn_amt; /* change in pen offsets for the current cubic */
10416 @<Other local variables for |offset_prep|@>;
10418 @<Initialize the pen size~|n|@>;
10419 @<Initialize the incoming direction and pen offset at |c|@>;
10423 @<Split the cubic between |p| and |q|, if necessary, into cubics
10424 associated with single offsets, after which |q| should
10425 point to the end of the final such cubic@>;
10427 @<Advance |p| to node |q|, removing any ``dead'' cubics that
10428 might have been introduced by the splitting process@>;
10430 @<Fix the offset change in |info(c)| and set |c| to the return value of
10435 @ We shall want to keep track of where certain knots on the cyclic path
10436 wind up in the envelope spec. It doesn't suffice just to keep pointers to
10437 knot nodes because some nodes are deleted while removing dead cubics. Thus
10438 |offset_prep| updates the following pointers
10442 pointer spec_p2; /* pointers to distinguished knots */
10445 mp->spec_p1=null; mp->spec_p2=null;
10447 @ @<Initialize the pen size~|n|@>=
10454 @ Since the true incoming direction isn't known yet, we just pick a direction
10455 consistent with the pen offset~|h|. If this is wrong, it can be corrected
10458 @<Initialize the incoming direction and pen offset at |c|@>=
10459 dxin=x_coord(link(h))-x_coord(knil(h));
10460 dyin=y_coord(link(h))-y_coord(knil(h));
10461 if ( (dxin==0)&&(dyin==0) ) {
10462 dxin=y_coord(knil(h))-y_coord(h);
10463 dyin=x_coord(h)-x_coord(knil(h));
10467 @ We must be careful not to remove the only cubic in a cycle.
10469 But we must also be careful for another reason. If the user-supplied
10470 path starts with a set of degenerate cubics, the target node |q| can
10471 be collapsed to the initial node |p| which might be the same as the
10472 initial node |c| of the curve. This would cause the |offset_prep| routine
10473 to bail out too early, causing distress later on. (See for example
10474 the testcase reported by Bogus\l{}aw Jackowski in tracker id 267, case 52c
10477 @<Advance |p| to node |q|, removing any ``dead'' cubics...@>=
10481 if ( x_coord(p)==right_x(p) && y_coord(p)==right_y(p) &&
10482 x_coord(p)==left_x(r) && y_coord(p)==left_y(r) &&
10483 x_coord(p)==x_coord(r) && y_coord(p)==y_coord(r) &&
10485 @<Remove the cubic following |p| and update the data structures
10486 to merge |r| into |p|@>;
10490 /* Check if we removed too much */
10494 @ @<Remove the cubic following |p| and update the data structures...@>=
10495 { k_needed=info(p)-zero_off;
10499 info(p)=k_needed+info(r);
10502 if ( r==c ) { info(p)=info(c); c=p; };
10503 if ( r==mp->spec_p1 ) mp->spec_p1=p;
10504 if ( r==mp->spec_p2 ) mp->spec_p2=p;
10505 r=p; mp_remove_cubic(mp, p);
10508 @ Not setting the |info| field of the newly created knot allows the splitting
10509 routine to work for paths.
10511 @<Declare subroutines needed by |offset_prep|@>=
10512 void mp_split_cubic (MP mp,pointer p, fraction t) { /* splits the cubic after |p| */
10513 scaled v; /* an intermediate value */
10514 pointer q,r; /* for list manipulation */
10515 q=link(p); r=mp_get_node(mp, knot_node_size); link(p)=r; link(r)=q;
10516 originator(r)=mp_program_code;
10517 left_type(r)=mp_explicit; right_type(r)=mp_explicit;
10518 v=t_of_the_way(right_x(p),left_x(q));
10519 right_x(p)=t_of_the_way(x_coord(p),right_x(p));
10520 left_x(q)=t_of_the_way(left_x(q),x_coord(q));
10521 left_x(r)=t_of_the_way(right_x(p),v);
10522 right_x(r)=t_of_the_way(v,left_x(q));
10523 x_coord(r)=t_of_the_way(left_x(r),right_x(r));
10524 v=t_of_the_way(right_y(p),left_y(q));
10525 right_y(p)=t_of_the_way(y_coord(p),right_y(p));
10526 left_y(q)=t_of_the_way(left_y(q),y_coord(q));
10527 left_y(r)=t_of_the_way(right_y(p),v);
10528 right_y(r)=t_of_the_way(v,left_y(q));
10529 y_coord(r)=t_of_the_way(left_y(r),right_y(r));
10532 @ This does not set |info(p)| or |right_type(p)|.
10534 @<Declare subroutines needed by |offset_prep|@>=
10535 void mp_remove_cubic (MP mp,pointer p) { /* removes the dead cubic following~|p| */
10536 pointer q; /* the node that disappears */
10537 q=link(p); link(p)=link(q);
10538 right_x(p)=right_x(q); right_y(p)=right_y(q);
10539 mp_free_node(mp, q,knot_node_size);
10542 @ Let $d\prec d'$ mean that the counter-clockwise angle from $d$ to~$d'$ is
10543 strictly between zero and $180^\circ$. Then we can define $d\preceq d'$ to
10544 mean that the angle could be zero or $180^\circ$. If $w_k=(u_k,v_k)$ is the
10545 $k$th pen offset, the $k$th pen edge direction is defined by the formula
10546 $$d_k=(u\k-u_k,\,v\k-v_k).$$
10547 When listed by increasing $k$, these directions occur in counter-clockwise
10548 order so that $d_k\preceq d\k$ for all~$k$.
10549 The goal of |offset_prep| is to find an offset index~|k| to associate with
10550 each cubic, such that the direction $d(t)$ of the cubic satisfies
10551 $$d_{k-1}\preceq d(t)\preceq d_k\qquad\hbox{for $0\le t\le 1$.}\eqno(*)$$
10552 We may have to split a cubic into many pieces before each
10553 piece corresponds to a unique offset.
10555 @<Split the cubic between |p| and |q|, if necessary, into cubics...@>=
10556 info(p)=zero_off+k_needed;
10558 @<Prepare for derivative computations;
10559 |goto not_found| if the current cubic is dead@>;
10560 @<Find the initial direction |(dx,dy)|@>;
10561 @<Update |info(p)| and find the offset $w_k$ such that
10562 $d_{k-1}\preceq(\\{dx},\\{dy})\prec d_k$; also advance |w0| for
10563 the direction change at |p|@>;
10564 @<Find the final direction |(dxin,dyin)|@>;
10565 @<Decide on the net change in pen offsets and set |turn_amt|@>;
10566 @<Complete the offset splitting process@>;
10567 w0=mp_pen_walk(mp, w0,turn_amt)
10569 @ @<Declare subroutines needed by |offset_prep|@>=
10570 pointer mp_pen_walk (MP mp,pointer w, integer k) {
10571 /* walk |k| steps around a pen from |w| */
10572 while ( k>0 ) { w=link(w); decr(k); };
10573 while ( k<0 ) { w=knil(w); incr(k); };
10577 @ The direction of a cubic $B(z_0,z_1,z_2,z_3;t)=\bigl(x(t),y(t)\bigr)$ can be
10578 calculated from the quadratic polynomials
10579 ${1\over3}x'(t)=B(x_1-x_0,x_2-x_1,x_3-x_2;t)$ and
10580 ${1\over3}y'(t)=B(y_1-y_0,y_2-y_1,y_3-y_2;t)$.
10581 Since we may be calculating directions from several cubics
10582 split from the current one, it is desirable to do these calculations
10583 without losing too much precision. ``Scaled up'' values of the
10584 derivatives, which will be less tainted by accumulated errors than
10585 derivatives found from the cubics themselves, are maintained in
10586 local variables |x0|, |x1|, and |x2|, representing $X_0=2^l(x_1-x_0)$,
10587 $X_1=2^l(x_2-x_1)$, and $X_2=2^l(x_3-x_2)$; similarly |y0|, |y1|, and~|y2|
10588 represent $Y_0=2^l(y_1-y_0)$, $Y_1=2^l(y_2-y_1)$, and $Y_2=2^l(y_3-y_2)$.
10590 @<Other local variables for |offset_prep|@>=
10591 integer x0,x1,x2,y0,y1,y2; /* representatives of derivatives */
10592 integer t0,t1,t2; /* coefficients of polynomial for slope testing */
10593 integer du,dv,dx,dy; /* for directions of the pen and the curve */
10594 integer dx0,dy0; /* initial direction for the first cubic in the curve */
10595 integer max_coef; /* used while scaling */
10596 integer x0a,x1a,x2a,y0a,y1a,y2a; /* intermediate values */
10597 fraction t; /* where the derivative passes through zero */
10598 fraction s; /* a temporary value */
10600 @ @<Prepare for derivative computations...@>=
10601 x0=right_x(p)-x_coord(p);
10602 x2=x_coord(q)-left_x(q);
10603 x1=left_x(q)-right_x(p);
10604 y0=right_y(p)-y_coord(p); y2=y_coord(q)-left_y(q);
10605 y1=left_y(q)-right_y(p);
10607 if ( abs(x1)>max_coef ) max_coef=abs(x1);
10608 if ( abs(x2)>max_coef ) max_coef=abs(x2);
10609 if ( abs(y0)>max_coef ) max_coef=abs(y0);
10610 if ( abs(y1)>max_coef ) max_coef=abs(y1);
10611 if ( abs(y2)>max_coef ) max_coef=abs(y2);
10612 if ( max_coef==0 ) goto NOT_FOUND;
10613 while ( max_coef<fraction_half ) {
10615 double(x0); double(x1); double(x2);
10616 double(y0); double(y1); double(y2);
10619 @ Let us first solve a special case of the problem: Suppose we
10620 know an index~$k$ such that either (i)~$d(t)\succeq d_{k-1}$ for all~$t$
10621 and $d(0)\prec d_k$, or (ii)~$d(t)\preceq d_k$ for all~$t$ and
10622 $d(0)\succ d_{k-1}$.
10623 Then, in a sense, we're halfway done, since one of the two relations
10624 in $(*)$ is satisfied, and the other couldn't be satisfied for
10625 any other value of~|k|.
10627 Actually, the conditions can be relaxed somewhat since a relation such as
10628 $d(t)\succeq d_{k-1}$ restricts $d(t)$ to a half plane when all that really
10629 matters is whether $d(t)$ crosses the ray in the $d_{k-1}$ direction from
10630 the origin. The condition for case~(i) becomes $d_{k-1}\preceq d(0)\prec d_k$
10631 and $d(t)$ never crosses the $d_{k-1}$ ray in the clockwise direction.
10632 Case~(ii) is similar except $d(t)$ cannot cross the $d_k$ ray in the
10633 counterclockwise direction.
10635 The |fin_offset_prep| subroutine solves the stated subproblem.
10636 It has a parameter called |rise| that is |1| in
10637 case~(i), |-1| in case~(ii). Parameters |x0| through |y2| represent
10638 the derivative of the cubic following |p|.
10639 The |w| parameter should point to offset~$w_k$ and |info(p)| should already
10640 be set properly. The |turn_amt| parameter gives the absolute value of the
10641 overall net change in pen offsets.
10643 @<Declare subroutines needed by |offset_prep|@>=
10644 void mp_fin_offset_prep (MP mp,pointer p, pointer w, integer
10645 x0,integer x1, integer x2, integer y0, integer y1, integer y2,
10646 integer rise, integer turn_amt) {
10647 pointer ww; /* for list manipulation */
10648 scaled du,dv; /* for slope calculation */
10649 integer t0,t1,t2; /* test coefficients */
10650 fraction t; /* place where the derivative passes a critical slope */
10651 fraction s; /* slope or reciprocal slope */
10652 integer v; /* intermediate value for updating |x0..y2| */
10653 pointer q; /* original |link(p)| */
10656 if ( rise>0 ) ww=link(w); /* a pointer to $w\k$ */
10657 else ww=knil(w); /* a pointer to $w_{k-1}$ */
10658 @<Compute test coefficients |(t0,t1,t2)|
10659 for $d(t)$ versus $d_k$ or $d_{k-1}$@>;
10660 t=mp_crossing_point(mp, t0,t1,t2);
10661 if ( t>=fraction_one ) {
10662 if ( turn_amt>0 ) t=fraction_one; else return;
10664 @<Split the cubic at $t$,
10665 and split off another cubic if the derivative crosses back@>;
10670 @ We want $B(\\{t0},\\{t1},\\{t2};t)$ to be the dot product of $d(t)$ with a
10671 $-90^\circ$ rotation of the vector from |w| to |ww|. This makes the resulting
10672 function cross from positive to negative when $d_{k-1}\preceq d(t)\preceq d_k$
10675 @<Compute test coefficients |(t0,t1,t2)| for $d(t)$ versus...@>=
10676 du=x_coord(ww)-x_coord(w); dv=y_coord(ww)-y_coord(w);
10677 if ( abs(du)>=abs(dv) ) {
10678 s=mp_make_fraction(mp, dv,du);
10679 t0=mp_take_fraction(mp, x0,s)-y0;
10680 t1=mp_take_fraction(mp, x1,s)-y1;
10681 t2=mp_take_fraction(mp, x2,s)-y2;
10682 if ( du<0 ) { negate(t0); negate(t1); negate(t2); }
10684 s=mp_make_fraction(mp, du,dv);
10685 t0=x0-mp_take_fraction(mp, y0,s);
10686 t1=x1-mp_take_fraction(mp, y1,s);
10687 t2=x2-mp_take_fraction(mp, y2,s);
10688 if ( dv<0 ) { negate(t0); negate(t1); negate(t2); }
10690 if ( t0<0 ) t0=0 /* should be positive without rounding error */
10692 @ The curve has crossed $d_k$ or $d_{k-1}$; its initial segment satisfies
10693 $(*)$, and it might cross again, yielding another solution of $(*)$.
10695 @<Split the cubic at $t$, and split off another...@>=
10697 mp_split_cubic(mp, p,t); p=link(p); info(p)=zero_off+rise;
10699 v=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10700 x0=t_of_the_way(v,x1);
10701 v=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10702 y0=t_of_the_way(v,y1);
10703 if ( turn_amt<0 ) {
10704 t1=t_of_the_way(t1,t2);
10705 if ( t1>0 ) t1=0; /* without rounding error, |t1| would be |<=0| */
10706 t=mp_crossing_point(mp, 0,-t1,-t2);
10707 if ( t>fraction_one ) t=fraction_one;
10709 if ( (t==fraction_one)&&(link(p)!=q) ) {
10710 info(link(p))=info(link(p))-rise;
10712 mp_split_cubic(mp, p,t); info(link(p))=zero_off-rise;
10713 v=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10714 x2=t_of_the_way(x1,v);
10715 v=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10716 y2=t_of_the_way(y1,v);
10721 @ Now we must consider the general problem of |offset_prep|, when
10722 nothing is known about a given cubic. We start by finding its
10723 direction in the vicinity of |t=0|.
10725 If $z'(t)=0$, the given cubic is numerically unstable but |offset_prep|
10726 has not yet introduced any more numerical errors. Thus we can compute
10727 the true initial direction for the given cubic, even if it is almost
10730 @<Find the initial direction |(dx,dy)|@>=
10732 if ( dx==0 && dy==0 ) {
10734 if ( dx==0 && dy==0 ) {
10738 if ( p==c ) { dx0=dx; dy0=dy; }
10740 @ @<Find the final direction |(dxin,dyin)|@>=
10742 if ( dxin==0 && dyin==0 ) {
10744 if ( dxin==0 && dyin==0 ) {
10749 @ The next step is to bracket the initial direction between consecutive
10750 edges of the pen polygon. We must be careful to turn clockwise only if
10751 this makes the turn less than $180^\circ$. (A $180^\circ$ turn must be
10752 counter-clockwise in order to make \&{doublepath} envelopes come out
10753 @:double_path_}{\&{doublepath} primitive@>
10754 right.) This code depends on |w0| being the offset for |(dxin,dyin)|.
10756 @<Update |info(p)| and find the offset $w_k$ such that...@>=
10757 turn_amt=mp_get_turn_amt(mp,w0,dx,dy,(mp_ab_vs_cd(mp, dy,dxin,dx,dyin)>=0));
10758 w=mp_pen_walk(mp, w0, turn_amt);
10760 info(p)=info(p)+turn_amt
10762 @ Decide how many pen offsets to go away from |w| in order to find the offset
10763 for |(dx,dy)|, going counterclockwise if |ccw| is |true|. This assumes that
10764 |w| is the offset for some direction $(x',y')$ from which the angle to |(dx,dy)|
10765 in the sense determined by |ccw| is less than or equal to $180^\circ$.
10767 If the pen polygon has only two edges, they could both be parallel
10768 to |(dx,dy)|. In this case, we must be careful to stop after crossing the first
10769 such edge in order to avoid an infinite loop.
10771 @<Declare subroutines needed by |offset_prep|@>=
10772 integer mp_get_turn_amt (MP mp,pointer w, scaled dx,
10773 scaled dy, boolean ccw) {
10774 pointer ww; /* a neighbor of knot~|w| */
10775 integer s; /* turn amount so far */
10776 integer t; /* |ab_vs_cd| result */
10781 t=mp_ab_vs_cd(mp, dy,(x_coord(ww)-x_coord(w)),
10782 dx,(y_coord(ww)-y_coord(w)));
10789 while ( mp_ab_vs_cd(mp, dy,(x_coord(w)-x_coord(ww)),
10790 dx,(y_coord(w)-y_coord(ww))) < 0) {
10798 @ When we're all done, the final offset is |w0| and the final curve direction
10799 is |(dxin,dyin)|. With this knowledge of the incoming direction at |c|, we
10800 can correct |info(c)| which was erroneously based on an incoming offset
10803 @d fix_by(A) info(c)=info(c)+(A)
10805 @<Fix the offset change in |info(c)| and set |c| to the return value of...@>=
10806 mp->spec_offset=info(c)-zero_off;
10807 if ( link(c)==c ) {
10808 info(c)=zero_off+n;
10811 while ( w0!=h ) { fix_by(1); w0=link(w0); };
10812 while ( info(c)<=zero_off-n ) fix_by(n);
10813 while ( info(c)>zero_off ) fix_by(-n);
10814 if ( (info(c)!=zero_off)&&(mp_ab_vs_cd(mp, dy0,dxin,dx0,dyin)>=0) ) fix_by(n);
10818 @ Finally we want to reduce the general problem to situations that
10819 |fin_offset_prep| can handle. We split the cubic into at most three parts
10820 with respect to $d_{k-1}$, and apply |fin_offset_prep| to each part.
10822 @<Complete the offset splitting process@>=
10824 @<Compute test coeff...@>;
10825 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set
10826 |t:=fraction_one+1|@>;
10827 if ( t>fraction_one ) {
10828 mp_fin_offset_prep(mp, p,w,x0,x1,x2,y0,y1,y2,1,turn_amt);
10830 mp_split_cubic(mp, p,t); r=link(p);
10831 x1a=t_of_the_way(x0,x1); x1=t_of_the_way(x1,x2);
10832 x2a=t_of_the_way(x1a,x1);
10833 y1a=t_of_the_way(y0,y1); y1=t_of_the_way(y1,y2);
10834 y2a=t_of_the_way(y1a,y1);
10835 mp_fin_offset_prep(mp, p,w,x0,x1a,x2a,y0,y1a,y2a,1,0); x0=x2a; y0=y2a;
10836 info(r)=zero_off-1;
10837 if ( turn_amt>=0 ) {
10838 t1=t_of_the_way(t1,t2);
10840 t=mp_crossing_point(mp, 0,-t1,-t2);
10841 if ( t>fraction_one ) t=fraction_one;
10842 @<Split off another rising cubic for |fin_offset_prep|@>;
10843 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,0);
10845 mp_fin_offset_prep(mp, r,ww,x0,x1,x2,y0,y1,y2,-1,(-1-turn_amt));
10849 @ @<Split off another rising cubic for |fin_offset_prep|@>=
10850 mp_split_cubic(mp, r,t); info(link(r))=zero_off+1;
10851 x1a=t_of_the_way(x1,x2); x1=t_of_the_way(x0,x1);
10852 x0a=t_of_the_way(x1,x1a);
10853 y1a=t_of_the_way(y1,y2); y1=t_of_the_way(y0,y1);
10854 y0a=t_of_the_way(y1,y1a);
10855 mp_fin_offset_prep(mp, link(r),w,x0a,x1a,x2,y0a,y1a,y2,1,turn_amt);
10858 @ At this point, the direction of the incoming pen edge is |(-du,-dv)|.
10859 When the component of $d(t)$ perpendicular to |(-du,-dv)| crosses zero, we
10860 need to decide whether the directions are parallel or antiparallel. We
10861 can test this by finding the dot product of $d(t)$ and |(-du,-dv)|, but this
10862 should be avoided when the value of |turn_amt| already determines the
10863 answer. If |t2<0|, there is one crossing and it is antiparallel only if
10864 |turn_amt>=0|. If |turn_amt<0|, there should always be at least one
10865 crossing and the first crossing cannot be antiparallel.
10867 @<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set...@>=
10868 t=mp_crossing_point(mp, t0,t1,t2);
10869 if ( turn_amt>=0 ) {
10873 u0=t_of_the_way(x0,x1);
10874 u1=t_of_the_way(x1,x2);
10875 ss=mp_take_fraction(mp, -du,t_of_the_way(u0,u1));
10876 v0=t_of_the_way(y0,y1);
10877 v1=t_of_the_way(y1,y2);
10878 ss=ss+mp_take_fraction(mp, -dv,t_of_the_way(v0,v1));
10879 if ( ss<0 ) t=fraction_one+1;
10881 } else if ( t>fraction_one ) {
10885 @ @<Other local variables for |offset_prep|@>=
10886 integer u0,u1,v0,v1; /* intermediate values for $d(t)$ calculation */
10887 integer ss = 0; /* the part of the dot product computed so far */
10888 int d_sign; /* sign of overall change in direction for this cubic */
10890 @ If the cubic almost has a cusp, it is a numerically ill-conditioned
10891 problem to decide which way it loops around but that's OK as long we're
10892 consistent. To make \&{doublepath} envelopes work properly, reversing
10893 the path should always change the sign of |turn_amt|.
10895 @<Decide on the net change in pen offsets and set |turn_amt|@>=
10896 d_sign=mp_ab_vs_cd(mp, dx,dyin, dxin,dy);
10898 @<Check rotation direction based on node position@>
10902 if ( dy>0 ) d_sign=1; else d_sign=-1;
10904 if ( dx>0 ) d_sign=1; else d_sign=-1;
10907 @<Make |ss| negative if and only if the total change in direction is
10908 more than $180^\circ$@>;
10909 turn_amt=mp_get_turn_amt(mp, w, dxin, dyin, (d_sign>0));
10910 if ( ss<0 ) turn_amt=turn_amt-d_sign*n
10912 @ We check rotation direction by looking at the vector connecting the current
10913 node with the next. If its angle with incoming and outgoing tangents has the
10914 same sign, we pick this as |d_sign|, since it means we have a flex, not a cusp.
10915 Otherwise we proceed to the cusp code.
10917 @<Check rotation direction based on node position@>=
10918 u0=x_coord(q)-x_coord(p);
10919 u1=y_coord(q)-y_coord(p);
10920 d_sign = half(mp_ab_vs_cd(mp, dx, u1, u0, dy)+
10921 mp_ab_vs_cd(mp, u0, dyin, dxin, u1));
10923 @ In order to be invariant under path reversal, the result of this computation
10924 should not change when |x0|, |y0|, $\ldots$ are all negated and |(x0,y0)| is
10925 then swapped with |(x2,y2)|. We make use of the identities
10926 |take_fraction(-a,-b)=take_fraction(a,b)| and
10927 |t_of_the_way(-a,-b)=-(t_of_the_way(a,b))|.
10929 @<Make |ss| negative if and only if the total change in direction is...@>=
10930 t0=half(mp_take_fraction(mp, x0,y2))-half(mp_take_fraction(mp, x2,y0));
10931 t1=half(mp_take_fraction(mp, x1,(y0+y2)))-half(mp_take_fraction(mp, y1,(x0+x2)));
10932 if ( t0==0 ) t0=d_sign; /* path reversal always negates |d_sign| */
10934 t=mp_crossing_point(mp, t0,t1,-t0);
10935 u0=t_of_the_way(x0,x1);
10936 u1=t_of_the_way(x1,x2);
10937 v0=t_of_the_way(y0,y1);
10938 v1=t_of_the_way(y1,y2);
10940 t=mp_crossing_point(mp, -t0,t1,t0);
10941 u0=t_of_the_way(x2,x1);
10942 u1=t_of_the_way(x1,x0);
10943 v0=t_of_the_way(y2,y1);
10944 v1=t_of_the_way(y1,y0);
10946 ss=mp_take_fraction(mp, (x0+x2),t_of_the_way(u0,u1))+
10947 mp_take_fraction(mp, (y0+y2),t_of_the_way(v0,v1))
10949 @ Here's a routine that prints an envelope spec in symbolic form. It assumes
10950 that the |cur_pen| has not been walked around to the first offset.
10953 void mp_print_spec (MP mp,pointer cur_spec, pointer cur_pen, char *s) {
10954 pointer p,q; /* list traversal */
10955 pointer w; /* the current pen offset */
10956 mp_print_diagnostic(mp, "Envelope spec",s,true);
10957 p=cur_spec; w=mp_pen_walk(mp, cur_pen,mp->spec_offset);
10959 mp_print_two(mp, x_coord(cur_spec),y_coord(cur_spec));
10960 mp_print(mp, " % beginning with offset ");
10961 mp_print_two(mp, x_coord(w),y_coord(w));
10965 @<Print the cubic between |p| and |q|@>;
10967 if ((p==cur_spec) || (info(p)!=zero_off))
10970 if ( info(p)!=zero_off ) {
10971 @<Update |w| as indicated by |info(p)| and print an explanation@>;
10973 } while (p!=cur_spec);
10974 mp_print_nl(mp, " & cycle");
10975 mp_end_diagnostic(mp, true);
10978 @ @<Update |w| as indicated by |info(p)| and print an explanation@>=
10980 w=mp_pen_walk(mp, w, (info(p)-zero_off));
10981 mp_print(mp, " % ");
10982 if ( info(p)>zero_off ) mp_print(mp, "counter");
10983 mp_print(mp, "clockwise to offset ");
10984 mp_print_two(mp, x_coord(w),y_coord(w));
10987 @ @<Print the cubic between |p| and |q|@>=
10989 mp_print_nl(mp, " ..controls ");
10990 mp_print_two(mp, right_x(p),right_y(p));
10991 mp_print(mp, " and ");
10992 mp_print_two(mp, left_x(q),left_y(q));
10993 mp_print_nl(mp, " ..");
10994 mp_print_two(mp, x_coord(q),y_coord(q));
10997 @ Once we have an envelope spec, the remaining task to construct the actual
10998 envelope by offsetting each cubic as determined by the |info| fields in
10999 the knots. First we use |offset_prep| to convert the |c| into an envelope
11000 spec. Then we add the offsets so that |c| becomes a cyclic path that represents
11003 The |ljoin| and |miterlim| parameters control the treatment of points where the
11004 pen offset changes, and |lcap| controls the endpoints of a \&{doublepath}.
11005 The endpoints are easily located because |c| is given in undoubled form
11006 and then doubled in this procedure. We use |spec_p1| and |spec_p2| to keep
11007 track of the endpoints and treat them like very sharp corners.
11008 Butt end caps are treated like beveled joins; round end caps are treated like
11009 round joins; and square end caps are achieved by setting |join_type:=3|.
11011 None of these parameters apply to inside joins where the convolution tracing
11012 has retrograde lines. In such cases we use a simple connect-the-endpoints
11013 approach that is achieved by setting |join_type:=2|.
11015 @c @<Declare a function called |insert_knot|@>;
11016 pointer mp_make_envelope (MP mp,pointer c, pointer h, small_number ljoin,
11017 small_number lcap, scaled miterlim) {
11018 pointer p,q,r,q0; /* for manipulating the path */
11019 int join_type=0; /* codes |0..3| for mitered, round, beveled, or square */
11020 pointer w,w0; /* the pen knot for the current offset */
11021 scaled qx,qy; /* unshifted coordinates of |q| */
11022 halfword k,k0; /* controls pen edge insertion */
11023 @<Other local variables for |make_envelope|@>;
11024 dxin=0; dyin=0; dxout=0; dyout=0;
11025 mp->spec_p1=null; mp->spec_p2=null;
11026 @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>;
11027 @<Use |offset_prep| to compute the envelope spec then walk |h| around to
11028 the initial offset@>;
11033 qx=x_coord(q); qy=y_coord(q);
11036 if ( k!=zero_off ) {
11037 @<Set |join_type| to indicate how to handle offset changes at~|q|@>;
11039 @<Add offset |w| to the cubic from |p| to |q|@>;
11040 while ( k!=zero_off ) {
11041 @<Step |w| and move |k| one step closer to |zero_off|@>;
11042 if ( (join_type==1)||(k==zero_off) )
11043 q=mp_insert_knot(mp, q,qx+x_coord(w),qy+y_coord(w));
11045 if ( q!=link(p) ) {
11046 @<Set |p=link(p)| and add knots between |p| and |q| as
11047 required by |join_type|@>;
11054 @ @<Use |offset_prep| to compute the envelope spec then walk |h| around to...@>=
11055 c=mp_offset_prep(mp, c,h);
11056 if ( mp->internal[mp_tracing_specs]>0 )
11057 mp_print_spec(mp, c,h,"");
11058 h=mp_pen_walk(mp, h,mp->spec_offset)
11060 @ Mitered and squared-off joins depend on path directions that are difficult to
11061 compute for degenerate cubics. The envelope spec computed by |offset_prep| can
11062 have degenerate cubics only if the entire cycle collapses to a single
11063 degenerate cubic. Setting |join_type:=2| in this case makes the computed
11064 envelope degenerate as well.
11066 @<Set |join_type| to indicate how to handle offset changes at~|q|@>=
11067 if ( k<zero_off ) {
11070 if ( (q!=mp->spec_p1)&&(q!=mp->spec_p2) ) join_type=ljoin;
11071 else if ( lcap==2 ) join_type=3;
11072 else join_type=2-lcap;
11073 if ( (join_type==0)||(join_type==3) ) {
11074 @<Set the incoming and outgoing directions at |q|; in case of
11075 degeneracy set |join_type:=2|@>;
11076 if ( join_type==0 ) {
11077 @<If |miterlim| is less than the secant of half the angle at |q|
11078 then set |join_type:=2|@>;
11083 @ @<If |miterlim| is less than the secant of half the angle at |q|...@>=
11085 tmp=mp_take_fraction(mp, miterlim,fraction_half+
11086 half(mp_take_fraction(mp, dxin,dxout)+mp_take_fraction(mp, dyin,dyout)));
11088 if ( mp_take_scaled(mp, miterlim,tmp)<unity ) join_type=2;
11091 @ @<Other local variables for |make_envelope|@>=
11092 fraction dxin,dyin,dxout,dyout; /* directions at |q| when square or mitered */
11093 scaled tmp; /* a temporary value */
11095 @ The coordinates of |p| have already been shifted unless |p| is the first
11096 knot in which case they get shifted at the very end.
11098 @<Add offset |w| to the cubic from |p| to |q|@>=
11099 right_x(p)=right_x(p)+x_coord(w);
11100 right_y(p)=right_y(p)+y_coord(w);
11101 left_x(q)=left_x(q)+x_coord(w);
11102 left_y(q)=left_y(q)+y_coord(w);
11103 x_coord(q)=x_coord(q)+x_coord(w);
11104 y_coord(q)=y_coord(q)+y_coord(w);
11105 left_type(q)=mp_explicit;
11106 right_type(q)=mp_explicit
11108 @ @<Step |w| and move |k| one step closer to |zero_off|@>=
11109 if ( k>zero_off ){ w=link(w); decr(k); }
11110 else { w=knil(w); incr(k); }
11112 @ The cubic from |q| to the new knot at |(x,y)| becomes a line segment and
11113 the |right_x| and |right_y| fields of |r| are set from |q|. This is done in
11114 case the cubic containing these control points is ``yet to be examined.''
11116 @<Declare a function called |insert_knot|@>=
11117 pointer mp_insert_knot (MP mp,pointer q, scaled x, scaled y) {
11118 /* returns the inserted knot */
11119 pointer r; /* the new knot */
11120 r=mp_get_node(mp, knot_node_size);
11121 link(r)=link(q); link(q)=r;
11122 right_x(r)=right_x(q);
11123 right_y(r)=right_y(q);
11126 right_x(q)=x_coord(q);
11127 right_y(q)=y_coord(q);
11128 left_x(r)=x_coord(r);
11129 left_y(r)=y_coord(r);
11130 left_type(r)=mp_explicit;
11131 right_type(r)=mp_explicit;
11132 originator(r)=mp_program_code;
11136 @ After setting |p:=link(p)|, either |join_type=1| or |q=link(p)|.
11138 @<Set |p=link(p)| and add knots between |p| and |q| as...@>=
11141 if ( (join_type==0)||(join_type==3) ) {
11142 if ( join_type==0 ) {
11143 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>
11145 @<Make |r| the last of two knots inserted between |p| and |q| to form a
11149 right_x(r)=x_coord(r);
11150 right_y(r)=y_coord(r);
11155 @ For very small angles, adding a knot is unnecessary and would cause numerical
11156 problems, so we just set |r:=null| in that case.
11158 @<Insert a new knot |r| between |p| and |q| as required for a mitered join@>=
11160 det=mp_take_fraction(mp, dyout,dxin)-mp_take_fraction(mp, dxout,dyin);
11161 if ( abs(det)<26844 ) {
11162 r=null; /* sine $<10^{-4}$ */
11164 tmp=mp_take_fraction(mp, x_coord(q)-x_coord(p),dyout)-
11165 mp_take_fraction(mp, y_coord(q)-y_coord(p),dxout);
11166 tmp=mp_make_fraction(mp, tmp,det);
11167 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11168 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11172 @ @<Other local variables for |make_envelope|@>=
11173 fraction det; /* a determinant used for mitered join calculations */
11175 @ @<Make |r| the last of two knots inserted between |p| and |q| to form a...@>=
11177 ht_x=y_coord(w)-y_coord(w0);
11178 ht_y=x_coord(w0)-x_coord(w);
11179 while ( (abs(ht_x)<fraction_half)&&(abs(ht_y)<fraction_half) ) {
11180 ht_x+=ht_x; ht_y+=ht_y;
11182 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range dot
11183 product with |(ht_x,ht_y)|@>;
11184 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxin,ht_x)+
11185 mp_take_fraction(mp, dyin,ht_y));
11186 r=mp_insert_knot(mp, p,x_coord(p)+mp_take_fraction(mp, tmp,dxin),
11187 y_coord(p)+mp_take_fraction(mp, tmp,dyin));
11188 tmp=mp_make_fraction(mp, max_ht,mp_take_fraction(mp, dxout,ht_x)+
11189 mp_take_fraction(mp, dyout,ht_y));
11190 r=mp_insert_knot(mp, r,x_coord(q)+mp_take_fraction(mp, tmp,dxout),
11191 y_coord(q)+mp_take_fraction(mp, tmp,dyout));
11194 @ @<Other local variables for |make_envelope|@>=
11195 fraction ht_x,ht_y; /* perpendicular to the segment from |p| to |q| */
11196 scaled max_ht; /* maximum height of the pen polygon above the |w0|-|w| line */
11197 halfword kk; /* keeps track of the pen vertices being scanned */
11198 pointer ww; /* the pen vertex being tested */
11200 @ The dot product of the vector from |w0| to |ww| with |(ht_x,ht_y)| ranges
11201 from zero to |max_ht|.
11203 @<Scan the pen polygon between |w0| and |w| and make |max_ht| the range...@>=
11208 @<Step |ww| and move |kk| one step closer to |k0|@>;
11209 if ( kk==k0 ) break;
11210 tmp=mp_take_fraction(mp, (x_coord(ww)-x_coord(w0)),ht_x)+
11211 mp_take_fraction(mp, (y_coord(ww)-y_coord(w0)),ht_y);
11212 if ( tmp>max_ht ) max_ht=tmp;
11216 @ @<Step |ww| and move |kk| one step closer to |k0|@>=
11217 if ( kk>k0 ) { ww=link(ww); decr(kk); }
11218 else { ww=knil(ww); incr(kk); }
11220 @ @<If endpoint, double the path |c|, and set |spec_p1| and |spec_p2|@>=
11221 if ( left_type(c)==mp_endpoint ) {
11222 mp->spec_p1=mp_htap_ypoc(mp, c);
11223 mp->spec_p2=mp->path_tail;
11224 originator(mp->spec_p1)=mp_program_code;
11225 link(mp->spec_p2)=link(mp->spec_p1);
11226 link(mp->spec_p1)=c;
11227 mp_remove_cubic(mp, mp->spec_p1);
11229 if ( c!=link(c) ) {
11230 originator(mp->spec_p2)=mp_program_code;
11231 mp_remove_cubic(mp, mp->spec_p2);
11233 @<Make |c| look like a cycle of length one@>;
11237 @ @<Make |c| look like a cycle of length one@>=
11239 left_type(c)=mp_explicit; right_type(c)=mp_explicit;
11240 left_x(c)=x_coord(c); left_y(c)=y_coord(c);
11241 right_x(c)=x_coord(c); right_y(c)=y_coord(c);
11244 @ In degenerate situations we might have to look at the knot preceding~|q|.
11245 That knot is |p| but if |p<>c|, its coordinates have already been offset by |w|.
11247 @<Set the incoming and outgoing directions at |q|; in case of...@>=
11248 dxin=x_coord(q)-left_x(q);
11249 dyin=y_coord(q)-left_y(q);
11250 if ( (dxin==0)&&(dyin==0) ) {
11251 dxin=x_coord(q)-right_x(p);
11252 dyin=y_coord(q)-right_y(p);
11253 if ( (dxin==0)&&(dyin==0) ) {
11254 dxin=x_coord(q)-x_coord(p);
11255 dyin=y_coord(q)-y_coord(p);
11256 if ( p!=c ) { /* the coordinates of |p| have been offset by |w| */
11257 dxin=dxin+x_coord(w);
11258 dyin=dyin+y_coord(w);
11262 tmp=mp_pyth_add(mp, dxin,dyin);
11266 dxin=mp_make_fraction(mp, dxin,tmp);
11267 dyin=mp_make_fraction(mp, dyin,tmp);
11268 @<Set the outgoing direction at |q|@>;
11271 @ If |q=c| then the coordinates of |r| and the control points between |q|
11272 and~|r| have already been offset by |h|.
11274 @<Set the outgoing direction at |q|@>=
11275 dxout=right_x(q)-x_coord(q);
11276 dyout=right_y(q)-y_coord(q);
11277 if ( (dxout==0)&&(dyout==0) ) {
11279 dxout=left_x(r)-x_coord(q);
11280 dyout=left_y(r)-y_coord(q);
11281 if ( (dxout==0)&&(dyout==0) ) {
11282 dxout=x_coord(r)-x_coord(q);
11283 dyout=y_coord(r)-y_coord(q);
11287 dxout=dxout-x_coord(h);
11288 dyout=dyout-y_coord(h);
11290 tmp=mp_pyth_add(mp, dxout,dyout);
11291 if ( tmp==0 ) mp_confusion(mp, "degenerate spec");
11292 @:this can't happen degerate spec}{\quad degenerate spec@>
11293 dxout=mp_make_fraction(mp, dxout,tmp);
11294 dyout=mp_make_fraction(mp, dyout,tmp)
11296 @* \[23] Direction and intersection times.
11297 A path of length $n$ is defined parametrically by functions $x(t)$ and
11298 $y(t)$, for |0<=t<=n|; we can regard $t$ as the ``time'' at which the path
11299 reaches the point $\bigl(x(t),y(t)\bigr)$. In this section of the program
11300 we shall consider operations that determine special times associated with
11301 given paths: the first time that a path travels in a given direction, and
11302 a pair of times at which two paths cross each other.
11304 @ Let's start with the easier task. The function |find_direction_time| is
11305 given a direction |(x,y)| and a path starting at~|h|. If the path never
11306 travels in direction |(x,y)|, the direction time will be~|-1|; otherwise
11307 it will be nonnegative.
11309 Certain anomalous cases can arise: If |(x,y)=(0,0)|, so that the given
11310 direction is undefined, the direction time will be~0. If $\bigl(x'(t),
11311 y'(t)\bigr)=(0,0)$, so that the path direction is undefined, it will be
11312 assumed to match any given direction at time~|t|.
11314 The routine solves this problem in nondegenerate cases by rotating the path
11315 and the given direction so that |(x,y)=(1,0)|; i.e., the main task will be
11316 to find when a given path first travels ``due east.''
11319 scaled mp_find_direction_time (MP mp,scaled x, scaled y, pointer h) {
11320 scaled max; /* $\max\bigl(\vert x\vert,\vert y\vert\bigr)$ */
11321 pointer p,q; /* for list traversal */
11322 scaled n; /* the direction time at knot |p| */
11323 scaled tt; /* the direction time within a cubic */
11324 @<Other local variables for |find_direction_time|@>;
11325 @<Normalize the given direction for better accuracy;
11326 but |return| with zero result if it's zero@>;
11329 if ( right_type(p)==mp_endpoint ) break;
11331 @<Rotate the cubic between |p| and |q|; then
11332 |goto found| if the rotated cubic travels due east at some time |tt|;
11333 but |break| if an entire cyclic path has been traversed@>;
11341 @ @<Normalize the given direction for better accuracy...@>=
11342 if ( abs(x)<abs(y) ) {
11343 x=mp_make_fraction(mp, x,abs(y));
11344 if ( y>0 ) y=fraction_one; else y=-fraction_one;
11345 } else if ( x==0 ) {
11348 y=mp_make_fraction(mp, y,abs(x));
11349 if ( x>0 ) x=fraction_one; else x=-fraction_one;
11352 @ Since we're interested in the tangent directions, we work with the
11353 derivative $${\textstyle1\over3}B'(x_0,x_1,x_2,x_3;t)=
11354 B(x_1-x_0,x_2-x_1,x_3-x_2;t)$$ instead of
11355 $B(x_0,x_1,x_2,x_3;t)$ itself. The derived coefficients are also scaled up
11356 in order to achieve better accuracy.
11358 The given path may turn abruptly at a knot, and it might pass the critical
11359 tangent direction at such a time. Therefore we remember the direction |phi|
11360 in which the previous rotated cubic was traveling. (The value of |phi| will be
11361 undefined on the first cubic, i.e., when |n=0|.)
11363 @<Rotate the cubic between |p| and |q|; then...@>=
11365 @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples of the control
11366 points of the rotated derivatives@>;
11367 if ( y1==0 ) if ( x1>=0 ) goto FOUND;
11369 @<Exit to |found| if an eastward direction occurs at knot |p|@>;
11372 if ( (x3!=0)||(y3!=0) ) phi=mp_n_arg(mp, x3,y3);
11373 @<Exit to |found| if the curve whose derivatives are specified by
11374 |x1,x2,x3,y1,y2,y3| travels eastward at some time~|tt|@>
11376 @ @<Other local variables for |find_direction_time|@>=
11377 scaled x1,x2,x3,y1,y2,y3; /* multiples of rotated derivatives */
11378 angle theta,phi; /* angles of exit and entry at a knot */
11379 fraction t; /* temp storage */
11381 @ @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples...@>=
11382 x1=right_x(p)-x_coord(p); x2=left_x(q)-right_x(p);
11383 x3=x_coord(q)-left_x(q);
11384 y1=right_y(p)-y_coord(p); y2=left_y(q)-right_y(p);
11385 y3=y_coord(q)-left_y(q);
11387 if ( abs(x2)>max ) max=abs(x2);
11388 if ( abs(x3)>max ) max=abs(x3);
11389 if ( abs(y1)>max ) max=abs(y1);
11390 if ( abs(y2)>max ) max=abs(y2);
11391 if ( abs(y3)>max ) max=abs(y3);
11392 if ( max==0 ) goto FOUND;
11393 while ( max<fraction_half ){
11394 max+=max; x1+=x1; x2+=x2; x3+=x3;
11395 y1+=y1; y2+=y2; y3+=y3;
11397 t=x1; x1=mp_take_fraction(mp, x1,x)+mp_take_fraction(mp, y1,y);
11398 y1=mp_take_fraction(mp, y1,x)-mp_take_fraction(mp, t,y);
11399 t=x2; x2=mp_take_fraction(mp, x2,x)+mp_take_fraction(mp, y2,y);
11400 y2=mp_take_fraction(mp, y2,x)-mp_take_fraction(mp, t,y);
11401 t=x3; x3=mp_take_fraction(mp, x3,x)+mp_take_fraction(mp, y3,y);
11402 y3=mp_take_fraction(mp, y3,x)-mp_take_fraction(mp, t,y)
11404 @ @<Exit to |found| if an eastward direction occurs at knot |p|@>=
11405 theta=mp_n_arg(mp, x1,y1);
11406 if ( theta>=0 ) if ( phi<=0 ) if ( phi>=theta-one_eighty_deg ) goto FOUND;
11407 if ( theta<=0 ) if ( phi>=0 ) if ( phi<=theta+one_eighty_deg ) goto FOUND
11409 @ In this step we want to use the |crossing_point| routine to find the
11410 roots of the quadratic equation $B(y_1,y_2,y_3;t)=0$.
11411 Several complications arise: If the quadratic equation has a double root,
11412 the curve never crosses zero, and |crossing_point| will find nothing;
11413 this case occurs iff $y_1y_3=y_2^2$ and $y_1y_2<0$. If the quadratic
11414 equation has simple roots, or only one root, we may have to negate it
11415 so that $B(y_1,y_2,y_3;t)$ crosses from positive to negative at its first root.
11416 And finally, we need to do special things if $B(y_1,y_2,y_3;t)$ is
11419 @ @<Exit to |found| if the curve whose derivatives are specified by...@>=
11420 if ( x1<0 ) if ( x2<0 ) if ( x3<0 ) goto DONE;
11421 if ( mp_ab_vs_cd(mp, y1,y3,y2,y2)==0 ) {
11422 @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11423 either |goto found| or |goto done|@>;
11426 if ( y1<0 ) { y1=-y1; y2=-y2; y3=-y3; }
11427 else if ( y2>0 ){ y2=-y2; y3=-y3; };
11429 @<Check the places where $B(y_1,y_2,y_3;t)=0$ to see if
11430 $B(x_1,x_2,x_3;t)\ge0$@>;
11433 @ The quadratic polynomial $B(y_1,y_2,y_3;t)$ begins |>=0| and has at most
11434 two roots, because we know that it isn't identically zero.
11436 It must be admitted that the |crossing_point| routine is not perfectly accurate;
11437 rounding errors might cause it to find a root when $y_1y_3>y_2^2$, or to
11438 miss the roots when $y_1y_3<y_2^2$. The rotation process is itself
11439 subject to rounding errors. Yet this code optimistically tries to
11440 do the right thing.
11442 @d we_found_it { tt=(t+04000) / 010000; goto FOUND; }
11444 @<Check the places where $B(y_1,y_2,y_3;t)=0$...@>=
11445 t=mp_crossing_point(mp, y1,y2,y3);
11446 if ( t>fraction_one ) goto DONE;
11447 y2=t_of_the_way(y2,y3);
11448 x1=t_of_the_way(x1,x2);
11449 x2=t_of_the_way(x2,x3);
11450 x1=t_of_the_way(x1,x2);
11451 if ( x1>=0 ) we_found_it;
11453 tt=t; t=mp_crossing_point(mp, 0,-y2,-y3);
11454 if ( t>fraction_one ) goto DONE;
11455 x1=t_of_the_way(x1,x2);
11456 x2=t_of_the_way(x2,x3);
11457 if ( t_of_the_way(x1,x2)>=0 ) {
11458 t=t_of_the_way(tt,fraction_one); we_found_it;
11461 @ @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
11462 either |goto found| or |goto done|@>=
11464 if ( mp_ab_vs_cd(mp, y1,y2,0,0)<0 ) {
11465 t=mp_make_fraction(mp, y1,y1-y2);
11466 x1=t_of_the_way(x1,x2);
11467 x2=t_of_the_way(x2,x3);
11468 if ( t_of_the_way(x1,x2)>=0 ) we_found_it;
11469 } else if ( y3==0 ) {
11471 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|@>;
11472 } else if ( x3>=0 ) {
11473 tt=unity; goto FOUND;
11479 @ At this point we know that the derivative of |y(t)| is identically zero,
11480 and that |x1<0|; but either |x2>=0| or |x3>=0|, so there's some hope of
11483 @<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|...@>=
11485 t=mp_crossing_point(mp, -x1,-x2,-x3);
11486 if ( t<=fraction_one ) we_found_it;
11487 if ( mp_ab_vs_cd(mp, x1,x3,x2,x2)<=0 ) {
11488 t=mp_make_fraction(mp, x1,x1-x2); we_found_it;
11492 @ The intersection of two cubics can be found by an interesting variant
11493 of the general bisection scheme described in the introduction to
11495 Given $w(t)=B(w_0,w_1,w_2,w_3;t)$ and $z(t)=B(z_0,z_1,z_2,z_3;t)$,
11496 we wish to find a pair of times $(t_1,t_2)$ such that $w(t_1)=z(t_2)$,
11497 if an intersection exists. First we find the smallest rectangle that
11498 encloses the points $\{w_0,w_1,w_2,w_3\}$ and check that it overlaps
11499 the smallest rectangle that encloses
11500 $\{z_0,z_1,z_2,z_3\}$; if not, the cubics certainly don't intersect.
11501 But if the rectangles do overlap, we bisect the intervals, getting
11502 new cubics $w'$ and~$w''$, $z'$~and~$z''$; the intersection routine first
11503 tries for an intersection between $w'$ and~$z'$, then (if unsuccessful)
11504 between $w'$ and~$z''$, then (if still unsuccessful) between $w''$ and~$z'$,
11505 finally (if thrice unsuccessful) between $w''$ and~$z''$. After $l$~successful
11506 levels of bisection we will have determined the intersection times $t_1$
11507 and~$t_2$ to $l$~bits of accuracy.
11509 \def\submin{_{\rm min}} \def\submax{_{\rm max}}
11510 As before, it is better to work with the numbers $W_k=2^l(w_k-w_{k-1})$
11511 and $Z_k=2^l(z_k-z_{k-1})$ rather than the coefficients $w_k$ and $z_k$
11512 themselves. We also need one other quantity, $\Delta=2^l(w_0-z_0)$,
11513 to determine when the enclosing rectangles overlap. Here's why:
11514 The $x$~coordinates of~$w(t)$ are between $u\submin$ and $u\submax$,
11515 and the $x$~coordinates of~$z(t)$ are between $x\submin$ and $x\submax$,
11516 if we write $w_k=(u_k,v_k)$ and $z_k=(x_k,y_k)$ and $u\submin=
11517 \min(u_0,u_1,u_2,u_3)$, etc. These intervals of $x$~coordinates
11518 overlap if and only if $u\submin\L x\submax$ and
11519 $x\submin\L u\submax$. Letting
11520 $$U\submin=\min(0,U_1,U_1+U_2,U_1+U_2+U_3),\;
11521 U\submax=\max(0,U_1,U_1+U_2,U_1+U_2+U_3),$$
11522 we have $u\submin=2^lu_0+U\submin$, etc.; the condition for overlap
11524 $$X\submin-U\submax\L 2^l(u_0-x_0)\L X\submax-U\submin.$$
11525 Thus we want to maintain the quantity $2^l(u_0-x_0)$; similarly,
11526 the quantity $2^l(v_0-y_0)$ accounts for the $y$~coordinates. The
11527 coordinates of $\Delta=2^l(w_0-z_0)$ must stay bounded as $l$ increases,
11528 because of the overlap condition; i.e., we know that $X\submin$,
11529 $X\submax$, and their relatives are bounded, hence $X\submax-
11530 U\submin$ and $X\submin-U\submax$ are bounded.
11532 @ Incidentally, if the given cubics intersect more than once, the process
11533 just sketched will not necessarily find the lexicographically smallest pair
11534 $(t_1,t_2)$. The solution actually obtained will be smallest in ``shuffled
11535 order''; i.e., if $t_1=(.a_1a_2\ldots a_{16})_2$ and
11536 $t_2=(.b_1b_2\ldots b_{16})_2$, then we will minimize
11537 $a_1b_1a_2b_2\ldots a_{16}b_{16}$, not
11538 $a_1a_2\ldots a_{16}b_1b_2\ldots b_{16}$.
11539 Shuffled order agrees with lexicographic order if all pairs of solutions
11540 $(t_1,t_2)$ and $(t_1',t_2')$ have the property that $t_1<t_1'$ iff
11541 $t_2<t_2'$; but in general, lexicographic order can be quite different,
11542 and the bisection algorithm would be substantially less efficient if it were
11543 constrained by lexicographic order.
11545 For example, suppose that an overlap has been found for $l=3$ and
11546 $(t_1,t_2)= (.101,.011)$ in binary, but that no overlap is produced by
11547 either of the alternatives $(.1010,.0110)$, $(.1010,.0111)$ at level~4.
11548 Then there is probably an intersection in one of the subintervals
11549 $(.1011,.011x)$; but lexicographic order would require us to explore
11550 $(.1010,.1xxx)$ and $(.1011,.00xx)$ and $(.1011,.010x)$ first. We wouldn't
11551 want to store all of the subdivision data for the second path, so the
11552 subdivisions would have to be regenerated many times. Such inefficiencies
11553 would be associated with every `1' in the binary representation of~$t_1$.
11555 @ The subdivision process introduces rounding errors, hence we need to
11556 make a more liberal test for overlap. It is not hard to show that the
11557 computed values of $U_i$ differ from the truth by at most~$l$, on
11558 level~$l$, hence $U\submin$ and $U\submax$ will be at most $3l$ in error.
11559 If $\beta$ is an upper bound on the absolute error in the computed
11560 components of $\Delta=(|delx|,|dely|)$ on level~$l$, we will replace
11561 the test `$X\submin-U\submax\L|delx|$' by the more liberal test
11562 `$X\submin-U\submax\L|delx|+|tol|$', where $|tol|=6l+\beta$.
11564 More accuracy is obtained if we try the algorithm first with |tol=0|;
11565 the more liberal tolerance is used only if an exact approach fails.
11566 It is convenient to do this double-take by letting `3' in the preceding
11567 paragraph be a parameter, which is first 0, then 3.
11570 unsigned int tol_step; /* either 0 or 3, usually */
11572 @ We shall use an explicit stack to implement the recursive bisection
11573 method described above. The |bisect_stack| array will contain numerous 5-word
11574 packets like $(U_1,U_2,U_3,U\submin,U\submax)$, as well as 20-word packets
11575 comprising the 5-word packets for $U$, $V$, $X$, and~$Y$.
11577 The following macros define the allocation of stack positions to
11578 the quantities needed for bisection-intersection.
11580 @d stack_1(A) mp->bisect_stack[(A)] /* $U_1$, $V_1$, $X_1$, or $Y_1$ */
11581 @d stack_2(A) mp->bisect_stack[(A)+1] /* $U_2$, $V_2$, $X_2$, or $Y_2$ */
11582 @d stack_3(A) mp->bisect_stack[(A)+2] /* $U_3$, $V_3$, $X_3$, or $Y_3$ */
11583 @d stack_min(A) mp->bisect_stack[(A)+3]
11584 /* $U\submin$, $V\submin$, $X\submin$, or $Y\submin$ */
11585 @d stack_max(A) mp->bisect_stack[(A)+4]
11586 /* $U\submax$, $V\submax$, $X\submax$, or $Y\submax$ */
11587 @d int_packets 20 /* number of words to represent $U_k$, $V_k$, $X_k$, and $Y_k$ */
11589 @d u_packet(A) ((A)-5)
11590 @d v_packet(A) ((A)-10)
11591 @d x_packet(A) ((A)-15)
11592 @d y_packet(A) ((A)-20)
11593 @d l_packets (mp->bisect_ptr-int_packets)
11594 @d r_packets mp->bisect_ptr
11595 @d ul_packet u_packet(l_packets) /* base of $U'_k$ variables */
11596 @d vl_packet v_packet(l_packets) /* base of $V'_k$ variables */
11597 @d xl_packet x_packet(l_packets) /* base of $X'_k$ variables */
11598 @d yl_packet y_packet(l_packets) /* base of $Y'_k$ variables */
11599 @d ur_packet u_packet(r_packets) /* base of $U''_k$ variables */
11600 @d vr_packet v_packet(r_packets) /* base of $V''_k$ variables */
11601 @d xr_packet x_packet(r_packets) /* base of $X''_k$ variables */
11602 @d yr_packet y_packet(r_packets) /* base of $Y''_k$ variables */
11604 @d u1l stack_1(ul_packet) /* $U'_1$ */
11605 @d u2l stack_2(ul_packet) /* $U'_2$ */
11606 @d u3l stack_3(ul_packet) /* $U'_3$ */
11607 @d v1l stack_1(vl_packet) /* $V'_1$ */
11608 @d v2l stack_2(vl_packet) /* $V'_2$ */
11609 @d v3l stack_3(vl_packet) /* $V'_3$ */
11610 @d x1l stack_1(xl_packet) /* $X'_1$ */
11611 @d x2l stack_2(xl_packet) /* $X'_2$ */
11612 @d x3l stack_3(xl_packet) /* $X'_3$ */
11613 @d y1l stack_1(yl_packet) /* $Y'_1$ */
11614 @d y2l stack_2(yl_packet) /* $Y'_2$ */
11615 @d y3l stack_3(yl_packet) /* $Y'_3$ */
11616 @d u1r stack_1(ur_packet) /* $U''_1$ */
11617 @d u2r stack_2(ur_packet) /* $U''_2$ */
11618 @d u3r stack_3(ur_packet) /* $U''_3$ */
11619 @d v1r stack_1(vr_packet) /* $V''_1$ */
11620 @d v2r stack_2(vr_packet) /* $V''_2$ */
11621 @d v3r stack_3(vr_packet) /* $V''_3$ */
11622 @d x1r stack_1(xr_packet) /* $X''_1$ */
11623 @d x2r stack_2(xr_packet) /* $X''_2$ */
11624 @d x3r stack_3(xr_packet) /* $X''_3$ */
11625 @d y1r stack_1(yr_packet) /* $Y''_1$ */
11626 @d y2r stack_2(yr_packet) /* $Y''_2$ */
11627 @d y3r stack_3(yr_packet) /* $Y''_3$ */
11629 @d stack_dx mp->bisect_stack[mp->bisect_ptr] /* stacked value of |delx| */
11630 @d stack_dy mp->bisect_stack[mp->bisect_ptr+1] /* stacked value of |dely| */
11631 @d stack_tol mp->bisect_stack[mp->bisect_ptr+2] /* stacked value of |tol| */
11632 @d stack_uv mp->bisect_stack[mp->bisect_ptr+3] /* stacked value of |uv| */
11633 @d stack_xy mp->bisect_stack[mp->bisect_ptr+4] /* stacked value of |xy| */
11634 @d int_increment (int_packets+int_packets+5) /* number of stack words per level */
11637 integer *bisect_stack;
11638 unsigned int bisect_ptr;
11640 @ @<Allocate or initialize ...@>=
11641 mp->bisect_stack = xmalloc((bistack_size+1),sizeof(integer));
11643 @ @<Dealloc variables@>=
11644 xfree(mp->bisect_stack);
11646 @ @<Check the ``constant''...@>=
11647 if ( int_packets+17*int_increment>bistack_size ) mp->bad=19;
11649 @ Computation of the min and max is a tedious but fairly fast sequence of
11650 instructions; exactly four comparisons are made in each branch.
11653 if ( stack_1((A))<0 ) {
11654 if ( stack_3((A))>=0 ) {
11655 if ( stack_2((A))<0 ) stack_min((A))=stack_1((A))+stack_2((A));
11656 else stack_min((A))=stack_1((A));
11657 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11658 if ( stack_max((A))<0 ) stack_max((A))=0;
11660 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11661 if ( stack_min((A))>stack_1((A)) ) stack_min((A))=stack_1((A));
11662 stack_max((A))=stack_1((A))+stack_2((A));
11663 if ( stack_max((A))<0 ) stack_max((A))=0;
11665 } else if ( stack_3((A))<=0 ) {
11666 if ( stack_2((A))>0 ) stack_max((A))=stack_1((A))+stack_2((A));
11667 else stack_max((A))=stack_1((A));
11668 stack_min((A))=stack_1((A))+stack_2((A))+stack_3((A));
11669 if ( stack_min((A))>0 ) stack_min((A))=0;
11671 stack_max((A))=stack_1((A))+stack_2((A))+stack_3((A));
11672 if ( stack_max((A))<stack_1((A)) ) stack_max((A))=stack_1((A));
11673 stack_min((A))=stack_1((A))+stack_2((A));
11674 if ( stack_min((A))>0 ) stack_min((A))=0;
11677 @ It's convenient to keep the current values of $l$, $t_1$, and $t_2$ in
11678 the integer form $2^l+2^lt_1$ and $2^l+2^lt_2$. The |cubic_intersection|
11679 routine uses global variables |cur_t| and |cur_tt| for this purpose;
11680 after successful completion, |cur_t| and |cur_tt| will contain |unity|
11681 plus the |scaled| values of $t_1$ and~$t_2$.
11683 The values of |cur_t| and |cur_tt| will be set to zero if |cubic_intersection|
11684 finds no intersection. The routine gives up and gives an approximate answer
11685 if it has backtracked
11686 more than 5000 times (otherwise there are cases where several minutes
11687 of fruitless computation would be possible).
11689 @d max_patience 5000
11692 integer cur_t;integer cur_tt; /* controls and results of |cubic_intersection| */
11693 integer time_to_go; /* this many backtracks before giving up */
11694 integer max_t; /* maximum of $2^{l+1}$ so far achieved */
11696 @ The given cubics $B(w_0,w_1,w_2,w_3;t)$ and
11697 $B(z_0,z_1,z_2,z_3;t)$ are specified in adjacent knot nodes |(p,link(p))|
11698 and |(pp,link(pp))|, respectively.
11700 @c void mp_cubic_intersection (MP mp,pointer p, pointer pp) {
11701 pointer q,qq; /* |link(p)|, |link(pp)| */
11702 mp->time_to_go=max_patience; mp->max_t=2;
11703 @<Initialize for intersections at level zero@>;
11706 if ( mp->delx-mp->tol<=stack_max(x_packet(mp->xy))-stack_min(u_packet(mp->uv)))
11707 if ( mp->delx+mp->tol>=stack_min(x_packet(mp->xy))-stack_max(u_packet(mp->uv)))
11708 if ( mp->dely-mp->tol<=stack_max(y_packet(mp->xy))-stack_min(v_packet(mp->uv)))
11709 if ( mp->dely+mp->tol>=stack_min(y_packet(mp->xy))-stack_max(v_packet(mp->uv)))
11711 if ( mp->cur_t>=mp->max_t ){
11712 if ( mp->max_t==two ) { /* we've done 17 bisections */
11713 mp->cur_t=halfp(mp->cur_t+1); mp->cur_tt=halfp(mp->cur_tt+1); return;
11715 mp->max_t+=mp->max_t; mp->appr_t=mp->cur_t; mp->appr_tt=mp->cur_tt;
11717 @<Subdivide for a new level of intersection@>;
11720 if ( mp->time_to_go>0 ) {
11721 decr(mp->time_to_go);
11723 while ( mp->appr_t<unity ) {
11724 mp->appr_t+=mp->appr_t; mp->appr_tt+=mp->appr_tt;
11726 mp->cur_t=mp->appr_t; mp->cur_tt=mp->appr_tt; return;
11728 @<Advance to the next pair |(cur_t,cur_tt)|@>;
11732 @ The following variables are global, although they are used only by
11733 |cubic_intersection|, because it is necessary on some machines to
11734 split |cubic_intersection| up into two procedures.
11737 integer delx;integer dely; /* the components of $\Delta=2^l(w_0-z_0)$ */
11738 integer tol; /* bound on the uncertainly in the overlap test */
11740 unsigned int xy; /* pointers to the current packets of interest */
11741 integer three_l; /* |tol_step| times the bisection level */
11742 integer appr_t;integer appr_tt; /* best approximations known to the answers */
11744 @ We shall assume that the coordinates are sufficiently non-extreme that
11745 integer overflow will not occur.
11747 @<Initialize for intersections at level zero@>=
11748 q=link(p); qq=link(pp); mp->bisect_ptr=int_packets;
11749 u1r=right_x(p)-x_coord(p); u2r=left_x(q)-right_x(p);
11750 u3r=x_coord(q)-left_x(q); set_min_max(ur_packet);
11751 v1r=right_y(p)-y_coord(p); v2r=left_y(q)-right_y(p);
11752 v3r=y_coord(q)-left_y(q); set_min_max(vr_packet);
11753 x1r=right_x(pp)-x_coord(pp); x2r=left_x(qq)-right_x(pp);
11754 x3r=x_coord(qq)-left_x(qq); set_min_max(xr_packet);
11755 y1r=right_y(pp)-y_coord(pp); y2r=left_y(qq)-right_y(pp);
11756 y3r=y_coord(qq)-left_y(qq); set_min_max(yr_packet);
11757 mp->delx=x_coord(p)-x_coord(pp); mp->dely=y_coord(p)-y_coord(pp);
11758 mp->tol=0; mp->uv=r_packets; mp->xy=r_packets;
11759 mp->three_l=0; mp->cur_t=1; mp->cur_tt=1
11761 @ @<Subdivide for a new level of intersection@>=
11762 stack_dx=mp->delx; stack_dy=mp->dely; stack_tol=mp->tol;
11763 stack_uv=mp->uv; stack_xy=mp->xy;
11764 mp->bisect_ptr=mp->bisect_ptr+int_increment;
11765 mp->cur_t+=mp->cur_t; mp->cur_tt+=mp->cur_tt;
11766 u1l=stack_1(u_packet(mp->uv)); u3r=stack_3(u_packet(mp->uv));
11767 u2l=half(u1l+stack_2(u_packet(mp->uv)));
11768 u2r=half(u3r+stack_2(u_packet(mp->uv)));
11769 u3l=half(u2l+u2r); u1r=u3l;
11770 set_min_max(ul_packet); set_min_max(ur_packet);
11771 v1l=stack_1(v_packet(mp->uv)); v3r=stack_3(v_packet(mp->uv));
11772 v2l=half(v1l+stack_2(v_packet(mp->uv)));
11773 v2r=half(v3r+stack_2(v_packet(mp->uv)));
11774 v3l=half(v2l+v2r); v1r=v3l;
11775 set_min_max(vl_packet); set_min_max(vr_packet);
11776 x1l=stack_1(x_packet(mp->xy)); x3r=stack_3(x_packet(mp->xy));
11777 x2l=half(x1l+stack_2(x_packet(mp->xy)));
11778 x2r=half(x3r+stack_2(x_packet(mp->xy)));
11779 x3l=half(x2l+x2r); x1r=x3l;
11780 set_min_max(xl_packet); set_min_max(xr_packet);
11781 y1l=stack_1(y_packet(mp->xy)); y3r=stack_3(y_packet(mp->xy));
11782 y2l=half(y1l+stack_2(y_packet(mp->xy)));
11783 y2r=half(y3r+stack_2(y_packet(mp->xy)));
11784 y3l=half(y2l+y2r); y1r=y3l;
11785 set_min_max(yl_packet); set_min_max(yr_packet);
11786 mp->uv=l_packets; mp->xy=l_packets;
11787 mp->delx+=mp->delx; mp->dely+=mp->dely;
11788 mp->tol=mp->tol-mp->three_l+mp->tol_step;
11789 mp->tol+=mp->tol; mp->three_l=mp->three_l+mp->tol_step
11791 @ @<Advance to the next pair |(cur_t,cur_tt)|@>=
11793 if ( odd(mp->cur_tt) ) {
11794 if ( odd(mp->cur_t) ) {
11795 @<Descend to the previous level and |goto not_found|@>;
11798 mp->delx=mp->delx+stack_1(u_packet(mp->uv))+stack_2(u_packet(mp->uv))
11799 +stack_3(u_packet(mp->uv));
11800 mp->dely=mp->dely+stack_1(v_packet(mp->uv))+stack_2(v_packet(mp->uv))
11801 +stack_3(v_packet(mp->uv));
11802 mp->uv=mp->uv+int_packets; /* switch from |l_packet| to |r_packet| */
11803 decr(mp->cur_tt); mp->xy=mp->xy-int_packets;
11804 /* switch from |r_packet| to |l_packet| */
11805 mp->delx=mp->delx+stack_1(x_packet(mp->xy))+stack_2(x_packet(mp->xy))
11806 +stack_3(x_packet(mp->xy));
11807 mp->dely=mp->dely+stack_1(y_packet(mp->xy))+stack_2(y_packet(mp->xy))
11808 +stack_3(y_packet(mp->xy));
11811 incr(mp->cur_tt); mp->tol=mp->tol+mp->three_l;
11812 mp->delx=mp->delx-stack_1(x_packet(mp->xy))-stack_2(x_packet(mp->xy))
11813 -stack_3(x_packet(mp->xy));
11814 mp->dely=mp->dely-stack_1(y_packet(mp->xy))-stack_2(y_packet(mp->xy))
11815 -stack_3(y_packet(mp->xy));
11816 mp->xy=mp->xy+int_packets; /* switch from |l_packet| to |r_packet| */
11819 @ @<Descend to the previous level...@>=
11821 mp->cur_t=halfp(mp->cur_t); mp->cur_tt=halfp(mp->cur_tt);
11822 if ( mp->cur_t==0 ) return;
11823 mp->bisect_ptr=mp->bisect_ptr-int_increment;
11824 mp->three_l=mp->three_l-mp->tol_step;
11825 mp->delx=stack_dx; mp->dely=stack_dy; mp->tol=stack_tol;
11826 mp->uv=stack_uv; mp->xy=stack_xy;
11830 @ The |path_intersection| procedure is much simpler.
11831 It invokes |cubic_intersection| in lexicographic order until finding a
11832 pair of cubics that intersect. The final intersection times are placed in
11833 |cur_t| and~|cur_tt|.
11835 @c void mp_path_intersection (MP mp,pointer h, pointer hh) {
11836 pointer p,pp; /* link registers that traverse the given paths */
11837 integer n,nn; /* integer parts of intersection times, minus |unity| */
11838 @<Change one-point paths into dead cycles@>;
11843 if ( right_type(p)!=mp_endpoint ) {
11846 if ( right_type(pp)!=mp_endpoint ) {
11847 mp_cubic_intersection(mp, p,pp);
11848 if ( mp->cur_t>0 ) {
11849 mp->cur_t=mp->cur_t+n; mp->cur_tt=mp->cur_tt+nn;
11853 nn=nn+unity; pp=link(pp);
11856 n=n+unity; p=link(p);
11858 mp->tol_step=mp->tol_step+3;
11859 } while (mp->tol_step<=3);
11860 mp->cur_t=-unity; mp->cur_tt=-unity;
11863 @ @<Change one-point paths...@>=
11864 if ( right_type(h)==mp_endpoint ) {
11865 right_x(h)=x_coord(h); left_x(h)=x_coord(h);
11866 right_y(h)=y_coord(h); left_y(h)=y_coord(h); right_type(h)=mp_explicit;
11868 if ( right_type(hh)==mp_endpoint ) {
11869 right_x(hh)=x_coord(hh); left_x(hh)=x_coord(hh);
11870 right_y(hh)=y_coord(hh); left_y(hh)=y_coord(hh); right_type(hh)=mp_explicit;
11873 @* \[24] Dynamic linear equations.
11874 \MP\ users define variables implicitly by stating equations that should be
11875 satisfied; the computer is supposed to be smart enough to solve those equations.
11876 And indeed, the computer tries valiantly to do so, by distinguishing five
11877 different types of numeric values:
11880 |type(p)=mp_known| is the nice case, when |value(p)| is the |scaled| value
11881 of the variable whose address is~|p|.
11884 |type(p)=mp_dependent| means that |value(p)| is not present, but |dep_list(p)|
11885 points to a {\sl dependency list\/} that expresses the value of variable~|p|
11886 as a |scaled| number plus a sum of independent variables with |fraction|
11890 |type(p)=mp_independent| means that |value(p)=64s+m|, where |s>0| is a ``serial
11891 number'' reflecting the time this variable was first used in an equation;
11892 also |0<=m<64|, and each dependent variable
11893 that refers to this one is actually referring to the future value of
11894 this variable times~$2^m$. (Usually |m=0|, but higher degrees of
11895 scaling are sometimes needed to keep the coefficients in dependency lists
11896 from getting too large. The value of~|m| will always be even.)
11899 |type(p)=mp_numeric_type| means that variable |p| hasn't appeared in an
11900 equation before, but it has been explicitly declared to be numeric.
11903 |type(p)=undefined| means that variable |p| hasn't appeared before.
11905 \smallskip\noindent
11906 We have actually discussed these five types in the reverse order of their
11907 history during a computation: Once |known|, a variable never again
11908 becomes |dependent|; once |dependent|, it almost never again becomes
11909 |mp_independent|; once |mp_independent|, it never again becomes |mp_numeric_type|;
11910 and once |mp_numeric_type|, it never again becomes |undefined| (except
11911 of course when the user specifically decides to scrap the old value
11912 and start again). A backward step may, however, take place: Sometimes
11913 a |dependent| variable becomes |mp_independent| again, when one of the
11914 independent variables it depends on is reverting to |undefined|.
11917 The next patch detects overflow of independent-variable serial
11918 numbers. Diagnosed and patched by Thorsten Dahlheimer.
11920 @d s_scale 64 /* the serial numbers are multiplied by this factor */
11921 @d max_indep_vars 0177777777 /* $2^{25}-1$ */
11922 @d max_serial_no 017777777700 /* |max_indep_vars*s_scale| */
11923 @d new_indep(A) /* create a new independent variable */
11924 { if ( mp->serial_no==max_serial_no )
11925 mp_fatal_error(mp, "variable instance identifiers exhausted");
11926 type((A))=mp_independent; mp->serial_no=mp->serial_no+s_scale;
11927 value((A))=mp->serial_no;
11931 integer serial_no; /* the most recent serial number, times |s_scale| */
11933 @ @<Make variable |q+s| newly independent@>=new_indep(q+s)
11935 @ But how are dependency lists represented? It's simple: The linear combination
11936 $\alpha_1v_1+\cdots+\alpha_kv_k+\beta$ appears in |k+1| value nodes. If
11937 |q=dep_list(p)| points to this list, and if |k>0|, then |value(q)=
11938 @t$\alpha_1$@>| (which is a |fraction|); |info(q)| points to the location
11939 of $\alpha_1$; and |link(p)| points to the dependency list
11940 $\alpha_2v_2+\cdots+\alpha_kv_k+\beta$. On the other hand if |k=0|,
11941 then |value(q)=@t$\beta$@>| (which is |scaled|) and |info(q)=null|.
11942 The independent variables $v_1$, \dots,~$v_k$ have been sorted so that
11943 they appear in decreasing order of their |value| fields (i.e., of
11944 their serial numbers). \ (It is convenient to use decreasing order,
11945 since |value(null)=0|. If the independent variables were not sorted by
11946 serial number but by some other criterion, such as their location in |mem|,
11947 the equation-solving mechanism would be too system-dependent, because
11948 the ordering can affect the computed results.)
11950 The |link| field in the node that contains the constant term $\beta$ is
11951 called the {\sl final link\/} of the dependency list. \MP\ maintains
11952 a doubly-linked master list of all dependency lists, in terms of a permanently
11954 in |mem| called |dep_head|. If there are no dependencies, we have
11955 |link(dep_head)=dep_head| and |prev_dep(dep_head)=dep_head|;
11956 otherwise |link(dep_head)| points to the first dependent variable, say~|p|,
11957 and |prev_dep(p)=dep_head|. We have |type(p)=mp_dependent|, and |dep_list(p)|
11958 points to its dependency list. If the final link of that dependency list
11959 occurs in location~|q|, then |link(q)| points to the next dependent
11960 variable (say~|r|); and we have |prev_dep(r)=q|, etc.
11962 @d dep_list(A) link(value_loc((A)))
11963 /* half of the |value| field in a |dependent| variable */
11964 @d prev_dep(A) info(value_loc((A)))
11965 /* the other half; makes a doubly linked list */
11966 @d dep_node_size 2 /* the number of words per dependency node */
11968 @<Initialize table entries...@>= mp->serial_no=0;
11969 link(dep_head)=dep_head; prev_dep(dep_head)=dep_head;
11970 info(dep_head)=null; dep_list(dep_head)=null;
11972 @ Actually the description above contains a little white lie. There's
11973 another kind of variable called |mp_proto_dependent|, which is
11974 just like a |dependent| one except that the $\alpha$ coefficients
11975 in its dependency list are |scaled| instead of being fractions.
11976 Proto-dependency lists are mixed with dependency lists in the
11977 nodes reachable from |dep_head|.
11979 @ Here is a procedure that prints a dependency list in symbolic form.
11980 The second parameter should be either |dependent| or |mp_proto_dependent|,
11981 to indicate the scaling of the coefficients.
11983 @<Declare subroutines for printing expressions@>=
11984 void mp_print_dependency (MP mp,pointer p, small_number t) {
11985 integer v; /* a coefficient */
11986 pointer pp,q; /* for list manipulation */
11989 v=abs(value(p)); q=info(p);
11990 if ( q==null ) { /* the constant term */
11991 if ( (v!=0)||(p==pp) ) {
11992 if ( value(p)>0 ) if ( p!=pp ) mp_print_char(mp, '+');
11993 mp_print_scaled(mp, value(p));
11997 @<Print the coefficient, unless it's $\pm1.0$@>;
11998 if ( type(q)!=mp_independent ) mp_confusion(mp, "dep");
11999 @:this can't happen dep}{\quad dep@>
12000 mp_print_variable_name(mp, q); v=value(q) % s_scale;
12001 while ( v>0 ) { mp_print(mp, "*4"); v=v-2; }
12006 @ @<Print the coefficient, unless it's $\pm1.0$@>=
12007 if ( value(p)<0 ) mp_print_char(mp, '-');
12008 else if ( p!=pp ) mp_print_char(mp, '+');
12009 if ( t==mp_dependent ) v=mp_round_fraction(mp, v);
12010 if ( v!=unity ) mp_print_scaled(mp, v)
12012 @ The maximum absolute value of a coefficient in a given dependency list
12013 is returned by the following simple function.
12015 @c fraction mp_max_coef (MP mp,pointer p) {
12016 fraction x; /* the maximum so far */
12018 while ( info(p)!=null ) {
12019 if ( abs(value(p))>x ) x=abs(value(p));
12025 @ One of the main operations needed on dependency lists is to add a multiple
12026 of one list to the other; we call this |p_plus_fq|, where |p| and~|q| point
12027 to dependency lists and |f| is a fraction.
12029 If the coefficient of any independent variable becomes |coef_bound| or
12030 more, in absolute value, this procedure changes the type of that variable
12031 to `|independent_needing_fix|', and sets the global variable |fix_needed|
12032 to~|true|. The value of $|coef_bound|=\mu$ is chosen so that
12033 $\mu^2+\mu<8$; this means that the numbers we deal with won't
12034 get too large. (Instead of the ``optimum'' $\mu=(\sqrt{33}-1)/2\approx
12035 2.3723$, the safer value 7/3 is taken as the threshold.)
12037 The changes mentioned in the preceding paragraph are actually done only if
12038 the global variable |watch_coefs| is |true|. But it usually is; in fact,
12039 it is |false| only when \MP\ is making a dependency list that will soon
12040 be equated to zero.
12042 Several procedures that act on dependency lists, including |p_plus_fq|,
12043 set the global variable |dep_final| to the final (constant term) node of
12044 the dependency list that they produce.
12046 @d coef_bound 04525252525 /* |fraction| approximation to 7/3 */
12047 @d independent_needing_fix 0
12050 boolean fix_needed; /* does at least one |independent| variable need scaling? */
12051 boolean watch_coefs; /* should we scale coefficients that exceed |coef_bound|? */
12052 pointer dep_final; /* location of the constant term and final link */
12055 mp->fix_needed=false; mp->watch_coefs=true;
12057 @ The |p_plus_fq| procedure has a fourth parameter, |t|, that should be
12058 set to |mp_proto_dependent| if |p| is a proto-dependency list. In this
12059 case |f| will be |scaled|, not a |fraction|. Similarly, the fifth parameter~|tt|
12060 should be |mp_proto_dependent| if |q| is a proto-dependency list.
12062 List |q| is unchanged by the operation; but list |p| is totally destroyed.
12064 The final link of the dependency list or proto-dependency list returned
12065 by |p_plus_fq| is the same as the original final link of~|p|. Indeed, the
12066 constant term of the result will be located in the same |mem| location
12067 as the original constant term of~|p|.
12069 Coefficients of the result are assumed to be zero if they are less than
12070 a certain threshold. This compensates for inevitable rounding errors,
12071 and tends to make more variables `|known|'. The threshold is approximately
12072 $10^{-5}$ in the case of normal dependency lists, $10^{-4}$ for
12073 proto-dependencies.
12075 @d fraction_threshold 2685 /* a |fraction| coefficient less than this is zeroed */
12076 @d half_fraction_threshold 1342 /* half of |fraction_threshold| */
12077 @d scaled_threshold 8 /* a |scaled| coefficient less than this is zeroed */
12078 @d half_scaled_threshold 4 /* half of |scaled_threshold| */
12080 @<Declare basic dependency-list subroutines@>=
12081 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12082 pointer q, small_number t, small_number tt) ;
12085 pointer mp_p_plus_fq ( MP mp, pointer p, integer f,
12086 pointer q, small_number t, small_number tt) {
12087 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12088 pointer r,s; /* for list manipulation */
12089 integer mp_threshold; /* defines a neighborhood of zero */
12090 integer v; /* temporary register */
12091 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
12092 else mp_threshold=scaled_threshold;
12093 r=temp_head; pp=info(p); qq=info(q);
12099 @<Contribute a term from |p|, plus |f| times the
12100 corresponding term from |q|@>
12102 } else if ( value(pp)<value(qq) ) {
12103 @<Contribute a term from |q|, multiplied by~|f|@>
12105 link(r)=p; r=p; p=link(p); pp=info(p);
12108 if ( t==mp_dependent )
12109 value(p)=mp_slow_add(mp, value(p),mp_take_fraction(mp, value(q),f));
12111 value(p)=mp_slow_add(mp, value(p),mp_take_scaled(mp, value(q),f));
12112 link(r)=p; mp->dep_final=p;
12113 return link(temp_head);
12116 @ @<Contribute a term from |p|, plus |f|...@>=
12118 if ( tt==mp_dependent ) v=value(p)+mp_take_fraction(mp, f,value(q));
12119 else v=value(p)+mp_take_scaled(mp, f,value(q));
12120 value(p)=v; s=p; p=link(p);
12121 if ( abs(v)<mp_threshold ) {
12122 mp_free_node(mp, s,dep_node_size);
12124 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12125 type(qq)=independent_needing_fix; mp->fix_needed=true;
12129 pp=info(p); q=link(q); qq=info(q);
12132 @ @<Contribute a term from |q|, multiplied by~|f|@>=
12134 if ( tt==mp_dependent ) v=mp_take_fraction(mp, f,value(q));
12135 else v=mp_take_scaled(mp, f,value(q));
12136 if ( abs(v)>halfp(mp_threshold) ) {
12137 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=v;
12138 if ( (abs(v)>=coef_bound) && mp->watch_coefs ) {
12139 type(qq)=independent_needing_fix; mp->fix_needed=true;
12143 q=link(q); qq=info(q);
12146 @ It is convenient to have another subroutine for the special case
12147 of |p_plus_fq| when |f=1.0|. In this routine lists |p| and |q| are
12148 both of the same type~|t| (either |dependent| or |mp_proto_dependent|).
12150 @c pointer mp_p_plus_q (MP mp,pointer p, pointer q, small_number t) {
12151 pointer pp,qq; /* |info(p)| and |info(q)|, respectively */
12152 pointer r,s; /* for list manipulation */
12153 integer mp_threshold; /* defines a neighborhood of zero */
12154 integer v; /* temporary register */
12155 if ( t==mp_dependent ) mp_threshold=fraction_threshold;
12156 else mp_threshold=scaled_threshold;
12157 r=temp_head; pp=info(p); qq=info(q);
12163 @<Contribute a term from |p|, plus the
12164 corresponding term from |q|@>
12166 } else if ( value(pp)<value(qq) ) {
12167 s=mp_get_node(mp, dep_node_size); info(s)=qq; value(s)=value(q);
12168 q=link(q); qq=info(q); link(r)=s; r=s;
12170 link(r)=p; r=p; p=link(p); pp=info(p);
12173 value(p)=mp_slow_add(mp, value(p),value(q));
12174 link(r)=p; mp->dep_final=p;
12175 return link(temp_head);
12178 @ @<Contribute a term from |p|, plus the...@>=
12180 v=value(p)+value(q);
12181 value(p)=v; s=p; p=link(p); pp=info(p);
12182 if ( abs(v)<mp_threshold ) {
12183 mp_free_node(mp, s,dep_node_size);
12185 if ( (abs(v)>=coef_bound ) && mp->watch_coefs ) {
12186 type(qq)=independent_needing_fix; mp->fix_needed=true;
12190 q=link(q); qq=info(q);
12193 @ A somewhat simpler routine will multiply a dependency list
12194 by a given constant~|v|. The constant is either a |fraction| less than
12195 |fraction_one|, or it is |scaled|. In the latter case we might be forced to
12196 convert a dependency list to a proto-dependency list.
12197 Parameters |t0| and |t1| are the list types before and after;
12198 they should agree unless |t0=mp_dependent| and |t1=mp_proto_dependent|
12199 and |v_is_scaled=true|.
12201 @c pointer mp_p_times_v (MP mp,pointer p, integer v, small_number t0,
12202 small_number t1, boolean v_is_scaled) {
12203 pointer r,s; /* for list manipulation */
12204 integer w; /* tentative coefficient */
12205 integer mp_threshold;
12206 boolean scaling_down;
12207 if ( t0!=t1 ) scaling_down=true; else scaling_down=! v_is_scaled;
12208 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
12209 else mp_threshold=half_scaled_threshold;
12211 while ( info(p)!=null ) {
12212 if ( scaling_down ) w=mp_take_fraction(mp, v,value(p));
12213 else w=mp_take_scaled(mp, v,value(p));
12214 if ( abs(w)<=mp_threshold ) {
12215 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12217 if ( abs(w)>=coef_bound ) {
12218 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12220 link(r)=p; r=p; value(p)=w; p=link(p);
12224 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
12225 else value(p)=mp_take_fraction(mp, value(p),v);
12226 return link(temp_head);
12229 @ Similarly, we sometimes need to divide a dependency list
12230 by a given |scaled| constant.
12232 @<Declare basic dependency-list subroutines@>=
12233 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12234 t0, small_number t1) ;
12237 pointer mp_p_over_v (MP mp,pointer p, scaled v, small_number
12238 t0, small_number t1) {
12239 pointer r,s; /* for list manipulation */
12240 integer w; /* tentative coefficient */
12241 integer mp_threshold;
12242 boolean scaling_down;
12243 if ( t0!=t1 ) scaling_down=true; else scaling_down=false;
12244 if ( t1==mp_dependent ) mp_threshold=half_fraction_threshold;
12245 else mp_threshold=half_scaled_threshold;
12247 while ( info( p)!=null ) {
12248 if ( scaling_down ) {
12249 if ( abs(v)<02000000 ) w=mp_make_scaled(mp, value(p),v*010000);
12250 else w=mp_make_scaled(mp, mp_round_fraction(mp, value(p)),v);
12252 w=mp_make_scaled(mp, value(p),v);
12254 if ( abs(w)<=mp_threshold ) {
12255 s=link(p); mp_free_node(mp, p,dep_node_size); p=s;
12257 if ( abs(w)>=coef_bound ) {
12258 mp->fix_needed=true; type(info(p))=independent_needing_fix;
12260 link(r)=p; r=p; value(p)=w; p=link(p);
12263 link(r)=p; value(p)=mp_make_scaled(mp, value(p),v);
12264 return link(temp_head);
12267 @ Here's another utility routine for dependency lists. When an independent
12268 variable becomes dependent, we want to remove it from all existing
12269 dependencies. The |p_with_x_becoming_q| function computes the
12270 dependency list of~|p| after variable~|x| has been replaced by~|q|.
12272 This procedure has basically the same calling conventions as |p_plus_fq|:
12273 List~|q| is unchanged; list~|p| is destroyed; the constant node and the
12274 final link are inherited from~|p|; and the fourth parameter tells whether
12275 or not |p| is |mp_proto_dependent|. However, the global variable |dep_final|
12276 is not altered if |x| does not occur in list~|p|.
12278 @c pointer mp_p_with_x_becoming_q (MP mp,pointer p,
12279 pointer x, pointer q, small_number t) {
12280 pointer r,s; /* for list manipulation */
12281 integer v; /* coefficient of |x| */
12282 integer sx; /* serial number of |x| */
12283 s=p; r=temp_head; sx=value(x);
12284 while ( value(info(s))>sx ) { r=s; s=link(s); };
12285 if ( info(s)!=x ) {
12288 link(temp_head)=p; link(r)=link(s); v=value(s);
12289 mp_free_node(mp, s,dep_node_size);
12290 return mp_p_plus_fq(mp, link(temp_head),v,q,t,mp_dependent);
12294 @ Here's a simple procedure that reports an error when a variable
12295 has just received a known value that's out of the required range.
12297 @<Declare basic dependency-list subroutines@>=
12298 void mp_val_too_big (MP mp,scaled x) ;
12300 @ @c void mp_val_too_big (MP mp,scaled x) {
12301 if ( mp->internal[mp_warning_check]>0 ) {
12302 print_err("Value is too large ("); mp_print_scaled(mp, x); mp_print_char(mp, ')');
12303 @.Value is too large@>
12304 help4("The equation I just processed has given some variable")
12305 ("a value of 4096 or more. Continue and I'll try to cope")
12306 ("with that big value; but it might be dangerous.")
12307 ("(Set warningcheck:=0 to suppress this message.)");
12312 @ When a dependent variable becomes known, the following routine
12313 removes its dependency list. Here |p| points to the variable, and
12314 |q| points to the dependency list (which is one node long).
12316 @<Declare basic dependency-list subroutines@>=
12317 void mp_make_known (MP mp,pointer p, pointer q) ;
12319 @ @c void mp_make_known (MP mp,pointer p, pointer q) {
12320 int t; /* the previous type */
12321 prev_dep(link(q))=prev_dep(p);
12322 link(prev_dep(p))=link(q); t=type(p);
12323 type(p)=mp_known; value(p)=value(q); mp_free_node(mp, q,dep_node_size);
12324 if ( abs(value(p))>=fraction_one ) mp_val_too_big(mp, value(p));
12325 if (( mp->internal[mp_tracing_equations]>0) && mp_interesting(mp, p) ) {
12326 mp_begin_diagnostic(mp); mp_print_nl(mp, "#### ");
12327 @:]]]\#\#\#\#_}{\.{\#\#\#\#}@>
12328 mp_print_variable_name(mp, p);
12329 mp_print_char(mp, '='); mp_print_scaled(mp, value(p));
12330 mp_end_diagnostic(mp, false);
12332 if (( mp->cur_exp==p ) && mp->cur_type==t ) {
12333 mp->cur_type=mp_known; mp->cur_exp=value(p);
12334 mp_free_node(mp, p,value_node_size);
12338 @ The |fix_dependencies| routine is called into action when |fix_needed|
12339 has been triggered. The program keeps a list~|s| of independent variables
12340 whose coefficients must be divided by~4.
12342 In unusual cases, this fixup process might reduce one or more coefficients
12343 to zero, so that a variable will become known more or less by default.
12345 @<Declare basic dependency-list subroutines@>=
12346 void mp_fix_dependencies (MP mp);
12348 @ @c void mp_fix_dependencies (MP mp) {
12349 pointer p,q,r,s,t; /* list manipulation registers */
12350 pointer x; /* an independent variable */
12351 r=link(dep_head); s=null;
12352 while ( r!=dep_head ){
12354 @<Run through the dependency list for variable |t|, fixing
12355 all nodes, and ending with final link~|q|@>;
12357 if ( q==dep_list(t) ) mp_make_known(mp, t,q);
12359 while ( s!=null ) {
12360 p=link(s); x=info(s); free_avail(s); s=p;
12361 type(x)=mp_independent; value(x)=value(x)+2;
12363 mp->fix_needed=false;
12366 @ @d independent_being_fixed 1 /* this variable already appears in |s| */
12368 @<Run through the dependency list for variable |t|...@>=
12369 r=value_loc(t); /* |link(r)=dep_list(t)| */
12371 q=link(r); x=info(q);
12372 if ( x==null ) break;
12373 if ( type(x)<=independent_being_fixed ) {
12374 if ( type(x)<independent_being_fixed ) {
12375 p=mp_get_avail(mp); link(p)=s; s=p;
12376 info(s)=x; type(x)=independent_being_fixed;
12378 value(q)=value(q) / 4;
12379 if ( value(q)==0 ) {
12380 link(r)=link(q); mp_free_node(mp, q,dep_node_size); q=r;
12387 @ The |new_dep| routine installs a dependency list~|p| into the value node~|q|,
12388 linking it into the list of all known dependencies. We assume that
12389 |dep_final| points to the final node of list~|p|.
12391 @c void mp_new_dep (MP mp,pointer q, pointer p) {
12392 pointer r; /* what used to be the first dependency */
12393 dep_list(q)=p; prev_dep(q)=dep_head;
12394 r=link(dep_head); link(mp->dep_final)=r; prev_dep(r)=mp->dep_final;
12398 @ Here is one of the ways a dependency list gets started.
12399 The |const_dependency| routine produces a list that has nothing but
12402 @c pointer mp_const_dependency (MP mp, scaled v) {
12403 mp->dep_final=mp_get_node(mp, dep_node_size);
12404 value(mp->dep_final)=v; info(mp->dep_final)=null;
12405 return mp->dep_final;
12408 @ And here's a more interesting way to start a dependency list from scratch:
12409 The parameter to |single_dependency| is the location of an
12410 independent variable~|x|, and the result is the simple dependency list
12413 In the unlikely event that the given independent variable has been doubled so
12414 often that we can't refer to it with a nonzero coefficient,
12415 |single_dependency| returns the simple list `0'. This case can be
12416 recognized by testing that the returned list pointer is equal to
12419 @c pointer mp_single_dependency (MP mp,pointer p) {
12420 pointer q; /* the new dependency list */
12421 integer m; /* the number of doublings */
12422 m=value(p) % s_scale;
12424 return mp_const_dependency(mp, 0);
12426 q=mp_get_node(mp, dep_node_size);
12427 value(q)=two_to_the(28-m); info(q)=p;
12428 link(q)=mp_const_dependency(mp, 0);
12433 @ We sometimes need to make an exact copy of a dependency list.
12435 @c pointer mp_copy_dep_list (MP mp,pointer p) {
12436 pointer q; /* the new dependency list */
12437 q=mp_get_node(mp, dep_node_size); mp->dep_final=q;
12439 info(mp->dep_final)=info(p); value(mp->dep_final)=value(p);
12440 if ( info(mp->dep_final)==null ) break;
12441 link(mp->dep_final)=mp_get_node(mp, dep_node_size);
12442 mp->dep_final=link(mp->dep_final); p=link(p);
12447 @ But how do variables normally become known? Ah, now we get to the heart of the
12448 equation-solving mechanism. The |linear_eq| procedure is given a |dependent|
12449 or |mp_proto_dependent| list,~|p|, in which at least one independent variable
12450 appears. It equates this list to zero, by choosing an independent variable
12451 with the largest coefficient and making it dependent on the others. The
12452 newly dependent variable is eliminated from all current dependencies,
12453 thereby possibly making other dependent variables known.
12455 The given list |p| is, of course, totally destroyed by all this processing.
12457 @c void mp_linear_eq (MP mp, pointer p, small_number t) {
12458 pointer q,r,s; /* for link manipulation */
12459 pointer x; /* the variable that loses its independence */
12460 integer n; /* the number of times |x| had been halved */
12461 integer v; /* the coefficient of |x| in list |p| */
12462 pointer prev_r; /* lags one step behind |r| */
12463 pointer final_node; /* the constant term of the new dependency list */
12464 integer w; /* a tentative coefficient */
12465 @<Find a node |q| in list |p| whose coefficient |v| is largest@>;
12466 x=info(q); n=value(x) % s_scale;
12467 @<Divide list |p| by |-v|, removing node |q|@>;
12468 if ( mp->internal[mp_tracing_equations]>0 ) {
12469 @<Display the new dependency@>;
12471 @<Simplify all existing dependencies by substituting for |x|@>;
12472 @<Change variable |x| from |independent| to |dependent| or |known|@>;
12473 if ( mp->fix_needed ) mp_fix_dependencies(mp);
12476 @ @<Find a node |q| in list |p| whose coefficient |v| is largest@>=
12477 q=p; r=link(p); v=value(q);
12478 while ( info(r)!=null ) {
12479 if ( abs(value(r))>abs(v) ) { q=r; v=value(r); };
12483 @ Here we want to change the coefficients from |scaled| to |fraction|,
12484 except in the constant term. In the common case of a trivial equation
12485 like `\.{x=3.14}', we will have |v=-fraction_one|, |q=p|, and |t=mp_dependent|.
12487 @<Divide list |p| by |-v|, removing node |q|@>=
12488 s=temp_head; link(s)=p; r=p;
12491 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12493 w=mp_make_fraction(mp, value(r),v);
12494 if ( abs(w)<=half_fraction_threshold ) {
12495 link(s)=link(r); mp_free_node(mp, r,dep_node_size);
12501 } while (info(r)!=null);
12502 if ( t==mp_proto_dependent ) {
12503 value(r)=-mp_make_scaled(mp, value(r),v);
12504 } else if ( v!=-fraction_one ) {
12505 value(r)=-mp_make_fraction(mp, value(r),v);
12507 final_node=r; p=link(temp_head)
12509 @ @<Display the new dependency@>=
12510 if ( mp_interesting(mp, x) ) {
12511 mp_begin_diagnostic(mp); mp_print_nl(mp, "## ");
12512 mp_print_variable_name(mp, x);
12513 @:]]]\#\#_}{\.{\#\#}@>
12515 while ( w>0 ) { mp_print(mp, "*4"); w=w-2; };
12516 mp_print_char(mp, '='); mp_print_dependency(mp, p,mp_dependent);
12517 mp_end_diagnostic(mp, false);
12520 @ @<Simplify all existing dependencies by substituting for |x|@>=
12521 prev_r=dep_head; r=link(dep_head);
12522 while ( r!=dep_head ) {
12523 s=dep_list(r); q=mp_p_with_x_becoming_q(mp, s,x,p,type(r));
12524 if ( info(q)==null ) {
12525 mp_make_known(mp, r,q);
12528 do { q=link(q); } while (info(q)!=null);
12534 @ @<Change variable |x| from |independent| to |dependent| or |known|@>=
12535 if ( n>0 ) @<Divide list |p| by $2^n$@>;
12536 if ( info(p)==null ) {
12539 if ( abs(value(x))>=fraction_one ) mp_val_too_big(mp, value(x));
12540 mp_free_node(mp, p,dep_node_size);
12541 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) {
12542 mp->cur_exp=value(x); mp->cur_type=mp_known;
12543 mp_free_node(mp, x,value_node_size);
12546 type(x)=mp_dependent; mp->dep_final=final_node; mp_new_dep(mp, x,p);
12547 if ( mp->cur_exp==x ) if ( mp->cur_type==mp_independent ) mp->cur_type=mp_dependent;
12550 @ @<Divide list |p| by $2^n$@>=
12552 s=temp_head; link(temp_head)=p; r=p;
12555 else w=value(r) / two_to_the(n);
12556 if ( (abs(w)<=half_fraction_threshold)&&(info(r)!=null) ) {
12558 mp_free_node(mp, r,dep_node_size);
12563 } while (info(s)!=null);
12567 @ The |check_mem| procedure, which is used only when \MP\ is being
12568 debugged, makes sure that the current dependency lists are well formed.
12570 @<Check the list of linear dependencies@>=
12571 q=dep_head; p=link(q);
12572 while ( p!=dep_head ) {
12573 if ( prev_dep(p)!=q ) {
12574 mp_print_nl(mp, "Bad PREVDEP at "); mp_print_int(mp, p);
12579 r=info(p); q=p; p=link(q);
12580 if ( r==null ) break;
12581 if ( value(info(p))>=value(r) ) {
12582 mp_print_nl(mp, "Out of order at "); mp_print_int(mp, p);
12583 @.Out of order...@>
12588 @* \[25] Dynamic nonlinear equations.
12589 Variables of numeric type are maintained by the general scheme of
12590 independent, dependent, and known values that we have just studied;
12591 and the components of pair and transform variables are handled in the
12592 same way. But \MP\ also has five other types of values: \&{boolean},
12593 \&{string}, \&{pen}, \&{path}, and \&{picture}; what about them?
12595 Equations are allowed between nonlinear quantities, but only in a
12596 simple form. Two variables that haven't yet been assigned values are
12597 either equal to each other, or they're not.
12599 Before a boolean variable has received a value, its type is |mp_unknown_boolean|;
12600 similarly, there are variables whose type is |mp_unknown_string|, |mp_unknown_pen|,
12601 |mp_unknown_path|, and |mp_unknown_picture|. In such cases the value is either
12602 |null| (which means that no other variables are equivalent to this one), or
12603 it points to another variable of the same undefined type. The pointers in the
12604 latter case form a cycle of nodes, which we shall call a ``ring.''
12605 Rings of undefined variables may include capsules, which arise as
12606 intermediate results within expressions or as \&{expr} parameters to macros.
12608 When one member of a ring receives a value, the same value is given to
12609 all the other members. In the case of paths and pictures, this implies
12610 making separate copies of a potentially large data structure; users should
12611 restrain their enthusiasm for such generality, unless they have lots and
12612 lots of memory space.
12614 @ The following procedure is called when a capsule node is being
12615 added to a ring (e.g., when an unknown variable is mentioned in an expression).
12617 @c pointer mp_new_ring_entry (MP mp,pointer p) {
12618 pointer q; /* the new capsule node */
12619 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
12621 if ( value(p)==null ) value(q)=p; else value(q)=value(p);
12626 @ Conversely, we might delete a capsule or a variable before it becomes known.
12627 The following procedure simply detaches a quantity from its ring,
12628 without recycling the storage.
12630 @<Declare the recycling subroutines@>=
12631 void mp_ring_delete (MP mp,pointer p) {
12634 if ( q!=null ) if ( q!=p ){
12635 while ( value(q)!=p ) q=value(q);
12640 @ Eventually there might be an equation that assigns values to all of the
12641 variables in a ring. The |nonlinear_eq| subroutine does the necessary
12642 propagation of values.
12644 If the parameter |flush_p| is |true|, node |p| itself needn't receive a
12645 value, it will soon be recycled.
12647 @c void mp_nonlinear_eq (MP mp,integer v, pointer p, boolean flush_p) {
12648 small_number t; /* the type of ring |p| */
12649 pointer q,r; /* link manipulation registers */
12650 t=type(p)-unknown_tag; q=value(p);
12651 if ( flush_p ) type(p)=mp_vacuous; else p=q;
12653 r=value(q); type(q)=t;
12655 case mp_boolean_type: value(q)=v; break;
12656 case mp_string_type: value(q)=v; add_str_ref(v); break;
12657 case mp_pen_type: value(q)=copy_pen(v); break;
12658 case mp_path_type: value(q)=mp_copy_path(mp, v); break;
12659 case mp_picture_type: value(q)=v; add_edge_ref(v); break;
12660 } /* there ain't no more cases */
12665 @ If two members of rings are equated, and if they have the same type,
12666 the |ring_merge| procedure is called on to make them equivalent.
12668 @c void mp_ring_merge (MP mp,pointer p, pointer q) {
12669 pointer r; /* traverses one list */
12673 @<Exclaim about a redundant equation@>;
12678 r=value(p); value(p)=value(q); value(q)=r;
12681 @ @<Exclaim about a redundant equation@>=
12683 print_err("Redundant equation");
12684 @.Redundant equation@>
12685 help2("I already knew that this equation was true.")
12686 ("But perhaps no harm has been done; let's continue.");
12687 mp_put_get_error(mp);
12690 @* \[26] Introduction to the syntactic routines.
12691 Let's pause a moment now and try to look at the Big Picture.
12692 The \MP\ program consists of three main parts: syntactic routines,
12693 semantic routines, and output routines. The chief purpose of the
12694 syntactic routines is to deliver the user's input to the semantic routines,
12695 while parsing expressions and locating operators and operands. The
12696 semantic routines act as an interpreter responding to these operators,
12697 which may be regarded as commands. And the output routines are
12698 periodically called on to produce compact font descriptions that can be
12699 used for typesetting or for making interim proof drawings. We have
12700 discussed the basic data structures and many of the details of semantic
12701 operations, so we are good and ready to plunge into the part of \MP\ that
12702 actually controls the activities.
12704 Our current goal is to come to grips with the |get_next| procedure,
12705 which is the keystone of \MP's input mechanism. Each call of |get_next|
12706 sets the value of three variables |cur_cmd|, |cur_mod|, and |cur_sym|,
12707 representing the next input token.
12708 $$\vbox{\halign{#\hfil\cr
12709 \hbox{|cur_cmd| denotes a command code from the long list of codes
12711 \hbox{|cur_mod| denotes a modifier of the command code;}\cr
12712 \hbox{|cur_sym| is the hash address of the symbolic token that was
12714 \hbox{\qquad or zero in the case of a numeric or string
12715 or capsule token.}\cr}}$$
12716 Underlying this external behavior of |get_next| is all the machinery
12717 necessary to convert from character files to tokens. At a given time we
12718 may be only partially finished with the reading of several files (for
12719 which \&{input} was specified), and partially finished with the expansion
12720 of some user-defined macros and/or some macro parameters, and partially
12721 finished reading some text that the user has inserted online,
12722 and so on. When reading a character file, the characters must be
12723 converted to tokens; comments and blank spaces must
12724 be removed, numeric and string tokens must be evaluated.
12726 To handle these situations, which might all be present simultaneously,
12727 \MP\ uses various stacks that hold information about the incomplete
12728 activities, and there is a finite state control for each level of the
12729 input mechanism. These stacks record the current state of an implicitly
12730 recursive process, but the |get_next| procedure is not recursive.
12733 eight_bits cur_cmd; /* current command set by |get_next| */
12734 integer cur_mod; /* operand of current command */
12735 halfword cur_sym; /* hash address of current symbol */
12737 @ The |print_cmd_mod| routine prints a symbolic interpretation of a
12738 command code and its modifier.
12739 It consists of a rather tedious sequence of print
12740 commands, and most of it is essentially an inverse to the |primitive|
12741 routine that enters a \MP\ primitive into |hash| and |eqtb|. Therefore almost
12742 all of this procedure appears elsewhere in the program, together with the
12743 corresponding |primitive| calls.
12745 @<Declare the procedure called |print_cmd_mod|@>=
12746 void mp_print_cmd_mod (MP mp,integer c, integer m) {
12748 @<Cases of |print_cmd_mod| for symbolic printing of primitives@>
12749 default: mp_print(mp, "[unknown command code!]"); break;
12753 @ Here is a procedure that displays a given command in braces, in the
12754 user's transcript file.
12756 @d show_cur_cmd_mod mp_show_cmd_mod(mp, mp->cur_cmd,mp->cur_mod)
12759 void mp_show_cmd_mod (MP mp,integer c, integer m) {
12760 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
12761 mp_print_cmd_mod(mp, c,m); mp_print_char(mp, '}');
12762 mp_end_diagnostic(mp, false);
12765 @* \[27] Input stacks and states.
12766 The state of \MP's input mechanism appears in the input stack, whose
12767 entries are records with five fields, called |index|, |start|, |loc|,
12768 |limit|, and |name|. The top element of this stack is maintained in a
12769 global variable for which no subscripting needs to be done; the other
12770 elements of the stack appear in an array. Hence the stack is declared thus:
12774 quarterword index_field;
12775 halfword start_field, loc_field, limit_field, name_field;
12779 in_state_record *input_stack;
12780 integer input_ptr; /* first unused location of |input_stack| */
12781 integer max_in_stack; /* largest value of |input_ptr| when pushing */
12782 in_state_record cur_input; /* the ``top'' input state */
12783 int stack_size; /* maximum number of simultaneous input sources */
12785 @ @<Allocate or initialize ...@>=
12786 mp->stack_size = 300;
12787 mp->input_stack = xmalloc((mp->stack_size+1),sizeof(in_state_record));
12789 @ @<Dealloc variables@>=
12790 xfree(mp->input_stack);
12792 @ We've already defined the special variable |loc==cur_input.loc_field|
12793 in our discussion of basic input-output routines. The other components of
12794 |cur_input| are defined in the same way:
12796 @d index mp->cur_input.index_field /* reference for buffer information */
12797 @d start mp->cur_input.start_field /* starting position in |buffer| */
12798 @d limit mp->cur_input.limit_field /* end of current line in |buffer| */
12799 @d name mp->cur_input.name_field /* name of the current file */
12801 @ Let's look more closely now at the five control variables
12802 (|index|,~|start|,~|loc|,~|limit|,~|name|),
12803 assuming that \MP\ is reading a line of characters that have been input
12804 from some file or from the user's terminal. There is an array called
12805 |buffer| that acts as a stack of all lines of characters that are
12806 currently being read from files, including all lines on subsidiary
12807 levels of the input stack that are not yet completed. \MP\ will return to
12808 the other lines when it is finished with the present input file.
12810 (Incidentally, on a machine with byte-oriented addressing, it would be
12811 appropriate to combine |buffer| with the |str_pool| array,
12812 letting the buffer entries grow downward from the top of the string pool
12813 and checking that these two tables don't bump into each other.)
12815 The line we are currently working on begins in position |start| of the
12816 buffer; the next character we are about to read is |buffer[loc]|; and
12817 |limit| is the location of the last character present. We always have
12818 |loc<=limit|. For convenience, |buffer[limit]| has been set to |"%"|, so
12819 that the end of a line is easily sensed.
12821 The |name| variable is a string number that designates the name of
12822 the current file, if we are reading an ordinary text file. Special codes
12823 |is_term..max_spec_src| indicate other sources of input text.
12825 @d is_term 0 /* |name| value when reading from the terminal for normal input */
12826 @d is_read 1 /* |name| value when executing a \&{readstring} or \&{readfrom} */
12827 @d is_scantok 2 /* |name| value when reading text generated by \&{scantokens} */
12828 @d max_spec_src is_scantok
12830 @ Additional information about the current line is available via the
12831 |index| variable, which counts how many lines of characters are present
12832 in the buffer below the current level. We have |index=0| when reading
12833 from the terminal and prompting the user for each line; then if the user types,
12834 e.g., `\.{input figs}', we will have |index=1| while reading
12835 the file \.{figs.mp}. However, it does not follow that |index| is the
12836 same as the input stack pointer, since many of the levels on the input
12837 stack may come from token lists and some |index| values may correspond
12838 to \.{MPX} files that are not currently on the stack.
12840 The global variable |in_open| is equal to the highest |index| value counting
12841 \.{MPX} files but excluding token-list input levels. Thus, the number of
12842 partially read lines in the buffer is |in_open+1| and we have |in_open>=index|
12843 when we are not reading a token list.
12845 If we are not currently reading from the terminal,
12846 we are reading from the file variable |input_file[index]|. We use
12847 the notation |terminal_input| as a convenient abbreviation for |name=is_term|,
12848 and |cur_file| as an abbreviation for |input_file[index]|.
12850 When \MP\ is not reading from the terminal, the global variable |line| contains
12851 the line number in the current file, for use in error messages. More precisely,
12852 |line| is a macro for |line_stack[index]| and the |line_stack| array gives
12853 the line number for each file in the |input_file| array.
12855 When an \.{MPX} file is opened the file name is stored in the |mpx_name|
12856 array so that the name doesn't get lost when the file is temporarily removed
12857 from the input stack.
12858 Thus when |input_file[k]| is an \.{MPX} file, its name is |mpx_name[k]|
12859 and it contains translated \TeX\ pictures for |input_file[k-1]|.
12860 Since this is not an \.{MPX} file, we have
12861 $$ \hbox{|mpx_name[k-1]<=absent|}. $$
12862 This |name| field is set to |finished| when |input_file[k]| is completely
12865 If more information about the input state is needed, it can be
12866 included in small arrays like those shown here. For example,
12867 the current page or segment number in the input file might be put
12868 into a variable |page|, that is really a macro for the current entry
12869 in `\ignorespaces|page_stack:array[0..max_in_open] of integer|\unskip'
12870 by analogy with |line_stack|.
12871 @^system dependencies@>
12873 @d terminal_input (name==is_term) /* are we reading from the terminal? */
12874 @d cur_file mp->input_file[index] /* the current |FILE *| variable */
12875 @d line mp->line_stack[index] /* current line number in the current source file */
12876 @d in_name mp->iname_stack[index] /* a string used to construct \.{MPX} file names */
12877 @d in_area mp->iarea_stack[index] /* another string for naming \.{MPX} files */
12878 @d absent 1 /* |name_field| value for unused |mpx_in_stack| entries */
12879 @d mpx_reading (mp->mpx_name[index]>absent)
12880 /* when reading a file, is it an \.{MPX} file? */
12882 /* |name_field| value when the corresponding \.{MPX} file is finished */
12885 integer in_open; /* the number of lines in the buffer, less one */
12886 unsigned int open_parens; /* the number of open text files */
12887 FILE * *input_file ;
12888 integer *line_stack ; /* the line number for each file */
12889 char * *iname_stack; /* used for naming \.{MPX} files */
12890 char * *iarea_stack; /* used for naming \.{MPX} files */
12891 halfword*mpx_name ;
12893 @ @<Allocate or ...@>=
12894 mp->input_file = xmalloc((mp->max_in_open+1),sizeof(FILE *));
12895 mp->line_stack = xmalloc((mp->max_in_open+1),sizeof(integer));
12896 mp->iname_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12897 mp->iarea_stack = xmalloc((mp->max_in_open+1),sizeof(char *));
12898 mp->mpx_name = xmalloc((mp->max_in_open+1),sizeof(halfword));
12901 for (k=0;k<=mp->max_in_open;k++) {
12902 mp->iname_stack[k] =NULL;
12903 mp->iarea_stack[k] =NULL;
12907 @ @<Dealloc variables@>=
12910 for (l=0;l<=mp->max_in_open;l++) {
12911 xfree(mp->iname_stack[l]);
12912 xfree(mp->iarea_stack[l]);
12915 xfree(mp->input_file);
12916 xfree(mp->line_stack);
12917 xfree(mp->iname_stack);
12918 xfree(mp->iarea_stack);
12919 xfree(mp->mpx_name);
12922 @ However, all this discussion about input state really applies only to the
12923 case that we are inputting from a file. There is another important case,
12924 namely when we are currently getting input from a token list. In this case
12925 |index>max_in_open|, and the conventions about the other state variables
12928 \yskip\hang|loc| is a pointer to the current node in the token list, i.e.,
12929 the node that will be read next. If |loc=null|, the token list has been
12932 \yskip\hang|start| points to the first node of the token list; this node
12933 may or may not contain a reference count, depending on the type of token
12936 \yskip\hang|token_type|, which takes the place of |index| in the
12937 discussion above, is a code number that explains what kind of token list
12940 \yskip\hang|name| points to the |eqtb| address of the control sequence
12941 being expanded, if the current token list is a macro not defined by
12942 \&{vardef}. Macros defined by \&{vardef} have |name=null|; their name
12943 can be deduced by looking at their first two parameters.
12945 \yskip\hang|param_start|, which takes the place of |limit|, tells where
12946 the parameters of the current macro or loop text begin in the |param_stack|.
12948 \yskip\noindent The |token_type| can take several values, depending on
12949 where the current token list came from:
12952 \indent|forever_text|, if the token list being scanned is the body of
12953 a \&{forever} loop;
12955 \indent|loop_text|, if the token list being scanned is the body of
12956 a \&{for} or \&{forsuffixes} loop;
12958 \indent|parameter|, if a \&{text} or \&{suffix} parameter is being scanned;
12960 \indent|backed_up|, if the token list being scanned has been inserted as
12961 `to be read again'.
12963 \indent|inserted|, if the token list being scanned has been inserted as
12964 part of error recovery;
12966 \indent|macro|, if the expansion of a user-defined symbolic token is being
12970 The token list begins with a reference count if and only if |token_type=
12972 @^reference counts@>
12974 @d token_type index /* type of current token list */
12975 @d token_state (index>(int)mp->max_in_open) /* are we scanning a token list? */
12976 @d file_state (index<=(int)mp->max_in_open) /* are we scanning a file line? */
12977 @d param_start limit /* base of macro parameters in |param_stack| */
12978 @d forever_text (mp->max_in_open+1) /* |token_type| code for loop texts */
12979 @d loop_text (mp->max_in_open+2) /* |token_type| code for loop texts */
12980 @d parameter (mp->max_in_open+3) /* |token_type| code for parameter texts */
12981 @d backed_up (mp->max_in_open+4) /* |token_type| code for texts to be reread */
12982 @d inserted (mp->max_in_open+5) /* |token_type| code for inserted texts */
12983 @d macro (mp->max_in_open+6) /* |token_type| code for macro replacement texts */
12985 @ The |param_stack| is an auxiliary array used to hold pointers to the token
12986 lists for parameters at the current level and subsidiary levels of input.
12987 This stack grows at a different rate from the others.
12990 pointer *param_stack; /* token list pointers for parameters */
12991 integer param_ptr; /* first unused entry in |param_stack| */
12992 integer max_param_stack; /* largest value of |param_ptr| */
12994 @ @<Allocate or initialize ...@>=
12995 mp->param_stack = xmalloc((mp->param_size+1),sizeof(pointer));
12997 @ @<Dealloc variables@>=
12998 xfree(mp->param_stack);
13000 @ Notice that the |line| isn't valid when |token_state| is true because it
13001 depends on |index|. If we really need to know the line number for the
13002 topmost file in the index stack we use the following function. If a page
13003 number or other information is needed, this routine should be modified to
13004 compute it as well.
13005 @^system dependencies@>
13007 @<Declare a function called |true_line|@>=
13008 integer mp_true_line (MP mp) {
13009 int k; /* an index into the input stack */
13010 if ( file_state && (name>max_spec_src) ) {
13015 ((mp->input_stack[(k-1)].index_field>mp->max_in_open)||
13016 (mp->input_stack[(k-1)].name_field<=max_spec_src))) {
13019 return mp->line_stack[(k-1)];
13024 @ Thus, the ``current input state'' can be very complicated indeed; there
13025 can be many levels and each level can arise in a variety of ways. The
13026 |show_context| procedure, which is used by \MP's error-reporting routine to
13027 print out the current input state on all levels down to the most recent
13028 line of characters from an input file, illustrates most of these conventions.
13029 The global variable |file_ptr| contains the lowest level that was
13030 displayed by this procedure.
13033 integer file_ptr; /* shallowest level shown by |show_context| */
13035 @ The status at each level is indicated by printing two lines, where the first
13036 line indicates what was read so far and the second line shows what remains
13037 to be read. The context is cropped, if necessary, so that the first line
13038 contains at most |half_error_line| characters, and the second contains
13039 at most |error_line|. Non-current input levels whose |token_type| is
13040 `|backed_up|' are shown only if they have not been fully read.
13042 @c void mp_show_context (MP mp) { /* prints where the scanner is */
13043 int old_setting; /* saved |selector| setting */
13044 @<Local variables for formatting calculations@>
13045 mp->file_ptr=mp->input_ptr; mp->input_stack[mp->file_ptr]=mp->cur_input;
13046 /* store current state */
13048 mp->cur_input=mp->input_stack[mp->file_ptr]; /* enter into the context */
13049 @<Display the current context@>;
13051 if ( (name>max_spec_src) || (mp->file_ptr==0) ) break;
13052 decr(mp->file_ptr);
13054 mp->cur_input=mp->input_stack[mp->input_ptr]; /* restore original state */
13057 @ @<Display the current context@>=
13058 if ( (mp->file_ptr==mp->input_ptr) || file_state ||
13059 (token_type!=backed_up) || (loc!=null) ) {
13060 /* we omit backed-up token lists that have already been read */
13061 mp->tally=0; /* get ready to count characters */
13062 old_setting=mp->selector;
13063 if ( file_state ) {
13064 @<Print location of current line@>;
13065 @<Pseudoprint the line@>;
13067 @<Print type of token list@>;
13068 @<Pseudoprint the token list@>;
13070 mp->selector=old_setting; /* stop pseudoprinting */
13071 @<Print two lines using the tricky pseudoprinted information@>;
13074 @ This routine should be changed, if necessary, to give the best possible
13075 indication of where the current line resides in the input file.
13076 For example, on some systems it is best to print both a page and line number.
13077 @^system dependencies@>
13079 @<Print location of current line@>=
13080 if ( name>max_spec_src ) {
13081 mp_print_nl(mp, "l."); mp_print_int(mp, mp_true_line(mp));
13082 } else if ( terminal_input ) {
13083 if ( mp->file_ptr==0 ) mp_print_nl(mp, "<*>");
13084 else mp_print_nl(mp, "<insert>");
13085 } else if ( name==is_scantok ) {
13086 mp_print_nl(mp, "<scantokens>");
13088 mp_print_nl(mp, "<read>");
13090 mp_print_char(mp, ' ')
13092 @ Can't use case statement here because the |token_type| is not
13093 a constant expression.
13095 @<Print type of token list@>=
13097 if(token_type==forever_text) {
13098 mp_print_nl(mp, "<forever> ");
13099 } else if (token_type==loop_text) {
13100 @<Print the current loop value@>;
13101 } else if (token_type==parameter) {
13102 mp_print_nl(mp, "<argument> ");
13103 } else if (token_type==backed_up) {
13104 if ( loc==null ) mp_print_nl(mp, "<recently read> ");
13105 else mp_print_nl(mp, "<to be read again> ");
13106 } else if (token_type==inserted) {
13107 mp_print_nl(mp, "<inserted text> ");
13108 } else if (token_type==macro) {
13110 if ( name!=null ) mp_print_text(name);
13111 else @<Print the name of a \&{vardef}'d macro@>;
13112 mp_print(mp, "->");
13114 mp_print_nl(mp, "?");/* this should never happen */
13119 @ The parameter that corresponds to a loop text is either a token list
13120 (in the case of \&{forsuffixes}) or a ``capsule'' (in the case of \&{for}).
13121 We'll discuss capsules later; for now, all we need to know is that
13122 the |link| field in a capsule parameter is |void| and that
13123 |print_exp(p,0)| displays the value of capsule~|p| in abbreviated form.
13125 @<Print the current loop value@>=
13126 { mp_print_nl(mp, "<for("); p=mp->param_stack[param_start];
13128 if ( link(p)==mp_void ) mp_print_exp(mp, p,0); /* we're in a \&{for} loop */
13129 else mp_show_token_list(mp, p,null,20,mp->tally);
13131 mp_print(mp, ")> ");
13134 @ The first two parameters of a macro defined by \&{vardef} will be token
13135 lists representing the macro's prefix and ``at point.'' By putting these
13136 together, we get the macro's full name.
13138 @<Print the name of a \&{vardef}'d macro@>=
13139 { p=mp->param_stack[param_start];
13141 mp_show_token_list(mp, mp->param_stack[param_start+1],null,20,mp->tally);
13144 while ( link(q)!=null ) q=link(q);
13145 link(q)=mp->param_stack[param_start+1];
13146 mp_show_token_list(mp, p,null,20,mp->tally);
13151 @ Now it is necessary to explain a little trick. We don't want to store a long
13152 string that corresponds to a token list, because that string might take up
13153 lots of memory; and we are printing during a time when an error message is
13154 being given, so we dare not do anything that might overflow one of \MP's
13155 tables. So `pseudoprinting' is the answer: We enter a mode of printing
13156 that stores characters into a buffer of length |error_line|, where character
13157 $k+1$ is placed into \hbox{|trick_buf[k mod error_line]|} if
13158 |k<trick_count|, otherwise character |k| is dropped. Initially we set
13159 |tally:=0| and |trick_count:=1000000|; then when we reach the
13160 point where transition from line 1 to line 2 should occur, we
13161 set |first_count:=tally| and |trick_count:=@tmax@>(error_line,
13162 tally+1+error_line-half_error_line)|. At the end of the
13163 pseudoprinting, the values of |first_count|, |tally|, and
13164 |trick_count| give us all the information we need to print the two lines,
13165 and all of the necessary text is in |trick_buf|.
13167 Namely, let |l| be the length of the descriptive information that appears
13168 on the first line. The length of the context information gathered for that
13169 line is |k=first_count|, and the length of the context information
13170 gathered for line~2 is $m=\min(|tally|, |trick_count|)-k$. If |l+k<=h|,
13171 where |h=half_error_line|, we print |trick_buf[0..k-1]| after the
13172 descriptive information on line~1, and set |n:=l+k|; here |n| is the
13173 length of line~1. If $l+k>h$, some cropping is necessary, so we set |n:=h|
13174 and print `\.{...}' followed by
13175 $$\hbox{|trick_buf[(l+k-h+3)..k-1]|,}$$
13176 where subscripts of |trick_buf| are circular modulo |error_line|. The
13177 second line consists of |n|~spaces followed by |trick_buf[k..(k+m-1)]|,
13178 unless |n+m>error_line|; in the latter case, further cropping is done.
13179 This is easier to program than to explain.
13181 @<Local variables for formatting...@>=
13182 int i; /* index into |buffer| */
13183 integer l; /* length of descriptive information on line 1 */
13184 integer m; /* context information gathered for line 2 */
13185 int n; /* length of line 1 */
13186 integer p; /* starting or ending place in |trick_buf| */
13187 integer q; /* temporary index */
13189 @ The following code tells the print routines to gather
13190 the desired information.
13192 @d begin_pseudoprint {
13193 l=mp->tally; mp->tally=0; mp->selector=pseudo;
13194 mp->trick_count=1000000;
13196 @d set_trick_count {
13197 mp->first_count=mp->tally;
13198 mp->trick_count=mp->tally+1+mp->error_line-mp->half_error_line;
13199 if ( mp->trick_count<mp->error_line ) mp->trick_count=mp->error_line;
13202 @ And the following code uses the information after it has been gathered.
13204 @<Print two lines using the tricky pseudoprinted information@>=
13205 if ( mp->trick_count==1000000 ) set_trick_count;
13206 /* |set_trick_count| must be performed */
13207 if ( mp->tally<mp->trick_count ) m=mp->tally-mp->first_count;
13208 else m=mp->trick_count-mp->first_count; /* context on line 2 */
13209 if ( l+mp->first_count<=mp->half_error_line ) {
13210 p=0; n=l+mp->first_count;
13212 mp_print(mp, "..."); p=l+mp->first_count-mp->half_error_line+3;
13213 n=mp->half_error_line;
13215 for (q=p;q<=mp->first_count-1;q++) {
13216 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13219 for (q=1;q<=n;q++) {
13220 mp_print_char(mp, ' '); /* print |n| spaces to begin line~2 */
13222 if ( m+n<=mp->error_line ) p=mp->first_count+m;
13223 else p=mp->first_count+(mp->error_line-n-3);
13224 for (q=mp->first_count;q<=p-1;q++) {
13225 mp_print_char(mp, mp->trick_buf[q % mp->error_line]);
13227 if ( m+n>mp->error_line ) mp_print(mp, "...")
13229 @ But the trick is distracting us from our current goal, which is to
13230 understand the input state. So let's concentrate on the data structures that
13231 are being pseudoprinted as we finish up the |show_context| procedure.
13233 @<Pseudoprint the line@>=
13236 for (i=start;i<=limit-1;i++) {
13237 if ( i==loc ) set_trick_count;
13238 mp_print_str(mp, mp->buffer[i]);
13242 @ @<Pseudoprint the token list@>=
13244 if ( token_type!=macro ) mp_show_token_list(mp, start,loc,100000,0);
13245 else mp_show_macro(mp, start,loc,100000)
13247 @ Here is the missing piece of |show_token_list| that is activated when the
13248 token beginning line~2 is about to be shown:
13250 @<Do magic computation@>=set_trick_count
13252 @* \[28] Maintaining the input stacks.
13253 The following subroutines change the input status in commonly needed ways.
13255 First comes |push_input|, which stores the current state and creates a
13256 new level (having, initially, the same properties as the old).
13258 @d push_input { /* enter a new input level, save the old */
13259 if ( mp->input_ptr>mp->max_in_stack ) {
13260 mp->max_in_stack=mp->input_ptr;
13261 if ( mp->input_ptr==mp->stack_size ) {
13262 int l = (mp->stack_size+(mp->stack_size>>2));
13263 XREALLOC(mp->input_stack, l, in_state_record);
13264 mp->stack_size = l;
13267 mp->input_stack[mp->input_ptr]=mp->cur_input; /* stack the record */
13268 incr(mp->input_ptr);
13271 @ And of course what goes up must come down.
13273 @d pop_input { /* leave an input level, re-enter the old */
13274 decr(mp->input_ptr); mp->cur_input=mp->input_stack[mp->input_ptr];
13277 @ Here is a procedure that starts a new level of token-list input, given
13278 a token list |p| and its type |t|. If |t=macro|, the calling routine should
13279 set |name|, reset~|loc|, and increase the macro's reference count.
13281 @d back_list(A) mp_begin_token_list(mp, (A),backed_up) /* backs up a simple token list */
13283 @c void mp_begin_token_list (MP mp,pointer p, quarterword t) {
13284 push_input; start=p; token_type=t;
13285 param_start=mp->param_ptr; loc=p;
13288 @ When a token list has been fully scanned, the following computations
13289 should be done as we leave that level of input.
13292 @c void mp_end_token_list (MP mp) { /* leave a token-list input level */
13293 pointer p; /* temporary register */
13294 if ( token_type>=backed_up ) { /* token list to be deleted */
13295 if ( token_type<=inserted ) {
13296 mp_flush_token_list(mp, start); goto DONE;
13298 mp_delete_mac_ref(mp, start); /* update reference count */
13301 while ( mp->param_ptr>param_start ) { /* parameters must be flushed */
13302 decr(mp->param_ptr);
13303 p=mp->param_stack[mp->param_ptr];
13305 if ( link(p)==mp_void ) { /* it's an \&{expr} parameter */
13306 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
13308 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
13313 pop_input; check_interrupt;
13316 @ The contents of |cur_cmd,cur_mod,cur_sym| are placed into an equivalent
13317 token by the |cur_tok| routine.
13320 @c @<Declare the procedure called |make_exp_copy|@>;
13321 pointer mp_cur_tok (MP mp) {
13322 pointer p; /* a new token node */
13323 small_number save_type; /* |cur_type| to be restored */
13324 integer save_exp; /* |cur_exp| to be restored */
13325 if ( mp->cur_sym==0 ) {
13326 if ( mp->cur_cmd==capsule_token ) {
13327 save_type=mp->cur_type; save_exp=mp->cur_exp;
13328 mp_make_exp_copy(mp, mp->cur_mod); p=mp_stash_cur_exp(mp); link(p)=null;
13329 mp->cur_type=save_type; mp->cur_exp=save_exp;
13331 p=mp_get_node(mp, token_node_size);
13332 value(p)=mp->cur_mod; name_type(p)=mp_token;
13333 if ( mp->cur_cmd==numeric_token ) type(p)=mp_known;
13334 else type(p)=mp_string_type;
13337 fast_get_avail(p); info(p)=mp->cur_sym;
13342 @ Sometimes \MP\ has read too far and wants to ``unscan'' what it has
13343 seen. The |back_input| procedure takes care of this by putting the token
13344 just scanned back into the input stream, ready to be read again.
13345 If |cur_sym<>0|, the values of |cur_cmd| and |cur_mod| are irrelevant.
13348 void mp_back_input (MP mp);
13350 @ @c void mp_back_input (MP mp) {/* undoes one token of input */
13351 pointer p; /* a token list of length one */
13353 while ( token_state &&(loc==null) )
13354 mp_end_token_list(mp); /* conserve stack space */
13358 @ The |back_error| routine is used when we want to restore or replace an
13359 offending token just before issuing an error message. We disable interrupts
13360 during the call of |back_input| so that the help message won't be lost.
13363 void mp_error (MP mp);
13364 void mp_back_error (MP mp);
13366 @ @c void mp_back_error (MP mp) { /* back up one token and call |error| */
13367 mp->OK_to_interrupt=false;
13369 mp->OK_to_interrupt=true; mp_error(mp);
13371 void mp_ins_error (MP mp) { /* back up one inserted token and call |error| */
13372 mp->OK_to_interrupt=false;
13373 mp_back_input(mp); token_type=inserted;
13374 mp->OK_to_interrupt=true; mp_error(mp);
13377 @ The |begin_file_reading| procedure starts a new level of input for lines
13378 of characters to be read from a file, or as an insertion from the
13379 terminal. It does not take care of opening the file, nor does it set |loc|
13380 or |limit| or |line|.
13381 @^system dependencies@>
13383 @c void mp_begin_file_reading (MP mp) {
13384 if ( mp->in_open==mp->max_in_open )
13385 mp_overflow(mp, "text input levels",mp->max_in_open);
13386 @:MetaPost capacity exceeded text input levels}{\quad text input levels@>
13387 if ( mp->first==mp->buf_size )
13388 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13389 incr(mp->in_open); push_input; index=mp->in_open;
13390 mp->mpx_name[index]=absent;
13392 name=is_term; /* |terminal_input| is now |true| */
13395 @ Conversely, the variables must be downdated when such a level of input
13396 is finished. Any associated \.{MPX} file must also be closed and popped
13397 off the file stack.
13399 @c void mp_end_file_reading (MP mp) {
13400 if ( mp->in_open>index ) {
13401 if ( (mp->mpx_name[mp->in_open]==absent)||(name<=max_spec_src) ) {
13402 mp_confusion(mp, "endinput");
13403 @:this can't happen endinput}{\quad endinput@>
13405 fclose(mp->input_file[mp->in_open]); /* close an \.{MPX} file */
13406 delete_str_ref(mp->mpx_name[mp->in_open]);
13411 if ( index!=mp->in_open ) mp_confusion(mp, "endinput");
13412 if ( name>max_spec_src ) {
13414 delete_str_ref(name);
13418 pop_input; decr(mp->in_open);
13421 @ Here is a function that tries to resume input from an \.{MPX} file already
13422 associated with the current input file. It returns |false| if this doesn't
13425 @c boolean mp_begin_mpx_reading (MP mp) {
13426 if ( mp->in_open!=index+1 ) {
13429 if ( mp->mpx_name[mp->in_open]<=absent ) mp_confusion(mp, "mpx");
13430 @:this can't happen mpx}{\quad mpx@>
13431 if ( mp->first==mp->buf_size )
13432 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
13433 push_input; index=mp->in_open;
13435 name=mp->mpx_name[mp->in_open]; add_str_ref(name);
13436 @<Put an empty line in the input buffer@>;
13441 @ This procedure temporarily stops reading an \.{MPX} file.
13443 @c void mp_end_mpx_reading (MP mp) {
13444 if ( mp->in_open!=index ) mp_confusion(mp, "mpx");
13445 @:this can't happen mpx}{\quad mpx@>
13447 @<Complain that we are not at the end of a line in the \.{MPX} file@>;
13453 @ Here we enforce a restriction that simplifies the input stacks considerably.
13454 This should not inconvenience the user because \.{MPX} files are generated
13455 by an auxiliary program called \.{DVItoMP}.
13457 @ @<Complain that we are not at the end of a line in the \.{MPX} file@>=
13459 print_err("`mpxbreak' must be at the end of a line");
13460 help4("This file contains picture expressions for btex...etex")
13461 ("blocks. Such files are normally generated automatically")
13462 ("but this one seems to be messed up. I'm going to ignore")
13463 ("the rest of this line.");
13467 @ In order to keep the stack from overflowing during a long sequence of
13468 inserted `\.{show}' commands, the following routine removes completed
13469 error-inserted lines from memory.
13471 @c void mp_clear_for_error_prompt (MP mp) {
13472 while ( file_state && terminal_input &&
13473 (mp->input_ptr>0)&&(loc==limit) ) mp_end_file_reading(mp);
13474 mp_print_ln(mp); clear_terminal;
13477 @ To get \MP's whole input mechanism going, we perform the following
13480 @<Initialize the input routines@>=
13481 { mp->input_ptr=0; mp->max_in_stack=0;
13482 mp->in_open=0; mp->open_parens=0; mp->max_buf_stack=0;
13483 mp->param_ptr=0; mp->max_param_stack=0;
13485 start=1; index=0; line=0; name=is_term;
13486 mp->mpx_name[0]=absent;
13487 mp->force_eof=false;
13488 if ( ! mp_init_terminal(mp) ) mp_jump_out(mp);
13489 limit=mp->last; mp->first=mp->last+1;
13490 /* |init_terminal| has set |loc| and |last| */
13493 @* \[29] Getting the next token.
13494 The heart of \MP's input mechanism is the |get_next| procedure, which
13495 we shall develop in the next few sections of the program. Perhaps we
13496 shouldn't actually call it the ``heart,'' however; it really acts as \MP's
13497 eyes and mouth, reading the source files and gobbling them up. And it also
13498 helps \MP\ to regurgitate stored token lists that are to be processed again.
13500 The main duty of |get_next| is to input one token and to set |cur_cmd|
13501 and |cur_mod| to that token's command code and modifier. Furthermore, if
13502 the input token is a symbolic token, that token's |hash| address
13503 is stored in |cur_sym|; otherwise |cur_sym| is set to zero.
13505 Underlying this simple description is a certain amount of complexity
13506 because of all the cases that need to be handled.
13507 However, the inner loop of |get_next| is reasonably short and fast.
13509 @ Before getting into |get_next|, we need to consider a mechanism by which
13510 \MP\ helps keep errors from propagating too far. Whenever the program goes
13511 into a mode where it keeps calling |get_next| repeatedly until a certain
13512 condition is met, it sets |scanner_status| to some value other than |normal|.
13513 Then if an input file ends, or if an `\&{outer}' symbol appears,
13514 an appropriate error recovery will be possible.
13516 The global variable |warning_info| helps in this error recovery by providing
13517 additional information. For example, |warning_info| might indicate the
13518 name of a macro whose replacement text is being scanned.
13520 @d normal 0 /* |scanner_status| at ``quiet times'' */
13521 @d skipping 1 /* |scanner_status| when false conditional text is being skipped */
13522 @d flushing 2 /* |scanner_status| when junk after a statement is being ignored */
13523 @d absorbing 3 /* |scanner_status| when a \&{text} parameter is being scanned */
13524 @d var_defining 4 /* |scanner_status| when a \&{vardef} is being scanned */
13525 @d op_defining 5 /* |scanner_status| when a macro \&{def} is being scanned */
13526 @d loop_defining 6 /* |scanner_status| when a \&{for} loop is being scanned */
13527 @d tex_flushing 7 /* |scanner_status| when skipping \TeX\ material */
13530 integer scanner_status; /* are we scanning at high speed? */
13531 integer warning_info; /* if so, what else do we need to know,
13532 in case an error occurs? */
13534 @ @<Initialize the input routines@>=
13535 mp->scanner_status=normal;
13537 @ The following subroutine
13538 is called when an `\&{outer}' symbolic token has been scanned or
13539 when the end of a file has been reached. These two cases are distinguished
13540 by |cur_sym|, which is zero at the end of a file.
13542 @c boolean mp_check_outer_validity (MP mp) {
13543 pointer p; /* points to inserted token list */
13544 if ( mp->scanner_status==normal ) {
13546 } else if ( mp->scanner_status==tex_flushing ) {
13547 @<Check if the file has ended while flushing \TeX\ material and set the
13548 result value for |check_outer_validity|@>;
13550 mp->deletions_allowed=false;
13551 @<Back up an outer symbolic token so that it can be reread@>;
13552 if ( mp->scanner_status>skipping ) {
13553 @<Tell the user what has run away and try to recover@>;
13555 print_err("Incomplete if; all text was ignored after line ");
13556 @.Incomplete if...@>
13557 mp_print_int(mp, mp->warning_info);
13558 help3("A forbidden `outer' token occurred in skipped text.")
13559 ("This kind of error happens when you say `if...' and forget")
13560 ("the matching `fi'. I've inserted a `fi'; this might work.");
13561 if ( mp->cur_sym==0 )
13562 mp->help_line[2]="The file ended while I was skipping conditional text.";
13563 mp->cur_sym=frozen_fi; mp_ins_error(mp);
13565 mp->deletions_allowed=true;
13570 @ @<Check if the file has ended while flushing \TeX\ material and set...@>=
13571 if ( mp->cur_sym!=0 ) {
13574 mp->deletions_allowed=false;
13575 print_err("TeX mode didn't end; all text was ignored after line ");
13576 mp_print_int(mp, mp->warning_info);
13577 help2("The file ended while I was looking for the `etex' to")
13578 ("finish this TeX material. I've inserted `etex' now.");
13579 mp->cur_sym = frozen_etex;
13581 mp->deletions_allowed=true;
13585 @ @<Back up an outer symbolic token so that it can be reread@>=
13586 if ( mp->cur_sym!=0 ) {
13587 p=mp_get_avail(mp); info(p)=mp->cur_sym;
13588 back_list(p); /* prepare to read the symbolic token again */
13591 @ @<Tell the user what has run away...@>=
13593 mp_runaway(mp); /* print the definition-so-far */
13594 if ( mp->cur_sym==0 ) {
13595 print_err("File ended");
13596 @.File ended while scanning...@>
13598 print_err("Forbidden token found");
13599 @.Forbidden token found...@>
13601 mp_print(mp, " while scanning ");
13602 help4("I suspect you have forgotten an `enddef',")
13603 ("causing me to read past where you wanted me to stop.")
13604 ("I'll try to recover; but if the error is serious,")
13605 ("you'd better type `E' or `X' now and fix your file.");
13606 switch (mp->scanner_status) {
13607 @<Complete the error message,
13608 and set |cur_sym| to a token that might help recover from the error@>
13609 } /* there are no other cases */
13613 @ As we consider various kinds of errors, it is also appropriate to
13614 change the first line of the help message just given; |help_line[3]|
13615 points to the string that might be changed.
13617 @<Complete the error message,...@>=
13619 mp_print(mp, "to the end of the statement");
13620 mp->help_line[3]="A previous error seems to have propagated,";
13621 mp->cur_sym=frozen_semicolon;
13624 mp_print(mp, "a text argument");
13625 mp->help_line[3]="It seems that a right delimiter was left out,";
13626 if ( mp->warning_info==0 ) {
13627 mp->cur_sym=frozen_end_group;
13629 mp->cur_sym=frozen_right_delimiter;
13630 equiv(frozen_right_delimiter)=mp->warning_info;
13635 mp_print(mp, "the definition of ");
13636 if ( mp->scanner_status==op_defining )
13637 mp_print_text(mp->warning_info);
13639 mp_print_variable_name(mp, mp->warning_info);
13640 mp->cur_sym=frozen_end_def;
13642 case loop_defining:
13643 mp_print(mp, "the text of a ");
13644 mp_print_text(mp->warning_info);
13645 mp_print(mp, " loop");
13646 mp->help_line[3]="I suspect you have forgotten an `endfor',";
13647 mp->cur_sym=frozen_end_for;
13650 @ The |runaway| procedure displays the first part of the text that occurred
13651 when \MP\ began its special |scanner_status|, if that text has been saved.
13653 @<Declare the procedure called |runaway|@>=
13654 void mp_runaway (MP mp) {
13655 if ( mp->scanner_status>flushing ) {
13656 mp_print_nl(mp, "Runaway ");
13657 switch (mp->scanner_status) {
13658 case absorbing: mp_print(mp, "text?"); break;
13660 case op_defining: mp_print(mp,"definition?"); break;
13661 case loop_defining: mp_print(mp, "loop?"); break;
13662 } /* there are no other cases */
13664 mp_show_token_list(mp, link(hold_head),null,mp->error_line-10,0);
13668 @ We need to mention a procedure that may be called by |get_next|.
13671 void mp_firm_up_the_line (MP mp);
13673 @ And now we're ready to take the plunge into |get_next| itself.
13674 Note that the behavior depends on the |scanner_status| because percent signs
13675 and double quotes need to be passed over when skipping TeX material.
13678 void mp_get_next (MP mp) {
13679 /* sets |cur_cmd|, |cur_mod|, |cur_sym| to next token */
13681 /*restart*/ /* go here to get the next input token */
13682 /*exit*/ /* go here when the next input token has been got */
13683 /*|common_ending|*/ /* go here to finish getting a symbolic token */
13684 /*found*/ /* go here when the end of a symbolic token has been found */
13685 /*switch*/ /* go here to branch on the class of an input character */
13686 /*|start_numeric_token|,|start_decimal_token|,|fin_numeric_token|,|done|*/
13687 /* go here at crucial stages when scanning a number */
13688 int k; /* an index into |buffer| */
13689 ASCII_code c; /* the current character in the buffer */
13690 ASCII_code class; /* its class number */
13691 integer n,f; /* registers for decimal-to-binary conversion */
13694 if ( file_state ) {
13695 @<Input from external file; |goto restart| if no input found,
13696 or |return| if a non-symbolic token is found@>;
13698 @<Input from token list; |goto restart| if end of list or
13699 if a parameter needs to be expanded,
13700 or |return| if a non-symbolic token is found@>;
13703 @<Finish getting the symbolic token in |cur_sym|;
13704 |goto restart| if it is illegal@>;
13707 @ When a symbolic token is declared to be `\&{outer}', its command code
13708 is increased by |outer_tag|.
13711 @<Finish getting the symbolic token in |cur_sym|...@>=
13712 mp->cur_cmd=eq_type(mp->cur_sym); mp->cur_mod=equiv(mp->cur_sym);
13713 if ( mp->cur_cmd>=outer_tag ) {
13714 if ( mp_check_outer_validity(mp) )
13715 mp->cur_cmd=mp->cur_cmd-outer_tag;
13720 @ A percent sign appears in |buffer[limit]|; this makes it unnecessary
13721 to have a special test for end-of-line.
13724 @<Input from external file;...@>=
13727 c=mp->buffer[loc]; incr(loc); class=mp->char_class[c];
13729 case digit_class: goto START_NUMERIC_TOKEN; break;
13731 class=mp->char_class[mp->buffer[loc]];
13732 if ( class>period_class ) {
13734 } else if ( class<period_class ) { /* |class=digit_class| */
13735 n=0; goto START_DECIMAL_TOKEN;
13739 case space_class: goto SWITCH; break;
13740 case percent_class:
13741 if ( mp->scanner_status==tex_flushing ) {
13742 if ( loc<limit ) goto SWITCH;
13744 @<Move to next line of file, or |goto restart| if there is no next line@>;
13749 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13750 else @<Get a string token and |return|@>;
13752 case isolated_classes:
13753 k=loc-1; goto FOUND; break;
13754 case invalid_class:
13755 if ( mp->scanner_status==tex_flushing ) goto SWITCH;
13756 else @<Decry the invalid character and |goto restart|@>;
13758 default: break; /* letters, etc. */
13761 while ( mp->char_class[mp->buffer[loc]]==class ) incr(loc);
13763 START_NUMERIC_TOKEN:
13764 @<Get the integer part |n| of a numeric token;
13765 set |f:=0| and |goto fin_numeric_token| if there is no decimal point@>;
13766 START_DECIMAL_TOKEN:
13767 @<Get the fraction part |f| of a numeric token@>;
13769 @<Pack the numeric and fraction parts of a numeric token
13772 mp->cur_sym=mp_id_lookup(mp, k,loc-k);
13775 @ We go to |restart| instead of to |SWITCH|, because |state| might equal
13776 |token_list| after the error has been dealt with
13777 (cf.\ |clear_for_error_prompt|).
13779 @<Decry the invalid...@>=
13781 print_err("Text line contains an invalid character");
13782 @.Text line contains...@>
13783 help2("A funny symbol that I can\'t read has just been input.")
13784 ("Continue, and I'll forget that it ever happened.");
13785 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13789 @ @<Get a string token and |return|@>=
13791 if ( mp->buffer[loc]=='"' ) {
13792 mp->cur_mod=rts("");
13794 k=loc; mp->buffer[limit+1]='"';
13797 } while (mp->buffer[loc]!='"');
13799 @<Decry the missing string delimiter and |goto restart|@>;
13802 mp->cur_mod=mp->buffer[k];
13806 append_char(mp->buffer[k]); incr(k);
13808 mp->cur_mod=mp_make_string(mp);
13811 incr(loc); mp->cur_cmd=string_token;
13815 @ We go to |restart| after this error message, not to |SWITCH|,
13816 because the |clear_for_error_prompt| routine might have reinstated
13817 |token_state| after |error| has finished.
13819 @<Decry the missing string delimiter and |goto restart|@>=
13821 loc=limit; /* the next character to be read on this line will be |"%"| */
13822 print_err("Incomplete string token has been flushed");
13823 @.Incomplete string token...@>
13824 help3("Strings should finish on the same line as they began.")
13825 ("I've deleted the partial string; you might want to")
13826 ("insert another by typing, e.g., `I\"new string\"'.");
13827 mp->deletions_allowed=false; mp_error(mp);
13828 mp->deletions_allowed=true;
13832 @ @<Get the integer part |n| of a numeric token...@>=
13834 while ( mp->char_class[mp->buffer[loc]]==digit_class ) {
13835 if ( n<32768 ) n=10*n+mp->buffer[loc]-'0';
13838 if ( mp->buffer[loc]=='.' )
13839 if ( mp->char_class[mp->buffer[loc+1]]==digit_class )
13842 goto FIN_NUMERIC_TOKEN;
13845 @ @<Get the fraction part |f| of a numeric token@>=
13848 if ( k<17 ) { /* digits for |k>=17| cannot affect the result */
13849 mp->dig[k]=mp->buffer[loc]-'0'; incr(k);
13852 } while (mp->char_class[mp->buffer[loc]]==digit_class);
13853 f=mp_round_decimals(mp, k);
13858 @ @<Pack the numeric and fraction parts of a numeric token and |return|@>=
13860 @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>;
13861 } else if ( mp->scanner_status!=tex_flushing ) {
13862 print_err("Enormous number has been reduced");
13863 @.Enormous number...@>
13864 help2("I can\'t handle numbers bigger than 32767.99998;")
13865 ("so I've changed your constant to that maximum amount.");
13866 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
13867 mp->cur_mod=el_gordo;
13869 mp->cur_cmd=numeric_token; return
13871 @ @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>=
13873 mp->cur_mod=n*unity+f;
13874 if ( mp->cur_mod>=fraction_one ) {
13875 if ( (mp->internal[mp_warning_check]>0) &&
13876 (mp->scanner_status!=tex_flushing) ) {
13877 print_err("Number is too large (");
13878 mp_print_scaled(mp, mp->cur_mod);
13879 mp_print_char(mp, ')');
13880 help3("It is at least 4096. Continue and I'll try to cope")
13881 ("with that big value; but it might be dangerous.")
13882 ("(Set warningcheck:=0 to suppress this message.)");
13888 @ Let's consider now what happens when |get_next| is looking at a token list.
13891 @<Input from token list;...@>=
13892 if ( loc>=mp->hi_mem_min ) { /* one-word token */
13893 mp->cur_sym=info(loc); loc=link(loc); /* move to next */
13894 if ( mp->cur_sym>=expr_base ) {
13895 if ( mp->cur_sym>=suffix_base ) {
13896 @<Insert a suffix or text parameter and |goto restart|@>;
13898 mp->cur_cmd=capsule_token;
13899 mp->cur_mod=mp->param_stack[param_start+mp->cur_sym-(expr_base)];
13900 mp->cur_sym=0; return;
13903 } else if ( loc>null ) {
13904 @<Get a stored numeric or string or capsule token and |return|@>
13905 } else { /* we are done with this token list */
13906 mp_end_token_list(mp); goto RESTART; /* resume previous level */
13909 @ @<Insert a suffix or text parameter...@>=
13911 if ( mp->cur_sym>=text_base ) mp->cur_sym=mp->cur_sym-mp->param_size;
13912 /* |param_size=text_base-suffix_base| */
13913 mp_begin_token_list(mp,
13914 mp->param_stack[param_start+mp->cur_sym-(suffix_base)],
13919 @ @<Get a stored numeric or string or capsule token...@>=
13921 if ( name_type(loc)==mp_token ) {
13922 mp->cur_mod=value(loc);
13923 if ( type(loc)==mp_known ) {
13924 mp->cur_cmd=numeric_token;
13926 mp->cur_cmd=string_token; add_str_ref(mp->cur_mod);
13929 mp->cur_mod=loc; mp->cur_cmd=capsule_token;
13931 loc=link(loc); return;
13934 @ All of the easy branches of |get_next| have now been taken care of.
13935 There is one more branch.
13937 @<Move to next line of file, or |goto restart|...@>=
13938 if ( name>max_spec_src ) {
13939 @<Read next line of file into |buffer|, or
13940 |goto restart| if the file has ended@>;
13942 if ( mp->input_ptr>0 ) {
13943 /* text was inserted during error recovery or by \&{scantokens} */
13944 mp_end_file_reading(mp); goto RESTART; /* resume previous level */
13946 if ( mp->selector<log_only || mp->selector>=write_file) mp_open_log_file(mp);
13947 if ( mp->interaction>mp_nonstop_mode ) {
13948 if ( limit==start ) /* previous line was empty */
13949 mp_print_nl(mp, "(Please type a command or say `end')");
13951 mp_print_ln(mp); mp->first=start;
13952 prompt_input("*"); /* input on-line into |buffer| */
13954 limit=mp->last; mp->buffer[limit]='%';
13955 mp->first=limit+1; loc=start;
13957 mp_fatal_error(mp, "*** (job aborted, no legal end found)");
13959 /* nonstop mode, which is intended for overnight batch processing,
13960 never waits for on-line input */
13964 @ The global variable |force_eof| is normally |false|; it is set |true|
13965 by an \&{endinput} command.
13968 boolean force_eof; /* should the next \&{input} be aborted early? */
13970 @ We must decrement |loc| in order to leave the buffer in a valid state
13971 when an error condition causes us to |goto restart| without calling
13972 |end_file_reading|.
13974 @<Read next line of file into |buffer|, or
13975 |goto restart| if the file has ended@>=
13977 incr(line); mp->first=start;
13978 if ( ! mp->force_eof ) {
13979 if ( mp_input_ln(mp, cur_file,true) ) /* not end of file */
13980 mp_firm_up_the_line(mp); /* this sets |limit| */
13982 mp->force_eof=true;
13984 if ( mp->force_eof ) {
13985 mp->force_eof=false;
13987 if ( mpx_reading ) {
13988 @<Complain that the \.{MPX} file ended unexpectly; then set
13989 |cur_sym:=frozen_mpx_break| and |goto comon_ending|@>;
13991 mp_print_char(mp, ')'); decr(mp->open_parens);
13992 update_terminal; /* show user that file has been read */
13993 mp_end_file_reading(mp); /* resume previous level */
13994 if ( mp_check_outer_validity(mp) ) goto RESTART;
13998 mp->buffer[limit]='%'; mp->first=limit+1; loc=start; /* ready to read */
14001 @ We should never actually come to the end of an \.{MPX} file because such
14002 files should have an \&{mpxbreak} after the translation of the last
14003 \&{btex}$\,\ldots\,$\&{etex} block.
14005 @<Complain that the \.{MPX} file ended unexpectly; then set...@>=
14007 mp->mpx_name[index]=finished;
14008 print_err("mpx file ended unexpectedly");
14009 help4("The file had too few picture expressions for btex...etex")
14010 ("blocks. Such files are normally generated automatically")
14011 ("but this one got messed up. You might want to insert a")
14012 ("picture expression now.");
14013 mp->deletions_allowed=false; mp_error(mp); mp->deletions_allowed=true;
14014 mp->cur_sym=frozen_mpx_break; goto COMMON_ENDING;
14017 @ Sometimes we want to make it look as though we have just read a blank line
14018 without really doing so.
14020 @<Put an empty line in the input buffer@>=
14021 mp->last=mp->first; limit=mp->last; /* simulate |input_ln| and |firm_up_the_line| */
14022 mp->buffer[limit]='%'; mp->first=limit+1; loc=start
14024 @ If the user has set the |mp_pausing| parameter to some positive value,
14025 and if nonstop mode has not been selected, each line of input is displayed
14026 on the terminal and the transcript file, followed by `\.{=>}'.
14027 \MP\ waits for a response. If the response is null (i.e., if nothing is
14028 typed except perhaps a few blank spaces), the original
14029 line is accepted as it stands; otherwise the line typed is
14030 used instead of the line in the file.
14032 @c void mp_firm_up_the_line (MP mp) {
14033 size_t k; /* an index into |buffer| */
14035 if ( mp->internal[mp_pausing]>0 ) if ( mp->interaction>mp_nonstop_mode ) {
14036 wake_up_terminal; mp_print_ln(mp);
14037 if ( start<limit ) {
14038 for (k=(size_t)start;k<=(size_t)(limit-1);k++) {
14039 mp_print_str(mp, mp->buffer[k]);
14042 mp->first=limit; prompt_input("=>"); /* wait for user response */
14044 if ( mp->last>mp->first ) {
14045 for (k=mp->first;k<=mp->last-1;k++) { /* move line down in buffer */
14046 mp->buffer[k+start-mp->first]=mp->buffer[k];
14048 limit=start+mp->last-mp->first;
14053 @* \[30] Dealing with \TeX\ material.
14054 The \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}$\,\ldots\,$\&{etex}
14055 features need to be implemented at a low level in the scanning process
14056 so that \MP\ can stay in synch with the a preprocessor that treats
14057 blocks of \TeX\ material as they occur in the input file without trying
14058 to expand \MP\ macros. Thus we need a special version of |get_next|
14059 that does not expand macros and such but does handle \&{btex},
14060 \&{verbatimtex}, etc.
14062 The special version of |get_next| is called |get_t_next|. It works by flushing
14063 \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}\allowbreak
14064 $\,\ldots\,$\&{etex} blocks, switching to the \.{MPX} file when it sees
14065 \&{btex}, and switching back when it sees \&{mpxbreak}.
14071 mp_primitive(mp, "btex",start_tex,btex_code);
14072 @:btex_}{\&{btex} primitive@>
14073 mp_primitive(mp, "verbatimtex",start_tex,verbatim_code);
14074 @:verbatimtex_}{\&{verbatimtex} primitive@>
14075 mp_primitive(mp, "etex",etex_marker,0); mp->eqtb[frozen_etex]=mp->eqtb[mp->cur_sym];
14076 @:etex_}{\&{etex} primitive@>
14077 mp_primitive(mp, "mpxbreak",mpx_break,0); mp->eqtb[frozen_mpx_break]=mp->eqtb[mp->cur_sym];
14078 @:mpx_break_}{\&{mpxbreak} primitive@>
14080 @ @<Cases of |print_cmd...@>=
14081 case start_tex: if ( m==btex_code ) mp_print(mp, "btex");
14082 else mp_print(mp, "verbatimtex"); break;
14083 case etex_marker: mp_print(mp, "etex"); break;
14084 case mpx_break: mp_print(mp, "mpxbreak"); break;
14086 @ Actually, |get_t_next| is a macro that avoids procedure overhead except
14087 in the unusual case where \&{btex}, \&{verbatimtex}, \&{etex}, or \&{mpxbreak}
14090 @d get_t_next {mp_get_next(mp); if ( mp->cur_cmd<=max_pre_command ) mp_t_next(mp); }
14093 void mp_start_mpx_input (MP mp);
14096 void mp_t_next (MP mp) {
14097 int old_status; /* saves the |scanner_status| */
14098 integer old_info; /* saves the |warning_info| */
14099 while ( mp->cur_cmd<=max_pre_command ) {
14100 if ( mp->cur_cmd==mpx_break ) {
14101 if ( ! file_state || (mp->mpx_name[index]==absent) ) {
14102 @<Complain about a misplaced \&{mpxbreak}@>;
14104 mp_end_mpx_reading(mp);
14107 } else if ( mp->cur_cmd==start_tex ) {
14108 if ( token_state || (name<=max_spec_src) ) {
14109 @<Complain that we are not reading a file@>;
14110 } else if ( mpx_reading ) {
14111 @<Complain that \.{MPX} files cannot contain \TeX\ material@>;
14112 } else if ( (mp->cur_mod!=verbatim_code)&&
14113 (mp->mpx_name[index]!=finished) ) {
14114 if ( ! mp_begin_mpx_reading(mp) ) mp_start_mpx_input(mp);
14119 @<Complain about a misplaced \&{etex}@>;
14121 goto COMMON_ENDING;
14123 @<Flush the \TeX\ material@>;
14129 @ We could be in the middle of an operation such as skipping false conditional
14130 text when \TeX\ material is encountered, so we must be careful to save the
14133 @<Flush the \TeX\ material@>=
14134 old_status=mp->scanner_status;
14135 old_info=mp->warning_info;
14136 mp->scanner_status=tex_flushing;
14137 mp->warning_info=line;
14138 do { mp_get_next(mp); } while (mp->cur_cmd!=etex_marker);
14139 mp->scanner_status=old_status;
14140 mp->warning_info=old_info
14142 @ @<Complain that \.{MPX} files cannot contain \TeX\ material@>=
14143 { print_err("An mpx file cannot contain btex or verbatimtex blocks");
14144 help4("This file contains picture expressions for btex...etex")
14145 ("blocks. Such files are normally generated automatically")
14146 ("but this one seems to be messed up. I'll just keep going")
14147 ("and hope for the best.");
14151 @ @<Complain that we are not reading a file@>=
14152 { print_err("You can only use `btex' or `verbatimtex' in a file");
14153 help3("I'll have to ignore this preprocessor command because it")
14154 ("only works when there is a file to preprocess. You might")
14155 ("want to delete everything up to the next `etex`.");
14159 @ @<Complain about a misplaced \&{mpxbreak}@>=
14160 { print_err("Misplaced mpxbreak");
14161 help2("I'll ignore this preprocessor command because it")
14162 ("doesn't belong here");
14166 @ @<Complain about a misplaced \&{etex}@>=
14167 { print_err("Extra etex will be ignored");
14168 help1("There is no btex or verbatimtex for this to match");
14172 @* \[31] Scanning macro definitions.
14173 \MP\ has a variety of ways to tuck tokens away into token lists for later
14174 use: Macros can be defined with \&{def}, \&{vardef}, \&{primarydef}, etc.;
14175 repeatable code can be defined with \&{for}, \&{forever}, \&{forsuffixes}.
14176 All such operations are handled by the routines in this part of the program.
14178 The modifier part of each command code is zero for the ``ending delimiters''
14179 like \&{enddef} and \&{endfor}.
14181 @d start_def 1 /* command modifier for \&{def} */
14182 @d var_def 2 /* command modifier for \&{vardef} */
14183 @d end_def 0 /* command modifier for \&{enddef} */
14184 @d start_forever 1 /* command modifier for \&{forever} */
14185 @d end_for 0 /* command modifier for \&{endfor} */
14188 mp_primitive(mp, "def",macro_def,start_def);
14189 @:def_}{\&{def} primitive@>
14190 mp_primitive(mp, "vardef",macro_def,var_def);
14191 @:var_def_}{\&{vardef} primitive@>
14192 mp_primitive(mp, "primarydef",macro_def,secondary_primary_macro);
14193 @:primary_def_}{\&{primarydef} primitive@>
14194 mp_primitive(mp, "secondarydef",macro_def,tertiary_secondary_macro);
14195 @:secondary_def_}{\&{secondarydef} primitive@>
14196 mp_primitive(mp, "tertiarydef",macro_def,expression_tertiary_macro);
14197 @:tertiary_def_}{\&{tertiarydef} primitive@>
14198 mp_primitive(mp, "enddef",macro_def,end_def); mp->eqtb[frozen_end_def]=mp->eqtb[mp->cur_sym];
14199 @:end_def_}{\&{enddef} primitive@>
14201 mp_primitive(mp, "for",iteration,expr_base);
14202 @:for_}{\&{for} primitive@>
14203 mp_primitive(mp, "forsuffixes",iteration,suffix_base);
14204 @:for_suffixes_}{\&{forsuffixes} primitive@>
14205 mp_primitive(mp, "forever",iteration,start_forever);
14206 @:forever_}{\&{forever} primitive@>
14207 mp_primitive(mp, "endfor",iteration,end_for); mp->eqtb[frozen_end_for]=mp->eqtb[mp->cur_sym];
14208 @:end_for_}{\&{endfor} primitive@>
14210 @ @<Cases of |print_cmd...@>=
14212 if ( m<=var_def ) {
14213 if ( m==start_def ) mp_print(mp, "def");
14214 else if ( m<start_def ) mp_print(mp, "enddef");
14215 else mp_print(mp, "vardef");
14216 } else if ( m==secondary_primary_macro ) {
14217 mp_print(mp, "primarydef");
14218 } else if ( m==tertiary_secondary_macro ) {
14219 mp_print(mp, "secondarydef");
14221 mp_print(mp, "tertiarydef");
14225 if ( m<=start_forever ) {
14226 if ( m==start_forever ) mp_print(mp, "forever");
14227 else mp_print(mp, "endfor");
14228 } else if ( m==expr_base ) {
14229 mp_print(mp, "for");
14231 mp_print(mp, "forsuffixes");
14235 @ Different macro-absorbing operations have different syntaxes, but they
14236 also have a lot in common. There is a list of special symbols that are to
14237 be replaced by parameter tokens; there is a special command code that
14238 ends the definition; the quotation conventions are identical. Therefore
14239 it makes sense to have most of the work done by a single subroutine. That
14240 subroutine is called |scan_toks|.
14242 The first parameter to |scan_toks| is the command code that will
14243 terminate scanning (either |macro_def|, |loop_repeat|, or |iteration|).
14245 The second parameter, |subst_list|, points to a (possibly empty) list
14246 of two-word nodes whose |info| and |value| fields specify symbol tokens
14247 before and after replacement. The list will be returned to free storage
14250 The third parameter is simply appended to the token list that is built.
14251 And the final parameter tells how many of the special operations
14252 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#} are to be replaced by suffix parameters.
14253 When such parameters are present, they are called \.{(SUFFIX0)},
14254 \.{(SUFFIX1)}, and \.{(SUFFIX2)}.
14256 @c pointer mp_scan_toks (MP mp,command_code terminator, pointer
14257 subst_list, pointer tail_end, small_number suffix_count) {
14258 pointer p; /* tail of the token list being built */
14259 pointer q; /* temporary for link management */
14260 integer balance; /* left delimiters minus right delimiters */
14261 p=hold_head; balance=1; link(hold_head)=null;
14264 if ( mp->cur_sym>0 ) {
14265 @<Substitute for |cur_sym|, if it's on the |subst_list|@>;
14266 if ( mp->cur_cmd==terminator ) {
14267 @<Adjust the balance; |break| if it's zero@>;
14268 } else if ( mp->cur_cmd==macro_special ) {
14269 @<Handle quoted symbols, \.{\#\AT!}, \.{\AT!}, or \.{\AT!\#}@>;
14272 link(p)=mp_cur_tok(mp); p=link(p);
14274 link(p)=tail_end; mp_flush_node_list(mp, subst_list);
14275 return link(hold_head);
14278 @ @<Substitute for |cur_sym|...@>=
14281 while ( q!=null ) {
14282 if ( info(q)==mp->cur_sym ) {
14283 mp->cur_sym=value(q); mp->cur_cmd=relax; break;
14289 @ @<Adjust the balance; |break| if it's zero@>=
14290 if ( mp->cur_mod>0 ) {
14298 @ Four commands are intended to be used only within macro texts: \&{quote},
14299 \.{\#\AT!}, \.{\AT!}, and \.{\AT!\#}. They are variants of a single command
14300 code called |macro_special|.
14302 @d quote 0 /* |macro_special| modifier for \&{quote} */
14303 @d macro_prefix 1 /* |macro_special| modifier for \.{\#\AT!} */
14304 @d macro_at 2 /* |macro_special| modifier for \.{\AT!} */
14305 @d macro_suffix 3 /* |macro_special| modifier for \.{\AT!\#} */
14308 mp_primitive(mp, "quote",macro_special,quote);
14309 @:quote_}{\&{quote} primitive@>
14310 mp_primitive(mp, "#@@",macro_special,macro_prefix);
14311 @:]]]\#\AT!_}{\.{\#\AT!} primitive@>
14312 mp_primitive(mp, "@@",macro_special,macro_at);
14313 @:]]]\AT!_}{\.{\AT!} primitive@>
14314 mp_primitive(mp, "@@#",macro_special,macro_suffix);
14315 @:]]]\AT!\#_}{\.{\AT!\#} primitive@>
14317 @ @<Cases of |print_cmd...@>=
14318 case macro_special:
14320 case macro_prefix: mp_print(mp, "#@@"); break;
14321 case macro_at: mp_print_char(mp, '@@'); break;
14322 case macro_suffix: mp_print(mp, "@@#"); break;
14323 default: mp_print(mp, "quote"); break;
14327 @ @<Handle quoted...@>=
14329 if ( mp->cur_mod==quote ) { get_t_next; }
14330 else if ( mp->cur_mod<=suffix_count )
14331 mp->cur_sym=suffix_base-1+mp->cur_mod;
14334 @ Here is a routine that's used whenever a token will be redefined. If
14335 the user's token is unredefinable, the `|frozen_inaccessible|' token is
14336 substituted; the latter is redefinable but essentially impossible to use,
14337 hence \MP's tables won't get fouled up.
14339 @c void mp_get_symbol (MP mp) { /* sets |cur_sym| to a safe symbol */
14342 if ( (mp->cur_sym==0)||(mp->cur_sym>frozen_inaccessible) ) {
14343 print_err("Missing symbolic token inserted");
14344 @.Missing symbolic token...@>
14345 help3("Sorry: You can\'t redefine a number, string, or expr.")
14346 ("I've inserted an inaccessible symbol so that your")
14347 ("definition will be completed without mixing me up too badly.");
14348 if ( mp->cur_sym>0 )
14349 mp->help_line[2]="Sorry: You can\'t redefine my error-recovery tokens.";
14350 else if ( mp->cur_cmd==string_token )
14351 delete_str_ref(mp->cur_mod);
14352 mp->cur_sym=frozen_inaccessible; mp_ins_error(mp); goto RESTART;
14356 @ Before we actually redefine a symbolic token, we need to clear away its
14357 former value, if it was a variable. The following stronger version of
14358 |get_symbol| does that.
14360 @c void mp_get_clear_symbol (MP mp) {
14361 mp_get_symbol(mp); mp_clear_symbol(mp, mp->cur_sym,false);
14364 @ Here's another little subroutine; it checks that an equals sign
14365 or assignment sign comes along at the proper place in a macro definition.
14367 @c void mp_check_equals (MP mp) {
14368 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
14369 mp_missing_err(mp, "=");
14371 help5("The next thing in this `def' should have been `=',")
14372 ("because I've already looked at the definition heading.")
14373 ("But don't worry; I'll pretend that an equals sign")
14374 ("was present. Everything from here to `enddef'")
14375 ("will be the replacement text of this macro.");
14380 @ A \&{primarydef}, \&{secondarydef}, or \&{tertiarydef} is rather easily
14381 handled now that we have |scan_toks|. In this case there are
14382 two parameters, which will be \.{EXPR0} and \.{EXPR1} (i.e.,
14383 |expr_base| and |expr_base+1|).
14385 @c void mp_make_op_def (MP mp) {
14386 command_code m; /* the type of definition */
14387 pointer p,q,r; /* for list manipulation */
14389 mp_get_symbol(mp); q=mp_get_node(mp, token_node_size);
14390 info(q)=mp->cur_sym; value(q)=expr_base;
14391 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym;
14392 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14393 info(p)=mp->cur_sym; value(p)=expr_base+1; link(p)=q;
14394 get_t_next; mp_check_equals(mp);
14395 mp->scanner_status=op_defining; q=mp_get_avail(mp); ref_count(q)=null;
14396 r=mp_get_avail(mp); link(q)=r; info(r)=general_macro;
14397 link(r)=mp_scan_toks(mp, macro_def,p,null,0);
14398 mp->scanner_status=normal; eq_type(mp->warning_info)=m;
14399 equiv(mp->warning_info)=q; mp_get_x_next(mp);
14402 @ Parameters to macros are introduced by the keywords \&{expr},
14403 \&{suffix}, \&{text}, \&{primary}, \&{secondary}, and \&{tertiary}.
14406 mp_primitive(mp, "expr",param_type,expr_base);
14407 @:expr_}{\&{expr} primitive@>
14408 mp_primitive(mp, "suffix",param_type,suffix_base);
14409 @:suffix_}{\&{suffix} primitive@>
14410 mp_primitive(mp, "text",param_type,text_base);
14411 @:text_}{\&{text} primitive@>
14412 mp_primitive(mp, "primary",param_type,primary_macro);
14413 @:primary_}{\&{primary} primitive@>
14414 mp_primitive(mp, "secondary",param_type,secondary_macro);
14415 @:secondary_}{\&{secondary} primitive@>
14416 mp_primitive(mp, "tertiary",param_type,tertiary_macro);
14417 @:tertiary_}{\&{tertiary} primitive@>
14419 @ @<Cases of |print_cmd...@>=
14421 if ( m>=expr_base ) {
14422 if ( m==expr_base ) mp_print(mp, "expr");
14423 else if ( m==suffix_base ) mp_print(mp, "suffix");
14424 else mp_print(mp, "text");
14425 } else if ( m<secondary_macro ) {
14426 mp_print(mp, "primary");
14427 } else if ( m==secondary_macro ) {
14428 mp_print(mp, "secondary");
14430 mp_print(mp, "tertiary");
14434 @ Let's turn next to the more complex processing associated with \&{def}
14435 and \&{vardef}. When the following procedure is called, |cur_mod|
14436 should be either |start_def| or |var_def|.
14438 @c @<Declare the procedure called |check_delimiter|@>;
14439 @<Declare the function called |scan_declared_variable|@>;
14440 void mp_scan_def (MP mp) {
14441 int m; /* the type of definition */
14442 int n; /* the number of special suffix parameters */
14443 int k; /* the total number of parameters */
14444 int c; /* the kind of macro we're defining */
14445 pointer r; /* parameter-substitution list */
14446 pointer q; /* tail of the macro token list */
14447 pointer p; /* temporary storage */
14448 halfword base; /* |expr_base|, |suffix_base|, or |text_base| */
14449 pointer l_delim,r_delim; /* matching delimiters */
14450 m=mp->cur_mod; c=general_macro; link(hold_head)=null;
14451 q=mp_get_avail(mp); ref_count(q)=null; r=null;
14452 @<Scan the token or variable to be defined;
14453 set |n|, |scanner_status|, and |warning_info|@>;
14455 if ( mp->cur_cmd==left_delimiter ) {
14456 @<Absorb delimited parameters, putting them into lists |q| and |r|@>;
14458 if ( mp->cur_cmd==param_type ) {
14459 @<Absorb undelimited parameters, putting them into list |r|@>;
14461 mp_check_equals(mp);
14462 p=mp_get_avail(mp); info(p)=c; link(q)=p;
14463 @<Attach the replacement text to the tail of node |p|@>;
14464 mp->scanner_status=normal; mp_get_x_next(mp);
14467 @ We don't put `|frozen_end_group|' into the replacement text of
14468 a \&{vardef}, because the user may want to redefine `\.{endgroup}'.
14470 @<Attach the replacement text to the tail of node |p|@>=
14471 if ( m==start_def ) {
14472 link(p)=mp_scan_toks(mp, macro_def,r,null,n);
14474 q=mp_get_avail(mp); info(q)=mp->bg_loc; link(p)=q;
14475 p=mp_get_avail(mp); info(p)=mp->eg_loc;
14476 link(q)=mp_scan_toks(mp, macro_def,r,p,n);
14478 if ( mp->warning_info==bad_vardef )
14479 mp_flush_token_list(mp, value(bad_vardef))
14483 int eg_loc; /* hash addresses of `\.{begingroup}' and `\.{endgroup}' */
14485 @ @<Scan the token or variable to be defined;...@>=
14486 if ( m==start_def ) {
14487 mp_get_clear_symbol(mp); mp->warning_info=mp->cur_sym; get_t_next;
14488 mp->scanner_status=op_defining; n=0;
14489 eq_type(mp->warning_info)=defined_macro; equiv(mp->warning_info)=q;
14491 p=mp_scan_declared_variable(mp);
14492 mp_flush_variable(mp, equiv(info(p)),link(p),true);
14493 mp->warning_info=mp_find_variable(mp, p); mp_flush_list(mp, p);
14494 if ( mp->warning_info==null ) @<Change to `\.{a bad variable}'@>;
14495 mp->scanner_status=var_defining; n=2;
14496 if ( mp->cur_cmd==macro_special ) if ( mp->cur_mod==macro_suffix ) {/* \.{\AT!\#} */
14499 type(mp->warning_info)=mp_unsuffixed_macro-2+n; value(mp->warning_info)=q;
14500 } /* |mp_suffixed_macro=mp_unsuffixed_macro+1| */
14502 @ @<Change to `\.{a bad variable}'@>=
14504 print_err("This variable already starts with a macro");
14505 @.This variable already...@>
14506 help2("After `vardef a' you can\'t say `vardef a.b'.")
14507 ("So I'll have to discard this definition.");
14508 mp_error(mp); mp->warning_info=bad_vardef;
14511 @ @<Initialize table entries...@>=
14512 name_type(bad_vardef)=mp_root; link(bad_vardef)=frozen_bad_vardef;
14513 equiv(frozen_bad_vardef)=bad_vardef; eq_type(frozen_bad_vardef)=tag_token;
14515 @ @<Absorb delimited parameters, putting them into lists |q| and |r|@>=
14517 l_delim=mp->cur_sym; r_delim=mp->cur_mod; get_t_next;
14518 if ( (mp->cur_cmd==param_type)&&(mp->cur_mod>=expr_base) ) {
14521 print_err("Missing parameter type; `expr' will be assumed");
14522 @.Missing parameter type@>
14523 help1("You should've had `expr' or `suffix' or `text' here.");
14524 mp_back_error(mp); base=expr_base;
14526 @<Absorb parameter tokens for type |base|@>;
14527 mp_check_delimiter(mp, l_delim,r_delim);
14529 } while (mp->cur_cmd==left_delimiter)
14531 @ @<Absorb parameter tokens for type |base|@>=
14533 link(q)=mp_get_avail(mp); q=link(q); info(q)=base+k;
14534 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
14535 value(p)=base+k; info(p)=mp->cur_sym;
14536 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14537 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
14538 incr(k); link(p)=r; r=p; get_t_next;
14539 } while (mp->cur_cmd==comma)
14541 @ @<Absorb undelimited parameters, putting them into list |r|@>=
14543 p=mp_get_node(mp, token_node_size);
14544 if ( mp->cur_mod<expr_base ) {
14545 c=mp->cur_mod; value(p)=expr_base+k;
14547 value(p)=mp->cur_mod+k;
14548 if ( mp->cur_mod==expr_base ) c=expr_macro;
14549 else if ( mp->cur_mod==suffix_base ) c=suffix_macro;
14552 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14553 incr(k); mp_get_symbol(mp); info(p)=mp->cur_sym; link(p)=r; r=p; get_t_next;
14554 if ( c==expr_macro ) if ( mp->cur_cmd==of_token ) {
14555 c=of_macro; p=mp_get_node(mp, token_node_size);
14556 if ( k==mp->param_size ) mp_overflow(mp, "parameter stack size",mp->param_size);
14557 value(p)=expr_base+k; mp_get_symbol(mp); info(p)=mp->cur_sym;
14558 link(p)=r; r=p; get_t_next;
14562 @* \[32] Expanding the next token.
14563 Only a few command codes |<min_command| can possibly be returned by
14564 |get_t_next|; in increasing order, they are
14565 |if_test|, |fi_or_else|, |input|, |iteration|, |repeat_loop|,
14566 |exit_test|, |relax|, |scan_tokens|, |expand_after|, and |defined_macro|.
14568 \MP\ usually gets the next token of input by saying |get_x_next|. This is
14569 like |get_t_next| except that it keeps getting more tokens until
14570 finding |cur_cmd>=min_command|. In other words, |get_x_next| expands
14571 macros and removes conditionals or iterations or input instructions that
14574 It follows that |get_x_next| might invoke itself recursively. In fact,
14575 there is massive recursion, since macro expansion can involve the
14576 scanning of arbitrarily complex expressions, which in turn involve
14577 macro expansion and conditionals, etc.
14580 Therefore it's necessary to declare a whole bunch of |forward|
14581 procedures at this point, and to insert some other procedures
14582 that will be invoked by |get_x_next|.
14585 void mp_scan_primary (MP mp);
14586 void mp_scan_secondary (MP mp);
14587 void mp_scan_tertiary (MP mp);
14588 void mp_scan_expression (MP mp);
14589 void mp_scan_suffix (MP mp);
14590 @<Declare the procedure called |macro_call|@>;
14591 void mp_get_boolean (MP mp);
14592 void mp_pass_text (MP mp);
14593 void mp_conditional (MP mp);
14594 void mp_start_input (MP mp);
14595 void mp_begin_iteration (MP mp);
14596 void mp_resume_iteration (MP mp);
14597 void mp_stop_iteration (MP mp);
14599 @ An auxiliary subroutine called |expand| is used by |get_x_next|
14600 when it has to do exotic expansion commands.
14602 @c void mp_expand (MP mp) {
14603 pointer p; /* for list manipulation */
14604 size_t k; /* something that we hope is |<=buf_size| */
14605 pool_pointer j; /* index into |str_pool| */
14606 if ( mp->internal[mp_tracing_commands]>unity )
14607 if ( mp->cur_cmd!=defined_macro )
14609 switch (mp->cur_cmd) {
14611 mp_conditional(mp); /* this procedure is discussed in Part 36 below */
14614 @<Terminate the current conditional and skip to \&{fi}@>;
14617 @<Initiate or terminate input from a file@>;
14620 if ( mp->cur_mod==end_for ) {
14621 @<Scold the user for having an extra \&{endfor}@>;
14623 mp_begin_iteration(mp); /* this procedure is discussed in Part 37 below */
14630 @<Exit a loop if the proper time has come@>;
14635 @<Expand the token after the next token@>;
14638 @<Put a string into the input buffer@>;
14640 case defined_macro:
14641 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14643 }; /* there are no other cases */
14646 @ @<Scold the user...@>=
14648 print_err("Extra `endfor'");
14650 help2("I'm not currently working on a for loop,")
14651 ("so I had better not try to end anything.");
14655 @ The processing of \&{input} involves the |start_input| subroutine,
14656 which will be declared later; the processing of \&{endinput} is trivial.
14659 mp_primitive(mp, "input",input,0);
14660 @:input_}{\&{input} primitive@>
14661 mp_primitive(mp, "endinput",input,1);
14662 @:end_input_}{\&{endinput} primitive@>
14664 @ @<Cases of |print_cmd_mod|...@>=
14666 if ( m==0 ) mp_print(mp, "input");
14667 else mp_print(mp, "endinput");
14670 @ @<Initiate or terminate input...@>=
14671 if ( mp->cur_mod>0 ) mp->force_eof=true;
14672 else mp_start_input(mp)
14674 @ We'll discuss the complicated parts of loop operations later. For now
14675 it suffices to know that there's a global variable called |loop_ptr|
14676 that will be |null| if no loop is in progress.
14679 { while ( token_state &&(loc==null) )
14680 mp_end_token_list(mp); /* conserve stack space */
14681 if ( mp->loop_ptr==null ) {
14682 print_err("Lost loop");
14684 help2("I'm confused; after exiting from a loop, I still seem")
14685 ("to want to repeat it. I'll try to forget the problem.");
14688 mp_resume_iteration(mp); /* this procedure is in Part 37 below */
14692 @ @<Exit a loop if the proper time has come@>=
14693 { mp_get_boolean(mp);
14694 if ( mp->internal[mp_tracing_commands]>unity )
14695 mp_show_cmd_mod(mp, nullary,mp->cur_exp);
14696 if ( mp->cur_exp==true_code ) {
14697 if ( mp->loop_ptr==null ) {
14698 print_err("No loop is in progress");
14699 @.No loop is in progress@>
14700 help1("Why say `exitif' when there's nothing to exit from?");
14701 if ( mp->cur_cmd==semicolon ) mp_error(mp); else mp_back_error(mp);
14703 @<Exit prematurely from an iteration@>;
14705 } else if ( mp->cur_cmd!=semicolon ) {
14706 mp_missing_err(mp, ";");
14708 help2("After `exitif <boolean exp>' I expect to see a semicolon.")
14709 ("I shall pretend that one was there."); mp_back_error(mp);
14713 @ Here we use the fact that |forever_text| is the only |token_type| that
14714 is less than |loop_text|.
14716 @<Exit prematurely...@>=
14719 if ( file_state ) {
14720 mp_end_file_reading(mp);
14722 if ( token_type<=loop_text ) p=start;
14723 mp_end_token_list(mp);
14726 if ( p!=info(mp->loop_ptr) ) mp_fatal_error(mp, "*** (loop confusion)");
14728 mp_stop_iteration(mp); /* this procedure is in Part 34 below */
14731 @ @<Expand the token after the next token@>=
14733 p=mp_cur_tok(mp); get_t_next;
14734 if ( mp->cur_cmd<min_command ) mp_expand(mp);
14735 else mp_back_input(mp);
14739 @ @<Put a string into the input buffer@>=
14740 { mp_get_x_next(mp); mp_scan_primary(mp);
14741 if ( mp->cur_type!=mp_string_type ) {
14742 mp_disp_err(mp, null,"Not a string");
14744 help2("I'm going to flush this expression, since")
14745 ("scantokens should be followed by a known string.");
14746 mp_put_get_flush_error(mp, 0);
14749 if ( length(mp->cur_exp)>0 )
14750 @<Pretend we're reading a new one-line file@>;
14754 @ @<Pretend we're reading a new one-line file@>=
14755 { mp_begin_file_reading(mp); name=is_scantok;
14756 k=mp->first+length(mp->cur_exp);
14757 if ( k>=mp->max_buf_stack ) {
14758 while ( k>=mp->buf_size ) {
14759 mp_reallocate_buffer(mp,(mp->buf_size+(mp->buf_size>>2)));
14761 mp->max_buf_stack=k+1;
14763 j=mp->str_start[mp->cur_exp]; limit=k;
14764 while ( mp->first<(size_t)limit ) {
14765 mp->buffer[mp->first]=mp->str_pool[j]; incr(j); incr(mp->first);
14767 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
14768 mp_flush_cur_exp(mp, 0);
14771 @ Here finally is |get_x_next|.
14773 The expression scanning routines to be considered later
14774 communicate via the global quantities |cur_type| and |cur_exp|;
14775 we must be very careful to save and restore these quantities while
14776 macros are being expanded.
14780 void mp_get_x_next (MP mp);
14782 @ @c void mp_get_x_next (MP mp) {
14783 pointer save_exp; /* a capsule to save |cur_type| and |cur_exp| */
14785 if ( mp->cur_cmd<min_command ) {
14786 save_exp=mp_stash_cur_exp(mp);
14788 if ( mp->cur_cmd==defined_macro )
14789 mp_macro_call(mp, mp->cur_mod,null,mp->cur_sym);
14793 } while (mp->cur_cmd<min_command);
14794 mp_unstash_cur_exp(mp, save_exp); /* that restores |cur_type| and |cur_exp| */
14798 @ Now let's consider the |macro_call| procedure, which is used to start up
14799 all user-defined macros. Since the arguments to a macro might be expressions,
14800 |macro_call| is recursive.
14803 The first parameter to |macro_call| points to the reference count of the
14804 token list that defines the macro. The second parameter contains any
14805 arguments that have already been parsed (see below). The third parameter
14806 points to the symbolic token that names the macro. If the third parameter
14807 is |null|, the macro was defined by \&{vardef}, so its name can be
14808 reconstructed from the prefix and ``at'' arguments found within the
14811 What is this second parameter? It's simply a linked list of one-word items,
14812 whose |info| fields point to the arguments. In other words, if |arg_list=null|,
14813 no arguments have been scanned yet; otherwise |info(arg_list)| points to
14814 the first scanned argument, and |link(arg_list)| points to the list of
14815 further arguments (if any).
14817 Arguments of type \&{expr} are so-called capsules, which we will
14818 discuss later when we concentrate on expressions; they can be
14819 recognized easily because their |link| field is |void|. Arguments of type
14820 \&{suffix} and \&{text} are token lists without reference counts.
14822 @ After argument scanning is complete, the arguments are moved to the
14823 |param_stack|. (They can't be put on that stack any sooner, because
14824 the stack is growing and shrinking in unpredictable ways as more arguments
14825 are being acquired.) Then the macro body is fed to the scanner; i.e.,
14826 the replacement text of the macro is placed at the top of the \MP's
14827 input stack, so that |get_t_next| will proceed to read it next.
14829 @<Declare the procedure called |macro_call|@>=
14830 @<Declare the procedure called |print_macro_name|@>;
14831 @<Declare the procedure called |print_arg|@>;
14832 @<Declare the procedure called |scan_text_arg|@>;
14833 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14834 pointer macro_name) ;
14837 void mp_macro_call (MP mp,pointer def_ref, pointer arg_list,
14838 pointer macro_name) {
14839 /* invokes a user-defined control sequence */
14840 pointer r; /* current node in the macro's token list */
14841 pointer p,q; /* for list manipulation */
14842 integer n; /* the number of arguments */
14843 pointer tail = 0; /* tail of the argument list */
14844 pointer l_delim=0,r_delim=0; /* a delimiter pair */
14845 r=link(def_ref); add_mac_ref(def_ref);
14846 if ( arg_list==null ) {
14849 @<Determine the number |n| of arguments already supplied,
14850 and set |tail| to the tail of |arg_list|@>;
14852 if ( mp->internal[mp_tracing_macros]>0 ) {
14853 @<Show the text of the macro being expanded, and the existing arguments@>;
14855 @<Scan the remaining arguments, if any; set |r| to the first token
14856 of the replacement text@>;
14857 @<Feed the arguments and replacement text to the scanner@>;
14860 @ @<Show the text of the macro...@>=
14861 mp_begin_diagnostic(mp); mp_print_ln(mp);
14862 mp_print_macro_name(mp, arg_list,macro_name);
14863 if ( n==3 ) mp_print(mp, "@@#"); /* indicate a suffixed macro */
14864 mp_show_macro(mp, def_ref,null,100000);
14865 if ( arg_list!=null ) {
14869 mp_print_arg(mp, q,n,0);
14870 incr(n); p=link(p);
14873 mp_end_diagnostic(mp, false)
14876 @ @<Declare the procedure called |print_macro_name|@>=
14877 void mp_print_macro_name (MP mp,pointer a, pointer n);
14880 void mp_print_macro_name (MP mp,pointer a, pointer n) {
14881 pointer p,q; /* they traverse the first part of |a| */
14887 mp_print_text(info(info(link(a))));
14890 while ( link(q)!=null ) q=link(q);
14891 link(q)=info(link(a));
14892 mp_show_token_list(mp, p,null,1000,0);
14898 @ @<Declare the procedure called |print_arg|@>=
14899 void mp_print_arg (MP mp,pointer q, integer n, pointer b) ;
14902 void mp_print_arg (MP mp,pointer q, integer n, pointer b) {
14903 if ( link(q)==mp_void ) mp_print_nl(mp, "(EXPR");
14904 else if ( (b<text_base)&&(b!=text_macro) ) mp_print_nl(mp, "(SUFFIX");
14905 else mp_print_nl(mp, "(TEXT");
14906 mp_print_int(mp, n); mp_print(mp, ")<-");
14907 if ( link(q)==mp_void ) mp_print_exp(mp, q,1);
14908 else mp_show_token_list(mp, q,null,1000,0);
14911 @ @<Determine the number |n| of arguments already supplied...@>=
14913 n=1; tail=arg_list;
14914 while ( link(tail)!=null ) {
14915 incr(n); tail=link(tail);
14919 @ @<Scan the remaining arguments, if any; set |r|...@>=
14920 mp->cur_cmd=comma+1; /* anything |<>comma| will do */
14921 while ( info(r)>=expr_base ) {
14922 @<Scan the delimited argument represented by |info(r)|@>;
14925 if ( mp->cur_cmd==comma ) {
14926 print_err("Too many arguments to ");
14927 @.Too many arguments...@>
14928 mp_print_macro_name(mp, arg_list,macro_name); mp_print_char(mp, ';');
14929 mp_print_nl(mp, " Missing `"); mp_print_text(r_delim);
14931 mp_print(mp, "' has been inserted");
14932 help3("I'm going to assume that the comma I just read was a")
14933 ("right delimiter, and then I'll begin expanding the macro.")
14934 ("You might want to delete some tokens before continuing.");
14937 if ( info(r)!=general_macro ) {
14938 @<Scan undelimited argument(s)@>;
14942 @ At this point, the reader will find it advisable to review the explanation
14943 of token list format that was presented earlier, paying special attention to
14944 the conventions that apply only at the beginning of a macro's token list.
14946 On the other hand, the reader will have to take the expression-parsing
14947 aspects of the following program on faith; we will explain |cur_type|
14948 and |cur_exp| later. (Several things in this program depend on each other,
14949 and it's necessary to jump into the circle somewhere.)
14951 @<Scan the delimited argument represented by |info(r)|@>=
14952 if ( mp->cur_cmd!=comma ) {
14954 if ( mp->cur_cmd!=left_delimiter ) {
14955 print_err("Missing argument to ");
14956 @.Missing argument...@>
14957 mp_print_macro_name(mp, arg_list,macro_name);
14958 help3("That macro has more parameters than you thought.")
14959 ("I'll continue by pretending that each missing argument")
14960 ("is either zero or null.");
14961 if ( info(r)>=suffix_base ) {
14962 mp->cur_exp=null; mp->cur_type=mp_token_list;
14964 mp->cur_exp=0; mp->cur_type=mp_known;
14966 mp_back_error(mp); mp->cur_cmd=right_delimiter;
14969 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
14971 @<Scan the argument represented by |info(r)|@>;
14972 if ( mp->cur_cmd!=comma )
14973 @<Check that the proper right delimiter was present@>;
14975 @<Append the current expression to |arg_list|@>
14977 @ @<Check that the proper right delim...@>=
14978 if ( (mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
14979 if ( info(link(r))>=expr_base ) {
14980 mp_missing_err(mp, ",");
14982 help3("I've finished reading a macro argument and am about to")
14983 ("read another; the arguments weren't delimited correctly.")
14984 ("You might want to delete some tokens before continuing.");
14985 mp_back_error(mp); mp->cur_cmd=comma;
14987 mp_missing_err(mp, str(text(r_delim)));
14989 help2("I've gotten to the end of the macro parameter list.")
14990 ("You might want to delete some tokens before continuing.");
14995 @ A \&{suffix} or \&{text} parameter will be have been scanned as
14996 a token list pointed to by |cur_exp|, in which case we will have
14997 |cur_type=token_list|.
14999 @<Append the current expression to |arg_list|@>=
15001 p=mp_get_avail(mp);
15002 if ( mp->cur_type==mp_token_list ) info(p)=mp->cur_exp;
15003 else info(p)=mp_stash_cur_exp(mp);
15004 if ( mp->internal[mp_tracing_macros]>0 ) {
15005 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,info(r));
15006 mp_end_diagnostic(mp, false);
15008 if ( arg_list==null ) arg_list=p;
15013 @ @<Scan the argument represented by |info(r)|@>=
15014 if ( info(r)>=text_base ) {
15015 mp_scan_text_arg(mp, l_delim,r_delim);
15018 if ( info(r)>=suffix_base ) mp_scan_suffix(mp);
15019 else mp_scan_expression(mp);
15022 @ The parameters to |scan_text_arg| are either a pair of delimiters
15023 or zero; the latter case is for undelimited text arguments, which
15024 end with the first semicolon or \&{endgroup} or \&{end} that is not
15025 contained in a group.
15027 @<Declare the procedure called |scan_text_arg|@>=
15028 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) ;
15031 void mp_scan_text_arg (MP mp,pointer l_delim, pointer r_delim) {
15032 integer balance; /* excess of |l_delim| over |r_delim| */
15033 pointer p; /* list tail */
15034 mp->warning_info=l_delim; mp->scanner_status=absorbing;
15035 p=hold_head; balance=1; link(hold_head)=null;
15038 if ( l_delim==0 ) {
15039 @<Adjust the balance for an undelimited argument; |break| if done@>;
15041 @<Adjust the balance for a delimited argument; |break| if done@>;
15043 link(p)=mp_cur_tok(mp); p=link(p);
15045 mp->cur_exp=link(hold_head); mp->cur_type=mp_token_list;
15046 mp->scanner_status=normal;
15049 @ @<Adjust the balance for a delimited argument...@>=
15050 if ( mp->cur_cmd==right_delimiter ) {
15051 if ( mp->cur_mod==l_delim ) {
15053 if ( balance==0 ) break;
15055 } else if ( mp->cur_cmd==left_delimiter ) {
15056 if ( mp->cur_mod==r_delim ) incr(balance);
15059 @ @<Adjust the balance for an undelimited...@>=
15060 if ( end_of_statement ) { /* |cur_cmd=semicolon|, |end_group|, or |stop| */
15061 if ( balance==1 ) { break; }
15062 else { if ( mp->cur_cmd==end_group ) decr(balance); }
15063 } else if ( mp->cur_cmd==begin_group ) {
15067 @ @<Scan undelimited argument(s)@>=
15069 if ( info(r)<text_macro ) {
15071 if ( info(r)!=suffix_macro ) {
15072 if ( (mp->cur_cmd==equals)||(mp->cur_cmd==assignment) ) mp_get_x_next(mp);
15076 case primary_macro:mp_scan_primary(mp); break;
15077 case secondary_macro:mp_scan_secondary(mp); break;
15078 case tertiary_macro:mp_scan_tertiary(mp); break;
15079 case expr_macro:mp_scan_expression(mp); break;
15081 @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>;
15084 @<Scan a suffix with optional delimiters@>;
15086 case text_macro:mp_scan_text_arg(mp, 0,0); break;
15087 } /* there are no other cases */
15089 @<Append the current expression to |arg_list|@>;
15092 @ @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>=
15094 mp_scan_expression(mp); p=mp_get_avail(mp); info(p)=mp_stash_cur_exp(mp);
15095 if ( mp->internal[mp_tracing_macros]>0 ) {
15096 mp_begin_diagnostic(mp); mp_print_arg(mp, info(p),n,0);
15097 mp_end_diagnostic(mp, false);
15099 if ( arg_list==null ) arg_list=p; else link(tail)=p;
15101 if ( mp->cur_cmd!=of_token ) {
15102 mp_missing_err(mp, "of"); mp_print(mp, " for ");
15104 mp_print_macro_name(mp, arg_list,macro_name);
15105 help1("I've got the first argument; will look now for the other.");
15108 mp_get_x_next(mp); mp_scan_primary(mp);
15111 @ @<Scan a suffix with optional delimiters@>=
15113 if ( mp->cur_cmd!=left_delimiter ) {
15116 l_delim=mp->cur_sym; r_delim=mp->cur_mod; mp_get_x_next(mp);
15118 mp_scan_suffix(mp);
15119 if ( l_delim!=null ) {
15120 if ((mp->cur_cmd!=right_delimiter)||(mp->cur_mod!=l_delim) ) {
15121 mp_missing_err(mp, str(text(r_delim)));
15123 help2("I've gotten to the end of the macro parameter list.")
15124 ("You might want to delete some tokens before continuing.");
15131 @ Before we put a new token list on the input stack, it is wise to clean off
15132 all token lists that have recently been depleted. Then a user macro that ends
15133 with a call to itself will not require unbounded stack space.
15135 @<Feed the arguments and replacement text to the scanner@>=
15136 while ( token_state &&(loc==null) ) mp_end_token_list(mp); /* conserve stack space */
15137 if ( mp->param_ptr+n>mp->max_param_stack ) {
15138 mp->max_param_stack=mp->param_ptr+n;
15139 if ( mp->max_param_stack>mp->param_size )
15140 mp_overflow(mp, "parameter stack size",mp->param_size);
15141 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15143 mp_begin_token_list(mp, def_ref,macro); name=macro_name; loc=r;
15147 mp->param_stack[mp->param_ptr]=info(p); incr(mp->param_ptr); p=link(p);
15149 mp_flush_list(mp, arg_list);
15152 @ It's sometimes necessary to put a single argument onto |param_stack|.
15153 The |stack_argument| subroutine does this.
15155 @c void mp_stack_argument (MP mp,pointer p) {
15156 if ( mp->param_ptr==mp->max_param_stack ) {
15157 incr(mp->max_param_stack);
15158 if ( mp->max_param_stack>mp->param_size )
15159 mp_overflow(mp, "parameter stack size",mp->param_size);
15160 @:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
15162 mp->param_stack[mp->param_ptr]=p; incr(mp->param_ptr);
15165 @* \[33] Conditional processing.
15166 Let's consider now the way \&{if} commands are handled.
15168 Conditions can be inside conditions, and this nesting has a stack
15169 that is independent of other stacks.
15170 Four global variables represent the top of the condition stack:
15171 |cond_ptr| points to pushed-down entries, if~any; |cur_if| tells whether
15172 we are processing \&{if} or \&{elseif}; |if_limit| specifies
15173 the largest code of a |fi_or_else| command that is syntactically legal;
15174 and |if_line| is the line number at which the current conditional began.
15176 If no conditions are currently in progress, the condition stack has the
15177 special state |cond_ptr=null|, |if_limit=normal|, |cur_if=0|, |if_line=0|.
15178 Otherwise |cond_ptr| points to a two-word node; the |type|, |name_type|, and
15179 |link| fields of the first word contain |if_limit|, |cur_if|, and
15180 |cond_ptr| at the next level, and the second word contains the
15181 corresponding |if_line|.
15183 @d if_node_size 2 /* number of words in stack entry for conditionals */
15184 @d if_line_field(A) mp->mem[(A)+1].cint
15185 @d if_code 1 /* code for \&{if} being evaluated */
15186 @d fi_code 2 /* code for \&{fi} */
15187 @d else_code 3 /* code for \&{else} */
15188 @d else_if_code 4 /* code for \&{elseif} */
15191 pointer cond_ptr; /* top of the condition stack */
15192 integer if_limit; /* upper bound on |fi_or_else| codes */
15193 small_number cur_if; /* type of conditional being worked on */
15194 integer if_line; /* line where that conditional began */
15197 mp->cond_ptr=null; mp->if_limit=normal; mp->cur_if=0; mp->if_line=0;
15200 mp_primitive(mp, "if",if_test,if_code);
15201 @:if_}{\&{if} primitive@>
15202 mp_primitive(mp, "fi",fi_or_else,fi_code); mp->eqtb[frozen_fi]=mp->eqtb[mp->cur_sym];
15203 @:fi_}{\&{fi} primitive@>
15204 mp_primitive(mp, "else",fi_or_else,else_code);
15205 @:else_}{\&{else} primitive@>
15206 mp_primitive(mp, "elseif",fi_or_else,else_if_code);
15207 @:else_if_}{\&{elseif} primitive@>
15209 @ @<Cases of |print_cmd_mod|...@>=
15213 case if_code:mp_print(mp, "if"); break;
15214 case fi_code:mp_print(mp, "fi"); break;
15215 case else_code:mp_print(mp, "else"); break;
15216 default: mp_print(mp, "elseif"); break;
15220 @ Here is a procedure that ignores text until coming to an \&{elseif},
15221 \&{else}, or \&{fi} at level zero of $\&{if}\ldots\&{fi}$
15222 nesting. After it has acted, |cur_mod| will indicate the token that
15225 \MP's smallest two command codes are |if_test| and |fi_or_else|; this
15226 makes the skipping process a bit simpler.
15229 void mp_pass_text (MP mp) {
15231 mp->scanner_status=skipping;
15232 mp->warning_info=mp_true_line(mp);
15235 if ( mp->cur_cmd<=fi_or_else ) {
15236 if ( mp->cur_cmd<fi_or_else ) {
15240 if ( mp->cur_mod==fi_code ) decr(l);
15243 @<Decrease the string reference count,
15244 if the current token is a string@>;
15247 mp->scanner_status=normal;
15250 @ @<Decrease the string reference count...@>=
15251 if ( mp->cur_cmd==string_token ) { delete_str_ref(mp->cur_mod); }
15253 @ When we begin to process a new \&{if}, we set |if_limit:=if_code|; then
15254 if \&{elseif} or \&{else} or \&{fi} occurs before the current \&{if}
15255 condition has been evaluated, a colon will be inserted.
15256 A construction like `\.{if fi}' would otherwise get \MP\ confused.
15258 @<Push the condition stack@>=
15259 { p=mp_get_node(mp, if_node_size); link(p)=mp->cond_ptr; type(p)=mp->if_limit;
15260 name_type(p)=mp->cur_if; if_line_field(p)=mp->if_line;
15261 mp->cond_ptr=p; mp->if_limit=if_code; mp->if_line=mp_true_line(mp);
15262 mp->cur_if=if_code;
15265 @ @<Pop the condition stack@>=
15266 { p=mp->cond_ptr; mp->if_line=if_line_field(p);
15267 mp->cur_if=name_type(p); mp->if_limit=type(p); mp->cond_ptr=link(p);
15268 mp_free_node(mp, p,if_node_size);
15271 @ Here's a procedure that changes the |if_limit| code corresponding to
15272 a given value of |cond_ptr|.
15274 @c void mp_change_if_limit (MP mp,small_number l, pointer p) {
15276 if ( p==mp->cond_ptr ) {
15277 mp->if_limit=l; /* that's the easy case */
15281 if ( q==null ) mp_confusion(mp, "if");
15282 @:this can't happen if}{\quad if@>
15283 if ( link(q)==p ) {
15291 @ The user is supposed to put colons into the proper parts of conditional
15292 statements. Therefore, \MP\ has to check for their presence.
15295 void mp_check_colon (MP mp) {
15296 if ( mp->cur_cmd!=colon ) {
15297 mp_missing_err(mp, ":");
15299 help2("There should've been a colon after the condition.")
15300 ("I shall pretend that one was there.");;
15305 @ A condition is started when the |get_x_next| procedure encounters
15306 an |if_test| command; in that case |get_x_next| calls |conditional|,
15307 which is a recursive procedure.
15310 @c void mp_conditional (MP mp) {
15311 pointer save_cond_ptr; /* |cond_ptr| corresponding to this conditional */
15312 int new_if_limit; /* future value of |if_limit| */
15313 pointer p; /* temporary register */
15314 @<Push the condition stack@>;
15315 save_cond_ptr=mp->cond_ptr;
15317 mp_get_boolean(mp); new_if_limit=else_if_code;
15318 if ( mp->internal[mp_tracing_commands]>unity ) {
15319 @<Display the boolean value of |cur_exp|@>;
15322 mp_check_colon(mp);
15323 if ( mp->cur_exp==true_code ) {
15324 mp_change_if_limit(mp, new_if_limit,save_cond_ptr);
15325 return; /* wait for \&{elseif}, \&{else}, or \&{fi} */
15327 @<Skip to \&{elseif} or \&{else} or \&{fi}, then |goto done|@>;
15329 mp->cur_if=mp->cur_mod; mp->if_line=mp_true_line(mp);
15330 if ( mp->cur_mod==fi_code ) {
15331 @<Pop the condition stack@>
15332 } else if ( mp->cur_mod==else_if_code ) {
15335 mp->cur_exp=true_code; new_if_limit=fi_code; mp_get_x_next(mp);
15340 @ In a construction like `\&{if} \&{if} \&{true}: $0=1$: \\{foo}
15341 \&{else}: \\{bar} \&{fi}', the first \&{else}
15342 that we come to after learning that the \&{if} is false is not the
15343 \&{else} we're looking for. Hence the following curious logic is needed.
15345 @<Skip to \&{elseif}...@>=
15348 if ( mp->cond_ptr==save_cond_ptr ) goto DONE;
15349 else if ( mp->cur_mod==fi_code ) @<Pop the condition stack@>;
15353 @ @<Display the boolean value...@>=
15354 { mp_begin_diagnostic(mp);
15355 if ( mp->cur_exp==true_code ) mp_print(mp, "{true}");
15356 else mp_print(mp, "{false}");
15357 mp_end_diagnostic(mp, false);
15360 @ The processing of conditionals is complete except for the following
15361 code, which is actually part of |get_x_next|. It comes into play when
15362 \&{elseif}, \&{else}, or \&{fi} is scanned.
15364 @<Terminate the current conditional and skip to \&{fi}@>=
15365 if ( mp->cur_mod>mp->if_limit ) {
15366 if ( mp->if_limit==if_code ) { /* condition not yet evaluated */
15367 mp_missing_err(mp, ":");
15369 mp_back_input(mp); mp->cur_sym=frozen_colon; mp_ins_error(mp);
15371 print_err("Extra "); mp_print_cmd_mod(mp, fi_or_else,mp->cur_mod);
15375 help1("I'm ignoring this; it doesn't match any if.");
15379 while ( mp->cur_mod!=fi_code ) mp_pass_text(mp); /* skip to \&{fi} */
15380 @<Pop the condition stack@>;
15383 @* \[34] Iterations.
15384 To bring our treatment of |get_x_next| to a close, we need to consider what
15385 \MP\ does when it sees \&{for}, \&{forsuffixes}, and \&{forever}.
15387 There's a global variable |loop_ptr| that keeps track of the \&{for} loops
15388 that are currently active. If |loop_ptr=null|, no loops are in progress;
15389 otherwise |info(loop_ptr)| points to the iterative text of the current
15390 (innermost) loop, and |link(loop_ptr)| points to the data for any other
15391 loops that enclose the current one.
15393 A loop-control node also has two other fields, called |loop_type| and
15394 |loop_list|, whose contents depend on the type of loop:
15396 \yskip\indent|loop_type(loop_ptr)=null| means that |loop_list(loop_ptr)|
15397 points to a list of one-word nodes whose |info| fields point to the
15398 remaining argument values of a suffix list and expression list.
15400 \yskip\indent|loop_type(loop_ptr)=mp_void| means that the current loop is
15403 \yskip\indent|loop_type(loop_ptr)=progression_flag| means that
15404 |p=loop_list(loop_ptr)| points to a ``progression node'' and |value(p)|,
15405 |step_size(p)|, and |final_value(p)| contain the data for an arithmetic
15408 \yskip\indent|loop_type(loop_ptr)=p>mp_void| means that |p| points to an edge
15409 header and |loop_list(loop_ptr)| points into the graphical object list for
15412 \yskip\noindent In the case of a progression node, the first word is not used
15413 because the link field of words in the dynamic memory area cannot be arbitrary.
15415 @d loop_list_loc(A) ((A)+1) /* where the |loop_list| field resides */
15416 @d loop_type(A) info(loop_list_loc((A))) /* the type of \&{for} loop */
15417 @d loop_list(A) link(loop_list_loc((A))) /* the remaining list elements */
15418 @d loop_node_size 2 /* the number of words in a loop control node */
15419 @d progression_node_size 4 /* the number of words in a progression node */
15420 @d step_size(A) mp->mem[(A)+2].sc /* the step size in an arithmetic progression */
15421 @d final_value(A) mp->mem[(A)+3].sc /* the final value in an arithmetic progression */
15422 @d progression_flag (null+2)
15423 /* |loop_type| value when |loop_list| points to a progression node */
15426 pointer loop_ptr; /* top of the loop-control-node stack */
15431 @ If the expressions that define an arithmetic progression in
15432 a \&{for} loop don't have known numeric values, the |bad_for|
15433 subroutine screams at the user.
15435 @c void mp_bad_for (MP mp, char * s) {
15436 mp_disp_err(mp, null,"Improper "); /* show the bad expression above the message */
15437 @.Improper...replaced by 0@>
15438 mp_print(mp, s); mp_print(mp, " has been replaced by 0");
15439 help4("When you say `for x=a step b until c',")
15440 ("the initial value `a' and the step size `b'")
15441 ("and the final value `c' must have known numeric values.")
15442 ("I'm zeroing this one. Proceed, with fingers crossed.");
15443 mp_put_get_flush_error(mp, 0);
15446 @ Here's what \MP\ does when \&{for}, \&{forsuffixes}, or \&{forever}
15447 has just been scanned. (This code requires slight familiarity with
15448 expression-parsing routines that we have not yet discussed; but it seems
15449 to belong in the present part of the program, even though the original author
15450 didn't write it until later. The reader may wish to come back to it.)
15452 @c void mp_begin_iteration (MP mp) {
15453 halfword m; /* |expr_base| (\&{for}) or |suffix_base| (\&{forsuffixes}) */
15454 halfword n; /* hash address of the current symbol */
15455 pointer s; /* the new loop-control node */
15456 pointer p; /* substitution list for |scan_toks| */
15457 pointer q; /* link manipulation register */
15458 pointer pp; /* a new progression node */
15459 m=mp->cur_mod; n=mp->cur_sym; s=mp_get_node(mp, loop_node_size);
15460 if ( m==start_forever ){
15461 loop_type(s)=mp_void; p=null; mp_get_x_next(mp);
15463 mp_get_symbol(mp); p=mp_get_node(mp, token_node_size);
15464 info(p)=mp->cur_sym; value(p)=m;
15466 if ( mp->cur_cmd==within_token ) {
15467 @<Set up a picture iteration@>;
15469 @<Check for the |"="| or |":="| in a loop header@>;
15470 @<Scan the values to be used in the loop@>;
15473 @<Check for the presence of a colon@>;
15474 @<Scan the loop text and put it on the loop control stack@>;
15475 mp_resume_iteration(mp);
15478 @ @<Check for the |"="| or |":="| in a loop header@>=
15479 if ( (mp->cur_cmd!=equals)&&(mp->cur_cmd!=assignment) ) {
15480 mp_missing_err(mp, "=");
15482 help3("The next thing in this loop should have been `=' or `:='.")
15483 ("But don't worry; I'll pretend that an equals sign")
15484 ("was present, and I'll look for the values next.");
15488 @ @<Check for the presence of a colon@>=
15489 if ( mp->cur_cmd!=colon ) {
15490 mp_missing_err(mp, ":");
15492 help3("The next thing in this loop should have been a `:'.")
15493 ("So I'll pretend that a colon was present;")
15494 ("everything from here to `endfor' will be iterated.");
15498 @ We append a special |frozen_repeat_loop| token in place of the
15499 `\&{endfor}' at the end of the loop. This will come through \MP's scanner
15500 at the proper time to cause the loop to be repeated.
15502 (If the user tries some shenanigan like `\&{for} $\ldots$ \&{let} \&{endfor}',
15503 he will be foiled by the |get_symbol| routine, which keeps frozen
15504 tokens unchanged. Furthermore the |frozen_repeat_loop| is an \&{outer}
15505 token, so it won't be lost accidentally.)
15507 @ @<Scan the loop text...@>=
15508 q=mp_get_avail(mp); info(q)=frozen_repeat_loop;
15509 mp->scanner_status=loop_defining; mp->warning_info=n;
15510 info(s)=mp_scan_toks(mp, iteration,p,q,0); mp->scanner_status=normal;
15511 link(s)=mp->loop_ptr; mp->loop_ptr=s
15513 @ @<Initialize table...@>=
15514 eq_type(frozen_repeat_loop)=repeat_loop+outer_tag;
15515 text(frozen_repeat_loop)=intern(" ENDFOR");
15517 @ The loop text is inserted into \MP's scanning apparatus by the
15518 |resume_iteration| routine.
15520 @c void mp_resume_iteration (MP mp) {
15521 pointer p,q; /* link registers */
15522 p=loop_type(mp->loop_ptr);
15523 if ( p==progression_flag ) {
15524 p=loop_list(mp->loop_ptr); /* now |p| points to a progression node */
15525 mp->cur_exp=value(p);
15526 if ( @<The arithmetic progression has ended@> ) {
15527 mp_stop_iteration(mp);
15530 mp->cur_type=mp_known; q=mp_stash_cur_exp(mp); /* make |q| an \&{expr} argument */
15531 value(p)=mp->cur_exp+step_size(p); /* set |value(p)| for the next iteration */
15532 } else if ( p==null ) {
15533 p=loop_list(mp->loop_ptr);
15535 mp_stop_iteration(mp);
15538 loop_list(mp->loop_ptr)=link(p); q=info(p); free_avail(p);
15539 } else if ( p==mp_void ) {
15540 mp_begin_token_list(mp, info(mp->loop_ptr),forever_text); return;
15542 @<Make |q| a capsule containing the next picture component from
15543 |loop_list(loop_ptr)| or |goto not_found|@>;
15545 mp_begin_token_list(mp, info(mp->loop_ptr),loop_text);
15546 mp_stack_argument(mp, q);
15547 if ( mp->internal[mp_tracing_commands]>unity ) {
15548 @<Trace the start of a loop@>;
15552 mp_stop_iteration(mp);
15555 @ @<The arithmetic progression has ended@>=
15556 ((step_size(p)>0)&&(mp->cur_exp>final_value(p)))||
15557 ((step_size(p)<0)&&(mp->cur_exp<final_value(p)))
15559 @ @<Trace the start of a loop@>=
15561 mp_begin_diagnostic(mp); mp_print_nl(mp, "{loop value=");
15563 if ( (q!=null)&&(link(q)==mp_void) ) mp_print_exp(mp, q,1);
15564 else mp_show_token_list(mp, q,null,50,0);
15565 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
15568 @ @<Make |q| a capsule containing the next picture component from...@>=
15569 { q=loop_list(mp->loop_ptr);
15570 if ( q==null ) goto NOT_FOUND;
15571 skip_component(q) goto NOT_FOUND;
15572 mp->cur_exp=mp_copy_objects(mp, loop_list(mp->loop_ptr),q);
15573 mp_init_bbox(mp, mp->cur_exp);
15574 mp->cur_type=mp_picture_type;
15575 loop_list(mp->loop_ptr)=q;
15576 q=mp_stash_cur_exp(mp);
15579 @ A level of loop control disappears when |resume_iteration| has decided
15580 not to resume, or when an \&{exitif} construction has removed the loop text
15581 from the input stack.
15583 @c void mp_stop_iteration (MP mp) {
15584 pointer p,q; /* the usual */
15585 p=loop_type(mp->loop_ptr);
15586 if ( p==progression_flag ) {
15587 mp_free_node(mp, loop_list(mp->loop_ptr),progression_node_size);
15588 } else if ( p==null ){
15589 q=loop_list(mp->loop_ptr);
15590 while ( q!=null ) {
15593 if ( link(p)==mp_void ) { /* it's an \&{expr} parameter */
15594 mp_recycle_value(mp, p); mp_free_node(mp, p,value_node_size);
15596 mp_flush_token_list(mp, p); /* it's a \&{suffix} or \&{text} parameter */
15599 p=q; q=link(q); free_avail(p);
15601 } else if ( p>progression_flag ) {
15602 delete_edge_ref(p);
15604 p=mp->loop_ptr; mp->loop_ptr=link(p); mp_flush_token_list(mp, info(p));
15605 mp_free_node(mp, p,loop_node_size);
15608 @ Now that we know all about loop control, we can finish up
15609 the missing portion of |begin_iteration| and we'll be done.
15611 The following code is performed after the `\.=' has been scanned in
15612 a \&{for} construction (if |m=expr_base|) or a \&{forsuffixes} construction
15613 (if |m=suffix_base|).
15615 @<Scan the values to be used in the loop@>=
15616 loop_type(s)=null; q=loop_list_loc(s); link(q)=null; /* |link(q)=loop_list(s)| */
15619 if ( m!=expr_base ) {
15620 mp_scan_suffix(mp);
15622 if ( mp->cur_cmd>=colon ) if ( mp->cur_cmd<=comma )
15624 mp_scan_expression(mp);
15625 if ( mp->cur_cmd==step_token ) if ( q==loop_list_loc(s) ) {
15626 @<Prepare for step-until construction and |break|@>;
15628 mp->cur_exp=mp_stash_cur_exp(mp);
15630 link(q)=mp_get_avail(mp); q=link(q);
15631 info(q)=mp->cur_exp; mp->cur_type=mp_vacuous;
15634 } while (mp->cur_cmd==comma)
15636 @ @<Prepare for step-until construction and |break|@>=
15638 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "initial value");
15639 pp=mp_get_node(mp, progression_node_size); value(pp)=mp->cur_exp;
15640 mp_get_x_next(mp); mp_scan_expression(mp);
15641 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "step size");
15642 step_size(pp)=mp->cur_exp;
15643 if ( mp->cur_cmd!=until_token ) {
15644 mp_missing_err(mp, "until");
15645 @.Missing `until'@>
15646 help2("I assume you meant to say `until' after `step'.")
15647 ("So I'll look for the final value and colon next.");
15650 mp_get_x_next(mp); mp_scan_expression(mp);
15651 if ( mp->cur_type!=mp_known ) mp_bad_for(mp, "final value");
15652 final_value(pp)=mp->cur_exp; loop_list(s)=pp;
15653 loop_type(s)=progression_flag;
15657 @ The last case is when we have just seen ``\&{within}'', and we need to
15658 parse a picture expression and prepare to iterate over it.
15660 @<Set up a picture iteration@>=
15661 { mp_get_x_next(mp);
15662 mp_scan_expression(mp);
15663 @<Make sure the current expression is a known picture@>;
15664 loop_type(s)=mp->cur_exp; mp->cur_type=mp_vacuous;
15665 q=link(dummy_loc(mp->cur_exp));
15667 if ( is_start_or_stop(q) )
15668 if ( mp_skip_1component(mp, q)==null ) q=link(q);
15672 @ @<Make sure the current expression is a known picture@>=
15673 if ( mp->cur_type!=mp_picture_type ) {
15674 mp_disp_err(mp, null,"Improper iteration spec has been replaced by nullpicture");
15675 help1("When you say `for x in p', p must be a known picture.");
15676 mp_put_get_flush_error(mp, mp_get_node(mp, edge_header_size));
15677 mp_init_edges(mp, mp->cur_exp); mp->cur_type=mp_picture_type;
15680 @* \[35] File names.
15681 It's time now to fret about file names. Besides the fact that different
15682 operating systems treat files in different ways, we must cope with the
15683 fact that completely different naming conventions are used by different
15684 groups of people. The following programs show what is required for one
15685 particular operating system; similar routines for other systems are not
15686 difficult to devise.
15687 @^system dependencies@>
15689 \MP\ assumes that a file name has three parts: the name proper; its
15690 ``extension''; and a ``file area'' where it is found in an external file
15691 system. The extension of an input file is assumed to be
15692 `\.{.mp}' unless otherwise specified; it is `\.{.log}' on the
15693 transcript file that records each run of \MP; it is `\.{.tfm}' on the font
15694 metric files that describe characters in any fonts created by \MP; it is
15695 `\.{.ps}' or `.{\it nnn}' for some number {\it nnn} on the \ps\ output files;
15696 and it is `\.{.mem}' on the mem files written by \.{INIMP} to initialize \MP.
15697 The file area can be arbitrary on input files, but files are usually
15698 output to the user's current area. If an input file cannot be
15699 found on the specified area, \MP\ will look for it on a special system
15700 area; this special area is intended for commonly used input files.
15702 Simple uses of \MP\ refer only to file names that have no explicit
15703 extension or area. For example, a person usually says `\.{input} \.{cmr10}'
15704 instead of `\.{input} \.{cmr10.new}'. Simple file
15705 names are best, because they make the \MP\ source files portable;
15706 whenever a file name consists entirely of letters and digits, it should be
15707 treated in the same way by all implementations of \MP. However, users
15708 need the ability to refer to other files in their environment, especially
15709 when responding to error messages concerning unopenable files; therefore
15710 we want to let them use the syntax that appears in their favorite
15713 @ \MP\ uses the same conventions that have proved to be satisfactory for
15714 \TeX\ and \MF. In order to isolate the system-dependent aspects of file names,
15715 @^system dependencies@>
15716 the system-independent parts of \MP\ are expressed in terms
15717 of three system-dependent
15718 procedures called |begin_name|, |more_name|, and |end_name|. In
15719 essence, if the user-specified characters of the file name are $c_1\ldots c_n$,
15720 the system-independent driver program does the operations
15721 $$|begin_name|;\,|more_name|(c_1);\,\ldots\,;|more_name|(c_n);
15723 These three procedures communicate with each other via global variables.
15724 Afterwards the file name will appear in the string pool as three strings
15725 called |cur_name|\penalty10000\hskip-.05em,
15726 |cur_area|, and |cur_ext|; the latter two are null (i.e.,
15727 |""|), unless they were explicitly specified by the user.
15729 Actually the situation is slightly more complicated, because \MP\ needs
15730 to know when the file name ends. The |more_name| routine is a function
15731 (with side effects) that returns |true| on the calls |more_name|$(c_1)$,
15732 \dots, |more_name|$(c_{n-1})$. The final call |more_name|$(c_n)$
15733 returns |false|; or, it returns |true| and $c_n$ is the last character
15734 on the current input line. In other words,
15735 |more_name| is supposed to return |true| unless it is sure that the
15736 file name has been completely scanned; and |end_name| is supposed to be able
15737 to finish the assembly of |cur_name|, |cur_area|, and |cur_ext| regardless of
15738 whether $|more_name|(c_n)$ returned |true| or |false|.
15741 char * cur_name; /* name of file just scanned */
15742 char * cur_area; /* file area just scanned, or \.{""} */
15743 char * cur_ext; /* file extension just scanned, or \.{""} */
15745 @ It is easier to maintain reference counts if we assign initial values.
15748 mp->cur_name=xstrdup("");
15749 mp->cur_area=xstrdup("");
15750 mp->cur_ext=xstrdup("");
15752 @ @<Dealloc variables@>=
15753 xfree(mp->cur_area);
15754 xfree(mp->cur_name);
15755 xfree(mp->cur_ext);
15757 @ The file names we shall deal with for illustrative purposes have the
15758 following structure: If the name contains `\.>' or `\.:', the file area
15759 consists of all characters up to and including the final such character;
15760 otherwise the file area is null. If the remaining file name contains
15761 `\..', the file extension consists of all such characters from the first
15762 remaining `\..' to the end, otherwise the file extension is null.
15763 @^system dependencies@>
15765 We can scan such file names easily by using two global variables that keep track
15766 of the occurrences of area and extension delimiters. Note that these variables
15767 cannot be of type |pool_pointer| because a string pool compaction could occur
15768 while scanning a file name.
15771 integer area_delimiter;
15772 /* most recent `\.>' or `\.:' relative to |str_start[str_ptr]| */
15773 integer ext_delimiter; /* the relevant `\..', if any */
15775 @ Input files that can't be found in the user's area may appear in standard
15776 system areas called |MP_area| and |MF_area|. (The latter is used when the file
15777 extension is |".mf"|.) The standard system area for font metric files
15778 to be read is |MP_font_area|.
15779 This system area name will, of course, vary from place to place.
15780 @^system dependencies@>
15782 @d MP_area "MPinputs:"
15784 @d MF_area "MFinputs:"
15789 @ Here now is the first of the system-dependent routines for file name scanning.
15790 @^system dependencies@>
15792 @<Declare subroutines for parsing file names@>=
15793 void mp_begin_name (MP mp) {
15794 xfree(mp->cur_name);
15795 xfree(mp->cur_area);
15796 xfree(mp->cur_ext);
15797 mp->area_delimiter=-1;
15798 mp->ext_delimiter=-1;
15801 @ And here's the second.
15802 @^system dependencies@>
15804 @<Declare subroutines for parsing file names@>=
15805 boolean mp_more_name (MP mp, ASCII_code c) {
15809 if ( (c=='>')||(c==':') ) {
15810 mp->area_delimiter=mp->pool_ptr;
15811 mp->ext_delimiter=-1;
15812 } else if ( (c=='.')&&(mp->ext_delimiter<0) ) {
15813 mp->ext_delimiter=mp->pool_ptr;
15815 str_room(1); append_char(c); /* contribute |c| to the current string */
15821 @^system dependencies@>
15823 @d copy_pool_segment(A,B,C) {
15824 A = xmalloc(C+1,sizeof(char));
15825 strncpy(A,(char *)(mp->str_pool+B),C);
15828 @<Declare subroutines for parsing file names@>=
15829 void mp_end_name (MP mp) {
15830 pool_pointer s; /* length of area, name, and extension */
15833 s = mp->str_start[mp->str_ptr];
15834 if ( mp->area_delimiter<0 ) {
15835 mp->cur_area=xstrdup("");
15837 len = mp->area_delimiter-s;
15838 copy_pool_segment(mp->cur_area,s,len);
15841 if ( mp->ext_delimiter<0 ) {
15842 mp->cur_ext=xstrdup("");
15843 len = mp->pool_ptr-s;
15845 copy_pool_segment(mp->cur_ext,mp->ext_delimiter,(mp->pool_ptr-mp->ext_delimiter));
15846 len = mp->ext_delimiter-s;
15848 copy_pool_segment(mp->cur_name,s,len);
15849 mp->pool_ptr=s; /* don't need this partial string */
15852 @ Conversely, here is a routine that takes three strings and prints a file
15853 name that might have produced them. (The routine is system dependent, because
15854 some operating systems put the file area last instead of first.)
15855 @^system dependencies@>
15857 @<Basic printing...@>=
15858 void mp_print_file_name (MP mp, char * n, char * a, char * e) {
15859 mp_print(mp, a); mp_print(mp, n); mp_print(mp, e);
15862 @ Another system-dependent routine is needed to convert three internal
15864 to the |name_of_file| value that is used to open files. The present code
15865 allows both lowercase and uppercase letters in the file name.
15866 @^system dependencies@>
15868 @d append_to_name(A) { c=(A);
15869 if ( k<file_name_size ) {
15870 mp->name_of_file[k]=xchr(c);
15875 @<Declare subroutines for parsing file names@>=
15876 void mp_pack_file_name (MP mp, char *n, char *a, char *e) {
15877 integer k; /* number of positions filled in |name_of_file| */
15878 ASCII_code c; /* character being packed */
15879 char *j; /* a character index */
15883 for (j=a;*j;j++) { append_to_name(*j); }
15885 for (j=n;*j;j++) { append_to_name(*j); }
15887 for (j=e;*j;j++) { append_to_name(*j); }
15889 mp->name_of_file[k]=0;
15893 @ @<Internal library declarations@>=
15894 void mp_pack_file_name (MP mp, char *n, char *a, char *e) ;
15896 @ A messier routine is also needed, since mem file names must be scanned
15897 before \MP's string mechanism has been initialized. We shall use the
15898 global variable |MP_mem_default| to supply the text for default system areas
15899 and extensions related to mem files.
15900 @^system dependencies@>
15902 @d mem_default_length 9 /* length of the |MP_mem_default| string */
15903 @d mem_ext_length 4 /* length of its `\.{.mem}' part */
15904 @d mem_extension ".mem" /* the extension, as a \.{WEB} constant */
15907 char *MP_mem_default;
15908 char *mem_name; /* for commandline */
15910 @ @<Option variables@>=
15911 char *mem_name; /* for commandline */
15913 @ @<Allocate or initialize ...@>=
15914 mp->MP_mem_default = xstrdup("plain.mem");
15915 mp->mem_name = xstrdup(opt->mem_name);
15917 @^system dependencies@>
15919 @ @<Dealloc variables@>=
15920 xfree(mp->MP_mem_default);
15921 xfree(mp->mem_name);
15923 @ @<Check the ``constant'' values for consistency@>=
15924 if ( mem_default_length>file_name_size ) mp->bad=20;
15926 @ Here is the messy routine that was just mentioned. It sets |name_of_file|
15927 from the first |n| characters of |MP_mem_default|, followed by
15928 |buffer[a..b-1]|, followed by the last |mem_ext_length| characters of
15931 We dare not give error messages here, since \MP\ calls this routine before
15932 the |error| routine is ready to roll. Instead, we simply drop excess characters,
15933 since the error will be detected in another way when a strange file name
15935 @^system dependencies@>
15937 @c void mp_pack_buffered_name (MP mp,small_number n, integer a,
15939 integer k; /* number of positions filled in |name_of_file| */
15940 ASCII_code c; /* character being packed */
15941 integer j; /* index into |buffer| or |MP_mem_default| */
15942 if ( n+b-a+1+mem_ext_length>file_name_size )
15943 b=a+file_name_size-n-1-mem_ext_length;
15945 for (j=0;j<n;j++) {
15946 append_to_name(xord((int)mp->MP_mem_default[j]));
15948 for (j=a;j<b;j++) {
15949 append_to_name(mp->buffer[j]);
15951 for (j=mem_default_length-mem_ext_length;
15952 j<mem_default_length;j++) {
15953 append_to_name(xord((int)mp->MP_mem_default[j]));
15955 mp->name_of_file[k]=0;
15959 @ Here is the only place we use |pack_buffered_name|. This part of the program
15960 becomes active when a ``virgin'' \MP\ is trying to get going, just after
15961 the preliminary initialization, or when the user is substituting another
15962 mem file by typing `\.\&' after the initial `\.{**}' prompt. The buffer
15963 contains the first line of input in |buffer[loc..(last-1)]|, where
15964 |loc<last| and |buffer[loc]<>" "|.
15967 boolean mp_open_mem_file (MP mp) ;
15970 boolean mp_open_mem_file (MP mp) {
15971 int j; /* the first space after the file name */
15972 if (mp->mem_name!=NULL) {
15973 mp->mem_file = mp_open_file(mp, mp->mem_name, "rb", mp_filetype_memfile);
15974 if ( mp->mem_file ) return true;
15977 if ( mp->buffer[loc]=='&' ) {
15978 incr(loc); j=loc; mp->buffer[mp->last]=' ';
15979 while ( mp->buffer[j]!=' ' ) incr(j);
15980 mp_pack_buffered_name(mp, 0,loc,j); /* try first without the system file area */
15981 if ( mp_w_open_in(mp, &mp->mem_file) ) goto FOUND;
15983 wterm_ln("Sorry, I can\'t find that mem file; will try PLAIN.");
15984 @.Sorry, I can't find...@>
15987 /* now pull out all the stops: try for the system \.{plain} file */
15988 mp_pack_buffered_name(mp, mem_default_length-mem_ext_length,0,0);
15989 if ( ! mp_w_open_in(mp, &mp->mem_file) ) {
15991 wterm_ln("I can\'t find the PLAIN mem file!\n");
15992 @.I can't find PLAIN...@>
15997 loc=j; return true;
16000 @ Operating systems often make it possible to determine the exact name (and
16001 possible version number) of a file that has been opened. The following routine,
16002 which simply makes a \MP\ string from the value of |name_of_file|, should
16003 ideally be changed to deduce the full name of file~|f|, which is the file
16004 most recently opened, if it is possible to do this in a \PASCAL\ program.
16005 @^system dependencies@>
16008 #define mp_a_make_name_string(A,B) mp_make_name_string(A)
16009 #define mp_b_make_name_string(A,B) mp_make_name_string(A)
16010 #define mp_w_make_name_string(A,B) mp_make_name_string(A)
16013 str_number mp_make_name_string (MP mp) {
16014 int k; /* index into |name_of_file| */
16015 str_room(mp->name_length);
16016 for (k=0;k<mp->name_length;k++) {
16017 append_char(xord((int)mp->name_of_file[k]));
16019 return mp_make_string(mp);
16022 @ Now let's consider the ``driver''
16023 routines by which \MP\ deals with file names
16024 in a system-independent manner. First comes a procedure that looks for a
16025 file name in the input by taking the information from the input buffer.
16026 (We can't use |get_next|, because the conversion to tokens would
16027 destroy necessary information.)
16029 This procedure doesn't allow semicolons or percent signs to be part of
16030 file names, because of other conventions of \MP.
16031 {\sl The {\logos METAFONT\/}book} doesn't
16032 use semicolons or percents immediately after file names, but some users
16033 no doubt will find it natural to do so; therefore system-dependent
16034 changes to allow such characters in file names should probably
16035 be made with reluctance, and only when an entire file name that
16036 includes special characters is ``quoted'' somehow.
16037 @^system dependencies@>
16039 @c void mp_scan_file_name (MP mp) {
16041 while ( mp->buffer[loc]==' ' ) incr(loc);
16043 if ( (mp->buffer[loc]==';')||(mp->buffer[loc]=='%') ) break;
16044 if ( ! mp_more_name(mp, mp->buffer[loc]) ) break;
16050 @ Here is another version that takes its input from a string.
16052 @<Declare subroutines for parsing file names@>=
16053 void mp_str_scan_file (MP mp, str_number s) {
16054 pool_pointer p,q; /* current position and stopping point */
16056 p=mp->str_start[s]; q=str_stop(s);
16058 if ( ! mp_more_name(mp, mp->str_pool[p]) ) break;
16064 @ And one that reads from a |char*|.
16066 @<Declare subroutines for parsing file names@>=
16067 void mp_ptr_scan_file (MP mp, char *s) {
16068 char *p, *q; /* current position and stopping point */
16070 p=s; q=p+strlen(s);
16072 if ( ! mp_more_name(mp, *p)) break;
16079 @ The global variable |job_name| contains the file name that was first
16080 \&{input} by the user. This name is extended by `\.{.log}' and `\.{ps}' and
16081 `\.{.mem}' and `\.{.tfm}' in order to make the names of \MP's output files.
16084 char *job_name; /* principal file name */
16085 boolean log_opened; /* has the transcript file been opened? */
16086 char *log_name; /* full name of the log file */
16088 @ @<Option variables@>=
16089 char *job_name; /* principal file name */
16091 @ Initially |job_name=NULL|; it becomes nonzero as soon as the true name is known.
16092 We have |job_name=NULL| if and only if the `\.{log}' file has not been opened,
16093 except of course for a short time just after |job_name| has become nonzero.
16095 @<Allocate or ...@>=
16096 mp->job_name=opt->job_name;
16097 mp->log_opened=false;
16099 @ @<Dealloc variables@>=
16100 xfree(mp->job_name);
16102 @ Here is a routine that manufactures the output file names, assuming that
16103 |job_name<>0|. It ignores and changes the current settings of |cur_area|
16106 @d pack_cur_name mp_pack_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext)
16109 void mp_pack_job_name (MP mp, char *s) ;
16111 @ @c void mp_pack_job_name (MP mp, char *s) { /* |s = ".log"|, |".mem"|, |".ps"|, or .\\{nnn} */
16112 xfree(mp->cur_name); mp->cur_name=xstrdup(mp->job_name);
16113 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16114 xfree(mp->cur_ext); mp->cur_ext=xstrdup(s);
16118 @ If some trouble arises when \MP\ tries to open a file, the following
16119 routine calls upon the user to supply another file name. Parameter~|s|
16120 is used in the error message to identify the type of file; parameter~|e|
16121 is the default extension if none is given. Upon exit from the routine,
16122 variables |cur_name|, |cur_area|, |cur_ext|, and |name_of_file| are
16123 ready for another attempt at file opening.
16126 void mp_prompt_file_name (MP mp,char * s, char * e) ;
16128 @ @c void mp_prompt_file_name (MP mp,char * s, char * e) {
16129 size_t k; /* index into |buffer| */
16130 char * saved_cur_name;
16131 if ( mp->interaction==mp_scroll_mode )
16133 if (strcmp(s,"input file name")==0) {
16134 print_err("I can\'t find file `");
16135 @.I can't find file x@>
16137 print_err("I can\'t write on file `");
16139 @.I can't write on file x@>
16140 mp_print_file_name(mp, mp->cur_name,mp->cur_area,mp->cur_ext);
16141 mp_print(mp, "'.");
16142 if (strcmp(e,"")==0)
16143 mp_show_context(mp);
16144 mp_print_nl(mp, "Please type another "); mp_print(mp, s);
16146 if ( mp->interaction<mp_scroll_mode )
16147 mp_fatal_error(mp, "*** (job aborted, file error in nonstop mode)");
16148 @.job aborted, file error...@>
16149 saved_cur_name = xstrdup(mp->cur_name);
16150 clear_terminal; prompt_input(": "); @<Scan file name in the buffer@>;
16151 if (strcmp(mp->cur_ext,"")==0)
16153 if (strlen(mp->cur_name)==0) {
16154 mp->cur_name=saved_cur_name;
16156 xfree(saved_cur_name);
16161 @ @<Scan file name in the buffer@>=
16163 mp_begin_name(mp); k=mp->first;
16164 while ( (mp->buffer[k]==' ')&&(k<mp->last) ) incr(k);
16166 if ( k==mp->last ) break;
16167 if ( ! mp_more_name(mp, mp->buffer[k]) ) break;
16173 @ The |open_log_file| routine is used to open the transcript file and to help
16174 it catch up to what has previously been printed on the terminal.
16176 @c void mp_open_log_file (MP mp) {
16177 int old_setting; /* previous |selector| setting */
16178 int k; /* index into |months| and |buffer| */
16179 int l; /* end of first input line */
16180 integer m; /* the current month */
16181 char *months="JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC";
16182 /* abbreviations of month names */
16183 old_setting=mp->selector;
16184 if ( mp->job_name==NULL ) {
16185 mp->job_name=xstrdup("mpout");
16187 mp_pack_job_name(mp,".log");
16188 while ( ! mp_a_open_out(mp, &mp->log_file, mp_filetype_log) ) {
16189 @<Try to get a different log file name@>;
16191 mp->log_name=xstrdup(mp->name_of_file);
16192 mp->selector=log_only; mp->log_opened=true;
16193 @<Print the banner line, including the date and time@>;
16194 mp->input_stack[mp->input_ptr]=mp->cur_input;
16195 /* make sure bottom level is in memory */
16196 mp_print_nl(mp, "**");
16198 l=mp->input_stack[0].limit_field-1; /* last position of first line */
16199 for (k=0;k<=l;k++) mp_print_str(mp, mp->buffer[k]);
16200 mp_print_ln(mp); /* now the transcript file contains the first line of input */
16201 mp->selector=old_setting+2; /* |log_only| or |term_and_log| */
16204 @ @<Dealloc variables@>=
16205 xfree(mp->log_name);
16207 @ Sometimes |open_log_file| is called at awkward moments when \MP\ is
16208 unable to print error messages or even to |show_context|.
16209 The |prompt_file_name| routine can result in a |fatal_error|, but the |error|
16210 routine will not be invoked because |log_opened| will be false.
16212 The normal idea of |mp_batch_mode| is that nothing at all should be written
16213 on the terminal. However, in the unusual case that
16214 no log file could be opened, we make an exception and allow
16215 an explanatory message to be seen.
16217 Incidentally, the program always refers to the log file as a `\.{transcript
16218 file}', because some systems cannot use the extension `\.{.log}' for
16221 @<Try to get a different log file name@>=
16223 mp->selector=term_only;
16224 mp_prompt_file_name(mp, "transcript file name",".log");
16227 @ @<Print the banner...@>=
16230 mp_print(mp, mp->mem_ident); mp_print(mp, " ");
16231 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_day]));
16232 mp_print_char(mp, ' ');
16233 m=mp_round_unscaled(mp, mp->internal[mp_month]);
16234 for (k=3*m-3;k<3*m;k++) { wlog_chr(months[k]); }
16235 mp_print_char(mp, ' ');
16236 mp_print_int(mp, mp_round_unscaled(mp, mp->internal[mp_year]));
16237 mp_print_char(mp, ' ');
16238 m=mp_round_unscaled(mp, mp->internal[mp_time]);
16239 mp_print_dd(mp, m / 60); mp_print_char(mp, ':'); mp_print_dd(mp, m % 60);
16242 @ The |try_extension| function tries to open an input file determined by
16243 |cur_name|, |cur_area|, and the argument |ext|. It returns |false| if it
16244 can't find the file in |cur_area| or the appropriate system area.
16246 @c boolean mp_try_extension (MP mp,char *ext) {
16247 mp_pack_file_name(mp, mp->cur_name,mp->cur_area, ext);
16248 in_name=xstrdup(mp->cur_name);
16249 in_area=xstrdup(mp->cur_area);
16250 if ( mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16253 if (strcmp(ext,".mf")==0 ) in_area=xstrdup(MF_area);
16254 else in_area=xstrdup(MP_area);
16255 mp_pack_file_name(mp, mp->cur_name,in_area,ext);
16256 return mp_a_open_in(mp, &cur_file, mp_filetype_program);
16261 @ Let's turn now to the procedure that is used to initiate file reading
16262 when an `\.{input}' command is being processed.
16264 @c void mp_start_input (MP mp) { /* \MP\ will \.{input} something */
16265 char *fname = NULL;
16266 @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>;
16268 mp_begin_file_reading(mp); /* set up |cur_file| and new level of input */
16269 if ( strlen(mp->cur_ext)==0 ) {
16270 if ( mp_try_extension(mp, ".mp") ) break;
16271 else if ( mp_try_extension(mp, "") ) break;
16272 else if ( mp_try_extension(mp, ".mf") ) break;
16273 /* |else do_nothing; | */
16274 } else if ( mp_try_extension(mp, mp->cur_ext) ) {
16277 mp_end_file_reading(mp); /* remove the level that didn't work */
16278 mp_prompt_file_name(mp, "input file name","");
16280 name=mp_a_make_name_string(mp, cur_file);
16281 fname = xstrdup(mp->name_of_file);
16282 if ( mp->job_name==NULL ) {
16283 mp->job_name=xstrdup(mp->cur_name);
16284 mp_open_log_file(mp);
16285 } /* |open_log_file| doesn't |show_context|, so |limit|
16286 and |loc| needn't be set to meaningful values yet */
16287 if ( ((int)mp->term_offset+(int)strlen(fname)) > (mp->max_print_line-2)) mp_print_ln(mp);
16288 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
16289 mp_print_char(mp, '('); incr(mp->open_parens); mp_print(mp, fname);
16292 @<Flush |name| and replace it with |cur_name| if it won't be needed@>;
16293 @<Read the first line of the new file@>;
16296 @ This code should be omitted if |a_make_name_string| returns something other
16297 than just a copy of its argument and the full file name is needed for opening
16298 \.{MPX} files or implementing the switch-to-editor option.
16299 @^system dependencies@>
16301 @<Flush |name| and replace it with |cur_name| if it won't be needed@>=
16302 mp_flush_string(mp, name); name=rts(mp->cur_name); xfree(mp->cur_name)
16304 @ Here we have to remember to tell the |input_ln| routine not to
16305 start with a |get|. If the file is empty, it is considered to
16306 contain a single blank line.
16307 @^system dependencies@>
16309 @<Read the first line...@>=
16312 (void)mp_input_ln(mp, cur_file,false);
16313 mp_firm_up_the_line(mp);
16314 mp->buffer[limit]='%'; mp->first=limit+1; loc=start;
16317 @ @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>=
16318 while ( token_state &&(loc==null) ) mp_end_token_list(mp);
16319 if ( token_state ) {
16320 print_err("File names can't appear within macros");
16321 @.File names can't...@>
16322 help3("Sorry...I've converted what follows to tokens,")
16323 ("possibly garbaging the name you gave.")
16324 ("Please delete the tokens and insert the name again.");
16327 if ( file_state ) {
16328 mp_scan_file_name(mp);
16330 xfree(mp->cur_name); mp->cur_name=xstrdup("");
16331 xfree(mp->cur_ext); mp->cur_ext =xstrdup("");
16332 xfree(mp->cur_area); mp->cur_area=xstrdup("");
16335 @ Sometimes we need to deal with two file names at once. This procedure
16336 copies the given string into a special array for an old file name.
16338 @c void mp_copy_old_name (MP mp,str_number s) {
16339 integer k; /* number of positions filled in |old_file_name| */
16340 pool_pointer j; /* index into |str_pool| */
16342 for (j=mp->str_start[s];j<=str_stop(s)-1;j++) {
16344 if ( k<=file_name_size )
16345 mp->old_file_name[k]=xchr(mp->str_pool[j]);
16347 mp->old_file_name[++k] = 0;
16351 char old_file_name[file_name_size+1]; /* analogous to |name_of_file| */
16353 @ The following simple routine starts reading the \.{MPX} file associated
16354 with the current input file.
16356 @c void mp_start_mpx_input (MP mp) {
16357 mp_pack_file_name(mp, in_name, in_area, ".mpx");
16358 @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16359 |goto not_found| if there is a problem@>;
16360 mp_begin_file_reading(mp);
16361 if ( ! mp_a_open_in(mp, &cur_file, mp_filetype_program) ) {
16362 mp_end_file_reading(mp);
16365 name=mp_a_make_name_string(mp, cur_file);
16366 mp->mpx_name[index]=name; add_str_ref(name);
16367 @<Read the first line of the new file@>;
16370 @<Explain that the \.{MPX} file can't be read and |succumb|@>;
16373 @ This should ideally be changed to do whatever is necessary to create the
16374 \.{MPX} file given by |name_of_file| if it does not exist or if it is out
16375 of date. This requires invoking \.{MPtoTeX} on the |old_file_name| and passing
16376 the results through \TeX\ and \.{DVItoMP}. (It is possible to use a
16377 completely different typesetting program if suitable postprocessor is
16378 available to perform the function of \.{DVItoMP}.)
16379 @^system dependencies@>
16381 @ @<Exported types@>=
16382 typedef int (*mp_run_make_mpx_command)(MP mp, char *origname, char *mtxname);
16385 mp_run_make_mpx_command run_make_mpx;
16387 @ @<Option variables@>=
16388 mp_run_make_mpx_command run_make_mpx;
16390 @ @<Allocate or initialize ...@>=
16391 set_callback_option(run_make_mpx);
16393 @ @<Internal library declarations@>=
16394 int mp_run_make_mpx (MP mp, char *origname, char *mtxname);
16396 @ The default does nothing.
16398 int mp_run_make_mpx (MP mp, char *origname, char *mtxname) {
16399 if (mp && origname && mtxname) /* for -W */
16406 @ @<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
16407 |goto not_found| if there is a problem@>=
16408 mp_copy_old_name(mp, name);
16409 if (!(mp->run_make_mpx)(mp, mp->old_file_name, mp->name_of_file))
16412 @ @<Explain that the \.{MPX} file can't be read and |succumb|@>=
16413 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16414 mp_print_nl(mp, ">> ");
16415 mp_print(mp, mp->old_file_name);
16416 mp_print_nl(mp, ">> ");
16417 mp_print(mp, mp->name_of_file);
16418 mp_print_nl(mp, "! Unable to make mpx file");
16419 help4("The two files given above are one of your source files")
16420 ("and an auxiliary file I need to read to find out what your")
16421 ("btex..etex blocks mean. If you don't know why I had trouble,")
16422 ("try running it manually through MPtoTeX, TeX, and DVItoMP");
16425 @ The last file-opening commands are for files accessed via the \&{readfrom}
16426 @:read_from_}{\&{readfrom} primitive@>
16427 operator and the \&{write} command. Such files are stored in separate arrays.
16428 @:write_}{\&{write} primitive@>
16430 @<Types in the outer block@>=
16431 typedef unsigned int readf_index; /* |0..max_read_files| */
16432 typedef unsigned int write_index; /* |0..max_write_files| */
16435 readf_index max_read_files; /* maximum number of simultaneously open \&{readfrom} files */
16436 FILE ** rd_file; /* \&{readfrom} files */
16437 char ** rd_fname; /* corresponding file name or 0 if file not open */
16438 readf_index read_files; /* number of valid entries in the above arrays */
16439 write_index max_write_files; /* maximum number of simultaneously open \&{write} */
16440 FILE ** wr_file; /* \&{write} files */
16441 char ** wr_fname; /* corresponding file name or 0 if file not open */
16442 write_index write_files; /* number of valid entries in the above arrays */
16444 @ @<Allocate or initialize ...@>=
16445 mp->max_read_files=8;
16446 mp->rd_file = xmalloc((mp->max_read_files+1),sizeof(FILE *));
16447 mp->rd_fname = xmalloc((mp->max_read_files+1),sizeof(char *));
16448 memset(mp->rd_fname, 0, sizeof(char *)*(mp->max_read_files+1));
16450 mp->max_write_files=8;
16451 mp->wr_file = xmalloc((mp->max_write_files+1),sizeof(FILE *));
16452 mp->wr_fname = xmalloc((mp->max_write_files+1),sizeof(char *));
16453 memset(mp->wr_fname, 0, sizeof(char *)*(mp->max_write_files+1));
16457 @ This routine starts reading the file named by string~|s| without setting
16458 |loc|, |limit|, or |name|. It returns |false| if the file is empty or cannot
16459 be opened. Otherwise it updates |rd_file[n]| and |rd_fname[n]|.
16461 @c boolean mp_start_read_input (MP mp,char *s, readf_index n) {
16462 mp_ptr_scan_file(mp, s);
16464 mp_begin_file_reading(mp);
16465 if ( ! mp_a_open_in(mp, &mp->rd_file[n], mp_filetype_text) )
16467 if ( ! mp_input_ln(mp, mp->rd_file[n], false) ) {
16468 fclose(mp->rd_file[n]);
16471 mp->rd_fname[n]=xstrdup(mp->name_of_file);
16474 mp_end_file_reading(mp);
16478 @ Open |wr_file[n]| using file name~|s| and update |wr_fname[n]|.
16481 void mp_open_write_file (MP mp, char *s, readf_index n) ;
16483 @ @c void mp_open_write_file (MP mp,char *s, readf_index n) {
16484 mp_ptr_scan_file(mp, s);
16486 while ( ! mp_a_open_out(mp, &mp->wr_file[n], mp_filetype_text) )
16487 mp_prompt_file_name(mp, "file name for write output","");
16488 mp->wr_fname[n]=xstrdup(mp->name_of_file);
16492 @* \[36] Introduction to the parsing routines.
16493 We come now to the central nervous system that sparks many of \MP's activities.
16494 By evaluating expressions, from their primary constituents to ever larger
16495 subexpressions, \MP\ builds the structures that ultimately define complete
16496 pictures or fonts of type.
16498 Four mutually recursive subroutines are involved in this process: We call them
16499 $$\hbox{|scan_primary|, |scan_secondary|, |scan_tertiary|,
16500 and |scan_expression|.}$$
16502 Each of them is parameterless and begins with the first token to be scanned
16503 already represented in |cur_cmd|, |cur_mod|, and |cur_sym|. After execution,
16504 the value of the primary or secondary or tertiary or expression that was
16505 found will appear in the global variables |cur_type| and |cur_exp|. The
16506 token following the expression will be represented in |cur_cmd|, |cur_mod|,
16509 Technically speaking, the parsing algorithms are ``LL(1),'' more or less;
16510 backup mechanisms have been added in order to provide reasonable error
16514 small_number cur_type; /* the type of the expression just found */
16515 integer cur_exp; /* the value of the expression just found */
16520 @ Many different kinds of expressions are possible, so it is wise to have
16521 precise descriptions of what |cur_type| and |cur_exp| mean in all cases:
16524 |cur_type=mp_vacuous| means that this expression didn't turn out to have a
16525 value at all, because it arose from a \&{begingroup}$\,\ldots\,$\&{endgroup}
16526 construction in which there was no expression before the \&{endgroup}.
16527 In this case |cur_exp| has some irrelevant value.
16530 |cur_type=mp_boolean_type| means that |cur_exp| is either |true_code|
16534 |cur_type=mp_unknown_boolean| means that |cur_exp| points to a capsule
16535 node that is in the ring of variables equivalent
16536 to at least one undefined boolean variable.
16539 |cur_type=mp_string_type| means that |cur_exp| is a string number (i.e., an
16540 integer in the range |0<=cur_exp<str_ptr|). That string's reference count
16541 includes this particular reference.
16544 |cur_type=mp_unknown_string| means that |cur_exp| points to a capsule
16545 node that is in the ring of variables equivalent
16546 to at least one undefined string variable.
16549 |cur_type=mp_pen_type| means that |cur_exp| points to a node in a pen. Nobody
16550 else points to any of the nodes in this pen. The pen may be polygonal or
16554 |cur_type=mp_unknown_pen| means that |cur_exp| points to a capsule
16555 node that is in the ring of variables equivalent
16556 to at least one undefined pen variable.
16559 |cur_type=mp_path_type| means that |cur_exp| points to a the first node of
16560 a path; nobody else points to this particular path. The control points of
16561 the path will have been chosen.
16564 |cur_type=mp_unknown_path| means that |cur_exp| points to a capsule
16565 node that is in the ring of variables equivalent
16566 to at least one undefined path variable.
16569 |cur_type=mp_picture_type| means that |cur_exp| points to an edge header node.
16570 There may be other pointers to this particular set of edges. The header node
16571 contains a reference count that includes this particular reference.
16574 |cur_type=mp_unknown_picture| means that |cur_exp| points to a capsule
16575 node that is in the ring of variables equivalent
16576 to at least one undefined picture variable.
16579 |cur_type=mp_transform_type| means that |cur_exp| points to a |mp_transform_type|
16580 capsule node. The |value| part of this capsule
16581 points to a transform node that contains six numeric values,
16582 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16585 |cur_type=mp_color_type| means that |cur_exp| points to a |color_type|
16586 capsule node. The |value| part of this capsule
16587 points to a color node that contains three numeric values,
16588 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16591 |cur_type=mp_cmykcolor_type| means that |cur_exp| points to a |mp_cmykcolor_type|
16592 capsule node. The |value| part of this capsule
16593 points to a color node that contains four numeric values,
16594 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16597 |cur_type=mp_pair_type| means that |cur_exp| points to a capsule
16598 node whose type is |mp_pair_type|. The |value| part of this capsule
16599 points to a pair node that contains two numeric values,
16600 each of which is |independent|, |dependent|, |mp_proto_dependent|, or |known|.
16603 |cur_type=mp_known| means that |cur_exp| is a |scaled| value.
16606 |cur_type=mp_dependent| means that |cur_exp| points to a capsule node whose type
16607 is |dependent|. The |dep_list| field in this capsule points to the associated
16611 |cur_type=mp_proto_dependent| means that |cur_exp| points to a |mp_proto_dependent|
16612 capsule node. The |dep_list| field in this capsule
16613 points to the associated dependency list.
16616 |cur_type=independent| means that |cur_exp| points to a capsule node
16617 whose type is |independent|. This somewhat unusual case can arise, for
16618 example, in the expression
16619 `$x+\&{begingroup}\penalty0\,\&{string}\,x; 0\,\&{endgroup}$'.
16622 |cur_type=mp_token_list| means that |cur_exp| points to a linked list of
16623 tokens. This case arises only on the left-hand side of an assignment
16624 (`\.{:=}') operation, under very special circumstances.
16626 \smallskip\noindent
16627 The possible settings of |cur_type| have been listed here in increasing
16628 numerical order. Notice that |cur_type| will never be |mp_numeric_type| or
16629 |suffixed_macro| or |mp_unsuffixed_macro|, although variables of those types
16630 are allowed. Conversely, \MP\ has no variables of type |mp_vacuous| or
16633 @ Capsules are two-word nodes that have a similar meaning
16634 to |cur_type| and |cur_exp|. Such nodes have |name_type=capsule|
16635 and |link<=mp_void|; and their |type| field is one of the possibilities for
16636 |cur_type| listed above.
16638 The |value| field of a capsule is, in most cases, the value that
16639 corresponds to its |type|, as |cur_exp| corresponds to |cur_type|.
16640 However, when |cur_exp| would point to a capsule,
16641 no extra layer of indirection is present; the |value|
16642 field is what would have been called |value(cur_exp)| if it had not been
16643 encapsulated. Furthermore, if the type is |dependent| or
16644 |mp_proto_dependent|, the |value| field of a capsule is replaced by
16645 |dep_list| and |prev_dep| fields, since dependency lists in capsules are
16646 always part of the general |dep_list| structure.
16648 The |get_x_next| routine is careful not to change the values of |cur_type|
16649 and |cur_exp| when it gets an expanded token. However, |get_x_next| might
16650 call a macro, which might parse an expression, which might execute lots of
16651 commands in a group; hence it's possible that |cur_type| might change
16652 from, say, |mp_unknown_boolean| to |mp_boolean_type|, or from |dependent| to
16653 |known| or |independent|, during the time |get_x_next| is called. The
16654 programs below are careful to stash sensitive intermediate results in
16655 capsules, so that \MP's generality doesn't cause trouble.
16657 Here's a procedure that illustrates these conventions. It takes
16658 the contents of $(|cur_type|\kern-.3pt,|cur_exp|\kern-.3pt)$
16659 and stashes them away in a
16660 capsule. It is not used when |cur_type=mp_token_list|.
16661 After the operation, |cur_type=mp_vacuous|; hence there is no need to
16662 copy path lists or to update reference counts, etc.
16664 The special link |mp_void| is put on the capsule returned by
16665 |stash_cur_exp|, because this procedure is used to store macro parameters
16666 that must be easily distinguishable from token lists.
16668 @<Declare the stashing/unstashing routines@>=
16669 pointer mp_stash_cur_exp (MP mp) {
16670 pointer p; /* the capsule that will be returned */
16671 switch (mp->cur_type) {
16672 case unknown_types:
16673 case mp_transform_type:
16674 case mp_color_type:
16677 case mp_proto_dependent:
16678 case mp_independent:
16679 case mp_cmykcolor_type:
16683 p=mp_get_node(mp, value_node_size); name_type(p)=mp_capsule;
16684 type(p)=mp->cur_type; value(p)=mp->cur_exp;
16687 mp->cur_type=mp_vacuous; link(p)=mp_void;
16691 @ The inverse of |stash_cur_exp| is the following procedure, which
16692 deletes an unnecessary capsule and puts its contents into |cur_type|
16695 The program steps of \MP\ can be divided into two categories: those in
16696 which |cur_type| and |cur_exp| are ``alive'' and those in which they are
16697 ``dead,'' in the sense that |cur_type| and |cur_exp| contain relevant
16698 information or not. It's important not to ignore them when they're alive,
16699 and it's important not to pay attention to them when they're dead.
16701 There's also an intermediate category: If |cur_type=mp_vacuous|, then
16702 |cur_exp| is irrelevant, hence we can proceed without caring if |cur_type|
16703 and |cur_exp| are alive or dead. In such cases we say that |cur_type|
16704 and |cur_exp| are {\sl dormant}. It is permissible to call |get_x_next|
16705 only when they are alive or dormant.
16707 The \\{stash} procedure above assumes that |cur_type| and |cur_exp|
16708 are alive or dormant. The \\{unstash} procedure assumes that they are
16709 dead or dormant; it resuscitates them.
16711 @<Declare the stashing/unstashing...@>=
16712 void mp_unstash_cur_exp (MP mp,pointer p) ;
16715 void mp_unstash_cur_exp (MP mp,pointer p) {
16716 mp->cur_type=type(p);
16717 switch (mp->cur_type) {
16718 case unknown_types:
16719 case mp_transform_type:
16720 case mp_color_type:
16723 case mp_proto_dependent:
16724 case mp_independent:
16725 case mp_cmykcolor_type:
16729 mp->cur_exp=value(p);
16730 mp_free_node(mp, p,value_node_size);
16735 @ The following procedure prints the values of expressions in an
16736 abbreviated format. If its first parameter |p| is null, the value of
16737 |(cur_type,cur_exp)| is displayed; otherwise |p| should be a capsule
16738 containing the desired value. The second parameter controls the amount of
16739 output. If it is~0, dependency lists will be abbreviated to
16740 `\.{linearform}' unless they consist of a single term. If it is greater
16741 than~1, complicated structures (pens, pictures, and paths) will be displayed
16744 @<Declare subroutines for printing expressions@>=
16745 @<Declare the procedure called |print_dp|@>;
16746 @<Declare the stashing/unstashing routines@>;
16747 void mp_print_exp (MP mp,pointer p, small_number verbosity) {
16748 boolean restore_cur_exp; /* should |cur_exp| be restored? */
16749 small_number t; /* the type of the expression */
16750 pointer q; /* a big node being displayed */
16751 integer v=0; /* the value of the expression */
16753 restore_cur_exp=false;
16755 p=mp_stash_cur_exp(mp); restore_cur_exp=true;
16758 if ( t<mp_dependent ) v=value(p); else if ( t<mp_independent ) v=dep_list(p);
16759 @<Print an abbreviated value of |v| with format depending on |t|@>;
16760 if ( restore_cur_exp ) mp_unstash_cur_exp(mp, p);
16763 @ @<Print an abbreviated value of |v| with format depending on |t|@>=
16765 case mp_vacuous:mp_print(mp, "mp_vacuous"); break;
16766 case mp_boolean_type:
16767 if ( v==true_code ) mp_print(mp, "true"); else mp_print(mp, "false");
16769 case unknown_types: case mp_numeric_type:
16770 @<Display a variable that's been declared but not defined@>;
16772 case mp_string_type:
16773 mp_print_char(mp, '"'); mp_print_str(mp, v); mp_print_char(mp, '"');
16775 case mp_pen_type: case mp_path_type: case mp_picture_type:
16776 @<Display a complex type@>;
16778 case mp_transform_type: case mp_color_type: case mp_pair_type: case mp_cmykcolor_type:
16779 if ( v==null ) mp_print_type(mp, t);
16780 else @<Display a big node@>;
16782 case mp_known:mp_print_scaled(mp, v); break;
16783 case mp_dependent: case mp_proto_dependent:
16784 mp_print_dp(mp, t,v,verbosity);
16786 case mp_independent:mp_print_variable_name(mp, p); break;
16787 default: mp_confusion(mp, "exp"); break;
16788 @:this can't happen exp}{\quad exp@>
16791 @ @<Display a big node@>=
16793 mp_print_char(mp, '('); q=v+mp->big_node_size[t];
16795 if ( type(v)==mp_known ) mp_print_scaled(mp, value(v));
16796 else if ( type(v)==mp_independent ) mp_print_variable_name(mp, v);
16797 else mp_print_dp(mp, type(v),dep_list(v),verbosity);
16799 if ( v!=q ) mp_print_char(mp, ',');
16801 mp_print_char(mp, ')');
16804 @ Values of type \&{picture}, \&{path}, and \&{pen} are displayed verbosely
16805 in the log file only, unless the user has given a positive value to
16808 @<Display a complex type@>=
16809 if ( verbosity<=1 ) {
16810 mp_print_type(mp, t);
16812 if ( mp->selector==term_and_log )
16813 if ( mp->internal[mp_tracing_online]<=0 ) {
16814 mp->selector=term_only;
16815 mp_print_type(mp, t); mp_print(mp, " (see the transcript file)");
16816 mp->selector=term_and_log;
16819 case mp_pen_type:mp_print_pen(mp, v,"",false); break;
16820 case mp_path_type:mp_print_path(mp, v,"",false); break;
16821 case mp_picture_type:mp_print_edges(mp, v,"",false); break;
16822 } /* there are no other cases */
16825 @ @<Declare the procedure called |print_dp|@>=
16826 void mp_print_dp (MP mp,small_number t, pointer p,
16827 small_number verbosity) {
16828 pointer q; /* the node following |p| */
16830 if ( (info(q)==null) || (verbosity>0) ) mp_print_dependency(mp, p,t);
16831 else mp_print(mp, "linearform");
16834 @ The displayed name of a variable in a ring will not be a capsule unless
16835 the ring consists entirely of capsules.
16837 @<Display a variable that's been declared but not defined@>=
16838 { mp_print_type(mp, t);
16840 { mp_print_char(mp, ' ');
16841 while ( (name_type(v)==mp_capsule) && (v!=p) ) v=value(v);
16842 mp_print_variable_name(mp, v);
16846 @ When errors are detected during parsing, it is often helpful to
16847 display an expression just above the error message, using |exp_err|
16848 or |disp_err| instead of |print_err|.
16850 @d exp_err(A) mp_disp_err(mp, null,(A)) /* displays the current expression */
16852 @<Declare subroutines for printing expressions@>=
16853 void mp_disp_err (MP mp,pointer p, char *s) {
16854 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
16855 mp_print_nl(mp, ">> ");
16857 mp_print_exp(mp, p,1); /* ``medium verbose'' printing of the expression */
16859 mp_print_nl(mp, "! "); mp_print(mp, s);
16864 @ If |cur_type| and |cur_exp| contain relevant information that should
16865 be recycled, we will use the following procedure, which changes |cur_type|
16866 to |known| and stores a given value in |cur_exp|. We can think of |cur_type|
16867 and |cur_exp| as either alive or dormant after this has been done,
16868 because |cur_exp| will not contain a pointer value.
16870 @ @c void mp_flush_cur_exp (MP mp,scaled v) {
16871 switch (mp->cur_type) {
16872 case unknown_types: case mp_transform_type: case mp_color_type: case mp_pair_type:
16873 case mp_dependent: case mp_proto_dependent: case mp_independent: case mp_cmykcolor_type:
16874 mp_recycle_value(mp, mp->cur_exp);
16875 mp_free_node(mp, mp->cur_exp,value_node_size);
16877 case mp_string_type:
16878 delete_str_ref(mp->cur_exp); break;
16879 case mp_pen_type: case mp_path_type:
16880 mp_toss_knot_list(mp, mp->cur_exp); break;
16881 case mp_picture_type:
16882 delete_edge_ref(mp->cur_exp); break;
16886 mp->cur_type=mp_known; mp->cur_exp=v;
16889 @ There's a much more general procedure that is capable of releasing
16890 the storage associated with any two-word value packet.
16892 @<Declare the recycling subroutines@>=
16893 void mp_recycle_value (MP mp,pointer p) ;
16895 @ @c void mp_recycle_value (MP mp,pointer p) {
16896 small_number t; /* a type code */
16897 integer vv; /* another value */
16898 pointer q,r,s,pp; /* link manipulation registers */
16899 integer v=0; /* a value */
16901 if ( t<mp_dependent ) v=value(p);
16903 case undefined: case mp_vacuous: case mp_boolean_type: case mp_known:
16904 case mp_numeric_type:
16906 case unknown_types:
16907 mp_ring_delete(mp, p); break;
16908 case mp_string_type:
16909 delete_str_ref(v); break;
16910 case mp_path_type: case mp_pen_type:
16911 mp_toss_knot_list(mp, v); break;
16912 case mp_picture_type:
16913 delete_edge_ref(v); break;
16914 case mp_cmykcolor_type: case mp_pair_type: case mp_color_type:
16915 case mp_transform_type:
16916 @<Recycle a big node@>; break;
16917 case mp_dependent: case mp_proto_dependent:
16918 @<Recycle a dependency list@>; break;
16919 case mp_independent:
16920 @<Recycle an independent variable@>; break;
16921 case mp_token_list: case mp_structured:
16922 mp_confusion(mp, "recycle"); break;
16923 @:this can't happen recycle}{\quad recycle@>
16924 case mp_unsuffixed_macro: case mp_suffixed_macro:
16925 mp_delete_mac_ref(mp, value(p)); break;
16926 } /* there are no other cases */
16930 @ @<Recycle a big node@>=
16932 q=v+mp->big_node_size[t];
16934 q=q-2; mp_recycle_value(mp, q);
16936 mp_free_node(mp, v,mp->big_node_size[t]);
16939 @ @<Recycle a dependency list@>=
16942 while ( info(q)!=null ) q=link(q);
16943 link(prev_dep(p))=link(q);
16944 prev_dep(link(q))=prev_dep(p);
16945 link(q)=null; mp_flush_node_list(mp, dep_list(p));
16948 @ When an independent variable disappears, it simply fades away, unless
16949 something depends on it. In the latter case, a dependent variable whose
16950 coefficient of dependence is maximal will take its place.
16951 The relevant algorithm is due to Ignacio~A. Zabala, who implemented it
16952 as part of his Ph.D. thesis (Stanford University, December 1982).
16953 @^Zabala Salelles, Ignacio Andres@>
16955 For example, suppose that variable $x$ is being recycled, and that the
16956 only variables depending on~$x$ are $y=2x+a$ and $z=x+b$. In this case
16957 we want to make $y$ independent and $z=.5y-.5a+b$; no other variables
16958 will depend on~$y$. If $\\{tracingequations}>0$ in this situation,
16959 we will print `\.{\#\#\# -2x=-y+a}'.
16961 There's a slight complication, however: An independent variable $x$
16962 can occur both in dependency lists and in proto-dependency lists.
16963 This makes it necessary to be careful when deciding which coefficient
16966 Furthermore, this complication is not so slight when
16967 a proto-dependent variable is chosen to become independent. For example,
16968 suppose that $y=2x+100a$ is proto-dependent while $z=x+b$ is dependent;
16969 then we must change $z=.5y-50a+b$ to a proto-dependency, because of the
16970 large coefficient `50'.
16972 In order to deal with these complications without wasting too much time,
16973 we shall link together the occurrences of~$x$ among all the linear
16974 dependencies, maintaining separate lists for the dependent and
16975 proto-dependent cases.
16977 @<Recycle an independent variable@>=
16979 mp->max_c[mp_dependent]=0; mp->max_c[mp_proto_dependent]=0;
16980 mp->max_link[mp_dependent]=null; mp->max_link[mp_proto_dependent]=null;
16982 while ( q!=dep_head ) {
16983 s=value_loc(q); /* now |link(s)=dep_list(q)| */
16986 if ( info(r)==null ) break;;
16987 if ( info(r)!=p ) {
16990 t=type(q); link(s)=link(r); info(r)=q;
16991 if ( abs(value(r))>mp->max_c[t] ) {
16992 @<Record a new maximum coefficient of type |t|@>;
16994 link(r)=mp->max_link[t]; mp->max_link[t]=r;
17000 if ( (mp->max_c[mp_dependent]>0)||(mp->max_c[mp_proto_dependent]>0) ) {
17001 @<Choose a dependent variable to take the place of the disappearing
17002 independent variable, and change all remaining dependencies
17007 @ The code for independency removal makes use of three two-word arrays.
17010 integer max_c[mp_proto_dependent+1]; /* max coefficient magnitude */
17011 pointer max_ptr[mp_proto_dependent+1]; /* where |p| occurs with |max_c| */
17012 pointer max_link[mp_proto_dependent+1]; /* other occurrences of |p| */
17014 @ @<Record a new maximum coefficient...@>=
17016 if ( mp->max_c[t]>0 ) {
17017 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
17019 mp->max_c[t]=abs(value(r)); mp->max_ptr[t]=r;
17022 @ @<Choose a dependent...@>=
17024 if ( (mp->max_c[mp_dependent] / 010000 >= mp->max_c[mp_proto_dependent]) )
17027 t=mp_proto_dependent;
17028 @<Determine the dependency list |s| to substitute for the independent
17030 t=mp_dependent+mp_proto_dependent-t; /* complement |t| */
17031 if ( mp->max_c[t]>0 ) { /* we need to pick up an unchosen dependency */
17032 link(mp->max_ptr[t])=mp->max_link[t]; mp->max_link[t]=mp->max_ptr[t];
17034 if ( t!=mp_dependent ) { @<Substitute new dependencies in place of |p|@>; }
17035 else { @<Substitute new proto-dependencies in place of |p|@>;}
17036 mp_flush_node_list(mp, s);
17037 if ( mp->fix_needed ) mp_fix_dependencies(mp);
17041 @ Let |s=max_ptr[t]|. At this point we have $|value|(s)=\pm|max_c|[t]$,
17042 and |info(s)| points to the dependent variable~|pp| of type~|t| from
17043 whose dependency list we have removed node~|s|. We must reinsert
17044 node~|s| into the dependency list, with coefficient $-1.0$, and with
17045 |pp| as the new independent variable. Since |pp| will have a larger serial
17046 number than any other variable, we can put node |s| at the head of the
17049 @<Determine the dep...@>=
17050 s=mp->max_ptr[t]; pp=info(s); v=value(s);
17051 if ( t==mp_dependent ) value(s)=-fraction_one; else value(s)=-unity;
17052 r=dep_list(pp); link(s)=r;
17053 while ( info(r)!=null ) r=link(r);
17054 q=link(r); link(r)=null;
17055 prev_dep(q)=prev_dep(pp); link(prev_dep(pp))=q;
17057 if ( mp->cur_exp==pp ) if ( mp->cur_type==t ) mp->cur_type=mp_independent;
17058 if ( mp->internal[mp_tracing_equations]>0 ) {
17059 @<Show the transformed dependency@>;
17062 @ Now $(-v)$ times the formerly independent variable~|p| is being replaced
17063 by the dependency list~|s|.
17065 @<Show the transformed...@>=
17066 if ( mp_interesting(mp, p) ) {
17067 mp_begin_diagnostic(mp); mp_print_nl(mp, "### ");
17068 @:]]]\#\#\#_}{\.{\#\#\#}@>
17069 if ( v>0 ) mp_print_char(mp, '-');
17070 if ( t==mp_dependent ) vv=mp_round_fraction(mp, mp->max_c[mp_dependent]);
17071 else vv=mp->max_c[mp_proto_dependent];
17072 if ( vv!=unity ) mp_print_scaled(mp, vv);
17073 mp_print_variable_name(mp, p);
17074 while ( value(p) % s_scale>0 ) {
17075 mp_print(mp, "*4"); value(p)=value(p)-2;
17077 if ( t==mp_dependent ) mp_print_char(mp, '='); else mp_print(mp, " = ");
17078 mp_print_dependency(mp, s,t);
17079 mp_end_diagnostic(mp, false);
17082 @ Finally, there are dependent and proto-dependent variables whose
17083 dependency lists must be brought up to date.
17085 @<Substitute new dependencies...@>=
17086 for (t=mp_dependent;t<=mp_proto_dependent;t++){
17088 while ( r!=null ) {
17090 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17091 mp_make_fraction(mp, value(r),-v),s,t,mp_dependent);
17092 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
17093 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
17097 @ @<Substitute new proto...@>=
17098 for (t=mp_dependent;t<=mp_proto_dependent;t++) {
17100 while ( r!=null ) {
17102 if ( t==mp_dependent ) { /* for safety's sake, we change |q| to |mp_proto_dependent| */
17103 if ( mp->cur_exp==q ) if ( mp->cur_type==mp_dependent )
17104 mp->cur_type=mp_proto_dependent;
17105 dep_list(q)=mp_p_over_v(mp, dep_list(q),unity,mp_dependent,mp_proto_dependent);
17106 type(q)=mp_proto_dependent; value(r)=mp_round_fraction(mp, value(r));
17108 dep_list(q)=mp_p_plus_fq(mp, dep_list(q),
17109 mp_make_scaled(mp, value(r),-v),s,mp_proto_dependent,mp_proto_dependent);
17110 if ( dep_list(q)==mp->dep_final ) mp_make_known(mp, q,mp->dep_final);
17111 q=r; r=link(r); mp_free_node(mp, q,dep_node_size);
17115 @ Here are some routines that provide handy combinations of actions
17116 that are often needed during error recovery. For example,
17117 `|flush_error|' flushes the current expression, replaces it by
17118 a given value, and calls |error|.
17120 Errors often are detected after an extra token has already been scanned.
17121 The `\\{put\_get}' routines put that token back before calling |error|;
17122 then they get it back again. (Or perhaps they get another token, if
17123 the user has changed things.)
17126 void mp_flush_error (MP mp,scaled v);
17127 void mp_put_get_error (MP mp);
17128 void mp_put_get_flush_error (MP mp,scaled v) ;
17131 void mp_flush_error (MP mp,scaled v) {
17132 mp_error(mp); mp_flush_cur_exp(mp, v);
17134 void mp_put_get_error (MP mp) {
17135 mp_back_error(mp); mp_get_x_next(mp);
17137 void mp_put_get_flush_error (MP mp,scaled v) {
17138 mp_put_get_error(mp);
17139 mp_flush_cur_exp(mp, v);
17142 @ A global variable |var_flag| is set to a special command code
17143 just before \MP\ calls |scan_expression|, if the expression should be
17144 treated as a variable when this command code immediately follows. For
17145 example, |var_flag| is set to |assignment| at the beginning of a
17146 statement, because we want to know the {\sl location\/} of a variable at
17147 the left of `\.{:=}', not the {\sl value\/} of that variable.
17149 The |scan_expression| subroutine calls |scan_tertiary|,
17150 which calls |scan_secondary|, which calls |scan_primary|, which sets
17151 |var_flag:=0|. In this way each of the scanning routines ``knows''
17152 when it has been called with a special |var_flag|, but |var_flag| is
17155 A variable preceding a command that equals |var_flag| is converted to a
17156 token list rather than a value. Furthermore, an `\.{=}' sign following an
17157 expression with |var_flag=assignment| is not considered to be a relation
17158 that produces boolean expressions.
17162 int var_flag; /* command that wants a variable */
17167 @* \[37] Parsing primary expressions.
17168 The first parsing routine, |scan_primary|, is also the most complicated one,
17169 since it involves so many different cases. But each case---with one
17170 exception---is fairly simple by itself.
17172 When |scan_primary| begins, the first token of the primary to be scanned
17173 should already appear in |cur_cmd|, |cur_mod|, and |cur_sym|. The values
17174 of |cur_type| and |cur_exp| should be either dead or dormant, as explained
17175 earlier. If |cur_cmd| is not between |min_primary_command| and
17176 |max_primary_command|, inclusive, a syntax error will be signaled.
17178 @<Declare the basic parsing subroutines@>=
17179 void mp_scan_primary (MP mp) {
17180 pointer p,q,r; /* for list manipulation */
17181 quarterword c; /* a primitive operation code */
17182 int my_var_flag; /* initial value of |my_var_flag| */
17183 pointer l_delim,r_delim; /* hash addresses of a delimiter pair */
17184 @<Other local variables for |scan_primary|@>;
17185 my_var_flag=mp->var_flag; mp->var_flag=0;
17188 @<Supply diagnostic information, if requested@>;
17189 switch (mp->cur_cmd) {
17190 case left_delimiter:
17191 @<Scan a delimited primary@>; break;
17193 @<Scan a grouped primary@>; break;
17195 @<Scan a string constant@>; break;
17196 case numeric_token:
17197 @<Scan a primary that starts with a numeric token@>; break;
17199 @<Scan a nullary operation@>; break;
17200 case unary: case type_name: case cycle: case plus_or_minus:
17201 @<Scan a unary operation@>; break;
17202 case primary_binary:
17203 @<Scan a binary operation with `\&{of}' between its operands@>; break;
17205 @<Convert a suffix to a string@>; break;
17206 case internal_quantity:
17207 @<Scan an internal numeric quantity@>; break;
17208 case capsule_token:
17209 mp_make_exp_copy(mp, mp->cur_mod); break;
17211 @<Scan a variable primary; |goto restart| if it turns out to be a macro@>; break;
17213 mp_bad_exp(mp, "A primary"); goto RESTART; break;
17214 @.A primary expression...@>
17216 mp_get_x_next(mp); /* the routines |goto done| if they don't want this */
17218 if ( mp->cur_cmd==left_bracket ) {
17219 if ( mp->cur_type>=mp_known ) {
17220 @<Scan a mediation construction@>;
17227 @ Errors at the beginning of expressions are flagged by |bad_exp|.
17229 @c void mp_bad_exp (MP mp,char * s) {
17231 print_err(s); mp_print(mp, " expression can't begin with `");
17232 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
17233 mp_print_char(mp, '\'');
17234 help4("I'm afraid I need some sort of value in order to continue,")
17235 ("so I've tentatively inserted `0'. You may want to")
17236 ("delete this zero and insert something else;")
17237 ("see Chapter 27 of The METAFONTbook for an example.");
17238 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
17239 mp_back_input(mp); mp->cur_sym=0; mp->cur_cmd=numeric_token;
17240 mp->cur_mod=0; mp_ins_error(mp);
17241 save_flag=mp->var_flag; mp->var_flag=0; mp_get_x_next(mp);
17242 mp->var_flag=save_flag;
17245 @ @<Supply diagnostic information, if requested@>=
17247 if ( mp->panicking ) mp_check_mem(mp, false);
17249 if ( mp->interrupt!=0 ) if ( mp->OK_to_interrupt ) {
17250 mp_back_input(mp); check_interrupt; mp_get_x_next(mp);
17253 @ @<Scan a delimited primary@>=
17255 l_delim=mp->cur_sym; r_delim=mp->cur_mod;
17256 mp_get_x_next(mp); mp_scan_expression(mp);
17257 if ( (mp->cur_cmd==comma) && (mp->cur_type>=mp_known) ) {
17258 @<Scan the rest of a delimited set of numerics@>;
17260 mp_check_delimiter(mp, l_delim,r_delim);
17264 @ The |stash_in| subroutine puts the current (numeric) expression into a field
17265 within a ``big node.''
17267 @c void mp_stash_in (MP mp,pointer p) {
17268 pointer q; /* temporary register */
17269 type(p)=mp->cur_type;
17270 if ( mp->cur_type==mp_known ) {
17271 value(p)=mp->cur_exp;
17273 if ( mp->cur_type==mp_independent ) {
17274 @<Stash an independent |cur_exp| into a big node@>;
17276 mp->mem[value_loc(p)]=mp->mem[value_loc(mp->cur_exp)];
17277 /* |dep_list(p):=dep_list(cur_exp)| and |prev_dep(p):=prev_dep(cur_exp)| */
17278 link(prev_dep(p))=p;
17280 mp_free_node(mp, mp->cur_exp,value_node_size);
17282 mp->cur_type=mp_vacuous;
17285 @ In rare cases the current expression can become |independent|. There
17286 may be many dependency lists pointing to such an independent capsule,
17287 so we can't simply move it into place within a big node. Instead,
17288 we copy it, then recycle it.
17290 @ @<Stash an independent |cur_exp|...@>=
17292 q=mp_single_dependency(mp, mp->cur_exp);
17293 if ( q==mp->dep_final ){
17294 type(p)=mp_known; value(p)=0; mp_free_node(mp, q,dep_node_size);
17296 type(p)=mp_dependent; mp_new_dep(mp, p,q);
17298 mp_recycle_value(mp, mp->cur_exp);
17301 @ This code uses the fact that |red_part_loc| and |green_part_loc|
17302 are synonymous with |x_part_loc| and |y_part_loc|.
17304 @<Scan the rest of a delimited set of numerics@>=
17306 p=mp_stash_cur_exp(mp);
17307 mp_get_x_next(mp); mp_scan_expression(mp);
17308 @<Make sure the second part of a pair or color has a numeric type@>;
17309 q=mp_get_node(mp, value_node_size); name_type(q)=mp_capsule;
17310 if ( mp->cur_cmd==comma ) type(q)=mp_color_type;
17311 else type(q)=mp_pair_type;
17312 mp_init_big_node(mp, q); r=value(q);
17313 mp_stash_in(mp, y_part_loc(r));
17314 mp_unstash_cur_exp(mp, p);
17315 mp_stash_in(mp, x_part_loc(r));
17316 if ( mp->cur_cmd==comma ) {
17317 @<Scan the last of a triplet of numerics@>;
17319 if ( mp->cur_cmd==comma ) {
17320 type(q)=mp_cmykcolor_type;
17321 mp_init_big_node(mp, q); t=value(q);
17322 mp->mem[cyan_part_loc(t)]=mp->mem[red_part_loc(r)];
17323 value(cyan_part_loc(t))=value(red_part_loc(r));
17324 mp->mem[magenta_part_loc(t)]=mp->mem[green_part_loc(r)];
17325 value(magenta_part_loc(t))=value(green_part_loc(r));
17326 mp->mem[yellow_part_loc(t)]=mp->mem[blue_part_loc(r)];
17327 value(yellow_part_loc(t))=value(blue_part_loc(r));
17328 mp_recycle_value(mp, r);
17330 @<Scan the last of a quartet of numerics@>;
17332 mp_check_delimiter(mp, l_delim,r_delim);
17333 mp->cur_type=type(q);
17337 @ @<Make sure the second part of a pair or color has a numeric type@>=
17338 if ( mp->cur_type<mp_known ) {
17339 exp_err("Nonnumeric ypart has been replaced by 0");
17340 @.Nonnumeric...replaced by 0@>
17341 help4("I've started to scan a pair `(a,b)' or a color `(a,b,c)';")
17342 ("but after finding a nice `a' I found a `b' that isn't")
17343 ("of numeric type. So I've changed that part to zero.")
17344 ("(The b that I didn't like appears above the error message.)");
17345 mp_put_get_flush_error(mp, 0);
17348 @ @<Scan the last of a triplet of numerics@>=
17350 mp_get_x_next(mp); mp_scan_expression(mp);
17351 if ( mp->cur_type<mp_known ) {
17352 exp_err("Nonnumeric third part has been replaced by 0");
17353 @.Nonnumeric...replaced by 0@>
17354 help3("I've just scanned a color `(a,b,c)' or cmykcolor(a,b,c,d); but the `c'")
17355 ("isn't of numeric type. So I've changed that part to zero.")
17356 ("(The c that I didn't like appears above the error message.)");
17357 mp_put_get_flush_error(mp, 0);
17359 mp_stash_in(mp, blue_part_loc(r));
17362 @ @<Scan the last of a quartet of numerics@>=
17364 mp_get_x_next(mp); mp_scan_expression(mp);
17365 if ( mp->cur_type<mp_known ) {
17366 exp_err("Nonnumeric blackpart has been replaced by 0");
17367 @.Nonnumeric...replaced by 0@>
17368 help3("I've just scanned a cmykcolor `(c,m,y,k)'; but the `k' isn't")
17369 ("of numeric type. So I've changed that part to zero.")
17370 ("(The k that I didn't like appears above the error message.)");
17371 mp_put_get_flush_error(mp, 0);
17373 mp_stash_in(mp, black_part_loc(r));
17376 @ The local variable |group_line| keeps track of the line
17377 where a \&{begingroup} command occurred; this will be useful
17378 in an error message if the group doesn't actually end.
17380 @<Other local variables for |scan_primary|@>=
17381 integer group_line; /* where a group began */
17383 @ @<Scan a grouped primary@>=
17385 group_line=mp_true_line(mp);
17386 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17387 save_boundary_item(p);
17389 mp_do_statement(mp); /* ends with |cur_cmd>=semicolon| */
17390 } while (! (mp->cur_cmd!=semicolon));
17391 if ( mp->cur_cmd!=end_group ) {
17392 print_err("A group begun on line ");
17393 @.A group...never ended@>
17394 mp_print_int(mp, group_line);
17395 mp_print(mp, " never ended");
17396 help2("I saw a `begingroup' back there that hasn't been matched")
17397 ("by `endgroup'. So I've inserted `endgroup' now.");
17398 mp_back_error(mp); mp->cur_cmd=end_group;
17401 /* this might change |cur_type|, if independent variables are recycled */
17402 if ( mp->internal[mp_tracing_commands]>0 ) show_cur_cmd_mod;
17405 @ @<Scan a string constant@>=
17407 mp->cur_type=mp_string_type; mp->cur_exp=mp->cur_mod;
17410 @ Later we'll come to procedures that perform actual operations like
17411 addition, square root, and so on; our purpose now is to do the parsing.
17412 But we might as well mention those future procedures now, so that the
17413 suspense won't be too bad:
17416 |do_nullary(c)| does primitive operations that have no operands (e.g.,
17417 `\&{true}' or `\&{pencircle}');
17420 |do_unary(c)| applies a primitive operation to the current expression;
17423 |do_binary(p,c)| applies a primitive operation to the capsule~|p|
17424 and the current expression.
17426 @<Scan a nullary operation@>=mp_do_nullary(mp, mp->cur_mod)
17428 @ @<Scan a unary operation@>=
17430 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_primary(mp);
17431 mp_do_unary(mp, c); goto DONE;
17434 @ A numeric token might be a primary by itself, or it might be the
17435 numerator of a fraction composed solely of numeric tokens, or it might
17436 multiply the primary that follows (provided that the primary doesn't begin
17437 with a plus sign or a minus sign). The code here uses the facts that
17438 |max_primary_command=plus_or_minus| and
17439 |max_primary_command-1=numeric_token|. If a fraction is found that is less
17440 than unity, we try to retain higher precision when we use it in scalar
17443 @<Other local variables for |scan_primary|@>=
17444 scaled num,denom; /* for primaries that are fractions, like `1/2' */
17446 @ @<Scan a primary that starts with a numeric token@>=
17448 mp->cur_exp=mp->cur_mod; mp->cur_type=mp_known; mp_get_x_next(mp);
17449 if ( mp->cur_cmd!=slash ) {
17453 if ( mp->cur_cmd!=numeric_token ) {
17455 mp->cur_cmd=slash; mp->cur_mod=over; mp->cur_sym=frozen_slash;
17458 num=mp->cur_exp; denom=mp->cur_mod;
17459 if ( denom==0 ) { @<Protest division by zero@>; }
17460 else { mp->cur_exp=mp_make_scaled(mp, num,denom); }
17461 check_arith; mp_get_x_next(mp);
17463 if ( mp->cur_cmd>=min_primary_command ) {
17464 if ( mp->cur_cmd<numeric_token ) { /* in particular, |cur_cmd<>plus_or_minus| */
17465 p=mp_stash_cur_exp(mp); mp_scan_primary(mp);
17466 if ( (abs(num)>=abs(denom))||(mp->cur_type<mp_color_type) ) {
17467 mp_do_binary(mp, p,times);
17469 mp_frac_mult(mp, num,denom);
17470 mp_free_node(mp, p,value_node_size);
17477 @ @<Protest division...@>=
17479 print_err("Division by zero");
17480 @.Division by zero@>
17481 help1("I'll pretend that you meant to divide by 1."); mp_error(mp);
17484 @ @<Scan a binary operation with `\&{of}' between its operands@>=
17486 c=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
17487 if ( mp->cur_cmd!=of_token ) {
17488 mp_missing_err(mp, "of"); mp_print(mp, " for ");
17489 mp_print_cmd_mod(mp, primary_binary,c);
17491 help1("I've got the first argument; will look now for the other.");
17494 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_primary(mp);
17495 mp_do_binary(mp, p,c); goto DONE;
17498 @ @<Convert a suffix to a string@>=
17500 mp_get_x_next(mp); mp_scan_suffix(mp);
17501 mp->old_setting=mp->selector; mp->selector=new_string;
17502 mp_show_token_list(mp, mp->cur_exp,null,100000,0);
17503 mp_flush_token_list(mp, mp->cur_exp);
17504 mp->cur_exp=mp_make_string(mp); mp->selector=mp->old_setting;
17505 mp->cur_type=mp_string_type;
17509 @ If an internal quantity appears all by itself on the left of an
17510 assignment, we return a token list of length one, containing the address
17511 of the internal quantity plus |hash_end|. (This accords with the conventions
17512 of the save stack, as described earlier.)
17514 @<Scan an internal...@>=
17517 if ( my_var_flag==assignment ) {
17519 if ( mp->cur_cmd==assignment ) {
17520 mp->cur_exp=mp_get_avail(mp);
17521 info(mp->cur_exp)=q+hash_end; mp->cur_type=mp_token_list;
17526 mp->cur_type=mp_known; mp->cur_exp=mp->internal[q];
17529 @ The most difficult part of |scan_primary| has been saved for last, since
17530 it was necessary to build up some confidence first. We can now face the task
17531 of scanning a variable.
17533 As we scan a variable, we build a token list containing the relevant
17534 names and subscript values, simultaneously following along in the
17535 ``collective'' structure to see if we are actually dealing with a macro
17536 instead of a value.
17538 The local variables |pre_head| and |post_head| will point to the beginning
17539 of the prefix and suffix lists; |tail| will point to the end of the list
17540 that is currently growing.
17542 Another local variable, |tt|, contains partial information about the
17543 declared type of the variable-so-far. If |tt>=mp_unsuffixed_macro|, the
17544 relation |tt=type(q)| will always hold. If |tt=undefined|, the routine
17545 doesn't bother to update its information about type. And if
17546 |undefined<tt<mp_unsuffixed_macro|, the precise value of |tt| isn't critical.
17548 @ @<Other local variables for |scan_primary|@>=
17549 pointer pre_head,post_head,tail;
17550 /* prefix and suffix list variables */
17551 small_number tt; /* approximation to the type of the variable-so-far */
17552 pointer t; /* a token */
17553 pointer macro_ref = 0; /* reference count for a suffixed macro */
17555 @ @<Scan a variable primary...@>=
17557 fast_get_avail(pre_head); tail=pre_head; post_head=null; tt=mp_vacuous;
17559 t=mp_cur_tok(mp); link(tail)=t;
17560 if ( tt!=undefined ) {
17561 @<Find the approximate type |tt| and corresponding~|q|@>;
17562 if ( tt>=mp_unsuffixed_macro ) {
17563 @<Either begin an unsuffixed macro call or
17564 prepare for a suffixed one@>;
17567 mp_get_x_next(mp); tail=t;
17568 if ( mp->cur_cmd==left_bracket ) {
17569 @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>;
17571 if ( mp->cur_cmd>max_suffix_token ) break;
17572 if ( mp->cur_cmd<min_suffix_token ) break;
17573 } /* now |cur_cmd| is |internal_quantity|, |tag_token|, or |numeric_token| */
17574 @<Handle unusual cases that masquerade as variables, and |goto restart|
17575 or |goto done| if appropriate;
17576 otherwise make a copy of the variable and |goto done|@>;
17579 @ @<Either begin an unsuffixed macro call or...@>=
17582 if ( tt>mp_unsuffixed_macro ) { /* |tt=mp_suffixed_macro| */
17583 post_head=mp_get_avail(mp); tail=post_head; link(tail)=t;
17584 tt=undefined; macro_ref=value(q); add_mac_ref(macro_ref);
17586 @<Set up unsuffixed macro call and |goto restart|@>;
17590 @ @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>=
17592 mp_get_x_next(mp); mp_scan_expression(mp);
17593 if ( mp->cur_cmd!=right_bracket ) {
17594 @<Put the left bracket and the expression back to be rescanned@>;
17596 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17597 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp; mp->cur_sym=0;
17601 @ The left bracket that we thought was introducing a subscript might have
17602 actually been the left bracket in a mediation construction like `\.{x[a,b]}'.
17603 So we don't issue an error message at this point; but we do want to back up
17604 so as to avoid any embarrassment about our incorrect assumption.
17606 @<Put the left bracket and the expression back to be rescanned@>=
17608 mp_back_input(mp); /* that was the token following the current expression */
17609 mp_back_expr(mp); mp->cur_cmd=left_bracket;
17610 mp->cur_mod=0; mp->cur_sym=frozen_left_bracket;
17613 @ Here's a routine that puts the current expression back to be read again.
17615 @c void mp_back_expr (MP mp) {
17616 pointer p; /* capsule token */
17617 p=mp_stash_cur_exp(mp); link(p)=null; back_list(p);
17620 @ Unknown subscripts lead to the following error message.
17622 @c void mp_bad_subscript (MP mp) {
17623 exp_err("Improper subscript has been replaced by zero");
17624 @.Improper subscript...@>
17625 help3("A bracketed subscript must have a known numeric value;")
17626 ("unfortunately, what I found was the value that appears just")
17627 ("above this error message. So I'll try a zero subscript.");
17628 mp_flush_error(mp, 0);
17631 @ Every time we call |get_x_next|, there's a chance that the variable we've
17632 been looking at will disappear. Thus, we cannot safely keep |q| pointing
17633 into the variable structure; we need to start searching from the root each time.
17635 @<Find the approximate type |tt| and corresponding~|q|@>=
17638 p=link(pre_head); q=info(p); tt=undefined;
17639 if ( eq_type(q) % outer_tag==tag_token ) {
17641 if ( q==null ) goto DONE2;
17645 tt=type(q); goto DONE2;
17647 if ( type(q)!=mp_structured ) goto DONE2;
17648 q=link(attr_head(q)); /* the |collective_subscript| attribute */
17649 if ( p>=mp->hi_mem_min ) { /* it's not a subscript */
17650 do { q=link(q); } while (! (attr_loc(q)>=info(p)));
17651 if ( attr_loc(q)>info(p) ) goto DONE2;
17659 @ How do things stand now? Well, we have scanned an entire variable name,
17660 including possible subscripts and/or attributes; |cur_cmd|, |cur_mod|, and
17661 |cur_sym| represent the token that follows. If |post_head=null|, a
17662 token list for this variable name starts at |link(pre_head)|, with all
17663 subscripts evaluated. But if |post_head<>null|, the variable turned out
17664 to be a suffixed macro; |pre_head| is the head of the prefix list, while
17665 |post_head| is the head of a token list containing both `\.{\AT!}' and
17668 Our immediate problem is to see if this variable still exists. (Variable
17669 structures can change drastically whenever we call |get_x_next|; users
17670 aren't supposed to do this, but the fact that it is possible means that
17671 we must be cautious.)
17673 The following procedure prints an error message when a variable
17674 unexpectedly disappears. Its help message isn't quite right for
17675 our present purposes, but we'll be able to fix that up.
17678 void mp_obliterated (MP mp,pointer q) {
17679 print_err("Variable "); mp_show_token_list(mp, q,null,1000,0);
17680 mp_print(mp, " has been obliterated");
17681 @.Variable...obliterated@>
17682 help5("It seems you did a nasty thing---probably by accident,")
17683 ("but nevertheless you nearly hornswoggled me...")
17684 ("While I was evaluating the right-hand side of this")
17685 ("command, something happened, and the left-hand side")
17686 ("is no longer a variable! So I won't change anything.");
17689 @ If the variable does exist, we also need to check
17690 for a few other special cases before deciding that a plain old ordinary
17691 variable has, indeed, been scanned.
17693 @<Handle unusual cases that masquerade as variables...@>=
17694 if ( post_head!=null ) {
17695 @<Set up suffixed macro call and |goto restart|@>;
17697 q=link(pre_head); free_avail(pre_head);
17698 if ( mp->cur_cmd==my_var_flag ) {
17699 mp->cur_type=mp_token_list; mp->cur_exp=q; goto DONE;
17701 p=mp_find_variable(mp, q);
17703 mp_make_exp_copy(mp, p);
17705 mp_obliterated(mp, q);
17706 mp->help_line[2]="While I was evaluating the suffix of this variable,";
17707 mp->help_line[1]="something was redefined, and it's no longer a variable!";
17708 mp->help_line[0]="In order to get back on my feet, I've inserted `0' instead.";
17709 mp_put_get_flush_error(mp, 0);
17711 mp_flush_node_list(mp, q);
17714 @ The only complication associated with macro calling is that the prefix
17715 and ``at'' parameters must be packaged in an appropriate list of lists.
17717 @<Set up unsuffixed macro call and |goto restart|@>=
17719 p=mp_get_avail(mp); info(pre_head)=link(pre_head); link(pre_head)=p;
17720 info(p)=t; mp_macro_call(mp, value(q),pre_head,null);
17725 @ If the ``variable'' that turned out to be a suffixed macro no longer exists,
17726 we don't care, because we have reserved a pointer (|macro_ref|) to its
17729 @<Set up suffixed macro call and |goto restart|@>=
17731 mp_back_input(mp); p=mp_get_avail(mp); q=link(post_head);
17732 info(pre_head)=link(pre_head); link(pre_head)=post_head;
17733 info(post_head)=q; link(post_head)=p; info(p)=link(q); link(q)=null;
17734 mp_macro_call(mp, macro_ref,pre_head,null); decr(ref_count(macro_ref));
17735 mp_get_x_next(mp); goto RESTART;
17738 @ Our remaining job is simply to make a copy of the value that has been
17739 found. Some cases are harder than others, but complexity arises solely
17740 because of the multiplicity of possible cases.
17742 @<Declare the procedure called |make_exp_copy|@>=
17743 @<Declare subroutines needed by |make_exp_copy|@>;
17744 void mp_make_exp_copy (MP mp,pointer p) {
17745 pointer q,r,t; /* registers for list manipulation */
17747 mp->cur_type=type(p);
17748 switch (mp->cur_type) {
17749 case mp_vacuous: case mp_boolean_type: case mp_known:
17750 mp->cur_exp=value(p); break;
17751 case unknown_types:
17752 mp->cur_exp=mp_new_ring_entry(mp, p);
17754 case mp_string_type:
17755 mp->cur_exp=value(p); add_str_ref(mp->cur_exp);
17757 case mp_picture_type:
17758 mp->cur_exp=value(p);add_edge_ref(mp->cur_exp);
17761 mp->cur_exp=copy_pen(value(p));
17764 mp->cur_exp=mp_copy_path(mp, value(p));
17766 case mp_transform_type: case mp_color_type:
17767 case mp_cmykcolor_type: case mp_pair_type:
17768 @<Copy the big node |p|@>;
17770 case mp_dependent: case mp_proto_dependent:
17771 mp_encapsulate(mp, mp_copy_dep_list(mp, dep_list(p)));
17773 case mp_numeric_type:
17774 new_indep(p); goto RESTART;
17776 case mp_independent:
17777 q=mp_single_dependency(mp, p);
17778 if ( q==mp->dep_final ){
17779 mp->cur_type=mp_known; mp->cur_exp=0; mp_free_node(mp, q,value_node_size);
17781 mp->cur_type=mp_dependent; mp_encapsulate(mp, q);
17785 mp_confusion(mp, "copy");
17786 @:this can't happen copy}{\quad copy@>
17791 @ The |encapsulate| subroutine assumes that |dep_final| is the
17792 tail of dependency list~|p|.
17794 @<Declare subroutines needed by |make_exp_copy|@>=
17795 void mp_encapsulate (MP mp,pointer p) {
17796 mp->cur_exp=mp_get_node(mp, value_node_size); type(mp->cur_exp)=mp->cur_type;
17797 name_type(mp->cur_exp)=mp_capsule; mp_new_dep(mp, mp->cur_exp,p);
17800 @ The most tedious case arises when the user refers to a
17801 \&{pair}, \&{color}, or \&{transform} variable; we must copy several fields,
17802 each of which can be |independent|, |dependent|, |mp_proto_dependent|,
17805 @<Copy the big node |p|@>=
17807 if ( value(p)==null )
17808 mp_init_big_node(mp, p);
17809 t=mp_get_node(mp, value_node_size); name_type(t)=mp_capsule; type(t)=mp->cur_type;
17810 mp_init_big_node(mp, t);
17811 q=value(p)+mp->big_node_size[mp->cur_type];
17812 r=value(t)+mp->big_node_size[mp->cur_type];
17814 q=q-2; r=r-2; mp_install(mp, r,q);
17815 } while (q!=value(p));
17819 @ The |install| procedure copies a numeric field~|q| into field~|r| of
17820 a big node that will be part of a capsule.
17822 @<Declare subroutines needed by |make_exp_copy|@>=
17823 void mp_install (MP mp,pointer r, pointer q) {
17824 pointer p; /* temporary register */
17825 if ( type(q)==mp_known ){
17826 value(r)=value(q); type(r)=mp_known;
17827 } else if ( type(q)==mp_independent ) {
17828 p=mp_single_dependency(mp, q);
17829 if ( p==mp->dep_final ) {
17830 type(r)=mp_known; value(r)=0; mp_free_node(mp, p,value_node_size);
17832 type(r)=mp_dependent; mp_new_dep(mp, r,p);
17835 type(r)=type(q); mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(q)));
17839 @ Expressions of the form `\.{a[b,c]}' are converted into
17840 `\.{b+a*(c-b)}', without checking the types of \.b~or~\.c,
17841 provided that \.a is numeric.
17843 @<Scan a mediation...@>=
17845 p=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17846 if ( mp->cur_cmd!=comma ) {
17847 @<Put the left bracket and the expression back...@>;
17848 mp_unstash_cur_exp(mp, p);
17850 q=mp_stash_cur_exp(mp); mp_get_x_next(mp); mp_scan_expression(mp);
17851 if ( mp->cur_cmd!=right_bracket ) {
17852 mp_missing_err(mp, "]");
17854 help3("I've scanned an expression of the form `a[b,c',")
17855 ("so a right bracket should have come next.")
17856 ("I shall pretend that one was there.");
17859 r=mp_stash_cur_exp(mp); mp_make_exp_copy(mp, q);
17860 mp_do_binary(mp, r,minus); mp_do_binary(mp, p,times);
17861 mp_do_binary(mp, q,plus); mp_get_x_next(mp);
17865 @ Here is a comparatively simple routine that is used to scan the
17866 \&{suffix} parameters of a macro.
17868 @<Declare the basic parsing subroutines@>=
17869 void mp_scan_suffix (MP mp) {
17870 pointer h,t; /* head and tail of the list being built */
17871 pointer p; /* temporary register */
17872 h=mp_get_avail(mp); t=h;
17874 if ( mp->cur_cmd==left_bracket ) {
17875 @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>;
17877 if ( mp->cur_cmd==numeric_token ) {
17878 p=mp_new_num_tok(mp, mp->cur_mod);
17879 } else if ((mp->cur_cmd==tag_token)||(mp->cur_cmd==internal_quantity) ) {
17880 p=mp_get_avail(mp); info(p)=mp->cur_sym;
17884 link(t)=p; t=p; mp_get_x_next(mp);
17886 mp->cur_exp=link(h); free_avail(h); mp->cur_type=mp_token_list;
17889 @ @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>=
17891 mp_get_x_next(mp); mp_scan_expression(mp);
17892 if ( mp->cur_type!=mp_known ) mp_bad_subscript(mp);
17893 if ( mp->cur_cmd!=right_bracket ) {
17894 mp_missing_err(mp, "]");
17896 help3("I've seen a `[' and a subscript value, in a suffix,")
17897 ("so a right bracket should have come next.")
17898 ("I shall pretend that one was there.");
17901 mp->cur_cmd=numeric_token; mp->cur_mod=mp->cur_exp;
17904 @* \[38] Parsing secondary and higher expressions.
17905 After the intricacies of |scan_primary|\kern-1pt,
17906 the |scan_secondary| routine is
17907 refreshingly simple. It's not trivial, but the operations are relatively
17908 straightforward; the main difficulty is, again, that expressions and data
17909 structures might change drastically every time we call |get_x_next|, so a
17910 cautious approach is mandatory. For example, a macro defined by
17911 \&{primarydef} might have disappeared by the time its second argument has
17912 been scanned; we solve this by increasing the reference count of its token
17913 list, so that the macro can be called even after it has been clobbered.
17915 @<Declare the basic parsing subroutines@>=
17916 void mp_scan_secondary (MP mp) {
17917 pointer p; /* for list manipulation */
17918 halfword c,d; /* operation codes or modifiers */
17919 pointer mac_name; /* token defined with \&{primarydef} */
17921 if ((mp->cur_cmd<min_primary_command)||
17922 (mp->cur_cmd>max_primary_command) )
17923 mp_bad_exp(mp, "A secondary");
17924 @.A secondary expression...@>
17925 mp_scan_primary(mp);
17927 if ( mp->cur_cmd<=max_secondary_command )
17928 if ( mp->cur_cmd>=min_secondary_command ) {
17929 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17930 if ( d==secondary_primary_macro ) {
17931 mac_name=mp->cur_sym; add_mac_ref(c);
17933 mp_get_x_next(mp); mp_scan_primary(mp);
17934 if ( d!=secondary_primary_macro ) {
17935 mp_do_binary(mp, p,c);
17937 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17938 decr(ref_count(c)); mp_get_x_next(mp);
17945 @ The following procedure calls a macro that has two parameters,
17948 @c void mp_binary_mac (MP mp,pointer p, pointer c, pointer n) {
17949 pointer q,r; /* nodes in the parameter list */
17950 q=mp_get_avail(mp); r=mp_get_avail(mp); link(q)=r;
17951 info(q)=p; info(r)=mp_stash_cur_exp(mp);
17952 mp_macro_call(mp, c,q,n);
17955 @ The next procedure, |scan_tertiary|, is pretty much the same deal.
17957 @<Declare the basic parsing subroutines@>=
17958 void mp_scan_tertiary (MP mp) {
17959 pointer p; /* for list manipulation */
17960 halfword c,d; /* operation codes or modifiers */
17961 pointer mac_name; /* token defined with \&{secondarydef} */
17963 if ((mp->cur_cmd<min_primary_command)||
17964 (mp->cur_cmd>max_primary_command) )
17965 mp_bad_exp(mp, "A tertiary");
17966 @.A tertiary expression...@>
17967 mp_scan_secondary(mp);
17969 if ( mp->cur_cmd<=max_tertiary_command ) {
17970 if ( mp->cur_cmd>=min_tertiary_command ) {
17971 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
17972 if ( d==tertiary_secondary_macro ) {
17973 mac_name=mp->cur_sym; add_mac_ref(c);
17975 mp_get_x_next(mp); mp_scan_secondary(mp);
17976 if ( d!=tertiary_secondary_macro ) {
17977 mp_do_binary(mp, p,c);
17979 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
17980 decr(ref_count(c)); mp_get_x_next(mp);
17988 @ Finally we reach the deepest level in our quartet of parsing routines.
17989 This one is much like the others; but it has an extra complication from
17990 paths, which materialize here.
17992 @d continue_path 25 /* a label inside of |scan_expression| */
17993 @d finish_path 26 /* another */
17995 @<Declare the basic parsing subroutines@>=
17996 void mp_scan_expression (MP mp) {
17997 pointer p,q,r,pp,qq; /* for list manipulation */
17998 halfword c,d; /* operation codes or modifiers */
17999 int my_var_flag; /* initial value of |var_flag| */
18000 pointer mac_name; /* token defined with \&{tertiarydef} */
18001 boolean cycle_hit; /* did a path expression just end with `\&{cycle}'? */
18002 scaled x,y; /* explicit coordinates or tension at a path join */
18003 int t; /* knot type following a path join */
18005 my_var_flag=mp->var_flag; mac_name=null;
18007 if ((mp->cur_cmd<min_primary_command)||
18008 (mp->cur_cmd>max_primary_command) )
18009 mp_bad_exp(mp, "An");
18010 @.An expression...@>
18011 mp_scan_tertiary(mp);
18013 if ( mp->cur_cmd<=max_expression_command )
18014 if ( mp->cur_cmd>=min_expression_command ) {
18015 if ( (mp->cur_cmd!=equals)||(my_var_flag!=assignment) ) {
18016 p=mp_stash_cur_exp(mp); c=mp->cur_mod; d=mp->cur_cmd;
18017 if ( d==expression_tertiary_macro ) {
18018 mac_name=mp->cur_sym; add_mac_ref(c);
18020 if ( (d<ampersand)||((d==ampersand)&&
18021 ((type(p)==mp_pair_type)||(type(p)==mp_path_type))) ) {
18022 @<Scan a path construction operation;
18023 but |return| if |p| has the wrong type@>;
18025 mp_get_x_next(mp); mp_scan_tertiary(mp);
18026 if ( d!=expression_tertiary_macro ) {
18027 mp_do_binary(mp, p,c);
18029 mp_back_input(mp); mp_binary_mac(mp, p,c,mac_name);
18030 decr(ref_count(c)); mp_get_x_next(mp);
18039 @ The reader should review the data structure conventions for paths before
18040 hoping to understand the next part of this code.
18042 @<Scan a path construction operation...@>=
18045 @<Convert the left operand, |p|, into a partial path ending at~|q|;
18046 but |return| if |p| doesn't have a suitable type@>;
18048 @<Determine the path join parameters;
18049 but |goto finish_path| if there's only a direction specifier@>;
18050 if ( mp->cur_cmd==cycle ) {
18051 @<Get ready to close a cycle@>;
18053 mp_scan_tertiary(mp);
18054 @<Convert the right operand, |cur_exp|,
18055 into a partial path from |pp| to~|qq|@>;
18057 @<Join the partial paths and reset |p| and |q| to the head and tail
18059 if ( mp->cur_cmd>=min_expression_command )
18060 if ( mp->cur_cmd<=ampersand ) if ( ! cycle_hit ) goto CONTINUE_PATH;
18062 @<Choose control points for the path and put the result into |cur_exp|@>;
18065 @ @<Convert the left operand, |p|, into a partial path ending at~|q|...@>=
18067 mp_unstash_cur_exp(mp, p);
18068 if ( mp->cur_type==mp_pair_type ) p=mp_new_knot(mp);
18069 else if ( mp->cur_type==mp_path_type ) p=mp->cur_exp;
18072 while ( link(q)!=p ) q=link(q);
18073 if ( left_type(p)!=mp_endpoint ) { /* open up a cycle */
18074 r=mp_copy_knot(mp, p); link(q)=r; q=r;
18076 left_type(p)=mp_open; right_type(q)=mp_open;
18079 @ A pair of numeric values is changed into a knot node for a one-point path
18080 when \MP\ discovers that the pair is part of a path.
18082 @c@<Declare the procedure called |known_pair|@>;
18083 pointer mp_new_knot (MP mp) { /* convert a pair to a knot with two endpoints */
18084 pointer q; /* the new node */
18085 q=mp_get_node(mp, knot_node_size); left_type(q)=mp_endpoint;
18086 right_type(q)=mp_endpoint; originator(q)=mp_metapost_user; link(q)=q;
18087 mp_known_pair(mp); x_coord(q)=mp->cur_x; y_coord(q)=mp->cur_y;
18091 @ The |known_pair| subroutine sets |cur_x| and |cur_y| to the components
18092 of the current expression, assuming that the current expression is a
18093 pair of known numerics. Unknown components are zeroed, and the
18094 current expression is flushed.
18096 @<Declare the procedure called |known_pair|@>=
18097 void mp_known_pair (MP mp) {
18098 pointer p; /* the pair node */
18099 if ( mp->cur_type!=mp_pair_type ) {
18100 exp_err("Undefined coordinates have been replaced by (0,0)");
18101 @.Undefined coordinates...@>
18102 help5("I need x and y numbers for this part of the path.")
18103 ("The value I found (see above) was no good;")
18104 ("so I'll try to keep going by using zero instead.")
18105 ("(Chapter 27 of The METAFONTbook explains that")
18106 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18107 ("you might want to type `I ??" "?' now.)");
18108 mp_put_get_flush_error(mp, 0); mp->cur_x=0; mp->cur_y=0;
18110 p=value(mp->cur_exp);
18111 @<Make sure that both |x| and |y| parts of |p| are known;
18112 copy them into |cur_x| and |cur_y|@>;
18113 mp_flush_cur_exp(mp, 0);
18117 @ @<Make sure that both |x| and |y| parts of |p| are known...@>=
18118 if ( type(x_part_loc(p))==mp_known ) {
18119 mp->cur_x=value(x_part_loc(p));
18121 mp_disp_err(mp, x_part_loc(p),
18122 "Undefined x coordinate has been replaced by 0");
18123 @.Undefined coordinates...@>
18124 help5("I need a `known' x value for this part of the path.")
18125 ("The value I found (see above) was no good;")
18126 ("so I'll try to keep going by using zero instead.")
18127 ("(Chapter 27 of The METAFONTbook explains that")
18128 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18129 ("you might want to type `I ??" "?' now.)");
18130 mp_put_get_error(mp); mp_recycle_value(mp, x_part_loc(p)); mp->cur_x=0;
18132 if ( type(y_part_loc(p))==mp_known ) {
18133 mp->cur_y=value(y_part_loc(p));
18135 mp_disp_err(mp, y_part_loc(p),
18136 "Undefined y coordinate has been replaced by 0");
18137 help5("I need a `known' y value for this part of the path.")
18138 ("The value I found (see above) was no good;")
18139 ("so I'll try to keep going by using zero instead.")
18140 ("(Chapter 27 of The METAFONTbook explains that")
18141 ("you might want to type `I ??" "?' now.)");
18142 mp_put_get_error(mp); mp_recycle_value(mp, y_part_loc(p)); mp->cur_y=0;
18145 @ At this point |cur_cmd| is either |ampersand|, |left_brace|, or |path_join|.
18147 @<Determine the path join parameters...@>=
18148 if ( mp->cur_cmd==left_brace ) {
18149 @<Put the pre-join direction information into node |q|@>;
18152 if ( d==path_join ) {
18153 @<Determine the tension and/or control points@>;
18154 } else if ( d!=ampersand ) {
18158 if ( mp->cur_cmd==left_brace ) {
18159 @<Put the post-join direction information into |x| and |t|@>;
18160 } else if ( right_type(q)!=mp_explicit ) {
18164 @ The |scan_direction| subroutine looks at the directional information
18165 that is enclosed in braces, and also scans ahead to the following character.
18166 A type code is returned, either |open| (if the direction was $(0,0)$),
18167 or |curl| (if the direction was a curl of known value |cur_exp|), or
18168 |given| (if the direction is given by the |angle| value that now
18169 appears in |cur_exp|).
18171 There's nothing difficult about this subroutine, but the program is rather
18172 lengthy because a variety of potential errors need to be nipped in the bud.
18174 @c small_number mp_scan_direction (MP mp) {
18175 int t; /* the type of information found */
18176 scaled x; /* an |x| coordinate */
18178 if ( mp->cur_cmd==curl_command ) {
18179 @<Scan a curl specification@>;
18181 @<Scan a given direction@>;
18183 if ( mp->cur_cmd!=right_brace ) {
18184 mp_missing_err(mp, "}");
18185 @.Missing `\char`\}'@>
18186 help3("I've scanned a direction spec for part of a path,")
18187 ("so a right brace should have come next.")
18188 ("I shall pretend that one was there.");
18195 @ @<Scan a curl specification@>=
18196 { mp_get_x_next(mp); mp_scan_expression(mp);
18197 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<0) ){
18198 exp_err("Improper curl has been replaced by 1");
18200 help1("A curl must be a known, nonnegative number.");
18201 mp_put_get_flush_error(mp, unity);
18206 @ @<Scan a given direction@>=
18207 { mp_scan_expression(mp);
18208 if ( mp->cur_type>mp_pair_type ) {
18209 @<Get given directions separated by commas@>;
18213 if ( (mp->cur_x==0)&&(mp->cur_y==0) ) t=mp_open;
18214 else { t=mp_given; mp->cur_exp=mp_n_arg(mp, mp->cur_x,mp->cur_y);}
18217 @ @<Get given directions separated by commas@>=
18219 if ( mp->cur_type!=mp_known ) {
18220 exp_err("Undefined x coordinate has been replaced by 0");
18221 @.Undefined coordinates...@>
18222 help5("I need a `known' x value for this part of the path.")
18223 ("The value I found (see above) was no good;")
18224 ("so I'll try to keep going by using zero instead.")
18225 ("(Chapter 27 of The METAFONTbook explains that")
18226 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
18227 ("you might want to type `I ??" "?' now.)");
18228 mp_put_get_flush_error(mp, 0);
18231 if ( mp->cur_cmd!=comma ) {
18232 mp_missing_err(mp, ",");
18234 help2("I've got the x coordinate of a path direction;")
18235 ("will look for the y coordinate next.");
18238 mp_get_x_next(mp); mp_scan_expression(mp);
18239 if ( mp->cur_type!=mp_known ) {
18240 exp_err("Undefined y coordinate has been replaced by 0");
18241 help5("I need a `known' y value for this part of the path.")
18242 ("The value I found (see above) was no good;")
18243 ("so I'll try to keep going by using zero instead.")
18244 ("(Chapter 27 of The METAFONTbook explains that")
18245 ("you might want to type `I ??" "?' now.)");
18246 mp_put_get_flush_error(mp, 0);
18248 mp->cur_y=mp->cur_exp; mp->cur_x=x;
18251 @ At this point |right_type(q)| is usually |open|, but it may have been
18252 set to some other value by a previous splicing operation. We must maintain
18253 the value of |right_type(q)| in unusual cases such as
18254 `\.{..z1\{z2\}\&\{z3\}z1\{0,0\}..}'.
18256 @<Put the pre-join...@>=
18258 t=mp_scan_direction(mp);
18259 if ( t!=mp_open ) {
18260 right_type(q)=t; right_given(q)=mp->cur_exp;
18261 if ( left_type(q)==mp_open ) {
18262 left_type(q)=t; left_given(q)=mp->cur_exp;
18263 } /* note that |left_given(q)=left_curl(q)| */
18267 @ Since |left_tension| and |left_y| share the same position in knot nodes,
18268 and since |left_given| is similarly equivalent to |left_x|, we use
18269 |x| and |y| to hold the given direction and tension information when
18270 there are no explicit control points.
18272 @<Put the post-join...@>=
18274 t=mp_scan_direction(mp);
18275 if ( right_type(q)!=mp_explicit ) x=mp->cur_exp;
18276 else t=mp_explicit; /* the direction information is superfluous */
18279 @ @<Determine the tension and/or...@>=
18282 if ( mp->cur_cmd==tension ) {
18283 @<Set explicit tensions@>;
18284 } else if ( mp->cur_cmd==controls ) {
18285 @<Set explicit control points@>;
18287 right_tension(q)=unity; y=unity; mp_back_input(mp); /* default tension */
18290 if ( mp->cur_cmd!=path_join ) {
18291 mp_missing_err(mp, "..");
18293 help1("A path join command should end with two dots.");
18300 @ @<Set explicit tensions@>=
18302 mp_get_x_next(mp); y=mp->cur_cmd;
18303 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18304 mp_scan_primary(mp);
18305 @<Make sure that the current expression is a valid tension setting@>;
18306 if ( y==at_least ) negate(mp->cur_exp);
18307 right_tension(q)=mp->cur_exp;
18308 if ( mp->cur_cmd==and_command ) {
18309 mp_get_x_next(mp); y=mp->cur_cmd;
18310 if ( mp->cur_cmd==at_least ) mp_get_x_next(mp);
18311 mp_scan_primary(mp);
18312 @<Make sure that the current expression is a valid tension setting@>;
18313 if ( y==at_least ) negate(mp->cur_exp);
18318 @ @d min_tension three_quarter_unit
18320 @<Make sure that the current expression is a valid tension setting@>=
18321 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<min_tension) ) {
18322 exp_err("Improper tension has been set to 1");
18323 @.Improper tension@>
18324 help1("The expression above should have been a number >=3/4.");
18325 mp_put_get_flush_error(mp, unity);
18328 @ @<Set explicit control points@>=
18330 right_type(q)=mp_explicit; t=mp_explicit; mp_get_x_next(mp); mp_scan_primary(mp);
18331 mp_known_pair(mp); right_x(q)=mp->cur_x; right_y(q)=mp->cur_y;
18332 if ( mp->cur_cmd!=and_command ) {
18333 x=right_x(q); y=right_y(q);
18335 mp_get_x_next(mp); mp_scan_primary(mp);
18336 mp_known_pair(mp); x=mp->cur_x; y=mp->cur_y;
18340 @ @<Convert the right operand, |cur_exp|, into a partial path...@>=
18342 if ( mp->cur_type!=mp_path_type ) pp=mp_new_knot(mp);
18343 else pp=mp->cur_exp;
18345 while ( link(qq)!=pp ) qq=link(qq);
18346 if ( left_type(pp)!=mp_endpoint ) { /* open up a cycle */
18347 r=mp_copy_knot(mp, pp); link(qq)=r; qq=r;
18349 left_type(pp)=mp_open; right_type(qq)=mp_open;
18352 @ If a person tries to define an entire path by saying `\.{(x,y)\&cycle}',
18353 we silently change the specification to `\.{(x,y)..cycle}', since a cycle
18354 shouldn't have length zero.
18356 @<Get ready to close a cycle@>=
18358 cycle_hit=true; mp_get_x_next(mp); pp=p; qq=p;
18359 if ( d==ampersand ) if ( p==q ) {
18360 d=path_join; right_tension(q)=unity; y=unity;
18364 @ @<Join the partial paths and reset |p| and |q|...@>=
18366 if ( d==ampersand ) {
18367 if ( (x_coord(q)!=x_coord(pp))||(y_coord(q)!=y_coord(pp)) ) {
18368 print_err("Paths don't touch; `&' will be changed to `..'");
18369 @.Paths don't touch@>
18370 help3("When you join paths `p&q', the ending point of p")
18371 ("must be exactly equal to the starting point of q.")
18372 ("So I'm going to pretend that you said `p..q' instead.");
18373 mp_put_get_error(mp); d=path_join; right_tension(q)=unity; y=unity;
18376 @<Plug an opening in |right_type(pp)|, if possible@>;
18377 if ( d==ampersand ) {
18378 @<Splice independent paths together@>;
18380 @<Plug an opening in |right_type(q)|, if possible@>;
18381 link(q)=pp; left_y(pp)=y;
18382 if ( t!=mp_open ) { left_x(pp)=x; left_type(pp)=t; };
18387 @ @<Plug an opening in |right_type(q)|...@>=
18388 if ( right_type(q)==mp_open ) {
18389 if ( (left_type(q)==mp_curl)||(left_type(q)==mp_given) ) {
18390 right_type(q)=left_type(q); right_given(q)=left_given(q);
18394 @ @<Plug an opening in |right_type(pp)|...@>=
18395 if ( right_type(pp)==mp_open ) {
18396 if ( (t==mp_curl)||(t==mp_given) ) {
18397 right_type(pp)=t; right_given(pp)=x;
18401 @ @<Splice independent paths together@>=
18403 if ( left_type(q)==mp_open ) if ( right_type(q)==mp_open ) {
18404 left_type(q)=mp_curl; left_curl(q)=unity;
18406 if ( right_type(pp)==mp_open ) if ( t==mp_open ) {
18407 right_type(pp)=mp_curl; right_curl(pp)=unity;
18409 right_type(q)=right_type(pp); link(q)=link(pp);
18410 right_x(q)=right_x(pp); right_y(q)=right_y(pp);
18411 mp_free_node(mp, pp,knot_node_size);
18412 if ( qq==pp ) qq=q;
18415 @ @<Choose control points for the path...@>=
18417 if ( d==ampersand ) p=q;
18419 left_type(p)=mp_endpoint;
18420 if ( right_type(p)==mp_open ) {
18421 right_type(p)=mp_curl; right_curl(p)=unity;
18423 right_type(q)=mp_endpoint;
18424 if ( left_type(q)==mp_open ) {
18425 left_type(q)=mp_curl; left_curl(q)=unity;
18429 mp_make_choices(mp, p);
18430 mp->cur_type=mp_path_type; mp->cur_exp=p
18432 @ Finally, we sometimes need to scan an expression whose value is
18433 supposed to be either |true_code| or |false_code|.
18435 @<Declare the basic parsing subroutines@>=
18436 void mp_get_boolean (MP mp) {
18437 mp_get_x_next(mp); mp_scan_expression(mp);
18438 if ( mp->cur_type!=mp_boolean_type ) {
18439 exp_err("Undefined condition will be treated as `false'");
18440 @.Undefined condition...@>
18441 help2("The expression shown above should have had a definite")
18442 ("true-or-false value. I'm changing it to `false'.");
18443 mp_put_get_flush_error(mp, false_code); mp->cur_type=mp_boolean_type;
18447 @* \[39] Doing the operations.
18448 The purpose of parsing is primarily to permit people to avoid piles of
18449 parentheses. But the real work is done after the structure of an expression
18450 has been recognized; that's when new expressions are generated. We
18451 turn now to the guts of \MP, which handles individual operators that
18452 have come through the parsing mechanism.
18454 We'll start with the easy ones that take no operands, then work our way
18455 up to operators with one and ultimately two arguments. In other words,
18456 we will write the three procedures |do_nullary|, |do_unary|, and |do_binary|
18457 that are invoked periodically by the expression scanners.
18459 First let's make sure that all of the primitive operators are in the
18460 hash table. Although |scan_primary| and its relatives made use of the
18461 \\{cmd} code for these operators, the \\{do} routines base everything
18462 on the \\{mod} code. For example, |do_binary| doesn't care whether the
18463 operation it performs is a |primary_binary| or |secondary_binary|, etc.
18466 mp_primitive(mp, "true",nullary,true_code);
18467 @:true_}{\&{true} primitive@>
18468 mp_primitive(mp, "false",nullary,false_code);
18469 @:false_}{\&{false} primitive@>
18470 mp_primitive(mp, "nullpicture",nullary,null_picture_code);
18471 @:null_picture_}{\&{nullpicture} primitive@>
18472 mp_primitive(mp, "nullpen",nullary,null_pen_code);
18473 @:null_pen_}{\&{nullpen} primitive@>
18474 mp_primitive(mp, "jobname",nullary,job_name_op);
18475 @:job_name_}{\&{jobname} primitive@>
18476 mp_primitive(mp, "readstring",nullary,read_string_op);
18477 @:read_string_}{\&{readstring} primitive@>
18478 mp_primitive(mp, "pencircle",nullary,pen_circle);
18479 @:pen_circle_}{\&{pencircle} primitive@>
18480 mp_primitive(mp, "normaldeviate",nullary,normal_deviate);
18481 @:normal_deviate_}{\&{normaldeviate} primitive@>
18482 mp_primitive(mp, "readfrom",unary,read_from_op);
18483 @:read_from_}{\&{readfrom} primitive@>
18484 mp_primitive(mp, "closefrom",unary,close_from_op);
18485 @:close_from_}{\&{closefrom} primitive@>
18486 mp_primitive(mp, "odd",unary,odd_op);
18487 @:odd_}{\&{odd} primitive@>
18488 mp_primitive(mp, "known",unary,known_op);
18489 @:known_}{\&{known} primitive@>
18490 mp_primitive(mp, "unknown",unary,unknown_op);
18491 @:unknown_}{\&{unknown} primitive@>
18492 mp_primitive(mp, "not",unary,not_op);
18493 @:not_}{\&{not} primitive@>
18494 mp_primitive(mp, "decimal",unary,decimal);
18495 @:decimal_}{\&{decimal} primitive@>
18496 mp_primitive(mp, "reverse",unary,reverse);
18497 @:reverse_}{\&{reverse} primitive@>
18498 mp_primitive(mp, "makepath",unary,make_path_op);
18499 @:make_path_}{\&{makepath} primitive@>
18500 mp_primitive(mp, "makepen",unary,make_pen_op);
18501 @:make_pen_}{\&{makepen} primitive@>
18502 mp_primitive(mp, "oct",unary,oct_op);
18503 @:oct_}{\&{oct} primitive@>
18504 mp_primitive(mp, "hex",unary,hex_op);
18505 @:hex_}{\&{hex} primitive@>
18506 mp_primitive(mp, "ASCII",unary,ASCII_op);
18507 @:ASCII_}{\&{ASCII} primitive@>
18508 mp_primitive(mp, "char",unary,char_op);
18509 @:char_}{\&{char} primitive@>
18510 mp_primitive(mp, "length",unary,length_op);
18511 @:length_}{\&{length} primitive@>
18512 mp_primitive(mp, "turningnumber",unary,turning_op);
18513 @:turning_number_}{\&{turningnumber} primitive@>
18514 mp_primitive(mp, "xpart",unary,x_part);
18515 @:x_part_}{\&{xpart} primitive@>
18516 mp_primitive(mp, "ypart",unary,y_part);
18517 @:y_part_}{\&{ypart} primitive@>
18518 mp_primitive(mp, "xxpart",unary,xx_part);
18519 @:xx_part_}{\&{xxpart} primitive@>
18520 mp_primitive(mp, "xypart",unary,xy_part);
18521 @:xy_part_}{\&{xypart} primitive@>
18522 mp_primitive(mp, "yxpart",unary,yx_part);
18523 @:yx_part_}{\&{yxpart} primitive@>
18524 mp_primitive(mp, "yypart",unary,yy_part);
18525 @:yy_part_}{\&{yypart} primitive@>
18526 mp_primitive(mp, "redpart",unary,red_part);
18527 @:red_part_}{\&{redpart} primitive@>
18528 mp_primitive(mp, "greenpart",unary,green_part);
18529 @:green_part_}{\&{greenpart} primitive@>
18530 mp_primitive(mp, "bluepart",unary,blue_part);
18531 @:blue_part_}{\&{bluepart} primitive@>
18532 mp_primitive(mp, "cyanpart",unary,cyan_part);
18533 @:cyan_part_}{\&{cyanpart} primitive@>
18534 mp_primitive(mp, "magentapart",unary,magenta_part);
18535 @:magenta_part_}{\&{magentapart} primitive@>
18536 mp_primitive(mp, "yellowpart",unary,yellow_part);
18537 @:yellow_part_}{\&{yellowpart} primitive@>
18538 mp_primitive(mp, "blackpart",unary,black_part);
18539 @:black_part_}{\&{blackpart} primitive@>
18540 mp_primitive(mp, "greypart",unary,grey_part);
18541 @:grey_part_}{\&{greypart} primitive@>
18542 mp_primitive(mp, "colormodel",unary,color_model_part);
18543 @:color_model_part_}{\&{colormodel} primitive@>
18544 mp_primitive(mp, "fontpart",unary,font_part);
18545 @:font_part_}{\&{fontpart} primitive@>
18546 mp_primitive(mp, "textpart",unary,text_part);
18547 @:text_part_}{\&{textpart} primitive@>
18548 mp_primitive(mp, "pathpart",unary,path_part);
18549 @:path_part_}{\&{pathpart} primitive@>
18550 mp_primitive(mp, "penpart",unary,pen_part);
18551 @:pen_part_}{\&{penpart} primitive@>
18552 mp_primitive(mp, "dashpart",unary,dash_part);
18553 @:dash_part_}{\&{dashpart} primitive@>
18554 mp_primitive(mp, "sqrt",unary,sqrt_op);
18555 @:sqrt_}{\&{sqrt} primitive@>
18556 mp_primitive(mp, "mexp",unary,m_exp_op);
18557 @:m_exp_}{\&{mexp} primitive@>
18558 mp_primitive(mp, "mlog",unary,m_log_op);
18559 @:m_log_}{\&{mlog} primitive@>
18560 mp_primitive(mp, "sind",unary,sin_d_op);
18561 @:sin_d_}{\&{sind} primitive@>
18562 mp_primitive(mp, "cosd",unary,cos_d_op);
18563 @:cos_d_}{\&{cosd} primitive@>
18564 mp_primitive(mp, "floor",unary,floor_op);
18565 @:floor_}{\&{floor} primitive@>
18566 mp_primitive(mp, "uniformdeviate",unary,uniform_deviate);
18567 @:uniform_deviate_}{\&{uniformdeviate} primitive@>
18568 mp_primitive(mp, "charexists",unary,char_exists_op);
18569 @:char_exists_}{\&{charexists} primitive@>
18570 mp_primitive(mp, "fontsize",unary,font_size);
18571 @:font_size_}{\&{fontsize} primitive@>
18572 mp_primitive(mp, "llcorner",unary,ll_corner_op);
18573 @:ll_corner_}{\&{llcorner} primitive@>
18574 mp_primitive(mp, "lrcorner",unary,lr_corner_op);
18575 @:lr_corner_}{\&{lrcorner} primitive@>
18576 mp_primitive(mp, "ulcorner",unary,ul_corner_op);
18577 @:ul_corner_}{\&{ulcorner} primitive@>
18578 mp_primitive(mp, "urcorner",unary,ur_corner_op);
18579 @:ur_corner_}{\&{urcorner} primitive@>
18580 mp_primitive(mp, "arclength",unary,arc_length);
18581 @:arc_length_}{\&{arclength} primitive@>
18582 mp_primitive(mp, "angle",unary,angle_op);
18583 @:angle_}{\&{angle} primitive@>
18584 mp_primitive(mp, "cycle",cycle,cycle_op);
18585 @:cycle_}{\&{cycle} primitive@>
18586 mp_primitive(mp, "stroked",unary,stroked_op);
18587 @:stroked_}{\&{stroked} primitive@>
18588 mp_primitive(mp, "filled",unary,filled_op);
18589 @:filled_}{\&{filled} primitive@>
18590 mp_primitive(mp, "textual",unary,textual_op);
18591 @:textual_}{\&{textual} primitive@>
18592 mp_primitive(mp, "clipped",unary,clipped_op);
18593 @:clipped_}{\&{clipped} primitive@>
18594 mp_primitive(mp, "bounded",unary,bounded_op);
18595 @:bounded_}{\&{bounded} primitive@>
18596 mp_primitive(mp, "+",plus_or_minus,plus);
18597 @:+ }{\.{+} primitive@>
18598 mp_primitive(mp, "-",plus_or_minus,minus);
18599 @:- }{\.{-} primitive@>
18600 mp_primitive(mp, "*",secondary_binary,times);
18601 @:* }{\.{*} primitive@>
18602 mp_primitive(mp, "/",slash,over); mp->eqtb[frozen_slash]=mp->eqtb[mp->cur_sym];
18603 @:/ }{\.{/} primitive@>
18604 mp_primitive(mp, "++",tertiary_binary,pythag_add);
18605 @:++_}{\.{++} primitive@>
18606 mp_primitive(mp, "+-+",tertiary_binary,pythag_sub);
18607 @:+-+_}{\.{+-+} primitive@>
18608 mp_primitive(mp, "or",tertiary_binary,or_op);
18609 @:or_}{\&{or} primitive@>
18610 mp_primitive(mp, "and",and_command,and_op);
18611 @:and_}{\&{and} primitive@>
18612 mp_primitive(mp, "<",expression_binary,less_than);
18613 @:< }{\.{<} primitive@>
18614 mp_primitive(mp, "<=",expression_binary,less_or_equal);
18615 @:<=_}{\.{<=} primitive@>
18616 mp_primitive(mp, ">",expression_binary,greater_than);
18617 @:> }{\.{>} primitive@>
18618 mp_primitive(mp, ">=",expression_binary,greater_or_equal);
18619 @:>=_}{\.{>=} primitive@>
18620 mp_primitive(mp, "=",equals,equal_to);
18621 @:= }{\.{=} primitive@>
18622 mp_primitive(mp, "<>",expression_binary,unequal_to);
18623 @:<>_}{\.{<>} primitive@>
18624 mp_primitive(mp, "substring",primary_binary,substring_of);
18625 @:substring_}{\&{substring} primitive@>
18626 mp_primitive(mp, "subpath",primary_binary,subpath_of);
18627 @:subpath_}{\&{subpath} primitive@>
18628 mp_primitive(mp, "directiontime",primary_binary,direction_time_of);
18629 @:direction_time_}{\&{directiontime} primitive@>
18630 mp_primitive(mp, "point",primary_binary,point_of);
18631 @:point_}{\&{point} primitive@>
18632 mp_primitive(mp, "precontrol",primary_binary,precontrol_of);
18633 @:precontrol_}{\&{precontrol} primitive@>
18634 mp_primitive(mp, "postcontrol",primary_binary,postcontrol_of);
18635 @:postcontrol_}{\&{postcontrol} primitive@>
18636 mp_primitive(mp, "penoffset",primary_binary,pen_offset_of);
18637 @:pen_offset_}{\&{penoffset} primitive@>
18638 mp_primitive(mp, "arctime",primary_binary,arc_time_of);
18639 @:arc_time_of_}{\&{arctime} primitive@>
18640 mp_primitive(mp, "mpversion",nullary,mp_version);
18641 @:mp_verison_}{\&{mpversion} primitive@>
18642 mp_primitive(mp, "&",ampersand,concatenate);
18643 @:!!!}{\.{\&} primitive@>
18644 mp_primitive(mp, "rotated",secondary_binary,rotated_by);
18645 @:rotated_}{\&{rotated} primitive@>
18646 mp_primitive(mp, "slanted",secondary_binary,slanted_by);
18647 @:slanted_}{\&{slanted} primitive@>
18648 mp_primitive(mp, "scaled",secondary_binary,scaled_by);
18649 @:scaled_}{\&{scaled} primitive@>
18650 mp_primitive(mp, "shifted",secondary_binary,shifted_by);
18651 @:shifted_}{\&{shifted} primitive@>
18652 mp_primitive(mp, "transformed",secondary_binary,transformed_by);
18653 @:transformed_}{\&{transformed} primitive@>
18654 mp_primitive(mp, "xscaled",secondary_binary,x_scaled);
18655 @:x_scaled_}{\&{xscaled} primitive@>
18656 mp_primitive(mp, "yscaled",secondary_binary,y_scaled);
18657 @:y_scaled_}{\&{yscaled} primitive@>
18658 mp_primitive(mp, "zscaled",secondary_binary,z_scaled);
18659 @:z_scaled_}{\&{zscaled} primitive@>
18660 mp_primitive(mp, "infont",secondary_binary,in_font);
18661 @:in_font_}{\&{infont} primitive@>
18662 mp_primitive(mp, "intersectiontimes",tertiary_binary,intersect);
18663 @:intersection_times_}{\&{intersectiontimes} primitive@>
18665 @ @<Cases of |print_cmd...@>=
18668 case primary_binary:
18669 case secondary_binary:
18670 case tertiary_binary:
18671 case expression_binary:
18673 case plus_or_minus:
18678 mp_print_op(mp, m);
18681 @ OK, let's look at the simplest \\{do} procedure first.
18683 @c @<Declare nullary action procedure@>;
18684 void mp_do_nullary (MP mp,quarterword c) {
18686 if ( mp->internal[mp_tracing_commands]>two )
18687 mp_show_cmd_mod(mp, nullary,c);
18689 case true_code: case false_code:
18690 mp->cur_type=mp_boolean_type; mp->cur_exp=c;
18692 case null_picture_code:
18693 mp->cur_type=mp_picture_type;
18694 mp->cur_exp=mp_get_node(mp, edge_header_size);
18695 mp_init_edges(mp, mp->cur_exp);
18697 case null_pen_code:
18698 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, 0);
18700 case normal_deviate:
18701 mp->cur_type=mp_known; mp->cur_exp=mp_norm_rand(mp);
18704 mp->cur_type=mp_pen_type; mp->cur_exp=mp_get_pen_circle(mp, unity);
18707 if ( mp->job_name==NULL ) mp_open_log_file(mp);
18708 mp->cur_type=mp_string_type; mp->cur_exp=rts(mp->job_name);
18711 mp->cur_type=mp_string_type;
18712 mp->cur_exp=intern(metapost_version) ;
18714 case read_string_op:
18715 @<Read a string from the terminal@>;
18717 } /* there are no other cases */
18721 @ @<Read a string...@>=
18723 if ( mp->interaction<=mp_nonstop_mode )
18724 mp_fatal_error(mp, "*** (cannot readstring in nonstop modes)");
18725 mp_begin_file_reading(mp); name=is_read;
18726 limit=start; prompt_input("");
18727 mp_finish_read(mp);
18730 @ @<Declare nullary action procedure@>=
18731 void mp_finish_read (MP mp) { /* copy |buffer| line to |cur_exp| */
18733 str_room((int)mp->last-start);
18734 for (k=start;k<=mp->last-1;k++) {
18735 append_char(mp->buffer[k]);
18737 mp_end_file_reading(mp); mp->cur_type=mp_string_type;
18738 mp->cur_exp=mp_make_string(mp);
18741 @ Things get a bit more interesting when there's an operand. The
18742 operand to |do_unary| appears in |cur_type| and |cur_exp|.
18744 @c @<Declare unary action procedures@>;
18745 void mp_do_unary (MP mp,quarterword c) {
18746 pointer p,q,r; /* for list manipulation */
18747 integer x; /* a temporary register */
18749 if ( mp->internal[mp_tracing_commands]>two )
18750 @<Trace the current unary operation@>;
18753 if ( mp->cur_type<mp_color_type ) mp_bad_unary(mp, plus);
18756 @<Negate the current expression@>;
18758 @<Additional cases of unary operators@>;
18759 } /* there are no other cases */
18763 @ The |nice_pair| function returns |true| if both components of a pair
18766 @<Declare unary action procedures@>=
18767 boolean mp_nice_pair (MP mp,integer p, quarterword t) {
18768 if ( t==mp_pair_type ) {
18770 if ( type(x_part_loc(p))==mp_known )
18771 if ( type(y_part_loc(p))==mp_known )
18777 @ The |nice_color_or_pair| function is analogous except that it also accepts
18778 fully known colors.
18780 @<Declare unary action procedures@>=
18781 boolean mp_nice_color_or_pair (MP mp,integer p, quarterword t) {
18782 pointer q,r; /* for scanning the big node */
18783 if ( (t!=mp_pair_type)&&(t!=mp_color_type)&&(t!=mp_cmykcolor_type) ) {
18787 r=q+mp->big_node_size[type(p)];
18790 if ( type(r)!=mp_known )
18797 @ @<Declare unary action...@>=
18798 void mp_print_known_or_unknown_type (MP mp,small_number t, integer v) {
18799 mp_print_char(mp, '(');
18800 if ( t>mp_known ) mp_print(mp, "unknown numeric");
18801 else { if ( (t==mp_pair_type)||(t==mp_color_type)||(t==mp_cmykcolor_type) )
18802 if ( ! mp_nice_color_or_pair(mp, v,t) ) mp_print(mp, "unknown ");
18803 mp_print_type(mp, t);
18805 mp_print_char(mp, ')');
18808 @ @<Declare unary action...@>=
18809 void mp_bad_unary (MP mp,quarterword c) {
18810 exp_err("Not implemented: "); mp_print_op(mp, c);
18811 @.Not implemented...@>
18812 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
18813 help3("I'm afraid I don't know how to apply that operation to that")
18814 ("particular type. Continue, and I'll simply return the")
18815 ("argument (shown above) as the result of the operation.");
18816 mp_put_get_error(mp);
18819 @ @<Trace the current unary operation@>=
18821 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
18822 mp_print_op(mp, c); mp_print_char(mp, '(');
18823 mp_print_exp(mp, null,0); /* show the operand, but not verbosely */
18824 mp_print(mp, ")}"); mp_end_diagnostic(mp, false);
18827 @ Negation is easy except when the current expression
18828 is of type |independent|, or when it is a pair with one or more
18829 |independent| components.
18831 It is tempting to argue that the negative of an independent variable
18832 is an independent variable, hence we don't have to do anything when
18833 negating it. The fallacy is that other dependent variables pointing
18834 to the current expression must change the sign of their
18835 coefficients if we make no change to the current expression.
18837 Instead, we work around the problem by copying the current expression
18838 and recycling it afterwards (cf.~the |stash_in| routine).
18840 @<Negate the current expression@>=
18841 switch (mp->cur_type) {
18842 case mp_color_type:
18843 case mp_cmykcolor_type:
18845 case mp_independent:
18846 q=mp->cur_exp; mp_make_exp_copy(mp, q);
18847 if ( mp->cur_type==mp_dependent ) {
18848 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18849 } else if ( mp->cur_type<=mp_pair_type ) { /* |mp_color_type| or |mp_pair_type| */
18850 p=value(mp->cur_exp);
18851 r=p+mp->big_node_size[mp->cur_type];
18854 if ( type(r)==mp_known ) negate(value(r));
18855 else mp_negate_dep_list(mp, dep_list(r));
18857 } /* if |cur_type=mp_known| then |cur_exp=0| */
18858 mp_recycle_value(mp, q); mp_free_node(mp, q,value_node_size);
18861 case mp_proto_dependent:
18862 mp_negate_dep_list(mp, dep_list(mp->cur_exp));
18865 negate(mp->cur_exp);
18868 mp_bad_unary(mp, minus);
18872 @ @<Declare unary action...@>=
18873 void mp_negate_dep_list (MP mp,pointer p) {
18876 if ( info(p)==null ) return;
18881 @ @<Additional cases of unary operators@>=
18883 if ( mp->cur_type!=mp_boolean_type ) mp_bad_unary(mp, not_op);
18884 else mp->cur_exp=true_code+false_code-mp->cur_exp;
18887 @ @d three_sixty_units 23592960 /* that's |360*unity| */
18888 @d boolean_reset(A) if ( (A) ) mp->cur_exp=true_code; else mp->cur_exp=false_code
18890 @<Additional cases of unary operators@>=
18897 case uniform_deviate:
18899 case char_exists_op:
18900 if ( mp->cur_type!=mp_known ) {
18901 mp_bad_unary(mp, c);
18904 case sqrt_op:mp->cur_exp=mp_square_rt(mp, mp->cur_exp);break;
18905 case m_exp_op:mp->cur_exp=mp_m_exp(mp, mp->cur_exp);break;
18906 case m_log_op:mp->cur_exp=mp_m_log(mp, mp->cur_exp);break;
18909 mp_n_sin_cos(mp, (mp->cur_exp % three_sixty_units)*16);
18910 if ( c==sin_d_op ) mp->cur_exp=mp_round_fraction(mp, mp->n_sin);
18911 else mp->cur_exp=mp_round_fraction(mp, mp->n_cos);
18913 case floor_op:mp->cur_exp=mp_floor_scaled(mp, mp->cur_exp);break;
18914 case uniform_deviate:mp->cur_exp=mp_unif_rand(mp, mp->cur_exp);break;
18916 boolean_reset(odd(mp_round_unscaled(mp, mp->cur_exp)));
18917 mp->cur_type=mp_boolean_type;
18919 case char_exists_op:
18920 @<Determine if a character has been shipped out@>;
18922 } /* there are no other cases */
18926 @ @<Additional cases of unary operators@>=
18928 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) ) {
18929 p=value(mp->cur_exp);
18930 x=mp_n_arg(mp, value(x_part_loc(p)),value(y_part_loc(p)));
18931 if ( x>=0 ) mp_flush_cur_exp(mp, (x+8)/ 16);
18932 else mp_flush_cur_exp(mp, -((-x+8)/ 16));
18934 mp_bad_unary(mp, angle_op);
18938 @ If the current expression is a pair, but the context wants it to
18939 be a path, we call |pair_to_path|.
18941 @<Declare unary action...@>=
18942 void mp_pair_to_path (MP mp) {
18943 mp->cur_exp=mp_new_knot(mp);
18944 mp->cur_type=mp_path_type;
18947 @ @<Additional cases of unary operators@>=
18950 if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_transform_type) )
18951 mp_take_part(mp, c);
18952 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18953 else mp_bad_unary(mp, c);
18959 if ( mp->cur_type==mp_transform_type ) mp_take_part(mp, c);
18960 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18961 else mp_bad_unary(mp, c);
18966 if ( mp->cur_type==mp_color_type ) mp_take_part(mp, c);
18967 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18968 else mp_bad_unary(mp, c);
18974 if ( mp->cur_type==mp_cmykcolor_type) mp_take_part(mp, c);
18975 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18976 else mp_bad_unary(mp, c);
18979 if ( mp->cur_type==mp_known ) mp->cur_exp=value(c);
18980 else if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18981 else mp_bad_unary(mp, c);
18983 case color_model_part:
18984 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
18985 else mp_bad_unary(mp, c);
18988 @ In the following procedure, |cur_exp| points to a capsule, which points to
18989 a big node. We want to delete all but one part of the big node.
18991 @<Declare unary action...@>=
18992 void mp_take_part (MP mp,quarterword c) {
18993 pointer p; /* the big node */
18994 p=value(mp->cur_exp); value(temp_val)=p; type(temp_val)=mp->cur_type;
18995 link(p)=temp_val; mp_free_node(mp, mp->cur_exp,value_node_size);
18996 mp_make_exp_copy(mp, p+mp->sector_offset[c+mp_x_part_sector-x_part]);
18997 mp_recycle_value(mp, temp_val);
19000 @ @<Initialize table entries...@>=
19001 name_type(temp_val)=mp_capsule;
19003 @ @<Additional cases of unary operators@>=
19009 if ( mp->cur_type==mp_picture_type ) mp_take_pict_part(mp, c);
19010 else mp_bad_unary(mp, c);
19013 @ @<Declarations@>=
19014 void mp_scale_edges (MP mp);
19016 @ @<Declare unary action...@>=
19017 void mp_take_pict_part (MP mp,quarterword c) {
19018 pointer p; /* first graphical object in |cur_exp| */
19019 p=link(dummy_loc(mp->cur_exp));
19022 case x_part: case y_part: case xx_part:
19023 case xy_part: case yx_part: case yy_part:
19024 if ( type(p)==mp_text_code ) mp_flush_cur_exp(mp, text_trans_part(p+c));
19025 else goto NOT_FOUND;
19027 case red_part: case green_part: case blue_part:
19028 if ( has_color(p) ) mp_flush_cur_exp(mp, obj_color_part(p+c));
19029 else goto NOT_FOUND;
19031 case cyan_part: case magenta_part: case yellow_part:
19033 if ( has_color(p) ) {
19034 if ( color_model(p)==mp_uninitialized_model )
19035 mp_flush_cur_exp(mp, unity);
19037 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-cyan_part)));
19038 } else goto NOT_FOUND;
19041 if ( has_color(p) )
19042 mp_flush_cur_exp(mp, obj_color_part(p+c+(red_part-grey_part)));
19043 else goto NOT_FOUND;
19045 case color_model_part:
19046 if ( has_color(p) ) {
19047 if ( color_model(p)==mp_uninitialized_model )
19048 mp_flush_cur_exp(mp, mp->internal[mp_default_color_model]);
19050 mp_flush_cur_exp(mp, color_model(p)*unity);
19051 } else goto NOT_FOUND;
19053 @<Handle other cases in |take_pict_part| or |goto not_found|@>;
19054 } /* all cases have been enumerated */
19058 @<Convert the current expression to a null value appropriate
19062 @ @<Handle other cases in |take_pict_part| or |goto not_found|@>=
19064 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
19066 mp_flush_cur_exp(mp, text_p(p));
19067 add_str_ref(mp->cur_exp);
19068 mp->cur_type=mp_string_type;
19072 if ( type(p)!=mp_text_code ) goto NOT_FOUND;
19074 mp_flush_cur_exp(mp, rts(mp->font_name[font_n(p)]));
19075 add_str_ref(mp->cur_exp);
19076 mp->cur_type=mp_string_type;
19080 if ( type(p)==mp_text_code ) goto NOT_FOUND;
19081 else if ( is_stop(p) ) mp_confusion(mp, "pict");
19082 @:this can't happen pict}{\quad pict@>
19084 mp_flush_cur_exp(mp, mp_copy_path(mp, path_p(p)));
19085 mp->cur_type=mp_path_type;
19089 if ( ! has_pen(p) ) goto NOT_FOUND;
19091 if ( pen_p(p)==null ) goto NOT_FOUND;
19092 else { mp_flush_cur_exp(mp, copy_pen(pen_p(p)));
19093 mp->cur_type=mp_pen_type;
19098 if ( type(p)!=mp_stroked_code ) goto NOT_FOUND;
19099 else { if ( dash_p(p)==null ) goto NOT_FOUND;
19100 else { add_edge_ref(dash_p(p));
19101 mp->se_sf=dash_scale(p);
19102 mp->se_pic=dash_p(p);
19103 mp_scale_edges(mp);
19104 mp_flush_cur_exp(mp, mp->se_pic);
19105 mp->cur_type=mp_picture_type;
19110 @ Since |scale_edges| had to be declared |forward|, it had to be declared as a
19111 parameterless procedure even though it really takes two arguments and updates
19112 one of them. Hence the following globals are needed.
19115 pointer se_pic; /* edge header used and updated by |scale_edges| */
19116 scaled se_sf; /* the scale factor argument to |scale_edges| */
19118 @ @<Convert the current expression to a null value appropriate...@>=
19120 case text_part: case font_part:
19121 mp_flush_cur_exp(mp, rts(""));
19122 mp->cur_type=mp_string_type;
19125 mp_flush_cur_exp(mp, mp_get_node(mp, knot_node_size));
19126 left_type(mp->cur_exp)=mp_endpoint;
19127 right_type(mp->cur_exp)=mp_endpoint;
19128 link(mp->cur_exp)=mp->cur_exp;
19129 x_coord(mp->cur_exp)=0;
19130 y_coord(mp->cur_exp)=0;
19131 originator(mp->cur_exp)=mp_metapost_user;
19132 mp->cur_type=mp_path_type;
19135 mp_flush_cur_exp(mp, mp_get_pen_circle(mp, 0));
19136 mp->cur_type=mp_pen_type;
19139 mp_flush_cur_exp(mp, mp_get_node(mp, edge_header_size));
19140 mp_init_edges(mp, mp->cur_exp);
19141 mp->cur_type=mp_picture_type;
19144 mp_flush_cur_exp(mp, 0);
19148 @ @<Additional cases of unary...@>=
19150 if ( mp->cur_type!=mp_known ) {
19151 mp_bad_unary(mp, char_op);
19153 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
19154 mp->cur_type=mp_string_type;
19155 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
19159 if ( mp->cur_type!=mp_known ) {
19160 mp_bad_unary(mp, decimal);
19162 mp->old_setting=mp->selector; mp->selector=new_string;
19163 mp_print_scaled(mp, mp->cur_exp); mp->cur_exp=mp_make_string(mp);
19164 mp->selector=mp->old_setting; mp->cur_type=mp_string_type;
19170 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19171 else mp_str_to_num(mp, c);
19174 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, font_size);
19175 else @<Find the design size of the font whose name is |cur_exp|@>;
19178 @ @<Declare unary action...@>=
19179 void mp_str_to_num (MP mp,quarterword c) { /* converts a string to a number */
19180 integer n; /* accumulator */
19181 ASCII_code m; /* current character */
19182 pool_pointer k; /* index into |str_pool| */
19183 int b; /* radix of conversion */
19184 boolean bad_char; /* did the string contain an invalid digit? */
19185 if ( c==ASCII_op ) {
19186 if ( length(mp->cur_exp)==0 ) n=-1;
19187 else n=mp->str_pool[mp->str_start[mp->cur_exp]];
19189 if ( c==oct_op ) b=8; else b=16;
19190 n=0; bad_char=false;
19191 for (k=mp->str_start[mp->cur_exp];k<=str_stop(mp->cur_exp)-1;k++) {
19193 if ( (m>='0')&&(m<='9') ) m=m-'0';
19194 else if ( (m>='A')&&(m<='F') ) m=m-'A'+10;
19195 else if ( (m>='a')&&(m<='f') ) m=m-'a'+10;
19196 else { bad_char=true; m=0; };
19197 if ( m>=b ) { bad_char=true; m=0; };
19198 if ( n<32768 / b ) n=n*b+m; else n=32767;
19200 @<Give error messages if |bad_char| or |n>=4096|@>;
19202 mp_flush_cur_exp(mp, n*unity);
19205 @ @<Give error messages if |bad_char|...@>=
19207 exp_err("String contains illegal digits");
19208 @.String contains illegal digits@>
19210 help1("I zeroed out characters that weren't in the range 0..7.");
19212 help1("I zeroed out characters that weren't hex digits.");
19214 mp_put_get_error(mp);
19217 if ( mp->internal[mp_warning_check]>0 ) {
19218 print_err("Number too large (");
19219 mp_print_int(mp, n); mp_print_char(mp, ')');
19220 @.Number too large@>
19221 help2("I have trouble with numbers greater than 4095; watch out.")
19222 ("(Set warningcheck:=0 to suppress this message.)");
19223 mp_put_get_error(mp);
19227 @ The length operation is somewhat unusual in that it applies to a variety
19228 of different types of operands.
19230 @<Additional cases of unary...@>=
19232 switch (mp->cur_type) {
19233 case mp_string_type: mp_flush_cur_exp(mp, length(mp->cur_exp)*unity); break;
19234 case mp_path_type: mp_flush_cur_exp(mp, mp_path_length(mp)); break;
19235 case mp_known: mp->cur_exp=abs(mp->cur_exp); break;
19236 case mp_picture_type: mp_flush_cur_exp(mp, mp_pict_length(mp)); break;
19238 if ( mp_nice_pair(mp, mp->cur_exp,mp->cur_type) )
19239 mp_flush_cur_exp(mp, mp_pyth_add(mp,
19240 value(x_part_loc(value(mp->cur_exp))),
19241 value(y_part_loc(value(mp->cur_exp)))));
19242 else mp_bad_unary(mp, c);
19247 @ @<Declare unary action...@>=
19248 scaled mp_path_length (MP mp) { /* computes the length of the current path */
19249 scaled n; /* the path length so far */
19250 pointer p; /* traverser */
19252 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
19253 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
19257 @ @<Declare unary action...@>=
19258 scaled mp_pict_length (MP mp) {
19259 /* counts interior components in picture |cur_exp| */
19260 scaled n; /* the count so far */
19261 pointer p; /* traverser */
19263 p=link(dummy_loc(mp->cur_exp));
19265 if ( is_start_or_stop(p) )
19266 if ( mp_skip_1component(mp, p)==null ) p=link(p);
19267 while ( p!=null ) {
19268 skip_component(p) return n;
19275 @ Implement |turningnumber|
19277 @<Additional cases of unary...@>=
19279 if ( mp->cur_type==mp_pair_type ) mp_flush_cur_exp(mp, 0);
19280 else if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, turning_op);
19281 else if ( left_type(mp->cur_exp)==mp_endpoint )
19282 mp_flush_cur_exp(mp, 0); /* not a cyclic path */
19284 mp_flush_cur_exp(mp, mp_turn_cycles_wrapper(mp, mp->cur_exp));
19287 @ The function |an_angle| returns the value of the |angle| primitive, or $0$ if the
19288 argument is |origin|.
19290 @<Declare unary action...@>=
19291 angle mp_an_angle (MP mp,scaled xpar, scaled ypar) {
19292 if ( (! ((xpar==0) && (ypar==0))) )
19293 return mp_n_arg(mp, xpar,ypar);
19298 @ The actual turning number is (for the moment) computed in a C function
19299 that receives eight integers corresponding to the four controlling points,
19300 and returns a single angle. Besides those, we have to account for discrete
19301 moves at the actual points.
19303 @d floor(a) (a>=0 ? a : -(int)(-a))
19304 @d bezier_error (720<<20)+1
19305 @d sign(v) ((v)>0 ? 1 : ((v)<0 ? -1 : 0 ))
19306 @d print_roots(a) { if (debuglevel>(65536*2))
19307 fprintf(stdout,"bezier_slope(): %s, i=%f, o=%f, angle=%f\n", (a),in,out,res); }
19308 @d out ((double)(xo>>20))
19309 @d mid ((double)(xm>>20))
19310 @d in ((double)(xi>>20))
19311 @d divisor (256*256)
19312 @d double2angle(a) (int)floor(a*256.0*256.0*16.0)
19314 @<Declare unary action...@>=
19315 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19316 integer CX,integer CY,integer DX,integer DY, int debuglevel);
19319 angle mp_bezier_slope(MP mp, integer AX,integer AY,integer BX,integer BY,
19320 integer CX,integer CY,integer DX,integer DY, int debuglevel) {
19322 integer deltax,deltay;
19323 double ax,ay,bx,by,cx,cy,dx,dy;
19324 angle xi = 0, xo = 0, xm = 0;
19326 ax=AX/divisor; ay=AY/divisor;
19327 bx=BX/divisor; by=BY/divisor;
19328 cx=CX/divisor; cy=CY/divisor;
19329 dx=DX/divisor; dy=DY/divisor;
19331 deltax = (BX-AX); deltay = (BY-AY);
19332 if (deltax==0 && deltay == 0) { deltax=(CX-AX); deltay=(CY-AY); }
19333 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19334 xi = mp_an_angle(mp,deltax,deltay);
19336 deltax = (CX-BX); deltay = (CY-BY);
19337 xm = mp_an_angle(mp,deltax,deltay);
19339 deltax = (DX-CX); deltay = (DY-CY);
19340 if (deltax==0 && deltay == 0) { deltax=(DX-BX); deltay=(DY-BY); }
19341 if (deltax==0 && deltay == 0) { deltax=(DX-AX); deltay=(DY-AY); }
19342 xo = mp_an_angle(mp,deltax,deltay);
19344 a = (bx-ax)*(cy-by) - (cx-bx)*(by-ay); /* a = (bp-ap)x(cp-bp); */
19345 b = (bx-ax)*(dy-cy) - (by-ay)*(dx-cx);; /* b = (bp-ap)x(dp-cp);*/
19346 c = (cx-bx)*(dy-cy) - (dx-cx)*(cy-by); /* c = (cp-bp)x(dp-cp);*/
19348 if (debuglevel>(65536*2)) {
19350 "bezier_slope(): (%.2f,%.2f),(%.2f,%.2f),(%.2f,%.2f),(%.2f,%.2f)\n",
19351 ax,ay,bx,by,cx,cy,dx,dy);
19353 "bezier_slope(): a,b,c,b^2,4ac: (%.2f,%.2f,%.2f,%.2f,%.2f)\n",a,b,c,b*b,4*a*c);
19356 if ((a==0)&&(c==0)) {
19357 res = (b==0 ? 0 : (out-in));
19358 print_roots("no roots (a)");
19359 } else if ((a==0)||(c==0)) {
19360 if ((sign(b) == sign(a)) || (sign(b) == sign(c))) {
19361 res = out-in; /* ? */
19364 else if (res>180.0)
19366 print_roots("no roots (b)");
19368 res = out-in; /* ? */
19369 print_roots("one root (a)");
19371 } else if ((sign(a)*sign(c))<0) {
19372 res = out-in; /* ? */
19375 else if (res>180.0)
19377 print_roots("one root (b)");
19379 if (sign(a) == sign(b)) {
19380 res = out-in; /* ? */
19383 else if (res>180.0)
19385 print_roots("no roots (d)");
19387 if ((b*b) == (4*a*c)) {
19388 res = bezier_error;
19389 print_roots("double root"); /* cusp */
19390 } else if ((b*b) < (4*a*c)) {
19391 res = out-in; /* ? */
19392 if (res<=0.0 &&res>-180.0)
19394 else if (res>=0.0 && res<180.0)
19396 print_roots("no roots (e)");
19401 else if (res>180.0)
19403 print_roots("two roots"); /* two inflections */
19407 return double2angle(res);
19411 @d p_nextnext link(link(p))
19413 @d seven_twenty_deg 05500000000 /* $720\cdot2^{20}$, represents $720^\circ$ */
19415 @<Declare unary action...@>=
19416 scaled mp_new_turn_cycles (MP mp,pointer c) {
19417 angle res,ang; /* the angles of intermediate results */
19418 scaled turns; /* the turn counter */
19419 pointer p; /* for running around the path */
19420 integer xp,yp; /* coordinates of next point */
19421 integer x,y; /* helper coordinates */
19422 angle in_angle,out_angle; /* helper angles */
19423 int old_setting; /* saved |selector| setting */
19427 old_setting = mp->selector; mp->selector=term_only;
19428 if ( mp->internal[mp_tracing_commands]>unity ) {
19429 mp_begin_diagnostic(mp);
19430 mp_print_nl(mp, "");
19431 mp_end_diagnostic(mp, false);
19434 xp = x_coord(p_next); yp = y_coord(p_next);
19435 ang = mp_bezier_slope(mp,x_coord(p), y_coord(p), right_x(p), right_y(p),
19436 left_x(p_next), left_y(p_next), xp, yp,
19437 mp->internal[mp_tracing_commands]);
19438 if ( ang>seven_twenty_deg ) {
19439 print_err("Strange path");
19441 mp->selector=old_setting;
19445 if ( res > one_eighty_deg ) {
19446 res = res - three_sixty_deg;
19447 turns = turns + unity;
19449 if ( res <= -one_eighty_deg ) {
19450 res = res + three_sixty_deg;
19451 turns = turns - unity;
19453 /* incoming angle at next point */
19454 x = left_x(p_next); y = left_y(p_next);
19455 if ( (xp==x)&&(yp==y) ) { x = right_x(p); y = right_y(p); };
19456 if ( (xp==x)&&(yp==y) ) { x = x_coord(p); y = y_coord(p); };
19457 in_angle = mp_an_angle(mp, xp - x, yp - y);
19458 /* outgoing angle at next point */
19459 x = right_x(p_next); y = right_y(p_next);
19460 if ( (xp==x)&&(yp==y) ) { x = left_x(p_nextnext); y = left_y(p_nextnext); };
19461 if ( (xp==x)&&(yp==y) ) { x = x_coord(p_nextnext); y = y_coord(p_nextnext); };
19462 out_angle = mp_an_angle(mp, x - xp, y- yp);
19463 ang = (out_angle - in_angle);
19467 if ( res >= one_eighty_deg ) {
19468 res = res - three_sixty_deg;
19469 turns = turns + unity;
19471 if ( res <= -one_eighty_deg ) {
19472 res = res + three_sixty_deg;
19473 turns = turns - unity;
19478 mp->selector=old_setting;
19483 @ This code is based on Bogus\l{}av Jackowski's
19484 |emergency_turningnumber| macro, with some minor changes by Taco
19485 Hoekwater. The macro code looked more like this:
19487 vardef turning\_number primary p =
19488 ~~save res, ang, turns;
19490 ~~if length p <= 2:
19491 ~~~~if Angle ((point 0 of p) - (postcontrol 0 of p)) >= 0: 1 else: -1 fi
19493 ~~~~for t = 0 upto length p-1 :
19494 ~~~~~~angc := Angle ((point t+1 of p) - (point t of p))
19495 ~~~~~~~~- Angle ((point t of p) - (point t-1 of p));
19496 ~~~~~~if angc > 180: angc := angc - 360; fi;
19497 ~~~~~~if angc < -180: angc := angc + 360; fi;
19498 ~~~~~~res := res + angc;
19503 The general idea is to calculate only the sum of the angles of
19504 straight lines between the points, of a path, not worrying about cusps
19505 or self-intersections in the segments at all. If the segment is not
19506 well-behaved, the result is not necesarily correct. But the old code
19507 was not always correct either, and worse, it sometimes failed for
19508 well-behaved paths as well. All known bugs that were triggered by the
19509 original code no longer occur with this code, and it runs roughly 3
19510 times as fast because the algorithm is much simpler.
19512 @ It is possible to overflow the return value of the |turn_cycles|
19513 function when the path is sufficiently long and winding, but I am not
19514 going to bother testing for that. In any case, it would only return
19515 the looped result value, which is not a big problem.
19517 The macro code for the repeat loop was a bit nicer to look
19518 at than the pascal code, because it could use |point -1 of p|. In
19519 pascal, the fastest way to loop around the path is not to look
19520 backward once, but forward twice. These defines help hide the trick.
19522 @d p_to link(link(p))
19526 @<Declare unary action...@>=
19527 scaled mp_turn_cycles (MP mp,pointer c) {
19528 angle res,ang; /* the angles of intermediate results */
19529 scaled turns; /* the turn counter */
19530 pointer p; /* for running around the path */
19531 res=0; turns= 0; p=c;
19533 ang = mp_an_angle (mp, x_coord(p_to) - x_coord(p_here),
19534 y_coord(p_to) - y_coord(p_here))
19535 - mp_an_angle (mp, x_coord(p_here) - x_coord(p_from),
19536 y_coord(p_here) - y_coord(p_from));
19539 if ( res >= three_sixty_deg ) {
19540 res = res - three_sixty_deg;
19541 turns = turns + unity;
19543 if ( res <= -three_sixty_deg ) {
19544 res = res + three_sixty_deg;
19545 turns = turns - unity;
19552 @ @<Declare unary action...@>=
19553 scaled mp_turn_cycles_wrapper (MP mp,pointer c) {
19555 scaled saved_t_o; /* tracing\_online saved */
19556 if ( (link(c)==c)||(link(link(c))==c) ) {
19557 if ( mp_an_angle (mp, x_coord(c) - right_x(c), y_coord(c) - right_y(c)) > 0 )
19562 nval = mp_new_turn_cycles(mp, c);
19563 oval = mp_turn_cycles(mp, c);
19564 if ( nval!=oval ) {
19565 saved_t_o=mp->internal[mp_tracing_online];
19566 mp->internal[mp_tracing_online]=unity;
19567 mp_begin_diagnostic(mp);
19568 mp_print_nl (mp, "Warning: the turningnumber algorithms do not agree."
19569 " The current computed value is ");
19570 mp_print_scaled(mp, nval);
19571 mp_print(mp, ", but the 'connect-the-dots' algorithm returned ");
19572 mp_print_scaled(mp, oval);
19573 mp_end_diagnostic(mp, false);
19574 mp->internal[mp_tracing_online]=saved_t_o;
19580 @ @<Declare unary action...@>=
19581 scaled mp_count_turns (MP mp,pointer c) {
19582 pointer p; /* a knot in envelope spec |c| */
19583 integer t; /* total pen offset changes counted */
19586 t=t+info(p)-zero_off;
19589 return ((t / 3)*unity);
19592 @ @d type_range(A,B) {
19593 if ( (mp->cur_type>=(A)) && (mp->cur_type<=(B)) )
19594 mp_flush_cur_exp(mp, true_code);
19595 else mp_flush_cur_exp(mp, false_code);
19596 mp->cur_type=mp_boolean_type;
19599 if ( mp->cur_type==(A) ) mp_flush_cur_exp(mp, true_code);
19600 else mp_flush_cur_exp(mp, false_code);
19601 mp->cur_type=mp_boolean_type;
19604 @<Additional cases of unary operators@>=
19605 case mp_boolean_type:
19606 type_range(mp_boolean_type,mp_unknown_boolean); break;
19607 case mp_string_type:
19608 type_range(mp_string_type,mp_unknown_string); break;
19610 type_range(mp_pen_type,mp_unknown_pen); break;
19612 type_range(mp_path_type,mp_unknown_path); break;
19613 case mp_picture_type:
19614 type_range(mp_picture_type,mp_unknown_picture); break;
19615 case mp_transform_type: case mp_color_type: case mp_cmykcolor_type:
19617 type_test(c); break;
19618 case mp_numeric_type:
19619 type_range(mp_known,mp_independent); break;
19620 case known_op: case unknown_op:
19621 mp_test_known(mp, c); break;
19623 @ @<Declare unary action procedures@>=
19624 void mp_test_known (MP mp,quarterword c) {
19625 int b; /* is the current expression known? */
19626 pointer p,q; /* locations in a big node */
19628 switch (mp->cur_type) {
19629 case mp_vacuous: case mp_boolean_type: case mp_string_type:
19630 case mp_pen_type: case mp_path_type: case mp_picture_type:
19634 case mp_transform_type:
19635 case mp_color_type: case mp_cmykcolor_type: case mp_pair_type:
19636 p=value(mp->cur_exp);
19637 q=p+mp->big_node_size[mp->cur_type];
19640 if ( type(q)!=mp_known )
19649 if ( c==known_op ) mp_flush_cur_exp(mp, b);
19650 else mp_flush_cur_exp(mp, true_code+false_code-b);
19651 mp->cur_type=mp_boolean_type;
19654 @ @<Additional cases of unary operators@>=
19656 if ( mp->cur_type!=mp_path_type ) mp_flush_cur_exp(mp, false_code);
19657 else if ( left_type(mp->cur_exp)!=mp_endpoint ) mp_flush_cur_exp(mp, true_code);
19658 else mp_flush_cur_exp(mp, false_code);
19659 mp->cur_type=mp_boolean_type;
19662 @ @<Additional cases of unary operators@>=
19664 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19665 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, arc_length);
19666 else mp_flush_cur_exp(mp, mp_get_arc_length(mp, mp->cur_exp));
19669 @ Here we use the fact that |c-filled_op+fill_code| is the desired graphical
19671 @^data structure assumptions@>
19673 @<Additional cases of unary operators@>=
19679 if ( mp->cur_type!=mp_picture_type ) mp_flush_cur_exp(mp, false_code);
19680 else if ( link(dummy_loc(mp->cur_exp))==null ) mp_flush_cur_exp(mp, false_code);
19681 else if ( type(link(dummy_loc(mp->cur_exp)))==c+mp_fill_code-filled_op )
19682 mp_flush_cur_exp(mp, true_code);
19683 else mp_flush_cur_exp(mp, false_code);
19684 mp->cur_type=mp_boolean_type;
19687 @ @<Additional cases of unary operators@>=
19689 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19690 if ( mp->cur_type!=mp_path_type ) mp_bad_unary(mp, make_pen_op);
19692 mp->cur_type=mp_pen_type;
19693 mp->cur_exp=mp_make_pen(mp, mp->cur_exp,true);
19697 if ( mp->cur_type!=mp_pen_type ) mp_bad_unary(mp, make_path_op);
19699 mp->cur_type=mp_path_type;
19700 mp_make_path(mp, mp->cur_exp);
19704 if ( mp->cur_type==mp_path_type ) {
19705 p=mp_htap_ypoc(mp, mp->cur_exp);
19706 if ( right_type(p)==mp_endpoint ) p=link(p);
19707 mp_toss_knot_list(mp, mp->cur_exp); mp->cur_exp=p;
19708 } else if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
19709 else mp_bad_unary(mp, reverse);
19712 @ The |pair_value| routine changes the current expression to a
19713 given ordered pair of values.
19715 @<Declare unary action procedures@>=
19716 void mp_pair_value (MP mp,scaled x, scaled y) {
19717 pointer p; /* a pair node */
19718 p=mp_get_node(mp, value_node_size);
19719 mp_flush_cur_exp(mp, p); mp->cur_type=mp_pair_type;
19720 type(p)=mp_pair_type; name_type(p)=mp_capsule; mp_init_big_node(mp, p);
19722 type(x_part_loc(p))=mp_known; value(x_part_loc(p))=x;
19723 type(y_part_loc(p))=mp_known; value(y_part_loc(p))=y;
19726 @ @<Additional cases of unary operators@>=
19728 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ll_corner_op);
19729 else mp_pair_value(mp, minx,miny);
19732 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, lr_corner_op);
19733 else mp_pair_value(mp, maxx,miny);
19736 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ul_corner_op);
19737 else mp_pair_value(mp, minx,maxy);
19740 if ( ! mp_get_cur_bbox(mp) ) mp_bad_unary(mp, ur_corner_op);
19741 else mp_pair_value(mp, maxx,maxy);
19744 @ Here is a function that sets |minx|, |maxx|, |miny|, |maxy| to the bounding
19745 box of the current expression. The boolean result is |false| if the expression
19746 has the wrong type.
19748 @<Declare unary action procedures@>=
19749 boolean mp_get_cur_bbox (MP mp) {
19750 switch (mp->cur_type) {
19751 case mp_picture_type:
19752 mp_set_bbox(mp, mp->cur_exp,true);
19753 if ( minx_val(mp->cur_exp)>maxx_val(mp->cur_exp) ) {
19754 minx=0; maxx=0; miny=0; maxy=0;
19756 minx=minx_val(mp->cur_exp);
19757 maxx=maxx_val(mp->cur_exp);
19758 miny=miny_val(mp->cur_exp);
19759 maxy=maxy_val(mp->cur_exp);
19763 mp_path_bbox(mp, mp->cur_exp);
19766 mp_pen_bbox(mp, mp->cur_exp);
19774 @ @<Additional cases of unary operators@>=
19776 case close_from_op:
19777 if ( mp->cur_type!=mp_string_type ) mp_bad_unary(mp, c);
19778 else mp_do_read_or_close(mp,c);
19781 @ Here is a routine that interprets |cur_exp| as a file name and tries to read
19782 a line from the file or to close the file.
19784 @d close_file 46 /* go here when closing the file */
19786 @<Declare unary action procedures@>=
19787 void mp_do_read_or_close (MP mp,quarterword c) {
19788 readf_index n,n0; /* indices for searching |rd_fname| */
19789 @<Find the |n| where |rd_fname[n]=cur_exp|; if |cur_exp| must be inserted,
19790 call |start_read_input| and |goto found| or |not_found|@>;
19791 mp_begin_file_reading(mp);
19793 if ( mp_input_ln(mp, mp->rd_file[n],true) )
19795 mp_end_file_reading(mp);
19797 @<Record the end of file and set |cur_exp| to a dummy value@>;
19800 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
19803 mp_flush_cur_exp(mp, 0);
19804 mp_finish_read(mp);
19807 @ Free slots in the |rd_file| and |rd_fname| arrays are marked with NULL's in
19810 @<Find the |n| where |rd_fname[n]=cur_exp|...@>=
19815 fn = str(mp->cur_exp);
19816 while (mp_xstrcmp(fn,mp->rd_fname[n])!=0) {
19819 } else if ( c==close_from_op ) {
19822 if ( n0==mp->read_files ) {
19823 if ( mp->read_files<mp->max_read_files ) {
19824 incr(mp->read_files);
19829 l = mp->max_read_files + (mp->max_read_files>>2);
19830 rd_file = xmalloc((l+1), sizeof(FILE *));
19831 rd_fname = xmalloc((l+1), sizeof(char *));
19832 for (k=0;k<=l;k++) {
19833 if (k<=mp->max_read_files) {
19834 rd_file[k]=mp->rd_file[k];
19835 rd_fname[k]=mp->rd_fname[k];
19841 xfree(mp->rd_file); xfree(mp->rd_fname);
19842 mp->max_read_files = l;
19843 mp->rd_file = rd_file;
19844 mp->rd_fname = rd_fname;
19848 if ( mp_start_read_input(mp,fn,n) )
19853 if ( mp->rd_fname[n]==NULL ) { n0=n; }
19855 if ( c==close_from_op ) {
19856 fclose(mp->rd_file[n]);
19861 @ @<Record the end of file and set |cur_exp| to a dummy value@>=
19862 xfree(mp->rd_fname[n]);
19863 mp->rd_fname[n]=NULL;
19864 if ( n==mp->read_files-1 ) mp->read_files=n;
19865 if ( c==close_from_op )
19867 mp_flush_cur_exp(mp, mp->eof_line);
19868 mp->cur_type=mp_string_type
19870 @ The string denoting end-of-file is a one-byte string at position zero, by definition
19873 str_number eof_line;
19878 @ Finally, we have the operations that combine a capsule~|p|
19879 with the current expression.
19881 @c @<Declare binary action procedures@>;
19882 void mp_do_binary (MP mp,pointer p, quarterword c) {
19883 pointer q,r,rr; /* for list manipulation */
19884 pointer old_p,old_exp; /* capsules to recycle */
19885 integer v; /* for numeric manipulation */
19887 if ( mp->internal[mp_tracing_commands]>two ) {
19888 @<Trace the current binary operation@>;
19890 @<Sidestep |independent| cases in capsule |p|@>;
19891 @<Sidestep |independent| cases in the current expression@>;
19893 case plus: case minus:
19894 @<Add or subtract the current expression from |p|@>;
19896 @<Additional cases of binary operators@>;
19897 }; /* there are no other cases */
19898 mp_recycle_value(mp, p);
19899 mp_free_node(mp, p,value_node_size); /* |return| to avoid this */
19901 @<Recycle any sidestepped |independent| capsules@>;
19904 @ @<Declare binary action...@>=
19905 void mp_bad_binary (MP mp,pointer p, quarterword c) {
19906 mp_disp_err(mp, p,"");
19907 exp_err("Not implemented: ");
19908 @.Not implemented...@>
19909 if ( c>=min_of ) mp_print_op(mp, c);
19910 mp_print_known_or_unknown_type(mp, type(p),p);
19911 if ( c>=min_of ) mp_print(mp, "of"); else mp_print_op(mp, c);
19912 mp_print_known_or_unknown_type(mp, mp->cur_type,mp->cur_exp);
19913 help3("I'm afraid I don't know how to apply that operation to that")
19914 ("combination of types. Continue, and I'll return the second")
19915 ("argument (see above) as the result of the operation.");
19916 mp_put_get_error(mp);
19919 @ @<Trace the current binary operation@>=
19921 mp_begin_diagnostic(mp); mp_print_nl(mp, "{(");
19922 mp_print_exp(mp,p,0); /* show the operand, but not verbosely */
19923 mp_print_char(mp,')'); mp_print_op(mp,c); mp_print_char(mp,'(');
19924 mp_print_exp(mp,null,0); mp_print(mp,")}");
19925 mp_end_diagnostic(mp, false);
19928 @ Several of the binary operations are potentially complicated by the
19929 fact that |independent| values can sneak into capsules. For example,
19930 we've seen an instance of this difficulty in the unary operation
19931 of negation. In order to reduce the number of cases that need to be
19932 handled, we first change the two operands (if necessary)
19933 to rid them of |independent| components. The original operands are
19934 put into capsules called |old_p| and |old_exp|, which will be
19935 recycled after the binary operation has been safely carried out.
19937 @<Recycle any sidestepped |independent| capsules@>=
19938 if ( old_p!=null ) {
19939 mp_recycle_value(mp, old_p); mp_free_node(mp, old_p,value_node_size);
19941 if ( old_exp!=null ) {
19942 mp_recycle_value(mp, old_exp); mp_free_node(mp, old_exp,value_node_size);
19945 @ A big node is considered to be ``tarnished'' if it contains at least one
19946 independent component. We will define a simple function called `|tarnished|'
19947 that returns |null| if and only if its argument is not tarnished.
19949 @<Sidestep |independent| cases in capsule |p|@>=
19951 case mp_transform_type:
19952 case mp_color_type:
19953 case mp_cmykcolor_type:
19955 old_p=mp_tarnished(mp, p);
19957 case mp_independent: old_p=mp_void; break;
19958 default: old_p=null; break;
19960 if ( old_p!=null ) {
19961 q=mp_stash_cur_exp(mp); old_p=p; mp_make_exp_copy(mp, old_p);
19962 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
19965 @ @<Sidestep |independent| cases in the current expression@>=
19966 switch (mp->cur_type) {
19967 case mp_transform_type:
19968 case mp_color_type:
19969 case mp_cmykcolor_type:
19971 old_exp=mp_tarnished(mp, mp->cur_exp);
19973 case mp_independent:old_exp=mp_void; break;
19974 default: old_exp=null; break;
19976 if ( old_exp!=null ) {
19977 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
19980 @ @<Declare binary action...@>=
19981 pointer mp_tarnished (MP mp,pointer p) {
19982 pointer q; /* beginning of the big node */
19983 pointer r; /* current position in the big node */
19984 q=value(p); r=q+mp->big_node_size[type(p)];
19987 if ( type(r)==mp_independent ) return mp_void;
19992 @ @<Add or subtract the current expression from |p|@>=
19993 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
19994 mp_bad_binary(mp, p,c);
19996 if ((mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
19997 mp_add_or_subtract(mp, p,null,c);
19999 if ( mp->cur_type!=type(p) ) {
20000 mp_bad_binary(mp, p,c);
20002 q=value(p); r=value(mp->cur_exp);
20003 rr=r+mp->big_node_size[mp->cur_type];
20005 mp_add_or_subtract(mp, q,r,c);
20012 @ The first argument to |add_or_subtract| is the location of a value node
20013 in a capsule or pair node that will soon be recycled. The second argument
20014 is either a location within a pair or transform node of |cur_exp|,
20015 or it is null (which means that |cur_exp| itself should be the second
20016 argument). The third argument is either |plus| or |minus|.
20018 The sum or difference of the numeric quantities will replace the second
20019 operand. Arithmetic overflow may go undetected; users aren't supposed to
20020 be monkeying around with really big values.
20022 @<Declare binary action...@>=
20023 @<Declare the procedure called |dep_finish|@>;
20024 void mp_add_or_subtract (MP mp,pointer p, pointer q, quarterword c) {
20025 small_number s,t; /* operand types */
20026 pointer r; /* list traverser */
20027 integer v; /* second operand value */
20030 if ( t<mp_dependent ) v=mp->cur_exp; else v=dep_list(mp->cur_exp);
20033 if ( t<mp_dependent ) v=value(q); else v=dep_list(q);
20035 if ( t==mp_known ) {
20036 if ( c==minus ) negate(v);
20037 if ( type(p)==mp_known ) {
20038 v=mp_slow_add(mp, value(p),v);
20039 if ( q==null ) mp->cur_exp=v; else value(q)=v;
20042 @<Add a known value to the constant term of |dep_list(p)|@>;
20044 if ( c==minus ) mp_negate_dep_list(mp, v);
20045 @<Add operand |p| to the dependency list |v|@>;
20049 @ @<Add a known value to the constant term of |dep_list(p)|@>=
20051 while ( info(r)!=null ) r=link(r);
20052 value(r)=mp_slow_add(mp, value(r),v);
20054 q=mp_get_node(mp, value_node_size); mp->cur_exp=q; mp->cur_type=type(p);
20055 name_type(q)=mp_capsule;
20057 dep_list(q)=dep_list(p); type(q)=type(p);
20058 prev_dep(q)=prev_dep(p); link(prev_dep(p))=q;
20059 type(p)=mp_known; /* this will keep the recycler from collecting non-garbage */
20061 @ We prefer |dependent| lists to |mp_proto_dependent| ones, because it is
20062 nice to retain the extra accuracy of |fraction| coefficients.
20063 But we have to handle both kinds, and mixtures too.
20065 @<Add operand |p| to the dependency list |v|@>=
20066 if ( type(p)==mp_known ) {
20067 @<Add the known |value(p)| to the constant term of |v|@>;
20069 s=type(p); r=dep_list(p);
20070 if ( t==mp_dependent ) {
20071 if ( s==mp_dependent ) {
20072 if ( mp_max_coef(mp, r)+mp_max_coef(mp, v)<coef_bound )
20073 v=mp_p_plus_q(mp, v,r,mp_dependent); goto DONE;
20074 } /* |fix_needed| will necessarily be false */
20075 t=mp_proto_dependent;
20076 v=mp_p_over_v(mp, v,unity,mp_dependent,mp_proto_dependent);
20078 if ( s==mp_proto_dependent ) v=mp_p_plus_q(mp, v,r,mp_proto_dependent);
20079 else v=mp_p_plus_fq(mp, v,unity,r,mp_proto_dependent,mp_dependent);
20081 @<Output the answer, |v| (which might have become |known|)@>;
20084 @ @<Add the known |value(p)| to the constant term of |v|@>=
20086 while ( info(v)!=null ) v=link(v);
20087 value(v)=mp_slow_add(mp, value(p),value(v));
20090 @ @<Output the answer, |v| (which might have become |known|)@>=
20091 if ( q!=null ) mp_dep_finish(mp, v,q,t);
20092 else { mp->cur_type=t; mp_dep_finish(mp, v,null,t); }
20094 @ Here's the current situation: The dependency list |v| of type |t|
20095 should either be put into the current expression (if |q=null|) or
20096 into location |q| within a pair node (otherwise). The destination (|cur_exp|
20097 or |q|) formerly held a dependency list with the same
20098 final pointer as the list |v|.
20100 @<Declare the procedure called |dep_finish|@>=
20101 void mp_dep_finish (MP mp, pointer v, pointer q, small_number t) {
20102 pointer p; /* the destination */
20103 scaled vv; /* the value, if it is |known| */
20104 if ( q==null ) p=mp->cur_exp; else p=q;
20105 dep_list(p)=v; type(p)=t;
20106 if ( info(v)==null ) {
20109 mp_flush_cur_exp(mp, vv);
20111 mp_recycle_value(mp, p); type(q)=mp_known; value(q)=vv;
20113 } else if ( q==null ) {
20116 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20119 @ Let's turn now to the six basic relations of comparison.
20121 @<Additional cases of binary operators@>=
20122 case less_than: case less_or_equal: case greater_than:
20123 case greater_or_equal: case equal_to: case unequal_to:
20124 check_arith; /* at this point |arith_error| should be |false|? */
20125 if ( (mp->cur_type>mp_pair_type)&&(type(p)>mp_pair_type) ) {
20126 mp_add_or_subtract(mp, p,null,minus); /* |cur_exp:=(p)-cur_exp| */
20127 } else if ( mp->cur_type!=type(p) ) {
20128 mp_bad_binary(mp, p,c); goto DONE;
20129 } else if ( mp->cur_type==mp_string_type ) {
20130 mp_flush_cur_exp(mp, mp_str_vs_str(mp, value(p),mp->cur_exp));
20131 } else if ((mp->cur_type==mp_unknown_string)||
20132 (mp->cur_type==mp_unknown_boolean) ) {
20133 @<Check if unknowns have been equated@>;
20134 } else if ( (mp->cur_type<=mp_pair_type)&&(mp->cur_type>=mp_transform_type)) {
20135 @<Reduce comparison of big nodes to comparison of scalars@>;
20136 } else if ( mp->cur_type==mp_boolean_type ) {
20137 mp_flush_cur_exp(mp, mp->cur_exp-value(p));
20139 mp_bad_binary(mp, p,c); goto DONE;
20141 @<Compare the current expression with zero@>;
20143 mp->arith_error=false; /* ignore overflow in comparisons */
20146 @ @<Compare the current expression with zero@>=
20147 if ( mp->cur_type!=mp_known ) {
20148 if ( mp->cur_type<mp_known ) {
20149 mp_disp_err(mp, p,"");
20150 help1("The quantities shown above have not been equated.")
20152 help2("Oh dear. I can\'t decide if the expression above is positive,")
20153 ("negative, or zero. So this comparison test won't be `true'.");
20155 exp_err("Unknown relation will be considered false");
20156 @.Unknown relation...@>
20157 mp_put_get_flush_error(mp, false_code);
20160 case less_than: boolean_reset(mp->cur_exp<0); break;
20161 case less_or_equal: boolean_reset(mp->cur_exp<=0); break;
20162 case greater_than: boolean_reset(mp->cur_exp>0); break;
20163 case greater_or_equal: boolean_reset(mp->cur_exp>=0); break;
20164 case equal_to: boolean_reset(mp->cur_exp==0); break;
20165 case unequal_to: boolean_reset(mp->cur_exp!=0); break;
20166 }; /* there are no other cases */
20168 mp->cur_type=mp_boolean_type
20170 @ When two unknown strings are in the same ring, we know that they are
20171 equal. Otherwise, we don't know whether they are equal or not, so we
20174 @<Check if unknowns have been equated@>=
20176 q=value(mp->cur_exp);
20177 while ( (q!=mp->cur_exp)&&(q!=p) ) q=value(q);
20178 if ( q==p ) mp_flush_cur_exp(mp, 0);
20181 @ @<Reduce comparison of big nodes to comparison of scalars@>=
20183 q=value(p); r=value(mp->cur_exp);
20184 rr=r+mp->big_node_size[mp->cur_type]-2;
20185 while (1) { mp_add_or_subtract(mp, q,r,minus);
20186 if ( type(r)!=mp_known ) break;
20187 if ( value(r)!=0 ) break;
20188 if ( r==rr ) break;
20191 mp_take_part(mp, name_type(r)+x_part-mp_x_part_sector);
20194 @ Here we use the sneaky fact that |and_op-false_code=or_op-true_code|.
20196 @<Additional cases of binary operators@>=
20199 if ( (type(p)!=mp_boolean_type)||(mp->cur_type!=mp_boolean_type) )
20200 mp_bad_binary(mp, p,c);
20201 else if ( value(p)==c+false_code-and_op ) mp->cur_exp=value(p);
20204 @ @<Additional cases of binary operators@>=
20206 if ( (mp->cur_type<mp_color_type)||(type(p)<mp_color_type) ) {
20207 mp_bad_binary(mp, p,times);
20208 } else if ( (mp->cur_type==mp_known)||(type(p)==mp_known) ) {
20209 @<Multiply when at least one operand is known@>;
20210 } else if ( (mp_nice_color_or_pair(mp, p,type(p))&&(mp->cur_type>mp_pair_type))
20211 ||(mp_nice_color_or_pair(mp, mp->cur_exp,mp->cur_type)&&
20212 (type(p)>mp_pair_type)) ) {
20213 mp_hard_times(mp, p); return;
20215 mp_bad_binary(mp, p,times);
20219 @ @<Multiply when at least one operand is known@>=
20221 if ( type(p)==mp_known ) {
20222 v=value(p); mp_free_node(mp, p,value_node_size);
20224 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20226 if ( mp->cur_type==mp_known ) {
20227 mp->cur_exp=mp_take_scaled(mp, mp->cur_exp,v);
20228 } else if ( (mp->cur_type==mp_pair_type)||(mp->cur_type==mp_color_type)||
20229 (mp->cur_type==mp_cmykcolor_type) ) {
20230 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20232 p=p-2; mp_dep_mult(mp, p,v,true);
20233 } while (p!=value(mp->cur_exp));
20235 mp_dep_mult(mp, null,v,true);
20240 @ @<Declare binary action...@>=
20241 void mp_dep_mult (MP mp,pointer p, integer v, boolean v_is_scaled) {
20242 pointer q; /* the dependency list being multiplied by |v| */
20243 small_number s,t; /* its type, before and after */
20246 } else if ( type(p)!=mp_known ) {
20249 if ( v_is_scaled ) value(p)=mp_take_scaled(mp, value(p),v);
20250 else value(p)=mp_take_fraction(mp, value(p),v);
20253 t=type(q); q=dep_list(q); s=t;
20254 if ( t==mp_dependent ) if ( v_is_scaled )
20255 if (mp_ab_vs_cd(mp, mp_max_coef(mp,q),abs(v),coef_bound-1,unity)>=0 )
20256 t=mp_proto_dependent;
20257 q=mp_p_times_v(mp, q,v,s,t,v_is_scaled);
20258 mp_dep_finish(mp, q,p,t);
20261 @ Here is a routine that is similar to |times|; but it is invoked only
20262 internally, when |v| is a |fraction| whose magnitude is at most~1,
20263 and when |cur_type>=mp_color_type|.
20265 @c void mp_frac_mult (MP mp,scaled n, scaled d) {
20266 /* multiplies |cur_exp| by |n/d| */
20267 pointer p; /* a pair node */
20268 pointer old_exp; /* a capsule to recycle */
20269 fraction v; /* |n/d| */
20270 if ( mp->internal[mp_tracing_commands]>two ) {
20271 @<Trace the fraction multiplication@>;
20273 switch (mp->cur_type) {
20274 case mp_transform_type:
20275 case mp_color_type:
20276 case mp_cmykcolor_type:
20278 old_exp=mp_tarnished(mp, mp->cur_exp);
20280 case mp_independent: old_exp=mp_void; break;
20281 default: old_exp=null; break;
20283 if ( old_exp!=null ) {
20284 old_exp=mp->cur_exp; mp_make_exp_copy(mp, old_exp);
20286 v=mp_make_fraction(mp, n,d);
20287 if ( mp->cur_type==mp_known ) {
20288 mp->cur_exp=mp_take_fraction(mp, mp->cur_exp,v);
20289 } else if ( mp->cur_type<=mp_pair_type ) {
20290 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20293 mp_dep_mult(mp, p,v,false);
20294 } while (p!=value(mp->cur_exp));
20296 mp_dep_mult(mp, null,v,false);
20298 if ( old_exp!=null ) {
20299 mp_recycle_value(mp, old_exp);
20300 mp_free_node(mp, old_exp,value_node_size);
20304 @ @<Trace the fraction multiplication@>=
20306 mp_begin_diagnostic(mp);
20307 mp_print_nl(mp, "{("); mp_print_scaled(mp,n); mp_print_char(mp,'/');
20308 mp_print_scaled(mp,d); mp_print(mp,")*("); mp_print_exp(mp,null,0);
20310 mp_end_diagnostic(mp, false);
20313 @ The |hard_times| routine multiplies a nice color or pair by a dependency list.
20315 @<Declare binary action procedures@>=
20316 void mp_hard_times (MP mp,pointer p) {
20317 pointer q; /* a copy of the dependent variable |p| */
20318 pointer r; /* a component of the big node for the nice color or pair */
20319 scaled v; /* the known value for |r| */
20320 if ( type(p)<=mp_pair_type ) {
20321 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p); p=q;
20322 }; /* now |cur_type=mp_pair_type| or |cur_type=mp_color_type| */
20323 r=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20328 if ( r==value(mp->cur_exp) )
20330 mp_new_dep(mp, r,mp_copy_dep_list(mp, dep_list(p)));
20331 mp_dep_mult(mp, r,v,true);
20333 mp->mem[value_loc(r)]=mp->mem[value_loc(p)];
20334 link(prev_dep(p))=r;
20335 mp_free_node(mp, p,value_node_size);
20336 mp_dep_mult(mp, r,v,true);
20339 @ @<Additional cases of binary operators@>=
20341 if ( (mp->cur_type!=mp_known)||(type(p)<mp_color_type) ) {
20342 mp_bad_binary(mp, p,over);
20344 v=mp->cur_exp; mp_unstash_cur_exp(mp, p);
20346 @<Squeal about division by zero@>;
20348 if ( mp->cur_type==mp_known ) {
20349 mp->cur_exp=mp_make_scaled(mp, mp->cur_exp,v);
20350 } else if ( mp->cur_type<=mp_pair_type ) {
20351 p=value(mp->cur_exp)+mp->big_node_size[mp->cur_type];
20353 p=p-2; mp_dep_div(mp, p,v);
20354 } while (p!=value(mp->cur_exp));
20356 mp_dep_div(mp, null,v);
20363 @ @<Declare binary action...@>=
20364 void mp_dep_div (MP mp,pointer p, scaled v) {
20365 pointer q; /* the dependency list being divided by |v| */
20366 small_number s,t; /* its type, before and after */
20367 if ( p==null ) q=mp->cur_exp;
20368 else if ( type(p)!=mp_known ) q=p;
20369 else { value(p)=mp_make_scaled(mp, value(p),v); return; };
20370 t=type(q); q=dep_list(q); s=t;
20371 if ( t==mp_dependent )
20372 if ( mp_ab_vs_cd(mp, mp_max_coef(mp,q),unity,coef_bound-1,abs(v))>=0 )
20373 t=mp_proto_dependent;
20374 q=mp_p_over_v(mp, q,v,s,t);
20375 mp_dep_finish(mp, q,p,t);
20378 @ @<Squeal about division by zero@>=
20380 exp_err("Division by zero");
20381 @.Division by zero@>
20382 help2("You're trying to divide the quantity shown above the error")
20383 ("message by zero. I'm going to divide it by one instead.");
20384 mp_put_get_error(mp);
20387 @ @<Additional cases of binary operators@>=
20390 if ( (mp->cur_type==mp_known)&&(type(p)==mp_known) ) {
20391 if ( c==pythag_add ) mp->cur_exp=mp_pyth_add(mp, value(p),mp->cur_exp);
20392 else mp->cur_exp=mp_pyth_sub(mp, value(p),mp->cur_exp);
20393 } else mp_bad_binary(mp, p,c);
20396 @ The next few sections of the program deal with affine transformations
20397 of coordinate data.
20399 @<Additional cases of binary operators@>=
20400 case rotated_by: case slanted_by:
20401 case scaled_by: case shifted_by: case transformed_by:
20402 case x_scaled: case y_scaled: case z_scaled:
20403 if ( type(p)==mp_path_type ) {
20404 path_trans(c,p); return;
20405 } else if ( type(p)==mp_pen_type ) {
20407 mp->cur_exp=mp_convex_hull(mp, mp->cur_exp);
20408 /* rounding error could destroy convexity */
20410 } else if ( (type(p)==mp_pair_type)||(type(p)==mp_transform_type) ) {
20411 mp_big_trans(mp, p,c);
20412 } else if ( type(p)==mp_picture_type ) {
20413 mp_do_edges_trans(mp, p,c); return;
20415 mp_bad_binary(mp, p,c);
20419 @ Let |c| be one of the eight transform operators. The procedure call
20420 |set_up_trans(c)| first changes |cur_exp| to a transform that corresponds to
20421 |c| and the original value of |cur_exp|. (In particular, |cur_exp| doesn't
20422 change at all if |c=transformed_by|.)
20424 Then, if all components of the resulting transform are |known|, they are
20425 moved to the global variables |txx|, |txy|, |tyx|, |tyy|, |tx|, |ty|;
20426 and |cur_exp| is changed to the known value zero.
20428 @<Declare binary action...@>=
20429 void mp_set_up_trans (MP mp,quarterword c) {
20430 pointer p,q,r; /* list manipulation registers */
20431 if ( (c!=transformed_by)||(mp->cur_type!=mp_transform_type) ) {
20432 @<Put the current transform into |cur_exp|@>;
20434 @<If the current transform is entirely known, stash it in global variables;
20435 otherwise |return|@>;
20444 scaled ty; /* current transform coefficients */
20446 @ @<Put the current transform...@>=
20448 p=mp_stash_cur_exp(mp);
20449 mp->cur_exp=mp_id_transform(mp);
20450 mp->cur_type=mp_transform_type;
20451 q=value(mp->cur_exp);
20453 @<For each of the eight cases, change the relevant fields of |cur_exp|
20455 but do nothing if capsule |p| doesn't have the appropriate type@>;
20456 }; /* there are no other cases */
20457 mp_disp_err(mp, p,"Improper transformation argument");
20458 @.Improper transformation argument@>
20459 help3("The expression shown above has the wrong type,")
20460 ("so I can\'t transform anything using it.")
20461 ("Proceed, and I'll omit the transformation.");
20462 mp_put_get_error(mp);
20464 mp_recycle_value(mp, p);
20465 mp_free_node(mp, p,value_node_size);
20468 @ @<If the current transform is entirely known, ...@>=
20469 q=value(mp->cur_exp); r=q+transform_node_size;
20472 if ( type(r)!=mp_known ) return;
20474 mp->txx=value(xx_part_loc(q));
20475 mp->txy=value(xy_part_loc(q));
20476 mp->tyx=value(yx_part_loc(q));
20477 mp->tyy=value(yy_part_loc(q));
20478 mp->tx=value(x_part_loc(q));
20479 mp->ty=value(y_part_loc(q));
20480 mp_flush_cur_exp(mp, 0)
20482 @ @<For each of the eight cases...@>=
20484 if ( type(p)==mp_known )
20485 @<Install sines and cosines, then |goto done|@>;
20488 if ( type(p)>mp_pair_type ) {
20489 mp_install(mp, xy_part_loc(q),p); goto DONE;
20493 if ( type(p)>mp_pair_type ) {
20494 mp_install(mp, xx_part_loc(q),p); mp_install(mp, yy_part_loc(q),p);
20499 if ( type(p)==mp_pair_type ) {
20500 r=value(p); mp_install(mp, x_part_loc(q),x_part_loc(r));
20501 mp_install(mp, y_part_loc(q),y_part_loc(r)); goto DONE;
20505 if ( type(p)>mp_pair_type ) {
20506 mp_install(mp, xx_part_loc(q),p); goto DONE;
20510 if ( type(p)>mp_pair_type ) {
20511 mp_install(mp, yy_part_loc(q),p); goto DONE;
20515 if ( type(p)==mp_pair_type )
20516 @<Install a complex multiplier, then |goto done|@>;
20518 case transformed_by:
20522 @ @<Install sines and cosines, then |goto done|@>=
20523 { mp_n_sin_cos(mp, (value(p) % three_sixty_units)*16);
20524 value(xx_part_loc(q))=mp_round_fraction(mp, mp->n_cos);
20525 value(yx_part_loc(q))=mp_round_fraction(mp, mp->n_sin);
20526 value(xy_part_loc(q))=-value(yx_part_loc(q));
20527 value(yy_part_loc(q))=value(xx_part_loc(q));
20531 @ @<Install a complex multiplier, then |goto done|@>=
20534 mp_install(mp, xx_part_loc(q),x_part_loc(r));
20535 mp_install(mp, yy_part_loc(q),x_part_loc(r));
20536 mp_install(mp, yx_part_loc(q),y_part_loc(r));
20537 if ( type(y_part_loc(r))==mp_known ) negate(value(y_part_loc(r)));
20538 else mp_negate_dep_list(mp, dep_list(y_part_loc(r)));
20539 mp_install(mp, xy_part_loc(q),y_part_loc(r));
20543 @ Procedure |set_up_known_trans| is like |set_up_trans|, but it
20544 insists that the transformation be entirely known.
20546 @<Declare binary action...@>=
20547 void mp_set_up_known_trans (MP mp,quarterword c) {
20548 mp_set_up_trans(mp, c);
20549 if ( mp->cur_type!=mp_known ) {
20550 exp_err("Transform components aren't all known");
20551 @.Transform components...@>
20552 help3("I'm unable to apply a partially specified transformation")
20553 ("except to a fully known pair or transform.")
20554 ("Proceed, and I'll omit the transformation.");
20555 mp_put_get_flush_error(mp, 0);
20556 mp->txx=unity; mp->txy=0; mp->tyx=0; mp->tyy=unity;
20557 mp->tx=0; mp->ty=0;
20561 @ Here's a procedure that applies the transform |txx..ty| to a pair of
20562 coordinates in locations |p| and~|q|.
20564 @<Declare binary action...@>=
20565 void mp_trans (MP mp,pointer p, pointer q) {
20566 scaled v; /* the new |x| value */
20567 v=mp_take_scaled(mp, mp->mem[p].sc,mp->txx)+
20568 mp_take_scaled(mp, mp->mem[q].sc,mp->txy)+mp->tx;
20569 mp->mem[q].sc=mp_take_scaled(mp, mp->mem[p].sc,mp->tyx)+
20570 mp_take_scaled(mp, mp->mem[q].sc,mp->tyy)+mp->ty;
20574 @ The simplest transformation procedure applies a transform to all
20575 coordinates of a path. The |path_trans(c)(p)| macro applies
20576 a transformation defined by |cur_exp| and the transform operator |c|
20579 @d path_trans(A,B) { mp_set_up_known_trans(mp, (A));
20580 mp_unstash_cur_exp(mp, (B));
20581 mp_do_path_trans(mp, mp->cur_exp); }
20583 @<Declare binary action...@>=
20584 void mp_do_path_trans (MP mp,pointer p) {
20585 pointer q; /* list traverser */
20588 if ( left_type(q)!=mp_endpoint )
20589 mp_trans(mp, q+3,q+4); /* that's |left_x| and |left_y| */
20590 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20591 if ( right_type(q)!=mp_endpoint )
20592 mp_trans(mp, q+5,q+6); /* that's |right_x| and |right_y| */
20593 @^data structure assumptions@>
20598 @ Transforming a pen is very similar, except that there are no |left_type|
20599 and |right_type| fields.
20601 @d pen_trans(A,B) { mp_set_up_known_trans(mp, (A));
20602 mp_unstash_cur_exp(mp, (B));
20603 mp_do_pen_trans(mp, mp->cur_exp); }
20605 @<Declare binary action...@>=
20606 void mp_do_pen_trans (MP mp,pointer p) {
20607 pointer q; /* list traverser */
20608 if ( pen_is_elliptical(p) ) {
20609 mp_trans(mp, p+3,p+4); /* that's |left_x| and |left_y| */
20610 mp_trans(mp, p+5,p+6); /* that's |right_x| and |right_y| */
20614 mp_trans(mp, q+1,q+2); /* that's |x_coord| and |y_coord| */
20615 @^data structure assumptions@>
20620 @ The next transformation procedure applies to edge structures. It will do
20621 any transformation, but the results may be substandard if the picture contains
20622 text that uses downloaded bitmap fonts. The binary action procedure is
20623 |do_edges_trans|, but we also need a function that just scales a picture.
20624 That routine is |scale_edges|. Both it and the underlying routine |edges_trans|
20625 should be thought of as procedures that update an edge structure |h|, except
20626 that they have to return a (possibly new) structure because of the need to call
20629 @<Declare binary action...@>=
20630 pointer mp_edges_trans (MP mp, pointer h) {
20631 pointer q; /* the object being transformed */
20632 pointer r,s; /* for list manipulation */
20633 scaled sx,sy; /* saved transformation parameters */
20634 scaled sqdet; /* square root of determinant for |dash_scale| */
20635 integer sgndet; /* sign of the determinant */
20636 scaled v; /* a temporary value */
20637 h=mp_private_edges(mp, h);
20638 sqdet=mp_sqrt_det(mp, mp->txx,mp->txy,mp->tyx,mp->tyy);
20639 sgndet=mp_ab_vs_cd(mp, mp->txx,mp->tyy,mp->txy,mp->tyx);
20640 if ( dash_list(h)!=null_dash ) {
20641 @<Try to transform the dash list of |h|@>;
20643 @<Make the bounding box of |h| unknown if it can't be updated properly
20644 without scanning the whole structure@>;
20645 q=link(dummy_loc(h));
20646 while ( q!=null ) {
20647 @<Transform graphical object |q|@>;
20652 void mp_do_edges_trans (MP mp,pointer p, quarterword c) {
20653 mp_set_up_known_trans(mp, c);
20654 value(p)=mp_edges_trans(mp, value(p));
20655 mp_unstash_cur_exp(mp, p);
20657 void mp_scale_edges (MP mp) {
20658 mp->txx=mp->se_sf; mp->tyy=mp->se_sf;
20659 mp->txy=0; mp->tyx=0; mp->tx=0; mp->ty=0;
20660 mp->se_pic=mp_edges_trans(mp, mp->se_pic);
20663 @ @<Try to transform the dash list of |h|@>=
20664 if ( (mp->txy!=0)||(mp->tyx!=0)||
20665 (mp->ty!=0)||(abs(mp->txx)!=abs(mp->tyy))) {
20666 mp_flush_dash_list(mp, h);
20668 if ( mp->txx<0 ) { @<Reverse the dash list of |h|@>; }
20669 @<Scale the dash list by |txx| and shift it by |tx|@>;
20670 dash_y(h)=mp_take_scaled(mp, dash_y(h),abs(mp->tyy));
20673 @ @<Reverse the dash list of |h|@>=
20676 dash_list(h)=null_dash;
20677 while ( r!=null_dash ) {
20679 v=start_x(s); start_x(s)=stop_x(s); stop_x(s)=v;
20680 link(s)=dash_list(h);
20685 @ @<Scale the dash list by |txx| and shift it by |tx|@>=
20687 while ( r!=null_dash ) {
20688 start_x(r)=mp_take_scaled(mp, start_x(r),mp->txx)+mp->tx;
20689 stop_x(r)=mp_take_scaled(mp, stop_x(r),mp->txx)+mp->tx;
20693 @ @<Make the bounding box of |h| unknown if it can't be updated properly...@>=
20694 if ( (mp->txx==0)&&(mp->tyy==0) ) {
20695 @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>;
20696 } else if ( (mp->txy!=0)||(mp->tyx!=0) ) {
20697 mp_init_bbox(mp, h);
20700 if ( minx_val(h)<=maxx_val(h) ) {
20701 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift by
20708 @ @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>=
20710 v=minx_val(h); minx_val(h)=miny_val(h); miny_val(h)=v;
20711 v=maxx_val(h); maxx_val(h)=maxy_val(h); maxy_val(h)=v;
20714 @ The sum ``|txx+txy|'' is whichever of |txx| or |txy| is nonzero. The other
20717 @<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift...@>=
20719 minx_val(h)=mp_take_scaled(mp, minx_val(h),mp->txx+mp->txy)+mp->tx;
20720 maxx_val(h)=mp_take_scaled(mp, maxx_val(h),mp->txx+mp->txy)+mp->tx;
20721 miny_val(h)=mp_take_scaled(mp, miny_val(h),mp->tyx+mp->tyy)+mp->ty;
20722 maxy_val(h)=mp_take_scaled(mp, maxy_val(h),mp->tyx+mp->tyy)+mp->ty;
20723 if ( mp->txx+mp->txy<0 ) {
20724 v=minx_val(h); minx_val(h)=maxx_val(h); maxx_val(h)=v;
20726 if ( mp->tyx+mp->tyy<0 ) {
20727 v=miny_val(h); miny_val(h)=maxy_val(h); maxy_val(h)=v;
20731 @ Now we ready for the main task of transforming the graphical objects in edge
20734 @<Transform graphical object |q|@>=
20736 case mp_fill_code: case mp_stroked_code:
20737 mp_do_path_trans(mp, path_p(q));
20738 @<Transform |pen_p(q)|, making sure polygonal pens stay counter-clockwise@>;
20740 case mp_start_clip_code: case mp_start_bounds_code:
20741 mp_do_path_trans(mp, path_p(q));
20745 @<Transform the compact transformation starting at |r|@>;
20747 case mp_stop_clip_code: case mp_stop_bounds_code:
20749 } /* there are no other cases */
20751 @ Note that the shift parameters |(tx,ty)| apply only to the path being stroked.
20752 The |dash_scale| has to be adjusted to scale the dash lengths in |dash_p(q)|
20753 since the \ps\ output procedures will try to compensate for the transformation
20754 we are applying to |pen_p(q)|. Since this compensation is based on the square
20755 root of the determinant, |sqdet| is the appropriate factor.
20757 @<Transform |pen_p(q)|, making sure...@>=
20758 if ( pen_p(q)!=null ) {
20759 sx=mp->tx; sy=mp->ty;
20760 mp->tx=0; mp->ty=0;
20761 mp_do_pen_trans(mp, pen_p(q));
20762 if ( ((type(q)==mp_stroked_code)&&(dash_p(q)!=null)) )
20763 dash_scale(q)=mp_take_scaled(mp, dash_scale(q),sqdet);
20764 if ( ! pen_is_elliptical(pen_p(q)) )
20766 pen_p(q)=mp_make_pen(mp, mp_copy_path(mp, pen_p(q)),true);
20767 /* this unreverses the pen */
20768 mp->tx=sx; mp->ty=sy;
20771 @ This uses the fact that transformations are stored in the order
20772 |(tx,ty,txx,txy,tyx,tyy)|.
20773 @^data structure assumptions@>
20775 @<Transform the compact transformation starting at |r|@>=
20776 mp_trans(mp, r,r+1);
20777 sx=mp->tx; sy=mp->ty;
20778 mp->tx=0; mp->ty=0;
20779 mp_trans(mp, r+2,r+4);
20780 mp_trans(mp, r+3,r+5);
20781 mp->tx=sx; mp->ty=sy
20783 @ The hard cases of transformation occur when big nodes are involved,
20784 and when some of their components are unknown.
20786 @<Declare binary action...@>=
20787 @<Declare subroutines needed by |big_trans|@>;
20788 void mp_big_trans (MP mp,pointer p, quarterword c) {
20789 pointer q,r,pp,qq; /* list manipulation registers */
20790 small_number s; /* size of a big node */
20791 s=mp->big_node_size[type(p)]; q=value(p); r=q+s;
20794 if ( type(r)!=mp_known ) {
20795 @<Transform an unknown big node and |return|@>;
20798 @<Transform a known big node@>;
20799 }; /* node |p| will now be recycled by |do_binary| */
20801 @ @<Transform an unknown big node and |return|@>=
20803 mp_set_up_known_trans(mp, c); mp_make_exp_copy(mp, p);
20804 r=value(mp->cur_exp);
20805 if ( mp->cur_type==mp_transform_type ) {
20806 mp_bilin1(mp, yy_part_loc(r),mp->tyy,xy_part_loc(q),mp->tyx,0);
20807 mp_bilin1(mp, yx_part_loc(r),mp->tyy,xx_part_loc(q),mp->tyx,0);
20808 mp_bilin1(mp, xy_part_loc(r),mp->txx,yy_part_loc(q),mp->txy,0);
20809 mp_bilin1(mp, xx_part_loc(r),mp->txx,yx_part_loc(q),mp->txy,0);
20811 mp_bilin1(mp, y_part_loc(r),mp->tyy,x_part_loc(q),mp->tyx,mp->ty);
20812 mp_bilin1(mp, x_part_loc(r),mp->txx,y_part_loc(q),mp->txy,mp->tx);
20816 @ Let |p| point to a two-word value field inside a big node of |cur_exp|,
20817 and let |q| point to a another value field. The |bilin1| procedure
20818 replaces |p| by $p\cdot t+q\cdot u+\delta$.
20820 @<Declare subroutines needed by |big_trans|@>=
20821 void mp_bilin1 (MP mp, pointer p, scaled t, pointer q,
20822 scaled u, scaled delta) {
20823 pointer r; /* list traverser */
20824 if ( t!=unity ) mp_dep_mult(mp, p,t,true);
20826 if ( type(q)==mp_known ) {
20827 delta+=mp_take_scaled(mp, value(q),u);
20829 @<Ensure that |type(p)=mp_proto_dependent|@>;
20830 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),u,dep_list(q),
20831 mp_proto_dependent,type(q));
20834 if ( type(p)==mp_known ) {
20838 while ( info(r)!=null ) r=link(r);
20840 if ( r!=dep_list(p) ) value(r)=delta;
20841 else { mp_recycle_value(mp, p); type(p)=mp_known; value(p)=delta; };
20843 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20846 @ @<Ensure that |type(p)=mp_proto_dependent|@>=
20847 if ( type(p)!=mp_proto_dependent ) {
20848 if ( type(p)==mp_known )
20849 mp_new_dep(mp, p,mp_const_dependency(mp, value(p)));
20851 dep_list(p)=mp_p_times_v(mp, dep_list(p),unity,mp_dependent,
20852 mp_proto_dependent,true);
20853 type(p)=mp_proto_dependent;
20856 @ @<Transform a known big node@>=
20857 mp_set_up_trans(mp, c);
20858 if ( mp->cur_type==mp_known ) {
20859 @<Transform known by known@>;
20861 pp=mp_stash_cur_exp(mp); qq=value(pp);
20862 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20863 if ( mp->cur_type==mp_transform_type ) {
20864 mp_bilin2(mp, yy_part_loc(r),yy_part_loc(qq),
20865 value(xy_part_loc(q)),yx_part_loc(qq),null);
20866 mp_bilin2(mp, yx_part_loc(r),yy_part_loc(qq),
20867 value(xx_part_loc(q)),yx_part_loc(qq),null);
20868 mp_bilin2(mp, xy_part_loc(r),xx_part_loc(qq),
20869 value(yy_part_loc(q)),xy_part_loc(qq),null);
20870 mp_bilin2(mp, xx_part_loc(r),xx_part_loc(qq),
20871 value(yx_part_loc(q)),xy_part_loc(qq),null);
20873 mp_bilin2(mp, y_part_loc(r),yy_part_loc(qq),
20874 value(x_part_loc(q)),yx_part_loc(qq),y_part_loc(qq));
20875 mp_bilin2(mp, x_part_loc(r),xx_part_loc(qq),
20876 value(y_part_loc(q)),xy_part_loc(qq),x_part_loc(qq));
20877 mp_recycle_value(mp, pp); mp_free_node(mp, pp,value_node_size);
20880 @ Let |p| be a |mp_proto_dependent| value whose dependency list ends
20881 at |dep_final|. The following procedure adds |v| times another
20882 numeric quantity to~|p|.
20884 @<Declare subroutines needed by |big_trans|@>=
20885 void mp_add_mult_dep (MP mp,pointer p, scaled v, pointer r) {
20886 if ( type(r)==mp_known ) {
20887 value(mp->dep_final)+=mp_take_scaled(mp, value(r),v);
20889 dep_list(p)=mp_p_plus_fq(mp, dep_list(p),v,dep_list(r),
20890 mp_proto_dependent,type(r));
20891 if ( mp->fix_needed ) mp_fix_dependencies(mp);
20895 @ The |bilin2| procedure is something like |bilin1|, but with known
20896 and unknown quantities reversed. Parameter |p| points to a value field
20897 within the big node for |cur_exp|; and |type(p)=mp_known|. Parameters
20898 |t| and~|u| point to value fields elsewhere; so does parameter~|q|,
20899 unless it is |null| (which stands for zero). Location~|p| will be
20900 replaced by $p\cdot t+v\cdot u+q$.
20902 @<Declare subroutines needed by |big_trans|@>=
20903 void mp_bilin2 (MP mp,pointer p, pointer t, scaled v,
20904 pointer u, pointer q) {
20905 scaled vv; /* temporary storage for |value(p)| */
20906 vv=value(p); type(p)=mp_proto_dependent;
20907 mp_new_dep(mp, p,mp_const_dependency(mp, 0)); /* this sets |dep_final| */
20909 mp_add_mult_dep(mp, p,vv,t); /* |dep_final| doesn't change */
20910 if ( v!=0 ) mp_add_mult_dep(mp, p,v,u);
20911 if ( q!=null ) mp_add_mult_dep(mp, p,unity,q);
20912 if ( dep_list(p)==mp->dep_final ) {
20913 vv=value(mp->dep_final); mp_recycle_value(mp, p);
20914 type(p)=mp_known; value(p)=vv;
20918 @ @<Transform known by known@>=
20920 mp_make_exp_copy(mp, p); r=value(mp->cur_exp);
20921 if ( mp->cur_type==mp_transform_type ) {
20922 mp_bilin3(mp, yy_part_loc(r),mp->tyy,value(xy_part_loc(q)),mp->tyx,0);
20923 mp_bilin3(mp, yx_part_loc(r),mp->tyy,value(xx_part_loc(q)),mp->tyx,0);
20924 mp_bilin3(mp, xy_part_loc(r),mp->txx,value(yy_part_loc(q)),mp->txy,0);
20925 mp_bilin3(mp, xx_part_loc(r),mp->txx,value(yx_part_loc(q)),mp->txy,0);
20927 mp_bilin3(mp, y_part_loc(r),mp->tyy,value(x_part_loc(q)),mp->tyx,mp->ty);
20928 mp_bilin3(mp, x_part_loc(r),mp->txx,value(y_part_loc(q)),mp->txy,mp->tx);
20931 @ Finally, in |bilin3| everything is |known|.
20933 @<Declare subroutines needed by |big_trans|@>=
20934 void mp_bilin3 (MP mp,pointer p, scaled t,
20935 scaled v, scaled u, scaled delta) {
20937 delta+=mp_take_scaled(mp, value(p),t);
20940 if ( u!=0 ) value(p)=delta+mp_take_scaled(mp, v,u);
20941 else value(p)=delta;
20944 @ @<Additional cases of binary operators@>=
20946 if ( (mp->cur_type==mp_string_type)&&(type(p)==mp_string_type) ) mp_cat(mp, p);
20947 else mp_bad_binary(mp, p,concatenate);
20950 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_string_type) )
20951 mp_chop_string(mp, value(p));
20952 else mp_bad_binary(mp, p,substring_of);
20955 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
20956 if ( mp_nice_pair(mp, p,type(p))&&(mp->cur_type==mp_path_type) )
20957 mp_chop_path(mp, value(p));
20958 else mp_bad_binary(mp, p,subpath_of);
20961 @ @<Declare binary action...@>=
20962 void mp_cat (MP mp,pointer p) {
20963 str_number a,b; /* the strings being concatenated */
20964 pool_pointer k; /* index into |str_pool| */
20965 a=value(p); b=mp->cur_exp; str_room(length(a)+length(b));
20966 for (k=mp->str_start[a];k<=str_stop(a)-1;k++) {
20967 append_char(mp->str_pool[k]);
20969 for (k=mp->str_start[b];k<=str_stop(b)-1;k++) {
20970 append_char(mp->str_pool[k]);
20972 mp->cur_exp=mp_make_string(mp); delete_str_ref(b);
20975 @ @<Declare binary action...@>=
20976 void mp_chop_string (MP mp,pointer p) {
20977 integer a, b; /* start and stop points */
20978 integer l; /* length of the original string */
20979 integer k; /* runs from |a| to |b| */
20980 str_number s; /* the original string */
20981 boolean reversed; /* was |a>b|? */
20982 a=mp_round_unscaled(mp, value(x_part_loc(p)));
20983 b=mp_round_unscaled(mp, value(y_part_loc(p)));
20984 if ( a<=b ) reversed=false;
20985 else { reversed=true; k=a; a=b; b=k; };
20986 s=mp->cur_exp; l=length(s);
20997 for (k=mp->str_start[s]+b-1;k>=mp->str_start[s]+a;k--) {
20998 append_char(mp->str_pool[k]);
21001 for (k=mp->str_start[s]+a;k<=mp->str_start[s]+b-1;k++) {
21002 append_char(mp->str_pool[k]);
21005 mp->cur_exp=mp_make_string(mp); delete_str_ref(s);
21008 @ @<Declare binary action...@>=
21009 void mp_chop_path (MP mp,pointer p) {
21010 pointer q; /* a knot in the original path */
21011 pointer pp,qq,rr,ss; /* link variables for copies of path nodes */
21012 scaled a,b,k,l; /* indices for chopping */
21013 boolean reversed; /* was |a>b|? */
21014 l=mp_path_length(mp); a=value(x_part_loc(p)); b=value(y_part_loc(p));
21015 if ( a<=b ) reversed=false;
21016 else { reversed=true; k=a; a=b; b=k; };
21017 @<Dispense with the cases |a<0| and/or |b>l|@>;
21019 while ( a>=unity ) {
21020 q=link(q); a=a-unity; b=b-unity;
21023 @<Construct a path from |pp| to |qq| of length zero@>;
21025 @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>;
21027 left_type(pp)=mp_endpoint; right_type(qq)=mp_endpoint; link(qq)=pp;
21028 mp_toss_knot_list(mp, mp->cur_exp);
21030 mp->cur_exp=link(mp_htap_ypoc(mp, pp)); mp_toss_knot_list(mp, pp);
21036 @ @<Dispense with the cases |a<0| and/or |b>l|@>=
21038 if ( left_type(mp->cur_exp)==mp_endpoint ) {
21039 a=0; if ( b<0 ) b=0;
21041 do { a=a+l; b=b+l; } while (a<0); /* a cycle always has length |l>0| */
21045 if ( left_type(mp->cur_exp)==mp_endpoint ) {
21046 b=l; if ( a>l ) a=l;
21054 @ @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>=
21056 pp=mp_copy_knot(mp, q); qq=pp;
21058 q=link(q); rr=qq; qq=mp_copy_knot(mp, q); link(rr)=qq; b=b-unity;
21061 ss=pp; pp=link(pp);
21062 mp_split_cubic(mp, ss,a*010000); pp=link(ss);
21063 mp_free_node(mp, ss,knot_node_size);
21065 b=mp_make_scaled(mp, b,unity-a); rr=pp;
21069 mp_split_cubic(mp, rr,(b+unity)*010000);
21070 mp_free_node(mp, qq,knot_node_size);
21075 @ @<Construct a path from |pp| to |qq| of length zero@>=
21077 if ( a>0 ) { mp_split_cubic(mp, q,a*010000); q=link(q); };
21078 pp=mp_copy_knot(mp, q); qq=pp;
21081 @ @<Additional cases of binary operators@>=
21082 case point_of: case precontrol_of: case postcontrol_of:
21083 if ( mp->cur_type==mp_pair_type )
21084 mp_pair_to_path(mp);
21085 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
21086 mp_find_point(mp, value(p),c);
21088 mp_bad_binary(mp, p,c);
21090 case pen_offset_of:
21091 if ( (mp->cur_type==mp_pen_type)&& mp_nice_pair(mp, p,type(p)) )
21092 mp_set_up_offset(mp, value(p));
21094 mp_bad_binary(mp, p,pen_offset_of);
21096 case direction_time_of:
21097 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21098 if ( (mp->cur_type==mp_path_type)&& mp_nice_pair(mp, p,type(p)) )
21099 mp_set_up_direction_time(mp, value(p));
21101 mp_bad_binary(mp, p,direction_time_of);
21104 @ @<Declare binary action...@>=
21105 void mp_set_up_offset (MP mp,pointer p) {
21106 mp_find_offset(mp, value(x_part_loc(p)),value(y_part_loc(p)),mp->cur_exp);
21107 mp_pair_value(mp, mp->cur_x,mp->cur_y);
21109 void mp_set_up_direction_time (MP mp,pointer p) {
21110 mp_flush_cur_exp(mp, mp_find_direction_time(mp, value(x_part_loc(p)),
21111 value(y_part_loc(p)),mp->cur_exp));
21114 @ @<Declare binary action...@>=
21115 void mp_find_point (MP mp,scaled v, quarterword c) {
21116 pointer p; /* the path */
21117 scaled n; /* its length */
21119 if ( left_type(p)==mp_endpoint ) n=-unity; else n=0;
21120 do { p=link(p); n=n+unity; } while (p!=mp->cur_exp);
21123 } else if ( v<0 ) {
21124 if ( left_type(p)==mp_endpoint ) v=0;
21125 else v=n-1-((-v-1) % n);
21126 } else if ( v>n ) {
21127 if ( left_type(p)==mp_endpoint ) v=n;
21131 while ( v>=unity ) { p=link(p); v=v-unity; };
21133 @<Insert a fractional node by splitting the cubic@>;
21135 @<Set the current expression to the desired path coordinates@>;
21138 @ @<Insert a fractional node...@>=
21139 { mp_split_cubic(mp, p,v*010000); p=link(p); }
21141 @ @<Set the current expression to the desired path coordinates...@>=
21144 mp_pair_value(mp, x_coord(p),y_coord(p));
21146 case precontrol_of:
21147 if ( left_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21148 else mp_pair_value(mp, left_x(p),left_y(p));
21150 case postcontrol_of:
21151 if ( right_type(p)==mp_endpoint ) mp_pair_value(mp, x_coord(p),y_coord(p));
21152 else mp_pair_value(mp, right_x(p),right_y(p));
21154 } /* there are no other cases */
21156 @ @<Additional cases of binary operators@>=
21158 if ( mp->cur_type==mp_pair_type )
21159 mp_pair_to_path(mp);
21160 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_known) )
21161 mp_flush_cur_exp(mp, mp_get_arc_time(mp, mp->cur_exp,value(p)));
21163 mp_bad_binary(mp, p,c);
21166 @ @<Additional cases of bin...@>=
21168 if ( type(p)==mp_pair_type ) {
21169 q=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, p);
21170 mp_pair_to_path(mp); p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q);
21172 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
21173 if ( (mp->cur_type==mp_path_type)&&(type(p)==mp_path_type) ) {
21174 mp_path_intersection(mp, value(p),mp->cur_exp);
21175 mp_pair_value(mp, mp->cur_t,mp->cur_tt);
21177 mp_bad_binary(mp, p,intersect);
21181 @ @<Additional cases of bin...@>=
21183 if ( (mp->cur_type!=mp_string_type)||(type(p)!=mp_string_type))
21184 mp_bad_binary(mp, p,in_font);
21185 else { mp_do_infont(mp, p); return; }
21188 @ Function |new_text_node| owns the reference count for its second argument
21189 (the text string) but not its first (the font name).
21191 @<Declare binary action...@>=
21192 void mp_do_infont (MP mp,pointer p) {
21194 q=mp_get_node(mp, edge_header_size);
21195 mp_init_edges(mp, q);
21196 link(obj_tail(q))=mp_new_text_node(mp, str(mp->cur_exp),value(p));
21197 obj_tail(q)=link(obj_tail(q));
21198 mp_free_node(mp, p,value_node_size);
21199 mp_flush_cur_exp(mp, q);
21200 mp->cur_type=mp_picture_type;
21203 @* \[40] Statements and commands.
21204 The chief executive of \MP\ is the |do_statement| routine, which
21205 contains the master switch that causes all the various pieces of \MP\
21206 to do their things, in the right order.
21208 In a sense, this is the grand climax of the program: It applies all the
21209 tools that we have worked so hard to construct. In another sense, this is
21210 the messiest part of the program: It necessarily refers to other pieces
21211 of code all over the place, so that a person can't fully understand what is
21212 going on without paging back and forth to be reminded of conventions that
21213 are defined elsewhere. We are now at the hub of the web.
21215 The structure of |do_statement| itself is quite simple. The first token
21216 of the statement is fetched using |get_x_next|. If it can be the first
21217 token of an expression, we look for an equation, an assignment, or a
21218 title. Otherwise we use a \&{case} construction to branch at high speed to
21219 the appropriate routine for various and sundry other types of commands,
21220 each of which has an ``action procedure'' that does the necessary work.
21222 The program uses the fact that
21223 $$\hbox{|min_primary_command=max_statement_command=type_name|}$$
21224 to interpret a statement that starts with, e.g., `\&{string}',
21225 as a type declaration rather than a boolean expression.
21227 @c void mp_do_statement (MP mp) { /* governs \MP's activities */
21228 mp->cur_type=mp_vacuous; mp_get_x_next(mp);
21229 if ( mp->cur_cmd>max_primary_command ) {
21230 @<Worry about bad statement@>;
21231 } else if ( mp->cur_cmd>max_statement_command ) {
21232 @<Do an equation, assignment, title, or
21233 `$\langle\,$expression$\,\rangle\,$\&{endgroup}'@>;
21235 @<Do a statement that doesn't begin with an expression@>;
21237 if ( mp->cur_cmd<semicolon )
21238 @<Flush unparsable junk that was found after the statement@>;
21242 @ @<Declarations@>=
21243 @<Declare action procedures for use by |do_statement|@>;
21245 @ The only command codes |>max_primary_command| that can be present
21246 at the beginning of a statement are |semicolon| and higher; these
21247 occur when the statement is null.
21249 @<Worry about bad statement@>=
21251 if ( mp->cur_cmd<semicolon ) {
21252 print_err("A statement can't begin with `");
21253 @.A statement can't begin with x@>
21254 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod); mp_print_char(mp, '\'');
21255 help5("I was looking for the beginning of a new statement.")
21256 ("If you just proceed without changing anything, I'll ignore")
21257 ("everything up to the next `;'. Please insert a semicolon")
21258 ("now in front of anything that you don't want me to delete.")
21259 ("(See Chapter 27 of The METAFONTbook for an example.)");
21260 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21261 mp_back_error(mp); mp_get_x_next(mp);
21265 @ The help message printed here says that everything is flushed up to
21266 a semicolon, but actually the commands |end_group| and |stop| will
21267 also terminate a statement.
21269 @<Flush unparsable junk that was found after the statement@>=
21271 print_err("Extra tokens will be flushed");
21272 @.Extra tokens will be flushed@>
21273 help6("I've just read as much of that statement as I could fathom,")
21274 ("so a semicolon should have been next. It's very puzzling...")
21275 ("but I'll try to get myself back together, by ignoring")
21276 ("everything up to the next `;'. Please insert a semicolon")
21277 ("now in front of anything that you don't want me to delete.")
21278 ("(See Chapter 27 of The METAFONTbook for an example.)");
21279 @:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
21280 mp_back_error(mp); mp->scanner_status=flushing;
21283 @<Decrease the string reference count...@>;
21284 } while (! end_of_statement); /* |cur_cmd=semicolon|, |end_group|, or |stop| */
21285 mp->scanner_status=normal;
21288 @ If |do_statement| ends with |cur_cmd=end_group|, we should have
21289 |cur_type=mp_vacuous| unless the statement was simply an expression;
21290 in the latter case, |cur_type| and |cur_exp| should represent that
21293 @<Do a statement that doesn't...@>=
21295 if ( mp->internal[mp_tracing_commands]>0 )
21297 switch (mp->cur_cmd ) {
21298 case type_name:mp_do_type_declaration(mp); break;
21300 if ( mp->cur_mod>var_def ) mp_make_op_def(mp);
21301 else if ( mp->cur_mod>end_def ) mp_scan_def(mp);
21303 @<Cases of |do_statement| that invoke particular commands@>;
21304 } /* there are no other cases */
21305 mp->cur_type=mp_vacuous;
21308 @ The most important statements begin with expressions.
21310 @<Do an equation, assignment, title, or...@>=
21312 mp->var_flag=assignment; mp_scan_expression(mp);
21313 if ( mp->cur_cmd<end_group ) {
21314 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21315 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21316 else if ( mp->cur_type==mp_string_type ) {@<Do a title@> ; }
21317 else if ( mp->cur_type!=mp_vacuous ){
21318 exp_err("Isolated expression");
21319 @.Isolated expression@>
21320 help3("I couldn't find an `=' or `:=' after the")
21321 ("expression that is shown above this error message,")
21322 ("so I guess I'll just ignore it and carry on.");
21323 mp_put_get_error(mp);
21325 mp_flush_cur_exp(mp, 0); mp->cur_type=mp_vacuous;
21331 if ( mp->internal[mp_tracing_titles]>0 ) {
21332 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp); update_terminal;
21336 @ Equations and assignments are performed by the pair of mutually recursive
21338 routines |do_equation| and |do_assignment|. These routines are called when
21339 |cur_cmd=equals| and when |cur_cmd=assignment|, respectively; the left-hand
21340 side is in |cur_type| and |cur_exp|, while the right-hand side is yet
21341 to be scanned. After the routines are finished, |cur_type| and |cur_exp|
21342 will be equal to the right-hand side (which will normally be equal
21343 to the left-hand side).
21345 @<Declare action procedures for use by |do_statement|@>=
21346 @<Declare the procedure called |try_eq|@>;
21347 @<Declare the procedure called |make_eq|@>;
21348 void mp_do_equation (MP mp) ;
21351 void mp_do_equation (MP mp) {
21352 pointer lhs; /* capsule for the left-hand side */
21353 pointer p; /* temporary register */
21354 lhs=mp_stash_cur_exp(mp); mp_get_x_next(mp);
21355 mp->var_flag=assignment; mp_scan_expression(mp);
21356 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21357 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21358 if ( mp->internal[mp_tracing_commands]>two )
21359 @<Trace the current equation@>;
21360 if ( mp->cur_type==mp_unknown_path ) if ( type(lhs)==mp_pair_type ) {
21361 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, lhs); lhs=p;
21362 }; /* in this case |make_eq| will change the pair to a path */
21363 mp_make_eq(mp, lhs); /* equate |lhs| to |(cur_type,cur_exp)| */
21366 @ And |do_assignment| is similar to |do_expression|:
21369 void mp_do_assignment (MP mp);
21371 @ @<Declare action procedures for use by |do_statement|@>=
21372 void mp_do_assignment (MP mp) ;
21375 void mp_do_assignment (MP mp) {
21376 pointer lhs; /* token list for the left-hand side */
21377 pointer p; /* where the left-hand value is stored */
21378 pointer q; /* temporary capsule for the right-hand value */
21379 if ( mp->cur_type!=mp_token_list ) {
21380 exp_err("Improper `:=' will be changed to `='");
21382 help2("I didn't find a variable name at the left of the `:=',")
21383 ("so I'm going to pretend that you said `=' instead.");
21384 mp_error(mp); mp_do_equation(mp);
21386 lhs=mp->cur_exp; mp->cur_type=mp_vacuous;
21387 mp_get_x_next(mp); mp->var_flag=assignment; mp_scan_expression(mp);
21388 if ( mp->cur_cmd==equals ) mp_do_equation(mp);
21389 else if ( mp->cur_cmd==assignment ) mp_do_assignment(mp);
21390 if ( mp->internal[mp_tracing_commands]>two )
21391 @<Trace the current assignment@>;
21392 if ( info(lhs)>hash_end ) {
21393 @<Assign the current expression to an internal variable@>;
21395 @<Assign the current expression to the variable |lhs|@>;
21397 mp_flush_node_list(mp, lhs);
21401 @ @<Trace the current equation@>=
21403 mp_begin_diagnostic(mp); mp_print_nl(mp, "{("); mp_print_exp(mp,lhs,0);
21404 mp_print(mp,")=("); mp_print_exp(mp,null,0);
21405 mp_print(mp,")}"); mp_end_diagnostic(mp, false);
21408 @ @<Trace the current assignment@>=
21410 mp_begin_diagnostic(mp); mp_print_nl(mp, "{");
21411 if ( info(lhs)>hash_end )
21412 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21414 mp_show_token_list(mp, lhs,null,1000,0);
21415 mp_print(mp, ":="); mp_print_exp(mp, null,0);
21416 mp_print_char(mp, '}'); mp_end_diagnostic(mp, false);
21419 @ @<Assign the current expression to an internal variable@>=
21420 if ( mp->cur_type==mp_known ) {
21421 mp->internal[info(lhs)-(hash_end)]=mp->cur_exp;
21423 exp_err("Internal quantity `");
21424 @.Internal quantity...@>
21425 mp_print(mp, mp->int_name[info(lhs)-(hash_end)]);
21426 mp_print(mp, "' must receive a known value");
21427 help2("I can\'t set an internal quantity to anything but a known")
21428 ("numeric value, so I'll have to ignore this assignment.");
21429 mp_put_get_error(mp);
21432 @ @<Assign the current expression to the variable |lhs|@>=
21434 p=mp_find_variable(mp, lhs);
21436 q=mp_stash_cur_exp(mp); mp->cur_type=mp_und_type(mp, p);
21437 mp_recycle_value(mp, p);
21438 type(p)=mp->cur_type; value(p)=null; mp_make_exp_copy(mp, p);
21439 p=mp_stash_cur_exp(mp); mp_unstash_cur_exp(mp, q); mp_make_eq(mp, p);
21441 mp_obliterated(mp, lhs); mp_put_get_error(mp);
21446 @ And now we get to the nitty-gritty. The |make_eq| procedure is given
21447 a pointer to a capsule that is to be equated to the current expression.
21449 @<Declare the procedure called |make_eq|@>=
21450 void mp_make_eq (MP mp,pointer lhs) ;
21454 @c void mp_make_eq (MP mp,pointer lhs) {
21455 small_number t; /* type of the left-hand side */
21456 pointer p,q; /* pointers inside of big nodes */
21457 integer v=0; /* value of the left-hand side */
21460 if ( t<=mp_pair_type ) v=value(lhs);
21462 @<For each type |t|, make an equation and |goto done| unless |cur_type|
21463 is incompatible with~|t|@>;
21464 } /* all cases have been listed */
21465 @<Announce that the equation cannot be performed@>;
21467 check_arith; mp_recycle_value(mp, lhs);
21468 mp_free_node(mp, lhs,value_node_size);
21471 @ @<Announce that the equation cannot be performed@>=
21472 mp_disp_err(mp, lhs,"");
21473 exp_err("Equation cannot be performed (");
21474 @.Equation cannot be performed@>
21475 if ( type(lhs)<=mp_pair_type ) mp_print_type(mp, type(lhs));
21476 else mp_print(mp, "numeric");
21477 mp_print_char(mp, '=');
21478 if ( mp->cur_type<=mp_pair_type ) mp_print_type(mp, mp->cur_type);
21479 else mp_print(mp, "numeric");
21480 mp_print_char(mp, ')');
21481 help2("I'm sorry, but I don't know how to make such things equal.")
21482 ("(See the two expressions just above the error message.)");
21483 mp_put_get_error(mp)
21485 @ @<For each type |t|, make an equation and |goto done| unless...@>=
21486 case mp_boolean_type: case mp_string_type: case mp_pen_type:
21487 case mp_path_type: case mp_picture_type:
21488 if ( mp->cur_type==t+unknown_tag ) {
21489 mp_nonlinear_eq(mp, v,mp->cur_exp,false); goto DONE;
21490 } else if ( mp->cur_type==t ) {
21491 @<Report redundant or inconsistent equation and |goto done|@>;
21494 case unknown_types:
21495 if ( mp->cur_type==t-unknown_tag ) {
21496 mp_nonlinear_eq(mp, mp->cur_exp,lhs,true); goto DONE;
21497 } else if ( mp->cur_type==t ) {
21498 mp_ring_merge(mp, lhs,mp->cur_exp); goto DONE;
21499 } else if ( mp->cur_type==mp_pair_type ) {
21500 if ( t==mp_unknown_path ) {
21501 mp_pair_to_path(mp); goto RESTART;
21505 case mp_transform_type: case mp_color_type:
21506 case mp_cmykcolor_type: case mp_pair_type:
21507 if ( mp->cur_type==t ) {
21508 @<Do multiple equations and |goto done|@>;
21511 case mp_known: case mp_dependent:
21512 case mp_proto_dependent: case mp_independent:
21513 if ( mp->cur_type>=mp_known ) {
21514 mp_try_eq(mp, lhs,null); goto DONE;
21520 @ @<Report redundant or inconsistent equation and |goto done|@>=
21522 if ( mp->cur_type<=mp_string_type ) {
21523 if ( mp->cur_type==mp_string_type ) {
21524 if ( mp_str_vs_str(mp, v,mp->cur_exp)!=0 ) {
21527 } else if ( v!=mp->cur_exp ) {
21530 @<Exclaim about a redundant equation@>; goto DONE;
21532 print_err("Redundant or inconsistent equation");
21533 @.Redundant or inconsistent equation@>
21534 help2("An equation between already-known quantities can't help.")
21535 ("But don't worry; continue and I'll just ignore it.");
21536 mp_put_get_error(mp); goto DONE;
21538 print_err("Inconsistent equation");
21539 @.Inconsistent equation@>
21540 help2("The equation I just read contradicts what was said before.")
21541 ("But don't worry; continue and I'll just ignore it.");
21542 mp_put_get_error(mp); goto DONE;
21545 @ @<Do multiple equations and |goto done|@>=
21547 p=v+mp->big_node_size[t];
21548 q=value(mp->cur_exp)+mp->big_node_size[t];
21550 p=p-2; q=q-2; mp_try_eq(mp, p,q);
21555 @ The first argument to |try_eq| is the location of a value node
21556 in a capsule that will soon be recycled. The second argument is
21557 either a location within a pair or transform node pointed to by
21558 |cur_exp|, or it is |null| (which means that |cur_exp| itself
21559 serves as the second argument). The idea is to leave |cur_exp| unchanged,
21560 but to equate the two operands.
21562 @<Declare the procedure called |try_eq|@>=
21563 void mp_try_eq (MP mp,pointer l, pointer r) ;
21566 @c void mp_try_eq (MP mp,pointer l, pointer r) {
21567 pointer p; /* dependency list for right operand minus left operand */
21568 int t; /* the type of list |p| */
21569 pointer q; /* the constant term of |p| is here */
21570 pointer pp; /* dependency list for right operand */
21571 int tt; /* the type of list |pp| */
21572 boolean copied; /* have we copied a list that ought to be recycled? */
21573 @<Remove the left operand from its container, negate it, and
21574 put it into dependency list~|p| with constant term~|q|@>;
21575 @<Add the right operand to list |p|@>;
21576 if ( info(p)==null ) {
21577 @<Deal with redundant or inconsistent equation@>;
21579 mp_linear_eq(mp, p,t);
21580 if ( r==null ) if ( mp->cur_type!=mp_known ) {
21581 if ( type(mp->cur_exp)==mp_known ) {
21582 pp=mp->cur_exp; mp->cur_exp=value(mp->cur_exp); mp->cur_type=mp_known;
21583 mp_free_node(mp, pp,value_node_size);
21589 @ @<Remove the left operand from its container, negate it, and...@>=
21591 if ( t==mp_known ) {
21592 t=mp_dependent; p=mp_const_dependency(mp, -value(l)); q=p;
21593 } else if ( t==mp_independent ) {
21594 t=mp_dependent; p=mp_single_dependency(mp, l); negate(value(p));
21597 p=dep_list(l); q=p;
21600 if ( info(q)==null ) break;
21603 link(prev_dep(l))=link(q); prev_dep(link(q))=prev_dep(l);
21607 @ @<Deal with redundant or inconsistent equation@>=
21609 if ( abs(value(p))>64 ) { /* off by .001 or more */
21610 print_err("Inconsistent equation");
21611 @.Inconsistent equation@>
21612 mp_print(mp, " (off by "); mp_print_scaled(mp, value(p));
21613 mp_print_char(mp, ')');
21614 help2("The equation I just read contradicts what was said before.")
21615 ("But don't worry; continue and I'll just ignore it.");
21616 mp_put_get_error(mp);
21617 } else if ( r==null ) {
21618 @<Exclaim about a redundant equation@>;
21620 mp_free_node(mp, p,dep_node_size);
21623 @ @<Add the right operand to list |p|@>=
21625 if ( mp->cur_type==mp_known ) {
21626 value(q)=value(q)+mp->cur_exp; goto DONE1;
21629 if ( tt==mp_independent ) pp=mp_single_dependency(mp, mp->cur_exp);
21630 else pp=dep_list(mp->cur_exp);
21633 if ( type(r)==mp_known ) {
21634 value(q)=value(q)+value(r); goto DONE1;
21637 if ( tt==mp_independent ) pp=mp_single_dependency(mp, r);
21638 else pp=dep_list(r);
21641 if ( tt!=mp_independent ) copied=false;
21642 else { copied=true; tt=mp_dependent; };
21643 @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>;
21644 if ( copied ) mp_flush_node_list(mp, pp);
21647 @ @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>=
21648 mp->watch_coefs=false;
21650 p=mp_p_plus_q(mp, p,pp,t);
21651 } else if ( t==mp_proto_dependent ) {
21652 p=mp_p_plus_fq(mp, p,unity,pp,mp_proto_dependent,mp_dependent);
21655 while ( info(q)!=null ) {
21656 value(q)=mp_round_fraction(mp, value(q)); q=link(q);
21658 t=mp_proto_dependent; p=mp_p_plus_q(mp, p,pp,t);
21660 mp->watch_coefs=true;
21662 @ Our next goal is to process type declarations. For this purpose it's
21663 convenient to have a procedure that scans a $\langle\,$declared
21664 variable$\,\rangle$ and returns the corresponding token list. After the
21665 following procedure has acted, the token after the declared variable
21666 will have been scanned, so it will appear in |cur_cmd|, |cur_mod|,
21669 @<Declare the function called |scan_declared_variable|@>=
21670 pointer mp_scan_declared_variable (MP mp) {
21671 pointer x; /* hash address of the variable's root */
21672 pointer h,t; /* head and tail of the token list to be returned */
21673 pointer l; /* hash address of left bracket */
21674 mp_get_symbol(mp); x=mp->cur_sym;
21675 if ( mp->cur_cmd!=tag_token ) mp_clear_symbol(mp, x,false);
21676 h=mp_get_avail(mp); info(h)=x; t=h;
21679 if ( mp->cur_sym==0 ) break;
21680 if ( mp->cur_cmd!=tag_token ) if ( mp->cur_cmd!=internal_quantity) {
21681 if ( mp->cur_cmd==left_bracket ) {
21682 @<Descend past a collective subscript@>;
21687 link(t)=mp_get_avail(mp); t=link(t); info(t)=mp->cur_sym;
21689 if ( eq_type(x)!=tag_token ) mp_clear_symbol(mp, x,false);
21690 if ( equiv(x)==null ) mp_new_root(mp, x);
21694 @ If the subscript isn't collective, we don't accept it as part of the
21697 @<Descend past a collective subscript@>=
21699 l=mp->cur_sym; mp_get_x_next(mp);
21700 if ( mp->cur_cmd!=right_bracket ) {
21701 mp_back_input(mp); mp->cur_sym=l; mp->cur_cmd=left_bracket; break;
21703 mp->cur_sym=collective_subscript;
21707 @ Type declarations are introduced by the following primitive operations.
21710 mp_primitive(mp, "numeric",type_name,mp_numeric_type);
21711 @:numeric_}{\&{numeric} primitive@>
21712 mp_primitive(mp, "string",type_name,mp_string_type);
21713 @:string_}{\&{string} primitive@>
21714 mp_primitive(mp, "boolean",type_name,mp_boolean_type);
21715 @:boolean_}{\&{boolean} primitive@>
21716 mp_primitive(mp, "path",type_name,mp_path_type);
21717 @:path_}{\&{path} primitive@>
21718 mp_primitive(mp, "pen",type_name,mp_pen_type);
21719 @:pen_}{\&{pen} primitive@>
21720 mp_primitive(mp, "picture",type_name,mp_picture_type);
21721 @:picture_}{\&{picture} primitive@>
21722 mp_primitive(mp, "transform",type_name,mp_transform_type);
21723 @:transform_}{\&{transform} primitive@>
21724 mp_primitive(mp, "color",type_name,mp_color_type);
21725 @:color_}{\&{color} primitive@>
21726 mp_primitive(mp, "rgbcolor",type_name,mp_color_type);
21727 @:color_}{\&{rgbcolor} primitive@>
21728 mp_primitive(mp, "cmykcolor",type_name,mp_cmykcolor_type);
21729 @:color_}{\&{cmykcolor} primitive@>
21730 mp_primitive(mp, "pair",type_name,mp_pair_type);
21731 @:pair_}{\&{pair} primitive@>
21733 @ @<Cases of |print_cmd...@>=
21734 case type_name: mp_print_type(mp, m); break;
21736 @ Now we are ready to handle type declarations, assuming that a
21737 |type_name| has just been scanned.
21739 @<Declare action procedures for use by |do_statement|@>=
21740 void mp_do_type_declaration (MP mp) ;
21743 void mp_do_type_declaration (MP mp) {
21744 small_number t; /* the type being declared */
21745 pointer p; /* token list for a declared variable */
21746 pointer q; /* value node for the variable */
21747 if ( mp->cur_mod>=mp_transform_type )
21750 t=mp->cur_mod+unknown_tag;
21752 p=mp_scan_declared_variable(mp);
21753 mp_flush_variable(mp, equiv(info(p)),link(p),false);
21754 q=mp_find_variable(mp, p);
21756 type(q)=t; value(q)=null;
21758 print_err("Declared variable conflicts with previous vardef");
21759 @.Declared variable conflicts...@>
21760 help2("You can't use, e.g., `numeric foo[]' after `vardef foo'.")
21761 ("Proceed, and I'll ignore the illegal redeclaration.");
21762 mp_put_get_error(mp);
21764 mp_flush_list(mp, p);
21765 if ( mp->cur_cmd<comma ) {
21766 @<Flush spurious symbols after the declared variable@>;
21768 } while (! end_of_statement);
21771 @ @<Flush spurious symbols after the declared variable@>=
21773 print_err("Illegal suffix of declared variable will be flushed");
21774 @.Illegal suffix...flushed@>
21775 help5("Variables in declarations must consist entirely of")
21776 ("names and collective subscripts, e.g., `x[]a'.")
21777 ("Are you trying to use a reserved word in a variable name?")
21778 ("I'm going to discard the junk I found here,")
21779 ("up to the next comma or the end of the declaration.");
21780 if ( mp->cur_cmd==numeric_token )
21781 mp->help_line[2]="Explicit subscripts like `x15a' aren't permitted.";
21782 mp_put_get_error(mp); mp->scanner_status=flushing;
21785 @<Decrease the string reference count...@>;
21786 } while (mp->cur_cmd<comma); /* either |end_of_statement| or |cur_cmd=comma| */
21787 mp->scanner_status=normal;
21790 @ \MP's |main_control| procedure just calls |do_statement| repeatedly
21791 until coming to the end of the user's program.
21792 Each execution of |do_statement| concludes with
21793 |cur_cmd=semicolon|, |end_group|, or |stop|.
21795 @c void mp_main_control (MP mp) {
21797 mp_do_statement(mp);
21798 if ( mp->cur_cmd==end_group ) {
21799 print_err("Extra `endgroup'");
21800 @.Extra `endgroup'@>
21801 help2("I'm not currently working on a `begingroup',")
21802 ("so I had better not try to end anything.");
21803 mp_flush_error(mp, 0);
21805 } while (mp->cur_cmd!=stop);
21807 int mp_run (MP mp) {
21808 @<Install and test the non-local jump buffer@>;
21809 mp_main_control(mp); /* come to life */
21810 mp_final_cleanup(mp); /* prepare for death */
21811 mp_close_files_and_terminate(mp);
21812 return mp->history;
21814 char * mp_mplib_version (MP mp) {
21816 return mplib_version;
21818 char * mp_metapost_version (MP mp) {
21820 return metapost_version;
21823 @ @<Exported function headers@>=
21824 int mp_run (MP mp);
21825 char * mp_mplib_version (MP mp);
21826 char * mp_metapost_version (MP mp);
21829 mp_primitive(mp, "end",stop,0);
21830 @:end_}{\&{end} primitive@>
21831 mp_primitive(mp, "dump",stop,1);
21832 @:dump_}{\&{dump} primitive@>
21834 @ @<Cases of |print_cmd...@>=
21836 if ( m==0 ) mp_print(mp, "end");
21837 else mp_print(mp, "dump");
21841 Let's turn now to statements that are classified as ``commands'' because
21842 of their imperative nature. We'll begin with simple ones, so that it
21843 will be clear how to hook command processing into the |do_statement| routine;
21844 then we'll tackle the tougher commands.
21846 Here's one of the simplest:
21848 @<Cases of |do_statement|...@>=
21849 case random_seed: mp_do_random_seed(mp); break;
21851 @ @<Declare action procedures for use by |do_statement|@>=
21852 void mp_do_random_seed (MP mp) ;
21854 @ @c void mp_do_random_seed (MP mp) {
21856 if ( mp->cur_cmd!=assignment ) {
21857 mp_missing_err(mp, ":=");
21859 help1("Always say `randomseed:=<numeric expression>'.");
21862 mp_get_x_next(mp); mp_scan_expression(mp);
21863 if ( mp->cur_type!=mp_known ) {
21864 exp_err("Unknown value will be ignored");
21865 @.Unknown value...ignored@>
21866 help2("Your expression was too random for me to handle,")
21867 ("so I won't change the random seed just now.");
21868 mp_put_get_flush_error(mp, 0);
21870 @<Initialize the random seed to |cur_exp|@>;
21874 @ @<Initialize the random seed to |cur_exp|@>=
21876 mp_init_randoms(mp, mp->cur_exp);
21877 if ( mp->selector>=log_only && mp->selector<write_file) {
21878 mp->old_setting=mp->selector; mp->selector=log_only;
21879 mp_print_nl(mp, "{randomseed:=");
21880 mp_print_scaled(mp, mp->cur_exp);
21881 mp_print_char(mp, '}');
21882 mp_print_nl(mp, ""); mp->selector=mp->old_setting;
21886 @ And here's another simple one (somewhat different in flavor):
21888 @<Cases of |do_statement|...@>=
21890 mp_print_ln(mp); mp->interaction=mp->cur_mod;
21891 @<Initialize the print |selector| based on |interaction|@>;
21892 if ( mp->log_opened ) mp->selector=mp->selector+2;
21897 mp_primitive(mp, "batchmode",mode_command,mp_batch_mode);
21898 @:mp_batch_mode_}{\&{batchmode} primitive@>
21899 mp_primitive(mp, "nonstopmode",mode_command,mp_nonstop_mode);
21900 @:mp_nonstop_mode_}{\&{nonstopmode} primitive@>
21901 mp_primitive(mp, "scrollmode",mode_command,mp_scroll_mode);
21902 @:mp_scroll_mode_}{\&{scrollmode} primitive@>
21903 mp_primitive(mp, "errorstopmode",mode_command,mp_error_stop_mode);
21904 @:mp_error_stop_mode_}{\&{errorstopmode} primitive@>
21906 @ @<Cases of |print_cmd_mod|...@>=
21909 case mp_batch_mode: mp_print(mp, "batchmode"); break;
21910 case mp_nonstop_mode: mp_print(mp, "nonstopmode"); break;
21911 case mp_scroll_mode: mp_print(mp, "scrollmode"); break;
21912 default: mp_print(mp, "errorstopmode"); break;
21916 @ The `\&{inner}' and `\&{outer}' commands are only slightly harder.
21918 @<Cases of |do_statement|...@>=
21919 case protection_command: mp_do_protection(mp); break;
21922 mp_primitive(mp, "inner",protection_command,0);
21923 @:inner_}{\&{inner} primitive@>
21924 mp_primitive(mp, "outer",protection_command,1);
21925 @:outer_}{\&{outer} primitive@>
21927 @ @<Cases of |print_cmd...@>=
21928 case protection_command:
21929 if ( m==0 ) mp_print(mp, "inner");
21930 else mp_print(mp, "outer");
21933 @ @<Declare action procedures for use by |do_statement|@>=
21934 void mp_do_protection (MP mp) ;
21936 @ @c void mp_do_protection (MP mp) {
21937 int m; /* 0 to unprotect, 1 to protect */
21938 halfword t; /* the |eq_type| before we change it */
21941 mp_get_symbol(mp); t=eq_type(mp->cur_sym);
21943 if ( t>=outer_tag )
21944 eq_type(mp->cur_sym)=t-outer_tag;
21945 } else if ( t<outer_tag ) {
21946 eq_type(mp->cur_sym)=t+outer_tag;
21949 } while (mp->cur_cmd==comma);
21952 @ \MP\ never defines the tokens `\.(' and `\.)' to be primitives, but
21953 plain \MP\ begins with the declaration `\&{delimiters} \.{()}'. Such a
21954 declaration assigns the command code |left_delimiter| to `\.{(}' and
21955 |right_delimiter| to `\.{)}'; the |equiv| of each delimiter is the
21956 hash address of its mate.
21958 @<Cases of |do_statement|...@>=
21959 case delimiters: mp_def_delims(mp); break;
21961 @ @<Declare action procedures for use by |do_statement|@>=
21962 void mp_def_delims (MP mp) ;
21964 @ @c void mp_def_delims (MP mp) {
21965 pointer l_delim,r_delim; /* the new delimiter pair */
21966 mp_get_clear_symbol(mp); l_delim=mp->cur_sym;
21967 mp_get_clear_symbol(mp); r_delim=mp->cur_sym;
21968 eq_type(l_delim)=left_delimiter; equiv(l_delim)=r_delim;
21969 eq_type(r_delim)=right_delimiter; equiv(r_delim)=l_delim;
21973 @ Here is a procedure that is called when \MP\ has reached a point
21974 where some right delimiter is mandatory.
21976 @<Declare the procedure called |check_delimiter|@>=
21977 void mp_check_delimiter (MP mp,pointer l_delim, pointer r_delim) {
21978 if ( mp->cur_cmd==right_delimiter )
21979 if ( mp->cur_mod==l_delim )
21981 if ( mp->cur_sym!=r_delim ) {
21982 mp_missing_err(mp, str(text(r_delim)));
21984 help2("I found no right delimiter to match a left one. So I've")
21985 ("put one in, behind the scenes; this may fix the problem.");
21988 print_err("The token `"); mp_print_text(r_delim);
21989 @.The token...delimiter@>
21990 mp_print(mp, "' is no longer a right delimiter");
21991 help3("Strange: This token has lost its former meaning!")
21992 ("I'll read it as a right delimiter this time;")
21993 ("but watch out, I'll probably miss it later.");
21998 @ The next four commands save or change the values associated with tokens.
22000 @<Cases of |do_statement|...@>=
22003 mp_get_symbol(mp); mp_save_variable(mp, mp->cur_sym); mp_get_x_next(mp);
22004 } while (mp->cur_cmd==comma);
22006 case interim_command: mp_do_interim(mp); break;
22007 case let_command: mp_do_let(mp); break;
22008 case new_internal: mp_do_new_internal(mp); break;
22010 @ @<Declare action procedures for use by |do_statement|@>=
22011 void mp_do_statement (MP mp);
22012 void mp_do_interim (MP mp);
22014 @ @c void mp_do_interim (MP mp) {
22016 if ( mp->cur_cmd!=internal_quantity ) {
22017 print_err("The token `");
22018 @.The token...quantity@>
22019 if ( mp->cur_sym==0 ) mp_print(mp, "(%CAPSULE)");
22020 else mp_print_text(mp->cur_sym);
22021 mp_print(mp, "' isn't an internal quantity");
22022 help1("Something like `tracingonline' should follow `interim'.");
22025 mp_save_internal(mp, mp->cur_mod); mp_back_input(mp);
22027 mp_do_statement(mp);
22030 @ The following procedure is careful not to undefine the left-hand symbol
22031 too soon, lest commands like `{\tt let x=x}' have a surprising effect.
22033 @<Declare action procedures for use by |do_statement|@>=
22034 void mp_do_let (MP mp) ;
22036 @ @c void mp_do_let (MP mp) {
22037 pointer l; /* hash location of the left-hand symbol */
22038 mp_get_symbol(mp); l=mp->cur_sym; mp_get_x_next(mp);
22039 if ( mp->cur_cmd!=equals ) if ( mp->cur_cmd!=assignment ) {
22040 mp_missing_err(mp, "=");
22042 help3("You should have said `let symbol = something'.")
22043 ("But don't worry; I'll pretend that an equals sign")
22044 ("was present. The next token I read will be `something'.");
22048 switch (mp->cur_cmd) {
22049 case defined_macro: case secondary_primary_macro:
22050 case tertiary_secondary_macro: case expression_tertiary_macro:
22051 add_mac_ref(mp->cur_mod);
22056 mp_clear_symbol(mp, l,false); eq_type(l)=mp->cur_cmd;
22057 if ( mp->cur_cmd==tag_token ) equiv(l)=null;
22058 else equiv(l)=mp->cur_mod;
22062 @ @<Declarations@>=
22063 void mp_grow_internals (MP mp, int l);
22064 void mp_do_new_internal (MP mp) ;
22067 void mp_grow_internals (MP mp, int l) {
22071 if ( hash_end+l>max_halfword ) {
22072 mp_confusion(mp, "out of memory space"); /* can't be reached */
22074 int_name = xmalloc ((l+1),sizeof(char *));
22075 internal = xmalloc ((l+1),sizeof(scaled));
22076 for (k=0;k<=l; k++ ) {
22077 if (k<=mp->max_internal) {
22078 internal[k]=mp->internal[k];
22079 int_name[k]=mp->int_name[k];
22085 xfree(mp->internal); xfree(mp->int_name);
22086 mp->int_name = int_name;
22087 mp->internal = internal;
22088 mp->max_internal = l;
22092 void mp_do_new_internal (MP mp) {
22094 if ( mp->int_ptr==mp->max_internal ) {
22095 mp_grow_internals(mp, (mp->max_internal + (mp->max_internal>>2)));
22097 mp_get_clear_symbol(mp); incr(mp->int_ptr);
22098 eq_type(mp->cur_sym)=internal_quantity;
22099 equiv(mp->cur_sym)=mp->int_ptr;
22100 if(mp->int_name[mp->int_ptr]!=NULL)
22101 xfree(mp->int_name[mp->int_ptr]);
22102 mp->int_name[mp->int_ptr]=str(text(mp->cur_sym));
22103 mp->internal[mp->int_ptr]=0;
22105 } while (mp->cur_cmd==comma);
22108 @ @<Dealloc variables@>=
22109 for (k=0;k<=mp->max_internal;k++) {
22110 xfree(mp->int_name[k]);
22112 xfree(mp->internal);
22113 xfree(mp->int_name);
22116 @ The various `\&{show}' commands are distinguished by modifier fields
22119 @d show_token_code 0 /* show the meaning of a single token */
22120 @d show_stats_code 1 /* show current memory and string usage */
22121 @d show_code 2 /* show a list of expressions */
22122 @d show_var_code 3 /* show a variable and its descendents */
22123 @d show_dependencies_code 4 /* show dependent variables in terms of independents */
22126 mp_primitive(mp, "showtoken",show_command,show_token_code);
22127 @:show_token_}{\&{showtoken} primitive@>
22128 mp_primitive(mp, "showstats",show_command,show_stats_code);
22129 @:show_stats_}{\&{showstats} primitive@>
22130 mp_primitive(mp, "show",show_command,show_code);
22131 @:show_}{\&{show} primitive@>
22132 mp_primitive(mp, "showvariable",show_command,show_var_code);
22133 @:show_var_}{\&{showvariable} primitive@>
22134 mp_primitive(mp, "showdependencies",show_command,show_dependencies_code);
22135 @:show_dependencies_}{\&{showdependencies} primitive@>
22137 @ @<Cases of |print_cmd...@>=
22140 case show_token_code:mp_print(mp, "showtoken"); break;
22141 case show_stats_code:mp_print(mp, "showstats"); break;
22142 case show_code:mp_print(mp, "show"); break;
22143 case show_var_code:mp_print(mp, "showvariable"); break;
22144 default: mp_print(mp, "showdependencies"); break;
22148 @ @<Cases of |do_statement|...@>=
22149 case show_command:mp_do_show_whatever(mp); break;
22151 @ The value of |cur_mod| controls the |verbosity| in the |print_exp| routine:
22152 if it's |show_code|, complicated structures are abbreviated, otherwise
22155 @<Declare action procedures for use by |do_statement|@>=
22156 void mp_do_show (MP mp) ;
22158 @ @c void mp_do_show (MP mp) {
22160 mp_get_x_next(mp); mp_scan_expression(mp);
22161 mp_print_nl(mp, ">> ");
22163 mp_print_exp(mp, null,2); mp_flush_cur_exp(mp, 0);
22164 } while (mp->cur_cmd==comma);
22167 @ @<Declare action procedures for use by |do_statement|@>=
22168 void mp_disp_token (MP mp) ;
22170 @ @c void mp_disp_token (MP mp) {
22171 mp_print_nl(mp, "> ");
22173 if ( mp->cur_sym==0 ) {
22174 @<Show a numeric or string or capsule token@>;
22176 mp_print_text(mp->cur_sym); mp_print_char(mp, '=');
22177 if ( eq_type(mp->cur_sym)>=outer_tag ) mp_print(mp, "(outer) ");
22178 mp_print_cmd_mod(mp, mp->cur_cmd,mp->cur_mod);
22179 if ( mp->cur_cmd==defined_macro ) {
22180 mp_print_ln(mp); mp_show_macro(mp, mp->cur_mod,null,100000);
22181 } /* this avoids recursion between |show_macro| and |print_cmd_mod| */
22186 @ @<Show a numeric or string or capsule token@>=
22188 if ( mp->cur_cmd==numeric_token ) {
22189 mp_print_scaled(mp, mp->cur_mod);
22190 } else if ( mp->cur_cmd==capsule_token ) {
22191 mp->g_pointer=mp->cur_mod; mp_print_capsule(mp);
22193 mp_print_char(mp, '"');
22194 mp_print_str(mp, mp->cur_mod); mp_print_char(mp, '"');
22195 delete_str_ref(mp->cur_mod);
22199 @ The following cases of |print_cmd_mod| might arise in connection
22200 with |disp_token|, although they don't correspond to any
22203 @<Cases of |print_cmd_...@>=
22204 case left_delimiter:
22205 case right_delimiter:
22206 if ( c==left_delimiter ) mp_print(mp, "left");
22207 else mp_print(mp, "right");
22208 mp_print(mp, " delimiter that matches ");
22212 if ( m==null ) mp_print(mp, "tag");
22213 else mp_print(mp, "variable");
22215 case defined_macro:
22216 mp_print(mp, "macro:");
22218 case secondary_primary_macro:
22219 case tertiary_secondary_macro:
22220 case expression_tertiary_macro:
22221 mp_print_cmd_mod(mp, macro_def,c);
22222 mp_print(mp, "'d macro:");
22223 mp_print_ln(mp); mp_show_token_list(mp, link(link(m)),null,1000,0);
22226 mp_print(mp, "[repeat the loop]");
22228 case internal_quantity:
22229 mp_print(mp, mp->int_name[m]);
22232 @ @<Declare action procedures for use by |do_statement|@>=
22233 void mp_do_show_token (MP mp) ;
22235 @ @c void mp_do_show_token (MP mp) {
22237 get_t_next; mp_disp_token(mp);
22239 } while (mp->cur_cmd==comma);
22242 @ @<Declare action procedures for use by |do_statement|@>=
22243 void mp_do_show_stats (MP mp) ;
22245 @ @c void mp_do_show_stats (MP mp) {
22246 mp_print_nl(mp, "Memory usage ");
22247 @.Memory usage...@>
22248 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used);
22250 mp_print(mp, "unknown");
22251 mp_print(mp, " ("); mp_print_int(mp, mp->hi_mem_min-mp->lo_mem_max-1);
22252 mp_print(mp, " still untouched)"); mp_print_ln(mp);
22253 mp_print_nl(mp, "String usage ");
22254 mp_print_int(mp, mp->strs_in_use-mp->init_str_use);
22255 mp_print_char(mp, '&'); mp_print_int(mp, mp->pool_in_use-mp->init_pool_ptr);
22257 mp_print(mp, "unknown");
22258 mp_print(mp, " (");
22259 mp_print_int(mp, mp->max_strings-1-mp->strs_used_up); mp_print_char(mp, '&');
22260 mp_print_int(mp, mp->pool_size-mp->pool_ptr);
22261 mp_print(mp, " now untouched)"); mp_print_ln(mp);
22265 @ Here's a recursive procedure that gives an abbreviated account
22266 of a variable, for use by |do_show_var|.
22268 @<Declare action procedures for use by |do_statement|@>=
22269 void mp_disp_var (MP mp,pointer p) ;
22271 @ @c void mp_disp_var (MP mp,pointer p) {
22272 pointer q; /* traverses attributes and subscripts */
22273 int n; /* amount of macro text to show */
22274 if ( type(p)==mp_structured ) {
22275 @<Descend the structure@>;
22276 } else if ( type(p)>=mp_unsuffixed_macro ) {
22277 @<Display a variable macro@>;
22278 } else if ( type(p)!=undefined ){
22279 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22280 mp_print_char(mp, '=');
22281 mp_print_exp(mp, p,0);
22285 @ @<Descend the structure@>=
22288 do { mp_disp_var(mp, q); q=link(q); } while (q!=end_attr);
22290 while ( name_type(q)==mp_subscr ) {
22291 mp_disp_var(mp, q); q=link(q);
22295 @ @<Display a variable macro@>=
22297 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22298 if ( type(p)>mp_unsuffixed_macro )
22299 mp_print(mp, "@@#"); /* |suffixed_macro| */
22300 mp_print(mp, "=macro:");
22301 if ( (int)mp->file_offset>=mp->max_print_line-20 ) n=5;
22302 else n=mp->max_print_line-mp->file_offset-15;
22303 mp_show_macro(mp, value(p),null,n);
22306 @ @<Declare action procedures for use by |do_statement|@>=
22307 void mp_do_show_var (MP mp) ;
22309 @ @c void mp_do_show_var (MP mp) {
22312 if ( mp->cur_sym>0 ) if ( mp->cur_sym<=hash_end )
22313 if ( mp->cur_cmd==tag_token ) if ( mp->cur_mod!=null ) {
22314 mp_disp_var(mp, mp->cur_mod); goto DONE;
22319 } while (mp->cur_cmd==comma);
22322 @ @<Declare action procedures for use by |do_statement|@>=
22323 void mp_do_show_dependencies (MP mp) ;
22325 @ @c void mp_do_show_dependencies (MP mp) {
22326 pointer p; /* link that runs through all dependencies */
22328 while ( p!=dep_head ) {
22329 if ( mp_interesting(mp, p) ) {
22330 mp_print_nl(mp, ""); mp_print_variable_name(mp, p);
22331 if ( type(p)==mp_dependent ) mp_print_char(mp, '=');
22332 else mp_print(mp, " = "); /* extra spaces imply proto-dependency */
22333 mp_print_dependency(mp, dep_list(p),type(p));
22336 while ( info(p)!=null ) p=link(p);
22342 @ Finally we are ready for the procedure that governs all of the
22345 @<Declare action procedures for use by |do_statement|@>=
22346 void mp_do_show_whatever (MP mp) ;
22348 @ @c void mp_do_show_whatever (MP mp) {
22349 if ( mp->interaction==mp_error_stop_mode ) wake_up_terminal;
22350 switch (mp->cur_mod) {
22351 case show_token_code:mp_do_show_token(mp); break;
22352 case show_stats_code:mp_do_show_stats(mp); break;
22353 case show_code:mp_do_show(mp); break;
22354 case show_var_code:mp_do_show_var(mp); break;
22355 case show_dependencies_code:mp_do_show_dependencies(mp); break;
22356 } /* there are no other cases */
22357 if ( mp->internal[mp_showstopping]>0 ){
22360 if ( mp->interaction<mp_error_stop_mode ) {
22361 help0; decr(mp->error_count);
22363 help1("This isn't an error message; I'm just showing something.");
22365 if ( mp->cur_cmd==semicolon ) mp_error(mp);
22366 else mp_put_get_error(mp);
22370 @ The `\&{addto}' command needs the following additional primitives:
22372 @d double_path_code 0 /* command modifier for `\&{doublepath}' */
22373 @d contour_code 1 /* command modifier for `\&{contour}' */
22374 @d also_code 2 /* command modifier for `\&{also}' */
22376 @ Pre and postscripts need two new identifiers:
22378 @d with_pre_script 11
22379 @d with_post_script 13
22382 mp_primitive(mp, "doublepath",thing_to_add,double_path_code);
22383 @:double_path_}{\&{doublepath} primitive@>
22384 mp_primitive(mp, "contour",thing_to_add,contour_code);
22385 @:contour_}{\&{contour} primitive@>
22386 mp_primitive(mp, "also",thing_to_add,also_code);
22387 @:also_}{\&{also} primitive@>
22388 mp_primitive(mp, "withpen",with_option,mp_pen_type);
22389 @:with_pen_}{\&{withpen} primitive@>
22390 mp_primitive(mp, "dashed",with_option,mp_picture_type);
22391 @:dashed_}{\&{dashed} primitive@>
22392 mp_primitive(mp, "withprescript",with_option,with_pre_script);
22393 @:with_pre_script_}{\&{withprescript} primitive@>
22394 mp_primitive(mp, "withpostscript",with_option,with_post_script);
22395 @:with_post_script_}{\&{withpostscript} primitive@>
22396 mp_primitive(mp, "withoutcolor",with_option,mp_no_model);
22397 @:with_color_}{\&{withoutcolor} primitive@>
22398 mp_primitive(mp, "withgreyscale",with_option,mp_grey_model);
22399 @:with_color_}{\&{withgreyscale} primitive@>
22400 mp_primitive(mp, "withcolor",with_option,mp_uninitialized_model);
22401 @:with_color_}{\&{withcolor} primitive@>
22402 /* \&{withrgbcolor} is an alias for \&{withcolor} */
22403 mp_primitive(mp, "withrgbcolor",with_option,mp_rgb_model);
22404 @:with_color_}{\&{withrgbcolor} primitive@>
22405 mp_primitive(mp, "withcmykcolor",with_option,mp_cmyk_model);
22406 @:with_color_}{\&{withcmykcolor} primitive@>
22408 @ @<Cases of |print_cmd...@>=
22410 if ( m==contour_code ) mp_print(mp, "contour");
22411 else if ( m==double_path_code ) mp_print(mp, "doublepath");
22412 else mp_print(mp, "also");
22415 if ( m==mp_pen_type ) mp_print(mp, "withpen");
22416 else if ( m==with_pre_script ) mp_print(mp, "withprescript");
22417 else if ( m==with_post_script ) mp_print(mp, "withpostscript");
22418 else if ( m==mp_no_model ) mp_print(mp, "withoutcolor");
22419 else if ( m==mp_rgb_model ) mp_print(mp, "withrgbcolor");
22420 else if ( m==mp_uninitialized_model ) mp_print(mp, "withcolor");
22421 else if ( m==mp_cmyk_model ) mp_print(mp, "withcmykcolor");
22422 else if ( m==mp_grey_model ) mp_print(mp, "withgreyscale");
22423 else mp_print(mp, "dashed");
22426 @ The |scan_with_list| procedure parses a $\langle$with list$\rangle$ and
22427 updates the list of graphical objects starting at |p|. Each $\langle$with
22428 clause$\rangle$ updates all graphical objects whose |type| is compatible.
22429 Other objects are ignored.
22431 @<Declare action procedures for use by |do_statement|@>=
22432 void mp_scan_with_list (MP mp,pointer p) ;
22434 @ @c void mp_scan_with_list (MP mp,pointer p) {
22435 small_number t; /* |cur_mod| of the |with_option| (should match |cur_type|) */
22436 pointer q; /* for list manipulation */
22437 int old_setting; /* saved |selector| setting */
22438 pointer k; /* for finding the near-last item in a list */
22439 str_number s; /* for string cleanup after combining */
22440 pointer cp,pp,dp,ap,bp;
22441 /* objects being updated; |void| initially; |null| to suppress update */
22442 cp=mp_void; pp=mp_void; dp=mp_void; ap=mp_void; bp=mp_void;
22444 while ( mp->cur_cmd==with_option ){
22447 if ( t!=mp_no_model ) mp_scan_expression(mp);
22448 if (((t==with_pre_script)&&(mp->cur_type!=mp_string_type))||
22449 ((t==with_post_script)&&(mp->cur_type!=mp_string_type))||
22450 ((t==mp_uninitialized_model)&&
22451 ((mp->cur_type!=mp_cmykcolor_type)&&(mp->cur_type!=mp_color_type)
22452 &&(mp->cur_type!=mp_known)&&(mp->cur_type!=mp_boolean_type)))||
22453 ((t==mp_cmyk_model)&&(mp->cur_type!=mp_cmykcolor_type))||
22454 ((t==mp_rgb_model)&&(mp->cur_type!=mp_color_type))||
22455 ((t==mp_grey_model)&&(mp->cur_type!=mp_known))||
22456 ((t==mp_pen_type)&&(mp->cur_type!=t))||
22457 ((t==mp_picture_type)&&(mp->cur_type!=t)) ) {
22458 @<Complain about improper type@>;
22459 } else if ( t==mp_uninitialized_model ) {
22460 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22462 @<Transfer a color from the current expression to object~|cp|@>;
22463 mp_flush_cur_exp(mp, 0);
22464 } else if ( t==mp_rgb_model ) {
22465 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22467 @<Transfer a rgbcolor from the current expression to object~|cp|@>;
22468 mp_flush_cur_exp(mp, 0);
22469 } else if ( t==mp_cmyk_model ) {
22470 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22472 @<Transfer a cmykcolor from the current expression to object~|cp|@>;
22473 mp_flush_cur_exp(mp, 0);
22474 } else if ( t==mp_grey_model ) {
22475 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22477 @<Transfer a greyscale from the current expression to object~|cp|@>;
22478 mp_flush_cur_exp(mp, 0);
22479 } else if ( t==mp_no_model ) {
22480 if ( cp==mp_void ) @<Make |cp| a colored object in object list~|p|@>;
22482 @<Transfer a noncolor from the current expression to object~|cp|@>;
22483 } else if ( t==mp_pen_type ) {
22484 if ( pp==mp_void ) @<Make |pp| an object in list~|p| that needs a pen@>;
22486 if ( pen_p(pp)!=null ) mp_toss_knot_list(mp, pen_p(pp));
22487 pen_p(pp)=mp->cur_exp; mp->cur_type=mp_vacuous;
22489 } else if ( t==with_pre_script ) {
22492 while ( (ap!=null)&&(! has_color(ap)) )
22495 if ( pre_script(ap)!=null ) { /* build a new,combined string */
22497 old_setting=mp->selector;
22498 mp->selector=new_string;
22499 str_room(length(pre_script(ap))+length(mp->cur_exp)+2);
22500 mp_print_str(mp, mp->cur_exp);
22501 append_char(13); /* a forced \ps\ newline */
22502 mp_print_str(mp, pre_script(ap));
22503 pre_script(ap)=mp_make_string(mp);
22505 mp->selector=old_setting;
22507 pre_script(ap)=mp->cur_exp;
22509 mp->cur_type=mp_vacuous;
22511 } else if ( t==with_post_script ) {
22515 while ( link(k)!=null ) {
22517 if ( has_color(k) ) bp=k;
22520 if ( post_script(bp)!=null ) {
22522 old_setting=mp->selector;
22523 mp->selector=new_string;
22524 str_room(length(post_script(bp))+length(mp->cur_exp)+2);
22525 mp_print_str(mp, post_script(bp));
22526 append_char(13); /* a forced \ps\ newline */
22527 mp_print_str(mp, mp->cur_exp);
22528 post_script(bp)=mp_make_string(mp);
22530 mp->selector=old_setting;
22532 post_script(bp)=mp->cur_exp;
22534 mp->cur_type=mp_vacuous;
22537 if ( dp==mp_void ) {
22538 @<Make |dp| a stroked node in list~|p|@>;
22541 if ( dash_p(dp)!=null ) delete_edge_ref(dash_p(dp));
22542 dash_p(dp)=mp_make_dashes(mp, mp->cur_exp);
22543 dash_scale(dp)=unity;
22544 mp->cur_type=mp_vacuous;
22548 @<Copy the information from objects |cp|, |pp|, and |dp| into the rest
22552 @ @<Complain about improper type@>=
22553 { exp_err("Improper type");
22555 help2("Next time say `withpen <known pen expression>';")
22556 ("I'll ignore the bad `with' clause and look for another.");
22557 if ( t==with_pre_script )
22558 mp->help_line[1]="Next time say `withprescript <known string expression>';";
22559 else if ( t==with_post_script )
22560 mp->help_line[1]="Next time say `withpostscript <known string expression>';";
22561 else if ( t==mp_picture_type )
22562 mp->help_line[1]="Next time say `dashed <known picture expression>';";
22563 else if ( t==mp_uninitialized_model )
22564 mp->help_line[1]="Next time say `withcolor <known color expression>';";
22565 else if ( t==mp_rgb_model )
22566 mp->help_line[1]="Next time say `withrgbcolor <known color expression>';";
22567 else if ( t==mp_cmyk_model )
22568 mp->help_line[1]="Next time say `withcmykcolor <known cmykcolor expression>';";
22569 else if ( t==mp_grey_model )
22570 mp->help_line[1]="Next time say `withgreyscale <known numeric expression>';";;
22571 mp_put_get_flush_error(mp, 0);
22574 @ Forcing the color to be between |0| and |unity| here guarantees that no
22575 picture will ever contain a color outside the legal range for \ps\ graphics.
22577 @<Transfer a color from the current expression to object~|cp|@>=
22578 { if ( mp->cur_type==mp_color_type )
22579 @<Transfer a rgbcolor from the current expression to object~|cp|@>
22580 else if ( mp->cur_type==mp_cmykcolor_type )
22581 @<Transfer a cmykcolor from the current expression to object~|cp|@>
22582 else if ( mp->cur_type==mp_known )
22583 @<Transfer a greyscale from the current expression to object~|cp|@>
22584 else if ( mp->cur_exp==false_code )
22585 @<Transfer a noncolor from the current expression to object~|cp|@>;
22588 @ @<Transfer a rgbcolor from the current expression to object~|cp|@>=
22589 { q=value(mp->cur_exp);
22594 red_val(cp)=value(red_part_loc(q));
22595 green_val(cp)=value(green_part_loc(q));
22596 blue_val(cp)=value(blue_part_loc(q));
22597 color_model(cp)=mp_rgb_model;
22598 if ( red_val(cp)<0 ) red_val(cp)=0;
22599 if ( green_val(cp)<0 ) green_val(cp)=0;
22600 if ( blue_val(cp)<0 ) blue_val(cp)=0;
22601 if ( red_val(cp)>unity ) red_val(cp)=unity;
22602 if ( green_val(cp)>unity ) green_val(cp)=unity;
22603 if ( blue_val(cp)>unity ) blue_val(cp)=unity;
22606 @ @<Transfer a cmykcolor from the current expression to object~|cp|@>=
22607 { q=value(mp->cur_exp);
22608 cyan_val(cp)=value(cyan_part_loc(q));
22609 magenta_val(cp)=value(magenta_part_loc(q));
22610 yellow_val(cp)=value(yellow_part_loc(q));
22611 black_val(cp)=value(black_part_loc(q));
22612 color_model(cp)=mp_cmyk_model;
22613 if ( cyan_val(cp)<0 ) cyan_val(cp)=0;
22614 if ( magenta_val(cp)<0 ) magenta_val(cp)=0;
22615 if ( yellow_val(cp)<0 ) yellow_val(cp)=0;
22616 if ( black_val(cp)<0 ) black_val(cp)=0;
22617 if ( cyan_val(cp)>unity ) cyan_val(cp)=unity;
22618 if ( magenta_val(cp)>unity ) magenta_val(cp)=unity;
22619 if ( yellow_val(cp)>unity ) yellow_val(cp)=unity;
22620 if ( black_val(cp)>unity ) black_val(cp)=unity;
22623 @ @<Transfer a greyscale from the current expression to object~|cp|@>=
22630 color_model(cp)=mp_grey_model;
22631 if ( grey_val(cp)<0 ) grey_val(cp)=0;
22632 if ( grey_val(cp)>unity ) grey_val(cp)=unity;
22635 @ @<Transfer a noncolor from the current expression to object~|cp|@>=
22642 color_model(cp)=mp_no_model;
22645 @ @<Make |cp| a colored object in object list~|p|@>=
22647 while ( cp!=null ){
22648 if ( has_color(cp) ) break;
22653 @ @<Make |pp| an object in list~|p| that needs a pen@>=
22655 while ( pp!=null ) {
22656 if ( has_pen(pp) ) break;
22661 @ @<Make |dp| a stroked node in list~|p|@>=
22663 while ( dp!=null ) {
22664 if ( type(dp)==mp_stroked_code ) break;
22669 @ @<Copy the information from objects |cp|, |pp|, and |dp| into...@>=
22670 @<Copy |cp|'s color into the colored objects linked to~|cp|@>;
22671 if ( pp>mp_void ) {
22672 @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>;
22674 if ( dp>mp_void ) {
22675 @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>;
22679 @ @<Copy |cp|'s color into the colored objects linked to~|cp|@>=
22681 while ( q!=null ) {
22682 if ( has_color(q) ) {
22683 red_val(q)=red_val(cp);
22684 green_val(q)=green_val(cp);
22685 blue_val(q)=blue_val(cp);
22686 black_val(q)=black_val(cp);
22687 color_model(q)=color_model(cp);
22693 @ @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>=
22695 while ( q!=null ) {
22696 if ( has_pen(q) ) {
22697 if ( pen_p(q)!=null ) mp_toss_knot_list(mp, pen_p(q));
22698 pen_p(q)=copy_pen(pen_p(pp));
22704 @ @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>=
22706 while ( q!=null ) {
22707 if ( type(q)==mp_stroked_code ) {
22708 if ( dash_p(q)!=null ) delete_edge_ref(dash_p(q));
22709 dash_p(q)=dash_p(dp);
22710 dash_scale(q)=unity;
22711 if ( dash_p(q)!=null ) add_edge_ref(dash_p(q));
22717 @ One of the things we need to do when we've parsed an \&{addto} or
22718 similar command is find the header of a supposed \&{picture} variable, given
22719 a token list for that variable. Since the edge structure is about to be
22720 updated, we use |private_edges| to make sure that this is possible.
22722 @<Declare action procedures for use by |do_statement|@>=
22723 pointer mp_find_edges_var (MP mp, pointer t) ;
22725 @ @c pointer mp_find_edges_var (MP mp, pointer t) {
22727 pointer cur_edges; /* the return value */
22728 p=mp_find_variable(mp, t); cur_edges=null;
22730 mp_obliterated(mp, t); mp_put_get_error(mp);
22731 } else if ( type(p)!=mp_picture_type ) {
22732 print_err("Variable "); mp_show_token_list(mp, t,null,1000,0);
22733 @.Variable x is the wrong type@>
22734 mp_print(mp, " is the wrong type (");
22735 mp_print_type(mp, type(p)); mp_print_char(mp, ')');
22736 help2("I was looking for a \"known\" picture variable.")
22737 ("So I'll not change anything just now.");
22738 mp_put_get_error(mp);
22740 value(p)=mp_private_edges(mp, value(p));
22741 cur_edges=value(p);
22743 mp_flush_node_list(mp, t);
22747 @ @<Cases of |do_statement|...@>=
22748 case add_to_command: mp_do_add_to(mp); break;
22749 case bounds_command:mp_do_bounds(mp); break;
22752 mp_primitive(mp, "clip",bounds_command,mp_start_clip_code);
22753 @:clip_}{\&{clip} primitive@>
22754 mp_primitive(mp, "setbounds",bounds_command,mp_start_bounds_code);
22755 @:set_bounds_}{\&{setbounds} primitive@>
22757 @ @<Cases of |print_cmd...@>=
22758 case bounds_command:
22759 if ( m==mp_start_clip_code ) mp_print(mp, "clip");
22760 else mp_print(mp, "setbounds");
22763 @ The following function parses the beginning of an \&{addto} or \&{clip}
22764 command: it expects a variable name followed by a token with |cur_cmd=sep|
22765 and then an expression. The function returns the token list for the variable
22766 and stores the command modifier for the separator token in the global variable
22767 |last_add_type|. We must be careful because this variable might get overwritten
22768 any time we call |get_x_next|.
22771 quarterword last_add_type;
22772 /* command modifier that identifies the last \&{addto} command */
22774 @ @<Declare action procedures for use by |do_statement|@>=
22775 pointer mp_start_draw_cmd (MP mp,quarterword sep) ;
22777 @ @c pointer mp_start_draw_cmd (MP mp,quarterword sep) {
22778 pointer lhv; /* variable to add to left */
22779 quarterword add_type=0; /* value to be returned in |last_add_type| */
22781 mp_get_x_next(mp); mp->var_flag=sep; mp_scan_primary(mp);
22782 if ( mp->cur_type!=mp_token_list ) {
22783 @<Abandon edges command because there's no variable@>;
22785 lhv=mp->cur_exp; add_type=mp->cur_mod;
22786 mp->cur_type=mp_vacuous; mp_get_x_next(mp); mp_scan_expression(mp);
22788 mp->last_add_type=add_type;
22792 @ @<Abandon edges command because there's no variable@>=
22793 { exp_err("Not a suitable variable");
22794 @.Not a suitable variable@>
22795 help4("At this point I needed to see the name of a picture variable.")
22796 ("(Or perhaps you have indeed presented me with one; I might")
22797 ("have missed it, if it wasn't followed by the proper token.)")
22798 ("So I'll not change anything just now.");
22799 mp_put_get_flush_error(mp, 0);
22802 @ Here is an example of how to use |start_draw_cmd|.
22804 @<Declare action procedures for use by |do_statement|@>=
22805 void mp_do_bounds (MP mp) ;
22807 @ @c void mp_do_bounds (MP mp) {
22808 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22809 pointer p; /* for list manipulation */
22810 integer m; /* initial value of |cur_mod| */
22812 lhv=mp_start_draw_cmd(mp, to_token);
22814 lhe=mp_find_edges_var(mp, lhv);
22816 mp_flush_cur_exp(mp, 0);
22817 } else if ( mp->cur_type!=mp_path_type ) {
22818 exp_err("Improper `clip'");
22819 @.Improper `addto'@>
22820 help2("This expression should have specified a known path.")
22821 ("So I'll not change anything just now.");
22822 mp_put_get_flush_error(mp, 0);
22823 } else if ( left_type(mp->cur_exp)==mp_endpoint ) {
22824 @<Complain about a non-cycle@>;
22826 @<Make |cur_exp| into a \&{setbounds} or clipping path and add it to |lhe|@>;
22831 @ @<Complain about a non-cycle@>=
22832 { print_err("Not a cycle");
22834 help2("That contour should have ended with `..cycle' or `&cycle'.")
22835 ("So I'll not change anything just now."); mp_put_get_error(mp);
22838 @ @<Make |cur_exp| into a \&{setbounds} or clipping path and add...@>=
22839 { p=mp_new_bounds_node(mp, mp->cur_exp,m);
22840 link(p)=link(dummy_loc(lhe));
22841 link(dummy_loc(lhe))=p;
22842 if ( obj_tail(lhe)==dummy_loc(lhe) ) obj_tail(lhe)=p;
22843 p=mp_get_node(mp, mp->gr_object_size[stop_type(m)]);
22844 type(p)=stop_type(m);
22845 link(obj_tail(lhe))=p;
22847 mp_init_bbox(mp, lhe);
22850 @ The |do_add_to| procedure is a little like |do_clip| but there are a lot more
22851 cases to deal with.
22853 @<Declare action procedures for use by |do_statement|@>=
22854 void mp_do_add_to (MP mp) ;
22856 @ @c void mp_do_add_to (MP mp) {
22857 pointer lhv,lhe; /* variable on left, the corresponding edge structure */
22858 pointer p; /* the graphical object or list for |scan_with_list| to update */
22859 pointer e; /* an edge structure to be merged */
22860 quarterword add_type; /* |also_code|, |contour_code|, or |double_path_code| */
22861 lhv=mp_start_draw_cmd(mp, thing_to_add); add_type=mp->last_add_type;
22863 if ( add_type==also_code ) {
22864 @<Make sure the current expression is a suitable picture and set |e| and |p|
22867 @<Create a graphical object |p| based on |add_type| and the current
22870 mp_scan_with_list(mp, p);
22871 @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>;
22875 @ Setting |p:=null| causes the $\langle$with list$\rangle$ to be ignored;
22876 setting |e:=null| prevents anything from being added to |lhe|.
22878 @ @<Make sure the current expression is a suitable picture and set |e|...@>=
22881 if ( mp->cur_type!=mp_picture_type ) {
22882 exp_err("Improper `addto'");
22883 @.Improper `addto'@>
22884 help2("This expression should have specified a known picture.")
22885 ("So I'll not change anything just now."); mp_put_get_flush_error(mp, 0);
22887 e=mp_private_edges(mp, mp->cur_exp); mp->cur_type=mp_vacuous;
22888 p=link(dummy_loc(e));
22892 @ In this case |add_type<>also_code| so setting |p:=null| suppresses future
22893 attempts to add to the edge structure.
22895 @<Create a graphical object |p| based on |add_type| and the current...@>=
22897 if ( mp->cur_type==mp_pair_type ) mp_pair_to_path(mp);
22898 if ( mp->cur_type!=mp_path_type ) {
22899 exp_err("Improper `addto'");
22900 @.Improper `addto'@>
22901 help2("This expression should have specified a known path.")
22902 ("So I'll not change anything just now.");
22903 mp_put_get_flush_error(mp, 0);
22904 } else if ( add_type==contour_code ) {
22905 if ( left_type(mp->cur_exp)==mp_endpoint ) {
22906 @<Complain about a non-cycle@>;
22908 p=mp_new_fill_node(mp, mp->cur_exp);
22909 mp->cur_type=mp_vacuous;
22912 p=mp_new_stroked_node(mp, mp->cur_exp);
22913 mp->cur_type=mp_vacuous;
22917 @ @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>=
22918 lhe=mp_find_edges_var(mp, lhv);
22920 if ( (e==null)&&(p!=null) ) e=mp_toss_gr_object(mp, p);
22921 if ( e!=null ) delete_edge_ref(e);
22922 } else if ( add_type==also_code ) {
22924 @<Merge |e| into |lhe| and delete |e|@>;
22928 } else if ( p!=null ) {
22929 link(obj_tail(lhe))=p;
22931 if ( add_type==double_path_code )
22932 if ( pen_p(p)==null )
22933 pen_p(p)=mp_get_pen_circle(mp, 0);
22936 @ @<Merge |e| into |lhe| and delete |e|@>=
22937 { if ( link(dummy_loc(e))!=null ) {
22938 link(obj_tail(lhe))=link(dummy_loc(e));
22939 obj_tail(lhe)=obj_tail(e);
22940 obj_tail(e)=dummy_loc(e);
22941 link(dummy_loc(e))=null;
22942 mp_flush_dash_list(mp, lhe);
22944 mp_toss_edges(mp, e);
22947 @ @<Cases of |do_statement|...@>=
22948 case ship_out_command: mp_do_ship_out(mp); break;
22950 @ @<Declare action procedures for use by |do_statement|@>=
22951 @<Declare the function called |tfm_check|@>;
22952 @<Declare the \ps\ output procedures@>;
22953 void mp_do_ship_out (MP mp) ;
22955 @ @c void mp_do_ship_out (MP mp) {
22956 integer c; /* the character code */
22957 mp_get_x_next(mp); mp_scan_expression(mp);
22958 if ( mp->cur_type!=mp_picture_type ) {
22959 @<Complain that it's not a known picture@>;
22961 c=mp_round_unscaled(mp, mp->internal[mp_char_code]) % 256;
22962 if ( c<0 ) c=c+256;
22963 @<Store the width information for character code~|c|@>;
22964 mp_ship_out(mp, mp->cur_exp);
22965 mp_flush_cur_exp(mp, 0);
22969 @ @<Complain that it's not a known picture@>=
22971 exp_err("Not a known picture");
22972 help1("I can only output known pictures.");
22973 mp_put_get_flush_error(mp, 0);
22976 @ The \&{everyjob} command simply assigns a nonzero value to the global variable
22979 @<Cases of |do_statement|...@>=
22980 case every_job_command:
22981 mp_get_symbol(mp); mp->start_sym=mp->cur_sym; mp_get_x_next(mp);
22985 halfword start_sym; /* a symbolic token to insert at beginning of job */
22990 @ Finally, we have only the ``message'' commands remaining.
22993 @d err_message_code 1
22995 @d filename_template_code 3
22996 @d print_with_leading_zeroes(A) g = mp->pool_ptr;
22997 mp_print_int(mp, (A)); g = mp->pool_ptr-g;
22999 mp->pool_ptr = mp->pool_ptr - g;
23001 mp_print_char(mp, '0');
23004 mp_print_int(mp, (A));
23009 mp_primitive(mp, "message",message_command,message_code);
23010 @:message_}{\&{message} primitive@>
23011 mp_primitive(mp, "errmessage",message_command,err_message_code);
23012 @:err_message_}{\&{errmessage} primitive@>
23013 mp_primitive(mp, "errhelp",message_command,err_help_code);
23014 @:err_help_}{\&{errhelp} primitive@>
23015 mp_primitive(mp, "filenametemplate",message_command,filename_template_code);
23016 @:filename_template_}{\&{filenametemplate} primitive@>
23018 @ @<Cases of |print_cmd...@>=
23019 case message_command:
23020 if ( m<err_message_code ) mp_print(mp, "message");
23021 else if ( m==err_message_code ) mp_print(mp, "errmessage");
23022 else if ( m==filename_template_code ) mp_print(mp, "filenametemplate");
23023 else mp_print(mp, "errhelp");
23026 @ @<Cases of |do_statement|...@>=
23027 case message_command: mp_do_message(mp); break;
23029 @ @<Declare action procedures for use by |do_statement|@>=
23030 @<Declare a procedure called |no_string_err|@>;
23031 void mp_do_message (MP mp) ;
23034 @c void mp_do_message (MP mp) {
23035 int m; /* the type of message */
23036 m=mp->cur_mod; mp_get_x_next(mp); mp_scan_expression(mp);
23037 if ( mp->cur_type!=mp_string_type )
23038 mp_no_string_err(mp, "A message should be a known string expression.");
23042 mp_print_nl(mp, ""); mp_print_str(mp, mp->cur_exp);
23044 case err_message_code:
23045 @<Print string |cur_exp| as an error message@>;
23047 case err_help_code:
23048 @<Save string |cur_exp| as the |err_help|@>;
23050 case filename_template_code:
23051 @<Save the filename template@>;
23053 } /* there are no other cases */
23055 mp_flush_cur_exp(mp, 0);
23058 @ @<Declare a procedure called |no_string_err|@>=
23059 void mp_no_string_err (MP mp,char *s) {
23060 exp_err("Not a string");
23063 mp_put_get_error(mp);
23066 @ The global variable |err_help| is zero when the user has most recently
23067 given an empty help string, or if none has ever been given.
23069 @<Save string |cur_exp| as the |err_help|@>=
23071 if ( mp->err_help!=0 ) delete_str_ref(mp->err_help);
23072 if ( length(mp->cur_exp)==0 ) mp->err_help=0;
23073 else { mp->err_help=mp->cur_exp; add_str_ref(mp->err_help); }
23076 @ If \&{errmessage} occurs often in |mp_scroll_mode|, without user-defined
23077 \&{errhelp}, we don't want to give a long help message each time. So we
23078 give a verbose explanation only once.
23081 boolean long_help_seen; /* has the long \.{\\errmessage} help been used? */
23083 @ @<Set init...@>=mp->long_help_seen=false;
23085 @ @<Print string |cur_exp| as an error message@>=
23087 print_err(""); mp_print_str(mp, mp->cur_exp);
23088 if ( mp->err_help!=0 ) {
23089 mp->use_err_help=true;
23090 } else if ( mp->long_help_seen ) {
23091 help1("(That was another `errmessage'.)") ;
23093 if ( mp->interaction<mp_error_stop_mode ) mp->long_help_seen=true;
23094 help4("This error message was generated by an `errmessage'")
23095 ("command, so I can\'t give any explicit help.")
23096 ("Pretend that you're Miss Marple: Examine all clues,")
23098 ("and deduce the truth by inspired guesses.");
23100 mp_put_get_error(mp); mp->use_err_help=false;
23103 @ @<Cases of |do_statement|...@>=
23104 case write_command: mp_do_write(mp); break;
23106 @ @<Declare action procedures for use by |do_statement|@>=
23107 void mp_do_write (MP mp) ;
23109 @ @c void mp_do_write (MP mp) {
23110 str_number t; /* the line of text to be written */
23111 write_index n,n0; /* for searching |wr_fname| and |wr_file| arrays */
23112 int old_setting; /* for saving |selector| during output */
23114 mp_scan_expression(mp);
23115 if ( mp->cur_type!=mp_string_type ) {
23116 mp_no_string_err(mp, "The text to be written should be a known string expression");
23117 } else if ( mp->cur_cmd!=to_token ) {
23118 print_err("Missing `to' clause");
23119 help1("A write command should end with `to <filename>'");
23120 mp_put_get_error(mp);
23122 t=mp->cur_exp; mp->cur_type=mp_vacuous;
23124 mp_scan_expression(mp);
23125 if ( mp->cur_type!=mp_string_type )
23126 mp_no_string_err(mp, "I can\'t write to that file name. It isn't a known string");
23128 @<Write |t| to the file named by |cur_exp|@>;
23132 mp_flush_cur_exp(mp, 0);
23135 @ @<Write |t| to the file named by |cur_exp|@>=
23137 @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if
23138 |cur_exp| must be inserted@>;
23139 if ( mp_str_vs_str(mp, t,mp->eof_line)==0 ) {
23140 @<Record the end of file on |wr_file[n]|@>;
23142 old_setting=mp->selector;
23143 mp->selector=n+write_file;
23144 mp_print_str(mp, t); mp_print_ln(mp);
23145 mp->selector = old_setting;
23149 @ @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if...@>=
23151 char *fn = str(mp->cur_exp);
23153 n0=mp->write_files;
23154 while (mp_xstrcmp(fn,mp->wr_fname[n])!=0) {
23155 if ( n==0 ) { /* bottom reached */
23156 if ( n0==mp->write_files ) {
23157 if ( mp->write_files<mp->max_write_files ) {
23158 incr(mp->write_files);
23163 l = mp->max_write_files + (mp->max_write_files>>2);
23164 wr_file = xmalloc((l+1),sizeof(FILE *));
23165 wr_fname = xmalloc((l+1),sizeof(char *));
23166 for (k=0;k<=l;k++) {
23167 if (k<=mp->max_write_files) {
23168 wr_file[k]=mp->wr_file[k];
23169 wr_fname[k]=mp->wr_fname[k];
23175 xfree(mp->wr_file); xfree(mp->wr_fname);
23176 mp->max_write_files = l;
23177 mp->wr_file = wr_file;
23178 mp->wr_fname = wr_fname;
23182 mp_open_write_file(mp, fn ,n);
23185 if ( mp->wr_fname[n]==NULL ) n0=n;
23190 @ @<Record the end of file on |wr_file[n]|@>=
23191 { fclose(mp->wr_file[n]);
23192 xfree(mp->wr_fname[n]);
23193 mp->wr_fname[n]=NULL;
23194 if ( n==mp->write_files-1 ) mp->write_files=n;
23198 @* \[42] Writing font metric data.
23199 \TeX\ gets its knowledge about fonts from font metric files, also called
23200 \.{TFM} files; the `\.T' in `\.{TFM}' stands for \TeX,
23201 but other programs know about them too. One of \MP's duties is to
23202 write \.{TFM} files so that the user's fonts can readily be
23203 applied to typesetting.
23204 @:TFM files}{\.{TFM} files@>
23205 @^font metric files@>
23207 The information in a \.{TFM} file appears in a sequence of 8-bit bytes.
23208 Since the number of bytes is always a multiple of~4, we could
23209 also regard the file as a sequence of 32-bit words, but \MP\ uses the
23210 byte interpretation. The format of \.{TFM} files was designed by
23211 Lyle Ramshaw in 1980. The intent is to convey a lot of different kinds
23212 @^Ramshaw, Lyle Harold@>
23213 of information in a compact but useful form.
23216 FILE * tfm_file; /* the font metric output goes here */
23217 char * metric_file_name; /* full name of the font metric file */
23219 @ The first 24 bytes (6 words) of a \.{TFM} file contain twelve 16-bit
23220 integers that give the lengths of the various subsequent portions
23221 of the file. These twelve integers are, in order:
23222 $$\vbox{\halign{\hfil#&$\null=\null$#\hfil\cr
23223 |lf|&length of the entire file, in words;\cr
23224 |lh|&length of the header data, in words;\cr
23225 |bc|&smallest character code in the font;\cr
23226 |ec|&largest character code in the font;\cr
23227 |nw|&number of words in the width table;\cr
23228 |nh|&number of words in the height table;\cr
23229 |nd|&number of words in the depth table;\cr
23230 |ni|&number of words in the italic correction table;\cr
23231 |nl|&number of words in the lig/kern table;\cr
23232 |nk|&number of words in the kern table;\cr
23233 |ne|&number of words in the extensible character table;\cr
23234 |np|&number of font parameter words.\cr}}$$
23235 They are all nonnegative and less than $2^{15}$. We must have |bc-1<=ec<=255|,
23237 $$\hbox{|lf=6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np|.}$$
23238 Note that a font may contain as many as 256 characters (if |bc=0| and |ec=255|),
23239 and as few as 0 characters (if |bc=ec+1|).
23241 Incidentally, when two or more 8-bit bytes are combined to form an integer of
23242 16 or more bits, the most significant bytes appear first in the file.
23243 This is called BigEndian order.
23244 @^BigEndian order@>
23246 @ The rest of the \.{TFM} file may be regarded as a sequence of ten data
23249 The most important data type used here is a |fix_word|, which is
23250 a 32-bit representation of a binary fraction. A |fix_word| is a signed
23251 quantity, with the two's complement of the entire word used to represent
23252 negation. Of the 32 bits in a |fix_word|, exactly 12 are to the left of the
23253 binary point; thus, the largest |fix_word| value is $2048-2^{-20}$, and
23254 the smallest is $-2048$. We will see below, however, that all but two of
23255 the |fix_word| values must lie between $-16$ and $+16$.
23257 @ The first data array is a block of header information, which contains
23258 general facts about the font. The header must contain at least two words,
23259 |header[0]| and |header[1]|, whose meaning is explained below. Additional
23260 header information of use to other software routines might also be
23261 included, and \MP\ will generate it if the \.{headerbyte} command occurs.
23262 For example, 16 more words of header information are in use at the Xerox
23263 Palo Alto Research Center; the first ten specify the character coding
23264 scheme used (e.g., `\.{XEROX TEXT}' or `\.{TEX MATHSY}'), the next five
23265 give the font family name (e.g., `\.{HELVETICA}' or `\.{CMSY}'), and the
23266 last gives the ``face byte.''
23268 \yskip\hang|header[0]| is a 32-bit check sum that \MP\ will copy into
23269 the \.{GF} output file. This helps ensure consistency between files,
23270 since \TeX\ records the check sums from the \.{TFM}'s it reads, and these
23271 should match the check sums on actual fonts that are used. The actual
23272 relation between this check sum and the rest of the \.{TFM} file is not
23273 important; the check sum is simply an identification number with the
23274 property that incompatible fonts almost always have distinct check sums.
23277 \yskip\hang|header[1]| is a |fix_word| containing the design size of the
23278 font, in units of \TeX\ points. This number must be at least 1.0; it is
23279 fairly arbitrary, but usually the design size is 10.0 for a ``10 point''
23280 font, i.e., a font that was designed to look best at a 10-point size,
23281 whatever that really means. When a \TeX\ user asks for a font `\.{at}
23282 $\delta$ \.{pt}', the effect is to override the design size and replace it
23283 by $\delta$, and to multiply the $x$ and~$y$ coordinates of the points in
23284 the font image by a factor of $\delta$ divided by the design size. {\sl
23285 All other dimensions in the\/ \.{TFM} file are |fix_word|\kern-1pt\
23286 numbers in design-size units.} Thus, for example, the value of |param[6]|,
23287 which defines the \.{em} unit, is often the |fix_word| value $2^{20}=1.0$,
23288 since many fonts have a design size equal to one em. The other dimensions
23289 must be less than 16 design-size units in absolute value; thus,
23290 |header[1]| and |param[1]| are the only |fix_word| entries in the whole
23291 \.{TFM} file whose first byte might be something besides 0 or 255.
23293 @ Next comes the |char_info| array, which contains one |char_info_word|
23294 per character. Each word in this part of the file contains six fields
23295 packed into four bytes as follows.
23297 \yskip\hang first byte: |width_index| (8 bits)\par
23298 \hang second byte: |height_index| (4 bits) times 16, plus |depth_index|
23300 \hang third byte: |italic_index| (6 bits) times 4, plus |tag|
23302 \hang fourth byte: |remainder| (8 bits)\par
23304 The actual width of a character is \\{width}|[width_index]|, in design-size
23305 units; this is a device for compressing information, since many characters
23306 have the same width. Since it is quite common for many characters
23307 to have the same height, depth, or italic correction, the \.{TFM} format
23308 imposes a limit of 16 different heights, 16 different depths, and
23309 64 different italic corrections.
23311 Incidentally, the relation $\\{width}[0]=\\{height}[0]=\\{depth}[0]=
23312 \\{italic}[0]=0$ should always hold, so that an index of zero implies a
23313 value of zero. The |width_index| should never be zero unless the
23314 character does not exist in the font, since a character is valid if and
23315 only if it lies between |bc| and |ec| and has a nonzero |width_index|.
23317 @ The |tag| field in a |char_info_word| has four values that explain how to
23318 interpret the |remainder| field.
23320 \yskip\hang|tag=0| (|no_tag|) means that |remainder| is unused.\par
23321 \hang|tag=1| (|lig_tag|) means that this character has a ligature/kerning
23322 program starting at location |remainder| in the |lig_kern| array.\par
23323 \hang|tag=2| (|list_tag|) means that this character is part of a chain of
23324 characters of ascending sizes, and not the largest in the chain. The
23325 |remainder| field gives the character code of the next larger character.\par
23326 \hang|tag=3| (|ext_tag|) means that this character code represents an
23327 extensible character, i.e., a character that is built up of smaller pieces
23328 so that it can be made arbitrarily large. The pieces are specified in
23329 |exten[remainder]|.\par
23331 Characters with |tag=2| and |tag=3| are treated as characters with |tag=0|
23332 unless they are used in special circumstances in math formulas. For example,
23333 \TeX's \.{\\sum} operation looks for a |list_tag|, and the \.{\\left}
23334 operation looks for both |list_tag| and |ext_tag|.
23336 @d no_tag 0 /* vanilla character */
23337 @d lig_tag 1 /* character has a ligature/kerning program */
23338 @d list_tag 2 /* character has a successor in a charlist */
23339 @d ext_tag 3 /* character is extensible */
23341 @ The |lig_kern| array contains instructions in a simple programming language
23342 that explains what to do for special letter pairs. Each word in this array is a
23343 |lig_kern_command| of four bytes.
23345 \yskip\hang first byte: |skip_byte|, indicates that this is the final program
23346 step if the byte is 128 or more, otherwise the next step is obtained by
23347 skipping this number of intervening steps.\par
23348 \hang second byte: |next_char|, ``if |next_char| follows the current character,
23349 then perform the operation and stop, otherwise continue.''\par
23350 \hang third byte: |op_byte|, indicates a ligature step if less than~128,
23351 a kern step otherwise.\par
23352 \hang fourth byte: |remainder|.\par
23355 additional space equal to |kern[256*(op_byte-128)+remainder]| is inserted
23356 between the current character and |next_char|. This amount is
23357 often negative, so that the characters are brought closer together
23358 by kerning; but it might be positive.
23360 There are eight kinds of ligature steps, having |op_byte| codes $4a+2b+c$ where
23361 $0\le a\le b+c$ and $0\le b,c\le1$. The character whose code is
23362 |remainder| is inserted between the current character and |next_char|;
23363 then the current character is deleted if $b=0$, and |next_char| is
23364 deleted if $c=0$; then we pass over $a$~characters to reach the next
23365 current character (which may have a ligature/kerning program of its own).
23367 If the very first instruction of the |lig_kern| array has |skip_byte=255|,
23368 the |next_char| byte is the so-called right boundary character of this font;
23369 the value of |next_char| need not lie between |bc| and~|ec|.
23370 If the very last instruction of the |lig_kern| array has |skip_byte=255|,
23371 there is a special ligature/kerning program for a left boundary character,
23372 beginning at location |256*op_byte+remainder|.
23373 The interpretation is that \TeX\ puts implicit boundary characters
23374 before and after each consecutive string of characters from the same font.
23375 These implicit characters do not appear in the output, but they can affect
23376 ligatures and kerning.
23378 If the very first instruction of a character's |lig_kern| program has
23379 |skip_byte>128|, the program actually begins in location
23380 |256*op_byte+remainder|. This feature allows access to large |lig_kern|
23381 arrays, because the first instruction must otherwise
23382 appear in a location |<=255|.
23384 Any instruction with |skip_byte>128| in the |lig_kern| array must satisfy
23386 $$\hbox{|256*op_byte+remainder<nl|.}$$
23387 If such an instruction is encountered during
23388 normal program execution, it denotes an unconditional halt; no ligature
23389 command is performed.
23392 /* value indicating `\.{STOP}' in a lig/kern program */
23393 @d kern_flag (128) /* op code for a kern step */
23394 @d skip_byte(A) mp->lig_kern[(A)].b0
23395 @d next_char(A) mp->lig_kern[(A)].b1
23396 @d op_byte(A) mp->lig_kern[(A)].b2
23397 @d rem_byte(A) mp->lig_kern[(A)].b3
23399 @ Extensible characters are specified by an |extensible_recipe|, which
23400 consists of four bytes called |top|, |mid|, |bot|, and |rep| (in this
23401 order). These bytes are the character codes of individual pieces used to
23402 build up a large symbol. If |top|, |mid|, or |bot| are zero, they are not
23403 present in the built-up result. For example, an extensible vertical line is
23404 like an extensible bracket, except that the top and bottom pieces are missing.
23406 Let $T$, $M$, $B$, and $R$ denote the respective pieces, or an empty box
23407 if the piece isn't present. Then the extensible characters have the form
23408 $TR^kMR^kB$ from top to bottom, for some |k>=0|, unless $M$ is absent;
23409 in the latter case we can have $TR^kB$ for both even and odd values of~|k|.
23410 The width of the extensible character is the width of $R$; and the
23411 height-plus-depth is the sum of the individual height-plus-depths of the
23412 components used, since the pieces are butted together in a vertical list.
23414 @d ext_top(A) mp->exten[(A)].b0 /* |top| piece in a recipe */
23415 @d ext_mid(A) mp->exten[(A)].b1 /* |mid| piece in a recipe */
23416 @d ext_bot(A) mp->exten[(A)].b2 /* |bot| piece in a recipe */
23417 @d ext_rep(A) mp->exten[(A)].b3 /* |rep| piece in a recipe */
23419 @ The final portion of a \.{TFM} file is the |param| array, which is another
23420 sequence of |fix_word| values.
23422 \yskip\hang|param[1]=slant| is the amount of italic slant, which is used
23423 to help position accents. For example, |slant=.25| means that when you go
23424 up one unit, you also go .25 units to the right. The |slant| is a pure
23425 number; it is the only |fix_word| other than the design size itself that is
23426 not scaled by the design size.
23428 \hang|param[2]=space| is the normal spacing between words in text.
23429 Note that character 040 in the font need not have anything to do with
23432 \hang|param[3]=space_stretch| is the amount of glue stretching between words.
23434 \hang|param[4]=space_shrink| is the amount of glue shrinking between words.
23436 \hang|param[5]=x_height| is the size of one ex in the font; it is also
23437 the height of letters for which accents don't have to be raised or lowered.
23439 \hang|param[6]=quad| is the size of one em in the font.
23441 \hang|param[7]=extra_space| is the amount added to |param[2]| at the
23445 If fewer than seven parameters are present, \TeX\ sets the missing parameters
23450 @d space_stretch_code 3
23451 @d space_shrink_code 4
23454 @d extra_space_code 7
23456 @ So that is what \.{TFM} files hold. One of \MP's duties is to output such
23457 information, and it does this all at once at the end of a job.
23458 In order to prepare for such frenetic activity, it squirrels away the
23459 necessary facts in various arrays as information becomes available.
23461 Character dimensions (\&{charwd}, \&{charht}, \&{chardp}, and \&{charic})
23462 are stored respectively in |tfm_width|, |tfm_height|, |tfm_depth|, and
23463 |tfm_ital_corr|. Other information about a character (e.g., about
23464 its ligatures or successors) is accessible via the |char_tag| and
23465 |char_remainder| arrays. Other information about the font as a whole
23466 is kept in additional arrays called |header_byte|, |lig_kern|,
23467 |kern|, |exten|, and |param|.
23469 @d max_tfm_int 32510
23470 @d undefined_label max_tfm_int /* an undefined local label */
23473 #define TFM_ITEMS 257
23475 eight_bits ec; /* smallest and largest character codes shipped out */
23476 scaled tfm_width[TFM_ITEMS]; /* \&{charwd} values */
23477 scaled tfm_height[TFM_ITEMS]; /* \&{charht} values */
23478 scaled tfm_depth[TFM_ITEMS]; /* \&{chardp} values */
23479 scaled tfm_ital_corr[TFM_ITEMS]; /* \&{charic} values */
23480 boolean char_exists[TFM_ITEMS]; /* has this code been shipped out? */
23481 int char_tag[TFM_ITEMS]; /* |remainder| category */
23482 int char_remainder[TFM_ITEMS]; /* the |remainder| byte */
23483 char *header_byte; /* bytes of the \.{TFM} header */
23484 int header_last; /* last initialized \.{TFM} header byte */
23485 int header_size; /* size of the \.{TFM} header */
23486 four_quarters *lig_kern; /* the ligature/kern table */
23487 short nl; /* the number of ligature/kern steps so far */
23488 scaled *kern; /* distinct kerning amounts */
23489 short nk; /* the number of distinct kerns so far */
23490 four_quarters exten[TFM_ITEMS]; /* extensible character recipes */
23491 short ne; /* the number of extensible characters so far */
23492 scaled *param; /* \&{fontinfo} parameters */
23493 short np; /* the largest \&{fontinfo} parameter specified so far */
23494 short nw;short nh;short nd;short ni; /* sizes of \.{TFM} subtables */
23495 short skip_table[TFM_ITEMS]; /* local label status */
23496 boolean lk_started; /* has there been a lig/kern step in this command yet? */
23497 integer bchar; /* right boundary character */
23498 short bch_label; /* left boundary starting location */
23499 short ll;short lll; /* registers used for lig/kern processing */
23500 short label_loc[257]; /* lig/kern starting addresses */
23501 eight_bits label_char[257]; /* characters for |label_loc| */
23502 short label_ptr; /* highest position occupied in |label_loc| */
23504 @ @<Allocate or initialize ...@>=
23505 mp->header_last = 0; mp->header_size = 128; /* just for init */
23506 mp->header_byte = xmalloc(mp->header_size, sizeof(char));
23507 mp->lig_kern = NULL; /* allocated when needed */
23508 mp->kern = NULL; /* allocated when needed */
23509 mp->param = NULL; /* allocated when needed */
23511 @ @<Dealloc variables@>=
23512 xfree(mp->header_byte);
23513 xfree(mp->lig_kern);
23518 for (k=0;k<= 255;k++ ) {
23519 mp->tfm_width[k]=0; mp->tfm_height[k]=0; mp->tfm_depth[k]=0; mp->tfm_ital_corr[k]=0;
23520 mp->char_exists[k]=false; mp->char_tag[k]=no_tag; mp->char_remainder[k]=0;
23521 mp->skip_table[k]=undefined_label;
23523 memset(mp->header_byte,0,mp->header_size);
23524 mp->bc=255; mp->ec=0; mp->nl=0; mp->nk=0; mp->ne=0; mp->np=0;
23525 mp->internal[mp_boundary_char]=-unity;
23526 mp->bch_label=undefined_label;
23527 mp->label_loc[0]=-1; mp->label_ptr=0;
23529 @ @<Declarations@>=
23530 scaled mp_tfm_check (MP mp,small_number m) ;
23532 @ @<Declare the function called |tfm_check|@>=
23533 scaled mp_tfm_check (MP mp,small_number m) {
23534 if ( abs(mp->internal[m])>=fraction_half ) {
23535 print_err("Enormous "); mp_print(mp, mp->int_name[m]);
23536 @.Enormous charwd...@>
23537 @.Enormous chardp...@>
23538 @.Enormous charht...@>
23539 @.Enormous charic...@>
23540 @.Enormous designsize...@>
23541 mp_print(mp, " has been reduced");
23542 help1("Font metric dimensions must be less than 2048pt.");
23543 mp_put_get_error(mp);
23544 if ( mp->internal[m]>0 ) return (fraction_half-1);
23545 else return (1-fraction_half);
23547 return mp->internal[m];
23551 @ @<Store the width information for character code~|c|@>=
23552 if ( c<mp->bc ) mp->bc=c;
23553 if ( c>mp->ec ) mp->ec=c;
23554 mp->char_exists[c]=true;
23555 mp->tfm_width[c]=mp_tfm_check(mp, mp_char_wd);
23556 mp->tfm_height[c]=mp_tfm_check(mp, mp_char_ht);
23557 mp->tfm_depth[c]=mp_tfm_check(mp, mp_char_dp);
23558 mp->tfm_ital_corr[c]=mp_tfm_check(mp, mp_char_ic)
23560 @ Now let's consider \MP's special \.{TFM}-oriented commands.
23562 @<Cases of |do_statement|...@>=
23563 case tfm_command: mp_do_tfm_command(mp); break;
23565 @ @d char_list_code 0
23566 @d lig_table_code 1
23567 @d extensible_code 2
23568 @d header_byte_code 3
23569 @d font_dimen_code 4
23572 mp_primitive(mp, "charlist",tfm_command,char_list_code);
23573 @:char_list_}{\&{charlist} primitive@>
23574 mp_primitive(mp, "ligtable",tfm_command,lig_table_code);
23575 @:lig_table_}{\&{ligtable} primitive@>
23576 mp_primitive(mp, "extensible",tfm_command,extensible_code);
23577 @:extensible_}{\&{extensible} primitive@>
23578 mp_primitive(mp, "headerbyte",tfm_command,header_byte_code);
23579 @:header_byte_}{\&{headerbyte} primitive@>
23580 mp_primitive(mp, "fontdimen",tfm_command,font_dimen_code);
23581 @:font_dimen_}{\&{fontdimen} primitive@>
23583 @ @<Cases of |print_cmd...@>=
23586 case char_list_code:mp_print(mp, "charlist"); break;
23587 case lig_table_code:mp_print(mp, "ligtable"); break;
23588 case extensible_code:mp_print(mp, "extensible"); break;
23589 case header_byte_code:mp_print(mp, "headerbyte"); break;
23590 default: mp_print(mp, "fontdimen"); break;
23594 @ @<Declare action procedures for use by |do_statement|@>=
23595 eight_bits mp_get_code (MP mp) ;
23597 @ @c eight_bits mp_get_code (MP mp) { /* scans a character code value */
23598 integer c; /* the code value found */
23599 mp_get_x_next(mp); mp_scan_expression(mp);
23600 if ( mp->cur_type==mp_known ) {
23601 c=mp_round_unscaled(mp, mp->cur_exp);
23602 if ( c>=0 ) if ( c<256 ) return c;
23603 } else if ( mp->cur_type==mp_string_type ) {
23604 if ( length(mp->cur_exp)==1 ) {
23605 c=mp->str_pool[mp->str_start[mp->cur_exp]];
23609 exp_err("Invalid code has been replaced by 0");
23610 @.Invalid code...@>
23611 help2("I was looking for a number between 0 and 255, or for a")
23612 ("string of length 1. Didn't find it; will use 0 instead.");
23613 mp_put_get_flush_error(mp, 0); c=0;
23617 @ @<Declare action procedures for use by |do_statement|@>=
23618 void mp_set_tag (MP mp,halfword c, small_number t, halfword r) ;
23620 @ @c void mp_set_tag (MP mp,halfword c, small_number t, halfword r) {
23621 if ( mp->char_tag[c]==no_tag ) {
23622 mp->char_tag[c]=t; mp->char_remainder[c]=r;
23624 incr(mp->label_ptr); mp->label_loc[mp->label_ptr]=r;
23625 mp->label_char[mp->label_ptr]=c;
23628 @<Complain about a character tag conflict@>;
23632 @ @<Complain about a character tag conflict@>=
23634 print_err("Character ");
23635 if ( (c>' ')&&(c<127) ) mp_print_char(mp,c);
23636 else if ( c==256 ) mp_print(mp, "||");
23637 else { mp_print(mp, "code "); mp_print_int(mp, c); };
23638 mp_print(mp, " is already ");
23639 @.Character c is already...@>
23640 switch (mp->char_tag[c]) {
23641 case lig_tag: mp_print(mp, "in a ligtable"); break;
23642 case list_tag: mp_print(mp, "in a charlist"); break;
23643 case ext_tag: mp_print(mp, "extensible"); break;
23644 } /* there are no other cases */
23645 help2("It's not legal to label a character more than once.")
23646 ("So I'll not change anything just now.");
23647 mp_put_get_error(mp);
23650 @ @<Declare action procedures for use by |do_statement|@>=
23651 void mp_do_tfm_command (MP mp) ;
23653 @ @c void mp_do_tfm_command (MP mp) {
23654 int c,cc; /* character codes */
23655 int k; /* index into the |kern| array */
23656 int j; /* index into |header_byte| or |param| */
23657 switch (mp->cur_mod) {
23658 case char_list_code:
23660 /* we will store a list of character successors */
23661 while ( mp->cur_cmd==colon ) {
23662 cc=mp_get_code(mp); mp_set_tag(mp, c,list_tag,cc); c=cc;
23665 case lig_table_code:
23666 if (mp->lig_kern==NULL)
23667 mp->lig_kern = xmalloc((max_tfm_int+1),sizeof(four_quarters));
23668 if (mp->kern==NULL)
23669 mp->kern = xmalloc((max_tfm_int+1),sizeof(scaled));
23670 @<Store a list of ligature/kern steps@>;
23672 case extensible_code:
23673 @<Define an extensible recipe@>;
23675 case header_byte_code:
23676 case font_dimen_code:
23677 c=mp->cur_mod; mp_get_x_next(mp);
23678 mp_scan_expression(mp);
23679 if ( (mp->cur_type!=mp_known)||(mp->cur_exp<half_unit) ) {
23680 exp_err("Improper location");
23681 @.Improper location@>
23682 help2("I was looking for a known, positive number.")
23683 ("For safety's sake I'll ignore the present command.");
23684 mp_put_get_error(mp);
23686 j=mp_round_unscaled(mp, mp->cur_exp);
23687 if ( mp->cur_cmd!=colon ) {
23688 mp_missing_err(mp, ":");
23690 help1("A colon should follow a headerbyte or fontinfo location.");
23693 if ( c==header_byte_code ) {
23694 @<Store a list of header bytes@>;
23696 if (mp->param==NULL)
23697 mp->param = xmalloc((max_tfm_int+1),sizeof(scaled));
23698 @<Store a list of font dimensions@>;
23702 } /* there are no other cases */
23705 @ @<Store a list of ligature/kern steps@>=
23707 mp->lk_started=false;
23710 if ((mp->cur_cmd==skip_to)&& mp->lk_started )
23711 @<Process a |skip_to| command and |goto done|@>;
23712 if ( mp->cur_cmd==bchar_label ) { c=256; mp->cur_cmd=colon; }
23713 else { mp_back_input(mp); c=mp_get_code(mp); };
23714 if ((mp->cur_cmd==colon)||(mp->cur_cmd==double_colon)) {
23715 @<Record a label in a lig/kern subprogram and |goto continue|@>;
23717 if ( mp->cur_cmd==lig_kern_token ) {
23718 @<Compile a ligature/kern command@>;
23720 print_err("Illegal ligtable step");
23721 @.Illegal ligtable step@>
23722 help1("I was looking for `=:' or `kern' here.");
23723 mp_back_error(mp); next_char(mp->nl)=qi(0);
23724 op_byte(mp->nl)=qi(0); rem_byte(mp->nl)=qi(0);
23725 skip_byte(mp->nl)=stop_flag+1; /* this specifies an unconditional stop */
23727 if ( mp->nl==max_tfm_int) mp_fatal_error(mp, "ligtable too large");
23729 if ( mp->cur_cmd==comma ) goto CONTINUE;
23730 if ( skip_byte(mp->nl-1)<stop_flag ) skip_byte(mp->nl-1)=stop_flag;
23735 mp_primitive(mp, "=:",lig_kern_token,0);
23736 @:=:_}{\.{=:} primitive@>
23737 mp_primitive(mp, "=:|",lig_kern_token,1);
23738 @:=:/_}{\.{=:\char'174} primitive@>
23739 mp_primitive(mp, "=:|>",lig_kern_token,5);
23740 @:=:/>_}{\.{=:\char'174>} primitive@>
23741 mp_primitive(mp, "|=:",lig_kern_token,2);
23742 @:=:/_}{\.{\char'174=:} primitive@>
23743 mp_primitive(mp, "|=:>",lig_kern_token,6);
23744 @:=:/>_}{\.{\char'174=:>} primitive@>
23745 mp_primitive(mp, "|=:|",lig_kern_token,3);
23746 @:=:/_}{\.{\char'174=:\char'174} primitive@>
23747 mp_primitive(mp, "|=:|>",lig_kern_token,7);
23748 @:=:/>_}{\.{\char'174=:\char'174>} primitive@>
23749 mp_primitive(mp, "|=:|>>",lig_kern_token,11);
23750 @:=:/>_}{\.{\char'174=:\char'174>>} primitive@>
23751 mp_primitive(mp, "kern",lig_kern_token,128);
23752 @:kern_}{\&{kern} primitive@>
23754 @ @<Cases of |print_cmd...@>=
23755 case lig_kern_token:
23757 case 0:mp_print(mp, "=:"); break;
23758 case 1:mp_print(mp, "=:|"); break;
23759 case 2:mp_print(mp, "|=:"); break;
23760 case 3:mp_print(mp, "|=:|"); break;
23761 case 5:mp_print(mp, "=:|>"); break;
23762 case 6:mp_print(mp, "|=:>"); break;
23763 case 7:mp_print(mp, "|=:|>"); break;
23764 case 11:mp_print(mp, "|=:|>>"); break;
23765 default: mp_print(mp, "kern"); break;
23769 @ Local labels are implemented by maintaining the |skip_table| array,
23770 where |skip_table[c]| is either |undefined_label| or the address of the
23771 most recent lig/kern instruction that skips to local label~|c|. In the
23772 latter case, the |skip_byte| in that instruction will (temporarily)
23773 be zero if there were no prior skips to this label, or it will be the
23774 distance to the prior skip.
23776 We may need to cancel skips that span more than 127 lig/kern steps.
23778 @d cancel_skips(A) mp->ll=(A);
23780 mp->lll=qo(skip_byte(mp->ll));
23781 skip_byte(mp->ll)=stop_flag; mp->ll=mp->ll-mp->lll;
23782 } while (mp->lll!=0)
23783 @d skip_error(A) { print_err("Too far to skip");
23784 @.Too far to skip@>
23785 help1("At most 127 lig/kern steps can separate skipto1 from 1::.");
23786 mp_error(mp); cancel_skips((A));
23789 @<Process a |skip_to| command and |goto done|@>=
23792 if ( mp->nl-mp->skip_table[c]>128 ) { /* |skip_table[c]<<nl<=undefined_label| */
23793 skip_error(mp->skip_table[c]); mp->skip_table[c]=undefined_label;
23795 if ( mp->skip_table[c]==undefined_label ) skip_byte(mp->nl-1)=qi(0);
23796 else skip_byte(mp->nl-1)=qi(mp->nl-mp->skip_table[c]-1);
23797 mp->skip_table[c]=mp->nl-1; goto DONE;
23800 @ @<Record a label in a lig/kern subprogram and |goto continue|@>=
23802 if ( mp->cur_cmd==colon ) {
23803 if ( c==256 ) mp->bch_label=mp->nl;
23804 else mp_set_tag(mp, c,lig_tag,mp->nl);
23805 } else if ( mp->skip_table[c]<undefined_label ) {
23806 mp->ll=mp->skip_table[c]; mp->skip_table[c]=undefined_label;
23808 mp->lll=qo(skip_byte(mp->ll));
23809 if ( mp->nl-mp->ll>128 ) {
23810 skip_error(mp->ll); goto CONTINUE;
23812 skip_byte(mp->ll)=qi(mp->nl-mp->ll-1); mp->ll=mp->ll-mp->lll;
23813 } while (mp->lll!=0);
23818 @ @<Compile a ligature/kern...@>=
23820 next_char(mp->nl)=qi(c); skip_byte(mp->nl)=qi(0);
23821 if ( mp->cur_mod<128 ) { /* ligature op */
23822 op_byte(mp->nl)=qi(mp->cur_mod); rem_byte(mp->nl)=qi(mp_get_code(mp));
23824 mp_get_x_next(mp); mp_scan_expression(mp);
23825 if ( mp->cur_type!=mp_known ) {
23826 exp_err("Improper kern");
23828 help2("The amount of kern should be a known numeric value.")
23829 ("I'm zeroing this one. Proceed, with fingers crossed.");
23830 mp_put_get_flush_error(mp, 0);
23832 mp->kern[mp->nk]=mp->cur_exp;
23834 while ( mp->kern[k]!=mp->cur_exp ) incr(k);
23836 if ( mp->nk==max_tfm_int ) mp_fatal_error(mp, "too many TFM kerns");
23839 op_byte(mp->nl)=kern_flag+(k / 256);
23840 rem_byte(mp->nl)=qi((k % 256));
23842 mp->lk_started=true;
23845 @ @d missing_extensible_punctuation(A)
23846 { mp_missing_err(mp, (A));
23847 @.Missing `\char`\#'@>
23848 help1("I'm processing `extensible c: t,m,b,r'."); mp_back_error(mp);
23851 @<Define an extensible recipe@>=
23853 if ( mp->ne==256 ) mp_fatal_error(mp, "too many extensible recipies");
23854 c=mp_get_code(mp); mp_set_tag(mp, c,ext_tag,mp->ne);
23855 if ( mp->cur_cmd!=colon ) missing_extensible_punctuation(":");
23856 ext_top(mp->ne)=qi(mp_get_code(mp));
23857 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23858 ext_mid(mp->ne)=qi(mp_get_code(mp));
23859 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23860 ext_bot(mp->ne)=qi(mp_get_code(mp));
23861 if ( mp->cur_cmd!=comma ) missing_extensible_punctuation(",");
23862 ext_rep(mp->ne)=qi(mp_get_code(mp));
23866 @ The header could contain ASCII zeroes, so can't use |strdup|.
23868 @<Store a list of header bytes@>=
23870 if ( j>=mp->header_size ) {
23871 int l = mp->header_size + (mp->header_size >> 2);
23872 char *t = xmalloc(l,sizeof(char));
23874 memcpy(t,mp->header_byte,mp->header_size);
23875 xfree (mp->header_byte);
23876 mp->header_byte = t;
23877 mp->header_size = l;
23879 mp->header_byte[j]=mp_get_code(mp);
23880 incr(j); incr(mp->header_last);
23881 } while (mp->cur_cmd==comma)
23883 @ @<Store a list of font dimensions@>=
23885 if ( j>max_tfm_int ) mp_fatal_error(mp, "too many fontdimens");
23886 while ( j>mp->np ) { incr(mp->np); mp->param[mp->np]=0; };
23887 mp_get_x_next(mp); mp_scan_expression(mp);
23888 if ( mp->cur_type!=mp_known ){
23889 exp_err("Improper font parameter");
23890 @.Improper font parameter@>
23891 help1("I'm zeroing this one. Proceed, with fingers crossed.");
23892 mp_put_get_flush_error(mp, 0);
23894 mp->param[j]=mp->cur_exp; incr(j);
23895 } while (mp->cur_cmd==comma)
23897 @ OK: We've stored all the data that is needed for the \.{TFM} file.
23898 All that remains is to output it in the correct format.
23900 An interesting problem needs to be solved in this connection, because
23901 the \.{TFM} format allows at most 256~widths, 16~heights, 16~depths,
23902 and 64~italic corrections. If the data has more distinct values than
23903 this, we want to meet the necessary restrictions by perturbing the
23904 given values as little as possible.
23906 \MP\ solves this problem in two steps. First the values of a given
23907 kind (widths, heights, depths, or italic corrections) are sorted;
23908 then the list of sorted values is perturbed, if necessary.
23910 The sorting operation is facilitated by having a special node of
23911 essentially infinite |value| at the end of the current list.
23913 @<Initialize table entries...@>=
23914 value(inf_val)=fraction_four;
23916 @ Straight linear insertion is good enough for sorting, since the lists
23917 are usually not terribly long. As we work on the data, the current list
23918 will start at |link(temp_head)| and end at |inf_val|; the nodes in this
23919 list will be in increasing order of their |value| fields.
23921 Given such a list, the |sort_in| function takes a value and returns a pointer
23922 to where that value can be found in the list. The value is inserted in
23923 the proper place, if necessary.
23925 At the time we need to do these operations, most of \MP's work has been
23926 completed, so we will have plenty of memory to play with. The value nodes
23927 that are allocated for sorting will never be returned to free storage.
23929 @d clear_the_list link(temp_head)=inf_val
23931 @c pointer mp_sort_in (MP mp,scaled v) {
23932 pointer p,q,r; /* list manipulation registers */
23936 if ( v<=value(q) ) break;
23939 if ( v<value(q) ) {
23940 r=mp_get_node(mp, value_node_size); value(r)=v; link(r)=q; link(p)=r;
23945 @ Now we come to the interesting part, where we reduce the list if necessary
23946 until it has the required size. The |min_cover| routine is basic to this
23947 process; it computes the minimum number~|m| such that the values of the
23948 current sorted list can be covered by |m|~intervals of width~|d|. It
23949 also sets the global value |perturbation| to the smallest value $d'>d$
23950 such that the covering found by this algorithm would be different.
23952 In particular, |min_cover(0)| returns the number of distinct values in the
23953 current list and sets |perturbation| to the minimum distance between
23956 @c integer mp_min_cover (MP mp,scaled d) {
23957 pointer p; /* runs through the current list */
23958 scaled l; /* the least element covered by the current interval */
23959 integer m; /* lower bound on the size of the minimum cover */
23960 m=0; p=link(temp_head); mp->perturbation=el_gordo;
23961 while ( p!=inf_val ){
23962 incr(m); l=value(p);
23963 do { p=link(p); } while (value(p)<=l+d);
23964 if ( value(p)-l<mp->perturbation )
23965 mp->perturbation=value(p)-l;
23971 scaled perturbation; /* quantity related to \.{TFM} rounding */
23972 integer excess; /* the list is this much too long */
23974 @ The smallest |d| such that a given list can be covered with |m| intervals
23975 is determined by the |threshold| routine, which is sort of an inverse
23976 to |min_cover|. The idea is to increase the interval size rapidly until
23977 finding the range, then to go sequentially until the exact borderline has
23980 @c scaled mp_threshold (MP mp,integer m) {
23981 scaled d; /* lower bound on the smallest interval size */
23982 mp->excess=mp_min_cover(mp, 0)-m;
23983 if ( mp->excess<=0 ) {
23987 d=mp->perturbation;
23988 } while (mp_min_cover(mp, d+d)>m);
23989 while ( mp_min_cover(mp, d)>m )
23990 d=mp->perturbation;
23995 @ The |skimp| procedure reduces the current list to at most |m| entries,
23996 by changing values if necessary. It also sets |info(p):=k| if |value(p)|
23997 is the |k|th distinct value on the resulting list, and it sets
23998 |perturbation| to the maximum amount by which a |value| field has
23999 been changed. The size of the resulting list is returned as the
24002 @c integer mp_skimp (MP mp,integer m) {
24003 scaled d; /* the size of intervals being coalesced */
24004 pointer p,q,r; /* list manipulation registers */
24005 scaled l; /* the least value in the current interval */
24006 scaled v; /* a compromise value */
24007 d=mp_threshold(mp, m); mp->perturbation=0;
24008 q=temp_head; m=0; p=link(temp_head);
24009 while ( p!=inf_val ) {
24010 incr(m); l=value(p); info(p)=m;
24011 if ( value(link(p))<=l+d ) {
24012 @<Replace an interval of values by its midpoint@>;
24019 @ @<Replace an interval...@>=
24022 p=link(p); info(p)=m;
24023 decr(mp->excess); if ( mp->excess==0 ) d=0;
24024 } while (value(link(p))<=l+d);
24025 v=l+halfp(value(p)-l);
24026 if ( value(p)-v>mp->perturbation )
24027 mp->perturbation=value(p)-v;
24030 r=link(r); value(r)=v;
24032 link(q)=p; /* remove duplicate values from the current list */
24035 @ A warning message is issued whenever something is perturbed by
24036 more than 1/16\thinspace pt.
24038 @c void mp_tfm_warning (MP mp,small_number m) {
24039 mp_print_nl(mp, "(some ");
24040 mp_print(mp, mp->int_name[m]);
24041 @.some charwds...@>
24042 @.some chardps...@>
24043 @.some charhts...@>
24044 @.some charics...@>
24045 mp_print(mp, " values had to be adjusted by as much as ");
24046 mp_print_scaled(mp, mp->perturbation); mp_print(mp, "pt)");
24049 @ Here's an example of how we use these routines.
24050 The width data needs to be perturbed only if there are 256 distinct
24051 widths, but \MP\ must check for this case even though it is
24054 An integer variable |k| will be defined when we use this code.
24055 The |dimen_head| array will contain pointers to the sorted
24056 lists of dimensions.
24058 @<Massage the \.{TFM} widths@>=
24060 for (k=mp->bc;k<=mp->ec;k++) {
24061 if ( mp->char_exists[k] )
24062 mp->tfm_width[k]=mp_sort_in(mp, mp->tfm_width[k]);
24064 mp->nw=mp_skimp(mp, 255)+1; mp->dimen_head[1]=link(temp_head);
24065 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_wd)
24068 pointer dimen_head[5]; /* lists of \.{TFM} dimensions */
24070 @ Heights, depths, and italic corrections are different from widths
24071 not only because their list length is more severely restricted, but
24072 also because zero values do not need to be put into the lists.
24074 @<Massage the \.{TFM} heights, depths, and italic corrections@>=
24076 for (k=mp->bc;k<=mp->ec;k++) {
24077 if ( mp->char_exists[k] ) {
24078 if ( mp->tfm_height[k]==0 ) mp->tfm_height[k]=zero_val;
24079 else mp->tfm_height[k]=mp_sort_in(mp, mp->tfm_height[k]);
24082 mp->nh=mp_skimp(mp, 15)+1; mp->dimen_head[2]=link(temp_head);
24083 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ht);
24085 for (k=mp->bc;k<=mp->ec;k++) {
24086 if ( mp->char_exists[k] ) {
24087 if ( mp->tfm_depth[k]==0 ) mp->tfm_depth[k]=zero_val;
24088 else mp->tfm_depth[k]=mp_sort_in(mp, mp->tfm_depth[k]);
24091 mp->nd=mp_skimp(mp, 15)+1; mp->dimen_head[3]=link(temp_head);
24092 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_dp);
24094 for (k=mp->bc;k<=mp->ec;k++) {
24095 if ( mp->char_exists[k] ) {
24096 if ( mp->tfm_ital_corr[k]==0 ) mp->tfm_ital_corr[k]=zero_val;
24097 else mp->tfm_ital_corr[k]=mp_sort_in(mp, mp->tfm_ital_corr[k]);
24100 mp->ni=mp_skimp(mp, 63)+1; mp->dimen_head[4]=link(temp_head);
24101 if ( mp->perturbation>=010000 ) mp_tfm_warning(mp, mp_char_ic)
24103 @ @<Initialize table entries...@>=
24104 value(zero_val)=0; info(zero_val)=0;
24106 @ Bytes 5--8 of the header are set to the design size, unless the user has
24107 some crazy reason for specifying them differently.
24109 Error messages are not allowed at the time this procedure is called,
24110 so a warning is printed instead.
24112 The value of |max_tfm_dimen| is calculated so that
24113 $$\hbox{|make_scaled(16*max_tfm_dimen,internal[mp_design_size])|}
24114 < \\{three\_bytes}.$$
24116 @d three_bytes 0100000000 /* $2^{24}$ */
24119 void mp_fix_design_size (MP mp) {
24120 scaled d; /* the design size */
24121 d=mp->internal[mp_design_size];
24122 if ( (d<unity)||(d>=fraction_half) ) {
24124 mp_print_nl(mp, "(illegal design size has been changed to 128pt)");
24125 @.illegal design size...@>
24126 d=040000000; mp->internal[mp_design_size]=d;
24128 if ( mp->header_byte[4]<0 ) if ( mp->header_byte[5]<0 )
24129 if ( mp->header_byte[6]<0 ) if ( mp->header_byte[7]<0 ) {
24130 mp->header_byte[4]=d / 04000000;
24131 mp->header_byte[5]=(d / 4096) % 256;
24132 mp->header_byte[6]=(d / 16) % 256;
24133 mp->header_byte[7]=(d % 16)*16;
24135 mp->max_tfm_dimen=16*mp->internal[mp_design_size]-mp->internal[mp_design_size] / 010000000;
24136 if ( mp->max_tfm_dimen>=fraction_half ) mp->max_tfm_dimen=fraction_half-1;
24139 @ The |dimen_out| procedure computes a |fix_word| relative to the
24140 design size. If the data was out of range, it is corrected and the
24141 global variable |tfm_changed| is increased by~one.
24143 @c integer mp_dimen_out (MP mp,scaled x) {
24144 if ( abs(x)>mp->max_tfm_dimen ) {
24145 incr(mp->tfm_changed);
24146 if ( x>0 ) x=three_bytes-1; else x=1-three_bytes;
24148 x=mp_make_scaled(mp, x*16,mp->internal[mp_design_size]);
24154 scaled max_tfm_dimen; /* bound on widths, heights, kerns, etc. */
24155 integer tfm_changed; /* the number of data entries that were out of bounds */
24157 @ If the user has not specified any of the first four header bytes,
24158 the |fix_check_sum| procedure replaces them by a ``check sum'' computed
24159 from the |tfm_width| data relative to the design size.
24162 @c void mp_fix_check_sum (MP mp) {
24163 eight_bits k; /* runs through character codes */
24164 eight_bits B1,B2,B3,B4; /* bytes of the check sum */
24165 integer x; /* hash value used in check sum computation */
24166 if ( mp->header_byte[0]==0 && mp->header_byte[1]==0 &&
24167 mp->header_byte[2]==0 && mp->header_byte[3]==0 ) {
24168 @<Compute a check sum in |(b1,b2,b3,b4)|@>;
24169 mp->header_byte[0]=B1; mp->header_byte[1]=B2;
24170 mp->header_byte[2]=B3; mp->header_byte[3]=B4;
24175 @ @<Compute a check sum in |(b1,b2,b3,b4)|@>=
24176 B1=mp->bc; B2=mp->ec; B3=mp->bc; B4=mp->ec; mp->tfm_changed=0;
24177 for (k=mp->bc;k<=mp->ec;k++) {
24178 if ( mp->char_exists[k] ) {
24179 x=mp_dimen_out(mp, value(mp->tfm_width[k]))+(k+4)*020000000; /* this is positive */
24180 B1=(B1+B1+x) % 255;
24181 B2=(B2+B2+x) % 253;
24182 B3=(B3+B3+x) % 251;
24183 B4=(B4+B4+x) % 247;
24187 @ Finally we're ready to actually write the \.{TFM} information.
24188 Here are some utility routines for this purpose.
24190 @d tfm_out(A) fputc((A),mp->tfm_file) /* output one byte to |tfm_file| */
24192 @c void mp_tfm_two (MP mp,integer x) { /* output two bytes to |tfm_file| */
24193 tfm_out(x / 256); tfm_out(x % 256);
24195 void mp_tfm_four (MP mp,integer x) { /* output four bytes to |tfm_file| */
24196 if ( x>=0 ) tfm_out(x / three_bytes);
24198 x=x+010000000000; /* use two's complement for negative values */
24200 tfm_out((x / three_bytes) + 128);
24202 x=x % three_bytes; tfm_out(x / unity);
24203 x=x % unity; tfm_out(x / 0400);
24206 void mp_tfm_qqqq (MP mp,four_quarters x) { /* output four quarterwords to |tfm_file| */
24207 tfm_out(qo(x.b0)); tfm_out(qo(x.b1));
24208 tfm_out(qo(x.b2)); tfm_out(qo(x.b3));
24211 @ @<Finish the \.{TFM} file@>=
24212 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24213 mp_pack_job_name(mp, ".tfm");
24214 while ( ! mp_b_open_out(mp, &mp->tfm_file, mp_filetype_metrics) )
24215 mp_prompt_file_name(mp, "file name for font metrics",".tfm");
24216 mp->metric_file_name=xstrdup(mp->name_of_file);
24217 @<Output the subfile sizes and header bytes@>;
24218 @<Output the character information bytes, then
24219 output the dimensions themselves@>;
24220 @<Output the ligature/kern program@>;
24221 @<Output the extensible character recipes and the font metric parameters@>;
24222 if ( mp->internal[mp_tracing_stats]>0 )
24223 @<Log the subfile sizes of the \.{TFM} file@>;
24224 mp_print_nl(mp, "Font metrics written on ");
24225 mp_print(mp, mp->metric_file_name); mp_print_char(mp, '.');
24226 @.Font metrics written...@>
24227 fclose(mp->tfm_file)
24229 @ Integer variables |lh|, |k|, and |lk_offset| will be defined when we use
24232 @<Output the subfile sizes and header bytes@>=
24234 LH=(k+3) / 4; /* this is the number of header words */
24235 if ( mp->bc>mp->ec ) mp->bc=1; /* if there are no characters, |ec=0| and |bc=1| */
24236 @<Compute the ligature/kern program offset and implant the
24237 left boundary label@>;
24238 mp_tfm_two(mp,6+LH+(mp->ec-mp->bc+1)+mp->nw+mp->nh+mp->nd+mp->ni+mp->nl
24239 +lk_offset+mp->nk+mp->ne+mp->np);
24240 /* this is the total number of file words that will be output */
24241 mp_tfm_two(mp, LH); mp_tfm_two(mp, mp->bc); mp_tfm_two(mp, mp->ec);
24242 mp_tfm_two(mp, mp->nw); mp_tfm_two(mp, mp->nh);
24243 mp_tfm_two(mp, mp->nd); mp_tfm_two(mp, mp->ni); mp_tfm_two(mp, mp->nl+lk_offset);
24244 mp_tfm_two(mp, mp->nk); mp_tfm_two(mp, mp->ne);
24245 mp_tfm_two(mp, mp->np);
24246 for (k=0;k< 4*LH;k++) {
24247 tfm_out(mp->header_byte[k]);
24250 @ @<Output the character information bytes...@>=
24251 for (k=mp->bc;k<=mp->ec;k++) {
24252 if ( ! mp->char_exists[k] ) {
24253 mp_tfm_four(mp, 0);
24255 tfm_out(info(mp->tfm_width[k])); /* the width index */
24256 tfm_out((info(mp->tfm_height[k]))*16+info(mp->tfm_depth[k]));
24257 tfm_out((info(mp->tfm_ital_corr[k]))*4+mp->char_tag[k]);
24258 tfm_out(mp->char_remainder[k]);
24262 for (k=1;k<=4;k++) {
24263 mp_tfm_four(mp, 0); p=mp->dimen_head[k];
24264 while ( p!=inf_val ) {
24265 mp_tfm_four(mp, mp_dimen_out(mp, value(p))); p=link(p);
24270 @ We need to output special instructions at the beginning of the
24271 |lig_kern| array in order to specify the right boundary character
24272 and/or to handle starting addresses that exceed 255. The |label_loc|
24273 and |label_char| arrays have been set up to record all the
24274 starting addresses; we have $-1=|label_loc|[0]<|label_loc|[1]\le\cdots
24275 \le|label_loc|[|label_ptr]|$.
24277 @<Compute the ligature/kern program offset...@>=
24278 mp->bchar=mp_round_unscaled(mp, mp->internal[mp_boundary_char]);
24279 if ((mp->bchar<0)||(mp->bchar>255))
24280 { mp->bchar=-1; mp->lk_started=false; lk_offset=0; }
24281 else { mp->lk_started=true; lk_offset=1; };
24282 @<Find the minimum |lk_offset| and adjust all remainders@>;
24283 if ( mp->bch_label<undefined_label )
24284 { skip_byte(mp->nl)=qi(255); next_char(mp->nl)=qi(0);
24285 op_byte(mp->nl)=qi(((mp->bch_label+lk_offset)/ 256));
24286 rem_byte(mp->nl)=qi(((mp->bch_label+lk_offset)% 256));
24287 incr(mp->nl); /* possibly |nl=lig_table_size+1| */
24290 @ @<Find the minimum |lk_offset|...@>=
24291 k=mp->label_ptr; /* pointer to the largest unallocated label */
24292 if ( mp->label_loc[k]+lk_offset>255 ) {
24293 lk_offset=0; mp->lk_started=false; /* location 0 can do double duty */
24295 mp->char_remainder[mp->label_char[k]]=lk_offset;
24296 while ( mp->label_loc[k-1]==mp->label_loc[k] ) {
24297 decr(k); mp->char_remainder[mp->label_char[k]]=lk_offset;
24299 incr(lk_offset); decr(k);
24300 } while (! (lk_offset+mp->label_loc[k]<256));
24301 /* N.B.: |lk_offset=256| satisfies this when |k=0| */
24303 if ( lk_offset>0 ) {
24305 mp->char_remainder[mp->label_char[k]]
24306 =mp->char_remainder[mp->label_char[k]]+lk_offset;
24311 @ @<Output the ligature/kern program@>=
24312 for (k=0;k<= 255;k++ ) {
24313 if ( mp->skip_table[k]<undefined_label ) {
24314 mp_print_nl(mp, "(local label "); mp_print_int(mp, k); mp_print(mp, ":: was missing)");
24315 @.local label l:: was missing@>
24316 cancel_skips(mp->skip_table[k]);
24319 if ( mp->lk_started ) { /* |lk_offset=1| for the special |bchar| */
24320 tfm_out(255); tfm_out(mp->bchar); mp_tfm_two(mp, 0);
24322 for (k=1;k<=lk_offset;k++) {/* output the redirection specs */
24323 mp->ll=mp->label_loc[mp->label_ptr];
24324 if ( mp->bchar<0 ) { tfm_out(254); tfm_out(0); }
24325 else { tfm_out(255); tfm_out(mp->bchar); };
24326 mp_tfm_two(mp, mp->ll+lk_offset);
24328 decr(mp->label_ptr);
24329 } while (! (mp->label_loc[mp->label_ptr]<mp->ll));
24332 for (k=0;k<=mp->nl-1;k++) mp_tfm_qqqq(mp, mp->lig_kern[k]);
24333 for (k=0;k<=mp->nk-1;k++) mp_tfm_four(mp, mp_dimen_out(mp, mp->kern[k]))
24335 @ @<Output the extensible character recipes...@>=
24336 for (k=0;k<=mp->ne-1;k++)
24337 mp_tfm_qqqq(mp, mp->exten[k]);
24338 for (k=1;k<=mp->np;k++) {
24340 if ( abs(mp->param[1])<fraction_half ) {
24341 mp_tfm_four(mp, mp->param[1]*16);
24343 incr(mp->tfm_changed);
24344 if ( mp->param[1]>0 ) mp_tfm_four(mp, el_gordo);
24345 else mp_tfm_four(mp, -el_gordo);
24348 mp_tfm_four(mp, mp_dimen_out(mp, mp->param[k]));
24351 if ( mp->tfm_changed>0 ) {
24352 if ( mp->tfm_changed==1 ) mp_print_nl(mp, "(a font metric dimension");
24353 @.a font metric dimension...@>
24355 mp_print_nl(mp, "("); mp_print_int(mp, mp->tfm_changed);
24356 @.font metric dimensions...@>
24357 mp_print(mp, " font metric dimensions");
24359 mp_print(mp, " had to be decreased)");
24362 @ @<Log the subfile sizes of the \.{TFM} file@>=
24366 if ( mp->bch_label<undefined_label ) decr(mp->nl);
24367 snprintf(s,128,"(You used %iw,%ih,%id,%ii,%il,%ik,%ie,%ip metric file positions)",
24368 mp->nw, mp->nh, mp->nd, mp->ni, mp->nl, mp->nk, mp->ne,mp->np);
24372 @* \[43] Reading font metric data.
24374 \MP\ isn't a typesetting program but it does need to find the bounding box
24375 of a sequence of typeset characters. Thus it needs to read \.{TFM} files as
24376 well as write them.
24381 @ All the width, height, and depth information is stored in an array called
24382 |font_info|. This array is allocated sequentially and each font is stored
24383 as a series of |char_info| words followed by the width, height, and depth
24384 tables. Since |font_name| entries are permanent, their |str_ref| values are
24385 set to |max_str_ref|.
24388 typedef unsigned int font_number; /* |0..font_max| */
24390 @ The |font_info| array is indexed via a group directory arrays.
24391 For example, the |char_info| data for character~|c| in font~|f| will be
24392 in |font_info[char_base[f]+c].qqqq|.
24395 font_number font_max; /* maximum font number for included text fonts */
24396 size_t font_mem_size; /* number of words for \.{TFM} information for text fonts */
24397 memory_word *font_info; /* height, width, and depth data */
24398 char **font_enc_name; /* encoding names, if any */
24399 boolean *font_ps_name_fixed; /* are the postscript names fixed already? */
24400 int next_fmem; /* next unused entry in |font_info| */
24401 font_number last_fnum; /* last font number used so far */
24402 scaled *font_dsize; /* 16 times the ``design'' size in \ps\ points */
24403 char **font_name; /* name as specified in the \&{infont} command */
24404 char **font_ps_name; /* PostScript name for use when |internal[mp_prologues]>0| */
24405 font_number last_ps_fnum; /* last valid |font_ps_name| index */
24406 eight_bits *font_bc;
24407 eight_bits *font_ec; /* first and last character code */
24408 int *char_base; /* base address for |char_info| */
24409 int *width_base; /* index for zeroth character width */
24410 int *height_base; /* index for zeroth character height */
24411 int *depth_base; /* index for zeroth character depth */
24412 pointer *font_sizes;
24414 @ @<Allocate or initialize ...@>=
24415 mp->font_mem_size = 10000;
24416 mp->font_info = xmalloc ((mp->font_mem_size+1),sizeof(memory_word));
24417 memset (mp->font_info,0,sizeof(memory_word)*(mp->font_mem_size+1));
24418 mp->font_enc_name = NULL;
24419 mp->font_ps_name_fixed = NULL;
24420 mp->font_dsize = NULL;
24421 mp->font_name = NULL;
24422 mp->font_ps_name = NULL;
24423 mp->font_bc = NULL;
24424 mp->font_ec = NULL;
24425 mp->last_fnum = null_font;
24426 mp->char_base = NULL;
24427 mp->width_base = NULL;
24428 mp->height_base = NULL;
24429 mp->depth_base = NULL;
24430 mp->font_sizes = null;
24432 @ @<Dealloc variables@>=
24433 xfree(mp->font_info);
24434 xfree(mp->font_enc_name);
24435 xfree(mp->font_ps_name_fixed);
24436 xfree(mp->font_dsize);
24437 xfree(mp->font_name);
24438 xfree(mp->font_ps_name);
24439 xfree(mp->font_bc);
24440 xfree(mp->font_ec);
24441 xfree(mp->char_base);
24442 xfree(mp->width_base);
24443 xfree(mp->height_base);
24444 xfree(mp->depth_base);
24445 xfree(mp->font_sizes);
24449 void mp_reallocate_fonts (MP mp, font_number l) {
24451 XREALLOC(mp->font_enc_name, l, char *);
24452 XREALLOC(mp->font_ps_name_fixed, l, boolean);
24453 XREALLOC(mp->font_dsize, l, scaled);
24454 XREALLOC(mp->font_name, l, char *);
24455 XREALLOC(mp->font_ps_name, l, char *);
24456 XREALLOC(mp->font_bc, l, eight_bits);
24457 XREALLOC(mp->font_ec, l, eight_bits);
24458 XREALLOC(mp->char_base, l, int);
24459 XREALLOC(mp->width_base, l, int);
24460 XREALLOC(mp->height_base, l, int);
24461 XREALLOC(mp->depth_base, l, int);
24462 XREALLOC(mp->font_sizes, l, pointer);
24463 for (f=(mp->last_fnum+1);f<=l;f++) {
24464 mp->font_enc_name[f]=NULL;
24465 mp->font_ps_name_fixed[f] = false;
24466 mp->font_name[f]=NULL;
24467 mp->font_ps_name[f]=NULL;
24468 mp->font_sizes[f]=null;
24473 @ @<Declare |mp_reallocate| functions@>=
24474 void mp_reallocate_fonts (MP mp, font_number l);
24477 @ A |null_font| containing no characters is useful for error recovery. Its
24478 |font_name| entry starts out empty but is reset each time an erroneous font is
24479 found. This helps to cut down on the number of duplicate error messages without
24480 wasting a lot of space.
24482 @d null_font 0 /* the |font_number| for an empty font */
24484 @<Set initial...@>=
24485 mp->font_dsize[null_font]=0;
24486 mp->font_bc[null_font]=1;
24487 mp->font_ec[null_font]=0;
24488 mp->char_base[null_font]=0;
24489 mp->width_base[null_font]=0;
24490 mp->height_base[null_font]=0;
24491 mp->depth_base[null_font]=0;
24493 mp->last_fnum=null_font;
24494 mp->last_ps_fnum=null_font;
24495 mp->font_name[null_font]="nullfont";
24496 mp->font_ps_name[null_font]="";
24498 @ Each |char_info| word is of type |four_quarters|. The |b0| field contains
24499 the |width index|; the |b1| field contains the height
24500 index; the |b2| fields contains the depth index, and the |b3| field used only
24501 for temporary storage. (It is used to keep track of which characters occur in
24502 an edge structure that is being shipped out.)
24503 The corresponding words in the width, height, and depth tables are stored as
24504 |scaled| values in units of \ps\ points.
24506 With the macros below, the |char_info| word for character~|c| in font~|f| is
24507 |char_info(f)(c)| and the width is
24508 $$\hbox{|char_width(f)(char_info(f)(c)).sc|.}$$
24510 @d char_info_end(A) (A)].qqqq
24511 @d char_info(A) mp->font_info[mp->char_base[(A)]+char_info_end
24512 @d char_width_end(A) (A).b0].sc
24513 @d char_width(A) mp->font_info[mp->width_base[(A)]+char_width_end
24514 @d char_height_end(A) (A).b1].sc
24515 @d char_height(A) mp->font_info[mp->height_base[(A)]+char_height_end
24516 @d char_depth_end(A) (A).b2].sc
24517 @d char_depth(A) mp->font_info[mp->depth_base[(A)]+char_depth_end
24518 @d ichar_exists(A) ((A).b0>0)
24520 @ The |font_ps_name| for a built-in font should be what PostScript expects.
24521 A preliminary name is obtained here from the \.{TFM} name as given in the
24522 |fname| argument. This gets updated later from an external table if necessary.
24524 @<Declare text measuring subroutines@>=
24525 @<Declare subroutines for parsing file names@>;
24526 font_number mp_read_font_info (MP mp, char*fname) {
24527 boolean file_opened; /* has |tfm_infile| been opened? */
24528 font_number n; /* the number to return */
24529 halfword lf,tfm_lh,bc,ec,nw,nh,nd; /* subfile size parameters */
24530 size_t whd_size; /* words needed for heights, widths, and depths */
24531 int i,ii; /* |font_info| indices */
24532 int jj; /* counts bytes to be ignored */
24533 scaled z; /* used to compute the design size */
24535 /* height, width, or depth as a fraction of design size times $2^{-8}$ */
24536 eight_bits h_and_d; /* height and depth indices being unpacked */
24537 int tfbyte; /* a byte read from the file */
24539 @<Open |tfm_infile| for input@>;
24540 @<Read data from |tfm_infile|; if there is no room, say so and |goto done|;
24541 otherwise |goto bad_tfm| or |goto done| as appropriate@>;
24543 @<Complain that the \.{TFM} file is bad@>;
24545 if ( file_opened ) fclose(mp->tfm_infile);
24546 if ( n!=null_font ) {
24547 mp->font_ps_name[n]=fname;
24548 mp->font_name[n]=fname;
24553 @ \MP\ doesn't bother to check the entire \.{TFM} file for errors or explain
24554 precisely what is wrong if it does find a problem. Programs called \.{TFtoPL}
24555 @.TFtoPL@> @.PLtoTF@>
24556 and \.{PLtoTF} can be used to debug \.{TFM} files.
24558 @<Complain that the \.{TFM} file is bad@>=
24559 print_err("Font ");
24560 mp_print(mp, fname);
24561 if ( file_opened ) mp_print(mp, " not usable: TFM file is bad");
24562 else mp_print(mp, " not usable: TFM file not found");
24563 help3("I wasn't able to read the size data for this font so this")
24564 ("`infont' operation won't produce anything. If the font name")
24565 ("is right, you might ask an expert to make a TFM file");
24567 mp->help_line[0]="is right, try asking an expert to fix the TFM file";
24570 @ @<Read data from |tfm_infile|; if there is no room, say so...@>=
24571 @<Read the \.{TFM} size fields@>;
24572 @<Use the size fields to allocate space in |font_info|@>;
24573 @<Read the \.{TFM} header@>;
24574 @<Read the character data and the width, height, and depth tables and
24577 @ A bad \.{TFM} file can be shorter than it claims to be. The code given here
24578 might try to read past the end of the file if this happens. Changes will be
24579 needed if it causes a system error to refer to |tfm_infile^| or call
24580 |get_tfm_infile| when |eof(tfm_infile)| is true. For example, the definition
24581 @^system dependencies@>
24582 of |tfget| could be changed to
24583 ``|begin get(tfm_infile); if eof(tfm_infile) then goto bad_tfm; end|.''
24585 @d tfget {tfbyte = fgetc(mp->tfm_infile); }
24586 @d read_two(A) { (A)=tfbyte;
24587 if ( (A)>127 ) goto BAD_TFM;
24588 tfget; (A)=(A)*0400+tfbyte;
24590 @d tf_ignore(A) { for (jj=(A);jj>=1;jj--) tfget; }
24592 @<Read the \.{TFM} size fields@>=
24593 tfget; read_two(lf);
24594 tfget; read_two(tfm_lh);
24595 tfget; read_two(bc);
24596 tfget; read_two(ec);
24597 if ( (bc>1+ec)||(ec>255) ) goto BAD_TFM;
24598 tfget; read_two(nw);
24599 tfget; read_two(nh);
24600 tfget; read_two(nd);
24601 whd_size=(ec+1-bc)+nw+nh+nd;
24602 if ( lf<(int)(6+tfm_lh+whd_size) ) goto BAD_TFM;
24605 @ Offsets are added to |char_base[n]| and |width_base[n]| so that is not
24606 necessary to apply the |so| and |qo| macros when looking up the width of a
24607 character in the string pool. In order to ensure nonnegative |char_base|
24608 values when |bc>0|, it may be necessary to reserve a few unused |font_info|
24611 @<Use the size fields to allocate space in |font_info|@>=
24612 if ( mp->next_fmem<bc) mp->next_fmem=bc; /* ensure nonnegative |char_base| */
24613 if (mp->last_fnum==mp->font_max)
24614 mp_reallocate_fonts(mp,(mp->font_max+(mp->font_max>>2)));
24615 while (mp->next_fmem+whd_size>=mp->font_mem_size) {
24616 size_t l = mp->font_mem_size+(mp->font_mem_size>>2);
24617 memory_word *font_info;
24618 font_info = xmalloc ((l+1),sizeof(memory_word));
24619 memset (font_info,0,sizeof(memory_word)*(l+1));
24620 memcpy (font_info,mp->font_info,sizeof(memory_word)*(mp->font_mem_size+1));
24621 xfree(mp->font_info);
24622 mp->font_info = font_info;
24623 mp->font_mem_size = l;
24625 incr(mp->last_fnum);
24629 mp->char_base[n]=mp->next_fmem-bc;
24630 mp->width_base[n]=mp->next_fmem+ec-bc+1;
24631 mp->height_base[n]=mp->width_base[n]+nw;
24632 mp->depth_base[n]=mp->height_base[n]+nh;
24633 mp->next_fmem=mp->next_fmem+whd_size;
24636 @ @<Read the \.{TFM} header@>=
24637 if ( tfm_lh<2 ) goto BAD_TFM;
24639 tfget; read_two(z);
24640 tfget; z=z*0400+tfbyte;
24641 tfget; z=z*0400+tfbyte; /* now |z| is 16 times the design size */
24642 mp->font_dsize[n]=mp_take_fraction(mp, z,267432584);
24643 /* times ${72\over72.27}2^{28}$ to convert from \TeX\ points */
24644 tf_ignore(4*(tfm_lh-2))
24646 @ @<Read the character data and the width, height, and depth tables...@>=
24647 ii=mp->width_base[n];
24648 i=mp->char_base[n]+bc;
24650 tfget; mp->font_info[i].qqqq.b0=qi(tfbyte);
24651 tfget; h_and_d=tfbyte;
24652 mp->font_info[i].qqqq.b1=h_and_d / 16;
24653 mp->font_info[i].qqqq.b2=h_and_d % 16;
24657 while ( i<mp->next_fmem ) {
24658 @<Read a four byte dimension, scale it by the design size, store it in
24659 |font_info[i]|, and increment |i|@>;
24661 if (feof(mp->tfm_infile) ) goto BAD_TFM;
24664 @ The raw dimension read into |d| should have magnitude at most $2^{24}$ when
24665 interpreted as an integer, and this includes a scale factor of $2^{20}$. Thus
24666 we can multiply it by sixteen and think of it as a |fraction| that has been
24667 divided by sixteen. This cancels the extra scale factor contained in
24670 @<Read a four byte dimension, scale it by the design size, store it in...@>=
24673 if ( d>=0200 ) d=d-0400;
24674 tfget; d=d*0400+tfbyte;
24675 tfget; d=d*0400+tfbyte;
24676 tfget; d=d*0400+tfbyte;
24677 mp->font_info[i].sc=mp_take_fraction(mp, d*16,mp->font_dsize[n]);
24681 @ This function does no longer use the file name parser, because |fname| is
24682 a C string already.
24683 @<Open |tfm_infile| for input@>=
24685 mp_ptr_scan_file(mp, fname);
24686 if ( strlen(mp->cur_area)==0 ) { xfree(mp->cur_area); mp->cur_area=xstrdup(MP_font_area);}
24687 if ( strlen(mp->cur_ext)==0 ) { xfree(mp->cur_ext); mp->cur_ext=xstrdup(".tfm"); }
24689 mp->tfm_infile = mp_open_file(mp, mp->name_of_file, "rb",mp_filetype_metrics);
24690 if ( !mp->tfm_infile ) goto BAD_TFM;
24693 @ When we have a font name and we don't know whether it has been loaded yet,
24694 we scan the |font_name| array before calling |read_font_info|.
24696 @<Declare text measuring subroutines@>=
24697 font_number mp_find_font (MP mp, char *f) {
24699 for (n=0;n<=mp->last_fnum;n++) {
24700 if (mp_xstrcmp(f,mp->font_name[n])==0 )
24703 return mp_read_font_info(mp, f);
24706 @ One simple application of |find_font| is the implementation of the |font_size|
24707 operator that gets the design size for a given font name.
24709 @<Find the design size of the font whose name is |cur_exp|@>=
24710 mp_flush_cur_exp(mp, (mp->font_dsize[mp_find_font(mp, str(mp->cur_exp))]+8) / 16)
24712 @ If we discover that the font doesn't have a requested character, we omit it
24713 from the bounding box computation and expect the \ps\ interpreter to drop it.
24714 This routine issues a warning message if the user has asked for it.
24716 @<Declare text measuring subroutines@>=
24717 void mp_lost_warning (MP mp,font_number f, pool_pointer k) {
24718 if ( mp->internal[mp_tracing_lost_chars]>0 ) {
24719 mp_begin_diagnostic(mp);
24720 if ( mp->selector==log_only ) incr(mp->selector);
24721 mp_print_nl(mp, "Missing character: There is no ");
24722 @.Missing character@>
24723 mp_print_str(mp, mp->str_pool[k]);
24724 mp_print(mp, " in font ");
24725 mp_print(mp, mp->font_name[f]); mp_print_char(mp, '!');
24726 mp_end_diagnostic(mp, false);
24730 @ The whole purpose of saving the height, width, and depth information is to be
24731 able to find the bounding box of an item of text in an edge structure. The
24732 |set_text_box| procedure takes a text node and adds this information.
24734 @<Declare text measuring subroutines@>=
24735 void mp_set_text_box (MP mp,pointer p) {
24736 font_number f; /* |font_n(p)| */
24737 ASCII_code bc,ec; /* range of valid characters for font |f| */
24738 pool_pointer k,kk; /* current character and character to stop at */
24739 four_quarters cc; /* the |char_info| for the current character */
24740 scaled h,d; /* dimensions of the current character */
24742 height_val(p)=-el_gordo;
24743 depth_val(p)=-el_gordo;
24747 kk=str_stop(text_p(p));
24748 k=mp->str_start[text_p(p)];
24750 @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>;
24752 @<Set the height and depth to zero if the bounding box is empty@>;
24755 @ @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>=
24757 if ( (mp->str_pool[k]<bc)||(mp->str_pool[k]>ec) ) {
24758 mp_lost_warning(mp, f,k);
24760 cc=char_info(f)(mp->str_pool[k]);
24761 if ( ! ichar_exists(cc) ) {
24762 mp_lost_warning(mp, f,k);
24764 width_val(p)=width_val(p)+char_width(f)(cc);
24765 h=char_height(f)(cc);
24766 d=char_depth(f)(cc);
24767 if ( h>height_val(p) ) height_val(p)=h;
24768 if ( d>depth_val(p) ) depth_val(p)=d;
24774 @ Let's hope modern compilers do comparisons correctly when the difference would
24777 @<Set the height and depth to zero if the bounding box is empty@>=
24778 if ( height_val(p)<-depth_val(p) ) {
24783 @ The new primitives fontmapfile and fontmapline.
24785 @<Declare action procedures for use by |do_statement|@>=
24786 void mp_do_mapfile (MP mp) ;
24787 void mp_do_mapline (MP mp) ;
24789 @ @c void mp_do_mapfile (MP mp) {
24790 mp_get_x_next(mp); mp_scan_expression(mp);
24791 if ( mp->cur_type!=mp_string_type ) {
24792 @<Complain about improper map operation@>;
24794 mp_map_file(mp,mp->cur_exp);
24797 void mp_do_mapline (MP mp) {
24798 mp_get_x_next(mp); mp_scan_expression(mp);
24799 if ( mp->cur_type!=mp_string_type ) {
24800 @<Complain about improper map operation@>;
24802 mp_map_line(mp,mp->cur_exp);
24806 @ @<Complain about improper map operation@>=
24808 exp_err("Unsuitable expression");
24809 help1("Only known strings can be map files or map lines.");
24810 mp_put_get_error(mp);
24813 @ This is temporary.
24815 @d ps_room(A) mp_ps_room(mp,A)
24817 @ To print |scaled| value to PDF output we need some subroutines to ensure
24820 @d max_integer 0x7FFFFFFF /* $2^{31}-1$ */
24823 scaled one_bp; /* scaled value corresponds to 1bp */
24824 scaled one_hundred_bp; /* scaled value corresponds to 100bp */
24825 scaled one_hundred_inch; /* scaled value corresponds to 100in */
24826 integer ten_pow[10]; /* $10^0..10^9$ */
24827 integer scaled_out; /* amount of |scaled| that was taken out in |divide_scaled| */
24830 mp->one_bp = 65782; /* 65781.76 */
24831 mp->one_hundred_bp = 6578176;
24832 mp->one_hundred_inch = 473628672;
24833 mp->ten_pow[0] = 1;
24834 for (i = 1;i<= 9; i++ ) {
24835 mp->ten_pow[i] = 10*mp->ten_pow[i - 1];
24838 @ The following function divides |s| by |m|. |dd| is number of decimal digits.
24840 @c scaled mp_divide_scaled (MP mp,scaled s, scaled m, integer dd) {
24844 if ( s < 0 ) { sign = -sign; s = -s; }
24845 if ( m < 0 ) { sign = -sign; m = -m; }
24847 mp_confusion(mp, "arithmetic: divided by zero");
24848 else if ( m >= (max_integer / 10) )
24849 mp_confusion(mp, "arithmetic: number too big");
24852 for (i = 1;i<=dd;i++) {
24853 q = 10*q + (10*r) / m;
24856 if ( 2*r >= m ) { incr(q); r = r - m; }
24857 mp->scaled_out = sign*(s - (r / mp->ten_pow[dd]));
24861 @* \[44] Shipping pictures out.
24862 The |ship_out| procedure, to be described below, is given a pointer to
24863 an edge structure. Its mission is to output a file containing the \ps\
24864 description of an edge structure.
24866 @ Each time an edge structure is shipped out we write a new \ps\ output
24867 file named according to the current \&{charcode}.
24868 @:char_code_}{\&{charcode} primitive@>
24870 @<Declare the \ps\ output procedures@>=
24871 void mp_open_output_file (MP mp) ;
24873 @ @c void mp_open_output_file (MP mp) {
24874 integer c; /* \&{charcode} rounded to the nearest integer */
24875 int old_setting; /* previous |selector| setting */
24876 pool_pointer i; /* indexes into |filename_template| */
24877 integer cc; /* a temporary integer for template building */
24878 integer f,g=0; /* field widths */
24879 if ( mp->job_name==NULL ) mp_open_log_file(mp);
24880 c=mp_round_unscaled(mp, mp->internal[mp_char_code]);
24881 if ( mp->filename_template==0 ) {
24882 char *s; /* a file extension derived from |c| */
24886 @<Use |c| to compute the file extension |s|@>;
24887 mp_pack_job_name(mp, s);
24889 while ( ! mp_a_open_out(mp, &mp->ps_file, mp_filetype_postscript) )
24890 mp_prompt_file_name(mp, "file name for output",s);
24891 } else { /* initializations */
24892 str_number s, n; /* a file extension derived from |c| */
24893 old_setting=mp->selector;
24894 mp->selector=new_string;
24896 i = mp->str_start[mp->filename_template];
24897 n = rts(""); /* initialize */
24898 while ( i<str_stop(mp->filename_template) ) {
24899 if ( mp->str_pool[i]=='%' ) {
24902 if ( i<str_stop(mp->filename_template) ) {
24903 if ( mp->str_pool[i]=='j' ) {
24904 mp_print(mp, mp->job_name);
24905 } else if ( mp->str_pool[i]=='d' ) {
24906 cc= mp_round_unscaled(mp, mp->internal[mp_day]);
24907 print_with_leading_zeroes(cc);
24908 } else if ( mp->str_pool[i]=='m' ) {
24909 cc= mp_round_unscaled(mp, mp->internal[mp_month]);
24910 print_with_leading_zeroes(cc);
24911 } else if ( mp->str_pool[i]=='y' ) {
24912 cc= mp_round_unscaled(mp, mp->internal[mp_year]);
24913 print_with_leading_zeroes(cc);
24914 } else if ( mp->str_pool[i]=='H' ) {
24915 cc= mp_round_unscaled(mp, mp->internal[mp_time]) / 60;
24916 print_with_leading_zeroes(cc);
24917 } else if ( mp->str_pool[i]=='M' ) {
24918 cc= mp_round_unscaled(mp, mp->internal[mp_time]) % 60;
24919 print_with_leading_zeroes(cc);
24920 } else if ( mp->str_pool[i]=='c' ) {
24921 if ( c<0 ) mp_print(mp, "ps");
24922 else print_with_leading_zeroes(c);
24923 } else if ( (mp->str_pool[i]>='0') &&
24924 (mp->str_pool[i]<='9') ) {
24926 f = (f*10) + mp->str_pool[i]-'0';
24929 mp_print_str(mp, mp->str_pool[i]);
24933 if ( mp->str_pool[i]=='.' )
24935 n = mp_make_string(mp);
24936 mp_print_str(mp, mp->str_pool[i]);
24940 s = mp_make_string(mp);
24941 mp->selector= old_setting;
24942 if (length(n)==0) {
24946 mp_pack_file_name(mp, str(n),"",str(s));
24947 while ( ! mp_a_open_out(mp, &mp->ps_file, mp_filetype_postscript) )
24948 mp_prompt_file_name(mp, "file name for output",str(s));
24952 @<Store the true output file name if appropriate@>;
24953 @<Begin the progress report for the output of picture~|c|@>;
24956 @ The file extension created here could be up to five characters long in
24957 extreme cases so it may have to be shortened on some systems.
24958 @^system dependencies@>
24960 @<Use |c| to compute the file extension |s|@>=
24963 snprintf(s,7,".%i",(int)c);
24966 @ The user won't want to see all the output file names so we only save the
24967 first and last ones and a count of how many there were. For this purpose
24968 files are ordered primarily by \&{charcode} and secondarily by order of
24970 @:char_code_}{\&{charcode} primitive@>
24972 @<Store the true output file name if appropriate@>=
24973 if ((c<mp->first_output_code)&&(mp->first_output_code>=0)) {
24974 mp->first_output_code=c;
24975 xfree(mp->first_file_name);
24976 mp->first_file_name=xstrdup(mp->name_of_file);
24978 if ( c>=mp->last_output_code ) {
24979 mp->last_output_code=c;
24980 xfree(mp->last_file_name);
24981 mp->last_file_name=xstrdup(mp->name_of_file);
24985 char * first_file_name;
24986 char * last_file_name; /* full file names */
24987 integer first_output_code;integer last_output_code; /* rounded \&{charcode} values */
24988 @:char_code_}{\&{charcode} primitive@>
24989 integer total_shipped; /* total number of |ship_out| operations completed */
24992 mp->first_file_name=xstrdup("");
24993 mp->last_file_name=xstrdup("");
24994 mp->first_output_code=32768;
24995 mp->last_output_code=-32768;
24996 mp->total_shipped=0;
24998 @ @<Dealloc variables@>=
24999 xfree(mp->first_file_name);
25000 xfree(mp->last_file_name);
25002 @ @<Begin the progress report for the output of picture~|c|@>=
25003 if ( (int)mp->term_offset>mp->max_print_line-6 ) mp_print_ln(mp);
25004 else if ( (mp->term_offset>0)||(mp->file_offset>0) ) mp_print_char(mp, ' ');
25005 mp_print_char(mp, '[');
25006 if ( c>=0 ) mp_print_int(mp, c)
25008 @ @<End progress report@>=
25009 mp_print_char(mp, ']');
25011 incr(mp->total_shipped)
25013 @ @<Explain what output files were written@>=
25014 if ( mp->total_shipped>0 ) {
25015 mp_print_nl(mp, "");
25016 mp_print_int(mp, mp->total_shipped);
25017 mp_print(mp, " output file");
25018 if ( mp->total_shipped>1 ) mp_print_char(mp, 's');
25019 mp_print(mp, " written: ");
25020 mp_print(mp, mp->first_file_name);
25021 if ( mp->total_shipped>1 ) {
25022 if ( 31+strlen(mp->first_file_name)+
25023 strlen(mp->last_file_name)> (unsigned)mp->max_print_line)
25025 mp_print(mp, " .. ");
25026 mp_print(mp, mp->last_file_name);
25030 @ A text node may specify an arbitrary transformation but the usual case
25031 involves only shifting, scaling, and occasionally rotation. The purpose
25032 of |choose_scale| is to select a scale factor so that the remaining
25033 transformation is as ``nice'' as possible. The definition of ``nice''
25034 is somewhat arbitrary but shifting and $90^\circ$ rotation are especially
25035 nice because they work out well for bitmap fonts. The code here selects
25036 a scale factor equal to $1/\sqrt2$ times the Frobenius norm of the
25037 non-shifting part of the transformation matrix. It is careful to avoid
25038 additions that might cause undetected overflow.
25040 @<Declare the \ps\ output procedures@>=
25041 scaled mp_choose_scale (MP mp,pointer p) ;
25043 @ @c scaled mp_choose_scale (MP mp,pointer p) {
25044 /* |p| should point to a text node */
25045 scaled a,b,c,d,ad,bc; /* temporary values */
25050 if ( (a<0) ) negate(a);
25051 if ( (b<0) ) negate(b);
25052 if ( (c<0) ) negate(c);
25053 if ( (d<0) ) negate(d);
25056 return mp_pyth_add(mp, mp_pyth_add(mp, d+ad,ad), mp_pyth_add(mp, c+bc,bc));
25059 @ There may be many sizes of one font and we need to keep track of the
25060 characters used for each size. This is done by keeping a linked list of
25061 sizes for each font with a counter in each text node giving the appropriate
25062 position in the size list for its font.
25064 @d sc_factor(A) mp->mem[(A)+1].sc /* the scale factor stored in a font size node */
25065 @d font_size_size 2 /* size of a font size node */
25067 @ @<Internal library declarations@>=
25068 boolean mp_has_font_size(MP mp, font_number f );
25071 boolean mp_has_font_size(MP mp, font_number f ) {
25072 return (mp->font_sizes[f]!=null);
25076 @ The potential overflow here is caused by the fact the returned value
25077 has to fit in a |name_type|, which is a quarterword.
25079 @d fscale_tolerance 65 /* that's $.001\times2^{16}$ */
25081 @<Declare the \ps\ output procedures@>=
25082 quarterword mp_size_index (MP mp, font_number f, scaled s) {
25083 pointer p,q; /* the previous and current font size nodes */
25084 quarterword i; /* the size index for |q| */
25085 q=mp->font_sizes[f];
25087 while ( q!=null ) {
25088 if ( abs(s-sc_factor(q))<=fscale_tolerance )
25091 { p=q; q=link(q); incr(i); };
25092 if ( i==max_quarterword )
25093 mp_overflow(mp, "sizes per font",max_quarterword);
25094 @:MetaPost capacity exceeded sizes per font}{\quad sizes per font@>
25096 q=mp_get_node(mp, font_size_size);
25098 if ( i==0 ) mp->font_sizes[f]=q; else link(p)=q;
25102 @ @<Internal library ...@>=
25103 scaled mp_indexed_size (MP mp,font_number f, quarterword j);
25106 scaled mp_indexed_size (MP mp,font_number f, quarterword j) {
25107 pointer p; /* a font size node */
25108 quarterword i; /* the size index for |p| */
25109 p=mp->font_sizes[f];
25111 if ( p==null ) mp_confusion(mp, "size");
25113 incr(i); p=link(p);
25114 if ( p==null ) mp_confusion(mp, "size");
25116 return sc_factor(p);
25119 @ @<Declare the \ps\ output procedures@>=
25120 void mp_clear_sizes (MP mp) ;
25122 @ @c void mp_clear_sizes (MP mp) {
25123 font_number f; /* the font whose size list is being cleared */
25124 pointer p; /* current font size nodes */
25125 for (f=null_font+1;f<=mp->last_fnum;f++) {
25126 while ( mp->font_sizes[f]!=null ) {
25127 p=mp->font_sizes[f];
25128 mp->font_sizes[f]=link(p);
25129 mp_free_node(mp, p,font_size_size);
25134 @ The \&{special} command saves up lines of text to be printed during the next
25135 |ship_out| operation. The saved items are stored as a list of capsule tokens.
25138 pointer last_pending; /* the last token in a list of pending specials */
25141 mp->last_pending=spec_head;
25143 @ @<Cases of |do_statement|...@>=
25144 case special_command:
25145 if ( mp->cur_mod==0 ) mp_do_special(mp); else
25146 if ( mp->cur_mod==1 ) mp_do_mapfile(mp); else
25150 @ @<Declare action procedures for use by |do_statement|@>=
25151 void mp_do_special (MP mp) ;
25153 @ @c void mp_do_special (MP mp) {
25154 mp_get_x_next(mp); mp_scan_expression(mp);
25155 if ( mp->cur_type!=mp_string_type ) {
25156 @<Complain about improper special operation@>;
25158 link(mp->last_pending)=mp_stash_cur_exp(mp);
25159 mp->last_pending=link(mp->last_pending);
25160 link(mp->last_pending)=null;
25164 @ @<Complain about improper special operation@>=
25166 exp_err("Unsuitable expression");
25167 help1("Only known strings are allowed for output as specials.");
25168 mp_put_get_error(mp);
25171 @ On the export side, we need an extra object type for special strings.
25173 @<Graphical object codes@>=
25176 @ @<Export pending specials@>=
25178 while ( p!=null ) {
25179 hq = mp_new_graphic_object(mp,mp_special_code);
25180 gr_pre_script(hq) = str(value(p));
25181 if (hh->body==NULL) hh->body=hq; else gr_link(hp) = hq;
25185 mp_flush_token_list(mp, link(spec_head));
25186 link(spec_head)=null;
25187 mp->last_pending=spec_head
25189 @ We are now ready for the main output procedure. Note that the |selector|
25190 setting is saved in a global variable so that |begin_diagnostic| can access it.
25192 @<Declare the \ps\ output procedures@>=
25193 void mp_ship_out (MP mp, pointer h) ;
25196 @d gr_type(A) (A)->_type_field
25197 @d gr_link(A) (A)->_link_field
25198 @d gr_name_type(A) (A)->name_type_field
25199 @d gr_path_p(A) (A)->path_p_field
25200 @d gr_htap_p(A) (A)->htap_p_field
25201 @d gr_pen_p(A) (A)->pen_p_field
25202 @d gr_ljoin_val(A) (A)->ljoin_field
25203 @d gr_lcap_val(A) (A)->lcap_field
25204 @d gr_dash_scale(A) (A)->dash_scale_field
25205 @d gr_miterlim_val(A) (A)->miterlim_field
25206 @d gr_pre_script(A) (A)->pre_script_field
25207 @d gr_post_script(A) (A)->post_script_field
25208 @d gr_dash_p(A) (A)->dash_p_field
25209 @d gr_text_p(A) (A)->text_p_field
25210 @d gr_font_n(A) (A)->font_n_field
25211 @d gr_width_val(A) (A)->width_field
25212 @d gr_height_val(A) (A)->height_field
25213 @d gr_depth_val(A) (A)->depth_field
25214 @d gr_tx_val(A) (A)->tx_field
25215 @d gr_ty_val(A) (A)->ty_field
25216 @d gr_txx_val(A) (A)->txx_field
25217 @d gr_txy_val(A) (A)->txy_field
25218 @d gr_tyx_val(A) (A)->tyx_field
25219 @d gr_tyy_val(A) (A)->tyy_field
25222 void mp_ship_out (MP mp, pointer h) { /* output edge structure |h| */
25223 pointer p; /* the current graphical object */
25224 integer t; /* a temporary value */
25225 font_number f; /* fonts used in a text node or as loop counters */
25226 struct mp_edge_object *hh; /* the first graphical object */
25227 struct mp_graphic_object *hp; /* the current graphical object */
25228 struct mp_graphic_object *hq; /* something |hp| points to */
25229 int prologues = mp->internal[mp_prologues];
25230 mp_open_output_file(mp);
25231 mp->non_ps_setting=mp->selector;
25232 mp->selector=ps_file_only;
25233 mp_set_bbox(mp, h, true);
25234 mp_print_initial_comment(mp, minx_val(h),miny_val(h),maxx_val(h),maxy_val(h));
25235 @<Unmark all marked characters@>;
25236 mp_reload_encodings(mp);
25237 @<Scan all the text nodes and mark the used characters@>;
25238 if ( prologues==two || prologues==three ) {
25239 mp_print_improved_prologue(mp, h);
25241 mp_print_prologue(mp, h);
25243 hh = mp_xmalloc(mp,1,sizeof(struct mp_edge_object));
25245 @<Export pending specials@>;
25246 p=link(dummy_loc(h));
25247 while ( p!=null ) {
25248 hq = mp_new_graphic_object(mp,type(p));
25251 gr_pen_p(hq) = mp_export_knot_list(mp,pen_p(p));
25252 if ((pen_p(p)==null) || pen_is_elliptical(pen_p(p))) {
25253 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25256 pc = mp_copy_path(mp, path_p(p));
25257 pp = mp_make_envelope(mp, pc, pen_p(p),ljoin_val(p),0,miterlim_val(p));
25258 gr_path_p(hq) = mp_export_knot_list(mp,pp);
25259 mp_toss_knot_list(mp, pp);
25260 pc = mp_htap_ypoc(mp, path_p(p));
25261 pp = mp_make_envelope(mp, pc, pen_p(p),ljoin_val(p),0,miterlim_val(p));
25262 gr_htap_p(hq) = mp_export_knot_list(mp,pp);
25263 mp_toss_knot_list(mp, pp);
25265 @<Export object color@>;
25266 @<Export object scripts@>;
25267 gr_ljoin_val(hq) = ljoin_val(p);
25268 gr_miterlim_val(hq) = miterlim_val(p);
25270 case mp_stroked_code:
25271 gr_pen_p(hq) = mp_export_knot_list(mp,pen_p(p));
25272 if (pen_is_elliptical(pen_p(p))) {
25273 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25276 pc=mp_copy_path(mp, path_p(p));
25278 if ( left_type(pc)!=mp_endpoint ) {
25279 left_type(mp_insert_knot(mp, pc,x_coord(pc),y_coord(pc)))=mp_endpoint;
25280 right_type(pc)=mp_endpoint;
25284 pc=mp_make_envelope(mp,pc,pen_p(p),ljoin_val(p),t,miterlim_val(p));
25285 gr_path_p(hq) = mp_export_knot_list(mp,pc);
25286 mp_toss_knot_list(mp, pc);
25288 @<Export object color@>;
25289 @<Export object scripts@>;
25290 gr_ljoin_val(hq) = ljoin_val(p);
25291 gr_miterlim_val(hq) = miterlim_val(p);
25292 gr_lcap_val(hq) = lcap_val(p);
25293 gr_dash_scale(hq) = dash_scale(p);
25294 gr_dash_p(hq) = mp_export_dashes(mp,dash_p(p));
25297 gr_text_p(hq) = str(text_p(p));
25298 gr_font_n(hq) = font_n(p);
25299 @<Export object color@>;
25300 @<Export object scripts@>;
25301 gr_width_val(hq) = width_val(p);
25302 gr_height_val(hq) = height_val(p);
25303 gr_depth_val(hq) = depth_val(p);
25304 gr_tx_val(hq) = tx_val(p);
25305 gr_ty_val(hq) = ty_val(p);
25306 gr_txx_val(hq) = txx_val(p);
25307 gr_txy_val(hq) = txy_val(p);
25308 gr_tyx_val(hq) = tyx_val(p);
25309 gr_tyy_val(hq) = tyy_val(p);
25311 case mp_start_clip_code:
25312 case mp_start_bounds_code:
25313 gr_path_p(hq) = mp_export_knot_list(mp,path_p(p));
25315 case mp_stop_clip_code:
25316 case mp_stop_bounds_code:
25317 /* nothing to do here */
25320 if (hh->body==NULL) hh->body=hq; else gr_link(hp) = hq;
25324 mp_gr_ship_out (mp, hh->body);
25326 fclose(mp->ps_file);
25327 mp->selector=mp->non_ps_setting;
25328 if ( mp->internal[mp_prologues]<=0 ) mp_clear_sizes(mp);
25329 @<End progress report@>;
25330 if ( mp->internal[mp_tracing_output]>0 )
25331 mp_print_edges(mp, h," (just shipped out)",true);
25335 @d gr_color_model(A) (A)->color_model_field
25336 @d gr_red_val(A) (A)->color_field.rgb._red_val
25337 @d gr_green_val(A) (A)->color_field.rgb._green_val
25338 @d gr_blue_val(A) (A)->color_field.rgb._blue_val
25339 @d gr_cyan_val(A) (A)->color_field.cmyk._cyan_val
25340 @d gr_magenta_val(A) (A)->color_field.cmyk._magenta_val
25341 @d gr_yellow_val(A) (A)->color_field.cmyk._yellow_val
25342 @d gr_black_val(A) (A)->color_field.cmyk._black_val
25343 @d gr_grey_val(A) (A)->color_field.grey._grey_val
25345 @<Export object color@>=
25346 gr_color_model(hq) = color_model(p);
25347 gr_cyan_val(hq) = cyan_val(p);
25348 gr_magenta_val(hq) = magenta_val(p);
25349 gr_yellow_val(hq) = yellow_val(p);
25350 gr_black_val(hq) = black_val(p);
25351 gr_red_val(hq) = red_val(p);
25352 gr_green_val(hq) = green_val(p);
25353 gr_blue_val(hq) = blue_val(p);
25354 gr_grey_val(hq) = grey_val(p)
25357 @ @<Export object scripts@>=
25358 if (pre_script(p)!=null)
25359 gr_pre_script(hq) = str(pre_script(p));
25360 if (post_script(p)!=null)
25361 gr_post_script(hq) = str(post_script(p));
25363 @ @<Internal library declarations@>=
25364 void mp_apply_mark_string_chars(MP mp, pointer h, int next_size);
25367 void mp_apply_mark_string_chars(MP mp, pointer h, int next_size) {
25369 p=link(dummy_loc(h));
25370 while ( p!=null ) {
25371 if ( type(p)==mp_text_code ) {
25372 if ( font_n(p)!=null_font ) {
25373 if ( name_type(p)==next_size )
25374 mp_mark_string_chars(mp, font_n(p),text_p(p));
25381 @ @<Unmark all marked characters@>=
25382 for (f=null_font+1;f<=mp->last_fnum;f++) {
25383 if ( mp->font_sizes[f]!=null ) {
25384 mp_unmark_font(mp, f);
25385 mp->font_sizes[f]=null;
25389 @ @<Scan all the text nodes and mark the used ...@>=
25390 p=link(dummy_loc(h));
25391 while ( p!=null ) {
25392 if ( type(p)==mp_text_code ) {
25394 if (f!=null_font ) {
25395 switch (prologues) {
25398 mp->font_sizes[f] = mp_void;
25399 mp_mark_string_chars(mp, f,text_p(p));
25400 if (mp_has_fm_entry(mp,f,NULL) ) {
25401 if (mp->font_enc_name[f]==NULL )
25402 mp->font_enc_name[f] = mp_fm_encoding_name(mp,f);
25403 mp->font_ps_name[f] = mp_fm_font_name(mp,f);
25407 mp->font_sizes[f]=mp_void;
25410 name_type(p)=mp_size_index(mp, f,mp_choose_scale(mp, p));
25411 if ( name_type(p)==0 )
25412 mp_mark_string_chars(mp, f,text_p(p));
25419 @ Now that we've finished |ship_out|, let's look at the other commands
25420 by which a user can send things to the \.{GF} file.
25422 @ @<Determine if a character has been shipped out@>=
25424 mp->cur_exp=mp_round_unscaled(mp, mp->cur_exp) % 256;
25425 if ( mp->cur_exp<0 ) mp->cur_exp=mp->cur_exp+256;
25426 boolean_reset(mp->char_exists[mp->cur_exp]);
25427 mp->cur_type=mp_boolean_type;
25433 @ @<Allocate or initialize ...@>=
25434 mp_backend_initialize(mp);
25437 mp_backend_free(mp);
25440 @* \[45] Dumping and undumping the tables.
25441 After \.{INIMP} has seen a collection of macros, it
25442 can write all the necessary information on an auxiliary file so
25443 that production versions of \MP\ are able to initialize their
25444 memory at high speed. The present section of the program takes
25445 care of such output and input. We shall consider simultaneously
25446 the processes of storing and restoring,
25447 so that the inverse relation between them is clear.
25450 The global variable |mem_ident| is a string that is printed right
25451 after the |banner| line when \MP\ is ready to start. For \.{INIMP} this
25452 string says simply `\.{(INIMP)}'; for other versions of \MP\ it says,
25453 for example, `\.{(mem=plain 90.4.14)}', showing the year,
25454 month, and day that the mem file was created. We have |mem_ident=0|
25455 before \MP's tables are loaded.
25461 mp->mem_ident=NULL;
25463 @ @<Initialize table entries...@>=
25464 mp->mem_ident=xstrdup(" (INIMP)");
25466 @ @<Declare act...@>=
25467 void mp_store_mem_file (MP mp) ;
25469 @ @c void mp_store_mem_file (MP mp) {
25470 integer k; /* all-purpose index */
25471 pointer p,q; /* all-purpose pointers */
25472 integer x; /* something to dump */
25473 four_quarters w; /* four ASCII codes */
25475 @<Create the |mem_ident|, open the mem file,
25476 and inform the user that dumping has begun@>;
25477 @<Dump constants for consistency check@>;
25478 @<Dump the string pool@>;
25479 @<Dump the dynamic memory@>;
25480 @<Dump the table of equivalents and the hash table@>;
25481 @<Dump a few more things and the closing check word@>;
25482 @<Close the mem file@>;
25485 @ Corresponding to the procedure that dumps a mem file, we also have a function
25486 that reads~one~in. The function returns |false| if the dumped mem is
25487 incompatible with the present \MP\ table sizes, etc.
25489 @d off_base 6666 /* go here if the mem file is unacceptable */
25490 @d too_small(A) { wake_up_terminal;
25491 wterm_ln("---! Must increase the "); wterm((A));
25492 @.Must increase the x@>
25497 boolean mp_load_mem_file (MP mp) {
25498 integer k; /* all-purpose index */
25499 pointer p,q; /* all-purpose pointers */
25500 integer x; /* something undumped */
25501 str_number s; /* some temporary string */
25502 four_quarters w; /* four ASCII codes */
25504 @<Undump constants for consistency check@>;
25505 @<Undump the string pool@>;
25506 @<Undump the dynamic memory@>;
25507 @<Undump the table of equivalents and the hash table@>;
25508 @<Undump a few more things and the closing check word@>;
25509 return true; /* it worked! */
25512 wterm_ln("(Fatal mem file error; I'm stymied)\n");
25513 @.Fatal mem file error@>
25517 @ @<Declarations@>=
25518 boolean mp_load_mem_file (MP mp) ;
25520 @ Mem files consist of |memory_word| items, and we use the following
25521 macros to dump words of different types:
25523 @d dump_wd(A) { WW=(A); fwrite(&WW,sizeof(WW),1,mp->mem_file); }
25524 @d dump_int(A) { int cint=(A); fwrite(&cint,sizeof(cint),1,mp->mem_file); }
25525 @d dump_hh(A) { WW.hh=(A); fwrite(&WW,sizeof(WW),1,mp->mem_file); }
25526 @d dump_qqqq(A) { WW.qqqq=(A); fwrite(&WW,sizeof(WW),1,mp->mem_file); }
25527 @d dump_string(A) { dump_int(strlen(A)+1);
25528 fwrite(A,strlen(A)+1,1,mp->mem_file); }
25531 FILE * mem_file; /* for input or output of mem information */
25533 @ The inverse macros are slightly more complicated, since we need to check
25534 the range of the values we are reading in. We say `|undump(a)(b)(x)|' to
25535 read an integer value |x| that is supposed to be in the range |a<=x<=b|.
25537 @d undump_wd(A) { fread(&WW,sizeof(WW),1,mp->mem_file); A=WW; }
25538 @d undump_int(A) { int cint; fread(&cint,sizeof(cint),1,mp->mem_file); A=cint; }
25539 @d undump_hh(A) { fread(&WW,sizeof(WW),1,mp->mem_file); A=WW.hh; }
25540 @d undump_qqqq(A) { fread(&WW,sizeof(WW),1,mp->mem_file); A=WW.qqqq; }
25541 @d undump_strings(A,B,C) {
25542 undump_int(x); if ( (x<(A)) || (x>(B)) ) goto OFF_BASE; else C=str(x); }
25543 @d undump(A,B,C) { undump_int(x); if ( (x<(A)) || (x>(int)(B)) ) goto OFF_BASE; else C=x; }
25544 @d undump_size(A,B,C,D) { undump_int(x);
25545 if (x<(A)) goto OFF_BASE;
25546 if (x>(B)) { too_small((C)); } else { D=x;} }
25547 @d undump_string(A) { integer XX=0; undump_int(XX);
25548 A = xmalloc(XX,sizeof(char));
25549 fread(A,XX,1,mp->mem_file); }
25551 @ The next few sections of the program should make it clear how we use the
25552 dump/undump macros.
25554 @<Dump constants for consistency check@>=
25555 dump_int(mp->mem_top);
25556 dump_int(mp->hash_size);
25557 dump_int(mp->hash_prime)
25558 dump_int(mp->param_size);
25559 dump_int(mp->max_in_open);
25561 @ Sections of a \.{WEB} program that are ``commented out'' still contribute
25562 strings to the string pool; therefore \.{INIMP} and \MP\ will have
25563 the same strings. (And it is, of course, a good thing that they do.)
25567 @<Undump constants for consistency check@>=
25568 undump_int(x); mp->mem_top = x;
25569 undump_int(x); if (mp->hash_size != x) goto OFF_BASE;
25570 undump_int(x); if (mp->hash_prime != x) goto OFF_BASE;
25571 undump_int(x); if (mp->param_size != x) goto OFF_BASE;
25572 undump_int(x); if (mp->max_in_open != x) goto OFF_BASE
25574 @ We do string pool compaction to avoid dumping unused strings.
25577 w.b0=qi(mp->str_pool[k]); w.b1=qi(mp->str_pool[k+1]);
25578 w.b2=qi(mp->str_pool[k+2]); w.b3=qi(mp->str_pool[k+3]);
25581 @<Dump the string pool@>=
25582 mp_do_compaction(mp, mp->pool_size);
25583 dump_int(mp->pool_ptr);
25584 dump_int(mp->max_str_ptr);
25585 dump_int(mp->str_ptr);
25587 while ( (mp->next_str[k]==k+1) && (k<=mp->max_str_ptr) )
25590 while ( k<=mp->max_str_ptr ) {
25591 dump_int(mp->next_str[k]); incr(k);
25595 dump_int(mp->str_start[k]); /* TODO: valgrind warning here */
25596 if ( k==mp->str_ptr ) {
25603 while (k+4<mp->pool_ptr ) {
25604 dump_four_ASCII; k=k+4;
25606 k=mp->pool_ptr-4; dump_four_ASCII;
25607 mp_print_ln(mp); mp_print(mp, "at most "); mp_print_int(mp, mp->max_str_ptr);
25608 mp_print(mp, " strings of total length ");
25609 mp_print_int(mp, mp->pool_ptr)
25611 @ @d undump_four_ASCII
25613 mp->str_pool[k]=qo(w.b0); mp->str_pool[k+1]=qo(w.b1);
25614 mp->str_pool[k+2]=qo(w.b2); mp->str_pool[k+3]=qo(w.b3)
25616 @<Undump the string pool@>=
25617 undump_int(mp->pool_ptr);
25618 mp_reallocate_pool(mp, mp->pool_ptr) ;
25619 undump_int(mp->max_str_ptr);
25620 mp_reallocate_strings (mp,mp->max_str_ptr) ;
25621 undump(0,mp->max_str_ptr,mp->str_ptr);
25622 undump(0,mp->max_str_ptr+1,s);
25623 for (k=0;k<=s-1;k++)
25624 mp->next_str[k]=k+1;
25625 for (k=s;k<=mp->max_str_ptr;k++)
25626 undump(s+1,mp->max_str_ptr+1,mp->next_str[k]);
25627 mp->fixed_str_use=0;
25630 undump(0,mp->pool_ptr,mp->str_start[k]);
25631 if ( k==mp->str_ptr ) break;
25632 mp->str_ref[k]=max_str_ref;
25633 incr(mp->fixed_str_use);
25634 mp->last_fixed_str=k; k=mp->next_str[k];
25637 while ( k+4<mp->pool_ptr ) {
25638 undump_four_ASCII; k=k+4;
25640 k=mp->pool_ptr-4; undump_four_ASCII;
25641 mp->init_str_use=mp->fixed_str_use; mp->init_pool_ptr=mp->pool_ptr;
25642 mp->max_pool_ptr=mp->pool_ptr;
25643 mp->strs_used_up=mp->fixed_str_use;
25644 mp->pool_in_use=mp->str_start[mp->str_ptr]; mp->strs_in_use=mp->fixed_str_use;
25645 mp->max_pl_used=mp->pool_in_use; mp->max_strs_used=mp->strs_in_use;
25646 mp->pact_count=0; mp->pact_chars=0; mp->pact_strs=0;
25648 @ By sorting the list of available spaces in the variable-size portion of
25649 |mem|, we are usually able to get by without having to dump very much
25650 of the dynamic memory.
25652 We recompute |var_used| and |dyn_used|, so that \.{INIMP} dumps valid
25653 information even when it has not been gathering statistics.
25655 @<Dump the dynamic memory@>=
25656 mp_sort_avail(mp); mp->var_used=0;
25657 dump_int(mp->lo_mem_max); dump_int(mp->rover);
25658 p=0; q=mp->rover; x=0;
25660 for (k=p;k<= q+1;k++)
25661 dump_wd(mp->mem[k]);
25662 x=x+q+2-p; mp->var_used=mp->var_used+q-p;
25663 p=q+node_size(q); q=rlink(q);
25664 } while (q!=mp->rover);
25665 mp->var_used=mp->var_used+mp->lo_mem_max-p;
25666 mp->dyn_used=mp->mem_end+1-mp->hi_mem_min;
25667 for (k=p;k<= mp->lo_mem_max;k++ )
25668 dump_wd(mp->mem[k]);
25669 x=x+mp->lo_mem_max+1-p;
25670 dump_int(mp->hi_mem_min); dump_int(mp->avail);
25671 for (k=mp->hi_mem_min;k<=mp->mem_end;k++ )
25672 dump_wd(mp->mem[k]);
25673 x=x+mp->mem_end+1-mp->hi_mem_min;
25675 while ( p!=null ) {
25676 decr(mp->dyn_used); p=link(p);
25678 dump_int(mp->var_used); dump_int(mp->dyn_used);
25679 mp_print_ln(mp); mp_print_int(mp, x);
25680 mp_print(mp, " memory locations dumped; current usage is ");
25681 mp_print_int(mp, mp->var_used); mp_print_char(mp, '&'); mp_print_int(mp, mp->dyn_used)
25683 @ @<Undump the dynamic memory@>=
25684 undump(lo_mem_stat_max+1000,hi_mem_stat_min-1,mp->lo_mem_max);
25685 undump(lo_mem_stat_max+1,mp->lo_mem_max,mp->rover);
25688 for (k=p;k<= q+1; k++)
25689 undump_wd(mp->mem[k]);
25691 if ( (p>mp->lo_mem_max)||((q>=rlink(q))&&(rlink(q)!=mp->rover)) )
25694 } while (q!=mp->rover);
25695 for (k=p;k<=mp->lo_mem_max;k++ )
25696 undump_wd(mp->mem[k]);
25697 undump(mp->lo_mem_max+1,hi_mem_stat_min,mp->hi_mem_min);
25698 undump(null,mp->mem_top,mp->avail); mp->mem_end=mp->mem_top;
25699 for (k=mp->hi_mem_min;k<= mp->mem_end;k++)
25700 undump_wd(mp->mem[k]);
25701 undump_int(mp->var_used); undump_int(mp->dyn_used)
25703 @ A different scheme is used to compress the hash table, since its lower region
25704 is usually sparse. When |text(p)<>0| for |p<=hash_used|, we output three
25705 words: |p|, |hash[p]|, and |eqtb[p]|. The hash table is, of course, densely
25706 packed for |p>=hash_used|, so the remaining entries are output in~a~block.
25708 @<Dump the table of equivalents and the hash table@>=
25709 dump_int(mp->hash_used);
25710 mp->st_count=frozen_inaccessible-1-mp->hash_used;
25711 for (p=1;p<=mp->hash_used;p++) {
25712 if ( text(p)!=0 ) {
25713 dump_int(p); dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]); incr(mp->st_count);
25716 for (p=mp->hash_used+1;p<=(int)hash_end;p++) {
25717 dump_hh(mp->hash[p]); dump_hh(mp->eqtb[p]);
25719 dump_int(mp->st_count);
25720 mp_print_ln(mp); mp_print_int(mp, mp->st_count); mp_print(mp, " symbolic tokens")
25722 @ @<Undump the table of equivalents and the hash table@>=
25723 undump(1,frozen_inaccessible,mp->hash_used);
25726 undump(p+1,mp->hash_used,p);
25727 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
25728 } while (p!=mp->hash_used);
25729 for (p=mp->hash_used+1;p<=(int)hash_end;p++ ) {
25730 undump_hh(mp->hash[p]); undump_hh(mp->eqtb[p]);
25732 undump_int(mp->st_count)
25734 @ We have already printed a lot of statistics, so we set |mp_tracing_stats:=0|
25735 to prevent them appearing again.
25737 @<Dump a few more things and the closing check word@>=
25738 dump_int(mp->max_internal);
25739 dump_int(mp->int_ptr);
25740 for (k=1;k<= mp->int_ptr;k++ ) {
25741 dump_int(mp->internal[k]);
25742 dump_string(mp->int_name[k]);
25744 dump_int(mp->start_sym);
25745 dump_int(mp->interaction);
25746 dump_string(mp->mem_ident);
25747 dump_int(mp->bg_loc); dump_int(mp->eg_loc); dump_int(mp->serial_no); dump_int(69073);
25748 mp->internal[mp_tracing_stats]=0
25750 @ @<Undump a few more things and the closing check word@>=
25752 if (x>mp->max_internal) mp_grow_internals(mp,x);
25753 undump_int(mp->int_ptr);
25754 for (k=1;k<= mp->int_ptr;k++) {
25755 undump_int(mp->internal[k]);
25756 undump_string(mp->int_name[k]);
25758 undump(0,frozen_inaccessible,mp->start_sym);
25759 if (mp->interaction==mp_unspecified_mode) {
25760 undump(mp_unspecified_mode,mp_error_stop_mode,mp->interaction);
25762 undump(mp_unspecified_mode,mp_error_stop_mode,x);
25764 undump_string(mp->mem_ident);
25765 undump(1,hash_end,mp->bg_loc);
25766 undump(1,hash_end,mp->eg_loc);
25767 undump_int(mp->serial_no);
25769 if ( (x!=69073)|| feof(mp->mem_file) ) goto OFF_BASE
25771 @ @<Create the |mem_ident|...@>=
25773 xfree(mp->mem_ident);
25774 mp->mem_ident = xmalloc(256,1);
25775 snprintf(mp->mem_ident,256," (mem=%s %i.%i.%i)",
25777 (int)(mp_round_unscaled(mp, mp->internal[mp_year]) % 100),
25778 (int)mp_round_unscaled(mp, mp->internal[mp_month]),
25779 (int)mp_round_unscaled(mp, mp->internal[mp_day]));
25780 mp_pack_job_name(mp, mem_extension);
25781 while (! mp_w_open_out(mp, &mp->mem_file) )
25782 mp_prompt_file_name(mp, "mem file name", mem_extension);
25783 mp_print_nl(mp, "Beginning to dump on file ");
25784 @.Beginning to dump...@>
25785 mp_print(mp, mp->name_of_file);
25786 mp_print_nl(mp, mp->mem_ident);
25789 @ @<Dealloc variables@>=
25790 xfree(mp->mem_ident);
25792 @ @<Close the mem file@>=
25793 fclose(mp->mem_file)
25795 @* \[46] The main program.
25796 This is it: the part of \MP\ that executes all those procedures we have
25799 Well---almost. We haven't put the parsing subroutines into the
25800 program yet; and we'd better leave space for a few more routines that may
25801 have been forgotten.
25803 @c @<Declare the basic parsing subroutines@>;
25804 @<Declare miscellaneous procedures that were declared |forward|@>;
25805 @<Last-minute procedures@>
25807 @ We've noted that there are two versions of \MP. One, called \.{INIMP},
25809 has to be run first; it initializes everything from scratch, without
25810 reading a mem file, and it has the capability of dumping a mem file.
25811 The other one is called `\.{VIRMP}'; it is a ``virgin'' program that needs
25813 to input a mem file in order to get started. \.{VIRMP} typically has
25814 a bit more memory capacity than \.{INIMP}, because it does not need the
25815 space consumed by the dumping/undumping routines and the numerous calls on
25818 The \.{VIRMP} program cannot read a mem file instantaneously, of course;
25819 the best implementations therefore allow for production versions of \MP\ that
25820 not only avoid the loading routine for \PASCAL\ object code, they also have
25821 a mem file pre-loaded.
25824 boolean ini_version; /* are we iniMP? */
25826 @ @<Option variables@>=
25827 int ini_version; /* are we iniMP? */
25829 @ @<Set |ini_version|@>=
25830 mp->ini_version = (opt->ini_version ? true : false);
25832 @ Here we do whatever is needed to complete \MP's job gracefully on the
25833 local operating system. The code here might come into play after a fatal
25834 error; it must therefore consist entirely of ``safe'' operations that
25835 cannot produce error messages. For example, it would be a mistake to call
25836 |str_room| or |make_string| at this time, because a call on |overflow|
25837 might lead to an infinite loop.
25838 @^system dependencies@>
25840 This program doesn't bother to close the input files that may still be open.
25842 @<Last-minute...@>=
25843 void mp_close_files_and_terminate (MP mp) {
25844 integer k; /* all-purpose index */
25845 integer LH; /* the length of the \.{TFM} header, in words */
25846 int lk_offset; /* extra words inserted at beginning of |lig_kern| array */
25847 pointer p; /* runs through a list of \.{TFM} dimensions */
25848 @<Close all open files in the |rd_file| and |wr_file| arrays@>;
25849 if ( mp->internal[mp_tracing_stats]>0 )
25850 @<Output statistics about this job@>;
25852 @<Do all the finishing work on the \.{TFM} file@>;
25853 @<Explain what output files were written@>;
25854 if ( mp->log_opened ){
25856 fclose(mp->log_file); mp->selector=mp->selector-2;
25857 if ( mp->selector==term_only ) {
25858 mp_print_nl(mp, "Transcript written on ");
25859 @.Transcript written...@>
25860 mp_print(mp, mp->log_name); mp_print_char(mp, '.');
25866 @ @<Declarations@>=
25867 void mp_close_files_and_terminate (MP mp) ;
25869 @ @<Close all open files in the |rd_file| and |wr_file| arrays@>=
25870 if (mp->rd_fname!=NULL) {
25871 for (k=0;k<=(int)mp->read_files-1;k++ ) {
25872 if ( mp->rd_fname[k]!=NULL ) {
25873 fclose(mp->rd_file[k]);
25877 if (mp->wr_fname!=NULL) {
25878 for (k=0;k<=(int)mp->write_files-1;k++) {
25879 if ( mp->wr_fname[k]!=NULL ) {
25880 fclose(mp->wr_file[k]);
25886 for (k=0;k<(int)mp->max_read_files;k++ ) {
25887 if ( mp->rd_fname[k]!=NULL ) {
25888 fclose(mp->rd_file[k]);
25889 mp_xfree(mp->rd_fname[k]);
25892 mp_xfree(mp->rd_file);
25893 mp_xfree(mp->rd_fname);
25894 for (k=0;k<(int)mp->max_write_files;k++) {
25895 if ( mp->wr_fname[k]!=NULL ) {
25896 fclose(mp->wr_file[k]);
25897 mp_xfree(mp->wr_fname[k]);
25900 mp_xfree(mp->wr_file);
25901 mp_xfree(mp->wr_fname);
25904 @ We want to produce a \.{TFM} file if and only if |mp_fontmaking| is positive.
25906 We reclaim all of the variable-size memory at this point, so that
25907 there is no chance of another memory overflow after the memory capacity
25908 has already been exceeded.
25910 @<Do all the finishing work on the \.{TFM} file@>=
25911 if ( mp->internal[mp_fontmaking]>0 ) {
25912 @<Make the dynamic memory into one big available node@>;
25913 @<Massage the \.{TFM} widths@>;
25914 mp_fix_design_size(mp); mp_fix_check_sum(mp);
25915 @<Massage the \.{TFM} heights, depths, and italic corrections@>;
25916 mp->internal[mp_fontmaking]=0; /* avoid loop in case of fatal error */
25917 @<Finish the \.{TFM} file@>;
25920 @ @<Make the dynamic memory into one big available node@>=
25921 mp->rover=lo_mem_stat_max+1; link(mp->rover)=empty_flag; mp->lo_mem_max=mp->hi_mem_min-1;
25922 if ( mp->lo_mem_max-mp->rover>max_halfword ) mp->lo_mem_max=max_halfword+mp->rover;
25923 node_size(mp->rover)=mp->lo_mem_max-mp->rover;
25924 llink(mp->rover)=mp->rover; rlink(mp->rover)=mp->rover;
25925 link(mp->lo_mem_max)=null; info(mp->lo_mem_max)=null
25927 @ The present section goes directly to the log file instead of using
25928 |print| commands, because there's no need for these strings to take
25929 up |str_pool| memory when a non-{\bf stat} version of \MP\ is being used.
25931 @<Output statistics...@>=
25932 if ( mp->log_opened ) {
25935 wlog_ln("Here is how much of MetaPost's memory you used:");
25936 @.Here is how much...@>
25937 snprintf(s,128," %i string%s out of %i",(int)mp->max_strs_used-mp->init_str_use,
25938 (mp->max_strs_used!=mp->init_str_use+1 ? "s" : ""),
25939 (int)(mp->max_strings-1-mp->init_str_use));
25941 snprintf(s,128," %i string characters out of %i",
25942 (int)mp->max_pl_used-mp->init_pool_ptr,
25943 (int)mp->pool_size-mp->init_pool_ptr);
25945 snprintf(s,128," %i words of memory out of %i",
25946 (int)mp->lo_mem_max+mp->mem_end-mp->hi_mem_min+2,
25947 (int)mp->mem_end+1);
25949 snprintf(s,128," %i symbolic tokens out of %i", (int)mp->st_count, (int)mp->hash_size);
25951 snprintf(s,128," %ii, %in, %ip, %ib stack positions out of %ii, %in, %ip, %ib",
25952 (int)mp->max_in_stack,(int)mp->int_ptr,
25953 (int)mp->max_param_stack,(int)mp->max_buf_stack+1,
25954 (int)mp->stack_size,(int)mp->max_internal,(int)mp->param_size,(int)mp->buf_size);
25956 snprintf(s,128," %i string compactions (moved %i characters, %i strings)",
25957 (int)mp->pact_count,(int)mp->pact_chars,(int)mp->pact_strs);
25961 @ We get to the |final_cleanup| routine when \&{end} or \&{dump} has
25964 @<Last-minute...@>=
25965 void mp_final_cleanup (MP mp) {
25966 small_number c; /* 0 for \&{end}, 1 for \&{dump} */
25968 if ( mp->job_name==NULL ) mp_open_log_file(mp);
25969 while ( mp->input_ptr>0 ) {
25970 if ( token_state ) mp_end_token_list(mp);
25971 else mp_end_file_reading(mp);
25973 while ( mp->loop_ptr!=null ) mp_stop_iteration(mp);
25974 while ( mp->open_parens>0 ) {
25975 mp_print(mp, " )"); decr(mp->open_parens);
25977 while ( mp->cond_ptr!=null ) {
25978 mp_print_nl(mp, "(end occurred when ");
25979 @.end occurred...@>
25980 mp_print_cmd_mod(mp, fi_or_else,mp->cur_if);
25981 /* `\.{if}' or `\.{elseif}' or `\.{else}' */
25982 if ( mp->if_line!=0 ) {
25983 mp_print(mp, " on line "); mp_print_int(mp, mp->if_line);
25985 mp_print(mp, " was incomplete)");
25986 mp->if_line=if_line_field(mp->cond_ptr);
25987 mp->cur_if=name_type(mp->cond_ptr); mp->cond_ptr=link(mp->cond_ptr);
25989 if ( mp->history!=mp_spotless )
25990 if ( ((mp->history==mp_warning_issued)||(mp->interaction<mp_error_stop_mode)) )
25991 if ( mp->selector==term_and_log ) {
25992 mp->selector=term_only;
25993 mp_print_nl(mp, "(see the transcript file for additional information)");
25994 @.see the transcript file...@>
25995 mp->selector=term_and_log;
25998 if (mp->ini_version) {
25999 mp_store_mem_file(mp); return;
26001 mp_print_nl(mp, "(dump is performed only by INIMP)"); return;
26002 @.dump...only by INIMP@>
26006 @ @<Declarations@>=
26007 void mp_final_cleanup (MP mp) ;
26008 void mp_init_prim (MP mp) ;
26009 void mp_init_tab (MP mp) ;
26011 @ @<Last-minute...@>=
26012 void mp_init_prim (MP mp) { /* initialize all the primitives */
26016 void mp_init_tab (MP mp) { /* initialize other tables */
26017 integer k; /* all-purpose index */
26018 @<Initialize table entries (done by \.{INIMP} only)@>;
26022 @ When we begin the following code, \MP's tables may still contain garbage;
26023 the strings might not even be present. Thus we must proceed cautiously to get
26026 But when we finish this part of the program, \MP\ is ready to call on the
26027 |main_control| routine to do its work.
26029 @<Get the first line...@>=
26031 @<Initialize the input routines@>;
26032 if ( (mp->mem_ident==NULL)||(mp->buffer[loc]=='&') ) {
26033 if ( mp->mem_ident!=NULL ) {
26034 mp_do_initialize(mp); /* erase preloaded mem */
26036 if ( ! mp_open_mem_file(mp) ) return mp_fatal_error_stop;
26037 if ( ! mp_load_mem_file(mp) ) {
26038 fclose( mp->mem_file); return mp_fatal_error_stop;
26040 fclose( mp->mem_file);
26041 while ( (loc<limit)&&(mp->buffer[loc]==' ') ) incr(loc);
26043 mp->buffer[limit]='%';
26044 mp_fix_date_and_time(mp);
26045 mp->sys_random_seed = (scaled)(mp->get_random_seed)(mp);
26046 mp_init_randoms(mp, mp->sys_random_seed);
26047 @<Initialize the print |selector|...@>;
26048 if ( loc<limit ) if ( mp->buffer[loc]!='\\' )
26049 mp_start_input(mp); /* \&{input} assumed */
26052 @ @<Run inimpost commands@>=
26054 mp_get_strings_started(mp);
26055 mp_init_tab(mp); /* initialize the tables */
26056 mp_init_prim(mp); /* call |primitive| for each primitive */
26057 mp->init_str_use=mp->str_ptr; mp->init_pool_ptr=mp->pool_ptr;
26058 mp->max_str_ptr=mp->str_ptr; mp->max_pool_ptr=mp->pool_ptr;
26059 mp_fix_date_and_time(mp);
26063 @* \[47] Debugging.
26064 Once \MP\ is working, you should be able to diagnose most errors with
26065 the \.{show} commands and other diagnostic features. But for the initial
26066 stages of debugging, and for the revelation of really deep mysteries, you
26067 can compile \MP\ with a few more aids, including the \PASCAL\ runtime
26068 checks and its debugger. An additional routine called |debug_help|
26069 will also come into play when you type `\.D' after an error message;
26070 |debug_help| also occurs just before a fatal error causes \MP\ to succumb.
26072 @^system dependencies@>
26074 The interface to |debug_help| is primitive, but it is good enough when used
26075 with a \PASCAL\ debugger that allows you to set breakpoints and to read
26076 variables and change their values. After getting the prompt `\.{debug \#}', you
26077 type either a negative number (this exits |debug_help|), or zero (this
26078 goes to a location where you can set a breakpoint, thereby entering into
26079 dialog with the \PASCAL\ debugger), or a positive number |m| followed by
26080 an argument |n|. The meaning of |m| and |n| will be clear from the
26081 program below. (If |m=13|, there is an additional argument, |l|.)
26084 @<Last-minute...@>=
26085 void mp_debug_help (MP mp) { /* routine to display various things */
26090 mp_print_nl(mp, "debug # (-1 to exit):"); update_terminal;
26093 fscanf(mp->term_in,"%i",&m);
26097 fscanf(mp->term_in,"%i",&n);
26099 @<Numbered cases for |debug_help|@>;
26100 default: mp_print(mp, "?"); break;
26105 @ @<Numbered cases...@>=
26106 case 1: mp_print_word(mp, mp->mem[n]); /* display |mem[n]| in all forms */
26108 case 2: mp_print_int(mp, info(n));
26110 case 3: mp_print_int(mp, link(n));
26112 case 4: mp_print_int(mp, eq_type(n)); mp_print_char(mp, ':'); mp_print_int(mp, equiv(n));
26114 case 5: mp_print_variable_name(mp, n);
26116 case 6: mp_print_int(mp, mp->internal[n]);
26118 case 7: mp_do_show_dependencies(mp);
26120 case 9: mp_show_token_list(mp, n,null,100000,0);
26122 case 10: mp_print_str(mp, n);
26124 case 11: mp_check_mem(mp, n>0); /* check wellformedness; print new busy locations if |n>0| */
26126 case 12: mp_search_mem(mp, n); /* look for pointers to |n| */
26128 case 13: l = 0; fscanf(mp->term_in,"%i",&l); mp_print_cmd_mod(mp, n,l);
26130 case 14: for (k=0;k<=n;k++) mp_print_str(mp, mp->buffer[k]);
26132 case 15: mp->panicking=! mp->panicking;
26136 @ Saving the filename template
26138 @<Save the filename template@>=
26140 if ( mp->filename_template!=0 ) delete_str_ref(mp->filename_template);
26141 if ( length(mp->cur_exp)==0 ) mp->filename_template=0;
26143 mp->filename_template=mp->cur_exp; add_str_ref(mp->filename_template);
26147 @* \[48] System-dependent changes.
26148 This section should be replaced, if necessary, by any special
26149 modification of the program
26150 that are necessary to make \MP\ work at a particular installation.
26151 It is usually best to design your change file so that all changes to
26152 previous sections preserve the section numbering; then everybody's version
26153 will be consistent with the published program. More extensive changes,
26154 which introduce new sections, can be inserted here; then only the index
26155 itself will get a new section number.
26156 @^system dependencies@>
26159 Here is where you can find all uses of each identifier in the program,
26160 with underlined entries pointing to where the identifier was defined.
26161 If the identifier is only one letter long, however, you get to see only
26162 the underlined entries. {\sl All references are to section numbers instead of
26165 This index also lists error messages and other aspects of the program
26166 that you might want to look up some day. For example, the entry
26167 for ``system dependencies'' lists all sections that should receive
26168 special attention from people who are installing \MP\ in a new
26169 operating environment. A list of various things that can't happen appears
26170 under ``this can't happen''.
26171 Approximately 25 sections are listed under ``inner loop''; these account
26172 for more than 60\pct! of \MP's running time, exclusive of input and output.